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Foreword 

The First Course in Calculus went through five editions since the early 
sixties. Sociological and educational conditions have evolved in various 
ways during four decades. Hence it has been found worth while to make 
the original edition again available. It is also worth while repeating here 
most of the foreword which I wrote almost forty years ago. 

The purpose of a first course in Calculus is to teach the student the basic 
notions of derivative and integral, and the basic techniques and applica­
tions which accompany them. 

At present in the United States, this material is covered mostly during 
the first year of college. Ideally, the material should be taught to students 
who are 'approximately sixteen years of age, and belongs properly in the 
secondary schools. (I have talked with several students of that age, and 
find them perfectly able to understand what it is all about.) 

Irrespective of when it is taught, I believe that the presentation remains 
more or less invariant. The very talented student, with an obvious apti­
tude for mathematics, will rapidly require a course in functions of one real 
variable, more or less as it is understood by professional mathematicians. 
This book is not primarily addressed to such students (although I hope 
they will be able to acquire from it a good introduction at an early age). 

I have not written this course in the style I would use for an advanced 
monograph, on sophisticated topics. One writes an advanced monograph 
for oneself, because one wants to give permanent form to one's vision of 
some beautiful part of mathematics, not otherwise accessible, somewhat 
in the manner of a composer setting down his symphony in musical 
notation. 

This book is written for the student, to provide an immediate, and 
pleasant, access to the subject. I hope that I have struck a proper com­
promise between dwelling too much on special details, and not giving 
enough technical exercises, necessary to acquire the desired familiarity 
with the subject. In any case, certain routine habits of sophisticated 
mathematicians are unsuitable for a first course. 

This does not mean that so-called rigour has to be abandoned. The 
logical development of the mathematics of this course from the most basic 
axioms proceeds through the following stages: 

v 



VI FOREWORD 

Set theory 
Integers (whole numbers) 
Rational numbers (fractions) 
Numbers (i.e. real numbers) 
Limits 
Derivatives 
and forward. 

Noone in his right mind suggests that one should begin a course with set 
theory. It happens that the most satisfactory place to jump into the sub­
ject is between limits and derivatives. In other words, any student is 
ready to accept as intuitively obvious the notions of numbers and limits 
and their basic properties. For some reason, there is a fashion which 
holds that the best place to enter the subject logically is between numbers 
and limits. Experience shows that the students do not have the proper 
psychological background to accept this, and resist it tremendously. Of 
course, there is still another fashion, which is to omit proofs completely. 
This does not teach mathematics, and puts students at a serious disad­
vantage for subsequent courses, and the understanding of what goes on. 

In fact, it turns out that one can have the best of all these ideas. The argu­
ments which show how the vroperties of limits can be reduced to those of 
numbers form a self-contained whole. Logically, it belongs before the sub­
ject matter of our course. Nevertheless, we have inserted it as an appendix. 
If any students feel the need for it, they need but read it and visualize it as 
Chapter O. In that case, everything that follows is as rigorous as any 
mathematician would wish it (so far as objects which receive an analytic 
definition are concerned). Not one word need be changed in any proof. I 
hope this takes care once and for all of possible controversies concerning 
so-called rigour. 

Some objects receive a geometric definition, and there are applications 
to physical concepts. In that case, it is of course necessary to insert one 
step to bridge the physical notion and its mathematical counterpart. The 
major instances of this are the functions sine and cosine, and the area, 
as an integral. 

For sine and cosine, we rely on the notions of plane geometry. If one 
accepts standard theorems concerning plane figures then our proofs satisfy 
the above-mentioned standards. 

For the integral, we first give a geometric argument. We then show, 
using the usual Riemann sums, how this geometric argument has a perfect 
counterpart when we require the rules of the game to reduce all definitions 
and proofs to numbers. This should satisfy everybody. Furthermore, the 
theory of the integral is so presented that only its existence depends either 
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on a geometric argument or a slightly involved theoretical investigation 
(upper and lower sums). According to the level of ability of a class, the 
teacher may therefore dose the theory according to ad hoc judgement. 

It is not generally recognized that some of the major difficulties in 
teaching mathematics are analogous to those in teaching a foreign language. 
(The secondary schools are responsible for this. Proper training in the 
secondary schools could entirely eliminate this difficulty.) Consequently, 
I have made great efforts to carry the student verbally, so to say, in using 
proper mathematical language. Some proofs are omitted. For instance, 
they would be of the following type. In the theory of maxima and minima, 
or increasing and decreasing functions, we carry out in full just one of the 
cases. The other is left as an exercise. The changes needed in the proof are 
slight, amounting mainly to the insertion of an occasional minus sign, 
but they force students to understand the situation and train them in 
writing clearly. This is very valuable. Aside from that, such an omission 
allows the teacher to put greater emphasis on certain topics, if necessary, 
by carrying out the other proof. As in learning languages, repetition is 
one of the fundamental tools, and a certain amount of mechanical learn­
ing, as distinguished from logical thinking, is both healthy and necessary. 

I have made no great innovations in the exposition of calculus. Since 
the subject was discovered some 300 years ago, it was out of the question. 
Rather, I have omitted some specialized topics which no longer belong in 
the curriculum. Stirling's formula is included only for reference, and can 
be skipped, or used to provide exercises. Taylor's formula is proved with 
the integral form of the remainder, which is then properly estimated. The 
proof with integration by parts is more natural than the other (differ­
entiating some complicated expression pulled out of nowhere), and is the 
one which generalizes to the higher dimensional case. I have placed inte­
gration after differentiation, because otherwise one has no technique 
available to evaluate integrals. But on the whole, everything is fairly 
standard. 

I have cut down the amount of analytic geometry to what is both neces­
sary and sufficient for a general first course in this type of mathematics. 
For some applications, more is required, but these applications are fairly 
specialized. For instance, if one needs the special properties concerning 
the focus of a parabola in a course on optics, then that is the place to pre­
sent them, not in a general course which is to serve mathematicians, 
physicists, chemists, biologists, and engineers, to mention but a few. What 
is important is that the basic idea of representing a graph by a figure in 
the plane should be thoroughly understood, together with basic examples. 
The more abstruse properties of ellipses, parabolas, and hyperbolas should 
be skipped. 

As for the question: why republish a forty year old edition? I answer: 
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Because for various reasons, a need exists for a short, straightforward and 
clear introduction to the subject. Adding various topics may be useful in 
some respects, and adding more exercises also, but such additions may 
also clutter up the book, especially for students with no or weak back­
ground. 

To conclude, if I may be allowed another personal note here, I learned 
how to teach the present course from Artin, the year I wrote my Doctor's 
thesis. I could not have had a better introduction to the subject. 

SERGE LANG 

New Haven, 2002 
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CHAPTER I 

Numbers and Functions 

In starting the study of any sort of mathematics, we cannot prove 
everything. Every time that we introduce a new concept, we must define 
it in terms of a concept whose meaning is already known to us, and it is 
impossible to keep going backwards defining forever. Thus we must 
choose our starting place, what we assume to be known, and what we are 
willing to explain and prove in terms of these assumptions. 

At the beginning of this chapter, we shall describe most of the things 
which we assume known for this course. Actually, this involves very 
little. Roughly speaking, we assume that you know about numbers, 
addition, subtraction, multiplication, and division (by numbers other 
than 0). We shall recall the properties of inequalities (when a number is 
greater than another). On a few occasions we shall take for granted cer­
tain properties of numbers which might not have occurred to you before 
and which will always be made precise. Proofs of these properties will be 
supplied in the appendix for those of you who are interested. 

§1. Integers, rational numbers and real numbers 

The most common numbers are the numbers 1, 2, 3, ... which are called 
positive integers. 

The numbers -1, -2, -3, -4, ... are called negative integers. When 
we want to speak of the positive integers together with the negative 
integers and 0, we call them simply integers. Thus the integers are 0, 1, 
-1,2, -2,3, -3, .... 

The sum and product of two integers are again integers. 
In addition to the integers we have fractions, like!, f, --1, -W, -h, .. . , 

which may be positive or negative, and which can be written as quotients 
min, where m, n are integers and n is not equal to o. Such fractions are 
called rational numbers. Every integer m is a rational number, because it 
can be written as mil, but of course it is not true that every rational 
number is an integer. We observe that the sum and product of two ra­
tional numbers are again rational numbers. If alb and min are two 
rational numbers (a, b, m, n being integers and b, n unequal to 0), then 

1 
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2 NUMBERS AND FUNCTIONS [I, §1] 

their sum and product are given by the following formulas, which you 
know from elementary school: 

a m am 
bn=bn' 

~+ m = an+ bm. 
b n bn 

In this second formula, we have simply put the two fractions over the 
common denominator bn. 

We can represent the integers and rational numbers geometrically on a 
straight line. We first select a unit length. The integers are multiples of 
this unit, and the rational numbers are fractional parts of this unit. We 
have drawn a few rational numbers on the line below. 

I I I I 
-2 -1 -~ 0 ~ 

I I 
1 ~ 

4 2 

Observe that the negative integers and rational numbers occur to the 
left of zero. 

Finally, we have the numbers which can be represented by infinite 
decimals, like v'2 = 1.414 ... or 7r = 3.14159 ... , and which will be called 
real numbers or simply numbers. 

Geometrically, the numbers are represented as the collection of all 
points on the above straight line, not only those which are a rational part 
of the unit length or a multiple of it. 

We note that the sum and product of two numbers are numbers. If a is a 
number unequal to zero, then there is a unique number b such that ab = 
ba = 1, and we write 

1 
b=­

a 
or 

We say that b is the inverse of a, or "a inverse". We emphasize that the 
expression 

I/O or 0-1 is not defined. 

In other words, we cannot divide by zero, and we do not attribute any 
meaning to the symbols 1/0 or 0-1• 

However, if a is a number then the product 0 . a is defined and is equal to 
o. The product of any number and 0 is O. Furthermore, if b is any number 
unequal to 0, then O/b is defined and equal to O. It can also be written 
o· (l/b). 
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If a is a rational number ~ 0, then 11a is also a rational number. 
Indeed, if we can write a = min, with integers m, n both different from 0, 
then 

is also a rational number. 

1 n 
a m 

Not all numbers are rational numbers. For instance, 0 is not a rational 
number, and we shall now prove this fact. 

We recall that the even numbers are the integers ±2, ±4, ±6, ±8, ... , 
which can be written in the form 2n for some integer n. An odd number is 
an integer like ±1, ±3, ±5, ±7, ... , which can be written in the form 
2n + 1 for some integer n. Thus 6 = 2·3 is even (we select n = 3) and 

11=2·5+1 
is odd (we select n = 5). 

We observe that the square of an even number is even. Indeed, if n is 
an integer and 2n is an even number, then 

is an even number, which can be written 2(2n2), the product of 2 and the 
integer 2n2. 

The square of an odd number is odd. To prove this, let 2n + 1 be an 
odd number (n being an integer). Then its square is 

(2n + 1)2 = 4n2 + 4n + 1 

= 2(2n2 + 2n) + 1. 

Since 2n2 + 2n is an integer, we have written the square of our odd number 
in the form 2m + 1 for some integer m, and thus have shown that our 
square is odd. 

We are now ready to prove that the square root of 2 is not a rational 
number. Suppose it were. This would mean that we can find a rational 
number a such that a2 = 2. We can write 

m 
a= -, 

n 

where m, n are integers, and neither m nor n is 0. Furthermore, we can 
assume that not both m, n are even because we can put the fraction min in 
lowest form and cancel as many powers of 2 dividing both m and n as 
possible. Thus we can assume that at least one of the integers m or n is odd. 
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From our assumption that a2 = 2 we get (mln)2 = 2 or 

m2 
2"=2. n 

Multiplying both sides of this equation by n 2 yields 

[I, §2] 

and the right-hand side is even. By what we saw above, this means that m 
is even and we can therefore write m = 2k for some integer k. Substituting, 
we obtain 

or 4k2 = 2n2. We cancel 2 and get 2k2 = n 2• This means that n 2 is even, 
and consequently, by what we saw above, that n is even. Thus we have 
reached the conclusion that both m, n are even, which contradicts the fact 
that we put our fraction in lowest form. We can therefore conclude that 
there was no fraction min whose square is 2. 

It is usually very difficult to determine whether a given number is a 
rational number or not. For instance, the fact that 7r is not rational was 
discovered only at the end of the 18th century. 

§2. Inequalities 

Aside from addition, multiplication, subtraction and division (by num­
bers other than 0), we shall now discuss another important feature of the 
real numbers. 

We have the positive numbers, represented geometrically on the straight 
line by those numbers unequal to 0 and lying to the right of O. If a is a 
positive number, we write a > O. You have no doubt already worked with 
positive numbers, alid with inequalities. The next two properties are the 
most basic ones, concerning positivity. 

POS 1. If a, b are positive, so is the product ab and the sum a + b. 

POS 2. If a is a number, then either a is positive, or a = 0, or -a is 
positive, and these possibilities are mutually exclusive. 

If a number is not positive and not 0, then we say that this number is 
negative. By POS 2, if a is negative then -a is positive. 

Although you know already that the number 1 is positive, it can in fact 
be proved from our two properties. It may interest you to see the proof, 
which runs as follows and is very simple. By POS 2, we know that either 1 
or -1 is positive. If 1 is not positive, then -1 is positive. By POS 1, it 
must then follow that (-1) (-1) is positive. But this product is equal to 1. 
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Consequently, it must be 1 which is positive, and not -1. Using property 
POS 1, we could now conclude that 1 + 1 = 2 is positive, that 2 + 1 = 3 
is positive, and so forth. 

If a > 0 we shall also say that a is greater than O. If we wish to say that 
a is positive or equal to 0, we write 

a ~ 0 

and read this "a greater than or equal to zero". 
Given two numbers a, b we shall say that a is greater than b and write 

a > b if a - b > o. We write a < 0 if -a > 0 and a < b if b > a. 
Thus 3 > 2 because 3 - 2 > o. 

We shall write a ~ b when we want to say that a is greater than or equal 
to b. Thus 3 ~ 2 and 3 ~ 3 are both true inequalities. 

Using only our two properties POS 1 and POS 2 we shall now prove all 
the usual rules concerning inequalities. You probably know these already, 
but proving them systematically will both sharpen your wits and etch 
these rules more profoundly in your mind. 

In what follows, let a, b, c be numbers. 

Rule 1. If a > band b > c then a > c. 

Rule 2. If a > b and c > 0 then ac > bc. 

Rule 3. If a > b and c < 0 then ac < bc. 

Rule 2 expresses the fact that an inequality which is multiplied by a posi­
tive number is preserved. Rule 3 tells us that if we multiply both sides of 
an inequality by a negative number, then the inequality gets reversed. For 
instance, we have the inequality 

1 < 3. 

Since 2 > 0 we also have 2·1 < 2·3. But -2 is negative, and if we 
multiply both sides by -2 we get 

-2> -6. 

In the geometric representation of the real numbers on the line, -2 lies 
to the right of -6. This gives us the geometric representation of the fact 
that -2 is greater than -6. 

To prove Rule 1, suppose that a > band b > c. By definition, this 
means that (a - b) > 0 and (b - c) > o. Using property POS 1, we 
conclude that 

a - b + b - c > 0, 

and canceling b gives us (a - c) > O. By definition, this means a > c, as 
was to be shown. 
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To prove Rule 2, suppose that a > band e > o. By definition, 

a - b > o. 

Hence using the property of POS 1 concerning the product of positive 
numbers, we conclude that 

(a - b)e > O. 

The left-hand side of this inequality is none other than ae - be, which is 
therefore >0. Again by definition, this gives us 

ae > be. 

We leave the proof of Rule 3 as an exercise. 
If a is a number, then we define the absolute value of a to be: 

a itself if a is ~ o. 
-a if a is <0. 

In the second case, when a is negative, then -a is positive. Thus the ab­
solute value of a number is always a positive number, or O. For instance, 
the absolute value of 3 is 3 itself. The absolute value of -3 is - (-3) = 3. 
The absolute value of -! is l The absolute value of 0 is 0 and the 
absolute value of -0 is 0. It is customary to denote the absolute 
value of a number by two bars beside the number. Thus the absolute value 
of a number a is written lal. For instance, 131 = 3 and 1-31 = 3 also. 
We have by definition 101 = o. 

Let a be a number > o. Then there exists a number whose square is a. 
This is one of the facts which we take for granted about numbers. If 
b2 = a then we observe that 

is also equal to a. Thus either b or -b is positive. We agree to denote by 
va the positive square root and call it simply the square root of a. Thus v'4 
is equal to 2 and not -2, even though (_2)2 = 4. This is the most 
practical convention about the use of the v' sign that we can make. Of 
course, the square root of 0 is 0 itself. A negative number does not have a 
square root. 

THEOREM 1. If a is a number, then lal 2 = a2 and 

lal = Va 2 • 

Proof. If a is positive then lal = a and our first assertion is clear. If a 
is negative, then lal = -a and 

(-a)2 = a2, 
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so we again get JaJ2 = a2• When a = 0 our first assertion simply means 
o = O. Finally, taking the (positive) square root, we get 

JaJ = Va2 • 

THEOREM 2. If a, b are numbers, then 

JabJ = JaJJbl· 

This theorem expresses the fact that the absolute value of a product is 
the product of the absolute values. We shall leave the proof as an exercise. 
As an example, we see that 

1-61 = 1(-3)·21 = 1-3112J = 3·2 = 6. 

There is one final inequality which is extremely important. 

THEOREM 3. If a, b are two numbers, then 

la+ bl ~ lal + Ibl· 

Proof. We first observe that either ab is positive, or it is negative, or it 
is O. In any case, we have 

ab ~ labl = lallbl· 

Hence, multiplying both sides by 2, we obtain the inequality 

From this we get 
2ab ~ 2laJlbl. 

(a + b)2 = a2 + 2ab + b2 

~ a2 + 2 lalJbl + b2 

= (Ial + IbJ)2. 

We can take the square root of both sides and use Theorem 1 to conclude 
that 

la + bl ~ lal + Ibl, 

thereby proving our theorem. 
You will find plenty of exercises below to give you practice with in­

equalities. We shall work out some numerical examples to show you the 
way. 

Example 1. Determine the numbers satisfying the equality 

Ix + 11 = 2. 
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This equality means that either x + 1 = 2 or -(x + 1) = 2, because 
the absolute value of x + 1 is either (x + 1) itself or -(x + 1). In the 
first case, solving for x gives us x = 1, and in the second case, we get 
-x - 1 = 2 or x = -3. Thus the answer is x = 1 or x = -3. 

Example 2. Determine all intervals of numbers satisfying the inequality 

Ix + 11 > 2. 

We distinguish cases. 

Case 1. x + 1 ~ o. Then Ix + 11 = x + 1, and in this case, we must 
find those x such that x + 1 ~ 0 and x + 1 > 2. The inequality 
x + 1 > 2 implies the inequality x + 1 ~ O. Hence all x such that 
x + 1 > 2 will do, i.e. all x such that x > 1. 

Case 2. x + 1 < o. Then Ix + 11 = -(x + 1), and in this case we 
must find those numbers x such that x + 1 < 0 and -x - 1 > 2. These 
inequalities are equivalent with the inequalities x < -1 and x < -3. 
The set of numbers x satisfying these inequalities is precisely the set of 
numbers x satisfying x < -3. 

Putting our two cases together, we find that the required numbers x 
are those such that x > 1 or x < -3. 

EXERCISES 

Determine all intervals of numbers x satisfying the following inequalities. 

1. /x/ < 3 2. /2x + 1/ ~ 1 
3. /x2 - 2/ ~ 1 4. /x - 5/ < /x + 1/ 
5. (x + I)(x - 2) < 0 6. (x - I)(x + 1) > 0 
7. (x - 5)(x + 5) < 0 8. x(x + 1) ~ 0 
9. x2(x - 1) ~ 0 10. (x - 5)2(X + 10) ~ 0 

11. (x - 5)4(X + 10) ~ 0 12. (2x + I)6(x - 1) ~ 0 

13. (4x + 7)20(2x + 8) < 0 

Prove the following inequalities for all numbers x, y. 

14. /x+ y/ ~ /x/-/y/ 15. /x - y/ ~ /x/-/y/ 
16. /x - y/ ~ /x/ + /y/ 

§3. Functions 

Afunction (of numbers) is a rule which to any given number associates 
another number. 

It is customary to denote a function by some letter, just as a letter "x" 
denotes a number. Thus if we denote a given function by f, and x is a 
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number, then we denote by f(x) the number associated with x by the func­
tion. This of course does not mean "f times x". There is no multiplication 
involved here. The symbols f(x) are read "f of x". 

For example, the rule could be "square the number". For this function, 
we associate the number x 2 to the number x. If f is the function "square 
the number", thenf(x) = x 2 • In particular, the square of 2 is 4 and hence 
f(2) = 4. The square of 7 is 49 and f(7) = 49. The square of V2 is 2, 
and hence f( V2) = 2. The square of (x + 1) is x 2 + 2x + 1 and thus 
f(x + 1) = x 2 + 2x + 1. If h is any number, 

To take another example, let g be the function "add 1 to the number". 
Then to each number x we associate the number x + 1. Therefore g(x) = 

x + 1 and g(l) = 2. Also, g(2) = 3, g(3) = 4, g(V2) = V2 + 1, and 
g(x + 1) = x + 2 for any number x. 

We can view the absolute value as a function, defined by the rule: Given 
any number a, we associate the number a itself if a ~ 0, and we associate 
the number -a if a < o. Let F denote the absolute value function. Then 
F(x) = Ixl for any number x. We have in particular F(2) = 2, and 
F( -2) = 2 also. The absolute value is not defined by means of a formula 
like x 2 or x + 1. We give you another example of such a function which 
is not defined by a formula. 

We consider the function G described by the following rule: 

G(x) = 0 if x is a rational number. 

G(x) = 1 if x is not a rational number. 

Then in particular, G(2) = G(l) = G( -i) = 0 but 

G(V2) = 1. 

You must be aware that you can construct a function just by prescribing 
arbitrarily the rule associating a number to a given one. 

If f is a function and x a number, then f(x) is called the value of the 
function at x. Thus if f is the function "square the number", the value of 
fat 2 is 4 and the value of f at I is l 

In order to describe a function, we need simply to give its value at any 
number x. Thus we usually speak of a function f(x) , meaning by that the 
function f whose value at x is f(x). For instance, we wO,uld say "Let f(x) 
be the function x 3 + 5" instead of saying "Let f be the function cube the 
number and add 5". The advantages of speaking and writing in this way 
are obvious. 
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We would also like to be able to define a function for some numbers and 
leave it undefined for others. For instance we would like to say that 0 
is a function (the square root function, whose value at a number x is the 
square root of that number), but we observe that a negative number does 
not have a square root. Hence it is desirable to make the notion of function 
somewhat more precise by stating explicitly for what numbers it is defined. 
For instance, the square root function is defined only for numbers ~ O. 
This function is denoted by 0. The value 0 is the unique number ~O 
whose square is x. 

Let us give another example of a function which is not defined for all 
numbers. The function J(x) = l/x is defined only for numbers ,.t:O. For 
this particular function, we have J(I) = 1, J(2) = t, J(!) = 2 and 

J(V2) =~. y2 
One final word before we pass to the exercises: There is no magic reason 

why we should always use the letter x to describe a function J(x). Thus 
instead of speaking of the function J(x) = J/x we could just as well say 
J(y) = l/y or J(q) = l/q. Unfortunately, the most neutral way of writing 
would be J(blank) = l/blank, and this is really not convenient. 

EXERCISES 

1. Letf(x) = I/x. What isf(t), fe-f)? 

2. Let f(x) = I/x again. What is f(2x + 1) (for any number x such that 
x ~ -1)? 

3. Let g(x) = /x/ - x. What is g(I), g(-I), g(-54)? 

4. Let fey) = 2y - y2. What is f(z) , f(w)? 

5. For what numbers could you define a functionf(x) by the formula 

1 
f(x) = x2 _ 2 ? 

What is the value of this function for x = 5? 

6. For what numbers could you define a functionf(x) by the formulaf(x) 
~ (cube root of x)? What is f(27) ? 

7. Letf(x) = xl/xl, defined for x ~ O. What is: 
a. f(I) b. f(2) c. f( -3) d. f( -i) 

8. Letf(x) = x + /x/. What is: 
a. f(!) b. f(2) c. f( -4) d. f( -5) 

9. Letf(x) = 2x + x 2 - 5. What is: 
a. f(I) b. f( -1) c. f(x + 1) 

10. For what numbers could you define a functionf(x) by the formulaf(x) 
~ (fourth root of x)? What isf(16)? 
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§4. Powers 

In this section we just summarize some elementary arithmetic. 
Let n be an integer;;;;; 1 and let a be any number. Then an is the product 

of a with itself n times. For example, let a = 3. If n = 2, then a 2 = 9. 
If n = 3, then a3 = 27. Thus we obtain a function which is called the 
n-th power. If f denotes this function, then f(x) = xn. 

We recall the rule 

for any number x and integers m, n ;;;;; 1. 
Again, let n be an integer;;;;; 1, and let a be a positive number. We 

define a lin to be the unique positive number b such that bn = a. (That 
there exists such a unique number b is taken for granted as part of the 
properties of numbers.) We get a function called the n-th root. Thus if 
f is the 4-th root, then f(16) = 2 and f(81) = 3. 

The n-th root function can also be defined at 0, the n-th root of 0 being 
o itself. 

Question: If n is an odd integer like 1, 3, 5, 7, ... , can you define an 
n-th root function for all numbers? 

If a, b are two numbers ;;;;; 0 and n is an integer ;;;;; 1 then 

(ab)l/n = al/nbl/n. 

There is another useful and elementary rule. Let m, n be integers ;;;;; 1 
and let a be a number ;;;;;0. We define amln to be (al/n)m which is also equal 
to (am) lin. This allows us to define fractional powers, and gives us a func­
tion 

f(x) = xmln 

defined for x ;;;;; O. 
We now come to powers with negative numbers or O. We want to define 

xa when a is a negative rational number or 0 and x > o. We want the 
fundamental rule 

to be true. This means that we must define XO to be 1. For instance, since 

23 = 23 +0 = 232°, 

we see from this example that the only way in which this equation holds is 
if 2° = 1. Similarly, in general, if the relation 

is true, then XO must be equal to 1. 
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Suppose finally that a is a positive rational number, and let x be a num­
ber >0. We define x-a to be 

1 

Thus 
and 

W\l observe that in this special case, 

In general, xax-a = xo = 1. 
We are tempted to define xa even when a is not a rational number. This 

is more subtle. For instance, it is absolutely meaningless to say that 

2v"2 

is the product of 2 square root of 2 times itself. The problem of defining 
2a (or xa ) when a is not rational will be postponed to a later chapter. Until 
that chapter, when we deal with such a power, we shall assume that there 
is a function, written xa, described as we have done above for rational 
numbers, and satisfying the fundamental relation 

Example. We have a function f(x) = XV2 defined for all x > O. It is 
actually hard to describe its values for special numbers, like 2V2. It was 
unknown for a very long time whether 2V2 is a rational number or not. 
The solution (it is not) was found only in 1927 by the mathematician 
Gelfond, who became famous for solving a problem that was known to be 
very hard. 

Warning. Do not confuse a function like x 2 and a function like 2X. 
Given a number e > 0, we can view eX as a function defined for all x. (It 
will be discussed in detail in Chapter VIII.) This function is called an 
exponentialfunetion. Thus 2X and lOX are exponential functions. We shall 
select a number 

e = 2.718 ... 

and the exponential function eX as having special properties which make it 
better than any other exponential function. The meaning of our use of the 
word "better" will be explained in Chapter VIII. 
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E:X:ERCISES 

Find aX and xG for the following values of x and a. 

1. a 2 and x = 3 2. a = 5 and x = -1 
3. a ! and x = 4 4. a = i- and x = 2 
5. a -! and x = 4 6. a = 3 and x = 2 
7. a -3 and x = -1 8. a = -2 and x = -2 
9. a -1 and x = -4 10. a = -!andx = 9 

11. Determine whether 2V2 + 3V3 is a rational number. (This is actually a 
major research problem whose answer is not known today. Later in this course 
we shall deal with numbers e and 71". Although it is known that neither e nor 71" 

is rational, it is not known whether e7l" or e + 71" is rational.) 



CHAPTER II 

Graphs and Curves 

The ideas contained in this chapter allow us to translate certain state­
ments backwards and forwards between the language of numbers and the 
language of geometry. 

It is extremely basic for what follows, because we can use our geometric 
intuition to help us solve problems concerning numbers and functions, and 
conversely, we can use theorems concerning numbers and functions to 
yield results about geometry. 

§1. Coordinates 

Once a unit length is selected, we can represent numbers as points on a 
line. We shall now extend this procedure to the plane, and to pairs of 
numbers. 

We visualize a horizontal line and a vertical line intersecting at an 
origin O. 

o 

These lines will be called coordinate axes or simply axes. 
We select a unit length and cut the horizontal line into segments of 

lengths 1, 2, 3, ... to the left and to the right, and do the same to the 
vertical line, but up and down, as indicated in the next figure. 

On the vertical line we visualize the points going below 0 as correspond­
ing to the negative integers, just as we visualized points on the left of the 

14 
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horizontal line as corresponding to negative integers. We follow the same 
idea as that used in grading a thermometer, where the numbers below zero 
are regarded as negative. 

We can now cut the plane into squares whose sides have length 1. 

4 
(3 4) , 

3 

2 
(1, 2) 

1 

4 - -2 -1 o 1 2 3 4 T T 

00 (-3, -2) 

We can describe each point where two lines intersect by a pair of integers. 
Suppose that we are given a pair of integers like (1,2). We go to the right 
of the origin 1 unit and vertically up 2 units to get the point (1, 2) which 
has been indicated above. We have also indicated the point (3,4). The 
diagram is just like a map. 

Furthermore, we could also use negative numbers. For instance to 
describe the point (-3, -2) we go to the left of the origin 3 units and 
vertically downwards 2 units. 

There is actually no reason why we should limit ourselves to points which 
are described by integers. For instance we can also have the point (!, -1) 
and the point (-0,3) as on the next figure. We have not drawn all the 
squares on the plane. We have drawn only the relevant lines to find our 
two points. 
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In general, if we take any point P in the plane and draw the perpendicu­
lar lines to the horizontal axis and to the vertical axis, we obtain two 
numbers x, y as in the figure below. 

p y 

x 

The perpendicular line from P to the horizontal axis determines a num­
ber x which is negative in the figure because it lies to the left of the origin. 
The number y determined by the perpendicular from P to the vertical 
axis is positive because it lies above the origin. The two numbers x, yare 
called the coordinates of the point P, and we can write P = (x, y). 

Every pair of numbers (x, y) determines a point of the plane. We find 
the point by going a distance x from the origin 0 in the horizontal direction 
and then a distance y in the vertical direction. If x is positive we go to the 
right of o. If x is negative, we go to the left of o. If y is positive we go 
vertically upwards, and if y is negative we go vertically downwards. 

The coordinates of the origin are (0,0). 
We usually call the horizontal axis the x-axis and the vertical axis the 

y-axis. If a point P is described by two numbers, say (5, -10), it is cus­
tomary to call the first number its x-coordinate and the second number its 
y-coordinate. Thus 5 is the x-coordinate, and -10 the .y-coordinate of 
our point. 

Of course, we could use other letters besides x and y, for instance t 
and s, or u and v. 
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Our two axes separate the plane into four quadrants which are numbered 
as indicated in the figure: 

II I 

III IV 

If (x, y) is a point in the first quadrant, then both x and yare >0. If 
(x, y) is a point in the fourth quadrant, then x > 0 but y < O. 

EXERCISES 

1. Plot the following points: 
(-1,1), (0,5), (-5, -2), (1,0). 

2. Plot the following points: 
(!, 3), (-!, -!), (~, -2), (-:1-, -!). 

3. Let (x, y) be the coordinates of a point in the second quadrant. Is x posi­
tive or negative? Is y positive or negative? 

4. Let (x, y) be the coordinates of a point in the third quadrant. Is x positive 
or negative? Is y positive or negative? 

5. Plot the following points: 
(1.2, -2.3), (1.7,3). 

6. Plot the following points: 
(-2.5, !), (-3.5, i). 

7. Plot the following points: 
(1.5, -1), (-1.5, -1). 

§2. Graphs 

Let f be a function. We define the graph of f to be the collection of all 
pairs of numbers (x, f(x) whose first coordinate is any number for which 
f is defined and whose second coordinate is the value of the function at the 
first coordinate. 

For example, the graph of the function f(x) = x 2 consists of all pairs 
(x, y) such that y = x 2 • In other words, it is the collection of all pairs 
(x, x 2 ), like (1, 1), (2,4), (-1,1), (-3,9), etc. 

Since each pair of numbers corresponds to a point on the plane (once a 
system of axes and a unit length have been selected), we can view the graph 
of f as a collection of points in the plane. The graph of the function 
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f(x) = x 2 has been drawn in the figure below, together with the points 
which we gave above as examples. 

(-3, 9) (3, 9) 

To determine the graph, we plot a lot of points making a table giving 
the x- and y-coordinates. 

x f(x) x f(x) 

1 1 -1 1 
2 4 -2 4 
3 9 -3 9 
t 1 -t 1 

4 4 

At this stage of the game there is no other way for you to determine the 
graph of a function other than this trial and error method. Later, we shall 
develop techniques which give you greater efficiency in doing it. 

We shall now give several examples of graphs of functions which occur 
very frequently in the sequel. 

Example 1. Consider the function f(x) = x. The points on its graph 
are of type (x, x). The first coordinate must be equal to the second. Thus 
f(l) = 1, f( -V2) = -O, etc. The graph looks like this: 
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Example 2. Letf(x) = -x. Its graph looks like this: 

Observe that the graphs of the preceding two functions are straight lines. 
We shall study the general case of a straight line later. 

Example 3. Let f(x) = Ixi- When x ~ 0, we know that f(x) = x. 
When x ~ 0, we know that f(x) = -x. Hence the graph of Ixl is ob­
tained by combining the preceding two, and looks like this: 

All values of y are ~O, whether x is positive or negative. 

Example 4. There is an even simpler type of function than the ones we 
have just looked at, namely the constant functions. For instance, we can 
define a function f such that f(x) = 2 for all numbers x. The rule is to 
associate the number 2 to any number x. It is a very simple rule, and the 
graph of this function is a horizontal line, intersecting the vertical axis at 
the point (0,2). 

f(x) =2 

(0, 2) 
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If we took the function f(x) = -1, then the graph would be a horizontal 
line intersecting the vertical axis at the point (0, -1). 

In general, let c be a fixed number. The graph of the function f(x) = c 
is the horizontal line intersecting the vertical axis at the point (0, c). The 
function f(x) = c is called a constant function. 

Example 5. The last of our examples is the function f(x) = l/x 
(defined for x ¢ 0). By plotting a few points of the graph, you will see 
that it looks like this: 

For instance, you can plot the following points: 

x l/x x l/x 

1 1 1 1 
2 1 -2 -.1. 2" 2 

3 ! -3 -! 
! 2 -! -2 
! 3 1 3 -3 

As x becomes very large positive, l/x becomes very small. As x approaches 
o from the right, l/x becomes very large. A similar phenomenon occurs 
when x approaches 0 from the left; then x is negative and l/x is negative 
also. Hence in that case, l/x is very large negative. 

In trying to determine how the graph of a function looks, you can 
already watch out for the following: 

The points at which the graph intersects the two coordinate axes. 
What happens when x becomes very large positive and very large 

negative. 
On the whole, however, in working out the exercises, your main technique 

is just to plot a lot of points until it becomes clear to you what the graph 
looks like. 
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EXERCISES 

Sketch the graphs of the following functions and plot at least three points on 
each graph. 

1.x+l 

4.4x 
x 

7. 2+ 3 

10. -3x2 + 1 

13. vi; 
16. x + 1 

19. -Ixl 

1 
22. --2 x-

2 
25. --2 x-

-2 
28. x + 5 

2. 2x 

5. 2x + 1 

8. -3x + 2 

11. x 3 

14. x-1I2 

17. Ixl + x 

20. -Ixl + x 

1 
23. x + 3 

2 
26. x + 2 

3 
29. x + 1 

3. 3x 

6. 5x +! 
9. 2x2 - 1 

12. x4 

15. 2x 

18. Ixl + 2x 

1 
21. x + 2 

1 
24. --3 x-

27. ~ 
x 

x 
30. jXf 

(In Exercises 13, 14, and 21 through 30, the functions are not defined for all 
values of x.) 

31. Sketch the graph of the function f(x) such that: 
f(x) = 0 if x ~ O. 
f(x) = 1 if x > O. 

32. Sketch the graph of the function f(x) such that: 
f(x) = x if x < O. 
f(O) = 2. 
f(x) = x if x > O. 

33. Sketch the graph of the functionf(x) such that: 
j(x) = x 2 if x < o. 
f(x) = x if x ~ O. 

34. Sketch the graph of the functionf(x) such that: 
f(x) = Ixl + x if -1 ~ x ~ 1. 
f(x) = 3 if x > 1. (f(x) is not defined for other values of x.) 

35. Sketch the graph of the functionj(x) such that: 
f(x) = x 3 if x ~ O. f(x) = 1 if 0 < x < 2. 
f(x) = x 2 if x ~ 2. 

36. Sketch the graph of the function f(x) such that: 
f(x) = x if 0 < x ~ 1. f(x) = x-I if 1 < x ~ 2. 
f(x) = x - 2 if 2 < x ~ 3. f(x) = x - 3 if 3 < x ~ 4. 

(We leave f(x) undefined for other values of x, but try to define it yourself in 
such a way as to preserve the symmetry of the graph.) 
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§3. The straight line 

One of the most basic types of functions is the type whose graph repre­
sents a straight line. We have already seen that the graph of the function 
f(x) = x is a straight line. If we take f(x) = 2x, then the line slants up 
much more steeply, and even more so for f(x) = 3x. The graph of the 
function f(x) = 10,000x would look almost vertical. In general, let a be 
a positive number ~O. Then the graph of the function 

f(x) = ax 

represents a straight line. The point (2,2a) lies on the line because 
f(2) = 2a. The point (0,0 a) also lies on the line, and if c is any 
number, the point (c, ca) lies on the line. The (x, y) coordinates of these 
points are obtained by making a similarity transformation, starting with 
the coordinates (1, a) and multiplying them by some number c. 

We can visualize this procedure by means of similar triangles. In the 
figure below, we have a straight line. If we select a point (x, y) on the line 
and drop the perpendicular from this point to the x-axis, we obtain a right 
triangle. 

If x is the length of the base of the smaller triangle in the figure, and y its 
height, and if cx is the length of the base of the bigger triangle, then cy is 
the height of the bigger triangle: The smaller triangle is similar to the 
bigger one. 

If a is a number <0, then the graph of the function f(x) = ax is also a 
straight line, which slants to the left. For instance, the graphs of f(x) = -x 
or f(x) = -2x. 

Let a, b be two numbers. The graph of the function g(x) = ax + b is 
also a straight line, which is parallel to the line determined by the function 
f(x) = ax. In order to convince you of this, we observe the following. 
When x = 0 we see that g(x) = b. Let y' = y - b. The equation 
y' = ax is of the type discussed above. If we have a point (x, y') on the 
straight line y' = ax, then we get a point (x, y' + b) on the straight line 
y = ax + b, by simply adding b to the second coordinate. This means 
that the graph of the function g(x) = ax + b is the straight line parallel 
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to the line determined by the function f(x) = ax and passing through the 
point (0, b). 

Example 1. Let g(x) = 2x + 1. When x = 0, then g(x) = 1. The 
graph looks like this: 

Example 2. Let g(x) = -2x - 5. When x = 0, then g(x) = -5. 
The graph looks like this: 

y = -2x-5 

We shall frequently speak of a functionf(x) =- ax + b as a straight line 
(although of course, it ib its graph which is a straight line). 

The number a which is the coefficient of x is called the slope of the line. 
It determines how much the line is slanted. As we have already seen in 
many examples, when the slope is positive, the line is slanted to the right, 
and when the slope is negative, the line is slanted to the left. The relation­
ship Y = ax + b is also called the equation of the line. It gives us the 
relation between the x- and y-coordinates of a point on the line. 

Let f(x) = ax + b be a straight line, and let (Xl, YI) and (X2, Y2) be 
two points of the line. It is easy to find the slope of the line in terms of the 
coordinates of these two points. By definition, we know that 

Yl = axl + b 
and 



24 GRAPHS AND CURVES [II, §3] 

Subtracting, we get 

Consequently, if the two points are distinct, X2 ~ Xl, then we can divide 
by X2 - Xl and obtain 

This formula gives us the slope in terms of the coordinates of two distinct 
points on the line. 

Example 3. Look at the line f(x) = 2x + 5. Letting X = 1, we have 
f(x) = 7 and letting X = -1, we get f(x) = 3. Thus the points (1,7) 
and (-1,3) are on the line. The slope is 2, and is equal to 

7-3 
1 - (-1) 

as it should be. 

Geometrically, our quotient 

is simply the ratio of the vertical side and horizontal side of the triangle in 
the next diagram: 

Y2 -------------71~(-YI 

Yl ______ ~1 
!-X2-Xl-: 

I 

Conversely, given two points in the plane, it is easy to determine the 
equation of the line passing through them. 

Example 4. Let (1, 2) and (2, -1) be the two points. What is the slope 
of the line between them? What is the equation of the line? 

We first find the slope. It must be the quotient 
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which is equal to 

THE STRAIGHT LINE 

-1 - 2 
2 - 1 

-3. 

Thus we know that our line is given by the equation 

Y = -3x + b 

25 

for some number b. Furthermore, we know also that the line must pass 
through the point (1, 2). Hf(x) = -3x + b, then we must havef(l) = 2. 
From this we can solve for b, namely 

2 = -3·1 + b 

yields b = 2 + 3 = 5. Thus the equation of the line is 

f(x) = -3x + 5. 

Observe that it does not matter which point we call (Xli YI) and which 
we call (X2, Y2)' We would get the same answer for the slope. 

Knowing two points on a line, we first determine the slope and then solve 
for the constant b, using the coordinates of one of the points. 

We can also determine the equation of a line provided we know the slope 
and one point. 

Example 5. Find the equation of the line having slope -7 and passing 
through the point (-1, 2). 

The equation must be of type 

Y = -7x + b 

for some number b. Furthermore, when x = -1, we must have Y = 2. 
Thus 

2 = (-7)(-1) + b 

and b = -5. Hence the equation of the line is 

Y = -7x - 5. 

Finally, we should mention vertical lines. These cannot be represented 
by equations of type Y = ax + b. Suppose that we have a vertical line 
intersecting the x-axis at the point (2,0). The y-coordinate of any point 
on the line can be arbitrary. Thus the equation of the line is simple x = 2. 
In general, the equation of the vertical line intersecting the x-axis at the 
point (c, 0) is x = c. 
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EXERCISES 

Sketch the graphs of the following lines: 

1. y = -2x + 5 2. Y = 5x - 3 
x x 

3. y = 2+ 7 4'Y=-3+ 1 

What is the equation of the line passing through the following points? 

5. (-1,1) and (2, -7) 6. (3, i) and (4, -1) 

7. (v'2, -1) and (v'2, 1) 8. (-3, -5) and (-va, 4) 

[II, §4] 

What is the equation of the line having the given slope and passing through the 
given point? 

9. slope 4 and point (1, 1) 

11. slope -i and point (v'2, 3) 

Sketch the graphs of the following lines: 

13. x = 5 14. x = -1 

16. y = -4 17. y = 2 

10. slope -2 and point (!, 1) 

12. slope v'a and point (-1, 5) 

15. x = -3 

18. y = O. 

§4. Distance between two points 

Let (Xl, YI) and (X2, Y2) be two points in the plane, for instance as in the 
following diagrams. 

(a) (b) 

We can then make up a right triangle. By the Pythagoras theorem, the 
length of the line segment joining our two points can be determined from 
the lengths of the two sides. The square of the bottom side is (X2 - XI)2, 
which is also equal to (Xl - X2)2. This is clear in part (a) of the figure. 
It is also true in part (b) (convince yourself by working out an example, as 
for instance in Example 2 below). The length of the vertical side is 
(Y2 - YI)2, which is equal to (YI - Y2)2. If L denotes the length of the 
line segment, then 
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and consequently, 

Example 1. Let the two points be (1, 2) and (1, 3). Then the length of 
the line segment between them is 

v'(1 - 1)2 + (3 - 2)2 = 1. 

The length L is also called the distance between the two points. 

Example 2. Find the distance between the points (-1,5) and (4, -3). 

The distance is 

v'(4 - (-1»)2 + (-3 - 5)2 = v'89. 

(You should plot these points, and convince yourself that the minus signs 
do not affect the validity of our formula for the length of the line segment 
between the two points.) 

EXERCISES 

Find the distance between the following points: 

1. The points (-3, -5) and (1,4) 

2. The points (1, 1) and (0,2) 

3. The points (-1,4) and (3, -2) 

4. The points (1, -1) and (-1,2) 

5. The points (1, 2) and (1, 1) 

6. Find the coordinates of the fourth corner of a rectangle, three of whose 
corners are (-1, 2), (4,2), (-1, -3). 

7. What are the lengths of the sides of the rectangle in Exercise 6? 

§5. Curves and eauations 

Let F(x, y) be an expression involving a pair of numbers (x, y). Let c 
be a number. We consider the equation 

F(x, y) = c. 

The collection of points (a, b) in the plane satisfying this equation, i.e. 
such that 

F(a, b) = c, 
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is called the graph of the equation. This graph is also known as a curve, 
and we will usually not make a distinction between the equation 

F(x, y) = c 

and the curve which represents the equation. 
For example, 

x+y=2 

is the equation of a straight line, and its graph is the straight line. We 
shall study below important examples of equations which arise frequently. 

If f is a function, then we can form the expression y - f(x), and the 
graph of the equation 

y - f(x) = 0 

is none other than the graph of the function f as we discussed it in §2. 
You should observe that there are equations of type 

F(x, y) = c 

which are not obtained from a function y = f(x). For instance, the equa­
tion x 2 + y2 = 1 is such an equation. 

We shall now study important examples of graphs of equations 

F(x, y) = 0 or F(x, y) = c. 

§6. The circle 

The function F(x, y) = x 2 + y2 has a simple geometric interpretation. 
It is the square of the distance of the point (x, y) from the origin (0,0). 
Thus the points (x, y) satisfying the equation 

x 2 + y2 = 12 = 1 

are simply those points whose distance from the origin is 1. It is the circle 
of radius 1, with center at the origin. 

Similarly, the points (x, y) satisfying the equation 

x 2 + y2 = 4 

are those points whose distance from the origin is 2. They constitute the 
circle of radius 2. In general, if c is any number > OJ then the graph of the 
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equation 

is the circle of radius c, with center at the origin. 
We have already remarked that the equation 

or x2 + y2 - 1 = 0 is not of the type y - f(x) = 0, i.e. does not come 
from a function y = f(x). However, we can write our equation in the form 

For any value of x between -1 and + 1, we can solve for y and get 

y = VI - x 2 or y = -VI - x 2• 

If x ~ 1 or x ~ -1, then we get two values of y for each value of x. 
Geometrically, these two values correspond to the points indicated on the 
following diagram. 

There is a function, defined for -1 ;;;!; x ;;;!; 1, such that 

f(x) = VI - X2, 

and the graph of this function is the upper half of our circle. Similarly, 
there is another function 

g(x) = -VI - X2, 

also defined for -1 ;;;!; x ;;;!; 1, whose graph is the lower half of the circle. 
1\" either of these functions is defined for other values of x. 

We now ask for the equation of the circle whose center is (1, 2) and whose 
radius has length 3. It consists of the points (x, y) whose distance from 
(1,2) is 3. These are the points satisfying the equation 

(x - 1)2 + (y - 2)2 = 9. 
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The graph of this equation has been drawn above. 
To pick another example, we wish to determine those points at a distance 

2 from the point (-1, -3). They are the points (x, y) satisfying the equa­
t!on 

(x - (_1))2 + (y - (-3))2 = 4 

or, in other words, 
(x + 1)2 + (y + 3)2 = 4. 

(Observe carefully the cancellation of minus signsl) Thus the graph of this 
equation is the circle of radius 2 and center (-I, -3). 

