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Preface

Functional analysis has become a sufficiently large area of mathematics that
it is possible to find two research mathematicians, both of whom call
themselves functional analysts, who have great difficulty understanding the
work of the other. The common thread is the existence of a linear space with
a topology or two (or more). Here the paths diverge in the choice of how
that topology is defined and in whether to study the geometry of the linear
space, or the linear operators on the space, or both.

In this book I have tried to follow the common thread rather than any
special topic. 1 have included some topics that a few years ago might have
been thought of as specialized but which impress me as interesting and
basic. Near the end of this work I gave into my natural temptation and
included some operator theory that, though basic for operator theory, might
be considered specialized by some functional analysts.

-The word Course in the title of this book has two meanings. The first is
obvious. This book was meant as a text for a graduate course in functional
analysis. The second meaning is that the book attempts to take an excursion
through many of the territories that comprise functional analysis. For this
purpose, a choice of several tours is offered the reader-whether he is a
tourist or a student looking for a place of residence. The sections marked
with an asterisk are not (strictly speaking) necessary for the rest of the book,
but will offer the reader an opportunity to get more deeply involved in the
subject at hand, or to see some applications to other parts of mathematics,
or, perhaps, just to see some local color. Unlike many tours, it is possible to
retrace your steps and cover a starred section after the chapter has been left.

There are some parts of functional analysis that are not on the tour. Most
authors have to make choices due to time and space limitations, to say
nothing of the financial resources of our graduate students. Two areas that



are only briefly touched here, but which constitute entire areas by them-
selves, are topological vector spaces and ordered linear spaces. Both are
beautiful theories and both have books which do them justice.

The prerequisites for this book are a thoroughly good course in measure
and integration-together with some knowledge of point set topology. The
appendices contain some of this material, including a discussion of nets in
Appendix A. In addition, the reader should at least be taking a course in
analytic function theory at the same time that he is reading this book. From
the beginning, analytic functions are used to furnish some examples, but it
is only in the last half of this text that analytic functions are used in the
proofs of the results.

It has been traditional that a mathematics book begin with the most
general set of axioms and develop the theory, with additional axioms added
as the exposition progresses. To a large extent I have abandoned tradition.
Thus the first two chapters are on Hilbert space, the third is on Banach
spaces, and the fourth is on locally convex spaces. To be sure, this causes
some repetition (though not as much as 1 first thought it would) and the
phrase the proof is just like the proof of ...” appears several times. But I
firmly believe that this order of things develops a better intuition in the
student. Historically, mathematics has gone from the particular to the
general-not the reverse. There are many reasons for this, but certainly one
reason is that the human mind resists abstraction unless it first sees the need
to abstract.

I have tried to include as many examples as possible, even if this means
introducing without explanation some other branches of mathematics (like
analytic functions, Fourier series, or topological groups). There are, at the
end of every section, several exercises of varying degrees of difficulty with
different purposes in mind. Some exercises just remind the reader that he is
to supply a proof of a result in the text; others are routine, and seek to fix
some of the ideas in the reader § mind; yet others develop more examples;
and some extend the theory. Examples emphasize my idea about the nature
of mathematics and exercises stress my belief that doing mathematics is the
way to learn mathematics.

Chapter 1 discusses the geometry of Hilbert spaces and Chapter II begins
the theory of operators on a Hilbert space. In Sections 5-8 of Chapter II,
the complete spectral theory of normal compact operators, together with a
discussion of multiplicity, is worked out. This material is presented again in
Chapter IX, when the Spectral Theorem for bounded normal operators is
proved. The reason for this repetition is twofold. First, I wanted to design
the book to be usable as a text for a one-semester course. Second, if the
reader understands the Spectral Theorem for compact operators, there will
be less difficulty in understanding the general case and, perhaps, this will
lead to a greater appreciation of the complete theorem.

Chapter IIT is on Banach spaces. It has become standard to do some of
this material in courses on Real Variables. In particular, the three basic



principles, the Hahn-Banach Theorem, the Open Mapping Theorem, and
the Principle of Uniform Boundedness, are proved. For this reason 1
contemplated not proving these results here, but in the end decided that
they should be proved. 1 did bring myself to relegate to the appendices the
proofs of the representation of the dual of L? (Appendix B) and the dual of
C,(X) (Appendix C).

Chapter IV hits the bare essentials of the theory of locally convex spaces
-enough to rationally discuss weak topologies. It is shown in Section 5 that
the distributions are the dual of a locally convex space.

Chapter V treats the weak and weak-star topologies. This is one of my
favorite topics because of the numerous uses these ideas have.

Chapter VI looks at bounded linear operators on a Banach space.
Chapter VII introduces the reader to Banach algebras and spectral theory
and applies this to the study of operators on a Banach space. It is in
Chapter VII that the reader needs to know the elements of analytic function
theory, including Liouville § Theorem and Runge § Theorem. (The latter is
proved using the Hahn-Banach Theorem in Section 111.8.)

When in Chapter VIII the notion of a C*-algebra is explored, the
emphasis of the book becomes the theory of operators on a Hilbert space.

Chapter IX presents the Spectral Theorem and its ramifications. This is
done in the framework of a C*-algebra. Classically, the Spectral Theorem
has been thought of as a theorem about a single normal operator. This it is,
but it is more. This theorem really tells us about the functional calculus for
a normal operator and, hence, about the weakly closed C*-algebra gener-
ated by the normal operator. In Section IX.8 this approach culminates in
the complete description of the functional calculus for a normal operator. In
Section IX.10 the multiplicity theory (a complete set of unitary invariants)
for normal operators is worked out. This topic is too often ignored in books
on operator theory. The ultimate goal of any branch of mathematics is to
classify and characterize, and multiplicity theory achieves this goal for
normal operators.

In Chapter X unbounded operators on Hilbert space are examined. The
distinction between symmetric and self-adjoint operators is carefully delin-
eated and the Spectral Theorem for unbounded normal operators is ob-
tained as a consequence of the bounded case. Stone § Theorem on one
parameter unitary groups is proved and the role of the Fourier transform in
relating differentiation and multiplication is exhibited.

Chapter XI, which does not depend on Chapter X, proves the basic
properties of the Fredholm index. Though it is possible to do this in the
context of unbounded operators between two Banach spaces, this material is
presented for bounded operators on a Hilbert space.

There are a few notational oddities. The empty set is denoted by 0O. A
reference number such as (8.10) means item number 10 in Section 8 of the
present chapter. The reference (1X.8.10) is to (8.10) in Chapter IX. The
reference (A.ll) is to the first item in the first section of Appendix A.



There are many people who deserve my gratitude in connection with
writing this book. In three separate years 1 gave a course based on an
evolving set of notes that eventually became transfigured into this book. The
students in those courses were a big help. My colleague Grahame Bennett
gave me several pointers in Banach spaces. My ex-student Marc Raphael
read final versions of the manuscript, pointing out mistakes and making
suggestions for improvement. Two current students, Alp Eden and Paul
McGuire, read the galley proofs and were extremely helpful. Elena Fraboschi
typed the final manuscript.
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CHAPTER I

Hilbert Spaces

A Hilbert space is the abstraction of the finite-dimensional Euclidean spaces
of geometry. Its properties are very regular and contain few surprises,
though the presence of an infinity of dimensions guarantees a certain
amount of surprise. Historically, it was the properties of Hilbert spaces that
guided mathematicians when they began to generalize. Some of the proper-
ties and results seen in this chapter and the next will be encountered in more
general settings later in this book, or we shall see results that come close to
these but fail to achieve the full power possible in the setting of Hilbert
space.

§1. Elementary Properties and Examples

Throughout this book F will denote either the real field, R, or the complex
field, C.

1.1. Definition. If X is a vector space over F, a semi-innerproduct on X is
a function u: Xx X = F such that for all &, 8in F and x, y, z in &, the
following are satisfied:

(@) u(ax + By, z) = au(x, z) + Bu(y, z),
(®) u(x, ay + Bz) = au(x, y) + Bu(x, 2),
(© u(x, x) =20 .,
(d) u(x’ y) = u(y’x)'

Here, for ainF,a = aif F =R and « is the complex conjugate of a if
F=C.If a€C, the statement that a> 0 means that «a €R and a is
non-negative.



2 I. Hilbert Spaces

Note that if @ = 0, then property (a) implies that u(0, y) =u(a .0, y) =
au(0,y) =0 for all y in Z. This and similar reasoning shows that for a
semi-inner product u,

(e) u(x,0)=u(0,y) =0 for all x, yinZ%.

In particular, u(0,0) = 0.
An inner product on Z is a semi-inner product that also satisfies the
following:

() If u(x, x) = 0, then x = 0.
An inner product in this book will be denoted by
(x,y) = u(x,y).

There is no universally accepted notation for an inner product and the
reader will often see (x, y) and (x|y) used in the literature.

1.2. Example. Let & be the collection of all sequences {a,:n=1} of
scalars a,, from F such that @, = O for all but a finite number of values of
n. If addition and scalar multiplication are defined on % by

{an}+{Bn}E{an + Bn}a
a{a,} = {aa,},
then & is a vector space over [.

It u({a, ), {B,}) =X 10,,B,, then u is a semi-inner product that is
not an inner product. On the other hand,

<{an}’ {IBn}> =

|

I8
=]

=

=Y

E
I
—

I
18
X =
)

x
%bl

({a,}, {B.}) =

B
3
—

(e}, (B)) = L e B,

all define inner products on %.

1.3. Example. Let (X, £, ) be a measure space consisting of a set X, a
u-algebra £ of subsets of X, and a countably additive R U {co} valued
measure p defined on 2.1f f and g € L?(p)=L?*( X, 2, ), then Holder s
inequality implies fg < L'(p). If

(f.8) = [fgan,

then this defines an inner product on L*(p).

Note that Holder s inequality also states that |[fgdp| <[ [IA*dpn]*/?
[ flg)*dr]'/2 This is, in fact, a consequence of the following result o1
semi-inner products.



Note that if @ = 0, then property (a) implies that u(0, y)=u(a .0, y) =
au(0, y) = 0 for all y in Z. This and similar reasoning shows that for a
semi-inner product u,

() u(x,0) =u(0,y)=0 forall x, yinZ.

In particular, #(0,0) =0
An inner product on Z is a semi-inner product that also satisfies the
following:

() If u(x, x) = 0, then x = 0.
An inner product in this book will be denoted by
(x,y) = u(x,y).

There is no universally accepted notation for an inner product and the
reader will often see (x, y) and (x|y) used in the literature.

1.2. Example. Let £ be the collection of all sequences {a,:n >1} of
scalars a, from F such that a, = O for all but a finite number of values of
n. If addition and scalar multiplication are defined on Z by

{an} + {an}E{an + an}’
a{a,} = {aa,},
then & is a vector space over F.

1f u({a,}, {B,)=X% 1a,,B,,, then u is a semi-inner product that is
not an inner product. On the other hand,

{a}{B}>*Z .

1

({a}, {B}>= a,B,,

i I8 1
:[r—a

({a.}, {B.}) = {:1"50‘"—",

all define inner products on Z.

1.3. Example. Let (X, £,p) be a measure space consisting of a set X, a
u-algebra £ of subsets of X, and a countably additive R U {oo} valued
measure p defined on 2.If f and g € L?(p) = L3( X, 2,p), then Holder s
inequality implies fg € L'(p). If

(f.8) = [fgdu,

then this defines an inner product on L2(p).

Note that Holder 8 inequality also states that |{fgdp|<[/[|A1*dn]*/?.
[flg|>du)'/? This is,in fact, a consequence of the following result on
semi-inner products.



1.4. The Cauchy-Bunyakowsky—Schwarz Inequality. If (--) is a semi-
inner product on Z, then

[ERDEXEREIIE D
forall x and y in Z.
ProoF. If a €F and x and y €Z, then
0<(x—ay,x— ay)
(x,xy—aly,x)—a{x, Y) + |a|2(y,y>.

Suppose (y, x) = beia, b >0, and let a = e_’ot,tin R. The above
inequality becomes

0 < (x,x) —e ¥the’® —ethe™ + t¥y, y)
=(x, x) —2bt + t* y, y)
= ¢ —2bt + at*= g(1),

where ¢ = (x, X) and a = (y, y). Thus ¢(z) is a quadratic polynomial in
the real variable ¢ and ¢(z) = O for all #. This implies that the equation
q(t) = 0 has at most one real solution f. From the quadratic formula we
find that the discriminant is not positive; that is, 0 > 4b% — 4ac. Hence

0 =b*—ac = |(x, y)I* — (x, x){(y, ),
proving the inequality. ]

The inequality in (1.4) will be referred to as the CBS inequality.

1.5. Corollary. If (-, ") is a semi-innerproduct on & and ||x||= (x, x )/
for all x in &, then

(@) 1x + Yl <lixl| + Wl for x, y in Z,
(b) ||ax|| = |a|l|x|| for a in F and x in %.

If (-, -) is an inner product, then
(c) |l|x]| = O implies x = 0.

Proor. The proofs of (b) and (c) are left as an exercise. To see (a), note that
for x and y in X,

lx 4+ yI> = (x+p,x 4 »)
= XI? + (»s x) + (6, p) + 1P
= [IXII* + 2Re(x, ) + IWII*
By the CBS inequality, Re(x,y) <{(x, y)|<|Ix|/ll¥ll. Hence,
lx + P17 <lxll® + 2{xl il + 1112

2
= (IIxll + i)™
The inequality now follows by taking square roots. |



If (-,-) is a semi-inner product on Z and if x, y € &, then as was
shown in the preceding proof,

llx + YU = 1%l + 2 Redx, y) + [Iyll1%.
This identity is often called the polar identity.

The quantity {|x|f = (x, x)'/? for an inner product ( -,-) is called the
norm of x. If =F¢(R¢ or C9) and ({«,},{B,})=X%_,a,B,, then the
corresponding norm is ||{ @, }| = [Z9_,la,|*]*/2

The virtue of the norm on a vector space £ is that d(x,y) = |jx — y||
defines a metric on % [by (1.5)] so that Z becomes a metric space. In fact,
dix, v) = lIx= )yl = ix=—2)+ -l <lx —zl +lz -yl =
d(x,z) + d(z,y). The other propertics of a metric follow similarly. If
% =1F ¢ and the norm is defined as above, this distance function is the usual
Euclidean metric.

1.6. Definition. A Hilbert space is a vector space s over IF together with
an inner product ( -, -) such that relative to the metric d(x, y) = ||x — y||
induced by the norm, 57 is a complete metric space.

If #=L*p) and (f, g) = [fgdp, then the associated norm is |f]| =
[/1N*du]/? Tt is a standard result of measure theory that L2(p)is a
Hilbert space. It is also easy to see that F is a Hilbert space.

Remarx. The inner products defined on L*(p) and F ¢ are the “ usual ones.
Whenever these spaces are discussed these are the inner products referred
to. The same is true of the next space.

1.7. Example. Let Z be any set and let /2(I) denote the set of all functions
x. Z —F such that x(i) = 0 for all but a countable number of i and
¥ dx(i)|* < co. For x and y in {*(I) define |

(x, ¥y =2 x(i)y(i).

Then /2(I)is a Hilbert space (Exercise 2).

If Z = N, I*(I) is usually denoted by /% Note that if £ = the set of all
subsets of Z and for E in £, u(E)=oc if E is infinite and p(E) = the
cardinality of E if E is finite, then /2(I') and L*(I,, p) are equal.

Recall that an absolutely continuous function on the unit interval [0, 1]
has a derivative a.e. on [0, 1].

1.8. Example. Let 5= the collection of all absolutely continuous func-
tions f: [0, 1]>F such that f(0) = 0 and f’€L*0, 1). If {f, &) =
fof (1)g’(2)dr for f and g in S, then S is a Hilbert space (Exercise 3).

Suppose & is a vector space with an inner product ( -,-) and the norm
is defined by the inner product. What happens if (%, d) (d(x, y) =|lx— »|})
is not complete?



1.9.  Proposition. If X is a vector space and ( -, Y4 is an inner product on

X and if # is the completion of % with respect to the metric induced by the
norm on %, then there is an inner product ( -, ), on ¥ such that
(X, y)se=(x, ¥)a prxandy in X and the metric on ¥ is induced by this
inner product. That is, the completion of X is a Hilbert space.

The preceding result says that an incomplete inner product space can be
completed to a Hilbert space. It is also true that a Hilbert space over R can
be imbedded in a complex Hilbert space (see Exercise 7).

This section closes with an example of a Hilbert space from analytic
function theory.

1.10. Definition. If G is an open subset of the complex plane C, then
L2(G) denotes the collection of all analytic functions f: G = C such that

fj;;[f(x + iy)|Pdxdy < 0.

L%(G) is called the Bergman space for G.

Several alternatives for the integral with respect to two-dimensional
Lebesgue measure will be used. In addition to ffsf (x + iy) dx dy we will

also see
ffo and fo dArea.

Note that L2(G)< L%*(p), where p = Area|G, so that L2(G) has a
natural inner product and norm from L2(p).

1.11. Lemma. If f is analytic in a neighborhood of B(a; 1), then

f@=—ff r

(a;r)
[Here B(a; r) = {z: |z— a| <rYand B(a;r)= {z: |z—a|< r}.]

Proor. By the mean value property, if 0 <t<r fla) = (1/2#)(" . f(a+
te’®)df. Hence

(wrz)_lffma'r)f= (wrz)‘lfort[f_:f(a + te’) dé | dt
=(2/r2)f0rtf(a) dt = fla). ®

1.12. Corollary. IffELYG),a € G, and 0 <r< dist(a, dG), then

(a)] < #Ilﬂlz-



Proor. Since l—?(a;r)g G, the preceding lemma and the CBS inequality

imply

‘/‘/;3(11; ry
1
L

(asr)

(a)] = 5 f-l]

IA

s

= %Imlzr‘/;- u
r

1,2
12
(a;r)

1.13. Proposition. L2(G)is a Hilbert space.

Proor. If p = area measure on G, then L?(p) is a Hilbert space and
Lﬁ(G)ng(u). So it suffices to show that L3(G) is closed in L?(u). Let
{f,) be a sequence in L2( G) and let f € L*(p) such that [|f,— f|*>dp— 0
as n — oo.

Suppose B(a;r)C G and let 0 < P <dist(B( a; r),G). By the preced-
ing corollary there is a constant C such that |f,(2) — [, (2|2 Cllf, — f.ll2
for all n, m and for |z—a|< p. Thus { f,} is a uniformly Cauchy sequence
on any closed disk in G. By standard results from analytic function theory
(Montel 8 Theorem or Morera § Theorem, for example), there is an analytic
function g on G such that f,(z) = g(z) uniformly on compact subsets of
G. But since f|f,— fi*dp — 0, a result of Riesz implies there is a subse-
quence {f., } such that f, (z) = f(2 ae. [p] Thus f= g ae. [p] and so
felip) =

EXERCISES

1. Verify the statements made in Example 1.2.

2. Verify that I2(I) (Example 1.7) is a Hilbert space.

3. Show that the space J# in Example 1.8 is a Hilbert space.
4

. Describe the Hilbert spaces obtained by completing the space & in Example 1.2
with respect to the norm defined by each of the inner products given there.

5. (A variation on Example 1.8) Let n> 2 and let #= the collection of all
functions f: [0, 11— F such that (a) f(0) = 0; (b) for | <k <n— 1, f¥s)
exists for all ¢ in [0, 1] and £%) is continuous on [0, 1} () f"™ 1 is absolutely
continuous and f@>€L2(0, 1). For f and g in 5, define

(£ =L [ 10D ar
k-1

Show that 5 is a Hilbert space.
6. Let u be a semi-inner product on % and put 4 = {x € L u(x, x) = O}.

(a) Show that A" is a linear subspace of %.



(b) Show that if
(x+ N, y+ ) =u(x,y)

for all x + 4" and y + A" in the quotient space Z/A", then ( -,-) is a
well-defined inner product on Z/A .

7. Let 3 be a Hilbert space over R and show that there is a Hilbert space ¥ over
C and a map U:5#— X" such that (a) U is linear; (b) (Uh,,Uh,) ={hy,h,)
for all Ay, h,in 5#; (c) for any & in ¢ there are unique A,k ,in 3 such that
k = Uhy +iUh,. (X is called the complexijication of 5#.)

8. If G = {z€ C: 0 <|z|<1} show that every fin L?( G) has a removable
singularity at z = O.

9. Which functions are in L2(C)?

10. Let G be an open subset of € and show that if @ € G, then {feLﬁ(G):
f(a) = 0} is closed in L2 (G).

L1. If {h,} is a sequence in a Hilbert space ¢ such that ¥,|jA,|| < co, then show
that ¥%_, h,, converges in 5.

§2. Orthogonality

The greatest advantage of a Hilbert space is its underlying concept of
orthogonality.

2.1. Definition. If 5# is a Hilbert space and f, g€ 5, then f and g are
orthogonal if (f, g) = 0. In symbols, fL g If A, BCH#, then A 1 Bif
fLgfor every fin A and g in B.

If #=R?2, this is the correct concept. Two non-zero vectors in R? are
orthogonal precisely when the angle between them is m/2.

2.2, The Pythagorecan Theorem. If fi, f5,..., [, are pairwise orthogonal
vectors in ¥, then

Wi+ fo s o HLIP=WAIPHIAIR + . L L+ W%
Proor. If f; 1 f,, then

Wi + fz”2 = <f1+f2af1+f2>= Hf1||2 + 2Re(f1,f2>+ Hfz”2

by the polar identity. Since f;L f,, this implies the result for n = 2. The
remainder of the proof proceeds by induction and is left to the reader. a

Note that if /L g then fL—g, so |If —gl*= /I + llgll>. The next
result is an easy consequence of the Pythagorean Theorem if fand g are
orthogonal, but this assumption is not needed for its conclusion.



