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Foreword

The First Course in Calculus went through five editions since the early
sixties. Sociological and educational conditions have evolved in various
ways during four decades. Hence it has been found worth while to make
the original edition again available. It is also worth while repeating here
most of the foreword which I wrote almost forty years ago.

The purpose of a first course in Calculus is to teach the student the basic
notions of derivative and integral, and the basic techniques and applica-
tions which accompany them.

At present in the United States, this material is covered mostly during
the first year of college. Ideally, the material should be taught to students
who are ‘approximately sixteen years of age, and belongs properly in the
secondary schools. (I have talked with several students of that age, and
find them perfectly able to understand what it is all about.)

Irrespective of when it is taught, I believe that the presentation remains
more or less invariant. The very talented student, with an obvious apti-
tude for mathematics, will rapidly require a course in functions of one real
variable, more or less as it is understood by professional mathematicians.
This book is not primarily addressed to such students (although I hope
they will be able to acquire from it a good introduction at an early age).

I have not written this course in the style I would use for an advanced
monograph, on sophisticated topics. One writes an advanced monograph
for oneself, because one wants to give permanent form to one’s vision of
some beautiful part of mathematics, not otherwise accessible, somewhat
in the manner of a composer setting down his symphony in musical
notation.

This book is written for the student, to provide an immediate, and
pleasant, access to the subject. I hope that I have struck a proper com-
promise between dwelling too much on special details, and not giving
enough technical exercises, necessary to acquire the desired familiarity
with the subject. In any case, certain routine habits of sophisticated
mathematicians are unsuitable for a first course.

This does not mean that so-called rigour has to be abandoned. The
logical development of the mathematics of this course from the most basic
axioms proceeds through the following stages:
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Set, theory

Integers (whole numbers)
Rational numbers (fractions)
Numbers (i.e. real numbers)
Limits

Derivatives

and forward.

No one in his right mind suggests that one should begin a course with set
theory. It happens that the most satisfactory place to jump into the sub-
ject is between limits and derivatives. In other words, any student is
ready to accept as intuitively obvious the notions of numbers and limits
and their basic properties. For some reason, there is a fashion which
holds that the best place to enter the subject logically is between numbers
and limits. Experience shows that the students do not have the proper
psychological background to accept this, and resist it tremendously. Of
course, there is still another fashion, which is to omit proofs completely.
This does not teach mathematics, and puts students at a serious disad-
vantage for subsequent courses, and the understanding of what goes on.

In fact, it turns out that one can have the best of all these ideas. The argu-
ments which show how the properties of limits can be reduced to those of
numbers form a self-contained whole. Logically, it belongs before the sub-
ject matter of our course. Nevertheless, we have inserted it as an appendix.
If any students feel the need for it, they need but read it and visualize it as
Chapter 0. In that case, everything that follows is as rigorous as any
mathematician would wish it (so far as objects which receive an analytic
definition are concerned). Not one word need be changed in any proof. I
hope this takes care once and for all of possible controversies concerning
so-called rigour.

Some objects receive a geometric definition, and there are applications
to physical concepts. In that case, it is of course necessary to insert one
step to bridge the physical notion and its mathematical counterpart. The
major instances of this are the functions sine and cosine, and the area,
as an integral.

For sine and cosine, we rely on the notions of plane geometry. If one
accepts standard theorems concerning plane figures then our proofs satisfy
the above-mentioned standards.

For the integral, we first give a geometric argument. We then show,
using the usual Riemann sums, how this geometric argument has a perfect
counterpart when we require the rules of the game to reduce all definitions
and proofs to numbers. This should satisfy everybody. Furthermore, the
theory of the integral is so presented that only its existence depends either
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on a geometric argument or a slightly involved theoretical investigation
(upper and lower sums). According to the level of ability of a class, the
teacher may therefore dose the theory according to ad hoc judgement.

It is not generally recognized that some of the major difficulties in
teaching mathematics are analogous to those in teaching a foreign language.
(The secondary schools are responsible for this. Proper training in the
secondary schools could entirely eliminate this difficulty.) Consequently,
I have made great efforts to carry the student verbally, so to say, in using
proper mathematical language. Some proofs are omitted. For instance,
they would be of the following type. In the theory of maxima and minima,
or increasing and decreasing functions, we carry out in full just one of the
cases. The other is left as an exercise. The changes needed in the proof are
slight, amounting mainly to the insertion of an occasional minus sign,
but they force students to understand the situation and train them in
writing clearly. This is very valuable. Aside from that, such an omission
allows the teacher to put greater emphasis on certain topics, if necessary,
by carrying out the other proof. As in learning languages, repetition is
one of the fundamental tools, and a certain amount of mechanical learn-
ing, as distinguished from logical thinking, is both healthy and necessary.

I have made no great innovations in the exposition of calculus. Since
the subject was discovered some 300 years ago, it was out of the question.
Rather, I have omitted some specialized topics which no longer belong in
the curriculum. Stirling’s formula is included only for reference, and can
be skipped, or used to provide exercises. Taylor’s formula is proved with
the integral form of the remainder, which is then properly estimated. The
proof with integration by parts is more natural than the other (differ-
entiating some complicated expression pulled out of nowhere), and is the
one which generalizes to the higher dimensional case. I have placed inte-
gration after differentiation, because otherwise one has no technique
available to evaluate integrals. But on the whole, everything is fairly
standard.

I have cut down the amount of analytic geometry to what is both neces-
sary and sufficient for a general first course in this type of mathematics.
For some applications, more is required, but these applications are fairly
specialized. For instance, if one needs the special properties concerning
the focus of a parabola in a course on optics, then that is the place to pre-
sent them, not in a general course which is to serve mathematicians,
physicists, chemists, biologists, and engineers, to mention but a few. What
is important is that the basic idea of representing a graph by a figure in
the plane should be thoroughly understood, together with basic examples.
The more abstruse properties of ellipses, parabolas, and hyperbolas should
be skipped.

As for the question: why republish a forty year old edition? I answer:
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Because for various reasons, a need exists for a short, straightforward and
clear introduction to the subject. Adding various topics may be useful in
some respects, and adding more exercises also, but such additions may
also clutter up the book, especially for students with no or weak back-
ground.

To conclude, if I may be allowed another personal note here, I learned
how to teach the present course from Artin, the year I wrote my Doctor’s
thesis. I could not have had a better introduction to the subject.

SerGE Lanc
New Haven, 2002
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CHAPTER 1
Numbers and Functions

In starting the study of any sort of mathematics, we cannot prove
everything. Every time that we introduce a new concept, we must define
it in terms of a concept whose meaning is already known to us, and it is
impossible to keep going backwards defining forever. Thus we must
choose our starting place, what we assume to be known, and what we are
willing to explain and prove in terms of these assumptions.