In general, let a, b be two numbers and r a number >0. Then the circle of 
radius r and center (a, b) is the graph of the equation 

In our last example, we have 

r = 2, a = -I, b = -3. 

Example 1. Suppose that we have a quadratic expression like 

x2 + 2x. 

We can complete the square and write it as 

x 2 + 2x = (x + 1)2 - 1. 

Similarly, given the expression y2 - 3y, we can write it 

Given an equation 

x 2 + y2 + 2x - 3y - 5 = 0, 

we can use the trick of completing the square to see what its graph looks 
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like. Our equation can be written in the form 

(x + 1)2 + (y - !)2 = 5 + :1 + 1 = ¥. 

Thus our equation is a circle of center (-1, I) and radius v'33/4. 

EXERCISES 

Sketch the graph of the following equations: 

1. (x - 2)2 + (y + 1)2 = 25 2. x2 + (y - 1)2 = 9 

2 2 
3. (x + 1) + y = 3 

2 2 
X Y 

5. 4 + 9 = 1 

2 2 
X Y 

7. 4 + 25 = 1 

9. 4x2 + 25y2 = 100 

2 2 11. 25x + 16y = 400 

2 2 
X Y 

4. 9 + 16 = 1 
2 2 

X Y 
6.5"+ 16 = 1 

8 (x - 1)2 + (y + 2)2 
. 9 16 1 

10. (x ~ 1)2 + (y ~ 2)2 = 1 

2 
12. (x - 1)2 + (y ~ 3) = 1 

31 

(In Exercises 4 through 12, the graph of the equation is called an ellipse. It 
is a stretched-out circle. Investigate for yourself the effect of changing the coeffi­
cients of x2 and y2 in these equations.) 

§7. The parabola. Changes of coordinates 

We have seen what the graph of the equation y = x 2 looks like. Sup­
pose that we graph the equation y = (x - 1)2. We shall find that it 
looks exactly the same, but as if the origin were placed at the point (1,0). 

Similarly, the curve y - 2 = (x - 4)2 looks again like y = x 2 except 
that the whole curve has been moved as if the origin were the point (4, 2). 
The graphs of these equations have been drawn on the next diagram. 

We can formalize these remarks as follows. Suppose that in our given 
coordinate system we pick a point (a, b) as a new origin. We let new 
coordinates be x' = x - a and y' = y - b. Thus when x = a we have 
x' = 0 and when y = b we have y' = O. If we have a curve 

in the new coordinate system whose origin is at the point (a, b), then it 
gives rise to the equation 

(y - b) = (x - a)2 
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(1, 0) 

in terms of the old coordinate system. This type of curve is known as a 
parabola. 

We can apply the same technique of completing the square that we did 
for the circle. 

Example. What is the graph of the equation 

2y - x 2 - 4x + 6 = O? 

Completing the square, we can write 

x 2 + 4x = (x + 2) 2 - 4. 

Thus our equation can be rewritten 

2y = (x + 2)2 - 10 
or 

2(y + 5) = (x + 2)2. 

We choose a new coordinate system 

x'=x+2 and y' = y + 5 

so .that our equation becomes 

2y' = X'2 

or y' = !X'2. This is a function whose graph you already know, and whose 
sketch we leave to you. 

Finally, we remark that if we have an equation 

or x = y2, then we get a parabola which is tilted horizontally. (Draw the 
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graph yourself.) We can then apply the technique of changing the co­
ordinate system to see what the graph of a more general equation is like, 
for instance the graph of 

x - y2 + 2y + 5 = O. 

EXERCISES 

Sketch the graph of the following equations: 

1. y = -x + 2 2. y = 2x2 + X - 3 

3. x - 4y2 = 0 4. x - y2 + y + 1 = 0 

Complete the square in the following equations and change the coordinate 
system to put them into the form 

x'2 + y'2 = r2 
or 

y' = cx'2 
or 

x' = cy'2 
with a suitable constant c. 

5. x2 + y2 - 4x + 2y - 20 = 0 

7. x2 + y2 + 2x - 2 = 0 

6. x2 + y2 - 2y - 8 = 0 

8. y - 2x2 - X + 3 = 0 

10. y - x2 + 2x + 3 = 0 9. y - x2 - 4x - 5 = 0 

11. x2 + y2 + 2x - 4y = -3 

13. x - 2y2 - Y + 3 = 0 

12. x2 + y2 - 4x - 2y = -3 

14. x - y2 - 4y = 5 

§8. The hyperbola 

We have already seen what the graph of the equation 

xy = 1 

looks like. It is of course the same as the graph of the functionf(x) = l/x 
(defined for x ~ 0). If we pick a coordinate system whose origin is at the 
point (a, b), the equation 

1 
y-b=-­

x-a 

is known as a hyperbola. In terms of the new coordinate system x' = x - a 
and y' = y - b, our hyperbola has the old type of equation 

x'y' = 1. 
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If we are given an equation like 

xy - 2x + 3y + 4 = 5, 

we can factor the left-hand side and rewrite the equation as 

or 
(x + 3) (y - 2) + 6 + 4 = 5 

(x + 3) (y - 2) = -5. 

[II, §8] 

In terms of the coordinate system x' = x + 3 and y' = y - 2, we get 
the equation 

x'y' = -5. 

The graph of this equation has been drawn on the following diagram. 

(-3, 2) 

EXERCISES 

Sketch the graphs of the following curves: 

1. (x - l)(y - 2) = 2 

3. xy - 4 = 0 

1 
5. y = x+ 1 

7. (x - 1)(y - 1) = 2 

1 
9. y = x _ 2 + 4 

11 _4x-7 
.y- x-2 

13. y = x + 1 
x-I 

2. x(y + 1) = 3 
2 

4. y = 1 - x 

6. (x + 2)(y - 1) = 1 

8. (x - 1) (y - 1) = 1 
1 

10. Y = x + 1 - 2 

-2x -1 
12. y = x + 1 

x-I 
14. Y = x + 1 



CHAPTER III 

The Derivative 

The two fundamental notions of this course are those of the derivative 
and the integral. We take up the first one in this chapter. 

The derivative will give us the slope of a curve at a point. It has also 
applications to physics, where it can be interpreted as the rate of change. 

We shall develop some basic techniques which will allow you to compute 
the derivative in all the standard situations which you are likely to en­
counter in practice. 

§1. The slope of a curve 

Consider a curve, and take a point P on the curve. We wish to define 
the notions of slope of the curve at that point, and tangent line to the curve 
at that point. Sometimes the statement is made that the tangent to the 
curve at the point is the line which touches the curve only at that point. 
This is pure nonsense, as the subsequent pictures will convince you. 

Q 

FIGURE 1 FIGURE 2 

In Figs. 1,2, and 3, we look at the tangent line to the curve at the point 
P. In Fig. 1 the line cuts the curve at the other point Q. In Fig. 2 the line 
is also tangent to the curve at the point Q. In Fig. 3 the curve is supposed to 
be very flat near the point P, and the horizontal line cuts the curve at P, 
but we would like to say that it is tangent to the curve at P if the curve is 
very flat. The vertical line cuts the curve only at P, but is not tangent. 
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FIGURE 3 

Observe also that you cannot get out of the difficulties by trying to 
distinguish a line "cutting" the curve, or "touching the curve", or by 
saying that the line should lie on one side of the curve (cf. Fig. 1). 

We therefore have to give up the idea of touching the curve only at one 
point, and look for another idea. 

We have to face two problems. One of them is to give the correct 
geometric idea which allows us to define the tangent to the curve, and the 
other is to test whether this idea allows us to compute effectively this 
tangent line when the curve is given by a simple equation with numerical 
coefficients. It is a remarkable thing that our solution of the first problem 
will in fact give us a solution to the second. 

In the first chapter, we have seen that knowing the slope of a straight 
line and one point on the straight line allows us to determine the equation 
of the line. We shall therefore define the slope of a curve at a point and then 
get its tangent afterward by using the method of Chapter II. 

Our examples show us that to define the slope of the curve at P, we 
should not consider what happens at a point Q which is far removed from P. 
Rather, it is what happens near P which is important. 

Let us therefore take any point Q on the given curve y = f(x), and 
assume that Q ~ P. Then the two points P, Q determine a straight line 
with a certain slope which depends on P, Qand which we shall write as 
S(P, Q). Suppose that the point Q approaches the point P on the curve 
(but stays distinct from P). Then, as Q comes near P, the slope S(P, Q) 
of the line passing through P and Q should approach the (unknown) slope 
of the (unknown) tangent line to the curve at P. In the following diagram, 
we have drawn the tangent line to the curve at P and two lines between P 
and another point on the curve close to P (Fig. 4). The point Q2 is closer 
to P on the curve and so the slope of the line between P and Q2 is closer 
to the slope of the tangent line than is the slope of the line between P and Qr. 

If the limit of the slope S(P, Q) exists as Q approaches P, then it should 
be regarded as the slope of the curve itself at P. This is the basic idea 
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FIGURE 4 

behind our definition of the slope of the curve at P. We take it as a defini­
tion, perhaps the most important definition in this book. To repeat: 

Given a curve Y = f(x), let P be a point on the curve. The slope of 
the curve at P is the limit of the slope of lines between P and another 
point Q on the curve, as Q approaches P. 

The idea of defining the slope in this manner was discovered in the 
seventeenth century by Newton and Leibnitz. We shall see that this 
definition allows us to determine the slope effectively in practice. 

First we observe that when y = ax + b is a straight line, then the slope 
of the line between any two distinct points on the curve is always the same, 
and is the slope of the line as we defined it in the preceding chapter. 

Let us now look at the next simplest example, 

We wish to determine the slope of this curve at the point (1, 1). 
We look at a point near (1, 1), for instance a point whose x-coordinate 

is 1.1. Then f(1.1) = (1.1)2 = 1.21. Thus the point (1.1,1.21) lies on 
the curve. The slope of the line between two points (Xl, YI) and (X2' Y2) is 

Y2 - YI 
X2 - Xl 

Therefore the slope of the line between (1, 1) and (1.1, 1.21) is 

1.21 - 1 = 0.21 = 2 1 
1.1 - 1 0.1 .. 

In general, the x-coordinate of a point near (1, 1) can be written 1 + h, 
where h is some small number, positive or negative, but h ~ O. We have 

f(1 + h) = (1 + h)2 = 1 + 2h + h2. 

Thus the point (1 + h, 1 + 2h + h 2) lies on the curve. When h is positive, 
the line between our two points would look like that in Fig. 5. 
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FIGURE 5 

When h is negative, then 1 + h is smaller than 1 and the line would look 
like this: 

FIGURE 6 

For instance, h could be -0.1 and 1 + h = 0.9. 
The slope of the line between our two points is therefore the quotient 

which is equal to 

(1 + 2h + h2) - 1 
(1 + h) - 1 

2h t h2 = 2 + h. 

When the point whose x-coordinate is 1 + h approaches our point (1, 1), 
the number h approaches O. As h approaches 0, the slope of the line be­
tween our two points approaches 2, which is therefore the slope of the curve 
at the point (1, 1) by definition. 

You will appreciate how simple the computation turns out to be, and 
how easy it was to get this slope! 

Let us take another example. We wish to find the slope of the same c-urve 
(fx) = x 2 at the point (-2,4). Again we take a nearby point whose 
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x-coordinate is -2 + h for small h ~ O. The y-coordinate of this nearby 
point is 

f( -2 + h) = (-2 + h)2 = 4 - 4h + h2. 

The slope of the line between the two points is therefore 

4 - 4h + h2 - 4 -4h + h2 
-2 + h - (-2) = h = -4 + h. 

As h approaches 0, the nearby point approaches the point (-2, 4) and we 
see that the slope approaches -4. 

EXERCISES 

Find the slopes of the following curves at the indicated points: 
1. y = 2x2 at the point (1, 2) 

2. Y = x2 + 1 at the point (-1,2) 

3. Y = 2x - 7 at the point (2, -3) 

4. Y = x3 at the point (!, k) 
5. Y = l/x at the point (2, !) 
6. Y = x2 + 2x at the point (-1, -1) 

§2. The derivative 

We continue to consider the function y = x 2• Instead of picking a 
definite numerical value for the x-coordinate of a point, we could work at 
an arbitrary point on the curve. Its coordinates are then (x, x 2). We write 
the x-coordinate of a point nearby as x + h for some small number h, 
positive or negative, but h ~ O. The y-coordinate of this nearby point is 

Hence the slope of the line between them is 

(x + h)2 - x 2 

(x + h) - x 
x2 + 2xh + h2 _ x2 

x+h-x 

2xh + h2 

h 

= 2x + h. 

As h approaches 0, 2x + h approaches 2x. Consequently, the slope of 
the curve y= x2 at an arbitrary point (x, y) is 2x. In particular, when 
x = 1 the slope is 2 and when x = -2 the slope is -4, as we found out 
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before by the explicit computation using the special x-coordinates 1 
and -2. 

This time, however, we have found out a general formula giving us the 
slope for any point on the curve. Thus when x = 3 the slope is 6 and 
when x = -10 the slope is -20. 

The example we have just worked out gives us the procedure for treating 
more general functions. 

Given a function f(x), we form the quotient 

f(x ~ h) - f(x) 
x~h-x 

f(x ~ h) - f(x) 
h 

This quotient is the slope of the line between the points 

(x, f(x)) and (x ~ h,f(x ~ h)). 

We shall call it the Newton quotient. If it approaches a limit as h approaches 
0, then this limit is called the derivative of f at x, and we say that f is dif­
ferentiable at x. The limit will be written in an abbreviated fashion, 

lim f(x ~ h) - f(x) . 
h--.O h 

The derivative will be written 1'(x) , and we thus have 

f'(x) = lim f(x ~ h) - f(x) . 
h--.O h 

The derivative may thus be viewed as a function 1', which is defined at 
all numbers x such that the Newton quotient approaches a limit as h tends 
to O. 

We say that f is differentiable if it is differentiable at all points for which 
it is defined. For instance the function f(x) = x 2 is differentiable and its 
derivative is 2x. 

It will also be convenient to use another notation for the derivative, 
namely 

1'(x) = df 
dx 

(or df/dx). Thus the two expressions1'(x) and df/dx mean the same thing. 
We emphasize however that in the exprf'ssion df / dx we do not multiply f or 
x by d or divide df by dx. The expression is to be read as a whole. We shall 
find out later that the expression, under certain circumstances, behaves 
as if we were dividing, and it is for this reason that we adopt this classical 
way of writing the derivative. 
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We work out some examples before giving you exercises on this section. 

Example 1. Let f(x) = 2x + 1. Find the derivative f'(x). 

We form the Kewton quotient. We have f(x + h) = 2(x + h) + 1. 
Thus 

f(x + h) - f(x) = 2x + 2h + 1 - (2x + 1) = 2h = 2 
h h h· 

As h approaches 0 (which we write also h ~ 0), this number is equal to 2 
and hence the limit is 2. Thus 

f'(x) = 2 

for all values of x. The derivative is constant. 

Example 2. Find the slope of the graph of the function f(x) = 2X2 at 
the point whose x-coordinate is 3. 

We may just as well find the slope at an arbitrary point on the graph. 
It is the derivative f'(x). We have 

f(x + h) = 2(x + h)2 = 2(x2 + 2xh + h2). 

The Kewton quotient is 

f(x + h) - f(x) 
h 

2(x2 + 2xh + h 2) - 2X2 
h 

4xh + 2h2 
h 

= 4x + 2h. 

As h ~ 0 the limit is 4x. Hence f'(x) = 4x. At the point x = 3 we get 
f'(3) = 12, which is the desired slope. 

Example 3. Find the equation of the tangent line to the curve y = 2X2 
at the point whose x-coordinate is -2. 

In the preceding example we have computed the general formula for 
the slope of the tangent line. It is 

f'(x) = 4x. 

At the point x = -2 the slope is therefore -8. The tangent line has an 
equation 

y = -8x + b 

for some number b. The y-coordinate of our point is 2( _2)2 = 8. Hence 
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we must have 
8 = -8(-2) + b 

and solving for b yields 
b = -8. 

Thus the equation of the tangent line is 

y = -8x - 8. 

In defining the Newton quotient, we can take h positive or negative. It 
is sometimes convenient when taking the limit to look only at values of h 
which are positive. In this manner we get what is called the right derivative. 
If in taking the limit of the Newton quotient we took only negative values 
for h, we would get the left derivative. 

Example 4. Let f(x) = Ix/. Find its right derivative and its left deriva­
tive when x = O. 

The right derivative is the limit 

lim f(O + h) - f(O) . 
h-->O h 
h>O 

When h > 0, we have f(O + h) = f(h) = h, and f(O) = O. Thus 

f(O + h) - f(O) = ~ = 1 
h h' 

The limit as h ---t 0 and h > 0 is therefore 1. 
The left derivative is the limit 

lim f(O + h) - f(O) . 
h-->O h 
h<O 

When h < 0 we have 

f(O + h) = f(h) = -h. 

Hence 
f(O + h) - f(O) 

h 
-h 
h 

The limit as h ---t 0 and h < 0 is therefore -1. 

-1. 

We see that the right derivative at 0 is 1 and the left derivative is -1. 
They are not equal. We would of course expect this from the graph of our 
function f(x) = lxi, which looks like that in Fig. 7. 
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FIGURE 7 

Both the right derivative of 1 and the left derivative of 1 exist but they 
are not equal. 

We could rephrase our definition of the derivative and say that the 
derivative of a function l(x) is defined when the right derivative and the 
left derivative exist and they are equal, in which case this common value 
is simply called the derivative. 

Example 5. Letl(x) be equal to x if 0 < x ~ 1 and x-I if 1 < x ~ 2. 
We do not define 1 for other values of x. Then the graph of 1 looks like this: 

FIGURE 8 

The left derivative of 1 at 1 exists and is equal to 1, but the right deriva­
tive of 1 at 1 does not exist. We leave the verification of the first assertion 
to you. To verify the second assertion, we must see whether the limit 

lim 1,-,-(_1 .....:...+_h-:-) --,1:.....:.(....:...1) 
"-+0 h 
">0 

exists. Since 1 + h > 1 we have 

1(1 + h) = 1 + h - 1 = h. 

Also 1(1) = 1. Thus the Newton quotient is 

1(1 + h) - 1(1) = h - 1 = 1 _ !. 
h h h 

As h approaches 0 the quotient I/h has no limit since it becomes arbitrarily 
large. Thus the Newton quotient has no limit for h > 0 and the function 
does not have a right derivative when x = 1. 
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EXERCISES 

Find the derivatives of the following functions: 

1. X2 + 1 2. x3 

3. 2x3 4. 3x2 

5. x2 - 5 6. 2x2 + x 

7. 2x2 - 3x 8. Ix3 + 2x 
1 2 

9. ;; + 1 10. x + 1 

11. In exercises 1 through 10, find the slope of the graph at the point whose 
x-coordinate is 2, and find the equation of the tangent line at that point. 

12. Letf(x) be defined as follows: 
f(x) = -x if x ~ 0 f(x) = 2 if x > o. 

Find f'ex) when x = -1. Find the right and left derivatives of f at x = 0, if 
they exist. 

13. Let f(x) = Ixl + x. Does 1'(0) exist? Does I'(x) exist for values of x 
other than O? 

14. Letf(x) = 0 if x ~ 1 andf(x) = x if x > 1. Sketch the graph. Find the 
right and left derivatives of f when x = 1. Find I' (x) for all other values of x. 

15. Determine whether the following functions have a derivative at 0, and if 
so, what is the derivative. 

(a) f(x) = xlxl (b) f(x) = x21xl (c) f(x) = x31xl 

§3. Limits 

In defining the slope of a curve at a point, or the derivative, we used the 
notion of limit, which we regarded as intuitively clear. It is indeed. You 
can see in the Appendix how one may define limits using only properties of 
numbers, but we do not worry about this here. However, we shall make a 
list of the properties of limits which will be used in the sequel, just to be 
sure of what we assume about them, and also to give you a technique for 
computing limits. 

First, we note that if F is a constant function, F(x) = c for all x, then 

lim F(h) = c 
h-+O 

is the constant itself. 
If F(h) = h, then 

lim F(h) = O. 
h-+O 

The next properties relate limits with addition, subtraction, multi­
plication, division, and inequalities. 
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Suppose that we have two functions F(x) and G(x) which are defined 
for the same numbers. Then we can form the sum of the two functions 
F + G, whose value at a point x is F(x) + G(x). Thus when F(x) = X4 

and G(x) = 5X3 / 2 we have 

F(x) + G(x) = X4 + 5x3/2. 

The value F(x) + G(x) is also written (F + G)(x). The first property of 
limits concerns the sum of two functions. 

Property 1. Suppose that we have two functions F and G defined for 
small values of h, and assume that the limits 

lim F(h) and lim G(h) 
h ..... O h ..... O 

exist. Then 
lim [F(h) + G(h)] 
h ..... O 

exists and 
lim (F + G)(h) = lim F(h) + lim G(h). 
h ..... O h ..... O h ..... O 

In other words the limit of a sum is equal to the sum of the limits. 

A similar statement holds for the difference F-G. 
After the sum we discuss the product. Suppose we have two functions F 

and G defined for the same numbers. Then we can form their product FG 
whose value at a number x is 

(FG)(x) = F(x)G(x). 

For instance if F(x) = 2X2 - 2"' and G(x) = x2 + 5x, then the product is 

(FG)(x) = (2X2 - 2"')(x2 + 5x). 

Property 2. Let F, G be two functions defined for small values of h, and 
assume that 

lim F(h) and lim G(h) 
h ..... O h ..... O 

exist. Then the limit of the product exists and we have 

lim (FG)(h) = lim [F(h)G(h)] 
h ..... O h ..... O 

= lim F(h) . lim G(h). 
h ..... o h ..... O 

In words, we can say that the product of the limits is equal to the limit of 
the product. 
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As a special case, suppose that F(x) is the constant function F(x) = c. 
Then we can form the function cG, product of the constant by G, and we 
have 

lim cG(h) = c· lim G(h). 
h-.O h-.O 

Thirdly, we come to quotients. Let F, G be as before, but assume that 
G(x) ;t. 0 for any x. Then we can form the quotient function FIG whose 
value at x is 

~ ( ) = F(x) . 
G x G(x) 

Property 3. Assume that the limits 

lim F(h) and lim G(h) 
h-.O h-.O 

exist, and that 

lim G(h) ;t. o. 
h-.O 

Then the limit of the quotient exists and we have 

lim F(h) _ lim F(h) . 
h-.O G(h) - lim G(h) 

In words, the quotient of the limits is equal to the limit of the quotient. 

As we have done above, we shall sometimes omit writing h ~ 0 for the 
sake of simplicity. 

Property 4. Let F, G be two functions defined for small values of h, and 
assume that G(h) ~ F(h). Assume also that 

lim F(h) and lim G(h) 
h-.O h-.O 

exist. Then 

lim G(h) ~ lim F(h). 
h-.O h-.O 

Property 5. Let the assumptions be as in Property 4, and in addition, 
assume that 

lim G(h) = lim F(h). 
h-.O h-.O 

Let E be another function defined for the same numbers as F, G such that 

G(h) ~ E(h) ~ F(h) 
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for all small valves of h. Then 
lim E(h) 
h_O 

exists and is equal to the limits of F and G. 
Property 5 is known as the squeezing process. You will find many 

applications of it in the sequel. 

Example 1. Find the limit 

1. 2xh + 3 
1m -:::---'--:-::-

h_O x2 - 4h 
when x ~ O. 

The numerator of our quotient approaches 3 when h ---t 0 and the 
denominator approaches x 2• Thus the quotient approaches 3/x2 . We can 
justify these steps more formally by applying our three properties. For 
instance: 

lim (2xh + 3) = lim (2xh) + lim 3 
h_O h_O h_O 

= lim (2x) lim (h) + lim 3 

=2x·0+3 

= 3. 

For the denominator, we have 

lim (x 2 - 4h) = lim x 2 + lim (-4h) 

= x2 + lim (-4) lim (h) 

= x2 + (-4) ·0 

Using the rule for the quotient, we get 3/x2• 

The properties of limits which we have stated above will allow you to 
compute limits in determining derivatives. We illustrate this by an 
example. 

Example 2. Let f(x) = l/x (defined for x ~ 0). Find the derivative 
df/dx. 

The Newton quotient is 

f(x + h) - f(x) 
h 

1 1 
x+h 

h 
x 

We put everything over a common denominator (x + h)xh. The Newton 
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quotient is equal to 

x - (x + h) 
(x + h)xh 

-h 
(x + h)xh 

[III, §4] 

-1 
(x + h)x 

Thus we have to determine the limit of a quotient as h approaches O. 
Using the property of a product, we have 

lim (x + h)x = lim (x + h) lim x 

Using the property of quotients, we see that the Newton quotient for the 
function 1/x approaches _1/X2. Thus 

df = lim f(x + h) - f(x) -1 
dx h~O h = X""2' 

EXERCISES 

Find the derivatives of the following functions, justifying the steps in taking 
limits by means of the first three properties: 

1. f(x) = 2X2 + 3x 2. f(x) 
1 

= 2x+ 1 

3. f(x) 
x 

4. f(x) = x(x + 1) =--
x+l 

5. f(x) 
x 

6. f(x) = 3x3 =---
2x - 1 

7. f(x) 
4 

8. f(x) 
5 = X = x 

9. f(x) = 2x3 lO. f(x) 
3 

= !x + x 

§4. Powers 

We have seen that the derivative of the function x 2 is 2x. 
Let us consider the functionf(x) = x 3 and find its derivative. We have 

Hence the Newton quotient is 

f(x + h) - f(x) 
h 

x 3 + 3x2h + 3xh2 + h 3 - x 3 

h 

Using the properties of limits of sums and products, we see that 3x2 
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remains equal to itself as h approaches 0, that 3xh and h3 both approach O. 
Hence 

f'(x) = lim f(x + h) - f(x) = 3x2. 
h--+O h 

This suggests that in general, whenever f(x) = xn for some positive 
integer n, the derivative f'(x) should be nxn- 1. This is indeed the case, 
and we state it as a theorem. 

THEOREM 1. Let n be an integer ~ 1 and let f(x) = xn. Then 

df n-l 
dx=nx . 

Proof. We have 

f(x + h) = (x + h)n = (x + h)(x + h) ... (x + h), 

the product being taken n times. Selecting x from each factor gives us a 
term xn. If we take x from all but one factor and h from the remaining 
factor, we get hxn- 1 taken n times. This gives us a term nxn-1h. All 
other terms will involve selecting h from at least two factors, and the 
corresponding term will be divisible by h2. Thus we get 

f(x + h) = (x + h)n = xn + nxn-1h + h2g(x, h), 

where g(x, h) is simply some expression involving powers of x and h with 
numerical coefficients which it is unnecessary for us to determine. How­
ever, using the rules for limits of sums and products we can conclude that 

lim g(x, h) 
h--+O 

will be some number which it is unnecessary for us to determine. 
The Newton quotient is therefore 

f(x + h) - f(x) 
h 

xn + nxn-1h + h2g(X, h) - xn 

h 

We can cancel xn and are left with 

nxn-1h + h2g(X, h) 
h 

We can now divide numerator and denominator by h, thereby giving us 

nxn - 1 + hg(x, h). 
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As h approaches 0, the term nxn - 1 remains unchanged. The limit of h as h 
tends to 0 is 0, and hence by the product rule, the term hgex, h) approaches 
o when h tends to O. Thus finally 

lim f,,-,e,-x_+,---h-;.-) _--,,-f--,-ex...:...) = nxn - 1, 

h--.O h 

which proves our theorem. 

THEOREM 2. Let a be any number and let fex) = xa edefined for x > 0). 
Then f(x) has a derivative, which is 

f'ex) = axa - 1• 

It would not be difficult to prove Theorem 2 when a is a negative integer. 
It is best however to wait until we have a rule giving us the derivative of a 
quotient before doing it. We could also give a proof when a is a rational 
number. However, we shall prove the general result in a later chapter, 
and thus we prefer to wait until then, when we have more techniques 
available. 

Examples. If f(x) = x lO then f'(x) = 10x9• 

If fex) = X 3/ 2 efor x > 0) thenf'ex) = -ixl/2. 

If fex) = X-5/ 4 then f'ex) = _!X-9/ 4• 

If fex) = X~2 thenf'ex) = v'2 X~2-1. 

Note especially the special case when fex) = x. Then f'ex) 1. 

EXERCISES 

1. Write out the expansion of (x + h)4 in terms of powers of x and h. 

2. Find the derivative of the function x4 directly, using the Newton quotient. 

3. What are the derivatives of the following functions? 
(a) x2/3 (b) x-3/2 (c) x7/6 

4. What is the equation of the tangent line to the curve y = x 9 at the point 
(1, I)? 

5. What is the slope of the curve y = x2/3 at the point (8, 4)? What is the 
equation of the tangent line at that point? 

6. Give the slope and equation of the tangent line to the curve y = x-3/4 at 
the point whose x-coordinate is 16. 

7. Give the slope and equation of the tangent line to the curve y = YX at 
the point whose x-coordinate is 3. 
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8. Give the derivatives of the following functions at the indicated points: 
(a) f(x) = X1l4 at x = 5 (b) f(x) = x-1I4 at x = 7 
(c) f(x) = xV'2 at x = 10 (d) f(x) = x" at x = 7 

§5. Sums, products, and quotients 

In this section we shall derive several rules which allow you to find the 
derivatives for sums, products, and quotients of functions when you know 
the derivative of each factor. 

Before stating and proving these rules, we make one remark concerning 
the derivative. 

Let f(x) be a function having a derivative f'(x). Since the quotient 

f(x ~ h) -- f(x) 
h 

approaches a limit as h approaches 0, and since 

f(x ~ h) = f(x) ~ h f(x ~ hi -- f(x) , 

using the rules for sums and products of limits, we conclude that 

lim f(x ~ h) = f(x), 
h--+O 

and that f(x ~ h) -- f(x) approaches 0 as h approaches O. 
Of course, we can never substitute h = 0 in our quotient, because then 

it becomes 0/0, which is meaningless. Geometrically, letting h = 0 
amounts to taking the two points on the curve equal to each other. It is 
then impossible to have a unique straight line through one point. Our 
procedure of takfng the limit of the Newton quotient is meaningful only 
if h ;;tf= O. 

Let c be a number and f(x) a function which has a derivative f'(x) for 
all values of x for which it is defined. We can multiply f by the constant c 
to get another function cf whose value at x is cf(x). 

The derivative of cf is then given by the formula 

(cn/(x) = c· f'(x); 

in other words, the derivative of a constant times a function is the constant times 
the derivative of the function. 

To prove this rule, we use the definition of derivative. The Newton 
quotient for the function cf is 

(cf)(x ~ h) -- (cf)(x) = cf(x ~ h) -- cf(x) = cf(x ~ h) -- f(x) • 
h h h 
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Let us take the limit as h approaches O. Then c remains fixed, and 

f(x 4- h) -- f(x) 

h 

approaches f'(x). According to the rule for the product of limits, we see 
that our Newton quotient approaches cf'(x), as was to be proved. 

For example, let f(x) = 3x2• Then f'(x) = 6x. If f(x) = 17xl/2, then 
f'(x) = ¥X-1/ 2. Iff(x) = lOxa, thenf'(x) = lOaxa - 1. 

Next we look at the sum of two functions. 

Let f(x) and g(x) be two functions which have derivatives f'(x) and g'(x), 
respectively. Then the sum f(x) 4- g(x) has a derivative, and 

(f 4- g)'(x) = f'(x) 4- g'(x). 

The derivative of a sum is equal to the sum of the derivatives. 

To prove this, we have by definition 

(f 4- g)(x 4- h) = f(x 4- h) 4- g(x 4- h) 

(f 4- g)(x) = f(x) 4- g(x). 

Therefore the Newton quotient for f 4- g is 

(f 4- g)(x 4- h) -- (f 4- g)(x) 
h 

f(x 4- h) 4- g(x 4- h) -- f(x) -- g(x) 
h 

Collecting terms and separating the fraction, we see that this expression 
is equal to 

f(x 4- h) -- f(x) 4- g(x 4- h) -- g(x) 
h 

= f(x 4- h) -- f(x) 4- g(x 4- h) -- g(x) . 
h h 

Taking the limit as h approaches 0 and using the rule for the limit of a sum, 
we see that this last sum approachesf'(x) 4- g'(x) as h approaches o. This 
proves what we wanted. 

For example, the derivative of the function x 3 4- x 2 is 3x2 4- 2x. The 
derivative of the function 4Xl/2 4- 5x-10 is 

2X-1/ 2 -- 50x-1l . 

Carried away by our enthusiasm at determining so easily the derivative 
of functions built up from others by means of constants and sums, we might 
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now be tempted to state the rule that the derivative of a product is the 
product of the derivatives. Unfortunately, this is false. To see that the 
rule is false, we look at an example. 

Let f(x) = x and g(x) = x 2 • Then f'(x) = 1 and g'(x) = 2x. There­
fore f'(x)g'(x) = 2x. However, the derivative of the product (fg)(x) = x 3 

is 3x2 , which is certainly not equal to 2x. Thus the product of the deriva­
tives is not equal to the derivative of the product. 

Through trial and error the correct rule was discovered. It can be stated 
as follows: 

Let f(x) and g(x) be two functions having derivatives f'(x) and g'(x). Then 
the product function f(x)g(x) has a derivative, which is given by the formula 

(fg)'(x) = f'(x)g(x) + f(x)g'(x). 

In words, the derivative of the product is equal to the derivative of the first 
times the second, plus the first times the derivative of the second. 

The proof is not very much more difficult than the proofs we have 
already encountered. By definition, we have 

(fg)(x + h) = f(x + h)g(x + h) 

(fg)(x) = f(x)g(x). 

Consequently the Newton quotient for the product function fg is 

(fg)(x + h) - (fg)(x) 
h 

f(x + h)g(x + h) - f(x)g(x) 
h 

At this point, it looks a little hopeless to transform this quotient in such a 
way that we see easily what limit it approaches as h tends to O. But we 
rewrite our quotient by inserting 

-f(x)g(x + h) + f(x)g(x + h) 

in the numerator. This certainly does not change the value of our quotient, 
which now looks like 

f(x + h)g(x + h) - f(x)g(x + h) + f(x)g(x + h) - f(x)g(x) 
h 

We can split this fraction into a sum of two fractions: 

f(x + h)g(x + h) - f(x)g(x + h) + f(x)g(x + h) - f(x)g(x) . 
h h 
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We can factor g(x + h) in the first term, and f(x) in the second term, to 
obtain 

f(x + h) h - f(x) g(x + h) + f(x) g(x + h~ - g(x) . 

The situation is now well under control. As h tends to 0, g(x + h) tends to 
g(x), and the two quotients in the expression we have just written tend to 
f'(x) and g'(x) respectively. Thus the Newton quotient for fg tends to 

f'(x)g(x) + f(x)g'(x), 

thereby proving our assertion. 
To illustrate the rules for products, let us find the derivative of 

Applying the rule, we see that it is equal to 

1· (3x 2 ) + (x + 1)6x. 

Similarly, let f(x) = 2x5 + 5x4 and g(x) = 2XI/2 + X-I. Then the 
derivative of f(x)g(x) is 

(lOx4 + 20x3)(2x I / 2 + X-I) + (2x 5 + 5x4 ) (x- I/2 - ;2) , 
which you may and should leave just like that without attempting to 
simplify the expression. 

The last rule of this section concerns the derivative of a quotient. We 
begin with a special case. 

Let g(x) be a function having a derivative g'(x), and such that g(x) ~ O. 
Then the derivative of the quotient l/g(x) exists, and is equal to 

-1 
g(X)2 g'(x). 

To prove this, we look at the Newton quotient 

which is equal to 

1 1 
g(x + h) - g(X) 

h 

g(x) - g(x + h) 1 g(x + h) - g(x) 
g(x + h)g(x)h = - g(x + h)g(x) h 
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Letting h approach 0 we see immediately that our expression approaches 

-1 
g(X)2 g'(x) 

as desired. 
The general case of the rule for quotients can now be easily stated and 

proved. 

Let f(x) and g(x) be two functions having derivatives l' (x) and g' (x) respec­
tively, and such that g(x) ~ O. Then the derivative of the quotient f(x)/g(x) 
exists, and is equal to 

g(x)f'(x) - f(x)g'(x) 
g(X)2 

Putting this into words yields: The bottom times the derivative of the top, 
minus the top times the derivative of the bottom, over the bottom squared 
(which you can memorize like a poem). 

To prove this rule, we write our quotient in the form 

f(x) 1 
g(x) = f(x) g(x) 

and use the rule for the derivative of a product, together with the special 
case we have just proved. We obtain 

f'(x) g(~) + f(x) g(X~2 g'(x). 

Putting this expression over the common denominator g(X)2 yields 

g(x)j'(x) - f(x)g'(x) 
g(X)2 

which is the desired derivative. 
We work out some examples. 
Let f(x) = x 2 + 1 and g(x) = 3x4 - 2x. Then the derivative of 

f(x)/g(x) is 
(3x4 - 2x)2x - (x2 + 1)(12x3 - 2) 

(3x4 - 2X)2 

Still another: The derivative of 2x/(x + 4) is 

(x + 4) . 2 - 2x· 1 
(x + 4)2 
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For future reference, we write the various rules which we have proved 
into the df /dx notation. The first one: 

d(c!) df 
--= c·-· 

dx dx 
The sum: 

dU + g) = df + dg . 
dx dx dx 

The product: 

dUg) = df g(x) + f(x) dg . 
dx dx dx 

The quotient: 

EXERCISES 

Find the derivatives of the following functions: 

1. 2x1l3 2. 5xll 

3. tX-3/4 4. 7x3 + 4x2 

5. 25x-1 + 12xl/2 6. !x2 - 2x8 

7. (x3 + x)(x - 1) 8. (2x2 - l)(x4 + 1) 

9. (x + 1)(x2 + 5i12) 10. (2x - 5)(3x4 + 5x + 2) 

11. (x-2/3 + x2) (x3 +~) 12. (2x + 3) (x\ +~) 
13 2x + 1 14 2x 

. x + 5 . x2 + 3x + 1 

To break the monotony of the letter x, let us use another. 

t2 + 2t - 1 
15. f(t) = (t + 1)(t - 1) 

17. What is the slope of the curve 
t 

t-5/4 

16. t2 + t - 1 

Y = t+ 5 

at the point t = 2? What is the equation of the tangent line at this point? 

18. What is the slope of the curve 

at t = I? What is the equation of the tangent line? 
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§6. The chain rule 

We know how to build up new functions from old ones by means of 
sums, products, and quotients. There is one other important way of build­
ing up new functions. We shall first give examples of this new way. 

Consider the function (x + 2) 10. We can say that this function is made 
up of the lO-th power function, and the function x + 2. Namely, given a 
number x, we first add 2 to it, and then take the lO-th power. Let g(x) = 
x + 2 and let f be the 10-th power function. Then we can take the value of 
f at x + 2, namely 

f(x + 2) = (x + 2) 10 

and we can also write it as 

f(x + 2) == f(g(x). 

Another example: Consider the function (3x 4 - 1) 1/2. If we let g(x) = 
3x4 - 1 and f be the square root function, then 

f(g(x) = v3x4 - 1 = (3x4 - 1)1/2. 

In order not to get confused by the letter x, which cannot serve us any 
more in all contexts, we use another letter to denote the values of g. Thus 
we may write feu) = U 1/ 2• 

Similarly, let feu) be the function u + 5 and g(x) = 2x. Then 

f(g(x) = f(2x) = 2x + 5. 

One more example of the same type: Let 

and 

Then 

1 
feu) =-­

u+2 

1 
f(g(x) = xlO + 2· 

In order to give you sufficient practice with many types of functions, 
we now mention several of them whose definitions will be given later. These 
will be sin and cos (which we read sine and cosine), log (which we read 
logarithm or simply log), and the exponential function expo We shall 
select a special number e (whose value is approximately 2.718 ... ), such 
that the function exp is given by 
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We now see how we make new functions out of these. 

Let feu) = sin u and g(x) = x 2. Then 

f(g(x») = sin (x 2 ). 

Let feu) = eU and g(x) = cos x. Then 

f(g(x») = eC08X• 

Let f(v) = log v and get) = t3 - 1. Then 

f(g(t») = log (t 3 - 1). 

Let g(w) = w lO and fez) = log z + sin z. Then 

g(j(z») = (log z + sin z) 10. 
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You should practice with part (a) of the exercises, in order to assimilate 
properly the terminology and mechanisms of these combined functions. 

Whenever we have two functions f and g such that f is defined for all 
numbers which are values of g, then we can build a new function denoted 
by fog whose value at a number x is 

(f 0 g)(x) = f(g(x»). 

The rule defining this new function is: Take the number x, find the number 
g(x), and then take the value of f at g(x). This is the value of fog at x. 
The functionf 0 g is called the composite function of f and g. We say that 
g is the inner function and that f is the outer function. 

It is important to keep in mind that we can compose two functions only 
when the outer function is defined at all values of the inner function. For 
instance, let feu) = U 1/ 2 and g(x) = -x2 . Then we cannot form the 
composite function fog because f is defined only for positive numbers 
(or 0) and the values of g are all negative, or O. Thus (_X2)1/2 does not 
make sense. 

However, for the moment you are asked to learn the mechanism of com­
posite functions just the way you learned the multiplication table, in order 
to acquire efficient conditioned reflexes when you meet composite func­
tions. Hence for the drills given by the exercises at the end of the section, 
you should forget for a while the meaning of the symbols and operate with 
them formally, just to learn the formal rules properly. 

We come to the problem of taking the derivative of a composite func­
tion. 

We start with an example. Suppose we want to find the derivative of the 
function (x + 1) 10. The Newton quotient would be a very long expression, 
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which it would be essentially hopeless to disentangle by brute force, the 
way we have up to now. It is therefore a pleasant surprise that there will 
be an easy way of finding the derivative. We tell you the answer right 
away: The derivative of this function is lO(x + 1) 9. This looks very much 
related to the derivative of powers. 

Before proving and stating the general theorem, we give you other 
examples. The derivative of (x 2 + 2X)3/2 is !(x2 + 2X)I/2(2x + 2). 
Observe carefully the extra term 2x + 2, which is the derivative of the 
expression x 2 + 2x. 

The derivative of (x 2 + x) 10 is 1O(x2 + x) 9(2x + 1). Observe again 
the presence of the term 2x + 1, which is the derivative of x 2 + x. 

Can you guess the general rule from the preceding assertions? The 
general rule was also discovered by trial and error, but we profit from three 
centuries of experience, and thus we are able to state it and prove it very 
simply, as follows. 

Let f and g be two functions having derivatives, and such that f is defined at 
all numbers which are values of g. Then the composite function fog has a 
derivative, !liven by the formula 

(f 0 g)'(x) = j'Cg(x»)g'(x). 

This can be expressed in words by saying that we take the derivative of the 
outer function times the derivative of the inner function (or the derivative of 
what is inside). 

The preceding assertion is known as the chain rule, and we shall now 
prove it. 

We must consider the Newton quotient of the composite function fog. 
By definition, it is 

Put u = g(x), and let 

f(g(x + h») -- f(g(x») 
h 

k = g(x + h) -- g(x). 

Then k depends on h, and tends to 0 as h approaches o. Our Newton quo­
tient is equal to 

feu + k) -- feu) 
h 

Suppose that k is unequal to 0 for all small values of h. Then we can multiply 
and divide this quotient by k, and obtain 

feu + k) -- .f(u) k feu + k) -- feu) g(x + h) -- g(x) 
k Ji= k h· 
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If we let h approach 0 and use the rule for the limit of a product, we see 
that our Newton quotient approaches 

f'(u)g'(x) , 

and this would prove our chain rule, under the assumption that k is not o. 
It does not happen very often that k = 0 for arbitrarily small values of 

h, but when it does happen, the preceding argument breaks down. For 
those of you who are interested, we shall show you how the argument can 
be slightly modified so as to be valid in all cases. The uninterested reader 
can just skip it. 

We go back to the definition of the derivative of f. Given a number u 
such that f(u) is defined, we know that 

1· f(u + k) - f(u) = f'( ) 
1m k u. 

k->O 

Therefore, the limit of the expression 

«!(k) = f(u + k) - f(u) - f'(u) 
k 

as k approaches 0 is equal to O. In symbols: 

lim «!(k) = o. 
k->O 

Multiplying by k we obtain 

k«!(k) = f(u + k) - f(u) - kf'(u) 
or 

f(u + k) - f(u) = k . f'(u) + k . «!(k). 

So far, this is valid only when k is not O. But if we define «!(O) to be 0, then 
we note that the relationship we have just derived is still valid when 
k = 0 because k does not appear in the denominator. Substituting k = 0 
just yields 

f(u) - f(u) = 0, 

which is certainly true. 
Now let u = g(x) and let k = g(x + h) - g(x). As h approaches zero, 

so does k. 
The Newton quotient for the composite function fog is 

f(g(x + h» - f(g(x) f(u + k) - f(u) 
h = h 
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which, by the expression we have just derived, is equal to 

k . f'(u) + k· lP(k) 
h ., 

or substituting the value for k, is equal to 

g(x + hk - g(x) f'(u) + g(x + hk - g(x) lP(k). 

Taking the limit as h approaches 0, we see that the first term approaches 
g'(x)f'(u). So far as the second term is concerned, taking the limit, we get 

lim g(x + h) - g(x) lP(k) = g'(x) . 0 = 0 
10 ...... 0 h 

because the limit of lP(k) as h or k goes to 0 is o. This proves that the 
Newton quotient of fog approaches 

f'(u)g'(x) 

and concludes the proof of the chain rule in general. 
We are in a position to see the reason for the notation dg/dx. The chain 

rule in this notation can be expressed by the formula 

dU 0 g) df du 
dx = du dx 

if u = g(x) is a function of x. Thus the derivative behaves as if we could 
cancel the duo As long as we have proved this result, there is nothing wrong 
with working like a machine in computing derivatives of composite func­
tions, and we shall give you several examples before the exercises. 

Let feu) = u lO and u = g(x) = x 2 + 1. Then f'(u) = 10u9 and 
g'(x) = 2x. Thus 

dU 0 g) 
dx 

Letf(u) = 2U 1/ 2 and g(x) = 5x + 1. Thenf'(u) = U- 1/ 2 and g'(x) = 5. 
Thus 

dUd; g) = (5x + 1)-1/2·5. 

(Pay attention to the constant 5, which is the derivative of 5x + 1. You 
are very likely to forget it.) 

In order to give you more extensive drilling than would be afforded by 
the functions we have considered, like powers, we summarize the deriva-
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tives of the elementary functions which are to be considered later. 

d (sin x) 
dx = cosx. 

d (cos x) 
dx = -sin x. 

d~:) = eZ (yes, eZ , the same as the function I). 

d (log x) 1 = -. 
dx x 

In view of these, and the chain rule, we see that the derivative of 
(sin xf is 7 (sin X)6 (cos x). (Here again we emphasize the appearance of 
cos x, which is the derivative of what's inside our composite function.) 

The derivative of (log X)1/2 is! (log X)-1/2. ~ • 
2 ,~ 

The derivative of esinz is esinz (cos x). 

The derivative,of cos (2X2) is -sin (2X2) ·4x. (The 4x is the derivative 
of 2x2.) 

EXERCISES 

(a) In each case, find two functions feu) and g(x) such that the indicated 
function is of type f(g(x»). 

(b) Find the derivative of the indicated function. 

1. (x + 1)8 2. (2x _ 5)112 

3. (sin x)3 4. (log x)5 

5. sin 2x 6. log (x2 + 1) 
7. e"o.", 

9. sin (lOg x +~) 
11. (2x2 + 3)3 

13. log (cos 2x) 

15. sin [cos (x + 1)] 

1 
17. (3x _ 1)4 

1 
19. (sin 2x)2 

8. log (e'" + sin x) 

10. x.+ 1 
sm2x 

12. cos (sin 5x) 

14. sin [(2x + 5)2] 

16. sin (ex) 

1 
18. (4x)3 

20 1 
. (cos 2X)2 

(Note: Do not attempt to simplify your answers.) 
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§7. Rate oj change 

The derivative has an interesting physical interpretation, which was 
very closely connected with it in its historical development, and is worth 
mentioning. 

Suppose that a particle moves along some straight line a certain distance 
depending on time t. Then the distance s is a function of t, which we write 
s = I(t). 

