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Preface to the Fourth Edition

In this edition two new chapters, 9 and 10, on mathematical finance are
added. They are written by Dr. Farid AitSahlia, ancien éléve, who has
taught such a course and worked on the research staff of several industrial
and financial institutions.

The new text begins with a meticulous account of the uncommon vocab-
ulary and syntax of the financial world; its manifold options and actions,
with consequent expectations and variations, in the marketplace. These are
then expounded in clear, precise mathematical terms and treated by the
methods of probability developed in the earlier chapters. Numerous graded
and motivated examples and exercises are supplied to illustrate the appli-
cability of the fundamental concepts and techniques to concrete financial
problems. For the reader whose main interest is in finance, only a portion
of the first eight chapters is a “prerequisite” for the study of the last two
chapters. Further specific references may be scanned from the topics listed
in the Index, then pursued in more detail.

I have taken this opportunity to fill a gap in Section 8.1 and to expand
Appendix 3 to include a useful proposition on martingale stopped at an
optional time. The latter notion plays a basic role in more advanced finan-
cial and other disciplines. However, the level of our compendium remains
elementary, as befitting the title and scheme of this textbook. We have also
included some up-to-date financial episodes to enliven, for the beginners,
the stratified atmosphere of “strictly business”. We are indebted to Ruth
Williams, who read a draft of the new chapters with valuable suggestions
for improvement; to Bernard Bru and Marc Barbut for information on the
Pareto-Lévy laws originally designed for income distributions. It is hoped
that a readable summary of this renowned work may be found in the new
Appendix 4.

Kai Lai Chung
August 3, 2002
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Prologue to Introduction to
Mathematical Finance

The two new chapters are self-contained introductions to the topics of
mean-variance optimization and option pricing theory. The former covers
a subject that is sometimes labeled “modern portfolio theory” and that is
widely used by money managers employed by large financial institutions.
To read this chapter, one only needs an elementary knowledge of prob-
ability concepts and a modest familiarity with calculus. Also included is
an introductory discussion on stable laws in an applied context, an of-
ten neglected topic in elementary probability and finance texts. The latter
chapter lays the foundations for option pricing theory, a subject that has
fueled the development of finance into an advanced mathematical discipline
as attested by the many recently published books on the subject. It is an
initiation to martingale pricing theory, the mathematical expression of the
so-called “arbitrage pricing theory”, in the context of the binomial random
walk. Despite its simplicity, this model captures the flavors of many ad-
vanced theoretical issues. It is often used in practice as a benchmark for
the approximate pricing of complex financial instruments.

I would like to thank Professor Kai Lai Chung for inviting me to write
the new material for the fourth edition. I would also like to thank my wife
Unnur for her support during this rewarding experience.

Farid AitSahlia
November 1, 2002
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Set

1.1. Sample sets

These days schoolchildren are taught about sets. A second grader* was
asked to name “the set of girls in his class.” This can be done by a complete
list such as:

“Nancy, Florence, Sally, Judy, Ann, Barbara, ... ”
A problem arises when there are duplicates. To distinguish between two
Barbaras one must indicate their family names or call them B; and Bs.
The same member cannot be counted twice in a set.

The notion of a set is common in all mathematics. For instance, in
geometry one talks about “the set of points which are equidistant from a
given point.” This is called a circle. In algebra one talks about “the set of
integers which have no other divisors except 1 and itself.” This is called
the set of prime numbers. In calculus the domain of definition of a function
is a set of numbers, e.g., the interval (a,b); so is the range of a function if
you remember what it means.

In probability theory the notion of a set plays a more fundamental
role. Furthermore we are interested in very general kinds of sets as well as
specific concrete ones. To begin with the latter kind, consider the following
examples:

(a) a bushel of apples;
(b) fifty-five cancer patients under a certain medical treatment;

*My son Daniel.
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(c) all the students in a college;
(d) all the oxygen molecules in a given container;
)
)

(
(

(§]

f

all possible outcomes when six dice are rolled;
all points on a target board.

Let us consider at the same time the following “smaller” sets:

the rotten apples in that bushel;
those patients who respond positively to the treatment;
the mathematics majors of that college;

)
)
)
(d’) those molecules that are traveling upwards;
) those cases when the six dice show different faces;
)

the points in a little area called the “bull’s-eye” on the board.

We shall set up a mathematical model for these and many more such
examples that may come to mind, namely we shall abstract and generalize
our intuitive notion of “a bunch of things.” First we call the things points,
then we call the bunch a space; we prefix them by the word “sample” to
distinguish these terms from other usages, and also to allude to their sta-
tistical origin. Thus a sample point is the abstraction of an apple, a cancer
patient, a student, a molecule, a possible chance outcome, or an ordinary
geometrical point. The sample space consists of a number of sample points
and is just a name for the totality or aggregate of them all. Any one of the
examples (a)—(f) above can be taken to be a sample space, but so also may
any one of the smaller sets in (a’)—(f'). What we choose to call a space [a
universe] is a relative matter.

Let us then fix a sample space to be denoted by €2, the capital Greek
letter omega. It may contain any number of points, possibly infinite but
at least one. (As you have probably found out before, mathematics can be
very pedantic!) Any of these points may be denoted by w, the small Greek
letter omega, to be distinguished from one another by various devices such
as adding subscripts or dashes (as in the case of the two Barbaras if we do
not know their family names), thus wy,ws,w’,... . Any partial collection
of the points is a subset of ), and since we have fixed 2 we will just call
it a set. In extreme cases a set may be € itself or the empty set, which
has no point in it. You may be surprised to hear that the empty set is an
important entity and is given a special symbol (). The number of points in
a set S will be called its size and denoted by |S|; thus it is a nonnegative
integer or co. In particular |§] = 0.

A particular set S is well defined if it is possible to tell whether any
given point belongs to it or not. These two cases are denoted respectively
by

wesS; w¢s.
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Thus a set is determined by a specified rule of membership. For instance, the
sets in (a/)—(f’) are well defined up to the limitations of verbal descriptions.
One can always quibble about the meaning of words such as “a rotten
apple,” or attempt to be funny by observing, for instance, that when dice
are rolled on a pavement some of them may disappear into the sewer. Some
people of a pseudo-philosophical turn of mind get a lot of mileage out of
such caveats, but we will not indulge in them here. Now, one sure way of
specifying a rule to determine a set is to enumerate all its members, namely
to make a complete list as the second grader did. But this may be tedious if
not impossible. For example, it will be shown in §3.1 that the size of the set
in (e) is equal to 6° = 46656. Can you give a quick guess as to how many
pages of a book like this will be needed just to record all these possibilities
of a mere throw of six dice? On the other hand, it can be described in a
systematic and unmistakable way as the set of all ordered 6-tuples of the
form below:

(517 $2,83, 54, S5, 56)

where each of the symbols s;, 1 < j < 6, may be any of the numbers 1, 2,
3, 4, 5, 6. This is a good illustration of mathematics being economy of
thought (and printing space).

If every point of A belongs to B, then A is contained or included in B
and is a subset of B, while B is a superset of A. We write this in one of
the two ways below:

AcCB, BDA.

Two sets are identical if they contain exactly the same points, and then we
write

A=B.

Another way to say this is: A = B if and only if A C B and B C A. This
may sound unnecessarily roundabout to you, but is often the only way
to check that two given sets are really identical. It is not always easy to
identify two sets defined in different ways. Do you know for example that
the set of even integers is identical with the set of all solutions = of the
equation sin(wx/2) = 0?7 We shall soon give some examples of showing the
identity of sets by the roundabout method.

1.2. Operations with sets

We learn about sets by operating on them, just as we learn about num-
bers by operating on them. In the latter case we also say that we compute
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with numbers: add, subtract, multiply, and so on. These operations per-
formed on given numbers produce other numbers, which are called their
sum, difference, product, etc. In the same way, operations performed on
sets produce other sets with new names. We are now going to discuss some
of these and the laws governing them.

Complement. The complement of a set A is denoted by A€ and is the set
of points that do not belong to A. Remember we are talking only about
points in a fixed 2! We write this symbolically as follows:

A= f{w]|w¢ A,

which reads: “A€ is the set of w that does not belong to A.” In particular
Q¢ = () and (¢ = Q. The operation has the property that if it is performed
twice in succession on A, we get A back:

(A°)° = A. (1.2.1)

Union. The union A U B of two sets A and B is the set of points that
belong to at least one of them. In symbols:

AUB={w|weAorwe B}

where “or” means “and/or” in pedantic [legal] style and will always be used
in this sense.

Intersection. The intersection A N B of two sets A and B is the set of
points that belong to both of them. In symbols:

ANB={w|wé€ A and w € B}.

AC

Figure 1
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We hold the truth of the following laws as self-evident:

Commutative Law. AUB=BUA, ANB=BnNA.

Associative Law. (AUB)UC =AU (BUC(C),
(ANB)NC =AN(BNC).

