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Preface

This book is designed to introduce the reader to the theory of semisimple
Lie algebras over an algebraically closed field of characteristic 0, with
emphasis on representations. A good knowledge of linear algebra (including
eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector
spaces) is presupposed, as well as some acquaintance with the methods of
abstract algebra. The first four chapters might well be read by a bright
undergraduate; however, the remaining three chapters are admittedly a little
more demanding.

Besides being useful in many parts of mathematics and physics, the
theory of semisimple Lie algebras is inherently attractive, combining as it
does a certain amount of depth and a satisfying degree of completeness in its
basic results. Since Jacobson’s book appeared a decade ago, improvements
have been made even in the classical parts of the theory. I have tried to incor-
porate some of them here and to provide easier access to the subject for
non-specialists. For the specialist, the following features should be noted:

(1) The Jordan-Chevalley decomposition of linear transformations is
emphasized, with “toral”” subalgebras replacing the more traditional Cartan
subalgebras in the semisimple case.

(2) The conjugacy theorem for Cartan subalgebras is proved (following
D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding
the use of algebraic geometry.

(3) The isomorphism theorem is proved first in an elementary way
(Theorem 14.2), but later obtained again as a corollary of Serre’s Theorem
(18.3), which gives a presentation by generators and relations.

(4) From the outset, the simple algebras of types A, B, C, D are empha-
sized in the text and exercises.

(5) Root systems are treated axiomatically (Chapter III), along with
some of the theory of weights.

(6) A conceptual approach to Weyl’s character formula, based on
Harish-Chandra’s theory of “‘characters” and independent of Freudenthal’s
multiplicity formula (22.3), is presented in §23 and §24. This is inspired by
D.-N. Verma’s thesis, and recent work of I. N. Bernstein, I. M. Gel’fand,
S. I. Gel’fand.

(7) The basic constructions in the theory of Chevalley groups are given
in Chapter VII, following lecture notes of R. Steinberg.

I have had to omit many standard topics (most of which I feel are better
suited to a second course), e.g., cohomology, theorems of Levi and Mal’cev,
theorems of Ado and Iwasawa, classification over non-algebraically closed
fields, Lie algebras in prime characteristic. I hope the reader will be stimu-
lated to pursue these topics in the books and articles listed under References,
especially Jacobson [1], Bourbaki [1], [2], Winter [1], Seligman [1].
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viii Preface

A few words about mechanics: Terminology is mostly traditional, and
notation has been kept to a minimum, to facilitate skipping back and forth
in the text. After Chapters I-III, the remaining chapters can be read in
almost any order if the reader is willing to follow up a few references (except
that VII depends on §20 and §21, while VI depends on §17). A reference to
Theorem 14.2 indicates the (unique) theorem in subsection 14.2 (of §14).
Notes following some sections indicate nonstandard sources or further
reading, but I have not tried to give a history of each theorem (for historical
remarks, cf. Bourbaki [2] and Freudenthal-deVries [1]). The reference list
consists largely of items mentioned explicitly; for more extensive biblio-
graphies, consult Jacobson [l], Seligman [1]. Some 240 exercises, of all
shades of difficulty, have been included; a few of the easier ones are needed
in the text.

This text grew out of lectures which 1 gave at the N.S.F. Advanced Science
Seminar on Algebraic Groups at Bowdoin College in 1968; my intention
then was to enlarge on J.-P. Serre’s excellent but incomplete lecture notes [2].
My other literary debts (to the books and lecture notes of N. Bourbaki,
N. Jacobson, R. Steinberg, D. J. Winter, and others) will be obvious. Less
obvious is my personal debt to my teachers, George Seligman and Nathan
Jacobson, who first aroused my interest in Lie algebras. I am grateful to
David J. Winter for giving me pre-publication access to his book, to Robert
L. Wilson for making many helpful criticisms of an earlier version of the
manuscript, to Connie Engle for her help in preparing the final manuscript,
and to Michael J. DeRise for moral support. Financial assistance from the
Courant Institute of Mathematical Sciences and the National Science
Foundation is also gratefully acknowledged.

New York, April 4, 1972 J. E. Humphreys

Preface to the Second Printing

In addition to correcting minor errors and improving a few arguments,
I have taken this opportunity to add an appendix to §24, in which Weyl’s
formula is obtained more efficiently (avoiding the use of §23). I want to
thank those who have pointed out errors and suggested helpful alterna-
tives, in particular: J. Carr, J. Dorfmeister, M. Eichler, M. Elmer, K. W.
Gruenberg, J. H. Lindsey, B. Weisfeiler, R. L. Wilson.

Notation and Conventions

Z, Z*, Q, R, C denote (respectively) the integers, nonnegative integers,
rationals, reals, and complex numbers

I denotes direct sum of vector spaces

A >< B denotes the semidirect product of groups 4 and B, with B normal

Card = cardinality Ker = kernel
char = characteristic Im = image
det = determinant Tr = trace

dim = dimension
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Chapter 1

Basic Concepts

In this chapter F denotes an arbitrary (commutative) field.

1. Definitions and first examples

1.1. The notion of Lie algebra

Lie algebras arise ““in nature” as vector spaces of linear transformations
endowed with a new operation which is in general neither commutative nor
associative: [x, y] = xy—yx (where the operations on the right side are the
usual ones). It is possible to describe this kind of system abstractly in a few
axioms.

Definition. A vector space L over a field F, with an operation Lx L — L,
denoted (x, y) — [xy] and called the bracket or commutator of x and y, is
called a Lie algebra over F if the following axioms are satisfied:

(L1) The bracket operation is bilinear.
(L2) [xx] = O for all x in L.
(L3) [xlyzl1+DzxN+[zlxyl] = 0 (x, y, ze L).

Axiom (L3) is called the Jacobi identity. Notice that (L1) and (L2), applied
to [x+y, x+y], imply anticommutativity: (L2") [xy] = —[yx]. (Conversely,
if char F s 2, it is clear that (L2') will imply (L2).)

We say that two Lie algebras L, L’ over F are isomorphic if there exists
a vector space isomorphism ¢: L — L’ satisfying ¢{([xy]) = [¢(x)é(y)] for
all x, y in L (and then ¢ is called an isomorphism of Lie algebras). Similarly,
it is obvious how to define the notion of (Lie) subalgebra of L: A subspace
K of L is called a subalgebra if [xy] €e K whenever x, y € K; in particular,
K is a Lie algebra in its own right relative to the inherited operations. Note
that any nonzero element x € L defines a one dimensional subalgebra Fx,
with trivial multiplication, because of (L2).

In this book we shall be concerned almost exclusively with Lie algebras
L whose underlying vector space is finite dimensional over F. This will always
be assumed, unless otherwise stated. We hasten to point out, however, that
certain infinite dimensional vector spaces and associative algebras over F
will play a vital role in the study of representations (Chapters V-VII). We
also mention, before looking at some concrete examples, that the axioms for
a Lie algebra make perfectly good sense if L is only assumed to be a module
over a commutative ring, but we shall not pursue this point of view here.

1



2 Basic Concepts

1.2. Linear Lie algebras

If V is a finite dimensional vector space over F, denote by End V the set
of linear transformations ¥ — V. As a vector space over F, End ¥ has dimen-
sion n? (n = dim V), and End V is a ring relative to the usual product
operation. Define a new operation [x, y] = xy—yx, called the bracket of
x and y. With this operation End V becomes a Lie algebra over F: axioms
(L1) and (L2) are immediate, while (L3) requires a brief calculation (which
the reader is urged to carry out at this point). In order to distinguish this new
algebra structure from the old associative one, we write gl(¥V) for End V'
viewed as Lie algebra and call it the general linear algebra (because it is
closely associated with the general linear group GL(}V") consisting of all in-
vertible endomorphisms of 7). When V is infinite dimensional, we shall also
use the notation gl(¥) without further comment.

Any subalgebra of a Lie algebra gl(}V) is called a linear Lie algebra. The
reader who finds matrices more congenial than linear transformations may
prefer to fix a basis for V, thereby identifying gl(¥’) with the set of all nxn
matrices over F, denoted gl (#, F). This procedure is harmless, and very
convenient for making explicit calculations. For reference, we write down
the multiplication table for gl (n, F) relative to the standard basis consisting
of the matrices e;; (having 1 in the (i, j) position and 0 elsewhere). Since
e;ie = Oyey, it follows that:

@) [eijs el = Sjk e;— 3y € j-

Notice that the coefficients are all +1 or O; in particular, all of them lie in
the prime field of F.

Now for some further examples, which are central to the theory we are
going to develop in this book. They fall into four families A,, B,, C,, D,
(/ = 1) and are called the classical algebras (because they correspond to
certain of the classical linear Lie groups).

A,: Let dim ¥V = /+1. Denote by sl(V), or sI(/+1, F), the set of endo-
morphisms of V having trace zero. (Recall that the trace of a matrix is the
sum of its diagonal entries; this is independent of choice of basis for V,
hence makes sense for an endomorphism of V.) Since Tr(xy) = Tr(yx),
and Tr(x+y) = Tr(x)+Tr(y), sl(V) is a subalgebra of gl(V), called the
special linear algebra because of its connection with the special linear group
SL(V) of endomorphisms of det 1. What is its dimension? On the one hand
s[(V)is a proper subalgebra of gI(¥), hence of dimension at most (/+1)%—1.
On the other hand, we can exhibit this number of linearly independent
matrices of trace zero: Take all e;; (i # j), along with all h; = e;;—e;4 ;44
(1 <i<?), for a total of /+(/+1)>—(/+1) matrices. We shall always
view this as the standard basis for sI(/+1, F).

C,: Let dim V = 2/, with basis (v,, ..., v,,). Define a nondegenerate

0 ]’) . (It can be shown

skew-symmetric form fon ¥ by the matrix s = ( 10
Ay



1.2. Linear Lie algebras 3

that even dimensionality is a necessary condition for existence of a non-
degenerate bilinear form satisfying f(v, w) = —f(w, v).) Denote by sp(V),
or sp(27, F), the symplectic algebra, which by definition consists of all endo-
morphisms x of V satisfying f(x(v), w) = —f(v, x(w)). The reader can easily
verify that sp(¥) is closed under the bracket operation. In matrix terms, the

condition for x = (;1 Z) (m, n, p, q € gl(Z, F)) to be symplectic is that

sx = —x's (x' = transpose of x), i.e., that n’ = n, p' = p, and m' = —q.
(This last condition forces Tr(x) = 0.) It is easy now to compute a basis
for sp(2/, F). Take the diagonal matrices e;—e,y;,4; (1 < i < ¢),
Z in all. Add to these all e;—e,.j 4; (1 <i#j <), £~ in number.
For n we use the matrices ¢, ,,, (1 <i < /) and e; ,4;+€; ,»; (1 <i<j
< /), a total of £+ % £(/—1), and similarly for the positions in p. Adding up,
we find dim sp(24, F) = 242 +4.

B,: Let dim ¥ = 2£+1 be odd, and take f to be the nondegenerate sym-

100
metric bilinear form on ¥ whose matrix is s = <0 0 I,) . The orthogonal
07,0
algebra o(V), or 0(2/+1, F), consists of all endomorphisms of V satisfying
f(x(v), w) = —f(v, x(w)) (the same requirement as for C,). If we partition x in
a b, b,
the same form as s, say x = (cl m n ) , then the condition sx = —x's
2P q
translates into the following set of conditions: a = 0, ¢, = —b}, ¢, = — b,
q= —m', n' = —n, pP = —p. (As in the case of C,, this shows that Tr(x)
= 0.) For a basis, take first the / diagonal matrices e;;—e;,; ,4; 2 < i <
/+1). Add the 2/ matrices involving only row one and column one:
e rviv1—€+1,1 and ey —€4q,1 (1 <i<¢). Corresponding to
q = —m', take (as for C)) e,y jr1—€r+js1,04i41 (L <P #j<{). For
n take €4y, 4je1—€r1,r4is1 (1 i <j<{), and for p, e;pr4q,jr1—
€jse+1,i+1 (1 < j < i < /). The total number of basis elements is 2% 4/
(notice that this was also the dimension of C)).

D,: Here we obtain another orthogonal algebra. The construction is
identical to that for B,, except that dim V' = 2/is even and s has the simpler
form ((I)/ (I)’) . We leave it as an exercise for the reader to construct a basis
and to verify that dim o(2/, F) = 2¢% —/ (Exercise 8).

We conclude this subsection by mentioning several other subalgebras of
gl(n, F) which play an important subsidiary role for us. Let t(n, F) be the set
of upper triangular matrices (a;;), a;; = 0 if i > j. Let n(n, F) be the strictly
upper triangular matrices (a,; = 0 if / > j). Finally, let d(n, F) be the set of
all diagonal matrices. It is trivial to check that each of these is closed under
the bracket. Notice also that t(n, F) = d(n, F)+ n(n, F) (vector space direct
sum), with [d(#, F), n(n, F)] = n(n, F), hence [t(n, F), t(n, F)] = n(n, F), cf.
Exercise 5. (If H, K are subalgebras of L, [H K] denotes the subspace of L
spanned by commutators [xy], x € H, y € K.)



4 Basic Concepts

1.3. Lie algebras of derivations

Some Lie algebras of linear transformations arise most naturally as
derivations of algebras. By an F-algebra (not necessarily associative) we
simply mean a vector space U over F endowed with a bilinear operation
WA x A — A. usually denoted by juxtaposition (unless U is a Lie algebra, in
which case we always use the bracket). By a derivation of 2 we mean a linear
map 8: A — U satisfying the familiar product rule 8(ab) = ad(b)+ 8(a)b. 1t
is easily checked that the collection Der U of all derivations of U is a vector
subspace of End U. The reader should also verify that the commutator
[5. 8] of two derivations is again a derivation (though the ordinary product
need not be, cf. Exercise 11). So Der U is a subalgebra of gl(20).

Since a Lie algebra L is an F-algebra in the above sense, Der L is defined.
Certain derivations arise quite naturally, as follows. If x e L, y > [xy] is an
endomorphism of L, which we denote ad x. In fact, ad x € Der L, because
we can rewrite the Jacobi identity (using (L2')) in the form: [x[yz]] = [[xy]z]
+[y[xz]]. Derivations of this form are called inner, all others outer. 1t is of
course perfectly possible to have ad x = 0 even when x # 0: this occurs
in any one dimensional Lie algebra, for example. The map L — Der L
sending x to ad x is called the adjoint representation of L; it plays a decisive
role in all that follows.

Sometimes we have occasion to view x simultaneously as an element of
L and of a subalgebra K of L. To avoid ambiguity, the notation ad; x or
adgx will be used to indicate that x is acting on L (respectively, K). For
example, if x is a diagonal matrix, then ady, ¢ (x) = 0, whereas ad, ¢ (x)
need not be zero.

1.4. Abstract Lie algebras

We have looked at some natural examples of linear Lie algebras. It is
known that, in fact, every (finite dimensional) Lie algebra is isomorphic to
some linear Lie algebra (theorems of Ado, Iwasawa). This will not be proved
here (cf. Jacobson [1] Chapter VI, or Bourbaki [1]); however, it will be
obvious at an early stage of the theory that the result is true for all cases we
are interested in.

Sometimes it is desirable, however, to contemplate Lie algebras abstractly.
For example, if L is an arbitrary finite dimensional vector space over F, we
can view L as a Lie algebra by setting [xy] = O for all x, y e L. Such an
algebra, having trivial Lie multiplication, is called abelian (because in the
linear case [x, y] = O just means that x and y commute). If L is any Lie
algebra, with basis x, ..., x, it is clear that the entire multiplication table
of L can be recovered from the structure constants @, which occur in the

n
expressions [x;x;] = ) afx,. Those for which i > j can even be deduced
k=1

from the others, thanks to (L2), (L2). Turning this remark around, it is
possible to define an abstract Lie algebra from scratch simply by specifying



1.4. Abstract Lie algebras 5
a set of structure constants. Naturally, not just any set of scalars {af.j.} will
do, but a moment’s thought shows that it is enough to require the “obvious™
identities, those implied by (L2) and (L3):

k.

k_(— &
a; —O—a,j+aj

;(afja;"(+a§,a,'(’§+a’;,»a,’("j) = 0.
In practice, we shall have no occasion to construct Lie algebras in this
artificial way. But, as an application of the abstract point of view, we can
determine (up to isomorphism) all Lie algebras of dimension <2. In dimen-
sion 1 there is a single basis vector x, with multiplication table [xx] = 0 (L2).
In dimension 2, start with a basis x, y of L. Clearly, all products in L yield
scalar multiples of [xy]. If these are all 0, then L is abelian. Otherwise, we
can replace x in the basis by a vector spanning the one dimensional space
of multiples of the original [xy], and take y to be any other vector independent
of the new x. Then [xy] = ax (a # 0). Replacing y by a~ 'y, we finally get
[xy] = x. Abstractly, therefore, at most one nonabelian L exists (the reader
should check that [xy] = x actually defines a Lie algebra).

Exercises

1. Let L be the real vector space R>. Define [xy] = xx y (cross product of
vectors) for x, y € L, and verify that L is a Lie algebra. Write down the
structure constants relative to the usual basis of R>.

2. Verify that the following equations and those implied by (L1) (L2)
define a Lie algebra structure on a three dimensional vector space with

basis (x, y, z): [xy] = z, [xz] = y, [yz] = 0.

3. Let x = (8 (])) , h = ((]) _?), y= ((1) 8) be an ordered basis for
s1(2, F). Compute the matrices of ad x, ad A, ad y relative to this basis.

4. Find a linear Lie algebra isomorphic to the nonabelian two dimensional
algebra constructed in (1.4). [Hint: Look at the adjoint representation.]

5. Verify the assertions made in (1.2) about t(n, F), d(n, F), n(n, F), and
compute the dimension of each algebra, by exhibiting bases.

6. Let x € gl(n, F) have n distinct eigenvalues ay, ..., a, in F. Prove that
the eigenvalues of ad x are precisely the n* scalars a;—a; (1 < i,j < n),
which of course need not be distinct.

7. Let s(n, F) denote the scalar matrices (=scalar multiples of the identity)
in gl(n, F). If char F is O or else a prime not dividing », prove that
gl(n, F) = sl(n, F)+s(n, F) (direct sum of vector spaces), with [s(n, F),
gl(n, F)] = 0.

. Verify the stated dimension of D,.

9. When char F = 0, show that each classical algebra L = A,, B,,C,, or D,

is equal to [LL]. (This shows again that each algebra consists of trace 0
matrices.)

oo



6 Basic Concepts

10. For small values of /, isomorphisms occur among certain of the classical
algebras. Show that A,, B,, C, are all isomorphic, while D, is the one
dimensional Lie algebra. Show that B, is isomorphic to C,. Dy to Aj.
What can you say about D,?

11. Verify that the commutator of two derivations of an F-algebra is again
a derivation, whereas the ordinary product need not be.

12. Let L be a Lie algebra over an algebraically closed field and let x e L.
Prove that the subspace of L spanned by the eigenvectors of ad x is a
subalgebra.

2. Ideals and homomorphisms

2.1. ldeals

A subspace [ of a Lie algebra L is called an ideal of L if xe L, yel
together imply [xy] € 1. (Since [xy] = —[px], the condition could just as well
be written: {yx]e /) ldeals play the role in Lie algebra theory which is
played by normal subgroups in group theory and by two sided ideals in ring
theory: they arise as kernels of homomorphisms (2.2).

Obviously 0 (the subspace consisting only of the zero vector) and L
itself are ideals of L. A less trivial example is the center Z(L) = {z e L|[xz] =
0 for all x € L}. Notice that L is abelian if and only if Z(L)= L. Another
important example is the derived algebra of L, denoted [LL], which is
analogous to the commutator subgroup of a group. It consists of all linear
combinations of commutators [xy], and is clearly an ideal.

Evidently L is abelian if and only if [LL] = 0. At the other extreme, a
study of the multiplication table for L = sl(n, F) in (1.2) (n # 2 if char
F = 2) shows that L = [LL] in this case, and similarly for other classical
linear Lie algebras (Exercise 1.9).

If 7. J are two ideals of a Lie algebra L, then /+J = {x+y|xel, yeJ}
is also an ideal. Similarly, [IJ] = {Z x,y.|x; € I, y; € J} is an ideal; the derived
algebra [LL] is just a special case of this construction.

It is natural to analyze the structure of a Lie algebra by looking at its
ideals. If L has no ideals except itself and 0, and if moreover [LL] # 0, we
call L simple. The condition [LL] # O (i.e., L nonabelian) is imposed in
order to avoid giving undue prominence to the one dimensional algebra.
Clearly, L simple implies Z(L) = 0 and L = [LL].

Example. Let L = sl(2, F), char F # 2. Take as standard basis for L the

three matrices (cf. (1.2)): x = (O 1) , V= (0 0) , h = (1 0) . The multi-

00 10 0 —1
plication table is then completely determined by the equations: [xy] = A,
[Ax] = 2x, [hy] = —2y. (Notice that x, y, h are eigenvectors for ad A, corres-

ponding to the eigenvalues 2, —2, 0. Since char F # 2, these eigenvalues are
distinct.) If 7 # 0 is an ideal of L, let ax+by+ch be an arbitrary nonzero
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element of I. Applying ad x twice, we get —2bx e I, and applying ad y twice,
we get —2ay € I. Therefore, if a or b is nonzero, I contains either y or x
(char F # 2), and then, clearly, I = L follows. On the other hand, if a = b
=0, then 0 # chel, so hel, and again I = L follows. We conclude that
L is simple.

In case a Lie algebra L is not simple (and not one dimensional) it is
possible to “factor out” a nonzero proper ideal 7 and thereby obtain a Lie
algebra of smaller dimension. The construction of a quotient algebra L/
(1 an ideal of L) is formally the same as the construction of a quotient ring:
as vector space L/[ is just the quotient space, while its Lie multiplication is
defined by [x+ 1, y+I] = [xy]+I. This is unambiguous, since if x+71 = x’'+1,
y+I=y'+1, then we have x’ = x+u (uel), y' = y+v (vel), whence
[xyT = [xy]+ (uy]+[xv] + [uv]), and therefore [x'y’]+1 = [xy]+1, since the
terms in parentheses all lie in /.

For later use we mention a couple of related notions, analogous to those
which arise in group theory. The normalizer of a subalgebra (or just subspace)
K of L is defined by N, (K) = {xe L|[xK] = K}. By the Jacobi identity,
N (K) is a subalgebra of L; it may be described verbally as the largest sub-
algebra of L which includes K as an ideal (in case K is a subalgebra to begin
with). If K = N (K), we call K self-normalizing; some important examples of
this behavior will emerge later. The centralizer of a subset X of L is C,(X) =
{x e L|[xX] = 0}. Again by the Jacobi identity, C;(X) is a subalgebra of L.
For example, C,(L) = Z(L).

2.2. Homomorphisms and representations

The definition should come as no surprise. A linear transformation
¢: L — L' (L, L' Lie algebras over F) is called a homomorphism if ([xy]) =
[¢(x)p(»)], for all x, ye L. ¢ is called a monomorphism if Ker ¢ = 0, an
epimorphism if Im ¢ = L’, an isomorphism (as in (1.1)) if it is both mono- and
epi-. The first interesting observation to make is that Ker ¢ is an ideal of L:
indeed, if ¢(x) = 0, and if y € L is arbitrary, then ¢([xy]) = [#(x)¢(»)] = 0.
It is also apparent that Im ¢ is a subalgebra of L’. As in other algebraic
theories, there is a natural 1-1 correspondence between homomorphisms
and ideals: to ¢ is associated Ker ¢, and to an ideal / is associated the canonical
map x +— x+ /1 of L onto L/I. 1t is left as an easy exercise for the reader to
verify the standard homomorphism theorems:

Proposition. (a) If ¢: L — L' is a homomorphism of Lie algebras, then
L/Ker ¢ ~ Im ¢. If I is any ideal of L included in Ker ¢, there exists a unique
homomorphism : L/l — L' making the following diagram commute (w =
canonical map):

L 1

N

LI
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(b) If I and J are ideals of L such that I < J, then J/I is an ideal of L|I
and (L/D)|(J/I) is naturally isomorphic to L|J.

(¢) If 1, J are ideals of L, there is a natural isomorphism between (I+J)|J
and I/I N J). 10

A representation of a Lie algebra L is a homomorphism ¢: L — gl(V)
(V' = vector space over F). Although we require L to be finite dimensional,
it is useful to allow ¥ to be of arbitrary dimension: gl(?) makes sense in any
case. However, for the time being the only important example to keep in
mind is the adjoint representation ad: L — gI(L) introduced in (1.3), which
sends x to ad x, where ad x(y) = [xy]. (The image of ad is in Der L < gl(L), but
this does not concern us at the moment.) It is clear that ad is a linear trans-
formation. To see that it preserves the bracket, we calculate:

[ad x, ad y] (z) = ad x ad y(z)—ad y ad x(2)
= ad x([yz]) —ad y([xz])
[xlyz]]— [zl

= [x{yz]] +[[xz]y] (L2
= [[xyl2] (L3)
= ad [xy] (2).

What is the kernel of ad? It consists of all x e L for which ad x = 0,
i.e., for which [xy] = 0 (all y e L). So Ker ad = Z(L). This already has an
interesting consequence: If L is simple, then Z(L) = 0, so that ad: L — gI(L)
is a monomorphism. This means that any simple Lie algebra is isomorphic
to a linear Lie algebra.

2.3. Automorphisms

An automorphism of L is an isomorphism of L onto itself. Aut L denotes
the group of all such. Important examples occur when L is a linear Lie
algebra < gl(V). If g e GL(V) is any invertible endomorphism of V, and if
moreover gLg~' = L, then it is immediate that the map x> gxg~! is an
automorphism of L. For instance, if L = gl(¥V) or even sl( V), the second
condition is automatic, so we obtain in this way a large collection of auto-
morphisms. (Cf. Exercise 12.)

Now specialize to the case: char F = 0. Suppose x € L is an element for
which ad x is nilpotent, i.e., (ad x)* = 0 for some k > 0. Then the usual
exponential power series for a linear transformation over C makes sense over
F, because it has only finitely many terms: exp (ad x) = 1+ad x+(ad x)?/2!
+(ad x)*/3!+...+(ad x)*"'/(k—1)!. We claim that exp (ad x)e Aut L.
More generally, this is true if ad x is replaced by an arbitrary nilpotent
derivation 8 of L. For this, use the familiar Leibniz rule:

n

nl (xy) = ;ﬂ (1/i) (8'x) (1/(n—1i)!) (8" 'y).
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Then calculate as follows: (say 8¢ = 0)

k=1 /§i; k=1 /&
exp 8(x) exp 8(y) = <‘Zo (T,Y>> ( 2 _'y>)
i= ! ji= !

2k-2 8" -

-y f:'y) (Leibniz)
S 8e)

- 8 =0
,,Zo n! ( )

= exp 3(xy).

The fact that exp & is invertible follows (in the usual way) by exhibiting the
explicit inverse 1 —n+n?—n>+. ..+ ! exp & = 1+1.

An automorphism of the form exp (ad x), ad x nilpotent, is called inner;
more generally, the subgroup of Aut L generated by these is denoted Int L
and its elements called inner automorphisms. It is a normal subgroup: If
deAut L, xe L, then #(ad x)¢~' = ad #(x), whence ¢ exp (ad x)¢ ' =
exp (ad $(x)).

For example, let L = sl(2, F), with standard basis (x, y, /). Define
o = exp ad x-exp ad (—y)-exp ad x (so o € Int L). It is easy to compute the
effect of o on the basis (Exercise 10): o(x) = —y, o(y) = —x, o(h) = —h.
In particular, o has order 2. Notice that exp x, exp (—y) are well
defined elements of SL(2, F), the group of 2 x 2 matrices of det 1, conjugation
by which leaves L invariant (as noted at the start of this subsection), so the
product s = (exp x) (exp —y) (exp x) induces an automorphism z > szs~*

of L. A quick calculation shows that s = (_(1) (1)) and that conjugating by s

has precisely the same effect on L as applying o.

The phenomenon just observed is not accidental: If L < gl(¥) is an
arbitrary linear Lie algebra (char F = 0), and x € L is nilpotent, then we
claim that
*) (expx) y (expx)~! = expad x (y) forall y e L.

To prove this, notice that ad x = A, +p_,, where A, p, denote left and
right multiplication by x in the ring End V (these commute, of course, and
are nilpotent). Then the usual rules of exponentiation show that exp ad
X =exp (A, +p_,) = €xXp A,. €XP p_; = Aexp x Pexp (-x)» Which implies (*).

Exercises

1. Prove that the set of all inner derivations ad x, x € L, is an ideal of Der L.
2. Show that sl(n, F) is precisely the derived algebra of gl(n, F) (cf. Exercise
1.9).



10 Basic Concepts

3. Prove that the center of gl(n, F) equals s(n, F) (the scalar matrices).
Prove that sl(n, F) has center 0, unless char F divides n, in which case
the center is s(n, F).

4. Show that (up to isomorphism) there is a unique Lie algebra over F of
dimension 3 whose derived algebra has dimension 1 and lies in Z(L).

5. Suppose dim L = 3, L = [LL]. Prove that L must be simple. [Observe
first that any homomorphic image of L also equals its derived algebra.]
Recover the simplicity of sl(2, F), char F # 2.

6. Prove that sl(3, F) is simple, unless char F = 3 (cf. Exercise 3). [Use
the standard basis &y, h,, e;; (i # j). If I # 0 is an ideal, then 7 is the
direct sum of eigenspaces for ad A, or ad /,; compare the eigenvalues
of ad A, ad %, acting on the e,;.]

7. Prove that t(n, F) and d(n, F) are self-normalizing subalgebras of gl(n, F),
whereas 1i(n, F) has normalizer t(n, F).

8. Prove that in each classical linear Lie algebra (1.2), the set of diagonal
matrices is a self-normalizing subalgebra, when char F = 0.

9. Prove Proposition 2.2.

10. Let o be the automorphism of sl(2, F) defined in (2.3). Verify that
o(x) = —y,0(y) = —x, ath) = —h.

11. If L = sl(n, F), g € GL(n, F), prove that the map of L to itself defined
by x > —gx'g™! (x' = transpose of x) belongs to Aut L. When n = 2,
g = identity matrix, prove that this automorphism is inner.

12. Let L be an orthogonal Lie algebra (type B, or D,). If g is an orthogonal
matrix, in the sense that g is invertible and g'sg = s, prove that x> gxg !
defines an automorphism of L.

3. Solvable and nilpotent Lie algebras
3.1. Solvability

It is natural to study a Lie algebra L via its ideals. In this section we
exploit the formation of derived algebras. First, define a sequence of ideals of
L (the derived series) by L® = L L™ = [LL], L® = [LWLDM], ..., LO =
[LE-DLE=D] Call L solvable if L™ = 0 for some n. For example, abelian
implies solvable, whereas simple algebras are definitely nonsolvable.

An example which turns out to be rather general is the algebra t(n, F) of
upper triangular matrices, which was introduced in (1.2). The obvious basis
for t(n, F) consists of the matrix units e;; for which i < j; the dimension is
14+2+...4+n = n(n+1)/2. To show that L = t(n, F) is solvable we compute
explicitly its derived series, using the formula for commutators in (1.2). In
particular, we have [e;;, e;] = e;, for i < I, which shows that n(n, F) < [LL],
where n(n, F) is the subalgebra of upper triangular nilpotent matrices.
Since t(n, F) = d(n, F)+n(n, F), and since d(n, F) is abelian, we conclude that
n(n, F) is equal to the derived algebra of L (cf. Exercise 1.5). Working next
inside the algebra n(n, F), we have a natural notion of “level” for e;;, namely
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j—1i. In the formula for commutators, assume that i < j, k < I. Without
losing any products we may also require i # . Then [e,;, e,,] = e, (if j = k)
or 0 (otherwise). In particular, each e;; is commutator of two matrices whose
levels add up to that of e;,. We conclude that L® is spanned by those e;; of
level =2, L by those of level >2"!. Finally, it is clear that L% = 0
whenever 2071 > n—1.

Next we assemble a few simple observations about solvability.

Proposition. Let L be a Lie algebra.

(a) If L is solvable, then so are all subalgebras and homomorphic images
of L.

(b) If I is a solvable ideal of L such that L/I is solvable, then L itself is
solvable.

(¢) If 1, J are solvable ideals of L, then so is I+J.

Proof. (a) From the definition, if K is a subalgebra of L, then K? < L,
Similarly, if ¢: L — M is an epimorphism, an easy induction on i shows that
‘i’(L(i)) = MWD,

(b) Say (L/D'™ = 0. Applying part (a) to the canonical homomorphism
m: L — L/I, we get 7(L™) = 0, or L™ < I = Ker =. Now if I'™ = 0, the
obvious fact that (L)) = LU+ implies that L"*™ = 0 (apply proof of
part (a) to the situation L™ < J).

(c) One of the standard homomorphism theorems (Proposition 2.2 (c))
yields an isomorphism between (/+J)/J and I/(/ N J). As a homomorphic
image of /, the right side is solvable, so (/+J)/J is solvable. Then so is I+ J,
by part (b) applied to the pair I+J, J. [

As a first application, let L be an arbitrary Lie algebra and let S be a
maximal solvable ideal (i.e., one included in no larger solvable ideal). If 7
is any other solvable ideal of L, then part (c) of the Proposition forces
S+ I =29 (by maximality), or 7 C S. This proves the existence of a unique
maximal solvable ideal, called the radical of L and denoted Rad L. In case
Rad L =0, L is called semisimple. For example, a simple algebra is semisim-
ple: L has no ideals except itself and 0, and L is nonsolvable. Also, L =0 is
semisimple. Notice that for arbitrary L, L /Rad L is semisimple (use part (b)
of the proposition). The study of semisimple Lie algebras (char F = 0) will
occupy most of this book. (But certain solvable subalgebras will also be
needed along the way.)

3.2. Nilpotency

The definition of solvability imitates the corresponding notion in group
theory, which goes back to Abel and Galois. By contrast, the notion of
nilpotent group is more recent, and is modeled on the corresponding notion
for Lie algebras. Define a sequence of ideals of L (the descending central
series, also called the lower central series) by L° = L, L' = [LL] (=L"),
L? =[LL"Y,...,L  =[L L'"']. L is called nilpotent if L" = 0 for some n.
For example, any abelian algebra is nilpotent. Clearly, L‘? < L' for all i, so
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nilpotent algebras are solvable. The converse is false, however. Consider
again L = t(n, F). Our discussion in (3.1) showed that L") = L' is n(n, F),
and also that L2 = [L L'] = L',so L' = L' for alli > 1. On the other hand,
it is easy to see that M = n(n, F) is nilpotent: M' is spanned by those e
of level 22, M? by those of level 23,..., M' by those of level = i+1.

Proposition. Let L be a Lie algebra.

(a) If L is nilpotent, then so are all subalgebras and homomorphic images
of L.

(b) If L|Z(L) is nilpotent, then so is L.

(c) If L is nilpotent and nonzero, then Z(L)#0.

Proof. (a) Imitate the proof of Proposition 3.1 (a).

(b) Say L" < Z(L), then L"*! = [LL"] < [LZ(L)] = 0.

(c) The last nonzero term of the descending central series is central. [J

The condition for L to be nilpotent can be rephrased as follows: For
some n (depending only on L), ad x, ad x, ... ad x,(y) =0 for all x;, ye L.
In particular, (ad x)" = 0 for all x € L. Now if L is any Lie algebra, and x € L,
we call x ad-nilpotent if ad x is a nilpotent endomorphism. Using this language,
our conclusion can be stated: If L is nilpotent, then all elements of L are ad-
nilpotent. It is a pleasant surprise to find that the converse is also true.

Theorem (Engel). If all elements of L are ad-nilpotent, then L is nilpotent.

The proof will be given in the next subsection. Using Engel’s Theorem,
it is easy to prove that n(n, F) is nilpotent, without actually calculating the
descending central series. We need only apply the following simple lemma.

Lemma. Let x € gl(V) be a nilpotent endomorphism. Then ad x is also
nilpotent.

Proof. As in (2.3), we may associate to x two endomorphisms of End V,
left and right translation: A(y) = xy, p(») = yx, which are nilpotent
because x is. Moreover A, and p, obviously commute. In any ring (here
End (End V)) the sum or difference of two commuting nilpotents is again
nilpotent (why?), so ad x = A, —p, is nilpotent. []

A word of warning: It is easy for a matrix to be ad-nilpotent in gl(n, F)
without being nilpotent. (The identity matrix is an example.) The reader
should keep in mind two contrasting types of nilpotent linear Lie algebras:
d(n, F) and n(n, F).

3.3. Proof of Engel’s Theorem

Engel’s Theorem (3.2) will be deduced from the following result, which
is of interest in its own right. Recall that a single nilpotent linear transforma-
tion always has at least one eigenvector, corresponding to its unique eigen-
value 0. This is just the case dim L = 1 of the following theorem.

Theorem. Let L be a subalgebra of gI(V), V finite dimensional. If L consists
of nilpotent endomorphisms and V # 0, then there exists nonzero ve V for
which L.v = 0.
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Proof. Use induction on dim L, the case dim L =0 (or dim L = 1)
being obvious. Suppose K # L is any subalgebra of L. According to Lemma
3.2, K acts (via ad) as a Lie algebra of nilpotent linear transformations on
the vector space L, hence also on the vector space L/K. Because dim K <
dim L, the induction hypothesis guarantees existence of a vector x+ K # K
in L/K killed by the image of K in gl(L/K). This just means that [yx] e K
for all y € K, whereas x ¢ K. In other words, K is properly included in N, (K)
(the normalizer of K in L, see (2.1)).

Now take K to be a maximal proper subalgebra of L. The preceding
argument forces N, (K) = L, i.e., K is an ideal of L. If dim L/K were greater
than one, then the inverse image in L of a one dimensional subalgebra of
L/K (which always exists) would be a proper subalgebra properly containing
K, which is absurd; therefore, K has codimension one. This allows us to
write L = K+Fz for any ze LK.

By induction, W = {ve V|K.v = 0} is nonzero. Since K is an ideal, W is
stable under L: xelL, ye K, we W imply yx.w = xy.w—[x, yl.w = 0.
Choose z € L—K as above, so the nilpotent endomorphism z (acting now on
the subspace W) has an eigenvector, i.e., there exists nonzero v € W for
which z.v = 0. Finally, L.v = 0, as desired. []

Proof of Engel’s Theorem. We are given a Lie algebra L all of whose
elements are ad-nilpotent; therefore, the algebra ad L < gl(L) satisfies the
hypothesis of Theorem 3.3. (We can assume L # 0.) Conclusion: There
exists x # 0 in L for which [Lx] = 0, i.e., Z(L) # 0. Now L/Z(L) evidently
consists of ad-nilpotent elements and has smaller dimension than L. Using
induction on dim L, we find that L/Z(L) is nilpotent. Part (b) of Proposition
3.2 then implies that L itself is nilpotent. []

There is a useful corollary (actually, an equivalent version) of Theorem
3.3, which shows how “‘typical” n(n, F) is. First a definition: If ¥ is a finite
dimensional vector space (say dim V' = n), a flag in V' is a chain of subspaces
O0=Vy<cV,c...cV,=V,dimV, =i lf xeEnd V, we say x stabilizes
(or leaves invariant) this flag provided x.V; < ¥, for all i.

Corollary. Under the hypotheses of the theorem there exists a flag (V)
in V stable under L, with x.V; = V,_, for all i. In other words, there exists a
basis of V relative to which the matrices of L are all in n(n, F).

Proof. Begin with any nonzero v € V killed by L, the existence of which is
assured by the theorem . Set V', = Fv. Let W = V/V/,, and observe that the
induced action of L on W is also by nilpotent endomorphisms. By induction
on dim ¥V, W has a flag stabilized by L, whose inverse image in V" does the
trick. [J

To conclude this section, we mention a typical application of Theorem
3.3, which will be needed later on.

Lemma. Let L be nilpotent, K an ideal of L. Then if K # 0, KN Z(L) # 0.
(In particular, Z(L) # 0; cf. Proposition 3.2(c).)
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Proof. L acts on K via the adjoint representation, so Theorem 3.3 yields

nonzero x € K killed by L, i.e., [Lx] = 0,so xe KN Z(L). [0

el

10.

Exercises

. Let I be an ideal of L. Then each member of the derived series or descend-

ing central series of / is also an ideal of L.

Prove that L is solvable if and only if there exists a chain of subalgebras
L=Ly>L, 2> L,>...>2 L, =0 such that L;,, is an ideal of L;
and such that each quotient L;/L,,, is abelian.

Let char F = 2. Prove that sl(2, F) is nilpotent.

Prove that L is solvable (resp. nilpotent) if and only if ad L is solvable
(resp. nilpotent).

Prove that the nonabelian two dimensional algebra constructed in (1.4)
is solvable but not nilpotent. Do the same for the algebra in Exercise 1.2.

. Prove that the sum of two nilpotent ideals of a Lie algebra L is again a

nilpotent ideal. Therefore, L possesses a unique maximal nilpotent ideal.
Determine this ideal for each algebra in Exercise 5.

Let L be nilpotent, K a proper subalgebra of L. Prove that N,(K)
includes K properly.

Let L be nilpotent. Prove that L has an ideal of codimension 1.

Prove that every nilpotent Lie algebra L has an outer derivation (see
(1.3)), as follows: Write L = K+Fx for some ideal K of codimension
one (Exercise 8). Then C,(K) # 0 (why?). Choose # so that C;(K) < L",
C(K) ¢ L"*', and let ze C(K)—L"*". Then the linear map & sending
K to 0, x to z, is an outer derivation.

Let L be a Lie algebra, K an ideal of L such that L/K is nilpotent and
such that ad x|k is nilpotent for all x e L. Prove that L is nilpotent.



Chapter 11

Semisimple Lie Algebras

In Chapter I we looked at Lie algebras over an arbitrary field F. Apart
from introducing the basic notions and examples, we were able to prove
only one substantial theorem (Engel’s Theorem). Virtually all of the remain-
ing theory to be developed in this book will require the assumption that F
have characteristic 0. (Some of the exercises will indicate how counter-
examples arise in prime characteristic.) Moreover, in order to have available
the eigenvalues of ad x for arbitrary x (not just for ad x nilpotent), we shall
assume that F is algebraically closed, except where otherwise specified. It is
possible to work with a slightly less restrictive assumption on F (cf. Jacobson
[1], p. 107), but we shall not do so here.

4. Theorems of Lie and Cartan
4.1. Lie’s Theorem

The essence of Engel’s Theorem for nilpotent Lie algebras is the existence
of a common eigenvector for a Lie algebra consisting of nilpotent endo-
morphisms (Theorem 3.3). The next theorem is similar in nature, but requires
algebraic closure, in order to assure that F will contain all required eigen-
values. It turns out to be necessary also to have char F = 0 (Exercise 3).

Theorem. Let L be a solvable subalgebra of gI(V), V finite dimensional.

If V # 0, then V contains a common eigenvector for all the endomorphisms
in L.

Proof. Use induction on dim L, the case dim L = 0 being trivial. We
attempt to imitate the proof of Theorem 3.3 (which the reader should
review at this point). The idea is (1) to locate an ideal K of codimension one,
(2) to show by induction that common eigenvectors exist for K, (3) to verify
that L stabilizes a space consisting of such eigenvectors, and (4) to find in
that space an eigenvector for a single z € L satisfying L = K+ Fz.

Step (1) is easy. Since L is solvable, of positive dimension, L properly
includes [LL]. L/[LL] being abelian, any subspace is automatically an ideal.
Take a subspace of codimension one, then its inverse image K is an ideal
of codimension one in L (including [LL]).

For step (2), use induction to find a common eigenvector v € V for K
(K is of course solvable; if K = 0, then L is abelian of dimension1 and an eigen-
vector for a basis vector of L finishes the proof.) This means that for x € K

15
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x.v = Mx)v, A: K — F some linear function. Fix this A, and denote by W the

subspace
{we V|x.w = Mx)w, for all xe K}; so W # 0.

Step (3) consists in showing that L leaves W invariant. Assuming for the
moment that this is done, proceed to step (4): Write L = K+ Fz, and use
the fact that F is algebraically closed to find an eigenvector v, € W of z
(for some eigenvalue of z). Then v, is obviously a common eigenvector for L
(and A can be extended to a linear function on L such that x.v, = A(x)vg,
xel).

It remains to show that L stabilizes W. Let we W, x € L. To test whether
or not x.w lies in W, we must take arbitrary y € K and examine yx.w =
xy.w—[x, ylw = A(p)x.w—A([x, y])w. Thus we have to prove that X([x, y]) = 0.
For this, fix we W, xe L. Let n > 0 be the smallest integer for which w,
x.w, ..., x"w are linearly dependent. Let W, be the subspace of V' spanned
by w, xw, ..., x' "Lw (set Wy =0),sodim W,=n, W,=W,,,; (i >0)
and x maps W, into W,. It is easy to check that each y € K leaves each W;
invariant. Relative to the basis =, x.w, ..., x""'.w of W,, we claim that
y € K is represented by an upper triangular matrix whose diagonal entries
equal A(y). This follows immediately from the congruence:

* yxiw = A(y)xiw (mod W),

which we prove by induction on i, the case i = 0 being obvious. Write
yxiw = pxx'"tw = xpx'"'w—[x, ylx'"lw. By induction, yx'"l.w =
AP)x " Lw4w’ (w e W;_,); since x maps W,;_, into W; (by construction),
(*) therefore holds for all i.

According to our description of the way in which y € K acts on W,,
Try () = nA(p). In particular, this is true for elements of K of the special
form [x, y] (x as above, y in K). But x, y both stabilize W,, so [x, y] acts on
W, as the commutator of two endomorphisms of W,; its trace is therefore 0.
We conclude that #A([x, y]) = 0. Since char F = 0, this forces A([x, y]) = 0,
as required. [

Corollary A (Lie’s Theorem). Let L be a solvable subalgebra of gl(V),
dim V = n < . Then L stabilizes some flag in V (in other words, the matrices
of L relative to a suitable basis of V are upper triangular).

Proof. Use the theorem, along with induction on dim V. [

More generally, let L be any solvable Lie algebra, ¢: L — gl(¥) a finite
dimensional representation of L. Then ¢(L) is solvable, by Proposition 3.1(a),
hence stabilizes a flag (Corollary A). For example, if ¢ is the adjoint repre-
sentation, a flag of subspaces stable under L is just a chain of ideals of L,
each of codimension one in the next. This proves:

Corollary B. Let L be solvable. Then there exists a chain of ideals of L,
O=Ly<cL,c...cL,=L, such that dim L; = i. []

Corollary C. Let L be solvable. Then x €[LL)] implies that ad; x is nil-
potent. In particular, [LL) is nilpotent.
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Proof. Find a flag of ideals as in Corollary B. Relative to a basis (x,, . . .,
x,) of L for which (x, ..., x;) spans L;, the matrices of ad L lie in t(n, F).
Therefore the matrices of [ad L, ad L] = ad, [LL] lie in n(n, F), the derived
algebra of t(n, F). It follows that ad, x is nilpotent for x € [LL]; a fortiori
ad;p1; x is nilpotent, so [LL] is nilpotent by Engel’s Theorem. []

4.2. Jordan-Chevalley decomposition

In this subsection only, char F may be arbitrary. We digress in order to
introduce a very useful tool for the study of linear transformations. The reader
may recall that the Jordan canonical form for a single endomorphism x
over an algebraically closed field amounts to an expression of x in matrix
form as a sum of blocks

a 1 0
a 1
.1
0 a
Since diag (4, ..., a) commutes with the nilpotent matrix having one’s

just above the diagonal and zeros elsewhere, x is the sum of a diagonal and
a nilpotent matrix which commute. We can make this decomposition more
precise, as follows.

Call x € End V (V finite dimensional) semisimple if the roots of its minimal
polynomial over F are all distinct. Equivalently (F being algebraically closed),
x is semisimple if and only if x is diagonalizable. We remark that two
commuting semisimple endomorphisms can be simultaneously diagonalized;
therefore, their sum or difference is again semisimple (Exercise 2). Also, if
x is semisimple and maps a subspace W of V into itself, then obviously the
restriction of x to W is semisimple.

Proposition. Let V be a finite dimensional vector space over F, x € End V.

(a) There exist unique x,, x, € End V satisfying the conditions: x = x,+ X,
x, is semisimple, x, is nilpotent, x, and x, commute.

(b) There exist polynomials p(T), q(T) in one indeterminate, without
constant term, such that x; = p(x), x, = q(x). In particular, x, and x, com-
mute with any endomorphism commuting with x.

(¢) If A < B < V are subspaces, and x maps B into A, then x, and x, also
map B into A.

The decomposition x = x,+x, is called the (additive) Jordan-Chevalley
decomposition of x, or just the Jordan decomposition; x,, x, are called
(respectively) the semisimple part and the nilpotent part of x.

Proof. Let ay,...,q, (with multiplicities m,, ..., m,) be the distinct
eigenvalues of x, so the characteristic polynomial is II(T—a;)™. If V; = Ker
(x—a;-1)™, then V is the direct sum of the subspaces V,, ..., V;, each stable
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under x. On V,;, x clearly has characteristic polynomial (7'—a;)™. Now
apply the Chinese Remainder Theorem (for the ring F[T7]) to locate a poly-
nomial p(7) satisfying the congruences, with pairwise relatively prime
moduli: p(T) = a; (mod (T—a)™), p(T) = 0 (mod T.) (Notice that the
last congruence is superfluous if O is an eigenvalue of x, while otherwise T’
is relatively prime to the other moduli.) Set ¢(T) = T—p(T). Evidently
each of p(T), q(T) has zero constant term, since p(7)) = 0 (mod 7).

Set x, = p(x), x, = q(x). Since they are polynomials in x, x, and x,
commute with each other, as well as with all endomorphisms which commute
with x. They also stabilize all subspaces of V stabilized by x, in particular the
V.. The congruence p(T) = a; (mod (T—a;)™) shows that the restriction of
x,—a;'1 to V;is zero for all i, hence that x, acts diagonally on V; with
single eigenvalue a;. By definition, x, = x—x,, which makes it clear that x,
is nilpotent. Because p(T), ¢(T) have no constant term, (c) is also obvious
at this point.

It remains only to prove the uniqueness assertion in (a). Let x = s+n be
another such decomposition, so we have x,—s = n—x,. Because of (b), all
endomorphisms in sight commute. Sums of commuting semisimple (resp.
nilpotent) endomorphisms are again semisimple (resp. nilpotent), whereas
only 0 can be both semisimple and nilpotent. This forces s = x,, n = x,. [

To indicate why the Jordan decomposition will be a valuable tool, we
look at a special case. Consider the adjoint representation of the Lie algebra
gl(V), V finite dimensional. If x € gI(¥) is nilpotent, then so is ad x (Lemma
3.2). Similarly, if x is semisimple, then so is ad x. We verify this as follows.
Choose a basis (vy, . . ., v,) of V relative to which x has matrix diag (a,, .. .,
a,). Let {e;;} be the standard basis of gl(¥) (1.2) relative to (vy, ..., 0,):
e;j(vy) = 8,v;. Then a quick calculation (see formula (*) in (1.2)) shows that
ad x (e;;) = (a;—a;)e;;. So ad x has diagonal matrix, relative to the chosen
basis of gl(V).

Lemma A. Let x€ End V (dim V < ), x = x,+Xx, its Jordan decom-
position. Then ad x = ad x;+ad x, is the Jordan decomposition of ad x (in
End (End V)).

Proof. We have seen that ad x,, ad x, are respectively semisimple, nil-
potent; they commute, since [ad x,, ad x,] = ad [x,, x,] = 0. Then part (a) of
the proposition applies. []

A further useful fact is the following.

Lemma B. Let U be a finite dimensional F-algebra. Then Der W contains
the semisimple and nilpotent parts (in End W) of all its elements.

Proof. If 6eDer U, let o, ve End U be its semisimple and nilpotent
parts, respectively. It will be enough to show that o € Der U. If aeF, set
A, = {xe AY(8—a.1)*x = 0 for some k (depending on x)}. Then A is the
direct sum of those A, for which a is an eigenvalue of 8 (or o), and o acts
on A, as scalar multiplication by a. We can verify, for arbitrary a, b € F,
that A, W, = A, ., by means of the general formula: (*) (8 —(a+b).1)"(xy)
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= Z(") ((8—a.1)""'x)-((8—b.1)y), for x, ye W. (This formula is easily

checked by induction on n.) Now if xe U, y e Ay, then o(xy) = (a+b)xy,
because xy € W, , (possibly equal to 0); on the other hand, (ox)y + x(oy) =
(a+b)xy. By directness of the sum U = [ [ U, it follows that o is a derivation,
as required. [

4.3. Cartan’s Criterion

We are now ready to obtain a powerful criterion for solvability of a Lie
algebra L, based on the traces of certain endomorphisms of L. It is obvious
that L will be solvable if [LL] is nilpotent (this is the converse of Corollary
4.1C). In turn, Engel’s Theorem says that [LL] will be nilpotent if (and only
if) each adyx, x € [LL], is nilpotent. We begin, therefore, with a *“trace”
criterion for nilpotence of an endomorphism.