For two values of the time, tb and t2 , the quotient 

l(t2) - I(t l ) 

t2 - tl 

can be regarded as a sort of average speed of the particle. At a given time 
to, it is therefore reasonable to regard the limit 

lim I:.....:(--'-:t)_~f-'-(to=-) 
t-->to t - to 

as the rate of change of s with respect to t. This is none other than the 
derivative f'(t). 

For instance if the particle is an object dropping under the influence of 
gravity, then experimental data show that 

s = !gt2 , 

where g is the gravitational constant. In that case, 

is its speed. 

ds - = gt 
dt 

The rate of change of the speed is the acceleration. In the case of 
gravity, we take the derivative of the speed and we get simply the con­
stant g. 

In general, given a function y = I(x), the derivativef'(x) is interpreted 
as the rate of change of I(x). Thus f' is also a function. If it turns out to 
be also differentiable (this being usually the case), then its derivative is 
called the second derivative of I and is denoted by f"(x). For instance, the 
first derivative of (x 2 + 1)2 is 2(x2 + 1)2x = 4x3 + 4x, and the second 
derivative f"(x) is 12x2 + 4. 

EXERCISES 

Find the second derivatives of the following functions: 

1. 3x3 + 5x + 1 2. (x2 + 1)5 



64 THE DERIVATIVE [III, §7] 

There is no reason to stop at the second derivative, and one can of course con-
tinue with the third, fourth, etc. 

3. Find the 80-th derivative of x 7 + 5x - 1. 

4. Find the 7-th derivative of x7 + 5x - 1. 

5. Find the third derivative of x2 + 1. 

6. Find the third derivative of x3 + 2x - 5. 

Find the derivatives of the following functions: 

1 
7. -.-3-

sm x 

9. (x2 + l)ez 

1 
11.. + sm x cos x 

13 log x 
. x 2 + 3 

15. (2x - 3)(e'" + x) 
3 

17. x + 1 
x-I 

19. (x4/3 - eZ )(2x + 1) 

21. sin (x2 + 5x) 

1 
23. log (x4 + 1) 

25. ~x 
eX 

8. (sin x)(cos x) 

10. (x3 + 2x)(sin 3x) 

12. sin 2x 
e"" 

14. x + 1 
cos 2x 

16. (x3 - l)(i'" + 5x) 

x2 - 1 
18. 2x + 3 

20. (sin 3x)(x1l4 - 1) 

22. i z2+8 

24 1 
. log (x l/2 + 2x) 

26. Relax. 

27. A particle is moving so that at time t, the distance traveled is given by 
set) = t3 - 2t + 1. At what time is the acceleration equal to O? 

28. A cube is expanding in such a way that its edge is changing at a rate of 
5 in./sec. When its edge is 4 in. long, find the rate of change of its volume. 

29. A sphere is increasing so that its radius increases at the rate of 1 in./sec. 
How fast is its volume changing when its radius is 3 in. ? (The volume of a 
sphere is 41rr3 /3.) 

30. What is the rate of change of the area of a circle with respect to its radius, 
diameter, circumference? 

31. A point moves along the graph of y = 1/(x2 + 4) so that its x-coordinate 
changes at the rate of 3 units per second. What is the rate of change of its 
y-coordinate when x = 2? 



CHAPTER IV 

Sine and Cosine 

From the sine of an angle and the cosine of an angle, we shall define 
functions of numbers, and determine their derivatives. 

It is convenient to recall all the facts about trigonometry which we need 
in the sequel, especially the formula giving us the sine and cosine of the 
sum of two angles. Thus our treatment of the trigonometric functions is 
self-contained-you do not need to know anything about sine and cosine 
before starting to read this chapter. However, most of the proofs of state­
ments in § 1 come from plane geometry and will be left to you. 

§1. The sine and cosine functions 

Suppose that we have given coordinate axes, and a certain angle, as 
shown on the figure. 

We select a point (x, y) (not the origin) on the line determining our angle A. 
We let r = VX2 + y'l.. Then r is the distance from (0,0) to the point 
(x, y). We define 

sine A = '!!. = y 
r vx2 + y2 

cosine A 
x x 

= - = --;:::::;:==;:::::~ 
r vx2 + y2 

If we select another point (Xb YI) on the line determining our angle A 
and use its coordinates to get the sine and cosine, then we shall obtain the 
same values as with (x, y). Indeed, there is a positive number e such that 

Xl = ex and YI = ey. 
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Thus 

We can factor c from the denominator, and then cancel c in both the 
numerator and denominator to get 

y 

VX2 + y2 

In this way we see that sine A does not depend on the choice of coordinates 
(x, y). 

The geometric interpretation of the above argument simply states that 
the triangles in the following diagram are similar. 

(0, 0) ..c:..-----'-__ -'--_---' 

The angle A can go all the way around. For instance, we could have an 
angle determined by a point (x, y) in the second or third quadrant. 

(x, y) 

(x, y) 

When the angle A is in the first quadrant, then its sine and cosine are 
positive because both coordinates x, yare positive. When the angle A is 
in the second quadrant, its sine is positive because y is positive, but its 
cosine is negative because x is negative. 

When A is in the third quadrant, sine A is negative and cosine A is 
negative also. 

In order to define the sine of a number, we select a unit for measuring 
angles. We let 7r be the area of the circle of radius 1. We then choose a 
unit angle such that the flat angle is equal to 7r times the unit angle. (See 
the following figures.) The right angle has measure 7r/2. The full angle 
going once around is then 27r. 

The unit of measurement for which the flat angle is 7r is called the 
radian. Thus the right angle has 7r /2 radians. 
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1r/2 

++ 
There is another current unit of measurement for which the flat angle is 

180. This unit is called the degree. Thus the flat angle has 180 degrees, and 
the right angle has 90 degrees. We also have 

360 degrees = 27r radians 

60 degrees = 7r /3 radians 

45 degrees = 7r / 4 radians 

30 degrees = 7r/6 radians. 

We make a table of the sines and cosines of these angles. 

Angle Sine Cosine 

7r/6 1/2 v'a/2 
7r/4 1/0 1/0 
7r/3 v'a/2 1/2 
7r/2 1 0 

7r 0 -1 
27r 0 1 

Unless otherwise specified,we always use the radian measure, and our table 
is given for this measure. 

The values of this table are easily determined, using properties of similar 
triangles and plane geometry. For instance, we get the sine of the angle 
7r/4 radians from a right triangle with two equal sides: 

zJ' 1 

We can determine the sine of 7r/4 by means of the point (1, 1). Then 
r = 0 and sine 7r/4 radians is 1/0. Similarly for the cosine. 

The following is an important rule relating the sine and cosine. 
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or 

SINE AND COSINE 

THEOREM 1. For any angle A we have 

cosine A = sine (A + 1) 

sine A = cosine ( A - ~) . 

[IV, §1] 

Proof. You can use theorems of plane geometry to prove our theorem. 
We leave this to you. 

We wish to define a function of numbers, which will also be called the 
sine. The rule is: 

For any number x we associate to it the number which is the sine 
of x radians. 

This function is denoted by sin x and is defined for all x. Thus sin 7r = 0, 
sin 7r/2 = 1, sin 27r = 0, sin 0 = O. 

Similarly, we have the cosine junction, which is defined for all numbers x 
by the rule: 

cos x is the number which is the cosine of the angle x radians. 

Thus cos 0 = 1 and cos 7r = -1. 
We can also define the tangent function, tan x, which is the quotient 

t sin x 
anx =-­

cos x 

and is defined for all numbers x such that cos x ¢ o. These are the numbers 
x which are unequal to 

7r 37r 57r 
"2' 2' 2' 

in general x ¢ (2n + 1)7r/2 for some integer n. 
If we had used the measure of angles in degrees we would obtain another 

sine function which is not equal to the sine function which we defined in 
terms of radians. Suppose we call this other sine function sin *. Then 

sin* (180) = sin 7r, 
and in general 

sin* (180x) = sin 7rX 

for any number x. Thus 

.* .(7r) sm x = sm 180x 

is the formula relating our two sine functions. It will become clear later 
why we always pick the radian measure instead of any other. 
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At present we have no means of computing values for the sine and cosine 
other than the very special cases listed above (and similar ones, based on 
simple symmetries of right triangles). It will be only in Chapter XIV that 
we shall develop a method which will allow us to find sin x and cos x for 
any value of x, up to any degree of accuracy that you wish. 

EXERCISES 

Find the following values of the sin function and cos function: 

1. sin 311'/4 

3 . 711' 
. sm 12 

5. cos (11' + i) 
7. cos (211' - i) 

Find the following values: 

11' 
9. tan 4 

511' 
11. tanT 

2. sin 211'/6 

4. sin (11' - i) 

6. cos (11' + 2:) 

511' 
8. COST 

. 211' 
10. tan6" 

12. tan (211' - ~) 
13. Prove by plane geometry that sin (11' - x) = sin x. 

14. Prove by plane geometry that cos (11' - x) = -cos x. 

15. Prove by plane geometry that sin (211' - x) = -sin x. 

16. Prove by plane geometry that sin (-x) = -sin x. 

17. Prove by plane geometry that cos (-x) = cos x. 

18. Let a be a given number. Determine all numbers x such that sin x = sin a. 
(You may suppose that 0 ;;i! a < 211', and distinguish the cases a = 11'/2, 
a = -11'/2 and a ~ ±'II'/2.) 

§2. The graphs 

We wish to sketch the graph of the sine function. 
We know that sin 0 = O. As x goes from 0 to 7r/2, the sine of x increases 

until x reaches 7r/2, at which point the sine is equal to 1. 
As x ranges from 7r/2 to 7r, the sine decreases until it becomes sin 7r = O. 
As x ranges from 7r to 37r/2 the sine becomes negative, but other­

wise behaves in a similar way to the first quadrant, until it reaches 
sin 37r/2 = -1. 

Finally, as x goes from 37r /2 to 27r, the sine of x goes from -1 to 0, and 
we are ready to start all over again. 
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The graph looks like this: 

The graph of the cosine will look like that of the sine, but it starts with 
cos 0 = 1. In the next picture the scale used on the vertical axis is dif­
ferent from that on the horizontal axis so that we will have more room for 
the arches of the graph. 

If we go once around by 211", both the sine and cosine take on the same 
values, in other words 

sin (x + 211") = sin x 

cos (x + 211") = cos X 

for all x. This holds whether x is positive or negative, and the same would 
be true if we took x - 211" instead of x + 211". 

You might legitimately ask why one arch of the sine (or cosine) curve 
looks the way you have drawn it, and not the following way: 

A 
In the next section, we shall find the slope of the curve y = sin x. It is 
equal to cos x. Thus when x = 0, the slope is cos 0 = 1. Furthermore, 
when x = 11"/2, we have cos 11"/2 = 0 and hence the slope is o. This means 
that the curve becomes horizontal, and cannot have a peak the way we 
have drawn it above. 

At present we have no means for computing more values of sin x and 
cos x. However, using the few that we know and the derivative, we can 
convince ourselves that the graphs look as we have drawn them. 
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EXERCISES 

1. Draw the graph of tan x. 

2. Let sec x = l/cos x be defined when cos x 0;6. O. Draw the graph of sec x. 

3. Let cot x = l/tan x. Draw the graph of cot x. 
(Sec and cot are abbreviations for the secant and cotangent.) 

4. Draw the graph of the function sin (I/x). 

5. Draw the graph of the function x sin (l/x). 

6. Draw the graph of the function x2 sin (l/x). 
(In Exercises 4, 5, 6 the function is not defined for x = 0.) 

7. Let f(x) = x 2 sin (l/x) when x 0;6. 0 and let f(O) = o. Using the Newton 
quotient, show that f has a derivative at 0 and that l' (0) = O. 

8. Let f(x) = x sin (I/x) when x 0;6. 0 and let f(O) = o. Show that f does 
not have a derivative at O. (Look at small values of x like 

2 
h =-, 

mr 

n being a large integer. Try n = 1,2,3,4, etc. and see what happens to the values 
of f(x) and the Newton quotient 

f(h) - f(O) .) 
h 

§3. Additionformula 

In this section we shall state and prove the most important formulas 
about sine and cosine. 

To begin with, using the Pythagoras theorem, we observe that 

(sin X)2 + (cos X)2 = 1 

for all x. Indeed, if we have an angle A and we determine its sine and 
cosine from the right triangle, as in the following figure, 

b 

then we have 

Dividing by r2 yields 
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The same argument works when A is greater than 7r/2, by means of a 
triangle like this one: 

b 

In both cases, we have sine A = air and cosine A = blr, so that we 
have the relation 

(sine A)2 + (cosine A)2 = 1. 

It is customary to write the square of the sine and cosine as sin2 A and 
cos2 A. 

Our main result is the addition formula. 

THEOREM 2. For any angles A and B, we have 

sin (A + B) = sin A cos B + cos A sin B 

cos (A + B) = cos A cos B - sin A sin B. 

Proof. We shall prove the second formula first. 

We consider two angles A, B and their sum: 

We take two points P, Q as indicated, at a distance 1 from the origin O. 
We shall now compute the distance from P to Q, using two different co­
ordinate systems. 

First, we take a coordinate system as usual: 

Then the coordinates of Pare (1,0) and those of Q are 

(cos (A + B), sin (A + B)). 
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The square of the distance between P and Q is 

sin2 (A + B) + (cos (A + B) - 1)2, 

which is equal to 
-2 cos (A + B) + 2. 

Next we place the coordinate system as follows: 

y-axis 

x-axis 

Then the coordinates of P become 

(cos A, sin (-A») = (cos A, -sin A). 

Those of Q are simply (cos B, sin B). The square of the distance between 
P and Q is 

(sin B + sin A)2 + (cos B - cos A)2, 

which is equal to 

sin2 B + 2 sin B sin A + sin2 A + cos2 B-2 cos B cos A + cos2 A 

= 2 + 2 sin A sin B-2 cos A cos B. 

If we set the squares of the two distances equal to each other, we get our 
formula. 

The addition formula for the sine can be obtained by the following 
device: 

sin (A + B) = cos (A + B - ~) 

= cos A cos (B - ~) - sin A sin (B ~ ~) 
cos A sin B + sin A sin (~ - B) 
cos A sin B + sin A cos B, 

thereby proving our formula. 
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§4. The derivatives 

We shall prove: 

THEOREM 3. The functions sin x and cos x have derivatives and 

d (sin x) 
dx 

d (cos x) 
dx 

cos x 

-sin x. 

[IV, §4] 

Proof. We shall first determine the derivative of sin x. We have to look 
at the Kewton quotient of sin x. It is 

sin (x + h) - sin x 
h 

Using the addition formula to expand sin (x + h), we see that the Newton 
quotient is equal to 

sin x cos h + cos x sin h - sin x 
h 

We put together the two terms involving sin x: 

cos x sin h + sin x (cos h - 1) 
h 

and separate our quotient into a sum of two terms: 

sinh+. cosh - 1 
cos x -h- sm x h . 

sin h cos h - 1 
We now face the problem of finding the limit of -h- and h as h 

approaches O. This is a somewhat more difficult problem than those we 
encountered previously. We cannot tell right away what these limits will 
be. In the next section, we shall prove that 

1· sin h 1 Im--= 
h-->O h 

and 1· cos h - 1 - 0 
1m h -. 

h-->O 

Once we know these limits, then we see immediately that the first term 
approaches cos x and the second term approaches 

(sin x) . 0 = O. 
Hence 

1. sin (x + h) - sm x 
1m = cosx. 

h-->O h 



[IV, §4] 

This proves that 

THE DERIVATIVES 

d (sin x) 
d = cos x. 

x 

75 

To find the derivative of cos x, we could proceed in the same way, and 
we would encounter the same limits. However, there is a trick which 
avoids this. 

We know that cos x = sin (x + ~) . 
chain rule. We get 

7r 
Let u = x + 2 and use the 

d (cos x) 
dx 

However, du/dx = 1. Hence 

d (sin u) du 
du dx· 

d (cos x) (7r) 
dx = cos u = cos x + 2" -sin x, 

thereby proving our theorem. 

Remark. It is not true that the derivative of the function sin * x is 
cos* x. Using the chain rule, find out what its derivative is. The reason 
for using the radian measure of angles is to get a function sin x whose 
derivative is cos x. 

EXERCISES 

1. What is the derivative of tan x? 

Find the derivative of the following functions: 

2. sin (3x) 3. cos (5x) 

4. sin (4x2 + x) 

6. tan (x4 - x3) 

8. sin (tan x) 

10. What is the slope of the curve y 
is 11"? 

5. tan (x3 - 5) 

7. tan (sin x) 

9. cos (tan x) 

sin x at the point whose x-coordinate 

Find the slope of the following curves at the indicated point (we just give the 
x-coordinate of the point) : 

11. y = cos (3x) at x = 11"/3 

12. Y = sin x at x = 11"/6 

13. Y sin x + cos x at x 

14. Y tan x at x = -11"/4 

1 
15. Y = -.- at x = -11"/6 

smx 

311"/4 
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§5. Two basic limits 

We shall first prove that 

1· sin h - 1 
1m h - . 

h-->O 

[IV, §5] 

Both the numerator and the denominator approach 0 as h approaches 0, 
and we get no information by trying some cancellation procedure, the way 
we did it for powers. 

Let us assume first that h is positive, and look at the following diagram. 

o A C 

We take a circle of radius 1 and an angle of h radians. Let 8 be the altitude 
of the small triangle, and t that of the big triangle. Then 

and 

We see that: 

sinh=~=8 
1 

tanh=i=t=sinh. 
1 cos h 

area of triangle OAB < area of sector OeB < area of triangle OeD. 

The base OA of the small triangle is equal to cos h and its altitude is 
sin h. 

The base oe of the big triangle is equal to 1. Its altitude is 

t=sinh. 
cos h 

The area of each triangle is ~ the base times the altitude. 
The area of the sector is the fraction h/27r of the area of the circle, which 

IS 7r. Hence the area of the sector is h/2. Thus we obtain: 

-21 cos h sin h < -21 h < .! sin h . 
2 cos h 

We multiply everywhere by 2 and get 

cos h sin h < h < sin h . 
cos h 
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There are really two inequalities here. The first one is 

cos hsin h < h. 

Since h is positive, we can divide it by h and then divide by cos h, which is 
also positive. This yields 

The second inequality is 

sinh < _1_. 
h cosh 

h<sinh. 
cos h 

We multiply it by cos h and divide it by h to get 

sin h 
cosh < -h-· 

Putting our two inequalities together, we get 

sin h 1 
cosh < -- < --. 

h cos h 

The game is almost won. Letting h approach 0, we see that (sin h)/h is 
squeezed between two quantities which approach 1. Hence it must ap­
proach 1 also, and our proof is complete. 

We still have to consider the limit 

1. cos h - 1 
1m ---0'---

k-+O h 

and show that it is O. We have 

cosh - 1 
h 

(cos h - 1) (cos h + 1) 
h (cos h + 1) 

cos2 h - 1 
- h (cos h + 1) 

-sin2 h 
h (cos h + 1) 

We can write this last expression in the form 

sinh. 1 
- -h- (sm h) cos h + 1 

Using the property concerning the product of limits, we have a product of 
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three factors. The first is 
sin h 

--h-

and approaches -1 as h approaches O. 
The second is sin h and approaches 0 as h approaches O. 
The third is 

1 
cosh + 1 

and its limit is ! as h approaches O. 

[IV, §5] 

Therefore the limit of the product is 0, and everything is proved! 

We still have one thing to take care of. We computed our limit when 
h > O. Suppose that h < O. We can write 

h =-k 

with k > O. Then 
sin (-k) -sin k sin k 

-k = -----=k = -k-' 

As h tends to 0, so does k. Hence we are reduced to our previous limit 
because k > O. A similar remark applies to our other limit involving cos h. 

EXERCISES 

Find the following limits, as h approaches O. 

1 sin 2h [ . sin 2h sin k ] 
· h Htnt: Put k = 2h. Then -h- = 2 1C · 

2 sin 3h 
· h 

4 tanh 
· sin h 

. h2 
6 ~ 

· h 
. h3 

8 ~ 
· h3 

10 h sin h 
· sin 2h2 

3 sin h 
· 3h 

5 cos 2h 
'l+sinh 

7 sin 2h2 

· 3h 

9 sin 2h3 

· h3 

11 (sin h) (sin 2h) 
· (sin 3h)h 



CHAPTER V 

The Mean Value Theorem 

Giver a curve, y = f(x), we shall use the derivative to give us informa­
tion about the curve. For instance, we shall find the maximum and mini­
mum of the graph, and regions where the curve is increasing or decreasing. 
We shall use the mean value theorem, which is basic in the theory of 
derivatives. 

§1. The maximum and minimum theorem 

Let f be a differentiable function. A point c such that l' (c) = 0 is called 
a critical point of the function. The derivative being zero means that the 
slope of the tangent line is 0 and thus that the tangent line itself is hori­
zontal. We have drawn three examples of this phenomenon. 

c 

FIGURE 1 FIGURE 2 

FIGURE 3 

The third example is that of a function like f(x) = .e:l . We have 
1'(x) = 3x 2 and hence when x = 0,1'(0) = O. 

The other two examples are those of a maximum and a mlmmum, 
respectively, if we look at the graph of the function only near our point c. 
We shall now formalize these notions. 
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Let a, b be two numbers with a < b. We shall repeatedly de/tl with the 
interval of numbers between a and b. Sometimes we want to include the 
end points a and b, and sometimes we do not. We need some terminology 
to distinguish between these various types of intervals, and the standard 
terminology is as follows: 

The collection of numbers x such that a < x < b is called the open 
interval between a and b. 

The collection of numbers x such that a ~ x ~ b is called the closed 
interval between a and b. We denote this closed interval by the symbols 
[a, b]. (A single point will also be called a closed interval.) 

If we wish to include only one end point, we shall say that the interval 
is half closed. We have of course two half-closed intervals, namely the 
one consisting of the numbers x with a ~ x < b, and the other one 
consisting of the numbers x with a < x ~ b. 

Sometimes, if a is a number, we call the collection of numbers x > a 
(or x < a) an open interval. The context will always make this clear. 

Let f be a function, and c a number at which f is defined. We shall say 
that c is a maximum of the function if 

fCc) ~ f(x) 

for all numbers x at which f is defined. If we have only f(c) ~ f(x) for all 
numbers x in some interval, then we say that c is a maximum of the func­
tion in that interval. 

Example 1. Let f(x) = sin x. Then 7r/2 is a maximum for f because 
f(7r/2) = 1 and sin x ~ 1 for all values of x. Note that -37r/2 is also a 
maximum for sin x. 

Example 2. Let f(x) = 2x, and view f as a function defined only on 
the interval 

o ~ x ~ 2. 

Then 2 is a maximum for the function in this interval because f(2) = 4 
and f(x) ~ 4 for all x in the interval. 

Example 3. Let f(x) = l/x. We know that f is not defined for x = o. 
This function has no maximum. It becomes arbitrarily large when x 
comes close to 0 and x > o. 

We have illustrated our three examples in Figs. 4, 5, and 6. 
In the next theorem, we shall prove that under certain circumstances, 

the derivative of a function at a maximum is O. 
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1 4 

1r/2 2 

FIGURE 4 FIGURE 5 FIGURE 6 

THEOREM 1. Let f be a function which is defined and differentiable on 
the open interval a < x < b. Let c be a number in the interval which is a 
maximum for the function. (In other words, f(c) ~ f(x) for all x in the 
interval.) Then 

f'(c) = o. 

Proof. If we take small values of h (positive or negative), the number 
c + h will lie in the interval. 

~ , , 
, I , , 
I I 
, I 
, I 
, I , , , , 
I I I ' 
a c-k c c+h b 

FIGURE 7 

Let us first take h positive (see Fig. 7). We must have 

f(c) ~ fCc + h) 

no matter what h is (provided h is small). Thereforef(c + h) - f(c) ~ O. 
Since h > 0, the Newton quotient 

fCc + h) - f(c) 
h 

is ~ O. Hence the limit is ~ 0, or in symbols: 

lim f(c+ hk - f(c) ~ o. 
h-.O 
h>O 
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Now take h negative, say h = -k with k > O. Then 

f(c - k) - f(c) ~ OJ f(c) - f(c - k) ~ 0 

and the quotient is 

f(c - k) - f(c) 
-k 

f(c) - f(c - k) 
k 

[V, §ll 

Thus the Newton quotient is ~O. Taking the limit as h (or k) approaches 
0, we see that 

lim f(c + h) - f(c) ~ O. 
h->O h 
h<O 

The only way in which our two limits can be equal is that they should 
both be O. Therefore f'(c) = O. 

We can interpret our arguments geometrically by saying that the line 
between our two points slants to the left when we take h > 0 and slants 
to the right when we take h < 0. As h approaches 0, both lines must 
approach the tangent line to the curve. The only way this is possible is 
for the tangent line at the point whose x-coordinate is c to be horizontal. 
This means that its slope is 0, i.e. f'(c) = 0. 

Everything we have done with a maximum could have been done with a 
minimum. 

Letfbe a function. We say that a number c is a minimum for fif f(c) ~ 
f(x) for all x at which the function is defined. 

Theorem 1 remains true when we replace the word "maximum" by the 
word "minimum". It will be a good exercise for you to prove Theorem 1 
for the minimum. When we refer to Theorem 1 we shall use it in both 
cases. 

We illustrate various minima with the graphs of certain functions. 
In Fig. 8 the function has a minimum. In Fig. 9 the minimum is at the 

end point of the interval. In Figs. 3 and 6 the function has no minimum. 

FIGURE 8 FIGURE 9 
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In the following picture, the point Cl looks like a maximum and the 
point C2 looks like a minimum, provided we stay close to these points, and 
don't look at what happens to the curve farther away. 

FIGURE 10 

There is a name for such points. 
We shall say that a point C is a local minimum of the function f if there 

exists an interval 

such that f(c) ~ f(x) for all numbers x with al ~ x ~ bl . 
Similarly, we define the notion of local maximum. (Do it yourself.) In 

Fig. 10, the point C3 is a local maximum, C4 is a local minimum, and Cs is a 
local maximum. 

The actual maximum and minimum occur at the end points. 
In practice, a function usually has only a finite number of critical points, 

and it is easy to find all points c such that f'(c) = O. One can then deter­
mine by inspection which of these are maxima, which are minima, and 
which are neither. 

Example 1. Find the critical points of the function f(x) = x 3 - 1. 
We have f'(x) = 3x2 • Hence there is only one critical point, namely 

x = O. 

Example 2. Find the critical points of the function 

y = x 3 - 2x + 1. 

The derivative is 3x2 - 2. It is equal to 0 precisely when 

x 2 = !, 

which means x = V2/3 or -V2/3. These are the critical points. 

Example 3. Find the local maximum and minimum of the function 
f(.1:) = x 3 - 2.1: + 1. 
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The local maximum and minimum must be a critical point, hence we 
have only two possibilities, which we found in Example 2. These are 
x = v'273 and x = -v'273. We make a small table of values of our 
function: 

x y 

0 1 
-1 2 
-2 -3 

1 0 
2 5 

The number v'273 is between 0 and 1. Since f(l) = 0 and f(O) = 1, it 
follows that v'273 must be a local minimum. 

Similarly, -v'273 is between 0 and -1. Butf(O) = 1 andf(-I) = 2. 
Hence ~v'273 is a local maximum. The sketch of the graph looks like 
this: 

FIGURE 11 

EXERCISES 

Find the critical points of the following functions: 

1. x2 - 2x + 5 2. 2X2 - 3x - 1 

3. 3x2 - X + 1 4. -x2 + 2x + 2 

5. _2x2 + 3x - 1 

7. x3 - 3x 

6. x3 + 2 

8. sin x + cos x 

9. cos x 10. sin x 

11. A box with open top is to be made with a square base and a constant 
surface C. Determine the sides of the box if the volume is to be a maximum. 

12. A container in the shape of a cylinder with open top is to have a fixed 
surface area C. Find the radius of its base and its height if it is to have maximum 
volume. 
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13. Do the above two problems when the box and container are closed at the 
top. 

(The area ofa circle of radius x is 1I"X2 and its length is 211"x. The volume of a 
cylinder whose base has radius x and of height y is 1I"X2 y.) 

§2. Existence of maxima and minima 

It is important to know when a function has a maximum and a minimum. 
We shall describe a condition under which it does. 

Up to now we have defined derivatives by means of a Newton quotient 
taken with h positive and negative. However, in Chapter II, we also 
described the right derivative and the left derivative. 

Let f(x) be a function defined on an interval 

a ~ x ~ b. 

(We assume throughout that a < b.) We shall say that it is differentiable in 
this interval if it is differentiable in the interval 

a < x < b, 

and if, in addition, it has a right derivative at a, and a left derivative at b. 
Thus we assume that the limits 

lim f,-,(c-a .....;+----:h ),--=-f--,-( a-"-) 
h-+O h 
h>O 

and 

lim f"-'.(_b -,-+_h-;.-) ------,f'-'.(b....:...) 
h-+O h 
h<O 

exist. These limits will be denoted by f'(a) and f'(b) just as with the 
ordinary derivative. 

If we have a point x in the interval which is not equal to the end points, 
then f'(x) has the usual meaning. 

Since the function may not be defined outside the interval, the quotient 

f(a + h) - f(a) 
h 

would not be defined when h < 0, and similarly the quotient 

f(b + h) - f(b) 
h 

would not be defined when h > o. 
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We need some criterion to know when a function has a maximum and a 
minimum in an interval. 

A function f is said to be continuous if for every x such that f is defined, 
we have 

lim f(x + h) = f(x). 
h-+O 

If f is differentiable, then it must be continuous. 
In this chapter, we shall deal mostly with functions defined on an in­

terval with end points a, b such that a < b, and these functions will be 
differentiable in the open interval, and continuous at the end points. 

THEOREM 2. Let f(x) be a function which is continuous on the closed 
interval a ~ x ~ b. Then f has a maximum and also has a minimum in 
this interval. 

This means that there is a point CI in the interval such that f(CI) ~ f(x) 
for all x in the interval, and there is a point C2 such that f( C2) ~ f(x) for all 
x in the interval. 

If you look back to Fig. 3 and Fig. 6 of §l, you will see graphs of functions 
which have no maximum or minimum. The reason for this is that the 
functions are not defined over closed intervals. In the case of a hyperbola, 
as in Fig. 6, we could define the function at 0 in an arbitrary way, for 
instance letf(O) = 997. We still would not get a maximum or a minimum. 

We shall take Theorem 2 for granted, without proof. If you are inter­
ested in seeing a proof, you can look in the appendix. The proof must be 
carried out by using special properties of numbers. 

Combining Theorems 1 and 2, we obtain: 

THEOREM 3. Let a, b be two numbers, a < b. Let f be a function which 
is continuous over the closed interval 

a ~ x ~ b 

and differentiable on the open interval a < x < b. Assume that 

f(a) = feb) = o. 
Then there exists a point c such that 

a < c < b 

and such that f'(C) = o. 
Proof. If the function is constant in the interval, then its derivative is 0 

and any point in the open interval a < x < b will do. 
If the function is not constant, then there exists some point in the in­

terval where the function is not 0, and this point cannot be one of the end 
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points a or b. Suppose that some value of our function is positive. By 
Theorem 2, the function has a maximum. Let c be this maximum. Then 
f(c) must be greater than 0, and c cannot be either one of the end points. 

Consequently 
a < c < b. 

By Theorem 1, we must have f'(c) = O. This proves our theorem in case 
the function is positive somewhere in the interval. 

If the function is negative for some number in the interval, then we use 
Theorem 2 to get a minimum, and we argue in a similar way, using Theo­
rem 1 (applied to a minimum). (Write out the argument in full as an exer­
cise.) 

The following picture illustrates our Theorem 3. 

b 

FIGURE 12 

§3. The mean value theorem 

Let f(x) be a function which is differentiable in the closed interval 

a ~ x ~ b. 

We continue to assume throughout that a < b. This time we do not as­
sume, as in Theorem 3, that f(a) = feb) = O. We shall prove that there 
exists a point c between a and b such that the slope of the tangent line at 
(c, f( c») is the same as the slope of the line between the end points of our 
graph. In other words, the tangent line is parallel to the line passing 
through the end points of our graph. 

~ __ ~~ (b, feb)~ 

a c b 

FIGURE 13 
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The slope of the line between the two end points is 

feb) - f(a) 
b-a 

[V, §3] 

because the coordinates of the end points are (a, f(a)) and (b, f(b)) re­
spectively. Thus we have to find a point c such that 

f'(c) = feb) - f(a) . 
b-a 

THEOREM 4. Leta < basbefore. Letfbe a function which is continuous 
in the closed interIJal a ~ x ~ b,and differentiable in the interval a < x < b. 
Then there exists a point c such that a < c < b and 

f'(C) = feb) - f(a) . 
b-a 

Proof. The equation of the line between the two end points is 

y = feb) - f(a) (x - a) + f(a). 
b-a 

Indeed, the slope 
feb) - f(g,) 

b-a 

is the coefficieI1t of x. When x = a, Y = f(a). Hence we have written 
down the equation of the line having the given slope and passing through 
a given point. When x = b, we note that y = feb). 

We now consider geometrically the difference between f(x) and the 
straight line. In other words, we consider the function 

Then 

and 

also. 

g(x) = f(x) - feb) - f(a) (x - a) - f(a). 
b-a 

g(a) = f(a) - f(a) = 0 

g(b) = feb) - feb) = 0 

We can therefore apply Theorem 3 to the function g(x). We know that 
there is a point c between a and b, and not equal to a or b, such that 

But 
g'(C) = o. 

g'(X) = f'ex) _ feb) - f(a) . 
b-a 
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Consequently 

INCREASING AND DECREASING FUNCTIONS 

o = g'(e) = f'(c) _ feb) - f(a) . 
b-a 

This gives us the desired value for f'ee). 

89 

The difference between f(x) and the straight line becomes 0 at the end 
points. This is the geometric idea which allows us to apply our Theorem 3. 

Example 1. Let a = 1 and b = 2. Let f(x) = x 2• Find a point c as 
in Theorem 4. 

We have f'(x) = 2x, and 

feb) - f(a) 
b-a 

22 - 12 3 
2 - 1 = 1 = 3. 

We have to solve the equation 2x = 3. We get x = 3/2. Thus c = 3/2 
is a point such that f'(e) has the required value. 

Example 2. Let f(x) = x 3 + 2x, and let a = -1, b = 2. Find a 
number e as in Theorem 4. 

We have f'ex) = 3x2 + 2, and 

feb) -f(a) = 12 - (-3) = 15 = 5 
b - a 2 - (-1) 3 . 

We must solve 3x2 + 2 = 5 and get x = 1 or x = -1. We take c = 1. 

EXERCISES 

Find a number c as in the mean value theorem for each one of the following 
functions: 

1. f(x) = x3, 

2. f(x) = (x - 1)3, 

3. f(x) = x3, 

4. f(x) = x 2 + 5x, 

1 ;:§! x ;:§! 3 

-1 ;:§! x ;:§! 2 

-1 ;:§! x ;:§! 3 

o ;:§! x ;:§! 2 

§4. Increasing and decreasing fJ.tnctions 

Let f be a function defined on some interval (which may be open or 
closed). We shall say that f is increasing over this interval if 

whenever Xl and X2 are two points of the interval such that Xl ~ X2. 
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Thus, if a number lies to the right of another, the value of the function 
at the larger number must be greater than or equal to the value of the func­
tion at the smaller number. 

In the next figure, we have drawn the graph of an increasing function. 

~ 
, I 

FIGURE 14 

We say that a function defined on some interval is decreasing over this 
interval if 

whenever Xl and X2 are two points of the interval such that Xl ;;:;; X2. 

Observe that a constant function (whose graph is horizontal) is both 
increasing and decreasing. 

If we want to omit the equality sign in our definitions, we shall use the 
word strictly to qualify decreasing or increasing. Thus a function f is 
strictly increasing if 

whenever Xl < X2, and f is strictly decreasing if 

whenever Xl < X2. 

The mean value theorem gives us a good test to determine when a func­
tion is increasing or decreasing. 

THEOREM 5. Let f be a function which is continuous in some interval, 
and differentiable in the interval (excluding the end points). 

If f'(x) = 0 in the interval (excluding the end points), thenfis constant. 

If f'(x) > 0 in the interval (excluding the end points), then f is strictly 
increasing. 

If f'(x) < 0 in the interval (excluding the end points), then f is strictly 
decreasing. 

Proof. Let Xl and X2 be two points of the interval, and suppose Xl < X2. 

By the mean value theorem, there exists a point c such that Xl < c < X2 

and 
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The difference X2 - Xl is positive, and we have 

If the derivative of the function is 0 throughout the interval, excluding 
the end points, then the right-hand side of (1) is equal to 0, and hence 
f(XI) = f(X2)' This means that, given any two points of the interval, the 
values of the function are equal, and hence the function is constant. 

If the derivative f'(x) is >0 for all X in the interval, excluding the end 
points, then f'(c) > 0 (because c is in the interval). Hence the product 
(X2 - XI)f'(C) is positive, and 

This proves that the function is increasing. 

We leave the proof of the last assertion to you, as an exercise. 

Example 1. Determine the regions of increase and decrease for the 
function f(x) = x 2 + 5. 

The derivative is f'(x) = 2x. It is >0 when x > 0 and hence f is 
strictly increasing when x > O. The derivative is negative when x < 0 
and hence f is strictly decreasing when x < O. We leave the sketch of the 
graph to you. 

Example 2. Determine the regions of increase and decrease for the 
function f(x) = x 3 - 2x + l. 

The derivative is 3x 2 - 2. The condition 

3x2 - 2 > 0 

is equivalent with 3x2 > 2 or x 2 > 2/3. Thus when x > V2/3 or 
-x > V2/3, we have x 2 > 2/3. The function is strictly increasing when 
x > V2/3 and when x < -V2/3. 

The condition 
f'(x) < 0 

is equivalent to 3x2 - 2 < 0 or x2 < 2/3. Thus the function is decreas­
ing when 

-V2/3 < x < V2/3· 

Example 3. Prove that sin x ~ x for x ~ O. 

We let f(x) = x - sin x. Then f(O) = O. Furthermore, 

f'ex) = 1 - cos x. 
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Since cos x ;;;;; 1 for all x, it follows that 1'(x) ~ 0 for all x. Hence f(x) is 
an increasing function. Hence f(x) ~ 0 for all x ~ 0 and therefore 
. < SIn x = x. 

We shall now give a criterion which will allow us to decide when a func­
tion is positive or negative throughout an interval. For this, we need 
what is known as the intermediate value theorem. 

THEOREM 6. Let Xl and X2 be two numbers, with Xl ;;;;; X2. Let f be a 
function which is defined on the interval 

and assume that f is continuous. Let YI = f(XI) and Y2 = f(X2). Let 
Y3 be a number between YI and Y2. Then there exists a number X3 between 
Xl and X2 such that f(X3) = Y3. 

The proof of Theorem 6 is given in the appendix. It is the type of proof 
which reduces the theorem to properties of numbers, and which we omit. 

As a consequence of Theorem 6, we see that a function which is con­
tinuous in an interval, is positive at some point of the interval, and is not 
equal to 0 at any point of the interval, must be positive throughout the 
interval. Indeed, if it were negative at some point of the interval, the 
intermediate value theorem would ensure that there is a point in the 
interval at which it is equal to o. For our purposes, we therefore have the 
following criterion. 

THEOREM 7. Let f be a function having a derivative l' at every point of 
an interval, and assume that l' is continuous. If l' is positive at some 
point of the interval, and l' (x) ~ 0 for any x in the interval except possibly 
at the end points, then f is strictly increasing in the interval. 

In practice, we can use Theorem 7 by checking that l' is not equal to 0 
at any point. This is easier than checking that 1'(x) > 0 at every point 
of an interval. 

Needless to say, an analogous statement holds when l' is assumed to be 
negative throughout the interval. State it yourself as an exercise. 

Before closing this chapter, we emphasize the first assertion of Theo­
rem 5. We had already seen that the derivative of a constant is o. We now 
have proved the converse. It gives us the following very important result: 

THEOREM 8. Let f(x) and g(x) be two functions which are differentiable 
in some interval and assume that 

1'(x) = g'(x) 
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for all x in the interval. Then there is a constant C such that 

f(x) = g(x) + C 

for all x in the interval. 

Proof. Let !p(x) = f(x) - g(x) be the difference of our two functions. 
Then 

!p'(x) = f'(x) - g'(x) = O. 

Hence !p(x) is constant, i.e. !p(x) = C for some number C. 

EXERCISES 

Determine when the following functions are increasing and decreasing. 

1. f(x) = x3 + 1 2. f(x) = (x - l)(x - 2)(x - 3) 

3. f(x) = x2 - X + 5 4. f(x) = sin x + cos x 

5. f(x) = sin 2x 

7. f(x) = x3 + X - 2 

9. f(x) = 2x3 + 5 

8. f(x) = -x3 + 2x + 1 

10. f(x) = 5x2 + 1 

11. Consider only values of x ~ 0, and let 

!a (x) 

hex) = x - sin x 

3 

-x + _x_ + sin x 
3·2 

hex) 
2 x 

-1 + -+ cos x 
2 

2 4 
X x 

hex) = 1 - 2 + 4. 3 . 2 - cos x 

3 5 

f5(x) = x - 3~ 2 + 5 . 4~ 3.2 - sin x 

(a) Determine whether hex) is increasing or decreasing. Using the value of 
hex) at 0, show that sin x ~ x. 

(b) Determine which of the other functions are increasing or decreasing. 
Using the value of each function at 0, prove the following inequalities: 

3 3 x5 
X - ~ < sl'n x < x - ~+ ---:---=---=-

3·2 = = 3·2 5·4·3·2 
224 

X X x 
1 - - S cos x S 1 - - + ---

2- - 24·3·2 

(c) Show how the above procedure can be continued to get further inequalities 
for sin x and cos x. Give the general formula. 

12. Assume that there is a function f(x) such that f(x) "t: ° for any x, and 
f'(x) = f(x). Let g(x) be any function such that g'(x) = g(x). Show that there 
is a constant C such that g(x) = Cf(x). [Hint: Differentiate the quotient glf.] 



CHAPTER VI 

Sketching Curves 

We have developed enough techniques to be able to sketch curves and 
graphs of functions much more efficiently than before. We shall investigate 
systematically the behavior of a curve, and the mean value theorem will 
playa fundamental role. 

We shall especially look for the following aspects of the curve: 
1. Intersections with the coordinate axes. 
2. Critical points. 
3. Regions of increase. 
4. Regions of decrease. 
5. Maxima and minima (including the local ones). 
6. Behavior as x becomes very large positive and very large negative. 
7. Values of x near which y becomes very large positive or very large 

negative. 
These seven pieces of information will be quite sufficient to give us a 

fairly accurate idea of what the graph looks like. 
We shall also introduce a new way of describing points of the plane and 

functions, namely polar coordinates. These are especially useful in con­
nection with the trigonometric functions. 

§1. Behavior as x becomes very large 

Suppose we have a function f defined for all sufficiently large numbers. 
Then we get substantial information concerning our function by investi­
gating how it behaves as x becomes large. 

For instance, sin x oscillates between -1 and + 1. 
However, polynomials don't oscillate. When f(x) = x 2 , as x becomes 

large positive, so does x 2• Similarly with the function x 3 , or x4 (etc.). 

Example 1. Consider a polynomial 

f(x) = x 3 + 2x - 1. 

We can. write it in the form 

3 ( 2 1) x 1+---· 
X2 x3 
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When x becomes very large, the expression 

2 1 1+---x2 x3 

95 

approaches 1. In particular, given a small number ~ > 0, we have, for 
all x sufficiently large, the inequality 

2 1 
1 - ~ < 1 + - - - < 1 + ~. 

x 2 x 3 

Therefore f(x) satisfies the inequality 

This tells us that f(x) behaves very much like x 3 when x is very large. 
A similar argument can be applied to any polynomial. 

Example 2. Consider a quotient of polynomials like 

x 3 + 2x - 1 
Q(x) = 2x3 - X + 1 . 

Dividing numerator and denominator by x 3 , we get 

Q(x) 

2 1 1+---
X2 x 3 

1 1 
2--+-

x 2 x 3 

As x becomes very large, the numerator approaches 1 and the denominator 
approaches 2. Thus our fraction approaches !. 

Example 3. Consider the quotient 

x 2 - 1 
Q(x) = x 3 - 2x + 1 

Does it approach a limit as x becomes very large? 
If we divide numerator and denominator by x 3 , then we see that our 

quotient can be written 
1 1 

2 1 1--+-
X2 x3 

As x becomes very large, the numerator approaches 0 and the denominator 
approaches 1. Consequently the quotient approaches O. 
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Example 4. Consider the quotient 

x 3 - 1 
Q(x) = x2 + 5 

and determine what happens when x becomes very large. 

We divide numerator and denominator by x 2• This gives 

Q(x) 

[VI, §1] 

As x becomes very large, the numerator is approximately equal to x and 
the denominator approaches 1. Thus the quotient is approximately equal 
to x. 

These four examples are typical of what happens when we deal with 
quotients of polynomials. 

Instead of saying "when x becomes very large", we shall also say "as x 
approaches infinity", or even better, "as x approaches plus infinity". Thus 
in Example 2 we would write 

lim Q(x) 
X->OD 

In Example 3 we would write 

.1. 
2· 

lim Q(x) = o. 
x->oo 

In Example 4, we would write 

lim Q(x) = 00. 
X->OD 

We emphasize that this way of writing is an abbreviation, a shorthand, for 
the sentences we wrote in our various examples. There is NO NUMBER 

WHICH IS CALLED INFINITY. The symbol 00 will not be used except in the 
context we have just described. 

Of course, we could also investigate what happens when x becomes very 
large negative, or, as we shall also say, when x approaches minus infinity, 
which we write - 00 • 

In Example 2, we see that as x becomes very large negative, our quotient 
Q(x) still approaches t, because a fraction like 1/x3 becomes very small. 
(For instance 1/-10,000 = -1/10,000 is very small negative.) Thus we 
would write 

lim Q(x) = t. 
X---+-QO 
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EXERCISES 

Find the limits of the following quotients Q(x) as x becomes very large positive 
or negative. In other words, find 

2x3 - x 
1. x4-1 

2 
4 x + 1 

• 1I"X2 - 1 

_x2 + 1 
7. x+ 5 

2x4 - 1 
10. -4x5 + x2 

lim Q(x) and lim Q(x). %-+-
2. sin x 

x 

5 sin 4x 
. x3 

2x4 - 1 
8. -4x4 + x2 

3.~ 
x 
4 3 

6 5x -x +3x+2 
. x3 - 1 

2x4 - 1 
9. -4x3 + x2 

Describe the behavior of the following polynomials as x becomes very large 
positive and very large negative. 

11. x3 - X + 1 

13. X4 + 3x3 + 2 

15. 2x5 + x2 - 100 

12. _x3 - x + 1 

14. _X4 + 3x3 + 2 

16. -3x5 + x + 1000 

18. -3x6 + x3 + 1 
19. A function I(x) which can be expressed as follows: 

I(x) = a,.x" + a,,_ix"-i + ... + ao, 

where n is a positive integer and the an, a,,-i, ... , ao are numbers, is called a 
polynomial. If an ;& 0, then n is called the degree of the polynomial. Describe 
the behavior of I(x) as x becomes very large positive or negative, n is odd or 
even, and an > 0 or an < O. (You will have eight cases to consider.) 

§2. Curve sketching 

We shall put together all the information we have gathered up to now 
to get an accurate picture of the graph of a function. We deal systemati­
cally with the seven properties stated in the introduction, and our discus­
sion will take the form of working out examples. 

Example 1. Sketch the graph of the curve 

x-I 
y = f(x) = x + 1 

and determine the seven properties stated in the introduction. 
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1. When x = O,wehavef(x) = -1. When x = l,f(x) = O. 
2. The derivative is 

f'ex) = (x ~ 1)2 

(You can compute it using the quotient rule.) It is never 0, and therefore 
the function has no critical points. 

3. The denominator is a square and hence is always positive. Thus 
f'(x) > 0 for all x. The function is increasing for all x. Of course, the 
function is not defined for x = -1 and neither is the derivative. Thus it 
would be more accurate to say that the function is increasing in the region 

x < -1 

and is increasing in the region x > -1. 
4. There is no region of decrease. 
5. Since the derivative is never 0, there is no relative maximum or 

minimum. 
6. As x becomes very large positive, our function approaches 1 (using 

the method of the preceding section). As x becomes very large negative, 
our function also approaches 1. 