But observe that these relations are instances of identity of sets mentioned
above, and are subject to proof. They should be compared, but not con-
fused, with analogous laws for sum and product of numbers:
a+b=b+a, axb=bxa
(a+b)+c=a+(b+c), (axb)xc=ax(bxc).

Brackets are needed to indicate the order in which the operations are to be
performed. Because of the associative laws, however, we can write

AUBUC, ANnBnCND
without brackets. But a string of symbols like A U B N C is ambiguous,

therefore not defined; indeed (AU B)NC' is not identical with AU(BNC).
You should be able to settle this easily by a picture.

(AUB) NC AU (BNC)

Figure 2
The next pair of distributive laws connects the two operations as follows:

(AUBYNC = (ANC)U (BN C):; (D1)
(ANBYUC = (AUC) N (BUC). (Ds)
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(AUB)NC = (ANC)U(BNC) (ANB)UC = (AUC)N(BUC)
Figure 3

Several remarks are in order. First, the analogy with arithmetic carries over
to (Dl):

(a+b) xc=(axc)+ (bxec);
but breaks down in (Ds):
(axb)+c#(a+c)x(b+c).

Of course, the alert reader will have observed that the analogy breaks down
already at an earlier stage, for

A=AUA=ANA;

but the only number a satisfying the relation a + a = a is 0; while there
are exactly two numbers satisfying a X a = a, namely 0 and 1.

Second, you have probably already discovered the use of diagrams to
prove or disprove assertions about sets. It is also a good practice to see the
truth of such formulas as (D) and (Dz) by well-chosen examples. Suppose
then that

A = inexpensive things, B = really good things,
C = food [edible things].

Then (AUB)NC means “(inexpensive or really good) food,” while (ANC)U
(BN C) means “(inexpensive food) or (really good food).” So they are the
same thing all right. This does not amount to a proof, as one swallow does
not make a summer, but if one is convinced that whatever logical structure
or thinking process involved above in no way depends on the precise nature
of the three things A, B, and C, so much so that they can be anything,
then one has in fact landed a general proof. Now it is interesting that the
same example applied to (Dy) somehow does not make it equally obvious
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(at least to the author). Why? Perhaps because some patterns of logic are
in more common use in our everyday experience than others.

This last remark becomes more significant if one notices an obvious
duality between the two distributive laws. Each can be obtained from the
other by switching the two symbols U and N. Indeed each can be deduced
from the other by making use of this duality (Exercise 11).

Finally, since (D2) comes less naturally to the intuitive mind, we will
avail ourselves of this opportunity to demonstrate the roundabout method
of identifying sets mentioned above by giving a rigorous proof of the for-
mula. According to this method, we must show: (i) each point on the left
side of (D2) belongs to the right side; (ii) each point on the right side of
(D2) belongs to the left side.

(i) Suppose w belongs to the left side of (D3), then it belongs either
to ANBortoC.Ifwée AN B, then w € A, hence w € AU C;
similarly w € B U C'. Therefore w belongs to the right side of (D2).
On the other hand, if w € C', then w € AUC and w € BU C and
we finish as before.

(ii) Suppose w belongs to the right side of (Ds), then w may or may
not belong to C, and the trick is to consider these two alternatives.
If w € C, then it certainly belongs to the left side of (D2). On the
other hand, if w ¢ C, then since it belongs to AUC, it must belong
to A; similarly it must belong to B. Hence it belongs to AN B, and
so to the left side of (D3). Q.E.D.

1.3. Various relations

The three operations so far defined: complement, union, and intersection
obey two more laws called De Morgan’s laws:

(AUB)° = A°N B¢ (C1)
(AN B)° = A°U B“. (Ca)

They are dual in the same sense as (D7) and (Dg) are. Let us check these
by our previous example. If A = inexpensive, and B = really good, then
clearly (A U B)¢ = not inexpensive nor really good, namely high-priced
junk, which is the same as A° N B¢ = inexpensive and not really good.
Similarly we can check (Caz).

Logically, we can deduce either (Cq) or (Cs) from the other; let us show
it one way. Suppose then (Cp) is true, then since A and B are arbitrary
sets we can substitute their complements and get

(A°U B°)® = (A°)° N (B°)° = AN B (1.3.1)
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(ANB)¢ =A% UB®
Figure 4

where we have also used (1.2.1) for the second equation. Now taking the
complements of the first and third sets in (1.3.1) and using (1.2.1) again
we get

A°UB¢= (AN B)“.

This is (Cz2). Q.E.D.

It follows from De Morgan’s laws that if we have complementation, then
either union or intersection can be expressed in terms of the other. Thus
we have

ANB = (A°UB°)°,

AUB = (A°Nn BY)S
and so there is redundancy among the three operations. On the other hand,
it is impossible to express complementation by means of the other two
although there is a magic symbol from which all three can be derived

(Exercise 14). It is convenient to define some other operations, as we now
do.

Difference. The set A\ B is the set of points that belong to A and (but)
not to B. In symbols:

A\B=ANB°={w|we Aandw ¢ B}.

This operation is neither commutative nor associative. Let us find a coun-
terexample to the associative law, namely, to find some A, B, C' for which

(A\B)\C £ A\ (B\O). (1.3.2)
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Figure 5

Note that in contrast to a proof of identity discussed above, a single instance
of falsehood will destroy the identity. In looking for a counterexample one
usually begins by specializing the situation to reduce the “unknowns.” So
try B = C. The left side of (1.3.2) becomes A\ B, while the right side
becomes A\ ) = A. Thus we need only make A\ B # A, and that is easy.

In case A D B we write A — B for A\ B. Using this new symbol we
have

A\B=A-(ANDB)
and
Ac=Q — A.

The operation “—” has some resemblance to the arithmetic operation of
subtracting, in particular A — A = (), but the analogy does not go very far.
For instance, there is no analogue to (a +b) —c=a+ (b —¢).

Symmetric Difference. The set A A B is the set of points that belong
to exactly one of the two sets A and B. In symbols:

AAB=(ANBY)U(A°NB) = (A\ B)U(B\ A).

This operation is useful in advanced theory of sets. As its name indicates,
it is symmetric with respect to A and B, which is the same as saying that it
is commutative. Is it associative? Try some concrete examples or diagrams,
which have succeeded so well before, and you will probably be as quickly
confused as I am. But the question can be neatly resolved by a device to
be introduced in §1.4.
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(AUB)\C AU (B\C)

Figure 6

Having defined these operations, we should let our fancy run free for a
few moments and imagine all kinds of sets that can be obtained by using
them in succession in various combinations and permutations, such as

[(A\ C°) N (BUC)C U (A° A B).

But remember we are talking about subsets of a fixed €2, and if € is a finite
set of a number of distinct subsets is certainly also finite, so there must
be a tremendous amount of interrelationship among these sets that we can
build up. The various laws discussed above are just some of the most basic
ones, and a few more will be given among the exercises below.

An extremely important relation between sets will now be defined. Two
sets A and B are said to be disjoint when they do not intersect, namely,
have no point in common:

ANB=0.
This is equivalent to either one of the following inclusion conditions:
AC B¢ BCA"

Any number of sets are said to be disjoint when every pair of them is
disjoint as just defined. Thus, “A, B, C are disjoint” means more than just
AN BNC = 0; it means

ANB=0, AnC=0, BnC=40.
From here on we will omit the intersection symbol and write simply

AB for ANB
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A, B, C disjoint ANBNC=¢

Figure 7

just as we write ab for a x b. When A and B are disjoint we will write
sometimes

A+ B for AUB.

But be careful: not only does “4” mean addition for numbers but even
when A and B are sets there are other usages of A + B such as their
vectorial sum.

For any set A, we have the obvious decomposition:

Q=A+ A (1.3.3)

The way to think of this is: the set A gives a classification of all points w in
Q according as w belongs to A or to A¢. A college student may be classified
according to whether he is a mathematics major or not, but he can also
be classified according to whether he is a freshman or not, of voting age
or not, has a car or not, ..., is a girl or not. Each two-way classification
divides the sample space into two disjoint sets, and if several of these are
superimposed on each other we get, e.g.,

Q= (A+ A% (B+ B°) = AB+ AB° + A°B+ A°B°,  (1.3.4)
Q= (A+ A°) (B + B%)(C + C°) (1.3.5)
— ABC + ABC® + AB°C + AB°C* + A°BC
+ A°BC® + A°B°C + A°B°C".

Let us call the pieces of such a decomposition the atoms. There are 2,4, 8
atoms respectively above because 1, 2, 3 sets are considered. In general there
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ABC€cC ACBCcC
BC
ABCC ACBCC
ABC ACBC
B
ABCC® ACBCC
A AC
Figure 8

will be 2™ atoms if n sets are considered. Now these atoms have a remark-
able property, which will be illustrated in the case (1.3.5), as follows: no
matter how you operate on the three sets A, B, C, and no matter how many
times you do it, the resulting set can always be written as the union of some
of the atoms. Here are some examples:

AUB = ABC + ABC®+ AB°C + AB°C° + A°BC° + A°BC

(A\ B)\ C° = AB°C
(AA B)C® = AB°C® + A°BC*.