Lemma. Let A < B be two subspaces of gl(V), dim V < o. Set M =
{x e g(V)|[x, B] = A}. Suppose x € M satisfies Tr(xy) = O for all ye M.
Then x is nilpotent.

Proof. Let x = s+n (s = x,, n = x,) be the Jordan decomposition of x.

Fix a basis vy, . . ., v,, of V relative to which s has matrix diag (a,, . . ., a,).
Let E be the vector subspace of F (over the prime field Q) spanned by the
eigenvalues a,, ..., a,. We have to show that s = 0, or equivalently, that

E = 0. Since F has finite dimension over Q (by construction), it will suffice
to show that the dual space E* is 0, i.e., that any linear function f: £ — Q
18 Zero.

Given f, let y be that element of gl(¥) whose matrix relative to our given
basis is diag (f(a,), . . ., f(a,). If {e;;} is the corresponding basis of gl(V),
we saw in (4.2) that: ad s(e;;) = (a;—a))e;;, ad y(e;;) = (f(a;)—f(a;))e;;- Now
let (T') € F[T] be a polynomial without constant term satisfying r(a;—a;) =
Sf(a;)—f(a;) for all pairs i, j. The existence of such r(T') follows from Lagrange
interpolation; there is no ambiguity in the assigned values, since a;—a; =
a,—a, implies (by linearity of f) that f(a;)—f(a;) = f(a,)—f(a,). Evidently
ad y = r (ad s).

Now ad s is the semisimple part of ad x, by Lemma A of (4.2), so it can
be written as a polynomial in ad x without constant term (Proposition 4.2).
Therefore, ad y is also a polynomial in ad x without constant term. By
hypothesis, ad x maps B into A4, so we also have ad y (B) < 4, i.e.,, ye M.
Using the hypothesis of the lemma, Tr(xy) = 0, we get Za; f(a;) = 0. The
left side is a Q-linear combination of elements of E; applying f, we obtain
2f(a;)*> = 0. But the numbers f(a;) are rational, so this forces all of them to
be 0. Finally, f must be identically O, because the a; span E. [

Before stating our solvability criterion, we record a useful identity:
If x, y, z are endomorphisms of a finite dimensional vector space, then
*) Tr([x, y)z) = Tr(x[y, z]). To verify this, write [x, y]z = xyz—yxz, x[y, z]
= xyz--xzy, and use the fact that Tr(y(xz)) = Tr((xz)y).
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Theorem (Cartan’s Criterion). Let L be a subalgebra of gU(V), V finite
dimensional. Suppose that Tr(xy) =0 for all xe[LL], yeL. Then L is
solvable.

Proof. As remarked at the beginning of (4.3), it will suffice to prove that
[LL] is nilpotent, or just that all x in [LL] are nilpotent endomorphisms
(Lemma 3.2 and Engel’s Theorem). For this we apply the above lemma to
the situation: V as given, 4 = [LL], B= L, so M = {xegl(V)|[x, L] =
[LL]}. Obviously L = M. Our hypothesis is that 7r(xy) = 0 for x e [LL],
y e L, whereas to conclude from the lemma that each x e [LL] is nilpotent
we need the stronger statement: Tr(xy) = O for x e [LL], y e M.

Now if [x, y] is a typical generator of [LL], and if z € M, then identity (*)
above shows that Tr([x, y]z) = Tr(x[y, z]) = Tr([y, z]x). By definition of M,
[y, z] € [LL], so the right side is O by hypothesis. []

Corollary. Let L be a Lie algebra such that Tr(ad x ad y) = 0 for all
xe[LL), ye L. Then L is solvable.

Proof. Applying the theorem to the adjoint representation of L, we get
ad L solvable. Since Ker ad = Z(L) is solvable, L itself is solvable (Pro-
position 3.1). [

Exercises

1. Let L=8l(V). Use Lie’s Theorem to prove that Rad L=2Z(L); con-
clude that L is semisimple (cf. Exercise 2.3). [Observe that Rad L lies in
each maximal solvable subalgebra B of L. Select a basis of V' so that
B=Ln1{(n,F), and notice that the transpose of B is also a maximal
solvable subalgebra of L. Conclude that Rad L< LN d(n,F), then that
Rad L=Z(L)]

2. Show that the proof of Theorem 4.1 still goes through in prime character-
istic, provided dim V is less than char F.

3. This exercise illustrates the failure of Lie’s Theorem when F is allowed to
have prime characteristic p. Consider the p x p matrices:

010...0

0010..0
x=1...... , y=diag(,1,2,3,...,p-1).

.1

1 .0

Check that [x, y] = x, hence that x and y span a two dimensional solvable
subalgebra L of gl(p, F). Verify that x, y have no common eigenvector.
4. When p = 2, Exercise 3.3 shows that a solvable Lie algebra of endo-
morphisms over a field of prime characteristic p need not have derived
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algebra consisting of nilpotent endomorphisms (cf. Corollary C of Theorem
4.1). For arbitrary p, construct a counterexample to Corollary C as
follows: Start with L < gl(p, F) as in Exercise 3. Form the vector space
direct sum M = L+F?, and make M a Lie algebra by decreeing that F?
is abelian, while L has its usual product and acts on F? in the given way.
Verify that M is solvable, but that its derived algebra (= Fx + F?) fails to
be nilpotent.

5. If x, ye End V commute, prove that (x+y), = x,+y,, and (x+y), =

Xx,+y,. Show by example that this can fail if x, y fail to commute. [Show

first that x, y semisimple (resp. nilpotent) implies x + y semisimple (resp.

nilpotent).]

Check formula (*) at the end of (4.2).

Prove the converse of Theorem 4.3.

8. Note that it suffices to check the hypothesis of Theorem 4.3 (or its
corollary) for x, y ranging over a basis of L. For the example given in
Exercise 1.2, verify solvability by using Cartan’s Criterion.

N

Notes

The proofs here follow Serre [1]. The systematic use of the Jordan
decomposition in linear algebraic groups originates with Chevalley [1]; see
also Borel [1], where the additive Jordan decomposition in the Lie algebra is
emphasized.

5. Killing form
5.1. Criterion for semisimplicity

Let L be any Lie algebra. If x, y e L, define x(x, y) = Tr(ad x ad y).
Then « is a symmetric bilinear form on L, called the Killing form. « is also
associative, in the sense that «([xy], z) = «(x, [yz]). This follows from the
identity recorded in (4.3): Tr([x, y]z) = Tr(x[y, z]), for endomorphisms x, y, z
of a finite dimensional vector space.

The following lemma will be handy later on.

Lemma. Let I be an ideal of L. If « is the Killing form of L and «; the
Killing form of I (viewed as Lie algebra), then x; = «|;x.

Proof. First, a simple fact from linear algebra: If W is a subspace of a
(finite dimensional) vector space ¥, and ¢ an endomorphism of ¥ mapping
V into W, then Tr¢ = Tr(¢|y). (To see this, extend a basis of W to a basis
of ¥ and look at the resulting matrix of ¢.) Now if x, y € I, then (ad x) (ad y)
is an endomorphism of L, mapping L into 7, so its trace «(x, y) coincides with
the trace «;(x, ) of (ad x) (ad y)|; = (ad; x) (ad; y). 0O
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In general, a symmetric bilinear form B(x, y) is called nondegenerate
if its radical S is 0, where S = {x e L|B(x, y) = O for all y e L}. Because the
Killing form is associative, its radical is more than just a subspace: S is an
ideal of L. From linear algebra, a practical way to test nondegeneracy is as
follows: Fix a basis x,, ..., x, of L. Then « is nondegenerate if and only if
the nx n matrix whose i, j entry is «(x;, x;) has nonzero determinant.

As an example, we compute the Killing form of s1(2, F), using the standard
basis (Example 2.1), which we write in the order (x, A, y). The matrices become:

0-20 000
ad h = diag 2,0, —2),adx =0 O1l}),ady=|-100].

0 00 020
004
Therefore « has matrix |0 8 0}, with determinant —128, and « is non-
400

degenerate. (This is still true so long as char F # 2.)

Recall that a Lie algebra L is called semisimple in case Rad L =0. This
is equivalent to requiring that L have no nonzero abelian ideals: indeed,
any such ideal must be in the radical, and conversely, the radical (if
nonzero) includes such an ideal of L, viz., the last nonzero term in the
derived series of Rad L (cf. exercise 3.1).

Theorem. Let L be a Lie algebra. Then L is semisimple if and only if its
Killing form is nondegenerate.

Proof. Suppose first that Rad L = 0. Let S be the radical of «. By defini-
tion, Tr(ad x ad y) = 0 for all xe S, ye L (in particular, for y e [SS]).
According to Cartan’s Criterion (4.3), ad, S is solvable, hence S is solvable.
But we remarked above that S is an ideal of L, so S < Rad L = 0, and « is
nondegenerate.

Conversely, let S = 0. To prove that L is semisimple, it will suffice to
prove that every abelian ideal 7 of L is included in S. Suppose xe I, ye L.
Then ad x ad y maps L — L — I, and (ad x ad y)?> maps L into [/I] = 0.
This means that ad x ad y is nilpotent, hence that 0 = Tr(ad x ad y) =
k(x, ), so I = § = 0. (This half of the proof remains valid even in prime
characteristic (Exercise 6).) []

The proof shows that we always have S < Rad L; however, the reverse
inclusion need not hold (Exercise 4).

5.2. Simple ideals of L

First a definition. A Lie algebra L is said to be the direct sum of ideals
I, ..., I, provided L = I, +...+1, (direct sum of subspaces). This con-
dition forces [/;/;] = I; N I; = 0 if i # j (so the algebra L can be viewed as
gotten from the Lie algebras I; by defining Lie products componentwise
for the external direct sum of these as vector spaces). We write L = I,

®...0I,.
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Theorem. Let L be semisimple. Then there exist ideals L,,...,L, of L
which are simple (as Lie algebras), suchthat L = L, ® ... ® L,. Every simple
ideal of L coincides with one of the L;. Moreover, the Killing form of L; is the
restriction of « to L;x L;.

Proof. As a first step, let I be an arbitrary ideal of L. Then I* = {x e L|
k(x, y) = 0 for all y e I'} is also an ideal, by the associativity of «. Cartan’s
Criterion, applied to the Lie algebra I, shows that the ideal 7 N I* of L is
solvable (hence 0). Therefore, since dim /+dim /* = dim L, we must have
L=I®I.

Now proceed by induction on dim L to obtain the desired decomposition
into direct sum of simple ideals. If L has no nonzero proper ideal, then L is
simple already and we’re done. Otherwise let L, be a minimal nonzero ideal ;
by the preceding paragraph, L = L, ® Li. In particular, any ideal of L,
is also an ideal of L, so L, is semisimple (hence simple, by minimality).
For the same reason, Lt is semisimple; by induction, it splits into a direct
sum of simple ideals, which are also ideals of L. The decomposition of L
follows.

Next we have to prove that these simple ideals are unique. If 7 is any
simple ideal of L, then [/L] is also an ideal of , nonzero because Z(L) = 0;
this forces [IL] = I. On the other hand, [IL] = [IL,] ® ... ® [IL,], so all
but one summand must be 0. Say [/L;] = I. Then/ < L;,and I = L;(because
L,; is simple).

The last assertion of the theorem follows from Lemma 5.1. [

Corollary. If L is semisimple, then L=[LL), and all ideals and homomor-
phic images of L are semisimple. Moreover, each ideal of L is a sum of
certain simple ideals of L. [1

5.3. Inner derivations

There is a further important consequence of nondegeneracy of the
Killing form. Before stating it we recall explicitly the result of Exercise 2.1:
ad L is an ideal in Der L (for any Lie algebra L). The proof depends on the
simple observation: (*) [8, ad x] = ad (8x), xe L, 8 € Der L.

Theorem. If L is semisimple, then ad L = Der L (i.e., every derivation of
L is inner).

Proof. Since L is semisimple, Z(L) = 0. Therefore, L —ad L is an
isomorphism of Lie algebras. In particular, M = ad L itself has non-
degenerate Killing form (Theorem 5.1). If D = Der L, we just remarked
that [D, M] = M. This implies (by Lemma 5.1) that «,, is the restriction to
M x M of the Killing form «j, of D. In particular, if I = M* is the subspace
of D orthogonal to M under «j, then the nondegeneracy of «,, forces I N M
= 0. Both 7 and M are ideals of D, so we obtain [/, M] = 0. If & €], this
forces ad (6x) = O for all x e L (by (*)), so in turn 8x = 0 (x € L) because
adis 1—1, and § = 0. Conclusion: I =0, Der L =M =ad L. [
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5.4. Abstract Jordan decomposition

Theorem 5.3 can be used to introduce an abstract Jordan decomposition
in an arbitrary semisimple Lie algebra L. Recall (Lemma B of (4.2)) that
if A is any F-algebra of finite dimension, then Der U contains the semisimple
and nilpotent parts in End U of all its elements. In particular, since Der L
coincides with ad L (5.3), while L —ad L is 1 -1, each x € L determines
unique elements s, n € L such that ad x = ad s+ad » is the usual Jordan
decomposition of ad x (in End L). This means that x = s+n, with [sn] = 0,
s ad-semisimple (i.e., ad s semisimple), n ad-nilpotent. We write s = x,,
n = x,, and (by abuse of language) call these the semisimple and nilpotent
parts of x.

The alert reader will object at this point that the notation x,, x, is am-
biguous in case L happens to be a linear Lie algebra. It will be shown in
(6.4) that the abstract decomposition of x just obtained does in fact agree
with the usual Jordan decomposition in all such cases. For the moment we
shall be content to point out that this is true in the special case L = sl(V)
(V finite dimensional): Write x = x,+x, in End V (usual Jordan decom-
position), x € L. Since x, is a nilpotent endomorphism, its trace is 0 and
therefore x, € L. This forces x, also to have trace 0, so x,€ L. Moreover,
adg(y)X, is semisimple (Lemma A of (4.2)), so ad; x; is a fortiori semisimple;
similarly ad; x, is nilpotent, and [ad, x,, ad; x,] = ad [x,x,] = 0. By the
uniqueness of the abstract Jordan decomposition in L, x = x,+ x, must be it.

Exercises

[

. Prove that if L is nilpotent, the Killing form of L is identically zero.

2. Prove that L is solvable if and only if [LL] lies in the radical of the Killing
form.

3. Let L be the two dimensional nonabelian Lie algebra (1.4), which is
solvable. Prove that L has nontrivial Killing form.

4. Let L be the three dimensional solvable Lie algebra of Exercise 1.2.
Compute the radical of its Killing form.

5. Let L = sl(2, F). Compute the basis of L dual to the standard basis,
relative to the Killing form.

6. Let char F = p # 0. Prove that L is semisimple if its Killing form is
nondegenerate. Show by example that the converse fails. [Look at s1(3, F)
modulo its center, when char F = 3.]

7. Relative to the standard basis of sl(3, F), compute the determinant of «.
Which primes divide it?

8. Llet L=L, ®...® L, be the decomposition of a semisimple Lie

algebra L into its simple ideals. Show that the semisimple and nilpotent

parts of x € L are the sums of the semisimple and nilpotent parts in the

various L; of the components of x.



6.1. Modules 25

Notes

Even in prime characteristic, nondegeneracy of the Killing form has
very strong implications for the structure of a Lie algebra. See Seligman [1],
Pollack [1], Kaplansky [1].

6. Complete reducibility of representations

In this section all representations are finite dimensional, unless otherwise
noted.

We are going to study a semisimple Lie algebra L by means of its adjoint
representation (see §8). It turns out that L is built up from copies of s1(2, F);
to study the adjoint action of such a three dimensional subalgebra of L,
we need precise information about the representations of s1(2, F), to be given
in §7 below. First we prove an important general theorem (due to Weyl)
about representations of an arbitrary semisimple Lie algebra.

6.1. Modules

Let L be a Lie algebra. It is often convenient to use the language of
modules along with the (equivalent) language of representations. As in other
algebraic theories, there is a natural definition. A vector space V, endowed
with an operation Lx V' — V (denoted (x, v) — x.v or just xv) is called an
L-module if the following conditions are satisfied:

(M) (ax+by).v = a(x.v)+b(y.v),
(M2) x.(av+bw) = a(x.v)+b(x.w),
(M3) [xylv = x.yv—y.xv. (x,yeL;v,weV;a, beF).

For example, if : L — gl(V) is a representation of L, then V' may be viewed
as an L-module via the action x.v = ¢(x) (v). Conversely, given an L-module
V, this equation defines a representation ¢: L — gl(¥V).

A homomorphism of L-modules is a linear map ¢: V — W such that
é(x.v) = x.¢(v). The kernel of such a homomorphism is then an L-submodule
of V (and the standard homomorphism theorems all go through without
difficulty). When ¢ is an isomorphism of vector spaces, we call it an iso-
morphism of L-modules; in this case, the two modules are said to afford
equivalent representations of L. An L-module V is called irreducible if it has
precisely two L-submodules (itself and 0); in particular, we do not regard a
zero dimensional vector space as an irreducible L-module. We do, however,
allow a one dimensional space on which L acts (perhaps trivially) to be called
irreducible. V is called completely reducible if ¥ is a direct sum of irreducible
L-submodules, or equivalently (Exercise 2), if each L-submodule W of V
has a complement W' (an L-submodule such that V= W @® W’). When
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W, W' are arbitrary L-modules, we can of course make their direct sum an
L-module in the obvious way, by defining x.(w, w') = (x.w, x.w’). These
notions are all standard and also make sense when dim V' = oo. Of course,
the terminology “irreducible” and ‘“‘completely reducible” applies equally
well to representations of L.

Given a representation ¢: L — gl(V), the associative algebra (with 1)
generated by #(L) in End V leaves invariant precisely the same subspaces as
L. Therefore, all the usual results (e.g., Jordan-Holder Theorem) for modules
over associative rings hold for L as well. For later use, we recall the well
known Schur’s Lemma.

Schur’s Lemma. Let ¢: L — gl(V) be irreducible. Then the only endo-
morphisms of 'V commuting with all $(x) (x € L) are the scalars. ]

L itself is an L-module (for the adjoint representation). An L-submodule
is just an ideal, so it follows that a simple algebra L is irreducible as L-module,
while a semisimple algebra is completely reducible (Theorem 5.2).

For later use we mention a couple of standard ways in which to fabricate
new L-modules from old ones. Let ¥ be an L-module. Then the dual vector
space V* becomes an L-module (called the dual or contragredient) if we define,
for fe V*, veV, xe L: (x.f) (v) = —f(x.v). Axioms (M1), (M2) are almost
obvious, so we just check (M3):

(xy1.f) (v) = —f([xyl0)
= —f(x.yv—y.x.v)
= —f(x.y.0) +f(y.x.v)
= (x.f)(p0)=.f) (x.v)
= —(-x.f) )+ (xy.f) @
= ((x.y=y.x).f) (V).

If V, W are L-modules, let V' ® W be the tensor product over F of the
underlying vector spaces. Recall that if ¥, W have respective bases (v, . . .,
v,) and (wy, ..., w,), then ¥ ® W has a basis consisting of the mn vectors
v; ® w;. The reader may know how to give a module structure to the tensor
product of two modules for a group G: on the generators v ® w, require
g.(v® w) = g.v ® g.w. For Lie algebras the correct definition is gotten by
“differentiating” this one: x.(v ® w) = x.v ® w+v ® x.w. As before, the
crucial axiom to verify is (M3):

[xyl.(v ® w) = [xy]l.o ® w+v ® [xy]l.w
= (x.yv—y.x0) ® w+v ® (x.y.w—y.x.w)
=xyo @ w+v ® x.y.w)—(¥.xv ® w+v ® y.x.w).
Expanding (x.y —y.x).(t®@ w) yields the same result.
Given a vector space V over F, there is a standard (and very useful)

isomorphism of vector spaces: V* ® ¥V — End V, given by sending a typical
generator f® v (fe V* ve V) to the endomorphism whose value at we V'
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is f(w)v. It is a routine matter (using dual bases) to show that this does set
up an epimorphism ¥V* ® ¥V — End V; since both sides have dimension n?
(n = dim V), this must be an isomorphism.

Now if ¥ (hence V*) is in addition an L-module, then V* ® V becomes
an L-module in the way described above. Therefore, End ¥ can also be
viewed as an L-module via the isomorphism just exhibited. This action of
L on End V can also be described directly: (x.f) (v) = x.f(v)—f(x.v), xe L,
feEnd V, ve V (verify!). More generally, if ¥ and W are two L-modules,
then L acts naturally on the space Hom (¥, W) of linear maps by the rule
(x.f) (v) = x.f(v)—f(x.v). (This action arises from the isomorphism between
Hom (V, W) and V* ® W.)

6.2. Casimir element of a representation

In §5 we used Cartan’s trace criterion for solvability to prove that a
semisimple Lie algebra L has nondegenerate Killing form. More generally,
let L be semisimple and let ¢: L — gl(V) be a faithful (i.e., 1-1) representa-
tion of L. Define a symmetric bilinear form B(x, y) = Tr(#(x)$(y)) on L.
The form B is associative, thanks to identity (*) in (4.3), so in particular its
radical S is an ideal of L. Moreover, B is nondegenerate: indeed, Theorem
4.3 shows that ¢(S) >~ S is solvable, so S = 0. (The Killing form is just 8 in
the special case ¢ = ad.)

Now let L be semisimple, 8 any nondegenerate symmetric associative
bilinear form on L. If (x,, ..., x,) is a basis of L, there is a uniquely deter-
mined dual basis (y,, . . ., y,) relative to g, satisfying B(x;, y;) = 8,;. If x e L,
we can write [xx;] = Za,} 5 and [xy;] = Zb,-jyj. Using the associativity

of B, we compute: ay = ¥ ayB(x;, ¥ = Alxx], 1) = B(=Dxixl, %) =
Bl —[xnd) = — 3 buBxs 3) = —b,

If : L — gl( V)Jis any representation of L, write c4(8) = Z d(x)p(y,) €
End V (x;, y; running over dual bases relative to 3, as above’). Using the

identity (in End V) [x, yz] = [x, y]z+y[x, 2] and the fact that a, = —b;
(for x € L as above), we obtain: [¢(x), c¢,(B)] = Z [b(x), p(x)b(yy) + Z #(x;)

[$(x), ¢(y)] = Za.,¢(x NPy + Z bijp(x)$(y;) = 0. In other words, c4(B)

is an endomorphtsm of V commutmg with ¢(L).

To bring together the preceding remarks, let ¢: L — gl(¥) be a faithful
representation, with (nondegenerate!) trace form B(x, y) = Tr(¢(x)¢(»)). In
this case, having fixed a basis (x, . . ., x,) of L, we write simply c,, for c4(8)
and call this the Casimir element of ¢. Its trace is Y Tr(¢(x)d(y;) =

Z B(x;,y)=dimL. In case ¢ is also irreducible, Schur’s Lemma (6.1)

implies that c, is a scalar (equal to dimL/dimV, in view of the preceding
sentence); in this case we see that c, is independent of the basis of L which
we chose.
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Example. L = sl(2, F), V = F?, ¢ the identity map L — gl(V). Let
(x, h, y) be the standard basis of L (2.1). It is quickly seen that the dual
basis relative to the trace form is (y, /2, x), so ¢, = xy+(1/2)h* +yx =
(3(/)2 3(/’2) . Notice that 3/2 = dim L/dim V.

When ¢ is no longer faithful, a slight modification is needed. Ker ¢ is an
ideal of L, hence a sum of certain simple ideals (Corollary 5.2). Let L’
denote the sum of the remaining simple ideals (Theorem 5.2). Then the
restriction of ¢ to L’ is a faithful representation of L’, and we make the
preceding construction (using dual bases of L’); the resulting element of
End V is again called the Casimir element of ¢ and denoted c,4. Evidently
it commutes with ¢(L) = (L"), etc.

One last remark: It is often convenient to assume that we are dealing
with a faithful representation of L, which amounts to studying the repre-
sentations of certain (semisimple) ideals of L. If L is simple, only the one
dimensional module (on which L acts trivially) or the module 0 will fail to
be faithful.

6.3. Weyl’s Theorem

Lemma. Let ¢: L — gl(V) be a representation of a semisimple Lie algebra
L. Then ¢(L) = sW(V). In particular, L acts trivially on any one dimensional
L-module.

Proof. Use the fact that L = [LL] (5.2) along with the fact that sI(V) is
the derived algebra of gl(V). [

Theorem (Weyl). Let ¢: L—gl(V) be a (finite dimensional) representa-
tion of a semisimple Lie algebra. Then ¢ is completely reducible.

Proof. We start with the special case in which ¥ has an L-submodule W
of codimension one. Since L acts trivially on V/W, by the lemma, we may
denote this module F without misleading the reader: 0 - W — V —F -0
is therefore exact. Using induction on dim W, we can reduce to the case
where W is an irreducible L-module, as follows. Let W' be a proper nonzero
submodule of W. This yields an exact sequence: 0 - W/W' — V/W' —F
— 0. By induction, this sequence “splits”, i.e., there exists a one dimensional
L-submodule of V/W' (say W/W') complementary to W/W'. So we get
another exact sequence: 0 — W' — W —F — 0. This is like the original
situation, except that dim W’ < dim W, so induction provides a (one
dimensional) submodule X complementary to W' in W: W= W'® X.
But V/W' = W/W'@® W/W’. It follows that V = W @® X, since the
dimensions add up to dim ¥ and since W N X = 0.

Now we may assume that W is irreducible. (We may also assume without
loss of generality that L acts faithfully on V') Let ¢ = c, be the Casimir
element of ¢ (6.2). Since ¢ commutes with ¢(L), ¢ is actually an L-module
endomorphism of V'; in particular, ¢(W) < W and Ker c is an L-submodule
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of V. Because L acts trivially on V/W (i.e., ¢(L) sends V into W), ¢ must do
likewise (as a linear combination of products of elements ¢(x)). So ¢ has
trace 0 on V/W. On the other hand, ¢ acts as a scalar on the irreducible
L-submodule W (Schur’s Lemma); this scalar cannot be 0, because that
would force Tr,(c) = 0, contrary to the conclusion of (6.2). It follows that
Ker c is a one dimensional L-submodule of V which intersects W trivially.
This is the desired complement to W.

Now we can attack the general case. Let W be a nonzero submodule
of V: 0> W—V—V/W—0. Let Hom(V, W) be the space of linear maps
V — W, viewed as L-module (6.1). Let ¥~ be the subspace of Hom (¥, W)
consisting of those maps whose restriction to W is a scalar multiplication.
¥ is actually an L-submodule: Say f|, = a.ly; then for xe L, we W,
x.f) W) = x. f(w)—f(x.w) = a(x.w)—a(x.w) = 0, so x.f|y = 0. Let #~ be
the subspace of #” consisting of those f whose restriction to W is zero. The
preceding calculation shows that ¥~ is also an L-submodule and that L
maps ¥ into #". Moreover, ¥"/#" has dimension one, because each fe ¥~
is determined (modulo #") by the scalar f|y. This places us precisely in the
situation 0 — ¥~ — ¥~ — F — 0 already treated above.

According to the first part of the proof, ¥~ has a one dimensional sub-
module complementary to #". Let f: ¥V — W span it, so after multiplying by
a nonzero scalar we may assume that f|y = 1,. To say that L Kkills f is
just to say that 0 = (x. f) (v) = x.f(v)—f(x.v), i.e., that f is an L-homo-
morphism. Therefore Ker f is an L-submodule of V. Since f maps V into W
and acts as 1y on W, we conclude that V = W @ Ker f, as desired. []

6.4. Preservation of Jordan decomposition

Weyl’s Theorem is of course fundamental for the study of representations
of a semisimple Lie algebra L. We offer here a more immediate application,
to the problem of showing that the abstract Jordan decomposition (5.4) is
compatible with the various linear representations of L.

Theorem. Let L < gl(V) be a semisimple linear Lie algebra (V finite
dimensional). Then L contains the semisimple and nilpotent parts in gl(V) of
all its elements. In particular, the abstract and usual Jordan decompositions
in L coincide.

Proof. The last assertion follows from the first, because each type of
Jordan decomposition is unique (4.2, 5.4).

Let x € L be arbitrary, with Jordan decomposition x = x;+x, in gl(V).
The problem is just to show that x,, x, lie in L. Since ad x(L) < L, it follows
from Proposition 4.2(c) that ad x,(L) < L and ad x,(L) < L, where ad =
ad gy). In other words, x,, x, € Ny,(L) = N, which is a Lie subalgebra
of gl(V) including L as an ideal. If we could show that N = L we’d be done,
but unfortunately this is false: e.g., since L < sl(V) (Lemma 6.3), the scalars
lie in N but not in L. Therefore we need to get x;, x, into a smaller subalgebra
than N, which can be shown to equal L. If W is any L-submodule of V,
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define Ly = {ye gl(V)|[y(W) = W and Tr(y|y) = 0}. For example, L, =
sl(V). Since L = [LL]), it is clear that L lies in all such Ly. Set L’ = inter-
section of N with all spaces Ly. Clearly, L’ is a subalgebra of N including
L as an ideal (but notice that L’ does exclude the scalars). Even more is
true: If x e L, then x,, x, also lie in Ly, and therefore in L’.

It remains to prove that L = L’. L’ being a finite dimensional L-module,
Weyl’s Theorem (6.3) permits us to write L’ = L+ M for some L-submodule
M, where the sum is direct. But [L, L'] = L (since L’ < N), so the action of
L on M is trivial. Let W be any irreducible L-submodule of V. If ye M,
then [L, y] = 0, so Schur’s Lemma implies that y acts on W as a scalar.
On the other hand, Tr(y|y) = O because y € Ly. Therefore y acts on W as
zero. V can be written as a direct sum of irreducible L-submodules (by Weyl’s
Theorem), so in fact y = 0. This means M =0, L= L'. [

Corollary. Let L be a semisimple Lie algebra, ¢: L — gl(V) a (finite
dimensional) representation of L. If x = s+n is the abstract Jordan decom-
position of x € L, then ¢(x) = ¢(s)+d(n) is the usual Jordan decomposition

of $(x).

Proof. The algebra ¢(L) is spanned by the eigenvectors of ad g, #(s),
since L has this property relative to ad s; therefore, ad 1) ¢(s) is semisimple.
Similarly, ad 41y ¢(n) is nilpotent, and it commutes with ad ., ¢(s). Accord-
ingly, #(x) = ¢(s)+¢(n) is the abstract Jordan decomposition of ¢(x) in the
semisimple Lie algebra ¢(L) (5.4). Applying the theorem, we get the desired
conclusion. ]

Exercises

1. Using the standard basis for L = sl(2, F), write down the Casimir element
of the adjoint representation of L (cf. Exercise 5.5). Do the same thing
for the usual (3-dimensional) representation of sl(3, F), first computing
dual bases relative to the trace form.

2. Let V be an L-module. Prove that V is a direct sum of irreducible sub-

modules if and only if each L-submodule of ¥V possesses a complement.

. J€ L is solvable, every irreducible representation of L is one dimensional.

4. Use Weyl’s Theorem to give another proof that for L semisimple, ad L =
Der L (Theorem 5.3). [If 8 € Der L, make the direct sum F+ L into an
L-module via the rule x.(a, y) = (0, ad(x)+[xy]). Then consider a com-
plement to the submodule L.]

5. A Lie algebra L for which Rad L = Z(L) is called reductive. (Examples:
L abelian, L semisimple, L = gl(n, F).)

(a) If L is reductive, then L is a completely reducible ad L-module. [If
ad L # 0, use Weyl’s Theorem.] In particular, L is the direct sum of
Z(L) and [LL], with [LL] semisimple.

(b) If L is a classical linear Lie algebra (1.2), then L is semisimple. [Cf.
Exercise 1.9.]

w



7.1. Weights and maximal vectors 31

(c) If L is a completely reducible ad L-module, then L is reductive.

(d) If L is reductive, then all finite dimensional representations of L in
which Z(L) is represented by semisimple endomorphisms are completely
reducible.

6. Let L be a simple Lie algebra. Let 8(x,y) and y(x,y) be two symmetric
associative bilinear forms on L. If B,y are nondegenerate, prove that 8
and y are proportional. [Use Schur’s Lemma.]

7. It will be seen later on that sl(n,F) is actually simple. Assuming this and
using Exercise 6, prove that the Killing form « on 8l(n,F) is related to
the ordinary trace form by k(x,y)=2nTr(xy).

8. If L is a Lie algebra, then L acts (via ad) on (L® L)*, which may be
identified with the space of all bilinear forms 8 on L. Prove that 8 is
associative if and only if L.8=0.

9. Let L’ be a semisimple subalgebra of a semisimple Lie algebra L. If
x e L', its Jordan decomposition in L’ is also its Jordan decomposition
in L.

Notes

The proof of Weyl’s Theorem is based on Brauer [1]. The original
proof was quite different, using integration on compact Lie groups, cf.
Freudenthal, de Vries [1]. For Theorem 6.4 we have followed Bourbaki [1].

7. Representations of sl(2, F)

In this section (as in §6) all modules will be assumed to be finite dimen-
sional over F. L denotes sl(2, F), whose standard basis consists of

_ (01 _ (00 ,_(1 ©
*=loo)' 77 10)> "7 10 -1
(Example 2.1). Then [hx] = 2x, [hy] = —2y, [xy] = h.

7.1. Weights and maximal vectors

Let V be an arbitrary L-module. Since 4 is semisimple, Corollary 6.4
implies that & acts diagonally on V. (The assumption that F is algebraically
closed insures that all the required eigenvalues already lie in F.) This yields a
decomposition of ¥ as direct sum of eigenspaces V, = {ve V|hov = A},
A e F. Of course, the subspace V, still makes sense (and is 0) when A is not an
eigenvalue for the endomorphism of ¥ which represents 4. Whenever V, # 0,
we call A a weight of 4 in ¥ and we call ¥, a weight space.

Lemma. If ve V,, then xveV,,, and yveV,_,.
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Proof. h.(x.v) = [h, x]v+x.hv = 2x.0+Ax.v = (A+2)x.v, and similarly
fory. 1[I
Remark. The lemma implies that x, y are represented by nilpotent

endomorphisms of ¥; but this already follows from Theorem 6.4.

Since dim ¥V < oo, and the sum V = ]_I V, is direct, there must exist
A€F

V, # 0 such that V,,, = 0. (Thanks to the lemma, x.v = O for any ve V,.)
For such A, any nonzero vector in ¥, will be called a maximal vector of

weight A,

7.2. Classification of irreducible modules

Assume now that ¥ is an irreducible L-module. Choose a maximal
vector, say voe V5 set v_y = 0, v; = (1/i)y'.vy (i = 0).

Lemma. (a) ho; = (A—2i),,

(®) yvi = (i+ Doy,
() xv;=@A—i+1Dv,_y (= 0).

Proof. (a) follows from repeated application of Lemma 7.1, while (b) is
just the definition. To prove (c), use induction on i/, the case i = 0 being
clear (since v_, = 0, by convention). Observe that

iX.0; = X.p.0;_4 (by definition)
=[x, Y]vi— 1 +y.x0;-4
= ho;_+y.xv;_,

=A=2(—-Dw;_1+(A—i+2)y.v;_,
(by (a) and induction)

A=2i+2)v;_+(=1) A—i+2w;_, (by (b))
= iQA—i+1Do;_,.

Then divide both sides by i. [

Thanks to formula (a), the nonzero v; are all linearly independent. But
dim ¥V < oo. Let m be the smallest integer for which v, # 0, v,,,, = 0;
evidently v,,; = 0 for all i > 0. Taken together, formulas (a)-(c) show
that the subspace of V with basis (vq, vy,...,0,) is an L-submodule,
different from 0. Because V is irreducible, this subspace must be all of V.
Moreover, relative to the ordered basis (vg, v, . . ., v,), the matrices of the
endomorphisms representing x, y, h can be written down explicitly; notice
that h yields a diagonal matrix, while x and y yield (respectively) upper and
lower triangular nilpotent matrices.

A closer look at formula (c) reveals a striking fact: for i = m+1, the
left side is 0, whereas the right side is (A\—m)v,,. Since v,, # 0, we conclude
that A = m. In other words, the weight of a maximal vector is a nonnegative
integer (one less than dim V). We call it the highest weight of V. Moreover,
each weight u occurs with multiplicity one (i.e., dim V, = 1 if V, # 0),
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by formula (a); in particular, since ¥ determines A uniquely (A = dim V' —1),
the maximal vector v, is the only possible one in ¥ (apart from nonzero
scalar multiples). To summarize:

Theorem. Let V be an irreducible module for L = s1(2, F).

(@) Relative to h, V' is the direct sum of weight spaces V,, p = m, m—2,
oy, —(m—=2), —m, where m+1 = dim V and dim V, = 1 for each p.

(b) V has (up to nonzero scalar multiples) a unique maximal vector, whose
weight (called the highest weight of V) is m.

(¢) The action of L on V is given explicitly by the above formulas, if the
basis is chosen in the prescribed fashion. In particular, there exists at most one
irreducible L-module (up to isomorphism) of each possible dimension m+1,
m>0. [

Corollary. Let V be any (finite dimensional) L-module, L = sl(2, F).
Then the eigenvalues of h on V are all integers, and each occurs along with its
negative (an equal number of times). Moreover, in any decomposition of V
into direct sum of irreducible submodules, the number of summands is precisely
dim Vo+dim V.

Proof. If V = 0, there is nothing to prove. Otherwise use Weyl’s Theorem
(6.3) to write V' as direct sum of irreducible submodules. The latter are
described by the theorem, so the first assertion of the corollary is obvious.
For the second, just observe that each irreducible L-module has a unique
occurrence of either the weight O or else the weight 1 (but not both). []

For the purposes of this chapter, the theorem and corollary just proved
are quite adequate. However, it is unreasonable to leave the subject before
investigating whether or not sl(2, F) does have an irreducible module of
each possible highest weight m = 0, 1, 2, ... . Of course, we already know
how to construct suitable modules in low dimensions: the trivial module
(dimension 1), the natural representation (dimension 2), the adjoint repre-
sentation (dimension 3). For arbitrary m > 0, formulas (a)-(c) of Lemma
7.2 can actually be used to define an irreducible representation of L on an
m+ 1-dimensional vector space over F with basis (vy, vy, ..., v,), called
V(m). As is customary, the (easy) verification will be left for the reader
(Exercise 3). (For a general existence theorem, see (20.3) below.)

One further observation: The symmetry in the structure of ¥(m) can be
made more obvious if we exploit the discussion of exponentials in (2.3).
Let ¢: L — gl(V(m)) be the irreducible representation of highest weight m.
Then ¢(x), ¢(y) are nilpotent endomorphisms, in view of the formulas above,
so we can define an automorphism of V(m) by 7 = exp ¢(x) exp ¢(—y)
exp é(x). We may as well assume m > 0, so the representation is faithful
(L being simple). The discussion in (2.3) shows that conjugating ¢(h) by =
has precisely the same effect as applying exp (ad ¢(x)) exp (ad ¢(—y))
exp (ad ¢(x)) to ¢(h). But $(L) is isomorphic to L, so this can be calculated
just as in (2.3). Conclusion: r¢(h)r~' = —(h), or rd(h) = —$(h)=. From
this we see at once that = sends the basis vector v; of weight m—2i to the
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basis vector v,,_; of weight —(m—2i). (The discussion in (2.3) was limited
to the special case m = 1.) More generally, if V is any finite dimensional
L-module, then = interchanges positive and negative weight spaces.

Exercises
(In these exercises, L = sl(2, F).)

1. Use Lie’s Theorem to prove the existence of a maximal vector in an
arbitrary finite dimensional L-module. [Look at the subalgebra B spanned
by A and x.]

2. M = sl(3, F) contains a copy of L in its upper left-hand 2x 2 position.
Write M as direct sum of irreducible L-submodules (M viewed as L-
module via the adjoint representation): V(0) @ V(1) @ V(1) ® V(2).

3. Verify that formulas (a)-(c) of Lemma 7.2 do define an irreducible
representation of L. [To show that they define a representation, it suffices to
show that the matrices corresponding to x, y, h satisfy the same structural
equations as x, y, h.]

4. The irreducible representation of L of highest weight m can also be
realized ““naturally”, as follows. Let X, Y be a basis for the two dimen-
sional vector space F2, on which L acts as usual. Let # = F[X, Y] be the
polynomial algebra in two variables, and extend the action of L to #
by the derivation rule: z. fg = (z.f)g+f(z.g),forz € L, f, g € Z#. Show that
this extension is well defined and that #Z becomes an L-module. Then show
that the subspace of homogeneous polynomials of degree m, with basis X,
Xmly,..., XY™ ' Y™ is invariant under L and irreducible of
highest weight m.

5. Suppose char F=p > 0, L = sl(2, F). Prove that the representation
V(m) of L constructed as in Exercise 3 or 4 is irreducible so long as the
highest weight m is strictly less than p, but reducible when m = p.

6. Decompose the tensor product of the two L-modules V(3), ¥(7) into the
sum of irreducible submodules: V(4) @ V(6) @ V(8) @ V(10). Try to
develop a general formula for the decomposition of V(m) ® V(n).

7. In this exercise we construct certain infinite dimensional L-modules. Let
A e F be an arbitrary scalar. Let Z(X) be a vector space over F with count-
ably infinite basis (vy, vy, U,, . . .).

(a) Prove that formulas (a)-(c) of Lemma 7.2 define an L-module
structure on Z(A), and that every nonzero L-submodule of Z(A)
contains at least one maximal vector.

(b) Suppose A+ 1= is a nonnegative integer. Prove that v, is a maxi-
mal vector (e.g., A= —1, i=0). This induces an L-module homomor-
phism Z(u)i Z (M), p=A—2i, sending v, to v, Show that ¢ is a
monomorphism, and that Im ¢, Z(A)/Im ¢ are both irreducible L-
modules (but Z (A) fails to be completely reducible when i > 0).

(c) Suppose A+1 is not a nonnegative integer. Prove that Z (M) is
irreducible.
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8. Root space decomposition

Throughout this section L denotes a (nonzero) semisimple Lie algebra.
We are going to study in detail the structure of L, via its adjoint repre-
sentation. Our main tools will be the Killing form, and Theorems 6.4, 7.2
(which rely heavily on Weyl’s Theorem). The reader should bear in mind
the special case L =5[(2,F) (or more generally, s[(n,F)) as a guide to what is
going on.

8.1. Maximal toral subalgebras and roots

If L consisted entirely of nilpotent (i.e., ad-nilpotent) elements, then L
would be nilpotent (Engel’s Theorem). This not being the case, we can find
x € L whose semisimple part x; in the abstract Jordan decomposition (5.4)
is nonzero. This shows that L possesses nonzero subalgebras (e.g., the span
of such x,) consisting of semisimple elements. Call such a subalgebra toral.
The following lemma is roughly analogous to Engel’s Theorem.

Lemma. A toral subalgebra of L is abelian.

Proof. Let T be toral. We have to show that ad; x = 0 for all x in T.
Since ad x is diagonalizable (ad x being semisimple and F being algebraically
closed), this amounts to showing that ad; x has no nonzero eigenvalues.
Suppose, on the contrary, that [xy] = ay (a # 0) for some nonzero y in T.
Then ady y(x) = —ay is itself an eigenvector of ady y, of eigenvalue 0. On
the other hand, we can write x as a linear combination of eigenvectors of
adp y (¥ being semisimple also); after applying ady y to x, all that is left is a
combination of eigenvectors which belong to nonzero eigenvalues, if any.
This contradicts the preceding conclusion. []

Now fix a maximal toral subalgebra H of L, i.e., a toral subalgebra not
properly included in any other. (The notation H is less natural than 7, but
more traditional.) For example, if L = sl(n, F), it is easy to verify (Exercise
1) that H can be taken to be the set of diagonal matrices (of trace 0).

Since H is abelian (by the above lemma), ad, H is a commuting family of
semisimple endomorphisms of L. According to a standard result in linear
algebra, ad, H is simultaneously diagonalizable. In other words, L is the
direct sum of the subspaces L, = {x € L|[hx] = a(h)x for all h € H}, where
o ranges over H*. Notice that L, is simply C,(H), the centralizer of H; it
includes H, thanks to the lemma. The set of all nonzero « € H* for which
L, # 0 is denoted by @; the elements of ® are called the roots of L relative
to H (and are finite in number). With this notation we have a root space
decomposition (or Cartan decomposition): (*) L = C,(H)® [] L,. When

aed
L = sl(n, F), for example, the reader will observe that (*) corresponds to
the decomposition of L given by the standard basis (1.2). Our aim in what
follows is first to prove that H = C,(H), then to describe the set of roots in
more detail, and ultimately to show that ® characterizes L completely.
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We begin with a few simple observations about the root space decom-
position.

Proposition. For all «, B H*, [L,Lg] < L, 4. If xe L,, « # 0, then ad x
is nilpotent. If «, B e H*, and a+B # 0, then L, is orthogonal to Ly, relative
to the Killing form « of L.

Proof. The first assertion follows from the Jacobi identity: x e L,, y € L,
h e H imply that ad A([xy]) = [[Ax]y] +[x[hy]] = «(h) [xy]+B(h) [xy] = (x+B)
(h) [xy). The second assertion is an immediate consequence of the first.

For the remaining assertion, find 4 e H for which («+f) (h) # 0. Then
if xeL,, y e Lj;, associativity of the form allows us to write «([hx], y) =
—«([xh], y) = —«(x, [hy]), or a(h) k(x, y) = —B(h) «(x, y), or («+p) (h)
k(x,y) = 0. This forces «(x, y) = 0. [

Corollary. The restriction of the Killing form to L, = C(H) is non-
degenerate.

Proof. We know from Theorem 5.1 that « is nondegenerate. On the other
hand, L, is orthogonal to all L, (x €®), according to the proposition. If
ze L, is orthogonal to L, as well, then «(z, L) = 0, forcing z = 0. []

8.2. Centralizer of H

We shall need a fact from linear algebra, whose proof is trivial:

Lemma. If x, y are commuting endomorphisms of a finite dimensional
vector space, with y nilpotent, then xy is nilpotent; in particular, Tr(xy) = 0. []

Proposition. Let H be a maximal toral subalgebra of L. Then H = C (H).

Proof. We proceed in steps. Write C = C(H).

(1) C contains the semisimple and nilpotent parts of its elements. To say
that x belongs to C,(H) is to say that ad x maps the subspace H of L into
the subspace 0. By Proposition 4.2, (ad x), and (ad x), have the same property.
But by (5.4), (ad x), = ad x, and (ad x), = ad x,,.

(2) All semisimple elements of C lie in H. If x is semisimple and centralizes
H, then H+ Fx (which is obviously an abelian subalgebra of L) is toral: the
sum of commuting semisimple elements is again semisimple (4.2). By
maximality of H, H+Fx = H, so xe H.

(3) The restriction of « to H is nondegenerate. Let «(h, H) = 0 for some
h e H; we must show that # = 0. If x e C is nilpotent, then the fact that
[xH] = 0 and the fact that ad x is nilpotent together imply (by the above
lemma) that Tr(ad x ad y) = O for all y € H, or «(x, H) = 0. But then (1)
and (2) imply that «(h, C) = 0, whence & = 0 (the restriction of « to C being
nondegenerate by the Corollary to Proposition 8.1).

(4) Cisnilpotent. If x e Cis semisimple, then x € H by (2), and ad¢ x(=0) is
certainly nilpotent. On the other hand, if x € C is nilpotent, then ad; x is a
fortiori nilpotent. Now let x € C be arbitrary, x = x,+x,. Since both x;, x,



8.3. Orthogonality properties 37

lie in C by (1), ad¢ x is the sum of commuting nilpotents and is therefore
itself nilpotent. By Engel’s Theorem, C is nilpotent.

(5) Hn[CC] = 0. Since « is associative and [HC] = 0, «(H, [CC]) = 0.
Now use (3).

(6) C is abelian. Otherwise [CC] # 0. C being nilpotent, by (4), Z(C) N
[CC] # 0 (Lemma 3.3). Let z # O lie in this intersection. By (2) and (5), z
cannot be semisimple. Its nilpotent part # is therefore nonzero and lies in C,
by (1), hence also lies in Z(C) by Proposition 4.2. But then our lemma
implies that x(n, C) = 0, contrary to Corollary 8.1.

(7) C = H. Otherwise C contains a nonzero nilpotent element, x, by (1),
(2). According to the lemma and (6), «(x, y) = Tr(ad x ad y) = O for all
y € C, contradicting Corollary 8.1. [}

Corollary. The restriction of x to H is nondegenerate. [

The corollary allows us to identify H with H*: to ¢ € H* corresponds
the (unique) element ¢4 € H satisfying ¢(h) = «(t,4, h) for all h e H. In par-
ticular, ® corresponds to the subset {7,; « € ®} of H.

8.3. Orthogonality properties

In this subsection we shall obtain more precise information about the
root space decomposition, using the Killing form. We already saw (Pro-
position 8.1) that «(L,, Ls) =0 if o, Be H*, «+f # 0; in particular,
«(H, L,) = 0 for all « € D, so that (Proposition 8.2) the restriction of « to H
is nondegenerate.

Proposition. (a) ® spans H*.

) If «€®, then —ae®.

(¢c) Let ac®, xe L,, yeL_,. Then|[xy] = «(x, y)t,(t,as in (8.2)).

) If «e®, then [L,L_,] is one dimensional, with basis t,.

(e) «fty) = «(t,, t,) # 0, for o€ ®.

(f) If « e ® and x, is any nonzero element of L,, then there exists y,e L_,
such that x,, y,, h, = [x,y,] span a three dimensional simple subalgebra of L

isomorphic to sl(2, F) via x, — (g (1)) > Va2 ((1) 8) s hy ((1) _?) .
2t,

h, = ; hy= —h_,.

®) %, k(ty, 1y)

Proof. (a) If ® fails to span H*, then (by duality) there exists nonzero
h e H such that «(h) = 0 for all « € ®. But this means that [h, L,] = 0 for
all « e®. Since [hH] = 0, this in turn forces [hL] = 0, or he Z(L) = 0,
which is absurd.

(b) Let we®. If —a ¢ @ (ie., L_, = 0), then «(L,, L;) = 0 for all e H*
(Proposition 8.1). Therefore «(L,, L) = 0, contradicting the nondegeneracy
of «.

(c) Let «e®, xeL,, yeL_, Let he H be arbitrary. The associativity

of « implies: «(h, [xy]) = «x([hx], y) = a(b)x(x, y) = «(t,, H)x(x, y) =
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w(x(x, Y)t,, h) = w(h, x(x, y)t,). This says that H is orthogonal to [xy] — x(x, )¢,
forcing [xy] = «(x, y)t, (Corollary 8.2).

(d) Part (c) shows that t, spans [L,L_,], provided [L,L_,] # 0. Let
0# xeL, If «(x, L_,) = 0, then «(x, L) = 0 (cf. proof of (b)), which is
absurd since « is nondegenerate. Therefore we can find 0 # ye L_, for
which «(x, y) # 0. By (c), [xy] # 0.

(e) Suppose «(t,) = 0, so that [t,x] =0 = [t,y] for all xeL,, yeL_,.
As in (d), we can find such x, y satisfying «(x, y) # 0. Modifying one or the
other by a scalar, we may as well assume that «(x, y) = 1. Then [xy] = ¢,
by (c). It follows that the subspace S of L spanned by x, y, ¢, is a three
dimensional solvable algebra, S ~ ad, S < gl(L). In particular, ad, s is
nilpotent for all s € [SS] (Corollary 4.1A), so ad, ¢, is both semisimple and
nilpotent, i.e., ad, ?, = 0. This says that ¢, € Z(L) = 0, contrary to choice
of ¢,.

(f) Given 0 # x,€ L,, find y, e L_, such that «(x,, y,) = This

K(ter 1)
is possible in view of (¢) and the fact that «(x,, L_,) # 0. Set h, = 2t,/«(t,,

t,). Then [x,y,] = h,, by (c). Moreover, [h,x,] = 2 [tx] = 2041.)
o1,) (1)
2x,, and similarly, [4,y,] = —2y,. So x,, y,, h, span a three dimensional
subalgebra of L with the same multiplication table as ${(2, F) (Example 2.1).
(g) Recall that ¢, is defined by «(¢,, h) = a(h) (h € H). This shows that

t, = —t_, and in view of the way 4, is defined, the assertion follows. []

Xy =

8.4. Integrality properties

For each pair of roots o, —« (Proposition 8.3(b)), let S, ~ sl(2, F) be a
subalgebra of L constructed as in Proposition 8.3(f). Thanks to Weyl’s
Theorem and Theorem 7.2, we have a complete description of all (finite
dimensional) S,-modules; in particular, we can describe ad; S,,.