Finally, there is one more useful piece of information which we can look 
into, when f(x) itself becomes very large positive or negative: 

7. As x approaches -1, the denominator approaches 0 and the num­
erator approaches -2. If x approaches -1 from the right, then the 
denominator is positive, and the numerator is negative. Hence the fraction 

x-I 
x+l 

is negative, and is very large negative. 
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If x approaches -1 from the left, then x-I is negative, but x + 1 is 
negative also. HenceJ(x) is positive and very large, since the denominator 
is small when x is close to -1. Putting all this information together, we 
see that the graph looks like that in the prec-eding figure. 

We have drawn the two lines x = -1 and y = 1, as these play an 
important role when x approaches -1 and when x becomes very large, 
positive or negative. 

Example 2. Sketch the graph of the curve 

y = -x3 + 3x - 5. 

1. When x = 0, we have y = -5. 
2. The derivative is 

f'(x) = -3x2 + 3. 

It is ° when 3x2 = 3, which is equivalent to saying that x 2 = 1, or 
x = ± 1. These are the critical points. 

3. The derivative is positive when -3x2 + 3 > 0, which amounts to 
saying that 

or 

This is equivalent to the condition 

-1 < x < 1, 

which is therefore a region of increase. 
4. When -3x2 + 3 < 0, the function decreases. This is the region 

given by the inequality 

or x 2 > 1. Thus when 

x > 1 or x < -1, 

the function decreases. 
5. Since the function decreases when x < -1 and increases when 

x > -1 (and is close to -1), we conclude that the point -1 is a local 
minimum. Also,J(-I) = -7. 

Similarly, the point 1 is a relative maximum and J(I) = -3. 
6. As x becomes very large positive, x 3 is very large positive and -x3 

is very large negative. Hence our function becomes very large negative, 
as we see if we put it in the form 

J(x) = _x3 (1 - ~ + ~) . 
x 2 x 3 
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Similarly, as x becomes very large negative, our function becomes very 
large positive. 

Putting all this information together, we see that the graph looks like 
this: 

-1 

(1, -3) 

EXERCISES 

Sketch the following curves, indicating all the information stated in the 
introduction: 

2 
1.y=x+2 

x-3 

x+l 
3. y = x2 + 1 

5. y = cos2 X 

7. y = tan2 x 

9. y = x4 - 2x3 + 1 

2x - 3 
11. Y = 3x + 1 

13. Y = x 5 + x 

15. y = x7 + X 

x-3 
2. y = x2 + 1 

4 . 2 
. Y = sm x 

x2 - 1 
6. y =--

x 

x3 + 1 
8. y = x + 1 

2x2 - 1 
10. y = x2 _ 2 

12. y = x4 + 4x 

14. y = x 6 + 6x 

16. y = x8 + X 

17. Which of the following polynomials have a minimum (for all x)? 

65+ (a) x - x + 2 (b) x - x 2 
6 . 5 + (c) -x - x + 2 (d) -x - x 2 

6 5 
(e) x + x + 2 (f) x + x + 2 
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18. Which of the polynomials in Exercise 17 have a maximum (for all x)? 

19. Sketch the curves of Exercise 17. 

Sketch the following curves: 

20. x3 + x-I 21. x3 - x-I 22. -x3 + 2x + 5 

23. -2x3 + x + 2 24. x3 - x2 + 1 25. x3 + x 

26. Let a, b, c, d be four distinct numbers. What would the following curves 
look like? You may assume a < b < c < d. 

(i) (x - a)(x - b) 
(ii) (x - a)(x - b)(x - c) 
(iii) (x - a)(x - b)(x - c)(x - d) 

REMARK 

In the classical study of functionsj(x), one sometimes asks for points such that 
f"(x) = 0, j"(X) > 0, and f"(x) < O. If we view the second derivative of j as 
the rate of change of the slope of our curve, in a region where j is increasing, the 
positivity of the second derivative means that the rate of change of the slope is 
positive. This can be interpreted geometrically by saying that the curve is 
bending upwards. If on the other hand the second derivative is negative, the 
curve is bending downwards. The following two pictures illustrate this: 

Bending upwards Bending downwards 

A point where a curve changes its behavior from bending upwards to bending 
downwards (or vice versa) is called an inflection point. If the curve is the graph 
of a function j(x), then j" (x) must be 0 at such a point. The following picture 
illustrates this: 
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The determination of inflection points of course gives us more information 
about our curves than we listed above. However, I believe that this additional 
piece of information is not worth spending much time on, especially since the 
above-mentioned seven pieces of information already tend to be slightly oppres­
sive. We shall therefore not go deeper into the question, leaving it as an optional 
topic of study for anyone who has a strong urge to look into it. The reader will 
find the discussion in the supplementary exercises for Chapter V. 

§3. Polar coordinates 

Instead of describing a point in the plane by its coordinates with respect 
to two perpendicular axes, we can also describe it as follows. We draw a 
line between the point and a given origin. The angle which this line makes 
with the horizontal axis and the distance between the point and the origin 
determine our point. Thus the point .is described by a pair of numbers 
(r, 0), which are called its polar coordinates. 

(r,O) 

~cl 
x 

If we have our usual axes and x, yare the ordinary coordinates of our 
point, then we see that 

x 
cos 0 and 

y . - = SIn 0, 
r r 

whence 
X= r cos 0 and y = r sin 0. 

This allows us to change from polar coordinates to ordinary coordinates. 
It is to be understood that r is always supposed to be ~ O. In terms of 

the ordinary coordinates, we have 

Example 1. Find polar coordinates of the point whose ordinary co­
ordinates are (1, V3). 

The polar coordinates are (2, 71"/3). 

We observe that we may have several polar coordinates corresponding 
to the same point. The point whose polar coordinates are (r, 0 + 271") is 
the same as the point (r,O). Thus in our example above, (2,71"/6 +271") 
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would also be polar coordinates for our point. In practice, we usually use 
the value for the angle which lies between 0 and 21r. 

Let f be a function whose values are ~o. If we set r = f(8), then the 
set of points (8, f(8)) is the graph of the function in polar coordinates. We 
can also view r = f(8) as the equation of a curve. 

Example 2. Sketch the graph of the function r = sin 8 for 0 ~ 8 ~ 1r. 

First we make a table of values, as indicated. As 8 ranges from 0 to 
1r/2, sin 8 increases until it reaches 1. As 8 goes from 1r/2 to 1r, the sine 
decreases back to O. Hence the graph looks like this: 

(1, '11"/2) r 

o 0 
11"/4 1/V'2 
11"/2 1 

11" 0 

Example 3. The equation of the circle of radius 3 and center at the origin 
in polar coordinates is simply 

r = 3. 

EXERCISES 

1. Plot the following points in polar coordinates: 
(a) (2,11"/4) (b) (3,11"/6) (c) (1, -11"/4) (d) (2, -311"/6) 

2. Same directions as in Exercise 1. 
(a) (1, 1) (b) (4, -3) 

(These are polar coordinates. Just show approximately the angle represented 
by the given coordinates.) 

3. Find polar coordinates for the following points given in the usual x- and 
y-coordinates: 

(a) (1,1) (b) (-1, -1) (c) (3,3V3) (d) (-1,0) 

Sketch the graphs of the following curves given in polar coordinates: 

4. r = 5 5. r = sin 28 6. r = 8 

7. r = sin 8 + cos 8 8. r 

10. r2 = 2a2 cos 28 (a > 0) 

12. r = a cos 8 (a > 0) 

2 
9. r = sin 38 

2 - cos 8 

11. r 1 + cos 8 

13. r = a sin 8 (a > 0) 
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§4. Parametric curves 

There is one other way in which we can describe a curve. Suppose that 
we look at a point which moves in the plane. Its coordinates can be given 
as a function of time t. Thus, when we give two functions of t, say 

x = f(t), y = g(t), 

we may view these as describing a point moving along a curve. 
For example, if we let x = cos t and y = sin t, then our point moves 

along a circle, counterclockwise, with uniform speed. 
When (x, y) is described by two functions of t as above, we say that we 

have a parametrization of the curve in terms of the parameter t. 

Example 1. Sketch the curve x = t2 , Y = t3• 

We can make a table of values as usual. We also investigate when x 
and yare increasing or decreasing functions of t. For instance, taking the 
derivative, we get 

and 

dx = 2t 
dt 

dy = 3t2 
dt . 

Thus x increases when t > 0 and decreases when t < o. The y-coordinate 
is increasing since t2 > 0 (unless t = 0). Furthermore, the x-coordinate 
is always positive (unless t = 0). Thus the graph looks like this: 

x y 
x=t2 --- --
y=t3 0 0 0 

1 1 1 
2 4 8 

-1 1 -1 
-2 4 -8 

Example 2. We look at the circle 

x = cos 0, y = sin o. 

We shall find another parametrization. Consider the circle of radius 1 and 
the point (x, y) on it: 
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Let 
y 

t=x+l 

The equation of the circle is 

(x ¥ -1). 

(j 
Then we can interpret t geometrically to be tan - . 

2 
From our expression for t we obtain 

y = (x + l)t and 

On the other hand, 

y2 = 1 - x 2 = (x + 1)(1 - x). 

105 

In the two expressions for y2, we cancel (x + 1) (x ¥ -1) and obtain 

1 - x = (x + 1)t2• 

From this we solve for x, and get 

1 - t2 

x = 1 + t2 . 

From the formula y = t(x + 1), we get 

2t 
y = 1 + t2 ' 

Thus, for x ¥ -1, we can get t from x and y, but conversely we can recover 
x, y from values of t, which can be given arbitrarily. This allows us to find 
points on the circle explicitly simply by giving t arbitrary values, which 
may be selected to be rational numbers. Points (x, y) such that x and yare 
rational numbers are called rational points. The above parametrization 
shows us how to get all of them (except when x = -1). 
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EXERCISES 

Sketch the following curves given in parametric form: 

1. x = t + 1, y = 3t + 4 
2. x 1 + t2, Y = 3 - t 
3. x 1 - t2, Y = t (-I;:;i t ;:;i 1) 

4. x t - sin t, y 1 - cos t 
5. x 2(t - sin t), y = 2(1 - cos t) 

One can also give a parametrization of curves in polar coordinates. Sketch 
the following curves in polar coordinates: 

6. r = t3 , 8 = 1I"t2 7. r = t, 8 = t2 

8. Find at least five rational points on the circle of radius 1. (It is very 
difficult in general to find rational points on curves. It is rather remarkable that 
we did it on the circle.) 

9. Using the method above, find an analogous parametrization of the circle 

x2 + y2 = 9. 
10. Prove that on any curve 

xn + yn = 1 

(n = positive integer ~ 3), there is only a finite number of rational points. (If 
you solve this, you will be instantly world-famous among mathematicians. It is 
in fact believed that the only rational points are those for which x or y = o. 
This is Fermat's problem, and has been verified for many values of n. It is 
also unknown whether there exist infinitely many rational points on a curve 
of type 

y2 = f(x), 

where f is a polynomial of degree ~ 5, having distinct roots, for instance 

y2 = (x - I)(x - 2)(x - 3)(x - 4)(x - 5). 

This is a special case of a more general conjecture made by Mordell some forty 
years ago, and unproved to this day.) 



CHAPTER VII 

Inverse Functions 

Suppose that we have a function, for instance 

y = 3x - 5. 

Then we can solve for x in terms of y, namely 

x = My + 5). 

Thus x can be expressed as a function of y. 
Although we are able to solve by means of an explicit formula, there are 

interesting cases where x can be expressed as a function of y, but without 
such an explicit formula. In this chapter, we shall investigate such cases. 

§1. Definition of inverse functions 

Let y = f(x) be a function, defined for all x in some interval. If, for 
each value YI of y, there exists exactly one value Xl of x in the interval such 
that f(XI) = YI, then we can define an inverse function 

x = g(y) 

by the rule: Given a number y, we associate with it the unique number x in 
the interval such that f(x) = y. 

Our inverse function is defined only at those numbers which are values 
of f. We have the fundamental relationf(g(y)) = y and g(j(x)) = x. 

For example, consider the function y = x 2, which we view as being 
defined only for x ~ O. Every positive number (or 0) can be written 
uniquely as the square of a positive number (or 0). Hence we can define 
the inverse function, which will also be defined for y ~ 0, but not for 
y < o. 

The next theorem gives us a good criterion when the inverse function is 
defined. 

THEOREM 1. Let f(x) be a function which is strictly increasing. Then 
the inverse function exists. 
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Proof. This is praetieally obvious: Given a number YI and a number Xl 

sueh that f(XI) = Yb there cannot be another number X2 such that 
f(X2) = YI unless X2 = Xb beeause if X2 ,e Xb then either X2 > Xb in 
which case f(X2) > f(XI), or X2 < Xb in which case f(X2) < f(XI). 

Sinee the positivity of the derivative gives us a good test when a func­
tion is strictly increasing, we are able to define inverse funetions whenever 
the function is differentiable and its derivative is positive. 

As usual, what we have said above applies as well to functions which 
are strictly decreasing, and whose derivatives are negative. 

Using the intermediate value theorem, we now conclude: 

THEOREM 2. Let f be a continuous function on the closed interval 
a ~ x ~ b and assume that f is strictly increasing. Let f(a) = a and 
feb) = {3. Then the inverse function is defined on the closed interval [a, {3]. 

Proof. Given any number l' between a and (3, there exists a number c 
between a and b such that f(c) = 1', by the intermediate value theorem. 
Our assertion now follows from Theorem 1. 

If we let g be this inverse function, then g(a) = a and g({3) = b. Fur­
thermore, the inverse function is characterized by the relation 

f(x) = Y if and only if x = g(y). 

Example 1. Let f(x) = x 3 - 2x + 1, viewed as a function on the 
interval X > V273. Can you define the inverse function? For what 
numbers·? If g is the inverse function, what is g(O)? What is g(5)'? 

Since f'(x) = 3x 2 - 2, the derivative is positive when x > V2/3. 
Hence our function is strictly increasing and the inverse function is defined. 

We know (from the techniques of the previous chapter) that x = V2/3 
is a minimum of f, andf(v'2/3) = (2/3)3/2 - 2(2/3) 1/2 + 1. The inverse 
function is defined therefore for Y > f(V2/3). 

Since f(l) = 0, we get g(O) = 1. Since f(2) = 5, we get g(5) = 2. 
Please note that we do not give an explicit formula for our inverse 

function. 

Example 2. Let f(x) = xn (n being a positive integer). We view f as 
defined only for numbers x > O. Since f'(x) is nxn-t, the function is 
strictly increasing. Hence the inverse function exists. This inverse func­
tion g is in fact what we mean by the n-th root. In particular, we have 
proved that every positive number has an n-th root. 

In all the exercises of the previous chapter you determined intervals over 
which certain functions increase and decrease. You can now define inverse 
functions for such intervals. In most cases, you cannot write down an 
explicit formula for such inverse functions. 
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§2. Derivative of inverse functions 

We shall state below a theorem which allows us to determine the deriva­
tive of an inverse function when we know the derivative of the given 
function. 

THEOREM 3. Let a, b be two numbers, a < b. Let f be a function 
which is differentiable on the interval a < x < b and such that its derivative 
f'(x) is >0 for all x in this open interval. Then the inverse funrtion 
x = g(y) exists, and we have 

g'(Y) = f'~x) . 

Proof. We are supposed to investigate the Newton quotient 

g(y ~ k) -- g(y) 
k 

The following picture,illustrates the situation: 

----~-------: 
y _____ I 

I I 
I I 
I I 
I I 

x x+h 

By the intermediate value theorem, every number of the form y + k with 
small values of k can be written as a value of f. We let x = g(y) and we 
let h = g(y ~ k) -- g(y). Then 

x -:. g(y) and g(y ~ k) = x ~ h. 

Furthermore, y + k = f(x ~ h) and hence 

k = f(x ~ h) -- f(x). 

The Newton quotient for g can therefore be written 

h 
f(x + h) -- f(x) , 

and we see that it is the reciprocal of the Kewton quotient for f, namely 

1 
f(x + h) -- f(x) 

h 
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As h approaches 0, we know that k approaches O. Conversely, as k ap­
proaches 0, we know that there e:dsts exactly one value of h such that 
f(x + h) = y + k, because the inverse function is defined. Consequently, 
the corresponding value of h must also approach O. 

If we now take the limit of the reciprocal of the Newton quotient of f, 
as h (or k) approaches 0, we get 

1 
f'(x) . 

By definition, this is the derivative g'(y) and our theorem is proved. 

Example 1. Let f(x) = x3 - 2x + 1, viewed as a function on the 
interval x > V273. Let g be the inverse function. What is g'(O)? What 
is g'(5)? 

Since 1'(x) = 3x2 - 2 we know that 

g'(y) = l' ~x) 

whenever y = f(x) or x = g(y). But 

f(l) = 0 
and 

g(O) = 1. 

Therefore 

g'(O) = l' ~1) = 1. 

Similarly, f(2) = 5 and g(5) = 2. Hence 

g'(5) = l' ~2) = :0' 

because l' (2) = 10. 
Please note that the derivative g'(y) is given in terms of the inverse 

function. We don't have a formula in terms of y. 

The theorem giving us the derivative of the inverse function could also 
be expressed by saying that 

dx 1 
dy dy/dx' 

Here also, the derivative behaves as if we were taking a quotient. Thus the 
notation is very suggestive and we can use it from now on without thinking, 
because we proved a theorem justifying it. 



[VII, §3] THE ARCSINE 111 

EXERCISES 

In the exercises of Chapter V, §4, restrict f to an interval so that the inverse 
function is defined in an interval containing the indicated point, and find the 
derivative of the inverse function at that point. (Let g denote this inverse 
function in every case.) 

1. g' (2) 

4. g'(-I) 

7. g'(O) 

2. g'(6) 

5. g'(V3/2) 

8. g'(2) 9. g' (21) 

§3. The arcsine 

3. g' (7) 

6. g'(-I) 

10. g' (11) 

It is impossible to define an inverse function for the function y = sin x 
because to each value of y there correspond infinitely many values of x 
(differing by 211"). However, if we restrict our attention to special intervals, 
we can define the inverse function. 

We restrict the sine function to the interval 

_~< <11" 
2 = x = 2· 

The derivative of sin x is cos x and in that interval, we have 

o < cos x 

except when x = 11"/2 or x = -11"/2 in which case the cosine is O. 
Therefore, in the interval 

11" <~ -2~x=2 

the function is strictly increasing by Theorem 2 of Chapter V, §4. The 
inverse function exists, and is called the arcsine. 

Let f(x) = sin x, and x = arcsin y, the inverse function. Since f(O) = 0 
we have arcsin 0 = O. Furthermore, since sin (-11"/2) = -1 and 
sin (11"/2) = 1, we know that the inverse function is defined over the 
interval going from -1 to + 1, i.e. for 

-1 ~ y ~ 1. 

In words, we can say loosely that arcsin x is the angle whose sine is x. (We throw 
in the word loosely because, strictly speaking, arcsin x is a number, and not 
an angle, and also because we mean the angle between -11"/2 and 11"/2.) 

The derivative of sin x is positive for 

-11"/2 < x < 11"/2. 

Since the derivative of the inverse function x = g(y) i~ l/!'(x), the deriva-
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tive of arcsin y is also positive, in the interval 

-1 < y < 1. 

Therefore the inverse function is strictly increasing in that interval. Its 
graph looks like this: 

At this point, we cannot call the horizontal axis simultaneously the x­
and y-axis. Thus for the moment, the horizontal axis as drawn above is 
the y-axis and the vertical axis is the x-axis. 

According to the general rule for the derivative of inverse functions, we 
know that when 

y = SIll X and x = arcsin y 

the derivative is 

When x is very close to 7r /2, we know that cos x is close to O. Therefore 
the derivative is very large. Hence the curve is almost vertical. Similarly, 
when x is close to -7r /2 and y is close to -1, the curve is almost vertical, 
as drawn. 

Finally, it turns out that we can express our derivative explicitly as a 
function of y. Indeed, we have the relation 

sin 2 x + cos 2 X = 1, 
whence 

cos 2 X = 1 - sin2 x. 

In the interval between -7r /2 and 7r /2, the cosine is ~ O. Hence we can 
take the square root, and we get 

cos x = VI - sin 2 x 
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in that interval. Since y = sin x, we can write our derivative in the form 

dx 1 
dy VI - y2 

which is expressed entirely in terms of y. 
Having now obtained all the information we want concerning the 

arcsine, we shift back our letters to the usual ones. We state the main 
properties as a theorem. 

THEOREM 4. View the sine function as defined on the interval 

[-1r/2,1r/2]. 

Then the inverse function is defined on the interval [-1, 1]. Call it g(x) = 
arcsin x. Then g is differentiable in the open interval -1 < x < 1, and 

g'(x) 
1 

EXERCISES 

1. Define the inverse function arccosine, viewing the cosine only on the 
interval [0, ,..]. 

2. What is the derivative of arccosine? 

3. Let g(x) = arcsin x. What is g'(!)? What is g'(1/V'2)? What is g(!)? 
What is g(1/V'2)? 

4. Let g(x) = arccos x. What is g'(!)? What is g'(1/V'2)? What is g(!)? 
What is g(1/V'2)? 

5. Let sec x = l/cos x. Define the inverse function of the secant over a 
suitable interval and obtain a formula for the derivative of this inverse function. 

Find the following numbers. 

6. arcsin (sin 3,../2) 

8. arccos (cos 3,../2) 

10. arcsin (sin -3,../4) 

7. arcsin (sin 2,..) 

9. arccos (cos -,../2) 

§4. The arctangent 

Let f(x) = tan x and view this function as defined over the interval 

-7!.<x<7!.· 
2 2 

As x goes from - 1r/2 to 1r/2, the tangent goes from very large negative 
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values to very large positive values. As x approaches 7r/2, the tangent has 
in fact arbitrarily large positive values, and similarly when x approaches 
-7r/2, the tangent has arbitrarily large negative values. 

We recall that the graph of the tangent looks like this: 

The derivative of tan x is 

d (tan x) 
dx 

... 
2" 

1 + tan2 x. 

Hence the derivative is always positive, and our function is strictly in­
creasing. Therefore the inverse function is defined for all numbers. We call 
it the arctangent. Its derivative is also positive (because it is the reciprocal 
of the derivative of the tangent) and hence the arctan is strictly increasing 
also. 

The graph looks like this: 

Let x = g(y) = arctan y. Then 

so that 

1 g' (y) = -,-----
1 + tan2 x 

g'(y) = 1 ~ y2 
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Here again we are able to get an explicit formula for the derivative of the 
inverse function. 

As with the arcsine, when dealing simultaneously with the function and 
its inverse function, we have to keep our letters x, y separate. However, 
we now summarize the properties of the arctan in terms of our usual 
notation. 

THEOREM 5. The inverse function of the tangent is defined for all 
numbers. Call it the arctangent. Then it has a derivative, and that derivative 
is given by the relation 

d (arctan x) 1 
dx = 1 + x 2 • 

As x becomes very large positive, arctan x approaches 7r/2. 
As x becomes very large negative, arctan x approaches -7r/2. 
The arctangent is strictly increasing for all x. 

In words, we can say that arctan x is the angle whose tangent is x, 
between -7r/2 and 7r/2. 

EXERCISES 

1. Let g be the arctan function. What is g(l)? What is g(1/V3)? What is 
g(-l)? What is g(V3)? 

2. Let g be the arctan function. What is g'(l)? What is g'(1/V3)? What is 
g'(-l)? What is g'(V3)? 

3. Suppose you were to define an inverse function for the tangent in the 
intervalr /2 < x < 3r /2. What would be the derivative of this inverse function? 

4. What is 
(a) arctan (tan 3r/4)? 
(c) arctan (tan fur/6)? 

(b) arctan (tan 2r) ? 
(d) arctan (tan -fur/6)? 



CHAPTER VIII 

Exponents and Logarithms 

We remember that we had trouble at the very beginning with the func­
tion 2" (or 3", or 10"). It was intuitively very plausible that there should 
be such functions, satisfying the fundamental equation 

2"+Y = 2"2Y 

for all numbers x, y, and 2° = 1, but we had difficulties in saying what 
we meant by 2-./2 (or 2""). 

It is the purpose of this chapter to give a systematic treat.ment of this 
function, and others like it. 

We shall see that its inverse function is defined for positive numbers. 
It is called the log (or rather the log to the base 2). Thus y = 2" if and 
only if x = log2 y. For instance, 

3 = log28 
and 

are two ways of saying the same thing. 
Let us assume for the moment that we can make sense of the function 

2", and let us see how we could find its derivative. 
We form the Newton q'.lOtient. It is 

Using the fundamental equation we see that this quotient is equal to 

2"2h - 2" ,,2h - 1 
h = 2 h 

As h approaches 0, 2" remains fixed, but it is very difficult to see what 
happens to 
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It is not at all clear that this quotient approaches a limit. Roughly speak­
ing, we meet a difficulty which is analogous to the one we met when we 
tried to find the derivative of sin x. However, in the present situation, a 
direct approach would lead to much greater difficulties than those which 
we met when we discussed 

It is in fact true that 

1. sin h 
Im--' 

h-+O h 

2h - 1 
lim h 
h-+O 

exists. We see that it does not depend on x. It depends only on 2. 
If we tried to take the derivative of lOX, we would end up with the 

problem of determining the limit 
h 

1. 10 - 1 
1m h ' 

h-+O 

which is also independent of x. 
There seems to be no reason for selecting 2, or 10, or any other number a 

in investigating the function aX. However, we shall see that there exists 
a number called e such that 

h 
1. e - 1 
1m h 

h-+O 

is equal to 1. This is perfectly marvelous, because if we then form the 
Newton quotient for eX, we get 

ex+h - eX X _tJ h-o-_l 
h = e· h 

Therefore its limit as h approaches 0 is eX and hence 

d(eX ) X a:x=e. 

We shall find out eventually how to compute e. Its value is 2.718.... In 
Chapter XIV you will have the technique to compute e to any degree of 
accuracy you wish. 

The sales talk which precedes must now be set aside in your mind. We 
start from scratch, and in order to develop the theory in the easiest way, 
it is best to start with the log, and not with the exponential function. We 
shall then have no difficulties in determining all the limits which arise. 
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§1. The logarithm 

We define a function log x to be the area under the curve l/x between 
1 and x if x ~ 1, and the negative of the area of the curve l/x between 1 
and x if 0 < x < 1. In particular, log 1 = o. 

The shaded portion of our picture represents the area under the curve 
between 1 and x and we have taken an instance where x > 1. 

If x < 1 and x > 0, we would have the following picture: 

If 0 < x < 1, we have said that log x is equal to the negative of the area. 
Thus log x < 0 if 0 < x < 1 and log x > 0 if x > 1. 

(In defining the log, we have appealed to our geometric intuition of area, 
just as we did when we defined the sine and cosine. In the next chapter, 
we shall see how one can avoid this appeal to geometry, and give a purely 
analytic definition.) 

The fundamental fact concerning the logarithm is the following. 

THEOREM 1. The junction log x is differentiable, and 

d (log x) 1 
dx x 
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Proof. We form the Newton quotient 

log (x + h) - log x 
h 
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and have to prove that it approaches l/x as a limit when h approaches O. 
Let us take h > 0 for the moment. Then log (x + h) - log x is the 

area under the curve between x and x + h. Since the curve l/x is decreas­
ing, this area satisfies the following inequalities: 

1 1 
h x + h < log (x + h) - log x < h x . 

Indeed, l/x is the height of the big rectangle as drawn on the next figure, 
and 1/(x + h) is the height of the small rectangle. Since h is the base of the 
rectangle, and since the area under the curve l/x between x and x + his 
in between the two rectangles, we see that it satisfies our inequalities. 

l/x 
l/(x+---..:h)+---_-.l_L-======::::::= 

We divide both sides of our inequalities by the positive number h. Then 
the inequalities are preserved, and we get 

_1_ < log (x + h) - log x < !. 
x+h h x 

As h approaches 0, our Newton quotient is squeezed between 1/(x + h) and 
l/x and consequently approaches l/x. This proves our theorem in case 
h> O. 

When h < 0 we use an entirely similar argument, which we leave as 
an exercise. (You have to pay attention to the sign of the log. Also when 
you divide an inequality by hand h < 0 then the inequality gets reversed. 
However, you will again see that the Newton quotient is squeezed between 
l/x and 1/(x + h).) 

From now on, we do not need our geometric intuition any more. The 
notion of area was used only to give us the existence of a function whose 
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derivative is 1/x, and whose value at 1 is O. All the arguments which 
follow depend only on the fact that we have such a function. 

Let, therefore, log x be a function defined for x > 0, such that log 1 = 0, 
and such that 

d (log x) 1 
dx x 

If g(x) is another such function, then it differs from log x by a constant C, 
i.e. 

g(x) = log x + C 

for all x > o. (Use Theorem 8 of Chapter V, §4.) Setting x = 1 gives 
g(1) = C. Since we assume that g(1) = 0 we see that g(x) = log x. Thus 
there is only one function having the properties mentioned above. 

THEOREM 2. If a, b are two numbers > 0, then 

log (ab) = log a + log b. 

Proof. Consider the function f(x) = log (ax), defined for all x > O. 
We can take its derivative by the chain rule, and we obtain 

df 1 1 
-=-·a=-· 
dx ax x 

( Put u = ax and remember that df = df dU.) Therefore, our functions 
dx du dx 

f(x) and log x have the same derivative. Consequently, they differ by a 
constant: 

log (ax) = log x + C. 

This is true for all x > o. In particular, it is true for x = 1. This yields 

log a = C 

and determines the constant C as being equal to log a. 
But the above relation being true for all x > 0, it is also true if we set 

x = b. In that case, we obtain 

log (ab) = log b + log a, 

thereby proving our theorem. 
Please appreciate the elegance and efficiency of the arguments! 

THEOREM 3. The function log x is strictly increasing for x > o. It 
takes on arbitrarily large positive and negative values. 
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Proof. Since the derivative is l/x, which is positive for all x > 0, our 
function is strictly increasing. Since log 1 = 0, we conclude for instance 
that log 2 > 0. 

Using Theorem 2 we now see that 

log 4 = log (2 . 2) = 2 log 2, 

log 8 = log (4 . 2) = log 4 + log 2 = 3 log 2, 

log 16 = log (8 . 2) = log 8 + log 2 = 4 log 2, 

and so on. In general, 
log 2n = n log 2 

for any po~itive integer n. As n becomes very large, n log 2 also becomes 
very large. 

Concerning the negative values, observe that 

° = log 1 = log (2 . !) = log 2 + log (!). 
Therefore 

log (!) = -log 2, 
and arguing as before, 

log (21n) = -n log 2. 

For large positive integers n, the number -n log 2 is very large negative. 
These same arguments can be applied to prove the following theorem. 

THEOREM 4. If n is an integer, positive or negative, and a is a number 
>0, then 

log (an) = n log a. 

Proof. We proceed stepwise, assuming first that n is positive. Then 

log (a2 ) = log a + log a = 2 log a. 

We continue with a3 , a\ etc. We leave the arguments as an exercise. 
Suppose that n is negative, say n = -m with m positive. Then 

Therefore 
log (an) = log (a-m ) = -m log (a) = n log a, 

thereby proving our theorem. 
By the intermediate value theorem, the function log takes on all values. 

Its graph looks like that in the next figure. 
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Remark. We shall sometimes consider composite functions of the type 
log (j(x)). Since the log is not defined for numbers <0, this expression is 
defined only for numbers x such that f(x) > o. This is to be understood 
whenever we write such an expression. 

Thus when we write log (x - 2), this is defined only when x - 2 > 0, 
in other words x > 2. When we write log (sin x), this is meaningful only 
when sin x > o. It is not defined when sin x ~ o. 

EXERCISES 

1. What is the tangent line to the curve y = log x at the point whose x-coor­
dinate is (a) 2, (b) 5, (c) !. 

2. What is the equation of the tangent line of the curve y = log (x2 + 1) 
at the point whose x-coordinate is (a) -1, (b) 2, (c) -3. 

3. Find the derivatives of the following functions: 

(a) log (sin x) (b) sin (log (2x + 3») 
2 (c) log (x + 5) (d) lo~ 2x 

smx 

4. What is the equation of the tangent line of the curve y = log (x + 1) 
at the point whose x-coordinate is 3? 

5. What is the equation of the tangent line of the curve y = log (2x - 5) 
at the point whose x-coordinate is 4? 

6. Prove that log x < x for all x > 1. [Hint: Let f(x) = x - log x, find 
f(l) and show that f is strictly increasing.] 

7. Let h be a positive number. Compare the area under the curve l/x 
between 1 and 1 + h with the area of suitable rectangles to show that 

h 
1 + h < log (1 + h) < h. 

8. Prove that 

lim -hI log (1 + h) 1. 
h~O 
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9. Prove that for every positive integer n, we have 

10. Let 

n ~ 1 < log ( 1 + ~) < ~. 

1 
an = 1 + ! + ... + - - log n 

n 

for each integer n ~ 2. Show that an+! < an. 

1 
11. Let bn = an - -. Show that bn+! > bn. 

n 
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12. The sequence of positive numbers an decreases, and the sequence of 
positive numbers bn increases. Since bn - an becomes arbitrarily small as n 
becomes large, it follows that there is a unique number C such that 

bn < C < an 

for all positive integers n. This number is called Euler's constant. Prove that 
this constant is not a rational number. (Undying fame awaits you if you can 
do this exercise.) 

§2. The exponential function 

We can apply the theory of the inverse function. Since the function 
log is strictly increasing, the inverse function is defined and we call it expo 
Since log takes on all values, the inverse function is defined for all numbers, 
positive or negative. 

Since 0 = log 1, we have by definition 

1 = exp (0). 

THEOREM 5. If z, ware two numbers, then 

exp (z + w) = exp (z) • exp (w). 

Proof. Let a = exp z and b = exp w. Then z = log a and w = log b 
by definition of the ihverse function. By Theorem 2, we know that 

z + w = log (ab). 

By the definition of the inverse function, this means that 

exp (z + w) = abo 

However, ab = exp (z) • exp (w). Our theorem is proved. 
We define the number e to be exp (1). This is the same as saying that 

log e = lor exp (1) = e. 
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(With the geometric interpretation of the log as area under the curve 
l/x, this means that e is the number such that the area between 1 and e 
is equal to 1.) 

Using Theorem 5, we conclude that 

exp (2) = exp (1 + 1) = exp (1) exp (1) = e2 • 

Similarly, 

exp (3) = exp (2 + 1) = exp (2) exp (1) = e2 • e = e3• 

Proceeding stepwise, we conclude that 

exp (n) = en 
for every positive integer n. 

If n is a negative integer, write n = -m where m is positive. Then 

1 = exp (0) = exp (m - m) = exp (m) exp (-m). 

Dividing by exp (m), which is em, we get 

1 
exp (-m) =-. 

em 

We see therefore that our exp function gives us the power function for 
positive and negative integers m. 

THEOREM 6. The function exp is differentiable, and 

d (exp x) 
dx = exp x. 

Proof. By the theory of the derivative of the inverse function, we know 
that it is differentiable. If y = exp x and x = log y, then the theory of 
the derivative of inverse functions givef; us 

dy 1 
dx = dx/dy· 

But dx/dy = l/y. Hence 

dy 1 
dx = l/y = y = exp x, 

thereby proving our theorem. 
From now on, we agree to write eX instead of exp (x). In view of Theo­

rem 5, we have the rule 

for all numbers z, w, and eO = 1. 



[VIII, §2] THE EXPONENTIAL FUNCTION 125 

The preceding theorem then looks like 

By definition, the derivative of eX is the limit of the Newton quotient 

X eh - 1 e ---
h 

as h approaches O. Hence, at the very end of our theory, we now obtain 
in a very natural way the fact that 

h 
e - 1 = 1. lim h 

h-+O 

As we said in the introduction, this fact would have been very trouble­
some to obtain directly. 

We are now in a position to see that the graph of eX looks like this: 

The function is always strictly increasing, and since e > 1, en becomes 
very large as n becomes very large. Hence so does eX for any x. 

Actually, eX increases quite fast. We shall make this a little more precise 
in §4. 

EXERCISES 

1. What is the equation of the tangent line to the curve y = e2x at the point 
whose x-coordinate is (a) 1, (b) -2, (c) O. 

2. What is the equation qf the tangent line to the curve y = e /2 at the point 
whose x-coordinate is (a) -4, (b) 1, (c) O. 

3. What is the equation of the tangent line to the curve y = xe at the point 
whose x-coordinate is 2? 

4. Find the derivatives of the following functions: 
(a) eSin 3x (b) log (eX + sin x) 

(c) sin (eX+2) (d) sin (e 4x - 5) 
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5. Sketch the curve y = e- lIx (defined for x rf 0). 

6. Sketch the curve y = e-1/x2 (defined for x rf 0). 

7. Let f(x) be a differentiable function over some interval satisfying the 
relation f'(x) = Kf(x) for some constant K. Show that there is a constant C 
such that f(x) = CeKx • 

1 
8. Show that 1 + x < e < 1 _ x for 0 < x < 1, and for -1 < x < O. 

§3. The general exponential function 

Let a be a positive number, and x any number. We define 

aX = exp (x log a) = eX loga. 

Thus 

Using the properties of the log and exp, it is easy to prove that 

for all numbers x and y and that aO = 1. Furthermore, (aX)Y = aXY . 
We leave the proof as an exercise. However, we observe that when x 

is a positive integer n, then aX is indeed the J)roduct of a with itself n times. 
For instance, take x = 2. Then 

is equal to 

and similarly, 

is equal to 
e(lOg a) +(log al+(log a) 

which is equal to (e log a)3. Thus our definition of aX as eX log a is consistent 
with our original notation of an when x is a positive integer n. This is the 
justification for the definition in the general case. 

The moral of the story is that, by going all the way around the difficul­
ties, and giving up on a frontal attack on the function aX, we have recovered 
it at the end, together with all of the desired properties. For instance, 
we have its derivative: 

THEOREM 7. The derivative of aX is aX (log a). 



[VIII, §3] THE GENERAL EXPONENTIAL FUNCTION 127 

Proof. We use the chain rule. Let u = (log a)x. Then du/dx = log a 
and aZ = eU • Hence 

as desired. 
In particular, 

d(2Z) = 2z I 2 
dx og . 

This result clarifies the mysterious limit 

1. 2h - 1 
1m h 

h ..... O 

which we encountered in the introduction. We are now able to see that this 
limit is log 2, and it arises in a very natural way. We also see that when 
we take a = e we obtain the only exponential function which is equal to 
its own derivative. For any other choice of the constant a, we would get 
an extraneous constant appearing in the derivative. 

As an application of our theory of the exponential function, we also 
can take care of the general power function (which we had left dangling 
in Chapter III). 

THEOREM 8. Let c be any number, and let 

f(x) = XC 

be defined for x > o. Then f'(x) exists and is equal to 

f'(x) = cx c- 1• 

Proof. By definition, 

f(x) = eC logz = eU 

if we put u = clog x. Then 

Using the chain rule, we see that 

f'(x) = eU • du = eclogz. ~ 
dx x 

c C c-l =X ·-=cx 
X 

This proves our theorem. 
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When x, yare two numbers such that y = 2x , it is customary to say 
that x is the log of y to the base 2. Similarly, if a is a number >0, and 
y = aX = eX log a, we say that x is the log of y to the base a. When y = eX, 
we simply say that x = log y. 

The log to the base a is sometimes written loga. It occurs very infre­
quently, and you might as well forget about it. 

EXERCISES 

1. What is the derivative of lOx? 7x? 

2. What is the derivative of 3x? 7fx? 

3. What is the derivative of the function XX (defined for x > O)? [Hint: 
XX = eX log x.J 

4. What is the derivative of the function x(xX)? 

5. Referring to Exercise 8 of §I, what is 

lim (I + h)lIh? 
h---+O 
h>O 

6. What about when h < 0, does the limit come out the same? 

7. Sketch the curves y = 2X and y = 2-"'. 

8. Find the equation of the tangent line to the curve y = x'" at the point 
x = 1. 

9. Find the equation of the tangent line to each curve of Exercise 1 at x = O. 

10. Find the equation of the tangent line to each curve of Exercise 2 at x = 2. 

§4. Order of magnitude 

The area under the curve l/x between 1 and 2 is at least equal to 1. 
(Visualize a rectangle like that in the picture below.) 

1 ------

1/2 

3 4 
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Since log e = 1 and log 4 = 2 log 2 ~ 1, it follows that e < 4. On the 
other hand, the area under our curve between 1 and 2 is less than 1 because 
1/x is at most equal to 1 in that interval. Thus we have 

2 < e < 4. 

We shall learn how to compute e to any degree of accuracy in a later 
chapter. 

In order to prove Theorem 10, we need an auxiliary statement. 

THEOREM 9. Let a be a number >0. Then 

(1 + a)n 
n 

becomes very large as n becomes very large. 

Proof. We can write 

(1 + at = 1 + na + n(n ~ 1) a2 + b, 

where b is some number ~ O. This is easily seen by expanding the product 
of (1 + a) with itself n times. Consequently, dividing by n, we obtain 

(1 + a)n = 1. + a + n - 1 a2 + !!.. , 
n n 2 n 

and bin is ~O. 
n - 1 

As n becomes large, we see that the term -2- a2 becomes 

large. All the other terms are ~O. Hence we have proved our theorem. 
We apply this to the case of en/no We know that e can be written in 

the form 1 + a with a > O. Hence we see that en In becomes arbitrarily 
large as n increases indefinitely. 

THEOREM 10. The function f(x) = eX Ix is strictly increasing for 
x > 1. As x becomes very large positive, so does f(x). 

Proof. To verify the first assertion, take the derivative 

X X X 
f'(x) = xe -; e = e 2 (x - 1). 

x x 

We know that eX and x 2 are >0 for all x > O. Hence our derivativef'(x) 
is positive when x > 1, and so our function is strictly increasing. 

When x is an integer n, we know that the function fen) becomes arbi­
trarily large. It follows that it does also for all x when x becomes 
arbitrarily large. This proves our theorem. 
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Observe that we can conclude that 

x 
eZ 

and 
n 
en 
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approach 0 as x and n become large. In fact, for any number a > 0 we 
also observe that 

n 
(1 + a)n 

approaches 0 as n becomes large. 

COROLLARY 1. As x becomes arbitrarily large, the function x - log x 
also becomes arbitrarily large. 

Proof. The log of eZ /x is x - log x. Our assertion follows from the 
properties of the log proved previously, namely when y becomes very 
large, so does log y. 

COROLLARY 2. As x becomes very large, the quotient 

x 
log x 

also becomes very large. 

Proof. Let y = log x. Then x = ell and our quotient is of the form 

y 

We know that log x becomes large when x becomes large. Thus our asser­
tion follows from the theorem. 

COROLLARY 3. As x becomes very large, X I/z approaches] as a limit. 

Proof. We have X I/z = e(\Og zl/x. As x becomes very large, (log x)/x 
approaches 0 and hence its exponent approaches 1. 

This corollary is used frequently when we look at integers n instead of 
arbitrary numbers x. Thus 

nI/n 

approaches 1 as n becomes very large. 
The next theorem is a refinement of some previous ones. 

THEOREM 11. Let m be a positive integer. Then the function 

is strictly increasing for x > m and becomes very large when x becomes l'ery 
large. 
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Proof. Let f(x) = eX /xm. Since 

we have 

Therefore 
f(x) = ex-mlog",. 

We have 

f'(x) = ex-mlog", (1 - ~). 

This is > 0 when x > m and our first assertion is proved. 
As to the second, to prove that e'" /xm becomes very large when x does, 

it suffices to do it for its log. Taking the log we see that 

logf(x) = x - m (log x), 

which can also be written 

(log x) (_x_ - m) . 
, log x 

As x becomes large, so does log x, and so does x/log x by Corollary 2 
above. Since m is fixed, our expression becomes very large, as desired. 

EXERCISES 

1. Sketch the curve y = xex , giving the usual pieces of information from the 
beginning of Chapter VI. [Hint: The derivative is xeX + eX = eX(x + 1). It 
is equal to 0 just when x = -1, which is therefore the only critical point. Take 
it from there.] 

Sketch the graphs of the following functions. (In Exercises 6 through 10, 
x ~ 0.) 

6. eX/x 

2. xe-X 

5. x2e-x 

8. ex/x3 9. ellx 10. xe llx 

11. Show that the equation eX = 

a except when 0 ~ a < e. 
ax has at least one solution for any number 

12. Let f(x) be the function e-lIx2 when x ~ 0 and f(O) = O. Show that f 
has a derivative at 0 and that f' (0) = O. 

13. Doesf' have a derivative? If yes, what is it? 
14. Does f have any further derivatives at O? 
15. Sketch the curve f(x) = XX. 
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§S. Some applications 

It is worth while to mention briefly some applications of the exponential 
function to physics and chemistry. 

It is known (from experimental data) that when a piece of radium is 
left to disintegrate, the rate of disintegration is proportional to the amount 
of radium left. 

Suppose that at time t = 0 we have 10 grams of radium and let J(t) be 
the amount of radium left at time t. Then 

dJ 
dt = kJ(t) 

for some constant k. We take k negative since the physical interpretation 
is that the amount of substance decreases. 

If we take the derivative of the quotient 

J(t) 
ekt 

and use the rule for the derivative of a quotient, we find 

itJI(t) - J(t)ki t 

e2kt 

and this is equal to 0 (using our hypothesis concerning f'(t». Hence there 
is a constant C such that 

Let t = o. Then J(O) = C. Thus C = 10, if we assumed that we started 
with 10 grams. In general, C is interpreted as the amount of initial sub­
stance when t = o. 

Similarly, consider a chemical reaction. It is frequently the case that 
the rate of the reaction is proportional to the quantity of reacting sub­
stance present. If J(t) denotes the amount of substance left after time t, 
then 

dJ 
dt = KJ(t) 

for some constant K (determined experimentally in each case). We are 
therefore in a similar situation as before. 

EXERCISES 

1. Let f(t) = 10eKt for some constant K. Suppose that you know that 
f(1/2) = 2. Find K. 
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2. Let f(t) = Ce2t• Suppose that you know f(2) = 5. Determine the con­
stant C. 

3. One gram of radium is left to disintegrate. After one million years, there is 
0.1 gram left. What is the formula giving the rate of disintegration? 

4. A certain chemical substance reacts in such a way that the rate of reaction 
is equal to the quantity of substance present. After one hour, there are 20 grams 
of substance left. How much substance was there at the beginning? 

5. A radioactive substance disintegrates proportionally to the amount of 
substance present at a given time, say 

f(t) = CeKt • 

At what time will there be exactly half the original amount left? 

6. Suppose K = -4 in the preceding exercise. At what time will there be 
one-third of the substance left? 

7. If bacteria increase in number at a rate proportional to the number present, 
how long will it take before 1,000,000 bacteria increase to 10,000,000 if it takes 
12 minutes to increase to 2,000,000? 

8. A substance decomposes at a rate proportional to the amount present. 
At the end of 3 minutes, 10 percent of the original substance has decomposed. 
When will half the original amount have decomposed? 



CHAPTER IX 

Integration 

In this chapter, we solve, more or less simultaneously, the following 
problems: 

(1) Given a function f(x) , find a function F(x) such that 

F'(x) = f(x). 

This is the inverse of differentiation, and is called integration. 
(2) Given a functionf(x) which is ~o, give a definition of the area under 

the curve y = f(x) which does not appeal to geometric intuition. 
Actually, in this chapter, we give the ideas behind the solutions of our 

two problems. The techniques which allow us to compute effectively when 
specific data are given will be postponed to the next chapter. 

In carrying out (2) we shall follow an idea of Archimedes. It is to ap­
proximate the function f by horizontal functions, and the area under f by 
the sum of little rectangles. 

The slightly theoretical sections 5 and 6 should be omitted for any class 
especially allergic to pure theory. The geometric argument involving area 
should suffice to justify the definite integral, and a mild sales talk on the 
integral as a limit of sums of small rectangles would be sufficient for the 
physical applications. Our axiomatization of the fundamental theorem 
allows the greatest flexibility concerning the extent to which these sections 
should be carried out in detail. 