Can you see why?

Up to now we have considered only the union or intersection of a finite
number of sets. There is no difficulty in extending this to an infinite number
of sets. Suppose a finite or infinite sequence of sets A,, n = 1,2,..., is
given, then we can form their union and intersection as follows:

U A, ={w|w € A, for at least one value of n};

n

ﬂAn ={w|w € A, for all values of n}.

When the sequence is infinite these may be regarded as obvious “set limits”
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of finite unions or intersections, thus:
oo m oo m
UAﬂ:hmlJAm ry%zlm,ﬂAw
m—0oQ m— 00
n=1 n=1 n=1 n=1

Observe that as m increases, |J;—; A, does not decrease while (", A,
does not increase, and we may say that the former swells up to Uzozl Ay,
the latter shrinks down to (), —, Ap.

The distributive laws and De Morgan’s laws have obvious extensions to

a finite or infinite sequence of sets. For instance,

O}%)mBLk%mB% (1.3.6)
(ﬂ@):Uﬁ. (1.3.7)

Really interesting new sets are produced by using both union and in-
tersection an infinite number of times, and in succession. Here are the two
most prominent ones:

A9~ Olaw)

These belong to a more advanced course (see [Chung 1, §4.2] of the Refer-
ences). They are shown here as a preview to arouse your curiosity.

1.4. Indicator*

The idea of classifying w by means of a dichotomy: to be or not to be in A,
which we discussed toward the end of §1.3, can be quantified into a useful
device. This device will generalize to the fundamental notion of “random
variable” in Chapter 4.

Imagine € to be a target board and A a certain marked area on the
board as in Examples (f) and (f') above. Imagine that “pick a point w in
" is done by shooting a dart at the target. Suppose a bell rings (or a bulb
lights up) when the dart hits within the area A; otherwise it is a dud. This
is the intuitive picture expressed below by a mathematical formula:

1 fweAd
La(w) = :
AW) L)ﬁng.

*This section may be omitted after the first three paragraphs.
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Figure 9

Thus the symbol 4 is a function that is defined on the whole sample
space €1 and takes only the two values 0 and 1, corresponding to a dud
and a ring. You may have learned in a calculus course the importance of
distinguishing between a function (sometimes called a mapping) and one
of its values. Here it is the function I4 that indicates the set A, hence it is
called the indicator function, or briefly, indicator of A. Another set B has
its indicator Ig. The two functions T4 and I are identical (what does that
mean?) if and only if the two sets are identical.

To see how we can put indicators to work, let us figure out the indicators
for some of the sets discussed before. We need two mathematical symbols
V (cup) and A (cap), which may be new to you. For any two real numbers
a and b, they are defined as follows:

a Vb = maximum of a and b;
(1.4.1)

a A'b = minimum of a and b.

In case a = b, either one of them will serve as maximum as well as minimum.
Now the salient properties of indicators are given by the formulas below:

Ianp(w) = Is(w) A Ip(w) = I4(w) - Ip(w); (1.4.2)
Taup(w) = I4(w) V Ig(w). (1.4.3)
You should have no difficulty checking these equations, after all there are

only two possible values 0 and 1 for each of these functions. Since the
equations are true for every w, they can be written more simply as equations
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(identities) between functions:

Tanp =1aNlp =14-1Ig, (1.4.4)
Iaup =14V Ip. (145)

Here for example the function 4 A I is that mapping that assigns to each
w the value I4(w) A Ig(w), just as in calculus the function f + g is that
mapping that assigns to each z the number f(z) + g(z).

After observing the product I4(w)-Ip(w) at the end of (1.4.2) you may
be wondering why we do not have the sum I4(w)+ Ip(w) in (1.4.3). But if
this were so we could get the value 2 here, which is impossible since the first
member [4,p(w) cannot take this value. Nevertheless, shouldn’t 14 + Ip
mean something? Consider target shooting again but this time mark out
two overlapping areas A and B. Instead of bell-ringing, you get 1 penny if
you hit within A, and also if you hit within B. What happens if you hit
the intersection AB? That depends on the rule of the game. Perhaps you
still get 1 penny, perhaps you get 2 pennies. Both rules are legitimate. In
formula (1.4.3) it is the first rule that applies. If you want to apply the
second rule, then you are no longer dealing with the set A U B alone as in
Figure 10a, but something like Figure 10b:

0]
1 1
2
|,c». uB lA + IB
Figure 10a Figure 10b

This situation can be realized electrically by laying first a uniform
charge over the area A, and then on top of this another charge over the
area B, so that the resulting total charge is distributed as shown in Figure
10b. In this case the variable charge will be represented by the function
I4 + Ip. Such a sum of indicators is a very special case of sum of random
variables, which will occupy us in later chapters.

For the present let us return to formula (1.4.5) and note that if the
two sets A and B are disjoint, then it indeed reduces to the sum of the
indicators, because then at most one of the two indicators can take the
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value 1, so that the maximum coincides with the sum, namely
Ov0O=040, Ov1l=0+1 1v0=1+0.
Thus we have
Inyg=1I4+1Ip provided ANB=4. (1.4.6)
As a particular case, we have for any set A:
Io =14+ 14ec.

Now I, is the constant function 1 (on €2), hence we may rewrite the above
as

Iye =1—1I4. (1.4.7)

We can now derive an interesting formula. Since (A U B)¢ = A°B¢, we get
by applying (1.4.7), (1.4.4) and then (1.4.7) again:

IAule—IAch :1—IACIBC :1—(1—IA)(1—IB)

Multiplying out the product (we are dealing with numerical functions!) and
transposing terms we obtain

Tavg +1ang = 14 + Ip. (1.4.8)

Finally we want to investigate T4 p. We need a bit of arithmetic (also
called number theory) first. All integers can be classified as even or odd,
depending on whether the remainder we get when we divide it by 2 is 0 or
1. Thus each integer may be identified with (or reduced to) 0 or 1, provided
we are only interested in its parity and not its exact value. When integers
are added or subtracted subject to this reduction, we say we are operating
modulo 2. For instance:

5474+8—-14+3=14140—-141=2=0, modulo 2.

A famous case of this method of counting occurs when the maiden picks
off the petals of some wild flower one by one and murmurs: “he loves me,”
“he loves me not” in turn. Now you should be able to verify the following
equation for every w:

IVYN: :IA(w)+IB(w)—2IAB(w) (1.4.9)
=Is(w) + Ip(w), modulo 2.

We can now settle a question raised in §1.3 and establish without pain the
identity:

(AABYAC=ANA(BAC). (1.4.10)
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Proof: Using (1.4.9) twice we have
Itanpyac =Tanp +1Ic = (Ia+ 1) + Ic, modulo 2. (1.4.11)

Now if you have understood the meaning of addition modulo 2 you should
see at once that it is an associative operation (what does that mean, “mod-
ulo 277). Hence the last member of (1.4.11) is equal to

In+(Ip+1c)=1a+Ipac :IAA(BAC); modulo 2.

We have therefore shown that the two sets in (1.4.10) have identical indi-
cators, hence they are identical. Q.E.D.

We do not need this result below. We just want to show that a trick is
sometimes neater than a picture!

Exercises

1. Why is the sequence of numbers {1,2,1, 2,3} not a set?
2. If two sets have the same size, are they then identical?

3. Can a set and a proper subset have the same size? (A proper subset is
a subset that is not also a superset!)

4. If two sets have identical complements, then they are themselves identi-
cal. Show this in two ways: (i) by verbal definition, (ii) by using formula
(1.2.1).

5. If A, B,C have the same meanings as in Section 1.2, what do the fol-
lowing sets mean:

Au(BNC); (A\B)\C; A\(B\C).
6. Show that
(AUB)NC # AU (BNCQC);

but also give some special cases where there is equality.
7. Using the atoms given in the decomposition (1.3.5), express

AUBUC; (AUuB)(BUC); A\B; AAB;

the set of w which belongs to exactly 1 [exactly 2; at least 2] of the sets
A, B,C.

8. Show that A C B if and only if AB = A; or AUB = B. (So the relation
of inclusion can be defined through identity and the operations.)
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9.

10.

11.
*12.

*13.

*14.

15.

16.
17.

18.

19.

Set

Show that A and B are disjoint if and only if A\ B=A4; or AUB =
A A B. (After No. 8 is done, this can be shown purely symbolically
without going back to the verbal definitions of the sets.)

Show that there is a distributive law also for difference:

(A\B)NC = (ANC)\ (BNC).

Is the dual

(AnB)\C=(A\C)N(B\O)
also true?
Derive (D3) from (D;) by using (Cq) and (Cs).
Show that

(AuB)\ (CUD)cC (A\C)U(B\D).
Let us define a new operation “/” as follows:
A/B = A°UB.