2.3. Parallelogram Law. If # is a Hilbert space and [ and g € #, then

If + 811+ 1 = gll* = 20117 + llgll)-
ProOF. For any [ and g in # the polar identity implies

If + gl* = A7 + 2Re( f, &) + ligll?,

If — &> = N> — 2ReC /. &) + lighl*.
Now add. m®

The next property of a Hilbert space is truly pivotal. But first we need a
geometric concept valid for any vector space over IF.

2.4. Definition. If & is any vector space over F and A C &, then A is a
convex set if for any x and y in A and 0 <tr<1l,x+ (1 — 1)y € A.

Note that {#x+ (1 —¢)y: 0 <¢ <1} is the straight-line segment joining
x and y. So a convex set is a set A such that if x and y € A, the entire line
segment joining X and y is contained in A.

If & is a vector space, then any linear subspace in & is a convex set. A
singleton set is convex. The intersection of any collection of convex sets is
convex. If 5 is a Hilbert space, then every open ball B( f,' r)={geH:
IIf —gll<r} is convex, as is every closed ball.

2.5. Theorem. If 3 is a Hilbert space, K is a closed convex nonempty
subset of I, and h € 5, then there is a unique point ky in K such that

Ih — k|l = dist(h, K) =inf{||h —k||: k € K}.
ProoF. By considering K —h={k — h: k € K} instead of K, it suffices

to assume that & = 0. (Verify!) So we want to show that there is a unique
vector kg in K such that

lkoll = dist(O, K) =inf{|k||: k€K }.
Let d = dist(O, K ). By definition, there is a sequence {k,}in K such that
llk,ll— d Now the Parallelogram Law implies that

k, -k, k,+k,
= = L1k, 1? + Nell?) — ‘ —

Since K is convex, (k, + k,,) € K. Hence, ||3(k,+k,)I>=d> If > 0,
choose N such that for n > N, ||kn||2<d2 + 1€l By the equation above, if
n, m = N, then

2 2

2

k,— k < 1(2d? + Le?)—d? = 162,

n n

2

Thus, ||k, —k,||<¢€for n, m > N and {k,} is a Cauchy sequence. Since
¥ is complete and K is closed, there is a k,in K such that ||k, —ky||— 0.




Also for all k,,
dS”k()” = ”kO - kn + kn”
< lko = Kl + Ikl - d.

Thus |lkgll = d.
To prove that ky is unique, suppose ko€ K such that ||hy)|=d By
convexity, 3(ky + h) € K. Hence,

d<|l5(ho + ko)l < (Aol + likoll) < d.
So ||3(hy + k)|l = d. The Parallelogram Law implies

Mzzcﬂ_
2

ho—ko
2

2

>

;-

hence hy=k,. ]

If the convex set in the preceding theorem is in fact a closed linear
subspace of #, more can be said.

2.6. Theorem. If A is a closed linear subspace of 3, h € 3, and [, is the
unique element of M such that ||h— fo| = dist(h, #), then h — f, L MA.
Conversely, if f, € M such that h — fo L M, then |h— fo| = dist(h, A).

ProoF. Suppose f,&€ A and ||h— fy||= dist(h, #). I fe M, then fy + f
€. andso ||k — foll> < |lh = (fo + £ = Ih = f)— A* = |k = folI?
— 2 Re( b~ fy, P + /1> Thus

2Re(h = fo. f) < AP

for any fin 4. Fix fin .# and substitute te’’f for fin the preceding
inequality, where (h — f,, ) = re'®,r> 0. This yields 2 Re{ te "re’®} <
2% or 2tr <t?|f]l. Letting t = 0, we see that r = 0; that is, h — fy L f.

For the converse, suppose f,&€.# such that h — f, L A. If fE€ 4, then
h —fol fo— fso that

Ik = A2 = Ik = o)+ (fo— I
= |lh = fo“2 + o — ﬂ|2
2 ||k = foll*.
Thus ||h— foll = dist(h, A ). ]
IfAcH#, let At={fes#: f1Lgforall gin A4}. It is easy to see that
A *is a closed linear subspace of J#.
Note that Theorem 2.6, together with the uniqueness statement in Theo-
rem 2.5, shows that if .# is a closed linear subspace of 5# and h € ¢, then

there is a unique element f,in .# such that h — f, € .# *. Thus a function
P:#— # can be defined by Ph = f,.



2.7. Theorem. If A is a closed linear subspace of 3 and h € 3, let Ph be
the unique point in M such that h — Ph L M. Then

(a) P is a linear transformation on 3,

(b) ||Ph|| < ||kl for every h in I,

(c) P2 = P (here P? means the composition of P with itself ),
(d) kerP=M"* and ran P= A

ProOF. Keep in mind that for every h in 5, h — Ph € # * and ||h— Phj
= dist(h, A ).

(a) Let h;,h, € # and a,a,€F. If f € 4, then {Jajh; + a,h,]—
[ayPhy + ayPhy), f) = a(hy— Phy, f) + ay(hy = Phy, f) = 0. By
the uniqueness statement of (2.6), P(ah, + a,h,) = a;Ph, +a,Ph,.

() If hes#, then h=(h— Ph)+ Ph,Phe M, and h— Phe#t.
Thus [[Al1 = | — PAI> + ||Ph® =[Pl

(c) If f€ #, then Pf= f. For any h in 5, Ph € #; hence P’h = P(Ph)
= Ph. That is, P? = P.

(d) If Ph = 0, then h = h — Phe #*. Conversely, if he#*, then O is
the unique vector in . such that h — 0 = h L .#. Therefore Ph = 0.
That ran P = A is clear. ]

2.8. Definition. If A is a closed linear subspace of # and P is the linear
map defined in the preceding theorem, then P is called the orthogonal
projection of S onto A . If we wish to show this dependence of P on A, we
will denote the orthogonal projection of S# onto . by P,.

It also seems appropriate to introduce the notation A < 5 to signify
that # is a closed lincar subspace of #. We will use the term linear
manifold to designate a linear subspace of 5 that is not necessarily closed.
A linear subspace of 5 will always mean a closed linear subspace.

2.9. Corollary. If # < ¥, then (H )" =M.

ProOOF. If [ is used to designate the identity operator on S (viz., Ih = h)
and P=P,, then I—P is the orthogonal projection of S onto A *
(Exercise 2). By part (d) of the preceding theorem, (A& ) =ker({— P)
But 0 = (I — P)h iff h = Ph. Thus (A ) *=ker(/ — P)=ran P = A,

|

2.10. Corollary. If A C3#, then (A *)* is the closed linear span of A in 3.

The proof is left to the reader; see Exercise 4 for a discussion of the term
Closed linear span.”

2.11. Corollary. If Y is a linear manifold in 3, then Y is dense in 3 iff
Y+ =(0).

Proor. Exercise.



EXERCISES

1. Let o# be a Hilbert space and suppose f, g € 5 with ||f]|=||gll = 1. Show that
llif + (1 —t)gll< 1 for 0 <r< 1. What does this say about {h € 5:||a||<1}?

2. If # <5 and P= P,, show that I —Pisthe orthogonal projection of #
onto A *.

3.1f # < #, show that #/ n A+ = (0) and every hin # can be written as
h=f+gwherefe#andge H It M+ M ={(f,g): fEHM gEM")
and T: A + H+ — i is defined by T(f,g)=f + g, show that T is a linear
bijection and a homeomorphism if # +.#* is given the product topology.
(This is usually phrased by stating that # and # * are topologically complemen-
tary in 5¢.)

4, If A co#, let VA = the intersection of all closed linear subspaces of ¢ that
contain A. VA is called the closed linear span of A. Prove the following:

(a) VA <57 and VA is the smallest closed lincar subspace of 5 that con-
tains A.
(b) VA = the closure of {L}_a,fy:nz=z1, ar€F, f € A}

5. Prove Corollary 2.10.
6. Prove Corollary 2.11.

§3. The Riesz Representation Theorem

The title of this section is somewhat ambiguous as there are at least two
Riesz Representation Theorems. There is one so-called theorem that repre-
sents bounded linear functionals on the space of continuous functions on a
compact Hausdorff space. That theorem will be discussed later in this book.
The present section deals with the representation of certain linear function-
als on Hilbert space. But first we have a few preliminaries to dispose of.

3.1. Proposition. Let s be a Hilbert space and L: #—F a linear
Jfunctional. The following statements are equivalent.

(a) L is continuous.

(b) L is continuous at 0.

(¢) L is continuous at some point.

(d) There is a constant ¢ > 0 such that \L(h)} <c||h)| for every hin 5.

Proor. It is clear that (a) = (b) = (¢) and (d) = (b). Let S show that
(¢) = (a) and (b) = (d).

(¢) = (a): Suppose L is continuous at kA, and k is any point in 5. If
h,— hin 5, then h,— h + hy— h. By assumption, L(hy) = lim[L(#4,
—h + k)] = Uim[L(h,)— L(h) + L(hy)] = lim L(h,)— L(h) + L(hy).
Hence L(h) = lim L(h,).



(b) = (d): The definition of continuity at O implies that Lvl({ae IF:
Ja| < 1)) contains an open ball about 0. So there is a 6> 0 such that
B(0; 8) c L '({a€F:|a|<1}). That is, ||| <& implies |L(h)|< 1. If h
is an arbitrary element of 5 and &> 0, then ||8(||A]| + £)~'A|| < 8. Hence

8h
L
[lIhH + E]

LR < 5 (Al + €.

Letting € = 0 we see that (d) holds with ¢ = 1/8. |

1>

)

thus,

3.2. Definition. A bounded linear functional L on 5 is a linear functional
for which there is a constant ¢ > 0 such that |L(h)|<c||h|| for all A in 5.
In light of the preceding proposition, a linear functional is bounded if and
only if it is continuous.

For a bounded linear functional L: s#—[F, define
(LIl = sup{|L(h)|:|All <1}.
Note that by definition, ||L||<oo;||L|| is called the norm of L.

3.3. Proposition. IfLis alinear functional, then

LIl = sup{|L(A)|: [|All = 1}
sup{|L(h)|/\\All: h € H#, h+ 0}

= inf{c > 0: |L(h)|<c||h||, hin ¥ }.

Also, \L(W)\<||LI[||A|| for every h in .
ProorF. Let « = inf{c > O: ||L(h)||<c||h||, h in 3 }. It will be shown that
lIL|| = a; the remaining equalities are left as an exercise. If &> 0, then the
definition of ||L|| shows that |L((||A||+ &) 'h)|<||L||. Hence |L(h)|<
[IL]|(}|h]| + €). Letting €-> O shows that |L(h)|<[|L||||h]| for all A So the

definition of a shows that a <|/L||. On the other hand, if |L(h)| < cl|hl|
for all A, then ||L||< ¢. Hence ||L||<a. ]

Fix an hyin 5# and define L: 5— IF by L(h) = (h. h). It is casy to
see that L is linear. Also, the CBS inequality gives that |L( h)| =] (h h,) |
<|lA|l{lAgll. So L is bounded and ||L||<||hgll. In fact, L(hy/|lhgll) =
(ho/Nholl, ho) = llhll, 8O that | L|| = ||Ayll- The main result of this section
provides a converse to these observations.

3.4. The Riesz Representation Theorem. Zf L: #—TF is a bounded linear
functional, then there is a unique vector hyin 3 such that L(h) = (h, h )
for every hin 3. Moreouer, ||L|| = |hy||.



Proor. Let # = kerL. Because L is continuous, # is a closed linear
subspace of . Since we may assume that 4 # ¢, # *+ (0). Hence there
is a vector f, in A * such that L(f)) = 1. Now if h€ 5 and a = L(h),
then L(h—af,)=L(h) —a = 0; so h —~L(h)f,€ .#. Thus

0 <h" L(h)fo’f0>
(hs foy = LIRS

So if kg = |foll o L(h) = (h, h,) for all hin #.

If hy € 3 such that (h, hy) = (h, hy) for all h, then hy—hjy L . In
particular, hy— hg L hy—h{ and so hy = hy. The fact that ||L|| = |jA,|
was shown in the discussion preceding the theorem. a

3.5. Corollary. If (X, 2,p) is a measure space and F:L*(p)—F is a
bounded linear functional, then there is a unique hyin L*(p) such that

F(h) = f hhydp
for every h in L*(p).

Of course the preceding corollary is a special case of the theorem on
representing bounded linear functionals on L ?(p), 1 < p <oo. But it is
interesting to note that it is a consequence of the result for Hilbert space
[and the result that L?(u) is a Hilbert space].

EXERCISES
1. Prove Proposition 3.3.

2. Let #=/[*N).If N> | and L: #—F is defined by L({a,})= a,, find the
vector hg in S such that L(h) = (h, hy) for every hin 7.

3. Let #=1*(Nu {0}). (2) Show that if {an}Elz, then the power series Lo, z”
has radius of convergence > 1. (b) If |A\|< 1 and L:5#—C is defined by
L({a,}) = L% ¢a,X", find the vector hyin 5 such that L(h) = {h,hy) for
every hin 5. (¢) What is the norm of the linear functional L defined in (b)?

4. With the notation as in Exercise 3, define L: #—Cby L({a,})=X% na)" !,

where |A|< L. Find a vector hy in 3¢ such that L(h) = (h, hy) for every h
in 7.

5. Let 5# be the Hilbert space described in Example 1.8. If 0 <t < 1, define L:
H#—F by L(h) = h(z). Show that L is a bounded linear functional, find ||Lj||,
and find the vector Ay in S such that L(h) = (h, hy) for all hin 5.

6 Let #=L%*0, 1) and let C) be the set of all continuous functions on [0, 1] that
have a continuous derivative. Let f€ [0, 1] and define L:C—>F by L¢h) =
h’(t). Show that there is no bounded linear functional on ¢ that agrees with L
on CV,



§4. Orthonormal Sets of Vectors and Bases

It will be shown in this section that, as in Euclidean space, each Hilbert
space can be coordinatized. The vehicle for introducing the coordinates is
an orthonormal basis. The corresponding vectors in F¢ are the vectors
{e,e,5,...,€,}, where e, is the d-tuple having a 1 in the kth place and
zeros elsewhere.

4.1. Definition. An orthonormal subset of a Hilbert space S is a subset &
having the properties: (a) for e in &,|le}| = 1; (b) if e;,e, € 6 and e, #e,,
then e; L e,.

A basis for # is a maximal orthonormal set.

Every vector space has a Hamel basis (a maximal linearly independent
set). The term basis for a Hilbert space is defined as above and it relates
to the inner product on . For an infinite-dimensional Hilbert space, a
basis is never a Hamel basis. This is not obvious, but the reader will be able
to see this after understanding several facts about bases.

4.2, Proposition. If & is an orthonormal set in 3, then there is a basis for 3
that contains &.

The proof of this proposition is a straightforward application of Zorn §
Lemma and is left to the reader.

4.3. Example. Let s#=L%[0,27] and for n in Z define e, in H# by
e,(t) = (2m) Y?exp(int). Then {e,; n €Z} is an orthonormal set in .
(Here L%[0,27] is the space of complex-valued square integrable functions.)

It is also true that the set in (4.3) is a basis, but this is best proved after a
bit of theory.

4.4. Example. If #=F9 and for 1 <k <d, e, = the d-tuple with 1 in the
k th place and zeros elsewhere, then {e,, ..., e,}is a basis for .

4.5. Example. Let #=/%(1) as in Example 1.7. For each iin Z define e;
in # by e(i) = 1 and e,(j) = 0 for j+i Then {e, i€ I} is a basis.

The proof of the next result is left as an exercise (see Exercise 5). It is very
useful but the proof is not difficult.

4.6. The Gram-Schmidt Orthogonalization Process. If 5 is a Hilbert
space and {h,:n €N} is a linearly independent subset of H, then there is
an orthonormal set {e,: n €NY} such thar for every n, the linear span of
{ey,...,e,] equals the linear span of {h,, ..., h)].



Remember that VA is the closed linear span of A (Exercise 2.4).

4.7. Proposition. Let{ey, ..., e} be an orthonormal set in I and let
M =V{e,...,e,}. If P is the orthogonal projection of 3 onto M, then

Ph= ). (h,e e,
k=1

for all h in 5.

ProoF. Let Qh = Xi_(h,e,de,. If 1 <j<n then (Qh, e,) =
Lioi( h e (e, e = (b, e;) since ey Le; for k# j. Thus (h —Qh,e;)
=0 for 1 <j<n That is, h — Qh L M for every h in . Since Qh is
clearly a vector in #,Qh is the unique vector hy in A such that
h—hyL A (2.6). Hence Qh = Ph for every h in 5. ]

4.8. Bessel 8 Inequality. Zf fe,; n €N} is an orthonormal set and h € 3,
then

o0

2Kk e < Al

n=1
ProovF. Let h,=h — X} (h, e, e, Then h,Le, for 1 <k <n (Why?).
By the Pythagorean Theorem,
2

all? = ||k, 1% +

E <h’en>ek
k=1

M? + X I1<h e )
k=1

\%

Y Khoe
k=1
Since n was arbitrary. the result is proved. ]

4.9. Corollary. Zf & is an orthonormal set in # and h € H#, then (h, e) # 0
for at most a countable number of vectors e in &.

ProoF. For cach n>11let & = {e €1: |(h,e)|= 1/n}. By Bessel $
Inequality, &, is finite. But UY_,&, = {e €&: (h, ¢,) * O). ]

4.10. Corollary. Zf& is an orthonormal set and h € 3, then

Y (R, e)* < ihlf.

eed

This last corollary is just Bessel § Inequality together with the fact (4.9)
that at most a countable number of the terms in the sum differ from zero.
Actually, the sum that appears in (4.10) can be given a better interpreta-
tion- a mathematically precise one that will be useful later. The question is,



what is meant by L{h;: i € I} if h, €5 and [ is an infinite, possibly
uncountable, set? Let % be the collection of all finite subsets of 7 and order
& by inclusion, so # becomes a directed set. For each F in &, define

he= Y. {h;:i€F).

Since this is a finite sum, #, is a well-defined element of 5. Now { h:
"Fe%)}isanetin .

4.11. Definition. With the notation above, the sum 2{ 4;: i € I} converges
if the net {h: F € )} converges; the value of the sum is the limit of the
net.

If ##=F, the definition above gives meaning to an uncountable sum of
scalars. Now Corollary 4.10 can be given its precise meaning; namely,
Y{|(h,e)|% e € &} converges and the value < |/h||> (Exercise 9).

If the set / in Definition 4.11 is countable, then this definition of
convergent sum is not the usual one. That is, if {4,} is a sequence in 5,
then the convergence of X{4,: n € N} is not equivalent to the convergence
of =_,Ah,. The former concept of convergence is that defined in (4.11) while
the latter means that the sequence {X}_,h,}>., converges. Even if 5= F,
these concepts do not coincide (see Exercise 12). If, however, X{h,: n € N}
converges, then X2_, 4, converges (Exercise 10). Also see Exercise 11.

4.12. Lemma. If & is an orthonormal set and h € ', then

Y {(h,ede: e}
converges in .
PrOOF. By (4.9), there are vectors e, e,, ... in & such that {e €&
(h,e) # 0} = {ey,e,, ... ). Wealso know that T2, |(h, e, }]* < ||A]|* < co.
So if &> 0, there is an N such that Y2_,|(h,e,)|?> <&’ Let F,=
{ey,...,ex_1} and let F= all the finite subsets of &. For F in ¥ define
hp=X{(h,ede: e€ F}. If Fand G €% and both contain F, then

Ihs = hgll> = L {I(h, )’ e € (F\G) U(G\ F))
< ¥ Khe)?
n=N

2

< €.
So {hp: F € %) is a Cauchy net in 5. Because 5 is complete, this net
converges. In fact, it converges to X7°_,(h,e,)e,. |

4.13. Theorem. If & is an orthonormal ser in H#, then the following
statements are equivalent.

(a) & is a basis for #.
M) Ifhesx¥ andh L&, thenh = 0.
(c) V&= .



(d) If he #, then h=L{(h,e)ereEF}.
(e) If g and hE€ S, then

(g, k) = 2 {(g.e){e,h)y: e€&}.

() If he 3, then ||h]|? = L{|(h,e)|* e € &} (Parseval’s Identity).

PROOF. (a) = (b): Suppose h L& and h # 0; then EU{ h/||A||} is an
orthonormal set that properly contains &, contradicting maximality.

(b) = (c): By Corollary 2.11, V&= 5 if and only if &+ = (0).

(b) = (d): f he#, then f=h—L{(h ede:e€E} is a well-defined
vector by Lemma 4.12. If e, €&, then (f, e;) = (h, e;) —L{(h,e){e,e.):
e€8) = (h e,)— (h €;) = 0. That is, f€&*. Hence f = 0. (Is every-
thing legitimate in that string of equalities? We dont want any illegitimate
equalities.)

(d) = (e): This is left as an exercise for the reader.

(e) = (f): Since ||A||> = (h, h), this is immediate.

(f)= (a): If & is not a basis, then there is a unit vector ey ({leg|l = 1) in
# such that e, L &. Hence, 0 = L{|{e,, e)|*:e<€ &}, contradicting (f).

[ ]

Just as in finite-dimensional spaces, a basis in Hilbert space can be used
to define a concept of dimension. For this purpose the next result is pivotal.

4.14. Proposition. Zf 3 is a Hilbert space, any two bases have the same
cardinality.

ProoF. Let 6 and F be two bases for £ and put € = the cardinality of &,
1 = the cardinality of % .1If ¢ or 5 is finite, then ¢ = 3 (Exercise 15).
Suppose both & and 4 are infinite. For ein &, let £Z={fE€F: (e, ) #
0O}; so %, is countable. By (4.13b), cach fin # belongs to at least one set
Z.,ein & That is, F=U{ZF:e€F}. Hence n<e-N,=e¢ Similarly,
£<. u

4.15. Definition. The dimension of a Hilbert space is the cardinality of a
basis and is denoted by dim 7.

If (X, d) is a metric space that is separable and {B,=B(x;E): i€ Z}is
a collection of pairwise disjoint open balls in X, then Z must be countable.
Indeed, if D is a countable dense subset of X, B,N D # 0O for each iin I.
Thus there is a point x; in B;N D. So {x,: i € Z} is a subset of D having
the cardinality of I; thus Z must be countable.