§1. The indefinite integral 

Let f(x) be a function defined over some interval. If F(x) is a function 
defined over the same interval and such that 

F'(x) = f(x), 

then we say that F is an indefinite integral of f. If G(x) is another indefinite 
integral of f, then G'(x) = f(x) also. Hence the derivative of the difference 
F - Gis 0: 

(F - G)'(x) = F'(x) - G'(x) = f(x) - f(x) = O. 

134 
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Consequently, by Theorem 3 of Chapter V, §4, there is a constant C such 
that 

F(x) = G(x) + C 

for all x in the interval. 

Example 1. An indefinite integral for cos x would be sin x. But sin x + 5 
is also an indefinite integral for cos x. 

Example 2. log x is an indefinite integral for l/x. So is log x + 10 or 
log x - 11'. 

In the next chapter, we shall develop techniques for finding indefinite 
integrals. Here, we merely observe that every time we prove a formula 
for a derivative, it has an analogue for the integral. 

It is customary to denote an indefinite integral of a function f by 

If or If(x) dx. 

In this second notation, the dx is meaningless by itself. It is only the full 
expression ff(x) dx which is meaningful. When we study the method of 
substitution in the next chapter, we shall get further confirmation for the 
practicality of our notation. 

We shall now make a table of some indefinite integrals, using the in­
formation which we have obtained about derivatives. 

Let n be an integer, n ~ -1. Then we have 

f xn+l 
xndx = n + l' 

If n = -1, then 

f ~dx = logx. 

(This is true only in the interval x > 0.) 
In the interval x > 0 we also have 

for any number c ~ -1. 
The following indefinite integrals are valid for all x. 

f cos x dx = sin x 

leX dx = eX 

fSin x dx = -cos x 

f 1 ~ x2 dx = arctan x 



136 INTEGRATION [IX, §1] 

Finally, for -1 < x < 1, we have 

f 1 dx = arcsin x. 
VI - x 2 

In practice, one frequently omits mentioning over what interval the 
various functions we deal with are defined. However, in any specific 
problem, one has to keep it in mind: For instance, if we write 

J X- I/3 dx = !. x2/3 , 

this is valid for x > 0 and is also valid for x < O. But 0 cannot be in any 
interval of definition of our functions. Thus we could have 

J x- I/3 dx = ! . X 2/3 + 5 

when x < 0 and J x- I/3 dx = ~ . x2/3 - 2 

when x > o. 
We agree throughout that indefinite integrals are defined only over 

intervals. Thus in considering the function l/x, we have to consider 
separately the cases x > 0 and x < O. For x > 0, we have already 
remarked that log x is an indefinite integral. It turns out that for the 
interval x < 0 we can also find an indefinite integral, and in fact we have 
for x < 0, f ~dx = log (-x). 

Observe that when x < 0, -x is positive, and thus log (-x) is meaningful. 
The fact that the derivative of log (-x) is equal to l/x is true by the 
chain rule. 

For x < 0, any other indefinite integral is given by 

log (-x) + C, 
where C is a constant. 

It is sometimes stated that in all cases, 

f ~ dx = log Ixl + C. 

With our conventions, we do not attribute any meaning to this, because 
our functions are not defined over intervals (the missing point 0 prevents 
this). In any case, the formula would be false. Indeed, for x < 0 we have 

f ~ dx = log Ixl + CI, 
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and for x > 0 we have 

f ~dx = log Ixl + C2• 

However, the two constants need not be equal, and hence we cannot write 

f ~ dx = log Ixl + C 

in all cases. 
We prefer to stick to our convention that integrals are defined only 

over intervals. When we deal with the log, it is to be understood that we 
deal only with the case x > O. 

EXERCISES 

Find indefinite integrals for the following functions: 

1. sin 2x 2. cos 3x 

1 
3. x+ 1 

1 
4. x+ 2 

(In these last two problems, specify the intervals over which you find an indefinite 
integral.) 

§2. Continuous functions 

Let f(x) be a function. We shall say that f is continuous if 

lim f(x + h) = f(x) 
h--+O 

for all x at which the function is defined. 
It is understood that in taking the limit, only values of h for which 

f(x + h) is defined are considered. For instance, if f is defined on an 
interval 

(assuming a < b), then we would say that f is continuous at a if 

lim f(a + h) = f(a). 
h--+O 
h>O 

We cannot take h < 0, since the function would not be defined for a + h 
if h < O. 

Geometrically speaking, a function is continuous if there is no break 
in its graph. All differentiable functions are continuous. We have already 
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remarked this fact, because if a quotient 

f(x 4- h) -- f(x) 
h 

[IX, §3] 

has a limit, then the numerator f(x 4- h) -- f(x) must approach 0, because 

f(x 4- h) -- f(x) -- h f(x 4- h) -- f(x) . 
-- h 

The following are graphs of functions which are not continuous. 

11-----

---~-1 

In Fig. 1, we have the graph of a function like 

We see that 

for all h > O. Hence 

f(x) = -1 if x ~ 0 

f(x) = 1 if x > o. 

f(a 4- h) = f(h) = 1 

lim f(a 4- h) = 1, 
1>-+0 
1»0 

which is unequal to f(O). 
A similar phenomenon occurs in Fig. 2 where there is a break. (Cf. 

Example 5 of Chapter III, §2.) 

§3. Area 

Let a < b be two numbers, and let f(x) be a continuous function defined 
on the interval a ~ x ~ b. 

We wish to find a function F(x) which is differentiable in this interval, 
and such that 

F'(x) = f(x). 

In this section, we appeal to our geometric intuition concerning area. 
We assume that f(x) ~ 0 for all x in the interval, and we define geometri­
cally the function F(x) by saying that it is the numerical measure of the 
area under the curve between a and x. 

The following picture illustrates this. 
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We thus have F(a) = o. The area between a and a is O. 

THEOREM 1. The function F(x) is differentiable, and its derivative is f(x). 

Proof. Since we defined F geometrically, we shall have to argue geo­
metrically. 

We have to consider the Newton quotient 

F(x + h) - F(x) 
h 

Suppose first that x is unequal to the end point b, and also suppose that 
we consider only values of h > o. 

Then F(x + h) - F(x) is the area between x and x + h. A magnified 
picture may look like this. 

The shaded area represents F(x + h) - F(x). 
We let c be a point in the closed interval [x, x + h] which is a maximum 

for our function f ~·n that small interval. We let d be a point in the same 
closed interval which is a minimum for f in that interval. Thus 

fed) ;;;; f(t) ;;;; fCc) 

for all t satisfying 
x ;;;; t ;;;; x + h. 

(We are forced to use another letter, t, since x is already being used.) 
The area under the curve between x and x + h is bigger than the area of 

the small rectangle in the figure above, i.e. the rectangle having base hand 
height fed). 
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The area under the curve between x and x + h is smaller than the area 
of the big rectangle, i.e. the rectangle having base h and height f(c). 

This gives us 

h . fed) ~ F(x + h) - F(x) ~ h· f(c). 

Dividing by the positive number h yields 

fed) ~ F(x + hl - F(x) ~ f(c). 

Since c, d are between x and x + h, as h approaches 0 both fCc) and fed) 
approach f(x). Hence the Newton quotient for F is squeezed between two 
numbers which approach f(x). It must therefore approach f(x) itself, and 
we have proved Theorem 1, when h > O. 

The proof is essentially the same as the proof which we used to get 
the derivative of log x. The only difference in the present case is that we 
pick a maximum and a minimum without being able to give an explicit 
value for it, the way we could for the function 1/x. Otherwise, there is no 
difference in the arguments. 

If x = b, we look at negative values for h. The argument in that case 
is entirely similar to the one we have written down in detail, and we find 
again that the Newton quotient of F is squeezed between f(c) and fed). 
We leave it as an exercise. 

Suppose that we are able to guess at a function G(x) whose derivative 
isf(x). Then we know that there is a constant C such that 

F(x) = G(x) + C. 
Let x = a. We get 

o = F(a) = G(a) + C. 

This shows that C = -G(a). Hence letting x = b yields 

F(b) = G(b) - G(a). 

Thus the area under the curve between a and b is G(b) - G(a). This is 
very useful to know in practice, because we can usually guess the func­
tion G. 

If we deal with a continuous function f which may be negative in the 
interval [a, b], then we could still use our notion of area to find the function 
F(x). However, in those portions where the function is negative, we have 
to take F to be minus the area under the curve. We illustrate this by the 
following picture. In this case, F(x) would be the area between al and a2, 
minus the area between a2 and x (for the point x indicated in the picture). 
The argument that F'(x) = f(x) goes through in the same way. 
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Thus by using our geometric intuition, we have found a function F(x) 
whose derivative is f(x). 

Example 1. Find the area under the curve y = x 2 between x = 1 
and x = 2. 

Let f(x) = x 2• If G(x) = x 3/3 then G'(x) = f(x). Hence the area 
under the curve between 1 and 2 is 

23 13 7 
G(2) - G(1) = - - - = -. 

3 3 3 

Example 2. Find the area under one arch of the function sin x. 

We have to find the area under the curve between 0 and 7r. Let G(x) 
-cos x. Then G'(x) = sin x. Hence the area is 

G( 7r) - G(O) = -cos 7r - (-cos 0) 

-(-1) + 1 

= 2. 

Note how remarkable this is. The arch of the sine curve going from 0 to 7r 

seems to be a very irrational curve, and yet the area turns out to be the 
integer 2! 

EXERCISES 

Find the area under the given curves between the given bounds. 

1. y = x3 between x = 1.and x = 5. 

2. Y = x between x = 0 and x = 2. 

3. Y = cos x, one arch. 

4. y = l/x between x = 1 and x = 2. 

5. Y = l/x between x = 1 and x = 3. 

6. Y = X4 between x = -1 and x = 1. 

7. y = eX between x = 0 and x = 1. 



142 INTEGRATION [IX, §4] 

§4. Upper and lower sums 

To show the existence of the integral, we still use the idea of approxi­
mating our curves by constant functions. 

Let a, b be two numbers, with a ~ b. Let 1 be a continuous function in 
the interval a ~ x ~ b. 

By a partition 01 the interval [a, b] we mean a sequence of numbers 

between a and b, such that Xi ~ Xi+l (i = 0, 1, ... ,n - 1). For in­
stance, we could take just two numbers, 

Xo = a and 

This will be called the trivial partition. 
A partition divides our interval in a lot of smaller intervals [Xi, Xi+l]' 

• I 
X2 xa . .. Xn-l xn=b 
I I I. 

Given any number between a and b, in addition to xo, ... , Xn , we can add 
it to the partition to get a new partition having one more small interval. 
If we add enough intermediate numbers to the partition, then the intervals 
can be made arbitrarily small. 

Let 1 be a function defined on the interval 

a ~ X ~ b 

and continuous. If Ci is a point between Xi and Xi+l, then we form the sum 

Such a sum will be called a Riemann sum. Each value I(Ci) can be viewed 
as the height of a rectangle, and each (Xi+l - Xi) can be viewed as the 
length of the base. 

Let 8i be a point between Xi and Xi+l such that 1 has a maximum in this 
small interval [Xi, Xi+l] at 8i. In other words, 

for all X between Xi and Xi+l. The rectangles then look like those in the 
next figure. In the picture, 80 happens to be equal to Xl, 82 = X2, 

8a = X4· 

The main idea which we are going to carry out is that, as we make the 
intervals of our partitions smaller and smaller, the sum of the areas of the 
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rectangles will approach a limit, and this limit can be used to define the 
area under the curve. 

Observe however that when f(x) becomes negative, the value f(Si) may 
be negative. Thus the corresponding rectangle gives a negative contri­
bution 

to the sum. 
If P is the partition given by the numbers 

then the sum 

will be called the upper sum associated with the function f, and the parti­
tion P of the interval [a, b]. We shall denote it by the symbols 

U!(P, f). 

Also, it is tiresome to write the sum by repeating each term, and so we 
shall use the abbreviation 

n-l 

l: f(Si)(Xi+l - Xi) 
i=O 

to mean the sum from 0 to n - 1 of the terms f(Si) (Xi+l - Xi). Thus, by 
definition, 

n-l 

U!(P,f) = l: f(Si) (Xi+l - Xi). 
i=O 

Instead of taking a maximum Si in the interval [Xi, Xi+l] we could have 
taken a minimum. Let ti be a point in this interval, such that 

for all X in the small interval [Xi, xi+d. We call the sum 
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the lower sum associated with the function f, and the partition P of the 
interval [a, b). The lower sum will be denoted by 

L!(P,f). 

With our convention concerning sums, we can therefore write 

n-l 

L!(p, f) = :E f(ti) (Xi+l - Xi). 
i=O 

On the next picture, we have drawn a typical term of the sum. 

ti 2:i+l 

For all numbers X in the interval [Xi, Xi+l) we have 

Since Xi+! - Xi is ~O, it follows that each term of the lower sum is less 
than or equal to each term of the upper sum. Therefore 

L!(P, f) ~ U!(p, f). 

Furthermore, any Riemann sum taken with points Ci (which are not neces­
sarily maxima or minima) is between the lower and upper sum. 

What happens to our sums when we add a new point to a partition? 
We shall see that the lower sum increases and the upper sum decreases. 

THEOREM 2. Let f be a continuous function on the interval [a, b). Let 
P = (xo, ... , xn) be a partition of [a, b). Let:l be any number in the inter­
val, and let Q be the partition obtained from P by adding x to (xo, ... , xn). 
Then 

Proof. Let us look at the lower sums, for example. Suppose that our 
number :l is between X; and X;+l: 

When we form the lower sum for P, it will be the same as the lower sum 
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for Q except that the term 

will now be replaced by two terms. If u is a minimum for f in the interval 
between Xj and x, and v is a minimum for f in the interval between x and 
x j + 1, then these two terms are 

f(u)(x - Xj) + f(v) (Xi+l - x). 

We can write f(tj) (Xi+l - Xj) in the form 

Since f(tj) is less than or equal to feu) or f(v) (because tj was a minimum 
in the whole interval between Xj and Xi+l), it follows that 

Thus when we replace the term in the sum for P by the two terms in the 
sum for Q, the value of the contribution of these two terms increases. 
Since all other terms are the same, our assertion is proved. 

The assertion concerning the fact that the upper sum decreases is left 
as an exercise. The proof is very similar. 

As a consequence of our theorem, we obtain: 

COROLLARY. Every lower sum is less than or equal to every upper sum. 

Proof. Let P and Q be two partitions. If we add to P all the points of 
Q and add to Q all the points of P, we obtain a partition R such that every 
point of P is a point of R and every point of Q is a point of R. Thus R is 
obtained by adding points to P and to Q. Consequently, we have the 
inequalities 

This proves our assertion. 
It is now a very natural question to ask whether there is a unique point 

between the lower sums and the upper sums. In the next sections, we shall 
prove: 

THEOREM 3. There exists a unique number which is greater or equal to 
every lower sum and less than or equal to every upper sum. 

This number will be called the definite integral of f between a and b, 
and is denoted by 
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Example. Let f(x) = x 2 and let the interval be [0, 1]. Write out the 
upper and lower sums for the partition consisting of (0, !, 1). 

The minimum of the function in the interval [0, !] is at 0, andf(O) = O. 
The minimum of the function in the interval [!, 1] is at! and Ai) = t. 
Hence the lower sum is 

f(O)(! - 0) + f(t)(l - !) = i· ! = 1· 

The maximum of the function in the interval [0, !] is at ! and the 
maximum of the function in the interval [!, 1] is at 1. Thus the upper 
sum IS 

f(!)(! - 0) + f(l)(l - !) = 1 + ! = i· 

EXERCISES 

Write out the lower and upper sums for the following functions and intervals. 
Use a partition such that the length of each small interval is t. 

1. f(x) = x 2 in the interval [1,2]. 

2. f(x) = l/x in the interval [1, 3]. 

3. f(x) = x in the interval [0, 2]. 

4. f(x) = 3 in the interval [0, 5]. 

5. Let I(x) = l/x and let the interval be [1, 2]. Let n be a positive integer. 
Write out the upper and lower sum, using the partition such that the length 
of each small interval is l/n. 

6. Prove that 

1 1 1 1 1 1 
n + 1 + n + 2 + ... + n + n ~ log 2 ~ n + n + 1 + ... + 2n - 1 

7. Let f(x) = log x. Let n be a positive integer. Write out the upper and 
lower sums, using the partition of the interval between 1 and n consisting of the 
integers from 1 to n, i.e. the partition (1,2, ... , n). 

§s. The fundamental theorem 

This section will contain a sketch of the proof of Theorem 3. We first 
need to discuss a special property of numbers. 

Let S be a collection of numbers, with at least one number in the col­
lection. (We also say that S is not empty.) An upper bound for S is a 
number B such that 

x~B 
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for all x in the collection S. A least upper bound for S is an upper bound 
which is smallest among all upper bounds. 

For instance, let S be the collection of numbers whose square is ~ 4. 
Then 5 is an upper bound for S and so is 3. However, 2 is the least upper 
bound. 

Another example: Let S be the collection of numbers whose square is 
< 2. Then v'2 is the least upper bound. (In this example, the least upper 
bound does not belong to our collection S.) 

The property of numbers which we accept without proof is that every 
collection of numbers which is not empty and has an upper bound also has a 
least upper bound. 

Similarly, we shall say that a number A is a lower bound for S if 

A ~ x 

for all x in the collection S. A greatest lower bound for S is a lower bound 
which is largest among all lower bounds. 

We shall also accept without proof that every non-empty collection of 
numbers which has a lower bound has a greatest lower bound. 

For example, the collection of numbers 1, !, 1, 1-, ... has a greatest 
lower bound, which is the number O. Observe again that this greatest 
lower bound is not in the collection. 

We return to our upper and lower sums. 
Let f be as in §4. We consider the collection of numbers consisting of 

all lower sums 

for all partitions P. This collection certainly has an upper bound (any 
upper sum will be an upper bound). We denote by 

L!(f) 

its least upper bound, and call it the lower integral of f, over the interval 
[a, bJ. 

Every upper sum is an upper bound for the collection of lower sums. 
Therefore 

for every partition P. Thus L!(f) is a lower bound for the collection of 
upper sums. We denote by 

U!(f) 

the greatest lower bound of the collection of upper sums, and call it the 



148 INTEGRATION [IX, §5] 

upper integral of f over the interval [a, b]. Then 

If x is any point in the interval, then we have the numbers 

L~(J) and U~(J). 

Thus L~ U) is the value at x of a function defined on the interval. Similarly, 
U:(f) is the value at x of another function defined on the interval. 

Our purpose is to prove that these functions are equal for all x. The 
way we shall do this is to prove that their derivative is equal to f. From 
this it will follow that there is a constant C such that 

L~(J) = U~(f) + C, 

for all x in the interval. This is true especially for x = a, so that 

Since both L:(f) and U:U) are equal to 0, we get C = 0, and hence 
L~(f) = U:(f) for all x in the interval. Letting x = b gives us what we 
want. 

The proof that the derivative of L:U) and U~U) is f(x) will depend on 
twu properties, which we now state. These properties concern Land U. 
In order to be neutral, and speak of either L or U without committing our­
selves, we shall use another letter, say I. 

THEOREM 4. Let a, d be two numbers, with a < d. Let f be a continuous 
function on the interval [a, d]. Suppose that for each pair of numbers 
b ~ c in the interval we are able to associate a number denoted by II,U) 
satisfying the following properties: 

Property 1. If M, m are two numbers such that 

m ~ f(x) ~ M 

for all x in the interval [b, c] then 

m(c - b) ~ n(J) ~ M(c - b). 

Property 2. We have 

I~U) + II,(f) = I~U)· 

Then the function I~(f) is differentiable in the interval [a, d] and its derivative 
is f(x). 

The fact that Land U satisfy our two properties will be proved in the 
next section. We shall now prove Theorem 4. 
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Proof. We have to form the Newton quotient 

1~+\j) - 1~(j) 
h 
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and see if it approaches a limit as h -+ O. (If x = a then it is to be under­
stood that h > 0, and if x = b then h < O. As usual, we prove that the 
function 1:(1) is right differentiable at a and left differentiable at b.) 

Assume for the moment that h > O. By Property 2, applied to the three 
numbers a, x, x + h, we conclude that our Newton quotient is equal to 

1~(j) + [';+\j) - 1~(j) 
h 

This reduces our investigation of the Newton quotient to the interval 
between x and x + h. 

Let 8 be a point between x and x + h such that f reaches a maximum 
in this small interval [x, x + h] and let t be a point in this interval such 
that f reaches a minimum. 

We let m = f(t) and M = f(8) and apply Property 1 to the interval 
[x, x + h]. We obtain 

f(t)(x + h - x) ~ 1~+h(j) ~ f(8)(X + h - x), 

which we can rewrite as 

f(t) . h ~ 1~+\j) ~ f(8) . h. 

Dividing by the positive number h preserves the inequalities, and yields 

Since 8, t lie between x and x + h, we must have (by continuity) 

lim f(8) = f(x) 
h->O 

and 
lim f(t) = f(x). 
h->O 

Thus our Newton quotient is squeezed between two numbers which ap­
proach f(x). It must therefore approach f(x), and our theorem is proved 
when h > O. 

The argument when h < 0 is entirely similar. We omit it, except for 
the following remark concerning Property 2. 
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Suppose that we have two numbers b, c with c < b. We define 

Ib(J) = - I~(J), 

whenever f is a continuous function on the interval [c, b]. Then it is easy 
to verify that Property 2 holds no matter what the numbers b, care. 
For instance, suppose c < b. We show you how to prove the statement 
of Property 2 in that case. 

By definition 
Ig(!) = -I~(!). 

We know that 
I~(J) + I~(J) = I~(J) 

if we use the ordinary case of Property 2 when the numbers are increasing. 
Substituting the value for Ibe!), we find 

whence 
I~(J) - Ib(J) = I~(J), 

I~(J) = I~(J) + Ib(J). 

§6. The basic properties 

We shall finally prove that Land U satisfy the basic properties. 

Proof of Property 1. Suppose that we have two numbers m, M such that 

m ~ f(x) ~ M 

for all x between band c. Let P be the partition of the interval b, c con­
sisting only of the end points. Then 

On the other hand, 

L'/,(J) ~ U'/,(J) ~ M(c - b). 

This proves our property. 

Proof of Property 2. Let a, b, c be three numbers with a ~ b ~ c. 
Let f be a continuous function on the interval [a, c]. We shall prove: 

L~(J) + L'/,(J) = L~(J). 

A similar statement holds for the upper integrals, namely 

U~(J) + Ui,(J) = U~(J). 
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Proof. We shall first prove that 

L!(J) + Lg(J) ~ L!(J). 

Since L!(f) is the least upper bound of the lower sums built up with parti­
tions, we can find such a lower sum which comes arbitrarily close to it. 
Thus, given any small number E > 0, we can find a partition P of the 
interval [a, b] such that 

L!(J) - E ~ L!(p, f). 

Similarly, we can find a partition Q of the interval [b, c] such that 

Adding, we get 

We can view P and Q together as giving a partition of the whole interval 
[a, c]. 

I I I II I I I I I I I I 
a~b\ T 'e 

P Q 

We denote this partition simply by (P, Q). The two sums occurring on 
the right-hand side of our inequality are then equal to the lower sum 
built up from the partition (P, Q) over the whole interval [a, c]. Thus we 
can write 

L!(J) + Lg(J) - 2E ~ L!(P,Q),f). 

But any lower sum made up from a partition is smaller than the lower 
integral, which is an upper bound (even a least upper bound) of such lower 
sums. Thus our expression on the right satisfies the inequality 

L!(P, Q),f) ~ L!(J). 
We obtain finally 

L!(J) + L/,(J) - 2E ~ L!(J). 

This is true for every E > O. Let E approach o. Then the left-hand side 
approaches 

L!(J) + Lb(J) 

and our inequality follows. 
We shall now prove the reverse inequality. 
Let R be any partition of [a, c]. If we add b to R, then we get a parti­

tion of [a, c] which splits up into a partition of [a, b] and a partition of 
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[b, c]. Call these P and Q. Then 

L~(R,J) ~ L~«P,Q),f) = L!(P,J) + Lg(Q,J). 

Since the lower integral is an upper bound for these lower sums, we know 
that the expression on the right is less than or equal to 

L!(J) + Lg(J), 

which is therefore an upper bound for L~(R, J). The least upper bound 
L~(J) is therefore less than or equal to our sum on the right, and the 
property is proved. 

The proof that the upper integral U satisfies the two properties is en­
tirely similar, and will be left as an exercise. 



CHAPTER X 

Properties of the Integral 

This is a short chapter. It shows how the integral combines with addi­
tion and inequalities. There is no good formula for the integral of a product. 
The closest thing is integration by parts, which is postponed to the next 
chapter. 

Connecting the integral with the derivative is what allows us to com­
pute integrals. The fact that two functions having the same derivative 
differ by a constant is again exploited to the hilt. 

§1. Further connection with the derivative 

Let f be a continuous function on some interval. Let a, b be two points 
of the interval such that a ~ b, and let F be a function which is differ­
entiable on the interval and whose derivative is f. 

a x b 

Then we know that there is a constant C such that 

f'f = F(x) + C 

for all x in the interval. If we put x = a, we get 

o = La f = F(a) + c, 

whence C = -F(a). We also have 

From this we obtain 

Lb f = F(b) - F(a). 

This is extremely useful in practice, because we can usually guess the 
function F, and once we have guessed it, we can then compute the integral 
by means of this relation. 
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Furthermore, it is also practical to use the notation 

instead of F(b) - F(a). Thus the integral 

for sin x dx 

is equal to 

-cosxl~, 

which is -cos 7r - (-cos 0) = 2. 
As another example, suppose we want to find 

Let F(x) = x 3/3. Then F'(x) = x 2• Hence our integral is equal to 

~31: = ~7 _ i = ~6. 
Finally, we shall usually call the indefinite integral simply an integral, 

since the context makes clear what is meant. When we deal with a definite 
integral Jab, the numbers a and b are sometimes called the lower limit and 
upper limit, respectively. 

Find the following integrals: 

(2 5 
l. h zth 

3. j~r sin z th 

EXERCISES 

2. /1 zl/3 dz 
-1 

4. for cos z th 

§2. Sums 

Let I(x) and g(x) be two functions defined over some interval, and let 
F(x) and G(x) be (indefinite) integrals for I and g, respectively. Since the 
derivative of a sum is the sum of the derivatives, we see that F + G is an 
integral for I + g; in other words, 

j{f(x) + g(x)] dx = j/(x) dx + jg(x) dx. 
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Similarly, let c be a number. The derivative of cF(x) is cf(x). Hence 

f cf(x) dx = c ff(x) dx. 

A constant can be taken in and out of an integral. 

Example 1. Find the integral of sin x + 3x4. 

We have 
f (sin x + 3x4) dx = f sin x dx + f 3x4 dx 

= -cos x + 3x5/5. 
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Any formula involving the indefinite integral yields a formula for the 
definite integral. Using the same notation as above, suppose we have to 
find 

lab [f(x) + g(x)] dx. 

We know that it is 

which is equal to 

F(b) + G(b) - F(a) - G(a). 

Thus we get the formula 

lab [f(x) + g(x)] dx = lab f(x) dx + t g(x) dx. 

Similarly, for any constant c, 

lab cf(x) dx = C lab f(x) dx. 

Example 2. Find the integral 

This (definite) integral is equal to 

-cos x + 3x5 /51~ = -cos 7r + 37r5/5 - (-cos 0 + 0) 

= 1 + 37r5/5 + 1 

= 2 + 37r5/5. 
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Find the following integrals: 

1. I4x3 dx 

3. 1(2 sin x + 3 cos x) dx 

5. I (5e Z + ~) dx 

7. 1_11 2x5 dx 

9. f3 4x2 dx 
-1 

EXERCISES 

2. I (3x4 - x5 ) dx 

4. I (3i /3 + 5 cos x) dx 

6. I: .. (sin x + cos x) dx 

8. f2 eZ dx 
-1 

[X, §2] 

10. Find the area between the curves y = x and y = x2 • [Sketch the curve. 
If f(x) and g(x) are two continuous functions such thatf(x) ~ g(x) on an interval 
[a, b], then the area between the two CUlves, from a to b, is 

l (I(x) - g(x)) dx. 

In this problem, the curves intersect at x = 0 and x 1.] 

Hence the area is 

r 1 (x _ x2 ) dx = x2 _ x311 = ! _ ! . 
Jo 2 3 0 2 3 

11. Find the area between the curves y = x and y = x3 . 

12. Find the area between the curves y = x 2 and y = x 3 • 

13. Find the area between the curve y = (x - l)(x - 2)(x - 3) and the 
x-axis. (Sketch the curve.) 

14. Find the area between the curve y = (x + l)(x - l)(x + 2) and the 
x-axis. 

15. Find the area between the curves y = sin x, y = cos x, the y-axis, and 
the first point where these curves intersect for x > o. 
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§3. Inequalities 

THEOREM 1. Let a, b be two numbers, with a ;;;;; b. Let f, g be two con­
tinuous functions on the interval [a, b] and assume that f(x) ;;;;; g(x) for all 
x in the interval. Then 

l b b 
a f(x) dx ;;;;; L g(x) dx. 

Proof. Since g(x) - f(x) ~ 0, we can use the basic Property 1 of 
Chapter IX, §5 (with m = 0) to conclude that 

But 

Transposing the second integral on the right in our inequality, we obtain 

as desired. 
Theorem 1 will be used mostly when g(x) = !f(x)!. Since a negative 

number is always;;;;; a positive number, we know that 

f(x) ;;;;; !f(x)! 

and 
-f(x) ;;;;; !f(x)l· 

THEOREM 2. Let a, b be two numbers, with a ;;;;; b. Let f be a continuous 
funci£on on the interval [a, b]. Then 

it f(x) dxi ~ t !f(x)! dx. 

Proof. We simply let g(x) = !f(x) I in the preceding theorem. The 
absolute value of the integral on the left is equal to 

t f(x) dx or -t f(x) dx. 

We can apply Theorem 1 either to f(x) or -f(x) to get Theorem 2. 

We make one other application of Theorem 2. 

THEOREM 3. Let a, b be two numbers and f a continuous function on 
the closed interval between a and b. (We do not necessarily assume that 
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a < b.) Let M be a number such that If(x) I ~ M for all x in the interval. 
Then 

It f(x) dxl ~ M Ib - al· 

Proof. If a ~ b, we can use Theorem 2 to get 

Itf(X)dxl ~ t Mdx = Mt dx = M(b - a). 

If b < a, then 

Taking the absolute value gives us the estimate M (a - b). Since a - b = 
Ib - al in case b < a, we have proved our theorem. 

§4. Improper integrals 

We know that the area under curve l/x between 1 and x is log x. Instead 
of taking x > 1, let us take ° < x < 1. As x approaches 0, log x becomes 
very large negative. The integral 

L 1 i dt = log t I ~ = -log x 

is therefore very large positive. We can interpret this by saying that t.he 
area becomes very large. 

However, it is remarkable that an entirely different situation will occur 
when we consider the area under the curve I/Xl/2 = X-1/ 2. We take 
x > 0, of course, and compute the integral 

1 _ t _ 1/2 i l 1/211 
x tl/ 2 dt - 1/2 x - 2 - 2x . 

As x approaches 0, this approaches 2, in spite of the fact that our curve 
y = X- 1/ 2 gives rise to a chimney near the y-axis, and is not even defined 
for x = 0. 

When that happens, we shall say that the integral 

101 t- 1/ 2 dt 

exists, even though the function is not defined at ° and is not continuous 
in the closed interval [0, 1]. 

In general, suppose we have two numbers a, b with, say, a < b. Let f 
be a continuous function in the interval a < x ~ b. This means that 
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for every positive number h (such that a + h < b), the function f is 
continuous on the interval 

a + h ~ x ~ b. 

We can then form our usual integral 

l b f(x) dx. 
a+1> 

If F is an indefinite integral for f over our interval, then the integral is 
equal to 

F(b) - F(a + h). 
If the limit 

lim F(a + h) 
1>-+0 

exists, then we say that the improper integral 

Lb f(x) dx 

exists, and is equal to F(b) - lim F(a + h). 
1>-+0 

In our preceding examples, we can say that the improper integral 

(1 !dx 
Jo x 

does not exist, but that the improper integral 

101 
X-1/2 dx 

does exist. This second integral is equal to 2. 
We make similar definitions when we deal with an interval a ~ x < b 

and a function f which is continuous on this interval. If the limit 

lb-I> 

lim f(x) dx 
1>-+0 a 
1»0 

exists, then we say that the improper integral exists, and it is equal to this 
limit. 

Example 1. Show that the improper integral 

{1 \dx 
Jo x 

does not exist. 
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We consider 

This does not approach a limit as h approaches 0 and hence the improper 
integral does not exist. 

There is another type of improper integral, dealing with large values. 
Let a be a number and I a continuous function defined for x ~ a. 

Consider the integral 

LB I(x) dx 

for some number B > a. If F(x) is any indefinite integral of I, then our 
integral is equal to F(B) - F(a). If it approaches a limit as B becomes 
very large, then we define 

L~ I(x) dx or 

to be this limit, and say that the improper integral converges. 
Thus Ja~ I converges if 

exists, and is equal to this limit. Otherwise, we say that the improper 
integral does not converge. 

Example 2. Determine whether the improper integral 
verges, and if it does, find its value. 

We have, for a large number B, 

(B ! dx = log B - log 1 = log B. Jl X 

i~l 

- dx con-
1 x 

As B becomes large, so does log B, and hence the improper integral does 
not converge. 

Let us look at the function 1/x2• Its graph looks like that in the next 
figure. At first sight, there seems to be no difference between this function 
and l/x, except that 1/x2 < l/x when x > 1. However, intuitively 
speaking, we shall find that 1/x2 approaches 0 sufficiently faster than l/x 
to guarantee that the area under the curve between 1 and B approaches a 
limit as B becomes large. 
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Example 3. Determine whether the improper integral 

f"'.ldx 11 X2 

converges, and if it does, find its value. 

For a large numberB, we have 

i B IB 1 -1 
-dx=-

1 x2 X 1 

1 
-]j+1. 
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As B becomes large, liB approaches o. Hence the limit as B becomes 
large exists and is equal to 1, which is the value of our integral. We thus 
have by definition 

f'" .ldx = 1. 11 x 2 

It is frequently possible to determine whether an improper integral 
converges without computing it, by comparing it with another which is 
known to converge. We give such a criterion in the following theorem. 

THEOREM 4. Let J(x) and g(x) be two continuous Junctions defined Jor 
x ~ a and such that J(x) ~ 0 and g(x) ~ 0 Jor all x ~ a. Assume that 
J(x) ~ g(x) and that the improper integral 

Lao g(x) dx 

converges. Then so does the improper integral 

Lao J(x) dx. 

(Intuitively speaking, we visualize the theorem as saying that iJ the area 
under the graph oj g is finite, then the area under the graph oj J is also 
finite because it is smaller.) 
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Proof. Let B be a large number. Then according to the inequalities 
satisfied by the definite integral, we have 

As B becomes large, and increases, the integral on the right increases. 
But we know that it approaches a limit; call it L. This limit is a number, 
which is a bound for the integral of f between a and B, i.e. 

As B increases, this integral of f also increases (the area under the graph 
increases because f is ~O) but stays below L for all B. There must be a 
least upper bound for such integrals of f, and this least upper bound is 
the desired limit. 

Example 4. Determine whether the improper integral 

r' X 
11 x3 + 1 dx 

converges. 

We don't try to evaluate this, but observe that 

x 3 ~ x3 + 1 
for x ~ I, whence 

All the functions involved are ~O when x ~ 1. Using Example 3, we 
conclude that our improper integral converges. 

EXERCISES 

Determine whether the following improper integrals exist or not, and con­
verge or not: 

1. i«J x;/2 dx 

4. ('-51 dx Jo - x 
12 

5 1 dx 
• 0 x2 -2x 

3. i«J 1 ~ x2 dx 

6. i«J e-z dx 

o 7. Let B be a number >2. Find the area under the curve y = e-2z between 
2 and B. Does this area approach a limit when B becomes very large? If so, 
what limit? 



CHAPTER XI 

Techniques of Integration 

The purpose of this chapter is to teach you certain basic tricks to find 
indefinite integrals. It is of course easier to look up integral tables, but 
you should have a minimum of training in standard techniques. 

§1. Substitution 

We shall formulate the analogue of the chain rule for integration. 
Suppose that we have a function g(x) and another function f such that 

f(g(x)) is defined. (All these functions are supposed to be defined over 
suitable intervals.) We wish to evaluate an integral 

jf(g(X)) d~~) dx. 

Let F(u) be an indefinite integral for f(u) , so that 

jf(U) du = F(u) , i.e. d~~u) = feu). 

Then we assert that F(g(x)) is an integral for f(g(x)) : ' or symbolically, 
that 

jf(g(x)) ~~dx = jf(U) duo 

This follows at once from the chain rule, because 

dF = dF du = feu) du = f( (x)) dg(x) . 
dx du dx dx g dx 

Example 1. Find f(x 2 + 1)3(2x) dx. 

Put u = x 2 + 1. Then du/dx = 2x and our integral is in the form 

f du 
feu) dx dx, 

the function f being feu) = u 3. 
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Therefore our integral is equal to 

f f 4 (X 2 + 1)4 
feu) du = u 3 du = ~ = 4 

We can check this by differentiating the expression on the right, using the 
chain rule. We get (x 2 + 1)3(2x), as desired. 

Example 2. Find J sin (2x) (2) dx. 

Put u = 2x. Then du/dx = 2. Hence our integral is in the form 

J sin u du = -cos u = -cos (2x). 

Observe that 
J sin (2x) dx ~ -cos (2x). 

If we differentiate -cos (2x), we get sin (2x) ·2. 
The integral in Example 2 could also be written 

J 2 sin (2x) dx. 

It does not matter, of course, where we place the 2. 

Example 3. Find J cos (3x) dx. 

Let u = 3x. Then du/dx = 3. There is no extra 3 in our integral. 
However, we can take a constant in and out of an integral. Our integral 
is equal to 

~ J 3 cos (3x) dx, 

and this integral is in the form 

~ J cos u duo 

Thus our integral is equal to t sin u =t sin (3x). 
It is convenient to use a purely formal notation which allows us to 

make a substitution u = g(x), as in the previous examples. Thus instead 
of writing 

du 
-- = 2x 
dx 

in Example 1, we would write du = 2x dx. Similarly, in Example 2, we 
would write du = 2 dx, and in Example 3 we would write du = 3 dx. 
We do not attribute any meaning to this. It is merely a device of a type 
used in programming a computing machine. A machine does not think. 
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One simply adjusts certain electric circuits so that the machine performs 
a certain operation and comes out with the right answer. The fact that 
writing 

du 
du = -dx 

dx 

makes us come out with the right answer was proved once and for all when 
we established the relationship 

If(g(x)) ~! dx = If(U) duo 

The proof consisted in differentiating the answer and checking that it gives 
us the desired function. 

Example 4. Find 

Let 
U = x 3 + X. 

Then 
du = (3x 2 + 1) dx. 

Hence our integral is of type If(u) du and is equal to 

I 9 _ u 10 _ (x 3 + X)10 • 
u du - 10 - 10 

We should also observe that the formula for integration by substitu­
tion applies to the definite integral. Suppose that x lies in an interval 
a ~ x ~ b. Then with our preceding notation, we have 

lb lO(b) 
f(g(x)) ddg dx = feu) duo 

a X o(a) 

This is essentially the definition of these symbols. 
In Example 4, suppose that we consider the integral 

with u = x 3 + X. When x = 0, u = 0, and when x = 1, u = 2. Thus 
our definite integral is equal to 

9 2 12 10 

o u du = w· 
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EXERCISES 

Find the following integrals: 

1. f xe,,2 dx 

3. f x2(1 + x3 ) dx 

5 f 1 dx (n = integer) 
. x (log x)n 

7. f x ~ 1 dx 

9. f sin2 x cos x dx 

11. iT cos4 x sin x dx 

f arctan x d 
13. 1 + x2 X 

("/2 
15. J 0 x sin (2x2) dx 

2 f 3 _,,4 d 
. x e x 

4. f 10; x dx 

f 2x+ 1 
6. x2 + X + 1 dx 

8. f sin x cos x dx 

10. i'l" sin5 x cos x dx 

12. f ~in x 2 dx 
1 cos x 

t3-
14. Jo x vI - x2 dx 
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16. Find the area under the curve y = xe-x2 between 0 and a number B > o. 
Does this area approach a limit as B becomes very large? If so, what limit? 

17. Find the area under the curve y = x2e-x3 between 0 and a number 
B > O. Does this area approach a limit as B becomes very large? If so, what 
limit? 

In some integrals involving eX, one can sometimes find the integral by the 
substitution u = eX, x = log u, and dx = (l/u) duo You can combine this 
with the technique of §4 below to deal with the following integrals. 

18. f vI + eX dx 19. f 1 ~ eX dx 

f 1 21. f 1 dx w. + & V~+l eX e X 

§2. Integration by parts 

If f, g are two differentiable functions of x, then 

d(fg) = f(x) dg.+ g(x) df . 
dx dx dx 

Hence 
f(x) dg = d(fg) _ g(x) df . 

dx dx dx 
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Using the formula for the integral of a sum, which is the sum of the inte­
grals, we obtain 

ff(X) :~ dx = f(x)g(x) - f g(x) :~ dx, 

which is called the formula for integrating by parts. 
If we let u = f(x) and v = g(x), then the formula can be abbreviated 

in our shorthand notation as follows: 

Example 1. Find the integral f log x dx. 

Let u = log x and v = x. Then du = (l/x) dx and dv = dx. Hence 
our integral is in the form f u dv and is equal to 

uv - f v du = x log x - f 1 dx 

= xlogx - x. 

Example 2. Find f eX sin x dx. 

Let u = eX and dv = sin x dx. Then 

du = eX dx and v = -cosx. 

If we call our integral I, then 

I = _ex cos x - f _ex cos x 

_ex cos x + f eX cos x dx. 

This looks as if we were going around in circles. Don't lose heart. Rather, 
let t = eX and dz = cos x dx. Then 

dt = eX dx and z = sin x. 

The second integral becomes 

f t dz = eX sin x - f eX sin x dx. 

We have come back to our integral I but with a minus sign! Thus 

I = eX sin x - eX cos x - I. 
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Hence 
21 = eX sin x - eX cos x, 

and dividing by 2 gives us the value of I. 

EXERCISES 

Find the following integrals: 

1. I arcsin x dx 2. I arctan x dx 

3. I e2:r; sin 3x dx I -4:r; d 4.· e cos 2x x 

5. I (log x)2 dx 6. I (log x)3 dx 

7. I x2e'" dx 8. I 2 -"'d xe x 

9. Ix sin x dx 10. IXCOSXdX 

11. Ix2 sin x dx 12. I x2 cos xdx 

13 I 3 2 x cosx dx 14. 15 -x VI - x2 dx 

15. I x2 10gxdx 16. I x3 10g x dx 

I 2 2 17. x (log x) dx 18. I 3 _",2 d xe x 

19. I (1 ::..7 x4 )2 dx 20. I:r x2 cos x dx 

21. Let B be a number >0. Find the area under the curve y = xe-Z between 
o and B. Does this area approach a limit as B becomes very large? 

22. Does the improper integral hoc x2e-z dx converge? 

23. Does the improper integral hoc x3e-z dx converge? 

24. Let B be a number > 2. Find the area under the curve 

1 
y = x (log x)2 

between 2 and B. Does this area approach a limit as B becomes very large? 
If so, what limit? 
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25. Does the improper integral 

converge? If yes, to what? 

1'" 1 
-----,.....,.dx 

3 x (log x)4 

§3. Trigonometric integrals 
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We shall investigate integrals involving sine and cosine. It will be useful 
to have the following formulas: 

1 - cos 2x 
sin 2 x = ---::---

2 

cos2 X = 1 + cos 2x 
2 

These are easily proved, using 

cos 2x = cos2 X -- sin2 x. 

When we want to integrate sin2 x, we are thus reduced to 

f l If xI. - dx - - cos 2x dx = - - - sm 2x 2 2 2 4 . 

There is a general way in which one can integrate sinn x for any positive 
integer n: integrating by parts. Let us take first an example. 

Example 1. Find the integral f sin3 x d.l'. 

We write the integral in the form 

J sin2 x sin x dx. 

Let u = sin2 x and dv = sin x dx. Then 

du = 2 sin x cos x dx and 

Thus our integral is equal to 

v = -cosx. 

(sin2 x) (cos x) - J -cos x (2 sin x cos x) d.1: 

= -sin2 x cos x + 2 J cos2 x sin x d.l:. 

This last integral could then be determined by substitution, for instance 
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t = COS X and dt = -sin x dx. The last integral becomes -2Jt2 dt, and 
hence 

J sin3 x dx = -sin2 x cos x - i cos3 X. 

To deal with an arbitrary positive integer n, we shall show how to reduce 
the integral J sinn x dx to the integral J sinn- 2 x dx. Proceeding stepwise 
downwards will give a method for getting the full answer. 

THEOREM 1. For any positive integer n, we have 

f . n d 1 . n-l + n - 1 f . n-2 d sm x x = - rism xcosx -n-- sm x x. 

Proof. We write the integral as 

In = J sinn x dx = J sinn- 1 x sin x dx. 

Let u = sinn- 1 x and dv = sin x dx. Then 

Thus 
du = (n - 1) sinn- 2 x cos x dx and v = -cosx. 

In = -sinn- 1 x cos x - J -(n - 1) cos x sinn- 2 x cos x dx 

- -sinn- 1 x cos x + (n - 1) J sinn- 2 x cos2 X dx. 

We replace cos2 x by 1 - sin2 x and get finally 

In = -sinn- 1 x cos x + (n - l)In- 2 - (n - l)In' 
whence 

nIn = -sinn- 1 x cos x + (n - 1)In- 2• 

Dividing by n gives us our formula. 
We leave the proof of the analogous formula for cosine as an exercise. 

f cosn x dx = ~ cos .. - 1 x sin x + n n 1 f cosn-2 X dx. 

Integrals involving tangents can be done by a similar technique, because 

dtanx 1+t 2 ---;IX = an x. 

These functions are less used than sine and cosine, and hence we don't 
write out the formulas, to lighten this printed page which would otherwise 
become oppressive. 
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It is also useful to remember the following trick: 

f _1_ dx = f sec x dx = log (sec x + tan x). 
cos x 

This is done by substitution. We have 

1 (sec x) (sec x + tan x) 
--=secx= . 
cos x sec x + tan x 

Let u = sec x + tan x. Then the integral is in the form 

f ~du. 

171 

(This is a good opportunity to emphasize that the formula we just ob­
tained is valid on any interval such that cos x ~ 0 and sec x + tan x > o. 
Otherwise the symbols are meaningless. Determine such an interval as 
an exercise.) 

One can integrate mixed powers of sine and cosine by replacing sin2 x 
by 1 - cos 2 x, for instance. 

Example 2. Find f sin2 x cos2 x dx. 

Replacing sin2 x by 1 - cos2 x, we see that our integral is equal to 

J cos2 X dx - J cos4 X dx 

and we know how to find each one of these integrals. 
When we meet an integral involving a square root, we can frequently 

get rid of the square root by making a trigonometric substitution. 

Example 3. Find the area of a circle of radius 3. 

The equation of the circle is 

x 2 + y2 = 9, 

and the portion of the circle in the first quadrant is described by the 
function 

One-fourth of the area is therefore given by the integral 

103 v32 - x 2 dx. 
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Let x = 3 sin t. Then dx = 3 cos t dt and our integral becomes 

1,,/2 1"/2 
v32 - 32 sin2 t 3 cos t dt = 9 cos2 t dt = 911". 

o 0 4 

(We see that 1 - sin2 t = cos2 t and v1 - sin2 t = cos t in the interval 
between 0 and 11"/4.) The total area of the circle is therefore 911". 

EXERCISES 

Find the following integrals. 

1. J sin4 xdx 2. J cos3 X dx 3. J sin2 x cos3 x dx 

Find the area of the region enclosed by the following curves: 
2 2 2 2 2 

2 Y 
4. x + 9" = 1. 

X Y 
5. 4 + 16 = 1. 

X Y 
6. a2 + b2 = 1. 

7. Find the area of a circle of radius r > O. 

8. For any two integers m, n prove the formulas: 

sin mx sin nx = ![cos (m - n)x - cos (m + n)x] 

sin mx cos nx = ![sin (m + n)x + sin (m - n)x] 

cos mx cos nx = ![cos (m + n)x + cos (m - n)x] 

9. Show that 

J~" sin 3x cos 2x dx = o. 
10. Show that 

J~" cos 5x cos 2x dx = O. 

