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Preface o

This textbook covers the basic properties of elliptic curves and modular
forms, with emphasis on certain connections with number theory. The ancient
“congruent number problem™ is the central motivating example for most of
the book.

My purpose is to make the subject accessible to those who find it hard to
read more advanced or more algebraically oriented treatments. At the same
time I want to introduce topics which are at the forefront of current research.
Down-to-earth examples are given in the text and exercises, with the aim of
making the material readable and interesting to mathematicians in fields far
removed from the subject of the book.

With numerous exercises (and answers) included, the textbook is also
intended for graduate students who have completed the standard first-year
courses in real and complex analysis and algebra. Such students would learn
applications of techniques from those courses, thereby solidifying their under-

standing of some basic tools used throughout mathematics. Graduate stu- -

dents wanting to work in number theory or algebraic geometry would get a
motivational, example-oriented introduction. In addition, advanced under-
graduates could use the book for independent study projects, senior theses,
and seminar work. N

This book grew out of lecture notes for a course I gave at the University of
Washington in 1981-1982, and from a series of lectures at the Hanoi
Mathematical Institute in April, 1983. I would like to thank the auditors of
both courses for their interest and suggestions. My special gratitude is due to
Gary Nelson for his thorough reading of the manuscript and his detailed
comments and corrections. I would also like to thank Professors J. Buhler, B.
Mazur, B. H. Gross, and Huynh Mui for their interest, advice and
encouragement.




vi Preface

The frontispiece was drawn by Professor A. T. Fomenko of Moscow State
University to illustrate the theme of this book. It depicts the family of elliptic
curves (tori) that arises in the congruent number problem. The'elliptic curve
corresponding to a natural number n has branch points at 0, co,7and —#.In
the drawing we see how the elliptic curves interlock and deform as the branch
points +» go to infinity.

Note: References are given in the form [Author year]; in case of multiple

works by the same author in the same year, we use a, b, ... after the date to
indicate the order in which they are listed in the Bibliography.

Seattle, Washington NeaL KosLitz
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CHAPTER.I

From Congruent Numbers to Elliptic
Curves

The theory of elliptic curves and modular forms is one subject where the
most diverse branches of mathematics come together: complex analysis,
algebraic geometry, representation theory, number theory. While our point
of view will be number theoretic, we shall find ourselves using the type of
techniques that one learns in basic courses in complex variables, real var-
jables, and algebra. A well-known feature of number theory is the abundance
of conjectures and theorems whose statements are accessible to high school
students but whose proofs either are unknown or, in some cases, are the
culmination of decades of research using some of the most powerful tools
of twentieth century mathematics.

We shall motivate our choice of topics by one such theorem: an elegant
characterization of so-called “congruent numbers” that was recently proved
by J. Tunnell [Tunnell 1983]. A few of the proofs of necessary results go
beyond our scope, but many of the ingredients in the proof of Tunnell's
theorem will be developed in complete detail.

Tunnell’s theorem gives an almost complete answer to an ancient problem:
find a simple test to determine whether or not a given integer n is the area
of some right triangle all of whose sides are rational numbers. A natural
number 7 is called “congruent” if there exists a right triangle with all three
sides rational and area n. For example, 6 is"the area of the 3-4-5 right
triangle, and so is a congruent number. )

Right triangles whose sides are integers X, Y, Z (a “Pythagorean triple”)
were studied in ancient Greece by Pythagoras, Euclid, Diophantus, and
others. Their central discovery was that there is an easy way to generate all
such triangles. Namely, take any two positive integers a and b with a > b,
draw the line in the uv-plane through the point (—1, 0) with slope b/a. Let
(u, v) be the second point of intersection of this line with the unit circle
(see Fig. 1.1). It is not hard to show that
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Figure 1.1

_ai=br_ 2ab
ST @+ b

Then the integers X =a*> —b%, Y =2ab, Z= a? + b? are the sides of a
right triangle; the fact that X + Y? = Z2 follows because u? + v* = 1. By
letting a and b range through all positive integers with a > b, one gets all
possible Pythagorean triples (see Problem 1 below).

Although the problem of studying numbers n which occur as areas of
rational right triangles was of interest to the Greeks in special cases, it
seems that the congruent number problem was first discussed systematically
by Arab scholars of the tenth century. (For a detailed history of the problem
of determining which numbers are “congruent”, see [L. E. Dickson 1952,
Ch. XVI]; see also [Guy 1981, Section D27].) The Arab investigators
preferred to rephrase the problem in the following equivalent form: given n,
can one find a rational number x such that x% +n and x% — n are both
squares of rational numbers? (The equivalence of these two forms of the
congruent number problem was known to the Greeks and to the Arabs; for
a proof of this elementary fact, see Proposition 1 below.)

Since that time, some well-known mathematicians have devoted consid-
erable energy to special cases of the congruent number problem. For
example, Euler was the first to show that n =7 is a congruent number.
Fermat showed that n=1 is not; this result is essentially equivalent to
Fermat’s Last Theorem for the exponent 4 (i.e., the fact that X + Y4=2*
has no nontrivial integer solutions).

It eventually became known that the numbers 1, 2, 3, 4 are not congruent
numbers, but 5, 6, 7 are. However, it looked hopeless to find a straight-
forward criterion to tell whether or not a given n is congruent. A major
advance in the twentieth century was to place this problem in the context of
the arithmetic theory of elliptic curves. It was in this context that Tunnell
was able to prove his remarkable theorem.

u
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Here is part of what Tunnell’s theorem says (the full statement will be
given later): ‘

Theorem (Tunnell). Let n be an odd squarefree natural number. Consider the
two conditions:

(A) n is congruent;
(B) the number of triples of integers (x, y, z) satisfying x4y +82=n
is equal to twice the number of trjiples‘satisfying 2x2 +y? + 3222 =n.

Then (A) implies (B); and, if a weak form of the so-called Birch—Swinnerton-
Dyer conjecture is true, then (B) also implies (A). ‘

The central concepts in the proof of Tunnell’s theorem—the Hasse—Weil
L-function of an elliptic curve, the Birch-Swinnerton-Dyer conjecture,
modular forms of half integer weight—will be discussed in later chapters.
Our concern in this chapter will be to establish the connection between
congruent numbers and a certain family of elliptic curves, in the process
giving the definition and some basic properties of elliptic curves.

§1. Congruent numbers

Let us first make a more general definition of a congruent number. A
positive rational number re@ is called a “congruent number” if it is the
area of some right triangle with rational sides. Suppose r is congruent, and
X, Y, ZeQ are the sides of a triangle with area r. For any nonzero re Q we
can find some se@Q such that s°r is a squarefree integer. But the triangle
with sides sX, sY, sZ has area s?r. Thus, without loss of generality we may
assume that r =n is a squarefree natural number. Expressed in group
language, we can say that whether or not a number r in the multiplicative
group @* of positive rational numbers has the congruent property depends
only on its coset modulo the subgroup (Q%)? consisting of the squares of
rational numbers; and each coset in @*/(Q*)? contains a unique squarefree
natural number r = n. In what follows, when speaking of congruent numbers,
we shall always assume that the number is a squarefree positive integer.
Notice that the definition of a congruent number does not require the
sides of the triangle to be integral, only rational. While n = 6 is the smallest
possible area of a right triangle with integer sides, one can find right triangles
with rational sides having area n = 5. The right triangle with sides 1}, 63, 63
is sucha triangle (see Fig. 1.2). It turns out that » = 5 is the smallest congruent
number (recall that we are using “congruent number” to mean “congruent
squarefree natural number”).
There is a simple algorithm using Pythagorean triples (see the problems
below) that will eventually list all congruent numbers. Unfortunately, given
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63
6 1
I3
2
63
- Figure 1.2

n, one cannot tell how long one must wait to get n if it is congruent; thus,
if n has not appeared we do not know whether this means that z is not a
congruent number or that we have simply not waited long enough. From a
practical point of view, the beauty of Tunnell’s theorem is that his condition
(B) can be easily and rapidly verified by an effective algorithm. Thus, his
theorem almost settles the congruent number problem, i.e., the problem of
finding a verifiable criterion for whether a given 7 is congruent. We must
say “almost settles™ because in one direction the criterion is only known to
work in all cases if one assumes a conjecture about elliptic curves.

Now suppose that X, Y, Z are the sides of a right triangle with area n.
This means: X2 + Y2 = Z2, and XY = n. Thus, algebraically speaking,
the condition that # be a congruent number says that these two equations
have a simultaneous solution X, ¥, ZeQ. In the proposition that follows,
we derive an alternate condition for n to be a congruent number. In listing
triangles with sides X, ¥, Z, we shall not wantto list X, ¥, Zand ¥, X, Z
separately. So for now let us fix the ordering by requiring that X <Y <Z
(Z is the hypotenuse).

Proposition 1. Let n be a fixed squarefree positive integer. Let X, Y, Z, x
always denote rational numbers, with X < Y < Z. There is a one-to-one
correspondence between right triangles with legs X and Y, hypotenuse Z, and
area n; and numbers x for which x, x + n, and x —n are each the square of a
rational number. The correspondence is:

X, Y, Z - x=(Z[2)?

xoX=Jxtn—Jx—n, Y= /x+n+x—n Z=2x.
In particular, n is a congruent number if and only if there exists x such that X,
x + n, and x — n are squares of rational numbers.

Proor. First suppose that X, Y, Z is a triple with the desired properties:
X2 4 Y? = Z2% 1XY = n. If we add or subtract four times the second equa-
tion from the first, we obtain: (X + ¥)? = Z? + 4n. If we then divide both
sides by four, we see that x = (Z/2)* has the property that the numbers
x + n are the squares of (X £ Y)/2. Conversely, given x with the desired

properties, it is easy to see that the three positive rational numbers X <Y <Z

given by the formulas in the proposition satisfy: XY = 2n, and X2+ Y%=
4x = Z2. Finally, to establish the one-to-one correspondence, it only remains
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to verify that no two distinct triples X, Y, Z can lead to the same x. We leave
this to the reader (see the problems below). u]

PROBLEMS

1. Recall that a Pythagorean triple is a solution (X, Y, Z) in positive integers to the
equation X2 + Y2 = Z2 It is called “primitive” if X, ¥, Z have no common factor.
Suppose that a > b are two relatively prime positive integers, not both odd. Show
that X = a? — b2, Y = 2ab, Z = a* + b* form a primitive Pythagorean triple, and
that all primitive Pythagorean triples are obtained in this way.

2. Use Problem 1 to write a flowchart for an algorithm that lists all squarefree con-
gruent numbers (of course, not in increasing order). List the first twelve distinct
congruent numbers your algorithm gives. Note that there is no way of knowing
when a given congruent number will appear in the list. For example, 101 is a
congruent number, but the first Pythagorean triple which leads to an area s 101
involves twenty-two-digit numbers (see [Guy 1981, p. 106]). One hundred fifty-seven
is even worse (see Fig. 1.3). One cannot use this algorithm to establish that some
is not a congruent number. Technically, it is not a real algorithm, only a “semi-
algorithm”.

3. (a) Show thatif | were a congruent number, then the equation x* — y* = u* would
have an integer solution with « odd.
(b) Prove that 1 is not a congruent number. (Note: A consequence is Fermat’s
Last Theorem for the exponent 4.)

4. Finish the proof of Proposition 1 by showing that no two triples X, Y, Z can lead
to the same x.

5. (a) Find xe(Q")? such that x + 5e(Q%)>.
(b) Find xe(Q*)? such that x + 6e(Q*).

224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016480830

6803298487826435051217540
411340519227716149383203

411340519227716149383203
31666555693714761 309610

Figure 1.3. The Simplest Rational Right Triangle with Area 157 (computed by D.
Zagier). :
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(c) Find two values xe(Q@")? such that x + 210e(Q")?. At the end of this chapter
we shall prove that if there is one such x, then there are infinitely many. Equiva-
lently (by Proposition 1), if there exists one right triangle with rational sides
and area n, then there exist infinitely many.

6. (2) Show that condition (B) in Tunnell’s theorem is equivalent to the condition that
the number of ways n can be written in'‘the form 2x? + y* + 8z* with x, y, z
integers and z odd, be equal to the number of ways » can be written in this form
with z even. L

(b) Write a flowchart for an algorithm that tésts condition (B) in Tunnell’s theorem
for a given n. ;

7. (a) Prove that condition (B) in Tunnell’s ;"theorem always holds if n is congruent
to 5 or 7 modulo 8. :

(b) Check condition (B) for all squarefree n= 1 or 3 (mod 8) until you find such
an n for which condition (B) holds.

(¢) By Tunnell’s theorem, the number you found in part (b) should be the smallest
congruent number congruent to | or 3 modulo 8. Use the algorithm in Problem 2
to find a right triangle with rational sides and area equal to the number you
found in part (b).

§2. A certain cubic equation

In this section we find yet another equivalent characterization of congruent
numbers. ‘

In the proof of Proposition 1 in the last section, we arrived at the equations
((X £ Y)/2)*> = (Z/2)* + n whenever X, Y, Z are the sides of a triangle with
area n. If we multiply together these two equations, we obtain ((X? — Y2)/4)2
= (Z/2)* — n%. This shows that the equation u* — n? = v? has a rational
solution, namely, ¥ = Z/2 and v = (X? — Y?)/4. We next multiply through
by u? to obtain u® — n?u? = (uv)?. If we set x = u? = (Z/2) (this is the same
x as in Proposition 1) and further set y = uv = (X2 — Y?)Z/8, then we have
a pair of rational numbers (x, y) satisfying the cubic equation:

yr=x3—nx.

Thus, given a right triangle with rational sides X, Y, Z and area n, we
obtain a point (x, y) in the xy-plane having rational coordinates and lying
on the curve y*> = x> — n?x. Conversely, can we say that any point (x, y)
with x, y e Q which lies on the cubic curve must necessarily come from such
a right triangle? Obviously. not, because in the first place the x-coordinate

x = u* = (Z/2)? must lie in (Q*)? if the point (x, y) can be obtained as in

the last paragraph. In the second place, we can see that the x-coordinate of
such a point must have its denominator divisible by 2. To see this, notice that
the triangle X, Y, Z can be obtained starting with a primitive Pythagorean
triple X’, Y’, Z’ corresponding to a right triangle with integral sides X”, ¥, Z
and area s°n, and then dividing the sides by s to get X, Y, Z. But in a primitive
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Pythagorean triple X” and Y’ have different parity, and Z’ is odd. We
conclude that (1) x = (Z/2)® = (Z’[2s)* has denominator divisible by 2 and
(2) the power of 2 dividing the deniominator of Z is equal to the power of 2
dividing the denominator of one of the other two sides, while a strictly lower
power of 2 divides the denominator of the third side. (For example, in the
triangle in Fig. 1.2 with area 5, the hypotenuse and the shorter sidehavea2in
the denominator, while the other leg does not.) We conclude that a necessary
condition for the point (x, y) with rational coordinates on the curve y* =
x3 — n?x to come from a right triangle is that x be a square and that its
denominator be divisible by 2. For example, when n = 31, the point (41 /72,
29520/7%) on the curve y* = x* — 31%x does not come from a triangle, even
though its x-coordinate is a square. We next prove that these two conditions
are sufficient for a point on the curve to come from a triangle.

Proposition 2. Let (x, y) be a point with rational coordinates on the curve
y% = x3 < n’x. Suppose that x satisfies the two conditions: (i) it is the square
of a rational number and (i) its denominator is even. Then there exists a right
triangle with rational sides and area n which corresponds to x under the corre-
spondence in Proposition 1.

PROOF. Letu = \/;c eQ*. We work backwards through the sequence of steps
at the beginning of this section. That is, set v = y/u, so that v? = y?/x =
x? — n?,i.e., v + n* = x2. Now let # be the denominator of u, i.e., the smallest
positive integer such that tueZ. By assumption, ¢ is even. Notice that the
denominators of v> and x? are the same (because nis an integer, and
v? 4+ n? = x?2), and this denominator is ¢*. Thus, *v, £*n, x is a primitive
Pythagorean triple, with 12z even. By Problem 1 of §1, there exist integers
a and b such that: t2n = 2ab, v = a® — b?, *x = a® + b%. Then the right
triangle with sides 2a/t, 2b/t, 2u has area 2ab[t* = n, as desired. The image
of this triangle X = 2a/t, Y = 2bft, Z = 2u under the correspondence in
Proposition 1 is x = (Z/2)* = u*. This proves Proposition 2. O

We shall later prove another characterization of the points P = (x; y).on
the curve y? = x> — n*x which correspond to rational right triangles of
area n. Namely, they are the points P = (x, y) which are “twice” a rational
point P’ = (x’, y’). That is, P’ + P’ = P, where ““+” is an addition law for
points on our curve, which we shall define later.

PROBLEMS

1. Find a simple linear change of variables that gives a one-to-one correspondence
between points on ny? = x> +ax2+bx +c¢ and points on y* = x*+ anx’ +
bn®x + cn®. For example, an alternate form of the equation y* = x> — n’x is the
equation ny? =x3 - x. ‘ .

2. Another correspondence between rational right triangles X, Y, Z with area 1 XY = n
and rational solutions to y? = x* — n®x can be constructed as follows.
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(u, v)

Figure 1.4

(a) Parametrize all right triangles by letting the point u = X/Z, v=Y/Z on the unit
circle correspond to the slope ¢ of the line joining (—1, 0) to this point (see
Fig. 1.4). Show that

. Bl p= 2
142 142

(Note: This is the usual way to parametrize a conic. If 1 = a/b is rational, then
the point (1, v) corresponds to the Pythagorean triple constructed by the method
at the beginning of the chapter.)

(b) If we want the triangle X, ¥, Z to have area n, express n/Z 2 in terms of £.

(c) Show that the point x = —nt, y = n*(1 + 1?)/Z is on the curve y* = x> — n2x.
Express (x, y) in terms of X, ¥, Z.

(d) Conversely, show that any point (x, y) on the curve y* = x> —~ n*x with y #0
comes from a triangle, except that to get points with positive x, we must allow
triangles with negative X and Y (but positive area XY = n), and to get points
with negative y we must allow negative Z (see Fig. 1.5). Later in this chapter we
shall show the connection between this correspondence and the one given in the
text above.

(¢) Find the points on y? = x> — 36x coming from the 3-4-5 right triangle and all
equivalent triangles (4-3-5, (—3)-(—4)-5, etc.).

. Generalize the congruent number problem as follows. Fix an angle 6 not necessarily
90°. But suppose that 4 = cos 8 and B = sin ¢ are both rational. Let n be a square-
free natural number. One can then ask whether # is the area of any triangle with
rational sides one of whose angles is 6. '

(a) Show that the answer to this question is equivalent to a question about rational
solutions to a certain cubic equation (whose coefficients depend on 6 as well
as n).

(b) Suppose that the line joining the point (—1, 0) to the point (4, B) on the unit
circle has slope 4. Show that the cubic in part (a) is equivalent (by a linear
change of variables) to the cubic ny? = x(x — A)(x + (1/2)). The classical con-
gruent number problem is, of course, the case 4 = 1.

§3. Elliptic curves 9

X,Y<0,Z>0
X, Y,Z>0

X.¥Y>0,2<0
X,Y.Z<0

Figure 1.5

§3. Elliptic curves

The locus of points P = (x, y) satisfying y* = x® — n*x is a special case of
what’s called an “elliptic curve”. More generally, let K be any field, and let
f(x)e K[x] be a cubic polynomial with coefficients in K which has distinct
roots (perhaps in some extension of K). We shall suppose that K does not
have characteristic 2. Then the solutions to the equation

¥ =f(x), (ER))

where x and y are in some extension K’ of K, are called the K’-points of the
elliptic curve defined by (3.1). We have just been dealing with the example
K=K =Q, f(x)=x*—n’x. Note that this example y? = x> —n’x
satisfies the condition for an elliptic curve over any field K of characteristic
P, as long as p does not divide 2n, since the three roots 0, +n of f(x) = x> —
n?x are then distinct. :

In general, if xo, o€ K’ are the coordinates of a point on a curve C
defined by an equation F(x, y) = 0, we say that C is “smooth” at (xg, yo) if
the two partial derivatives 0F/0x and 0F/0y are not both zero at (xq, ¥o)-
This is the definition regardless of the ground field (the partial derivative
of a polynomial F(x, y) is defined by the usual formula, which makes sense
over any field). If K’ is the field R of real numbers, this agrees with the usual
condition for C to have a tangent line. In the case F(x, y) = y? — f(x), the
partial derivatives are 2y, and —f"(x,). Since K is not a field of characteristic
2, these vanish simultaneously if and only if y, = 0 and x, is a multiple root
of f(x). Thus, the curve has a non-smooth point if and only if f{(x) has a
multiple root. It is for this reason that we assumed distinct roots in the
definition of an elliptic curve: an elliptic.curve is smooth at all of its points.
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In addition to the points (x, ) on an elliptic curve (3.1), there is a very

important “point at infinity” that we would like to consider as being on
the curve, much as in complex variable theory in addition to the points on .

the complex plane one throws in a point at infinity, thereby forming the
“Riemann sphere”. To do this precisely, we now introduce projective
coordinates. - c )

By the “total degree” of a monomial x'y/ we mean i + j. By the “total
degree” of a polynomial F(x, y) we mean the maximum total degree of the
monomials that occur with nonzero coefficients. If F(x, y) has total degree
n, we define the corresponding homogeneous polynomial F(x, y, z) of three
variables to be what you get by multiplying each monomial x'y in F(x, y)
by z" to bring its total degree in the variables x, y, z up to n; in other
words, . '

AN
Fx,y,2)= z"F(f, X).
z Z
In our example F(x, y) = y* — (x> — n’x), we have Fix,y,2)=y*z—x*+
n2xz%. Notice that F(x, y) = F(x, y, 1).
Suppose that our polynomials have coefficients in a field K, and we are
interested in triples x, y, z€ K such that F(x, y, z) = 0. Notice that:

(1) for any Ae K, F(Ax, Ay, Az) = "F(x, y, z) (n = total degree of F);
(2) for any nonzero A€ K, F(ix, Ay, Az) = 0 if and only if F(x,y,2) =0.In
particular, for z # 0 we have F(x, y, 2) = 0 if and-only if F(x/z, y/z) = 0.

Because of (2), it is natural to look at equivalence classes of triples x, y,
ze K, where we say that two triples (x, y, 2) and (x', ¥, z') are equivalent if
there exists a nonzero A€ K such that (x", y', 2’) = A(x, y, 2)- We omit the
trivial triple (0, 0, 0), and then we define the “projective plane Pz to be
the set of all equivalence classes of nontrivial triples. ,

No normal person likes to think in terms of “equivalence classes”, and
fortunately there are more visual ways to think of the projective plane.
Suppose that X is the field R of real numbers. Then the triples (x, y, z) in
an equivalence class all correspond to points in three-dimensional Euclidean
space lying on a line through the origin. Thus, P3 can be thought of geo-
metrically as the set of lines through the origin in three-dimensional space.

Another way to visualize P} is to place a plane at a distance from the
origin in three-dimensional space, for example, take the plane parallel to the
xy-plane and at a distance 1 from it, i.e. the plane with equation z = 1. All
lines through the origin, cxcept for those lying in the xy-plane, have a unique

point of intersection with this plane. That is, every equivalence class of '

triples (x, y, z) with nonzero z-coordinate has a unique triple of the form
(x, y, 1). So we think of such equivalence classes as points in the ordinary
xy-plane. The remaining triples, those of the form (x, y, 0), make up the
“line at infinity”. .

The line at infinity, in turn, can be visualized as an ordinary line (say,
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the line y =1 in the xy-plane) consisting of the equivalence classes with
nonzero y-coordinate and hence containing a unique triple of the form
(x, 1, 0), together with a single ““point at infinity” (1, 0, 0). That is, we define
the projective line PL over a field K to be the set of equivalence classes of
pairs (x, y) with (x, ») ~ (Ax, 2y). Then P2-can be thought of as an ordinary
plane (x, y, 1) together with a projective line at infinity, which, in turn,
consists of an ordinary line (x, 1, 0) together with its point at infinity (1, 0, 0).

More generally, n-dimensional projective space Pk is defined using
equivalencé classes of (n + 1)-tuples, and’can be visualized as the usual
space of n-tuples (xy, - - -5 Xn 1) together with a P! at infinity. But we
shall only have need of Pk and Pz. '

Given a homogeneous polynomial F(x, y, z) ' with coefficients in K, we
can look at the solution set consisting of points (x, y, 2) in PZ (actually,
equivalence classes of (x, y, 2)) for which F(x, y, z) = 0. The points of this
solution set where z # 0 are the points (x,y, 1) for which F(x,y, )=
F(x, y) = 0. The remaining points are on the line at infinity. The solution
set of F(x,y,z)=0 is called the “projective completion™ of the curve
F(x,y) = 0. From now on, when we speak of a “line”, a “conic section”,
an “elliptic curve”, etc., we shall usually be working in a projective plane
PZ, in which case these terms will always denote the projective completion
of the usual curve in the xy-plane. For example, the line y = mx + b will
really mean the solution set to y = mx + bz in PZ; and the elliptic curve
y? = x3 — n?x will now mean the solution set to y2z = x* — n’xz? in P§.

Let us look more closely at our favorite example : F(x, y) =% — x>+ n’x,
Fx,y,z)=y*z— x>+ n2xz2. The points at infinity on this elliptic curve
are the equivalence classes (x, ), 0) such that 0= F(x,y,0)=—x".ie.
x = 0. There is only one such equivalence class (0, 1, 0). Intuitively, if we
take K = R, we can think of the curve y? = x* — n*x heading off in an
increasingly vertical direction as it approaches-the line at infinity (see Fig.
1.6). The points on the line at infinity correspond to the lines through the
origin in the xy-plane, i.e., there is one for every possible slope y/x of such
a line. As we move far out along our elliptic curve, we approach slope
y/x = 00, corresponding to the single point (0, 1, 0) on the linc at infinity.
Notice that any elliptic curve y? = f(x) similarly contains exactly one point
at infinity (0, 1, 0). ]

All of the usual concepts of calculus on curves F(x, y) = 0 in the xy-plane
carry over to the corresponding projective curve Fi(x, y, z) = 0. Such notions
as the tangent line at a point, points of inflection, smooth and singular
points all depend only upon what is happening in a neighborhood of the
point in question. And any point in P has a large neighborhood which
looks like an ordinary plane. More precisely, if we are interested in a point
with nonzero z-coordinate, we can work in the usual xy-plane, where the
curve has equation F(x, y) = F(x, y, 1) = 0. If we want to examine a point
on the line z = 0, however, we put the triple in either the form (x, 1, 0) or
(1, y,0).1In the former case, we think of it asa point on the curve F(x, 1,2) = 0
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y2=x3—x

Figure 1.6

in the xz-plane; and in the latter case as a point on the curve F(l,y,2) =0
in the yz-plane. ’

For example, near the point at infinity (0, 1,0) on the elliptic curve
y2z — x* + n?xz?, all points have the form (x, 1, z) with z — x3 4+ n?xz? =0.
The latter equation, in fact, gives us all points on the elliptic curve except
for the three points (0, 0, 1), (+n, 0, 1) having zero y-coordinate (these are
the three “points at infinity” if we think in terms of xz-coordinates).

PROBLEMS

1. Prove that if X is an infinite field and F(x, y, z)e K[x, y, z] satisfies F(Ax, Ay, Az) =
A"F(x, y, z) for all 4, x, y, ze K, then F is homogeneous, i.e., each monomial has
total degree n. Give a counterexample if K is finite.

2. By a “line” in P} we mean either the projective completion of a line in the xy-plane
or the line at infinity. Show that a line in PZ has equation of the form ax + by +cz=
0, with a, b, ce K not all zero; and that two such equations determine the same line
if and only if the two triples (a, b, ¢) differ by a multiple. Construct a 1-to-1 cor-
respondence between lines in a copy of P} with coordinates (x, y, z) and points in
another copy of P2 with coordinates (g, b, ¢) and between points in the Xxyz-projec-
tive plane and lines in the abc-projective plane, such that a bunch of points are on
the same line in the first projective plane if and only if the lines that correspond to
them in the second projective plane all meet in the same point. The xyz-projective
plane and the abe-projective plane are called the “duals” of each other.

7.
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. How many points at infinity are on a parabola in P2? an ellipse? a hyperbola?

. Prove that any two nondegenerate conic sections in P2 are equivalent to one another

by some linear change of variables.

. (a) If F(x, y, z)e K[x, , z] is homogeneous of degree n, show that
oF  oF OF_ =
"ax”ay”az =ne

(b) If K has characteristic zero, show that a point (x, y, z)ePZ is a non-smooth
point on the curve C: F(x, y,2) =0 if and only if the triple (0F/dx, 8F/oy,
8F/az) is (0, 0, 0) at our particular (x, y, z). Give a counterexample if char K # 0.
In what follows, suppose that char K = 0,e.g., K=R.

(c) Show that the tangent line to C at 2 smooth point (xo, Yo, Zo) has equation
ax + by + ¢z = 0, where

aﬁl oF oF
a=_— , b= , €= .
2 %o+ Yo» Fo) dy (X, Yo+ Zo) 0z X0+ ¥o- Z0)

(d) Prove that the condition that (x, y, 2) be a smooth point on C does not depend
upon the choice of coordinates, i.e., it does not change if we shift to x’p'z’:
coordinates, where (x’ ' z) =(x y z)A with A4 an invertible 3 x 3 matrix.
For example, if more than one of the coordinates are nonzero, it makes no
difference which we choose to regard as the “z.coordinate”, i.e., whether we
look at C in the xy-plane, the xz-plane, or the yz-plane.

(¢) Prove that the condition that a given line / be tangent to C ata smooth point
{x, y, z) does not depend upon the choice of coordinates.

. (@) Let P, = (x;,¥,,2) and P, = (X3, 53, z,) be two distinct points in PZ. Show

that the line joining P, and P, can be given in parametrized form as sP, + tP;,
ie., {(sx, + tx3, 5y, + Y3, 52, + t2,)}s, 1€ K}. Check that this linear map takes
P} (with coordinates s, #) bijectively onto the line P, P, in PZ. What part of the
line do you get by taking s = 1 and letting ¢ vary?

(b) Suppose that K = R or C. If the curve F(x, y) = 0 in the xy-plane is smooth at
P, = (x,, y,) with nonvertical tangent line, then we can expand the implicit
function y =f(x) in a Taylor series about X = x;. The linear term gives
the tangent line. If we subtract off the linear term, we obtain f(x) —y; —
S (= x;)=ag(x —x)" + - ,wherea,, # 0,m > 2. mis called the “order
of tangency”. We say that (x,, y,) is a point of inflectionif m > 2,i.e..f/"(x,) = 0.
(In the case K = R, note that we are not requiring a change in concavity with
this definition, e.g., y = x* has a point of inflection at x =0.) Let P, = (x4,
¥4 21, 2y # 0, and let /= P, P, be tangent to the curve F(x, y) = F(x,y. 1) at
the smooth point P,. Let P, = (X3, y;, Z5). Show that m is the lowest power of
{ that occurs in F(x, + 1X5, py + 1y, 2y + tz:)€ K[t].

(c) Show that m does not change if we make a linear change of variables in P§.
For example, suppose that y, and z, are both nonzero, and we use the xz-plane
instead of the xy-plane in parts (2) and (b).

Show that the line at infinity (with equation z = 0) is tangent to the elliptic curve
y? = f(x) at (0, 1, 0), and that the point (0, 1, 0) is a point of inflection on the curve.
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§4. Doubly periodic functions

Let L be a lattice in the complex plane, by which we mean the set of all
integral linear combinations of two given complex numbers w, and w,,
where , and @, do not lie on the same line through the origin. For example,

if w, =iand w, =1, we get the lattice of Gaussian integers {mi + n|m,;.

neZ). It will turn out that the example of the lattice of Gaussian integers
is intimately related to the elliptic curves y? = x3 — n?x that come from the
congruent number problem.

The fundamental parallelogram for w,, w, is defined as

1= {aw, +bw,|0<a<1,0<b< 1}

Since , , w, form a basis for C over R, any number xeC can be written in
the form x = aw, + bw, for some a, beR. Then x can be written as the

sum of an element in the lattice L = {mw, + nw,} and an element in I1, and .

in only one way unless a or b happens to be an integer, i.., the element of
IT happens to lie on the boundary I1. )

We shall always take w,, , in clockwise order; that is, we shall assume
that w,/w, has positive imaginary part.

Notice that the choice of w,, w, giving the lattice L is not unique. For
example, ] = », + v, and v, give the same lattice. More generally, we
can obtain new bases ), w} for the lattice L by applying a matrix with
integer entries and determinant 1 (see Problem 1 below).

For a given lattice L, a meromorphic function on C is said to be an elliptic
function relative to L if f(z + |) = f(z) for all /e L. Notice that it suffices to
check this property for / = w, and / = w,. In other words, an elliptic func-
tion is periodic with two periods w; and w,. Such a function is determined
by its values on the fundamental parallelogram IT; and its values on opposite
points of the boundary of II are the same, ie., flaw, + ;)= flaw,),
flw, + bw,) = f(bw,). Thus, we can think of an elliptic function f(z) as a
function on the set IT with opposite sides glued together. This set (more
precisely, “complex manifold”) is known as a “torus”. It looks like a donut.

Doubly periodic functions on the complex numbers are directly analogous
to singly periodic functions on the real numbers. A function f(x) on R which
satisfies f(x + nw) = f(x) is determined by its values on the interval [0, ].
Its values at 0 and o are the same, so.it can be thought of as a function on
the interval [0, @] with the endpoints glued together. The “real manifold”
obtained by gluing the endpoints is simply a circle (see Fig. 1.7).. )

Returning now to elliptic functions for a lattice L, we let &, denote the
set of such functions. We immedintely see that & is a subfield of the field
of all meromorphic functions. i.... ... sum, difference, product, or quotient
of two elliptic functions is elliptic. In addition, the subfield &), is closed under

differentiation. We now prove a sequence of propositions giving some very

special properties which any elliptic function must have. The condition that
a meromorphic function be doubly periodic turns out to be much more
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Figure 1.7

restrictive than the analogous condition in the real case. The set of real-
analytic periodic functions with given period is much “larger” than the set
&, of elliptic functions for a given period lattice L. ~

Proposition 3. A function f(z)e&;, L = {mw, + nw,}, which has no pole in
the fundamental parallelogram 11 must be a constant.

ProoF. Since IT is compact, any such function must be bounded on II, say
by a constant M. But then | f(z)| < M for all z, since the values of f(z) are
determined by the values on I1. By Liouville’s theorem, a meromorphic
function which is bounded on all of C must be a constant. o

Proposition 4. With the same notation as above, let o + I1 denote the translate
of T1 by the complex number o, i.e., {¢ + z|z€I1}. Suppose that f(z)€ &, has
no poles on the boundary C of o + I1. Then the sum of the residues of f(z) in
o + I1 is zero.

Proor. By the residue theorem, this sum is equal to

L J f(2)dz.

2mi |

But the integral over opposite sides cancel, since the values of f(z) at corre-
sponding points are the same, while dz has opposite signs, because the path
of integration is in opposite directions on opposite sides (see Fig. 1.8). Thus;
the integral is zero, and so the sum of residues is zero. "~ - - O

Notice that, since a meromorphic function can only have finitely many -
polesina bqunded region, it is always possible to choose an o such that the -
boundary of « + IT misses the poles of f(z). Also note that Proposition 4
immediately implies that a nonconstant f(z)e &, must have at least' two
poles (or a multiple pole), since if it had a single simple pole, then the sum -
of residues would not be zero. S R '
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Proposition 5. Under the conditions of Proposition 4, suppose that f(z) has no
zeros or poles on the boundary of « + Il. Let {m;} be the orders of the various
zeros ina + T1, and let {n;} be the orders of the various poles. ThenXm; = Zn;.

ProoF. Apply Proposition 4 to the elliptic function f”(2)/f(2). Recall that the
logarithmic derivative f’(z)/f(z) has a pole precisely where f(z) has a zero
or pole, such a pole is simple, and the residue there is equal to the order of
zero or pole of the original f(z) (negative if a pole). (Recall the argument: If
f@)=cn(z—a)y"+ - -, then f'(2) = c,m(z—a)" ' + - - -, and 50 f*(2)/f(2)
=m(z — @)~ + - - -.) Thus, the sum of the residues of f'(z)/f(z) is Zm; —
Zn;=0. ]

We now define what will turn out to be a key example of an elliptic
function relative to the lattice L = {m®, + nw,}. This function is called the
Weierstrass g-function. It is denoted @(z; L) or 9(z; @y, @,), or simply
@(2) if the lattice is fixed throughout the discussion. We set

m5=Mmu@§+;ﬁ;5F—%) @
1#0

Proposition 6. The sum in (4.1) converges absolutely and uniformly for z in
any compact subset of C — L.

ProOF. The sum in question is taken over a two-dimensional lattice. The
proof of convergence will be rather routine if we keep in mind a one-
dimensional analog. If instead of L we take the integers Z, and instead of
reciprocal squares we take reciprocals, we obtain a real function S =
14+ X1 + 1, where the sum is over nonzero /e Z. To prove absolute and
uniform convergence in any compact subset of R — Z, first write the sum-
mand as x/(!(x — {)), and then use a comparison test, showing that the series
in question basically has the same behavior as 12, More precisely, use the
following lemma: if X b, is a convergent sum of positive terms (all our sums

being over nonzero /€Z), and if I f(x) has the property that | Sfi0/b|

approaches a finite limit as / > + o0, uniformly for x in some set, then the
sum X f;(x) converges absolutely and uniformly for x in that set. The details
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are easy to fill in. (By the way, our particular example of f(x) can be shown
to be the function 7 cot 7x; just take the logarithmic derivative of both
sides of the infinite product for the sine function: sin nx = nxII7., (1 —
2,2
x%[n?).)
The proof of Proposition 6 proceeds in the same way. First write the
summand over a common denominator:

11 _2-2Y
-0 P -
Then show absolute and uniform convergence by comparison with |/|™>,

where the sum is taken over all nonzero /€ L. More precisely, Proposition 6
will follow from the following two lemmas.

Lemma 1. If £ b, is a convergent sum of positive terms, where the sum is taken
over all nonzero elements in the lattice L, and if T f{(z) has the property that
| /i2)/b,| approaches a finite limit as |I| > oo, uniformly for z in some subset
of C, then the sum X fi(z) converges absolutely and uniformly for z in that set.

Lemma 2. X |/|™* converges if s > 2.

The proof of Lemma 1 is routine, and will be omitted. We give a sketch
of the proof of Lemma 2. We split the sum into sums over / satisfying
n—1<|l|<nasn=1,2,.... Itisnot hard to show that the number of /
in that annulus has order of magnitude n. Thus, the sum in the lemma is
bounded by a constant times £, n-n"*=Xn'"", and the latter sum
converges fors — 1 > 1.

This concludes the proof of Proposition 6. o

Proposition 7. p(z) € 6., and its only pole is a double pole at each lattice point.

ProoF. The same argument as in the proof of Proposition 6 shows that for
any fixed /e L, the function g(z) — (z — [)™? is continuous at z = /. Thus,
@(2) is a meromorphic function with a double pole at all lattice points and
no other poles. Next, note that @(z) = @ (—z), because the right side of
(4.1) remains unchanged if z is replaced by —z and / is replaced by —/; but
summing over /€ L is the same as summing over —/e L. :

To prove double periodicity, we look at the ‘derivative. Differentiating
(4.1) term-by-term, we obtain:

1
@) =2 —s.
P 1:‘:1. -1
Now g’(2) is obviously doubly periodic, since replacing z by z + /, for
some fixed /e L merely rearranges the terms in the sum. Thus, p'(z)e&;.
To prove that p(z)€ &, it suffices to show that p(z + w;) — (z) = 0 for
i =1, 2. We prove this for i = 1; the identical argument applies to i = 2.
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Since the derivative of the function p(z + w,) — p(2) is P’(z + w,) —
#'(z) =0, we must have p(z + w,) — @(z) = C for some constant C. But
substltutmg z= —4m, and using the fact that @(z) is an even function, we
conclude that C = p(w,) = p(—3iw,) = 0. This concludes the proof. O

Notice that the double periodicity of g(z) was not immediately obvious
from the definition (4.1).

Since g (z) has exactly one double pole in a fundamental domain of the
form a + I1, by Proposition 5 it has exactly two zeros there (or one double
zero). The same is true of any elliptic function of the form p(z) — u, where
u is_a constant. It is not hard to show (see the problems below) that g(z2)
takes every value ue C U {0} exactly twice on the torus (i.e., a fundamental
parallelogram with opposite sides glued together), counting multiplicity
(which means the order of zero of @(2) —u); and that the values as-
sumed with multiplicity two are ©, e, = 0(@4/2), €, 55 #(0,/2), and €5 5=,

(0, + ,)/2). Namely, g(z) has a double pole at 0, while the other three

points are the zeros of p’(z2).

§5. The field of elliptic functions -

Proposition 7 gives us a concrete example of an elliptic function. Just as
sin x and cos x play a basic role in the theory of periodic functions on R,
because of Fourier expansion, similarly the functions g (z) and g’(z) play a
fundamental role in the study of elliptic functions. But unlike in the real
case, we do not even need infinite series to express an arbitrary elliptic
function in terms of these two basic ones.

Proposition 8. &, = C(p, §"), i.e., any elliptic function for L is a rational
expression in (z; L) and §’(z; L). More precisely, given f(z)eé&,, there
exist two rational functions g(X), h(X) such that f(z)=g(p(2))+
' (2)h(p(2)).

Proor. If f(z) is an elliptic function for L, then so are the two even functions

[Q+f(=2) 4 f@-f=2)
2 20'(2)
Since f(z) is equal to the first of these functions plus g’(z) times the second,
to prove Proposmon 8 it suffices to prove

Proposition 9. The subfield & < &, of even elliptic functions for L is generated
by p(2), ie., & = C(p).

Proor. The idea of the proof is to cook up a function which has the samé‘

zeros and poles as f(z) using only functions of the form g (z) — u with u a
constant,
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The ratio of f(z) to such a function is an elhptxc function with no poles and
so must be a constant, by Proposition 3.

Let f(z) e 67 . Wefirst list the zeros and poles of f(z). But we must do thxs
carefully, in a special way. Let IT” be a fundamental parallelogram with two
sides removed: I = {aw, + bw,|0 <a < 1,0 < b < 1}. Then every point
in C differs by a lattice element from exactly one point in I1’; that is, IT" is
a set of coset representatives for the additive group of complex numbers
modulo the subgroup L. We will list zeros and poles in IT", omitting 0 from
our list (éven if it happens to be a zero or pole of f(z)). Each zero or pole
will be listed as many times as its multiplicity. However, only “‘half™ will
be listed; that is, they will be arranged in pairs, with only one taken from
each pair. We now give the details. We describe the method of listing zeros;
the method of listing poles is exactly analogous.

First suppose that aelIl’, a # 0, is a zero of f(z) which is not half of a
lattice point, i.e., @ # w/2, w,/2, or (w, + w,)/2. Let a*eIl’ be the point
“symmetric” to a4, i.e., @* = w, + w, — a if a is in the interior of IT", while
a* = @, —aora* = w, — aif ais on one of the two sides (see Fig. 1.9). If «
is a zero of order m, we claim that the symmetric point a* is also a zero of
order m. This follows from the double periodicity and the evenness of f(z).
Namely, we have f(a* — z) = f(—a —z) by double periodicity, and this is
equal to f(a + z) because f(z) is an even function. Thus, if f(a + 2) = a,,z" +
higher terms, it follows that f(a* + z) = a,,(—z)" + higher terms, i.e., a* is
a zero of order m.

Now suppose that ae Il is a zero of f(z) which is half of a lattice point;
for example, suppose that a = /2. In this case we claim that the order of
zero m is even. If fla+ z)=fGw, +z) = a,z" + higher terms, then
fGw, —2)=f(—3w, + 2) = fGw, + 2) by double periodicity and evenness.
Thus, a,,z" + higher terms = a,,(—z)™ + higher terms, and so m is even.

We are now ready to list the zeros and poles of f(z). Let {q;} be a list of
the zeros of f(z) in Il” which are not half-lattice points, each taken as many
times as the multiplicity of zero there, but only one taken from each pair.of
symmetrical zeros a, a*; in addition, if one of the three nonzero half-lattice -
points in IT" is a zero of (z), include it in the.list half as many times as its
multiplicity. Let {b;} be a list of the nonzero poles of f(z) in I1; counted in

. the same way as the zeros (i.e., “‘only half”” of them appear).
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Since all of the g; and b; are nonzero, the values ¢(a;) and g (b)) are finite,
and it makes sense to define the elliptic function

(e — pa)
10 =T(pe) - pb))

We claim that g(z) has the same zeros and poles as f(2) (counting multiplic-
ity), from which it will follow that f(z) = ¢ g(2) for some constant c. Since
g(2) is a rational function of p(z), this will complete the proof.

To prove this claim, we first examine nonzero points in IT". Since 0is the
only pole in the numerator or denominator of g(z), it follows that the
nonzero zeros of g(z) must come from the zeros of ©(2) — g(a;), while the
nonzero poles of g(z) must come from the zeros of p(z) — p(b). But we
know (see problems below) that g(z) — u (for constant u) has a double zero
at z = u if u is a half-lattice point, and otherwise has a pair of simple zeros
at u and the symmetric point «*. These are the only zeros of @(z) — uinI¥.
By our construction of the a; and b;, we see that g(z) and f(z) have the same
order of zero or pole everywhere in T, with the possible exception of the
point 0. So it merely remains to show that they have the same order of zero
or pole at 0. But this will follow automatically by Proposition 5. Namely,
choose « so that no lattice point and no zero or pole of f(z) or g(z) is on the
boundary of « + IT. Then o + IT will contain precisely one lattice point /L
We know that f(z) and g(z) have the same orders of zeros and poles every-
where in « + I with the possible exception of /. Let m, denote the order of
zero of f(z) at [ (m; is negative if there is a pole), and let m, denote the anal-
ogous order for g(z). Then

m, + (total of orders of zeros of f) — (total of orders of poles of )
= m, + (total of orders of zeros of g) — (total of orders of poles of g).

Since the corresponding terms in parentheses on both sides of the equality
are equal, we conclude that m, = m,. Thus, Proposition 5 tells us that when
we know that two elliptic functions have the same order of zero or pole
everywhere but possibly at one point in the fundamental parallelogram, then
that one point is carried along automatically. This concludes the proof of
Proposition 9. O

The proof of Propositions 8 and 9 was constructive, ie., it gives us a
prescription for expressing a given elliptic function in terms of g(z) once
we know its zeros and poles. Without doing any more work, for example,
we can immediately conclude that:

(1) the even elliptic function @'(2)? is a cubic polynomial in @(z) (because
@'(2) has a triple pole at 0 and three simple zeros, hence there are three
a’s and no b;’s); ~

(2) the even elliptic function g(Nz) (for any fixed positive integer N) is a
rational function in (2).
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Both of these facts will play a fundamental role in what follows. The first
tells us that the Weierstrass g-function satisfies a differential equation of a
very special type. This equation will give the connection with elliptic curves.
The second fact is the starting point for studying points of finite order on
elliptic curves. Both facts will be given a more precise form, and the connec-
tion with elliptic curves will be developed, in the sections that follow.

PROBLEMS

1. Prove that the lattice L = {mw, + nw,} and the lattice L = {mw + nw}} are the
same if and only if there is a 2 x 2 matrix 4 with integer entries and determinant
+1 such that @’ = 4w (where w denotes the column vector with entries w,, ;).
If the pairs w,, v, and @}, @} are each listed in clockwise order, show that det 4 =
+1.

2. Let C/L denote the quotient of the additive group of complex numbers by the
subgroup L = {mw, + nw,}. Then C/L is in one-to-one correspondence with the
fundamental parallelogram 1 with opposite sides glued together.

(a) Let C be the circle group (the unit circle in the complex plane). Give a continuous
group isomorphism from C/L to the product of C with itself.

(b) How many points of order N or a divisor of N are there in the group C/L?

(c) Show that the set of subgroups of prime order p in C/L is in one-to-one corre-
spondence with the points of Pép (where F, = Z/pZ). How many are there?

3. Lets=2, 3,4, ....Fixa positive integer N, and let f: Z x Z — C be any function
of period N, i.e., f(m + N, n)=f(m, n) and f(m, n + N) = f(m, n). Suppose that
£(0,0)= 0. If s =2, further suppose that X f(m, n) = 0, where the sum is over
0 < m, n < N, Define a function

_ Sf(m, n)
En 0D = 2. o, + noy
(a) Prove that this sum converges absolutely if s > 2 and conditionally if s =2
(in the latter case, take the sum over m and 7 in nondecreasing order of [mw, +
nw,).
(b) Express F,(w,, »,) in terms of the values of 9 (z; w;, w,) or a suitable derivative
evaluated at values of ze Il for which Nze L (see Problem 2(b)).

4. Show that for any fixed u, the elliptic function g(z) — u has exactly two zeros (or a

single double zero). Use the fact that @’(z) is odd to show that the zeros of p'(z)
are precisely w,/2, @,/2, and (@, + ®,)/2, and that the values ¢, = p(w,/2), ¢, =
@(w,/2), 3 = p((w, + w,)[2) are the values of u for which g (z) — « has a double
zero. Why do you know that e, ¢,, e; are distinct? Thus, the Weierstrass g-function
gives a two-to-one map from the torus (the fundamental parallelogram [T with
opposite sides glued together) to the Riemann sphere C U {o0} except over the four
“branch points” e,, ¢,, €3, 00, each of which has a single preimage in C/L.

5. Using the proof of Proposition 9, without doing any computations, what can you

say about how the second derivative g”(z) can be expressed in terms of @(z)?
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§6. Elliptic curves in Weierstrass form

As remarked at the end of the last section, from the proof of Proposition 9
we can immediately conclude that the square of p’(2) is equal to a cubic
polynomial in g(z). More precisely, we know that p’(z)* has a double zero
at w,/2, w,/2, and (w; + ®,)/2 (see Problem 4 of §5). Hence, these three
numbers are the ¢;’s, and we have

9'(@)? = Cp(2) — P(@,/D)(PE) — £(,/2)(P@) — p(01 + @2)/2))
= C(p(2) — e))(p(2) — e2)(9(2) — €3),

where C is some constant. It is easy to find C by comparing the coefficients
of the lowest power of z in the Laurent expansion at the origin. Recall that
¢(z) — z~% is continuous at the origin, as is p’(z) + 2z73. Thus, the leading
term on the left is (~2z~3)? = 4276, while on the right it is C(z"%)* = Cz™°.
We conclude that C = 4. That is, (z) satisfies the differential equation

0 (2 =f(p(z)), where f(x)=4(x —e;)(x — ex)(x — e3) ed[)g |

Notice that the cubic polynomial fhas distinct roots (see Problem 4 of §5).

We now give another independent derivation of the differential equation
for g(z) which uses only Proposition 3 from §4. Suppose that we can find a
cubic polynomial f(x) = ax® + bx? + cx + d such that the Laurent expansion
at 0 of the elliptic function f(g(z)) agrees with the Laurent expansion of
'(2)* through the negative powers of z. Then the difference p'(2)?* — fp2)
would be an elliptic function with no pole at zero, or in fact anywhere else
(since g (z) and @'(z) have a pole only at zero). By Proposition 3, this differ-
ence is a constant; and if we suitably choose d, the constant term in f(x),
we can make this constant zero.

To carry out this plan, we must expand ¢ (z) and $’(2)? near the origin.
Since both are even functions, only even powers of z will appear.

Let ¢ be the minimum absolute value of nonzero lattice points /. We shall
take r < 1, and assume that z is in the disc of radius rc about the origin.
For each nonzero /eL, we expand the term corresponding to / in the
definition (4.1) of p(z). We do this by differentiating the geometric series
1/(1 —x) =1+ x+ x? + - - and then substituting z// for x:

1 z ,z2  Z
T L4257 +35+45+

If we now subtract 1 from both sides, divide both sides by /%, and then
substitute in (4.1), we obtain

1 T, Lzt 2 z*?
6,)(z)=?+lezL2F-+3F"l-4'[—5+ +(k—‘l)T+ teel

1#0
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' We.claim that this double series is absolutely convergent for |z| < re,
in which case the following reversal of the order of summation will be
Jjustified : '
I
p() = h 3G,2% + 5Ggz* + 1Ggz® + - - -, (6.2)

where for & > 2 we denote

_ _ - 1
G, = G(L) = Gi(w,, wz);—;f,ZLl k= Zz oo, + no ) (6.3)
€ mne 1 2
1#0 not both 0

(notice that the G, are zero for odd %, since the term for / cancels the term
for —/; as we expect, only even powers of z occur in the expansion (6.2)).
To check the claim of absolute convergence of the double series, we write
the sum of the absolute values of the terms in the inner sum in the form
(recall: |z| < r|l}):

34, 5,

el (143 + 4 3o ) < 2L

| =¥’
and then use Lemma 2 from the proof of Proposition 6.

We now use (6.2) to compute the first few terms in the expansions of
#(2), 9(2)%, 9(2)°, p'(2), and p'(2)?, as follows:

2 2 2

0'@) = —;23 +6G,z + 206G,z + 42625 + - - - (6.4)
@) = f«, —'24642‘E — 80G, + (36GZ — 168Gg)z> + -1 (6.5)
0 @) = 214 +6G, + 10Ggz> + - - -; (6.6)
o) = 2—16 + 9G4;'z- + 156G, + 21Gy + 2762 + - (67)

Recall that we are interested in finding coefficients a, b, ¢, d of a cubic
S(x) = ax® + bx* + ¢x + d such that

92 = ap(2)® + bp(2)> + cp(2) + d,

and we saw that it suffices to show that both sides agree in their expansion
through the constant term. If we multiply equation (6.7) by a, equation (6.6)
by b, equation (6.2) by ¢, and then add them all to the constant d, and finally
equate the coefficients of 279, z7%, 272 and the constant term to the corre-
sponding coefficients in (6.5), we obtain successively:

a=4; b=0; —24G, = 4(9G,) + ¢; - —80Gs =4(15G,) + d.
Thus, ¢ = —60G,, d = — 140G;. It is traditional to denote
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9, = g2(L) 606G, = 6012;‘14;

1#0 - (6.8)
g;= ga(L)d:';; 140G, = 140’zL1'6.
1#0

We have thereby derived a second form for the differential equation (6.1):
'@ =f(p(), where f(x)=4x>—g,x—gyeClx]. (69)

Notice that if we were to continue comparing coefficients of higher powers
of z in the expansion of both sides of (6.9), we would obtain relations between
the various G, (see Problems 4-35 below).

The differential equation (6.9) has an elegant and basic geometric inter-
pretation. Suppose that we take the function from the torus C/L (i.e., the
fundamental parallelogram IT with opposite sides glued) to PZ defined by

2 (g(2), p'(2), 1) for z#0;
010, 1, 0).

The image of any nonzero point z of C/L is a point in the xy-plane (with
complex coordinates) whose x- and y-coordinates satisfy the relationship

2 = f(x) because of (6.9). Here f(x)eC[x] is a cubic polynomial with
distinct roots. Thus, every point z in C/L maps to a point on the elliptic
curve y? = f(x) in PZ. It is not hard to see that this map is a one-to-one
correspondence between C/L and the elliptic curve (including its point at
infinity). Namely, every x-value except for the roots of f(x) (and infinity)
has precisely two z’s such that p(z) = x (see Problem 4 of §5). The
y-coordinates y = (2) coming from these two z’s are the two square roots
of f(x) = f(g(2)). If, however, x happens to be a root of f(x), then there is
only one z value such that p(z) = x, and the corresponding y-coordinate is
y=p'(2)=0,s0 that again we are getting the solutions to y? = f(x) for our
given x.

Moreover, the map from C/L to our elliptic curve in P2 is analytic, meaning
that near any point of C/L it can be given by a triple of analytic functions.
Near non-lattice points of C the map is given by 2z (p(2), 9'(2), 1); and
near lattice points the map is given by z> (9 (2)/9'(2), 1, 1/9°(2)), which is
a triple of analytic functions near L.

We have proved the following proposition.

6.10)

Proposition 10. The map (6.10) is an analytic one-to-one correspondence .

between C/L and the elliptic curve y* = 4x*> — g,(L)x — g5(L) in P

One might be interested in how the inverse map from the elliptic curve
to C/L can be constructed. This can be done by taking path integrals of
dx[y = (4x* — g,x — g3) ¥?dx from a fixed starting point to 2 variable
endpoint. The resulting integral depends on the path, but only changes by
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Figure 1.10

a “period”, i.e., a lattice element, if we change the path. We hence obtain
a well-defined map to C/L. See the exercises below for more details.

We conclude this section with a few words about an algebraic picture
that is closely connected with the geometric setting of our elliptic curve.
Recall from Proposition 8 that any elliptic function (meromorphic function
on the torus C/L) is a rational expression in (z) and '(z). Under our
one-to-one correspondence in Proposition 10, such a function is carried over
to a rational expression in x and y on the elliptic curve in the xy-plane
(actually, in P2). Thus, the field C(x, y) of rationa! functions on the xy-plane,
when we restrict its elements to the elliptic curve y* = f(x), and then “pull
back” to the torus C/L by substituting x = @(2), y = $'(2), give us precisely
the elliptic functions &, . Since the restriction of y? is the same as the restric-
tion of f(x), the field of functions obtained by restricting the rational func-
tions in C(x, y) to the elliptic curve is the following quadratic extension of
C(x): CX)[Y]/(y* — (@x> — g, x — g3)). Algebraically speaking, we form
the quotient ring of C(x)[y] by the principal ideal corresponding to the
equation y? = f(x).

Geometrically, projection onto the x-coordinate gives us Fig. 1.10. Two
points on the elliptic curve map to one point on the projective line, except
at four points (the point at infinity and the three points where y = 0), where
the two “branches” are “pinched” together.

- In algebraic geometry, one lets the field F = C(x) correspond to the com-
plex line P, and the field K = C(x, y)/y* — (4x> — g,x — g3) correspond
to the elliptic curve in P2. The rings A = C[x] and B = C[x, y]/y* — f(x)
are the “rings of integers” in these fields. The maximal ideals in 4 are of
the form (x — a)A4; they are in one-to-one correspondence with aeC. 4
maximal ideal in B is of the form (x — a)B + (y — b)B (where b is 4 square
root of f(a)), and it corresponds to the point (a, b) on the elliptic curve.

lF:l?:(x-—a)B-{-(y——b)B b= Jfa)
(x-—cf)B+(y+b)B

1

P

L !
FoAdo(x—a4d
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The maximal ideal (x — a)4, when “lifted up” to the ring B,.is no longer
prime. That is, the ideal (x — a) B factors into the product of the two ideals:

(x—a)B=((x—a)B+(y—b)B)((x—a)B+ (y+ b)B).

The maximal ideal corresponding to the point a on the x-line splits into
two maximal ideals corresponding to two points on the elliptic curve. If it
so happens that b =0, i.e., a is a root of f(x), then both of the ideals are the
same, i.e., (x — a)B is the square of the ideal ((x — a)B + yB). In that case
we say that the ideal (x — a)4 “‘ramifies” in B. This happens at values a
of the x-coordinate which come from only one point (a, 0) on the elliptic
curve. Thus, the above algebraic diagram of fields, rings and ideals is an
exact mirror of the preceding geometric diagram.

We shall not go further than these ad hoc comments, since we shall not
be using algebra geometric techniques in which follows. For a systematic
introduction to algebraic geometry, see the textbooks by Shafarevich,
Mumford, or Hartshorne.

PROBLEMS

1. (a) Let L = Z[i] be the lattice of Gaussian integers. Show that g;(L) = 0 but that
g.(L) is a nonzero real number‘

(b) Let L = Z[w], where w = $(— 1 + i\/3), be the lattice of integers in the qua-
dratic imaginary field @(\/_—3)‘ Show that g,(L) = 0 but that g5(L) is a
nonzero real number.

(c) For any nonzero complex number ¢, let ¢L denote the lattice obtained by
multiplying all lattice elements by c. Show that g,(cL) = ¢"*g,(L),and gy(cL) =
¢ %g3(L).

(d) Prove that any elliptic curve y% = 4x> — g,x — g, with either g, or g, equal
to zero, is of the form y? = 4x* — g,(L)x — g5(L) for some lattice L. It can
be shown that any elliptic curve is of that form for some lattice L. See, for
example, [Whittaker & Watson 1958, §21.73]; also, we shall prove this much
later as a corollary in our treatment of modular forms.’

2. Recall that the discriminant of a polynomial f(x) = @ox" + a;x" ' + --- 4+ a,=
ao(x — e)))x — &) -(x —¢,) is ag ‘Tl j(e; — ¢)*. It is nonzero if and only if
the roots are distinct. Since it is a symmetric homogeneous polynomial of degree
n(n — 1) in the e}s, it can be written as a polynomial in the elementary symmetric
polynomials in the e/s, which are' (—1)‘a;/a,. Moreover, each monomial terin
I1; (a;/ao)™ has total “weight” m, + 2m, + - - - + nm, equal to n(n — 1). Applying
this to f(x) = 4x> — g,x — g3, we see that the discriminant is equal to a polynomial
in g,, g, of weight six, i.e., it must be of the form ag3 + Bg3. Find « and 8 by com-

puting 4%(e, — e,)*(e, — €;)* (e2 — e,)? directly in the case g, = 4, g3 =0 and the

case g, =0,g; =4.

3. Since the even elliptic function @”(z) has a quadruple pole at zero and no other
pole, you know in advance that it is ‘equal to a quadratic polynomial in @(2).
Find this polynomial in two ways: (a) comparing coefficients. of powers of z;
(b) differentiating ' = 49> — g, 9 — g5. Check that your answers agree.
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4. Use either the equation for go 2 or the equation for g” to prove that G, = 2G2.

S. Prove by induction that all G/'s can be expressed as polynomials in G, and G,
with rational coefficients, i.e., G, Q[G,, G¢]. We shall later derive this fact again
when we study modular forms (of which the G, turn out to be examples).

6. Let w, = it be purely imaginary, and let w, = n. Show that as f approaches infinity,
G,(it, m) approaches 2n~¥{(k), where {(s) is the Riemann zeta-function. Suppose
we know that {(2) = n%/6, {(4) = n*/90, {(6) = n°/945. Use Problem 4 to find
{(8). Use Problem 5 to show that n7*{(k) € Q for all positive even integers k.

7. Find the limit of g, and g, for the lattice L = {mit + nn} as  — o0.

8. Show that v = csc? z satisfies the differential equation v'2 = 4v*(v — 1), and that
the function

v=csclz—}%
satisfies the differential equation v’ = 4v® — %y — &. What is the discriminant
of the polynomial on the right? Now start thh the infinite product formula for
sin(nz), replace z by z/n, and take the logarithmic derivative and then the derivative
once again to obtain an infinite sum for csc? z. Then prove that

,llﬂ @(z;it, ) =csc? z — 4.

9. The purpose of this problem is to review the function z = log v for v complex,
in the process providing a “dry run” for the problems that follow.
(a) For v in a simply connected region of the complex plane that does not include
the origin, define a function z of v by:
"dt
Z= —I",
1
where the path from 1 to v is chosen arbitrarily, except that the same choice
is made for all points in the region. (In other words, fix any path from 1 to
Vg, and then to go to other v’s use.a path from v, to v that stays in the region.)
Call this function z = log v. Show that if a different path is chosen, the function
changes by a constant value in the “lattice” L = {2nim}; and that any lattice
element can be added to the function by a suitable change of path. (L is actually
only a lattice in the imaginary axis Ri, not a lattice in C.)
(b) Express dz/dv and dv/dz in terms of v.
(c) If the function v = €® is defined by the usual series, use part (b) to show that
e is the inverse function of z = log v.
) Show that the map e gives a one-to-one correspondence between C/L and
— {0}. Under this one-to-one correspondence, the additive group law in
C/L becomes what group law in C — {0}?

10. Let L be a fixed lattice, set g, = g,(L), g3 = g3(L), 9(2) = @(z; L). Let u = f(2)
be a function on a connected open region R < C which satisfies the differential
equation #'? = 4u® — g,u — g,. Prove that u = p(z + «) for some constant «.

1. Let L= {mw, + nw;} be a fixed lattice, and set g, = g,(L), g5 = gs(L), () =
#(z; L). Let R, be an unbounded simply connected open region in the complex
plane which does not contain the roots ey, e,, 3 of the cubic 4x> — g,x — g,.
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Figure 1.11
For ue R,, define a function z = g(u) by

w VA4 ‘”gzt’j‘ga,

where a fixed branch of the square root is chosen as ¢ varies in R,. Note that the

integral converges and is independent of the path in R, from u to oo, since R, is

simply connected. The function z = g(u) can be analytically continued by letting
R, be a simply connected region in C — {e;, €;, e5} which overlaps with R;. If
u€R,, then choose u € R, NR,, and set z=g(u)=g(u;) + fur (4° — go1 —
g5)""2d1. This definition clearly does not depend on our choice of u; € R, " R; or
our path from u to 4, in R,. Continuing in this way, we obtain an analytic function
which is multivalued, because our sequence of regions R;, R;, R;, ... can wind
around e,, e;, OT €3.

(a) Express (dz/du)® and (du/dz)® in terms of u.

(b) Show that u = @(z). In particular, when we wind around e,, e,, or e, the
value of z can only change by something in L. Thus, z = g(«) is well defined
as an element in C/L for ueC — {e;, e,, e;}. The function z = g(x) then
extends by continuity to ey, €;, €3.

(¢) Let C, be the path in the complex u-plane from e, to oo that is traced by u =
©(2) as z goes from w,/2 to 0 along the side of IT (see Fig. 1.11). Show that
fc, @% — gyt — g3)"2dt = — w,/2 for a'suitable branch of the square root.

(d) Let C, be the path that goes from co to e, along C,, winds once around e,
and then returns along C, to co. Take the same branch of the square root as
in part (c), and show that [¢_(4t° — g,1 — g3)dt = w,.

() Describe how the function z = g(u) can be made to give all preimages of u
under & = p(2).

(a) Prove that all of the roots e, e,, e3 of 4x® — g,x — g, are real if and only
if g, and g, are real and A = g3 — 27¢3 > 0.

(b) Suppose that the conditions in part (a) are met, and we order the ¢; so that
e, > e > e,. Show that we can choose the periods of L to be given by

1 N dt 1 © dt
S, =1 —_——— and -, = e
2 —w Vg3 + 9ot —4° 2 e VA — g3t ~g;

where we take the positive branch of the square root, and integrate along the
real axis.

{c) With these assumptions about the location of the ¢; on the real axis, describe
how to change the path of integration and the branch of the square root in
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Problem 11 so as to get the other values of z for which u = @(z). namely
+z + mw, + nw,.

13. Suppose that g, = 4n?, g =0. Take ¢;, €;, €3 50 that e, > e, > ¢,. What are
€, €,, ¢ in this case? Show that w, = iw,, i.e., the lattice L is the Gaussian integer
lattice expanded by a factor of w,. Show that as z travels along the straight line
from w,/2 to w,;/2 + @, the point (x, ) = (p(2), '()) moves around the real
points of the elliptic curve y = 4(x* — n’x) between —n and 0; and as = travels
along the straight line from 0 to w, the point (x, y) = (9(2), p'(2)) travels through
all the real points of this elliptic curve which are to the right of (n, 0). Think of
the “open” appearance of the latter path to be an optical illusion: the two ends are

really “tied together” at the point at infinity (0, 1, 0). ’
1 n i
14. (a) Show that j‘ _ -%-5---(n—l>forn=0, 1,2,....

1
o JIA=0 n!2
o

(b) Under the conditions of Problem 12, with e, > ¢3 > ¢, set A= ‘—)—*’—_——;—‘E(O. 1.
270

2 5

V4

Derive the formula:

PR j‘ dt
2 Jer— ey Jo JIT=0D(T =)

(c) Derive the formula w, = n(e, — e,)""?F(2), where

i1 35 1\ 4"

The function F(4) is called a “hypergeometric series™. )
(d) Show that the hypergeometric series in part (c) satisfies the differential equa-
tion: A(1 — A)F"(A) + (1 = 2D)F (A) — 3F(A) = 0.

§7. The addition law

In the last section we showed how the Weierstrass g-function gives a
correspondence between the points of C/L and the points on the elliptic
curve y* = f(x) = 4x> — g,(L)x — g5(L) in P. We have an obvious addition
law for points in C/L, obtained from ordinary addition of complex numbers
by dividing by the additive subgroup L, i.e., ordinary addition “modulo L.
This is the two-dimensional analog of **addition modulo one™ in the group
R/Z. .
We can use the correspondence between C/L and the elliptic curve to
carry over the addition law to the points on the elliptic curve. That is, to
add two points Py(x,, y,) and P, = (x,, ¥,), by definition what we do is
go back to the z-plane, find z; and z, such that P, = (¢(z,). ¢'(z)) and
P, = (p(z2), 9'(22)),and thenset Py + P, = ({2, + 23), (2, + z,)). This
is just a case of the general principle: whenever we have a one-to-one corre-
spondence between elements of a commutative group and elements of some
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other ‘set, we can use this correspondence to define a commutative group
law on that other set.
But the remarkable thing about the addition law we obtain in this way is

.that (1) there is a simple geometric interpretation of “adding” the points on

the elliptic curve, and (2) the coordinates of P, + P, can be expressed
directly in terms of x,, x,, y,, ¥, by rather simple rational functions. The
purpose of this section is to show how this is.done. -

We first prove a general lemma about elliptic functions.

Lemma. Let f(z)eé,. Let T1 = {aw, + bw,|0 < a, b < 1} be a fundamental
parallelogram for the lattice L, and choose o so that f(z) has no zeros or poles
on the boundary of o + I1. Let {a;} be the zeros of f(2)-in o + I, each repeated
as many times as its multiplicity, and let {b;} be the poles, each occurring as
many times as its multiplicity. Then Za; — ZbeL.

ProoF. Recall that the function f'(z)/f(z) has poles at the zeros and poles
of f(z), and its expansion near a zero a of order m is m/(z —a) + - - - (and
near a pole b of order —m the expansion is —m/(z — b) + «--). Then the
function zf"(z)/f(z) has the same poles, but, writing z = d +(z — a), we see
that the expansion starts out am/(z — a). We conclude that Xq; — X b; is
the sum of the residues of z/"(2)/f(2) inside o + II. Let C be the boundary
of a + I1. By the residue theorem,

‘ zf (z)
,Za‘ —Xh= 2mi J‘ f(z)

We first take the integral over the pair of opposxte'sxdes from a to a 4+ w,

and from o + w; to a + w, + wz' (see Fig. 1.12). This part is equal to

‘“1_ atw,y f(Z) a+a)l+w2 f(z)
i U “Fy “ j R © dz)

&

1 (J‘a-l-wz f(z)dz B j‘aﬂoz (z + wl)f (Z)dz> j

~2m f(2) Cf@

] :x+m2/(z)
- w‘ij f(z)
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Now make the change of variables v = f(z), so that f'(z)dz/f(2) = du/u. Lef
C, be the closed path from f(a) to f(a + @,) = f(o) traced byu= f(z) asz
goes from a to @ + w,. Then '

. a+w2f(z)d du’
2m’ 1@ 2m c, u’

and this is some mteger n, namely the number of times. the closed path C,

- winds around the origin (counterclockwise). Thus, we obtain — w, # for this

part of our original integral. In the same way, we find that the integral over
the remaining two sides of C is equal to —w,m for some integer m. Thus,"
Za; — Xby= —nw,; — mw, €L, as desired. This proves the lemma. u]

We are now ready to derive the geometrical procedure for adding two
points on the elliptic curve y* = f(x) = x> — g,(L)x — g5(L). For z in C/L,
let P, be the corresponding point P, = (p(2), 9'(2), 1), P, = (0, 1, 0) on the
elliptic curve. Suppose we want to add P, =(xy,y;) to P, =(x,,y,) to
obtain the sum P, .., = (x3,y;). We would like to know how to go from
the two points to their sum directly, without tracing the points back to the
z-plane.

We first treat some special cases. The additive identity is, of course, the
image of z = 0. Let 0 denote the point at infinity (0, 1, 0), i.e., the additive
identity of our group of points. The addition is trivial if one of the points
is 0, i.e., if z; or z, is zero. Next, suppose that P, and P, have the same

‘x~coordmate but are not the same point. This means that Xy = X1, Y= =Y.

In this case z, = —z;, because only “symmetric” values of z (values which
are the negatives of each other modulo the lattice L) can have the same
go-value In 'this case, P, + P, = F, =0, i.e., the two points are additive
inverse to one another. Speakmg geometncally, we say that two points of
the curve which are on the same vertical line have sum 0. We further note
that in the spec1al situation of a point P = P,, on the x-axis, we have
¥, = —y,; =0, and it is easy to check that we still have P, +P,=2P, =0,

We have proved:

Proposition 11. The additive inverse of (x, y) is (x, —).

Given two points P = P, =(x;,y;)and P, = P, =(x,,y,)on the elliptic
curve y* = 4x> — g,x — g, (nelther the point at mﬁmty 0), there is a line
I=PP, Jommg them. If P, = P,, we take / to be the tangent line to the
elliptic curve at P;. If / is a vertical line, then we saw that P, + P, =0.
Suppose that / is not a vertical line, and we want to find P+ P,=Py =
(x3, ¥3)- Our basic claim is that —P; = (x5, — y3) is the thll‘d point of
intersection of the elliptic curve with /.

‘Write the .equation of / = P, P, in the form y = mx.+ b. A pomt (x,y) on
1is on the elliptic curve if and on]y if (mx + b)* = f(x) = 4x> —g,x — g5,

: ’that is, if and only 1fx is a re~ i the cubic f(x) — (mx + b)>. Thxs cubic
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has three roots, each of which gives a point of intersection. If x is a double
root or triple root, then / intersects the curve with multiplicity two or three - <
“at the point (x, y) (see Problem 6 of §1.3). In any case, the total number of .
points of intersection (counting multiplicity) is three.

Notice that vertical lines also intersect the curve in three points, including

the point at infinity 0; and the line at infinity has a triple intersection at 0
(see Problem 7 of §1.3). Thus, any line in P2 intersects the curve in three
points. This is a special case of o :
Bezout’s Theorem. Let F(x, y, z) and G(x, y, z) be homogeneous polynomials
of degree m and n, respectively, over an algebraically closed field K. Suppose
that F and G have no common polynomial factor. Then the curves in PE defined
by F and G have mn points of intersection, counting multiplicities.

For a more detailed discussion of multiplicity of intersection and a proof
of Bezout’s theorem, see, for example, Walker’s book an algebraic curves
[Walker 1978]. : _

In our case F(x,y,z)=y*2—4x> +g,xz* +¢;2° and G(x,y,2) =
y—mx — bz. .

Proposition 12. [f P, + P, = Py, then — Py is the third point of intersection
of 1= P, P, with the elliptic curve. If Py =P, then by P,P, we mean the
tangent line at P;. '

PrOOF. We have already treated the case when P, or P, is the point at infinity
0, and when P, = — P,. So suppose that / = P, P, has the form y = mx + b.
Let Py =P, , P, = F,,. To say that a point P, = (9(2), ¢’(2)) is on / means
that @'(z) = mg(z) + b. The elliptic function '(z) — mp(z) — b has three
poles and hence three zeros in C/L. Both z, and z, are zeros. According to
the lemma proved above, the sum of the three zeros and three poles is equal
to zero modulo the lattice L. But the three poles are all at zero (where 0/(2)
has a triple pole); thus, the third zero is —(z, + z,) modulo the lattice.
Hence, the third point of intersection of / with the curve is P_; 4., = —F;,
as claimed. ‘ o
The argument in the last paragraph is rigorous only if the three points
of intersection of / with the elliptic curve are distinct, in which case a zero
of ©'(z) — mp(z) — b corresponds, exactly to a point of intersection F;.
Otherwise, we must show that a double or triple zero of the elliptic function
always corresponds to a double or triple intersection, respectively, of -
with the curve. That is, we must show that the two_meanings of the term
“multiplicity” agree: multiplicity of zero of the elliptic function of the
variable z, and multiplicity of intersection in the xy-plane. ' S
Let z,, z,, —2z3 be the three zeros of p'(z) — mgp(z) — b, listed as many

times as their multiplicity. Note that none of these three points is the negative
of another one, since / is not a vertical line. Since —z,, —z,, z; are the three
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~zeros of ©'(2) +mp(z) + b, it follows that +z,, +z,, +z, are the six
" zeros of 9'(2)> — (mgp(2) + b)* = f(p(2)) — (mp(2) + b)* = 4(p(2) — x,)
(p(@) — x,)(p(z) — x3), where x,, x,, x5 are the root$ of f(x) — (mx + b)*.
If, say, @(z,) = x,, then the multiplicity of x, depends upon the number

Figure 1.13.

