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Preface to the Fourth Edition

In this edition two new chapters, 9 and 10, on mathematical finance are
added. They are written by Dr. Farid AitSahlia, ancien élève, who has
taught such a course and worked on the research staff of several industrial
and financial institutions.

The new text begins with a meticulous account of the uncommon vocab-
ulary and syntax of the financial world; its manifold options and actions,
with consequent expectations and variations, in the marketplace. These are
then expounded in clear, precise mathematical terms and treated by the
methods of probability developed in the earlier chapters. Numerous graded
and motivated examples and exercises are supplied to illustrate the appli-
cability of the fundamental concepts and techniques to concrete financial
problems. For the reader whose main interest is in finance, only a portion
of the first eight chapters is a “prerequisite” for the study of the last two
chapters. Further specific references may be scanned from the topics listed
in the Index, then pursued in more detail.

I have taken this opportunity to fill a gap in Section 8.1 and to expand
Appendix 3 to include a useful proposition on martingale stopped at an
optional time. The latter notion plays a basic role in more advanced finan-
cial and other disciplines. However, the level of our compendium remains
elementary, as befitting the title and scheme of this textbook. We have also
included some up-to-date financial episodes to enliven, for the beginners,
the stratified atmosphere of “strictly business”. We are indebted to Ruth
Williams, who read a draft of the new chapters with valuable suggestions
for improvement; to Bernard Bru and Marc Barbut for information on the
Pareto-Lévy laws originally designed for income distributions. It is hoped
that a readable summary of this renowned work may be found in the new
Appendix 4.

Kai Lai Chung
August 3, 2002
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Prologue to Introduction to
Mathematical Finance

The two new chapters are self-contained introductions to the topics of
mean-variance optimization and option pricing theory. The former covers
a subject that is sometimes labeled “modern portfolio theory” and that is
widely used by money managers employed by large financial institutions.
To read this chapter, one only needs an elementary knowledge of prob-
ability concepts and a modest familiarity with calculus. Also included is
an introductory discussion on stable laws in an applied context, an of-
ten neglected topic in elementary probability and finance texts. The latter
chapter lays the foundations for option pricing theory, a subject that has
fueled the development of finance into an advanced mathematical discipline
as attested by the many recently published books on the subject. It is an
initiation to martingale pricing theory, the mathematical expression of the
so-called “arbitrage pricing theory”, in the context of the binomial random
walk. Despite its simplicity, this model captures the flavors of many ad-
vanced theoretical issues. It is often used in practice as a benchmark for
the approximate pricing of complex financial instruments.

I would like to thank Professor Kai Lai Chung for inviting me to write
the new material for the fourth edition. I would also like to thank my wife
Unnur for her support during this rewarding experience.

Farid AitSahlia
November 1, 2002
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1
Set

1.1. Sample sets

These days schoolchildren are taught about sets. A second grader∗ was
asked to name “the set of girls in his class.” This can be done by a complete
list such as:

“Nancy, Florence, Sally, Judy, Ann, Barbara, . . . ”

A problem arises when there are duplicates. To distinguish between two
Barbaras one must indicate their family names or call them B1 and B2.
The same member cannot be counted twice in a set.

The notion of a set is common in all mathematics. For instance, in
geometry one talks about “the set of points which are equidistant from a
given point.” This is called a circle. In algebra one talks about “the set of
integers which have no other divisors except 1 and itself.” This is called
the set of prime numbers. In calculus the domain of definition of a function
is a set of numbers, e.g., the interval (a, b); so is the range of a function if
you remember what it means.

In probability theory the notion of a set plays a more fundamental
role. Furthermore we are interested in very general kinds of sets as well as
specific concrete ones. To begin with the latter kind, consider the following
examples:

(a) a bushel of apples;
(b) fifty-five cancer patients under a certain medical treatment;

∗My son Daniel.
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(c) all the students in a college;
(d) all the oxygen molecules in a given container;
(e) all possible outcomes when six dice are rolled;
(f) all points on a target board.

Let us consider at the same time the following “smaller” sets:

(a′) the rotten apples in that bushel;
(b′) those patients who respond positively to the treatment;
(c′) the mathematics majors of that college;
(d′) those molecules that are traveling upwards;
(e′) those cases when the six dice show different faces;
(f′) the points in a little area called the “bull’s-eye” on the board.

We shall set up a mathematical model for these and many more such
examples that may come to mind, namely we shall abstract and generalize
our intuitive notion of “a bunch of things.” First we call the things points,
then we call the bunch a space; we prefix them by the word “sample” to
distinguish these terms from other usages, and also to allude to their sta-
tistical origin. Thus a sample point is the abstraction of an apple, a cancer
patient, a student, a molecule, a possible chance outcome, or an ordinary
geometrical point. The sample space consists of a number of sample points
and is just a name for the totality or aggregate of them all. Any one of the
examples (a)–(f) above can be taken to be a sample space, but so also may
any one of the smaller sets in (a′)–(f′). What we choose to call a space [a
universe] is a relative matter.

Let us then fix a sample space to be denoted by Ω, the capital Greek
letter omega. It may contain any number of points, possibly infinite but
at least one. (As you have probably found out before, mathematics can be
very pedantic!) Any of these points may be denoted by ω, the small Greek
letter omega, to be distinguished from one another by various devices such
as adding subscripts or dashes (as in the case of the two Barbaras if we do
not know their family names), thus ω1, ω2, ω

′, . . . . Any partial collection
of the points is a subset of Ω, and since we have fixed Ω we will just call
it a set. In extreme cases a set may be Ω itself or the empty set, which
has no point in it. You may be surprised to hear that the empty set is an
important entity and is given a special symbol ∅. The number of points in
a set S will be called its size and denoted by |S|; thus it is a nonnegative
integer or ∞. In particular |∅| = 0.

A particular set S is well defined if it is possible to tell whether any
given point belongs to it or not. These two cases are denoted respectively
by

ω ∈ S; ω /∈ S.
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Thus a set is determined by a specified rule of membership. For instance, the
sets in (a′)–(f′) are well defined up to the limitations of verbal descriptions.
One can always quibble about the meaning of words such as “a rotten
apple,” or attempt to be funny by observing, for instance, that when dice
are rolled on a pavement some of them may disappear into the sewer. Some
people of a pseudo-philosophical turn of mind get a lot of mileage out of
such caveats, but we will not indulge in them here. Now, one sure way of
specifying a rule to determine a set is to enumerate all its members, namely
to make a complete list as the second grader did. But this may be tedious if
not impossible. For example, it will be shown in §3.1 that the size of the set
in (e) is equal to 66 = 46656. Can you give a quick guess as to how many
pages of a book like this will be needed just to record all these possibilities
of a mere throw of six dice? On the other hand, it can be described in a
systematic and unmistakable way as the set of all ordered 6-tuples of the
form below:

(s1, s2, s3, s4, s5, s6)

where each of the symbols sj , 1 ≤ j ≤ 6, may be any of the numbers 1, 2,
3, 4, 5, 6. This is a good illustration of mathematics being economy of
thought (and printing space).

If every point of A belongs to B, then A is contained or included in B
and is a subset of B, while B is a superset of A. We write this in one of
the two ways below:

A ⊂ B, B ⊃ A.

Two sets are identical if they contain exactly the same points, and then we
write

A = B.

Another way to say this is: A = B if and only if A ⊂ B and B ⊂ A. This
may sound unnecessarily roundabout to you, but is often the only way
to check that two given sets are really identical. It is not always easy to
identify two sets defined in different ways. Do you know for example that
the set of even integers is identical with the set of all solutions x of the
equation sin(πx/2) = 0? We shall soon give some examples of showing the
identity of sets by the roundabout method.

1.2. Operations with sets

We learn about sets by operating on them, just as we learn about num-
bers by operating on them. In the latter case we also say that we compute
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with numbers: add, subtract, multiply, and so on. These operations per-
formed on given numbers produce other numbers, which are called their
sum, difference, product, etc. In the same way, operations performed on
sets produce other sets with new names. We are now going to discuss some
of these and the laws governing them.

Complement. The complement of a set A is denoted by Ac and is the set
of points that do not belong to A. Remember we are talking only about
points in a fixed Ω! We write this symbolically as follows:

Ac = {ω | ω /∈ A},

which reads: “Ac is the set of ω that does not belong to A.” In particular
Ωc = ∅ and ∅c = Ω. The operation has the property that if it is performed
twice in succession on A, we get A back:

(Ac)c = A. (1.2.1)

Union. The union A ∪ B of two sets A and B is the set of points that
belong to at least one of them. In symbols:

A ∪B = {ω | ω ∈ A or ω ∈ B}

where “or” means “and/or” in pedantic [legal] style and will always be used
in this sense.

Intersection. The intersection A ∩ B of two sets A and B is the set of
points that belong to both of them. In symbols:

A ∩B = {ω | ω ∈ A and ω ∈ B}.

Figure 1
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We hold the truth of the following laws as self-evident:

Commutative Law. A ∪B = B ∪A, A ∩B = B ∩A.

Associative Law. (A ∪B) ∪ C = A ∪ (B ∪ C),

(A ∩B) ∩ C = A ∩ (B ∩ C).

But observe that these relations are instances of identity of sets mentioned
above, and are subject to proof. They should be compared, but not con-
fused, with analogous laws for sum and product of numbers:

a+ b = b+ a, a× b = b× a

(a+ b) + c = a+ (b+ c), (a× b)× c = a× (b× c).

Brackets are needed to indicate the order in which the operations are to be
performed. Because of the associative laws, however, we can write

A ∪B ∪ C, A ∩B ∩ C ∩D

without brackets. But a string of symbols like A ∪ B ∩ C is ambiguous,
therefore not defined; indeed (A∪B)∩C is not identical with A∪ (B ∩C).
You should be able to settle this easily by a picture.

Figure 2

The next pair of distributive laws connects the two operations as follows:

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C); (D1)

(A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C). (D2)
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Figure 3

Several remarks are in order. First, the analogy with arithmetic carries over
to (D1):

(a+ b)× c = (a× c) + (b× c);

but breaks down in (D2):

(a× b) + c �= (a+ c)× (b+ c).

Of course, the alert reader will have observed that the analogy breaks down
already at an earlier stage, for

A = A ∪A = A ∩A;

but the only number a satisfying the relation a + a = a is 0; while there
are exactly two numbers satisfying a× a = a, namely 0 and 1.

Second, you have probably already discovered the use of diagrams to
prove or disprove assertions about sets. It is also a good practice to see the
truth of such formulas as (D1) and (D2) by well-chosen examples. Suppose
then that

A = inexpensive things, B = really good things,

C = food [edible things].

Then (A∪B)∩C means “(inexpensive or really good) food,” while (A∩C)∪
(B ∩C) means “(inexpensive food) or (really good food).” So they are the
same thing all right. This does not amount to a proof, as one swallow does
not make a summer, but if one is convinced that whatever logical structure
or thinking process involved above in no way depends on the precise nature
of the three things A, B, and C, so much so that they can be anything,
then one has in fact landed a general proof. Now it is interesting that the
same example applied to (D2) somehow does not make it equally obvious
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(at least to the author). Why? Perhaps because some patterns of logic are
in more common use in our everyday experience than others.

This last remark becomes more significant if one notices an obvious
duality between the two distributive laws. Each can be obtained from the
other by switching the two symbols ∪ and ∩. Indeed each can be deduced
from the other by making use of this duality (Exercise 11).

Finally, since (D2) comes less naturally to the intuitive mind, we will
avail ourselves of this opportunity to demonstrate the roundabout method
of identifying sets mentioned above by giving a rigorous proof of the for-
mula. According to this method, we must show: (i) each point on the left
side of (D2) belongs to the right side; (ii) each point on the right side of
(D2) belongs to the left side.

(i) Suppose ω belongs to the left side of (D2), then it belongs either
to A ∩ B or to C. If ω ∈ A ∩ B, then ω ∈ A, hence ω ∈ A ∪ C;
similarly ω ∈ B ∪C. Therefore ω belongs to the right side of (D2).
On the other hand, if ω ∈ C, then ω ∈ A ∪ C and ω ∈ B ∪ C and
we finish as before.

(ii) Suppose ω belongs to the right side of (D2), then ω may or may
not belong to C, and the trick is to consider these two alternatives.
If ω ∈ C, then it certainly belongs to the left side of (D2). On the
other hand, if ω /∈ C, then since it belongs to A∪C, it must belong
to A; similarly it must belong to B. Hence it belongs to A∩B, and
so to the left side of (D2). Q.E.D.

1.3. Various relations

The three operations so far defined: complement, union, and intersection
obey two more laws called De Morgan’s laws:

(A ∪B)c = Ac ∩Bc; (C1)

(A ∩B)c = Ac ∪Bc. (C2)

They are dual in the same sense as (D1) and (D2) are. Let us check these
by our previous example. If A = inexpensive, and B = really good, then
clearly (A ∪ B)c = not inexpensive nor really good, namely high-priced
junk, which is the same as Ac ∩ Bc = inexpensive and not really good.
Similarly we can check (C2).

Logically, we can deduce either (C1) or (C2) from the other; let us show
it one way. Suppose then (C1) is true, then since A and B are arbitrary
sets we can substitute their complements and get

(Ac ∪Bc)c = (Ac)c ∩ (Bc)c = A ∩B (1.3.1)
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Figure 4

where we have also used (1.2.1) for the second equation. Now taking the
complements of the first and third sets in (1.3.1) and using (1.2.1) again
we get

Ac ∪Bc = (A ∩B)c.

This is (C2). Q.E.D.
It follows from De Morgan’s laws that if we have complementation, then

either union or intersection can be expressed in terms of the other. Thus
we have

A ∩B = (Ac ∪Bc)c,

A ∪B = (Ac ∩Bc)c;

and so there is redundancy among the three operations. On the other hand,
it is impossible to express complementation by means of the other two
although there is a magic symbol from which all three can be derived
(Exercise 14). It is convenient to define some other operations, as we now
do.

Difference. The set A \B is the set of points that belong to A and (but)
not to B. In symbols:

A \B = A ∩Bc = {ω | ω ∈ A and ω /∈ B}.

This operation is neither commutative nor associative. Let us find a coun-
terexample to the associative law, namely, to find some A,B,C for which

(A \B) \ C �= A \ (B \ C). (1.3.2)
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Figure 5

Note that in contrast to a proof of identity discussed above, a single instance
of falsehood will destroy the identity. In looking for a counterexample one
usually begins by specializing the situation to reduce the “unknowns.” So
try B = C. The left side of (1.3.2) becomes A \ B, while the right side
becomes A \ ∅ = A. Thus we need only make A \B �= A, and that is easy.

In case A ⊃ B we write A − B for A \ B. Using this new symbol we
have

A \B = A− (A ∩B)

and

Ac = Ω−A.

The operation “−” has some resemblance to the arithmetic operation of
subtracting, in particular A−A = ∅, but the analogy does not go very far.
For instance, there is no analogue to (a+ b)− c = a+ (b− c).

Symmetric Difference. The set A� B is the set of points that belong
to exactly one of the two sets A and B. In symbols:

A�B = (A ∩Bc) ∪ (Ac ∩B) = (A \B) ∪ (B \A).

This operation is useful in advanced theory of sets. As its name indicates,
it is symmetric with respect to A and B, which is the same as saying that it
is commutative. Is it associative? Try some concrete examples or diagrams,
which have succeeded so well before, and you will probably be as quickly
confused as I am. But the question can be neatly resolved by a device to
be introduced in §1.4.
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Figure 6

Having defined these operations, we should let our fancy run free for a
few moments and imagine all kinds of sets that can be obtained by using
them in succession in various combinations and permutations, such as

[(A \ Cc) ∩ (B ∪ C)c]c ∪ (Ac �B).

But remember we are talking about subsets of a fixed Ω, and if Ω is a finite
set of a number of distinct subsets is certainly also finite, so there must
be a tremendous amount of interrelationship among these sets that we can
build up. The various laws discussed above are just some of the most basic
ones, and a few more will be given among the exercises below.

An extremely important relation between sets will now be defined. Two
sets A and B are said to be disjoint when they do not intersect, namely,
have no point in common:

A ∩B = ∅.

This is equivalent to either one of the following inclusion conditions:

A ⊂ Bc; B ⊂ Ac.

Any number of sets are said to be disjoint when every pair of them is
disjoint as just defined. Thus, “A,B,C are disjoint” means more than just
A ∩B ∩ C = ∅; it means

A ∩B = ∅, A ∩ C = ∅, B ∩ C = ∅.

From here on we will omit the intersection symbol and write simply

AB for A ∩B
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Figure 7

just as we write ab for a × b. When A and B are disjoint we will write
sometimes

A+B for A ∪B.

But be careful: not only does “+” mean addition for numbers but even
when A and B are sets there are other usages of A + B such as their
vectorial sum.

For any set A, we have the obvious decomposition:

Ω = A+Ac. (1.3.3)

The way to think of this is: the set A gives a classification of all points ω in
Ω according as ω belongs to A or to Ac. A college student may be classified
according to whether he is a mathematics major or not, but he can also
be classified according to whether he is a freshman or not, of voting age
or not, has a car or not, . . . , is a girl or not. Each two-way classification
divides the sample space into two disjoint sets, and if several of these are
superimposed on each other we get, e.g.,

Ω = (A+Ac)(B +Bc) = AB +ABc +AcB +AcBc, (1.3.4)

Ω = (A+Ac)(B +Bc)(C + Cc) (1.3.5)

= ABC +ABCc +ABcC +ABcCc +AcBC

+AcBCc +AcBcC +AcBcCc.

Let us call the pieces of such a decomposition the atoms. There are 2, 4, 8
atoms respectively above because 1, 2, 3 sets are considered. In general there
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Figure 8

will be 2n atoms if n sets are considered. Now these atoms have a remark-
able property, which will be illustrated in the case (1.3.5), as follows: no
matter how you operate on the three sets A,B,C, and no matter how many
times you do it, the resulting set can always be written as the union of some
of the atoms. Here are some examples:

A ∪B = ABC +ABCc +ABcC +ABcCc +AcBCc +AcBC

(A \B) \ Cc = ABcC

(A�B)Cc = ABcCc +AcBCc.

Can you see why?
Up to now we have considered only the union or intersection of a finite

number of sets. There is no difficulty in extending this to an infinite number
of sets. Suppose a finite or infinite sequence of sets An, n = 1, 2, . . . , is
given, then we can form their union and intersection as follows:⋃

n

An = {ω | ω ∈ An for at least one value of n};

⋂
n

An = {ω | ω ∈ An for all values of n}.

When the sequence is infinite these may be regarded as obvious “set limits”
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of finite unions or intersections, thus:

∞⋃
n=1

An = lim
m→∞

m⋃
n=1

An;
∞⋂
n=1

An = lim
m→∞

m⋂
n=1

An.

Observe that as m increases,
⋃m

n=1 An does not decrease while
⋂m

n=1 An

does not increase, and we may say that the former swells up to
⋃∞

n=1 An,
the latter shrinks down to

⋂∞
n=1 An.

The distributive laws and De Morgan’s laws have obvious extensions to
a finite or infinite sequence of sets. For instance,(⋃

n

An

)
∩B =

⋃
n

(An ∩B), (1.3.6)

(⋂
n

An

)c

=
⋃
n

Ac
n. (1.3.7)

Really interesting new sets are produced by using both union and in-
tersection an infinite number of times, and in succession. Here are the two
most prominent ones:

∞⋂
m=1

( ∞⋃
n=m

An

)
;

∞⋃
m=1

( ∞⋂
n=m

An

)
.

These belong to a more advanced course (see [Chung 1, §4.2] of the Refer-
ences). They are shown here as a preview to arouse your curiosity.

1.4. Indicator∗

The idea of classifying ω by means of a dichotomy: to be or not to be in A,
which we discussed toward the end of §1.3, can be quantified into a useful
device. This device will generalize to the fundamental notion of “random
variable” in Chapter 4.

Imagine Ω to be a target board and A a certain marked area on the
board as in Examples (f) and (f′) above. Imagine that “pick a point ω in
Ω” is done by shooting a dart at the target. Suppose a bell rings (or a bulb
lights up) when the dart hits within the area A; otherwise it is a dud. This
is the intuitive picture expressed below by a mathematical formula:

IA(ω) =

{
1 if ω ∈ A,

0 if ω /∈ A.

∗This section may be omitted after the first three paragraphs.
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Figure 9

Thus the symbol IA is a function that is defined on the whole sample
space Ω and takes only the two values 0 and 1, corresponding to a dud
and a ring. You may have learned in a calculus course the importance of
distinguishing between a function (sometimes called a mapping) and one
of its values. Here it is the function IA that indicates the set A, hence it is
called the indicator function, or briefly, indicator of A. Another set B has
its indicator IB . The two functions IA and IB are identical (what does that
mean?) if and only if the two sets are identical.

To see how we can put indicators to work, let us figure out the indicators
for some of the sets discussed before. We need two mathematical symbols
∨ (cup) and ∧ (cap), which may be new to you. For any two real numbers
a and b, they are defined as follows:

a ∨ b = maximum of a and b;

a ∧ b = minimum of a and b.
(1.4.1)

In case a = b, either one of them will serve as maximum as well as minimum.
Now the salient properties of indicators are given by the formulas below:

IA∩B(ω) = IA(ω) ∧ IB(ω) = IA(ω) · IB(ω); (1.4.2)

IA∪B(ω) = IA(ω) ∨ IB(ω). (1.4.3)

You should have no difficulty checking these equations, after all there are
only two possible values 0 and 1 for each of these functions. Since the
equations are true for every ω, they can be written more simply as equations
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(identities) between functions:

IA∩B = IA ∧ IB = IA · IB , (1.4.4)

IA∪B = IA ∨ IB . (1.4.5)

Here for example the function IA∧ IB is that mapping that assigns to each
ω the value IA(ω) ∧ IB(ω), just as in calculus the function f + g is that
mapping that assigns to each x the number f(x) + g(x).

After observing the product IA(ω) ·IB(ω) at the end of (1.4.2) you may
be wondering why we do not have the sum IA(ω)+ IB(ω) in (1.4.3). But if
this were so we could get the value 2 here, which is impossible since the first
member IA∪B(ω) cannot take this value. Nevertheless, shouldn’t IA + IB
mean something? Consider target shooting again but this time mark out
two overlapping areas A and B. Instead of bell-ringing, you get 1 penny if
you hit within A, and also if you hit within B. What happens if you hit
the intersection AB? That depends on the rule of the game. Perhaps you
still get 1 penny, perhaps you get 2 pennies. Both rules are legitimate. In
formula (1.4.3) it is the first rule that applies. If you want to apply the
second rule, then you are no longer dealing with the set A ∪B alone as in
Figure 10a, but something like Figure 10b:

Figure 10a Figure 10b

This situation can be realized electrically by laying first a uniform
charge over the area A, and then on top of this another charge over the
area B, so that the resulting total charge is distributed as shown in Figure
10b. In this case the variable charge will be represented by the function
IA + IB . Such a sum of indicators is a very special case of sum of random
variables, which will occupy us in later chapters.

For the present let us return to formula (1.4.5) and note that if the
two sets A and B are disjoint, then it indeed reduces to the sum of the
indicators, because then at most one of the two indicators can take the
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value 1, so that the maximum coincides with the sum, namely

0 ∨ 0 = 0 + 0, 0 ∨ 1 = 0 + 1, 1 ∨ 0 = 1 + 0.

Thus we have

IA+B = IA + IB provided A ∩B = ∅. (1.4.6)

As a particular case, we have for any set A:

IΩ = IA + IAc .

Now IΩ is the constant function 1 (on Ω), hence we may rewrite the above
as

IAc = 1− IA. (1.4.7)

We can now derive an interesting formula. Since (A ∪B)c = AcBc, we get
by applying (1.4.7), (1.4.4) and then (1.4.7) again:

IA∪B = 1− IAcBc = 1− IAcIBc = 1− (1− IA)(1− IB).

Multiplying out the product (we are dealing with numerical functions!) and
transposing terms we obtain

IA∪B + IA∩B = IA + IB . (1.4.8)

Finally we want to investigate IA�B . We need a bit of arithmetic (also
called number theory) first. All integers can be classified as even or odd,
depending on whether the remainder we get when we divide it by 2 is 0 or
1. Thus each integer may be identified with (or reduced to) 0 or 1, provided
we are only interested in its parity and not its exact value. When integers
are added or subtracted subject to this reduction, we say we are operating
modulo 2. For instance:

5 + 7 + 8− 1 + 3 = 1 + 1 + 0− 1 + 1 = 2 = 0, modulo 2.

A famous case of this method of counting occurs when the maiden picks
off the petals of some wild flower one by one and murmurs: “he loves me,”
“he loves me not” in turn. Now you should be able to verify the following
equation for every ω:

IA�B = IA(ω) + IB(ω)− 2IAB(ω)

= IA(ω) + IB(ω), modulo 2.
(1.4.9)

We can now settle a question raised in §1.3 and establish without pain the
identity:

(A�B)� C = A� (B � C). (1.4.10)
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Proof: Using (1.4.9) twice we have

I(A�B)�C = IA�B + IC = (IA + IB) + IC , modulo 2. (1.4.11)

Now if you have understood the meaning of addition modulo 2 you should
see at once that it is an associative operation (what does that mean, “mod-
ulo 2”?). Hence the last member of (1.4.11) is equal to

IA + (IB + IC) = IA + IB�C = IA�(B�C), modulo 2.

We have therefore shown that the two sets in (1.4.10) have identical indi-
cators, hence they are identical. Q.E.D.

We do not need this result below. We just want to show that a trick is
sometimes neater than a picture!

Exercises

1. Why is the sequence of numbers {1, 2, 1, 2, 3} not a set?
2. If two sets have the same size, are they then identical?
3. Can a set and a proper subset have the same size? (A proper subset is

a subset that is not also a superset!)
4. If two sets have identical complements, then they are themselves identi-

cal. Show this in two ways: (i) by verbal definition, (ii) by using formula
(1.2.1).

5. If A,B,C have the same meanings as in Section 1.2, what do the fol-
lowing sets mean:

A ∪ (B ∩ C); (A \B) \ C; A \ (B \ C).

6. Show that

(A ∪B) ∩ C �= A ∪ (B ∩ C);

but also give some special cases where there is equality.
7. Using the atoms given in the decomposition (1.3.5), express

A ∪B ∪ C; (A ∪B)(B ∪ C); A \B; A�B;

the set of ω which belongs to exactly 1 [exactly 2; at least 2] of the sets
A,B,C.

8. Show that A ⊂ B if and only if AB = A; or A∪B = B. (So the relation
of inclusion can be defined through identity and the operations.)
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9. Show that A and B are disjoint if and only if A \ B = A; or A ∪ B =
A � B. (After No. 8 is done, this can be shown purely symbolically
without going back to the verbal definitions of the sets.)

10. Show that there is a distributive law also for difference:

(A \B) ∩ C = (A ∩ C) \ (B ∩ C).

Is the dual

(A ∩B) \ C = (A \ C) ∩ (B \ C)

also true?
11. Derive (D2) from (D1) by using (C1) and (C2).

*12. Show that

(A ∪B) \ (C ∪D) ⊂ (A \ C) ∪ (B \D).

*13. Let us define a new operation “/” as follows:

A/B = Ac ∪B.

Show that
(i) (A / B) ∩ (B / C) ⊂ A / C;
(ii) (A / B) ∩ (A / C) = A / BC;
(iii) (A / B) ∩ (B / A) = (A�B)c.
In intuitive logic, “A/B” may be read as “A implies B.” Use this to
interpret the relations above.

*14. If you like a “dirty trick” this one is for you. There is an operation
between two sets A and B from which alone all the operations defined
above can be derived. [Hint: It is sufficient to derive complement and
union from it. Look for some combination that contains these two. It
is not unique.]

15. Show that A ⊂ B if and only if IA ≤ IB ; and A ∩B = ∅ if and only if
IAIB = 0.

16. Think up some concrete schemes that illustrate formula (1.4.8).
17. Give a direct proof of (1.4.8) by checking it for all ω. You may use the

atoms in (1.3.4) if you want to be well organized.
18. Show that for any real numbers a and b, we have

a+ b = (a ∨ b) + (a ∧ b).

Use this to prove (1.4.8) again.
19. Express IA\B and IA−B in terms of IA and IB .
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20. Express IA∪B∪C as a polynomial of IA, IB , IC . [Hint: Consider 1 −
IA∪B∪C .]

*21. Show that

IABC = IA + IB + IC − IA∪B − IA∪C − IB∪C + IA∪B∪C .

You can verify this directly, but it is nicer to derive it from No. 20 by
duality.



2
Probability

2.1. Examples of probability

We learned something about sets in Chapter 1; now we are going to measure
them. The most primitive way of measuring is to count the number, so we
will begin with such an example.

Example 1. In Example (a′) of §1.1, suppose that the number of rotten
apples is 28. This gives a measure to the set A described in (a′), called
its size and denoted by |A|. But it does not tell anything about the total
number of apples in the bushel, namely the size of the sample space Ω
given in Example (a). If we buy a bushel of apples we are more likely to be
concerned with the relative proportion of rotten ones in it rather than their
absolute number. Suppose then the total number is 550. If we now use the
letter P provisionarily for “proportion,” we can write this as follows:

P (A) =
|A|
|Ω| =

28
550

. (2.1.1)

Suppose next that we consider the set B of unripe apples in the same
bushel, whose number is 47. Then we have similarly

P (B) =
|B|
|Ω| =

47
550

.

It seems reasonable to suppose that an apple cannot be both rotten and
unripe (this is really a matter of definition of the two adjectives); then the

20
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two sets are disjoint so their members do not overlap. Hence the number
of “rotten or unripe apples” is equal to the sum of the number of “rotten
apples” and the number of “unripe apples”: 28 + 47 = 75. This may be
written in symbols as:

|A+B| = |A|+ |B|. (2.1.2)

If we now divide through by |Ω|, we obtain

P (A+B) = P (A) + P (B). (2.1.3)

On the other hand, if some apples can be rotten and unripe at the same
time, such as when worms got into green ones, then the equation (2.1.2)
must be replaced by an inequality:

|A ∪B| ≤ |A|+ |B|,

which leads to

P (A ∪B) ≤ P (A) + P (B). (2.1.4)

Now what is the excess of |A|+ |B| over |A∪B|? It is precisely the number
of “rotten and unripe apples,” that is, |A ∩B|. Thus

|A ∪B|+ |A ∩B| = |A|+ |B|,

which yields the pretty equation

P (A ∪B) + P (A ∩B) = P (A) + P (B). (2.1.5)

Example 2. A more sophisticated way of measuring a set is the area of a
plane set as in Examples (f) and (f′) of §1.1, or the volume of a solid. It
is said that the measurement of land areas was the origin of geometry and
trigonometry in ancient times. While the nomads were still counting on
their fingers and toes as in Example 1, the Chinese and Egyptians, among
other peoples, were subdividing their arable lands, measuring them in units
and keeping accounts of them on stone tablets or papyrus. This unit varied
a great deal from one civilization to another (who knows the conversion
rate of an acre into mou’s or hectares?). But again it is often the ratio
of two areas that concerns us as in the case of a wild shot that hits the
target board. The proportion of the area of a subset A to that of Ω may
be written, if we denote the area by the symbol | |:

P (A) =
|A|
|Ω| . (2.1.6)
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This means also that if we fix the unit so that the total area of Ω is 1
unit, then the area of A is equal to the fraction P (A) in this scale. Formula
(2.1.6) looks just like formula (2.1.1) by the deliberate choice of notation
in order to underline the similarity of the two situations. Furthermore, for
two sets A and B the previous relations (2.1.3) to (2.1.5) hold equally well
in their new interpretations.

Example 3. When a die is thrown there are six possible outcomes. If
we compare the process of throwing a particular number [face] with
that of picking a particular apple in Example 1, we are led to take
Ω = {1, 2, 3, 4, 5, 6} and define

P ({k}) = 1
6
, k = 1, 2, 3, 4, 5, 6. (2.1.7)

Here we are treating the six outcomes as “equally likely,” so that the same
measure is assigned to all of them, just as we have done tacitly with the ap-
ples. This hypothesis is usually implied by saying that the die is “perfect.”
In reality, of course, no such die exists. For instance, the mere marking of
the faces would destroy the perfect symmetry; and even if the die were a
perfect cube, the outcome would still depend on the way it is thrown. Thus
we must stipulate that this is done in a perfectly symmetrical way too, and
so on. Such conditions can be approximately realized and constitute the
basis of an assumption of equal likelihood on grounds of symmetry.

Now common sense demands an empirical interpretation of the “proba-
bility” given in (2.1.7). It should give a measure of what is likely to happen,
and this is associated in the intuitive mind with the observable frequency of
occurrence . Namely, if the die is thrown a number of times, how often will
a particular face appear? More generally, let A be an event determined by
the outcome; e.g., “to throw a number not less than 5 [or an odd number].”
Let Nn(A) denote the number of times the event A is observed in n throws;
then the relative frequency of A in these trials is given by the ratio

Qn(A) =
Nn(A)
n

. (2.1.8)

There is good reason to take this Qn as a measure of A. Suppose B is
another event such that A and B are incompatible or mutually exclusive
in the sense that they cannot occur in the same trial. Clearly we have
Nn(A+B) = Nn(A) +Nn(B), and consequently

Qn(A+B) =
Nn(A+B)

n

=
Nn(A) +Nn(B)

n
=

Nn(A)
n

+
Nn(B)
n

= Qn(A) +Qn(B).

(2.1.9)
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Similarly for any two events A and B in connection with the same game,
not necessarily incompatible, the relations (2.1.4) and (2.1.5) hold with the
P ’s there replaced by our present Qn. Of course, this Qn depends on n and
will fluctuate, even wildly, as n increases. But if you let n go to infinity,
will the sequence of ratios Qn(A) “settle down to a steady value”? Such a
question can never be answered empirically, since by the very nature of a
limit we cannot put an end to the trials. So it is a mathematical idealization
to assume that such a limit does exist, and then write

Q(A) = lim
n→∞

Qn(A). (2.1.10)

We may call this the empirical limiting frequency of the event A. If you
know how to operate with limits, then you can see easily that the relation
(2.1.9) remains true “in the limit.” Namely when we let n→∞ everywhere
in that formula and use the definition (2.1.10), we obtain (2.1.3) with P
replaced by Q. Similarly, (2.1.4) and (2.1.5) also hold in this context.

But the limit Q still depends on the actual sequence of trials that are
carried out to determine its value. On the face of it, there is no guarantee
whatever that another sequence of trials, even if it is carried out under the
same circumstances, will yield the same value. Yet our intuition demands
that a measure of the likelihood of an event such as A should tell something
more than the mere record of one experiment. A viable theory built on the
frequencies will have to assume that the Q defined above is in fact the same
for all similar sequences of trials. Even with the hedge implicit in the word
“similar,” that is assuming a lot to begin with. Such an attempt has been
made with limited success, and has a great appeal to common sense, but we
will not pursue it here. Rather, we will use the definition in (2.1.7) which
implies that if A is any subset of Ω and |A| its size, then

P (A) =
|A|
|Ω| =

|A|
6
. (2.1.11)

For example, if A is the event “to throw an odd number,” then A is iden-
tified with the set {1, 3, 5} and P (A) = 3/6 = 1/2.

It is a fundamental proposition in the theory of probability that un-
der certain conditions (repeated independent trials with identical die), the
limiting frequency in (2.1.10) will indeed exist and be equal to P (A) de-
fined in (2.1.11), for “practically all” conceivable sequences of trials. This
celebrated theorem, called the Law of Large Numbers, is considered to be
the cornerstone of all empirical sciences. In a sense it justifies the intuitive
foundation of probability as frequency discussed above. The precise state-
ment and derivation will be given in Chapter 7. We have made this early
announcement to quiet your feelings or misgivings about frequencies and
to concentrate for the moment on sets and probabilities in the following
sections.
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2.2. Definition and illustrations

First of all, a probability is a number associated with or assigned to a set
in order to measure it in some sense. Since we want to consider many sets
at the same time (that is why we studied Chapter 1), and each of them will
have a probability associated with it, this makes probability a “function
of sets.” You should have already learned in some mathematics course
what a function means; in fact, this notion is used a little in Chapter 1.
Nevertheless, let us review it in the familiar notation: a function f defined
for some or all real numbers is a rule of association, by which we assign
the number f(x) to the number x. It is sometimes written as f(·), or more
painstakingly as follows:

f : x→ f(x). (2.2.1)

So when we say a probability is a function of sets we mean a similar asso-
ciation, except that x is replaced by a set S:

P : S → P (S). (2.2.2)

The value P (S) is still a number; indeed it will be a number between 0 and
1. We have not been really precise in (2.2.1), because we have not specified
the set of x there for which it has a meaning. This set may be the interval
(a, b) or the half-line (0,∞) or some more complicated set called the domain
of f . Now what is the domain of our probability function P? It must be a set
of sets or, to avoid the double usage, a family (class) of sets. As in Chapter 1
we are talking about subsets of a fixed sample space Ω. It would be nice
if we could use the family of all subsets of Ω, but unexpected difficulties
will arise in this case if no restriction is imposed on Ω. We might say that
if Ω is too large, namely when it contains uncountably many points, then
it has too many subsets, and it becomes impossible to assign a probability
to each of them and still satisfy a basic rule [Axiom (ii*) ahead] governing
the assignments. However, if Ω is a finite or countably infinite set, then
no such trouble can arise and we may indeed assign a probability to each
and all of its subsets. This will be shown at the beginning of §2.4. You are
supposed to know what a finite set is (although it is by no means easy to
give a logical definition, while it is mere tautology to say that “it has only
a finite number of points”); let us review what a countably infinite set is.
This notion will be of sufficient importance to us, even if it only lurks in
the background most of the time.

A set is countably infinite when it can be put into 1-to-1 correspondence
with the set of positive integers. This correspondence can then be exhibited
by labeling the elements as {s1, s2, . . . , sn, . . . }. There are, of course, many
ways of doing this, for instance we can just let some of the elements swap
labels (or places if they are thought of being laid out in a row). The set of
positive rational numbers is countably infinite, hence they can be labeled
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Figure 11

in some way as {r1, r2, . . . , rn, . . . }, but don’t think for a moment that
you can do this by putting them in increasing order as you can with the
positive integers 1 < 2 < · · · < n < · · · . From now on we shall call a set
countable when it is either finite or countably infinite. Otherwise it is called
uncountable. For example, the set of all real numbers is uncountable. We
shall deal with uncountable sets later, and we will review some properties
of a countable set when we need them. For the present we will assume the
sample space Ω to be countable in order to give the following definition in
its simplest form, without a diverting complication. As a matter of fact, we
could even assume Ω to be finite as in Examples (a) to (e) of §1.1, without
losing the essence of the discussion below.
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Figure 12

Definition. A probability measure on the sample space Ω is a function of
subsets of Ω satisfying three axioms:

(i) For every set A ⊂ Ω, the value of the function is a nonnegative
number: P (A) ≥ 0.

(ii) For any two disjoint sets A and B, the value of the function for
their union A + B is equal to the sum of its value for A and its
value for B:

P (A+B) = P (A) + P (B) provided AB = ∅.

(iii) The value of the function for Ω (as a subset) is equal to 1:

P (Ω) = 1.

Observe that we have been extremely careful in distinguishing the func-
tion P (·) from its values such as P (A), P (B), P (A + B), P (Ω). Each of
these is “a probability,” but the function itself should properly be referred
to as a “probability measure” as indicated.

Example 1 in §2.1 shows that the proportion P defined there is in fact
a probability measure on the sample space, which is a bushel of 550 apples.
It assigns a probability to every subset of these apples, and this assignment
satisfies the three axioms above. In Example 2 if we take Ω to be all the
land that belonged to the Pharaoh, it is unfortunately not a countable set.
Nevertheless we can define the area for a very large class of subsets that
are called “measurable,” and if we restrict ourselves to these subsets only,
the “area function” is a probability measure as shown in Example 2 where
this restriction is ignored. Note that Axiom (iii) reduces to a convention:
the decree of a unit. Now how can a land area not be measurable? While



2.2 Definition and illustrations 27

this is a sophisticated mathematical question that we will not go into in
this book, it is easy to think of practical reasons for the possibility: the
piece of land may be too jagged, rough, or inaccessible (see Fig. 13).

Figure 13

In Example 3 we have shown that the empirical relative frequency is
a probability measure. But we will not use this definition in this book.
Instead, we will use the first definition given at the beginning of Example
3, which is historically the earliest of its kind. The general formulation will
now be given.

Example 4. A classical enunciation of probability runs as follows. The
probability of an event is the ratio of the number of cases favorable to that
event to the total number of cases, provided that all these are equally likely
.

To translate this into our language: the sample space is a finite set of
possible cases: {ω1, ω2, . . . , ωm}, each ωi being a “case.” An event A is a
subset {ωi1 , ωi2 , . . . , ωin}, each ωij being a “favorable case.” The probabil-
ity of A is then the ratio

P (A) =
|A|
|Ω| =

n

m
. (2.2.3)

As we see from the discussion in Example 1, this defines a probability
measure P on Ω anyway, so that the stipulation above that the cases be
equally likely is superfluous from the axiomatic point of view. Besides, what
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does it really mean? It sounds like a bit of tautology, and how is one going
to decide whether the cases are equally likely or not?

A celebrated example will illustrate this. Let two coins be tossed.
D’Alembert (mathematician, philosopher, and encyclopedist, 1717–83)
argued that there are three possible cases, namely:

(i) both heads, (ii) both tails, (iii) a head and a tail.

So he went on to conclude that the probability of “a head and a tail” is
equal to 1/3. If he had figured that this probability should have something
to do with the experimental frequency of the occurrence of the event, he
might have changed his mind after tossing two coins more than a few times.
(History does not record if he ever did that, but it is said that for centuries
people believed that men had more teeth than women because Aristotle
had said so, and apparently nobody bothered to look into a few mouths.)
The three cases he considered are not equally likely. Case (iii) should be
split into two:

(iiia) first coin shows head and second coin shows tail.
(iiib) first coin shows tail and second coin shows head.

It is the four cases (i), (ii), (iiia) and (iiib) that are equally likely by sym-
metry and on empirical evidence. This should be obvious if we toss the
two coins one after the other rather than simultaneously. However, there
is an important point to be made clear here. The two coins may be physi-
cally indistinguishable so that in so far as actual observation is concerned,
D’Alembert’s three cases are the only distinct patterns to be recognized.
In the model of two coins they happen not to be equally likely on the basis
of common sense and experimental evidence. But in an analogous model
for certain microcosmic particles, called Bose–Einstein statistics (see Ex-
ercise 24 of Chapter 3), they are indeed assumed to be equally likely in
order to explain some types of physical phenomena. Thus what we regard
as “equally likely” is a matter outside the axiomatic formulation. To put it
another way, if we use (2.2.3) as our definition of probability then we are
in effect treating the ω’s as equally likely, in the sense that we count only
their numbers and do not attach different weights to them.

Example 5. If six dice are rolled, what is the probability that all show
different faces?

This is just Example (e) and (e′). It is stated elliptically on purpose to
get you used to such problems. We have already mentioned that the total
number of possible outcomes is equal to 66 = 46656. They are supposed to
be all “equally likely” although we never breathed a word about this as-
sumption. Why, nobody can solve the problem as announced without such
an assumption. Other data about the dice would have to be given before we



2.2 Definition and illustrations 29

could begin—which is precisely the difficulty when similar problems arise
in practice. Now if the dice are all perfect, and the mechanism by which
they are rolled is also perfect, which excludes any collusion between the
movements of the several dice, then our hypothesis of equal likelihood may
be justified. Such conditions are taken for granted in a problem like this
when nothing is said about the dice. The solution is then given by (2.2.3)
with n = 66 and m = 6! (see Example 2 in §3.1 for these computations):

6!
66 =

720
46656

= .015432

approximately.
Let us note that if the dice are not distinguishable from each other,

then to the observer there is exactly one pattern in which the six dice show
different faces. Similarly, the total number of different patterns when six
dice are rolled is much smaller than 66 (see Example 3 of §3.2). Yet when we
count the possible outcomes we must think of the dice as distinguishable,
as if they were painted in different colors. This is one of the vital points to
grasp in the counting cases; see Chapter 3.

In some situations the equally likely cases must be searched out. This
point will be illustrated by a famous historical problem called the “problem
of points.”

Example 6. Two players A and B play a series of games in which the
probability of each winning a single game is equal to 1/2, irrespective [in-
dependent] of the outcomes of other games. For instance, they may play
tennis in which they are equally matched, or simply play “heads or tails”
by tossing an unbiased coin. Each player gains a “point” when he wins a
game, and nothing when he loses. Suppose that they stop playing when
A needs 2 more points and B needs 3 more points to win the stake. How
should they divide it fairly?

It is clear that the winner will be decided in 4 more games. For in those
4 games either A will have won ≥2 points or B will have won ≥3 points,
but not both. Let us enumerate all the possible outcomes of these 4 games
using the letter A or B to denote the winner of each game:

AAAA AAAB AABB ABBB BBBB
AABA ABAB BABB
ABAA ABBA BBAB
BAAA BAAB BBBA

BABA
BBAA

These are equally likely cases on grounds of symmetry. There are∗ (4
4

)
+(4

3

)
+
(4
2

)
= 11 cases in which A wins the stake; and

(4
3

)
+
(4
4

)
= 5 cases

∗See (3.2.3) for notation used below.
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in which B wins the stake. Hence the stake should be divided in the ratio
11:5. Suppose it is $64000; then A gets $44000, B gets $20000. [We are
taking the liberty of using the dollar as currency; the United States did not
exist at the time when the problem was posed.]

This is Pascal’s solution in a letter to Fermat dated August 24, 1654
. [Blaise Pascal (1623–62); Pierre de Fermat (1601–65); both among the
greatest mathematicians of all time.] Objection was raised by a learned
contemporary (and repeated through the ages) that the enumeration above
was not reasonable, because the series would have stopped as soon as the
winner was decided and not have gone on through all 4 games in some
cases. Thus the real possibilities are as follows:

AA ABBB
ABA BABB
ABBA BBAB
BAA BBB
BABA
BBAA

But these are not equally likely cases. In modern terminology, if these 10
cases are regarded as constituting the sample space, then

P (AA) =
1
4
, P (ABA) = P (BAA) = P (BBB) =

1
8
,

P (ABBA) = P (BABA) = P (BBAA) = P (ABBB)

= P (BABB) = P (BBAB) =
1
16

since A and B are independent events with probability 1/2 each (see §2.4).
If we add up these probabilities we get of course

P (A wins the stake) =
1
4
+

1
8
+

1
16

+
1
8
+

1
16

+
1
16

=
11
16
,

P (B wins the stake) =
1
16

+
1
16

+
1
16

+
1
8
=

5
16
.

Pascal did not quite explain his method this way, saying merely that “it
is absolutely equal and indifferent to each whether they play in the natural
way of the game, which is to finish as soon as one has his score, or whether
they play the entire four games.” A later letter by him seems to indicate
that he fumbled on the same point in a similar problem with three players.
The student should take heart that this kind of reasoning was not easy
even for past masters.
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2.3. Deductions from the axioms

In this section we will do some simple “axiomatics.” That is to say, we
shall deduce some properties of the probability measure from its definition,
using, of course, the axioms but nothing else. In this respect the axioms
of a mathematical theory are like the constitution of a government. Unless
and until it is changed or amended, every law must be made to follow from
it. In mathematics we have the added assurance that there are no divergent
views as to how the constitution should be construed.

We record some consequences of the axioms in (iv) to (viii) below. First
of all, let us show that a probability is indeed a number between 0 and 1.

(iv) For any set A, we have

P (A) ≤ 1.

This is easy, but you will see that in the course of deducing it we shall
use all three axioms. Consider the complement Ac as well as A. These two
sets are disjoint and their union is Ω:

A+Ac = Ω. (2.3.1)

So far, this is just set theory, no probability theory yet. Now use Axiom
(ii) on the left side of (2.3.1) and Axiom (iii) on the right:

P (A) + P (Ac) = P (Ω) = 1. (2.3.2)

Finally use Axiom (i) for Ac to get

P (A) = 1− P (Ac) ≤ 1.

Of course, the first inequality above is just Axiom (i). You might object
to our slow pace above by pointing out that since A is contained in Ω, it
is obvious that P (A) ≤ P (Ω) = 1. This reasoning is certainly correct, but
we still have to pluck it from the axioms, and that is the point of the little
proof above. We can also get it from the following more general proposition.

(v) For any two sets such that A ⊂ B, we have

P (A) ≤ P (B), and P (B −A) = P (B)− P (A).

The proof is an imitation of the preceding one with B playing the role
of Ω. We have

B = A+ (B −A),

P (B) = P (A) + P (B −A) ≥ P (A).
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The next proposition is such an immediate extension of Axiom (ii) that
we could have adopted it instead as an axiom.

(vi) For any finite number of disjoint sets A1, . . . , An, we have

P (A1 + · · ·+An) = P (A1) + · · ·+ P (An). (2.3.3)

This property of the probability measure is called finite additivity . It
is trivial if we recall what “disjoint” means and use (ii) a few times; or
we may proceed by induction if we are meticulous. There is an important
extension of (2.3.3) to a countable number of sets later, not obtainable by
induction!

As already checked in several special cases, there is a generalization of
Axiom (ii), hence also of (2.3.3), to sets that are not necessarily disjoint.
You may find it trite, but it has the dignified name of Boole’s inequality.
Boole (1815–64) was a pioneer in the “laws of thought” and author of
Theories of Logic and Probabilities.

(vii) For any finite number of arbitrary sets A1, . . . , An, we have

P (A1 ∪ · · · ∪An) ≤ P (A1) + · · ·+ P (An). (2.3.4)

Let us first show this when n = 2. For any two sets A and B, we can
write their union as the sum of disjoint sets as follows:

A ∪B = A+AcB. (2.3.5)

Now we apply Axiom (ii) to get

P (A ∪B) = P (A) + P (AcB). (2.3.6)

Since AcB ⊂ B, we can apply (v) to get (2.3.4).
The general case follows easily by mathematical induction, and you

should write it out as a good exercise on this method. You will find that
you need the associative law for the union of sets as well as that for the
addition of numbers.

The next question is the difference between the two sides of the inequal-
ity (2.3.4). The question is somewhat moot since it depends on what we
want to use to express the difference. However, when n = 2 there is a clear
answer.

(viii) For any two sets A and B, we have

P (A ∪B) + P (A ∩B) = P (A) + P (B). (2.3.7)
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This can be gotten from (2.3.6) by observing that AcB = B − AB, so
that we have by virtue of (v):

P (A ∪B) = P (A) + P (B −AB) = P (A) + P (B)− P (AB),

which is equivalent to (2.3.7). Another neat proof is given in Exercise 12.
We shall postpone a discussion of the general case until §6.2. In practice,

the inequality is often more useful than the corresponding identity which
is rather complicated.

We will not quit formula (2.3.7) without remarking on its striking re-
semblance to formula (1.4.8) of §1.4, which is repeated below for the sake
of comparison:

IA∪B + IA∩B = IA + IB . (2.3.8)

There is indeed a deep connection between the pair, as follows. The proba-
bility P (S) of each set S can be obtained from its indicator function IS by
a procedure (operation) called “taking expectation” or “integration.” If we
perform this on (2.3.8) term by term, their result is (2.3.7). This procedure
is an essential part of probability theory and will be thoroughly discussed
in Chapter 6. See Exercise 19 for a special case.

To conclude our axiomatics, we will now strengthen Axiom (ii) or its
immediate consequence (vi), namely the finite additivity of P , into a new
axiom.

(ii*) Axiom of countable additivity . For a countably infinite collection
of disjoint sets Ak, k = 1, 2, . . . , we have

P

( ∞∑
k=1

Ak

)
=

∞∑
k=1

P (Ak). (2.3.9)

This axiom includes (vi) as a particular case, for we need only put
Ak = ∅ for k > n in (2.3.9) to obtain (2.3.3). The empty set is disjoint
from any other set including itself and has probability zero (why?). If Ω is
a finite set, then the new axiom reduces to the old one. But it is important
to see why (2.3.9) cannot be deduced from (2.3.3) by letting n → ∞. Let
us try this by rewriting (2.3.3) as follows:

P

(
n∑

k=1

Ak

)
=

n∑
k=1

P (Ak). (2.3.10)

Since the left side above cannot exceed 1 for all n, the series on the right
side must converge and we obtain

lim
n→∞

P

(
n∑

k=1

Ak

)
= lim

n→∞

n∑
k=1

P (Ak) =
∞∑
k=1

P (Ak). (2.3.11)
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Comparing this established result with the desired result (2.3.9), we see
that the question boils down to

lim
n→∞

P

(
n∑

k=1

Ak

)
= P

( ∞∑
k=1

Ak

)
,

which can be exhibited more suggestively as

lim
n→∞

P

(
n∑

k=1

Ak

)
= P

(
lim
n→∞

n∑
k=1

Ak

)
. (2.3.12)

See end of §1.3 (see Fig. 14).

Figure 14

Thus it is a matter of interchanging the two operations “lim” and “P” in
(2.3.12), or you may say, “taking the limit inside the probability relation.”
If you have had enough calculus you know this kind of interchange is often
hard to justify and may be illegitimate or even invalid. The new axiom is
created to secure it in the present case and has fundamental consequences
in the theory of probability.
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2.4. Independent events

From now on, a “probability measure” will satisfy Axioms (i), (ii*), and
(iii). The subsets of Ω to which such a probability has been assigned will
also be called an event.

We shall show how easy it is to construct probability measures for any
countable space Ω = {ω1, ω2, . . . , ωn, . . . }. To each sample point ωn let us
attach an arbitrary “weight” pn subject only to the conditions

∀n: pn ≥ 0,
∑
n

pn = 1. (2.4.1)

This means that the weights are positive or zero, and add up to 1 altogether.
Now for any subset A of Ω, we define its probability to be the sum of the
weights of all the points in it. In symbols, we put first

∀n: P ({ωn}) = pn; (2.4.2)

and then for every A ⊂ Ω:

P (A) =
∑
ωn∈A

pn =
∑
ωn∈A

P ({ωn}).

We may write the last term above more neatly as

P (A) =
∑
ω∈A

P ({ω}). (2.4.3)

Thus P is a function defined for all subsets of Ω and it remains to check
that it satisfies Axioms (i), (ii*), and (iii). This requires nothing but a bit
of clearheaded thinking and is best done by yourself. Since the weights
are quite arbitrary apart from the easy conditions in (2.4.1), you see that
probability measures come “a dime a dozen” in a countable sample space.
In fact, we can get them all by the above method of construction. For
if any probability measure P is given, never mind how, we can define pn
to be P ({ωn}) as in (2.4.2), and then P (A) must be given as in (2.4.3),
because of Axiom (ii*). Furthermore the pn’s will satisfy (2.4.1) as a simple
consequence of the axioms. In other words, any given P is necessarily of
the type described by our construction.

In the very special case that Ω is finite and contains exactly m points,
we may attach equal weights to all of them, so that

pn =
1
m
, n = 1, 2, . . . ,m.

Then we are back to the “equally likely” situation in Example 4 of §2.2.
But in general the pn’s need not be equal, and when Ω is countably infinite
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they cannot all be equal (why?). The preceding discussion shows the degree
of arbitrariness involved in the general concept of a probability measure.

An important model of probability space is that of repeated independent
trials : this is the model used when a coin is tossed, a die thrown, a card
drawn from a deck (with replacement) several times. Alternately, we may
toss several coins or throw several dice at the same time. Let us begin with
an example.

Example 7. First toss a coin, then throw a die, finally draw a card from
a deck of poker cards. Each trial produces an event; let

A = coin falls heads;

B = die shows number 5 or 6;

C = card drawn is a spade.

Assume that the coin is fair, the die is perfect, and the deck thoroughly
shuffled. Furthermore assume that these three trials are carried out “inde-
pendently” of each other, which means intuitively that the outcome of each
trial does not influence that of the others. For instance, this condition is
approximately fulfilled if the trials are done by different people in different
places, or by the same person in different months! Then all possible joint
outcomes may be regarded as equally likely. There are respectively 2, 6, and
52 possible cases for the individual trials, and the total number of cases for
the whole set of trials is obtained by multiplying these numbers together:
2 · 6 · 52 (as you will soon see it is better not to compute this product).
This follows from a fundamental rule of counting, which is fully discussed
in §3.1 and which you should read now if need be. [In general, many parts
of this book may be read in different orders, back and forth.] The same
rule yields the numbers of favorable cases to the events A, B, C, AB, AC,
BC, ABC given below, where the symbol | . . . | for size is used:

|A| = 1 · 6 · 52, |B| = 2 · 2 · 52, |C| = 2 · 6 · 13,

|AB| = 1 · 2 · 52, |AC| = 1 · 6 · 13, |BC| = 2 · 2 · 13,

|ABC| = 1 · 2 · 13.

Dividing these numbers by |Ω| = 2 ·6 ·52, we obtain after quick cancellation
of factors:

P (A) =
1
2
, P (B) =

1
3
, P (C) =

1
4
,

P (AB) =
1
6
, P (AC) =

1
8
, P (BC) =

1
12
,

P (ABC) =
1
24
.
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We see at a glance that the following set of equations holds:

P (AB) = P (A)P (B), P (AC) = P (A)P (C), P (BC) = P (B)P (C) (2.4.4)

P (ABC) = P (A)P (B)P (C).

The reader is now asked to convince himself that this set of relations will
also hold for any three events A,B,C such that A is determined by the
coin, B by the die, and C by the card drawn alone. When this is the case
we say that these trials are stochastically independent as well as the events
so produced. The adverb “stochastically” is usually omitted for brevity.

The astute reader may observe that we have not formally defined the
word “trial,” and yet we are talking about independent trials! A logical
construction of such objects is quite simple but perhaps a bit too abstract
for casual introduction. It is known as “product space”; see Exercise 29.
However, it takes less fuss to define “independent events” and we shall do
so at once.

Two events A and B are said to be independent if we have P (AB) =
P (A)P (B). Three events A, B, and C are said to be independent if the
relations in (2.4.4) hold. Thus independence is a notion relative to a given
probability measure (by contrast, the notion of disjointness, e.g., does not
depend on any probability). More generally, the n events A1, A2, . . . , An

are independent if the intersection [joint occurrence] of any subset of them
has as its probability the product of probabilities of the individual events.
If you find this sentence too long and involved, you may prefer the following
symbolism. For any subset (i1, i2, . . . , ik) of (1, 2, . . . , n), we have

P (Ai1 ∩Ai2 ∩ · · · ∩Aik) = P (Ai1)P (Ai2) · · ·P (Aik). (2.4.5)

Of course, here the indices i1, . . . , ik are distinct and 1 ≤ k ≤ n.
Further elaboration of the notion of independence is postponed to §5.5,

because it will be better explained in terms of random variables. But we
shall briefly describe a classical scheme—the grand daddy of repeated trials,
and subject of intensive and extensive research by J. Bernoulli, De Moivre,
Laplace, . . . , Borel, . . . .

Example 8. (The coin-tossing scheme). A coin is tossed repeatedly n
times. The joint outcome may be recorded as a sequence of H’s and T ’s,
whereH = “head,” T = “tail.” It is often convenient to quantify by putting
H = 1, T = 0; or H = 1, T = −1; we shall adopt the first usage here. Then
the result is a sequence of 0’s and 1’s consisting of n terms such as 110010110
with n = 9. Since there are 2 outcomes for each trial, there are 2n possible
joint outcomes. This is another application of the fundamental rule in §3.1.
If all of these are assumed to be equally likely so that each particular joint
outcome has probability 1/2n, then we can proceed as in Example 7 to
verify that the trials are independent and the coin is fair. You will find this
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a dull exercise, but it is recommended that you go through it in your head
if not on paper. However, we will turn the table around here by assuming
at the outset that the successive tosses do form independent trials. On the
other hand, we do not assume the coin to be “fair,” but only that the
probabilities for head (H) and tail (T ) remain constant throughout the
trials. Empirically speaking, this is only approximately true since things
do not really remain unchanged over long periods of time. Now we need
a precise notation to record complicated statements, ordinary words being
often awkward or ambiguous. Then let Xi denote the outcome of the ith
trial and let εi denote 0 or 1 for each i, but of course varying with the
subscript. Then our hypothesis above may be written as follows:

P (Xi = 1) = p; P (Xi = 0) = 1− p; i = 1, 2, . . . , n; (2.4.6)

where p is the probability of heads for each trial. For any particular, namely
completely specified, sequence (ε1, ε2, . . . , εn) of 0’s and 1’s, the probability
of the corresponding sequence of outcomes is equal to

P (X1 = ε1, X2 = ε2, . . . , Xn = εn)

= P (X1 = ε1)P (X2 = ε2) . . . P (Xn = εn)
(2.4.7)

as a consequence of independence. Now each factor on the right side above
is equal to p or 1− p depending on whether the corresponding εi is 1 or 0.
Suppose j of these are 1’s and n− j are 0’s; then the quantity in (2.4.7) is
equal to

pj(1− p)n−j . (2.4.8)

Observe that for each sequence of trials, the number of heads is given by
the sum

∑n
i=1 Xi. It is important to understand that the number in (2.4.8)

is not the probability of obtaining j heads in n tosses, but rather that
of obtaining a specific sequence of heads and tails in which there are j
heads. In order to compute the former probability, we must count the total
number of the latter sequences since all of them have the same probability
given in (2.4.8). This number is equal to the binomial coefficient

(
n
j

)
; see

§3.2 for a full discussion. Each one of these
(
n
j

)
sequences corresponds to

one possibility of obtaining j heads in n trials, and these possibilities are
disjoint. Hence it follows from the additivity of P that we have

P

(
n∑

i=1

Xi = j

)
= P (exactly j heads in n trials)

=
(
n

j

)
P (any specified sequence of n trials with exactly j heads)

=
(
n

j

)
pj(1− p)n−j .
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This famous result is known as Bernoulli’s formula. We shall return to it
many times in the book.

2.5. Arithmetical density∗

We study in this section a very instructive example taken from arithmetic.

Example 9. Let Ω be the first 120 natural numbers {1, 2, . . . , 120}. For
the probability measure P we use the proportion as in Example 1 of §2.1.
Now consider the sets

A = {ω | ω is a multiple of 3},

B = {ω | ω is a multiple of 4}.

Then every third number of Ω belongs to A, and every fourth to B. Hence
we get the proportions

P (A) = 1/3, P (B) = 1/4.

What does the set AB represent? It is the set of integers that are divisible
by 3 and by 4. If you have not entirely forgotten your school arithmetic,
you know this is just the set of multiples of 3·4 = 12. Hence P (AB) = 1/12.
Now we can use (viii) to get P (A ∪B):

P (A ∪B) = P (A) + P (B)− P (AB) = 1/3 + 1/4− 1/12 = 1/2. (2.5.1)

What does this mean? A ∪ B is the set of those integers in Ω which are
divisible by 3 or by 4 (or by both). We can count them one by one, but
if you are smart you see that you don’t have to do this drudgery. All you
have to do is to count up to 12 (which is 10% of the whole population Ω),
and check them off as shown:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

�� � �� �
�

Six are checked (one checked twice), hence the proportion of A∪B among
these 12 is equal to 6/12 = 1/2 as given by (2.5.1).

An observant reader will have noticed that in the case above we have
also

P (AB) = 1/12 = 1/3 · 1/4 = P (A) · P (B).

∗This section may be omitted.
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This is true because the two numbers 3 and 4 happen to be relatively
prime, namely they have no common divisor except 1. Suppose we consider
another set:

C = {ω | ω is a multiple of 6}.

Then P (C) = 1/6, but what is P (BC) now? The set BC consists of those
integers that are divisible by both 4 and 6, namely divisible by their least
common multiple (remember that?), which is 12 and not the product 4·6 =
24. Thus P (BC) = 1/12. Furthermore, because 12 is the least common
multiple we can again stop counting at 12 in computing the proportion of
the set B∪C. An actual counting gives the answer 4/12 = 1/3, which may
also be obtained from the formula (2.3.7):

P (B ∪ C) = P (B) + P (C)− P (BC) = 1/4 + 1/6− 1/12 = 1/3. (2.5.2)

This example illustrates a point that arose in the discussion in Example
3 of §2.1. Instead of talking about the proportion of the multiples of 3, say,
we can talk about its frequency. Here no rolling of any fortuitous dice is
needed. God has given us those natural numbers (a great mathematician
Kronecker said so), and the multiples of 3 occur at perfectly regular periods
with the frequency 1/3. In fact, if we use Nn(A) to denote the number of
natural numbers up to and including n which belong to the set A, it is a
simple matter to show that

lim
n→∞

Nn(A)
n

=
1
3
.

Let us call this P (A), the limiting frequency of A. Intuitively, it should
represent the chance of picking a number divisible by 3, if we can reach into
the whole bag of natural numbers as if they were so many indistinguishable
balls in an urn. Of course, similar limits exist for the sets B, C, AB, BC,
etc. and have the values computed above. But now with this infinite sample
space of “all natural numbers,” call it Ω∗, we can treat by the same method
any set of the form

Am = {ω | ω is divisible by m}, (2.5.3)

where m is an arbitrary natural number. Why then did we not use this
more natural and comprehensive model?

The answer may be a surprise for you. By our definition of probability
measure given in §2.2, we should have required that every subset of Ω∗ have
a probability, provided that Ω∗ is countable, which is the case here. Now
take for instance the set that consists of the single number {1971} or, if you
prefer, the set Z = {all numbers from 1 to 1971}. Its probability is given
by limn→∞ Nn(Z)/n according to the same rule that was applied to the set
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A. But Nn(Z) is equal to 1971 for all values of n ≥ 1971; hence the limit
above is equal to 0 and we conclude that every finite set has probability 0
by this rule. If P were to be countably additive as required by Axiom (ii*)
in §2.3, then P (Ω∗) would be 0 rather than 1. This contradiction shows
that P cannot be a probability measure on Ω∗. Yet it works perfectly well
for sets such as Am.

There is a way out of this paradoxical situation. We must abandon
our previous requirement that the measure be defined for all subsets (of
natural numbers). Let a finite number of the sets Am be given, and let
us consider the composite sets that can be obtained from these by the
operations complementation, union, and intersection. Call this class of sets
the class generated by the original sets. Then it is indeed possible to define
P in the manner prescribed above for all sets in this class. A set that is
not in the class has no probability at all. For example, the set Z does
not belong to the class generated by A,B,C. Hence its probability is not
defined, rather than zero. We may also say that the set Z is nonmeasurable
in the context of Example 2 of §2.1. This saves the situation, but we will
not pursue it further here except to give another example.

Example 10. What is the probability of the set of numbers divisible by
3, not divisible by 5, and divisible by 4 or 6?

Using the preceding notation, the set in question is ADc(B ∪C), where
D = A5. Using distributive law, we can write this as ADcB ∪ ADcC. We
also have

(ADcB)(ADcC) = ADcBC = ABC −ABCD.

Hence by (v),

P (ADcBC) = P (ABC)− P (ABCD) =
1
12
− 1

60
=

1
15
.

Similarly, we have

P (ADcB) = P (AB)− P (ABD) =
1
12
− 1

60
=

4
60

=
1
15
,

P (ADcC) = P (AC)− P (ACD) =
1
6
− 1

30
=

4
30

=
2
15
.

Finally we obtain by (viii):

P (ADcB ∪ADcC) = P (ADcB) + P (ADcC)− P (ADcBC)

=
1
15

+
2
15
− 1

15
=

2
15
.

You should check this using the space Ω in Example 9.
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The problem can be simplified by a little initial arithmetic, because the
set in question is seen to be that of numbers divisible by 2 or 3 and not by
5. Now our method will yield the answer more quickly.

Exercises

1. Consider Example 1 in §2.1. Suppose that each good apple costs 1/c
while a rotten one costs nothing. Denote the rotten ones by R, an
arbitrary bunch from the bushel by S, and define

Q(S) = |S \R|/|Ω−R|.

Q is the relative value of S with respect to that of the bushel. Show
that it is a probability measure.

2. Suppose that the land of a square kingdom is divided into three strips
A,B,C of equal area and suppose the value per unit is in the ratio
of 1:3:2. For any piece of (measurable) land S in this kingdom, the
relative value with respect to that of the kingdom is then given by the
formula:

V (S) =
P (SA) + 3P (SB) + 2P (SC)

2

where P is as in Example 2 of §2.1. Show that V is a probability
measure.

*3. Generalizing No. 2, let a1, . . . , an be arbitrary positive numbers and
let A1 + · · ·+An = Ω be an arbitrary partition. Let P be a probability
measure on Ω and

Q(S) = [a1P (SA1) + · · ·+ anP (SAn)]/[a1P (A1) + · · ·+ anP (An)]

for any subset of Ω. Show that P is a probability measure.
4. Let A and B denote two cups of coffee you drank at a lunch counter.

Suppose the first cup of coffee costs 15/c, and a second cup costs 10/c.
Using P to denote “price,” write down a formula like Axiom (ii) but
with an inequality (P is “subadditive”).

5. Suppose that on a shirt sale each customer can buy two shirts at $4
each, but the regular price is $5. A customer bought 4 shirts S1, . . . , S4.
Write down a formula like Axiom (ii) and contrast it with Exercise 3.
Forget about sales tax! (P is “superadditive.”)

6. Show that if P and Q are two probability measures defined on the same
(countable) sample space, then aP + bQ is also a probability measure
for any two nonnegative numbers a and b satisfying a + b = 1. Give a
concrete illustration of such a mixture.
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*7. If P is a probability measure, show that the function P/2 satisfies
Axioms (i) and (ii) but not (iii). The function P 2 satisfies (i) and (iii)
but not necessarily (ii); give a counterexample to (ii) by using Example
1.

*8. If A,B,C are arbitrary sets, show that
(a) P (A ∩B ∩ C) ≤ P (A) ∧ P (B) ∧ P (C),
(b) P (A ∪B ∪ C) ≥ P (A) ∨ P (B) ∨ P (C).

*9. Prove that for any two sets A and B, we have

P (AB) ≥ P (A) + P (B)− 1.

Give a concrete example of this inequality. [Hint: Use (2.3.4) with n = 2
and De Morgan’s laws.]

10. We have A ∩A = A, but when is P (A) · P (A) = P (A)? Can P (A) = 0
but A �= ∅?

11. Find an example where P (AB) < P (A)P (B).
12. Prove (2.3.7) by first showing that

(A ∪B)−A = B − (A ∩B).

13. Two groups share some members. Suppose that Group A has 123,
Group B has 78 members, and the total membership in both groups is
184. How many members belong to both?

14. Groups A,B,C have 57, 49, 43 members, respectively. A and B have
13, A and C have 7, B and C have 4 members in common; and there
is a lone guy who belongs to all three groups. Find the total number
of people in all three groups.

*15. Generalize Exercise 14 when the various numbers are arbitrary but, of
course, subject to certain obvious inequalities. The resulting formula,
divided by the total population (there may be any nonjoiners!), is the
extension of (2.3.7) to n = 3.

16. Compute P (A�B) in terms of P (A), P (B), and P (AB); also in terms
of P (A), P (B), and P (A ∪B).

*17. Using the notation (2.5.3) and the probability defined in that context,
show that for any two m and n we have

P (AmAn) ≥ P (Am)P (An).

When is there equality above?
*18. Recall the computation of plane areas by double integration in calculus;

for a nice figure such as a parallelogram, trapezoid, or circle, we have

area of S =
∫∫
S

1 dxdy.
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Show that this can be written in terms of the indicator IS as

A(S) =
∫∫

IS(x, y) dxdy,

where Ω is the whole plane and IS(x, y) is the value of the function IS
for (at) the point (x, y) (denoted by ω in §1.4). Show also that for two
such figures S1 and S2, we have

A(S1) +A(S2) =
∫∫

(IS1 + IS2),

where we have omitted some unnecessary symbols.
*19. Now you can demonstrate the connection between (2.3.7) and (2.3.8)

mentioned there, in the case of plane areas.
20. Find several examples of {pn} satisfying the conditions in (2.4.1); give

at least two in which all pn > 0.
*21. Deduce from Axiom (ii*) the following two results. (a) If the sets An

are nondecreasing, namely An ⊂ An+1 for all n ≥ 1, and A∞ =
⋃

nAn,
then P (A∞) = limn→∞ P (An). (b) If the sets An are nonincreasing,
namely An ⊃ An+1 for all n ≥ 1, and A∞ =

⋂
nAn, then P (A∞) =

limn→∞ P (An). [Hint: For (a), consider A1+(A2−A1)+(A3−A2)+· · · ;
for (b), dualize by complementation.]

22. What is the probability (in the sense of Example 10) that a natural
number picked at random is not divisible by any of the numbers 3, 4,
6 but is divisible by 2 or 5?

*23. Show that if (m1, . . . ,mn) are co-prime positive integers, then the
events (Am1 , . . . , Amn

) defined in §2.5 are independent.
24. What can you say about the event A if it is independent of itself? If

the events A and B are disjoint and independent, what can you say of
them?

25. Show that if the two events (A,B) are independent, then so are
(A,Bc), (Ac, B), and (Ac, Bc). Generalize this result to three indepen-
dent events.

26. Show that if A,B,C are independent events, then A and B ∪ C are
independent, and A \B and C are independent.

27. Prove that

P (A ∪B ∪ C) = P (A) + P (B) + P (C)

− P (AB)− P (AC)− P (BC) + P (ABC)

when A,B,C are independent by considering P (AcBcCc). [The for-
mula remains true without the assumption of independence; see §6.2.]
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28. Suppose five coins are tossed; the outcomes are independent but the
probability of heads may be different for different coins. Write the prob-
ability of the specific sequence HHTHT and the probability of exactly
three heads.

*29. How would you build a mathematical model for arbitrary repeated
trials, namely without the constraint of independence? In other words,
describe a sample space suitable for recording such trials. What is the
mathematical definition of an event that is determined by one of the
trials alone, two of them, etc.? You do not need a probability measure.
Now think how you would cleverly construct such a measure over the
space in order to make the trials independent. The answer is given in,
e.g., [Feller 1, §V.4], but you will understand it better if you first give
it a try yourself.



3
Counting

3.1. Fundamental rule

The calculation of probabilities often leads to the counting of various possi-
ble cases. This has been indicated in Examples 4 and 5 of §2.2 and forms the
backbone of the classical theory with its stock in trade the games of chance.
But combinatorial techniques are also needed in all kinds of applications
arising from sampling, ranking, partitioning, allocating, programming, and
model building, to mention a few. In this chapter we shall treat the most
elementary and basic types of problems and the methods of solving them.

The author has sometimes begun a discussion of “permutations and
combinations” by asking in class the following question. If a man has three
shirts and two ties, in how many ways can he dress up [put on one of each]?
Only two numbers, 2 and 3, are involved, and it’s anybody’s guess that one
must combine them in some way. Does one add: 2 + 3? or multiply: 2× 3?
(or perhaps make 23 or 32). The question was meant to be rhetorical but
experience revealed an alarming number of wrong answers. So if we dwell
on this a little longer than you deem necessary you will know why.

First of all, in a simple example like that, one can simply picture the
various possibilities and count them mentally:
A commonly used tabulation is as follows:

S
T 1 2 3

1 11 21 31

2 12 22 32

(3.1.1)

46
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Figure 15

As mathematics is economy of thought we can schematize (program) this
in a more concise way:

(s1, t1)(s1, t2)(s2, t1)(s2, t2)(s3, t1)(s3, t2),

and finally we see that it is enough just to write

(1, 1)(1, 2)(2, 1)(2, 2)(3, 1)(3, 2) (3.1.2)

by assigning the first slot to “shirt” and the second to “tie.” Thus we have
reached the mathematical method of naming the collection in (3.1.2). It is
the set of all ordered couples (a, b) such that a = 1, 2, 3; b = 1, 2; and you
see that the answer to my question is 3× 2 = 6.

In general we can talk about ordered k-tuples (a1, . . . , ak) where for
each j from 1 to k, the symbol aj indicates the assignment (choice) for the
jth slot, and it may be denoted by a numeral between 1 and mj . In the
example above k = 2, m1 = 3, m2 = 2, and the collection of all (a1, a2) is
what is enumerated in (3.1.2).

This symbolic way of doing things is extremely convenient. For instance,
if the man has also two pairs of shoes, we simply extend each 2-tuple to a
3-tuple by adding a third slot into which we can put either “1” or “2.” Thus
each of the original 2-tuples in (3.1.2) splits into two 3-tuples, and so the
total of 3-tuples will be 3×2×2 = 12. This is the number of ways the man
can choose a shirt, a tie, and a pair of shoes. You see it is all automated as
on a computing machine. As a matter of fact, it is mathematical symbolism
that taught the machines, not the other way around (at least, not yet).

The idea of splitting mentioned above lends well to visual imagination.
It shows why 3 “shirts” multiply into 6 “shirt–ties” and 12 “shirt–tie–
shoes.” Take a good look at it. Here is the general proposition:
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Fundamental Rule. A number of multiple choices are to be made. There
are m1 possibilities for the first choice, m2 for the second, m3 for the
third, etc. If these choices can be combined freely, then the total number
of possibilities for the whole set of choices is equal to

m1 ×m2 ×m3 × · · · .

A formal proof would amount to repeating what is described above in
more cut-and-dried terms, and is left to your own discretion. Let us point
out, however, that “free combination” means in the example above that no
matching of shirt and ties is required, etc.

Example 1. A menu in a restaurant reads like this:

Choice of one:
Soup, Juice, Fruit Cocktail

Choice of one:
Beef Hash
Roast Ham

Fried Chicken
Spaghetti with Meatballs

Choice of one:
Mashed Potatoes, Broccoli, Lima Beans

Choice of one:
Ice Cream, Apple Pie

Choice of one:
Coffee, Tea, Milk

Suppose you take one of each “course” without substituting or skipping;
how many options do you have? Or if you like the language nowadays
employed in more momentous decisions of this sort, how many scenarios
of a “complete 5-course dinner” (as advertised) can you make out of this
menu? The total number of items you see on the menu is

3 + 4 + 3 + 2 + 3 = 15.

But you don’t eat them all. On the other hand, the number of different
dinners available is equal to

3× 4× 3× 2× 3 = 216,

according to the fundamental rule. True, you eat only one dinner at a time,
but it is quite possible for you to try all these 216 dinners if you have
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catholic taste in food and patronize that restaurant often enough. More
realistically and statistically significant: all these 216 dinners may be actu-
ally served to different customers over a period of time and perhaps even
on a single day. This possibility forms the empirical basis of combinatorial
counting and its relevance to computing probabilities.

Example 2. We can now solve the problem about Example (e) and (e′)
in §1.1: in how many ways can six dice appear when they are rolled? And
in how many ways can they show all different faces?

Each die here represents a multiple choice of six possibilities. For the
first problem these 6 choices can be freely combined so the rule applies
directly to give the answer 66 = 46656. For the second problem the choices
cannot be freely combined since they are required to all be different. Off-
hand the rule does not apply, but the reasoning behind it does. This is what
counts in mathematics: not a blind reliance on a rule but a true understand-
ing of its meaning. (Perhaps that is why “permutation and combination”
are for many students harder stuff than algebra or calculus.) Look at the
splitting diagram in Fig. 16.

The first die can show any face, but the second must show a different
one. Hence, after the first choice has been made, there are five possibilities
for the second choice. Which five depends on the first choice, but their
number does not. So there are 6 × 5 possibilities for the first and second
choices together. After these have been made, there are four possibilities
left for the third, and so on. For the complete sequence of six choices we
have, therefore, 6 · 5 · 4 · 3 · 2 · 1 = 6! = 720 possibilities. By the way, make
sure by analyzing the diagram that the first die hasn’t got preferential
treatment. Besides, which is “first”?

Of course, we can re-enunciate a more general rule to cover the situation
just discussed, but is it necessary once the principles are understood?

3.2. Diverse ways of sampling

Let us proceed to several standard methods of counting which constitute
the essential elements in the majority of combinatorial problems. These can
be conveniently studied either as sampling or as allocating problems. We
begin with the former.

An urn contains m distinguishable balls marked 1 to m, from which n
balls will be drawn under various specified conditions, and the number of
all possible outcomes will be counted in each case.

I. Sampling with replacement and with ordering.
We draw n balls sequentially, each ball drawn being put back into the

urn before the next drawing is made, and we record the numbers on the
balls together with their order of appearance. Thus we are dealing with
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ordered n-tuples (a1, . . . , an) in which each aj can be any number from
1 to m. The fundamental rule applies directly and yields the answer mn.
This corresponds to the case of rolling six dice without restriction, but the
analogy may be clearer if we think of the same dice being rolled six times
in succession, so that each rolling corresponds to a drawing.

II. Sampling without replacement and with ordering.
We sample as in Case I, but after each ball is drawn it is left out of

the urn. We are dealing with ordered n-tuples (a1, . . . , an) as above with
the restriction that the aj all be different. Clearly we must have n ≤ m.
The Fundamental Rule does not apply directly, but the splitting argument
works as in Example 2 and yields the answer

m · (m− 1) · (m− 2) · · · (m− n+ 1) = (m)n. (3.2.1)

Observe that there are n factors on the left side of (3.2.1) and that the
last factor is m− (n− 1) rather than m−n, why? We have introduced the
symbol (m)n to denote this “continued product” on the left side of (3.2.1).

Case II has a very important subcase, which can be posed as a “per-
mutation” problem.

IIa. Permutation of m distinguishable balls.
This is the case of II when m = n. Thus all m balls are drawn out

one after another without being put back. The result is therefore just the
m numbered balls appearing in some order, and the total number of such
possibilities is the same as that of all possible arrangements (ordering,
ranking, permutation) of the set {1, 2, . . . ,m}. This number is called the
factorial of m and denoted by

m! = (m)m = m(m− 1) · · · 2 · 1

n n!

1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880

10 3628800

III. Sampling without replacement and without ordering.
Here the balls are not put back and their ordering of appearance is

not recorded; hence we might as well draw all n balls at one grab. We are
therefore dealing with subsets of size n from a set (population) of size m.
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To count their number, we will compare with Case II where the balls are
ranged in order. Now a bunch of n balls, if drawn one by one, can appear
in n! different ways by Case IIa. Thus each unordered sample of size n
produces n! ordered ones, and conversely every ordered sample of size n
can be produced in this manner. For instance, if m = 5, n = 3, the subset
{3, 5, 2} can be drawn in 3! = 6 ways as follows:

(2, 3, 5)(2, 5, 3)(3, 2, 5)(3, 5, 2)(5, 2, 3)(5, 3, 2).

In general we know from Case II that the total number of ordered samples
of size n is (m)n. Let us denote for one moment the unknown number of
unordered samples of size n by x, then the argument above shows that

n!x = (m)n.

Solving for x, we get the desired answer, which will be denoted by(
m

n

)
=

(m)n
n!

. (3.2.2)

If we multiply both numerator and denominator by (m− n)!, we see from
(3.2.1) that(

m

n

)
=

(m)n(m− n)!
n! (m− n)!

=
m(m− 1) · · · (m− n+ 1)(m− n) · · · 2 · 1

m! (m− n)!
=

m!
n! (m− n)!

.

(3.2.3)

When n = m, there is exactly one subset of size n, namely the whole
set, hence the number in (3.2.3) must reduce to 1 if it is to maintain its
significance. So we are obliged to set 0! = 1. Under this convention, for-

mula (3.2.3) holds for 0 ≤ n ≤ m. The number
(
m

n

)
is called a binomial

coefficient and plays an important role in probability theory. Note that(
m

n

)
=
(

m

m− n

)
, (3.2.4)

which is immediate from (3.2.3). It is also obvious without this explicit eval-
uation from the interpretation of both sides as counting formulas (why?).

The argument used in Case III leads to a generalization of IIa:

IIIa. Permutation of m balls that are distinguishable by groups.
Suppose that there are m1 balls of color no. 1, m2 balls of color no. 2,

. . . , mr balls of color no. r. Their colors are distinguishable, but balls of
the same color are not. Of course, m1 +m2 + · · · +mr = m. How many
distinguishable arrangements of these m balls are there?
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For instance, if m1 = m2 = 2, m = 4, and the colors are black and
white, there are 6 distinguishable arrangements as follows:

••◦◦ •◦•◦ •◦◦• ◦••◦ ◦•◦• ◦◦••
To answer the question in general, we compare with Case IIa where all

balls are distinguishable. Suppose we mark the balls of color no. 1 from
1 to m1, the balls of color no. 2 from 1 to m2, and so forth. Then they
become all distinguishable and so the total number of arrangements after
the markings will be m! by Case IIa. Now the m1 balls of color no. 1 can be
arranged in m1! ways by their new marks, the m2 balls of color no. 2 can
be arranged in m2! ways by their new marks, etc. Each arrangement for
one color can be freely combined with any arrangement for another color.
Hence according to the fundamental rule, there are altogether

m1!m2! . . .mr!

new arrangements produced by the various markings, for each original un-
marked arrangement. It follows as in the discussion of Case III that the
total number of distinguishable unmarked arrangements is equal to the
quotient

m!
m1!m2! . . .mr!

.

This is called a multinomial coefficient. When r = 2, it reduces to the

binomial coefficient
(
m

m1

)
=
(
m

m2

)
.

IV. Sampling with replacement and without ordering.
We draw n balls one after another, each ball being put back into the

urn before the next drawing is made, but we record the numbers drawn
with possible repetitions as a lot without paying attention to their order of
appearance. This is a slightly more tricky situation, so we will begin by a
numerical illustration. Take m = n = 3; all the possibilities in this case are
listed in the first column below:

111 ��� ���
112 �� � �� �
113 �� � �� �
122 � �� � ��
123 � � � � � �
133 � �� � ��
222 ��� ���
223 �� � �� �
233 � �� � ��
333 ��� ���

(3.2.5)
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Do you see the organization principle used in making the list?
In general think of a “tally sheet” with numbers indicating the balls in

the top line:

1 2 3 4 m

�� � ���

After each drawing we place a check under the number (of the ball) that is
drawn. Thus at the end of all the drawings the total number of checks on
the sheet will be n (which may be greater thanm); there may be as many as
that in an entry, and there may be blanks in some entries. Now economize
by removing all dispensable parts of the tally sheet, so that column 1 in
(3.2.5) becomes the skeleton in column 2. Check this over carefully to see
that no information is lost in the simplified method of accounting. Finally,
align the symbols � and in column 2 to get column 3. Now forget about
columns 1 and 2 and concentrate on column 3 for a while. Do you see
how to reconstruct from each little cryptogram of “checks and bars” the
original tally? Do you see that all possible ways of arranging 3 checks and
2 bars are listed there? Thus the total number is (by Case IIIa with m = 5,
m1 = 3, m2 = 2, or equivalently Case III with m = 5, n = 3) equal
to 5!/3! 2! = 10 as shown. This must therefore also be the number of all
possible tally results.

In general each possible record of sampling under Case IV can be trans-
formed by the same method into the problem of arranging n checks and
m − 1 bars (since m slots have m − 1 lines dividing them) in all possible
ways. You will have to draw some mental pictures to convince yourself that
there is one-to-one correspondence between the two problems as in the par-
ticular case illustrated above. From IIIa we know the solution to the second
problem is (

m+ n− 1
n

)
=
(
m+ n− 1
m− 1

)
. (3.2.6)

Hence this is also the total number of outcomes when we sample under
Case IV.

Example 3. D’Alembert’s way of counting discussed in Example 4 of §2.2
is equivalent to sampling under Case IV with m = n = 2. Tossing each
coin corresponds to drawing a head or a tail if the results for two coins are
tallied without regard to “which shows which” (or without ordering when
the coins are tossed one after the other); then there are three possible
outcomes:

�� � � ��
HH HT = TH TT
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Similarly, if six dice are rolled and the dice are not distinguishable, then
the total number of recognizably distinct patterns is given by (3.2.6) with
m = n = 6, namely (

6 + 6− 1
6

)
=
(
11
6

)
= 462.

This is less than 1% of the number 46656 under Case 1.
We will now illustrate in a simple numerical case the different ways of

counting in the four sampling procedures: m = 4, n = 2.

Case (I)

(1, 1) (1, 2) (1, 3) (1, 4)
(2, 1) (2, 2) (2, 3) (2, 4)
(3, 1) (3, 2) (3, 3) (3, 4)
(4, 1) (4, 2) (4, 3) (4, 4)

Case (II)

(1, 2) (1, 3) (1, 4)
(2, 1) (2, 3) (2, 4)
(3, 1) (3, 2) (3, 4)
(4, 1) (4, 2) (4, 3)

Case (IV)

(1, 1) (1, 2) (1, 3) (1, 4)
(2, 2) (2, 3) (2, 4)

(3, 3) (3, 4)
(4, 4)

Case (III)

(1, 2) (1, 3) (1, 4)
(2, 3) (2, 4)

(3, 4)

3.3. Allocation models; binomial coefficients

A source of inspiration as well as frustration in combinatorics is that the
same problem may appear in different guises and it may take an effort to
recognize their true identity. Sampling under Case (IV) is a case in point;
another will be discussed under (IIIb) ahead. People have different thinking
habits and often prefer one way to another. But it may be worthwhile
to learn some other ways as we learn foreign languages. In the above we
have treated several basic counting methods as sampling problems. Another
formulation, preferred by physicists and engineers, is “putting balls into
boxes.” Since these balls play a different role from those used above, we
will call them tokens instead to simplify the translation later.

There arem boxes labeled from 1 tom and there are n tokens, numbered
from 1 to n. The tokens are put into the boxes with or without the condition
that no box can contain more than one token. We record the outcome of
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the allocation (occupancy) by noting the number of tokens in each box,
with or without noting the labels on the tokens. The four cases below then
correspond respectively with the four cases of sampling discussed above.

I′. Each box may contain any number of tokens, and the labels on the
tokens are observed.