At the beginning of this chapter, we shall describe most of the things
which we assume known for this course. Actually, this involves very
little. Roughly speaking, we assume that you know about numbers,
addition, subtraction, multiplication, and division (by numbers other
than 0). We shall recall the properties of inequalities (when a number is
greater than another). On a few occasions we shall take for granted cer-
tain properties of numbers which might not have occurred to you before
and which will always be made precise. Proofs of these properties will be
supplied in the appendix for those of you who are interested.

§1. Integers, rational numbers and real numbers

The most common numbers are the numbers 1, 2, 3, . . . which are called
positive integers.
The numbers —1, —2, —3, —4, . .. are called negative integers. When

we want to speak of the positive integers together with the negative
integers and 0, we call them simply éntegers. Thus the integers are 0, 1,
—1,2,—2,3, —3,....

The sum and product of two integers are again integers.

In addition to the integers we have fractions, like $, 2, —§, —384 & ...,
which may be positive or negative, and which can be written as quotients
m/n, where m, n are integers and n is not equal to 0. Such fractions are
called rational numbers. Every integer m is a rational number, because it
can be written as m/1, but of course it is not true that every rational
number is an integer. We observe that the sum and product of two ra-
tional numbers are again rational numbers. If a/b and m/n are two
rational numbers (a, b, m, n being integers and b, » unequal to 0), then

1

S. Lang, Short Calculus
© Springer Science+Business Media New York 2002



2 NUMBERS AND FUNCTIONS I, §1]

their sum and product are given by the following formulas, which you
know from elementary school:

am__am
bn  bn’
a m_an—}—bm'
5T T T m

In this second formula, we have simply put the two fractions over the
common denominator bn.

We can represent the integers and rational numbers geometrically on a
straight line. We first select a unit length. The integers are multiples of
this unit, and the rational numbers are fractional parts of this unit. We
have drawn a few rational numbers on the line below.

—+

|
[\
|
-4
!
SEE
(=]
ol
[
EEE
[

Observe that the negative integers and rational numbers occur to the
left of zero.

Finally, we have the numbers which can be represented by infinite
decimals, like /2 = 1.414... or m = 3.14159..., and which will be called
real numbers or simply numbers.

Geometrically, the numbers are represented as the collection of all
points on the above straight line, not only those which are a rational part
of the unit length or a multiple of it.

We note that the sum and product of two numbers are numbers. Ifaisa
number unequal to zero, then there is a unique number b such that ab =
ba = 1, and we write

b=l or b=oa
a

We say that b is the tnverse of a, or “a inverse”. We emphasize that the
expression
1/0 or 07'is not defined.

In other words, we cannot divide by zero, and we do not attribute any
meaning to the symbols 1/0 or 0~ 1.

However, if a is a number then the product 0 - a is defined and is equal to
0. The product of any number and 0 is 0. Furthermore, if b is any number
unequal to 0, then 0/b is defined and equal to 0. It can also be written

0-(1/b).
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If a is a rational number 5 0, then 1/a is also a rational number.
Indeed, if we can write @ = m/n, with integers m, n both different from 0,
then

1
a

3=

is also a rational number.

Not all numbers are rational numbers. For instance, \/2 is not a rational
number, and we shall now prove this fact.

We recall that the even numbers are the integers +2, 4, +6, &8, ...,
which can be written in the form 2n for some integer n. An odd number is
an integer like 1, £3, &5, £7, ..., which can be written in the form
2n + 1 for some integer n. Thus 6 = 2 - 3 is even (we select » = 3) and

11=2-5+41

is odd (we select n = 5).
We observe that the square of an even number is even. Indeed, if » is
an integer and 2n is an even number, then

(2n)% = 4n?

is an even number, which can be written 2(2n2), the product of 2 and the
integer 2n2.

The square of an odd number is odd. To prove this, let 2n -}- 1 be an
odd number (n being an integer). Then its square is

@Cn+ 1D2=4n?+ 4n+1
= 2(2n? + 2n) + 1.

Since 2n? + 2n is an integer, we have written the square of our odd number
in the form 2m 4 1 for some integer m, and thus have shown that our
square is odd.

We are now ready to prove that the square root of 2 is not a rational
number. Suppose it were. This would mean that we can find a rational
number @ such that a2 = 2. We can write

where m, n are integers, and neither m nor » is 0. Furthermore, we can
assume that not both m, n are even because we can put the fraction m/n in
lowest form and cancel as many powers of 2 dividing both m and = as
possible. Thus we can assume that at least one of the integers m or n is odd.
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From our assumption that a2 = 2 we get (m/n)2 = 2 or

Multiplying both sides of this equation by n? yields
m? = 2n2

and the right-hand side is even. By what we saw above, this means that m
is even and we can therefore write m = 2k for some integer k. Substituting,
we obtain

(2k)% = 2n?

or 4k? = 2n%. We cancel 2 and get 2k? = n2. This means that n?is even,
and consequently, by what we saw above, that n is even. Thus we have
reached the conclusion that both m, n are even, which contradicts the fact
that we put our fraction in lowest form. We can therefore conclude that
there was no fraction m/n whose square is 2.

It is usually very difficult to determine whether a given number is a
rational number or not. For instance, the fact that m is not rational was
discovered only at the end of the 18th century.

§2. Inequalities

Aside from addition, multiplication, subtraction and division (by num-
bers other than 0), we shall now discuss another important feature of the
real numbers.

We have the positive numbers, represented geometrically on the straight
line by those numbers unequal to 0 and lying to the right of 0. If a is a
positive number, we write ¢ > 0. You have no doubt already worked with
positive numbers, aud with inequalities. The next two properties are the
most basic ones, concerning positivity.

POS 1. If a, b are positive, so is the product ab and the sum a -+ b.

POS 2. If a is a number, then either a is positive, or a = 0, or —a s
positive, and these possibilities are mutually exclusive.

If a number is not positive and not 0, then we say that this number is
negative. By POS 2, if a is negative then —a is positive.

Although you know already that the number 1 is positive, it can in fact
be proved from our two properties. It may interest you to see the proof,
which runs as follows and is very simple. By POS 2, we know that either 1
or —1 is positive. If 1 is not positive, then —1 is positive. By POS 1, it
must then follow that (—1)(—1) is positive. But this product is equal to 1.
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Consequently, it must be 1 which is positive, and not —1. Using property
POS 1, we could now conclude that 1 + 1 = 2 is positive, that2 + 1 = 3
is positive, and so forth.

If @ > 0 we shall also say that a is greater than 0. If we wish to say that
a is positive or equal to 0, we write

a=0

and read this “a greater than or equal to zero”.

Given two numbers a, b we shall say that a is greater than b and write
a>bifa—b>0 Wewritea <0if —a>0anda <bifd > a.
Thus 3 > 2 because 3 — 2 > 0.

We shall write a = b when we want to say that a is greater than or equal
tob. Thus 3 =z 2 and 3 = 3 are both true inequalities.