Show that
() (A/B)N(B/C)C A/ C;
(i) (A/B)N(A/C)= A/ BC;
(iii) (A/B)n(B/A)=(AA B)-.
In intuitive logic, “A/B” may be read as “A implies B.” Use this to
interpret the relations above.

If you like a “dirty trick” this one is for you. There is an operation
between two sets A and B from which alone all the operations defined
above can be derived. [Hint: It is sufficient to derive complement and
union from it. Look for some combination that contains these two. It
is not unique.]

Show that A C B if and only if I4 < Ig; and AN B = () if and only if
Ialp =0.
Think up some concrete schemes that illustrate formula (1.4.8).

Give a direct proof of (1.4.8) by checking it for all w. You may use the
atoms in (1.3.4) if you want to be well organized.

Show that for any real numbers a and b, we have
a+b=(aVb)+ (aAb).

Use this to prove (1.4.8) again.
Express I4\p and I4_p in terms of I4 and Ip.



Exercises 19

20. Express Iaupuc as a polynomial of I4,Ip,Ic. [Hint: Consider 1 —
TauBuc:]
*21. Show that

Iapc =1a+1Ip+Ic — ITauB — Tauc — Ipuc + TauBuc-

You can verify this directly, but it is nicer to derive it from No. 20 by
duality.
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Probability

2.1. Examples of probability

We learned something about sets in Chapter 1; now we are going to measure
them. The most primitive way of measuring is to count the number, so we
will begin with such an example.

Example 1. In Example (a’) of §1.1, suppose that the number of rotten
apples is 28. This gives a measure to the set A described in (a'), called
its size and denoted by |A|. But it does not tell anything about the total
number of apples in the bushel, namely the size of the sample space )
given in Example (a). If we buy a bushel of apples we are more likely to be
concerned with the relative proportion of rotten ones in it rather than their
absolute number. Suppose then the total number is 550. If we now use the
letter P provisionarily for “proportion,” we can write this as follows:

4] 28
PA) =15 = 555 (2.1.1)

Suppose next that we consider the set B of unripe apples in the same
bushel, whose number is 47. Then we have similarly

_ Bl _ 47

P(B) =2 = .
(B) Q] ~ 550

It seems reasonable to suppose that an apple cannot be both rotten and
unripe (this is really a matter of definition of the two adjectives); then the

20
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two sets are disjoint so their members do not overlap. Hence the number
of “rotten or unripe apples” is equal to the sum of the number of “rotten
apples” and the number of “unripe apples”: 28 + 47 = 75. This may be
written in symbols as:

|A+ B| = |A| +|B|. (2.1.2)
If we now divide through by |Q|, we obtain
P(A+ B)=P(A)+ P(B). (2.1.3)

On the other hand, if some apples can be rotten and unripe at the same
time, such as when worms got into green ones, then the equation (2.1.2)
must be replaced by an inequality:

AU B| < |A| +B],
which leads to
P(AUB) < P(A)+ P(B). (2.1.4)

Now what is the excess of |A| + |B| over |AU B|? It is precisely the number
of “rotten and unripe apples,” that is, |A N B|. Thus

|AUB|+ |ANB|=|A|+|B|,
which yields the pretty equation

P(AUB) + P(AN B) = P(A) + P(B). (2.1.5)

Example 2. A more sophisticated way of measuring a set is the area of a
plane set as in Examples (f) and (') of §1.1, or the volume of a solid. It
is said that the measurement of land areas was the origin of geometry and
trigonometry in ancient times. While the nomads were still counting on
their fingers and toes as in Example 1, the Chinese and Egyptians, among
other peoples, were subdividing their arable lands, measuring them in units
and keeping accounts of them on stone tablets or papyrus. This unit varied
a great deal from one civilization to another (who knows the conversion
rate of an acre into mou’s or hectares?). But again it is often the ratio
of two areas that concerns us as in the case of a wild shot that hits the
target board. The proportion of the area of a subset A to that of 2 may
be written, if we denote the area by the symbol | |:

_ 14

P(A) =15 (2.1.6)
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This means also that if we fix the unit so that the total area of 2 is 1
unit, then the area of A is equal to the fraction P(A) in this scale. Formula
(2.1.6) looks just like formula (2.1.1) by the deliberate choice of notation
in order to underline the similarity of the two situations. Furthermore, for
two sets A and B the previous relations (2.1.3) to (2.1.5) hold equally well
in their new interpretations.

Example 3. When a die is thrown there are six possible outcomes. If
we compare the process of throwing a particular number [face] with
that of picking a particular apple in Example 1, we are led to take
2 =1{1,2,3,4,5,6} and define

1
P({k}) = 5. k=123456. (2.1.7)

Here we are treating the six outcomes as “equally likely,” so that the same
measure is assigned to all of them, just as we have done tacitly with the ap-
ples. This hypothesis is usually implied by saying that the die is “perfect.”
In reality, of course, no such die exists. For instance, the mere marking of
the faces would destroy the perfect symmetry; and even if the die were a
perfect cube, the outcome would still depend on the way it is thrown. Thus
we must stipulate that this is done in a perfectly symmetrical way too, and
so on. Such conditions can be approximately realized and constitute the
basis of an assumption of equal likelihood on grounds of symmetry.

Now common sense demands an empirical interpretation of the “proba-
bility” given in (2.1.7). It should give a measure of what is likely to happen,
and this is associated in the intuitive mind with the observable frequency of
occurrence . Namely, if the die is thrown a number of times, how often will
a particular face appear? More generally, let A be an event determined by
the outcome; e.g., “to throw a number not less than 5 [or an odd number].”
Let N, (A) denote the number of times the event A is observed in n throws;
then the relative frequency of A in these trials is given by the ratio

Nn(A)

Qn(A4) = (2.1.8)
There is good reason to take this @, as a measure of A. Suppose B is
another event such that A and B are incompatible or mutually exclusive
in the sense that they cannot occur in the same trial. Clearly we have
N,n(A+ B) = N,(A) + N,,(B), and consequently

Quia+p) = LD
_ M)+ Nu(B) _ Nold) |, NulB) _ 4y 0 (B).

(2.1.9)
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Similarly for any two events A and B in connection with the same game,
not necessarily incompatible, the relations (2.1.4) and (2.1.5) hold with the
P’s there replaced by our present @,,. Of course, this @,, depends on n and
will fluctuate, even wildly, as n increases. But if you let n go to infinity,
will the sequence of ratios @, (A4) “settle down to a steady value”? Such a
question can never be answered empirically, since by the very nature of a
limit we cannot put an end to the trials. So it is a mathematical idealization
to assume that such a limit does exist, and then write

Q(4) = lim Q. (A). (2.1.10)

We may call this the empirical limiting frequency of the event A. If you
know how to operate with limits, then you can see easily that the relation
(2.1.9) remains true “in the limit.” Namely when we let n — oo everywhere
in that formula and use the definition (2.1.10), we obtain (2.1.3) with P
replaced by Q. Similarly, (2.1.4) and (2.1.5) also hold in this context.

But the limit @ still depends on the actual sequence of trials that are
carried out to determine its value. On the face of it, there is no guarantee
whatever that another sequence of trials, even if it is carried out under the
same circumstances, will yield the same value. Yet our intuition demands
that a measure of the likelihood of an event such as A should tell something
more than the mere record of one experiment. A viable theory built on the
frequencies will have to assume that the @@ defined above is in fact the same
for all similar sequences of trials. Even with the hedge implicit in the word
“similar,” that is assuming a lot to begin with. Such an attempt has been
made with limited success, and has a great appeal to common sense, but we
will not pursue it here. Rather, we will use the definition in (2.1.7) which
implies that if A is any subset of Q and |A| its size, then

_ Al Al

P(A) = Q=6 (2.1.11)

For example, if A is the event “to throw an odd number,” then A is iden-
tified with the set {1,3,5} and P(A) =3/6 =1/2.

It is a fundamental proposition in the theory of probability that un-
der certain conditions (repeated independent trials with identical die), the
limiting frequency in (2.1.10) will indeed exist and be equal to P(A) de-
fined in (2.1.11), for “practically all” conceivable sequences of trials. This
celebrated theorem, called the Law of Large Numbers, is considered to be
the cornerstone of all empirical sciences. In a sense it justifies the intuitive
foundation of probability as frequency discussed above. The precise state-
ment and derivation will be given in Chapter 7. We have made this early
announcement to quiet your feelings or misgivings about frequencies and
to concentrate for the moment on sets and probabilities in the following
sections.