11. Show in general that for any integers m, n we have 

J~" sin mx cos nx dx = O. 

12. Show in general that 

__ {o if 1_"_ sin mx sin nx dx 
• 1r if 

m "F n, 

m = n. 

13. Find f tan x dx. 

Find the following integrals: 

14. f 1 dx 
V9 - x2 

15. f 1 dx 
V3 - x2 

16. dx f 1 

V2 - 4x2 
17. dx f 1 

va2 - b2x2 
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§4. Partial fractions 

Let f(x) and g(x) be two polynomials. We want to investigate the 
integral 

f f(x) dx. 
g(x) 

Using long division, one can reduce the problem to the case when the degree 
of f is less than the degree of g. The following example illustrates this 
reduction. 

Example 1. Consider the two polynomials f(x) = x 3 - X + 1 and 
g(x) = x 2 + 1. Dividing f by g (you should know how from high school) 
we obtain a quotient of x with remainder -2x + 1. Thus 

x 3 - X + 1 = (x 2 + l)x + (-2x + O. 
Hence 

f(x) = x2 + 1 + -2x + 1 . 
g(x) x 2 + 1 

To find the integral of f(x)/g(x) we integrate x 2 and 1, and the quotient 
on the right, which has the property that the degree of the numerator is 
less than the degree of the denominator. 

From now on, we assume throughout that when we consider a quotient 
f(x)/g(x) , the degree of f is less than the degree of g. Factoring out a 
constant if necessary, we also assume that g(x) can be written g(x) = 

xd + lower terms. We shall begin by discussing special cases, and then 
describe afterwards how the general case can be reduced to these. 

Case 1. If a is a number, find 

f 1 d 
(x - a)n x 

if n is an integer ~ 1. 

This is an old story. We know how to do it. 

Case 2. If b is a number, find 

This is new. Using the substitution x = bz, dx = b dz reduces the integral 
to 

f (x2 ! l)n dx. 



174 TECHNIQUES OF INTEGRATION [XI, §4] 

We shall now discuss how to find this integral. We use integration by parts 
when n > 1. (If n = I, this is the arctangent.) Let the above integral 
be In. We shall start with I n- 1 because our integration by parts will 
raise n instead of lowering n. We have 

I n- 1 = f (x2 +II)n_l dx. 

1 
Let u = -(x-,2:--+-I)-n----:-l and dv = dx. Then 

2x 
du = -en - 1) (x 2 + I)n dx and v = x. 

Thus 

x f x 2 
I n- 1 = (x2 + I)n-l + 2(n - 1) (x2 + I)n dx. 

We write x 2 = x 2 + 1 - 1. We obtain 

x 
I n- 1 = (x2 + I)n-l + 2(n - I)In_ 1 - 2(n - I)In. 

Therefore 
x 

2(n - I)In = (x 2 + I)n-l + (2n - 3)In- b 

whence 

f 1 dx= 1 X 
(x 2 + I)n 2(n - 1) (x 2 + I)n-l 

(2n - 3) f 1 + 2(n - 1) (x2 + I)n-l dx. 

Case 3. Find the integral 

f (x2 ~ b2)n dx. 

This is an old story. We make the substitution u = x 2 + b2 and 
du = 2x dx. The integral is then equal to 

!f~dU 
2 un ' 

which you know how to do. 

We shall now investigate a general quotientf(x)/g(x). 

If one is given a polynomial of type x2 + bx + c, then one completes 
the square. The polynomial can thus be written in the form 

(x - a)(x - (J) or (x - a)2 + {32 
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with suitable numbers a, fJ. For instance, 

x 2 - X - 6 = (x + 2)(x - 3) 

x 2 - 2x + 5 = (x - 1)2 + 22. 
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It can be shown that a polynomial g(x) can always be written as a 
product of terms of type 

(x - a)n and 

n, m being integers ~O. It can also be shown that a quotient f(x)/g(x) 
can be written as a sum of terms of the following type: 

_C_l _ + C2 + ... + Cn 
X - a (x - a)2 (x -a)n-l 

d l + elX dm. + emx + (x - fJ)2 + -y2 + ... + [(x - fJ)2 + -y2]m 

with suitable constants Cb C2, ••• , db d 2, ••• , eb e2, • • •• The way one 
can determine these constants is to put the right-hand side over the com­
mon denominator g(x), equate the numerator f(x) with what is obtained 
on the right, and solve for the constants. We shall illustrate this by ex­
amples, and will not give the proofs of the preceding assertions, which are 
quite difficult. 

Example 2. Express the quotient 

1 
(x - 2)(x - 3) 

as a sum of the previous type. 
This will be 

_C_l_+~. 
x-2 x-3 

Putting this over the common denominator, we get the numerator 

which must be equal to 1. Thus we must have 

Cl + C2 = 0 

-3Cl - 2C2 = 1. 

Solving for Cl and C2 gives C2 = 1 and Cl = -1. 
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Example 3. Express the quotient 

x+l 
(x - 1)2(x - 2) 

as a sum of the previous type. 

We want to find numbers Cll C2, Ca such that 

x+l =_C_l_+ C2 +~. 
(x - 1)2(x - 2) x-I (x - 1)2 X - 2 

Putting the right-hand side over the common denominator (x - 1)2(x - 2), 
we get a numerator equal to 

This can be rewritten as 

and must be equal to x + 1. We equate the coefficients of x 2, x, and the 
constant terms. We get 

Cl + Ca = 0 

-3Cl + C2 - 2ca = 1 

2Cl - 2C2 + Ca = 1. 

This is a system of three linear equations in three unknowns, which you 
can solve to determine Cll C2, and Ca. One finds Cl == -3, C2 = -2, Ca = 3. 

Example 4. Express the quotient 

2x+5 
(x2 + 1)2(x - 3) 

as a sum of the type described above. 
We can find numbers Cll C2, ••• such that the quotient is equal to 

Cl + C2X + Ca + C.x + ~ . 
x2 + 1 (x2 + 1)2 X - 3 

We put this over the common denominator (x 2 + 1)2(x - 3). The 
numerator is equal to 

and must be equal to 2x + 5. If we equate the coefficients of x·, xa, x 2, x and 
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the constants, we get a system of five linear equations in five unknowns 
and it can be solved. It would be tedious to do it here. 

We are now in a position to evaluate the integrals of the quotients in 
Examples 2, 3, and 4. We find: 

In Example 2, the integral is 

f (x _ 2;(X _ 3) dx = -log (x - 2) + log (x - 3). 

In Example 3, the integral is 

f x + 1 2 
(x _ 1)2(x _ 2) dx = -3 log (x - 1) + x-I + 3 log (x - 2). 

In Example 4, we find 

f ~+5 2 
(x2 + 1)2(x _ 3) dx = Cl arctan x + !c2 log (x + 1) 

+ C3 f (x 2 ! 1)2 dx + !c4 log (x 2 + 1) + c5 log (x - 3). 

The integral which we left standing is just that of Case 2. Find it explicitly 
as an exercise. 

EXERCISES 

1. Find the constants in Example 4. 
2. Write out in full the integral 

f (X2! 1)2 dx. 

Find the following integrals: 

3. (a) f (x _ 3~(X + 2) dx 

4. f (x + l)(x ~ 2)(x + 3) dx 

6. f (x ~ 1)2 dx 

8. f (x2: 16)2 dx 

10. f (X2! 1)3 dx 

(b) f (x + 2)\X + 1) dx 

5. f x+ 2 dx 
x2 + x 

f x+ 1 
7. (x2 + 9)2 dx 

9. f (x + l)~x + 2)2 dx 

f 2x - 3 
11. (x _ l)(x + 7) dx 



CHAPTER XII 

Some Substantial Exercises 

We shall not use the contents of this section until the chapter on series, 
and even then we use only the estimate of (n!)l/n. Thus this chapter may 
be skipped entirely. We include it mostly for reference, and to provide 
some good exercises for those interested. 

§1. An estimate for (n 1) lin 

Let n be a positive integer. We define n! (which we read n factorial) to 
be the product of the first n integers: Thus 1 . 2 . 3 . . . n. This is cer­
tainly less than nn (the product of n with itself n times). We shall investi­
gate to what extent it differs from nn. (Not too much.) 

In fact, what we shall prove first is that 

where dn is a number such that d~/n approaches 1 as n becomes large. This 
is a weaker statement than the result stated in the next theorem, whose 
proof is very simple and very easy to remember. It is a nice application 
of the lower and upper sum techniques. 

THEOREM 1. Let n be a positive integer. Then 

Proof. Exercise. Evaluate and compare the integral 

f"tnlog x dx 

with the upper and lower sum associated with the partition (1,2, ... , n) 
of the interval [1, nJ. Then exponentiate. 

COROLLARY. As n becomes very large, 

(n!)l/n = [n!]l/n 
n nn 

approaches lie. 
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Proof. Take the n-th root of the right inequality in our theorem. We get 

Dividing by n yields 
1 ( I)l/n _ el/n ::;; _n_. __ . 
e - n 

On the other hand, multiply both sides of the inequality 

by n. We get n! ;£ nne-nen. Take an n-th root: 

Dividing by n yields 

But we know that both n lin and el/n approach 1 as n becomes large. Thus 
our quotient is squeezed between two numbers approaching lie, and must 
therefore approach lie. 

EXERCISES 

1. Use the abbreviation lim to mean: limit as n becomes very large. Prove 
that n->oo 

(a) lim [(3:~!]lIn 27 (b) lim [(3n)!]lln = 27 
n->oo n e3 n->oo n!n2n e2 

2. Find the limit: 

(a) lim [(2~~!]lIn 
n--+oo n 

(b) lim [(2:)!(5n)!]lIn 
n->oo n n(3n)! 

§2. Stirling's formula 

Using various refinements of the above method, one can prove the fol­
lowing theorem. 

THEOREM 2. Let n be a positive integer. Then there is a number (J 

between 0 and 1 such that 

We shall present another proof giving the main steps, and leave the 
details to you as exercises. 
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1. Let !p(x) = ! log ~ + : - x. Show that 

x2 

tp'(x) = 1 _ x2 

x3 
2. Let I/t(x) = tp(x) - 3(1 _ X2)· Show that 

_2X4 

I/t'(x) = 3(1 - x2)2 

3. For 0 < x < 1, conclude that tp(x) > 0 and I/t(x) < O. 

4. Deduce that for 0 ~ x < 1 we have 

1 + x < x 3 

o ~ ! log 1 _ x - x = 3(1 _ x2) 

1 l+x n+l 
5. Let x = 2n + 1· Then 1 _ x = -n- and 

3(1 - x 2 ) 

6. Conclude that 

1 
12(2n + l)(n2 + n) 

n + 1 1 1 
o ~ !log-n- - 2n + 1 ~ 12(2n + l)(n2 + n) 

o ~ (n + !) log n + 1 _ 1 ~ ~ (! __ 1_) . 
n 12 n n + 1 

7. Let 

an= 

Then an ~ bn . Show that 

an+! !?; 1 
an 

and 

and bn+1 ~ 1 bn - • 

[XII, §2] 

Thus the an are increasing and the bn are decreasing. Hence there exists 
a unique number c such that 

an ~ c ~ bn 

for all n. 

8. Conclude that 

for some number 8 between 0 and 1. 
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To get the value of the constant c, one has to use another argument, 
which will be described in the next section. 

§3. Wallis' product 

Our first aim is to obtain the following limit, known as the Wallis 
product. 

THEOREM 3. We have 

:!: = lim ~ ~ ! ! ~ ~ . . . -::--2_n----:- 2n 
2 10-+00 133557 2n-12n+l 

Proof. The proof will again be presented as an exercise. 

1. Using the recurrence formulas for the integrals of powers of the sine, 
prove that 

1,,/2 
. 210 d _ 2n - 1 2n - 3 1 11'" 

o sm x x- 2n 2n-2···22" 

1,,/2 
2n 2n-2 2 

O 
sin21O+1 x dx = -::---:--:- ::----:-2n+12n-l···3"· 

2. Using the fact that powers of the sine are decreasing as n = 1, 2, 3, ... 
and the first integral formula above, conclude that 

1 ~ 
i,,/2 

sin21O- 1 x dx 
o ~ 
,,/2 -fo sin21O +1 x dx 

1 1+-· 2n 

3. Taking the ratio of the integrals of sin2" x and sin21O+1 x between 0 
and 11'"/2, deduce Wallis' product. 

COROLLARY • We have 

. (n!)22210 1/2 
hm (2 )' 1/2 = 11'" • 
10-+00 n.n 

Proof. Rewrite the Wallis product into the form 

11'" • 2242 ... (2n - 2)2 
2" = !~ 3252 ••• (2n - 1)2 2n. 

Take the square root and find the limit stated in the corollary. 
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Finally, show that the constant c in Stirling's formula is 1/V21r, by 
arguing as follows. (Justify all the steps.) 

. (2n)2n+te- 2n 
c = hm (2 )' 

n~oo n . 

Thus c = 1/.y21T. 



CHAPTER XIII 

Applications of Integration 

Most of the applications are to physical concepts and show us how 
useful it is to have related differentiation and integration as limits of sum. 

§1. Length of curves 

Let y = f(x) be a differentiable function over some interval [a, b] 
(with a ~ b) and assume that its derivative l' is continuous. We wish 
to find a way to determine the length of the curve described by the graph. 
The main idea is to approximate the curve by small line segments and add 
these up. 

(a, f(a») 

Consequently, we consider a partition of our interval: 

a = Xo ~ Xl ~ ••• ~ Xn = b. 

For each Xi we have the point (Xi, f(Xi)) on the curve y = f(x). We draw 
the line segments between two successive points. The length of such a 
segment is the length of the line between 

(Xi, f(Xi)) and 

and is equal to 

By the mean value theorem, we conclude that 

f(Xi+l) - f(Xi) = (Xi+l - Xi)1'(Ci) 
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for some number Ci between Xi and Xi+!. Using this, we see that the 
length of our line segment is 

V(Xi+l - Xi)2 + (Xi+l - Xi)2f'(Ci)2 . 

We can factor out (Xi+! - Xi)2 and we see that the sum of the length of 
these line segments is 

,,-1 

~ VI + f'(Ci) 2 (Xi+l - Xi). 
i=O 

Let G(x) = VI + f'(X)2. Then G(x) is continuous, and we see that 
the sum we have just written down is 

,,-1 

~ G(Ci)(Xi+l - Xi). 
i=O 

This is precisely a Riemann sum used to find the integral. It is therefore 
very reasonable to define the length of our curve between a and b to be 

lab VI + I'(t) 2 dt. 

(As an exercise, show that the least upper bound of the above sums is equal 
to the integral.) 

ParaDletric forDl. We shall now see what happens when the curve 
is given in parametric form. 

Suppose that our curve is given by 

x = jet), y = get), 

with a ~ t ~ b, and assume that both j, g have continuous derivatives. 
As before, we cut our interval into a partition, say 

We then obtain points (J(ti) , g(ti») on the curve, and the distance between 
two successive points is 

We use the mean value theorem for j and g. There are numbers Ci and di 

between ti and ti+l such that 

f(ti+l) - j(ti) = !'(Ci)(ti+l - ti) 

g(ti+l) - g(ti) = g'(di )(ti+l - ti). 
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Substituting these values and factoring out (ti+1 - ti), we see that the 
sum of the lengths of our line segments is equal to 

n-l 

L: v'!'(Ci)2 + g'(di)2 (ti+l - ti). 
i=O 

Let 
G(t) = v'f'(t):4 + g'(t):4. 

Then our sum is almost equal to 

n-l 

L: G(Ci)(ti+1 - ti), 
i=O 

which would be a Riemann sum for G. It is not, because it is not neces­
sarily true that Ci = di. Nevertheless, what we have done makes it very 
reasonable to define the length of our curve (in parametric form) to be 

Lb v'f'(t) 2 + g'(t)2 dt. 

(A complete justification that this integral is a limit, in a suitable sense, 
of our sums would require some additional theory, which is irrelevant 
anyway since we just want to make it reasonable that the above integral 
should represent what we mean physically by length.) 

Observe that when y = f(x) we can let t = x = g(t) and y = f(t). In 
that case, g'(t) = 1 and the formula for the length in parametric form is 
seen to be the same as the formula we obtained before for a curve y = f(x). 

Example. Find the length of the curve 

x = cos t, y = sint 

between t = 0 and t = 1r. 

The length is the integral 

for v'(-sint)2 + (cost)2dt. 

In view of the relation (-sin t)2 = (sin t)2 and a basic formula relating 
sine and cosine, we get 

fo" dt = 1r. 

If we integrated between 0 and 21r we would get 21r. This is the length 
of the circle of radius 1. 
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Polar coordinates. Let us now find a formula for the length of curves 
given in polar coordinates. Say the curve is 

r = f(8), 

with 81 ~ 8 ~ 82• We know that 

x = r cos 8 = f( 8) cos 8 

Y = r sin 8 = f(8) sin 8. 

This puts the curve in parametric form, just as in the preceding con­
siderations. Consequently we can apply the definition as before, and we 
see that the length is 

1'2 ~(dX)2 (dY) 2 

d8 + d8 d8. 'I 
You can compute dx/d8 and dy/d8 using the rule for the derivative of a 
product. If you do this, you will find that many terms cancel, and that the 
integral is equal to 

rh 
}'1 v'f(8)2 + /,(8)2 d8. 

(The computation is very ea.sy, and is good practice in simple identities 
involving sine and cosine. We leave it to you as an exercise. Anyhow, 
working it out will make you remember the formula better.) 

EXERCISES 

1. Carry out the preceding computation. 

2. Find the length of a circle of radius r. 

3. Find the length of the curve x = e' cos t, Y = et sin t between t = 1 and 
t = 2. 

4. Find the length of the curve x = cos3 t, y = sin3 t (a) between t = 0 
and t = 7(/4, and (b) between t = 0 and t = 7(. 

Find the lengths of the following curves: 

5. y = e" between x = 0 and x = 1. 

6. y = x3/2 between x = 1 and x = 3. 

7. y = i(e" + e-") between x = -1 and x = 1. 

8. Find the length of one loop of the curve r = 1 + cos 8 (polar coordinates). 

9. Same, with r = cos 8, between -7(/2 and 7(/2. 
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10. Find the length of the curve r = 2/cos (J between (J = 0 and (J = '11"/3. 
11. Find the length of the curve r = Isin (JI from (J = 0 to (J = 2'11". 
12. Sketch the curve r = e9 (in polar coordinates), and also the curve r = e-9• 

13. Find the length of the curve r = e9 between (J = 1 and (J = 2. 

14. In general, give the length of the curve r = e9 between two values (Jl 
and (J2. 

§2. Area in polar coordinates 

Suppose we are given a function 

r = f«(J) 

which is defined in some interval a ~ (J ~ b. We assume that f«(J) ~ 0 
and b ~ a + 27r. 

We wish to find an integral expression for the area encompassed by the 
curve r = f«(J) between the two bounds a and b. 

Let us take a partition of [a, b], say 

The picture between (Ji and (Ji+l might look like this: 

We let Si be a number between (Jiand (Ji+l such thatf(si) is a maximum in 
that interval, and we let ti be a number such that f(ti) is a minimum 
in that interval. In the picture, we have drawn the circles (or rather the 
sectors) of radius f(Si) and f(ti), respectively. 

Then the area between (Ji, (Ji+l and the curve lies between the two 
sectors. Denote it by Ai. The area of a sector having angle (Ji+l - (Ji 

and radius R is equal to the fraction 
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of the total area of the circle of radius R, namely 7rR2. Hence we get the 
inequality 

Let G(O) = !J(O) 2. We see that the sum of the small pieces of area Ai 
satisfies the inequalities 

n-l n-l n-l 

~ G(li)(Oi+l - Oi) ~ ~ Ai ~ ~ G(Si)(Oi+l - Oi). 
i=O 

Thus the desired area lies between the upper sum and lower sum associated 
with the partition. Thus it is reasonable to define the area to be 

Example. Find the area bounded by one loop of the curve 

r:<: = 2a2 cos 20 (a > 0). 

Between - ~ and ~ the cosine is ~ O. Thus we can write 

r = V2aVcos20. 

The area is therefore 

/
,,/4 

t2a2 cos 20 dO = a 2 • 
-r/4 

EXERCISES 

Find the area enclosed by the following curves: 

1. r = 2(1 + cos 0) 2. r2 = a2 sin 20 (a > 0) 

3. r = 2a cos 0 

5. r = 1 + sin 0 

7. r = 2 + cos 0 

4. r = cos 30, -11"/6 ~ 0 ~ 11"/6 

6. r = 1 + sin 20 

8. r = 2 cos 30, -11"/6 ~ 0 ~ 11"/6 

§3. Volumes of revolution 

Let y = f(x) be a continuous function of x on some interval a ~ x ~ b. 
Assume that f(x) ~ 0 in this interval. If we revolve the curve y = f(x) 
around the x-axis, we obtain a solid, whose volume we wish to compute. 
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Take a partition of [a, b], say 

a = Xo ~ Xl ~ ••• ~ Xn = b. 

Let Ci be a minimum of! in the interval [Xi, xi+d and let di be a maximum 
of! in that interval. Then the solid of revolution in that small interval 
lies between a small cylinder and a big cylinder. The width of these 
cylinders is Xi+l - Xi and the radius is !(Ci) for the small cylinder and 
!(di) for the big one. Hence the volume of revolution, denoted by V, 
satisfies the inequalities 

n-l 

~ 7r!(Ci)2(Xi+1 - Xi) 
i=O 

n-l 

~ V ~ ~ 7r!(di)2(Xi+1 - Xi). 
i=O 

It is therefore reasonable to define this volume to be 

t 7r!(X)2 dx. 

Example. Compute the volume of the sphere of radius 1. 

We take the function y = VI - X2 between 0 and 1. If we rotate 
this curve around the x-axis, we shall get half the sphere. Its volume is 
therefore 

The volume of the full sphere is therefore !7r. 

EXERCISES 

1. Find the volume of a sphere of radius r 

Find the volumes of revolution of the following: 

2. y = l/cos x between x = 0 and x = 11'"/4 

3. y sin x between x = 0 and x = 11'"/4 

4. y = cos x between x = 0 and x = 11'"/4 
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5. The region between y = x2 and y = 5x 

6. y = xez/2 between x = 0 and x = 1 
7. y = x1l2ez/2 between x = 1 and x = 2 
8. y = log x between x = 1 and x = 2 
9. y = vI + x between x = 1 and x = 5 

10. Let B be a number > 1. What is the volume of revolution of the curve 
y = e-Z between 1 and B? Does this volume approach a limit as B becomes 
large? If so, what limit? 

11. Find the volume of a cone whose base has radius r, and of height h. 

§4. Work 

Suppose a particle moves on a curve, and that the length of the curve 
is described by a variable u. 

Let I(u) be a function. We interpret I as a force acting on the particle, 
in the direction of the curve. We want to find an integral expression for 
the work done by the force between two points on the curve. 

Whatever our expression will turn out to be, it is reasonable that the 
work done should satisfy the following properties: 

If a, b, c are three numbers, with a ~ b ~ c, then the work done be­
tween a and c is equal to the work done between a and b, plus the work 
done between band c. If we denote the work done between a and b by 
W~(f), then we should have 

W~(f) = W~(f) + wg(f). 

Furthermore, if we have a constant force M acting on the particle, it 
is reasonable to expect that the work done between a and b is 

M(b - a). 

Finally, if g is a stronger force than I, say I(u) ~ g(u), on the interval 
[a, b], then we shall do more work with g than with I, meaning 

W~(f) ~ W!(g). 

In particular, if there are two constant forces m and M such that 

m ~ I(u) ~ M 

throughout the interval [a, b], then 

m(b - a) ~ W~(f) ~ M(b - a). 
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But this condition, together with the first one expressed above, deter­
mines the integral uniquely! Hence there is only one reasonable way to 
associate a mathematical formula with work, compatible with physical 
requirements, and that is: The work done by the force f between a distance 
a and a distance b is 

f f(u) duo 

If the particle or object happens to move along a straight line, say 
along the x-axis, then f is given as function of x, and our integral is simply 

f f(x) dx. 

Furthermore, if the length of the curve u is given as a function of time t 
(as it is in practice, cf. §1) we see that the force becomes a function of t 
by the chain rule, namely f(u(t». Thus between time tt and t2 the work 
done is equal to 

112 du 
f( u(t» dt di. 

tl 

This is the most practical expression for the work, since curves and forces 
are most frequently expressed as functions of time. 

Example. Find the work done in stretching a spring from its unstretched 
position to a length of 10 cm. You may assume that the force needed to 
stretch the spring is proportional to the increase in length. 

We visualize the spring as being horizontal, on the x-axis. Thus there 
is a constant K such that the force is given by 

f(x) = Kx. 

The work done is therefore 

rtO 
Jo Kx dx = !K(100) 

50K. 

Note. No exercises on work (and on moments in the next section) will 
be given. These belong properly in a physics course. However, the dis­
cussion concerning the uniqueness of our notion W~(f) (and M~(f) in the 
next section) does belong to this course. 
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§5. Moments 

We wish to describe the notion of "moment" (with respect to the origin), 
which arises in physics. "Moment" should have the following properties. 

Suppose that we have a mass K concentrated at a point b on the x-axis. 
Then its moment is Kb. 

K 
I I 
o b 

Suppose that we have an interval [a, b], with a < b (which may be in­
terpreted as a rod), and a constant density distribution C over the interval. 
Then the total mass is C(b - a). The moment of our constant distribu­
tion, which we denote by M, should then satisfy the inequalities 

Ca(b - a) ~ M ~ Cb(b - a). 

If we think of the total mass K = C(b - a) as being concentrated at the 
point b, then the right inequality states that the moment of our constant 
distribution is less than or equal to the moment of a total mass K placed 
at the point b. The left inequality states that the moment of our constant 
distribution is greater than or equal to that of a total mass K placed at 
the point a. If we assume 0 ~ a < b then these two inequalities state 
that the moment should be larger, the farther our total mass is from the 
origin. We shall assume 0 ~ a < b throughout our discussion. 

Suppose that we have a variable density distribution over our interval 
[a, b]. This means that our distribution is represented by a function f(x) 
on the interval. Let us denote its "moment" by M~(f). The following 
two properties should then be satisfied. 

Property 1. If f is continuous on the interval [a, b] and if there are two 
constants C 11 C 2 both ;:;; 0 such that 

for all x in our interval, then the moment of f satisfies the inequalities 

(In other words, the moment of f should lie between the moments 
determined by the constant distributions C l and C2 .) 

Property 2. If f is continuous on the interval [a, e], with a ~ e and if b 
is a point such that a ~ b ~ e, then 

M~(J) = M~(J) + lIfb(f). 
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(In other words, the moment over the big interval is the sum of the 
moments over the first interval and the second interval.) 

We shall now prove that there is one and only one way of obtaining a 
moment M~U) satisfying the above two properties, and that is the integral 

f xf(x) dx. 

To begin with, we note that the integral satisfies Property 2. This is 
an old result. 

As to Property 1, assume that f lies between two constants C1 and C2 

as above. For the interval a ~ x ~ b, we get 

and hence by Theorem 1 of Chapter XI, §3 we conclude that 

Thus the integral certainly satisfies our two properties. 
We shall now prove conversely that any M~(f) satisfying the two prop­

erties must be the integral written down above. This is done by our usual 
technique. We prove that the function M:U) has a derivative, and that 
this derivative is xf(x). Such a function must be the integral. 

The Newton quotient is 

M:+\J) - M~(J) 
h 

Using Property 2, we see that the Newton quotient is equal to 

M~+h(J) 

h 

Let s be a maximum for f in the small interval between x and x + hand 
let t be a minimum for f in that small interval. If, say, h is positive, then 
by Property 1 we conclude that 

f(t)x(x + h - x) ~ M~+\J) ~ f(s)(x + h)(x + h - x), 

or in other words that 

f(t)xh ~ M~+\J) ~ f(s)(x + h)h. 

Dividing by h yields 
M~+\J) 

xf(t) ~ h ~ (x + h)J(s). 
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As h approaches 0, both f(t) and f(s) approach f(x) because s, t lie between 
x and x + h. The usual squeezing argument shows that the Newton 
quotient approaches xf(x), as was to be shown. If h is negative, a similar 
argument can be applied as usual. 

Consider now a density <listribution on the interval [a, b] represented 
by a continuous function f. We define the total mass (or simply mass) of 
this distribution over the interval to be the integral 

f f(x) dx. 

Assume thatf(x) ~ 0 for all x in the interval, and thatf(x) ~ 0 for some 
point in the interval. Then the total mass is positive. We define the 
center of gravity of our distribution over the interval to be that point c 
such that the moment of our total mass concentrated at the point c is 
equal to the moment of f over the interval. This can be expressed by the 
relation 

In other words, 

c· f f(x) dx = f xf(x) dx. 

c= 
f xf(x) dx 

f f(x) dx 

If you study physics, you will recognize this as being the usual formula 
giving the center of gravity. 



CHAPTER XIV 

Taylor's Formula 

We finally come to the point where we develop a method which allows 
us to compute the values of the elementary functions like sine, exp, and 
log. The method is to approximate these functions by polynomials, with 
an error term which is easily estimated. This error term will be given by 
an integral, and our first task is to estimate integrals. We then go through 
the elementary functions systematically, and derive the approximating 
polynomials. 

You should review the estimates of Chapter X, §3, which will be used 
to estimate our error terms. 

§1. Taylor's formula 

Let f be a function which is differentiable on some interval. We can 
then take its derivative l' on that interval. Suppose that this derivative 
is also differentiable. We need a notation for its derivative. We shall 
denote it by f(2). Similarly, if the derivative of the function t 2) exists, we 
denote it by t 3 ), and so forth. In this system, the first derivative is de­
noted by f(1). (Of course, we can also write t 2 ) = f".) 

In the d/dx notation, we also write 

and so forth. 
Taylor's formula gives us a polynomial which approximates the func­

tion, in terms of the derivatives of the function. Since these derivatives 
are usually easy to compute, there is no difficulty in computing these 
polynomials. 

For instance, if f(x) = sin x, then to(x) = cos x, f(2)(X) = -sin x, 
t 3)(x) = -cos x, and f(4)(X) = sin x. From there on, we start all over 
again. 

In the case of eX, it is even easier, namely tn)(x) = eX for all positive 
integers n. 
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It is also customary to denote the function f itself by f(O). Thus f(x) = 
f(O)(x). 

We need one more piece of notation before stating Taylor's formula. 
When we take successive derivatives of functions, the following numbers 
occur frequently: 

1, 2·1, 3·2·1, 4·3·2·1, 5·4·3·2·1, etc. 

These numbers are denoted by 

1 ! 2! 3! 4! 5! etc. 
Thus 

I! = 1 4! = 24 

2! = 2 5! = 120 

3! = 6 6! = 720 

When n is a positive integer, the symbol n! is read n factorial. Thus in 
general, 

n! = n(n - l)(n - 2) ... 2 . 1 

is the product of the first n integers from 1 to n. 
It is also convenient to agree that O! = 1. This is the convention which 

makes certain formulas easiest to write. 
We are now in a position to state Taylor's formula. 

ThEOREM 1. Let f be a function defined on a closed interval between two 
numbers a and b. Assume that the function has n derivatives on this interVal, 
and that all of them are continuous functions. Then 

feb) = f(a) + f(l;~a) (b - a) + f(~~a) (b - a)2 + ... 
f (n-l)( ) 

+ a (b _ a)n-l + R 
(n - I)! n, 

where Rn (which is called the remainder term) is the integral 

R = Ib (b - tt-1 In)(t) dt 
n a (n - I)! . 

The most important case of Theorem 1 occurs when a = O. In that 
case, the formula reads 

feb) = f(O) + f'(O) b + ... + In-l)(O) bn- 1 + R 
I! (n - I)! n· 
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Furthermore, if x is any number between a and b, the same formula remains 
valid for this number x instead of b, simply by considering the interval 
between a and x instead of the interval between a and b. Thus the formula 
reads 

I(x) = 1(0) + 1'1(~) x + ... + {:n~)iO;! xn - 1 + Rn , 

where Rn is the integral 

Rn = ['" (x - t)n-l j<n)(t) dt. 
Jo (n - I)! 

Each derivative 1(0), 1'(0), ... ,j<n-ll(o) is a number, and we see that 
the terms preceding Rn make up a polynomial in x. This is the approxi­
mating polynomial. 

Of course, for the formula to be of any use, we have to estimate the 
remainder Rn and show that it becomes small when n becomes large, so 
that the polynomial does indeed approximate the function. We shall do 
this in the following sections for special functions. You may very well 
want to look at these sections before reading the proof, so as to familiarize 
yourselves with the symbols and nature of the theorem. 

We shall now prove the theorem, for those of you who are interested 
in seeing the proof first. It is an application of integration by parts. 

We proceed stepwise. We know that a function is the integral of its 
derivative. Thus when n = 1 we have 

I(b) - I(a) = t f'(t) dt. 

Let u = f'(t) and dv = dt. Then du = I"(t) dt. We are tempted to 
put v = t. This is one case where we choose another indefinite integral, 
namely v = -(b - t), which differs from t by a constant. We still have 
dv = dt (the minus signs cancel!). Integrating by parts, we get 

b /b lb L u dv = uv a - a V du 

= -I'(t)(b - t)/: - t -(b - t)j<2)(t) dt 

= f'(a)(b - a) + t (b - t)j<2)(t) dt. 

This is precisely the Taylor formula when n = 2. 
We push it one step further, from 2 to 3. We rewrite the integral just 

obtained as 
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Let u = f (2 )(t) and dv = (b - t) dt. Then 

and 
-(b - t)2 

V= 2 

Thus, integrating by parts, we find that our integral, which is of the 
form J! u dv, is equal to 

Ib lb 21b lb 2 uv - v du = _j'2)(t) (b - t) _ _ (b - t) j'a)(t) dt 
a a 2 a a 2 

= j'2)(a) (b -; a)2 + Ra. 

Here, Ra is the desired remainder, and the term preceding it is just the 
proper term in the Taylor formula. 

If you need it, do the next step yourself, from 3 to 4. We shall now 
show you how the general step goes, from n to n + 1. 

Suppose that we have already obtained the first n - 1 terms of the 
Taylor formula, with a remainder term 

lb n-l 
R - (b - t) fcn)(t) dt 

n ~ a (n - I)! ' 
which we rewrite 

R = lb j'n)(t) (b - tt-'-l dt 
n a (n - I)! . 

(b - t)n-l 
Let u = fCn)(t) and dv = dt. Then 

(n - I)! 

and 
-(b - tt 

v = , n. 

(Observe how, when we integrate dv, we get n in the denominator, to climb 
from (n - I)! to n!.) 

Integrating by parts, we see that Rn is equal to 

Ib lb nib lb n UV - v du = _j'n)(t) (b - t) _ _ (b - t) j'n+l)(t) dt 
a a n! a a n! 

= j'n)(a) (b - a) + (b - t) j'n+l)(t) dt. n lb n 
n! a n! 

Thus we have split off one more term of the Taylor formula, and the new 
remainder is the desired Rn+1• This concludes the proof. 
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§2. Estimate for the remainder 

THEOREM 2. In Taylor's formula of Theorem 1, there exists a number c 
in the interval [a, b] such that the remainder Rn is given by 

If Mn is a number such that If(nl(x)1 ~ Mn for all x in the interval, then 

Proof. The second assertion follows at once from the first, taking the 
absolute value of the product of the n-th derivative and the length of the 
interval. 

Let us prove the first assertion. Since t nl is continuous on the interval, 
there exists a point u in the interval such that f(nl(u) is a maximum, and 
there exists a point v such that f(nl(v) is a minimum for all values of f(nl 
in our interval. 

Let us assume that a < b. Then for any t in the interval, b - t is ~ 0, 
and hence 

(b - tt-1 f(n)(v) < (b - t)n-l tn)(t) < (b - t)n-l f(n)(u) 
(n - I)! = (n - I)! = (n - I)! . 

Using Theorem 1 of Chapter X, §3, we conclude that similar inequalities 
hold when we take the integral. However,tn)(v) andf(n\u) are now fixed 
numbers which can be taken out of the integral sign. Consequently, we 
obtain 

tn)(v) {b (b - t)n-l dt ~ Rn ~ f(n)(u) t (b - t)n-l dt. 
1 a (n - I)! 1 a (n - I)! 

We now perform the integration, which is very easy, and get 

By the intermediate value theorem, the n-th derivative f(n)(t) takes on all 
values between its minimum and maximum in the interval. Hence 

takes on all values between its minimum and maximum in the interval. 
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Hence there is some point c in the interval such that 

which is what we wanted. 
The proof in case b < a is similar, except that certain inequalities get 

reversed. We leave it as an exercise. (Hint: Interchange the limits of inte­
gration, taking the integral from b to a.) 

The estimate of the remainder is particularly useful when b is close to a. 
In that case, let us rewrite Taylor's formula by setting b - a = h. We 
obtain: 

THEOREM 3. Assumptions being as in Theorem 1, we have 

f(a+h) = f(a) + f'(a)h + ... + f(n-l)(a) (n h~-:) I + Rn 

with the estimate 

where M n is a bound for the absolute value of the n-th derivative off between 
a and a + h. 

In the following sections, we give several examples. 

EXERCISES 

(These exercises are mainly to show you how to recover some classical forms 
of the remainder. You may skip them without harm.) 

1. Let g(t} be a continuous function on an interval between two numbers 
a and b. Show that 

t g(t} dt 

lies between m(b - a} and M(b - a} if m, M are minimum and maximum 
values of g over the interval. 

2. Use the intermediate value theorem to conclude that there is a number c 
in the interval such that 

t g(t} dt = g(c}(b - a}. 

3. Apply this to the remainder term 

R" = t (b - t)"-ll">(t) dt Ja (n - I)! 
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to conclude that there exists a number c between a and b such that 

R (b - c) .. -l(b - a)j(")( ) 
.. = (n - 1)! c. 

Except in some exercises, Jrom now on we assume that the Taylor Jormula 
is taken with a = 0, so that we have 

J(n-l)(O) 
J(x) = J(O) + J'(O)x + .. , + (n _ 1) I xn- 1 + Rn 

with the estimate 

IR IS M Ixln 
n - n nl 

iJ Mn is a bound Jor the n-th derivative oj J between 0 and x. 

§3. Trigonometric functions 

LetJ(x) = sin x and take a = 0 in Taylor's formula. We have already 
mentioned what the derivatives of sin x and cos x are. Thus 

J(O) = 0 

1'(0) = 1 

j<2)(O) = 0 

J(3)(O) = -1. 

The Taylor formula for sin x is therefore as follows: 

We see that all the even terms are 0 because sin 0 = O. 
We can estimate sin x and cos x very simply, because 

lsin xl ~ 1 and Icosxl ~ 1 

for all x. Thus we take the bound 

Mn = 1 
for all n, and 

IR Is Ixln. 
n - nl 

Thus if we look at all values of x such that Ixl ~ 1, we see that Rn ap­
proaches 0 when n becomes very large. 

Example 1. Compute sin (0.1) to 3 decimals. 
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Let US estimate R3 • We let a = 0, b = a + 0.1 in Taylor's formula. 
We get the estimate 

IR I < (0.1)3 = 10-3 . 
3 = 3! 6 

Such an error term would put us within the required range of accuracy. 
Hence we can just use the first term of Taylor's formula, 

sin (0.1) = 0.100, 

with an error which does not exceed ±i 10-4. 

We see how efficient this is for computing the sine for small values of x. 

Example 2. Compute sin (~ + 0.2) to an accuracy of 10-4. 

In this case, we take a = 7r/6. By trial and error, and guessing, we try 
for the remainder R4 • Thus 

sin (a + h) = sin a + cos (a) ~ - sin (a) ~~ - cos (a) ~~ + R4 

= ~ + ~3 (0.2) _ ~ (0;)2 _ V; (0;)3 + R 4 • 

For R4 we have the estimate 

IR I < (0.2)4 = ~ 10-4 < 10-4 
4 = 4! 24 = , 

which is within the required bounds of accuracy. You do not need to carry 
out the actual decimal expansion of the first four terms, which are given 
just as an illustration. 

It is still true that the remainder term of the Taylor formula for sin x 
approaches 0 when n becomes large, even when x is > 1. For this we need: 

THEOREM 4. Let c be any number. Then cn/n! approaches 0 as n 
becomes very large. 

Proof. Let no be an integer such that no > 2c. Thus c < no/2, and 
c/no < t. We write 

cn C c··· c c c c 
n! = 1 2··· no (no + 1)(no + 2) ... n 

~ cno (1.) ... (1.) 
- no! 2 2 

= ::o! (on-no 
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As n becomes large, (1/2)n-no becomes small and our fraction approaches 
o. Take for instance c = 10. We write 

10 ... 10 (10)··· (10) = 1020 (.!)n-20 
1 ·2· .. 20 (21)··· (n) 20! 2 

and (1/2)n-20 approaches 0 as n becomes large. 
From this we see immediately that the remainder in Taylor's formula 

for sin x approaches o. 

EXERCISES 

1. Write down the first 5 terms of the Taylor formula for cos x. 

2. Give an estimate for the remainder similar to that for sin x. 

3. Compute cos (0.1) to 3 decimals. 

4. Estimate the remainder R3 in the Taylor formula for cos x, for the value 
x = 0.1. 

5. Estimate the remainder R4 in the Taylor formula for sin x, for the value 
x = 0.2. 

6. Write down the terms of order ~ 4 of the Taylor formula for tan x. 

7. Estimate the remainder R4 in the Taylor formula for tan x, for 0 ~ x ~ 0.2. 

8. Compute sine 31 degrees to 3 places. 

Write down the terms of order ~ 4 of the Taylor formula for the following 
functions: 

9. sin2 x 10. cos3 X 11. _1_ 
cos x 

§4. Exponential function 

12. sin3 x 

All derivatives of eX are equal to eX and eO = 1. Hence the Taylor series 
for eX is 

x 2 xn - 1 

1 + x + 2! + ... + (n _ I)! + Rn. 

Case 1. Look at values of x such that x < 0; then eX < 1 and of course 
eX > 0 for all x. Hence by Theorem 2, we get 

which is the same estimate we obtained for sin x. 
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Case 2. Look at values of x > 0, and say x ~ b for some number b. 
Since eX is strictly increasing, we know that 

for any value of x ~ b. Hence by Theorem 5, we get 

IRI < bbn 

n = e " n. 

and we see again that this tends to 0 as n becomes large. 

Example 1. Compute e to 3 decimals. 

We have e = e1• From Chapter VIII, §4 we know that e < 4. We 
estimate R7: 

Thus 

I R I < 1 < 4 1 < 10-a. 
7 = e 7! = 5,040 = 

1 1 
e = 1 + 1 + 2 + ... + 6! + R7 

= 2.718 .... 

Of course, the smaller x is, the fewer terms of the Taylor series do we need 
to approximate eX. 

Example 2. How many terms of the Taylor series do you need to com­
pute el / IO to an accuracy of 1O-3? 

We certainly have e1/ 10 < 2. Thus 

Hence we need just 3 terms (including the O-th term). 

EXERCISES 

1. Write down the terms of order ~ 4 of the Taylor formula e-,,2. 

2. Estimate the remainder Ra in the Taylor series for eX for x = 1/2. 

3. Estimate the remainder R4 for x = 10-2 • 

4. Estimate the remainder Ra for x = 10-2• 

5. Write down the terms of order ~ 5 of the Taylor series for e-X • 

6. Compute lie to 3 decimals, and show which remainder would give you an 
accuracy of 10 -3 . 
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7. Write down the first four terms of the Taylor series for the function/(x) = 
e-lIz2 (when x ~ 0), and /(0) = O. Can you say something about the other 
terms in the Taylor series? 

§5. Logarithm 

We leave it to you to derive the Taylor series for the logarithm. Take 
a = 1. We shall obtain an analogous result here by another method. 

Let t be any number, and n an integer > 1. Then 

This is trivially proved. We first multiply the big sum on the left by 1 
and then by t, getting 

1 - t + t2 - ••• + (_I)n-1tn- 1 

+ t - t2 + ... - (_1)n-2tn- 1 + (_1)n-1tn, 

and add, to obtain what we want. 
Suppose that t ~ -1. Then we can divide by 1 + t. Thus 

1 + (_I)n-ltn 1 (_I)n-ltn 
l+t =1+t+ l+t . 

This yields 

_1_ = 1 _ t + t2 _ ••• + (_I)n-1tn-1 + (_I)ntn . 
l+t l+t 

Consider the interval -1 < x ~ 1, and take the integral from 0 to x 
(in this interval). The integrals of the powers of t are well known to you. 
The integral 

i Z 

1 ~ t dt = log (1 + x) 

is computed by the substitution u = 1 + t, du = dt. Thus we get: 

THEOREM 5. For -1 < x ~ 1, we have 

x2 x 3 xn 
log (1 + x) = x - 2" + "3 - ... + (_I)n-l n + Rn+1! 

where the remainder Rn+1 is the integral 

n tn 1z 
(-1) 0 1 + t dt. 
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We shall now estimate the remainder term. 

Case 1. Let a be a number with 0 < a ~ 1, and consider the interval 
o ~ x ~ a. 

In that case, 1 + t ~ 1. Thus 

tn < tn 
1 + t = , 

and our integral is bounded by f~ tn dt. Thus in that case, 

(We perform the integration and use the fact that x ~ 1.) In particular, 
the remainder approaches 0 as n becomes large. 

Case 2. Let a be a number with -1 < a < 0 and consider the interval 
a ~ x ~ o. 

In that case, we see that 

O<I+a~l+t 

if t lies between x and o. 

I I 
~1 a x 0 

Thus 

To estimate the absolute value of the integral, we can invert the limits 
(we do this because x ~ 0) and thus 

IRn+ll ~ rO (_t)n dt 
Jo: 1 + a 

(_a)n+l _ lain+! 
~ (n + 1)(1 + a) - (n + 1)(1 + a) 

Therefore the remainder also approaches 0 in that case. 
As an exercise, compute log 1.1 to 3 decimals; 
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§6. The arctangent 

We proceed as with the logarithm, except that we consider 

_1_ = 1 _ t2 + t4 _ ... + (_I)n-1t2n-2 + (_I)n~. 
1 + t2 1 + t2 

After integration from 0 to any number x, we obtain: 

THEOREM 6. The arctan has an expansion 

x3 x 5 X 2n- 1 
arctan x = x - - + - - ... + (_I)n-1 + R2 3 5 2n - 1 n, 

where 
n r2: t2n 

R 2n = (-1) Jo 1 + t2 dt. 

If b is a positive number such that Ixl :i b then 

rb b2n+! 
IR2nl :i Jo t2n dt ~ 2n+ l' 

When -1 ~ x ~ 1, the remainder approaches 0 as n becomes large. 

From our theorem, we get an expression for 11"/4: 

.!=1-!+!-'" 
4 3 5 

207 

from the Taylor formula for arctan 1. However, it takes many terms to 
get a good approximation to 11"/4 by this expression. You will find a more 
clever approach in the exercises. 

EXERCISES 

1. Prove the addition formula for the tangent: 

tan(x+ ) = tanx+ tany 
y 1 - tan x tan y 

2. Prove that 'If'/4 = arctan i + arctan 1. 
3. Verify that 'If' = 3.14159 ...• 

4. You will need even fewer terms if you prove that 
'If' 1 1 4" = 4 arctan 5" - arctan 239' 

Find the following limits as x approaches 0: 

elll - 1 6 sin (x2) 5.---
x . (sin x)2 

7. ~nx 
sm x 
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8. arctanz 
x 

11. eft; - ~! + z) 

14 log (1 + x2) 
. sin (x2) 

TAYLOR'S FORMULA 

9. log (1 + x) 
z 

12. sin:2- z 

2 
15 tan (x ) 

. (sin x)2 

10. log (1 + 2x) 
z 

13. cos :2- 1 

16 log (1 + z2) 
. (sin z)2 

[XIV, §7] 

§7. The binomial expansion 

Let us first consider a special case. 
Let n be a positive integer, and consider the function 

f(z) = (1 + x)". 

We have no difficulty computing the derivatives: 

1'(x) = n(1 + X) .. -1 

1"(x) = n(n - 1)(1 + X) .. -2 

f<")(x) = n! 

f< .. +1)(x) = o. 