Fix o« € ®. Consider first the subspace M of L spanned by H along with
all root spaces of the form L_, (c € F¥). This is an S, -submodule of L, thanks
to Proposition 8.1. The weights of h, on M are the integers 0 and 2¢ =
ca(h,) (for nonzero c such that L, # 0), in view of Theorem 7.2. In particular,
all ¢ occurring here must be integral multiples of 1/2. Now S, acts trivially
on Ker «, a subspace of codimension one in H complementary to Fh,,
while on the other hand S, is itself an irreducible S,-submodule of M.
Taken together, Ker « and S, exhaust the occurrences of the weight 0 for 4,.
Therefore, the only even weights occurring in M are 0, +2. This proves that
2« is not a root, i.e., that twice a root is never a root. But then (1/2)a cannot
be a root either, so 1 cannot occur as a weight of 4, in M. The Corollary
of Theorem 7.2 implies that M = H+S,. In particular, dim L, = 1 (so S,
is uniquely determined as the subalgebra of L generated by L, and L_,), and
the only multiples of a root « which are roots are + .

Next we examine how S, acts on root spaces L;, B # +a. Set K =Y.
ieZ
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Lg. ;.- According to the preceding paragraph, each root space is one
dimensional and no 8+ix can equal 0; so K is an S,-submodule of L, with
one dimensional weight spaces for the distinct integral weights B(h,)+2i
(i € Z such that B+ iax € ®). Obviously, not both 0 and 1 can occur as weights
of this form, so the Corollary of Theorem 7.2 implies that K is irreducible.
The highest (resp. lowest) weight must be B(h,)+2q (resp. B(h,)—2r) if
q (resp. r) is the largest integer for which B+ g« (resp. B—ra) is a root.
Moreover, the weights on K form an arithmetic progression with difference 2
(Theorem 7.2), which implies that the roots 8+ ia form a string (the a-string
through B)B—ra, ..., B, ..., B+qa. Notice too that (B—ra) (h,) = —(B+qax)
(h,), or B(h,) = r—gq. Finally, observe that if «, B, «+B8€®, then ad L,
maps Ly onto L,z (Lemma 7.2), i.e., [L,Lg]=L, -
To summarize:

Proposition. (a) « € ® implies dim L, = 1. In particular, S, = L,+L_,
+H,(H, =[L,L_,), and for given nonzero x,€ L,, there exists a unique
Yo € L, satisfying [x,y,] = h,

(b) If a € ®, the only scalar multiples of « which are roots are « and — a.

(¢) If a, Be®, then B(h,) e Z, and B—B(h,)x € ®. (The numbers B(h,) are
called Cartan integers.)

@) If «, B, a+B e®, then [L,Lg] = L,,p.

(e) Let «, Be®, B # t+a. Let r, q be (respectively) the largest integers
for which B—ra, B+qa are roots. Then all B+ine® (—r < i < q), and
Blh) = r—gq.

(f) L is generated (as Lie algebra) by the root spaces L,. [

8.5. Rationality properties. Summary

L is a semisimple Lie algebra (over the algebraically closed field F of
characteristic 0), H a maximal toral subalgebra, ® = H* the set of roots of

L (relative to H), L = H + |] L, the root space decomposition.
acd

Since the restriction to H of the Killing form is nondegenerate (Corollary
8.2), we may transfer the form to H*, letting (y, 8) = «(t,, t;) for all y, 8 € H*.
We know that ® spans H* (Proposition 8.3(a)), so choose a basis a;, . . ., a,

l
of H* consisting of roots. If B € ®, we can then write 8 uniquely as 8 = ) ca;,
i=1

where ¢; e F. We claim that in fact ¢; € Q. To see this, we use a little linear
12

algebra. For each j =1,..., 4, (B, ;) = ¥ ci(«;, «;), so multiplying both

. . : 2(0‘,', aj)
sides by 2/(«;, «;) yields: 2(8, a;)/(a;, «;) = Y, 0 )
=1\, &;
as a system of Z equations in £ unknowns c;, with integral (in particular,
rational) coefficients, thanks to Proposition-8.4(c). Since («,...,«,) is a
basis of H*, and the form is nondegenerate, the matrix ((x;, «;)),<; j<, IS

nonsingular; so the same is true of the coefficient matrix of this system of

¢;. This may be viewed
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equations. We conclude that the equations already possess a unique
solution over Q, thereby proving our claim.

We have just shown that the Q-subspace Eq of H* spanned by all the
roots has Q-dimension /=dim; H*. Even more is true: Recall that for
Ape H*, A p)=x(t,t,)=2a(t)a(t,)=2(a,A)(a,p), where the sum is
over a € ®. In partlcular for B e ®, (B B)=3(a, 8)*. Dividing by (S,8)%
we get 1/(8,8)=2(a, 8)*/(B,B)?, the latter in Q because 2(a,B)/(B,8)
e Z by Proposition 8.4(c). Therefore (8,8) € Q, and in turn, (a,8) € Q. It
follows that all inner products of vectors in E, are rational, so we obtain a
nondegenerate form on Eq. As above, (\,A)=Z(a,\)?, so that for Ae Eo
(A, A) is a sum of squares of rational numbers and hence is positive (unless
A=0). Therefore, the form on Eg, is positive definite.

Now let E be the real vector space obtained by extending the base field
from Q to R: E = R ®¢ Eq. The form extends canonically to E and is positive
definite, by the preceding remarks, i.e., E is a euclidean space. ® contains a
basis of E, and dimg E = 7. The following theorem summarizes the basic
facts about @: cf. Propositions 8.3(a) (b) and 8.4(b) (c).

Theorem. L, H, ®, E as above. Then:

(a) © spans E, and O does not belong to ®.
b) If x€® then —a e ®, but no other scalar multiple of « is a root.

() If a, BeD, then B — ((B:;) ed.
(d) If a, BeD, then (,8 %) eZ. 0

In the language of Chapter III, the theorem asserts that @ is a root system
in the real euclidean space E. We have therefore set up a correspondence
(L, H)— (®, E). Pairs (@, E) will be completely classified in Chapter III.
Later (Chapters IV and V) it will be seen that the correspondence here is
actually 1-1, and that the apparent dependence of ® on the choice of H is
not essential.

Exercises

1. If L is a classical linear Lie algebra of type A,, B,, C,, or D, (see (1.2)),
prove that the set of all diagonal matrices in L is a maximal toral sub-
algebra, of dimension 7. (Cf. Exercise 2.8.)

2. For each algebra in Exercise 1, determine the roots and root spaces.
How are the various &, expressed in terms of the basis for H given in
1.2)?

3. If L is of classical type, compute explicitly the restriction of the Killing
form to the maximal toral subalgebra described in Exercise 1.

4. If L = sl(2, F), prove that each maximal toral subalgebra is one
dimensional.

5. If L is semisimple, H a maximal toral subalgebra, prove that H is self-
normalizing (i.e., H = N (H)).
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6.

7.

10.

11.

Compute the basis of sl(rn, F) which is dual (via the Killing form) to
the standard basis. (Cf. Exercise 5.5.)

Let L be semisimple, H a maximal toral subalgebra. If # e H, prove
that Cp(h) is reductive (in the sense of Exercise 6.5). Prove that H
contains elements / for which C,(h) = H; for which 4 in sl(n, F) is this
true?

. For sl(n, F) (and other classical algebras), calculate explicitly the root

strings and Cartan integers. In particular, prove that all Cartan integers

2(a, P)/(B, B), « # £B, for sl(n, F) are 0, +1.

Prove that every three dimensional semisimple Lie algebra has the same
root system as sl(2, F), hence is isomorphic to s1(2, F).

Prove that no four, five or seven dimensional semisimple Lie algebras

exist.
If (¢, B) > 0, prove that a—B e ® («, B € ®). Is the converse true?

Notes

The use of maximal toral subalgebras rather than the more traditional

(but equivalent) Cartan subalgebras is suggested by the parallel theory of
semisimple algebraic groups: cf. Borel [1], Seligman [2], Winter [1].
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Root Systems

9. Axiomatics

9.1. Reflections in a euclidean space

Throughout this chapter we are concerned with a fixed euclidean space E,
i.e., a finite dimensional vector space over R endowed with a positive definite
symmetric bilinear form («, B). Geometrically, a reflection in E is an invertible
linear transformation leaving pointwise fixed some hyperplane (subspace of
codimension one) and sending any vector orthogonal to that hyperplane
into its negative. Evidently a reflection is orthogonal, i.e., preserves the inner
product on E. Any nonzero vector « determines a reflection o,, with reflecting
hyperplane P, = {8 € E|(B, «) = 0}. Of course, nonzero vectors proportional
to « yield the same reflection. It is easy to write down an explicit formula:

o) = p - B9
(o, @)
points in P,.) Since the number 2(8, «)/(«, ) occurs frequently, we abbreviate
it by (B, «). Notice that (B, «) is linear only in the first variable.

For later use we record the following fact.

a. (This works, because it sends « to —a and fixes all

Lemma. Let @ be a finite set which spans E. Suppose all reflections o (o € D)
leave @ invariant. If o € GL(E) leaves ® invariant, fixes pointwise a hyperplane
P of E, and sends some nonzero o € @ to its negative, then ¢ = o, (and P = P)).

Proof. Let 7 = oo, (=00, ). Then +(®) = ®, 7(«) = «, and 7 acts as
the identity on the subspace R as well as on the quotient E/Ra«. So all eigen-
values of 7 are 1, and the minimal polynomial of = divides (T—1)’ (£ =
dim E). On the other hand, since @ is finite, not all vectors B, =(B), . . . , ™(B)
(Be®d, k = Card ®) can be distinct, so some power of = fixes B. Choose k
large enough so that * fixes all B € ®. Because ® spans E, this forces ¥ = 1;
so the minimal polynomial of = divides 7¥—1. Combined with the previous
step, this shows that = has minimal polynomial T—1 = g.c.d. (T*—1,(T—1)"),
e, r=1. []

9.2. Root systems

A subset @ of the euclidean space E is called a root system in E if the
following axioms are satisfied:

(R1) @ is finite, spans E, and does not contain 0.

(R2) If a € ®, the only multiples of « in ® are +a.

(R3) If « € @, the reflection o, leaves ® invariant.

(R4) If «, Be®, then <{B, a) e Z.

42
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There is some redundancy in the axioms; in particular, both (R2) and
(R3) imply that ® = —®. In the literature (R2) is sometimes omitted, and
what we have called a “root system” is then referred to as a “‘reduced root
system” (cf. Exercise 9). Notice that replacement of the given inner product
on E by a positive multiple would not affect the axioms, since only ratios of
inner products occur.

Let ® be a root system in E. Denote by #~ the subgroup of GL(E)
generated by the reflections o,(« € ®). By (R3), #" permutes the set ®, which
by (R1) is finite and spans E. This allows us to identify #~ with a subgroup
of the symmetric group on @; in particular, #" is finite. #" is called the Weyl
group of @, and plays an extremely important role in the sequel. The following
lemma shows how certain automorphisms of E act on #” by conjugation.

Lemma. Let ® be a root system in E, with Weyl group #". If o € GL(E)
leaves ® invariant, then oo,0™" = o, for all xc®, and (B, «) = {(a(B),
o(a)) for all «, Be®.

Proof. oo,0” (o(B)) = oo, (B) €D, since o,(B) € D. But this equals o(8—
(B, a> a) = o(B)— (B, ) o(a). Since o(f) runs over ® as B runs over ®, we
conclude that oo,0~" leaves @ invariant, while fixing pointwise the hyper-
plane o(P,) and sending o(«) to —o(x). By Lemma 9.1, oo,0™ ' = o,,,. But
then, comparing the equation above with the equation o,,\(a(B)) = o(B)—
(o(B), o)) o(a), we also get the second assertion of the lemma. []

There is a natural notion of isomorphism between root systems @, @’
in respective euclidean spaces E, E': Call (®, E) and (®’, E’) isomorphic if
there exists a vector space isomorphism (not necessarily an isometry) ¢:
E — E’ sending @ onto @’ such that {¢(B), #(«)> = {B, o) for each pair of
roots a, B e®. It follows at once that oy,\(4(8)) = ¢(o,(B)). Therefore an
isomorphism of root systems induces a natural isomorphism o+ ¢ o oo ¢~ *
of Weyl groups. In view of the lemma above, an automorphism of ® is the
same thing as an automorphism of E leaving @ invariant. In particular, we
can regard ¥~ as a subgroup of Aut @ (cf. Exercise 6).

. . 2
It is useful to work not only with « but also with «' = X call

(o, @)
¥ = {«'|a e D} the dual (or inverse) of ®. It is in fact a root system in E,
whose Weyl group is canonically isomorphic to %~ (Exercise 2). (In the Lie
algebra situation of §8, « corresponds to 7,, while «' corresponds to 4,,
under the Killing form identification of H* with H.)

9.3. Examples

Call £ = dim E the rank of the root system ®. When £ < 2, we can
describe @ by simply drawing a picture. In view of (R2), there is only one
possibility in case £ = 1, labelled (A)):

<~
— x
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Of course, this actually is a root system (with Weyl group of order 2); in
Lie algebra theory it belongs to sl(2, F).

Rank 2 offers more possibilities, four of which are depicted in Figure 1
(these turn out to be the only possibilities). In each case the reader should
check the axioms directly and determine ¥".

Al X Al AZ
. B
< > B < > o
Bz G2
B ’ {
B
< o [43
v
Figure 1

9.4. Pairs of roots

Axiom (R4) limits severely the possible angles occurring between pairs
of roots. Recall that the cosine of the angle 6 between vectors «, B eE is

given by the formula |j«|| ||3]| cos 6 = («, B). Therefore, {B, a)> = 2(—(18—’—0;) =
a, o
|
2 ”—B] cos 8 and {a, B> (B, «» = 4 cos? 8. This last number is a nonnegative

flec]
integer; but 0 < cos? 8 < 1, and <{a, 8, {8, «) have like sign, so the following
possibilities are the only ones when « # +8 and ||B]] > |l«|| (Table 1).
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Table 1.
o, B (B, o> 6 1817/ lle 2

0 0 w2 undetermined
1 1 /3 1

-1 -1 27/3 1
1 2 /4 2

-1 -2 377/4 2
1 3 /6 3

-1 -3 S5m/6 3

The reader will observe that these angles and relative lengths are just the
ones portrayed in Figure 1 (9.3). (For A, x A, it is harmless to change scale
in one direction so as to insure that |j«|| = |||l.) The following simple but
very useful criterion can be read off from Table 1.

Lemma. Let «, B be nonproportional roots. If («, ) > 0 (i.e., if the angle
between o and B is strictly acute), then «—pB is a root. If («, B) < 0, then o+
is a root.

Proof. The second assertion follows from the first (applied to —p in
place of B). Since («, B) is positive if and only if {«, 8> is, Table 1 shows that
one or the other of {«, B>, (B, «> equals 1. If («, 8> = 1, then oy(a) = a—f €
@ (R3); similarly, if {8, «) = 1, then B—oa e ®, hence oy_ (B—a) = a—f €
o. 0

As an application, consider a pair of nonproportional roots «, 8. Look
at all roots of the form B+ix (i € Z), the a-string through B. Let r, ge Z*
be the largest integers for which f—rx € @, B+qo € @ (respectively). If some
B+ix¢®(—r < i < gq),wecanfind p < sin this interval such that B+ pa € @,
B+(p+Dag¢®, B+(s—1)a ¢ D, B+5«c®, But then the lemma implies both
(2, B+pa) = 0, (a, B+52) < 0. Since p < s and («, «) > 0, this is absurd.
We conclude that the a-string through B is unbroken, from B—ro to B+ ga.
Now o, just adds or subtracts a multiple of « to any root, so this string is
invariant under o,. Geometrically, it is obvious that o, just reverses the
string (the reader can easily supply an algebraic proof). In particular,
o (B+qa) = B—ra. The left side is f— (B, ad>a—qa, so finally we obtain:
r—q = {B, «) (cf. Proposition 8.4(e)). It follows at once that root strings are
of length at most 4.

Exercises
(Unless otherwise specified, ® denotes a root system in E, with Weyl
group W".)

1. Let E’ be a subspace of E. If a reflection ¢, leaves E’ invariant, prove that
either x ¢ E' orelse E' < P,.
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Prove that ®' is a root system in E, whose Weyl group is naturally
isomorphic to ¥ show also that («*, B*> = (B, a), and draw a picture
of @' in the cases A, A,, B,, G,.

. In Table 1, show that the order of o0, in #" is (respectively) 2, 3, 4, 6

when 6 = 7/2, 7/3 (or 2=/3), =/4 (or 3=/4), =/6 (or 57/6). [Note that
0,05 = rotation through 26.]

. Prove that the respective Weyl groups of A; x A, A,, B,, G, are dihedral

of order 4, 6, 8, 12. If @ is any root system of rank 2, prove that its Weyl
group must be one of these.

. Show by example that «—f may be a root even when («, ) < 0 (cf.

Lemma 9.4).

. Prove that ¥ is a normal subgroup of Aut ® (=group of all iso-

morphisms of ® onto itself).

. Let o, B € ® span a subspace E’ of E. Prove that E’ N @ is a root system

in E’. Prove similarly that ® N (Za+ZB) is a root system in E’ (must this
coincide with E’ " ®?). More generally, let ®' be a nonempty subset of
® such that @’ = —®’, and such that «, 3 € ®’, x+ € D implies x+B € D',
Prove that @’ is a root system in the subspace of E it spans. [Use Table 1].

. Compute root strings in G, to verify the relation r—q = (B, a).
. Let @ be a set of vectors in a euclidean space E, satisfying only (R1),

(R3), (R4). Prove that the only possible multiples of « € ® which can be
in® are +1/2 a, +a, +2«. Verify that {« e®22 ¢ D} is a root system.
Example: See Figure 2.

Figure 2
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10. Let o, B e ®@. Let the a-string through 8 be B—ra, ..., B+ga, and let the
qr+1)  ¢'(r'+1)
8,8 (o, 2)
11. Let ¢ be a positive real number. If @ possesses any roots of squared
length ¢, prove that the set of all such roots is a root system in the
subspace of E it spans. Describe the possibilities occurring in Figure 1.

B-string through e« be « —r'B, . . ., «+¢'B. Prove that

Notes

The axiomatic approach to root systems (as in Serre (2], Bourbaki [2])
has the advantage of providing results which apply simultaneously to Lie
algebras, Lie groups, and linear algebraic groups. For historical remarks,
consult Bourbaki [2].

10. Simple roots and Weyl group

Throughout this section ® denotes a root system of rank ¢ in a euclidean
space E, with Weyl group #".

10.1. Bases and Weyl chambers

A subset A of @ is called a base if:
(B1) A is a basis of E,
(B2) each root B can be written as 8 = X k,« (a € A) with integral co-
efficients k, all nonnegative or all nonpositive.
The roots in A are then called simple. In view of (B1), Card A = 7, and the
expression for B in (B2) is unique. This allows us to define the height of a
root (relative to A)by ht 8 = Y k,. If all k, > O (resp. all k, < 0), we call

aeA

B positive (resp. negative) and write 8 > 0 (resp. B < 0). The collections of
positive and negative roots (relative to A) will usually just be denoted ®*
and @~ (clearly, @~ = —®*). If « and B are positive roots, and «+8 is a
root, then evidently «+ 8 is also positive. Actually, A defines a partial order
on E, compatible with the notation « > 0: define 8 < « iff x—B is a sum of
positive roots (equivalently, of simple roots) or 8 = «.

The only problem with the definition of base is that it fails to guarantee
existence. In the examples shown in (9.3), the roots labelled «, 8 do form a
base in each case (verify!). Notice there that the angle between « and B is
obtuse, i.e., («, B) < 0. This is no accident.

Lemma. If A is a base of ®, then («,B) < 0 for « # B in A, and «—B is not
a root.

Proof. Otherwise («, B) > 0. Since « # B, by assumption, and since
obviously « # —pB, Lemma 9.4 then says that « — B is a root. But this violates
(B2). O
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Our goal is the proof of the following theorem.

Theorem. @ has a base.

The proof will in fact yield a concrete method for constructing all possible
bases. For each vector y € E, define ®*(y) = {a e ®|(y, ) > 0} = the set of
roots lying on the “positive” side of the hyperplane orthogonal to y. It is
an elementary fact in euclidean geometry that the union of the finitely
many hyperplanes P, (« € ®) cannot exhaust E (we leave to the reader the

task of formulating a rigorous proof). Call y e E regular if ycE — (J P,,
aed

singular otherwise. When y is regular, it is clear that ® = ®*(y) U -D*(y).
This is the case we shall now pursue. Call « € ®*(y) decomposable if « =
B, +B, for some B; e ®*(y), indecomposable otherwise. Now it suffices to
prove the following statement.

Theorem'. Let v ¢ E be regular. Then the set A(y) of all indecomposable
roots in ®*(y) is a base of ®, and every base is obtainable in this manner.

Proof. This will proceed in steps.

(1) Each root in ®*(y) is a nonnegative Z-linear combination of A(y).
Otherwise some « € ®*(y) cannot be so written; choose « so that (y, «) is as
small as possible. Obviously « itself cannot be in A(y), so « = B;+8,
(B; € ®*(y)), whence (y, o) = (v, B;)+(y, B,). But each of the (y, B;) is posi-
tive, so B, and 8, must each be a nonnegative Z-linear combination of A(y)
(to avoid contradicting the minimality of (y, «)), whence « also is. This
contradiction proves the original assertion.

(2) If a, BeA(y), then («, B) < 0 unless « = B. Otherwise «—f is a root
(Lemma 9.4), since B clearly cannot be —a, so a—fB or B—a is in ®*(y).
In the first case, « = B+ (x—p), which says that « is decomposable; in the
second case, B = a+(B—«a) is decomposable. This contradicts the assump-
tion.

(3) A(y) is a linearly independent set. Suppose Zr,a = 0 (o € A(y), r, € R).
Separating the indices « for which r, > 0 from those for which r, < 0, we
can rewrite this as Zs,a = Xy (s,, 15 > 0, the sets of «’s and B’s being
disjoint). Call ¢ = Zs,a. Then (¢, &) = Y s,#; (a, f) < 0 by step (2), forcing

a,B
e = 0. Then 0 = (y, &) = Zs,(y, «), forcing all s, = 0. Similarly, all 7, = 0.
(This argument actually shows that any set of vectors lying strictly on one
side of a hyperplane in E and forming pairwise obtuse angles must be linearly
independent.)

(4) A(y) is a base of ®. Since ® = ®*(y) U — ®*(y), the requirement
(B2) is satisfied thanks to step (1). It also follows that A(y) spans E, which
combined with step (3) yields (B1).

(5) Each base A of ® has the form A(y) for some regular v € E. Given A,
select y € E so that (y, «) > O for all « € A. (This is possible, because the
intersection of “positive” open half-spaces associated with any basis of E
is nonvoid (Exercise 7).) In view of (B2), y is regular and ®* < ®*(y),
®~ < —®*(y) (so equality must hold in each instance). Since ®* = @7 (y),
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A clearly consists of indecomposable elements, i.e., A < A(y). But Card
A = Card A(y) = 7, so A = A(y). 1[I

It is useful to introduce a bit of terminology. The hyperplanes P, (x € @)
partition E into finitely many regions; the connected components of E — () P,

are called the (open) Weyl chambers of E. Each regular y e E therefore belongs
to precisely one Weyl chamber, denoted §(y). To say that C(y) = C(y') is
just to say that vy, ¢’ lie on the same side of each hyperplane P, (« € D), i.e.,
that ®*(y) = ®*(y"), or A(y) = A(y’). This shows that Weyl chambers are in
natural 1-1 correspondence with bases. Write €(A) = E(y) if A = A(y), and
call this the fundamental Weyl chamber relative to A. €(A) is the open convex
set (intersection of open half-spaces) consisting of all y € E which satisfy the
inequalities (y, ) > 0 (« € A). In rank 2, it is easy to draw the appropriate
picture; this is done in Figure 1 for type A,. Here there are six chambers,
the shaded one being fundamental relative to the base {«, B}.

The Weyl group obviously sends one Weyl chamber onto another:
explicitly, o(€(y)) = €(oy), if 0¥ and v is regular. On the other hand,
W~ permutes bases: o sends A to o(A), which is again a base (why?). These
two actions of ¥~ are in fact compatible with the above correspondence

_

Figure 1
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between Weyl chambers and bases; we have o(A(y)) = A(oy), because
(oy, oa) = (y, ).

10.2. Lemmas on simple roots

Let A be a fixed base of ®. We prove here several very useful lemmas
about the behavior of simple roots.

Lemma A. If « is positive but not simple, then «—f is a root (necessarily
positive) for some B e A.

Proof. If («, B) < O for all B €A, the parenthetic remark in step (3) in
(10.1) would apply, showing that A U {«} is a linearly independent set. This
is absurd, since A is already a basis of E. So («, f) > 0 for some 8 €A and
then « — B € @ (Lemma 9.4, which applies since 8 cannot be proportional to «).

Write « = ) k,y (all k, > 0, some k, > O for y # f). Subtracting 8 from «
veA
yields a Z-linear combination of simple roots with at least one positive

coefficient. This forces all coeflicients to be positive, thanks to the uniqueness
of expression in (B2). []

Corollary. Each Be®* can be written in the form o, +...+o; (x; €A,
not necessarily distinct) in such a way that each partial sum o, +. . .+a; is a
root.

Proof. Use the lemma and induction on ht 8. []

Lemma B. Let « be simple. Then o, permutes the positive roots other than .

Proof. Let Be ®* — {a}, B = Y k,y (k, e Z"). It is clear that B is not pro-
portional to «. Therefore, k, # 6E?or some y # a. But the coefficient of y in
o,(B) = B—{B, o) ais still k,. In other words, o,(B) has at least one positive

coefficient (relative to A), forcing it to be positive. Moreover, o,(B) # «,
since « is the image of —a. [

Corollary. Ser & = 4 B. Then o,(8) = 8—ua for all acA.
50

Proof. Obvious from the lemma. []

Lemma C. Let ay,...,«, €A (not necessarily distinct). Write o; = o,,.

If o,...0,_(a) is negative, then for some index 1 < s <t o...0, =

O .. 0 1 Ogiq...00 1.

Proof. Write B, =0;4,...0,_4(2,), 0 <i<t-2, B,_; = . Since
Bo <0 and B,_, >0, we can find a smallest index s for which S, > 0.
Then o(B,) = B,_; < 0, and Lemma B forces B, = «,. In general (Lemma
9.2), o € ¥ implies o,,, = oo,0”'; so in particular, o, = (0,4, ... 0,_,)o,
(64— ...054,) which yields the lemma. []

Corollary. If 0 = o, ... o, is an expression for o € W~ in terms of reflections
corresponding to simple roots, with t as small as possible, then o(«,) < 0. []
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10.3. The Weyl group

Now we are in a position to prove that %" permutes the bases of @ (or,
equivalently, the Weyl chambers) in a simply transitive fashion and that %~
is generated by the “simple reflections” relative to any base A (i.e., by the
o, for a € A).

Theorem. Let A be a base of ®.

(o) If y € E, y regular, there exists o € #" such that (o(y), @) > 0 for all
ael (so W acts transitively on Weyl chambers).

(b) If A’ is another base of @, then o(A") = A for some a € W (so W acts
transitively on bases).

(¢) If « is any root, there exists o € W~ such that o(x) € A.

(d) W is generated by the o, (« € A).

() If o(A) = A, oW, then o =1 (so W acts simply transitively on
bases).

Proof. Let #' be the subgroup of #~ generated by all o, (« € A). We shall
prove (a)—(c) for #7', then deduce that #"' = %",
(a) Write 8 = 1Y «, and choose o e #" for which (a(y), 9) is as big as

a>0
possible. If « is simple, then of course o,0 is also in #”, so the choice of ¢

implies that (o(y), 8) > (0,0(y), 8) = (a(y), 0,(9)) = (o(y), 8—) = (o(y), J)
—(a(y), o) (Corollary to Lemma 10.2B). This forces (¢(y), «) = 0 for all
e A. Since y is regular, we cannot have (o(y), «) = 0 for any «, because
then y would be orthogonal to o~ 'a. So all the inequalities are strict. There-
fore o(y) lies in the fundamental Weyl chamber §(A), and ¢ sends E(y) to
&(A) as desired.

(b) Since #"' permutes the Weyl chambers, by (a), it also permutes the
bases of @ (transitively).

(c) In view of (b), it suffices to prove that each root belongs to at least
one base. Since the only roots proportional to « are +«, the hyperplanes
Py (B # +o) are distinct from P,, so there exists y € P,, y ¢ Py (all B # t«)
(why?). Choose y’ close enough to y so that (y', o) = & > 0 while |(y', )| > &
for all B # + «. Evidently « then belongs to the base A(y").

(d) To prove #"' = #", it is enough to show that each reflection o,
(xe®) is in #"'. Using (c); find o ¢ ¥ such that § = o(«) € A. Then o, =
Opq) = 00,0 ', 50 0, = 0 'oyoe W,

(e) Let o(A) = A, but o # 1. If ¢ is written minimally as a product of
one or more simple reflections (which is possible, thanks to (d)), then the
Corollary to Lemma 10.2C is contradicted. []

We can use the lemmas of (10.2) to explore more precisely the significance
of the generation of " by simple reflections.

When oe ¥ is written as o, ...0, (x; €A, t minimal), we call the
expression reduced, and write /(o) = ¢: this is the length of o, relative to A.
By definition, #£(1) = 0. We can characterize length in another way, as
follows. Define n(¢) = number of positive roots o for which o(«) <O.
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Lemma A. For all s e W, {(0) = n(o).

Proof. Proceed by induction on #(o). The case £(¢) = 0 is clear: £(c) = 0
implies o = 1, so n(o) = 0. Assume the lemma true for all re#  with
/Ar) < o). Write ¢ in reduced form as ¢ = o,, ... 0,, and set « = «,. By
the Corollary of Lemma 10.2C, o(x) < 0. Then Lemma 10.2B implies that
n(oo,) = n(c)—1. On the other hand, Aoo,) = fo)—1 < o), so by induc-
tion #(o0,) = n(oo,). Combining these statements, we get (o) = n(c). [

Next we look more closely at the simply transitive action of #~ on
Weyl chambers (parts (a) and (e) of the theorem). The next lemma shows
that the closure ©(A) of the fundamental Weyl chamber relative to A is a
fundamental domain for the action of #~ on E, i.e., each vector in E is # -
conjugate to precisely one point of this set (cf. Exercise 14).

Lemma B. Let A\,p e €(A). If 6A=p for some o ¢ W, then ¢ is a product
of simple reflections which fix \; in particular, A= p.

Proof. Use induction on £(o), the case £(c)=0 being clear. Let £(0)> 0.
By Lemma A, ¢ must send some positive root to a negative root; so o
cannot send all simple roots to positive roots. Say ca<O0(aE€A). Now
0> (p,00)=(c  'u,a)=(,a) =0, because A, e €(A). This forces (\,a)=
0,0,A=A,(00,)A=pu. Thanks to Lemma 10.2B (and Lemma A), £(g0,)=
(o) —1, so induction may be applied. [

10.4. Irreducible root systems

® is called irreducible if it cannot be partitioned into the union of two
proper subsets such that each root in one set is orthogonal to each root in
the other. (In (9.3), A,, A,, B,, G, are irreducible, while A, x A, is not.)
Suppose A is a base of ®. We claim that ® is irreducible if and only if A
cannot be partitioned in the way just stated. In one direction, let ® = ®, U ®,,
with (®,, ®,) = 0. Unless A is wholly contained in ®, or ®,, this induces a
similar partition of A; but A < ®, implies (4, ®,) =0, or (E, ®,) =0,
since A spans E. This shows that the “if”* holds. Conversely, let ® be irre-
ducible, but A = A, U A, with (A, A,) = 0. Each root is conjugate to a
simple root (Theorem 10.3(c)), so ® = @, U ®,, @, the set of roots having
a conjugate in A;. Recall that («, B) = 0 implies o,05 = 0;0,. Since # is
generated by the o, (x € A), the formula for a reflection makes it clear that
each root in @, is gotten from one in A; by adding or subtracting elements
of A;. Therefore, ®; lies in the subspace E; of E spanned by A;, and we see
that (®,, ®,) = 0. This forces ®;, = o or ®, = @, whence A; = @ or
A, = o.

Lemma A. Let @ be irreducible. Relative to the partial ordering <, there
is a unique maximal root B (in particular, « # B implies ht x < ht B, and (B, «)
> 0 for all acA). If B = Zk,o (x€A) then all k, > 0.
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Proof. Let B = Zk,x (xeA) be maxXimal in the ordering; evidently
B>0.IfA; = {xcAlk, > C}and A, = {xeAlk, = 0}, thenA = A, UA,
is a partition. Suppose A, is nonvoid. Then («, B) < 0 for any « € A, (Lemma
10.1); since @ is irreducible, at least one « € A, must be nonorthogonal to A,
forcing (x, «’) < 0 for some o’ € A, whence («, B) < 0. This implies that
B+« is a root (Lemma 9.4), contradicting the maximality of 8. Therefore A,
is empty and all k, > 0. This argument shows also that («, 8) > 0 for all
a €A (with (¢, B) > O for at least one «, since A spans E). Now let B’ be
another maximal root. The preceding argument applies to 8’, so B’ involves
(with positive coefficient) at least one « € A for which («, ) > 0. It follows
that (8’, ) > 0, and B—B’ is a root (Lemma 9.4) unless 8 = B’. But if
B—pB’ is a root, then either B < B’ or else B’ < B, which is absurd. So B is
unique. [J

Lemma B. Let @ be irreducible. Then %~ acts irreducibly on E. In particular,
the # -orbit of a root « spans E.

Proof. The span of the # -orbit of a root is a (nonzero) # -invariant
subspace of E, so the second statement follows from the first. As to the first,
let E' be a nonzero subspace of E invariant under # . The orthogonal
complement E” of E’ is also # -invariant, and E = E’ @ E”. It is trivial to
verify that for « € @, either « € E’ or else E' < P,, since o,(E’) = E’ (Exercise
9.1). Thus, « ¢ E’ implies « € E”, so each root lies in one subspace or the other.
This partitions ® into orthogonal subsets, forcing one or the other to be
empty. Since ® spans E, we conclude that E' = E. []

Lemma C. Let O be irreducible. Then at most two root lengths occur in @,
and all roots of a given length are conjugate under W'.

Proof. If «, B are arbitrary roots, then not all o(x) (0 €#") can be
orthogonal to B, since the o(«) span E (Lemma B). If («, B) # 0, we know
(cf. (9.4)) that the possible ratios of squared root lengths of «, 8 are 1, 2, 3,
1/2, 1/3. These two remarks easily imply the first assertion of the lemma, since the
presence of three root lengths would yield also a ratio 3/2. Now let «, 8
have equal length. After replacing one of these by a # -conjugate (as above),
we may assume them to be nonorthogonal (and distinct: otherwise we’re
done!). According to (9.4), this in turn forces <{«, B) = (B, a) = +1.
Replacing B (if need be) by —B = o4(B), we may assume that {«, ) = I.
Therefore, (0,040,) (B) = 0,05(B—2) = g ,(—=B—a+p) = a. [

In case @ is irreducible, with two distinct root lengths, we speak of long
and short roots. (If all roots are of equal length, it is conventional to call all
of them long.)

Lemma D. Let ® be irreducible, with two distinct root lengths. Then the
maximal root B of Lemma A is long.
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Proof. Let o € @ be arbitrary. It will suffice to show that (8, 8) = (a, ).
For this we may replace « by a # -conjugate lying in the closure of the
fundamental Weyl chamber (relative to A). Since B—a > 0 (Lemma A), we

have (y, B—«) > 0 for any y e (E(A) This fact, applied to the cases y = 8
(cf. Lemma A) and y = «, yields (8, 8) = (8, «) = (o, o). 1]

Exercises

1. Let ®" be the dual system of ®,A"={a"|a € A}. Prove that A" is a base

of &".[Compare Weyl chambers of ® and &)
2. If A is a base of @, prove that the set (Za+ZB) N D (« # B in A) is a

root system of rank 2 in the subspace of E spanned by «, 8 (cf. Exercise
9.7). Generalize to an arbitrary subset of A.

3. Prove that each root system of rank 2 is isomorphic to one of those
listed in (9.3).

4. Verify the Corollary of Lemma 10.2A directly for G,.

5. If e e #" can be written as a product of ¢ simple reflections, prove that
t has the same parity as (o).

6. Define a function sn: #~ — {+1} by sn(0) = (—1)"“). Prove that sn is
a homomorphism (cf. the case A,, where #~ is isomorphic to the sym-
metric group &5).

7. Prove that the intersection of “positive” open half-spaces associated
with any basis y,,...,y, of E is nonvoid. [If §; is the projection of y; on
the orthogonal complement of the subspace spanned by all basis
vectors except y;, consider y =23 r;§; when all r,>0.]

8. Let A be a base of @, « # B simple roots, ®,, the rank 2 root system in
E,s = Ra+Rp (see Exercise 2 above). The Weyl group #7,; of @, is
generated by the restrictions 7,, 74 to E,; of o,, 05, and #”,5 may be
viewed as a subgroup of #”. Prove that the “length”” of an element of
W 5 (relative to 7,, 75) coincides with the length of the corresponding
element of #".

9. Prove that there is a unique element o in %~ sending ®* to @~ (relative
to A). Prove that any reduced expression for o must involve all o, (x € A).
Discuss (o).

10. Given A = {a, ..., } in ® let A =.‘2 kio; (k;eZ, all k; > 0 or all
; < 0). Prove that either A is a multi[;lzel(possibly 0) of a root, or else

there exists o € ¥~ such that o) = Z k/a;, with some k] > 0 and some

k; < 0. [Sketch of proof: If A is not a multlplc of any root, then the hyper-

plane P, orthogonal to A is not included in | ) P,. Take pe P; — | ) P,.
aed aed

Then find ¢ € #” for which all («;, o) > 0. It follows that 0 = (A, p) =
(oA, op) = Zk(w;, op).]
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11. Let @ be irreducible. Prove that ®" is also irreducible. If ® has all roots
of equal length, so does ®' (and then ®" is isomorphic to ®). On the
other hand, if ® has two root lengths, then so does ®"; but if « is long,
then «' is short (and vice versa). Use this fact to prove that ® has a
unique maximal short root (relative to the partial order < defined by A).

12. Let Ae € (A). If 6A=A for some o € #', then o=1.

13. The only reflections in #” are those of the form o, (« € ®). [A vector in
the reflecting hyperplane would, if orthogonal to no root, be fixed only
by the identity in % .]

14. Prove that each point of E is # -conjugate to a point in the closure of
the fundamental Weyl chamber relative to a base A. [Enlarge the
partial order on E by defining u <Aiff A~ p is a nonnegative R-linear
combination of simple roots. If u € E, choose 6 € % for which A=op is
maximal in this partial order.]

Notes

The exposition here is an expanded version of that in Serre [2].

11. Classification

In this section © denotes a root system of rank ¢, W its Weyl group, A a
base of P.

11.1. Cartan matrix of ®

Fix an ordering («,, ..., «,) of the simple roots. The matrix ({«;, «;>)
is then called the Cartan matrix of ®. Its entries are called Cartan integers.
Examples: For the systems of rank 2, the matrices are:

20\ 2 -1) . 2 -2\ . 2 -1
AIXAI (0 z)vAZ(_l 2)’82(_1 2)’G2(_3 2)'
The matrix of course depends on the chosen ordering, but this is not very
serious. The important point is that the Cartan matrix is independent of the
choice of A, thanks to the fact (Theorem 10.3(b)) that #” acts transitively on

the collection of bases. The Cartan matrix is nonsingular, as in (8.5), since
A is a basis of E. It turns out to characterize ® completely.

Proposition. Let ®' < E' be another root system, with base A’ =
fay, ..o, 0} If (o 0> = (o, af> for 1 < i, j < £, then the bijection o; — o
extends (uniquely) to an isomorphism ¢. E — E' mapping ® onto ®' and
satisfying {¢(), $(B)> = {«, B> for all o, B € ®. Therefore, the Cartan matrix

of ® determines ® up to isomorphism.

Proof. Since A (resp. A’) is a basis of E (resp. E’), there is a unique vector
space isomorphism ¢: E — E’ sending «; to «} (1 < i < ¢). If «, B A, the
hypothesis insures that oy, ($(B)) = o,(B') = B'—=<B’, a'> &' = $(B)—
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B, &> d(a) = p(B—<B, > a) = $(o,(B)). In other words, the following

diagram commutes for each « € A:

The respective Weyl groups %, #"' are generated by simple reflections
(Theorem 10.3(d)), so it follows that the map o> o oo ¢~ ' is an isomor-
phism of %" onto #"’, sending o, t0 0,,, (x € A). But each 8 € ® is conjugate
under # to a simple root (Theorem 10.3(c)), say 8 = o(«) (« € A). This in
turn forces #(8) = (¢ o oo ¢~ 1) (H(x)) € @". It follows that ¢ maps ® onto ®’;
moreover, the formula for a reflection shows that ¢ preserves all Cartan
integers. [J

The proposition shows that it is possible in principle to recover ® from a
knowledge of the Cartan integers. In fact, it is not too hard to devise a
practical algorithm for writing down all roots (or just all positive roots).
Probably the best approach is to consider root strings (9.4). Start with the
roots of height one, i.e., the simple roots. For any pair «; # «;, the integer
r for the «;-string through «; is 0 (i.e., «;—o; is not a root, thanks to Lemma
10.1), so the integer q equals — {a;, «;>. This enables us in particular to
write down all roots « of height 2, hence all integers <{«, «;>. For each root «
of height 2, the integer r for the «;-string through « can be determined easily,
since «; can be subtracted at most once (why?), and then ¢ is found, because
we know r—g = {a, a;). The corollary of Lemma 10.2A assures us that all
positive roots are eventually obtained if we repeat this process enough times.

11.2. Coxeter graphs and Dynkin diagrams
If «, B are distinct positive roots, then we know that {«, B> (B, «> = 0,

1, 2, or 3 (9.4). Define the Coxeter graph of @ to be a graph having £ vertices,
the ith joined to the jth (i # j) by {«;, «;> {a;, «;> edges. Examples:

A x A, o o
A, o0
B, a———o
G, =

The Coxeter graph determines the numbers {«;, «;> in case all roots
have equal length, since then <{«;, «;> = <{«;, «;>. In case more than one root
length occurs (e.g., B, or G,), the graph fails to tell us which of a pair of
vertices should correspond to a short simple root, which to a long (in case
these vertices are joined by two or three edges). (It can, however, be proved
that the Coxeter graph determines the Weyl group completely, essentially
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because it determines the orders of products of generators of ¥, cf.
Exercise 9.3.)

Whenever a double or triple edge occurs in the Coxeter graph of @, we
can add an arrow pointing to the shorter of the two roots. This additional
information allows us to recover the Cartan integers; we call the resulting
figure the Dynkin diagram of ®. (As before, this depends on the numbering
of simple roots.) For example:

Another example: Given the diagram o———a——>>—o—— o (which

turns out to be associated with the root system F,), the reader can easily
recover the Cartan matrix

2-1 0 O
-1 2-2 0
0-1 2 -1
0 0-1 2

11.3. Irreducible components

Recall (10.4) that @ is irreducible if and only if ® (or, equivalently, A)
cannot be partitioned into two proper, orthogonal subsets. It is clear that @ is
irreducible if and only if its Coxeter graph is connected (in the usual sense).
In general, there will be a number of connected components of the Coxeter
graph; let A = A, U...UA, be the corresponding partition of A into
mutually orthogonal subsets. If E; is the span of A, it is clear that E = E; &
... ® E, (orthogonal direct sum). Moreover, the Z-linear combinations of
A; which are roots (call this set ®;) obviously form a root system in E;, whose
Weyl group is the restriction to E; of the subgroup of #~ generated by all
o, (e € A)). Finally, each E; is # -invariant (since « ¢ A; implies that o, acts
trivially on E;), so the (easy) argument required for Exercise 9.1 shows
immediately that each root lies in one of the E;, ie.,  =®, U.. . UD,.

Proposition. ® decomposes (uniquely) as the union of irreducible root
systems ®, (in subspaces E; of E) such that E = E, ® ... ® E, (orthogonal
direct sum). ]

11.4. Classification theorem

The discussion in (11.3) shows that it is sufficient to classify the irreducible
root systems, or equivalently, the connected Dynkin diagrams (cf. Pro-
position 11.1).

Theorem. If ® is an irreducible root system of rank ¢, its Dynkin diagram
is one of the following (£ vertices in each case):
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A, (£=1):

= 0
e
w
~
|
-
~

B, (/=22): o0———o0 '+ o0—a—>—1

1 2 ‘-2 -1 ¢
C, (/=23 o0—-0 + o0——a—=x0
1 2 ¢-2 ‘-1 ¢
D,(=24): o——o - ‘-1
1 2 ¢-3 ¢-2

Eq: o 0 o —o
1 3 5 6
Tz
E, o o- los -0 o %)
1 3 4 5 6 7
12
o0—o ol o— o o—0
E8 O —O
1 3 4 5 6 7 8
F, o——a—>—D ——0
1 2 3 4
G, o=—==—
1 2

The restrictions on ¢ for types A,—D, are imposed in order to avoid
duplication. Relative to the indicated numbering of simple roots, the corres-
ponding Cartan matrices are given in Table 1. Inspection of the diagrams
listed above reveals that in all cases except B,, C,, the Dynkin diagram can
be deduced from the Coxeter graph. However, B, and C, both come from a
single Coxeter graph, and differ in the relative numbers of short and long
simple roots. (These root systems are actually dual to each other, cf. Exercise
5.)

Proof of Theorem. The idea of the proof is to classify first the possible
Coxeter graphs (ignoring relative lengths of roots), then see what Dynkin
diagrams result. Therefore, we shall merely apply some elementary euclidean
geometry to finite sets of vectors whose pairwise angles are those prescribed
by the Coxeter graph. Since we are ignoring lengths, it is easier to work for
the time being with sets of unit vectors. For maximum flexibility, we make
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Table 1. Cartan matrices

11.4 Classification theorem

OO0 ‘AN [ (o Ma\} [=NeNe) — ey (=N} O —~O AN
| | |
o — e [\ Na\} O —NO
| | | l
\||I||||)
=} — — O = COOCOO0O—~N
| | | Il !
\J
N—~O0 D OO OocO~ay COOOO —~ AN —~
| | | |
T
o — OO O —~N OO OO —~ N —~ COOO—N—~O
| | | | | |
o SO0 —~ AN —~ OO~ —=O COO—~AN—0O O
| | I | | |
S — (=] o — O~ = —~O O~ =N —~O O O~ N —~0 0O
| | (I ! I | [ |
O = o O — (=N O —~ N [=] (=R —_OoON~O O —_ O N—~O OO —ON—~0 00O
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0
0
-1
2
-1
0
0
-1
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only the following assumptions: E is a euclidean space (of arbitrary dimen-
sion), A = {e, ..., ¢,} is a set of n linearly independent unit vectors which
satisfy (e;,¢;) < 0 (z #j) and 4(e;, £;)> =0, 1, 2, or 3 (i # j). Such a set of
vectors is called (for brevity) admissible. (Example Elements of a base for a
root system, each divided by its length.) We attach a graph T' to the set U
just as we did above to the simple roots in a root system, with vertices i and j
(i # j)joined by 4(e;, ¢ j)z edges. Now our task is to determine all the connected
graphs associated with admissible sets of vectors (these include all connected
Coxeter graphs). This we do in steps, the first of which is obvious. (I" is not
assumed to be connected until later on.)

(1) If some of the ; are discarded, the remaining ones still form an admis-
sible set, whose graph is obtained from T' by omitting the corresponding
vertices and all incident edges.

(2) The number of pairs of vertices in I' connected by at least one edge is

strictly less than n. Set ¢ = Z g;. Since the ¢; are linearly independent, ¢ # 0.
So 0 < (e e)=n+2) (e,, J) Let i, j be a pair of (distinct) indices for

i<j
which (e;, ¢;) # 0 (i.e., let vertices i and j be joined). Then 4(e,, ‘ej)2 =1, 2,
or 3, so in particular 2(e;, ¢;) < —1. In view of the above inequality, the

number of such pairs cannot exceed n—1.

(3) T contains no cycles. A cycle would be the graph I'" of an admissible
subset A’ of A (cf. (1)), and then I would violate (2), with n replaced by
Card U’

(4) No more than three edges can originate at a given vertex of I'. Say
ee W, and 7y, ..., n, are the vectors in W connected to ¢ (by 1, 2, or 3
edges each), i.e., (e, 7;) < 0 with ¢, 7, ..., n, all distinct. In view of (3), no
two 7’s can be connected, so (y;, 7;) = 0 for i # j. Because U is linearly
independent, some unit vector 7, in the span of e, 7, ..., 7, is orthogonal

k

to 7y, ..., m; clearly (e, no) # 0 for such n,. Now & =Y (e 7,)y;, so
i=0

k k k
1 =(e, &) =) (e, )% This forces Y (¢, n)*> < 1, or Y. 4(e, 1,)* < 4. But
i=0 i=1 i=1

4(e, 1;)* is the number of edges joining e to »; in T

(5) The only connected graph T' of an admissible set W which can
contain a triple edge is =—=———=o (the Coxeter graph G,). This follows at
once from (4).

(6) Let {e1,...,¢,} < W have subgraph o——o ----- o——o (a simple
chainin T.If W = (U—{e, ..., U {e}, e = Z &;, then W' is admissible.

(The graph of A’ is obtained from I' by shrmkmg the simple chain to a

point.) Linear independence of U’ is obvious. By hypothesis, 2(e;, ¢;4,) =

—1(<i<k-1),50(e) =k+2) (e ¢) =k—(k—1)=1.S0¢is a
i<j

unit vector. Any ne W—{e;,..., ¢} can be connected to at most one of

e, ..., 6 (by (3), s0 (n, &) =0 or else (y, &) = (, &) for 1 <i < k. In
either case, 4(», ¢)> = 0, 1, 2, or 3.
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(7) T contains no subgraph of the form:

Suppose one of these graphs occurred in I'; by (1) it would be the graph of
an admissible set. But (6) allows us to replace the simple chain in each case
by a single vertex, yielding (respectively) the following graphs which violate

“):

(8) Any connected graph 1" of an admissible set has one of the following
Jorms:

O———0 O———°0
(e, O -0 ac——Oo——0 o——O0
& & £3 £p Nq Ng-1 72 M
[om—————]

m

Indeed, only === contains a triple edge, by (5). A connected graph
containing more than one double edge would contain a subgraph

aoo—Do——0 ‘** O0———a—_—0D
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which (7) forbids, so at most one double edge occurs. Moreover, if I' has a
double edge, it cannot also have a “node” (branch point)

—

(again by (7)), so the second graph pictured is the only possibility (cycles
being forbidden by (3)). Finally, let I" have only single edges; if I" has no
node, it must be a simple chain (again because no cycles are allowed). It
cannot contain more than one node (7), so the fourth graph is the only
remaining possibility.

(9) The only connected T" of the second type in (8) is the Coxeter graph F,
o————a———o0o————0 or the Coxeter graph B,(=C,) o0———o ---
oO—C—— "0,

q

p
Sete = Y ie;, m = Y in;. By hypothesis, 2(e;, &;4,) = —1 = 2(n;, 7;+,), and
iz1 i=1
p-

2 ii+1) = p(p+1)/2, (n, n)

i=1
= q(q+1)/2. Since 4(z,, 7,)* = 2, we also have (¢, 1) = p*q*(e,, 7,)° =
p?q*/2. The Schwartz inequality implies (since e, n are obviously independent)
that (e, 7)* < (e, €) (1, m), or p?q*/2 < p(p+ 1)q(g+1)/4, whence (p—1) (¢—1)
< 2. The possibilities are: p = ¢ = 2 (whence F,) or p = 1 (g arbitrary),
q = 1 (p arbitrary).

(10) The only connected T of the fourth type in (8) is the Coxeter graph D,

O_O<z or the Coxeter graph E, (n =6, 7 or 8)

o "—I o -+ o Set e=2Xig, n=2Ziy, {=2il;. It is

clear that ¢, n, { are mutually orthogonal, linearly independent vectors,
and that i is not in their span. As in the proof of (4) we therefore obtain
cos? 0, +cos? 6,+cos® §; < 1, where 6,, 6,, 6, are the respective angles
between i and &, 5, {. The same calculation as in (9), with p—1 in place of p,
shows that (e, ¢) = p(p—1)/2, and similarly for 5, {. Therefore cos® 6, =
(es )*/(e, &) (b ) = (p=D(ep—1, )*/(es &) =% Qp—1*[p(p—1)) =
(p—1)/2p = 3 (1—1/p). Similarly for 6,, ;. Adding, we get the inequality
FA—-1/p+1-1/g+1—=1/r) < 1, or (*) I/p+1/g+1/r > 1. (This inequality,
by the way, has a long mathematical history.) By changing labels we may
assume that 1/p < 1/qg < 1/r (<1/2; if p, g, or r equals 1, we are back in
type A,). In particular, the inequality (*) implies 3/2 > 3/r > 1, so r = 2.
Then 1/p+1/g > 1/2, 2/g > 1/2, and 2 < g < 4. If g = 3, then 1/p > 1/6
and necessarily p < 6. So the possible triples (p, g, r) turn out to be: (p, 2, 2)
=D,;(3,3,2) =Eg; (4,3,2) =E;; (5, 3,2 = E,.