Using only our two properties POS 1 and POS 2 we shall now prove all
the usual rules concerning inequalities. You probably know these already,
but proving them systematically will both sharpen your wits and etch
these rules more profoundly in your mind.

In what follows, let a, b, ¢ be numbers.

Rulel. Ifa > bandb > cthena > c.
Rule 2. If a > bandc > 0 then ac > be.
Rule 3. If a > band ¢ < 0O then ac < be.

Rule 2 expresses the fact that an inequality which is multiplied by a posi-
tive number is preserved. Rule 3 tells us that if we multiply both sides of
an inequality by a negative number, then the inequality gets reversed. For
instance, we have the inequality

1 <3.

Since 2 > 0 we also have 2-1 < 2:3. But —2 is negative, and if we
multiply both sides by —2 we get

—2 > —6.

In the geometric representation of the real numbers on the line, —2 lies
to the right of —6. This gives us the geometric representation of the fact
that —2 is greater than —6.

To prove Rule 1, suppose that ¢ > b and b > ¢. By definition, this
means that (¢ — b) > 0 and (b — ¢) > 0. Using property POS 1, we

conclude that
a—b+b—ec>0,

and canceling b gives us (@ — ¢) > 0. By definition, this means a > ¢, as
was to be shown.
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To prove Rule 2, suppose that a > b and ¢ > 0. By definition,
a—>b>0.

Hence using the property of POS 1 concerning the product of positive
numbers, we conclude that

(a — b)e > 0.

The left-hand side of this inequality is none other than ac — be, which is
therefore >0. Again by definition, this gives us

ac > bec.

We leave the proof of Rule 3 as an exercise.
If a is a number, then we define the absolute value of a to be:

a itself if a is =0.

—aif ais <O0.

In the second case, when a is negative, then —a is positive. Thus the ab-
solute value of a number is always a positive number, or 0. For instance,
the absolute value of 3 is 3 itself. The absolute value of —31is —(—3) = 3.
The absolute value of —% is 4. The absolute value of /2 is v/2 and the
absolute value of —1/2 is /2. It is customary to denote the absolute
value of a number by two bars beside the number. Thus the absolute value
of a number a is written |a|. For instance, |3| = 3 and |—3| = 3 also.
We have by definition |0] = 0.

Let a be a number >0. Then there exists a number whose square is a.
This is one of the facts which we take for granted about numbers. If
b2 = a then we observe that

(__b)z — b2

is also equal to a. Thus either b or —b is positive. We agree to denote by
v/a the positive square root and call it simply the square root of a. Thus \/4
is equal to 2 and not —2, even though (—2)2 = 4. This is the most
practical convention about the use of the v/ sign that we can make. Of
course, the square root of 0 is 0 itself. A negative number does not have a
square root.

THEOREM 1. If a is a number, then |a|? = a? and
la| = Va2

Proof. If ais positive then |a]| = a and our first assertion is clear. If a
is negative, then |a] = —a and

(_a)Z = (12,
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so we again get |a|2 = a?. When a = 0 our first assertion simply means
0 = 0. Finally, taking the (positive) square root, we get

la| = Va2
Tueorem 2. If a, b are numbers, then
lab| = laf |b].

This theorem expresses the fact that the absolute value of a product is
the product of the absolute values. We shall leave the proof as an exercise.
As an example, we see that

|—6] = I(—=3)-2| = [=3[|2| = 3-2 = 6.

There is one final inequality which is extremely important.

TueoreM 3. If a, b are two numbers, then
la + b = |a| + [b].

Proof. We first observe that either ab is positive, or it is negative, or it
is 0. In any case, we have

ab < |ab| = |a| |b].
Hence, multiplying both sides by 2, we obtain the inequality

2ab £ 2]al |b].
From this we get

I

(a + b)2 = a® + 2ab + b2
a?+ 2|al b} + b2

(lal + [B])2.

IIA

I

We can take the square root of both sides and use Theorem 1 to conclude
that

la + 8| = |a] + 2],

thereby proving our theorem.
You will find plenty of exercises below to give you practice with in-

equalities. We shall work out some numerical examples to show you the
way.

Ezxample 1. Determine the numbers salisfying the equality

e+ 1] = 2.
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This equality means that either x + 1 = 2 or —(z + 1) = 2, because
the absolute value of z -+ 1 is either (z + 1) itself or —(x 4+ 1). In the
first case, solving for x gives us x = 1, and in the second case, we get
—z — 1 =2orz = —3. Thus the answerisx = 1l orz = —3.

Ezxample 2. Determine all intervals of numbers satisfying the inequality

le + 1] > 2.
We distinguish cases.

Case 1. z+ 1 = 0. Then |zt + 1| = z + 1, and in this case, we must
find those = such that x +1 = 0 and z 4+ 1 > 2. The inequality
z 4+ 1 > 2 implies the inequality * + 1 =z 0. Hence all x such that
z + 1 > 2 will do, i.e. all z such that x > 1.

Case 2. 2+ 1 < 0. Then |z + 1| = —(z + 1), and in this case we
must find those numbers x such thatx + 1 < 0and —x — 1 > 2. These
inequalities are equivalent with the inequalities * < —1 and z < —3.
The set of numbers x satisfying these inequalities is precisely the set of
numbers z satisfying x < —3.

Putting our two cases together, we find that the required numbers x
are those such that z > 1orz < —3.

EXERCISES

Determine all intervals of numbers z satisfying the following inequalities.

1. || < 3 2. |22+ 1] =1

3. |22 —2/ =21 4. |z — 5 < [z 1]

5. (z+1Dx—2)<0 6. ¢ —1+1) >0
7. (x — 5+ 5) <0 8. zxz+1)=0

9.2%(z —1) =0 10. (z — 5)%(z+10) = 0
11. (x — 5)%(z+10) £ 0 12. 224+ 1)@= — 1 =0

13. 4z + 7)2°2z+8) < 0

Prove the following inequalities for all numbers z, y.

14 |z + 9| 2 [o] — |y 15. |z —y| 2 [2] — ||
16. [z — y| = |a| + |y

§3. Functions

A function (of numbers) is a rule which to any given number associates
another number.

It is customary to denote a function by some letter, just as a letter “z”
denotes a number. Thus if we denote a given function by f, and z is a
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number, then we denote by f(x) the number associated with z by the func-
tion. This of course does not mean “f times z”. There is no multiplication
involved here. The symbols f(x) are read “f of x”.

For example, the rule could be “square the number”. For this function,
we associate the number z% to the number z. If f is the function “square
the number”, then f(x) = z2. In particular, the square of 2 is 4 and hence
f(2) = 4. The square of 7 is 49 and f(7) = 49. The square of /2 is 2,
and hence f(/2) = 2. The square of (z -+ 1) is 22 + 2z + 1 and thus
flx + 1) = 22 + 2x + 1. If h is any number,

fx 4+ h) = 22 4 2zh + A2

To take another example, let ¢ be the function “add 1 to the number”.
Then to each number z we associate the number x 4+ 1. Therefore g(x) =
z+ 1and g(1) = 2. Also, g(2) = 3, ¢(3) = 4, g(v/2) = v2 4+ 1, and
glx + 1) = 2 + 2 for any number z.