Thus the Taylor formula has no remainder after the n-th term, and we get: 

THEOREM 7. Let n be a positive integer. For any number x, we have 

(1 + x)" = 1 + nx + n(n 2-;- 1) x2 

+ n(n - ~!(n - 2) x3 + ... + x". 

The coefficient of xk is sometimes denoted by c: or m and is called a 
binomial coefficient. Thus: 

(n) nl 
k = k!(n - k) I' 

If we want an expression for (a + b)" with numbers a, b, then we let 
x = bfa. Then 
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and from this we conclude at once that 

We shall now consider the function (1 + x)B when s is not an integer. 
We define the binomial coefficient 

( s) = s(s - 1) ... (s - k + 1) . 
k k! 

THEOREM 8. Let s be any number and let x lie tn the interval 
-1 < x < 1. Then we have 

s(s - 1) 2 
(1 + xt = 1 + sx + 2! x 

+ s(s - l)(s - 2) 3 + ... + (s) k + R 
3! x k x k+b 

where the remainder term is equal to the usual integral. The remainder Rk 
approaches 0 as k becomes large. 

Proof. The proof that the remainder approaches 0 is slightly more 
involved than our previous proofs, and will be omitted. To carry it out, 
one uses the form of the remainder given in Exercise 3 of §3 in case 
-1 < x < O. There is of course no difficulty in verifying that when 
f(x) = (1 + X)8 then 

j<k)(O) = (s) 
k! k 

and you should definitely do this as an exercise. 
What we shall do, however, is discuss the remainder R 2 • Let f(x) = 

(1 + X)8. Assume for simplicity that s > O. We have 

The Taylor formula gives 

(1 + X)8 = 1 + sx + R20 

For small x, this means that 1 + sx should be a good approximation to 
the s power of 1 + x, if R2 can be proved to be small. This we can do 
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easily. We know that 

IR I s M 21xl 2 S 8(8 - 1) (1 + Ix!)8 I 12 
2 - 2! - 2 (1 - Ixl)2 x . 

[XIV, §7] 

As x approaches 0, we see that Ixl 2 approaches 0 much more rapidly, and 
both 1 + Ixl and 1 - Ixl approach 1. Thus the expression on the right 
approaches O. 

This is in fact the most useful estimate in practice, when we have to 
compute some 8 power of 1 + x, with Ixl small. 

If additional accuracy is needed, one can carry out a similar discussion 
for R3 • We leave it to you. 

EXERCISES 

1. Compute the cube root of 126 to 4 decimals. 

2. Compute '\1'97 to 4 decimals. 

3. Estimate R2 in the remainder of (1 + x)1/3 for x lying in the interval 

-0.1 ~ x ~ 0.1. 

4. Estimate the remainder R2 in the Taylor series of (1 + x) 112 when x = 0.2. 

5. Estimate the remainder R2 in the Taylor series for (1 + x) 1/4 when 
x = 0.01. 

6. Let b be a number > O. Let f(x) be a function having n + 1 continuous 
derivatives in the interval -b < x < b. Assume that there are numbers 
ao, .•• , an, such that we can write 

f(x) = ao + a1X + ... + anx" + g(x), 

where g(x) is a function satisfying 

Ig(x) 1 ~ Olx/,,+l 

for some number 0 > O. Prove that 

/"\0) 
ak=~ 

for k = 0, 1, ... ,n. (In other words, the polynomial ao + ... + a"xn is the 
same as the polynomial in the Taylor formula.) 

7. Prove that the expressions given in Theorems 5 and 6 for the log and 
atctangent satisfy the assumption stated in Exercise 6, provided 0 < b < 1. 



CHAPTER XV 

Series 

Series are a natural continuation of our study of functions. In the 
preceding chapter we found how to approximate our elementary functions 
by polynomials, with a certain error term. Conversely, one can define 
arbitrary functions by giving a series for them. We shall see how in the 
sections below. 

In practice, very few tests are used to determine convergence of series. 
Essentially, the comparison test is the most frequent. Furthermore, the 
most important series are those which converge absolutely. Thus we shall 
put greater emphasis on these. 

§1. Convergent series 

Suppose that we are given a sequence of numbers 

i.e. we are given a number an for each integer n ~ 1. (We picked the start­
ing place to be 1, but we could have picked any integer.) We form the sums 

It would be meaningless to form an infinite sum 

because we do not know how to add infinitely many numbers. However, 
if our sums Sn approach a limit, as n becomes large, then we say that the 
sum of our sequence converges, and we now define its sum to be that limit. 

The symbols 

will be called a series. We shall say that the series converges if the sums 
Sn approach a limit as n becomes large. Otherwise, we say that it does not 
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converge, or diverges. If the series converges, we say that the value of the 
series is 

00 

L: an = lim Sn = lim (al + ... + an). 
n----+oo n----+oo 

The symbols lim are to be read: "The limit as n becomes large." 
n--->oo 

Example. Consider the sequence 

1 1 1 1 1-,-,-,-,···, , 2 4 8 16 

and let us form the sums 

1 1 1 
1+-+-+ .. ·+_· 

2 4 2n 

You probably know already that these sums approach a limit and that 
this limit is 2. To prove it, let r = ~. Then 

2 1 - rn +1 1 rn +1 

(1 + r + r + ... + rn) = --1--r- = -1---r - -1---r . 

As n becomes large, rn+1 approaches 0, whence our sums approach 

1 
-1--1 = 2. 

-2" 

Actually, the same argument works if we take for r any number such that 

-1 < r < 1. 

In that case, r n+1 approaches 0 as n becomes large, and consequently we 
can write 

In view of the fact that the limit of a sum is the sum of the limits, we get: 

THEOREM 1. Let {an} and {bn} (n = 1,2, ... ) be two sequences and 
assume that the series 

and 

00 

converge. Then L (an + bn) also converges, and is equal to the sum 
n=l 

of the two series. 
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In other words, series can be added term by term. Of course, they 
cannot be multiplied term by term! 

We also observe that a similar theorem holds for the difference of two 
series. 

If a series Lan converges, then the numbers an must approach 0 as n 
becomes large. However, there are examples of sequences {an} for which 
the series does not converge. Consider for instance 

We contend that the partial sums 8n become very large when n becomes 
large. To see this, we look at partial sums as follows: 

1111 11 1 
1 +-+-+-+-+ ... +-+-+ ... +-+ ... 2 3 4 5 8 9 16 . 

L-.-.J ' , , ! 

In each bunch of terms as indicated, we replace each term by that farthest 
to the right. This makes our sums smaller. Thus our expression is greater 
than or equal to 

1111 11 1 
1 +-+-+-+-+ ... +-+-+ ... +-+ ... 2 4 4 8 8 16 16 

L-.-.J I I ! I 

1 
2 + 1 

2 + 1 
2 

+ ... 

and therefore becomes arbitrarily large when n becomes large. 

§2. Series with positive terms 

Throughout this section, we shall assume that our numbers an are ~O. 
Then the partial sums 

are increasing, i.e. 

If they are to approach a limit at all, they cannot become arbitrarily large. 
Thus in that case there is a number B such that 

for all n. The collection of numbers {8n } has therefore a least upper bound, 
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i.e. there is a smallest number S such that 

for all n. In that case, the partial sums Sn approach S as a limit. In other 
words, given any positive number E > 0, we have 

S - E ;;;;; Sn ;;;;; S 

for all n sufficiently large. 

I I I 
8n 

This simply expresses the fact that S is the least of all upper bounds for 
our collection of numbers Sn. We express this as a theorem. 

THEOREM 2. Let {an} (n = 1,2, ... ) be a sequence of numbers ~O 
and let 

If the sequence of numbers {sn} is bounded, then it approaches a limit S, 
which is its least upper bound. 

Theorem 1 gives us a very useful criterion to determine when a series 
with positive terms converges: 

THEOREM 3. Let 

and 

be two series, with an ~ 0 for all nand bn ~ 0 for all n. Assume that 
there is a number C > 0 such that 

~ ~ 

for all n, and that L bn converges. Then L an converges, and 
n=1 n=1 

~ ~ 

:E an ;;;;; C :E bn. 
n=1 n=1 

Proof. We have 
~ 

al + ... + an ;;;;; Cb l + ... + Cbn = C(b l + ... + bn) ;;;;; C:E bn. 
n=1 

~ 

This means that C L bn is a bound for the partial sums 
n=1 
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GO 

The least upper bound of these sums is therefore 
proving our theorem. 

~ C E bn , thereby 

GO 1 
Example. Prove that the series E 2 converges. 

n=l n 
Let us look at the series: 

n=1 

We look at the groups of terms as indicated. In each group of terms, if 
we decrease the denominator in each term, then we increase the fraction. 
We replace 3 by 2, then 4, 5, 6, 7 by 4, then we replace the numbers from 
8 to 15 by 8, and so forth. Our partial sums are therefore less than or equal 
to 

11111 1 
1 + 22 + 22 + 42 + ... + 42 + 82 + ... + 82 + ... , 

and we note that 2 occurs twice, 4 occurs four times, 8 occurs eight times, 
and so forth. Hence the partial sums are less than or equal to 

Thus our partial sums are less than or equal to those of the geometric 
series and are bounded. Hence our series converges. 

EXERCISES 

GO 1 
1. Show that the series E 3" converges . 

.. _I n GO 1 

2. Let E be a number >0. Show that the series 1: n1+< converges. 
,,=1 

Test the following series for convergence: 
GO 2 

4.1: 4
n+ 

I nn 
n= 

"" 5.1: n~ 1 
n=1 

6. t n~5 
n=1 

GO 2 

7. ?; n3 +nn+ 2 

9 ~ Icosnl 
• L..J n2 + n ,,=1 
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§3. The integral test 

You must already have felt that there is an analogy between the con­
vergence of an improper integral and the convergence of a series. We shall 
now make this precise. 

THEOREM 4. Let f be a function which is defined and positive for all 
x ~ 1, and decreasing. The series 

'" L: fen) 
n=l 

converges if and only if the improper integral 

h'" f(x) dx 

converges. 

We visualize the situation in the following diagram. 

Consider the partial sums 

f(2) + ... + fen) 

and assume that our improper integral converges. The area under the 
curve between 1 and 2 is greater than or equal to the area of the rectangle 
whose height is f(2) and whose base is the interval between 1 and 2. This 
base has length 1. Thus 

f(2) ~ h2 f(x) dx. 

Again, since the function is decreasing, we have a similar estimate between 
2 and 3: 

3 
f(3) ~ h f(x) dx. 

We can continue up to n, and get 

f(2) + f(3) + ... + fen) ~ hn f(x) dx. 
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As n becomes large, we have assumed that the integral approaches a limit. 
This means that 

1(2) + 1(3) + ... + I(n) ~ h'" I(x) dx. 

Hence the partial sums are bounded, and hence by Theorem 2, they ap­
proach a limit. Therefore our series converges. 

Conversely, assume that the partial sums 

1(1) + ... + I(n) 

approach a limit as n becomes large. 
The area under the graph of f between 1 and n is less than or equal to 

the sum of the areas of the big rectangles. Thus 

and 

h2/(X) dx ~ f(I)(2 - 1) = f(l) 

h3 f(x) dx ~ f(2)(3 - 2) = f(2). 

Proceeding stepwise, and taking the sum, we see that 

hn I(x) dx ~ 1(1) + ... + fen - 1). 

The partial sums on the right are less than or equal to their limit. Call 
this limit L. Then for all positive integers n, we have 

hn f(x) dx ~ L. 

Given any number B, we can find an integer n such that B ~ n. Then 

hB I(x) dx ~ hn I(x) dx ~ L. 

Hence the integral from 1 to B approaches a limit as B becomes large, and 
this limit is less than or equal to L. This proves our theorem. 

Example. Prove that the series L 2 1 converges. 
n + 1 

Let f(x) = 2 1 . Then f is decreasing, and 
x + 1 

(B ~ 11 f(x) dx = arctan B - arctan 1 = arctan B - "4. 
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As B becomes large, arctan B approaches 7r/2 and therefore has a limit. 
Hence the integral converges. So does the series, by the theorem. 

EXERCISES 

1. Show that the following series diverges: t __ 1_ 
n~2 n log n 

2. Show that the following series converges: t ( n: ~ , 
n~l n 2 n. 

Test for convergence: 
QO 2 

3. ~ ne-n 

n~l 

QO 1 
4. ~ n (log n)3 

n~2 

QO 1 

5. ~ n (log n)2 
n~2 

10. t n3 _ nn + 5 
n~l 

§4. Absolute convergence 
QO 

We consider a series L an in which we do not assume that the terms an 
n=l 

are ~O. We shall say that the series converges absolutely if the series 

formed with the absolute values of the terms an converges. This is now a 
series with terms ~ 0, to which we can apply the tests for convergence 
given in the two preceding sections. This is important, because we have: 

THEOREM 5. Let {an} en = 1,2, ... ) be a sequence, and assume that 
the series 

QO 

converges. Then so does the series Lan' 
n=l 
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Proof. Let at be equal to 0 if an < 0 and equal to an itself if an ~ O. 
Let a; be equal to 0 if an > 0 and equal to -an if an ~ O. Then both 
at and a;: are ~O. By assumption and comparison with L lanl, we see 
that each one of the series 

and 

converges. Hence so does their difference 

GO GO 

~ at - ~ a;;, 
n=l n=l 

which is equal to 
GO 

~ (at - a;;), 
n=l 

GO 

which is none other than L an. This proves our theorem. 
n=l 

We shall use one more test for convergence of a series which may have 
positive and negative terms. 

GO 

THEOREM 6. Let L an be a series such that 
n=l 

lim an = 0, 
n-+GO 

lJuch that the terms an are alternately positive and negative, and such that 
lan+ll ~ lanl for n ~ 1. Then the series is convergent. 

Proof. Let us write the series in the form 

with bn , Cn ~ O. Let 

sn = b1 - Cl + b2 - C2 + ... + bn 

tn = b1 - Cl + b2 - C2 + ... + bn - Cn. 

Since the absolute values of the terms decrease, it follows that 

and 

i.e. that the Sn are decreasing and the tn are increasing. Let L be the 
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greatest lower bound of the numbers Sn. In view of the fact that bn and Cn 
approach 0 .as n becomes large, it follows that both Sn and tn approach L 
as a limit. 

EXERCISES 

Determine whether the following series converge absolutely: 

1. L: s~3n 
(-1)" 

4. L: n2+ 1 

2 '"' 1 + cos 7rn 3 '"' sin 7rn + cos 27rn 
• £..oJ n! . £..oJ n3/2 

5 '"' (_I)n sin n + cos 3n 
• £..oJ n2 + n 

Which of the following series converge and which do not? 

6. L: (_:)n 

(_I)n+l 

9. L: log en + 2) 

11. For each number x, show that the series 
. 2 

'"' sm n x 
£..oJ n2 

converges absolutely. Let f be the function whose value at x is the above series. 
Show that f is continuous. Determine whether f is differentiable or not. (Re­
markably enough, this does not seem to be known! Cf. J. P. Kahane, Bulletin 
of the American Mathematical Society, March 1964, p. 199.) 

§s. Power series 

Perhaps the most important type of series are power series. Let x be 
any number and let {an} (n = 0, 1, ... ) be a sequence of numbers. Then 
we can form the series 

The partial sums are 
ao + alx + a2x2 + ... + anxn. 

We have already met such sums when we discussed Taylor's formula. 

THEOREM 7. Assume that there is a number r > 0 such that the series 

converges. Then for all x such that Ixl < r, the series 

converges absolutely. 
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Proof. The absolute value of each term is 

Our assertion follows from the comparison Theorem 2. 
The least upper bound of all numbers r for which we have the conver­

gence stated in the theorem is called the radius of convergence of the series. 
Theorem 5 allows us to define a function f; namely, for all numbers x 

such that Ix) < r, we define 

f(x) = lim (ao + alx + ... + anxn). 
n--+co 

Our proofs that the remainder term in Taylor's formula approaches 0 
for various functions now allow us to say that these functions are given 
by their Taylor series. Thus 

. x 3 x 5 
sm x = x - 3! + 5! - ... 

x2 
e'" = 1 +x +-+ ... 2! 

for all x. Furthermore, 

x2 
log (1 + x) = -x + 2" - ... 

is valid for -1 < x < 1. 
(Here we saw that the series converges for x = 1, but it does not con­

verge absolutely, cf. §1.) 
However, we can now define functions at random by means of a power 

series, provided we know the power series converges absolutely, for Ix) < r. 
Before we give you an example, we must have some good way of finding 

out when a power series converges. The next theorem gives us such a way. 

THEOREM 8. Let {an} (n = 1,2, ... ) be a sequence of numbers ~O 
and assume that there is a number s > 0 such that 

a!,n ~ s 

for all but a finite number of integers n. Let r < 1/ s, and r > O. Then the 
series 

converges. 

Proof. For all but a finite number of integers n, we have 
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Hence 

Since rs < 1, we can compare our series with the geometric series, and 
conclude that it converges. 

On the other hand, we have: 

THEOREM 9. Let {an} (n = 1,2, ... ) be a sequence of numbers ;;;;;0 
and assume that there is a number s > 0 such that a~/n ;;;;; s for infinitely 
many integers n. Let r > 1/ s. Then 

diverges. 

Proof. In fact, we shall see that the terms do not even approach O. We 
have rs > 1, whence ra~/n ;;;;; rs > 1. Thus anrn > 1 for infinitely many 
values of n. The series cannot converge. 

Theorems 8 and 9 are particularly useful in case there is a limit 

We see at once that if this limit is ¢O, then the radius of convergence of 
the series 

is precisely 
1 

lim a;ln 
n-+oo 

Example. Prove that the series 

~ logn n 
L..J ----ri2 x 
n=2 

converges absolutely for Ixl < 1. 
We put an = log n/n2 for n ;;;;; 2. We know that n1/n approaches 1 as n 

becomes very large. Since (log n) lin ~ n lin, it follows that (log n) lin also 
approaches 1. Furthermore, 

also approaches 1. Thus 1 is the radius of convergence. 



[XV, §6] DIFFERENTIATION AND INTEGRATION OF POWER SERIES 223 

00 

Remark. If a power series L: anxn does not converge for any value of 
n=l 

X except 0, then we agree to say that its radius of convergence is o. If it 
converges for all x, then we say that the radius of convergence is infinity. 
This is the case if lim a~/n = 0 (trivial consequence of Theorem 8). 

n-+co 

EXERCISES 

Find the radius of convergence of the following series: 

1 ~ (2n)! n 

. LJ ( ')2 X 
n=l n. 

~ (n!)3 n 

3. t:; (3n)! x 

5 ~ (3n)! n 
. LJ ( ')2 X 

n_l n. 

00 

"'" n n 13. ~ logn x 

L:CO n! n 
15. -x nn 

n=l 

~ nn n 
2. LJ ,x 

n=l n. 
co 5n 

4 "'" n n . LJ (2n) !n3n x 
n=l 

~ sinmr/2 n 
6. LJ 2n x 

n=l 

~ 1 + cos 2,rn n 
8. LJ 3n x 

n=l 

~ sin211"n n 
10. LJ---x 

n=l n! 

co 2 
"'" cos n n 12. LJ--x 
n=l nn 

14 ~ (_1)n n 
·LJ '_Ix 

n=2 n. 

(In these exercises, you may use Stirling's formula, namely 

, . ~ n -n 6/12n n. = V ':'1I"n nee 

with 0 ~ f) ~ 1, so that in the present applications we can replace n! by nne-n .) 

§6. Differentiation and integration of power series 

If we have a polynomial 

with numbers ao, at, ... , an as coefficients, then we know how to find its 
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derivative. It is al + 2a2x + ... + na"x,,-I. We would like to say that 
the derivative of a series can be taken in the same way, and that the 
derivative converges whenever the series does. 

THEOREM 10. Let r be a number >0 and let La"x" be a series which 
converges absolutely for Ixl < r. Then the series Lna"x,,-1 also converges 
absolutely for Ixl < r. 
Proof. Our series is equal to 

and thus it will suffice to consider the series Lna"x". We may also assume 
that all a" ~ o. Let 0 < rl < r and let c be a number, 0 < c < 1 such 
that rt/c < r. Applying Theorem 9, we find that for all but a finite 
number of n, we have 

a:!" ~ clrl 

(otherwise the series La"r" would diverge), and hence for all but a finite 
number of n, we have 

On the other hand, by Corollary 3 of Theorem 10, Chapter VIII, §4 we 
know that nIl" approaches 1, as n becomes large. Hence for all sufficiently 
large n, (na"ri) 11" itself is less than or equal to a number < 1 (possibly 
slightly bigger than c). Theorem 3 of §2 now proves that the series Lna"ri 
converges. This is true for all rl with 0 < rl < r, and thus our theorem 
is proved. 

A similar result holds for integration, but trivially. Indeed, if we have a 
ao 

series L a"x" which converges absolutely for Ixl < r, then the series 
,,=1 

!. t ~x"+I = t ~x" 
X ,,=1 n + 1 ,,=1 n + 1 

has terms whose absolute value is smaller than in the original series. 

The preceding results can be expressed by saying that an absolutely 
convergent power series can be integrated and differentiated term by term 
and still yield an absolutely convergent power series. 

THEOREM 11. Let 
ao 

f(x) = .E a"x" 
,,=1 

be a power series, which converges absolutely for Ixl < T. Then f is diiJer-
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entiable /or Ixl < r, and 

GO 

/'(x) = L: nanXn- 1. 
n-2 

Proo/. Let 0 < b < r. Let 6 > 0 be such that b + 6 < r. We con­
sider values of x such that Ixl < b and values of h such that /hl < 6. We 
have 

GO GO GO 

/(x + h) - /(x) = L: an(x + h)n - L: anxn = L: an[(x + h)n - xn]. 
n=l 

By the mean value theorem, there exists a number Xn between x and 
x + h such that the preceding expression is 

GO 

/(x + h) - /(x) = L: nanx:-1h. 
n-l 

Therefore 
/(x + h) - /(x) ~ n-l 

h = £...t nanXn . 
n=l 

We have to show that the Newton quotient above approaches the value 
of the series obtained by taking the derivative term by term. We have 

/(x + h) - /(x) ~ n-l ~ n-l ~ n-l 
h - £...t nanx = £...t nanXn - £...t nanx 

n~l n_1 n~l 

GO 

= L: nan[x:-1 - xn - 1]. 
n_l 

Using the mean value theorem again, there exists Yn between Xn and x 
such that the preceding expression is 

/(x + hi- /(x) - t nanxn- 1 = t (n - 1)nany:-2(xn - x). 
n-l n=2 

We have IYnl ~ b + 6 < r, and /xn - xl ~ Ihl. Consequently, 

I/(X + hi - /(x) - t nanxn-11 ~ t (n - 1)nlanl/Ynln- 2 Ihl 
n-l n-2 

GO 

~ Ihl L: (n - l)nlanl(b + 6t-2• 

n=2 

By Theorem 10 applied twice, we know that the series appearing on the 
right converges. It is equal to a fixed constant. As h approaches 0, it follows 
that the expression on the left also approaches O. This proves that / is 
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co 

differentiable at x, and that its derivative is equal to L nanxn- 1, for all x 
n=l 

such that Ixl < b. This is true for all b, 0 < b < r, and therefore con­
cludes the proof of our theorem. 

co 

THEOREM 12. Let f(x) = L anxn be a power series, which converges 
n=l 

absolutely for Ixl < r. Then the relation 

jf(X)dX = t n~ 1 xn +1 

n=l 

is valid in the interval Ixl < r. 

Proof. We know that the series integrated term by term converges 
absolutely in the interval. By the preceding theorem, its derivative term 
by term is the series for the derivative of the function, thereby proving 
our assertion. 

Example. If we had never heard of the exponential function, we could 
define a function 

x 2 x 3 
f(x) = l+x+-+-+··· 2! 3! . 

Taking the derivative term by term, we see that 

f'(x) = f(x). 

Hence by what we know from Chapter VIII, §2, Exercise 7, we conclude 
that 

f(x) = Kex 

for some constant K. Letting x = 0 shows that 

1 = f(O) = K. 

Thus K = 1 and f(x) = eX. 

Similarly, if we had never heard of sine and cosine, we could define 
functions 

x 3 x 5 
Sex) = X - 3! + 5! - .. " 

x2 X4 
C(x) = 1 - 2! + 4! - .... 

Differentiating term by term shows that 

S'(x) = C(x), C'(x) = -Sex). 

Furthermore, S(O) = 0 and C(O) = 1. It can then be shown easily that 
any pair of functions Sex) and C(x) satisfying these properties must be 
the sine and cosine. This is actually carried out as an appendix to the 
second volume of this course, and there, we also show how to relate these 
functions to angles. 



Appendix 1 

€ and 8 
This appendix is intended to show how the notions of limits and the 

properties of limits can be explained and proved in terms of the notions 
and properties of numbers. We therefore assume the latter and carry out 
the proofs from there. 

There remains the problem of showing how the real numbers can be 
defined in terms of the rational numbers, and the rational numbers in 
terms of integers. This takes too long to be included in this book. 

Aside from the ordinary rules for addition, multiplication, subtraction, 
division (by non-zero numbers), ordering, positivity, and inequalities, 
there is one more basic property satisfied by the real numbers. This prop­
erty is stated in §l. Our proofs then use only these properties. 

§1. Least upper bound 

We meet again the problem of where to jump into the theory. It would 
be long and tedious to jump in too early. Hence we assume known the 
contents of Chapter I, §1 and §2. These involve the ordinary operationR 
of addition and multiplication, and the notion of ordering, positivity, 
negative numbers, and inequalities. Those who are interested in seeing 
the logical development of these notions are referred to my book Under­
graduate Analysis, Second Edition (Springer-Verlag, NY, 1997). 

A collection of numbers will simply be called a set of numbers. This is 
shorter and is the usual terminology. If a set has at least one number in 
it, we say that it is non-empty. 

Let S be a non-empty set of numbers. We shall say that S is bounded 
from above if there exists a number B such that 

x~B 

for all x in our set S. We then call B an upper bound for S. 
A least upper bound for S is an upper bound L such that any 

upper bound B for S satisfies the inequality B ~ L. If M is another 
least upper bound, then we have M ~ Land L ~ M, whence L = M. 
A least upper bound is unique. 

227 
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Similarly, we define the notions of bounded from below, and of greatest 
lower bound. (Do it yourself.) 

The real numbers satisfy a property which is not satisfied by the set of 
rational numbers, namely: 

FUNDAMENTAL PROPERTY. Every non-empty set S of numbers which is 
bounded from above has a least upper bound. Every non-empty set of 
numbers S which is bounded from below has a greatest lower bound. 

PROPOSITION 1. Let a be a number such that 

1 
O::::;;a<-- n 

for every positive integer n. Then a = O. There is no number b such that 
b ~ n for every positive integer n. 

Proof. Suppose there is a number a ~ 0 such that a < lin for every 
positive integer n. Then n < lla for every positive integer n. Thus to 
prove both our assertions, it will suffice to prove the second. 

Suppose there is a number b such that b ~ n for every positive integer n. 
Let S be the set of positive integers. Then S is bounded, and hence has a 
least upper bound. Let C be this least upper bound. No number strictly 
less than C can be an upper bound. Since 0 < 1, we have C < C + 1, 
whence C - 1 < C. Hence there is a positive integer n such that 

C - 1 < n. 

This implies that C < n + 1 and n + 1 is a positive integer. We have 
contradicted our assumption that C is an upper bound for the set of positive 
integers, so no such upper bound can exist. 

§2. Limits 

Let S be a set of numbers and let f be a function defined for all numbers 
in S. Let Xo be a number. We shall assume that S is arbitrarily close to xo, 
i.e. given E > 0 there exists an element x of S such that Ix - xol < E. 

Let L be a number. We shall say that f(x) approaches the limit L as x 
approaches Xo if the following condition is satisfied: 

Given a number E > 0, there exists a number Ii > 0 such that for all x 
in S satisfying 

Ix - xol < Ii 

we have 

If(x) - LI < E. 
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If that is the case, then we write 

lim f(x) = L. 
Z-+Zo 

We could also rephrase this as follows. We write 

limf(xo + h) = L 
h .... O 

and say that the limit of f(xo + h) is L as h approaches 0 if the following 
condition is satisfied: 

Given E > 0, there exists 6 > ° such that whenever h is a number with 
Ihl < 6 and Xo + h in S, then 

If(xo + h) - LI < E. 

We note that our definition of limit depends on the set S on which f is 
defined. Thus we should say "limit with respect to Stl. The next proposi­
tion shows that this is really unnecessary. 

PROPOSITION 2. Let S be a set of numbers arbitrarily close to xo and let 
S' be a subset of S, also arbitrarily close to Xo. Let f be a function defined 
on S. If 

limf(xo + h) = L 
h-+O 

limf(xo + h) = M 
h-+O 

(with respect to S) 

(with respect to S') 

then L = M. In particular, the limit is unique. 

Proof. Given E > 0, there exists 6 > ° such that whenever Ihl < 6 
we have 

We have 

If(xo + h) - LI < ~ 2 
E 

If(xo + h) - MI < 2· 

E E IL - MI ~ IL - f(xo + h) + f(xo + h) - MI ~ 2 + 2 = E. 

Hence IL - MI is less than any E > 0, and by Proposition 1 of §I, we 
just have IL - MJ = 0, whence L - M = ° and L = M. 
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Remark. Suppose that lim f(xo + h) = L. Then there exists a > 0 
"--+0 

such that whenever Ihl < a we have 

IJ(xo + h)1 < ILl + 1. 

Indeed, given E > 0 there exists a such that whenever Ihl < a we have 

IJ(xo + h) - LI < 1, 

so that our assertion follows from standard properties of inequalities. 
Also, note that we have trivially 

limC=C 
"-+0 

for any number e, viewed as a constant function on S. Indeed, given 
E> 0, 

Ie - el < E. 

Remark. We mention a word about limits "when x becomes large". Let 
a be a number and f a function defined for all numbers x ~ a. Let L be 
a number. We shall say that f(x) approaches L as x becomes large, and we 
write 

limf(x) = L 
"'-+00 

if the following condition is satisfied. Given E > 0 there exists a number 
A such that whenever x > A we have 

IJ(x) - LI < E. 

In practice, instead of saying "when x becomes large", we sometimes 
say "when x approaches 00". We leave it to you to define the analogous 
notion "when x becomes large negative", or "x approaches -00". 

In the definition of lim we took a function f defined for x ~ a. If 
"'--+00 

al > a, and we restrict the function to all numbers ~ at, then the limit 
as x becomes very large will be the same. 

Let us suppose that a ~ 1. Define a function g for values of x such that 

o < x ~ l/a 
by the rule 

g(x) = f(l/x). 

Then a second's thought will allow you to prove that 

lim g(x) 
",-+0 
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exists if and only if 
lim f(x) 
"' ...... 00 

exists, and that they are equal. 
Consequently all properties which we prove concerning limits as x 

approaches 0 (or a number) immediately give rise to similar properties 
concerning limits as x becomes very large. We leave their formulations 
to you. 

THEOREM 1. Let S be a set of numbers, and f, g two functions 
defined for all numbers in S. Let xo be a number. If 

lim f(xo + h) = L 
h ...... O 

and 
lim g(xo + h) = M, 
h ...... O 

then lim (j + g)(xo + h) exists and is equal to L + M. 
h ...... O 

Proof. Given E > 0, there exists {) > 0 such that, whenever Ihl < {) 
(and xo + h is in S), we have 

We observe that 

If(xo + h) - LI 

Ig(xo + h) - MI 

<! 
2 
E < -. 
2 

If(xo + h) + g(xo + h) - L - M/ ~ 

If(xo + h) - LI + Ig(xo + h) - MI ~ E. 

This proves that L + M is the limit of (j + g)(xo + h) as h approaches O. 
In practice, we omit stating the fact that xo + h should be in S. It is 

to be understood as being so in every case. 

THEOREM 2. Let S be a set of numbers, and f, g two functions defined 
for all numbers in S. Let xo be a number. If 

lim f(xo + h) = L 
h ...... O 

and 

lim g(xo + h) = M, 
h ...... O 

then lim f(xo + h)g(xo + h) exists and is equal to LM. 
h-->O 
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Proof. Given E > 0 there exists 8 > 0 such that, whenever Ihl < 8, we 
have 

1 E 
If(xo + h) - LI < 2" IMI if M ¢O 

If(xo + h) - LI < ~ E if M = 0 

1 E 
Ig(xo + h) - MI < 2" ILl + 1 

If(xo + h)1 < ILl + 1. 
We have 

If(xo + h)g(xo + h) - LMI 

= If(xo + h)g(xo + h) - f(xo + h)M + f(xo + h)M - LMI 

;;;i If(xo + h)g(xo + h) - f(xo + h)MI + If(xo + h)M - LMI 

;;;i If(xo + h)llg(xo + h) - MI + If(xo + h) - LIIMI 

1 E 1 
< (ILl + 1) 2" ILl + 1 + 2" E 

<~+~ =2 2 
;;;i E. 

COROLLARY 1. Let C be a number and let the assumptions be as in the 
theorem. Then 

lim Cf(xo + h) = CL. 
h--+O 

Proof. Clear. 

COROLLARY 2. Let the notation be as in Theorem 2. Then 

lim [f(xo + h) - g(xo + h)] = L - M. 
h ..... O 

Proof. Clear. 

THEOREM 3. Let S be a set of numbers, and f a function defined for all 
numbers in S. Let xo be a number. If 

limf(xo + h) = L 
h--+O 

and L ~ 0, then the limit 

lim 1 
h--+O f(xo + h) 

exists and is equal to I/L. 
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Proof. Given E > 0, let El be the smaller of the numbers ILI/2 and E. 
There exists 6 > 0 such that whenever Ihl < 6 we have 

and also 
IJ(xo + h) - LI < El 

EILI If(xo + h) - LI < _. 
2 

From the first inequality, we get 

ILl ILl 
If(xo + h)1 > ILl - El ;;;;; ILl - ~ = 2' 

In particular, f(xo + h) ¢ 0 when Ihl < 6. For such h we get 

I 1 11 IL-f(xo+h)1 
f(xo + h) - L = If(xo + h)LI 

2 
~ lLr IL - f(xo + h)1 

2 EILI < lLf -2- = E. 

COROLLARY. Let the hypotheses be as in Theorem 2, and assume that 
L ¢ O. Then 

1. g(xo + h) 
1m "="'--=---,:-----=-'-

h ...... of(xo + h) 

exists and is equal to MIL. 

Proof. Use Theorem 2 and Theorem 3. 

THEOREM 4. Let S be a set of numbers, and f a function on S. Let xo be 
a number. Let g be a function on S such that g(x) ~ f(x) for all x in S. 
Assume that 

limf(xo + h) = L and lim g(xo + h) = M. 
h-+O h-+O 

ThenM ~ L. 

Proof. Let lP(x) = f(x) - g(x). Then lP(x) ;;;;; 0 for all x in S. Also, 

lim lP(xo + h) = L - M 
h-+O 

by Corollary 2 of Theorem 2. Let K be this limit. We must show K ;;;;; O. 
Suppose K < O. Then - K > 0 and IKI = - K. Given E > 0 there 
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exists 8 > 0 such that whenever Ihl < 8 we have 

whence 
IIP(xo + h) - KI < E, 

IIP(xo + h)1 - K < E. 

[APP. 1, §3] 

Since lP(xo + h) ~ 0, we get -K < E for all E > O. In particular, for 
all positive integers n we get - K < lin. But - K > O. This contradicts 
Proposition I of §1. 

THEOREM 5. Let the notation be as in Theorem 4 and assume that 
M = L. Let t/I be a function on S such that 

g(x) ~ t/I(x) ~ f(x) 
for all x in S. Then 

lim t/I(xo + h) 
h-+O 

exists and is equal to L (or M). 

Proof. Given E > 0 there exists 8 > 0 such that whenever Ihl < 8 we 
have 

Ig(xo + h) - LI < ! 4 

If(xo + h) - LI < ~. 
We also have 

But 

If(xo + h) - t/I(xo + h)1 ~ If(xo + h) - g(xo + h)1 

~ If(xo + h) - L + L - g(xo + h)1 

~ If(xo + h) - LI + IL - g(xo + h)1 

< !. 
2 

IL - t/I(xo + h)1 ~ \L - f(xo + h)1 + If(xo + h) - t/I(xo + h)1 
E E 

< 2 + 2 = E. 

This completely proves all the statements about limits we made in 
Chapter III. 

§3. Points of accumulation 

A sequence is a function defined on a set of integers ~O. Usually, this 
set consists of all positive integers. In that case, a sequence amounts to 
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giving numbers 

for each positive integer, and we denote the sequence by {an} (n = 1,2, ... ). 
If the set consists of all integers ~O, then we denote the sequence by 

{an} (n = 0, 1, 2, ... ). 
Let {an} (n = 1, 2, ... ) be a sequence. Let C be a number. We say 

that C is a point of accumulation of the sequence if given e > 0 there exist 
infinitely many integers n such that 

Let {an} (n = 1, 2, ... ) be a sequence, and L a number. We shall say 
that L is a limit of the sequence if given e > 0 there exists an integer N 
such that for all n > N we have 

Ian - LI < e. 

The limit is then unique (same type of proof as we had for limits of 
functions). 

We shall say that the sequence {an} (n = 1, 2, ... ) is increast·ng if 
an ~ an+l for all positive integers n. 

THEOREM 6. Let {an} (n = 1,2, ... ) be an increasing sequence, and 
assume that t·t is bounded from· above. Then the least upper bound L is a 
limit of the sequence. 

Proof. Given e > 0 the number L - (e/2) is not an upper bound for the 
sequence. Hence there exists some number aN such that L - (e/2) ~ aN. 
This inequality is also satisfied for all n > N, since the sequence is in­
creasing. But 

because L is an upper bound. Thus 

for all n > N, thereby proving our assertion. 

COROLLARY. Let {an} (n = 1, 2, ... ) be a sequence, and let A, B be 
two numbers such that A ~ an ~ B for all positive integers n. Then there 
exists a point of accumulation C of the sequence with C between A and B. 

Proof. For each integer n we let bn be the greatest lower bound of the 
set of numbers {an, an+b an+2, ... }. Then bn ~ bn+1 ~ ' •• , i.e. {bn} 
(n = 1, 2, ... ) is an increasing sequence. Let L be its limit, as in Theorem 
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6. We leave it to you as an exercise to prove that this limit is a point of 
accumulation. 

One can reduce the notion of limit of a sequence to that of limits defined 
previously. 

Let S be the set of numbers 

1 1 
1, 2' 3"' 

1 ... , -, ... , 
n 

i.e. the set of numbers which can be written as lin, where n is a positive 
integer. 

If {an} (n = 1, 2, ... ) is a sequence, we let f be a function defined on S 
by the rule 

f(1ln) = an· 

Then you will verify immediately that 

exists if and only if 
lim f(h) 
h--->O 

exists, and in that case the two limits are equal. We say that a sequence 
{an} approaches a number L when n becomes large if L = lim an. 

n--->oo 

Thus properties concerning limits in the sense of §2 immediately give 
rise to properties concerning limits of sequences (for instance limits of 
sums, products, quotients). We leave their translations to you. 

§4. Continuous functions 

Let f be a function defined on a set of numbers S. Let Xo be a number 
in S. Then S is arbitrarily close to Xo. We say thatfis continuous at Xo if 

lim f(xo + h) = f(xo}. 
h--->O 

Note that there may be two numbers a, b with a < Xo < b such that Xo 
is the only point which is in the interval and lies also in S. (In this case, 
one could say that Xo is an isolated point of S.) 

It follows at once from our definition that if {an} (n = 1,2, ... ) is a 
sequence of numbers in S such that 

lim an = Xo 
n--->oo 
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then 
lim f(an) = f(xo). 
n ...... oo 

It is immediate that the sum, product, quotient of continuous functions 
are again continuous. (In the quotient, we have to assume that f(xo) ¢ 0, 
of course.) Every constant function is continuous. The functionf(x) = x 
is continuous for all x. This is trivially verified. From the quotient theo­
rem, we see that the functionf(x) = l/x (defined for x ¢ 0) is continuous. 

If g is a continuous function, and f is a function which is defined at all 
values of g, then the composite function fog is continuous. This is an easy 
exercise, which we leave to you. 

THEOREM 7. Let f be a continuous function on a closed interval 
a ~ x ~ b. Then there exists a p01:nt c in the interval such that f(c) 
is a maximum, and there exists a point d in the interval such that fed) is 
a minimum. 

Proof. We shall first prove that f is bounded, i.e. that there exists a 
number M such that f(x) ~ M for all x in the interval. 

If f is not bounded, then for every positive integer n we can find a num­
ber Xn in the interval such that f(xn) > n. The sequence of such Xn has a 
point of accumulation C in the interval. We have 

IJ(xn) - f(C)1 ~ IJ(xn)I - IJ(C)I 

~ n - fCC). 

Given E > 0, there exists a 0 > 0 such that, whenever 

we have IJ(xn) - f(C) I < E. This has to happen for infinitely many n, 
since C is an accumulation point. Our statements are contradictory, and 
we therefore conclude that the function is bounded (from above). 

Let (3 be the least upper bound of the set of values f(x) for all x in the 
interval. Then given a positive integer n, we can find a number Zn in the 
interval such that 

1 
If(zn) - {31 < -. 

n 

Let c be a point of accumulation of the sequence of numbers {zn} 
(n = 1, 2, ... ). Then f(c) ~ (3. We contend that f(c) = {3 (this will 
prove our theorem). 

Given E > 0, there exists 0 > 0 such that whenever IZn - cl < 0 we 
have 

IJ(Zn) - f(c) I < E. 
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This happens for infinitely many n, since c is a point of accumulation of the 
sequence {Zn}. But 

IfCc) - iSl ~ IfCc) - fCzn) I + IfCzn) - iSl 

< E +!.. 
n 

This is true for every E and infinitely many positive integers n. Hence 
IfCc) - iSl = 0 and fCc) = is. 

The proof for the minimum is similar and will be left as an exercise. 

THEOREM 8. Let f be a continuous function on a closed interval 
a ~ x ~ b. Let a = fCa) and is = fCb). Let 'Y be a number such 
that a < 'Y < is. Then there exists a number c between a and b such that 
fCc) = 'Y. 

Proof. Let S be the set of numbers x in the interval such that fCz) ~ 'Y 
for all numbers Z in the interval, with Z ~ x. Then S is not empty because 
a is in it, and b is an upper bound for S. Let c be its least upper bound. 
Then c is in our interval. We contend that fCc) = 'Y. 

Given a positive integer n, there exists a number an such that 

and 
1 

Ian - cl < n 
and fCan) ~ 'Y, because c is a least upper bound of our set S. Since 
lim an = c we get lim f(an) = fCc). Hence fCc) ~ 'Y. 
n~~ n~~ 

Suppose fCc) < 'Y. Then c ¢ b. We have by continuity 

lim fCc + h) = fCc). 
h->O 

Let E > 0 be such that fCc) + E < 'Y. There exists a > 0 such that 
whenever Ihl < a we have 

whence in particular 
IfCc + h) - fCc)1 < E, 

fCc + h) < fCc) + E < 'Y. 

This means that c cannot be an upper bound for our set S Cwhich would 
contain for instance c + h for h > 0 and h < a). 



Appendix 2 

Physics and Mathematics 

Mathematics consists in discovering and describing certain objects and 
structures. It is essentially impossible to give an all-encompassing descrip­
tion of these. Hence, instead of such a definition, we simply state that 
the objects of study of mathematics as we know it are those which you 
will find described in the mathematical journals of the past two centuries, 
and leave it at that. There are many reasons for studying these objects, 
among which are aesthetic reasons (some people like them), and practical 
reasons (some mathematics can be applied). 

Physics, on the other hand, consists in describing the empirical world 
by means of mathematical structures. The empirical world is the world 
with which we come into contact through our senses, through experiments, 
measurements, etc. What makes a good physicist is the ability to choose, 
among many mathematical structures and objects, the ones which can be 
used to describe the empirical world. I should of course immediately 
qualify the above assertion in two ways: First, the description of physical 
situations by mathematical structures can only be done within the degree 
of accuracy provided by the experimental apparatus. Second, the descrip­
tion should satisfy certain aesthetic criteria (simplicity, elegance). After 
all, a complete listing of all results of all experiments performed is a descrip­
tion of the physical world, but is quite a distinct thing from giving at one 
single stroke a general principle which will account simultaneously for the 
results of all these experiments. 

For psychological reasons, it is impossible (for most people) to learn 
certain mathematical theories without seeing first a geometric or physical 
interpretation. Hence in this book, before introducing a mathematical 
notion, we frequently introduce one of its geometric or physical interpreta­
tions. These two, however, should not be confused. Thus we might make 
two columns, as shown on the following page. 

As far as the logical development of our course is concerned, we could 
omit the second column entirely. The second column is used, however, 
for many purposes: To motivate the first column (because our brain is 
made up in such a way that to understand something in the first column, 
it needs the second). To provide applications for the first column, other 
than pure aesthetic satisfaction (granting that you like the subject). 
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Mathematics 

numbers 

derivative 

df 
- = Kf(x) 
dx 

integral 

Physics and geometry 

points on a line 

slope of a line 
rate of change 

exponential decay 

area 
work 
moments 

[APP. 2) 

Nevertheless, it is important to keep in mind that the derivative (as 
the limit of 

f(x + h) - f(x) ) 
h 

and the integral (as a unique number between upper and lower sums), 
are not to be confused with a slope or an area respectively. It is simply 
our mind which interprets the mathematical notion in physical or geo­
metric terms. Besides, we frequently assign several such interpretations 
to the same mathematical notion (viz. the integral being interpreted as 
an area, or as the work done by a force). 

And by the way, the above remarks which are about physics and mathe­
matics belong neither to physics nor to mathematics. They belong to 
philosophy. 



ANSWERS TO EXERCISES 

I am much indebted to D. Levine for the answers to the exercises. 

Chapter I, §2 
I. -3 < x < 3 2. -1 ;:;i x ~ 0 3. -va ;:;i x ;:;i -lor 1 ;:;i x ~ va 
4. x > 2 5. -1 < x < 2 6. x < -lor x > 1 7. -5 < x < 5 
8. -1 ;:;i x ;:;i 0 9. x ~ 1 or x = 0 10. x ;:;i -10 or x = 5 

n. x ;:;i -10 or x = 5 12. x ~ 1 or x = -i 13. x < -4 

Chapter I, §3 

I. t,-i 2. 1 3. 0,2,108 4. 2z - z2,2w - w2 
(2x + 1) 

5. x F- '\1'2 or -'\1'2. 1(5) = ia 6. All x. 1(27) = 3 
7. (a) 1 (b) 1 (c) -1 (d) -1 8. (a) 1 (b) 4 (c) 0 (d) 0 
9. (a) -2 (b) -6 (c) x2 + 4x - 2 10. x ~ 0,2 

Chapter I, §4 
I. 8 and 9 2.! and -1 3. fi and 2 4. ~ and 21/3 5. -h and -! 
6. 9 and 8 7. -1 and -1 8. 1 and 1 9. 1 and -1 10. -sh and! 

Chapter I I, §1 
3. x negative, y positive 4. x negative, y negative 

Chapter II, §3 

5. y = -Ix -! 6. y = --Ix + 5 7. x = '\1'2 
9 9va 

8. y = va + 3 x + 4 - va + 3 9. y = 4x - 3 10. y = -2x + 2 

n. y = --!x + 3 + '\1'2 12. Y = va x + 5 + va 
2 

Chapter II, §4 
I. '\1'97 2. '\1'2 3. V52 4. vTI 5. V574 6. (4, -3) 7. 5 and 5 

Chapter II, §7 
5. (x - 2)2 + (y + 1)2 = 25 6. x2 + (y - 1)2 = 9 
7. (x + 1)2 + y2 = 3 8. y + 285 = 2(x + 1)2 9. y - 1 (x + 2)2 

10. Y + 4 = (x - 1)2 n. (x + 1)2 + (y - 2)2 = 2 
12. (x - 2)2 + (y - 1)2 = 2 13. x + ¥ = 2(y + !-)2 
14. x-I = (y + 2) 2 

Chapter I II, §1 
I. 4 2. -2 3. 2 4. £ 5. -1 6. 0 
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Chapter III, §2 

Tangent line at x = 2 

1.2x y=4x-3 
2.3x2 y = 12x - 16 
3. 6x2 y=24x-32 
4.6x y = 12x - 12 
S.2x y=4x-9 
6. 4x + 1 y=9x-8 
7. 4x - 3 y=5x-8 

8. 3x2 + 2 
2 

y=8x-8 

9. _ 1 
(x + 1)2 

y = -i-x+ t 
10. _ 2 

(x + 1)2 
y = -ix+ V-

n. The slopes are 4, 12, 24, 12, 4, 9, 5, 8, -i, -t. The tangent lines at the 
point x = 2 are indicated near the corresponding problem. 