" of +z,, +z, which equal +2z,. But this is precisely the number of z,, —z;

which equal z, . Hence “multiplicity” has the same meaning in both cases.
This concludes the proof of Proposition 12. o

Proposition 12 gives us Fig. 1.13, which illustrates the group of real points
on the elliptic curve y* = x* — x. To add two points P; and P,, we draw the
line joining them, find the third point of intersection of that line with the
curve, and then take the symmetric point on the other side of the x-axis.

It would have been possible to define the group law in this geometrical
manner in the first place, and prove directly that the axioms of an abelian
group are satisfied. The hardest part would have been the associative law,
which would have necessitated a deeper investigation of intersections of
curves. In turns out that there is some flexibility in defining the group law.
For example, any one of the eight points of inflection besides the point at
infinity could equally well have been chosen as the identity. For details of
this alternate approach, see [Walker 1978]. -

One disadvantage of our approach using g (z) is that a priori it only applies

to elliptic curves of the form y? = 4x® — g,(L)x — g,(L) or curves that can
be transformed to that form by a linear change of variables. (Note that the
‘geometrical deseription of the.group law will still give an abelian group law

. ~after a linear change of variables.) In actual fact, as was mentioned earlier
~ . and will be proved later, any elliptic curve over the. complex numbers can

be transformed to the Weierstrass form for some lattice L. We already know
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that our favorite example y? » =x3—n’x eorresponds tof'a Irrulliple' of the

Gaussian integer lattice. In the exercises for this section and the next, we '
shall allow ourselves to use the fact that the group law works lor any elhptrc

curve.
It is not hard to translate this geometrrcal procedure into formulas
expressing the coordinates (x3, y3) of the sum of P, =(x,,y,) and P, =

(x5, y,) in terms of x,, X5, ¥y, ¥, and the coefl“ cients of the equatxon of the“ ‘
elliptic curve. Although strictly speakmg, our derivation was for elliptic

curves in the form y? = f(x) = 4x> — g,(L)x — gs(L) for'some lattlce L, the
procedure gives an abelian group law for any elhptlc curve y* = f(x) as

remarked above. So let us take f(x) =ax® + bx* + ¢x + de C[x] to be any .

cubic with distinct roots.
In what follows, we shall assume that neither Pl nor P, is the point at

infinity 0, and that P, # —P,. Then the line through P, and P, (the tangent

line at P, if P, = Pz) can be written in the form y = mx + f, wheré m =
W, —y)/(x; — x,) if Py # P,and m= dy/a’x[(,‘pyl if P, = P,. In the latter

case we can express m in terms of x, and y; by rmphculy differentiating

y? = f(x); we find that m =f'(x,)/2y,. In both cases the y-intercept rs‘

B=y, —mx,.

Then x5, the x-coordinate of the sum, is the third root of the cublc

f(x) — (mx + B)?, two of whose roots are Xy, %. Since the sum of the three
roots is equal to minus the coefficient of x* divided by the leading coefficient,

we have: x, + x, + x3 = —(b — m?)/a, and hence:
—— 2 . s
Xy = —X, ~x2_§v+£<%j—_%) , if P #P; .1
xy= =%, — 041 (f(x*)> it P=P, (12
2y, : :

The y-coordinate y, is the negative of the value y = mx; + B, i.e.,

y3 = ""y]_ + m(x'l — x3), : (7.3)
where x, is given by (7.1) and (7.2), and ‘
m=(yz—yl)/(x2—xr)_wif P, # P,; ‘
: m=f(x)2y, if P =P, .

If our elliptic curve is in Weierstrass form y?=4x3~ g,x — g5, then
we have a=4, b=0, and f(x,) = 12x} — g, in the addltlon formulas
(7.D)-(7.4).

In principle, we could have srmply defined the group law by means of .

these formulas, and then verified algebralcally that the axioms of a commu-

tative group are satisfied. The hardest axiom to verify would be assocratlvxty -
Tedious as this procedure would be, it would h- ¢ key advantage over
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either the complex-analytic procedure. (usmg 5o(z)) or.the geometrical pro-
cedure. Namely, we would never have to use the fact that our field K over
which the elliptic curve is defined is the complex numbers, or even that it has
characteristic zero. That is, we would find that our formulas, which make
sense over any field K of characterrstrc not equal t0 2, gwe an abehan group '
law. That is, if y* = f(x) = ax® + bx* + cx + deK[x] is the equation of
an elliptic curve over K, and if we define f'(x) = 3ax? + 2bx + ¢, then any
two points having coordinates in some extension of K can be added using
the formulas (7.1)-(7.4). We shall make use of this fact in what follows,
even though, strictly speaking, we have not gone through the tedious purely
algebraic verification of the group laws.

PROBLEMS

1. Let L 'R be the -additive subgroup {mw} of multiples of a fixed nonzero real
number w. Then the function zr(cos(2nz/w), sin(2nz/w)) gives a one-to-onc
analytic map of R/L onto the curve x2 + y* = | in the real xy-plane. Show that
ordinary addition in R/L carries over to a rational (actually polynomial) law for
“adding” two points (x,, y,) and (x,, ;) on the unit circle; that is, the coordinates
of the “sum” are polynomials in x|, x,, y;, ¥,. Thus, the rational addition law on
an elliptic curve can be thought of as a generalization of the formulas for the sine
and cosine of the sum of two angles.

2. (a) Srmphfy the expressron for the x-coordinate of 2P in the case of the elliptic

/ curve y2 = x3 — n2x.

(b) Let X, Y,Zbea ratronal rrght mangle with area n. Let P be the correspondmg
point on the curve y? = x> — n?x constructed in the text in §1.2. Let Q be the
point constructed in Problem 2 of §1.2. Show that P = 20.

(©) Prove that ll' P is a point not of order 2 with rational coordinates on the curve
y* = x> — n’x, then the x-coordinate of 2P is the square of a rational number
having even denominator. For example, the point Q = ((41/7)%, 720-41/7%)
on the curve y* = x3 — 31%x is not equal to twice a point P having rational
coordinates. (In this problem, recall: n is always squarefree.)

3. Describe geometrically: (a) the four points of order two on an elliptic curve; (b)
- the nine points of order three; (c) how to find the twelve points of order four which
are not of order two; (d) what the associative law of addition says about a certain

- configuration of lines joining points on the elliptic curve (draw a picture).

4. (a) How many points of inflection are there on an elliptic curve besides the point
at infinity? Notice that they occur in symmetnc palrs Find an equatron for
» their x-coordinates. i
(b) In the case of the elliptic curve’y = x%— n’x find an explicit formula for
these x-coordinates Show that they are-never rational (for any n). -

5. Givenapoint Q onan elhptrc curve, how many pomts P are there suchthat2P = Q7
<« Describe geometncally how to find them '

‘6. Show that if K i 1s any; subfield of C: contammg g, and g3, then the points on.the - |
'-:felhptrc curve y =4x3 —g,x — g; whose coordirates are rn K forma subgroup‘
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of the group of allﬁpoints‘ More generally, show that this is true for the elliptic
curve y? = f(x) if f(x)e K[x]- : : o :

7. Consider the subgroup of all points on y* = x* — nx with real coordinates. How
many points in this subgroup are of order 2? 3? 47 Describe geometrically where
these points are located.

8. Same as Problem 7 for the elliptic curve y? = x* — @, aeR.

9. If y* = f(x) is an elliptic curve in which f(x) has real coefficients, show that the
group of points with real coordinates is isomorphic to (a) R/Z if f(x) has only
one real root; (b) R/Z x Z/2Z if f(x) has three real roots.

10. Letting a approach zero in Problem 8, show that for the curve y? = x* the same
geometric procedure for finding P, + P, as for elliptic curves makes the smooth
points of the curve (ie., P # (0, 0), but including the point at infinity) into an
abelian group. Show that the map which takes P = (x, y) to x/y (and takes the
point at infinity to zero) gives an isomorphism with the additive group of complex
numbers. This is called “‘additive degeneracy” of an elliptic curve. One way to
think of this is to imagine both @, and w, approaching infinity (in different direc-
tions). Then g, and g, both approach zero, so the equation of the corresponding
elliptic curve approaches y* = 4x>. Meanwhile, the additive group C/L, where
L = {mw, + nw,}, approaches the additive group C, i.., the fundamental par-
allelogram becomes all of C.

11. Let a — 0 in the elliptic curve y? = (x* ~ @)(x + 1). Show that for the curve =
x3(x + 1) the same geometric procedure for finding P; + P, as for elliptic curves
makes the smooth points of the curve into an abelian group. Show that the map
which takes P =(x, y) to (y — x)/(y + x) (and takes the point at infinity to 1)
gives an isomorphism with the multiplicative group C* of nonzero complex num-
‘bers. This is called “multiplicative degeneracy” of an elliptic curve. Draw the
graph of the real points of y* = x*(x + 1), and show where the various sections
go under the isomorphism with C*. One way to think of multiplicative degeneracy
is to make the linear change of variables y+> 4y, x> —x — }, so that the equation
becomes y? = 4x* — $x — £ (compare with Problem 8 of §1.6). So we are dealing
with the limit as ¢ approaches infinity of the group C/{mit + nn}, ie., with the
vertical strip C/{nn} (rather, a cylinder, since opposite sides are glued together),
and this is isomorphic to C* under the map zi— ¢, ’

§8. Points of finite order
In any group, there is a basic distinction between elemenfs of finite order

and elements of infinite order. In an abelian group, the set of clem’erits of
finite order form a subgroup, called the “torsion subgroup”. In the case of

the group of points in P2 on the elliptic curve y* = f(x), we immediately see
that a point P, = (x, y) has finite order if and only if Nze L for some N, -
i.., if and only if z is a rational linear combination of w, and «,. In that h
case, the least such N (which is the least common denominator of the

coefficients of o, and w,) is-the exact order of ;. Under the isomorphism -

P
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from R/Z x R/Z to the elliptic curve given by (4, b)Y Py, 1pe, 1t IS the
image of Q/Z x @/Z which is the torsion subgroup of the elliptic curve. '
This situation is the two-dimensional analog of the circle group, whose -
torsion subgroup is precisely the group of all roots of unity, i.c., all o2
for ze Q/Z. Just as the cyclotomic fields—the field extensions of Q generated
by the roots of unity—are central to algebraic number theory, we would
expect that the fields obtained by adjoining the coordinates of points
P = (x, y) of order N on an elliptic curve should have interesting special
properties. We shall soon see that these coordinates are algebraic (if the
coefficients of f(x) are). This analogy between cyclotomic fields and fields
formed from points of finite order on elliptic curves is actually much deeper
than one might have guessed. In fact, a major area of research in algebraic
number theory today consists in finding and proving analogs for such fields
of the rich results one has for cyclotomic fields. ‘
‘Let N be a fixed positive integer. Let f(x)=ax®+bx*+cx+d=
a(x — e,)(x — €,)(x — e3) be a cubic polynomial with coefficients in a field
K of characteristic #2 and with distinct roots (perhaps in some extension
of K). We are interested in describing the coordinates of the points of order
N (i.e., exact order a divisor of N) on the elliptic curve y? = f(x), where
these coordinates may lie in an extension of K. If N = 2, the points of order
N are the point at infinity 0 and (e;, 0), i = 1, 2, 3. Now suppose that N > 2.
If N is odd, by a “nontrivial” point of order N we mean a point P # 0 such
that NP = 0. If N is even, by a “nontrivial”” point of order N we.mean a
point P such that NP = 0 but 2P # 0.

Proposition 13. Let K’ be any field extension of K (not necessarily algebraic),
and let 6: K’ — 6K’ be any field isomorphism which leaves fixed all elements
of K. Let PePZ be a point of exact order N on the elliptic curve y* = f(x),
where f(x)e K[x]. Then oP has exact order N (where for P = (x.y.2)€ Pi.

— 2
we denote oP = (ox, oy, 6z)€ Pry).

PROOF. It follows from the addition formulas that P, + 6P, =a(P, + P,).
and hence N(cP) = 6(NP) = ¢0 = 0 (since o(0, 1, 0) = (0, 1, 0)). Hence aP
has order N. It must have exact order N, since if N'gP =0, we would have
o(N'P) =0 = (0, 1, 0), and hence N'P = 0. This proves the proposition. O -

Proposition 14. In the situation of Proposition 13, with K a subfield of C, let
Ky < C denote the field obtained by adjoining to K the x- and y-coordinates
of all points of order N. Let K} denote the field obtained by adjoining just
their x-coordinates. Then both Ky and Ky are finite galois extensions of K.

ProoF. In each case Ky and Ky, we are adjoining a finite set of complex -
numbers which are pemuﬁed by any automorphism of C which fixes K. -
This immediately implies the proposition. ) Co

o As an exéfhpl.e, if N = 2, then K, = k; is the splitting field of f(x) over K. -
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Recall that the group of points of order Non an elliptic curve in PZ is

isomorphic to (Z/NZ) x (Z|NZ). Because any oeGal(Ky/K) respects addi-
tion of points, i.e., 6(P, + P,) = 6P, + 0P, 1t follows that each’ a gives an
invertible linear map of (Z/NZ)* to itself.

If R is any commutative ring, we let GL,(R) denote’ the group (under
matrix multiplication) of all n x n invertible matrices with entries in R. Here
invertibility of a matrix 4 is equivalent to det A€ R¥, where R* is the
multiplicative group of invertible elements of the ring. For example

(1) GL,(R) = R*;
@ GL,(ZINZ) = {C ®la, b, ¢, deZJNZ, ad — bee @/NT)*}.

It is easy to construct a natural one-to-one correspondence between invertible
linear maps R" — R" and elements of GL,(R). There is no difference with
the more familiar case when R is a field.

In our situation of points of order N on an elliptic curve, we have seen
that Gal(Ky/K) is isomorphic to a subgroup of the group of all invertible
linear maps (ZINZ)?* - (Z/NZ)*. Thus, any o€ Gal(Ky/K) corresponds to
a matrix (¢ 2)e GL,(Z/NZ). The matrix entries can be found by writing

aP, @yN = Paw,/N+m2/N= oP, w,/N = wa,/N+a¢o2/N

Notice that this is a direct generalization of the sxtuatxon with the
N-th cyclotomic field Qy m@(\[ ). Recall that Gal(Qy/Q) = (Z/NZ)* =

GL,(Z|NZ), with the element a which corresponds to ¢ determined by
o.(e2m'/N) — eZm’a/N‘
But one difference in our two-dimensional case of division points on elliptic

curves is that, in general, Gal(Ky/K) - GL,(Z/NZ) is only an injection, not
an isomorphism. '

In the case K < C, say K = Q(g,, g3), where y* = f(x) = 4x> — g,x — g3 k

is in Weierstrass form, we shall now use the g-function to determine the
polynomial whose roots are the x-coordinates of the points of order N. That
is, K5 will be the splitting field of such a polynomial.

We first construct an elliptic function f,,(z) whose zeros are precisely the
nonzero values of z such that £, is a point of order N. We follow the prescrip-

tion in the proof of Proposition 9 of §1.5. If ue C/L is a point of order N, -
then so is the symmetric point —u (which we denoted u* when we were

thinking in terms of points in a fundamental parallelogram). We consider
two cases:

-(i) N is odd. Then the points u and —u are always distinct modulo L. In §

other words, # cannot be w,/2, w,/2 or (w; + wy)/2ifu has odd order N
We define

SO=NIE@-e@, 6D

;
i
¥
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where the product is_taken over nonzero ueC/L such that Nue L, with
one u taken from each pair u, —u. Then fy(z) = Fy(¢(2)), where Fy(x)€
C[x] is a polynomial of degree (N 2 — 1)/2. The even elliptic function
~ fy(z) has N* — 1 simple zeros and a single polc at 0 of order N 21
" TIts leading term at z = 0-is N/zV" 7L
(11) N is even. Now let u range over ueC/L such that NueL but u is not of
order 2; i.e., u # 0, w,/2, 0,/2, (w; + w,)/2. Define f+(2) by the product
in (8.1). Then fy(z) = Fy(@(2)), where FN(x)eC[r] is a polynomial of
degree (N? — 4)/2. The even elliptic function fu(2) has N2 — 4 simple
zeros and a smgle pok at 0 of order N2 — 4. Its leading term atz = 0 is
N/ZN 4 '

If N is odd, the function fy(z) has the property that
A*=N Tl (@) - pw).

. 0#ueC/L,NueL
If N is even, then the function (@) @%p'(z) /v(2) has the property that
7@ =40’ @) /n(@)?
= N2(p(2) — e,)(p(2) — e2)((2) — €3) [1 (9(2) — pW)

ueC/L,Nue L,2u¢ L
=N ]I (0@ - pW).

O#ueC/L,NueL

" We see that a point (x, y) = (¢(2), ¢’(2)) has odd order N if and only if
Fy(x) = 0. It has even order N if and only if either y = 0 (i.e., it is a point of
order 2) or else Fy(x) = ‘

Because of Propositions 13 and 14, we know that any automorphism of
C fixing K = Q(g,, g;) permutes the roots of Fy. Hence, the coefficients of.
Fy are in K = Q(g,, g3)-

If we started with an elliptic curve not in Weierstrass form, say y?
f(x) = ax® + bx* + cx + d, and if we wanted to avoid using the - functnon
then we could repeatedly apply the addition formulas (7.1)—(7.4) to compute
the rational function of x and y which is the x-coordinate of NP, where

= (x, y). We would simplify algebraically as we go, making use of the
relation y? = f(x), and would end up with an expression in the denominator
which vanishes if and only if NP is the point at infinity, i.e., if and only if
P has order N (recall: “order N”” means “‘exact order N or a-divisor of N™’).

"What type of an expression would we have to get in the denominator of -
the x-coordinate -of NP? Suppose' for example, that N is odd. Then' this
denominator would be an expressxon in K[x, y] (with y occurring at most to
the first power), where K = Q(a, b, ¢, d), which vanishes if and only if x is"
one of the (N ? — 1)/2 values of x-coordinates of nontrivial points of order N.:
Thus, the expression must be a polynomtal in x alone with (N2 — 1)/2 roots.
Slmllarly, ‘we ﬁnd that when N is cven, this. denommator has the forin
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y - (polynomial im x alone), where the polynomial in"K{x] has (N 2—4)2
roots. : :

It is important to note that the algebraic procedure described in the last
two paragraphs applies for any elliptic curve y? = f(x) over any field K of
characteristic s 2, not only over subfields of the complex numbers. Thus,
for any K we end up with an expression in the denominator of the x-
coordinate of NP that vanishes for at most N2 — 1 values of (x, y).

For a general field X, however, we do not necessarily get exactly N2 — 1
nontrivial points of order N. Of course, if K is not algebraically closed, the
coordinates of points of order N may lie only in some extension of K.
Moreover. if K has characteristic p, then there might be fewer points of order
N for another reason: the leading coefficient of the expression in the denom-
inator vanishes modulo p, and so the degree of that polynomial drops. We
shall soon see examples where there are fewer than N 2 points of order N
even if we allow coordinates in K*#¢!,

This discussion has led to the following proposition.

Proposition 15. Let y* = f(x) be an elliptic curve over any ﬁeld Kof characteris-
tic not equal to 2. Then there are at most N 2 points of order N over any exten-
sion K’ of K.

Now let us turn our attention briefly to the case of K a finite field, in
order to illustrate one application of Proposition 15. We shall later return
to elliptic curves over finite fields in more detail.

Since there are only finitely many points in Pfq (namely, ¢*> + ¢ + 1),
there are certainly only finitely many F,-points on an elliptic curve y? = f(x),
where f(x)e F,[x]. So the group of F,-points is a finite abelian group.

By the “type” of a finite abelian group, we mean its expression as a
product of cyclic groups of prime power order. We list the orders of all
of the cyclic groups that appear in the form: 2%, 282 2L, 3%, 3P 3%

..., 5%, 5fs ... But Proposition I5 implies that only certain types can

occur in- the case of the group of F;-points on y* = f(x). Namely, for each
prime / there are at most two /-th power components 1#, 11 since otherwise

we would have more than /2 points of ordér /. And of course [t*#imust equal

the power of / dividing the order of the group. -

As an example of how this works, let us consider the elliptic curve yr=
x* — n?x over K = F, (the finite field of ¢ = p/ elements), where we must
assume that p does not divide 2n. In the case when ¢ =3 (mod4), it is
particularly easy to count the number of F -points.

g + 1 F-points on the elliptic curve y* = x* ~ n*x.

ProoF. First, there are four points of order 2: the point_ at infinity, (0, 0), -

and (£n, 0). We now count all pairs (x, y) where x # 0, n, ént We arrange

Proposition 16. Let g = p’, p{ 2n. Suppose that q = 3 (mod 4). Then there are

e,

-
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-~ these ¢ — 3 x’s in pairs {x, —x}. Since f(x) = x* — n’x is an odd function, .

and — 1 is not a square in [, (here’s where we use the assumption that ¢ = 3
(mod 4)), it follows that exactly one of the two elements f(x) and f(—x) =
—f(x) is a square in F,. (Recall: In the multiplicative group of a finite field,
the squares are a subgroup of index 2, and so the product of two nonsquares
is a square, while the product of a square and a nonsquare is a nonsquare.)
Whichever of the pair x, —x gives a square, we obtain exactly two. points
(x, +Jf(x)) or else (—x, £4/f(—x)). Thus, the (g — 3)/2 pairs give us
g — 3 points. Along with the four points of order two, we have ¢ + 1 F,-
points in all, as claimed. : =]

Notice that when ¢ = 3 (mod 4), the number of F,-points on the elliptic
curve y? = x* — n%x does not depend on ». This is not true if g = 1 (mod 4).”

*As an example, Proposition 16 tells us that for g = 7% there are 344 =
23 - 43 points. Since there are four points of order two, the type of the group
of Fs45-points on y? = x> — n”x must be (2, 2%,43).

As a more interesting example, let ¢ = p = 107. Then there are 108 =

-22.33 points. The group is either of type (2, 2, 3*) or of type (2,2, 3, 3%).
To resolve the question, we must determine whether there are 3.or 9 points
of order three. (There must be nontrivial points of order 3, since 3 divides
the order of thé group.) Recall the equation for the x-coordinates of points
of order three (see Problem 4 of §7): —3x*+ 6n’x* +n* =0, ie., x=
+ny1 4+ 2ﬁ/3. Then the corresponding y-coordinates are found by taking
+./f(x). We want to know how many of these points have both coordinates . -
in [, o5, rather than an extension of [, ;. We could compute explicitly, using
ﬁ = 418 in F,4;, so that x = i\/1_3_, +./—11, etc. But even before doing
those computations, we can see that not all 9 points have coordinates in
F, 4. This is because, if (x, y) is in F, 4, then (—x, \'/:Ty) is another point
of order three, and its coordinates are not in F,,,. Thus, there are only 3
points of order three, and the type of the group is (2, 2, 3%).

Notice that if K is any field of characteristic 3, then the group of K-points
has no nontrivial point of order three, because —3x* + 6n’x* + n* = n* #.0.
This is an example of the “dropping degree” phenomenon mentioned above.
It turns out that the same is true for any p = 3 (mod 4), namely, there areno
points of order p over a field of characteristic p in that case. This is related .
to the fact that such p remain prime in the ring of Gaussian integers Z[i],
a ring which is intimately related to our particular elliptic curve (see Problem
13 of §6). But we will not go further into that-now. o

PROBLEMS

1. For the elliptic curve y? = 4x — g,x — g,, express p(Nz) as a rational function
"~ of gp(z) when N = 2. '

2 Let fy(z) be the elliptic functions defined above. Express f3(z) as 2 polynomial in
Lo T N /‘." t . -
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3. Setfl(z)—l Provethatfor N=2,3,4, ... we have:
K’J(NZ) $(2) — In- l(z)fNﬂ(z)[fN(z)z

4. In the notation of Proposition 14, suppose that ¢ € Gal(Ky/K) fixes all x-coordmates ‘

of pomts of order N. That s, al kg = identity. Show that the image of o in GL,(Z/N Z)
is + 1. Conclude that Gal(Ky/Ky) = { + 1} n G, where G is the image of Gal(Ky/K)
in GL,(Z/N Z). What is the analogous situation for cyclotomic fields? .

5. Let L = {mw, + nw,}, and let E be the elliptic curve y? = 4x3 — g,(L)x — g5(L).
Notice that E does not change if we replace the basis {w,, w,} of L by another

basis {w}, w;}. However, the group isomorphism C/L = R/Z x R/Z changes, and

so-does the isomorphism from the points of order N on E to Z/NZ x ZINZ. For
example, the point (g (w} IN), ¢ "(wy/N)), rather than (g (w,/N), @’ (w,/N)), corre-
sponds to (1,0)eZ/NZ x Z/NZ. What effect does the change of basis from «; to
o] have on the image of Gal(Kx/K) in GL,(Z/N Z)?

6. Show that the group GL,(Z/2Z) is isomorphic to S;, the group of permutations of
{1, 2, 3}. For each of the following elliptic curves, describe the image in GL,(Z)2Z)
of the galois group over @ of the field generated by the coordinates of the points
of order 2.

(@) y*=x%—nx (n not a perfect square)
® Y =x—nlx *

(©) y¥*=x>~n  (nnota perfect cube)
d) y*=x*~n’.

7. (a) How many elements are in GL,(Z/3Z)?

(b) Describe the field extension K; of K =Q generated by the coordinates of all -

points of order 3 on the elliptic curve y* = x3 — n2x.

(c) Find [K;: @]. What subgroup of GL,(Z/3Z) is isomorphic to Gal(K,/Q)?

(d) Give a simple example of an element in GL,(Z/3Z) that is nof in the image of
Gal(K,/Q); in other words, find a pair of elements z; = (m,w, + n,wy)/f3,

zy= (»/;,_wl + n,w,)/3 which generate all (mw, + nw,)/3 but such that £, , F, -

cannot be obtained from P, 3, P, by applying an automorphism to the
‘coordinates of the latter pair of points.

8. In Problem 13 of §1.6, we saw that the lattice corresponding to the curve y* =

x® — n?x is the lattice L of Gaussian integers expanded by a factor w,eR: L=

{miw, + nw,} = w,Z[{].
(a) Show that the map z+ iz gives an analytic automorphism of the additive group

C/L; and, more generally, for any Gaussian integer a + bieZ{i] we have a’

corresponding analytic endomorphism of C/L induced by z+ (a + bi)z.

(b) Notice that if b = 0, this is the map z~sz+2+4 -+ +z(a times) which gives'

¢,: Pr>aP on the elliptic curve. By looking at the definition of p(2), ©'(2),
show that the map z+» iz gives the automorphism ¢;: (x, y)+>(~x, iy) on the
elliptic curve. This is an example of what's called: “complex multiplication”.

Show that ¢;0¢; = ¢_,, and in fact the map a + bir> ¢4 is an injection of :

the ring Z[{] into the ring of endomorphisms of the group of points on the
elhptic curve.

(c) If L is a lattice’in C and if therc cxists. a complex number a=a + bi, b#0,

such that aL < L, show that o s a qus tdratic imaginary algebralc integer, and
that L.contains a sublattice of f inie yank of the form w,Z[«].
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9. Each of the following points has finite order N on the given elliptic curve. In each
case, find its order. :
(@) P=(0,4) ony?=4x3+16
J(b) P=(2,8ony?=4x> + l6x
© P=@2,)ony*=x>+1
) P=G3, 8)ony2~—x3-43x+166
(&) P=(3,12)ony*= x> — 14x* + 8lx
() P=(0,0)ony* +y=x*~x*
@ P=(1,0)ony* +xy+y=x>~x%=3x+3

§9. Points over finite fields, and the congruént
number problem

We have mainly been interested in elliptic curves E over @, particularly the
elliptic curve y? = x* — n*x, which we shall denote E,. But if K is any field
whose characteristic p does not divide 2n, the same equation (where we
consider 7 modulo p) is an elliptic curve over K. We shall let £,(K) denote
the set of points on the curve with coordinates in K. Thus, Proposition 16 -
in the last section can be stated: If g = 3 (mod 4), then #E,(F) =¢q + 1.

The elliptic curve E, considered as being defined over F,, is called the
“reduction” modulo p, and we say that E, has ““good reduction” if p does
not divide 2n, i.e., if y* = x> — n’x gives an elliptic curve over F,. More
generally, if y? = f(x) is an elliptic curve E defined over an algebraic number
field, and if p is a prime ideal of the number field which does not divide the
denominators of the coefficients of f(x) or the discriminant of f(x), then by
reduction modulo p we obtain an elliptic curve defined over the (finite)
residue field of p.

. At first glance, it may seem that the elliptic curves over finite fields—
which lead only to finite abelian groups—are not a serious business, and
that reduction modulo p is a frivolous game that will not help us in our
original objective of studying Q-points on y? = x* — n*x. However, this is
far from the case. Often information from the various reductions modulo p
can be pieced together to yield information about the Q-points. This is
usually a subtle and difficult procedure, replete with conjectures and unsolved
problems. However, there is one result of this type which is simple enough
to give right now. Namely, we shall use reduction modulo p for various -
primes p to determine the torsion subgroup of E,(Q),.the group of Q-points
on y* = x3 — n’x.

In any abelian group, the elements of finite order form a subgroup,
called the ‘“‘torsion subgroup”. For example, the group E(C) of complex
points on an elliptic curve is isomorphic to C/L, which for any lattice L is

- isomorphic to R/Z x R/Z (see Problem 2 of §L.5). Its torsion subgroup

corresponds to the subgroup Q/Z x Q/Z = K/Z x R/Z, i.e., in C/L it
consists of all rational linear combinations of @, atid w,.
A basic theorem of Morde" “tatas that the group E(Q) of Q- pomts onan
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elliptic curve E defined over Q is a finitely generated abelian group This

means that (1) the torsion subgroup E(Q), is finite, and (2) E(Q) is iso-
morphic to the direct sum of E(Q),, and a finite number of copies of
Z: E(Q) = E(Q),,. ® Z". The nonnegative integer r is called the “rank” of
_E(Q). It is greater than zero if and only if £ has infinitely many Q-points.

Mordell’s theorem is also true, by the way, if @ is replaced by any algebraic
number field. This generalization, proved by Andre Weil, is known-as the
~ Mordell-Weil theorem. We shall not need this theorem for our purposes,
even in the form proved by Mordell. For a proof, the reader is referred to
Husemuller’s forthcoming book on elliptic curves or else to [Lang 1978b].

We shall now prove that the only rational points of finite order on E, are-

the four points of order 2: 0 (the point at infinity), (0, 0), (£, 0).
Proposition 17. # E,(Q),o.s = 4.

ProoF. The idea of the proof is to construct a group homomorphism from
E,(Q),o,s to E,(F,) which is injective for most p. That will imply that the
order of E(Q),,. divides the order of E,(F,) for such p. But no number
greater than 4 could divide all such numbers # E,(F,), because we at least
know that # E,(F,) runs through all integers of the form p + 1 for p a prime
congruent to 3 modulo 4 (see Proposition 16).

We begin the proof of Proposition 17 by constructing the homomorphlsm
from the group of Q-points on E, to the group of F,-points. More generally,
we simply construct a map from Pé to PEP. In what follows, we shall always

choose a triple (x, y, z) for a point in P in such a way that x, y, and z are

integers with no common factor. Up to multiplication by +1, there is a \

unique such triple in the equivalence class. For any fixed prime p, we define
the image P of P=(x,y,z)ePZto be the point P = (X, J, 2)€ PF , where

the bar denotes reduction of an integer modulo p. Note that P is not the
identically zero triple, because p does not divide all three integers x, y, z
Also note that we could have replaced the triple (x, y, z) by any multiple
by an integer prime to p without affecting P.

It is easy to see that if P = (x, y, z) happens to be in E (Q), ie., if y?z =
x3 — n?xz?%, then P is in E,(F,). Moreover, the image of P; + P, under this
map is P, + P,, because it makes no difference whether we use the addition
formulas (7.1)—(7.4) to find the sum and then reduce mod p, or whether we

first reduce mod p and then use the addition formulas. In other words, our
map is 2 homomorphism from E,(Q) to E,(F,), for any prime p not dividing -

2n.
We now determine when this map is not injective, i.c., when two points
= (%, y1, 2;) and P, = (x5, y,, z,) in P have the same image P, =P,
m P
17

Lemma. P, = P, if and only if the cross-product of P, and P, (considered as
vectors in R3) is dzvtszble byp,ie.ifand only if p divides y 2, — Y321, X321 —
X123, and X, y; — X2 ¥y '

“have a subgroup S =
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PROOF OF LemMA. First suppose that p divides the cross-product. We consider
two cases:

(i) p divides x;. Thenp divides x,z, and x,y,, and therefore divides x,,

" because it cannot divide x,; y, and z,. Suppose, for example; that 1287

_ (an analogous argument will apply if p{z,). Then P, =(0,9,7,,7,5,) =

(0, 7,75, ¥22,) = (0, ¥,, Z,) = P, (where we have used the fact that p

divides y,z, — y,2;). v

(i) p does not divide ,vc1 Then P, =
%Z) =G0 5) =

Conversely, suppose that P1 P2 Without loss of generality, suppose
that p_)(xl (an analogous argument will apply if pfy, or pfz;). Then, since
= P, = (X,, 7, Z,), we also have pix,. Hence, (X,X,, X,¥,, X,2,) =
= P, = (X,X,, X,J,, X,Z;). Since the first coordinates are the same, these
two points can be equal only if the second and third coordinates are equal,
i.e., if p divides x, y, — x,, and x,z; — X,z,. Finally, we must show that p.
leldes Y125 — ¥,2y. If both y, and z, are divisible by p, then this is trivial.
Otherwise, the conclusion will follow by repeating the above argument with
x,, X, replaced by y,, y, or by z,, z,. This concludes the proof of the lemma.
We are now ready to prove Proposition 17. Suppose that the proposition
is false, i.e., that E,(Q) contains a point of finite order greater than 2. Then
either it contains an element of odd order, or else the group of points of
order 4 (or a divisor of 4) contains either 8-or 16 elements. In either case we
{Py, Py, ..., Py} < E;(Q)s. Where m = #3§ is either
8 or else an odd number. : : ‘
Let us write all of the points-P, i= 1, ..., m, in the form in the lemma:
= (x;, ¥i» z;). For each palr of points P P;, consider the cross-product
vector iz = YiZis XjZi — XiZj XiYj — ,y,)eIRP Since P, and P, are distinct
points, as vectors in R3 they are not proportional, and so their cross-product
is not the zero vector. Let n;; be the greatest common divisor of the coor-
dinates of this cross-product. According to the lemma, the points P, and P
have the same image P, = P in E,(F,) if and only if p divides n;;. Thus, nfp
is.a prime of good reducuon which is greater than all of the n;;, it follows-
that all images are distinct, i.., the map reduction modulo p gives an injection
of Sin E,(F,). ‘
. But this means that for all but finitely many p the number 7 must divide.

(1 X5, X1, X1Z,) = (X, X, %2 ¥y,

- #E(F,), because the i image of S is a subgroup of order m. Then for all but .

ﬁnitely many primes congruent to 3 modulo 4, by Proposition 16 we must
have p = —1 (mod ). But this contradicts Dirichlet’s theorem on primes
*in-an arithmetic progressnon Namely, if m = 8 this would mean that there
-are only finitely many primes of the form 8k + 3. If m is odd, it would
mean that there are only finitely many primes of the form 4mk + 3 (if 3} m),

‘ and that there are only finitely many primes of the form 12k + 7 if 3[m In

all cases, Dirichlet’s theorem tells us that there are infinitely many primes ol‘
the given type. Thxs concludes the proof of Proposition 17 .o
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Notice how the technique of reduction modulo p (more precisely, the use
of Proposition 16 for infinitely many primes p) led to a rather painless proof
of a strong fact: There are no “non-obvious” rational points of finite order
on E,. As we shall soon see, this fact is useful for the congruent number

problem. But a far more interesting and difficult question is the existence.

of points of infinite order, i.e., whether the rank r of E,(Q) is nonzero. As
we shall see in a moment, that question is actually equivalent to the question
of whether or not # is a congruent number.

Soit is natural to ask whether mod p information can somehow be put
together to yleld information about the rank of an elliptic curve. This

_subtle question will lead us in later chapters to consideration of the Birch—

Swinnerton-Dyer conjecture for elliptic curves.

For further general motivational discussion of elliptic curves over finite
fields, see [Koblitz 1982].

We now prove the promised corollary of Proposition 17.

Proposition 18. n is a congruent number zf and only if E,(Q) has nonzero
rank r.

ProoF. First suppose that » is a congruent number. At the beginning of §2,
we saw that the existence of a right triangle with rational sides and area n
leads to a rational point on E, whose x-coordinate lies in (Q*)?. Since the
x-coordinates of the three nontrivial points of order 2 are 0, +n, this means
that there must be a rational point not of order 2. By Proposition 17, such a
point has infinite order, i.e., r > 1.

Conversely, suppose that P is a point of infinite order. By Problem 2(c)
of §1.7, the x-coordinate of the point 2P is the square of a rational number

having even denominator. Now by Proposition 2 in §I.2, the point 2P

corresponds to a right triangle with rational sides and area » (under the
correspondence in Proposition 1). This proves Proposition 18. ]

Notice the role of Proposition 17 in the proof-of Proposition 18. It tells
“us that the only way to get nontrivial rational points of the form 2P is from

- points of infinite order. Let 2E,(Q) denote the subgroup of E,(Q) consisting

of the doubles of rational points. Then Proposition 17 is equivalent to the
assertion that 2E,(Q) is a torsion-free abelian group, i.e., it is isomorphic
to a certain number of copies (namely, r) of Z. The set 2E,(Q)—0(0 denotes
the point at infinity) is empty if and only if r =

We saw that points in the set 2E,(Q) —0 lead to right triangles w1th
rational sides and area n under the correspondence in Proposition 1. It is

natural to ask whether all points meeting the conditions in Proposition 2,

i.e., corresponding to triangles, are doubles of points. We now prove that
the answer is yes. At the same time, we give another verification of Prop051-
tion 18 (not relying on the homework problem 2(c) of §1.7).

Proposition 19. There is a onc-to-one (~nrrespdndence bétween right triangles
with rational sides X <Y <Z and n, and pairs of points (x, ty)e
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2E,(Q) — 0. The correspondence is:

&, £ x+n—Jx—n, \/x+n+\/x—n 2/x;
X, 7Y, Z—(Z%4, +(Y? - X?Z/8). '

In light of Proposition 1 of §I.1, Proposition 19 is an immediate conse-
quence of the following general characterlzatlon of the doubles of points on
elliptic curves.

Proposition 20. Let E be the elliptic curve yr= (x — e} (x — e;)(x — ey) with
e,¢5,e3€0. Let P= (%o, Yo) € E(Q) — 0. Then P 2E(Q) — 0 if and only if

Xo — €4. Xg — Ca, Xo — €3 are all squares of rational numbers.

ProoF. We first note that, without loss of generality, we may assume that
xo = 0. To see this, make the change of variables X" = x — x,. By simply
translating the geometrical picture for adding pomts we see that the point .
P’ = (0, y,) on the curve E’ with equation y* = (x — €})(x — €3)(x — €3),

_ where ¢; = ¢; — x,, is in 2E’(Q@) — 0 if and only if our original P were in

2E(Q) - 0. And trivially, the x, — e; are all squares if and only if the (0 — ¢})
are. So it suffices to prove the proposition with x, = 0.

Next, note that if there exists Q € E(Q) such that 2Q = P, then there are.
exactly four such points Q, Q,, Q,, Q5 € E(Q) with 2Q; = P. To obtain @,
simply add to Q the point of order two (e;, 0) € E(Q) (see Problem 5 in §1.7).

Choose a point Q = (x, y) such that 20 = P = 0, yo). We want to find
conditions for the coordinates of one such Q (and hence all four) to be
rational. Now a point Q on the elliptic curve satisfies 2Q = P if and only if
the tangent line to the curve at Q passes through — P = (0, — y;). That is,
the four possible points Q are obtained geometrically by drawing the four
distinct lines emanating from — P which are tangent to the curve.

We readily verify that the coordinates (x, y) are rational if and only if the
slope of the line from —P to Q is rational. The “only if” is immediate.

_Conversely, if this slope m is rational, then the x-coordinate of Q, which is

the double root of the cubic (mx — yo)* = (x — e,){x — e,)(x — e5), must
also be rational. (Explicitly; x = (e, + e, + e + m?)/2.) In this case the
y-coordinate of Q is also rational: y = mx — y,. Thus, we want to know
when one (and hence all four) slopes of lines from —P which are tangent to

_E are rational.

A number meC is the slope of a line from - P which is tangent to E if /
and only if the following equanon has a double root:

(mx — po)? = (x — €,) (x — e)(x — e3) = x> + ax? +bhx+e (9.0

“with
La=—e —e; ey, b=eye; + e e; + 50, ¢ = —eyes03 =Y.
9.2)
v +last equality ¢ = yZ comes from the fact that (0. y,) is on the curve
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y? = x> + ax® + bx + ¢. Now if we simplify (9 1) and factor out x, our
condition becomes: the following quadratic equation has a double root:

x2 4+ (@ — m*)x + (b + 2my,) = 0. -
This is equivalent to saying that its discriminant must vanish, i.e., ,
(@—m?? — 4(b + 2myy) = - 0.3

Thus, our task is to determine when one (and hence all four) roots of this
quartic polynomial in m are rational.

We want to find a condition in terms of the ¢;’s (namely, our claim is that
an equivalent condition is: —e;e @?). In (9.3), the a and b are symmetric
polynomials in the e;, but the y, is not. However, y, is a symmetric polyno-
mial in the \/e',.. That is, we introduce f; satisfying f;> = —e;. There are two
possible choices for f;, unless ¢; = 0. Choose the f; in any of the possible
ways, subject to the condition that y, = f, f, f. If all of the e; are nonzero,
this means that the sign of f; and f, are arbitrary, and then the sign of f; is
chosen so that y, and f, /> f5 are the same square root of —e,e,e;. If, say,
e, = 0, then either choice can be made for the sign of f;, f,, and of course
£ = 0. In all cases there are four possible choices of the f;’s consistent with
the requirement that y, = f; f> f3. Once we fix one such choice f,, f;, f3, we
can list the four choices as follows (here we’re supposing that ¢, and e, are
nonzero): )

fohtfss h—f —fs —fuhe —fss —he e fs 04

The advantage of going from the ¢;’s to the f’s is that now the coefficients
of our equation (9.3) are symmetric functions of £}, f5, f3. Motre precisely,

if we set s, =f, + /15 + f1, 52 =ifa + 1S3 + oS35 S3 = f1./2/5, the elemen-
tary symmetric functions, then

a=f+fF+fF=s}-2s;
b= [+ 127+ 17 =55 — 251835
Yo = 83- ..
Thus, equation (9.3) becomes
=(m? — s + 25,)% — 4(s] — 25,53 + 2ms3)’
= (m? — 53)? + 4s;(m? — 52) — 853(m — 5y).

‘We see at a glance that the polynomial in (9.5) is divisible by m — s, , i.e.,
m=s,=f, +f, +f; is a root. Since we could have made three other
choices for the signs of the f;, the other roots must correspond to these
choices, i.e., the four solutions of equation (9.3) are:

. myo=fi+h+f  my=fi—f—fo
~fi o =fr  mg=—fi—fy+ [y

msy

©.5) ‘
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We want to know whether the four values in (9.6) are rational. Clearly.
if all of the f; are rational, then so are the m;. Conversely, suppose the m;
are rational. Then f; = (m, + my)/2, f, = (m, + m3)/2,and f; = (m, + my)f2
are rational. The conclusion of this string of equivalent conditions is: the
coordinates (x, y) of a point Q for which 2Q = P are rational if and only
1f the f; = /—e; are rational. Thls proves Proposmon 20. a]

Finally, we note that Proposition 20 holds with Q replaced by any field

K not of characteristic 2. Essentially the same proof applies. (We need only
take care to use algebraic rather than geometric arguments, for example,
when reducing to the case P = (0, y,).) '

PROBLEMS

. Prove that for fodd, any F,s-point of order 3 on the elliptic curve E,: y* = x* = nix
is actually an F,-point; prove that there are at most three such points if p =3
(mod 4); and find a fairly good sufficient condition on p and f which ensures nine

F,/-points of order 3.

2. For each of the following values of q, ﬁnd the order and type of the group of
I —pomts.on the elliptic curve E, : y* = x* — x. In all cases, find the type directly,

later problems.

(a) All odd primes from 3 to 23.

® 9 . |

() 27 ‘ ! y
) 71

 (e) 113

. Find the ‘type of the group of F,-points on the elliptic curve Es: 32 = x* — 25x
for all odd primes p of good reduction up to 23.

. Prove that for ae Q the equation y* = x* — a deterinines an elliptic curve over any
field K whose characteristic p does not divide 6 or the numerator or denominator
of a; and that it has ¢ +'1 F,-points if ¢ = 2 (mod 3).

. Prove that there are exactly 3 F -points of order 3 on the elhptlc curve in Problem 4
if g = 2 (mod 3).

6. For all odd primes p from $ to 23, find the order and type of the group of F, -pomts
on the elliptic curve y* = x*— 1. .

7. Prove that the torsion subgroup of the group of Q-points on the elliptic curve
~ y*=x*— ahas order at most 6, and that its order is equal to:

(a) 6if a= —b® for some beQ;

(b) 2if a = c* for some ce Q with ¢ not of the form —5?;

for some beQ;
_(d) 1 otherwise.

. Showthat the.correspondence constructed in Problem 2 of'§1.2 gives a one-to-one

if necessary cheeking how many points have order 3 or 4. Don’t “peek™ at the

(¢) 3ifeither a = —d? for some de @ with d not of the form 5%, or nfa = 432b" -

correspondence between right triangles as in Proposition 19 ‘and pairs +P of

™
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non-identity elements of the quotient group E(Q)/E(Q),yesion> whrch is lsomorphxc
to 2E,(Q) under the map P+ 2P. See Problem 2(b) of §1.7.

In the problems below, we illustrate how more mformatron can be obtamed

using two additional tools: (1) the complex multiplication automorphrsm ;

(x y)f-—»( x, /—1y) of the group of K-points of the elliptic curve y?
x3 — n*x if K contains a square root of —1; (2) the action of Gal(K"“'/K)
‘on the coordinates of the K*'#“-points.

9. Suppose that ¢ = 3 (mod 4), and / is an odd prime. Prove that:
(a) there are at most / F,-points of order / on the elliptic curve y2 = x - nzx,
and there are at most eight F, -pomts of order 4; :
(b) the group of F-points is the product of a group of order 2anda cychc group
of order (g + 1)/2.

10. Suppose that g = 2 (mod 3), 2,{’N 3}N. Prove that there are at most N F ,~points
of order N on the elliptic curve y? = x> —a. ,

11. Suppose that ¢ =1 (mod 4), and /= 3 (mod 4) is a prime not equal to p- Let
(%, 1%) be the I-part of the'type of the group of F,-points on the elliptic curve y*
x% — n*x, Prove that o = B. If / =2, prove that e = Bora=f + 1.

12. The group of K-points on an elliptic curve is analogous to the multiplicative group,

- K*. In Problem 11 of §1.7, we saw that for K = C, as ¢ — 0 the elhptlc curve y* =

(x% — a)(x + 1) “becomes” the multiplicative group C*."Now let K be the finite :

field F,. In this problem we work with K*, and in the next problem we work with

the grdup of K-points on an elliptic curve. Let / be a prime not equal to p, and

suppose that F, contains all /-throots of 1, i.e., g = pf=1(mod /).

(2) Show that the splitting field of x' — a, where aeF,; has degree either 1 or /
over [,.

(b) Show that the subfield of IF““‘ generated by all M*1.th roots of 1 is |Fl
where M < M. :

(c) (For readers who know about /-adic numbers.) Construct an isomorphism
between the additive group Z, of /-adic integers and the galors group over F,
of the field extension generated by all /-th power division pomts (i.e., lth power.
roots of unity).

13. Now let E be an elliptic curve defined over F,. Suppose that there are /2 F-points

of order /.

(@) Let 4 be an F-point, and let F, be the.extension of [F generated by the co- k

ordinates of a solution « to the equation lx = 4 (i.e., Foris the smallest extension
of F, contammg such an «). Show that thcre are / 2 F~points o; such that
la; =

(b) Fix an [F ,r-point a such that /u = 4. Prove that the map g+ o(o) — a gives an .

imbedding of Gal(F,/F,) into the group of points of order / on E.
(¢) Show thatr=1or/

(d)- What is the field extension of [, generated by all pomts of order M M= 1’,'

2, ...? What is its galois group"

CHAPTER II ;
‘The Hasse—Weil L-Function of an

Elliptic Curve

At the end of the last chapter, we used reduction modulo p to find some

useful information about the elliptic curves E, : y? = x* — n’x and the con-

‘gruent number problem. We considered E, as a curve over the prime field:
lF where pf2n; used the easily proved equality #E,(F,)=p+ 1 when

=3 (mod 4); and, by making use of infinitely many such p, were able

to conclude that the only rational points of finite order on E,, are the four

obvious points of order two. This then reduced the congruent' number -
problem to the determination of whether r, the rank of E,(@), is zero or

greater than zero.

Determining r is much more drfﬁcult than finding the torsion group. Some
progress can be made using the number of F -points. But the progress does
not come cheaply. First of all, we will derive a formula for # E,(F,) for any
prime power g =p". Next, we will combine these numbers N, =N, , ="
#E,(F,r) into a function which is analogous to the Riemann zeta-function
(but more complicated). The behavior of this complex-analytic function
near the point 1 is intimately related to the group of rational points. ‘

Before introducing this complex-analytic function, which is defined using .
all of the N, ,, we introduce a much simpler functron called the “congruence

rp*
zeta-function™, which is buxlt up from the N, = N, for a fixed prime p.

§1. The congruence zeta-function

Given any séduence N.,r='1,23, ..., we define the corresponding “zeta-

 function” by the formal power series

rd

Z(T) = exp(ZN ) where exp(u)deri%— (1 -
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At first glance, it might seem simpler to define Z(7) as ZN,T"; however,

the above definition has crucial propertles which make it the most useful
one (see the problenis below).

Let K be a field. Let AT denote the set of m-tuples of elements’ of K.
By an *“affine algebraic variety in m-dimensional space over K we mean

a system of polynomnal equations of the form fi(x;, ..., x,,) = 0, where
fi€K[xq, ..., X,). For example, a conic section is a system of two equations

fig ) =x2 4y —22=0; filx,y,D)=ax+by+ecz+d=0

in 3-dimensional space over R. If L is any field extension of K, the ““L-points”

of the variety are the m-tuples (x,, ..., X,)€Af for which all of the poly-

nomials f; vanish.

By a ““projective variety in m-dimensional space over K’ we mean a system

of homogeneous polynomial equations fj(xo, Xy, - - - » X,,) inm + 1 variables.
If L is a field extension of K, the “L-points” of the pro;ectxve variety are the
points in P} (i.e., equivalence classes of m + 1-tuples (x,, . .., X,,), where
(Xo» « o s Xm) ~ (Axg, - .., AX,), A€L¥) at which all of thef vanish For
example in the last chapter we studied the [ -pomts of the elhptlc curve
defined in Pzp by the single equation f(x,y, z) = y*z — x> + n?xz? = 0.
(Note: Here x, =z, x, = x, x, =y are variables for a projective variety
in PZ, while in the last paragraph x; = X, X, = y, X3 = z were variables for
an affine variety in A3.)

If we have a projective variety, by setting x, = 1 in the f; we obtain an
affine variety whose L-points correspond to the m + I-tuples with nonzero
first coordinate. The remaining L-points of the projective variety will be
the projective variety in P! obtained by setting x, = 0 in all of the equa-
tions and considering the equivalence classes of m-tuples (x,, .. ., x,,) which
satisfy the resultmg equations. For example, the elliptic curve with equatlon
y*z — x* + n*xz? consists of the affine pomts———the solutions of y? = x> —
n*x—and the points (x, y) of P} for which —x* =0, i.e., the single point
(0, 1) on the line at infinity z =

Let V be an affine or projective variety defined over F,. For any field
K > F,, we let V(K) denote the set of K-points of V. By the “congruence
zeta- functlon of V over ;" we mean the zeta-function correspondmg to the
sequence N, = # V(F,). That is, we define

 Z(V[F,; T) =exp (Z #V([F,,,)T'/r>., 12

r=1

Of course, N, is finite, in fact, less than the total number of points in Ag,

(in the affine case) or lP"',(m the pro;ectlve case).
We shall be espcc1ally interested in the situation when V is an elliptic
curve defined over F,. This is a special case of a smooth projective plane

curve: A projective plane curve defined over a field K is a projective variety

given in P by one homogencous equation f(x, ,z) = 0. Such a curve is

said to be “smooth” if there is no K*®°.point at which all partial derivatives .
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vanish. This agrees with the usual definition when K = C ( has a tangent o
line at every point™).

It turns out that the congruence zeta-function of any elliptic curve E
defined over F, has the form ‘ '

1 - 2aET+ qT?
(1=T)(1 —qTy

where only the integer 2a; depends on E We shall.soon prove this in the
case of the elliptic curve E,: y* = x> — n’x. Let a be a reciprocal root of
the numerator; then 1 — 2a,T + ¢T? = (1 —aT)(1 — 7). If one takes the -
logarithmic derivative of both sides of (1.3) and uses the definition (1.1),
one easily finds (see problems below) that the equality (1.3) is equlvalent ;
to the following formula for N, = # E(F,r):

CN=¢ +1—o —(gay. o ,,(1.4)

Z(E/{Fq; T)= | (1.3)

"As a special case of (1.4) we have

N,=#E([Fq)=q+1—a~g=q+1—2a5. .(15)

Thus, if we know that Z(E/F,; T) must have the form (1.3), then we can
determine a, merely by counting the number of F-points. This will give us
Z(E[F,; T), the value of a, and all of the values N, = #E(F,) by (1.4).
In other words, in the case of an elliptic curve, the number of F,-points
determines the number of [, ~points for all r. This is an important property
of elliptic curves defined over finite fields. We shall prove it in the special
case y° = x> — n?x. ’

It will also turn out that « is a quadratic imaginary algebraic integer whose
complex absolute value is /g. In the case y? = x> — n’x, it will turn out
that o is a square root of —gq if ¢ = 3 (mod 4), and is of the form a -+ bi,
a,beZ, a* + b* = gq,if g = | (mod 4).

This situation is a special case of a much more general fact concerning
smooth projective algebraic varieties over finite fields. The general result

. was conjectured by Andre Weil in [Weil 1949], and the last and most
_difficult part was proved by Pierre Deligne in 1973. (For a survey of Deligne’s

proof, see [Katz 1976a].) We shall not discuss it, except to state what it says

‘in the case of a smooth projective curve (one-dimensional variety):

(i) Z(V[F,; T) is a rational function of T (this is true for any variety
without the smoothness assumption) which for a smooth curve has the
form P(T)/(1 — T)(1 — qT). Here P(T) has coefficients in Z and con-
stant term 1 (equivalently, its reciprocal roots are algebraic integers).

(i) If V was obtained by reducing modulo p a variety V defined over Q,

then deg P = 2g is twice the genus (“Betti number”) of the complex
analytic manifold V. Intumvely, g is the “number of handles” in the |
corresponding Riemann surface. An elliptic curve has 9= I, and the'
Riemann surface in Fig. II.1 has g = 3.




.54

I1. The Hasse~Weil L-Eunction of an Elliptic Curve’

- Figure I1.1

(iii) If « is a reciprocal root of the numerator, then so is g/«.
(iv) All reciprocal roots of the numerator have complex absolute value f

One reason for the elegance of the Weil conjectures is the 1ntr1gu1ng

mdlrect connection between the “physical” properties of a curve (e.g.,
number of handles as a Riemann surface when considered over C) and the
number theoretic properties (its number of points when considered over
F,r). Roughly speaking, it says that the more complicated the curve is (the
hlghcr its genus), the more N,’s you need to know before the remaining
Snes can be determined. In the simplest interesting case; ‘that of elliptic
curves, where g = 1, all of the N,’s are determined once you know N;.

PROBLEMS

1.

Show that if N, = N* + N** and Z(T), Z*(T), Z**(T) are the corresponding
zeta-functions, then Z(T) = Z*(T)- Z**(T); and if N, = N;* — NJ**, then Z(T) =

ZX(T)[Z**(T).
. Show that if there exists a fixed set &y, .. ., &;, B;, . . . , B, such that for all r we have
erﬁ'l'_*_ +Bt’_..a:._. '_as’7then
(L=, T)(1 =9, 7)- (1 —a,T)
Z(Ty= .
D= DA = kD (- kD

. Prove that if N, < CA" for some constants C and 4, then the power series Z(T)

converges in the open disc of radius 1/4 in the complex plane ’

1, reven; . . . .
. Show that if N, = then Z(T) is not a rational function; but if N, =
0, rodd, - : :
2, reven; . . .
{0 \r :ld then Z(T) is rational. In the latter case, interpret N, as the number

of F, r-solunons of some equation.

. The Bernoulli polynomials B, (x)e@[x] have the properties: (i) deg-B, = r; (ji) for

all M, B(M) — B,(0) =r(1"* + 2! w4 (M —1)y""). Now for fixed M let

N,_, = ¥B,(M) — B,(0)). Find the corresponding Z(T). (Cultural note: By(x) =

x — 1, By(x) = x* — x + %, etc.; they are uniquely determined by properties (i)

and (ii) along with-the normalization requirement that {3 B,(x)dx =0 for r= 1.

One way to define them is by equating terms in: the relauon ze"‘j(e - 1)—
r=0 Br(x)l /" ) '

6

. Show that, if ¥ is a variety in A';:'q orPf, then Z(V/

. Let N, be the number of lines in P;q,

13.

. Let ¥ be an affine algebraic variéty defined over K by eqnations fj(xlr, e
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Suppose that / i isa prlme g is a power of another prime p, g = 1.(mod /), g% 1 .

(mod /?). B

(a) For fixed M, let N, = # {xelF, Ix = 1}. Find the corresponding Z(T)..

(b) Now let N, = #{ xeF,,rIxM = | for some M}. Find the corresponding zeta-
function. Is it rational? ' .

. A'special case of an affine or projective vanety Vis the entire space, correspondmg .

to the empty set of equations. Let A% denote m-dimensional affine space (the
usual space of m-tuples of numbers in the field K), and.let P¥ denote projective .
space, as usual.

(a) What is Z(AE /F,; T)? ; )
(b) Find Z(P"’/!F T) by. writing P as a disjoint union of Ak, k=m, m—1,

,0, and using Problem 1.
(c) Also find Z(P§ / ; T) by counting equivalence classes of (m + l)—tuples
and check that your answers agree. . :

F,; T) converges fork[TI <q™m

. If one wants to prove that Z(¥/F,; T)e Z[[T']] with constant term for any affine

or projective variety V, show that it suffices to prove this when V is any affine
variety: Then show that it suffices to prove this when ¥V is given by a single equation..
Show that the rationality assertion Z(V/F,; T)eQ(T) can also be reduced to the
case of an affine variety V defined by a smgle equanon A variety defined by a
single equation is called a “hypersurface”.

. Find the zeta-function of the curve y2=x%—n’x in [P’qu if p|2n, ie., p is nor'a

prime of good reduction.

. Find the zeta-function of the hypersurfacein Af defined by x,x, — x3x, = 0.
\ , n Ag, 1X2 = X3

. Find its zeta-function. (It is possible to view

the set of k-dimensional subspaces in P¥ as a variety, called the grassmannian;
inourcase k=1, m=3)

Using the form (1.3) for the zeta-function of an elliptic curve, where the numerator
has reciprocal root a, show that N, is equal to the norm of 1 — «". Now, in the
situation of Problem 13 of §1.9, suppose that £ has /? F,-points of order /, and no
F,-points of exact order /%, 2 Prove that the field extension of F, generated by the
coordinates of the pomts of order /M*! is Fg*. (Note the close analogy with the
multiplicative group F¥, with ¢ = 1 (mod l) but ¢ % 1 (mod /2), where the field
generated by all M th roots of unity is F, ™)

s Xp) =
0. By the coordinate ring R(V) we mean the quotient ring of K[x,, ..., x,]
by the ideal generated by all of the f;. Let P = (a,, ...,a,) be a K*®#-point on
V.Let L = K(a,. ..., a,) be the finite extension of K generated by the coordinates
of P. L is called the residue field of P, and its degree over K is called the resxdue' ‘
degree. - "
(a) Show that the map x;+ q; is well-defined on R(V), and extends to a homo-
morphism whose kernel is a maximal ideal m(P) in R(V). (It is not hard to
prove that every maximal ideal of R(V) arrsgs in this way.)
‘how that m(P’y= m(P) if and only if there is an isomorphism from LtolL”
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(the residue fields of P and /”, respectively) which takes ¢; to a;. Thus, the
maxifnal ideal m(P) corresponds to d different K*#-points P on ¥, where
d = [R(V)/m(P): K] is the residue degree of any of the points P.

15. In the situation of Problem 14, let K = F,. For a given K*€<Lpoint P, the residue

field is lF,,a for some d. Then P conmbutes I to each N, for which r is-a multiple of ’

d. That is, the contribution of P to the exponent in the definition of the zeta-
function is £, T*/kd. Then Z(V[F,; T) is exp of the sum of all contributions
from the diffcrent K*'tl.points P. Group together all points corresponding to a
given maximal ideal, and express Z(V/F,; T) as the product over all maximal
ideals m of (1 — 79%=)!, Then show that the zeta-function belongs to 1+
TZ[[T]] (Cultural note: If we make the change of variables 7 = ¢, and define
Normi(m) to be the number of elements in the residue field, i.e., Norm(m) = goiem,
then-we have Z(V/F,; ¢~ =I1.(1.— Norm(m)™%)!, which is closely analogous
to the Euler product for the Dedekind zeta-function of a number field: {x(s) =

I1,(1 — Norm(p)~®)"!, in which the product is over all nonzero prime ideals of ,

the ring of integers in the field K. In a number ring, a nonzero prime ideal is the
same as a maximal ideal.)

16. Prove that if Z(V/F, T)eQ(T) then the numerator and denominator are in
1+ TZ[T] (equwalently, the s and §’s in Problem 2 are algebraic integers).

§2. The zeta-function of £,

We now return to our elliptic curve E,, which is the curve y> = x> — n’x,
where n is a squarefree positive integer. More precisely, E,, is the projective
completion of this curve, i.e., we also include the point at infinity. E, is
an elliptic curve over any field K whose characteristic does not divide 2n,
and, as we have seen, it is sometimes useful to take K = F,, or more generally
K = [F,. The purpose of this section is to express the number of [ -points
‘on E, in terms of “Jacobi sums”.

To do this, we first transform the equation of E, to a “diagonal form”.
We say that a hypersurface f(x,, ..., x,) = 0 in A} is ““diagonal” if each
monomial in finvolves at most one of the variables, and each variable occurs
in at most one monomial. For example, the “Fermat curve” x*+ y? =1 is
diagonal. It turns out that diagonal hypersurfaces lend themselves to easy

computation of the N, (much in the same way that multiple integrals are

much easier to evaluate when the variables separate). We shall not treat the
general case, but only the one we need to evaluate N, = # E, (F,). (For.a
general treatment of diagonal hypersurfaces, see [Well 1949] or [Ireland
and Rosen 1982, Chapter I1].)

We first show a relatlon between points on E y* = x* = n?x and points

onthecurve E,: u? = v* + 4n. Asusual, we suppose that p ,l’ 2n. First suppose
that (, v) is on E;. Then it is easy to check that the point (x, y) = G(# + v?);
3v(u +v?)) is on E,. Conversely, if (x, y) is on E, and its x-coordinate is
nonzero, then we check that the point (, v) =(2x — yz/x y/x) is.on E,.
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Moreover, these two maps are inverse to one another. In other words, we
have a one-to-one correspondence between points on E, and pomts on

—{(0, 0)}. Let N’ be the number of F,-solutions (u, v) to u? = v* + 4n*.
Then the points on our elliptic curve. consnst of (0, 0), the point at infi lmly
and the N’ points corresponding to the pairs (, v). In other words, N, =
#E,(F,) is equal to N’ + 2. So it remains to compute N’. The advantage
of the equation u? = v* + 4n? is that it is diagonal.

The basic ingredients in determining the number of points on a diagonal .
hypersurface are the Gauss and Jacobi sums over finite ﬁelds We shall now
define them and give their elementary properties.

Let y: F, —» C* be a nontrivial additive character, i.e., a nontrivial homo-
morphism from the additive group of the finite field to the multiplicative
group- of complex numbers. (Since F, is finite, the image must consist of
roots of unity.) In what follows, we shall always define y(x) = &™* where
&= e®"P and Tr is the trace from F, to F,. Since the trace is a nontrivial
additive map, and its image is F, = Z/pZ we obtain in this way a-nontrivial”
additive character.

Now let x: F} — C* be any multiplicative character, i.e., a group homo-
morphism from the multiplicative group of the finite ﬁeld to the multi-
plicative group of nonzero complex numbers. In what follows, the addmve
character ¥ will be fixed, as defined above, but y can vary.

We define the Gauss sum (depending on the variable ) by the formula

g = Y x(X)Y(x)
) x€ Fq
(where we agree to take x(0) = 0 for a/l y, even the trivial multiplicative
character). We define the Jacobi sum (dependmg on two variable multi-
plicative characters) by the formula

J(x1» Xz) = Z X1 (X)x2(1 — x).
xe Fq
The proofs of the following elementary properties of Gauss and Jacobi
sums are stralghtforward and will be left as exercises. (Here y,,;, denotes
the trivial character, which takes all nonzero elements of F,to 15 % x,, and
X2 denote nontrivial characters; and 7 ¥ denotes the complex conjugate (also
called “inverse™) character of y, whose value at x is the complex conjugate

of x(x).)

(l) g(Xtrlv) = —1 ) J(X(nvv thv) qg— 2 J(X(nvo X) - l
JO 0 = —1(=1; I, 1) =I5 x1)5

@ 9090 = 1(—=Dg; |g|=Vq;

) x> 22) = 99 G1 22) if X2 # T

,2We now proceed to the computation of the number N’ of u, ve F satnsfymg
u? = v* + 4n®.The key observation in computing N’ is that for any a # 0

“inF and any m dividing ¢ — 1, the number of solutions x€ [, to the equanon 2
x™ = a is given by:
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#{xm=al= ) 1, - @y
Am=1

where the sum is over all multiplicative characters whose m-th power is the .

trivial character. Namely, both sides of (2.1) equal m if a is'an m-th- power

in F, and equal 0 otherwise; the detailed proof will be left as a problem -

below.

(mod 4). In what follows, we shall suppose that ¢ = 1 (mod 4).,
" In counting the pairs (%, v), we count separately the pairs where either u
or v is zero. Thus, we write . ; ‘ ek

N = #{ueF,|u* =4’} + # {veF,|0 = v* + 4n?}
+ #{u, veFX|u? = v* + 4n}.

The first term in (2.2) is obviously 2 (recall that we are assuming that pf2n).
We use (2.1) to evaluate the second term. Let x4 be one of the characters

of F¥ having exact order 4, i.e., xa(g) = i for some generator g of the cyclic i

group Fj. Then, by(2.1), the second term in (2.2) equals

4 .

Y rh(—4n?) =2 + 274(—4n*) - (23
j=1

(where we use the fact that —4n? is a square in F¥). Finally, we evaluate the
third term in (2.2). Let x, denote the nontrivial character of order 2 (i.e.,
¥, = x2). Using (2.1) again, we can write the third term in (2.2) as

Y #t=a#lt=bl= T T @),

asfz,a~4n2¢0 j=k1=,%,2,4
Note that since x4(0) =0, we can drop the condition @ — 4n? # 0 on the
right. We now make the change of variable x = a/4n? in the first summation
on the right. As a result, after we reverse the order of summation, the right
side becomes ’

Y (=4t T A0 -0= % (=4I, -

j=1,2,3,4 xefg Jj=1,2,3,4
k=1,2 k=1,2

Finally, bringing together the three terms in (2.2) and using property (1) of |

Jacobi sums when % or yJ is trivial or they are conjugate to one another,
- we obtain:

N =4+ 2(=4n") + 3 xh(=4n")J 0z, 13) +4 =243 (=1)
Jj=1,3 .
+ 2xa(—4n?) - (=1) o 4
=g =1+ 2u(=4n)U(tas ta) + JQ2s Xa))- - :
In the problems we show-that y,(—4) = 1. Hence, Xa(—4n%) = x,(n). Thus,
if'we set ; IR _ :

a=0, =~ ) @.5)

" def

- we conclude that’

By Proposition 16 of the last chapter, We know: that N1;=‘q +1lifg=3.

Q.2

e
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Ny =#EF)=qg+1—a—a : C(2.6)

‘Notice that « is an algebraic integer in Q(#), since the values of x, and y,
in the definition of J(x,, x4) are all +1, +i. We now pin down the Gaussian
integer a = a -+ bi, at least in the case when ¢ = p is'a prime congruent to 1
mod 4 or g = p?is the square of a prime congruent to 3 mod 4. By property
(3).relating Jacobi to Gauss sums, we have )

o= —1(M90)IXIT),

- and hence, by property'(Z), we have |#|> = @* + b* = ¢. In the two cases

g =p=1(mod 4) and g = p?, p = 3 (mod 4), there are very few possibilities
for such an «. Namely, in the former case there are eight choices of the form.
+a + bi, +b + ai; and in the latter case there are the four pOSsibilities +p,
+pi. The following lemma enables us to determine which it is.

Lemma 1. Let g = 1 (mod 4), and let y, and y, be characters of F% of exact
order 2 and 4, respectively. Then 1 + J(x,, x4) is divisible by 2 + 2i in the
ring Z[i].

PRroOF. We first relate J(x,, x4) to J(¥4, X4) by expressing both in terms o‘f
Gauss sums. By property (3), we have: J(x2, 2a) = J(la 14)9(12)*/9(14)9 (Xs)
= y4(—DJ(x4, x4) by property (2). Next, we write

T(tas %a) = L 1@ tall = ) = 2355 + 23 2a(02a(1 — %),

where X’ is a sum over (g — 3)/2 elements, one from each pair x, 1 — X,
with the pair 231, 22D omitted. Notice that y,(x) is a power of i, and so is
congruent to 1 modulo 1 + iin Z[i]; thus, 2x,(x)x,(1 — x) = 2(mod 2 + 2i).
As a result, working modulo 2 + 2i, we have J (x4, xa) = ¢ — 3 + p2(%5) =

2 + x4(4) (since ¢ = 1 (mod 4)). Returning to J(x,, x4), we obtain:
P+ J(, 1) =1+ 1a(= DIy 28) = 1+ xa(—4) + 2x4(= 1)
(mod 2 + 2i). ’

Since. Xa(—4) =1, as mentioned above (and proved in the problems below),
and since 2(1 + x,(—1)) = O or 4, it follows that 1 + J(x,, x,) is divisible by
2 + 2i, as claimed. ' - O

We now have the basic ingredients‘ to prove a formula for Z(E,[F,; T).

1 — 2aT + pT? ,,=.'(1 — «T)(1 — aT) |
1-7)(1-pT) (A-T)Y(1-pT)’

Z (E7/[F"; T)= @7

where ca;a=iJpifp=3(mod4); andifp=1(mod 4), then o is an

élg;ﬁrv '} of norm p which is congruent to (§) modulo 2 + 2i.

2
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Before pfoving the theorem, we note that in the case p = .1 (mod 4') it says
we choose o = a + bi with @ odd (and b even), where the sign of a is deter-

mined by the congruence condition modulo 2 + 2i. There are two possible
choices a + bi and a — bi; and of course the formula (2.7) does not change :

if we replace o by its conjugate.

PrOOF. In order to obtain Z(E,/F,; T), we must let the power of p vary, and

determine N, = #E,(F,») for p = 1-(mod 4) and N,, = #E,(Fy) forp=3 |

(mod 4), ¢ = p? (since we know that N, = p" + 1 for odd r in that case). S_o we
fix ¢ equal to p in the first case and equal to p? in the second case (in elthgr
case ¢ = 1 (mod 4)), and we replace g by ¢" throughout the work we did
earlier to find a formula for #E,(F,), ¢ = 1 (mod 4). o
Because the r is varying, we need a notation to indicate which x, and Xa
we are talking about, i.e., to indicate for which finite field ‘they are multi-
plicative characters. Let x, ; = 1, denote the unique nontrivial character of
F}oforder2,andlet x4 = Xa denote a fixed character of ﬂ:;" of exact orde'r 4
(there are two, the other one being ¥,). Then by composing ¥, O X with
the norm from F, to F,, we obtain a character of Fj of exact order 2 or 4,
respectively. We denote these characters y,, and x4, For example, if g is
~ a generator of F such that x,(g) = i, and if g, is a generator of F} whose
porm is g, i.e., (g,)' 7" "+ =g, then we have x4 ,(g,) = i. If N, denotes
the norm from F, to F,, we can write our definitions: :

Tar = XaONy o X2, = 120 N,. (2.8)
With these definitions, using (2.5) and (2.6), we can write:
F)=q + | — tygr — B grs
#E(Fp) =q a q 29
92,09 an)
g(ZA,r)

where  a, o= —X2,.(7)

We now use a basic relationship, called the Hasse—Davenport relation, for
Gauss sums over extensions of finite fields. The Hasse—~Davenport formula
is: : '

—g(xoN,) = (=g(0)- (2.10)

The proof of this fact will be given in a series of exercises below. Applying
(2.10) to the three Gauss sums in (2.9), and observing that y, ,(n) = y,(n") =
%2(n)’, we conclude the following basic relationship: -

Op gr = Olp ge o - (211

The theorem now follows quickly. First suppose p = 1 (mod 4), in which
case ¢ = p. Then y,(n) is the Legendre symbol (§). Using (2.5) and Lemma 1,
we find that « = a,, , is a Gaussian integer of norm p which is congruent to
(&) modulo 2 + 2i; and, by (2.9) and (2.11),
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N=p +1—a —7a"

This proves the theorem when p = 1 (mod 4) (see Problem 2 of §I1.1).
*Now suppose that p = 3 (mod 4), g = p2. Then (1) = 1, since all elements -
of F, are squares in F 2. Then Lemma.1 tells us that a, , is a Gaussian integer-
of norm g which is congruent to 1 mod 2 + 2i. Of the four Gaussian integers
i'p, j=0, 1, 2, 3, having norm ¢, only o, , = —p satisfies the congruence
condition. Then, by (2.6) and (2.11), we conclude that for r even we have -

N = #E,Fpp) =p"+ 1~ (=p)? — (-p)".
Since N, = p" + 1 for odd r, we have for any r:
N =p"+1—(i\py — (—i/p).

This completes the proof of the theorem. ‘ o

"We conclude this section by calling attention to the role Lemma 1 has
played in pinning down the reciprocal roots « and @ in (2.7). The congruence
condition in Lemma 1 will again be needed when we start working with the .
Hasse~Weil L-function of the elliptic curve E,, which combines the o’s for
different primes p. In that context, Lemma 1 is a special case of a general”
fact about how Jacobi sums vary as we vary the prime p. The general case
is treated in [Weil 1952]. ' ‘

PROBLEMS )
1. Prove properties (1)-(3) of Gauss and Jacobi sums that were given in the text.