The preceding argument shows that the connected graphs of admissible
sets of vectors in euclidean space are all to be found among the Coxeter
graphs of types A-G. In particular, the Coxeter graph of a root system must
be of one of these types. But in all cases except B,, C,, the Coxeter graph

p
other pairs are orthogonal, so (e, &) = ) i? —
i=1

O0————o0
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uniquely determines the Dynkin diagram, as remarked at the outset. So the
theorem follows. []

Exercises

1. Verify the Cartan matrices (Table 1).
2. Calculate the determinants of the Cartan matrices (using induction on
¢ for types A,~D,), which are as follows:

A, l+1;B,:2;C,:2;D,:4; E¢:3;E;:2; Eg, Fyand G,: 1.

3. Use the algorithm of (11.1) to write down all roots for G,. Do the same

2 -1 0
forCy: | -1 2 —1}.
0 -2 2

4. Prove that the Weyl group of a root system ® is isomorphic to the direct
product of the respective Weyl groups of its irreducible components.

5. Prove that each irreducible root system is isomorphic to its dual, except
that B,, C, are dual to each other.

6. Prove that an inclusion of one Dynkin diagram in another (e.g., E¢ in E,
or E; in Eg) induces an inclusion of the corresponding root systems.

Notes

Our proof of the classification theorem follows Jacobson [1]. For a
somewhat different approach, see Carter [1]. Bourbaki [2] emphasizes the
classification of Coxeter groups, of which the Weyl groups of root systems
are important examples.

12. Construction of root systems and automorphisms

In §11 the possible (connected) Dynkin diagrams of (irreducible) root
systems were all determined. It remains to be shown that each diagram of
type A-G does in fact belong to a root system ®. Afterwards we shall briefly
discuss Aut ®. The existence of root systems of type A,—D, could actually
be shown by verifying for each classical linear Lie algebra (1.2) that its
root system is of the indicated type, which of course requires that we first
prove the semisimplicity of these algebras (cf. §19). But it is easy enough
to give a direct construction of the root system, which moreover makes plain
the structure of its Weyl group.

12.1. Construction of types A-G

We shall work in various spaces R", where the inner product is the usual
one and where ¢y, ..., ¢, denote the usual orthonormal unit vectors which
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form a basis of R". The Z-span of this basis is (by definition) a lattice,
denoted I. In each case we shall take E to be R” (or a suitable subspace
thereof, with the inherited inner product). Then ® will be defined to be the
set of all vectors in I (or a closely related subgroup J of E) having
specified length or lengths.

Since the group I (or J) is discrete in the usual topology of R”, while
the set of vectors in R” having one or two given lengths is compact (closed
and bounded), @ is then obviously finite, and will exclude 0 by definition.
In each case it will be evident that ® spans E (indeed, a base of ® will be
exhibited explicitly). Therefore (R1) is satisfied. The choice of lengths will
also make it obvious that (R2) holds. For (R3) it is enough to check that
the reflection o, (o« € ) maps ® back into J, since then o, (P) automati-
cally consists of vectors of the required lengths. But then (R3) follows
from (R4). As to (R4), it usually suffices to choose squared lengths
dividing 2, since it is automatic that all inner products (a,8) € Z (a, 8 € I).

Having made these preliminary remarks, we now treat the separate
cases A—G. After verifying (R1) to (R4) in the way just sketched, the
reader should observe that the resulting Cartan matrix matches that in
Table 1 (11.4).

A, (/= 1): Let E be the /-dimensional subspace of R’*! orthogonal
to the vector e, +...+¢,,.,. Let I’ = I N E, and take ® to be the set of all
vectors « € I’ for which («, @) = 2. It is obvious that ® = {e;—e;, i # j}. The
vectors o; = e;—&;,; (1 < i < /) are independent, and &;—¢; = (&;—&;4,)
+(eiv1—¢i42)+ ... +(e;-1—¢;) if i < j, which shows that they form a
base of ®. It is clear that the Cartan matrix A, results. Finally, notice that
the reflection with respect to «; permutes the subscripts /, i+1 and leaves
all other subscripts fixed. Thus ¢,, corresponds to the transposition (i, i+1)
in the symmetric group &, ; these transpositions generate <& ,,,, SO we
obtain a natural isomorphism of #” onto &, ;.

B,(/>2):1LetE=R’,® = {ael|(x, ) =1 or 2}. It is easy to check
that @ consists of the vectors +e; (of squared length 1) and the vectors
*(e;t¢)), i # j(of squared length 2). The £ vectors &, —e,, e, —e3, ..., &/,
—e&,, €, are independent; a short root & = (e;—e; )+ (01 —&i12)+. ..
+ (e, —¢,)+¢,, while alongroot e;—e¢; or ¢;+¢; is similarly expressible. The
Cartan matrix for this (ordered) base is clearly B,. #" acts as the group of

all permutations and sign changes of the set {¢,, ..., ¢}, so #  is isomorphic
to the semidirect product of (Z/2Z)’ and ¥, (the latter acting on the
former).

C, (£ =3): C, (£ = 2) may be viewed most conveniently as the root
system dual to B, (with B, = C,), cf. Exercise 11.5. The reader can verify
directly that in E = R’, the set of all +2¢; and all t(e,te)), i # j, forms a
root system of type C,, with base (¢; —&,,...,&,_;—¢, 2¢,}. Of course
the Weyl group is isomorphic to that of B,.

D,(/=4): Let E=R" ® = {ael|(a o) =2}={£(e;%¢), i #j}.
For a base take the ¢ independent vectors e, —e,, ..., &1 —¢&s, e,-1+&,
(so D, results). The Weyl group is the group of permutations and sign changes



12.2. Automorphisms of ® 65

involving only even numbers of signs of the set {e,,...,¢,}. So # is iso-
morphic to the semidirect product of (Z/2Z) ™' and &,.

E, E;, Eg: We know that E,, E, can be identified canonically with sub-
systems of Eg (Exercise 11.6), so it suffices to construct Eg. This is slightly
complicated. Take E = R®, 1" = I+Z((e, +. . . +eg)/2), I” = subgroup of I’

.. ¢ . o -
consisting of all elements Ec,-e,-+§ (e;+...+eg) for which ¢+ Xc; is an even

integer. (Check that this is a subgroup!) Define ® = {x € /"|(«, «) = 2}. It

is easy to see that @ consists of the obvious vectors + (e; - ¢;),7 # j,along with
8

the less obvious ones + ) (—1)*"e; (where the k(i) = 0, 1, add up to an even
i=1

integer). By inspection, all inner products here are in Z (this has to be
checked, because we are working in a larger lattice than 7). As a base we take
{3erteg—(eat. . teq)) eitey, ex—ep, e3—ey, eg—e3, €5—ey, €6 es,
e, —eg}. (This has been crdered so as to correspond to the Cartan matrix
for Eg in Table 1 (11.4).) The reader is invited to contemplate for himself
the action of the Weyl group, whose order can be shown to be 2'43°527.

Fo:LetE = R* 1" = I+ Z((e, +e,+e3+€4)/2),® = {xel'|(x,a) = 1 or
2}. Then @ consists of all te;, all +(e;%¢;), i # j, as well as all + 3(e; + ¢,
+e3+e,), where the signs may be chosen independently. By inspection, all
numbers (a,B) are integral. As a base take {&, — 5,65~ €464, 3(&, — &, — &
—¢,)}. Here #” has order 1152.

G,: We already constructed G, explicitly in §9. Abstractly, we can take
E to be the subspace of R® orthogonal to e, +e,+e;, I’ =INE, ® =
fael'|(x, @) =2 or 6}. SO @ = + {e,—¢,, e,—¢3, &,—¢3, 26, —e,—¢3,
2¢,—¢, —e;, 2e5—e; —e,}. As a base choose ¢, —¢,, —2¢;+¢,+¢5. (How
does ¥ act?)

Theorem. For each Dynkin diagram (or Cartan matrix) of type A-G,
there exists an irreducible root system having the given diagram. ]

12.2. Automorphisms of ®

We are going to give a complete description of Aut @, for each root
system @. Recall that Lemma 9.2 implies that %" is a normal subgroup of
Aut ® (Exercise 9.6). Let I' = {o € Aut ®|o(A) = A}, A a fixed base of D.
Evidently, T" is a subgroup of Aut . If re ' " #", then = = 1 by virtue
of the simple transitivity of #~ (Theorem 10.3(¢)). Moreover, if e Aut ®
is arbitrary, then 7(A) is evidently another base of @, so there exists o € #~
such that or(A) = A (Theorem 10.3(b)), whence = I'#/". 1t follows that
Aut © is the semidirect product of T' and W".

For all € Aut @, all «, 8 € ®, we have {«, B> = {(«), 7(8)). Therefore,
each 7 € I" determines an automorphism (in the obvious sense) of the Dynkin
diagram of ®. If = acts trivially on the diagram, then = = 1 (because A spans
E). On the other hand, each automorphism of the Dynkin diagram obviously
determines an automorphism of @ (cf. Proposition 11.1). So T" may be
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Table 1.
Number of
Type Positive Roots Order of #~ Structure of ¥~ r
A, (’;1) ¢+ 1) L yir Z2Z (£ > 2)
B,, C, e 2041 (Z)22)¢ >a 1
_ ~ Ly (F=4)
2 (-1 ¢-1 3
D, (22— ¢ 2 ’! (Z/2Z) > Sy ZPZ (¢ > 4)
Ee 36 27345 Z2Z
E, 63 2103457 1
Eg 120 21435 527 1
Fa 24 27 32 1
G, 6 223 D 1

identified with the group of diagram automorphisms. A glance at the list in
(11.4) yields a description of I', summarized in Table 1 along with other
useful data, for @ irreducible. (Since diagram automorphisms other than the
identity exist only in cases of single root length, when the Dynkin diagram
and Coxeter graph coincide, the term graph automorphism may also be used.)

Exercises

1. Verify the details of the constructions in (12.1).

2. Verify Table 2.

3. Let ® < E satisfy (R1), (R3), (R4), but not (R2), cf. Exercise 9.9. Suppose
moreover that @ is irreducible, in the sense of §11. Prove that @ is the
union of root systems of type B,, C, in E (» = dim E), where the long
roots of B, are also the short roots of C,. (This is called the non-reduced
root system of type BC, in the literature.)

Table 2. Highest long and short roots

Type Long Short

A, ayto,+. .. tar

B, oy 4205+ 203+, . .- 207 aytart...fay

Cy 20+ 20+ . . .+ 20s_ 1+ oy oy +20,4. 20ty

D, oy +20,+. . .+ 20, 2t ar_+a

Ee oy + 20, + 203+ 3og + 2005 + g

E, 200y + 20, + 33+ 4oy + Jous + 206 + 7

Eg 20ty + 30y + 4oty + 6oy + Sas + dag + 3og + 20

Fa 20y + 30, + 4oy + 20, oy + 2005 + 3oz + 204

G, 3oy + 2, 200y + 0y
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4. Prove that the long roots in G, form a root system in E of type A,.

5. In constructing C,, would it be correct to characterize @ as the set of all
vectors in I of squared length 2 or 4? Explain.

6. Prove that the map « +— —« is an automorphism of ®. Try to decide for
which irreducible @ this belongs to the Weyl group.

7. Describe Aut ® when @ is not irreducible.

Notes

The treatment here follows Serre [2]. More information about the
individual root systems may be found in Bourbaki [2].

13. Abstract theory of weights

In this section we describe that part of the representation theory of
semisimple Lie algebras which depends only on the root system. (None of
this is needed until Chapter VI.) Let @ be a root system in a euclidean space
E, with Weyl group # .

13.1. Weights

Let A be the set of all Ae E for which (A, «) € Z (x €®), and call its

elements weights. Since <A, ) = 2((/\’0‘)) depends linearly on A, A is a sub-
o, &

group of E including ®. Thanks to Exercise 10.1, A € A iff (A, a) € Z for all
a € A. Denote by A, the root lattice (=subgroup of A generated by ®). A,
is a lattice in E in the technical sense: it is the Z-span of an R-basis of E
(namely, any set of simple roots). Fix a base A < @, and define A € A to be
dominant if all the integers {A,a)(«a € A) are nonnegative, strongly domi-
nant if these integers are positive. Let A* be the set of all dominant
weights. In the language of (10.1), A™ is the set of all weights lying in the
closure of the fundamental Weyl chamber € (A), while AN §(4) is the set of
strongly dominant weights.

It A ={«y,...,a}, then the vectors 2«;/(«;, «;) again form a basis of E.
Let A,,...,A, be the dual basis (relative to the inner product on E):
27, “j)_ _

. a) 8;;. Since all <A;, «) (« € A) are nonnegative integers, the A; are
A

dojmil;ant weights. We call them the fundamental dominant weights (relative
to A). Notice that ¢;A; = A;—8,;«;. If AeE is arbitrary, e.g., any weight,
let m; = (A, a;>. Then 0 = <(A—Em;A,, «) for each simple root «, which
implies that (A—Xm;A;, «) = 0 as well, or that A = Zm;A;. Therefore, A is a
lattice with basis (\;, 1 < i < £), and Ae A" if and only if all m; > 0. (Cf.

Figure 1, for type A,.)
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A
[
|
|
|
|
|
|

Figure 1

It is an elementary fact about lattices that A/A, must be a finite group
(called the fundamental group of ®). We can see this directly as follows.
Write «; = Y my;A; (m; € Z). Then <a;, > = Y m;; <A;, 4> = my. In other

)
words, the éartan matrix expresses the changej of basis. To write the A; in
terms of the «;, we have only to invert the Cartan matrix; its determinant
(cf. Exercise 11.2) is the sole denominator involved, so this measures the
index of A, in A. For example, in type A,, «; = 2A,. (This is the only case
in which a simple root is dominant, for reasons which will later become

apparent.) In type A,, the Cartan matrix is (_% —;) , S0 oy = 2A; =],

and «, = —A;+2A,. Inverting, we get (1/3) (‘:‘ ;) , so that A, = (1/3)

(2ay +a,) and A, = (1/3) (x; +2a,). By computing determinants of Cartan
matrices one verifies the following list of orders for the fundamental groups
A/A, in the irreducible cases:

Al’ /+1; B/’ C[’ E7, 2’ D[’ 4’ E6’ 3’ EB’ F4, GZ, 1'

With somewhat more labor one can calculate explicitly the A; in terms of
the «;. This information is listed in Table 1, for the reader’s convenience,
although strictly speaking we shall not need it in what follows. The exact
structure of the fundamental group can be found by computing elementary
divisors, or can be deduced from Table 1 once the latter is known (Exercise 4).

13.2. Dominant weights

The Weyl group % of ® preserves the inner product on E, hence leaves
A invariant. (In fact, we already made the more precise observation that
oA; = A;—8;;«;.) Orbits of weights under %" occur frequently in the study of
representations. In view of Lemma 10.3B and Exercise 10.14, we can state:

Lemma A. Each weight is conjugate under W~ to one and only one dominant
weight. If X is dominant, then oA < A for all o € #~, and if A is strongly dominant,
then ok = A only when o = 1. []
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As a subset of E, A is partially ordered by the relation: A > p if and
only if A—px is a sum of positive roots (10.1). Unfortunately, this ordering
does not have too close a connection with the property of being dominant;
for example, it is easy to have x dominant, x < A, but A not dominant
(Exercise 2). Our next lemma shows, however, that dominant weights are
not foo badly behaved relative to <.

Table 1.

1
Ay A= 11 [(/=i+ Doy +2(/—i+ Day+. ..+ (=1 (=it Doy

(= i+ Do+ i( = iYotigy + o iy
Byt A= ay+20+. . (= Doy +i(e, 4o+ .+ ap) (i< ?)
A= Yoy + 205+, .+ )
Cri A= +200+. .+ G— Doy i+ . .+ +Loy)
Dspi A = ay+2a5 4. . .+ (= Doy +ilai+. . .+ 2)+diley— 1 +ay) (i< /-1
Mot = Yo+ 2+ (=22 + 3o+ 3= 2)oy)
M= Yo+ 2054 A (F=Dop s+ 3 =Dy + 3 lay)
(=g is abbreviated (g, . .. g/) in the following lists.)
Es: A, =14,3,5,6,4,2)
A= (1,223,201
A3 =35, 6,10, 12,8, 4)
A= (2,3,4,6,4,2)
As = 14, 6, 8, 12, 10, 5)
Ae =3(2,3,4,6,5 4)

E;r Av= (2,2,3,4,3,2,1)
A, =1(4,7,8,12,9, 6, 3)
A3= (3,4,6,8,6,4,2)
A= (4,6,8,12,9,6,3)

Xs = 36, 9, 12, 18, 15, 10, 5)
de= (2,3,4,6,5,4,2)
A =12,3,4,6,5,4,3)

Es: L= (4,5,7,10,8,6,4,2)
= (58,10,15,12,9,6,3)
A= (7,10, 14,20, 16, 12, 8, 4)
Ao = (10, 15, 20, 30, 24, 18, 12, 6)
As = (8,12, 16, 24, 20, 15, 10, 5)
de = (6,9,12, 18,15, 12, 8, 4)
A= (4,6,8,12, 10,8, 6,3)
de= (2,3,4,6,54,3,2

Fa: A = (2,3,4,2)

L= (3,68 4)
L= (2,4,6,3)
de= (1,2,3,2)

Gyt A = (2, 1)
L= (3,2
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LemmaB. Let Xe A*. Then the number of dominant weights u < X is finite.

Proof. Since A+ p. € A* and A — p is a sum of positive roots, 0< (A + p, A
—w)=A,A)—(p,p). Thus p lies in the compact set {x e E|(x,x) < (A N)},
whose intersection with the discrete set A* is finite. ]

13.3. The weight

Recall (Corollary to Lemma 10.2B) that § = 1 ) a, and that 0,6 = §—,
>0
(1 <i < £). Of course, § may or may not lie in the root lattice A, (cf. type

A)); but 8 does lie in A. More precisely:
14
Lemma A. 8 = Y X, so & is a (strongly) dominant weight.
i=1

Proof. Since 0,8 = 8§—a;, (§—a;, a;) = (628, 0,0;) = (8, —«;), or 2(8, «;)
= (a; o), 0r (8, ;> =1 (1 < i< £).Butd =23 <8 o)A (cf. (13.1)), so
the lemma follows. [J i

The next lemma is merely an auxiliary result, needed in (13.4).

Lemma B. Let peA*, v=0"'u (ce#). Then (v+38, v+38) < (u+3$,
w+8), with equality only if v=p.

Proof. (v+68,v+8)=(c(v+38),0(r+38))=(p+od,p+08)=(p+8p+
8)—2(p,6—08). Since pe A", and §—08 is a sum of positive roots
(13.2A, 13.3A), the right side 1s <(p+98,u+48), with equality only if
(p,8—08)=0, ie., (p,8)=(p,06)=(»,8), or (u—»,6)=0. But p—vr is a
sum of positive roots (13.2A) and § is strongly dominant, so p=v». []

13.4. Saturated sets of weights

Certain finite sets of weights, stable under #”, play a prominent role in
representation theory. We call a subset Il of A saturated if for all A eI,
a € ®, and i between 0 and <A, «), the weight A — i« also lies in II. Notice first
that any saturated set is automatically stable under #”, since o A = A—
(A, &) @ and #" is generated by reflections. We say that a saturated set Tl
has highest weight A (Ae A*) if Ae Il and u < A for all ue Il. Examples:
(1) The set consisting of 0 alone is saturated, with highest weight 0. (2) The
set ® of all roots of a semisimple Lie algebra, along with 0, is saturated. In
case @ is irreducible, there is a unique highest root (relative to a fixed base
A of @) (Lemma 10.4A), so Il has this root as its highest weight (why?).

Lemma A. A saturated set of weights having highest weight X must be
finite.
Proof. Use Lemma 13.2B. []

Lemma B. Let I1 be saturated, with highest weight \. If pe A* and p < A,
then p € T1.

Proof. Suppose p' = pu + Y keIl (k e Z"). (Important: We do not
aeA
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assume that p’ is dominant.) We shall show how to reduce one of the k,
by one while still remaining in II, thus eventually arriving at the conclusion
that p € I. Of course, our starting point is the fact that A itself is such a
p’. Now suppose u’ # p, so some k, is positive. From (Z ko, Zk @) > 0,

we deduce that (Z k,x, B) > 0 for some €A, with k; > 0. In particular,
<Z k,x, B> is posmve Since u is dominant, {u, ) is nonnegative. There-
a

fore, {u’, B) is positive. By definition of saturated set, it is now possible to
subtract B once from " without leaving II, thus reducing k, by one. [J

From Lemma B emerges a very clear picture of a saturated set Il having
highest weight A: II consists of all dominant weights lower than or equal to A
in the partial ordering, along with their conjugates under #". In particular,
for given A e A*, at most one such set I can exist. Conversely, given A\ e A™*,
we may simply define II to be the set consisting of all dominant weights
below A, along with their % -conjugates. Since II is stable under #, it
can be seen to be saturated (Exercise 10), and thanks to Lemma 13.2A, II has
A as highest weight.

To conclude this section, we prove an inequality which is essential to
the application of Freudenthal’s formula (§22).

Lemma C. Let 11 be saturated, with highest weight A. If p €11, then
(p+8,p+8)<(AN+6,A+0), with equality only if p=A\.

Proof. In view of Lemma 13.3B, it is enough to prove this when p is
dominant. Write p=A— 7, where 7 is a sum of positive roots. Then (A +§,
A+8)—(p+6, p+8)=QA+8, A+6)-A+d6—7, A+0—m)=
A+8,m)+(m,n+8)= (A+8,7) =0, the inequalities holding because u+ 6
and A+ 8 are dominant. Equality holds only if 7 =0, since A+ § is strongly
dominant. []

Exercises

1. Let ® =&, U...Ud, be the decomposition of @ into its irreducible
components, with A = A; U ...U A,. Prove that A decomposes into a
direct sum A, @ ... @ A,; what about A*?

2. Show by example (e.g., for A,) that A ¢ A", e A, \—x € A" is possible.

3. Verify some of the data in Table 1, e.g., for F,.

4. Using Table 1, show that the fundamental group of A, is cyclic of order
/+1, while that of D, is isomorphic to Z/4Z (¢ odd), or Z2Z x Z|2Z
(¢ even). (It is easy to remember which is which, since A; = D;.)

5. If A’ is any subgroup of A which includes A,, prove that A’ is # -
invariant. Therefore, we obtain a homomorphism ¢: Aut ®/#" — Aut
(A/A,). Prove that ¢ is injective, then deduce that —1¢#” if and only
if A, @ 2A (cf. Exercise 12.6). Show that —1e %" for precisely the
irreducible root systems A,, B,, C,, D, (£ even), E,, Eg, F,, G,.
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. Prove that the roots in ® which are dominant weights are precisely the

highest long root and (if two root lengths occur) the highest short root
(cf. (10.4) and Exercise 10.11), when ® is irreducible.

. If ey, ..., &, is an obtuse basis of the euclidean space E (i.e., all (¢;, ¢;) <

0 for i # j), prove that the dual basis is acure (i.e., all (¢, &) = 0 for
i # j). [Reduce to the case £ = 2.]

Let @ be irreducible. Without using the data in Table 1, prove that each
X; is of the form Y g,;a;, where all g;; are positive rational numbers.

J
[Deduce from Exercise 7 that all g,; are nonnegative. From (A;, 4,) > 0
obtain ¢g;; > 0. Then show thatif g;; > 0and («;, ) < 0, theng;, > 0.]

. Let Ae A*. Prove that o(A+8)—§ is dominant only for ¢ = 1.
. If Xe A™, prove that the set Il consisting of all dominant weights p < A

and their # -conjugates is saturated, as asserted in (13.4).

Prove that each subset of A is contained in a unique smallest saturated
set, which is finite if the subset in question is finite.

For the root system of type A,, write down the effect of each element of
the Weyl group on each of A;, A,. Using this data, determine which
weights belong to the saturated set having highest weight A, +3A,. Do
the same for type G, and highest weight A, +2A,.

Call A e A* minimal if u € A*, u < X implies that 4 = X. Show that each
coset of A, in A contains precisely one minimal A. Prove that A is minimal
if and only if the # -orbit of A is saturated (with highest weight }), if
and only if Ae A" and <)\, «> =0, 1, —1 for all roots «. Determine
(using Table 1) the nonzero minimal A for each irreducible @, as follows:

A A, .,

m m

_ o

> >

= T
>
(=2

Notes

Part of the material in this section is drawn from the text and exercises

of Bourbaki [2], Chapter VI, §1, No. 9-10 (and Exercise 23). But we have
gone somewhat beyond what is usually done outside representation theory
in order to emphasize the role played by the root system.



Chapter 1V

Isomorphism and Conjugacy Theorems

14. Isomorphism theorem

We return now to the situation of Chapter Il: L is a semisimple Lie
algebra over the algebraically closed field F of characteristic 0, H is a maximal
toral subalgebra of L, ® = H* the set of roots of L relative to H. In (8.5)
it was shown that the rational span of ® in H* is of dimension Z over Q,
where / = dim; H*. By extending the base field from Q to R we therefore
obtain an /-dimensional real vector space E spanned by ®. Moreover, the
symmetric bilinear form dual to the Killing form is carried along to E,
making E a euclidean space. Then Theorem 8.5 affirms that ® is a root
system in E.

Our aim in this section is to prove that two semisimple Lie algebras
having the same root system are isomorphic. Actually, we can prove a more
precise statement, which leads to the construction of certain automorphisms
as well.

14.1. Reduction to the simple case

Proposition. Let L be a simple Lie algebra, H and ® as above. Then @ is an
irreducible root system in the sense of (10.4).

Proof. Suppose not. Then ® decomposes as @, U ®,, where the ®; are
orthogonal. If «e®,, Be®,, then («+pB, a) # 0, (¢+8, B) # 0, so a+f
cannot be a root, and [L,L,;] = 0. This shows that the subalgebra K of L
generated by all L, (xe®,) is centralized by all L, (8 €®,); in particular,
K is a proper subalgebra of L, because Z(L) = 0. Furthermore, K is normal-
ized by all L, (x €®,), hence by all L, (« € ?), hence by L (Proposition 8.4
(f)). Therefore K is a proper ideal of L, different from 0, contrary to the
simplicity of L. []

Next let L be an arbitrary semisimple Lie algebra. Then L can be written
uniquely as a direct sum L; @ ... @® L, of simple ideals (Theorem 5.2). If
H is a maximal toral subalgebra of L, then H = H, ® ... ® H,, where
H; = L; " H (cf. Exercise 5.8). Evidently each H; is a toral algebra in L,
in fact maximal toral: Any toral subalgebra of L; larger than H; would
automatically be toral in L, centralize all H;, j # i, and generate with them
a toral subalgebra of L larger than H. Let ®; denote the root system of L;
relative to H,, in the real vector space E;. If « € ®;, we can just as well view «
as a linear function on H, by decreeing that «(H;) = 0 for j # i. Then « is
clearly a root of L relative to H, with L, < L;. Conversely, if o« € @, then

73
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[H;L,] # 0 for some i (otherwise H would centralize L,), and then L, < L,,
0 «ly, is a root of L, relative to H;. This discussion shows that ® may be
decomposed as &, U... VO, E~xE @ ... ®E, (cf. (11.3)). From the
above proposition we obtain:

Corollary. Let L be a semisimple Lie algebra, with maximal toral sub-
algebra H and root system ®. [f L = L, ® ... @® L, is the decomposition of
L into simple ideals, then H; = H N L; is a maximal toral subalgebra of L,
and the corresponding (irreducible) root system ®; may be regarded canonically
as a subsystem of ® in such a way that ® = ®, U ... U @, is the decomposition
of @ into its irreducible components. []

This corollary reduces the problem of characterizing semisimple Lie
algebras by their root systems to the problem of characterizing simple ones
by their (irreducible) root systems.

14.2. Isomorphism theorem

First we single out a small set of generators for L.

Proposition. Let L be a semisimple Lie algebra, H a maximal toral sub-
algebra of L, ® the root system of L relative to H. Fix a base A of ® (10.1).
Then L is generated (as Lie algebra) by the root spaces L,, L_, (« € A); or
equivalently, L is generated by arbitrary nonzero root vectors x,€ L,, y, € L_,
(x € A).

Proof. Let B be an arbitrary positive root (relative to A). By the Corollary
of Lemma 10.2A, B may be written in the form B = «, +...+«, where
«, € A and where each partial sum «; +...+«; is a root. We know also
(Proposition 8.4 (d)) that [L .L;] = L,,; whenever y, 8, y+8¢e®. Using
induction on s, we see easily that Ly lies in the subalgebra of L generated by
all L, (« € A). Similarly, if 8 is negative, then L, lies in the subalgebra of L
generated by all L_, (x€A). But L = H + [[L,,and H =Y [L,L_,], so

aed aed
the proposition follows. [

If0# x,eL,and 0 # y,e L_, (x€A), with [x,y,] = h,, we shall call
{Xu Vo) OF {x,, v, h,} a standard set of generators for L. Recall that /4, is the
unique element of [L,L_,] at which « takes the value 2.

If (L, H) and (L', H') are two pairs, each consisting of a simple Lie
algebra and a maximal toral subalgebra, we want to prove that an isomor-
phism of the corresponding (irreducible) root systems ®, ®’ will induce an
isomorphism of L onto L’ sending H onto H'. By definition, an isomorphism
® —> @’ is induced by an isomorphism E —> E’ of the ambient euclidean
spaces, the latter not necessarily an isometry. However, the root system
axioms are unaffected if we multiply the inner product on E or E’ by a
positive real number. Therefore, it does no harm to assume that the isomorphism
© — @’ comes from an isometry of the euclidean spaces. Notice next that the
isomorphism ® — @’ extends uniquely to an isomorphism of vector spaces
¢ H* — H'* (since ® spans H* and @' spans H'*). In turn ¢ induces an
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isomorphism =: H — H’, via the Killing form identification of H, H' with
their duals. Explicitly, if «+> o’ denotes the given map ® —®’, then = (¢,) = ¢..,
where ¢, and ¢, correspond to «, «’ (via the Killing form). Since the given
isomorphism of ® and ®’ comes from an isometry between the respective
euclidean spaces, we also have m(h,) = h,., because h, = 2t /(x, o).

Since H, H' are abelian Lie algebras, = can even be regarded as an iso-
morphism of Lie algebras. What is wanted is a way to extend = to an iso-
morphism L — L’ (which we shall again denote by ). If such an extension
exists, then a moment’s thought shows that it must send L, onto L., for
all « e ®. Now the question arises: To what extent can we hope to specify
in advance the element of L. to which a given x, € L, should be sent?
Obviously the choices of the various x,. («’ €®’) cannot be completely
arbitrary: e.g., if we choose x,, x;, X, 5 satisfying [x,x;] = x,,, then we are
forced to choose X,., 4 = [x,.x5]. This line of reasoning suggests that we
concentrate on simple roots, where the choices can be made independently.

Theorem. Let L, L’ be simple Lie algebras over F, with respective maximal
toral subalgebras H, H' and corresponding root systems ®, ®'. Suppose there
is an isomorphism of ® onto ®' (denoted « +— "), inducing m: H—~ H'. Fix a
base A = ®, so A’ = {«'|xc A} is a base of O'. For each ac A, «' €A/,
choose arbitrary (nonzero) x, e L,, x, €L, (i.e., choose an arbitrary Lie
algebra isomorphism =, L, — L_.). Then there exists a unique isomorphism
w: L — L' extending =: H — H' and extending all the m, (o € A).

Proof. The uniqueness of = (if it exists) is immediate: x, («x € A) deter-
mines unique y, € L_, for which [x,y,] = h,, and L is generated by the
X, V(@ € A), by the above proposition.

The idea of the existence proof is not difficult. If L and L’ are to be
essentially the same, then their direct sum L @ L’ (a semisimple Lie algebra
with unique simple ideals L, L") should include a subalgebra D resembling
the “‘diagonal” subalgebra {(x, x)|x e L} of L @ L, which is isomorphic to
L under the projection of L @ L onto either factor. It is easy to construct a
suitable subalgebra D of L @ L’: As above, x, (x € A) determines unique
vy, € L_, for which [x,y,] = h,, and similarly in L’. Let D be generated by the
elements X, = (x,, X.), Yo = Vg Vi) By = (hy, hoy) for we A, o’ e A,

The main problem is to show that D is a proper subalgebra; conceivably
D might contain elements such as (x,, x.) and (x,, 2x,.), where x,¢ L,
x;, € L;, for some roots «, «’, in which case D would contain all of L’, then
all of L, hence all of L @ L’ (as the reader can easily verify). It is difficult
to see directly that such behavior cannot occur, so instead we proceed in-
directly.

Because L, L’ are simple, ® and ®’ are irreducible (Proposition 14.1).
Therefore ®, ®’ have unique maximal roots B, B’ (relative to A, A’), which
of course correspond under the given isomorphism ® —®’ (Lemma A of
(10.4)). Choose arbitrary nonzero x € Lg, x" € Lﬁ;,. Set x =(x,x)eL® L',
and let M be the subspace of L @ L' spanned by all (*)ad y,, ad y,,...ad y,
(), where «; € A (repetitions allowed). Obviously (*) belongs to L;_3,, ®
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L,;'—):a;; in particular, M N (L; ® L) is only one dimensional, forcing M
to be a proper subspace of L @ L.

We claim that our subalgebra D stabilizes M, which we verify by looking
at generators of D. By definition, ad y, stabilizes M (« € A), and by an easy
induction based on the fact that [hy,] is a multiple of y,, we see that ad h,
does likewise. On the other hand, for simple «, we know that ad x, commutes
with all ad y, (¥ simple) except ¥ = «, since «—7 is not a root (Lemma 10.1).
If we apply ad X, to (*), we can therefore move it past each ad j, except
ad j,, in which case an extra summand (involving ad h,) is introduced. But
we have already taken care of this kind of term. Since ad %,(¥) = 0 whenever
ae A (x+f8 ¢ ®, by maximality), we see finally that ad X, stabilizes M.

Now it is clear that D is a proper subalgebra: Otherwise M would be a
proper nonzero ideal of L @ L’, but L, L’ are the unique ideals of this type
(Theorem 5.2), and obviously M # L, M # L'.

We claim that the projections of D onto the first and second factors of
L @ L’ are (Lie algebra) isomorphisms. These projections are Lie algebra
homomorphisms, by general principles, and they are onto, thanks to the
above proposition and the way D was defined. On the other hand, suppose D
has nonzero intersection with L (=kernel of projection onto second factor).
This means that D contains some (w, 0), w # 0; so D also contains all
(ad z,,...ad z,, (w), 0), +a;€A, z, = x, or y,. These elements form a
nonzero ideal of L (by the proposition), which must be L itself (L being
simple). Thus D includes L. By symmetry, D must also include L', hence all
of L @ L’, which is not the case.

Finally, we observe that the isomorphism L — L’ just obtained via D
sends x, to x,. (x€A) and h, to h_., hence coincides with = on H. This is
what was promised. []

The theorem extends easily (Exercise 1) to semisimple algebras. We
remark that there is another, higher powered, approach to the proof of the
isomorphism theorem, suggested by the above proposition. Namely, write
down an explicit presentation of L, with generators x,, y,, #, (x€A) and
with suitable relations; choose the relations so that all constants involved
are dependent solely on the root system ®. Then any other simple algebra L’
having root system isomorphic to ® will automatically be isomorphic to L.
This proof will in fact be given later on (§18), after some preparation; it is
less elementary, but has the advantage of leading simultaneously to an
existence theorem for semisimple Lie algebras.

14.3. Automorphisms

The isomorphism theorem can be used to good advantage to prove the
existence of automorphisms of a semisimple Lie algebra L (with H, ® as
before): Any automorphism of ® determines an automorphism of H, which
can be extended to L. As a useful example, take the map sending each root
to its negative. This evidently belongs to Aut @ (cf. Exercise 12.6), and the
induced map on H sends h to —h. In particular, if o: H — H is this iso-
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morphism, o(h,) = —h,, which by Proposition 8.3(g) is the same as h_,.
To apply Theorem 14.2, we decree that x, should be sent to —y, («€A).
(Notice that the unique z € L, such that [—y,z] = A_,isjust —x,.) According
to the theorem, o extends to an automorphism of L sending x, to —y,
(x € A). The preceding parenthetical remark then implies that y, is sent to
— X, (o« € A). Moreover, ¢ has order 2, because o? fixes a set of generators of
L. To summarize:

Proposition. L as in Theorem 14.2 (but not necessarily simple). Fix (non-
zero) x,e€ L, (x€A) and let y, e L_, satisfy [x,y,] = h,. Then there exists
an automorphism o of L, of order 2, satisfying o(x,) = —y,, o(y,) = —x,
(xeA),oh) = —h(heH). [

For L = sl(2, F), the automorphism o was already discussed in (2.3).

The Weyl group #~ of ® accounts for most of the automorphisms of @
(12.2). Theorem 14.2 assures the existence of corresponding automorphisms
of L, which extend the action of ¥ on H. If o € #7, it is clear that the exten-
sion of o to an automorphism of L must map L, to L,z (Of course, there
are various ways of adjusting the scalar multiples involved.) We can also
give a direct construction of such an automorphism of L, based on the
discussion in (2.3) and independent of Theorem 14.2. It suffices to do this for
the reflection o, (« € ®). Since ad x; (B € ®) is nilpotent, it makes sense to
define the inner automorphism =, = exp ad x,-expad (—y,)-exp ad x,. Here
[x. = h,, as usual. What is the effect of 7, on H? Write H = Ker « @ Fh,.
Clearly, 7,(h) = h for all heKer «, while 7,(h,) = —h, (2.3). Therefore,
7, and o, agree on H. It follows, moreover, that 7, sends L; to L, s.

This method of representing reflections (and hence arbitrary elements of
#") by elements of Int L has one unavoidable drawback: It does not in
general lead to a realization of ¥~ as a subgroup of Int L (cf. Exercise 5).

Exercises

1. Generalize Theorem 14.2 to the case: L semisimple.

2. Let L = sl(2, F). If H, H' are any two maximal toral subalgebras of L,
prove that there exists an automorphism of L mapping H onto H'.

3. Prove that the subspace M of L @ L’ introduced in the proof of Theorem
14.2 will actually equal D, if x and x" are chosen carefully.

4. Let o be as in Proposition 14.3. Is it necessarily true that o(x,) = —y,
for nonsimple «, where [x,y,] = h,?

5. Consider the simple algebra s1(3, F) of type A,. Show that the subgroup
of Int L generated by the automorphisms 7, in (14.3) is strictly larger
than the Weyl group (here %,). [View Int L as a matrix group and
compute 72 explicitly.]

6. Use Theorem 14.2 to construct a subgroup I'(L) of Aut L isomorphic
to the group of all graph automorphisms (12.2) of ®.
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7. For each classical algebra (1.2), show how to choose elements 4, € H
corresponding to a base of @ (cf. Exercise 8.2).

Notes

The proof of Theorem 14.2 is taken from Winter [1]. The automorphism
o discussed in (14.3) will be used in §25 to construct a “Chevalley basis’ of
L (cf. also Exercise 25.7).

15. Cartan subalgebras

In §14, we proved that a pair (L, H), consisting of a semisimple Lie
algebra and a maximal toral subalgebra, is determined up to isomorphism by
its root system ®. However, it is conceivable that another maximal toral
subalgebra H' might lead to an entirely different root system ®’. (This could
of course be ruled out in many instances by use of the classification in §11,
since dim L = rank ®+ Card ®. However, types B,, C, are indistinguishable
from this point of view!)

In order to show that L alone determines @, it would surely suffice to
prove that all maximal toral subalgebras of L are conjugate under Aut L.
This will be done in §16, but in the wider context of an arbitrary Lie algebra
L, where the appropriate analogue of H is a “Cartan subalgebra”. This
wider context actually makes the proof easier, by allowing us to exploit the
special properties of solvable Lie algebras. In the present section we prepare
the framework ; here F may be of arbitrary characteristic, except where other-
wise specified. For technical convenience we still require F to be algebraically
closed, but this could also be weakened: for the main resulits it is enough that
Card F not be “too small” relative to dim L.

15.1. Decomposition of L relative to ad x

Recall from (4.2) that if € End ¥ (V a finite dimensional vector space),
then V is the direct sum of all V, = Ker (t—a-1)™, where m is the multi-
plicity of a as root of the characteristic polynomial of 7. Each V, is invariant
under ¢, and the restriction of ¢ to V, is the sum of the scalar ¢ and a
nilpotent endomorphism.

This applies in particular to the adjoint action of an element x on a Lie
algebra L. Write L = [ [ L(ad x) = L, (ad x) @ L, (ad x), where L, (ad x)

aeF

denotes the sum of those L,(ad x) for which a # 0. More generally, if K is
a subalgebra of L stable under ad x, we may write K = K, (ad x) @ K, (ad x)
even if x ¢ K.

Lemma. I/fa, beF, then[L, (ad x), L, (ad x)] < L,,, (ad x). In particular,
Ly(adx) is a subalgebra of L, and when charF=0, a0, each element of
L,(adx) is ad-nilpotent.
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Proof. The following formula is a special case of one noted in the proof
of Lemma 4.2B:

(ad x—a—b)"[yz) = Y. (’:’) [(ad x—a)(y), (ad x—b)"~¥(2)].

It follows that, for sufficiently large m, all terms on the right side are 0,
when ye L, (ad x), ze L, (ad x). [

15.2. Engel subalgebras

According to Lemma 15.1, L, (ad x) is a subalgebra of L, for xe L.
Following D. W. Barnes, we call it an Engel subalgebra. The following two
lemmas are basic to our discussion of Cartan subalgebras.

Lemma A. Let K be a subalgebra of L. Choose z € K such that L, (ad z) is
minimal in the collection of all L (ad x), x in K. Suppose that K < L, (ad z).
Then L, (ad z) < L, (ad x) for all x € K.

Proof. Begin with fixed, but arbitrary, x € K, and consider the family
{ad (z+cx)|c € F} of endomorphisms of L; since K, = L, (ad z) is a sub-
algebra of L including K, these endomorphisms stabilize K, hence induce
endomorphisms of the quotient vector space L/K, as well. If T is an in-
determinate, we can therefore express the characteristic polynomial of
ad (z+ cx) as the product f(7T, c)g(T, c) of its characteristic polynomials on
Ko, L/K,, respectively. If r = dim K, n = dim L, we can write f(7, c¢) =
T +AT " +...+f(c), &(T, c) = T" "+g,(c)T" " '+...4+g,_,(c). The
reader will see (after translating this into matrix language) that the coefficients
fic), g{c) are polynomials in ¢, of degree at most i.

By definition, the eigenvalue O of ad z occurs only on the subspace K,
which means (for the special case ¢ = 0) that g,_, is not identically O on F.
Therefore we can find as many scalars as we please which are not zeros
of g,_,; say ¢y, ..., .+, are r+1 distinct scalars of this sort. To say that
gn-,{c) # 0 is just to say that 0 is not an eigenvalue of ad (z+cx) on the
quotient space; this forces all of L, (ad (z+cx)) to lie in the subspace K.
But the latter was chosen to be minimal, so we conclude that L, (ad z) =
L, (ad (z+¢;x)) for 1 < i < r+1. This in turn means that ad (z +¢;x) has the
sole eigenvalue 0 on L, (ad 2), i.e., that f(T, ¢;) = T". So each of the pol:-
nomials £, . . ., f; (each of degree at most r) has r+1 distinct zeros ¢y, . . .,
¢, 4. This forces each of these polynomials to be identically 0.

We have just shown that L, (ad (z+cx)) @ K, for all ¢ € F. Since x was
arbitrary, we may now replace it by x—z, take ¢ = 1, and obtain L, (ad x)
>[Ly(adz). [

Lemma B. If K is a subalgebra of L containing an Engel subalgebra, then
Nu(K) = K. In particular, Engel subalgebras are self-normalizing.

Proof. Say K > L, (ad x). Then ad x acts on N (K)/K without eigen-
value 0. On the other hand, x € K implies [N, (K)x] < K, so ad x acts trivially
on N,(K)/K. Together, these force K = N, (K). [
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15.3. Cartan subalgebras

A Cartan subalgebra (abbreviated CSA) of a Lie algebra L is a nilpotent
subalgebra which equals its normalizer in L. This definition has the draw-
back of not implying that CSA’s exist (indeed, over finite fields the existence
question is not yet fully settled). If L is semisimple (char F = 0), then a
maximal toral subalgebra H is abelian (hence nilpotent), and N, (H) = H,

because L = H + [[ L,, with [H L,] = L, for « € ®. So in this case CSA’s
aed
certainly exist (and play an important role). More generally, we can prove:

Theorem. Let H be a subalgebra of the Lie algebra L. Then H is a
CSA of L if and only if H is a minimal Engel subalgebra (in particular, CSA’s
exist).

Proof. First suppose that H = L, (ad z) is an Engel subalgebra of L; by
Lemma B of (15.2), H is self-normalizing. If in addition H properly contains
no other Engel subalgebra, then the hypotheses of Lemma A of (15.2) are
satisfied (with H = K), forcing H = L, (ad z) < L, (ad x) for all x € H.
In particular, ady x is nilpotent for x € H. Therefore (Engel’s Theorem) H is
nilpotent.

Conversely, let H be a CSA of L. Since H is nilpotent, H < L, (ad x)
for all x e H. We want equality to hold for at least one x. Suppose, on the
contrary, that this never happens. Take L, (ad z), z € H, to be as small as
possible. Then Lemma A of (15.2) again applies, and we get L, (ad x) @ L,
(ad 2) for all x € H. This means that in the representation of H induced on the
nonzero vector space L, (ad z)/H, each x € H acts as a nilpotent endomor-
phism. It follows (3.3) that H annihilates some nonzero y+ H; or, in other
words, that there exists y ¢ H for which [Hy] < H. This contradicts the
assumption that H is self-normalizing. []

Corollary. Let L be semisimple (char F = 0). Then the CSA’s of L are
precisely the maximal toral subalgebras of L.

Proof. We remarked just before the theorem that any maximal toral
subalgebra is a CSA. Conversely, let H be a CSA. Observe that if x = x,+x,
is the Jordan decomposition of x in L, then L, (ad x,) < L, (ad x): any y
killed by a power of ad x, is also killed by a power of ad x, since ad x, is
nilpotent and commutes with ad x,. Observe also that for x € L semisimple,
L, (ad x) = C/(x), ad x being diagonalizable. Now the CSA H is minimal
Engel, of the form L, (ad x) (according to the theorem). The above remarks,
along with minimality, force H = L, (ad x,) = C.(x,). But C,(x,) evidently
includes a maximal toral subalgebra of L, which we already know is a CSA,
hence minimal Engel in its own right. We conclude that H is a maximal toral
subalgebra. []

As a corollary of this proof, we notice that a maximal toral subalgebra
of a semisimple Lie algebra (char F = 0) has the form C(s) for some semi-
simple element s (cf. Exercise 8.7). Such an element s is called regular semi-
simple.
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15.4. Functorial properties

Lemma A. Let ¢: L — L’ be an epimorphism of Lie algebras. If H is a
CSA of L, then ¢(H) is a CSA of L'.

Proof. Obviously ¢(H) is nilpotent. Let 4 = Ker ¢, and identify L’ with
L/A. If x+ A normalizes H+ A, then x € N,(H+ A). But H+ A4 includes a
CSA (mimimal Engel subalgebra: Theorem 15.3), so the subalgebra H+ A
is self-normalizing (Lemma B of (15.2)). Therefore, x € H+ A4, i.e., $(H) is
self-normalizing. [}

Lemma B. Let ¢: L — L’ be an epimorphism of Lie algebras. Let H' be a
CSA of L', K = ¢~ Y(H’). Then any CSA H of K is also a CSA of L.

Proof. H is nilpotent, by assumption. By the preceding lemma, ¢(H) is a
CSA of ¢(K) = H', forcing ¢(H) = H' (because CSA’s are minimal Engel).
If x e L normalizes H, then #(x) normalizes $(H), whence ¢(x) € $(H), or
x e H+Ker ¢. But Ker ¢ < K (by construction), so xe H+ K < K. Now
x e Ng(H) = H, since His a CSA of K. []

Exercises

1. A semisimple element of sl(n, F) is regular if and only if its eigenvalues are
all distinct (i.e., if and only if its minimal and characteristic polynomials
coincide).

2. Let L be semisimple (char F = 0). Deduce from Exercise 8.7 that the only
solvable Engel subalgebras of L are the CSA’s.

3. Let L be semisimple (char F = 0), x e L semisimple. Prove that x is
regular if and only if x lies in exactly one CSA.

4. Let H be a CSA of a Lie algebra L. Prove that H is maximal nilpotent,
i.e., not properly included in any nilpotent subalgebra of L. Show that
the converse is false.

5. Show how to carry out the proof of Lemma A of (15.2) if the field F is only
required to be of cardinality exceeding dim L.

6. Let L be semisimple (charF=0), L’ a semisimple subalgebra. Prove that
each CSA of L’ lies in some CSA of L. [Cf. Exercise 6.9.]

Notes

The approach to Cartan subalgebras used here is due largely to Barnes
[1], who introduced the notion of Engel subalgebra. See also Winter [1].

16. Conjugacy theorems

In this section F is assumed to be algebraically closed, of characteristic 0.
We are going to prove that, in an arbitrary Lie algebra L over F, all CSA’s
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are conjugate under the group Int L of inner automorphisms (the group
generated by all exp ad x, x € L ad-nilpotent). For L semisimple, this means
that all maximal toral subalgebras are conjugate: therefore, L is uniquely
determined (up to isomorphism) by its root system relative to any maximal
toral subalgebra. As an auxiliary step we shall also prove that all maximal
solvable subalgebras of L are conjugate.

16.1. The group &(L)

Let L be a Lie algebra. Call x ¢ L strongly ad-nilpotent if there exists
y e L and some nonzero eigenvalue a of ad y such that x € L, (ad y). This
forces x to be ad-nilpotent (15.1), so the terminology is reasonable. Denote
by A7(L) the set of all strongly ad-nilpotent elements of L, and by &(L) the
subgroup of Int L generated by all exp ad x, x € A°(L). (Notice that 4"(L)
is stable under Aut L; therefore, &(L) is normal in Aut L.)

We prefer to work with &(L) rather than with all of Int L because &'(L)
has better functorial properties. (Actually, when L is semisimple, it turns out
after the fact that &(L) = Int L; cf. (16.5).) For example, if K is a sub-
algebra of L, then obviously A4 (K) < A"(L). This permits us to define the
subgroup &(L; K) of &(L) generated by all exp ad; x, x e /" (K). Then &(K)
is obtained simply by taking the restriction of &(L; K) to K. By contrast,
if we take arbitrary x € K for which adg x is nilpotent, we have no control
over ad; x and therefore no such direct relationship between Int K and
Int L.

Itis clear that, if : L — L’ is an epimorphism, and y € L, then ¢(L,(ad y))
= L, (ad #(»)). From this we get: ¢(A"(L)) = A"(L’).

Lemma. Let ¢: L — L' be an epimorphism. If ¢’ € &(L’), then there exists
o e &(L) such that the following diagram commutes:

L—*

L——¢——>L'

Proof. 1t suffices to prove this in case ¢’ = exp ad,. x’, x’ € #/(L"). By
the preceding remark, x’ = ¢(x) for at least one x e A#°(L). For arbitrary
zeL, (¢ oexp ad, x) (2) = d(z+[xz]+(1/2) [x[xz]]+...) = #(2) +[x"d(2)] +
1/2) [x'[x'¢(2)]]+...) = (exp ad,. x" o ) (z). In other words, the diagram
commutes. [

16.2. Conjugacy of CSA’s (solvable case)

Theorem. Let L be solvable, &(L) as in (16.1). Then any two CSA’s H,, H,
of L are conjugate under &(L).

Proof. Use induction on dim L, the case dim L = 1 (or L nilpotent) being
trivial. Assume that L is not nilpotent. Since L is solvable, L possesses non-



16.3. Borel subalgebras 83

zero abelian ideals (e.g., the last nonzero term of the derived series); choose
A to be one of smallest possible dimension. Set L’ = L/A, and denote the
canonical map ¢: L — L/A by x+> x’. According to Lemma A of (15.4),
Hj and H, are CSA’s of the (solvable) algebra L’. By induction, there exists
o’ € &(L") sending H, onto H,. Then Lemma 16.1 allows us to find o € &(L)
such that the diagram there commutes. This means that o maps the full
inverse image K, = ¢~ '(H,) onto K, = ¢~ '(H,). But now H, and o(H,)
are both CSA’s of the algebra K. If K, is smaller than L, induction allows us
to find 7' € £(K,) such that 'o(H,) = H,; but &(K,) consists of the restric-
tions to K, of the elements of &(L; K,) = &(L), so this says that ro(H,) =
H, for 7 € &(L) whose restriction to K, is =’, and we’re done.

Otherwise we must have L = K, = o(K,), so in fact K, = K, and L =
H,+A = H,+A. To settle this case, we must explicitly construct an auto-
morphism of L (this is the only point in the whole argument where we have
to do so!). The CSA H, is of the form L, (ad x) for suitable x € L, thanks to
Theorem 15.3. A being ad x stable, 4 = A, (ad x) ® A4 (ad x) (cf. (15.1)),
and each summand is stable under L = H,+ A. By the minimality of A4, we
have either A = A, (ad x) or else A = A, (ad x). The first case is absurd,
since it would force 4 < H,, L = H,, contrary to the assumption that L is
not nilpotent. So A = A, (ad x), whence (clearly) 4 = L, (ad x).