4.16. Proposition. Zf X is an injinite-dimensional Hilbert space, then 3 is
separable if and only if dim =N,



Proor. Let & be a basis for . If e;, e, €&, then |le; — e,]|* = lle,)|* +

lle,lI? = 2. Hence { B(e;1/V2): e €6} is a collection of pairwise disjoint
open balls in 5. From the discussion preceding this proposition, the
assumption that 5# is separable implies 6 is countable. The converse is an

exercise. u
EXERCISES
1. Verify the statements in Example 4.3.

2.
3.

Verify the statements in Example 4.4.
Verify the statements in Example 4.5.
Find an infinite orthonormal set in the Hilbert space of Example 1.8.

Using the notation of the Gram-Schmidt Orthogonalization Process, show that
up to scalar multiple e; = hy/||hyll and for 7= 2, €, = llh, = fll '(h, = £,),
where f, is the vector defined formally by

Chyyhy) Chu-1s by (hyshy)
-1 . : :
= —det| : :
T S Nl TN S SR C MPIY SO SR (0 YD
hy h, 0

In the next three exercises, the reader is asked to apply the Gram-Schmidt

Orthogonalization Process to a given sequence in a Hilbert space. A reference for
this material is pp. 82-96 of Courant and Hilbert [1953].

6

10.

. If the sequence 1,x,x’, is orthogonalized in LZ(— 1, 1), the sequence

e.(x) = [32n+1]V2P,(x) is obtained, where

£ = p( ) (-1

The functions P,(x) are called Legendre polynomials.

If the sequence ef"z/z,xef"z/z,xze”‘z/z, is orthogonalized in
L?(— oo, o), the sequence e,,(x) = [2"n!\/;]’1/2Hn(x)ef" /2 is obtained,
where

noof d\" .2
H(x)=(-1)"e" =) e~
(0= (") e
The functions H, are Hermite polynomials and satisfy H,(x) =2 nH, | ( x).

If the sequence e */2, xe */% x% */?,.. is orthogonalized in L*(0,c0), the

sequence e,(X) = e”"/an (x) n ! is obtained, where
X d " n_—Xx
L(x) = e (dx) (x"e ™).

The functions L, are called Laguerre polynomials.

. Prove Corollary 4.10 using Definition 4.11.

If {h,} is a sequence in Hilbert space and X{h,:n€N} converges to h
(Definition 4.11), then lim, X} _ h, = h. Show that the converse is false.



11. If {h,} is a sequence in a Hilbert space and X.3_,|h,]|<oo, show that X{h,:
n&N} converges in the sense of Definition 4.11.

12. Let {e,} be a sequence in F and prove that the following statements are
equivalent: (a) X{ a,: n&€N} converges in the sense of Definition 4.11. (b) If #
is any permutation of N, then X% _;a converges (unconditional convergence).
(C) ZZO__.ll(an < o0.

m(n)

13. Let & be an orthonormal subset of 5 and let A& =V&.If P is the orthogonal
projection of 5 onto #, show that Ph=X{ (h, e)e: e €&} for every h
in 2.

14. Let A = Area measure on D and show that 1, z, zz, . . . are orthogonal vectors
in L*(A\). Find ||z"|l,n> 0. If e, = |z *z", n= 0, is [e,, e, .} a basis
for L2(A)?

15. In the proof of (4.14), show that if either ¢ or 7 is finite, then e =79

16. If 3 is an infinite-dimensional Hilbert space, show that no orthonormal basis
for £ is a Hamel basis. Show that a Hamel basis is uncountable.

17. Let d > 1 and let p be a regular Borel measure on R¥. Show that Lz(p,) is
separable.

18. Suppose L?( X,82,p) is separable and { E: i € I} is a collection of pairwise
disjoint subsets of X, E &€, and 0 <p( E) <cc for all i. Show that [ is
countable. Can you allow p( E;)=00?

19. If {h€ 5 ||h]|<1} is compact, show that dim < co.

20. What is the cardinality of a Hamel basis for /29

§5. Isomorphic Hilbert Spaces and the Fourier
Transform for the Circle

Every mathematical theory has its concept of isomorphism. In topology
there is homeomorphism and homotopy equivalence; algebra calls them
isomorphisms. The basic idea is to define a map which preserves the basic
structure of the spaces in the category.

5.1. Definition. If 5 and ¢ are Hilbert spaces, an isomorphism between

M and X is a linear surjection U: ¥ — X" such that
(Uh,Ug) = (h, g)
for all A, g in S#. In this case S# and X are said to be isomorphic.
It is easy to see that if U:3#¥— X is an isomorphism, then so is U™ !:

X' — . Similar such arguments show that the concept of isomorphic is
an equivalence relation on Hilbert spaces. It is also certain that this is the



correct equivalence relation since an inner product is the essential ingredient
for a Hilbert space and isomorphic Hilbert spaces have the Same inner
product. One might object that completeness is another essential ingredient
in the definition of a Hilbert space. So it is! However, this too is preserved
by an isomorphism. An isometty between metric spaces is a map that
preserves distance.

5.2.  Proposition. If V: S#— X is a linear map between Hilbert spaces, then
V is an isometry if and only if {Vh, Vg) = (h, g) for all h, g in #.

ProOF. Assume (Vh, Vg) = (h, g) for all h, g in H#. Then ||VA||* =
(Vh,Vh) = (h, h) = ||h||*> and V is an isometry.

Now assume that V is an isometry. If h, g € and A€F, then
IlA + Agl|?> = || V& + AVg||>. Using the polar identity on both sides of this
equation gives

IRl + 2ReX(h, gy + INPligh? = VR + 2ReX(Vh, Vg) + [\ Ve,
But ||Vh|| = ||kl and ||¥g|| = |igl|, so this equation becomes
ReA(h, g) = ReX(Vh, Vg)

for any A in F.IfF =R, take A = 1. If F=C, first take A = 1 and then

take A = ito find that (h, g) and (Vh, Vg) have the same real and
imaginary parts., B

Note that an isometry between metric spaces maps Cauchy sequences into
Cauchy sequences. Thus an isomorphism also preserves completeness. That
is, if an inner product space is isomorphic to a Hilbert space, then it must be
complete.

5.3. Example. Define S:/2—1?by S(a;,a,,...) = (0, aj,a,,...). Then
S is an isometry that is not surjective.

The preceding example shows that isometries need not be isomorphisms.

A word about terminology. Many call what we call an isomorphism a
unitary operator. We shall define a unitary operator as a linear transforma-
tion U: ¥ — 3¢ that is a surjective isometry. That is, a unitary operator is
an isomorphism whose range coincides with its domain. This may seem to
be a minor distinction, and in many ways it is. But experience has taught me
that there is some benefit in making such a distinction, or at least in being
aware of it.

5.4. Theorem. Two Hilbert spaces are isomorphic if and only if they have the
same dimension.

Proor. f U: #— ¢ is an isomorphism and & is a basis for S, then it is
casy to see that US ={Ue:c €8} is a basis for X". Hence, dim = dim .



Let 5 be a Hilbert space and let & be a basis for s#. Consider the
Hilbert space /2 (€). If h€ H#, define h:&—>F by h(e) = (h,e). By
Parseval’s Identity hel*(&) and ||h| = ||h||. Define U: #— I2(&) by
Uh = k. Thus U is linear and an isometry. It is easy to see that ranU
contains all the functions f in /(&) such that f(e) = O for all but a finite
number of ¢; that is, ranU is dense. But U, being an isometry, must have
closed range. Hence U: #—1%(&) is an isomorphism.

If X is a Hilbert space with a basis %, X is isomorphic to [2(F). If
dim 5= dim X", & and & have the same cardinality; it is easy to see that
[>(&)and I*(.#) must be isomorphic. Therefore S and X are isomorphic.

[ ]

5.5. Corollary. All separable infinite dimensional Hilbert spaces are isomor-
phic.

This section concludes with a rather important example of an isomor-
phism, the Fourier transform on the circle.

The proof of the next result can be found as an Exercise on p. 263 of
Conway [1978]. Another proof will be given later in this book after the
Stone-Weierstrass Theorem is proved. So the reader can choose to assume
this for the moment. Let D = {z €C:|z|<1}.

5.6. Theorem. Zf f: 3D - C is a continuous function, then there is a
sequence { p,(z, Z)} of polynomials in z and Z such that p,(z,7)— flz)
uniformly on dD.

Note that if z €9D,z =z"". Thus a polynomial in z and Z on 3D
becomes a function of the form

Y azk.
=-m
If we put z = e, this becomes a function of the form
n
Y et
K
= —m

Such functions are called trigonometric polynomials.
We can now show that the orthonormal set in Example 4.3 is a basis for
L2[0,27]. This is a rather important result.

5.7. Theorem. Zf for each n in Z, e,(t) =(27) YZexp(int), then fe,:
n €7} is a basis for LL[0,27].

ProoOF. Let I={X]__,a,e: ¢, €C,n> 0} Then J is a subalgebra of
Ccl0,27], the algebra of all continuous C-valued functions on [0,27]. Note
that if f€ T, f0) = f(27). We want to show that the uniform closure of I



is #={feC.[0,27]: £(0) = f(27)}. To do this, let f E¥ and define F:
dD - C by F(e'") = fit). F is continuous. (Why?) By (5.6) there is a
sequence of polynomials in z and Z,{ p,(z,Z)}, such that p,(z,Z)— F(z)
uniformly on 0D. Thus p,(e",e”")— f(t) uniformly on [0,27). But
p(e,eHe T

Now the closure of € in LZ[0,27] s all of L1[0,27] (Exercise 6). Hence
V{e: n€Z}=LL0,27] and {e,} is thus a basis (4.13). [ |

Actually, it is usually preferred to normalize the measure on [0, 2#]. That
is, replace dr by (2#) ' dt, so that the total measure of [0,27] is 1. Now
define e,(t) = exp(int). Hence {e,: n€Z} is a basis for H#=
LL([0,27]),2m) ' dr). If f €5, then

a _ _ L 27 _int
5.8 f(n)=(f,e,y = 277/0 f(e)e ™dr
is called the nth Fourier coefficient of f,n in Z. By (5.7) and (4.13d),
5.9 f= X f(n)e,,

where this infinite series converges to f in the metric defined by the norm of
J¥. This is called the Fourier series of f. This terminology is classical and
has been adopted for a general Hilbert space.

If »## is any Hilbert space and & is a basis, the scalars {(h, e); e €&}
are called the Fourier coefficients of h (relative to &) and the series in
(4.13d) is called the Fourier expansion of h (relative to 8).

Note that Parseval s Identity applied to (5.9) gives that Z‘j,°=A°°[fA(n)]2<
co. This proves a classical result.

5.10. The Riemann-Lebesgue Lemma. If fe& L*0,2x], then
J&™ (e ™dt > 0 as n =+ o0.

If fe LL[0,2], then the Fourier series of f converges to f in L*-norm.
It was conjectured by Lusin that the series converges to f almost every-
where. This was proved in Carleson [1966]. Hunt [1967] showed that if
feLf0,27),1 <p <00, then the Fourier series also converges to f ae.
Long before that, Kolmogoroff had furnished an example of a function f in
LL[0,27] whose Fourier series does not converge to f a..

For f in L[0,27], the function f:Z — C is called the Fourier transform
of £ the map U:LZ[0,27]—I*(Z) defined by Uf = f is the Fourier
transform. The results obtained so far can be applied to this situation to
yield the following.

5.11. Theorem. The Fourier transform is a linear isometry from L¥[0, 2]
onto 1%(Z).



ProOF. Let U: L£[0,27]—[*(Z) be the Fourier transform. That U maps
L* = L[0,27] into I*(Z) and satisfies ||Uf] = |fll is a consequence of
Parseval s Identity. That U is linear is an exercise. If {a,}€/*(Z) and
a,= 0 for all but a finite number of n, then f=X2 __a,e,€ L% It is

easy to check that f(n) = a,, for all n,so Uf = { d, }. Thus ranU is dense in
I?. But U is an isometry, so ranU is closed; hence U is surjective. |

Note that functions in LZ[0,27] can be defined on 9D by letting
f(e®)y= f(8). The ambiguity for @ = 0 and 27 (or e® = 1) might cause us
to pause, but remember that elements of LZ [0,27] are equivalence classes
of functions-not really functions. Since {0,27} has zero measure, there is
really no ambiguity. In this way LZ[0,2] can be identified with LZ( 9D),
where the measure on dD is normalized arc-length measure (normalized so
that the total measure of dDis 1). So L2[0,27)and LE ( D) are (naturally)
isomorphic). Thus, Theorem 5.11 is a theorem about the Fourier transform
of the circle.

The importance of Theorem 5.11 is not the fact that L2[0,2#] and [%(Z)
are isomorphic, but that the Fourier transform is an isomorphism. The fact
that these two spaces are isomorphic follows from the abstract result that all
separable infinite dimensional Hilbert spaces are isomorphic (5.5).

EXERCISES
1. Verify the statements in Example 5.3.

2. Define V:L2(0,00) = L*(0,0) by (Vf)(t) = f(¢t + 1). Show that ¥ is an
isometry that is not sujective.

3. Define V:L*(R)— L2(R) by (Vf)(¢) = f(t+ 1) and show that V is an isomor-
phism (a unitary operator).

4. Let o be the Hilbert space of Example 1.8 and define U:#— L?(0, 1) by
Uf = f’. Show that U is an isomorphism and find a formula for U~ .

5. Let (X, £,p) be a u-finite measure space and let u: X = IF be an ~-measurable
function such that sup{ |u(x)|: x € X} < co. Show that U: L*(X,Q,p)—
L*(X,82,p) defined by Uf = uf is an isometry if and only if ju(x)| = 1 a.e. [p],
in which case U is sujective.

0. Let €= {f €C[0,27]: f(0) = f(2m)} and show that % is dense in L2[0,27].

7. Show that {(1/ \/5;), 1/ \/;)cos nt,(1/ \/;)sin nt: 1 <n< cc} is a basis for
L[—&, 7]

8. Let (X, ) be a measurable space and let p, v be two measures defined on
(X, 2). Suppose v < p and ¢ is the Radon-Nikodym derivative of v with
respect to p (¢ = dv/dp). Define V:L?(») = L2 (p) by Vf = ‘/af Show that V'
is a well-defined linear isometry and V is an isomorphism if and only if p<v
(that is, 0 and v are mutually absolutely continuous).
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§6. The Direct Sum of Hilbert Spaces

Suppose ¥ and X are Hilbert spaces. We want to define S£® X so that it
becomes a Hilbert space. This is not a difficult assignment. For any vector
spaces & and ¥, X ® Y is defined as the Cartesian product € X Y where
the operations are defined on &X Y coordinatewise. That is, if elements of
@ Y are defined as {x ®y:x €EZ, y € Y}, then (x,® y) +(x, 9 y,)
=(x,+ Xx,)® (¥, + ), and so on.

6.1. Definition. If # and X are Hilbert spaces, #°® X' ={h® k: h € H#,
ke X} and

1l

(hy@ ky, hy @ ky) =Chy, hy) + (kg k).

It must be shown that this defines an inner product on H#® X and that
H® A is complete (Exercise).

Now what happens if we want to define #,® ¥, @--+ for a sequence
of Hilbert spaces ¢, 5,,...7 There is a problem about the completeness
of this infinite direct sum, but this can be overcome as follows.

6.2. Proposition. If #,, #,, . . . are Hilbert spaces, let #= {(h ,)®_1:
h,€ %, for all n and X2_\|h > <oo}. For h = (h,) and g = (g) in ¥,
dejine

6.3 (h, gy = X <h, &)
n=1

Then (-, -) is an inner product on 3 and the norm relative to this inner
product is |hl| = [EX,\\(T. With this inner product X is a Hilbert
space.

Proor. If h = (i) and g = (g,) €, then the CBS inequality implies
ZI( R g < ZlR N < ENAN7) 2 (Zlgal?) /2 <oo. Hence the series
in (6.3) converges absolutely. The remainder of the proof is left to the
reader. L]

6.4. Definition. If 3#,,#,,... are Hilbert spaces, the space £ of Proposi-
tion 6.2 is called the direct sum of 3, 3,,... and is denoted by H#'= %
SN, - .

This is part of a more general process. If {SF:i€ I} is a collection of
Hilbert spaces, #=@&{#;:i €1} is defined as the collection of function:
h: I >U{5#:i€ I} such that h(i) €5, for all i and Z{||h(i)||?
i€} <. It h g €3, (h g) =X{(h(i), g(i)): i €I};# is a Hilber
space.



The main reason for considering direct sums is that they provide a way of
manufacturing operators on Hilbert space. In fact, Hilbert space is a rather
dull subject, except for the fact that there are numerous interesting ques-
tions about the linear operators on them that are as yet unresolved. This
subject is introduced in the next chapter.

EXERCISES

. L Let {(X,,9,,p,):i€1] be a collection of measure spaces and define X, £, and
p as follows. Let X = the disjoint union of {X;:i€l}and let 2 = {A C X:
An X e for all i). For A in @ put p(A) =X, p,(A n X,). Show that
(X, 2, ) is a measure space and L*( X, 2, p) is isomorphic to & { L*(X,, 2,,p,):

ie ).

2. Let (X, £2) be a measurable space, let p,, p, be measures defined on (X, £2), and
put p = u;+p,. Show that the map V:L*(X,2,u) > L2( X, 2,u,))®
L2(X,2,u,) defined by Vf= f,®f,, where f, is the equivalence class of
L*(X, 2,p,) corresponding to £, is well defined, linear, and injective. Show that
U is an isomorphism iff p, and p, are mutually singular.



CHAPTER II

Operators on Hilbert Space

A large area of current research interest is centered around the theory of
operators on Hilbert space. Several other chapters in this book will be
devoted to this topic.

There is a marked contrast here between Hilbert spaces and the Banach
spaces that are studied in the next chapter. Essentially all of the information
about the geometry of Hilbert space is contained in the preceding chapter.
The geometry of Banach space lies in darkness and has attracted the
attention of many talented research mathematicians. However, the theory of
linear operators (linear transformations) on a Banach space has very few
general results, whereas Hilbert space operators have an elegant and well-
developed general theory. Indeed, the reason for this dichotomy is related to
the opposite status of the geometric considerations. Questions concerning
operators on Hilbert space dont necessitate or imply any geometric difficul-
ties.

In addition to the fundamentals of operators, this chapter will also
present an interesting application to differential equations in Section 6.

§1. Elementary Properties and Examples

The proof of the next proposition is similar to that of Proposition 1.3.1 and
is left to the reader.

L1, Proposition. Let 3 and X be Hilbert spaces and A: —> X a linear
transformation. The following statements are equivalent.

(a) A is continuous.
(b) A is continuous at 0.



(¢) A is continuous at some point.
(d) There is a constant ¢ > O such that ||Ah|| < c||h|| for all h in .
As in (1.3.3), if
4|l = sup{||AA||: h € #, ||h] <1},
then
41l

sup{||4A||: |7l = 1}
sup{[l4h|l/||All: h # 0}
inf{ ¢ > 0:||4h|| < c|\h||, h in H}.

Also, ||[Ah|| < ||4]] |A]|- ||4]] is called the norm of A and a linear transfor-
mation with finite norm is called bounded. Let B(3,X) be the set of
bounded linear transformations from ¢ into X". For = X", B(H, )
= Z(H). Note that Z(#,F) = all the bounded linear functionals on 7.

1.2. Proposition. (a) If A and B € B(H,H), then A + B € B(¥, X),
and 14+ B|| < ||4]| + || BJ|.

(b) If a €F and A € B(H, X), then aA€ B(H,X) and |ad| =
le| [|A]].

(¢c) If A€ B(H,X) and B € B(H', L), then BA € B(H, L) and ||BA||
< |IBIl N4l

Prookr. Only (c) will be proved; the rest of the proof is left to the reader. If
k €2, then ||Bk|| <||B||||k||. Hence, if h €5, k = Ah € X and so
|BARI < IBI| l[4A] < |BIl |4} lIAll. =

By virtue of the preceding proposition, d(A4, B) = ||4— B|| defines a
metric on Z(H,X). So it makes sense to consider Z(, X") as a metric
space. This will not be examined closely until later in the book, but later in
this chapter the idea of the convergence of a sequence of operators will be
used.

1.3. Example. If dim S#=n<oo and dim H#'=m <oo, let {e,, ..., ¢,} be
an orthonormal basis for 5 and let {¢,...,¢,} be an orthonormal basis
for A". It can be shown that every linear transformation from ¢ into ¢ is
bounded (Exercise 3). If 1 <j<n,1<i<m, let Q= (Ae,, €;>. Then the
m x n matrix (a,;) represents A and every such matrix represents an
element of B(#,X").

1.4. Example. Let /2=/*N) and let e, e,,... be its usual basis. If
A € B(1?), form a;, =(Ae, e,». The infinite matrix (a,,) represents A as
finite matrices represent operators on finite dimensional spaces. However,
this representation has limited value unless the matrix has a special form.
One difficulty is that it is unknown how to find the norm of A in terms of
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the entries in the matrix. In fact, if 2 <n< cc, there is no known formula
for the norm of a matrix in terms of its entries. A sufficient condition that is
useful is known, however (see Exercise 11).