24 Probability
2.2. Definition and illustrations

First of all, a probability is a number associated with or assigned to a set
in order to measure it in some sense. Since we want to consider many sets
at the same time (that is why we studied Chapter 1), and each of them will
have a probability associated with it, this makes probability a “function
of sets.” You should have already learned in some mathematics course
what a function means; in fact, this notion is used a little in Chapter 1.
Nevertheless, let us review it in the familiar notation: a function f defined
for some or all real numbers is a rule of association, by which we assign
the number f(x) to the number x. It is sometimes written as f(-), or more
painstakingly as follows:

fixz— fx). (2.2.1)

So when we say a probability is a function of sets we mean a similar asso-
ciation, except that x is replaced by a set S:

P:S— P(S). (2.2.2)

The value P(S) is still a number; indeed it will be a number between 0 and
1. We have not been really precise in (2.2.1), because we have not specified
the set of x there for which it has a meaning. This set may be the interval
(a, b) or the half-line (0, 00) or some more complicated set called the domain
of f. Now what is the domain of our probability function P? It must be a set
of sets or, to avoid the double usage, a family (class) of sets. As in Chapter 1
we are talking about subsets of a fixed sample space §2. It would be nice
if we could use the family of all subsets of 2, but unexpected difficulties
will arise in this case if no restriction is imposed on 2. We might say that
if © is too large, namely when it contains uncountably many points, then
it has too many subsets, and it becomes impossible to assign a probability
to each of them and still satisfy a basic rule [Axiom (ii*) ahead] governing
the assignments. However, if ) is a finite or countably infinite set, then
no such trouble can arise and we may indeed assign a probability to each
and all of its subsets. This will be shown at the beginning of §2.4. You are
supposed to know what a finite set is (although it is by no means easy to
give a logical definition, while it is mere tautology to say that “it has only
a finite number of points”); let us review what a countably infinite set is.
This notion will be of sufficient importance to us, even if it only lurks in
the background most of the time.

A set is countably infinite when it can be put into 1-to-1 correspondence
with the set of positive integers. This correspondence can then be exhibited
by labeling the elements as {s1, 82, ... , Sn, ... }. There are, of course, many
ways of doing this, for instance we can just let some of the elements swap
labels (or places if they are thought of being laid out in a row). The set of
positive rational numbers is countably infinite, hence they can be labeled
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in some way as {ri,r2,...,7n,...}, but don’t think for a moment that
you can do this by putting them in increasing order as you can with the
positive integers 1 < 2 < -+ < n < ---. From now on we shall call a set

countable when it is either finite or countably infinite. Otherwise it is called
uncountable. For example, the set of all real numbers is uncountable. We
shall deal with uncountable sets later, and we will review some properties
of a countable set when we need them. For the present we will assume the
sample space €) to be countable in order to give the following definition in
its simplest form, without a diverting complication. As a matter of fact, we
could even assume {2 to be finite as in Examples (a) to (e) of §1.1, without
losing the essence of the discussion below.
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Definition. A probability measure on the sample space € is a function of
subsets of  satisfying three axioms:

(i) For every set A C (2, the value of the function is a nonnegative
number: P(A4) > 0.

(ii) For any two disjoint sets A and B, the value of the function for
their union A 4+ B is equal to the sum of its value for A and its
value for B:

P(A+ B) = P(A)+ P(B) provided AB=1.
(iii) The value of the function for Q (as a subset) is equal to 1:

P(Q) =1.

Observe that we have been extremely careful in distinguishing the func-
tion P(-) from its values such as P(A), P(B), P(A + B), P(Q2). Each of
these is “a probability,” but the function itself should properly be referred
to as a “probability measure” as indicated.

Example 1 in §2.1 shows that the proportion P defined there is in fact
a probability measure on the sample space, which is a bushel of 550 apples.
It assigns a probability to every subset of these apples, and this assignment
satisfies the three axioms above. In Example 2 if we take  to be all the
land that belonged to the Pharaoh, it is unfortunately not a countable set.
Nevertheless we can define the area for a very large class of subsets that
are called “measurable,” and if we restrict ourselves to these subsets only,
the “area function” is a probability measure as shown in Example 2 where
this restriction is ignored. Note that Axiom (iii) reduces to a convention:
the decree of a unit. Now how can a land area not be measurable? While
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this is a sophisticated mathematical question that we will not go into in
this book, it is easy to think of practical reasons for the possibility: the
piece of land may be too jagged, rough, or inaccessible (see Fig. 13).
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In Example 3 we have shown that the empirical relative frequency is
a probability measure. But we will not use this definition in this book.
Instead, we will use the first definition given at the beginning of Example
3, which is historically the earliest of its kind. The general formulation will
now be given.

Example 4. A classical enunciation of probability runs as follows. The
probability of an event is the ratio of the number of cases favorable to that
event to the total number of cases, provided that all these are equally likely

To translate this into our language: the sample space is a finite set of
possible cases: {w1,wa, ... ,wn}, each w; being a “case.” An event A is a
subset {wj,, Wiy, ... Wi, }, each w;; being a “favorable case.” The probabil-
ity of A is then the ratio

P(A) = % == (2.2.3)

As we see from the discussion in Example 1, this defines a probability
measure P on () anyway, so that the stipulation above that the cases be
equally likely is superfluous from the axiomatic point of view. Besides, what
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does it really mean? It sounds like a bit of tautology, and how is one going
to decide whether the cases are equally likely or not?

A celebrated example will illustrate this. Let two coins be tossed.
D’Alembert (mathematician, philosopher, and encyclopedist, 1717-83)
argued that there are three possible cases, namely:

(i) both heads, (ii) both tails, (iii) a head and a tail.

So he went on to conclude that the probability of “a head and a tail” is
equal to 1/3. If he had figured that this probability should have something
to do with the experimental frequency of the occurrence of the event, he
might have changed his mind after tossing two coins more than a few times.
(History does not record if he ever did that, but it is said that for centuries
people believed that men had more teeth than women because Aristotle
had said so, and apparently nobody bothered to look into a few mouths.)
The three cases he considered are not equally likely. Case (iii) should be
split into two:

(iiia) first coin shows head and second coin shows tail.
(iiib) first coin shows tail and second coin shows head.

It is the four cases (i), (ii), (iiia) and (iiib) that are equally likely by sym-
metry and on empirical evidence. This should be obvious if we toss the
two coins one after the other rather than simultaneously. However, there
is an important point to be made clear here. The two coins may be physi-
cally indistinguishable so that in so far as actual observation is concerned,
D’Alembert’s three cases are the only distinct patterns to be recognized.
In the model of two coins they happen not to be equally likely on the basis
of common sense and experimental evidence. But in an analogous model
for certain microcosmic particles, called Bose-Einstein statistics (see Ex-
ercise 24 of Chapter 3), they are indeed assumed to be equally likely in
order to explain some types of physical phenomena. Thus what we regard
as “equally likely” is a matter outside the axiomatic formulation. To put it
another way, if we use (2.2.3) as our definition of probability then we are
in effect treating the w’s as equally likely, in the sense that we count only
their numbers and do not attach different weights to them.

Example 5. If six dice are rolled, what is the probability that all show
different faces?

This is just Example (e) and (e’). It is stated elliptically on purpose to
get you used to such problems. We have already mentioned that the total
number of possible outcomes is equal to 6% = 46656. They are supposed to
be all “equally likely” although we never breathed a word about this as-
sumption. Why, nobody can solve the problem as announced without such
an assumption. Other data about the dice would have to be given before we
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could begin—which is precisely the difficulty when similar problems arise
in practice. Now if the dice are all perfect, and the mechanism by which
they are rolled is also perfect, which excludes any collusion between the
movements of the several dice, then our hypothesis of equal likelihood may
be justified. Such conditions are taken for granted in a problem like this
when nothing is said about the dice. The solution is then given by (2.2.3)
with n = 6% and m = 6! (see Example 2 in §3.1 for these computations):

6! 720

— = —— =.015432
65 46656

approximately.

Let us note that if the dice are not distinguishable from each other,
then to the observer there is exactly one pattern in which the six dice show
different faces. Similarly, the total number of different patterns when six
dice are rolled is much smaller than 6% (see Example 3 of §3.2). Yet when we
count the possible outcomes we must think of the dice as distinguishable,
as if they were painted in different colors. This is one of the vital points to
grasp in the counting cases; see Chapter 3.

In some situations the equally likely cases must be searched out. This
point will be illustrated by a famous historical problem called the “problem
of points.”

Example 6. Two players A and B play a series of games in which the
probability of each winning a single game is equal to 1/2, irrespective [in-
dependent] of the outcomes of other games. For instance, they may play
tennis in which they are equally matched, or simply play “heads or tails”
by tossing an unbiased coin. Each player gains a “point” when he wins a
game, and nothing when he loses. Suppose that they stop playing when
A needs 2 more points and B needs 3 more points to win the stake. How
should they divide it fairly?

It is clear that the winner will be decided in 4 more games. For in those
4 games either A will have won >2 points or B will have won >3 points,
but not both. Let us enumerate all the possible outcomes of these 4 games
using the letter A or B to denote the winner of each game:

AAAA AAAB AABB ABBB BBBB
AABA ABAB BABB
ABAA ABBA BBAB
BAAA BAAB BBBA
BABA
BBAA
These are equally likely cases on grounds of symmetry. There are* (i) +

(g) + (3) = 11 cases in which A wins the stake; and (g) + (i) = b cases

*See (3.2.3) for notation used below.
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in which B wins the stake. Hence the stake should be divided in the ratio
11:5. Suppose it is $64000; then A gets $44000, B gets $20000. [We are
taking the liberty of using the dollar as currency; the United States did not
exist at the time when the problem was posed.]