2. Let G be a finite group, and let G denote the group of characters ¥ (i.e., of homo-
" morphisms y: G — C*). Recall that for any nontrivial ye G, Z,e6 2{g) = 0. Notice
that any fixed g€ G gives a character g: y y(g) on the group G, and also on any
subgroup S < G. Apply these general considerations to the case . when G = Fr
and § is the subgroup of characters y such that ™ = 1. In that way prove the
relation (2.1) in the text.

~.3. Let g =1 (mod 4), and let x, have exact order 4. Show that y,(4) and y,(— 1) are

_ both equal to 1 if ¢ = I (mod 8) and equal to —1 if ¢ = 5 (mod 8). Conclude that
24(—4) = 1 in all cases.

4. Show that g(x,)? = (—1)""24. It is somewhat harder to determine which square
root to take to get g(x,) (see [Borevich and Shafarevich 1966, pp. 349-353]).
Compute g(x,) when g =3, 5,7, 9. ) :

5. For g = 1 (mod 4), again let x, be the nontrivial quadratic character, and lct y, :
:and ¥, be the two characters of exact order 4. Compute J(x,, x4) and J(x,. %)
% directly. from the definition when ¢ = 5,9, 13, 17. !

6. Show that if y, is the nontrivial quadratic character of F} and  is any nontrivial -

-+~ character, then J(x5,.%) = (@I, x).
7. Let x5 and 7, be the two characters of Fyof order 3,whereg =1 (modﬂ 3). Compute:

. J(%3, ¥3) and J(¥3, 7) directly from the definition when g = 7, 13. .
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8. (a) Notice that we proved that the number N, of F-points on E, is independent
of n if r is even. Show this directly. 7 i

(b) Also notice that N, does not change if n is multiplied by an integer which is

a square in F,. This is for the same reason that we could, without loss of gen-

erality, reduce to squarefree n when considering Q-points. Namely, if K is

any field not of characteristic 2 and if m, ne K*, construct a simple corre-

spondence between E,(K) and E,.2(K).

9. This problem concerns a more general definition of Gauss sums, examples of
~ which will occur later in the chapter. Let R be the ring of integers in a number field

K, and let I be a nonzero ideal of R. Then R/l isa finite ring. Let y: R/I— C* be
an additive character which is nontrivial on any additive subgroup of R/I of the
form J/I for any strictly larger ideal J = I (including the “improper ideal” J = R,
which will be the only such J if 7 is a prime ideal). Define the norm NI = #(R/I).
Let y: (R/I)* — C* be any multiplicative character: Take (x) = 0 for xe R/I not
prime to I. Define g(x) = g(x, ¥) 5{2 1(X)¥(x), where the summation is over
xeR/IL .
(a) Prove that Z y(x)¥/(ax) = ¥(@)g(x, ¥) for any ae(R/I)*.
In parts (b) and (c) we suppose that y is “primitive”” modulo 1. By definition, this
means that, for any strictly larger ideal J = Z, y is nontrivial on the subgroup of
(R/D)* consisting of elements congruent to | modulo J.
(b) If y is primitive, show that the formula in part (a) holds for all ae R/
(c) For y primitive, prove that g(x, ¥)g(Z, ¥) = x(— DNZ, and |g(x, ¥)| = /NI
Some examples of the characters and Gauss sums in this problem are: (1) if /is a
prime ideal with residue field F,, then propetty (2) of Gauss sums in the text is a
special case of part (c); (2) if R=Z and I is the ideal (N), then x is an ordinary
Dirichlet character. NJ = N, we often take y(x) = ¢™", and “primitive” means
that the value of y(x) for xe(Z/N Z)* does not depend only on its residue modulo

some proper divisor of N; (3) later in the chapter we will encounter examples where

R=1Z[i].
Problems 10—17 will lead to a proof of the Hasse—Davenport relation.

10. Let S be the set of all monic polynomials in F,[x], and let S denote the subset of
all irreducible monic polynomials. Subscripts will indicate degree. By writing

x¥ — x = I, (x — o), prove that x¥ — x = I1f, where the product is over all

fin i for all 4 dividing r.

11. Let i be a nontrivial additive character and y a multiplicative character of F,.
If fe S is written in the form f(x) = x* — ¢;x*7 4+ -+ + (—1)’¢,, define a map
i1 8= Cby A(f) = x(c)¥(cy): (If f= 1is the constant function in Sy, then define
(1) = 1) Prove that 2(f, f;) = A(/)4(f3) for £, /2€S.

12. Prove that the Gauss sum can be written g(x) = Z,.s, 4(/f)-

13. Suppose that a€F, satisfies monic irreducible polynomial f €Sy, where d|r.
Then show that A( )™= y,(«) - ,(«), where the subscripts here indicate the charac-

ters of F, obtained by composing with the norm from Fyr to F, (in the case of a’

multiplicative character) or with the trace from Fyr to F, (in the case of an additive
character). - : . ‘

14. Prove that g(x,) = Zy, ZcsirdA(f Y™,

R 7
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15. Prove the power series identity Z;.s A(/) 7%/ = T gire(1 — () T84y
16. Show that if @ > 1, then E s, A(f) = 0.

17.‘ Taking the logarithmic derivative of both sides in Problem 15; prove that

18

g =% ¥ d(,

djr fe si:’r
and conclude the proof of the Hasse-Davenport relation.

(a) Show that the ideal (2) in Z[{] is the square of the prime ideal (1 + i); and
that any element aeZ[i] not in (1 + i) has a unique associate i« which is
congruent to 1 medulo (1 + i)* = (2 + 2i).

(b) Show that the ideal (3) in Z{w], @ = (—1 + /=3)/2, is the square of the
prime ideal (,/=3); and that any element ae Z[w] not in (/= 3) has a unique
associate (— w)’a which is congruent to 1 modulo 3. . o

19. ‘Consider the elliptic curve y? = x> —a, acF}. Recall from Problem 4 of §1.9

20.

21.

that it has ¢ + 1 points if ¢ = 2 (mod 3). So suppose that ¢ = 1 (mod 3). Let %,
be the nontrivial quadratic character of F}, and let x5 be either of the nontrivial
characters of F} of order 3. Prove that the number of IF,,—poinfs on the elliptic curve
is equal to

g+ 1+ (~a) (1@ (12, 1) + T30 (t25 X3))-

Let ¢ = 1 (mod 3), and let x5 be a nontrivial character of F} of order 3.

(a) Prove that gJ(xs, x3) = 9(x3)*.

(b) Prove that J(x3, 3) = — 1 (mod 3) in Z[w], where w = (=1 + i\/3)/2.

(c) Show that J(x3, x3) = pif g = p?, p =2 (mod 3).

(d) Suppose that g =p =1 (mod 3). Choose a+ bw so that p = |a + bo|* =
a® — ab + b%. Show that exactly one of the two ideals (a + bw), (a + b®)
(without loss of generality, suppose the first one) has the property that

x3(x) = x7"3  (mod a + bw) forall xef,.

(e¢) Letg =p = 1(mod 3), and choose a + bw as in part (d). Show that —J(x3, 13)
is the unique element generating the ideal (@ + bw) which is congruent to 1
modulo 3.

Let N, be the number of F,~points on the elliptic curve y* = x* — a, where aeF},

pP#2,3. .

(a) If p =1 (mod 3), let x, and x5 be nontrivial characters of F} of order 2 and 3,
respectively, and set a = —y,(—a)x3(4a)J(x3, x3). Prove that N, =p" + I —

.ooat—an

(b) Ifp= 2 (mod 3), let x, and y; be nontrivial characters of F: of order 2 and 3,
respectively. First prove that y, and y; are both trivial on elements of F}.

- Nowseta= i/p.Provethat N=p"+1—o" = &.

,‘;:(c) Conclude that in both cases the zeta-function is (1 ~ 2¢T + pT2)/(} — T)(1 —

. pT), where ¢ =0 if p=2 (mod 3), and ¢ = —x,(—a)Re(xs(4a)J(x3. 13)) if

p =1 (mod 3). ' .

22, Let C < P% be the curve y2 + ay = x3, aeK (ie., F(x, y, z) = y?z + apz® — x°).

. (2) Find conditions on the characteristic of X and on a€ X which are equivalent
. to Cbeing smooth at all of its K*®#-points. -~ = - valer
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(b) Let K = F,-. Show that for r odd, # VC(IFZ})‘z 2" +1 (this ié>indépendent of a).
(¢) Let K=Fyr,aeK, a#0. Let x3 bea nontrivial character of K* of order 3,
and let ¥, be the other one. Derive the formula:
#C(F) =4 + 1+ 7,@JI (13, 13) + 1@ (T, Ta)-

(d) In thesituation of part (c), show that J(x3, x3) = (- 1)"~12"; then find a formula
for Z(C[F,; T) whena = 1. i :

(e) Now let K=Q, a=1. Find a linear change of variables (with coefficients ’

in @) which transforms C to the elliptic curve y* = x3 + 16.

23. Let N, be the number of F,r~points on the elliptic curve E,: y? = x> — n’x, where
pr2n.

(2/1!,) Show that if p = 3 (mod 4), then N, is independent of n; it equals p” + 1if
ris odd; and it equals (p7> — (— 1)) if r is even. '

(b) Now let p = | (mod 4). In Problem 8 above, we saw that N, is independent
of n if r is even, and if r is odd it depends only on whether n'is a quadratic
residue or nonresidue modulo p. For odd r, let Ny and N* denote the N,
for n a residue and for # a nonresidue, respectively. Show that N, isa multiple
of the least common multiple of N and N,

(c) For p = 5, make a table of N* and Ny for r = 1, 3, 5, 7 and a table of N,
for r=2, 4, 6, 8, 10, 12, 14. In each case, determine the type of the abelian
group E,(F ). (See Problems 9 and 11 in §1.9.)

(d) For p = 13, make a table of N;** and N for r= 1, 3, 5 and a table of N, for
r=2,4,6,8,10;and in each case, find the type of E,(F,r).

§3. Varying the prime p

In this section we look at the elliptic curve E,: y* = x* — n’x and its zeta--

function Z(E,/F,; T) as p varies. We shall later want to combine these
zeta-functions for the various p into a single function, called the Hasse—Weil
L-series of the elliptic curve. It is the Hasse—~Weil L-function that is intimately
related to the group of @-points on E,. .

The denominator of Z(E,/F,; T) is always (1 — T)(1 — pT). Only the
numerator depends on p. If p|2n, in which case E, is not even an elliptic
curve, the numerator is simply 1 (see Problem 10 in §II.1). Otherwise, the
numerator is a quadratic polynomial in 7 of the form (1 ~aT)(1 —aT).

When we later define the Hasse—Weil L-series of E,, we shall take this
quadratic polynomial and replace T by p~* (s is a new complex variable).
The resulting expression (1 — ap™*)(1 — @ ~*) is called the “Euler factor at
p”", by analogy with the term in the Euler product expansion of the Riemann
zeta-function: - ' ‘

wasm= 11 ; —]15" - (hereRes>D. G

n=1 N primésp \ ' :

In this section we shall study how this “Euler factor” depends on p. This '

congritgnt to (3) modulo 2 + 2i. We have thus shown:
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dependence will turn out to be described by a cgrtaid'cﬁaracter, xof Z[i] -
(see Problem 9 of the last section). I - '
For the duration of this section we shall let P denote prime ideals of the
Ggusgian integer ring Z[i]. There are two types: (1), P=(p) for p=3-
(mod 4); (2) P=(a+ bi) for a® +b*=p =1 (mod 4). In the latter case
we have PP = (p), and -we say that p “splits” in Z[/]. (There is also the

. special case P = (1 + i), which “ramifies”, i.e., P? = (2).) The degree of a

prime P dividing (p) is defined to be the degree of the field extension Z[i]/P
of F,;itis 2in the first case and 1 if p splits. We can then rephrase the theorem -
Ain the last section as follows.

Propogition 1. ) .
(1 =)A= pD)Z(EJF,; T) = [] (1 = (@pT)**"), (3.2)

Pi(p)

where the product is over the (one or two) prime ideals of 7 [i] dividing (p),
amf where ap = t\/ﬁ if P = (p) and ap = a + bi if p splits, where a + bi is the
unique generator of P which is congruent to (%) modulo 2 + 2i. We take ap =0~

if P|(2n).

We now define a map }, on Z[/] which will be multiplicative and " will
§atisfy #n(x) = ap for any generator x of P = (x). This multiplicative map
is of the form 7,(x) = xy,(x), where y,(x) has value 0, + 1, or +i. First of all,”
we define y,(x) = 0 if x has a common factor with 2n. Next, for n = 1 we
define x;(x) to equal #, where i is the unique power of i such that #x = 1
(mod 2 + 2i). Here x is assumed prime to 2, and hence an clemeﬁt of .
(Z[i]/(2 + 2i))*, which has four elements represented by the powers of i.
Finally, for other » and for x € Z[/] prime to 2, we define x(x) = x; (x) (%),
whe}'e Nx = x- X is a positive odd integer, and () is the Legendre symbol
(which ?xtends from prime modulus () to arbitrary positive odd modulus
by requiring that (wf%;) = () %)) To summarize, we have defined: ’

. , x1(%) (L) for x prime to 2n;
W) =x0x0); 1) = Nx 63
' 0 . otherwise )

where for x prime to 2
1) =i with Px=1 (mod2+2i). . (3.4)

. ‘Suppose/ that x generates a prime ideal P = (x) not dividing 2n. If P = (p)
with p = 3 (mod 4), then (%) = (&) = 1, and 7,(x) = i’x = —p. That is,
takes_y any of the four possible generators of P to a}. If x is any of the fou;
possible generators of a prime P of norm p =1 (mod 4), then 7,(x)=

- Px(3)-= (3) (mod 2 +2i), i.e., f,(x) is the unique generator ap which is

'
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Proposition 2. The map §, defined in (3.3)-(3.9) is the unique multiplicative
map on Z[i] which coincides with apee? on any generator of a prime ideal P.

Notice that y; is a character on (Z[i]/(2 + 2i))*. It takes any X to the

root of unity in the class 1/x. The general x;, is obtained from y; using the
Legendre symbol, with the variable x appearing on the bottom.-We now
use quadratic reciprocity to bring the variable x up on top, thereby showing
that y, is a character. At this point recall Problem 9 of the last section, in
particular, the definition of a “primitive” character on a number ring.

Proposition 3. The map Y, defined in (3.3)-(3.4) is a primitive multiplicative
character modulo (2 + 2i)n for odd n and modulo 2n for even n.

PROOF. Suppose x is prime to 2n. Let n = 27, - - - I, where the [; are distinct
odd prime numbers, and ¢ = 0 or 1. Note that Nx is a product of odd prime

powers, where the primes p,, ..., p, occurring to odd powers are all con-
gruent to 1 (mod 4). First, it is easy to see that
(_2_>={ 1 if Nx =1 (mod 8); (3.9)
Nx

—1 ifNx=5(mod8).

Next, we compute that

()~ () . () - (R 1)

by quadratic reciprocity, since p, = 1 (mod 4). Since Nx is equal to an ‘odd

square factor times the product of the py, we conclude that

1) = 1) (Nz;)n(—m—}-"—) =4 (Nz—;) (—'?jﬁ) 39

where n, = nif n is odd, ny, = nf2 if n is even.

We now prove the proposition in the case n odd. The proof for n even is
very similar, and will be left as an exercise below.

We must first show that y,(x) depends only on what x is modulo (2 + 2i)n.
-Suppose that x" = x + (2 + 2i)np. Since x" =x (mod 2 + 2i), we clearly
“have y;(x") = x;(x). Next, we have

Nx = (x + 2+ 2)np)(X + (2 — 2i)nﬁ) =x-X=Nx (modn),

and hence the Legendre symbols are also equal. (This would not have been

clear until we used quadratic reciprocity to bring Nx to the top, obtaining

&) in (3.6).) . . ,
To show primitivity, we must show that there is no proper divisor of

(2 + 2i)n such that y;(x) depends only on what x is modulo that proper

divisor. Thus, if y, were not primitive mod (2 + 2i)n, there would exist a
prime ideal Q dividing (2 + 2i)n such that x;(x) depends only on x-modulo
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the ideal (2 + 2i)n)/Q. In particular, yj(x) # —1 for all x = I mod((2 +
2i)n)/Q. We consider three cases, and show that each leads to a contradic-
tion. ‘ ‘

@ Q=@+, ie, x(x) #—1 for all x=1+ 2nf, feZ[i]. But since

© Nx = 1 (mod r), we have x,(x) = xj(x) = x1(1 + 2p), and this value is
—1if, for example, f = i. o

(i) Q = (a + bi) with (a + bi)(a — bi) == 1 (mod 4), /|n. Then we are

supposing that y,(x) # —1 for all x of the form 1 + B(2 + 2i)n(a — bi)/l,

where BeZ[i]. Let B = k(1 — i), where k is an arbitrary integer, i.e.,

x =1+ dkn(a — bi)/l. Then yxi(x) =1, and Nx = 1 + 8akn/l (mod n).

Hence,  y.(x) = (A8&2L)  Since 8an/! is prime to /, it follows that

1 + 8akn/I runs through all residues modulo / as k varies. In particular,

there is a value of k for which 1 + 8akn// is a quadratic nonresidue,'

i.e., xn(x) = —1, a contradiction. i :

(i) @ = (/) with / = 3 (mod 4). Then we are supposing that y,(x) # —1 for x

= | (mod (2 +2i)n/l). Since x = 1 (mod 2 + 2i), we have x}(x) = 1, and

50 x.(x) = (8 = (8), since Nx = 1 (mod n/l). Now since (2 + 2i)n//

is prime to /, it follows by the Chinese remainder theorem that x of the

form 1 + B(2 + 2i)n/l runs through all residues of Z[i] modulo Q.

If we consider x modulo Q, i.e., as an element in the field Z[{]/Q = F,

then the norm map x+» Nx = x- X is simply the norm map from [

to [, And the latter map is surjective (for instance, a generator g, of

F}; goes to a generator g = g5 of [¥). Hence, there are x of the required

form for which x,(x) = (8% = —1. This concludes the proof of the

proposition. p O

- For the remainder of this chapter, we shall let #” denote the conductor of

¢ . xn, 1.€., @ generator of the largest ideal such that y,(x) depends only on x

modulo that ideal. By Proposition 3, we may choose

= {(2 +2i)n, nodd;

2n, n even. (3.7)

Whenever one studies transformation formulas for functions involving
characters, as we shall do in the sections that follow, the Gauss sum of the

. character is almost certain to make an appearance. In preparation for our

later derivation of the functional equation for the Hasse—Weil L-series of E,,,
we now find a formula for the Gauss sum of the character x;,: (Z[i]/n')*+> C*
(whose image consists of powers of 7).
We define our additive character on Z[i}/n" by the rule:
- .’[/(x) —_ eZni Re(x/n'). (38)

It is easy to check that ¥ is a nontrivial additive character of Z[i]/n" which

* satisfies the condition in Problem9 of the last section, namely, it is nontrivial

on the multiples of any proper divisor of #’.
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xezliyn’ ———) in’, n=2n, even.
: = )i

Pmposition 4.

Proor. To show that g(x,) =2 + 2i and g(x3) = 4i is a short computation
that will be left asan exercise (Problem 2 below). .
Let m be a positive squarefree odd number. Let (7) denote-the character

x> (8%) on (Z[i]/m)*. Then by (3.6) we have
Xn =21 (ﬁ) for n odd; e = A2 (;;;) for n = 2n4 even. | (3.10)
We define the Gauss sum for the character (5) as follows:

. M 2ni kc(J;[m) 3 1 1
(G)m. 3. C)erm o

We can obtain an alternate form for g(()) if we replace x by 2x. (Note that
2x runs through (Z[i]/m)* as x runs through (Z[{]/m)*.) Since N(2x) = 4Nx,
we have (82%) = (%). Writing Re(2x/m) as 5 Tr x, where Tr x denotes x + X,

we have
Nx\ (2rifm Trx (3.12)
J— = — )€ * :
g <(m)) xel%]/'" ( m ) :

Proposition 4 will follow as an immediate consequence of the following
lemmas, which will be proved below.

Lemma 1.

Lemma 3. If p is an odd prime, then g ((;)) =p.

PrOOF OF LEMMA 1. First suppose that 7 is odd. Write x in the form x =
(2 + 2i)x, + nx,, where x, runs through a set of representatives of Z[i]

modulo n and x, runs through a set of representatives of Z[i} modulo.

2 + 2i. By the Chinese remainder theorem, x then runs through a set of
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representatlves of Z}i] modulo- (2 + 2i)n. By (3.10), we have x,(x)=
¥1(nx,) (M@ 2020y By (3.4), we have x;(n) = (F). Also, N((2 + 2i)x,) =
8Nx,, and so the second term becomes (=), Meanwhile, in the additive
character we have Re(x/n’) = Re(x,/n + x,/2 + 21)) Hence, in the defini-
tion (3.9) of g(y,) we have

Q(X:.) = (;1') (2> Z X; (Xz) (N. x,) @2mi Relx,/m+2ni Re'(xz/(2+21‘))’
nj\n eZlilfn n X

x, SBGI2F20)

and the double sum on the right separates out into g(x’l)g((;)).\
The proof for even n is very similar, where we write x = 4x; + nyx,.
The details will be left as an exercise. o

Proor oF LEMMA 2. The proof is quite similar to that of Lemma 1. In the
definition (3.11) we write x = x,m, + x,m,, where x; runs through a set of
representatives of Z[i]/m;, j=1, 2. Since Nx =m3Nx, (mod m,) and
Nx = m?Nx, (mod m,), we have

(-2 (2)2)

Since also Re(x/m) = Re(x,/m,) + Re(x,/m,) the sum in (3.11) separates
out into a product over x, which is equal to g((=;)) and a product over x,
which is equal to g((w,)). o

PrOOF OF LEMMA 3. We first consider the case p = | (mod 4). Let p = f- B,
where = a + bz In (3.11), we write x = x; B + x,f, where x, and x, each
run through 0, .., p— 1 (note that these numbers are representatives
of Z[i]/B and also of Z[i]/B)- Again, since § and f are relatively prime, the
Chinese remainder theorem tells us that x will run over Z[i]/p. We have
Nx = (x, 8+ x,8)(x, 8 + xzﬁ) 2x,x, Re B? (mod p). But Re % = a* —

- b% = 24* (mod p), since p- = a* + b*. Thus, since Re x = x,a + x,a, we have

by (3.11)

g (<“)> - Z (ax, axz) ()(Zgi/p)(ax| +ax2).
A\, Xy x,€Z/pZ P \

The double sum separates out into the square of a single sum over x, € Z/pZ.-

If we then replace ax; by x, we obtain "

0)-(56r-

which we know equals p by property (2) of Gauss sums for finite fields (see

. §I1.2; also see Problem 4 of §I1.2).

Fmally, suppose that p = 3 (mod 4). Then ( p) is a pnme ideal of Z[z]
and Z[i]/p is the field of p? elements. In that case, g((3)) in (3.12) is the

Gauss sum for the multxphcatwe and additive characters of F,. obtained
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from the multiplicative character (%) and additive character e*™ of F,
using the norm and the trace. In other words, we are in the situation of the
Hasse—Davenport relation (2.10), which tells us that —g((3)) is the square
of the Gauss sum X5, (%)e?™*P_ Again using Problem 4 of §I1.2 (this time
with ¢ = p = 3 (mod 4)), we conclude that g((3)) = p.

This completes the proof of the lemmas, and hence of Proposition 4. O

In Proposition 4, the term (52) for n odd, (72) for n even, is equal to +1
ifrn=1,2, 3 (mod 8) and is equal to —1 if =5, 6, 7 (mod 8). This sign
will turn out to play a crucial role in the functional equation for the Hasse~
Weil L-series for E,. It is called the “root number”. If it equals —1, then
conjecturally it follows that » must be a congruent number: But there is no
known direct reason why any squarefree # congruent to 5, 6, or 7 modulo 8
should be the area of a rational right triangle.

PROBLEMS

1. Using (3.6), prove Proposition 3 for n = 2n, even.

2. Verify the formula in Proposition 4 for n = 1, 2 by a direct computation.
3. Prove Lemma 1 for even n.

4. Give another proof of Lemma 3 directly from the definition of g((3))-

§4. The prototype: the Riemann zeta-function

For Re s >-1,the Riemann zeta-function is defined by the convergent infinite .

sum of reciprocal s-th powers, or alternatively by the product of “Euler

‘factors” 1/(1 — p~*) with the product over all primes p (see (3.1)). In this

section we give a proof of analytic continuation and the functional equation
for the Riemann zeta-function {(s). The proof has all of the essential elements

_that will later be needed to prove analogous facts about the Hasse—Weil

L-function of E,.

We start by recalling some basic tools for working with real- and complex-
valued functions. First, we summarize the properties of the gamma-function
(for the proofs and further details; see, for example, { Whittaker and Watson
1958, Chapter XII], or [Artin 1964]).

The gamma-function I'(s) interpolates #! in the sense that I'(n) = (n — 1)!.
It can be defined for se C with Re s > 0 by the integral

dt

r(s)derf et @y
0 .

t

It satisfies the relation

C(s+ 1) =sC(s), o 4.2 :
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which enables one to continue I'(s) analytically onto all of the complex = -
s-plane, except that it has simple poles at s =0, —1, =2, —3, .... The
gamma-function also satisfies the relations

rErd —s =

r(3)r (3

Finally, using (4.2) and (4.3), one easily sees that the reczprocal of the gamma-
function is an entire function of s.

The gamma-function (4.1) is a spcciai case of a construction known as the
“Mellin transform”. Given a function f(¢) on the positive real axis, its
Mellin transform is the function g(s) defined by the formula

09 = [ @3
0 - .

sin(ns) 43

and"

) = /r2! T (s). (4.4)

for values of s for which the integral converges. Thus, I'(s) is the Mellin
transform of e™*. Notice that for any constant ¢ > 0, the Mellin transform-
of e™is ¢ °T'(s):

o
J e‘“tsizz = ¢"°T'(s), (4.6)
t .
0

as we see after a simple change of variables. We shall often have occasion
to use (4.6).

Another tool we shall need is the Fourier transform. Let & be the vector
space of infinitely differentiable functions f: R— C which decrease at infinity
faster than any negative power function, i.e., lx[”f(x) —0as x— +oo for
all N. An example of such a function is f(x) = e T For any fe & we define
its Fourier transform £ by:

" ® .
J) d‘:}J e f(x)dx. 4.7)
. -0
It is not hard to show that the integral converges for all y, and fe &,
The following properties of the Fourier transform are also easy to verify:

1) Ifae[R and g(x) = f(x + a), then g(y) = eZ’"‘”f(y)
(2) If aeR and g(x) = *"f(x), then §(¥) = f(y — a).
() If b > 0 and g(x) = f(bx), then §(») = +f(y/b).

' Fofpxample, to check (3), we compute

hal” ]

a0= [ et [ ememoRLiom.
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Proposition 5. If f(x) = €™, then f = . - R
PROOF. Differentiating under the integral sign, we have

f}(Y) = %J‘ 3F2ﬁx}’f(x)dx = —znif Ve—Znixyxe—nx.zdx.

- -

Integrating by parts gives ' ~

. o1 2
’ —_ P o 2mixy »— X
' 2nie 2n(

@ @ . e—-nx2
o+ 2mi —2miye” ™ ———dx
- —2n

—®

= —2ny J " e rfdx = —2my ().

Thus, / satisfies the dxfferentxal equation f*( W) = —2ny; this clearly has
. solution f(y) = Ce™", where C is obtained by settmg y=0:

C:f(0)=r = 1,

-

(Recall the evaluation of the latter integral:
«© 0 . .
C?*= J e dx J e ™dy = J e dxdy
- - R?

= f e~ dnrdr = J e du=1.)
0 0

Thus, f( y) = e, as/claim,ed. m]

Proposition 6 (Poisson Summation Formula). Ifge &, then

5 gm= 5 g @y

m=—w m=-c

Proor. Define h(x) = ZZ. _,, g(x + k). The function h(x) is periodic with
period 1, and has Fourier series A(x) = Z3. _, ¢,e>™"*, where

1 1 0 ©
Cp = J h(x)e 2mimxdy = Y g(x + kye M mrdx = J g(x)e™2mimxdx,
0 0 k=-w ~o

where we interchanged summation and integration, and made a change of

variables (replacing x + k by x) to obtain the last equality. But the last -

expression is simply §(m). Now the left side of (4.8) is #(0), by definition;
and the right side is also 4(0), as we see by substltutmg x = 0 in the Fourier

series for A(x) and using the fact that ¢, = §(m). 0.

We now define the theta-function:

0= 5 e for 1>0, 9)

n=-w
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Proposntlon 7. The theta-, functzon satzsf Ges the functzonal equazzon

0(:) = 7.-0(1/:) B (4.10)

PROOF We apply Poisson summatlon to g(x) = e~™ for fixed t> 0. We

write g(x) = f(\/tx) with f(x) = e~ By Proposition 5 and property (3)

- of the Fourier transform (with b = J1) we have g(y) = (™2™, Then
the left side of (4.8) is 0(¢), and the right side is 77*26(1/r). This proves the

proposition. ]

We sometimes want to consider () for complex ¢, where we assume that
Re ¢t > 0 in the definition (4.9). The functional equation (4.10) still holds
for complex ¢, by the principle of analytic continuation of identities. That is,
both sides of (4.10) are analytic functions of ¢ on the right half-plane. Since
they agree on the positive real axis, they must be equal everywhere for
Ret> 0.

Proposition 8. As 1 approaches zero from above, we have

|6@t) — 72| < e ' R (R

Jfor some positive constant C.’

PROOF. By (4.10) and (4.9), the left side is equal to 2:7/2 T2, e™™"". Suppose

t is small enough so that /1 > 4e™"* and also e™*"" < 4. Then

!0([) _ t-1/2| < %ellt(e—a/t + e~4mh .. )< %e_‘"_l)/'(l + % + % + % 4+ )
— e—(n—l)/l.

Thus, we can take C =n — 1. ‘ ]

We now relate 6(¢) to the Riemann zeta-function. Roughly speaking, {(s)
is the Mellin transform of 6(f). The functional equation for 8(f) then leads
us to the functional equation for {(s), and at the same time gives analytic
continuation of {(s). We now show how this works.

Theorem. The Riemann zeta-function {(s) defined by (3.1) for Re s > 1 extends
analytically onto the whole complex s-plane, except for a simple pole ats =1
with residue 1. Let

A(s) ST ( ) (s). : (4.12)

Then A(s) is invariant under replacing s by 1 — s:
: AGs) = A(l = s).

That is, {(s) satisfies the functional equation




74 : ' II. The Hasse~Weil L-Function of an Elliptic Curve

n-s/zl—G) {(s) = n-a-9r (1_5_3) t—s). @.13) °

PrOOF. Basically, what we want to do is consider the Mellin transform
{2 6(nr(%). However, for large ¢ the theta-function is asymptotic to 1
(since all except the n = 0 term in (4.9) decrease rapidly); and for 7 near 0
it looks like "2, by Proposition 8. Hence, we must introduce correction

terms if we want convergence at both ends. In addition, we replace s by $

(otherwise, we would end up with {(2s)). So we define

() = Jm 20 — l)fit-{- + Jl 2 (G(I) — ,L)_di (4.14)

0 Vi)t

In the first integral, the expression 6(f) — 1 = 232, e™™* approaches
zero rapidly at infinity. So the integral converges, and can be evaluated
term by term, for any s. Similarly, Proposition 8 implies that the second
integral converges for any s. In any case, since 6(?) is bounded by a constant
times 7”2 in the interval (0, 1], if we take s with Re s > 1 we can evaluate
the second integral as ‘

1 1 1
f ts/ZO(I)g_t_ — J t(s~1)/2£1.t_ — J ts/ZB(t)_‘it__ 2 )
“Jo t . o t 0 Ut os—1
Thus, for s in the half-plane Re s > 1, we obtain:

0 © 1 © 1
¢(S) =2 Z e——nnzttslzitt_ + <J' ’SIZ%E +2 Z J‘ e—-nnzxts/Z_fd_t_ - __2__)
n=1 jJo

=N o rs—1

S _tspdt 2 2
=2 e ™ tts/2____ <
2 s+l—s

. =1 Jo t

Using (4.6) with ¢ replaced by nn® and s replaced by —%, we have:

e=% (nnZ)-’/zr(g) -

1—s

4.
. 4.15)

1-¢

. . 1
= q-sir| S 2
wer($)e+ 1
where always here Re s > 1. .
Now ¢(s) is an entire function of s, since the integrals in (4.13) converge

~ sowell for any s, as we saw. Thus, (4.14) shows us that there is a meromorphic
function of s on the whole complex plane, namely

2 (1 1 1
TG2) <2¢(S) s 1—s)
which is equal to {(s) for Re s > 1. Moreover, since 7°2, 1/T'(3), and $(s)
are all entire functions, it follows that the only possible poles are at s =0

and at s = 1. But near s = 0 we can replace s['($) in the dcnominator by
2(9)T'(3) = 2I'(3 + 1), which remains nonzero as s — 0. B: the only pole
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isviéf s = 1, where we compute the residue

‘ IRT S 1 1. n'/?

im(s — Ne———= LI Ay [t

im = Ve (24’(”-- sts— 1) T2

It. remains to ;Srove‘ the fixnctional equation. Since, by (4.15), A(s) =

Ld(s) — + — gLy, and since § + (rL5; is invariant under replacing s by 1 — s,
it suffices to prove that ¢(s) = ¢(1 — s). This is where we use the functional
equation (4.10) for the theta-function. Using (4.10) and replacing 7 by { in
(4.14), we obtain (note that d3)/(}) = —%, and 7 becomes §9 = —{5 under
the substitution): o ' ; ‘

o= [ [0

(replacing 1 by })

- J LR ion - 4+ J " nion — D% by @10)
1

0

. ! 1—;)/2( ____L)_d_t ® (1*;)/2 —_ ﬂ
- L o2 (00 - 7)o+ |0 -G
= ¢(l — 3). '

This completes the proof of the theorem. ' O

In a similar way one can prove analytic continuation and a functional
equation for the more general series obtained by inserting a Dirichlet
character y(n) before n~* in (3.1), or, equivalently, inserting x(p) before p™*
in the Euler product (see Problem 1 below). That is, for any character
x: (Z/NZ)* — C*, one defines: '

Lo = & 2 =Tl

1 —x(pp~*

The details of the proof of analytic continuation and the functional equation
will be outlined in the form of problems below.

“(where Re s > 1).  (4.16)

. The Hasse—Weil L-function for our elliptic curve E,, to be defined in the

next section, will also turn out to be a series similar to (4.16), éxcept that
the summation will be over Gaussian integers x; the denominator will be

the norm of x to the s-th power, and the numerator will be 7.(x), where ¥, -

‘was defined in (3.3) in the last section. The techniques used in this section
to treat the Riemann zeta-function can be modified to give analogous

facts—analytic continuation and a functional equation—for the Hasse-Weil

L-function for E,. In the final section we shall use this information to _
[investigate the “critical value” of the Hasse—Weil L-function, which is
related to the congruent nimber problem.
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PROBLEMS

1. (a) Show that the summation form and the Euler product form of the definition of
L(y, s) are equal. .

(b) Prove that if y is nontrivial, then the sum in (4.15) actually converges (condi-

tionally) for Re s > 0.

2. Let G = Z/NZ, and let ¢ = ™, ‘

(a) Define the “finite group Fourier transform” of a functipn f: G —C by setting
J(@) = Z,.6f(b)E ™ for aeG. Prove that f(B) = §Z,.cf(@)E®.

(b) For fixed seC with Re s > 1, let f;: G — C be the function

Si(b) = y v .
nz1,n=b(mod N)

Prove that for any primitive Dirichlet character y modulo N and for any s with
Res>1:

¢

-an
n’

L9 =590 T 7@ $
ae A=1

where g(x) is the Gauss sum (se¢ Problem 9 of §I1.2).

(c) Take the limit in part (b) as s approaches 1 from above, supposing x nontrivial.
In that way derive a simple formula for L(y, 1). )

(d) Define the “dilogarithm” function by /(x) = £, % for |x| < 1.-Express L(y, 2)
in terms of the dilogarithm.

3. (a) For fixed ¢ > 0 and ae R, what is the Fourier transform of e ™+29
(b) Suppose that ae R is in the open interval (0, 1). Define the following functions:

‘@, s5)= Y (n+a)°, Res>1;
n=0 :

@ )
[(a’ S) - Z n—sez:una’

n=1

Res>1;

0= Y e’ ;50;

n= -

0
0"([) — Z ezﬂ“""e—’""z’ t>0.
n=-aw .

(The notation /(a, s) should not be confused with the function /(x) in Problem-2.)
Prove that :

@) 6, = 1726°();

(i) 6.(5) ~ ¢72| < ™" as 1 » 0 for some positive constant C, ;
(iii) |0°(r)| < e~ as t — 0 for some positive constant C,. )

(c) Prove that {(a, s) + {(1 — a, 5) as a function of s&€C extends to a'meronforphic

function with no pole except for a simple pole at s = 1; that the function /(a, s) +
(1 — a, s) extends to an entire function; and that ‘

n"“r(g) (@, )+ —a,s))

=-,;-u-sv2r(l-2‘-ﬁ> (@1~ )+ 11 —a 1~ ).
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‘ -(d) Let g bea primitive Dirichlet character mod N. Let L(y, s) bedefined asin (4.16).
3 Prove that for Re s >'1: ‘ )

O ¥ x(h)C(%,s)=N'L(x,s)_; -

0<h<N -

@ 3 10(3.s) =L 9.
O<h<N .
- (¢) Suppose that y is a nontrivial even character, i.e., x(— 1) = 1. Prove that Ly, s)
extends to an entire function of seC, and find a functional equation relating
L(X: 5) to L(i? - 5). -
(f) Let x be a primitive even quadratic character, i.e., x(n) = +1. Recall from
Problem 9(c) of §I1.2 that g(x)* = N, so that g(y) = +./N. Suppose you some- -
how knew that L(y, 3) # 0. Show that this implies that g(y) = /N.
(g) With y as in'part (¢), show that L(y, 5) = 0if sis an even negative integer or zero. -
() With y as in part (¢), express L'(x, — 2k) in terms of L(%, 2k + 1). In particular,
express L'(y, 0) in terms of L(7, 1).

4. Let x be a nontrivial even primitive Dirichlet character mod N, and define
o .
0, =Y xme " =1 Y xme™, >0,
n=1 2nel

(@) Prove that

N
@ 00 0=3 3. x@B(N?);
a=1 N

@) 5 ¥ 1@0™) = 9000, ;

(i) 6z, 1) = 2% oz, 1/N%).
X% 0 \/NT! 1/ )
(b) Show that the Mellin transform of 6(y, #) converges for any s (with no need for
any correction term), and that for Re s > L it is equal to #™*I"(s) L(y, 2s). -

- (c) Use the functional equation in part (a)(jii) to give another proof of the functional
equation for L(y, s) in Problem 3(e) above.

5.(a) Let fe#, and g(x) = /(). Show that §(y) = 2miyf(y).
(b) Find the Fourier transform of (x + a)e™™**9* with ¢ and a as in Problem 3(@).

" (¢) Letae(0, 1). Define ¢ (a, s) and /(a, s) as in Problem 3 above, buf now define 6,
" and 0° differently:

\

(D= ) (n+a)e ™’ ;50;

n=~w

O
0°(t) = Z neZm‘nae—mnz’ t>0.
Prove that: \

M 0, = —it=¥26°(});

(ii) |0,(9)] < e~ as 1 0 for some positive constant C;
(iii) |6°(2)] < e ¥ as ¢ - 0 for some positive constant.C,.
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@ Exf)ress the Mellin transform of 0, and (“ in terms of t(a, s) and g, 5); pfove_ S
that ¢(a, s) — {(} —a, s) and /{a, s)— /(1 — a, 5) extend to entire functions of ~

. seC; and derive a functional equation relating these two functions:
(e) Suppose that y is a primitive odd character mod N, i.e., x(—1) = — 1. Prove that
L(y, 5) extends to an entire function of seC, and find a functional equation
- relating L(x, 5) toL(¥, 1 — ).

(f) Let y be an odd quadratic character. Show-that if you somehow knew that

, L(x, 1/2) # 0, then this would imply that g(x) = iy/N (rather than —i,/N).
(g) With y as in part (€), show that L(y, s) =0 if s is a negative odd integer. .

(h) With y as in part (e), express L'(x, 1 — 2k) in terms of L(¥, 2k). In particular,

express L'(y, — 1) in terms of the dilogarithm. For example, express Ly, —1)
where x(n) = (8), in terms of the dilogarithm. N o

6. Let x be-an odd primitive Dirichlet character mod N, and define

60, 0= 3 nxle™ = 3 mpae™,  1>0.
. a=1 nelZ

(Note that this is different from the definition of 6(, ¢) for even x in Problem 4.)

Let 6, and 6° be as in Problem 5(c).

(a) Prove that:

M 0. 0=

Nz

N
Z X(a)oa/N(Nzl);
a=1

N
(i) 3 3. 2@0™() = 9000, 0;
a=1

(iii) O(r, ) = —iN 21" g()0, 1N?0).

(b) Show that the Mellin transform of 6(x, f) converges for any s, and that for
Re s > L it is equal to z~°T'(s)L(y, 2s — 1).

(c) Use the functional equation in part (a)(iii) to give another proof of the func-
tional equation for. L(y, s) in Problem 5(¢) above.

7. Let x be the character mod 12 such that y(F1) =1, y(£5) = —1. Let n(z) = 6(y,
—iz/12) for Im z > 0. Prove that n(— 1/z) = \/z[in(z), where we take the branch of
\/z_/i which has value 1 when z = i. We shall later encounter #(z) again, and give a
different expression for it and a different proof of its functional equation.

8. (a) Use the functional equations derived above to express /(a, 1 — s) in terms of
{(a,s)and {(1 -, ). '
(b) Use the properties (4.3) and (4.4) of the gamma-function along with part (a) to
show that

la, 1 — 5) = F(5)Qm) "™ ({(a, 5) + e~**{(1 — a, 5)).

(c) ForaeC,a+ —n,define (a + n)~ tomean e *'°#@*" where we take the branch
of log having imaginary part in (—x, #]. Show that foraeC,Ima > 0,Re s >'1,
on¢ has: . : e

@, 1—3) = l"(sv-)(21:)-""9'""’2 i '(’va_:+ n)~s. v: '~

n= =0
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' ) {d) Let s = k be a positive even;integer. Show that for aeC, Ima > 0: .

i 1 2ni)* i Inl;—x eZIni:x.ﬂf

n=—oo(a +‘n)k (k —l) !.n=1

o . (¢) Giveasecond derivation of the formula in part (d) by successively differentiating
the formula :

-S| 1
7rcot(1ta)—-2-!~"§t it aTh

§5. The Hasse—Weil L-function and its functional -
equation : ”

Earlier in this chapter we studied the congruence zeta-function Z (E[F,:T)
for our elliptic curves E,: y* = x* — n”x. That function was defined by a
generating series made up from the number N, = N, , of F,~points on the
elliptic curve reduced mod p. We now combine these functions forall pto
obtain a function which incorporates the numbers N, , for all possible prime
powers p', i.e., the numbers of points on E, over all finite fields.

Let s be a complex variable. We make the substitution T=p*in
Z(E,[F,; T), and define the Hasse—Weil L-function L(E,, s) as follows:

__leis—1
L(En, D) &;fan(En/[Fp;p'—s)
1
pgnl . zaEmpp—s +p1—25

1
PI;!" 1— adegP(NP)—-s'

.1

= (5.2)

“ We must first explain the meaning of these products, why they are equiv-
alent, and what restriction on se C will ensure convergence. In (5.1) we are
using the form of the congruence zeta-function inthe theorem'in §11.2 (see the
first equality in (2.7)), where the notation ag,_, indicates that the coefficient
a depends on E, and also on the prime p. We put the term {(s)(s — 1) in

- the definition so that the uninteresting part of the congruence zeta-function—

its denominator—disappears, as we see immediately by replacing {(s) and

~{(s — 1) by their Euler products (see (3.1)). Note that when p|2n, the deno-

minator term is all there is (see Problem 10 of §I1.1), so we only have a
contribution of 1 to the product in that case; so those primes:do not appear

in the product in (5.1).

f;;In (5.2) the product is over all prime ideals P of Z[i] which divide primes
~p.of good reduction. Recall that those primes are of two types: P =(p),
p=3 (mod4), degP=2, NP=p?; and P=(a+bi), a®+b*=p=1

" (mod 4), deg P = 1, NP = p. The meaning of o, and the equivalence of -

(5.1) and (5.2) are contained in Proposition 1 (see (3.2)).
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As in the case of the Riemann zeta-function, we can expand the Euler

- product, writing each term as a geometric series and multiplying all of the

geometric series corresponding to each prime. The result is a Dirichlet
series, 1.e., a series of the form

L(E, 5)= il By ™. (.3)

Before discussing the “additive” form of L(E,, 5) in detail, let us work out
the values of the first few b, , for the example of the elliptic curve E, : y* =

x3 — x. We first compute the first few values of ag, ,in(5.1).1f p = 3(mod 4),

thenag , = 0.1f p = 1(mod 4), there are two easy ways to compute a = ag, »:
(1) as the solution to a® + 4% = p for which a + bi =1 (mod 2 + 2i); (2)
after counting the number N, of F,-points on E,,wehave2a=p+1—N,
(see (1.5)). Here is the result: '

1 1 N 1
1+397° 1 +2-5%4+5-25"° 14+7-49"% 14+ 11-121"¢
. l . l | e

1—6-137°413-1697° 1 — 21775+ 17-2897

=1-2:5%=3-97 46134217+ Y b, ,m>. (54

mx>25

L(Ey, 5) =

We have not yet discussed convergence of the series or product for L(E,, s).
Using (5.2) and the standard criterion for an infinite product to converge
to a nonzero value, we are led to consider Zplap|*8P(NP)™* for s real. By
Proposition 1, we have |a,|*#” = NP2, In addition, NPY2~5 < p¥/2~s for
s = % (where P = (p) or else PP = (p)). Since there are at most two P’s for
each p, it follows that the sum is bounded by 2X,p2%, which converges if
Res > 3. To summarize, the right half-plane of guaranteed convergence is
1/2 to the right of the right half-plane of convergence for the Riemann
zeta-function, because we have a term of absolute value \/; in the Euler
product which was absent in the case of {(s).

We now discuss the additive form of L(E,, s) in more detail. Using
Proposition 2, we can rewrite (5.2) in-terms of the map ¥, defined in (3.3)-
(3.4:

zn(P))" :
L E,,, 8= 1-— R DS > 5.5
En 9= IT ( ) (5.5)
where we have used #n(P) to denote its value at any generator of the ideal P.
Notice that, since ¥, is a multiplicative map taking the value 1 at all four
units +1, +4, we may regard it equally well as a map on elements x of
Z[i] or on ideals I. '

We can now expand the product (5.5) in the same way one does for the

Riemann zeta-function and for Dirichlet L-series (see Problem 1(a) in the
last section). We use the two facts: (1) every ideal Thas a unique factorization
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asa produét of prime power ideals; and (2) both )Z,, and N are multiplicative:
T ) = 1,(I)7u(I), N(L 1) = NI - NI,. Then, by multiplying out the
geometric series, we obtain: : ‘ )

LE, 9 =TLOND", 56

where the sum is over all nonzero ideals of Z[i]. ,

A series of the form (5.6) is called a “Hecke L-series”, and the map j, is
an example of a “Hecke character”. In a Hecke L-series, the sum on the -
right of (5.6) is taken over all nonzero ideals in some number ring. A multi-
plicative map x on the ideals in that ring is said to be a Hecke character if
the following condition holds. There is some fixed ideal f and a fixed set of
integers #,, one for each imbedding & of the number field into Q*#°!. such
. thatif / is a principal ideal generated by an element x which is congruent to
1 modulo the ideal f, then x(7) = I1,6(x)". In our example, the number
ring is Z[i]; there are two imbeddings ¢, = identity, o, = complex conju-
gation in Gal(Q[i]/Q); we take n, =1, n, =0; and we take = (1)
("’ = (2 + 2i)nif nis odd, 2n if n is even). Then the condition simply states
that 7,((x)) = x if x = 1 (mod r). ,

It is very useful when the Hasse—Weil L-series of an elliptic curve turns
out to be a Hecke L-series. In that case one can work with it much as with
Dirichlet L-series, for example, proving analytic continuation and a func-
tional equation. It can be shown that the Hasse—Weil L-series of an elliptic
curve with complex multiplication (see Problem 8 of §1.8) is always a Hecke
L-series. . _

The relation between the additive form (5.6) and the additive form (5.3)
is quite simple. We obtain (5.3) by collecting all terms corresponding to
ideals J with the same norm, i.e.,

bun= Y D).

" IwithNI=m

Notice that, since 7,(1) = 7,(I) - (&) by (3.3), we have

bm n= _’1‘) i {d =("‘1-> bm,
’ (m Iwill§11=mX1( ) m :

- where we have denoted b,, = by, 1 Thus, if for fixed n we let , denote the
7', multiplicative map on Z given by m— (%) (for m prime to 2n), we have

(Bn, 9) = ). ta(m)bp,m™*
m=1
=1 =25 _3( ) g-s LA P T IY RO LA
oo
note: ()% is 1 if 3fn and 0 if 3|n); one says that L(E,, s) is a “twisting”

f L(E,, s)= Z b,,m™* by the character ¥,. One can, verify that for n square-
he conductor of y, is » when # = 1 (mod 4) and is 4n when n = 2 or 3.
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mod 4 (this follows from quadratic recnprocny) In other words, y, is a
primitive Dirichlet character modulo » or 4n.

To keep the notation clear in our minds, let us review the meaning of y,,

%n» and 7,. First, x, is a map from Z to {+1, 0} which is defined by the
Legendre symbol on integers prime to 2n. Second, ¥, is a map from Z[i]
to {£1, +i, 0} which takes elements x prime to 2x to the unique power of i-
such that y,(x)x = x,(Nx) modulo 2 + 2i (see (3.3)-(3.4)). Thirdly, ¥, is a
map from Z[i] to Z[i] which takes an element x to xy,(x); also, 7, can be
regarded as a map from ideals of Z[i] to elements of Z[i] which takes an
ideal J prime to 2n to the unique generator of / which is congruent to x,(NJ)
modulo 2 + 2i.

The character g, is intimately connected w1th the quadratic field Q(/n).
Namely, if m = p # 2 is a prime number, then the value of x,,( p) = (,,) shows
whether p splits into a product of two prime 1deals (p)=P,P, in Q(\/_ )
(this happens if (£) = 1), remains prime (if (£) = —'), ot ramifies (p) =
(if (3) = 0, i.e:, p|n). (See [Borevich and Shafarevich 1966].) We' say that An
is the quadratic character associated to the field Q(f ).

It is not surprising that the character correspondmg to the field @(f )
appears in the formula (5.7) which links L(E,, s) with L(E,, s). In fact,
if we allow ourselves to make a linear change of vanables wzth coefficients in
@(\/') then we can transform E,: y> =x% —n?xt0 E;: y2 = x> — X by
setting y = n\/_ ny’, x = nx’. One says that E and E, are 1s0morphlc ‘over
the field Q(/n).”

Returning now to the expression (5.6) for L(E,,, s), we see that it can also
be written as a sum over elements of Z[ | rather than ideals. We simply note
that every nonzero ideal has four generators, and so appears four times if
we list elements instead of ideals. Thus,

ban=2 %

4 a+biwitha2+b2=m

Tnla + bi),

and

LE, 9 =5 T BN~

xeZ[i} ) (58)
_1 (a + bi)y.(a + bi)

- (az +”'b2)s ’

where y, was defined in (3.3)—(3.4). (The sums are over nonzero x, a + bi.) .

Notice the analogy between the sum (5.8) and Dirichlet L-series. The only
differences are that the number ring is Z[i] rather than Z, and our Hecke
character 7,(x) includes an ordinary character x,,(x) (with values in the roots
of unity) multiplied by x.

We now proceed to show that L(E,, s) can be analytically continued to the .
left of Re s = 3, in fact, to an entire function on the whole complex plane
and that it satisfies a functional equation relating L(E,,, s) to L(E,

4a+bis_l[i]
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Smce L(E,, s) is a “two-dimensional”’ sum over Z[t] 772, i.e., over pairs
of ‘integers rather than integers, it follows that we shall need to look at
Fourler transforms, the Poisson summation formula, and theta functions
in two variables: We shall give the necessary ingredients as a sequence of
‘propositions whose proofs are no harder than the analogous results we
proved in the last section for the case of one variable.

Since the definitions and properties we need in-two dimensions are just.
as easy to state and prove in # dimensions, we-shall consider functions on R".
For now, n will denote the number of vanables (not to be ‘confused w1th
our use of n when writing E,: y* = x* — n’x, x,. etc.). We will use x =
(%y5eeesx)and y = (yy, ..., ¥, to denote vectors in R". As usual, we let
x-y= x,y1 + oo 4 X, ¥ x| = /xx. We shall also use the dot-product
notation when the vectors arc in C*; for example, if # = 2 we have x - (1, i) =
Xy + X,i.

Let & be the vector space of functions f: R” — C which are bounded,
smooth (i.e., all partial derivatives exist ‘and are continuous), and rapidly
decreasing (i.e., |x|"/(x) approaches zero whenever |x| approaches infinity
for any N). For fe & we define the Fourier transform f: R"— C as follows
(where dx denotes dx,dx, - - - dx,):

f)= J () . | (59)
)

This integral converges for all yeR", and fes.

Proposition 9. Lé; fiR">C,g: R" — C be functions ind.

(1) If aeR and g(x) = f(x + a), then §(y) = e*™*>f().

() If aeR" and g(x) = e*™**f(x), then §(y) = f(y ~a).
() IfbeR, b >0, and g(x) = f(bx), then §(y) = b™"f(y/b).
@ Iff(x) = &%, then f=/.

‘ Proposmon 10 (Poisson Summation Formula). Ifge ¥, then

Y gmy=3 g(m).
; meZ" me2"

The proofs of Propositions 9 and 10 are completely snmnhr to those of pro-
perties (1)- (3) of the Fourier transform in one variable and Propositions 5
~and 6 of the last section. One 31mply has to proceed one variable at a time.

- IfweC"and fe &, we let w- 2 fm Wi w4 g

" Pmposmon 11 Iffesf andg=w- <= then g( V) = 2miw- yf(y)

PR X F. Smce both sides of the equahty are linear in w, it sufﬁces to prove
roposition when w is the Jj-th standard basxs vector, i.e., to prove that
ouriér transform of a; & f(x) is-2miy; f(»). This is easily done by sub-
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stituting a; 2 f(x)in plaoe of f(x) in (5.9) and integrating by parts with respect
to the j-th’ vanable (see Problem 5(a) in the ]ast sectlon) . O

For the rest of thns section, we take n = 2 in Propositions 9-11, and we
return to our earlier use of the letter nin E,, y,,, etc. - :

Theorem. The Hasse—~Weil L-function L(E,,s) for the elliptic curve E,:
y2 = x3 — n*x, which for Re s > 3 is defined by (5.1), extends analytically
to an entire function on the whole complex s-plane. In addition, let

32n%, nodd;
= 4|n’|? = ’ ’ 5.10
4|n'.| {16n2, n even. (.10)

Let ,
JRY ,
AG) = (—é; L) L(E,, 5)- (5.11)
Then L(E,, s) sati.\ﬁes. the functional equation _ .
A(s) = £AQ2 —9), (5.12)

where the “root number” +1 isequal to'l if n = 1, 2, 3 (mod 8) and is equal
to —1ifn=5,6,7 (mod 8).

ProoF. The proof is closely parallel to the proof of analytic continuation
and the functional equation for Dirichlet L-series with odd character, which
was outlined in Problem 5 of the last section. Namely, we express L(E,, s),
written in the form (5.8), in terms of the Mellin transform of a two-dimen-
sional version of the theta-function 6,(¢) defined in Problem 5(c). We shall
use the letter u rather than a to avoid confusion with the use of a in (5.8).

Thus, let u = (u,, u,) € R?, where u¢ Z2, and let teR be positive. Let w
be the fixed vector (1, i)e C?, so that, for example, m:w = m, + m,i for
meZ?. We define:

0,0 =3 (m+u)-we ™Im+u?; (5.13)
me 22 ’

0%ty =Y m-wemimug=ntimi®, , - (5.14)
me 22

Regarding » and ¢ as fixed, we find a functional equation for ,(¢) by

means of the Poisson summation formula (Proposition 10); to obtain 6,(¢) - -

on the left side of Proposition 10, we choose

g(x) = (x + u) - we Ix+ul, \ 615y

To find the Fourier transform of g(x) and hence the right side of the Poisson
summation formula, we proceed in several steps, writing f(x) = e **,

have

9:(x) = f(/x), gz(x) w- axyl(x), and finally g(x)—zmgz(x+u) We

HEAN
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f) = by Proposition 9, part (4);
§,(p) = t~Le~ b by Proposition 9, part (3); ‘
., - gz(y) = 2mt lw -y e~ by Proposition 11;
:  g(p) = —it"2w -y e¥we= @I by Proposition 9, part (1).

If we now evaluate g(m) for me Z?, and sum over all m, we obtain the func- '
tional'equation

0,(1) = -:—219(%) 5.106)

We now consider the Mellin transform of 6,(7): % °6,(n%, and show that
the integral converges to an entire function of s. First,-for large ¢ it is easy .
to bound the integrand by something of the form e, using the fact that
|m + u|? is bounded away from zero, since u is not in Z2. Next, for  near
zero one uses the functional equation (5.16) and a bound for §*(2) of the
form ™, where we. use the fact that the only term in (5.14) with |m|? = 0
* vanishes because of the factor m- w. These bounds make it a routine matter
to show that the integral converges for all 5, and that the Mellin transform
is analytic in s.

If we now take Re s > 3, we can evaluate the Mellin transform integral
term by term, obtaining a sum that begins to look like our L-function:

J 005 = T o+ v J gsg-rama? 1 .
Jo 0 t ,

me 7%

' (m+ u)-w
n F(S),,,Ezzz e
Now for Re s > 2, we can rewrite L(E,, s) as a linear combination of these
sums with various .
We now suppose that n is odd. The case n = 2n, even is completely similar,
and will be left as an exercise below. We take w = (1, i). If we use (5.8) and
. recall that x;(x) depends only on x modulo " = (2 + 2i)n, and hence, a
- fortiori, only on x modulo 4n, we obtain:

1 . a+bi+4nm-w
L(E,, s)=~ (@ + bi T/
En 5) 405a§<4nx ( ),EZ, |(a, ) + 4nm|*

=;}(4n)“‘2‘ Y xla+bi) ZMMD)__»Y

0=a,b<4n . melzl + (4m 4n)‘2s

(see (4.6)).

Thus:‘_j’

FTOLE, 9 = 5@ T fia+ bi) J a2 (5.17)

- 0<a,b<4n
(a,b)#(0,0)

: Smce the integral inside the finite sum is an entlre functxon of s, as are the
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functmns (4n)'~ 25 and n¥/T'(s), we conclude that L( ,'5) has an analytic

continuation to an entire function of s. /

- _ Moreover, we can transform this integral using the functional equation
~ (5.16) and replacing ¢ by +: :

® dt . _ dt R dt
f rsoa/4n.b/4n(t)7 = —lf 5=2Qekns ""‘"( t) o= -—IJ ? sé?"’“"’b'/“"(l)T
0 : 0 0

In the entire function (5.17) we now suppose that Re 2 — s > 3 (i.e., Re s < )
-so that we can evaluate this last integral as an infinite sum. Using (4.6) again,
inserting the definition (5.14), and interchanging summation and integration,
we obtain

J‘w tz-sea/4n,b/4n(t)ﬂ — ns—zl—(z - S) Z m- we(lni/:tn)m-(a,b)lml—2(2-—5).
t . :
0 . meZ?

Thus, for Re 2 — 5 > 3, the right side of (5.17) is equal to

—i(dn)! =522 — s) Z I |2(2—s) (5.18)
where for meZ?
) Sez Y ala+ biyesnmed, (5.19)

0<a,b<4n

' Lemma. If m; + m,i is not in the ideal 1+, then S,, =0, whereas if v

my + myi = (1 + i)x with xe Z[i ], then S,, = 2y,(x)g(x,), where g(x) is the
Gauss sum defined in Proposition 4 of §11.3 (see (3.9)).

Before proving the lemma, we show how the functional equation in the

theorem follows immediately from it. Namely, if we make the substitution .

m-w=m, + myi = (1 + i)x in the sum in (5.18), the lemma gives us

y gy DX )90

lzu—s; m_‘xezm|(1 + i)x lzu s)

mez? |M
=(1+1)2°" 1( )(2—}— 2in Y. f"(x)(Nx)"(z""

xeZ[i]

by Proposition 4. But this last sum is 4L(E,, 2 — s), by (5.8). Bringing this
all together, we conclude that for Re 2 — s > 3 the right side of (5.17) is
equal to ' ‘

—i(4n)* "5 02 — s)(1 + 1)2°7! ( )(2 + 2i)nL(E,, 2 —s)

- (‘72> 57202 — 5)(8n?) °L(E,, 2 — ).

On the other hand, if we bring the term (,/N/2)* over to the right in the
funcuonal equation (5.11)—(5.12) in the theorem; we find that what we want

(5.20)
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to.'pf.h;/eiéz o - . - .
n'_S'r(.s-)L(E,,, 5) = (:n-%) (JN/z)'s(zﬁ)*Tz(\/Tv')z‘*r(é —$)L(E,.2 — 5)

= (_12.> (N4 "2 F (2 = s)L(En, 2 - 5)-

And this is precisely (5.20).
Thus, to finish the proof of the theorem for odd 7, it remains to prove
the lemma.

PRrOOF OF LEMMA. First suppose that m, + m,iis not divisible by 1 + 7. This
is equivalent to saying that m, and m, have opposite parity, i.e., their sum
is odd. Now as a, b range from 0 to 4n, the Gaussian integer u + bi runs
through each residue class modulo (2 + 2i)n exactly twice. Each time gives
the same value of y,(a + bi), since y,(a + bi) depends only on what a + bi

is modulo n” = (2 + 2i)n. But meanwhile, the exponential terms in the two

summands have opposite sign, causing the two summands to cancel. To see
this, we observe that if a, + b,i and a, + b,i are the two Gaussian integers
in different residue classes modulo 4n but the same residue class modulo
(24 2i)n, thew a, + byi — (a, + b,i) = (2 + 2i)n (mod 4n), and so

e\ 2mifanm @y, by)~(a,b5)) — e\2mifdnym-(2n,2n) _ emitmitmy) — 1

This proves the first part of the lemma.

Now suppose that m, + m,i = (1 + i)x. Note that m - (a, b) = m,a + m,b
= Re((m, myi)(a + bi)) = Re((1 — i)X(a + bi)). Hence, the cxponenual
term in the summand in S, is ¥ (X(a + bi)), where

. p2ni Re(x/n’)
'//(x)d‘;fe

(with »” = (2 + 2i)n). Since g, is a primitive character modulo (2 + 2i)n
(see PrOposition 3), we can apply Problem 9(a)-(b) of §I1.2. Since the sum-
mation in (5.19) goes through each residue class modulo (2 + 2i)n twice,
we have

Sp=2 y xla+ bi)tﬂ(x’(a + bi))

a+bieZ{i]/(2+2i)n
= 27,(g(xn) = 21(x)g(x7)-

ThlS proves the lemma, and hence the theorem (except for some slight
modxﬁcatlons in the case of even n, which will be left as an exercise).’ ]

' In the problems we shall outline a proof of the analogous theorem in
the case of an elliptic curve, namely y? = x> + 16, which has complex multi-
phcatlon by another quadratic imaginary integer ring, namely Z[w], where
= =%+ $i,/3. There is one additional feature which is needed because
we: _end up summing not over Z[i], which can be thought of as Z2, but
rather over a lattice which is the image of Z2 under a certain 2 x 2-matrix.
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So we have to apply Poisson summation to a function much like the function
in this section, but involving this matrix. .

We conclude this section by mentioning two refe_fence,s for a more general

treatment of the theory of which we have only treated a few special cases.
First, in C. L. Siegel’s Tata notes [Siegel 1961] (see especially pp. 60-72)
one finds L-functions whose summand has the form - ;

Pm+v) |
(Q[m + v]y*o’

where me Z", u, ve R, Q is the matrix of a positive definite quadratic form,
and P is a “spherical polynomial with respect to Q of degree g”. The case
we needed for L(E,, sy was: n=2, Q= (} D, P(xy, x) =%, +ix;,g= L.
In Problem 8 below we have the case Q = (i, '{%), P(x;, X,) = (@ + 1/2)x,
+ (@/2 + 1)x, (where 0 = —1/2 + i,/3/2), g = 1.

In [Lang 1970, Chapters XIII and XIV], two approaches are given to this
topic. In Ch. XIII, the approach we have used (originally due to Hecke)
is applied to obtain the functional equation for the Dedekind zeta-function
of an arbitrary number field. This is a generalization of Problems 2 and 6
below. However, the case of more general Hecke L-series is not included in
that chapter. A quite different approach due to J. Tate—using' Fourier
analysis on p-adic fields—is given in Ch. XIV of Lang’s book.

ez:um‘u

PROBLEMS
1. Finish the proof of the theorem for n even.

2. (a) Find a functional equation for omﬁz,,,e pemml £ 50,
(b) The Dedekind zeta-function of a.number field X is defined as follows:

k() = L (NI,

where the sum is over all nonzero ideals / of the ring of integers of K. This sum
converges for Re s > 1 (see [Borevich and Shafarevich 1966, Ch. 5, §1]). Let
K = Q(i). Prove that {x(s) is an entire function except for a simple pole at s = 1
with residue 7/4, and find a functional equation relating {(s).to {x(1 — s).

3. Foruand v in R2, let

oz(t)‘;_e__f Z eZm’m-ve—nl]m-t-n[z’ t>0.
meZ? N

Find a functional equation relating 6;(2) to 6“,(3),

4. (a) In the situation of Proposition 11, express the Fourier transform of (w : 32)*/(x)-

in terms of f(y) for any nonnegative integer k. - - ‘
(b) Suppose that k is a nonnegative integer, ue R? is fixed with u ¢ 72, ¢t > 0 s fixed,
and w = (1, /)€ C?. What is the Fourier transform of .

g(x) = (6 + ) - w)te i+’

(c) Withk,u, 1, was in part (b), define:
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ou,k(t)'z Z ((m + u) . w)ke—nllm+u[z ;
mez? )
9"‘_"([) = Z (m- W)"ez’".";',"e"“lml’.

me2?.

' -Find a functional equation relating 6, {2) to 6“5(3). - ' i

(d) Suppose that [ is a fixed ideal of Z[i], and y: (Z[{)/)* - C* is a nontrivial
. -character. Outline (without computing the details) how one would prove that
the function X, zin ¥ x(x)(Nx)™ extends to an entire function of sGf x were ©
trivial, there would be a simple pole at s = 1), and satisfies a functional equation

~ relating its value at's to its value at k + 1 — . :

(e) ‘Explain why any Hecke L-series for Z[i] is essentially of the form in part (d).

-5 Letf:R"—C, fes.

- (@) For MeGL,(R), let M* denote the transpose matrix, and let M* = (M 7'}, Let
9(x) = f(MXx). Express §(y) in terms of ().

(b) Let L be a lattice in R"; equivalently, L is of the form L = MZ", where Me
GL,(R), i.e., L is obtained by applying some matrix M to the elements in the
standard basis lattice Z". Let L’ be the “dual lattice” defined by: L'={ye
R"|x-yeZ for all xe L}. First show that L’ is a lattice. Then prove a functional
equation relating £, , f(x) to £,.,. /().

6. Letw = —4+4./3. (

@) Let M =(; 7). Show that the lattice L = Z[o] = C = R? is L = MZ2. What
are M* and L'? Show that L’, considered as a lattice in C, is twice the “different”
of Z[w], which is defined as {xe Q)| Tr(xy)eZforall yeZ [w]}. Here Tr x =

‘X + X =2Rex.

(b) Prove that

Y emmis o 2 T e,
xeZlw] INVE] xeZfw)

(© LetX = Q(w). Prove that {y(s) extends meromofphically onto thé complex s-
plane with its only pole a simple pole at s = 1. Find the residue at the pole, and
derive a functional equation for ¢ x(5).

(d) With K as in part (c), prove the identity: {x(s) = {(s)L(y, s), where % Is the
non;rivial character of (Z/32)*.

(e) Use part (d), the theorem in §11.4, and Problem 5(e) of §i1.4 to give another
proof of the functional equation in part (c).

. 7. Let E be the elliptic curve y2 = x3 + 16, Let o = —1+4/3.

(a) Show that the reduction mod p of »* = x + 16 is an elliptic curve over F,ifand
only if p # 2, 3. For such p, recall that the Euler factor at pis(l~2a,p~ +
P71 where (1 - 2a,T + pT?) is the numerator of Z(E[F,; T). Show that
fo; P #2, 3 this factor is . -

[10 —apernpy,
T

-~ where the product-is over all (one or two) prime ideals P of Z[w] dividing (p)
and a§°®” is the unique generator of P such that a5t ® = 1 (mod 3). ‘
(b) »»Wh‘en p =3, define the Euler factor at 3 to be simply 1, as we did for E,: y? =
x* — n’x when p|2n. When p =2, at first glance it looks like we again have -



90 i il. The Hasse—Weil L-Function of an Elliptic Curve

y*=x*, and so we mlght be tempted to take 1 for the Euler factor at 2 as well.

However, this is wrong. When one defines L(E 5), 1f there exists a Q-linear

change of variables that takes ourequation E: y* = x* +'16 in P to a curve C
whose reduction mod p is smooth then we are obliged to say that E has good
reduction at p and to form the corresponding Euler factor from the zeta-func-
tion of C over F,. In Problem 22 of §I1.2, we saw that y* = x* + 16 is equivalent
over Q'to y% + y = x*, asmooth curve over [, whose zeta-function we computed.
Show that the Euler factor at p = 2 is given by the same formula as in part (a)-

(c) Forxe Z[w] prime to 3, let x(x) = (—w)’ be the unique sixth root of 1'such that
- xx(x) =1 (mod 3). Let x(x) = 0 for x in the ideal (,/ 3). Show that
Cxx
L(E, s
( ) 6xe§[w](Nx)s
(d) Let

.//(x) i e(2m/3) Tr(x/tJB)

where Trx=x+X¥=2Rex. Verrfy that ¥(x) is an additive character of
Z[w]/3 satisfying the condition in Problem 9 of §I1.2 (i.e., that it is nontrivial on
any larger ideal than (3)). Find the value of g(¥, ¥) = Ze z10y3 XY (%), where
¥ is as in part (b).

8. (a) Let w = (1, w), ue R* — Z?, and ¢ > 0 be fixed. What is the Fourier transform
of g(x) = (x + u)- we ™Ixtu ¥’y
(b) Let 6,(r) = X,,.z2g(m), where g(x) is as in part (a). Find the Mellin transform
¢(s) of :
¥ xla+ bw)b, ).

u=(g/3,b/3)
0<a,b<3

(c) Prove that L(E, 5) is an entire function, where E: y?* = x* + 16 is the elliptic
curve in Problem 7.
(d) Prove the functional equation A(s) = A(2 — s) with

(‘/2_7) I'(s) L(E, s).

A@) =

def

§6. The critical value

The value at s = 1 of the Hasse-Weil L-function L(E, s) of an elliptic curve
E is called the “critical value”. When we have a functional equation relating
L(E, s) to L(E, 2 — s), the point s =1 is the “center” of the functional
equation, in the sense that it is the fixed point of the correspondence se2—5.
The importance of thls crmcal value comes from the following famous
con)ecture

Conjecture (B. J. Birch and H. P. F. Swinnerton- Dyer) L(E, 1)— if and

only if E has Inﬁmlely many ratzonal points. .

.

In this conjecture E is any elliptic curve dcﬁned oyer Q. In rhc general
case it has not even been proved that it makes sense to speak of L(E, 1),
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because no one has béen' able to prove analytic continuation of L(E, 5) to
the left of the line Re s = 3. However, analytic continuation and'a functional -
equatlon have been proved for any elliptic curve with complex multiplication
(see Problem 8 of §1.8), of which our E, are special cases, and for'a broader
class of elliptic curves with a so-called “Weil parametrization” by modular
curves: (It has beén conjectured by Weil and Taniyama that the latter class
actually consists of all elliptic curves defined over Q.) ,

We shall call the above conjecture the ““weak Birch-Swinnerton-Dyer
conjecture”, because Birch and Swinnerton-Iyer made a much more detailed
conjecture about the behavior of L(E, sy at s = 1. Namely, they conjectured

" that the order of zero is equal to the rank r of the group of rational points

on E (see the beginning of §1.9). Moreovey” they gave a conjectural descrip-
tion of the coefficient of the first nonvanishing term in the Taylor expansion

~ at s=1 in terms of various subtle arithmetic properties of E. For'a more

detailed discussion of the conjecture of Birch and Swinnerton-Dyer, see
[Birch 1963], [Birch and Swinnerton-Dyer 1963, 1965], [Cassels 1966].
[Swinnerton-Dyer 1967], [Tate 1974]. '

There is a simple heuristic argument— far from a proof-—which shows -
why the weak  Birch—-Swinnerton-Dyer conjecture might be true. Let us
pretend that the Euler product for L(E,s) (see (5.1) for the case E = E,)
is a convergent infinite product when s =1 (which it isn’t). In that case we
would have: :

L(E, 1) = | =[—2 £
(E. 1) 1:11—2a,;,,,p‘+pl . ,,/J+l—2a5p_ I;IN

where N,= N, , = p + 1 — 2a; , is the number of F -points on the elliptic
curve £ consrdered modulo p. Now as p varies, the N, “straddle” p at a
distance bounded by 2./p. This is because 2a;. » = o, + &,, and the reciprocal
roots a, have absolute value Jp (see (2.7) for E = E,,, and the discussion of
the Well conjectures in §1 for the general case). Thus, roughly speaking,
Ny=p+ Jp- If N, spent an equal time on both sides of p as p varies, one
could expect the infinite product of the p/N, to converge to a nonzero limit.
(See Problem 1 below.) If, on the other hand, the N, had a tendency to be
on the large side: N, ~p+\/;, then we would obtam L(E, )= I, p/
(p+p) =TI, 1/(1 +p%) =

To conclude this heuristic argument we point out that, if there are
infinitely many rational points, one would expect that by reducing them
modulo p (as in the proof of Proposition 17 in §1.9) we would obtain a large
guaranteed contribution to N, for all p, thereby ensuring this lopsided
behavior N, ~ p + \/— On the other hand, if there are only finitely many
rational pomts, then their contribution to N, would be negligible for large p.

' so that N, would have the “random” behavnor N,~p+ \/E Needless to say,

this heunstlc argument is not of much help in trymg to prove the weak"
Brrch-—Swmnerton-Dyer con_]ecture T

re is considerable evidence. both computa'uonal and theoretical
to support the conjecture of Birch'ahd Swinnerton- -Dyer. The most dramatic
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partial result so far was the proof in 1977 by John Coates and Andrew Wiles
that for a large class of elliptic curves, an infinite number of rational points

implies that L(E, 1) = 0. Other major advances have been obtained in

[Greenberg 1983] and [Gross and Zagier 1983].

Recall from Problem 8 of §1.8 that an elliptic curve is said to have complex
multiplication if its lattice is taken to itself under multiplication by some

complex numbers other than integers.

Theorem (J. Coates and A. Wiles). Let E be an elliptic curve defined over Q
and having complex multiplication. If E has infinitely many Q-points, then
L(E, 1)=0.

The proof of this theorem is rather difficult (see [ Coates and Wiles 1977}),
and it will not be given here. (The original proof further assumed that the
quadratic imaginary field of complex multiplication has class number 1, but
this turned out not to be necessary.)