1.5. Theorem. Let (X, £,pn) be a a-jinite measure space and put H'=
LA(X,Q,p)=L*p). If $ € L*(p), dejine M,: L* ()~ L*(p) by M,f =
¢f. Then M, € B(L* (W) and | M,ll = |19l o-

PrOOF. Here |||l is the ~-essential supremum norm. That is,
llol|, = inf{sup{|op(x)]: x &€ N}: Ne 2, u(N) =0}
= inf{c > 0: p({x € X: |¢(x)|> ¢c}) = O}.

Thus 19|l o is the infimum of all ¢ > 0 such that [¢(x)}< ¢ ae. [p] and,
moreover, |#(x)] <l¢ll, a.e. [g] Thus we can, and do, assume that ¢ is a
bounded measurable function and |¢p(x)|<||¢||, for all x. So if f & L*(u),
then [lof1°dp < ||¢ll,./|f1*dp. That is, M, € B(L*(u)) and ||M,]| <
l|¢]l - I > O, the u-finiteness of the measure space implies that there is a
set A in £2,0 <p(4)<oo, such that {¢p(x)|=||¢|l,—€ on A. (Why?) If
f=((8) X s then fE€LXw) and IIfll; = L. So [M,|? = |6f]2 =
(u(A) " Yslo1* dp = (¢l — €)% Letting & > 0, we get that || M,|| > |||l ..
|

The operator M, is called a multiplication operator. The function ¢ is its
symbol.

If the measure space (X, §2,p) is not a-finite, then the conclusion of
Theorem 1.5 is not necessarily valid. Indeed, let §2 = the Borel subsets of
[0, 1] and define p on £ by p(4) =the Lebesgue measure of A if 0 &€ A and
p(4) =00 if 0 € A. This measure has an infinite atom at O and, therefore, is
not u-finite. Let ¢ = X (- Then ¢ € L¥(p) and |||, = 1. If £ € L*(pn),
then 0> [|f]*dp = |f(0)|*w({0}). Hence every function in L?(g) vanishes
at 0. Therefore M, =0 and ||M,|| <||¢|l -

There are more general measure spaces for which (1.5) is valid-the
decomposable measure spaces (see Kelley [1966]).

1.6. Theorem. Let ( X, 82, 1) be a measure space and suppose k: X x X >F
isan & X Q-measurable function for which there are constants ¢, and c, such
that

J kG yNdu(y) e ae[ul,

fx|k(X, y)ldp(x) <c, ae [p].



If K: L*(u)— L*(p) is defined by

(Kf )(x) = [k(x,2)f(p)dp(y),

then K is a bounded linear operator and || K||<(c,c,)

PrROOF. Actually it must be shown that Kf € L2(p), but this will follow
from the argument that demonstrates the boundedness of K. If f€ L2(u),

P < [IkCe, () dn(y)
= f|k(x,y)|1/2|k(x,y)|1/2lf(y)l du(y)
< [ fite o ]| firemrnann]

< e[ fwte R ann]”

Hence

JIKFGOPdu(x) < e [ fikeGe, V(0P d( ) dp(x)

= e [V ()P fik (e, p)ldis(x) du( y)

2
< 6l

Now this shows that the formula used to define Kf is finite a.e. [u]
Kf €L*(p), and |KA?<cicli>. ™

[}

The operator described above is called an integral operator and the
function % is called its kernel. There are conditions on the kernel other than
the one in (1.6) that will imply that K is bounded.

A particular example of an integral operator is the Volierra operator
defined below.

1.7. Example. Let k: /0, 1] x /0, 1] =R be the characteristic function of
{(x, y): y < x}. The corresponding operator V:L*(0, 1) = L*(0. 1) defined
by VFf (®) = [¢k(x, y)f( ¥) dy is called the Volterra operator. Note that

Vi(x) = foxf(y)dy-

Another example of an operator was defined in Example 1.5.3. The
nonsurjective isometry defined there is called the unilateral shift. It will be
studied in more detail later in this book. Note that any isometry is a
bounded operator with norm 1.



EXERCISES
1. Prove Proposition 1.1.
2. Prove Proposition 1.2.

3. Suppose {e, } is an orthonormal basis for J# and A: #— X is a linear
transformation such that X{|A4e,|| <oo. Show that A is bounded.

4, Proposition 1.2 says that d(A4, B) = |4~ B|| is a metric on Z(#,X ). Show
that Z(5#, X") is complete relative to this metric.

5. Show that a multiplication operator M, (1.5) satisfies Mgz M, if and only if ¢
is a characteristic function.

6. Let (X, £2, ) be a measure space and let k;, k, be two kernels satisfying the
hypothesis of (1.6). Define

ki XXX—->F byk(x,y)= fkl(x,z)kz(z,y) du(z).

(a) Show that k also satisfies the hypothesis of (1.6). (b) If K, K, K, are the
integral operators with kernels k, k;, k5, show that K = K, K,. What does this
remind you of? Is more going on than an analogy?

7. If (X, £,p) is a measure space and k € L?(u X ), show that k defines a
bounded integral operator.

8. Let {e,} be the usual basis for /? and let {a, } be a sequence of scalars. Show
that there is a bounded operator A on /2 such that Ae, = a,e, for all n if and
only if {a, } is uniformly bounded, in which case ||4|| = sup{ |a,|:n > 1). This
type of operator is called a diagonal operator or is said to be diagonalizahle.

9. (Schur test) Let { @, };°;_; be an infinite matrix such that a,, > O for all i, j
and such that there are scalars p, > 0 and B,y > 0 with

oo
Z ai]plS Bpjv
i=1

s

a;;p, < Yp,
1

J

for all i, j > 1. Show that there is an operator A on [*(N) with (Ae, , ¢, ) = a;,
and ||4|* < By.

10. (Hilbert matrix) Show that (Ade;, ,) = (i +j +1)"for 0 < i, j < cc defines
a bounded operator on [*(N U {0}) with ||4||<=. (See also Choi [1983])

11. Find the operator norm of a 2 x 2 matrix in terms of its entries.

12. (Direct sum of operators) Let {5 } be a collection of Hilbert spaces and let
H=@ #,. Suppose A, € B(X,) for all i. Show that there is a bounded
operator A on ¥ such that A |5, = A, for all { if and only if sup, || A, || <oco.In
this case, ||A]| = sup,||4,]|.
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§2. The Adjoint of an Operator

2.1. Definition. If 5 and X are Hilbert spaces, a function u:#X ¥ —F
is a sesquilinear form if for h, g in SZ,k, fin X', and a, 8 in IF,

(a) u(ah + Bg, k) = au(h, k) + Bu(g, k);
(b) u(h,ak + Bf) = au(h, k) + Bu(h, f).

The prefix Sesqui is used because the function is linear in one variable
but (for F = C) only conjugate linear in the other. ( Sesqui means
one-and-a-half. )

A sesquilinear form is bounded if there is a constant M such that
lu(h, k)| < M||h| ||k|| for all h in 5 and k in K. The constant M is
called a bound for u.

Sesquilinear forms are used to study operators. If A € %B(s#, "), then
u(h, k) = (Ah, k) is a bounded sesquilinear form. Also, if Be Z (X, ),
u( h, k) = (h, Bk) is a bounded sesquilinear form. Are there any more? Are
these two forms related?

2.2, Theorem. If u: XA —F is a bounded sesquilinear form with bound
M, then there are unique operators A in B(H, 4 )and B in B(H , ) such
that

2.3 u(h, k) = (Ah, k) = (h, Bk)
for all hin ¥ and k in A and ||A4|],||B||< M.

Proovr. Only the existence of A will be shown. For each A in %, define L,:
X —F by L(k) = u(h, k). Then L, is linear and |L,(k)|< M|A|||k]|.
By the Riesz Representation Theorem there is a unique vector fin ) such
that (k, f) = L(k) = u(h, k) and ||f]] < M|\h)|. Let Ah = f Tt is left as
an exercise to show that A is linear (use the uniqueness part of the Riesz
Theorem). Also, (Ah, k) = (k, Ah) = (k, f) = u(h, k).

If A, € B(H, ) and u(h, k) = {(Ah, k), then (Ah — A h, k) = 0 for
all k; thus Ah — A h = 0 for all h. Thus, A is unique. [ |

2.4. Definition. If A € (5, X"), then the unique operator B in
B(A, X)) satisfying (2.3) is called the adjoint of A and is denoted by
B = A*

The adjoint of an operator will usually be used for operators in Z(5#),
rather than Z(5%,X"). There is one notable exception.

2.5. Proposition. ZfU € B(H#,X), then U is an isomorphism if and only if
U is invertible and U™ '=U *.

Proor. Exercise.
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From now on we will examine and prove results for the adjoint of
operators in Z(s). Often, as in the next proposition, there are analogous
results for the adjoint of operators in #(S¢, X "). This simplification is
justified, however, by the cleaner statements that result. Also, the interested
reader will have no trouble formulating the more general statement when it
is needed.

2.6. Proposition. Zf A, BE #(¥) and a € IF, then:

(a) (a4 + B)* = aA* + B*

(b) (AB)* = B*4*.

(c) A¥* = (A¥)* = A

(d) Zf A is invertible in B(H) and A~ is its inverse, then A* is invertible
and (A*)™ ' = (4" H*

The proof of the preceding proposition is left as an exercise, but a word
about part (d) might be helpful. The hypothesis that A is invertible in
B(HH) means that there is an operator 4 'in B(5#) such that A4 ! =
A4 =1 Tt is a remarkable fact that if A is only assumed to be bijective,
then A is invertible in #Z(). This is a consequence of the Open Mapping
Theorem, which will be proved later.

2.7. Proposition. If A€ B(H),||4| = ||A*| = ||[A*4]"/~

Proor For h in o, ||hl< 1, ||[4A1> = (Ah, Ah) = (A*4h h)<
|A*AR|| Al < |4*4]| < | A*|| | 4]l. Hence |l4]* < ||4*4|| < [[4*]| ||4]l.
Using the two ends of this string of inequalities gives {|A4||<||4*|| when
[[4]] is cancelled. But A = A** and so if A* is substituted for A, we get
|[A*||<||4**|| = ||4||. Hence ||4|| = ||[4*||. Thus the string of inequalities
becomes a string of equalities and the proof is complete. ]

2.8. Example. Let (X, £, 1) be a u-finite measure space and let M¢ be the
multiplication operator with symbol ¢ (1.5). Then M*is Mg, the multipli-
cation operator with symbol ¢.

If an operator on F? is represented by a matrix, then its adjoint is
represented by the conjugate transpose of the matrix.

2.9. Example. If Kis the integral operator with kernel k as in (1.6), then
K *is the integral operator with kernel k*(x,y)=k(y, x).

2.10. Proposition. Zf S: 1> > 1% is dejined by S(aja,,...)=
©, ay, ay,...), then S is an isometry and S*(a,, a,,...)=(a,,a;,...).

Proor. It has already been mentioned that S is an isometry (1.5.3). For (a,)

and (B,) in 1%(S*(a,), (B,)) = {(a,, S(B,)) ={(ay, &, ...), (0, B}, B,
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cee )> = azﬁl -+ a:;Ez + = <(a2, a3, .. -)9 (Bl’ B27 .. )> SinCC thlS hOldS
for every (,), the result is proved. ]

The operator S in (2.10) is called the unilateral shift and the operator S*
is called the backward shift.

The operation of taking the adjoint of an operator is, as the reader may
have seen from the examples above, analogous to taking the conjugate of a
complex number. It is good to keep the analogy in mind, but do not become
too religious about it.

2.11. Definition. If A € Z(5¢F), then: (a) A is hermitian or self-adjoint if
A* = A; (b) A is normal if AA* = A*A4.

In the analogy between the adjoint and the complex conjugate, hermitian
operators become the analogues of real numbers and, by (2.5), unitaries are
the analogues of complex numbers of modulus 1. Normal operators, as we
shall see, are the true analogues of complex numbers. Notice that hermitian
and unitary operators are normal.

In light of (2.8), every multiplication operator M, is normal; M, is
hermitian if and only if ¢ is real-valued; M, is unitary if and only if
|¢|=1 ae. [u]. By (2.9), an integral operator K with kernel k is hermitian
if and only if k(x, y) = k(y, x) ae. [px u]. The unilateral shift is not
normal (Exercise 6).

2.12.  Proposition. Zf 3 is a C-Hilbert space and A € B(HK), then A is
hermitian if and only if (Ah, h) €R for all h in .

Proor. If A = A* then (Ah, h) = (h, Ah) = (Ah, h); hence (Ah, h) €
R.

For the converse, assume (Ah, h) is real for every h in J#.If a€C and
h, g €, then (A(h + ag), h +ag) = (Ah, h) + a{Ah, g) + a(Ag, h)
+ |a|X Ag, g) €R. So this expression equals its complex conjugate. Using
the fact that (Ah, h) and (Ag, g) €R yiclds

al{Ag, h) + a{Ah,g) = a(h, Ag) + a{g, Ah)
= a{A*h, g) + a{A*g, h).
By first taking a« = 1 and then a =i, we obtain the two equations
(Ag, hy + (Ah,g) = (A*h,g) + (A*g, hy,
i(Ag, h) —i{Ah, g) = -i(A*h, g) + i(A*g, h).
A little arithmetic implies (Ag, h) = (A*g, h), s0 A = A% [ ]

The preceding proposition is false if it is only assumed that 5 is an

W-Hilbert space. For example, if A _(1) j_on Rz, then (Ah, h) = 0



34 II. Operators on Hilbert Space

for all 4 in R%. However, A* is the transpose of A and so A* # A. Indeed,
for any operator A on an R-Hilbert space, (Ah, g) €ER.

2.13. Proposition. If A = A* then
4|l = sup{[{4h, h)|:||A|| = 1}.

PROOF. Put M = sup{{{Ah, h)|: ||| = 1}. If |A|| = 1, then [{A4h, h)| <
II4|; hence M <||4||. On the other hand, if [|A|=1Igll = 1, then

(A(h £ g), ht g)

(Ah, h) £(Ah, g) £{A8, h) + (A8, g)
(Ah, )+ (Ah, g) £(8, A*h) + (A48, 8).

Since A = A* this implies

(A(h £8),ht g) = (Ah,h) + 2Re(Ah, gy + {Ag, 8).
Subtracting one of these two equations from the other gives

4Re(4h, g) = (A(h + g),h + g) —(A(h—g),h—g).
Now it is easy to verify that | (Af, f) |< M||f]|*> for any fin . Hence

using the parallelogram law we get

4Re(Ah, gy< M(|h + glI* + ||k — gl|*)

= 2M(|lAI1% + l1gll?)
= 4M

since h and g are unit vectors. Now suppose (Ah, g) = ei‘9| (AR, 2) |-
Replacing 4 in the inequality above with e “°h gives | (Ah, g) |< M if
2]l = llgit = 1. Taking the supremum over all g gives ||[4A||< M when
l|hl| = 1. Thus ((A({ < M. ]

2.14. Corollary. If A = A* and (Ah, h) = 0 for all h, then A = 0.

The preceding corollary is not true unless A = A% as the example given
after Proposition 2.12 shows. However, if a complex Hilbert space is
present, this hypothesis can be deleted.

2.15. Proposition. If 3 is a C-Hilbert space and A € () such that
(Ah, h) = O for all h in 3, then A = 0.

The proof of (2.15) is left to the reader.

If »# is a C-Hilbert space and A € #(5¢), then B = (A + A*)/2 and
C = (A —A*)/2i are self-adjoint and A = B + iC. The operators B and
C are called, respectively, the real and imaginary parts of A.

ﬁ:«z
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2.16. Proposition. If A € B(I), the following statements are equivalent.

(a) A is normal.
(b) ||AA|| = ||A*A|| for all h.

If 5 is a C-Hilbert space, then these statements are also equivalent to:
(¢) The real and imaginary parts of A commute.

Proor. If h € #, then ||4h||> —||A*h||®> = (Ah, Ah) —(A*h, A*h) =
((A*A — AA*®)h, h). Since A*A — AA* is hermitian, the equivalence of (a)
and (b) follows from Corollary 2.14.
If B, C are the real and imaginary parts of A, then a calculation yields
A*4 = B*—iCB + iBC + C?,
AA* = B?+iCB—iBC + C*.
Hence A*A = AA* if and only if CB = BC, and so (a) and (c) are
equivalent. ®

2.17. Proposition. Zf A € B(I¥), the following statements are equivalent.

(a) A is an isometty.
(b)) A*A = L
(c) (Ah, Ag) = (h, g) for all h, g in .

Proor. The proof that (a) and (c) are equivalent was seen in Proposition
1.5.2. Note that if h, g €57, then (A*Ah, g) = (Ah, Ag). Hence (b) and
(c) are easily seen to be equivalent. u

2.18. Proposition. If A € B(H), then the following statements are equiv-
alent.

(a) A is unitary.
(b) A is a surjective isometry.
(¢) A is a normal isometry.

Proor. (a) = (b): Proposition 1.5.2.
(b) = (¢): By (2.17), A*A = I. But it is easy to sec that the fact that A is
a surjective isometry implies that 4! is also. Hence by (2.17) Z =
(A H*47 1= (4*%)"'4 1 = (44*)7 Y this implies that A*A = AA* = [
(¢c) = (a): By (2.17), A*A = I Since A is also normal, AA* = A*A = Z
and so A is surjective. u

We conclude with a very important, though easily proved, result.

219, Theorem. IfA € B(I¥), then ket A = (ran A*) *.

Proor. If h €Ekerd and g € 7, then (h, A*g) = (Ah, g) = 0, so kerAC
(ran A*) +. On the other hand, if & L ran A* and g €%, then (Ah, g) =
(h, A*g) = 0; so (ran A*)* Cker A. u
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Two facts should be noted. Since A** = A, it also holds that ker A* =

(ran A) 1. Second, it is not true that (ker4)* = ran A* since ran A* may
not be closed. All that can be said is that (ker4)* = cl(ranA*) and
(ker A*)* = cl(ran A).

EXERCISES

L.

2.

10.

11.

12.

13.

14.

15.

16.

Prove Proposition 2.5.

Prove Proposition 2.6.

. Verify the statement in Example 2.8.
. Verify the statement in Example 2.9.
. Find the adjoint of a diagonal operator (Exercise 1.8).

. Let S be the unilateral shift and compute SS* and S*S. Also compute S"S*”

and §*"S”.

. Compute the adjoint of the Volterra operator ¥ (1.7) and V + V'*. What is

ran( V +V*)? .

. Where was the hypothesis that S is a Hilbert space over C used in the proof of

Proposition 2.12?

. Suppose A = B +iC, where B and C are hermitian and prove that B = (A +

A*)/2, C = (A — A*)/2i.
Prove Proposition 2.15.

If A and B are self-adjoint, show that AB is self-adjoint if and only if
AB = BA.

Let ©%_ga,z" be a power series with radius of convergence R, 0 <R <oo. If
A €B(H#) and ||A||< R, show that there is an operator T in #( ) such that
for any h, gin 5, (Th, g) = L3 qa,{A"h, g). [If {(z) = La,z", the operator
T is usually denoted by f(A).]

Let A and T be as in Exercise 12 and show that ||T — L}_oa,A||— 0 as
n—oo.If BA = AB, show that BT = TB.

If f(z) = expz = L7_¢z"/n! and A is hermitian, show that f(i4) is unitary.

If Ais a normal operator on J, show that A is injective if and only if A has
dense range. Give an example of an operator B such that ker B = (0) but ran B
is not dense. Give an example of an operator C such that C is surjective but
kerC # (0).

Let M, be a multiplication operator (1.5) and show that kerM, = (0) if and
only if p({x:¢(x)=0}) = 0. Grve necessary and sufficient conditions on ¢
that ran M, is closed.
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§3. Projections and Idempotents; Invariant and
Reducing Subspaces

3.1.  Definition. An idempotent on # is a bounded linear operator E on 5
such that E2 = E. A projection is an idempotent P such that kerP =
(ran P)*.

If # < ¢, then P, is a projection (Theorem 1.2.7). It is not difficult to
construct an idempotent that is not a projection (Exercise 1).

Let E be any idempotent and set 4 =ran E and A =kerE. Since E is
continuous, A4 is a closed subspace of . Notice that (I — E)? = Z — 2E
+ E2=Z—-2E+E=1-E;thus Z — Eis also an idempotent. Also,
0=(I—Eh =h — Eh, if and only if Eh = h. So ran E 2ker(] — E).
On the other hand, if h € ran E, h = Eg and so Eh = E’¢ = Eg = h;
hence ran E = ker( I — E). Similarly, ran(/ — E) = ker E. These facts are
recorded here.

3.2. Proposition. (a) E is an idempotent if and only if I — E is an idempo-
tent. (b) ran E = ker(I — E), kerE = ran( 1 — E), and both ran E and
ker E are closed linear subspaces of #.(c)If # = ran E and A" = ker E,
then M NAN"=(0) and M + N =K.

The proof of part (c) is left as an exercise. There is also a converse to (c).
X MN<H M n A= (0), and A + A=, then there is an idempo-
tent E such that . = ran E and A "=ker E; moreover, E is unique. The
difficult part in proving this converse is to show that E is bounded. The
same fact is true in more generality (for Banach spaces) and so this proof
will be postponed.

Now we turn our attention to projections, which are peculiar to Hilbert
space.

3.3. Proposition. If E is an idempotent on H# and E + 0, the following
statements are equivalent.

(a) E is a projection.

(b) E is the orthogonal projection of Y onto ran E.
©IEl = 1.

(d) E is hermitian.

(e) E is normal.

() (Eh,h) =0 forall hin 5.

Proor. (a) = (b): Let # =ran E and P = P, . If h €3¢, Ph = the unique
vector in .# such that h — Ph € # * = (ran E) * = kerE by (a). But
h— Eh = (I — E)h €kerE. Hence Eh = Ph by uniqueness.