Since L = H,+ A, we can now express x = y+z, where ye H;, ze L,
(ad x). In turn, write z = [xz'], z’ € L, (ad x), using the fact that ad x is
invertible on L, (ad x). Since 4 is abelian, (ad z')> = 0, soexp ad z’ = 1,
+ad z’; applied to x, this yields x—z = y. In particular, H = L, (ad y)
must also be a CSA of L. Since ye H,, H > H,, whence H = H, (both
being minimal Engel). So H, is conjugate to H, via exp ad z’.

It remains only to observe that exp ad z’ does lie in &(L): z° can be
written as sum of certain strongly ad-nilpotent elements z; of 4 = L, (ad x),
but the latter “commute” (4 is abelian), soexpad z’ = [ expad z; € &(L). [

16.3. Borel subalgebras

To pass from the solvable case to the general case, we utilize Borel
subalgebras of a Lie algebra L, which are by definition the maximal solvable
subalgebras of L. If we can show that any two Borel subalgebras of L are
conjugate under &(L), then it will follow from Theorem 16.2 that all CSA’s
of L are conjugate.

Lemma A. If B is a Borel subalgebra of L, then B = N (B).

Proof. Let x normalize B. Then B+Fx is a subalgebra of L, solvable
because [B+Fx, B+Fx] = B, whence x € B by maximality of B. []

Lemma B. If Rad L # L, then the Borel subalgebras of L are in natural
1-1 correspondence with those of the semisimple Lie algebra L/Rad L.

Proof. Rad L being a solvable ideal of L, B+Rad L is a solvable sub-
algebra of L for any Borel subalgebra B of L, i.e., Rad L < B (by maxi-
mality). The lemma follows at once. [
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From Lemma B it follows that the essential case is that in which L is
semisimple. In this situation, let H be a CSA, ® the root system of L relative

to H. Fix a base A, and with it a set of positive roots. Set B(A) = H + [] L,,
>0

N(A) =[] L,. Then we know that B(A) is a subalgebra of L, with derived
a>0
algebra N(A). Furthermore, N(A) is nilpotent: If x € L, (« > 0), then appli-

cation of ad x to root vectors for roots of positive height (relative to A)
increases height by at least one; this shows how to make the descending
central series go to zero. It follows now that B(A) is solvable. In fact, we
claim that B(A) is a Borel subalgebra: Indeed, let K be any subalgebra of L
properly including B(A). Then K, being stable under ad H, must include
some L, for « < 0. But this forces K to include the simple algebra S,; in
particular, K cannot be solvable.

Lemma C. Let L be semisimple, with CSA H and root system ®. For each
base A = ®, B(A) is a Borel subalgebra of L (called standard relative to H).
All standard Borel subalgebras of L relative to H are conjugate under &(L).

Proof. Only the second statement remains to be proved. Recall (14.3)
that the reflection g,, acting on H, may be extended to an inner automor-
phism 7, of L, which is (by construction) in &(L). It is clear that this
automorphism sends B (4) to B(o,A). Using the fact that the Weyl group
is generated by reflections and acts transitively on bases, we see that & (L)
acts transitively on the standard Borels relative to H. [

16.4. Conjugacy of Borel subalgebras

Theorem. The Borel subalgebras of an arbitrary Lie algebra L are all
conjugate under &(L).

Corollary. The Cartan subalgebras of an arbitrary Lie algebra L are
conjugate under &'(L).

Proof of Corollary. Let H, H' be two CSA’s of L. Being nilpotent (hence
solvable), each lies in at least one Borel subalgebra, say B and B’ (respec-
tively). By the theorem, there exists o € &(L) such that o(B) = B’. Now
o(H) and H' are both CSA’s of the solvable algebra B’, so by Theorem 16.2
there exists 7' € £(B’) for which 'o(H) = H'. But =’ is the restriction to B’
of some e &(L; B') = &(L) (16.1), so finally ro(H) = H'. 7ce &(L). [

Proof of Theorem. We proceed by induction on dim L, the case dim L =
| being trivial. By Lemmas 16.1 and 16.3B, along with the induction
hypothesis, we may assume that L is semisimple. Fix a standard Borel
subalgebra B (relative to some CSA). It will suffice to show that any other
Borel subalgebra B’ is conjugate to B under &(L). If Bn B’= B, there is
nothing to prove (since this forces B’= B by maximality). Therefore, we
may also use a second (downward) induction on dim(B n B’): by assump-
tion, any Borel subalgebra whose intersection with B (or a conjugate of B)
has larger dimension is already conjugate to B.
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(1) First suppose that BN B’#0. Two cases arise:

Case (i): The set N’ of nilpotent elements of BN B’ is nonzero. Since B
1s standard, N’ is a subspace and the derived algebra of B N B’ consists of
nilpotent elements. This implies in turn that N’ is an idealin BN B’. N' is
of course not an ideal of L, so its normalizer K is a proper subalgebra of L.

Next we show that B N B’ is properly contained in both BN K, B’ N K.
For consider the action of N’ on B/(B N B’) induced by ad. Each x e N’ acts
nilpotently on this vector space, so by Theorem 3.3 there must exist nonzero
y+(B N B’) killed by all xe N’, i.e., such that [xy]e BN B, y¢ BN B'.
But [xy] is also in [BB], so is nilpotent; this forces [xy] e N', or y € Ng(N') =
B N K, while y ¢ BN B’. Similarly, B N B’ is properly contained in B’ N K.

On the other hand, BN K and B’ N K are solvable subalgebras of K.
Let C, C’ be respective Borel subalgebras of K including them (Figure 1).
Since K # L, induction yields o e&(L; K) < &(L) such that o(C’) = C.
Because BN B’ is a proper (nonzero) subalgebra of both C and C’, the
second induction hypothesis then yields 7ed&(L) such that 7o(C’) < B
(i.e., 7 sends a Borel subalgebra of L including ¢(C’) = C onto B). Finally,

NS
C C
|
Brl\K B NK
N
BN B
|
N’

Figure 1

BN 79(B’) @ 7o(C’) N 79(B’) = 7o(B' N K) 2 7o(BN B’), so the former
has greater dimension than B N B’. Again appealing to the second induction
hypothesis, we see that B is conjugate under &(L) to 7o(B’), and we’re done
with case (i).

Case (ii): BN B’ has no nonzero nilpotent elements. Note that any Borel
subalgebra of L contains the semisimple and nilpotent parts of its ele-
ments, thanks to Proposition 4.2(c) and Lemma 16.3A. This shows at once
that BN B’=T is a toral subalgebra. Now we use the fact that B is a
standard Borel subalgebra, say B=B(A), N=N(A), B=H+ N. Since
[BB]=N, and since TN N=0, it is clear that Ny(T)= Cyx(T). Let C be
any CSA of Cy(T); in particular, C is nilpotent and 7<= N, (C)=C. If
neNg(C),t e T<C,then (adt)’n=0 for some k since C is nilpotent. But
ads is semisimple, so k=1 and ne Cg(T). Thus Ng(C)=N¢, (C)=C.
As a nilpotent self-normalizing subalgebra of B, C is therefore a CSA of B
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(which includes 7). We know, thanks to Theorem 16.2, that C is a maximal
toral subalgebra of L conjugate under &'(B) (hence under &(L)) to H, so
without loss of generality we may now assume that T < H.

Suppose 7' = H. Evidently B’ 2 H, so B’ must include at least one L,
(« < 0 relative to A). Applying 7, (cf. Lemma C of 16.3) to B’ yields a Borel
subalgebra B” whose intersection with B includes H+ L_,; so the second
induction hypothesis shows that B” is conjugate in turn to B, and we’re done.

Next suppose T is properly included in H. Now either B’ centralizes T or
not. If B < C,(T), then we can appeal to the first induction hypothesis,
since dim C(T) < dim L (T # 0 and Z(L) = 0). Namely, use the fact that
H < C,(T) to find a Borel subalgebra B” of C,(T) including H, then use
induction to find o € &(L; C(T)) = &(L) sending B’ onto B”. In particular,
B” is a Borel subalgebra of L, including H, so it is conjugate to B under
&' (L) because of the second induction hypothesis.

We are left with the situation B’ ¢ C,(T). This allows us to find a com-
mon eigenvector x € B’ for ad T, and an element ¢ € T for which [7x] = ax,
with a rational and positive. Define S = H + I L,, « € ® running over
those roots for which «(¢) is rational and positive. It is clear that S is a sub-
algebra of L (and x € S). Moreover, it is immediate that S is solvable (cf.
proof of Lemma 16.3C). Let B” be a Borel subalgebra of L which includes
S. Now B"NB > T+Fx 2 T =B N B, so dim B"N B’ > dim BN B".
Similarly, "N B> H 2 T, so dim B”"N B > dim B’ N B. The second
induction hypothesis, applied to this iast inequality, shows that B” is con-
jugate to B. (In particular, B” is obviously standard relative to a CSA
conjugate to H.) The second induction hypothesis next applies (because B”
is standard) to the first inequality, showing that B” is conjugate to B’. So B
is conjugate to B’'.

(2) This disposes of all cases for which B N B’ # 0. Consider now what
happens if BN B’ = 0. This forces dim L > dim B+dim B’; since B is
standard, we know dim B > (1/2) dim L, so B’ must be “too small”. More
precisely, take 7 to be a maximal toral subalgebra of B’. If T = 0, then B’
consists of nilpotent elements; B’ is therefore nilpotent (Engel’s Theorem)
as well as self-normalizing (Lemma A of (16.3)), i.e., B’ is a CSA. But this
is absurd, since we know (Corollary 15.3) that all CSA’s of L are toral.
Therefore T # 0. If H, is a maximal toral subalgebra of L including 7, then
B’ has nonzero intersection with any standard Borel subalgebra B” relative
to H,. Therefore B’ is conjugate to B”, by the first part of the proof, so dim
B’ = dim B” > (1/2) dim L, contradicting the “smallness” of B’. []

Corollary 16.4 allows us to attach a numerical invariant (called rank)
to an arbitrary Lie algebra L over F, namely, the dimension of a CSA of L.
In case L is semisimple, rank L coincides with rank @, ® the root system of
L relative to any maximal toral subalgebra (= CSA).

It is worthwhile to note one byproduct of the conjugacy theorem for
Borel subalgebras. Let L be semisimple, with CSA H and root system .
We claim that any Borel subalgebra B of L which includes H is standard.
Indeed, let o(B(A)) = B, where A is some given base of @, o e &(L). Since
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H and o(H) are two CSA’s of B, they are conjugate under &(L; B) < &(L)
(Theorem 16.2), so we may as well assume that o(H) = H. Then it is clear
that for each « > 0, o(L,) = L,,, with sx a root. Moreover, the permutation
of roots effected by ¢ preserves sums, so o(A) = A’ is again a base of ® and
B = B(A’) is standard.

16.5. Automorphism groups

Let L be semisimple, H a CSA of L, with root system ® and some fixed
base A. If 7 is any automorphism of L, then of course 7(B), B = B(4), is
another Borel subalgebra of L, so it is sent back to B by some o, € &(L)
(Theorem 16.4). Now H and o, 7(H) are two CSA’s of L (hence also CSA’s
of B), so we can find o, e &§(L; B) < &(L) which sends o,7(H) to H (and
leaves B invariant), thanks to Theorem 16.2. Since o,0,7 simultaneously
preserves H and B, it induces an automorphism of ® which leaves A in-
variant. From (12.2) we know all such automorphisms: the nontrivial ones
arise from nontrivial graph automorphisms, which exist (for @ irreducible)
only in the cases A, (¢ > 1), D,, E4. Let p be a corresponding automorphism
of L (cf. Exercise 14.6). Because p is not quite unique, we may adjust the
scalars involved in such a way that po,o,7 sends x, to c,x, (« > 0), y, to
¢, 'y,, hence h, to h, (hence all h to themselves). The upshot is that = differs
from an element of the group &(L)-I'(L), I'(L) = group of graph auto-
morphisms of L, only by a diagonal automorphism, i.c., an automorphism
which is the identity on H and scalar multiplication on each root space L,.

It can be proved (see Jacobson [1], p. 278) that a diagonal automorphism
is always inner; in fact, the construction shows that it can be found in &(L).
Moreover, the product Aut L = Int (L)-I'(L) turns out to be semidirect
(Jacobson [1], Chapter IX, exercises), so in particular &(L) = Int (L). The
reader will also find in Jacobson’s book detailed descriptions of the auto-
morphism groups for various simple Lie algebras.

Exercises

—

Prove that &(L) has order one if and only if L is nilpotent.

2. Let L be semisimple, H a CSA, A a base of ®. Prove that any subalgebra
of L consisting of nilpotent elements, and maximal with respect to this
property, is conjugate under &(L) to N(A), the derived algebra of B(}).

3. Let ¥ be a set of roots which is closed («, 8 € ¥, «+ 5 € ® implies «+ € \')
and satisfies W' N —¥ = . Prove that ¥ is included in the set of positive
roots relative to some base of ®. [Use Exercise 2.] (This exercise belongs
to the theory of root systems, but is easier to do using Lie algebras.)

4. How does the proof of Theorem 16.4 simplify in case L = sl(2, F)?

5. Let L be semisimple. If a semisimple element of L is regular, then it lies
in only finitely many Borel subalgebras. (The converse is also true, but
harder to prove, and suggests a notion of “regular” for elements of L
which are not necessarily semisimple.)

6. Let L be semisimple, L = H + II L,. A subalgebra P of L is called
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parabolic if P includes some Borel subalgebra. (In that case P is self-
normalizing, by Lemma 15.2B.) Fix a base A © @, and set B = B(A).
For each subset A’ < A, define P(A’) to be the subalgebra of L generated
by all L, (x€A or —axeA’), along with H.

(a) P(A') is a parabolic subalgebra of L (called standard relative to A).
(b) Each parabolic subalgebra of L including B(A) has the form P(A")
for some A’ < A, [Use the Corollary of Lemma 10.2A and Proposition
8.4(d).]

(¢) Prove that every parabolic subalgebra of L is conjugate under &(L)
to one of the P(A").

. Let L = sl(2, F), with standard basis (x, A4, y). For ¢ eF, write x(c) =

exp ad(cx), y(c) = exp ad(cy). Define inner automorphisms w(c) =
x(e)y(—c ™ Hx(e), h(c) = we)w(1)™! (=w(c)w(—1)), for ¢ # 0. Compute
the matrices of w(c), A(c) relative to the given basis of L, and deduce that
all diagonal automorphisms (16.5) of L are inner. Conclude in this case
that Aut L = Int L = &(L).

Let L be semisimple. Prove that the intersection of two Borel subalge-
bras B, B’ of L always includes a CSA of L. [The proof is not easy;
here is one possible outline:

(a) Let N,N’ be the respective ideals of nilpotent elements in B,B’.
Relative to the Killing form of L, N=B*+,N’=B’*, where L denotes
orthogonal complement.

(b) Therefore B=N*=(N+(NNN')*=(N+(BNN) " =N*+n
(B*+N'*)=BNn(N+B)=N+(BNnB).

(c) Note that A = BN B’ contains the semisimple and nilpotent parts of
its elements.

(d) Let T be a maximal toral subalgebra of 4, and find a T-stable
complement A" to AN N. Then A’ consists of semisimple elements.
Since B/ N is abelian, [TA']=0, forcing A'=T.

(e) Combine (b), (d) to obtain B=N+T; thus T is a maximal toral
subalgebra of L.]

Notes

The proof of Theorem 16.4 is due to Winter [1] (inspired in part by G.

D. Mostow); see also Barnes [1]. Most of the older proofs use analytic
methods (F=C) or else some algebraic geometry: see Bourbaki [3], Chap.
VII, Chevalley [2], Jacobson [1], Séminaire “Sophus Lie” [1], Serre [2]. For
detailed accounts of the automorphism groups, consult Jacobson [1],
Seligman [1].



Chapter V

Existence Theorem

17. Universal enveloping algebras

In this section F may be an arbitrary field (except where otherwise noted).
We shall associate to each Lie algebra L over F an associative algebra with 1
(infinite dimensional, in general), which is generated as “freely” as possible
by L subject to the commutation relations in L. This “universal enveloping
algebra™ is a basic tool in representation theory. Although it could have
been introduced right away in Chapter I, we deferred it until now in order
to avoid the unpleasant task of proving the Poincaré-Birkhoff-Witt Theorem
before it was really needed. The reader is advised to forget temporarily all
the specialized theory of semisimple Lie algebras.

17.1. Tensor and symmetric algebras

First we introduce a couple of algebras defined by universal properties.
(For further details consult, e.g., S. Lang, Algebra, Reading, Mass.:
Addison-Wesley 1965, Ch. XVI.) Fix a finite dimensional vector space
Vover F.Let TV =F, TV =V, TV=VRV,....TV=V®...®
V (m copies). Define T(V) = [] T'V, and introduce an associative product,

i=0

defined on homogeneous generators of I(V) by the obvious rule (v; ® . ..
Qv) W ®...0W,) =0, ® ..., W, ®...QR w,eT*""V. This
makes T(V) an associative graded algebra with 1, which is generated by 1
along with any basis of V. We call it the tensor algebra on V. T(V) is the
universal associative algebra on n generators (n = dim V), in the following
sense: given any F-linear map ¢: V' — U (WA an associative algebra with
1 over F), there exists a unique homomorphism of F-algebras ¢: IT(V) - A
such that (1) = 1 and the following diagram commutes (i = inclusion):

r— 3)
¢ ¢
A

Next let I be the (two sided) ideal in I(V') generated by all x ® y—y @ x
(x, y e V) and call S(V) = IT(V)/I the symmetric algebra on V; o: (V) —
&(V) will denote the canonical map. Notice that the generators of 7 lie in
T?V; this makes it obvious that /= (UNT?*V)@UNTV)@...
Therefore, o is injective on T°V = F, T'V = V (allowing us to identify V
with a subspace of &(V)), and S(V) inherits a grading from T(V): S(V)

89
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= ][] S'V. The effect of factoring out I is just to make the elements of V'
i=0

commute; so S(V) is universal (in the above sense) for linear maps of V

into commutative associative F-algebras with 1. Moreover, if (x, ..., x,)

is any fixed basis of V, then G(V) is canonically isomorphic to the poly-

nomial algebra over F in n variables, with basis consisting of 1 and all

Xicty+++Xiepp 12 1, 1 <i(1) < ... <i(f) < n.

The reader can easily verify that the preceding constructions go through
even when V is infinite dimensional.

For use much later (in §23) we mention a special fact in case char F = 0.
The symmetric group &, acts on T™V by permuting subscripts of tensors
v, ® ... ® v, (v;e V). An element of T™V fixed by ., is called a homo-
geneous symmetric tensor of order m. Example: x ® y+y ® x (order 2).
Fix a basis (x;, ..., x,) of V, so the products x;;) ® ... ® X;um (1 < i(j)
< n) form a basis of T™V. For each ordered sequence 1 < i(l) < i(2)...
< i(m) < n, define a symmetric tensor
™ m' Z Xia(1)) ® « + + @ Xi(rmy)
(which makes sense since m! # 0 in F). The images of these tensors in S™V
are nonzero and clearly form a basis there, so the tensors (*) in turn must
span a complement to / N T™V in T™V. On the other hand, the tensors (*)
obviously span the space of all symmetric tensors of order m (call it S™V <
T™V). We conclude that ¢ defines a vector space isomorphism of S™F onto
S™V, hence of the space S(¥) of all symmetric tensors onto S(V).

17.2. Construction of V(L)

We begin with the abstract definition, for an arbitrary Lie algebra L
(allowed here to be infinite dimensional, contrary to our usual convention).
A universal enveloping algebra of L is a pair (U, i), where U is an associative
algebra with 1 over F, i: L — Ul is a linear map satisfying

™ i([xy])) = i(x)i(y)—i(y)i(x)

for x, y € L, and the following holds: for any associative F-algebra U with 1
and any linear map j: L — 9 satisfying (*), there exists a unique homo-
morphism of algebras ¢: U — U (sending 1 to 1) such that o i = j.

The unigueness of such a pair (U, i) is easy to prove. Given another pair
(B, i’) satisfying the same hypotheses, we get homomorphisms ¢: U — B,
¢ B — U. By definition, there is a unique dotted map making the following
diagram commute:

u
L/=
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But 1, and ¢ o ¢ both do the trick, so o ¢ = 1,. Similarly, ¢o b = 1g4.
Existence of a suitable pair (U, i) is also not difficult to establish. Let
(L) be the tensor algebra on L (17.1), and let J be the two sided ideal in
(L) generated by all x ® y—y ® x—[xy] (x, y € L). Define U(L) = I(L)/J,
and let w: F(L) - U(L) be the canonical homomorphism. Notice that
J <[] T'L, so = maps T°L = F isomorphically into U(L) (therefore, (L)
i>0
contains at least the scalars). It is not at all obvious that = maps T'L = L
isomorphically into U(L); this will be proved later. In any case, we claim that
(U(L), i) is a universal enveloping algebra of L, where i: L — U(L) is the
restriction of = to L. Indeed, let j: L — U be as in the definition. The uni-
versal property of T(L) yields an algebra homomorphism ¢': T(L) — A
which extends j and sends 1 to 1. The special property (*) of j forces all
Xx®y—y ® x—[xy] to lie in Ker ¢, so ¢ induces a homomorphism ¢:
U(L) — A such that ¢ o i = j. The uniqueness of ¢ is evident, since 1 and
Im i together generate U(L).

Example. Let L be abelian. Then the ideal J above is generated by all
X ® y—y ® x, hence coincides with the ideal 7 introduced in (17.1). This
means that U(L) coincides with the symmetric algebra S(L). (In particular,
i: L — U(L) is injective here.)

17.3. PBW Theorem and consequences

So far we know very little about the structure of (L), except that it
contains the scalars. For brevity, write T = I(L), © = S(L), U = U(L);
similarly, write 7™, S™. Define a filtrationon T by T, = T° @ T' @ ... ®
T andlet U, = «(T,),U_, = 0. Clearly, U,,U, < U,,; ,and U,, © U, +,. Set
G¢" = U,/U,_, (this is just a vector space), and let the multiplication in U
define a bilinear map G™x G? — G™*?. (The map is well-defined; why?)

This extends at once to a bilinear map ®x ® — ®, ® = [ [ G™, making G a

m=0
graded associative algebra with 1.

Since = maps T™ into U,,, the composite linear map ¢,,: T™ — U,, - G™
= U,/U,_, makes sense. It is surjective, because #(T,,— T}, ;) = U,,— U, - ;.
The maps ¢,, therefore combine to yield a linear map ¢: T — ®, which is
surjective (and sends 1 to 1).

Lemma. ¢: T — ® is an algebra homomorphism. Moreover, ¢(I) = 0,
$0 ¢ induces a homomorphism w of S = /I onto ®.

Proof. Let x e T™, y € TP be homogeneous tensors. By definition of the
product in ®, #(xp) = #(x)$(»), so it follows that ¢ is multiplicative on I.
Let x® y—y ® x (x, ye L) be a typical generator of I. Then #(x ® y—
y ® x) € U,, by definition. On the other hand, 7(x ® y—y ® x) = #([xy]) €
U,, whence ¢(x ® y—y ® x) e U;/U; = 0. It follows that I < Ker ¢. [

The following theorem is the basic result about U(L); it (or its Corollary
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C) is called the Poincaré-Birkhoff-Witt Theorem (or PBW Theorem). The
proof will be given in (17.4).

Theorem. The homomorphism w: S — ® is an isomorphism of algebras.

Corollary A. Let W be a subspace of T™. Suppose the canonical map T™ —
S™ sends W isomorphically onto S™. Then =(W) is a complement to U, _,
in U,

Proof. Consider the diagram (all maps canonical):

Thanks to the lemma above (and the definitions), this is a commutative
diagram. Since w: © — ® is an isomorphism (by the theorem), the bottom
map sends W < T™ isomorphically onto G™. Reverting to the top map,
we get the corollary. [

Corollary B. The canonical map i: L — U(L) is injective (so L may be
identified with i(L)).

Proof. This is the special case W = T* (=L) of Corollary A. [J
We have allowed L to be infinite dimensional. In practice, the case where
L has countable basis is quite adequate for our purposes.

Corollary C. Let (x;, x,, X3,...) be any ordered basis of L. Then the
elements Xy ... Ximy = T(Xi1) @ « oo ® Xymy), meZ™, i(1) <i2)... <
i(m), along with 1, form a basis of U(L).

Proof. Let W be the subspace of 7™ spanned by all x;, ® ... ® X,
i(1) < ... < i(m). Evidently W maps isomorphically onto S™, so Corollary
A shows that =(W) is a complement to U,,_; in U,,. []

A basis of U(L) of the type just constructed will be referred to simply as
a PBW basis.

Corollary D. Let H be a subalgebra of L, and extend an ordered basis
(hy, hy, .. .) of H to an ordered basis (hy, . .., xy,...) of L. Then the homo-
morphism W(H) — W(L) induced by the injection H — L — W(L) is itself
injective, and W(L) is a free U(H)-module with free basis consisting of all
Xi1) « -+ Xigmy» 1(1) < #(2) < ... < i(m), along with 1.

Proof. These assertions follow at once from Corollary C. []
For use much later, we record a special fact.

Corollary E. Let char F = 0. With notation as in (17.1), the composite
S"L — S™L — U,, of canonical maps is a (linear) isomorphism of S™L onto
a complement of U,,_, in U,.

Proof. Use Corollary A, with W = §™. []
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17.4. Proof of PBW Theorem

Fix an ordered basis (x;; A € Q) of L. This choice identifies & with the
polynomial algebra in indeterminates z, (A € Q). For each sequence X =
(A1s - .., Ay of indices (m is called the length of Z), let zgy = z;, ...z, eS™
andletxy = x; ® ... ® x;, e T™ Call Zincreasing if \; <A, < ... <A,
in the given ordering of Q; by fiat, @ is increasing and z, = 1. So {z|Z
increasing} is a basis of &. Associated with the grading © = II S™ is the
filtration S,, = S° @ ... ® S™ In the following lemmas, write A < X if
A< pforall peZ.

Lemma A. For each m e Z*, there exists a unique linear map f,,: L ® S,
— & satisfying:

A4,,) fulx, ® z5) = z;zg for A < X, z; € S,,.
(B,) fu(X, ® z5)—z;2z5 € S for k < m, zg € S,.
(Co) fu(X2 ® ful(Xu ® 27)) = Sl X, ® Su(X1 ® 21)) +1u([x:%,] ® 2z7) for all
zreS,_1.
Moreover, the restriction of f,, to L ® S,,_, agrees with f,,_;.

Proof. Notice that the terms in (C,,) all make sense, once (B,,) is proved.
Notice too that the restriction of f,, to L ® S,,-; automatically satisfies
(Apn-1)s (Bn-1), (Cn-1), so this restricted map must coincide with f,,_,
because of the asserted uniqueness. To verify existence and uniqueness
of f,,, we proceed by induction on m. For m = 0, only zy = 1 occurs; therefore
we may let fo(x; ® 1) = z, (and extend linearly to L ® S,). Evidently (4,),
(By), (C,) are satisfied, and moreover, (4,) shows that our choice of f, is
the only possible one.

Assuming the existence of a unique f,,_; satisfying (4,,-1), (Bu-1),
(C,,— 1), we shall show how to extend f,,_; to a map f,,. For this it will suffice
to define f,,(x; ® zg) when X is an increasing sequence of length m.

For the case A < Z, (4,,) cannot hold unless we define f,,(x; ® z;z) =
z,zs. In case A < X fails, the first index w in 2 must be strictly less than A, so
2 = (u, T), where of course u < T and T has length m—1. By (4,,-),
2y = 2,27 = fu-1(x, ® z7). Since p < T, fo(x, ® z7) = z,zp is already
defined, so the left side of (C,,) becomes f,(x; ® zgz). On the other hand,
(B,,— ;) implies that f,,(x; ® z7) = fr,—1(x; ® z7) = 2,z (mod S,,-;). This
shows that the right side of (C,,) is already defined:

2,2;Zr - 1(x, @ ) +fum (X3 x,] ® 27), Y € Syt

The preceding remarks show that f;, can be defined, and in only one way.
Moreover, (4,,) and (B,) clearly hold, as does (C,,) in case p < A, up < T.
But [x, x;] = —[x; x,], so (C,) also holds for A < pu, A < T. When A = p,
(C,) is also true. It remains only to consider the case where neither A < T
nor u < Tis true. Write T = (v, ¥), where v < ¥, v < A, v < pu. To keep the
notation under control, abbreviate f,,(x ® z) by xz whenever xe L, z€ S,,.
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The induction hypothesis insures that x,zr = x,(x,2¢) = x,(x,29)+[x,
X2y, and x,2¢ = z,29+w (W e S,,_,), by (B,-,). Since v < ¥, v <, (C,)
applies already to x,(x,(z,zy)). By induction, (C,,) also applies to x,(x,w),
therefore to x,(x,(x,z¢)). Consequently: (*) x,(x,zp) = x,(x,(x,2¢)) +[x;
xv] (xuz‘l")-}'[xu xv] (xi.z‘Y)+[xA. [xu, xv]]z‘l"

Recall that A, p are interchangeable throughout this argument. If we
interchange them in (*) and subtract the two resulting equations, we get:

x(xuz1) — x,(x;27) = X,(x3(x,29)) — X, (x,(x;2)) +[x; [x,X,]]29 —
=[x, [x:xlzg = x,([xax,)z9) + x5 [x,X, ]2
+[x, [xyxllze = [xx,] (eyze) +([xy [x5x,]]
+[x; [xx 1+ [x, [ xa]Dze = [xax,]z7

(thanks to the Jacobi identity).
This proves (C,,), and with it the lemma. [

Lemma B. There exists a representation p: L — gl(S) satisfying:
(@) p(x)zg = 2,25 for A < Z.
) p(x))zs = z,z5 (mod S,,), if 2 has length m.

Proof. Lemma A allows us to define a linear map /: L® S > S
satisfying (4,,), (B,,), (C,,) for all m (since f,, restricted to L ® S,,—; 1S fru-1,
by the uniqueness part). In other words & becomes an L-module (condition
(C,), affording a representation p which satisfies (a), (b), thanks to (4,,),
(Bn)- D

Lemma C. Let te T, N J (J = Ker =, w: T — U canonical). Then the
homogeneous component t,, of t of degree m lies in I (the kernel of the canonical

map T — ).

Proof. Write t,, as linear combination of basis elements xz;, (1 < i <),
each Z(i) of length m. The Lie homomorphism p: L — gl(&) constructed
in Lemma B extends, by the universal property of U, to an algebra homo-
morphism (also called p) T — End &, with J < Ker p. So p(z) = 0. But
p(¢).1 is a polynomial whose term of highest degree is the appropriate
combination of the zg;) (1 < i < r), by Lemma B. Therefore this combina-
tion of the zy;, is 0 in &, and 1, € I as required. []

Proof of PBW Theorem. Let t € T™, w: T — U the canonical map. We
must show that #(¢) e U,,_, implies teI. But te T™, n(f) e U,_, together
imply that =(f) = =(¢') for some ¢’ € T,,_,, whence t—¢t' € J. Apply Lemma C
to the tensor t—t' e T, N J: the homogeneous component of degree m
being t, we get tel. []

17.5. Free Lie algebras

The reader may be familiar with the method of constructing groups by gen-
erators and relations. We shall use an analogous method in §18 to construct
semisimple Lie algebras. For this one needs the notion of free Lie algebra.

Let L be a Lie algebra over F generated by a set X. We say L is free
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on X if, given any mapping ¢ of X into a Lie algebra M, there exists a
unique homomorphism : L — M extending ¢. The reader can easily verify
the wuniqueness (up to a unique isomorphism) of such an algebra L. As
to its existence, we begin with a vector space V having X as basis, form
the tensor algebra T(V) (viewed as Lie algebra via the bracket operation),
and let L be the Lie subalgebra of T(V) generated by X. Given any map ¢:
X — M, let ¢ be extended first to a linear map V' — M < U(M), then (canoni-
cally) to an associative algebra homomorphism (V) — U(M), or a Lie
homomorphism (whose restriction to L is the desired s: L — M, since s maps
the generators X into M).

We remark that if L is free on a set X, then a vector space ¥ can be given
an L-module structure simply by assigning to each x € X an element of the
Lie algebra gl(V) and extending canonically.

Finally, if L is free on X, and if R is the ideal of L generated by elements
J/; (j running over some index set), we call L/R the Lie algebra with generators
x; and relations f; = 0, where x; are the images in L/R of the elements of X.

Exercises

1. Prove that if dim L < oo, then U(L) has no zero divisors. [Hint: Use the
fact that the associated graded algebra ® is isomorphic to a polynomial
algebra.]

2. Let L be the two dimensional nonabelian Lie algebra (1.4), with [xy] = x.
Prove directly that i: L — U(L) is injective (i.e., that J N L = 0).

3. If xe L, extend ad x to an endomorphism of U(L) by defining ad x(y) =
xy—yx (y e U(L)). If dim L < oo, prove that each element of U(L) lies

in a finite dimensional L-submodule. [If x, x,, ..., x, € L, verify that
ad x(x; ... x,) = Y x;x, ... ad x(x)" - x,,.]
i=1

4. If L is a free Lie algebra on a set X, prove that U(L) is isomorphic to the
tensor algebra on a vector space having X as basis.

5. Describe the free Lie algebra on a set X = {x}.

6. How is the PBW Theorem used in the construction of free Lie algebras?

Notes
Our treatment of the PBW Theorem follows Bourbaki [1]. For another
approach, see Jacobson [1].

18. Generators and relations

We can now resume our study of a semisimple Lie algebra L over the
algebraically closed field F of characteristic 0. The object is to find a pre-
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sentation of L by generators and relations which depend only on the root
system @, thereby proving both the existence and the uniqueness of a semi-
simple Lie algebra having ® as root system. In this section, contrary to our
general convention, Lie algebras are allowed to be infinite dimensional.

18.1. Relations satisfied by L

Let L be a semisimple Lie algebra, H a CSA, ® the corresponding root
2oy, D‘j) _
(0‘], “j)
alh;) (h; = haj). Fix a standard set of generators x;eL,, y;e L_,, SO
that [xiy,'] = hi'

system, A = {a;,..., o} a fixed base. Recall that {a;, «;> =

Proposition. With the above notation, L is generated by {x;, y;, hj]l < i <
¢}, and these generators satisfy at least the following relations:

(S1) [hh]=0 1<ij<?)

(S2) [xyil = hy, [xiy] = 0if i #j.

(S3) [hixj] = <°‘j, apy Xjs [hiyj] = —{aj, “i>J’j-

(S;) (adxi)—<aj'a‘>+l(xj) =0 @ #J)

(Sy) (ady)~Cro*1(y) = 0 @ #J)-

Proof. Proposition 14.2 implies that L is already generated by the x;
and y;. Relation (S1) is clear, as is (S2), in view of the fact that a;—«; ¢ @

when i # j (Lemma 10.1). (S3) is obvious. Consider now (S;) ((S;) will
follow by symmetry). Since i # j, a;—«; is not a root, and the «;-string

through «; consists of «;, a;j+a;, ..., «;+qx; wWhere —q = {«;, a;> (see
(9.4) or Proposition 8.4(e)). Since ad x; maps x; successively into the root
spaces for o;+o;, o;+2a;, . . ., (S;) follows. [

Notice that the relations in the proposition involve constants which
depend only on the root system. Serre discovered that these form a complete
set of defining relations for L (Theorem 18.3 below). As a first step toward
proving Serre’s Theorem, we shall examine the (possibly infinite dimensional)
Lie algebra defined by (S1)-(S3) alone.

18.2. Consequences of (S1)-(S3)

Fix a root system @, with base A = {«y, ..., «,}. Abbreviate the Cartan
integer <a;, «;> by ¢;;. We begin with a free Lie algebra L (see (17.4)) on 3/
generators {X;, §;, h;|1 < i < ¢}. Let K be the ideal in L generated by the
following elements: [A4,], [£:9,1— 8;;h;, [Ai%;]—c;i%;, [Rif;]+¢;i9; Set L, =
L/K, and let x;, y;, h; be the respective images in L, of the generators. (In
general, dim L, = o0.)

The trouble with L, is that it is defined too abstractly (it might even be
trivial, for all we know at this point). To study L, concretely we attempt to
construct a suitable representation of it. The construction which follows is



18.2. Consequences of (S1)-(S3) 97

the prototype of one which plays a prominent role in Chapter VI, so the
reader is urged to follow the argument closely.

As was noted in (17.5), there is no problem about constructing a module
for L: we need only specify a linear transformation corresponding to each of
the 37 generators. Let V' be the tensor algebra (= free associative algebra)
on a vector space with basis (v, .. ., v,), but forget the product in V. To
avoid cumbersome notation we abbreviate v;, ® ... ® v; byv; ...v;,. These
tensors (along with 1) form a basis of ¥ over F. Next, define endomorphisms
of V as follows:

{h,.l —0

hj.v,-l...vit = “'(Cilj‘i'...'{'Ci‘j)l)il...l)it

{ﬁj.l = v;

Pivi, v;, = Vv;, v;,

{.21.1 = = X_] U,

ﬁj.vil . e l)i‘ = Uil(xj'v,'z PN vi‘)—S,—lj(cizj-l-. . .+C"tj)l]iz oo l)it

Then there is a (unique) extension to L of this action by its generators,
yielding a representation ¢: L — gl(»).

Proposition. Let K, = Ker $. Then K = K, i.e., $ factors through L,,
thereby making V an L,-module.

Proof. Notice first that h acts diagonally on V (relatlve to the chosen
basis of V), so that $(h,) and qS(h ) commute, i.e., [/;h il e K,. On the other
hand, ¢(p;) is simply left multiplication by v;. (It is only the action of X;
which complicates matters.)

Setting j = i, in the formulas, we obtain: X y, N R T
SJI(C,“ Ay - v, =9 . Wiy e e Also (xly, % ,) 1 = 0 =
h 1. Therefore [x,yl] ,J ,eK

Next (h,yj Pih).1 = h;. v; = —c;v; = —c;;P;.1. Similarly, (h;9;—y;h)).

Vi e 0, = huvo; v,t+(c,“+ v DO 0, = =D e Ve

Therefore [h,y,]+cﬂyj ek,
For the remaining step, we make a preliminary observation:

*) hifjvy oovs, = —(Cipite o o Ci— )R 05 v Ve
This is proved by induction on ¢, starting with the case t = 0 (thenv;, ... v;,
= 1, by convention), where both sides are 0. The induction hypothesis just
says that £;.0;, . . . v;, is an eigenvector for h;, with eigenvalue —(c;,;+. . .+
Cii—Cji)- Multlplymg this eigenvector by v; on the left evidently produces
another eigenvector for h; with ergenvalue —(¢iyi+. . .+c;;—c¢;). From
these remarks and the definitions (*) follows quickly.

Using (*) we calculate: (h)? —-X h,)l =0, (hx —X; h,)v o, =
(=(ciyite e i—ci)+ (et . +cm))'< Wiy eV, = '2 Dy v‘-t. So

[Biﬁj]—cj‘fj eK,,. Finally, K < K,,. 0

Theorem. Given a root system ® with base {«,, ..., «,}, let L, be the Lie
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algebra with generators {x;, y;, hjl < i < £} and relations (S1)~(S3). Then
the h; are a basis for an {-dimensional abellan subalgebra Hof L,and L, = Y
+ H+ X (direct sum of subspaces), where Y (resp. X) is the subalgebra of L,
generated by the y; (resp. x;).

Proof. This proceeds in _steps, using the representation ¢: L, — gl(V)
constructed above: ¢(x) = $(&) if x is the image in L, of £ e L.

() YFi,nKerd =0.If h = Za h;, and $(h) = 0, then in particular
the eigenvalues — Za ic; (1< < f) of $(h) are all 0. But the Cartan

matrix (c;;) of @ is nonsmgular so this forces all a; = 0, i.e., h=o.

(2) The canonical map L — L, sends Y Fh; lsomorphtcally onto Y. Fh;.
This follows directly from (1).

(3) The subspace Y, F&;+Y. F9;+Y Fh; of L maps isomorphically into L,.
Fix i. The relations (S1)—(S3) include: [x;y;] = h;, [hix;] = 2x;, [hiy] = =243
so Fx;+Fy;+Fh; is a homomorphic image of s1(2, F). But the latter is simple,
and h; # 0 (step (2)), so Fx;+ Fy;+ Fh; must be isomorphic to sl(2, F). Now
the set {x;, y;, h;]l < j < £} is linearly independent, because its elements
are nonzero and satisfy relations (S1)~(S3) (cf. the eigenvalues of the ad A;).
This proves (3).

(4) H =Y Fh; is an {-dimensional abelian subalgebra of L,. This follows
from (2) and relation (S1).

) Ifx;, - .. x;]) denotes [x;[x;, ... [xi,_x;]... ) then[h]x; ...x;]] =
(Cij+--tei)) [xi ..o x;)), and szmzlarlyfor the y; in place of the Xi, —Cyin
place of ¢;;. For t = l this is (S3). The general case follows quickly by induc-
tion, using the Jacobi identity.

(6) If't =2 2, then[y|lx;, . .. x; ]l € X, and similarly for Y. By relation (S2),
[y;x;] = —8;;h;, and therefore the case ¢ = 2 is immediate from the Jacobi
identity and (S3). An easy induction on ¢ completes the argument.

(7) Y+ H+ X is a subalgebra of L,, hence coincides with L,. That Y+ H+ X
is a subalgebra follows from (4), (5), (6). But Y+ H+ X contains a set of
generators of L,, so it coincides with L,.

(8) The sum L, = Y+ H+ X is direct. Indeed, (5) shows how to decom-
pose L, into eigenspaces for ad H; directness follows (cf. (1), (2)). 0O

It is convenient to describe the decomposition L, = Y+ H+X in terms
of “weights” (to use the language of §20). For A € H*, let (L,), = {t € L,|[ht]
= M)t for all he H}. The proof of the preceding theorem shows that
H = (L,),. Moreover the only nonzero A for which (L,), # 0 are those of

the form A = Z kix; (k; € Z), with all k; > 0 (write A > 0 in this case) or all
< 0 (write ) < 0). Then X = Z (L), and Y = Z (L,);-

18.3. Serre’s Theorem

In (18.2) we studied the structure of the Lie algebra L, determined by
(S1)—(S3) alone. Now we ask what happens when we impose the “finiteness”
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conditions (S;}), (S;) of (18.1). Set x;; = (ad x,) " !(x,), y;; = (ad y) ="}
(¥;) (i # ). (These are elements of L,.)

Lemma. /n the algebra L, of (18.2), ad x,(y;;) = 0 (1 < k < £) for each
i #J.

Proof. Case (a): k # i. Then [x.y;] = 0 (by (S2)), so ad x, and ad y;
commute. Therefore, ad x,(y;;) = (ad y)~*' ad x(y). If k =, this
reads (ad y,-)“cf"“(hj). But by (S3), ad y(4;) = c;;y;. If this is nonzero, then
c;; is nonzero (and negative, since i # j), so —c;;+1 = 2. It follows that
(ad )~ ¥ (hj) = 0. If k # j, then [x,y;] = 0 (S2), so the same assertion
follows.

Case (b): k = i. Recall from the proof of Theorem 18.2 that S = Fx;+
Fy,+Fh; is a subalgebra of L, isomorphic to s1(2, F). We can therefore say
quite a bit about the adjoint action of S on L,. Even though L, is (in general)
infinite dimensional, some of the reasoning used in §7 carries over directly
to the present situation. In particular, since j # i, [x;y;] = 0, so that y; is a
“maximal vector” for S, of “weight” m = —c;; (because [h,y,]= —c;iy)).
An easy induction on ¢ shows that ad x; (ad y,)'(y;) = t(m—1+1) (ad y;)' "
(¥)- Therefore the right side is 0 when t = —c;+1. [

Before stating Serre’s Theorem, we mention a useful construction. Call
an endomorphism x of an infinite dimensional vector space V locally nil-
potent if every element of V is killed by a sufficiently large power of x. In
that case, x is nilpotent on each finite dimensional subspace W of ¥, so it
makes sense to form exp (x|, ). It is clear that exp (x|y) and exp (x|, /) agree
on W N W', so we can patch these maps together to obtain an automorphism
“exp x> of V.

Theorem (Serre). Fix a root system ®, with base A = {a,...,o,}. Let L
be the Lie algebra generated by 3¢ elements {x;, y,, hj|l < i < £}, subject to
the relations (S1), (S2), (S3), (S;), (S;) listed in (18.1). Then L is a (finite
dimensional) semisimple algebra, with CSA spanned by the h; and with corre-
sponding root system ®.

Proof. This will be carried out in steps. By definition, L = L /K, L, as
in (18.2) and K the ideal generated by all x;;, y;; (i # j). To avoid notational
problems, we work at first inside L,. Let I (resp. J) be the ideal of X (resp. Y)
generated by all x;; (resp. y;;). (So K includes 1, J.)

(1) I and J are ideals of L,. It suffices to consider J (the argument for /
being analogous). On the one hand, y;; is an eigenvector forad 4, (1 < k < /),
with eigenvalue ¢, +(c;;—1)cy. Since ad A (Y) < Y, it follows from the
Jacobi identity that ad /#,(J) < J. On the other hand, the lemma above says
that ad x(y;;) = 0. It is clear that ad x, maps Y into Y+H (cf. 18.2));
combining this with the Jacobi identity and the fact that ad #,(J) < J, we
get ad x,(J) < J. Finally, ad L,(J) < J, again by the Jacobi identity (since
the x,, y, generate L,).

(2) K = I+J. By definition, /+J < K. But I+J is an ideal of L, (by (1))

containing all x,;, y;;, and K is the smallest such ideal.
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(3) L = N™+ H+ N (direct sum of subspaces), where N~ = Y/J, N =
X/1, and H is identified with its image under the canonical map L, — L. Use (2),
along with the direct sum decomposition L, = Y+ H+ X (Theorem 18.2).

(4) 3. Fx;+Y Fh;+Y Fy, maps isomorphically into L. This follows just as
in step (3) of the proof of Theorem 18.2, since H maps isomorphically into L
(by (3) above). We may therefore identify x;, y;, s; with elements of L (and
these generate L).

(5) If e H*, let L, = {x e L|[hx] = A(h)x for all he H}. Then H = L,,
N=YL,, N~ =Y L, (cf remarks at end of (18.2)), and each L, is finite

A>0 A<0

dimensional. This is clear, because of (3), (4).

(6) For 1 <i < ¢, ad x; and ad y; are locally nilpotent endomorphisms
of L. 1t suffices to consider ad x;, for fixed i (by symmetry). Let M be the
subspace of all elements of L which are killed by some power of ad x;.
If x e M (resp. y € M) is killed by (ad x,)" (resp. (ad x;)*), then [xy] is killed
by (ad x,)"** (cf. Lemma 15.1). So M is actually a subalgebra of L. But all
x,€ M (by relations (S;7)) and all y, e M (by (S2), (S3)). These elements
generate L, so M = L, as desired.

(7) 7; = exp (ad x;) exp (ad (—y;)) exp (ad x,) (for | < i < ) is a well-
defined automorphism of L. This follows from (6) and the remarks just
preceding the theorem.

®) If A, pe H* and o) = u (oW, the Weyl group of ®), then dim
L, = dim L,. 1t suffices to prove this when o = ¢, is a simple reflection,
because these generate ¥~ (Theorem 10.3(d)). The automorphism =; of L
constructed in step (7) coincides on the finite dimensional space L,+L,
with the ordinary product of exponentials, and we conclude (as in the last
part of (7.2)) that r; interchanges L;, L,. In particular, dim L, = dim L,.

() For 1 <i<{, dim L, =1, while Ly,, = 0 for integers k # 0, 1,
—1. This is clear for L,, hence also for L because of (4).

(10) If «€®, then dim L, =1, but L., =0 for k # 0, 1, —1. Each
root is ¥ -conjugate to a simple root (Theorem 10.3(c)), so this follows
from (8), (9).

(A1) If L; # 0, then either Ae® or A = 0. Otherwise A is an integral
combination of simple roots, with coefficients of like sign (not all 0), A not a
multiple of any root because of (10). Exercise 10.10 shows that some # -
conjugate oA has a strictly positive as well as a strictly negative coefficient.
This means that L,; = 0 (cf. (5)), contradicting the conclusion of step (8).

(12) dim L = {+ Card® < co. In view of (5), this follows from (10), (11).

(13) L is semisimple. Let A be an abelian ideal of L; we have to show that
A =0. Since ad H stabilizes 4, 4 =(ANH) + Y (AN L,) (because

acd
L=H+)YL) If L,< A, then [L_,L,] < A, whence L_, < 4 and 4

acd
contains a copy of the simple algebra s1(2, F) (cf. step (4)). This is absurd,

so instead 4 = A N H < H, whence [L,A] = 0 (xe®) and 4 < (") Ker «

aed
= 0 (the «; span H*).
(14) H isa CSA of L, D the root system. H is abelian (hence nilpotent) and
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self-normalizing (because of the direct sum decomposition L = H + ) L),
acd
i.e., His a CSA. Then @ is obviously the corresponding set of roots. []

18.4. Application: Existence and uniqueness theorems

Finally, our efforts are rewarded.

Theorem. (a) Let ® be a root system. Then there exists a semisimple Lie
algebra having © as its root system.

(b) Let L, L' be semisimple Lie algebras, with respective CSA’s H, H'
and root systems ®, ®'. Let an isomorphism ® — @’ be given, sending a given
base A to a base A’, and denote by m: H — H' the associated isomorphism
(as in (14.2)). For each a € A (' € A") select arbitrary nonzero x, € L, (x,. € L_.).
Then there exists a unique isomorphism w: L — L’ extending m: H — H' and
sending x, to x,, (x € A).

Proof. (a) This follows directly from Theorem 18.3. (b) Choose y,, ¥,
(uniquely) satisfying [x,y.] = hy [Xpyu] = by = w(h,) for aeA, «' A,
Since the x,., y.., h, (2’ € A’) satisfy the relations of Theorem 18.3, which
define L, there is a unique homomorphism #: L — L’ sending x,, y,, 4,
(€ A) to x,., Yo, h,. (respectively). It is clear that = extends the given iso-
morphism H — H'. Moreover, the same argument yields a homomorphism
w': L' — L, and the composites are the identity maps on generators for
L or L', so = is an isomorphism. []

Exercises

1. Using the representation of L, on ¥ (Proposition 18.2), prove that the
algebras X, Y described in Theorem 18.2 are (respectively) free Lie
algebras on the sets of x;, y;.

2. When rank ® = 1, the relations (S;;), (S;) are vacuous, so L, = L =
sl(2, F). By suitably modifying the basis of ¥ in (18.2), show that V is
isomorphic to the module Z(0) constructed in Exercise 7.7.

3. Prove that the ideal K of L, in (18.3) lies in every ideal of L, having finite
codimension (i.e., L is the largest finite dimensional quotient of L,).

4. Prove that each inclusion of Dynkin diagrams (e.g., Es < E; < Ey)
induces a natural inclusion of the corresponding semisimple Lie algebras.

Notes

In essence, the proof of Theorem 18.2 is due (independently) to Chevalley
and Harish-Chandra (cf. Harish-Chandra [1]), with simplifications by
Jacobson (cf. Jacobson [1]). Serre’s Theorem, along with the applications to
uniqueness and existence, appears in Serre [2]. See also Varadarajan [1].
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19. The simple algebras

As in §18, F is algebraically closed of characteristic 0. In this section we
assemble some information about the simple Lie algebras over F (much of
which has already been indicated in the exercises). According to the classi-
fication theorems, there exists one and (up to isomorphism) only one simple
Lie algebra having root system A, (£ > 1), B, (£ > 2),C, (£ = 3),D, (£ > 4),
Ec, E,, Eg, Fu4, G,. We shall give rather complete descriptions of the classical
types A-D, along with G,. But for the remaining exceptional algebras, the
prerequisites concerning Jordan algebras and the like would take us too far
afield (see Notes below).

19.1. Criterion for semisimplicity

In theory we can test a given Lie algebra for semisimplicity by computing
its Killing form (Theorem 5.1); in practice there is often a much simpler
method. First, a definition (cf. Exercise 6.5). A Lie algebra L # 0 is called
reductive if Rad L = Z(L). There are two extreme cases: L abelian and L
semisimple. gl(¥) is an intermediate case. Now suppose L is reductive but
not abelian, so L' = L/Z(L) is semisimple. Then ad L ~ ad L’ acts com-
pletely reducibly on L (6.3). Write L = M @ Z(L), M an ideal. In particular,
[LL] = [MM] < M. But [LL] maps onto L’ under the canonical map, so
L = [LL) ® Z(L). These remarks imply the first statement of the following
proposition.

Proposition. (a) Let L be reductive. Then L = [LL]) ® Z(L), and [LL] is
either semisimple or 0.