Since our curves E, have complex multiplication, the Coates—Wiles
theorem applies, and, in view of Proposition 18 of Chapter I, tells us that
if L(E,, 1) # 0, then n is not a congruent number. Conversely, if we allow
ourselves the weak Birch—Swinnerton-Dyer conjecture, then it follows that
L(E,, 1) = 0 implies that » is a congruent number.

There is one situation in which it is easy to know that L(E,, 1) =0.
Recall that the “root number”—the plus or minus sign in the functional
equation for L(E,, s)—is equal to (5?) for n odd, and (7}) for n = 2n, even
(see the theorem in §5).

Proposition 12. If n = 5, 6 or 7 (mod 8), and if the weak Birch—Swinnerton-
Dyer conjecture holds for E,, then n is a congruent number.

ProoF. According to the theorem in §5 ifn=35, 6,7 (mod 8), then A(s) =

—A(2 — 5), where A(s) is given by (5.11). Substituting s = 1, we conclude
that A(1) = —A(l), i.e., A(1) = 0. But by (5.11), A(1) differs from L(E,, 1)
by a nonzero factor (namcly, \/N/Zn). Thus, L(E,, 1) =0, and the wcak
Birch—Swinnerton-Dyer conjecture then tells us that E, has infinitely many
Q-points, i.e., by Proposition 18 of Chapter I, n is a congruent number. O

In certain cases, the claim that alln = 5, 6, 7 (mod 8) are congruent num-
bers has been verified without assuming the weak Birch—Swinnerton-Dyer
conjecture. A method due to Heegner (see [Birch 1975]) for constructing

points on E, enables one to prove this claim for n equal to a prime or twice i i
a prime. That is, if # is a prime congruent to 5 or 7 modulo 8, or twice-a

prime congruent to 3 mod 4, then n is known to be a congruent number.
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Heegner’s method. As a special case of their results, they showed that for
n=35, 6, 7 (mod 8) the elliptic curve E, has infinitely many rational points
provided that L(E,, s) has only a simple zero at s = 1, i.e., L'(E,, 1) # 0.
This result represents substantial progress in making Proposition 12 un-
conditional. Moreover, their method is constructive, i.e., it gives you a
rational point on the curve (equivalently, a right triangle with area n) when
" L'(E,, 1) #0. See [Gross and Zagier 1983].

In the cases when the root number is + 1, we cannot be sure in advance
whether L(E,, 1) is zero or nonzero. So in those cases it is useful to have an
efficient algorithm for computing L(E,, 1), at least to enough accuracy to
know for certain that it is nonzero. (It is harder to be sure of ourselves in
cases when the critical value seems to be zero.) We cannot use the series (5.3)
or (5.8) to evaluate L(E,, 1), since they only converge when Re s > 3.

So we now turn our attention to finding a rapidly convergent expression
for L(E,, 1).

Let us return to the functional equatlon for L(E,, 5), and give a slightly
different, more efﬁcxent proof. Recall that

LE,9) =5 T Hx)(No™
er[x]
with 7,(x) = xy;(x), where y, was defined in (3.3)~(3.4). Suppose we ask
the question, “What function F(E,, 1) has n~T'(s)L(E,, s) as its Mellin
transform?” By our usual method using (4.6), we see that the answer is

F(E,, 1) d=ef% Y Rax)em 6.1)
xeZli)
We now proceed to find a functional equation for F(E,, 1), which will then
immediately give us once again our functional equation for the Mellin
transform L(E,, s). The only difference with our earlier derivation is whether
we take the character sum before or after applying the functional equation
(compare with the two derivations in Problems 3 ‘and 5 of §I1.4 and in
Problems 4 and 6 for the functional equation for a Dirichlet L-serles) .
‘Recall that x{,(x) isa primitive character of (Z[i]/n')*, where n’ = (2 + 2i)n
for n odd, " = 2n for n even. Let a + bi run through some set of coset
representatlves of Z[i]modulo n’,and for each a + bi define a corresponding
pair (u, u,) of rational numbers by Uy + uyi = (a + bi)/n’. Replacing x by
ca+bi+n'(m-(1,i)) for meZ?, and setting
N'=|,,'|z=% L (62)

(see (5.10)), we can rewrite F(E,, 1) as follows:

Very recently, Gross and Zagier were able to improve greatly upon

It is interesting to note that even in the cases when Heegner’s method
ensures us that » is a congruent. number, the method does not give us an:
effective algorithm for constructing a nontrivial rational point. on E,, or
equivalently, ﬁndmg a nght triangle with rational sides and area n. i

FE, = Y ua+b) Y m+ u)-(1, P)e~ N tlmealz

a+bi eZ[iljn’ i mezz

‘ eplacc t by Nis the summand in the inner sunt. becomes 0,(%) in the
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notation of (5.13). We then use thc functional equation (5.16) for 0( )
As a result we obtain: _
FlE - Y tila+ bi)(—iti)Zm‘(l, )e2rimug-ntin?
n» N/ 4 o ‘

~

— -—-tzn’Zm a, l)e-ntimlz Z e (a +bl)(,2mmu
a+bi
Now m1-u = Re((m, — myi)(u, + uzi)) = Re((m, — m,i)(a + bi)/n’). We
now use Problem 2 of §I1.2 to rewrite the last inner sum as

Tolmy = mai) Y. 14(@ -+ bi)e™ R,
a+bi

" But 7,(m, — myi) = x,(my+ m;i), and the sum here is the Gauss sum g(x,,)

evaluated in Proposition 4 (see (3.9)). We finally obtain:

B i 2 e s 5 -
F — = ——t*n'(en my + m,i)e ,
(En, N,,) gen) T qalm+m

where the ¢ is (52) for n odd, i(5;) for n = 2n, even. Replacing m; + m,i by
xeZ[i], we see that the sum is premsely 4F(E,, f). Thus, we have
(—“’72-) N'2F(E,, 1), nodd;

F (E 7v’1’”> =0
! (%) N'12F(E,, f), n= 2nyeven.
0

We can easily derive the functional equation for L(E,, s) from (6.3). We
shall write + to denote (52) for n odd, () for n = 2n, even. We have

I e .dt 1 — dt
n—sr(s)L(E",s)=J CF(E, ) = N—f t5"2F (EYV—?)T
(4]

by (6.3). Making the change of variables u = a7, we obtain:

(6.3)

' di
7 T()L(E,, s) = +N''~° J u?—F(E, u)—uE
(o] .

= + N''5n5~2r Q2 — 5)L(E,, 2 — 9).

Finally, replacing N’*~* by (/N/2)*"%* and multiplying both sides by’

(\/— /2)°, we obtain the functional equation of (5.11)- —(5.12).

We now use our function F(E,, f) in the case when the root number is + 1 '

ie., n=1,2,3(mod 8), in order to find a convenient expression for L(E,, 1).
Thus, suppose that

n* N/[

F (E i—) = N'PF(E,. 0). (6.4)

We use this functional equation to break up the Mellin transform of F(E,, £)
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into. two mtegrals from 7 F to oo: The point f; 1s the *‘center” of the func-
tional equation, i.e., the fixed point of the correspondence Ly Vi
‘We have:

;«sr(s)L(E,,,s) f PRE, 0% = f J SF(E,
1/VN"

In the second integral we replace ¢ by 7, and then use (6.4) to write F(E,, 5)
in terms of F(E,, #). The result is:

T L(E,, 5) = Jw (CF(E,, {) + N''0*F(E,, t))E”-’

Now set s = 1. Multiplying both sides by =, we immediately obtain:
L(E, )=2n J F(E,, Hdt. . (6.5)
o VN
Recall that the Hasse~Weil L-function can be written as a Dirichlet series

s)= Y b, .m™5, where bm,n=% Y Tax). (6.6)
m=1

xeZ[i]
Nx=m

Comparing with the definition (6.1) of F(E,, t), we see that
(Ens ) = 3. by e™™. ' (6.7)
: m=1} .

We can now substitute the series (6.7) into (6.5) and integrate term by term.
(Notice that the procedure below will work only because we have a positive
lower limit of integration in (6.5); if we tried directly to use the Mellin
transform, in which the lower limit of integration is 0, we would not have
convergence.) Using the formula | e™dr = te™* with a = N'"'2, ¢ = num,
we immediately obtain the following rapidly convergent infinite series for

L(E,, 1).

Probbsition 13. The critical value of the Hasse—Weil L-function of the elb‘ptic
curue E,: y* = x>~ n’x for squarefree n=1, 2, 3 (mod 8) is given by:

2n2, nodd;
L E,,,I —2 % bnn *""'N_, here JN? = - L (6.8
( ) 5 ma »w 2n, _ neven. 68

Here the coeﬁ”zczents b,,, " are the Dzrzchlet series coeffzczents obtained by

( expandmg

H(l 2amp 4 i 25)' L z m=s.

g, pi2n -

In addttzon, the absolute value of the coefficient b o is bounded by ao(m)\/_ T

o(m) denotes the number of divisors of m.
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. PrOOF. We have already proved all except for the bound on b,, ;. If we write
the Euler factor in the form (I — a,p™)~ (1 — &,p™) ", expand each factor
in a geometric series, and collect coefficients of p™** for each posmve integer -
e, we find that the coefficient of p™* is af + ot;"& +of i@+ - 45y

from this chapter into what turns out to be modular forms. ,
In studying modular forms, we will at the same time be approaching elliptic
“curves from another perspective. But these two aspects of elliptic curves—the

This means that, if » has prime factorizati‘on m = p§r -« - pfr, then congruence zeta-function and Hasse-Weil L.series, and the theory of
’ - modular forms—have combined in recent years to form a richly interlocking
n () + a5 8 ot R &;J.'). N plcture
Since |a,| = |&,| = 4/ for all p, we immediately obtain the bound PROBLEMS

r

bl < [+ D = ao(m)/m,

L. In the heuristic argument for the weak Birch~Swinnerton-Dyer conjecture, make the
following ridiculous assumptions: (i) |2ag,, — 1| = /p; and (i) (2ag , — 1)//p = *1
~is“evenly” distributed, and happens to coincide with the value at p of a fixed quadra-
tic Dirichlet character y(p) = (§) for some fixed N. (One of the reasons why these
‘assumptions are ridiculous is that 2a, , is an integer.) Show that then L(E, 1) is
“equal to the value L(y, %) of the Dirichlet L-function at the center of symmetry of its
functional equation.

where we have used the easy fact from elementary number theory that 6,(m)
is the product of the (¢; + 1). This completes the proof . o

The bound for b, , is useful in estimating the remainder after we compute |
the series in (6.8) out to the M-th place. In particular, if we find that the -
remainder is less than the value of that partial sum, we rnay conclude that |
L(E,, 1) #0. :

As an example, we treat the case n = 1. The first few Dirichlet series
coefficients b,, for L(E,, s) are given in (5.4). By (6.8), we have ‘ g

L(E,, 1) ,
- 2(e_,,,2,/7 _ %efsn/zﬁ _ %e-9n/2ﬁ + _15_38—137:/2\/5 + %e—wnﬂﬁ 400 . ;

-2. Prove that if the root number in the functional equation for L(E,, s) is 1, then
L(E,, s) has either a nonzero value or else an even-order zero at s = 1; and if the
root number is —1, then L(E,, 5) has an odd-order zero at s = 1.

3, In the notation of Proposition 13 (here we abbreviate b, = O ns @y = ag,_ ), prove

that: .

@) b,=2a,if pf2n;b,=0if p|2n;

() byym, = b, by, if my and m, are relatively prime;

©) byers = 2a,bye — pbe-1 for e 2 0 (here take byp=0whene= 0). -

= 0.6555143... + R;s, , .
where we have denoted Ry, = 22.,.21»: bm p=rm/2V2,

A very crude estimate for 6o(m) is 2\/_— (see the problems). Thus,

4. Prove that o,(m) < 2,/m for all m, and that m™*a,(m) ~ 0 as m — co for any positive .
e .

5.. Compute L(E,, 1) and L(E;, 1) to about three decrmal places of accuracy, venfymg o
" ‘that they are nonzero.

Rul <4 3 e 4 ainis
6. Prove that L(E,,, 1) # 0.

s 1 — e—n/z./i

So R, s is bounded by 5.2 x 107'2. Actually, the convergence is so fast that |

A Suppose you knew a lowcr bound c¢ for the absolute value of all nonzero L(E, l); i
we only needed to evaluate the first term to show that L(E;, 1) #0: ;

n=1,2,3, ... squarefree. (No such ¢ is known.) For n very large, what is the order ’
of magmtude of M such that you could determine from the first M terms in (6. 8)

L(E,, 1) =0.6586... + Rs, with |Rs|<0.023. whether or not L(E,, 1) = 0?

(a) Write a flow chart for a computer program that evaluates L(E,, l) through the
" M-th term of (6.8) and estimates the remainder.

(h) If you have a computer handy, use part (a) to find L(E“ , 1) to three decimal
places

This computation, together with the Coates—Wiles theorem, then‘tells us
that 1 is not a congruent number. In fact, this argument undoubtedly qualifies
as the world’s most roundabout proof of that fact, which was proved by
Fermat more than three hundred years ago. (See [Weil 1973, p- 270 of Vol.
III of Collected Papers]; see also Problem 3 of §1.1.) :

The next topic we take up is the systematic study of functions such as
theta-series which have certain types of functional equations under tt
and similar changes of variable. Such functions are calied “modular forms”.
Actually, modular forms are functions of the form X &,,e*™ rather tha

4 b e~™, but the simple substitution 7 = — 2iz will transform our theta-series - -
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Modular Forms

Our treatment of the introductory material will be similar to that in Serre’s

A Course in Arithmetic (Chapter WII), except that we shall bring in the

“level” from the very beginning.

§1. SL,(Z) and its congruence subgroups -

For any commutative ring R, the “general linear group” GL,(R) is defined '
to be the set of matrices g = (¢ '§) such that det g = ad — bc is in R* (the
multiplicative group of invertible elements of R). It is easy tosee that GL,(R) '
is a group. The “special linear group” SL,(R) is defined to be the subgroup

of GL,(R) consisting of matrices of determinant 1. In this section we shall

be concerned with the cases R = R (the real numbers), R = Z R=7ZINZ.

(for a positive integer N).
Let C denote C U {0} (i.e., the complex plane with a pomt at infinity, or

equivalently the complex pro;ectxve line P¢, also known as the “Riemann
sphere”). Given an element g = (¢ )eSLz(R) and a point zeC we deﬁne ‘

‘ az+b
g ““cz-l—d

(Thus, g(—d/c) = .0, and if ¢ = 0, then goo = 0.) These maps zn—-»gz are"
called “fractional linear transformatlons of the Riemann sphere C. 1t 1s' )

easy to check that (1.1) deﬁnes a group action on the set c, m other words
91(922) = (g,9,)z for all g, gze SL,(R), ze€C. ~
Notice that for g= —1= s _l)eSLZ(R) (1. 1) grves the 1dent1ty map

goo=a/c=limgz. : (1.1)”
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But + 1 are the only matrices which act trivially on €, as we see by supposing

that z = (az + b)/(cz + d) for all z, ie., cz* + (d—a)z —b =0 for all z,
which implies that b = ¢ = 0 and a = d; but the only scalar matrices (5 ) of
determinant 1 are +/7. Thus, the quotient group SL,(R)/+7, which is

. sometimes denoted PSL,(R), acts “faithfully” on C, in other words “each

element other than the identity acts nontrivially.
Let H = C denote the upper half-plane H = {zeC|Im z > 0}. It is impor-
tant to note that any g € SL,(R) preserves H, i.e., Im z > 0 implies Im gz > 0.

This is because

az+b _ m(az +b)(cz+d) _
cz+d lez +d*

, ;Im gz =1Im ]cz + d| 2 Im(adz + bez).

But Im(adz + bcZ) = (ad — bc)Im z = Im z, since det g = 1. Thus,

d

Thus, the group SL,(R) acts on the set H by the transformations (1.1).
The subgroup of SL,(R) consisting of matrices with integer entries is,
by definition, SL,(Z). It is called the ““full modular group”, and is sometimes

b
Imgz=|cz+d>Imz for g= C )eSLz(R). 1.2)

“denoted I'. We shall denote F =I'/+1. (Whenever we have a subgroup G

of SL,(R), we shall let G denote G/%Iif G contains —1; if —I¢ G, we set
G = G.) This group = SLZ(Z)/ + 1 acts faithfully on H. It is one of the
basic groups arising in number theory and other branches of mathematics.

Besides I' = SL,(Z), certain of its subgroups have special significance.
Let N be a positive integer. We define

V)= {(c )eSLZ(Z)Ia =d=1(mod N), b= c=0(mod N)}.
| (1.3)

This is a subgroup of I = SL,(Z), actually a normal subgroup, because it
is the kernel of the group homomorphism from I" to SL,(Z/NZ) obtained
by reducing entries modulo N. In other words, I'(N) consists of 2 x 2
integer matrices of determinant 1 which are congruent modulo N to the
identity matrix. Note that ['(1) = I'. We shall later see that I'(V) is analogous
to the subsemigroup 1+ NZ < Z consisting of integers congruent to 1

_ modulo N.T(N) is called the “principal congruence subgroup of level V7.

- Notice that I'(2) = ['(2)/ 1, whereas for N > 2 we have (N ) F (N),

} because —1% 1 (mod N), and so —1is not in (V).

A subgroup of I" (or of T) is called a “congruence subgroup of level N7
lf it'contains I'(N) (or T'(N), if we are considering matrices modulo + 7).
Notice that a congruence subgroup of level N also has level N’ for any
multiple N” of N. This is.because I'(N) > I'(N’). We say that a subgroup of

I (or of ') is a “congruence subgroup” if there exists N such that it is a
, congruence subgroup of level N. Not all subgroups of I' are-congruence
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subgroups, but we shall never have occasion to deal with non-congruence
- subgroups. o :
For our purposes the most important congruence subgroups of I' are:

LM = {(‘c’ Z)er[c =0 (mod N)}; (1.4)

L) = {(” b)e o(V)|a = 1 (mod N)}. (1.5)
f (\¢ d
It is easy to check that these are, in fact, subgroups. Note that if (¢ §e
Ty (N), then since ad — bc = 1 and N|c, it follows that ad = 1 (mod N), and
hence d = 1 (mod N). We sometimes abbreviate the definitions (1:3)—(1.5)
as follows: : -

(V)= {((l) (1)) mod N}; V)= {(:) ;‘) mod N};
To(N) = {(O ) mod N},

where * indicates the absence of any congruence condition modulo N.

Whenever a group acts on a set, it divides the set into equivalence classes,
where two points are said to be in the same equivalence class if there is an
element of the group which takes one to the other. In particular, if G is a
subgroup of I', we say that two points z,, z, € H are “G-equivalent” if there
exists ge G such that z, = gz,.

Let F be a closed region in H. (Usually, F will also be simply connected.)
We say that F is a “fundamental domain” for the subgroup G of I if every
ze H is G-equivalent to a point in F, but no two distinct points z,, z, in the
interior of F are G-equivalent (two boundary points are permitted to be
G-equivalent).

The most famous example of a fundamental domain is shown in Fig.
HI.1:

Fyz{zeH|-}<Rez<}and|z| > 1}.

Proposition 1. The region F defined in (1.6) is a fundamental domain for T.

PRrOOF. The group I’ = SL,(Z) contains two fractional linear transformations
which act as building blocks for the entire group:

11
Td?f(o 1>:Zl—->z+ 1;

0 -1
Sd-—e-f(l O):zt—»—«l/z.'

(1.6)

(1.7)
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To prove that every ze H is I'-equivalent to a point in F, the idea is to -
use translations 77 to move a point z inside the strip —1 < Rez <. Ifit
lands outside the unit circle, it is in F. Otherwise use S to throw the point
outside the unit circle, then use a translation T* to bring it inside the strip, _
and continue in this way until you get a point inside the strip and outside the
unit circle. We now give a precise proof.

Let ze H be fixed. Let I' be the subgroup of I" generated by S and T
(we shall soon see that actually I' = +I7). If y = (¢ 5 eI”, then Im yz =
Im z/|cz + d|* by (1.2). Since ¢ and d are integers, the numbers |ez + d|
are bounded away from zero. (Geometrically, as ¢ and d vary through all
integers, the complex numbers cz + d run through the lattice generated by
1 and z; and there is a disc around 0 which contains no nonzero lattice
point.) Thus, there is some y = (¢ §)eI" such that Im yz is maximal. Replac- -
ing y by 77y for some suitable j, without loss of generality we may suppose
that yz is in the strip —4'< Re yz < 1. But then, if yz were not in F, i.e., if
we had |yz| < 1, then, by (1.2), we would have: ’

Im Syz = Im yz/|yz|* > Im yé,

-which contradicts our choice of yeI'” so that Im yz is maximal. Thus, there
exists ye I such that yze F. '

... We now prove that no two points in the interior of F are I" -equivalent.
We shall actually prove a more precise result. Suppose that z,, z,€ F are
I'-equivalent. Here we are not supposing that z, ‘and z, are necessarily
distinct or that they are necessarily in the interior of F. Without loss of
generality, suppose that Im z, > Im z,. Let y = (¢ §)eT be such that z, =
7Z;. Since Im z, > Im z;, by (1.2) we must have |cz, + d|.£ 1. Since z, is in
F and d is real (in fact, an integer), it is easy to see from:Fig. III.1 that this
inequality cannot hold if |c[-> 2. This leaves the cases:Xi) ¢ =0, d= +1;
(i) ¢=+1,d =0, and z, is on the unit circle; (iii) c=d=#1and z, =
=44 3. (v)c= ~d= +1and zy=4+53 In cax?(i),éithcg yor —y




. generated by S and 7. Let z be any point in the interior of F (e.g. z.= 2i).

102 _ ) T . HI Modular Forms

is a translation T7; but such a y can take a point in F to another point in F
only if it is-the identity or if j= +1 and the points are on the two vertical
boundary lines Re z = +34. In case (ii), it is easy to see that y =+ T*S with

a = 0and z, and z, on the unit circle (and symmetrically located with respect ...

to the imaginary axis) or withea= +1 and z, =z, = +5+3¥52 ‘/_3 . In case
(iii), y can be written as +7%3 1), and if such a map takes zy eF to z,€F
wemusthavea—Oandzz =z;= —1 453 orelsea= landz, =z, +1
=143 /=3 Case (iv) is handled in the same way as case (ii). We conclude
that in no case can z, or z, belong to the interior of F, unless +7 is the
identity and z, = z,. This proves the proposition. !

In the course of the proof of Proposition 1, we have established two other
facts.

Proposition 2. Two distinct pomts 2, , z, on the boundary of F are T'-equivalent

only if Rez; = +2 and z; =z, + 1, 0r tle is on the unit circle and z, = 3}.

In the next proposition we use the notation G, for the “isotropy subgroup”
of an element z in a set on which the group G acts: by definition, G, =

{geGlgz = z}.

Proposition 3.IfzeF, then T, = +1 except in the following three cases:

@) T=+{IS}ifz=1i;
) T = +£{L ST, (ST} if == —} + 55,
i) T = £{L TS.(TS)} if 2= —@ = 4 + 5%,

Both Propositions 2 and 3 follow from the second part of the proof of
Proposition 1.

Notice that S? = —I (ST)3——-I and (7S)®= —I Thus, inT= .

SL,(Z)] + I the elements S, ST, T'S generate cyclic subgroups of order 2,3,3,
respectively ; and these subgroups are the isotropy subgroups of the elements

i, w, — @, respectively. These points in H with nontrivial 1sotropy subgroups ‘

are called “elliptic points™.
Another by-product of the proof of Proposmon lis the followmg useful

fact. |

Proposition 4. The group T = SL, (Z)/ +1is generated by the two elements S

and T (see (1.7)). In other words, any fractional linear transformation can be

written as a “word” in S (the negative-reciprocal map) and T(translatzon by 1)

and their inverses.

PROOF. As in the proof of Proposition 1, let I'" denote the subgroup of I

Let g be an element of I'. Consider the point gze H. In the first part of the
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p'rpof'of Proposition 1, we showed that there exists ye I'” such that y(gz) e F.
But since z is in the interior of F, it follows by Propositions 1 and 3 that
yg = +1, ie.,g= +y 'el". This shows that any geT is actually (up to a

sign).in I'". The proposition is proved. O

Thus, any element in T can be written in the form SaThi ST . -
SaT4, where all of the a bj are nonzero integers, except that we allow a;
and/or b, to be zero; and since S2 = ~1I, we may suppose that all of the g;
equal 1, except that a; = 0 or 1. We may also use the identity (ST)? = ——1
to achxeve a further simplification in some cases.

We now return to the fundamental domain F for I' = SL,(Z). Recall that
in Chapter I §4 we also had a fundamental domain, in that case a parallel-
ogram IT = C for the lattice L. In that case the group was L, the action of
geLon a point zeC was simply g(z) = g + z. Every z€ C is L-equivalent to
a point in I, and no two points in the interior of I1 are L-equivalent. In that
situation we found it useful to glue together the boundary of I1 by identifying
[L-equivalent points. We obtained a torus, and then we found that the map
2 (p(2), $’(2)) gives an analytic isomorphism from the torus C/L to the
elliptic curve y? = 4x> — g,(L)x — g5(L) (see §1.6).

In our present situation, with the group I' acting on the set H with funda-
mental domain F, it is also useful to identify T-equivalent points on the
boundary of F. Vlsually, we fold F around the imaginary axis, gluing the
point & + iy to =%+ iy and the point > to ¢*(12=9 for y >3 and
1 <0 <1 The resulting set F with its sides glued is in one-to-one corre-
spondence with the set of I'-equivalence classes in H, which we denote
I\H. (The notation I'\H rather than H/T is customarily used because the
group T" acts on the set H on the left:)

In Chapter I we saw how useful it is to “‘complete” the picture by including
a point or points at infinity. The same is true when we work with I'\H.

Let H denote the set Hu {0} L Q. That is, we add to H a point at infinity

. (which should be visualized far up the positive imaginary axis; for this

reason we sometimes denote it ico) and also all of the rational numbers on
the real axis. These points {co} U Q are called “cusps”. It is easy to see that -
I permutes the cusps transitively. Namely, any fraction afc in lowest terms
can be completed to a matrix (¢ 5 eI by solving ad — bc = 1 for d and b;

this matrix takes oo to a/c. Hence all ratronal numbers are in the same

- T-equivalence class as 0.

IfI"isa subgroup of I, then I'" permutes the cusps but in generdl not
lransmvely That is, there is usually more than one F’-equrvalence class
among the cusps {eo} U Q. We shall see examples later. By a “cusp of I'"”
we mean a I"-equlvalence class of cusps. We may choose any convenient

representative of the equivalence class to denote the cusp. Thus, we say that '4 :
s'a single cusp at oo”’, where oo can be replaced by any rational number
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mental system of open neighborhoods of oo is N = {z eH |Im z >-C} U {0}

for any C > 0. Note that if we map H to the punctured open unit disc by

sending )
qu;rez""/ k g . R B ‘ (1.8)

and if we agree to take the point oo € A to the origin under thls map, then
N_ is the inverse image of the open disc of radius e~ 2"
and we have defined our topology on H U {00} so as to make this map (1.8)
continuous.

The change of variables (1.8) from z ' to gplaysa basnc role in the theory of
modular functions. We use (1.8) to define an analytic structure on Hu {oo}.
In other words, given a function on H of period 1, we say that it is-mero-
morphic at oo if it can be expressed as a power series in‘the variable g having
at most finitely many negative terms, i. e, , it has a Fourier expansron of the
form A

f@ =3 a..ez"""’ = Z a.q", (1.9)

- neZ neZ ’ )
in which a, = 0 for n << 0. We say that f(z) is holomorphic at «.if a, = 0
for all negative #; and we say that f(z) vanishes at oo if f(z) is. holomorphic

at oo and a, = 0. More generally, if f(z) has period N, then we use the map |

zqy = eV to map Hu {co} to the open unit disc. We then express

f(z) asa series in gy, and say that it is meromorphic (is holomorphic, vanishes)
at o if a, = 0 for n << 0 (respectively, for n < 0, for n < 0). -

Next, near a cusp a/ce Q = H we define a fundamental system of open
neighborhoods by completing a, ¢ to a matrix a« = (¢ §) eI and using « to
transport the N to discs which are tangent to the real axis at a/c (see Fig.

I11.2). In other words with this topology, tosaythata sequence z;approaches

a/c means that o™ z; approaches ico, i.e., that Im o~ 1z approaches infinity
in the usual sense. Notlce by the way, that the topology near the rational

numbers a/c does not agree with the usual topology -on the real line, i.c.,a '

centered at the origin, -

i
i
#
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séqtien‘ce of rational numbers which approaches ajc as real numbers will
not approach a/c in our topology »
Let F denote the fundamental domain F with I“-equwalent boundary

points identified and with the cusp co thrown in. Thus, the points of F are

infone-to-one correspondence with I'-equivalence c_lasses in H. We take the
topology on Fwhich comes from the topology on H. That is, by a small disc
around an interior point of F we mean a disc in the usual sense; by a small
disc around oo we mean all points lying about the hne Im z = C, where Cis
large; by a small disc around a boundary point —4 + iy we mean the half-
disc contained in F together with the half-disc of the same radius around
1 4 iy which is contained in F; and so on. Thus, F has an analytic structure
coming from the usual structure on H, except at co, where it comes from
the usual structure at 0 after the change of variable (1.8).

In Chapter I we found that the Weierstrass @-function gave us an analytic
isomorphism of C/L with an elliptic curve in PZ. In our present situation,
we shall later see that a certain function (called the “j-invariant”) gives an
analytic isomorphism between F = I'\H and the projective line (Riemann -
sphere) P¢.

We now look at fundamental domains for subgroups I’ < I'.- Suppose-
that [I": I"] = n < o, so that I can be written as a disjoint union of n
cosets " = ( Ji; o,I"". I claim that F' = ( )i, o ' Fwill serve as a fundamental
domain for I'". Let us verify that every ze H is I["-equivalent to a point in
F’; the verification that no two interior points of F’ are I"-equivalent will
be left as an exercise (see below). Let ze H. Since Fis a fundamental domain

“for I', we can find yeT such that yze F. Then for some i we have y = o;)’

with y' €T, and hence y’zea;'F = F’, as desired. Roughly speaking, F' is
n times as big as F because there are one n-th as many elements y”€I'” which
one can use to move z around.

* There are many possible choices of the o; in the coset decomposition in the
previous paragraph. In practice, we shall always try to choose the «; so that
the resulting F’ is simply connected.

As an example, let us find a fundamental domain F(2) for I'' = F(2)
(We shall use the notation F(N) to mean any fundamental domain for F(N ),
Fy(N) to mean any fundamental domain for I'o(N), etc.) Since I'(2) is the
kernel of the surjective map SL,(Z) — SL,(Z/2Z), and since SL,(Z/2Z) =
GL,(Z/2Z) is isomorphic to S; (see Problem 6 of §1.8), it follows that
[T:T(2)] = 6. As coset representatives of I' modulo I'(2) let us choose:

(! 9. _T_1'1_
HEE o) 2= 1)
0 -1 I -1
“3_S=<1 .o)’ ““_TS=<1 0)’
‘ -1 =2\
=T8T = “).
T _<1 1)
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Figure I11.3. A fundamental Domain F(2) for I'(2).:

The resulting fundamental domain F(2) = { J&, o 'F is depicted in Fig.
I11.3. Because any fractional linear transformation takes a circle or line to
a circle or line and preserves symmetry about the real axis, it follows that the |
boundary of any fundamental domain. constructed in this way consists of
vertical lines and arcs of circles centered at rational numbers on the real
axis. The boundary of the fundamental domain in Fig. II1.3 is made up from
_ the vertical lines Re z = —2 and Re z = 1, the circles of radius 1 centered -
at 0 and — 1, and the circles of radius 4 centered at 4 and —%. coh
We see that I'(2) has three cusps: o, 0, —1. That is, there are thre
T'(2)-equivalence classes of cusps with those three points as representatives.
Now the etymology of the word “cusp” is clear: geometrically, F(2) has the
appearance we usually associate with the word “cusp” at the points 0 and
-1 " :

PROBLEMS

- 1. Prove that I',(N) is a normal subgroup of I',(¥) but not of I'. Is I';() a normal
subgroup of I'? :

N .iS"Lyz (Z) and its congruence subgroups

. (a) Prove that for any N, the map SL,(Z) -
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-

SL,(Z/NZ) obtained by reducing the

“ _ matrix entries modulo N is a surjective group homomorphism.

e ‘b)

. What is the order of the group (a) GL,(Fp)? (b) SL,(F)?

) Prove that for any positive integers M and N, the maps (“reduction modulo
N from SL,(Z/MNZ) to SL,(Z/NZ) and from GL,(Z/MNZ) to GL;(Z/NZ)
‘are surjective group homomorphisms. :

.“(a) What is the kernel of the homomorphism GL,(Z[p°Z) — GL,(Z[pZ)?
‘(b) What is the order of the group GL,(Z/p°Z)?

(c) What is the order of the group SL,(Z/p*Z)?

. Let N = p% - pgr be the prime factorization of the positive integer N. Show that

the reductions modulo pfi, j= 1, ..., r, give isomorphisms
GL,(ZINZ) S ,GLy(Z/piZ) and SL,(Z/NZ) S T, SL,(Z/pfiZ).
What is the order of the group SL,(Z/NZ)?

. Find the indices [T: T(N)], [T, (V): T()], [FoV): Ty ()], [Fo(N): T(V)], and

[r: LN

. Find a simple isomorphism from I'(N) to a subgroup of I[y(N %) having index ¢(N)

in T,(N2). In particular, I'(2) and I',(4) are isomorphic.

. Suppose that I'; and T, are two subgroups of finite index in I', and T = aTa™! for

~ some xeGL,(Q). If Fis a fundamental domain for. I, prove that oF, is a fun-

‘damental domain for I';.

. Using the previous problem, draw a fundamental domain for I'g(4).

. Suppose that T' = { Jj-, ;T", where I""-is a subgroup of index # in T.Let F'=

Ui, ;' F. Show that no two distinct poiits in the interior of F’ are I"-equivalent.

. Describe all congruence subgroups I of level 2, i.e., all groups contained between

[ and [(2): F(2) = I < T. For each such I'/, find a simply connected fundamental
domain by taking a suitable part of the fundamental domain F(2) for I"'(2) that was

" given in the text.

13

. (b) Prove that TSTand T* generate T°(2) ={G

(a) Prove that +Sand T2, with S and T as in (1.7), generate one of the subgroups
of level 2 in the previous problem. That group was denoted ®(2) by Hecke.
%) mod 2}; and that Tand ST>S
generate To(2). . :

“(c) Prove that the elements T? and ST~2S generate T Q).
" (d)_Prove that T and ST™*S generate [o(4).

14

. Suppose I'; and T, are subgroup

{a) Prove that the following is a complete set of coset representatives {«;} for
Io(p®) in T, ie., F = { Ja;To(p°) is a disjoint union: :

1; TS, k=0,1, ‘o1 ST®S, k=1,2,...,p7 — L

.....

(b) Use ";Sart (a) to draw a fundam~ntal doméin for Fo(4).
:(c) Using part (a), describe a fu-

nental domain for I'y( p). Draw the fundamen-
tal domain for I',(3). '

‘te index in T having fundamental domains
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Fy and F,, respectively. Does F) < F, imply that T, > > T 37 (Give 2 proof or

counterexample.)

16. (a) The assertion at the end of the section that I'(2) has 3 cusps (i.c., that there are
three I'(2)-equivalence classes of cusps) does not immediately follow from the
appearance of the fundamental domain, because boundary points of the fun-
damental domain may be I'(2)-equivalent. But prove directly that oo, 0, —1
are I'(2)-inequivalent to one another. )

(b) How many cusps does each of the congruence subgroups in Problem 12 have?

17. Let {o;} be a complete set of coset representatives for I'"in T, where T” is a sub-
group of finite mdex in I'. Show that the cusps of I' are among the set {;! 00}, but
that o' 0o and o;* 0o are I'-equivalent if and only if there exists ne€ Z such that

1 Tyel.

18. Prove that I'y(p) has two cusps oo and 0; and that To(p?) has p + 1 cusps: o, 0,
and —!/kpfork: L...,p—1.

§2. Modular forms for SL,(Z)

Definition. Let f(z) be a meromorphic function on the upper half-plane H,
and let k be an integer. Suppose that f(z) satisfies the relation

f42) = (cz + d)f(z) forall y= C Z)eSLZ(Z). @1
In particular, for the elements y = 7'= (3}) and y = § = (L9 }), (2.1) gives
[+ 1) =1@); @
S(=1/z2) = (=2)*/(2). ‘ (23)
Further suppose that f(z) is “meromorphlc at mﬁmty” Recall that this
means that the Fourier series .
f@= Ez a,q", where g=e¥ - (2.4)

has at most finitely many -nonzero a, with n <0. Then f(z) is called a
“modular function of weight k for I' = SL,(Z)".

If, in addition, f(z) is actually holomorphic on H and at infinity (i.e., a, = 0
for all n < 0), then f(z) is called a “modular form of weight & for '=
SL,(Z)”. The set of such functions is denoted M ().

If we further have ao = 0, i.e., the modular form vanishes at infinity, then
f(2) is called a “‘cusp-form of wexght k for I"”’. The set of such functions is
denoted S,(T). (The use of the letter S is traditional, and comes from the

German_“Spitzenform” for “cusp-form” Cusp-forms are sometlmes also
called “parabolic forms” )

,a finite limit as z — ic0:

§2:§'ig{¢duxar f&rms for SL,(@) IR [

Fmally, the expansion (2.4) for a modular functlon f(2) is called its
“g-expansion”.
We first make some easily verified remarks about these definitions.

: Rémarks. 1. If k is odd, there are no nonzero modular functions of weight -
k for T'. We see this by substituting y = ("3 _9)in (2.1). So in this section we
shall always suppose that k& is even. '
= -4 ((az + b)/(cz + d)) = (cz + d)™2, we can rewrite (2.1)in '
the—form & )"’Zf(yz) = f(2), i.e., f(z)(d2)"* is invariant when z is replaced
by yz. From this we see that if (2.1) holds for y, and y,, then it holds for
:7,. Since all of T is generated by S and 7, this means that (2.2)-(2.3)
imply (2.1). , )

- 3. The conditions are preserved under addition and scalar multiplication,
i.e., the sets of modular functions, forms, and cusp-forms of some fixed
weight are complex vector spaces. In addition, the product of a modular
function (or form) of weight &k, and a modular function (respectively, form)
of weight k, is a modular function (respectively, form) of weight &, + &, ;
and the quotient of a modular function of weight k, by a nonzero modular
function of weight k, is a modular function of welght ki — k,. In particular,
the set of modular functions of weight zero is a field. .

4. If k=0, then the condition (2.1) says that f(z) is invariant under
I' = SL,(2), i.e., it may be considered as a function on I'\H. If k = 2, then
the differential form S (z)dz on H is invariant under I', i.e., f(yz)dyz = f(2)dz,
since dyz/dz = (cz + d)~2.

ExaMpLE (Eisenstein series). Let k& be an even integer greater than 2. For
ze H we define

1

— 2.5
Gk( )def Z (mz + n ‘ ( )
where the summation is over pairs of integers m, n not both zero. If we let
L, denote the lattice in C spanned by 1 and z, then this is a familiar definition

from Chapter I (see (6.3) of Chapter I). That is, the function G,(z) in (2.5)

" is what we then denoted G, (L,). The new point of view in-this chapter is to

think of G,(z) = G,(L,) as functions of z, not merely as coefficients in the
Laurent expansion of the Weierstrass g- functlon (The letter z was used in
a different way in §6 of Chapter 1.)

Because £ is at least 4, the double sum (2.5) is absolutely convergent, and
" uniformly convergent int any compact subset of H. Hence G(z) is a holo-
morphic function on H. It is also obvious that G,(z) = G,(z + 1), and that
the Fourier expansion (2.4) has no negative terms, because G,(z) approaches

lim Z (mz+ny* =Y n*=20(k).

n¥0
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Finally, we easﬂy check that
G (= 1/2) = Z’{( m + nz) ™ = G(z),
i.e., Gi(2) satisfies @ 3). We have proved
Proposition 5. ‘
G,e M(T).

We now compute the g-expansion coefficients for G,. We shall find that
these coefficients are essentially the arithmetic functions of n

a,‘_l(n)dffdzl:d""l. (2.6)

Proposition 6. Let k be an even integer greater than 2, and let ze H. Then the
modular form G, (z) defined in (2.5) has g-expansion

@@=x®@-%iwww? @7
kn=1

where q = e*™*, and the Bernoulli numbers By are defined by setting
k

X el X
pear kgoBkH. (2.8)

(Note. Our notation is slightly different from'Serre’s in 4 Course in
Arithmetic. Basically, he uses 2k where we use k.)

ProOOF. The logarithmic derivative of the product formula for sine is

7 cot(na) = — + Z( 1 ), acH. 2.9

=1 a+n a—n

If we-write the left side as mi(e™ + e™™9)/(e™® — e™™*) = i + 2mi/(e*™ — 1),

multiply both sides by a, replace 2zia by x, and expand both sides in powers
of x (using (2.8)), we obtain the well-known formula for {(k):

{(k) = —(2mi)*B,f2k! for k> 0even. (2.10).

Next, if we successively differentiate both sides of (2.9) with respect to a
(see Problem 8(d)—(e) of §I1.4) and then replace a by mz, we obtain:

3 1 (27”) < k=1 p2ninmz _2_k_ &, k=1 dm
,.=Z-:‘,° (mz +ny  (k—D! 5 Z Bk;(k)d;d q

(where we have used (2.10) and replaced n by d and 2™ by g). Thus-,

Gy (z) = 2{(k) + 2 Z Z

m=1 n=—oo(mz + n)k

= 2Lk (1 —%" 3 d""q""‘).

km,d=1

§2. Modular forms for SL,(Z) i

Collééting:cdefficients ofa ﬁxed'-pO\g\}er q" in the last double sum, we obtain /
the sum in (2.6) as the coefﬁcient of ¢". This completes the proof.. . .O

Because of Proposmon 6, 1t is useful to define the “normahzed Eisenstein
senes” obtained by dividing G,(z) by the constant 2{(k) in (2.7): -

Ef2) = wa@ kZﬁnWW e

Thus, E,(z) is defined so as to have rational g-expansion cocfficients. The
First few E, are:

E(2)=1+4240 ) o3(mq";

n=1

Eq@) =1~ 504 ¥, 05"
n=1
Es(z) =1+ 480 Z 0'7(n)q'f;

Eo(2)=1—264 Z ae(Mq";
65520

691 Z 61, (Mq";

E(@)=1+

E(z)=1-24 Z o13(m)q".
n=1

An alternate way of defining the normalized Eisenstein series is to sum only
over relatively prime pairs m, # in (2.5):

_1 N
E@) =5 méz T (2.12)

(m,n)=1

where (m, n) denotes the greatest common divisor. The equivalence of (2.12)
and (2.11) will be left as an exercise (see below). .

ExaMpLE (The discriminant modular form A(z)). Recall from our study of
the Weierstrass g-function of a lattice L that one defines g,(L) = 60G,(L),
g3(L) = 140G (L) to be the coefficients occurring in the differential equation
satisfied by the @-function (i.e., in the equation of the elliptic curve corre-
sponding to L; see (6.8)-(6.9) in §I.6). Now let us def‘me 9,(2) = g,(L,),
g3(z) g3(L,) for ze H. That is,

92(2) = 60G,(2);  g3(2) = 140Gs(2). (2.13)

Then g,(z) and g;(z) are modular forms for I' of weigh: 4 and 6, respectively.
Since £(4) = n*/90 and {(6) = n®/945, we can express y, and g, in terms of
the normalized Eisenstein series E, and Eg as follows:
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9:2) =3n*Ey(@); ;) = HnEs2).  (214)

The discriminant of the elliptic curve corresponding to £,—a function
of the lattice which is nonvanishing for all nontrivial lattices, i.e., in all cases
when the cubic polynomial 4x* — g,(L,)x — g5(L,) has distinct roots—is
given by (see Problem 2 of §1.6) ’ '

‘ 3 2_ (2m*? 3 2
A@2) = g,(z)° — 27g5(2)* = 725 Es(@® — Es(2)). (2.15)

By Remark 3 following the definition of a modular form, we see that A(z)
is a modular form of weight 12 for I'. Moreover, because both E,(z) and
E¢(z) have constant term a, =1 in their g-expansions, we see that the
constant term in (2.15) is zero, i.e., A(z) is a cusp-form. It is the first example
of a cusp-form that we have seen. We shall later see that it is the cusp-form
of lowest possible weight for I.

The g-expansion of (2r)"'2A(z) has rational coefficients, and the first
coefficient is easily computed to be 1 (use: E, =1+ 240g + - - -, E,=
1 —504g + - - -). We shall later prove a remarkable product formula, due
to Jacobi, for this discriminant function. :

The example of Eisenstein series gives us one modular form for every even
weight starting with 4. It might seem unfortunate to have to pass up 2. Is
there any Eisenstein series that can be salvaged in the case k = 2?

It turns out that there is, but the normalized Eisenstein series E, is not
a modular form. We use the same definition as for the other E,, except that
the double sum when k = 2 is not absolutely convergent, and we must take
care with the order of summation. Note that in the proof of Proposition 5,
when showing that z7*G,(— 1/z) = G,(z), we needed to reverse the order of
summation over m and n. Because this change of order of summation is no
longer justified when we only have conditional convergence, it turns out
that £, fails to transform “correctly” under zr> — 1 [z. E, satisfies a slightly

more complicated transformation rule, a rule that will be used in important

ways later.
Thus, we define (here ' means that n # 0 if m = 0)

l L oo/ l
D e i

3 < 1
=14 —_—
NER NI
6 & & 1
=1+ —1
7% 2 0 (mz + d)?

Ey(2) =

The inner sums clearly converge for any ze H and any m; and, once we

obtai_n a different expression for.the inner sums, we shall see-that-the outer
sum over m then converges absolutely. As in the proof of Proposition 6,

\

2.16)
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we _ﬁnd that for.any fixedm=1,2,3, ...
ey . ;

4,0 & T oamie
= 2 Y dg*™, where g = e
Lo BOLY |

“This gives us

0 00
E,=1-24% % dg*™
m=1d=1
Since |g| < 1, it is easy to see that the double'. sum over m and d is absolutely
convergent. Collecting coefficients of ¢” by summing over all divisors d of , A
we-obtain:

E,=1-24 g,(n)q". (2.17)
n=g -

*As in the case of the higher E,, E, is a holomorphic function on H which
is periodic of period 1 and holomorphic at infinity. In order-for it to be a
modular form of weight 2 for I, all we would need in addition is for-
272E,(—1/2) to equal E,(z). From (2.16) we find that

2 1 & =, 1 ;
z 2E2(_ l/Z) - 5Z(?)m=z—oo n=z—u>(—.m + nZ)Z

(2.18)
3 & 1
=1+ P
n? n=z~uo :/:‘;eo (mz + n)?
Thus; the extent to which E, fails to satisfy. the “right” rule is a reflection
of the alteration produced by reversing the order of summation. We now
compute this “error term”.

Proposition 7.

2 2E,(—1/2) = E,(2) + 5;—21; : (2.19)

Proor. The proposition says that 12/2riz is the difference between the double
sum (2.18) and the double sum (2.16). Suppose we introduce a “correction

- term” a,, , inside both double sums which causes the double sums to be

absolutely convergent. In that case, the order of summation of the “cor-
rected” double sums does not make any difference; i.c., the two “corrected”
double sums are equal. It then follows that the difference between (2.18)
and (2.16) is equal to the difference between X, %, 4, and X,%,a, ,. The
‘ided is to choose a,, , to be a term close to (mz + n)~2 but which is easier to
“sum. -

. -Let us take

1 R
(mz+n—)(mz+n (mz+n—1) (mz+ n)"

) Qn,n = am,n(z) =

v/
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Since the difference between (mz + n)~2and a,,
it follows-that the following “corrected” E, is absolutely convergent

E@=1+ mzzm((—,,;-l;;)— 0@
)

=1+i Y 3 !
n? m¢0n=—=o(mz+n)2

But since the last inner sum telescopes to zero, we have: E,(z) = E,(z).
Because the double sum for E2 is absolutely convergent, we have

E,(2)=1+ 2n=2w m;O (m m,n(z))

=z"2E,(~1/2) ——35 Z Y G2

n==wom#*0

(2.20)

So it remains to evaluate this last double sum.
Now: this double sum differs from the sum in (2. 18) by an absolutely
convergent series. As in the derivation of (2.17), we ﬁnd that for n > 0

1 1 1 1
wio(—mz—np 22 (“nz+m? b
Since —1/z is a fixed element of H, we see that the outer sum over 7 in (2.18)

converges absolutely. Thus, the same is true for ,%,, a,, ,(2). This justifies
writing

Z de —Zmdn/z

¥ S a@=ln ¥ 3 4.0

n= = m# O pe= —N+1 m#0

= lim ) i

N=® 3t 0 p= ~N+1

Ay (2).

The last inner sum telescopes to 1/(mz — N) — 1/(mz + N), and by (2.9)

we have

Z( 1 1 ) 28a [ SR
meo\Mmz — N T mz+ N zZ\—=Nfz+m. =N/z—m

_2 N\, 6 z
, -E(ncot (—-—Z—>+Yv—).
We conclude that the double sum is equal to , .

'e—ZuiN/z + 1

; _ 2mi
w e 2mNz ]

2 ..
l -—
im cot(—nN/z) =

Substituting this into (2.20) gives:
Ex@) = 2 Ey(=12) + 2 = 2By~ 1)~ 5

This completes the proof of Proposmon 7. o

III. Modular Forms

nis 1/(mz + n)*(mz + n— 1),

1 1 -
m¢on--w(mz+n mz+n—l>'
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Figure I111.4. Contour for the Proof of Proposition 8.

The next result will play a basic role in determining the spaces M, (I') and
S,(I") of modular forms and cusp-forms of given weight for I', and it will
also be useful'in proving that two modular forms deﬁned in different ways
are ‘actually the same in certain cases.

Proposmon 8. Let f(z) be a nonzero modular function of weight k for T.
For PeH, let vp(f) denote the order of zero (or minus the order of pole)
of f(2) at the point P. Let v, (f) denote the zndex of the first nonvamshmg
_term in the q—expanszon of 'f(2). Then

Y ou(N=15 @2

() + Lo+ ~v¢,,(f) +
2 3 Pel\H,P+i.0

(Note It is easy to check that vp(f) does not change if P is replaced by

yP foryel.) -

. PROOF The idea of the proof is to count the zeros and poles in I'\H by
integrating the logarithmic derivative of f(z) around the boundary of the
‘fundamental domain F. More precisely, let C be the contour in Fig. I11.4.
The top of C is a horizontal line from H = 4 + iTto A= —1% 1 4+iT, where T
is t;élken larger than the imaginary part of any of the zeros or poles of f(z2).
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(Note. That this can be done, i.e., that f(z) does not have poles or zeros

with arbitrarily large imaginary part, follows from the fact that the change -

of variables g = ¢ makes f(z) into a meromorphic function of g in a disc
around g = 0.) The rest of the contour follows around the boundary of F,
except that it detours around any zero or pole on the boundary along circular
arcs of small radius e. This is done in such a way as to include every I'-
equivalence class of zero or pole exactly once inside C, except that i and w
(and Sw = — @) are kept outside of C if they are zeros or poles. In Fig. I11.4

we have illustrated the case when the zeros and poles on a boundary of F -

consist of i, w (and hence also Sw), one point P on the vertical boundary

line (and hence also the I'-equivalent point on the opposite line), and one

point Q on the unit circl¢ part of the boundary (and hence also SQ).
According to the residue theorem, we have

IOupe 3y o) @22)

2711 f(Z) Pel\H, P#i,0

On the other hand, we evaluate the integral in (2.22) section by section.
First of all, the integral from A to B (see Fig. I11.4) cancels the integral
from G to H, because f(z + 1) = f{(z), and the lines go in opposite directions.
Next, we evaluate the integral over HA. To do this we make the change
-of vanables q =e?™ Let f(q) =f(z) =Za .q" be the g-expansion. Since
f@ =4 2 f(9)%, we find that this section of the integral in (2.22) is equal to
the following integral over the circle of radius e~2*7 centered at zero:

abf/dq
f(q)

Since the circle is traversed in a clockwise direction as z goes from H to 4,
it follows that this integral is minus the order of zero or pole of flg) at 0,
and this is what we mean by —v, (f).

To evaluate the integral over the arcs BC, DE, and FG, recall the derivation
of the residue formula. If f(z) has Laurent expansion ¢,,(z — @)™ + - - - near
a, with ¢, # 0, then f(2)/f(z) = % + g(2), with g(z) holomorphlc at a.
If we integrate f”(z)/f(z) counterclockwise around a circular arc of angle 8
centered at a with small radius ¢, then as ¢ — 0 this integral approaches mif
(the usual residue formula results when 6 = 27). We apply this to the section
of (2.22) between B and C, letting & — 0. The angle approaches 7/3, and so
we obtain —5+(v,(f)in/3) = —v,(f)/6. (The minus sign is because the
arc BC goes clockwise.) In the same way, we find that as & — 0 the part of
(2 22) from D to E becomes —v;(f)/2, and the part between Fand G becomes

a(/)I6 = —v,(f)/6.

What remains is the integral from C to D and from E to F. Combmmg

the above calculations, we find from (2.22) that the left side of (2.21) is

equal to that remalmng section of the left side of (2.22). Thus to prove .

Proposition 8, it remains to show that in the limit as ¢ — 0

§2:"Modular forms for SL,(Z) , E _ 7

f @, L@, k. 2

‘ S @ dz + 27u w J@ dz = 12" _ (223
To compute the sum of these two integrals, we note that the transformation

- S:z> —1/z takes CD to EF, or more precisely, to FE, i.e., Sz goes from F
to E along the contour as z goes from C to D along the contour. The desired
formula (2.23) will follow from the followmg more general lemma.

Lemma. Let y=(¢ f,’)el" with ¢ #0, and let” f(z) be a meromorphic
function on H with no zeros or poles on a contour C = H. Suppose that
f(2) = (cz + d)*f(2). Then ;

[@,, f [ dz
LEg | L@ - (.24
) 7@ Zr @ )
The requnrcd equalnty (2.23) follows 1mmed1ately from the lemma, wherev
wesety=S= (] ~}), note that S(CD) = FE, and compute that as ¢ — 0

1

2mi

dz _ L 2mi
—;—-»J do = -1—5 (where z = ¢*™9),

PROOF OF THE LEMMA. Differentiating i ,
Slyz) = (cz+ d)"f(Z) (2.25y
we obtain

: f’(yz)% =(cz + d)'y'(z) + ke(ez + dY(z). 2.26)

- We now divide (2.26) by (2.25)

fe2), L@ cdz
Fon =i et a

Thus the left side of (2.24) is equal to
L@y LGy, J cdz

f(Z)  S(y2) cz+d’

. This completes the proof of the lemma, and of Proposition 8. o
' We now derive several very useful consequences of Proposition 8.

Proposition 9. Let k be an even integer, T = SL,(Z).

(2) The only modular forms of weight Ofor I" are constants, i.e., M o F)
(b)-M(I') =0 ifk is'negative or k = 2, -

(€).- M(T') is one-dimensional, generated by E, , ifk = 4,6,8,10 or 14; in other
- words, M(') = CE, for those values of k.

(d) STy =0 ik <12 or k=14; S,,() = CA; and for k > 14 S, (D) =

;
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AM,_,,(D) (ie., the cusp forms of weight k are obtained by multiplying -
modular forms of weight k — 12°by the function A(z)). '
(e) MI)=S(T)®CE, fork > 2.

. we can find ceC such that f — cELE{ € S(T). By part (d) of Proposition 9,
we can write fin the form - e o -

e (zn)lz

1728

where S1e€M_;,(). Applying (2.27) to f; by the induction assumption
(with & replaced by k — 12), we obtain the desired polynomial for f. (u]

| o , f=CcELE} + Af, = cELE} + (E3 = EBf,,
Proor. Note that for a modular form all terms on the left in (2.:21) are '
nonnegative. : ‘

(2) Letfe My(T'), and let c be any value taken by f(z). Then f(z) — ce My(T")
has a zero, i.e., one of the terms on the left in (2.21) is strictly positive.
Since the right side is 0, this can only happen if f(z) — ¢ is the zero
function. ) ' B

(b) If k£ < 0 or k = 2, there is no way that the sum of nonnegative terms on
the left in (2.21) could equal k/12. .

(c) When & =4, 6, 8, 10, or 14 we note that there is only one possible way
of choosing the vp( f) so that (2.21) holds:

for k = 4, we must have v,,(f) = 1, all other vp(f) = 0;

for k = 6, we must have v,(f) = 1, all other vp(f) = 0;

for k'= 8, we must have v,(f) = 2, all other vp(f) = 0;

for k = 10, we must have v,(f) = v,(f) = 1, all other v,(f) = 0;

for k = 14, we must have v,(f) = 2, v,(f) = 1, all other v,(f) = 0.
Let £1(2), /() be nonzero elements of M,(z). Since f,(z) and £,(z) have
the same zeros, the weight zero modular function f, (2)/f,(z) is actually
a modular form. By part (a), f; and f, are proportional. Choosing
f2(2) = E,(2) gives part (c). '

(d) For feS,(I') we have v, (f) > 0, and all other terms on the left in (2.21)
are nonnegative. Notice that when k = 12 and f'= A, (2.21) implies that
the only zero of A(z) is at infinity. Hence, for any k and any fe S(I),
the modular function f/A is actually a modular form, i.e., flAe M,_,,(I).
This gives us all of the assertions in part (d).

(e). Since E; does not vanish at infinity, given fe M,(') we can always o
subtract a suitable multiple of E, so that the resulting f ~ cE, e My(I') '
vanishes at infinity, i.e., f — cE, € S;(I"). o

The j-invariant. We now define a very important modular function of weight
Zero: , ‘ ‘

o 1728g,(2)° Ey2y’
IO&F a6 = E B

(by (2.14)-(2.15))  (2.28)

Prdposition 11. The function j gives a bijection from T\H (the fundamental
domain with T-equivalent sides identified and the point at infinity included)
and the Riemann sphere P¢ = C U {c0}. .

PROOF. In the proof of Proposition 9(d) we saw that A(z) has a simple zero
at infinity and no other zero. Since g, does not vanish at infinity, this means
that j(z) has a simple pole at infinity and is holomorphic on H. For any
ceC the modular form 1728g3 — cA e M, ,(I') must vanish at exactly one
point PeI'\H, because when k = 12 exactly one of the terms on the left
in (2.21) is strictly positive. Dividing by A, we see that this means that
J(2) = ¢ = 0 for exactly one value of ze I'\H. Thus, j takes oo to oo and on
I'\H is a bijection with C. : O

Proposition 12. The modular functions of weight zero for T are precisely the
rational functions of j. ‘

PROOF. A rational function of j(z) is a modular function of weight zero
(see Remark 3 at the beginning of this section). Conversely, suppose that
. f(z) is a modular function of weight zero for I'. If z; are the poles of f(z)
- in P\H, counted with multiplicity, then f(z)- IT jU(@) = j(z)) is -a modular
function of weight 0 with no poles in H, and it suffices to.show that such a
function is a rational function of j. So, without loss of generality we may
assume that f(z) has no poles in H. We can next multiply by a suitable power
of A to cancel the pole of f(z) at co. Thus, for some & we will have A () e
M, (). By Proposition 10, we can write f(2) as a linear combination of
modular functions of the form E,E{/A* (where 4i 4 6] = 12k), so it suffices
to show that such a modular function is a rational expression in J- Since
4i + 6 is divisible by 12, we must have i = 3i, divisible by 3 and i=2
divisible by 2. But it is easy to check that E3/A and E2/A are each of the
form aj + b, by (2.28); and E}EZo/A* is a product of such factors. This

proves the proposition. o

We now prove that any modular form for T is a polynomial in E,, E6
(see Problem 4 of §1.6 for a different proof of this fact). |

Proposition 10. Any fe M,(T') canbe written in the form
f@= 3 cE2)Es(zy. (2.27)

4i+6j=k

Proor. We use induction on k. For k = 4, 6, 8, 10, 14 we note that E,, Eq,
E} E,Eg, EZE,, respectively, is an element of M, ('), and so, by Proposition
9(c), must span M, (I). Now suppose that k = 12 or k> 14. It is clearly
possible to find i and j such that 4/ + 6j = k, in which case E5E{e My(T)..
Given fe M,(I'), by the same argument as in the proof of Proposition 9(e)
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The definition (2.28) is not the only way one could have defined the
invariant. It is not hard to see that any ratio of two non-proportional modular
forms of weight 12 would have satisfied Propositions 11 and 12. But _](Z)
has the additional convenient properties that: its pole is at infinity, i.e.,
it is holomorphic on H; and its residue at the pole is 1, as we easily compute
from (2.28) that the g-expansion of j starts out § + - - - .

Recall that in Chapter I we used the Weierstrass g-function and its
derivative to identify the analytic manifold C/L with an elliptic curve in
PZ. Similarly, in our present context we have used the j-mvarlant to identify
I'\H as an analytic manifold with the Riemann sphere P¢. Proposition 12
then amounts to saying that the only meromorphic functions on the Riemann
sphere are the rational functions. Thus, Proposition 12 is analogous to
Proposition 8 in §1.5, which characterized the field of elliptic functions as
the rational functions of x = @(2), y = #'(2).

A loose end from Chapter I. In Chapter I we defined an elliptic curve over C

to be a curve given by an equation of the form y? = f(x), where f(x) is a
cubic with distinct roots. We then worked with curves whose equations were
written in the form

¥ =4x* — g,(L)x — g5(L) (2.29)

for some lattice L. It is not hard to see that a linear change of variables will
bring an equation y? = f(x), where f(x) has distinct roots, into the form

y2=4x3 — Ax— B with A®—27B% #0. (2.30)

But in order to write such a curve in the form (2.29) we need to show that a
lattice L can always be found such that g,(L) = 4, g3(L) = B. This was not
proved in Chapter 1, but it is easy to prove now using modular forms.

In what follows we shall write a lattice L = {mw, + nw,}, where z =
w,/w,€ H,asfollows: L = AL, = {miz + nA}. Here A = w,. Thus, any lattice
L is a complex multiple of (i.e., a rotation plus expansion of) a lattice of
the form L..

Proposition 13. For any A, BeC such that A3 # 21B? there exists L = AL,
such that

g,(L) = 4; @

9;(L) = B; 232)

Proor. It follows immediately from- the definition of g, that g,(AL) =
A7%g,(L,), and similarly g;(1L,) = A~ 6g;,(Lz)

By (2.14), we can restate the proposition: there exist A and. z such that
E,(z) = #*(3/4n*) 4 and E,(z) = ,16(27/81:6)3 Let a = 34/4n*, b = 27B/8n°.
Then the condition 4* # 27B? becomes a* # b®. Suppose we find a value
of z such that E¢(2)?/E,(z)® = b*/a®. Then choose A so that E,(z) = 4%a,
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in wﬁich case we must have
E¢(2)2 = bPE,(2)*/a® = 212b%, ie., Eq(z)= +1%.

If we have + in the last equation, then our values of z and A have the required
properties (2.31)—(2.32). If we have —, then we need only replace 1 by il.
So it remains to find a value of z Wthh gives the right ratio E¢(z)?/E,(2)*.
Now E§/E4 = 1 — 1728]j, by (2.28). Since j(z) takes all finite values on H,
and b%/a® # 1, we can find a value of z such that b%/a® = 1 — 1728/j(z) =

E¢(2)*/E4(2)°. This completes the proof. o

Thus there was no loss of generality in Chapter 1 in takmg our elliptic

. curves to be in the form (2.29) for some lattice L.

The Dedekind eta-function and the product formula Jfor A(z). We conclude
this section by proving the functional equation for the Dedekind #-function,
from which Jacobi’s product formula for A(z) will follow.

The function 5(2), z€ H, is defined by the product

V[(Z) _ e2m’z/24 ﬁ\(l — eZm‘nz)' C (233) :
n=1

(In Problem 7 of §I1.4 we gave another definition, and another proof of the

functional equation. In the problems below we shall see the equivalence of -

the two definitions.)

Proposition 14. Let f denote the branch of the square root having nonnegative
real part. Then

1(=1j2) = \/2fin(2). 234

Proor. The product (2.33) clearly converges to a nonzero value for any
ze H, and defines a holomorphic function on H. Suppose we show that the
logarithmic derivatives of the left and right sides of (2.34) are equal. Then
(2.34) must hold up to a multiplicative constant; but substituting z :z
shows that the constant must be 1.

Now the logarithmic derivative of (2. 33) is

n(z) _2mi( ne™rz '\

n(z) 24 ( 24 Z Zmnz -
If we expand each term in the sum as a geometnc series in q (g= ez’“‘)
and then collect terms with a given power of ¢, we find that

n((zz)) 227: ( -2 i "1(”)‘1"> = 22Ez( ). (2.35)

Meanwhxle the logarlthmlc derivative of the . relanon (2.34) that we
want 1s
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W(=1/2) - @
12" z+'1(2)' (2.36)

Using (2.35), we reduce (2.36) to showing _that
12 :
1Dz =—% 1L E
Ey)(—1/2)z iz + E5(2),
and this is precisely Proposition 7. o
Proposition 15.

QDM@ =g ] (1— g%,  q=e¥" @37
n=1 .

Proor. Let f(2) be the product on the right of (2.37). The function f is
holomorphic on H, periodic of period 1, and vanishes at infinity. Moreover,
J(2) is the 24-th power of 7(z), by definition ; and, raising both sides of (2.34)
to the 24-th power, we find that f(—1/z) = z'%f(z). Thus, f(2) is a cusp form
of weight 12 for I'. By Proposition 9(d), f(z) must be a constant multiple of
A(z). Comparing the coefficient of g in their g- expans1ons we conclude that
J(2) equals (2m)"12A(2). o

Notice the role of the Eisenstein series E,(z) in proving the functional
equation for #(z), and then (2.37). The #-function turns up quite often in
the study of modular forms. Some useful examples of modular forms,

especially for congruence subgroups, can be built up from #(z) and functions

of the form n(Mz).

The g-expansion in (2.37) is one of the famous series in number theory. Its
coefficients are denoted t(n) and called the Ramanujan function of », since
it was Ramanujan who proved or conjectured many of their. properties:

Zl T(n)q defq H (1 - ")24
Among the properties which will be shown later: (1) t(n) is multlphcatlve
(t(nm) = t(n)t(m) if n and m are relatlvely prime); (2) t(n). = o,,(n) (mod
691) (see Problem 4 below); (3) t(n)/n® is bounded. Ramanujan conjectured
a stronger bound than (3), namely: |t(n)| < n''?g,(n) (Where go(n) is the
number of divisors of #). The Ramanujan conjecture was finally proved ten
years ago by Deligne as a consequence of his proof of the Weil conjectures.

For more discussion of t(r) and references for the proofs, see, for example, '

[Serre 1977] and [Katz 1976a].

PROBLEMS
1. Prove thatfork > 4: Efz)=% Y (mz+n)™

m,neZ
(m,m)=1
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. What is E,(i)?

..(a) Show that E} = Eg, E,‘E6 E\o,and EgEg = E,,. .
“(b): Derive relations expressing ¢, in terms of a3 ; Gy ini terms of gyand g5; and 0,5

% in terms of o5 and 0.

. (2) Show that E,, — EZ = cA, with ¢ = (2m)~'2-25 - 35 72/69.

(b) Derive an expression for 1(r) in terms of o, and 0.
(¢) Prove that t(n) = o,,(n) (mod 691).

. Prove that E, and E are algebraically independent; in particular, the polynomial

in. Proposmon 10 is unique.

= z n(n)x
(b) Leta =1 (mod 4) bc an integer greater than 1. Show that £, (/) = 0, and prove _

the following sequence of summation formulas:

1/504, a=35;
1/264, a=9;
1/24, a=13,etc.

0 nl? l
B D— =
et 2a+1) !

. Let f(2) be « modular form of weight k for I'. Let

g(z) = f (@)~ Ez(Z)f @

Prove that y(z) is a modular form of weight k + 2 for I', and that it is a cusp form
if and only if f(2) is a cusp form.

. @ Prove that E; = E,E, — 2 E; and Ey = EE, — L EL.

(b) Derive relations expressing o5 in terms of g, and 63, and o, in terms of o, and
. Os. : :

. Recall the following definitions and relations from Problems 4 and 7 in §H1.4. Let

x be a nontrivial even primitive Dirichlet character mod N. Define

0. )= Y x(me™", Rer>0.
‘ n=1 .

' Then

0(x, ) = (N?1)"2g()0(, 1/N?1).
Now let 3 be the character mod 12 such that wWED) =1, x(+5) = —1, and def ne

i(2)'= 6(x, —iz/12) for z& H. Then fi(~ 1/2) = JZliniz).

(a) "Prove that 7(z + 1) = e*™24j(z), and that 72 & S, ,(I").

(b) Prove that #(z) = 5(z2).

(c) Write the equality in part (b) as an identity between formal power series in ¢.
- (Note. This identity is essentially Euler’s “pentagonal number theorem.” For a
discussion of its combinatoric meaning and two more proofs. of the identity,
- see [Andrews 1976, Corollaries 1.7 and 2. 9])

. Fmd the j-mvanant of the elliptic curve in Problem 3(b) of §1.2, which comes from

the generahzed congruent number problem. What is j in the classical case /=17
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Prove that there is no other value of AcQ for which the corresponding j is an i

integer. It is known that an elliptic curve with nonintegral j cannot have complex
multiplication.

§3. Modular forms for congruence subgroups

Lety = (¢ Y el = SL,(Z), let f(z) be a function on H = HU Q U {0} with
values in C U {00}, and let k € Z. We introduce the notation f|[ 7], to denote
the function whose value at z is (cz.-+ d) *f((az + b)/(cz + d)). We denote
the value of f|[7]; at z by f(2)|[v1x:

b
f(Z)I[V]kar(CZ +d)¥f(yz) for y= (Z d)er'

More generally, let GL;(Q) denote the subgroup of GL,(Q) consisting

of matrices with positive determinant. Then we define

’ b
SO|[7)k 5 (et ez + d)M(yz) for y= C d) eGL;(Q).
(3.2

For example, if y = (2 9) is a scalar matrix, we have f l[y],, = funlessa <0
and k is odd, in which case f'|[], = —f.

Care should be taken with this notation. For example, by definition.

fQ2)|[7), means f|[y]. evaluated at 2z, ie., (2cz+ d)™*f((2az + b)/
(2¢z + d)). This is not the same as g(z)|[y]; for g the function defined by
9(z) = f(2z); namely, g(2)|[v]i = (cz + d)™*g(y2) = (cz + d)™*f(2(az + b)/
(cz + d)). v :

With this notation, any modular function of weight k& for I' satisfies
SfI[y) = f for all yeI'. Some functions are invariant under [y], for other
yeGL; (Q). For example, recall the theta-function defined in §4 of Chapter
II: 6(t) = Z,.,¢"™ for Ret > 0. We saw that it satisfies the functional
equation 6(z) = t"260(1/r) (where / is the branch such that /T ="1). We
define a function of ze H, also called the theta-function, by setting ©(z) =
0(—2iz), i.e.,

O@)= Y ™ =Y g for zeH,

neZ nelZ

2miz

q=e€
Substituting —2iz for ¢ in the functional equation for 6, we have
O(2) = (22/i) P O(—1/42).
Squaring both sides and using the notation (3.2), we can write
0 -1
0?|[y]; = —i®% for y= <4 : O)GGLZ(Q).

i

Gl

33 .
G4

3s)
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_Notice that _— .
U Fvade= Slnollvde for 7y, v, €GL; (@) X))
To see this, write (det )¥?(cz + d)™ in the form (dyz/dz)*?, and use the
chain rule. . - -

We are now ready to define modular functions, modular forms, and cusp-
forms for a congruence subgroup I" < I. Let gy denote e2%#",

Definition. Let f(z) be a meromorphic function on H, and let I" < T be a
congruence subgroup of level N, ie.,, I'" © I'(V). Let keZ. We call f(z) a
modular function of weight k for I'" if

[yl =f forall yeI”,
and if, for any y,eT" = SL,(2),
f(z)f[yo]k has the form Za,,q,':, with a,=0 for n<<O. (3;8)

- We call such an f{z) a modular form of weight k for I if it is holomorphic
on H and if for all yyeI" we have a, =0 for all n <0 in (3.8). We call a
modular form a cusp-form if in addition a, = 0 in (3.8) for all y,eT".

Thus, as in the case I =T treated in §2, a modular “function” is allowed
to have poles of finite order, a “form” must be holomorphic at all points
including the cusps, and a “cusp-form” must vanish at a// cusps. This
interpretation of (3.8) as a condition “at the cusps” will be explained below.

The first condition (3.7) is the obvious analog of the first condition (2.1)
for modular functions for I'. The second condition (3.8) is called “meromor-
phicity” at the cusps (“holomorphicity” if a, =0 for n <0, “vanishing”
if @, = 0 for n < 0). We now explain this further.

Let g = f|[yo)x for some fixed y,e GL}(Q). If f is invariant under I",
ie., if f|[v]x = f for yeI", then it follows from (3.6) that g is invariant
under the group y5'I"y,: for all y5'yy, €75y, we have gllvo o ki =
(f1[70)010%0 7v0de = £ |[70]e = (f |[710|[%oJk =/ |[7oJk = 9. In particular,
if %o€l’ and I'" > I'(N), then y;'I"y, also contains I'(N) (since I'(N) is
‘normal in T), and 5o g = f|[y,]; is invariant under I'(N). Because TV =
(s Y)eT(N), we have g(z + N) = g(z), and so g = f|[7o]x has a Fourier
- series expansion in powers of gy = e*™#". The content of condition (3.8)
is that this expansion has only finitely many negative powers of gy (no
negative powers for holomorphicity, only positive powers for vanishing).

It may bappen that g = f|[y,], is invariant under a smaller translation
T*, where h|N, i.e., g(z + k) = g(z). In that case the only powers of gy that
appear in the Fourier series are powers of g, = g¥". For example, if y, = /
and I = I'y(N), then TeI” and g(z + 1) = g(z). In that case g = f has an
-expansion in powers of g = g, = g&. On the other hand, for I'" = [o(N)
and y, = S = (] 7§) we have y;'I"y, = I'°(N) = {¢ ) mod N}; thus, if
Jfis a modular function for I',(V), in general we only have gz + h)=g(z)
for h = N, where g = f|[S],. , ‘ '

3.
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Any cusp se QU {co} can be written in the form s = a0 for some a = -

@ ByeT (by writing s = —dJc in lowest terms and finding any solution a
and b to the equation ad — bc = 1). If we set y, = o™ in (3.8), the behavior
of g = f|[a""]; near oo (i.e., ncar ¢y = 0) is a reflection of the behavior

of fnear s, since g(z) = (—cz + u) *f((dz — b)/(—cz + a)).

Proposition 16. The condition (3.8) depends only on the T"-equivalence class
of s = y,00. More precisely, if y, oo = 7'y, 0 for some y’ e T, then the smallest
power of qy that occurs in the Fourier expansion of f|[v,1, and f|[y,]; is
the same. Moreover, if this smallest power is the constant term, then the

value at gy =0 is the same for f|[y, ] and f|[y,]x if k is even; if k is odd,

this value may at most change sign.

PrOOF. If 9,00 = y'y,00, then the element y;y'y,eI” keeps oo fixed, in
which case it must be of the form =+ 7. (Note that (* 5)co = oo is equivalent
to ¢ = 0, and the elements of T with ¢ = 0 are + T') Thus, we have y;'y’y, =
+ T/, sothaty, = +y" 'y, T'. Let g(2) = f(2)| [y, ]k = Za,qx. Since f|[ - T];
= (=1, and f|[y"'], =f (because y’eI”), it follows that f|[7;], =
(+ I)k(f![yl]k)l[TJ]k =(t l)"gI[T’]k. Thus,

@)= (19 +)) = (£ 1) Y a,e’ " Ngj,.