II′. No box may contain more than one token, and the labels on the
tokens are observed.

III′. No box may contain more than one token, and the labels on the
tokens are not observed.

IV′. Each box may contain any number of tokens, and the labels on the
tokens are not observed.

It will serve no useful purpose to prove that the corresponding problems
are really identical, for this is the kind of mental exercise one must go
through by oneself to be convinced. (Some teachers even go so far as to say
that combinatorial thinking cannot be taught.) However, here are the key
words in the translation from one to the other description.

Sampling Allocating
Ball Box
Number of drawing Number on token
jth drawing gets ball no. k jth token put into box no. k

In some way the new formulation is more adaptable in that further
conditions on the allocation can be imposed easily. For instance, one may
require that no box be left empty when n ≥ m, or specify “loads” in some
boxes. Of course, these conditions can be translated into the other language,
but they may then become less natural. Here is one important case of this
sort, which is just Case IIIa in another guise.

IIIb. Partition into numbered groups.
Let a population of m objects be subdivided into r subpopulations or

just “groups”:m1 into group no. 1,m2 into group no. 2, . . . , mr into group
no. r, wherem1+· · ·+mr = m and allmj ≥ 1. This is a trivial paraphrasing
of puttingm tokens into r boxes so thatmj tokens are put into box no. j. It
is important to observe that it is not the same as subdividing into r groups
of sizes m1, . . . ,mr; for the groups are numbered. A simple example will
make this clear.

Example 4. In how many ways can four people split into two pairs?
The English language certainly does not make this question unambigu-

ous, but offhand one would have to consider the following three ways as
the answer:

(12)(34) (13)(24) (14)(23). (3.3.1)
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This is the correct interpretation if the two pairs are going to play chess or
pingpong games and two equally good tables are available to both pairs.
But now suppose the two pairs are going to play double tennis together
and the “first” pair has the choice of side of the court, or will be the first
to serve. It will then make a difference whether (12) precedes (34), or vice
versa. So each case in (3.3.1) must be permuted by pairs into two orders,
and the answer is then the following six ways:

(12)(34) (34)(12) (13)(24) (24)(13) (14)(23) (23)(14).

This is the situation covered by the general problem of partition under IIIb,
which will now be solved.

Think of putting tokens (people) into boxes (groups). According to

sampling Case III, there are
(
m

m1

)
ways of choosing m1 tokens to be put

into box 1; after that, there are
(
m−m1

m2

)
ways of choosingm2 tokens from

the remaining m −m1 to be put into box 2; and so on. The fundamental
rule does not apply but its modification used in sampling Case II does, and
so the answer is

(
m

m1

)(
m−m1

m2

)(
m−m1 −m2

m3

)
· · ·
(
m−m1 −m2 − · · · −mr−1

mr

)

=
m!

m1! (m−m1)!
(m−m1)!

m2! (m−m1 −m2)!
(m−m1 −m2)!

m3! (m−m1 −m2 −m3)!

· · · (m−m1 − · · · −mr−1)!
mr! 0!

(3.3.2)

=
m!

m1!m2! · · ·mr!
.

Observe that there is no duplicate counting involved in the argument, even
if some of the groups have the same size as in the tennis player example
above. This is because we have given numbers to the boxes (groups). On
the other hand, we are not arranging the numbered groups in order (as the
words “ordered groups” employed by some authors would seem to imply).
To clarify this essentially linguistic confusion, let us consider another simple
example.

Example 5. Six mountain climbers decide to divide into three groups for
the final assault on the peak. The groups will be of size 1, 2, 3, respectively,
and all manners of deployment are considered. What is the total number
of possible grouping and deploying?
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The number of ways of splitting in G1, G2, G3, where the subscript
denotes the size of group, is given by (3.3.2):

6!
1! 2! 3!

= 60.

Having formed these three groups, there remains the decision of which
group leads, which is in the middle, and which backs up. This is solved
by Case IIa: 3! = 6. Now each grouping can be combined freely with each
deploying; hence the fundamental rule gives the final answer: 60 · 6 = 360.

What happens when some of the groups have the same size? Think
about the tennis players again.

Returning to (3.3.2), this is the same multinomial coefficient obtained as
solution to the permutation problem IIIa. Here it appears as a combination
type of problem since we have used sampling Case III repeatedly in its
derivation. Thus it is futile to try to pin a label on a problem as permutation
or combination. The majority of combinatorial problems involves a mixture
of various ways of counting discussed above. We will now illustrate this with
several worked problems.

In the remainder of this section we will establish some useful formulas
connecting binomial coefficients. First of all, let us lay down the convention:

(
m

n

)
= 0 if m < n or if n < 0. (3.3.3)

Next we show that(
m

n

)
=
(
m− 1
n− 1

)
+
(
m− 1
n

)
, 0 ≤ n ≤ m. (3.3.4)

Since we have the explicit evaluation of
(
m

n

)
from (3.2.3), this can of

course be verified at once. But here is a combinatorial argument without

computation. Recall that
(
m

n

)
is the number of different ways of choosing

n objects out of m objects, which may be thought of as being done at one
stroke. Now think of one of the objects as “special.” This special one may
or may not be included in the choice. If it is included, then the number of
ways of choosing n− 1 more objects out of the other m− 1 objects is equal

to
(
m− 1
n− 1

)
. If it is not included, then the number of ways of choosing all

n objects from the other m − 1 objects is equal to
(
m− 1
n

)
. The sum of

the two alternatives must then give the total number of choices, and this
is what (3.3.4) says. Isn’t this neat?
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As a consequence of (3.3.4), we can obtain
(
m

n

)
, 0 ≤ n ≤ m, step by

step as m increases, as follows:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
· · · · · · · · ·

(3.3.5)

For example, each number in the last row shown above is obtained by
adding its two neighbors in the preceding row, where a vacancy may be
regarded as zero:

1 = 0 + 1, 7 = 1 + 6, 21 = 6 + 15, 35 = 15 + 20, 35 = 20 + 15,

21 = 15 + 6, 7 = 6 + 1, 1 = 1 + 0.

Thus
(
7
n

)
=
(

6
n− 1

)
+
(
6
n

)
for 0 ≤ n ≤ 7. The array in (3.3.5) is called

Pascal’s triangle, though apparently he was not the first one to have used
it.

∗Observe that we can split the last term
(
m− 1
n

)
in (3.3.4) as we split

the first term
(
m

n

)
by the same formula applied to m− 1. Thus we obtain

successively(
m

n

)
=
(
m− 1
n− 1

)
+
(
m− 1
n

)
=
(
m− 1
n− 1

)
+
(
m− 2
n− 1

)
+
(
m− 2
n

)

=
(
m− 1
n− 1

)
+
(
m− 2
n− 1

)
+
(
m− 3
n− 1

)
+
(
m− 3
n

)
= · · · .

The final result is(
m

n

)
=
(
m− 1
n− 1

)
+
(
m− 2
n− 1

)
+ · · ·+

(
n

n− 1

)
+
(
n

n

)

=
m−1∑

k=n−1

(
k

n− 1

)
=
∑

k≤m−1

(
k

n− 1

) (3.3.6)

∗The rest of the section may be omitted.



60 Counting

since the last term in the sum is
(
n

n

)
=
(
n− 1
n− 1

)
, and for k < n − 1 the

terms are zero by our convention (3.3.3).

Example. 35 =
(
7
4

)
=
(
6
3

)
+
(
5
3

)
+
(
4
3

)
+
(
3
3

)
= 20+10+4+1. Look

at Pascal’s triangle to see where these numbers are located.
As an application, we can now give another solution to the count-

ing problem for sampling under (IV) in §3.2. By the second formulation
(IV′) above, this is the number of ways of putting n indistinguishable [un-
numbered] tokens into m labeled boxes without restriction. We know from

(3.2.6) that it is equal to
(
m+ n− 1
m− 1

)
, but the argument leading to this

answer is pretty tricky. Suppose we were not smart enough to have figured
it out that way, but have surmised the result by experimenting with small
values of m and n. We can still establish the formula in general as follows.
[Actually, that tricky argument was probably invented as an afterthought
after the result had been surmised.]

We proceed by mathematical induction on the value of m. For m = 1
clearly there is just one way of dumping all the tokens, no matter how

many, into the one box, which checks with the formula since
(
1 + n− 1
1− 1

)
=(

n

0

)
= 1. Now suppose that the formula holds true for any number of

tokens when the number of boxes is equal to m− 1. Introduce a new box;
we may put any number of tokens into it. If we put j tokens into the new
one, then we must put the remaining n − j tokens into the other m − 1

boxes. According to the induction hypothesis, there are
(
m− 2 + n− j

m− 2

)
different ways of doing this. Summing over all possible values of j, we have

n∑
j=0

(
m− 2 + n− j

m− 2

)
=

m+n−2∑
k=m−2

(
k

m− 2

)
,

where we have changed the index of summation by setting m− 2+n− j =

k. The second sum above is equal to
(
m+ n− 1
m− 1

)
by (3.3.6), and the

induction is complete.
Next, let us show that(

n

0

)
+
(
n

1

)
+
(
n

2

)
+ · · ·+

(
n

n

)
=

n∑
k=0

(
n

k

)
= 2n; (3.3.7)

that is, the sum of the nth row in Pascal’s triangle is equal to 2n [the first
row shown in (3.3.5) is the 0th]. If you know Newton’s binomial theorem,
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this can be shown from

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k (3.3.8)

by substituting a = b = 1. But here is a combinatorial proof. The terms on
the left side of (3.3.7) represent the various numbers of ways of choosing
0, 1, 2, . . . , n objects out of n objects. Hence the sum is the total number
of ways of choosing any subset [the empty set and the entire set both
included] from a set of size n. Now in such a choice each object may or
may not be included, and the inclusion or exclusion of each object may be
freely combined with that of any other. Hence the fundamental rule yields
the total number of choices as

2× 2× · · · × 2︸ ︷︷ ︸
n times

= 2n.

This is the number given on the right side of (3.3.7). It is the total number
of distinct subsets of a set of size n.

Example. For n = 2, all choices from (a, b) are

∅, {a}, {b}, {ab}.

For n = 3, all choices from (a, b, c) are

∅, {a}, {b}, {c}, {ab}, {ac}, {bc}, {abc}.

Finally, let k ≤ m be two positive integers. We show

(
m

n

)
=

k∑
j=0

(
k

j

)(
m− k

n− j

)
. (3.3.9)

Observe how the indices on top [at bottom] on the right side add up to the
index on top [at bottom] on the left side; it is not necessary to indicate the
precise range of j in the summation; we may let j range over all integers
because the superfluous terms will automatically be zero by our convention
(3.3.3). To see the truth of (3.3.9), we think of the m objects as being
separated into two piles, one containing k objects and the other m − k.
To choose n objects from the entire set, we may choose j objects from the
first pile and n− j objects from the second pile, and combine them. By the
fundamental rule, for each fixed value j the number of such combinations

is equal to
(
k

j

)(
m− k

n− j

)
. So if we allow j to take all possible values and

add up the results, we obtain the total number of choices which is equal
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to
(
m

n

)
. You need not worry about “impossible” values for j when j > n

or n − j > m − k, because the corresponding term will be zero by our
convention.

Example.(
7
3

)
=
(
3
0

)(
4
3

)
+
(
3
1

)(
4
2

)
+
(
3
2

)(
4
1

)
+
(
3
3

)(
4
0

)
,

(
7
5

)
=
(
3
1

)(
4
4

)
+
(
3
2

)(
4
3

)
+
(
3
3

)(
4
2

)
.

In particular, if k = 1 in (3.3.9), we are back to (3.3.4). In this case our
argument also reduces to the one used there.

An algebraic derivation of (3.3.9), together with its extension to the
case where the upper indices are no longer positive integers, will be given
in Chapter 6.

3.4. How to solve it

This section may be entitled “How to count.” Many students find these
problems hard, partly because they have been inured in other elementary
mathematics courses to the cookbook variety of problems such as: “Solve
x2 = 5x+10 = 0,” “differentiate xe−x” (maybe twice), etc. One can do such
problems by memorizing certain rules without any independent thought. Of
course, we have this kind of problem in “permutation and combination” too,
and you will find some of these among the exercises. For instance, there is
a famous formula to do the “round-table” problem: “In how many different
ways can 8 people be seated at a round table?” If you learned it, you could
solve the problem without knowing what the word “different” means. But
a little variation may get you into deep trouble. The truth is, and that’s
also a truism: there is no substitute for true understanding. However, it is
not easy to understand the principles without concrete applications, so the
handful of examples below are selected to be the “test cases.” More are
given in the Exercises and you should have a lot of practice if you want to
become an expert. Before we discuss the examples in detail, a few general
tips will be offered to help you to do your own thing. They are necessarily
very broad and rather slippery, but they may be of some help sometimes.

(a) If you don’t see the problem well, try some particular (but not too
particular) case with small numbers so you can see better. This will
fix in your mind what is to be counted, and help you especially in
spotting duplicates and omissions.
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(b) Break up the problem into pieces provided that they are simpler,
cleaner, and easier to concentrate on. This can be done sometimes
by fixing one of the “variables,” and the number of similar pieces
may be counted as a subproblem.

(c) Don’t try to argue step by step if you can see complications rising
rapidly. Of all the negative advice I gave my classes this was the
least heeded but probably the most rewarding. Counting step by
step may seem easy for the first couple of steps, but do you see how
to carry it through to the end?

(d) Don’t be turned off if there is ambiguity in the statement of the
problem. This is a semantical hang-up, not a mathematical one. Try
all interpretations if necessary. This may not be the best strategy
in a quiz, but it’s a fine thing to do if you want to learn the stuff.
In any case, don’t take advantage of the ambiguities of the English
language or the oversight of your instructor to turn a reasonable
problem into a trivial one. (See Exercise 13.)

Problem 1. (Quality Control). Suppose that in a bushel of 550 apples
2% are rotten ones. What is the probability that a “random sample” of 25
apples contains 2 rotten apples?

This is the principle behind testing the quality of products by random
checking. If the probability turns out to be too small on the basis of the
claimed percentage compared with that figured on some other suspected
percentage, then the claim is in doubt. This problem can be done just as
easily with arbitrary numbers so we will formulate it in the general case.
Suppose there are k defective items in a lot of m products. What is the
probability that a random sample of size n contains j defective items? The
word “random” here signifies that all samples of size n, under Case III in

§3.2, are considered equally likely. Hence the total number is
(
m

n

)
. How

many of these contain exactly j defective items? To get such a sample we
must choose any j out of the k defective items and combine it freely with
n − j out of the m − k nondefective items. The first choice can be made

in
(
k

j

)
ways, the second in

(
m− k

n− j

)
ways, by sampling under Case III.

By the fundamental rule, the total number of samples of size n containing
j defective items is equal to the product, and consequently the desired
probability is the ratio

(
k

j

)(
m− k

n− j

)/(
m

n

)
. (3.4.1)

In the case of the apples, we have m = 550, k = 11, n = 25, j = 2; so the
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probability is equal to (
11
2

)(
539
23

)/(
550
25

)
.

This number is not easy to compute, but we will learn how to get a good
approximation later. Numerical tables are also available.

If we sum the probabilities in (3.4.1) for all j, 0 ≤ j ≤ n, the result
ought to equal 1 since all possibilities are counted. We have therefore proved
the formula

k∑
j=0

(
k

j

)(
m− k

n− j

)
=
(
m

n

)

by a probabilistic argument. This is confirmed by (3.3.9); indeed a little
reflection should convince you that the two arguments are really equivalent.

Problem 2. If a deck of poker cards is thoroughly shuffled, what is the
probability that the four aces are found in a row?

There are 52 cards among which are 4 aces. A thorough shuffling signi-
fies that all permutations of the cards are equally likely. For the whole deck,
there are (52)! outcomes by Case IIa. In how many of these do the four
aces stick together? Here we use tip (b) to break up the problem according
to where the aces are found. Since they are supposed to appear in a row,
we need only locate the first ace as we check the cards in the order they
appear in the deck. This may be the top card, the next, and so on, until
the 49th. Hence there are 49 positions for the 4 aces. After this has been
fixed, the 4 aces can still permute among themselves in 4! ways, and so can
the 48 nonaces. This may be regarded as a case of IIIa with r = 2, m1 = 4,
m2 = 48. The fundamental rule carries the day, and we get the answer

49 · 4! (48)!
(52)!

=
24

52 · 51 · 50 .

This problem is a case where my tip (a) may be helpful. Try four cards
with two aces. The total number of permutations in which the aces stick
together is only 3 · 2! 2! = 12, so you can list them all and look.

Problem 3. Fifteen new students are to be evenly distributed among
three classes. Suppose that there are 3 whiz-kids among the 15. What
is the probability that each class gets one? One class gets them all?

It should be clear that this is the partition problem discussed under
Case IIIb, with m = 15, m1 = m2 = m3 = 5. Hence the total number of
outcomes is given by

15!
5! 5! 5!

.
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To count the number of these assignments in which each class gets one
whiz-kid, we will first assign these three kids. This can be done in 3! ways
by IIa. The other 12 students can be evenly distributed in the 3 classes by
Case IIIb with m = 12, m1 = m2 = m3 = 4. The fundamental rule applies,
and we get the desired probability

3!
12!

4! 4! 4!

/
15!

5! 5! 5!
=

6 · 53

15 · 14 · 13 .

Next, if one class gets them all, then there are three possibilities according
to which class it is, and the rest is similar. So we just replace the numerator
above by 3 · (12!/5! 5! 2!) and obtain

3 · 12!
5! 5! 2!

/
15!

5! 5! 5!
=

5 · 4 · 32

15 · 14 · 13 .

By the way, we can now get the probability of the remaining possibility,
namely that the number of whiz-kids in the three classes be two, one, zero
respectively.

Problem 4. Six dice are rolled. What is the probability of getting three
pairs?

One can ask at once “which three pairs?” This means a choice of 3
numbers out of the 6 numbers from 1 to 6. The answer is given by sampling

under Case III:
(
6
3

)
= 20. Now we can concentrate on one of these cases,

say {2, 3, 5}, and figure out the probability of getting “a pair of 2, a pair
of 3, and a pair of 5.” This is surely more clear-cut, so my tip (b) should
be used here. To count the number of ways 6 dice can show the pattern
{2, 2, 3, 3, 5, 5}, one way is to consider this as putting six labeled tokens
(the dice as distinguishable) into three boxes marked 2 , 3 , 5 , with
two going into each box. So the number is given by IIIb:

6!
2! 2! 2!

= 90.

Another way is to think of the dice as six distinguishable performers stand-
ing in line waiting for cues to do their routine acts, with two each doing
acts nos. 2, 3, 5, respectively, but who does which is up to Boss Chance.
This then becomes a permutation problem under IIIa and gives of course
the same number above. Finally, we multiply this by the number of choices
of the 3 numbers to get (

6
3

)
6!

2! 2! 2!
= 20 · 90.
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You may regard this multiplication as another application of the ubiquitous
fundamental rule, but it really just means that 20 mutually exclusive cate-
gories are added together, each containing 90 cases. The desired probability
is given by

20 · 90
66 =

25
648

.

This problem is a case where my negative tip (c) may save you some
wasted time as I have seen students trying an argument as follows. If we
want to end up with three pairs, the first two dice can be anything; the
third die must be one of the two if they are different, and a new one if
they are the same. The probability of the first two being different is 5/6,
in which case the third die has probability 4/6; on the other hand, the
probability of the first two being the same is 1/6, in which case the third
has probability 5/6. Are you still with us? But what about the next step,
and the next?

However, this kind of sequential analysis, based on conditional proba-
bilities, will be discussed in Chapter 5. It works very well sometimes, as in
the next problem.

Problem 5. (Birthdays). What is the probability that among n people
there are at least two who have the same birthday? We are assuming that
they “choose” their birthdays independently of one another, so that the
result is as if they had drawn n balls marked from 1 to 365 (ignoring leap
years) by sampling under Case I. All these outcomes are equally likely, and
the total number is (365)n. Now we must count those cases in which some
of the balls drawn bear the same number. This sounds complicated but
it is easy to figure out the “opposite event,” namely when all n balls are
different. This falls under Case II, and the number is (365)n. Hence the
desired probability is

pn = 1− (365)n
(365)n

.

What comes as a surprise is the numerical fact that this probability exceeds
1/2 as soon as n ≥ 23; see table below.∗ What would you have guessed?

∗Computation from n = 2 to n = 55 was done on a small calculator to five decimal
places in a matter of minutes.
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n pn

5 .03
10 .12
15 .25
20 .41
21 .44
22 .48
23 .51
24 .54
25 .57
30 .71
35 .81
40 .89
45 .94
50 .97
55 .99

One can do this problem by a naive argument that turns out to be
correct. To get the probability that n people all have different birthdays,
we order them in some way and consider each one’s “choice,” as in the
case of the six dice that show different faces (Example 2, §3.1). The first
person can have any day of the year for her birthday, hence probability 1;
the second can have any but one, hence probability 364/365; the third any
but two, hence probability 363/365; and so on. Thus the final probability
is

365
365

364
365

363
365

· · · (n factors),

which is just another way of writing (365)n/(365)n. The intuitive idea of
sequential conditional probabilities used here is equivalent to a splitting
diagram described in Section 3.1, beginning with 365 cases, each of which
splits into 364, then again into 363, etc. If one divides out by 365 at each
stage, one gets the product above.

Problem 6. (Matching). Four cards numbered 1 to 4 are laid face down
on a table and a person claiming clairvoyance will name them by his ex-
trasensory power. If he is a faker and just guesses at random, what is the
probability that he gets at least one right?

There is a neat solution to this famous problem by a formula to be
established later in §6.2. But for a small number like 4, brute force will
do and in the process we shall learn something new. Now the faker simply
picks any one of the 4! permutations, and these are considered equally
likely. Using tip (b), we will count the number of cases in which there is
exactly 1 match. This means the other three cards are mismatched, and so
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we must count the “no-match” cases for three cards. This can be done by
enumerating all the 3! = 6 possible random guesses as tabulated below:

real (abc) (abc) (abc) (abc) (abc) (abc)

guess (abc) (acb) (bac) (bca) (cab) (cba)

There are two cases of no-match: the 4th and 5th above. We obtain all cases
in which there is exactly one match in four cards by fixing that one match
and mismatch the three other cards. There are four choices for the card to
be matched, and after this is chosen, there are two ways to mismatch the
other three by the tabulation above. Hence by the modified fundamental
rule there are 4 · 2 = 8 cases of exactly 1 match in 4 cards. Next, fix two
matches and mismatch the other two. There is only one way to do the
latter; hence the number of cases of exactly 2 matches in 4 cards is equal

to that of choosing 2 cards (to be matched) out of 4, which is
(
4
2

)
= 6.

Finally, it is clear that if three cards match, the remaining one must also,
and there is just one way of matching them all. The results are tabulated
as follows:

Exact number
of matches Number of cases Probability

4 1 1/24
3 0 0
2 6 1/4
1 8 1/3
0 9 3/8

The last row above, for the number of cases of no-match, is obtained by
subtracting the sum of the other cases from the total number:

24− (1 + 6 + 8) = 9.

The probability of at least one match is 15/24 = 5/8; of at least two
matches is 7/24.

You might propose to do the counting without any reasoning by listing
all 24 cases for 4 cards, as we did for 3 cards. That is a fine thing to do, not
only for your satisfaction but also to check the various cases against our
reasoning above. But our step leading from 3 cards to 4 cards is meant to
be an illustration of the empirical inductive method and can lead also from
4 to 5, etc. In fact, that is the way the computing machines do things. They
are really not very smart, and always do things step by step, but they are
organized and tremendously fast. In our case a little neat algebra does it
better, and we can establish the following general formula for the number
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of cases of at least one match for n cards:

n!
(
1− 1

2!
+

1
3!
−+ · · ·+ (−1)n−1 1

n!

)
.

Problem 7. In how many ways can n balls be put into n numbered boxes
so that exactly one box is empty? This problem is instructive as it illustrates
several points made above. First of all, it is ambiguous whether the balls
are distinguishable or not. Using my tip (d), we will treat both hypotheses.

Hypothesis 1. The balls are indistinguishable. Then it is clearly just a
matter of picking the empty box and the one that must have two balls. This
is a sampling problem under Case II, and the answer is (n)2 = n(n− 1).

This easy solution would probably be acceptable granted the ambiguous
wording, but we can learn more if we try the harder way too.

Hypothesis 2. The balls are distinguishable. Then after the choice of the
two boxes as under Hypothesis 1 (call it step 1), we still have the problem
as to which ball goes into which box. This is a problem of partition under
Case IIIb with m = n, m1 = 2, m2 = · · · = mn−1 = 1, the empty box
being left out of consideration. Hence the answer is

n!
2! 1! · · · 1! =

n!
2!
. (3.4.2)

You don’t have to know about that formula, since you can argue directly as
follows. The question is how to put n numbered balls into n− 1 numbered
boxes with 2 balls going into a certain box (already chosen by step 1) and 1

ball each into all the rest. There are
(
n

2

)
ways of choosing the two balls to

go into that particular box, after that the remaining n−2 balls can go into
the other n− 2 boxes in (n− 2)! ways. The product of these two numbers
is the same as (3.4.2). Finally, the total number of ways under Hypothesis
2 is given by

n(n− 1) · n!
2
. (3.4.3)

We have argued in two steps above. One may be tempted to argue in
three steps as follows. First choose the empty box; then choose n− 1 balls
and put them one each into the other n − 1 boxes; finally throw the last
ball into any one of the latter. The number of possible choices for each step
is equal, respectively, to n, (n)n−1 (by sampling under II), and n − 1. If
they are multiplied together, the result is

n · n! (n− 1), (3.4.4)

which is twice as large as (3.4.3). Which is correct?
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This is the kind of situation my tip (a) is meant to help. Take n = 3
and suppose the empty box has been chosen, so the problem is to put balls
1, 2, 3 into boxes A and B. For the purpose of the illustration let A be
square and B round. Choose two round balls to put into these two boxes;
there are six cases as shown:

1 2 2 1 1 3 3 1 2 3 3 2

Now throw the last ball into one of the two boxes, so that each case above
splits into two according to which box gets it:

13 2 23 1 12 3 32 1 21 3 31 2

1 23 2 13 1 32 3 12 2 31 3 21

You see what the trouble is. Each final case is counted twice because the
box that gets two balls can get them in two orders! The trouble is the same
in the general case, and so we must divide the number in formula (3.4.4)
by 2 to eliminate double counting, which makes it come out as in formula
(3.4.3). All is harmonious.

Exercises

[When probabilities are involved in the problems below, the equally likely
cases should be “obvious” from the context. In case you demur, follow my
tip (d).]

1. A girl decides to choose either a shirt or a tie for a birthday present.
There are three shirts and two ties to choose from. How many choices
does she have if she will get only one of them? If she may get both a
shirt and a tie?

2. Three kinds of shirts are on sale. (a) If two men buy one shirt each,
how many possibilities are there? (b) If two shirts are sold, how many
possibilities are there?

3. As in No. 2 make up a good question with 3 shirts and 2 men, to which

the answer is 23, or
(
3 + 2− 1

3

)
.

4. If on the menu shown in §3.1 there are three kinds of ice cream and
two kinds of pie to choose from, how many different dinners are there?
If we take into account that the customer may skip the vegetable or
the dessert or both, how many different dinners are there?

5. How many different initials can be formed with two or three letters of
the alphabet? How large must the alphabet be in order that 1 million
people can be identified by 3-letter initials?

6. How many integers are there between 1 million and 10 million, in whose
decimal form no two consecutive digits are the same?
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7. In a “true or false” test there are 12 questions. If a student decides to
check six of each at random, in how many ways can she do it?

8. In how many ways can four boys and four girls pair off? In how many
ways can they stand in a row in alternating gender?

9. In how many ways can a committee of 3 be chosen from 20 people? In
how many ways can a president, a secretary, and a treasurer be chosen?

10. If you have two dollars, two quarters, and three nickels, how many dif-
ferent sums can you pay without making change? Change the quarters
into dimes and answer again.

11. Two screws are missing from a machine that has screws of three dif-
ferent sizes. If three screws of different sizes are sent over, what is the
probability that they are what’s needed?

12. There are two locks on the door and the keys are among the six different
ones you carry in your pocket. In a hurry you dropped one somewhere.
What is the probability that you can still open the door? What is the
probability that the first two keys you try will open the door?

13. A die is rolled three times. What is the probability that you get a
larger number each time? (I gave this simple problem in a test but in-
advertently used the words “ . . . that the numbers you obtain increase
steadily.” Think of a possible misinterpretation of the words!)

*14. Three dice are rolled twice. What is the probability that they show the
same numbers (a) if the dice are distinguishable, (b) if they are not.
[Hint: divide into cases according to the pattern of the first throw: a
pair, a triple, or all different; then match the second throw accordingly.]

15. You walk into a party without knowing anyone there. There are six
women and four men and you know there are four married couples. In
how many ways can you guess who the couples are? What if you know
there are exactly three couples?

16. Four shoes are taken at random from five different pairs. What is the
probability that there is at least one pair among them?

17. A California driver decides that he must switch lanes every minute
to get ahead. If he is on a 4-lane divided highway and does this at
random, what is the probability that he is back on his original lane
after 4 minutes (assuming no collision)? [Hint: the answer depends on
whether he starts in an outside or inside lane.]

18. In sampling under Case I or II of §3.2, what is the probability that in
n drawings a particular ball is never drawn? Assume n < m.

19. You are told that of the four cards face down on the table, two are
red and two are black. If you guess all four at random, what is the
probability that you get 0, 2, 4 right?

20. An airport shuttle bus makes 4 scheduled stops for 15 passengers. What
is the probability that all of them get off at the same stop? What is the
probability that someone (at least one person) gets off at each stop?
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21. Ten books are made into 2 piles. In how many ways can this be done
if books as well as piles may or may not be distinguishable? Treat all
four hypotheses, and require that neither pile be empty.

22. Ten different books are to be given to Daniel, Phillip, Paul, and John,
who will get in the order given 3, 3, 2, 2 books, respectively. In how
many ways can this be done? Since Paul and John screamed “no fair,”
it is decided that they draw lots to determine which two get 3 and which
two get 2. How many ways are there now for a distribution? Finally,
Marilda and Corinna also want a chance and so it is decided that the
six kids should draw lots to determine which two get 3, which two get
2, and which two get none. Now how many ways are there? [There
is real semantical difficulty in formulating these distinct problems in
general. It is better to be verbose than concise in such a situation. Try
putting tokens into boxes.]

23. In a draft lottery containing the 366 days of the year (including Febru-
ary 29), what is the probability that the first 180 days drawn (without
replacement of course) are evenly distributed among the 12 months?
What is the probability that the first 30 days drawn contain none from
August or September? [Hint: first choose 15 days from each month.]

24. At a certain resort the travel bureau finds that tourists occupy the 20
hotels there as if they were so many lookalike tokens (fares) placed in
numbered boxes. If this theory is correct, what is the probability that
when the first batch of 30 tourists arrive, no hotel is left vacant? [This
model is called the Bose–Einstein statistic in physics. If the tourists are
treated as distinct persons, it is the older Boltzmann–Maxwell statistic;
see [Feller 1, §II.5].]

25. One hundred trout are caught in a little lake and returned after they
are tagged. Later another 100 are caught and found to contain 7 tagged
ones. What is the probability of this if the lake contains n trout? [What
is your best guess as to the true value of n? The latter is the kind of
question asked in statistics.]

26. Program a one-to-one correspondence between the various possible
cases under the two counting methods in IIIa and IIIb by takingm = 4,
m1 = 2, m2 = m3 = 1.

*27. (For poker players only.) In a poker hand assume all “hands” are equally
likely as under Sampling Case III. Compute the probability of (a) flush,
(b) straight, (c) straight flush, (d) four of a kind, (e) full house.

*28. Show that (
2n
n

)
=

∞∑
k=0

(
n

k

)2

.

[Hint: apply (3.3.9).]
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*29. The number of different ways in which a positive integer n can be
written as the sum of positive integers not exceeding n is called (in
number theory) the “partition number” of n. For example,

6 = 6 sextuple

= 5 + 1 quintuple

= 4 + 2 quadruple and pair

= 4 + 1 + 1 quadruple

= 3 + 3 two triples

= 3 + 2 + 1 triple and pair

= 3 + 1 + 1 + 1 triple

= 2 + 2 + 2 three pairs

= 2 + 2 + 1 + 1 two pairs

= 2 + 1 + 1 + 1 + 1 one pair

= 1 + 1 + 1 + 1 + 1 + 1 all different (“no same”)

Thus the partition number of 6 is equal to 11; compare this with the
numbers 46656 and 462 given in Examples 2 and 3. This may be called
the total number of distinguishable “coincidence patterns” when six
dice are thrown. We have indicated simpler (but vaguer) names for
these patterns in the listing above. Compute their respective probabil-
ities. [It came to me as a surprise that “two pairs” is more probable
than “one pair” and has a probability exceeding 1/3. My suspicion of
an error in the computation was allayed only after I had rolled 6 dice
100 times. It was an old custom in China to play this game over the
New Year holidays, and so far as I can remember, “two pairs” were
given a higher rank (prize) than “one pair.” This is unfair according to
their probabilities. Subsequently to my own experiment I found that
Feller∗ had listed analogous probabilities for seven dice. His choice of
this “random number” 7 in disregard or ignorance of a time-honored
game had probably resulted in my overlooking his tabulation.]

*30. (Banach’s match problem.) The Polish mathematician Banach kept
two match boxes, one in each pocket. Each box contains n matches.
Whenever he wanted a match he reached at random into one of his
pockets. When he found that the box he picked was empty, what is
the distribution of the number of matches left in the other box? [Hint:
divide into two cases according to whether the left or right box is empty,
but be careful about the case when both are empty.]

∗William Feller (1906–70), leading exponent of probability.



4
Random Variables

4.1. What is a random variable?

We have seen that the points of a sample space may be very concrete
objects such as apples, molecules, and people. As such they possess various
qualities, some of which may be measurable. An apple has its weight and
volume; its juicy content can be scientifically measured; even its taste may
be graded by expert tasters. A molecule has mass and velocity, from which
we can compute its momentum and kinetic energy by formulas from physics.
For a human being, there are physiological characteristics such as age,
height, and weight. But there are many other numerical data attached to
him (or her) like I.Q., number of years of schooling, number of brothers and
sisters, annual income earned and taxes paid, and so on. We will examine
some of these illustrations and then set up a mathematical description in
general terms.

Example 1. Let Ω be a human population containing n individuals. These
may be labeled as

Ω = {ω1, ω2, . . . , ωn}. (4.1.1)

If we are interested in their age distribution, let A(ω) denote the age of ω.
Thus to each ω is associated a number A(ω) in some unit, such as “year.”
So the mapping

ω → A(ω)

74
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is a function with Ω as its domain of definition. The range is the set of
integers but can be made more precise by fractions or decimals or spelled
out as, e.g., “18 years, 5 months, and 1 day.” There is no harm if we take all
positive integers or all positive real numbers as the range, although only a
very small portion of it will be needed. Accordingly, we say A is an integer-
valued or real-valued function. Similarly, we may denote the height, weight,
and income by the functions

ω → H(ω),

ω →W (ω),

ω → I(ω).

In the last case I may take negative values! Now for some medical purposes,
a linear combination of height and weight may be an appropriate measure:

ω → λH(ω) + µW (ω),

where λ and µ are two numbers. This then is also a function of ω. Similarly,
if ω is a “head of family,” alias breadearner, the census bureau may want
to compute the function:

ω → I(ω)
N(ω)

where N(ω) is the number of persons in his or her family, namely the
number of mouths to be fed. The ratio above represents then the “income
per capita” for the family.

Let us introduce some convenient symbolism to denote various sets of
sample points derived from random variables. For example, the set of ω in
Ω for which the age is between 20 and 40 will be denoted by

{ω | 20 ≤ A(ω) ≤ 40}

or more briefly when there is no danger of misunderstanding by

{20 ≤ A ≤ 40}.

The set of ω for which the height is between 65 and 75 (in inches) and the
weight is between 120 and 180 (in pounds) can be denoted in several ways
as follows:

{ω | 65 ≤ H(ω) ≤ 75}
⋂
{ω | 120 ≤W (ω) ≤ 180}

= {ω | 65 ≤ H(ω) ≤ 75; 120 ≤W (ω) ≤ 180}

= {65 ≤ H ≤ 75; 120 ≤W ≤ 180}.
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Figure 17

Example 2. Let Ω be gaseous molecules in a given container. We can still
represent Ω as in (4.1.1) even though n is now a very large number such as
1025. Let m = mass, v = velocity, M = momentum, E = kinetic energy.
Then we have the corresponding functions:

ω → m(ω),

ω → v(ω),

ω →M(ω) = m(ω)v(ω),

ω → E(ω) =
1
2
m(ω)v(ω)2.

In experiments with gases actual measurements may be made of m and v,
but the quantities of interest may be M or E, which can be derived from
the formulas. Similarly, if θ is the angle of the velocity relative to the x-axis,
ω → θ(ω) is a function of ω and

ω → cos θ(ω)

may be regarded as the composition of the function “cos” with the function
“θ.” The set of all molecules moving toward the right is represented by

{ω | cos θ(ω) > 0}.

Example 3. Let Ω be the outcome space of throwing a die twice. Then it
consists of 62 = 36 points listed below:
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(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

Thus each ω is represented by an ordered pair or a two-dimensional vector :

ωk = (xk, yk), k = 1, 2, . . . , 36,

where xk and yk take values from 1 to 6. The first coordinate x represents
the outcome of the first throw, the second coordinate y the outcome of the
second throw. These two coordinates are determined by the point ω, hence
they are functions of ω:

ω → x(ω), ω → y(ω). (4.1.2)

On the other hand, each ω is completely determined by its two coordinates,
so much so that we may say that ω is the pair of them:

ω ≡ (x(ω), y(ω)).

This turnabout is an important concept to grasp. For example, let the die
be thrown n times and the results of the successive throws be denoted by

x1(ω), x2(ω), . . . , xn(ω);

then not only is each xk(ω), k = 1, 2, . . . , n, a function of ω that may be
called its kth coordinate, but the totality of these n functions in turn de-
termines ω, and therefore ω is nothing more or less than the n-dimensional
vector

ω ≡ (x1(ω), x2(ω), . . . , xn(ω)). (4.1.3)

In general each xk(ω) represents a certain numerical characteristic of
the sample ω, and although ω may possess many, many characteristics,
in most questions only a certain set of them is taken into account. Then
a representation like (4.1.3) is appropriate. For example, in a traditional
beauty contest, only three bodily measurements given in inches are con-
sidered, such as (36, 29, 38). In such a contest (no “song and dance”) each
contestant is reduced to such an ordered triple:

contestant = (x, y, z).

Another case of this kind is when a student takes a number of tests, say 4,
which are graded on the usual percentage basis. Let the student be ω, his
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score on the 4 tests be x1(ω), x2(ω), x3(ω), x4(ω). For the grader (or the
computing machine if all the tests can be machine processed), each ω is
just the 4 numbers (x1(ω), . . . , x4(ω)). Two students who have the same
scores are not distinguished. Suppose the criterion for success is that the
total should exceed 200; then the set of successful candidates is represented
by

{ω | x1(ω) + x2(ω) + x3(ω) + x4(ω) > 200}.

A variation is obtained if different weights λ1, λ2, λ3, λ4 are assigned to the
4 tests – then the criterion will depend on the linear combination λ1x1(ω)+
· · ·+ λ4x4(ω). Another possible criterion for passing the tests is given by

{ω | min(x1(ω), x2(ω), x3(ω), x4(ω)) > 35}.

What does this mean in plain English?

4.2. How do random variables come about?

We can now give a general formulation for numerical characteristics of
sample points. Assume first that Ω is a countable space. This assumption
makes an essential simplification that will become apparent; other spaces
will be discussed later.

Definition of Random Variable. A numerically valued function X of
ω with domain Ω:

ω ∈ Ω: ω → X(ω) (4.2.1)

is called a random variable [on Ω].
The term “random variable” is well established and so we will use it

in this book, but “chance variable” or “stochastic variable” would have
been good too. The adjective “random” is just to remind us that we are
dealing with a sample space and trying to describe certain things that are
commonly called “random events” or “chance phenomena.” What might
be said to have an element of randomness in X(ω) is the sample point ω
that is picked “at random,” such as in a throw of dice or the polling of an
individual from a population. Once ω is picked, X(ω) is thereby determined
and there is nothing vague, indeterminate, or chancy about it anymore. For
instance, after an apple ω is picked from a bushel, its weight W (ω) can be
measured and may be considered as known. In this connection the term
“variable” should also be understood in the broad sense as a “dependent
variable,” namely a function of ω, as discussed in §4.1. We can say that
the sample point ω serves here as an “independent variable” in the same
way the variable x in sinx does, but it is better not to use this language
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since “independent” has a very different and more important meaning in
probability theory (see §5.5).

Finally, it is a custom (not always observed) to use a capital letter to
denote a random variable, such as X, Y , N , or S, but there is no reason
why we cannot use small letters x or y as we did in the examples of §4.1.

Observe that random variables can be defined on a sample space before
any probability is mentioned. Later we shall see that they acquire their
probability distributions through a probability measure imposed on the
space.

Starting with some random variables, we can at once make new ones
by operating on them in various ways. Specific examples have already been
given in §4.1. The general proposition may be stated as follows:

Proposition 1. If X and Y are random variables, then so are

X + Y, X − Y, XY, X/Y (Y �= 0), (4.2.2)

and aX + bY where a and b are two numbers.

This is immediate from the general definition, since, e.g.,

ω → X(ω) + Y (ω)

is a function on Ω as well as X and Y . The situation is exactly the same
as in calculus: if f and g are functions, then so are

f + g, f − g, fg, f/g (g �= 0), af + bg.

The only difference is that in calculus these are functions of x, a real num-
ber, while here the functions in (4.2.2) are those of ω, a sample point. Also,
as in calculus where a constant is regarded as a very special kind of func-
tion, so is a constant a very special kind of random variable. For example,
it is quite possible that in a class in elementary school, all pupils are of the
same age. Then the random variable A(ω) discussed in Example 1 of §4.1
is equal to a constant, say = 9 (years) in a fourth-grade class.

In calculus a function of a function is still a function such as x →
log(sinx) or x → f(ϕ(x)) = (f ◦ ϕ)(x). A function of a random variable
is still a random variable such as the cos θ in Example 2 of §4.1. More
generally we can have a function of several random variables.

Proposition 2. If ϕ is a function of two (ordinary) variables and X and
Y are random variables, then

ω → ϕ(X(ω), Y (ω)) (4.2.3)

is also a random variable, which is denoted more concisely as ϕ(X,Y ).
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A good example is the function ϕ(x, y) =
√
x2 + y2. Suppose X(ω)

and Y (ω) denote, respectively, the horizontal and vertical velocities of a
gas molecule; then

ϕ(X,Y ) =
√
x2 + Y 2

will denote its absolute speed.
Let us note in passing that Proposition 2 contains Proposition 1 as a

particular case. For instance, if we take ϕ(x, y) = x + y, then ϕ(X,Y ) =
X+Y . It also contains functions of a single random variable as a particular
case such as f(X). Do you see why? Finally, an extension of Proposition 2
to more than two variables is obvious. A particularly important case is the
sum of n random variables:

Sn(ω) = X1(ω) + · · ·+Xn(ω) =
n∑

k=1

Xk(ω). (4.2.4)

For example, if X1, . . . , Xn denote the successive outcomes of a throw of a
die, then Sn is the total obtained in n throws. We shall have much to do
with these partial sums Sn.

We will now illustrate the uses of random variables in some everyday
situations. Quite often the intuitive notion of some random quantity pre-
cedes that of a sample space. Indeed one can often talk about random
variables X, Y , etc. without bothering to specify Ω. The rather formal
(and formidable?) mathematical setup serves as a necessary logical back-
drop, but it need not be dragged into the open on every occasion when the
language of probability can be readily employed.

Example 4. The cost of manufacturing a certain book is $3 per book up
to 1000 copies, $2 per copy between 1000 and 5000 copies, and $1 per copy
afterwards. In reality, of course, books are printed in round lots and not
on demand “as you go.” What we assume here is tantamount to selling all
overstock at cost, with no loss of business due to understock. Suppose we
print 1000 copies initially and price the book at $5. What is “random” here
is the number of copies that will be sold; call it X. It should be evident
that once X is known, we can compute the profit or loss from the sales;
call this Y . Thus Y is a function of X and is random only because X is so.
The formula connecting Y with X is given below (see Fig. 18 on page 82):

Y =



5X − 3000 if X ≤ 1000,

2000 + 3(X − 1000) if 1000 < X ≤ 5000,

14000 + 4(X − 5000) if X > 5000.

What is the probability that the book is a financial loss? It is that of the
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event represented by the set

{5X − 3000 < 0} = {X < 600}.

What is the probability that the profit will be at least $10000? It is that
of the set

{2000 + 3(X − 1000) ≥ 10000} ∪ {X > 5000}

=
{
X ≥ 8000

3
+ 1000

}
∪ {X > 5000}

= {X ≥ 3667}.

But what are these probabilities? They will depend on a knowledge of X.
One can only guess at it in advance; so it is a random phenomenon. But
after the sales are out, we shall know the exact value of X; just as after a
die is cast we shall know the outcome. The various probabilities are called
the distribution of X and will be discussed in §4.3 ahead.

What is the sample space here? Since the object of primary interest is
X, we may very well take it as our sample point and call it ω instead to
conform with our general notation. Then each ω is some positive integer
and ω → Y (ω) is a random variable with Ω the space of positive integers.
To pick an ω means in this case to hazard a guess (or make a hypothesis)
on the number of sales, from which we can compute the profit by the
preceding formula. There is nothing wrong about this model of a sample
space, though it seems a bit superfluous.

A more instructive way of thinking is to consider each ω as representing
“a possible sales record for the book.” A publisher is sometimes interested
in other information than the total number of sales. An important factor
left out of consideration above is the time element involved in the sale.
Surely it makes a difference whether 5000 copies are sold in 1 or 10 years.
If the book is a college text like this one, it may be important to know
how it does in different types of schools and in different regions of the
country. If it is fiction or drama, it may mean a great deal (even only
from the profit motive) to know what the critics say about it, though this
would be in a promotions rather than sales record. All these things may
be contained in a capsule, which is the sample point ω. You can imagine
it to be a complete record of every bit of information pertaining to the
book, of which X(ω) and Y (ω) represent only two facets. Then what is Ω?
It is the totality of all such conceivable records. This concept of a sample
space may sound weird and is unwieldy (can we say that Ω is countable?),
but it gives the appropriate picture when one speaks of, e.g., the path of
a particle in Brownian motion or the evolution of a stochastic process (see
Chapter 8). On the other hand, it also shows the expediency of working
with some specific random variables rather than worrying about the whole
universe.
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Figure 18

Example 5. An insurance company receives claims for indemnification
from time to time. Both the times of arrival of such claims and their
amounts are unknown in advance and determined by chance; ergo, ran-
dom. The total amount of claims in one year, say, is of course also random,
but clearly it will be determined as soon as we know the “when” and “how
much” of the claims. Let the claims be numbered as they arrive and let
Sn denote the date of the nth claim. Thus S3 = 33 means the third claim
arrives on February 2. So we have

1 ≤ S1 ≤ S2 ≤ · · · ≤ Sn ≤ · · · ,

and there is equality whenever several claims arrive on the same day. Let
the amount of the nth claim be Cn (in dollars). What is the total number
of claims received in the year? It is given by N , where

N = max{n | Sn ≤ 365}.

Obviously N is also random but it is determined by the sequence of Sn’s; in
theory we need to know the entire sequence because N may be arbitrarily
large. Knowing N and the sequence of Cn’s, we can determine the total
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amount of claims in that year:

C1 + · · ·+ CN (4.2.5)

in the notation of (4.2.4). Observe that in (4.2.5) not only is each term a
random variable but also the number of terms. Of course the sum is also a
random variable. It depends on the Sn’s as well as the Cn’s.

In this case we can easily imagine that the claims arrive at the office
one after another and a complete record of them is kept in a ledger printed
like a diary. Under some dates there may be no entry, under others there
may be many in various different amounts. Such a ledger is kept over the
years and will look quite different from one period of time to another.
Another insurance company will have another ledger that may be similar
in some respects and different in others. Each conceivable account kept in
such a ledger may be considered as a sample point, and a reasonably large
collection of them may serve as the sample space. For instance, an account
in which one million claims arrive on the same day may be left out of the
question, or a claim in the amount of 95 cents. In this way we can keep the
image of a sample space within proper bounds of realism.

If we take such a view, other random variables come easily to mind. For
example, we may denote by Yk the total amount of claims on the kth day.
This will be the number that is the sum of all the entries under the date,
possibly zero. The total claims from the first day of the account to the nth
day can then be represented by the sum

Zn =
n∑

k=1

Yk = Y1 + Y2 + · · ·+ Yn. (4.2.6)

The total claims over any period of time [s, t] can then be represented as

Zt − Zs−1 =
t∑

k=s

Yk = Ys + Ys+1 + · · ·+ Yt. (4.2.7)

We can plot the accumulative amount of claims Zt against the time t by a
graph of the kind in Figure 19.

There is a jump at t when the entry for the tth day is not empty, and
the size of the rise is the total amount of claims on that day. Thus the
successive rises correspond to the Yk’s that are greater than 0. Clearly you
can read off from such a graph the total claim over any given period of
time, and also, e.g., the lengths of the “free periods” between the claims,
but you cannot tell what the individual claims are when several arrive on
the same day. If all the information you need can be gotten from such a
graph, then you may regard each conceivable graph as a sample point. This
will yield a somewhat narrower sample space than the one described above,
but it will serve our purpose. From the mathematical point of view, the
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Figure 19

identification of a sample point with a graph (also called a sample curve,
path, or trajectory) is very convenient, since a curve is a more precise (and
familiar!) object than a ledger or some kind of sales-and-promotions record.

4.3. Distribution and expectation

In Chapter 2 we discussed the probabilities of sets of sample points. These
sets are usually determined by the values of random variables. A typical
example is

{a ≤ X ≤ b} = {ω | a ≤ X(ω) ≤ b}, (4.3.1)

where X is a random variable, a and b are two constants. Particular cases
of this have been indicated among the examples in §4.1. Since every subset
of Ω has a probability assigned to it when Ω is countable, the set above has
a probability, which will be denoted by

P (a ≤ X ≤ b). (4.3.2)

More generally let A be a set of real numbers, alias a set of points on the
real line R1 = (−∞,+∞); then we can write

P (X ∈ A) = P ({ω | X(ω) ∈ A}). (4.3.3)

For instance, if A is the closed interval [a, b], then this is just the set in
(4.3.2); but A may be the open interval (a, b), half-open interval (a, b] or
[a, b), infinite intervals (−∞, b) or (a,+∞); the union of several intervals,
or a set of integers say {m,m + 1, . . . ,m + n}. An important case occurs
when A reduces to a single point x; it is then called the singleton {x}.
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The distinction between the point x and the set {x} may seem academic.
Anyway, the probability

P (X = x) = P (X ∈ {x}) (4.3.4)

is “the probability that X takes (or assumes) the value x.” If X is the age
of a human population, {X = 18} is the subpopulation of 18-year-olds—a
very important set!

Now the hypothesis that Ω is countable will play an essential simplifying
role. Since X has Ω as domain of definition, it is clear that the range of X
must be finite when Ω is finite, and at most countably infinite when Ω is
so. Indeed, the exact range of X is just the set of real numbers below:

VX =
⋃
ω∈Ω

{X(ω)}, (4.3.5)

and many of these numbers may be the same – because the mapping ω →
X(ω) is in general many-to-one, not necessarily one-to-one. In the extreme
case when X is a constant random variable, the set VX reduces to a single
number. Let the distinct values in VX be listed in any order as

{v1, v2, . . . , vn, . . . }.

The sequence may be finite or infinite. Clearly if x �∈ VX , namely if x is
not one of the values vn, then P (X = x) = 0. On the other hand, we do
not forbid that some vn may have zero probability. This means that some
sample points may have probability zero. You may object: why don’t we
throw such nuisance points out of the sample space? Because it is often
hard to know in advance which ones to throw out. It is easier to leave them
in since they do no harm. [In an uncountable Ω, every single point ω may
have probability zero! But we are not talking about this at present; see §4.5
ahead.]

Let us introduce the notation

pn = P (X = vn), vn ∈ Vx. (4.3.6)

It should be obvious that if we know all the pn’s, then we can calculate
all probabilities concerning the random variable X, alone. Thus the prob-
abilities in (4.3.2) and (4.3.3) can be expressed in terms of the pn’s as
follows:

P (a ≤ X ≤ b) =
∑

a≤vn≤b

pn; P (X ∈ A) =
∑
vn∈A

pn. (4.3.7)

The first is a particular case of the second, and the last-written sum reads
this way: “the sum of the pn’s for which the corresponding vn’s belong to
A.”
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When A is the infinite interval (−∞, x] for any real number x, we can
introduce a function of x as follows:

FX(x) = P (X ≤ x) =
∑
vn≤x

pn. (4.3.8)

This function x→ FX(x) defined on R1 is called the distribution function
of X. Its value at x “picks up” all the probabilities of values of X up to x
(inclusive); for this reason the adjective “cumulative” is sometimes added to
its name. For example, if X is the annual income (in $’s) of a breadwinner,
then FX(10000) is the probability of the income group earning anywhere
up to $10,000 and can theoretically include all those whose incomes are
negative.

The distribution function FX is determined by the vn’s and pn’s as
shown in (4.3.8). Conversely, if we know FX , namely we know FX(x) for
all x, we can “recover” the vn’s and pn’s. We will not prove this fairly
obvious assertion here. For the sake of convenience, we shall say that the
two sets of numbers {vn} and {pn} determine the probability distribution
of X, where any vn for which pn = 0 may be omitted. It is easy to see that
if a < b, then

P (a < X ≤ b) = P (X ≤ b)− P (X ≤ a) = FX(b)− FX(a); (4.3.9)

but how do we get P (a ≤ X ≤ b), or P (X = x) from FX? (See Exercise 7
ahead.)

Now to return to the pn’s, which are sometimes called the “elementary
probabilities” for the random variableX. In general they have the following
two properties:

(i) ∀n: pn ≥ 0;

(ii)
∑
n

pn =1. (4.3.10)

Compare this with (2.4.1). The sum in (ii) may be over a finite or infinite
sequence depending on whether VX is a finite or infinite set. Property (i) is
obvious, apart from the observation already made that some pn may = 0.
Property (ii) says that the values {vn} in VX exhaust all possibilities for X,
hence their probabilities must add up to that of the “whole universe.” This
is a fine way to say things, but let us learn to be more formal by converting
the verbal argument into a symbolic proof. We begin with⋃

n

{X = vn} = Ω.

Since the vn’s are distinct, the sets {X = vn} must be disjoint. Hence by
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countable additivity (see §2.3) we have∑
n

P (X = vn) = P (Ω) = 1.

This is Property (ii).
Before making further specialization on the random variables, let us

formulate a fundamental new definition in its full generality. It is motivated
by the intuitive notion of the average of a random quantity.

Definition of Mathematical Expectation. For a random variable X
defined on a countable sample space Ω, its mathematical expectation is the
number E(X) given by the formula

E(X) =
∑
ω∈Ω

X(ω)P ({ω}), (4.3.11)

provided that the series converges absolutely, namely∑
ω∈Ω

|X(ω)|P ({ω}) <∞. (4.3.12)

In this case we say that the mathematical expectation of X exists. The
process of “taking expectations” may be described in words as follows:
take the value of X at each ω, multiply it by the probability of that point,
and sum over all ω in Ω. If we think of P ({ω}) as the weight attached to
ω, then E(X) is the weighted average of the function X. Note that if we
label the ω’s as {ω1, ω2, . . . , ωn, . . . }, then we have

E(X) =
∑
n

X(ωn)P ({ωn}).

But we may as well use ω itself as label, and save a subscript, which explains
the cryptic notation in (4.3.11).

Example 6. Let Ω = {ω1, . . . , ω7} be a parcel of land subdivided into
seven “lots for sale.” These lots have percentage areas and prices as follows:

5%, 10%, 10%, 10%, 15%, 20%, 30%;
$800, $900, $1000, $1200, $800, $900, $800.

Define X(ω) to be the price per acre of the lot ω. Then E(X) is the average
price per acre of the whole parcel and is given by

(800)
5

100
+ (900)

10
100

+ (1000)
10
100

+ (1200)
10
100

+ (800)
15
100

+ (900)
20
100

+ (800)
30
100

= 890;
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namely $890 per acre. This can also be computed by first lumping together
all acreage at the same price, and then summing over the various prices;

(800)
(

5
100

+
15
100

+
30
100

)
+ (900)

(
10
100

+
20
100

)
+ (1000)

10
100

+ (1200)
10
100

= (800)
50
100

+ (900)
30
100

+ (1000)
10
100

+ (1200)
10
100

= 890.

The adjective in “mathematical expectation” is frequently omitted, and
it is also variously known as “expected value,” “mean (value),” or “first
moment” (see §6.3 for the last term). In any case, do not expect the value
E(X) when X is observed. For example, if you toss a fair coin to win $1 or
nothing depending on whether it falls heads or tails, you will never get the
expected value $.50! However, if you do this n times and n is large, then
you can expect to get about n/2 dollars with a good probability. This is
the implication of the law of large numbers, to be made precise in §7.6.

We shall now amplify the condition given in (4.3.12). Of course, it is
automatically satisfied when Ω is a finite space, but it is essential when
Ω is countably infinite because it allows us to calculate the expectation
in any old way by rearranging and regrouping the terms in the series in
(4.3.11), without fear of getting contradictory results. In other words, if the
series is absolutely convergent, then it has a uniquely defined “sum” that
in no way depends on how the terms are picked out and added together.
The fact that contradictions can indeed arise if this condition is dropped
may be a surprise to you. If so, you will do well to review your knowledge
of the convergence and absolute convergence of a numerical series. This is
a part of the calculus course which is often poorly learned (and taught),
but will be essential for probability theory, not only in this connection but
generally speaking. Can you, for instance, think of an example where the
series in (4.3.11) converges but the one in (4.3.12) does not? [Remember
that the pn’s must satisfy the conditions in (4.3.10), though the vn’s are
quite arbitrary. So the question is a little harder than just to find an arbi-
trary nonabsolutely convergent series; but see Exercise 21.] In such a case
the expectation is not defined at all. The reason why we are being so strict
is: absolutely convergent series can be manipulated in ways that nonabso-
lutely [conditionally] convergent series cannot be. Surely the definition of
E(X) would not make sense if its value could be altered simply by shuffling
around the various terms in the series in (4.3.11), which merely means that
we enumerate the sample points in a different way. Yet this can happen
without the condition (4.3.12)!

Let us explicitly state a general method of calculating E(X) which
is often expedient. Suppose the sample space Ω can be decomposed into
disjoint sets An:

Ω =
⋃
n

An (4.3.13)
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in such a way that X takes the same value on each An. Thus we may write

X(ω) = an for ω ∈ An, (4.3.14)

where the an’s need not all be different. We then have

E(X) =
∑
n

P (An)an =
∑
n

P (X = an)an. (4.3.15)

This is obtained by regrouping the ω’s in (4.3.11) first into the subsets An,
and then summing over all n. In particular, if (v1, v2, . . . , vn, . . . ) is the
range of X, and we group the sample points ω according to the values of
X(ω), i.e., putting

An = {ω | X(ω) = vn}, P (An) = pn,

then we get

E(X) =
∑
n

pnvn, (4.3.16)

where the series will automatically converge absolutely because of (4.3.12).
In this form it is clear that the expectation of X is determined by its
probability distribution.

Finally, it is worthwhile to point out that formula (4.3.11) contains an
expression for the expectation of any function of X:

E(ϕ(X)) =
∑
ω∈Ω

ϕ(X(ω))P ({ω})

with a proviso like (4.3.12). For by Proposition 2 or rather a simpler ana-
logue, ϕ(X) is also a random variable. It follows that we have

E(ϕ(X)) =
∑
n

pnϕ(vn), (4.3.17)

where the vn’s are as in (4.3.16), but note that the ϕ(vn)’s need not be
distinct. Thus the expectation of ϕ(X) is already determined by the prob-
ability distribution of X (and of course also by the function ϕ), without the
intervention of the probability distribution of ϕ(X) itself. This is most con-
venient in calculations. In particular, for ϕ(x) = xr we get the rth moment
of X:

E(Xr) =
∑
n

pnv
r
n; (4.3.18)

see §6.3.
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4.4. Integer-valued random variables

In this section we consider random variables that take only nonnegative
integer values. In this case it is convenient to consider the range to be the
entire set of such numbers:

N0 = {0, 1, 2, . . . , n, . . . }

since we can assign probability zero to those that are not needed. Thus we
have, as specialization of (4.3.6), (4.3.8), and (4.3.11),

pn = P (X = n), n ∈ N0,

FX(x) =
∑

0≤n≤x

pn, (4.4.1)

E(X) =
∞∑
n=0

npn.

Since all terms in the last-written series are nonnegative, there is no dif-
ference between convergence and absolute convergence. Furthermore, since
such a series either converges to a finite sum or diverges to +∞, we may
even allow E(X) = +∞ in the latter case. This is in contrast to our general
definition in the last section but is a convenient extension.

In many problems there is a practical justification to consider the ran-
dom variables to take only integer values, provided a suitably small unit
of measurement is chosen. For example, monetary values can be expressed
in cents rather than dollars, or one tenth of a cent if need be; if “inch”
is not a small enough unit for lengths we can use one hundredth or one
thousandth of an inch. There is a unit called angstrom (Å), which is equal
to 10−7 of a millimeter, used to measure electromagnetic wavelengths. For
practical purposes, of course, incommensurable magnitudes (irrational ra-
tios) do not exist; at one time π was legally defined to be 3.14 in some state
of the United States! But one can go too far in this kind of justification!

We proceed to give some examples of (4.4.1).

Example 7. Suppose L is a positive integer, and

pn =
1
L
, 1 ≤ n ≤ L. (4.4.2)

Then automatically all other pn’s must be zero because
∑L

n=1 pn = L· 1L = 1
and the conditions in (4.3.10) must be satisfied. Next, we have

E(X) =
1
L

L∑
n=1

n =
1
L
· L(L+ 1)

2
=

L+ 1
2

.
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The preceding sum is done by a formula for arithmetical progression which
you have probably learned in school.

We say in this case that X has a uniform distribution over the set
{1, 2, . . . , L}. In the language of Chapter 3, the L possible cases {X =
1}, {X = 2}, . . . , {X = L} are all equally likely. The expected value of X
is equal to the arithmetical mean [average] of the L possible values. Here
is an illustration of its meaning. Suppose you draw at random a token X
from a box containing 100 tokens valued at 1/c to 100/c. Then your expected
prize is given by E(X) = 50.5/c. Does this sound reasonable to you?

Example 8. Suppose you toss a perfect coin repeatedly until a head turns
up. Let X denote the number of tosses it takes until this happens, so
that {X = n} means n − 1 tails before the first head. It follows from the
discussion in Example 8 of §2.4 that

pn = P (T = n) =
1
2n

(4.4.3)

because the favorable outcome is just the specific sequence TT · · ·T︸ ︷︷ ︸H
n−1 times

.

What is the expectation of X? According to (4.4.1), it is given by the
formula

∞∑
n=1

n

2n
=? (4.4.4)

Let us learn how to sum this series, though properly speaking this does
not belong to this course. We begin with the fountainhead of many of such
series:

1
1− x

= 1 + x+ x2 + · · ·+ xn + · · · =
∞∑
n=0

xn for |x| < 1. (4.4.5)

This is a geometric series of the simplest kind which you surely have seen.
Now differentiate it term by term:

1
(1− x)2

= 1 + 2x+ 3x2 + · · ·+ nxn−1 + · · · =
∞∑
n=0

(n+ 1)xn for |x| < 1.

(4.4.6)

This is valid because the radius of convergence of the power series in (4.4.5)
is equal to 1, so such manipulations are legitimate for |x| < 1. [Absolute and
uniform convergence of the power series are involved here.] If we substitute
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x = 1/2 in (4.4.6), we obtain

4 =
∞∑
n=0

(n+ 1)
(
1
2

)n

. (4.4.7)

There is still some difference between (4.4.4) and the preceding series, so
a little algebraic manipulation is needed. One way is to split up the terms
above:

4 =
∞∑
n=0

n

2n
+

∞∑
n=0

1
2n

=
∞∑
n=1

n

2n
+ 2,

where we have summed the second series by substituting x = 1/2 into
(4.4.5). Thus the answer to (4.4.4) is equal to 2. Another way to manipulate
the formula is to change the index of summation: n+1 = ν. Then we have

4 =
∞∑
n=0

n+ 1
2n

=
∞∑
ν=1

ν

2ν−1 = 2
∞∑
ν=1

ν

2ν
,

which of course yields the same answer. Both techniques are very useful!
The expectation E(X) = 2 seems eminently fair on intuitive grounds.

For if the probability of your obtaining a head is 1/2 on one toss, then
two tosses should get you 2 · 1/2 = 1 head, on the average. This plausible
argument [which was actually given in a test paper by a smart student]
can be made rigorous, but the necessary reasoning involved is far more
sophisticated than you might think. It is a case of Wald’s equation∗ or
martingale theorem [for the advanced reader].

Let us at once generalize this problem to the case of a biased coin, with
probability p for head and q = 1− p tail. Then (4.4.3) becomes

pn = (q · · · q)︸ ︷︷ ︸
n−1 times

p = qn−1p, (4.4.8)

and (4.4.4) becomes

∞∑
n=1

nqn−1p = p

∞∑
n=0

(n+ 1)qn =
p

(1− q)2
=

p

p2 =
1
p
. (4.4.9)

The random variable X is called the waiting time, for heads to fall, or
more generally for a “success.” The distribution {qn−1p;n = 1, 2, . . . } will
be called the geometrical distribution with success probability p.

∗Named after Abraham Wald (1902–50), leading U.S. statistician.
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Example 9. A perfect coin is tossed n times. Let Sn denote the number
of heads obtained. In the notation of §2.4, we have Sn = X1 + · · · + Xn.
We know from §3.2 that

pk = P (Sn = k) =
1
2n

(
n

k

)
, 0 ≤ k ≤ n. (4.4.10)

If we believe in probability, then we know
∑∞

k=0 pk = 1 from (4.3.10). Hence

n∑
k=0

1
2n

(
n

k

)
= 1 or

n∑
k=0

(
n

k

)
= 2n. (4.4.11)

This has been shown in (3.3.7) and can also be obtained from (4.4.13)
below by putting x = 1 there, but we have done it by an argument based
on probability. Next we have

E(Sn) =
n∑

k=0

k

2n

(
n

k

)
. (4.4.12)

Here again we must sum a series, a finite one. We will do it in two different
ways, both useful for other calculations. First by direct manipulation, the
series may be rewritten as

n∑
k=0

k

2n
n!

k! (n− k)!
=

n

2n

n∑
k=1

(n− 1)!
(k − 1)!(n− k)!

=
n

2n

n∑
k=1

(
n− 1
k − 1

)
.

What we have done above is to cancel k from k!, split off n from n!, and
omit a zero term for k = 0. Now change the index of summation by putting
k − 1 = j (we have done this kind of thing in Example 8):

n

2n

n∑
k=1

(
n− 1
k − 1

)
=

n

2n

n−1∑
j=0

(
n− 1
j

)
=

n

2n
· 2n−1 =

n

2
,

where the step before the last is obtained by using (4.4.11) with n replaced
by n− 1. Hence the answer is n/2.

This method is highly recommended if you enjoy playing with combi-
natorial formulas such as the binomial coefficients. But most of you will
probably find the next method easier because it is more like a cookbook
recipe. Start with Newton’s binomial theorem in the form

(1 + x)n =
n∑

k=0

(
n

k

)
xk. (4.4.13)
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Observe that this is just an expression of a polynomial in x and is a special
case of Taylor’s series, just as the series in (4.4.5) and (4.4.6) are. Now
differentiate to get

n(1 + x)n−1 =
n∑

k=0

(
n

k

)
kxk−1. (4.4.14)

Substitute x = 1:

n2n−1 =
n∑

k=0

(
n

k

)
k;

divide through by 2n, and get the answer n/2 again for (4.4.12). So the
expected number of heads in n tosses is n/2. Once more, what could be
more reasonable since heads are expected half of the time!

We can generalize this problem to a biased coin, too. Then (4.4.10)
becomes

P (Sn = k) =
(
n

k

)
pkqn−k, 0 ≤ k ≤ n. (4.4.15)

There is a preview of the above formula in §2.4. We now see that it gives the
probability distribution of the random variable Sn =

∑n
i=1 Xi. It is called

the binomial distribution B(n; p). The random variable Xi here as well as
its distribution are often referred to as Bernoullian; and when p = 1/2, the
adjective symmetric is added. Next, (4.4.12) becomes

n∑
k=0

(
n

k

)
kpkqn−k = np. (4.4.16)

Both methods used above still work. The second is quicker: setting x = p/q
in (4.4.14), since p+ q = 1 we obtain

n

(
1 +

p

q

)n−1

=
n

qn−1 =
n∑

k=0

(
n

k

)
k

(
p

q

)k−1

;

multiplying through by pqn−1, we establish (4.4.16).

Example 10. In Problem 1 of §3.4, if we denote by X the number of
defective items, then P (X = j) is given by the formula in (3.4.1). This is
called the hypergeometric distribution.
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4.5. Random variables with densities

In the preceding sections we have given a quite rigorous discussion of ran-
dom variables that take only a countable set of values. But even at an
elementary level there are many important questions in which we must
consider random variables not subject to such a restriction. This means
that we need a sample space that is not countable. Technical questions of
“measurability” then arise which cannot be treated satisfactorily without
more advanced mathematics. As we have mentioned in Chapter 2, this kind
of difficulty stems from the impossibility of assigning a probability to every
subset of the sample space when it is uncountable. The matter is resolved
by confining ourselves to sample sets belonging to an adequate class called
a Borel field; see Appendix 1. Without going into this here we will take
up a particular but very important situation that covers most applications
and requires little mathematical abstraction. This is the case of a random
variable with a “density.”

Consider a function f defined on R1 = (−∞,+∞):

u→ f(u)

and satisfying two conditions:

(i) ∀u: f(u) ≥ 0;

(ii)
∫ ∞

−∞
f(u) du = 1.

(4.5.1)

Such a function is called a density function on R1. The integral in (ii) is the
Riemann integral taught in calculus. You may recall that if f is continuous
or just piecewise continuous, then the definite integral∫ b

a

f(u) du

exists for any interval [a, b]. But in order that the “improper integral” over
the infinite range (−∞,+∞) should exist, further conditions are needed to
make sure that f(u) is pretty small for large |u|. In general, such a function
is said to be “integrable over R1.” The requirement that the total integral
be equal to 1 is less serious than it might appear, because if∫ ∞

−∞
f(u) du = M <∞,

we can just divide through by M and use f/M instead of f . Here are some
possible pictures of density functions, some smooth, some not so.
You see what a variety they can be. The only constraints are that the curve
should not lie below the x-axis anywhere, that the area under the curve
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Figure 20

should have a meaning, and the total area should be equal to 1. You may
agree that this is not asking for too much.

We can now define a class of random variables on a general sample
space as follows. As in §4.2, X is a function on Ω : ω → X(ω), but its
probabilities are prescribed by means of a density function f so that for
any interval [a, b] we have

P (a ≤ X ≤ b) =
∫ b

a

f(u) du. (4.5.2)

More generally, if A is the union of intervals not necessarily disjoint and
some of which may be infinite, we have

P (X ∈ A) =
∫
A

f(u) du. (4.5.3)

Such a random variable is said to have a density, and its density function
is f . [In some books this is called a “continuous” random variable, whereas
the kind discussed in §2 is called “discrete.” Both adjectives are slightly
misleading so we will not use them here.]

If A is a finite union of intervals, then it can be split up into disjoint
ones, some of which may abut on each other, such as

A =
k⋃

j=1

[aj , bj ],
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and then the right-hand side of (4.5.3) may be written as∫
A

f(u) du =
k∑

j=1

∫ bj

aj

f(u) du.

This is a property of integrals which is geometrically obvious when you
consider them as areas. Next if A = (−∞, x], then we can write

F (x) = P (X ≤ x) =
∫ x

−∞
f(u) du; (4.5.4)

compare with (4.3.8). This formula defines the distribution function F of
X as a primitive [indefinite integral] of f . It follows from the fundamental
theorem of calculus that if f is continuous, then f is the derivative of F :

F ′(x) = f(x). (4.5.5)

Thus in this case the two functions f and F mutually determine each other.
If f is not continuous everywhere, (4.5.5) is still true for every x at which
f is continuous. These things are proved in calculus.

Let us observe that in the definition above of a random variable with a
density, it is implied that the sets {a ≤ X ≤ b} and {X ∈ A} have prob-
abilities assigned to them; in fact, they are specified in (4.5.2) and (4.5.3)
by means of the density function. This is a subtle point in the wording that
should be brought out but will not be elaborated on. [Otherwise we shall
be getting into the difficulties we are trying to circumvent here. But see
Appendix 1.] Rather, let us remark on the close resemblance between the
formulas above and the corresponding ones in §4.3. This will be amplified
by a definition of mathematical expectation in the present case and listed
below for comparison.

Countable case Density case

Range vn, n = 1, 2, . . . −∞ < u < +∞

element of probability pn f(u) du = dF (u)

P (a ≤ X ≤ b)
∑

a≤vn≤b

pn
∫ b
a
f(u) du

P (X ≤ x) = F (x)
∑

vn≤x

pn
∫ x

−∞ f(u) du

E(X)
∑
n
pnvn

∫∞
−∞ uf(u) du

proviso
∑
n
pn|vn| <∞

∫∞
−∞ |u|f(u) du <∞

More generally, the analogue of (4.3.17) is

E(ϕ(X)) =
∫ ∞

−∞
ϕ(u)f(u) du. (4.5.6)
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You may ignore the second item in the density case above involving a
differential if you don’t know what it means.

Further insight into the analogy is gained by looking at the following
picture:

Figure 21

The curve is the graph of a density function f . We have divided the x-
axis into m+1 pieces, not necessarily equal and not necessarily small, and
denote the area under the curve between xn and xn+1 by pn, thus:

pn =
∫ xn+1

xn

f(u) du, 0 ≤ n ≤ m,

where x0 = −∞, xm+1 = +∞. It is clear that we have

∀n : pn ≥ 0;
∑
n

pn = 1.

Hence the numbers pn satisfy the conditions in (4.3.10). Instead of a fi-
nite partition we may have a countable one by suitable labeling such as
. . . , p−2, p−1, p0, p1, . . . . Thus we can derive a set of “elementary proba-
bilities” from a density function, in infinitely many ways. This process may
be called discretization. If X has the density f , we may consider a random
variable Y such that

P (Y = xn) = pn,

where we may replace xn by any other number in the subinterval [xn, xn+1].
Now if f is continuous and the partition is sufficiently fine, namely if the
pieces are sufficiently small, then it is geometrically evident that Y is in
some sense a discrete approximation of X. For instance,

E(Y ) =
∑
n

pnxn
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will be an approximation of E(X) =
∫∞

−∞ uf(u) du. Remember the Rie-
mann sums defined in calculus to lead to a Riemann integral? There the
strips with curved tops in Figure 21 are replaced by flat tops (rectangles),
but the ideas involved are quite similar. From a practical point of view,
it is the discrete approximations that can really be measured, whereas the
continuous density is only a mathematical idealization. We shall return to
this in a moment.

Having dwelled on the similarity of the two cases of random variable,
we will pause to stress a fundamental difference between them. If X has a
density, then by (4.5.2) with a = b = x, we have

P (X = x) =
∫ x

x

f(u) du = 0. (4.5.7)

Geometrically speaking, this merely states the trivial fact that a line seg-
ment has zero area. Since x is arbitrary in (4.5.7), it follows that X takes
any preassigned value with probability zero. This is in direct contrast to
a random variable taking a countable set of values, for then it must take
some of these values with positive probability. It seems paradoxical that on
the one hand, X(ω) must be some number for every ω, and on the other
hand any given number has probability zero. The following simple concrete
example should clarify this point.

Example 11. Spin a needle on a circular dial. When it stops it points at a
random angle θ (measured from the horizontal, say). Under normal condi-
tions it is reasonable to suppose that θ is uniformly distributed between 0◦

and 360◦ (cf. Example 7 of §4.4). This means it has the following density
function:

f(u) =




1
360

for 0 ≤ u ≤ 360,

0 otherwise.

Thus for any θ1 < θ2 we have

P (θ1 ≤ θ ≤ θ2) =
∫ θ2

θ1

1
360

du =
θ2 − θ1
360

. (4.5.8)

This formula says that the probability of the needle pointing between any
two directions is proportional to the angle between them. If the angle θ2−
θ1 shrinks to zero, then so does the probability. Hence in the limit the
probability of the needle pointing exactly at θ is equal to zero. From an
empirical point of view, this event does not really make sense because the
needle itself must have a width. So in the end it is the mathematical fiction
or idealization of a “line without width” that is the root of the paradox.



100 Random Variables

There is a deeper way of looking at this situation which is very rich. It
should be clear that instead of spinning a needle we may just as well “pick
a number at random” from the interval [0, 1]. This can be done by bending
the circle into a line segment and changing the unit. Now every point in
[0, 1] can be represented by a decimal such as

.141592653589793 · · · . (4.5.9)

There is no real difference if the decimal terminates because then we just
have all digits equal to 0 from a certain place on, and 0 is no different from
any other digit. Thus, to pick a number in [0, 1] amounts to picking all its
decimal digits one after another. That is the kind of thing a computing
machine churns out. Now the chance of picking any prescribed digit, say
the first digit “1” above, is equal to 1/10 and the successive pickings from
totally independent trials (see §2.4). Hence the chance of picking the 15
digits shown in (4.5.9) is equal to

1
10
· 1
10
· · · 1

10︸ ︷︷ ︸
15 times

=
(

1
10

)15

.

If we remember that 109 is 1 billion, this probability is already so small that
according to Emile Borel [1871–1956; great French mathematician and one
of the founders of modern probability theory], it is terrestrially negligible
and should be equated to zero! But we have only gone 15 digits in the
decimals of the number π − 3, so there can be no question whatsoever of
picking this number itself and yet if you can imagine going on forever, you
will end up with some number which is just as impossible a priori as this
π − 3. So here again we are up against a mathematical fiction—the real
number system.

We may generalize this example as follows. Let [a, b] be any finite, non-
degenerate interval in R1 and put

f(u) =




1
b− a

for a ≤ u ≤ b,

0 otherwise.

This is a density function, and the corresponding distribution is called the
uniform distribution on [a, b]. We can write the latter explicitly:

F (x) =
[(a ∨ x) ∧ b]− a

b− a

if you have a taste for such tricky formulas.
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Figure 22

Example 12. A chord is drawn at random in a circle. What is the prob-
ability that its length exceeds that of a side of an inscribed equilateral
triangle?

Let us draw such a triangle in a circle with center 0 and radius R, and
make the following observations. The side is at distance R/2 from 0; its
midpoint is on a concentric circle of radius R/2; it subtends an angle of
120 degrees at 0. You ought to know how to compute the length of the
side, but this will not be needed. Let us denote by A the desired event that
a random chord be longer than that side. Now the length of any chord is
determined by any one of the three quantities: its distance d from 0; the
location of its midpoint M ; the angle θ it subtends at 0. We are going to
assume in turn that each of these has a uniform distribution over its range
and compute the probability of A under each assumption.

(1) Suppose that d is uniformly distributed in [0, R]. This is a plausible
assumption if we move a ruler parallel to itself with constant speed from a
tangential position toward the center, stopping somewhere to intersect the
circle in a chord. It is geometrically obvious that the event A will occur if
and only if d < R/2. Hence P (A) = 1/2.

(2) Suppose that M is uniformly distributed over the disk D formed by
the given circle. This is a plausible assumption if a tiny dart is thrown at
D and a chord is then drawn perpendicular to the line joining the hitting
point to 0. Let D′ denote the concentric disk of radius R/2. Then the event
A will occur if and only if M falls within D′. Hence P (A) = P (M ∈ D′) =
(area of D′)/(area of D) = 1/4.

(3) Suppose that θ is uniformly distributed between 0 and 360 degrees.
This is plausible if one endpoint of the chord is arbitrarily fixed and the
other is obtained by rotating a radius at constant speed to stop somewhere
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on the circle. Then it is clear from the picture that A will occur if and only
if θ is between 120 and 240 degrees. Hence P (A) = (240− 120)/360 = 1/3.

Thus the answer to the problem is 1/2, 1/4, or 1/3 according to the
different hypotheses made. It follows that these hypotheses are not com-
patible with one another. Other hypotheses are possible and may lead to
still other answers. Can you think of a good one? This problem was known
as Bertrand’s paradox in the earlier days of discussions of probability the-
ory. But of course the paradox is due only to the fact that the problem is
not well posed without specifying the underlying nature of the randomness.
It is not surprising that the different ways of randomization should yield
different probabilities, which can be verified experimentally by the mechan-
ical procedures described. Here is a facile analogy. Suppose that you are
asked how long it takes to go from your dormitory to the classroom without
specifying whether we are talking about “walking,” “biking,” or “driving”
time. Would you call it paradoxical that there are different answers to the
question?

We end this section with some other simple examples of random vari-
ables with densities. Another important case, the normal distribution, will
be discussed in Chapter 6.

Example 13. Suppose you station yourself at a spot on a relatively serene
country road and watch the cars that pass by that spot. With your stop-
watch you can clock the time before the first car passes. This is a random
variable T called the waiting time. Under certain circumstances it is a rea-
sonable hypothesis that T has the density function below with a certain
λ > 0:

f(u) = λe−λu, u ≥ 0. (4.5.10)

It goes without saying that f(u) = 0 for u < 0. The corresponding dis-
tribution function is called the exponential distribution with parameter λ,
obtained by integrating f as in (4.5.4):

F (x) =
∫ x

−∞
f(u) du =

∫ x

0
λe−λu du = 1− e−λx.

In particular, if we put x = +∞, or better, let x→∞ in the above, we see
that f satisfies the conditions in (4.5.1), so it is indeed a density function.
We have

P (T ≤ x) = F (x) = 1− e−λx; (4.5.11)

but in this case it is often more convenient to use the tail probability :

P (T > x) = 1− F (x) = e−λx. (4.5.12)
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This can be obtained directly from (4.5.3) with A = (x,∞); thus

P (T ∈ (x,∞)) =
∫

(x,∞)
λe−λu du =

∫ ∞

x

λe−λu du = e−λx.

For every given x, say 5 (seconds), the probability e−5λ in (4.5.12) decreases
as λ increases. This means your waiting time tends to be shorter if λ is
larger. On a busy highway λ will indeed be large. The expected waiting-
time is given by

E(T ) =
∫ ∞

0
uλe−λu du =

1
λ

∫ ∞

0
te−t dt =

1
λ
. (4.5.13)

[Can you compute the integral above using “integration by parts” without
recourse to a table?] This result supports our preceding observation that T
tends on the average to be smaller when λ is larger.

The exponential distribution is a very useful model for various types of
waiting time problems such as telephone calls, service times, splitting of
radioactive particles, etc.; see §7.2.

Example 14. Suppose in a problem involving the random variable T
above, what we really want to measure is its logarithm (to the base e):

S = log T. (4.5.14)

This is also a random variable (cf. Proposition 2 in §4.2); it is negative if
T > 1, zero if T = 1, and positive if T > 1. What are its probabilities? We
may be interested in P (a ≤ S ≤ b), but it is clear that we need only find
P (S ≤ x), namely the distribution function FS of S. Now the function

x→ log x

is monotone and its inverse is

x→ ex

so that

S ≤ x⇔ log T ≤ x⇔ T ≤ ex.

Hence by (4.5.11)

FS(x) = P{S ≤ x} = P{T ≤ ex} = 1− e−λex

.

The density function fS is obtained by differentiating:

fS(x) = F ′
S(x) = λexe−λex

= λex−λex

.

This looks formidable, but you see it is easily derived.
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Example 15. A certain river floods every year. Suppose the low-water
mark is set at 1, and the high-water mark Y has the distribution function

F (y) = P (Y ≤ y) = 1− 1
y2 , 1 ≤ y <∞. (4.5.15)

Observe that F (1) = 0, that F (y) increases with y, and that F (y) → 1 as
y →∞. This is as it should be from the meaning of P (Y ≤ y). To get the
density function we differentiate:

f(y) = F ′(y) =
2
y3 , 1 ≤ y <∞. (4.5.16)

It is not necessary to check that
∫∞

−∞ f(y) dy = 1, because this is equivalent
to limy→∞ F (y) = 1. The expected value of Y is given by

E(Y ) =
∫ ∞

1
u · 2

u3 du =
∫ ∞

1

2
u2 du = 2.

Thus the maximum of Y is twice that of the minimum, on the average.
What happens if we set the low-water mark at 0 instead of 1 and use a

unit of measuring the height which is 1/10 of that used above? This means
we set

Z = 10(Y − 1). (4.5.17)

As in Example 13 we have

Z ≤ z ⇔ 10(Y − 1) ≤ z ⇔ Y ≤ 1 +
z

10
, 0 ≤ z <∞.

From this we can compute

FZ(z) = 1− 100
(10 + z)2

,

fZ(z) =
200

(10 + z)3
.

The calculation of E(Z) from fZ is tedious but easy. The answer is E(Z) =
10, and comparing with E(Y ) = 2 we see that

E(Z) = 10(E(Y )− 1). (4.5.18)

Thus the means of Y and Z are connected by the same linear relation
as the random variables themselves. Does this seem obvious to you? The
general proposition will be discussed in §6.1.
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4.6. General case

The most general random variable is a function X defined on the sample
space Ω such that for any real x, the probability P (X ≤ x) is defined.

To be frank, this statement has put the cart before the horse. What
comes first is a probability measure P defined on a class of subsets of Ω.
This class is called the sample Borel field or probability field and is denoted
by F. Now if a function X has the property that for every x, the set {ω |
X(ω) ≤ x} belongs to the class F, then it is called a random variable. [We
must refer to Appendix 1 for a full description of this concept; but the rest
of this section should be intelligible without the formalities.] In other words,
an arbitrary function must pass a test to become a member of the club.
The new idea here is that P is defined only for subsets in F, not necessarily
for all subsets of Ω. If it happens to be defined for all subsets, then of
course the test described above becomes a nominal one and every function
is automatically a random variable. This is the situation for a countable
space Ω discussed in §4.1. In general, as we have hinted several times before,
it is impossible to define a probability measure on all subsets of Ω, and so
we must settle for a certain class F. Since only sets in F have probabilities
assigned to them, and since we wish to discuss sample sets of the sort “X ≤
x,” we are obliged to require that these belong to F. Thus the necessity of
such a test is easy to understand. What may be a little surprising is that
this test is all we need. Namely, once we have made this requirement, we
can then go on to discuss the probabilities of a whole variety of sample sets
such as {a ≤ X ≤ b}, {X = x}, {X takes a rational value}, or some crazy
thing like {ex > X2 + 1}.

Next, we define for every real x:

F (x) = P (X ≤ x) (4.6.1)

or equivalently for a < b:

F (b)− F (a) = P (a < X ≤ b);

and call the function F the distribution function of X. This has been done
in previous cases, but we no longer have the special representative in (4.3.8)
or (4.5.4):

F (x) =
∑
νn≤x

pn, F (x) =
∫ x

−∞
f(u) du

in terms of elementary probability or a density function. As a matter of
fact, the general F turns out to be a mixture of these two kinds together
with a weirder kind (the singular type). But we can operate quite well with
the F as defined by (4.6.1) without further specification. The mathematical
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equipment required to handle the general case, however, is somewhat more
advanced (at the level of a course like “Fundamental concepts of analysis”).
So we cannot go into this but will just mention two easy facts about F :

(i) F is monotone nondecreasing: namely x ≤ x′ ⇒ F (x) ≤ F (x′);
(ii) F has limits 0 and 1 at −∞ and +∞, respectively:

F (−∞) = lim
x→−∞

F (x) = 0, F (+∞) = lim
x→+∞

F (x) = 1.

Property (i) holds because if x ≤ x′, then {X ≤ x} ⊂ {X ≤ x′}. Property
(ii) is intuitively obvious because the event {X ≤ x} becomes impossible as
x→ −∞, and certain as x→ +∞. This argument may satisfy you, but the
rigorous proofs are a bit more sophisticated and depend on the countable
additivity of P (see §2.3). Let us note that the existence of the limits in (ii)
follows from the monotonicity in (i) and a fundamental theorem in calculus:
a bounded monotone sequence of real numbers has a limit.

The rest of the section is devoted to a brief discussion of some basic
notions concerning random vectors. This material may be postponed until
it is needed in Chapter 6.

For simplicity of notation we will consider only two random variables
X and Y , but the extension to any finite number is straightforward. We
first consider the case where X and Y are countably valued. Let X take
the values {xi}, Y take the values {yj}, and put

P (X = xi, Y = yj) = p(xi, yj). (4.6.2)

When xi and yj range over all possible values, the set of “elementary prob-
abilities” above gives the joint probability distribution of the random vector
(X,Y ). To get the probability distribution of X alone, we let yj range over
all possible values in (4.6.2); thus

P (X = xi) =
∑
yi

p(xi, yj) = p(xi, ∗), (4.6.3)

where the last quantity is defined by the middle sum. When x ranges over all
possible values, the set of p(xi, ∗) gives the marginal distribution of X. The
marginal distribution of Y is similarly defined. Let us observe that these
marginal distributions do not in general determine the joint distribution.