(b) Let L = gl(V) (V finite dimensional) be a nonzero Lie algebra acting
irreducibly on V. Then L is reductive, with dim Z(L) < 1. If in addition
L <= sl(V) then L is semisimple.

Proof. We have to prove (b). Let S = Rad L. By Lie’s Theorem, S has a
common eigenvector in V, say s.o = A(s)v (se S). If xe L, then [sx]e S
implies (*) s.(x.v) = A(s)x.v+A([sx])v. Since L acts irreducibly, all vectors in
V are obtainable by repeated application of elements of L to v and formation
of linear combinations. It therefore follows from (*) that the matrices of all
s € S (relative to a suitable basis of V') will be triangular, with A(s) the only
diagonal entry. However, the commutators [SL] < S have trace 0, so this
condition forces A to vanish on [SL]. Referring back to (*), we now conclude
that s € S acts diagonally on V as the scalar A(s). In particular, S = Z(L)
(so L is reductive) and dim S < 1. Finally, let L < gl(V). Since sl(V)
contains no scalars except O (char F = 0), S = 0 and L is semisimple. []

19.2 The classical algebras

In (1.2) we introduced the classical algebras. To avoid repetition, we
always limit attention to A, (£/>1), B, (/= 2), C, (£=3), D, (£ = 4)
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(cf. Exercise 1.10 and the classification in §11). Since gl(V) = sl(V)+
(scalars), and since gl(V) acts irreducibly on V (it even acts transitively), it is
clear that sI(¥) acts irreducibly as well. This is the prototype of the proof of
semisimplicity which we shall give for B,, C, D,, using the criterion of
Proposition 19.1. (We already observed in (1.2) that these algebras consist of
endomorphisms of trace 0, so all that needs to be verified is irreducibility.)

Notice that any subspace of ¥ which is invariant under a subalgebra L
of gl(V) is also invariant under the (associative) subalgebra of End V
generated by 1, L. Therefore, to prove that each of B,, C,, D, acts irreducibly in
its natural representation, it will suffice to prove that all endomorphisms of ¥
are obtainable from 1 and L using addition, scalar multiplication and
ordinary multiplication. From 1 we get all scalars. From the diagonal matrices
(as exhibited in (1.2)) we can then get all possible diagonal matrices. Then
multiplying various other basis elements (such as e;;—e;;, i # j) by suitable
diag (0,...,1,...,0) (1 in ith position) yields all the off-diagonal matrix
units e;;, as the reader can quickly verify.

The preceding argument shows that the classical algebras are all semi-
simple. It is clear in each case that the /-dimensional subalgebra H spanned
by diagonal matrices (exhibited in (1.2)) is toral and equal to its centralizer
in L, hence is a maximal toral subalgebra (=CSA). The remaining basis
elements described in (1.2) are root vectors, so it is easy to locate an appro-
priate set of simple roots, thereby showing that L is simple of the type
indicated.

19.3. The algebra G,

It will be seen in Chapter VI that the simple algebra of type G, has a
(faithful) irreducible representation by 7x 7 matrices, and none of smaller
degree than 7. It turns out that the representing matrices lie in L, = o(7, F),
the simple algebra of type B;. Since dim L, = 21, while G, has dimension 14,
it is not too difficult (with the benefit of some hindsight) to describe G,
directly as a subalgebra L of L,

As in (1.2), there is a standard basis for L, expressed in terms of the
matrix units e,; (1 < r, s < 7). In the following discussion it is convenient
to reserve the indices i, j, k, ... for the values 1, 2, 3. Recall that L, has a
CSA H, with basis (dy, ds, d3), d; = €;4,;+1—€i+4,i+4- Our candidate for
CSA of the subalgebra L willbe H = {Za,d;|Za; = 0}. Of course, dim H = 2.

Corresponding to the six long roots in G,, which form in their own right
a system of type A, (Exercise 12.4), we choose certain root vectors g; _; (i#)
of L, relative to H, as follows:

— ot _
81,-2 = 82,-1 = €23 €5
— of —
81,-3 = 83,-1 = €24~ €7s.

— of — _
82,-3 = 83,-2 = €34 €76-
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For the short roots of L relative to H, we take g ; (i = 1, 2, 3):

g1 =g 1= \/5 (e12—es1)—(e37—€46)

g = —8,= \/2 (ey3—eg1)+(ez7—e4s)

g3 = —8. 3= \/2 (e14—e71)—(ez6—€35)-
Notice that each of the twelve vectors just listed really is a common eigen-
vector for ad H, with none of them centralizing H. Now we can define L to
be the span of H along with these twelve vectors. The following equations
imply that L is closed under the bracket. The reader can verify them without
too much labor (taking advantage of the transpose relationships, to cut
down on the number of cases).

D [gi,—j7 &r,—1] = 8jkgi,—l_8ilgk,-j
)] [g:, g-1] = 3d;—(d, +d,+d;)
P —is = —ai N
3) (gi,-j> &l «& }
[gi,—j,g—k] = 8-
O] [gbg-—j] = 3gj,—i (i #J)
lg: &)l = t2g_k} e
5 (i, j, k distinct)
©) [g-i8-]1 = +2g

The signs in (5) can be read off from the equations: [g,, g.] = 2g_3,
[g1, &3] = —2g_5, [g2, &3] = 2¢_ (and equations involving transposes).

It follows from what we have said that L is a 14-dimensional Lie algebra,
H is a CSA of L (of dimension 2), and that L consists of trace 0 matrices.
The classification makes it clear that G, is the only possible root system if L
is semisimple. Therefore, in view of Proposition 19.1, it remains only to
verify that L acts irreducibly on ¥V = F’. Let the canonical ordered basis of
V be denoted (v, vy, v,, v3, V_y, V_,, v_3). The matrix diag (0, 1, 2, —3,
—1, —2, 3) belongs to H and has distinct eigenvalues, so any subspace
W # 0 of V invariant under L must contain at least one of the canonical
basis vectors. In turn, observe that g, ; sends v, to a multiple of vy;, and
sends v_ ; to a multiple of v, (i, j, k distinct), while g; _;.v; = v;, g; —j0_; =
—v_;. These equations force W to contain all basis vectors, whence W =V
as desired.

It is also interesting to realize the simple algebra of type G, as the Lie
algebra Der € (cf. (1.3)), where € is an 8-dimensional nonassociative algebra
(the Cayley or octonion algebra). First it is necessary to describe €. Let
(e;, €5, e3) be the usual orthonormal basis of F* (endowed with its usual
inner (or dot) product v-w). F? also has a vector (or cross) product vx w =
—(w x v), satisfying the rules: e;xe; =0( = 1,2, 3), e;xe, = €3, ;X €3 =
ey, e3X ey = e,. As a vector space, € is the sum of two copies of F*> and
two copies of F. For convenience, however, we write elements of € as 2x2

matrices <fv Z) , where a, beF and v, we F3. We add and multiply by
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scalars just as we would for matrices. However, the product in € is given by
a more complicated recipe:

a v\(fa v\ (aa'—v-w' av’'+b'v+wxw’
wb)\w b a'w+bw' +vxv bb'—w-v’
This operation is obviously bilinear, because the product of scalars in F,

and the dot and cross products in F3, are bilinear.
Fix a basis (¢4, . . ., ¢g) of €, where

10 00 0 e; 00 .
Cl 2(0 0)5 CZ=<0 1)7 62+i=<0 0)» CS+i—<ei0> (l— 1,293)'

It is easy to verify the multiplication table for € (Table 1). Notice that
10 . . .
citey = <0 l> acts as identity element for the algebra €. A routine check

of commutators cc¢’—¢’c (using the basis elements and Table 1) shows that

Table 1

Cy Cc2 Cc3 Cq Cs Ceo c7 Cg
1| C1 0 Cc3 Cq Cs 0 0 0
c2 |0 c1 0 0 0 c6 cq cs
c3 |0 c3 0 cg —c7 —cC1 0 0
cs | O c4 —Cg 0 3 0 —c 0
Cs 0 Cs c7 —C¢ 0 0 0 —C1
ce | Cc6 0 —oc 0 0 0 cs —cC4
c7 | ¢ 0 0 —c 0 —cs 0 c3
cg | cg 0 0 0 —oc cs —cC3 0

the subspace €, spanned by all commutators has codimension one, with
basis (¢;—c3, €3, €4, C5, Cg, C7, Cg), cOmplementary to the line through
¢y +c¢,. Moreover, €, then coincides with the space of all elements in ¢
having “trace’” 0 (b = —a). Because of the product rule, any derivation of €
kills the “constants” (the multiples of ¢, +¢,). On the other hand, a deriva-
tion obviously leaves €, invariant, hence is completely determined by its
restriction to .

Set L = Der €. In view of the preceding remarks, L acts faithfully on €,
(and trivially on F(c, +c,)). Denote by ¢: L — gl(7, F) the associated matrix
representation (the basis of ¢, being chosen as above). The main problem
now is to show that L is not too small; for this we actually have to exhibit
some derivations of €. Since the long roots in the root system of type G,
form a system of type A,, L ought to include a copy of s1(3, F). For x € s1(3,
F), define an endomorphism 8(x) of € by (i} Z) — (_x?(w) '\g;)) ' =
transpose of x). It is a routine matter to verify that 6(x) is a derivation and
that x — 8(x) is a (nontrivial, hence faithful) representation of sI(3, F). Call
the image M, and denote by H the image of the diagonal subalgebra. (Notice
that ¢(M) lies in o(7, F) and that ¢(H) coincides with the earlier CSA of G,.)
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It is easy to check that the matrices in gI(8, F) commuting with H all have the
form diag (a,, a,, as, x, a4, as, ag), where x € gl(2, F), and that such a matrix
represents a derivation of € only if it is already in H. Therefore, H is its own
centralizer in L. Since Z(M) = 0, we also deduce that Z(L) = 0.

In order to conclude that L is simple of type G,, we would have to locate
more derivations of ¢ (corresponding to short roots), then use them to show
that L acts irreducibly in €,. Actually, we have chosen the basis for €, in
such a way that the matrix representation ¢ of L is precisely the one studied
above (in o(7, F)). It would be possible to verify directly that the earlier
algebra L consists of the images of derivations of € (but quite tedious!).
As an alternative approach, certain derivations of € (called “inner’’) can be
defined intrinsically and then shown to correspond to the matrices exhibited
earlier. This is indicated in the exercises.

Exercises

. If L is a Lie algebra for which [LL] is semisimple, then L is reductive.

. Supply details for the argument outlined in (19.2).

. Verify the assertions made about ¢, in (19.3).

. Verify that 8(x), x e s1(3, F), as defined in (19.3), is a derivation of .

. Show that the Cayley algebra © satisfies the “alternative laws”: x%y =
x(xy), yx* = (yx)x. Prove that, in any algebra U satisfying the alternative
laws, an endomorphism of the following form is actually a derivation:
[As Apl+TAas pul+[pas ps) (a, be WU, A, = left multiplication in A by a, p,
= right multiplication in U by b, bracket denoting the usual commutator
of endomorphisms).

6. Fill in details of the argument at the conclusion of (19.3).

DN AW N =

Notes

Tits has constructed the five exceptional simple algebras in a uniform
manner; for details and references, see Jacobson [2], Schafer [1]. The
characteristic p analogues of the simple Lie algebras discussed here are
studied by Seligman [1], cf. Kaplansky [1], Pollack [1]. Our construction
of G, as a subalgebra of o(7, F) is inspired by Exposé 14 of Séminaire
“Sophus Lie” [1]. (However, the formulas there contain some errors.)



Chapter VI

Representation Theory

Throughout this chapter L will denote a semisimple Lie algebra (over the
algebraically closed field F of characteristic 0), H a fixed CSA of L, ® the
root system, A = {a;,...,«,} a base of ®, #" the Weyl group. The main
object is to study finite dimensional L-modules (although certain infinite
dimensional modules will also appear). Thanks to Weyl’s Theorem on
complete reducibility, it is the irreducible modules which play a controlling
role in the finite dimensional case.

20. Weights and maximal vectors
20.1. Weight spaces

If V is a finite dimensional L-module, it follows from Theorem 6.4 that
H acts diagonally on V: V = [[ V,, where A runs over H* and V, = {ve V|
h.av = Xh)v for all he H}. For arbitrary V, the subspaces V; are still well-
defined; whenever V, # 0, we call it a weight space and we call A a weight
of V (more precisely, a “weight of H on V™).

Examples. (1) Viewing L itself as an L-module via the adjoint representa-
tion, we see that the weights are the roots « € ® (with weight space L, of
dimension one) along with 0 (with weight space H of dimension ). (2) When
L = sl(2, F) a linear function A on H is completely determined by its value
A(h) at the basis vector /; so we were in effect utilizing weights in §7. (The
reader is urged to review that section now.)

If dim ¥V = oo, there is no assurance that ¥ is the sum of its weight
spaces (Exercise 2). Nevertheless, the sum V' of all weight spaces V, is
always direct: this is essentially the same argument as the one proving that
eigenvectors of distinct eigenvalues for a single linear transformation are
linearly independent (Exercise 1). Moreover, V' is an L-submodule of V:
this follows from the fact that L, (« € ®) permutes the weight spaces. Namely,
if xeL, veV,, he H, then h.x.v = x.hv+[hx]l.v = (A(h) +«(h))x.v, so L,
sends V, into V,,,. Summarizing:

Lemma. Let V be an arbitrary L-module. Then

(a) L, maps V, into V,;,, (Ae H* o ec®).
(b) The sum V' =YV, is direct, and V' is an L-submodule of V.

AeH*

(¢) If dim V < oo, then V =V'. []
107
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20.2. Standard cyclic modules

By definition, a maximal vector (of weight A) in an L-module V is a non-
zero vector v* e V, killed by all L, (« > 0, or just « € A). This notion of
course depends on the choice of A. For example, if L is simple, and g is
the maximal root in @ relative to A (Lemma 10.4A), then any nonzero element
of L, is a maximal vector for the adjoint representation of L; these are
obviously the only possible maximal vectors in this case. When dim V = oo,
there is no need for a maximal vector to exist. By contrast, if dim V < oo,

then the Borel subalgebra (16.3) B(A) = H + || L, has a common eigen-
a>0

vector (killed by all L,, « > 0), thanks to Lie’s Theorem, and this is a maximal
vector in the above sense.

In order to study finite dimensional irreducible L-modules, it is useful to
study first the larger class of L-modules generated by a maximal vector. If
V = U(L).»* for a maximal vector v* (of weight A), we say briefly that V is
standard cyclic (of weight A) and we call A the highest weight of V. It is easy
to describe the structure of such a module. Fix nonzero x,€ L, (« > 0),
and choose y, e L_, (uniquely) for which [x,y,] = #,. Recall the partial
ordering A > p iff A—p is a sum of positive roots (A, u € H¥*), introduced in
§10 for the euclidean space E but equally definable for H*. Part (b) of the
following theorem justifies the terminology ‘“‘highest weight” for A.

Theorem. Let V be a standard cyclic L-module, with maximal vector
YeV, Let ®* = {B,,...,Bn}. Then:

(@) V is spanned by the vectors yj' . ..yinv* (i;€ ZY); in particular, V
is the direct sum of its weight spaces.

(b) The weights of V are of the form p = A— Zk,a, (k;eZ?), ie., all
weights satisfy p < A. i=1

(c) For each p e H*, dim V,, < o0, and dim V; = 1.

(d) Each submodule of V is the direct sum of its weight spaces.

(e) V is an indecomposable L-module, with a unique maximal (proper)
submodule and a corresponding unique irreducible quotient.

(f) Every nonzero homomorphic image of V is also standard cyclic of
weight A.

Proof. L = N~ +B, where N~ = [[ L, and B = B(A). From the PBW

a<0

Theorem (Corollaries C, D of Theorem 17.3) it follows that U(L).v™ =
UNHUMB).v" = U(N").Fo* (since v* is a common eigenvector for B).
Now (N 7) has a basis consisting of monomials yj! . .. ysm, so (a) follows.

The vector (*) yit...yimv* has weight A — ) i;8; (Lemma 20.1(a)).

J
Rewriting each f; as a nonnegative Z-linear combination of simple roots
(as in §10), we get (b).
Evidently there are only a finite number of the vectors (*) in (b) for which

14
Y'i;B; equals a prescribed ). k;x;. In view of (a), these span the weight space

i=1
V,, if p = A=Y ka;. Moreover, the only vector of the form (*) which has
weight p = A s v* itself, whence (c).
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For (d), let W be a submodule of ¥ and write we W as a sum of
vectors v; € ¥, belonging to distinct weights. We must show that all v, lie
in W. If not, we can choose such w=v,+ - - + v, with n» minimal, n>1;
in particular, no v, belongs to W. Find 4 € H for which u,(h)# p,(). Then
hw=2p,(h)v, lies in W, as does (h—p(h)-1).w=(p(h)— u,(h))v,
+ - +(p,(h)—p(h))v,7#0. The choice of w forces v, e W, which is
absurd.

We conclude from (c), (d) that each proper submodule of V lies in the
sum of weight spaces other than V,, so the sum W of all such submodules
is still proper. This implies that ¥ has a unique maximal submodule and
unique irreducible quotient. In turn, ¥ cannot be the direct sum of two
proper submodules, since each of these is contained in W. So (e) follows.

Finally, (f) is clear.

Corollary. Let V be as in the theorem. Suppose further that V is an
irreducible L-module. Then v* is the unique maximal vector in V, up 1o nonzero
scalar multiples.

Proof. If w* is another maximal vector, then U(L).w* = V (since V is
irreducible). Therefore the theorem applies equally to v* and to w*. If w* has
weight A’, then A’ < A and A < A’ (by part (b)), requiring A = A". But then
(by part (c)) w* is proportional to v*. []

20.3. Existence and uniqueness theorems

We want to show that for each A e H* there exists one and (up to iso-
morphism) only one irreducible standard cyclic L-module of highest weight A,
which may be infinite dimensional. The uniqueness part is not difficult (the
argument is similar to that used in proving Theorem 14.2, but less compli-
cated).

Theorem A. Let V, W be standard cyclic modules of highest weight A.
If 'V and W are irreducible, then they are isomorphic.

Proof. Form the L-module X=V®W. If v™, w™ are respective maxi-
mal vectors of weight A in V, W, let x*=(v",w")e X, so x* is a
maximal vector of weight A. Let ¥ be the L-submodule of X generated by
x* (Y is standard cyclic), and let p: Y=V, p’: Y— W be the maps induced
by projecting X onto its first and second factors. It is obvious that p, p” are
L-module homomorphisms; since p(x*)=uv," p'(x*)=w™, it is also clear
that Imp =V, Imp’= W. As irreducible quotients of the standard cyclic
module Y, V and W are therefore isomorphic, by Theorem 20.2(e). [

Next we consider the existence question. Leaving aside all mention of
irreducibility, the question remains: How can we construct any standard
cyclic modules at all? There are two illuminating ways to proceed, which
lead to the same results.

First we look at an induced module construction (which is similar to a
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technique used in the representation theory of finite groups). This is suggested
by the observation that a standard cyclic module, viewed as B-module
(B = B(A), as above), contains a one dimensional submodule spanned by the
given maximal vector. Accordingly, we begin with a one dimensional vector
space D, having v* as basis, and define an action of B on D, by the rule
(h+ Y x)o" =hov' = MNhw*, for fixed Ae H*. The reader can quickly

a>0
convince himself that this makes D; a B-module. Of course, D, is equally

well a U(B)-module, so it makes sense to form the tensor product Z(A) =
(L) @y(pyD;, which becomes a U(L)-module under the natural (left) action
of U(L).

We claim that Z(X) is standard cyclic of weight A. On the one hand,
1 ® v* evidently generates Z(A). On the other hand, 1 ® v* is nonzero,
because U(L) is a free U(B)-module (Corollary D of Theorem 17.3) with
basis consisting of 1 along with the various monomials yi! ... yi". There-
fore 1 ® v™* is a maximal vector of weight A. Call it v* for brevity.

This construction also makes it clear that, if N~ =[] L,, then Z(})
a<0
viewed as U(N ~)-module is isomorphic to U(N ) itself. To be precise,
L) ~ U(N7) ® UB) (PBW Theorem), so that Z(A) ~ U(N™) ® F (as
left W(N ~)-modules).

It is also possible to construct Z(A) by ““generators and relations”. For
this choose, as before, nonzero elements x, € L, (« > 0), and let 7(A) be the
left ideal in (L) generated by all x, (« > 0) along with all 4,—A(h,).1
(« € ®). Notice that these generators of /(A) annihilate the maximal vector
vt of Z()), so I()) also does, and there is a canonical homomorphism of
left U(L)-modules U(L)/I(X) — Z(A) sending the coset of 1 onto the maximal
vector v*. Again using our PBW basis of U(L), we see that this map sends
the cosets of U(B) onto the line Fv*, so it follows that the map is one-one.
In other words, Z(}) is isomorphic to W(L)/I(}).

Theorem B. Let A € H*. Then there exists an irreducible standard cyclic
module V(\) of weight A.

Proof. Z(X) (constructed above) is standard cyclic of weight A, and has a
unique maximal submodule Y(A) (Theorem 20.2(d)). Therefore, V(}) =
Z(N)/Y (A) is irreducible and standard cyclic of weight A (Theorem 20.2(e)). [

Two basic problems remain: (1) Decide which of the V()) are finite
dimensional. (2) Determine for such V(A) exactly which weights p occur
and with what multiplicity. The following sections are devoted to solving
these problems.

Exercises
1. If Vis an arbitrary L-module, then the sum of its weight spaces is direct.

2. (a) If Vis an irreducible L-module having at least one (nonzero) weight
space, prove that V is the direct sum of its weight spaces.
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11.

(b) Let ¥ be an irreducible L-module. Then ¥V has a (nonzero) weight
space if and only if U(H).v is finite dimensional for all v e ¥, or if and
only if .v is finite dimensional for all ve V' (where WA = subalgebra
with 1 generated by an arbitrary 4 € H in U(H)).

(c) Let L = sl(2, F), with standard basis (x, y, ). Show that 1—x is
not invertible in U(L), hence lies in a maximal left ideal I of U(L). Set
V = U(L)/I, so V is an irreducible L-module. Prove that the images of 1.

h, h*, ... are all linearly independent in ¥ (so dim V = o0), using the
fact that
(= 1)k = 0 (mcr)d 1), r>s
(=2)r!“1 (mod I), r =s.

Conclude that ¥ has no (nonzero) weight space.
Describe weights and maximal vectors for the natural representations of
the linear Lie algebras of types A,— D, described in (1.2).

. Let L = sl(2, F), Ae H*. Prove that the module Z() for A = A(h)

constructed in Exercise 7.7 is isomorphic to the module Z(A) constructed
in (20.3). Deduce that dim V' (A) < oo if and only if A(4) is a nonnegative
integer.

If pe H*, define Z(n) to be the number of distinct sets of nonnegative
integers k, («> 0) for which p =) k,x. Prove that dim Z(}), =

a>0
P(A—p), by describing a basis for Z(}),.
Prove that the left ideal 7(A) introduced in (20.3) is already generated by
the elements x,, #,—A(h,).1 for « simple.

. Prove, without using the induced module construction in (20.3), that

I(N) N U(NT) = 0, in particular that /() is properly contained in U(L).
[Show that the analogous left ideal 7'(A) in U(B) is proper, while I1(A) =
U(NHI'(A) by PBW.]

. For each positive integer d, prove that the number of distinct irreducible

L-modules V(}) of dimension <d is finite. Conclude that the number of

nonisomorphic L-modules of dimension <d is finite. [If dim V' (A) < <o,

view V(1) as S,-module for each « > 0; notice that A(4,) € Z, and that

V(A) includes an S,-submodule of dimension A(h,)+1.]

Verify the following description of the unique maximal submodule

Y(X) of Z(\) (20.3): If ve Z(),, A—p =Y ¢, (¢, e Z"), observe that
a>0

"

[T x50 has weight X (the positive roots in any fixed order), hence is a
a>0
scalar multiple of the maximal vector »*. If this multiple is 0 for every

possible choice of the ¢, (cf. Exercise 5), prove that v € Y(X). Conversely,
prove that Y(2) is the span of all such weight vectors v for weights o # A.

. A maximal vector w* of weight p in Z(}) induces an L-module homo-

morphism ¢: Z(i) — Z(\), with Im ¢ the submodule generated by w™.
Prove that ¢ is injective.

Let V be an arbitrary finite dimensional L-module, A ¢ H*. Construct in
the L-module W = Z(}) ® V a chain of submodules W = W, = W,
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>...2 W,y =0(n=dimV) so that W,/W,,, is isomorphic to
Z(A+1,), where the weights of ¥ in suitable order (multiplicities counted)
are Ay, ..., A,

Notes

Lemire [1] treats the question of existence of weight spaces in infinite
dimensional modules; Exercise 2 is due to him. The modules Z () are
explored in detail by Verma [1], and more recently by Bernstein, Gel'fand,
Gel’fand [1], [2], [3]. Verma shows in particular that the space of L-homo-
morphisms Z (u)—>Z (A) is either zero or 1-dimensional over F, and
obtains a sufficient condition for the second of these, while the latter
authors prove the (conjectured) necessity of the condition. See Dixmier [1],
Chap. 7.

21. Finite dimensional modules

21.1. Necessary condition for finite dimension

Suppose V is a finite dimensional irreducible L-module. Then V has at
least one maximal vector, of uniquely determined weight A, and the submodule
it generates must be all of V' (by irreducibility). Therefore, V' is isomorphic
to V(1) (Theorems A and B of (20.3)).

For each simple root «a,, let S, (=S,) be the corresponding copy of
8[(2,F) in L. Then V() is also a (finite dimensional) module for S, and a
maximal vector for L is also a maximal vector for S,. In particular, since
there is a maximal vector of weight A, the weight for the CSA H,< §; is
completely determined by the scalar A(h), s, = h,. But this forces A(h;) to
be a nonnegative integer, thanks to Theorem 7.2. This proves:

Theorem. If' V is a finite dimensional irreducible L-module of highest
weight A, then M h,) is a nonnegative integer (1 < i < ¢). [

More generally, it follows from (7.2) that if V' is any finite dimensional
L-module, p a weight of V, then u(h;) = {(u, ;> € Z, for 1 < i < £. Accord-
ingly, the weights occurring in a finite dimensional module are also “weights”
in the sense of the abstract theory developed in §13, so all results proved
there are available from now on. Notice that, in the language of §13, the
highest weight A of V(A) (in case dim V(A) < o0) is dominant. To avoid
ambiguity, we shall continue to allow any element of H* to be called a weight,
whereas a linear function A for which all A(k;) (hence all A(h,)) are integral
will be called integral. If all A(h;) are nonnegative integers, then we call A
dominant integral. The set A of all integral linear functions is therefore a
lattice in H* (or equally well, in the real euclidean space generated by the
roots), which includes the root lattice. As in §13, the set of dominant integral
linear functions is denoted A ™.
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One further bit of notation will be handy: If' V is an L-module, let 11( V)
denote the set of all its weights. For V = V(X), write instead TT(A).

21.2. Sufficient condition for finite dimension

Theorem. If A€ H* is dominant integral, then the irreducible L-module
V = V(}) is finite dimensional, and its set of weights 11(}) is permuted by ",
with dim V,, = dim V,, for c e #".

Corollary. The map A+ V(X) induces a one-one correspondence between
A™ and the isomorphism classes of finite dimensional irreducible L-modules.

Proof of Corollary. This follows from the theorem, in view of Theorem
21.1 and Theorems A, B of (20.3). [

Proof of Theorem. It will be convenient to write down first some informa-
tion about commutators in U(L). Fix standard generators {x; y;} of L.

Lemma. The following identities hold in W(L), for k > 0,1 < i,j < -

(a) [xj,y, =0 wheni# j;
(b) [hy, £ = —(k+Doy(hy)yf+t:
(0) Ixp, Y1 = (k‘*'l)J/f‘(k 1—=hy).

Proof. (a) follows from the fact (Lemma 10.1) that «;—«; is not a root
when i # J.

For (b), use induction on k, the case k = 0 being [h;, yi] = —oilh))y;
(cf. (18.1)). In general, the left side equals a;yf "' —y¥*'h, = (hyf—yih,)y,
+Yihyi—yih) = —kodh)ylyi+yi(—oihyy;) = —(k+1)a.(h,)y"“, using
the induction hypothesis in the next-to-last step.

For () write [x;, '] = x* =k x, = [y, yilyb+pilxs 14 =hoptk
+y:[x;, ¥¥], and use induction on k along with formula (b) (for k in place of
k+1). 0

The proof of the theorem will be carried out in steps. The idea is to show
that the set of weights of ¥ is permuted by %", hence is finite (cf. the proof of
Theorem 18.3). It is convenient to denote the representation of L afforded
by V by ¢: L — gl(¥). Fix a maximal vector v* of ¥ (of weight X), and set
m; = Mh), 1 <i < /. The m; are nonnegative integers, by assumption.

(1) ym*tp* =0. Let w = y™m*lp*. By part (a) of the lemma, when
i #j, xw= 0 On the other hand, parts (b) and (c) of the lemma show
that x,yf" ot =yt iy ot —(mi+ D)y mpt —mpt) = 0, so x;w = 0.
If w were nonzero, it would therefore be a maximal vector in V of weight
A—(m;+1)a; # A, contrary to Corollary 20.2.

(2) For 1 i < {, V contains a nonzero finite dimensional Smodule.
The subspace spanned by v*, y,.o*, y2v™, ... ym.o* is stable under y;,
according to step (1). It is also stable under 4;, since each of these vectors
belongs to a weight space of V; so it is stable under x;, by part (c) of the
lemma (and induction on the superscript k).

(3) V is the sum of finite dimensional S;-submodules. If V' denotes the
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sum of all such submodules of ¥V, then V'’ is nonzero by step (2). On the other
hand, let W be any finite dimensional S;-submodule of V. The span of all
subspaces x,W (« e ®) is evidently finite dimensional, as well as S;-stable.
Therefore V' is stable under L, and V' = ¥V because V' is irreducible.

(4) For 1 <i < /{, ¢(x;) and #(y;) are locally nilpotent endomorphisms
of V (¢f. (18.3)). Indeed, if v € ¥, then v lies in a finite sum of finite dimen-
sional S;-submodules (hence in a finite dimensional S;-submodule), by (3).
On such a module ¢(x;) and #(y;) are nilpotent (cf. (6.4)).

(5) s; = exp p(x;) exp $(—y,) exp d(x;) is a well-defined automorphism
of V. This follows at once from (4) (cf. (18.3) again!).

(6) If pis any weight of V, then s(V,) = V,, (o; = reflection relative to
;). ¥, lies in a finite dimensional S;-submodule V'’ (cf. step (3)), and s,|, is
the same as the automorphism 7 constructed in (7.2); the claim now follows
from the discussion in (7.2).

(7) The set of weights 11(}) is stable under W, and dim V, = dim V,,
(n e II(A), o e #). Since W~ is generated by oy, ..., s, (Theorem 10.3(d)),
this follows from (6).

(8) TI(A) is finite. It is clear from Lemma 13.2B that the set of # -
conjugates of all dominant integral linear functions p < A is finite. But
I1(A) is included in this set, thanks to Theorem 20.2, combined with step (7).

(9) dim V is finite. We know from Theorem 20.2(c) that dim V), is finite
for all u e II(A). Combined with step (8), this proves our assertion. []

21.3. Weight strings and weight diagrams

We remain in the finite dimensional situation, ¥V = V(X), Ae A*. Let
e II(A), « e ®. Lemma 20.1 shows that the subspace W of ¥ spanned by all
weight spaces V, , ;, (i € Z) is invariant under S,. In view of (7.2) and Weyl’s
Theorem on complete reducibility, the weights in II(A) of the form p+ia
must form a connected string (the a-string through w., generalizing the notion
of a-string through B for roots in the adjoint representation). Moreover,
the reflection o, reverses this string. If the string consists of p—ra, ..., p,

., p+ge, it follows that r—g = {u, o). This proves the following result,
in view of (13.4).

Proposition. If X e A", the set TI()) is saturated in the sense of (13.4). In
particular, the necessary and sufficient condition for p € A to belong to II(}) is
that p and all its W -conjugates be < A. []

All of this can be visualized quite easily when rank ® < 2, if we draw a
weight diagram. For example, let L = sl(3, F) (type A,), with fundamental
dominant integral linear functions (13.2) A;, A,. The weight diagram for
V(A), A = 4x;+3],, is given in Figure 1. The dots indicate which weights
occur. The multiplicities in this case are also indicated, increasing from one to
four (passing from outer “shell” to inner “shell”, the multiplicity dim V,
increases steadily by one until the shells become triangles, at which point
multiplicity stabilizes). The simple behavior of these multiplicities is a special
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1 A
2
3
0N 4
a

Figure 1

fact about type A, (Antoine, Speiser [1]). For other root systems, the situa-
tion can be much more complicated; see §22 below for a more detailed
discussion of multiplicities.

21.4. Generators and relations for V(7)

It is possible to describe more precisely the passage from Z(A) to its
homomorphic image V(A), when X is dominant integral. This is not needed
elsewhere in the text, but is of independent interest. In effect we shall rework
some of the proof of Theorem 21.2.

Recall from (20.3) that Z(}) is isomorphic to U(L)/I(A), where I(}) is the
left ideal of U(L) generated by all x, (« > 0), and by all h,—A(h,) 1 (x € D).
Equivalently, 7(}) is the annihilator of a maximal vector in Z(}). Now fix a
dominant integral linear function A, and let J(X) be the left ideal in (L)
which annihilates a maximal vector of V(A). The inclusion I(A) < J(})
induces the canonical map Z(X) = U(L)/I(A) — V(A) =~ U(L)/J(A). From the
proof of Theorem 21.2 we recall that y"*' e J(X), 1 < i < ¢, where m; =

<)\a o‘i>‘

Theorem. Let Ae A", m; = A, o> (1 < i < £). Then J(N) is generated
by I()) along with all y"*' (1 <i < /).

Proof. Suppose we can show that V'(A) = W(L)/J'(}) is finite dimensional,
where J'(}) is the left ideal generated by () along with all y™*!. Since V'(\)
is standard cyclic (or 0), it must be irreducible (or 0) (Theorem 20.2(d),
with Weyl’s Theorem on complete reducibility). But J'(A\) < J(A) implies
that ¥(}) is a homomorphic image of V'(d), forcing V'(A) ~ V(A), whence
J'(A) = J(A) as desired.
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To show that V'(}) is finite dimensional, it would in turn suffice to show
that it is a sum of finite dimensional S;-submodules (1 < i < ¢), because
then the proof of Theorem 21.2 would go through exactly as before. For this
it is enough to show that each y; is locally nilpotent on V'(}) (this is of course
obvious already for the x;, since we cannot have p+ka; < A for all k > 0).
By hypothesis, the coset of 1 in V'(A) is killed by a suitable power of y;
(namely, m;+1). We know (Theorem 20.2) that V'(}) is spanned by the
cosets of all y;, ...y, (1 <i; < /). The following lemma implies that if the
coset of this monomial is killed (i.e. sent into J'(A)) by y¥, then the coset of
the longer monomial y; y;, ...y, is killed by y**>. Induction on length of
monomials, starting at 1, then proves the local nilpotence of ;.

Lemma. Let U be an associative algebra over F, y, z € . Then [y, z] =
k - k =
(1) bt () e a2 D D

Proof. Use induction on k, the case k = 1 being the identity [y, z] =
[y, z]. The induction step is easy, and is left to the reader. [J

To apply the lemma, take A to be U(L), and take y, z to be root vectors
belonging to two negative roots. We know that (ad y)*(z) = 0, since root
strings have length at most 4, so the identity obtained in the lemma reduces

t0: D421 = My 2 () D ol () n D a2, 0

Exercises

1. The reader can check that we have not yet used the simple transitivity of
#" on bases of ® (Theorem 10.3(e)), only the transitivity. Use representa-
tion theory to obtain a new proof, as follows: There exists a finite di-
mensional irreducible module V(A) for which all (A, «> (xeA) are
distinct and positive. If o € #~ permutes A, then oA = A, forcing o = 1.

2. Draw the weight diagram for the case B,, A = A, +A, (notation of
Chapter III).

3. Let Ae A", Prove that 0 occurs as a weight of V(}) if and only if A is a
sum of roots.

4. Recall the module Z(}) constructed in (20.3). Use Lemma 21.2 to find
certain maximal vectors in Z(X), when Ae A: the coset of ym*!
m; = {A, a;», is a maximal vector provided mi; is nonnegative (Cf.
Exercise 7.7.)

5. Let V be a faithful finite dimensional L-module, A(V') the subgroup of A
generated by the weights of V. Then A(V) > A,. Show that every sub-
group of A including A, is of this type.

6. If V= V), Ae A", prove that V* is isomorphic (as L-module) to
V(—o)), where o € #" is the unique element of ¥~ sending A to —A
(Exercise 10.9, cf. Exercise 13.5).
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7.

11.

*)

Let V= V), W = V(n), with A, xe A*. Prove that TI(V ®@ W) =
{v+v'|v e II(}), v' e TI(w)} and that dim (V ® W), equals
S dim V,-dim W,
T4 =v+y

In particular, A+pu occurs with multiplicity one, so V(A+p) occurs
exactly once as a direct summand of V ® W.

. Let A, ...,A, be the fundamental dominant weights for the root

system ® of L (13.1). Show how to construct an arbitrary V(A), Ae A™,
as a direct summand in a suitable tensor product of modules V(A,),. . .,
V(A,) (repetitions allowed).

. Prove Lemma 21.4 and deduce Lemma 21.2 from it.
. Let L = sl(/+1, F), with CSA H = d({+1, )N L. Let oy, ..., ppyq

be the coordinate functions on H, relative to the standard basis of gli(£+1,
F). Then ) w; = 0, and py, ..., p, form a basis of H*, while the set of
o; = p;—pivq (1 < i < £)is a base A for the root system ®. Verify that
W acts on H* by permuting the u;; in particular, the reflection with
respect to «; interchanges w;, p;4; and leaves the other u; fixed. Then
show that the fundamental dominant weights relative to A are given by
N=p+. o+l <k <0

Let V = F*! L = sI(V). Fix the CSA H and the base A = («y, ..., &)
of ® as in Exercise 10. The purpose of this exercise is to construct
irreducible L-modules ¥V, (1 < k < ¢) of highest weight A,.

(a) For k =1, V, = V is irreducible of highest weight A,.

(b) In the k-fold tensor product V® ... ® V, k > 2, define V, to be

the subspace of skew-symmetric tensors: If (v, . . ., v,, ) is the canonical
. . . {
basis of V, V, has basis consisting of the ( :1) vectors
iy ooy 0,] = Y sn(mi,) @ - oo @ Uy

TES |

where i; < i, < ... < . Show that (*) is of weight u; +...+p,.

(c) Prove that L leaves the subspace V, invariant and that all the weights
Biyt+. .+, (i <...<1i) are distinct and conjugate under #".
Conclude that V; is irreducible, of highest weight A. (Cf. Exercise 13.13.)

Notes

Theorem 21.4 is more or less well known; our treatment is based on an

addendum to the thesis of Verma [1], cf. also Harish-Chandra [1]. Weight
diagrams for A, appear in Antoine, Speiser [1]; see also Belinfante,
Kolman [1], and Samelson [1].

22. Multiplicity formula

All modules considered in this section are finite dimensional.
If we H* is an integral linear function, define the multiplicity of x in

V(A), e A*, to be m,(p) = dim V()), (=0 in case p is not a weight of
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V(X)). When A is fixed we write simply m(x). Our aim is to derive Freuden-
thal’s recursion formula for m,(un), by computing the trace of a Casimir-type
element on V(}),; using the fact that the element in question acts as a non-
zero scalar on V(}), we can recover in this way dim V(}),.

22.1. A universal Casimir element

Recall from (6.2) the notion of Casimir element ¢, of a representation
of L, which was used to prove Weyl’s Theorem on complete reducibility.
Now that U(L) is available we can make a “universal” construction of this
sort.

Begin with the adjoint representation of L, whose trace form is just the
Killing form «. It is easy to deduce from §8 a natural construction of dual
bases relative to «. If «, 8 are arbitrary linear functions on H, we know that
L, is orthogonal to L, except when 8 = —« (Proposition 8.1). We also know
that the restriction of « to H is nondegenerate. Therefore we can proceed as
follows. Choose any basis of H, say the standard one (4, ..., A,) (relative
to A), and let (k,, ..., k,) be the dual basis of H, relative to the restriction
of « to H. Next choose nonzero x, in each L, (« € @), and let z, be the (unique)
element of L_, satisfying x(x,, z,) = 1. By the remarks above, the bases
(hy1 <i<{;x,aedand (k;, 1 <i < /;z,, oed)are dual relative to «.
A word of caution, however: The pair x,, z, must not be confused with our
customary choice of x, y, such that [x,y,] = h,. Rather, we have here
[x,zJd = t, = [(«, 2)/2]h, (Proposition 8.3(c)).

By definition, a Casimir element for ad is the endomorphism of L given
s

by g = Z ad A, ad k; + ) ad x, ad z,. This constructxon might suggest
i aed

to the reader consideration of the element ¢, = Z hik; + Z Xz, € U(L). If

ad is extended (uniquely) to a homomorphlsm of assoc1at1ve algebras
ad: U(L) — End L, then ad ¢, is none other than c,q. For this reason we
call ¢, a universal Casimir element of L. It is not difficult to see that ¢, is
independent of the choice of basis of L (Exercise 2). The argument in (6.2)
shows that for any representation ¢ of L, ¢(c;) commutes with ¢(L),
hence acts as a scalar if ¢ is irreducible.

Let us investigate how ¢(c,) is related to a Casimir element c,. This is
easy to see in case L is simple, so we treat this case first (cf. Exercise 6.6).

Lemma. Let L be a simple Lie algebra. If f(x, y) and g(x, y) are non-
degenerate symmetric, associative bilinear forms on L, then there is a nonzero
scalar a such that f(x, y) = ag(x, y) for all x, y € L.

Proof. Each form (being nondegenerate) sets up a natural vector space
isomorphism of L onto L*, via x s, where s(¥) = f(x, y) or g(x, »). The
associativity guarantees that these are actually isomorphisms of L-modules
(recall from (6.1) how L* is made into an L-module). Combining one of
these maps with the inverse of the other therefore sets up an L-module
isomorphism =: L — L. But L is an irreducible L-module (being simple), so
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7 is a scalar multiplication, thanks to Schur’s Lemma. In other words, we
have 0 # a € F such that if f(x, y) = g(z, y) (for all ye L), then z = ax. []

Let ¢: L — gl(V) be a representation of L, L simple. If (L) = 0, every-
thing is clear. Otherwise ¢ is faithful (since Ker ¢ is an ideal of L), so the
form f(x, y) = Tr (¢(x)$(y)) on L is nondegenerate, as well as associative.
The Killing form has the same properties, so it must be a nonzero multiple
af (by the lemma). In particular, given one basis of L, the dual basis relative
to « is gotten by multiplying the dual basis vectors relative to /' by 1/a. This
shows that ¢(c;) = (1/a)c,. In words, the ordinary Casimir element of ¢ is a
nonzero multiple of the image of the universal Casimir element.

Finally, let L be semisimple. We observed in (5.2) that distinct simple
ideals of L are orthogonal to each other, relative to k. This makes it clear
that the dual bases selected above can be chosen to be unions of analo-
gous dual bases for the simple components of L (relative to their Killing
forms, which are gotten by restricting ). Therefore ¢, =c, +--- +¢
(L=L,®---@® L), and if ¢ is a representation of L, each ¢(c, ) is pro-
portional to the corresponding c4, (#;=4¢|, ), where ¢, is either trivial or
faithful for each i. So ¢(c;) is again very closely related, though not
necessarily proportional, to ¢,. In particular, this shows again that ¢(c;)
commutes with ¢(L). The precise value of the scalar by which ¢(c,) acts
will be determined below, when ¢ is irreducible.

22.2. Traces on weight spaces

Fix an irreducible L-module ¥ = V(A), Ae A*, and denote by ¢ the
representation it affords. Fix also the dual bases of L relative to « chosen in
(22.1). In this subsection we are going to compute, for each weight p of V,
the trace on V), of the endomorphism ¢(x,)¢(z,). This makes sense, because
#(z,) maps V, into V,_, and then ¢(x,) maps V,_, back into V.

Since we are working with only one root «, we can utilize the representa-
tion theory of S, (§7). Some modifications are needed, however, because our
basis (x,, z,, t,) i1s nonstandard; it is related to the standard basis (x,, y,, #,)
by z, = [(o, ©)/2]ys t, = [(«, ®)/2)h,. Let (vo, vy, .. ., v,) be the basis used
in formulas (a)-(c), Lemma 7.2, for the irreducible S,-module of highest
weight m. It will be convenient to replace this basis by (wy, . . ., w,,), where
w; = i'[(«, )/2'lv;., After making this substitution, we obtain:

@") tpw; = (m—20) (e, 2)/2]w;;

(bY) zpw; = Wiy, (Wm+y = 0);

) xpow; =im—i+1) [(«, ®)/2)w;_,, (w_, =0).
Therefore:
)] X ZpW; = (m—10) (i+1) [(«, 2)/2]w;.

Now let u be any weight of V for which p+« is not a weight. Then (21.3)
the o-string of weights through u consists of p, p—e«, ..., u—ma, where
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m = {p, o). We keep u, «, m fixed throughout the following discussion. The
representation of S, on the sum of weight spaces W =V, +V,_,+...+
V,-me is a direct sum of irreducible representations (Weyl’s Theorem), each
involving a string of weights stable under o,. To be more precise, let n;
(0 < i < [m/2]) denote the number of such constituents having highest
weight (u— i) (h,). Then m(u—ia) = ny+...+n;, and in turn, n; = m(u— i)
—m(p—(i— 1)a). This is shown schematically in Figure 1, for the case m even.

m
Y o } LCP) } Pm—-2y2-+- | B2 | Ny ) o

p—(m—1)a
—me

Figure 1. (m even)

For each fixed k, 0 < k < m/2, we want to calculate the trace of
d(x)Pp(z,) on V,_;,. Let 0 < i < k. In a typical irreducible S,-summand of
W having highest weight m —2i = (u—ix) (h,), the weight space correspond-
ing to p— ka is spanned by the vector w;_; (in the above notation). Replacing
m by m—2i and i by k—i in formula (1), we obtain:

() (x )z Wi = (m—i—k) (k—i+1) [(«, 0)/2]wy—;.

There are n; S,-summands of W having highest weight m—2i, so the
matrix of ¢(x,)¢(z,) (restricted to V,_,,) has n; diagonal entries of the form
given by (2), relative to a suitable basis of eigenvectors. Letting i range from
0 to k, we obtain for ¢(x,)é(z,) a diagonal matrix of order m(u—ka) = n,
+...+n, with trace:

3 S mm—i—k) (k—i+1) (x, )12
i=0
k
= 3 (n(p—io)=m(u—(i= 1)) (m—i=F) (k=i+1) (2, )2
k

Z m(u — i) (m—2i) (e, @)/2.

i=

The last equality follows, because the coefficient of m(n—ix) is («, «)/2 times
(m—i—k) (k—i+1)—(m—i—k—1) (k—i) = m—2i. (The reader should
check directly the extreme case i = k.) Now recall that m/2 = (u, «)/(x, ).
So (3) becomes:

k
@ Try,_,$(x)$(z,) = .gom(# —io) (u— i, o).



22.3. Freudenthal’s formula 121

This takes care of the weights p— ka in the top half of the “ladder”
(Figure 1). Since the reflection o, interchanges top and bottom, we can
expect similar behavior; in particular, m(p—ia)=m(p—(m—1i)a) for
m/2<i<m. Imitating the above reasoning for fixed k, m/2 <k < m, we

get:
m-k-1

(5) TrV“_ k,¢(xa)¢(za) = Z m(f“—' lo‘) (:U’_ ia, “)'

i=0
(We should sum to m—k, but ¢(z,) kills a vector of weight u— ka
belonging to an S,-summand of W having highest weight p—(m—k)a.)
But notice that, for m/2 < i < m, (uw—ia, &) +(p—(M—i)x, «) = 2u—ma,
o) = 0, because m = 2(u, o)/(a, «). Therefore:

(©) m(p— i) (= lex, o) +m(p— (M —i)e) (p—(m—ia, «) = 0.

This shows that certain pairs of summands may be added to (5): k+1 and
m—(k+1), k+2 and m—(k+2), etc. (Note that for m = 2i even, (6) forces
(p—ix, o) = 0.) In other words, (5) reduces to (4), for arbitrary k.

Finally, if we wish to consider an arbitrary weight v of ¥, we form the
a-string through v and let the final term v+ ka« play the role of x in the above
formulas. With m(u) = O for all u such that ¥, = 0, a little juggling then
permits us to rewrite (4) as follows, for arbitrary u € II(A):

@ Trobe)8z) = 3 mlut o) (u i, ).

22.3. Freudenthal’s formula

Let ¢, V be as in (22.2), dim V> 1. Recall from (22.1) the universal Casimir
element ¢; = Z hik; + Y x,z,. Since ¢ is irreducible, ¢(c;) is multiplication
=1

acd

by a scalar, say c¢. Fix a weight p of V. We want to calculate Tr,, o(c )=
em( ).

First of all, ¢(4;) is just scalar multiplication by w(#;) in V,, and similarly
for ¢(k;). Let t, € H satisfy u(h) = «(t,, h) for all he H (as in §8). Write
1, = Zah,, then by definition u(h;) = Z aj(h;, h;) and p(k;) = Z a,x(h;,

k) = a, (by duality). Therefore, (4, 1) = T awly, h) = Y wlhuatk),
whence: J i

® ;T rv, $h)dk;) = m(p) (u, ).
Combining (8) with formula (7) in (22.2), we have:
) em(p) = (4, Wm(p) + Z Z m(p+ ia) (p+ie, o).

D i=0
Notice that the terms m(un) (u, «) and m(u) (u, —a) both occur (and cancel),
S0 we can omit the index i = 0.
We claim that formula (9) remains valid for arbitrary ue A, p ¢ II(Y),
in which case it reads: 0 = Y Y m(u+ix) (u+ix, «). Indeed, if u ¢ II(Y),

e i=1
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then for each « € ® the weights (if any) of the form p+ix must occur in a
string with all i positive or all i negative. In the latter case, the summand for
« is 0; in the former case this is equally true, by an argument analogous to
that in (22.2) for formula (6).

The preceding discussion actually shows that for each fixed « e ® and
each p e A, we have:

(10) i m(p + i) (u+ia, o) = 0.

i= -
In particular,

@

(1) 3 mGs—i) (s i, =) = m(e) () + 3ot ) (ot i, ).
Substituting (11) in (9) (summation starting with / = 1, as remarked follow-
ing (9)), we obtain finally:

(12) em(p) = (p, pm(p) + ;)In(/») (1, )

+2Y Y mu+ia) (u+ia, o).
a>0 i=1

Letting 8 = (1/2) ), « (13.3), this can be rewritten as:
a>0

(13 am) = o 29m)+2 T 3 Gk i) i, )

The only drawback to this formula is that it still involves c¢. But there is a
special case in which we know m(u), namely: m(A) = 1. Moreover, m(A+ i)
= 0 for all positive roots «, all i > 1. Accordingly, we can solve (13) for the
value ¢ = (A, A+28) = (A+86, A+8)—(8, 8). (Actually, it is not hard to
compute ¢ directly: Exercise 23.4.) These results may now be summarized
in Freudenthal’s formula.

Theorem. Let V = V(X) be an irreducible L-module of highest weight A,
Ae A", If pe A, then the multiplicity m(u) of n in V is given recursively as
Jfollows:

(19 O+, 0+9)=(ut 8, OhmG) =23 3 mutia) Gutimz). 0

It still has to be observed that Freudenthal’s formula provides an effective
method for calculating multiplicities, starting with m(A) = 1. Thanks to
Proposition 21.3, Lemma C of (13.4) shows that for p e II(d), p # A, the
quantity (A+8, A+8)—(u+ 86, u+8) is nonzero; so m(x) = O whenever this
quantity is 0, u # A. Therefore m(x) is known provided all m(u+ix) (i = 1,
a > 0) are known, i.e., provided all m(v), p < v < A, are known. (Some
concrete examples will be given below.) *

In practice, the use of Freudenthal’s formula can be made more efficient
by exploiting the fact that weights conjugate under the Weyl group have the
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same multiplicity (Theorem 21.2). There exist computer programs for
carrying out the calculations involved. Notice that the inner product can be
normalized in any convenient way, since m(u) appears as a quotient.

22.4. Examples

To use Freudenthal’s formula in any given case, we have to be able to
compute explicitly the bilinear form on A. The form used above was the
“natural” one (dual to the Killing form), but it may be normalized by any
convenient scalar multiplication in view of the above remarks. One popular
procedure is to require that all squared root lengths be 1, 2, or 3, the smallest
being 1 (for each irreducible component of ®). Alternatively, the inner
product used in the construction of root systems in §12 can be chosen.