In other words, the gy-expansion coefficients corresponding to y, differ
from those corresponding to y, only by roots of unity. The proposition now
follows immediately. o

If f is a meromorphic function on H which is invariant under [y'], for

y' eI, and if se Q U {00} with 5 = y,00, yo€T, then we say that f is mero-
morphic (is holomorphic, vanishes) at the cusp s if /'|[7,], has a Fourier
expansion with only finitely many negative terms (respectively, with no

negative terms, with no negative terms or constant term). Proposition 16

says that meromorphicity, holomorphicity, vanishing at s does not depend

on the choice of y, for which s = y,00, and in fact only depends on the .

I'"-equivalence class of s. .
Thus, the condition (3.8) is really a set of conditions, one corresponding
to each cusp s of I'". (Recall that “cusp of I'"” means “I"-equivalence class
of cusps”.) For example, if I'" = I'y(p) for p a prime, we saw (Problem 18
in §IIL1) that there are only two cusps co, 0. Thus, the condition (3.8)
amounts to the two conditions .- bl '

f(@) =Y aq",
' ) z"‘f(—l/z)=2b,,q;,

g=e*" with a,=0 for n<<0; (39

q, =™ with b,=0 for n<<0.

J(0) for a, and f(0) fox h,. Note that £(0) is not the limit of f(z) asz—0.

- (3.10)

We call the Fourier series in (3.9) the g-expansion of fat oo, and we call -
(3.10) the g,-expansion of f at the cusp 0. If f is holomorphic, we write
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. We let M, (I"") and S,(T") denote the set of modular forms of weight &
for I'" and the set of cusp-forms of weight & for I, respectively. As in the
case I'" =T  treated in the last section, it is easy to see that these are C-vector

- spaces, that fe M;‘](l" ') and ge M, (I"") implies Jge M, . (I'), and that the
vector space of weight zero modular functions for I'” is a field. Also note
that if —7€I", then there are no nonzero modular functions for I'" of odd
weight k, since then f|[— 1], = —f. '

It is immediate from the definition that if I'” = I'’, then a modular func-

 tion/modular form/cusp-form for I'"" is also a modular function/modular
form/cusp-form for I'”.

There are more interesting ways to get modular forms for a congruence
subgroup I'” from forms for another subgroup I'. For example, if f(z) =
Za,q"e M,(I'), then f(Nz) = Za,q™ and 1) = Za,x(n)q" (the “twist” of

_ /by a Dirichlet character y) turn out to be modular forms, although for a
smaller congruence subgroup than I'. The next proposition gives two im-
portant classes of constructions of this type. In part (b) of the proposition we
use the notation M, (N, ) with y a Dirichlet character mod N to denote the
subspace of M, (', (N)) (see (1.5)) consisting of f(z) for which f v = x(d) f
whenever y = (! §)eTl,(V). In particular, for y the trivial character
Mk(Ns Xtriv) = Mk(FO(N))

Proposition 17. (a) Let T” be a congruence subgroup of T, let aeGL3(Q),
and set IT” = a™'T"anT. Then T is a congruence subgroup of T, and the
map fi f|[a], takes M(T") 10 M(I'"), and takes S, (I to S(T'"). In par-
ticular, if fe M(T') and g(z) = f(Nz), then ge M(Ty(N)) and one has g(0) =
S(), g(0) = N7*/(0). ,

(b) Let x-and y, be Dirichlet characters modulo M and N, respectively.
I f@=E0a,q"eMM,y) and [ () =E%0a,10,(0", then f,
M(MN?, yy}). If fis a cusp form, then so is Jy,- In particular, if fe M(I'y(M))
and y, is quadratic (i.e., takes valucs + 1), then Sy, € Mi(To(MN?)).

PROOF (a) We need two lemmas.

Lemma 1. Let ae GL}(Q) have integer entries, and let D =deta. If I >
(N, then a™'T’a > T(ND). '

PROOF OF LEMMA 1. Suppose yeI'(VD), ie, y=1-+ NDB for some

X 2-matrix § with integer entries and det y = 1. We must show that
7€' e, i, that " saya™ = a(1 + NDB)a~! = 1 + NDofa™!. But o =
D" is an integer matrix. Since det ayo ™! = det y=1landoaye ™' =1 + Nafo’,

ave aya~'eI'(N) < I, as claimed. _ o

Lemma 2. Suppose that f(z) has the property (3.8) for all y, ef; ie., f(2)| [0
= j‘,;,,o a,qy (where ny = 0 if f(2) is holomorphic a1 the cusps, ny = 1 if (z)
vanishes at the cusps) Then f(z) has the same property for all aeGL;(Q);
ie,f@)|[a) = 22, bn ‘1:’ d( for some positive integers a and D which depend
on ..
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ProOF OF LEMMA 2. Since « can be multiplied by a positive scalar without 12

affecting [a],, without loss of generality we may suppose that o has integer = 3

entries. It is an easy exercise in linear algebra to show that thereexists y,eI' =
SL,(Z) such that y5'o = (3 %), where a and d are positive integers. Then

@[] =\(f(?)l[YO]k)’ [(g z>:| .

= (ad)** 4k i a, eZnin((uz+byd)/N

n=n,
3 2nibndN k f
= (a/d)¥? Y a,e?twiNgir, i
n="o 1
O
= Z bhql':ld’

n=an0 |
where 1
5 =40 ifajfn;
== " . L‘
" |(a/d)rermintiedNg, , if aln. , o

This proves the lemma. o

We now turn to the proof of the proposition. The first assertion in part ()
follows from Lemma 1. Now suppose that fe M,(I""). Then for o *y’'ael”
(where y'eI™) we have (f|[a]o|[e™ty e = (f|[y'I|[e]k =f][oc]k, in
addition, for y, €I" we have (f|[a])|[70)x = f|[%vo )i and the condition (3.8) =
holds for f|[a],, by Lemma 2. '

Thus, f|[«]; € M, (I'"). If f vanishes at all of the cusps, then so does f|[«]s,
by Lemma 2. To obtain the last assertion in Proposition 17(a), we write
a=@ 9, g=N"%f|[«], and note that o™ 'TanT = Ty(N). The values
at the two cusps oo and 0 come from the above formula for b, with n =0
and a replaced by (¥ 9) at the cusp oo and by (§ 9)S = S(} J) at the cusp 0.
This completes the proof of Proposition 17(a).

(b) Let & = ™™ and let g = 20 1, (/)& be the Gauss sum. Then

-1
1@ = }2 () g (ﬁ 5 g(lw)v) d

i_ V)X1(IV)€IV z a, eann(z~v/N)

n=0

Zl‘b 2[*‘

Z (v)f(z —vIN).

Now let y= (¢ el (MN?). We want to examine fx (yz). Let » denote
@ ~Y™). Then: for each vand v, 0 < v, v < N, we compute
1 _[a—cv/N b+ (vVa—vd)|N—cw|N?
WP . ¢ : ‘ ‘ .d'!‘__CV//N ’ e
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If v/ is chosen for each v so that via = vd mod N, (such a choice is unique,-
because a and d are prime to N), then we have y,yy; lel 0(M ), and so

j;(,(yz) z Xl(")f('}’va Py Z)
~£T O en s+ d+ INYFG,2

N=-1
= y(d)(cz + d)"% Zo 7Sz — V/IN). -
But 7,0) = 7107 @)/11 @) = 1, @7, (v). Thus,
£ = 3@ (ez + )5 2 LS — VIN) = 13 d)(cz + d),, @),

and so f, has the right transformation formula to be in M, (MN~, 2, ).
The cusp conditions are verified by the same method as in the proof of part

_ (a) of the proposition. Namely, forall yeT" Sy, (2)|[y]x is a linear combination

of 1(2)|[% 7]k and so the cusp conditions follow from Lemma 2. o

The next proposition generalizes Proposition 9(a) in the last section.
Like Proposition 9(a), it is useful in proving equallty of two modular forms
from information about their zeros.

Proposmon 18. M, (I"") = C for any congruence subgroup I = T'. That is,
there -are no non-constant modular forms of weight zero.

PROOF. Let fe MO(F’) and let @ = f(z,) for some fixed zoe H. Let I' = { ) o, T
be a disjoint union of cosets, and consider g = I1(f|[2; '], — a), ie.,

9@ =11(f(0j'2) —a). (3.11)

Then g(2) is holomorphlc on H, and it satisfies (3.8), because f does. More-
over, given y 'el-we have g|[y™"]o = (f|[(y)™']o — a@). But since
S I[a 1o does not change if « is replaced by another element ay’eal”, and
sinice left multlphcatron by y permutes the cosets o;I”, it follows that
{f][(y ;)" 1o} is merely a rearrangement of { f'|[o;*],}. Thus, gy Jo=y9
and we conclude that g e My(I'). By Proposition 9(a), g is a constant. Since
the term in (3.11) correspondmg to the coset IT” is f(z) — a, it follows that
for z.= z, the product (3.11) includes a zero factor. Thus, g = 0. Then one

“of the factors in (3.11) must be the zero function (since the meromorphic

functions on H form a field). That is, f(a"z) —a =0 for some j and for.
all zeH Replacing z by «;z, we have: f(z) = a for all zeH, asclaimed. O

. As an example of the applications of Propositjon 18, we show that for
any: posmve mtegers N and k (with k even) such that k(N + l) 24, a
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" cusp-form of weight k for ['((N) must be a multiple of (n(z)n(Nz))*. Here
1(z) = 2411, (1 — q"), g = ¢*™; as in §2. g

Proposition 19. Let f(z) ‘be a nonzero element of S,(Io(N)), where N =2,
3,5, 0r 11 and k =8, 6, 4, or 2, respectively, so that k(N + 1) = 24. Then

f(2) is a constant multiple of 9(2) H@nIN2)-. |
Proor. By Proposition 17(a), g(z)"*' = A(z)A(Nz) is an element of

S,4(To(N)). In addition, g(z)"** is nonzero on H, since A(z) # 0 on H. -

At infinity, g(z)"** = ¢" " I (1 — ¢")**(1 — ¢")** hasa zero of order N + 1
in its g-expansion. At the cusp zero, we write : .

9@ |[S )24 = 2 2*A(= 1/2)A(— NJ2) = 27242'2A (@) (z/N) *A(z/N)
= NI T - g - g, |
which has a zero of order N + 1 in its gy-expansion. On the other hand,
since feS,(To(N)), its g-expansion at oo is divisible by ¢, and the gy-

expansion of f|[S]; is divisible by g5. Now (f/g N+l as a ratio of two
elements of S,,(Io(N)), is a modular function of weight zero for To(N).

Since g(z) # 0 on H, this ratio is holomorphic on H. Moreover, the g-

expansion of fV+! is divisible at least by ¢"**, and at zero the gn-expansion
is divisible at least by gy*!. Hence, the ¢"*' in ¢g"*' and the gN*ttin
gV*1|[S],, are canceled, and the ratio is holomorphic at the cusps, ie.,

(flg)¥* e Mo(To(N)). By Proposition 18, (f/g)"** is a constant, and hence

flg is also a constant. This completes the proof. o

Notice that we did not actually prove that g(z) = n(2)n(N2))* is in
S, (Fo(N)), unless we can be assured that there exists a nonzero element
fe8,(T4(N)). The same proof, for example, would tell us that any nonzero
feS3(T(7)) must be a constant multiple of (n(2)n(72))?; but S3(Te(7)) =0,
since 3 is odd and —Ie (7). However, for the values of N and & in Pro-

position 19 it can be shown that dim S (I'4(NV)) = 1 (see Theorem 2.24 and

Proposition 1.43 in Chapter 2 of [Shimura 1971]). Thus, Proposition 19

is not vacuous. For N =2, k = 8 we can see this directly, since we know

that 7 and ST2S = ("} _9) generate T'o(2) (see Problem 13(b) of §IIL.1).
Proposition 20. (1(2)7(22)) € Sg(Fo(2)). '
Proor. Clearly, g(z) = (n(z)n(Zz))s‘ is holor‘nofphi‘c‘o.r.l H. Its q;expanSi

’ at oo is: (eggi:/24+2ni2z/24)8 n(l - qn)B(l . qz'n)s - qn(l o qn)S(l _ an) i
Using the relation #(—1/z) = JZ[in(z), we easily see that g(z) vanishes at

~ the cusp 0 as well. It remains.to show invariance under [CY -9]s. Set

a=(3 ~5). Then ("} -9) = a7, and
9(2)|[a]s = 2°Q2) 7 (1(=1/22)m(=1/2)* = 22)~*(22]in2)\/2[in(@))®
- =M@N2))° =gG). ' o

‘under a7, as desired.
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Since g|[T1s = g, and [$1], is always trivial, it follows that g is invariant
. oL . 0

Eiséhstein series. Let N be a positive integer. Let @ = (a,, a,) be a pair of

. integers modulo N. We shall either consider the g; as elements of Z/NZ or
 as integers in the range 0 < a; < N. Let k be an integer at least 3. Letm=

(m,, m,) denote a pair of integers. We shall think of a and m as row vectors.
For ze H we define the “level N Eisenstein series’” (corresponding to g and
k) as follows: \

a 1 '
G2(z) =G ) = — 3.12
k( ) k (z)def mezlz (mlz + mz)k ( )
m=amod N

If a = (0, 0), we delete the pair m = (0, 0) in the sum (3.12). But there is
no point in considering the case when g = 0, since, setting m, = Nm, my =~
Nn, we have .
Gi)=N"* Y (mz+n)*=N*G(2),
. mneZ
which is the Eisenstein series for I’ which we already studied in §2. In what
follows we shall suppose that a # (0, 0). .
Notice that we are allowing k > 3 to be either odd or even.

amod N

Pro_positidn 21. GE™ e M(T(N)), and G{®*2™ N e M (T (N)).

Proor. First, the series (3.12) is absolutely and uniformly éonvcrgent for
z in any compact subset of H, because k = 3 (see, for example, Problem
3 in §1.5). Hence Gy(z) is holomorphic in H. Now let y = (¢ §)eT. Then

a .1
G|yl =(cz+a)™ :
e (@[] mﬂ%‘w (m az+b + m2>k

Yez+d

= 3 1

mzamodn (M@ +myc)z + (m b+ myd))*

Let m = (mya+myc,mb+myd)=(m, m)(¢ ) =my. Note that
modglo N we have m =ay. Let ¢' = ay (ret‘iuc.ed modulo N). Then the
maps m—>m’ = my, and m’ —m = m'y”" give a one-to-one correspondence

 between pairs meZ* with m=amod N and pairs m €Z? with m=
@’ mod N. This means that the last sum above is equal to Z,; =g moa n(712 +

m'z)"‘ = GZ(2). Thus,
) G,;qule['y]k — G].(&_vmo_dN. for yer' . (.13)

V If;_"’y]e I'(N), then bay definition y = I'mod N, and so @y = a mod N. Thus,
(3.13) shows that G, is invariant under [y], for.ye '(¥). Similarly, if y€

"Ty(N) and a, = 0, we have (0, )y = (0, a,) mod N, and so G2 is
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invariant under [y], for yel“1 (N). It remains-to cho%ck the holomorphxcxty -
condition at the cusps. But [}, permutes the GE™" for poeT, by (3.13).

Hence it suffices to show that each G is finite at infinity. But

: 0 ifa, #0;
s ma k. : 1 >
21_1.1,130 Gi(2) = ME_,,“,;,,,,,,FO'"Z Y n* ifa;=0.

n=a2 mod N

The sum %n~* over n = a, mod N converges because k > 3. It is essentxally

a “partial” zeta-function. More precisely,
GO (0) = {*2(k) + (— 1) ™%(k), where (*(k)gz X nt

nx1
n=amod N

(3.14)

This completes the proof of the proposition. o

As a special case of (3.13), if we set y = —I we have
Gt = (—D'G,. (3.15

This can also be seen directly from the definition (3.12). Thus, for example,
G¢ = 0if k is odd and 2g = 0 mod N. ’

It is now not hard to construct modular forms for any congruence sub-
group I'', I' o I o T'(N), out of the Eisenstein series Gy 2modN “For fixed a,
the elements yeI” permute the Eisenstein series G; , where @’ ranges over
the orbit of ¢ under the action of I', i.e.,

aded” = {aylyeI}.

Let r = #(aI'’) be the number of elements in the orbit. If F(X,, ..., X)) is"

any homogeneous symmetric polynomial in r variables with total degree d,
and we set X; = G,/ (where gy; runs through the orbit aI), then F(G “",

, G is easnly seen to be a modular form of weight kd for I'". For
example, taking Ftobe X, + .-+ + X, or X, ... X,, we have

GO 2y M(T oV
a,e(ZINZ*

GLO™N(2) My Ta().

a, e (ZINZ)*

(3.16)

We now compute the gy-expansion for G;. We shall be especially in-
terested in the cases when a; = 0 or a, = 0. Recall the formula used in
deriving the g-expansion for G, in the last section (see the proof of Pro-
position 6):

. 1 . :
—— = (= D12 (K jkle2miz  for k=2, eH.
P o S G () “}:11 :

3.17) _

Let
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C“:___(——l)k-l2kC(k), bE = b2 {0 ‘ o ifa; #0;
Tk det N,,‘Bk s [} kder Caz(k) +(~ l)kc-az(k) ifa, =0.
(3.18)
Then
 G@=b+ Y% Y mztmyt

m;=a, mod N,m,#0 my=a, med N

-k
=bE+N* Y z(i”—*—z-]—\,fﬂm)

my=a, modN,m,>0 neZ

+NH-F Y ) (’”—-—*'Z; = +n)_k

m;=~a, modN,m,>0 neZ

o«
= bf', + Ck( Z 2 1 gRiimztapiN)

my=a; mod N j=1
m;>0

+(_l)k Z z ]k 1 21"](("!‘2 az)/N))

my=—a;mod N j=1
m,>0
In these computations we had to split up the sum into two parts, with m,
replaced by —m, for m; negative, because in applying (3.17) with z replaced
by (m,z + a,)/N we need (m,z + a,)/{Ne H, i.e., m; > 0. Now let

6def 21ulN gy = eZniz/N_ (319)
Then
a a 3
Gi(2) =bo + ck< 2 ‘[. I aghm
m;=a; modN j=1
o (3.20)
+ (_1)k z Z jk lé-]aquml)
m,=—a;modN j=1
my>0

To find the coefficient b; of ¢J, it remains to gather together terms with
jm; = n. We shall only do this in the cases when ¢, =0 and a, = 0. As a
result, we have the following proposition.

Proposition 22. Let ¢, b 1, &, gy be asin (3.18)~(3. 19). For k > 3let G2 ()

amod

be the Eisenstein. series (3.12). Then the qy-expansion of Gy

A Gi(e) = Z mkd i G2y

can be computed from (3. 20) Ifa=(a,,0), thenforn>1

boi = Ck(,« P L G ) I ) jH) . (3.22)
jln )
j= a,‘mod N njj= -{;llnmod N
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Ifa=(0,ay,), then for n > 1
bre=0 if Nfn; ank-csz* '(c"z+( 1)*5-1%) (3.23)

il

Thus, for a = (0, az)

Gk(o.az)(,) b(O 1a2) 4 C Z (ij l({]az + (-—l)ké Ja;)) ‘ q — g2z’
" - (3.24)

Proposition 23. If 22 = (0, 0) mod N and k is odd, then G mmz“’ = 0. Other-
wise, G{®%2 is nonzero at oo, and G{® has a zero of order min(a;, N — ay),

where we are taking a, in the range 0 < a, < N. That is, for a = (ay, 0) the '+

Jfirst power of gy which occurs in (3.21) with nonzero coefficient is gy or gy

Prookr. The first assertion we already saw as a result of (3.15). We now check
that (3.14) is nonzero (unless N |2a, and k is odd). If k is even, then we have
a sum of positive terms. If k i is odd and we take 0 < a2 <N, then the sum
in (3.14) isequal to

i 1 _ 1 >0 ifa, < Nj2

2o \(@, + nNY* (N —a, +nN) ) <0 ifa,> Nj2.
Finally, we look for the first possible value of » in (3.22) for which either
sum in (3.22) is nonzero. That value is » = min(a,, N — a,), where we have

‘the possible value j = 1 in one of the two sums. Thus, b("' 0= T forn="

" min(a,, N — a;). This completes the proof. a]
As an apphcatlon we show that a certain product of G; med¥ can be

expressed in terms of the #-function. We shall use this result in the next

section, where we give Hecke’s proof of the transformation formula for O(2).
- Recall the Welerstrass g-function and its derivatives from Chapter I

60(2;0)1,602) + Z ( ! N2 L 2)5 K

maez \(Z + mw; + nw,) (mw; + nw,)

Pz, 0, w)=—2 Y (z+mw +nwy)"?;

mmneZ

P Iz 0y, w) = (=D - D! Y @+ mo, + nwz)"‘ k>3

mneZ

If a # (0, 0), We can express G2 (2) in terms of go”‘ 2 as follows:

-k
amodN() N_k Z (a,z+a2+mz+n)
mnelZ N )

~1
N“((k - e 2)(‘1121\;r 2is 1).’

This is the value of o~ for the lattice L. = {mz + n} at a poit;fy of order

Proposntlon 24. If 2a £ 0.mod N, then Gy

(325
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N modulo the lattice, namely (a,z + a,)/N. Thus, the Eisenstein series for
(V) are related to the values of the derivatives of g at division points.

- Now suppose that k& = 3. By (3.25), G5(z) can vanish only if p'((a,z +
a,)/N;z,1) = 0. But g’ vanishes only at half-lattice points (see the end of

- §1.4).1f 2a = (0, 0) mod N, i.e., if 2(a,z + a,)/N is a point in L, then Gy is

the zero function, by Proposition 23. Otherwise, p'((¢;z + a,)/N;z, 1) is
nonzero We have proved

amodN(2) # 0 for ze H.
Let p be an odd prime. We now define

p—1
hz) = [] G§**2mr(z). 3.26)
a,=1
Proposition 25. h(z)e M., (T'o(p)), its only zero is a ( p?—1)/4 ~ fold
zeroat 0,anditis a constant multiple of (nP(2)/n{ pz))°.

Proor. The first part is the special case of (3.16) when N =p, k = 3. h(z)
is nonzero on H by Proposition 24, and at infinity by Proposmon 23. To
find its order of zero at 0, we examine the q,,-expansnon of

H[STsp-n= H1 G{Pedmear|[S]y = Hl Gy OImedp
a,= ay=

by (3.135. According to Proposition 23, the first power of g, which appears
in G{*»9™odP i gint@2:p=42) Thus, the order of zero of A(z) at 0 is

p=-1 R (p—1)2 N
Z min(a,, p —a,) =2 Z a, =(p* — /4.
. 42=1 a=1

Now set A1(z) = (nP(2)/n(pz))°. Then h(z)* = A(z)?/A(pz) is holomorphic

- and nonzero on H, since A(z) is holomorphic and nonzero on H. Because
M2)€S8,(T) = 81,(To(p)) and A(pz)€ S, ,(To(p)) by Proposition 17(a), it

follows that /(z)* is a modular function of weight 12(p — 1) for To(p). Its

i g-expansion at infinity is

g" [1A = ¢)**[g" [Tt — g™)** = [1(A ~ ¢"Y’/(1 ~ g""))**;

. hence h(z)* is holomorphic and nonzero at co. At the cusp 0 we have

h(Z) |08 Ti2(p-1y = 271277 DA(= 12V IA(~pl2)
__ = 27 20D 2AR) (2 ]p) *Mz/p))
= p"*A@?/AGlp) = p2q ] (1 a**1q, [1(1 - g;)*,

whlch has leading term p*2¢2°~!. Thus, both h* and h* are elements of
M; 2(p_,,(l“o( p)) with no zero except for a (p* — 1)-ordér zero at 0. Hence

- their ratio is'a: constant’ by Proposition 18. But (hjh)* = const 1mplxes that’

/h = const Thls concludes the proof of Proposmon 25. N n]

RN
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Notice that, by (3.15), we have some duphcatlon in the definition (3. 26)

of h(z). That is, if we define
(p=1)2

f(z)__ H G(O az)modp(z) i (3.27)

az-l
we find, by (3.15), that
h(z) = (— 1) D2f(z)>, Y )

Proposition 25 then tells us that the square of the ratio of /(z) to (n?(2)/n( pz))?
is a constant. Hence, the ratio of those two functions must itself be a con-

stant, and we have proved

Proposition 26. The function f(z) defined in (3.27) is a constant.multiple of

n*@2)/n(p2))°.

Because each of the G{**? in (3.27) is in M;(T';(p)) by Proposition 21, it
follows that f€ M3 ,—1,,(I';(p)). However, unlike A(z), f(2) is not, strictly
speaking, a modular form for the larger group I'y(p).

Proposition 27. Let f(z) be defined by (3.27), and let y = (¢ 5)eTo(p). Then

S sp-1y2 = ©)f, where () is the Legendre symbol (which is + 1, depending ‘ ’

on whether or not d is a square modulo p).

ProoF. Since (0, a,)(¢ 4) = (0, da,) mod p, it follows by (3.13) that

(p—1)2

S )s-na = [T GEo2mer,

a,=1
But by (3.15), the terms in this product are a rearrangement of (3.27), except
that a minus sign is introduced every time the least positive residue of da,
modulo p falls in the range (p + 1)/2, (p + 3)/2, ..., p — 1. Let n; be the
number of times this occurs. Thus, f|[v]3,-1y2 = (—1)"f. According to
Gauss’s lemma, which is an easily proved fact from elementary number

theory (see, for example, p. 74 of [Hardy and Wright 1960]), we have (— l)"d’

= (%), This proves the proposition. o

The transformation formula in Proposition 27 is an example of a general
relationship between modular forms for I'j(¥) and “twisted-modular”

forms for I'y(N), called “modular forms with character”. We now discuss -

this relationship. We start with some very general observations.

Suppose that I'” is a subgroup of I'", and f(z) is a modular form of weight
k for the smaller group I'” but not necessarily for the bigger one. Then for
yeI” we can at least say that f |[y™*], only depends on the coset of y modulo
I'”. That is, if y” €T, then f|[ (") 'L =/ |y -

Now suppose that the subgroup I'” is normal in I'". To every coset yI'” 3

associate the linear map fi—f|[y™'], which takes an element in M,(I'") to
M, (I'") by Proposition 17 (with I'” and y™* in place of I'” and «; note that
Tyt AT =TI, since yeI'" and T'” is normal in I'""). This gives us a group
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homomorphlsm p from I’/I'” to the linear automorphxsms of the vector-
space M,‘(l"”) because for y,, y,€T”

Py S|l e = (flDvs ‘]k)l[v{ l]k —p(vl)(p()»z)f ).

In other words, we “have what is called a “representation” of the group
I’/T” in the vector space M (I"").

Ify: F’/F” — C*is a character of the quotient group, then deﬁne M, %)
to be the subspace of M, (") consisting of modular forms on which the
representation p acts by scalar multiplication by g, i.e.,

M, )z {SeM@")|p()f = 1()f forall yeT"}.

If I'/T” happens to be abelian, then according to a basic fact about repre-
sentations of finite abelian groups, M, (I'") decomposes into a direct sum
of M, (I"", x) over the various characters y of I'"//T"”. We shall soon recall the
simple proof of this fact in the special case that will interest us. .
We apply these observations to the case I'” = I'y(N), I'" = I['((XN). Since

. T'j(N) is the kernel of the surjective homomorphism from [o(N) to (Z/N Z)*

that takes (¢ %) to d, it follows that I';(N) is a normal subgroup of T'y(V)

. with abelian quotient group isomorphic to (Z/N Z)* (see Problems 1-2 of

§IIL.1). Let x be any Dirichlet character modulo N, i.e., any character of
(Z/NZ)*. In this context the subspace M, (I'y(N), x) = M (T, (N)) is usual]y
abbreviated M, (N, y). That is,
a b
Mk(N V& {fth(Fx(N))lf 7] = 2d)f fory ~( d)él" o(N)}-
(3.29)
In particular, if y = 1 is the trivial character, then M (N, 1) = M (To(N)). ,

Proposmon 28. M (I',(N)) = @M (N, x), where the sum is over all Dirichlet
characters modulo N,

PrOOF. As ‘mentioned before, this proposition is actually a special case
- of the basic fact from representation theory that any representation of a
finite abelian group decomposes into a direct sum: of characters. However,
we shall give an explicit proof-anyway.

First, any function fthat satisfies /'|[7], = y(d)ffor two distinct characters

x must clearly be zero; hence, it suffices to show that any fe M, (I';(N)) can
i be written as a sum of functions f, € M (N, ¥). Let

I
]; ¢(N) de(Zz/;VZ)* X(d)f|[)’d]k,

\where 74 s any element of I"O(N) with lower-right entry congruent to d
mod N: We check that for y = (¢ 2)eT'y(N)

.f;z|[7]k xf I [Yaa Jis

¢(N ) de(Z%VZ)

: \whxch 1f we replace dd’ by d as the variable of summation, is easily seen
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to equal (@) j;, ie., f,e My(N, ). Fmally, we sum the fl over all characters
« modulo N, reverse the order of summation over d and y, and obtain:

de(Z/NZ

which is equal to f, because the inner sum is 1 if d =1 and 0 otherwise.
Thus, f can be written as a sum of functions in M,(, ), as claimed. o

Notice that M (N, x) = 0 if y has a different parity from k,ie,if y(—1) #
(—1)*. This follows by taking y = —1I in the definition (3. 29) and recalling

that f|[ 1] = (= DY.

For example, as an immediate corollary of Proposmon 28 and the pre- .

ceding remark, we have

Proposition 29.
M4, 1), keven;

Mk(4s X)) k Odd,

where 1 denotes the trivial character and y the unique nontrivial character
modulo 4.

Mk(rl (4)) = {

Notice that the relationship in (3.29) is multiplicative in y; that is, if it
holds for y, and y,, then it holds for their product. Thus, as in the case of
modular forms without character, to show that f(2) is in M, (N, ) it suffices
to check the transformation rule on a set of elements that generate I',(NV).

As another example, we look at ©2(2) = (Z,.z¢")? whose n-th g-
expansion coefficient is the number of ways n can be written as a sum of two
squares. ‘ : :

Proposition 30. ©@%e M, (T'; (4)) = M, (4, y), where y(d) = (— 1)~

ProoF. It suffices to verify the transformation rule for — I, T, and ST*S = - ;
(7% _9), which generate I'y(4) (see Problem 13 of §III.1). This is immediate

for T, since ®* has period 1. Next, the relation f|[ 1]y = —f=x(— l)f
holds for any £, by definition. So it remains to treat the case ST 4S Let

(0 =1 _ 1

a b\ d  =—c/N
. and © oo i
& aN<c d)aN ( Nb e ) )
We write ST*S = —o, Tozt = Lo, Ta,,, and use the relatxonshlp ®2|[a4]1

—i®? (sée (3.5)) to obtain
Q%[ST*S], = G)z[[:<zt4Tac4]1 = —1@2[[Ta4]1 = —z®2|[ac4]1 = —@)z '

(Recall that the scalar matrix 11 acts trivially on all functions, i. e, [1 /4]1 -‘ :

identity. )

(3.30)
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To finish the prodf of the propositiOn, we must show the cusp condition,
i.e., that ©2|[y,], is finite at infinity for all y, e I'. But the square of ©* ][yo]l
is @4{[))0]2, and it will be shown in Problem 11 below that @ M,(T',(4));in

* particular, this means that ©*|[y,],, and hence’ also 0?2 I[yo] 1, is finite at
‘;mfimty This completes the proof o

The spaces M,(N, x) include many of the most important examples of
modular forms, and will be our basic object of study in several of the sections
that follow. We also introduce the notation S, (N, y) to denote the subspace
of cusp forms: Si(N, y) = M, (N, ) S, (T'; (V).

det
The Mellin transform of a modular- form. Suppose that f(z) = Z a,qy (Where

_'gy=€*") is 2 modular form of weight k for a congruence subgroup I’

of level N. Further suppose that |a,| = O(»°) for some constant ceR, i.e.,
that a,/n° is bounded as n — co. It is not hard to see that the gy-expansion
coefficients for the Eisenstein series G2™" have this property with ¢ =
k — 1+ ¢ for any ¢ > 0. For example, in the case I'"=T, the coefficients
are a constant multiple of g,_;(n), and it is not hard to show that a,_, (n)/
n*=1%¢ 5 0 as n — ov. We shall later show that, if f'is a cusp form, we can
take ¢ = k/2 + ¢. 1t has been shown (as a consequence of Deligne’s proof
of the Weil conjectures) that one can actually do better, and take ¢ =
tk— 12 +e. ' ‘

In Chapter II we saw that the Mellin transform of 6(f) = Te~™" and
certain generalizations are useful in investigating some important Dirichlet
series, such as the Riemann zeta-function, Dirichlet L-functions, and the
Hasse-Weil L-function of the elliptic curves E,: y*> = x> — n°x. We now
look at the Mellin transform for modular forms.

Because we use a variable z in the upper half-plane rather than 7 (e.g.,
't = —2iz), we define the Mellin transform by integrating along the positive
imaginary axis rather than the positive real axis.

The most important case 1s I'" = I',(N). For now we shall also assume that
f(00) = 0. Thus, let f(z) = 2, a,g9"€ M(T';(N)). (Recall that since Te
I';(N), we have an expansion in powers of g = 2™ rather than gy.) We set

g(s)d—:-,J'oo f(@)z*  dz. 33D

We now show that if f(z) = 2, a,9" with |a j= O(n‘), then the integral

_ g(s) defined in (3.31) converges for Res>c+1:

_»:fflm f(z)zs 1y = i e e2m’nz_‘£§

n=1 0 . z B ) ) .
ER- S A U N . I
A — S S ) tS -t ' h I .
: n=21 q,,( Znin) ' J;) e i (Where ¢ ‘anz)

(see (4.6) of Ch. IT)"
(3.32)

oy T S oan

n=1
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(whére the use of ' in the gamma-function I'(s) has no relation to its use

in the notation for congruence subgroups; but in practice the use of the same .

- letter T should not cause any confusion). Since |a,n™*| = O(n°"**%), this

last sum is absolutely convergent (and the interchanging of the order of

integration and summation was justified).
If f(z) = 2.0 a,q" € M (T';(N)) has a, # 0, we replace f(z) by f(z) —ay
in (3.31). In either case, we then obtain g(s) = (—2mi)~*T'(s)L(s), where

if f@)=73 ag"

Lis)z ) amn™® for Res>c+1,
n=1 n=0

(3.33)
with |a,| = O(n°).

In addition to their invariance under [y]i for yeT',(N), many modular
forms also transform nicely under [y}, where oy = (§ ') as in (3.30).
It will be shown in the exercises that, for example, any function in M (N, )

for x a real character (i.e., its values are +1) can be wrltten as a sum of

two functions satisfying
Sllonde = Ci™%,

where one of the functions satisfies (3.34) with C =1 and the other with
C = —1. An example we already know of a function satisfying (3.34) is
©2: the relation (3.5) is a special case of (3.34) withk =1, C =1, N=4.

We now show that if (3.34) holds, then we have a functional equation
for the corresponding Mellin transform g(s) which relates g(s) to g(k — s).
For simplicity, we shall again suppose that f(z) = £a,q" with a, = 0. We
can write (3.34) explicitly as follows, by the definition of [oy ], :

f(=1/Nz) = CN™%(—~iNz)¥(2). (3 35)

In (3.31), we break up the integral into the part from 0 to I/W and the
part from i/\/N to ico. We choose i/,/N because it is the fixed pomt in H
ofocN z+> —1/Nz. We have
(i~ s feo sd(—
f@)z"—— S(=1/Nz)(=1/Nzy* =—"===
x/«/ﬁ

C=1lor —1, (3.34)

d(—1/Nz)

g(s) = —1/Nz

JiWN
(*ico d
=| @z +f=1N)(~1Nzp)Z
Jim ‘ .
= | @z + FON A (~ N2y E
J iWVN
because of (3.35). _
In the first place, this integral converges to an entire function of s, because
f(2) decreases exponentially as z — ico. That is, because the lower limit of

integration has been moved away from zero, we no longer have to worry
about the behavior of the integrand near 0. (Compare with the proof of =~
Proposition 13 in Chapter II, where we used a similar technique to find a -
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"rapldly convergent series for the critical value of the Hasse—Weil L- functlon
: seethe remark following equation (6.7) in §I1.6.)
Moreover, if we replace s by k — s in the last mtegral and factor out
"CN"‘/’( N)*, we obtain: :
gk —5) = FCNW(—NY f (TN (= N) () +f(z)zs>‘-’5
) CJivR z
= *CN ""2( —-N )‘J (t"CN ¥2£(z)(= 1/Nz)** + f(z)z‘)—~
ijVN

- =i*CNT¥(=N)g(s),

. because the last integral is the same as our earlier integral for g(s). This
equality can be written in the form ’

 (—iJNygls) = C(—iy/N) gk ~ 9.
Thus, by (3.32)-(3.33), if we define A(s) for Res>c + 1 by
- A@©) = (—iy/Nyg(s) = (JN2m)T ()L y(s), (3.36)

“we have shown that A(s) extends to an entire function of s, and satisfies
the functional equation

A(s) = CA(k — 5). (3.37)

As an example of this result, we can take f(z) = A(z)€ S;,(I'), which
-+ satisfies (3.35) with N = 1, k = 12, C = 1. Then A(z) = 7., ©(n)q", Lp(s) =
Z2,tmn™s, and A(s) = (2n) T (s)Ly(s) satisfies the relation: A(s) =
A2 = 5).
The derivation of (3.37) from (3.34) indicates a close connectnon between
Dirichlet series with a functional equation and modular forms. We came
across Dirichlet series with a functional equation in a very different context. -
in Chapter II. Namely, the Hasse—Weil L-function of the elliptic curve
E,: y* = x> — n’x satisfies (3.36)—(3.37) with k =2, N = 32n? for n odd
~and 16n? for n even, C = (=) for n 0dd and (53) for n even (see (5.10)—
(5.12)i m Ch. II) We also saw that the Hasse—Wexl L-function of the elliptic
curve y? = x3 + 16 satisfies (3.36)~(3.37) with k=2, N= 27 C=1 (see
Problem 8(d) of §IL.5).
So the question naturally arises: Can one go the other way? Does every
Dirichlet series with the right type of functional equation come from some
modular form, i.e., is it of the form L,(s) for some modular form f? In
~ particular, can the Hasse—~Weil L-functions we studied in Chapter II be
,obtamed by taking the Mellin transform of a suitable modular form of
" weight 27 That is, if we write L(E,, 5) in the form Z2_, b,,m™* (see (5.3) in
Ch. II), is =2, b,,q™ the g-expansion of a weight two modular form? -
- Hecke [1936] and Weil [1967] showed that the answer to these questions
s basically yes, but with some quallﬁcatlons We shall not give the detaxls,'
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which are available in [Ogg 1969], but shall only outline the situation and

state Weil’s fundamental theorem on the subject. , )
Suppose that L(s) = Za,n”* satisfies (3.36)-(3.37) (and a suitable hy-
pothesis about convergence). Using the “inverse Mellin transform”, one
can reverse the steps that led to (3.36)-(3.37), and find that f(z) = Za,4"
satisfies (3.34). For now, let us suppose that N = 2% is a perfect square,
and that C = i* (k even). Then, if f(z) satisfies (3.35), it follows that f;(2) 3
f(z/2) = Ta,q} satisfies: f;(—1/z) = z*f;(2). Thus, f; is invariant under [S];
and [T*],, and hence is invariant under the group generated by S and T2
Hecke denoted that group (/). We have encountered the group ®(2) before.
In this way one can show, for example, that L(E;, , s) corresponds toa
modular form (actually, a cusp form) of weight 2 for &(8no).
Unfortunately, however, Hecke’s groups ®(4) turn out not to be large
enough to work with satisfactorily. In general, they are not congruence
subgroups. (6(2) = I'(2) is an exception.) ‘
~ But one can do much better. Weil showed, roughly speaking, that if one
has functional equations analogous to (3.36)-(3.37) for enough “twists”
T x(n)a,n~* of the Dirichlet series Za,n~*, then the corresponding g¢-
expansion is in M,([,(N)). We now give a more precise statement of Weil’s
theorem. =~
Let y, be-a fixed Dirichlet character modulo N (y, is allowed to be the
trivial character). Let y be a variable Dirichlet character of conductor m,
where m is either an odd prime not dividing N, or else 4 (we allow m =4
only if N is odd). By a “large” set of values of m we shall mean that the set

contains at least one m in any given arithmetic progression {u + jv}jez, -

where u and v are relatively prime. According to Dirichlet’s theorem, any
such arithmetic progression contains a prime; thus, a “large” set of primes
is one which satisfies (this weak form of ) Dirichlet’s theorem. By a “large”
set of characters y we shall mean the set of all nontrivial y modulo m for a
“large” set of m. ;

Let C = +1; and for any y of conductor m set

C, = Caom)x(=N)g (/g (D),

where g(x) = ZJ, x(j)e*™" is the Gauss sum. Given a g-expansion f(2) =
20a,q", ¢ = e*™*, for which |a,| = O(n%), we define L(s) by (3.33) and
A(s) by (3.36), and we further define -

- (3.38)

Lf(x, 5) = ix(n)ann‘s; Ay, 5) = (m,/J_V/zn)T(s)L,(x, 5). (3.3sf)

Weil’s Theorem. Suppose that f.(z)‘= Z;',‘L;,‘a,,q", q = e*™, has the property’

that |a,| = O(n°), ceR. Suppose that for C =1 or ~1 the function A(s)

~ defined by (3.36) hgs the p’ropé_’r;’tj‘f that-'(&'('s)'}if ao_(_l/s“.’-j Ik — ) Yextend.'g :

A
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"to an entire function which is bounded in any vertical strip of the complex

plane, and satisfies the functional equation A(s) = CA(k — s). Further suppose

above), the function A(y, s) defined by (3.39) extends to an entire. Sfunction

which is bounded in any vertical strip, and satisfies the Jfunctional equation
- A@, 5) = C,AG, k — s), with C, defined in (3.38).

'Then fe My(N, o), and f satisfies (3.34). If, in addition, L(s) converges
absolutely for Re s > k — ¢ for some ¢ > 0, then f is a cusp form.

One can show that the Hasse-Weil L-functions of the elliptic curves in
Chapter 11 satisfy the hypotheses of Weil’s theorem (with yo = 1). The same
techniques as in the proof O the theorem in §IL.5 can be used to show this.
However, one must consider the Hecke L-series obtained in (5.6) of Ch. 11
by replacing ¥,(I) by the chavacter %, (1) x (N1 ) with y any Dirichlet character
modulo m as in Weil’s thed®m. For example, if we do this for L(E,,s),
where E, is the elliptic curvc.\i‘z x3 — x, we can conclude by Weil’s theorem
that

fe, @) =g~ 245 —3¢" + 64" +2¢"" 4+ Y. bug" (3.40)

mz25

(see (5.4) of Cu.. IT) is a cusp form ol weight two for [o(32).

If we form the g-expansion corresponding to the L-series of E,: y*=
x3 — n’x, namely, fg (2) = Z z,(m)b,q", it turns out that f e M ,(T(3212))
for n odd and fEneMz(F0(16n2)) for n even. Note that when » = 1 mod 4,

_so'that y, is a character of conductor », this is an immediate consequence of

the fact that fz, € M,(T'o(32)), by Proposition 17(b).

More generally, it can be shown that the Hasse—Weil L-function for any
elliptic curve with complex miultiplication satisfies the hypotheses of Weil’s
theorem with k =2, and so corresponds to a weight two modular form
(actually, a cusp form) for To(N). (N is the so-called “conductor” of the
elliptic curve.) ‘ » ;

~Many elliptic curves without complex multiplication are also known to
have this property. In fact, it was conjectured (by Taniyama and Weil) that
every elliptic curve defined ovey the rational numbers has L-function which .
satisfies Weil’s theorem for some N. Geometrically, the cusp -forms-of
weight two can be regarded as holomorphic differential forms on_the
Riemann surface To(N\H (i.e., the fundamental domain with. I'o(V)-
equivalent boundary sides identified an: the cusps included). The Taniyama—
‘Weil conjecture then can be shown to take the form: every elliptic curve

v oifer Q can be obtained as a quotient of the Jacobian of some such Riemann
- surface. o - :

~..-'For more information about the correspon dence between modular fo‘rms" o
- and Dirichlet series, see [Hecke 19817, [ Weil 1967], [Ogg 1969], and
[Shimura 1971]. : - R S o

that for a “large” set of characters y of conductor m (in the sense explained -
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: (b) Show that, if I'" is a normal subgroup, and if f(2) is I"-invariant, then so is
_ f(az) for any aeT". Then show that the field of weight zero modular fuactions
for I' is a galois field extension of C(j) whose galois group is a quotient of
I'/T". In practice (e.g., if I'” is a congruence subgroup), it can be shown that the.
galois group is equal to I'/T™".

PROBLEMS

1. Let aeGL; (@), and let g(z) = f(az). Let y = (¢ 5yl Notice that f(az)|[7]; was
defined to be (caz + d)™*f(yxz), which is nor the same as g(2)|[y]. = (cz + d)™*
S(ayz). Show that if a = (§ 9), ie., if @z = nz, then ¢(2)|[v]i = f(o2)|[aya™ ] =
Sm2)|[(G D

2. Let I be a congruence subgroup of I" of level N, and denote T} = {yeI"|ys = s}
forseQu {oo}. Let s =a !0, el
(a) Prove that alJa™ = (aI"a™1),,.
-(b) Show that there exists a unique positive integer /4 (called the “‘ramification
index” of I'” at s) such that

8. Prove the following identities, which will be useful in the problems that follow and
" in the next section, by manipulation of power series and. products ir ing = e2nie
() O@) + Oz + $) = 20(42); g
(b) Ey(z +3) — Ex(2) = 48 Zouan>001(M)q"; :
©(© Ef2) = (1 + 0 DVE(p2) + P E(pP2) = — B a0 (MG
(k = 2, p prime);
() Ey(2) — 3E,(22) + 2E,(42) = H(E,(2) ~ Ey(z + D);
©) n(z +3) = "> 22)n(2In(42).

9. Prove that if k is even and f(z) has period one and satisfies f(—1/4z) = (— 472y
f(@), then f|[y], = f for all yeT,(4).

10. (a) Prove that 53(42)/n*(22) € M,(I'4(4)), and find its value at each cusp.
(b) For aeZ prove that E,(ST°Sz) = (az + 1)2E,(z) — %% (az + 1).
©) Let F(z) = & 24(E2(2) — 3E,(22) + 2E,(42)) = zoddn)O ay(n)q" by Problem
8(c). Prove that F(z) e M,(I'y(4)), and find its value at each cusp.
(d) Prove that F(z) = n8(42)/n*(22). Then derive the identity
- a[A-g" 0+ = T amg"
n=1 odd n>0
- (e) Give a different proof that —24F(z) = 3(E,(z) — E,(z + 1/2)) is in M,(I',(4))
by proving that, more generally, Ey(z) — $ZX3! Ey(z + j/N) is in M,(To(N?)).

11. (d@) Prove that ©(z)* e M,(I'o(4)), and find its value at each cusp.
(b) Show that ©(z)* and F(z) (see preceding problem) are linearly independent.
(¢) Prove that n*°(22)/n®(z)n%(4z) € M,(T'5(4)), and find its value at each cusp.
(d) Prove that ©(2) = °(22)/n*(2)n*(4z). '
(€) Prove that ©(z) = e™2"24p2(z + Y/n(22).

12. Let N =7 or 23, and let k = 24/(N + 1). Let x be the Legendre symbol () ='(})-
Prove that any nonzero element of S, (N, x) must be a constant multiple of

((@n(Nz))-

13. Using Propositions 25-27, prove that (2)n(32))° € Ss(Tp(3)) and (n(2)n(7z))*e
S3(7, x) where x(n) = (5).

14. Let ¢(2) = Z,. €™ = ©(z/2). Let x be the unique nontrivial character of G(2)/
T'(2) (which has 2 elements). Show that ¢*e M,(6(2), ). .

15, Let fe M (N, x), and set ay = (3 ~3).
(a) Prove that f{[ay]se M (N, %), and that the map fi—[|[ey]; is an isomorphism
- - of vector spaces from M, (N, y) to M, (N, 7). Prove that the square of this map
- (e, where one uses it to go from M;(N, ) to M, (N, %) and then again to go
;- from M,‘(N %) back to M, (N, x)) is the map (— 1)* on M,(N, ).
(b) If x =7, i.e., if x takes only the values +1, then prove that M(N, y) =
M(N, ) ® M (N, p), where MEWN, ) = {fe MW, DI lande = 27}
In other words, any modular form in Mk(N x) can be written as a sum of one

(i) in the case —JfeT”’ )
rs,= ia—l{Thm}"Eza;

(i) in the case —J¢ T either . )
L= {T", 000 (Tla)

I = o (= T pea0n (11b)

Show that 4 is a divisor of N.

(c) Show that the integer / and the type (I, Ila, or IIb) of s does not depend on the
choice of weI” with s =« "00; and they only depend on the I"-equivalence
class of s.

(d) Show that if a™ o0 is of type I or 11a and f& M,(I"), then f|{e ], has a Fourier
expansion in powers of g,. A cusp of I'’ is called “regular” if it is of type I or
I1a; it is called ““irregular™ if it is of type IIb.

(¢) Show that if a~oo is an irregular cusp, and fe M(I"), then f|[«™*], has a
Fourier expansion in powers of ¢, in which only odd powers appear if k is odd
and only even powers appear if k is even. If k is odd, note that this means that
to show that fe M, (I"") is a cusp form one need only check the g-expansions at
the regular cusps.

3. Let h be any positive integer, and suppose 2h|N, N > 4. Let I" be the following
level N congruence subgroup: I'" = {(¢ §) = (7} "")’ mod N for some j}. Show
that oo is a cusp of type IIb.

4. (a) Show that TI'; (V) has the same cusps as To(NV) for N=3, 4.
(b) Note that —I¢I;(N) for N > 2. Which of the cusps of I';(3) and I, (4), if any,
are irregular?

5. Find the ramification indices of I' at all of its cusps when:
(@) I'"=To(p) (p a prime);
(b) T’ =To(p?);
© I''=TQ).

6. Prove that if I'" = I' is a normal subgroup, then all cusps have the same ramifica-
tion index, namely [, : +I7,].

7. (a) Show that any weight zero modular function for I'" < I" satisfies a polynomial
of degree [I": I'"] over the-field C(}) of weight zero modular functions for I.

/
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19. Let I” < T be a congruence subgroup, with I' = ( Jo,T", so that F' = | Jo; ' Fis a
fundamental domam for I, Let f; = f|[a; " i for fe Mi(T"’). Suppose that fe S(I"),
so that f (2) =224, ,q,,j, where /4 is the ramification index of I'" at the cusp

- s = o] ! 00. In particular, f{(z) = 32, a,qj at the cusp .
. (a) Show that there exists a constant C mdependent of jand x such that

which is fixed under i*[ey], and one which is taken to its negative by #*[oty i
(¢) Let N =4.InProblem 17(d) below, we shall see that ©* and Fspan M, (I, (4)) =
M, (4, 1) (where F= X, 450,(n)g" as in Problem 10, and 1 denotes the trivial
character in M,(4, 1)). Assuming this, find the matrix of [«,], in the basis ©%,
F; show that M, (4, 1) and M; (4, 1) are each one-dimensional; and find a
basis for M,(T',(4)) consisting of eigenforms for [a,],. If you normalize these
eigenvectors by requiring the coefficient of ¢ in their g-expansions to be 1, then g
they are uniquely determined.

16. (a) For k = 2 even, let f(z) = ——Ek '%’5 + Z2, 0,1 (m)q". Express L,(s) (see
the definition in (3.33)) in terms of the Riemann zeta-function.
(b) Write an Euler product for L(s). _
(©) Let f,(2) =Z2, 0,1 (m)x(n)q" for a Dirichlet character . ‘Write an Euler
product for L, (s).

17. Let F(2) be the fundamental domain for I'(2) constructed in §1 (see Fig. I11.3). Then
= oF(2), where « = (§ ")), is a fundamenta! domain for Ty(4) = aI"(2)a™* (see
Problem 10 in §II1.1). The boundary of F’ consists of: two vertical lines extending
from (—3 + i\/3)/4 and from (1 + i,/3)/4 to infinity; two arcs of citcles of radius
1, one centered at —% and one centered at 0; thé arc of the circle of radius £ and
center & which extends from 0 to (9 + i,/3)/28; and the arc of the circle of radius
15 and center 15 which extends from (9 + zf )/28 to 4. Consider T 0(4)-equ1valem
points on the boundary of F” to be identified.
(a) Find all elliptic points in F’ (i.e., points which are I'-equivalent to i or @ = '
(—1+ iﬁ)/Z). Which are on the boundary and which are in the interior of F'?
(b) Let f(z) be a nonzero modular function of weight &k (k€Z even) for I';(4). Let
v,(f) denote the order of zero or pole of f(z) at the point P. At a cusp P =
a™' oo, we define v,(f) to be the first power of ¢, with nonzero coefficient in_
the Fourier expansion of f|[«~'], (where A is the ramification index; see’
Problem 2 above). Prove that: Z, g v,(f) = k/2, where the summation is over
all points in the fundamental domain F”, including the three cusps, but taking
only one point in a set of I'y(4)-equivalent boundary points (e.g., {—3+ iy,
%+iy}0f{—z+l4,4+l4,zg ’ﬁ}) :
(¢) Describe the zeros of @(z)* and F(z) (see Problems 10~11 above).
(d) Prove that ©* and F span M,(I,(4)).
(e) Provethat M (I'y(4)) = 0if k <0, and it contains only the constants if k = 0.
(f) Prove that for k = 2k, a nonnegative even integer, any f& M,(I';(4)) can be ~
written as a homogeneous polynomial of degree &, in F and ©%, )
(g) Prove that Ss(I'o(4)) is one-dimensional and is spanned by @3F — 160*F2, '
(h) Prove that 7'2(2z) ¢ Ss(I'o(2)), but that 712(22) € Ss(I'y(4)). Then conclude that
7'2(2z) = @8 F — 16@4F2.
(i) Prove that for k = 2k, > 6, any fe S, (I',(4)) can be written as a homogenedus,
‘ polynomial of degree ko in Fand ©* that is divisible by @*F(@* — 16F).

18. (a) If fe M (N, x,) and ge M, (N, x,), show thatfgeM,,ﬂ,‘z(N x,xz) ‘
(b) Let x be the unique nontrivial character of (Z/AZ)*. Show that any eIément of
M, (4, ¥) is a constant multiple of ®2. ‘
“(c) With'y as in part (b), find a formula for dim S,(T'; (4)) = dim S;(4, xY).
) }gt fd (@) = (1(2)n(22))%, and let g(z) f(22) Show that Ss(l" 1(4)) is spanned by
* fandg.

[fix + iy)| < Ce™* M for y>e

(b) Let g(z) = (Im 2)*?| (z)|. Show that g(yz) = (Im 2)*”*| f(2)|[y]| for y&T.
(c) Show that g, = (Im 2)| f2)| is bounded on F.

(d) Show that g(z) is bounded on F’,

(¢) Show that g(z) is bounded on H.

(f) Show that for any fixed y:

h
=1J f(x+ iy)e-—ZRintu)[hdx'
h 0

(g) Show that there exists a constant C, such that for all y:
ta"‘ < Cly-klze2nny/h'

(h) Choosing y = 1/n in part (g), show that for C, = C;e*™": |a,| < C,n*2.
(i) Show that |a, ;|n™? is similarly bounded for each .

§4. Transformation formula for the theta-function

We first define some notation. Let d be an odd integer, and let ¢ be any
integer. The quadratic residue symbol (§) is defined in the usual way when
d is a (positive) prime number, i.e., it equals 0 if dlc, 1 if ¢ is a nonzero
quadratic residue modulo d, and ~1 otherwise. We extend this deﬁmtlon
to arbitrary odd d as follows. First, if g.c.d.(c, d) > 1, then always (3) =
Next, if d is positive, we write d as a product of primes d = I1;p; (not neces-
sarily distinct), and define () = I1;(). If d= %1 and ¢ = 0, we adopt the
convention that (%) = 1. Finally, if d is negative, then we define (3) = ()
ife>0and (§) = =@ if e <0.

It is easy to check that this quadratic residue symbol is bxmultlphcanve
i:e;; it is multiplicative in ¢ if d is held fixed and multiplicative in d if ¢ is
held fixed. It is also periodic with period d.when d is positive: (<5%) = (§)
if d> 0. However, one’must be careful, because periodicity fails when d is
negative and ¢ + d and ¢ have different signs: (&= —(9ifc>0>c+d.
This is because of our convention that (§) = — () when both ¢ and d are
negative. On the other hand, this convention ensures that the usual formula
(&) = (—1)“"Y72 holds whether d is positive or negative.

Next we adopt the convention that \/_ for ze C always denotes the branch
whose argument isin the interval (—7/2, n/2]. We next define g, ford odd by:

&= -— (——) ie.,
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_ I ifd=1mod4;
%=V ifd=3mod4.

With these definitions we finally define the “automorphy factor” j(y, 2),
which depends on y = (¢ §)€To(4) and ze H:

N ' ,
J(7, z)é——-ef<§)s;‘,/cz+d for y=(z d)el'o(4), zeH. (4.2)

2nizn?

\('4.1)

Recall our definition of the theta-function @(z) = £, 9" = Z,cz €
The purpose of this section is to prove the following theorem, following
Hecke [1944].

Theorem. For yel'y(4) andze H
O(y2) = j(r, 2)0(2), 4.3)
where j(y, z) is defined by (4.2).

Notice that the square of j(, z) is () (cz + d), and so the square of the
. equality is precisely what we proved in Proposition 30. Thus, for fixed
yel4(4) the ratio of the two sides of (4.3) is a holomorphic function of
ze H whose square is identically 1. Thus, the ratio itself is + 1. The content
of the theorem is that this ratio is + 1, i.e., that j(y, z) has the right sign.

Simple as that sounds, the theorem is by no means trivial to prove. At
first, it might seem sensible to proceed as in the proof of Proposition 30,
proving that (4.3) holds for generators of I'j(4). However, then we would
have to show that the expression j(7, z) in (4.2) has a certain multiplicative
property which ensures that, if (4.3) holds for y, and y,, then it must hold
for y,7,. But that is a mess to try to show directly. We shall, in fact, conclude
such a property for j(y, z) as a consequence of the theorem (see Problem 3
at the end of this section). ’ ‘

In proving the theorem, it turns out to be easier to work with the function
$(2) = 0/2) =X, e™"2 which we encountered in Problem 14 of §II1.3.
This function satisfies: ¢(7?z) = ¢(z) (obvious from the definition) and
¢(Sz) = / —iz¢(2z) (immediate from (3.4)). Hence, ¢(yz) has a transforma-
tion rule for any y in the group ®(2) generated by -+ T2, S. It is because
®(2) is such a large group—having only index 3 in I'—that it is sometimes
easier to work with ¢. The corresponding group under which @(z) = ¢(az),
a= (3 9), has a transformation rule is « *®(2)x (see Problem 1 of §III.3).

But «'G(2)a is not contained in I' = SL,(Z); its intersection with I is the -

subgroup I'y(4) of index six in I". Thus, we can work with a “larger” subgroup

of I' (i.e., its index is smaller) if we work with ¢(z) rather than ©(z). The

next lemma gives an equivalent form of the theorem in terms of ¢(2).

Lemma 1. The theorem follows if we prove tlie' Jollowing transformation

Sformula for ¢(2):
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b(z) = i(1-c)/2—<.c‘!)“/_—i(cz+d)¢)(z); o (4.9)

Jor yeT such thaty = (¢ ) = (.9 §) (mod 2) with #0.

" PROOF. Suppose that we havé the transformation rule for ¢(2). We muét

show that © satisfies (4.3) for all y = (¢ 5)eI,(4). We first note that'if

_¢=0, then (4.3) holds trivially, since in that case ®(yz) = ©(z), while

Jj(r,2)=¢5 ‘JZ =1 (since d = *1). So in what follows we suppose that
c#0. . . .
For any y = (¢ §)el,(4) with ¢ # 0 we write -

=g (2B D) _y (B2 —a) g
00 = ¢ (2cz * d) = ¢( i 6/2) = 60/(~1/22)),

Whefg: Y =& ) and y = () §) (mod 2), because 4|c. We apply (4.4)
‘withy inplace of y and — 1/2zin place of z. Using the fact that (=5%) = (-7)($),
we obtain

O(yz) = it=2 (—“f) (5)\/ ZHd(=1/22) — c]2)p(—1/22).
Next, we have ¢(—1/2z) = @)(;— 1/4z) = \/ —2izO(2) by (3.4). The product

of the two square root terms is +./cz + d (note that, because of our conven-
tion on the branch of the square root, we have \/x\/y = +./xy; for example,

J—1y/—1= —/1). But since the three functions \/—i(d(—1/2z) — ¢/2),
—2iz, and \/cz + d are all holomorphic on H, the + must be the same

for all z; so it suffices to check for any one value of z, say z = i. But in that

case'\/ —2iz = \/5, and \/)—c\/; = +./xy always holds when y is positive real.
Thus, the product of the two square root terms is /¢z + d, and we have

O(yz) = 1= ({}) (g)\/m(-)(z).

To complete the proof of Lemma 1, it remains to check that ! “9/2(52) = ¢7!,
which we easily do by considering the cases d = 1, 3, 5, 7 (mod 8). o

The remainder of this section is devoted to proving (4.4).
For a fixed odd prime p, let us denote

Y@@ =n"@m(pz), . ; 4.5)

where 7(2) is the Dedekind eta-function, as in §2 and §3. According to
Propositions 26-27, we have ¥ €M,y ,,(p, 5)), i.e., Y* is a modular
form for I'o(p) with character y(d) = (). This is the basic tool which will
be used to prove (4.4). But it will take several lemmas to relate > and ¢.

Leinina 2.

$(p)/9°@) = Y@ (%——‘-) 46
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PROOF By Problem 11(e) in the preceding section, with z replaced by % and
by &, we find that the left side of (4. 6) is equal to

e 2miiz4 Z(M)/’?(PZ) = elp-ni2dyzmi _Y\Z) y(z) 2(255—_1_) .
(e 242 (E ) m(2)y Y2 PRED)

But since 11"(2 + 1) =e>2%(2), and p((z + 1)/2) = (pz + /2 + 55, it
~ follows that the last term on the right is e™#~V2%/24_ This proves (4.6). 0O

) "i"dking the quotient of these two relationships gives

/ _(d ‘
9,[7](1—»/2': 99|['}’]'9(1—p)/2/98|[?]4(1—p) = (p)g~ a

s The next lemma generalizes Lemma 4 by replacmg the prime p by an
arbltrary positive odd number ».

Lehma 5. Let n be a positive odd integer, let y = (% e G(2) N Ty(n), and let

Lemma 3, Let p be an odd prime, let y = (¢ 8) e ®(2) N Toy(p), and let f(z) =
-4(2) = ¢p(nz)/¢"(2). Then g I[)’]u—n)/z = (9)g.

'//3(2“) Thenfl[')’]sfp—l)/z = (p)f

Proor. Let o = (} 1), so that Q/((z + 1)/2) = ¥(xz). Then Y ((yz + 1)/2) =
¥(ayz) = Y((aya~")az). Now for y as in the lemma, we have -

R (b+d—-a—c)/2) r ‘
aya -( 2 d—c elo(p).

(Note that b+ d —a — ¢ is divisible by 2 because ye®(2).) Hence, by
Propositions 26-27, we have

¢3(” + 1) (d; c) Qcaz + d — )Py (az)

= (‘.") (cz + dy>w=Dizy3 (2—32“—1>

because d —.¢ = d (mod p). This is the relation asserted in the lemma. O

ProOF. We write n=p, ---p, as a product of primes (not necessarily
distinct), and we use induction on the number r of prime factors. Lemma 4
is the case r = 1. Now suppose we know Lemma 5 for n; we shall prove the
corresponding equality for a product n’ = np of r + 1 primes. We write

$(n'z) _ p(naz) <¢(p2))" @
| | @) " P \9@) )

where o = (§ 9). For‘y = Dely()nGQ) wehave y = aya™! = (), De

Fo(m) n 6(2), and so, by the induction assumption,

¢‘(‘”°‘VZ)/¢"(“?Z) = ¢(ny'az)/p"(y'az) = (;—1) (ﬁaz + d)“ " 2¢(naz)/¢>"(ozz)

= (4 + - sorigre
\

1 -,
Lemma 4. Let p be an odd prime, let y = (¢ 5 e ®(2) N Ty( p) and let g(z) n addition, by Lemma 4, we have

& (p2)/d*(z). Then gl[ﬂ(x—p)/z = ('i'r)g-

D(py2)|¢P(yz) = (4)(cz + d)YTP2G( p2)/pP(z).

Combining these two relations, we see that replacmg z by yz in (4.7) has the
effect of multiplying by

’. 1/(;>(cz -+ d)(l—n)/Z ((g)(cz +'d)(l-p)/2)" =‘ (g) (g) (CZ + d)(l'fﬂp)/z
= () ey

This completes the induction step, and the proof of the lemma. | u

ProOF. We first claim that g® transforms trivially under y. Let a = (% ¢
and let y’ = aya~!. Then both yand y" are in $(2), and we can use Problem 14
of the preceding section to compute

gs(z)!['}’]ul—p) = (cz + d)“rl)‘bs('}"‘xz)/ $®2(yz)
_ Goz +d)"*¢%(yaz)
(cz + d)™*°¢®*(yz)
(8

as claimed. Meanwhlle, the ninth power of g transforms under y by (9), as |
we see by raising both sides of (4.6) to the 9th power and using Propositions
26~27 and Lemma 3 (here f(2) is as in Lemma 3):

9 976 _w? l['}’]up—l)/z)s ((_4)'/,3)3_(4> 9 |
g [[7]9(1—p)/2—(¢ If )“:1’]9(1 -pi2 = (”[V]s(p—u/z) (:%)f),; =7 g

We are now ready to prove (4 4). We first note that-both sides of (4.4)
remain unchanged if y is replaced by —y (see Problem 2 below) Hence,
without loss of generality we may suppose that 7=0¢H=(9 Hmod2 "
- withie > 0.

We now apply Lemma 5 with 7 replaced by. the positive odd integer c,
obtamn
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¢(C‘))Z) — (é) d (1-¢)2 PLz) ¢(CZ) ' o (4.8) -
o6n  \ )T e

The ratio that ultimately interests us is ¢('yz)/¢ (). Solvmg for thls in (4.8)

gives
s\ _ (c_i) e e 49)

(¢(z)) )T e o
On the other hand, we have (using: ad — 1 = bc)
eyz = caz +b 1

z+d C az+d

Since a is even and ¢ has period 2, this means that

$(cyz) = ¢ ( ) J=iez + dyd(cz + d)

cz+d

= /—i(cz + d)p(cz).

Combining (4.9) and (4.10) gives

(qs(yz)) ( )(cz + d)e 2 [ iez + d). @.11)

(4.10)

(@)

Meanwhile, we saw in Problem 14 of the preceding section that ¢® is invariant
under [y], for ye 6(2), i.e.,

é(2)

We now raise both sides of (4.11) to the c-th power and divide by (4.12),
where k is chosen so that ¢? = 8k + 1. (Since c¢ is odd, of course ¢? =1
mod 8.) The result is: ,

oG2) _ (%)(cz + d) eI (—j(cz + d)) V2 [ —i(cz + d):.

(?—(]—zl)sk =(cz+d)y* forany keZ. ‘} 4.12)

#(2)
But e(c — 1)/2 = 4k + (¢ — 1)/2 = (¢? — 1)/2 — 4k = 0. Henc,

i((vzz)) _ (%)(_,')(C"l)/zm,

which is the transformation formula (4.4) that we wanted to prove. This
concludes the proof of the main theorem as well. o

The transformation formula for the theta-function is similar to the trans-
formation formula for a modular form of weight k if we take k =1, i.e.,
except for a power of i the “automorphy factor” is (cz + d)*?. In the next
chapter we shall see that there is a general theory of modular forms whose
weight is a half-integer; and the transformation formula for ©(z) plays a
fundamental role in describing such functions. .
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PROBLEMS

‘l'. i Prove that the generalized quadratic residue symbol (%) as defined in this sectxon
. satisfies the followmg form of quadrauc reciprocity : if ¢ and d are both odd integers,
h then

4 - (-— Dehé-t4ey ifc or dis positive;
¢ —(=1)leDU-14(ey if ¢ and d are negative.
2. Show directly that both sides of (4.4) remain unchanged if y is replaced by —.

3. (a) Show directly (using (3.4)) that the theorem (4.3) holds for the generators -1,
T,and ST*S of [,(4).
(b) Show that the theorem would follow from part (a) if one could show that

@B, 2) = j(@, B2)j(B, 2) forall «, BeTo(). @.13)

‘(c) Conversely, show that the theorem proved in this section implies the relation
4.13).

§5. The modular interpretation, and Hecke operators

A basic feature of modular forms is their interpretation as functions on
lattices. More precisely, we consider the most important cases of a congruence
subgroup I'': T" = I', T'{ (N), To(N) or I'(N). (Of course, I = T', (1) = [',(1)
=TI'(1), so everything we say about the cases I'; (N), T'o(N) or I'(N) will
apply to I' if we set N = 1 .) By a “modular point” for I’ we mean:

(i) for I'" =T: alattice L < C;
(i) for I'" =T';(N): a pair (L, 7), where L is a lattice in C, and teC/L is
a point of exact order N;

(iii) for I'" = I'y(N): a pair (L; ), where L is a lattice'in C, and S = C/L -
is a cyclic subgroup of order N, i.e.; S = Zt for some point te C/L of
exact order N.

(iv) for I'" = I'(N): a pair (L, {t;, 1,}), where 1, ¢, GC/L have the property
that every te 4L/L is of the form ¢t = mt, + nt,, i.e., t,, t, form a basis
for the points of order N (in particular, t, and ¢, must each have exact,

.-order N).

Given a lattice L, in general there will be several modular poir,:s of the
form (L, 9), (L, S), or (L, {t,, 1,}). However, when N = 1, there is only
one modular point corresponding to each L, and we identify it with the
modular point L for T.

Let keZ. In each case (i)-(iv), we consider complex valued functnons
F on the set of modular points which are of “weight k in the following
sense. If we scale a modular point by a nonzero complex number A, then the

- value of F changes by a factor of 7%, That is, for 1eC* we consider AL =
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{MljleL}, iteC/AL, AS = {M|te S} = C/AL. Then F is defined to be of
weight k if for all e C* ' . -
case (i) F(AL) = A~*F(L) for all modular points L;
case (i) F(AL, A1) = A"*F(L, 1) for all modular points (L, #);
case (iii) F(AL, AS) = A"*F(L, ) for all modular points (L, S);
case (iv) F(AL, {At,, Aty}) = 2*F(L, {t,, t,}) for all modular points
&, {1, 1}).

An example of such a function of weight k is
‘ G)y= Y I™*  (k>2even). SRR

O+#leL
Notice that any function F in case (i), such as G, automatically gives a
function for the other groups; for example, by setting F(L, 1) = F @).

Given a function F of weight k, we define two corresponding functions -

F and f as follows. F(w) is a complex-valued function on column vectors
= (“") such that w,/w,€H; f(z) is a function on the upper, half-plane
H Let’ L,, be the lattice spanned by w; and w,, and let L, be the lattice

~ spanned by z and 1. Given F as above, we define

case (i) F(w) = F(L,);
case (i) F(w) = F(L,, w,/N); -
case (iii) F(w) = F(L,, Zw,/N);
case (iv) F(w) = F(L,,, {&/N, wz/N})

In all cases we define f(z) = F(%). Thus, for example, the’ functnon f(z)
that corresponds to G (L) (see (5.1)) is the Eisenstein series we denoted
G, (2) in §2 (see 2.5):

For y = (¢ §)eI = SL,(Z), we define the action of y on functions of w
by the rule yF(w) = Fiyw), where yw is the usual multrplrcatlon of a column
vector by a matrix.

Proposition 31. Let ke Z, and let T' =T, T{(N), To(N) or T'(N). The above
association of F with F and f gives a one-to-one correspondence between the
Jollowing sets of complex-ualued Sfunctions: (1) F on modular points which
have weight k; (2) - F on column vectors w which are invariant under 7y for

yeI” and satisfy F(hw) = A"*F(w); (3) f on H which are invariant under

[y)cforyel”.

Proor. We shall treat case (ii), and leave the other cases as exercis'es‘E :
Suppose ye ' (V) and F is a weight k functlon of modular points (L, £).

We first compute:

Fyo) = (Lw, 5‘*—’%‘-’—%) L 0¥ = ),

becais Ly, shoco i = Lo, Gince y€T) and (co + dogN = ol

mod L (since yeT, (N ) We also have -
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FAw) = F(L,,, A0,/N) = 27*F(L,,, 0,/N) = A *F(w).

Next we have

' 1 cz+d
f(yz) ( (az+bY(cz+d)s ) (CZ + d) F( ‘az+b,cz+d> ZT_)y

because F has wexght k. But the lattice spanned by az+band ¢z +d is
L;;and (cz + d)/N = 4 mod L, ; hence

f02) = (cz + d}F (Lz, —‘ﬁ) = (cz + AV(@).
Thus, the F and f corresponding to F have the properties claimed.

To show the correspondence in the other direction, given f(z) we define
F(w) to be w3*f(w,/w,); and given F we define F(L, 1) to be F(w), where ®
is chosen to be any.basis of L such that w,/N =t mod L. One must first
check that the definition of F makes sense (i.e., that such a basis w exists),
and that the definition of F is independent of the choice of such a basis w.
The first point is routine, using the fact that  has exact order N in C/L, and
the second point follows immediately because any other such basis must be
of the form yw with yeI'y (V). It is also easy to check that, once f'is invariant
under [y], for ye I3 (), it follows that Fis invariant under y and has weight
k;and that, if Fhas weight k, then so does the corresponding F. The construc-
tion going from F to F to f and the construction going from f'to F to F are
clearly inverse to one another. This concludes the proof. o

We say that F is a modular function/ modular form/ cusp form if the
corresponding f'is a modular function/ modular form/ cusp form as defined
in §3.

We now discuss the Hecke operators acting on modular forms of weight &
for I'; (N). We could define them directly on f(z) e M, (I', (N)). However, the
definition appears more natural when given in terms of the corresponding -
functions F on modular points.

Let £ denote the Q-vector space of formal finite linear combinations of
modular points, i.e., & = ®@Qe,, is the direct sum of infinitely many
one-dimensional spaces, one for each pair (L, #),'where L is any lattice in
C and teC/L is any point of exact order N. A linear map T: ¥ — % can be

‘given by describing the image Te, , = Za,ep, of each basis element; here
{P,} are a finite set of modular points.

For each positive integer n we define a linear map 7,,: & - % by the

following formula giving the image of the basis vector ¢, ,:

\ T(eL,)=—zey , 62

- ; where the summation is over all lattices L’ containing L with index n such ‘
,tha,t (L, #) is a modular point. (Here for e C/L we still use the letter  to
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denote the image of z modulo the larger lattice L”.) In other-words, L'/L <
C/L is a subgroup of order n, and ¢ must have exact order N modulo the
larger lattice L’ as well as modulo L. The latter condition means that the
only multiples Z¢ which are in L’/L are the multiples ZNt which are in L.
In the case N=1, i.e.,, I" =T, this condition disappears, and we sum
over all lattices L’ with [L’: L] = n. The condition on ¢ is also empty if
n and N have no common factor. To see this, suppose that g.c.d.(n, N) =1,

and suppose that N'ze L’. Then the order of N’ in L’/L divides N (because -

N’Nte L)and divides n (because # L’/L = n), and sodivides g.c.d.(N, n) = L.
Thus N'teL.

Notice that the sum in (5.2) is finite, since any lattice L’ in the sum must
be contained in 5L = {}/|/e L}, because each element of L’/L has order
dividing n = # L’/L. Thus, each L’ in the sum corresponds to a subgroup of
order nin 2L/L = (Z/nZ)>.

Note that T, = 1 = the identity map.