(b) = (c): By (1.2.7),||E[l< 1. But Eh = h for h in ran E, so ||E||=1.
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(c) = (a): Let he(kerE)* . Now ran(I — E) = ker E, so h— Eh €
kerE. Hence 0 = (h — Eh, h) = ||h||>— (Eh, h). Hence ||h||*> = (Eh, h)
<||Eh||}h|| < )|A|1%. So for h in (kerE)*,||Eh| = ||h]| = (Eh, h)/? But
then for hin (ker E) *,

\h— Eh||*> = ||h||>—2 Re( ER, h) + ||ER|*> = o.

That is, (ker E)*Cker(/ — E) = ran E. On the other hand, if g € ran E,
g2 =g + g, where g€ ker E and g, € (kerE)*. Thus g = Eg = Eg, =
g,; that is, ran E C(kerE)*. Therefore ran E = (kerE)* and E is a
projection.

(b) = (): If h €3¢, write h = hy + h,,h, € ran E, hyEkerE
(ran EY*. Hence (Eh, h) = {(E(h; + h,),h, + hy) = (Eh,, h,)
(h ) = llgll? 2 0.

(f) = (a): Let h; € ran E and h,E€kerE. Then by (f), 0 <(E(h; +
hy), hy+hy) = (b, h) + (h, hy). Hence —||h|\*<{hy, hy) for all hy
in ran E and A, in ker E. If there are such hy and h, with (h, h,) = a+# 0,
then substituting k, = —2a~1|h,||?k, for h, in this inequality, we obtain
— |l#1l1* < —2||A4]1%, a contradiction. Hence (h,, h;) = 0 whenever h; €
ran E and & , € ker E. That is, E is a projection.

(a) (d): Let h,ge s and puth=h, + h, and g = g, + g,, where
hy,g € ran E and h,,g,€kerE = (ran E)*. Hence (Eh, g) = (h, g)-
Also, (E*h,g) = (h,Eg)=<(h,, g ) = (Ehg). Thus E = E*

(d) = (e): clear.

(e) = (a): By (2.16),||EHh|| = ||E*h|| for every h. Hence kerE = kerE*.
But by (2.19), ker E * = (ran E) *,s0 Eis a projection. a

Note that by part (b) of the preceding proposition, if E is a projection
and A =ran E, then E = P,.

Let P be a projection with ran P = .# and kerP = A", So both .# and
A are closed subspaces of S and, hence, are also Hilbert spaces. As in
(1.6.1), we can form A SN .M U: M &N > is defined by U(h® g)
=h+ gfor hin A and g in A", then it is easy to see that U is an
isomorphism. Making this identification, we will often write #'=.# & A"

More generally, the following will be used.

3.4. Definition. If{.#;} is a collection of pairwise orthogonal subspaces of
J%, then
oM =V M,.
If A and A" are two closed linear subspaces of ¢, then
MON=HNN*.
This is called the orthogonal difference of # and A"
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Note that if A, A/ <H# and A L AN, then A + A is closed. (Why?)
Hence A & AV =.# + A". The same is true, of course, for any finite
collection of pairwise orthogonal subspaces but not for infinite collections.

3.5. Definition. If A € B(F) and A <, say that A is an invariant
subspace for A if Ah € # whenever h € #. In other words, if A4 C.4#.
Say that 4 is a reducing subspace for A if A# C M and AM+C M.

If # < then #=MS M It AcSF(H), then A can be written as
a2 x 2 matrix with operator entries,

U, |
Yy Z»I’
where W EB(M), XS B(M, M), Y EB(M, H"), and Z € B( M ).

3.6 A=

371. Proposition. If A€ B(HK), M<K, and P = P, then statements (a)
through (c) are equivalent.

(a) A is invariant for A.

(b) PAP = AP.

(¢) In (3.6), Y = 0.

Also, statements (d) through (g) are equivalent.

(d) A reduces A.

(e) PA = AP.

(f) In (3.6), Y and X are 0.

(g) A is invariant for both A and A*.

Proor. (a) = (b): If h€ N, Phc . #. S50 APh<€ #. Hence, P(APh) =
APh. That is, PAP = AP.
(b) = (c): If P is represented as a 2 X 2 operator matrix relative to

H= M ML, then
=00

PAP=[W O]=AP=[W O].

Hence,

0 0 Yy O

SoY =0.
(¢)=>@:IfY=0and h €4, then

_[w x][r]_[wn
Ah_[o z][o] [ 0 ]e“”‘
(d) = (e): Since both A and # * are invariant for A, (b) implies that

AP = PAP and A(I— P) = (I — PYA(I — P). Multiplying this second
equation gives A — AP = A — AP — PA + PAP. Thus PA = PAP = AP.
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(e) = (f): Exercise.
()= (g If X =Y =0, then

(w0 . _[w* o
A—[O Z] and A4 [OZ*].
By (¢), A is invariant for both A and A*.

(g) = (d): If he £+ and g €M, then (g, Ah) = (A*g, h) = 0 since
A*g € #. Since g was an arbitrary vector in .#, Ah € # . That is,
AL C o+, [ ]

If # reduces A, then X =Y = 0 in (3.6). This says that a study of A is

reduced to the study of the smaller operators W and Z. This is the reason
for the terminology.

If A €B() and A is an invariant subspace for A, then A|# is used
to denote the restriction of A to .. That is, A|# is the operator on #
defined by (A|A#)h = Ah whenever h € .#. Note that A| A4 € B( M) and
||4|A#) <||A4]]. Also, if # is invariant for A and A has the representation
(3.6) with Y = 0, then W = A|.#.

EXERCISES

I. Let 5 be the two-dimensional real Hilbert space R?, let A4 ={(x,0) €R:
x €R} and let & = {(x,x tan#): x € R}, where 0 <8 <5«. Find a formula
for the idempotent E, with ran Ey= 4 and ker E; = A", Show that || Ey|| =
(sing)~ L.

2. Prove Proposition 3.2 (¢).

3. Let {A#,:iel} be a collection of closed subspaces of »# and show that
AL :ieZ) = N{A:iel)]*t and [ A iel)]' =V{At:ie]).

4. Let P and Q be projections. Show: (a) P+ Q is a projection if and only if
ran P LranQ. If P + Q is a projection, then ran(P + @) = ran P + ran @ and
ker( P+ Q) = ker Pn ker Q. (b) PQ is a projection if and only if PQ = QP. If
PQ is a projection, then ran PQ = ran P n ran Q and ker PQ = cl(ker P +
ker Q).

5. Generalize Exercise 4 as follows. Suppose {#,:i€l} is a collection of
subspaces of & such that A, L # ifi= j. Let P, be the projection of 5
onto #, and show that for all kin 5, 2{ P,h:i€I} converges to Ph, where
P is the projection of 5 onto V{A;:i€}.

6. If Pand Q are projections, then the following statements are equivalent. (a)
P— @ is a projection. (b) ranQCran P. (¢) PR =Q. (d) QP=Q. IfP—-Q
is a projection, then ran(P — @) = (ran P) © (ran Q) and ker( P— Q) =ran Q
+ ker P.

7. Let Pand Q be projections. Show that PQ = QP if and only if P+ @ — PQ
is a projection. If this is the case, then ran( P+ @ — PQ) = cl(ran P + ran Q)
and ker( P+ @ — PQ) = ker P n ker Q.



11.4. Compact Operators 41

8. Give an example of two noncommuting projections.

9. Let A € B() and let A= graph A C H#® . That is, /'={h® Ah:
he 3 }. Because A is continuous and linear, A < #'® . Let M = H#'® (0) <
H® . Prove the following statements. (a) A4 N A = (0) if and only if ker A =
(0). (b) M + A is dense in #® S if and only if ran A is dense in 3. (c)
M+ N =3¢ if and only if A is surjective.

10. Find two closed linear subspaces #, A" of an infinite-dimensional Hilbert space
M such that £ N\ A= (0) and A + A is dense in S, but M + N+ .

11. Define A: 2(Z) = P@)byA(....a_, &g, a1, ... )=(.... 8 00,0, ...),
where -~ sits above the coefficient in the O-place. Find an invariant subspace of A
that does not reduce A.

12. Let p = Area measure on D= {z €C:|z|<1} and define A: L*(p)—> L*(p)
by (Af)z) = zf(z) for |z|]< | and f in L*(w). Find a nontrivial reducing
subspace for A and an invariant subspace that does not reduce A.

§4. Compact Operators

It turns out that most of the statements about linear transformations on
finite-dimensional spaces have nice generalizations to a certain class of
operators on infinite-dimensional spaces-namely, to the compact oper-
ators.

4.1. Definition. A linear transformation T:5— X is compact if T(ball
) has compact closure in . The set of compact operators from ¥ into
X is denoted by Bo(H, X "), and By(H) = By (H, H).

4.2. Proposition. (a) Bo(H,H)C B(H, X ).

(b) By(H, X )is a linear space and if {T,} S By( H, K) and T € #( H, K)
such that |T,,—T||> 0, then T € Bo(H,X').

(¢c) If A €B(H),BERB(X), and T € By(#, X)), then TA and BT &€
Bo(H, X).

PRrROOF. (a) If T € By( 3¢, X "), then cl[ T(ball )] is compact in X#". Hence
there is a constant C > 0 such that T(ball ) C {k € X":| k|| < CJ. Thus
I < C.

(b) It is left to the reader to show that %By(S¢, X) is a linear space. For
the second part of (b), it will be shown that T(ball ) is totally bounded.
Since X" is a complete metric space, this is equivalent to showing that
T(ball ) pas compact closure. Let €> 0 and choose » such that || 7 —T,]|
<e/3. Since T, is compact, there are vectors hy,...,Hh, in ball S such
that T,(ball #) c U7 B(T,h; e/3). So if ||h]| < 1, there is an h; with
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| T,h, — T,hll <e/3. Thus
ITh, — Thi| < ||Th, = T,h,|| + IT,h, = Tl + IT,h — Thi

<2|T-T)| + E/3
<e.

Hence T(ball 5#°)cUT B(Th;; E).
The proof of (c) is left to the reader. a

4.3. Definition. An operator T on S has jinite rank if ran T is finite
dimensional. The set of finite-rank operators is denoted by PBgo(, X');
Boo(H) = Boo(H, ).

It is easy to see that PBoo(, X") is a linear space and By H#, A ) C
HBo(H, A) (Exercise 2). Before giving other examples of compact oper-
ators, however, the next result should be proved.

44. Theorem. If T € B( H, X'), the following statements are equivalent.

(a) T is compact.

(b)y T * is compact.

(¢) There is a sequence {T,} of operators of finite rank such that || T — T,
- 0.

PROGF. (¢) = (a): This is immediate from (4.2b) and the fact that
Boog(H, X)) C By(H, X).

(a) = (¢): Since cl[T(ball 5#)] is compact, it is separable. Therefore
clran T) = % is a separable subspace of X¥". Let {e,, €,,.. .} be a basis for
& and let P, be the orthogonal projection of X onto V{e,: 1 <j<n}. Put
T, = P,T,; note that each T, has finite rank. It will be shown that ||T,, — T||
— (0, but first we prove the following:

Claim. If h € #,||T,h — Th||— 0.

In fact, k = Th €%, so ||P,k — k||— 0 by (1.4.13d) and (1.4.7). That is,
[P, Th~Th| — 0 and the claim is proved.

Since T is compact, if €> 0, there are vectors hy,..., h,, in ball # such
that T(ball ) CUT,B(Th;;¢/3). So if ||h||< 1, choose h, with ||Th—
Thjll<e/3. Thus for any integer n,

Th = T,h| < |Th = Th/|| + |Th, = T,h | + ||P,(Th, — Th))|
<2Th—Th)| + ||Th; — T,h/]|
<2¢/3 +||Th, — T,k
Using the claim we can find an integer n, such that || Th, —T,h || <e/3 for

1 £j<mand n=n,. So ||[Th—T,h||<e uniformly for A in ball H#.
Therefore ||T — T,|| < eforn=n,,.
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(c) = (b): If {T,}s a sequence in Hpo(H, X') such that |T,—T||— 0,
then ||T*—=T*| = ||T,~T|| = 0. But T* € By (H#,X ) (Exercise 3).
Since (c) implies (a), T *is compact.

(b) = (a): Exercise. [ |

A fact emerged in the proof that (a) implies (c¢) in the preceding theorem
that is worth recording.

4.5. Corollary. If TE By(H,H"), then cl(ran T) is separable and if { e}
is a basis for cl(ran T) and P, is the projection of X onto V{ e;:1 <j<n},
then ||P,T—T||— 0.

4.6. Proposition. Let ) be a separable Hilbert space with basis {e}; let
{a,}SF with M = sup{ |a,}:n =21} <co. If Ae, = a,e, for all n, then A
extends by linearity to a bounded operator on I with ||A|| =M. The operator
A is compact if and only if a,— 0asn —>0.

Proor. The fact that A is bounded and ||4|| =M is an exercise; such an
operator is said to be diagonalizable (see Exercise 1.8). Let P, be the
projection of 3% onto V{ e, ..., ¢,}. Then A, = A — AP, is seen to be

diagonalizable with A,e,=aje;ifj>nand A,e;=0ifj<n So AP, €
Bo(H) and ||4,]| = sup{|a;|:j > n). If @, > O, then |[|4,][— 0 and so A
is compact since it is the limit of a sequence of finite-rank operators.

Conversely, if A is compact, then Corollary 4.5 implies ||4,||— 0; hence
a,— 0. .

47. Proposition. If (X, 2, 1) is a measure space and k €L*(X X X, 2 X
Q,u X p), then

(K )(x) = [k(x, )/ (3) dp(y)

is a compact operator and || K|| <[ kl|,-
The following lemma is useful for proving this proposition.
4.8. Lemma. Iffe,:i €Z} is a basis for L*(X,2,1) and

¢ij(x7 y)= ei(x)ej(_y)

fori,jin Z and x, y in X, then {$,;: i, j € 1} is a basis for L*(X X X, 2 X
Q, pXp).

Proor. Since ff|¢ij|2dl‘dl‘ = ||ei”2”ej“2 =1, ¢ijEL2(I‘XI‘)- I, j) #
(, B), then

(Supr 01> = [ [6(2)850) &:(0)8,(») di(x) du(»)

= <¢m ¢i><¢j, ¢3> = 0.
So {¢;,} is an orthonormal family.
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If € L¥(p x p), then the fact that [f|o(x, ¥)|*dp(x)dp(y)<oo im-
plies that fl¢(x, y)|>dp&)<oo for almost all y in X. That is, if ¢,(x) =
¢(x, y), then ¢ &€ L2(p) for almost all y. Thus f(y) = (e,,¢> =
f(b(x ¥)e; (x)du(x 15 well defined. Moreover, feL? (u) (Exercise). But

Vill? = Xi<en fdI* =
J

- | fox. e, () dutx
PG

So if ¢ L ¢,, for all i, j, then f, = O for all & Thus ¢, =0 in L*(p) for
almost all y. That is, ¢ = 0. Therefore, { ¢;;} is a basis. u

Proor oF ProposiTioN 4.7. Let {e;} and { ¢;;} be as in Lemma 4.8. Since
ke L*(pXp),

Iklz = XKk, o)1
i, J

JiCx, e (x)e,(y) dp(x

[ Jie e, () dutn | anco)|

Z|<K,, enl’.
Thus, if f = ):jajejELz(u), Zjlaj|2<oo, then

2

Za (Ke,,
(Zla N el

I(Kf, e)]* =

Therefore,

KA = XICKf, e

< NKIIAR.

This shows that K is bounded and ||K}| < |k]|,.

Now assume that k is a lincar combination of a finite number of the
{ ¢;;)- Tt is left to the reader to show that in this case K has finite rank. If %
is an arbitrary element of L?(p x p), then k is in the linear span of a
countable number of ¢,;. Say that & = Ly o 1@,,D0m Guml(X, ¥) =
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e, (x)e,(¥). I ky = L) 1@, w®a m» then |lky—k|;—= 0 as N> cc. If
K, is the integral operator corresponding to ky, K, has finite rank and
(Ky— K| <|lky—kll,— 0. Thus K is compact. ]

In particular, note that the preceding proposition shows that the Volterra
operator (1.7) is compact.

One of the dominant tools in the study of linear transformations on
finite-dimensional spaces is the concept of eigenvalue.

49, Definition. If A € Z(5¢), a scalar a is an eigenvalue of A if ker( A —
a)# (0). If his a nonzero vector in ker(A—a), h is called an eigenuector
for a; thus Ah = ah. Let 6,(A) denote the set of eigenvalues of A.

4.10. Example. Let A be the diagonalizable operator in Proposition 4.6.
Then 0,(A4) = {a,a,,... ). L a€0,(A4), let J,={j€ N: a)=a}. Then
his an cigenvector for a if and only if h € V{ e;: jEJ,}.

4.11. Example. The Volterra operator has no eigenvalues.

4.12. Example. Let h € #=LEI(—7,7m) and define K: #— # by
(Kf)(x) = [T h(x=y)f(p)dy. I A, = Q)" [ h(x)exp(—inx)dx =
h(n), the nth Fourier coefficient of k, then Ke, = A,e,, where e,(x) =
(7)) V2exp( inx).

The way to see this is to extend functions in LZ(—,7) to R by
periodicity and perform a change of variables in the formula for (Ke,)(x).
The details are left to the reader.

Operators on finite-dimensional spaces always have eigenvalues. As the
Volterra operator illustrates, the analogy between operators on finite-dimen-
sional spaces and compact operators breaks down here. If, however, a
compact operator has an eigenvalue, several nice things can be said if the
eigenvalue is not zero.

4.13. Proposition. Zf T € By(H), A €0,(T), and X # 0, then the eigen-
space ker(T — ) is finite dimensional.

ProoF. Suppose there is an infinite orthonormal sequence {e,} in ker(T —
A). Since T is compact, there is a subsequence {e, } such that {7Te, }
converges. Thus, {Te } is a Cauchy sequence. But for n, # n, ||Te, —
Te, ||2 = ||Ae, —Ae, l| = 2|A\|?>> 0 since A # 0. This contradlctlon shows
that ker(T — >\) must’ be finite dimensional. ]

The next result on the existence of eigenvalues is not a practical way to
show that a specific example has a nonzero eigenvalue, but it is a good
theoretical tool that will be used later in this book (in particular, in the next
section).
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4.14. Proposition. zr Tis a compact operator on #,A+ 0, and inf{ ||( T~
Mhll:|ihll =1} = 0, then A€o, (T).

Proor. By hypothesis, there is a sequence of unit vectors {h,} such that
(T —A)h,||— 0. Since T is compact, there is a vector fin & and a
subsequence {h, } such that ||Th, — fil= 0. But h, =A"'[(A—=T)h,,
+ Th, 1= A7, S 1= A~ = 1>\| A and £+ 0. *Also, it must be
that Th LA 1Tf. Since Th, L F=AT 1Tf, or Tf = hf. That is, f €
ker(T — }\) and f# 0, SOAEG(T) [ ]

4.15.  Corollary. Zf T is a compact operator on X ,A+ 0, A&, (T), and
Ao, (T*), then ran( T—A)=# and (T—A) 'is a bounded operator
onﬂ

Proor. Since A €0,(T), the preceding proposition implies that there is a
constant ¢ > 0 such that ||(T —A)Aa||=c|lhl| for all 2 in SF. I fE clran(T
—A), then there is a sequence {h,} in S such that (T —A)h,— f. Thus
h,—h)l<c (T =A)h,— (T —A)h,| and so {h,} is a Cauchy se-
quence. Hence h,— h for some A in 5. Thus (T — ?\)h f. So ran(T —A)
is closed and, lSy (2.19), rtan(T — A) = [ker(T — A)*] * =5, by hypothesis.

So for fin 5 let Af = the unique vector h such that (T —A)h = f.
Thus (T —A)Af = ffor all fin 5. From the inequality above, c|lAf]l<
T =) A0 = Al So ||[A|<c YAl and A is bounded. Also, (T —
MNA(T —Ah = (T —=2h,s0 0 = (T —A)[A(T —A)h— hJ. Since A&
o,(T), A(T=Mh=h That is, A = (T—X\)".. =

It will be proved in a later chapter that if A& e,(T) and A # 0, then
Aéo (T ™).

More will be shown about arbitrary compact operators in Chapter VI In
the next section the theory of compact self-adjoint operators will be
explored.

EXERCISES
1. Prove Proposition 4.2(c).
2. Show that every operator of finite rank is compact.

3. If T € By(3,X), show that T* € By( N, #) and dim(ran T) =
dim(ran T*).

4. Show that an idempotent is compact if and only if it has finite rank.
5. Show that no nonzero multiplication operator on L?(0, 1) is compact.

6. Show that if T: #— X is a compact operator and {e,} is any orthonormal
sequence in 3%, then ||Te,|| = 0. Is the converse true?
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7, If T is compact and # is an invariant subspace for T, show that 7|4 is

compact.
§, fh,gest, define T: #— HbyTf = (f,h) g Showthat T has rank 1 [that
is, dim(ran T) = 1]. Moreover, every rank | operator can be so represented.

Show that if T is a finite-rank operator, then there are orthonormal vectors
e,,...,e, and vectors g,..., g, such that Th =%"_,(k,e ) g, forall & in 5.
In this case show that T is normal if and only if g, =X e, for some scalars
Ar,...» A, Find o,(7T).

9, Show that a diagonalizable operator is normal.

10. Verify the statements in Example 4.10.

11, Verify the statement in Example 4.11.

12. Verify the statement in Example 4.12. (Note that the operator K in this example
is diagonalizable.)

13. T, € B(#,), n >1,withsup,|iT,|| <ccand T = @7 T, on #=D" ¥,

n=1%n

show that T is compact if and only if each 7, is compact and ||7,]|— 0.