We can view the absolute value as a function, defined by the rule: Given
any number a, we associate the number a itself if & = 0, and we associate
the number —a if ¢ < 0. Let F denote the absolute value function. Then
F(x) = |z| for any number 2. We have in particular F(2) = 2, and
F(—2) = 2 also. The absolute value is not defined by means of a formula
like 22 or z + 1. We give you another example of such a function which
is not defined by a formula.

We consider the function G described by the following rule:

G(x) = 0 if z is a rational number.

G(z) = 1if x is not a rational number.
Then in particular, G(2) = G(§) = G(—%) = 0 but
G(H2) = 1.

You must be aware that you can construct a function just by preseribing
arbitrarily the rule associating a number to a given one.

If fis a function and x a number, then f(x) is called the value of the
function at . Thus if f is the function “square the number”, the value of
fat 21is 4 and the value of f at §is }.

In order to describe a function, we need simply to give its value at any
number x. Thus we usually speak of a function f(x), meaning by that the
function f whose value at z is f(z). For instance, we would say “Let f(z)
be the function 22 + 5” instead of saying “Let f be the function cube the
number and add 5”. The advantages of speaking and writing in this way
are obvious.
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We would also like to be able to define a function for some numbers and
leave it undefined for others. For instance we would like to say that v/z
is a function (the square root function, whose value at a number z is the
square root of that number), but we observe that a negative number does
not have a square root. Hence it is desirable to make the notion of function
somewhat more precise by stating explicitly for what numbers it is defined.
For instance, the square root function is defined only for numbers =0.
This function is denoted by /z. The value v/z is the unique number =0
whose square is z.

Let us give another example of a function which is not defined for all
numbers. The function f(x) = 1/z is defined only for numbers 0. For
this particular function, we have f(1) = 1, f(2) = %, f(3) = 2 and

- 1.
f(\@)—\/5

One final word before we pass to the exercises: There is no magic reason
why we should always use the letter x to describe a function f(x). Thus
instead of speaking of the function f(z) = 1/x we could just as well say
fly) = 1/yorf(q) = 1/q. Unfortunately, the most neutral way of writing
would be f(blank) = 1/blank, and this is really not convenient.

EXERCISES

1. Let f(x) 1/x. Whatis f(3), f(—%)?

2. Let f(x) = 1/z again. What is f(2¢ + 1) (for any number z such that
z # —4)?

3. Let g(z) = |z] — z. Whatis g(1), g(—1), g(—54)?

4. Let f(y) = 2y — y2. What is f(2), f(w)?

5. For what numbers could you define a function f(z) by the formula

1
fx) = PR

What is the value of this function for z = 5?

6. For what numbers could you define a function f(z) by the formula f(z) =
+v/z (cube root of )? What is f(27)?

7. Let f(z) = z/|z|, defined for z % 0. What is:

?

a. f(1) b. f(2) c. f(—3) d. f(—%)
8. Let f(x) = z 4 |z|]. What is:

a. f(3) b. f(2) c. f(—4) d. f(—5)
9. Let f(xr) = 2r + 2?2 — 5. What is:

a. f(1) b. f(—1) c. fz+ 1)

10. For what numbers could you define a function f(z) by the formula f(z) =
v/ (fourth root of )? What is f(16)?
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§4. Powers

In this section we just summarize some elementary arithmetic.

Let n be an integer =1 and let a be any number. Then a” is the product
of a with itself n times. For example, let a = 3. If n = 2, then a®> = 9.
If n» = 3, then a® = 27. Thus we obtain a function which is called the
n-th power. If f denotes this function, then f(z) = a™.

We recall the rule

m..n

m+tn __ *

x =z
for any number z and integers m, n = 1.

Again, let n be an integer =1, and let a be a positive number. We
define a'/™ to be the unique positive number b such that b = a. (That
there exists such a unique number b is taken for granted as part of the
properties of numbers.) We get a function called the n-th roof. Thus if
f is the 4-th root, then f(16) = 2 and f(81) = 3.

The n-th root function can also be defined at 0, the n-th root of 0 being
0 itself.

Question: If n is an odd integer like 1, 3, 5, 7, ..., can you define an
n-th root function for all numbers?

If a, b are two numbers =0 and »n is an integer =1 then
(ab) 1/n — al/nblln_

There is another useful and elementary rule. Let m, n be integers =1
and let @ be a number =0. We define a™'™ to be (al/™)™ which is also equal
to (a™)!/. This allows us to define fractional powers, and gives us a func-
tion

f@) = ami
defined for x = 0.

We now come to powers with negative numbers or 0. We want to define

x® when a is a negative rational number or 0 and + > 0. We want the

fundamental rule

a-+b b

x = 1%

to be true. This means that we must define 2° to be 1. For instance, since
23 — 23+0 — 2320,

we see from this example that the only way in which this equation holds is
if 2° = 1. Similarly, in general, if the relation

a+0 a .0

r = = rr

is true, then z° must be equal to 1.
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Suppose finally that a is a positive rational number, and let 2 be a num-
ber >0. We define 27* to be

1
v
Thus ) 1
278 = 55 =3’ ond 4728 — 1/4%3,

We observe that in this special case,
(4723 (4%3%) = 4° = 1.
In general, 2%27% = 2% = 1.
We are tempted to define z® even when a is not a rational number. This
is more subtle. For instance, it is absolutely meaningless to say that

AL

is the product of 2 square root of 2 times itself. The problem of defining
2¢ (or %) when a is not rational will be postponed to a later chapter. Until
that chapter, when we deal with such a power, we shall assume that there
is a function, written z% described as we have done above for rational
numbers, and satisfying the fundamental relation

xa+b — $a.’13b

20 = 1.

Ezxample. We have a function f(z) = zVZ2 defined for all z > 0. It is
actually hard to describe its values for special numbers, like 2V2. It was
unknown for a very long time whether 2V?2 is a rational number or not.
The solution (it s not) was found only in 1927 by the mathematician
Gelfond, who became famous for solving a problem that was known to be
very hard.

Warning. Do not confuse a function like x2 and a function like 22,
Given a number ¢ > 0, we can view ¢” as a function defined for all x. (It
will be discussed in detail in Chapter VIII.) This function is called an
exponential function. Thus 2% and 10* are exponential functions. We shall

select a number
e = 2.718...

and the exponential function e” as having special properties which make it
better than any other exponential function. The meaning of our use of the
word “better” will be explained in Chapter VIII.
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EXERCISES

Find a® and z¢ for the following values of x and a.

3.

7.
9.
11.