Next, for any positive integer n prime to N we define another linear map

T, n: L —> &by ‘

1
Tn,n(eL,t) = "jl‘ie( 1n)L,t* 6.3)
Note that ¢ has exact order N modulo 1L, because g.c.d.(V, n) = 1. Again
we are using the same letter 7 to denote an element in C/L and the corre-
sponding element in C/:L.
It is easy to check the commutativity of the operators

Ton Topn, = Topnyngn, = Tnguny Tayn s TanTw = T Do (5:4)

L B T ) n2,h2
It is also true, but not quite so trivial to prove, that the 7,,’s commute with
one another for different m’s. This will follow from the next proposition.

Proposition 32. (a) If g.c.d.(m,n) =1, then T,,=T,T,; in particular, T,
and T, commute. '

(b) If p is a prime dividing N, then Ty = T,.

() If p is a prime not dividing N, then for | > 2

Tp=Ty-1T, — pTy-2T, ,. 5.5

PRrOOF. (a) In the sum (5.2) for 7,,,, the L’ correspond to certain subgroups
S’ of order mn in 7 L/L, namely, those which have trivial intersection with

the subgroup Z¢ = C/L. Since g.c.d.(m, n) = 1, it follows that any such S’ -

has a unique subgroup S~ of order n; if L” o L is the lattice corresponding
to S”, then S’/S” gives a subgroup of order m in £L”/L”. Both S” and
S’/S” have nontrivial intersection with Z¢. Conversely, given S” = L"/L
LL/L of order n and a subgroup S’ = L’/L” < 2L"/L” of order m, where
both subgroups have trivial intersection with Zz, we have a unique subgroup

L’|L = #L/[L of order mn with nontrivial intersection with Zz. This shows.
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that the modular points that occur in 7,,,(e ) = #% Z e andin T,(T (e, )
=4ZT,(e.,) are the same. - o

(b) By induction, it suffices to show that T;-17, = T for /> 2. Let
t' =%t Then T(e, )= p~'Ze,.,, where the summation is over all L’ > L
such that L'/L < p~'L/L has order p' and does not contain ¢. Notice that -
L’/L must be cyclic, since otherwise it would contain a (p,. p)-subgroup of
p7'L/L. There is only one such (p, p)-subgroup, namely 5L/L, and resL/L,
since pt’ = Nte L. Once we know that L’/L must be cyclic, we can use the
same argument as in part (a). Namely, for each L’ that occurs in the sum for
T,i(e.,) there is a unique cyclic subgroup of order p in L'/L ; the correspond-
ing lattice L” occurs in the sum for T,(e,,), and L is one of the lattices that
occur in T-1(ey», ). This shows the equality in part (b).

(0) Since p} N, the condition about the order of # in C/L’ is always fulfilled.
We have Ti-1Ty (e, ) =p~' 5.2, e, ,, where the first summation is over
all lattices L” such that S” = L”/L has order p, and the second summation
is over all L' such that S" = L’/L” has order p'*~!. On the other hand, TleL,).
=p~'Z, ey ,, where the summation is over all L’ such that L’/L has order
p'. Clearly, every L’ in the inner sum for T,-1T,is an L’ of the form in the
sum for T, and every L’ in the latter sum is an L’ of the form in the former
sum. But we must count how many different pairs L”, L’ in the double sum
lead to the same L’. First, if L'/L is cyclic, then there is only one possible
L”. But if L'/L is not cyclic, i.e., if L'/L > $L/L, then L” can be an arbitrary
lattice such that L”/L has order p. Since there are p + 1 such lattices (for
example, they are in one-to-one correspondence with the points on the
projective line over the field of p elements), it follows that there are p extra
times that e;. , occurs in the double sum for T,-1T,. Thus,

Tle,) = Ty T(erd)—p p Z €Ly

L's(1/p)L
wypL}=pt=2

But

1 L
Tp-2T, pler) = — Tpi-2€ /1,0 = p Y en.
P : L'y p)L)=p! =2

This concludes the proof of part (c). n|

Ifn=pft - - p}r is the prime factorization of the positive integer n, then
Prop_osi’tion 32(a) says that 7, = Tog, -+ - Tz Then parts (b)—(c) show that
each T, A is a polynomial in 7;:,- and 7;,}., oy It is easy to see from this and (5.4)

- thatall of the 7,’s commute with each other. Thus, the operators T, , (n a

positive integer prime to N) and 7,, (m any positive integer) generate a
commutative algebra # of linear maps from & to &; actually, 5 is gen-
erated by the 7, , (p{N a prime) and the T, (p any prime). ,

There is an elegant way to summarize the relations in Proposition 32 as

formal power series identities, where the coefficients of the power series

~
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are elements in 9? Flrst for pP|N, we can restate Proposmon 32(b) as -

- follows: :

1-T,X°

‘ z T,X"=.— I, : (5:6)

ie, CTy X1 -T,X)=1in #[[X]]. This follows from Proposmon :

32(b) because equating. coefficients, we see that the coefficient of X' is
Tl - Ti-1T,,. Similarly, for p*N part (c) of Proposition 32 is equxvalent
to the 1dermty ’
1 O

, N, 5.7
T e e - 67
i.e., if we multiply both sides of (5.7) by 1 — T,X + pT, ,X* and equate
coefficients of powers of X, we see that (5.7) is equivalent to the equalities

T,=1, T,~T,=0, T—Ty-1T,+pTy-2T,, for 1>2.

To incorporate part (a) of Proposition 32, we introduce a new variable s
by putting X = p~* for each p in (5.6) or (5.7). We then take the product of
. 6) over p with p|N and (5.7) over all p with pJN: _

i 1 .
Tup™" = =%
ﬂll’llplz pINI"T;rp pl)ll—np +T,,,,,p1 z

But, by part (a) of the proposition, when we multiply together the sums on
the left in this equality, we obtain  T,n™%, where the sum is over all positive
integers n. The proof is exactly like the proof of the Euler product for the

S Tuxi =
=0

Riemann zeta-function. We use the factorization n = p{* - -- p;v, and the
relation: T,n™* = (7, %1 P1%%) -+ (Tpa.pr ™). We hence conclude that
2 1 1 ‘
= 11 IS . (5.8)
; pIN 1 Tp~ plN 1- : + Top

For d an integer prime to N, let [d]: & — .? be the Imear map deﬁned .

~ on basis elements by [d]e, , = e, 4. Note that dr has exact order N in C/L
because g.c.d.(d, N) = 1. Also note that [d] depends only on d modulo N,
i.e., we have an action of the group (Z/NZ)* on £.

We now consider functions F on modular points and the correspondmg

functions f(z) on H. Again we suppose that we are in the case I'' = I';(N).
If T: £ — & is a linear map given on basis elements by equations of the .

form T(e, ) = Za,ep,, then we have a corresponding lmear ‘map (which we

also denote T') on the vector space of complex-valued functlons on modular
points: TF(L; ) = L a,F(P,). For example,

[d]F, )= F(L,dt)  (here g.c.d.d, N) = 1_);‘,5”.'. |
T, F(L, )= n‘ZF(IllL, t) (ged.(n, Ny=1);

TR 0= L FL, 0,
>
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) where the last summation is over all modular pomts (L’ t) such that [L’ L]

—n asm(52) i -

Proposnion 33. Suppose that F(L, t) corresponds to a function f(z) on H
which is in M(T'y(N)). Then [d]F, T, ,F, and T,F also correspond to functions
(denoted [d]f; T, wnfs and T, f) in M(Ty(N)). If f is a cusp form, then so are
[d1f, T, .f, and T,f. Thus, [d], T, ,, and T, may be regarded as linear maps
on Mi(I'y(N)) or on'S,(T',(N)): In this situation, let - y be a Dirichlet character
modu{o N. Then fe Mi(N, y) if and only if [d]F = y(d)F, i.e., if and only if

F(L, dt) = y(d)F(L, {) for de(Z/NZ)* (5.10)

PROOF Toshowthat[d]f, T, .fand T, fare invariant under [yl for yel[(N),
by Proposition 31 it suffices to show that [d}F(L, 1), T, F(L, t), and T,F(L,t)
have weight &, ie, [d]FUL, )= A*d]F(L, 1), T, ,FOL, it)=
A7, JF(L, 1), and T, F(AL A= A"*T,F(L, f); but this all follows trivially
from the definitions. We next check the condition at the cusps.
Note that if & = (¢ §)e GL] (Q) and if f(z) corresponds to F(L, 1), then

@[ = (det &) (cz + d)""F(L.,, —j;)

(det a)k/2F< ‘az+b, cz+d9£21-—v‘:‘4)'

In particular, if €T, then this equals F(L,, (cz + d)/N). Next, for each
de(Z/NZ)*, choose a fixed o;eI" such that ¢, = (! 9 mod N. (This is
possible, because g.c.d.(d, N) = 1,and themap I’ - SL,(Z/NZ)is surjective,
. by Problem 2 of §III.1.) We then have

rotods= (L. )= ta1r(L. ) = 1417,

i.e, [d]f=f|[0.)i. Thus, for y,eI" we check (3.8) for [d]f as follows:
[a'] S |[vo)k = f|[6470)x> which has a g-expansion of the required type, i.e.,
[d] fsatisfies (3.8) if fdoes. Similarly, we find that T, ,f(z) = n2F(L,, D=

n*"2F(L,, &)y = n*2[n] f(2), so this case has already been covered.
We next consider the cusp condition for 7, f(z), which is a sum of functions -

of the form ;F(L’, §), where L’ is a lattice coritaining L, with index n. We
; take such an L’ and let (w,, w,) be a basis for L', Since L, < L’ with index n,
. there is a matrix t with integral entries and determinant n such that () = 1w
(@ denotes the column vector with entries o, and w,). We can choose a set
T of such t (independently of z) such that

FOEED) F(L -G, l).

We now consider each F (Lo §), where () = 1(2 1). We find a y€TI such that

1( %) with zero lower-left entry and a, b, d integers with ad = n
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(it is an easy exercise to see that this can be done). The lattice spanned by.
(&) = t7'(5) is the same as that spanned by 730 = #(§ DE)- Thus,

' : 1 ‘ i : a
F <‘L¢o, %7) =F (L(az+b)ln,d/m' ’I‘V‘) =a'F (L(az+b)/a._1, ‘ﬁ)

= d[a]f((az + b)/d).

But if f(2) satisfies (3.8), then so does f((az + b)/d), and [a] also preserves
(3.8), as shown above. This proves the cusp condition for 7, f.

Finally, let y,€ [o(N) be any element with lower-right entry d. As shown
above, f(z)![yd]k = F(Ln }dV) = [d]F(Ln %) Thusa fl['))d]k corf'esponds to
[d]F, and so f|[7s) = x(d)f if and only if [d]F = y(d)F. This completes
the proof of the proposition. o

We saw before (Proposition 28) that a function fe M(I';(N)) can be
written as a sum of functions in M, (N, y) for different Dirichlet characters
y. Thus, using the one-to-one correspondence in Proposition 31, we can
write a modular form F(L, 1) as a direct sum of F’s which satisfy (5.10) for
various X.

Proposition 34. The operators T, and T, , commute with [d], and preserve the
space of F(L, t) of weight k which satisfy (5.10). If F(L, 1) has weight k and
satisfies'(5.10), then T, ,F = n*~*y(n)F.

ProoF. That the operators commute follows directly from the definitions.
Next, if [d]F = x(d)F, it follows that [d]T,F = T,[d]F = y(d)T,F and
(417, .F =T, [d]F = y(d)T, ,F. This is just the simple fact from lineqr
algebra that the eigenspace for an operator [d] with a given eigenvalue is
preserved under any operator which commutes with [d]. Finally, if F(L, #)
satisfies  (5.10), then T, ,F(L,f) = n"2FGL, 1) = n*"*F(L,nt) =
w2 [n]F(L, ) = n*"2y(n)F(L, 1). o

If we translate the action of 7}, T, , and [d] from functions F(L, ?) to
functions f(z) on H, ’then Proposition 34 becomes

Proposition 35. 7, and T, , preserve M(N, y), and also Sk(IcV, x. For

feM(N, y) the action of T, , is given by T, ,f = n* "2 y(n)f. -

Proposition 36. The operators T, on M(N, y) satisfy the formal power series

identity - o
. © o
Y T =Tl = Tp =+ 3P ) - (5.11)

n=1 allp

Proor. We simply use (5.8) and observe that for p}N we have T, ,f ="
P¥"2x(p)f, while for p|N the term on the right in (5.11) becomes (1 —

T,p™*)"! because x(p) = 0. _ , _ u]
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As a special case of these propositions, suppose we take y to be the trivial
character of (Z/NZ)*. Then M(N, x) = M(T,(N)), and the modular forms
Se Mi(N, y) correspond to F(L, {) on which [d] acts trivially, i.e., F(L, t) =
F(L, di) for all de(Z/NZ)*. Such F(L, 1) are in one-to-one correspondence
with functions F(L, S), where S is a cyclic subgroup of order N in C/L.
Namely, choose ¢ to be any generator of S, and set F(L, S) = F(L, 1). The
factthat F(L, 1) = F(L, df) means that it makes no difference which generator
of S is chosen. Conversely, given F(L, S), define F(L, {) = F(L, S,), where
S, = Zt is the subgroup of C/L generated by ¢. So we have just verified that
functions of modular points in the sense of case (iii) at the beginning of this
section correspond to modular forms for Iy(N).

. We now examine the effect of the Hecke operator T, on the g-expansion
at oo of a modular form f(z) e M, (N, y). That is, if we write f(z) = L a,q"
and T,,f(z) = £b,9", g = €™, we want to express b, in terms of the a,.

We first introduce some notation. If fe C[[4]]. f= £ a,q", we define

Vol = Lad™;  Unf=Lag", (512
where the latter summation is only over n divisible by m. Note that U, =

V, =.dentity, and U, 0 V,, is the identity, while ¥, o'U,,, is the map on power
series which deletes all terms with » not divisible by m. Suppose that f(z) =

* Za,q",q = e*™*, converges for ze H. Then we clearly have:
wd >4

) =fore); Ut = LT (D) s

Proposition 37. Let f(2) = £2%.0a,q", g = €2, fe My(N, x), and let T, f(z) =
2 0b.q". Then

bn =’apn + X(P)Pk_lan/p, ) . N (514)
where we take y(p) = 0 if p| N and we take @y, = 0 if n is not divisible by p.
In-other words,

T,=U,+x(pP*'V, on MN,n. (519

ProoF. We have T,f(z) = 3 Z,. F(L’, }), where F is the function on modular
points which corresponds to fand the sum is over all lattices L’ containing
L, with index p such that § has order N modulo L’. Such L’ are contained in
the lattice 3L, generated by % and 4, and the lattices of index p are in one-to-

. one correspondence with the projective line P}p over the field of p elements

F, = Z/pZ. Namely, the pointin Pi with homogeneous coordinates (a,, a,)
corresponds to the lattice generated by L, and (a,z + a,)/p. Thus, there are

~ p+ 1 possible L’ corresponding to (1,j) for j=0, 1, ..., p — 1 and (0, 1).

If p{ N, then all p + 1 of these lattices L’ are included; if p| N, then the last
lattice (generated by L, and }) must be omitted, since 4 has order ¥ in that
case. Note that the lattice generated by L, and (z + j)/p is L.+ jyp- Thus, if
P|N we have T,f(z)=3E28 F(Lyyyp #) = 53004 f(55D) = U, f(@). If
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PIN, then we have the same sum plus one addmonal term correspondmg‘
to the lattice generated by L, and},, this lattice is lL Thus in that case

7;, (Z)v'= Upf(Z) +§F(;‘Lpz’ "1]\7) = —Up @ +pk_lF<LPZ’ 1%)

= pf(z) +pk 11(p)F( pzs ]1V> Upf(z) +Pk_1X(P)f(PZ)’

which is (5.15). The expression (5.14) for the b, follows directly from (5.15)
if we use the expressions (5.12) for the operators V, and U,. u
As a consequence of Proposition 37 we have the factorization

1= T,X + x(pp 7' X7 = (1 - U,X)(1 - 1P TV, X),

where both sides dre regarded as polynomials in the variable X whose
coefficients are in the algebra of operators on the subspace of C[[4]]

formed by the g-expansions of elements f(z) e M(N, 1) To see (5.16), note

that the equality of coefficients of X is precisely (5.15), while the coefficients
of X* agree because U,0¥, = 1.’

" Proposition 38. We have the following formal identity :

Y T = ( Y x(mn*t V,,n's> ( Y U,,n"’), 6.17)
n=1 n=1 n=1
or, eqnivalently,
T,= ) (d)d* Vo Uyy. (5.18)

din

Proor. By (5.11) and (5.16) we find that the left side of (5.17) is equal to
‘ [T = Up™ (U = (2" V™) 7
p

Since the U, and ¥, do not commute, we must be careful about the order of

the factors. Movmg the inverse operation inside the outer parentheses, 'we
reverse the order, obtaining

l—I((1 =P TV ™M A = Upp™) ). |

Note that U and V;,, do commute for p, # p,, as follows immediately from
(5.12). This enables us to move all of the (1 — U,p™%)7" terms to the right

past any (1 — x(p)ps ™'V, p
products with the Vys and w1th the U,’s:

1 1
Hl—x(p).v" Y,p rI1~U s

We now expand each term in a geometrxc series and use the fact that V,,,,,
VoV, and U,, = U, o U,. The result is (5.17). o

(5.16).

5%~ term for p, # p. This gives us separate :
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Proposmon 39. Under the condtttons of Proposztzon 37,if T,,, f@)=

then
b= ¥

" d|g.c.d-(m,n)

0 b’nq"’ ’

(5.'19)

‘mnfd?

wd)d" 'a

PROOF Accordmg to (5.18), we have

T Z anq = ZX(d)dk-lVdo Um/d Z anq

dim
= ZH@d T ag
m/d{n
If we set r =d?n/m, the inner sum becomes Z @ymjq2q" with the sum taken
over all r divisible by d. Replacing r by n and gathering together coefficients
of ¢", we obtain the expression (5.19) for the n-th coefficient. O

‘Most of the most important examples of modular forms turn out to be
eigenvectors (“‘eigenforms™) for the action of all of the T;, on the given space
of modular forms. If fe M(N, y) is such an eigenform, then we can conclude
a lot of mformanon about its g-expansion coefficients.

" Proposition 40. Suppose that f(@2)e M, (N, y) is an eigenform for all of the
operators T,, with eigenvalues Ay, m= 1,2, ...: T,.f = A.f. Let a,, be the
g-expansion coefficients: f(z) = 2 oa,q". Then a, = A,a, for m=1, 2,
. In addition, a, # 0 unless k = 0 and f is a constant function. Finally, zf

a0 ¢ 0, then 1,, is given by the formula
A=Y y(d)d* .

dim

- (5.20)

Proor. Using (5.19) with » = 1, we find that the coefficient of the first power
of gin T,,fis a,. If T, f = 4,.f, then this coefficient is also equal to A mdy -
This proves the first assertion. If we had a; = 0, then it would follow that

.compare the constant terms in 7,,f= 4,f and use (5.19) with n =0, we ’
obtain: 1,a, = by = Zy, x(d)d* ' a,. Dividing by a; gives the formula for-
y - T : o

If fisan elgenform asin Proposmon 40 (with k # 0), then we can multiply
it by a suitable constant to get the coefficient of g, equal to 1:a, = 1. Such
an eigenform is called “normalized”. In that case, Proposition 40 tells us .~
that a,, = 4,, is simply the elgenvalue of T,,. If we then apply the operator

coefficients of f ‘Namely, applying both sides of (5.11) to a normahzed
elgenform fe M (N, y), we have:

Z s = H(l = a,,p" + x(p)p" 1=z,

all a,, = 0, and f would be a constant. Finally, suppose that a, # 0. If we =

1dent1ty (5.11) to the eigenform £, we obtain identities for the g-expansion =
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EXAMPLES., 1. Let N= 1,’ and let k > 4 be an even integer. Suppose that
f=Za,q"e M,(T') is an eigenform for all of the T,,, and suppose that a, # 0
and f is normalized (i.e., @, = 1). Then Proposition 40 says that f = a, +

X 0,-,(n)g". But recall the Eisenstein series E, =1— %&Z o1 (M) g" (see

(2.11)). Thus, f an —7,;Ek are two elements of M, (I") which differ by a
constant. Since there are no nonzero constants in M, (I'), they must be equal,
i.e.,a, = — B,/2k. Therefore, up to a constant factor, any weight k eigenform
for I which is not a cusp form (i.e., g, # 0) must be E,. Conversely, it is
not hard to show that E, is actually an eigenform for all of the 7,,. This can
be done using the g-expansion and (5.14) (it suffices to show that it is an
eigenform for the 7,,, since any 7,, is a polynomial in the operators T, for p
prime). Another method is to use the original definition of 7, on modular
points, applied to G (L) = Zouc I ™

2. Let N=1, k=12. Since S,,(I") is one-dimensional, spanned by
@n)*2A(2) = T2, t(n)q" (see Propositions 9(d) ‘and 15), and since the T,
preserve Si(I), it follows that f= Zt(n)q" is an eigenform for T,,. It is
normalized, since ©(1) = 1. Then Proposition 40 says that T, f = t(m)f for
all m. Thus, the relation (5.11) applied to f gives

0 - 1
; T I.l L—tw(p)p~+p

This Euler product for the Mellin transform of f= X 1(n)q" is equivalent to
the sequence of identities (see Proposition 32):

T3 (5.21)

t(mn) = 1(m)t(n) for m, n relatively prime;

(0" = 1(p*)e(p) — pHia(p'2).

Ramanujan conjectured that in the denominator of (5.21) the quadratic

1 — w(p)X + p''X? (where X = p~*) has complex conjugate reciprocal roots
«, and &,; equivalently, 1 — (p)X +p"'X? = (1 — o, X)(1 — @, X), ie,
1:( p)=ua, + @, with |o,| = p* "2, From this it is easy to conclude that It( Pl <
Zp“/2 and more generally, |t(n)| < go(m)n**? (see the proof of Proposition
13 in §I1.6). The Ramanujan conjecture and its generalization, the
Ramanujan-Petersson conjecture for cusp forms which are eigenforms for
the Hecke operators, were proved by Deligne as a consequence of the Weil
conjectures (see [Katz 1976a]).

The Euler product (5.21) is reminiscent of the Hasse~Weil L-series for
elliptic curves. For more information on such connections, see [Shlmura
1971}.

3.Let N=4, y(n) = G = (= D" V2 for n odd. We saw that M, (N, )
is one-dimensional and is spanned by ©2. If we apply Proposition 40 to

102=L4qg+ - +A,9"+ '~-,weﬁndthat}.,,,=Z(-=al-),wherethesum."

is over odd d dividing m. For example,

1 {0 if p = 3 (mod 4); o
Ap=1+ = ; _ s
(.p) {2 if p = 1 (mod 4). o (5.22)
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Smce A 18 one-fourth the number of ways m can be written as a sum of two .
squares, we have recovered the well-known fact that p can be so expressed
in eight ways if p =1 (mod 4) and in no way if p =3 (mod 4). That fact is
usually proved using factorization in the Gaussian integers Z[i]. The
Gaussian field Q(i) has discriminant —4, and corresponds to the character
x of Z having conductor 4: y(n) = (31). Let 1 denote the trivial character of
(Z/4Z)*, and let p denote the two-dimensional representation (§ $) of
(Z/4Z)*. Then we can write (5.22) in the form 4, = Tr p(p). This turns out
to be a very special case of a general fact: a normahzed weight-one eigenform
in M, (N, y) has its g-expansion coefficients determined by the trace of a
certain two-dimensional representation of a certain galois group. For more
information about this, see [ Deligne and Serre 1974]. - -

Another approach to Hecke operators. Let Ty and T, be two subgroups of
some group G. :

Definition. I'; and I, are said to be “commensurable” if their intersection
has finite index in each group: [I';: Iy N ] <o, [[:TynT,] < co.

Basic ExaMPLE. ‘Let I be a congruence subgroup of I' = SL,(Z), and let
2eG = GL;(Q). Then I'" and o 'I"« are commensurable. To see this,
suppose I'" o ['(N). By Lemma 1 in the proof of Proposition 17, we have
Ao 'T"a s> T(ND) and T nal’a™* o T'(VD) for some D. Let I'”

T"'Aa'lMa. Then T”>T(ND), al"a”' > T(ND). Thus, [I'": F”]<
[[:T(VD)] < @, and also [a'T"a: "] = [I": ol "a™'] < [[: T(ND)]

< .

Definition. If I';, I', « G and «€ G, then the double coset I'; al’, is the set of
all elements of G of the form y,ay, with y, €Ty, y,eI,. Notice that I';al’,
contains the right coset I';a, and in general is a union of right cosets of the
form Iy ay,.

Proposition 41. Let I = G be any subgroup of a group, and let € G be any
element such that T’ and o 'T"'0 are commensurable. Let T” =T na™'T"o.
Let [I":T"] =d, and write T" = | Ji-, T"y;. Then T'al" = { Ji_; T"oy] is a
disjoint union of d right cosets. Conversely, if T'al” = ( )., [ay] is a disjoint -
union of d right cosets, then T = | )i, T"v;.

ProoF. Given an element ylcxyz with y,, yze IV, we can write yz =""y; with

“y”eI”” for some j. Since y”"eo™'I"o, we can write 9" = a"'y’a, so that
Yoy = proe” )y = (7)) eI"cxy, We must show that the right cosets

F’oc'yj are distinct for different j. Suppose y,ay] = y,ay,. Then ¥y ™' =
o yrty,eea” M. Since yjy~ €7, it follows that y;y, ' e T, ie., y e Ty,

and'so j = k. The converse assertlon is also routme, so we shall omit the

detalls : _ , ) : . u]
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We shall define Hecke operators in terms of double cosets for a large class
of congruence subgroups of I', a class which includes T;(N), I,(N) and

. T'(V) as special cases. Then we shall show that in the case of I';(V) this

- definition coincides with our earlier definition of the operators T, acting on
M(Ty(N)).

Let S* be a nonzero additive subgroup of the integers, i.e., S* = MZ for
some positive integer M. Let S* be a subgroup of (Z/NZ)*. We shall also
use S to denote the subset of Z whose image modulo Nisin §*. (If N = 1,
then we agree to take S™ = Z.) For example, if $* = {1}, then we also use
S to denote 1 + NZ < Z. Let n be any positive integer. We define

AY(N, §*, S*) = {integer matrices (¢ 3)| N|c,aeS*, beS*, det (¢ §)=n}.
(.23)

If N =1and §* = S* = Z, then A" is simply the set of all 2 x 2-matrrces
with determinant n. It is easy to check that

A™(N, §*, 8)-A"(N, §*, §*)< A™(N, §*, 8™), (5.24)
and that A1(N, $*, §*) is a group. A'(N, §*, §*) is clearly a congruence

subgroup of I', since it contains I'(N’), where N’ is the least common

multiple of M and N (recall S* = MZ). Here are our familiar examples:
LNy =A'N, {1},2);  ToN) = A'(N, (ZINZ)*, Z);
I'(N) = AY(N, {1}, N2).

Definition. Let I'” be a congruence subgroup of T, and let xe GL (Q). Let :

I"=I"na Iy, and letd =[I":T"], T = =1 I'"y;. Let f(z) be a func—
tion on H which is invariant under [¥], for - G F Then

S@|[T"el ], dﬁ gf(z)l[a%]k- (5.25)

Proposition 42. f(z)][I“’ocI“’],‘ does not change if o is replaced by any other
representative o’ of the same double coset: T'o’T” = I""al"". Nor does it depend
on the choice of representatives y; of T modulo T". If fe M(T"), then
I oT ) e M. .

Proor. We first prove the second assertion, that is, that (5.25) is unchanged :

T

if ] is replaced by 3 7{, where j/ e I"”. Since I'” = «~'I”a, we have Y= y,
for some 5,€T". Then f{[os/ ;1 = £ |[37 ] =/ |[37];, because £|[7;]; = /.

Next, we observe that, by Proposition 41, the sum on the right in (5.25) can 2

be written X f(2)|[« ]k, where- the «; are any elements such that I"ol " =

(JTa;. It is then immediate that the definition depends only on the double .-

coset F’aF " and not on the choice of representative «. Finally, suppose that

JeM(I). If yel”, then (f[[r’od“ N = Zf|levpyle = f|[ToT T,
. since right multxphcanon by y just rearrcmges the right cosets IMay]. If
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satlsﬁes the cusp conditions, then so does f |{eeyi]x for each j, by Lemma 2
in’ the proof of Proposmon 17. This completes the proof of Proposmon 42.
; 0

Definition. Let I = A'(N, S*, S"), and let n be a positive integer. Let

feM,,(F’). Then . .
T gn* P STl T (5.26)

where the sum is over all double cosets of I'” in A"(N, S, S¥).
By Proposition 42, we have T, fe M,(I").
_ Equivalently, we can define

Tof=n*271 3 f|[a ]k’ (5.27)
where I"a; runs through the nght cosets of I in A"(N, §*, S™).

Proposmon 43. In the case F’ =T 1(V), the definition (5.26) agrees with our
earlier definition of the Hecke operators T,. . )

'PROOF. Let A" = A*(N, {1}, Z). For each ae(Z/NZ)* we fix 6,€I" such that

g, = (** 9 mod N. O
Lemma. :
b .
A" = | Y0 5.28) -
dkgn! 1( )a (O d) ( )

' where the disjoint union is taken over all positive a dzvldmg n and prime to N,

and for each such a we set d = nja and take b =0, 1, ,d— 1.

PROOF OF LEMMA. The terms on the rrght in (5.28) are clearly contained in
A". Suppose the union were not disjoint. Then for some a’, &', d’ = nj/a’ we
would have y,0,(8 %) = y,0,(5 5), and so I'' would contain the matrix
GG P =4 ) then @ =a, d’=d, and so (§ = ()G 1) for
some j, i.e., b= b"+ jd. If 0 < b, b’ < d, this means that b b,

To prove the lemma, it remains to show that any « = (% 5)eA" is in one
of the terms on the right in (5.28). Choose g, 4 relatively prime so that
ga’ + he’ = 0, and complete the row g, & to a matrix y = (§ )eI". Then ya
has determinant # and is of the form (§ %). Replacing y by +(}) 1)y if neces-
sary, without loss of generality we may suppose that ye = (§ %) witha > 0,
ad=n, 0 <b <d. Then, considered modulo N, the equality o= y71(3 }
gives (§ ) = (" 9 Y, ie., y ' is of the form y,4, for some y, eI, (N).
Thus, & = y,0,(3 d)el"l (N)o, (8 & , as desired. This completes the proof of
the lemma 3 n

.Wenow prove the proposition. Let 7™ be the linear map on M, (I',(N))
deﬁned by (5.26) (or (5.27)), and let T°"‘ be the earlier definition. Since’
Mk(I‘l(N ) = @, My(N, y), it suffices to show that T2 = 72" on M,(N. 7).
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Let fe M, (N, ). By the lemma, we have

Trevf = n®-1%" £|[a,(8 Dl

Since f& M (N, x) we have f [[o.c = 2(a)f. Also, for each a > O and d with
ad = nwehave

:z:::f(z)‘[(g 5)],‘ = g k/zd-kf<az + b)

=, 0dU,f(2),
by (5.13). Thus,
Tnewf__~ n(kIZ)—l zx(a)nklzdl kV ) Udf

aln

(The sum is over @ > 0 dividing » and prime to N; but the term x(a) ensures
that the terms with g.c.d.(a, N) > 1 will drop out.) Thatis,

T3 = ¥ 1@a* " V,0 Uy, = T34,

aln

by (5.18). This proves Proposition 43. ‘ , o

In many situations, the definition of 7, in terms of double cosets is more

convenient than the definition in terms of modular points. For example, we
shall use this definition below to show that T, is a Hermitian operator with
respect to the Petersson scalar product. Moreover, the double coset approach
can be generalized to situations where no good interpretation in terms of
modular points is known. We shall see an example of this in the next chapter,
where we shall define Hecke operators on forms of half-integral weight. For
a more detailed treatment of the double coset approach in a more general
context, see [Shimura 1971].

The Petersson scalar product. Suppose we have an integral over some region
in the upper half-plane and make the change of variable z+»oaz = <352,
where a = (¢ 7,’;)eGL§' (Q). If we have a term dxdy/y? in the integrand, this
does not change under such a change of variable. To see this, we compute:

dez _ deta | Imoaz  deta
dz (cz+d)?’ Imz |ez+d]*

In general, if we make a differentiable change of complex variable z, = u(z),
then the area element dxdy near z is multiplied by |«/(z)|* (see Fig. IIL.5).

- (5.29)

Thus, interpreting the first equality in (5.29) in terms of the real variables -

" x=Rezand y=1Im z, we see that an element of area near z is expanded
by a factor |doz/dz|* = (det @)?/|cz + d|*. Thus, dxdy/y* is invariant under
the change of variables, by (5 29)

Proposition 44. Let I < F be ‘a congruence subgroup, let F ‘< H be any -

Jundamental domain for I, and define -

VN ~
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N4

Figure IIL.5

, dxd
p) = J yzy ) (5.30)
.

Then }

Q(a)v The integral (5.30) converges and is independent of the choice of F'.

(b) [T:T"] = p(I")/u().
(c))' EfozeGL;(Q) and a 'T"a = T, then [F "=[T:aTa].

ProoF. First let [T:T"]=4d, let T =4, o1, and take F'= Uoz"F
Notice that the integral for u(I') converges, because

1/2 ©

dxc21y<f : J ¥y~ 2dydx = 2
. F Y J-12JV3)2 \/§
If for each j we make the change of variables z—a;z, we find that
Ja “1pdxdy|y* = [pdxdy[y*; hence, for our choice of F” we find that the
mjtegral in (5.30) converges to du(I'). Suppose we chose a different funda-
mental domain F, for I'". Then we divide F; into regions R for which there
exists eI with «R = F’, and again we use the invariance of dxdy[y* under
zk>az to show that the integral over R < F; and the integral over the
correspondmg region aR in F"are equal. Finally, to show part (c), we note
that a~'F’ is a fundamental domain for ™ 'I""a.. Since

J‘ dxdyzj dxdy
a”1F y? rY ’

it follows that u(x™'T"a) = u(I”), and so part (c) follows from part (b). - ©

Now suppose that f(z) and g(z) are two functions in M,(I""). We consider
the function f(z)g(z)y where the bar denotes complex conjugation .and

=Im z. If we replace the. variable z by az for ae GL3(Q), we obtain:
f(otz)g(az)y"(det a/|cz +d|?)*, by (5.29). But this is just ( f@|[do)
(g(z)][oc]k) y*. Thus, the effect of the change of variable is to replace f by
f I[“]k and g by g l[“]k

’ Deﬁmtlon LetI"<T bea congruence subgroup, let F' be a fundamental
domam for I/, and let £, ge M(T"), with at least one of the two functions f,
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g a cusp form. Then we define

o

dxdy
K, g>(,e,[r = f 1 )g(z)y*

It is immediate from this definition that {f, 9> is linear in f and antilinear

in g (i.e., {f, cg) = T f, g)), it is antisymmetric (i.e., g, > = {f, g)), and .

also {f,f> > 0 for f# 0. These are the properties one needs in order to

“have a hermitian scalar product. We shall return to this later.

Proposition 45. The integral in (5.31) is absolutely convergent, and does not
depend on the choice of F'. If T is another congruence subgroup such that
[, ge M (T'"), then the definition of {f, g) is independent of whether f, g are
considered in M, (I"") or in M, (I'").

Remark. The term 1/[T:T"] in (5.31) is needed in' order to have the

second assertion in the proposition. The requirement that f or g be a cusp
form is needed to get convergence of the integral, as we shall see.

ProOF. First take F* = | ) aj'F, where T = ) o,T". In each region o ! F make
the change of variables which replaces z by o; 'z, thereby transforming the
integral into

dxdy

» f O\ 1@ T

Since /, g€ M(I"), we can write f|[e; '], = Zi2 oa..qN,gl[a e =T 0 budis
with either a, = 0 or b, =0, since f or g is a cusp form. Because |gy| =

|e2mi= M| = e ?"”” and y > £ in F, and because a, and b, have only polyno-

mial growth (see Problem 19 in §3), it is not hard to see that the integral is
absolutely convergent. Next, if F, is another fundamental domain, we
proceed as in the proof of Proposition 44, comparing [g f(2)g(2)y* 2dxdy
with {,z f(2)g(z)y*~2dxdy, where R is a subregion of F, and «R, with aeI”,

is the corresponding subregion of F’. Making the change of variable !
z—>az and using the fact that f|[«], = f, g|[«]; =g, we find that the two |

integrals are equal.
Fmally, _suppose f, ge M(T'"). First suppose that I'” < T’. Writing
U,é I, F” =) 67 F’, we have

f f(z)g(z)y"d’“’y

[T r'
1
il [r' r"

g; and there are [T": T'] values of /. We thus obtain the right side of (5.31).
IfT” ¢ I, we simply set T =T AT, and show that (5.31) and (5.31)

with I'” in place of I'” are each equal to (5.31) &'

completes the proof of Proposition 45.

631

J S (z)|[5, l]kg(z)|[5x 1]1:)’" dxdy ;

'Butall of the summands on the right are equal, since f|[6; 1], =/, g|[6; ‘],‘ =

~ 7 in'place of I'”. This
o
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Prbhbsition 46. Let f,ge Mk(l‘") with f or g a cusp form. Let a.€ GLE (Q). Then

‘ S 9> = <S[2des glledi>- - (5.32)
PROOF. Let I” =I" nol"a~". Then f, geM ("), and fl[a]., g|ladie
M, (0"*T"a) by Proposition 17(a). Here a ™ 'I"a = o« ' T"a nT". Let F” be a

fundamental domain for I'”, and take o F” as a fundamental domain for
o~ 'T"a. Then the right side of (5.32) is

f f(z)l[aJkg(z)I[a]ky""""y

[r d“lr//
N dxdy
—l rll
Since [T: o 'T"a] = [T: T"] by Propositxon 44(c), we obtam the left side
of (5.32). 0

Now for « e GL} (Q) we note that « can be multiplied by a positive scalar
without affecting [oc],(, So without loss of generality we shall assume in
what follows that « = (¢ %) has integer entries. Let D = ad — bc = det «, and
seta’ = Do~ = (4 ). Then [a™'], = [a'];.

Proposition 47. With f, g, o as in Proposition 46,

<Slede 90 = < S gllo L. (5.33)
In addition, { f |[«]i, g) depends only on the double coset of o« modulo T".

ProOF. If in (5.32) we replace g by g|[«™'], and replace I by I" nal"a ™",
then Proposition 46 gives (5.33). Now suppose we replace « by y,ay, in
{f|[ad, g>. We obtain {f|[n1av,]s, 9> = {F|[p1oi 9|lv2 " T = (S| [l
9, because fis invariant under [y, ], and g 1s invariant under [y5'];, since
1, ¥z €T , : o

'Propbsition 48. Let T"=T{(N), A"=A"(N, {1}, Z) (see (5.23))." Let f,
ge M (I'") with f or g a cusp form. For each de (Z|NZ)*, fix some o,€T such
that 6, = (** 9) mod N. Let n be a positive integer prime to N. Then {T,f, g} :

=< flode Tu9>- Inparticular, if fe M(N, 1), th€n<Tf g) X< f, T,
forn przme to N.

PRQOF If o=( 5eA" then a=(} Y mod N, o = (}
0,0/ = (5 ;") mod N. Thus, 0,8’ A". By deﬁnmon,

T, f = n2 Zf][r’ar T
where the sum is over the distinct double cosets of I'" = A' in A™. Let d,
denote the number of right cosets in I"aI”. Then d, = [I" I'na 'Ta] by .
Proposmon 41.By (" %), (5.25) and the second assertion in Proposition 47,
we have ‘

) mod N, and
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(Tofy gy =D Y d L f|[]r 9, ‘
where the sum takes one a from each double coset. The map I"al”
I'"(0,&")I"" permutes the double cosets. Namely, if we had 0,0 and g,a) in
the same double coset y, 6,01y, = 0,03, then taking inverses and multlplymg
by n would give

-1 ~1,=1 _ ~1
Y2 %10, "Y1 = %0, 7,

ie., a; = y,0,5(0,71y,0,). Since ;1T (N)a, =T;(IV), we have a, " azl"’
and so «; and «, are in the same double coset. Next, we observe that Ay
d,, because

"N (6,0) T, =T noo; ' Te,0™ =" nal’a™?
=al  TanT)a™?,
and so -
d,=[I": T na'Ta] = [[": ' A (0,0) ' To,@] = d, ,
by Proposition 44(c). Thus,

(LS, 9> =n*P71 3 d, A fllo: ]k, 9> = n*D7' Y d  fllo.]e, 9[>

by Proposition 47. This equals <f|[o,]i, 7,97, as desired. Finally, if
JeM(N, y), then f|[s,] = x(n)f, so we obtain the final equality. w}

A basis of eigenforms. We first remark that for any congruence subgroup
I'" and any integer k, the C-vector space M, (I") is finite dimensional.
One way to show this would be to take a fundamental domain F’ for
I of the form F’ = Jo;*F and integrate f"(z)/f(z) around the boundary
for nonzero fe M (I'’), as in the proof of Proposition 8 of §III.2, thereby
obtaining a bound on the total number of zeros of fin a fundamental domain.
But if M, (I'") were infinite dimensional, by taking suitable linear combina-
tions one could obtain nonzero fe M, (I"") which vanish at any given finite
set of points in F’. Alternately, one could prove finite dimensionality, and
even obtain formulas for the dimension, using the Riemann—Roch theorem
(see [Shimura 1971, §2.6]). ,

The Petersson scalar product (5.31) gives a hermman scalar product on
the finite dimensional C-vector space S,(I""). That is, { f; g is linear in fand
antilinear in g, it is antisymmetric, and { £, f> > 0 for f # 0, as we remarked
when we gave the definition (5.31).

Proposition 50. Let n be a positive integer prime to N, and let y be a Dirichlet
character modulo N. Let c, be either square root of ¥(n). Then the operator
¢, T, on S (N, y) is hermitian, i.e., {c,T,f, g> = {f, c,T,g>.

Proor. {c,T,.f, 9> = c.{T.f, 9> = c,x(W{Sf, T,9> = ¢, c2{f, T,g9> =
& fs Tug> = {f, ¢, T,,9>, as claimed. u]

-
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We saw before that eigenforms for the T, have nice properties: the - -
coefficients can be expressed in terms of the eigenvalues for the 7, and the
corresponding Dirichlet series have Euler products. Because of Proposition
50, 1t is possible to ﬁnd a basis of such forms. o

Proposmon 51. There exists a basis of the C-vector space Sk(N 2 whose
elementq are eigenforms for all of the T, for which g.cd.(n, N) = 1.

ProoF. For any fixed T, with g.c.d.(n, N) = 1 and any subspace S = S, (N, 1)
which is preserved by T, there exists-a basis of S consisting of eigenforms.
of T,. To see this, we apply the following basic fact from linear algebra (see
[Lang 1984, §X1V.12]) to the hermitian operator ¢,7,: Given any hermitian
operator T on a finite dimensional C-vector space S, there exists a basis of
S consisting of eigenvectors for 7. We further note that any eigenspace for
T, is preserved by all T,,., as follows from the fact that 7, and T, comimute:
if T,f = A,f, then T(T,.f) =T, T,f = A,T, f. (This remark does not require
n or ' to be prime to N.) Thus, to prove the proposition, we list-the 7, for
n prime to N (actually, it suffices to work with the 7}, for primes p/ N, since
any eigenform for them is an éigenform for the 7, with n prime to N). We
write S,(N, ) as a direct sum of eigenspaces S for the first 7, in the list.
Then we write each S as a direct sum of eigenspaces for the next 7, ; then we
write each one of those spaces (which is an eigenspace for the first two T,’s)
as a sum of eigenspaces for the third 7,; and so on. Because S;(N, y) is
finite dimensional, after finitely many steps this process must stop giving us
any new smaller spaces.. At that point S;(N, y) is expressed as a direct sum
of subspaces on each of which the 7, for n prime to N act as a scalar. Any
basis consisting of forms in these subspaces will satisfy the requirements of
the proposition. .o

Proposition 51 does not quite give us what we want, because-of the
restriction that » be prime to N. In order to have vé‘m Euler product (as, for
example, in (5.21)), we would also want our basis forms to be eigenforms
for T, for p| N. One way we could ensure this is if we found that the eigen-
spaces for all of the T, with »n prime to N are each one-dimensional, because
we know that the T, for p| N commute with the 7, and so preserve each
eigenspace. Such an assertion is called “multiplicity one”, i.e., each set of
eigenvalues for the 7, with » prime to N corresponds to only one.eigenform
in:the basis that was constructed in Proposition 51. Multiplicity one does
not hold in general; however, it does hold if we restrict our attention to
forms which do not come from lower level. We now explain what this means.

If d,d, = N and fe M, (I, (d,)), then we also have fe M, (I";(NV)) and also
g(‘z)";—-e:f f (d,2)e M (T'y(N)) (see Proposition 17). The subspace of S,(I';(N))
spanned by the forms obtained in these two ways from forms fe S, (I, (d))

/for proper divisors d| N iscalled the space of ““old forms”. It is not hard to

/ show that all Hecke operators preserve this space. The orthogonal comple-
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ment to the space of old forms with respect to the Petersson scalar product

is called the space of “new forms™. In other words, a form fe §,(I';(N))isa .
new form'if and only if <f,¢> =0 and <f,g|[% 91> =0 for every ge

S(I'1(d,)), where d,d, = N, 1 < d, < N.Itcan then be shown that the space

of new forms has multiplicity one; thus, Proposition 51 holds for the space

of new forms without the condition that n be prime to N. For details, see
Chapter VIII of [Lang 1976].

Another question not answered by Proposition 51 is the existence of a
basis of eigenforms for all of M, (I',(V)). Here we cannot consider { , > as
a scalar product on M (T;(N)), because < f, g> makes sense only if f or g
isa cusp form. Instead, one can use the explicit construction of Eisenstein
series in §I1I.3 above, directly constructing eigenforms. Then M, (T';(N)) can
be written as the orthogonal direct sum of S,(I'; (V) and a'space spanned by
Eisenstein series which are eigenforms. (In fact, an intrinsic definition of an
Eisenstein series, which generalizes to many other situations, is: a modular
form which is orthogonal to all cusp forms.) The dimension of the space of
Eisenstein series turns out to be the number r of regular cusps of I'y (V).

Roughly speaking, in order for a modular form to be a cusp form it must

satisfy r conditions (vanishing of the constant term in the gy-expansion), one
at each regular cusp; and so S, (I'; (V)) has codimension r in M (I'; (N )). For
more information on Eisenstein series, see, for example, [Gunning 1962].

PROBLEMS )
1. Prove Proposition 31 in cases (iii)~(iv), i.e, I = Lo(N), T(NV).

2. (@) Letay = (§ 7§). We saw in Problem 15 of §I11.3 that [ty ], preserves M, (I (IV)).
Prove that the Hecke operator 7, commutes with ay for # prime to N.
(b) Let F=Z,440,(n)q", ®* =X, a,q"e M)(T'y(4)) (where a, equals the number
of ways n can be written as a sum of four squares). Write the matrix of 7; in the
basis @4, F, and find a basis of normalized eigenforms for 7.
{(c) Showthat T, does not commute with o, (see Problem 15(c) in §I11.3).

(d) Suppose # is odd. Since 7, commutes with o, and T, it preserves each eigen- ;

space in part (b) and each eigenspace in Problem 15(c) of §II1.3. Show that the
operator T, on the two-dimensional space M,(I'y(4)) is simply multiplication
by o, (n).

(e) Derive the following famous formula (see, for example, Chapter 20 of [Hardy

and Wright 1960]) for the number of ways n can be written as a sum of four o

squares:
{80,(}2) for n odd;
" \24a,(ny) for n = 2"ng even, 2)n,.

3. If fe M (N, ), show that f(o0) = 0 implies 7, f(oo) 0, but that f(s) = 0 does not
necessarily imply 7, f(s) = 0 for other cusps s (glve an example).

4. (a) Show that if fe My(N, x) and g(z) = f(Mz), then geM,‘(MN x ), whete 1 is :.-
defined by X' (n) = x(n mod N) for ne (Z/MNZ)*. Let T, be the Hecke operator- .
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= considered on M,(N, x), and let T, be the Hecke operator considered on
"~ M (MN, x'). Suppose n is prime to M. Show that for feM,‘(N 20 < M (MN, ¥)
- and g(2) = f(Mz)e M,(MN, y') we have:

Lf=Tf; T4@)=(T)(M2).

() Let £(z) = (1(2)n(22))%, g(2) = f(22) € S5(To(4)) (see Problem 18(d) of §IIL.3).
' Show that for odd #, 7, acts on the two-dimensional space Sg(I'o(4)) by multi-
- plication by a scalar.
(c) , Find the matrix of T, acting on Sg(I'y(4)) in the basis £, g; then find the basis of
normalized eigenforms for all of the T,,.

5. i.gtf, geM(N, %) with f or g a cusp form. Let p|N. Note that T, = U,. Show that
(T.f, 9> =P S Vo).

6. Let f; = 2n)"**A%, f, = (2n) *2AE,, where (2r)"'?A = gI1,(1 — ¢")** and E, =
1= 5042 o5(n)y". We know that S,,(I') is two-dimensional and is spanned by f;
and f, (see §II1.2).

‘(a) Give a simple reason why f, is not an eigenform for the Hecke operators.

(b) With the help of a calculator, find the matrix of the Hecke operator T, in the
basis £, f5.

(c) Express in terms of f; and f; the basis for S,,(I") consisting of normalized eigen-
forms for all the 7;,.

(d) Express in terms of f; and f; the cusp form whose n-th q-expansxon coefficient
is the trace of T, on S,4(T).

(e) Find Tr T; from part (d), and also directly by compuung matrix entries.

In thlS problem one encounters fairly large numbers; for example, the coefﬁcnents in
part (c) are in Q(,/144169). While Proposition 51 guarantees the existence of a basis of
normalized eigenforms, it does not guarantee that it will always be easy to find it
computationally.

7. Let (L, t) be a modular point for I', (V). Let e A"(N, {1}, Z), and let yeT';(N). For
each ¢ and y, consider the lattice L’ = tayL. Show that L’ is a lattice which contains
L with index n, that L’ depends only on the right coset of I'; (V) in A"(N, {1}, Z)
which contains &y, and that ¢ has order N in C/L’. Show that the L’ in (5.2) are in
one-to-one correspondence with the right cosets of I'; (N) in A"(WV, {1}, Z). Use this
to give another proof of Proposition 43 by comparing (5.9) and (5.27):

8. Let fe M(T,(p)).
(a) Show that yo=1and y;=(} ), 0<j<p, are rlght coset representatxves for
~. T modulo I'y(p).
-(b) Let Tr(f) be defined by: Tr(f) = ZL,f|[7;]i. Show that Tr(f)e M(I). ‘
(c) If f happens to be in Mk(l"), then show that Tr(f)=(p+1)f, and
UG O =



CHAPTER IV
Modular Forms of Half Integer Welght

Let & be a positive odd integer, and let 4 = (k ~ 1)/2. In this chapter we shall .

look at modular forms of weight k/2 = 4 + 1/2, which is not an integer
but rather half way between two integers. Roughly speaking, such a modular
form f should satisfy f((az + b)/(cz + d)) = (cz + d)**'*f(2) for (¢ §) in
I = SL,(Z) or some congruence subgroup I'’ < I'. However, such a simple-
minded functional equation leads to inconsistencies (see below), basically
because of the possible choice of two branches for the square root. A subtler
definition is needed in order to handle the square root properly. One must
introduce a quadratic character, corresponding to some quadratic extension
of @. Roughly speaking, because of this required “twist” by a quadratic
character, the resulting forms turn out to have interesting relationships to
the arithmetic of quadratic fields (such as L-series and class numbers).
Moreover, recall that the Hasse—~Weil L-series for our family of elliptic
curves E,:y*=x®>—n%x in the congruent number problem involved
“twists” by quadratic characters as n varies (see Chapter II). It turns out
that the critical values L(E,, 1) for this family of L-serles are closely related
to certain modular forms of half-integral weight.

One classical reason why modular forms were studied is their use in

investigating the number of ways of representing an integer by a quadratic
form: m = Z% ., Aynn, = [n]'A[n], where A = [A;] is a given symmetric
matrix, [n] is a column vector and [#]' the corresponding row vector. For
example, the number of ways m can be represented as a sum of k squares is
equal to the coefficient a,, in the g-expansion of ©%:

®"=l'[ Y ¢i= i q‘"f=2amq"'.

j=1 nj=-oo Ny, ==

‘ ‘§l. Dg_ﬁnitions/andcxamples . . ' 177 -

character modulo 4 defined by f-1(m) =G = ( 1)~V More generally,
for k even one can use X, ¢4 to construct modular forms of weight k/2.
The properties of modular forms are then useful in studying the number of
representations m = [n]'A[#]. For example, in Problem 2 of §I11.5 we used
the action of the Hecke operators on M,(T'y(4)) to derive a simple formula
for the. number of ways an integer can be written as a sum of four squares.
For more information about the connection between quadratic forms in k
variables and modular forms of weight k/2, see, for example [Gunning
1962] and [Ogg 1969].

It is natural to ask whether a similar theory exists for quadratic forms in
an odd number of variables. This would be a theory of modular forms of
weight k/2 where k is an odd integer. One would want ©* for k odd to be an
example of such a form. Early investigators of representablhty of aninteger
as a sum of an odd number of squares—Eisenstein, and later G. H. Hardy—
understood the desirability of such a theory of modular forms of half-
integral weight. But it was only recently—starting with Shimura’s 1973
Annals paper—that major advances have been made toward a systematic
theory -of such forms which rivals in elegance and beauty the much older
theory of forms of integral weight.

In this chapter we shall first present the basic deﬁmtlons and elementary
properties of forms of half-integral weight, largely following [ Shimura 1973a,
1973b}, but with slightly different notation. We shall discuss examples in
some detail. But when we come to the fundamental theorems of Shimura
and Waldspurger, we shall not give the proofs, which go beyond the scope
of an introductory text. Rather, we shall motivate those theorems using. the
examples. Finally, we shall conclude by returning to the congruent number
problem and Tunnell’s theorem, which we used in Chapter I to motivate
our study of elliptic curves. -

§1. Definitions and examples

We shall always take the branch of the square root having argument in
(—m/2, n/2]. Thus, \/E is a holomorphic function on the complex plane with
the negative real axis (— oo, 0] removed. It takes positive reals to positive
reals, complex numbers in the upper half—p]ane to the first quadrant, and
complex numbers in the lower half-plane to the fourth quadrant. For any
integer &, we define z¥? to mean (y/z)".
Whenever we have a transformation rule such as f(yz).= (cz + d)"f(z)
(where y= 5, yz=(az + b)/(cz + d)), we call the term (cz + d)* the
“automorphy factor”. It depends on y and on z. That is, an automorphy

factor J(y, z) for a nonzero function fhas the property that f ('yz) J(y, 2)f(z),

for zeH and y in some matrix group. Because
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f@Bz) _ fopz) f(f)
1@ ) 1@

it follows that any automorphy factor J(y, z) must satisfy :
J(@p, 2) = J(o, Bz)- J(B, 2). : - @y

For example, J(y,z) = cz +d for y = (* §)eIl" = SL,(Z) satisfies (1.1). If
—1=(3" %) isin our matrix group, then J(y, z) must also satisfy: J(—1, 2)
= 1. Another example of an automorphy factor is J(y, z) = j(y, z) =
(Der'Jez +d, y = (¢ §eT,(4), which is the automorphy factor for Oz) =
2 oq", g = e*™ (see §IIL.4). ‘

Suppose that, in defining modular forms of weight &/2 for k an odd
integer, we try the most obvious thing: we look for functions f satisfying
S(y2) = (cz + d)**f(z). However, J(y, z) = (cz + d)¥* cannot be an auto-
morphy factor of a nonzero function for any congruence subgroup. I = I’
and any odd integer k. To see this, suppose I'' > I'(N), N> 2. Let a =

Y 8. B=( v 9. Thena, eI, and (1.1) would require the k-th power
of the following equality of holomorphic functions on H:

ST 1= N = NN T DFT=N-J=N 1. (1.2)

Clearly, the square of (1.2) holds; thus (1.2) itself holds up to a sign. Since
both expressions in the radicals on the right are in the lower half-plane, the
right side is the product of two complex numbers in the fourth quadrant;
but the left side is in the first quadrant, since (N2 — 2N)z +1-— NeH.
Hence, (1.2) is off by a factor of —1, and (1.1), which is the k-th power of
(1.2), is also off by —1 if k is odd. Thus, we cannot have J(y, z) = (cz + d)*2.

The natural way out of this difficulty is to force (1.1) to hold by simply
defining the automorphy factor J(y, z) to be the k-th power of

J(, 2) 5 O(2)/0(2) = (5) &t /C'er d for y= (‘c‘ Z)Ero@). w3 | :

That is, for a congruence subgroup I'" < I'y(4), one defines a modular form

of weight k/2 to be a holomorphic function on H which transforms like the

k-th power of ©(z) under any fractional linear transformation in I’ (and which

is holomorphic at the cusps, in a sense to be explained below).
Recall that () is the Legendre symbol, defined for a positive odd prime
d as the usual quadratic residue symbol, then for all positive odd d by
- multiplicativity, and finally for negative odd d as (@p if ¢ > 0 and —(55p) if
" ¢ < 0. (Also, (%) = 1.) Further recall that we define ¢, = 1 if d = 1 (mod 4).
and g; = iif d = —1 (mod 4). Thus, &} = x_,(d) = (—1)“"2? (note that this
holds for negative as well as positived). - - . fo

Thus, if we define /(2)|[y]y2 = (7, ) ™f(72) for yeT,(4) and k odd, we

shall require a modular form of weight k/2 for I to be fixed by (72 for

ve€I”. As in the case of integer weight, we shall' want to define [a]y), for -
arbitrary matrices a € GL; (Q) with rational entries and positive determinant. -
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" But since the automofphy factor j(y, z) is defined or.ﬂy forye 170(41), we ha\{e, '
‘no preferred branch of the square root for arbitrary aeGL;(Q). This

circumstance requires us to work with a bigger group than GL; (Q), a group
G that contains two “copies” of eachae GL;(Q). one corresponding to each
branch of the square root of ¢z + d. The example of the automorphy factor
j(y','i), which is a square root. of ez + d), shows that we also shouid
allow square roots of —(cz + d). Thus, we shall,actual.ly deﬁng G to be a
fourééheeted covering of GL3(@). We now give the precise definition of the
roup G. '
: Lext) T < C denote the group of fourth roots of unity: 7= {£1, +ij. :Ne
now define G to be the set of all ordered pairs (2, ¢(z)), where a = (2 7€
GL;’(@) and ¢(2) is a holomorphic function on H such that

cz+d
P(2)* = f**‘——m
for some e T? = {+1}. That is, for each ae GL;(Q) and for each fixed

t= +1, there are two possible elements (x, £$(2))eG. We defin€ thel
product of two elements of G as follows: .

@ @), V() = B, SPW@). (L4

" Remark. We could define G in the same way but with T defined to be the
group of all roots of unity or even (as in [Shimura l973a]) the group of all
complex numbers of absolute value 1. However, for our purposes we only
need fourth roots of unity.

Proposition 1. G is a group under the operation (1.4).

PRrOOF. We first check closure, i.e., that the right side of (1.4) belongs to G. -
Ifa=( 5, f=( #), we have

(D(BW(2))? = t,(cBz + d)t,(gz + h)/\/det a det
= t,t5(clez + f) + d(gz + h))/\/det «f
= 1,1,((ce + dg)z + ¢f + dh)/Jdet aB,

which shows that (af, $(Bz)¥(z)) € G. Associativity is immediate. It is also
obvious that ((3 9), 1)€G serves as the identity element. Einall_y, to fﬁndjn
inverse of («, ¢(2)), where o = (¢ 3), we write D = deta, &’ = Da t= (4 7h,
and look for («™*, ¥(z)) such that: ¢ (@ 12 (z) ='1. That is, we set Y (z) =

1/¢(¢™*z), and then must check that (¢!, ¥(z)) € G. But

25 ¢(z)2 = ’1 /(z (c dz—b + d) /fﬁ) = %@(—cz + a)/(ad — bc)

—cz+a

1 c a —
=1L 4 L)/ Jdeta T,
t( Dz+D)/\/ea

whlch\ls of the reqoim{' form. This completes the proof. - ' - a

P
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We have a homomorphism
T P:G-GLi@) _
which simply projects onto the first pért of the pair: (a, ¢(z)) > a. The kernel

of P is the set of all (1, ¢(2)) € G. Since ¢(z)% = ¢ for (1, ¢(2)) G, it follows °

that ¢(z) must be a constant function equal to a fourth root of unity. Thus,
if we map T'to G by ¢+ (1, 1), we have an exact sequence

1-T->GL6Li@-1;

in other words, the kernal of P is the image of T under t+(1, ).

Similarly, if « = a(} {) for acQ, the inverse image of o under P'is the set -
of all pairs (a, t) for te T, since in that case we again find that ¢(z)? must -

be +1. .

We let G' = P™Y(T) be the set of all pairs («, ¢(z)) € G such that ae =
SL,(2). G' is clearly a subgroup. If ¢ = (o, #(2)) e G, we shall sometimes
use the notation ¢z to mean the same as az for ze H.

For { = (a, ¢(2))€G and any integer k, we define an‘opergl-tor'[é]k,2 on

functions f on the upper half-plane H by the rule
S| &7

This gives an action of the group G on the space of such functions, ie., we

have (f(z)l[él]k/z),[§2]k/2 =f(z)|[f1 fz]k/z, because of (1.4). .
Now let I'" be a subgroup of I'y(4). Then j(y, z) is defined for elements

yeI” (see (1.3)). We define

™

10y, 2))|yer}. - (1.6)

Clearly I' is a subgroup of G (because of (4.13) in §I11.4) which is isomorphic
to I'" under the projection P. Let L denote the map from I'y(4) to G which
takes y to

150, )G, 2)eG.

Then P and L are mutually inverse isomorphisms from Iy(4) to T, o(4). We
call L a “lifting” or “section” of the projection P. In our notation we are
using tildes to denote this lifting from To(@) to G:

L:y—§=(y,j@ 2);
. P: (3, j(, 2))y. :
Suppose that f(z) is a meromorphic function on H which is invariant under

[7]2 for yeI”, where I is a subgroup of finite index in I'y(4). We now -

describe what it means for f(z) to be meromorphic, holomorphic, or vanish

at a cusp se QU {oo}. We first treat the cusp oo. Since I has finite index -

in I'y(4) and hence in T, its intersection with

=16 L.
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- must.be of the form {% (5 })’} if —1e T~ and either {(3 %)’} or {(~(} 1)}
_if—1¢I".(Wealways take s > 0.) Since [ = 1]y is the identity, and j((} ¥), z)
= 1, in all cases f is invariant under z+—z + A, and so has an expansion in
powers of g, = e>™/"_ As in the case of integer weight, we say that f is
meromorphic at oo if only finitely many negative powers of g, occur, we
say that fis holomorphic at oo if no negative power of g, occurs, and we define
J(0) to be'the constant term when f'is holomorphic at 0. , .

Now suppose that se @ U {0}. Let s = 00, ae T, and let & = (a, ¢(2)) be
. any element of G' which projects to a: P(¢) = «. Define I v ={5el|ys =5},
and let G = {n€G!|noo = c0}. We have :

J

{4 )

because I', = { (5 {)}, and the ¢(z) for (} {) must be a constant function 1,
as noted above. Now ¢™'T'J¢ is contained in G ! and fixes oo, i.c., EME e
G, Moreover, P gives an isomorphism from EMTE to o ' T = T, Since '
I" has finite index in T, it follows that ™' I is of one of the forms { + (4 ")},
{G Y}, or {(—=(} *))’}. Thus, for some re T we have

+efE= {(i (é )x)} _»

A,Given sand &, h>0is determined by requiring (5 ?)to bea generatdr of

‘a” e modulo +1; then 7 is determined, since P is one-to-one on ¢™!T; 7E,
i.e,, we can find ¢ by applying the lifting map Lto +a(} "o tel].

~

<

jeZ,;teT},

h
1

h

Prol‘)osition‘Z. The element ((§ *

s )€ Gy, depends only on the T -equivalence
class of the cusp s. : o
PROOF. First suppdse that ¢ is replaced by another element ¢, = («,, ¢
G' such that s =«
(&G 1), ;). Then.

CagTE = @) T E )

(6 k) {EG D E )

But ((5 {), ) commutes with ((} %), 1), so conjugating by ¢71¢, does not
affect (5 4, 0. _ o : ' =
‘ Now suppose that s, = ys = (7)o, where yeI™,
that I =yI;y™", and so I = §I,57". Thus,
SR ROOTEE = 2ETGT e = +ETE
and 'we again obtain the same ((§ %), #). This completes the proof.

1(2)e

190. Then {7'¢, €G* fixes oo, and 50 it is of the form

~

7=0j(n2)el". Note

w}
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We are now ready to define meromorphicity/holomorphicity/vanishing at
the cusp s of I". Suppose f is invariant under [¥], for jel”. Lets= &oo,
and set g = f|[£],/,- Then for any element +¢™'§¢e +¢7'I7¢ we have

gl[i5_17ﬂm =f“:7§]k/z =f“:ﬂk/2 =g,

That is, g is invariant under [((§ }), )]y:

[«é I:) ’)] LoD,

Write 1% = ¢2%" where r = 0, 1, 4, or 2. Then ¢~ 2""*"g(z) is invariant under
z+>z + h, and so we obtain a Fourier series expansion e~ 2""g(z) = S a, gy,
ie.,

9(2) =9

— 2xniz(n+r)fh
g(z) = ) a,e .
Ya,

We say that f'is meromorphic at s if @, = 0 for all but finitely many n <0,
and that f'is holomorphic at s if @, = 0 for all n < 0. If f'is holomorphic at s,
we define f(s) = lim, ., g(2). Automatically f(s) = 0 if 7 # 0, since in that
case the first term is age?™=™*, If r = 0, then f(s) = a,. It is easy to see that
these definitions depend only on the I'-equivalence class of s, ie., g =
S|[€])y, may be replaced by g, = f|[7¢, 142, where eI” and ;o0 = s (see
the proof of Proposition 2, and also the proof of Proposition 16 in §I11.3).

It should be noted, however, that there is some indeterminacy in the value
f(s) of a modular form at a cusp. Namely, if we replace E€ G by ((§ 1), #,)&,
with 7, € 7, then the effect is to multiply g = f|[&],, by 7% If k/2 is a half-
integer, this may alter the value by a power of /; if k/2 is an odd integer, then
/f(s) may be defined only up to +1 (compare with the proof of Proposition
16); and if k/2 is an even integer, then f(s) is well defined in all cases.

Given a cusp s of I'” and an integer k, we say that s is k-irregular if r # 0,

and we say that s is k-regular if r = 0, i.e., if t* = 1. Thus, if fis holomorphic
at the cusps, it automatically vanishes at all k-irregular cusps. ,

Note that whether a given cusp s of I'” is k-regular or k-irregular depends
only on k& modulo 4. That is, if ¢t = % i, then the cusp is k-irregular unless
k/2is an even integer; if t = — 1, then it is k-irregular unless £/2 is an integer;
and if r = 1, then it is always k-regular. In the case when k/2 is an odd integer,
the terminology agrees with the definition of regular and irregular cusps in
Problem 2 of §I11.3.

Definitions. Let k be any integer, and let I'" < I';(4) be a subgroup of finite
index. Let f(z) be a meromorphic function on the upper half-plane H which
is invariant under ﬁ]m for all e T. We say that f(z) is a modular function
of weight k/2 for I'” if f is meromorphic at every cusp of I'". We say that
such an f(z) is a modular form and write /' eMk,z(f"’), if it is holomorphic

on H and at every cusp. We say that a modular form f'is a cusp form and

write fe Sk,z(f’), if it vanishes at every cusp.

t
|

it
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Now let N be a positive multiple of 4, so that I',(N) < ['y(4). Let y be
a character of (Z/NZ)*. We let M,,,(T4((N), ) denote the subspace of
M,, (T (N)) consisting of fsuch that for y = (¢ eI 4(N)

fFl2 = (@) f. (1.7)

We define Sy, (Fo(V), 1) = S, (F1(N)) A My, (Fo(V), 7). The exact same
argument as in the integer weight case shows that ‘

My, (T (N)) = @, Mp (To(N), 1)

Furthermore, it follows immediately from the definitions that if ¥, and
%2 are Dirichlet characters modulo N, then

ﬁEMki/z(ro(N)a x) (i=1,2) implies f,f, E3}M(k,+k;,,)/2,(fqo(N), X142)-
) 4 (1.8)

Notice that for any k € Z, we have M, ,(T,(N), x) = 0 if x is an odd char-
acter, as we see by substituting —1 for y in (1.7): f|[[((C§ -, D]yp=f=
x(—1)f. For example, since the trivial character y =1 is the only even
character of (Z/4Z)*, this means that

Mk/z(rl ®)= Mk/z(fo(“)’ )= Mk/z(ro(4))-

If 4|N, recall that _, denotes the character modulo N defined by L-1(n) =
(= D" Y2 for ne(Z/NZ)*.

Notice that in our definitions k is any integer, not necessarily odd. For &
even, let us compare the above definitions of M, (1), S,,,(I"), M, ,(To(N),
2> Sip(To(N), ) with the definitions of M,,(I"), S,,(I"), M, (N, 1),
Si2(N, 1) in Chapter III. First, for any ¢ = (o, ¢(2))€G, a = (¢ b), ¢p(z)? =
t(cz + d)/\/det a, note that f(2)|[£]y, = ¢(2)*f(ez) = 17*?(2)|[e]y). sO
that [}, for k/2€Z differs only by a root of unity from the operator [odis2
defined in the last chapter. It immediately follows that for k/2€ Z the cusp
condition defined in the last chapter is equivalent to the cusp condition
defined above.

There is a slight difference, however, between the condition that f be
invariant under [y],;, for y = (¢ })eI"” and the condition that Jfbe invariant
under [§]y,. Namely, f|[7]i2 = j(y, 2)™*f(32) = (D) (cz + d))f(yz)) =
GH**f|[]u2- Thus, if k/2 is odd, then [],, differs from [7]i2 bY x-4(d).
From this discussion we conclude

Proposition 3. Let 4|N, k/2€Z. Then
Mk/z(ro(N ), %) = My, (N, 2420, Sk/z(r oN), 1) = Siz (N, 2¥20).

It is now not hard to describe the structure of M, ,(F',(4)). If we have
a polynomial P(X,, ..., X,)eC[X,, ..., X,] and assign “weights” w; to
X;, then we say that a monomial IT X7 has weight w = Z n,w,, and we say
that a polynomial P has pure weight w if every monomial which occurs in
P with nonzero coefficient has weight w.
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Proposition 4. Let ©(2) = Z2_.,q", F(2)=Z,5000a0:(mq", g =e>™"
Assign weight 1/2 to @ and weight 2 to F. Then M, ,(T(4)) is the space of all
polynomials in C[©, F] having pure weight k/2.

Proor. In Chapter III we found that for k/2€Z, the space M,,(N, z*%)
consists of polynomials in ® and F having pure weight k/2 (see Problems
17-18 of §I11.3). This gives Proposition 4 when k/2€ Z. Next, by the defini-
tion of [7],,, we have ®|[7],,, = © for yeTI,(4). © is holomorphic at the
cusps, because we checked holomorphicity of ©2 at the cusps, and if © had
a singularity at s, so would ©2. Thus, ® e M,;,(I',(4)). It now follows by
(1.8) that any polynomial in ©® and F of pure weight k/2 is in M, ,(T,(4)).
Conversely, suppose that feM,‘,z(f“o(4)), where k is odd. Then f® is in
My, 1,2(To(4)), and so can be written in the form f @ =aF**V* + ©2P(O, F),
where a€C is a constant which equals 0 if 4f & + 1 and P(®, F) has pure
weight (k — 1)/2. Then f— OP(0, F) = aF**V*/@e M, ,(I'y(4)). But be-
cause ® vanishes at the cusp —1, while F does not, this form satisfies the
holomorphicity condition at —% only if a = 0. Thus, f = @P(O, F), and
the proof is complete. u]

Corollary. Dim M,,(T,(4)) = 1 + [k/4].

PROBLEMS

1. Lety = (¢ HeTy(4),and let p = ((§ 9), m~1%). Check that peG.
(a) Compute pjp~t.
(b) If yeTy(4m), then y, = (¢ Dy 9! is in I'y(4). Compare pjp~! with 5,. Show
that they are always the same if m is a perfect square, but that otherwise they
differ by a sign for certain ye I',(4m).

2. Lety=( DeTy(4), and let p = (% ~3), N¥*/z). Check that p€G.
(a) Compute pjp~*.
(b) Suppose that 4[N and yeo(N). Then y, = (§ “3)7Q "3 ~'elL(N). Compare
pip™! with 5. :
3. Find 4 and ¢ for each cusp of I'y(4).

4. Let T” = I',(4) be a subgroup of finite index. Let k/2€Z. Show that if I < I',(4),
then M,(I") = M,,(I""). Otherwise, let x be the unique nontrivial character of
I'/T" AT, (4); show that M, ,(I") = M, ,(I", x*?) in the notation of §III.3 (see the
discussion following Proposition 27).

5. (a) Describe Sy,(F5(4)), and find its dimension. ) ~
(b) Show that for k£ > 5, the codimension of Sip(To(4)) in My, (Lo(4)) is equal to
the number of k-regular cusps.
(¢) Find an element £a,q9"in S, 3,2(f0(4)) such that @, = 1 and a, = 0 (there is only
one). )

6. Let4|N, and define xy by xn(d) = () if g.c.d.(N, d) = 1, yy(d) = 0if g.c.d.(V, d) > 1.
(a) Show that xy is a Dirichlet character modulo N.
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(b) Let p be as in Problem 2 above, let x be an arbitrary Dirichlet character modulo
* N, and suppose that fe M,,(I'((N), x). Show that ][ p],» € My, (Lo(N), k).

7. Find the value of © € M, ,(Fy(4)) at the three cusps of [y(4).

§2. Eisenstein series of half integer weight for T'(4)

Recall the functions Gi(z) and E,(z) in M,(T) that we defined in §I11.2 for
k > 4 an even integer. We set G,(z) = % (mz +n)"¥, where the sum is over
m, n€Z not both zero; and then E,(z) was obtained by dividing by G,(io0) =
2{(k). Alternately, we can obtain E,(z) by the same type of summation
Z(mz 4 n)7* if we sum only over pairs m, n which have no common factor
(see Problem | of §I11.2):

1
(mz + n)*

E(z)= Z 2.1
where the sum is over m, ne Z with g.c.d.(m, n) = 1 and only one pair taken
from (m, n), (—m, —n). In §I11.2 we obtained the g-expansion

2k S n 2niz
E@=1-2Y o(mg"  q=c*".
k n=1

~ We now want to give an analogous construction, with k replaced by a
half-integer &/2 and I replaced by I',(4). To do this, we give a more intrinsic
description of the sum (2.1). Notice that if we complete the row (m, n) to
form a matrix y = (% % eI, which can be done because g.cd.(m,n) =1,
then the summand in (2.1) is the reciprocal of the automorphy factor J,(y, z)
for functions in M,(I'). That is, such functions f satisfy: f (r2) = J(y, 2)f(2)
for Ji(y, z) = (mz + n)*. In (2.1) we are summing 1 /iy, 2) over all equiva-
lence classes of ye ', where y, ~ 3, if y, and y, have the same bottom row
up to a sign, i.e., if y, = +(§ {)y, for some +(} {)el,. In other words,
we may regard Ji(y, z) as a function on the set I \I" of right cosets, and then
rewrite (2.1) as follows:

E@= Y J»2™", k>4even. (2.2)

yeTl m\l‘
It.is now possible to give a proof of the invariance of E,(z) under [y, ],
for y, e I" which easily generalizes to other such sums.of automorphy factors.