§5*. The Diagonalization of Compact
Self-Adjoint Operators

This section and the remaining ones in this chapter may be omitted if the
reader intends to continue through to the end of this book, as the material
in these sections (save for Section 6) will be obtained in greater generality in
Chapter IX. It is worthwhile, however, to examine this material even if
Chapter IX is to be read, since the intuition provided by this special case is
valuable.

The main result of this section is the following.

5.1, Theorem. If T is a compact self-adjoint operator on H,{A,A,, - . .}
are the distinct nonzero eigenvalues of T, and P, is the projection of F onto
ker(T — A,), then PP, =P, P, =0ifn# m, each A, is real, and

52 T = ZAnPa

where the series converges to T in the metric defined by the norm of #(H#).
[Of course, (5.2) may be only a finite sum.]

The proof of Theorem 5.1 requires a few preliminary results. Before
beginning this process, let S look at a few consequences.
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5.3. Corollary. With the notation of (5.1):

(a) kerT=[V{P,#:n=1}]*=(ranT)*;
(b) each P, has finite rank;
(c) IT|| = sup{|A,l: 21} and A, = 0 us n = .

Proor. Since P,LP, for n # m, if h €3¢, then (5.2) implies (| Th|? =
T2, PA|1? = £, |A,12IP, A% Hence Th = 0 if and only if P, h =0 for
all n. That is, h € ker T if and only if 2 L P,5# for all n, whence (a).

Part (b) follows by Proposition 4.13.

For part (¢), if &= cl[ran TJ, & is invariant for T. Since T = T%,
F= (ker T) * and ¥ reduces T' So we can consider the restriction of T to
L, T|¥. Now £= V{ P,#:n>1} by (a). Let {e(":1 <j<N,} be a
basis for P, #'= ker(T — A,), so Te{” =\,e{™ for 1 <j<N,. Thus {e/™:
1<j<N, n>1}is a basis for & and T)-¥ is diagonalizable with respect
to this basis. Part (c) now follows by (4.6). [ |

The proof of (c) in the preceding corollary revealed an interesting fact
that deserves a statement of its own.

54. Corollary. If T is a compact self-adjoint operator, then there is a
sequence {{t,} of real numbers and an orthonormal basis fe,} for (ker T) *
such that for all h,

0
Th = Zp‘n<h’en>en‘

n=1

Note that there may be repetitions in the sequence {p,} in (5.4). How
many repetitions?

5.5. Corollary. If T € By(#), T=T*, and ker T = (0), then # is

separable.

Also note that by (4.6), if (5.2) holds, T € Zy().
To begin the proof of Theorem 5.1, we prove a few results about not
necessarily compact operators.

5.6. Proposition. If A is a normal operator and A€, then ker( A —A) =
ker( A —A)* and ker( A — M) is a reducing subspace for A.

ProoF. Since A is normal, so is A —A. Hence [|[(A—A)A| = ||[(A—A)*h|
(2.16). Thus ker(A — A) = ker( A —A)Y*.If h € ker(A —A), Ah = Ah €
ker(A — X). Also A*h = Ah& ker( A — A). Therefore ker(A —A) reduces
A =

5.7. Proposition. If A is a normal operator and A, p are distinct eigenvalues
of A, then ker(A —A) L ker(A —p).
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ProoF. If heker(4—A) and g €ker(4—p), then the fact (5.6) that
A*g = fig implies that A(h, g) = (Ah, g)=<h, A*g)y=<(h.pg) =
p(h, g). Thus (A—p)(h,g)=0. Since A—pn+#0,hlg g

5.8. Proposition. If A = A* and AE€o,( A), then A is a real number.

Proor. If Ah = Ah, then Ah = A*h = 7\_h by (5.6). So (A — A)h = 0. Since
h can be chosen different from 0, A = A. [ |

The main result prior to entering the proof of Theorem 5.1 is to show that
a compact self-adjoint operator has nonzero eigenvalues. If (5.3c) is ex-
amined, we see that there is a A, in 6,(T) with |A,|=]||T]|. Since the
preceding proposition says that A,€R,’it must be that A, = 4| T||. That
is, either x||T||€0,(T). This is the key to showing that u,(T) is nonvoid.

5.9. Lemma. Zf T is a compact self-adjoint operator, then either +||T|| is an
eigenvalue of T.

Proor. If T = 0, the result is clear. So suppose T # 0. By Proposition 2.13
there is a sequence {h,} of unit vectors such that |[(Th , h, > —|T|. By
passing to a subsequence if necessary, we may assume that (7h,, h) —A,
where |A|=]|T||. It will be show that A€ u(T). Since |A|=||T], 0 <
(T — MNyh 1> = |Th,|I> — 2X(Th,, h,) + N <2X—2X(Th,, h,) = 0.
Hence |(T —A)h,||— 0. By (414),A €0, (T). ]

ProoF oF THEOREM 5.1. By Lemma 5.9 there is a real number A, in u,(7)
with |A;|=||T)|. Let &; = ker(T — A,), P, = the projection onto &, 5%, =
& . By (5.6) &, reduces T, so 5, reduces T. Let T, = T|#,; then T, is a
self-adjoint compact operator on 5%;,. (Why?)

By (5.9) there is an eigenvalue A, for T, such that |A,| =[|T5|]. Let
&, =ker(T,— A). It is easy to check that &, = ker(T —A,) and s0 A, #A,.
Let P, = the projection of ¢ onto &, and put & = (&,® &) 4. Note
that ||TL|| <|ITl so that |A,l <|A)

Using induction (give the details) we obtain a sequence {A,} of real
eigenvalues of 7 such that

O A=A =z -
(i) If &, = ker(T —A,), A, =TS, & --&8,) 7.

By (i) there is a nonnegative number « such that |A,|— a.
Claim. « = 0; that is, lim A, = 0.

In fact, let e,€8,,|le,|l = 1. Since T is compact, there is an h in S# and
a subsequence {e,,} such that || Te, —h||— 0. But e, Le, for n # m and
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Te, = A,e,. Hence ||Te, —Te,||> = X5, + A3, >2a% Since {Te,,} is a
Cauchy séquence, a=0. ’

Now put P, = the projection of ¢ onto &, and examine T —X7_;AP.
Ifheé,, 1 <k <n, then (T =X%_ A, P)h=Th —Ah= 0. Hence &
® - 88,C ker(T —~LI_\,P).IThE(& - &&)", then P,h = 0
for 1 <j<n;so(T —X_1A;P)h = Th. These two statements, together
with the fact that (&, ®---@6,)* reduces T, imply that

=|TI(& @ --- ®&,)" ||

T- % AP
j=1

= 'An+l| - 0
Therefore the series L_;A, P, converges in the metric of #(H#)to T. u

Theorem 5.1 is called the Spectral Theorem for compact self-adjoint
operators. Using it, one can answer virtually every question about compact
hermitian operators, as will be seen before the end of this chapter.

If in Theorem 5.1 it is assumed that T is normal and compact, then the
same conclusion, except for the statement that each A, is real, is true
provided that ¥ is a C-Hilbert space. The proof of this will be given in
Section 7.

EXERCISES
1. Prove Corollary 5.4.
2. Prove Corollary 5.5

3. Let K and % be as in Proposition 4.7 and suppose that k( x, y) = k( y, x). Show
that K is self-adjoint and if {p,) are the eigenvalues of K, each repeated
dim( K —p,,) times, then |, [*< cc.

4, If T is a compact self-adjoint operator and {e,} and { u,} are as in (5.4) and if A
is a given vector in 5, show that there is a vector I in S# such that Tf = A if
and only if A LkerT and ¥, u;%[(h,e,)? < co. Find the form of the general
vector f such that Tf = .

5. Let T, {p,}, and {e,} be as in (5.4). If A+ 0 and A # p_ for any p,, then for
every hin 5 there is a unique fin # such that (T -A) f = h. Moreover,
f=AA+Z2 A (A—X,) h,e,)e,]. Interpret this when T is an integral
operator.

§6 *. An Application: Sturm-Liouville Systems

In this section, [a, b] will be a proper interval with —oo<a <b <oo.
Cla, b] denotes the continuous functions f:[a, b =R and for n> 1,
C|a, b] denotes those functions in C[a, bJ that have n continuous deriva-



11.6. An Application: Sturm-Liouville Systems 51

tives. C{"[a,b] denotes the corresponding spaces of complex-valued func-
tions. We want to consider the differential equation

6.1 —h + gh —Ah = f,

where A is a given complex number, ¢ €Cla, b], and f € L*{a, b], to-
gether with the boundary conditions

6o (@) ah(u) + a;h’(a) = 0
' (b) Bh(b) +&h (b) = 0’

where a, a;, 8, and B, are real numbers and a’+af>0, 82+ B> 0.

Equation (6.1) together with the boundary conditions (6.2) is called a
(regular) Sturm-Liouville system. Such systems arise in a number of physi-
cal problems, including the description of the motion of a vibrating string.
In this section we will discuss solutions of the Sturm-Liouville system by
relating the system to a certain compact self-adjoint integral operator.

Recall that an absolutely continuous function 4 on [a, b] has a derivative
ae. and h(x) = [FH(¢)dt + h(u) for all x.

Define

2,={heC®C[a,b]: h is absolutely continuous,
h €L?[a,b], and hsatisties (6.2a)}.

9, is defined similarly but each h in £, satisfies (6.2b) instead of (6.2a).
The space 2=2, N 2,.
Define L: @ — L?[a, b] by

6.3 Lh = —h" + gh.

L is called a Sturm-Liouville operator.

Note that £ is a linear space and L is a linear transformation. The
Sturm-Liouville problem thus becomes: if A€C andfeLz[a, b], is there
an h in @ with (L —A)h = f. Equivalently, for which A is fin ran( L — A)?

By placing a suitable norm on £, L can be made into a bounded
operator. This does not help much. The best procedure is to consider
(L —\)"!. Integration is the inverse of differentiation, and it turns out that
(L —A)~! (when we can define it) is an integral operator.

Begin by considering the case when A = 0. (Equivalently, replace g by
g— A.) To define L™ ! (even if only on its range), we need that L is
injective. Thus we make an assumption:

6.4 IfheP and Lh = 0, then h = 0.

The first lemma is from ordinary differential equations and says that
certain initial-value problems have nontrivial (nonzero) solutions.

6.5. Lemma. Zf a,a;,B,8,€R,a’* + ai> 0, and B? + BE> 0, then
there are functions h , h ,in 2,,9D,, respectively, such that I{ h,) = 0 and
L(h,)=0andh, h, are real-valued and not identically zero.
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The Wronskian of h, and h,, is the function
ha hb
hy,

Note that W = h,hy —hlh, = h,(gh,)—(gh,)h, = 0. Hence W(x) =
W(a) for all x.

W = det[ ]: h by — hh,.

6.6. Lemma. Assuming (6.4), W(a) # 0 and so h, and h, are linearly
independent.

Proor. If W(a) = 0, then linear algebra tells us that the column vectors in
the matrix used to define W(a) are lincarly dependent. Thus there is a A in
R such that A,(a) = Ah,(a) and hj(a)= Ah,(a). Thus h,€ D and L(h,)
= (0. By (6.4),h,=0, a contradiction. a

Put ¢ = W(a) and define g: [a, b] x [a, B> R by
67 (x.7) ¢t (x)h(y) fa<x<y<b

. g\x,y)=

c ' (y)h,(x) ifa<y<x<b

The function g is the Green function for L.

6.8. Lemma. The function g defined in (6.7) is real-valued, continuous, and
g(x,Y) = g(y, ).

Proor. Exercise.

6.9. Theorem. Assume (6.4). If g is the Green function for L defined in (6.7)
and G: L*[a, b] = L*[a, b] is the integral operator defined by

(@)(x) = [s(x. ) () .

then G is a compact self-adjoint operator,ranG = 2,LGf = f for all f in
L?[a,b], and GLh=h forall hin 2.

Proor. That G is self-adjoint follows from the fact that g is real-valued and
g(x,y) = g( y, x); G is compact by (4.7). Fix finL?[a, b] and put 2 = Gf.
It must be shown that & € 2.

Put

()= 10Ny et H() = [0 .
Then

h(x)

fabg(x,y)f(y)dy
c_l_/(;xha()’)hb(X)f()’)dy + c*l-/;bha(x)hb(y)f(y) dy.
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That is, h = H,h, + h, H,. Differentiating this equation gives A =
(¢ *h,fYh, + Hhy+h,H, + h,(—c *h,f)y = Hh), + h,Hyae. Since
H,h,+h',H, is absolutely continuous, as part of showing that & €D we
want to show the following.

Claim. h = H,h’,+h, H, everywhere.

Put ¢ = Hh,+h,H, and put ¥(x) = h(u) + [Fé(py)dy. So h and ¥
are absolutely continuous, A(w) = Y(a), and = ¢’ a.e. Thus A =
everywhere. But ¢ has a continuous derivative ¢, so h does too. That is, the
claim is proved.

Differentiating » = H,hj + h),H, gives that a.e, b = (¢ h f)h} +
Hhy + hH, + h'(—c 'h,f); since each of these summands belongs to
L*[a,b], h €L?a, b].

Because H,(a) = 0 and h,€2D,, ah(a) + a;h’(a) = ah (a)H,(a) +
ahi(aYH (a)=[ah,(a)+ ah/(a)]H,(a) = 0. Hence h €9,. Similarly,
h€D,. Thus h €2. Hence ranGC 2.

Now to show that LGf =f It h = Gf, L(W = -h + qgh =
—{c  h hyf + Hhy +hiH, — ¢ 'hih,f1+ q(Hh, + h H) = (—h} +
ghy))H, +(—h, + gh,YH, + ¢ "(h,h,—h,h})f = fsince L(h,) =
L(h,)=0and hlh,—h,h), = W = c.

If h €9, then Lh € L*[a, b]. So by the first part of the proof, LGLh =
Lh. Thus 0 = L(GLh — h). Since ker L = (0), h = GLh and so h €ranG.

[ ]

6.10. Corollary. Assume (6.4). Zfh €2,A €C, and Lh = Ah, then
Gh = A" 'h. Zf h € L?[a, b] and Gh = A" 'h, then h €D and Lh = Xh.

Proor. This is immediate from the theorem. [ ]

6.11. Lemma. Assume (6.4). Zf a€0,(G), then dim ker(G —a) = 1.

ProoF. Suppose there are linearly independent functions hj, h, in ker(G —
a). By (6.10) h;,h, are solutions of the equation

-k +(qg —a”Y)h =0
Since this is a second-order linear differential equation, every solution of it
must be a linear combination of h; and h,. But h),h, € D so they satisfy
(6.2). But a solution can be found to this equation satisfying any initial

conditions at u-and thus not satisfying (6.2). This contradiction shows
that linearly independent hy,k, in ker(G —a) cannot be found. ]

6.12. Theorem. Assume (6.4). Then there is a sequence {A;,A,,...} of real
numbers and a basis {e,e,,...}for L*[a, b] such that

(@ 0 <|A|<|A ) <--+ and A, — 0.
(b) e, €D and Le, = A e, for all n.
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© IfN# A, for any X, andf € L*[a, b], then there is a unique h in D with
Lh —Ah =+

(d) If A\ =\, for some n and f €L?[a, b], then there is an h in D with
Lh — Ah =fifandonly if (f,e,y = 0. If {f,e,) = 0, any two solutions
of Lh —Ah = f differ by a multiple of e,.

Proor. Parts (a) and (b) follow by Theorem 5.1, Corollary 6.10, and Lemma
6.11. For parts (¢) and (d), first note that

6.13 Lh —Ah=fif and only if A —AGh = Gf.

This is, in fact, astraightforward consequence of Theorem 6.9.

(¢) fA+#A, for any n, A\ "' 40 ,(G). Since G = G*, Corollary 4.15
implies G — A is bljectlve So if f€ L?a, b], there is a unique A in
L*[a,b] with Gf = (A= @h. Thus €2 and (6.13) implies L(h/A)—
A(h/A) = f.

(d) Suppose A=A, for some n If Lh —A h=Ff, then » —A ,Gh = Gf.
Hence (Gf.e,) = (h.e,)—A,(Gh.e,) = (h,e,)—A,(h.Ge,) = (h,e,)
=M N he) =0 S0 0= (Gf,e,)={(f,Ge,)=A{f e Hence fL
e,.

Since Ce, = ker(G —A; 1), [e,] * =4 reduces G. Let G, = G|4/". So G,
is a compact self-adjoint operator on A" and A, & 0,(G,). By (4.15),
ran(G,— A)) = A". As in the proof of (¢), if fLe,, there is a unique % in
A" such that Lh —A h=f Note that h + ae, is also a solution. If A, h,
are two solutions, h,—h,€ kel —A ), s0 h;—h,=ae,. [ |

What happens if kerL # (0)? In this case it is possible to find a real
number p such that ker(. —p) = (0) (Exercise 6). Replacing g by ¢ —p,
Theorem 6.12 now applies. More information on this problem can be found
in Exercises 2 through 5.

EXERCISES

1. Consider the Sturm-Liouville operator Lh=—h" with a =0, b = 1, and for
each of the following boundary conditions find the eigenvalues {A, }, the
eigenvectors {e,,}, and the Green function g(x,y): (a) h(0) = h(l) = 0; (b)
h(0)=h (1) =0; (¢) h(0) =0 and h (1) = 0; (d)A(0) = h (0) and h(1) = -h (I).

2. In Theorem 6.12 show that ¥, A, *<oo (see Exercise 5.3).
3. In  Theorem 6.12 show that h€ D if and only if he€ L*[a,b] and

_Nl(h, e, P <oo. If h€ D, show that h(x) = L2 (h,e,)e,(x), where
this series converges uniformly and absolutely on [a, b].

4, In Theorem 6.12(c), show that h(x) = L% (A, —A) (f.e,de,(x) and this
series converges uniformly and absolutely on [a, b].

5. In Theorem 6.12(d), show that if f_Lle, and Lh— A, h = f, then h(x) =
Yiea(A, — >\,,)71<f, eye (x) + ae,(x) for some a, where the series converges
uniformly and absolutely on [a, b].
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6. This exercise demonstrates how to handle the case in which ker L# (0). (a) If
h,geCW[a,b] with h, g absolutely continuous and h , g € L?[a,b], show
that

[[h7s — hg") = [W () 5(b) = h() g'(B)] ~[W(a) g(a) ~ h(a) g'(a)].

(b) If h, g € @, show that ( Lk, g) = (h, Lg). (The inner product is in L[ a, b].)
@ Ifhge2 and A\, peR, A #p, and if he€ker(L —A), g € ker(L ~—p),
then 2 L g. (d) Show that there is a real number p with ker( L —p) = (0).

§7*. The Spectral Theorem and Functional Calculus
for Compact Normal Operators

We begin by characterizing the operators that commute with a diagonaliz-
able operator. If one considers the definition of a diagonalizable operator
(4.6), it is possible to reformulate it in a way that is more tractable for the
present purpose and closer to the form of a compact self-adjoint operator
given in (5.2). Unlike (4.6), it will not be assumed that the underlying
Hilbert space is separable.

7.1. Proposition. Let {P,: i €1} be a family of pairwise orthogonal pro-
jections in B(H). (That is, PP,= PP, =0 fori+j)If h €#, then
L {Ph:i€I) converges in ¥ to Ph, where P is the projection of £ onto
V{ Ps#:iel}.

This appeared as Exercise 3.5 and its proof is left to the reader.

If {P:i€I} is as in the preceding proposition and ;= P,5#, then
with the notation of Definition 3.4, P is the projection of 5 onto @ ,.# .
Write P = X, P.. A word of caation here: Ph = ¥ P.h, where the conver-
gence is in the norm of 3#. However, ¥, P, does not converge to P in the
norm of Z(5¢). In fact, it never does unless I is finite (Exercise 1).

7.2. Definition. A partition of the identity on 5 is a family { P;:i € Z} of
pairwise orthogonal projections on  such that V,P,»¢= 5. This might be
indicated by 1=X,P,or 1 =@ P, [Note that 1 is often used to denote the
operator on S¥ defined by l(h) = h for all h. Similarly if a€F,a is the
operator defined by a(h) = ah for all h.]

7.3. Definition. An operator A on 5¥ is diagonalizable if there is a
partition of the identity on 3#, {P,: i€ I}, and a family of scalars {a;
i € I} such that sup;e|<oo and Ah = a;h whenever h € ran P,

It is easy to see that this is equivalent to the definition given in (4.6) when
H# is separable (Exercise 2). Also, ||4]|| = sup,je,]|.
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To denote a diagonalizable operator satisfying the conditions of (7.3),
write

A=Y aP, or A= ®,aP,.

Note that it was not assumed that the scalars «, in (7.3) are distinct.
There is no loss in generality in assuming this, however. In fact, if a; =a),
then we can replace P; and P, with P, + P,

7.4. Proposition. An operator A on 3 is diagonalizable if and only if there
is an orthonormal basis for 3 consisting of eigenvectors for A.

Proor. Exercise.

Also note that if A = ®,a,P;, then A* = @,a,P, and A is normal
(Exercise 5).

7.5. Theorem. IfA = ®,a; P, is diagonalizable and all the a, are distinct,
then an operator B in B() satisfies AB = BA if and only if for each i,
ran P, reduces B.

1

Proovr. If all the a; are distinct, then ran P, = ker(A — a,). If AB = BA
and Ah = a;h, then ABh = BAh = B(a;h) = a;Bh; hence Bh € ran P,
whenever A € ran P,. Thus ran P, is left invariant by B. Therefore B leaves
V{ran P,: j +# i} = A invariant. But since ®,P,= 1, A} = (ran P,)
Thus ran P; reduces B.

Now assume that B is reduced by each ran P, Thus BP, = P,B for all i.
If h €5, then Ah = ¥X,a;P;h. Hence BAh = ¥.a,BPh = ¥,a,PBh = ABh.