. a

a

a
a

2and z =
tandz =
—4and z
—3and z
—1and z

[T

4
—1
—4

2.
4.
6.
8.
10.

{8 8

a

5and z
tandz =
3and z
—2 and z

]

—%andz =

13

Determine whether 2v2 | 3V3 is a rational number. (This is actually a
major research problem whose answer is not known today. Later in this course
we shall deal with numbers ¢ and w. Although it is known that neither € nor =
is rational, it is not known whether er or ¢ + =« is rational.)



CHAPTER II
Graphs and Curves

The ideas contained in this chapter allow us to translate certain state-
ments backwards and forwards between the language of numbers and the
language of geometry.

It is extremely basic for what follows, because we can use our geometric
intuition to help us solve problems concerning numbers and functions, and
conversely, we can use theorems concerning numbers and functions to
yield results about geometry.

§1. Coordinates

Once a unit length is selected, we can represent numbers as points on a
line. We shall now extend this procedure to the plane, and to pairs of
numbers.

We visualize a horizontal line and a vertical line intersecting at an

origin O.

These lines will be called coordinate axes or simply azxes.

We select a unit length and cut the horizontal line into segments of
lengths 1, 2, 3, ... to the left and to the right, and do the same to the
vertical line, but up and down, as indicated in the next figure.

On the vertical line we visualize the points going below 0 as correspond-
ing to the negative integers, just as we visualized points on the left of the

14
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horizontal line as corresponding to negative integers. We follow the same
idea as that used in grading a thermometer, where the numbers below zero
are regarded as negative.

We can now cut the plane into squares whose sides have length 1.

KD

W

{1, 2)

- N W

|
.
|
!
o
|
=
<
o
-~

|
g

We can describe each point where two lines intersect by a pair of integers.
Suppose that we are given a pair of integers like (1, 2). We go to the right
of the origin 1 unit and vertically up 2 units to get the point (1, 2) which
has been indicated above. We have also indicated the point (3, 4). The
diagram is just like a map.

Furthermore, we could also use negative numbers. For instance to
describe the point (—3, —2) we go to the left of the origin 3 units and
vertically downwards 2 units.

There is actually no reason why we should limit ourselves to points which
are described by integers. For instance we can also have the point (3, —1)
and the point (—+/2, 3) as on the next figure. We have not drawn all the
squares on the plane. We have drawn only the relevant lines to find our
two points.



16 GRAPHS AND CURVES (11, §1]

[ +3
' 1/2
—o— 4 t
— V2
—14-4(1/2, -1)

In general, if we take any point P in the plane and draw the perpendicu-
lar lines to the horizontal axis and to the vertical axis, we obtain two
numbers x, y as in the figure below.

The perpendicular line from P to the horizontal axis determines a num-
ber x which is negative in the figure because it lies to the left of the origin.
The number y determined by the perpendicular from P to the vertical
axis is positive because it lies above the origin. The two numbers z, y are
called the coordinates of the point P, and we can write P = (z, y).

Every pair of numbers (z, y) determines a point of the plane. We find
the point by going a distance x from the origin 0 in the horizontal direction
and then a distance y in the vertical direction. If z is positive we go to the
right of 0. If z is negative, we go to the left of 0. If y is positive we go
vertically upwards, and if y is negative we go vertically downwards.

The coordinates of the origin are (0, 0).

We usually call the horizontal axis the z-axzs and the vertical axis the
y-axis. If a point P is described by two numbers, say (5, —10), it is cus-
tomary to call the first number its z-coordinate and the second number its
y-coordinate. Thus 5 is the z-coordinate, and —10 the y-coordinate of
our point.

Of course, we could use other letters besides x and y, for instance ¢
and s, or u and v.
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Our two axes separate the plane into four quadrants which are numbered
as indicated in the figure:

II I

11T v

If (x, y) is a point in the first quadrant, then both x and y are >0. If
(z, y) is a point in the fourth quadrant, then x > O but y < 0.

EXERCISES

1. Plot the following points:
(—1, 1), (0, 5), (—5, —2), (1, 0).
2. Plot the following points:
(%; 3); (-%) —%); (%’ __2); (_%1 '—%)
3. Let (z, ¥) be the coordinates of a point in the second quadrant. Is z posi-
tive or negative? Is y positive or negative?
4. Let (z, ) be the coordinates of a point in the third quadrant. Is z positive
or negative? Is y positive or negative?
5. Plot the following points:
(1.2, —2.3), (1.7, 3).
6. Plot the following points:
(—2.5, 8, (—3.5, 3.
7. Plot the following points:
(1.5, —1), (—1.5, —1).

§2. Graphs

Let f be a function. We define the graph of f to be the collection of all
pairs of numbers (z, f(z)) whose first coordinate is any number for which
f is defined and whose second coordinate is the value of the function at the
first coordinate.

For example, the graph of the function f(x) = x? consists of all pairs
(x, y) such that y = 22 In other words, it is the collection of all pairs
(z, 29, like (1, 1), (2,4), (—1, 1), (—3,9), ete.

Since each pair of numbers corresponds to a point on the plane (once a
system of axes and a unit length have been selected), we can view the graph
of f as a collection of points in the plane. The graph of the function
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f(z) = z2 has been drawn in the figure below, together with the points
which we gave above as examples.

(-3, 9 T 3,9
1 Y=z
(—27 4) T (2y 4)
(-1, )% + #@Q, 1

To determine the graph, we plot a lot of points making a table giving
the z- and y-coordinates.

T f(z) T f(x)
1 1 -1 1
2 4 —2 4
3 9 -3 9
3 i —3% i

At this stage of the game there is no other way for you to determine the
graph of a function other than this trial and error method. Later, we shall
develop techniques which give you greater efficiency in doing it.

We shall now give several examples of graphs of functions which occur
very frequently in the sequel.

Example 1. Consider the function f(r) = z. The points on its graph
are of type (z, x). The first _coordinate must be equal to the second. Thus
fQ) = 1, f(—1/2) = —+/2, etc. The graph looks like this:

(€AY
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Example 2. Let f(x) = —x. Its graph looks like this:

(_11 1)

Observe that the graphs of the preceding two functions are straight lines.
We shall study the general case of a straight line later.

Example 3. Let f(z) = |z|. When z = 0, we know that f(z) = z.
When z = 0, we know that f(x) = —z. Hence the graph of |z| is ob-~
tained by combining the preceding two, and looks like this:

y=|z|

All values of y are =0, whether z is positive or negative.

Ezample 4. There is an even simpler type of function than the ones we
have just looked at, namely the constant functions. For instance, we can
define a function f such that f(x) = 2 for all numbers x. The rule is to
associate the number 2 to any number x. It is a very simple rule, and the
graph of this function is a horizontal line, intersecting the vertical axis at
the point (0, 2).

J)=2
©, 2
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If we took the function f(x) = —1, then the graph would be a horizontal
line intersecting the vertical axis at the point (0, —1).