Just as we can express the expectation of any function of X by means
of its probability distribution [see (4.3.17)], we can do the same for any
function of (X,Y ) as follows:

E(ϕ(X,Y )) =
∑
xi

∑
yj

ϕ(xi, yj)p(xi, yj). (4.6.4)
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It is instructive to see that this results from a rearrangement of terms in
the definition of the expectation of ϕ(X,Y ) as one random variable as in
(4.3.11):

E(ϕ(X,Y )) =
∑
ω

ϕ(X(ω), Y (ω))P (ω).

Next, we consider the density case extending the situation in §4.5. The
random vector (X,Y ) is said to have a joint density function f in case

P (X ≤ x, Y ≤ y) =
∫ x

−∞

∫ y

−∞
f(u, v) du dv (4.6.5)

for all (x, y). It then follows that for any “reasonable” subset S of the
Cartesian plane (called a Borel set), we have

P ((X,Y ) ∈ S) =
∫∫
S

f(u, v) du dv. (4.6.6)

For example, S may be polygons, disks, ellipses, and unions of such shapes.
Note that (4.6.6) contains (4.6.5) as a very particular case and we can, at a
pinch, accept the more comprehensive condition (4.6.6) as the definition of
f as density for (X,Y ). However, here is a heuristic argument from (4.6.5)
to (4.6.6). Let us denote by R(x, y) the infinite rectangle in the plane with
sides parallel to the coordinate axes and lying to the southwest of the point
(x, y). The picture below shows that for any δ > 0 and δ′ > 0:

R(x+ δ, y + δ′)−R(x+ δ, y)−R(x, y + δ′) +R(x, y)

is the shaded rectangle

It follows that if we manipulate the relation (4.6.5) in the same way, we get

P (x ≤ X ≤ x+ δ, y ≤ Y ≤ y + δ′) =
∫ x+δ

x

∫ y+δ′

y

f(u, v) du dv.

This means (4.6.6) is true for the shaded rectangle. By varying x, y as well
as δ, δ′, we see that the formula is true for any rectangle of this shape. Now
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any reasonable figure can be approximated from inside and outside by a
number of such small rectangles (even just squares)—a fact known already
to the ancient Greeks. Hence in the limit we can get (4.6.6) as asserted.

The curious reader may wonder why a similar argument was not given
earlier for the case of one random variable (4.5.3)? The answer is: heuristi-
cally speaking, there are hardly any sets in R1 other than intervals, points,
and their unions! Things are pretty tight in one dimension and our geomet-
ric intuition does not work well. This is one reason why classical measure
theory is a sophisticated business.

The joint density function f satisfies the following conditions:

(i) f(u, v) ≥ 0 for all (u, v);
(ii)

∫∞
−∞
∫∞

−∞ f(u, v) du dv = 1.

Of course, (ii) implies that f is integrable over the whole plane. Frequently
we also assume that f is continuous. Now the formulas analogous to (4.6.3)
are

P (X ≤ x) =
∫ x

−∞
f(u, ∗) du, where f(u, ∗) =

∫ ∞

−∞
f(u, v) dv,

P (Y ≤ y) =
∫ y

−∞
f(∗, v) dv, where f(∗, v) =

∫ ∞

−∞
f(u, v) du.

(4.6.7)

The functions u → f(u, ∗) and v → f(∗, v) are respectively called the
marginal density functions of X and Y . They are derived from the joint
density function after “integrating out” the variable that is not in question.

The formula corresponding to (4.6.4) becomes in the density case: for
any “reasonable” [Borel] function ϕ:

E(ϕ(X,Y )) =
∫ ∞

−∞

∫ ∞

−∞
ϕ(u, v)f(u, v) du dv. (4.6.8)

The class of reasonable functions includes all bounded continuous functions
in (u, v), indicators of reasonable sets, and functions that are continuous
except across some smooth boundaries, for which the integral above exists,
etc.

In the most general case the joint distribution function F of (X,Y ) is
defined by

F (x, y) = P (X ≤ x, Y ≤ y) for all (x, y). (4.6.9)

If we denote limy→∞ F (x, y) by F (x,∞), we have

F (x,∞) = P (X ≤ x, Y <∞) = P (X ≤ x)
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since “Y <∞” puts no restriction on Y . Thus x→ F (x,∞) is the marginal
distribution function of X. The marginal distribution function of Y is sim-
ilarly defined.

Although these general concepts form the background whenever several
random variables are discussed, explicit use of them will be rare in this
book.

Exercises

1. If X is a random variable [on a countable sample space], is it true that

X +X = 2X,X −X = 0?

Explain in detail.
2. Let Ω = {ω1, ω2, ω3}, P (ω1) = P (ω2) = P (ω3) = 1/3, and define X, Y ,

and Z as follows:

X(ω1) = 1, X(ω2) = 2, X(ω3) = 3;

Y (ω1) = 2, Y (ω2) = 3,mY (ω3) = 1;

Z(ω1) = 3, Z(ω2) = 1, Z(ω3) = 2.

Show that these three random variables have the same probability dis-
tribution. Find the probability distributions of X + Y , Y + Z, and
Z +X.

3. In No. 2 find the probability distribution of

X + Y − Z,
√

(X2 + Y 2)Z,
Z

|X − Y | .

4. Take Ω to be a set of five real numbers. Define a probability mea-
sure and a random variable X on it that takes the values 1, 2, 3, 4, 5
with probabilities 1/10, 1/10, 1/5, 1/5, 2/5 respectively; another ran-
dom variable Y that takes the value

√
2,
√
3, π with probabilities

1/5, 3/10, 1/2. Find the probability distribution of XY . [Hint: the
answer depends on your choice and is not unique.]

5. Generalize No. 4 by constructing Ω, P,X so that X takes the values
v1, v2, . . . , vn with probabilities p1, p2, . . . , pn where the pn’s satisfy
(4.3.10).

6. In Example 3 of §4.1, what do the following sets mean?

{X + Y = 7}, {X + T ≤ 7}, {X ∨ Y > 4}, {X �= Y }

List all the ω’s in each set.
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*7. Let X be integer-valued and let F be its distribution function. Show
that for every x and a < b

P (X = x) = lim
ε↓0

[F (x+ ε)− F (x− ε)],

P (a < X < b) = lim
ε↓0

[F (b− ε)− F (a+ ε)].

[The results are true for any random variable but require more ad-
vanced proofs even when Ω is countable.]

8. In Example 4 of §4.2, suppose that

B = 5000 +X ′,

whereX ′ is uniformly distributed over the set of integers from 1 to 5000.
What does this hypothesis mean? Find the probability distribution and
mean of Y under this hypothesis.

9. As in No. 8 but now suppose that

X = 4000 +X ′,

where X ′ is uniformly distributed from 1 to 10000.
*10. As in No. 8 but now suppose that

X = 3000 +X ′

and X ′ is the exponential distribution with mean 7000. Find E(Y ).
11. Let λ > 0 and define f as follows:

f(u) =




1
2
λe−λu if u ≥ 0;

1
2
λe+λu if u < 0.

This f is called bilateral exponential. IfX has density f , find the density
of |X|. [Hint: begin with the distribution function.]

12. If X is a positive random variable with density f , find the density of
+
√
X. Apply this to the distribution of the side length of a square

when its area is uniformly distributed in [a, b].
13. If X has density f , find the density of (i) aX + b where a and b are

constants; (ii) X2.
14. Prove (4.4.5) in two ways: (a) by multiplying out (1−x)(1+x+· · ·+xn);

(b) by using Taylor’s series.
15. Suppose that

pn = cqn−1p, 1 ≤ n ≤ m,
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where c is a constant and m is a positive integer; cf. (4.4.8). Determine
c so that

∑m
n=1 pn = 1. (This scheme corresponds to the waiting time

for a success when it is supposed to occur within m trials.)
16. A perfect coin is tossed n times. Let Yn denote the number of heads

obtained minus the number of tails. Find the probability distribution
of Yn and its mean. [Hint: there is a simple relation between Yn and
the Sn in Example 9 of §4.4.]

17. Refer to Problem 1 in §3.4. Suppose there are 11 rotten apples in a
bushel of 550, and 25 apples are picked at random. Find the probability
distribution of the number X of rotten apples among those picked.

*18. Generalize No. 17 to arbitrary numbers and find the mean of X. [Hint:
this requires some expertise in combinatorics but becomes trivial after
§6.1.]

19. Let

P (X = n)− pn =
1

n(n+ 1)
, n ≥ 1.

Is this a probability distribution for X? Find P (X ≥ m) for any m and
E(X).

20. If all the books in a library have been upset and a monkey is hired
to put them all back on the shelves, it can be shown that a good
approximation for the probability of having exactly n books put back
in their original places is

e−1

n!
, n ≥ 0.

Find the expected number of books returned to their original places.
[This oft-quoted illustration is a variant on the matching problem dis-
cussed in Problem 6 of §3.4.]

21. Find an example in which the series
∑

n pnvn in (4.3.11) converges but
not absolutely. [Hint: there is really nothing hard about this: choose
pn = 1/2n say, and now choose vn so that pnvn is the general term of
any nonabsolutely convergent series you know.]

22. If f and g are two density functions, show that λf+µg is also a density
function, where λ+ µ = 1, λ ≥ 0, µ ≥ 0.

23. Find the probability that a random chord drawn in a circle is longer
than the radius. As in Example 11 of §4.5, work this out under the
three different hypotheses discussed there.

24. Let

f(u) = ue−u, u ≥ 0.

Show that f is a density function. Find
∫∞
0 uf(u) du.
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25. In the figure below an equilateral triangle, a trapezoid, and a semidisk
are shown:

Determine numerical constants for the sides and radius to make these
the graphs of density functions.

26. Suppose a target is a disk of radius 10 feet and that the probability
of hitting within any concentric disk is proportional to the area of the
disk. Let R denote the distance of the bullet from the center. Find the
distribution function, density function, and mean of R.

27. Agent 009 was trapped between two narrow abysmal walls. He swung
his gun around in a vertical circle touching the walls as shown in Fig. 23,
and fired a wild [random] shot. Assume that the angle his pistol makes
with the horizontal is uniformly distributed between 0◦ and 90◦. Find
the distribution of the height where the bullet landed and its mean.

28. [St. Petersburg paradox] You play a game with your pal by tossing a
perfect coin repeatedly and betting on the waiting time X until a head
is tossed up. You agree to pay him 2X/c when the value of X is known,
namely 2n/c if X = n. If you figure that a fair price for him to pay
you in advance in order to win this random prize should be equal to
the mathematical expectation E(2X), how much should he pay? How
much, honestly, would you accept to play this game? [If you do not
see any paradox in this, then you do not agree with such illustrious
mathematicians as Daniel Bernoulli, D’Alembert, Poisson, Borel, to
name only a few. For a brief account see [Keynes]. Feller believed that
the paradox would go away if more advanced mathematics were used to
reformulate the problem. You will have to decide for yourself whether it
is not more interesting as a philosophical and psychological challenge.
[See, however, Appendix 3 ahead.]

29. One objection to the scheme in No. 28 is that “time must have a stop.”
So suppose that only m tosses at most are allowed and your pal gets
nothing if a head does not show up in m tosses. Try m = 10 and
m = 100. What is now a fair price for him to pay? And do you feel more
comfortable after this change of rule? In this case Feller’s explanation
melts away but the psychological element remains.

*30. A number of µ is called the median of the random variable X iff
P (X ≥ µ) ≥ 1/2 and P (X ≤ µ) ≥ 1/2. Show that such a number
always exists but need not be unique. Here is a practical example.
After n examination papers have been graded, they are arranged in
descending order. There is one in the middle if n is odd, two if n is
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Figure 23

even, corresponding to the median(s). Explain the probability model
used.

31. An urn contains n tickets numbered from 1 to n. Two tickets are drawn
(without replacement). Let X denote the smaller, Y the larger of the
two numbers so obtained. Describe the joint distribution of (X,Y ),
and the marginal ones. Find the distribution of Y −X from the joint
distribution.

32. Pick two numbers at random from [0, 1]. Define X and Y as No. 31 and
answer the same question. [Hint: draw the picture and compute areas.]





Appendix 1
Borel Fields and General
Random Variables

When the sample space Ω is uncountable, it may not be possible to define
a probability measure for all its subsets, as we did for a countable Ω in
§2.4. We must restrict the measure to sets of a certain family which must,
however, be comprehensive enough to allow the usual operations with sets.
Specifically, we require the family F to have two properties:

(a) if a set A belongs to F, then its complement Ac = Ω−A also belongs
to F;

(b) if a countable number of sets A1, A2, . . . all belong to F, then their
union

⋃
nAn also belongs to F.

It follows from De Morgan’s laws that the union in (b) may be replaced by
the intersection

⋂
nAn as well. Thus if we operate on the members of the

family with the three basic operations mentioned above, for a countable
number of times, in any manner or order (see, e.g., (1.3.1)), the result is
still a member of the family. In this sense the family is said to be closed
under these operations, and so also under other derived operations such
as differences. Such a family of subsets of Ω is called a Borel field on Ω.
In general there are many such fields, for example the family of all subsets
which is certainly a Borel field but may be too large to have a probability
defined on it; or the family of two sets {∅,Ω} or four sets {∅, A,Ac,Ω} with
a fixed set A, which are too small for most purposes. Now suppose that a
reasonable Borel field F has been chosen and a probability measure P has
been defined on it; then we have a probability triple (Ω,F, P ) with which

115
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we can begin our work. The sets in F are said to be measurable and they
alone have probabilities.

LetX be a real-valued function defined on Ω. ThenX is called a random
variable iff for any real number x, we have

{ω | X(ω) ≤ x} ∈ F. (A.1.1)

Hence P{X ≤ x} is defined, and as a function of x it is the distribution
function F given in (4.6.1). Furthermore if a < b, then the set

{a < X ≤ b} = {X ≤ b} − {X ≤ a} (A.1.2)

belongs to F since F is closed under difference. Thus its probability is
defined and is in fact given by F (b)− F (a).

When Ω is countable and we take F to be the Borel field of all the subsets
of Ω, then of course the condition (A.1.1) is satisfied for any function X.
Thus in this case an arbitrary function on Ω is a random variable, as defined
in §4.2. In general, the condition in (A.1.1) is imposed mainly because we
wish to define the mathematical expectation by a procedure that requires
such a condition. Specifically, if X is a bounded random variable, then it
has an expectation given by the formula below:

E(X) = lim
δ↓0

∞∑
n=−∞

n δP{n δ < X ≤ (n+ 1) δ}, (A.1.3)

where the probabilities in the sum are well defined by the remark about
(A.1.2). The existence of the limit in (A.1.3), and the consequent properties
of the expectation that extend those discussed in Chapters 5 and 6, are part
of a general theory known as that of Lebesgue integration [Henri Lebesgue
(1875–1941), co-founder with Borel of the modern school of measure and
integration]. We must refer the reader to standard treatments of the subject
except to exhibit E(X) as an integral as follows:

E(X) =
∫

Ω
X(ω)P (dω);

cf. the discrete analogue (4.3.11) in a countable Ω.



5
Conditioning and Independence

5.1. Examples of conditioning

We have seen that the probability of a set A is its weighted proportion
relative to the sample space Ω. When Ω is finite and all sample points have
the same weight (therefore equally likely), then

P (A) =
|A|
|Ω|

as in Example 4 of §2.2. When Ω is countable and each point ω has the
weight P (ω) = P ({ω}) attached to it, then

P (A) =

∑
ω∈A

P (ω)∑
ω∈Ω

P (ω)
(5.1.1)

from (2.4.3), since the denominator above is equal to 1. In many questions
we are interested in the proportional weight of one set A relative to another
set S. More accurately stated, this means the proportional weight of the
part of A in S, namely the intersection A ∩ S, or AS, relative to S. The
formula analogous to (5.1.1) is then∑

ω∈AS

P (ω)∑
ω∈S

P (ω)
. (5.1.2)

117
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Thus we are switching our attention from Ω to S as a new universe, and
considering a new proportion or probability with respect to it. We introduce
the notation

P (A | S) = P (AS)
P (S)

(5.1.3)

and call it the conditional probability of A relative to S . Other phrases
such as “given S,” “knowing S,” or “under the hypothesis [of ] S” may also
be used to describe this relativity. Of course, if P (S) = 0, then the ratio in
(5.1.3) becomes the “indeterminate” 0/0, which has neither meaning nor
utility; so whenever we write a conditional probability such as P (A | S) we
shall impose the proviso that P (S) > 0 even if this is not explicitly men-
tioned. Observe that the ratio in (5.1.3) reduces to that in (5.1.2) when Ω is
countable, but is meaningful in the general context where the probabilities
of A and S are defined. The following preliminary examples will illustrate
the various possible motivations and interpretations of the new concept.

Example 1. All students on a certain college campus are polled as to their
reaction to a certain presidential candidate. Let D denote those who favor
him. Now the student population Ω may be cross-classified in various ways,
for instance according to sex, age, race, etc. Let

A = female, B = black, C = of voting age.

Then Ω is partitioned as in (1.3.5) into 8 subdivisions ABC,ABCc, . . .
, AcBcCc. Their respective numbers will be known if a complete poll is
made, and the set D will in general cut across the various divisions. For
instance,

P (D | AcBC) =
P (AcBCD)
P (AcBC)

denotes the proportion of male black students of voting age who favor the
candidate;

P (Dc | AcC) =
P (AcCDc)
P (AcC)

denotes the proportion of male students of voting age who do not favor the
the candidate, etc.

Example 2. A perfect die is thrown twice. Given [knowing] that the total
obtained is 7, what is the probability that the first point obtained is k,
1 ≤ k ≤ 6?

Look at the list in Example 3 of §4.1. The outcomes with total equal
to 7 are those on the “second diagonal,” and their number is 6. Among
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these there is one case in which the first throw is k. Hence the conditional
probability is equal to 1/6. In symbols, let X1 and X2 respectively denote
the point obtained in the first and second throw. Then we have as a case
of (5.1.3), with A = {X1 = k}, S = {X1 +X2 = 7}:

P{X1 = k | X1 +X2 = 7} = P{X1 = k;X1 +X2 = 7}
P{X1 +X2 = 7} =

1
6
.

The fact that this turns out to be the same as the unconditional probability
P{X1 = k} is an accident due to the lucky choice of the number 7. It is
the only value of the total that allows all six possibilities for each throw.
As other examples, we have

P{X1 = k | X1 +X2 = 6} = 1
5
, 1 ≤ k ≤ 5,

P{X1 = k | X1 +X2 = 9} = 1
4
, 3 ≤ k ≤ 6.

Here it should be obvious that the conditional probabilities will be the same
if X1 and X2 are interchanged. Why?

Next, we ask the apparently simpler question: given X1 = 4, what is
the probability that X2 = k? You may jump to the answer that this must
be 1/6 since the second throw is not affected by the first, so the conditional
probability P{X2 = k | X1 = 4} must be the same as the unconditional
one P{X2 = k}. This is certainly correct provided we use the independence
between the two trials (see §2.4). For the present we can use (5.1.3) to get

P{X2 = k | X1 = 4} = P{X1 = 4;X2 = k}
P{X1 = 4} =

1
36
1
6

=
1
6
. (5.1.4)

Finally, we have

P{X1 +X2 = 7 | X1 = 4} = P{X1 = 4;X1 +X2 = 7}
p{X1 = 4} . (5.1.5)

Without looking at the list of outcomes, we observe that the event {X1 =
4;X1+X2 = 7} is exactly the same as {X1 = 4;X2 = 7−4 = 3}; so in effect
(5.1.5) is a case of (5.1.4). This argument may seem awfully devious at this
juncture, but is an essential feature of a random walk (see Chapter 8).

Example 3. Consider the waiting time X in Example 8 of §4.4, for a
biased coin. Knowing that it has fallen tails three times, what is the prob-
ability that it will fall heads within the next two trials?

This is the conditional probability

P (X ≤ 5 | X ≥ 4) =
P (4 ≤ X ≤ 5)
P (X ≥ 4)

. (5.1.6)
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We know that

P (X = n) = qn−1p, n = 1, 2, . . . ; (5.1.7)

from which we can calculate

P (X ≥ 4) =
∞∑
n=4

qn−1p =
q3p

1− q
= q3 (5.1.8)

(how do we sum the series?) Again from (5.1.7),

P (4 ≤ X ≤ 5) = q3p+ q4p.

Thus the answer to (5.1.6) is p + qp. Now we have also from (5.1.7) the
probability that the coin falls heads (at least once in two trials):

P (1 ≤ X ≤ 2) = p+ qp.

Comparing these two results, we conclude that the three previous failures
do not affect the future waiting time. This may seem obvious to you a priori,
but it is a consequence of independence of the successive trials. By the
way, many veteran gamblers at the roulette game believe that “if reds have
appeared so many times in a row, then it is smart to bet on the black on
the next spin because in the long run red and black should balance out.”
On the other hand, you might argue (with Lord Keynes∗ on your side) that
if red has appeared say 10 times in a row, in the absence of other evidence,
if would be a natural presumption that the roulette wheel or the croupier
is biased toward the red, namely p > 1/2 in the above, and therefore the
smart money should be on it. See Example 8 in §5.2 below for a similar
discussion.

Example 4. We shall bring out an analogy between the geometrical distri-
bution given in (5.1.7) [see also (4.4.8)] and the exponential distribution in
(4.5.11). If X has the former distribution, then for any nonnegative integer
n we have

P (X > n) = qn. (5.1.9)

This can be shown by summing a geometrical series as in (5.1.8), but it
is obvious if we remember that “X > n” means that the first n tosses all
show tails. It now follows from (5.1.9) that for any nonnegative integers m
and n, we have

P (X > n+m | X > m) =
P (X > n+m)
P (X > m)

=
qm+n

qm
(5.1.10)

= qn = P (X > n).

∗John Maynard Keynes [1883–1946], English economist and writer.
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Now let T denote the waiting time in Example 12 of §4.5; then we have
analogously for any nonnegative real values of s and t:

P (T > s+ t | T > s) =
P (T > s+ t)
P (T > s)

=
e−λ(s+t)

e−λs
(5.1.11)

= e−λt = P (T > t).

This may be announced as follows: if we have already spent some time
in waiting, the distribution of further waiting time is the same as that of
the initial waiting time as if we have waited in vain! A suggestive way of
saying this is that the random variable T has no memory. This turns out
to be a fundamental property of the exponential distribution which is not
shared by any other and is basic for the theory of Markov processes. Note
that although the geometrical distribution is a discrete analogue as shown
in (5.1.10), strictly speaking it does not have the “memoryless” property
because (5.1.10) may become false when n and m are not integers: take,
e.g., n = m = 1/2.

Example 5. Consider all families with two children and assume that boys
and girls are equally likely. Thus the sample space may be denoted schemat-
ically by 4 points:

Ω = {(bb), (bg), (gb), (gg)}

where b = boy, g = girl; the order in each pair is the order of birth; and the
4 points have probability 1/4 each. We may of course instead use a space
of 4N points, where N is a large number, in which the four possibilities
have equal numbers. This will be a more realistic population model, but
the arithmetic below will be the same.

If a family is chosen at random from Ω and found to have a boy in it,
what is the probability that it has another boy, namely that it is of the type
(b, b)? A quickie answer might be 1/2 if you jumped to the conclusion from
the equal likelihood of the sexes. This is a mistake induced by a misplaced
“relative clause” for the conditional probability in question. Here is the
detailed explanation.

Let us put

A = {ω | there is a boy in ω},

B = {ω | there are two boys in ω}.

Then B ⊂ A and so AB = B, thus

P (B | A) = P (B)
P (A)

=
1
4
3
4

=
1
3
.
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This is the correct answer to the question. But now let us ask a similar
sounding but really different question. If a child is chosen at random from
these families and is found to be a boy, what is the probability that the other
child in his family is also a boy? This time the appropriate representation
of the sample space should be

Ω̃ = {gg, gb, bg, bb},

where the sample points are not families but the children of these families,
and gg = a girl who has a sister, gb = a girl who has a brother, etc. Now
we have

Ã = {ω̃ | ω̃ is a boy},

B̃ = {ω̃ | ω̃ has a brother},

so that

ÃB̃ = {ω̃ | ω̃ = bb}.

Therefore,

P (B̃ | Ã) = P (ÃB̃)
P (Ã)

=
1
4
1
2

=
1
2
.

This is a wonderful and by no means artificial illustration of the impor-
tance of understanding “what we are sampling” in statistics.

5.2. Basic formulas

Generally speaking, most problems of probability have to do with several
events or random variables and it is their mutual relation or joint action
that must be investigated. In a sense all probabilities are conditional be-
cause nothing happens in a vacuum. We omit the stipulation of conditions
that are implicit or taken for granted, or if we feel that they are irrelevant
to the situation in hand. For instance, when a coin is tossed we usually
ignore the possibility that it will stand on its edge, and do not even specify
whether it is Canadian or American. The probability that a certain can-
didate will win an election is certainly conditioned on his surviving the
campaign—an assumption that has turned out to be premature in recent
American history.

Let us begin by a few simple but fundamental propositions involving
conditional probabilities:
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Proposition 1. For arbitrary events A1, A2, . . . , An, we have

P (A1A2 . . . An) = P (A1)P (A2 | A1)P (A3 | A1A2) . . . P (An | A1A2 . . . An−1)
(5.2.1)

provided P (A1A2 . . . An−1) > 0.

Proof: Under the proviso, all conditional probabilities in (5.2.1) are well
defined since

P (A1) ≥ P (A1A2) ≥ · · · ≥ P (A1A2 . . . An−1) > 0.

Now the right side of (5.2.1) is explicitly

P (A1)
P (Ω)

P (A1A2)
P (A1)

P (A1A2A3)
P (A1A2)

· · · P (A1A2 · · ·An)
P (A1A2 · · ·An−1)

,

which reduces to the left side by successive cancellations. Q.E.D.

By contrast with the additivity formula (2.3.3) for a disjoint union, the
formula (5.2.1) may be called the general multiplicative formula for the
probability of an intersection. But observe how the conditioning events are
also “multiplied” step by step. A much simpler formula has been given in
§2.4 for independent events. As an important application of (5.2.1), suppose
the random variable X1, X2, . . . , Xn, . . . are all countably valued; this is
surely the case when Ω is countable. Now for arbitrary possible values
x1, x2, . . . , xn, . . . , we put

Ak = {Xk = xk}, k = 1, 2, . . . ,

and obtain

P{X1 = x1;X2 = x2; . . . ;Xn = xn} (5.2.2)

= P{X1 = x1}P{X2 = x2 | X1 = x1}P{X3 = x3 | X1 = x1, X2 = x2}

· · ·P{Xn = xn | X1 = x1, . . . , Xn−1 = xn−1}.

The first term above is called the joint probability of X1, X2, . . . , Xn; so
the formula expresses this by successive conditional probabilities. Special
cases of this will be discussed later.

Proposition 2. Suppose that

Ω =
∑
n

An



124 Conditioning and Independence

is a partition of the sample space into disjoint sets. Then for any set B we
have

P (B) =
∑
n

P (An)P (B | An). (5.2.3)

Proof: First we write

B = ΩB =

(∑
n

An

)
B =

∑
n

AnB

by simple set theory, in particular (1.3.6); then we deduce

P (B) = P

(∑
n

AnB

)
=
∑
n

P (AnB)

by countable additivity of P . Finally we substitute

P (AnB) = P (An)P (B | An)

from the definition (5.1.3). This establishes (5.2.3); note that if P (An) = 0
for some n, the corresponding term in the sum there may be taken to be 0
even though P (B | An) is undefined. Q.E.D.

From now on we shall adopt the convention that x · 0 = 0 if x is un-
defined, in order to avoid repetition of such remarks as in the preceding
sentence.

The formula (5.2.3) will be referred to as that of total probability. Here is
a useful interpretation. Suppose that the event B may occur under a num-
ber of mutually exclusive circumstances (or “causes”). Then the formula
shows how its “total probability” is compounded from the probabilities of
the various circumstances, and the corresponding conditional probabilities
figured under the respective hypotheses.

Suppose X and Y are two integer-valued random variables and k is an
integer. If we apply (5.2.3) to the sets

An = {X = n}, B = {Y = k},

we obtain

P (Y = k) =
∑
n

P (X = n)P (Y = k | X = n) (5.2.4)

where the sum is over all integers n, and if P (X = n) = 0 the corresponding
term may be taken to be 0. It is easy to generalize the formula when X
takes values in any countable range, and when “Y = k” is replaced by, e.g.,
“a ≤ Y ≤ b” for a more general random variable, not necessarily taking
integer values.
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Proposition 3. Under the assumption and notation of Proposition 2, we
have also

P (An | B) =
P (An)P (B | An)∑
n
P (An)P (B | An)

(5.2.5)

provided P (B) > 0.

Proof: The denominator above is equal to P (B) by Proposition 2, so the
equation may be multiplied out to read

P (B)P (An | B) = P (An)P (B | An).

This is true since both sides are equal to P (AnB). Q.E.D.

This simple proposition with an easy proof is very famous under the
name of Bayes’ Theorem, published in 1763. It is supposed to yield an
“inverse probability,” or probability of the “cause” A, on the basis of the
observed “effect” B. Whereas P (An) is the a priori , P (An | B) is the
a posteriori probability of the cause An. Numerous applications were made
in all areas of natural phenomena and human behavior. For instance, if B is
a “body” and the An’s are the several suspects of the murder, then the the-
orem will help the jury or court to decide the whodunit. [Jurisprudence was
in fact a major field of early speculations on probability.] If B is an earth-
quake and the An’s are the different physical theories to explain it, then the
theorem will help the scientists to choose between them. Laplace [1749–
1827; one of the great mathematicians of all time who wrote a monumental
treatise on probability around 1815] used the theorem to estimate the prob-
ability that “the sun will also rise tomorrow” (see Example 9 ahead). In
modern times Bayes lent his name to a school of statistics. For our dis-
cussion here let us merely comment that Bayes has certainly hit upon a
remarkable turnaround for conditional probabilities, but the practical util-
ity of his formula is limited by our usual lack of knowledge on the various
a priori probabilities.

The following simple examples are given to illustrate the three propo-
sitions above. Others will appear in the course of our work.

Example 6. We have actually seen several examples of Proposition 1 be-
fore in Chapter 3. Let us reexamine them using the new notion.

What is the probability of throwing six perfect die and getting six dif-
ferent faces? [See Example 2 of §3.1.] Number the dice from 1 to 6, and
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put

A1 = any face for Die 1,

A2 = Die 2 shows a different face from Die 1,

A3 = Die 3 shows a different face from Die 1 and Die 2,

etc. Then we have, assuming that the dice act independently,

P (A1) = 1, P (A2 | A1) =
5
6
, P (A3 | A1A2) =

4
6
, . . . ,

P (A6 | A1A2 · · ·A5) =
1
6
.

Hence an application of Proposition 1 gives

P (A1A2 · · ·A6) =
6
6
· 5
6
· 4
6
· 3
6
· 2
6
· 1
6
=

6!
66 .

The birthday problem [Problem 5 of §3.4] is now seen to be practically
the same problem, where the number 6 above is replaced by 365. The
sequential method mentioned there is just another case of Proposition 1.

Example 7. The family dog is missing after the picnic. Three hypotheses
are suggested:

(A) it has gone home;
(B) it is still worrying that big bone in the picnic area;
(C) it has wandered off into the woods.

The a priori probabilities, which are assessed from the habits of the dog,
are estimated respectively to be 1

4 ,
1
2 ,

1
4 . A child each is sent back to the

picnic ground and the edge of the woods to look for the dog. If it is in the
former area, it is a cinch (90%) that it will be found; if it is in the latter,
the chance is only a toss-up (50%). What is the probability that the dog
will be found in the park?

Let A,B,C be the hypotheses above, and let D = “dog will be found
in the park.” Then we have the following data:

P (A) =
1
4
, P (B) =

1
2
, P (C) =

1
4
;

P (D | A) = 0, P (D | B) =
90
100

, P (D | C) =
50
100

.

Hence by (5.2.3),

P (D) = P (A)P (D | A) + P (B)P (D | B) + P (C)P (D | C)

=
1
4
· 0 + 1

2
· 90
100

+
1
4
· 50
100

=
115
200

.
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What is the probability that the dog will be found at home? Call this D′,
and assume that P (D′ | A) = 1, namely that if it is home it will be there
to greet the family. Clearly P (D′ | B) = P (D′ | C) = 0 and so

P (D′) = P (A)P (D′ | A) + P (B)P (D′ | B) + P (C)P (D′ | C)

=
1
4
· 1 + 1

2
· 0 + 1

4
· 0 =

1
4
.

What is the probability that the dog is “lost”? It is

1− P (D)− P (D′) =
35
200

.

Example 8. Urn one contains 2 black and 3 red balls; urn two contains
3 black and 2 red balls. We toss an unbiased coin to decide on the urn
to draw from but we do not know which is which. Suppose the first ball
drawn is black and it is put back; what is the probability that the second
ball drawn from the same urn is also black?

Call the two urns U1 and U2; the a priori probability that either one is
chosen by the coin-tossing is 1/2:

P (U1) =
1
2
, P (U2) =

1
2
.

Denote the event that the first ball is black by B1, that the second ball is
black by B2. We have by (5.2.5)

P (U1 | B1) =
1
2 ·

2
5

1
2 ·

2
5 + 1

2 ·
3
5

=
2
5
, P (U2 | B1) =

3
5
.

Note that the two probabilities must add up to 1 (why?) so we need only
compute one of them. Note also that the two a posteriori probabilities
are directly proportional to the probabilities P (B1 | U1) and P (B1 | U2).
That is, the black ball drawn is more likely to have come from the urn
that is more likely to yield a black ball, and in the proper ratio. Now
use (5.2.3) to compute the probability that the second ball is also black.
Here A1 = “B1 is from U1,” A2 = “B1 is from U2” are the two alternative
hypotheses. Since the second drawing is conditioned onB1, the probabilities
of the hypotheses are really conditional ones:

P (A1) = P (U1 | B1) =
2
5
, P (A2) = P (U2 | B1) =

3
5
.

On the other hand, it is obvious that

P (B2 | A1) =
2
5
, P (B2 | A2) =

3
5
.
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Hence we obtain the conditional probability

P (B2 | B1) =
2
5
· 2
5
+

3
5
· 3
5
=

13
25
.

Compare this with

P (B2) = P (U1)P (B2 | U1) + P (U2)P (B2 | U2) =
1
2
· 2
5
+

1
2
· 3
5
=

1
2
.

Note that P (B2 | U1) = P (B1 | U1) – why? We see that the knowledge of
the first ball drawn being black has strengthened the probability of drawing
a second black ball, because it has increased the likelihood that we have
picked the urn with more black balls. To proceed one more step, given
that the first two balls drawn are both black and put back, what is the
probability of drawing a third black ball from the same urn? We have in
notation similar to the above:

P (U1 | B1B2) =
1
2

(2
5

)2
1
2 ·
( 2

5

)2 + 1
2

(3
5

)2 =
4
13

; P (U2 | B1B2) =
9
13

;

P (B3 | B1B2) =
4
13
· 2
5
+

9
13
· 3
5
=

35
65
.

This is greater than 13/25, so a further strengthening has occurred. Now
it is easy to see that we can extend the result to any number of drawings.
Thus,

P (U1 | B1B2 · · ·Bn) =
1
2

( 2
5

)n
1
2

(2
5

)n + 1
2

( 3
5

)n =
1

1 +
( 3

2

)n ,
where we have divided the denominator by the numerator in the middle
term. It follows that as n becomes larger and larger, the a posteriori prob-
ability of U1 becomes smaller and smaller. In fact it decreases to zero and
consequently the a posteriori probability of U2 increases to 1 in the limit.
Thus we have

lim
n→∞

P (Bn+1 | B1B2 · · ·Bn) =
3
5
= P (B1 | U2).

This simple example has important implications on the empirical view-
point of probability. Replace the two urns above by a coin that may be
biased (as all real coins are). Assume that the probability p of heads is
either 2/5 or 3/5 but we do not know which is the true value. The two
possibilities are then two alternative hypotheses between which we must
decide. If they both have a priori probability 1/2, then we are in the sit-
uation of the two urns. The outcome of each toss will affect our empirical
estimate of the value of p. Suppose for some reason we believe that p = 2/5.
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Then if the coin falls heads 10 times in a row, can we still maintain that
p = 2/5 and give probability (2/5)10 to this rare event? Or shall we concede
that really p = 3/5 so that the same event will have probability (3/5)10?
This is very small but still (3/2)10 larger than the other. In certain prob-
lems of probability theory it is customary to consider the value of p as fixed
and base the rest of our calculations on it. So the query is what reason do
we have to maintain such a fixed stance in the face of damaging evidence
given by observed outcomes? Keynes made a point of this criticism on the
foundations of probability. From the axiomatic point of view, as followed
in this book, a simple answer is this: our formulas are correct for each ar-
bitrary value of p, but axioms of course do not tell us what this value is, or
even whether it makes sense to assign any value at all. The latter may be
the case when one talks about the probability of the existence of some “big
living creatures somewhere in outer space.” [It used to be the moon! ] In
other words, mathematics proper being a deductive science, the problem
of evaluating, estimating, or testing the value of p lies outside its eminent
domain. Of course, it is of the utmost importance in practice, and statistics
was invented to cope with this kind of problem. But it need not concern
us too much here. [ The author had the authority of Dr. Albert Einstein
on this point, while on a chance stroll on Mercer Street in Princeton, N.J.,
sometime in 1946 or 1947. Here is the gist of what he said: in any branch
of science which has applications, there is always a gap, which needs a
bridge between theory and practice. This is so for instance in geometry or
mechanics; and probability is no exception.]

The preceding example has a natural extension when the unknown p
may take values in a finite or infinite range. Perhaps the most celebrated
illustration is Laplace’s law of succession below.

Example 9. Suppose that the sun has risen n times in succession; what
is the probability that it will rise once more?

It is assumed that the a priori probability for a sunrise on any day is
a constant whose value is unknown to us. Due to our total ignorance it
will be assumed to take all possible values in [0, 1] with equal likelihood.
That is to say, this probability will be treated as a random variable ξ that
is uniformly distributed over [0, 1]. Thus ξ has the density function f such
that f(p) = 1 for 0 ≤ p ≤ 1. This can be written heuristically as

P (p ≤ ξ ≤ p+ dp) = dp, 0 ≤ p ≤ 1. (5.2.6)

See the discussion in Example 10 in §4.5. Now if the true value of ξ is p,
then under this hypothesis the probability of n successive sunrises is equal
to pn, because they are assumed to be independent events. Let Sn denote
the event that “the sun rises n times in succession”; then we may write
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heuristically

P (Sn | ξ = p) = pn. (5.2.7)

The analogue to (5.2.3) should then be

P (Sn) =
∑

0≤p≤1

P (ξ = p)P (Sn | ξ = p). (5.2.8)

This is of course meaningless as it stands, but if we pass from the sum into
an integral and use (5.2.6), the result is

P (Sn) =
∫ 1

0
P (Sn | ξ = p) dp =

∫ 1

0
pn dp =

1
n+ 1

. (5.2.9)

This continuous version of (5.2.3) is in fact valid, although its derivation
above is not quite so. Accepting the formula and applying it for both n and
n+ 1, then taking the ratio, we obtain

P (Sn+1 | Sn) =
P (SnSn+1)
P (Sn)

=
P (Sn+1)
P (Sn)

=
1

n+2
1

n+1

=
n+ 1
n+ 2

. (5.2.10)

This is Laplace’s answer to the sunrise problem.

In modern parlance, Laplace used an “urn model” to study successive
sunrise as a random process. A sunrise is assimilated to the drawing of
a black ball from an urn of unknown composition. The various possible
compositions are assimilated to so many different urns containing various
proportions of black balls. Finally, the choice of the true value of the pro-
portion is assimilated to the picking of a random number in [0, 1]. Clearly,
these are weighty assumptions calling forth serious objections at several lev-
els. Is sunrise a random phenomenon or is it deterministic? Assuming that
it can be treated as random, is the preceding simple urn model adequate
to its description? Assuming that the model is appropriate in principle,
why should the a priori distribution of the true probability be uniformly
distributed, and if not how could we otherwise assess it?

Leaving these great questions aside, let us return for a moment to
(5.2.7). Since P (ξ = p) = 0 for every p (see §4.5 for a relevant discus-
sion), the so-called conditional probability in that formula is not defined
by (5.1.3). Yet it makes good sense from the interpretation given before
(5.2.7). In fact, it can be made completely legitimate by a more advanced
theory [Radon–Nikodym derivative]. Once this is done, the final step (5.2.9)
follows without the intervention of the heuristic (5.2.8). Although a full ex-
planation of these matters lies beyond the depth of this textbook, it seems
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proper to mention it here as a natural extension of the notion of condi-
tional probability. A purely discrete approach to Laplace’s formula is also
possible, but the calculations are harder (see Exercise 35 below).

We end this section by introducing the notion of conditional expecta-
tion. In a countable sample space consider a random variable Y with range
{yk} and an event S with P (S) > 0. Suppose that the expectation of Y
exists; then its conditional expectation relative to S is defined to be

E(Y | S) =
∑
k

ykP (Y = yk | S). (5.2.11)

Thus, we simply replace in the formula E(Y ) =
∑

k ykP (Y = yk) the
probabilities by conditional ones. The series in (5.2.11) converges absolutely
because the last-written series does so. In particular, ifX is another random
variable with range {xj}, then we may take S = {X = xj} to obtain
E(Y | X = xj). On the other hand, we have as in (5.2.4)

P (Y = yk) =
∑
j

P (X = xj)P (Y = yk | X = xj).

Multiplying through by yk, summing over k, and rearranging the double
series, we obtain

E(Y ) =
∑
j

P (X = xj)E(Y | X = xj). (5.2.12)

The rearrangement is justified by absolute convergence.
The next two sections contain somewhat special material. The reader

may read the beginnings of §§5.3 and 5.4 up to the statements of Theo-
rems 1 and 3 to see what they are about, but postpone the rest and go
to §5.5.

�5.3. Sequential sampling

In this section we study an urn model in some detail. It is among the sim-
plest schemes that can be handled by elementary methods. Yet it presents
rich ideas involving conditioning which are important in both theory and
practice.

An urn contains b black balls and r red balls. One ball is drawn at a
time without replacement. Let Xn = 1 or 0 depending on whether the nth
ball drawn is black or red. Each sample point ω is then just the sequence
{X1(ω), X2(ω), . . . , Xb+r(ω)}, briefly {Xn, 1 ≤ n ≤ b+ r}; see the discus-
sion around (4.1.3). Such a sequence is called a stochastic process, which is
a fancy name for any family of random variables. [According to the dictio-
nary, “stochastic” comes from a Greek word meaning “to aim at.”] Here
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the family is the finite sequence indexed by n from 1 to b + r. This index
n may be regarded as a time parameter as if one drawing is made per unit
time. In this way we can speak of the gradual evolution of the process as
time goes on by observing the successive Xn’s.

You may have noticed that our model is nothing but sampling without
replacement and with ordering, discussed in §3.2. You are right but our
viewpoint has changed and the elaborate description above is meant to
indicate this. Not only do we want to know, e.g., how many black balls
are drawn after so many drawings, as we would previously, but now we
want also to know how the sequential drawings affect each other, how the
composition of the urn changes with time, etc. In other words, we want to
investigate the mutual dependence of theXn’s, and that’s where conditional
probabilities come in. Let us begin with the easiest kind of question.

Problem. A ball is drawn from the urn and discarded. Without knowing
its color, what is the probability that a second ball drawn is black?

For simplicity let us write the events {Xn = 1} as Bn and {Xn = 0} as
Rn = Bc

n. We then have from Proposition 2 of §5.2,

P (B2) = P (B1)P (B2 | B1) + P (Bc
1)P (B2 | Bc

1). (5.3.1)

Clearly we have

P (B1) =
b

b+ r
, P (Bc

1) =
r

b+ r
, (5.3.2)

whereas

P (B2 | B1) =
b− 1

b+ r − 1
, P (B1 | Bc

1) =
b

b+ r − 1

since there are b + r − 1 balls left in the urn after the first drawing, and
among these are b − 1 or b black balls according to whether the first ball
drawn is or is not black. Substituting into (5.3.1) we obtain

P (B2) =
b

b+ r

b− 1
b+ r − 1

+
r

b+ r

b

b+ r − 1
=

b(b+ r − 1)
(b+ r)(b+ r − 1)

=
b

b+ r
.

Thus P (B2) = P (B1); namely if we take into account both possibilities for
the color of the first ball, then the probabilities for the second ball are the
same as if no ball had been drawn (and left out) before. Is this surprising
or not? Anyone with curiosity would want to know whether this result is
an accident or has a theory behind it. An easy way to test this is to try
another step or two: suppose 2 or 3 balls have been drawn but their colors
not noted; what then is the probability that the next ball will be black?
You should carry out the simple computations by all means. The general
result can be stated succinctly as follows.
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Theorem 1. We have for each n

P (Bn) =
b

b+ r
, 1 ≤ n ≤ b+ r. (5.3.3)

It is essential to pause here and remark on the economy of this math-
ematical formulation, in contrast to the verbose verbal description above.
The condition that “we do not know” the colors of the n − 1 balls pre-
viously drawn is observed as it were in silence, namely by the absence of
conditioning for the probability P (Bn). What should we have if we know
the colors? It would be something like P (B2 | B1) or P (B3 | B1B

c
2) or

P (B4 | B1B
c
2B3). These are trivial to compute (why?); but we can also

have something like P (B4 | B2) or P (B4 | B1B
c
3), which is slightly less

trivial. See Exercise 33.
There are many different ways to prove the beautiful theorem above;

each method has some merit and is useful elsewhere. We will give two now,
a third one in a tremendously more general form (Theorem 5 in §5.4) later.
But there are others and perhaps you can think of one later. The first
method may be the toughest for you; if so skip it and go at once to the
second.∗

First Method. This may be called “direct confrontation” or “brute force”
and employs heavy (though standard) weaponry from the combinatory ar-
senal. Its merit lies in that it is bound to work provided that we have
guessed the answer in advance, as we can in the present case after a few
trials. In other words, it is a sort of experimental verification. We introduce
a new random variable Yn = the number of black balls drawn in the first n
drawings. This gives the proportion of black balls when the n+1st drawing
is made since the total number of balls then is equal to b+r−n, regardless
of the outcomes of the previous n drawings. Thus we have

P (Bn+1 | Yn = j) =
b− j

b+ r − n
, 0 ≤ j ≤ b. (5.3.4)

On the other hand, the probability P (Yn = j) can be computed as in
Problem 1 of §3.4, with m = b+ r, k = b in (3.4.1):

P (Yn = j) =

(
b
j

)(
r

n−j

)
(
b+r
n

) . (5.3.5)

∗A third method is to make mathematical induction on n.
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We now apply (5.2.4):

P (Bn+1) =
b∑

j=0

P (Yn = j)P (Bn+1 | Yn = j) (5.3.6)

=
b∑

j=0

(
b
j

)(
r

n−j

)
(
b+r
n

) b− j

b+ r − n
.

This will surely give the answer, but how in the world are we going to
compute a sum like that? Actually it is not so hard, and there are excellent
mathematicians who make a career out of doing such (and much harder)
things. The beauty of this kind of computation is that it’s got to unravel if
our guess is correct. This faith lends us strength. Just write out the several
binomial coefficients above explicitly, cancelling and inserting factors with
a view to regrouping them into new binomial coefficients:

b!
j! (b− j)!

r!
(n− j)! (r − n+ j)!

n! (b+ r − n)!
(b+ r)!

b− j

b+ r − n

=
b! r!

(b+ r)!
(b+ r − n− 1)!

(r − n+ j)! (b− j − 1)!
n!

j! (n− j)!

=
1(

b+r
b

)(b+ r − n− 1
b− j − 1

)(
n

j

)
.

Hence

P (Bn+1) =
1(

b+r
b

) b−1∑
j=0

(
n

j

)(
b+ r − 1− n

b− 1− j

)
, (5.3.7)

where the term corresponding to j = b has been omitted since it yields
zero in (5.3.6). The new sum (5.3.7) is a well-known identity for binomial
coefficients and is equal to

(
b+r−1
b−1

)
; see (3.3.9). Thus

P (Bn+1) =
(
b+ r − 1
b− 1

)/(
b+ r

b

)
=

b

b+ r

as asserted in (5.3.3).

Second Method. This is purely combinatorial and can be worked out as
an example in §3.2. Its merit is simplicity; but it cannot be easily general-
ized to apply to the next urn model we shall consider.

Consider the successive outcomes in n+1 drawings: X1(ω), X2(ω), . . . ,
Xn(ω), Xn+1(ω). Each Xj(ω) is 1 or 0 depending on the particular ω; even
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the numbers of 1’s and 0’s among them depend on ω when n+1 < b+r. Two
different outcome sequences such as 0011 and 0101 will not have the same
probability in general. But now let us put numerals on the balls, say 1 to b
for the black ones and b+1 to b+r for the red ones, so that all balls become
distinguishable. We are then in the case of sampling without replacement
and with ordering discussed in §3.2. The total number of possibilities with
the new labeling is given by (3.2.1) with b + r for m and n + 1 for n:
(b+ r)n+1. These are now all equally likely! We are interested in the cases
where the n+ 1st ball is black; how many are there for these? There are b
choices for the n + 1st ball, and after this is chosen there are (b+ r − 1)n
ways of arranging the first n balls, by another application of (3.2.1). Hence
by the fundamental rule in §3.1, the number of cases where the n + 1st
ball is black is equal to b(b + r − 1)n. Now the classical ratio formula for
probability applies to yield the answer

P (Bn+1) =
b(b+ r − 1)n
(b+ r)n+1

=
b

b+ r
.

Undoubtedly this argument is easier to follow after it is explained, and
there is little computation. But it takes a bit of perception to hit upon the
counting method. Poisson [1781–1840; French mathematician for whom a
distribution, a process, a limit theorem, and an integral were named, among
other things] gave this solution, but his explanation is briefer than ours.
We state his general result as follows.

Theorem 2 (Poisson’s Theorem). Suppose in an urn containing b black
and r red balls, n balls have been drawn first and discarded without their
colors being noted. If m balls are drawn next, the probability that there are
k black balls among them is the same as if we had drawn these m balls at
the outset [without having discarded the n balls previously drawn].

Briefly stated: the probabilities are not affected by the preliminary
drawing so long as we are in the dark as to what those outcomes are. Obvi-
ously if we know the colors of the balls discarded, the probabilities will be
affected in general. To quote [Keynes, p. 349]: “This is an exceedingly good
example . . . that a probability cannot be influenced by the occurrence of
a material event but only by such knowledge as we may have, respecting
the occurrence of the event.”

Here is Poisson’s quick argument: if n + m balls are drawn out, the
probability of a combination made up of n black and red balls in given
proportions followed bym balls of which k are black andm−k are red must
be the same as that of a similar combination in which the m balls precede
the n balls. Hence the probability of k black balls in m drawings given that
n balls have already been drawn out must be equal to the probability of
the same result when no balls have been previously drawn out.
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Is this totally convincing to you? The more explicit combinatorial ar-
gument given above for the case m = 1 can be easily generalized to settle
any doubt. The doubt is quite justified despite Poisson’s authority. As we
may learn from Chapter 3, in these combinatorial arguments one must do
one’s own thinking.

�5.4. Pólya’s urn scheme

To pursue the discussion in the preceding section a step further, we will
study a famous generalization due to G. Pólya [1887–1986; professor at
Stanford University, one of the most eminent analysts of modern times who
also made major contributions to probability and combinatorial theories
and their applications]. As before the urn contains b black and r red balls
to begin with, but after a ball is drawn each time, it is returned to the
urn and c balls of the same color are added to the urn, where c is an
integer, and when c < 0 adding c balls means subtracting −c balls. This
may be done whether we observe the color of the ball drawn or not; in the
latter case, e.g., we may suppose that it is performed by an automaton. If
c = 0 this is just sampling with replacement, while if c = −1 we are in the
situation studied in §5.3. In general if c is negative the process has to stop
after a number of drawings, but if c is zero or positive it can be continued
forever. This scheme can be further generalized (you know generalization is
a mathematician’s bug!) if after each drawing we add to the urn not only c
balls of the color drawn but also d balls of the other color. But we will not
consider this, and furthermore we will restrict ourselves to the case c ≥ −1,
referring to the scheme as Pólya’s urn model. Pólya actually invented this
model to study a problem arising in medicine; see the last paragraph of
this section.

Problem. What is the probability that in Pólya’s model the first three
balls drawn have colors {b, b, r} in this order? or {b, r, b}? or {r, b, b}?

An easy application of Proposition 1 in §5.2 yields, in the notation
introduced in §5.3,

P (B1B2R3) = P (B1)P (B2 | B1)P (R3 | B1B2)

=
b

b+ r

b+ c

b+ r + c

r

b+ r + 2c
.

(5.4.1)

Similarly,

P (B1R2B3) =
b

b+ r

r

b+ r + c

b+ c

b+ r + 2c
,

P (R1B1B2) =
r

b+ r

b

b+ r + c

b+ c

b+ r + 2c
.
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Thus they are all the same, namely the probability of drawing 2 black and
1 red balls in three drawings does not depend on the order in which they
are drawn. It follows that the probability of drawing 2 black and 1 red in
the first three drawings is equal to three times the number on the right side
of (5.4.1).

The general result is given below.

Theorem 3. The probability of drawing (from the beginning) any specified
sequence of k black balls and n− k red balls is equal to

b(b+ c) · · · (b+ (k − 1)c)r(r + c) · · · (r + (n− k − 1)c)
(b+ r)(b+ r + c)(b+ r + 2c) · · · (b+ r + (n− 1)c)

, (5.4.2)

for all n ≥ 1 if c ≥ 0; and for 0 ≤ n ≤ b+ r if c = −1.

Proof: This is really an easy application of Proposition 1 in §5.2, but in a
scrambled way. We have shown it above in the case k = 2 and n = 3. If you
will try a few more cases with say n = 4, k = 2 or n = 5, k = 3, you will
probably see how it goes in the general case more quickly than it can be
explained in words. The point is: at the mth drawing, where 1 ≤ m ≤ n,
the denominator of the term corresponding to P (Am | A1A2 · · ·Am−1) in
(5.2.1) is b+ r+(m− 1)c, because a total of (m− 1)c balls has been added
to the urn by this time, no matter what balls have been drawn. Now at the
first time when a black ball is drawn, there are b black balls in the urn; at
the second time a black ball is drawn, the number of black balls in the urn
is b+ c, because one black ball has been previously drawn so c black balls
have been added to the urn. This is true no matter at what time (which
drawing) the second black ball is drawn. Similarly, when the third black ball
is drawn, there will be b+2c black balls in the urn, and so on. This explains
the k factors involving b in the numerator of (5.4.2). Now consider the red
balls: at the first time a red ball is drawn, there are r red ones in the urn;
at the second time a red ball is drawn, there are r+ c red ones in the urn,
because c red balls have been added after the first red one is drawn, and
so on. This explains the n− k factors involving r (= red) in the numerator
of (5.4.2). The whole thing there is therefore obtained by multiplying the
successive ratios as the conditional probabilities in (5.2.1), and the exact
order in which the factors in the numerator occur is determined by the
specific order of blacks and reds in the given sequence. However, their
product is the same so long as n and k are fixed. This establishes (5.4.2).

For instance, if the specified sequence is RBRRB, then the exact order
in the numerator should be rb(r + c)(r + 2c)(b+ c).

Now suppose that only the number of black balls is given [specified!]
but not the exact sequence; then we have the next result.
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Theorem 4. The probability of drawing (from the beginning) k black balls
in n drawings is equal to the number in (5.4.2) multiplied by

(
n
k

)
. In terms

of generalized binomial coefficients [see (5.4.4) below], it is equal to

(− b
c
k

)(− r
c

n−k

)
(− b+r

c
n

) . (5.4.3)

This is an extension of the hypergeometric distribution; see p. 90.

Proof: There are
(
n
k

)
ways of permuting k black and n − k red balls;

see §3.2. According to (5.4.2), every specified sequence of drawing k black
and n − k red balls has the same probability. These various permutations
correspond to disjoint events. Hence the probability stated in the theorem is
just the sum of

(
n
k

)
probabilities, each of which is equal to the number given

in (5.4.2). It remains to express this probability by (5.4.3), which requires
only a bit of algebra. Let us note that if a is a positive real number and j
is a positive integer, then by definition(

−a
j

)
=

(−a)(−a− 1) · · · (−a− j + 1)
j!

= (−1)j a(a+ 1) · · · (a+ j − 1)
j!

.

(5.4.4)

Thus if we divide every factor in (5.4.2) by c, and write

β =
b

c
, γ =

r

c

for simplicity, then use (5.4.4), we obtain

β(β + 1) · · · (β + k − 1)γ(γ + 1) · · · (γ + n− k − 1)
(β + γ)(β + γ + 1) · · · (β + γ + n− 1)

=
(−1)kk!

(−β
k

)
(−1)n−k(n− k)!

( −γ
n−k

)
(−1)nn!

(−β−γ
n

) =

(−β
k

)( −γ
n−k

)(−β−γ
n

)(
n
k

) .
After multiplying by

(
n
k

)
we get (5.4.3) as asserted.

We can now give a far-reaching generalization of Theorems 1 and 2 in
§5.3. Furthermore the result will fall out of the fundamental formula (5.4.2)
like a ripe fruit. Only a bit of terminology and notation is in the way.

Recalling the definition of Xn in §5.3, we can record (5.4.2) as giv-
ing the joint distribution of the n random variable {X1, X2, . . . , Xn}. Let
us introduce the hedge symbol “ 1 ” to denote either “0” or “1” and use
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subscripts (indices) to allow an arbitrary choice for each subscript, inde-
pendently of each other. On the other hand, two such symbols with the
same subscript must of course denote the same choice throughout a discus-
sion. For instance, { 1 1, 1 2, 1 3, 1 4} may mean {1, 1, 0, 1} or {0, 1, 0, 1},
but then { 1 1, 1 3} must mean {1, 0} in the first case and {0, 0} in the
second. Theorem 3 can be stated as follows: if k of the 1 ’s below are 1’s
and n− k of them are 0’s, then

P (X1 = 1 1, X2 = 1 2, . . . , Xn = 1 n) (5.4.5)

is given by the expression in (5.4.2). There are altogether 2n possible choices
for the 1 ’s in (5.4.5) [why?], and if we visualize all the resulting values cor-
responding to these choices, the set of 2n probabilities determines the joint
distribution of {X1, X2, . . . , Xn}. Now suppose {n1, n2, . . . , ns} is a subset
of {1, 2, . . . , n}; the joint distribution of {Xn1 , . . . , Xns

} is determined by

P (Xn1 = 1 n1
, . . . , Xns

= 1 ns
) (5.4.6)

when the latter 1 ’s range over all the 2s possible choices. This is called a
marginal distribution with reference to that of the larger set {X1, . . . , Xn}.

We need more notation! Let {n′
1, . . . , n

′
t} be the complementary set

of {n1, . . . , ns} with respect to {1, . . . , n}, namely those indices left over
after the latter set has been taken out. Of course, t = n− s and the union
{n1, . . . , ns, n

′
1, . . . , n

′
t} is just some permutation of {1, . . . , n}. Now we

can write down the following formula expressing a marginal probability by
means of joint probabilities of a larger set:

P (Xn1 = 1 1, . . . , Xns
= 1 s)

=
∑

1
′
1,... , 1

′
t

P (Xn1 = 1 1, . . . , Xns
= 1 s, (5.4.7)

Xn′
1
= 1

′
1, . . . , Xn′

t
= 1

′
t),

where { 1
′
1, . . . , 1

′
t} is another set of hedge symbols and the sum is over all

the 2t choices for them. This formula follows from the obvious set relation

{Xn1 = 1 1, . . . , Xns
= 1 s}

=
∑

1
′
1,..., 1

′
t

{Xn1 = 1 1, . . . , Xns
= 1 sXn′

1
= 1

′
1, . . . , Xn′

t
= 1

′
t}

and the additivity of P . [Clearly a similar relation holds when the X’s take
other values than 0 or 1, in which case the 1 ’s must be replaced by all
possible values.]

We now come to the pièce de résistance of this discussion. It will sorely
test your readiness to digest a general and abstract argument. If you can’t
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swallow it now, you need not be upset – but do come back and try it again
later.

Theorem 5. The joint distribution of any s of the random variables
{X1, X2, . . . , Xn, . . . } is the same, no matter which s of them is in ques-
tion.

As noted above, the sequence of Xn’s is infinite if c ≥ 0, whereas n ≤
b+ r if c = −1.

Proof: What does the theorem say? Fix s and let Xn1 , . . . , Xns
be any

set of s random variables chosen from the entire sequence. To discuss its
joint distribution, we must consider all possible choices of values for these
s random variables. So we need a notation for an arbitrary choice of that
kind, call it 1 1, . . . , 1 s. Now let us write

P (Xn1 = 1 1, Xn2 = 1 2, . . . , Xns
= 1 s).

We must show that this has the same value no matter what {n1, . . . , ns}
is, namely that it has the same value as

P (Xm1 = 1 1, Xm2 = 1 2, . . . , Xms
= 1 s),

where {m1, . . . ,ms} is any other subset of size s. The two sets {n1, . . . , ns}
and {m1, . . . ,ms} may very well be overlapping, such as {1, 3, 4} and
{3, 2, 1}. Note also that we have never said that the indices must be in
increasing order!

Let the maximum of the indices used above be n. As before let t = n−s,
and

{n′
1, . . . , n

′
t} = {1, . . . , n} − {n1, . . . , ns},

{m′
1, . . . ,m

′
t} = {1, . . . , n} − {m1, . . . ,ms}.

Next, let 1
′
1, . . . , 1

′
t be an arbitrary choice of t hedge symbols. We claim

then

P (Xn1 = 1 1, . . . , Xns
= 1 s, Xn′

1
= 1

′
1, . . . , Xn′

t
= 1

′
t) (5.4.8)

= P (Xm1 = 1 1, . . . , Xms
= 1 s, Xm′

1
= 1 1, . . . , Xmt

= 1
′
t).

If you can read this symbolism you will see that it is just a consequence
of (5.4.2)! For both (n1, . . . , ns, n

′
1, . . . , n

′
t) and (m1, . . . ,ms,m

′
1, . . . ,m

′
t)

are permutations of the whole set (1, . . . , n), whereas the set of hedge
symbols ( 1 1, . . . , 1 s, 1

′
1, . . . , 1

′
t) are the same on both sides of (5.4.8).

So the equation merely repeats the assertion of Theorem 3 that any two
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specified sequences having the same number of black balls must have the
same probability, irrespective of the permutations.

Finally, keeping 1 1, . . . , 1 s fixed but letting 1
′
1, . . . , 1

′
t vary over all

2t possible choices, we get 2t equations of the form (5.4.8). Take their sum
and use (5.4.7) once as written and another time when the n’s are replaced
by the m’s. We get

P (Xn1 = 1 1, . . . , Xns
= 1 s) = P (Xm1 = 1 1, . . . , Xms

= 1 s),

as we set out to show. Q.E.D.

There is really nothing hard or tricky about this proof. “It’s just the
notation!”, as some would say.

A sequence of random variables {Xn;n = 1, 2, . . . } having the prop-
erty given in Theorem 5 is said to be “permutable” or “exchange-
able.” It follows in particular that any block of given length s, such
as Xs0+1, Xs0+2, . . . , Xs0+s, where s0 is any nonnegative integer (and
s0 + s ≤ b + r if c = −1), has the same distribution. Since the index is
usually interpreted as the time parameter, the distribution of such a block
may be said to be “invariant under a time shift.” A sequence of random
variables having this property is said to be “[strictly] stationary.” This kind
of process is widely used as a model in electrical oscillations, economic time
series, queuing problems, etc.

Pólya’s scheme may be considered as a model for a fortuitous happen-
ing [a “random event” in the everyday usage] whose likelihood tends to
increase with each occurrence and decrease with each non occurrence. The
drawing of a black ball from his urn is such an event. Pólya himself cited
as an example the spread of an epidemic in which each victim produces
many more new germs and so increases the chances of further contamina-
tion. To quote him directly (my translation from the French original), “In
reducing this fact to its simplest terms and adding to it a certain symme-
try, propitious for mathematical treatment, we are led to the urn scheme.”
The added symmetry refers to the adding of red balls when a red ball is
drawn, which would mean that each nonvictim also increases the chances
of other nonvictims. This half of the hypothesis for the urn model does not
seem to be warranted and is slipped in without comment by several authors
who discussed it. Professor Pólya’s candor, in admitting it as a mathemat-
ical expediency, should be reassuring to scientists who invented elaborate
mathematical theories to deal with crude realities such as hens pecking
(mathematical psychology) and beetles crawling (mathematical biology).

5.5. Independence and relevance

An extreme and extremely important case of conditioning occurs when the
condition has no effect on the probability. This intuitive notion is common
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experience in tossing a coin or throwing a die several times, or drawing
a ball several times from an urn with replacement. The knowledge of the
outcome of the previous trials should not change the “virgin” probabilities
of the next trial and in this sense the trials are intuitively independent of
each other. We have already defined independent events in §2.4; observe
that the defining relations in (2.4.5) are just special cases of (5.2.1) when
all conditional probabilities are replaced by unconditional ones. The same
replacement (5.2.2) will now lead to the fundamental definition below.

Definition of Independent Random Variables. The countably valued
random variables X1, . . . , Xn are said to be independent iff for any real
numbers x1, . . . , xn, we have

P (X1 = x1, . . . , Xn = xn) = P (X1 = x1) . . . P (Xn = xn). (5.5.1)

This equation is trivial if one of the factors on the right is equal to zero;
hence we may restrict the x’s above to the countable set of all possible
values of all the X’s.

The deceptively simple condition (5.5.1) actually contains much more
than meets the eye. To see this let us deduce at once a major extension
of (5.5.1) in which single values xi are replaced by arbitrary sets Si. Let
X1, . . . , Xn be independent random variables in Propositions 4 to 6 below.

Proposition 4. We have for arbitrary countable sets S1, . . . , Sn:

P (X1 ∈ S1, . . . , Xn ∈ Sn) = P (X1 ∈ S1) . . . P (Xn ∈ Sn). (5.5.2)

Proof: The left member of (5.5.2) is equal to∑
x1∈S1

· · ·
∑

xn∈Sn

P (X1 = x1, . . . , Xn = xn)

=
∑

x1∈S1

· · ·
∑

xn∈Sn

P (X1 = x1) . . . P (Xn = xn)

=

{ ∑
x1∈S1

P (X1 = x1)

}
· · ·
{ ∑

xn∈Sn

P (Xn = xn)

}
,

which is equal to the right member of (5.5.2) by simple algebra (which you
should spell out if you have any doubt).

Note that independence of a set of random variables as defined above
is a property of the set as a whole. Such a property is not necessarily
inherited by a subset; can you think of an easy counterexample? However,
as a consequence of Proposition 4, any subset of (X1, . . . , Xn) is indeed
also a set of independent random variables. To see, e.g., (X1, X2, X3) is
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such a set when n > 3 above, we take Si = R1 for i > 3 and replace the
other Si’s by xi in (5.5.2).

Next, the condition (5.5.2) will be further strengthened into its most
useful form.

Proposition 5. The events

{X1 ∈ S1}, . . . , {Xn ∈ Sn} (5.5.3)

are independent.

Proof: It is important to recall that the definition of independent events
requires not only the relation (5.5.2), but also similar relations for all sub-
sets of (X1, . . . , Xn). However, these also hold because the subsets are also
sets of independent random variables, as just shown.

Before going further let us check that the notion of independent events
defined in §2.4 is a special case of independent random variables defined in
this section. With the arbitrary events {Aj , 1 ≤ j ≤ n} we associate their
indicators IAi

(see §1.4), where

IAi
(ω) =

{
1 if ω ∈ Aj ,

0 if ω ∈ Ac
j ;

1 ≤ j ≤ n.

These are random variables [at least in a countable sample space]. Each
takes only the two values 0 or 1, and we have

{IAi
= 1} = Aj , {IAi

= 0} = Ac
j .

Now if we apply the condition (5.5.1) of independence to the random vari-
ables IA1 , . . . , IAn

, they reduce exactly to the conditions

P (Ã1 · · · Ãn) = P (Ã1) · · ·P (Ãn), (5.5.4)

where each Ãj may be Aj or Ac
j but, of course, must be the same on

both sides. Now it can be shown (Exercise 36 ahead) that the condition
(5.5.4) for all possible choices of Ãj is exactly equivalent to the condition
(2.4.5). Hence the independence of the events A1, . . . , An is equivalent to
the independence of their indicators.

The study of independent random variables will be a central theme in
any introduction to probability theory. Historically and empirically, they
are known as independent trials. We have given an informal discussion of
this concept in §2.4. Now it can be formulated in terms of random variables
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as follows: a sequence of independent trials is just a sequence of indepen-
dent random variables (X1, . . . , Xn) where Xi represents the outcome of
the ith trial. Simple illustrations are given in Examples 7 and 8 of §2.4,
where in Example 7 the missing random variables are easily supplied. In-
cidentally, these examples establish the existence of independent random
variables so that we are assured that our theorems such as the propositions
in this section are not vacuities. Actually we can even construct indepen-
dent random variables with arbitrarily given distributions (see [Chung 1;
Chapter 3]). [It may amuse you to know that mathematicians have been
known to define and study objects that later turn out to be nonexistent!]
This remark will be relevant in later chapters; for the moment we shall add
one more general proposition to broaden the horizon.

Proposition 6. Let ϕ1, . . . , ϕn be an arbitrary real-valued function on
(−∞,∞); then the random variables

ϕ1(X1), . . . , ϕn(Xn) (5.5.5)

are independent.

Proof: Let us omit the subscripts on X and ϕ and ask the question: for a
given real number y, what are the values of x such that

ϕ(x) = y and X = x?

The set of such values must be countable since X is countably valued; call
it S; of course, it depends on y, ϕ and X. Then {ϕ(X) = y} means exactly
the same thing as {X ∈ S}. Hence for arbitrary y1, . . . , yn, the events

{ϕ1(X1) = y1}, . . . , {ϕn(Xn) = yn}

are just those in (5.5.3) for certain sets S1, . . . , Sn specified above. So
Proposition 6 follows from Proposition 5.

This proposition will be put to good use in Chapter 6. Actually there
is a more general result as follows. If we separate the random variables
X1, . . . , Xn into any number of blocks, and take a function of those in each
block, then the resulting random variables are independent. The proof is
not so different from the special case given above and will be omitted.

As for general random variables, they are defined to be independent iff
for any real numbers x1, . . . , xn, the events

{X1 ≤ x1}, . . . , {Xn ≤ xn} (5.5.6)

are independent. In particular,

P (X1 ≤ x1, . . . , Xn ≤ xn) = P (X1 ≤ x1) . . . P (Xn ≤ xn). (5.5.7)
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In terms of the joint distribution function F for the random vector
(X1, . . . , Xn) discussed in §4.6, the preceding equation may be written
as

F (x1, . . . , xn) = F1(x1) . . . Fn(xn), (5.5.8)

where Fj is the marginal distribution of Xj , 1 ≤ j ≤ n. Thus in case of
independence the marginal distributions determine the joint distribution.

It can be shown that as a consequence of the definition, events such as
those in (5.5.3) are also independent, provided that the sets S1, . . . , Sn are
reasonable [Borel]. In particular, if there is a joint density function f , then
we have

P (X1 ∈ S1, . . . , Xn ∈ Sn) =
{∫

S1

f1(u) du
}
· · ·
{∫

Sn

fn(u) du
}

=
∫
S1

· · ·
∫
Sn

f1(u1) · · · fn(un) du1 · · · dun,

where f1, . . . , fn are the marginal densities. But the probability in the first
member above is also equal to∫

S1

· · ·
∫
Sn

f(u1, . . . , un) du1 . . . dun

as in (4.6.6). Comparison of these two expressions yields the equation

f(u1, . . . , un) = f1(u1) . . . fn(un). (5.5.9)

This is the form that (5.5.8) takes in the density case.
Thus we see that stochastic independence makes it possible to factorize

a joint probability, distribution, or density. In the next chapter we shall
see that it enables us to factorize mathematical expectation, generating
function and other transforms.

Numerous results and applications of independent random variables will
be given in Chapters 6 and 7. In fact, the main body of classical probability
theory is concerned with them. So much so that in his epoch-making mono-
graph Foundations of the Theory of Probability, Kolmogorov [1903–87; lead-
ing Russian mathematician and one of the founders of modern probability
theory] said: “Thus one comes to perceive, in the concept of independence,
at least the first germ of the true nature of problems in probability theory.”
Here we will content ourselves with two simple examples.

Example 10. A letter from Pascal to Fermat (dated Wednesday, 29th
July, 1654), contains, among many other mathematical problems, the fol-
lowing passage:
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M. de Méré told me that he had found a fallacy in the theory of numbers,
for this reason: If one undertakes to get a six with one die, the advantage in
getting it in 4 throws is as 671 is to 625. If one undertakes to throw 2 sixes
with two dice, there is a disadvantage in undertaking it in 24 throws. And
nevertheless 24 is to 36 (which is the number of pairings of the faces of two
dice) as 4 is to 6 (which is the number of faces of one die). This is what
made him so indignant and made him say to one and all that the propo-
sitions were not consistent and Arithmetic was self-contradictory: but you
will very easily see that what I say is correct, understanding the principles
as you do.

This famous problem, one of the first recorded in the history of proba-
bility and which challenged the intellectual giants of the time, can now be
solved by a beginner.

To throw a six with 1 die in 4 throws means to obtain the point “six”
at least once in 4 trials. Define Xn, 1 ≤ n ≤ 4, as follows:

P (Xn = k) =
1
6
, k = 1, 2, . . . , 6,

and assume that X1, X2, X3, X4 are independent. Put An = {Xn = 6};
then the event in question is A1 ∪A2 ∪A3 ∪A4. It is easier to calculate the
probability of its complement, which is identical to Ac

1A
c
2A

c
3A

c
4. The trials

are assumed to be independent and the dice unbiased. We have as a case
of (5.5.4),

P (Ac
1A

c
2A

c
3A

c
4) = P (Ac

1)P (Ac
2)P (Ac

3)P (Ac
4) =

(
5
6

)4

;

hence

P (A1 ∪A2 ∪A3 ∪ A4) = 1−
(
5
6

)4

= 1− 625
1296

=
671
1296

.

This last number is approximately equal to 0.5177. Since 1296−671 = 625,
the “odds” are as 671 to 625, as stated by Pascal.

Next consider two dice; let (X ′
n, X

′′
n) denote the outcome obtained in

the nth throw of the pair, and let

Bn = {X ′
n = 6;X ′′

n = 6}.

Then P (Bc
n) = 35/36, and

P (Bc
1B

c
2 · · ·Bc

24) =
(
35
36

)24

,

P (B1 ∪B2 ∪ · · · ∪B24) = 1−
(
35
36

)24

.
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This last number is approximately equal to 0.4914, which confirms the
disadvantage.

One must give great credit to de Méré for his sharp observation and
long experience at gaming tables to discern the narrow inequality

P (A1 ∪ A2 ∪A3 ∪A4) >
1
2
> P (B1 ∪B2 ∪ · · · ∪B24).

His arithmetic went wrong because of a fallacious “linear hypothesis.” [Ac-
cording to some historians the problem did not originate with de Méré.]

Example 11. If two points are picked at random from the interval [0, 1],
what is the probability that the distance between them is less than 1/2?

By now you should be able to interpret this kind of cryptogram. It
means: if X and Y are two independent random variables each of which
is uniformly distributed in [0, 1], find the probability P (|X − Y | < 1/2).
Under the hypotheses the random vector (X,Y ) is uniformly distributed
over the unit square U (see Fig. 24); namely for any reasonable subset S
of U , we have

P{(X,Y ) ∈ S} =
∫∫
S

du dv.

This is seen from the discussion after (4.6.6); in fact the f(u, v) there is
equal to f1(u)f2(v) by (5.5.9) and both f1 and f2 are equal to 1 in [0, 1]
and 0 outside. For the present problem S is the set of points (u, v) in U
satisfying the inequality |u− v| < 1/2. You can evaluate the double integral
above over this set if you are good at calculus, but it is a lot easier to do this
geometrically as follows. Draw two lines u − v = 1/2 and u − v = −1/2;
then S is the area bounded by these lines and the sides of the square.
The complementary area U − S is the union of two triangles each of area
1/2 (1/2)2 = 1/8. Hence we have

area of S = 1− 2 · 1
8
=

3
4
,

and this is the required probability.

Example 12. Suppose X1, X2, . . . , Xn are independent random variables
with distributions F1, F2, . . . , Fn as in (4.5.4). Let

M = max(X1, X2, . . . , Xn),

m = min(X1, X2, . . . , Xn).

Find the distribution functions of M and m.
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Figure 24

Using (5.5.7), we have for each x

Fmax(x) = P (M ≤ x) = P (X1 ≤ x;X2 ≤ x; . . . ;Xn ≤ x)

= P (X1 ≤ x)P (X2 ≤ x) . . . P (Xn ≤ x)

= F1(x)F2(x) · · ·Fn(x).

In particular, if all the F ’s are the same,

Fmax(x) = F (x)n.

As for the minimum, it is convenient to introduce the “tail distribution”
Gj corresponding to each Fj as follows:

Gj(x) = P{Xj > x} = 1− Fj(x).

Then we have, using the analogue of (5.5.2) this time with Sj = (xj ,∞),

Gmin(x) = P (m > x) = P (X1 > x;X2 > x; . . . ;Xn > x)

= P (X1 > x)P (X2 > x) · · ·P (Xn > x)

= G1(x)G2(x) · · ·Gn(x).

Hence

Fmin(x) = 1−G1(x)G2(x) · · ·Gn(x).

If all the F ’s are the same, this becomes

Gmin(x) = G(x)n, Fmin(x) = 1−G(x)n.

Here is a concrete illustration. Suppose a town depends on three reser-
voirs for its water supply, and suppose that its daily draws from them are
independent and have exponential densities λ1e

−λ1x, λ2e
−λ2x, λ3e

−λ3x, re-
spectively. Suppose each reservoir can supply a maximum of N gallons per
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day to that town. What is the probability that on a specified day the town
will run out of water?

Call the draws X1, X2, X3 on that day; the probability in question is
by (4.5.12)

P (X1 > N ;X2 > N ;X3 > N) = e−λ1Ne−λ2Ne−λ3N = e−(λ1+λ2+λ3)N .

∗ The rest of the section is devoted to a brief study of a logical notion
that is broader than pairwise independence. This notation is inherent in
statistical comparison of empirical data, operational evaluation of alterna-
tive policies, etc. Some writers even base the philosophical foundation of
statistics on such a qualitative notion.

An event A is said to be favorable to another event B iff

P (AB) ≥ P (A)P (B). (5.5.10)

This will be denoted symbolically by A ‖ B. It is thus a binary relation
between two events which includes pairwise independence as a special case.
An excellent example is furnished by the divisibility by any two positive
integers; see §2.4 and Exercise 17 in Chapter 2.

It is clear from (5.5.10) that the relation ‖ is symmetric; it is also
reflexive since P (A) ≥ P (A)2 for any A. But it is not transitive, namely
A ‖ B and B ‖ C do not imply A ‖ C. In fact, we will show by an example
that even the stronger relation of pairwise independence is not transitive.

Example 13. Consider families with two children as in Example 5 of §5.1:
Ω = {(bb), (bg), (gb), (gg)}. Let such a family be chosen at random and
consider the three events below:

A = first child is a boy;

B = the two children are of different sex;

C = the first child is a girl.

Then

AB = {(bg)}, BC = {(gb)}, AC =  .

A trivial computation then shows that P (AB) = P (A)P (B), P (BC) =
P (B)P (C), but P (AC) = 0 �= P (A)P (C). Thus the pairs {A,B} and
{B,C} are independent but the pair {A,C} is not.

A slight modification will show that pairwise independence does not
imply total independence for three events. Let

D = second child is a boy.
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Then

AD = {(bb)}, BD = {(gb)}, ABD =  ;

and so P (ABD) = 0 �= P (A)P (B)P (D) = 1/8.

Not so long ago one could still find textbooks on probability and statis-
tics in which total independence was confused with pairwise independence.
It is easy on hindsight to think of everyday analogues of the counter-
examples above. For instance, if A is friendly to B, and B is friendly to C,
why should it follow that A is friendly to C? Again, if every two of three
people A,B,C get along well, it is not necessarily the case that all three of
them do.

These commonplace illustrations should tell us something about the use
and misuse of “intuition.” Pushing a bit further, let us record a few more
nonsequitors below (“�” reads “does not imply”):

A ‖ C and B ‖ C � (A ∩B) ‖ C;

A ‖ B and A ‖ C � A ‖ (B ∩ C);

A ‖ C and B ‖ C � (A ∪B) ‖ C;

A ‖ B and A ‖ C � A ‖ (B ∪ C).

(5.5.11)

You may try some verbal explanations for these; rigorous but artificial
examples are also very easy to construct; see Exercise 15.

The great caution needed in making conditional evaluation is no aca-
demic matter, for much statistical analysis of experimental data depends
on a critical understanding of the basic principles involved. The following
illustration is taken from Colin R. Blyth, “On Simpson’s paradox and the
sure-thing principle,” Journal of American Statistical Association, Vol. 67
(1972) pp. 364–366.

Example 14. A doctor has the following data on the effect of a new treat-
ment. Because it involved extensive follow-up treatment after discharge, he
could handle only a few out-of-town patients and had to work mostly with
patients residing in the city.

City residents NonCity residents

Treated Untreated Treated Untreated

Alive 1000 50 95 5000
Dead 9000 950 5 5000
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Let

A = alive,

B = treated,

C = cityresidents.

The sample space may be partitioned first according to A and B; then
according to A, B, and C. The results are shown in the diagrams:

A
1095 5050

Ac 9005 5950

B Bc

A
95

1000
5000

50

Ac
9000

5
950

5000

B Bc

The various conditional probabilities, namely the classified proportions, are
as follows:

P (A | B) =
1095
10100

= about 10%; P (A | BC) =
1000
10000

;

P (A | Bc) =
5050
11000

= about 50%; P (A | BcC) =
50
1000

;

P (A | BCc) =
95
100

;

P (A | BcCc) =
5000
10000

.

Thus if the results (a matter of life or death) are judged from the conditional
probabilities in the left column, the treatment seems to be a disaster since
it had decreased the chance of survival five times! But now look at the right
column, for city residents and noncity residents separately:

P (A | BC) = 10%; P (A | BcC) = 5%;

P (A | BCc) = 95%; P (A | BcCc) = 50%.

In both cases the chance of survival is doubled by the treatment.
The explanation is this: for some reason (such as air pollution), the C

patients are much less likely to recover than the Cc patients, and most of
those treated were C patients. Naturally, a treatment is going to show a
poor recovery rate when used on the most seriously ill of the patients.
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The arithmetical puzzle is easily solved by the following explicit formu-
las:

P (A | B) =
P (AB)
P (B)

=
P (ABC) + P (ABCc)

P (B)

=
P (ABC)
P (BC)

P (BC)
P (B)

+
P (ABCc)
P (BCc)

P (BCc)
P (B)

= P (A | BC)P (C | B) + P (A | BCc)P (Cc | B)

=
1000
10000

10000
10100

+
95
100

100
10100

;

P (A | Bc) = P (A | BcC)P (C | Bc) + P (A | BcCc)P (Cc | Bc)

=
50

1000
1000
11000

+
5000
10000

10000
11000

.

It is those “hidden coefficients” P (C | B), P (Cc | B), P (C | Bc), P (Cc|Bc)
that have caused a reverse. A little parable will clarify the arithmetic in-
volved. Suppose in two families both husbands and wives work. Husband
of family 1 earns more than husband of family 2, wife of family 1 earns
more than wife of family 2. For a certain good cause [or fun] both husband
and wife of family 2 contribute half their monthly income; but in family 1
the husband contributes only 5% of his income, letting the wife contribute
95% of hers. Can you see why the poorer couple give more to the cause [or
spend more on the vacation]?

This example should be compared with a simpler analogue in Exer-
cise 11, where there is no paradox and intuition is a sure thing.

�5.6. Genetical models

This section treats an application to genetics. The probabilistic model dis-
cussed here is among the simplest and the most successful in empirical
sciences.

Hereditary characters in diploid organisms such as human beings are
carried by genes, which appear in pairs. In the simplest case each genre of
a pair can assume two forms called alleles: A and a. For instance, A may
be “blue-eyed” and a “brown-eyed” in a human being; or A may be “red
blossom” and a “white blossom” in garden peas, which were the original
subject of experiment by Mendel [1822–84]. We have then three genotypes:

AA,Aa, aa,

there being no difference between Aa and aA [nature does not order the
pair]. In some characters, A may be dominant whereas a recessive so that
Aa cannot be distinguished from AA in appearance so far as the character
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in question is concerned; in others Aa may be intermediate such as shades
of green for eye color or pink for pea blossom. The reproductive cells, called
gametes, are formed by splitting the gene pairs and have only one gene of
each pair. At mating each parent therefore transmits one of the genes of
the pair to the offspring through the gamete. The pure type AA or aa can
of course transmit only A or a, whereas the mixed type Aa can transmit
either A or a but not both. Now let us fix a gene pair and suppose that the
parental genotypes AA,Aa, aa are in the proportions

u : 2v : w where u > 0, v > 0, w > 0, u+ 2v + w = 1.

[The factor 2 in 2v is introduced to simplify the algebra below.] The total
pool of these three genotypes is very large and the mating couples are
formed “at random” from this pool. At each mating, each parent transmits
one of the pair of genes to the offspring with probability 1/2, independently
of each other, and independently of all other mating couples. Under these
circumstances random mating is said to take place. For example, if peas
are well mixed in a garden, these conditions hold approximately; on the
other hand, if the pea patches are segregated according to blossom colors
then the mating will not be quite random.

The stochastic model can be described as follows. Two urns contain a
very large number of coins of three types: with A on both sides, with A on
one side and a on the other, and with a on both sides. Their proportions are
as u : 2v : w for each urn. One coin is chosen from each urn in such a way
that all coins are equally likely. The two chosen coins are then tossed and
the two uppermost faces determine the genotype of the offspring. What is
the probability that it be AA, Aa, or aa? In a more empirical vein and using
the frequency interpretation, we may repeat the process a large number of
times to get an actual sample of the distribution of the types. Strictly
speaking, the coins must be replaced each time so that the probability of
each type remains constant in the repeated trials.

Let us tabulate the cases in which an offspring of type AA will result
from the mating. Clearly this is possible only if there are at least two A
genes available between the parents. Hence the possibilities are given in the
first and second columns below.

Probability of
Probability of producing

Type of Type of mating of offspring AA Probability of
male female the couple from the couple offspring AA

AA AA u · u = u2 1 u2

AA Aa u · 2v = 2uv 1/2 uv
Aa AA 2v · u = 2uv 1/2 uv
Aa Aa 2v · 2v = 4v2 1/4 v2
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In the third column we give the probability of mating between the two
designated genotypes in the first two entries of the same row; in the fourth
column we give the conditional probability for the offspring to be of type
AA given the parental types; in the fifth column the product of the prob-
abilities in the third and fourth entries of the same row. By Proposition 2
of §5.2, the total probability for the offspring to be of type AA is given by
adding the entries in the fifth column. Thus

P (offspring is AA) = u2 + uv + uv + v2 = (u+ v)2.

From symmetry, replacing u by w, we get

P (offspring is aa) = (v + w)2.

Finally, we list all cases in which an offspring of type Aa can be produced,
in a similar tabulation as the preceding one.

Probability of
Probability of producing

Type of Type of mating of offspring Aa Probability of
male female the couple from the couple offspring Aa

AA Aa u · 2v = 2uv 1/2 uv
Aa AA 2v · u = 2uv 1/2 uv
AA aa u · w = uw 1 uw
aa AA w · u = uw 1 uw
Aa aa 2v · w = 2vw 1/2 vw
aa Aa w · 2v = 2vw 1/2 vw
Aa Aa 2v · 2v = 4v2 1/2 2v2

By adding up the last column, we hence obtain:

P (offspring is Aa) = 2(uv + uw + vw + v2) = 2(u+ v)(v + w).

Let us put

p = u+ v, q = v + w (5.6.1)

so that p > 0, q > 0, p+ q = 1. Let us also denote by Pn(· · · ) the probabil-
ity of the genotypes for offspring of the nth generation. Then the results
obtained above are as follows:

P1(AA) = p2, P1(Aa) = 2pq, P1(aa) = q2. (5.6.2)
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These give the proportions of the parental genotypes for the second gener-
ation. Hence in order to obtain P2, we need only substitute p2 for u, pq for
v, and q2 for w in the two preceding formulas. Thus

P2(AA) = (p2 + pq)2 = p2,

P2(Aa) = 2(p2 + pq)(pq + q2) = 2pq,

P2(aa) = (pq + q2)2 = q2.

Lo and behold: P2 is the same as P1! Does this mean that P3 is also the
same as P1, etc.? This is true, but only after the observation below. We
have shown that P1 = P2 for an arbitrary P0 [in fact, even the nit-picking
conditions u > 0, v > 0, w > 0 may be omitted]. Moving over one gener-
ation, therefore, P2 = P3, even although P1 may not be the same as P0.
The rest is smooth sailing, and the result is known as the Hardy–Weinberg
theorem. (G.H. Hardy [1877–1947] was a leading English mathematician
whose main contributions were to number theory and classical analysis.)

Theorem. Under random mating for one pair of genes, the distribution of
the genotypes becomes stationary from the first generation on, no matter
what the original distribution is.