Example 1. L = I3, F), ® = {fay, toy, +(a+ar)}, A= {ag, a,},
ay =20 =2y, ay = —A +20, A = (1/3) Quy+az), A, = (1/3) (2g+2a).
Require («;, «;) = 1, so that («;, «,) = —1/2, (A;, A) = 1/3, and (A, A;) =
1/6. Set A = A; +3A,. Then Freudenthal’s formula yields the list of multi-
plicities in Table 1. Other data are listed also, for the reader’s convenience.
Weights are grouped by “level”’: calculation of m(u) requires data only from
higher levels. The reader should draw a weight diagram, in the manner of
Figure 1 of (21.3).

Table 1.
p m(p) | (u+08, p+8) | p=mA +mh,

{A 1 28/3 A +3A;
{)\—a, 1 25/3 — A +4A,
A—ay 1 19/3 22 +4;
A—ay—oy 2 13/3 2X,
A—2a, 1 16/3 30 -2,
A—ay—2a, 2 7/3 A
A—20; —ay 1 13/3 —2X;,+3),
A—3a, 1 19/3 41, =32,
A—20; —2a; 2 4/3 —=Ai 42,
A—ay—3a;, 2 7/3 20, -2,
A—ay—4a, 1 13/3 30 —4A,
A—2a; —3a; 2 1/3 —Az
A—3a; — 20, 1 7/3 —=3A 42X,
A—=2a;—4a, 1 4/3 A =34,
A—3a; —3a; 2 1/3 =2\
{A—3a1—4a2 1 1/3 -2 =2);
A—4oy —3a; 1 7/3 —4A; 4+ A,
{A—4a; —4a, 1 4/3 =3 -,




124 Representation Theory

Example 2. Let L be the simple algebra of type G,. The root system of L
is constructed explicitly in (12.1). Recall that «, is short and «, is long, so
that A, = 2«, +«,, A, = 3a;+2«,. Some information obtained by using
Freudenthal’s formula is listed in Table 2. The weight m A, +m,A, is
abbreviated there by m,m,. Rows are indexed by highest weights A, columns
by dominant weights u, and the intersection of row A with column p contains
the integer m (1) (when this is nonzero). The reader should verify parts of
the table for himself.

Table 2.

00 10 01 20 11 30 02 21 40 12 31 50 03 22

00| 1

10/ 1 1

o 2 1 1

200 3 2 1 1

11 4 4 2 2 1

30, 5 4 3 2 1 1

02 5 3 3 2 1 1 1

200 9 8 6 5 3 2 1 1

490, 8 7 5 5 3 2 1 1 1

1210 10 7 7 5 3 2 2 1 1

3116 14 12 10 7 6 4 3 2 1 1
s0(12 11 9 8 6 5 3 3 2 1 1 1
3,9 7 7 5 4 4 3 2 1 1 1 0 1
22121 19 16 15 11 9 7 6 4 3 2 1 1 1

22.5. Formal characters

Let A © H* be, as before, the lattice of integral linear functions. If
V = V(X),Ae A*, we want to consider a formal sum of the weights u e II(X),
each p occurring in the sum m(w) times. However, “u+v” would be a poor
notation to use in such a formal sum, since this already has a concrete mean-
ing in A. Therefore we introduce the group ring of A over Z, denoted Z[A].
By definition, Z[A] is a free Z-module with basis elements e(A) in one-one
correspondence with the elements A of A, with the addition denoted e(X)+
e(w). Z[A] becomes a commutative ring if we decree that e(A) e(u) = e(A+ )
and extend by linearity. (There is an identity element: ¢(0).) %" acts naturally
on Z[A], by permuting the e(A): oce(A) = e(al).

Now it makes good sense to define the formal character chy,,, or just
ch;, of V(}) as the element Y my(p)e(r) of Z[A]. (Since m,(1) = 0 whenever

neTl()

w ¢ II(A), we can even extend the summation to all u e A.) For example,
if L = sl(2, F), the formal character of V(}) is given by ch; = e(d) +e(A—«)
+e(A=20)+...+e(A—ma), m = (A, ay. More generally, if V is an arbitrary
(finite dimensional) L-module, there is an essentially unique decomposition
V=VA)®...dV(QA,), \;e A", thanks to Weyl’s Theorem and the

t

classification theory (§21). So ch, = )’ ch;, may be called the formal charac-

i=
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ter of V. Notice that each o € #~ fixes chy, since ¢ permutes weight spaces in
each irreducible summand of ¥V (Theorem 21.2).

Knowledge of ch, actually enables us to recover the irreducib'e con-
stituents of V, because of the following result.

Proposition A. Let f = Y c(Ne(N), c(X) € Z, be fixed by all elements of W".
AeA

Then f can be written in one and only one way as a Z-linear combination of the
ch; (Ae AY).

Proof. 1t is clear that f = Y ¢(}) ('), e(oX)). For each Ae A* such that
AeA+ oW

c(A) # 0, the set of dominant u < A is finite (Lemma B of (13.2)). Let M,
be the totality of such x (for all such A), so M is finite. Let A ¢ A* be maximal
among the A e A* for which ¢(A) # 0, and set ' = f—c(A)ch,, so clearly f*
again satisfies the hypothesis of the proposition. We know that the dominant
p figuring in ch, all satisfy u < A, so they all lie in M,. This shows that
M, < M;. The inclusion is proper, because A ¢ M . By induction on
Card (M,), we can write /' in the desired form; then f also has the desired
form. To start the induction, notice that the case Card (M,) = 1 is trivial:
In this case a minimal dominant weight A is the only dominant weight

figuring in f, whence f = c(A)ch,, where ch; = ) e(od). The uniqueness
oW

assertion is left to the reader (Exercise 8). []

One advantage in being able to multiply formal characters is brought out
next.

Proposition B. Let V, W be (finite dimensional) L-modules. Then chy gy =
chy.chy.

Proof. On the one hand, from the way in which the actionof Lon V¥ @ W
is defined (6.1), it is clear that the weights of V' ® W are those of the form
A+p (A a weight of V, u of W), each occurring with multiplicity

Y mymmy()

T+ =A+pu

(cf. Exercise 21.7). But this is also what we get if we formally multiply
chy by chy. 1

Exercises

1. Let Ae A™. Prove, without using Freudenthal’s formula, that m;(A— k)
=1foraeAand 0 < k < <A, a).

2. Prove that ¢, is in the center of U(L) (cf. (23.2)). [Imitate the calculation
in (6.2), with ¢ omitted.] Show also that ¢, is independent of the basis
chosen for L.

3. In Example 1 (22.4), determine the # -orbits of weights, thereby verifying
directly that % -conjugate weights have the same multiplicity (cf. Theorem
21.2). [Cf. Exercise 13.12.]

4. Verify the multiplicities shown in Figure 1 of (21.3).
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5. Use Freudenthal’s formula and the data for A, in Example 1 (22.4) to
compute multiplicities for V(X), A = 2A, +2A,. Verify in particular that
dim V(X) = 27 and that the weight 0 occurs with multiplicity 3. Draw the
weight diagram.

6. For L of type G,, use Table 2 of (22.4) to determine all weights and their
multiplicities for V(A), A = A;+2A,. Compute dim FV(A) = 286. [Cf.
Exercise 13.12.]

7. Let L = sl(2, F), and identify mA,; with the integer m. Use Propositions
A and B of (22.5), along with Theorem 7.2, to derive the Clebsch-Gordan
formula: If n < m, then V(im) @ V(n) ~ V(im+n) @ Vim+n-2)® ...
@ V(m—n), n+1 summands in all. (Cf. Exercise 7.6.)

8. Prove the uniqueness part of Proposition 22.5A.

Notes

The proof of Freudenthal’s formula is taken from Jacobson [1]; see
also Freudenthal [1] and Freudenthal-de Vries [1]. For computational
aspects, cf. Agrawala, Belinfante [1], Beck, Kolman [1], Krusemeyer [1],
Burgoyne, Williamson [1]. A different algorithm has been found by
Demazure [1]. The data in Table 2 is taken from Springer [1].

23. Characters

Our object is to prove a theorem of Harish-Chandra on “characters”
associated with the infinite dimensional modules Z(}), A € H* (20.3). This
theorem will be used in §24 to obtain a simple algebraic proof of Weyl’s
classical result on characters of finite dimensional modules. As a preliminary
(which is also of independent interest) we shall prove in (23.1) a theorem of
Chevalley on “lifting” invariants. None of this depends on Freudenthal’s
formula (22.3).

23.1. Invariant polynomial functions

If ¥ is a finite dimensional vector space, the symmetric algebra S(V*)
(see (17.1)) is called the algebra of polynomial functions on ¥, and is denoted
PB(V). When a fixed basis (f7, . . ., f,) of V*is given, P(V) becomes identified
with the algebra of polynomials in n variables f}, . . ., f,. In this subsection
we consider ‘B(L) and P(H).

Since the weight lattice A spans H*, the polynomials in the A e A span
P(H). By the process of polarization (Exercise 5) the pure powers A¥ (A € A,
k € Z*) already suffice to span P(H). Now consider #”, which acts on H*
and hence on P(H). Let P(H)* be the subalgebra consisting of polynomial
functions fixed by all ¢ € #7; this is the algebra of % -invariant polynomial
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functions on H. (For example, if L = sl(2, F), A = fundamental dominant
weight, then B(H)” is the algebra with 1 generated by A%.) If we write Sym f
for the sum of all distinct ¥ -conjugates of /'€ B(H), then it is clear that the
collection of all Sym A* (A\e A*, ke Z*) spans P(H)”", because each A e A
is # -conjugate to a dominant integral linear function (Lemma 13.2A).

Next let G = Int L, which is generated by all exp ad x (x nilpotent).
Then G acts naturally on PB(L), via (of) (x) = f(o~'x) (o € G, fe P(L)), and
we denote the fixed elements of P(L) by P(L)°. These are the G-invariant
polynomial functions on L.

Many examples of G-invariant polynomial functions can be constructed
via representation theory, as follows. Let ¢: L — gl(V) be an irreducible
(finite dimensional) representation of L, of highest weight Ae A*, and let
ze N =[] L,, ¢ = exp ad z. Define a new representation ¢°: L — gl(¥) by

a>0

the rule ¢°(x) = ¢(a(x)), x € L. (Check that this actually satisfies ¢ ([xy]) =
[¢°x, $°y].) Obviously ¢° is again irreducible. If v* € V is a maximal vector,
(ad z)?

X +...)
(x)) (v) = 0, since the element of L in parentheses is still in N. Moreover,
#°(h) ") = d(h+[zh]) (v*) = d(h) (v™) = A(h)v™*, since [zh] € N and $(N)
(»*) = 0. In other words, v* is again a maximal vector of weight A for the
new representation, so the two representations ¢ and ¢° are equivalent
(i.e., the two L-module structures on ¥ are isomorphic (20.3)). Let ¢,: V — V
be an L-module isomorphism, so that ¢ (é(x) (v)) = ¢(x) (¥,(v)) for all
v e V. Concretely, ¢, is just a change of basis in ¥V, and this equation shows
that the matrices of #(x) and ¢°(x) = #(ox) (relative to a fixed basis of V)
are similar. In particular, they have the same trace. If k € Z™*, it follows that
the function x — Tr (¢(x)¥) is o-invariant. But this is a polynomial function:
starting with the (linear) coordinate functions for ¢(x), the entries of ¢(x)*
become polynomials in these, and the trace is a linear combination of such
polynomials. Notice too that the invariance of the trace function is inde-
pendent of the original choice of base (or positive roots) and even the choice
of H, so that x — Tr($(x)*) is in fact fixed by all generators of G (cf. Exercise
16.2), hence by G itself.

Now we are ready to compare P(L)¢ with P(H)* (this being the whole
point of the discussion). Any polynomial function f on L, when restricted to
H, is a polynomial function on H: this is obvious if a basis of H is extended
to a basis of L and fis written as a polynomial in the elements of the dual
basis. If /' happens to be G-invariant, then in particular it is fixed by each of
the inner automorphisms 7, (« € ®) constructed in (14.3). But 7,|, is the
reflection o, and the o, generate #”, so we see that f|, € P(H)*? . We there-
fore obtain an algebra homomorphism 6: P(L)¢ — P(H)” .

and B is any positive root, then ¢°(x;) (v*) = ¢((1+ad z +

Theorem (Chevalley). 6 is surjective.

Proof (Steinberg). By previous remarks, it will suffice to show that each
Sym A* (\e A*, ke Z™) lies in the image of 6. For this we use upward
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induction on the partial ordering of A", starting with A minimal (possibly 0).
(Recall from Lemma 13.2B that the dominant weights lying below a given
one are finite in number.) Since A is minimal, no other x € A* can occur as a
weight of the irreducible representation ¢ whose highest weight is A. In view
of Theorems 20.2, 21.2, the sole weights of ¢ are the # -conjugates of A,
each of multiplicity one. Now x — Tr ($(x)*) is a G-invariant polynomial
function f, whose restriction to H is Sym A*. So Sym A* = 6(f).

For the induction step, fix Ae A*, ke Z*. Let ¢ again denote the irre-
ducible representation of highest weight A, f the function x > Tr(¢(x)*). Then
flg = Sym M+ Ye(p,k) Sym p* (Theorem 21.2), where we sum over p § A,

peA*. The terms involving p j A are all liftable to P(L)®, by induction,

so finally Sym A* is liftable. ]

Let us make one further observation about P(L)®. Call a polynomial
function x — Tr(4(x)*) as above a trace polynomial. If x = x,+x, is the
Jordan decomposition of x, then #(x) = ¢(x,) +¢(x,) is the (usual) Jordan
decomposition of ¢(x) (cf. (6.4)). Since $(x,) and ¢(x,) commute, all terms
except ¢(x,)* in the expansion of (f(x,)+4(x,)* are nilpotent, hence of
trace 0. Therefore, a trace polynomial is completely determined by its values
at semisimple elements of L. The proof of Chevalley’s theorem actually shows
that @ maps the subalgebra T < P(L) generated by trace polynomials
onto P(H)™". In fact, 8| is injective as well as surjective: 6(f) = 0 means that
flu = 0. Each semisimple element of L lies in some maximal toral subalgebra,
hence (16.4) is conjugate under G to an element of H. Therefore, f vanishes
on all semisimple elements of L, forcing f = 0 (by the above remarks).

Using some elementary algebraic geometry (see Appendix below), it
can be shown directly that 6 is injective; as a corollary, P(L)¢ is generated
by trace polynomials. (We shall not need these results, however.) In (23.3) we
shall allow ourselves to write 61, but the reader can easily check that the
argument does not depend essentially on the injectivity of 6.

23.2. Standard cyclic modules and characters

Let 3 be the center of H(L), i.e., the set of elements commuting with all
x € U(L), or equivalently, with all x € L. An automorphism o: L — L extends
uniquely to an automorphism of (L), so in particular G = Int L acts on
U(L), mapping 3 onto itself. The following fact will be needed in (23.3).

Lemma. 3 is precisely the set of G-invariants of U(L).

Proof. On the one hand, 3 commutes with all nilpotent xe L, so 0 =
[xz] = ad x (z) (ze€ 3), and exp ad x (z) = z. This implies that all 0 € G
fix z. Conversely, let G fix an element x of U(L). Fix a root « € ® and take
0# x,eL, If n=ad x, suppose n' # 0, while n'*' = 0. Then choose
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t+1 distinct scalars a,, . . ., a,,, in F (possible since F is infinite). By hypo-
thesis, 14-an+(a}2)n*+. .. +(d/t)n" fixes x (1 < i < t+1). The deter-
minant

1 a, af2! e al/t!
1 (R a /2! Ay 1/t!
is (2!3!...#1)"" times the Vandermonde determinant H'(a,»—aj)sﬁO.
12>
i1
Therefore, we can find scalars b,,...,b,,, satisfying: n= Y b, (expa,n).

i=1
(Strictly speaking, this is to be done in the space of endomorphisms of the
(finite dimensional) L-submodule of (L) generated by x, cf. Exercise
17.3.) In particular, ad x, (x)=2b,exp(ada;x,)(x)=(Zb,)x. Since adx, is
nilpotent, we conclude that 2,=0, [x,,x]=0. But the x, generate L, so x
centralizes L and x € 3 as required. []

We remark that the universal Casimir element ¢, (22.1) belongs to 3:
Just imitate the calculation in (6.2), omitting mention there of ¢.

Next we ask how 3 acts on the infinite dimensional module Z(}), A€ H*,
which was constructed in (20.3). If v* is a maximal vector of Z(}), and
ze 3, notice that hzo® = z.ho' = Mh)zw™ (he H), while x,zo* =
z.x,0" =0 (x, € L,, « > 0). Therefore, z.v* is another maximal vector of
weight A; according to Theorem 20.2, z.v* must be a scalar multiple of v™,
say x,(z)v*. The resulting function y,: 3 — F is an F-algebra homomorphism
called the character determined by A.

It is clear that the set of all vectors in Z(A) on which z € 3 acts as scalar
multiplication by x,(z) is U(L)-stable and includes v*, hence must be all of
Z(A). Therefore, the action of ze 3 on any submodule of Z(A) is scalar
multiplication by y,(z) (similarly, on any homomorphic image of Z(})).

It turns out that not all characters y, (A € H*) are distinct. To get precise
conditions for equality of characters, we define A, u € H* to be linked (written
A~p)if A+8 and p+ 68 are # -conjugate (where 8 = half-sum of positive
roots, as in (13.3)). It is clear that linkage is an equivalence relation. Here
we shall only be concerned with integral linear functions (i.e., elements of
A). Choose x, € L, (« > 0), y, € L_,, so that [x,y,] = 4,

Proposition. Let A€ A, o e A. If the integer m = (A, «) is nonnegative,

then the coset of yT*' in Z()) is a maximal vector of weight A—(m+ 1)a.

Proof. Use the formulas of Lemma 21.2, along with the fact that h,—
A, ad-1€I())(20.3). 0

Corollary. Let Ae A, a€ A, p = o,(A+8)—8. Then x; = x,.

Proof. Since o, permutes the positive roots other than « and sends « to
—oa (Lemma 10.2B), 0,6—8 = —«. Therefore, u = o, (A+8)—8 = o, A~
a = A—({A, a>+1)a. By assumption, <A, a) e Z. If this number is non-
negative, the proposition shows that Z(X) contains a homomorphic image of
Z(p) (different from 0), whence y, = x, by earlier remarks. If <A, a) is
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negative, then (u, > = A, a>—2({A, a>+1) = — (A, o) —2 is nonnegative
(unless <A, ) = —1,in which case u = X and there is nothing to prove). So
the proposition applies, with x in place of A, and again x; = x,. [

The corollary shows that two integral linear functions linked by a simple
reflection yield the same character. Using the transitivity of linkage and the
fact that #" is generated by simple reflections (Theorem 10.3(d)), we obtain
a strengthened version.

Corollary’. Let A, pe A. If X ~ u, then x; = x,. [

This is the easy half of Harish-Chandra’s Theorem (see (23.3)). We shall
see below how to extend it to cover all A, u € H*, but only the integral case is
actually needed in this book.

23.3. Harish-Chandra’s Theorem

Theorem (Harish-Chandra). Let A, ue H*. If x; = x,, then A ~ p.

This subsection will be occupied with the proof of the theorem. The
idea of the proof is not really very difficult, but there are a number of maps
to keep straight. To begin with, fix a convenient basis of L, say {h;,1 < i < ¢;
Xy Voo >0}, where h; = h,, A = {ay,...,a}. Construct PBW bases
for U(L) and U(H) accordingly, relative to an ordering which puts the y,
first, then the 4;, then the x,. Define a linear map ¢: U(L) — U(H) by sending
each basis monomial in 4, . . ., A, to itself and all other basis elements to 0.

If v* is a maximal vector of the irreducible module V(}), A € H*, consider
how z € 3 (expressed in terms of the above PBW basis) acts on v*. A mono-
mial [] yi [] A¥ [ xZ= for which some j, > 0 kills v*, while one for which

oa>0 i a>0
all j, = 0 but some i, > 0 sends v* first to a multiple of itself and then to a

lower weight vector. Accordingly, the only monomials which contribute to
the eigenvalue y,(z) are those for which all i, = 0 = j,. From this it follows
at once that, with ¢ as above:

*) x:(2) = Mé(), ze3.

(A: H — F extends canonically to a homomorphism of associative algebras
U(H) — F.) Notice that the restriction of ¢ to 3 is an algebra homomorphism,
thanks to (¥).

Somehow 8 must be gotten into the picture. This happens as follows.
Send each #; to 4;—1, and extend linearly to a map H — U(H). This is a Lie
algebra homomorphism (all Lie products being 0), so it extends to a homo-
morphism 7: U(H) — U(H). Clearly n is an automorphism (with inverse
sending h; to h;+1). Let ¢: 3 — U(H) be the composite homomorphism

n o £|3. Recall (13.3) that & = Z A; (A; fundamental dominant weights in A),

so 8(h) = 1. It follows that ()\+8) h;—=1) =@Q+8 h)—-@A+d (1) =
(A(h)+1)—1 = A#h;). Therefore:

** A+ (2) = Mé@2))  (ze 3, Ae HY).
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Combined with (*), this says that x;(z) = (A+38) (1(z)). Now let A be integral.
By Corollary’ in (23.2), all the conjugates o(A + 8) agree at )(z); equivalently,
w = A+ 6 takes the same value at all # -conjugates of y(z). This being true
for all A € A, hence for all u € A, it follows that all linear functions take the
same value at all # -conjugates of #(z). But then #" must fix #(z), ze 3.
We may replace U(H) here by the symmetric algebra S(H), because H is
abelian (Example 17.2). Therefore, our conclusion is that ) maps 3 into
S(H)” (the elements of S(H) fixed by #).

It has been shown that, for all Ae H*, x,(z) = (A+8) (¥(2)), ze 3.
Moreover, (z) is ¥ -invariant, so the right side does not change if we
write o(A+8) in place of A+ 8. Therefore, x,(z) = x,(z) if A ~ p (u linked
to A by o). This shows that Corollary’ in (23.2) extends to all A\, p € H*, as
remarked there.

We just saw that x,(z) = (A+3) (¥(z)), A e H*. Suppose x; = x,. Then
A+8 and p+§ agree on (3), which lies in S(H)”. To prove Harish-
Chandra’s Theorem, we must show that A+ 8 and x+ 3 are conjugate under
W For this it will suffice to prove that $(3) = S(H)”, in view of the follow-
ing lemma.

Lemma. Let Ay, A, € H* lie in distinct W -orbits. Then A, A, take distinct
values at some element of S(H)” (=P(H*)").

Proof. This is elementary, requiring only the finiteness of #. Begin by
choosing some polynomial in S(H) at which A, does not vanish, but at which
all other # -conjugates of A,, as well as all # -conjugates of A,, vanish.
(Why does such a polynomial exist?) Add up the images of this polynomial,
to get an element of S(H)” at which A, vanishes but A; does not. []

The remaining task is to prove that ¢ maps 3 onto S(H)” . There is one
further map to introduce. Recall that GS(L) may be identified with the space
of symmetric tensors in I(L), which is complementary to the kernel J of
the canonical map =: (L) — U(L) (Corollary E of Theorem 17.3). Let
G = Int L, as in (23.1); G acts on I(L). It is obvious that S(L), J are stable
under the action of G, so the linear isomorphism =: S(L) — U(L) is actually
an isomorphism of G-modules. Denote by S(L)¢ the subspace (actually,
subalgebra) of elements fixed by G. According to Lemma 23.2, = maps
&(L)¢ onto 3 = U(L)°. (Caution: = is not an algebra homomorphism,
only a linear map.)

We now have the picture: S(L)° > 3 4o H)’V This bears a striking
resemblance to the set-up studied in (23.1): ‘B(L)G — P(H)”. Indeed, we
can even identify (canonically) L with L*, H with H*, by means of the Killing
form (which is nondegenerate on both L and H), and the actions of G, #~
are compatible with these identifications. Consider the resulting diagram:

S(L)° — 3 S(H)

I !

PL —————> PE”

¥
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Unfortunately, this diagram is not quite commutative. To see what is going
on, we pause to look at a simple example.

Example. Let L = sl(2, F), with standard basis (x, y, #). The dual
basis (x*, y*, h*) may be identified with (1y, 1x, $4) via the Killing form
(Exercise 5.5). If A is the fundamental dominant weight (A = 3«), then A
identifies here with #* and A generates B(H)” . A being the highest weight
of the usual representation of L, an easy calculation (Exercise 1) shows that
the trace polynomial #*? 4 x*y* equals 6~ *(A?). Under the identification of
P(L)® with S(L)%, this becomes the symmetric tensor (1/64) (h ® h)+(1/32)
(x ® y+y ® x). = maps this element to (1/64)h*+(1/32)xy+(1/32)yx € 3.
In turn, to calculate the image under ¢, we must rewrite this element in the
PBW basis (relative to the ordering y, &, x) as (1/64)h* +(2/32)yx+(1/32)h.
¢ sends this to (1/64) (h*+2h), and % in turn to the ¥ -invariant (1/64)
(h*—1). Reverting to P(H)”, this yields A*—1/64. Therefore, the diagram
does fail to commute. Nevertheless, the discrepancy is measured by an
invariant (here the scalar 1/64) of lower ‘“degree” than the element we
started with.

This example suggests how to complete the proof that ¢ is surjective
(for s1(2, F), it is the proof!). First of all, we agree to identify P(L)¢ with
S(L)¢ and P(H)” with S(H)”". Next, it is obvious that if a polynomial
in &(H) is fixed by #", then so are its homogeneous parts. Therefore, it will
suffice to lift homogeneous polynomials to 3; in particular, we can use
induction on degree (constants being trivially liftable).

The maps 6 and £ o = are now essentially the same (recall how each is
defined), except that we have to rewrite the “symmetric” element #(f) in the
PBW basis before applying £. This introduces some new terms. However,
if fhas degree k, then #(f) is a sum of terms x, . .. x; in U(L) (x; among the
fixed basis elements of L), so the new terms obtained by commutating clearly
have the form x, ... x; for j < k.

The map 7 (sending 4; to h;— 1) has no effect on highest degree terms of
polynomials in S(H). The upshot is that we recover our original homo-
geneous element of S(H)*, modulo terms of lower degree, when we go
around the diagram using 6!, then =, then . The lower degree terms are,
by induction, images under ¢ of elements of 3, so the argument is com-
plete. [I

Appendix

One fact was left unproved in this section: that the restriction map P(L)®
— P(H)" is injective (23.1). This fact is inessential to the proof of Harish-
Chandra’s Theorem, but it would be less than satisfactory to pass over it in
silence. It can be formulated as a simple density argument within the frame-
work of (affine) algebraic geometry.

Let A = F" (called affine n-space); we ignore the vector space structure of
A here. Let F[T] = F[Ty, ..., T,] be the polynomial ring in n indeterminates.
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If I'is an ideal in F[T], let ¥"(I) = {x = (x4, ..., x,) € A|f(x) = 0 for all
feI}. We topologize A by declaring the sets #7(I) to be closed; obviously &
and A are closed, while the fact that finite unions or arbitrary intersections of
closed sets are closed is easy to verify (using, e.g., ¥" Q. I,) = ) ¥'(1,)).

[+3 o
This topology on A is called the Zariski topology. (In case F = R or C, a
Zariski-closed set is also closed in the usual topology on F”, but not con-
versely.)

If A(T)eFT), the function x> f(x) (A —F) is called a polynomial
function on A. Evidently such a function is continuous in the Zariski topology,
F being given the Zariski topology of affine 1-space. Since F is infinite, the
only polynomial vanishing on A is the zero polynomial (as is well known).

A subset of A is called irreducible if it cannot be covered by two closed
sets neither of which already covers it. (“Irreducible” implies “‘connected”,
but not conversely.)

Lemma. A is irreducible.

Proof. Let A = ¥"(I,) U ¥°(1,), and suppose both of these closed sets are
proper. Then I, # 0, I, # 0. Let fel,, gel, be nonzero polynomials.
Then fg # 0, but fg vanishes identically on A, which is absurd. [J

Corollary. Any nonempty open set in A is dense.

Proof. Let U be a nonempty open set. If U is not dense, then there exists
a nonempty open set Vin A with UN V = o ; the closed sets A—U, A—V
are then proper, and cover A, contradicting the lemma. [

Return now to the situation of §23: L semisimple, H a CSA (etc.). Fix a
basis of L, so that L becomes identified with affine n-space (» = dim L) and
B(L) with the polynomial functions in the above sense. Relative to this
basis, ad x is represented by an nx n matrix, whose coordinates are linear

(hence polynomial) functions on L. In turn, let 7 be an indeterminate, and
n

write (for x € L) p,(T) = characteristic polynomial of ad x = ) ¢,(x)T". It
=0

is clear that each c; is a polynomial function on L.

Call the p-rank of L the smallest integer m for which c,, is not identically
0, and call x € L p-regular if c,(x) # 0. In words, x is p-regular if and only
if 0 has the smallest possible multiplicity as an eigenvalue of ad x. This
shows that x is p-regular if and only if x; is (since they have the same
characteristic polynomial); in particular, p-regular semisimple elements exist.
Obviously the set Z of all p-regular elements of L is open; being open and
nonempty, it is dense (by the above corollary).

If x e L is semisimple, x lies in a maximal toral subalgebra, so the con-
jugacy theorem implies that x is conjugate under G to some element of H.
But if 4 € H, we know that dim Cy(h) > £ = rank L; we also know that H
possesses elements (called regular) for which dim Cy(h) = ¢ (15.3). Since
p-regular semisimple elements exist, they must therefore coincide with the
regular semisimple elements (and m = /). But no nilpotent element other
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than O centralizes a regular semisimple element. In view of the preceding
paragraph, x p-regular implies x = x,. This allows us to describe X as the
set of all regular semisimple elements.

Now let fe B(L)%, f|g = 0. This implies in particular that f vanishes on
2, which is dense, so f = 0. Therefore 6: P(L)° — B(H)" is injective.

Exercises

1. In the Example in (23.3), verify that the trace polynomial is given correctly.
2. For the algebras of type A,, B,, G,, compute explicit generators for
B(H)” in terms of the fundamental dominant weights A,, A,. Show how
some of these lift to 3, using the algorithm of this section. (Notice too
that in each case P(H)” is a polynomial algebra with £ = 2 generators.)

3. Show that Proposition 23.2 remains valid when A is an arbitrary linear
function on H, provided only that <A, «) is an integer.

4. From the formula (*) x,(z) = A(¢é(2)) of (23.3), compute directly the value
of the universal Casimir element ¢; (22.1) on ¥V(X), Ae A*: (A48, A+ 8)—
(8, 8). [Recall how ¢, and A, resp. z, and y,, are related. Rewrite ¢, in the
ordering of a PBW basis, and use the fact derived in (22.3) that (4, p) =

Y. wlhplk;) for any weight p.]

5. Prove that any polynomial in n variables over F (char F = 0) is a linear
combination of powers of linear polynomials. [Use induction on n.
Expand (T, +aT,)* and then use a Vandermonde determinant argument
to show that kth powers of linear polynomials span a space of correct
dimension when n = 2.]

6. If e A* prove that all u linked to A satisfy u < A, hence that all such u
occur as weights of Z().

7. Let © = [U(L), U(L)] be the subspace of U(L) spanned by all xy—yx
(x, ye U(L)). Prove that U(L) is the direct sum of the subspaces © and 3
(thereby allowing one to extend x; to all of U(L) by requiring it to be
0 on D). [Recall from Exercise 17.3 that (L) is the sum of finite dimen-
sional L-modules, hence is completely reducible because L is semisimple.
Show that 3 is the sum of all trivial L-submodules of (L), while D
coincides with the space of all ad x(y), x e L, y € U(L), the latter being
complementary to 3.]

8. Prove that the weight lattice A is Zariski dense in H* (see Appendix),
H* being identified with affine Z-space. Use this to give another proof that
Corollary’ in (23.2) extends to all A, u € H*.

9. Every F-algebra homomorphism x :3 — F is of the form y, for some
Ae H*. [View y as a homomorphism G(H)* —F and show that its
kernel generates a proper ideal in S(H).]

10. Prove that the map ¢ :3 — G(H)” is independent of the choice of A.
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Notes

Steinberg’s proof of Chevalley’s theorem 23.1 is written down in Verma
[1], and in Varadarajan [1]. For accounts of Harish-Chandra’s work on
“characters”, see Bourbaki [3], Harish-Chandra [1], Séminaire “Sophus
Lie” [1], Exposé 19, Varadarajan [1], Verma [1]. Chevalley [5] shows that
S(H)" is a polynomial algebra.

24. Formulas of Weyl, Kostant, and Steinberg

The notation is that of §23. We are going to use Harish-Chandra’s
Theorem (23.3) to obtain several remarkable formulas for the characters
and multiplicities of finite dimensional L-modules. (For a shortcut, avoid-
ing the use of §23, see the Appendix below.)

24.1. Some functions on H*

For Ae A*, the formal character ch, of V()) was introduced in (22.5):
ch, =Y my(ne(r), where the e(u) form a basis for the group ring Z[A].

HEA
It is also convenient to define formal characters for the infinite dimensional

modules Z(A), but here the infinite formal sums would be awkward to
manipulate. Instead, we use a more suggestive formalism. Z[A] can be
viewed as the set of Z-valued functions on A (0 outside a finite set); the
reader can easily check that the product operation becomes convolution,

frg® = Y f(we®).

p+v=2A
Let X be the space of all F-valued functions f on H* whose support
(defined to be the set of A € H* for which f(A) # 0) is included in a finite

union of sets of the form {A — ) k,a, k, € Z*}. (Such a set is of course the
a>0
set of weights occurring in a module Z(A), A € H*.)

A moment’s thought shows that X is closed under convolution; thus it
becomes a commutative, associative F-algebra, containing the formal
character ch, of any standard cyclic L-module.

The reader may find it convenient at times to think of fe X as a formal
combination (with F-coefficients) of the A ¢ H*. What corresponds to our
earlier e(A)? Clearly this is just the characteristic function ¢,(\) = 1, ;,(u) = 0
if 4 # X. Notice that ¢ is the identity element of the ring X, and that ¢, * ¢,
=#&,,,- The Weyl group #" acts on Z[A] by (o~ 'NA)=f(o)); in particu-
lar, o(¢,)=¢,.

Two other useful elements of X must now be introduced. First, let p(A)

be the number of sets of nonnegative integers {k,, « > 0} for which —A =)
a>0
k. Of course, p(A) = 0 unless A lies in the root lattice. Notice that p=chz,,
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(Exercise 20.5); in particular, p € X. We call p the Kostant function (it differs
from Kostant’s partition function only by a change in the sign of A). Next,
we let ¢ = n (e4/2—€-42) (Where the product symbol [T always denotes

convolutlon 1n X). Call g the Weyl function.

We shall now prove a number of simple lemmas relating the various
functions defined above. Let f(—k«) = 1, f,(A) = 0 otherwise, for each
positive root «, k € Z*. (f, may be thought of symbolically as eq+e_,+¢_,,
+...). It is clear that f, ¢ X.

Lemma A. (o) p = n For

(b) (Eo_e—a) *fa = &o-
(©) g =e5% [](eo—2-0).

a>0

Proof. (a) This follows at once from the definition of convolution.

(b) Formally, (eg—e_,) * (eg+e_,+e_5,+...) = &g, since all other terms
cancel. (It is easy to make this rigorous.) (c) Since 8 = ) do, ¢, =[] &,
a>0 a>0

But (eg—e_,) * ¢4/ = €42~ &_42, 50 the result follows. []
Lemma B. og = (—1)“q (o0 € #"), {A0) as in (10.3).

Proof. 1t suffices to prove this when o = o, is a simple reflection, i.e.,
#(0) = 1. But o, permutes the positive roots other than « and sends « to —«
(Lemma 10.2B), so 0,4 = —¢q. [

Lemma C. g#p*e_; = &

Proof. Combining the three parts of Lemma A, we get g*pxe_; = ||
a>0

(Eo—e—a) *EsgkPHRE_5 = l—,[(eo_eﬂz) ¥p = 1—[((80_8—41) *foz) = €p- D
a>0 a>0

Lemma D. chy;(p) = p(u—2) = (p * &;) ().

Proof. The first equality is clear (cf. Exercise 20.5), the second is equally
so. [l

Lemma E. g x chy;, = €, 45

Proof. Combine Lemmas C and D. [

The coefficient (—1)") (c € #7) which appears in Lemma B will be
abbreviated henceforth to sn(c). Recall that when L is of type A, ¥  is
isomorphic to the symmetric group %, , and sn(o) coincides with the sign
(+ for even, — for odd) of the permutation o.

24.2. Kostant’s multiplicity formula

The idea now is to express the formal character ck; of the finite dimen-
sional module V() (Ae A™) as Z-linear combination of certain chy,), and
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then use the lemmas of the preceding subsection (along with Harish-
Chandra’s Theorem) to simplify the result.

Let 9, denote the collection of all L-modules ¥ having the following
properties (for fixed A € H*):

(1) V is the direct sum of weight spaces (relative to H).

(2) The action of 3 on V is by scalars x,(z) (z € 3), for the given A e H*.
(8 = center of U(L).)

(3) The formal character of V belongs to X. Of course, all standard
cyclic modules of weight A meet these criteria; so do their submodules (which
are known to be not always sums of standard cyclic submodules). Indeed,
M, is closed under the operations of taking submodules, taking homomorphic
images, and forming (finite) direct sums. In view of Harish-Chandra’s
Theorem (23.3), M, = M, precisely when A and w are linked.

Lemma. Let Ve IM,. Then V possesses at least one maximal vector
(if vV #0).

Proof. Because of property (3), for each « > 0, and each weight u of V,
p+ka is not a weight of V for all sufficiently large k € Z*. This makes it
clear that for some weight u, no u+« is a weight (« > 0); any nonzero vector
in ¥, is then maximal. []

For each A € H*, let 8() = {u € H*|u < A and u ~ A}. Recall (23.2) that
u ~ X means u+ 68 and A+ 38 are # -conjugate. In the following key result,
Harish-Chandra’s Theorem comes into play by limiting the possible highest
weights of composition factors of Z(A).

Proposition. Let A € H*. Then:

(a) Z(X) possesses a composition series.

(b) Each composition factor of Z(M) is of the form V(u), where u € 0(A)
and V(u) is as defined in (20.3).

(c) V(X) occurs only once as a composition factor of Z(A).

Proof. (a) If Z(}) is irreducible, then Z(\) = V(A), and there is nothing to
prove. Otherwise Z(A) has a nonzero proper submodule ¥, which lies in M,
(the given A being used for condition (2)). Since dim Z(X), = 1, A does not
occur as a weight of V. By the above lemma, V" has a maximal vector (say of
weight u 5 A), hence V contains a nonzero homomorphic image W of Z(u).
In particular, x; = x,, s0 A ~pu (by Harish-Chandra’s Theorem), and
w € 6(A). Consider now Z(X)/W, W. Each module is standard cyclic (and lies
in M,), but either has fewer weights linked to A than Z(}) had, or else has the
same weights linked to A, but some of smaller multiplicity than in Z(}).
Repetition of the above argument for Z(A)/W and W leads to further sub-
modules and homomorphic images of submodules, with decreasing number
of weights linked to A or else decreasing multiplicities for those weights.
This makes it evident that the process will end after finitely many steps,
with a composition series for Z(A).

(b) Each composition factor of Z(A) lies in 9, hence possesses a maximal
vector (by the lemma), hence must be standard cyclic (being irreducible). In
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view of (20.2), each composition factor is isomorphic to some V(x). We saw
already that p must then belong to 6(}).

(c) This is clear, since dim Z(A), = 1. []

The proposition allows us to write chy;) = chyy + Y d(p)chy ) (d(p)
Z%), where the summation is taken over we 8(}), 0 # A. With A e H* still
fixed, order the elements of 6() as (uy, - - . , #,), subject only to the condition
that u; < w;imply i < j. (In particular, A = y,.) According to the proposition,
each chy(,, may in turn be expressed as a Z-linear combination of the
chy .y With i <j (chy,, occurring with coefficient one). Therefore the
resulting system of ¢ equations has triangular matrix, relative to the chosen
order, with ones on the diagonal; in particular, its determinant is 1, so we
can invert it over Z and express each chy, , as Z-linear combination of the
chzuy for i < j, chy,,, occurring with coeflicient one. (Of course, some
coefficients may now be negative.)

Corollary. Let X € H*. Then chy,, is a Z-linear combination Y c(u)chy,,
(summation over p € 0(X)), with c(\) = 1. [

We now apply the corollary to the special case in which A is dominant
integral, ch; = chy;,. Then dim V(}) is finite, and o(ch;) = ch; forall o e #~
(Theorem 21.2). Write ch;, = Y c(u)chy,y (u € 8(2)) as above, with c(d) = 1.
By Lemma E of (24.1), ¢ x ch, = Y c(u)e, , ;. By Lemma B of (24.1), o(q * ch;)
= o(q) * o(ch,) = sn(c) q * ch; (c € #"). On the other hand, U(ZC(M)E‘”&) =
Y ()2, (u+5)- Since ¥~ just permutes the u+ 8 transitively (u being linked to
A), while ¢(d) = 1, it follows immediately that c(x) = sn(o) if o~ '(u+9) =
A+ 8. Therefore
™ q*ch, = Z s”(")%(na)-

oEW

Finally, apply Lemma C of (24.1) to this equation to obtain: ch; = q * p *
e_skchy =pxe_gx (Z sn(0) e,46) =P *( Z sn(0) &50345)-5) = z sn(o)
oW oW oW

P *&5a+5)-5

Theorem (Kostant). Let A e A*. Then the multiplicities of V(X) are given
by the formula

my(p) = Zf;ﬁsn(a)p(# +06—0(d+9)). 0
O€

This formula has the virtue of expressing multiplicities directly. However,
Freudenthal’s recursive method (§22) is often simpler to use in practice,
because summation over the Weyl group becomes very cumbersome in high
rank.

24.3. Weyl’s formulas

Lemma. ¢ = ) sn(0)e,,.
oW

Proof. This is easy to prove directly, but instead we use formula (*) of
(24.2). If X = 0, then of course ch; = &,, and the right side of (*) becomes )
sn(o)e,s. [ oW
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Theorem (Weyl). Let X e A*. Then (Y. sn(o)e,q) * chy = Y sn(0)e,;+ 5)-
oW oW

Proof. Use formula (*) in (24.2) along with the above lemma. []
Weyl’s character formula says in effect that we may calculate ch; as a
quotient of two simple alternating sums in Z[A]. In practice the carrying out
of this “division” can be quite laborious, so Freudenthal’s method (§22) is
usually quicker. However, we can derive from Weyl’s formula an extremely
useful formula for the dimension of V(A) (Ae A*), which we denote by
deg (A). It is clear that deg (A) = ). m,(w), since ¥(}) is direct sum of
)

pell(A
weight spaces. This is just the sum of coefficients in the formal sum ) m;(u)

e(u) € Z[A]. In the function notation, this becomes the sum of the leues of
chy. Let us work now in the subalgebra X,< X generated by the character-
istic functions & (A € A), so the homomorphism v:X,—F assigning to
f € X, the sum of its values is defined. Our problem is to compute v(ch,) as
a function of A. Unfortunately, applying v to an alternating sum such as
Y, sn(o)e,; gives 0, so we must proceed indirectly. Abbreviate
2. sn(0)enis) by w(A+8), for any A e A™.

The assignment &,—(\, )¢, (for fixed root a) extends to an endomor-

phism @, of X, which is in fact a derivation. The endomorphism & = H 2,

a>0
is no longer a derivation, in general, but may be thought of as a differential
operator. Weyl’s formula reads: w(8)*chy=w(A+38). Here w(d) is the
Weyl function (denoted ¢ earlier), which equals &_g* H (e,—1) (cf.

Lemma 24.1A(c)). Multiply this expression by ch, and apply 0 (using the
product rule for the derivations 9,), then v. Most of the resulting terms
vanish, since v(g, —1)=0. What survives is v(dw(8))v(chy), which by
Weyl’s formula must equal v(éw(A + 8)). This allows us to express deg(\) =
v(ch,) as a quotient.

A moment’s thought shows that v(de;) = n (8, «); similarly, v(de,5) = [ |

a>0 a>0

(08, @) = J] (8, o™ 'a). But recall that the number of positive roots sent to
a>0

negative roots by o~ ! is £(6™!) = /o) (cf. Lemma A (10.3)), so this is just

sn(o) [I (8, @), sn(o) = (—1)’), In other words, v(2w(8)) = an(a) (0e,5)
=) sn(cr)2 H (8, @) = Card (#") H (8, @). The same argument for w(A+39)

oW
leads to Card (//f ) [TA+38, ). Formmg the quotient we therefore have:
a>0

[T+3,)
Corollary. Let A e A*. Then deg (\) = *%—— . [
HO(S, )
o>
In order to compute some examples, we observe that after multiplying both
[T<A+8,
numerator and denominator b , we get deg () = m—*—*\—
yﬂo(, %) [1¢5 =

a>0
(a quotient of integers). But <A+38, a>=(A+38, «), «* the dual root. In
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turn, since AV is a base of ®" (Exercise 10.1), we can write o —Zc P,

whence <A+8,a> = Zc @< A48, a;> = Zc @(m;+1) A= Zm ). So we

need only compute the integers ¢;® (Exercxse 7.

Examples. For type A, A; = 3« = §, so the formula reads: deg (A) =
m+1, A = mA,, cf. Theorem 7.2.

Let us concentrate now on rank 2, writing A = m;A; +m,A,. For type A,
the positive roots are oy, a,, a; +a«,. Accordingly, the denominator above
equals 1-1-2, while the numerator is (m; +1) (m,+1) (m;+m,+2). For B,
and G, the calculations are similar (take «, short for B,, «; short for G,, in
conformity with §11). To summarize (Exercise 7):

1
(A 5 (m1 +1) (my+1) (m; +m,+2)
(Bz) (m1+1)(m2+1)(m1+m2+2)(2m1+m2+3)

(Gz) (m,+1) (my+1) (m; +m,+2) (my+2my+3) (my+3m,+4) Cm, +

3m2+5).
For G,, deg (A,) = 14. Since A, = 3«, +2a,, the highest root, we recognize
V(A,) as the module for the adjoint representation. Deg (A,) = 7. Here
V(A,) is €, (the trace 0 subspace of the Cayley algebra (19.3)).

24.4. Steinberg’s formula

We can combine the formulas of Kostant and Weyl to obtain an ex-
plicit formula (due to R. Steinberg) for the number of occurrences of V(})
in the tensor product ¥(1') ® V(A"). Because of Weyl’s Theorem on complete
reducibility of finite dimensional L-modules (6.3), if A, A" e A*, we can
write V(A") ® V()") as direct sum of certain ¥(}), each occurring n(A) times
(write n(A) = 0 if V(X)) does not occur at all). In particular, the formal

character of the tensor product equals Y, n(X) ch;. On the other hand, we
AeA*

proved in (22.5) that this formal character equals ch;. * ch,,. Thus:
(1) chy. * chy =Y, n(Nch,.
A
As before, let us abbreviate the expression Y, sn(o)e (s t0 w(u+9),

oW
for p e A*. If we multiply both sides of (1) by w(8) and use Weyl’s formula

(24.3) for X", A (respectively), we get:
2 chy x 0" +8) = Y n(A)w(A+8).
A
Next we write ch; = )y m;(u)e, and replace m;. (u) by its value in

Kostant’s formula (24.2). quuation (2) then becomes:
() T sno)plet 5o\ + e, » o) +8) = T na(\+3).

woeW
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Using the explicit form of w(A”+ 3), this reads:

@ Y Y Y snonp(p+8—oN +8)e, i)+

u CEW TeW
= Z Z "()‘)Sn(‘f)%(ua)'
A oeW

To compare the two sides of (4) we first change variables. On the right,
replace A by v, where o(A+8) = v+ 3§, to get
®) Y3 sn(@)n(ow+8)—d)e, ..

v oW

On the left, replace p by v, where (A" +8)+u = v+ 8, obtaining:
6) Z z Z sn(om)p(v+28—a(X' +8)— 7(X" + 8))e, 4 4.

v oW teW
Now let v be dominant. Then o(v+8)—38 cannot be dominant unless
o = 1 (Exercise 13.10). Therefore, n(o(v+38)—8) = 0 unless o = 1, which
means that the coefficient of e, ; in (5) is precisely n(v). In view of (6), we
have proved:

Theorem (Steinberg). Let X', X" € A*. Then the number of times V(}),
Ae A%, occurs in V(X') @ V (X") is given by the formula
Y, Y sn(or)p(A+28—o(X' +8)— (X" +38)). [
oW reW
This formula (like Kostant’s) is very explicit, but not at all easy to apply
when the Weyl group is large. A formula which is often more practical is
developed in Exercise 9.

Exercises

1. Give a direct proof of Weyl’s character formula (24.3) for type A,.

2. Use Weyl’s dimension formula to show that a faithful irreducible finite
dimensional L-module of smallest possible dimension has highest weight
A; for some 1 < i< /.

3. Use Kostant’s formula to check some of the multiplicities listed in
Example 1 (22.4), and compare ch; there with the expression given by
Wey!’s formula.

4. Compare Steinberg’s formula for the special case A; with the Clebsch-
Gordan formula (Exercise 22.7).

5. Using Steinberg’s formula, decompose the G,-module V(X)) ® V(},)
into its irreducible constituents. Check that the dimensions add up
correctly to the product dim ¥ (A,)-dim V(},), using Weyl’s formula.

6. Let L = sl(3, F). Abbreviate A = m;A,+m,X, by (m,, m,). Use
Steinberg’s formula to verify that V(l, 0)® V(0, 1) = V(0, 0) @
v, 1.

7. Verify the degree formulas in (24.3); derive such a formula for type
C,. How can the integers ¢, be found in general?
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8.

10.
11.

12.

13.

Representation Theory
Let Ae A, If there exists o # 1 in #” fixing A, prove that )  sn(o)e,;

o(A)=2A
= 0. [Use the fact that A lies in the closure but not the interior of some

Weyl chamber to find a reflection fixing A, and deduce that the group
fixing A has even order.]

. The purpose of this exercise is to obtain another decomposition of a

tensor product, based on explicit knowledge of the weights of one

module involved. Begin, as in (24.4), with the equation (2) ch;. * w(A" + 8)

= Y n(N)w(A+8). Replace ch;. on the left side by ) m;.(N)¢;, and combine
AeA

AeAt
to get: Y. sn(0) Y. mu(Neyi4.r+5, Using the fact that #° permutes
oeW A

weight spaces of V' (A"). Next show that the right side of (2) can be

expressed as Y sn(o) Y. n(A)ey 1+ 4 Define #(p) to be 0 if some element
oeW AeA*

o # 1 of # fixes p, and to be sn(o) if nothing but 1 fixes n and if o(x)
is dominant. Then deduce from Exercise 8 that:
chy * chy = Y, m N+ + 8)Chy; 437 4 53— o

AelT(N)
where the braces denote the unique dominant weight to which the indi-
cated weight is conjugate.
Rework Exercises 5, 6, using the approach of Exercise 9.
With notation as in Exercise 6, verify that V(1, 1) ® V (1, 2) = V(2, 3)
V3G, hHhe Vo, 9@ V(1,2)e V1,2 V(2,0 VO, 1).
Deduce from Steinberg’s formula that the only possible AeA* for which
V(A) can occur as a summand of V(A") ® V(A") are those of the form
w+2X", where ue II(A’). In case all such p+A" are dominant, deduce from
Exercise 9 that V(x+A") does occur in the tensor product, with multi-
plicity m;.(u). Using these facts, decompose V' (1,3) ® V' (4,4) for type
A, (cf. Example 1 of (22.4)).
Fix a sum 7 of positive roots, and show that for all sufficiently large n,

M5 (nd —m)=p(—m).

Notes

Weyl’s original proofs used integration on compact Lie groups; later

Freudenthal devised a more algebraic (but less intuitive) proof: see Freu-
denthal-deVries [1], Jacobson [1], Samelson [1]. The present approach is
suggested by work of Verma [1], and follows closely a recent paper by
Bernstein, Gel'fand, Gel’fand [1]. See Kostant [1] for the original (rather
complicated) proof of his formula, and Cartier [1] for simplifying remarks.
Steinberg’s formula is derived concisely in Steinberg [1]. The approach to
tensor products sketched in Exercise 9 is due to Brauer [2], cf. Klimyk [1],
while Exercise 12 is based on Kostant [1].
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Appendix

In proving the formulas of Weyl and Kostant, appeal was made to the
results of §23 on central characters. This seems to be unavoidable if one
intends to prove Proposition 24.2 for all A € H*. But in fact we only
require the case of infegral weights, for which the Casimir element alone
(rather than the full center of U(L)) provides adequate information. The
possibility of such a streamlining of the proof is made clear in the work of
V. G. Kac [1] on Macdonald’s formulas (cf. Garland, Lepowsky [1]). It
should be stressed, however, that §23 is essential for certain topics in
infinite dimensional representation theory (such as the work of Harish-
Chandra on the discrete series).