In general, let ¢ be a fixed number. The graph of the function f(x) = ¢
is the horizontal line intersecting the vertical axis at the point (0, ¢). The
function f(x) = c¢ is called a constant function.

Ezxzample 5. The last of our examples is the function f(z) = 1/x
(defined for z # 0). By plotting a few points of the graph, you will see
that it looks like this:

1, 1)
@, 1/2)

1 I
y t

1

(=1, =1) T

I

For instance, you can plot the following points:

x 1/z x 1/x
1 1 1 1
2 1 —2 —3
3 3 —3 —1
3 2 —1 —2
3 3 —3 3

As x becomes very large positive, 1/x becomes very small. As x approaches
0 from the right, 1/x becomes very large. A similar phenomenon ocecurs
when x approaches 0 from the left; then z is negative and 1/z is negative
also. Hence in that case, 1/x is very large negative.
In trying to determine how the graph of a function looks, you can
already watch out for the following:
The points at which the graph intersects the two coordinate axes.
What happens when x becomes very large positive and very large
negative.
On the whole, however, in working out the exercises, your main technique
is just to plot a lot of points until it becomes clear to you what the graph
looks like.
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EXERCISES

Sketch the graphs of the following functions and plot at least three points on
each graph.

l.z4+1 2. 2z 3. 3z
4. 42 5.2+ 1 6. 5z + %
7.g+3 8. —3z+ 2 9. 222 — 1
10. —3z°+1 11. z° 12. z*
13. Vz 14, z7 V2 15. 2z
16. z+ 1 17. |z| + = 18. |z| + 2z
1
19. —lz| 20. —|z| + = 21. pa
1 1 1
22 —— 2. — 24 ——
2 2 2
25. —— 2. 75 2. =
—2 3 z
j— 29, —— L=
28 z+ 5 9x+1 30 |z]

(In Exercises 13, 14, and 21 through 30, the functions are not defined for all
values of z.)

31. Sketch the graph of the function f(z) such that:
flzxy =0 if z=0.
flxy =1 if z>0.
32. Sketch the graph of the function f(x) such that:
fl@)y =z if z<0.
f0) = 2.
fl@y =2z if > 0.
33. Sketch the graph of the function f(z) such that:
flx) = 22 if 2 <O.
flxy =2 if z = 0.
34. Sketch the graph of the function f(z) such that:
fx) =lz]+=z if —1 221,
f(x) =3 if z > 1. (f(z) is not defined for other values of x.)
35. Sketch the graph of the function f(z) such that:
fo) =23 if 220, fx)=1if 0<z<2
flx) = 22 if z = 2.
36. Sketch the graph of the function f(z) such that:
flx) =« if 0<z=1. f@)y =2z—1 if 1<z 2
f@) =2 —2 if 2 <z Z 3. fl@2) =2—3 if 3<z =4
(We leave f(z) undefined for other values of z, but try to define it yourself in
such a way as to preserve the symmetry of the graph.)

=
=
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§3. The straight line

One of the most basic types of functions is the type whose graph repre-
sents a straight line. We have already seen that the graph of the function
f(x) = x is a straight line. If we take f(x) = 2z, then the line slants up
much more steeply, and even more so for f(x) = 3x. The graph of the
function f(z) = 10,000z would look almost vertical. In general, let a be
a positive number 0. Then the graph of the function

flx) = azx

represents a straight line. The point (2, 2a) lies on the line because
f(2) = 2a. The point (/2, /2 a) also lies on the line, and if ¢ is any
number, the point (c, ca) lies on the line. The (z, y) coordinates of these
points are obtained by making a similarity transformation, starting with
the coordinates (1, a) and multiplying them by some number c.

We can visualize this procedure by means of similar triangles. In the
figure below, we have a straight line. If we select a point (z, y) on the line
and drop the perpendicular from this point to the z-axis, we obtain a right
triangle.

(cx,cy)

(z, v)

x [

If z is the length of the base of the smaller triangle in the figure, and y its
height, and if cx is the length of the base of the bigger triangle, then cy is
the height of the bigger triangle: The smaller triangle is similar to the
bigger one.

If a is a number <0, then the graph of the function f(z) = ax is also a
straight line, which slants to the left. For instance, the graphsof f(z) = —=
or f(x) = —2=z.

Let a, b be two numbers. The graph of the function ¢(x) = ax + b is
also a straight line, which is parallel to the line determined by the function
f(x) = ax. In order to convince you of this, we observe the following.
When z = 0 we see that g(x) = b. Let ¥y’ = y — b. The equation
y’ = ax is of the type discussed above. If we have a point (z, ') on the
straight line ¥y’ = ax, then we get a point (z, 4’ -+ b) on the straight line
y = ax + b, by simply adding b to the second coordinate. This means
that the graph of the function g(x) = ax + b is the straight line parallel
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to the line determined by the function f(x) = ax and passing through the
point (0, ).

Example 1. Let g(x) = 2x + 1. When =z = 0, then ¢g(x) = 1. The
graph looks like this:

y=2z+1

/ © 1

Ezample 2. Let g(x) = —2x — 5. When z = 0, then g(x) = —5.
The graph looks like this:

(0, 0)

y= —2r—5

pa

We shall frequently speak of a function f(x) = ax + b as a straight line
(although of course, it is its graph which is a straight line).

The number ¢ which is the coefficient of x is called the slope of the line.
It determines how much the line is slanted. As we have already seen in
many examples, when the slope is positive, the line is slanted to the right,
and when the slope is negative, the line is slanted to the left. The relation-
ship ¥y = ax -+ b is also called the equation of the line. It gives us the
relation between the z- and y-coordinates of a point on the line.

Let f(x) = ax + b be a straight line, and let (xi, y;) and (zs, y2) be
two points of the line. It is easy to find the slope of the line in terms of the
coordinates of these two points. By definition, we know that

yr=ax; + b

and
Y2 = ars + b.
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Subtracting, we get
Yo — Y1 = axz — ax; = a(rz — T1).

Consequently, if the two points are distinct, 3 # 1, then we can divide
by s — z; and obtain

Y2 — Y1

Tz — 1

a =

This formula gives us the slope in terms of the coordinates of two distinct
points on the line.

Example 3. Look at the line f(z) = 2x + 5. Letting + = 1, we have
f(x) = 7 and letting x = —1, we get f(x) = 3. Thus the points (1, 7)
and (—1, 3) are on the line. The slope is 2, and is equal to

7—3
1 — (1)
as it should be.
Geometrically, our quotient
Y2 — Y1
Tog — Iq

is simply the ratio of the vertical side and horizontal side of the triangle in
the next diagram:

Conversely, given two points in the plane, it is easy to determine the
equation of the line passing through them.