Let us assign the numerical values 2, 1, 0 to the three types AA,Aa, aa
according to the number of A genes in the pair; and let us denote by Xn

the random variable that represents the numerical genotype of the nth
generation. Then the theorem says that for n ≥ 1:

P (Xn = 2) = p2, P (Xn = 1) = 2pq, P (Xn = 0) = q2. (5.6.3)

The distribution of Xn is stationary in the sense that these probabilities do
not depend on n. Actually it can be shown that the process {Xn, n ≥ 1} is
strictly stationary in the sense described in §5.4, because it is also a Markov
chain; see Exercise 40.

The result embodied in (5.6.2) may be reinterpreted by an even simpler
model than the one discussed above. Instead of gene pairs we may consider
a pool of gametes, namely after the splitting of the pairs into individual
genes. Then the A genes and a genes are originally in the proportion

(2u+ 2v) : (2v + 2w) = p : q

because there are two A genes in the type AA, etc. Now we can think of
these gametes as so many little tokens marked A or a in an urn, and assim-
ilate the birth of an offspring to the random drawing (with replacement)
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of two of the gametes to form a pair. Then the probabilities of drawing
AA,Aa, aa are, respectively,

p · p = p2, p · q + q · p = 2pq, q · q = q2.

This is the same result as recorded in (5.6.2).
The new model is not the same as the old one, but it leads to the same

conclusion. It is tempting to try to identify the two models on hindsight,
but the only logical way of doing so is to go through both cases as we
have done. A priori or prima facie, they are not equivalent. Consider, for
instance, the case of fishes: the females lay billions of eggs first and then
the males come along and fertilize them with sperm. The partners may
never meet. In this circumstance the second model fits the picture better,
especially if we use two urns for eggs and sperm separately. [There are in
fact creatures in which sex is not differentiated and which suits the one-
urn model.] Such a model may be called the spawning model, in contrast to
the mating model described earlier. In more complicated cases where more
than one pair of genes is involved, the two models need not yield the same
result.

Example 15. It is known in human genetics that certain “bad” genes
cause crippling defects or disease. If a is such a gene, the genotype aa will
not survive to adulthood. A person of genotype Aa is a carrier but ap-
pears normal because a is a recessive character. Suppose the probability
of a carrier among the general population is p, irrespective of sex. Now if
a person has an affected brother or sister who died in childhood, then he
has a history in the family and cannot be treated genetically as a member
of the general population. The probability of his being a carrier is a con-
ditional one to be computed as follows. Both his parents must be carriers,
namely of genotype Aa, for otherwise they could not have produced a child
of genotype aa. Since each gene is transmitted with probability 1/2, the
probabilities of their child to be AA,Aa, aa are 1/4, 1/2, 1/4, respectively.
Since the person in question has survived he cannot be aa, and so the
probability that he is AA or Aa is given by

P (AA | AA ∪Aa) = 1
3
, P (Aa | AA ∪Aa) = 2

3
.

If he marries a woman who is not known to have a history of that kind in
the family, then she is of genotype AA or Aa with probability 1 − p or p
as for the general population. The probabilities for the genotypes of their
children are listed below.
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Probability
of the Probability of Probability of Probability of

Male Female combination producing AA producing Aa producing aa

AA AA
1
3
(1− p) 1 0 0

AA Aa
1
3
p

1
2

1
2

0

Aa AA
2
3
(1− p)

1
2

1
2

0

Aa Aa
2
3
p

1
4

1
2

1
4

A simple computation gives the following distribution of the genotypes for
the offspring:

P1(AA) =
2
3
− p

3
;

P1(Aa) =
1
3
+
p

6
;

P1(aa) =
p

6
.

The probability of a surviving child being a carrier is therefore

P1(Aa | AA ∪Aa) =
2 + p

6− p
.

If p is negligible, this is about 1/3. Hence from the surviving child’s point
of view, his having an affected uncle or aunt is only half as bad a hereditary
risk as his father’s having an affected sibling. One can now go on computing
the chances for his children, and so on—exercises galore left to the reader.

In concluding this example, which concerns a serious human condition,
it is proper to stress that the simple mathematical theory should be re-
garded only as a rough approximation since other genetical factors have
been ignored in the discussion.

Exercises

1. Based on the data given in Example 14 of §5.5, what is the probability
that (a) A living patient resides in the city? (b) a living treated patient
lives outside the city?

2. All the screws in a machine come from the same factory but it is as
likely to be from Factory A as from Factory B. The percentage of de-
fective screws is 5% from A and 1% from B. Two screws are inspected;



158 Conditioning and Independence

if the first is found to be good, what is the probability that the second
is also good?

3. There are two kinds of tubes in an electronic gadget. It will cease to
function if and only if one of each kind is defective. The probability
that there is a defective tube of the first kind is .1; the probability that
there is a defective tube of the second kind is .2. It is known that two
tubes are defective, what is the probability that the gadget still works?

4. Given that a throw of three unbiased dice shows different faces, what
is the probability that (a) at least one is a six; (b) the total is eight?

5. Consider families with three children and assume that each child is
equally likely to be a boy or a girl. If such a family is picked at random
and the eldest child is found to be a boy, what is the probability that
the other two are girls? The same question if a randomly chosen child
from the family turns out to be a boy.

6. Instead of picking a family as in No. 5, suppose now a child is picked
at random from all children of such families. If he is a boy, what is the
probability that he has two sisters?

7. Pick a family as in No. 5, and then pick two children at random from
this family. If they are found to both be girls, what is the probability
they have a brother?

8. Suppose that the probability that both twins are boys is α, and that
both are girls β; suppose also that when the twins are of different sexes
the probability of the first born being a girl is 1/2. If the first born of
twins is a girl, what is the probability that the second is also a girl?

9. Three marksmen hit the target with probabilities 1/2, 2/3, 3/4, respec-
tively. They shoot simultaneously and there are two hits. Who missed?
Find the probabilities.

10. On a flight from Urbana to Paris my luggage did not arrive with me. It
had been transferred three times and the probabilities that the transfer
was not done in time were estimated to be 4/10, 2/10, 1/10, respec-
tively, in the order of transfer. What is the probability that the first
airline goofed?

11. Prove the “sure-thing principle”: if

P (A | C) ≥ P (B | C),

P (A | Cc) ≥ P (B | Cc),

then P (A) ≥ P (B).
12. Show that if A ‖ B, then

Ac ‖ Bc, A ∦ Bc, Ac ∦ B.
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13. Show that if A ∩B =  , then
(i) A ‖ C and B ‖ C ⇒ (A ∪B) ‖ C;
(ii) C ‖ A and C ‖ B ⇒ C ‖ (A ∪B);
(iii) A and C are independent, B and C are independent⇒ A∪B and

C are independent.
14. Suppose P (H) > 0. Show that the set function

S → P (S | H) for S ∈ Ω (countable)

is a probability measure.
*15. Construct examples for all the assertions in (5.5.11). [Hint: a systematic

but tedious way to do this is to assign p1, . . . , ps to the eight atoms
ABC, . . . , AcBcCc (see (1.3.5)) and express the desired inequalities by
means of them. The labor can be reduced by preliminary simple choices
among the p’s, such as making some of them zero and others equal.
One can also hit upon examples by using various simple properties
of a small set of integers; see an article by the author: “On mutually
favorable events,” Annals of Mathematical Statistics, Vol. 13 (1942),
pp. 338–349.]

16. Suppose that Aj , 1 ≤ j ≤ 5, are independent events. Show that
(i) (A1 ∪ A2)A3 and Ac

4 ∪Ac
5 are independent,

(ii) A1 ∪A2, A3 ∩A3 and Ac
5 are independent.

17. Suppose that in a certain casino there are three kinds of slot machines in
equal numbers with payoff frequencies 1/3, 1/2, 2/3, respectively. One
of these machines paid off twice in four cranks; what is the probability
of a payoff on the next crank?

18. A person takes four tests in succession. The probability of his passing
the first test is p, that of his passing each succeeding test is p or p/2
depending on whether he passes or fails the preceding one. He qualifies
provided he passes at least three tests. What is his chance of qualifying?

19. An electric circuit looks as in the figure where the numbers indicate the
probabilities of failure for the various links, which are all independent.
What is the probability that the circuit is in operation?
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20. It rains half of the time in a certain city, and the weather forecast is
correct 2/3 of the time. Mr. Milquetoast goes out every day and is quite
worried about the rain. So he will take his umbrella if the forecast is
rain, but he will also take it 1/3 of the time even if the forecast is no
rain. Find
(a) the probability of his being caught in rain without an umbrella,
(b) the probability of his carrying an umbrella without rain.
These are the two kinds of errors defined by Neyman and Pearson
in their statistical history.∗ [Hint: compute the probability of “rain;
forecast no rain; no umbrella,” etc.]

21. Telegraphic signals “dot” and “dash” are sent in the proportion 3:4.
Due to conditions causing very erratic transmission, a dot becomes a
dash with probability 1/4, whereas a dash becomes a dot with proba-
bility 1/3. If a dot is received, what is the probability that it is sent as
a dot?

22. A says B told him that C had lied. If each of these persons tells the
truth with probability p, what is the probability that C indeed lied?
[Believe it or not, this kind of question was taken seriously one time
under the name of “credibility of the testimony of witnesses.” In the
popular phrasing given above it is grossly ambiguous and takes a lot
of words to explain the intended meaning. To cover one case in detail,
suppose all three lied. Then B will tell A that C has told the truth,
because B is supposed to know whether C has lied or not but decides
to tell a lie himself; A will say that B told him that C had lied, since he
wants to lie about what B told him, without knowing what C did. This
is just one of the eight possible cases but the others can be similarly
interpreted. A much clearer formulation is the model of transmission of
signals used in No. 21. C transmits − or + according to whether he lies
or not; then B transmits the message from C incorrectly or correctly
if he lies or not; then A transmits the message from B in a similar
manner. There will be no semantic impasse even if we go on this way
to any number of witnesses. The question is: if “−” is received at the
end of line, what is the probability that it is sent as such initially?]

23. A particle starts from the origin and moves on the line 1 unit to the
right or left with probability 1/2 each, the successive movements be-
ing independent. Let Yn denote its position after n moves. Find the
following probabilities:
(a) P (Yn ≥ 0 for 1 ≤ n ≤ 4);
(b) P (|Yn| ≤ 2 for 1 ≤ n ≤ 4);
(c) P (Yn ≥ 0 for 1 ≤ n ≤ 4 | Y4 = 0).

∗The reader is supposed to translate the verbal descriptions so that answers are
obtainable. In the real world, predictions and decisions are made on even vaguer grounds.
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24. In No. 23, show that if j < k < n, we have

P (Yn = c | Yj = a, Yk = b) = P (Yn = c | Yk = b) = P (Yn−k = c− b),

where a, b, c are any integers. Illustrate with j = 4, k = 6, n = 10,
a = 2, b = 4, c = 6.

25. First throw an unbiased die, then throw as many unbiased coins as the
point shown on the die.
(a) What is the probability of obtaining k heads?
(b) If 3 heads are obtained, what is the probability that the die

showed n?
26. In a nuclear reaction a certain particle may split into 2 or 3 particles,

or not split at all. The probabilities for these possibilities are p2, p3,
and p1. The new particles behave in the same way and independently
of each other as well as of the preceding reaction. Find the distribution
of the total number of particles after two reactions.

27. An unbiased die is thrown n times; let M and m denote the maximum
and minimum points obtained. Find P (m = 2,M = 5). [Hint: begin
with P (m ≥ 2,M ≤ 5).]

28. Let X and Y be independent random variables with the same proba-
bility distribution {pn, n ≥ 1}. Find P (X ≤ Y ) and P (X = Y ).

In Problems 29–32, consider two numbers picked at random in [0, 1].

29. If the smaller one is less than 1/4, what is the probability that the
larger one is greater than 3/4?

*30. Given that the smaller one is less than x, find the distribution of the
larger one. [Hint: consider P (min < x,max < y) and the two cases
x ≤ y and x > y.]

*31. The two points picked divide [0, 1] into three segments. What is the
probability that these segments can be used to form a triangle? [Hint:
this is the case if and only if the sum of lengths of any two is greater
than the length of the third segment. Call the points X and Y and
treat the case X < Y first.]

32. Prove that the lengths of the three segments mentioned above have
the same distributions. [Hint: consider the distribution of the smaller
value picked, that of the difference between the two values, and use
a symmetrical argument for the difference between 1 and the larger
value.]

33. In Pólya’s urn scheme find:
(a) P (R3 | B1R2);
(b) P (R3 | R1R2);
(c) P (R3 | R2);
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(d) P (R1 | R2R3);
(e) P (R1 | R2);
(f) P (R1 | R3).

34. Consider two urns Ui containing ri red and bi black balls respectively,
i = 1, 2. A ball is drawn at random from U1 and put into U2, then a
ball is drawn at random from U2 and put into urn U1. After this what
is the probability of drawing a red ball from U1? Show that if b1 = r1,
b2 = r2, then this probability is the same as if no transfers have been
made.

*35. Assume that the a priori probabilities p in the sunrise problem (Ex-
ample 9 of §5.2) can only take the values k/100, 1 ≤ k ≤ 100, with
probability 1/100 each. Find P (Sn+1 | Sn). Replace 100 by N and let
N →∞; what is the limit?

*36. Prove that the events A1, . . . , An are independent if and only if

P (Ã1 · · · Ãn) = P (Ã1) · · ·P (Ãn),

where each Ãj may be Aj or Ac
j . [Hint: to deduce these equations

from independence, use induction on n and also induction on k in
P (Ac

1 · · ·Ac
kAk+1 · · ·An); the converse is easy by induction on n.]

*37. Spell out a proof of Theorem 2 in §5.3. [Hint: label all balls and
show that any particular sequence of balls has the same probability
of occupying any given positions if all balls are drawn in order.]

38. Verify Theorem 5 of §5.4 directly for the pairs (X1, X2), (X1, X3), and
(X2, X3).

39. Assume that the three genotypes AA,Aa, aa are in the proportion
p2 : 2pq : q2, where p + q = 1. If two parents chosen at random from
the population have an offspring of type AA, what is the probability
that another child of theirs is also of type AA? Same question with
AA replaced by Aa.

40. Let X1 and X2 denote the genotype of a female parent and her child.
Assuming that the unknown genotype of the male parent is distributed
as in Problem No. 39 and using the notation of (5.6.3), find the nine
conditional probabilities below:

P{X2 = k | X1 = j}, j = 0, 1, 2; k = 0, 1, 2.

These are called the transition probabilities of a Markov chain; see
§8.3.

*41. Prove that if the function ϕ defined on [0,∞) is nonincreasing and
satisfies the Cauchy functional equation

ϕ(s+ t) = ϕ(s)ϕ(t), s ≥ 0, t ≥ 0;
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then ϕ(t) = e−λt for some λ ≥ 0. Hence a positive random variable T
has the property

P (T > s+ t | T > s) = P (T > t), s ≥ 0, t ≥ 0

if and only if it has an exponential distribution. [Hint: ϕ(0) = 1:
ϕ(1/n) = α1/n, where α = ϕ(1), ϕ(m/n) = αm/n; if m/n ≤ t <
(m+1)/n, then α(m+1)/n ≤ ϕ(t) ≤ αm/n; hence the general conclusion
follows by letting n→∞.]

42. A needle of unit length is thrown onto a table that is marked with
parallel lines at a fixed distance d from one another, where d > 1. Let
the distance from the midpoint of the needle to the nearest line be
x, and let the angle between the needle and the perpendicular from
its midpoint to the nearest line be θ. It is assumed that x and θ are
independent random variables, each of which is uniformly distributed
over its range. What is the probability that the needle intersects a
line? This is known as Buffon’s problem and its solution suggests an
empirical [Monte Carlo] method of determining the value of π.



6
Mean, Variance, and
Transforms

6.1. Basic properties of expectation

The mathematical expectation of a random variable, defined in §4.3, is one
of the foremost notions in probability theory. It will be seen to play the
same role as integration in calculus—and we know “integral calculus” is at
least half of all calculus. Recall its meaning as a probabilistically weighted
average [in a countable sample space] and rewrite (4.3.11) more simply as

E(X) =
∑
ω

X(ω)P (ω). (6.1.1)

If we substitute |X| for X above, we see that the proviso (4.3.12) may be
written as

E(|X|) <∞. (6.1.2)

We shall say that the random variable X is summable when (6.1.2) is
satisfied. In this case we say also that “X has a finite expectation (or
mean)” or “its expectation exists.” The last expression is actually a little
vague because we generally allow E(X) to be defined and equal to +∞
when for instance X ≥ 0 and the series in (6.1.1) diverges. See Exercises 27
and 28 of Chapter 4. We shall say so explicitly when this is the case.

It is clear that if X is bounded, namely when there exists a number M
such that

|X(ω)| ≤M for all ω ∈ Ω,

164
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then X is summable and in fact

E(|X|) =
∑
ω

|X(ω)|P (ω) ≤M
∑
ω

P (ω) = M.

In particular, if Ω is finite then every random variable is bounded (this does
not mean all of them are bounded by the same number). Thus the class of
random variables having a finite expectation is quite large. For this class
the mapping

X → E(X) (6.1.3)

assigns a number to a random variable. For instance, if X is the height of
students in a school, then E(X) is their average height; if X is the income
of wage earners, then E(X) is their average income; if X is the number of
vehicles passing through a toll bridge in a day, then E(X) is the average
daily traffic, etc.

If A is an event, then its indicator IA (see §1.4) is a random variable,
and we have

E(IA) = P (A).

In this way the notion of mathematical expectation is seen to extend that
of a probability measure.

Recall that if X and Y are random variables, then so is X +Y (Propo-
sition 1 of §4.2). If X and Y both have finite expectations, it is intuitively
clear what the expectation of X + Y should be. Thanks to the intrinsic
nature of our definition, it is easy to prove the theorem.

Theorem 1. If X and Y are summable, then so is X + Y and we have

E(X + Y ) = E(X) + E(Y ). (6.1.4)

Proof: Applying the definition (6.1.1) to X + Y , we have

E(X + Y ) =
∑
ω

(X(ω) + Y (ω))P (ω)

=
∑
ω

X(ω)P (ω) +
∑
ω

Y (ω)P (ω) = E(X) + E(Y ).

This is the end of the matter. You may wonder wherever do we need the
condition (6.1.2)? The answer is: we want the defining series for E(X +Y )
to converge absolutely, as explained in §4.3. This is indeed the case because∑

ω

|X(ω) + Y (ω)|P (ω) ≤
∑
ω

(|X(ω)|+ |Y (ω)|)P (ω)

=
∑
ω

|X(ω)|P (ω) +
∑
ω

|Y (ω)|P (ω) <∞.
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Innocuous or ingenious as Theorem 1 may appear, it embodies the most
fundamental property of E. There is a pair of pale sisters as follows:

E(a) = a, E(aX) = aE(X) (6.1.5)

for any constant a; and combining (6.1.4) and (6.1.5) we obtain

E(aX + bY ) = aE(X) + bE(Y ) (6.1.6)

for any two constants a and b. This property makes the operation in (6.1.3)
a “linear operator.” This is a big name in mathematics; you may have heard
of it in linear algebra or differential equations.

An easy extension of (6.1.4) by mathematical induction yields: if
X1, X2, . . . , Xn are summable random variables, then so is their sum
and

E(X1 + · · ·+Xn) = E(X1) + · · ·+E(Xn). (6.1.7)

Before we take up other properties of E, let us apply this to some
interesting problems.

Example 1. A raffle lottery contains 100 tickets, of which there is one
ticket bearing the prize $10000, the rest being all zero. If I buy two tickets,
what is my expected gain?

If I have only one ticket, my gain is represented by the random variable
X, which takes the value 10000 on exactly one ω and 0 on all the rest. The
tickets are assumed to be equally likely to win the prize; hence

X =



10000 with probability

1
100

,

0 with probability
99
100

,

and

E(X) = 10000 · 1
100

+ 0 · 99
100

= 100.

Thus my expected gain is $100. This is trivial, but now if I have two tickets
I know very well only one of them can possibly win, so there is definite
interference [dependence] between the two random variables represented by
the tickets. Will this affect my expectation? Thinking a bit more deeply: if
I am not the first person to have bought the tickets, perhaps by the time
I get mine someone else has already taken the prize, albeit unknown to
all. Will it then make a difference whether I get tickets early or late? Well,
these questions have already been answered by the urn model discussed in
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§5.3. We need only assimilate the tickets to 100 balls of which exactly 1 is
black. Then if we define the outcome of the nth drawing by Xn, we know
from Theorem 1 there that Xn has the same probability distribution as
the X shown above, and so also the same expectation. For n = 2 this was
computed directly and easily without recourse to the general theorem. It
follows that no matter what j and k are, namely for any two tickets drawn
anytime, the expected value of both together is equal to

E(Xj +Xk) = E(Xj) + E(Xk) = 2E(X) = 200.

More generally, my expected gain is directly proportional to the number
of tickets bought—a very fair answer, but is it so obvious in advance? In
particular, if I buy all 100 tickets I stand to win 100 E(X) = 10000 dollars.
This may sound dumb but it checks out.

To go one step further, let us consider two lotteries of exactly the same
kind. Instead of buying two tickets X and Y from the same lottery, I may
choose to buy one from each lottery. Now I have a chance to win $20000.
Does this make the scheme more advantageous to me? Yet Theorem 1 says
that my expected gain is $200 in either case. How is this accounted for? To
answer this question you should figure out the distribution of X+Y under
each scheme and compute E(X + Y ) directly from it. You will learn a lot
by comparing the results.

Example 2. (Coupon collecting problem). There are N coupons marked
1 to N in a bag. We draw one coupon after another with replacement.
Suppose we wish to collect r different coupons; what is the expected number
of drawings to get them? This is the problem faced by schoolchildren who
collect baseball star cards; or by people who can win a sewing machine if
they have a complete set of coupons that come in some detergent boxes.
In the latter case the coupons may well be stacked against them if certain
crucial ones are made very scarce. Here of course we consider the fair case
in which all coupons are equally likely and the successive drawings are
independent.

The problem may be regarded as one of waiting time, namely: we wait
for the rth new arrival. Let X1, X2, . . . denote the successive waiting times
for a new coupon. Thus X1 = 1 since the first is always new. Now X2 is the
waiting time for any coupon that is different from the first one drawn. Since
at each drawing there are N coupons and all but one of them will be new,
this reduces to Example 8 of §4.4 with success probability p = N − 1/N ;
hence

E(X2) =
N

N − 1
.

After these two different coupons have been collected, the waiting time for
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the third new one is similar with success probability p = N − 2/N ; hence

E(X3) =
N

N − 2
.

Continuing this argument, we obtain for 1 ≤ r ≤ N

E(X1 + · · ·+Xr) =
N

N
+

N

N − 1
+ · · ·+ N

N − r + 1

= N

(
1

N − r + 1
+ · · ·+ 1

N

)
.

In particular, if r = N , then

E(X1 + · · ·+XN ) = N

(
1 +

1
2
+ · · ·+ 1

N

)
; (6.1.8)

and if N is even and r = N/2,

E(X1 + · · ·+XN/2) = N

(
1

N
2 + 1

+ · · ·+ 1
N

)
. (6.1.9)

Now there is a famous formula in mathematical analysis which says that

1 +
1
2
+ · · ·+ 1

N
= logN + C + εN , (6.1.10)

where the “log” is the natural logarithm to the base e, C is the Euler’s
constant = .5772 . . . [nobody in the world knows whether it is a rational
number or not], and εN tends to zero as N goes to infinity. For most
purposes, the more crude asymptotic formula is sufficient:

lim
N→∞

1
logN

(
1 +

1
2
+ · · ·+ 1

N

)
= 1. (6.1.11)

If we use this in (6.1.8) and (6.1.9), we see that for large values of N , the
quantities there are roughly equal to N logN and N log 2 = about 7/10N
respectively [how does one get log 2 in the second estimate?]. This means:
whereas it takes somewhat more drawings than half the number of coupons
to collect half of them, it takes “infinitely” more drawings to collect all of
them. The last few items are the hardest to get even if the game is not
rigged.

A terrifying though not so realistic application is to the effects of aerial
bombing in warfare. The results of the strikes are pretty much randomized
under certain circumstances such as camouflage, decoy, foul weather, and
intense enemy fire. Suppose there are 100 targets to be destroyed but each



6.2 The density case 169

strike hits one of them at random, perhaps repeatedly. Then it takes “on
the average” about 100 log 100 or about 460 strikes to hit all targets at
least once. Thus if the enemy has a large number of retaliatory launching
sites, it will be very hard to knock them all out without accurate military
intelligence. The conclusion should serve as a mathematical deterrent to
the preemptive strike theory.

6.2. The density case

To return to saner matters, we will extend Theorem 1 to random variables
in an arbitrary sample space. Actually the result is true in general, provided
the mathematical expectation is properly defined. An inkling of this may
be given by writing it as an abstract integral as follows:

E(X) =
∫

Ω
X(ω) dω, (6.2.1)

where “dω” denotes the probability of the “element at ω,” as is commonly
done for an area or volume element in multidimensional calculus—the so-
called “differential.” In this form (6.1.4) becomes∫

Ω
(X(ω) + Y (ω)) dω =

∫
Ω
X(ω) dω +

∫
Ω
Y (ω) dω, (6.2.2)

which is in complete analogy with the familiar formula in calculus:∫
I

(f(x) + g(x)) dx =
∫
I

f(x) dx+
∫
I

g(x) dx,

where I is an interval, say [0, 1]. Do you remember anything of the proof
of the last equation? It is established by going back to the definition of
[Riemann] integrals through approximation by [Riemann] sums. For the
probabilistic integral in (6.2.1) a similar procedure is followed. It is defined
to be the limit of mathematical expectations of approximate discrete ran-
dom variables [alluded to in §4.5]. These latter expectations are given by
(6.1.1), and Theorem 1 is applicable to them. The general result (6.2.2)
then follows by passing to the limit.

We cannot spell out the details of this proper approach in this text
because it requires some measure theory, but there is a somewhat sneaky
way to get Theorem 1 in the case where (X,Y ) has a joint density as
discussed in §4.6. Using the notation there, in particular (4.6.7), we have

E(X) =
∫ ∞

−∞
uf(u, ∗) du, E(Y ) =

∫ ∞

−∞
vf(∗, v) dv. (6.2.3)
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On the other hand, if we substitute ϕ(x, y) = x+ y in (4.6.8), we have

E(X + Y ) =
∫ ∞

−∞

∫ ∞

−∞
(u+ v)f(u, v) du dv. (6.2.4)

Now this double integral can be split and evaluated by iterated integration:∫ ∞

−∞
u du

[∫ ∞

−∞
f(u, v) dv

]
+
∫ ∞

−∞
v dv

[∫ ∞

−∞
f(u, v) du

]

=
∫ ∞

−∞
uf(u, ∗) du+

∫ ∞

−∞
vf(∗, v) dv.

Comparison with (6.2.3) establishes (6.1.4).
The key to this method is the formula (6.2.4) whose proof was not

given. The usual demonstration runs likes this. “Now look here: if X takes
the value u and Y takes the value v, then X + Y takes the value u + v,
and the probability that X = u and Y = v is f(u, v) du dv. See?” This
kind of talk must be qualified as hand-waving or brow-beating. But it is
a fact that applied scientists find such “demonstrations” quite convincing
and one should go along until a second look becomes necessary, if ever.
For the present the reader is advised to work out Exercise 40, which is the
discrete analogue of the density argument above and is perfectly rigorous.
These methods will be used again in the next section.

Example 3. Recall Example 5 in §4.2. The Sn’s being the successive times
when the claims arrive, let us put

S1 = T1, S2 − S1 = T2, . . . , Sn − Sn−1 = Tn, . . . .

Thus the Tn’s are the interarrival times. They are significant not only for
our example of insurance claims, but also for various other models such
as the “idle periods” for sporadically operated machinery, or “gaps” in a
traffic pattern when the T ’s measure distance instead of time. In many
applications it is these T ’s that are subject to statistical analysis. In the
simplest case we may assume them to be exponentially distributed as in
Example 12 of §4.5. If the density is λe−λt for all Tn, then E(Tn) = 1/λ.
Since

Sn = T1 + · · ·+ Tn,

we have by Theorem 1 in the density case

E(Sn) = E(T1) + · · ·+ E(Tn) =
n

λ
.

Observe that there is no assumption about the independence of the T ’s,
so that mutual influence between them is allowed. For example, several
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accidents may be due to the same cause such as a 20-car smash-up on the
freeway. Furthermore, the T ’s may have different λ’s due, e.g., to diurnal
or seasonal changes. If E(Tn) = 1/λn then

E(Sn) =
1
λ1

+ · · ·+ 1
λn

.

We conclude this section by solving a problem left over from §1.4 and
Exercise 20 in Chapter 1; cf. also Problem 6 in §3.4.

Poincaré’s Formula. For arbitrary events A1, . . . , An we have

P


 n⋃

j=1

Aj


 =

∑
j

P (Aj)−
∑
j,k

P (AjAk) +
∑
j,k,l

P (AjAkAl) (6.2.5)

−+ · · ·+ (−1)n−1P (A1 · · ·An),

where the indices in each sum are distinct and range from 1 to n.

Proof: Let αj = IAj
be the indicator of Aj . Then the indicator of Ac

1 · · ·Ac
n

is
∏n

j=1(1− αj); hence that of its complement is given by

IA1 ∪ · · · ∪An = 1−
n∏

j=1

(1− αj) =
∑
j

αj −
∑
j,k

αjαk

+
∑
j,k,l

αjαkαl −+ · · ·+ (−1)n−1α1 · · ·αn.

Now the expectation of an indicator random variable is just the probability
of the corresponding event:

E(IA) = P (A).

If we take the expectation of every term in the expansion above, and use
(6.1.7) on the sums and differences, we obtain (6.2.5). [Henri Poincaré
[1854–1912] was called the last universalist of mathematicians; his contri-
butions to probability theory is largely philosophical and pedagogical. The
formula above is a version of the “inclusion-exclusion principle” attributed
to Sylvester.]

Example 4. (Matching problem, or problem of rencontre). Two sets of
cards both numbered 1 to n are randomly matched. What is the probability
of at least one match?
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Solution. Let Aj be the event that the jth cards are matched, regardless
of the others. There are n! permutations of the second set against the first
set, which may be considered as laid out in natural order. If the jth cards
match, that leaves (n− 1)! permutations for the remaining cards, hence

P (Aj) =
(n− 1)!

n!
=

1
n
. (6.2.6)

Similarly if the jth and kth cards are both matched, where j �= k, that
leaves (n− 2)! permutations for the remaining cards, hence

P (AjAk) =
(n− 2)!

n!
=

1
n(n− 1)

; (6.2.7)

next if j, k, l are all distinct, then

P (AjAkAl) =
(n− 3)!

n!
=

1
n(n− 1)(n− 2)

,

and so on. Now there are
(
n
1

)
terms in the first sum on the right side of

(6.2.5),
(
n
2

)
terms in the second,

(
n
3

)
in the third, etc. Hence altogether the

right side is equal to(
n

1

)
1
n
−
(
n

2

)
1

n(n− 1)
+
(
n

3

)
1

n(n− 1)(n− 2)
−+ · · ·+ (−1)n−1 1

n!

= 1− 1
2!

+
1
3!
−+ · · ·+ (−1)n−1 1

n!
.

Everybody knows (?) that

1− e−1 = 1− 1
2!

+
1
3!
−+ · · ·+ (−1)n−1 1

n!
+ · · · =

∞∑
n−1

(−1)n−1

n!
.

This series converges very rapidly; in fact, it is easy to see that∣∣∣∣1− e−1 −
(
1− 1

2!
+

1
3!
−+ · · ·+ (−1)n−1 1

n!

)∣∣∣∣ ≤ 1
(n+ 1)!

.

Hence as soon as n ≥ 4, 1/(n + 1)! ≤ 1/5! = 1/120, and the probability
of at least one match differs from 1− e−1 ≈ .63 by less than .01. In other
words, the probability of no match is about .63 for all n ≥ 4.

What about the expected number of matches? The random number of
matches is given by

N = IA1 + · · ·+ IAn
. (6.2.8)
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[Why? Think this one through thoroughly and remember that the A’s are
neither disjoint nor independent.] Hence its expectation is, by another ap-
plication of Theorem 1,

E(N) =
n∑

j=1

E(IAj
) =

n∑
j=1

P (Aj) = n · 1
n

= 1,

namely exactly 1 for all n. This is neat, but it must be considered as a
numerical accident.

6.3. Multiplication theorem; variance and covariance

We have indicated that Theorem 1 is really a general result in integration
theory that is widely used in many branches of mathematics. In contrast,
the next result requires stochastic independence and is special to probabil-
ity theory.

Theorem 2. If X and Y are independent summable random variables,
then

E(XY ) = E(X)E(Y ). (6.3.1)

Proof: We will prove this first when Ω is countable. Then both X and Y
have a countable range. Let {xj} denote all the distinct values taken by
X, similarly {yk} for Y . Next, let

Ajk = {w | X(ω) = xj , Y (ω) = yk},

namely Ajk is the sample subset for which X = xj and Y = yk. Then the
sets Ajk, as (j, k) range over all pairs of indices, are disjoint [why?] and
their union is the whole space:

Ω =
∑
j

∑
k

Ajk.

The random variable XY takes the value xjyk on the set Ajk, but some
of these values may be equal, e.g., for xj = 2, yk = 3 and xj = 3, yk = 2.
Nevertheless we get the expectation of XY by multiplying the probability
of each Ajk with its value on the set, as follows:

E(XY ) =
∑
j

∑
k

xjykP (Ajk). (6.3.2)
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This is a case of (4.3.15) and amounts merely to a grouping of terms in
the defining series

∑
ωX(ω)Y (ω)P (ω). Now by the assumption of indepen-

dence,

P (Ajk) = P (X = xj)P (Y = yk).

Substituting this into (6.3.2), we see that the double sum splits into simple
sums as follows:∑

j

∑
k

xjykP (X = xj)P (Y = yk)

=

{∑
j

xjP (X = xj)

}{∑
k

ykP (Y = yk)

}
= E(X)E(Y ).

Here again the reassembling is justified by absolute convergence of the
double series in (6.3.2).

Next, we prove the theorem when (X,Y ) has a joint density function f ,
by a method similar to that used in §6.2. Analogously to (6.2.4), we have

E(XY ) =
∫ ∞

−∞

∫ ∞

−∞
uvf(u, v) du dv.

Since we have by (5.5.9), using the notation of §4.6,

f(u, v) = f(u, ∗)f(∗, v),

the double integral can be split as follows:∫ ∞

−∞
uf(u, ∗) du

∫ ∞

−∞
vf(∗, v) dv = E(X)E(Y ).

Strictly speaking, we should have applied the calculations first to |X|
and |Y |. These are also independent by Proposition 6 of §5.5, and we get

E(|XY |) = E(|X|)E(|Y |) <∞.

Hence XY is summable and the manipulations above on the double series
and double integral are valid. [These fussy details often distract from the
main argument but are a necessary price to pay for mathematical rigor.
The instructor as well as the reader is free to overlook some of these at his
or her own discretion.]

The extension to any finite number of independent summable random
variables is immediate:

E(X1 · · ·Xn) = E(X1) · · ·E(Xn). (6.3.3)
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This can be done directly or by induction. In the latter case we need that
X1X2 is independent of X3, etc. This is true and was mentioned in §5.5—
another fussy detail.

In the particular case of Theorem 2 where each Xj is the indicator of
an event Aj , (6.3.3) reduces to

P (A1 · · ·An) = P (A1) · · ·P (An).

This makes it crystal clear that Theorem 2 cannot hold without restriction
on the dependence. Contrast this with the corresponding case of (6.1.7):

E(IA1 + · · ·+ IAn
) = P (A1) + · · ·+ P (An).

Here there is no condition whatsoever on the events such as their being
disjoint, and the left member is to be emphatically distinguished from
P (A1 ∪ · · · ∪ An) or any other probability. This is the kind of confusion
that has pestered pioneers as well as beginners. It is known as Cardano’s
paradox. [Cardano (1501–76) wrote the earliest book on games of chance.]

Example 5. Iron bars in the shape of slim cylinders are test-measured.
Suppose the average length is 10 inches and average area of ends is 1 square
inch. The average error made in the measurement of the length is .005 inch,
that in the measurement of the area is .01 square inch. What is the average
error made in estimating their weights?

Since weight is a constant times volume, it is sufficient to consider the
latter: V = LA where L = length, A = area of ends. Let the errors be ∆L
and ∆A, respectively; then the error in V is given by

∆V = (L+∆L)(A+∆A)− LA = L∆A+A∆L+∆L∆A.

Assuming independence between the measurements, we have

E(∆V ) = E(L)E(∆A) +E(A)E(∆L) + E(∆A)E(∆L)

= 10 · 1
100

+ 1 · 1
200

+
1

100
· 1
200

= .105 cubic inch if the last term is ignored.

Definition of Moment. For positive integer r, the mathematical expec-
tation E(Xr) is called the rth moment [moment of order r] of X. Thus if
Xr has a finite expectation, we say that X has a finite rth moment. For
r = 1, of course, the first moment is just the expectation or mean.

The case r = 2 is of special importance. Since X2 ≥ 0, we shall call
E(X2) the second moment of X whether it is finite or equal to +∞ de-
pending on whether the defining series [in a countable Ω]

∑
ωX

2(ω)P (ω)
converges or diverges.
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When the mean E(X) is finite, it is often convenient to consider

X0 = X − E(X) (6.3.4)

instead of X because its first moment is equal to zero. We shall say X0 is
obtained from X by centering.

Definition of Variance and Standard Deviation. The second moment
of X0 is called the variance of X and denoted by σ2(X); its positive square
root σ(X) is called the standard deviation of X.

There is an important relation among E(X), E(X2), and σ2(X), as
follows.

Theorem 3. If E(X2) is finite, then so is E(|X|). We then have

σ2(X) = E(X2)− E(X)2; (6.3.5)

consequently,

E(|X|)2 ≤ E(X2). (6.3.6)

Proof: Since

X2 − 2|X|+ 1 = (|X| − 1)2 ≥ 0,

we must have (why?) E(X2 − 2|X| + 1) ≥ 0, and therefore E(X2) + 1 ≥
2E(|X|) by Theorem 1 and (6.1.5). This proves the first assertion of the
theorem. Next we have

σ2(X) = E{(X − E(X))2} = E{X2 − 2E(X)X +E(X)2}

= E(X2)− 2E(X)E(X) +E(X)2 = E(X2)− E(X)2.

Since σ2(X) ≥ 0 from the first equation above, we obtain (6.3.6) by sub-
stituting |X| for X in (6.3.5).

What is the meaning of σ(X)? To begin with, X0 is the deviation of X
from its mean and can take both positive and negative values. If we are only
interested in its magnitude then the mean absolute deviation is E(|X0|) =
E(|X − E(X)|). This can actually be used but it is difficult for calculations.
So we consider instead the mean square deviation E(|X0|2), which is the
variance. But then we should cancel out the squaring by extracting the root
afterward, which gives us the standard deviation +

√
E(|X0|2). This then

is a gauge of the average deviation of a random variable [sample value] from
its mean. The smaller it is, the better the random values cluster around
its average and the population is well centered or concentrated. The true
significance will be seen later when we discuss the convergence to a normal
distribution in Chapter 7.
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Observe that X and X + c have the same variance for any constant
c; in particular, this is the case for X and X0. The next result resembles
Theorem 1, but only in appearance.

Theorem 4. If X and Y are independent and both have finite variances,
then

σ2(X + Y ) = σ2(X) + σ2(Y ). (6.3.7)

Proof: By the preceding remark, we may suppose that X and Y both have
mean zero. Then X+Y also has mean zero and the variances in (6.3.7) are
the same as second moments. Now

E(XY ) = E(X)E(Y ) = 0

by Theorem 2, and

E{(X + Y )2} = E{X2 + 2XY + Y 2}

= E(X2) + 2E(XY ) + E(Y 2) = E(X2) +E(Y 2)

by Theorem 1, and this is the desired result.
The extension of Theorem 4 to any finite number of independent ran-

dom variables is immediate. However, there is a general formula for the
second moment without the assumption of independence, which is often
useful. We begin with the algebraic identity:

(X1 + · · ·+Xn)2 =
n∑

j=1

X2
j + 2

∑
1≤j<k≤n

XjXk.

Taking expectations of both sides and using Theorem 1, we obtain

E{(X1 + · · ·+Xn)2} =
n∑

j=1

E(X2
j ) + 2

∑
1≤j<k≤n

E(XjXk). (6.3.8)

When the X’s are centered and assumed to be independent, then all the
mixed terms in the second sum above vanish and the result is the extension
of Theorem 4 already mentioned.

Let us introduce two real indeterminants [dummy variables] ξ and η
and consider the identity:

E{(Xξ + Y η)2} = E(X2)ξ2 + 2E(XY )ξη + E(Y 2)η2.

The right member is a quadratic form in (ξ, η) and it is never negative
because the left member is the expectation of a random variable which
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does not take negative values. A well-known result in college algebra says
that the coefficients of such a quadratic form aξ2 +2bξη+ cη2 must satisfy
the inequality b2 ≤ ac. Hence in the present case

E(XY )2 ≤ E(X2)E(Y 2). (6.3.9)

This is called the Cauchy–Schwarz inequality.
If X and Y both have finite variances, then the quantity

E(X0Y 0) = E{(X −E(X))(Y − E(Y ))}

= E{XY −XE(Y )− Y E(X) +E(X)E(Y )}

= E(XY )− E(X)E(Y )− E(Y )E(X) +E(X)E(Y )

= E(XY )− E(X)E(Y )

is called the covariance of X and Y and denoted by Cov (X,Y ); the quan-
tity

ρ(X,Y ) =
Cov (X,Y )
σ(X)σ(Y )

is called the coefficient of correlation between X and Y , provided of course
the denominator does not vanish. If it is equal to zero, then X and Y
are said to be uncorrelated. This is implied by independence but is in
general a weaker property. As a consequence of (6.3.9), we always have
−1 ≤ ρ(X,Y ) ≤ 1. The sign as well as the absolute value of ρ gives a sort
of gauge of the mutual dependence between the random variable. ∗ See also
Exercise 30 of Chapter 7.

Example 6. The most classical application of the preceding results is to
the case of Bernoullian random variables (see Example 9 of §4.4). These
are independent with the same probability distribution as follows:

X =

{
1 with probability p;
0 with probability q = 1− p.

(6.3.10)

We have encountered them in coin tossing (Example 8 of §2.4), but the
scheme can be used in any repeated trials in which there are only two
outcomes: success (X = 1) and failure (X = 0). For instance, Example 1
in §6.1 is the case where p = 1/100 and the monetary unit is “ten grand.”
The chances of either “cure” or “death” in a major surgical operation is
another illustration.

∗The mathematician Emil Artin told me the following story in 1947. “Everybody
knows that probability and statistics are the same thing, and statistics is nothing but
correlation. Now the correlation is just the cosine of an angle. Thus, all is trivial.”



6.3 Multiplication theorem; variance and covariance 179

The mean and variance of X are easy to compute:

E(X) = p, σ2(X) = p− p2 = pq.

Let {Xn, n ≥ 1} denote Bernoullian random variables and write

Sn = X1 + · · ·+Xn (6.3.11)

for the nth partial sum. It represents the total number of successes in n
trials. By Theorem 1,

E(Sn) = E(X1) + · · ·+ E(Xn) = np. (6.3.12)

This would be true even without independence. Next by Theorem 3,

σ2(Sn) = σ2(X1) + · · ·+ σ2(Xn) = npq. (6.3.13)

The ease with which these results are obtained shows a great technical ad-
vance. Recall that (6.3.12) has been established in (4.4.16), via the binomial
distribution of Sn and a tricky computation. A similar method is available
for (6.3.13) and the reader is strongly advised to carry it out for practice
and comparison. But how much simpler is our new approach, going from
the mean and variance of the individual summands to those of the sum
without the intervention of probability distributions. In more complicated
cases the latter will be very hard if not impossible to get. That explains
why we are devoting several sections to the discussion of mean and variance
which often suffice for theoretical as well as practical purposes.

Example 7. Returning to the matching problem in §6.2, let us now com-
pute the standard deviation of the number of matches. The IAj

’s in (6.2.8)
are not independent, but formula (6.3.8) is applicable and yields

E(N2) =
n∑

j=1

E(I2
Aj

) + 2
∑

1≤j<k≤n

E(IAj
IAk

).

Clearly,

E(I2
Aj

) = P (Aj) =
1
n
,

E(IAj
IAk

) = P (AjAk) =
1

n(n− 1)

by (6.2.6) and (6.2.7). Substituting into the above, we obtain

E(N2) = n · 1
n
+ 2
(
n

2

)
1

n(n− 1)
= 1 + 1 = 2.
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Hence

σ2(N) = E(N2)−E(N)2 = 2− 1 = 1.

Rarely an interesting general problem produces such simple numerical an-
swers.

6.4. Multinomial distribution

A good illustration of the various notions and techniques developed in the
preceding sections is the multinomial distribution. This is a natural gener-
alization of the binomial distribution and serves as a model for repeated
trials in which there are a number of possible outcomes instead of just “suc-
cess or failure.” We begin with the algebraic formula called the multinomial
theorem:

(x1 + · · ·+ xr)n =
∑ n!

n1! · · ·nr!
xn1

1 · · ·xnr
r , (6.4.1)

where the sum ranges over all ordered r-tuples of integers n1, . . . , nr satis-
fying the following conditions:

n1 ≥ 0, . . . , nr ≥ 0, n1 + · · ·+ nr = n. (6.4.2)

When r = 2 this reduces to the binomial theorem. For then there are n+1
ordered couples

(0, n), (1, n− 1), . . . , (k, n− k), . . . , (n, 0)

with the corresponding coefficients

n!
0!n!

,
n!

1! (n− 1)!
, . . . ,

n!
k! (n− k)!

, . . . ,
n!
n! 0!

,

i.e., (
n

0

)
,

(
n

1

)
, . . . ,

(
n

k

)
, . . . ,

(
n

n

)
.

Hence the sum can be written explicitly as(
n

0

)
x0yn +

(
n

1

)
x1yn−1 + · · ·+

(
n

k

)
xkyn−k + · · ·+

(
n

n

)
xny0

=
n∑

k=0

(
n

k

)
xkyn−k.
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In the general case the n identical factors (x1 + · · ·+ xr) on the left side of
(6.4.1) are multiplied out and the terms collected on the right. Each term
is of the form xn1

1 · · ·xnr
r with the exponents nj satisfying (6.4.2). Such

a term appears n!/(n1! · · ·nr!) times because this is the number of ways
of permuting n objects (the n factors) that belong to r different varieties
(the x’s), such that nj of them belong to the jth variety. [You see some
combinatorics are in the nature of things and cannot be avoided even if
you have skipped most of Chapter 3.]

A concrete model for the multinomial distribution may be described as
follows. An urn contains balls of r different colors in the proportions

p1: · · · :pr, where p1 + · · ·+ pr = 1.

We draw n balls one after another with replacement. Assume independence
of the successive drawings, which is simulated by a thorough shake-up of
the urn after each drawing. What is the probability that so many of the
balls drawn are of each color?

Let X1, . . . , Xn be independent random variables all having the same
distribution as the X below:

X =




1 with probability p1,

2 with probability p2,
...
r with probability pr.

(6.4.3)

What is the joint distribution of (X1, . . . , Xn), namely

P (X1 = x1, . . . , Xn = xn) (6.4.4)

for all possible choices of x1, . . . , xn from 1 to r? Here the numerical values
correspond to labels for the colors. Such a quantification is not necessary
but sometimes convenient. It also leads to questions that are not intended
for the color scheme, such that the probability “X1 + · · ·+Xn = m.” But
suppose we change the balls to lottery tickets bearing different monetary
prizes, or to people having various ages or incomes, then the numerical
formulation in (6.4.3) is pertinent. What about negative or fractional val-
ues for the X’s? This can be accommodated by a linear transformation
(cf. Example 15 in §4.5) provided all possible values are commensurable,
say ordinary terminating decimals. For example, if the values are in three
decimal places and range from −10 up, then we can use

X ′ = 10000 + 1000X

instead of X. The value −9.995 becomes 10000 − 9955 = 5 in the new
scale. In a superpragmatic sense, we might even argue that the multino-
mial distribution is all we need for sampling in independent trials. For in
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reality we shall never be able to distinguish between (say) 101010
different

varieties of anything. But this kind of finitist attitude would destroy a lot
of mathematics.

Let us evaluate (6.4.4). It is equal to P (X1 = x1) · · ·P (Xn = xn) by
independence, and each factor is one of the p’s in (6.4.3). To get an explicit
expression we must know how many of the xj ’s are 1 or 2 or · · · or r?
Suppose n1 of them are equal to 1, n2 of them equal to 2, . . . , nr of them
equal to r. Then these nj ’s satisfy (6.4.2) and the probability in question
is equal to pn1

1 · · · pnr
r . It is convenient to introduce new random variables

Nj , 1 ≤ j ≤ r, as follows:

Nj = number of X’s among (X1, . . . , Xn) that take the value j.

Each Nj takes a value from 0 to n, but the random variables N1, . . . , Nr

cannot be independent since they are subject to the obvious restriction

N1 + · · ·+Nr = n. (6.4.5)

However, their joint distribution can be written down:

P (N1 = n1, . . . , Nr = nr) =
n!

n1! · · ·nr!
pn1
1 · · · pnr

r . (6.4.6)

The argument here is exactly the same as that given at the beginning of
this section for (6.4.1), but we will repeat it. For any particular, or com-
pletely specified, sequence (X1, . . . , Xn) satisfying the conditions N1 =
n1, . . . , Nr = nr, we have just shown that the probability is given by
pn1
1 · · · pnr

r . But there are n!/(n1! · · ·nr!) different particular sequences sat-
isfying the same conditions, obtained by permuting the n factors of which
n1 factors are p1, n2 factors are p2, etc. To nail this down in a simple nu-
merical example, let n = 4, r = 3, n1 = 2, n2 = n3 = 1. This means in 4
drawings there are 2 balls of color 1, and 1 ball each of color 2 and 3. All
the possible particular sequences are listed below:

(1, 1, 2, 3) (1, 1, 3, 2)
(1, 2, 1, 3) (1, 3, 1, 2)
(1, 2, 3, 1) (1, 3, 2, 1)
(2, 1, 1, 3) (3, 1, 1, 2)
(2, 1, 3, 1) (3, 1, 2, 1)
(2, 3, 1, 1) (3, 2, 1, 1)

Their number is 12 = 4!/(2! 1! 1!) and the associated probability is
12p2

1p2p3.
Formula (6.4.6), in which the indices nj range over all possible inte-

ger values subject to (6.4.2), is called the multinomial distribution for
the random variables (N1, . . . , Nr). Specifically, it may be denoted by
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M(n; r; p1, . . . , pr−1, pr) subject to p1 + · · · + pr = 1. For the binomial
case r = 2, this is often written as B(n; p), see Example 9 of §4.4.

If we divide (6.4.1) through by its left member, and put

pj =
xj

x1 + · · ·+ xr
, 1 ≤ j ≤ r,

we obtain

1 =
∑ n!

n1! · · ·nr!
pn1
1 · · · pnr

r . (6.4.7)

This yields a check that the sum of all the terms of the multinomial distri-
bution is indeed equal to 1. Conversely, since (6.4.7) is a consequence of its
probabilistic interpretation, we can deduce (6.4.1) from it, at least when
xj ≥ 0, by writing (p1 + · · · + pr)n for the left member in (6.4.7). This is
another illustration of the way probability theory can add a new meaning
to an algebraic formula; cf. the last part of §3.3.

Marginal distributions (see §4.6) of (N1, . . . , Nr) can be derived by a
simple argument without computation. If we are interested in N1 alone,
then we can lump the r − 1 other varieties as “not 1” with probability
1 − p1. Thus the multinomial distribution collapses into a binomial one
B(n; p1), namely:

P (N1 = n1) =
n!

n! (n− n1)!
pn1
1 (1− p1)n−n1 .

From this we can deduce the mean and variance of N1 as in Example 6 of
§6.3. In general,

E(Nj) = npj , σ2(Nj) = npj(1− pj), 1 ≤ j ≤ r. (6.4.8)

Next, if we are interested in the pair (N1, N2), a similar lumping yields
M(n; 3; p1, p2, p3), namely:

P (N1 = n1, N2 = n2) (6.4.9)

=
n!

n1!n2! (n− n1 − n2)!
pn1
1 pn2

2 (1− p1 − p2)n−n1−n2 .

We can now express E(N1N2) by using (4.3.15) or (6.3.2) [without inde-
pendence]:

E(N1N2) =
∑

n1n2P (N1 = n1, N2 = n2)

=
∑ n!

n1!n2!n3!
n1n2p

n1
1 pn2

2 pn3
3 ,
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where n3 = n− n1− n2, p3 = 1− p1 − p2, and the sum ranges as in (6.4.2)
with r = 3. The multiple sum above can be evaluated by generalizing the
device used in Example 9 of §4.4 for the binomial case. Take the indicated
second partial derivative below:

∂2

∂x1∂x2
(x1 + x2 + x3)n = n(n− 1)(x1 + x2 + x3)n−2

=
∑ n!

n1!n2!n3!
n1n2x

n1−1
1 xn2−1

2 xn3
3 .

Multiply through by x1x2 and then put x1 = p1, x2 = p2, x3 = p3. The
result is n(n − 1)p1p2 on one side and the desired multiple sum on the
other. Hence we have in general for j �= k:

E(NjNk) = n(n− 1)pjpk;

Cov (Nj , Nk) = E(NjNk)− E(Nj)E(Nk) (6.4.10)

= n(n− 1)pjpk − (npj)(npk) = −npjpk.

It is fun to check out the formula (6.3.8), recalling (6.4.5):

n2 = E{(N1 + · · ·+Nr)2}

=
r∑

j=1

{n(n− 1)p2
j + npj}+ 2

∑
1≤j<k≤r

n(n− 1)pjpk

= n(n− 1)


 r∑

j=1

pj


2

+ n

r∑
j=1

pj = n(n− 1) + n = n2.

There is another method of calculating E(NjNk), similar to the first
method in Example 6, §6.3. Let j be fixed and

ξ(x) =

{
1 if x = j,

0 if x �= j.

As a function ξ of the real variable x, it is just the indicator of the singleton
{j}. Now introduce the random variable

ξν = ξ(Xν) =

{
1 if Xν = j,

0 if Xν �= j.
(6.4.11)

namely, ξν is the indicator for the vent {Xν = j}. In other words, the ξν ’s
count just those Xν ’s taking the value j, so that Nj = ξ1 + · · · + ξn. Now
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we have

E(ξν) = P (Xν = j) = pj ,

σ2(ξν) = E(ξ2
ν)− E(ξν)2 = pj − p2

j = pj(1− pj).

Finally, the random variables ξ1, . . . , ξn are independent since X1, . . . , Xn

are, by Proposition 6 of §5.5. Hence by Theorems 1 and 4,

E(Nj) = E(ξ1) + · · ·+E(ξn) = npj ,

σ2(Nj) = σ2(ξ1) + · · ·+ σ2(ξn) = npj(1− pj).
(6.4.12)

Next, let k �= j and define η and ην in the same way as ξ and ξν are defined,
but with k in place of j. Consider now for 1 ≤ ν ≤ n, 1 ≤ ν′ ≤ n,

E(ξνην′) = P (Xν = j,Xν′ = k) =

{
pjpk if ν �= ν′,

0 if ν = ν′.
(6.4.13)

Finally, we calculate

E(NjNk) = E

{(
n∑

ν=1

ξν

)(
n∑

ν′=1

ην′

)}
= E




n∑
ν=1

ξνην +
∑

1≤ν �=ν′≤n

ξνην′




=
n∑

ν=1

E(ξνην) +
∑

1≤ν �=ν′≤n

E(ξνην′)

= n(n− 1)pjpk

by (6.4.13) because there are (n)2 = n(n−1) terms in the last written sum.
This is, of course, the same result as in (6.4.10).

We conclude with a simple numerical illustration of a general problem
mentioned above.

Example 8. Three identical dice are thrown. What is the probability of
obtaining a total of 9? The dice are not supposed to be symmetrical, and
the probability of turning up face j is equal to pj , 1 ≤ j ≤ 6; same for all
three dice.

Let us list the possible cases in terms of the X’s and the N ’s, respec-
tively:
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Permutation
X1 X2 X3 N1 N2 N3 N4 N5 N6 number Probability

1 2 6 1 1 1 6 6p1p3p6

1 3 5 1 1 1 6 6p1p3p5

1 4 4 1 2 3 3p1p
2
4

2 2 5 2 1 3 3p2
2p5

2 3 4 1 1 1 6 6p2p3p4

3 3 3 3 1 p3
3

Hence

P (X1 +X2 +X3 = 9) = 6(p1p2p6 + p1p3p5 + p2p3p4)

+ 3(p1p
2
4 + p2

2p5) + p3
3.

If all the p’s are equal to 1/6, then this is equal to

6 + 6 + 3 + 3 + 6 + 1
63 =

25
216

.

The numerator 25 is equal to the sum

∑ 3!
n1! · · ·n6!

,

where the nj ’s satisfy the conditions

n1 + n2 + n3 + n4 + n5 + n6 = 3,

n1 + 2n2 + 3n3 + 4n4 + 5n5 + 6n6 = 9.

There are six solutions tabulated above as possible values of the Nj ’s.
In the general context of the X’s discussed above, the probability

P (X1 + · · · + Xn = m) is obtained by summing the right side of (6.4.6)
over all (n1, . . . , nr) satisfying both (6.4.2) and

1n1 + 2n2 + · · ·+ rnr = m.

It is obvious that we need a computing machine to handle such explicit
formulas. Fortunately in most problems we are interested in cruder results
such that

P (an ≤ X1 + · · ·+Xn ≤ bn)

for large values of n. The relevant asymptotic results and limit theorems
will be the subject matter of Chapter 7. One kind of machinery needed for
this purpose will be developed in the next section.
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6.5. Generating function and the like

A powerful mathematical device, a true gimmick, is the generating function
invented by the great prolific mathematician Euler [1707–83] to study the
partition problem in number theory. Let X be a random variable taking
only nonnegative integer values with the probability distribution given by

P (X = j) = aj , j = 0, 1, 2, . . . . (6.5.1)

The idea is to put all the information contained above in a compact capsule.
For this purpose a dummy variable z is introduced and the following power
series in z set up:

g(z) = a0 + a1z + a2z
2 + · · · =

∞∑
j=0

ajz
j . (6.5.2)

This is called the generating function associated with the sequence of num-
bers {aj , j ≥ 0}. In the present case we may also call it the generating
function of the random variable X with the probability distribution (6.5.1).
Thus g is a function of z that will be regarded as a real variable, although
in some more advanced applications it is advantageous to consider z as a
complex variable. Remembering that

∑
j aj = 1, it is easy to see that the

power series in (6.5.2) converges for |z| ≤ 1. In fact, it is dominated as
follows:

|g(z)| ≤
∑
j

|aj ||z|j ≤
∑
j

aj = 1, for |z| ≤ 1.

[It is hoped that your knowledge about power series goes beyond the “ratio
test.” The above estimate is more direct and says a lot more.] Now a the-
orem in calculus asserts that we can differentiate the series term by term
to get the derivatives of g, so long as we restrict its domain of validity to
|z| < 1:

g′(z) = a1 + 2a2z + 3a3z
2 + · · · =

∞∑
n=1

nanz
n−1,

g′′(z) = 2a2 + 6a3z + · · · =
∞∑
n=2

n(n− 1)anzn−2.

(6.5.3)

In general we have

g(j)(z) =
∞∑
n=j

n(n− 1) · · · (n− j + 1)anzn−j =
∞∑
n=j

(
n

j

)
j! anzn−j . (6.5.4)
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If we set z = 0 above, all the terms vanish except the constant term:

g(j)(0) = j! aj or aj =
1
j!
g(j)(0). (6.5.5)

This shows that we can recover all the aj ’s from g. Therefore, not only does
the probability distribution determine the generating function, but also vice
versa. So there is no loss of information in the capsule. In particular, putting
z = 1 in g′ and g′′ we get by (4.3.18)

g′(1) =
∞∑
n=0

nan = E(X), g′′(1) =
∞∑
n=0

n2an −
∞∑
n=0

nan = E(X2)− E(X);

provided that the series converge, in which case (6.5.3) holds for z = 1.∗

Thus

E(X) = g′(1), E(X2) = g′(1) + g′′(1). (6.5.6)

In practice, the following qualitative statement, which is a corollary of
the above, is often sufficient.

Theorem 5. The probability distribution of a nonnegative integer-valued
random variable is uniquely determined by its generating function.

Let Y be a random variable having the probability distribution {bk, k ≥
0} where bk = P (Y = k), and let h be its generating function:

h(z) =
∞∑
k=0

bkz
k.

Suppose that g(z) = h(z) for all |z| < 1; then the theorem asserts that
ak = bk for all k ≥ 0. Consequently X and Y have the same distribution,
and this is what we mean by “unique determination.” The explicit formula
(6.5.4) of course implies this, but there is a simpler argument as follows.
Since

∞∑
k=0

akz
k =

∞∑
k=0

bkz
k, |z| < 1;

we get at once a0 = b0 by setting z = 0 in the equation. After removing
these terms we can cancel a factor z on both sides, and then get a1 = b1 by
again setting z = 0. Repetition of this process establishes the theorem. You
ought to realize that we have just reproduced a terrible proof of a standard

∗This is an Abelian theorem; cf. the discussion after (8.4.17).
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result that used to be given in some calculus text books! Can you tell what
is wrong there and how to make it correct?

We proceed to discuss a salient property of generating functions when
they are multiplied together. Using the notation above we have

g(z)h(z) =


 ∞∑

j=0

ajz
j


( ∞∑

k=0

bkz
k

)
=
∑
j

∑
k

ajbkz
j+k.

We will rearrange the terms of this double series into a power series in the
usual form. Then

g(z)h(z) =
∞∑
l=0

clz
l, (6.5.7)

where

cl =
∑

j+k=l

ajbk =
l∑

j=0

ajbl−j . (6.5.8)

The sequence {cj} is called the convolution of the two sequences {aj} and
{bj}. What does cl stand for? Suppose that the random variables X and
Y are independent. Then we have, by (6.5.8),

cl =
l∑

j=0

P (X = j)P (Y = l − j)

=
l∑

j=0

P (X = j, Y = l − j) = P (X + Y = l).

The last equation above is obtained by the rules in §5.2, as follows. Given
that X = j, we have X + Y = l if and only if Y = l − j; hence by
Proposition 2 of §5.2 [cf. (5.2.4)],

P (X + Y = l) =
∞∑
j=0

P (X = j)P (X + Y = l | X = j)

=
∞∑
j=0

P (X = j)P (Y = l − j | X = j)

=
l∑

j=0

P (X = j)P (Y = l − j),
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because Y is independent of X and it does not take negative values. In
other words, we have shown that for all l ≥ 0,

P (X + Y = l) = cl,

so that {cl, l ≥ 0} is the probability distribution of the random variable
X+Y . Therefore, by definition its generating function is given by the power
series in (6.5.7) and so equal to the product of the generating functions of
X and of Y . After an easy induction, we can state the result as follows.

Theorem 6. If the random variables X1, . . . , Xn are independent and
have g1, . . . , gn as their generating functions, then the generating function
of the sum X1 + · · ·+Xn is given by the product g1 · · · gn.

This theorem is of great importance since it gives a method to study
sums of independent random variables via generating functions, as we shall
see in Chapter 7. In some cases the product of the generating functions
takes a simple form and then we can deduce its probability distribution by
looking at its power series, or equivalently by using (6.5.5). The examples
ahead will demonstrate this method.

For future reference let us take note that given a sequence of real num-
bers {aj}, we can define the power series g as in (6.5.2). This will be called
the generating function associated with the sequence. If the series has a
nonzero radius of convergence, then the preceding analysis can be carried
over to this case without the probability interpretations. In particular, the
convolution of two such sequences can be defined as in (6.5.8), and (6.5.7) is
still valid. In §8.4 below we shall use generating functions whose coefficients
are probabilities, such that the series may diverge for z = 1.

Example 9. For the Bernoullian random variables X1, . . . , Xn (Example
6 of §6.3), the common generating function is

g(z) = q + pz

since a0 = q, a1 = p in (6.5.1). Hence the generating function of Sn =
X1 + · · · +Xn, where the X’s are independent, is given by the nth power
of g:

g(z)n = (q + pz)n.

Its power series is therefore known from the binomial theorem, namely,

g(z)n =
n∑

k=0

(
n

k

)
qn−kpkzk.
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On the other hand, by definition of a generating function, we have

g(z)n =
∞∑
k=0

P (Sn = k)zk.

Comparison of the last two expressions shows that

P (Sn = k) =
(
n

k

)
pkqn−k, 0 ≤ k ≤ n; P (Xn = k) = 0, k > n.

This is the Bernoulli formula we learned sometime ago, but the derivation
is new and it is machine-processed.

Example 10. For the waiting-time distribution (§4.4), we have pj =
qj−1p, j ≥ 1; hence

g(z) =
∞∑
j=1

qj−1pzj

=
p

q

∞∑
j=1

(qz)i =
p

q

qz

1− qz
=

pz

1− qz
. (6.5.9)

Let Sn = T1 + · · ·+ Tn where the T ’s are independent and each has the g
in (6.5.9) as generating function. Then Sn is the waiting time for the nth
success. Its generating function is given by gn, and this can be expanded
into a power series by using the binomial series and (5.4.4):

g(z)n =
(

pz

1− qz

)n

= pnzn
∞∑
j=0

(
−n
j

)
(−qz)j

=
∞∑
j=0

n(n+ 1) · · · (n+ j − 1)
j!

pnqjzn+j =
∞∑
j=0

(
n+ j − 1
n− 1

)
pnqjzn+j

=
∞∑
k=n

(
k − 1
n− 1

)
pnqk−nzk.

Hence we obtain for j ≥ 0,

P (Sn = n+ j) =
(
n+ j − 1

j

)
pnqj =

(
−n
j

)
pn(−q)j .

The probability distribution given by
{(−n

j

)
pn(−q)j , j ≥ 0

}
is called the

negative binomial distribution of order n. The discussion above shows that
its generating function is given by(

g(z)
z

)n

=
(

p

1− qz

)n

. (6.5.10)
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Now g(z)/z is the generating function of T1 − 1 (why?), which repre-
sents the number of failures before the first success. Hence the generating
function in (6.5.10) is that of the random variable Sn−n, which is the total
number of failures before the nth success.

Example 11. For the dice problem at the end of §6.4, we have pj = 1/6
for 1 ≤ j ≤ 6 if the dice are symmetrical. Hence the associated generating
function is given by

g(z) =
1
6
(z + z2 + z3 + z4 + z5 + z6) =

z(1− z6)
6(1− z)

.

The generating function of the total points obtained by throwing three dice
is just g3. This can be expanded into a power series as follows:

g(z)3 =
z3

63

(1− z6)3

(1− z)3
=

z3

63 (1− 3z6 + 3z12 − z18)(1− z)−3

=
z3

63 (1− 3z6 + 3z12 − z18)
∞∑
k=0

(
k + 2
2

)
zk.

(6.5.11)

The coefficient of z9 is easily found by inspection, since there are only two
ways of forming it from the product above:

1
63

{
1 ·
(
6 + 2
2

)
− 3 ·

(
0 + 2
2

)}
=

28− 3
63 =

25
63 .

You may not be overly impressed by the speed of this new method,
as compared with a combinatorial counting done in §6.4, but you should
observe how the machinery works:

Step 1◦: Code the probabilities {P (X = j), j ≥ 0} into a generating
function g.

Step 2◦: Process the function by raising it to nth power gn.
Step 3◦: Decode the probabilities {P (Sn = k), k ≥ 0} from gn by ex-

panding it into a power series.

A characteristic feature of machine process is that parts of it can be per-
formed mechanically such as the manipulations in (6.5.10). We need not
keep track of what we are doing at every stage: plug something in, push a
few buttons or crank some knobs, and out comes the product. To carry this
gimmickry one step further, we will now exhibit the generating function of
X in a form Euler would not have recognized [the concept of a random
variable came late, not much before 1930]:

g(z) = E(zX), (6.5.12)
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namely the mathematical expectation of zX . Let us first recall that for
each z, the function ω → zX(ω) is indeed a random variable. For countable
Ω this is a special case of Proposition 2 in §4.2. When X takes the value
j, zX takes the value zj ; hence by (4.3.15) the expectation of zX may be
expressed as

∑∞
j=0 P (X = j)zj , which is g(z).

An immediate payoff is a new and smoother proof of Theorem 6 based
on different principles. The generating function of X1+ · · ·+Xn is, by what
has just been said, equal to

E(zX1+···+Xn) = E(zX1zX2...zXn)

by the law of exponentiation. Now the random variables zX1 , zX2 , . . . , zXn

are independent by Proposition 6 of §5.5; hence by Theorem 2 of §6.3

E(zX1zX2 · · · zXn) = E(zX1)E(zX2) · · ·E(zXn). (6.5.13)

Since E(zXj ) = gj(z) for each j, this completes the proof of Theorem 6.
Another advantage of the expression E(zX) is that it leads to exten-

sions. IfX can take arbitrary real values, this expression still has a meaning.
For simplicity let us consider only 0 < z ≤ 1. Every such z can be rep-
resented as e−λ with 0 ≤ λ < ∞; in fact, the correspondence z = e−λ is
one-to-one; see Figure 25.

Now consider the new expression after such a change of variable:

E(e−λX), 0 ≤ λ <∞. (6.5.14)

If X has the probability distribution in (6.5.1), then

E(e−λX) =
∞∑
j=0

aje
−jλ,

which is of course just our previous g(z) with z = e−λ. More generally if
X takes the values {xj} with probabilities {pj}, then

E(e−λX) =
∑
j

pje
−λxj (6.5.15)

provided that the series converges absolutely. This is the case if all the
values xj ≥ 0 because then e−λxj ≤ 1 and the series is dominated by∑

j pj = 1. Finally, if X has the density function f , then by (4.5.6) with
ϕ(u) = e−λu:

E(e−λX) =
∫ ∞

−∞
e−λuf(u) du, (6.5.16)
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Figure 25

provided that the integral converges. This is the case if f(u) = 0 for u < 0,
namely when X does not take negative values. We have therefore extended
the notion of a generating function through (6.5.14) to a large class of
random variables. This new gimmick is called the Laplace transform of X.
In the analytic form given on the right side of (6.5.16) it is widely used in
operational calculus, differential equations, and engineering applications.

If we replace the negative real parameter −λ in (6.5.14) by the purely
imaginary iθ, where i =

√
−1 and θ is real, we get the Fourier transform

E(eiθX); in probability theory it is also known as the characteristic function
of X. Let us recall De Moivre’s formula (which used to be taught in high
school trigonometry courses) for real u:

eiu = cosu+ i sinu;

and its consequence

|eiu|2 = (cosu)2 + (sin u)2 = 1.

This implies that for any real random variable X, we have |eiθX | = 1; hence
the function ϕ:

ϕ(θ) = E(eiθX), −∞ < θ <∞, (6.5.17)

is always defined; in fact, |ϕ(θ)| ≤ 1 for all θ. Herein lies the superiority of
this new transform over the others discussed above, that cannot be defined
sometimes because the associated series or integral does not converge. On
the other hand, we pay the price of having to deal with complex variables
and functions which lie beyond the scope of an elementary text. Neverthe-
less, we will invoke both the Laplace and Fourier transforms in Chapter 7,
and for future reference let us record the following theorem.

Theorem 7. Theorems 5 and 6 remain true when the generating function
is replaced by the Laplace transform (for nonnegative random variables) or
the Fourier transform (for arbitrary random variables).
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In the case of Theorem 6, this is immediate from (6.5.13) if the variable
z there is replaced by e−λ or eiθ. For Theorem 5 the analogues lie deeper
and require more advanced analysis (see [Chung 1, Chapter 6]). The reader
is asked to accept their truth by analogy from the discussion above leading
from E(zX) to E(e−λX) and E(eiθX). After all, analogy is a time-honored
method of learning.

Exercises

1. The Massachusetts state lottery has 1 million tickets. There is one first
prize of $50000; 9 second prizes of $2500 each; 90 third prizes of $250
each; 900 fourth prizes of $25 each. What is the expected value of one
ticket? Five tickets?

2. Suppose in the lottery above only 80% of the tickets are sold. What is
the expected total to be paid out in prizes? If each ticket is sold at 50/c,
what is the expected profit for the state?

3. Five residential blocks are polled for racial mixture. The number of
houses having black or white owners listed below:

1 2 3 4 5

Black 3 2 4 3 4
White 10 10 9 11 10

If two houses are picked at random from each block, what is the ex-
pected number of black-owned ones among them?

4. Six dice are thrown once. Find the mean and variance of the total
points. Same question if the dice are thrown n times.

5. A lot of 1000 screws contain 1% with major defects and 5% with minor
defects. If 50 screws are picked at random and inspected, what are the
expected numbers of major and minor defectives?

6. In a bridge hand what is the expected number of spades? Of different
suits? [Hint: for the second question let Xj = 1 or 0 depending on
whether the jth suit is represented in the hand or not; consider E(X1+
X2 +X3 +X4).]

7. An airport bus deposits 25 passengers at 7 stops. Assume that each
passenger is as likely to get off at any stop as another and that they
act independently. The bus stops only if someone wants to get off.
What is the probability that nobody gets off at the third stop? What
is the expected number of stops it will make? [Hint: let Xj = 1 or 0
according as someone gets off at the jth stop or not.]

*8. Given 500 persons picked at random, (a) what is the probability that
more than one of them have January 1 as birthday? (b) What is the
expected number among them who have this birthday? (c) What is the
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expected number of days of the year that are birthdays of at least one
of these persons? (d) What is the expected number of days of the year
that are birthdays of more than one of these persons? Ignore leap years
for simplicity. [Hint: for (b), (c), (d), proceed as in No. 7.]

*9. Problems 6, 7, and 8 are different versions of occupancy problems, which
may be formulated generally as follows. Put n unnumbered tokens into
m numbered boxes (see §3.3). What is the expected number of boxes
that get exactly [or at least] k tokens? One can also ask for instance:
what is the expected number of tokens that do not share its box with
any other token? Answer these questions and rephrase them in the
language of Problem 6, 7, or 8.

*10. Using the occupancy model above, find the distribution of the tokens
in the boxes, namely, the probabilities that exactly nj tokens go into
the jth box, 1 ≤ j ≤ m. Describe this distribution in the language of
Problem 6, 7, or 8.

11. An automatic machine produces a defective item with probability 2%.
When this happens an adjustment is made. Find the average number
of good items produced between adjustments.

12. Exactly one of six similar-looking keys is known to open a certain door.
If you try them one after another, how many do you expect to have
tried before the door is opened?

13. One hundred electric bulbs are tested. If the probability of failure is p
for each bulb, what are the mean and standard deviation of the number
of failures? Assume stochastic independence of the bulbs.

*14. Fifty persons queue up for chest X-ray examinations. Suppose there
are four “positive” cases among them. What is the expected number of
“negative” cases before the first positive case is spotted? [Hint: think
of the four as partitioning walls for the others. Thus the problem is
equivalent to finding the expected number of tokens in the first box
under (IV′) of §3.3.]

15. There areN coupons numbered 1 toN in a bag. Draw one after another
with replacement. (a) What is the expected number of drawings until
the first coupon drawn is drawn again? (b)* What is the expected
number of drawings until the first time a duplication occurs? [Hint: for
(b) compute first the probability of no duplication in n drawings.]

*16. In the problem above, what is the expected maximum coupon number
in n drawings? The same question if the coupons are drawn without
replacement. [Hint: find P (maximum ≤ k).]

17. In Pólya’s urn scheme with c ≥ −1 (see §5.4):
(a) What is the expected number of red balls in n drawings?
(b) What is the expected number of red balls in the urn after the nth

drawing (and putting back c balls)?
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18. If pn ≥ 0 and rn =
∑∞

k=n pk show that

∞∑
n=1

npn =
∞∑
n=1

rn

whether both series converge or diverge to +∞. Hence if X is a random
variable taking nonnegative integer values, we have

E(X) =
∞∑
n=1

P (X ≥ n). (6.6.1)

[Hint: Write pn = rn−rn+1, rearrange the series (called Abel’s method
of summation in some calculus textbooks).]

19. Apply the formula (6.6.1) to compute the mean waiting time discussed
in Example 8 of §4.4. Note that P (X ≥ n) = qn−1, n ≥ 1.

20. Let X1, . . . , Xm be independent nonnegative integer-valued random
variables all having the same distribution {pn, n ≥ 0}; and rn =∑∞

k=n pk. Show that

E{min(X1, . . . , Xm)} =
∞∑
n=1

rmn .

[Hint: use No. 18.]
21. Let X be a nonnegative random variable with density function f . Show

that if r(u) =
∫∞
u

f(t) dt, then

E(X) =
∫ ∞

0
P (X ≥ u) du =

∫ ∞

0
r(u) du. (6.6.2)

[Hint: this is the analogue of No. 18. Calculation with integrals is
smoother than with sums.]

22. Apply formula (6.6.2) to an X with the exponential density λe−λt.
23. The duration T of a certain type of telephone call is found to satisfy

the relation

P (T > t) = ae−λt + (1− a)e−µt, t ≥ 0,

where 0 ≤ a ≤ 1, λ > 0, µ > 0 are constants determined statistically.
Find the mean and variance of T . [Hint: for the mean a quick method
is to use No. 21.]

24. Suppose that the “life” of an electronic device has the exponential
density λe−λt in hours. Knowing that it has been in use for n hours,
how much longer can it be expected to last? Compare this with its
initial life expectancy. Do you see any contradiction?
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25. Let five devices described above be tested simultaneously. (a) How long
can you expect before one of them fails? (b) How long can you expect
before all of them fall?

26. The average error committed in measuring the diameter of a circular
disk is .2% and the area of the disk is computed from this measurement.
What is the average percentage error in the area if we ignore the square
of the percentage error in the diameter?

27. Express the mean and variance of aX+b in terms of those of X, where
a and b are two constants. Apply this to the conversion of temperature
from Centigrade to Fahrenheit:

F =
9
5
C + 32.

28. A gambler figures that he can always beat the house by doubling his
bet each time to recoup any losses. Namely he will quit as soon as he
wins, otherwise he will keep doubling his ante until he wins. The only
drawback to this winning system is that he may be forced to quit when
he runs out of funds. Suppose that he has a capital of $150 and begins
with a dollar bet, and suppose he has an even chance to win each time.
What is the probability that he will quit winning, and how much will
he have won? What is the probability that he will quit because he does
not have enough left to double his last ante, and how much will he
have lost in this case? What is his overall mathematical expectation by
using this system? The same question if he will bet all his remaining
capital when he can no longer double.

29. Pick n points at random in [0, 1]. Find the expected value of the max-
imum, minimum, and range (= maximum minus minimum).

30. Consider n independent events Aj with P (Aj) = pj , 1 ≤ j ≤ n. Let
N denote the (random) number of occurrences among them. Find the
generating function of N and compute E(N) from it.

31. Let {pj , j ≥ 0} be a probability distribution and

uk =
k∑

j=0

pj ,

g(z) =
∞∑
k=0

ukz
k.

Show that the power series converges for |z| < 1. As an example let Sn
be as in Example 9 of §6.5, and pj = P{Sn = j}. What is the meaning
of uk? Find its generating function g.
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32. It is also possible to define the generating function of a random variable
that takes positive and negative values. To take a simple case, if

P (X = k) = pk, k = 0,±1,±2, . . . ,±N,

then

g(z) =
+N∑

k=−N

pkz
k

is a rational function of z, namely the quotient of two polynomials. Find
g when pk = 1/(2N+1) above, which corresponds to the uniform distri-
bution over the set of integers {−N,−(N − 1), . . . ,−1, 0,+1, . . . , N −
1, N}. Compute the mean from g′ for a check.

33. Let {Xj , 1 ≤ j ≤ n} be independent random variables such that

Xj =




1 with probability
1
4
,

0 with probability
1
2
,

−1 with probability
1
4
;

and Sn =
∑n

j=1 Xj . Find the generating function of Sn in the sense
of No. 32, and compute P (Sn = 0) from it. As a concrete application,
suppose A and B toss an unbiased coin n times each. What is the
probability that they score the same number of heads? [This problem
can also be solved without using generating function, by using formula
(3.3.9).]

*34. In the coupon-collecting problem of No. 15, let T denote the number
of drawings until a complete set of coupons is collected. Find the gen-
erating function of T . Compute the mean from it for a beautiful check
with (6.1.8). [Hint: Let Tj be the waiting time between collecting the
(j − 1)th and the jth new card; then it has a geometric distribution
with pj = (N − j + 1)/N . The Tj ’s are independent.]

35. Let X and g be as in (6.5.1) and (6.5.2). Derive explicit formulas for
the first four moments of X in terms of g and its derivatives.

36. Denote the Laplace transform of X in (6.5.16) by L(λ). Express the
nth moment of X in terms of L and its derivatives.

37. Find the Laplace transform corresponding to the density function f
given below.
(a) f(u) = 1/c in (0, c), c > 0.
(b) f(u) = 2u/c2 in (0, c), c > 0.
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(c) f(u) =
(
λnun−1/(n− 1)!

)
e−λu in [0,∞), λ > 0, n ≥ 1. [First verify

that this is a density function! The corresponding distribution is
called the gamma distribution Γ(n;λ).]

38. Let Sn = T1 + · · · + Tn, where the Tj ’s are independent random vari-
ables all having the density λe−λt. Find the Laplace transform of Sn.
Compare with the result in No. 37(c). We can now use Theorem 7 to
identify the distribution of Sn.

*39. Consider a population of N taxpayers paying various amounts of taxes,
of which the mean is m and variance is σ2. If n of these are selected
at random, show that the mean and variance of their total taxes are
equal to

nm and
N − n

N − 1
nσ2,

respectively. [Hint: denote the amounts by X1, . . . , Xn and use (6.3.8).
Some algebra may be saved by noting that E(XjXk) does not depend
on n, so it can be determined when n = N , but this trick is by no
means necessary.]

40. Prove Theorem 1 by the method used in the proof of Theorem 2. Do
the density case as well.

41. Let a(·) and b(·) be two probability density functions and define their
convolution c(·) as follows:

c(v) =
∫ ∞

−∞
a(u)b(v − u) du, −∞ < v <∞;

cf. (6.5.8). Show that c(·) is also a probability density function, often
denoted by a ∗ b.

*42. If a(u) = λe−λu for u ≥ 0, find the convolution of a(·) with itself. Find
by induction the n-fold convolution a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸

n times

. [Hint: the result is
given in No. 37(c).]

43. Prove Theorem 4 for nonnegative integer-valued random variables by
using generating functions. [Hint: express the variance by generating
functions as in No. 35 and then use Theorem 6.]

44. Prove the analogues of Theorem 6 for Laplace and Fourier transforms.
45. Consider a sequence of independent trials each having probability p

for success and q for failure. Show that the probability that the nth
success is preceded by exactly j failures is equal to

(
n+ j − 1

j

)
pnqj .
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*46. Prove the formula

∑
j+k=l

(
m+ j − 1

j

)(
n+ k − 1

k

)
=
(
m+ n+ l − 1

l

)

where the sum ranges over all j ≥ 0 and k ≥ 0 such that j + k = l.
[Hint: this may be more recognizable in the form

∑
j+k=l

(
−m
j

)(
−n
k

)
=
(
−m− n

l

)
;

cf. (3.3.9). Use (1− z)−m(1− z)−n = (1− z)−m−n.]
*47. The general case of the problem of points (Example 6 of §2.2) is as

follows. Two players play a series of independent games in which A
has probability p, B has probability q = 1 − p of winning each game.
Suppose that A needs m and B needs n more games to win the series.
Show that the probability that A will win is given by either one of the
expressions below:
(i)

m+n−1∑
k=m

(
m+ n− 1

k

)
pkqm+n−1−k;

(ii)

n−1∑
k=0

(
m+ k − 1

k

)
pmqk.

The solutions were first given by Montmort (1678–1719). [Hint: solution
(i) follows at once from Bernoulli’s formula by an obvious interpreta-
tion. This is based on the idea (see Example 6 of §2.2) to complete
m + n − 1 games even if A wins before the end. Solution (ii) is based
on the more natural idea of terminating the series as soon as A wins
m games before B wins n games. Suppose this happens after exactly
m + k games, then A must win the last game and also m − 1 among
the first m+ k − 1 games, and k ≤ n− 1.]

*48. Prove directly that the two expressions (i) and (ii) given in No. 47 are
equal. [Hint: one can do this by induction on n, for fixed m; but a
more interesting method is suggested by comparison of the two ideas
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involved in the solutions. This leads to the expansion of (ii) into

n−1∑
k=0

(
m+ k − 1

k

)
pmqk(p+ q)n−1−k

=
n−1∑
k=0

(
m+ k − 1

k

)
pmqk

n−k−1∑
j=0

(
n− 1− k

j

)
pn−1−k−jqj

=
n−1∑
l=0

pm+n−1−lql
∑

j+k=l

(
m+ k − 1

k

)(
n− k − 1

j

)
;

now use No. 46. Note that the equality relates a binomial distribution
to a negative binomial distribution.]



7
Poisson and Normal
Distributions

7.1. Models for Poisson distribution

The Poisson distribution is of great importance in theory and in practice. It
has the added virtue of being a simple mathematical object. We could have
introduced it at an earlier stage of the book, and the reader was alerted to
this in §4.4. However, the belated entrance will give it more prominence,
as well as a more thorough discussion than would be possible without the
benefit of the last two chapters.

Fix a real positive number α and consider the probability distribution
{ak, k ∈ N0}, where N0 is the set of all nonnegative integers, given by

ak =
e−α

k!
αk. (7.1.1)

We must first verify that

∞∑
k=0

ak = e−α
∞∑
k=0

αk

k!
= e−α · eα = 1,

where we have used the Taylor series of eα. Let us compute its mean as

203
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well:

∞∑
k=0

kak = e−α
∞∑
k=0

k
αk

k!
= e−αα

∞∑
k=1

αk−1

(k − 1)!

= e−αα

∞∑
k=0

αk

k!
= e−ααe+α = α.

[This little summation has been spelled out since I have found that students
often do not learn such problems of “infinite series” from their calculus
course.] Thus the parameter α has a very specific meaning indeed. We shall
call the distribution in (7.1.1) the Poisson distribution with parameter α.
It will be denoted by π(α), and the term with subscript k by πk(α). Thus
if X is a random variable having this distribution, then

P (X = k) = πk(α) =
e−α

k!
αk, k ∈ N0;

and

E(X) = α. (7.1.2)

Next, let us find the generating function g as defined in §6.5. We have,
using Taylor’s series for eαz this time:

g(z) =
∞∑
k=0

akz
k = e−α

∞∑
k=0

αk

k!
zk = e−αeαz = eα(z−1). (7.1.3)

This is a simple function and can be put to good use in calculations. If we
differentiate it twice, we get

g′(z) = αeα(z−1), g′′(z) = α2eα(z−1).

Hence by (6.5.6),

E(X) = g′(1) = α,

E(X2) = g′(1) + g′′(1) = α+ α2, (7.1.4)

σ2(X) = α.

So the variance as well as the mean are equal to the parameter α (see below
for an explanation).

Mathematically, the Poisson distribution can be derived in a number of
significant ways. One of these is a limiting scheme via the binomial distribu-
tion. This is known historically as Poisson’s limit law and will be discussed
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first. Another way, that of adding exponentially distributed random vari-
ables, is the main topic of the next section.

Recall the binomial distribution B(n; p) in §4.4 and write

Bk(n; p) =
(
n

k

)
pk(1− p)n−k, 0 ≤ k ≤ n. (7.1.5)

We shall allow p to vary with n; this means only that we put p = pn in the
above. Specifically, we take

pn =
α

n
, n ≥ 1. (7.1.6)

We are therefore considering the sequence of binomial distributions B(n;
α/n), a typical term of which is given by

Bk

(
n;
α

n

)
=
(
n

k

)(α
n

)k (
1− α

n

)n−k

, 0 ≤ k ≤ n. (7.1.7)

For brevity let us denote this by bk(n). Now fix k and let n go to infinity. It
turns out that bk(n) converges for every k and can be calculated as follows.
To begin at the beginning, take k = 0: then we have

lim
n→∞

b0(n) = lim
n→∞

(
1− α

n

)n
= e−α. (7.1.8)

This is one of the fundamental formulas for the exponential function which
you ought to remember from calculus. An easy way to see it is to take

natural logarithm and use the Taylor series log (1− x) = −
∞∑
n=1

xn/n:

log
(
1− α

n

)n
= n log

(
1− α

n

)
= n

{
−α
n
− α2

2n2 − · · ·
}

(7.1.9)

= −α− α2

2n
− · · · .

When n→∞ the last-written quantity converges to −α, which is log e−α.
Hence (7.1.8) may be verified by taking logarithms and expanding into
power series, a method very much in use in applied mathematics. A rigorous
proof must show that the three dots at the end of (7.1.9) above can indeed
be overlooked; see Exercise 18.

To proceed, we take the ratio of consecutive terms in (7.1.7):

bk+1(n)
bk(n)

=
n− k

k + 1

(α
n

)(
1− α

n

)−1
=

α

k + 1

[(
n− k

n

)(
1− α

n

)−1
]
.
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The two factors within the square brackets above both converge to 1 as
n→∞; hence

lim
n→∞

bk+1(n)
bk(n)

=
α

k + 1
. (7.1.10)

Starting with (7.1.8), and using (7.1.10) for k = 0, 1, 2, . . . , we obtain

lim
n→∞

b1(n) =
α

1
lim
n→∞

b0(n) = αe−α,

lim
n→∞· · ·

b2(n) =
α

2
lim
n→∞

b1(n) =
α2

1 · 2e
−α,

lim
n→∞· · ·

bk(n) =
α

k
lim
n→∞

bk−1(n) =
αk

1 · 2 · · · k e
−α.