This is Pascal’s solution in a letter to Fermat dated August 24, 1654
. [Blaise Pascal (1623-62); Pierre de Fermat (1601-65); both among the
greatest mathematicians of all time.] Objection was raised by a learned
contemporary (and repeated through the ages) that the enumeration above
was not reasonable, because the series would have stopped as soon as the
winner was decided and not have gone on through all 4 games in some
cases. Thus the real possibilities are as follows:

AA ABBB
ABA  BABB
ABBA BBAB
BAA  BBB
BABA
BBAA

But these are not equally likely cases. In modern terminology, if these 10
cases are regarded as constituting the sample space, then

1

P(AA) =, P(ABA)=P(BAA) = P(BBB) = ¢,

)

W] =

P(ABBA) = P(BABA) = P(BBAA) = P(ABBB)

— P(BABB) = P(BBAB) — %

since A and B are independent events with probability 1/2 each (see §2.4).
If we add up these probabilities we get of course

1 1 1 1 1 1 11
P(AWlnStheStake):Z+§+E+§+E+E:E7

1 1 1 1 5
P(B wins the stake) = 1_6+1_6+E+§ =

Pascal did not quite explain his method this way, saying merely that “it
is absolutely equal and indifferent to each whether they play in the natural
way of the game, which is to finish as soon as one has his score, or whether
they play the entire four games.” A later letter by him seems to indicate
that he fumbled on the same point in a similar problem with three players.
The student should take heart that this kind of reasoning was not easy
even for past masters.
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2.3. Deductions from the axioms

In this section we will do some simple “axiomatics.” That is to say, we
shall deduce some properties of the probability measure from its definition,
using, of course, the axioms but nothing else. In this respect the axioms
of a mathematical theory are like the constitution of a government. Unless
and until it is changed or amended, every law must be made to follow from
it. In mathematics we have the added assurance that there are no divergent
views as to how the constitution should be construed.

We record some consequences of the axioms in (iv) to (viii) below. First
of all, let us show that a probability is indeed a number between 0 and 1.

(iv) For any set A, we have
P(A) <1

This is easy, but you will see that in the course of deducing it we shall
use all three axioms. Consider the complement A€ as well as A. These two
sets are disjoint and their union is :

A+ A =Q. (2.3.1)

So far, this is just set theory, no probability theory yet. Now use Axiom
(ii) on the left side of (2.3.1) and Axiom (iii) on the right:

P(A)+ P(A°) = P(Q) =1. (2.3.2)
Finally use Axiom (i) for A¢ to get
P(A)=1-P(A°) < 1.

Of course, the first inequality above is just Axiom (i). You might object
to our slow pace above by pointing out that since A is contained in €, it
is obvious that P(A) < P(Q) = 1. This reasoning is certainly correct, but
we still have to pluck it from the axioms, and that is the point of the little
proof above. We can also get it from the following more general proposition.

(v) For any two sets such that A C B, we have
P(A) < P(B), and P(B— A) = P(B) — P(A).

The proof is an imitation of the preceding one with B playing the role
of 2. We have

B=A+(B- A,
P(B) = P(A) + P(B — A) > P(A).
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The next proposition is such an immediate extension of Axiom (ii) that
we could have adopted it instead as an axiom.

(vi) For any finite number of disjoint sets A4,... , A,, we have
P(Al_l’_+A“):P(A1)+-—|—P(An)~ (2.3.3)

This property of the probability measure is called finite additivity . It
is trivial if we recall what “disjoint” means and use (ii) a few times; or
we may proceed by induction if we are meticulous. There is an important
extension of (2.3.3) to a countable number of sets later, not obtainable by
induction!

As already checked in several special cases, there is a generalization of
Axiom (ii), hence also of (2.3.3), to sets that are not necessarily disjoint.
You may find it trite, but it has the dignified name of Boole’s inequality.
Boole (1815-64) was a pioneer in the “laws of thought” and author of
Theories of Logic and Probabilities.

(vii) For any finite number of arbitrary sets A44,..., A,, we have

P(AjU---UA,) < P(A1) + -+ P(Ay). (2.3.4)

Let us first show this when n = 2. For any two sets A and B, we can
write their union as the sum of disjoint sets as follows:

AUB=A+ A°B. (2.3.5)
Now we apply Axiom (ii) to get
P(AUB)=P(A)+ P(A°B). (2.3.6)

Since A°B C B, we can apply (v) to get (2.3.4).

The general case follows easily by mathematical induction, and you
should write it out as a good exercise on this method. You will find that
you need the associative law for the union of sets as well as that for the
addition of numbers.

The next question is the difference between the two sides of the inequal-
ity (2.3.4). The question is somewhat moot since it depends on what we
want to use to express the difference. However, when n = 2 there is a clear
answer.

(viii) For any two sets A and B, we have

P(AUB) + P(AN B) = P(A) + P(B). (2.3.7)
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This can be gotten from (2.3.6) by observing that A°B = B — AB, so
that we have by virtue of (v):

P(AUB) = P(A) + P(B — AB) = P(A) + P(B) — P(AB),

which is equivalent to (2.3.7). Another neat proof is given in Exercise 12.
We shall postpone a discussion of the general case until §6.2. In practice,
the inequality is often more useful than the corresponding identity which
is rather complicated.
We will not quit formula (2.3.7) without remarking on its striking re-
semblance to formula (1.4.8) of §1.4, which is repeated below for the sake
of comparison:

ITaup +1anp = Ia + Ip. (2.3.8)

There is indeed a deep connection between the pair, as follows. The proba-
bility P(S) of each set S can be obtained from its indicator function Ig by
a procedure (operation) called “taking expectation” or “integration.” If we
perform this on (2.3.8) term by term, their result is (2.3.7). This procedure
is an essential part of probability theory and will be thoroughly discussed
in Chapter 6. See Exercise 19 for a special case.

To conclude our axiomatics, we will now strengthen Axiom (ii) or its
immediate consequence (vi), namely the finite additivity of P, into a new
axiom.

(ii*) Axiom of countable additivity . For a countably infinite collection
of disjoint sets Ag, k=1,2,..., we have

P (i Ak> - iP(Ak). (2.3.9)
k=1 k=1

This axiom includes (vi) as a particular case, for we need only put
A = 0 for k > n in (2.3.9) to obtain (2.3.3). The empty set is disjoint
from any other set including itself and has probability zero (why?). If Q is
a finite set, then the new axiom reduces to the old one. But it is important
to see why (2.3.9) cannot be deduced from (2.3.3) by letting n — oo. Let
us try this by rewriting (2.3.3) as follows:

P (zn: Ak> = zn: P(Ap). (2.3.10)
k=1 k=1

Since the left side above cannot exceed 1 for all n, the series on the right
side must converge and we obtain

lim P <zn: Ak> = nllngozn:P(Ak) =" P(Ay). (2.3.11)
k=1 k=1 k

=1
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Comparing this established result with the desired result (2.3.9), we see
that the question boils down to

lim P (ZAk> =P (ZAk> :
e k=1 k=1
which can be exhibited more suggestively as
lim P (Z Ak> =P ( lim ZAk> . (2.3.12)
k=1 k=1

See end of §1.3 (see Fig. 14).

Figure 14

Thus it is a matter of interchanging the two operations “lim” and “P” in
(2.3.12), or you may say, “taking the limit inside the probability relation.”
If you have had enough calculus you know this kind of interchange is often
hard to justify and may be illegitimate or even invalid. The new axiom is
created to secure it in the present case and has fundamental consequences
in the theory of probability.
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2.4. Independent events

From now on, a “probability measure” will satisfy Axioms (i), (ii*), and
(iii). The subsets of Q to which such a probability has been assigned will
also be called an event.

We shall show how easy it is to construct probability measures for any
countable space Q = {w1,wa,... ,wn,...}. To each sample point w,, let us
attach an arbitrary “weight” p, subject only to the conditions

Vn: pn >0, pp=L (2.4.1)

This means that the weights are positive or zero, and add up to 1 altogether.
Now for any subset A of €2, we define its probability to be the sum of the
weights of all the points in it. In symbols, we put first

Yn: P({wn}) = Dn; (2.4.2)

and then for every A C (2

PA) =Y pu= 3 P{wn}).

wn€A wnp€A

We may write the last term above more neatly as

P(A)=>" P({w}). (2.4.3)

weA

Thus P is a function defined for all subsets of 2 and it remains to check
that it satisfies Axioms (i), (ii*), and (iii). This requires nothing but a bit
of clearheaded thinking and is best done by yourself. Since the weights
are quite arbitrary apart from the easy conditions in (2.4.1), you see that
probability measures come “a dime a dozen” in a countable sample space.
In fact, we can get them all by the above method of construction. For
if any probability measure P is given, never mind how, we can define p,
to be P({w,}) as in (2.4.2), and then P(A) must be given as in (2.4.3),
because of Aziom (ii*). Furthermore the p,’s will satisfy (2.4.1) as a simple
consequence of the axioms. In other words, any given P is necessarily of
the type described by our construction.