Ezxample 4. Let (1, 2) and (2, —1) be the two points. What is the slope
of the line between them? What is the equation of the line?
We first find the slope. It must be the quotient

Y2— W1
To — X1
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which is equal to

—1—2

=1 - %

Thus we know that our line is given by the equation
y= —3z+b

for some number b. Furthermore, we know also that the line must pass
through the point (1, 2). If f(zx) = —3x + b, then we must have f(1) = 2.
From this we can solve for b, namely

2= —3-1+4+%b
yields b = 2 + 3 = 5. Thus the equation of the line is
flx) = —3z + 5.

Observe that it does not matter which point we call (x;, y;) and which
we call (2, ¥2). We would get the same answer for the slope.

Knowing two points on a line, we first determine the slope and then solve
for the constant b, using the coordinates of one of the points.

We can also determine the equation of a line provided we know the slope
and one point.

Ezample 5. Find the equation of the line having slope —7 and passing
through the point (—1, 2).

The equation must be of type

y= —Tx+b
for some number b. Furthermore, when x+ = —1, we must have y = 2.
Thus
2= (—=7)(—1) +b
and b = —5. Hence the equation of the line is

y = —7x — 5.

Finally, we should mention vertical lines. These cannot be represented
by equations of type y = axr + b. Suppose that we have a vertical line
intersecting the z-axis at the point (2, 0). The y-coordinate of any point
on the line can be arbitrary. Thus the equation of the line is simple z = 2.
In general, the equation of the vertical line intersecting the z-axis at the
point (¢,0) isx = ¢.
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ExERCISES

Sketch the graphs of the following lines:

l.y=—2z+45 2.y =5z —3
z z
What is the equation of the line passing through the following points?
5. (—1,1) and (2, —7) 6. (3, %) and (4, —1)
7. (v/2, —1) and (2, 1) 8. (—3, —5) and (V/3, 4)

What is the equation of the line having the given slope and passing through the
given point?

9. slope 4 and point (1, 1) 10. slope —2 and point (3, 1)
11. slope —% and point (v/2, 3) 12. slope /3 and point (—1, 5)
Sketch the graphs of the following lines:

13. z =5 4. z = —1 15. z = —3
16. y = —4 17. y = 2 18.y = 0.

§4. Distance between two points

Let (x1, ¥1) and (x4, y2) be two points in the plane, for instance as in the
following diagrams.

(z, y2)
(z2, y2)

—

(@1, 1) (@1, Y1)

(a) (b)

We can then make up a right triangle. By the Pythagoras theorem, the
length of the line segment joining our two points can be determined from
the lengths of the two sides. The square of the bottom side is (x2 — )2,
which is also equal to (x; — z3)2 This is clear in part (a) of the figure.
It is also true in part (b) (convince yourself by working out an example, as
for instance in Example 2 below). The length of the vertical side is
(y2 — y1)?, which is equal to (y; — y2)2. If L denotes the length of the
line segment, then

L? = (z1 — 22)> + (1 — ¥2)°
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and consequently,

L=+V(x2— 21)2+ (y2 — y1)2

Ezample 1. Let the two points be (1, 2) and (1, 3). Then the length of
the line segment between them is

VI—D2+(@3—-22=1
The length L is also called the distance between the two points.

Example 2. Find the distance between the points (—1, 5) and (4, —3).

The distance is

VE = (1) + (=3 — 5)2 = V8.

(You should plot these points, and convince yourself that the minus signs
do not affect the validity of our formula for the length of the line segment
between the two points.)

EXERCISES

Find the distance between the following points:
1. The points (—3, —5) and (1, 4)

. The points (1, 1) and (0, 2)

. The points (—1, 4) and (3, —2)

. The points (1, —1) and (—1, 2)

. The points (4, 2) and (1, 1)

6. Find the coordinates of the fourth corner of a rectangle, three of whose
corners are (—1, 2), (4, 2), (—1, —3).

7. What are the lengths of the sides of the rectangle in Exercise 67

(oL VU )

§5. Curves and eauations

Let F(x, y) be an expression involving a pair of numbers (z,y). Let ¢
be a number. We consider the equation

F(z,y) = c

The collection of points (@, b) in the plane satisfying this equation, i.e.
such that

F(a,b) = ¢,
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is called the graph of the equation. This graph is also known as a curve,
and we will usually not make a distinction between the equation

F(z,y) = ¢

and the curve which represents the equation.
For example,

r+y=2

is the equation of a straight line, and its graph is the straight line. We
shall study below important examples of equations which arise frequently.

If f is a function, then we can form the expression y — f(x), and the
graph of the equation

y—fl) =0

is none other than the graph of the function f as we discussed it in §2.
You should observe that there are equations of type

Flz,y) = ¢

which are not obtained from a function y = f(x). For instance, the equa-
tion 2 + y2 = 1 is such an equation.
We shall now study important examples of graphs of equations

Fl,y) =0 or F(x,y) = c.

§6. The circle

The function F(x,y) = x2 + y? has a simple geometric interpretation.
It is the square of the distance of the point (z, y) from the origin (0, 0).
Thus the points (z, y) satisfying the equation

x2_+_y2=12___1

are simply those points whose distance from the origin is 1. It is the circle
of radius 1, with center at the origin.
Similarly, the points (z, y) satisfying the equation

x2_|__y2=4

are those points whose distance from the origin is 2. They constitute the
circle of radius 2. In general, if ¢ is any number >0, then the graph of the
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equation
1132 + y2 — C2

is the circle of radius ¢, with center at the origin.
We have already remarked that the equation

x2+y2=1

or 2 4+ y? — 1 = 0 is not of the type y — f(x) = 0, i.e. does not come
from a function y = f(x). However, we can write our equation in the form

y2=1— 22
For any value of z between —1 and -1, we can solve for y and get

y=V1— 2z or y= —V1— z2

If £ £ 1 or z # —1, then we get two values of y for each value of .
Geometrically, these two values correspond to the points indicated on the

following diagram.

x

(=, — Vi-22)

There is a function, defined for —1 = 2 = 1, such that

fl@) = V1 — =2,

and the graph of this function is the upper half of our circle. Similarly,
there is another function

g9(x) = —v1 — %,

also defined for —1 < x < 1, whose graph is the lower half of the circle.
Neither of these functions is defined for other values of z.

We now ask for the equation of the circle whose center is (1, 2) and whose
radius has length 3. It consists of the points (x, y) whose distance from
(1, 2) is 3. These are the points satisfying the equation

=D+ @—2°2=09.
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(1, 2)

N

The graph of this equation has been drawn above.
To pick another example, we wish to determine those points at a distance
2 from the point (—1, —3). They are the points (z, y) satisfying the equa-
tion
(= (=D)’+@H—(-3)°=1
or, in other words,

(z+ D2+ (y+ 3)2 =4

(Observe carefully the cancellation of minus signs!) Thus the graph of this
equation is the circle of radius 2 and center (—1, —3).