These limit values are the successive terms of π(α). Therefore we have
proved Poisson’s theorem in its simplest form as follows.

Poisson’s limit law :

lim
n→∞

Bk

(
n;
α

n

)
= πk(α), k ∈ N0.

This result remains true if the α/n on the left side above is replaced by
αn/n, where limn αn = α. In other words, instead of taking pn = α/n as we
did in (7.1.6), so that npn = α, we may take pn = αn/n, so that npn = αn

and

lim
n→∞

npn = lim
n
αn = α. (7.1.11)

The derivation is similar to the above except that (7.1.8) is replaced by the
stronger result below: if limn→∞ αn = α, then

lim
n→∞

(
1− αn

n

)n
= e−α. (7.1.12)

With this improvement, we can now enunciate the theorem in a more prag-
matic form as follows. A binomial probability Bk(n; p), when n is large
compared with np which is nearly α, may be approximated by πk(α), for
modest values of k. Recall that np is the mean of B(n; p) (see §4.4); it is
no surprise that its approximate value α should also be the mean of the
approximate Poisson distribution, as we have seen under (7.1.2). Similarly,
the variance of B(n; p) is npq = n(α/n) [1− (α/n)] for p = α

n ; as n → ∞
the limit is also α as remarked under (7.1.4).

The mathematical introduction of the Poisson distribution is thus done.
The limiting passage from the binomial scheme is quite elementary, in con-
trast to what will be done in §7.3 below. But does the condition (7.1.6),
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or the more relaxed (7.1.11), make sense in any real situation? The aston-
ishing thing here is that a great variety of natural and manmade random
phenomena are found to fit the pattern nicely. We give four examples to
illustrate the ways in which the scheme works to a greater or lesser degree.

Example 1. Consider a rare event, namely one with small probability p
of occurrence. For instance, if one bets on a single number at roulette,
the probability of winning is equal to 1/37 ≈ .027, assuming that the 36
numbers and one “zero” are equally likely. [The roulette wheels in Monte
Carlo have a single “zero,” but those in Las Vegas have “double zeros.”]
If we do this 37 times, we can “expect” to win once. (Which theorem says
this?) But we can also compute the probabilities that we win no time, once,
twice, etc. The exact answers are of course given by the first three terms
of B(37; 1/37):

(
1− 1

37

)37

,

(
37
1

)(
1− 1

37

)36 1
37

=
(
1− 1

37

)36

,

(
37
2

)(
1− 1

37

)35 1
372 =

36
2× 37

(
1− 1

37

)35

.

If we set

c =
(
1− 1

37

)37

≈ .363,

then the three numbers above are

c,
37
36
c,

37
36
× 1

2
c.

Hence if we use the approximation e−1 ≈ .368 for c, committing thereby
an error of 1.5%; and furthermore “confound” 37/36 with 1, committing
another error of 3%, but in the opposite direction, we get the first three
terms of π(1), namely:

e−1, e−1,
1
2
e−1.

Further errors will be compounded if we go on, but some may balance
others. We may also choose to bet, say, 111 times (111 = 37 × 3) on a
single number, and vary it from time to time as gamblers usually do at a
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roulette table. The same sort of approximation will then yield

(
1− 1

37

)111

= c3 ≈ e−3,

111
37

(
1− 1

37

)110

=
37
36
× 3c3 ≈ 3e−3,

111× 110
2

(
1− 1

37

)109

=
111× 110
36× 36

1
2
c3 ≈ 9

2
e−3,

etc. Here of course c3 is a worse approximation of e−3 than c is of e−1.
Anyway it should be clear that we are simply engaged in more or less
crude but handy numerical approximations, without going to any limit.
For no matter how small p is, so long as it is fixed as in this example, np
will of course go to infinity with n, and the limiting scheme discussed above
will be wide of the mark when n is large enough. Nevertheless a reasonably
good approximation can be obtained for values of n and p such that np
is relatively small compared with n. It is just a case of pure and simple
numerical approximation, but many such applications have been made to
various rare events. In fact, the Poisson law was very popular at one time
under the name of “the law of small numbers.” Well-kept statistical data
such as the number of Prussian cavalry men killed each year by a kick from
a horse, or the number of child suicides in Prussia, were cited as typical
examples of this remarkable distribution (see [Keynes]).

Example 2. Consider the card-matching problem in §6.2. If a person who
claims ESP (extrasensory perception) is a fake and is merely trying to
match the cards at random, will his average score be better or worse when
the number of cards is increased? Intuitively, two opposite effects are ap-
parent. On one hand, there will be more cards to score; on the other, it will
be harder to score each. As it turns out (see §6.2) these two effects balance
each other so nicely that the expected number is equal to 1 irrespective
of the number of cards! Here is an ideal setting for (7.1.6) with α = 1. In
fact, we can make it conform exactly to the previous scheme by allowing
duplication in the guessing. That is, if we think of a deck of n cards laid
face down on the table, we are allowed to guess them one by one with total
forgetfulness. Then we can guess each card to be any one of the n cards,
with equal probability 1/n, and independently of all other guesses. The
probability of exactly k matches is then given by (7.1.7) with α = 1, and
so the Poisson approximation πk(1) applies if n is large.

This kind of matching corresponds to sampling with replacement. It is
not a realistic model when two decks of cards are matched against each
other. There is then mutual dependence between the various guesses and
the binomial distribution above of course does not apply. But it can be



7.1 Models for Poisson distribution 209

shown that when n is large the effect of dependence is small, as follows.
Let the probability of “no match” be qn when there are n cards to be
matched. We see in Example 4 of §6.2 that

qn ≈ e−1

is an excellent approximation even for moderate values of n. Now an easy
combinatorial argument (Exercise 19) shows that the probability of exactly
k matches is equal to

(
n

k

)
1

(n)k
qn−k =

1
k!
qn−k. (7.1.13)

Hence for fixed k, this converges to (1/k!)e−1 = πk(1).

Example 3. The Poisson law in a spatial distribution is typified by the
counting of particles in a sort of “homogeneous chaos.” For instance, we
may count the number of virus particles with a square grid under the
microscope. Suppose that the average number per small square is µ and
that there are N squares in the grid. The virus moves freely about in
such a way that its distribution over the grid may be approximated by the
“tokens in boxes” model described under (I ′) in §3.3. Namely, there are
µN particles to be placed into the N squares, and each particle can go into
any of the squares with probability 1/N , independently of each other. Then
the probability of finding exactly k particles in a given square is given by
the binomial distribution:

Bk

(
µN ;

1
N

)
=
(
µN

k

)(
1
N

)k (
1− 1

N

)µN−k

.

Now we should imagine that the virus specimen under examination is part
of a much larger specimen with the same average spatial proportion µ. In
practice, this assumption is reasonably correct when, for example, a little
blood is drawn from a sick body. It is then legitimate to approximate the
above probability by πk(µ) when N is large. The point here is that the
small squares in which the counts are made remain fixed in size, but the
homogeneity of space permits a limiting passage when the number of such
squares is multiplied.

A grim example of the spatial scheme is furnished by the counting of
flying-bomb hits on the south of London during World War II. The area
was divided into N = 576 squares each of 1/4 square mile, and µ was found
statistically to be about .930. The table below shows the actual counts Nk

and the Poisson approximations πk(µ) with µ = .9323. The close fit in this
case might be explained by the deliberate randomness of the attacks which
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Figure 26

justified the binomial model above.

k 0 1 2 3 4 ≥5
Nk 229 211 93 35 7 1
Nπk 226.74 211.39 98.54 30.62 7.14 1.59

Example 4. In a large class of applications, time plays the role of space in
the preceding example. If random occurrences are distributed over a period
of time in such a way that their number per unit time may be supposed to be
fairly constant over the period, then the Poisson scheme will operate with
time acting as the medium for the homogeneous chaos. One could repeat
the multiplication argument in Example 3 with time substituting for space,
but here it is perhaps more plausible to subdivide the time. Suppose, for
example, some cosmic ray impacts are registered on a geiger counter at the
average rate of α per second. Then the probability of a register in a small
time interval δ is given by α δ+o(δ), where the “little-o” term represents an
error term that is of smaller order of magnitude than δ, or roughly, “very
small.” Now divide the time interval [0, t] into N equal parts, so that the
probability of a counter register in each subinterval is

αt

N
+ o
(
t

N

)
,

with δ = t/N above. Of course, αt/N is much smaller than 1 when t is
fixed and N is large. Let us first assume that for large enough values of
N , the probability of more than one register in any small subinterval may
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be neglected, so that we may suppose that the number of impacts received
in each of the N subintervals is either 0 or 1. These numbers can then be
treated as Bernoullian random variables taking the values 0 and 1 with
probabilities 1 − (αt/N) and αt/N , respectively. Finally we assume that
they are independent of each other. This assumption can be justified on
empirical grounds; for a deeper analysis in terms of the Poisson process,
see the next section. Under these assumptions it is now clear that the
probability of receiving exactly k impacts in the entire period [0, t] is given
by the binomial Bk (N ;αt/N); in fact, the total number registered in [0, t]
is just the sum of N independent Bernoullian random variables described
above. (See Example 9 of §4.4.) Since N is at our disposal and may be made
arbitrarily large, in the limit we get πk(αt). Thus is this case the validity of
the Poisson scheme may be attributed to the infinite subdivisibility of time.
The basic assumption concerning the independence of actions in disjoint
subintervals will be justified in Theorem 2 of the following section.

�7.2. Poisson process

For a deeper understanding of the Poisson distribution we will construct a
model in which it takes its proper place. The model is known as the Poisson
process and is a fundamental stochastic process.

Consider a sequence of independent positive random variables all of
which have the exponential density αe−αt, α > 0; see Example 3 of §6.2.
Let them be denoted by T1, T2, . . . so that for each j,

P (Tj ≤ t) = 1− e−αt, P (Tj > t) = e−αt, t ≥ 0. (7.2.1)

Since they are independent, we have for any nonnegative t1, . . . , tn

P (T1 > t1, . . . , Tn > tn) = P (T1 > t1) · · ·P (Tn > tn)

= e−α(t1+···+tn).

This determines the joint distribution of the Tj ’s although we have given
the “tail probabilities” for obvious simplicity. Examples of such random
variables have been discussed before. For instance, they may be the inter-
arrival times between vehicles in a traffic flow, or between claims received
by an insurance company (see Example 5 of §4.2). They can also be the du-
rations of successive telephone calls, or sojourn times of atoms at a specific
energy level. Since

E(Tj) =
1
α
, (7.2.2)

it is clear that the smaller α is, the longer the average inter-arrival, or
waiting, or holding time. For instance, if T is the interarrival time between
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automobiles at a checkpoint, then the corresponding α must be much larger
on a Los Angeles freeway than in a Nevada desert. In this particular case
α is also known as the intensity of the flow, in the sense that heavier traffic
means a higher intensity, as every driver knows from his or her nerves.

Now let us put S0 = 0 and for n ≥ 1:

Sn = T1 + · · ·+ Tn. (7.2.3)

Then by definition Sn is the waiting time until the nth arrival; and the
event {Sn ≤ t} means that the nth arrival occurs before time t. [We shall
use the preposition “before” loosely to mean “before or at” (time t). The
difference can often be overlooked in continuous-time models but must be
observed in discrete time.] Equivalently, this means “the total number of
arrivals in the time interval [0, t]” is at least n. This kind of dual point of
view is very useful, so we will denote the number just introduced by N(t).
We can then record the assertion as follows:

{N(t) ≥ n} = {Sn ≤ t}. (7.2.4)

Like Sn, N(t) is also a random variable: N(t, ω) with the ω omitted from
the notation as in Tj(ω). If you still remember our general discussion of
random variables as functions of a sample point ω, now is a good time
to review the situation. What is ω here? Just as in the examples of §4.2,
each ω may be regarded as a possible record of the traffic flow or insurance
claims or telephone service or nuclear transition. More precisely, N(t) is
determined by the whole sequence {Tj , j ≥ 1} and depends on ω through
the Tj ’s. In fact, taking the difference of both sides in the equations (7.2.4)
for n and n+ 1, we obtain

{N(t) = n} = {Sn ≤ t} − {Sn+1 ≤ t} = {Sn ≤ t < Sn+1}. (7.2.5)

The meaning of this new equation is clear from a direct interpretation:
there are exactly n arrivals in [0, t] if and only if the nth arrival occurs
before t but the (n+1)st occurs after t. For each value of t, the probability
distribution of the random variable N(t) is therefore given by

P{N(t) = n} = P{Sn ≤ t} − P{Sn+1 ≤ t}, n ∈ N0. (7.2.6)

Observe the use of our convention S0 = 0 in the above. We proceed to show
that this is the Poisson distribution π(αt).

We shall calculate the probability P{Sn ≤ t} via the Laplace transform
of Sn (see §6.5). The first step is to find the Laplace transform L(λ) of each
Tj , which is defined since Tj ≥ 0. By (6.5.16) with f(u) = αe−αu, we have

L(λ) =
∫ ∞

0
e−λuαe−αu du =

α

α+ λ
. (7.2.7)
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Since the Tj ’s are independent, an application of Theorem 7 of §6.5 yields
the Laplace transform of Sn:

L(λ)n =
(

α

α+ λ

)n

. (7.2.8)

To get the distribution or density function of Sn from its Laplace transform
is called an inversion problem; and there are tables of common Laplace
transforms from which you can look up the inverse, namely the distribution
or density associated with it. In the present case the answer has been
indicated in Exercise 38 of Chapter 6. However, here is a trick that leads
to it quickly. The basic formula is∫ ∞

0
e−xt dt =

1
x
, x > 0. (7.2.9)

Differentiating both sides n− 1 times, which is easy to do, we obtain

∫ ∞

0
(−t)n−1e−xt dt =

(−1)n−1(n− 1)!
xn

,

or

1
(n− 1)!

∫ ∞

0
tn−1e−xt dt =

1
xn

. (7.2.10)

Substituting α+λ for x in the above and multiplying both sides by αn, we
deduce ∫ ∞

0

αn

(n− 1)!
un−1e−αue−λu du =

(
α

α+ λ

)n

.

Thus if we put

fn(u) =
αn

(n− 1)!
un−1e−αu, (7.2.11)

we see that fn is the density function for the Laplace transform in (7.2.8),
namely that of Sn.∗ Hence we can rewrite the right side of (7.2.6) explicitly
as ∫ t

0
fn(u) du−

∫ t

0
fn+1(u) du. (7.2.12)

∗Another derivation of this is contained in Exercise 42 of Chapter 6.
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To simplify this we integrate the first integral by parts as indicated below:

αn

(n− 1)!

∫ t

0
e−αuun−1 du =

αn

(n− 1)!

{
un

n
e−αu

∣∣∣t
0
+
∫ t

0

un

n
e−αuα du

}

=
αn

n!
tne−αt +

αn+1

n!

∫ t

0
une−αu du.

But the last-written integral is just the second integral in (7.2.12); hence
the difference there is precisely (αn/n!)tne−αt = πn(αt). For fixed n and α,
this is the density function of the gamma distribution Γ(n;α); see p. 200.
Let us record this as a theorem.

Theorem 1. The total number of arrivals in a time interval of length t
has the Poisson distribution π(αt), for each t > 0.

The reader should observe that the theorem asserts more than has been
proved. For in our formulation above we have implicitly chosen an initial
instant from which time is measured, namely the zero time for the first
arrival time T1. Thus the result was proved only for the total number of
arrivals in the interval [0, t]. Now let us denote the number of arrivals in
an arbitrary time interval [s, s+ t] by N(s, s+ t). Then it is obvious that

N(s, s+ t) = N(s+ t)−N(s)

in our previous notation, and N(0) = 0. But we have yet to show that the
distribution of N(s, s+ t) is the same as N(0, t). The question becomes: if
we start counting arrivals from time s on, will the same pattern of flow hold
as from time 0 on? The answer is “yes” but it involves an essential property
of the exponential distribution of the Tj ’s. Intuitively speaking, if a waiting
time such as Tj is broken somewhere in between, its duration after the break
follows the original exponential distribution regardless of how long it has
already endured before the break. This property is sometimes referred to
as “lack of memory” and can be put in symbols: for any s ≥ 0 and t ≥ 0,
we have

P (T > t+ s | T > s) = P (T > t) = e−αt; (7.2.13)

see Example 4 of §5.1. There is a converse: if a nonnegative random variable
T satisfies the first equation in (7.2.13), then it must have an exponential
distribution; see Exercise 41 of Chapter 5. Thus the lack of memory is
characteristic of an exponential interarrival time.

We can now argue that the pattern of flow from time s on is the same
as from 0 on. For the given instant s breaks one of the inter-arrival times,
say Tk, into two stretches as shown below:
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Figure 27

According to the above, the second stretch T ′′
k of the broken Tk has the

same distribution as Tk, and it is clearly independent of all the succeeding
Tk+1, Tk+2, . . . . [The clarity is intuitive enough, but a formal proof takes
some doing and is omitted.] Hence the new shifted interarrival times from
s onward:

T ′′
k , Tk+1, Tk+2, . . . (7.2.14)

follow the same probability pattern as the original interarrival times begin-
ning at 0:

T1, T2, T3, . . . . (7.2.15)

Therefore our previous analysis applies to the shifted flow as well as the
original one. In particular, the number of arrivals in [s, s+ t] must have the
same distribution as that in [0, t]. This is the assertion of Theorem 1.

The fact that N(s, s + t) has the same distribution for all s is referred
to as the time-homogeneity of the flow. Let us remember that this is
shown under the assumption that the intensity α is constant for all time.
In practice such an assumption is tenable only over specified periods of
time. For example, in the case of traffic flow on a given highway, it may be
assumed for the rush hour or from 2 a.m. to 3 a.m. with different values of
α. However, for longer periods of time such as one day, an average value of
α over 24 hours may be used. This may again vary from year to year, even
week to week.

So far we have studied the number of arrivals in one period of time, of
arbitrary length and origin. For a more complete analysis of the flow we
must consider several such periods and their mutual dependence. In other
words, we want to find the joint distribution of

N(s1, s1 + t1), N(s2, s2 + t2), N(s3, s3 + t3), . . . , (7.2.16)

etc. The answer is given in the next theorem.

Theorem 2. If the intervals (s1, s1+t1), (s2, s2+t2), . . . are disjoint, then
the random variables in (7.2.16) are independent and have the Poisson
distributions π(αt1), π(αt2) . . . .



216 Poisson and Normal Distributions

It is reasonable and correct to think that if we know the joint action of
N over any arbitrary finite set of disjoint time intervals, then we know all
about it in principle. Hence with Theorem 2 we shall be in full control of
the process in question.

The proof of Theorem 2 depends again on the lack-of-memory property
of the Tj ’s. We will indicate the main idea here without going into formal
details. Going back to the sequence in (7.2.14), where we put s = s2, we
now make the further observation that all the random variables there are
not only independent of one another, but also of all those that precede s,
namely:

T1, . . . , Tk−1, T
′
k. (7.2.17)

The fact that the two broken stretches T ′
k and T ′′

k are independent is a
consequence of (7.2.13), whereas the independence of all the rest should
be intuitively obvious because they have not been distributed by the break
at s. [Again, it takes some work to justify the intuition.] Now the “past
history” of the flow up to time s is determined by the sequence in (7.2.17),
while its “future development” after s is determined by the sequence in
(7.2.14). Therefore, relative to the “present” s, past and future are inde-
pendent. In particular, N(s1, s1 + t1), which is part of the past, must be
independent of N(s2, s2 + t2), N(s3, s3 + t3), . . . , which are all part of
the future. Repeating this argument for s = s3, s4, . . . , the assertion of
Theorem 2 follows.

Figure 28

We are now ready to give a general definition for the “flow” we have
been discussing all along.

Definition of Poisson Process. A family of random variables {X(t)},
indexed by the continuous variable t ranging over [0,∞), is called a Poisson
process with parameter (or mean) α iff it satisfies the following conditions:

(i) X(0) = 0;
(ii) the increments X(si + ti) − X(si), over an arbitrary finite set of

disjoint intervals (si, si + ti), are independent random variables;
(iii) for each s ≥ 0, t ≥ 0, X(x+ t)−X(s) has the Poisson distribution

π(αt).
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According to Theorems 1 and 2 above, the family {N(t), t ≥ 0} satisfies
these conditions and therefore forms a Poisson process. Conversely, it can
be shown that every Poisson process is representable as the N(t) above.

The concept of a stochastic process has already been mentioned in
§§5.3–5.4, in connection with Pólya’s urn model. The sequence {Xn, n ≥ 1}
in Theorem 5 of §5.4 may well be called a Pólya process. In principle a
stochastic process is just any family of random variables; but this is putting
matters in an esoteric way. What is involved here goes back to the founda-
tions of probability theory discussed in Chapters 2, 4, and 5. There are a
sample space Ω with points ω, a probability measure P defined for certain
sets of ω, a family of functions ω → Xt(ω) called random variables, and
the process is concerned with the joint action or behavior of this family:
the marginal and joint distributions, the conditional probabilities, the ex-
pectations, and so forth. Everything we have discussed (and are going to
discuss) may be regarded as questions in stochastic processes, for in its
full generality the term encompasses any random variable or sample set
(via its indicator). But in its customary usage we mean a rather numer-
ous and well-organized family governed by significant and useful laws. The
preceding characterization of a Poisson process is a good example of this
description.

As defined, ω → N(t, ω) is a random variable for each t, with the Poisson
distribution π(αt). There is a dual point of view that is equally important in
the study of a process, and that is the function t→ N(t, ω) for each ω. Such
a function is called a sample function (path or trajectory). For example, in
the case of telephone calls, to choose a sample point ω may mean to pick a
day’s record of the actual counts at a switchboard over a 24-hour period.
This of course varies from day to day so the function t→ N(t, ω) gives only
a sample (denoted by ω) of the telephone service. Its graph may look like
Figure 29. The points of jumps are the successive arrival times Sn(ω), each
jump being equal to 1, and the horizontal stretches indicate the interarrival
times. So the sample function is a monotonically nondecreasing function
that increases only by jumps of size 1 and is flat between jumps. Such a
graphic is typical of the sample function of a Poisson process. If the flow is
intense, then the points of jumps are crowded together.

The sequence {Sn, n ≥ 1} defined in (7.2.3) is also a stochastic process,
indexed by n. A sample function n→ Sn(ω) for this process is an increasing
sequence of positive numbers {S1(ω), S2(ω), . . . , Sn(ω), . . . }. Hence it is
often called a sample sequence. There is a reciprocal relation between this
and the sample functionN(t, ω) above. If we interchange the two coordinate
axes, which can be done by turning the page 90◦, and look at Figure 29
through the light from the back, we get the graph of n → Sn(ω). Ignore
the now vertical stretches except the lower endpoints, which indicate the
values of Sn.

The following examples illustrate some of the properties of the Poisson
distribution and process.
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Figure 29

Example 5. Consider the number of arrivals in two disjoint time intervals:
X1 = N(s1, s1 + t1) and X2 = N(s2, s2 + t2) as in (7.2.16). What is the
probability that the total number X1 +X2 is equal to n?

By Theorem 2, X1 and X2 are independent random variables with the
distributions π(αt1) and π(αt2), respectively. Hence

P (X1 +X2 = n) =
∑

j+k=n

P (X1 = j)P (X2 = k)

=
∑

j+k=n

e−αt1(αt1)j

j!
e−αt2(αt2)k

k!

=
e−α(t1+t2)

n!

n∑
j=0

(
n

j

)
(αt1)j(αt2)n−j

=
e−α(t1+t2)

n!
(αt1 + αt2)n = πn(αt1 + αt2).

Namely, X1 +X2 is also Poissonian with parameter αt1 +αt2. The general
proposition is as follows.

Theorem 3. Let Xj be independent random variables with Poisson dis-
tributions π(αj), 1 ≤ j ≤ n. Then X1 + · · · +Xn has Poisson distribution
π(α1 + · · ·+ αn).

This follows from an easy induction, but we can also make speedy use
of generating functions. If we denote the generating function of Xi by gxi

,
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then by Theorem 6 of §6.5:

gX1+···+Xn
(z) = gX1(z)gX2(z) · · · gXn

(z)

= eα1(z−1)eα2(z−1) · · · eαn(z−1)

= e(α1+···+αn)(z−1).

Thus X1 + · · · + Xn has the generating function associated with π(α1 +
· · ·+ αn), and so by the uniqueness stated in Theorem 7 of §6.5 it has the
latter as distribution.

Example 6. At a crossroad of America we watch cars zooming by bearing
license plates of various states. Assume that the arrival process is Poissonian
with intensity α, and that the probabilities of each car being from the states
of California, Nevada ,and Arizona are, respectively, p1 = 1/25, p2 = 1/100,
p3 = 1/80. In a unit period of time what is the number of cars counted
with these license plates?

We are assuming that if n cars are counted the distribution of various
license plates follows a multinomial distributionM(n; 50; p1, . . . , p50) where
the first three p’s are given. Now the number of cars passing in the period
of time is a random variable N such that

P (N = n) =
e−α

n!
αn, n = 0, 1, 2, . . . .

Among these N cars, the number bearing the kth state license is also a
random variable Nk; of course,

N1 +N2 + · · ·+N50 = N.

The problem is to compute

P (N1 = n1, N2 = n2, N3 = n3)

for arbitrary n1, n2, n3. Let q = 1 − p1 − p2 − p3; this is the probability
of a license plate not being from one of the three indicated states. For
n ≥ n1 + n2 + n3, the conditional probability under the hypothesis that
N = n is given by the multinomial; hence

P (N1 = n1, N2 = n2, N3 = n3 | N = n) =
n! pn1

1 pn2
2 pn3

3 qk

n1!n2!n3! k!
,

where k = n − n1 − n2 − n3. Using the formula for “total probability”
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(5.2.3), we get

P (N1 = n1, N2 = n2, N3 = n3)

=
∑
n

P (N = n)P (N1 = n1, N2 = n2, N3 = n3 | N = n)

=
∞∑
k=0

e−α

n!
αn n!

n1!n2!n3!
pn1
1 pn2

2 pn3
3 qk

k!
.

Since n1 + n2 + n3 is fixed and n ≥ n1 + n2 + n3, the summation above
reduces to that with k ranging over all nonnegative integers. Now write in
the above

e−α = e−α(p1+p2+p3)e−αq, αn = αn1+n2+n3αk,

and take out the factors that do not involve the index of summation k. The
result is

e−α(p1+p2+p3)

n1!n2!n3!
(αp1)n1(αp2)n2(αp3)n3

∞∑
k=0

e−αq

k!
(αq)k

= πn1(αp1)πn2(αp2)πn3(αp3)

since the last-written sum equals 1. Thus the random variables N1, N2, N3
are independent (why?) and have the Poisson distributions π(αp1), π(αp2),
π(αp3).

The substitution of the “fixed number n” in the multinomialM(n; r; p1,
. . . , pr) by the “random number N” having a Poisson distribution is called
in statistical methodology “randomized sampling.” In the example here the
difference is illustrated by either counting a fixed number of cars or count-
ing whatever number of cars in a chosen time interval, or by some other
selection method that allows a chance variation of the number. Which way
of counting is more appropriate will in general depend on the circumstances
and the information sought.

There is, of course, a general proposition behind the above example that
may be stated as follows.

Theorem 4. Under randomized sampling from a multinomial population
M(n; r; p1, . . . , pr) where the total number sampled is a Poisson random
variable N with mean α, the numbers N1, . . . , Nr of the various varieties
obtained by the sampling become independent Poisson variables with means
αp1, . . . , αpr.

As an illustration of the finer structure of the Poisson process we will
derive a result concerning the location of the jumps of its sample functions.
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Let us begin with the remark that although (almost) all sample functions
have infinitely many jumps in (0,∞), the probability that a jump occurs
at any prescribed instant of time is equal to zero. For if t > 0 is fixed, then
as δ ↓ 0 we have

P{N(t+ δ)−N(t− δ) ≥ 1} = 1− π0(α, 2δ) = 1− e−2α δ → 0.

In particular, the number of jumps in an interval (t1, t2) has the same
distribution whether the endpoints t1 and t2 are included or not. As before
let us write N(t1, t2) for this number. Now suppose N(0, t) = n for a given
t, where n ≥ 1, and consider an arbitrary subinterval (t1, t2) of (0, t). We
have for 0 ≤ j ≤ n

P{N(t1, t2) = j;N(0, t) = n}

= P{N(t1, t2) = j;N(0, t1) +N(t2, t) = n− j}.

Let t2 − t1 = s; then the sum of the lengths of the two intervals (0, t1) and
(t2, t) is equal to t−s. By property (ii) and Theorem 3 the random variable
N(0, t1) + N(t2, t) has the distribution π(α(t − s)) and is independent of
N(t1, t2). Hence the probability above is equal to

e−αs (αs)
j

j!
e−α(t−s) (αt− αs)n−j

(n− j)!
.

Dividing this by P{N(0, t) = n} = e−αt(αt)n/n!, we obtain the conditional
probability:

P{N(t1, t2) = j | N(0, t) = n} =
(
n

j

)(s
t

)j (
1− s

t

)n−j

. (7.2.18)

This is the binomial probability Bj(n; s/t).
Now consider an arbitrary partition of (0, t) into a finite number of

subintervals I1, . . . , Il of lengths s1, . . . , sl so that s1 + · · · + sl = t. Let
n1, . . . , nl be arbitrary nonnegative integers with n1 + · · · + nl = n. If we
denote by N(Ik) the number of jumps of the process in the interval Ik,
then we have a calculation similar to the above:

P{N(Ik) = nk, 1 ≤ k ≤ l | N(0, t) = n}

=
l∏

k=1

e−αsk(αsk)nk

nk!

(
e−αt (αt)

n

n!

)−1

(7.2.19)

=
n!

n1! · · ·nl!

l∏
k=1

(sk
t

)nk

.

This is the multinomial distribution discussed in §6.4.
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Let us pick n points at random in (0, t) and arrange them in nonde-
creasing order 0 < ξ1 ≤ ξ2 ≤ · · · ≤ ξn < t. Using the notation above let
Ñ(Ik) denote the number of these points lying in Ik. It is not hard to see
that the n-dimensional distribution of (ξ1, . . . , ξn) is uniquely determined
by the distribution of (Ñ(I1), . . . , Ñ(Il)) for all possible partitions of (0, t);
for a rigorous proof of this fact see Exercise 26. In particular, if the n points
are picked independently of one another and each is uniformly distributed
in (0, t), then it follows from the discussion in §6.4 that the probability
P{Ñ(Ik) = nk, 1 ≤ k ≤ l} is given by the last term in (7.2.19). Therefore,
under the hypothesis that there are exactly n jumps of the Poisson process
in (0, t), the conditional distribution of the n points of jump is the same as
if they were picked in the manner just described. This has been described
as a sort of “homogeneous chaos.”

7.3. From binomial to normal

From the point of view of approximating the binomial distribution B(n; p)
for large values of n, the case discussed in §7.1 leading to the Poisson distri-
bution is abnormal, because p has to be so small that np remains constant,
or nearly so. The fact that many random phenomena follow this law rather
nicely was not known in the early history of probability. One must remem-
ber that not only had radioactivity yet to be discovered, but neither the
telephone nor automobile traffic existed as modern problems. On the other
hand, counting heads by tossing coins or points by rolling dice, and the
measurement of all kinds of physical and biological quantities were already
done extensively. These led to binomial and multinomial distributions, and
since computing machines were not available it became imperative to find
manageable formulas for the probabilities. The normal way to approximate
the binomial distribution

Bk(n; p) =
(
n

k

)
pk(1− p)n−k, 0 ≤ k ≤ n, (7.3.1)

is for a fixed value of p and large values of n. To illustrate by the simplest
kind of example, suppose an unbiased coin is tossed 100 times; what is the
probability of obtaining exactly 50 heads? The answer(

100
50

)
1

2100 =
100!
50! 50!

1
2100

gives little satisfaction as we have no idea of the magnitude of this prob-
ability. Without some advanced mathematics (which will be developed
presently), who can guess whether this is near 1/2 or 1/10 or 1/50?

Now it is evident that the key to such combinatorial formulas is the
factorial n!, which just crops up everywhere. Take a look back at Chapter 3.
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So the problem is to find a handy formula: another function χ(n) of n which
is a good approximation for n! but of a simpler structure for computations.
But what is “good”? Since n! increases very rapidly with n (see the short
table in §3.2), it would be hopeless to make the difference |n!− χ(n)| small.
[Does it really make a difference to have a million dollars or a million and
three?] What counts is the ratio n!/χ(n), which should be close to 1. For
two positive functions ψ and χ of the integer variable n, there is a standard
notation:

ψ(n) ∼ χ(n) which means lim
n→∞

ψ(n)
χ(n)

= 1. (7.3.2)

We say also that ψ(n) and χ(n) are asymptotically equal (or equivalent) as
n→∞. If so we also have

lim
n→∞

|ψ(n)− χ(n)|
χ(n)

= 0

provided χ(n) > 0 for large n; thus the difference |ψ(n)− χ(n)| is negligible
in comparison with χ(n) or ψ(n), though it may be large indeed in absolute
terms. Here is a trivial example that you should have retained from a
calculus course (under the misleading heading “indeterminate form”):

ψ(n) = 2n2 + 10n− 100, χ(n) = 2n2.

More generally, a polynomial in n is asymptotically equal to its highest
term. Here, of course, we are dealing with something far more difficult: to
find a simple enough χ(n) such that

lim
n→∞

n!
χ(n)

= 1.

Such a χ is given by Stirling’s formula (see Appendix 2):

χ(n) =
(n
e

)n√
2πn = nn+(1/2)e−n

√
2π, (7.3.3)

or more precisely

n! =
(n
e

)n√
2πn eω(n), where

1
12(n+ 1

2 )
< ω(n) <

1
12n

. (7.3.4)

You may think χ(n) is uglier looking than n!, but it is much easier to
compute because powers are easy to compute. Here we will apply it at once
to the little problem above. It does not pay to get involved in numericals
at the beginning, so we will consider(

2n
n

)
1
22n =

(2n)!
n!n!

1
22n . (7.3.5)



224 Poisson and Normal Distributions

Substituting χ(n) and χ(2n) for n! and (2n)!, respectively, we see that this
is asymptotically equal to

( 2n
e

)2n√4πn(
n
e

)2n 2πn 1
22n =

1√
πn

.

In particular for n = 50, we get the desired answer 1/
√
50π = .08 approxi-

mately. Try to do this by using logarithms on

(100)50
50!

1
2100

and you will appreciate Stirling’s formula more. We proceed at once to the
slightly more general(

2n
n+ k

)
1
22n =

(2n)!
(n+ k)! (n− k)!

1
22n , (7.3.6)

where k is fixed. A similar application of (7.3.3) yields

(2n
e

)2n√4πn · 1
22n(

n+k
e

)n+k√
2π(n+ k)

(
n−k
e

)n−k√
2π(n− k)

=
n2n

(n+ k)n+k(n− k)n−k

√
n

π(n+ k)(n− k)

=
(

n

n+ k

)n+k (
n

n− k

)n−k√
n

π(n2 − k2)
.

Clearly the last-written factor is asymptotically equal to 1/
√
πn. As for the

two preceding ones, it follows from (7.1.8) that

lim
n→∞

(
n

n+ k

)n+k

= lim
n→∞

(
1− k

n+ k

)n+k

= e−k,

lim
n→∞

(
n

n− k

)n−k

= lim
n→∞

(
1 +

k

n− k

)n−k

= ek.

(7.3.7)

Hence the asymptotic value of (7.3.6) is

e−kek
1√
πn

=
1√
πn

,

exactly as in (7.3.5), which is the particular case k = 0.
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As a consequence, for any fixed number l, we have

lim
n→∞

l∑
k=−l

(
2n

n+ k

)
1
22n = 0 (7.3.8)

because each term in the sum has limit 0 as n → ∞ as just shown, and
there is only a fixed number of terms. Now if we remember Pascal’s triangle
(3.3.5), the binomial coefficients

( 2n
n+k

)
,−n ≤ k ≤ n, assume their maxi-

mum value
(2n
n

)
for the middle term k = 0 and decrease as |k| increases

(see Exercise 6). According to (7.3.8), the sum of a fixed number of terms
centered around the middle term approaches zero; hence a fortiori the sum
of any fixed number of terms will also approach zero, namely for any fixed
a and b with a < b, we have

lim
n→∞

b∑
j=a

(
2n
j

)
1
22n = 0.

Finally, this result remains true if we replace 2n by 2n+ 1 above, because
the ratio of corresponding terms

(
2n+ 1

j

)
1

22n+1

/(
2n
j

)
1
22n =

2n+ 1
2n+ 1− j

· 1
2

approaches 1/2, which does not affect the zero limit. Now let us return
to the probability meaning of the terms, and denote as usual by Sn the
number of heads obtained in n tosses of the coin. The result then asserts
that for any fixed numbers a and b, we have

lim
n→∞

P (a ≤ Sn ≤ b) = 0. (7.3.9)

Observe that there are n+1 possible values for Sn, whereas if the range [a, b]
is fixed irrespective of n, it will constitute a negligible fraction of n when
n is large. Thus the result (7.3.9) is hardly surprising, though certainly
disappointing.

It is clear that in order to “catch” a sufficient number of possible values
of Sn to yield a nonzero limit probability, the range allowed must increase
to infinity with n. Since we saw that the terms near the middle are of the
order of magnitude 1/

√
n, it is plausible that the number of terms needed

will be of the order of magnitude
√
n. More precisely, it turns out that for

each l,

P
(n
2
− l
√
n ≤ Sn ≤

n

2
+ l
√
n
)
=

∑
|j− n

2 |≤l
√
n

(
n

j

)
1
2n

(7.3.10)
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will have a limit strictly between 0 and 1 as n → ∞. Here the range
for Sn is centered around the middle value n/2 and contains about 2l

√
n

terms. When n is large this is still only a very small fraction of n, but it
increases just rapidly enough to serve our purpose. The choice of

√
n rather

than say n1/3 or n3/5 is crucial and is determined by a rather deep bit of
mathematical analysis, which we proceed to explain.

Up to here we have considered the case p = 1/2 in (7.3.1), in order
to bring out the essential features in the simplest case. However, this sim-
plification would obscure the role of np and npq in the general formula
below. The reader is advised to carry out the following calculations in the
easier case p = q = 1/2 to obtain some practice and confidence in such
calculations.

Theorem 5. Suppose 0 < p < 1; put q = 1− p, and

xnk =
k − np
√
npq

, 0 ≤ k ≤ n. (7.3.11)

Clearly xnk depends on both n and k, but it will be written as xk below.
Let A be an arbitrary but fixed positive constant. Then in the range of

k such that

|xk| ≤ A, (7.3.12)

we have (
n

k

)
pkqn−k ∼ 1√

2πnpq
e−x2

k/2. (7.3.13)

The convergence is uniform with respect to k in the range specified above.

Proof: We have from (7.3.11)

k = np+
√
npq xk, n− k = nq −√npq xk. (7.3.14)

Hence in the range indicated in (7.3.12),

k ∼ np, n− k ∼ nq. (7.3.15)

Using Stirling’s formula (7.3.3), we may write the left member of (7.3.13)
as (

n
e

)n√2πn pkqn−k(
k
e

)k√
2πk

(
n−k
e

)n−k√
2π(n− k)

=
√

n

2πk(n− k)
ϕ(n, k) ∼ 1√

2πnpq
ϕ(n, k)

(7.3.16)
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by (7.3.15), where

ϕ(n, k) =
(np
k

)k ( nq

n− k

)n−k

.

Taking logarithms and using the Taylor series

log(1 + x) = x− x2

2
+ · · ·+ (−1)n−1x

n

n
+ · · · , |x| < 1,

we have by (7.3.14)

log
(np
k

)k
= k log

(
1−

√
npq xk

k

)

= k

(
−
√
npq xk

k
− npqx2

k

2k2 − · · ·
)
,

log
(

nq

n− k

)n−k

= (n− k) log
(
1 +

√
npq xk

n− k

)

= (n− k)
(√

npq xk

n− k
− npqx2

k

2(n− k)2
+ · · ·

)
,

(7.3.17)

provided that ∣∣∣∣
√
npq xk

k

∣∣∣∣ < 1 and
∣∣∣∣
√
npq xk

n− k

∣∣∣∣ < 1. (7.3.17′)

These conditions are satisfied for sufficiently large values of n, in view of
(7.3.12) and (7.3.15). Adding the two series expansions above whereupon
the first terms cancel out each other obligingly, ignoring the dots but using
“∼” instead of “=,” we obtain

logϕ(n, k) ∼ −npqx
2
k

2k
− npqx2

k

2(n− k)
= − n2pqx2

k

2k(n− k)
.

In Appendix 2 we will give a rigorous demonstration of this relation. Using
(7.3.15) again, we see that

logϕ(n, k) ∼ −n
2pqx2

k

2npnq
= −x

2
k

2
. (7.3.18)

In view of (7.3.12) [why do we need this reminder?], this is equivalent to

ϕ(n, k) ∼ e−x2
k/2.

Going back to (7.3.16), we obtain (7.3.13).
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Theorem 6 (De Moivre–Laplace Theorem). For any two constants a and
b, −∞ < a < b < +∞, we have

lim
n→∞

P

(
a <

Sn − np
√
npq

≤ b

)
=

1√
2π

∫ b

a

e−x2/2 dx. (7.3.19)

Proof: Let k denote a possible value of Sn so that Sn = k means (Sn −
np)/

√
npq = xk by the transformation (7.3.11). Hence the probability on

the left side of (7.3.19) is just

∑
a<xk≤b

P (Sn = k) =
∑

a<xk≤b

(
n

k

)
pkqn−k.

Substituting for each term its asymptotic value given in (7.3.13), and ob-
serving from (7.3.11) that

xk+1 − xk =
1

√
npq

,

we obtain

1√
2π

∑
a<xk≤b

e−x2
k/2(xk+1 − xk). (7.3.20)

The correspondence between k and xk is one-to-one and when k varies from
0 to n, xk varies in the interval [−

√
np/q,

√
nq/p], not continuously but by

an increment xk+1−xk = 1/
√
npq. For large enough n the interval contains

the given (a, b] and the points xk falling inside (a, b] form a partition of it
into equal subintervals of length 1/

√
npq. Suppose the smallest and greatest

values of k satisfying the condition a < xk ≤ b are j and l, then we have

xj−1 ≤ a < xj < xj+1 < · · · < xl−1 < xl ≤ b < xl+1

and the sum in (7.3.20) may be written as follows:

l∑
k=j

ϕ(xk)(xk+1 − xk); where ϕ(x) =
1√
2π

e−x2/2. (7.3.21)

This is a Riemann sum for the definite integral
∫ b
a
ϕ(x) dx, although in

standard textbook treatments of Riemann integration the endpoints a and
b are usually included as points of partition. But this makes no difference
as n→∞ and the partition becomes finer, so the sum above converges to
the integral as shown in (7.3.19).

The result in (7.3.19) is called the De Moivre–Laplace theorem [Abra-
ham De Moivre (1667–1754), considered as successor to Newton, gave this
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result in his Doctrine of Chances (1714). Apparently he had priority over
Stirling (1692–1770) for the formula named after the latter. Laplace ex-
tended it and realized its importance in his monumental Théorie Analytique
des Probabilités (1812)]. It was the first known particular case of the central
limit theorem to be discussed in the next section. It solves the problem of
approximation stated at the beginning of the section. The right member of
(7.3.20) involves a new probability distribution to be discussed in the next
section. Simple examples of application will be given at the end of §7.5 and
among the exercises.

7.4. Normal distribution

The probability distribution with the ϕ in (7.3.21) as density function will
now be formally introduced:

Φ(x) =
1√
2π

∫ x

−∞
e−u2/2 du, ϕ(x) =

1√
2π

e−x2/2.

It is called the normal distribution, also the Laplace–Gauss distribution;
and sometimes the prefix unit is attached to distinguish it from a whole
family of normal distributions derived by a linear transformation of the
variable x; see below. But we have yet to show that ϕ is a true probability
density as defined in §4.5, namely that

∫ ∞

−∞
ϕ(x) dx = 1. (7.4.1)

A heuristic proof of this fact may be obtained by setting a = −∞, b = +∞
in (7.3.19), whereupon the probability on the left side certainly becomes
1. Why is this not rigorous? Because two (or three) passages to limit are
involved here that are not necessarily interchangeable. Actually the argu-
ment can be justified (see Appendix 2); but it may be more important that
you should convince yourself that a justification is needed at all. This is an
instance where advanced mathematics separates from the elementary kind
we are doing mostly in this book.

A direct proof of (7.4.1) is also very instructive; although it is given in
most calculus texts we will reproduce it for its sheer ingenuity. The trick is
to consider the square of the integral in (7.4.1) and convert it to a double
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integral: (∫ ∞

−∞
ϕ(x) dx

)(∫ ∞

−∞
ϕ(y) dy

)

=
∫ ∞

−∞

∫ ∞

−∞
ϕ(x)ϕ(y) dx dy

=
1
2π

∫ ∞

−∞

∫ ∞

−∞
exp
(
−1
2
(x2 + y2)

)
dx dy.

We can then use polar coordinates:

ρ2 = x2 + y2, dx dy = ρ dρ dθ

to evaluate it:

1
2π

∫ 2π

0

∫ ∞

0
exp
(
−1
2
ρ2
)
ρ dρ dθ =

1
2π

∫ 2π

0
− exp

(
−1
2
ρ2
) ∣∣∣∞

0
dθ

=
1
2π

∫ 2π

0
1 dθ = 1.

This establishes (7.4.1) if we take the positive square root.
The normal density ϕ has many remarkable analytical properties; in

fact, Gauss determined it by selecting a few of them as characteristics
of a “law of errors.” [Carl Friedrich Gauss (1777–1855) ranked as one of
the greatest of all mathematicians, also did fundamental work in physics,
astronomy, and geodesy. His major contribution to probability was through
his theory of errors of observations, known as the method of least squares.]
Let us observe first that it is a symmetric function of x, namely ϕ(x) =
ϕ(−x), from which the convenient formula follows:∫ x

−x

ϕ(u) du = Φ(x)− Φ(−x) = 2Φ(x)− 1. (7.4.2)

Next, ϕ has derivatives of all orders, and each derivative is the product of
ϕ by a polynomial called a Hermite polynomial. The existence of all deriva-
tives makes the curve x→ ϕ(x) very smooth, and it is usually described as
“bell-shaped.”∗ Furthermore as |x| → ∞, ϕ(x) decreases to 0 very rapidly.
The following estimate of the tail of Φ is often useful:

1− Φ(x) =
∫ ∞

x

ϕ(u) du ≤ ϕ(x)
x

=
e−x2/2
√
2π x

, x > 0.

∗See the graph attached to the table of Φ(x) on p. 394.
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To see this, note that −ϕ′(u) = uϕ(u), hence∫ ∞

x

1 · ϕ(u) du ≤
∫ ∞

x

u

x
ϕ(u) du =

−1
x

∫ ∞

x

ϕ′(u) du =
−1
x
ϕ(u)

∣∣∣∞
x

=
ϕ(x)
x

,

another neat trick. It follows that not only Φ has moments of all orders,
but even the integral

M(θ) =
∫ ∞

−∞
eθxϕ(x) dx =

∫ ∞

−∞
exp
(
θx− x2

2

)
dx (7.4.3)

is finite for every real θ, because e−x2/2 decreases much faster than e|θx|

increases as |x| → ∞. As a function of θ,M is called the moment-generating
function of ϕ or Φ. Note that if we replace θ by the purely imaginary iθ,
then M(iθ) becomes the characteristic function or Fourier transform of Φ
[see (6.5.17)]. The reason why we did not introduce the moment-generating
function in §6.5 is because the integral in (7.4.3) rarely exists if ϕ is replaced
by an arbitrary density function, but for the normal ϕ, M(θ) is cleaner
than M(iθ) and serves as well. Let us now calculate M(θ). This is done by
completing a square in the exponent in (7.4.3):

θx− x2

2
=

θ2

2
− (x− θ)2

2
.

Now we have

M(θ) = eθ
2/2
∫ ∞

−∞
ϕ(x− θ) dx = eθ

2/2. (7.4.4)

From this we can derive all the moments of Φ by successive differentiation
of M with respect to θ, as in the case of a generating function discussed in
§6.5. More directly, we may expand the eθx in (7.4.3) into its Taylor series
in θ and compare the result with the Taylor series of eθ

2/2 in (7.4.4):∫ ∞

−∞

{
1 + θx+

(θx)2

2!
+ · · ·+ (θx)n

n!
+ · · ·

}
ϕ(x) dx

= 1 +
θ2

2
+

1
2!

(
θ2

2

)2

+ · · ·+ 1
n!

(
θ2

2

)n

+ · · · .

If we denote the nth moment by m(n):

m(n) =
∫ ∞

−∞
xnϕ(x) dx,

the above equation becomes

∞∑
n=0

m(n)

n!
θn =

∞∑
n=0

1
2nn!

θ2n.
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It follows from the uniqueness of power series expansion (cf. §6.5) that the
corresponding coefficients on both sides must be equal: thus for n ≥ 1,

m(2n−1) = 0,

m(2n) =
(2n)!
2nn!

.
(7.4.5)

Of course, the vanishing of all moments of odd order is an immediate con-
sequence of the symmetry of ϕ.

In general, for any real m and σ2 > 0, a random variable X is said to
have a normal distribution N(m,σ2) iff the reduced variable

X∗ =
X −m

σ

has Φ as its distribution function. In particular, for m = 0 and σ2 = 1,
N(0, 1) is just the unit normal Φ. The density function of N(m,σ2) is

1√
2π σ

exp
(
− (x−m)2

2σ2

)
=

1
σ
ϕ

(
x−m

σ

)
. (7.4.6)

This follows from a general proposition (see Exercise 13 of Chapter 4).
The moment-generating function MX of X is most conveniently calculated
through that of X∗ as follows:

MX(θ) = E(eθ(m+σX∗)) = emθE(e(σθ)X
∗
)

= emθM(σθ) = emθ+σ2θ2/2.
(7.4.7)

A basic property of the normal family is given below. Cf. the analogous
Theorem 3 in §7.2 for the Poisson family.

Theorem 7. Let Xj be independent random variables with normal dis-
tributions N(mj , σ

2
j ), 1 ≤ j ≤ n. Then X1 + · · · + Xn has the normal

distribution N
(∑n

j=1 mj ,
∑n

j=1 σ
2
j

)
.

Proof: It is sufficient to prove this for n = 2, since the general case fol-
lows by induction. This is easily done by means of the moment-generating
function. We have by the product theorem as in Theorem 6 of §6.5

MX1+X2(θ) = MX1(θ)MX2(θ) = em1θ+σ2
1θ

2/2em2θ+σ2
2θ

2/2

= e(m1+m2)θ+(σ2
1+σ2

2)θ2/2,

which is the moment-generating function of N(m1+m2, σ
2
1+σ

2
2) by (7.4.7).

Hence X1+X2 has this normal distribution since it is uniquely determined
by the moment-generating function. [We did not prove this assertion, but
see the end of §6.5.]



7.5 Central limit theorem 233

�7.5. Central limit theorem

We will now return to the De Moivre–Laplace Theorem 6 and give it a
more general formulation. Recall that

Sn = X1 + · · ·+Xn, n ≥ 1, (7.5.1)

where the Xj ’s are independent Bernoullian random variables. We know
that for every j:

E(Xj) = p, σ2(Xj) = pq;

and for every n:

E(Sn) = np, σ2(Sn) = npq;

see Example 6 of §6.3. Put

X∗
j =

Xj −E(Xj)
σ(Xj)

; S∗
n =

Sn − E(Sn)
σ(Sn)

=
1√
n

n∑
j=1

X∗
j . (7.5.2)

The S∗
n’s are the random variables appearing in the left member of (7.3.19)

and are sometimes called the normalized or normed sums. We have for
every j and n:

E(X∗
j ) = 0, σ2(X∗

j ) = 1,

E(S∗
n) = 0, σ2(S∗

n) = 1.
(7.5.3)

The linear transformation from Xj to X∗
j or Sn to S∗

n amounts to a change
of origin and scale in the measurement of a random quantity in order to
reduce its mean to zero and variance to 1 as shown in (7.5.3). Each S∗

n is
a random variable taking the set of values

xn,k =
k − np
√
npq

, k = 0, 1, . . . , n.

This is just the xnk in (7.3.11). The probability distribution of S∗
n is given

by

P (S∗
n = xn,k) =

(
n

k

)
pkqn−k, 0 ≤ k ≤ n.

It is more convenient to use the corresponding distribution function; call it
Fn so that

P (S∗
n ≤ x) = Fn(x), −∞ < x <∞.
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Finally, if I is the finite interval (a, b], and F is any distribution function,
we shall write

F (I) = F (b)− F (a).

[By now you should understand why we used (a, b] rather than (a, b) or
[a, b]. It makes no difference if F is continuous, but the Fn’s above are not
continuous. Of course in the limit the difference disappears in the present
case, but it cannot be ignored generally.] After these elaborate preparations,
we can rewrite the De Moivre–Laplace formula in the elegant form below:
for any finite interval I,

lim
n→∞

Fn(I) = Φ(I). (7.5.4)

Thus we see that we are dealing with the convergence of a sequence of
distribution functions to a given distribution function in a certain sense.

In this formulation the subject is capable of a tremendous generaliza-
tion. The sequence of distribution functions need not be those of normalized
sums, the given limit need not be the normal distribution nor even specified
in advance, and the sense of convergence need not be that specified above.
For example, the Poisson limit theorem discussed in §7.1 can be viewed as a
particular instance. The subject matter has been intensively studied in the
last 40 years and is still undergoing further evolutions. [For some reference
books in English, see [Feller 2], [Chung 1].] Here we must limit ourselves
to one such generalization, the so-called central limit theorem in its clas-
sical setting, which is about the simplest kind of extension of Theorem 6
in §7.3. Even so we shall need a powerful tool from more advanced theory
that we can use but not fully explain. This extension consists in replacing
the Bernoullian variables above by rather arbitrary ones, as we proceed to
describe.

Let {Xj , j ≥ 1} be a sequence of independent and identically distributed
random variables. The phrase “identically distributed” means they have a
common distribution, which need not be specified. But it is assumed that
the mean and variance of each Xj are finite and denoted by m and σ2,
respectively, where 0 < σ2 <∞. Define Sn and S∗

n exactly as before, then

E(Sn) = nm, σ2(Sn) = nσ2, (7.5.5)

and (7.5.3) holds as before. Again let Fn denote the distribution of the
normalized sum S∗

n. Then Theorem 8 below asserts that (7.5.4) remains
true under the liberalized conditions for the Xj ’s. To mention just some
simple cases, each Xj may now be a “die-rolling” instead of a “coin-tossing”
random variable to which Theorem 6 is applicable; or it may be uniformly
distributed (“point-picking” variable); or again it may be exponentially
distributed (“telephone-ringing” variable). Think of some other varieties if
you wish.
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Theorem 8. For the sums Sn under the generalized conditions spelled out
above, we have for any a < b

lim
n→∞

P

(
a <

Sn − nm√
nσ

≤ b

)
=

1√
2π

∫ b

a

e−x2/2 dx. (7.5.6)

Proof: The powerful tool alluded to earlier is that of the characteristic
function discussed in §6.5. [We could not have used the moment-generating
function since it may not exist for Sn.] For the unit normal distribution
Φ, its characteristic function g can be obtained by substituting iθ for θ in
(7.4.4):

g(θ) = e−θ2/2. (7.5.7)

With each arbitrary distribution Fn there is also associated its character-
istic function gn that is in general expressible by means of Fn as a Stieltjes
integral. This is beyond the scope of this book but luckily we can bypass it
in the following treatment by using the associated random variables. [Evi-
dently we will leave the reader to find out what may be concealed!] We can
now state the following result.

Theorem 9. If we have for every θ

lim
n→∞

gn(θ) = g(θ) = e−θ2/2, (7.5.8)

then we have for every x:

lim
n→∞

Fn(x) = Φ(x) =
1√
2π

∫ x

−∞
e−u2/2 du; (7.5.9)

in particular, (7.5.4) is true.

Although we shall not prove this (see [Chung 1, Chapter 6]), let us
at least probe its significance. According to Theorem 7 of §6.5, each gn
uniquely determines Fn, and g determines Φ. The present theorem car-
ries this correspondence between distribution function and its transform
(characteristic function) one step further; for it says that the limit of the
sequence {gn} also determines the limit of the sequence {Fn}. Hence it
has been called the “continuity theorem” for the transform. In the case of
the normal Φ above the result is due to Pólya; the general case is due to
Paul Lévy (1886–1972) and Harald Cramér (1893–1985); both pioneers of
modern probability theory.

Next we need a little lemma about characteristic functions.
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Lemma. If X has mean 0 and variance 1, then its characteristic function
h has the following Taylor expansion at θ = 0:

h(θ) = 1− θ2

2
(1 + ε(θ)), (7.5.10)

where ε is a function depending on h such that limθ→0 ε(θ) = 0.

Proof: According to a useful form of Taylor’s theorem (look it up in your
calculus book): if h has a second derivative at θ = 0, then we have

h(θ) = h(0) + h′(0)θ +
h′′(0)
2

θ2(1 + ε(θ)). (7.5.11)

From

h(θ) = E(eiθX)

we obtain by formal differentiation:

h′(θ) = E(eiθXiX), h′′(θ) = E(eiθX(iX)2);

hence

h′(0) = E(iX) = 0, h′′(0) = E(−X2) = −1.

Substituting into (7.5.11), we get (7.5.10).
Theorem 8 can now be proved by a routine calculation. Consider the

characteristic function of S∗
n:

E(eiθS
∗
n) = E(eiθ(X

∗
1 +···+X∗

n)/
√
n).

Since the X∗
j ’s are independent and identically distributed as well as the

Xj ’s, by the analogue of Theorem 6 of §6.5, the right member above is
equal to

E(eiθX
∗
1 /

√
n)n = h

(
θ√
n

)n

, (7.5.12)

where h denotes the characteristic function ofX∗
1 . It follows from the lemma

that

h

(
θ√
n

)
= 1− θ2

2n

(
1 + ε

(
θ√
n

))
(7.5.13)
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where θ is fixed and n→∞. Consequently we have

lim
n→∞

E(eiθS
∗
n) = lim

n→∞

[
1− θ2

2n

(
1 + ε

(
θ√
n

))]n
= e−θ2/2

by an application of (7.1.12). This means the characteristic functions of S∗
n

converge to that of the unit normal; therefore by Theorem 9, the distribu-
tion Fn converges to Φ in the sense of (7.5.9), from which (7.5.6) follows.

The name “central limit theorem” is used generally to designate a con-
vergence theorem in which the normal distribution appears as the limit.
More particularly it applies to sums of random variables as in Theorem 8.
Historically these variables arose as errors of observations of chance fluctua-
tions, so that the result is the all-embracing assertion that under “normal”
conditions they all obey the same normal law, also known as the “error
function.” For this reason it had been regarded by some as a law of nature!
Even in this narrow context Theorem 8 can be generalized in several direc-
tions: the assumptions of a finite second moment, of a common distribution,
and of strict independence can all be relaxed. Finally, if the normal con-
ditions are radically altered, then the central limit theorem will no longer
apply, and random phenomena abound in which the limit distribution is no
longer normal. The Poisson case discussed in §7.1 may be considered as one
such example, but there are other laws closely related to the normal that
are called “stable” and “infinitely divisible” laws. See [Chung 1, Chapter
7] for a discussion of the various possibilities mentioned here.

It should be stressed that the central limit theorem as stated in The-
orems 6 and 8 is of the form (7.5.4), without giving an estimate of the
“error” Fn(I) − Φ(I). In other words, it asserts convergence without in-
dicating any “speed of convergence.” This renders the result useless in
accurate numerical computations. However, under specified conditions it
is possible to obtain bounds for the error. For example in the De Moivre–
Laplace case (7.3.19) we can show that the error does not exceed C/

√
n,

where C is a numerical constant involving p but not a or b; see [Chung 1,
§7.4] for a more general result. In crude, quick-and-dirty applications the
error is simply ignored, as will be done below.

In contrast to the mathematical developments, simple practical applica-
tions that form the backbone of “large sample theory” in statistics are usu-
ally of the cookbook variety. The great limit theorem embodied in (7.5.6)
is turned into a rough approximate formula that may be written as follows:

P (x1σ
√
n < Sn −mn < x2σ

√
n) ≈ Φ(x2)− Φ(x1).

In many situations we are interested in a symmetric spread around the
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mean, i.e., x1 = −x2. Then the above becomes by (7.4.2)

P (|Sn −mn| < xσ
√
n) ≈ 2Φ(x)− 1. (7.5.14)

Extensive tabulations of the values of Φ and its inverse function Φ−1 are
available; a short table is appended at the end of the book. The following
example illustrates the routine applications of the central limit theorem.

Example 7. A physical quantity is measured many times for accuracy.
Each measurement is subject to a random error. It is judged reasonable
to assume that it is uniformly distributed between −1 and +1 in a conve-
niently chosen unit. Now if we take the arithmetical mean [average] of n
measurements, what is the probability that it differs from the true value
by less than a fraction δ of the unit?

Let the true value be denoted by m and the actual measurements ob-
tained by Xj , 1 ≤ j ≤ n. Then the hypothesis says that

Xj = m+ ξj ,

where ξj is a random variable that has the uniform distribution in [−1,+1].
Thus

E(ξj) =
∫ +1

−1

x

2
dx = 0, σ2(ξj) = E(ξ2

j ) =
∫ +1

−1

1
2
x2 dx =

1
3
,

E(Xj) = m, σ2(Xj) =
1
3
.

In our notation above, we want to compute the approximate value of
P{|Sn −mn| < δn}. This probability must be put into the form given
in (7.5.6), and the limit relation there becomes by (7.5.14)

P

{∣∣∣∣∣Sn −mn√
n/3

∣∣∣∣∣ < δ
√
3n

}
≈ 2Φ(δ

√
3n)− 1.

For instance, if n = 25 and δ = 1/5, then the result is equal to

2Φ(
√
3)− 1 ≈ 2Φ(1.73)− 1 ≈ .92,

from the Table on p. 394. Thus, if 25 measurements are taken, then we are
92% sure that their average is within one fifth of a unit from the true value.

Often the question is turned around: how many measurements should
we take in order for the probability to exceed α (the “significance level”)
and for the average to differ from the true value by at most δ? This means
we must find the value xα such that

2Φ(xα)− 1 = α or Φ(xα) =
1 + α

2
,
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and then choose n to make

δ
√
3n > xα.

For instance, if α = .95 and δ = 1/5, then the table shows that xα ≈ 1.96;
hence

n >
x2
α

3δ2 ≈ 32.

Thus, seven or eight more measurements should increase our degree of
confidence from 92% to 95%. Whether this is worthwhile may depend on
the cost of doing the additional work as well as the significance of the
enhanced probability.

It is clear that there are three variables involved in questions of this
kind, namely: δ, α, and n. If two of them are fixed, we can solve for the
third. Thus if n = 25 is fixed because the measurements are found in
recorded data and not repeatable, and our credulity demands a high degree
of confidence α, say 99%, then we must compromise on the coefficient of
accuracy δ. We leave this as an exercise.

Admittedly these practical applications of the great theorem are dull
stuff, but so are, e.g., Newton’s laws of motion on the quotidian level.

7.6. Law of large numbers

In this section we collect two results related to the central limit theorem:
the law of large numbers and Chebyshev’s inequality.

The celebrated law of large numbers can be deduced from Theorem 8
as an easy consequence.

Theorem 10. Under the same conditions as in Theorem 8, we have for a
fixed but arbitrary constant c > 0,

lim
n→∞

P

(∣∣∣∣Snn −m

∣∣∣∣ < c

)
= 1. (7.6.1)

Proof: Since c is fixed, for any positive constant l, we have

lσ
√
n < cn (7.6.2)

for all sufficiently large values of n. Hence the event{∣∣∣∣Sn −mn

σ
√
n

∣∣∣∣ < l

}
certainly implies

{∣∣∣∣Sn −mn

n

∣∣∣∣ < c

}
,
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and so

P

(∣∣∣∣Sn −mn

σ
√
n

∣∣∣∣ < l

)
≤ P

(∣∣∣∣Sn −mn

n

∣∣∣∣ < c

)
(7.6.3)

for large n. According to (7.5.6) with a = −l, b = +l, the left member
above converges to

1√
2π

∫ l

−l

e−x2/2 dx

as n→∞. Given any δ > 0 we can first choose l so large that the value of
the integral above exceeds 1− δ, then choose n so large that (7.6.3) holds.
It follows that

P

(∣∣∣∣Snn −m

∣∣∣∣ < c

)
> 1− δ (7.6.4)

for all sufficiently large n, and this is what (7.6.1) says.

Briefly stated, the law of large numbers is a corollary to the central
limit theorem because any large multiple of

√
n is negligible in comparison

with any small multiple of n.
In the Bernoullian case the result was first proved by Jakob Bernoulli as

a crowning achievement. [Jakob or Jacques Bernoulli (1654–1705), Swiss
mathematician and physicist, author of the first treatise on probability:
Ars conjectandi (1713), which contains this theorem.] His proof depends on
direct calculations with binomial coefficients without, of course, the benefit
of such formulas as Stirling’s. In a sense the De Moivre–Laplace Theorem 6
was a sequel to it. By presenting it in reverse to the historical development
it is made to look like a trivial corollary. As a matter of fact, the law of large
numbers is a more fundamental but also more primitive limit theorem. It
holds true under much broader conditions than the central limit theorem.
For instance, in the setting of Theorem 8, it is sufficient to assume that
the common mean of Xj is finite, without any assumption on the second
moment. Since the assertion of the law concerns only the mean, such an
extension is significant and was first proved by A.Ya. Khintchine [1894–
1959, one of the most important of the school of Russian probabilists]. In
fact, it can be proved by the method used in the proof of Theorem 8 above,
except that it requires an essential extension of Theorem 9 which will take
us out of our depth here. (See Theorem 6.4.3 of [Chung 1].) Instead we will
give an extension of Theorem 10 in another direction, when the random
variables {Xj} are not necessarily identically distributed. This is easy via
another celebrated but simple result known as Chebyshev’s inequality. [P.L.
Chebyshev (1821–94) together with A.A. Markov (1856–1922) and A. M.
Ljapunov (1857–1918) were founders of the Russian school of probability.]
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Theorem 11. Suppose the random variable X has a finite second moment.
Then for any constant c > 0 we have

P (|X| ≥ c) ≤ E(X2)
c2

. (7.6.5)

Proof: We will carry out the proof for a countably valued X and leave the
analogous proof for the density case as an exercise. The idea of the proof
is the same for a general random variable.

Suppose that X takes the values vi with probabilities pi, as in §4.3.
Then we have

E(X2) =
∑
j

pjv
2
j . (7.6.6)

If we consider only those values vj satisfying the inequality |vj | ≥ c and
denote by A the corresponding set of indices j, namely A = {j | |vj | ≥ c},
then of course v2

j ≥ c2 for j ∈ A, whereas

P (|X| ≥ c) =
∑
j∈A

pj .

Hence if we sum the index j only over the partial set A, we have

E(X2) ≥
∑
j∈A

pjv
2
j ≥

∑
j∈A

pjc
2 = c2

∑
j∈A

pj = c2P (|X| ≥ c),

which is (7.6.5).

We can now state an extended form of the law of large numbers as
follows.

Theorem 12. Let {Xj , j ≥ 1} be a sequence of independent random vari-
ables such that for each j,

E(Xj) = mj , σ2(Xj) = σ2
j ; (7.6.7)

and furthermore suppose there exists a constant M <∞ such that for all j,

σ2
j ≤M. (7.6.8)

Then we have for each fixed c > 0,

lim
n→∞

P

(∣∣∣∣X1 + · · ·+Xn

n
− m1 + · · ·+mn

n

∣∣∣∣ < c

)
= 1. (7.6.9)
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Proof: If we write X0
j = Xj − mj , S

0
n =

∑n
j=1 X

0
j , then the expression

between the bars above is just S0
n/n. Of course, E(S0

n) = 0, whereas

E((S0
n)

2) = σ2(S0
n) =

n∑
j=1

σ2(X0
j ) =

n∑
j=1

σ2
j .

This string of equalities follows easily from the properties of variances and
you ought to have no trouble recognizing them now at a glance. [If you still
do, then you should look up the places in preceding chapters where they
are discussed.] Now the condition in (7.6.8) implies that

E((S0
n))

2) ≤Mn, E

((
S0
n

n

)2
)
≤ M

n
. (7.6.10)

It remains to apply Theorem 11 to X = S0
n/n to obtain

P

(∣∣∣∣S0
n

n

∣∣∣∣ ≥ c

)
≤ E((S0

n/n)2)
c2

≤ M

c2n
. (7.6.11)

Hence the probability above converges to zero as n→∞, which is equiva-
lent to the assertion in (7.6.9).

Actually the proof yields more: it gives an estimate on the “speed of
convergence.” Namely, given M , c, and δ we can tell how large n must
be in order for the probability in (7.6.9) to exceed 1 − δ. Note also that
Theorem 10 is a particular case of Theorem 12 because there all the σ2

j ’s
are equal and we may take M = σ2

1 .
Perhaps the reader will agree that the above derivations of Theorems 11

and 12 are relatively simple doings compared with the fireworks in §§7.3–
7.4. Looking back, we may find it surprising that it took two centuries
before the right proof of Bernoulli’s theorem was discovered by Chebyshev.
It is an instance of the triumph of an idea, a new way of thinking, but even
Chebyshev himself buried his inequality among laborious and unnecessary
details. The cleaning up as shown above was done by later authors. Let us
observe that the method of proof is applicable to any sum Sn of random
variables, whether they are independent or not, provided that the crucial
estimates in (7.6.10) are valid.

We turn now to the meaning of the law of large numbers. This is best
explained in the simplest Bernoullian scheme where each Xj takes the
values 1 and 0 with probabilities p and q = 1− p, as in Theorems 5 and 6
above. In this case S0

n = Sn − np and E((S0
n)2) = σ2(Sn) = npq, so that

(7.6.11) becomes

P

(∣∣∣∣Snn − p

∣∣∣∣ ≥ c

)
≤ pq

c2n
≤ 1

4c2n
; (7.6.12)
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constant depending on p, and this error term should not be ignored. But
we do so below. Now put

η =
√

n

pq
c;

our problem is to find the value of η to make

2[1− Φ(η)] ≤ ε or Φ(η) ≥ 1− ε

2
; (7.6.15)

then solve for n from η. This can be done by looking up a table of values
of Φ; a short one is appended at the end of this book.

Example 8. Suppose c = 2% and ε = 5%. Then (7.6.15) becomes

Φ(η) ≥ 1− 5
200

= .975.

From the table we see that this is satisfied if η ≥ 1.96. Thus

n ≥ (1.96)2pq
c2

=
(1.96)2 × 10000

4
pq.

The last term depends on p, but p(1 − p) ≤ 1/4 for all p, as already
noted, and so n ≥ 10000 · (1/4) = 2500 will do. For comparison, the bound
given in (7.6.13) requires n ≥ 12500; but that estimate has been rigorously
established whereas the normal approximation is a rough-and-dirty one.
We conclude that if the coin is tossed more than 2500 times, then we can
be 95% sure that relative frequency of heads computed from the actual
experiment will differ from the true p by no more than 2%.

Such a result can be applied in two ways (both envisioned by Bernoulli):
(i) if we consider p as known, then we can make a prediction on the out-
come of the experiment; (ii) if we regard p as unknown, then we can make
an estimate of its value by performing an actual experiment. The second
application has been called a problem of “inverse probability” and is the
origin of the so-called Monte Carlo method. Here is a numerical example.
In an actual experiment 10000 tosses were made and the total number of
heads obtained is 4979; see [Feller 1, p. 21] for details. The computation
above shows that we can be 95% sure that∣∣∣∣p− 4979

10000

∣∣∣∣ ≤ 2
100

or .4779 ≤ p ≤ .5179.

Returning to the general situation in Theorem 10, we will state the
law of large numbers in the following form reminiscent of the definition of
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an ordinary limit. For any ε > 0, there exists an n0(ε) such that for all
n ≥ n0(ε) we have

P

(∣∣∣∣Snn −m

∣∣∣∣ < ε

)
> 1− ε. (7.6.16)

We have taken both c and δ in (7.6.4) to be ε without loss of generality
[see Exercise 22]. If we interpret this as in the preceding example as an
assertion concerning the proximity of the theoretical mean m to the em-
pirical average Sn/n, the double hedge [margin of error] implied by the
two ε’s in (7.6.16) seems inevitable. For in any experiment one can neither
be 100% sure nor 100% accurate, otherwise the phenomenon would not be
random. Nevertheless, mathematicians are idealists and long for perfection.
What cannot be realized in the empirical world may be achieved in a purely
mathematical scheme. Such a possibility was uncovered by Borel in 1909,
who created a new chapter in probability by his discovery described below.
In the Bernoullian case, his famous result may be stated as follows:

P

(
lim
n→∞

Sn
n

= p

)
= 1.∗ (7.6.17)

This is known as a “strong law of large numbers,” which is an essential
improvement on Bernoulli’s “weak law of large numbers.” It asserts the
existence of a limiting frequency equal to the theoretical probability p,
for all sample points ω except possibly a set of probability zero (but not
necessarily an empty set). Thus the limit in (2.1.10) indeed exists, but
only for almost all ω, so that the empirical theory of frequencies beloved
by the applied scientist is justifiable through a sophisticated theorem. The
difference between this and Bernoulli’s weaker theorem:

∀ε > 0: lim
n→∞

P

(∣∣∣∣Snn − p

∣∣∣∣ < ε

)
= 1,

is subtle and cannot be adequately explained without measure theory. The
astute reader may observe that although we claim 100% certainty and ac-
curacy in (7.6.17), the limiting frequency is not an empirically observable
thing—so that the cynic might say that what we are sure of is only an
ideal, whereas the sophist could retort that we shall never be caught want-
ing! Even so a probabilistic certainty does not mean absolute certainty
in the deterministic sense. There is an analogue of this distinction in the
second law of thermodynamics (which comes from statistical mechanics).
According to that law, e.g., when a hot body is in contact with a cold
body, it is logically possible that heat will flow from the cold to the hot,

∗For a discussion of Borel’s theorem and related topics, see Chapter 5 of [Chung 1].
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but the probability of this happening is zero. A similar exception is per-
mitted in Borel’s theorem. For instance, if a coin is tossed indefinitely, it
is logically possible that it’s heads every single time. Such an event consti-
tutes an exception to the assertion in (7.6.17), but its probability is equal
to limn→∞ pn = 0.

The strong law of large numbers is the foundation of a mathematical
theory of probability based on the concept of frequency; see §2.1. It makes
better sense than the weak one and is indispensable for certain theoretical
investigations. [In statistical mechanics it is known in an extended form
under the name ergodic theorem.] But the dyed-in-the-wool empiricist, as
well as a radical school of logicians called intuitionists, may regard it as an
idealistic fiction. It is amusing to quote two eminent authors on the subject:

Feller: “[the weak law of large numbers] is of very limited interest and
should be replaced by the more precise and more useful strong law of
large numbers.” (p. 152 of [Feller 1])

van der Waerden: “[the strong law of large numbers] scarcely plays a role
in mathematical statistics.” (p. 98 of Mathematische Statistik, 3rd ed.,
Springer-Verlag, 1971)

Let us end this discussion by keeping in mind the gap between observ-
able phenomena in the real world and the theoretical models used to study
them; see Einstein’s remark on p. 129. The law of large numbers, weak or
strong, is a mathematical theorem deduced from axioms. Its applicability
to true-life experiences such as the tossing of a penny or nickel is necessarily
limited and imperfect. The various examples given above to interpret and
illustrate the theorems should be viewed with this basic understanding.

Exercises

1. Suppose that a book of 300 pages contains 200 misprints. Use Poisson
approximation to write down the probability that there is more than
one misprint on a particular page.

2. In a school where 4% of the children write with their left hands, what
is the probability that there are no left-handed children in a class of
25?

3. Six dice are thrown 200 times by the players. Estimate the probability
of obtaining “six different faces” k times, where k = 0, 1, 2, 3, 4, 5.

4. A home bakery made 100 loaves of raisin bread using 2000 raisins.
Write down the probability that the loaf you bought contains 20 to 30
raisins.

5. It is estimated that on a certain island of 15 square miles there are
20 giant tortoises of one species and 30 of another species left. An
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ecological survey team spotted 2 of them in an area of 1 square mile,
but neglected to record which species. Use Poisson distribution to find
the probabilities of the various possibilities.

6. Find the maximum term or terms in the binomial distribution Bk(n; p),
0 ≤ k ≤ n. Show that the terms increase up to the maximum and then
decrease. [Hint: take ratios of consecutive terms.]

7. Find the maximum term or terms in the Poisson distribution πk(α),
0 ≤ k <∞. Show the same behavior of the terms as in No. 6.

8. Let X be a random variable such that P (X = c+kh) = πk(α), where c
is a real and h is a positive number. Find the Laplace transform of X.

9. Find the convolution of two sequences given by Poisson distributions
{πk(α)} and {πk(β)}.

*10. If Xα has the Poisson distribution π(α), then

lim
α→∞

P

{
Xα − α√

α
≤ u

}
= Φ(u)

for every u. [Hint: use the Laplace transform E(e−λ(Xα−α)/
√
α), show

that as α→∞ it converges to eλ
2/2, and invoke the analogue of The-

orem 9 of §7.5.]
11. Assume that the distance between cars going in one direction on a

certain highway is exponentially distributed with mean value of 100
meters. What is the probability that in a stretch of 5 kilometers there
are between 50 to 60 cars?

12. On a certain highway the flow of traffic may be assumed to be Pois-
sonian with intensity equal to 30 cars per minute. Write down the
probability that it takes more than N seconds for n consecutive cars
to pass by an observation post. [Hint: use (7.2.11).]

13. A perfect die is rolled 100 times. Find the probability that the sum of
all points obtained is between 330 and 380.

14. It is desired to find the probability p that a certain thumbtack will fall
on its flat head when tossed. How many trials are needed in order that
we may be 95% sure that the observed relative frequency differs from p
by less than p/10? [Hint: try it a number of times to get a rough bound
for p.]

15. Two movie theaters compete for 1000 customers. Suppose that each
customer chooses one of the two with “total indifference” and indepen-
dently of other customers. How many seats should each theater have
so that the probability of turning away any customer for lack of seats
is less than 1%?

16. A sufficient number of voters are polled to determine the percentage
in favor of a certain candidate. Assuming that an unknown proportion
p of the voters favor him and they act independently of one another,
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how many should be polled to predict the value of p within 4.5% with
95% confidence? [This is the so-called four percent margin of error in
predicting elections, presumably because <.045 becomes ≤.04 by the
rule of rounding decimals.]

17. Write Φ((a, b)) for Φ(b)− Φ(a), where a < b and Φ is the unit normal
distribution. Show that Φ((0, 2)) > Φ((1, 3)) and generalize to any two
intervals of the same length. [Hint: e−x2/2 decreases as |x| increases.]

18. Complete the proof of (7.1.8) and then use the same method to prove
(7.1.12). [Hint: |log(1− x) + x| ≤ (1/2)

∑∞
n=2 |x|n = x2/ (2(1− |x|));

hence if |x| ≤ 1/2 this is bounded by x2.]
19. Prove (7.1.13).
20. Prove Chebyshev’s inequality when X has a density. [Hint: σ2(X) =∫∞

−∞(x−m)2f(x) dx ≥
∫

|x−m|>c
(x−m)2f(x) dx.]

21. Prove the following analogue of Chebyshev’s inequality where the ab-
solute first moment is used in place of the second moment:

P (|X −m| > c) ≤ 1
c
E(|X −m|).

*22. Show that limn→∞ P (|Xn| > ε) = 0 for every ε if and only if given any
ε, there exists n0(ε) such that

P (|Xn| > ε) < ε for n > n0(ε).

This is also equivalent to: given any δ and ε, there exists n0(δ, ε) such
that

P (|Xn| > ε) < δ for n > n0(δ, ε).

[Hint: consider ε′ = δ ∧ ε and apply the first form.]
23. If X has the distribution Φ, show that |X| has the distribution Ψ,

where Ψ = 2Φ− 1; Ψ is called the “positive normal distribution.”
24. If X has the distribution Φ, find the density function ofX2 and the cor-

responding distribution. This is known as the “chi-square distribution”
in statistics. [Hint: differentiate P (X2 < x) = 2/

√
2π
∫√

x

0 e−u2/2 du.]
*25. Use No. 24 to show that∫ ∞

0
x−1/2e−x dx =

√
π.

The integral is equal to Γ (1/2), where Γ is the gamma function defined
by Γ(α) =

∫∞
0 xα−1e−x dx for α > 0. [Hint: consider E(X2) in No. 24.]

*26. Let {ξk, 1 ≤ k ≤ n} be n random variables satisfying 0 < ξ1 ≤ ξ2 ≤
· · · ≤ ξn ≤ t; let (0, t] = ∪lk=1 Ik be an arbitrary partition of (0, t] into
subintervals Ik = (xk−1, xk], where x0 = 0; and let Ñ(Ik) denote the
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number of ξ’s belonging to Ik. How can we express the event {ξk ≤
xk; 1 ≤ k ≤ l} by means of Ñ(Ik), 1 ≤ k ≤ l? Here, of course, 0 < x1 <
x2 < · · · < xn ≤ t. Now suppose that xk, 1 ≤ k ≤ l, are arbitrary and
answer the question again. [Hint: try n = 2 and 3 to see what is going
on; relabel the xk in the second part.]

*27. Let {X(t), t ≥ 0} be a Poisson process with parameter α. For a fixed
t > 0 define δ(t) to be the distance from t to the last jump before t
if there is one, and to be t otherwise. Define δ′(t) to be the distance
from t to the next jump after t. Find the distributions of δ(t) and δ′(t).
[Hint: if u < t, P{δ(t) > u} = P{N(t − u, t) = 0}; for all u > 0,
P{δ′(t) > u} = P{N(t, t+ u) = 0}.]

*28. Let τ(t) = δ(t) + δ′(t) as in No. 27. This is the length of the between-
jump interval containing the given time t. For each ω, this is one of the
random variables Tk described in §7.2. Does τ(t) have the same expo-
nential distribution as all the Tk’s? [This is a nice example where logic
must take precedence over “intuition,” and it is often referred to as a
paradox. The answer should be easy from No. 27. For further discus-
sion at a level slightly more advanced than this book, see Chung, “The
Poisson process as renewal process,” Periodica Mathematica Hungar-
ica, Vol. 2 (1972), pp. 41–48.]

29. Use Chebyshev’s inequality to show that if X and Y are two arbi-
trary random variables satisfying E{(X − Y )2} = 0, then we have
P (X = Y ) = 1, namely X and Y are almost surely identical. [Hint:
P (|X − Y | > ε) = 0 for any ε > 0.]

30. Recall the coefficient of correlation ρ(X,Y ) from §6.3. Show that if
ρ(X,Y ) = 1, then the two “normalized” random variables

X̃ =
X −E(X)
σ(X)

, Ỹ =
Y −E(Y )
σ(Y )

are almost surely identical. What if ρ(X,Y ) = −1? [Hint: compute
E{(X̃ − Ỹ )2} and use No. 29.]





Appendix 2
Stirling’s Formula and
De Moivre–Laplace’s Theorem

In this appendix we complete some details in the proof of Theorem 5,
establish Stirling’s formula (7.3.3), and relate it to the normal integral
(7.4.1). We begin with an estimate.

Lemma. If |x| ≤ 2/3, then

log(1 + x) = x− x2

2
+ θ(x),

where |θ(x)| ≤ |x|3.

Proof: We have by Taylor’s series for log(1 + x):

log(1 + x) = x− x2

2
+

∞∑
n=3

(−1)n−1x
n

n
.

Hence θ(x) is equal to the series above and

θ(x) ≤
∞∑
n=3

|x|n
n
≤ 1

3

∞∑
n=3

|x|n =
|x|3

3(1− |x|) .

For |x| ≤ 2/3, 3(1 − |x|) ≥ 1 and the lemma follows. The choice of the
constant 2/3 is a matter of convenience; a similar estimate holds for any
constant < 1.

We will use the lemma first to complete the proof of Theorem 5, by
showing that the omitted terms in the two series expansions in (7.3.17)

251
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may indeed be ignored as n → ∞. When n is sufficiently large the two
quantities in (7.3.17′) will be ≤2/3. Consequently the lemma is applicable
and the contribution from the “tails” of the two series, represented by dots
there, is bounded by

k

∣∣∣∣
√
npq xk

k

∣∣∣∣3 + (n− k)
∣∣∣∣
√
npq xk

n− k

∣∣∣∣3 .
Since pq < 1 and |xk| ≤ A, this does not exceed

n3/2

k2 A3 +
n3/2

(n− k)2
A3,

which clearly tends to zero as n → ∞, by (7.3.15). Therefore the tails
vanish in the limit, and we are led to (7.3.18) as shown there.

Next we shall prove, as a major step toward Stirling’s formula, the
relation below:

lim
n→∞

{
log n!−

(
n+

1
2

)
logn+ n

}
= C, (A.2.1)

where C is a constant to be determined later. Let dn denote the quantity
between the braces in (A.2.1). Then a simple computation gives

dn − dn+1 =
(
n+

1
2

)
log
(
1 +

1
n

)
− 1.

Using the notation in the lemma, we write this as(
n+

1
2

)(
1
n
− 1

2n2 + θ

(
1
n

))
− 1 =

(
n+

1
2

)
θ

(
1
n

)
− 1

4n2 ,

and consequently by the lemma with x = 1/n, n ≥ 2:

|dn − dn+1| ≤
(
n+

1
2

)
1
n3 +

1
4n2 =

2n+ 1
2n3 +

1
4n2 .

Therefore the series
∑

n |dn − dn+1| converges by the comparison test. Now
recall that an absolutely convergent series is convergent, which means the
partial sum tends to a finite limit, say C1. Thus we have

lim
N→∞

N∑
n=1

(dn − dn+1) = C1;

but the sum above telescopes into d1 − dN+1, and so

lim
N→∞

dN+1 = d1 − C1,
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and we have proved the assertion in (A.2.1) with C = d1 − C1. It follows
that

lim
n→∞

n! en

nn+(1/2) = eC ,

or if K = eC :

n! ∼ Knn+(1/2)e−n. (A.2.2)

If we compare this with (7.3.3) we see that it remains to prove that
K =

√
2π to obtain Stirling’s formula. But observe that even without this

evaluation of the constant K, the calculations in Theorems 5 and 6 of §7.3
are valid provided we replace

√
2π by K everywhere. In particular, formula

(7.3.19) with a = −b becomes

lim
n→∞

P

(∣∣∣∣Sn − np
√
npq

∣∣∣∣ ≤ b

)
=

1
K

∫ b

−b

e−x2/2 dx. (A.2.3)

On the other hand, we may apply Theorem 11 (Chebyshev’s inequality)
with X = (Sn−np)/

√
npq,E(X) = 0, E(X2) = 1, to obtain the inequality

P

(∣∣∣∣Sn − np
√
npq

∣∣∣∣ ≤ b

)
≥ 1− 1

b2
. (A.2.4)

Combining the last two relations and remembering that a probability can-
not exceed 1, we obtain,

1− 1
b2
≤ 1

K

∫ b

−b

e−x2/2 dx ≤ 1.

Letting b→∞, we conclude that

K =
∫ ∞

−∞
e−x2/2 dx. (A.2.5)

Since the integral above has the value
√
2π by (7.4.1), we have proved that

K =
√
2π.

Another way of evaluating K is via the Wallis’s product formula given
in many calculus texts (see e.g., Courant-John, Introduction to Calculus
and Analysis, Vol. 1, New York: Interscience Publishers, 1965). If this is
done, then the argument above gives (A.2.5) with K =

√
2π, so that the

formula for the normal integral (7.4.1) follows. This justifies the heuristic
argument mentioned under (7.4.1) and shows the intimate relation between
the two results named in the title of this appendix.



8
From Random Walks
to Markov Chains

8.1. Problems of the wanderer or gambler

The simplest random walk may be described as follows. A particle moves
along a line by steps; each step takes it one unit to the right or to the
left with probabilities p and q = 1 − p, respectively, where 0 < p < 1. For
verbal convenience we suppose that each step is taken in a unit of time
so that the nth step is made instantaneously at time n; furthermore we
suppose that the possible positions of the particle are the set of all integers
on the coordinate axis. This set is often referred to as the “integer lattice”
on R1 = (−∞,∞) and will be denoted by I. Thus the particle executes a
walk on the lattice, back and forth, and continues ad infinitum. If we plot
its position Xn as a function of the time n, its path is a zigzag line of which
some samples are shown below in Figure 30.

A more picturesque language turns the particle into a wanderer or
drunkard and the line into an endless street divided into blocks. In each
unit of time, say 5 minutes, he walks one block from street corner to corner,
and at each corner he may choose to go ahead or turn back with probabil-
ities p or q. He is then taking a random walk and his track may be traced
on the street with a lot of doubling and redoubling. This language suggests
an immediate extension to a more realistic model where there are vertical
as well as horizontal streets, regularly spaced as in parts of New York City.
In this case each step may take one of the four possible directions as in Fig-
ure 31. This scheme corresponds to a random walk on the integer lattice of
the plane R2. We shall occasionally return to this below, but for the most

254
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Figure 30

part we confine our discussion to the simplest situation of one dimension.
A mathematical formulation is near at hand. Let ξn be the nth step

taken or displacement, so that

ξn =

{
+1 with probability p,
−1 with probability q;

(8.1.1)

and the ξn’s are independent random variables. If we denote the initial
position by X0, then the position at time n (or after n steps) is just

Xn = X0 + ξ1 + · · ·+ ξn. (8.1.2)

Thus the random walk is represented by the sequence of random variables
{Xn, n ≥ 0} which is a stochastic process in discrete time. In fact, Xn−X0
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Figure 31

is a sum of independent Bernoullian random variables much studied in
Chapters 5, 6, and 7. We have changed our previous notation [see, e.g.,
(6.3.11)] to the present one in (8.1.2) to conform with later usage in §8.3.
But apart from this what is new here?