(Why is the first equality valid?) [ ]

Using the notation of the preceding theorem, if AB = BA, let B, =
Blran P,. Then it is appropriate to write B = @, B, on #=® (P,s#). One
might paraphrase Theorem 7.5 by saying that B commutes with a diagonal-
izable operator if and only if B can be diagonalized with operator entries.”

7.6. Spectral Theorem for Compact Normal Operators. If T is a compact
normal operator on the complex Hilbert space #,{Ay, A,, ...} are the
distinct nonzero eigenvalues of T, and P, is the projection of # onto
ker(T —A,), then PP, =P, P, =0ifn+ m and

o0
7.7 T= Y AP,

n=1
where this series converges to T in the metric defined by the norm on B( ).

Proovr. Let A = (T + T*)/2, B = (T —T*)/2i. So A, B are compact
self-adjoint operators, 7= A + iB, and AB = BA since T is normal. The
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idea of the proof is rather simple. We |1 get started in this proof together but
the reader will have to complete the details.

By Theorem 5.1, A = E{a, E,, where a,€R,a,#a,, if n+m, and E,
is the projection of 2 onto ker(A —a,). Since AB = BA, the idea is to
use Theorem 7.5 and Theorem 5.1 applied to B to diagonalize A and B
simultaneously; that is, to find an orthonormal basis for S consisting of
vectors that are simultancously eigenvectors of A and B.

Since BA = AB, E, #= %, reduces B for every n (7.5). Let B, = B|%,;
then B, = B¥ and dim %, <oo. Applying (5.1) to B, (or, rather, the
corresponding theorem from lincar algebra) there is a basis { e}"): 1<j<
d,} for £, and real numbers { B{:1 < j<d,} such that B,e(™ = B(Me(™.
Thus Te{” = Ae(™ + iBe(™ = (a, + iB{”)e(™.

Therefore {e{™:1<j<d,, nx1}is a basis for cl(ran A) consisting of
eigenvectors for 7. It may be that cl(ran A) # cl(ran T). Since B is reduced
by ker4 = (ran 4)* and B, = Blkerd is a compact self-adjoint operator,
there is an orthonormal basis {e}o): Jj =1} for cl(ran B,) and scalars {,Bj(o):
j =1} such that Be!” = BPe®.1t follows that Te® = iB@e®. Morcover,
ker T Cker A Nker B, so cl(ran T) C cl(ran A) @ cl(ran B).

The remainder of the proof now consists in a certain amount of book-
keeping to gather together the eigenvectors belonging to the same eigenval-
ues of T and the performing of some light housekeeping chores to obtain
the convergence of the series (7.7) a

7.8.  Corollary. With the notation of (7.6):

(@ ker T = [V{ P, #:n=1}]";
(b) each P, has finite rank;
(c) |IT)| = sup{ |A\,|:n=1} and A, — O us n— co.

The proof of (7.8) is similar to the proof of (5.3).

7.9.  Corollary. If T is a compact operator, then T is normal if and only if T
is diagonalizable.

If T is a normal operator which is not necessarily compact, there is a
spectral theorem for 7" which has a somewhat different form. This theorem
states that 7 can be represented as an integral with respect to a measure
whose values are not numbers but projections on a Hilbert space. Theorem
7.6 will be a consequence of this more general theorem and correspond to
the case in which this projection valued measure is atomic.”

The approach to this more general spectral theorem will be to develop a
functional calculus for normal operators 7. That is, an operator ¢(7) will
be defined for every bounded Borel function ¢ on € and certain properties
of the map ¢ = ¢(T) will be deduced. The projection valued measure will
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then be obtained by letting p(A) = x4(T). These matters are taken up in
Chapter IX.

At this point, Theorem 7.6 will be used to develop a functional calculus
for compact normal operators. For the remainder of this section € is a
complex Hilbert space.

7.10. Definition. Denote by /*°(C) all the bounded functions ¢:C —C.If
T is a compact normal operator satisfying (7.7), define ¢(T'): #— H# by

e e]
¢(T) = X ¢(X,)P, + ¢(0) P,
n=1
where P, = the projection of 5# onto ker 7.

Note that ¢(T) is a diagonalizable operator and [[¢(T)| =
sup{|¢(0)], ¢(Ay)], ...} (4.6). Much more can be said.

7.11. Functional Calculus for Compact Normal Operators. If T is a compact
normal operator on a C-Hilbert space #, then the map ¢— ¢(T) of
12(C)—> B( ) has the following properties:

(a) o= o(T) is a multiplicative linear map of 1°(C) into B(X).If p= 1,
$(T) = 1; if (z) = 2, then &(T) = T.

®) l6(T)ll = sup{|$(M)]: A € 0,(T)}.

(€) ¢(T)* = ¢*(T), where ¢* is the function defined by ¢*(z) = ¢(z).

(d) Zf A € B(H) and AT = TA, then AS(T) = ¢(T)A for all ¢ in | (C).

Proor. Adopt the notation of Theorem 7.6 and (7.10).

(a) If ¢,y €I°(C), then (PP)(2) = ¢(2)¢Y(z) for z in C. Also,
$(T)Y(T)k = [6(0)Py + Ed(A)PIV(O) Py 4 ZY(N,)P, Ik = [$(O0) Py +
Y. 0A NP Ny O Poh+ X, Y(A,)P, k] Since P, P, = 0 when n # m, this
gives that S(TW(T)A = OWO)Pok + Z,6(A )W (A, )P,h = ($¥)(T)h.
Thus ¢ — ¢(T) is multiplicative. The linearity of the map is left to the
reader. If ¢(z)= 1, then (P(T) = UT) = P,+X%_,P,=1 since
{ Py, Py,...} is a partition of the identity. If ¢(z) =1z, ¢(A,) =], and so
o(T)=T.

Parts (b) and (c) follow from Exercise 5.

(d) If AT = TA, Theorem 7.5 implies that Py, P5#,... all reduce A.
Fix h,in P,o#,n>0.1f ¢ [ (C), then Ah, € P, and so ¢(T)A4h, =
¢(A ) Ah, = A(d(A)h,) = AP(TYh,. It h € H#, then h = L2 Ak, where
h,, €P,. Hence ¢(T)Ah = 2 (T)Ah, = L7 Ap(THYh, = Ap(T)Hh.
(Justity the first equality.) L]

Which operators on 3¢ can be expressed as ¢(7T) for some ¢ in [<(C)?
Part (d) of the preceding theorem provides the answer.
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7.12.  Theorem. zf T is a compact normal operator on a C-Hilbert space,
then {$(T): ¢ €1°(C)} is equal to

{B € B(H#): BA = AB whenever AT = TA)j.

Proor. Half of the desired equality is obtained from (7.11d). So let
Be () and assume that BA = AB whenever AT = TA. Thus, B must
commute with T itself. By (7.5), B is reduced by each P, #=¢,n= 0;
put B, = B})Z,. Fix n> 0 for the moment and let A, be any bounded
operator in Z(#,). Define Ah = Ahit heH, and Ah = 0 if h € £,
m # n, and extend A to X by linearity; so A = ®._ A4, where A, = 0 if
m # n. By (7.5), AT = TA; hence BA = AB. This implies that B, A4, =
A,B,. Since A,, was arbitrarily chosen from #(3f,), B, = B, for some B,
(Exercise 7). If ¢:C—C is defined by ¢(0) = 8, and ¢(A,) = B, for
nx= 1, then B = ¢(T). n

7.13.  Definition. If A € (), then A is positive if (Ah, h) = 0 for all h
in . In symbols this is denoted by A > 0.

Note that by Proposition 2.12 every positive operator is self-adjoint.

7.14. Proposition. zf T is a compact normal operator, then T is positive if
and only if all its eigenvalues are positive real numbers.

Proor Let T = LA, P If T > 0 and h € P,5# with ||k = 1, then
Th = X,h. Hence A, = (Th, h) > 0. Conversely, assume each A, > 0. If
heX#, h = hy + L3.1h,, where hoekerT and A, € P # for n> 1.
Then Th = XAk, Hence (Th, h) = (5 A b ho+E5_1h,) =
B0 N (s ) = BN NIRL)IP 2 0 since (b, h) = 0 when n# m.

[ ]

7.15. Theorem. Zf T is a compact self-adjoint operator, then there are unique
positive compact operators A, B such that T = A — B and AB = BA = 0.

PROOF. Let 7 = L2 A P, as in (7.6). Define ¢,y:C—C by ¢(A,) =],
it A, >0, ¢(z) = 0 otherwise; $(A,) = —A, if A, <0, ¥(z) = 0 other-
wise. Put A = ¢(T) and B = Y(T). Then A = L{A,P,:A,> 0} and
B=Y{-A,P,:\,<0}. Thus T=A-B. Since ¢4 =0, AB=BA=0
by (7.11a). Since ¢,y > 0, A, B > 0 by the preceding proposition. It
remains to show that A, B are unique.

Suppose T = C — D where C, D are compact positive operators and
CD = DC = 0. It is easy to check that C and D commute with 7. Put
Ao = 0 and P, = the projection of 5% onto ker 7. Thus C and D are
reduced by P o= ¢, for all n = 0. Let C,= C|5#, and D, = D|¥#,. So
¢,D,=DC, =0 AP, =T\5#,=C,—D,, and C,, D, are positive. Sup-
pose A, > 0 and let h € 5. Since C,D, = 0, kerC,2 cl[ran D,] =
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(kerD,)*. So if ke (kerD,)*, then X,k = —D,h. Hence A Jh|* =
—{Dh, h) <0. Thus h = 0 since A, > 0. That is, ker D, = 5#,. Thus
D, =0 = B|#, and C, = A\,P, = A|#, Similarly, if \,<0,C, =0 =
A|#, and D, = —A P, = B|5¥,. On #,T|#, =0 = Cy— D,. Thus C,
=D, But 0 = C,D, = C} Thus 0 = (C¢h, h) = ||Coh||%, 50 Cy = 0 =
A\, and D, = 0 = B|5#,. Thereforce C = A and D = B. ]

Positive operators are analogous to positive numbers. With this in mind,
the next result seems reasonable.

7.16. Theorem. If T is a positive compact operator, then there is a unique
positive compact operator A such that A*=T.

PrOOF. Let 7= £2_,A, P, as in the Spectral Theorem. Since 7> 0, A, >0
for all n (7. 14) Let ¢(A,) = A/% and ¢(z) = O otherwise; put A = ¢(T).
It is easy to check that A>0; A = EN/2P, 5o that A is compact; and
A’ =T

The proof of uniqueness is left to the reader. n

EXERCISES

1. If{ P,} is a sequence of pairwise orthogonal nonzero projections and P =1XP,,
show that ||}P—X_; Pl =1 for all a.

2. If ) is separable, show that the definitions of a diagonalizable operator in (4.6)
and (7.3) are equivalent.

3.If A = La; P, as in (7.3), show that A is compact if and only if: (a) a, = 0 for
all but a countable number of i; (b) P, has finite rank whenever «,# 0; (c) if
{ay,2,,...} ={a,:a;# 0}, then a, > 0 as n~ co.

4. Prove Proposition 7.4.

5 A = ® P, show that A* = & &P, Ais normal, and ((A(( = sup{|a:
ie i)

6. Give the remaining details in the proof of (7.6).

7.1t A € B(H) and AT = TA for every compact operator T, show that A is a
multiple of the identity operator.

8. Suppose T is a compact normal operator on a C-Hilbert space such that
dim ker( T —A)< 1 for all A in C. Show that if A € #(#) and AT = TA,
then A = ¢(7) for some ¢ in /*(C).

9. Prove a converse to Exercise 8: if 7T is a compact normal operator such that
(A € B(H#):. AT = TA} = {$(T): ¢ €!*(C)}, then dimker(T ~ A) < | for
all A in C.

10. Let T be a compact normal operator and show that ker(T —A)< 1 for all A in
C if and only if there is a vector h in S such that { p(T)h:p is a polynomial
in one variable} is dense in #. (Such a vector h is called a cyclic vector for T.)
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11. If AeC, let 8, be the unit point mass at A; that is, 8, is the measure on C
such that 8,(A)=1if A€ A and §,(A)=0if A& A. If {A,A,,...} are
distinct complex numbers and {a,} is a sequence of real numbers with @, > 0
and ¥,a, <00, let p = X377 1a,8, ; so p is a finite measure. If ¢ &€/°(C), let
M, be the multiplication operator on L2(p). Define T:L*(p)— L*(p) by
(Tf)()\ Y=A,f(A,). Prove: (a) T is a normal operator; (b) T has a cyclic
vector (see Exercise 10); (¢) if A € B(H) and AT = TA, then A = M, for
some ¢ in /®(C); (d) T is compact if and only if A,— 0. (¢) Find all of the
cyclic vectors for 7. (f) If T is compact, find the decomposition (7.7) for T.

12. Using the notation of Theorem 7.11, give necessary and sufficient conditions on
T and ¢ that (p(T) be compact. (Hint: consider separately the cases where ker T
is finite or infinite dimensional.)

13. Prove the uniqueness part of Theorem 7.16.
14. If T € B(3¥), show that T*T > 0.

15. Let T be a compact normal operator and show that there is a compact positive
operator A and a unitary operator U such that 7 = U4 = AU. Discuss the
uniqueness of A and U.

16. (Polar decomposition of compact operators.) Let T € B, () and let A be the
unique positive square root of T*T [(7.16) and Exercise 14]. (a) Show that
|lAh|| = ||Th|| for all Ain . (b) Show that there is a unique operator U such
that ||Uh|| =|(k]| when hL ker T,Uh =0 when h€ ker T, and UA = T. (c) If
U and A are as in (a) and (b), show that T = AU if and only if 7 is normal.

17. Prove the following uniqueness statement for the functional calculus (7.11). If T
is a compact normal operator on a C-Hilbert space S and 7:/%(C)— Z(¢)
is a multiplicative linear map such that ||v(¢)|l = sup{|¢(M)|:A€0,(T)},
7({) =1, and 7(z) =T, then 7(¢) - ¢(T) for every ¢ in [*(C).

§8*. Unitary Equivalence for Compact
Normal Operators

In Section LS5 the concept of an isomorphism between Hilbert spaces was
defined as the natural equivalence relation on Hilbert spaces. This equiv-
alence relation between the spaces induces a natural equivalence relation
between the operators on the spaces.

8.l. Definition. If A, B are bounded operators on Hilbert spaces 3,
then A and B are unitarily equivalent if there is an isomorphism U: #—
such that UAU ™! = B. In symbols this is denoted by A = B.

Some of the elementary properties of unitary equivalence are contained in
Exercises 1 and 2. Note that if UAU ! = B, then UA = BU.
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The purpose of this section is to give necessary and sufficient conditions
that two compact normal operators are unitarily equivalent. Later, in
Section 1X.10, necessary and sufficient conditions that any two normal
operators be unitarily equivalent are given and the results of this section are
subsumed by those of that section.

8.2. Definition. If T is a compact operator, the multiplicity function for T
is the function m;:C - C U {0} defined by m,(X) = dimker(T — X).

Hence my(A)= 0 for all A and m,(h) >0 if and only if A is an
eigenvalue for T. Note that by Proposition 4.13, m,(A) <cecif A# 0.

If T,S are compact operators on Hilbert spaces and U:3¥— X is an
isomorphism with UTU ! =S, then U ker(T —A) = ker(S —A) for every
A in C. In fact, if Th = Ak, then SUh = UTh = AUh and so Uh €
ker(S — X). Conversely, if k €ker(S— A) and h = U™ 'k, then Th =
TU 'k =U 'Sk = Ah. In particular, it must be that m, = m,. If § and T
are normal, this condition is also sufficient for unitary equivalence.

8.3. Theorem. Two compact normal operators are unitarily equivalent if and
only if they have the same multiplicity function.

Proor. Let T,S be compact normal operators on Hilbert spaces 3¢, % . If
T =8, then it has already been shown that m, = m, Suppose now that
my = m, We must manufacture a unitary operator U:3#— ¢ such that
UTU ! = s.

Let 7 =X AP, and let S =%X7_,p,0, as in the Spectral Theorem
(7.6). So if n+# m, then A, # A, and p, # pn,,, and each of the projections
P, and Q, has finite rank. Let Py, Q, be the projections of 5, onto
ker T,kerS; so Py = (ZFP,)* and Qy = (£7°Q,)*. Put Ay = py = 0.

Since my =mg, 0 <mp(X,) = mg(A,). Hence there is a unique g; such
that p, = A,. Define m:N—>N by letting p,.,, =A,. Let #(0) = 0. Note
that 7 is one-to-one. Also, since 0 <mg(p,)=ms(p,), for every n there is
a j such that a(j) = n. Thus mN U {0} >N U {0} is a bijection or
permutation. Since dim P, =mz(A,)=mg(p,,) =dimQ_,, there is an
isomorphism U,: P, — Q (KX for n > 0. Define U: #— X" by letting
U=U,on P> and extending by linearity. Hence U =@ U,. It is easy
to check that U is an isomorphism. Also, if # € P3¢, n >0, then UTh =
AUk — p,,,Uh = SUR. Hence UTU ' =S. ®

If V is the Volterra operator, then m, =0 (4.11) and V and the zero
operator are definitely not unitarily equivalent, so the preceding theorem
only applies to compact normal operators. There are no known necessary
and sufficient conditions for two arbitrary compact operators to be unitarily
equivalent. In fact, there are no known necessray and sufficient conditions
that two arbitrary operators on a finite-dimensional space be unitarily
equivalent.
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EXERCISES

L.
2.

10.

12.

Show that Unitary equivalence is an equivalence relation on Z(%¢).

Let U: 5 — A" be an isomorphism and define p: B(#)— B(H) by p(A) =
UAU™!. Prove: (a) |ip(A)|| = ||4]l, p(A*) = p(A)% and p is an isomorphism
between the two algebras () and B(X). (b) p(A) € X, (X) if and only if
A € By (). (c) If T € B(HK), then AT= TA if and only if p(T)p(A4) =
p(A) p(T). (d) If A €B(¥) and A <, then A is invariant (reducing) for
A if and only if UA is invariant (reducing) for p(A).

. Say that an operator A on ¥ is irreducible if the only reducing subspaces for A

are (0) and 3. Prove: (a) The Volterra operator is irreducible. (b) The unilateral
shift is irreducible.

. Suppose A = D{A:i€l}and B=@®(B,:i€Z} where each 4, and B, is

irreducible (Exercise 3). Show that A =B if and only if there is a bijection

7:7Z — 7 such that A, EB,",(,).

. If T is a compact normal operator and my; =m is its multiplicity function,

prove: (a) {A: m(X) > 0} is countable and 0O is its only possible cluster point;
(b) m(X) <oo if A# 0. Show that if m: C—>Nu {0,000} is any function
satisfying (a) and (b), then there is a compact normal operator 7T such that
my=m,

. Show that two projections P and Q are unitarily equivalent if and only if

dim(ran P) = dim(ran Q) and dim(kerP) = dim(ker Q).

. Let A : L*(0,1)-> 12(0,1) be defined by (Af)( x) = x/{x) for fin L?(0,1) and

x in (0,1). Show that A = A%,

. Say that a compact normal operator 7 is simple if my < 1. (See Exercises 7.10

and 7.11.) Show that every compact normal operator 7 on a separable Hilbert
space is unitarily equivalent to @:‘;17;,, where each T, is a simple compact
normal operator and my>my  for all n. Show that ||T,||— 0. (Of course,
there may only be a finite number of T,.)

. Using the notation of Exercise 8, suppose also that § is a compact normal

operator and SEQB:LIS,,, where S, is a simple compact normal operator and
mg > mg  for all n. Show that T'=§ if and only if 7, =S, for all n.

If T'is a compact normal operator on a separable Hilbert space, show that there
are simple compact normal operators T;,7,,.. such that 7 = OGBTIGBTZ(Z)GB
T3(3) @ - - -, where: (a) for any operator A, A=A --®A (n times); (b) 0
is the zero operator on an infinite-dimensional space; (c) for n#k mymy =0;
and (d) if ker 7 is infinite dimensional, then ker 7, = (0) for all n. (Of course
not all of the summands need be present.) Show that (|7, |— O.

. Using the notation of Exercise 10, let § be a compact normal operator and let

005 ®SP®-- be the corresponding decomposition. Show that T = § if
and only if 7, =S, and ker T and kerS have the same dimension.

If Tis a compact normal operator, show that 7 and 7 & T are not unitarily
equivalent.
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13. Give an example of a nontrivial operator T suchthat T = T & T. Show that if

T=T® T, thenT =T& T & Characterize the diagonalizable normal
operators T suchthat T = T & T.

14. Let 3 be the space defined in Example 1.1.8 and let U:#¥— L2(0, 1) be the

isomorphism defined by Uf = f (Exercise 1.1.4). If (Af)(x) = zf(x) for fin
', what isUA U7



CHAPTER III

Banach Spaces

The concept of a Banach space is a generalization of Hilbert space. A
Banach space assumes that there is a norm on the space relative to which
the space is complete, but it is not assumed that the norm is defined in terms
of an inner product. There are many examples of Banach spaces that are not
Hilbert spaces, so that the generalization is quite useful.

§1. Elementary Properties and Examples

1.1. Definition. If & is a vector space over F, a seminorm is a function
p: &— [0, oo) having the properties:

() p(x+ y)< p(x) + p(y) for all x, yin Z.
(b) p(ax)=]a|p(x) for all @ in F and x in Z.

It follows from (b) that p(0) = 0. A norm is a seminorm p such that

(©) x =0 if pix) = 0.

Usually a norm is denoted by ||-||
The norm on a Hilbert space is a norm. Also, the norm on #(5)is a
norm.

If & has a norm, then d(x,y)=|x— y|| defines a metric on Z.

1.2. Definition. A normed space is a pair (Z,||-||), where Z is a vector
space and ||-|| is a norm on &. A Banach space is a normed space that is
complete with respect to the metric defined by the norm.
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1.3.  Proposition. If & is a normed space, then

(a) the function 1IxZ > % defined by (x, y) — x+ y is continuous;
(b) the function F X% — % defined by (a, x) — ax is continuous.