Here is a detailed outline of the modified approach to Weyl’s formula:

(1) Recall lfrom (22.1) the construction of the Casimir element c=c,

in W(L): c= D, hk,+ 2 x,z, where dual bases of L relative to the
i=1 aed
Killing form have been chosen in a special way. (Actually, any choice of

dual bases leads to the same element c.) As pointed out in (23.2), ¢ lies in
the center of 11(L) and therefore acts as a scalar on any standard cyclic
module.

(2) Let us compute the scalar by which ¢ acts on a standard cyclic
module of highest weight A e H*, generated by a maximal vector v* (cf.
Exercise 23.4). If a<0, z,.0™ =0, while if a>>0, we can rewrite x,z, =z, X,
+1,, with x,.0* =0 and hence x,z,.0"=1,.0"=(\,a)v". On the other

12

hand, it was shown at the beginning of (22.3) that >, A(A)A(k)=(A,A).
Putting these together and recalling that 28= >, a, WIC= flind that ¢ acts on
a>0
v* by the scalar (\,A\)+ >, (?\,a)=(}\,?\)+2()\,;)=(?\+8,)\+8)—(8,8).
(3) Now we can prtz;/g a version of Proposition 24.2. Let Z be a

standard cyclic module of highest weight A € A. We claim that Z has a
composition series, with composition factors of the form V(p), where
p<A satisfies

(*) (p+8,u+8)=(A+8,A+3).

Since A is discrete, while the set of p e E satisfying (*) is compact, only
finitely many weights p of Z satisfy (*). Let d=2dimZ, (sum over all
such p); then d is finite, since the weight spaces of Z are finite dimen-
sional. Proceed by induction on 4.

Suppose d=1. If Z has a proper nonzero submodule W, then W is the
sum of its weight spaces (20.2) and therefore possesses a maximal vector of
some weight p <A, p#A. According to step (2), ¢ acts on this maximal
vector by the scalar (p+8,u+8)—(8,8), while acting on Z by the scalar
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(A+8,A+38)—(8,8). Thus p satisfies (*), contrary to d= 1. In other words,
Z is irreducible, so Z = V' (\) (20.3) and there is nothing to prove.

The induction step is similar. Unless Z is irreducible, it contains a
proper submodule W which is standard cyclic of some weight p<<A
satisfying (*). Then induction can be applied to each of the standard cyclic
modules Z/ W, W to obtain composition series of the desired type, which
fit together to yield a composition series for Z.

(4) Asin (24.1), we can use formal characters to express a module as
the “sum” of its composition factors. Abbreviate chy ) by ch, and chy,,
by ch’y. Fix Ae A* and consider the (finite) set of pe A satisfying (*)
above. This set can be ordered as (u;,...,p,) in such a way that p, <,
implies i < j. Then step (3) allows us to write ch';/= 2 a;ch, (a; e Z*,aj,»

i<i
=1). If we set a;;=0 for i > j, the resulting matrix (a;;) is upper triangular
with Is on the diagonal and can therefore be inverted over Z. This implies
that each ch#j is expressible as a Z-linear combination of the ch, for i <.
In particular:

(**) chy= 2 c(p)ch;,

the sum over p << A satisfying (*), with c(A)=1.

(5) As in (24.1), derive various formulas relating the functions p, ¢,
ch;. Note that o € # fixes ch, (Theorem 21.2), while og = sn(0)q (Lemma
B).

(6) To derive Weyl’s formula (or Kostant’s), begin with formula (**)
above. It will suffice to show that the only p occurring with ¢(u)##0 are
those of the form p=0(A+38)—8 (06 € #'), with ¢(p)=sn(o). (Then the
argument concludes exactly as in (24.2), (24.3).) First multiply both sides
of (**) by ¢, then use Lemma E to obtain: gxchy =Xc(n)e,.s- Apply
o € ¥  to both sides of this equation. The left side is multiplied by sn (o),
while the right side becomes Zc(p)e,,+5) It follows that the set of
weights u+ 8 for which ¢(p)#0 is ¥ -stable, and the coefficients just
differ by +1 in a given orbit. If we rewrite the equation in terms of sums
over ¥ -orbits, and use the fact that c(A)=1, we get:

gxchy= 2 sn(0)e,n+5,+ S
ocew
It remains to see that the sum S is empty. Otherwise, since each #-orbit
in A meets A* (Lemma 13.2A), there must exist p <A, pA, such that
p+8 e AT and p satisfies (*). But the proof of Lemma 13.4C applies in
this situation, and forces p=A, which is absurd.



Chapter VII

Chevalley Algebras and Groups

The notation is that of earlier chapters. L is a semisimple Lie algebra
over the algebraically closed field F of characteristic 0, H a CSA, ® the root
system.

In this chapter we shall see how to construct L and its irreducible repre-
sentations “over Z”, a possibility which has been more or less apparent all
along in case L is classical. The results to be obtained actually go much
further, enabling us to construct ‘“Chevalley groups” and representations of
these groups over arbitrary fields. This is a large subject, to which we can
only introduce the reader.

25. Chevalley basis of L
25.1. Pairs of roots

It will be proved in (25.2) that L has a basis for which the structure
constants are integral. But first we must establish some facts about pairs of
roots «, B for which a+f is also a root, with an eye toward the equation
[x.Xg] = cupxy4p. The following proposition depends only on the root
system @ (not on L).

Proposition. Let o, 8 be linearly independent roots,B—ra, ..., B, ..., B+qo
the «-string through B. Then:

(@ <B,a) =r—g.

(b) At most two root lengths occur in this string.

(©) If a+Be®, then r+1 = q—(%‘%;iﬁz

Proof. (a) This was proved in (9.4) (as well as in Proposition 8.4(e), via
the representation theory of sl(2, F)).

(b) ¢’ = (Za+2ZB) N D is a root system of rank 2 (in the subspace of E
spanned by «, B): cf. Exercise 9.7. If reducible, it must be of type A; x A,,
ie., ®'" = {+«, +B}, and there is nothing to prove. If irreducible, @' = A,,
B,, or G,, and the result follows (alternatively, use Lemma 10.4C).

(c) This can be done by inspecting the root systems of rank 2 (Exercise 1).
However, the following geometric argument works in general. First, we
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deduce from (a):

QB atf) 28w | gatB oth)
D=6 T w6
_ 2(65 a) + 1 — CI(% OL) _ 2‘](“, B)
(@, 2) 6.8 (P
_ _ 4
— (B >+1)(1 (B,B)>°

Call the respective factors of this last product 4, B. We have to show that
one or the other is 0. The situation here is not symmetric in «, B, so two cases
must be distinguished:

Casei:(x, o) > (B, B). Then |(B, a)| < |{a, B)|. Since «, 8 are independent,
we know (9.4) that <B, «> {(«, B> =0, 1, 2, or 3. The inequality forces
B, «> = —1, 0, or 1. In the first case, 4 = 0 and we’re done. Otherwise
B, @) = 0, so (B+a, B+a) is strictly larger than both (8, B) and («, «). Since
a+pBe®, (b) implies that («, «) = (B, B). Similarly, (8+2«, B+2x) > (B+«,
B+a), so (b) implies that B+2a ¢ @, i.e., that ¢ = 1, forcing B = 0.

Case ii: (o, @) < (8, B). Then («+p, a+pB) = («, o) or (B, p) (by (b)),
forcing in either case («, 8) < 0 (hence <{«, 8> < 0). In turn, (B—«a, B—a) >
B, B) > (¢, @), so B—a¢d (by (b) again), i.e.,, r = 0. As before, <{a, B>
{B, &> =0, 1, 2, or 3, but here we have [{a, B>| < |{B, «)|, forcing <a, B>
= —1, 0, or 1. But we know that {«, 8> < 0, so {(«, B> = —1. By (a),

_ _ B _ (BB
q = —<Bs OL> -

= , whence B=0. [
(o, B (2, 2)

25.2. Existence of a Chevalley basis

Lemma. Let «, 8 be independent roots. Choose x,€L,, x_,<L_, for
which [x,x_,] = h,, and let x4 € L be arbitrary. Then if f—ra, ..., B+qu is
the a-string through B, we have: [x_[x,x;]] = q(r+1)x;. (For the definition
of h,, see Proposition 8.3.)

Proof. If «+ ¢ @, then ¢ = 0 and [x,x;] = 0, so both sides of the above
equation are 0. In general, we can exploit the adjoint representation of
S, (=sl(2, F)) on L, as we did for an arbitrary representation in (22.2).
Namely, the S,-submodule of L generated by x; has dimension r+4g+1
(the number of roots in the «-string through B), highest weight r+g¢. In the
notation of Lemma 7.2, x; is a (nonzero) multiple of v,, and the successive
application of ad x,, ad x_, multiplies v, (hence also x;) by the scalar
qg(r+1). 0

Propeosition. /¢ is possible to choose root vectors x, € L, (« € D) satisfying:

(@) [xx_o] = Ay

B) If «, B, a+Bed, [x,x5] = CopXyip, then c,g = —c_, _5 For any
such choice of root vectors, the scalars c,4(c, B, o+ B € ©) automatically satisfy:
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(ax+pB, 2+p)
8, B)

(0) & = q(r+1) , where B—ra, ...,B+qo is the «-string

through f.

Proof. Recall (Proposition 14.3) that L possesses an automorphism ¢ of
order 2 sending L, to L_, (« € ®) and acting on H as multiplication by —1.
For arbitrary nonzero x,¢ L,, x_, = —oa(x,) € L_, is nonzero, and «(x,,
x_,) # 0 (x the Killing form). Replacing x, by cx, (¢ € F) multiplies this
value by ¢?. Since F is algebraically closed, it is therefore possible to modify
the choice so that «(x,, x_,) takes any prescribed nonzero value. We specify

K(Xy X_p) = @) According to Proposition 8.3(c), this forces [x,x_,] =
o, o
2t
ha( = ( “)). For each pair of roots {«, —a} we fix such a choice of
a, o

{x, X_,}, so (a) is satisfied.

Now let «, B, a+Be®, so [x,x5] = cyupx,p for some c,5 € F. Applying
o to this equation, we get [—x_,, —x_z] = —c,5x_,_4. On the other hand,
[X_oX_p]l = c_y —pX_,—p, 50 (b) follows.

Having chosen root vectors {x,, «c®} satisfying (a) (b), consider the
situation: «, B8, «+f € @ (in particular, « and g, hence 7, and #; (cf. (8.2)), are
linearly independent). Since ¢, ,, = ,+1;, it follows from (a) that [c,5X, 445

2,

CapX—uopl = Copharp = @ +B +/3) (t,+1g). On the other hand, (b) implies

that the left side also equals —[[x,xz] [x_,x_4l] = —[x.[xp[x_x_plll+
[eplxalx - ox — 11 = [xa[xp[x - px _ JI + [xp[x[x — ox _4]]]. Let the B-string through
o be a—r'B,...,a+q'B. Then the above lemma may be applied to each
term (after replacing «, B by their negatives, which does not affect r, q, r’, ¢')
2q9'(r' +1) ‘[ + 2q(r+1) "
(¢, @) ()

Comparing these coefficients with those above, and using the linear inde-
pendence of #, and #;, we get (©. 0

We are now in a position to construct a Chevalley basis of L. This is by
definition any basis {x,, « € ®; h;, 1 < i < £} for which the x, satisfy (a) (b)
of the preceding proposition, while #; = h,, for some base A = {o, ..., «}
of ®.

to obtain: ¢'(r' +1) [x,x_,] +q(r+1) [xx_;] =

Theorem (Chevalley). Let {x,, a € ®; h;, 1 < i < ¢} be a Chevalley basis
of L. Then the resulting structure constants lie in Z. More precisely:

@ [hh] =0,1<ij< ¢

®) [hix,] = <o, 0> Xy 1 <P < 4, e,

(¢) [x,x_.] = h, is a Z-linear combination of hy, . .., h,.

(d) If «, B are independent roots, B—ra, . . ., B+qa the a-string through B,
then [x,xg] = 0 if g = 0, while [x,x5] = +(r+1)x,.5 if a+pe®.

Proof. (a) is clear, while (b) follows from the fact that a(h;) = <e, o;>.
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2
(o, @)
base AY = {«f, ..., o)} (Exercise 10.1). Under the Killing form identifica-
tion of H with H*, ¢, corresponds to « and 4, to «. Since each «" is a Z-
linear combination of AY, each 4, is a Z-linear combination of 4,, ..., h,.
Finally, (d) follows from part (c) of the preceding proposition, combined
with part (c) of Proposition 25.1. [

It may seem strange to the reader that we have required c,; = —c_, _
rather than c¢,; = c_, _, in our definition of Chevalley basis. However, this
asymmetry is inevitable: Given condition (a) of the proposition, it can be
shown by skillful use of the Jacobi identity that c,;c_, —; = —(r+1)* which
implies that condition (d) of the theorem could not hold unless we had
condition (b) of the proposition. (This was Chevalley’s original line of argu-
ment.) The reader should verify (Exercise 2) that the bases given in (1.2) for
the classical algebras can be modified to yield Chevalley bases. Chevalley’s
theorem has the virtue of providing a uniform existence proof for Chevalley
bases, as well as specifying how the structure constants arise from the root
system.

As to (c), recall that the dual roots «' = form a root system, with

25.3. Uniqueness questions

How unique is a Chevalley basis? Once A is fixed, the h; are completely
determined. On the other hand, it is possible to vary somewhat the choice of
the x,. Say x, is replaced by n(«)x, (¢ €®). Then [yp(«)x,, n(—)x_,] =
y(e)n(—ax)h,, so we must have (*¥) y(e)y(—«) = 1 in order to satisfy con-
dition (a) of Proposition 25.2. If «, B, a+Be®, then [y(x)x,, 7(B)x;] =

/ , Capn(e
o) [rcts] = CateBIap = cnla+ By where iy = T

To satisfy (b) of Proposition 25.2, a similar calculation, using (*), shows that
we must also have c,; = Capn(*+F)
n(m(B)

+ n(x+p). Conversely, it is clear that any function »: ® — F satisfying (*)
and (**) can be used to modify the choice of the x,.

The question of signs is more delicate. We have [x,x;] = +(r+1)x,.,
(o, B, 2+ B € D), but the argument used to establish this equation left unsettled
the choice of plus or minus. This is not accidental, as the reader can see by

, or in other words, (**) 7(x)n(B) =

0 0 -1 0 0 1
choosing (0 0 O) in place of (0 0 0) as part of a Chevalley basis
0 0 O 0 0 O

for s1(3, F): there is no reason to prefer one choice over the other. There
does exist an algorithm for making a consistent choice of signs, based on
knowledge of ® alone, and this leads to yet another proof of the isomorphism
theorem (14.2, 18.4) (see Notes for this section). Of course, such a proof is
circular unless the existence of the automorphism o is established inde-
pendently!

We remark that one can also prove the existence of L (18.4) by construct-
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ing the multiplication table explicitly and then verifying the Jacobi identity.
Such a proof has been written down by Tits (see Notes below); though
“elementary” in character, it is quite lengthy compared to the proof based
on Serre’s Theorem (18.4).

25.4. Reduction modulo a prime

The Z-span L(Z) of a Chevalley basis {x,, 4;} is a lattice in L, independent
of the choice of A. It is even a Lie algebra over Z (in the obvious sense) under
the bracket operation inherited from L (closure being guaranteed by Theorem
25.2). If F, = Z/pZ is the prime field of characteristic p, then the tensor
product L(F,) = I(Z) ®, F, is defined: L(F,) is a vector space over F,
with basis {x, ® 1, #; ® 1}. Moreover, the bracket operation in L(Z)
induces a natural Lie algebra structure on L(F,). The multiplication table is
essentially the same as the one given in Theorem 25.2, with integers reduced
mod p.

If K is any field extension of F, then L(K) = L(F,) ®r, K = L(Z)®, K
inherits both basis and Lie algebra structure from L(F,). In this way we
associate with the pair (L, K) a Lie algebra over K whose structure resembles
that of L. We call L(K) a Chevalley algebra. Even though L(Z) depends on
how the root vectors x, are chosen, it is easily seen (Exercise 5) to be defined
up to isomorphism (over Z) by L alone; similarly, the algebra L(K) depends
(up to isomorphism) only on the pair (L, K).

To illustrate these remarks, we consider L = sl(/+1, F). It is clear that
L(K) has precisely the same multiplication table as sI(Z+1, K), relative to
the standard basis (1.2). So L(K) ~ sl(/+1, K). The only real change that
takes place in passing from F to K is that L(K) may fail to be simple: here it
has one dimensional center consisting of scalar matrices whenever char K
divides 741 (cf. Exercise 2.3 and Exercise 8 below).

25.5. Construction of Chevalley groups (adjoint type)

Proposition. Let « e ®, me Z*. Then (ad x,)"|m! leaves L(Z) invariant.

Proof. 1t suffices to show that each element of the Chevalley basis is sent
back into L(Z). We have (ad x,) (h) = [x,h] = —<«, «;)> x, € L(Z), while
(ad x)"/m! (h;) =0 for all m > 2. Similarly, (ad x,) (x-,) = h, e L(Z).

d m
(ad x)*/2-(x_) = } [x,h] = —x, € L(Z) and (a—mf'l (x_,) = 0 for all
(ad x )™
m!
basis elements xg, 8 # to. If B—ra, ..., B+qx is the a-string through B,
then the integers which play the role of r for the roots B+ o, 8+ 2a, ... ,B+ g«
are (respectively) r+1, r+2, ..., r+4q. Therefore,

(ad x)™ (o) = & r+D)@E+2)...(r+m)
m! m!

m > 3. Of course, (x,) = 0 for m > 1. It remains to consider the

Xp+mo (01 0, if B+ma ¢ ©).
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The coefficient just involves the binomial coefficient (r+m) , so the right
side is an integral multiple of x;, .. [ n

The proposition has the following significance. L is a module for the
adjoint representation of L, and L(Z) is a lattice in L stable under the endo-
morphisms (ad x,)"/m!, hence also under exp ad x, = 1+ad x,+(ad x,)%/2!
+...(the sum being finite, because ad x, is nilpotent). Relative to the Chevalley
basis, Int L = G can be thought of as a group of matrices. The subgroup
generated by all exp ad cx, (« € @, ¢ € Z) leaves L(Z) invariant, hence consists
of matrices with integral coefficients (and determinant 1). In particular, if
p is a prime, F, the prime field of p elements, then reducing all matrix entries
mod p yields a matrix group over F, which acts on the Lie algebra L(F,) as a
group of automorphisms, denoted G (F,).

More generally, let T be an indeterminate. The matrix group generated
by all exp ad Tx, (« € ®) consists of matrices with coefficients in Z[T] (and
determinant 1), so that specializing T to elements of an arbitrary extension
field K of F, yields a matrix group G(K) over K. Such a group is called a
Chevalley group (of adjoint type). When K is finite, the group is finite and
(apart from a few exceptions) simple; by proving this, Chevalley was able to
exhibit several families of previously unknown finite simple groups.

Exercises

1. Prove Proposition 25.1(c) by inspecting root systems of rank 2. [Note
that one of «, 8 may be assumed simple.]

2. How can the bases for the classical algebras exhibited in (1.2) be
modified so as to obtain Chevalley bases? [Cf. Exercise 14.7.]

3. Use the proof of Proposition 25.2 to give a new proof of Exercise 9.10.

4. If only one root length occurs in each component of ® (i.e., ® has
irreducible components of types A, D, E), prove that all ¢,; = +1 in
Theorem 25.2 (when o, B, «a+f8 € D).

5. Prove that different choices of Chevalley basis for L lead to isomorphic
Lie algebras L(Z) over Z. (“Isomorphism over Z” is defined just as for a
field.)

6. For the algebra of type B,, let the positive roots be denoted «, B, «+p,
2B+ a«. Check that the following equations are those resulting from a
Chevalley basis (in particular, the signs + are consistent):

(g, x4 = 2x; [xp, x.] = Xatp
[, x4] = —2x, [xp, X4+ 4] = 2X2p+4a
[hg, Xavpl =0 [xp, X o] = —2x_,
[hﬂ’ x2ﬂ+a] = 2Xp514 [xp, X_2p-ql = —X_4-p
[he x5 = —x, (X X—qupl = x_y

[has x,] = 2x, [Xaips X-25-a] = X4

[ha’ xa+ﬂ] = Xu+p [hw x2ﬂ+a] =
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7. Let F = C. Fix a Chevalley basis of L, and let L’ be the R-subspace of
L spanned by the elements \/—1 h; (1 <i < {), x,—x_,, and \/—1
(xy+x_,) (¢ €e®*). Prove that these elements form a basis of L over C
(so L @ L’ ®g C) and that L’ is closed under the bracket (so L’ is a
Lie algebra over R). Show that the Killing form «’ of L’ is just the restric-
tion to L’ of «, and that «' is negative definite. (L’ is a ‘“‘compact real
form” of L, associated with a compact Lie group).

8. Let L = sl(/+1, F), and let K be any field of characteristic p. If p+ £+1,
then L(K) is simple. If p = 2, /= 1, then L(K) is solvable. If £ > 1,
pl{+1, then Rad L(K) = Z(L(K)) consists of the scalar matrices.

9. Prove that for L of type A,, the resulting Chevalley group G(K) of
adjoint type is isomorphic to PSL(/+1, K) = SL(/+1, K) modulo
scalars (the scalars being the /+ 1% roots of unity in K).

10. Let L be of type G,, K a field of characteristic 3. Prove that L(K) has a
7-dimensional ideal M (cf. the short roots). Describe the representation of
L(K) on L(K)/M.

11. The Chevalley group G(K) acts on L(K) as a group of Lie algebra
automorphisms.

12. Is the basis of G, exhibited in (19.3) a Chevalley basis ?

Notes

The ideas of this section all stem from Chevalley’s seminal paper [3].
Our treatment follows the lecture notes of Steinberg [2], which are the best
source of information about all aspects of Chevalley groups. Carter [1], [2],
Curtis [1] deal with finite Chevalley groups. An algorithm for choosing
signs for the Chevalley basis is described by Samelson [1], p. 54. For an
approach to the existence theorem based on a detailed (but elementary)
study of signs, see Tits [1].

26. Kostant’s Theorem

L, H, ®, A as before. Fix also a Chevalley basis {x,, «e®;h, 1 < i < {}
of L.

In order to construct matrix groups associated with arbitrary representa-
tions ¢ of L (not just ad), we have to work inside U(L). The idea is to con-
struct a lattice, analogous to L(Z), in an arbitrary (finite dimensional) L-
module which will be invariant under all endomorphisms é(x,)™/m! This
construction will utilize a “Z-form” of U(L), which turns out to be just the
subring with 1 of U(L) generated by all x7'/m! (x € ®).
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26.1. A combinatorial lemma.

—-D...(n—k+1 .
Recall that the binomial coefficient (Z) = n(n=1) ( +1) fnis

k!
replaced here by an element x of any commutative, associative F-algebra
(with 1), the resulting expression still makes sense and can be denoted by

(i) , ke Z*. The familiar identity for binomial coefficients, (*) ("Z ‘) -

(Z) = (kﬁl) , carries over as well. As usual, we interpret (Z) to be 0

whenever £ is negative, while (8) = 1.
Lemma. Let T, ..., T, be indeterminates, and let f = f(T,, ..., T,) be
a polynomial over F such that f(n,,...,n,) €Z whenever n,...,n,€Z.
Then f is a Z-linear combination of the polynomials (;‘) (ZZ) R (;‘) ,
1 2 2
where by, ...,b, € L™ and b; does not exceed the degree of f viewed as a
polynomial in T;.

Proof. First notice that the conclusion is reasonable, because

T\ TATi=1)...(Ti—b;+1)
by )~ b,!

i

does take integral values when T is replaced by an integer. Notice too that
the indicated polynomials form an F-basis for F[T,, ..., T,].
The proof is by induction on # and on the degree of fin T,. If fis a

constant polynomial, it must be an integral multiple of 1 = (T’) , so there

0
is nothing to prove. In general, write f = Y f(Ty, ..., T,_,) (i’) , where r
k=0
is the degree of fin T, and fi(Ty, ..., T,_)eF[Ty, ..., T,_,]. Formally

substitute T,+1 for T, on both sides of this equation, and subtract. The

identity (*) above shows that the right side equals ) fi(Ty, ..., T,_;)
K=0

(ki{l) , while the left side is a polynomial satisfying the original hypothesis
on f. Repeat this process a total of r times, until all binomial coefficients on
the right become 0, except (ri{r) = 1, this being the coefficient of (T, . . .,
T,_,). Now f, satisfies the hypothesis on f (it takes integral values on Z’~ "),
but it has one fewer variable than f. By induction, f, can be expressed in the
desired fashion. Moreover, f—f(Ty, ..., T,_,) (?) satisfies the original

hypothesis on f, but is of degree <r in T,, whence induction again applies to
complete the proof. [J
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26.2. Special case: sl(2, F)

In this subsection we consider the special case L = s1(2, F), with standard
(Chevalley) basis x, y, h. The following lemma and its corollary amount to a
proof of Kostant’s Theorem in this case; this will be used below to obtain
the general case.

Lemma. If a, ce Z™, then in U(L) we have:

xcya _min(a,l.‘) y"_k (h—a—c+2k> xc—k

clal & (a—k)! k (c—k)!

Proof. If a=0 (resp. ¢=0), the right side is x/c! (resp. y¢/a!). If
a=c=1, the equation becomes xy =yx + h (which is true). In general, we
proceed by induction on a and c. First let ¢=1; induction on «a yields:

a a-—1 a—1 a—2
oy T xy
— = + =— (h—a+2
ol " @a-Dla @1a @2t )
3 yax ya—lh N a lh 2ya—_1' ya_l_7
al a! a(a N a@-2)!  a@a-3)!
yax a—lh ya—l yx ya 1

4 ) a2 al T o et

Now use induction on ¢, combined with identity (*)in (26.1) and the fact
that xf(h)=f(h—2)x for any polynomial f(T) (check this for the poly-
nomials 77, using induction on m; cf. Lemma 26.3D below). [

Corollary. For beZ*, (Z) is in the subring of U(L) generated by all

c

* and - (a ceZ™).
!
Proof. This is clear if b = 0, so we may proceed by induction on b. In the
) ) h b—1 b—k
lemma, choose @ = ¢ = b, so the right side becomes <b> +kz’o (lyyjl&
—2b+2k\ x7% - .
<h k+ >(_b’€ o (and this lies in the indicated subring of U(L)). Let

k < b. The polynomial (T— 2llz+2k) (T an indeterminate) clearly takes in-

tegral values at integers, so Lemma 26.1 allows us to write it as Z-linear

combination of polynomials (f) , where j < k (<b). In turn, induction on

b shows that each (ﬁ) is in the indicated subring of U(L), so finally (z) 1s. [
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26.3. Lemmas on commutation

We return now to the general case. Since for each « € @, the standard basis
for the three dimensional simple subalgebra S, may be taken to be part
of the chosen Chevalley basis for L, the results of (26.2) can be applied freely
to situations involving only + «. The main problem now is to deal with pairs
of linearly independent roots.

Lemma A. Let V, W be L-modules, with respective subgroups A, B. If

s
X, )
A, B are invariant under all endomorphisms t—:" (xe®, teZ"), then so is

AR® BV W.

Proof. Recall that x,.(v ® w) = x,.v ® w+v ® x,.w. Using the bi-
nomial expansion, we see that

x; t Xk )(t_k
E(v@w)-/(Z( ®( k)‘ w).

If ve A, we B, each term on the right is therefore in 4 @ B. []

Corollary. Let L(Z) (as in (25.4)) be the Z-span of the Chevalley basis

+(a x,)'

chosen for L. Then for ac®, teZ *f*{ﬂ* leaves L(Z) ® L(Z) ® ... ®

L(Z) invariant.

Proof. Use Proposition 25.5 and the lemma. []

A subset ¥ of @ is called closed if «, B e V', a+B € ® imply that «+8 € V..
Examples: ®; ®* ; the set of all ix+jBe® (i, j = 0; «, B linearly independent
roots).

Lemma B. Let Y be a closed set of roots, with¥' N =¥ = o. Let X be the
subring of W(L) (with 1) generated by all X'/t! (x € ¥, t € Z™). Relative to any
/az

fixed ordering of ¥, the set of products || ? (written in the given order)
ael

forms a basis for the Z-module X.

Proof. 1t is clear that the F-span of the L, (x € V') is a subalgebra X of L;
the PBW theorem, applied to U (X), shows that the indicated products do
form a basis for X over F. So it will suffice to show that coefficients all lie in

’ar

Z. Let us call ) ¢, the degree of [ =% . If x € X is nonscalar, then x =
ael ael” a°
’AZ

X,
c[1 ;a' + (terms of degree < Yt,), where 0 # ceF and the remaining

terms of degree 1 = ) 1, involve sequences distinct from (... 7, ...). Now X
acts (via the adjoint representation) onL ® ... ® L(tcopies). In particular,
look at x'(x.,®...® x_a) Qx_;®. ® X_p) ®...), where ¥ =

S ——
ta ’ﬁ
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(«, B, ...). What is the component of this element in H ® ... ® H (relative

To

to the standard PBW basis)? The first term in x, [ | j—“' , yields ¢((h,®. . .®h,)

o [ ~——
ta
U

® (73®...®hg) ® ...), by inspection. However, all other terms IT z—“—' in x,

~————— ar

t

applied toﬂthe above element, yield no nonzero componentin H® ... ® H:
either there are too few factors (3 u, < Yt,), or else Y u, = Y't,, but the
factors are “‘distributed” wrong.

Now the corollary of Lemma A says that x preserves L(Z) ® ... ® L(Z)
(¢ copies). Moreover, L(Z) is independent of the choice of A, so we may
assume that « (the first element in \¥') is simple. The hy (8 simple) form a basis
for the free Z-module H(Z) = L{Z) N H, so their various tensor products
form a basis for the free Z-module H(Z) ® ... ® H(Z). On the other hand,
we have just shown that ¢((h,® ... ® /) @ ® ... @ hy) ® ...) e H(Z)

1

® ... ® H(Z). This makes it clear that ¢ € Z. Now the term ¢ 1—[ i“—' may be

ta

subtracted from x and the argument repeated for the element x—c¢ 1_[ a € X.
t,!

Induction on the number of terms completes the proof of the lemma. []
. xi (h;—j
Let us, for convenience, call any product of elements tT‘" , ( ! Y J) (,keZ,

teZ"), in U(L) a monomial, of height equal to the sum of the various t’s
occurring.
X xk
Lemma C. Let «, Be®, k,me Z*. Then ﬁ Iﬁ is a Z-linear combination of

d

ol m along with other monomials of height <k+m.

Proof. If « = B, there is nothing to prove. If « = —p, this follows from
Lemma 26.2. Otherwise, «, 8 are independent and we can apply Lemma B
above to the set of roots of the form ix+jB (i, j > 0), to write the given

. . o xg' . .
monomial as Z-linear combination of =% =2 and other monomials. It remains

k! m!
to be seen that these other monomials have height <k+m. But the PBW
Xg Xk xy xf3

Theorem (17.3) already assures us that — + (F-linear combina-

vkv k' m

tion of PBW basis elements of degree <k +m). Since we are using a PBW
basis (or scalar multiples thereof), the proof is complete. []

Lemma D. Let o, Be®, f(T) e F[T] (T an indeterminate). Then for all

Proof. 1t suffices (by linearity) to prove this when f is of the form 7,
then the assertion becomes: (*) xa"hl;"=(hﬁ—ka(hﬁ))'"x:. If Kk or m=0,
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this is clear. If k=m=1, we have x hy=hgx, — a(hg)x,=(hs—a(hg))x,,
as required. Proceed by induction on k£ and m. For fixed k, (*) for all
exponents <m readily implies (*) for m. So (*) is true for k=1, m
arbitrary. In turn, (*) for exponents < k and arbitrary m (or f) implies (*)
for k and arbitrary m. [

26.4. Proof of Kostant’s Theorem

Fix some ordering («;, ..., «,) of ®*. Denote m-tuples or /-tuples of
nonnegative integers by 4 = (a,,...,a,), B=(by,...,b), C=(¢y,...,
¢,,). Then define elements of U(L) as follows:

xa—lal xa—"&m
Ja= a! " a,
) (o)
hg = R
? <b1 b,
X Xom
ec=—...—=
¢! Cm!

Notice that the various 4 form a basis over F for U(H): this was essentially
remarked in (26.1), in connection with polynomials. Combined with the PBW
Theorem, this shows that the various elements f, 4z e form an F-basis of

).

Theorem (Kostant). Let (L), be the subring of U(L) (with 1) generated by
all x'jt! (xe®, te Z™). Let B be the lattice in W(L) with Z-basis consisting
of all f.hgec. Then B = U(L).

Proof. This is just a matter of fitting the pieces together. First of all,

each (Z') e U(L),, thanks to the Corollary of Lemma 26.2. Therefore

B < U(L)g.

The reverse inclusion is harder to prove. It will suffice to show that each
“monomial” (as defined in (26.3)) lies in B, since these span the Z-module
U(L)z. For this we use induction on “height”. Monomials of height 0 involve

k
general, Lemmas C and D of (26.3) (along with the induction hypothesis)
permit us to write a monomial as Z-linear combination of other monomials

for which factors involving x_,'s, 4's, and x,’s come in the prescribed order.
. k Tm m+k k+m

The identity Tl = ( - (k+’;)—! further insures that each x,, will

appear in at most one term of each resulting monomial. Now Lemma 26.1

and Lemma D of (26.3) allow us to complete the proof. []

only factors of the form (h"_j) , and lie in B thanks to Lemma 26.1. In
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Exercises

1. Let L = sl(2, F). Let (vy, v4, . - . , ) be the basis constructed in (7.2) for
the irreducible L-module V' (m) of highest weight m. Prove that the Z-span
of this basis is invariant under U(L),. Let (wy, wy, . .., w,,) be the basis
of V(m) used in (22.2). Show that the Z-span of the w; is not invariant
under U(L),.

2. Let A\e A" < H* be a dominant integral linear function, and recall the
module Z(}) of (20.3), with irreducible quotient V' (A) = Z(X)/Y()). Show
that the multiplicity of a weight u of V() can be effectively computed as
follows, thanks to Kostant’s Theorem: If »* is a maximal vector of Z()),
then the various f,.v* for which Y a;a; = A—u form an F-basis of the
weight space for p in Z(3). (Cf. Lemma D of (24.1).) In turn if Y a;«; =
Yci;, thenec f4.0™ is an integral multiple n 0. This yields a d x d integral
matrix (nc,) (d = multiplicity of u in Z(})), whose rank = m,;(u). (Cf.
Exercise 20.9). Moreover, this integral matrix is computable once the
Chevalley basis structure constants are known. Carry out a calculation of
this kind for type A,, taking A—p small.

Notes

Theorem 26.4 appears in Kostant [2]; here we reproduce the proof in
Steinberg [2]. For related material, from a ‘“schematic” point of view, cf.
Chevalley [4], Borel [2]. Exercise 2 is based on Burgoyne [1].

27. Admissible lattices

The notation is that of §26. Using Kostant’s Theorem, we shall construct
an ‘“‘admissible” lattice in an arbitrary finite dimensional L-module and
describe its stabilizer in L. Reduction modulo a prime then yields linear
groups and linear Lie algebras over an arbitrary field of prime characteristic,
generalizing the construction of Chevalley groups and Chevalley algebras
given in §25.

27.1. Existence of admissible lattices

It follows from Kostant’s Theorem (or the lemmas preceding it) that if
N* =]]L, N~ =]]L, then each of W(N ™), U(H), U(N") has a “Z-

a>0 a<0
form” with Z-basis consisting of all £, s, e (respectively). We call these

subrings Uz, UG, U7, so Uy (=U(L)z) equals Uz UZU ;.
One further preliminary: We have defined a /attice M in a finite dimen-
sional vector space V over F to be the Z-span of a basis of V (over F). Since
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char F = 0, a finitely generated Z-submodule of V' is automatically a free
Z-module of finite rank. Therefore, a lattice in ¥ may be characterized as a
finitely generated subgroup of ¥ which spans V over F and has Z-rank < dim;
V.

Lemma. Let de Z°, S < Z! a finite set not containing d. Then there exists
a polynomial {(T,, . . ., T,) over F such that f(Z°) < Z, f(d) = 1, and f(S) =
0.

Proof. Say d=(dy,...,d,). If keZ*, set f(T,,...,T,) =]]

i=1
(T"_]‘:””k) (_Ti;d"Jrk) , 50 £(Z%) = Z (cf. Lemma 26.1), fi(d) = 1. In
the “box” in Z‘ centered at d, with edge 2k, f; evidently takes the value 0
except at d. So it suffices to choose k large enough for this “box” to capture
the finite set S, and take f = f;. 1[I

Theorem. Let V be a finite dimensional L-module. Then: (a) Any subgroup
of V invariant under Uy is the direct sum of its intersections with the weight
spaces of V.

(b) V contains a lattice which is invariant under Us.

Proof. (a) Let M be a subgroup of ¥V stable under U . For each weight
wof V, set d(w) = (u(hy), . .., w(h,) € Z*. Fix an arbitrary weight A of V.
The preceding lemma then yields a polynomial f over F in £ variables, such
that f(Z°) < Z, f(d(N)) = 1, f(d()) = O for w #Ain[1 (V). Setu = f(h,, ...,
h,). Thanks to Lemma 26.1, u € U%. Evidently u acts on ¥ as projection onto
V,. In particular, if v € M, its V,;-component w.v also lies in M.

(b) In view of Weyl’s Theorem on complete reducibility, we may assume
that ¥V = V(\) A e A*), i.e., that V is irreducible. Let v* € V be a maximal
vector (of weight A), and set M = U .v™. Since all elements except 1 in the
Z-basis {ec} of U; kill v*, we have U; .wv* = Zv*. Also, Ug.0" = Zo™,

i

b

i

because ( ) acts on vt as scalar multiplication by the integer

Ath) Ah)—1) . .. Ah) =bi+ 1)
b;! ‘

In other words, Uz.v* = U7 U7 0" = U  .(Zv*) = M, so M is invariant
under U . The argument also shows that M N V, = Zv*. We know that all
but finitely many of the f, kill v*, so M is finitely generated. Moreover,
since U; contains an F-basis of (N ~), while W(N ).t = V, M spans V
over F.

It remains to be seen that the Z-rank of M does not exceed dim; V.
Suppose the contrary, and let r be the smallest number of vectors in M which

are free over Z but linearly dependent over F. Say ) a; = 0 (a;€F, 0 # v; €
i=1

M). For some u € U, u.v; must have nonzero V,-component: otherwise v,

would generate a nonzero proper U(L)-submodule of the irreducible module

V. On the other hand, the V,-component of each u.v; (1 < i < r) lies in M
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(by part (a)), hence is an integral multiple of v*, say mp* (because M N V),
= Zv"). So Yawp; = 0 implies Y a,(u.v;) = 0, and in turn Y am; = 0 (but

r

m, # 0). Therefore, 0 = ml( Yy aivi) - ( > a,-mi)v1 =Y a(mv;—mp,). The
i1 =1 i

vectors mv;—m;v, (2 < i < r) lie in M and are evidently free over Z but
linearly dependent over F. This contradicts the minimality of », and proves that
M is a lattice in V, stable under U,. 0

A lattice M in a finite dimensional L-module V which is invariant under
U, is called admissible. Part (b) of the theorem asserts the existence of such
a lattice; actually, the proof shows how to construct one (the smallest
possible one containing a given maximal vector, if V' is irreducible). Part (a)
implies that M = [[ (M N V,). Of course, when Vis L itself (for the repre-

uell(y)
sentation ad), the Z-span of a Chevalley basis has already been seen to be

an admissible lattice (25.5).
27.2. Stabilizer of an admissible lattice

Let V be a finite dimensional L-module. To avoid trivialities we assume
that V is faithful (in other words, we discard those simple ideals of L which
act trivially on V). Then it is easy to see that the Z-span of II(V), call it A(V),
lies between A and the root lattice A, (Exercise 21.5).

Using Theorem 27.1, choose an admissible lattice M in V, and let L,
be its stabilizer in L, H, = H N L,,. (It will be shown below that L,, depends
only on V, not on the choice of M, so the notation is unambiguous).
Obviously L(Z) < L,, and L, is closed under the bracket. To say that
h € H leaves M invariant is just to say that A(h) € Z for all A e II(V) (or A(V)),
in view of part (a) of Theorem 27.1. This shows that the lattice inclusions
A D A(V) o A, induce reverse inclusions H(Z) < H, < H,, where H, =
{he HMh)eZ for all Ae A,} and H(Z) = HN L(Z) (=Z-span of all h,,
o € ®). In particular, H, is a lattice in H. Our aim is to show that L, is an
admissible lattice in L. The following general lemma is a first step. (It could
be formulated as a fact about associative algebras, but we need only a
special case of it.)

Lemma. If u e (L), x € L, then

(ad x)n n—i xi

() = 5 (=1

in W(L).

Proof. For n = 1, this reads ad x (#) = xu—ux, which is true by definition.
Use induction on n:

n n—1-i i
(ad x) (u)=adx<z( x wi)!”{%)

n!
n-1 . xn—i xi n-1 ) xn—l—i xi+1
1y ) _ —1i—= —u ).
(,-;,( 2 n(n—l—i)!ui!> <,‘=Zo( —1=in " i
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After the change of index i+ i—1, the second sum reads:

xi

—inti—m”

-Z(— )‘
=1

For 0 < i < n, the ith term combines with the ith term of the first sum to yield

iwn—i i 1 1
(=1)x""ux (n(n—l—i)!i! + n(n-i)!(i—l)!>'

But the quantity in parentheses is just The Oth and nth terms are

(n=0'i'"

X uand (—1)"u * , as required. [
n! n!

Proposition. L, is an admissible lattice in the L-module L. Moreover,
L, = Hy + || Zx,; therefore, L, depends only on V (or just A(V)), not on

aed

the choice of M.

Proof. We know that L(Z) = H(Z)+]|] Zx, < Ly, and clearly H, < L,.
On the other hand, the preceding lemma guarantees that L, is invariant
under all (ad x,)"/m! (hence under ;). This allows us to write L, as the
sum of its intersections with H and the L, (part (a) of Theorem 27.1), so
L, =H, + [[(LynL,), with Zx, < L, " L,. The proposition will
follow at once if we prove that this last inclusion is an equality for each
aec®d.

Consider the linear map ¢:L,-~H defined by the rule x—[x_,x]
(=multiple of A,). This is injective, since dimZ, =1 and [x__,L,]#0. The
restriction of ¢ to L, L, has image in H, (since L, is closed under the
bracket, and H, =L, n H), hence in Fh,N H,. As the intersection of a
line with a lattice in H, the latter group is (infinite) cyclic. It follows that

L,n L, is cyclic. We may find a generator of the form 5 Xa (ne Z%),

(adx_a)z(%) X_q

2! T on

. Xy \of X _a 2x, .
ble under 11;), and in turn —(ad—n—)z( - )= — € Ly (because L, is
n

since x, € L, L,. Then y 1s sta-

closed under the bracket). But then %— € ;Z, forcing n=1. This shows
n

that L, "L, =Zx,, as required. []

As an example, consider L=3I[(2,F), with standard basis (x,y,h). For
the usual two dimensional representation of L, V=F? the basis
{(1,0),(0,1)} obviously spans an admissible lattice, with L, =Zh+Zx+
Zy (= L(Z)). On the other hand, taking L(Z) as admissible lattice in L

(for the 3-dimensional representation ad), we find L, = Z( h ) +Zx+1Zy.

2
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These extreme cases correspond to the two possible weight lattices A, A,
for the root system A, (Exercise 4).

27.3. Variation of admissible lattice

Let ¥ = V() (A e A") be an irreducible L-module. What are the possible
choices of admissible lattice in ¥'? In view of Theorem 27.1(a), such a lattice
M must contain a maximal vector v*, hence must include the admissible
lattice W7 .0* = U .o" utilized in the proof of Theorem 27.1(b). Since v*
is uniquely determined by V, up to a scalar multiple, we can keep v* fixed
throughout the discussion and denote this minimal admissible lattice U,.0™*
by M,,;.- We would be satisfied now to know which other admissible lattices
intersect V; in Zv*.

Recall the notion of dual (or contragredient) module: V* is the vector
space dual of V, with L acting by the rule (x.f) (W) = —f(x.w) (xe L,we V,
feV*). If X is a subspace of V* invariant under L, then the corresponding
subspace X* of V is easily seen to be invariant under L, so in particular V*
is again irreducible. In fact, we can specify its highest weight (Exercise 21.6):
Let 0 ¢ # send A to —A (hence ®* to @), and let w € V be a nonzero vector
of weight oA. So w is a “minimal vector”, killed by all x_,. Of course, dim
V,, =dim V, =1, so w is essentially unique. Relative to a basis of V
consisting of w along with other weight vectors, take f* to be the linear
function dual to w. Then f* is a maximal vector of V*, of weight —oA,
and V* = V(—od).

Now let M be an admissible lattice in V. Define M* = {fe V*|f(M) < Z}.
If M is the Z-span of a certain basis of V, then M* is evidently the Z-span
of the dual basis. In particular, M* is a lattice. It is even admissible: ve M,
fe M* implies that ((x7/m!).f) (v) = + f((x7/m!).v) e Z. It is also clear that
an inclusion M, < M, of admissible lattices in ¥ induces a reverse inclusion
ME > MF.

Assume now that v* (hence M,,;,) has been fixed, as above. Then there
is a canonical way to choose a minimal vector in V,; N M. Just notice
that the Weyl reflections constructed in step (5) of the proof of Theorem 21.2
are transformations of V representing elements of U, ; in particular, ¢ maps
Zv* onto M, N V,,. We may define w to be the image of v*, and then take
fteV*, as above (part of a dual basis relative to a basis of M;). It
follows immediately that M* N V*_ = Zf*.

Now let M be any admissible lattice in ¥ which intersects V, precisely
in Zv™". The preceding argument shows that M intersects V,, precisely in Zw,
hence also that M* intersects V'*_, precisely in Zf*. Therefore, as M varies
over the collection of all admissible lattices in V of the type indicated, M*
ranges over the analogous collection of admissible lattices in V*, but with
inclusions reversed. This shows that M* has an upper as well as lower
“bound”’, so the same is true for M. (For ad, we already proved this in
another way, by considering dual lattices for / alone.)
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Proposition. Let V = V(X), Ae A", with maximal vector v*.

(a) Each admissible lattice intersecting V, in Zv™ includes M ;, = Wz.v™.
(b) Each admissible lattice intersecting V, in Zv* is included in M,
the lattice dual to a suitable (M*);, in V*. [1

27.4. Passage to an arbitrary field

Let F, be the prime field of characteristic p, K an extension field of F,.
Let V be a faithful L-module; then the weights of ¥ span a lattice between
A, and A, which we have denoted A(¥). Choose an admissible lattice M in V,
with stabilizer L, = H, + [[Zx, in L, H, = {he H\h)eZ for all

acd
Ae A(V)} (27.2).

Let V(K) = M ®, K, L(K) = L, ® K. Since L, is isomorphic to a
subgroup of End M (and is closed under the bracket), L, (K) may be identified
with a Lie subalgebra of gl(V(K)) (=End V(K)). Moreover, the inclusion
L(Z) — L, induces a Lie algebra homomorphism L(K) — L,(K), which is
injective on || Kx, but may have a nonzero kernel in H(Z) ®, K = H(K).
To see how this works, recall the discussion of sl(2, F) in (27.2). If p = 2,

h
then 4/ ® 1 in L(K) is sent to 2 (i ® 1> = 0 in L,(K) when ¥V = L (adjoint
representation). Moreover, the multiplication in L(K) differs from that in
h
L,(K): e.g., in the former [4x] = 2x = 0, while in the latter [i x:l =x#0.

On the other hand, when p > 2, L(K) — L,(K) is an isomorphism (for either
choice of weight lattice A(V) = A or A,): Exercise 5.

The preceding discussion shows that each faithful L-module V gives rise,
via the homomorphism L(K) — L,(K), to a module V(K) for L(K), which is
occasionally not faithful (when L(K) has an ideal, necessarily central, in-
cluded in H(K)). It must be emphasized that (in spite of the notation) all of
this depends on the choice of the admissible lattice M in V.

What is the analogue here of the Chevalley group G(K) constructed in

t t
(25.5)? Since M 1is stable under the endomorphism x_ (i.e., under —= ¢( “)
if ¢ is the representation of L in question), V(K) is stable under the corres-
ponding endomorphism, which we call x, , (where x, o = 1). Notice that
(x, ® 1)

. , Whereas for ¢ > p this notation no

for t < p, x, , acts just like
longer has a meaning. At any rate, x, , = 0 for large enough ¢, so we may
write 6,(1) = i X4, € End (V(K)). Actually, it is clear that 6,(1) has deter-
minant 1, so ’iiobelongs to SL(V(K)). More generally, we can define auto-
morphisms 6,(c) of V(K) by forming Z “)!

indeterminate T to ¢ € K. The group GV(K) generated by all 0,(c) (xe®,

and then specializing the
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¢ € K) is called a Chevalley group of type A(V), adjoint if A(V) = A,, universal
if A(V) = A. As before, G,(K) actually depends on the choice of M.

27.5. Survey of related results

The constructions just described raise many questions, not all of which
are settled. To give the reader some idea of what is known, we list now a
number of results (without proof):

(1) Up to isomorphism, G,(K) and L,(K) depend on the weight lattice
A(V) but not on V itself or on the choice of M. (M does, however, affect the
action of Gy(K), L,(K) on V(K).) If A(V) > A(W), there exist canonical
homomorphisms G (K) =Gy (K), Ly (K)— L,(K). In particular, the Chevalley
groups of universal type (A(V) = A) “cover” all others, while those of
adjoint type are “‘covered” by all others.

(2) Let V = V(\), e A*, M = M,,,. Then V(K) is a cyclic module for
G(K), generated by a vector v ® 1, ve M N V,. As a result, V(K) has a
unique maximal Gy (K)-submodule, hence a unique irreducible homomor-
phic image (of ‘“highest weight” A). On the other hand, if M = M,_,,,, then
V(K) has a unique irreducible submodule, of ‘“highest weight” A.

(3) When Ae A" satisfies 0 < A(h;) < p(1 < i < £), p = char K, then
the assertions in (2) also hold true for L,(K) (or L(K)) in place of G,(K);
the resulting p? irreducible modules are inequivalent and exhaust the (iso-
morphism classes of) irreducible ““restricted” L(K)-modules.

(4) The composition factors of V(K), viewed as module for either
Gy(K) or L,(K), are independent of the choice of admissible lattice.

Exercises

1. If M is an admissible lattice in ¥, then M N V, is a lattice in V, for each
weight p of V.

2. Prove that each admissible lattice in L which includes L(Z) and is closed
under the bracket has the form L,,. [Imitate the proof of Proposition 27.2;
cf. Exercise 21.5.]

3. If M (resp. N) is an admissible lattice in V (resp. W), then M ® N is an
admissible lattice in ¥V ® W (cf. Lemma 26.3A). Use this fact, and the
identification (as L-modules) of V* ® V with End V (6.1), to prove that
L, is stable under all (ad x,)"/m! in Proposition 27.2 (without using

Lemma 27.2).
In the following exercises, L = sl(2, F), and weights are identified with
integers.
4. Let V = V()), Ae A*. Prove that L, = L(Z) when X is odd, while
L, = Z(; + Zx + Zy when A is even.

5. If char K > 2, prove that L(K) — L,(K) is an isomorphism for any
choice of V.
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. Keep the notation of Exercise 8. Let M be a subgroup of M

Chevalley Algebras and Groups
Let V=V (\), Ae A*. Prove that G,(K)= SL(2,K) when A(V)=A,
PSL(2,K) when A(V)=A,.
If 0<A<charK, V=V (), prove that V' (K) is irreducible as L(K)-
module.
Fix Ae A*. Then a minimal admissible lattice M_; in V(A) has a
Z-basis (vy,...,vy) for which the formulas in Lemma 7.2 are valid:

hoo,=(A-2i)v,
)’-Ui=(i+l)vi+1 (UA+1=O)’
xo.=A—i+1)v_, (v_,=0).

Show that the corresponding maximal admissible lattice M, has a
Z-basis (w,,...,w,) with wy= v, and action given by:

how,=(A=2)w,
yow,=A=w.
X.W,=iw,_ .

A
Deduce that v, = ( A)w,. Therefore, [M .. : M in]= [1 (A)

i I

. Keep the notation of Exercise 8. Let M be any admissible lattice,

M . o2M>M_, . Then M has a Z-basis (z,...,z,) With z;=a,w,
(a;€ Z), ay= a, = 1. Define integers b,,c, by: x.z;=b,z;_, (by=1),y.z,=
¢;z; 4, (cy=1). Show that ¢;= + b, _;, and that [[5,=A!.

max
containing M, ;.. with a Z-basis (wy,a,w,,...,a,w,). Find necessary
and sufficient conditions on the g; for M to be an admissible lattice.
Work out the possibilities when A=4.

Notes

Much of this material is taken from Steinberg [2], cf. also Borel [2]. For

some recent work, consult Burgoyne [l], Burgoyne, Williamson [1],
Humphreys [1], [2], Jantzen [1], [2], Shapovalov [1], Verma [3], Wong [1].

M.

Elmer suggested Exercises §-10.
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