The answer is that our point of view will be new. We are going to study
the entire walk, or process, as it proceeds, or develops, in the course of
time. In other words, each path of the particle or wanderer will be envi-
sioned as a possible development of the process subject to the probability
laws imposed on the motion. Previously we have been interested mostly in
certain quantitative characteristics of Xn (formerly Sn) such as its mean,
variance, and distribution. Although the subscript n there is arbitrary and
varies when n → ∞, a probability like P (a ≤ Xn ≤ b) concerns only the
variable Xn taken one at a time, so to speak. Now we are going to probe
deeper into the structure of the sequence {Xn, n ≥ 0} by asking questions
that involve many of them all at once. Here are some examples. Will the
moving particle ever “hit” a given point? If so, how long will this take, and
will it happen before or after the particle hits some other point? One may
also ask how frequently the particle hits a point or a set; how long it stays
within a set, etc. Some of these questions will be made precise below and
answered. In the meantime you should let your fancy go free and think up
a few more such questions and perhaps relate them to concrete models of
practical significance.

Let us begin with the following problem.

Problem 1. Consider the interval [0, c], where c = a+ b and a ≥ 1, b ≥ 1.
If the particle starts at the point “a” what is the probability that it will
hit one endpoint of the interval before the other?

This is a famous problem in another setting, discussed by Fermat and
Pascal and solved in general by Montmart. Two gamblers Peter and Paul
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play a series of games in which Peter wins with probability p and Paul wins
with probability q, and the outcomes of the successive games are assumed
to be independent. For instance, they may toss a coin repeatedly or play
ping-pong or chess in which their skills are rated as p to q. The loser pays a
dollar each time to the winner. Now if Peter has $a and Paul has $b at the
outset and they continue to play until one of them is ruined (bankrupt),
what is the probability that Peter will be ruined?

In this formulation the position of the particle at time n becomes the
number of dollars Peter has after n games. Each step to the right is $1 won
by him, each step to the left is $1 lost. If the particle reaches 0 before c,
then Peter has lost all his initial capital and is ruined; on the other hand,
if the particle reaches c before 0, then Paul has lost all his capital and is
ruined. The game terminates when one of these eventualities occurs. Hence
the historical name of “gambler’s ruin problem.”

We are now going to solve Problem 1. The solution depends on the
following smart “put,” for 1 ≤ j ≤ c− 1:

uj = the probability that the particle will reach 0
before c, when it starts from j.

(8.1.3)

The problem is to find ua, but since “a” is arbitrary we really need all
the uj ’s. Indeed the idea is to exploit the relations between them and trap
them together. These relations are given by the following set of difference
equations:

uj = puj+1 + quj−1, 1 ≤ j ≤ c− 1, (8.1.4)

together with the boundary conditions:

u0 = 1, uc = 0. (8.1.5)

To argue (8.1.4), think of the particle as being at j and consider what will
happen after taking one step. With probability p it will then be at j + 1,
under which hypothesis the (conditional) probability of reaching 0 before
c will be uj+1; similarly with probability q it will be at j − 1, under which
hypothesis the said probability will be uj−1. Hence the total probability
uj is equal to the sum of the two terms on the right side of (8.1.4), by
an application of Proposition 2 of §5.2. This argument spelled out in the
extremal cases j = 1 and j = c− 1 entails the values of u0 and uc given in
(8.1.5). These are not included in (8.1.3) and strictly speaking are not well
defined by the verbal description given there, although it makes sense by a
kind of extrapolation.

The rest of our work is purely algebraic. Since p+ q = 1 we may write
the left member of (8.1.4) as puj + quj ; after a transposition the equation
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becomes

q(uj − uj−1) = p(uj+1 − uj).

Using the abbreviations

r =
q

p
, dj = uj − uj+1,

we obtain the basic recursion between successive differences below:

dj = rdj−1. (8.1.6)

Iterating we get dj = rjd0; then summing by telescoping:

1 = u0 − uc =
c−1∑
j=0

(uj − uj+1)

=
c−1∑
j=0

dj =
c−1∑
j=0

rjd0 =
1− rc

1− r
d0

(8.1.7)

provided that r �= 1. Next we have similarly

uj = uj − uc =
c−1∑
i=j

(ui − ui+1)

=
c−1∑
i=j

dj =
c−1∑
i=j

ri d0 =
rj − rc

1− r
d0.

(8.1.8)

It follows that

uj =
rj − rc

1− rc
, 0 ≤ j ≤ c. (8.1.9)

In case r = 1 we get from the penultimate terms in (8.1.7) and (8.1.8) that

1 = cd0,

uj = (c− j) d0 =
c− j

c
, (8.1.10)

ua =
b

c
.

One half of Problem 1 has been completely solved; it remains to find

vj = the probability that the particle will reach
c before 0, when it starts from j.
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Exactly the same argument shows that the set of equations (8.1.4) will be
valid when the u’s are replaced by v’s, while the boundary conditions in
(8.1.5) are merely interchanged: v0 = 0, vc = 1. Hence we can find all vj by
a similar method, which you may wish to carry out as an excellent exercise.
However, there are quicker ways without this effort.

One way is perhaps easier to understand by thinking in terms of the
gamblers. If we change p into q (namely r into 1/r), and at the same time
j into c− j (because when Peter has $j, Paul has $(c− j), and vice versa),
then their roles are interchanged and so uj will go over into vj (not vc−j ,
why?). Making these changes in (8.1.9) and (8.1.10), we obtain

vj =
1− rj

1− rc
if p �= q,

vj =
j

c
if p = q.

Now it is a real pleasure to see that in both cases we have

uj + vj = 1, 0 ≤ j ≤ c. (8.1.11)

Thus as a by-product, we have solved the next problem that may have
occurred to you in the course of the preceding discussion.

Problem 2. If the particle starts inside the interval [0, c], what is the
probability that it will ever reach the boundary?

Since the boundary consists of the two endpoints 0 and c, the answer is
given by (8.1.11) and is equal to 1. In terms of the gamblers, this means that
one of them is bound to be ruined sooner or later if the game is continued
without a time limit; in other words, it cannot go on forever. Now you can
object that surely it is conceivable for Peter and Paul to seesaw endlessly
as, e.g., indicated by the sequence +1−1+1−1+1−1 . . . . The explanation
is that while this eventually is a logical possibility its probability is equal
to zero as just shown. Namely, it will almost never happen in the sense
discussed at the end of §7.6, and this is all we can assert.

Next, let us mention that Problem 2 can be solved without the inter-
vention of Problem 1. Indeed, it is clear the question raised in Problem 2 is
a more broad “qualitative” one that should not depend on the specific nu-
merical answers demanded by Problem 1. It is not hard to show that even
if the ξ’s in (8.1.2) are replaced by independent random variables with an
arbitrary common distribution, which are not identically zero, so that we
have a generalized random walk with all kinds of possible steps, the answer
to Problem 2 is still the same in the broader sense that the particle will
sooner or later get out of any finite interval (see, e.g., [Chung 1, Theorem
9.2.3]). Specializing to the present case where the steps are ±1, we see that
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the particle must go through one of the endpoints before it can leave the
interval [0, c]. If this conclusion tantamount to (8.1.11) is accepted with
or without a proof, then of course we get vj = 1 − uj without further
calculation.

Let us state the answer to Problem 2 as follows.

Theorem 1. For any random walk (with arbitrary p), the particle will
almost surely∗ not remain in any finite interval forever.

As a consequence, we can define a random variable that denotes the
waiting time until the particle reaches the boundary. This is sometimes
referred to as “absorption time” if the boundary points are regarded as
“absorbing barriers,” namely the particle is supposed to be stuck there as
soon as it hits them. In terms of the gamblers, it is also known as the
“duration of play.” Let us put for 1 ≤ j ≤ c− 1:

Sj = the first time when the particle reaches 0 or c
starting from j;

(8.1.12)

and denote its expectation E(Sj) by ej . The answer to Problem 2 asserts
that Sj is almost surely finite, hence it is a random variable taking positive
integer values. [Were it possible for Sj to be infinite it would not be a
random variable as defined in §4.2, since “+∞” is not a number. However,
we shall not elaborate on the sample space on which Sj is defined; it is
not countable!] The various ej ’s satisfy a set of relations like the uj ’s, as
follows:

ej = pej+1 + qej−1 + 1, 1 ≤ j ≤ c− 1,

e0 = 0, ec = 0.
(8.1.13)

The argument is similar to that for (8.1.4) and (8.1.5), provided we explain
the additional constant “1” on the right side of the first equation above.
This is the unit of time spent in taking the one step involved in the argu-
ment from j to j ± 1. In the above we have tacitly assumed that all ej are
finite; for a not-so-easy proof see Exercise 48 at the end of the chapter.

The complete solution of (8.1.13) may be carried out directly as before,
or more expeditiously by falling back on a standard method in solving
difference equations detailed in Exercise 13. Since the general solution is
not enlightening we will indicate the direct solution only in the case p =
q = 1/2, which is needed in later discussion. Let fj = ej − ej+1; then

fj = fj−1 + 2, fj = f0 + 2j,

0 =
c−1∑
j=0

fj = c(f0 + c− 1).

∗In general, “almost surely” means “with probability 1.”
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Hence f0 = 1− c, and after a little computation,

ej =
c−1∑
i=j

fi =
c−1∑
i=j

(1− c+ 2i) = j(c− j). (8.1.14)

Since the random walk is symmetric, the expected absorption time should
be the same when the particle is at distance j from 0, or from c (thus at
distance c−j from 0), hence it is a priori clear that ej = ec−j , which checks
out with (8.1.14).

8.2. Limiting schemes

We are now ready to draw important conclusions from the preceding for-
mulas. First of all, we will convert the interval [0, c] into the half-line [0,∞)
by letting c→ +∞. It follows from (8.1.9) and (8.1.10) that

lim
c→∞

uj =

{
rj if r < 1,
1 if r ≥ 1.

(8.2.1)

Intuitively, this limit should mean the probability that the particle will
reach 0 before “it reaches +∞,” starting from j; or else the probability
that Peter will be ruined where he plays against an “infinitely rich” Paul,
who cannot be ruined. Thus it simply represents the probability that the
particle will ever reach 0 from j, or that of Peter’s eventual ruin when his
capital is $j. This interpretation is correct and furnishes the answer to the
following problem, which is a sharpening of Problem 2.

Problem 3. If the particle starts from a (≥ 1), what is the probability
that it will ever hit 0?

The answer is 1 if p ≤ q; and (q/p)a if p > q. Observe that when p ≤ q
the particle is at least as likely to go left as to go right, so the first conclusion
is most plausible. Indeed, in case p < q we can say more by invoking the
law of large numbers in its strong form given in §7.6. Remembering our
new notation in (8.1.2) and that E(ξn) = p− q, we see that in the present
context (7.6.17) becomes the assertion that almost surely we have

lim
n→∞

(Xn −X0)
n

= p− q < 0.

This is a much stronger assertion than that limn→∞ Xn = −∞. Now our
particle moves only one unit at a time, hence it can go to −∞ only by
passing through all the points to the left of the starting point. In particular,
it will almost surely hit 0 from a.
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In case p > q the implication for gambling is curious. If Peter has a
definite advantage, then even if he has only $1 and is playing against an
unruinable Paul, he still has a chance 1−q/p to escape ruin forever. Indeed,
it can be shown that in this happy event Peter will win big in the following
precise sense, where Xn denotes his fortune after n games:

P{Xn → +∞ | Xn �= 0 for all n} = 1.

[This is a conditional probability given the event {Xn �= 0 for all n}.] Is
this intuitively obvious? Theorem 1 helps the argument here but does not
clinch it.

When p = q = 1/2, the argument above does not apply, and since in
this case there is symmetry between left and right, our conclusion may be
stated more forcefully as follows.

Theorem 2. Starting from any point in a symmetric random walk, the
particle will almost surely hit any point any number of times.

Proof: Let us write i ⇒ j to mean that starting from i the particle will
almost surely hit j, where i ∈ I, j ∈ I. We have already proved that if
i �= j, then i⇒ j. Hence also j ⇒ i. But this implies j ⇒ j by the obvious
diagram j ⇒ i⇒ j. Hence also i⇒ j ⇒ j ⇒ j ⇒ j . . . , which means that
starting from i the particle will hit j as many times as we desire, and note
that j = i is permitted here.

We shall say briefly that the particle will hit any point in its range
I infinitely often and that the random walk is recurrent (or persistent).
These notions will be extended to Markov chains in §8.4.

In terms of gambling, Theorem 2 has the following implication. If the
game is fair, then Peter is almost sure to win any amount set in advance
as his goal, provided he can afford to go into debt for an arbitrarily large
amount. For Theorem 2 only guarantees that he will eventually win say
$1000000 without any assurance as to how much he may have lost before
he gains this goal. Not a very useful piece of information this—but strictly
fair from Paul’s viewpoint! A more realistic prediction is given in (8.1.10),
which may be rewritten as

ua =
b

a+ b
, va =

a

a+ b
; (8.2.2)

which says that the chance of Peter winning his goal b before he loses his
entire capital a is in the exact inverse proportion of a to b. Thus if he has
$100, his chance of winning $1000000 is equal to 100/1000100, or about 1
in 10000. This is about the state of affairs when he plays in a casino, even
if the house does not reserve an advantage over him.

Another wrinkle is added when we let c → +∞ in the definition of ej .
The limit then represents the expected time that the particle starting at
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j (≥ 1) will first reach 0 (without any constraint as to how far it can go to
the right of j). Now this limit is infinite according to (8.1.14). This means
even if Peter has exactly $1 and is playing against an infinitely rich casino,
he can “expect” to play a long, long time provided the game is fair. This
assertion sounds fantastic as stated in terms of a single gambler, whereas
the notion of mathematical expectation takes on practical meaning only
through the law of large numbers applied to “ensembles.” It is common
knowledge that on any given day many small gamblers walk away from the
casino with pocketed gains—they have happily escaped ruin because the
casino did not have sufficient time to ruin them in spite of its substantial
profit margin!

Let us mention another method to derive (8.2.2) which is stunning. In
the case p = q we have E(ξn) = 0 for every n, and consequently we have
from (8.1.2) that

E(Xn) = E(X0) +E(ξ1) + · · ·+E(ξn) = a. (8.2.3)

In terms of the gamblers this means that Peter’s expected capital remains
constant throughout the play since the game is fair. Now consider the
duration of play Sa in (8.1.12). It is a random variable that takes positive
integer values. Since (8.2.3) is true for every such value, might it not remain
so when we substitute Sa for n there? This is in general risky business but
it happens to be valid here by the special nature of Sa as well as that of the
process {Xn}. We cannot justify it here (see Appendix 3) but will draw the
conclusion. Clearly XSa

takes only the two values 0 and c by its definition;
let

P (XSa
= 0) = ρ, P (XSa

= c) = 1− ρ. (8.2.4)

Then

E(XSa
) = ρ · 0 + (1− ρ) · c = (1− ρ)c.

Hence E(XSa
) = a means

ρ = 1− a

c
=

b

a+ b
,

in agreement with (8.2.2). Briefly stated, the argument above says that the
game remains fair up to and including the time of its termination. Is this
intuitively obvious?

We now proceed to describe a limiting procedure that will lead from
the symmetric random walk to Brownian motion. The English botanist
Brown observed (1826) that microscopic particles suspended in a liquid
are subject to continual molecular impacts and execute zigzag movements.
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Einstein and Smoluchovski found that in spite of their apparent irregu-
larity these movements can be analyzed by laws of probability; in fact,
the displacement over a period of time follows a normal distribution. Ein-
stein’s result (1906) amounted to a derivation of the central limit theorem
(see §7.4) by the method of differential equations. The study of Brown-
ian motion as a stochastic process was undertaken by Wiener∗ in 1923,
preceded by Bachelier’s heuristic work, and soon was developed into its
modern edifice by Paul Lévy and his followers. Together with the Poisson
process (§7.2) it constitutes one of the two fundamental species of stochas-
tic processes, in both theory and application. Although the mathematical
equipment allowed in this book is not adequate to treat the subject prop-
erly, it is possible to give an idea of how the Brownian motion process
can be arrived at through random walk and to describe some of its basic
properties.

The particle in motion observed by Brown moved of course in three-
dimensional space, but we can think of its projection on a coordinate axis.
Since numerous impacts are received per second, we will shorten the unit
of time; but we must also shorten the unit of length in such a way as to
lead to the correct model. Let δ be the new time unit – in other words, the
time between two successive impacts. Thus in our previous language t/δ
steps are taken by the particle in old time t. Each step is still a symmet-
rical Bernoullian random variable, but we now suppose that the step is of
magnitude

√
δ, namely for all k:

P (ξk =
√
δ) = P (ξk = −

√
δ) =

1
2
.

We then have

E(ξk) = 0, σ2(ξk) =
1
2
(
√
δ)2 +

1
2
(−
√
δ)2 = δ.

Let X0 = 0 so that by (8.1.2)

Xt =
t/δ∑
k=1

ξk. (8.2.5)

If δ is much smaller than t, t/δ is large and may be thought of as an integer.
Hence we have by Theorem 4 of §6.3:

E(Xt) = 0, σ2(Xt) =
t

δ
· δ = t. (8.2.6)

Furthermore if t is fixed and δ → 0, then by the De Moivre–Laplace central
limit theorem (Theorem 6 of §7.3), Xt will have the normal distribution

∗Norbert Wiener (1894–1964), renowned U.S. mathematician, father of cybernetics.
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N(0, t). This means we are letting our approximate scheme, in which the
particle moves a distance of ±

√
δ with equal probability in old time δ, go

to the limit as δ → 0. This limiting scheme is the Brownian motion, also
called Wiener process, and here is its formal definition.

Definition of Brownian Motion. A family of random variables {X(t)},
indexed by the continuous variable t ranging over [0,∞), is called the Brow-
nian motion iff it satisfies the following conditions:

(i) X(0) = 0;
(ii) the increments X(si + ti) − X(si), over an arbitrary finite set of

disjoint intervals (si, si + ti), are independent random variables;
(iii) for each s ≥ 0, t ≥ 0, X(s+ t)−X(s) has the normal distribution

N(0, t).

For each constant a, the process {X(t) + a}, where X(t) is just defined, is
called the Brownian motion starting at a.

We have seen that the process constructed above by a limiting passage
from symmetric random walks has property (iii). Property (ii) comes from
the fact that increments over disjoint intervals are obtained by summing
the displacements ξk in disjoint blocks; hence the sums are independent by
a remark made after Proposition 6 of §5.5.

The definition above should be compared with that of a Poisson process
given in §7.2, the only difference being in (iii). However, by the manner in
which a Poisson process is constructed there, we know the general appear-
ance of its paths as described under Figure 29. The situation is far from
obvious for Brownian motion. It is one of Wiener’s major discoveries that
almost all its paths are continuous; namely, for almost all ω, the function
t → X(t, ω) is a continuous function of t in [0,∞). In practice, we can
discard the null set of ω’s which yield discontinuous functions from the
sample space Ω, and simply stipulate that all Brownian paths are contin-
uous. This is a tremendously useful property that may well be added to
the definition above. On the other hand, Wiener also proved that almost
every path is nowhere differentiable, i.e., the curve does not have a tangent
anywhere—which only goes to show that one cannot rely on intuition any
more in these matters.

However, it is not hard to guess the answers to our previous questions
restated for Brownian motion. In fact, the analogue in Theorem 1 holds:
starting at any point, the path will go through any other point infinitely
many times. Note that because of the continuity of the path this will follow
from the “intermediate value theorem” in calculus once we show that it will
reach out as far as we wish. Since each approximating random walk has
this property, it is obvious that the Brownian motion does too. Finally,
let us show that formula (8.2.2) holds also for Brownian motion, where ua
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Figure 32

and va retain the same meanings as before but now a and c are arbitrary
numbers such that 0 < a < c. Consider the Brownian motion starting at
a; then it follows from property (i) that E(Xt) = a for all t ≥ 0, which
is just the continuous analogue of (8.2.3). Now we substitute Ta∗ for t to
get E(XTa

) = a as before. This time, the continuity of paths assures us
that at the instant Ta, the position of the particle must be exactly at 0
or at c. In fact, the word “reach” used in the definition of ua, va, and Ta
would have to be explained more carefully if the path could jump over the
boundary. Thus we can again write (8.2.4) and get the same answer as for
the symmetric random walk.

8.3. Transition probabilities

The model of random walks can be greatly generalized to that of Markov
chains, named after A.A. Markov (see §7.6). As the saying goes, one may
fail to see the forest on account of the trees. By doing away with some cum-
bersome and incidental features of special cases, a general theory emerges
that is clearer and simpler and covers a wider range of applications. The
remainder of this chapter is devoted to the elements of such a theory.

We continue to use the language of a moving particle as in the random
walk scheme, and denote its range by I. This may now be a finite or infinite
set of integers, and it will soon be apparent that in general no geometric

∗See (8.4.2) for definition of Ta with j = a there.
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or algebraic structure (such as right or left, addition and subtraction) is
required of I. Thus it may be an arbitrary countable set of elements, pro-
vided that we extend our definition of random variables to take values in
such a set. [In §4.2 we have defined a random variable to be numerically
valued.] We shall call I the state space and an element of it a state. For
example, in physical chemistry a state may be a certain level of energy for
an atom; in public opinion polls it may be one of the voter’s possible states
of mind, etc. The particle moves from state to state, and the probability
law governing its change of states or transition will be prescribed as follows.
There is a set of transition probabilities pij , where i ∈ I, j ∈ I, such that
if the particle is in the state i at any time, regardless of what state it has
been in before then, the probability that it will be in the state j after one
step is given by pij . In symbols, if Xn denotes the state of the particle at
time n, then we have

P{Xn+1 = j | Xn = i;A} = P{Xn+1 = j | Xn = i} = pij , (8.3.1)

for an arbitrary event A determined by {X0, . . . , Xn−1} alone. For in-
stance, A may be a completely specified “past” of the form “X0 = i0, X1 =
i1, . . . , Xn−1 = in−1,” or a more general past event where the states
i0, . . . , in−1 are replaced by sets of states: “X0 ∈ J0, X1 ∈ J1, . . . , Xn−1 ∈
Jn−1.” In the latter case some of these sets may be taken to be the whole
space I, so that the corresponding random variables are in effect omit-
ted from the conditioning: thus “X0 ∈ J0, X1 ∈ I,X2 ∈ J2” is really just
“X0 ∈ J0, X2 ∈ J2.” The first equation in (8.3.1) renders the precise mean-
ing of the phrase “regardless of prior history” and is known as the Markov
property. The second equation says that the conditional probability there
does not depend on the value of n; this is referred to as the stationarity (or
temporal homogeneity) of the transition probabilities. Together they yield
the following definition.

Definition of Markov Chain. A stochastic process {Xn, n ∈ N0}∗ tak-
ing values in a countable set I is called a homogeneous Markov chain, or
Markov chain with stationary transition probabilities, iff (8.3.1) holds.

If the first equation in (8.3.1) holds without the second, then the Markov
chain is referred to as being “nonhomogeneous,” in which case the prob-
ability there depends also on n and must be denoted by pij(n), say. Since
we shall treat only a homogeneous chain, we mean this case when we say
“Markov chain” or “chain” below without qualification.

As a consequence of the definition, we can write down the probabilities
of successive transitions. Whenever the particle is in the state i0, and re-
gardless of its prior history, the conditional probability that it will be in

∗It may be more convenient in some verbal descriptions to begin with n = 1 rather
than n = 0.
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the states i1, i2, . . . , in, in the order given, during the next n steps may be
suggestively denoted by the left member below and evaluated by the right
member:

p{. . . . . i0 → i1 → i2 → · · · → in} = pi0i1pi1i2 · · · pin−1in , (8.3.2)

where the five dots at the beginning serve to indicate the irrelevant and
forgotten past. This follows by using (8.3.1) in the general formula (5.2.2)
for joint probabilities; for instance,

P{X4 = j,X5 = k,X6 = l | X3 = i} = P{X4 = j | X3 = i}

· P{X5 = k | X3 = i,X4 = j}P{X6 = l | X3 = i,X4 = j,X5 = k}

= P{X4 = j | X3 = i}P{X5 = k | X4 = j}P{X6 = l | X5 = k}

= pijpjkpkl.

Moreover, we may adjoin any event A determined by {X0, X1, X2} alone
behind the bars in the first two members above without affecting the re-
sult. This kind of calculation shows that given the state of the particle at
any time, its prior history is not only irrelevant to the next transition as
postulated in (8.3.1), but equally so to any future transitions. Symbolically,
for any event B determined by {Xn+1, Xn+2, . . . }, we have

P{B | Xn = i;A} = P{B | Xn = i} (8.3.3)

as an extension of the Markov property. But that is not yet the whole story;
there is a further and more sophisticated extension revolving around the
three little words “at any time” italicized above, which will be needed and
explained later.

It is clear from (8.3.2) that all probabilities concerning the chain are
determined by the transition probabilities, provided that it starts from a
fixed state, e.g., X0 = i. More generally we may randomize the initial state
by putting

P{X0 = i} = pi, i ∈ I.

Then {pi, i ∈ I} is called the initial distribution of the chain and we have
for arbitrary states i0, i1, . . . , in:

P{X0 = i0, X1 = i1, . . . , Xn = in} = pi0pi0i1 · · · pin−1in (8.3.4)

as the joint distribution of random variables of the process. Let us pause
to take note of the special case where for every i ∈ I and j ∈ I we have

pij = pj .
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The right member of (8.3.4) then reduces to pi0pi1 . . . pin , and we see that
the random variables X0, X1, . . . , Xn are independent with the common
distribution given by {pj , j ∈ I}. Thus, a sequence of independent, identi-
cally distributed, and countably valued random variables is a special case
of a Markov chain, which has a much wider scope. The basic concept of
such a scheme is due to Markov, who introduced it around 1907.

It is clear from the definition of pij that we have

(a) pij ≥ 0 for every i and j,

(b)
∑
j∈I

pij = 1 for every i. (8.3.5)

Indeed, it can be shown that these are the only conditions that must be
satisfied by the pij ’s in order that they be the transition probabilities of
a homogeneous Markov chain. In other words, such a chain can be con-
structed to have a given matrix satisfying those conditions as its transition
matrix. Examples are collected at the end of the section.

Let us denote by p(n)
ij the probability of transition from i to j in exactly

n steps, namely:

p
(n)
ij = P{Xn = j | X0 = i}. (8.3.6)

Thus p(1)
ij is our previous pij and we may add

p
(0)
ij = δij =

{
0 if i �= j,

1 if i = j,

for convenience. The δij above is known as Kronecker’s symbol, which you
may have seen in linear algebra. We proceed to show that for n ≥ 1, i ∈ I,
k ∈ I, we have

p
(n)
ik =

∑
j

pijp
(n−1)
jk =

∑
j

p
(n−1)
ij pjk, (8.3.7)

where the sum is over I, an abbreviation that will be frequently used below.
To argue this, let the particle start from i, and consider the outcome after
taking one step. It will then be in the state j with probability pij ; and
conditioned on this hypothesis, it will go to the state k in n− 1 more steps
with probability p(n−1)

jk , regardless of what i is. Hence the first equation in
(8.3.7) is obtained by summing over all j according to the general formula
for total probabilities; see (5.2.3) or (5.2.4). The second equation in (8.3.7)
is proved in a similar way by considering first the transition in n− 1 steps,
followed by one more step.
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For n = 2, (8.3.7) becomes

p
(2)
ik =

∑
j

pijpjk, (8.3.8)

which suggests the use of matrices. Let us arrange the pij ’s in the form of
a matrix

Π = [pij ], (8.3.9)

so that pij is the element at the ith row and jth column. Recall that the
elements of Π satisfy the conditions in (8.3.5). Such a matrix is called
stochastic. Now the product of two square matrices Π1 × Π2 is another
such matrix whose element at the ith row and jth column is obtained by
multiplying the corresponding elements of the ith row of Π1 with those of
the jth column of Π2, and then adding all such products. In case both Π1
and Π2 are the same Π, this yields precisely the right member of (8.3.8).
Therefore we have

Π2 = Π×Π = [p(2)
ij ],

and it follows by induction on n and (8.3.7) that

Πn = Π×Πn−1 = Πn−1 ×Π = [p(n)
ij ].

In other words, the n-step transition probabilities p(n)
ij are just the elements

in the nth power of Π. If I is the finite set {1, 2, . . . , r}, then the rule of
multiplication described above is of course the same as the usual one for
square matrices (or determinants) of order r. When I is an infinite set, the
same rule applies but we must make sure that the resulting infinite series
such as the one in (8.3.8) are all convergent. This is indeed so, by virtue of
(8.3.7). We can now extend the latter as follows. For n ∈ N0,m ∈ N0, and
i ∈ I, k ∈ I, we have

p
(n+m)
ik =

∑
j

p
(n)
ij p

(m)
jk . (8.3.10)

This set of equations is known as the Chapman–Kolmogorov equations [Syd-
ney Chapman, 1888–1970, English applied mathematician]. It is simply an
expression of the law of exponentiation for powers of Π:

Πn+m = Πn ×Πm,

and can be proved, either by induction of m from (8.3.7), purely alge-
braically, or by a probabilistic argument along the same line as that for
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(8.3.7). Finally, let us record the trivial equation, valid for each n ∈ N0

and i ∈ I: ∑
j

p
(n)
ij = 1. (8.3.11)

The matrix Πn may be called the n-step transition matrix. Using p(n)
ij we can

express joint probabilities when some intermediate states are not specified.
An example will make this clear:

P{X4 = j,X6 = k,X9 = l | X2 = i} = p
(2)
ij p

(2)
jk p

(3)
kl .

We are now going to give some illustrative examples of homogeneous
Markov chains, and one that is nonhomogeneous.

Example 1. I = {. . . ,−2,−1, 0, 1, 2, . . . } is the set of all integers.

pij =



p if j = i+ 1,
q if j = i− 1,
0 otherwise;

(8.3.12)

Π =



. . . . . . .
. . . q 0 p 0 0 . . .
. . . 0 q 0 p 0 . . .
. . . 0 0 q 0 p . . .
. . . . . .


 ,

where p + q = 1, p ≥ 0, q ≥ 0. This is the free random walk discussed in
§8.1. In the extreme cases p = 0 or q = 0, it is of course deterministic
(almost surely).

Example 2. I = {0, 1, 2, . . . } is the set of nonnegative integers; pij is the
same as in Example 1 for i �= 0; but p00 = 1, which entails p0j = 0 for all
j �= 0. This is the random walk with one absorbing state 0. It is the model
appropriate for Problem 3 in §8.2. The absorbing state corresponds to the
ruin (state of bankruptcy) of Peter, whereas Paul is infinitely rich so that
I is unlimited to the right.

Example 3. I = {0, 1, . . . , c}, c ≥ 2.

Π =



1 0 0 . . . . . .
q 0 p 0 . . . . .
0 q 0 p 0 . . . .
. . . . . 0 q 0 p
. . . . . 0 0 0 1


 .
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For 1 ≤ i ≤ c− 1, the pij ’s are the same as in Example 1, but

p00 = 1, pcc = 1. (8.3.13)

This is the random walk with two absorbing barriers 0 and c and is appro-
priate for Problem 1 of §8.1. Π is a square matrix of order c+ 1.

Example 4. In Example 3 replace (8.3.13) by

p01 = 1, pc,c−1 = 1.

Π =



0 1 0 0 . . .
q 0 p 0 . . .
. . . . . . .
. . . 0 q 0 p
. . . 0 0 1 0


 ,

This represents a random walk with two reflecting barriers such that after
the particle reaches either endpoint of the interval [0, c], it is bound to
turn back at the next step. In other words, either gambler will be given a
$1 reprieve whenever he becomes bankrupt, so that the game can go on
forever—for fun! We may also eliminate the two states 0 and c, and let
I = {1, 2, . . . , c− 1},

p11 = q, p12 = p, pc−1,c−2 = q, pc−1,c−1 = p.

Π =



q p 0 0 . . .
q 0 p 0 . . .
. . . . . . .
. . . 0 q 0 p
. . . 0 0 q p


 .

Example 5. Let p ≥ 0, q ≥ 0, r ≥ 0, and p+ q+ r = 1. In Examples 1 to 4
replace each row of the form (. . . q0p . . . ) by (. . . qrp . . . ). This means that
at each step the particle may stay put, or that the game may be a draw,
with probability r. When r = 0, this reduces to the preceding examples.

Example 6. Let {ξn, n ≥ 0} be a sequence of independent integer-valued
random variables such that all except possibly ξ0 have the same distribution
given by {ak, k ∈ I}, where I is the set of all integers. Define Xn as in
(8.1.2): Xn =

∑n
k=0 ξk, n ≥ 0. Since Xn+1 = Xn + ξn+1, and ξn+1 is

independent of X0, X1, . . . , Xn, we have for any event A determined by
X0, . . . , Xn−1 alone:

P{Xn+1 = j | A;Xn = i} = P{ξn+1 = j − i | A;Xn = i}

= P{ξn+1 = j − i} = aj−i.
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Hence {Xn, n ≥ 0} constitutes a homogeneous Markov chain with the
transition matrix [pij ], where

pij = aj−i. (8.3.14)

The initial distribution is the distribution of ξ0, which need not be the same
as {ak}. Such a chain is said to be spatially homogeneous as pij depends
only on the difference j − i. Conversely, suppose {Xn, n ≥ 0} is a chain
with the transition matrix given in (8.3.14); then we have

P{Xn+1 −Xn = k | Xn = i} = P{Xn+1 = i+ k | Xn = i} = pi,i+k = ak.

It follows that if we put ξn+1 = Xn+1 − Xn, then the random variables
{ξn, n ≥ 1} are independent (why?) and have the common distribution
{ak}. Thus a spatially as well as temporally homogeneous Markov chain
is identical with the successive partial sums of independent and identically
distributed integer-valued random variables. The study of the latter has
been one of our main concerns in previous chapters.

In particular, Example 1 is the particular case of Example 6 with a1 =
p, a−1 = q; we may add a0 = r as in Example 5.

Example 7. For each i ∈ I, let pi and qi be two nonnegative numbers
satisfying pi + qi = 1. Take I to be the set of all integers and put

pij =



pi if j = i+ 1,
qi if j = 1− 1,
0 otherwise.

(8.3.15)

In this model the particle can move only to neighboring states as in Ex-
ample 1, but the probabilities may now vary with the position. The model
can be generalized as in Example 5 by also allowing the particle to stay put
at each position i with probability ri, with pi + qi + ri = 1. Observe that
this example contains also Examples 2, 3, and 4 above. The resulting chain
is no longer representable as sums of independent steps as in Example 6.
For a full discussion of the example, see [Chung 2].

Example 8. (Ehrenfest model). This may be regarded as a particular
case of Example 7 in which we have I = {0, 1, . . . , c} and

pi,i+1 =
c− i

c
, pi,i−1 =

i

c
. (8.3.16)

It can be realized by an urn scheme as follows. An urn contains c balls,
each of which may be red or black; a ball is drawn at random from it and
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replaced by one of the other color. The state of the urn is the number of
black balls in it. It is easy to see that the transition probabilities are as
given above and the interchange can go on forever. P. and T. Ehrenfest
used the model to study the transfer of heat between gas molecules. Their
original urn scheme is slightly more complicated (see Exercise 14).

Example 9. Let I = {0, 1, 2, . . . } and

pi,0 = pi, pi,i+1 = 1− pi for i ∈ I.

The pi’s are arbitrary numbers satisfying 0 < pi < 1. This model is used to
study a recurring phenomenon represented by the state 0. Each transition
may signal an occurrence of the phenomenon, or else prolong the waiting
time by one time unit. It is easy to see that the event “Xn = k” means
that the last time ≤ n when the phenomenon occurred is at time n − k,
where 0 ≤ k ≤ n; in other words, there has been a waiting period equal to
k units since that occurrence. In the particular case where all pi are equal
to p, we have

P{Xv �= 0 for 1 ≤ v ≤ n− 1;Xn = 0 | X0 = 0} = (1− p)n−1p.

This gives the geometric waiting time discussed in Example 8 of §4.4.

Example 10. Let I be the integer lattice in Rd, the Euclidean space of d
dimensions. This is a countable set. We assume that starting at any lattice
point, the particle can go only to one of the 2d neighboring points in one
step, with various (not necessarily equal) probabilities. For d = 1 this is
just Example 1; for d = 2 this is the street wanderer mentioned in §8.1.
In the latter case we may represent the states by (i, i′), where i and i′ are
integers; then we have

p(i,i′)(j,j′) =



p1 if j = i+ 1, j′ = i′,

p2 if j = i− 1, j′ = i′,

p3 if j = i, j′ = i′ + 1,
p4 if j = i, j′ = i′ − 1,

where p1 + p2 + p3 + p4 = 1. If all these four probabilities are equal to 1/4,
the chain is a symmetric two-dimensional random walk. Will the particle
still hit every lattice point with probability 1? Will it do the same in three
dimensions? These questions will be answered in the next section.

Example 11. (Nonhomogeneous Markov chain). Consider the Pólya urn
scheme described in §5.4 with c ≥ 1. The number of black balls in the urn is
called its state so that “Xn = i” means that after n drawings and insertions
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there are i black balls in the urn. Clearly each transition either increases
this number by c or leaves it unchanged, and we have

P{Xn+1 = j | Xn = i;A} =




i

b+ r + nc
if j = i+ c,

1− i

b+ r + nc
if j = i,

0 otherwise;

(8.3.17)

where A is any event determined by the outcomes of the first n−1 drawings.
The probability above depends on n as well as i and j, hence the process
is a nonhomogeneous Markov chain. We may also allow c = −1, which is
the case of sampling without replacement and yields a finite sequence of
{Xn: 0 ≤ n ≤ b+ r}.

Example 12. It is trivial to define a process that is not Markovian. For
instance, in Example 8 or 11, let Xn = 0 or 1 according to whether the
nth ball drawn is red or black. Then it is clear that the probability of
“Xn+1 = 1” given the values of X1, . . . , Xn will not in general be the same
as given the value of Xn alone. Indeed, the latter probability is not very
useful.

8.4. Basic structure of Markov chains

We begin a general study of the structure of homogeneous Markov chains
by defining a binary relation between the states. We say “i leads to j”
and write “i � j” iff there exists n ≥ 1 such that p(n)

ij > 0; we say “i
communicates with j” and write “i � j” iff we have both i � j and
j � i. The relation “�” is transitive, namely if i � j and j � k then
i� k. This follows from the inequality

p
(n+m)
ik ≥ p

(n)
ij p

(m)
jk , (8.4.1)

which is an algebraic consequence of (8.3.10), but perhaps even more obvi-
ous from its probabilistic meaning. For if it is possible to go from i to j in
n steps, and also possible to go from j to k in m steps, then it is possible
by combining these steps to go from i to k in n+m steps. Here and hence-
forth we shall use such expressions as “it is possible” or “one can” to mean
with positive probability ; but observe that even in the trivial argument just
given the Markov property has been used and cannot be done without. The
relation “�” is clearly both symmetric and transitive and may be used to
divide the states into disjoint classes as follows.
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Definition of Class. A class of states is a subset of the state space such
that any two states (distinct or not) in the class communicate with each
other.

This kind of classification may be familiar to you under the name of
“equivalence classes.” But here the relation “�” is not necessarily reflex-
ive; in other words, there may be a state that does not lead to itself, hence it
does not communicate with any state. Such states are simply unclassified!
On the other hand, a class may consist of a single state i: this is the case
when pii = 1. Such a state is called an absorbing state. Two classes that
are not identical must be disjoint, because if they have a common element
they must merge into one class via that element.

For instance, in Examples 1, 4, 5, 8 and 9 all states form a single class
provided p > 0 and q > 0; as also in Example 7 provided pi > 0 and qi > 0
for all i. In Example 2 there are two classes: the absorbing state 0 as a
singleton and all the rest as another class. Similarly in Example 3 there are
three classes. In Example 6 the situation is more complicated. Suppose, for
instance, the ak’s are such that ak > 0 if k is divisible by 5, and ak = 0
otherwise. Then the state space I can be decomposed into five classes. Two
states i and j belong to the same class if and only if i − j is divisible by
5. In other words, these classes coincide with the residue classes modulo 5.
It is clear that in such a situation it would be more natural to take one of
these classes as the reduced state space, because if the particle starts from
any class it will (almost surely) remain in that class forever, so why bother
dragging in those other states it will never get to?

In probability theory, particularly in Markov chains, the first instance
of occurrence of a sequence of events is an important notion. Let j be
an arbitrary state and consider the first time that the particle enters it,
namely:

Tj(ω) = min{n ≥ 1 | Xn(ω) = j}, (8.4.2)

where the right member reads as follows: the minimum positive value of
n such that Xn = j. For some sample point ω, Xn(ω) may never be j, so
that no value of n exists in the above and Tj is not really defined for that
ω. In such a case we shall define it by the decree: Tj(ω) = ∞. In common
language, “it will never happen” may be rendered into “one can wait un-
til eternity (or ‘hell freezes over’).” With this convention Tj is a random
variable that may take the value∞. Let us denote the set {1, 2, . . . ,∞} by
N∞. Then Tj takes values in N∞; this is a slight extension of our general
definition in §4.2.

We proceed to write down the probability distribution of Tj . For sim-
plicity of notation we shall write Pi{· · · } for probability relations associated
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with a Markov chain starting from the state i. We then put, for n ∈ N∞,

f
(n)
ij = Pi{Tj = n}, (8.4.3)

and

f∗
ij =

∞∑
n=1

f
(n)
ij = Pi{Tj <∞}. (8.4.4)

Remember that
∑∞

n=1 really means
∑

1≤n<∞; since we wish to stress the
fact that the value∞ for the superscript is not included in the summation.
It follows that

Pi{Tj =∞} = f
(∞)
ij = 1− f∗

ij . (8.4.5)

Thus {f (n)
ij , n ∈ N∞} is the probability distribution of Tj for the chain

starting from i.
We can give another more explicit expression for f (n)

ij , etc. as follows:

f
(1)
ij = pij = Pi{X1 = j},

f
(n)
ij = Pi{Xv �= j for 1 ≤ v ≤ n− 1;Xn = j}, n ≥ 2,

f
(∞)
ij = Pi{Xv �= j for all v ≥ 1},

f∗
ij = Pi{Xv = j for some v ≥ 1}.

(8.4.6)

Note that we may have i = j in the above, and “for some v” means “for at
least one value of v.”

The random variable Tj is called the first entrance time into the state
j; the terms “first passage time” and “first hitting time” are also used. It
is noteworthy that by virtue of homogeneity we have

f
(n)
ij = P{Xm+v �= j for 1 ≤ v ≤ n− 1;Xm+n = j | Xm = i} (8.4.7)

for any m for which the conditional probability is defined. This kind of
interpretation will be consistently used without specific mention.

The key formula connecting the f (n)
ij and p

(n)
ij will now be given.

Theorem 3. For any i and j, and 1 ≤ n <∞, we have

p
(n)
ij =

n∑
v=1

f
(v)
ij p

(n−v)
ij . (8.4.8)
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Proof: This result is worthy of a formal treatment in order to bring out
the basic structure of a homogeneous Markov chain. Everything can be set
down in a string of symbols:

p
(n)
ij = Pi{Xn = j} = Pi{Tj ≤ n;Xn = j} =

n∑
v=1

Pi{Tj = v;Xn = j}

=
n∑

v=1

Pi{Tj = v}Pi{Xn = j | Tj = v}

=
n∑

v=1

Pi{Tj = v}Pi{Xn = j | X1 �= j, . . . ,Xv−1 �= j,Xv = j}

=
n∑

v=1

Pi{Tj = v}P{Xn = j | Xv = j}

=
n∑

v=1

Pi{Tj = v}Pj{Xn−v = j}

=
n∑

v=1

f
(v)
ij p

(n−v)
jj .

Let us explain each equation above. The first is the definition of p(n)
ij ; the

second because {Xn = j} implies {Tj ≤ n}; the third because the events
{Tj = v} for 1 ≤ v ≤ n are disjoint; the fourth is by definition of conditional
probability; the fifth is by the meaning of {Tj = v} as given in (8.4.6); the
sixth by the Markov property in (8.3.1) since {X1 �= j, . . . ,Xv−1 �= j}, as
well as {X0 = i} implicit in the notation Pi, constitutes an event prior to
the time v; the seventh is by the temporal homogeneity of a transition from
j to j in n − v steps; the eighth is just notation. The proof of Theorem 3
is therefore completed.

True, a quicker verbal account can be and is usually given for (8.4.8),
but if you spell out the details and pause to ask “why” at each stage, it
will come essentially to a rough translation of the derivation above. This
is a pattern of argument much used in a general context in the advanced
theory of Markov processes, so a thorough understanding of the simplest
case as this one is well worth the pains.

For i �= j, formula (8.4.8) relates the transition matrix elements at (i, j)
to the diagonal element at (j, j). There is a dual formula that relates them
to the diagonal element at (i, i). This is obtained by an argument involving
the last exit from i as the dual of first entrance into j. It is slightly more
tricky in its conception and apparently known only to a few specialists. We
will present it here for the sake of symmetry—and mathematical beauty.
Actually the formula is a powerful tool in the theory of Markov chains,
although it is not necessary for our discussions here.



8.4 Basic structure of Markov chains 279

Figure 33

Define for n ≥ 1:

U
(n)
i (ω) = max{0 ≤ v ≤ n | Xv(ω) = i}; (8.4.9)

namely U
(n)
i is the last exit time from the state i before or at the given

time n. This is the dual of Tj but complicated by its dependence on n.
Next we introduce the counterpart of f (n)

ij , as follows:

g
(1)
ij = pij ;

g
(n)
ij = Pi{Xv �= i for 1 ≤ v ≤ n− 1;Xn = j}, 2 ≤ n <∞.

(8.4.10)

Thus g(n)
ij is the probability of going from i to j in n steps without going

through i again (for n = 1 the restriction is automatically satisfied since i �=
j). Contrast this with f

(n)
ij , which may now be restated as the probability

of going from i to j in n steps without going through j before. Both kinds
of probability impose a taboo on certain passages and are known as taboo
probabilities (see [Chung 2, §1.9] for a fuller discussion). We can now state
the following result.

Theorem 4. For i �= j, and n ≥ 1, we have

p
(n)
ij =

n−1∑
v=0

p
(v)
ii g

(n−v)
ij . (8.4.11)

Proof: We shall imitate the steps in the proof of Theorem 3 as far as
possible; thus



280 From Random Walks to Markov Chains

p
(n)
ij = Pi{Xn = j} = Pi{0 ≤ U

(n)
i ≤ n− 1, Xn = j}

=
n−1∑
v=0

Pi{U (n)
i = v;Xn = j}

=
n−1∑
v=0

Pi{Xv = i,Xu �= i for v + 1 ≤ u ≤ n− 1;Xn = j}

=
n−1∑
v=0

Pi{Xv = i}Pi{Xu �= i for 1 ≤ u ≤ n− v − 1;Xn−v = j}

=
n−1∑
v=0

p
(v)
ii g

(n−v)
ij .

The major difference lies in the fourth equation above, but this is obvious
from the meaning of U (n)

i . We leave the rest to the reader.

We also put

g∗
ij =

∞∑
n=1

g
(n)
ij . (8.4.12)

However, while each term in the series above is a probability, it is not clear
whether the series converges (it does, provided i� j; see Exercise 33). In
fact, g∗

ij may be seen to represent the expected number of entrances in j
between two successive entrances in i.

Theorems 3 and 4 may be called the first entrance and last exit decom-
position formulas, respectively. Used together they work like the two hands
of a human being, though one can do many things with one hand tied be-
hind one’s back, as we shall see later. Here as a preliminary ambidextrous
application let us state the following little proposition as a lemma.

Lemma. i� j is equivalent to f∗
ij > 0 and to g∗

ij > 0.

Proof: If f∗
ij = 0, then f (n)

ij = 0 for every n and it follows from (8.4.8) that

p
(n)
ij = 0 for every n. Hence it is false that i � j. Conversely, if f∗

ij > 0,

then f
(n)
ij > 0 for some n; since p(n)

ij ≥ f
(n)
ij from the meaning of these two

proabilities, we get p(n)
ij > 0 and so i� j.

Now the argument for g∗
ij is exactly the same when we use (8.4.11) in

lieu of (8.4.8), demonstrating the beauty of dual thinking.

Let us admit that the preceding proof is unduly hard in the case of f∗
ij ,

since a little reflection should convince us that “i� j” and “f∗
ij > 0” both
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mean: “it is possible to go from i to j in some steps” (see also Exercise 31).
However, is it equally obvious that “g∗

ij > 0” means the same thing? The
latter says that it is possible to go from i to j in some steps without going
through i again. Hence the asserted equivalence will imply this: if it is
possible to go from i to j, then it is also possible to do so without first
returning to i. For example, since one can drive from New York to San
Francisco, does it follow that one can do that without coming back for
repairs, forgotten items, or a temporary postponement? Is this so obvious
that no proof is needed?

An efficient way to exploit the decomposition formulas is to introduce
generating functions associated with the sequences {p(n)

ij , n ≥ 0} (see §6.5)

Pij(z) =
∞∑
n=0

p
(n)
ij zn,

Fij(z) =
∞∑
n=1

f
(n)
ij zn,

Gij(z) =
∞∑
n=1

g
(n)
ij zn,

where |z| < 1. We have then by substitution from (8.4.8) and inverting the
order of summation:

Pij(z) = δij +
∞∑
n=1

(
n∑

v=1

f
(v)
ij p

(n−v)
jj

)
zvzn−v

= δij +
∞∑
v=1

f
(v)
ij zv

∞∑
n=0

p
(n−v)
jj zn−v (8.4.13)

= δij + Fij(z)Pjj(z).

The inversion is justified because both series are absolutely convergent for
|z| < 1. In exactly the same way we obtain for i �= j:

Pij(z) = Pii(z)Gij(z). (8.4.14)

The first application is to the case i = j.

Theorem 5. For any state i we have f∗
ii = 1 if and only if

∞∑
n=0

p
(n)
ii =∞; (8.4.15)
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if f∗
ii < 1, then we have

∞∑
n=0

p
(n)
ii =

1
1− f∗

ii

. (8.4.16)

Proof: From (8.4.13) with i = j and solving for Pii(z) we obtain

Pii(z) =
1

1− Fii(z)
. (8.4.17)

If we put z = 1 above and observe that

Pii(1) =
∞∑
n=0

p
(n)
ii , Fii(1) = f∗

ii;

both assertions of the theorem follow. Let us point out that strictly speak-
ing we must let z ↑ 1 in (8.4.17) (why?), and use the following theorem from
calculus. If cn ≥ 0 and the power series C(z) =

∑∞
n=0 cnz

n converges for
|z| < 1, then limz↑1 C(z) =

∑∞
n=0 cn, finite or infinite. This important re-

sult is called an Abelian theorem (after the great Norwegian mathematician
Abel) and will be used again later.

The dichotomy in Theorem 5 yields a fundamental property of a state.

Definition of recurrent and nonrecurrent state. A state i is called
recurrent iff f∗

ii = 1, and nonrecurrent iff f∗
ii < 1.

The adjectives “persistent” and “transient” are used by some authors
for “recurrent” and “nonrecurrent.” For later use let us insert a corollary
to Theorem 5 here.

Corollary to Theorem 5. If j is nonrecurrent, then
∑∞

n=0 p
(n)
ij <∞ for

every i. In particular, limn→∞ p
(n)
ij = 0 for every i.

Proof: For i = j, this is just (8.4.16). If i �= j, this follows from (8.4.13)
since

Pij(1) = Fij(1)Pjj(1) ≤ Pjj(1) <∞.

It is easy to show that two communicating states are either both recur-
rent or both nonrecurrent. Thus either property pertains to a class and may
be called a class property. To see this let i� j; then there exist m ≥ 1
and m′ ≥ 1 such that p(m)

ij > 0 and p
(m′)
ji > 0. Now the same argument for

(8.4.1) leads to the inequality

p
(m′+n+m)
jj ≥ p

(m′)
ji p

(n)
ii p

(m)
ij .
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Summing this over n ≥ 0, we have

∞∑
n=0

p
(n)
jj ≥

∞∑
n=0

p
(m′+n+m)
jj ≥ p

(m′)
ji

( ∞∑
n=0

p
(n)
ii

)
p
(m)
ij . (8.4.18)

If i is recurrent, then by (8.4.15) the last term above is infinite, hence
so is the first term, and this means j is recurrent by Theorem 5. Since i
and j are interchangeable we have proved our assertion regarding recurrent
states. The assertion regarding nonrecurrent states then follows because
nonrecurrence is just the negation of recurrence.

The preceding result is nice and useful, but we need a companion that
says that it is impossible to go from a recurrent to a nonrecurrent state.
[The reverse passage is possible as shown by Example 3 of §8.3.] This result
lies deeper and will be proved twice below by different methods. The first
relies on the dual Theorems 3 and 4.

Theorem 6. If i is recurrent and i� j, then j is also recurrent.

Proof: There is nothing to provide if i = j, hence we may suppose i �= j.
We have by (8.4.13) and (8.4.14)

Pij(z) = Fij(z)Pjj(z), Pij(z) = Pii(z)Gij(z),

from which we infer

Fij(z)Pjj(z) = Pii(z)Gij(z). (8.4.19)

If we let z ↑ 1 as at the end of proof of Theorem 5, we obtain

Fij(1)Pjj(1) = Pii(1)Gij(1) =∞

since Gij(1) > 0 by the lemma and Pii(1) = ∞ by Theorem 5. Since
Fij(1) > 0 by the lemma, we conclude that Pjj(1) =∞, hence j is recurrent
by Theorem 5. This completes the proof of Theorem 6, but let us note that
the formula (8.4.19) written in the form

Pii(z)
Pjj(z)

=
Fij(z)
Gij(z)

leads to other interesting results when z ↑ 1, called “ratio limit theorems”
(see [Chung 2, §1.9]).
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8.5. Further developments

To probe the depth of the notion of recurrence we now introduce a new
“transfinite” probability, that of entering a given state infinitely often:

qij = Pi{Xn = j for an infinite number of values of n}. (8.5.1)

We have already encountered this notion in Theorem 2 of §8.2; in fact,
the latter asserts in our new notation that qij = 1 for every i and j in a
symmetric random walk. Now what exactly does “infinitely often” mean?
It means “again and again, without end,” or more precisely: “given any
large number, say m, it will happen more than m times.” This need not
strike you as anything hard to grasp, but it may surprise you that if we
want to express qij in symbols, it looks like this (cf. the end of §1.3):

qij = Pi

{ ∞⋂
m=1

∞⋃
n=m

[Xn = j]

}
.

For comparison let us write also

f∗
ij = Pi

{ ∞⋃
n=1

[Xn = j]

}
.

However, we will circumvent such formidable formalities in our discussion
below.

To begin with, it is trivial from the meaning of the probabilities that

qij ≤ f∗
ij (8.5.2)

because “infinitely often” certainly entails “at least once.” The next result
is crucial.

Theorem 7. For any state i, we have

qii =

{
1 if i is recurrent,
0 if i is nonrecurrent.

Proof: Put X0 = i, and α = f∗
ii. Then α is the probability of at least one

return to i. At the moment of the first return, the particle is in i and its
prior history is irrelevant; hence from that moment on it will move as if
making a fresh start from i (“like a newborn baby”). If we denote by Rm

the event of “at least m returns,” then this implies that the conditional
probability P (R2 | R1) is the same as P (R1) and consequently

P (R2) = P (R1R2) = P (R1)P (R2 | R1) = α · α = α2.
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Repeating this argument, we have by induction from m ≥ 1

P (Rm+1) = P (RmRm+1) = P (Rm)P (Rm+1 | Rm) = αm · α = αm+1.

Therefore the probability of infinitely many returns is equal to

lim
m→∞

P (Rm) = lim
m→∞

αm =

{
1 if α = 1,
0 if α < 1,

(8.5.3)

proving the theorem.

Now is a good stopping time to examine the key point in the preceding
proof:

P (Rm+1 | Rm) = α,

which is explained by considering the moment of the mth return to the
initial state i and starting anew from that moment on. The argument works
because whatever has happened prior to the moment is irrelevant to future
happenings. [Otherwise one can easily imagine a situation in which previous
returns tend to inhibit a new one, such as visiting the same old tourist
attraction.] This seems to be justified by the Markov property except for
one essential caveat. Take m = 1 for definiteness; then the moment of the
first return is precisely the Ti defined in (8.4.2), and the argument above
is based on applying the Markovian assumption (8.3.3) at the moment Ti.
But Ti is a random variable, its value depends on the sample point ω; can
we substitute it for the constant time n in those formulas? You might think
that since the latter holds true for any n, and Ti(ω) is equal to some n
whatever ω may be, such a substitution must be “OK.” (Indeed, we have
made a similar substitution in §8.2 without justification.) The fallacy in this
thinking is easily exposed,∗ but here we will describe the type of random
variables for which the substitution is legitimate.

Given the homogeneous Markov chain {Xn, n ∈ N0}, a random variable
T is said to be optional [or a stopping time] iff for each n, the event {T = n}
is determined by {X0, X1, . . . , Xn} alone. An event is prior to T iff it is
determined by {X0, X1, . . . , XT−1}, and posterior to T iff it is determined
by {XT+1, XT+2, . . . }. (When T = 0 there is no prior event to speak of.)
The state of the particle at the moment T is of course given by XT [note:
this is the random variable ω → XT (ω)(ω)]. In case T is a constant n, these
notions agree with our usual interpretation of “past” and “future” relative
to the “present” moment n. In the general case they may depend on the
sample point. There is nothing far-fetched in this; for instance, phrases such
as “prenatal care,” “postwar construction,” or “the day after the locusts”

∗E.g., suppose X0 = i0 �= k, and take T = Tk − 1 in (8.5.5) below. Since XT+1 = k

the equation cannot hold in general.
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contain an uncertain and therefore random date. When a gambler decides
that he will bet on red “after black has appeared three times in a row,” he is
dealing with XT+1, where the value of T is a matter of chance. However, it
is essential to observe that these relative notions make sense by virtue of the
way an optional T is defined. Otherwise if the determination of T involves
the future as well as the past and present, then “pre-T” and “post-T” will
be mixed up and serve no useful purpose. If the gambler can foresee the
future, he would not need probability theory! In this sense an optional time
has also been described as being “independent of the future”; it must have
been decided upon as an “option” without the advantage of clairvoyance.

We can now formulate the following extension of (8.3.3). For any op-
tional T , any event A prior to T , and any event B posterior to T , we
have

P{B | XT = i;A} = P{B | XT = i}; (8.5.4)

and in particular for any state i and j:

P{XT+1 = j | XT = i;A} = pij . (8.5.5)

This is known as the strong Markov property. It is actually implied by the
apparently weaker form given in (8.3.3), hence also in the original definition
(8.3.1). Probabilists used to announce the weak form and use the strong one
without mentioning the difference. Having flushed the latter out in the open
we will accept it as the definition for a homogeneous Markov chain. For a
formal proof see [Chung 2, §I.13]. Let us observe that the strong Markov
property was needed as early as in the proof of Theorem 2 of §8.2, where it
was deliberately concealed in order not to sound a premature alarm. Now
it is time to look back with understanding.

To return to Theorem 7 we must now verify that the Ti used in the
proof there is indeed optional. This has been effectively shown in (8.4.6),
for the event

{Ti = n} = {Xv �= i for 1 ≤ v ≤ n− 1;Xn = i}

is clearly determined by {X1, . . . , Xn} only. This completes the rigorous
proof of Theorem 7, to which we add a corollary.

Corollary to Theorem 7. For any i and j,

qij =

{
f∗
ij if j is recurrent,
0 if f is nonrecurrent.

Proof: This follows at once from the theorem and the relation:

qij = f∗
ijqjj . (8.5.6)
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For to enter j infinitely many times means to enter it at least once and
then return to it infinitely many times. As in the proof of Theorem 8, the
reasoning involved here is based on the strong Markov property.

The next result shows the power of “thinking infinite.”

Theorem 8. If i is recurrent and i� j, then

qij = qji = 1. (8.5.7)

Proof: The conclusion implies that i� j and that j is recurrent by the
corollary above. Thus the following proof contains a new proof of Theo-
rem 6.

Let us note that for any two events A and B, we have A ⊂ AB ∪ Bc,
and consequently

P (A) ≤ P (Bc) + P (AB). (8.5.8)

Now consider

A = {enter i infinitely often},

B = {enter j at least once}.

Then Pi(A) = qii = 1 by Theorem 7 and Pi(Bc) = 1− f∗
ij . As for Pi(AB)

this means the probability that the particle will enter j at some finite time
and thereafter enter i infinitely many times, because “infinite minus finite
is still infinite.” Hence if we apply the strong Markov property at the first
entrance time into j, we have

P (AB) = f∗
ijqji.

Substituting into the inequality (8.5.8), we obtain

1 = qii ≤ 1− f∗
ij + f∗

ijqji

and so

f∗
ij ≤ f∗

ijqji.

Since f∗
ij > 0 this implies 1 ≤ qji, hence qji = 1. Since qji ≤ f∗

ji it follows
that f∗

ji = 1, and so j � i. Thus i and j communicate and therefore j is
recurrent by (8.4.18). Knowing this we may interchange the roles of i and
j in the preceding argument to infer qij = 1.
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Corollary. In a recurrent class (8.5.7) holds for any two states i and j.

When the state space of a chain forms a single recurrent class, we shall
call the chain recurrent; similarly for “nonrecurrent.” The state of affairs
for a recurrent chain described in the preceding corollary is precisely that
for a symmetric random walk in Theorem 2 of §8.2. In fact, the latter is a
particular case as we now proceed to show.

We shall apply the general methods developed above to the case of
random walk discussed in §8.1, namely Example 1 of §8.3. We begin by
evaluating p(n)

ii . This is the probability that the particle returns to its initial
position i in exactly n steps. Hence p

(2n−1)
ii = 0 for n ≥ 1; and in the

notation of (8.1.2)

p
(2n)
ii = P{ξ1 + · · ·+ ξ2n = 0} =

(
2n
n

)
pnqn (8.5.9)

by Bernoulli’s formula (7.3.1), since there must be n steps to the right and
n steps to the left, in some order. Thus we obtain the generating function

Pii(z) =
∞∑
n=0

(
2n
n

)
(pqz2)n. (8.5.10)

Recalling the general binomial coefficients from (5.4.4), we record the pretty
identity: (

− 1
2
n

)
=

(−1)n1 · 3 · · · (2n− 1)
2n · n! =

(−1)n
22n

(
2n
n

)
, (8.5.11)

where the second equation is obtained by multiplying both the denominator
and numerator of its left member by 2n · n! = 2 · 4 · · · (2n). Substituting
into (8.5.10), we arrive at the explicit analytic formula:

Pii(z) =
∞∑
n=0

(
− 1

2
n

)
(−4pqz2)n = (1− 4pqz2)−1/2, (8.5.12)

where the second member is the binomial (Taylor’s) series of the third
member.

It follows that

∞∑
n=0

p
(n)
ii = Pii(1) = lim

z↑1
Pii(z) = lim

z↑1
(1− 4pqz2)−1/2. (8.5.13)

Now 4pq = 4p(1 − p) ≤ 1 for 0 ≤ p ≤ 1; and = 1 if and only if p = 1/2
(why?). Hence the series above diverges if p = 1/2 and converges if p �= 1/2.
By Theorem 5, i is recurrent if and only if p = 1/2. The calculations above
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do not depend on the integer i because of spatial homogeneity. Thus for
p = 1/2 the chain is recurrent; otherwise it is nonrecurrent. In other words,
the random walk is recurrent if and only if it is symmetric.

There is another method of showing this directly from (8.5.9), without
the use of generating functions. For when p = 1/2 we have

p
(2n)
ii =

(
2n
n

)
1
22n ∼

1√
πn

, (8.5.14)

by (7.3.6) as an application of Stirling’s formula. Hence by the comparison
test for positive series, the series in (8.5.13) diverges because

∑
n 1/

√
n

does. This method has the merit of being applicable to random walks in
higher dimensions. Consider the symmetric random walk inR2 (Example 10
of §8.3 with all four probabilities equal to 1/4). To return from any state
(i, j) to (i, j) in 2n steps means that: for some k, 0 ≤ k ≤ n, the particle
takes, in some order, k steps each to the east and west, and n − k steps
each to the north and south. The probability for this, by the multinomial
formula (6.4.6), is equal to

p
(2n)
(i,j)(i,j) =

1
42n

n∑
k=0

(2n)!
k! k! (n− k)! (n− k)!

=
(2n)!

42nn!n!

n∑
k=0

(
n

k

)2

=
(2n)!

42nn!n!

(
2n
n

)
=
[

1
22n

(
2n
n

)]2
,

(8.5.15)

where in the penultimate equation we have used a formula given in Ex-
ercise 28 of Chapter 3. The fact that this probability turns out to be the
exact square of the one in (8.5.14) is a pleasant coincidence. [It is not due
to any apparent independence between the two components of the walk
along the two coordinate axes.] It follows by comparison with (8.5.14) that

∑
n

p
(2n)
(i,j)(i,j) ∼

∑
n

1
πn

=∞.

Hence another application of Theorem 5 shows that the symmetric random
walk in the plane as well as on the line is a recurrent Markov chain. A similar
but more complicated argument shows that it is nonrecurrent in Rd for
d ≥ 3, because the probability analogous to that in (8.5.15) is bounded by
c/nd/2 (where c is a constant), and

∑
n 1/n

d/2 converges for d ≥ 3. These
results were first discovered by Pólya in 1921. The nonsymmetric case can
be treated by using the normal approximation given in (7.3.13), but there
the nonrecurrence is already implied by the strong law of large numbers as
in R1; see §8.2.
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As another illustration, we will derive an explicit formula for f (n)
ii in

case p = 1/2. By (8.4.17) and (8.5.12), we have

Fii(z) = 1− 1
Pii(z)

= 1− (1− z2)1/2.

Hence another expansion by means of binomial series gives

Fii(z) = 1−
∞∑
n=0

(1
2
n

)
(−z2)n

=
1
2
z2 +

∞∑
n=2

1 · 3 · · · (2n− 3)
2n · n! z2n.

Thus f (2n−1)
ii = 0; and

f
(2n)
ii =

1
22n

(
2n
n

)
1

2n− 1
, n ≥ 1; (8.5.16)

by a calculation similar to (8.5.11). In particular, we have

n 1 2 3 4 5

f
(2n)
ii

1
2

1
8

1
16

5
128

7
256

Comparison with (8.5.14) shows that

f
(2n)
ii ∼ 1

2
√
π n3/2

and so
∑∞

n=1 nf
(n)
ii = ∞. This can also be gotten by calculating F ′

ii(1).
Thus, although return is almost certain, the expected time before return
is infinite. This result will be seen in a moment to be equivalent to the
remark made in §8.2 that e1 =∞.

We can calculate f (n)
ii for any i and j in a random walk by a similar

method. However, sometimes a combinatorial argument is quicker and more
revealing. For instance, we have

f
(2n)
00 =

1
2
f

(2n−1)
10 +

1
2
f

(2n−1)
−1,0 = f

(2n−1)
10 = f

(2n−1)
01 . (8.5.17)

To argue this let the particle start from 0 and consider the outcome of its
first step as in the derivation of (8.1.4); then use the symmetry and spatial
homogeneity to get the rest. The details are left to the reader.
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8.6. Steady state

In this section we consider a recurrent Markov chain, namely we suppose
that the state space forms a single recurrent class.

After the particle in such a chain has been in motion for a long time,
it will be found in various states with various probabilities. Do these settle
down to limiting values? This is what the physicists and engineers call a
“steady state” (distribution).∗ They are accustomed to thinking in terms of
an “ensemble” or large number of particles moving according to the same
probability laws and independently of one another, such as in the study
of gaseous molecules. In the present case the laws are those pertaining
to a homogeneous Markov chain as discussed in the preceding sections.
After a long time, the proportion (percentage) of particles to be found in
each state gives approximately the steady-state probability of that state.
[Note the double usage of the word “state” in the last sentence; we shall use
“stationary” for the adjective “steady-state.”] In effect, this is the frequency
interpretation of probability mentioned in Example 3 of §2.1, in which the
limiting proportions are taken to determine the corresponding probabilities.
In our language, if the particle starts from the state i, then the probability
of the set of paths in which it moves to state j at time n, namely {ω |
Xn(ω) = j}, is given by Pi{Xn = j} = p

(n)
ij . We are therefore interested in

the asymptotic behavior of p(n)
ij as n → ∞. It turns out that a somewhat

more amenable quantity is its average value over a long period of time,
namely

1
n+ 1

n∑
v=0

p
(v)
ij or

1
n

n∑
v=1

p
(v)
ij . (8.6.1)

The difference between these two averages is negligible for large n but we
shall use the former. This quantity has a convenient interpretation as fol-
lows. Fix our attention on a particular state j and imagine that a counting
device records the number of time units the particle spends in j. This is
done by introducing the random variables below that count 1 for the state
j but 0 for any other state:

ξv(j) =

{
1 if Xv = j,

0 if Xv �= j.

We have used such indicators, e.g., in (6.4.11). Next we put

Nn(j) =
n∑

v=0

ξv(j),

∗Strange to relate, they call a “distribution” a “state”!
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which represents the total occupation time of the state j in n steps. Now if
Ei denotes the mathematical expectation associated with the chain starting
from i [this is a conditional expectation; see end of §5.2], we have

Ei(ξv(j)) = p
(v)
ij ,

and so by Theorem 1 of §6.1:

Ei(Nn(j)) =
n∑

v=0

Ei(ξv(j)) =
n∑

v=0

p
(v)
ij . (8.6.2)

Thus the quantity in (8.6.1) turns out to be the average expected occupa-
tion time.

In order to study this we consider first the case i = j and introduce the
expected return time from j to j as follows:

mjj = Ej(Tj)
∞∑
v=1

vf
(v)
jj , (8.6.3)

where Tj is defined in (8.4.2). Since j is a recurrent state we know that
Tj is almost surely finite, but its expectation may be finite or infinite. We
shall see that the distinction between these two cases is essential.

Here is the heuristic argument linking (8.6.2) and (8.6.3). Since the time
required for a return is mjj units on the basis of expectation, there should
be about n/mjj such returns in a span of n time units on the same basis.
In other words the particle spends about n/mjj units of time in the state j
during the first n steps, namely Ej(Nn(j)) ≈ n/mjj . The same argument
shows that it makes no difference whether the particle starts from j or any
other state i, because after the first entrance into j the initial i may be
forgotten and we are concerned only with the subsequent returns from j to
j. Thus we are led to the following limit theorem.

Theorem 9. For any i and j we have

lim
n→∞

1
n+ 1

n∑
v=0

p
(v)
ij =

1
mjj

. (8.6.4)

The argument indicated above can be made rigorous by invoking a
general form of the strong law of large numbers (see §7.5), applied to the
successive return times that form a sequence of independent and identically
distributed random variables. Unfortunately the technical details are above
the level of this book. There is another approach, which relies on a powerful
analytical result due to Hardy and Littlewood. [This is the same Hardy as in
the Hardy–Weinberg theorem of §5.6.] It is known as a Tauberian theorem
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(after Tauber, who first found a result of the kind) and may be stated as
follows.

Theorem 10. If A(z) =
∑∞

n=0 anz
n, where an ≥ 0 for all n and the series

converges for 0 ≤ z < 1, then we have

lim
n→∞

1
n+ 1

n∑
v=0

av = lim
z→1

(1− z)A(z). (8.6.5)

To get a feeling for this theorem, suppose all an = c > 0. Then

A(z) = c

∞∑
n=0

zn =
c

1− z

and the relation in (8.6.5) reduces to the trivial identity

1
n+ 1

n∑
v=0

c = c = (1− z)
c

1− z
.

Now take A(z) to be

Pij(z) =
∞∑
n=0

p
(n)
ij zn = Fij(z)Pij(z) =

Fij(z)
1− Fjj(z)

,

where the last two equations come from (8.4.13) and (8.4.17). Then we
have

lim
z→1

(1− z)Pij(z) = Fij(1) lim
z→1

1− z

1− Fjj(z)
= lim

z→1

1− z

1− Fjj(z)

since Fij(1) = f∗
ij = 1 by Theorem 8 of §8.5. The last-written limit may be

evaluated by l’Hospital rule:

lim
z→1

(1− z)′

(1− Fjj(z))′
= lim

z→1
− −1
F ′
jj(z)

=
1

F ′
jj(1)

,

where “′” stands for differentiation with respect to z. Since F ′
jj(z) =∑∞

v=1 vf
(v)
jj zv−1 we have F ′

jj(1) =
∑∞

v=1 f
(v)
jj = mjj , and so (8.6.4) is a

special case of (8.6.5).
We now consider a finite state space I in order not to strain our math-

ematical equipment. The finiteness of I has an immediate consequence.

Theorem 11. If I is finite and forms a single class (namely if there are
only a finite number of states and they all communicate with each other),
then the chain is necessarily recurrent.
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Proof: Suppose the contrary; then each state is transient and so almost
surely the particle can spend only a finite number of time units in it by
Theorem 7. Since the number of states is finite, the particle can spend
altogether only a finite number of time units in the whole space I. But
time increases ad infinitum and the particle has nowhere else to go. This
absurdity proves that the chain must be recurrent. (What then can the
particle do?)

Let I = {1, 2, . . . , l}, and put

x = (x1, . . . , xl),

which is a row vector of l components. Consider the “steady-state equation”

x = xΠ or x(∆−Π) = 0, (8.6.6)

where ∆ is the identity matrix with l rows and l columns: ∆ = (δij), and Π
is the transition matrix in (8.3.9). This is a system of l linear homogeneous
equations in l unknowns. Now the determinant of the matrix ∆−Π∣∣∣∣∣∣∣∣

1− p11 −p12 · · · −p1l
−p21 1− p22 · · · −p2l
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
−pl1 −pl2 · · · 1− pll

∣∣∣∣∣∣∣∣
is equal to zero because the sum of all elements in each row is 1−

∑
j pij =

0. Hence we know from linear algebra that the system has a nontrivial
solution, namely one that is not the zero vector. Clearly if x is a solution,
then so is cx = (cx1, cx2, . . . , cxl) for any constant c. The following theorem
identifies all solutions where I is a single finite class.

We shall write

wj =
1

mjj
, j ∈ I,

w = (w1, w2, . . . , wl),
(8.6.7)

and
∑

j for
∑

j∈I below.

Theorem 12. If I is finite and forms a single class, then

(i) w is a solution of (8.6.6),
(ii)

∑
i

wj = 1,

(iii) wj > 0 for all j,
(iv) any solution of (8.6.6) is a constant multiple of w.
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Proof: We have from (8.3.7), for every v ≥ 0,

p
(v+1)
ik =

∑
j

p
(v)
ij pjk.

Taking an average over v, we get

1
n+ 1

n∑
v=0

p
(v+1)
ik =

∑
j

(
1

n+ 1

n∑
v=0

p
(v)
ij

)
pjk.

The left member differs from 1/(n+1)
∑n

v=0 p
(v)
ik by 1/(n+1)(p(n+1)

ik −p(0)
ik ),

which tends to zero as n→∞; hence its limit is equal to wk by Theorem 9.
Since I is finite, we may let n → ∞ term by term in the right member.
This yields

wk =
∑
j

wjpjk,

which is w = wΠ; hence (i) is proved. We can now iterate:

w = wΠ = (wΠ)Π = wΠ2 = (wΠ)Π2 = wΠ3 = · · · , (8.6.8)

to obtain w = wΠn, or explicitly for n ≥ 1:

wk =
∑
j

wjp
(n)
jk . (8.6.9)

Next we have
∑

j p
(v)
ij = 1 for every i and v ≥ 1. Taking an average over v,

we obtain

1
n+ 1

n∑
v=0

∑
j

p
(v)
ij = 1.

It follows that

∑
j

wj =
∑
j

lim
n→∞

(
1

n+ 1

n∑
v=0

p
(v)
ij

)
= lim

n→∞

1
n+ 1

n∑
v=0

∑
j

p
(v)
ij = 1,

where the second equation holds because I is finite. This establishes (ii)
from which we deduce that at least one of the wj ’s, say wi, is positive. For
any k we have i � k and so there exists n such that p(n)

ik > 0. Using this
value of n in (8.6.9), we see that wk is also positive. Hence (iii) is true.
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Finally suppose x is any solution of (8.6.6). Then x = xΠv for every v ≥ 1
by iteration as before, and

x =
1

n+ 1

n∑
v=0

xΠv

by averaging. In explicit notation this is

xk =
∑
j

xj

(
1

n+ 1

n∑
v=0

p
(v)
jk

)
.

Letting n→∞ and using Theorem 9, we obtain

xk =


∑

j

xj


wk.

Hence (iv) is true with c =
∑

j xj . Theorem 12 is completely proved.

We call {wj , j ∈ I} the stationary (steady-state) distribution of the
Markov chain. It is indeed a probability distribution by (ii). The next result
explains the meaning of the word “stationary.”

Theorem 13. Suppose that we have, for every j,

P{X0 = j} = wj ; (8.6.10)

then the same is true when X0 is replaced by any Xn, n ≥ 1. Furthermore
the joint probability

P{Xn+v = jv, 0 ≤ v ≤ l} (8.6.11)

for arbitrary jv is the same for all n ≥ 0.

Proof: We have by (8.6.9)

P{Xn = j} =
∑
i

P{X0 = i}Pi{Xn = j} =
∑
i

wip
(n)
ij = wj .

Similarly the probability in (8.6.11) is equal to

P{Xn = j0}pj0j1 · · · pjl−1jl
= wj0pj0j1 · · · pjl−1jl

,

which is the same for all n.
Thus, with the stationary distribution as its initial distribution, the

chain becomes a stationary process as defined in §5.4. Intuitively, this means
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that if a system is in its steady state, it will hold steady indefinitely there,
that is, so far as distributions are concerned. Of course, changes go on in the
system, but they tend to balance out to maintain an overall equilibrium. For
instance, many ecological systems have gone through millions of years of
transitions and may be considered to have reached their stationary phase—
until human intervention abruptly altered the course of evolution. However,
if the new process is again a homogeneous Markov chain as supposed here,
then it too will settle down to a steady state in due time according to our
theorems.

The practical significance of Theorem 12 is that it guarantees a solution
of (8.6.6) that satisfies conditions (ii) and (iii). In order to obtain this
solution, we may proceed as follows. Discard one of the l equations and
solve the remaining equations for w2, . . . , wl in terms of w1. These are of
the form wj = cjw1, 1 ≤ j ≤ l, where c1 = 1. The desired solution is then
given by

wj =
cj
l∑

j=1
cj

, 1 ≤ j ≤ l.

Example 13. A switch may be on or off ; call these two positions states
1 and 2. After each unit of time the state may hold or change, but the
respective probabilities depend only on the present position. Thus we have
a homogeneous Markov chain with I = {1, 2} and

Π =
[
p11 p12
p21 p22

]
,

where all elements are supposed to be positive. The steady-state equations
are

(1− p11)x1 − p21x2 = 0,

−p12x1 + (1− p22)x2 = 0.

Clearly the second equation is just the negative of the first and may be
discarded. Solving the first equation we get

x2 =
1− p11

p21
x1 =

p12

p21
x1.

Thus

w1 =
p21

p12 + p21
, w2 =

p12

p12 + p21
.

In view of Theorem 9, this means: in the long run the switch will be on or
off for a total amount of time in the ratio of p21 : p12.
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Figure 34

Example 14. At a carnival Daniel won a prize for free rides on the merry-
go-round. He therefore took “infinitely many” rides, but each time when
the bell rang he moved onto the next hobby-horse forward or backward,
with probability p or q = 1 − p. What proportion of time was he on each
of these horses?

This may be described as “random walk on a circle.” The transition
matrix looks like this:




0 p 0 0 · · · 0 0 q
q 0 p 0 0 0 0
0 q 0 p 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 p 0
0 0 0 0 · · · q 0 p
p 0 0 0 · · · 0 q 0




The essential feature of this matrix is that the elements in each column (as
well as in each row) add up to 1. In general notation, this means that we
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have for every j ∈ I: ∑
i∈I

pij = 1. (8.6.12)

Such a matrix is called doubly stochastic. Now it is trivial that under the
condition (8.6.12), x = (1, 1, . . . , 1) where all components are equal to 1, is
a solution of the equation (8.6.6). Since the stationary distribution w must
be a multiple of this by (iv) of Theorem 12, and also satisfy (iii), it must
be

w =
(
1
l
,
1
l
, . . . ,

1
l

)
,

where as before l is the number of states in I. This means if Daniel spent
4 hours on the merry-go-round and there are 12 horses, his occupation
time of each horse is about 20 minutes, provided that he changed horses
sufficiently many times to make the limiting relation in (8.6.4) operative.

For a recurrent Markov chain in an infinite state space, Theorem 12
must be replaced by a drastic dichotomy as follows:

(a) either all wj > 0, then (ii) and (iii) hold as before, and Theorem 13
is also true;

(b) or all wj = 0.

The chain is said to be positive-recurrent (or strongly ergodic) in case (a)
and null-recurrent (or weakly ergodic) in case (b). The symmetric random
walk discussed in §§8.1–8.2 is an example of the latter (see Exercise 38).
It can be shown (see [Chung 2, §I.7]) that if the equation (8.6.6) has a
solution x = (x1, x2, . . . ) satisfying the condition 0 <

∑
j |xj | < ∞, then

in fact all xj > 0 and the stationary distribution is given by

wj =
xj∑
j

xj
, j ∈ I.

The following example illustrates this result.

Example 15. Let I = {0, 1, 2, . . . }, and pij = 0 for |i− j| > 1, whereas
the other pij ’s are arbitrary positive numbers. These must then satisfy the
equation

pj,j−1 + pjj + pj,j+1 = 1 (8.6.13)

for every j. This may be regarded as a special case of Example 7 in §8.3
with p0,−1 = 0 and a consequent reduction of state space. It may be called
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a simple birth-and-death process (in discrete time) in which j is the pop-
ulation size and j → j + 1 or j → j − 1 corresponds to a single birth or
death. The equation (8.6.6) becomes

x0 = x0p00 + x1p10,

xj = xj−1pj−1,j + xjpjj + xj+1pj+1,j , j ≥ 1.
(8.6.14)

This is an infinite system of linear homogeneous equations, but it is clear
that all possible solutions can be obtained by assigning an arbitrary value
to x0, and then solve for x1, x2, . . . successively from the equations. Thus
we get

x1 =
p01

p10
x0,

x2 =
1
p21
{x1(1− p11)− x0p01} =

p01(1− p11 − p10)
p21p10

x0 =
p01p12

p10p21
x0.

It is easy to guess (perhaps after a couple more steps) that we have in
general

xj = cjx0 where c0 = 1, cj =
p01p12 · · · pj−1,j

p10p21 · · · pj,j−1
, j ≥ 1. (8.6.15)

To verify this by induction, let us assume that pj,j−1xj = pj−1,jxj−1; then
we have by (8.6.14) and (8.6.13)

pj+1,jxj+1 = (1− pjj)xj − pj−1,jxj−1

= (1− pjj − pj,j−1)xj = pj,j+1xj .

Hence this relation holds for all j and (8.6.15) follows. We therefore have

∞∑
j=0

xj =


 ∞∑

j=0

cj


x0, (8.6.16)

and the dichotomy cited above is as follows, provided that the chain is
recurrent. It is easy to see that this is true in case (a).

Case (a). If
∑∞

j=0 cj < ∞, then we may take x0 = 1 to obtain a solu-
tion satisfying

∑
j xj < ∞. Hence the chain is positive-recurrent and the

stationary distribution is given by

wj =
cj

∞∑
j=0

cj

, j ≥ 0.
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Case (b). If
∑∞

j=0 cj =∞, then for any choice of x0, either
∑

j |xj | =∞
or
∑

j |xj | = 0 by (8.6.16). Hence wj = 0 for all j ≥ 0, and the chain is
null-recurrent or transient.

The preceding example may be modified to reduce the state space to
a finite set by letting pc,c+1 = 0 for some c ≥ 1. A specific case of this is
Example 8 of §8.3, which will now be examined.

Example 16. Let us find the stationary distribution for the Ehrenfest
model. We can proceed exactly as in Example 15, leading to the formula
(8.6.15), but this time it stops at j = c. Substituting the numerical values
from (8.3.16), we obtain

cj =
c(c− 1) · · · (c− j + 1)

1 · 2 · · · j =
(
c

j

)
, 0 ≤ j ≤ c.

We have
∑c

j=0 cj = 2c from (3.3.7); hence

wj =
1
2c

(
c

j

)
, 0 ≤ j ≤ c.

This is just the binomial distribution B (c, 1/2).
Thus the steady state in Ehrenfest’s urn may be simulated by coloring

the c balls red or black with probability 1/2 each, and independently of
one another; or again by picking them at random from an infinite reservoir
of red and black balls in equal proportions.

Next, recalling (8.6.3) and (8.6.7), we see that the mean recurrence
times are given by

mjj = 2c
(
c

j

)−1

, 0 ≤ j ≤ c.

For the extreme cases j = 0 (no black ball) and j = c (no red ball) this is
equal to 2c, which is enormous even for c = 100. It follows (see Exercise 42)
that the expected time for a complete reversal of the composition of the
urn is very long indeed. On the other hand, the chain is recurrent; hence
starting, e.g., from an urn containing all black balls, it is almost certain
that they will eventually be all replaced by red balls at some time in the
Ehrenfest process, and vice versa. Since the number of black balls can
change only one at a time the composition of the urn must go through all
intermediate “phases” again and again. The model was originally conceived
to demonstrate the reversibility of physical processes, but with enormously
long cycles for reversal. “If we wait long enough, we shall grow younger
again!”

Finally, let us describe without proof a further possible decomposition
of a recurrent class. The simplest illustration is that of the classical random
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walk. In this case the state space of all integers may be divided into two
subclasses: the even integers and the odd integers. At one step the particle
must move from one subclass to the other, so that the alternation of the two
subclasses is a deterministic part of the transition. In general, for each re-
current class C containing at least two states, there exists a unique positive
integer d, called the period of the class, with the following properties:

(a) for every i ∈ C, p(n)
ii = 0 if d � n;∗ on the other hand, p(nd)

ii > 0 for
all sufficiently large n (how large depending on i);

(b) for every i ∈ C and j ∈ C, there exists an integer r, 1 ≤ r ≤ d, such
that p(n)

ij = 0 if d � n − r; on the other hand, p(nd+r)
ij > 0 for all

sufficiently large n (how large depending on i and j).

Fixing the state i, we denote by Cr the set of all states j associated with
the same number r in (b), for 1 ≤ r ≤ d. These are disjoint sets whose
union is C. Then we have the deterministic cyclic transition:

C1 → C2 → · · · → Cd → C1.

Here is the diagram of such an example with d = 4:

Figure 35

∗“d � n” reads “d does not divide n.”
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where the transition probabilities between the states are indicated by the
numbers attached to the directed lines joining them.

The period d of C can be found as follows. Take any i ∈ C and consider
the set of all n ≥ 1 such that p

(n)
ii > 0. Among the common divisors

of this set there is a greatest one: this is equal to d. The fact that this
number is the same for all choices of i is part of the property of the period.
Incidentally, the decomposition described above holds for any class that is
stochastically closed (see §8.7 for definition); thus the free random walk has
period 2 whether it is recurrent or transient.

When d = 1, the class is said to be aperiodic. A sufficient condition for
this is: there exists an integer m such that all elements in Πm are positive.
For then it follows from the Chapman–Kolmogorov equations that the same
is true of Πn for all n ≥ m, and so property (a) above implies that d = 1. In
this case the fundamental limit theorem given in (8.6.4) can be sharpened
as follows:

lim
n→∞

p
(n)
ij =

1
mjj

; (8.6.17)

namely the limit of averages may be replaced by a strict individual limit.
In general if the period is d, and i and j are as in (b) above, then

lim
n→∞

p
(nd+r)
ij =

d

mjj
. (8.6.18)

We leave it to the reader to show: granted that the limit above exists,
its value must be that shown there as a consequence of (8.6.4). Actually
(8.6.18) follows easily from the particular case (8.6.17) if we consider d steps
at a time in the transition of the chain, so that it stays in a fixed subclass.
The sharp result above was first proved by Markov, who considered only a
finite state space, and was extended by Kolmogorov in 1936 to the infinite
case. Several different proofs are now known; see [Chung 2, §I.6] for one of
them.

8.7. Winding up (or down?)

In this section we shall give some idea of the general behavior of a homo-
geneous Markov chain when there are both recurrent and transient states.
Let R denote the set of all recurrent states, T the set of all transient states,
so that I = R ∪ T . We being with a useful definition: a set of states will
be called [stochastically ] closed iff starting from any state in the set the
particle will remain forever in the set. Here and hereafter we shall omit
the tedious repetition of the phrase “almost surely” when it is clearly in-
dicated. The salient features of the global motion of the particle may be
summarized as follows.
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(i) A recurrent class is closed. Hence, once the particle enters such a
class it will stay there forever.

(ii) A finite set of transient states is not closed. In fact, starting from
such a set the particle will eventually move out and stay out of it.

(iii) If T is finite, then the particle will eventually enter into one of the
various recurrent classes.

(iv) In general the particle will be absorbed into the recurrent classes
with total probability α, and remain forever in T with probability
1− α, where 0 ≤ α ≤ 1.