In the very special case that () is finite and contains exactly m points,
we may attach equal weights to all of them, so that

Pn=—, n=12... m.
m

Then we are back to the “equally likely” situation in Example 4 of §2.2.
But in general the p,’s need not be equal, and when 2 is countably infinite
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they cannot all be equal (why?). The preceding discussion shows the degree
of arbitrariness involved in the general concept of a probability measure.

An important model of probability space is that of repeated independent
trials : this is the model used when a coin is tossed, a die thrown, a card
drawn from a deck (with replacement) several times. Alternately, we may
toss several coins or throw several dice at the same time. Let us begin with
an example.

Example 7. First toss a coin, then throw a die, finally draw a card from
a deck of poker cards. Each trial produces an event; let

A = coin falls heads;
B = die shows number 5 or 6;

C = card drawn is a spade.

Assume that the coin is fair, the die is perfect, and the deck thoroughly
shuffled. Furthermore assume that these three trials are carried out “inde-
pendently” of each other, which means intuitively that the outcome of each
trial does not influence that of the others. For instance, this condition is
approximately fulfilled if the trials are done by different people in different
places, or by the same person in different months! Then all possible joint
outcomes may be regarded as equally likely. There are respectively 2, 6, and
52 possible cases for the individual trials, and the total number of cases for
the whole set of trials is obtained by multiplying these numbers together:
2-6-52 (as you will soon see it is better not to compute this product).
This follows from a fundamental rule of counting, which is fully discussed
in §3.1 and which you should read now if need be. [In general, many parts
of this book may be read in different orders, back and forth.] The same
rule yields the numbers of favorable cases to the events A, B, C', AB, AC,
BC, ABC given below, where the symbol |...| for size is used:

|A|=1-6-52, |B|=2-2-52, |C|=2-6-13,
|AB|=1-2-52, |AC|=1-6-13, |BC|=2-2-13,
|ABC|=1-2-13.

Dividing these numbers by |Q2| = 2-6-52, we obtain after quick cancellation
of factors:

PUA)=3,  PB)=3 PC)=7
P(AB) = %, P(AC) = é, P(BC) = %,
P(ABC) = —

()
g
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We see at a glance that the following set of equations holds:

P(AB) = P(A)P(B), P(AC) = P(A)P(C), P(BC) = P(B)P(C) (2.4.4)
P(ABC) = P(A)P(B)P(C).

The reader is now asked to convince himself that this set of relations will
also hold for any three events A, B,C' such that A is determined by the
coin, B by the die, and C by the card drawn alone. When this is the case
we say that these trials are stochastically independent as well as the events
so produced. The adverb “stochastically” is usually omitted for brevity.

The astute reader may observe that we have not formally defined the
word “trial,” and yet we are talking about independent trials! A logical
construction of such objects is quite simple but perhaps a bit too abstract
for casual introduction. It is known as “product space”; see Exercise 29.
However, it takes less fuss to define “independent events” and we shall do
so at once.

Two events A and B are said to be independent if we have P(AB) =
P(A)P(B). Three events A, B, and C are said to be independent if the
relations in (2.4.4) hold. Thus independence is a notion relative to a given
probability measure (by contrast, the notion of disjointness, e.g., does not
depend on any probability). More generally, the n events Aj, As, ..., A,
are independent if the intersection [joint occurrence] of any subset of them
has as its probability the product of probabilities of the individual events.
If you find this sentence too long and involved, you may prefer the following

symbolism. For any subset (i1,%2,... %) of (1,2,...,n), we have
P(A;, NA,N---NA;)=P(A4;,)P(A;,) - P(A;). (2.4.5)
Of course, here the indices i1, ... ,i; are distinct and 1 < k < n.

Further elaboration of the notion of independence is postponed to §5.5,
because it will be better explained in terms of random variables. But we
shall briefly describe a classical scheme—the grand daddy of repeated trials,
and subject of intensive and extensive research by J. Bernoulli, De Moivre,
Laplace, ..., Borel, ... .

Example 8. (The coin-tossing scheme). A coin is tossed repeatedly n
times. The joint outcome may be recorded as a sequence of H’s and T’s,
where H = “head,” T = “tail.” It is often convenient to quantify by putting
H=1,T=0;or H=1,T = —1; we shall adopt the first usage here. Then
the result is a sequence of 0’s and 1’s consisting of n terms such as 110010110
with n = 9. Since there are 2 outcomes for each trial, there are 2" possible
joint outcomes. This is another application of the fundamental rule in §3.1.
If all of these are assumed to be equally likely so that each particular joint
outcome has probability 1/2", then we can proceed as in Example 7 to
verify that the trials are independent and the coin is fair. You will find this
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a dull exercise, but it is recommended that you go through it in your head
if not on paper. However, we will turn the table around here by assuming
at the outset that the successive tosses do form independent trials. On the
other hand, we do not assume the coin to be “fair,” but only that the
probabilities for head (H) and tail (T') remain constant throughout the
trials. Empirically speaking, this is only approximately true since things
do not really remain unchanged over long periods of time. Now we need
a precise notation to record complicated statements, ordinary words being
often awkward or ambiguous. Then let X; denote the outcome of the ith
trial and let ¢; denote 0 or 1 for each i, but of course varying with the
subscript. Then our hypothesis above may be written as follows:

PX;=1)=p;, P(X;=0)=1-p; i=12,...,m; (2.4.6)

where p is the probability of heads for each trial. For any particular, namely
completely specified, sequence (€1, €a, . .. , €,) of 0’s and 1’s, the probability
of the corresponding sequence of outcomes is equal to

PXi=€,Xo=€,..., X, =¢,)

(2.4.7)
:P(Xl :Gl)P(XQ :62)P<Xn :Gn)

as a consequence of independence. Now each factor on the right side above
is equal to p or 1 — p depending on whether the corresponding ¢; is 1 or 0.
Suppose j of these are 1’s and n — j are 0’s; then the quantity in (2.4.7) is
equal to

pP(1—p)". (2.4.8)

Observe that for each sequence of trials, the number of heads is given by
the sum Y | X;. It is important to understand that the number in (2.4.8)
is not the probability of obtaining j heads in n tosses, but rather that
of obtaining a specific sequence of heads and tails in which there are j
heads. In order to compute the former probability, we must count the total
number of the latter sequences since all of them have the same probability
given in (2.4.8). This number is equal to the binomial coefficient (?), see

§3.2 for a full discussion. Each one of these (") sequences corresponds to
one possibility of obtaining j heads in n trials, and these possibilities are
disjoint. Hence it follows from the additivity of P that we have

n
P (Z X; = j) = P(exactly j heads in n trials)
i=1

= (n) P(any specified sequence of n trials with exactly j heads)
J

= (?)pj(l —p)" .
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This famous result is known as Bernoulli’s formula. We shall return to it
many times in the book.

2.5. Arithmetical density*
We study in this section a very instructive example taken from arithmetic.

Example 9. Let Q be the first 120 natural numbers {1,2,... ,120}. For
the probability measure P we use the proportion as in Example 1 of §2.1.
Now consider the sets

A ={w | w is a multiple of 3},

B = {w | w is a multiple of 4}.

Then every third number of 2 belongs to A, and every fourth to B. Hence
we get the proportions

P(A)=1/3, P(B)=1/4.

What does the set AB represent? It is the set of integers that are divisible
by 3 and by 4. If you have not entirely forgotten your school arithmetic,
you know this is just the set of multiples of 3-4 = 12. Hence P(AB) = 1/12.
Now we can use (viii) to get P(AU B):

P(AUB) = P(A)+ P(B) — P(AB) =1/3+1/4—1/12=1/2. (255.1)

What does this mean? A U B is the set of those integers in 2 which are
divisible by 3 or by 4 (or by both). We can count them one by one, but
if you are smart you see that you don’t have to do this drudgery. All you
have to do is to count up to 12 (which is 10% of the whole population ),
and check them off as shown:
1,2,3,4,5,6,7,8,9,10, 11, 12.
Vv vy v

v

Six are checked (one checked twice), hence the proportion of AU B among
these 12 is equal to 6/12 = 1/2 as given by (2.5.1).

An observant reader will have noticed that in the case above we have
also

P(AB) =1/12 = 1/3-1/4 = P(A) - P(B).

*This section may be omitted.



40 Probability

This is true because the two numbers 3 and 4 happen to be relatively
prime, namely they have no common divisor except 1. Suppose we consider
another set:

C = {w | w is a multiple of 6}.