In general, let a, b be two numbers and r a number >0. Then the circle of
radius r and center (a, b) s the graph of the equation

(z—a)?+ @y —b?=r2

In our last example, we have

Ezxample 1. Suppose that we have a quadratic expression like
z? + 2z,
We can complete the square and write it as
22420 = (@x+ 12— 1.
Similarly, given the expression y?2 — 3y, we can write it
V¥—3y=uw—-9*—-1
Given an equation
22+ 942+ 22 — 3y — 5 =0,

we can use the trick of completing the square to see what its graph looks
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like. Our equation can be written in the form
@+ +@@—P*=56+3+1=2%
Thus our equation is a circle of center (—1, §) and radius v/33/4.
EXERCISES

Sketch the graph of the following equations:

L@—22+@w+ 1% =25 2.2+ @w—1%=09
2 2
2 2 _23__ y_=
3.z 12447 =3 1. 5 +5% =1
12 y2 x2 y2
524 %~ 6. F+% =1
2 2 2 2
Ty -0 L G+2° _
T o1 8. 2+ =1
2
9. 42” + 25y° = 100 10. (’H;l) +(yt2) =1
2
11. 252% + 164 = 400 12. (x—1)2+@=1

(In Exercises 4 through 12, the graph of the equation is called an ellipse. It
is a stretched-out circle. Investigate for yourself the effect of changing the coefhi-
cients of z? and 2 in these equations.)

§7. The parabola. Changes of coordinates

We have seen what the graph of the equation y = 2% looks like. Sup-
pose that we graph the equation y = (z — 1)2. We shall find that it
looks exactly the same, but as if the origin were placed at the point (1, 0).

Similarly, the curve y — 2 = (z — 4)? looks again like y = 22 except
that the whole curve has been moved as if the origin were the point (4, 2).
The graphs of these equations have been drawn on the next diagram.

We can formalize these remarks as follows. Suppose that in our given
coordinate system we pick a point (a, b) as a new origin. We let new
coordinates be ' = ¢ — aand ' = y — b. Thus when x = & we have
2’ = 0 and when y = b we have y’ = 0. If we have a curve

yr — xl2

in the new coordinate system whose origin is at the point (a, b), then it
gives rise to the equation

(y —b) = (z— a)?
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y —2 = (z —4)2

{, 0)

in terms of the old coordinate system. This type of curve is known as a
parabola.

We can apply the same technique of completing the square that we did
for the circle.

Ezxample. What is the graph of the equation
2y — z%2 — 4z + 6 = 0?
Completing the square, we can write |
2+ 4z = (z + 2)%2 — 4.
Thus our equation can be rewritten

2y = (x+2)2 — 10
or

2(y + 5) = (x + 2)2
We choose a new coordinate system
¥ =zxz+2 and y=y+5

so-that our equation becomes

2yl — .’C’2

ory’ = 12’2 Thisis a function whose graph you already know, and whose
sketch we leave to you.
Finally, we remark that if we have an equation

r—y2=0

or x = y2, then we get a parabola which is tilted horizontally. (Draw the
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graph yourself.) We can then.apply the technique of changing the co-
ordinate system to see what the graph of a more general equation is like,
for instance the graph of

t—y*+2y+5=0.

EXERCISES

Sketch the graph of the following equations:
l.y=—2xz+2 2.y =222+ 1 —3
3.z —4y2 =0 4.2 —y2+y+1=0

Complete the square in the following equations and change the coordinate
system to put them into the form

24y’ = g2
or
y = cx'?
or
¥ = cy'?

with a suitable constant c.
5 224+ y2 — 44+ 2y —20 =0 6. 224+ y2 —2y —8 =0

7. 224+ y2+22—2 =0 8.y ~222 —2z2+3=0
9.y —22—4x—5=0 10. y —22+2:+3 =0
11, 22+ y2 4 22 — 4y = —3 12. 224+ 42 — 4z — 2y = —3
13.2— 22 —y+3=0 4.2 —y2—4y = 5

8§8. The hyperbola
We have already seen what the graph of the equation

zy = 1

looks like. It is of course the same as the graph of the function f(x) = 1/z
(defined for x £ 0). If we pick a coordinate system whose origin is at the
point (a, b), the equation
1
zT—a

y—b=
is known as a hyperbola. In terms of the new coordinate systemz’ =z — a
and ¥’ = y — b, our hyperbola has the old type of equation

Io

2y = 1.
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If we are given an equation like

GRAPHS AND CURVES
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2y —2x+3y+4=25,

we can factor the left-hand side and rewrite the equation as

or

+3)y—2)+6+4=35

(+3)@y —2) = —5.

In terms of the coordinate system 2’ = z + 3 and y' = y — 2, we get
the equation

'y’ = —5.

The graph of this equation has been drawn on the following diagram.

EXERCISES

Sketch the graphs of the following curves:

1.

3
5
7
9

11.

13.

(z— 1Dy —2)
.2y —4 =0
_ 1

'y_x+1
=Dy —1
1
.y=x_2+4
4z =7
y= r—2
_z+1
y—x——l

2

P il
T
2.z(y+1) = 3
2
4'y-—_l——:v
6. z+2)y —1) =1
8. (zx—1y—1 =1
1
10.y=x+1—2
—2z — 1
12.y=——m-
14,y = 21

z+1



CHAPTER III
The Derivative

The two fundamental notions of this course are those of the derivative
and the integral. We take up the first one in this chapter.

The derivative will give us the slope of a curve at a point. It has also
applications to physics, where it can be interpreted as the rate of change.

We shall develop some basic techniques which will allow you to compute
the derivative in all the standard situations which you are likely to en-
counter in practice.

§1. The slope of a curve

Consider a curve, and take a point P on the curve. We wish to define
the notions of slope of the curve at that point, and tangent line to the curve
at that point. Sometimes the statement is made that the tangent to the
curve at the point is the line which touches the curve only at that point.
This is pure nonsense, as the subsequent pictures will convince you.

2D 4 / \

Fiaure 1 Ficure 2

In Figs. 1, 2, and 3, we look at the tangent line to the curve at the point

P. In Fig. 1 the line cuts the curve at the other point @. In Fig. 2 the line

is also tangent to the curve at the point Q. In Fig. 3 the curve is supposed to

be very flat near the point P, and the horizontal line cuts the curve at P,

but we would like to say that it is tangent to the curve at P if the curve is

very flat. The vertical lize cuts the curve only at P, but is not tangent.
35
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Ficure 3

Observe also that you cannot get out of the difficulties by trying to
distinguish a line “cutting” the curve, or “touching the curve”, or by
saying that the line should lie on one side of the curve (cf. Fig. 1).

We therefore have to give up the idea of touching the curve only at one
point, and look for another idea.

We have to face two problems. One of them is to give the correct
geometric idea which allows us to define the tangent to the curve, and the
other is to test whether this idea allows us to compute effectively this
tangent line when the curve is given by a simple equation wi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>