Let us prove assertion (i). The particle cannot go from a recurrent state
to any transient state by Theorem 6; and it cannot go to any recurrent
state in a different class because two states from different classes do not
communicate by definition, hence one does not lead to the other by The-
orem 8 if these states are recurrent. Therefore from a recurrent class the
particle can only move within the class. Next, the truth of assertion (ii) is
contained in the proof of Theorem 11, according to which the particle can
only spend a finite number of time units in a finite set of transient states.
Hence from a certain instant on it will be out of the set. Assertion (iii)
is a consequence of (ii) and is illustrated by Example 3 of §8.3 (gambler’s
ruin problem). Assertion (iv) states an obvious alternative on account of
(i), and is illustrated by Example 1 of §8.3 with p > 1/2, in which case
α = 0; or by Example 9. In the latter case it is clear that starting from
i ≥ 1, either the particle will be absorbed in the state 0 with probability
f∗
i0 in the notation of (8.4.6); or it will move steadily through the infinite
set of transient states {i+ 1, i+ 2, . . . } with probability 1− f∗

i0.
Let us further illustrate some of the possibilities by a simple numerical

example.
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Example 17. Let the transition matrix be as follows:

1 2 3 4 5 6 · · ·

1
1
8

3
8

1
4

1
4

0 0 0 · · ·

2 0
1
2

0 0
1
3

1
6

0 · · ·

3
1
5

3
10

0
1
5

1
5

0
1
10

· · ·

4
0

1
2

1
2 0

5 1 0

6
0 0 R2·

·
·

(8.7.1)

The state space may be finite or infinite according to the specification of
R2, which may be the transition matrix of any recurrent Markov chain such
as Example 4 or 8 of §8.3, or Example 1 there with p = 1/2.

Here T = {1, 2, 3}, R1 = {4, 5} and R2 are two distinct recurrent classes.
The theory of communication between states implies that the four blocks
of 0’s in the matrix will be preserved when it is raised to any power. Try to
confirm this fact by a few actual schematic multiplications. On the other
hand, some of the single 0’s will turn positive in the process of multiplica-
tion. There are actually two distinct transient classes: {1, 3} and {2}; it is
possible to go from the first to the second but not vice versa. [This is not
important; in fact, a transient class that is not closed is not a very useful
entity. It was defined to be a class in §8.4 only by the force of circumstance!]
All three transient states lead to both R1 and R2, but it would be easy to
add another that leads to only one of them. The problem of finding the
various absorption probabilities can be solved by the general procedure
below.

Let i ∈ T and C be a recurrent class. Put for n ≥ 1:

y
(n)
i =

∑
j∈C

p
(n)
ij = Pi{Xn ∈ C}. (8.7.2)

This is probability that the particle will be in C at time n, given that it
starts from i. Since C is closed it will then also be in C at time n+1; thus
y
(n)
i ≤ y

(n+1)
i and so by the monotone sequence theorem in calculus the
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limit exists as n→∞:

yi = lim
n→∞

y
(n)
i = Pi{Xn ∈ C for some n ≥ 1}

(why the second equation?) and gives the probability of absorption.

Theorem 14. The {yi} above satisfies the system of equations

xi =
∑
j∈T

pijxj +
∑
j∈C

pij , i ∈ T. (8.7.3)

If T is finite, it is the unique solution of this system. Hence it can be
computed by standard method of linear algebra.

Proof: Let the particle start from i, and consider its state j after one step.
If j ∈ T , then the Markov property shows that the conditional probability
of absorption becomes yj ; if j ∈ C, then it is already absorbed; if j ∈
(I−T )−C, then it can never be absorbed in C. Taking into account these
possibilities, we get

yi =
∑
j∈T

pijyj +
∑
j∈C

pij · 1 +
∑

j∈(I−T )−C

pij · 0.

This proves the first assertion of the theorem. Suppose now T is the finite
set {1, 2, . . . , t}. The system (8.7.3) may be written in matrix form as
follows:

(∆T −ΠT )x = y(1), (8.7.4)

where ∆T is the identity matrix indexed by T × T ; ΠT is the restriction of
Π on T × T , and y(1) is given in (8.7.2). According to a standard result in
linear algebra, the equation above has a unique solution if and only if the
matrix ∆T − ΠT is nonsingular, namely it has an inverse (∆T − ΠT )−1,
and then the solution is given by

x = (∆T −ΠT )−1y(1). (8.7.5)

Suppose the contrary; then the same result asserts that there is a nonzero
solution to the associated homogeneous equation. Namely there is a column
vector v = (v1, . . . , vt) �= (0, . . . , 0) satisfying

(∆T −ΠT )v = 0, or v = ΠT v.

It follows by iteration that

v = ΠT (ΠT v) = Π2
T v = Π2

T (ΠT v) = Π3
T v = · · · ,
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and so for every n ≥ 1:

v = Πn
T v

[cf. (8.6.8) but observe the difference between right-hand and left-hand
multiplications]. This means

vi =
∑
j∈T

p
(n)
ij vj , i ∈ T.

Letting n → ∞ and using the corollary to Theorem 5 we see that every
term in the sum converges to zero and so vi = 0 for all i ∈ T , contrary to the
hypothesis. This contradiction establishes the nonsingularity of ∆T − ΠT

and consequently the existence of a unique solution given by (8.7.5). Since
{yi, i ∈ T} is a solution, the theorem is proved.

For Example 17 above, the equations in (8.7.3) for absorption proba-
bilities into R1 are

x1 =
1
8
x1 +

3
8
x2 +

1
4
x3 +

1
4
,

x2 =
1
2
x2 +

1
3
,

x3 =
1
5
x1 +

3
10
x2 +

2
5
.

We get x2 at once from the second equation, and then x1, x3 from the
others:

x1 =
26
33
, x2 =

2
3
, x3 =

25
33
.

For each i, the absorption probabilities into R1 and R2 add up to 1, hence
those for R2 are just 1 − x1, 1 − x2, 1 − x3. This is the unique solution to
another system of equations in which the constant terms above are replaced
by 0, 1/6, 1/10. You may wish to verify this as it is a good habit to double-
check these things, at least once in a while.

It is instructive to remark that the problem of absorption into recur-
rent classes can always be reduced to that of absorbing states. For each
recurrent class may be merged into a single absorbing state since we are
not interested in the transitions within the class; no state in the class leads
outside, whereas the probability of entering the class at one step from any
transient state i is precisely the y(1)

i used above. Thus, the matrix in (8.7.1)
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may be converted to the following one:


1
8

3
8

1
4

1
4

0

0
1
2

0
1
3

1
6

1
5

3
10

0
2
5

1
10

0 0 0 1 0
0 0 0 0 1




in which the last two states {4} and {5} take the place of R1 and R2. The
absorption probabilities become just f∗

i4 and f∗
i5 in the notation of (8.4.6).

The two systems of equations remain of course the same.
When T is finite and there are exactly two absorbing states, there is

another interesting method. As before let T = {1, 2, . . . , t} and let the
absorbing states be denoted by 0 and t + 1, so that I = {0, 1, . . . , t + 1}.
The method depends on the discovery of a positive nonconstant solution
of the equation (∆ − Π)x = 0, namely some such v = (v0, v1, . . . , vt+1)
satisfying

vi =
t+1∑
j=0

pijvj , i = 0, 1, . . . , t+ 1. (8.7.6)

Observe that the two equations for i = 0 and i = t + 1 are automatically
true for any v, because p0j = δ0j and pt+1,j = δt+1,j ; also that vi = 1 is
always a solution of the system, but it is constant. Now iteration yields

vi =
t+1∑
j=0

p
(n)
ij vj

for all n ≥ 1; letting n→∞ and observing that

lim
n→∞

p
(n)
ij = 0 for 1 ≤ j ≤ t,

lim
n→∞

p
(n)
ij = f∗

ij for j = 0 and j = t+ 1,

we obtain

vi = f∗
i0v0 + f∗

i,t+1vt+1. (8.7.7)

Recall also that

1 = f∗
i0 + f∗

i,t+1. (8.7.8)
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We claim that v0 �= vt+1; otherwise it would follow from the last two equa-
tions that vi = v0 for all i, contrary to the hypothesis that v is nonconstant.
Hence we can solve these equations as follows:

f∗
i0 =

vi − vt+1

v0 − vt+1
; f∗

i,t+1 =
v0 − vi
v0 − vt+1

. (8.7.9)

Example 18. Let us return to Problem 1 of §8.1, where t = c−1. If p �= q,
then vi = (q/p)i is a nonconstant solution of (8.7.6). This is trivial to verify
but you may well demand to know how on earth did we discover such a
solution? The answer in this case is easy (but motivated by knowledge of
difference equations used in §8.1): try a solution of the form λi and see
what λ must be. Now if we substitute this vi into (8.7.9) we get f∗

i0 equal
to the ui in (8.1.9).

If p = q = 1/2, then vi = i is a nonconstant solution of (8.7.6) since

i =
1
2
(i+ 1) +

1
2
(i− 1). (8.7.10)

This leads to the same answer as given in (8.1.10). The new solution has to
do with the idea of a martingale (see Appendix 3). Here is another similar
example.

Example 19. The following model of random reproduction was intro-
duced by S. Wright in his genetical studies (see, e.g., [Karlin] for further
details). In a haploid organism the genes occur singly rather than in pairs
as in the diploid case considered in §5.6. Suppose 2N genes of types A and
a (the alleles) are selected from each generation. The number of A genes
is the state of the Markov chain and the transition probabilities are given
below: I = {0, 1, . . . , 2N}, and

pij =
(
2N
j

)(
i

2N

)i(
1− i

2N

)2N−j

(8.7.11)

Thus if the number of A genes in any generation is equal to i, then we may
suppose that there is an infinite pool of both types of genes in which the
proportion of A to a is as i : 2N − i, and 2N independent drawings are
made from it to give the genes of the next generation. We are therefore
dealing with 2N independent Bernoullian trials with success probability
i/2N , which results in the binomial distribution B(2N ; i/2N) in (8.7.11).
It follows that [see (4.4.16) or (6.3.6)] the expected number of A genes is
equal to

2N∑
j=0

pijj = 2N
i

2N
= i. (8.7.12)
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This means that the expected number of A genes in the next generation
is equal to the actual (but random) number of these genes in the present
generation. In particular, this expected number remains constant through
the successive generations. The situation is the same as in the case of a
fair game discussed in §8.2 after (8.2.3). The uncertified trick used there
is again applicable and in fact leads to exactly the same conclusion except
for notation. However, now we can also apply the proven formula (8.7.9),
which gives at once

f∗
i0 =

2N − i

2N
, f∗

i,2N =
i

2N
.

These are the respective probabilities that the population will wind up
being pure a-type or A-type.

Our final example deals with a special but important kind of homoge-
neous Markov chain. Another specific example, queuing process, is outlined
with copious hints in Exercises 29–31.

Example 20. A subatomic particle may split into several particles after a
nuclear reaction; a male child bearing the family name may have a number
of male children or none. These processes may be repeated many times
unless extinction occurs. These are examples of a branching process defined
below.

There is no loss of generality to assume that at the beginning there is
exactly one particle: X0 = 1. It gives rise to X1 descendants of the first
generation, where

P (X1 = j) = aj , j = 0, 1, 2, . . . . (8.7.13)

Unless X1 = 0, each of the particles in the first generation will give rise to
descendants of the second generation, whose number follows the same prob-
ability distribution given in (8.7.13), and the actions of the various particles
are assumed to be stochastically independent. What is the distribution of
the number of particles of the second generation? Let the generating func-
tion of X1 be g:

g(z) =
∞∑
j=0

ajz
j .

Suppose the number of particles in the first generation is equal to j, and
we denote the numbers of their descendants by Z1, . . . , Zj , respectively.
Then by hypothesis these are independent random variables each having
g as its generating function. The total number of particles in the second
generation is X2 = Z1 + · · · + Zj and this has the generating function gj
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Figure 36

by Theorem 6 of §6.5. Recalling (6.5.12) and the definition of conditional
expectation in (5.2.11), this may be written as follows:

E(zX2 | X1 = j) = g(z)j , (8.7.14)

and consequently by (5.2.12):

E(zX2) =
∞∑
j=0

P (X1 = j)E(zX2 | X1 = j) =
∞∑
j=0

ajg(z)j = g(g(z)).

Let gn be the generating function of Xn so that g1 = g; then the above
says g2 = g(g1). Exactly the same argument gives gn = g(gn−1) = g ◦ g ◦
· · · ◦ g (there are n appearances of g), where “◦” denotes the composition
of functions. In other words gn is just the n-fold composition with g with
itself. Using this new definition of gn, we record this as follows:

gn(z) = E(zXn) =
∞∑
k=0

P (Xn = k)zk. (8.7.15)

Since the distribution of the number of descendants in each succeeding
generation is determined solely by the number in the existing generation,
regardless of past evolution, it is clear that the sequence {Xn, n ≥ 0} has
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the Markov property. It is a homogeneous Markov chain because the law of
reproduction is the same from generation to generation. In fact, it follows
from (8.7.14) that the transition probabilities are given below:

pjk = coefficient of zk in the power series for g(z)j . (8.7.16)

To exclude trivial cases, let us now suppose that

0 < a0 < a0 + a1 < 1. (8.7.17)

The state space is then (why?) the set of all nonnegative integers. The
preceding hypothesis implies that all states lead to 0 (why?), which is
an absorbing state. Hence all states except 0 are transient but there are
infinitely many of them. The general behavior under (iii) at the beginning
of the section does not apply and only (iv) is our guide. [Observe the
term “particle” was used in a different context there.] Indeed, we will now
determine the value of α which is called the probability of extinction in the
present model.

Putting z = 0 in (8.7.15) we see that gn(0) = p
(n)
10 ; on the other hand,

our general discussion about absorption tells us that

α = lim
n→∞

p
(n)
10 = lim

n→∞
gn(0). (8.7.18)

Since gn(0) = g(gn−1(0)), by letting n→∞ we obtain

α = g(α). (8.7.19)

Thus the desired probability is a root of the equation ϕ(z) = 0 where
ϕ(z) = g(z)−z; we shall call it simply a root of ϕ. Since g(1) = 1, one root
is z = 1. Next we have

ϕ′′(z) = g′′(z) =
∞∑
j=2

j(j − 1)ajzj−2 > 0

for z > 0, on account of (8.7.17). Hence the derivative ϕ′ is an increasing
function. Now recall Rolle’s theorem from calculus: between two roots of a
differentiable function there is at least one root of its derivative. It follows
that ϕ cannot have more than two roots in [0, 1], for then ϕ′ would have
more than one root, which is impossible because ϕ′ increases. Thus ϕ can
have at most one root different from 1 in [0, 1], and we have two cases to
consider.∗

∗It is customary to draw two pictures to show the two cases below. The reader is
invited to do this and see if he or she is more readily convinced than the author.
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Case 1. ϕ has no root in [0, 1). Then since ϕ(0) = a0 > 0, we must have
ϕ(z) > 0 for all z in [0, 1), for a continuous function cannot take both
positive and negative values in an interval without vanishing somewhere.
Thus we have

ϕ(1)− ϕ(z) < ϕ(1) = 0, 0 ≤ z < 1;

and it follows that

ϕ′(1) = lim
z↑1

ϕ(1)− ϕ(z)
1− z

≤ 0;

hence g′(1) ≤ 1.

Case 2. ϕ has a unique root r in [0, 1). Then by Rolle’s theorem ϕ′ must
have a root s in [r, 1), i.e., ϕ′(s) = g′(s)−1 = 0, and since g′ is an increasing
function we have

g′(1) > g′(s) = 1.

To sum up: the equation g(z) = z has a positive root less than 1 if and
only if g′(1) > 1.

In Case 1, we must have α = 1 since 0 ≤ α ≤ 1 and α is a root by
(8.7.19). Thus the population is almost certain to become extinct.

In Case 2, we will show that α is the root r < 1. For g(0) < g(r) = r, and
supposing for the sake of inducting gn−1(0) < r, then gn(0) = g(gn−1(0)) <
g(r) = r because g is an increasing function. Thus gn(0) < r for all n and
so α ≤ r by (8.7.18). But then α must be equal to r because both of them
are roots of the equation in [0, 1).

What will happen in Case 2 if the population escapes extinction? Ac-
cording to the general behavior under (iv) it must then remain forever in
the transient states {1, 2, . . . } with probability 1 − α. Can its size sway
back and forth from small to big and vice versa indefinitely? This question
is answered by the general behavior under (ii), according to which it must
stay out of every finite set {1, 2, . . . , L} eventually, no matter how large L
is. Therefore it must in fact become infinite (not necessarily monotonically,
but as a limit), namely:

P{ lim
n→∞

Xn = +∞ | Xn �= 0 for all n} = 1.

The conclusion is thus a “boom or bust” syndrome. The same is true
of the gambler who has an advantage over an infinitely rich opponent (see
§8.2): if he is not ruined, he will also become infinitely rich. Probability
theory contains a lot of such extreme results, some of which are known as
zero-or-one (“all or nothing”) laws.
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In the present case there is some easy evidence for the conclusions
reached above. Let us compute the expectation of the population of the
nth generation. Let µ = E(X1) be the expected number of descendants of
each particle. Observe that µ = g′(1) so that we have µ ≤ 1 in Case 1 and
µ > 1 in Case 2. Suppose µ <∞; then if the number of particles in the n-
1st generation is j, the expected number of particles in the nth generation
will be jµ (why?). Using conditional expectation, this may be written as

E{Xn | Xn−1 = j} = µj.

It follows from (5.2.12) that

E(Xn) =
∞∑
j=0

µjP (Xn−1 = j) = µE(Xn−1),

and consequently by iteration

E(Xn) = µnE(X0) = µn.

Therefore we have

lim
n→∞

E(Xn) = lim
n→∞

µn =



0 if µ < 1,
1 if µ = 1,
∞ if µ > 1.

This tends to support our conclusion in Case 1 for certain extinction; in
fact it is intuitively obvious that if µ < 1 the population fails to be self-
replacing on the basis of averages. The case µ = 1 may be disposed of with a
bit more insight, but let us observe that here we have the strange situation
that E(Xn) = 1 for all n, but P (limn→∞ Xn = 0) = 1 by Case 1. In case
µ > 1 the crude interpretation would be that the population will certainly
become infinite. But we have proved under Case 2 that there is a definite
probability that it will die out as a dire contrast. This too is interesting in
relating simple calculations to more sophisticated theory. These comments
are offered as an invitation to the reader for further wonderment about
probability and its meaning.

Exercises

1. Let Xn be as in (8.1.2) with X0 = 0. Find the following probabilities:
(a) P{Xn ≥ 0 for n = 1, 2, 3, 4};
(b) P{Xn �= 0 for n = 1, 2, 3, 4};
(c) P{Xn ≤ 2 for n = 1, 2, 3, 4};
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(d) P{|Xn| ≤ 2 for n = 1, 2, 3, 4}.
2. Let Yn = X2n, where Xn is as in No. 1. Show that {Yn, n ≥ 0} is a

Markov chain and find its transition matrix. Similarly for {Zn, n ≥ 0}
where Zn = X2n+1; what is its initial distribution?

3. Let a coin be tossed indefinitely; let Hn and Tn respectively denote the
numbers of heads and tails obtained in the first n tosses. Put Xn =
Hn, Yn = Hn − Tn. Are these Markov chains? If so, find the transition
matrix.

*4. As in No. 3 let Zn = |Hn − Tn|. Is this a Markov chain? [Hint: compute,
e.g., P{Y2n = 2i | Z2n = 2i} by Bernoulli’s formula, then P{Z2n+1 =
2i± 1 | Z2n = 2i, Y2n > 0}.]

5. Let the transition matrix be given below:

(a)



1
2

1
2

1
3

2
3


 (b)


p1 q1 0

0 p2 q2
q3 0 p3


 .

Find f (n)
11 , f (n)

12 , g(n)
12 for n = 1, 2, 3 [for notation see (8.4.6) and (8.4.10)].

6. In a model for the learning process of a rat devised by Estes, the rodent
is said to be in state 1 if he has learned a certain trick (to get a peanut
or avoid an electric shock), and to be in state 2 if he has not yet learned
it. Suppose that once it becomes learned it will remain so, while if it
is not yet learned it has a probability α of becoming so after each trial
run. Write down the transition matrix and compute p(n)

21 , f
(n)
21 for all

n ≥ 1; and m21 [see (8.6.3) for notation].
7. Convince yourself that it is a trivial matter to construct a transition

matrix in which there are any given number of transient and recurrent
classes, each containing a given number of states, provided that either
(a) I is infinite, or (b) I is finite but not all states are transient.

8. Given any transition matrix Π, show that it is trivial to enlarge it by
adding new states that lead to old ones, but it is impossible to add any
new state that communicates with any old one.

9. In the “double or nothing” game, you bet all you have and you have a
fifty-fifty chance to double it or lose it. Suppose you begin with $1 and
decide to play this game up to n times (you may have to quit sooner
because you are broke). Describe the Markov chain involved with its
transition matrix.

10. Leo is talked into playing heads in a coin-tossing game in which the
probability of heads is only 0.48. He decides that he will quit as soon
as he is one ahead. What is the probability that he may never quit?

11. A man has two girlfriends, one uptown and one downtown. When he
wants to visit one of them for a weekend he chooses the uptown girl
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with probability p. Between two visits he stays home for a weekend. De-
scribe the Markov chain with three states for his weekend whereabouts:
“uptown,” “home,” and “downtown.” Find the long-run frequencies of
each. [This is the simplest case of Example 4 of §8.3, but here is a
nice puzzle related to the scheme. Suppose that the man decides to let
chance make his choice by going to the bus stop where buses go both
uptown and downtown and jumping aboard the first bus that comes.
Since he knows that buses run in both directions every 15 minutes, he
figures that these equal frequencies must imply p = 1/2 above. But
after a while he realizes that he has been visiting uptown twice as fre-
quently as downtown. How can this happen? This example carries an
important lesson to the practicing statistician, namely that the relevant
datum may not be what appears at first right. Assume that the man
arrives at the bus stop at random between 6 p.m. and 8 p.m. Figure
out the precise bus schedules that will make him board the uptown
buses with probability p = 2/3.]

12. Solve Problem 1 of §8.1 when there is a positive probability r of the
particle remaining in its position at each step.

*13. Solve (8.1.13) when p �= q as follows. First determine the two values
λ1 and λ2 such that xj = λj is a solution of xj = pxj+1 + qxj−1. The
general solution of this system is then given by Aλj1 + Bλj2, where A
and B are constants. Next find a particular solution of xj = pxj+1 +
qxj−1+1 by trying xj = Cj and determine the constant C. The general
solution of the latter system is then given by Aλj1 +Bλj2 +Cj. Finally,
determine A and B from the boundary conditions in (8.1.13).

14. The original Ehrenfest model is as follows. There are N balls in each
of two urns. A ball is chosen at random from the 2N balls from either
urn and put into the other urn. Let Xn denote the number of balls in
a fixed urn after n drawings. Show that this is a Markov chain having
the transition probabilities given in (8.3.16) with c = 2N .

15. A scheme similar to that in No. 14 was used by Daniel Bernoulli [son
of Johann, who was younger brother of Jakob] and Laplace to study
the flow of incompressible liquids between two containers. There are
N red and N black balls in two urns containing N balls each. A ball
is chosen at random from each urn and put into the other. Find the
transition probabilities for the number of red balls in a specified urn.

16. In certain ventures such as doing homework problems one success tends
to reinforce the chance for another by imparting experience and con-
fidence; in other ventures the opposite may be true. Anyway let us
assume that the aftereffect is carried over only two consecutive trials
so that the resulting sequence of successes and failures constitutes a
Markov chain on two states {s, f}. Let

pss = α, pff = β,
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where α and β are two arbitrary members between 0 and 1. Find the
long-run frequency of successes.

17. The following model has been used for the study of contagion. Suppose
that there are N persons, some of whom are sick with influenza. The
following assumptions are made:

(a) when a sick person meets a healthy one, the chance is α that the
latter will be infected;

(b) all encounters are between two persons;

(c) all possible encounters in pairs are equally likely;

(d) one such encounter occurs in every (chosen) unit of time.

Define a Markov chain for the spread of the disease and write down its
transition matrix. [Are you overwhelmed by all these oversimplifying
assumptions? Applied mathematics is built upon the shrewd selection
and exploitation of such simplified models.]

18. The age of a light bulb is measured in days, and fractions of a day do
not count. If a bulb is burned out during the day, then it is replaced
by a new one at the beginning of the next day. Assume that a bulb
that is alive at the beginning of the day, possibly one that has just
been installed, has probability p of surviving at least one day so that
its age will be increased by 1. Assume also that the successive bulbs
used lead independent lives. Let X0 = 0 and Xn denote the age of
the bulb that is being used at the beginning of the n + 1st day. (We
begin with the first day, thus X1 = 1 or 0 depending on whether the
initial bulb is still in place or not at the beginning of the second day.)
The process {Xn, n ≥ 0} is an example of a renewal process. Show
that it is a recurrent Markov chain, find its transition probabilities and
stationary distribution. [Note: the life span of a bulb being essentially
a continuous variable, a lot of words are needed to describe the scheme
accurately in discrete time, and certain ambiguities must be resolved
by common sense. It would be simpler and clearer to formulate the
problem in terms of heads and tails in coin tossing (how?), but then it
would have lost the flavor of application!]

19. Find the stationary distribution for the random walk with two reflect-
ing barriers (Example 4 of §8.3).

20. In a sociological study of “conformity” by B. Cohen, the following
Markov chain model was used. There are four states: S1 = consistently
nonconforming; S2 = indecisively nonconforming; S3 = indecisively
conforming; S4 = consistently conforming. In a group experiment sub-
jects were found to switch states after each session according to the
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following transition matrix:

S1 S2 S3 S4

S1 1 0 0 0
S2 .06 .76 .18 0
S3 0 .27 .69 .04
S4 0 0 0 1

Find the probabilities of ultimate conversion from the “conflict” states
S2 and S3 into the “resolution” states S1 and S4.

21. In a genetical model similar to Example 19 of §8.7, we have I =
{0, 1, . . . , 2N} and

pij =
(
2i
j

)(
2N − 2i
N − j

)/(
2N
N

)
.

How would you describe the change of genotypes from one generation
to another by some urn scheme? Find the absorption probabilities.
[Hint: compute

∑2N
j=0 jpij by simplifying the binomial coefficients, or

by Theorem 1 of §6.1.]
22. For the branching process in Example 20 of §8.7, if a0, a1, and a2 are

positive but the other aj ’s are all zero, find the probability of extinction.
23. Suppose that the particles in the first generation of a branching process

follow a probability law of splitting given by {bj , j ≥ 0} that may be
different from that of initial particle given by (8.7.13). What then is
the distribution of the number of particles in the second generation?

24. A sequence of electric impulses is measured by a meter that records
the highest voltage that has passed through it up to any given time.
Suppose that the impulses are uniformly distributed over the range
{1, 2, . . . , L}. Define the associated Markov chain and find its transi-
tion matrix. What is the expected time until the meter records the
maximum value L? [Hint: argue as in (8.1.13) for the expected absorp-
tion time into the state L; use induction after computing el−1 and el−2.]

25. In proofreading a manuscript each reader finds at least one error. But if
there are j errors when she begins, she will leave it with any number of
errors between 0 and j − 1 with equal probabilities. Find the expected
number of readers needed to discover all the errors. [Hint: ej = j−1(e1+
· · ·+ ej−1) + 1; now simplify ej − ej−1.]

26. A deck of m cards may be shuffled in various ways. Let the state space
be the m! different orderings of the cards. Each particular mode of
shuffling sends any state (ordering) into another. If the various modes
are randomized, this results in various transition probabilities between
the states. Following my tip (a) in §3.4 for combinatorial problems, let
us begin with m = 3 and the following two modes of shuffling:
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(i) move the top card to the bottom, with probability p;
(ii) interchange the top and middle cards, with probability 1− p.
Write down the transition matrix. Show that it is doubly stochastic
and all states communicate. Show that if either mode alone is used the
states will not all communicate.

27. Change the point of view in No. 26 by fixing our attention on a par-
ticular card, say the queen of spades if the three cards are the king,
queen, and knight of spades. Let Xn denote its position after n shuf-
flings. Show that this also constitutes a Markov chain with a doubly
stochastic transition matrix.

*28. Now generalize Nos. 26 and 27: for any m and any randomized shuf-
fling, the transition matrices in both formulations are doubly stochas-
tic. [Hint: each mode of shuffling as a permutation on m cards has an
inverse. Thus if it sends the ordering j into k then it sends some order-
ing i into j. For fixed j the correspondence i = i(k) is one-to-one and
pij = pjk. This proves the result for the general case of No. 26. Next
consider two orderings j1 and j2 with the fixed card in the topmost
position, say. Each mode of shuffling that sends j1 into an ordering
with the given card second from the top does the same to j2. Hence
the sum of probabilities of such modes is the same for j1 or j2, and
gives the transition probability 1→ 2 for the displacement of the card
in question.]

*29. Customers arrive singly at a counter and enter into a queue if it is
occupied. As soon as one customer finishes, the service for the next
customer begins if there is anyone in the queue, or upon the arrival of
the next customer if there is no queue. Assume that the service time is
constant (e.g., a taped recording or automatic hand-dryer), then this
constant may be taken as the unit of time. Assume that the arrivals
follow a Poisson process with parameter α in this unit. For n ≥ 1 let
Xn denote the number of customers in the queue at the instant when
the nth customer finishes his service. Let {Yn, n ≥ 1} be independent
random variables with the Poisson distribution π(α); see §7.1. Show
that

Xn+1 = (Xn − 1)+ + Yn, n ≥ 1,

where x+ = x if x > 0 and x+ = 0 if x ≤ 0. Hence conclude that
{Xn, n ≥ 1} is a Markov chain on {0, 1, 2, . . . } with the following tran-
sition matrix: 


c0 c1 c2 c3 · · ·
c0 c1 c2 c3 · · ·
0 c0 c1 c2 · · ·
0 0 c0 c1 · · ·
· · · · · · · · · · · · · ·



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where cj = πj(α). [Hint: this is called a queuing process and {Xn, n ≥
1} is an imbedded Markov chain. At the time when the nth customer
finishes there are two possibilities. (i) The queue is not empty; then
the n + 1st customer begins his service at once and during his (unit)
service time Yn customers arrive. Hence when he finishes the number
in the queue is equal to Xn− 1+Yn. (ii) The queue is empty; then the
counter is free and the queue remains empty until the arrival of the
n+1st customer. He begins service at once and during his service time
Yn customers arrive. Hence when he finishes the number in the queue
is equal to Yn. The Yn’s are independent and have π(α) as distribution,
by Theorems 1 and 2 of §7.2.]

*30. Generalize the scheme in No. 29 as follows. The service time is a random
variable S such that P{S = k} = bk, k ≥ 1. Successive service times
are independent and identically distributed. Show that the conclusions
of No. 29 hold with

cj =
∞∑
k=1

bkπj(kα).

*31. In No. 29 or 30, let µ =
∑∞

j=0 jcj . Prove that the Markov chain is
transient, null-recurrent, or positive-recurrent depending on whether
µ < 1, µ = 1 or µ > 1. [This result is due to Lindley; here are the steps
for a proof within the scope of Chapter 8. In the notation of §8.4 let

F10(z) = f(z), g(z) =
∞∑
j=0

cjz
j .

(a) Fj,j−1(z) = f(z) for all j ≥ 1; because, e.g., f (4)
j,j−1 = P{Yn ≥

1, Yn+Yn+1 ≥ 2, Yn+Yn+1+Yn+2 ≥ 3, Yn+Yn+1+Yn+2+Yn+3 =
3 | Xn = j}.

(b) Fj0(z) = f(z)i for j ≥ 1, because the queue size can decrease only
by one at a step.

(c) f
(1)
10 = c0, f

(v)
10 =

∞∑
j=1

cjf
(v−1)
j0 for v ≥ 2; hence

f(z) = c0z +
∞∑
j=1

cjzFj0(z) = zg(f(z)).

(d) F00(z) = zg(f(z)) by the same token.
(e) If f(1) = ρ, then ρ is the smallest root of the equation ρ = g(ρ) in

[0, 1]; hence F00(1) = f(1) < 1 or = 1 according as g′(1) > 1 or
≤ 1 by Example 4 of §8.7.
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(f) f ′(1) = f ′(1)g′(1)+ g(1); hence if g′(1) ≤ 1 then in the notation of
(8.6.3), m00 = F ′

00(1) = f ′(1) =∞ or <∞ depending on whether
g′(1) = 1 or < 1. Q.E.D.

For more complicated queuing models see e.g., [Karlin]. ]
*32. A company desires to operate s identical machines. These machines are

subject to failure according to a given probability law. To replace these
failed machines the company orders new machines at the beginning of
each week to make up the total s. It takes one week for each new
order to be delivered. Let Xn be the number of machines in working
order at the beginning of the nth week and let Yn denote the number of
machines that fail during the nth week. Establish the recursive formula

Xn+1 = s− Yn

and show that {Xn, n ≥ 1} constitutes a Markov chain. Suppose that
the failure law is uniform, i.e.:

P{Yn = j | Xn = i} = 1
i+ 1

, j = 0, 1, . . . , i.

Find the transition matrix of the chain, its stationary distribution, and
the expected number of machines in operation in the steady state.

*33. In No. 32 suppose the failure law is binomial:

P{Yn = j | Xn = i} =
(
i

j

)
pj(1− p)i−j , j = 0, 1, . . . , i,

with some probability p. Answer the same questions as before. [These
two problems about machine replacement are due to D. Iglehart.]

34. The matrix [pij ], i ∈ I, j ∈ I is called substochastic iff for every i we
have

∑
j∈I pij ≤ 1. Show that every power of such a matrix is also

substochastic.
35. Show that the set of states C is stochastically closed if and only if for

every i ∈ C we have
∑

j∈C pij = 1.
36. Show that

max
0≤n<∞

Pi{Xn = j} ≤ Pi

{ ∞⋃
n=0

[Xn = f ]

}
≤

∞∑
n=0

Pi{Xn = j}.

Hence deduce that i� j if and only if f∗
ij > 0.

37. Prove that if qij > 0, then
∑∞

n=0 p
(n)
ij =∞.

*38. Prove that if j � i, then g∗
ij < ∞. Give an example where g∗

ij = ∞.

[Hint: show that g(n)
ij f

(v)
ji ≤ f

(n+v)
ii and choose v so that f (v)

ji > 0.]



322 From Random Walks to Markov Chains

39. Prove that if there exists j such that i � j but not j � i, then i is
transient. [Hint: use Theorem 9; or argue as in the proof of Theorem 9
to get qii ≤ p

(n)
ij · 0 + (1− p

(n)
ij ) · 1 for every n.]

40. Define for arbitrary i, j and k in I and n ≥ 1:

kp
(n)
ij = Pi{Xv �= k for 1 ≤ v ≤ n− 1;Xn = j}.

Show that if k = j this reduces to f
(n)
ij , while if k = i it reduces to

g
(n)
ij . In general, prove that

∑
3 �=k

kp
(n)
i3 kp

(m)
3j = kp

(n+m)
ij .

These are called taboo probabilities because the passage through k dur-
ing the transition is taboo.

41. If the total number of states is r, and i � j, then there exists n such
that 1 ≤ n ≤ r and p(n)

ij > 0. [Hint: any sequence of states leading from
i to j in which some k occurs twice can be shortened.]

42. Generalize the definition in (8.6.3) as follows:

mij = Ei(Tj) =
∞∑
v=1

vf
(v)
ij .

Prove that mij +mji ≥ mii for any two states i and j. In particular,
in Example 16 of §8.6, we have m0c ≥ 2c−1.

43. Prove that the symmetric random walk is null-recurrent. [Hint: P (n)
ij =

P{ξ1 + · · ·+ ξn = j − i}; use (7.3.7) and the estimate following it.]
44. For any state i define the holding time in i as follows: S = max{n ≥

1 | Xv = i, for all v = 1, 2, . . . , n}. Find the distribution of S.
*45. Given the Markov chain {Xn, n ≥ 1} in which there is no absorbing

state, define a new process as follows. Let n1 be the smallest value of n
such that Xn �= X1, n2 the smallest value > n1 such that Xn �= Xn1 ,
n3 the smallest value > n2 such that Xn �= Xn2 and so on. Now put
Yv = Xnv; show that {Yv, v ≥ 1} is also a Markov chain and derive
its transition matrix from that of {Xn, n ≥ 1}. Prove that if a state is
recurrent in one of them, then it is also recurrent in the other.

46. In the notation of No. 3, put H(2)
n =

∑n
v=1 Hv. Show that {Xn} does

not form a Markov chain but if we define a process whose value Yn at
time n is given by the ordered pair of states (Xn−1, Xn), then {Yn, n ≥
1} is a Markov chain. What are its state space and transition matrix?
The process {H(2)

n , n ≥ 0} is sometimes called a Markov chain of order
2. How would you generalize this notion to a higher order?
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47. There is a companion to the Markov property that shows it in reverse
time. Let {Xn} be a homogeneous Markov chain. For n ≥ 1 let B be
any event determined by Xn+1, Xn+2, . . . . Show that we have for any
two states i and j:

P{Xn−1 = j | Xn = i;B} = P{Xn−1 = j | Xn = i};

but this probability may depend on n. However, if {Xn} is stationary
as in Theorem 13, show that the probability above is equal to

p̃ij =
wjpji
wi

and so does not depend on n. Verify that [p̃ij ] is a transition matrix.
A homogeneous Markov chain with this transition matrix is said to be
a reverse chain relative to the original one.

48. Prove that E (Sj) <∞ for each j, thus strengthening Theorem 1. [Hint:
starting from any j in [1, c − 1], at most c − 1 steps get us out of the
interval. Let W denote the waiting time, then P (W ≥ c− 1) ≤ 1 −
pc−1 = δ say. Repeating the argument (how?) we obtain for any n ≥ 1,
P (W ≥ n(c− 1)) ≤ δn. Put V = W (c− 1)−1, then P (V = n) ≤ δn

and so E(V ) ≤
∑∞

n=1 nδ
n <∞. Tricky? Mathematics can be.]





Appendix 3
Martingale

Let each Xn be a random variable having a finite expectation, and for
simplicity we will suppose it to take integer values. Recall the definition of
conditional expectation from the end of §5.2. Suppose that for every event
A determined by X0, . . . , Xn−1 alone, and for each possible value i of Xn,
we have

E{Xn+1 | A;Xn = i} = i; (A.3.1)

then the process {Xn, n ≥ 0} is called a martingale. This definition resem-
bles that of a Markov chain given in (8.3.1) in the form of the conditioning,
but the equation is a new kind of hypothesis. It is more suggestively exhibi-
ted in the symbolic form below:

E{Xn+1 | X0, X1, . . . , Xn} = Xn. (A.3.2)

This means: for arbitrary given values of X0, X1, . . . , Xn, the conditional
expectation of Xn+1 is equal to the value of Xn, regardless of the other
values. The situation is illustrated by the symmetric random walk or the
genetical model in Example 19 of §8.7. In the former case, if the present
position of the particle is Xn, then its position after one step will be Xn+1
or Xn− 1 with probability 1/2 each. Hence we have, whatever the value of
Xn,

E{Xn+1 | Xn} =
1
2
(Xn + 1) +

1
2
(Xn − 1) = Xn;

furthermore this relation remains true when we add to the conditioning the
previous positions of the particle represented by X0, X1, . . . , Xn−1. Thus
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the defining condition (A.3.1) for a martingale is satisfied. In terms of the
gambler, it means that if the game is fair then at each stage his expected
gain or loss cancels out so that his expected future worth is exactly equal
to his present assets. A similar assertion holds true of the number of A
genes in the genetical model. More generally, when the condition (8.7.6) is
satisfied, then the process {v(Xn)n ≥ 0} constitutes a martingale, where
v is the function i→ v(i), i ∈ I. Finally in Example 20 of §8.7, it is easy to
verify that the normalized population size {Xn/µ

n, n ≥ 0} is a martingale.
If we take A to be an event with probability 1 in (A.3.1), and use

(5.2.12), we obtain

E(Xn+1) =
∑
i

P (Xn = i)E(Xn+1 | Xn = i)

=
∑
i

P (Xn = i)i = E(Xn).
(A.3.3)

Hence in a martingale all the random variables have the same expecta-
tion. This is observed in (8.2.3), but the fact by itself is not significant.
The following result from the theory of martingales covers the applications
mentioned there and in §8.7. Recall the definition of an optional random
variable from §8.5.

Theorem. If the martingale is bounded, namely if there exists a constant
M such that |Xn| ≤M for all n, then for any optional T we have

E(XT ) = E(X0). (A.3.4)

For any martingale, this equation holds if T is bounded.
In the case of Problem 1 of §8.1 with p = 1/2, we have |Xn| ≤ c; in

the case of Example 3 of §8.3 we have |Xn| ≤ 2N . Hence the theorem is
applicable and the absorption probabilities fall out from it as shown in §8.2.

The extension of (A.3.3) to (A.3.4) may be false for a martingale and an
optional T , without some supplementary condition such as boundedness.
In this respect, the theorem above differs from the strong Markov property
discussed in §8.5. Here is a trivial but telling example for the failure of
(A.3.4). Let the particle start from 0 and let T be the first entrance time
into 1. Then T is finite by Theorem 2 of §8.2; hence XT is well defined and
must equal 1 by its definition. Thus E(XT ) = 1 but E(X0) = 0.

Martingale theory was largely developed by J.L. Doob (1910– ) and
has become an important chapter of modern probability theory; for an
introduction see [Chung 1, Chapter 9].

We conclude this brief introduction with a wonderful exhibit.

Borel’s St. Petersburg Martingale. Let {yn, n ∈ N} be independent
random variables with P{yn = +1} = P{yn = −1} = 1/2, namely the fair
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coin-tossing sequence. Define a sequence of numbers as follows:

b1 = 2; for n ≥ 2, bn =
n−1∑
j=1

bj + 2n.

Actually we can verify that bn = (n+ 1).2n−1. Now define

Xn =
n∑

j=1

bjyj .

Then {Xn, n ∈ N} is a martingale. Indeed, successive sums of independent
random variables with mean zero form a martingale (Exercise). Next define
the random variable

T (w) = min{n ∈ N : yn(w) = +1},

namely T is the first time the coin comes up “heads.” Then T is optional
with P{T = n} = 2−n and E(T ) = 2. It follows that T is almost surely
finite. When T <∞ we have XT = 2T because when T = n, we have

Xn = −
n−1∑
j=1

bj + bn = 2n.

Thus E(XT ) =
∑∞

n=1 2
−n.2n = ∞; whereas E(Xn) = 0 for all n. In

sum, the game is fair and yet the gambler has a sure win (almost sure
to be exact!) of infinite expectation. This is the St. Petersburg Paradox
discussed in Exercise 28 of Chapter 4, over which numerous ancient and
modern mathematicians have wracked their brains.

Mathematically, the “fair” equation (A.3.4) (read X1 for X0) is false.
The theorem above does not apply because neither the martingale nor T
is bounded. Now for any positive integer t let T ∧ t denote the minimum
of T and t. Borel showed

E(XT∧t) = 0 for any t ≥ 1 (A.3.5)

by a direct, explicit computation. This is not hard and is an excellent
exercise, but it is a particular case of the second assertion in the Theorem
above.

Equation (A.3.5) restores the fairness of Borel’s reincarnation of the St.
Petersburg game. In the real world, of course, “Time must have a stop.” His-
torically the idea of limiting the duration of the game, or equivalently the
liability of the gamblers, had been variously suggested as realistic caveats.
But not until Borel’s martingaling and bounded stopping (1938 to 1949)
was the denouement of the paradox presented in a simple mathematical
proposition, which turns out to be valid for all martingales.
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To prove the Theorem we begin with the notation E(A;X) = E(IA.X)
for a set A and random variable X. Then the martingale property (A.3.3)
(omitting X0) means: for any set determined by X1, . . . , Xn alone we have

E(A;Xn+1) = E(A;Xn). (A.3.6)

Since T is optional, {T ≤ n} is such a set, so is its complement {T > n}.
Now

E(XT∧(n+1)) = E(T ≤ n;XT ) + E(T > n;Xn+1),

E(XT∧n) = E(T ≤ n;XT ) + E(T > n;Xn);

hence by using (A.3.6) with A = {T > n} we see the equality of the two
expectations displayed. Thus all E(XT∧n) are equal for all n ∈ N , so equal
to E(X1) since T ∧ 1 = 1. The second assertion in the theorem is proved
because if T is bounded then it is identical with T ∧ n for some n. To
prove the first assertion, let n increase to infinity, then T ∧ n becomes T
in the limit if T is finite by assumption, and so XT∧n becomes XT . Since
XT∧n for all n is bounded by assumption, E(XT∧n) converges to E(XT )
by Lebesgue’s bounded convergence theorem [Chung 1, §3.2]. This is a bit
of advanced analysis appropriate for the occasion. Here is the instructive
direct proof:

E(XT∧t) =
t∑

n=1

E(T = n;XT ) +E(T > t;Xt).

The last-written expectation is bounded by E(T > t;M) = P (T > t).M ,
which converges to zero as t goes to infinity since T is finite. Hence

lim
t→∞

E(XT∧t) =
∞∑
n=1

E(T = n;XT ) = E(XT ). Q.E.D.



9
Mean-Variance Pricing Model

In this and the next chapter we will illustrate the applications of probabil-
ity concepts to the field of mathematical finance, starting with the concept
of sample space, all the way to stochastic processes including martingales.
The present chapter examplifies “one-period” models, where the analy-
sis is based on random variables evaluated at a specific time. The next
chapter will address time-dependent (“multiperiod”) models, with analysis
based on stochastic processes. The two chapters differ in their financial per-
spectives: the first is basic to the concept of equilibrium pricing, the next
describes the application of the arbitrage–free pricing argument.

9.1. An investments primer

The field of finance is replete with vocabulary reflecting both its rich con-
ceptual and practical aspects. Numerous introductory books have been
written on the subject. We list here only two that appear to give compre-
hensive and understandable descriptions of the practice of finance: Invest-
ments by Sharpe et al., and Investments by Bodie et al. The book Capital
Ideas by Bernstein is a lively account of the paths followed by individuals
who shaped the field of finance as a quantitative discipline and as a distinct
branch of economics. In this section we give a short and basic introduction
to the financial concepts we will be using in this book.

When you invest you either buy, sell, borrow, or lend financial instru-
ments such as stock and cash. The theory and practice of finance involve
several concepts that sometimes differ only in a subtle way. To simplify
matters, though, we will use certain words interchangeably. In particular,
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we refer to financial instruments also as assets or securities. We will use ei-
ther wealth or fortune when referring to the total cash value of an investor’s
assets.

At their most fundamental level the financial instruments we deal with
here are of either equity-type or debt-type. Equity-type instruments repre-
sent ownership of companies. In this chapter, and for simplicity, we will con-
sider publicly traded stocks, on stock markets such as the New York Stock
Exchange, as the only equity-type securities. Many of the very large and
well-established companies pay dividends to their stock holders. These are
payments made, generally quarterly, sometimes less frequently, by the com-
panies. Debt-type instruments represent cash loans. Investors lend money
to corporations or to the government (both federal and local) by purchasing
bonds. As with any loan, an interest payment schedule (so-called coupon
payment) is specified as well as a date (so-called maturity date) by which
the loan (also called principal or par-value) is to be repaid. For example,
an investor who purchases a 30-year U.S. government bond at $10,000 for
which he or she receives a coupon payment schedule of $800 a year is lend-
ing the U.S. government $10,000, to be repaid in 30 years, with an interest
rate of 8% per year. For certain types of bonds the investor does not receive
any coupon payment. These are called “zero-coupon” or “discount” bonds.
In effect, with these bonds, investors lend the money that they receive back
with interest at the maturity date. Another example is where you buy a
certificate of deposit (“CD”) at your local bank. You can buy a CD for any
amount you wish, subject to certain minimum imposed by your bank, say
$5000. You will earn interest on this amount, which you technically loaned
to your bank. A CD comes with a term or duration, which is the amount
of time you have to wait before your bank pays you back, usually 6 or 12
months. For simplicity, we will consider only one type of debt-type asset:
a money market instrument, which represents a pool of several loans with
possibly different (short) maturities and interest rates. If we invest in it,
we get paid a fixed interest rate.

The basic financial instruments of stocks and bonds are traded and
priced according to the laws of supply and demand, as well as expectations
about certain economic factors such as inflation. They are the focus of this
chapter. The other category of financial instruments we consider in this
book are the so-called financial derivatives. Their values depend directly
on those of the basic instruments of stocks and bonds. An American put
option on a stock is an example of an equity-type derivative. It is a contract
between two parties giving one the right to sell to the other, by an agreed-
upon date, a specific stock at an agreed upon price. Derivatives are the
subject of the next chapter.
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9.2. Asset return and risk

Suppose today you hold an amount x0 dollars in an asset, say a company
stock. A year from now the value of this asset, i.e., the price of the company
stock, is likely to be different from its value today. You need only look at
the financial pages of the newspapers, or the Internet, to see this variability
in action. A number of factors can affect the value of an asset: the general
economic and political climates, the past performance, and the perceived
ability of the leaders of the company in the case of company stock, the
weather for an agriculture-related company stock, technological changes,
natural disasters, etc. It may be futile to try to find all the factors that affect
the value of a particular asset. Thus it is more efficient to think of the value
of your asset holdings as a random variable X. As defined in §4.2, X is a
numerical function defined on a sample space Ω : ω → X(ω), ω ∈ Ω, where
all the unknown factors that can cause the fluctuations in the observable
values of X are encapsulated in that sample (point) ω.

We may interpret a sample point in Ω as a “state of the economic
world.” For example, Ω may consist of two elements: a “good” state of
the economic world, ω1, and a “bad” state of the economic world, ω2.
Then we may assume that the value X of your stock holdings a year from
now is of the form X(ω1) = ux0 and X(ω2) = dx0, where u > 1 and
0 ≤ d < 1. This example shows your fortune X as rising if the state of the
economic world is ω1, and dropping if ω2 is sampled instead (stock prices
cannot be negative; the condition d > 0 is the mathematical expression of
what financial analysts call “limited liability”). This example, however, is
a particular instance. There can be other stocks that behave differently.
Their prices drop if the “good” state of the economic world ω1 is sampled
and increase if the “bad” state of the economic world is sampled. This
example highlights the non-necessity of the literal interpretation of the
elements of the sample space (see also the discussion on sample spaces on
pp. 78–80). In fact, we might as well have chosen our sample space Ω to be
that of a not-necessarily fair coin toss, so often discussed in this book (see
its introduction as Example 8 in §2.4), where ω1 = T (tails) and ω2 = H
(heads). This two-point sample space can in fact generalize to a countable
sample space. It is also common to consider Ω as an uncountable sample
space representing all shades of possible states of the economic world, such
as the set of all real (or positive) numbers. As a result, X can take real
values as well.

Consider now the random variable ∆ defined by

ω ∈ Ω : ω → ∆(ω) = X(ω)− x0.

∆ represents the change in the value of your asset holdings. It is called a
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gain if positive, a loss if negative. Next define the random variable

R =
∆
x0
.

This is the one-year return on your intial investment x0. Notice that we
have omitted the ω in the notation as usual. In our simple example, we can
also write

X = (1 +R)x0.

The dollar amounts x0 and X can be expressed as

x0 = np0 and X = nP,

where n is the number of shares of the asset you hold, and p0 and P are,
respectively, the price of the asset today (a constant) and the price of the
asset a year from now (a not-necessarily constant random variable). We
can therefore also represent R as

R = (P − p0)/p0.

In other words, we do not need to know the number of shares you hold in
an asset to determine the return of your investment in this asset. We can
determine it by simply using the price information of this asset.

One-Period and Multiperiod Models. For the situation considered so
far we were concerned with the value of a single random variable denoted
by R above. To define R we have two dates: today (date t0), where the
value of the asset is known with certainty, namely it is a constant x0; and a
year from now (date t1), where the value of the asset is a random variable
that is not necessarily constant.

Suppose now that we are interested in the prices of an asset in each of
the next 3 years, or 12 months, or 4 quarters. Then we say we are fixing a
horizon, to be denoted T , and dates t0, t1, . . . , tN , where N = 3, 12, 4 for
the examples above. The interval [0, T ] is thus subdivided into N periods
(ti−1, ti], i = 1, . . . , N , where ti − ti−1 = T/N . If we let Pi be the asset
price at date ti, then we can define returns

ri =
Pi − Pi−1

Pi−1
=

Pi

Pi−1
− 1 for period i = 1, 2, . . . , N. (9.2.1)

This is the context of a multiperiod model, of which the one-period
model is a particular case with N = 1. The latter will be the focus of most
of this chapter.

An asset return expresses a relative price change over a specific period,
e.g., 1% over one month, 5% over a quarter, 17% over a two–year period. As
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we have defined it, a return is in effect a rate of return, i.e., a change relative
to time, but we shall use both the word and expression interchangeably.
It is customary to express return rates in a single unit, % per year, to
allow for rapid comparison and to use standard units for numerical values
in formulas. This procedure is called annualization. It is easier to estimate
the annualized rate of return by working with the gross return, 1 + r,
instead of r. For period i we have 1 + ri = Pi/Pi−1. So now if we compute
the gross return over N periods, PN/P0, and relate it to that of every
period between 1 and N , we have

PN

P0
=

PN

PN−1
× PN−1

PN−2
× . . .× P1

P0

=
N∏
i=1

(1 + ri).

If each period is less than a year, and a year consists of N of these
periods, then the annualized rate of return AR(N) satisfies

PN

P0
= 1 +AR(N) =

N∏
i=1

(1 + ri).

For small values of ri we can write AR(N) ∼
∑N

i=1 ri (check it as exer-
cise, use Taylor expansion). So our examples of 1% per month and 5% per
quarter become approximately annualized to 12% and 20%, respectively.

If each period is exactly a year, then the annualization consists of finding
a fixed (annual) rate AR(N) such that PN/P0 =

(
1 +AR(N)

)N
. Thus

AR(N) = (PN/P0)
1/N − 1.

Our example of 17% over a two-year period converts to
√
1.17−1, or 8.17%,

per year. Note that in the last example, the return of 17% is for the entire
two–year period, and its conversion to 8.17% per year is for each of the two
years. Often we observe returns r1, r2, . . . , rN for a number N of successive
years and would like to find an average of r1, r2, . . . , rN . Because of the
effect of compounding, which is often illustrated via the expression “earning
interest on interest” in the case of savings accounts, the precise way to find
the average annual rate AR(N) is to start with PN/P0 =

(
1 +AR(N)

)N
,

which yields

1
N

log (PN/P0) = log
(
1 +AR(N)

)
.



334 Mean-Variance Pricing Model

Thus

log
(
1 +AR(N)

)
=

1
N

log

[
N∏
i=1

(1 + ri)

]

=

[
1
N

N∑
i=1

log(1 + ri)

]
.

For small values of ri we have the approximation AR(N) ∼ (1/N)
∑N

i=1 ri
(check it using Taylor expansion).

Asset Risk. As we just saw in the example above, and as you may know
from experience, investments can be risky: you could end up with less than
what you started out with, or even lose everything! But how do we express
(model) this risk mathematically? We have already encountered a similar
situation where a gambler risks losing everything (cf. Problem 1 in §8.1). So
is it reasonable to think of your investment risk as the probability of losing
all of your investment, i.e., P{X ≤ 0}? Or half your initial investment,
i.e., P{X < x0/2}? Note in passing that in the former case we use X ≤ 0
instead of X = 0 as, in general, X may become negative when borrowing
is allowed as we shall see.

There are, in fact, several ways in which financial theorists model risk.
Obviously we want to model risk so that we can assess whether some finan-
cial instruments such as stocks are too risky for our tastes, and so that we
can decide how much, if at all, we should invest in them. Among financial
economists, a commonly accepted way to capture an investor’s attitude to-
wards risky investments is through the use of the so-called utility functions
that can be theoretically identified for each individual. We do not pursue
this approach in this book. In this chapter we use another risk measure
that is popular with both financial theorists and practitioners.

Definition 1. The risk of an asset with return R is its variance σ2(R) (see
§6.3 for the definitions of the variance and standard deviation of a random
variable).

Remark. We could have used the standard deviation σ(R) instead of its
square σ2(R). The advantage of this alternative is that its unit of account
(% per unit of time) is the same as that of R. But we prefer to use the
variance for mathematical convenience.

Riskless Security. A particular type of security (asset) plays an impor-
tant role in finance theory: it is one where we know with certainty the rate
of return if we invest in it. Namely, ifX is the value of this asset a year from
now, then X(ω) = (1+rf )x0, for all ω ∈ Ω, where the annual rate of return
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rf is a constant. For simplicity, we will consider this particular security in
the form of a money market instrument introduced in §9.1. Its return is
R(ω) = (X(ω)− x0) /x0 = 1+rf , ω ∈ Ω (for simplicity, we assume rf ≥ 0).

Its return variance is E
{
(R− E(R))2

}
= E

{
((1 + rf )− (1 + rf ))

2
}

=
E {0} = 0. Because its return has zero variance, such a security is called
riskless.

9.3. Portfolio allocation

Suppose that you currently own n1 = 100 shares of a company stock, say
AT&T, and n2 = 80 shares of another company, say Ford. In addition,
assume that the current price of the first stock is P1 = $60 and that of the
second is P2 =$50. Then your current wealth is

x0 = n1P1 + n2P2

= 6, 000 + 4, 000

= 10, 000 dollars.

The quantities α1 = n1P1/x0 = 6, 000/10, 000 = 0.60 and α2 = n2P2/x0 =
4, 000/10, 000 = 0.40 represent the proportions of your wealth invested in
AT&T and Ford, respectively. Alternatively, α1 and α2 are expressed in
percentages so that in this particular example you are holding α1 = 60% of
your wealth in the first stock and α2 = 40% of your wealth in the second.
Notice that we have

α1 + α2 = 1.

Definition 2. Given M investment opportunities, an investor’s portfolio
allocation, or investment strategy, consists of an M -tuple (α1, α2, . . . , αM )
of reals such that

M∑
i=1

αi = 1.

For i ∈ {1, . . . ,M}, αi represents the proportion of the investor’s total
wealth invested in asset i and is also called the investor’s portfolio weight
for asset i.

Definition 3. Given a portfolio allocation (α1, α2, . . . , αM ), the corre-
sponding portfolio return is defined as the random variable

M∑
i=1

αiRi,
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where Ri is the one-period return (a random variable) for asset i.

9.4. Diversification

Ideally, we make investment decisions with an objective in mind. One such
objective is that of reducing portfolio risk, defined as the variance of the
portfolio return, similarly to individual assets (see Definition 1). One way
to reduce portfolio risk is through diversification, which is a portfolio allo-
cation defined as follows:

Definition 4. Let (α1, α2, . . . , αM ) be a portfolio allocation with corre-
sponding risk σ2

(∑M
i=1 αiRi

)
, where Ri is the one-period return for asset

i. A portfolio (α
′

1, α
′

2, . . . , α
′

M ) is a diversification of the original portfolio

if σ2
(∑M

i=1 α
′

iRi

)
< σ2

(∑M
i=1 αiRi

)
.

Example 1. Consider M = 2 assets. Assume that σ2(R1) = σ2(R2) > 0,
i.e., the two assets have the same risk. Assume further that −1 ≤ ρ12 < 1,
where ρ12 is the correlation coefficient between R1 and R2 (see §6.3 for
the definitions of correlation and covariance). If the current allocation is
(α1, α2) = (1, 0), then diversification occurs with a new portfolio (α

′

1, α
′

2) =
(α, 1− α) such that 0 < α < 1. Indeed,

σ2 (αR1 + (1− α)R2) = σ2(R1) + 2α(1− α) [Cov(R1, R2)− σ(R1)σ(R2)]

< σ2(R1) = σ2 (α1R1 + α2R2) , (9.4.1)

where the first equality results from σ2(R1) = σ2(R2) > 0, and the inequal-
ity is a consequence of 0 < α < 1 and Cov(R1, R2)/ (σ(R1)σ(R2)) = ρ12 <
1. In the particular case where Cov(R1, R2) ≤ 0, we have the following
interpretation: when offered an opportunity to invest in two assets with
equal risk and with returns that are either uncorrelated (Cov(R1, R2) = 0)
or negatively correlated (Cov(R1, R2) < 0), e.g., when their returns tend
to be of opposite signs, investing in both is less risky than investing in one
only.

Example 2. In the setting of Example 1, is there an allocation (α, 1−α),
with 0 < α < 1, that is least risky? In other words, is there α ∈ (0, 1) that
minimizes the function V (α) defined by

V (α) = σ2 (αR1 + (1− α)R2)?

From (9.4.1) we see that V is a quadratic function in α, with second deriva-
tive

V
′′
(α) = 2σ2(R1) + 2σ2(R2)− 4ρ12σ(R1)σ(R2).
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Under the assumptions −1 ≤ ρ12 < 1 and σ(R1) = σ(R2) > 0, we have

V
′′
(α) > 2σ2(R1) + 2σ2(R2)− 4σ(R1)σ(R2) = 2 (σ(R1)− σ(R2))

2 = 0.

Since V
′′
(α) > 0, to get the minimizing α, say α∗, we solve:

V
′
(α∗) = 2α∗σ2(R1)− 2(1− α∗)σ2(R2) + 2ρ12σ(R1)σ(R2)(1− 2α∗) = 0.

The second equation above simplifies, after canceling 2σ2(R1), to

α∗ − (1− α∗) + ρ12 (1− 2α∗) = 0,

from which we deduce

α∗ = 1/2.

To summarize, we have two assets with the same risk (same return variance)
and the most diversified portfolio, i.e., with the smallest return variance,
is the one where we invest our fortune equally in each of these assets. This
result is interesting because this allocation is independent of the strength of
the return correlation (ρ12 �= 1) between the two assets. The corresponding
risk is

V (α∗) = 1
2 (1 + ρ12)σ2(R1) < σ2(R1)

because ρ12 < 1. Note that if the two assets are such that their returns
are perfectly negatively correlated, i.e., ρ12 = −1, then V (α∗) = 0. The
expected rate of return of this portfolio is (E(R1) + E(R2)) /2. So when
ρ12 = −1, we are in fact almost surely assured of the expected return of
the portfolio.

Example 3. Consider again two assets such that σ(R1) > 0 and σ(R2) =
0. The second asset is a riskless security as we saw previously. Then for
0 ≤ α ≤ 1, V (α) = σ2 (αR1 + (1− α)R2) = α2σ2 (R1) ≥ 0. Thus the
minimand α∗ of the return variance of the portfolio (α, 1 − α) is α∗ = 0
and V (α∗) = 0 is the smallest risk.

9.5. Mean-variance optimization

As just seen in the examples above, one can diversify with a judicious choice
of portfolio allocation. However, can such risk reduction be too severe so
as to result in corresponding returns that are significantly smaller than the
original, less diversified portfolio allocation? It is generally assumed that
investors are willing to take on additional risk for a chance of getting higher
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returns, but can this trade-off be done systematically? Harry Markowitz,
an economist credited with the first formalization of this trade-off for which
he won the Nobel prize, proposes the following approach: for a given level
of expected returns, find the portfolio allocation with smallest risk. A dual
problem is that of fixing the level of portfolio risk and then looking for the
corresponding allocation that maximizes the expected return of this port-
folio. Mathematically, it is easier to deal with the former problem expressed
as follows. Find (α1, α2, . . . , αM ) that

minimize
1
2
σ2

(
M∑
i=1

αiRi

)
, (9.5.1)

where

M∑
i=1

αi = 1, (9.5.2)

E

(
M∑
i=1

αiRi

)
= µ, (9.5.3)

and µ is given (desired expected portfolio return). In practice, additional
conditions are imposed. They are generally of the form

li ≤ αi ≤ ui, 1 ≤ i ≤M, (9.5.4)

where ui is generally nonnegative and li can be negative.

Short and Long Positions. An investor with αi �= 0 is said to hold a
position in asset i. If αi < 0, then the investor is said to short (or hold
short) asset i. If αi > 0 the investor is said to go long (or hold long)
asset i. In the above problem, if li < 0 (typically li = −1 or −.5), then the
investor is allowed to short asset i. An investor shorts an asset by borrowing
this asset. When investors short the riskless asset, they borrow money to
invest for example in other assets as part of their optimal strategies. When
you hold your money in a savings account, you long the riskless security.
When investors short stocks, they borrow shares from their brokers and
sell them on the market. Later they return these shares to their brokers by
repurchasing them on the market.

A Three-Asset Example (1). In its general form, problem (9.5.1) -
(9.5.4) does not necessarily lead to closed–form solutions for α1, . . . , αM .
It is generally solved using the tools of quadratic programming (see, for ex-
ample, [Huang and Litzenberger] or [Luenberger]). When condition (9.5.4)
is omitted, one can solve (9.5.1) – (9.5.3) in closed form, if a solution exists.
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We illustrate here the case M = 3, using techniques appropriate for the
general level of this book. For i = 1, 2, 3 let µi = E(Ri), σi = σ(Ri) and
let ρij be the correlation coefficient between Ri and Rj , j = 1, 2, 3. Given
µ, (9.5.2) and (9.5.3) can be restated as

α3 = 1− α2 − α1, (9.5.5)

α1(µ1 − µ3) + α2(µ2 − µ3) = µ− µ3. (9.5.6)

Assume for now that µ2 �= µ3. Then from (9.5.5) and (9.5.6) we have

α2 =
µ− µ3

µ2 − µ3
− µ1 − µ3

µ2 − µ3
α1, (9.5.7)

α3 =
µ− µ2

µ3 − µ2
− µ1 − µ2

µ3 − µ2
α1. (9.5.8)

Thus (9.5.1) can be expressed as

minimize V (α1) =
1
2

3∑
i,j=1

αiαjρijσiσj , (9.5.9)

with α2 and α3 expressed in terms of α1. We can rewrite (9.5.7) and (9.5.8)
as

αi = aiα1 + biµ+ ci, for i = 2, 3,

where

a2 = −µ1 − µ3

µ2 − µ3
, b2 =

1
µ2 − µ3

, c2 = − µ3

µ2 − µ3
,

a3 = −µ1 − µ2

µ3 − µ2
, b3 =

1
µ3 − µ2

, c3 = − µ2

µ3 − µ2
.

Therefore we can write the derivative of V as

V
′
(α1) = Aα1 +Bµ+ C,

where

A = σ2
1 + a2

2σ
2
2 + a2

3σ
2
3 + 2a2ρ12σ1σ2 + 2a3ρ13σ1σ3 + 2a3ρ23σ3σ2,

B = a2b2σ
2
2 + a3b3σ

2
3 + b2ρ12σ1σ2 + b3ρ13σ1σ3 + (a3b2 + a2b3)ρ23σ2σ3,

C = a2c2σ
2
2 + a3c3σ

2
3 + c2ρ12σ1σ2 + c3ρ13σ1σ3 + (a3c2 + a2c3)ρ23σ2σ3.

With αi thus expressed, V in (9.5.9) is a quadratic function of α1. Therefore
a solution to V

′
(α1) = 0 corresponds to a global minimand for the problem
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(9.5.1) – (9.5.3) with M = 3 if V
′′
(α1) = A > 0. Assume then that the

parameters µi, σi, and ρij , for 1 ≤ i, j ≤ 3, are such that the latter condition
is satisfied. The solution of V

′
(α1) = 0 yields

αi = Aiµ+Bi, for 1 ≤ i ≤ 3, (9.5.10)

where A1 = −B/A, B1 = −C/A, and for i = 2, 3, Ai = ai (B/A) + bi and
Bi = −ai (C/A) + ci.

The return variance σ2 of the portfolio with allocations (or weights) αi,
i = 1, 2, 3, as given in (9.5.10) is a function of µ and can be written as

σ2 = aµ2 + bµ+ c, (9.5.11)

where

a =
3∑
i,j

AiAjρijσiσj , b =
∑3

i,j(AiBj +AjBi)ρijσiσj ,

and c =
3∑
i,j

BiBjρijσiσj .

Recall that we arrived at (9.5.11) by fixing µ and looking for portfo-
lio weights (αi) that minimize the return variance of the portfolios with
expected returns equal to µ. Recall also that the problem just solved can
be viewed as first fixing the return variance σ2 and then looking for the
weights (αi) maximizing the expected return of the corresponding portfo-
lio. Equation (9.5.11) shows that in the variance-expected return space the
graph of σ2 as a function of µ is a parabola. Note that the units of µ (in
percent per unit of time; e.g., 2% per year) are not directly comparable to
those of σ2 (in square percent per square unit of time). A more meaningful
and in fact more common representation of the relation between µ and σ2

is in the standard deviation-expected rate of return space.
Suppose the following holds:

a > 0, b2 < 4ac, and b/2a < 0.

Then (9.5.11) can be restated as

σ2

(4ac− b2)/4a
− (µ− (−b/2a))2

(4ac− b2)/4a2 = 1, (9.5.12)

thus expressing the relation between σ, the standard deviation of the return
of a portfolio with allocations (αi) as in (9.5.10), and µ, the corresponding
expected return, as a hyperbola with asymptotes µ = −b/2a ± σ/

√
a (see
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Fig. 37). The pair (σ̄, µ̄) corresponds to the portfolio that achieves the
smallest variance ( σ̄ =

√
(4ac− b2)/4a) among all possible portfolios,

with resulting expected return µ̄ = −(b/2a).

Efficient Frontier. Notice that when we solved the optimization problem
(9.5.1)–(9.5.3) we did not impose any restrictions on the desired level µ. As
a result, µ can conceivably span the entire real line. However, as a quick
look at Figure 37 would indicate, if we fix a risk level at a certain value σ0
then there correspond two values, µ∗ and µ∗∗, of µ for which this level of
risk σ0 is minimal. At this point, economic theory about the behavior of in-
vestors is invoked to distinguish between the two points A∗ = (σ0, µ

∗) and
A∗∗ = (σ0, µ

∗∗) on the curve. In particular, it is postulated that investors
always prefer more, even if only in expected returns, when comparing two
alternatives that bear the same risk. For this reason, at risk level σ0, a typ-
ical investor is going to select the portfolio that yields the expected return
µ∗ instead of that which yields the expected return µ∗∗. In this manner,
we only need focus on the part of the graph containing points (σ, µ) such
that µ ≥ µ̄. This portion of the graph, which is separately plotted in Figure
38, is called the efficient frontier. This label comes from the interpretation
that any point (σ∗, µ∗) in Figure 38 corresponds to a portfolio allocation
α∗ such that for any other portfolio allocation α′ yielding expected port-
folio return µ′ and standard deviation return σ′ we have the following: if
σ

′
< σ∗, then µ

′
< µ∗, and if µ

′
> µ∗, then σ

′
> σ∗. In other words,

no other portfolio allocation than α∗ can achieve a higher expected return
than µ∗ with smaller risk than σ∗.

σ

µ

σ-

µ-

σ 0

µ∗

µ∗∗

Figure 37 Portfolio frontier in the standard deviation (σ)- mean (µ) space
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σ

µ

σ-

µ-

σ0

µ∗

Figure 38 Efficient frontier in the standard deviation (σ)- mean (µ) space

The Case of M Securities. The result just obtained for three assets
generalizes in exactly the same manner to that of M securities (i.e., the
relation between the maximum expected return for a given level of risk is a
hyperbola in the standard deviation-expected rate of return space.) Recall
that in the derivation of this result we made some assumptions, particularly
about the second derivative of the portfolio variance as a function of the
weights. These assumptions are in fact easier to express using linear algebra
in vector-matrix form. In the general setting of M assets, the problem is
to find allocations (α1, α2, . . . , αM ), denoted by the M × 1 vector α, that

minimize
1
2
αTWα

such that

αTε = µ,

αT1 = 1,

where W is the return covariance matrix for the M assets, i.e., Wij =
Cov(Ri, Rj), 1 ≤ i, j ≤ M , ε is an M × 1 vector such that εi = µi, i =
1, 2, . . . ,M , and 1 is the M vector whose elements are each equal to 1.

At this point the derivation of the actual minimizing portfolios requires
some knowledge that is slightly beyond the level of this book. The interested
reader can consult Chapter 3 in [Huang and Litzenberger] where full details
are displayed in the spirit of the presentation of this chapter. The matrix
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formulation helps us identify more readily some of the conditions used
in the three-asset example worked out earlier. In particular, we required
that the second derivative of the portfolio variance as a function of the
portfolio weights be positive. From the general matrix formulation, this
condition is satisfied if and only if the covariance matrix W is positive
definite, which by definition means that for every nonzero vector x we have
xTWx > 0. Suppose now that a riskless security is among those considered
in the optimal allocation problem.Without loss of generality, we can assume
that it is asset 1. Then, since this asset has a deterministic value at the
end of the time period, the standard deviation σ1 of the one-period return
of asset 1 is zero and the correlation coefficient ρ1i of the riskless asset
with any other asset i is also zero. In other words, this means that all
the elements in the first column and in the first row of W are equal to
zero. Therefore, for the matrix W to be positive definite it is necessary
that the riskless asset be excluded from consideration in the optimization
problem. We will soon see that the inclusion of the riskless asset in the
optimal asset allocation problem can still be handled, leading to a different
characterization of the trade-off between optimal expected return and risk
level.

Effect of Riskless Security. In addition to M risky assets, i.e., assets
for which σ2(Ri) > 0, 1 ≤ i ≤ M , we now include asset 0, which is
riskless, i.e., σ2(R0) = 0. We are now looking for M + 1 portfolio weights
(α0, α1, α2, . . . , αM ) that again minimize the corresponding portfolio risk

σ2

(
M∑
i=0

αiRi

)
(9.5.13)

under the constraints

M∑
i=0

αi = 1, (9.5.14)

E

(
M∑
i=0

αiRi

)
= µ, (9.5.15)

where µ is the desired expected return, with the possible inclusion of
additional constraints of the form (9.5.4). Since σ(R0) = 0, it follows
that Cov(Ri, R0) = ρi0σ(Ri)σ(R0) = 0, and since α0 = 1 −

∑M
i=1 αi by

(9.5.15), the problem becomes that of finding (α1, α2, . . . , αM ) that mini-
mize (9.5.13) such that

E

(
M∑
i=1

αi(Ri −R0)

)
= µ−R0. (9.5.16)
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A Three-Asset Example (2). This case is similar to the three-asset
example (1) we saw earlier, now with M = 2 risky assets and one riskless
asset. Here too, conditions of the type (9.5.4) are not imposed. Following
the same notation we also let µ0 = R0. From (9.5.16) we have (assuming
µ2 �= µ0)

α2 = a+ bα1, (9.5.17)

where a = (µ−µ0)/(µ2−µ0) and b = −(µ1−µ0)/(µ2−µ0). Therefore the
problem reduces to that of finding α1 that minimizes the function

V (α1) = α2
1σ

2
1 + (a+ bα1)2σ2

2 + 2α1(a+ bα1)ρ12σ1σ2 (9.5.18)

from which we derive

V
′
(α1) = 2α1

(
σ2

1 + b2σ2
2 + 2bρ12σ1σ2

)
+ 2aρ12σ1σ2,

V
′′
(α1) = 2

(
σ2

1 + b2σ2
2 + 2bρ12σ1σ2

)
(9.5.19)

= 2σ2 (R1 + bR2) ,

where we recognize in (9.5.19) the variance of the random variable R1+bR2
thanks to the properties of the variance (see §6.3), which also includes
σ2(Z) ≥ 0 for any random variable Z. Notice again that (9.5.18) expresses
V as a quadratic function of α1. Therefore, as long as V

′′
(α1) > 0, in order

to find the minimizing α1 we need only solve V
′
(α1) = 0. The solution of

the latter is

α∗
1 = −a ρ12σ1σ2

σ2
1 + b2σ2

2 + 2bρ12σ1σ2
(9.5.20)

under the condition that

σ2
1 + b2σ2

2 + 2bρ12σ1σ2 �= 0. (9.5.21)

Note that this condition will make V
′′
(α1) > 0.

Assuming condition (9.5.21), with α∗
1 given by (9.5.20), the other op-

timal portfolio weights α∗
0 and α∗

2 are obtained directly through (9.5.17),
where α1 = α∗

1, and through

α∗
0 = 1− (α∗

1 + α∗
2) .

In a similar manner to that of the first three-asset example, we now
derive a relationship between the desired expected level µ and the opti-
mal portfolio variance σ2 resulting from the application of the portfolio
(α∗

0, α
∗
1, α

∗
2) in order to achieve µ. Let

C = − ρ12σ1σ2

σ2
1 + b2σ2

2 + 2bρ12σ1σ2
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and

K =

[
C2σ2

1 + (1 + bC)2σ2
2 + 2C(1 + bc)ρ12σ1σ2

]
(µ2 − µ0)2

.

Then from (9.5.18) and (9.5.20) we have

σ2 = V (α∗
1) = (µ− µ0)2K, (9.5.22)

where we remark that

K =
σ2 (CR1 + (1 + bC)R2)

(µ2 − µ0)2
≥ 0

since the variance of a random variable is always nonnegative and since
(µ2 − µ0)2 > 0 by the assumption µ2 �= µ0. We can also write (9.5.22) as

σ = |µ− µ0|
√
K, (9.5.23)

therefore showing that the graph of the minimum standard deviation-
expected portfolio return is the union of two half-lines emanating from
the point (0, µ0), more precisely of the form:

σ =
{ √

K(µ− µ0) if µ ≥ µ0,
−
√
K(µ− µ0) if µ < µ0.

What happens to security prices when all investors adopt the same
mean-variance optimization, thus allocating their money in the same pro-
portions across all the stocks? In simple terms, the prices will be determined
by the available supply of the stock shares and by the demand for these
shares as dictated by the optimal portfolio allocation α∗ for all stocks. This
equilibrium argument forms the basis of what is referred to as the Capi-
tal Asset Pricing Model, fully explored by William Sharpe, and for which
he shared the Nobel Prize with Harry Markowitz, mentioned earlier. The
derivation of these prices can be made mathematically complete (cf., for
example [Duffie] or [Huang and Litzenberger]). This theory is an approach
that predicts prices one period at a time. Prior to this approach, a number
of economists had attempted to find the right price at which stocks should
trade. Often these economists were academically oriented and their views
clashed with those who participated actively in the stock markets. Regu-
larly, economists were scorned for their rigid and “unprofitable” views —
there were indeed very few economists who used their theories to become
“rich and famous”! One exception though, is that of Keynes, who acquired
a large fortune by investing and who held what he called gamblers, who
buy stocks only for short-term gains, in contempt.
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The main point to be noted about this section is that it illustrates the
importance of diversification. There are several ways in which this message
is put into practice. For example,mutual funds∗ are investment assets where
small investors, such as teachers or even students, can pool their money
together to buy stocks in a diversified manner. Since the early 1980s, mutual
funds have become a favorite vehicle for workers to save and invest for
retirement. Unfortunately, some employees have most of their retirement
money invested only in the stock of the company they work for. As it lacks
diversification, this approach is at the mercy of the fortunes of a single
company. A prominent example where this strategy failed miserably and
affected thousands of employees is that of Enron, which in the year 2001
was one of the largest corporations in the world. To conclude, we mention
the opinion of the renowned American economist Frank H. Knight who in
his book [Knight] argued philosophically that not only is risk a fact of life,
but it is necessary to entrepreneurship and the realization of profits from
investments. Incidentatlly, his son Frank B. is the author of a treatise on
Brownian motion (see Chapter 8, Section 2), the theory of which is now
widely used as a model for stock market movements.

9.6. Asset return distributions

For the results we have derived so far we made use almost exclusively of
means, variances, and covariances. Little was said about the distributions
of these random variables. Clearly, two random variables can have the same
mean and variance and yet have completely different distribution functions.
An obvious example is that of one random variable that is integer-valued,
e.g. Bernoulli, and the other has a density, e.g., a normally distributed
random variable. If you need to convince yourself with two random variables
with densities, do Exercise 7.

With asset returns being at the heart of most financial investment anal-
yses, it is not surprising that their distribution functions have received a
lot of attention. On the one hand, actual data (and there is a lot of it)
suggest certain types of distributions, and on the other, the desire to ob-
tain mathematically tractable results imposes additional assumptions. In
anticipation of the next chapter we discuss the distribution of asset re-
turns in the multi-period context. Consider a situation with N periods
(t0, t1], (t1, t2], . . . , (tN−1, tN ]. Let Sn be the price of a security at time n
and define the one-period returns rn = (Sn−Sn−1)/Sn−1, n = 1, 2, . . . , N .
Define also the N -period return RN = (SN −S0)/S0 and the random vari-
ables

∗There are thousands of mutual funds generally grouped in families, but we mention
one in particular, the Alger Group, where the former second grader (at the time of the
first edition) appearing at the beginning of §1.1, who rode the merry-go-round horses in
Example 14 of Chapter 8 (see Fig. 34), is currently Chief Investment Officer.
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ξn = ln(1 + rn), for 1 ≤ n ≤ N , and ΨN = ln(1 +RN ).

It is commonly assumed that the random variables ξ1, ξ2, . . . , ξn, . . . , ξN
are identically and independently distributed (equivalently, r1, r2, . . . , rN
are identically and independently distributed — this is a direct applica-
tion of Proposition 6 in §5.5). There is some evidence from actual data
to support this assumption. In addition, it is commonly assumed that the
random variables ξn have normal distributions. Below we discuss whether
this assumption is reasonable.

If n refers to a small period index (e.g., rn represents a daily or hourly
return), actual data suggest that the distribution of ξn has “fatter” tails
than the normal distribution. Formally, a random variable Y is said to have
a fatter right tail than the random variable Z if P{Y > ξ} > P{Z > ξ} for
all ξ sufficiently large. Similarly, Y is said to have a fatter left tail than Z if
P{Y < ξ} > P{Z < ξ} for all ξ < 0 with |ξ| sufficiently large. So for a small
period index n, if we assume ξn to have a normal distribution we are likely
to underestimate the probability of large gains or losses (corresponding to
large absolute values of ξn).

Cauchy Distribution. A Cauchy distribution with location parameter µ
and scale parameter σ > 0 is defined as having the density function

f(x) =

[
πσ

(
1 +
(
x− µ

σ

)2
)]−1

.

Logarithmic Scale. As we have seen, the one-period model considered in
this chapter requires finiteness of return variances. Therefore the Cauchy
distribution is ruled out for this type of model. In the next chapter we
shall consider multiperiod models, where the distribution of the one-period
returns rn or their log transforms ξn will be assessed on the basis of the
random variable

∑N
i=1 ξn. To understand the significance of the latter, recall

that

1 + rn =
Sn
Sn−1

, (9.6.1)

and therefore

ξn = log(1 + rn) = logSn − logSn−1, (9.6.2)

thus showing that {ξn} represents the successive price changes on a loga-
rithmic scale. ξn is sometimes called the continuously compounded return
or log return for period n (see also the examples of §9.2 for multi–period
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models). Therefore

N∑
i=1

ξn = ΨN (9.6.3)

represents the cumulative log return between t0 and tN . If we assume, as
we will, that the random variables ξ1, ξ2, . . . , ξN are independently and
identically distributed, then we may be able to use readily available tools
such as the random walk properties of Chapter 8 and the central limit
theorem of §7.5.

Recall that because all prices Sn are required to remain positive, rn
is equivalently required to remain above −1, thus potentially limiting our
choices for a distribution for rn. On the other hand, ξn may take any value
on the real line and thus allows us more flexibility in the choice of its
distribution. More importantly though is the fact that the log transform
allows us to work with more tractable models, i.e., where we can obtain
results relatively quickly.

9.7. Stable probability distributions

Let N be the number of business days in a given month. Suppose
t1, t2, . . . , tN represent the times at which the stock market closes on
the successive business days in that month. Let t0 correspond to the last
closing time in the preceding month. Then for 1 ≤ n ≤ N , Sn, rn, and ξn
represent, respectively, the closing price, the return, and the log return for
day (period) n. Let S0 be the stock price at closing on the last business day
of the preceding month. We now have two ways of estimating the distribu-
tion of the monthly log return ΨN : one is to estimate the distribution of
the daily log returns ξn, using daily returns over 5 years, say, and then use
(9.6.3); the other is to estimate this distribution directly by using monthly
returns, through closing prices at the end of each month of the same 5 years.
For simplicity, assume there are N (say N = 22) business days in each
month over the five–year span. Then we observe 5× 12 ×N daily returns
over the five years. These observations help us decide on the distribution
of the daily returns rn, thus that of their logarithms ξn, and finally that
of the monthly returns via their logarithm ΨN through ΨN =

∑N
n=1 ξn.

The second approach is to observe 5 × 12 monthly returns over the five
years and infer the distribution of monthly returns (or equivalently their
logarithm ΨN ). Notice the difference between the two approaches: with
the first, we use actual data to infer the distribution of the daily returns.
The distribution of the monthly returns is then obtained as a result of
the addition of N random variables (the daily returns). With the second
approach, the distribution of the monthly returns is inferred directly from
the data, not as a sum of the N random variables (daily returns). Ideally,
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the latter distribution should be close to that which results from the sum
of the daily returns. This property, known as stability, is our next topic.

From Theorem 7 in §7.4, ifX1 andX2 are two independent random vari-
ables with normal distributions N

(
m1, σ

2
1
)
and N

(
m2, σ

2
2
)
, respectively,

then the random variable X1 + X2 also has a normal distribution (with
mean m1 +m2 and variance σ2

1 + σ2
2). In other words, the specific distri-

butions of X1, X2 and X differ only through their means and variances
(these are called the parameters of the normal distribution — once known,
they specify the distribution precisely). Observe that Zi = (Xi −mi) /σi,
i = 1, 2, are independent and follow the unit (or standard) normal distri-
bution. Let Z = [X1 +X2 − (m1 +m2)] /σ, where σ2 = σ2

1 + σ2
2 . Then we

can write:

σZ = σ1
X1 −m1

σ1
+ σ2

X2 −m2

σ2

= σ1Z1 + σ2Z2.

Notice that each of Z1, Z2 and Z follows the unit normal distribution.
Definition. A distribution function is said to be stable if for any two

independent random variables X1 and X2 with this distribution, and any
two positive constants c1 and c2, we have

c1X1 + c2X2 = cX + d, (9.7.1)

where c is a positive constant, d a constant, both depending on c1 and c2,
and X is a random variable with the same distribution as X1 and X2.

Example. As observed above, if X1 and X2 are independent, both
following a unit normal distribution, then the random variable Y = X1+X2
is normally distributed with mean 0 and variance 2. If we want Y to be
such that Y = cX + d, where c > 0, d is real and X follows a unit normal
distribution, then we must have 0 = E (Y ) = cE (X) + d = d and 2 =
V ar (Y ) = c2V ar (X) = c2. In other words, c =

√
2 and d = 0 will do.

Notice that if c1 = c2 �= 0, then we can write (9.7.1) as X1 + X2 =
c′X + d′, where c′ = c/c1 and d′ = d/c1. This way, stability refers to
obtaining, as a result of the addition of two independent and identically
distributed random variables X1 and X2, a similarly distributed random
variable modulo a possible scale change (captured by c

′
) and/or a shift

from the origin (captured by d
′
). We have already encountered this form

of stability, not only for a single distribution as above, but for an entire
family of distributions: in Theorem 3 of §7.2 for the Poisson family and
in Theorem 7 of §7.4 for the normal family. In fact, stability is a property
that is most useful at the distribution level. Accordingly, we shall refer to
both distributions and distribution families (or types∗) when considering
the stability property.

∗As in most texts, we use family and type interchangeably.
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Lévy Characterization of Stable Laws. In Theorem 7 of §7.4 we used
the fact that, when it is well defined, the moment-generating function (also
known as the Laplace transform) of a nonnegative random variable uniquely
determines its probability distribution function (cf. §6.5). As mentioned
also in §6.5, the moment-generating function of a random variable may
not always exist, but its characteristic function (also known as its Fourier
transform) always does. Similarly to the moment-generating function, the
characteristic function also uniquely determines the probability distribution
function of a random variable (cf. the proofs of Theorems 8 and 9 in §7.5).

Let F be a stable law (this is another way of calling a distribution
function or a distribution family) and let ϕ(θ) be its characteristic function
[see (6.5.17)]. If X1 and X2 are independent with distribution F , then we
have, for given positive constants c1 and c2,

E
[
eiθ(c1X1+c2X2)

]
= E

[
eiθc1X1

]
· E
[
eiθc2X2

]
= ϕ(θc1) · ϕ(θc2),

where the first equality is justified by the independence assumption, and the
second results from the identity of distributions of X1 and X2 [cf. Theorem
7 in §6.5]. For a random variable X following the same distribution, and in
order to have c1X1 + c2X2 = cX + d for some positive constant c and real
constant d, we must have

E
[
eiθ(c1X1+c2X2)

]
= E

[
eiθ(cX+d)

]
= E

[
eiθcX

]
· eiθd,

or equivalently

ϕ(θc1) · ϕ(θc2) = ϕ(θc) · eiθd. (9.7.2)

Example (revisited). For the unit normal distribution, the charac-
teristic function of which is ϕ(θ) = e−θ2/2 (see 7.5.7), (9.7.2) becomes

e−c21θ
2/2 · e−c22θ

2/2 = e−c2θ2/2 · eiθd, or

e−(c21+c22)θ
2/2 = e−c2θ2/2 · eiθd.

Thus with c =
√
c21 + c22 and d = 0 we verify that the unit normal distri-

bution is stable.
Paul Lévy has shown that a random variable X with stable distribution

has a characteristic function of the form

ϕ(θ) = E
(
eiθX

)
= e−γα|θ|α+idθ, (9.7.3)
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where 0 < α ≤ 2, γα is a complex constant and d is a real constant (cf.
(5) on p. 95 in [Lévy] and the Theorem of §34 on p. 164 in [Gnedenko and
Kolmogorov]).