Then P(C) = 1/6, but what is P(BC) now? The set BC' consists of those
integers that are divisible by both 4 and 6, namely divisible by their least
common multiple (remember that?), which is 12 and not the product 4-6 =
24. Thus P(BC) = 1/12. Furthermore, because 12 is the least common
multiple we can again stop counting at 12 in computing the proportion of
the set BUC'. An actual counting gives the answer 4/12 = 1/3, which may
also be obtained from the formula (2.3.7):

P(BUC) = P(B)+P(C)— P(BC)=1/4+1/6—1/12=1/3. (2.5.2)

This example illustrates a point that arose in the discussion in Example
3 of §2.1. Instead of talking about the proportion of the multiples of 3, say,
we can talk about its frequency. Here no rolling of any fortuitous dice is
needed. God has given us those natural numbers (a great mathematician
Kronecker said so), and the multiples of 3 occur at perfectly regular periods
with the frequency 1/3. In fact, if we use N,,(A4) to denote the number of
natural numbers up to and including n which belong to the set A, it is a
simple matter to show that

N,
lim —= (4) = E .
n—0o0 n 3

Let us call this P(A), the limiting frequency of A. Intuitively, it should
represent the chance of picking a number divisible by 3, if we can reach into
the whole bag of natural numbers as if they were so many indistinguishable
balls in an urn. Of course, similar limits exist for the sets B, C, AB, BC,
etc. and have the values computed above. But now with this infinite sample
space of “all natural numbers,” call it ¥, we can treat by the same method
any set of the form

Ay = {w | w is divisible by m}, (2.5.3)

where m is an arbitrary natural number. Why then did we not use this
more natural and comprehensive model?

The answer may be a surprise for you. By our definition of probability
measure given in §2.2, we should have required that every subset of Q* have
a probability, provided that 2* is countable, which is the case here. Now
take for instance the set that consists of the single number {1971} or, if you
prefer, the set Z = {all numbers from 1 to 1971}. Its probability is given
by lim,, 0o Np(Z)/n according to the same rule that was applied to the set



2.5 Arithmetical density 41

A. But N,(Z) is equal to 1971 for all values of n > 1971; hence the limit
above is equal to 0 and we conclude that every finite set has probability 0
by this rule. If P were to be countably additive as required by Axiom (ii*)
in §2.3, then P(Q*) would be 0 rather than 1. This contradiction shows
that P cannot be a probability measure on 2*. Yet it works perfectly well
for sets such as A4,,.

There is a way out of this paradoxical situation. We must abandon
our previous requirement that the measure be defined for all subsets (of
natural numbers). Let a finite number of the sets A,, be given, and let
us consider the composite sets that can be obtained from these by the
operations complementation, union, and intersection. Call this class of sets
the class generated by the original sets. Then it is indeed possible to define
P in the manner prescribed above for all sets in this class. A set that is
not in the class has no probability at all. For example, the set Z does
not belong to the class generated by A, B, C. Hence its probability is not
defined, rather than zero. We may also say that the set Z is nonmeasurable
in the context of Example 2 of §2.1. This saves the situation, but we will
not pursue it further here except to give another example.

Example 10. What is the probability of the set of numbers divisible by
3, not divisible by 5, and divisible by 4 or 67

Using the preceding notation, the set in question is AD*(BUC), where
D = Aj. Using distributive law, we can write this as AD°B U ADC. We
also have

(AD°B)(ADC) = AD°BC = ABC — ABCD.

Hence by (v),

1 1 1

P(AD*BC) = P(ABC)— P(ABCD) = — — — = —.
Similarly, we have
ey — 1 1t 41
P(AD°B) = P(AB) — P(ABD) = 13 60— 60 15’
1 1 4 2
P(AD°C)=P(AC) - P(ACD) == — — = — = —.
( ) (4) (ACD) 6 30 30 15

Finally we obtain by (viii):

P(AD°B U AD°C) = P(AD°B) + P(AD°C) — P(AD°BC)
2 12
15 15 15 15

You should check this using the space €2 in Example 9.



42 Probability

The problem can be simplified by a little initial arithmetic, because the
set in question is seen to be that of numbers divisible by 2 or 3 and not by
5. Now our method will yield the answer more quickly.

Exercises

1. Consider Example 1 in §2.1. Suppose that each good apple costs 1¢
while a rotten one costs nothing. Denote the rotten ones by R, an
arbitrary bunch from the bushel by S, and define

Q(S) =[S\ R|/[2 - R|.

Q is the relative value of S with respect to that of the bushel. Show
that it is a probability measure.

2. Suppose that the land of a square kingdom is divided into three strips
A, B,C of equal area and suppose the value per unit is in the ratio
of 1:3:2. For any piece of (measurable) land S in this kingdom, the
relative value with respect to that of the kingdom is then given by the
formula:

vig) = PB4+ 3P(§B) +2P(SC)

where P is as in Example 2 of §2.1. Show that V is a probability
measure.

*3. Generalizing No. 2, let ay,...,a, be arbitrary positive numbers and
let Ay +---+ A, = Q be an arbitrary partition. Let P be a probability
measure on ) and

Q(S) = [a1P(SAL) + -+ + anP(SA)]/[a1P(A1) + - + an P(Ay)]

for any subset of 2. Show that P is a probability measure.

4. Let A and B denote two cups of coffee you drank at a lunch counter.
Suppose the first cup of coffee costs 15¢, and a second cup costs 10¢.
Using P to denote “price,” write down a formula like Axiom (ii) but
with an inequality (P is “subadditive”).

5. Suppose that on a shirt sale each customer can buy two shirts at $4
each, but the regular price is $5. A customer bought 4 shirts Sy, ..., S4.
Write down a formula like Axiom (ii) and contrast it with Exercise 3.
Forget about sales tax! (P is “superadditive.”)

6. Show that if P and ) are two probability measures defined on the same
(countable) sample space, then aP + b@ is also a probability measure
for any two nonnegative numbers a and b satisfying a + b = 1. Give a
concrete illustration of such a mixture.
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If P is a probability measure, show that the function P/2 satisfies
Axioms (i) and (ii) but not (iii). The function P? satisfies (i) and (iii)
but not necessarily (ii); give a counterexample to (ii) by using Example
1.

If A, B,C are arbitrary sets, show that

(a) PLANBNC) < P(A)AP(B)AP(C),
(b) PLAUBUC) > P(A) Vv P(B)V P(C).
Prove that for any two sets A and B, we have

P(AB) > P(A) + P(B) — 1.

Give a concrete example of this inequality. [Hint: Use (2.3.4) withn = 2
and De Morgan’s laws.]

We have AN A = A, but when is P(A) - P(A) = P(A)? Can P(A) =0
but A # (?

Find an example where P(AB) < P(A)P(B).

Prove (2.3.7) by first showing that

(AUB)—A=B—-(ANB).

Two groups share some members. Suppose that Group A has 123,
Group B has 78 members, and the total membership in both groups is
184. How many members belong to both?

Groups A, B, C have 57, 49, 43 members, respectively. A and B have
13, A and C have 7, B and C have 4 members in common; and there
is a lone guy who belongs to all three groups. Find the total number
of people in all three groups.

Generalize Exercise 14 when the various numbers are arbitrary but, of
course, subject to certain obvious inequalities. The resulting formula,
divided by the total population (there may be any nonjoiners!), is the
extension of (2.3.7) to n = 3.

Compute P(AA B) in terms of P(A), P(B), and P(AB); also in terms
of P(A), P(B), and P(AU B).

Using the notation (2.5.3) and the probability defined in that context,
show that for any two m and n we have

When is there equality above?

Recall the computation of plane areas by double integration in calculus;
for a nice figure such as a parallelogram, trapezoid, or circle, we have

area of § = // 1dzdy.
s
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22.

*23.

24.

25.

26.

27.
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Show that this can be written in terms of the indicator Is as

A®) = [[ 15(0.9) dody,

where € is the whole plane and Ig(z,y) is the value of the function Ig
for (at) the point (z,y) (denoted by w in §1.4). Show also that for two
such figures S7 and S5, we have

A(S1) + A(S2) = //(IS1 +Is,),

where we have omitted some unnecessary symbols.

Now you can demonstrate the connection between (2.3.7) and (2.3.8)
mentioned there, in the case of plane areas.

Find several examples of {p,,} satisfying the conditions in (2.4.1); give
at least two in which all p,, > 0.

Deduce from Axiom (ii*) the following two results. (a) If the sets A4,
are nondecreasing, namely A, C A, foralln > 1, and A = U,, An,
then P(As) = limy, o0 P(Ay). (b) If the sets A,, are nonincreasing,
namely A, D A, foralln > 1, and A = (), An, then P(Ay) =
lim;, o, P(A4,). [Hint: For (a), consider A;+(A2—A;)+(As—Ag)+--+;
for (b), dualize by complementation.]

What is the probability (in the sense of Example 10) that a natural
number picked at random is not divisible by any of the numbers 3, 4,
6 but is divisible by 2 or 57

Show that if (mq,...,m,) are co-prime positive integers, then the
events (Am,, ..., Am, ) defined in §2.5 are independent.

What can you say about the event A if it is independent of itself? If
the events A and B are disjoint and independent, what can you say of
them?

Show that if the two events (