‘Namely, note that, by the definition of [y,],, we have

E@)|[71Jk = KOy, 27 Ee(y,2)
= Ji(ys, Z)-l Z Sy, '}’12)_1

yeLo\I'

Z Je(yy1, 271,

yelp\I'

because of the general relation (1.1) satisfied by any automorphy factor.
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But right multiplication by y, merely rearranges the right cosets I',y. Thus,
the last sum is just a rearrangement of the sum in (2.2) for E,. Since the sum
is absolutely convergent for k > 2, we conclude that E,|[7,], = E,.

We now mimic this procedure for half integral weight £/2 and the group
[',(4). In order to have absolute convergence, we must assume k/2 > 2, i.e.,
k=5

Note that we obviously have I'y(4), = I'y, = {+(} )}

Definition. Let k be an odd integer, & > 5.
Ek/Z(Z) = Z
ysl"m\l'o(d»)

As representatives y of I',,\I'o(4) we take one matrix (%, 3)eT,(4) for each
(m, n) with 4|m, g.c.d.(m, n) = 1 (in particular, n is odd), and we may specify
n > 0 so that we get only one of the pairs % (m, n). Thus

. a b K
5 B o 0]
he ) m,neZ,4\m,n>0,g.c.d.(m,n)=1 m n

Substituting the definition of j(y, z) and noting that (§)™* = (¥), since k is
odd, we obtain

J@ 27 (2.3)

Ep(2) = (’_;1) eimz +n)™2, k=5 o0dd. (2.4)

)

4|m,n>0
g.c.d.(m,n)=1

The fact that E,, eMk,Z(f“o(4)) now follows by the exact same argument
as in the case of the Eisenstein series of integral weight for I' which we
considered above. Namely, E,,(2)|[#;]i2 =J(1, 2) “Ey2(y,2), which just
gives a rearrangement of the sum (2.3). Finally, the cusp condition is routine
to check, so we shall leave that as an exercise (see below).

Unlike the case of I', where there is only one Eisenstein series of each
weight, E,,(z) has a companion Eisenstein series F,(z), defined by

[(Enac

That there are two basic Eisenstein series for each half-integer k/2 is related
to the fact that I'y(4) has two regular cusps (see Problem 3 of §l and the
discussion at the very end of §I11.5). To see that F, € M,‘,z(f‘o(4)), we apply
Problem 6 of §1 in thecase N =4, y = 1.

To write F,;; more explicitly, we compute

Fy(2) ='(2z)—k/2Ek/2(“ 1/4z)

Ec/Z = Ek/z

_ 2k/2 _”l) 6“ 1
B (4z)"2 almn>0 \7 "(—mf4z + )

g.c.d.(m,n)=1

m 1
=27 (7) 6""(—m + dnz)**’
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where we have used the fact that n>0 to write \/4z./—mjdz + n=
J—m + 4nz. We now replace m by —4m, so that the sum becomes a surnma-
tion over all meZ with g.c.d.(4m, n) = 1, ie., n odd and g.c.d.(m, n) = 1.

We obtain
zmy a1
n )" (nz + my?’

We next compute the g-expansions of E',‘,2 and F,. We proceed much as
in the computation of the g-expansion of E, in §II1.2, except that there are
added complications.

The derivation of the g-expansion for £ ,(z) turns out to be slightly less
tedious than for E,,(z). Hence, we shall give that derivation, and omit the
analogous proof of the g-expansion formula for E,,(z).

To compute the g-expansion of F, ,(z), we start with the following relation,
which was proved in Problem 8(c) of §I1.4 for any a > 1, ze H (where we
have replaced a, s by z, a here):

— k2
Fp(z) =2 4 Z
mnel
n>0odd
g.c.d.(m,n)=1

(2.5)

z (z + h)~a — (zn)ae—niaﬂr(a)—l i [a-leZm'Iz'

h= -0 I=1

(2.6)

(Note: for ze H we define z* = ', where log z denotes the branch having
imaginary part in (0, #) for ze H.)

Since the sum (2.5) for F,(z) is absolutely convergent, we may order the
terms as we please. If we let j=0, 1, ..., n— 1 and write m = —j + nh,
heZ, we obtain

E‘IZ(Z)
y O
=28 ¥ & ¥ (l) Y (nz—j+nk)™?
n>0odd  0<j<n \"/3="c
=27H2 § ghyk2 Y \(l)(zn)kﬂe—m'kml*(é)_l i [KID=1 g 2rilfn2nilz
n>0o0dd osj<n \? 2] 5

by (2.6) with z replaced by z — j/n and a replaced by k/2.
ThUS, Fia(z) = Z2, bq', g = €™, where

k2 .
T e
b = —— l(klz)"‘l skn“klz l e—-ZmlJ/n'
! I'-(%)emk/:x Z n Z

n>0odd 0<j<n\"

(2.7)

We now simplify the expression (2.7) in the important special case when
1is squarefree.

Let meZ be squarefree. For j> 0 odd we let y,,(j) denote (H. Thus,
if j is a prime, it is x,(j) which tells us whether j splits, remains prime,
or ramifies in Q(,/m) (i.e., this depends on whether Xm(J) equals 1, —1,
or 0, respectively). There is a unique character, also denoted y,,, which has
conductor |m| if m = 1 mod 4 and conductor |[4m| if m = 2 or 3 mod 4 and
which agrees with x,,(j) = (%) for j > 0 odd. We can express ,, in terms of
the usual Legendre symbol as follows: :
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x,,,(j):(»j—) if m = 1 mod 4;
|m|

m(J) = (-_:-1-) (—J—> ifm= —1mod 4;
Jj ) \|m|

Tnl) = (f) tn())  fm=2my=2mod 4,

where we define (1) = (—1)Y"""2 for j odd and (F) =0 for j even, and
() = (= 1)~V for j odd and (3) = 0 for j even.
Note that

(=D =1 if m>0, and 7,(—)=-1 if m<0. (2.8)
Recall that we define 4 = (k — 1)/2.

Proposition 5. The Eisenstein series F, has g-expansion coefficient b, which
Jor | squarefree is equal to L(y_y,x, | — 1) times a factor that depends only
on A and on | mod 8, but not on | itself. This factor is given in (2.16) below.

We first prove a lemma.

Lemma. Let n = nyn?, where n, is squarefree. Then for | squarefree, the inner
sum in (2.7) vanishes unless n, |1, and z" n, |1 it equals

en (%)mu(nl)nl, @9

where u is the Mobius function (equal to 0 if n, is not squarefree and equal to
(— 1) if n, is the product of r distinct primes).

PROOF OF LEMMA. First, if n, = 1, then (f) has conductor n =n,. If /has a
common factor d with », then, combining terms which differ by multiples of
n/d, we see that the inner sumin (2.7) is zero. On the other hand, if e (Z/nZ)*,
then making the change of variables j' = —/j leads to (3} Z (£)e?"¥, This
Gauss sum is well known to equal ¢,./n (see, e.g., §5.2 and §5.4 of [Borevich
and Shafarevich 1966]). This proves the lemma when n, = 1.

We next show that the inner sum is zero if g.c.d.(ny, n;) =d > 1. Note

that .
( 1) _ (é) if gc.d.(j,n) =1,
" 0 otherwise;
and it follows that () = (;{I;). Combining terms with j which differ by

multiples of #/d” and using the fact that d*}/ (since / is squarefree), so that
X, ™ 2milli+indm — 0 we find that the inner sum is zero in this case.
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Now suppose that n; > 1 is prime to #n,. Let p, run through all primes
dividing #,: n, = IIpv. Set g, = p}v; and let 6,(j) = 0 if p,|j and 6,(j) = 1
if p,J J. Then () = (L) I1,6,(j). Any jeZ/nZ can be written uniquely in
the form

J=Joni + ). jnlql, 0 <jy<ny, 0<j,<q
Then

e~ 2miliin — o= 2niliging 1 e~ 2miliyig}

Further note that

(i) _ (é) [a0) = (fo,) 15,00

Thus, the inner sum in (2.7) becomes

(Z (ig) e~21:iljo/no) H Z 8,(j.) o~ 2mili/a} (2.10)
7o \o v
The first sum is ¢, (7)+/no, by the first part of the proof (the case n = n,).

The sum inside the product is

-1 43/py=1
Z e-z;:u,‘,/qg_ Z e—2nilpvjv/q£'
iy=0 Jy=0

Hcrg the first sum is zero, because g2 ,{’ 1. The second sum is also zero, unless
g;|lp,; this can happen only if ¢, = p, and p,|/. Thus, the expression (2.10)
is zero unless each ¢, = p,, i.e., n, is squarefree, and n, |£. If n,|!, then each
sum inside the product in (2.10) is equal to —p,, and we obtain the following
expression for the desired sum:

&n (%)\/% l:[ (—Pv)

(Note that ¢, = ¢,.) The latter product is u(n,)n,. This completes the proof

_of the lemma. o

We are now ready to compute b, for / squarefree.
We replace the inner sum in (2.7) by its value given in the lemma, and sum
over all » with a fixed n,. According to the lemma, we obtain
7{"/2 lk/Z -1

b= & e n?y 2 (2 i
r§)eme no>§odd n,zll "°"§( o"1) no ok
and squarefree n, odd

Since &,,,2 = ¢, , the expression inside the summation over ng is equal to

k+1 _1 1-k)/2 P
&, (-n—o—)n{) 2N wn)nitk,

. oddn,{l
The 'sum over n, |/ is equal to IT 4, {1 = p*™9); since it does not depend on
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n,, we can pull it outside the summation over n,. In addition, we use the
relation (recall: 1 = (k — 1)/2)

(@-EEE-EEO

As a result, we obtain

k2 21 oz —-1)’1(1) -2
== [ (- — ] | )t @211
b T(§)em 1,} =7 no>§odd no) \no)"* ¢
podd andsquarefree

The expression (72)*(s) is what we denoted j_yx(1o). As remarked above,
these are the values at odd squarefree positive n, of a primitive character
X-1yu of conductor N =/ if (—D* =1mod 4 and conductor N =4/ if
(—1D* =2 or 3 mod 4.

Thus, the sum in (2.11) looks very much like the value at s = 4 of the
Dirichlet L-series

L -i> ) 3 2 X-pa(mn™,  Res>1 (2.12)
n=1 .

The difference between the two sums is that the sum in (2.11) only ranges
over all odd squarefree . But if we write an arbitrary n in the form n = ngni
with n, squarefree, we see that x_y)a,(n) = ¥-1u(ho) if n; is prime to N, and
X-yu() = 0 if g.c.d.(n, N) > 1, where N = [ or 4/ is the conductor.
First suppose that N = 4/. Then, if we were to multiply the sum in (2.11)
by
Y @)=l -pH =CH]]A —p7?,
piN

n, >0 primetoN pIN
we would obtain the L-series (2.12) with s = A. In other words, we have
7.Ek/2 lk}Z—l

1= p ™2 = e L(teais A T] (1= p72%).
b;C(2A)£IIv( P = el o A) ,,1';}2( P

The products cancel, except for p = 2|N on the left, so we obtain (here we ! _

replace k by 24 +1):
Ly A) JAm12 Atz
- C(Z).) 1 — 2—21 r(l + %)erri(l/2+l/4)
for (—=1* =2 or3mod 4.
If, on the other hand, N=1/, ie., (—1) = 1 mod 4, then to obtain
L(y-1yn> A) we must multiply the sum in (2.11) by
I 1
1 - X(—x)lz(z)z_lp,tzzl —P ‘ ‘
where the first term (1 — %-;,2(2)27%) ™" is necessary in order to get the terms

by

(2.13)

=24°

in (2.12) with neven. Since 1 — 27?4 = (1 + x(_,,z,(2)2"‘)(1 — Xty (D27h,
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we can rewrite the last product as
a+ x(-1)11(2)2“)l;[l(1 -p7h

o 2

This leads to the equality

= L1y, ) A2 At
l L2Y 1+ teyu@272 T (A + Hemaz+im

for (—1)*=1mod 4.

The formulas (2.13) and (2.14) express the /-th g-expansion coefficient of
E,, in terms of the values at positive integers of an L-function and the
Riemann zeta-function. Although these formulas include complicated-
looking factors, these factors largely disappear if we use the functional
equations for L(yyy4, 5) and {(s) to express b, in terms of values at the
negative integers. :

Namely, by the theorem in §I1.4 we have

(@A) = (1 = 2=**7 2T (G — HIT ().

Next, Problems 3(¢) and 5(¢) of §11.4 give us the functional equation for
L(%(-1)4, 5), where the functional equation is slightly different for even and
‘odd characters. By (2.8) it follows that y_;)4 is an even character if A is
even and an odd character if 4 is odd. We thus have

(2.14)

T

4 A=(1/2)
L(y-pyms A) = (‘]\7) L(-1yn, 1 — 4)

(2.15)
.{I’(—} —INHITEY if Ais even;
F(1 —4A/TG+42) ifAis odd.
Substituting these equalities in (2.14) and using the relations I'(1) =
TGATG + 3)2*7Y/n (see (4.4) of §I1.4) and T(x)I(1 — x) = n/sin 7x
(see (4.3) of §I1.4), one obtains (the details will be le_ft to the reader):
2).~1/2

— Ly, 1 —=4) . I+ .')C(—n/lt(z)z—/WL

I+ (=041 =28 | 212

. 1 — 2~211

if (—1)*/ = 1 mod 4;

1
if (=1* =2 or 3 mod 4.

(2.16)

Notice that the L-function value depends on the precise value of /, but all
of the other factors are either independent of / or else only depend on the
value of / modulo 8. This completes the proof of Proposition 5. O
{
For fixed 4 even,as / ranges through squarefree positive integers, the even
characters y_;)y run through the characters of all real quadratic fields
Q(/D). The discriminant D of Q(/7) is D=1/if /=1mod 4 and D = 4/



192 1V. Modular Forms of Half Integer Weight

if /=2 or 3 mod 4. For fixed 1 odd, the odd characters y_)3 run through
the characters corresponding to all imaginary quadratic fields QW/=D,
whose discriminant is D = —/if —/=1mod4and D= —4/if —{=2o0r3
mod 4.

Thus, for (—1)4/ =1 mod 4, the formula (2.16) expresses the |D|-th
g-expansion coefficient of Fj,,, in terms of the value at 1 — 1 of the L-
function of the quadratic character of conductor |D|.

By a similar computation, it is not hard to show that for (—1)/ = 2 or 3
mod 4, | D| = 4i, the | D|-th g-expansion coefficient is given by

L(g-iy, L =4 2412
A+ (=D)L —22) 1—272%

We now look at the g-expansion coefficients of the other Eisenstein series

E; 1. By an argument similar to the derivation of (2.16)-(2.17), one shows

that for / squarefree the /-th coefficient g, in the g-expansion of E,, = Za,¢'
is given by

(2.17)

bp) = by =221 =

1+ 222 4 if (=1 = 1 mod 4;
1 if(=D*=2o0r3mod4 .
2.18)

a; = (1 + (= 1)*)2712"4p, {

l-!_tl_t_lﬁ!_(.%)z__l:: 'f _111__:1 0d4'
= w, 2 1+ X(—1>11(2)2—’1 ! ( ) =1lm ’
o 1 122/1 if (—=1)*/ = 2 or 3mod 4;

(2.19)

and that when (— 1)*/ = 2 or 3mod 4, so that D = (— 1)*4/is the discriminant
of a quadratic field, we have :
L(X( 1)11, —A) ,1 —2t-24
C(l ) 2 — 21-2). *
(2.20)

= (1 + (= 1))2" W31 — 21 "F)p, =

Thus, we have found that both E,, and F,, have |D|-th g-expansion
coefficlent equal to L(xp, 1 — 4) times a factor which depends only on 4
and, in the case D = (— 1)*/ = 1 mod 4, on y,(2), which equals 1 if (— 1)/ = 1
mod 8 and — 1 if (— 1)/ = 5 mod 8. For now, let us abbreviate y = y,(2).

The same is true of any linear combination of E;;, and F,, so it should
be possible to find a linear combination whose | D|-th g-expansion coefficient
is exactly L(xp, 1 — 4). More precisely, we look for coefficients « and f
such that

{1 - 2/1)(“Ek/z ﬁﬁ/z)

has | D|-th g-expansion coefficient c;p equal to L(xp, 1 — ) for all discrim-
inants D of real quadratic fields if 4 is even and of imaginary quadratic
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fields if 4 is odd. The term {(1 — 2J) is inserted for simplicity, in order to
cancel the term {(1 — 24) in the denominators of all g-expansion coefficients
of Ey; and F,,. Thus, we want:

for D= (—1)/=1mod 4,
L(xp, 1 = ) =cpp

11 2! l 1 2).—(1/2)
- L1 - 13 ):

21772 x T Ty
for D=(—1)%/, (~1)*=2or3mod4,

Lxp, 1 =N = Cip|
21 24 1 21.—-(1/2)
=L - .
(XDa 1 )‘)( -2 77 % + 1+ (—l);‘l 1— 2—21 )

Dividing by L(xp, 1 — 4), we obtain a 2 x 2 system of equations in the
unknowns «, f. Because y depends on / modulo 8, it is not a priori clear
that the « and B for which aayp; + Bbyp; = L(xp, 1 — A)/{(1 — 24) will be

-independent of /. However, when we solve the equations for « and f, we

find that the solution does not actually contain y, and so is independent of /.
Namely, we obtain

a=1  B=(1+(=1k)27402,

We conclude

Proposition 6. Let /. = (k — 1)/2 > 2, and let E, ,, F,;, € M, ,(F(4)) be defined
by (2.4)-(2.5). Then

Hyp 501 = 20) (B, + (1 + 2742 F ) € M 5 (To(4))

has the following property : if D = (— 1)* or (— 1)*41, 1 > 0, is the discriminant
of a quadratic field and yy, is the corresponding character, then the | D|-th
g-expansion coefficient of Hy, is equal to L(xp, 1 — 2).

This proposition is due to H. Cohen [1975]. (His notation is slightly
different from ours.) It can be viewed as a prototype for the theorem of
Waldspurger-Tunnell which we shall discuss later. The Waldspurger—
Tunnell theorem exhibits a modular form of weight 2 (think of 1 as being
equal to 1 in Proposition 6) for I'y(128) such that the square of its n-th
g-expansion coefficient is a certain nonzero factor times L(E,, 1), where
L(E, s) is the Hasse—Weil L-function of an elliptic curve E (see §I1.5) and
E, is the elliptic curve y? = x* — n?x. Thus, the g-expansion coefficients of
this particular form of half integral weight are closely related to all of the _
critical values L(E,, 1) which we encountered in Chapter I1.

If we were allowed to take A =1 in Proposition 6, then the [D|-th g-
expansxon coefficient would be L(x,, 0), which differs by a simple nonzero
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factor from L(yp, 1) (because of the functional equation) and is essentially ..

equal to the class number of the quadratic imaginary field @(\/_ ) (here
D = —/or —4l). We will say more about the case 1 = 1 below. .
For another proof of Proposition 6, using so-called “Jacobi forms ” see

- [Eichler and Zagier 1984].

We now discuss some _interesting consequences of Proposition 6. Since -
- any element H,, € M,,(To(4)) can be expressed as a polynomial in @ =

T2 _,q" and F=Z,. 00440, (n)g" (sce Proposition 4), it follows that there
are formulas expressing L(xp, ! — 4) in terms of ¢;(n) and the number of
ways n can be expressed as a sum of r squares. We illustrate with the simple
case k =5, A = 2. In this case Mj,(T',(4)) is spanned by ®° and OF, and a
comparison of the constant coefficients and the coefficients of the first
power of g shows that H, = 1550° — $OF (see the exercises below). This
yields the following proposition.

. Proposition 7. Let s,(n) denote the number of waysv‘n can be written as a sum
of r squares; thus ©° = L s5(n)q". Let D be the discriminant of a real quadratic
field, and let y;, be the corresponding character. Then

L(XDy - )

R 0=

lil<vD

D~ j2odd
Many other relations of this sort can be derived, in much the same way
as we used the structure of M, (T) in the exercises in §II1.2 to derive identities
between various o,(n). For details, see [Cohen 1975]. These relations can be
viewed as a generalization to 4 > 1 of the so-called “class number relations”

of Kronecker and Hurwitz. (For a statement and proof of the class number
relations, see, for example, Zagier’s appendix to [Lang 1976] and his correc-
tion following the article [Zagier 1977].) The class number relations corre-"

spond-to thecase A = 1, i.e., L(}p, | — 4) = L(xp, 0). But A = 1 falls outside
the range of applicability of Proposition 6.

To get at the class number relations from the point of view of forms of
half integral weight; one must study a more complicated function H,,, which

transforms under I'y(4) like a form of weight 3 but which is not analytlc g

The | D|-th coefficient of Hy, is essentially the class niumber of the imaginary
quadratic field Q(/D). The study of Hs, is due to Zagier [1975a].

In some sense, the situation with Hy, is analogous to the situation with.

E, in§II1.2. In both cases, when we lower the weight just below the minimum
weight necessary for absolute convergence, problems arise and we no longer

have a true modular form. The study of £, and Hs, is much subtler than

that of E, and Hk,z for k> 2 and k/2 > 2, respectively. But.in both cases

‘the Eisenstein series, though they fail to be modular forms, have a special -/ .‘

importance : we saw that the functional equation for £, led to the functional |

equation for the discriminant form A(z) € S, ,(I'); and Hj, has as its coefﬁ-*

cients the class numbers of all imaginary quadratic ﬁelds i
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~We next examine the quite different question of how the nonsquarefree
q-expansmn coefficients of E,j,, F,, and Hy, can be determined. Again
we shall give the details only for £, and shall omit the sxmilar computations
for Eyp -

We proceed one prime ata time. That is, for each prime p we express 4,
in terms of b, , where / = p*'l, and pz*lo Finally, combining the different
primés p, we shall be able to express b, in terms of by, when = [/} and I,
is squarefree. This information can be conveniently summarized in the form -
of an Euler product for IP-1by, i1 *, as we shall see later. ‘

The easiest case is p = 2. Suppose that / = 4°/y, 4f1,. We return to our
earlier computation of b, in (2.7). The general formula (2.7) is valid for all /,
not-necessarily squarefree. If we replace / by 4/ in (2.7), the double sum
does not change, because replacing / by 4/ is equivalent to replacing j in the |
inner sum by 4j, which runs through Z/nZ as j does, since n is odd. Thus,
by = 4271, and so for [ = 4, we have

b= 2"“2’"b,0. ' 221
This case p = 2 can be summarized as follows: for any /,,
—sv 1 -

2 by 27 = b,ol——-?-z—-s (2.22)

Comparing coefficients of 2™ on both sides of (2.22) shows that (2.22) is -
equivalent to (2.21). (Note that we do not actually need to assume that 4f1,.)

Now suppose that p is odd. Let / = p**l,, where p> }/I,. We again use (2.7)
and divide into two cases.

CaSe @) p|lo. Let ly = pl,.

We write the double sum in (2.7) in the form Z,,>0°dd S,, where S, is the
term in (2.7) corresponding to n. Let n = nyp?", where p*}n,. We fix n,
and look at the sum of the S, over all n = 1, p?", h= 0,1,2,.... Note that
&, = &, and n™¥? = ng*2p~H Wenow evaluate the inner sum over;eZ/nZ

First suppose that p,{/n0 As representatives j of Z mod nZ we choose
J=Jjop*" + jing as j, ranges from 0 to no — l1and j, ranges from 0 to p** — 1.
With p fixed we introduce the notation

{0 ifplj; ‘
8(j) = 2.

o0 {1 if plj. (2.23)
Then for 4 > 1 we have '

() (GR)2)-s0()-a0n(®)

e =2nijin __ e-'ZnIJOI/nQe—Znu,lopl+2“‘ h’

leo,_

Thus, the term S, in (2 7) corresponding to n = no p*is the product of
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&k ng vy (JO) THele = 5y,
0<jo<ng n
and . ,
. p—hk Z 5(jl)e'2"if*’~°"l +2(v=h)
- 0sj,< ‘,Zh
In the last sum, make a change of variables by teplacmg - j,lo by j, ; then
the sum becomes
z © e2miy pl2v=h) g2niizp

2+2(v~h)

0<j,<p2h 0<jp<p2h=1

(where j; = pj,). The first sum is zero if # > vand it is p>* if h< v; the second

sumiszeroif h>v+ landitisp? ' ifh<v+ 1.
We conclude that all of the terms in the outer sum in (2.7) correspondmg
to n = ny p" for fixed n, contribute ~

) —hk 20 p2h=1y __ p—(v+1)kp2(v+1)-1
Sno(1+2p (P = p*) = pTTVP )

h=1
— S (1 ___pl—k) i ph(z—-k).
"o h=0

We next suppose that p|ng, no = pfiy. As representatives j of Z mod nZ
we choose :

J=jop™*t +jifigy  0<jo <y,  0<j <p™

We have
-(000- 1)
n p) \H, P)\ o
Then S, is the product of
skn—-k,’z Z - (M) e—Zn;jol/rTo
0<jo<i, \ o
and

0<j,<p2htt \P .

But it is easy to see that for any h the latter sum is zero. Namely, if h <v,

then we obtain Z; (34) = 0; and if & > v, then the sum over any given
residue class mod p, i.e., j, = j, + pj, for fixed j,, is equal to

(!1_)2_) e“z""jz%l’ﬂy-h) Z ) e—z,,_(jJTopZ(v—hHl’

and the latter sum is zero, because 2(v — &) + 1 < 0 and p,l’io. Thus, S, =0
if n is divisible by an odd power of p.

N

0sj,<p2h
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- We-conclude that for p}l, we have

‘ e &2 ) ) o v )
LT b= 1:‘ . (D=1 S s (1= piTh Y pheh,
- l"(_z_ iemk/% . 'ng>0odd,pin, h=0

Here S, depends only on /, arjd not on / =/, p*, because for pfn,

. ‘o ZV .
Z ( 4 ) o~ 2iling Z (_L_D__ ) o 2niloip2Ving Z < J. ) e~ 2niloing
o<jzn, \Mo . ogj<ny \ Mo : o<j<n, \Mo

Thus,
bilby, = (lp)%»! i P = i D),

This relation between b, and b,, can be summarized in the following
identity, which is valid for any /o with p|lo, p?{1y:

00
- 1

b 2vp W= b -y oy pnpe)
2, er P —pH(A )
To- ‘See the equivalence of this identity to the formula derived above for
byb,; it suffices to expand (1 —p~7* and (1 — p*"27)"! in geometric
series and in that way conclude that the coefﬁcwnt of p™° on the right in
Q. 24) is

(2.24)

blo Z ph(k—Z).

Case (ii) p,{’lo Again we fix n, with p*{n, and consider all terms S, in
the outer sum in (2.7) for which n = nyp** ' h =0, 1, 2, .

First suppose that p}n,. We take j = j, ch + jyng as before, define 4(j)
by (2.23), and find that

So=S, o™ Y 8(jy)e ik,
0
0s<j, <p2h
As before, this sum can be rewritten in the form
' — 2nij, p2(v=h) —2mij, pl ¥ 20v—h)
Y, emmh - e 2P ,

0<j,<p2h 0<j,<p2h—1

. which equals zero.if h > vand pz" —prifh <. Thus,

Z o p2h = <1 + Z p—~hk(p2h 2h-—l)). (2‘255

Now supposc that plno, ny = ph,. At this point we change our notation,
replacing A, by n,. That is, we shall determine X, S, o, p2h+1, Where now ny is
not divisible by p. As before, we set j = j,p***! +},n,, and find that S,,
where n = n,p**! is equal to the product of .o

[
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L) (19“3) e 2mialino (2.26)
o0sio<ng \ o , R
and
P/ ogj<p2htt \P

The latter sum is easily seen to vanish if either A < v or 4 > v. So the only
nonzero S, occurs when 42 =v, i.e.,, n=p>*!n,. Then the sum of (2.27)
overh=0,1,2, ..., visequal to

el =l \[n j) N
vk{ “to (%o L | g2niip
r ( P )(P)05j<§2v+1 (P

(after the change of variables j = —/,j,;); and this sum is p** times the
Gauss sum ¢,,/p. Meanwhile, (2.26) is equal to :

p‘*ﬂ(s,mo/e,y(ﬁ) Se -
ny,

2v+1 we have

Hence, forn =nyp

Z np2htl = =p> \/‘P Vk( ) (e pno/ no)k< )(10-) Sn,,-

p

We check that &,(e,, /¢,) G5) () = (5H)**! by considering the four cases

P, 1y = +1 mod 4. Hence,
Z oyZh"'l V(Z-k)—lX(—ljllo(p)Sno
Thus, combining this with (2.25), we find that the total contribution to

the outer sum in (2.7) of all terms correspondmg to n of the form ny p?" or
nop**** (for fixed nq not divisible by p) is equal to

Sno (l +pv(2 ky— lx( l)}-lo(p) + Z p—-hk(th 2h—1). (228) ‘

h=1
In the case [ = Iy, v = 0, this contribution is simply
Suo(L+ P t-1,(P)). ,
Let us temporarily abbreviate y = X(-1y41,(P)- Then we compute that
) bl pv(ku) (1 +pv(2-k)-).x + hé Pr—hk(th _th'-l )
b, G+r0 % S,

ny>00dd, ptng

i ph(k—Z) Z ph(k 2)-1 +p—i.x

ng>00dd, pfng

h=0

l+p X
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By a s1mple algebraic computation, using 32 == 1, we find that this last ratio
is equal to

. .v-l )
b:/bz0 Zp""‘ B—yp*t Y pR. (2.29)
h=0

The relatxons (229)forv=0, 1, ..., can be expressed by the identity

1= X (pp*~'°

b wp = b py > oy

vg‘o lor®P (1 —-pH(1 —p7)

as we see in the usual manner by gathering coefficients of p™” on the right.

Note that the relation (2.24) that we derived in case (i) is the same as (2.30),
because x4 (p) = 0 when p|lo- Thus, in all cases we have (2.30).

.The next proposition combines the identities (2.30) for all p odd and

(2.30)

(222 forp=2.

Proposition 8. Let I, be a squarefree positive integer, let b, denote the g-

- expansion coefficient of Fy;,, and set 1. = (k — 1)/2. Then

< -5 4 blo I— X(—x)’-lo(P)Pl—l—s
Zl b’ol%ll Tl - 2k=2~-s H (l _p—-S)(l ___pk—z—-s)‘ (2.3

odd p

PROOF. Let /; = py* - - - p,". Let f,(s) denote the factor in the product corre-
sponding to p (here fz(s) = (1 —2*727%)7"). Then we must show that b, ;;
equals b,, times the coefficient of /{* = p™ -+ - p7* in Jor++ Jp,- We use
induction on . For r=1, thls is precisely what (2.22) and (2. 30) say. If
r>1and l,=p,'--.p)r;!, we assume the result for r — 1, and then we
have (by (2.22) or (2.30) with /, replaced by /,/2):

biyzp2v, = by - (coefficient of p ™ in Jo)
= by, (coeff of [3*in f, - - - f, _ )(coeff of p, inf,)

by the induction assumption. But the product of ‘these two coefficients is
the coefficient of /7 in f, - ** Jp,- This completes the proof. (Compare with
the 1dent|ty . 8) for Hecke operators in-§ITL.S.) O

In‘ a similar manner, one can derive identities for the g-expansion co-
efficients a, for E,, as [ =I,/} varies over integers with fixed squarefree
part /,. We shall only give the result. One again proceeds one prime at a time.
For odd p, the same identity holds as for £, : .

& _ b= x- 1)110(1’)1’ :
&, orto P = e 32

(U
for fixed l,, p>}1,. But for p = 2 the identity. turns out to be a little more
complicated than for £,. .

The most interesting Eisenstein series for I'y(4) is the linear combination
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Hy, ={(1 = 20)(Ey, + (1L+ i*)2"¥2F, ;) in Proposition 6. Let ¢; be the /-th

g-expansion coefficient of Hy,. If I =1,p*, p*}l,, for an odd prime p, U

then, because of (2.30) and (2.32), we have the same identity for the ¢;:
L sy - X(-1)110(P)Ph1—s
2 clopz"p - clo(l _ —3)(1 _ k-—2—-s)‘

(2.33)

In the case p =2, one has by 4v'=2"*"?b,, and for a,4» one can derive
formulas expressing a; 4v in terms of b,o4v (these formulas are given in
[Cohen 1973}). Comblnmg these formulas for the case p = 2, one obtains
the following result: if /, is a positive integer such that either (— 1, =
1 mod 4 or else (— 1)/, is four times an integer congruent to 2 or 3 mod 4,
then the coefficients ¢, 4v, v=0, 1, 2, , satisfy the same identity (2.33)
with p = 2. Thus, under these c1rcumstances the identity (2.33) holds for all
primes p, including 2, in the case of Hy,.

The identities (2.33) for all primes p lead to a relation similar to (2.31),

where either /, is squarefree and (— 1)/, = 1 mod 4, or else /y/4 is squarefree -

and (=1)*/y/4 =2 or 3 mod 4. It can also be shown (see the problems
below) that ¢, = 0 for / which are not square multiples of such lo Since the
coefficients ¢, in these cases are precisely the values L(x.- ,),1,0 — A), we
obtain the following proposition.

Proposition 9. The element Hk,zeMk,z(Fo(4)) given by Huz ={(1—-24)
(Eyp + (1 +i%27%2F,,) has g-expansion coefficients ¢, which can be de—
termzned by the identity

A-1-s

s = X-nyu, (PP
Z 0101}11 = L(%-1)41> 1 - [l > 234
=1

allp (1 -p)(1 =py’
where either |, is squarefree and ( ~ 1Dy = 1 mod 4, or else 1[4 is squarefree
and (—1)*1y/4 =2 or 3mod 4. If ] is not a square multiple of such an l,
then ¢, = 0. Finally, ¢y = {(1 — 24).

Thus, there are two very different elegant properties satisfied by the
g-expansion coefficients of H,,. First, the coefficients corresponding to
discriminants of quadratic fields are the values of the L-function for the
corresponding quadratic character at the fixed negative integer 1 — A =
(3 — k)/2. Second, for a fixed discriminant, the coefficients ¢, with / a square
multiple of that discriminant satisfy an Euler product 1dent1ty

Both properties are closely analogous to the results about forms of half
integral weight which we shall need later to describe Tunnell’s work on
the congruent number problem. The first property of Hy, is parallel to
Waldspurger’s theorem, asserting the existence of a modular form of half
integral weight whose /,-th g-expansion coefficients are closely related to

L(E,, 1). The second property is an example of a very general correspon-
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e

dence due to Shlmura [l973a] between forms of half mtegral welght and -
forms of integral weight. :
" Let us look agam at the Euler product (2.34) for Hm The only part that
depends on /, is the numerator 1 — y ;% ( p)p ¢. The remaining part
of the Euler product SRR

[T —p™7a = p2797,

depends only on H,;, and not on the choice of /,. Observe that this is an
Euler product we encountered before: it is the Euler product relating all
the coefficients of the normalized Eisenstein series :

__E&E - By
2k—1 1T T2k - 1) )

(see Problem 16 in §II1.3). We say that HklzeMk,z(I‘o(4)) corresponds to
(~By_,/Q2(k — 1)))E-, € M,_,(T) under the Shimura map.

We shall discuss the Shimura map in more detail later. The Shimura map
applies to forms of half integer weight which have Euler products similar
to (2.34). As in the case of forms of integral weight, Euler products arise _
from the property of being an eigenform for Hecke operators. But when ‘
we work with half integral weight, it turns out that we only have Hecke
operators T,. whose index is a perfect square; all other 7, are identically
zero. This is why, in the case of half integral weight, we get a weaker type
of Euler product, which only connects coefficients whose indices differ by
a perfect square multiple. Hecke operators on forms of half integral welght
are the subject of the next section.

+ Z Ox-2(Mq"

PROBLEMS

1. Verify the cusp condition for E,, and find the value of E,, and F,, at all three
cusps of I'y(4).

2. Derive (2.16) from (2.15).
3. Derive (2.17).

4. Check that the constants a and f given in the proof of Proposition 6 are the solutions
to the two equations giving ¢\p; = L(xp, | — 4) in all cases.

5. Suppose that we looked for a linear combination “Ek/z + BF,; whose I-th g-expansion

- coefficient for / squarefree is equal to L(¥1,4, 1 — 4). (That is, when (— 1)*/ = 2 or

3 mod 4, this L-function value is ¢, rather than c,,.) Show that no linear combination
“has this property for all such /.

6. 'Show that if (— 1)*/ = 2 or 3 mod 4, then ¢, =0 in the g-expansion of Hk,2 (Note If

_‘,Mk,z(f‘ 0{4)) denotes the subspace of M,‘,z(f"o(4)) consisting of forms whose g-expan-
“sion coefficients satisfy this property, then it has been shown [Kohnen 1980] that
the Shimura map gives an isomorphism of Mk,z(l‘o(4)) with M. ,(F) )
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7. What is the constant term in Hy;, ? What is the coefficient of the first power of q in
Hy,? When s this latter coefficient zero?

8. Show that Hy, = 1550° — LOF, and show how this gives, Proposition 7.

9. Show that for k > 5 odd and for suitable @ and b, we have © — aEy, —bEj;

€ S (To (@) Find a and b. Express ©° and @ in terms of E,; and F,,.

§3. Hecke operators on forms of half 1nteger werght

We first recall how the Hecke operator T, can be defined on forms of integral

weight by means of double cosets. For stmphc..y, we review the case of the
full modular group I'.

For n a positive integer and fe Mk(F) we can define 7, f as follows. Let
A" be the set of all 2 x 2—matrices with integer entries and’ determinant
n. For any double coset I'al" = A", where a€A”, we. define f|[Tal'], =

Tf |[oty;Jis’ where the sum is over-all right cosets I’ oy; < Fal; equivalently, -
y; runs through a.complete set of right coset representatives of I" modulo :

a 'TanT (see Proposrtron 41in §IIL5). Then
deef D=1y fI[Tal ]y, »

where the sum is over all double cosets of " in A”.
There are'not many double cosets of I' in A™; in fact, if n is squarefree
there is only one. More precisely, we have the following proposition.

Proposmon 10. 4 complete set of double coset representatives of IinA" is

G mno)}> Where no, ny run through all positive integers such that n = nyn?.

In particular, if n is squarefree, then A" =T@ OT. On the other hand if

n=p?

0 is the square of a prime, then A®* =T (0 p,)l" upll (where (Y=
(e 7))

Proor. Consider the abelian group Z* with standard basis generators e =

&=, Any matrix «e A" gives a subgroup of index 7 in Z2, denoted ‘

aZ?, namely, the span of ae, and «e,, the columns of «. Conversely, any
subgroup of index # in Z* can be obtained as «Z? for some . Now fix any
a€A". By the elementary divisor theorem (see, e.g., [ Van der Waerden 1970,
Vol. 2, p. 4]), there exists a. basis ¢;, e, of Z2 such that the- -subgroup aZ?
is the span of n, €} and n,n,e, for some positive integers n,, n, with n =

non, Let y, €I be the change of basis matrix from e,, e, to e{;.¢}, and let

Yz eF be the change of basis matrix from ae,, ae, to n,el, nyngey. Thus,

“}’2 = [nlels n1n0e2] = YI(OI n,no)’ 1e., d - 7]('3 n,no)'}’zer(':i .nlno)r Srnce !

aeA" is arbitrary, this proves that the indicated double cosets exhaust A",
Conversely, it is easy to see that these double cosets are disjoint: in fact,

ael(y ,,l,,o)l“ = n,l"((‘, ,?)l“ if'and only if ny is the greatest common d1v1sor i
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‘of all entries in the matrix «. This is because, if « = y,a'y, with y,, _yzel“ ,
then d|all entries of o’ implies d|all entries of a; conversely, because & = -
77ty it follows that d|all entrres of a. 1mphes d|all entnes of o, Thrs :
completes the proof. _ o 3 a.
“In §III.5 we discussed the Hecke operators on forms of integral weight
for the congruence subgroup I'; (V). In that case one lets A" = A"(N, {1}, Z)
(see (5.23) in §IIL.5), i.e., A" is the set of matrices of determinant » which
are congruent to (5 ¥) modulo N. For fe M(I';(N)) one defines '

TS n @7 L ST (N)al s (M) i

where the sum is over all double cosets of F,(N )in A".‘

Proposmon 11. If g.cd.(n, N) =1, then a complete set of double coset repre-
sentatives of T'(N) in A" = A"(N, {1}, Z) is {0, (o nn, ° )}, where n,, myare
as in Proposition 10 and o, is a fixed element of [ such that 0, = (' ,)

modulo N.

Proor. If xe A", we know by Proposition 10 that a = my G ,,0))12, where
71, 72 €T and #, is the greatest common divisor of the entries of «. We must
show that.« can be written in the form n,y{g, @ ,,o)y2 with 7, yzeI" (N),
or equivalently, in the form #n, g, yl(o )Pz wrth yl = 0,,'y10,, € (N). We
suppose thatn, = 1,ie., n=n,; :'the genéral case is completely similar.

Lemma. If g c.d.(n, N) = 1, then a set {;} of right coset representanves for
r modulo I'y(N) can be chosen so that t;e I"o(n)

PROOF OF LEMMA. Lett= (c Y eI be any cose_t representative. We look for
G $ el (V) such that " = (§ §)tel(n), in which case we merely replace
T, by 7. It is easy to see that there exist # and v relatively prime such that n
divides au + cv. Let y=u+ (j, +j,N)n, 6 = v + In, where j;, and / are
chosen so that # +j,n=0mod N, v + In = 1 mod N (this is possible be-
cause g.c.d.(n, N) = 1). If we show-that j, can be chosen so that y and
are relatively prime, then we can find «, S such that§ §)eI';(N)and ¢ §)ze .
To(n), because ya + dc = au + cv =0 mod n. But if u+j;n+j,Nn and
v+ In"have a common factor, we first note that such a divisor must be
- prime to N (since v + /n = 1 mod N)and also prime to n (since g.c.d.(u, v) =

1). Then if P is the product of all'prime divisors of v + in not dividing Nn,
we can find j, such that u +jln +12Nn =1 mod P In thls way we'can ﬁnd ,
the required j;. R

y,_eI’o(n) and yleF,(N) Smce'y eFO(n), 1t fol]ows that ((‘, Nt ”((1, %9erl.
Wewrite _ g T g

s

““We now return-to the proof of the proposmon We have o= }’1(0 )yz s
W1th Y1, Y2 €. Using the lemma, we write'y, '€ I'in the form’ yl =y{y{ where":
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B ,(1 0 (1’ o)‘l (1 0) B ,(1‘ o),
=7 o n/\o n 141 0 n 72—7170 ‘n Y2,

where 75 =(§ 9797} 9y, el. It remains to show that 7erl (V). But

since o€ A" is congruent to (§ #) modulo N, we have modulo N

6 )= D6 2= 2

from which it immediately follows that y; € I'; (N). This completes the proof.

We now look at the analogous construction for forms of half integer
weight. Recall that in that case we must work with the groups I'4(4) =
G! = G, where ,

b v
= {(a, $(2)|a= C d)eGL;(@),

$(2)* = t(cz + d)//det o for some t = + 1};

G' = (& $(2))eGlaeTY;

Fotd) = {(éx, Jt 2o = (‘C’ f})e To(4).i(0,2) = (§) NCE d‘}.

Suppose that 4|N and fe M,,,z(f'1 (N)). Let n be any positive integer prime
to N. In the case of integer weight we defined 7, by considering double
cosets of the form I'; (N )a,,‘(o ,,o)l“ 1(N), where n = non1 So for half integer
weight one considers double cosets of the form r 1(N)6,, &, ', (N), where
&, €G is any lifting of (5 ), i.e., & =((6 m)s tn’/“) for some = +1, +i.
Since ¢ would turn out only to affect our deﬁnmon by the constant multiple
t*, for simplicity we agree always to take ¢ = 1. Also for simplicity we
consider the case n; =1, n, = n; the general case is completely similar.
So we now examine the action of the double coset I"; (N)&,I"; (V) on f, where

‘ 1o ,
“=((o o))
That is, we compute :

ST NET (N dcfo l[é..v,]k/z, . (3 )

where the sum is over all distinct right cosets of I'; (N ) in our double coset,
ie., over a set {§;} of right coset representatives of " 1(N) modulo [ =
lI‘l(N )&, I (V) (see Proposition 41 in §II1.5).

Proposition 12. If n is a positive integer prime to N which is not a perfect
square, then f |[T,(N)E,T(N)],, = 0.

o
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- PROOF Given oceGLz (@) and &= (a, ¢)eG we construct a map. from

I""-'—’a“’l",(N)ozr\I“ (N) to T={+1, £i} in the followmg way. Given
y=a ty,a with 7, yleI‘,(N), observe that 7 and &7'§,&e G, both have

" the same pro;ectlon in T, and so they differ by an element of the form

((0 (1) s t) le
- ERE=T(, ).

For fixed o and &, we consider the map that associates to y the number .

One verifies (see the exercises below) that #(y) is a group. homomorphism

from I'" to T, that it depends only on « and not on the choice of ¢(z) in
= (&, ¢), and that in the case o = (§ ) we have :

t(y) = (5-) for yp= (Z b)el” = a“fl(N)q N F;(N). ’(3.2)_ »

d

Let K = I" denote the kernel of this map ¢. i
Recall the definition I'” = &1 (N)E, n T (N). We claim that K=1",

ie., if 7eI’}(N) is of the form & '§,&, with y, € (N), then yeK, and .

conversely. To see this, first suppose that y, y, €';(N) and § = & '§,&,.
Applying the projection P: G — GL; @) givesy = (5 97'9,¢ 9, ie., yel”
=a ' (N)an T, (N). Since &5, &, = § = 7(1, 9, it follows that ye Ker ¢.
Conversely, if yeK<I”, so that y=a” ly,a and &715,&, = y(l 1) with
t = 1, it immediately follows that e ™.

Thus, in general, " = K is smaller than I,
ET(N)E, with T (V) is a subgroup of the hftmg of I =« ' [(N)an
I',(N). This subgroup I'” is all of I if and only if the map 1 is trivial. In
our case #(y) = (2), so that ¢ is trivial if and only if n is a perfect square. (We
are always assuming here that » is prime to N; the case n = p|N is treated
in Problem 3 below.) If 7 is not a perfect square, then ™ is a subgroup of
index 2 in T". In that case let I = I'” U "% be a right coset decomposition;
thus, T = a 't 0 and T = &%, &,-(1, —1). Let I',(N) = U,r'y, be a right

coset decomposmon of I'; (N) modulo I'V. Then

FI(N) = U 0 U I
is'a right coset decomposition of LW rnodulo =& ‘vf“, NE T (V).
By the definition and Proposition 41 of §I11.3, we have
f|[l~“1 (N)Cnfx(N)]uz = Zf‘[fu?j]k/z + ;fl[fn‘-')’;]k/z

. J
But for each j we have
e L TIGE e = GRSk
£ - =flEA, = D&EFl:

: =L, 1)5..7,]:42,
because fis 1nvar1ant under [tk for fel 1(N ) Smce [(l - 1)],‘,2 =

. the intersection of .

o
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(—1)* = —1 by definition, we have

fl[fn)’;:lk/z +fl[~fn Tilyz = f1LE, l’,]k/z f“:f 7,:'142 = 0

 This completes the proof of Proposition 12. SN o

The same argument will show that f |[F W(N)a, é,,of )]y =0 if ng
is a positive nonsquare integer prime to N.

Because of Proposition 12, we can only work with a Hecke operator on
Mm(r (N)) of index prime to N if that index is a perfect square #?; other-
wise, the Hecke operator is identically zero. Recall that the bulldmg blocks
for the Hecke operators in the integer weight case are the T, for p a prime
(see Proposition 32 of §II1.5). Similarly, in the half i mteger we1ght case, the
‘building blocks for the T,:, g.c.d.(n, N) = 1, are the T > PAN.

So let us examine in detail the action of 7,2 on M,dz(l“ (N)), where T,
is defined on fe Mk,Z(F (N)) in the following way:

o . 1
T f = 0% [Ty ()&l (V) )y2r Where &z = ((o ;2>,\/;>.
, (3.3)

This definition is not quite the immediate analog of T, acting on fe
M(T',(N)), which is glven by P21 (N) (G ,,z)F (N)]k + x(p)f) for
feM(N, y), because AP(N, {1}, Z) (V)G )F N)UT;(N)o, (8 9
I’y (N) by Proposition 11, and f|[a,(§ )T, (N )],‘ = x(p)/. Besides replacmg
k by k/2 and I'; (V) and (5 2 %) by thelr liftings I, (V') and &2, we also drop
the trivial double coset-T';(N)a,(§ 9T, (N). In the case of integer weight,
when 7, and not 7). is the bu1ldmg block, T, involves two double cosets;
but for half integer wexght we shall agree to take only the nontrmal double
coset.

As in the case of integer weight, in studymg M, (T'; (V) it is convenient .

to decompose it into y-components. If y is any Dirichlet character modulo
N, recall from §1 that

Mk/z(ro(N): X dff{fe Mk/z(rl )] A7z = 2@ f

for all y=(‘c’ Z)eFO(N)};

Mia(T(N)) = @, My (Fo(V), 7,

and that

where the sum is over all even Dirichlet characters modulo N (of course,

Mklz(l‘o(N), %) = 0if x is an odd character, since f = fl[—'l]k/z = x(=1Df).

By an argument which is completely. analogous to that in the integer
weight case, one can show that T, takes M,,,Z(I‘ 1(N)) to itself;; moreover
(see Problem 5 below), it preserves thc X-component..

We now fix a Dirichlet character y modulo N, suppose that fe M,‘,Z(I"O(N ),

QAN
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. ) end evalllate (3.3) explicitly. ‘Our purpose is to express the Fourier

coeff' cients for 72 f'in terms of those for f.

o By the lemma in the proof of Proposition 43 in §III S we know that

AP’ (N, {1}, Z) is the dlSjOmt union of the right cosets of I'; (V) with repre-
sentatives :

a,,:-.(l bz) for 0<b<p?;
p

2
p h . _(pt 0
ﬁ,,:crp(o p) for 0<h<p; and ’C—-—O’Fz<0 1).

Here for n prime to N, 6, denotes a fixed element of I' such that g, = ('{" )
mod N. The trivial double coset is the right coset corresponding to f;
thus, we have the disjoint union

2 -1 p—1
ran(, S)n =Y rienm o Y renporoe

In order to evaluate (3.3) using the definition (3.1), we need the right coset
decomposition of T’ (N)ijzf‘l(N) in the form U] I'{(N)E,:9;. If we could
write each «,, f,, T in the form (} z)y, where yeI” l(N ), then the y would be
right coset representatives of I’l(N ) modulo (0 o2 I (NG pz) n T (N),
and so the corresponding llftmgs 7 would be right coset representatives of
F 1(V) modulo & AT 1(N)E, 2T (N) (see Problem 1(b) below). In that
case, (3.3) is equal toZ, f ][é 2 yz-

Here we may adjust o, 8,, or t by multiplying on the left by any y"~
I';(N)—this merely replaces one right coset representative of I'j(N ) in
(N )(0 p,)F,(N) by another representative of the same coset. In other
words, it suffices to write &, B, T in the form y'( pz)y, where y, y e 'y (N),
and then compute

T2f(2) = plr2 Z f(z)|[€p2)~’]k/z- 3.4

The result will be the following proposition. We shall go through the
detailed computation of T,,. f after the statement of the proposition.

Proposition 13. Suppose that 4|N, y is a Dirichlet character modulo N, p{* N
is a prime, and k = 24 + 1 is a positive odd. mteger Let f(2) = T2y a,0*™ ¢
Mm(l" o), x). Then
TPZf(Z) — Z b"€2ninz’
L . n=0
( where
— 14 )
bn = ap’n.\+ X(p) <'(—7?—n>pl—1an“+ X(prz)Pk_zan/p2 (35) .

é;ere we take a,,: = 0.if p*{n).




208 . ’ _ IV. Modular Forms of Half Intéger Weight

PRbOF. As explained above, we must write each «,, f,, T in the form y ( )y
with y, yel, (N) First, o, = ( )—( )(0 5, i.e., for «, we can take
y=1,y=0"%. Thus the contrxbutxon to (3 4) from all of the o, is equal to

-2 z f(Z)I[(( » ) ﬁ) (G) 11)) I)LZ"

= pror’y f(z ; )
- 55

Since
21 3 2 .
FZ eZnin(z+b)/p2 — 0 lfp *n >
- 2, 2ninzlp? e 2
=0 - e if p*|n,
we see that this contribution is Z,a,2,¢*™". Thus, the a, give the first term
on the right in (3.5).

We next evaluate the contribution of t. Since g.c.d.(p?, N) = 1, we can
find two integers u, v such that up® + vN = 1. Thien we have’

- (pz, 0) p2 —o\/1 0 P v
T = 0p = 0p2 2 )
0 1 N 0 p*)\~N 1)/
i.e., we take y = 0,2y” with y” = % ),and y = (T4 ¥); then ¥, ey (N).

We have
f(z),[5p27]H2 =f(z)l[&p2?”épz:};]k/2

/1 0
= 1(P)f(2)] [(v”,j(v”, 2))- ((0 2>, \/E)‘ (4, J(», Z))]
14 K2

A simple computation of the product inside [ ., gives (5 9),p ).
Thus, the contribution to (3.4) from t is equal to

2 90 '
P 2(pAf ()| [(PO l)’ p~1/z]k/ = 212y p2yph2f( p27)
. 2

_pk ZX(pZ)Za eZmnpzz

Hence, 1 gives the third term on the right in (3.5).

Finally, we evaluate the contribution of the B,, 0 </ < p. Agam we
want to write f, = 6,(§ ) in the form o,7"(} pz)'}’ with y and g,y” in I (V).
So ;ve look for y = (¢ eI, (N) and 7" €To(N) such that (§ ) =7} pz)
a2 s ie.,

phakb"IO"‘_ph d —b/p?
<0 p)(c d) (0 p?) —(0 p)(-c alp* )er°(N)

Clearly p|a, so we write a = pa’, ¢ = N¢’. Thus, we need ——b/p + ha’/peZ'.. .
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" 'So first choose any integer @’ prime to p such that a=pa =1 (mod N).

Then any (¢ ',;)el” with a = pa’, ¢ = N¢’ will be in T'y(N). Next choose any

b primeto a’ such that b= ha’ (mod p) (this is clearly possible). Since

g c.d. (Nb pa "} = 1, we can find ¢ and 4 such that’ dpa — ¢'Nb = 1. Thus,
'.}) = DeTl;(N),and .

- f(p h pd —he (ah— b)/p)( 0>(pa’ b>
(0 p> ( —pe a 0 p /

wluch we denote y(} pz)y As in the previous paragraph, where we evaluated
the contribution of 7, we obtain

0\
f(Z)l[é T2 = 2P| [(v”,J(v” z))- (( »” ) \/i)'(w,j(v, Z))]k,z'
We compute ) '

((pd,— he (a'h -b)/p),( pc) - ﬁm) :

__pc a/

(6 D9 o=
(e (e

(2 @)

L

Since dpa’ — ¢’Nb = 1, we check that g,.6; = g,(F-)(— 1)@ =14, and that
@ = (p)- Thus,

QGO
- (2)-5(2%)

since b = ha’ (mod p); but bc = — 1 (mod p), and so we finally obtain

(G Gh)

T hus, tl1e contribution of all of the B, to (3.4) is equal to

L ()
pH- X(‘P)Zf(z) [(( ) 8”__‘1?__142.'_. FRNAS
. ] —:l k‘p~1’<l—1 (é }_l) e Lo

—‘p""” 2"(”)(1’)8’;,; p>f o)
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Now

=1 n=0 h=1

\P

where we have madeé the usual change of variables (replacing nk by h) and
used the value sp\/; for the Gauss sum. Thus, we obtain

—_ o] .
puqz)—zx(P) (J) e:“\/;_r Z ({1_) a"eznmz .
p n=0 p
— A © .
= pl—lx(p) <____1_> z (s)ane2mnz.

D n=0

So the contribution to the n-th coefficient of T2 f(z) is p*~!y( p)(‘—'—%,ﬁ)a,,.
This is the middle term on the right in (3.5). The proof of Proposition 13
is complete. . u]

We note that it can be shown (see Problem 3 below) that the formula
in Proposition 13 also holds when P|N, in which case x(p) = x(p® =0,
so we have simply b, = a,.,. '

We further note that, as in the case of integer weight, one can show that
the different Hecke operators T,. commute; that T, = T,2:T,2 when
g-c.d.(m, n) = 1; and that T2 is a polynomial in T,.. Thus, the operators
T): for different p generate the algebra of operators C[ {T,.}2,].

In the case of integer weight, we applied a formula analogous to (3.5)
in the case when we have a modular form which happens to be an eigen-

- function for all of the Hecke operators. The result was a formula for the
ratio of a, to a;, which can be written in the form Za,n™* = a, - (Euler
product). (See Propositions 36 and 40 in §I11.5.)

In the case of half integer weight, we can consider modular forms which

happen to be eigenfunctions for all of the Hecke operators. But since only .

the T,. are nontrivial, we only obtain a formula for the ratio of a2 to
a,, i.e., we can relate coefficients whose indices differ by a perfect square
factor. - . !

As in the integer weight case (see the end of §II1.5), the spaces My, (To(N),
x) have a basis of eigenforms for all Hecke operators of index prime to N;
and certain important subspaces have a basis of eigenforms for all of the

Hecke operators, i.e., for T,. when g-c.d.(n, N) =1 and for T, when p|N. |
Thus, let us now suppose that fe My, (Lo(N), y) is an eigenform for all of |

the Hecke operators T,:.

Proposition 14. Let f(z) = I3 0 @€ € My, (To(N), %) be an eigenform for :
all of the Hecke operators T,:. Let 4, be the corresponding eigenvalue, ie., '
T2 f= A,f. Suppose that l, is not divisible by any square prime to N (i.e., ]

P*|lo only if p|N). Then

LBzl - h © . =1 AT i Co © (p ' o L
Z (—-)f(z + ._) o Z a”eanz Z <_)e2mnh/p —_ gp\/l; z (__) a"eanz,
4 b ' n=0 \2 ,
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. N(ES AN
gl =a,]] TR G.
1,21 gl aloalI:Ip [— 4y + 2P 7 _

(Nofe: The use of the letter A to denote k — 1)/2 an_d its use with a sub-
script to denote an eigenvalue should not cause confusion.) .

IPR&)F. If T, f = 4, fwith p} N, then (3.5) gives for any /, prime to p:

, - — DU .
Api iz = a4y 12 p2 + ¥ x(p) (( p) 0) Az s v 3.7
' e — 14 -
Ay 2 p2v = Ay p20+1) + P 2(p) <( p) 0) a2y + PF 0P A 201,
- | | (38)
v=1,2,....If p|N, then we need not assume that /, is prime to p; we have

the same relations (3.7)—(3.8) in all cases, with only the first term on the

right nonzero when p|N. '

On the other hand, if we look at the terms in (3.6) corresponding to all /,
which differ by a power of p, i.e., if we consider a,o,fpz.v(l P8 for ﬁ’_‘fd 1, /«
prime to p (if p/N) and variable v=10, 1,2, ... ,?nd 1fwe.set Af.= pS, we
find that (3.6) is formally equivalent to the following set of identities for all
p and all /; prime to p (if pfN):

— 1M -
® 1—X(P)<( p) 0)[)" IX
Z a; 12 zva—':al )2 N k=3 v2 *
o o = A,X+ x(pIPTX

3.9
But when we multiply both sides of (3.9) by the denqminator 1 —A,X+
x(pH)p*2X? and compare coefficients of X**!, we obtain (3.7) for v =0and
3.8)forv=1,2, ....Thus, (3.9) holds, and we have established (3.6). O

Proposition 14 explains the appearance of Euler products of the type we

- found in the last section (compare (3.6) with (2.31)).

In the next section, we start by formulating Shimura’s theorem, which
gives a deeper significance to the Euler product in Proposition 14. The Euler
product (3.6) turns out to be closely related to a Euler product for a modular
form of integral weight k — 1. ’

PROBLEMS

1. Let &= (a, p(2))€G, let I'" = Ty(4) be a congruence subgroup, and let I'" = I"_rl\
" &™'Ta. For yeI'” define £(y) by the relation &¢~ = §, - (1, 1(y)), where y, = ayx -
"(a) Show that the map ¢ depends only on & and not on the ¢(z) in &. Prove that z is

- a group homomorphism from I'” to T.

(b) As usual, let ~ denote the lifting of an element or subgroup of To(4) to G, i.e.,
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7= (. J(, 2)) for yelo(4), M= {#lyel} for I" = To(4). Let K< I be the
kernel of ¢. Show that K = I’"r\é IT¢ Thus, if ¢ is tnv1a1 then y+»§ gives an
isomorphism from I'” to I = [ ~ V¢

(c) Prove that for fe M,,(f), if ¢ is nontrivial, then f][f'e:f“ Jy2 = 0. Recall that
f 1[1"61" Tuz = Z;f|[7,)2> where the sum is over all y; such that "¢l =
\J; T&7; (disjoint union).

2. Prove that @) =@ fora=(@} 9,7=( Hely@d) na T,(d)a
3. (@) For IV = (N), 4|N, and « = (§ 9), show that ¢ is trivial if and only if 8|N.
() ForI" =T (N), 4p|N, and « = (} 9), show that 1 is trivial.
(c) For I, p, and « as in part (b), show that T,vf(z) = Zay,e*™™ for f(z) =
Za,e®™" e M,(Ty(N)),v=1,2, ... If p= 2 and 8} N, show that this is still
true for v even. In particular, Proposition 14 holds for p|N.

4. Compare the formula for the g-expansion coefficients b, for T,.[f when fe M,,
(I'o(N), x) with the corresponding formula for 7,. f when fe M(N, x).

5. We n(_)ted in the text that 7). takes M,‘/z(f‘l (N)) to itself. Show that T, preserves
M, (T (N), y) for any Dirichlet character y modulo N.

§4. The theorems of Shimura,'Waldspurger, Tun.nell,
and the congruent number-problem

We now state Shimura’s fundamental theorem giving a correspondence from
forms of half integer weight k/2 to forms of (even) integer weight k — 1.

Theorem ([Shimura 1973a]). Let k >3 be an odd integer, A (k ~ 1)/2,
4|N, x be a Dirichlet character modulo N. Let f(z) =X, a,e’""e
Sk,Z(I'O(N) x) be an eigenform for T, for all primes p thh correspondmg
eigenvalue A,: Tof = A,f. Define a functzon g(2) = £2., b,e*™™ by the
Sormal identity

[ee] _ 1 ’
b,n~S = - T 4.1
g‘l :.Il]l,,l — A0~ + x(p)?p @D

Then ge My_(N', x*) for some integer N’ which is divisible by the conductor
of x*. If k > 5, then g is a cusp form.

Notice that the definition (4.1) of the b, is equivalent to the following:

M b=1

(2) b, = A, for all primes p,

(3) byy = A,bpy-1 — x(p)*p* 2bp-2for v > 2;
4) by, = b,b, if m and n are relatively prime.’

In Shimura’s original theorem, the determination of the level N’ of g was.

a little complicated. However, it has since been shown ([Niwa 1975]) that-
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one can always take N' = N/2. It should also be noted that Shlmura actually

fproved a somewhat more general theorem applying-to f which are not‘

necessarily eigenforms for all*of the T..
As a simple numerical example, suppose N =4, y is trivial. The first

nonzero cusp form of half integer weight occurs when k=9, A=14 (see '

Problem 5 of §IV.1). Up to a constant multlple itis f=OF(@* — 16F) =
T a;q", where we have chosen f'so that a, = 1. (By Problem 17(h) of §IIL.3
this f is also equal to 7'2(22)/@3(z).) Clearly, f is an eigenform for all 7).,
because Sg,z(l"o(4)) is one-dimensional. Then Shimura’s theorem holds w1th
N’ = 2. Now Sg(T'4(2)) is one-dimensional and spanned by the normalized
form g(z) = (n(z)1(22))® = g1, (1 — ¢")*(1 ~ ¢*")°® = L b,q" (see Proposi-
tions 19 and 20 in §I11.3); hence this g(z) must be the g(z) in the theorem. It
is now easy to relate the coefficients b, of g to the coefficients a, of /. Namely,
using (3.7) with [, =1/, =1, A =4, and noting that a; =1, y" = (this is
the trivial character mod 2, which equals 1 on odd numbers and 0 on even
numbers), we obtain:

by=h,=ap+p* if p>2; by=da. (4.2)

While (4.2) follows immediately from Shimura’s theorem, it is nevertheless
quite a remarkable numerlcal 1dent1ty the p-th coefficient in g TI(1 — ¢")*
(1 — g")® is equal to p* plus the p>-th coefficient in ¢ T1 (1 — ¢*")'2/(Z gy
Like many numerical relations that follow from the theory of modular forms,
this fact looks rather outlandish when stated in this elementary form without
the theoretical context.

If we have a fixed set of linearly independent forms f; in Sk,z(F o(N), 1)
which satisfy the hypotheses of Shimura’s theorem, then we can extend the
Shimura map by linearity to the subspace of S,(,Z(l"0 (N), ) spanned by them.
Note that the image g; of f; is always a normalized eigenformin S _; (N/2, ).
If we take another set {f/} of forms which satisfy Shimura’s theorem and
are also a basis for the same space as the f; (for example, if we multiply each

A by a scalar), the Shimura map is clearly affected. When we refer to the image

of a single eigenform under the Shimura map, we shall always mean- the

© normalized eigenform gin Shimura’s theorem. But if we have a space of

modular forms with fixed basis f; of eigenforms with Shimura(f;) = g;, then
we define Shimura(Za; f Y= Zay;, Wthh lS not necessarlly a normalized
eigenform. So our meaning of “image” prelmage > under the Shimura
map depends upon the context.

In general, it is possible for several different fe Sk,Z(FO(N ), x) to go to the’» L

sameg e M,_,(To(N"), x?). For instance, there might be an f eSk,z(F o). X))
which corresponds to g where y’ is a character different from y which has
the same square: 3> = x”’. However, when N = 4, Kohnen [1980] described
the situation more preclsely We now describe his main result. '
Let Mk,z(F0(4)) denote the subspace of Mk/z(l“o(4)) consisting of f(z) =
Za,,q for which a, = 0 whenever (— 1*n = 2 or 3'modulo 4. It is certainly
a prtorz possible that there are no nonzero forms f with this property, which
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requires that “half ”” its coefficients vanish. However, wé know from Proposi-
tion 9 that H,, is such a form. Also, it is easy to check (using Proposition
17(a) of §II1.3 and (1.8) of §IV.1) that ®(z)f(4z)eMk,2(Fo(4)) for any

fe€M1),(SL5(Z)). It turns out that Mk,z(f‘o(4)) is the direct sum of the -

one-dimensional space spanned by the Eisenstein serles H,, and the sub-
space Sk,,_(l"o(4)) of cusp forms:
Sk/Z(I‘O(4)) ={f=)aq eSk,Z(I"o(4))|a = O 1f(— 1)‘n =2or3mod4}.:
' 43)

It is not hard to show that M;},(T'(4)) is preserved by all of the Hecke
operators T, except for T,. According to Shimura’s definition of T4, one

has T4Za,,q = X a,,q". If we look back at §IV.2, we see that £, is an.

elgenform for T, (with eigenvalue 272, see (2.21)), but H,, is not. In fact,

it is easy to see that T, H,,¢ Mk,2(F0(4)) For this reason, Kohnen modifies”

T,, and defines a slightly different operator T, so that the m-th coefficient
of T{ £a,q" for (—1)*m =2 or 3 mod 4 is zero and for (~1)*m=0or 1
mod 4 is equal to

Aym + x(_,)).m(Z)Z"*lam + 2k—2am/4'

With Shimura’s definition, since we have y(p) = 0 when p]N even if y is the -

trivial character on (Z/NZ)*, the second and third terms vanish in
Ay + xx(_,)lm(2)2’1_‘am + X(4)2k~2‘1m/4-

Thus, Kohnen’s modification is to replace the trivial character x by the map
which takes the value 1 (and never 0) on all numbers mcludmg those not
prime to N. It is T; rather than 7, which preserves M,,,Z(I“O(4)) and
Sk,z(r 0(9). Note that H,, is an eigenform for T; with eigenvalue 2¢2

Kohnen further shows that Mk,2 (To(4)) has a basis of eigenforms for all
of the T,» (p #2) and for T; which is unique up to permutation of the
elements and scalar multiplication. There is no obvious way to normalize
an eigenform f= Z a,q"; for example, we cannot necessarily multiply by a
* scalar to get a; = 1, since a; =0 for allfeMka(f'o(4)) if 4 is odd. But one
can require that the coefficients all lie in as small a field extension of Q as
possible.

It turns out that the images g of these eigen-basis forms fe Sm(l" o(4)
under the correspondence in Shimura’s theorem are all contained in S, (M),
I' = SL,(Z) (the results of Shimura-Niwa only guarantee that they are in
8-1(I'(2))) ; they are all distinct;; and they form a basis for S, _, (T') consisting
of normalized eigenforms for all of the Hecke operators T, acting on S, (I').

(In particular, dim S,,,2 (T5(4)) = dim S,_,(T').) Thus, if we take each of our = -

basis elements for S,,’,Z(I“0 (4)) to its image under the Shimura map—and take

Hy; to the normalized Eisenstein-series -—é—:—;lEk 1—and then extend by
linearity to all of My, (T, 0(4)), we obtain an isomorphism from M,,,z(l"o(4)) )

to M,_,(T") (and from Sklz(l‘o(4)) to S, (). This isomorphism commutes

NN
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with the Hecke operators, in the sense that:

M To@)af—geM, (D) [y
. T,,:I I]}, and TZI .ITZ
T:fr~T,g - TifieTyg

The basic method of Shimura’s proof of his theorem was to use Weil’s
theorem which we discussed briefly at the end of §I11.3. Weil’s theorem says

" that if Zb,n"* and its “twists” b,y (n)n"* for certain Dirichlet characters

¥ each satisfy the right type of functional equation relating the value-at s

" to'the value at k — 1 — s, then g=ZXb,q"eM,_(T,(N), ¥*): But the proof

that all of these functional equations are satisfied is not easy; about twenty

pages of [Shimura 1973a] are devoted to an investigation of delicate analytic i

properties of the Dirichlet series corresponding to g and its twists.
Shimura’s correspondence seems rather roundabout. It says: take the
g-expansion of a suitable fe.S,,(I'o(N), x); look at the g-expansion coeffi-

cients a, as n varies over integers with fixed squarefree part /,, and form a

Dirichlet series from them which turns out to have an Euler product; then
take the part of this Euler product which is independent of /,, and expand it
into a new Dirichlet series £ b,n™°; and finally, go from this new Dirichlet
series to the g-expansion X b,g", which will be your modular form of imegral
weight.

After Shimura’s paper appeared, people started looking for a more
conceptual, less roundabout construction of the Shimura correspondence.
Certain more direct, analytic constructions were given by Shintani [1975]
and Niwa [1975]. In addition, group representation theory was found to
provide a conceptual explanation of this correspondence (see [ Gelbart 1976],
[Flicker 1980]). Moreover, the use of representation theory has led to
striking new results about forms of half integer weight, especially in the
work of J.-L. Waldspurger -

Using representation theory, Waldspurger [ 1980, 1981] proved a remark-
able theorem establishing a close connection between critical values of
L-series for a modular form g of weight k — 1€2Z and the coefficients in-
the g-expansion of a form f of half integer weight k/2 which corresponds to
g under the Shimura map. Roughly speaking, the theorem says that the
critical value is equal to the square of a corresponding g-expansion coeffi-
cient times a nonzero factor which can be explicitly described. Waldspurger’s
general result is complicated to state, so we shall only describe what it says
in two particular situations.

' As mentioned before, Kohnen [1980] showed that the Shimura map gives
an ‘isomorphism

Sty (Fo(d)) Stimzs, g 1<r> o (4.4)

Here S (To(4)) is defined in (4.3). Let g(z) = Zb,g"€ S,_,(I) be a nor-

‘malized eigenform for all of the Hecke operators, and let y;, be the character
corresponding to the quadratic field of discriminant D. Suppose that
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(—D*D > 0, i.e., the quadratic field is real if A = (k — 1)/2 is even and it is
imaginary if 4 is odd. Recall that L,(x, 5) denotes the analytic continuation
of T2, xp(m)b,n™° (which can be shown to converge absolutely if Re s>
k/2). Let f(z) = Za,q" eS,dz(F o(4)) be the unique preimage of g under the
Shimura map (4.4); i.e., g = Shimura(f). Let { £, /> and {g, g> denote the
Petersson scalar products, where the same definition (see (5.31) in $IIL. 5) is
used for half integer weight as for integer weight, i.e.,

- g o dxdy
Sr=¢| Lot

- Fo(4)
where Fr@)isa f‘undamental domain for [,(4).

Theorem ([Kohnen—Zagler 1981]) With the above notation and hypotheses,

LGt ) = (ID!> (kﬂ,ﬁi;% dy @)

The basis of eigenforms fe Sg,(I'4(4)) can be chosen so that the g-expan-
sion coefficients are all in some totally real number field. However, there is
no natural way to normalize them: we can multiply each f by an arbitrary
constant ¢ in that field. But note that the right side of (4.5) remains unchanged
when £ is multiplied by ¢, since afp and {f, £ are both multiplied by ¢*
So (4.5) does not depend on our choice of basis in -defining the Shlmura
isomorphism (4.4).

The L-series value in (4.5) is a “‘critical value” in the following sense.
Recall that the Riemann zeta-function has a functional equation relating
{(s) to {(1 — s), and the region 0 < Re s < 1 is called the “critical strip” for
{(s). Similarly, the Hasse~Weil L-function of the elliptic curve £ = E, in
Chapter II has a functional equation relating L(E, s) to L(E, 2 — s), and
theregion 0 < Re s < 2is called its critical strip. The value of such a function
at an integer in the critical strip is called a “critical value”; in the case of
L(E, s) the critical value is L(E, ). It is such critical values that have been
found to have arithmetic significance. (A general context for the study of
critical values is described in [Deligne 1979].) In the case of the L-functions
for modular forms g of weight k — 1, it turns out that they have functional
equations relating L,(y, s) to Ly(X, k — 1 — s). (Of course, x = when we
are working with quadratic characters y = x,.) Thus, the critical strip for
Ly(xp,s) is 0 <Res<k~—1; and the critical values are L (xp,j) for
J=1,2, ..., k —2. The critical value L,(xp, A) at j = 1 = (k — 1)/2in (4.5)
is the value taken at the exact center of the critical strip, i.e., at the fixed
point under s«>k — 1 — 5.

The first numerical example of the theorem of Kohnen—Zagler occurs
when k = 13, 1 = 6, since S,,(I') = CA is the first nonzero space of cusp
forms for I'. In this case g = A = Zr(n)q and f = @F(©* — 16F)(®4/ 2F),
where F=3X, 440,(n)q", ® =Zg" (see Problem 5(c) in §IV. 1; this

feSt 3,,Z(I‘o(4)) can be given other convement expressxons for example, in .
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terms of @ and E,). For more computational details of this example see
[Kohnen-Zagier 1981].

Our second example of Waldspurgers ‘theorem is the one studied by -
Tunnell for application to the congruent number problem. In §l11.3 we
explained that the Hasse~Weil L-function L(E,, 5) = Zb,n"* for the elliptic

curve .E,: y* = x® —x corresponds to a cusp form £b,q" of weight two. -

In turns out that g(z) = £ b,q"is in S,(F(32)); g is a normalized eigenform
for all of the Hecke operators, and, in fact, is the.unique such “new-form”,
i.e., form which does not come from any lower level N < 32.