12. -1. Left derivative -1. No right derivative. 
13. No. f'(x) exists for all other values of x. 
14. Left derivative O. No right derivative. I'(x) = 0 if x < 0 and f'(x) = 1 

ifz > 1. 
15. 0,0,0 

Chapter III, §3 
2 

1. 4x + 3 2. - (2x + 1)2 
1 1 

3. (x + 1)2 4. 2x + 1 5. - (2x _ 1)2 
2 

6. 9x2 7. 4x3 8. 5x4 9. 6x2 10. a~ + 1 

Chapter I II, §4 
1. x4 + 4x3h + 6x2h2 + 4xh3 + h4 2. 4x3 

3. (a) ix-1I3 (b) -ix-5/2 (c) tx1l6 4. y = 9x - 8 
-3 7 

5. y = 1x + t, slope 1 6. Y = -9 X + - , slope -3/29 
2 32 

1 Va 1 
7. y = 2V3 x + 2 ' slope 2V3 

8. (a) :15-314 (b) -:17-5/4 (c) V2 (1O~-1) (d) 11"7 .. - 1 

Chapter II I, §5 
1. 1x-2/3 2. 55x10 3. _jx-7/4 4. 2lx2 + 8x 5. -25x-2 + 6x- 1I2 

6. fx - 16x7 7. (x3 +x) + (3x2 + l)(x - 1) 
8. (2x2 - 1)4x3 + 4x(x4 + 1) 9. (x + 1).(2x + 1IX 1l2) + (x2 + 5x3/2) 

10. (2x - 5) (12x3 + 5) + 2(3x4 + 5x + 2) 

n. (x-2/3 + x2) (ax2 - :'2) + (_ix-5/3 + 2x) (X3 + n 
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12. (2x + 3)(-2x-3 - x-2) + 2(x-2 + x-I) 

9 (-2x2 + 2) 
13. (x + 5)2 14. (x2 + 3x + 1)2 

IS (t + 1)(t - 1)(2t + 2) - (t2 + 2t - 1)2t 
• (t2 - 1)2 

(t2 + t - 1)( _5/4)t-9/4 - t-5/\2t + 1) 
16. (t2 + t _ 1)2 

17. 459. Y = -At + -A 18. l y = it 
Chapter III, §6 

1. 8(x + 1)1 2. !(2x - 5) -112. 2 3. 3 (sin X)2 cos x 4. 5 (log X)4 ! 
x 
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1 COB "'( .) 1 ( '" + S. (cos 2x)2 6. 2 + 1 2x 7. e -sm x 8. +. e cos x) x ~ ffinx 

9 (1 + !) (! _ J.) 10 sin 2x - (x + l)(cos 2x)2 
· cos og x x X x2' (sin 2x)2 

n. 3(2x2 + 3)2(4x) 12. -sin (sin 5x)(cos 5x)5 13. ~2 (-sin 2x)2 
cos x 

14. cos ((2x + 5)2)2(2x + 5)2 IS. cos (cos (x + 1») (-sin (x + 1») 

16. (cos e"')e'" 17. - (3x ~ 1)8 [4(3x - 1)3] . 3 18. - (4!)6 . 3(4x)2 . 4 

19. (. 12 )4 2(sin 2x)(cos 2x) . 2 20. - ( 12 )4 2(cos 2x)( -sin 2x)2 
smx cos x 

Chapter I I I, §7 

I. 18x 2. 5(x2 + 1)4. 2 + 20(x2 + 1)34x2 3. 0 4. 5040 S. 0 6. 6 

1 .2+ 2 (2+),,+ '" 7. - (sin 3x)2 cos 3x . 3 8. -sm x cos x 9. x 1 e 2xe 

10. (x3 + 2x) cos 3x . 3 + (3x2 + 2) sin 3x 

n 1 ( .) 12 2e'" cos 2x - (sin 2x)e" 
· - (sin x + cos x)2 cos X - sm x. e2" 

13. (x2 + 3)/x - (log x) (2x) 14. cos 2x - (x + 1)( -sin 2x) . 2 
(x2 + 3)2 cos2 2x 

IS. (2x - 3)(ex + 1) + 2(e"'+ x) 16. (x3 - 1) (e3", . 3+ 5) + 3x2(e3x + 5x) 
232 

17. (x - 1)3x - (x + 1) 18. (2x + 3)2x - (x - 1)2 
(x - 1)2 (2x + 3)2 

19. 2(x4/3 - eX) + (!x1l3 - eX )(2x + 1) 
20. (sin 3x)ix-3/4 + 3(cos 3x)(x1l4 - 1) 21. [cos (x2 + 5x)](2x + 5) 

3",2+8 -1 1 3 
22. e (6x) 23. [log (x4 + 1)]2 . x4 + 1 . 4x 

24 -1 1 (1 -1/2 + 2) 2S. 2e'" - 2xe" 0 
• [log (x1!2 + 2x)J2 (xl/2 + 2x) "2"X e2z 27. 

28. 240 in3/sec 29. 3611" in3/sec 30. 211"T, ~d '2: 31. -3/16 units/sec 
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Chapter IV, §I 

I. I/V2 2. 0/2 3. _1_ (0 + I) 4. i 5. -0/2 6.-! 
20 

1 
7. 0/2 8. - - 9. 1 10. 0 II. -1 12.-1 o 

18. 11" - a + 211"n, where n is an integer. 

Chapter IV, §4 
I. 1 + tan2 x 2. cos (3x) . 3 3. -sin (5x) . 5 4. cos (4x2 + x)(8x + I) 
5. sec2 (x 3 - 5) (3x2) 6. sec2 (x4 - x3)( 4x3 - 3x2) 7. sec2 (sin x) cos x 
8. cos (tan x)(1 + tan2 x) 9. -sin (tan x)(1 + tan2 x) 10.-1 

2 
II. -I 12. 0/2 13. - - 14. 2 15. -20 o 
18. 11" - a + 211"n or a + 211"n, where n is an integer. 

Chapter IV, §5 

I. 2 2. 3 3.! 4. 1 5. 1 6. 0 7. 0 8. 1 9. 2 10. t II. ~ 

Chapter V, §I 
I. 1 2.:i 3. i 4. 1 5.:i 6. 0 7. ± 1 

8. ?!: + 2n1l" and 511" + 2n1l", n = integer. 9. n1l", n = integer 
4 4 

10. ?!: + n1l", n = integer II. Base = VC/3, height = VC/12 
2 

12. Radius = VC/311", height = vC/311" 
13. Base = VC/6, height = VC/6; Radius = vC/611", height = 2VC/611" 

Chapter V, §3 

I. (133 )1/2 2. 0 3. V7/3 4. 1 

Chapter V, §4 
I. Increasing for all x. 
2. Increasing for x ;;;;; 2 - 1/v'3, and x ~ 2 + I/V3. Decreasing for 

2 - 1/v'3 ;;;;; x ;;;;; 2 + I/V3. 
3. Decreasing for x ;;;;; t, increasing for x ~ t. 
4. Decreasing for 11"/4;;;;; x ;;;;; 511"/4, increasing for 0;;;;; x ;;;;; 11"/4 and 

511"/4 ;;;;; x ;;;;; 211". In general, add 2n1l" to these intervals. 
5. Decreasing for 11"/4 ;;;;; x ;;;;; 311"/4 and 511"/4 ;;;;; x ;;;;; 711"/4, increasing for 

o ;;;;; x ~ 11"/4 and 311"/4 ;;;;; x ;;;;; 511"/4 and 711"/4 ~ x ;;;;; 211". 
6. Decreasing x ~ -V3/2 and 0 ~ x ~ ..;3/2. Increasing -v'3j2 ~ x ~ 0 

and V3/2 ~ x. 
7. Increasing all x. 
3. Decreasing x ;;;;; -V2j3 and x ~ V2/3. Increasing -V2,73 ~ x ~ V2/3. 
9. Increasing all x. 

10. Decreasing for x ~ O. Increasing for x ~ O. II. All increasing. 
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Chapter VI, §1 
1 1 

I. 0,0 2. 0,0 3. 0,0 4. -, - 5. 0,0 6. 00, -00 7. -00, 00 
71" 71" 

8. -1, -1 9. -00, +00 10. 0,0 II. 00, -00 12. -00, 00 

13. 00,00 14. -00, -00 15. 00, -00 16. -00, 00 17. 00, 00 

18. -00, -00 

19. x -+ 00 an > 0 an < 0 x -+-00 an> 0 an < 0 

n odd 00 -00 n odd -00 00 

n even 00 -00 n even 00 -00 

Chapter VI, §2 

c.p. Increasing Decreasing 

I. 3 ± VII x ~ 3 - VII and 3 - VII ~ x < 3 and 
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x~3+VII 3<x~3+VII 
2. 3 ± V10 3-V1O~x~3+V1O 3+ V10 ~ x and 

x~3-V1O 
3. -1 ± v2 -1 - V2 ~ x ~ -1 + V2 x ~ -1 - V2 and 

x ~ -1+v2 
4. n7l"/2 o ~ x ~ 71"/2 and add n7l" 71"/2 ~ x ~ 71" and add n7l" 
5. n7l"/2 71"/2 ~ x ~ 71" and add n7l" o ~ x ~ 71"/2 and add n7l" 
6. None x < 0 and x > 0 Never 
7. n7l" o ~ x < 71"/2 and add n7l" -71"/2 < x ~ 0 and add n7l" 
8. ~ x ~ i x ~ i 2 

9. 0,1 x ~ ! x::s;1! 
- 2 

10. 0 x ~ 0 V2 < x and 0 ~ x < V2 
II. None x <-! x> -i-
12. -1 x ~ -1 x ~-1 
13. None All x Never 
14. -1 x ~ -1 x ~-1 
15. None All x Never 
16. -(i) 117 x ~ _(i)1I7 X ~ _(i)1/7 

17. (a), (e) 18. (c) 

Chapter V I, §3 

3. (a) (v2,71"/4) (b) (v2,fur/4) (c) (6,71"/3) (d) (1,71") 

Chapter V I I, §2 (Alternative answers depend on the choice of intervals.) 

I.!- 2. t 3.! or -!- 4. - 1 or 1 5. 1 or -1 

6. -1 or --hi, or ± .1;- 7. i- 8. -lor t ± 130v5 9. 214 
2v2 

1 -1 
10. -- or--

1OV2 1OV2 
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Chapter V II, §3 
~-~ 

2. -I/Vl - x 2 3. 2/v'3, V2, 71"/6, 11"/4 4. -2/v'3, -0,11"/3,11"/4 
5. Let y = sec x on interval 0 < x < 11"/2. Then x = arcsec y is defined 

I 
on I < y, and dx/dy = . ~ 

YVy2 - I 
6. -11"/2 7. 0 8. 11"/2 9. 11"/2 10. -11"/4 

Chapter VII, §4 
I. 11"/4,11"/6, -11"/4,11"/3 2.!,!,!, 1- 3. 1/(1 + y2) 
4. (a) -11"/4 (b) 0 (c) -11"/6 (d) 11"/6 

Chapter V II I, §I 
I. (a) y = !x + log 2 - I (b) y = lx + log 5 - I 

(c) y = 2x - log 2 - I 
2. (a) y = -x + log 2 - I (b) y = tx + log 5 - ! 

(c) y = -!x + log 10 - ! 
cos x ( ) 1 1 

3. (a) sin x (b) cos log (2x + 3) 2x + 3' 2 (c) x2 + 5' 2x 

(d) (sin x)l/x -:- (log 2x) cos x 
sm2 x 

2x 
4. y = 1-X + log 4 - i 5. y = - + log 3 - ! 

3 
Chapter V I II, §2 

I. (a) y = 2e2x - e2 (b) y = 2e-4x + 5e-4 (c) y = 2x + I 
2. (a) y = !c2x + 3e-2 (b) y = !e1l2x + !e1l2 (c) y = !x + I 
3. y = 3e2x - 4e2 

4. (a) eBin 3,,(cos 3x)3 (b) +1. (e" + cos x) (c) cos (e,,+2)e,,+2 
e" SIn x 

(d) 4 cos (e4x- 5)e4,,-5 

Chapter V I I I, §3 
I. 10" log 10, 7" log 7 2. 3X log 3, 1I"X log 11" 3. x"(1 + log x) 
4. x("")[x,,-I + (log x)xX(1 + log x)] 5. e 6. Yes 8. y = x 
9. y = (log lO)x + I, y = (log 7)x + I 

10. y = (9 log 3)x - 18 log 3 + 9 and y = (11"2 log 1I")x - 211"2 log 11" + 11"2 

Chapter V I I I, §4 
13, 14. All derivatives are 0 at O. 

Chapter V I II, §5 
I. -log 25 2. 5e-4 3. e-(Iog 1O)10-6t 4. 20/e 5. -(log 2)/K 

-3 log 2 
6. (log 3)/4 7. 12 log 10/log 2 8. ------=='----­

log 9 - log 10 
Chapter IX, §I 

I. -(cos 2x)/2 2. sin 3x 3. log (x + I), x > -I 
3 

4. log (x + 2), x > -2 
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Chapter IX, §3 
I. ~ 2. 2 3. 2 4. log 2 5. log 3 6.! 7. e - 1 

Chapter X, §1 
I..y. 2. 0 3. 0 4. 0 

Chapter X, §2 
I. x4 2. 3x5/5 - x6/6 3. -2 cos x + 3 sin x 4. !x5/3 + 5 sin x 
5. 5eX + log x 6. 0 7. 0 8. e2 - e-1 9. 4· 28/3 II.! 12.-ft 

13. 70 -!.p 14.! + -& 15. v'2 - 1 

Chapter X, §4 
I. Yes 2. No 3. Yes 4. No 5. No 6. Yes 
7. -ie-2B + !e-4. Yes, ie-4. 

Chapter XI, §1 
I. ex2/2 2. -ie-x' 3. -1(1 + X3)2 4. (log x) 2/2 

(log x)-n+1 
5. if n ~ 1, and log (log x) if n = 1. 6. log (x2 + X + 1) 

I-n .2·3 
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SIll X SIll X 
7. x - log (x + 1) 8. -- 9. -- 10. 0 II.! 12. -arctan (cos x) 

2 3 
13. i(arctan x)2 14. 2/15 15. -i cos (11"2/2) + i 
16. _!e-B2 +!. Yes,! 17. _!e-B3 +!. Yes,! 
18. 2VI + eX - log (VI + eX + 1) + log (VI + eX - 1) 
19. x - log (1 + eX) 20. arctan (eX) 
21. -log (~+ 1) + log (VI + eX - 1) 

Chapter XI, §2 
I. x arcsin x +.yt=X2 2. x arctan x - ! log (x2 + 1) 

e2x 
3. - (2 sin 3x - 3 cos 3x) 4. !oe-4x sin 2x - !e-4", cos 2x 

13 
5. x(log x)2 - 2x log x + 2x 6. (log x)3x - 3f (log x)2 dx 
7. x2e" - 2xe'" + 2e'" 8. -x2e-x - 2xe-'" - 2e-'" 9. -x cos x + sin x 

10. x sin x + cos x II. -x2 cos X + 2fx cos x dx 
12. x2 sin x - 2f x sin x dx 13. ![x2 sin x2 + cos x2) 

14. _!x4(1 _ X2)3/2 _ ---±- x2(1 _ x2)5/2 __ 8_ (1 _ x2)7/2 
3·5 3·5·7 

3 3 X X 2X 2 4 4 3 f 
15. i-x log x = ix 16. (log x) 4" - 16 17. (log x) 3" - i x log x dx 

2 ",2 ",2 4 ( 1 ) 4 18. -!x e- - ie- 19.!x 1 _ x4 + ilog(1 - x) 20.-4'/1" 

21. _Be-B - e-B + 1. Yes, 1 22. Yes 23. Yes 
1 1 3 

24. - log B + log 2· Yes, 1/log 2. 25. Yes, 1/3(log 3) 

Chapter X I, §3 
I. -t sin3 x cos x - i sin x cos x + ix 2.! cos2 x sin x + i sin x 

sin3 x sin5 x 
3. -- - -- 4. 311" 5. 811" 6. 1I"ab (If a, b > 0). 7. 1I"r2 

3 5 
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13. -log cos x 14. arcsin ~ 15. arcsin Ja 16.! arcsin (V2 x) 

1 1 . bx 
7. - arcsm­

b a 

Chapter X I, §4 

1. Cl = -/0\, C2 = -&, C3 = -i!8-, C4 = -ill, C5 = & 
x 

2. 2(x2 + 1) + ! arctan x 

3. (a) l[log (x - 3) - log (x + 2)] (b) log (x + 1) - log (x + 2) 

4. -1 log (x + 1) + 2 log (x + 2) - ! log (x + 3) 

2 1 
5. -log (x + x) + 3 log x 6. log (x + 1) + x + 1 

1 -1 1 x 1 x 1 x 1 x 
7. '2 x2 + 9 + 18 x2 + 9 + 54 arctan 3 8. 8 x2 + 16 + 32 arctan 4 

2 
9. -log (x + 1) + log (x + 2) - x + 2 

1 x 3 x 3 
10. 4 (x2 + 1)2 + 8 (x2 + 1) + 8 arctan x 

lI. -1 log (x - 1) + ¥ log (x + 7) 

Chapter XII, §1 
2. (a) 4/e2 (b) 2255e-4/33 

Chapter XIII, §1 
2. 2rr 3. V2 (e - 1) 4. (a) t (b) 3 

5. ~ -0+1Iog ~ -1+!log 0+ 1 
VI + e2 + 1 0 - 1 

6. *(313/2 - 133/2) 7. e -!. 8. 4 9. 11" 10. 20 11. 211" 
e 

13. V2 (e2 - e) 14. V2 (e'll - e'l) 

Chapter XIII, §2 

1. 6r 2. a2 (taking values of 8 such that sin 28 i?; 0) 3. 1I"a2 4 • .!.. 
12 

5. 311"/2 6. 311"/2 7. 911"/2 8. 11"/3 

Chapter XIII, §3 
2 2 

~3 11" 11" 11" 11" 
1. ~I" 2. 11" 3. 8" -"4 4. 8" + "4 

8. 11"[2 (log 2)2 - 4 log 2 + 2] 9. 1211" 

11. rr2h/3 

Chapter XIV, §3 

2.5411" 
5. -3- 6. 1I"(e - 2) 7. 1I"l 

10. ~ [e~ - e:B] , Yes, 2:2 

1. 1 - ;: + :: 2. IRnl ~ 1:I!n 3. 1 - 0.~1 = .995 4. IR31 ~ ilO-3 
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xs 
5. IR41 ~ 110-4 6. tanz = z + 3 
7. IR41 ~ 10-4 by crude estimates 

8. sin (~+ 1;0) = ~ + V;. 1;0 = 0.515 9. x2 - t.r;4 

3x2 7 4 z2 5 4 
10. 1 - ""2 + 8" z 11. 1 + 2" + 24 x 12. xs 

Chapter X IV, §4 
4 

1. 1 - Z2 + ~ 2. IRsl ~ 1/24 3. IR41 ~ 10-9 4. IRal ~ 110-6 

2 S 4 5 
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Z X Z z 
5. 1 - z + 2! - 3! + 4! - 5! 6. Use I R71 ~ ~ 7. All equal to O. 

Chapter XIV, §6 
5. 1 6. 1 7". 1 8. 1 9. 1 10. 2 11. 1 12. 0 13. -1 14. 1 

15. 1 16. 1 

Chapter X IV, §7 

1.5+ -h 2.10 -10- - ~ 3. IR21 ~ 2 X 10-2 4. IR21 ~ 0.09 

5. IR21 ~ 2 X 10-5 

Chapter XV, §2 
3. No 4. Yes 5. No 6. No 7. No 8. Yes 9. Yes 

Chapter XV, §3 

3. Yes 4. Yes 5. Yes 6. Yes 7. Yes 8. Yes 9. Yes 10. Yes 

Chapter XV, §4 

1. Yes 2. Yes 3. Yes 4. Yes 5. Yes 6. Yes 7. Yes 8. No 

9. Yes 10. Yes 

Chapter XV, §5 

I.! 2. lie 3. 27 4. 41e2 5. 0 6. 2 7. 2 8. 3 9. 1 10. 00 

11. 1 12. 00 13. 1 14. 00 15. e 16. 00 
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CHAPTER I 

1. Prove that the sum of a rational number and an irrational number is always 
irrational. What about the product? 

2. Find all solutions of the equation 

x + Ix - 21 = 1 + Ixl. 

3. A function f is called even if f(x) = f( -x) for all x, and is called odd if 
f( -x) = -f(x) for all x. 

(a) Which of the following functions are even? Odd? Neither? 

2 17 2 1 
f(x) = x , f(x) = x, f(x) = x + 2x + 1, f(x) = 1 + x 2 ' 

f(x) = sin x, f(x) = cos x, f(x) = tan x. 

(b) Let f be a function defined for all x. Show that the functions g and h 
defined by 

g(x) = f(x) + f( -x) and h(x) = f(x) - f( -x) 

are even and odd respectively. Show that any functionf can be expressed as the 
sum of an even function and an odd function. 

(c) Does there exist a function which is both even and odd? Is it unique? 
4. How many functions are there which are defined for the numbers {I, 2, 3} 

and whose values are in the set of integers n with 1 ;::;; n ;::;; 10? 
5. Let D be a set of m numbers and E a set of n numbers. How many functions 

are there defined for all numbers in D and taking their values in E? 
6. Let x, y be numbers > o. Assume that x < y. Prove by induction that 

for every positive integer n we have x" < y". Prove that xli" < yll" (where 
xli .. is the unique number whose nth power is x). 

CHAPTER III 

1. Let f be the function defined for all numbers as follows. If x is not a rational 
number then f(x) = o. If x is a rational number, which can be written as a 
fraction p/q, with integers q, p, and if this fraction is in lowest form, q > 0, 
then f(x) = l/q3. Show that f is not differentiable at any rational number x. 

2. Let a be an irrational number having the following property. There exists 
a number c > 0 such that for any rational number p/q (in lowest form) with 
q > 0, we have 

or equivalently, 
la -!!.I > ..!: q q2 

c Iqa - pi > -. 
q 

Show that the function f in Exercise 1 is differentiable at a. 
3. Let IX = v2 (or more generally va, where a is a positive integer such that 

its square root is irrational). Prove that a has the property stated in Exercise 2, 

250 
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namely there exists a number c > 0 such that for all integers q, p with q > 0 
we have Iqa - pi > clq· 

(More generally, let a be an algebraic number, i.e. a number which is a root of 
a polynomial of degree ~ I with rational coefficients, and suppose that a is not 
the root of a quadratic polynomial with rational coefficients. Does a still have 
the above property? As far as I know, the answer is not known, and is a good 
research problem. A similar question can be asked of all the common numbers 
you know, like e, 11", etc.) 

4. Let m, n be integers ;01'0. Show that the number a = m + nv'2 has the 
property stated in Exercise 2. 

5. Let g be the function defined for all numbers as follows: 
If x is not a rational number, then g(x) = O. If x is a rational number which 

can be written as a fraction plq, with integers q, p, and if this fraction is in lowest 
form, q > 0, then g(x) = l/q. 

(a) Show that g is not continuous at any rational number. 
(b) Investigate the differentiability of g at numbers a having the property 

stated in Exercise 2. 
(c) Show that g is continuous at all irrational numbers. 
6. Let a be an irrational number. Given a positive integer n, show that there 

exist integers p, q such that 

Iqa - pi < !. 
n 

and hence that 
I <-. q2 

[Hint: Cut up the interval between 0 and I into n equal segments of length lin, 
and consider the n + I numbers 

0, a, 2a, ... , na. 

Show that there exist integers r, 8 with 0 ~ r ~ nand 0 ~ 8 ~ n, r ;01' 8, such 
that ra - Pl and 8a - P2 lie in the same segment for suitable integers Pl, P2.] 

7. Let a be an irrational number. Let w be any number, and let E > O. Show 
that there exist integers q, P such that Iqa - P - wi < E. (In other words, 
the numbers of type qa - P come arbitrarily close to w.) 

CHAPTER V 

1. (a) Let a, b be numbers ~ O. Show that 

(00)1/2 ~ a ~ b. 

(b) Let al, ... , an be numbers ~ O. Show that 

( ) 1/10 ..... al + ... + a" 
al'" an.:i! . n 

[Hint: Take the nth power. Fix al, ... ,an-l and replace a" by a variable x. 
Use induction.] 
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2. (a) Let ao, ... , an be numbers such that for all x we have 

ao+ alx+", + anx" = o. 
Show that ai = 0 for all i. [Hint: Divide by x" and let x become very large.] 

(b) Let I, g be polynomials, 

I(x) = ao + alX + ... + anx" 

g(x) = bo + blX + ... + bnx". 

If I(x) = g(x) for all x, prove that ai = bi for i = 1, ... , n. [Hint: Subtract 
g from I.] 

3. Let I(x) = a,.x" + ... + ao be a polynomial, with an ~ O. Let Cl < 
C2 < ... < Cr be numbers such that I(Ci) = 0 for i = 1, ... , T. Show that 
T ~ n. [Hint: Show that I' has at least T - 1 roots, and continue to take the 
derivative.] 

4. Let I be a function which is infinitely differentiable. Let Cl < C2 < ... < Cr 

be numbers such that I(Ci) = 0 for all i. Show that I' has at least T - 1 zeros 
[i.e. numbers b such thatl'(b) = 0]. 

5. Let a, b be numbers, a < b. Let I be a continuous function defined over the 
interval [a, b]. Assume that I' and I" exist on the interval a < x < b, and that 
I"(x) > 0 for all x in this interval. Prove that the graph of I(x) in the open in­
tervallies below the line segment joining the two points of the graph whose co­
ordinates are (a,J(a» and (b,J(b». [Hint: Let !p(x) be the difference between 
the straight line joining the two points, andl(x). Show that !p' (x) = I'(C) - I'(x) 
for some number c, a < C < b. Applying the mean value theorem to I' show 
that!p is increasing to the left of C and decreasing to the right of c. Use the value 
of!p at the end points of the interval.] 

6. Let the hypotheses be as in Exercise 5. Let d be a number, a < d < b. 
Show that the tangent line to the curve y = I(x) at x = d lies below the graph of 
I except at x = d where it touches the graph. 

7. Let the hypotheses be as in Exercise 5, and let Xl, X2 be two numbers in 
the interval [a, b] such that Xl < X2. Show that 

I (Xl ~ X2) ~ I(Xl) ~ I(X2) . 

Generalize to n numbers. 
8. In Exercise 5, assume that I"(x) ~ 0 instead of ~O, and let the other 

assumptions and notations be the same. What can you conclude about the 
relative positions of the graph of I and the straight line between the two points? 

9. (a) Find the equation for the tangent to the hyperbola xy = 1 at the point 
(!,2). 

(b) Prove that the tangent line is below the hyperbola for all x > 0 (except 
x = I where it touches). 

10. Apply Exercises 5 and 8 to the functions sin x and cos x over suitable 
intervals. 

11. Prove that a polynomial of odd degree has a root. [In other words, if I 
is a polynomial of odd degree, then there exists a number a such that I(a) = 0.] 
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12. Let at, ... , an be numbers. Determine x so that 

is a minimum. 
CHAPTER VI 

1. Sketch the curves y = x + ! and y = ~ x + ! . 
x x 

2. Sketch the curves y = x2 ~ 1 ,and y = ~X2 ~ 1· 

3. Sketch the curves y = __ x_, and y = ~ x . 
x2 - 1 x2 - 1 

4. Show that among all triangles with given area, the equilateral triangle has 
the least perimeter. 

5. Show that among all triangles with given perimeter, the equilateral tri­
angle has the maximum area. 

6. Prove that tan x ~ x if 0 ~ x ~ !. 
- 2 

7. Sketch the curves: 
(a) y = Vrc-(x---l'---')(x--2~) (b) y = v(x - l)(x - 2)(x - 3) 
(c) y2 = (x - 1)(x - 2)(x - 3) 

8. Let a, b, c be numbers with a < b < c. Sketch the curves: 
(a) y2 = (x - a)(x - b)(x - c) (b) y = vr-(x--a--'-)"--(x--b-)(-x--'-c) 

9. Sketch the following curves: 

(a) y = ~x 1 (b) = ~X2 + 1 
x+l Y x+l 

rx=t 
(c) y = '\}X2TI (d) y = ~X2 + 1 

x2 - 1 

CHAPTER VIII 

1. Let f be the function such that f(x) = 0 if x ~ 0, and f(x) = e-1/x if 
x > o. Show that f is infinitely differentiable at 0, and that all its derivatives 
are equal to 0 at O. 

2. Let a, b be numbers, a < b. Let f be the function such that f(x) = 0 if 
x ~ a or x ~ b, and 

f(x) = e -l/(x-a)(b-z) 

if a < x < b. Sketch the graph of f. Show that f is infinitely differentiable at 
both a and b. 

3. Let a, b be numbers, a < b. Let y = f(x) be the equation of the straight 
line between the points (a, ea) and (b, eb) lying on the curve y = eX. Show 
that f(x) > eX for all numbers x such that a < x < b. 

4. Let a, b be numbers, 0 < a < b. Let y = f(x) be the equation of the 
straight line between the points (a, log a) and (b, log b) lying on the curve 
y = log x. Show that log x > f(x) for all numbers x such that a < x < b. 
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5. Let n be an integer ~ 1. Let 10, ... ,In be polynomials such that 

In(x)entt + 1,.-1 (X)e(n-1)tt + ... + lo(x) = 0 

for all numbers x. Show that 10, ... ,In are identically o. [Hint: Cf. Problem 2 
of Chapter V.] 

6. Let n be an integer ~ 1. Let 10, ... ,In be polynomials such that 

I .. (x)(log x)" + 1,,-1 (x)(log X),,-l + ... + fo(x) = 0 

for all numbers x > o. Show that fo, ... ,I" are identically o. 
7. Show that e is not a rational number. To do this, use the series for e given 

later in the text, namely 
co 1 

e = ~-. 
O n! n_ 

8. If a is a number > 1 and x > 0, show that 

xG 
- 1 ~ a(x - 1). 

1 1 
9. Let p, q be numbers ~ 1 such that - + - = 1. If x ~ 1, show that 

p q 

x1/p ~ ~ +!. 
p q 

10. Let a, 13 be positive numbers such that a/f3 ~ 1, and let p, q be as in Ex­
ercise 9. Show that 

a1/pf31/11. ~ ~ + ~ . 
p q 

11. Let a, 13 be two positive numbers, and p, q two nonzero numbers with 
p < q. Show that for any number t with 0 < t < 1, we have 

[taP + (1 - t)f31']l/p ~ [tall. + (1 - t)f3l1.]l/g. 

12. Show that the equality sign in the preceding inequality holds if and only 
if a = 13. 

13. Let a, 13 be two numbers >0, and 0 < t < 1. Show that 

a'f31-, ~ ta + (1 - t)f3, 

and that equality holds if and only if a = 13. 
14. Let a be a number >0. Find the minimum and maximum of the function 

f(x) = x2/az • 

15. Let aI, ..• , an be numbers ~ 0 and let 0 < r ~ 8. Show that 

[ 
r + + r]l/r [. + + .]1/. a1 .~. an ~ a1 .~. an . 

16. Hyperbolic lunction8 
(a) Define functions 

e' + e-' e' - e-' 
cosh t = 2 and sinh t = 2 
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Show that their derivatives are given by 

cosh' = sinh and sinh' = cosh. 

(b) Show that for all t we have 

cosh2 t - sinh2 t = 1. 

(c) Sketch the graph of the curve x2 - y2 = 1. 

255 

(d) If you let x = cosh t and y = sinh t, which portion of the curve in (c) is 
parametrized by these functions? 

(e) For a suitable interval of values of t, determine inverse functions for cosh t 
and sinh t, and determine their derivatives. 

1. Let 

Show that 

2. Show that 

3. Show that 

4. Evaluate 

CHAPTER IX 

P,,(x) = 2:n! ~: «x 2 - 1)"). 

f l P,,(x)P ... (x) dx = 0 if m ~ n. 
-1 

f l 2 2 
-1 P ,,(x) dx = 2n + 1 . 

f l x"'P .. (x) dx = 0 if 
-1 

f l x"P,,(x) dx. 
-1 

m < n. 

5. Let a, b be numbers with a < b. If j, g are continuous functions on the 
interval la, b) let 

(j, g) = lab j(x) g(x) dx. 

Show that the symbol (j, g) satisfies the following properties: 
(a) If it, 12, g are continuous on la, b) then 

(it + /2, g) = (/1, g) + (/2, g). 

If c is a number, then 
(cj, g) = c(j, g). 

(b) We have (j, g) = (g,j). 
(c) We have (j, j) ~ 0, and equality holds if and only if j = o. 
6. Let the notation be as in Exercise 5. For any number p ~ 1 define 
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1 1 
Let q be such that - + - = 1. Prove that 

p q 

IU, g)1 ~ IIfllpllgllq. 

[Hint: If IIfil p and Ilgllq ¢ 0 let ex = Iflp /llfll~ and (3 = Iglq/lIgll:.] 
7. Notation being as in the preceding exercise, prove that 

[Hint: Let I denote the integral. Show that 

and apply Exercise 6.] 
8. Let ex be a number >0. Let 

ex(ex + 1) ... (ex + n) 
an = . 

n!n" 

Show that {an} is monotonically decreasing for sufficiently large values of n, 
and hence approaches a limit. 

Let f be a continuous function, defined for all numbers. We say that the 
integral 

f~f(t) dt 

converges absolutely if the limits 

lim rB 
If(t) I dt 

B-... x, Jo and lim r-B 
If(t) I dt 

B-+® Jo 
exist. If the integral converges absolutely, then it can be shown that the similar 
limits exist without inserting the absolute value sign, and hence that 

B 

1~~ f-c f(t) dt 
c-+® 

exists (no matter in which order we take the two limits). We may assume this 
in the following exercises. 

9. Let P be a polynomial, and let a be a number >0. Show that the im­
proper integral 

converges absolutely. 
10. Let the notation be as in the preceding exercise. Show that the improper 

integral 

converges absolutely. 
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In the following exercise, you may assume that 

f .. _t2 _ e dt = V;. 

11. (a) Let k be an integer ~O. Let P(t) be a polynomial, and let c be the 
coefficient of its term of highest degree. Integrating by parts, show that the 
integral 

is equal to 0 if deg P < k, and is equal to (-I)"k! cV1r if deg P = k. 
(b) Show that 

where P" is a polynomial of degree k, and such that the coefficient of t" in P" is 
equal to 

a" = (_1)"21:. 

(c) Let m be an integer ~O. Let Hm be the function defined by 

Hm(t) = et2
/ 2 :::.. (e- t \ 

Show that 

and that if m ~ m' then 

CHAPTER XV 
1. Prove: If the series 

with decreasing positive terms converges, then lim" ...... na,. = O. 
2. Prove that if I:a.. converges, and if b1, b2, ba, ... , is a bounded monotone 

sequence of numbers, then I:a..b" converges. 
3. Prove that if the partial sums of the series I:a.. oscillate between finite 

bounds, and if b,. is a monotone sequence of numbers tending to 0, then I:a..b" 
converges. 

4. Formulate Exercises 2 and 3 for integrals instead of series. 
5. Show that the integral 

r sin t log t dt 
11 t 

converges. 
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6. Show that the integral 

10'" (cos t)e- t dt 

converges absolutely. 
7. Let an be a sequence of numbers ~O, and assume that the series 

converges when x = Xo. Show that it converges for any x > Xo. 
8. Determine which of the following series converge: 

L (log n)5 (b) L log log n (a) (with E fixed > 0) 
nl+· n(log n)l+· 

(c) L n(log n)~IOg log n) 
(d) ~ 1 

L...J n(log n)(log log n)l+· 

(All above sums are taken from 2 to 00.) 
9. Let Lan be a series with numbers an ;;; O. If there exist infinitely many n 

such that an > lin, show that the series does not converge. 

LIMITS 
1. Find the limits (for a fixed x > 0): 

(a) lim xn (b) lim Vx+h - Vx 
n-+oo h-+O h 

(c) lim xl/n 
n-+oo 

(If any limit does not exist, say so.) 
2. For x ~ -1, show that the following limit exists: 

f(x) = lim (xn - 1)2 . 
n-+", xn + 1 

(a) What is f(1), f(1/2), f(2)? 

(b) What is lim f(x)? 
",-+1 

(c) What is lim f(x)? 
",-+-1 

(d) For which values of x ~ -1 is f continuous? 
in such a way that f is continuous at -1 ? 

3. Let 
f(x) = lim~. 

n-+oo 1 + xn 

Is it possible to define f( -1) 

(a) What is the domain of f, i.e. for which numbers x does the limit exist? 
(b) Give explicitly the values f(x) of f for the various x in the domain of f. 
(c) For which x in the domain is f continuous at x? 
4. Let a be a number. Let f be a function defined for all numbers x < a. 

Assume that when x < y < a we have f(x) < fey), and also that f is bounded 
from above. Prove that lim",-+af(x) exists. 

5. Using only the properties of numbers related to addition, subtraction, 
multiplication, division, ordering, and the least upper bound (and greatest lower 
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bound) axiom, prove that if a is a number >0, then there exists a number b > 0 
such that b2 = a. 

6. Let at, a2, ... , an, ... , be a sequence of numbers. We shall say that it is a 
Cauchy sequence if given t > 0 there exists a positive integer N such that, for 
all integers m, n > N we have Ian - ami < t. Prove that every Cauchy se­
quence has a limit. 

7. Let S be a set of numbers. We shall say that S is closed if whenever x is a 
number such that S is arbitrarily close to x, then x lies in S. 

(a) If S, Sf are closed, show that S n Sf is closed. 
(b) If {Si} is a family of closed sets, show that the intersection of all the sets 

Si in the family is closed. 
(c) Prove that a set S is closed if and only if every Cauchy sequence in S 

has a limit in S. 
8. Let S be a set and let f be a function defined on S. We shall say that f is 

bounded if there exists a number C > 0 such that If(x) I ~ C for all x t S. 
(a) If f, g are bounded functions on S, show that f + g, f - g, fg are bounded. 

In particular, if a is a number, then af is bounded. 
(b) Let f be a bounded function on S. Define IIfll to be the least upper bound 

of the set of numbers If(x)l, with x in S. If f, g are bounded functions on S, show 
that IIf + gil ~ Ilfll + IIgll, Ilfgll ~ IIfllllgll, and if a is a number, then lIafll = 

laillfll· 
9. Let S be a set of numbers such that every sequence {an} of numbers in S 

has a point of accumulation in S. Let f be a function defined on S. Show that f 
is bounded, and has a maximum in S (i.e. that there exists c in S such that 
f(c) ~ f(x) for all x in S). 

10. (Tate) Let f be a function defined for all numbers. Assume that there 
exists a number C > 0 such that for all numbers x, y we have 

If(x + y) - f(x) - f(y) I ~ C. 

Show that there exists a unique function g such that 

g(x + y) = g(x) + g(y) 

for all x, y and such that f - g is bounded. [Hint: Let 

. f(2nx) 
g(x) = hm -_. 

n-+oo 2n 

Of course, you must prove that this limit exists.] 
11. Let S be a set of numbers such that any Cauchy sequence in S has a limit 

in S. Let f:S -+ S be a map of S into itself, and assume that there exists a 
number c, 0 < c < 1 such that for all x, y in S we have 

If(x) - f(y)1 ~ clx - yl· 
Prove the following. 

(a) Given any XES, the sequence {tn(x)} is Cauchy. (Here tn means the 
iterate of f taken n times.) 

(b) Let z = limn-+ootn(x). Thenf(z) = z. 
(c) If w is an element of S such thatf(w) = w, then w = z [the element in (b)]. 
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Rational point, 105 
Real number, 2 
Remainder, 196 
Riemann sum, 142 
Right derivative, 42 

Sequence, 211 
Series, 211 
Sine, 65 
Slope, 23 
Stirling's formula, 179 
Straight line, 23 
Strictly decreasing, 90 
Strictly increasing, 90 
Substitution, 163 

Taylor formula, 196 
Trivial partition, 142 

Upper bound, 146 
Upper integral, 148 
Upper sum, 143 

Value, 9 
Volume of revolution, 189 

Wallis product, 181 
Work, 190 
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Undergraduate Texts in Mathematics 

Abbott: Understanding Analysis. 
Anglin: Mathematics: A Concise History 

and Philosophy. 
Readings in Mathematics. 

AnglinILambek: The Heritage of 
Thales. 
Readings in Mathematics. 

Apostol: Introduction to Analytic 
Number Theory. Second edition. 

Armstrong: Basic Topology. 
Armstrong: Groups and Symmetry. 
Axler: Linear Algebra Done Right. 

Second edition. 
Beardon: Limits: A New Approach to 

Real Analysis. 
BaklNewman: Complex Analysis. 

Second edition. 
BanchofflWermer: Linear Algebra 

Through Geometry. Second edition. 
Berberian: A First Course in Real 

Analysis. 
Bix: Conics and Cubics: A 

Concrete Introduction to Algebraic 
Curves. 

Bremaud: An Introduction to 
Probabilistic Modeling. 

Bressoud: Factorization and Primality 
Testing. 

Bressoud: Second Year Calculus. 
Readings in Mathematics. 

Brickman: Mathematical Introduction 
to Linear Programming and Game 
Theory. 

Browder: Mathematical Analysis: 
An Introduction. 

Buchmann: Introduction to 
Cryptography. 

Buskeslvan Rooij: Topological Spaces: 
From Distance to Neighborhood. 

Callahan: The Geometry of Spacetime: 
An Introduction to Special and General 
Relavitity. 

Carter/van Brunt: The Lebesgue­
Stieltjes Integral: A Practical 
Introduction. 

Cederberg: A Course in Modem 
Geometries. Second edition. 

Childs: A Concrete Introduction to 
Higher Algebra. Second edition. 

Chung: Elementary Probability Theory 
with Stochastic Processes. Third 
edition. 

CoxILittlelO'Shea: Ideals, Varieties, 
and Algorithms. Second edition. 

Croom: Basic Concepts of Algebraic 
Topology. 

Curtis: Linear Algebra: An Introductory 
Approach. Fourth edition. 

Devlin: The Joy of Sets: Fundamentals 
of Contemporary Set Theory. 
Second edition. 

Dixmier: General Topology. 
Driver: Why Math? 
Ebbinghaus/Flum/Thomas: 

Mathematical Logic. Second edition. 
Edgar: Measure, Topology, and Fractal 

Geometry. 
Elaydi: An Introduction to Difference 

Equations. Second edition. 
Exner: An Accompaniment to Higher 

Mathematics. 
Exner: Inside Calculus. 
Fine/Rosenberger: The Fundamental 

Theory of Algebra. 
Fischer: Intermediate Real Analysis. 
Flanigan/Kazdan: Calculus Two: Linear 

and Nonlinear Functions. Second 
edition. 

Fleming: Functions of Several Variables. 
Second edition. 

Foulds: Combinatorial Optimization for 
Undergraduates. 

Foulds: Optimization Techniques: An 
Introduction. 

Franklin: Methods of Mathematical 
Economics. 

Frazier: An Introduction to Wavelets 
Through Linear Algebra. 

Gamelin: Complex Analysis. 
Gordon: Discrete Probability. 
HairerlWanner: Analysis by Its History. 

Readings in Mathematics. 



Undergraduate Texts in Mathematics 

Halmos: Finite-Dimensional Vector 
Spaces. Second edition. 

Halmos: Naive Set Theory. 
HiimmerlinIHoffmann: Numerical 

Mathematics. 
Readings in Mathematics. 

HarrislllirsUMossinghoff: 
Combinatorics and Graph Theory. 

Hartshorne: Geometry: Euclid and 
Beyond. 

Hijab: Introduction to Calculus and 
Classical Analysis. 

HiltonIHoltonIPedersen: Mathematical 
Reflections: In a Room with Many 
Mirrors. 

HiltonIHoltonIPedersen: Mathematical 
Vistas: From a Room with Many 
Windows. 

IoosslJoseph: Elementary Stability 
and Bifurcation Theory. Second 
edition. 

Isaac: The Pleasures of Probability. 
Readings in Mathematics. 

James: Topological and Uniform 
Spaces. 

Jiinich: Linear Algebra. 
Jiinich: Topology. 
Jiinich: Vector Analysis. 
Kemeny/Snell: Finite Markov Chains. 
Kinsey: Topology of Surfaces. 
K1ambauer: Aspects of Calculus. 
Lang: A First Course in Calculus. Fifth 

edition. 
Lang: Calculus of Several Variables. 

Third edition. 
Lang: Introduction to Linear Algebra. 

Second edition. 
Lang: Linear Algebra. Third edition. 
Lang: Short Calculus: The Original 

Edition of "A First Course in 
Calculus." 

Lang: Undergraduate Algebra. Second 
edition. 

Lang: Undergraduate Analysis. 
LaxlBursteinlLax: Calculus with 

Applications and Computing. 
Volume 1. 

LeCuyer: College Mathematics with 
APL. 

LidllPilz: Applied Abstract Algebra. 
Second edition. 

Logan: Applied Partial Differential 
Equations. 

Macki-Strauss: Introduction to Optimal 
Control Theory. 

Malitz: Introduction to Mathematical 
Logic. 

MarsdenIWeinstein: Calculus I, II, III. 
Second edition. 

Martin: Counting: The Art of 
Enumerative Combinatorics. 

Martin: The Foundations of Geometry 
and the Non-Euclidean Plane. 

Martin: Geometric Constructions. 
Martin: Transformation Geometry: An 

Introduction to Symmetry. 
MillmanlParker: Geometry: A Metric 

Approach with Models. Second 
edition. 

Moschovakis: Notes on Set Theory. 
Owen: A First Course in the 

Mathematical Foundations of 
Thermodynamics. 

Palka: An Introduction to Complex 
Function Theory. 

Pedrick: A First Course in Analysis. 
PeressinilSuilivanlUhl: The Mathematics 

of Nonlinear Programming. 
PrenowitzlJantosciak: Join Geometries. 
Priestley: Calculus: A Liberal Art. 

Second edition. 
ProtterlMorrey: A First Course in Real 

Analysis. Second edition. 
ProtterlMorrey: Intermediate Calculus. 

Second edition. 
Roman: An Introduction to Coding and 

Information Theory. 
Ross: Elementary Analysis: The Theory 

of Calculus. 
Samuel: Projective Geometry. 

Readings in Mathematics. 
Saxe: Beginning Functional Analysis 



Undergraduate Texts in Mathematics 

Scharlau/Opolka: From Fermat to 
Minkowski. 

Schiff: The Laplace Transform: Theory 
and Applications. 

Sethuraman: Rings, Fields, and Vector 
Spaces: An Approach to Geometric 
Constructability. 

Sigler: Algebra. 
Silvermanffate: Rational Points on 

Elliptic Curves. 
Sinunonds: A Brief on Tensor Analysis. 

Second edition. 
Singer: Geometry: Plane and Fancy. 
SingerIThorpe: Lecture Notes on 

Elementary Topology and 
Geometry. 

Smith: Linear Algebra. Third edition. 
Smith: Primer of Modem Analysis. 

Second edition. 

StantonlWhite: Constructive 
Combinatorics. 

Stillwell: Elements of Algebra: Geometry, 
Numbers, Equations. 

Stillwell: Mathematics and Its History. 
Second edition. 

Stillwell: Numbers and Geometry. 
Readings in Mathematics. 

Strayer: Linear Programming and Its 
Applications. 

Toth: Glimpses of Algebra and Geometry. 
Second Edition. 
Readings in Mathematics. 

Troutman: Variational Calculus and 
Optimal Control. Second edition. 

Valenza: Linear Algebra: An Introduction 
to Abstract Mathematics. 

WbyburnIDuda: Dynamic Topology. 
Wilson: Much Ado About Calculus. 