For example, the characteristic function corresponding to a normal dis-
tribution with mean m and variance v is

ϕ(θ) = e− v
2 θ

2+imθ.

Notice that the exponent α is 2 no matter what m or v is. In this sense,
α = 2 is associated with the normal family.

As another example, the characteristic function for a Cauchy distribu-
tion with parameters µ and σ (see §9.6) is

ϕ(θ) = e−σ|θ|+iµθ.

Here α = 1 is associated with the Cauchy type of distribution.
Remarkably, the exponent α of a stable law uniquely determines

whether it has finite mean or variance. If α = 2, both mean and vari-
ance are finite; if 1 < α < 2, only the mean is finite; and if 0 < α ≤ 1,
neither mean nor variance is finite (see [Gnedenko and Kolmogorov], p.
182).

As we shall see in the next chapter, we are interested in the distribu-
tion of

∑N
n=1 ξn. Then one may ask, when N is large, if the distribution of∑N

n=1 ξn could become, as in the central limit theorem (cf. §7.5), indepen-
dent of the actual distribution of {ξn}. As we alluded to at the end of §7.5,
there exist limit theorems for stable laws (see also Appendix 4). However,
only the tail distributions of

∑N
n=1 ξn can be characterized usefully when

the tail distributions of ξn are Pareto (i.e., for large |x|, P{ξn > x}, if x > 0,
or P{ξn < x}, if x < 0, has the form A/|x|β for some constants A and β.)
With the exception of the normal distribution, one has to resort to numer-
ical procedures to determine the “middle” (i.e. when |x| is not large) of the
limit distribution. For these reasons, and with some supporting empirical
evidence, the normal distribution assumption for ξn has become standard
for practical mathematical models in finance. In this case, one also says
that rn has the lognormal distribution.

Exercises

1. For the example given at the beginning of §9.2, express R explicitly in
terms of u and d. To familiarize yourself with some common values,
consider also the numerical example of u = 1.10 and d = .75 and
interpret the corresponding values of R in percentages.

2. Consider now the case where R maps to the set of reals. Assume that
R is normally distributed with mean µ and variance σ2; see §7.4 and
(7.4.6).
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(a) If µ = 0, are you more likely to lose money than to make money?
(b) If µ < 0, what is the probability of your losing money?
(c) If µ > 0, what is this probability?

This exercise shows that if we accept the return variance as a risk
gauge, then different assets with different probabilities of loss may be
considered equally risky.

3. Show that for any asset with positive variance, there exists a diversi-
fying portfolio that involves an asset with smaller variance (assuming
the second asset exists).

4. For the three-asset example (1), exhibit a set of conditions on µi, σi,
and ρij for which the function V

′′
(α1) ≤ 0 for all α1.

5. Recall that σ1 and σ2 are positive. Are there values of b and ρ12 for
which condition (9.5.21) is violated?

6. Check what happens when µ1 = µ0 or µ2 = µ0. Are there any solutions
for V

′
(α) = 0?

7. Let X be an exponentially distributed random variable with mean 1
and variance 1, and let Y be a normally distributed random variable
with mean 1 and variance 1. Given x > 0, compare P{X < x} and
P{0 < Y < x}. [Note: recall that an exponentially distributed random
variable X is positive and so P{0 < X < x} = P{X < x}; cf. Example
12 in §4.5.]

8. Show that the Pareto distribution (defined in Appendix 4) has a fatter
right tail than the standard normal distribution [its tail distribution is
given right after (7.4.2)]. [You need only look at the case x→∞.]

9. (a) Show that the mean of a Cauchy distribution (see §9.6) is unde-
fined. What can you say about its variance?

(b) Show that if X1 and X2 are independent random variables with
Cauchy distributions, then X1+X2 also has a Cauchy distribution.

(c) Plot the density functions of both a Cauchy distribution with µ = 0
and σ = 1, and a standard normal distribution. Notice that both
curves are symmetric and that the Cauchy plot is above that of
the normal for |x| > 2. This is a property of fatter tails.

10. (a) Show that the sum of two independent random variables with
gamma distributions [see Exercise 37(c) in §6.5 for a definition]
also has a gamma distribution. [Hint: this is straightforward if you
look at exercise 42 in §6.5.]

(b) Show that the Pareto distribution is not stable. [Hint: show that
for α = 1 and A = 1 we have P{X+Y > z} = 2/z+2 log(z−1)/z2].

11. The density function of a random variable X with a lognormal distri-
bution is

f(x) =
1

xσ
√
2π

exp−(log x−µ)2/(2σ2), for 0 < x,
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where µ and σ > 0 are given parameters. Show that
(a) the random variable Y = logX has a normal distribution with

mean µ and variance σ2,
(b) all the moments of X exist and are finite, and
(c) X does not have a moment-generating function.





Appendix 4
Pareto and Stable Laws

We list here some basic facts about stable laws and the Pareto distribution,
which received a lot of attention in the 1960s and 1970s to model stock re-
turns. This distribution is named after Vilfredo Pareto, an engineer turned
economist, who studied the distribution of wealth among people at the end
of the 19th century. A random variable X is said to have the (standard)
Pareto distribution with parameter α > 0 if

P{X > x} =
{

A
xα if x ≥ 1,
0 otherwise,

for some constant A > 0. If 0 < α ≤ 1, then the mean of X is infinite. In
probability theory, the Pareto distribution has been useful to motivate the
generalization of the central limit theorem in §8.5.

Recall that if we let Sn =
∑n

i=1 Xi, where Xi, i = 1, . . . , n are random
variables that are independent and identically distributed, and if σ2 ≡
σ2(Xi) <∞ and µ ≡ E(Xi) <∞, then

Yn =
Sn − nµ

σn1/2

has approximately a unit (or standard) normal distribution when n is large
enough. Namely, for n large enough we have

P{Yn > x} ∼
∫ ∞

x

e−y2/2
√
2π

dy

But what happens if µ or σ2 is not defined or infinite? A diferent way
of “normalizing” the sums Sn is possible, so that, in certain cases, when n

355
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is large, their distributions are found to be asymptotically (i.e., for large
|x|) of Pareto type.

Let us introduce a bit of notation first. Define F (x) as the distribution
function of Xi and let

Yn =
1
Bn

Sn −An (A.4.1)

so that, when µ < ∞ and σ < ∞, Bn = σn1/2 and An = (µ/σ)n1/2 for
the central limit theorem. Define also Fn(x) to be the distribution function
of Yn. A generalization to the central limit theorem is to find conditions
on F , Bn and An under which limn→∞ Fn(x) exists. For example, for the
central limit theorem, F must be such that µ and σ are finite, and An and
Bn as above. The proof of the solution to the general problem is beyond
the level of this book, but we summarize below the main results.

Theorem 1. (cf. theorem of §33, p. 162 in [Gnedenko–Kolmogorov])
When it exists, the limiting distribution of Yn, defined by Φ(x) = limn→∞ Fn(x),
must be a stable law.

Recall that by Lévy’s theorem cited in §9.7, a stable distribution family
is identified by the exponent α of its characteristic function, where 0 < α ≤
2 (see (9.7.3)). This property is exploited in the following two theorems.

Theorem 2. (cf. theorem 5, p. 181 in [Gnedenko–Kolmogorov]) If the dis-
tribution function F (x) of Xi satisfies for large |x|:

F (x) ∼ A

|x|α if x < 0,

1− F (x) ∼ B

|x|α if x > 0,

for some positive constants A, B and α ∈ (0, 2), then Fn(x) converges to
a stable law with characteristic function exponent α.

Theorem 3. (cf. Theorem 1, p. 172 in [Gnedenko–Kolmogorov]). In order
for Fn(x) to converge to the unit normal distribution function (i.e., with
α = 2), it is sufficient that V ar(Xi) be finite.

The above sufficient conditions are in fact also necessary if we want
to impose that Bn in (A.4.1) be of the form an1/α, where a is a positive
constant. The reference theorems above in [Gnedenko-Kolmogorov] actu-
ally address these necessary and sufficient conditions. In the central limit
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theorem (α = 2 and finite variance) we have a =
√
V ar(Xi), so that the

limiting distribution is the unit normal distribution. More generally, one
way to justify the need for Bn to be of the form an1/α is through the
following theorem.

Theorem 4. Let {Xi} be independent, following the same stable distribu-
tion with characteristic function ϕ(θ) = e−γα|θ|α+idθ. Then, for a given
positive a, Yn = (1/a)n−1/α∑n

k=1 (Xk − d) has a stable distribution with
characteristic exponent α.

Proof: For 1 ≤ k ≤ n, let X ′
k = (Xk − d)/(an1/α). Its characteristic

function is

ϕ′(θ) = E
[
eiθX

′
k

]
= E

[
e
iθ

Xk−d

an1/α

]

= e
−i θd

an1/α E
[
e
i θ

an1/α
Xk

]
= e

−i θd

an1/α ϕ

(
θ

an1/α

)
.

Given that the random variables {Xk}, and thus {X ′
k}, are independent

and identically distributed, Theorem 7 in §6.5 enables us to write the char-
acteristic function of Yn as:

E
[
eiθYn

]
= E

[
eiθ

∑n
k=1 X

′
k

]
=

n∏
k=1

ϕ′(θ)

= e
−in θd

an1/α

[
ϕ

(
θ

an1/α

)]n
= e− γα

a |θ|α .

Through this theorem we ensure that the sum of (properly scaled and
shifted) independent random variables that follow an identical stable law
converges to the same type.

We conclude by observing that when 0 < α < 2, the Pareto–type be-
havior that is manifested under the conditions of Theorem 2 above is also
present in the limiting stable distribution. This property was determined
by Lévy (cf. (37) on p. 201 of [Lévy] and §36 in [Gnedenko–Kolmogorov]).
It is hardly surprising as Theorem 4 above shows that if F is a stable type
with characteristic exponent α, then Φ must be of the same type.
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When α = 2 (i.e., in the central limit theorem) the property above
cannot hold. For a random variable Z with unit normal distribution we
have, for z ≥ 1:

P {|Z| > z} =
∫ ∞

z

e−ζ2/2
√
2π

dζ

≤
∫ ∞

z

ζ
e−ζ2/2
√
2π

dζ

=
1√
2π

e−z2/2.

This, by the way, means that the tail probability is at least“square–
exponential”. It decreases to zero as x → ∞ infinitely faster than the
exponential e−z, and even more so than the power x−α (α > 0) as in
Pareto’s law. This demonstrates that the upper bound on P {|Z| > z}
given by the Chebyshev inequality (see (7.6.5)) is quite loose in this case.

Final note: we have drawn the material on stable laws mostly from
[Lévy] and [Gnedenko–Kolmogorov]. However, similar results with alterna-
tive proofs are also given in [Feller 2].



10
Option Pricing Theory

The previous chapter treats one-period models that form the foundation of
the equilibrium pricing of primary securities such as stocks. In this chapter,
we focus on the so called derivative securities or contingent claims. These
are assets whose prices depend on those of primary securities. In this chap-
ter we will illustrate the application of some of the most advanced material
on stochastic processes presented in this book. The ideas presented here
form the basis of many developments in the field of mathematical finance
which have had a profound impact on both theory and practice.

10.1. Options basics

An option is a contract giving its holder the right, without the obligation,
to either buy or sell a security such as a stock (the underlying security), at
a predetermined price (the exercise or strike price). If the right granted is
to buy, then the option is labeled a call. If the right granted is to sell, the
option is labeled a put. This type of contract comes with an expiration or
maturity date, which may be infinite. Options that are exercisable only at
expiration are called European, and those that can be exercised any time
up to expiration are called American. Both American and European option
types are traded worldwide, but American options are more common. Op-
tions are the most representative type of contingent claims. For standard
comprehensive texts that include actual contract transactions and market
descriptions, we refer to [Cox and Rubinstein] and [Hull].

359



360 Option Pricing Theory

Example 1. Suppose today you hold a contract giving you the right to
buy one share of General Electric stock (the underlying security) at $30 any
time during the next three months. Then you are holding an American call
option on General Electric stock with a strike price of $30 and a maturity
of 3 months.

Example 2. If you hold a contract giving you the right to sell one Chinese
Renminbi at 16 Japanese Yen exactly six months from today then you are
holding a European currrency put on the exchange rate between Chinese
Renminbi and Japanese Yen with a strike price of 16 Japanese Yen and a
maturity of 6 months.

In both of these examples the price at which the underlying security will
be bought or sold is fixed and known in advance. These types of options
are called standard options, in contrast to so called “exotic” options, where
more generally the rule determining the exercise price is fixed but not
known in advance. For example, you may hold a contract giving you the
right to buy one share of General Electric stock at the average price it will
be selling for between now and the moment you exercise the option within
the next three months. In the remainder of this chapter our focus will be
on standard options of either European or American type. To simplify the
exposition, we will deal only with options where the underlying security is
a stock that pays no dividend, unless noted otherwise.

Option contracts can be used for several purposes. Prices of standard
options are significantly lower than those of their underlying securities.
For speculators, these lower prices give them an opportunity to potentially
benefit from favorable changes in the stock prices without committing as
much as the full stock price initially. Option contracts can also be viewed
as insurance contracts as they offer their holders protection against ad-
verse movement in the underlying security. For example, an investor who
currently owns stock of a company and who is concerned about a possible
significant drop in the value of the stock in the next three months may want
to purchase a put on the stock in order to guarantee a minimum price at
which he or she will sell this stock over the next three months.

In order to get the right to exercise an option, its holder must first pay
a premium at the time the contract is established. This price, also known
as the value of the option at inception, is the focus of option pricing theory.
In the case of American options, this theory allows us to also determine
the optimal exercise time, i.e., the best time to exercise the option.

Option Payoff. A standard option is characterized by its exercise price
K ($30 in the case of example 1 above), its expiration date T , expressed
in years (so that it is .25 year in the case of example 1), and whether it
is a call or a put. The price ST of the underlying security T units of time
from now is a random variable; i.e., there exists a sample space Ω such that



10.1 Options basics 361

the value of the underlying security at T is ST (ω) if ω ∈ Ω is drawn. Fast
forward to time T and assume that a particular ω̃ is sampled. Then, in the
case of a call option for example, the option is exercised only if ST (ω̃) > K.
This makes sense since there is no reason to buy a security at price K if
it is selling at a price ST (ω̃) ≤ K [by convention, we assume that when
ST (ω̃) = K we are not exercising the option]. So, assuming ST (ω̃) > K,
the holder of the option with strike K can exercise this option, i.e., buy at
K dollars per share, and then sell the shares back on the market at ST (ω̃)
to realize a profit of ST (ω̃) −K per share. If ST (ω̃) ≤ K, the call holder
does not exercise the option, thus realizing no profit. In summary we have
the following.

Definition 1. For a given T , let ST be the price of a stock at T . Consider
a standard European option on this stock with exercise price K and expi-
ration date T . Then the payoff of this option upon exercise is the random
variable g = max(ST −K, 0), in the case of a call, and g = max(K−ST , 0),
in the case of a put.

From a speculator’s or gambler’s point of view, the option price is the
amount that she or he is willing to pay at time 0 in order to collect the
option payoff T units of time later.

Generally, options are considered a less expensive way to benefit from
the price changes of an asset without having to commit to the full price of
the asset up front. For example, on March 8, 2002, IBM stock was trading
around $105 per share, while it cost only about $11 to buy a call option
on IBM stock with strike at $100 and which expired in July 2002. On the
other hand, on the same day, it cost approximately $ 6 to buy an IBM put
with strike at $100, with the same expiration month.

We should also remember that options involve two parties to a contract:
the option buyer (or holder) and the option writer (or seller), with opposing
views about the future performance of the underlying security. Often the
writer of a call option does not own the underlying security, hoping that
the buyer of the option would never exercise the option. Throughout his-
tory, there have been some phenomenal episodes where speculation about
prices of the underlying went wild and major crashes ensued as a result. A
famous example is that of “tulipmania” in the Netherlands in the 1630s.
Tulips were cultivated originally in Turkey and were brought to Holland in
the 16th century. By the 17th century, many new breeds had been created
through horticultural experiments. These exotic and beautiful flowers be-
came expensive, and thus a status symbol. As they became more desirable,
people realized they could make significant profits by speculating on their
prices. People with limited means were buying and selling tulip bulbs. To
protect themselves against endlessly rising prices, many speculators bought
call options (with high strikes) from other speculators who did not believe
that they would be called on to deliver bulbs at these high prices. Eventu-
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ally, option writers failed to honor their contracts. Many could no longer
afford the high prices anymore and the market crashed.

In recent history, similar phenomena involving speculation and the use
of derivatives occured. In the 1990s particularly, aggressive bets on currency
or interest rates, made by investors exposing their institutions, led to the
collapse of major organizations. Barings, one of the oldest banks, which
played a major role in the expansion of the British Empire; Orange County,
one of the largest in California; and Long-Term Capital Management, an
asset management company which used the services of two Nobel laureates
in economics and which invested for very wealthy individuals, large financial
institutions, and universities∗; all defaulted on their contracts and went
bankrupt or had to be rescued in a dramatic fashion.

Discounting. In the course of pricing options we will need to account for
cash values at different times. A common theme in finance is that of the
“time value of money”; e.g., in the case of price inflation, where an object
that can be purchased at one dollar today will have to be purchased at
more than a dollar say a year from now. In other words, the “value” of a
dollar today may be different than that of a dollar a year from now. To
allow for a fair comparison between cash values at different times, financial
economists have devised the concept of present-value discounting using a
discount rate, which in our case will simply be the rate of return r of the
riskless security introduced in §9.2. For our purposes, there exists only one
riskless security in our economy and we shall discount relative to time 0
over discrete dates. If we hold an asset with cash value Cn at time tn, its
time 0 discounted value is Cn/(1 + r)n.

Submartingales and Supermartingales. As we shall see shortly, op-
tion pricing is closely related to taking expectations of random variables.
The martingales introduced in Appendix 3 illustrate the concept of a fair
game, i.e., the odds are neither in favor nor against the gambler. There are,
however, situations where the odds, defined by the probability under which
the conditional expectation such as (A.3.1) is taken, are either in favor or
against the gambler. Using the same notation as in Appendix 3, the first
case is expressed as

E(Xn+1|X0, X1, . . . , Xn) ≥ Xn, (10.1.1)

and the second as

E(Xn+1|X0, X1, . . . , Xn) ≤ Xn. (10.1.2)

∗In February 2000, the PBS television network broadcast a documentary with
the principal actors involved and many industry observers. As of the writing of
this book, a transcript of this program (“Trillion Dollar Bet”) is available online at
www.pbs.org/wgbh/nova/stockmarket.
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A process {Xn} is called a submartingale if it satisfies (10.1.1), and a super-
martingale if (10.1.2) is true. There is an unfortunate verbal discordance
between these names and their meanings. In general, a word qualified with
super is associated with an outcome that is desirable. Here “supermartin-
gale” means a losing game.

Theorem 1. Under the same conditions of the theorem in Appendix 3, we
have for a finite optional time T

E (XT ) ≥ E (X0) for a submartingale

and E (XT ) ≤ E (X0) for a supermartingale.

For any supermartingale (respectively, submartingale) the same result holds
as long as T is bounded.

Proof: The proof is exactly as in Appendix 3 with equalities replaced with
the corresponding inequalities (left as an exercise).

We now illustrate the reach of this theorem with the following.

An Example of Greed. Consider two persons with same initial wealth
X0. The first one is timidly greedy and says that she will quit investing as
soon as she is ahead by one unit (you can pick your unit of account as $1
or $10000). The second person is more aggressive. He would like to quit
as soon as his wealth is 10 times his initial amount. For the first person
define T = min{n : Xn > X0 + 1}, where Xn is this investment value in
period n. For the second individual, define T = min{n : Xn > 10X0}. T is
not bounded. By our own nature, we all have a limited number of years to
live (some like the Queen mother of the United Kingdom can get as many
as 101 years). Let’s call the upper bound on the number of years we can
possibly live t̄. Define T̄ = T ∧ t̄; then T̄ is bounded. If the wealth process
Xn of these investors is a supermartingale, then we have E (XT̄ ) ≤ E (X0).
In either case he/she is expected to lose! All we can say in probability is
expectation (hope). Now people will retort: “But I know Mike bought Enron
at 8.52 and sold at 88.87!” Lord Keynes had the answer long ago, cited on
page 135. He wrote that in his doctorate in philosophy before delving
in “Money” (title of his famous treatise in economics). His philosophical
treatise is listed in the references.

We can even tell these investors their chances of making their goals.
For a given b positive, by Chebyshev’s inequality – see Exercise 21 of §7.6,
analogue of (7.6.5) – we have

P (XT̄ > b) ≤ E (XT̄ )
b

.
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From Theorem 1 above, we have E (XT̄ ) ≤ E (X0). Therefore

P {XT̄ > b} ≤ E (X0) /b.

Take, for example, X0 to be a constant C and b = a× C, for some a > 0.
Then

P {XT̄ > aC} ≤ 1/a.

With a = 10, for example, our aggressive investor has less than 10% chance
of reaching his goal.

Stock Price Evolution and Expectations. If you follow the evolution
of a particular stock price through media such as newspapers, radio, televi-
sion, or the Internet, you learn that it is “up” or “down,” or that it is likely
to go up or down. This description may remind you of a random walk (cf.
§8.1 for a definition). In fact we shall rely upon the framework introduced
in §9.2 to formalize this observation.

Recalling our discussion about discounting above, if we needed to com-
pare two stock values Sn, at time tn, and Sm at time tm, we would need
to look at their discounted values. So let

Yn =
1

(1 + r)n
Sn for n = 0, 1, 2, . . . , N.

Similarly, any expectation about the prospects of a stock would have to be
done on the basis of the discounted values {Yn}.

Recall that one of the main reasons investors are interested in options
is because of their expectations about the underlying securities. They may
view an option as insurance, for example, should they be interested in the
future purchase of a stock. If they expect a stock price to go up, then they
would lock in the purchase price (exercise price) today by acquiring an
option. For this coverage, they pay an insurance premium (option price)
for the right to use the locked-in price later.

In the spirit of the remainder of this chapter, assume that the one-
period returns {rn}, n = 1, 2, . . . , N , are identically and independently
distributed. Then following the notation introduced in Appendix 3, we
write the conditional expectation of Yn given all the history up to time
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n− 1 as

E[Yn|Y0, Y1, . . . , Yn−1] = E[Yn|Yn−1]

= E

[
1

(1 + r)n
Sn|Sn−1

]

=
1

(1 + r)n
E[Sn|Sn−1]

=
1

(1 + r)n
E[(1 + rn)Sn−1|Sn−1]

=
1

(1 + r)n
[1 + E(rn)]Sn−1

=
1 + E(rn)

1 + r

Sn−1

(1 + r)n−1 .

Therefore

E[Yn|Y0, Y1, . . . , Yn−1] =
1 + E(rn)

1 + r
Yn−1,

indicating that {Yn}, the discounted stock price process, is a martingale,
submartingale, or supermartingale whether s E(rn) = r, E(rn) ≥ r, or
E(rn) ≤ r, respectively.

Discrete and Continuous Models. To price an option we need to know
the evolution of the underlying security as a stochastic process. So far in
this book we have seen two kinds of stochastic processes: those that move
only at discrete times, e.g., a random walk as in §8.1, and those that evolve
continuously, e.g., a Brownian motion as in §8.2. Historically the major
breakthrough in pricing options happened in the context of the harder case
of continuous stochastic processes. It resulted in a neat formula (the fa-
mous Black–Scholes formula) that we will present shortly. As an indication
of its impact on the field of economics, both Myron Scholes and Robert
Merton were awarded the Nobel Prize for this formula and its fundamental
extension (Fisher Black had passed away at the time of the award deci-
sion in 1997). On the other hand, the discrete-time model, which we will
study in detail, is easier to understand but lacks the elegance of a closed-
form formula. In this chapter we will show an approach to approximate
with the discrete-time model the closed-form expressions obtained via the
continuous-time model.

Black–Scholes Formula. Consider a stock with instantaneous mean re-
turn rate µ and instantaneous return rate variance σ2, a market where the
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instantaneous return rate of the riskless asset is r, and a call with expiration
date T given. We assume that the stock does not pay a dividend. [Black
and Scholes] have derived prices C0 and P0 at time 0 for, respectively, a
European call and a European put written on this stock as follows:

C0 = S0Φ(d1)−Ke−rTΦ(d2)

and

P0 = Ke−rTΦ(−d2)− S0Φ(−d1),

where d1 =
[
log(S0/K) + (r + σ2/2)T

]
/σ
√
T , d2 = d1 − σ

√
T , and Φ

is the standard normal cumulative distribution function. Notice that the
mean instantaneous rate of return appears in neither formula. We will show
in the discrete-time setting that this situation is related to the concept of
arbitrage-free pricing, to be defined soon, and the associated concept of
equivalent pricing probability.

10.2. Arbitrage-free pricing: 1-period model

The one–period model is the building block for the multi-period model
in the discrete–time context of option pricing. To determine the option
premium, we need to know the nature of the stochastic behavior of the
underlying stock. In the simple one-period pricing setting, our sample space
Ω consists of only two elements H and T , such that P{H} = p and P{T} =
1 − p, p ∈ (0, 1). Let S0 be the initial price of the underlying stock of the
option [S0 is a constant random variable: S0(H) = S0(T )]. If ω = H is
sampled, then the price S1(H) of this stock at date 1 is uS0, and if ω = T
is sampled, then S1(T ) = dS0, where u and d are given such that

0 < d < 1 + r < u, (10.2.1)

where r ≥ 0 is the one-period rate of return of the riskless security. Recall
that the one-period rate of return of the stock is (S1 − S0)/S0. Thus

S1(ω)− S0

S0
=
{

u− 1 if ω = H,
d− 1 if ω = T .

We can rewrite the last two inequalities in (10.2.1) as

d− 1 < r < u− 1.

With the interpretation that u−1 and d−1 are, respectively, the favorable
(i.e., we have a gain) and unfavorable rates of returns on the stock, we
see that the rate of return r of the riskless asset must satisfy (10.2.1).
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Otherwise, if d ≥ 1 + r, then (S1(ω) − S0)/S0 ≥ r ∀ω ∈ Ω, indicating
that the return of the stock is always as good as that of the riskless asset.
In this situation we have no reason to invest in the riskless asset; i.e.,
there is no need for this asset to exist at all. Similarly, if 1 + r ≥ u,
then (S1(ω) − S0)/S0 ≤ r ∀ω ∈ Ω, making the investment in the stock
unattractive.

Let V0 and V1 be the values of a European option at times 0 and 1, re-
spectively. As seen before, V1 is known to be the payoff g at the expiration
date 1. To determine the option price V0 at time 0, we consider an invest-
ment environment where we can invest in a market that consists of only the
following assets: the option, its underlying stock, and the riskless security,
which we label bond as is generally the case in standard presentations on
the subject. A portfolio will therefore consist of a triple (α, β, γ), where, re-
spectively, α is the number of options, β the number of stock shares, and γ
the number of bond shares held. Define also Bn and Sn to be, respectively,
the bond and stock prices at n = 0, 1.

Arbitrage-free markets. It is clear that we cannot have a trading strat-
egy (α, β, γ) such that, starting with an initial wealth W0 = αV0 + βS0 +
γB0 = 0, we end up at time 1 with wealth W1 = αV1 + βS0 + γB1 such
that W1(ω) > 0 for all ω ∈ Ω; i.e., starting with zero wealth we are
guaranteed positive wealth at time 1. This strategy is economically un-
tenable, for if it existed it would soon be discovered by many traders and,
through their desire to hold exactly (α, β, γ), would bid up or down the
time-0 prices of either the option, the stock, or the bond so that W0 = 0
would soon be violated. A more rigorous argument using so-called sep-
aration theorems can be articulated (cf. [Duffie]). In fact, we define an
arbitrage opportunity or portfolio to be any strategy (α, β, γ) such that

(i) αV0 + βS0 + γB0 = 0,
(ii) αV1(ω) + βS1(ω) + γB1(ω) ≥ 0 for all ω ∈ Ω, and
(iii) E{αV1 + βS1 + γB1} > 0.
As we shall see shortly, there can be arbitrage opportunities such that

(ii) is satisfied strongly; i.e., αV1(ω) + βS1(ω) + γB1(ω) > 0 for all ω ∈ Ω.
This means that the strategy (α, β, γ) is a “sure win”: starting with no
wealth, you are guaranteed a positive wealth no matter which ω is sampled.

What is arbitrage? Most finance books describe immediately the me-
chanics of arbitrage without dwelling too much on the meaning of the word
itself. If you look it up in the dictionary, you might be left with a sense of
incomplete definition. We have found one source [Weisweiller], particularly
its Chapter 1, where the author traces the subtle evolution of the meaning
of this word through several editions of dictionaries. The concept of arbi-
trage as defined here is in fact an extension of its original meaning in the
context of finance, where it refers to a situation such that a person buys
an asset in one market (e.g., the New York Stock Exchange) and sells it
immediately in another market (e.g. the Paris Bourse) where it is trading
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at a higher price. The Oxford English dictionary follows this interpretation
while noticing its original French root, namely the verb “arbitrer,” which
means to arbiter or to judge. In this sense, arbitrage describes a person
(a speculator really) who is evaluating an asset, or judging its value, to
identify mispricing, i.e., the difference between what the asset is selling for
and what it should sell for. An arbitrage-free market is then defined as one
where no arbitrage opportunities exist. It is this type of market that we
shall assume henceforth.

Lemma. Let Ω = {H,T}. There exists a portfolio (α0, β0, γ0) such that
α0 = 0 and

β0S1(ω) + γ0B1(ω) = g(ω) for all ω ∈ Ω.

The proof is obvious, as it simply requires us to find β0 and γ0 as
solutions to a system of two linear equations. Since Ω = {H,T}, β0 and γ0
must satisfy

β0S1(H) + γ0B1(H) = g(H), and

β0S1(T ) + γ0B1(T ) = g(T ),

or equivalently

β0uS0 + γ0(1 + r)B0 = g(H), and

β0dS0 + γ0(1 + r)B0 = g(T ),

from which we deduce

β0 =
g(H)− g(T )
(u− d)S0

,

γ0 =
1

(1 + r)B0

[
ug(T )− dg(H)

u− d

]
. (10.2.2)

This lemma shows that starting with a portfolio consisting of only the
stock and the bond (no option) we can replicate the value of the option at
maturity. This strategy is labeled a replicating strategy. The next propo-
sition shows that the price of the option V0 has to be the value of this
portfolio (β0S0 + γ0B0) at time 0.

Proposition 1. The time-0 price of a European option on a stock with
price S and payoff g at time 1 is

V0 =
1

1 + r
[p̃g(H) + (1− p̃)g(T )] , (10.2.3)
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where

p̃ =
1 + r − d

u− d
. (10.2.4)

Proof: We first show that V0 = β0S0 + γ0B0, where β0 and γ0 are defined
by (10.2.2). Suppose ε = V0 − (β0S0 + γ0B0) > 0. Consider the following
portfolio (−1, β0, γ0 + ε/B0). At time 0 the value of this portfolio is

W0 = −V0 + β0S0 +
(
γ0 + ε

B0

)
B0 = 0.

At time 1 its value is

W1 = −V1 + β0S1 +
(
γ0 +

ε

B0

)
B1

= −V1 + β0S1 + γ0B1 + ε
B1

B0
.

Recalling that V1 = g and using the lemma above, we have

−V1(ω) + β0S1(ω) + γ0B1(ω) = 0 for all ω ∈ Ω.

Since B0 and B1 are positive, we have W1(ω) = ε(B1/B0) > 0 for all
ω ∈ Ω, thus showing that (−1, β0, γ0 + ε/B0) is an arbitrage portfolio. A
similar proof applies to the case ε = V0− (β0S0 + γ0B0) < 0 with portfolio
(1,−β0,−γ0 − ε/B0).

Using (10.2.2) we now write the value of the option as

V0 = β0S0 + γ0B0

=
g(H)− g(T )

u− d
+

1
1 + r

(
ug(T )− dg(H)

u− d

)

=
1

1 + r

[
1 + r − d

u− d
g(H) +

u− (1 + r)
u− d

g(T )
]
,

where we recall

g(H) =
{

max(uS0 −K, 0) for a call,
max(K − uS0, 0) for a put, and

g(T ) =
{

max(dS0 −K, 0) for a call,
max(K − dS0, 0) for a put.

Remarks.
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1. With condition (10.2.1) we have 0 < p̃ < 1, and thus p̃g(H) + (1 −
p̃)g(T ) can be interpreted as the expected value of the random vari-
able g under the probability P̃ defined on Ω = {H,T} such that
P̃{H} = p̃ and P̃{T} = 1 − p̃ (since this argument will show up
again when Ω = {0, 1}×{0, 1}×· · ·×{0, 1}, you may want to consult
§2.4 now to check how we can construct probabilities on countable
spaces). The probability P̃ is often referred to as the risk-neutral
probability; however, we simply call it the pricing probability. Thus,
in the one–period model the price at time 0 of a European option
with payoff g at time 1 is the discounted conditional expected value
of this payoff under the pricing probability. It is a conditional expec-
tation because both g(T ) and g(H) depend on information at time
0, namely S0.

2. The pricing probability P̃ is said to be equivalent to P . This property
is formally defined as: P (ω) > 0 if and only if P̃ (ω) > 0, for all
ω ∈ Ω. It means that P and P̃ agree on the sample points with non-
zero probability. In the current setting of Ω = {H,T}, this property
seems trivial, as 0 < p < 1 and 0 < p̃ < 1 imply P{H} = p > 0,
P{T} = 1 − p > 0, P̃{H} = p̃ > 0, and P̃{T} = 1 − p̃ > 0. But for
more abstract Ω you may not be able to see it as easily.

3. The price V0 is independent of the original probability defined on Ω.
In fact, under P̃ we have the following conditional expectation:

Ẽ[S1|S0] = p̃uS0 + (1− p̃)dS0

=
1 + r − d

u− d
uS0 +

u− (1 + r)
u− d

dS0

= (1 + r)S0,

which we can rewrite as

Ẽ[Y1|Y0] = Y0, (10.2.5)

where we define

Yk =
1

(1 + r)k
Sk, k = 0, 1.

Relation (10.2.5) states that under the pricing probability P̃ , the
discounted stock price {Yk}1k=0 is a martingale in this rather triv-
ial case of one-period; in contrast to the original probability, under
which the discounted stock price process could be a submartingale or
a supermartingale, depending on the expected one–period returns.
In fact, under the pricing probability, all the discounted price pro-
cesses, including the bond and the option, are martingales. For the
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bond, this result is obvious since its price process is nonrandom, and
for the option we notice that we can rewrite (10.2.3) as

1
(1 + r)0

V0 =
1

1 + r
Ẽ[V1|V0].

Indeed, by definition, V1(ω) = g(ω) for all ω ∈ Ω, and g(ω) is a
function of S0 and ω, which by the relation V0 = β0S0+γ0B0 implies
that Ẽ[V1|S0] = Ẽ[V1|V0].

4. Numéraire Invariance Principle
In our arbitrage pricing we presented an argument where prices are
evaluated in (units of) dollars. This way, cash is what is called the
unit of account or numéraire. In other words, we treated cash as a
security whose price is always 1. In fact, it turns out that we could
have used any other security with prices that are always positive.
For example, with the stock as a numéraire, we define new prices for
the bond as

B̄0 = B0/S0 and B̄n = Bn/Sn,

with the assumption S0 > 0 and Sn(ω) > 0 for all n and ω ∈ Ω. Of
course, S̄n ≡ 1.

Using stock as numéraire, we can rewrite (10.2.3) as

V0

S0
=

1
(1 + r)S0

[
p̃S1(H)

g(H)
S1(H)

+ (1− p̃)S1(T )
g(T )
S1(T )

]
or

V̄0 =
[
p̃

S1(H)
(1 + r)S0

ḡ(H) + (1− p̃)
S1(T )

(1 + r)S0
ḡ(T )

]
,

where V̄0 = V0/S0 and ḡ(ω) = g(ω)/S1(ω), for ω ∈ {H,T}. Thus,
with the stock price as numéraire, we can define yet another proba-
bility P̄ , equivalent to P , by:

P̄ (H) = p̃
S1(H)

(1 + r)S0
, and

P̄ (T ) = (1− p̃)
S1(T )

(1 + r)S0

so that V̄0 =
[
P̄ (H)ḡ(H) + P̄ (T )ḡ(T )

]
, which expresses the price of

the option in this unit of account as yet another expectation (as an
exercise, verify that P̄ (H) + P̄ (T ) = 1). In fact, one can show that
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there is no arbitrage in this new market (with prices S̄n and B̄n) if
and only if there is no arbitrage in the original market (with prices
Sn and Bn). This one-period result generalizes to multiple periods
(try it as an exercise and see [Duffie], for example, for the continuous
case).

10.3. Arbitrage-free pricing: N-period model

For the general case of N ≥ 1 periods: the arbitrage-free argument used for
one period will be applied to each of theN periods, and the properties listed
in the remarks at the end of the last section will hold as well. However,
because the previous analysis was limited to one period only, it didn’t allow
us to illustrate two other concepts that are important in the general case
and that connect adjacent periods: (i) dynamic replication, and (ii) self-
financing strategies, which are described below.

The holder of an option does not have to keep the option until exercise.
He or she can trade it on an exchange (e.g., the Chicago Board Options
Exchange) and therefore the next holder of this option will have to face the
same problem regarding its value: i.e., evaluating its fair price at the time
of purchase. As a result, in option pricing theory we are in fact interested
in the value of the option at all times. For multiple periods we shall exhibit
a strategy that replicates the value of the option at every discrete date,
which in the one-period case is reduced to the origin and the exercise date.
This process is called dynamic replication in the multi-period situation. It
is predicated upon the constraint that this strategy be self-financing: at
every date it will neither generate nor require external cash. For example,
suppose you are in period n (i.e., in the interval (tn−1, tn]) and that you
hold one share of stock and two of bond. If after observing the prices of
these two assets at time tn you decide to hold .8 share of stock and 3 of
bond for ensuing period (tn, tn+1] it must be the case that the purchase
of the additional share of bond uses exactly the cash amount generated by
the sale of .2 share of stock (we are of course ignoring the pesky problems
associated with transaction costs, taxes, etc.). In other words, the amount
that is generated by the sale of one asset finances exactly the additional
purchase of the other security.

For N periods the stock returns for two distinct periods are assumed
to be independent and identically distributed. In the simplest case, which
generalizes the one-period Bernoulli model we have just studied, the N -
period model is identical to the coin-tossing scheme that we have studied
in this book (cf. Example 8 in §2.4, §3.2 and Example 9 in §4.4). For the
one-period model we could have equally used the sample space Ω = {0, 1}
instead of {H,T}. To make for a neat presentation we shall, as in the coin
tossing example, adopt the sample space Ω = {0, 1}N for the N -period
model. Thus a sample point (also called sample path) ω ∈ Ω is of the form



10.3 Arbitrage-free pricing: N -period model 373

(ω1, ω2, . . . , ωN ). In period n ≤ N , price Sn is observed at time tn and
depends only on the outcome values of ω̂n = (ω1, ω2, . . . , ωn). Therefore
we can write Sn(ω) ≡ Sn(ω̂n) such that

Sn(ω̂n) =
{

uSn−1(ŵn−1, 1) with probability p,
dSn−1(ŵn−1, 0) with probability 1− p,

where u, d, and p are defined in (10.2.1). The probability P on Ω is then
defined by

P{(ω1, ω2, . . . , ωN )} = p
∑N

i=1 ωi(1− p)N−
∑N

i=1 ωi ,

which as we saw in the binomial case is the distribution of the total number
of 1s.

At discrete times 0, 1, 2, . . . , N (equivalently, actual times t0, t1, . . . , tN ),
let V0, V1, . . . , VN be the values of a European option with underlying stock
prices S0, S1, . . . , SN and exercise price K. As in the one-period model,
the value VN of the option at expiration is a random variable that has an
explicit form, namely:

VN =
{

max(SN −K, 0) for a call, and
max(K − SN , 0) for a put.

We can even express VN as a function of the sample path ω ∈ Ω:

VN =

{
max(u

∑N
i=1 ωidN−

∑N
i=1 ωiS0 −K, 0) for a call,

max(K − u
∑N

i=1 ωidN−
∑N

i=1 ωiS0, 0) for a put.

When we have N periods, we determine the option values recursively by
moving backward in time: first, given VN we determine VN−1, then VN−2,
etc. until we reach V0. Note that when we say “we determine Vn, 1 ≤ n ≤
N ,” we do not necessarily mean that the value Vn is fixed; it will actually
be in the form of a random variable, as is VN (recall the case N = 1 in the
previous section). Therefore at any time 1 ≤ n ≤ N , if the value Vn is known
explicitly, then Vn−1 is to be determined as in the one-period context. At
(discrete) time n − 1 (which is in period n) prices S0, S1, . . . , Sn−1 and
B0, B1, . . . , Bn−1 have been observed. Presumably, V0, V1, . . . , Vn−1 have
also been observed, but the point of the pricing theory is to ensure that
there are no arbitrage opportunities, in a manner identical to the one-period
case.

N-Period Portfolio Strategies. The concept of no-arbitrage introduced
for the one-period model extends to the N -period context, one period at a
time.
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Definition. An N -period portfolio strategy is a collection of triples
{(αn, βn, γn), n = 0, 1, . . . , N} where for 0 ≤ n ≤ N , αn, βn, and γn are
random variables defined on Ω = {0, 1}N , e.g., for ω = (ω1, ω2, . . . , ωN ) ∈
Ω, αn(ω) ∈ (−∞,∞).

For 0 ≤ n ≤ N , we also require that a portfolio (αn, βn, γn) be deter-
mined only upon the information available up to period n. For example, we
rule out “insider trading”: in period n you are privy to some information
that will be made public in period n+2, say. We have not formally defined
information, but for our purposes, it suffices to say that all the information
we need to determine a portfolio is the stock price history. As remarked
earlier, a price Sn observed at time tn depends only on the outcome val-
ues of ω̂n = (ω1, ω2, . . . , ωn). In a similar manner, a portfolio (αn, βn, γn)
depends only on ω̂n at time tn, e.g., we write αn(ω) ≡ αn(ω̂n).

Lemma. In period n there exists a portfolio (αn−1(ω̂n−1), βn−1(ω̂n−1),
γn−1(ω̂n−1)) such that αn−1(ω̂n−1) = 0 and

βn−1(ω̂n−1)Sn(ω̂n−1, ωn) + γn−1(ω̂n−1)Bn(ω̂n−1, ωn) = Vn(ω̂n−1, ωn)

for ωn ∈ {0, 1}.

Proof: For ease of notation, we let αn−1 ≡ αn−1(ω̂n−1), βn−1 ≡
βn−1(ω̂n−1), γn−1 ≡ γn−1(ω̂n−1). As in Lemma 10.2, we now seek βn−1
and γn−1 such that (recall that in the N -period model we substitute 0 for
H and 1 for T ):

βn−1Sn(ω̂n−1, 0) + γn−1Bn(ω̂n−1, 0) = Vn(ω̂n−1, 0), and

βn−1Sn(ω̂n−1, 1) + γn−1Bn(ω̂n−1, 1) = Vn(ω̂n−1, 1).

Equivalently, this linear system of equations can be written as

βn−1uSn−1(ω̂n−1) + γn−1(1 + r)Bn−1(ω̂n−1) = Vn(ω̂n−1, 0), and

βn−1dSn−1(ω̂n−1) + γn−1(1 + r)Bn−1(ω̂n−1) = Vn(ω̂n−1, 1),

therefore leading to the solution

βn−1 =
Vn(ω̂n−1, 0)− Vn(ω̂n−1, 1)

(u− d)Sn−1(ω̂n−1)
,

γn−1 =
1

(1 + r)Bn−1(ω̂n−1)

[
uVn(ω̂n−1, 1)− dVn(ω̂n−1, 0)

u− d

]
.(10.3.1)

Proposition 2. The values V0, V1, . . . , VN of a European option expiring
at time tN satisfy the recursive relations

Vn−1 (ω̂n−1) =
1

1 + r
[p̃Vn (ω̂n−1, 0) + (1− p̃)Vn (ω̂n−1, 1)] ,
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for 1 ≤ n ≤ N , where p̃ s defined as in (10.2.4).

Proof: As in the proof of Proposition 1, we need to first show that Vn−1 =
βn−1Sn−1 + γn−1Bn−1, where βn−1 and γn−1 are defined in (10.3.1). This
step is straightforward and is left as an exercise.

Remark. As we just saw, for any period 1 ≤ n ≤ N , an arbitrage-free
pricing strategy satisfies

βn−1Sn + γn−1Bn = Vn

and

βn−1Sn + γn−1Bn = βnSn + γnBn.

The first equation expresses dynamic replication while the second illustrates
the concept of self-financing strategies. Its left-hand side corresponds to the
portfolio value before transaction at time tn, and the right-hand side to the
portfolio value after transaction at time tn.

As an extension to the one-period case, the resulting N -period pricing
probability P̃ is defined as

P̃{(ω1, ω2, . . . , ωN )} = p̃
∑N

1 ωi(1− p̃)N−
∑N

1 ωi .

A Bit More on Conditional Expectations. The notion of conditional
expectation relative to a single event was introduced at the end of §5.2.
In fact, we can define the conditional expectation of a random variable
relative to a collection of events. We have indirectly seen this aspect already.
Namely, in the case of martingales (cf. Appendix 3) and sub- and super-
martingales [cf. (10.1) and (10.2)], we implicitly referred to (historic) events
when we used the history of the process X, X0, X1, . . . , Xn, up to time n.

We already know that an event is formally defined as a set of sample
points. A collection of events will therefore be defined as a collection of sets
(of sample points). We have already encountered a particular collection of
sets, the Borel field introduced in Appendix 1, which satisfies certain prop-
erties [cf. (a) and (b) in Appendix 1]. It is precisely these properties that we
require of a collection of events relative to which conditional expectations
are defined.

In what follows, we shall need the following property: let F1 and F2 be
collections of events satisfying (a) and (b) in Appendix 1. Assume F1 ⊂ F2
and that Y is a random variable with well-defined expectation. Then

E {{Y |F2}|F1} = E {Y |F1} . (10.3.2)

If you stare at this expression, you will notice on the left-hand side two
conditional expectations: the first one is Z = E {Y |F2}, and the second is
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X = E {Z|F1}. We do not prove this result here (called the tower property
of conditional expectations), but the interested reader can consult [Chung]
or [Williams]. Despite its forbidding look, this relation expresses the fact
that when conditioning over two sets of information, the overriding in-
formation will be the minimal (smallest) one. In more advanced books, a
collection of sets {Fn} such that Fn ⊂ Fn+1 is sometimes called a filtration.

Proposition 3. The time-0 price of a European call option on a stock with
price process S defined above and payoff g at time N is

V0 =
1

(1 + r)N
Ẽ {g | (S0, B0)} ,

where Ẽ refers to the expectation under the pricing probability P̃ . For an
option with strike K, we have more specifically

V0 =

{
1

(1+r)N

∑N
n=0

(
N
n

)
p̃n(1− p̃)N−nmax

(
undN−nS0 −K, 0

)
for a call,

1
(1+r)N

∑N
n=0

(
N
n

)
p̃n(1− p̃)N−nmax

(
K − undN−nS0, 0

)
for a put.

Proof: As in the one-period case (cf. Proposition 1) we can write, for
1 ≤ i ≤ N ,

Vi−1 = E

{
1

1 + r
Vi|(Si−1, Bi−1)

}
.

Then

Vi−2 = E

{
1

1 + r
Vi−1|(Si−2, Bi−2)

}

= E

{
1

(1 + r)2
E

{
1

1 + r
Vi|(Si−1, Bi−1)

}
|(Si−2, Bi−2)

}

= E

{
1

(1 + r)2
Vi|(Si−2, Bi−2)

}
,

where we used the tower property in the last equality. The rest of the proof
follows easily and is left as an exercise. [Hint: use the binomial distribution
as in (4.4.15).]

10.4. Fundamental asset pricing theorems

In the binomial model above we were able to obtain a unique price for
each of the European put and European call. This price was derived using
the assumption of no-arbitrage, which in turn led to the construction of a
probability under which all prices are martingales. These results are in fact
illustrations of the following asset pricing theorems:
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1. A finite market model is arbitrage-free if and only if there exists
an equivalent probability under which all asset price processes are
martingales;

2. An arbitrage-free market model is complete (i.e., where every Euro-
pean contingent claim can be priced) if and only if the equivalent
probability is unique.

Note that in both (1) and (2) above we mention “market model” to refer
to the particular probability model (i.e., sample space, probability, etc.) to
represent the market. This aspect is crucial. For example, if you replace
in the one-period case Ω with a set of three sample points, then there is
no pricing probability (check it as an exercise). To fully see the extent of
these theorems in the context of finite probability spaces with finite time
horizon, we refer to [Jacod and Shiryaev]. Despite its appearance, the last
reference is accessible even with knowledge at the level of this book. New
notions are defined and the point of the authors is to show that some deep
results can be proved with elementary methods. These results pertain to
so-called finite market models; i.e., Ω is finite, and such that P (ω) > 0 for
all ω ∈ Ω; there are finitely many assets (in our case three), the horizon is
finite and trading occurs at a finite number of dates.

On the other hand, the continuous analogue (continuous time and/or
state space) is more complicated. Interestingly, the continuous model of
Black and Scholes and the binomial model we have considered here are
connected. When the length of each of the intervals in the N -period model
tends to zero while N increases to infinity, then the value V0 obtained in
Proposition 3 tends to that of the Black and Scholes (for readable details at
the level of this book, see, for example, Chapter 5 in [Cox and Rubinstein]).

Exercises

1. Convince yourself that max(K−ST , 0) is the right payoff for a European
put by repeating the same argument we used for the call.

2. Prove that the discounted stock price process {Yn}Nn=0 is also a mar-
tingale under the pricing probability P̃ . (This should be very straight-
forward from the one-period case we saw previously and from the proof
of Proposition 3.)

3. Using the Black–Scholes formulas show that the put price P0 is a de-
creasing function of the initial stock price S0, while that of the call
C0 is increasing. In other words, the put is less valuable than the call
for large stock prices (think if it makes sense by looking at the payoff
functions).
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4. Show that both P0 and C0 are increasing functions of σ (volatility).
This means that both the put and call are more valuable when the
prospects of a stock are increasingly uncertain.

5. Show that C0 is an increasing function of the time to maturity T , i.e., a
European call option is more valuable with more distant exercise dates.
What can you say about the European put in this regard?

6. Put-Call Parity (1)
Verify that C0 = P0 + S0 − Ke−rT . This means that for the same
exercise date and strike, the call price can be deducted from that of a
put. This is an important property because in some cases it is easier,
for example, to derive certain mathematical results with puts rather
than calls. The latter is true because of the boundedness of the payoff
of the put (check this fact as an exercise).

7. Put–Call Parity (2)
To prove the parity result, consider a portfolio consisting (at concep-
tion, i.e., now) of one call held long, a put held short, a share of the
stock held short, and a borrowed amount Ke−rT . Here, both the call
and put have strike K and exercise date T .

Show that the value of this portfolio on date T is 0. As a result,
under the no-arbitrage requirement, it must be that the value of the
portfolio at conception is 0, which results in the put–call parity relation
given in the previous exercise.
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Answers to Problems

Chapter 1

7. (A ∪B)(B ∪ C) = ABC +ABCc +AcBC +AcBCc +ABcC; A\B =
ABcC +ABcCc; {the set of ω which belongs to exactly one of the sets
A,B,C} = ABcCc +AcBCc +AcBcC.

10. The dual is true.
14. Define A # B = Ac ∪Bc, or Ac ∩Bc.
19. IA\B = IA − IAIB ; IA−B = IA − IB .
20. IA∪B∪C = IA + IB + IC − IAB − IAC − IBC + IABC .

Chapter 2

4. P (A+B) ≤ P (A) + P (B).
5. P (S1 + S2 + S3 + S4) ≥ P (S1) + P (S2) + P (S3) + P (S4).

11. Take AB = ∅, P (A) > 0, P (B) > 0.
13. 17.
14. 126.
15. |A ∪B ∪ C| = |A|+ |B|+ |C| − |AB| − |AC| − |BC|+ |ABC|.
16. P (A∆B) = P (A) + P (B)− 2P (AB) = 2P (A ∪B)− P (A)− P (B).
17. Equality holds when m and n are relatively prime.
20. pn = 1/2n, n ≥ 1; pn = 1/(n(n+ 1)), n ≥ 1.
22. 14/60.

381
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24. If A is independent of itself, then P (A) = 0 or P (A) = 1; if A and B
are disjoint and independent, then P (A)P (B) = 0.

28. p1p2q3p4q5, where pk = probability that the kth coin falls heads,
qk = 1 − pk. The probability of exactly 3 heads for 5 coins is equal to∑

pk1pk2pk3qk4qk5 where the sum ranges over the 10 unordered triples
(k1, k2, k3) of (1, 2, 3, 4, 5) and (k4, k5) denotes the remaining unordered
pair.

Chapter 3

1. 3 + 2; 3 + 2 + (3× 2).

2. 32,

(
3 + 2− 1

2

)
.

3. Three shirts are delivered in two different packages each of which may

contain 0 to 3. If the shirts are distinguishable: 23; if not:
(
2 + 3− 1

3

)
.

4. 3× 4× 3× 5× 3; 3× 4× (3 + 1)× (2 + 1)× 3.
5. 262 + 263; 100.
6. 97.

7.
(
12
6

)
.

8. 4!; 2× 4! 4!.

9.
(
20
3

)
; (20)3.

10. 35 (0 sum being excluded); 23.
11. 1/2 if the missing ones are as likely to be of the same size as of different

sizes; 2/3 if each missing one is equally likely to be of any of the sizes.
12. 2/3; 4!/6! or (2 × 4!)/6! depending on whether the two keys are tried

in one or both orders (how is the lost key counted?).
13. 20/216 (by enumeration); some interpreted “steadily increasing” to

mean “forming an arithmetical progression,” if you know what that
means.

14. (a) 1/63; (b) {6× 1 + 90× 3 + 120× 6}/66.

15.
(
6
4

)
4!;
(
6
3

)(
4
3

)
3!.

16. 1−
{(

5
0

)(
5
4

)
+
(
5
1

)(
4
3

)
+
(
5
2

)(
3
2

)
+
(
5
3

)(
2
1

)
+
(
5
4

)(
1
0

)}/(
10
4

)
.

17. From an outside lane: 3/8; from an inside lane: 11/16.

18.
(
m− 1
m

)n

;
(m− 1)n
(m)n

.

19. 1/6, 4/6, 1/6.
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20. (a) 4
/(

18
15

)
; (b)

(
14
11

)/(
18
15

)
.

21. Assuming that neither pile is empty: (a) both distinguishable: 210 − 2;
(b) books distinguishable but piles not: (210 − 2)/2; (c) piles distin-
guishable but books not: 9; (d) both indistinguishable: 5.

22.
10!

3! 3! 2! 2!
;

10!
3! 3! 2! 2!

× 4!
2! 2!

;
10!

3! 3! 2! 2!
× 6!

2! 2! 2! 2
.

23. (a)
(
31
15

)7(30
15

)4(29
15

)
(180)!/(366)180,

(b) (305)30/(366)30.

24.
(
29
10

)/(
49
30

)
.

25.
(
n− 100

93

)(
100
7

)/(
n

100

)
.

27. Divide the following numbers by
(
52
5

)
:

(a) 4×
(
13
5

)
; (b) 9× 45; (c) 4× 9;

(d) 13× 48; (e) 13× 12× 4× 6.

29. Divide the following numbers by 66:

6; 6× 5× 6!
5! 1!

; 6× 5× 6!
4! 2!

; 6×
(
5
2

)
× 6!

4!(
6
2

)
× 6!

3! 3!
; (6)3 ×

6!
3! 2!

; 6×
(
5
3

)
× 6!

3!
;

(
6
3

)
× 6!

2! 2! 2!
;
(
6
2

)(
4
2

)
× 6!

2! 2!
;
(
6
1

)(
5
4

)
× 6!

2!
; 6!.

Add these up for a check; use your calculator if you have one.
30. Do the problem first for n = 2 by enumeration to see the situation. In

general, suppose that the right pocket is found empty and there are k
matches remaining in the left pocket. For 0 ≤ k ≤ n the probability

of this event is equal to
1

22n−k

(
2n− k

n

)
1
2
. This must be multiplied by

2 because right and left may be interchanged. A cute corollary to the
solution is the formula below:

n∑
k=0

1
22n−k

(
2n− k

n

)
= 1.
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Chapter 4

2. P{X + Y = k} = 1/3 for k = 3, 4, 5; same for Y + Z and Z +X.
3. P{X + Y − Z = k} = 1/3 for k = 0, 2, 4;

P{
√

(X2 + Y 2)Z = x} = 1/3 for x =
√
13,
√
15,
√
20;

P{Z/|X − Y | = 3} = 1/3, P{Z/|X − Y | = 1} = 2/3.
4. Let P (ωj) = 1/10 for j = 1, 2; = 1/5 for j = 3, 4; = 2/5 for j = 5;

X(ωj) = j for 1 ≤ j ≤ 5; Y (ωj) =
√
3 for j = 1, 4; = π for j = 2, 5;

=
√
2 for j = 3.

5. Let P (ωj) = pj , X(ωj) = vj , 1 ≤ j ≤ n.
6. {X + Y = 7} = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.
8. P{Y = 14000 + 4n} = 1/5000 for 1 ≤ n ≤ 5000; E(Y ) = 24002.
9. P{Y = 11000 + 3n} = 1/10000 for 1 ≤ n ≤ 1000;

P{Y = 10000 + 4n} = 1/10000 for 1001 ≤ n ≤ 10000;
E(Y ) = 41052.05.

10. E(Y ) = 29000 + 7000.e−2/7.
11. λe−λx, x > 0.
12. 2xf(x2), x > 0; 2x/(b− a) for

√
a ≤ x ≤

√
b.

13. (i) f ((x− b)/a) /|a| if a �= 0. (ii)
1

2
√
x
{f(√x) + f(−√x)}, x > 0.

15. c = 1/(1− qm).

16. P (Y = j) =

(
n

n+ j

2

)
1
2n

, for −n ≤ j ≤ n such that n+ j is even.

E(Y ) = 0.

17. P (X = j) =
(
11
j

)(
539

25− j

)/(
550
25

)
, 0 ≤ j ≤ 25.

18. If there are r rotten apples in a bushel of n apples and k are picked
at random, the expected number of rotten ones among those picked is
equal to kr/n.

19. P (X ≥ m) =
1
m
,E(X) = +∞.

20. 1.
21. Choose vn = (−1)n2n/n, pn = 1/2n.
23. According to the three hypotheses of Example 11 in §4.5: (1)

√
3/2;

(2) 3/4; (3) 2/3.
24. 2.
26. FR(r) = r2/100, fR(r) = r/50 for 0 ≤ r ≤ 100; E(R) = 20/3.
27. Y = d tan θ, where d is the distance from the muzzle to the wall and θ

is the angle the pistol makes with the horizontal direction.
P (Y ≤ y) = arctan(y/d);E(Y ) = +∞.

28. E(2X) = +∞.
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29. If at most m tosses are allowed, then his expectation is m cents.

31. P ((X,Y ) = (m,m′)) =
(
n

2

)−1

for 1 ≤ m < m′ ≤ n; P (X = m) =

(n − m)
(
n

2

)−1

; P (Y = m′) = (m′ − 1)
(
n

2

)−1

; P (Y − X = k) =

(n− k)
(
n

2

)−1

, 1 ≤ k ≤ n− 1.

32. Joint density of (X,Y ) is f(u, v) =

{
2 if 0 ≤ u < v ≤ 1,
0 otherwise.

Chapter 5

1. 1050/6145, 95/1095.

2.
18826
19400

.

3. 5/9.
4. (a) 1/2; (b) 1/10.
5. 1/4; 1/4.
6. 1/4.
7. 1/2.
8. 2β(1− α+ β)−1.
9. 6/11, 3/11, 2/11.

10. 400/568.
17. 1/2.
18. p3 + (3/2)× p3(1− p).
19. 379/400.
20. P (no umbrella | rain) = 2/9;P (no rain | umbrella) = 5/12.
21. 27/43.
22. [p2 + (1− p)2]/[3p2 + (1− p)2].
23. (a) 3/8; (b) 3/4; (c) 1/3.

25. (a)
1
6

6∑
n=1

(
n

k

)
1
2n

; (b)
(
n

3

)
1
2n

{
6∑

n=3

(
n

3

)
1
2n

}−1

for 3 ≤ n ≤ 6.

26. The probabilities that the number is equal to 1, 2, 3, 4, 5, 6 are equal,
respectively, to:
(1) p2

1; (2) p1p2 + p2
1p2; (3) p1p3 + 2p1p

2
2 + p3

1p3;
(4) 2p1p2p3 + p3

2 + 3p2
1p2p3; (5) 2p2

2p3 + 3p1p
2
2p3 + 3p2

1p
2
3;

(6) p2p
2
3 + p3

2p3 +6p1p2p
2
3; (7) 3p1p

3
3 +3p2

2p
2
3; (8) 3p2p

3
3; (9) p4

3. Tedious
work? See Example 20 and Exercise No. 23 of Chapter 8 for the general
method.
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27.
(
4
6

)n

− 2
(
3
6

)n

+
(
2
6

)n

.

28.
∞∑
n=0

pn

(
n∑

k=0
pk

)
;

∞∑
n=0

p2
n.

29. 2/7.
30. P (maximum < y | minimum < x) = y2/(2x − x2) if y ≤ x; = (2xy −

x2)/(2x− x2) if y > x.
31. 1/4.
33. (a) (r+c)/(b+r+2c); (b) (r+2c)/(b+r+2c); (c), (e), (f): (r+c)/(b+

r + c); (d) same as (b).
34. {b1(b2+1)r1+b1r2(r1+1)+r1b2(r1−1)+r1(r2+1)r1}/(b1+r1)2(b2+

r2 + 1).

35.
(

N∑
k=1

kn+1
)/

N

(
N∑
k=1

kn
)
.

39. (1 + p)2/4; (1 + pq)/2.
40. 0 1 2

0 q p 0
1 q/2 1/2 p/2
2 0 q p

Chapter 6

1. $.1175; $.5875.
2. $94000; $306000.

3. 2
(

3
13

+
2
12

+
4
13

+
3
14

+
4
14

)
.

4. 21; 35/2.
5. .5; 2.5.

6. 13/4; 4
{
1−
(
39
13

)/(
52
13

)}
.

7. (6/7)25; 7

{
1−
(
6
7

)25
}
.

8. (a) 1− (364/365)500 − 500(364)499/(365)500.
(b) 500/365.

(c) 365

{
1−
(
364
365

)500
}
.

(d) 365p, where p is the number in (a).

9. Expected number of boxes getting k tokens is equal to m
(
n
k

) (m−1)n−k

mn ;
expected number of tokens alone in a box is equal to n

(
m−1
m

)n−1.
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10. P (nj tokens in jth box for 1 ≤ j ≤ m) =
n!

n1! · · ·nm!
1
mn

, where n1 +
· · ·+ nm = n.

11. 49.
12. 7/2.
13. 100p; 10

√
p(1− p).

14. 46/5.

15. (a) N + 1; (b)
N+1∑
n=1

(N)n−1

Nn−1 .

16. Let M denote the maximum. With replacement:

P (M = k) =
kn − (k − 1)n

Nn
, 1 ≤ k ≤ N ;

E(M) =
N∑
k=1

{
1−
(
k − 1
N

)n}
;

without replacement:

P (M = k) =
(
k − 1
n− 1

)/(
N

n

)
, n ≤ k ≤ N ;

E(M) = n(N + 1)/(n+ 1).
17. (a) nr/(b+ r); (b) (r2 + br + cnr)/(b+ r).
19. 1/p.
22. E(X) = 1/λ.

23. E(T ) =
a

λ
+

1− a

µ
; σ2(T ) =

2a
λ2 +

2(1− a)
µ2 −

(
a

λ
+

1− a

µ

)2

.

24. E(T | T > n) = 1/λ.
25. (a) 1/5λ; (b) 137/60λ.
26. .4%.
27. E(aX + b) = aE(X) + b, σ2(aX + b) = a2σ2(X).
28. Probability that he quits winning is 127/128, having won $1; probabil-

ity that he quits because he does not have enough to double his last bet
is 1/128, having lost $127. Expectation is zero. So is it worth it? In the
second case he has probability 1/256 of losing $150, same probability
of losing $104, and probability 127/128 of winning $1. Expectation is
still zero.

29. E(maximum) = n/(n + 1); E(minimum) = 1/(n + 1); E(range) =
(n− 1)/(n+ 1).

30. g(z) =
∏n

j=1(qj + pjz); g′(1) =
∑n

j=1 pj .
31. uk = P{Sn ≤ k}; g(z) = (q + pz)n/(1− z).
32. g(z) = (1− z2N+1)/(2N + 1)zN (1− z); g′(1) = 0.

33.
(
2n
n

)
1
4n

.

34. g(z) = zN
N−1∏
j=0

N − j

N − jz
; g′(1) = N

N−1∑
j=0

1
N − j

.
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35. m1 = g′(1);m2 = g′′(1) + g′(1);m3 = g′′′(1) + 3g′′(1) + g′(1);m4 =
g(iv)(1) + 6g′′′(1) + 7g′′(1) + g′(1).

36. (−1)nL(n)(0).
37. (a) (1−e−cλ)/cλ, λ > 0; (b) 2(1−e−cλ−cλe−cλ)/c2λ2, λ > 0; (c) L(µ) =

λn/(λ+ µ)n.
38. Laplace transform of Sn is equal to λn/(λ+ µ)n;

P (a < Sn < b) =
λn

(n− 1)!

∫ b

a

un−1e−λu du.

Chapter 7

1. 1− 5
3
e−2/3.

2.
(
1− 4

100

)25

≈ e−1.

3. e−ααk/k!, where α = 1000/324.
4. e−20∑30

k=20(20)
k/k!.

5. Let α1 = 4/3, a2 = 2. P{X1 = j | X1+X2 = 2} = 2!
j! (2− j)!

αj
1α

2−j
2

(α1 + α2)2
for j = 0, 1, 2.

6. If (n + 1)p is not an integer, the maximum term of Bk(n; p) occurs
at k = [(n + 1)p] where [x] denotes the greatest integer not exceeding
x; if (n + 1)p is an integer, there are two equal maximum terms for
k = (n+ 1)p− 1 and (n+ 1)p.

7. If α is not an integer, the maximum term of πk(α) occurs at k = [α];
if α is an integer, at k = α− 1 and k = α.

8. exp[−λc+ α(e−λh − 1)].
9. πk(α+ β).

11. e−50∑60
k=50(50)

k/k!.

12.
1

(n− 1)! 2n

∫ ∞

N

un−1e−u/2 du.

13. Φ

(
3

√
12
35

)
− Φ

(
−2
√

12
35

)
.

14. Find n such that 2Φ (
√
n/10)− 1 ≥ .95. We may suppose p > 1/2 (for

the tack I used).
15. 537.
16. 475.
24. (1/(2πx))−1/2

e−x/2.
27. P{δ′(t) > u} = e−αu; P{δ(t) > u} = e−αu for u < t; = 0 for u ≥ t.
28. No!
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Chapter 8

1. (a) p4 + 3p3q + 2p2q2; (b) p4 + 2p3q + 2pq3 + q4; (c) 1 − (p4 + p3q);
(d) 1− (p4 + p3q + pq3 + q4).

2. For Yn: I = the set of even integers; p2i,2i+2 = p2, p2i,2i = 2pq, p2i,2i−2 =
q2;
For Zn: I = the set of odd integers; p2i−1,2i+1 = p2, p2i−1,2i−1 =
2pq, p2i−1,2i−3 = q2;P{Z0 = 1} = p, P{Z0 = −1} = q.

3. For Xn: I = the set of nonnegative integers; pi,i = q, pi,i+1 = p. For
Yn: I = the set of all integers, pi,i−1 = q, pi,i+1 = p.

4. P{|Y2n+1| = 2i+1 ‖ Y2n| = 2i} = (p2i+1+q2i+1)/(p2i+q2i), P{|Y2n+1| =
2i− 1 ‖ Y2n| = 2i} = (p2iq + pq2i)/(p2i + q2i).

5. (a) n 1 2 3

f
(n)
11

1
2

1
6

1
9

f
(n)
12

1
2

1
4

1
8

g
(n)
12

1
2

1
3

2
9

(b) n 1 2 3

f
(n)
11 p1 0 q1q2q3

f
(n)
12 q1 p1q1 p2

1q1

g
(n)
12 q1 q1p2 q1p

2
2

6.
[
1 0
α 1− α

]
; f (n)

21 = (1− α)n−1α; p(n)
21 = 1− (1− α)n;m21 = 1/α.

9. I = {0; 2i, 0 ≤ i ≤ n− 1}
p2i,2i+1 = 1/2, p2i,0 = 12 for 0 ≤ i ≤ n− 1.

10. 1/13.
11. U H D

U 0 1 0
H p 0 q
D 0 1 0

wU = p/2, wH = 1/2, wD = q/2.

12. Same as given in (8.1.9) and (8.1.10).

13. ej =
l(1− rj)

(p− q)(1− rl)
− j

p− q
where r = q/p.

15. pi,i−1 = (i/N)2, pi,i = 2i(N − i)/N2, pi,i+1 = ((N − i)/N)2;

wi =
(
N

i

)2/(2N
N

)
; 0 ≤ i ≤ N .

16. ws = (1− β)/(2− α− β);wf = (1− α)/(2− α− β).
18. pj,j+1 = p, pj,0 = 1− p;wj = pjq, 0 ≤ j ≤ ∞.

19. Let r = pq,A−1 = 1 + p−1∑c−1
k=1 r

k + rc−1; then w0 = A;wk =
p−1rkA, 1 ≤ k ≤ c− 1;wc = rc−1A.

20. f∗
21 = .721; f∗

31 = .628.
21. f∗

i,2N = i/2N, f∗
i,0 = 1− (i/2N), 0 ≤ i ≤ 2N .
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22. (1− a2 +
√
a2
1 − 2a1 + 1− 4a0a2)/2a2.

23. Coefficient of zj in g(h(z)), where h(z) =
∑∞

j=0 bjz
j .

24. Let ej denote the expected number of further impulses received until
the meter registers the value l, when the meter reads j; then ej = l for
1 ≤ j ≤ l − 1, el = 0.

25. em =
∑m

j=1
1
j
.

26. (123) (132) (213) (231) (312) (321)

(123) 0 0 q p 0 0
(132) 0 0 0 0 q p
(213) q p 0 0 0 0
(231) 0 0 0 0 p q
(312) p q 0 0 0 0
(321) 0 0 p q 0 0

27. 1 2 3

1 0 q p
2 1 0 0
3 0 p q

32. pij = 1/(i+ 1) for s− i ≤ j ≤ s; = 0 otherwise;

wj = 2(j + 1)/(s+ 1)(s+ 2) for 0 ≤ j ≤ s;
s∑

j=0

jwj = 2s/3.

33. pij =
(

i

s− j

)
ps−j(1− p)i−s+j for s− i ≤ j ≤ s; = 0 otherwise;

wj =
(
s

j

)(
1

1 + p

)j (
p

1 + p

)s−j

for 0 ≤ j ≤ s;
∑s

j=0 jwj = s/(1 + p).

44. P{S = k | X0 = i} = pkii(1− pkii), k ≥ 1.
45. p̃ij = pij/(1− pii) for i �= j; p̃ii = 0.
46. P{(Xn, Xn+1) = (k, 2k − j + 1) | (Xn−1, Xn) = (j, k)} = p,

P{(Xn, Xn+1) = (k, 2k − j) | (Xn−1, Xn) = (j, k)} = q.
Let H(3)

n =
∑n

v=1 H
(2)
v , then {H(3)

n } is a Markov chain of order 3, etc.

Chapter 9

1. R(ω1) = u − 1, R(ω2) = d − 1. With u = 1.10, R(ω1) = .10, i.e., a
gain of 10% should ω1 be drawn. With d = .75, R(ω2) = −.25, or a
drop of 25% if ω2 is drawn.

2. We are interested in comparing P{R ≤ 0} versus P{R > 0}. P{R ≤
0} = P{(R − µ)/σ ≤ −µ/σ}. Recall that (R − µ)/σ has a standard
normal distribution. So when µ = 0, P{R ≤ 0} = 1/2 = P{R > 0};
when µ < 0, −µ/σ > 0 and therefore P{R ≤ 0} > 1/2 > P{R > 0};
and µ > 0 then −µ/σ < 0, leading to P{R ≤ 0} < 1/2 < P{R > 0}.
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3. Let R1 and R2 be the returns of the first and second assets, respectively.
Our hypothesis is σ (R2) < σ (R1). For ease of notation, we let σi ≡
σ (Ri), i = 1, 2. Then, for α ∈ (0, 1), we have

σ2 (αR1 + (1− α)R2) = α2σ2
1 + (1− α)2σ2

2 + 2α(1− α)ρ12σ1σ2

< α2σ2
1 + (1− α)2σ2

1 + 2α(1− α)ρ12σ1σ2

< α2σ2
1 + (1− α)2σ2

1 + 2α(1− α)σ2
1

= (ασ1 + (1− α)σ1)
2

= σ2
1 ,

where the first inequality results from σ2 < σ1, and the second from
|ρ12| < 1, σ2 < σ1, and 0 < α < 1.

4. σ1 = 0 and µ1 = µ2 = µ3. In this case, there is no point trying to
diversify across assets since they all yield the same expected return
and one of them is riskless.

5. If such b and ρ12 exist then b is a solution of the quadratic in b expressed
through (9.5.21). For its discriminant to be nonnegative, we must have
|ρ12| ≥ 1. Since, by definition, |ρ12| ≤ 1, only two cases are possible:
ρ12 = 1 or ρ12 = −1. In either case, we must have b = −ρ12σ1/σ2.
If ρ12 = 1, then (µ1 − µ0) /σ1 = (µ2 − µ0) /σ2. We have an equality
between two values of a type of ratio that is referred to as the Sharpe
ratio. It is used to compare risky assets when a riskless asset is available.
It measures the expected excess return of an asset over the riskless
asset, i.e., µi − µ0, relative to the risk of the asset, σi. Another way
to interpret this ratio is to view it as measuring the expected excess
return over the riskless rate as the number of standard deviations of
this asset’s return. When ρ12 = 1 the returns of assets 1 and 2 are
perfectly correlated. In addition, they have the same Sharpe ratio. We
thus have an indication that no diversification across these two assets
would be meaningful.
If ρ12 = −1, then (σ1 +σ2)µ0 = −(σ1µ2 +σ2µ1), which shows that µ0,
µ1, and µ2 cannot all be positive. Thus there cannot be a diversification
involving all three assets.

Chapter 10

1. Since the put gives you the right to sell at time T , you do so only if
K > ST . In this case, you can first purchase the stock at price ST and
sell it at price K to obtain a net gain (payoff) of K − ST . If K ≤ ST ,
there is no point trying to sell at K when the market price is ST .
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2.

Ẽ
[
Yk+1|S), . . . , Sk

]
=

1
(1 + r)k+1 Ẽ

[
Sk+1|S), . . . , Sk

]
=

1
(1 + r)k+1 Ẽ [Sk+1|Sk]

=
1

(1 + r)k+1 (1 + r)Sk

= Yk.

3. For the call, ∂C0/∂S0 = Φ(d1) > 0, where Φ(x) is the cumulative
standard normal distribution. For the put, ∂P0/∂S0 = −Φ(−d1) < 0.

4. ∂C0/∂σ = S0
√
Tφ(d1) > 0 and ∂P0/∂σ = S0

√
Tφ(−d1) > 0, where

φ(x) is the density of the standard normal distribution.

5. For a call, ∂C0/∂T = −S0σφ(d1)/
(
2
√
T
)
− rKe−rTΦ(d2) < 0. For a

put, ∂C0/∂T = −S0σφ(−d1)/
(
2
√
T
)
+ rKe−rTΦ(−d2), which can be

of any sign.
7. The value of this portfolio at time 0 is V0 = C0 − P0 − S0 +Ke−rT .

At time T , its value is VT = CT − PT − ST + K, where CT =
max (ST −K, 0) and PT = max (K − ST , 0).

Case 1: K > ST . Then CT = 0, PT = K − ST , and
VT = −K + ST − ST +K = 0.

Case 2: K < ST . Then CT = ST −K, PT = 0, and
VT = ST −K − ST +K = 0.

Case 3: K = ST . Then CT = PT = 0 and VT = 0.
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TABLE 1 Values of the standard normal distribution function

Φ(x) =
∫ x

−∞

1√
2π

e−u2/2 du = P (X ≤ x)

x 0 1 2 3 4 5 6 7 8 9

−3. .0013 .0010 .0007 .0005 .0003 .0002 .0002 .0001 .0001 .0000
−2.9 .0019 .0018 .0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014
−2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0020 .0020 .0019
−2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
−2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
−2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
−2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
−2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
−2.2 .0139 .0136 .0132 .0129 .0126 .0122 .0119 .0116 .0113 .0110
−2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
−2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
−1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0238 .0233
−1.8 .0359 .0352 .0344 .0336 .0329 .0322 .0314 .0307 .0300 .0294
−1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
−1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
−1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0570 .0559
−1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0722 .0708 .0694 .0681
−1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
−1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
−1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
−1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
− .9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
− .8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
− .7 .2420 .2389 .2358 .2327 .2297 .2266 .2236 .2206 .2177 .2148
− .6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
− .5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
− .4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
− .3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
− .2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
− .1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
− .0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

Reprinted with permission of The Macmillan Company from INTRODUCTION TO
PROBABILITY AND STATISTICS, second edition, by B. W. Lindgren and G. W.
McElrath. Copyright c©1966 by B. W. Lindgren and G. W. McElrath.



Values of the Standard Normal Distribution Function 395

TABLE 1 Values of the standard normal distribution function

x 0 1 2 3 4 5 6 7 8 9

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5363 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 .7580 .7611 .7642 .7673 .7703 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9278 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9430 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9648 .9656 .9664 .9671 .9678 .9686 .9693 .9700 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9762 .9767
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9874 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3. .9987 .9990 .9993 .9995 .9997 .9998 .9998 .9999 .9999 1.0000
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A priori, a posteriori probability 125
Absorbing state, 276
Absorption probability, 305
Absorption time, 260
Allocation models, 55
Almost surely, 249
American put, 330
Aperiodic class, 303
Arbitrage
meaning of, 367
opportunity, portfolio, 367

Arbitrage-free market, 368
Area, 21, 42
Arithmetical density, 39
Artin, 178
Asset
see“financial instrument”, 330

Asset return
see“return”, 332

Asset return distribution, 346
continuous compounding, 347
logarithmic scale, 347
with fat tails, 347

Asset risk, see risk
Asymptotically equal, 223
Axioms for probability, 26

Banach’s match problem, 73

Bayes’ theorem, 125
Bernoulli’s formula, 39
Bernoulli, J., 240
Bernoullian random variable, 94,

178, 179, 190
Bertrand’s paradox, 102
Binomial coefficient, 52
generalized, 138
properties, 61, 201
properties(, 58

Binomial distribution, 94
Birth-and-death process, 300
Birthday problem, 66
Black–Scholes formula, 366
Bond, 330
maturity date, 330
par value, 330
zero-coupon, 330

Boole’s inequality, 32
Borel, 100
Borel field, 105
Borel’s theorem, 245
Branching process, 310
Brownian motion, 263
Buffon’s needle problem, 163

Call option, 359
Capital asset pricing model, 345

397



398 Index

Card shuffling, 318
Cardano’s paradox, 175
Cauchy distribution, 347, 352
Cauchy functional equation, 162
Cauchy–Schwarz inequality, 178
Central limit theorem, 234
Certificate of deposit, 330
Chapman–Kolmogorov equations,

270
Characteristic function, 194
Lévy’s characterization of stable

distributions, 350
Characteristic function exponent,

356
see also “stable distribution”, 356

Chebyshev’s inequality, 240, 248, 363
Chi-square distribution, 248
Chinese dice game, 73
Class of states, 276
Class property, 282
Coin-tossing scheme, 37
Communicating states, 275
Complement, 4
Conditional expectation, 131
filtration, 376
tower property, 375

Conditional probability, 118
basic formulas, 118–124

Contingent claim, 359
Contingent claim (see also “option”,

“financial derivative”, 359
Convergence of distributions, 234
Convolution, 189, 200
Coordinate variable, 77
Correlation, 178
Countable additivity, 33
Countable set, 25
Coupon collecting problem, 167
Covariance, 178
Cramér, 235
Credibility of testimony, 160

D’Alembert’s argument, 28, 54
De Méré’s dice problem, 146
De Moivre–Laplace theorem, 228
De Morgan’s laws, 7
Density function, 95
Derivative, see financial derivative
Derivative security, 359

Dice patterns, 73
Difference, 8
Difference equations, 257
Discount bond, see “bond,

zero-coupon”
Discount rate, 362
Discrete, 96
Disjoint, 10
Distribution function, 86, 97, 106
stable, 349, 350

Diversification, see portfolio
diversification

misfortunes with lack of, 346
Dividend, see “stock dividend”
Doob, 326
Doubling the bet, 198
Doubly stochastic matrix, 299
Duration of play, 292

Efficient frontier, 341, 342
Ehrenfest model, 273, 301, 316
Einstein, 129
Elementary probabilities, 86
Empty set, 2
Enron, 346
Equally likely, 22, 27, 35
Equity-type securities, 330
Ergodic theorem, 246
Errors in measurements, 175
European option price, 366
Event, 27, 35
Exchangeable events, 141
Expectation, 87, 116, 164
addition theorem, 165, 170
approximation of, 98
expression by tail probabilities,

197
multiplication theorem, 173
of function of random variable, 89,

97
Expected return time, 292
Exponential distribution, 102
memoryless property, 121, 163

Factorial, 51
Favorable to, 149
Feller, 73, 112, 246
Fermat-Pascal correspondence, 30,

145
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Financial derivative, 330
equity-type, 330

Financial instrument, 330
equity-, debt-type, 330

Finite additivity, 32
First entrance time, 277
decomposition formula, 280

Fourier transform, 194
Frequency, 22, 245
Fundamental rule (of counting), 46

Gambler’s ruin problem, 257, 261
Gamma distribution, 200
Gauss–Laplace distribution, 229
Generating function, 187
as expectation, 192
multiplication theorem, 190, 193
of binomial, 190
of geometric, 191
of negative binomial, 191

Genetical models, 152, 309, 318
Genotype, 152
Geometrical distribution, 92
Geometrical probability problems,

99, 101
Gross return, 333

Hardy–Weinberg theorem, 155
Hereditary problem, 155
Holding time, 211
Homoegeneous Markov chain, see

“Markov chain”
Homogeneity, 215
in space, 273
in time, 215, 267

Homogeneous chaos, 222

Identically distributed, 234
Independent events, 37, 143
Independent random variables, 142,

144
Indicator, 13, 171
Infinitely often, 262, 284
Initial distribution, 268
Insider trading, 374
Integer-valued random variable, 90
Intensity of flow, 212
Interarrival time, 170, see also

“waiting time”

Intersection, 4

Joint density function, 107
Joint distribution function, 108
Joint probability distribution, 106
Joint probability formula, 123

Keynes, 120, 129, 135, 363
and short-term investors, 345

Khintchine, 240
Kolmogorov, 145

Lévy, 235, 264
Laplace, 125, see also under “De

Moivre” and “Gauss”
law of succession, 129

Laplace transform, 194
Last exit time, 279
decomposition formula, 280

Law of large numbers, 239
J. Bernoulli’s, 240
strong, 245

Law of small numbers, 208
Leading to, 275
Limited liability, 331
Loan
interest, 330
principal, 330

Lognormal distribution, 351, 352
Long position, 338
Lottery problem, 166

Marginal density, 108
Marginal distribution, 106
Markov, 240, 266
Markov chain, 267
examples, 271–275
nonhomogeneous, 267, 274
of higher order, 322
positive-, null-recurrent, 299
recurrent-, nonrecurrent, 288
reverse, 323
two-state, 297

Markov property, 267
strong, 286

Markowitz, 338
Martingale, 325
discounted stock price process as,

365, 370



400 Index

Matching problems, 67, 171, 179
Mathematical expectation, see

“expectation”
Maximum and minimum, 147
Mean-variance optimization
definition, 338
effect of riskless security, 343–345
equilibrium, 345
risky assets example, 338–342
risky assets generalization,

342–343
Measurable, 26, 115
Median, 112
Moments, 175
Money market instrument, 330, 335
Montmort, 201
Multinomial coefficient, 53
Multinomial distribution, 181, 182
Multinomial theorem, 180
Multiperiod model, 332
dynamic replication, 372
European option price, 374
horizon, 332
self-financing strategy, 372
successive returns, 332

Multiperiod portfolio strategy, 374
Mutual fund, 346

Negative binomial distribution, 191
Neyman-Pearson theory, 160
Non-Markovian process, 275
Nonhomogeneous Markov chain, 267,

274
Nonmeasurable, 41
Nonrecurrent, 282, see also under

“recurrent”
Normal distribution, 229
convergence theorem, 235
moment-generating function,

moments, 231
positive, 248
stable law convergence, 356
table of values, 396

Normal family, 232
Null-recurrent, 299
Numéraire invariance principle,

371–372

Occupancy problems, 196, see also
“allocation models”

Occupation time, 292
One-period model, 332
European option price, 368

Option, 359
1-period model, 366–372
American, 359
as insurance, 360, 364
Black–Scholes formula, 366
buyer/holder of, 361
call, 359
European, 359
exercise, strike price, 359
exotic, 360
expiration/maturity date, 359
Fundamental pricing theorems,

376
multiperiod model, 372–377
payoff, 361
premium, 366
price, 361
pricing probability, 370
put, 359
standard, 360
underlying security, 359
writer/seller of, 361

Optional time, 285
Ordered k-tuples, 47

Pólya, 136, 235, 274
Pairwise independence, 149
Pareto, 355
Pareto distribution, 352, 355
Partition problems, 56
Pascal’s letters to Fermat, 30, 145
Pascal’s triangle, 59
Permutation formulas, 51–53
Persistent, see recurrent
Poincaré’s formula, 171
Poisson, 135
Poisson distribution, 204, 215
models for, 208–211
properties, 218–220

Poisson limit law, 206
Poisson process, 216
distribution of jumps, 221
finer properties, 249
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Poisson’s theorem on sequential
sampling, 135

Poker hands, 72
Portfolio
allocation, 335
diversification, 336
multiperiod, 374
return, 335
risk, 336
weight, 335

Portfolio frontier, 341
Position
long, 338
short, 338

Positive-recurrent, 299
Pricing probability, 370
equivalent, 370

Probability (classical definition), 26
Probability distribution, 86
Probability measure, 26
construction of, 35

Probability of absorption, 305
Probability of extinction, 312
Problem (for other listings see under

key words)
of liars, 160
of points, 29, 201
of rencontre, 171
of sex, 121

Put option, 359
Put-call parity, 378

Quality control, 63
Queuing process, 320–321

Random mating, 153
Random variable, 78, 115
continuous, 96
countable vs. density case, 97
discrete, 96
function of, 79
range of, 85
with density, 96

Random vector, 77, 106
Random walk, 254
free, 271
generalized, 272–273
in higher dimensions, 274, 289
on a circle, 298

recurrence of, 261, 288–289
with barriers, 272

Randomized sampling, 220
Rate of return
see“return”, 333

Recurrent, 282, 284
Markov chain, 288
random walk, 262

Renewal process, 317
Repeated trials, 36
Replicating strategy, 368
Return, 332, 333
annualization, 333
compounding effect, 333
continuous compounding, 347
distribution, 346
distribution with fat tails, 347
gross, 333

Riemann sums, 99
Risk, 334
definition, 334
lack of, 334

Risk–return tradeoff, 338
Risk-neutral probability, see pricing

probability
Riskless security, 334

Sample function, 217
Sample point, space, 2
Sampling (with or without

replacement)
vs. allocating, 56
with ordering, 49
without ordering, 51–53

Sequential sampling, 131
Sharpe, 345
Sharpe ratio, 391
Short position, 338
Significance level, 238
Simpson’s paradox, 150
Size of set, 2
St. Petersburg paradox, 112, 327
Stable distribution, 349, 350
characteristic function, 350
characteristic function exponent,

356
Lévy’s characterization, 350

Stable distribution type, 349
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Stable law, see stable distribution,
356

Standard deviation, 176
State of the economic world, 331
State space, 267
Stationary distribution, 296
Stationary process, 141, 155, 296
Stationary transition probabilities,

267
Steady state, 291
equation for, 294

Stirling’s formula, 223, 251
Stochastic independence, see

independent events, random
variables

Stochastic matrix, 270
Stochastic process, 131, 217
stock price evolution as, 365

Stochastically closed, 303
Stock dividend, 330
Stopping time, 285
Strong law of large numbers, 245
Strong Markov property, 286
Submartingale, 363
discounted stock price process as,

365
expectation under, 363

Summable, 164
Supermartingale, 363
discounted stock price process as,

365
expectation under, 363
in example of greed, 363

Symmetric difference, 9

Taboo probabilities, 279, 322
Tauberian theorem, 292
Time parameter, 132
Tips for counting problems, 62
Total probability formula, 124
Transient, see “nonrecurrent”
Transition matrix, 270
Transition probability, 267, 270
limit theorems for, 292, 303

Tulipmania, 361

Uniform distribution, 91, 100
Union, 4

Variance, 176
addition theorem, 177

Waiting time, 92, 102, 191
Wald’s equation, 92
Wiener process, 264

Zero-or-one law, 313
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