For n squarefree, let D= —nif —n=1mod 4, D= —4dnif —n=2or
3 'mod 4; that is, D is the discriminant of the-imaginary quadratic field
Q(:/—n). In Chapter'II we saw that L(E,, 5) = Z xp(m)b,m " is a twisting
of L(E,, s). (Actually, in (5.7) of §I1.5 we wrote x,(m) rather than y,(in):
but b,, = 0 unless m = 1 mod 4, in which case yp(m) = (7 = (%) = x,(").
so one can equally well use either y,, or y,. Because we will be looking at
the critical value at A =1, we want to work with quadratic characters of
imaginary quadratic fields, i.e., (—1)*D = —D > 0.)

Thus, we can write
L(E,, 8) = Ly(s) = Ybam™*;

L(E,, ) = L,(tp> ) = ¥ 1p(m)b,m™.

We saw that the critical value L(E,, 1) = L (xp, 1) vanishes if and only if n-
is a congruent number (“‘only if” here is conditional upon the Birch-
Swinnerton-Dyer conjecture). It is this critical value which Waldspurger’s
theorem provides a means of describing.

Let f denote the “real period” of E, : y*> = x* — x, which is obtained by
integrating dx/y over the segment [ 1, co) where y is real:

ﬁd‘_;rJ _ﬂﬂzz,6zz...

L X3 —x

Theorem ([Tunnell 1983]). There exist a form f= Za,q"€Sy,(T(128))
and a form f =ZXa,q" eS3,2(F0(128) xz) such that Shlmura( fy=
Shimura(f) =g = Zb,q"™ and

jor nodd;

4[ A
3 \/. a forneven

L(E,, 1) =

.'Ir‘t’,.pt‘zrticular, L(E,, 1) =0ifand only ifa,= 0 (n__odd) or Ay, =0(n g)ﬁcﬁn).

Before discusSing Tunnell’s explicit construction of the forms f and /7,
we-shall discuss how this theorem can be viewed as an analog of the results
about H,, which we proved in §IV.2 (see Proposition 6). -

“.6)
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We saw that under the Shimura map Hk,2 = Zc,,q eMm(l' o(4)) corre-

sponds to
2k — 1 1 ‘
g=-2€=Dp i b+ Soatare Mo, @,
k=1 . R N

In Problem 16 of §II1.3, we saw that Ly(s) ={(s){(s — (k — 2)) and that
L,(x, ) = L(x, $)L(x, s — (k — 2)), where the L-functions on the right are
Dirichlet L-functions. In particular, setting y =p and s = 4 = (k — 1)/2,
we obtain

But, by the functional equation for L(yy,, s), we can rewrite L(yp, 1) in
terms of L(yp, 1 — A)aswedid in (2.15). We obtain an expression for L(xp, 4)
as a product-of the form %+ L(xp, 1 — 1), where * denotes a nonzero factor
involving the gamma-function and powers of n. Substituting in (4.7) and
using Proposition 6, we obtain

Lytps D)=l T

When reformulated in this way, the results of §IV.2 are very similar to the
previous two examples of Waldspurger’s theorem. As in the Kohnen—Zagier
formula, on the left in (4.8) we have the value of the L-function for some
geM,_,(I'), twisted by xp, at the center of its critical strip; on the right we
have the square of the corresponding g-expansion coefficient of the form in
Mm(f“o(4)) which goes to g under the Shimura map. However, the Kohnen—
Zagier theorem does not include this case, because g and f'= H,, are not

cusp forms (in their formula, one cannot even define {f, /> and <{g,g)>

except for cusp forms). The case (4.8) is not even included in Waldspurger’s
general theorem, which also applies only to cusp forms. However, we may
think of the results of §IV.2, which were proved in an elementary manner,
as a “‘prototype” for theorems such as those of Waldspurger, Kohnen—
Zagier, Tunnell.

Recall that if we could take 4 = 1 in Proposition 6, then the coefficients

Cip| = L(xp, 0) of H,;, would be essentially-the class numbers of imaginary
quadratic fields Q(\/l—)). There is actually an analogy between these critical

‘values and the critical values L(E,, 1) in (4.6). For elliptic curves, a role
analogous to that of the ideal class group of Q(,/D) seems to be played by
the so-called Tate—Shafarevich group II. It is the order of Il which appears
in Birch and Swinnerton-Dyer’s conjectural formula for L(E,, 1) (or for
limg.,, (s — 1)™"L(E,, s) if L(E,, s) has an r-order zero at s = 1). Formulas
for the “average” value of the order of I have been conjectured which are
analogous to classical results in analytic number theory for the average value
of the class number of imaginary quadratic fields. For more about this,
see the papers by Goldfeld ez al. [1979, 1982].

We now return to Tunnell’s theorem, and discuss Tunnell’s explicit con-

struction of the modular forms f and f” of welght whose n-th or (n/2)-th
coefficient gives the value of L(E,, 1).
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Tunnell’s ﬁrst task is to find all fe S3,2(l" 0(N ), x) whose image under the
thmura map is the modular form g € S,(I',(32)) corresponding to L(E,, s).
According to [Niwa 1975], any such f has Shim(f)e S,(To(N/2), ¥%). So
one might try taking N = 64. However, there is no guarantee that Shimura(f)

~is not in S,(Ty(N"), x2) for N’ a proper divisor of N/2. For example, we

know that any fe S,,,Z(I“o(4)) ‘has Shimura(f) in S,,(T') = S, (I'4(1)). So
in fact the fwe want could be.in S3/2(I‘0(N ), x) for N a multiple of 64. Tunnell
computed that, in fact, no fof level 64 maps to g, but that all preimages of g
under the Shimura map have level 128.

The character y must be even, smce S,,,Z(I“ oV), ) = 0 for odd y ; it must
have conductor dividing 128; and x* must be trivial, i.e., y must be quadratic. -
There are two such y: the trivial character y = 1 and the character y, defined
by x2(j) = (3) for J.odd. Tunnell determined that Shimura™!(g) consists of
two forms in S3,2(F 0(128)) and two forms i m S3,2(I'0(128) X2)- Moreover,
he found that these four forms of weight 3 can be constructed in a par-
ticularly s1mple way: by multiplying a certain form f; of weight 1 by forms
of weight 3 of the type @(mz).

Up to a constant multiple, G)(mz) is equal to ®|[(§ 9), m**],,, and so it
easily follows from Problem 1 in §IV.1 that @(mz)eMl/z(F o(dm), 7,.) (see
also Proposition 17 in §I11.3). If we multiply this by a form n/fy(z)e M,(I'o(128),
1), then the product f;(2)®(mz) is contained in M3/2(F 0(128), xx-..) When
4m|128. (Recall that M, (T'y(128), y) = My, (T'5(128), x - x-,) by Proposition
3 of §IV.1, and so.the character for f;(z)O(mz) is x - 1, K D

The form /1 is chosen to be

[i@= Y (=1ygqémrir+se

mnelZ

It is an easy exercise to show that

£1(2) = (0(2) — 6(42))(0(322) — 3©(82)),

anci therefore f; € M1/2(T0(16)) M, (f0(128) x2) = M (Tp(128), x-,). Ac-
tually, f; also vanishes at the cusps of T'y(128), and so we have f 1 €8, (15(128),
X~2). Thus, for m|32 we have

‘ f1(2)O(mz)e Ss,z(f"o(128), Xam)-
It can be shown, by the way, that f; can also be written as a product

11@) =nB2)n(162) = q[[ (1 = ¢*")(1 - ¢**".

For a short proof using the Jacobi triple product formula, see [Moreno
' 1980].

Proposntlon ([Tunnell 1983]). The modular forms fl(z)G)(Zz) f1(2)0@82)e
15’3/2(F0(128)) and f,(z)©(4z), fl(z)®(16z)eS3,2(Fo(128) X2) are a maximal
set.of lincarly independent eigenforms for all of the T,. whose image under
the Shimura map is the modular form g = £ b,q" eSz(FO(32)) corresponding

to L(E1 s ).
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Tunnell then proves his theorem by a close examination of what Wald-
spurger says in the very special circumstances of the congruent number
problem. In our situation, Waldspurger’s theorem boils down to the as-
sertions that: (1) there is a linear combination f = X a,q" of the preimages
in Sy, (T,(128)) such that for all odd squarefree /,

Lg(X—l,,, l) = cai '
for some constant c; (2) there is a linear combination f” = Xa,q" of the
preimages in Sy, (I",(128), x,) such that for all odd squarefree /,
Lg(x—Zlos )= C/axl,,z

for some constant ¢’. Tunnell computes that one can take f(z) = f1(2) ©(2z),

¢= pialo, and 1) =/10U), ¢ = f2y2o. Since Lyt )=
L(E,,, s), this gives his theorem with

f(2) = (B(2) — ©(42))(©(322) — 30(82))O(22),
f(2) = (©(2) — ©(42))(©(322) — 36(82))O(42).

The numerical identity (4.6) in Tunnell’s theorem is quite bazaar. By the
formula (6.8) in §I1.6, it says that for n odd and squarefree:

—nm/n\/_ — ® dx '
8\/— Z ( )b e a, j 3 ’
‘ X —x
where L(E,, s) = Lb,m™* and a, is the n-th g-expansion coefficient in (4.9)
- below! '
Note that in (4.6) we are interested only in the odd g-expansion coefficients

of fand f”. But for n odd, the n-th coef_ﬁciem is the same as the n-th coefficient

in
() (@(322) - 19(82)) Q)= Y g 1 D e
2 x,y,2€Z 2 x,y,2€Z
4.9)
and

O(2) <®(322) -~ %@(82)) O4z) = Z q4x2+y2+3222 _ Z q4x2+y2+822,

x,y,2€Z -

N —
X

(4.10)

respectively.

(Notice that the coefficient of g' in (4 9) and (4.10) is obviously zero

if I, = 5 or 7mod 8 for (4.9), /, = 3 mod 4 for (4.10); but this tells us nothing

new, since in Proposition 12 of §I1.6 we saw that LE,y=0ifn=[=5§

or 7mod 8 or n = 2/, = 6 mod 8.)

Collecting coefficients of g’ in (4.9) and (4.10), we conclude the versxon.

_ of Tunnell’s theorem that we cited at the beginning of Chapter L.
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n’is a congruent number

“elementary” (proved -
in Chapter I)

<::>

E,:yt= x3 — n2x has
infmlte]y many rational points

Blrch-Swmnerton Dyer
conjecture

4 S/

Coates-Wiles: ~
LE, = O

~

Theorems of Shimufa.
Waldspurger, Tunnell -

< >

the n-th g-expansion coeffxcnent in
Tunnell’s product of theta-functions
is zero )

Figure IV.1

Theorem ([Tunnell 1983]). If n is a squarefree and odd (respectively, even)
positive integer and n is the area of a right triangle with rational sides, then

#{x,y,zeZ|n=2x2+y2+3222 =1#{x,y,zeZ|n=2x* + y* + 8z%}

| respectively,

# {x,y,zeZ

g: 4x? + y* + 3222}

:—;—# {x y,zeZ §=4x2+y2+822}).

_ If the weak Bzrch Swinnerton-Dyer conjecture is true for the elliptic curves

9% = x3 — n’x, then, conversely, these equalities imply that n is-a con-
gruent number.

:v\,‘Ijn- Fig. IV.l we recall the logical »struc‘:ture of tile argument.
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We note that very recently B. H. Gross and D. Zagier [1983] have been
able to show that the weak Birch—Swinnerton-Dyer conjecture is true for
E, for a large class of n. For such n, Tunnell’s theorem becomes an un-
conditional equivalence between the congruent number property for n and

the equalities in the theorem involving the number of representations of '

n (or %) by some simple ternary quadratic forms.

As mentioned in Chapter I, Tunnell’s theorem has the practical value of
leading to an effective and rapid algorithm for determining whether n is a
congruent number. In addition, one can give quick new proofs of certain
conditions for n not to be a congruent number. For example, if # is a prime
congruent to 3 modulo 8, Tunnell shows that a, = 2 mod 4, and therefore n
is not a congruent number. For this and other corollaries, see Tunnell’s
paper.

The only sense in which Tunnell’s theorem is not yet a completely satis-
factory solution to the ancient congruent number problem is that in one

direction it is conditional upon the weak Birch—Swinnerton-Dyer conjecture-

for certain elliptic curves. But lately, significant progress has been made
toward a proof of that conjecture in enough generality to include the curves
E,. In addition to the work of Gross and Zagier mentioned above, R.
Greenberg [1983] was able to prove that, if the conjecture were to fail for
an elliptic curve such as E, which has complex multiplication, then that would
imply a highly improbable combination of consequences for the Tate-
Shafarevich group of the elliptic curve.

It is remarkable that the nearly complete solution that we now have to
such an old and naive question as the congruent number problem, has
required some of the most powerful and sophisticated tools from diverse
branches of twentieth century mathematics.

Ah’swer_s, Hints, and References for
Selected Exercises |

§I.1

1. See [Hardy and Wright 1960, pp. 190-191]. 3. (b) Follow the proof that

x* + y* = u* is unsolvable on pp. 191-192 of Hardy and Wright. 4. For fixed # and
fixed x (so that Z is fixed), the triples that correspond to x come from the
infersection of the two conic sections X2 + ¥?=2Z%and XY = 2n in the XY-plane.
Given one point of intersection (X, Y), the other three are (=X, - Y), (Y, X), and
(=Y, —X), and s0 do not give a distinct triple. 5. (a) 1681/144; (b) 25/4;

(c) 841/4,1369/4. 7. Since x2, y* =0, 1 or 4 (mod 8), it follows that 2x2 -+ v+ 822
can never equal an integer n = 5 or 7 (mod 8). The first congruent number n = | or 3
(mod 8) is 41, which is the area of the right triangle with sides 655, 134, 148L,

§I.2:

1. replace y by y/n? and x by xfn 2. (c) x = —-nY/(X;f- Z),y=2n*(X+2Z)
e X Y Z | x y X Y Zz | x y

3.4 51 -3 9 T3 4 5| 12 -3
4 3 51 -2 8 4 3 -5| 18 -7
=3 -4 5| 12 3 -3 -4 -5 |.—3 -9
=4 =3 5 | 18 72 -4 -3 -5 | -2 _g

3: (a) If Z is the side opposite § and X, Y are the other two sides, the law of cosines
gives X2+ Y% —24XY =2Z2 Then the pointu = (X — AY)/Z, v = Y/Z is on the
ellipse u? 4 B2p? = 1. Again use the slope of the line Joining (—1, 0) to (i, v) to
parametrize this ellipse. Show that u = (1 — B2/2)/(1 + B*1%), v =2t/(1 + ’thi). Now
the area of the triangle is $X¥ sin 6 = £X'¥, so we obtain: o

n= $BZX(Y|Z)(X|Z) = 1BZ?v(u + Av) = BZ*1(1 + 24t — B*1*)/(1 + B21*)2.
Finally, set x = —Bt, y = (1 + B*?)/Z, 50 that ny? = x(x* + 2§x ~ 1). (b) Since

N
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A=(1-31 + 1*yand B = 22/(1 + 4%, the.right side of the cﬁﬁic/equatiqn in
_ 32 ) . s
1 1{1 x— 1) = x(x— D+

part ‘(a) becomes x (x"—k

§1.3

1. Counterexample if K= |F =Z[pZ: F(x, y, z) xP—x. 3.1;0;2 5. (b) Here's

a counterexample if char K = p Let d be a multiple of p,

F(x,p,2) =x%+ 3% + 20 + x%°2, where 0 < a,b,c, a+ b+ e =d. Then all partial
derivatives vanish at (0, 0, 1), (0, 1, 0), (1, 0, 0), but these points are not on the curve.
In fact, if p=d = 3,a = b = ¢ = |, then the curve is smooth at all of its points, even
though there are three points of PZ where all three partial derivatives vanish.

(d) With K = R or C, think of Fasamap F: K 3 ., K, so that the smoothness
condition becomes nonvanishing of the gradlent Then apply the chain rule to the

composite function: x’y’z’-space 4 Xxyz-space £ K. 6. (b) Reduce to the case

zy=z;=1setAx= TR(x; — X3), s0 thatf(xx)Ax = 7 (y2 — y1)- Then

0= F(x, + Ax, y, + f(x))Ax + @, Ax™ + -+, 1) = F(xl + Ax, y, +f(x)Ax, 1) +
y(xl + Ax, y; +/(x)Ax, DaAx™ + - - = (1 + D~ F F(x, + x50, py + pat,

z, + z,1) + (nonzero constant):™ + higher terms.

§L.5

2. (a) f(z) = (¥, €*"®) for z = aw, + bw,, a, beR. (b) N2, (c) In part (a), let

a = jp, b = k[p; then for j, k€ F, not both zero we have (j, k) < subgp gen by
(e?miiP, g*=4r) gives the required one—to-one correspondence; there are p + 1
subgroups. 3. (a) If s = 2, reduce to the case when f(m, n) = 1ifm,n=m,, n,
(mod N), f(m, n) = —1if m, n = my, n, (mod N), f(m,n) =0 otherwise (where m;,
n; are fixed pairs); then pair together the jN 4+ m,, kN + n, term and the jN + m,,
)( M- Z Sflm, ")JO(PZ)(N‘Ux Fw2; 0y, @,).

kN + n, term. (b
l)' O0<sm,n<N

§1.6

2. g3 —27g3. 3. p"(2) = 6p(2)* — ig,. 6. {(8) = n®/9450. 7. 4/3,8/27

10. Set v(2) = f " (9(2)), find (dv/dz)?, and show that dv/dz = +1.

14. (a) Substitute # = sin? 0 and integrate by parts. (b) Use Problem 12(b), and
substitute x = (¢ — e,)/(e; — e,) to get the expression under the radical in the form
x(x — 1)(x — 4). (Note: An elliptic curve written in the form y* = x(x — 1)(x — ) is
said to be in “‘Legendre form™.) Then make the substitution ¢ = 1 /x. (c) Expand

(1 — Af)"? in a binomial series in part (b), and use part (a).

§1.7
2. (a) ((x* + n2)/2y)2. () let ord, denote the power of 2 dividing the numerator

minus the power dividing the denominator; dividing into the cases ordzx <ordynm, |

ord,x = ord,n, ord,x > ord,n, determine ord,(x* + n?) and use y* = (x> — n’)x to
find ord, y, in order to conclude that ord,y > ord,(x* + n?). (Of course, ord,n =
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or 1, since # is squarefree.) - 3. (a) 0 togéther with 3 x-intercepts. (b) points of - -

inflection. (c) from each of the 3 x-intercepts there are 4 lines which are tangent to~

the curve at points of order 4. (d) if we have a configuration of three lines crossing

three other lines, and if the elliptic curve passes through 8 of the 9 points where they

-cross, then it passes through the ninth. 4. (a) eight; setting y” = 0 after twice

differentiating y* = f(x) implicitly and then multiplying both sides by 2y?* gives:
@yy)? = 2p*f"(x), and hence f(x)* — 2f(x) f"(x) = 0. (b) X = +n~/1 + 2,/3/3.

5. four; draw lines from —@Q which are tangent to the curve. 7. 4; 3; 8. The four
points of order 4 not of order 2 are found by drawing lines from (», 0) which are
tangent to the curve. 8. two points of order 2 (at infinity and (a*?, 0)); three points

_of order 3 (at infinity and ((4a)"*, +(3a)"?) if a is positive, (0, +(—a)'?) if ais

negative); four points of order 4, namely, the two of order 2 and the two points
@21 + /3), £(3a@ + 2/3))"?) (if a is positive; change the two +’s to'— if @ is-
negative). ) -

§1.8

1 pQ2) = 16x* + 8g,x% + 32g3x + g3
AT 16(4x® — g,x — g3) -
2. f5(z) = 3x* — 3g,x* — 3g3x — {592, with x = g(2). 3. Look at zeros and poles
of @(Nz) — $(2); determine the constant — 1 by comparing coefficients of z™2. (See
[Lang 1978b, pp. 34-35].) 4. Considered on.the points Foy + §w, in the z-plane,
o must take every such point either to itself or its negative (modulo L). When
finding the matrix entries by looking at the cases (j, k) = (1, 0) or (0, 1), we first
obtain (¥} ), but consideration of other j, k shows that both signs must be the
same. The analogous situation in cyclotomic fields is to set Q5 = Q(cos 3¥) (i.e.,
adjoin just the x-coordinate of the point of order N). Then Gal(Qy/Qy) is ‘the
subgroup {+1} in (Z/NZ)*. 5. The image is conjugated by the change of basis
matrix. 6. (a) a subgroup of order 2, (b) the trivial subgroup, (c) the entire group,
(d) a subgroup of order 2. (Note: In this and the next problem, these subgroups are

, with x = p(2).

- only defined up to conjugation; see Problem 5.) = 7. (a) 48, (b) Using Problem 4(b)

of §1.7, we see that K is generated by ++/1 £ 2,/3/3 and by the solutions y of

¥? = xn?(2/3/3) = + 23 + 2/3. (c) By part (a), [K;: Q] divides 48. Since it is
obtained by successive extractlon of square roots, K5 has-degree in fact dividing 16.
On the other hand, by part (b), it is easy to see that K3 contains i and also the fourth
root of 4n*(3 + 2,/3), which satisfies x® — 24n2x* — 48n*, which is irreducible (by
Eisenstein’s criterion for the prime 3, if 3} »; if 3|n, a generalization of Eisenstein’s
criterion can be used). Thus, the field F obtained by. ad_)ommg this root has degree 8.
But F< R, while K, -:->t so that [K5: @] > 16. Hence, the degree is 16, and the image
of the galois group is a 2-Sylow subgroup of GL,(Z/3Z). Here are two alternate ways
of showing that [K;: @] is at least 16: (i) K has at least degree 2 over

Q(Vany3 + 2,/3) = R, so it suffices to show irreducibility over Q of the polynomial

- Ty pensor s (¥ £ ¥ £204/3 £ 2./3). But otherwise a product of 4 of the roots would

be in'Z, and this can be ruled out directly. (ii) First show that
[Q(/3 + 2,/3): @] = 4, after which it suffices to show that Q(V2nv/3 + ZJ— )
0(\/3 + ZJ— ). Otherwise we would obtain 2nv/3 + 2,/3 = (a + bv/3 + 2,/3)%
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a, beQ(/3); since v/3 + 2,/3¢ Q(/3), this gives 0 =a® + b3 +2/3),

~ a contradiction, since @, beR. (d) (§ 1), i.e, z; = w,/3; z, = (w; + @3)/3. 8. (¢)
Show that « is an eigenvalue of a 2 x 2 matrix with integer entries. 9. (a) 3, (b) 4,
©6,@7@8,()5 (7.

§1.9
1. Possible conditions on p and S:8|f; orelse 2|fand p = ~1 (mod 12).
2@ p | 3 5 7 11 13 17 19 23

Tpe |2 24 24 223 24 44 225 (243

®)4,49@©2,2,7,d) 2,49, €(Q2,2,9,37). Forg=17 and 9, you have to
check that the x-coordinates of the doubles of all 12 points not of order 2 are 0, 1 or
—1, i.e., all points are of order 4. Note that those cases also follow from Problem 11
below. 3. Same as Problem 2 except for: p=13,(2,2,5); p =17, (2, 2, 5).

4. Notice that the right side x> — a runs through [, as x runs through F,, so the
number of points is the same as on y? = x (plus the point at infinity). 5. See’
Problem 10 below. ’

6 p | 5 7. 1 3 17 19 23
type | 2,3) (22 (4,3) (223) (29 227 B3

7. Show that for all but finitely many primes p = —1 (mod 6) the group
homomorphism from the subgroup of points of order m in E(Q) to E(F,) is an
imbedding. Show that this implies that points of finite order can only come from 2

’ points of order 2 and/or 3 points of order 3. Then find whether the points of order 2
or 3 can have rational coordinates. 9. (a) Show that a point of order N is taken to
another point of order N by the complex multiplication automorphism; but if both
(x, y) and (—x, \/—1y) have coordinates in F,, then \/—1€F,. 10. Proceed as in
9(a), using the complex multiplication (x, y) > ({x, y), where { is a nontrivial cube
root of unity in F,2. 11. Suppose that a'< f. Let G be the quotient group of the
group of points of order /# modulo the subgroup of points of order /*. Then
G =~ Z/I*~*Z. Show that the complex multiplication used in 9(a) gives an
automorphism of the group G whose square is the automorphism — 1 (which takes
every element in Z/I#™°Z to its negative). Show that there is no such automorphism
if 1 = 3 (mod 4), because —1 is not a square in (Z/IZ)*. If I = 2, use the fact that —1
is not a square in-(Z/4Z)*. : o ‘ :

§IL.1

4. Z(T) = (1= TH™2; Z(T) = (1 — T?; take the equation x> — a = 0 for a any
quadratic nonresidue mod p. 5. Z(T)=1/1—-T)(1 —=T»-.-(1 =T, ,
6. (8) Z(T) = 1/[(1 — TY(1 — T~1(1 = Ty~ .. (1 — 7 7'¥=1] (b) The limit of
the Z(T) in part (a) as M approaches infinity, an infinite product which is not a ‘
rational function. ) - ‘ .

7. (b)) Z(PE/F,; T) = 1/(1 = T)(1 = gT)(1 — ¢*T) - (1 — g"T). 9. Write V
as a disjeint union-of affine varieties, and use Problem 1. To reduce to the case of a
single equation, use induction and the observation that the number of simultaneous -

Y . '
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zeros of /= g = 0 is equal to the sum of the number for /= 0 and the number f(;r .

 g="0 minus the number forfg = 0. 10. 1/1 — T)(1 ~ qT).

1. (1 - ¢D)[1 = ¢*T)(1 - ¢°T). _ .
12. 1/(1 = T)(1 — qT)(1 ~ ¢*T)*(1 - ¢°T)(1 — ¢*T). 13. Following Problem 13
of §1.9, you quickly see that the field extension generated by the points of order /!

- is contained in F t*. It remains to show that only the /™-order points, and none of

exact order /M*!, have coordinates in F#~". Prove this by computing the exact power
of / that divides N,u-1. Consider separately the cases (i) / remains prime in the
quadratic extension Q(x); (ii) the ideal (/) = LL splits into a product of two prime
ideals. Show that, for example, if L° is the highest power of L dividing & — 1, then
L** is the highest power of L dividing " — 1. In this way, use the fact that N, is
exactly divisible by /2 to prove that Nu-: is exactly divisible by I?M.  16. Write
ZT)=14c,T+c,T*+ -+ = P(T)/Q(T), Q(T) = by + b, T + - - -, where P(T)
and Q(T) have no common factors and all coefficients are integers. Check that the
polynomial Q(T) is primitive. Use the Euclidean algorithm to write PU + QV = m,
where U, VeZ[T], meZ,m+ 0. Write m/Q = UP/Q)+ V =dy +d, T+ - --.
Since m = Q(T)(do + d, T + - - - ) with Q(T) primitive, it follows by the proof of -
Gauss’s lemma that m|d;. In particular, m|d,, and this means that the constant term
by is +1. It immediately follows that P(T) also has constant term +1.

§I1.2

1. For example, to prove (3), in the double sum for J(x,, x,)9(x, 1) replace x by x/y
and then replace y by x + y. For property (2), see 2(a) below. 4. i\/3, /5, i\/7, 3.
5. 14203, =342 —1+4i 6 x(@®J( 1) = x(dx — 4x?) =

Z(1 —(2x — )?) =Zx(1 — x?) (replacing 2x — 1 by x) = Z(1 + 3, (M) — )
(where y = x7 if y,(y) = 1), and this equals J(x,, ). 7. (1 + 3iﬁ)/2,

(=5+ 3iﬁ)/2. 8. (a) Use part (b) with m a square root of 1/n in Fgz. (b) Replace
x by x/m® and y by y/m® in y* = x* — nx. 9. (a) Replace x by x/a. (b) Choose J to
be the ideal of elements x for which axe J, and take the sum over a fixed coset in
(R/I)* of the subgroup consisting of elements congruent to 1 modulo J; show that
each such sum vanishes. (Look at the example R = Z, [ = (N ) to get used to the
.argument.) (¢) Check that g(¥, ¥) = g(%, ¥) = x(— 1)g(%, ¥). Then we have

90t VI = 906 V)9 ) = Zee iy Zyern XOIT(W(x — y) (here it makes no

. difference whether we sum over R/I or (R/I)*). Replace y by xy in the inner sum,

thereby changing the summand to %(»)y(x(1 — y)). For fixed x not prime to /, if we
let J denote the ideal of elements whose product with x is in 7 (thus, J is strictly

larger than 1), we see that the inner sum vanishes by the argument in part (b). So we
can replace the outer sum Z, _ g by . ;. We then interchange the order.of
summation to obtain: [g(x, ¥)|* = Z, gy ¥(¥) Zeerp ¥ (x(1 — 3)). When y = 1, the
inner sum is NJ. But when y # 1 it vanishes, since, by assumption, i is nontrivial on
the subgroup (1 — )R + I/I'in R/I. 10-17. See Weil’s paper [Weil 1949] or else
[Ireland and Rosen 1982, §4 in Chapter 11].  20. (b) By part (a), modulo 3 we
have J(x3, x3) = Rt (W (X))° = ERW (X) = Ziep, Y(3x) = ~ 1. (6) J(13, ¥5) is an
element of Z[w] of norm p which is congruent to — 1 mod 3. (e) Since J(x1, x3) has

'norm p and the right congruence, it suffices to show that it is in the ideal (2 + bw)

(rather than the other possibility (@ + b&)). Working mod a + bw, replace x3(x) by
x®~1% and y3(1 — x) by (1 — x)®~ in the definition of J(15, x5), and use the fact
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that £ x’ = O unless p — 1 dividesj. 2%. (a) Use Problem 6 and the Hasse-
Davenport relation. 22. (@)a+0 and char K # 3. (b) Use: the map x> x> is
one-to-one from X to itself, and so x> = u always has exactly one solutlon (c) There
is one point at infinity. For any fixed y, the number of x such that x® = y* + ay is
14 x3(y* + ay) + %3(»* + ay). Sum this over yeK, making the change of variable
y = ax, so that z3(y* + ay) = Xs(a)ls(x x%) = T3(@) 23 (x)x3(1 — x) (recall that
—1=1inK).(d) Compute the case r = 1 directly; then use the Hasse-Davenport
relation. Z(C/IFZ ;T) = (1 +273)/1 - T)(1 - 2T) © Completmg the square in the
equation y? + y = x3 and substituting y’ =y + %, ¥’ = x gives y? = x* + {, ie.,,
(8y)® = (4x')® +'16. Then set y = 8y", x = 4x’". . 23. (c) The following tables give the
number of points in factored form. The type of the group follows from Problem 10
of §11.1 unless that number is divisible by the square of a prime / = 1 (mod 4). Those
cases are marked with an asterisk and discussed below.

N . , . N

r Nres ~ NF r

1 23 22 2 ‘ 25 10 ‘ ©25-401-761

3 23.13 22.37 4 27-5 12* 27~5~132-37-6l
5 2%-401 22761 6  2°:13:37 14*  25-292-337-673
7 2%.29-337 2%-29-673 8 2°-32:5:17

@ . ‘

r N N r N, o N,

1 23 22.5 ° 2 25.5° 8* 29.32.52.73.97
3 23.277 $2%2.5.109 4% . 27.32.52 10* 25-52-101-461-3701

5 2%-101-461 2%-5%-3701* 6 25-5-109-277

To handle the asterisked cases,  suppose that E,(F,) contains exactly / points of order
1:jP, 0 < j < [; and that E,(F,) contains exactly 12 points of order /2 of the form jQ,
0 <j <% Let F < F;r be the extension generated by the coordinates of Q.
Following Problem 12 of §I1.1, use the map o+ o(Q) — Q on Gal(F,r/F,) to show
that #* = /. Use this to show that the / part of the type is (/, /) in all cases except Ny"
and N, in part (d). In those two cases, show the type is (1) as follows. If there were
12 Fr-points of order /, let F be the extension of F, they generate. By suitably
choosing a basis {P, Q} for the 2-dimensional F;-vector space of points of order /, get
an injection of Gal(F,-/F,) into matrices of the form ¢ 9Qix F*. Thus, 7|/ — 1.

§IL3 \

4. By (3.11), we have 9(()) = Zapmo,1,... p-1 ()W =p~ 1 +

EPo1Epol (£2£b2)e2xidP, In the inner sum replace b by ab to obtain g((3)) =

p— 1+ (i e ) (BP0 = p — | — ZpTp (4) =

2 —1-Zph(1 4+ ) =2p — 1 — #{a, beF|a? =1+ b%} =

2p—1— #{x,ye !F,,[xy = 1} (after the changg of variables x=a + b,y = a — b;
Ca=(x+))/2,b=(x~Y)[2). Hence,gG)) =2p ~ 1 = (p =D =p.

§II.4

2. (b) Note that L{y, 5) = Zp¢ x(8) £(b), and use parf (a) together with Problem
9(a), (b) in §11.2. (€) L(x, 1) = ~¥g(0) Zae X(@) log(1 — £7). (d) L(x, 2) =

-
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A Zaca T@IE™. 3. @7 2’""""’2” © ﬁ"’zr GIN°L(y, 5) =

a9 (LT, 1 — ). (f) Set's = 3 in part (). () L'(x, —2k)=
1—(—- Dkt mm 22 N2 (0T (k + HL(E, 2k +1). 5 (a) Integrate by parts in the
definition of the Fourier transform of f'(x). (b) — — jyp ™ H2 g2miay—nyht

(@ meTRL (YN ‘L(x 5) = —igQn " PTEF)LE, | - ). (h) For x(n) = (3 we .

‘obtain: L'(y, — 1) = 2i(l(e~>™3) — I(e*™)), where I(x) is the function in Problem
2(d). 7. Use part (a)_(m) of Problem 4. 8. (a) Add the expression for

la, 1 —s) + I(1 — a, | — s) in Problem 3(c) to the expression for

l(@, 1 — s)— I(1 —a, 1 —s) in Problem 5(d) to obtain:

_ —s+1/2r(s/2) _
@, 1~ 2——~——~—r((1 )/2)(6( ,8) + {1 —a,5)
SR (s + 1)/2) B
———————————-—zr(l 2 (e, -0~ a,9))-

§ILS

2. (a) (1) = 20(1/1). (b) Let (s) = [ £(6(1) — DL + f5(0() — by Asin§IL4,
show that ¢(s) is entire, and for Re s > 1 is equal to 5 #°(0(1) — D¢ + 1+ 4+ 15 =
Lo b + 17 T(8) Zomezz [m| 2 = 4 + 155 4 77T (s)4{x(s). By substituting 1/¢ for ¢~
in the integrals for ¢(s), show that ¢(1 — s) = ¢(s), and hence n“’F(s)g k()=
25101 = 5){k(1 — $). Finally, show that 4{(s) = pi I ((s) — L — 1) is analytic
except at s = 1, and that limg.,; (s — 1)4x(s) = lim,.,; n‘/l‘(s) =mx. 3. Since the
Fourier transform of g(x) = e2mv xe mlx+ul? jg 5(y) == Lo2niv-t—o)p=tntly=ti® ope
obtains: 62(f) = e~ 2" vg* (1. 4. (a) Qmiw- y)"f(y) (b) ()kLe?niv ye 1,

(©) 8, (t) = i™*r7+719**(%). (d) Let a + bi run through a set of coset representatives.
modulo [ = (#’), and write x in the sum in the form (a + bi) + n’'(m, + m,i), so that -
the sum becomes n’*[n’| "2 X,y x(@ + bi) Ty “I';i'z;‘:)k (where u, + u,i=

(a + bi)/n’). The inner sum is essentially the Mellin transform of 6, (). The
functional equation in part (c) will then give a linear combination of termsof the
form {§ r**17°6“*(£)4-, and this linear combination can be expressed in terms of a
Gauss sum and our. original sum with s replaced by k + 1 — s. (¢) Suppose the

(g, 0,) for our Hecke character j is (k,, k,) (this pair of integers is called the
“infinity type” of §). Consider 7 as a function on elements as well as ideals 6f Z[z] by
defining 7(x) = #((x)). Let k = |k, — k;|. If k, > k,, then the mapping

x>y (x) = )c(x)/x"(l\lx)"2 is easily seen to be a character of (Z[{}/)*; if k, > k,, then
x(x) = (x)/x"(l\lx)"l is a character of (Z[{]/f)*. In, for example, the case k, > k,,
the I-iecke L-series is then £ o pe 2y 10 (NX) ™ = { T x* x(x)(Nx)"z“ 5 (a) Make
the change of vanables x = Mx to obtain §(y) = [gne™ ™M I f(x) gl =
mf(M*y , since M ! =x"*M*y. (b) L' = M*Z"; let g(x) = f(Mx). Then

ZearS() = mz»g(m) mezn.ci(m) = Yoo Zyer f() by part (a).
6. (a) M* = (":ﬁ 9); considered in C, L’ =247[w]. Note that Tr xy = 2x-y,’
where on the left x and y are considered as elements of C, and on the right as
élements of R2. (b) In Problem 5(b), let f(x) = e ™ g(x) = f(Mx) with M as in

~'part (a); then apply Poisson summation. (c) Let 6(8) be the sum on the left in part

(b), and let ¢(s) = [Hu3e°(0() — 1)4 + [§¥3 £°(6(t) ~ -%;)%. For Re s > 1 show that
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() = (2/\/3P¢G + t5) + 27T (5)6k(s). The residue at s = 1 is n/3,/3. Finally,
replacing ¢ by 4/3¢ in the integrals for ¢(s) leads to the relation: ¢(s) = ’
(2/\/3F1¢(1 — 5), and this leads to A(s) =A(l —3) for AGs) = (\/_ 120 T () Lk (5).
(d) Use the Euler product form {x(s) = IT,(1 ~ (NP)™)"L. F or a prime ideal P of

“ norm p = 1 (mod 3), the contribution from Pand Pis (1 =p™72; for P =(p),
where p = 2 (mod 3), the contributionis (1 —p™2)™ ' = (1~ p™97 (1 — x(P)p™7};
and for P = (,/—3) the contribution is (1 — 3%} (1 — ¥(3)3 7%~ (since x(3) = 0).
So the Euler product is the Euler product for {(s) times the Euler product for L(y, s).
(¢) Multiplying the functional equations for {(s) and for L(, 5) gives A(s) = A(l — 5)
for A(s) = a2 T E)(5) B/ T((s + /DL (1, 8) = (3 L) TET (s + 1)/2) =
const - (/3/21)*T(s){x(s) by (4.4). 7. See Problems 20-22 in §I1.2; (d) g(x, ¥) =
8. (a) By part (1) of Proposition 9, §(y) equals ¢*** times the Fourier transform of
(x- w)e”""‘ **: note that x:w = Mx - (1 i) with M as in Problem 6(a); then proceed
as in Problem 6(b) to obtain §(y) = Sy (—, 1)e?mmre Gily(-e. O (b) Use
Problem 7(c) to obtain ¢(s) = 32~* T (s)6L(E, s). (d) Replacing ¢ by 4 in the
integrals in ¢(s), one obtains ¢(s) = (§)* " Z x(a + bw) J& *~*6"(r) 4, where the
summation is over 0 < a, b < 3; u = (a/3, b/3); and
04(t) = ez - (—, )2 me (.0 Then for Re (2 — 5) > 3/2 use (4.6),
Probfem 2 of §I1.2 (note that u - m = §Tr((a + bw)(—d&m; + my)[i\/3)), and the
evaluation of the Gauss sum in Problem 7(d). The result is: ¢(s) =
(4/3°"137°72I'(2 — 5)6L(E, 2 — 5). Equating this with the expression in part (b) and
collectmg terms gives the desired result.

§IL6

-2. The function f(s) = A(1 + 5) is even in the first case (so that its Taylor expansion
at s = 0 has only even powers of s) and odd in the second case. 3. (c) Use:

bpe=op + o7 %, + - -+ 4+, and 2a, = a, + &,.

P P P 14
_5-6. n | first few nonzero b, , | L, 1) | remainder estimate
21by=1,bs=2by=—3 K 0.92707 | - |R,3} < 0.00027
31by=1,bs=2,b,3=6b;,=—2 1.5138 |R2s| < 0.00123

10 | b, =1,bg= —3,b,3=6,by,=—2 | 165 [Rys| < 0.289

7. You want | Ry 44| to be less than ¢/2, ie., ¢/2 > 4(1'— e~ *F)" o mMHWN for
large n the right side is asympotic to 4/N'e"™"¥ 5o choose

M > L/N" log(8y/N'rc) m-2\/N log n, i.e. (2nf /m)log n for n odd, (2n/m)log n for
neven. 8. (a) Use Problem 3 to find the b, ,. (b) See Problem 7 of §L.1.

§III.1

L TeIhi(N) < FO(N ), but STS ™! ¢ I'o(N); hence, neither I, (V) nor Iy(N) is normal

inT. 2. (a)Given A€ SL,(Z/NZ), let 4 be any matnx with 4 = 4 mod N. Find

B, CeSL,(Z) such that BAC is diagonal: BAC = (¢ 9), where ad = det A = 1

(mod N). It suffices to find 4 = (**™ #¥) with determinant 1, since then - :
B ACT lESLZ(Z), and B1AC™' = B™1(§ )C' = A = A(mod N). To find 4 so

that I =det 4 =1+ ((ad — 1)/N + xd)N = zN?, first find x so that

xd = —(ad ~ 1)/N (mod N), and then choose z so.as to make det 4 = 1.
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3. @ (@*— 1)(@* — 9); () g(@> — 1). 4. (b) Since the kernel in part (a) has p*<»

elements and #GL,(Z/pZ) = (p* — 1)(p? = p), it follows that #GL(Z/p*Z) =
P73 (p* = 1)(p — 1). (c) Divide the answer in (b) by ¢(p°) to get p>~%(p? — 1)

- 5. Use the Chinese remainder theorem. 6. N° TNt —p~ 3.
" 7. N? (1 —-p “2) N; NII, (1 —p “1y; N? T ~p7'); NILi( +p7Y)
" 8. The image of I'(V) under conjugation by (§ ~§) is the subgroup of I',(N?)

consisting of matrices whose upper-left entry is = 1 (mod N). '10. and 14(b). See

‘Figures A.1-A.2. 12, Besides I" and I'(2), there are four, namely, the preimages of

the three subgroups of order 2 in S; and the one subgroup of order 3 under the map
I'— SL,(Z[2Z) ~ 8;. () Tp(2) = {(} ¥ mod 2}, F,(2) = the right half of F(2);

i) I°2) = {(¢ 9 mod 2}, F°(2) = Fu T™'F U SF; (iii) 6(2) = {( =lorS
mod 2}, fundamental domain = Fu T Fu T~ SF; (iv) {¢ ,5 I, ST or (ST)?
mod 2}, fundamental domain = Fu T™'F. 13, (a) This can be proved using the
fundamental domain, as in the proof of Proposition 4 in the text. Here is another
method. Let G denote the subgroup of ®(2) generated by +.5, T2 Clearly G ¢ G(2).
Conversely, write g € ®(2) as a word of the form +S%T?ST": ... ST", where

@y =0orland bj#0,j=1,...,/— 1. Use induction on / to show that g G. We
work mod +/, so that $% = (S7)* = 1. Without loss of generality we may suppose
a, =0, b, # 0, since we can always multiply g on the left or right by S without
affecting whether g € G. For the same reason we may suppose that b, = b, = 1, since

 T'*eG. Note that I = 1 or 2 is impossible, since T, TST¢ G(2). If / > 2, write

g =TST" -- - Since (STS)(TST) = 1, we have TST = (STS)~' = ST"'S, and so
T2Sg=TST*'S ..., which is just like g but with b, replaced by b, — 1. If b, > 0,
use induction on b, to finish the proof. If b, <0, write ST~ 2g = ST!ST% ... =
TST®*! .., and again use induction on |b,]. (b) Use: I'°(2) = TGQ2)T",

I(2)= ST (Y)(Z)(ST)'l () Let G be the subgroup of T generated by T and ST™2S.
Since G = I'(2), it suffices to show that [T': G] = 6, e.g., that any “word” in Sand T -
can be multiplied on the left by elements of G to obtain one of the elements «; used in
the text for coset representatives. Use S? = (ST)? = | and induction as in part (a).
(d) Use part (c) and the isomorphism in Problem 8. 14. (c) Fo(p) is bounded by the
vertical lines above § and —1; arcs of circles with diameter [0, 2] and

[—2/(2p — 1), 0]; and arcs of circles with diameter [ —1/(k — 2), —1/k],

(The centers of the
boundary arcs are at
~-1/2,0,1/6, 4/10.)

1 i
Z+Z\/§
3. .
—Z+7V3 9,13
2828
h o 1/2

Figure A.1
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N\,
—— A\
6\ < \\\\

% ! 3¢ ! %

172 0 1/2

Figure A.2. Two possible fundamental domains for I'4(4):

1. Let F(2) be the fundamental domain for I'(2) in the text. Then oF(2), where
a = (3 ~), is a fundamental domain for I',(4) = al'(2)a™" (see Fig. A-1).

I & ,iz 1 F is a fundamental domain for I'y(4), where F is the fundamental domain
for I = SL,(Z) given in the text, and «; are coset reprcsentat:vcs for I' modulo
I',(4). Here we have taken: o, = 1, az—-S oy =TS, 0y = T™2S, a5 = T3S,
ag = ST™2S. (In Fig. A 2, the number j labels &; ! F; the solid boundary arcs are
centered at 1, —%, —3; the dotted arcs are centered at0, —1, =%, -3, -%;
the point P is (—7 + l\/—)/26)

k=3,...,p. Forexample, F5(3) is the union of the regions marked 1, 2, 3 and 4 in
Figure A.2. 15. See Problems 12 and 14(c) for counterexamples. 16. (b) (i) 2;
(ii) 2; (iii) 2; (iv) 1. ~

§IIL.2

1. In the sum for G,, group together indices-m, n with given g.c.d. 2. Substitute

z = i in Proposition 7 to obtain: E,({) = 3/z. 3. (a) Since both sides of each
equality are in a one-dimensional M,(I"), by Proposition 9(c), it suffices to check -
equality of constant terms. (b) Equate coefficients of ¢" on both sides of the °
equalities in part (a) to obtain: o,(n) = a5(n) + 120 == 03(j)a3(n —J));

1og(n) = —1005(n) + 21a5(n) + 5040 2}':; 03()os(n —j);

613(n) = 21a5(n) — 200,(n) + 10080 Zi=} 65(j)o7(n — j). 4. (a) Since the left side is
in §;,(), by Proposition 9(d) it suffi ces to check equality of coefficients of g.
(b)1(n) = 75501, (n) + $3405(n) — 3+ ZZ{ 05(j)as(n — j). (¢) Consider part (b)
modulo 691. 5. Let F(X, Y) be an u'reducnble polynomial satisfied by X = E,,

Y = E,. Substituting z = i in E,(2), E¢(z) leads to a contradiction, since E¢(i) = 0,
E(i)#0. 6. (b) Use part (a) with x = ™" = ¢>™®, along with the relation

0= 2(a+l)Bn+1E + () = '274:‘+—1)Ba+1 — I 0,(n)q" with g = &*¥®. 7, Use
Proposition 7 and the derivative of the identity f(— 1/z) = z*/(z). 8. (a) By Problem
7, the right sides are in M,(T") and My(T), respectively. Now proceed as in Problem
3(@). (b) 2164(n) = 103n — 1a;(n) + a,(n) + 24052} 6, ()os(n — j);

200,(n) = (42n — 21)o5(n) — 6,(n) + 504 Z=! 6,(os(n — j). 9. (a) Use the fact
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,‘ . ' [ / : k
that #n* = 1 (mod 24) if n is prime to 12. (b) Use Propositio:i 9(d) to show that their
24-th powers are equal. (€) TI2, (1 — ¢") = £pe sy mea 124" 24 —

S ismea12d™ IR 10, j=256(A72 4 1+ AD3(A+ A2 j= 1728 if A= 15if -

A.='a/b.in lowest terms (with a'and b positive) and je Z, that means that

a*b*(@® + b*)? divides 256(a* + a®b* + b*)*, but since a, b and a* + b? each have no.
common factor with a* + @b 4 b*, that means that a?b%(a? + b*) divides 16, and -
now it’s easy to eliminate all possibilities except @ = b = 1.

§IIL3

4. (a) Since I\(N) = £TI',(N) in those cases, there is no difference between
TI'o(N)-equivalence and T, (N)-equivalence. (b) —1/2is an irregular cusp for F@. .

-5. Group | To(p) | To(2%) | T
Cusp w|{ 0|ow]| 0O |—=1l/kp k=1,...,p—=1] 0| 0 | —1
Index 1 P 1 2] 2 2

7. (a) See the proof of Proposition 18; replace a by X in (3.11). 8. (2) Replacing z -

by z+ 1/2 in Ze*™* gives X (— 1)"e*™"" ; meanwhile, the right-hand side is

2‘£,e2’""2’"2 (b) works the same way. (c) On the left side, the constant term is clearly
zero; the coefficient of ¢" for p}fn is (—2k/B) o, (n); if p]n but p’}n, then the
coefficient is —2k/B, times 6;_;(n) — (1 + p* Va,_,(nfp) = 0; if n = p™n, with m > 1
and pJny, then the coefficient of ¢" is ‘
— 2k/B, times 6, (p"no) — (1 + p* Vo1 (p" 1g) + p* 7 0y (P77 00) =
04-1(10) (041 (P™) = (1 + p* )y (P™71) + P70y (P 2)) 0. .
(d) Use parts (b) and (c) with p = k = 2. (¢) Rearrange the infinite producl of
(1 — MM = (] — (—1)"g") by writing 1 + ¢" = (1 — ¢*)/(1 — ¢"), getting
1, cven * Hpewiceanoga/Tnoaa (Where IT denotes IT(1 — q")) But this equals
nscven nevcn/nalln nn(vnceanevcn nzln/H nA[n 9. See the proof of Proposmon
30. 10. (a) Since n%(z)n%(22) € S5(T',(2)) by Proposition 20, to show invariance of
n®(4z)/1*(22) under [y], for yeI,(4) it suffices to show invariance of
n2(4z)n®(2n*(2z) under [y],, for yeT,(4); now use Problem 9 to show this. At the
cusp o, we see that n8(4z)/n*(22) = qI1(1 — ¢*")®/(1 — ¢*")* has a first order zero; to
find n(0) we apply [S1,: 27 %n°(—4/2)ln*(=2/5) =
X z/4* P /N~ (/D (2/2)) = —&TI(1 - ")8/ (1 — ¢3"*, which approaches
~g2.as z— . To find the value at the cusp —3, which is equivalent to the cusp

= T(—1/2), we can apply [(3 D], as follows:

(lzz+1)- 78_(2;_12_@ 1y (22+,1)4" (‘i"%)
) ))( 5

- 24 ( -1 .
% . ,
! g~ 2mie 1 by Problem

=R ) ¥

_.1 1*0Q9
T 16 °(2)nP(d2)’

=
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which approaches & as z —» . : o Do

(b) E,(ST™*Sz) = Ey(S(—a ~ ) = (@ + H?Ey(—a ~ H + F(—a—3), but

Ey(—a—%) = Ey(—1), so this equals (@ + H*(2Ey(@) + $) + S(—a— 1) =

(az + 1)?E;(z) — %(az + 1). (c) Obviously F|[T], = F. Using Problems 1 and 10(b),

we have —24F(z)|[ST~*S], = E,(@)|[ST~*S], — 3E,(22)|[ST 251, + :

2E,(42)|[ST1S ], = Ex(2) + %y — 3(E5(22) + ) + 2AE(42) + S =

—24F(z). We now look at the cusps. First, we clearly have F(o0) = 0. In evaluating

F|[5],, ignore terms which approach zero as z — c; then, using Proposition 7,

obtain F2)|[S]; ~ —%E(@) — 3GEx(2/2) + 2 Ex(24) » ~ (1 =3+ f) =

—. This is F(0). To find F(~—14), we similarly ignore terms which approach zero:

—24F()|[ST~2S], = E,@)|[ST 251, — 3E,22)|[STST, + 22z + 1) 2E(#51)

by Problem 1 above, and, by Proposition 7 and part (b), neglecting terms which

approach zero, this becomes E,(z) — 3E,(22) + 2(2z + )3~ -DE(-&-D=

Ey(2) — 3E,(22) + $272(— Ex(— ) + 6Ey(— %) — 4Ey(—1)) by Problem 8(d); again

applying Proposition 7 and neglecting small terms, we obtain :

E,(2) — 3E,(22) + §(—16E,(42) + 24E,(22) — 4Ey(z)) »1 — 3 + H—16+24-4)=

—3, s0 that F(—4) = —%(—2) = 1&. (d) Since the only zero of #°(4z)/n*(2z) isa -

simple zero at-co, it follows by Proposition 18 that F @/ @2)/n*(22)) e M(To () is-

a constant. To get the identity, write (1 — ¢*)/(1 — ¢*) = (1 + ¢*"). (¢) First show '

that TIX! A(z + j/N) €S, 5(To(NV'?)), using the same type of argument as in the

proof of Proposition 17(b). Then'set f(z) = A@2)*/TIA(z + j/N), and take the

logarithmic derivative of the equality f(yz) = f(z) for yeTo(¥ 2. 11. (a) Prove

invariance under [y], for ye'y(4) as in Proposition 30. At the cusps, clearly

.. ©*(0) = 1; at 0 we have @*(2)|[S], = z72©*(~1/(4z/4)) = 273 =2*[4)0%(z/4),

which approaches —% as z — o0; at $ we have ©*(2)|[ST 2], =

Qz + 1)720%(z/(2z + 1)) = (22 + 1)2O*(—1/(4(—1/dz — 1/2))) =

~(22)72@%(—1/4z — 1/2) by (3.4), but by Problem 8(a) this equals

~(22)"220(~1/2) — O(—1/42))* = —42(2)*O(z/4) — 2/ O(2))* =

(©(z/4) — ©(2))*, which approaches zero as z — co. (b) Use: ©*(0) # 0 = F(c0).

(c) One can proceed directly, as in Problem 10(a). Alternately, write it as ‘
AQz) 122

((2(22))® n°4z)°

easier method is as follows. Let f;(z) = n*(22)/n%(42), and let f,(z) =

72°(22)/n%(2)n®(4z). In the solution to Problem 10(a), we saw that for

a=ST2S= —(} 9) we have f, = 16f;|[e],. Since f, is invariant under {y], for ;

yeT,(4), it follows that f; is invariant under o™ To(4)a, which is easily checked to be

equal to T'y(4); finally, since « keeps 0 fixed and interchanges the equivalence classes

of cusps co and —3%, we see that £,(0) = 16£,(0) = =%, fo(—%) =16f,(x0) = 0,

f>(0) = 16f;(—4) = 1. (d) Same procedure as 10(d). (¢) Use Problem 8(e).

12. Follow the proof of Proposition 19. 13, Write (1(2)n(32))% =" .

A 322 @)C, (1(2M(72))® = A2 (1(72)/17(2))3.  14. Check the generators T’

and S, using (3.4) to get ¢(Sz) = \/zfi¢)(2); to check the cusp —1 = (TST) o,

write $*(2)|[7ST], = ©*(z/2)|[G D] (see Problem 1). o

15. (a) Fory = (¢ ByeT4(N) note that ayyor® = (L% ) eTH(N), and so

f [“N]k)'[)’]k = (fl[“n?aﬁl]k)man]k =x(a)f |[“N]k' But y(a) = %(d)-

(b) For fe My(N, y) write f= f* +f~, where f* = 4(f + i*f|[ay]0)- (¢) By 10(d),

F@)|[a,), = —2en*@n*(22) = —fs +3q + - -+ = ~750* + F; matrix is

(5 TY1%); MF(4, 1y=CiO*, M5 (4,1) = CGF — £40%): oo

16. (2) 2oy, ()™ = Z;pn, T M) S = BT IR, m T = (s + 1 =) ().

and use Propositions 17 and 20 and Problem 10(a). An even
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Figure A.3

sC —1sB

Figure A.4

®) Ly(s) = TL[(1 ~ p™)(1 = P+ 9] = T, (1 = 6y ()P~ + P47 7397
© Ly (&) = T,[(1 = 2(p)p™) (1 = 2(p)P* 7]
= 1,1 — (PO (PP + x(P) P 727 ,
17. (a) Any point I'-equivalent to i must be I'y(4)-equivalent to one of the points
ajti, where T = | J{-; ¢,T5(4). In this way, find that £, (2 +'i)/5elnt F’ are
T-equivalent to i; w and (5 + i\/73_)/|4€ Int F’ are ['-equivalent to w; the two
I'y(4)-equivalent boundary points (—1 + )/2 and (3 + i)/10 are I'-equivalent to i;
and no boundary points are I'-equivalent to w. (b) Follow the proof of Proposition 8,
but ‘with slightly more involved computations. Note that the'three “‘corners”
(=3 + i34, (1 + iy/3)/4, (9 + i,/3)/28 are all To(4)-equivalent, and the sum of the
angles at the three corners is 360°. To illustrate the elements in the integration
around the cusps and along the circular arcs, let us compute (2ri) ™ { /(2)dz/f(z)
over the contour ABCDEF pictured in Fig. A-3, where we suppose that f(z) has o
zeros or poles on the contour (but may have a zero or pole at the cusp 0), and we
ultimately want the limit as & —» 0. Here BC is a circular arc of radius ¢ centered at 0.
‘The element &, = (} 9)el,(4) takes the arc from A to 0 to the arc from D to 0. The
" image of B is very close to C, and so'we can use the integral from D to a, B to
approximate the integral from D to C. First, we use S to take the arc BCtoa
horizontal line between Re z = —3 and Re z = 1 (see Fig. A.4). By (2.24), we have

L@y, - fcf_’(z) - ré
L f(z)dz . f(z)dz k ot

B
But the latter ir;tegral approaches.0 as & — 0 (since the angle of the arc BC
“~approaches zero); while the first integral on the right“approaches —vo(f) (as in the
proof of Proposition 8, but we use the map g,= e*™#*into the unit disc). Next, by -

A
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A

(2.24), we have

®f(2) A 1@y (T L@y i f"__dz___
f?(_z)‘”fc,}'(z')"’- [ o B il e

_kr_i’_z___,_kjm dz
. PRI Vo Y W4

Similarly, using a, = (3 Z})eT,(4) to take the arc DE to the arc FE, we find that the
sum of the mtegrals over those two arcs is equal to —k times the integral of 4 from

(2 +i/3)/28 to §. These two integrals are evaluated by taking In z between the limits
of integration, where the branch is determined by following the contour. As a result,
we find that the sum of the two integrals is —k times the logarithm of

1/4 1/4
(C2+ i34 @+ i3 )28

where, if we keep track of the contour, we see that we must take In(—1)= —mni.
Thus, (27i)™! times the sum of these two integrals is equal to k/2. For a systematic
treatment of formulas for the sum of orders of zero of a modular form for a
congruence subgroup, see [Shimura 1971, Chapter 2]. (c) The only zero of ®* is a
simple zero at the cusp —%; the only zero of F is a simple zero at co. (d) If
feM,(I'y(4)), apply part (b) to the element f — f(00)O* — 16/(—%) Fe M,(T,(4)),
which is zero at —4 and oo, and hence is the zero function. (€)-(f) See the proof of
Proposition 9. (g) Look at the value at each cusp of

f=a0'2 4 bOPF + c@*F? + dF3: f(w) = a, f(—%) = d/16%,s0 a = d = 0; then
JO) = (% — ) () (=1, 50 c = —16b. (h) Let f(2) = n'?(22). Since

f(2)* = AQQz) e M ,(T,(2)), we immediately have vanishing at the cusps. Let

a= (.3 9). By writing 20z = —1/(1 — 1/2z), show that f|[«]s = —f; and so

fé M(To(2)). However, T(4) is generated by T and «?. Next, since Sg(I'h(4)) =
C(®°F — 16@*F?), to check the last equality in part (h), it suffices to check equality
of the coefficient of g. 18. (b) If fe M, (4, y), by subtracting off a multiple of ©? we
may suppose that f(c0) = 0; then M,(4, 1)3f2 = a2¢g® + - - -. But a multiple zero at
oo would contradict Problem 17(b), unless fis the zero function. (c) First show that,
for k > 5 odd, S,(4, y) = ©728,,,(4, 1); then, by Problem 17(i), dim S,(4, x*) =

[(k — 3)/2] (where [ ] is the greatest integer function). (d) Use Proposition 20,
Problem 17 (with I'" = T(2), & = (¢ 9)), and part (c).

-4

§IIL4

2. Show that \/—i(cz + d)//—i(—cz — d) = i~** (it suffices to check for z = 0),
and then divide into four cases, depending on the sign of cand d. 3. (b)—(c) Use the
O(fz) _ O@pz) O(p2)

0@k O 6@’

relation

§IILS
2. (a) By (5.27) and (5.28), T,(f|[oan]) = n%>™* Z, o f|[an0u(@ 3]s Let

Uy p = 0,050,(8 Doy’ €A"(N, {1}, Z), and show that the a, , are in-distinct cosets of
T, (N) in A*(N, {1}, Z), and hence form a set of representatives; so, by (5.27), .
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(T;f)i[“N] = n¥A z, s |ty = n*> Zfl[”n“lvo'a(; D= T(flfon10s -
because f|[0,], = /. (b) T,F =0, T,0* = ©* + 16F, s0 {F, 3F+#40%isa
normalized eigenbasis. (c) (TZF)][oz‘]2 = 0 # T,(F|[2,]2)- (d) Any eigenvector of T,
or [«,], must be an eigenvector of 7,; this includes F, 4F + 0%, ©*, and so all of . -
M,(T'y(4)); by Proposition 40 applied to F, we have 4, = o,(n) (# odd). (e) Let

©*(z) = La,q". For n odd, a, = 0, (n)a; = 86,(n) by Proposition 40. For n = 2n,

- twice an odd number, compare coefficients of g™ in 7;0* = ©@* + 16F to get

a, = a,, + 166,(ny) =240,(n,). For n = 2n, divisible by 4, compare coefficients of
q" in T,©0% = ©* + 16F to get a, = a, +0 =240,(n,) by.induction.” 3. The first-
part follows from (5.19) with n = 0; a counterexample for other cusps is in Problem
2(b), since ®* + 16F does not vanish at s = ~1/2. 4. (a) Both 7, fand T} f are
equal to n®"1 X f I[aa( £y over the same a, b, d, because g.c.d.(n, M) = 1. Note
that g = M f|[(% D]k Thus, M2 T} g = n¥>-1 Zf[[(“ °)a,,( ") ]x» where

a, = (¥ %) mod MN. Set g, in the sum for T, fequal to (¥ 97!, Then
M*Tjg = (™ S £|[a, 9@ HE 9 IIC 9= (Tnf)l[( )]s because in
@ My= 9@ HA 97! the entry bM runs through a complete set of residues
mod d. (b) Since S3(I',(2)) = Cf, fis an eigenform for T, ;.then by part (a), g is an
eigenform with the same eigenvalue. (c) T,g = U, V,f =f; T, f= —8f by a
comparison of coefficients. Hence { f, 8¢ + f'} is the normalized eigenbasis.

5. KT, f, 9> = 5 < p"P 7 LG Dl 90 = Z25 <L P27 g|[G )T by (5.33).
Since gI[(ﬁ D= p*g(pz — j) = p**g(p2), we have (T, 1, g> = 126 p““g(pz» =
Pf,V,g). 6. (a)lthasa, =0. . .
(b)fl—q —48g° +8:27-5¢* —~64-5-479° +4-9-5- 17 47q +
fo=q—24-43g> + 4-9-49-139¢> + 64-171337¢* + -

T,fi=q+ 1080g% + --- =1, + 2112f;; S
Lf,=—24-43g + (64 171337 + 223)g? + - -« = — 1032f, + 2°3%7%f,.

(c) Tr T, = 1080, Det T, = —21°-32-2221; elgenvalues = 540 + 12,/144169;

_ normalized eigenforms are f, + (131 & /144169)12f,. (d) 2f, + 3144f,. (¢) From

part (d): 2(4-9-49-139) — 48-3144 = 8-9-5-23-41. Alternately, compute

Ty f, = —48f, + 36-2619f,, T; f, = 36-6811f, + *f, (we don’t care about *), so
Tr T, = 36(2619 + 6811) = 8-9-5-23-41.. 8. In case of difficulty, see §3.1(c) of -
[Serre 1973]. )

§IV.1 ‘ '

i. (a) ot = @ ), 19 (¢ & @ EFD (CF D, m*/‘)-
\/CZIrn+ d) by (1.4). (b) v;—(c,... "), 509, =

‘ ((‘,,,l "'”), € ,,)a Vezim+d) = pip™ (3 ), (). Thus, they are equal if m isa square \

mod d. For m not a perfect square, to find y for which §, = pjp l(l ~1), it suffices
to find d prime to 4m such that (%) = — 1, since one can then find y of the form
(& DeTy(4m). To do this, first let m = 2°m?m, where & = O or 1 and m, is

»squarefree Choose d = 1 mod 8 and d = d, mod m,, where d, is chosen so-that

(,.0) = —1. Then one easily checks that () = (%% = (& o) = —1,as desired. -

2. Replacing y by — 9, if necessary, without loss of generality we may suppose that-
b>0orelseb=0anda>0.(a) pjp~! = ((° "‘) N (@ Y); Qe* ez + 2)-
(3 60, —iNY/z) = (G wo), NV ERGeg ez + d)(3 Y ”” —iN¥/z).
Note that \/(az + b)/(cz + d)* \Jez +d = n,\/az + b withn, = —-l xfa <0 and

c > 0, 1, = 1 otherwise. Thus, "~ :
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pip™t = (s I, MmN Qe Va(=T/NZ) + b(~iN*\[2)) =

4 ™), ni(5es" /—Nbz + a). (b) We have S

5= (L ~M), (=2)e; !/~ Nbz + a). Since ad — be = 1 and 4c, we have

a = dmod 4, and so &, = &,. Thus, it remains to compare (=) with 71,5). We
suppose ¢ > 0 (an analogous argument gives the same result if ¢ <.0). Then

(3 () = (%) = 1, and (5H) = (), so that (FI%) = (=}*). Now

=) = @59 = B sgna= H)ny. Thus, 7, = pio ™ (( 1), (). Again 7, and
pyp~! are equal if N is a perfect square; otherwise there exist y for which the two

differby (1, —1). 3. Atowo,p= L,h=1,1=1 At0, take p=(( ~%), ﬁ), SO

pl = (9 ), —i/2), and we need To(@)2p(( 1), Dp”" =

(@), WZF RS By —iy) = (4 Dy ity =Tz FhB =

((3,9), —ity/hz = 1). This is in Fo(4) if h =4, 1 = 1. Finally, at the cusp —} take
a=(19p=(} 9 J=2z+1),50 p7' =((G), 2z + 1). Since

a(} 1o~ eTy(4), we can take i = 1. To find ¢, compute p((5 1), Hp~' =

(22 .Y, 1/—dz—=T), which is j((-2 -}), ) provided that 7 = i.

5. (@) S,,,z(f‘ o(4) = 0if k <9. For k > 9, it consists of elements of the form

@F(16F — ©*)P(®, F), where P is a polynomial of pure weight (k — 9)/2. Thus, for
k=5, dim Sm(f'o(éi)) = [(k — 5)/4]. (b) Since ¢ = 1 at the cusps co and 0, there are
always those two regular cusps. Since ¢ = i at the cusp —3, that cusp is k-regular if
and'only if #* = 1, i.c., 4. But 1 + [k/4] — [(k — 5)/4] = 2if k > 5, 4k and = 3if
k=5, 4|k, as can be verified by checking for k = 5, 6, 7, 8 and then using induction
to go from k to k + 4. (c) OF(®* — 16F)(@* — 2F). 6. (a)If & =d mod N and
Nj4 s odd, then (%) = (Me) = (— VA= D112 (dry = '
(= Wa=D@ =024y — (I, If N/4 is even, then d” = d mod 8, and the proof works
the same way, with the additional observation that (3) = (3). (b) The proof that the
cusp condition holds for f|[ ply, is just like the analogous part of the proof of
Proposition 17 in §IIL3. Now let y = (¢ §)e[,(V), and let y, = (_3y ~&"). By '
Problem 2 above, we have pjp~! = (1, xx(d))7;. Thus, (f|[pLu)|[Flv2 =
(f[[P?P—‘]k/z)l[P]k/z = va(d)(f|[7~’1]k/2)l[P]wz = X}’fr(d)x(a)fl[P]k/r‘ But since

ad = 1 mod N, we have x(a) = 7(d). Thus, (f l[P]k/z)![ﬂk/z = Fand)f [[P]k,rza as
desited. 7. ©(co)=1, O(—1/2) =0, ©(0) = (1 — i)/2.

§1V.2 |
1. Eyy(e0) = 1, Eyy(0) = Eyy(—1/2) = 05 Fyp(0) = (iyD™; Fp(00) = Fyp(—1/2) = 0.

5. If one uses (2.16) and (2.19) rather than (2.17) and (2.20), then the solutions « and

B to the resulting 2 x 2 equations involve x, which depends on /. 6. By
Proposition 8, it suffices to show this for / squarefree. In that case use (2.16) and
(2.19) to evaluate the /-th coefficient of Ey, + (1 + )27 F,. 1. Hy, =
=20+ —Ag+ ;1 —A)=0ifand only if A > 3 is odd. ~9. Use
Problem 1 above and Problem 7 of §IV.1 to find a and b'so that ©* — aE,, — bF;;,
vanishes at the cusps. a = 1, b= (1 + i)*272. ©% = Ey;, — (1 + i)/\[2 Fsp;

©" = Eyp + (1 = DI\2Fyp. _ \

§IV.3

2. The computation is alﬁost identical to that in Problem 1 in §IV.1. 3. (c) By the
lemma in Proposition 43 in §I1L.5, right coset répresentatives for I'; (V') modulo
I (V) na™ T (N)a, where a = (5 5), are o, = (5 ), 0 < b < p*. By Problems. 1(b)

‘ -
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and 3(b), we use the o, to get representatives for I, (N) modulo

LNl (N)¢ . Since o, = (5 (o %), we have T,y f(z) = p™**71-
0GP (G D Dk =pT L) = o a,e?™"¥" . The same argument
works for v, since the corresponding ¢ is trivial even when 8fN. 4. (3.5) gives b,
for half integer weight k/2; in the case of integer weight k, the formula (5.19) of
§IIL5 with m = p? gives b, = a2, + 2(P)P* " a, + x(pHp* 2y, If k is formalty
replaced by k/2 here, the middle term on the right differs by x-1)4a( p)\/; from the
middle term on the right in (3.5). 5. Lety = (¢ H)elo(N) be such that p?|b. Then
for y;eI'|(N) we have {257 = él,z%;z' ¢,277'%;7. By Problem 2, we have épz%;z’ =7,
with y, = (4 "")eT,(N). Let 1=y 'y (N). Then

pzc d

UIE N1 7z = 277w
= Zf![’)-’x épzij]klz = z(d) Zf‘[fp’ii K2+

But one checks that the correspondence e 27 V)¢ !ﬁj permutes the right
cosets in_f‘, (N)¢, T',(N), and so this equals x(d) f [[F(N)ERT (N Y]z~ (Verify that .
if t; and t; are in the same right coset of I(N)na™'T (N)ein I'y(N), where.
a=(; %), thensoarey, = 5yt and y; = y1;y7".) Thus, T fI[7 )iy = x(@) T2 f 1t
remains to note that Ty(N) is generated by I (N) and y = (¢ bYe [y(N) for which
p?|b. Hence T,z f ][z = x(d) T2 f for ally = (¢ HelH(N).
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Bezout's theorem, 32
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93, 218, 221, 222
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- additive, 57, 62
conductor, 67
Dirichlet, 62, 75
of group, 61
multiplicative, 57, 62
primitive, 62 )
quadratic, 82, 176, 187-188, 191-192

trivial, 57
Class number, 176, 194, 218
relations, 194

_ Coates, J., 92

~Wiles theorem, 92, 96, 221
Commensurable subgroups, 165
Complex multiplication, 42, 50, 92, 124, 143,

222 .
Conductor

of character, 67

of elliptic curve, 143
Congruence

subgroup, 99-100

principal, 99

zeta-function, 51, 52
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Congruent
number, 1, 3, 5, 46, 70, 92, 221-222
number problem, 1, 2, 4, 221-222 ~
generalized, 8, 123-124, 223-224

Coordinate ring, 55

Critical value, 90, 95, 193, 215 216, 217
Cusp, 103, 106, 108, 126

condition, 125-126, 180182

form, 108, 117-118, 125, 127, 155, 182
. irregular; 144, 182
- regular, 144, 174, 182
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Cyclotonyic fields, 37

Dedekind

eta-function, 78, 121, 122

zeta-function, 56, 88, 89
Deligne, P., 53, 122, 164
A(2), 111-112, 122, 164
Diagonal hypersurface, 56
Different. 89~
Dilogarithm, 76, 78
Diophantus, 1
Dirichlet

L-series, 75, 188, 190, 193

series, 80, 141

and modular forms, 140-143

theorem (primes in' arithmetic progression),

45, 142
Discriminant :
modular form, 111-112, 127, 164
of polynomial, 26
Double coset, 165, 204
Doubly periodic, 14

Eigenforms
for Hecke operators, 163, 173-174, 201
Euler product, 163
half integer weight, 210-211, 214
normalized, 163
for involution of M,(I'y(4)), 146
Eisenstein, F., 177
Eisenstein series, 109-110, 123, 154, 164,
174, 185
of half integer weight, 186-188, 193
Euler product, 199-201
of level N, 131-134
" L-function of, 146
normalized, 111, 122
Elementary divisor theorem, 202
Elliptic
curve, 9, 11
addition law, 7, 29-35
additive degeneracy, 36

complex multiplication, 42, 50, 92, 124,

143, 222
over finite fields, 40-41, 43
inflection points, 13, 35, 41
Legendre form, 224
- multiplicative degeneracy, 36
points of order N, 21,36, 38-40
rank, 44, 46, 51,91
torsion subgroup, 36, 4344, 49-50
. Weierstrass form, 24, 26, 33, 120

Index

functions, 14-16, 18, 25
integrals, 27-29, 217
point, 102, 146

n(z), 78, 121, 122

Euclid, 1

Fermat, 2, 96
curve, 56
last theorem, 2, 5
Fields
cyclotomic, 37
of division points, 37
finite, 40
Fourier transform, 71, 83
for finite group, 76
Fractional linear transformation, 98, 102
Functional equation
Dedekind eta-function, 78, 121
Dedekind zeta-function, 88, 89
Dirichlet L-series, 77-78
Hasse-Weil L-series, 81, 84, 90, 91
L-series of modular forms, 140-143, 216 -
Riemann zeta-function, 73-74
theta-functions, 73, 76-78, 85, 88-89, 124
Fundamental
domain, 100, 103, 105-107, 146, 231-232
parallelogram, 14

® (), 107, 142, 148
Galois action on division points, 37-38, 42,
50

Gamma-function, 70-71

Gauss
lemma (on quadratic residues), 136
sums, 56, 62, 67-68, 188

Gaussian integers, 14, 41, 42, 65, 165

General linear group, 38, 98

Genus, 53-54

Good reduction, 43, 90

Grassmannian, 55

Greenberg, R., 222

Gross, B. H., 93, 222

Hardy, G. H., 177
Hasse~Davenport relation, 60, 62-63,.70 .

Hasse-Weil L-function, 3, 61, 64 75, 79, 81,

84, 90, 141
and modular forms, 143
Hecke, E., 88, 141, 142
character, 81
L-series, 81

'
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" Hecke, E. (cont.)

operators, 155, 156, 158, 167, 202
algebra of, 157, 210
Euler product, 158, 160
in half integer weight, 168, 201, 206-
207, 210
Hermitian, 168, 172
on g-expansion, 161, 163, 207
trace, 175
via double cosets, 167, 168, 202

. Héegner, K., 92-93

Homogeneous polynomial, 10, 12, 52

" Hurwitz, A., 194

Hypergeometric series, 29

Irregular cusp, 144, 182
Isotropy subgroup, 102

Jacobi, K., 112
forms., 194
sums, 56, 57, 61
triple product, 219
j-invariant, 105, 119-120, 123-124

Kohnen, W., 214

plus-subspace, 213-214

~Shimura isomorphism, 201, 213-216
, ~Zagier theorem, 216
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