Proor If x, = x and y,— vy, then |I(x, + y,) — x + Y =1(x,— %) +
v, = =lx, = x|l + 1y, — yll 2 0as n—>cc. This proves (a). The
proof of (b) is left to the reader. n

The next lemma is quite useful.

1.4. Lemma. If p and g are seminorms on a vector space X, then the
following statements are equivalent.

(@) p(x) < q(x) for all x. (That is, p < ¢.)

(b) {x € X:gq(x) <1) C {xeX: p(x) <1}.
(b ) p(x) <1 whenever g(x) < 1.

(© {x: q(x) £1}C {x: p(x) <1}.

(¢ ) p(x) <1 whenever g(x) < 1.

(d) {x: q(x) <1}C {x: p(x) <1}.

(d ) p(x) < I whenever g(x) < 1.

Proor It is clear that (b) and (b ), (c) and (c ), and (d) and (d ) are
equivalent. It is also clear that (a) implies all of the remaining conditions
and that (b) implies (d). It will be shown that (d) implies (a). The proof that
(c) implies (a) is left as an exercise.

Assume that (d) holds and put g(x) = a.If &> 0, then g((a + &) Ix) =
(a + &) la< 1. By (d), 1 > p((a+e&) %)= (a+e) 'p(x), so p(x) <a
+ & = q(x) + & Letting e > 0 shows (a). |

If||-|l; and |}- ]|, are two norms on &, they are said to be equivalent
norms if they define the same topology on X.

1.5. Proposition. If||-||; and |||, are two norms on &, then these norms

are equivalent if and only if there are positive constants ¢ and C such that
clixlly < lxfl, < Clixily

for all x in X.

Proor. Suppose there are constants ¢ and C such that c||x]|, <||x||, <
C|lxf|; for all x in X. Fix x, in X, e> 0. Then

{x € x:|lx = xoll, < E/C} € {x € x: x = xoll, <},
{x € x: [lx=xgl, < CE} C {x € x: ||lx = xll; < E}.

This shows that the two topologies are the same. Now assume that the two
norms are equivalent. Hence {x: ||x||, <1} is an open neighborhood of 0 in
the topology defined by ||||,. Therefore there is an r > 0 such that {x:
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Ixll; < ry € {x:llxlly <1} I q(x) = r™Yix|l, and p(x) = [|x|l;, the pre-
ceding lemma implies ||x||; <7 Y|x||, or cf|lx]|; <||x||,, where ¢ = r. The
other inequality is left to the reader. L]

There are two types of properties of a Banach space: those that are
topological and those that are metric. The metric properties depend on the
precise norm; the topological ones depend only on the equivalence class of
norms (see Exercise 4).

1.6. Example. Let X be any Hausdorff space (all spaces in this book are
assumed to be Hausdorff unless the contrary is specified) and let C,(X) = all
continuous functions f: X —[F such that ||f]|= sup{ |f(x)|: x € X} < co.
For f, g in C(X), define (f + g): X =Fby (f+ 2(x) = {(x) + g(x);
for a in F define (af }(x)=af(x). Then C,(X) is a Banach space.

The proofs of the statements in (1.6) are all routine except, perhaps, for
the fact that C,(X) is complete. To see this, let { f,} be a Cauchy sequence
in C(X). So if €> 0, there is an integer N, such that for n, m > N,
e>||f, — f.ll = sup{|f,(x)— f.(x)|: X € X}. In particular, for any x in
X £ (x) = . <Hf, — fall <€ when n,m = N,. So {f,(x)} is a Cauchy
sequence in F. Let f(x) = limf,(x)ifx € X. Now fix x in X. If n, m =N,
then [£(x) = £,(0)| < 1f(xX) = £u (Ol + W = Sl <IF(X) = fu(] + .
Letting m — oo gives that If(x) — f,(x)| <& when n> N,. This is indepen-
dent of x. Hence ||f — f,||<e for n=N,.

What has been just shown is that ||f — f,|| = O as n—>o0. Note that this
implies that f,(x) — f(x) uniformly on X. It is standard that f is continu-
ous. Also, Ifll <|If = full + If,ll < co0. Hence f&€ C(X) and so C,(X) is
complete.

Note that a linear subspace % of a Banach space £ that is topologically
closed is also a Banach space if it has the norm of %.

1.7.  Proposition. Zf X is a locally compact space and C(X) = all continuous
functions f: X —F such that for all e> 0, {x € X:|f(x)|=>¢} is compact,
then C(X) is a closed subspace of C(X) and hence is a Banach space.

Proor. That C(X) is a linear manifold in C,(X) is left as an exercise. It
will only be shown that C,(X) is closed in C,(X). Let {f,}< C,(X) and
suppose f,—fin C,(X). If &> 0, there is an integer N such that
f, — fll<e/2; that is, |f,(x)— f(x)|<€&/2 for all n> N and x in X. If
[f(x)|=¢€, then €< If(x) -f,(x) + f,(x)|<e/2 +]f,(x)| for n> N; so
I, ()l=¢€/2 for n> N. Thus, {x €X:|f(x)|=e}C fx € X: |fv(x)|=
e/2} so that f€ C,(X). ]

The space C,(X) is the set of continuous functions on X that vanish at
infinity. If X =R, then C,(R) = all of the continuous functions f: R—F
such that lim, , , . f(x) = 0. If X is compact, C,(X) = C.(X) = C(X).
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If I is any set, then give I the discrete topology. Hence I becomes locally
compact. Also any function on I is continuous. Rather than C.(Z), the
customary notation is Z (Z). That is, Z (Z) = all bounded functions f:
I ->F with |Ifll = sup{lf()|: i €1}.Co(I) consists of all functions f:
Z - F such that for every > 0, {i € I:|f(i)| = ¢} is finite. If 1 =N, the
usual notation for these spaces is I and ¢, Note that I consists of all

bounded sequences of scalars and c, consists of all sequences that converge
to O.

1.8. Example. If (X, 2,n) is a measure space and 1 < p<oo, then
LP(X,8,p) is a Banach space.

The preceding example is usually proved in courses on integration and no
proof is given here.

1.9. Example. Let I be a set and 1 < p < ¢c. Define [7( 1) to be the set of
all functions f:I—F such that L{|f(i)I:i€1}<oco; and define ||f], =

E{If()IF: i € I)P. Then IP(I) is a Banach space. If I =N, then
IP(N) = 17,

If £ = all subsets of I and for each A in £, p(A) = the number of points
in A if A is finite and p(A) = cc otherwise, then I7(I) = L?(1,2,p). So
the statement in (1.9) is a consequence of the one in (1.8).

1.10. Example. Let n> 1 and let C™[0,1] = the collection of functions
f: 10, 1] > F such that f has » continuous derivatives. Define ||f]l =
SUPy <k < w{sup{ |f®(x)]: 0 < x < 1}}. Then C™[0,1] is a Banach space.

L.11.  Example. Let 1 <p <oo and n> 1 and let W,'[0,1] = the functions
f: 10, 11> F such that f has n— 1 continuous derivatives, f"™ D is
absolutely continuous, and f( & L?[0,1]. For f in W,'[0,1], define

e gL Lo dx]w

Then W,'[0,1] is a Banach space.
The following is a useful fact about seminorms.

1.12. Proposition. Zp is a seminormon Z,|p(x)— p(y)|< p(x—y) for
all x, yin Z.If ||-|| is a norm, then |||x||—|y|l|<||lx— y| for all x, y
in%.
PRrooF. Of course, the inequality for norms is a consequence of the one for
seminorms. Note that if x, y€Z, plx) = p(x—y +y) <p(x—y) +
p(y),s0 p(x) -p(y) < p(x— y). Similarly, p(y) —p(x) < p(x— V),
[ ]
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There is the concept of “isomorphism” for the category of Banach spaces.

1.13. Definition. If % and % are normed spaces, & and % are isometri-
cally isomorphic if there is a surjective linear isometry from Z onto ¥,

The term isomorphism in Banach space theory is reserved for linear
bijections 7 & — % that are homeomorphisms.

EXERCISES

L.
2.

13.

Complete the proof of Proposition 1.3.

Complete the proof of Proposition 1.5.

. For 1 <p <ooand x = (x;,...,%,) in FY define ||x||, = [E_,|x,/"1"/7;

define lIxllo, = sup{ |x,|: 1 <j<d}. Show that all of these norms are equiv-
alent. For 1 < p,q<o0, what are the best constants ¢ and C such that
ellxl, < x|, < Cllx||, for all x in F9?

. 1If 1 <p <00 and |||, is defined on R2 as in Exercise 3, graph {x eRZ

lx]l, = 1}. Note that if 1 <p<oo,|ix{l, =1y, =1, and x # y, then for
O0<r<l,|lzx+ (1L —1)y|l,< 1. The same cannot be said for p =1,00.

. Let ¢ = the set of all sequences {a,}°, @, in[F, such that lima, exists. Show

that ¢ is a closed subspace of /* and hence is a Banach space.

. Let X ={n" tin> 1} u {0}. Show that C(X) and the space of ¢ of Exercise 5

are isometrically isomorphic.

(a) Show that if 1 <p <oo and I is an infinite set, then /?(I) has a dense set
of the same cardinality as I.

(b) Show that if 1 <p <oo,l”(I)and I”(J) are isometrically isomorphic if
and only if I and J have the same -cardinality.

LIEI°( Z) and [°(J) are isometrically isomorphic, do I and J have the same

cardinality?

. Show that I is not separable.

. Complete the proof of Proposition 1.7.
. Verify the statements in Example 1.10.
. Verify the statements in Example 1.11.

. Let X be locally compact and let X, = X U {cc} be the one-point compactifi-

cation of X. Show that C(X) and {fe€ C( X,): f(c0) = 0}, with the norm it
inherits as a subspace of C( X)), are isometrically isomorphic Banach spaces.

Let X be locally compact and define C,(X) to be the continuous functions f:
X —F such that sptf =cl{ x € X: f(x) # 0} is compact (spt f is the support
of ). Show that C,(X) is dense in C,,(X).
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14. If X is a metrizable locally compact space that is a-compuct, then C,(X) is
separable. (X is a-compact if X =U?_, K,, where each K, is compact.)

15. If W;’[0,1] is defined as in Example 1.11 and feW,[0,1], let |lif|=
LIIFGOP dx1? + [fIf 7 (x)P dx]'/?. Show that ||| -|f is equivalent to the
norm defined on W,'{0,1].

16. Let # be a normed space and let 4 be its completion as a metric space. Show
that £ is a Banach space.

§2. Linear Operators on Normed Spaces

This section gathers together a few pertinent facts and examples concerning
linear operators on normed spaces. A fuller study of operators on Banach
spaces will be pursued later.

The proof of the first result is similar to that of Proposition 1.3.1 and is
left to the reader [Also see (II.1.1)]. Z(%,%) = all continuous linear
transformations A: - %.

2.1.  Proposition. If & and ¥ are normed spaces and A: & > % is a linear
transformation, the following statements are equivalent.

(a) A €EHA(X,%).
(b) A is continuous at 0.
(c) A is continuous at some point.
(d) There is a positive constant ¢ such that ||AX|| < c||x|| for all xin &.

IfFAEB(X,Y) and

41l = sup{ljAx||: [Ix|| < 1},
then
41l = sup{||Ax||: |Ix]| = 1}

sup{fl4x| /I|x||: x # 0}

inf{ ¢ > 0: ||[4x]|| < c||x|| for x in &' }.

l|4]] is called the norm of A and B(Z,%) becomes a normed space if
addition and scalar multiplication are defined pointwise. Z(%,%) is Banach
space if % is a Banach space (Exercise 1). A continuous linear operator is
also called a bounded linear operator.

The following examples are reminiscent of those that were given in
Section 11.1.

2.2. Example. If (X, 2,p) is a u-finite measure space and ¢ € L*( X, 2, ),
define M,:LP(X,82,p)—> LP(X,2,p), 1 <p <00, by M,f = ¢f for all f
in L?( X, 2, p). Then M, € B(L7(X, 2, p)) and [M,]| = |9l .-
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2.3. Example. If X, ,pn), %, ¢y, and ¢, are as in Example 11.1.6 and
1 <p<cc then Ki LP(p)— LP(p), defined by

(K )(x) = [k(x, p)f () dp(y)
for all fin L?(p) and x in X, is a bounded operator on L?(u) and
IK]| < c¢t/9cY/P, where 1/p + l/q = 1.

2.4. Example. If X and Y are compact spaces and 7Y = X is a

continuous map, define A: C(X) = ¢C(Y) by (Af)X¥) = My)). Then
A € B(C(X),C(Y)) and ||A] = 1.

EXERCISES
1. Show that #(%,%) is a Banach space if and only if % is a Banach space.

2. Let & be a normed space, let % be a Banach space, and let % be the completion
of 1. Show that if p: B(Z,%)— B(X,%) is defined by p(A) = A|Z, then p is
an isometric isomorphism.

3.If (X, £2,p) is a u-finite measure space, ¢: X = F is an O-measurable function,
1 <p<cc and ¢f €LP(p) whenever f€ LP(p), then show that ¢ € L*(p).

. Verify the statements in Example 2.2.
. Verify the statements in Example 2.3

. Verify the statements in Example 2.4.

Ny e A

.Let A and 7 be as in Example 2.4. (a) Give necessary and sufficient conditions
on 7 that A be injective. (b) Give such a condition that A be surjective. (¢) Give
such a condition that A be an isometry. (d) If X = Y, show that A> = A if and
only if T is a retraction.

§3. Finite-Dimensional Normed Spaces

In functional analysis it it always good to see what significance a concept
has for finite-dimensional spaces.

3.1. Theorem. If & is a finite-dimensional vector space over IF, then any two
norms on & are equivalent.

Proor. Let {e,, ..., e,} bec a Hamel basis for Z. For x = Ej=1xjej, define
Xl = max{ |x,|: 1 <j<d} It is left to the reader to verify that ||-||o is
a norm. Let |j-|j be any norm on %. It will be shown that ||-|| and ||- ||

are equivalent.

If x = I,xe,, then |Ix]| <X |x,|llel < Cllxll., when C = I |le,ll. To

show the other inequality, let .7 be the topology defined on % by |||l
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and let  be the topology defined on Z by || ||- Put B = {x€ &
Ix|l o <1}. The first part of the proof implies 2 %. Since B is J~compact
and 2 %,Bis @-compact and the relativizations of the two topologies to
B agree. Let A = {x €Z:]|x||, <1}. Since A is Fopen, it is open in
(B, %). Hence there is a set U in % such that UN B = A. Thus 0 €U and
there is an r > 0 such that {x € Z:||x||<r}CU. Hence

3.2 llxl| < rand ||x]|,< 1 implies ||x[|, < 1.
Claim. ||x||<r implies ||X||q < 1.

Let |lx||<r and put x = Exe,a = |x],. So [Ix/a|l, =1 and x/a€
B. If a> 1, then |\x/al|< r/a < r, and hence ||x/all, <1 by (3.2), a
contradiction. Thus ||x||, =a< 1 and the claim is established.

By Lemma 1.4, ||x||, <r !|lx|| for all x and so the proof is complete.

3.3. Proposition. If Z is a normed space and M is a jinite dimensional
linear manifold in &, then M is closed.

ProOOF. Let x € Z\ A and put A, = the linear span of 4 and {x,}.
Define a norm ||-||; on A, by ||[x + apxgll; =||x]| + |ag|, for x in A
and a4 in . It is left as an exercise to show that ||-||; is a norm on .. By
Theorem 3.1 and Proposition 1.5, there are constants ¢ and C such that
cllx + apxyll < lix]| + |agl < Cllx + apxyl| for all x in & and a, in F.
Hence for all x in 4, |x,— x||>C (x| + 1) =C~ % Thus 0 <C~'<
inf{ ||x, — xI): x € A }=dist(x,, #). That is, every point X, not in & is
at a positive distance from A. Hence . is closed. [ ]

3.4. Proposition. Let & be a finite-dimensional normed space and let % be
any normed space. If T'Z - % is a linear transformation, then T is
CORLINUOUS.

ProOF. Since all norms on & are equivalent and 7: % — % is continuous
with respect to one norm on & precisely when it is continuous with respect
to any equivalent norm, we may assume that ||Zj-'=1§jej|l = max{ |§;]: 1<
<d}, where {e;} is a Hamel basis for &. Thus, for x = X§e,||Tx|| =
I1Z,€;Tell < Ll¢] ITell < Clx||,Where C = X ,||Te,||. By (2.1), T is con-
tinuous. a

EXERCISES
1. Show that if & is a locally compact normed space, then & is finite dimensional.

2. Show that ||-|l;, defined on A, in the proof of Proposition 3.3, is a norm.
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§4. Quotients and Products of Normed Spaces

Let X be a normed space, let & be a linear manifold in X, and let Q:
X Z/M be the natural map Qx = x + 4. We want to make Z/# into a
normed space, so define

4.1 l|x + A = inf{||x + y||: y €A }.

Note that because # is a linear space, ||x +.#| = inf{ ||x— y||: y € #)
= dist(x, A ), the distance from x to . It is left to the reader to show that
(4.1) defines a seminorm on £/.#. But if ./# is not closed in &, (4.1) cannot
define a norm. (Why?) If, however, # is closed, then (4.1) does define a
norm.

42. Theorem. If # <X and ||x + A is defined us in (4.1), then ||-|| is a
norm on &/ M . Also:

(@) |@(x)||<||x|| for all x in X and hence Q is continuous.

(b) If & is a Banach space, then so is Z/MH.

(c) A subset W of X/ M is open relative to the norm if and only if Q ~Y( W) is
open in X.

(d) Zf U is open in X, then Q(U) is open in /M.

Proor. It is left as an exercise to show that (4.1) defines a norm on Z%/.4.
To show (a), ||Q(x)|| = {lx + || <||x|| since 0 € 4; Q is therefore
continuous by (2.1).

(b) Let {x, + A } be a Cauchy sequence in Z/#. There is a subsequence
{x,, + A} such that
1xn, + #) = (3, + Al = Nx,, =%, + M| <275
Let y, = 0. Choose y, in A such that

IXn, = Xu, + 2ol < Hlxy, — %, + ) + 270 <2270

Choose y;in . such that

1(x,, + »2) = (x5, + I < Ix,, = X, + A +272<2-272

Continuing, there is a sequence { y,}in . such that
”(xnk + yk)_(xnkﬂ + yk+l)“<2 . 2_k'

Thus {x, + y.} is a Cauchy sequence in X (Why?). Since X is complete,
there is an x, in X such that x, + y,—x, in X. By (a), x, + # =
Q(x,, + yi) = Qxo=xo+ A. Snce {x,+ #) is a Cauchy sequence,
X, + M- xy+ A and /A is complete (Exercise 3).

(c) If W is open in Z/#, then Q- (W) is open in X because Q is
continuous. Now assume that W C %Z/.# and Q '( W) is open in X. Let
r>0and put B, = {x € X: |lx|| <r}. It will be shown that Q( B,) = {x
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+ A ||x + A <r}. Infact,if ||x|| <r, then ||x + #| < ||x|| < r. On the
other hand, if ||x + .#|| < r, then thereis a y in .# such that ||x + y|| < r.
Thus x + # = Q(x +y)€ Q(B,). If xy+.# € W, then x, € Q (W).
Since Q" !(W) is open, there is an r > 0 such that x, + B, = {x: ||x — x|
<r}c Q7 Y(W). The preceding argument now implies that W =
QO \W)2 Q(xo+ B)={x+M: |x—x,+.#| <r}). Hence W is
open.

(d) If U is open in &, then Q" (QU)=U+H={u+y: uel,
yeury=UU+y yes#} EachU + y is open, so Q@ (Q(U)) is open
in . By (¢), Q(U) is open in Z/ 4. a

Because Q is an open map [part (d)], it does not follow that Q is a closed
map (Exercise 4).

4.3. Proposition. If & is a normed space, M < X, and N is a finite
dimensional subspace of &, then M + N is a closed subspace of % .

PROOF. Consider %/# and the quotient map Q: % — Z/.#. Since
dim Q(A") < dim A< o0, Q(A") is closed in Z/.#. Since Q is continuous
Q NQ(A))isclosedin &; but 0 (QN N=M+ . =

Now for the product or direct sum of normed spaces. Here there is a
difficulty because, unlike Hilbert space, there is no canonical way to
proceed. Suppose { 2;: i € I'} is a collection of normed spaces. Then IT{ %:
i € I} is a vector space if the linear operations are defined coordinatewise.
The idea is to put a norm on a linear subspace of this product.

Let || - || denote the norm on each Z. For 1 < p < oo, define

[;ux(i)n”]l/p < oo}.

® %, = {x e 12 x|
1
Define

®,7, = {x e [12; || = supllx(D) < o).

1

If {Z,,%,, ...} is a sequence of normed spaces, define

2, = {x € [T, x(n) - 0};

give ©,2, the norm it has as a subspace of ®_Z,.
The proof of the next proposition is left as an exercise.

4.4. Proposition. Ler {%;: i € I} be a collection of normed spaces and let
=0 %,1<p<o0

(a) Z is a normed space and the projection P;: & — ¥, is a continuous linear
map with ||P,(x)|| < ||x|| for each x in &.
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(b) & is a Banach space if and only if each %, is a Banach space.

1

(c) Each projection P, is an open map of & onto Z,.

A similar result holds for &%, but the formulation and proof of this is

left to the reader.

EXERCISES

1.
2.

11.

12.

13.

14.

Show that if # < &, then (4.1) defines a norm on Z/A.

Prove that & is a Banach space if and only if whenever { x, } is a sequence in &
such that X||x,|| < co, then £, x, converges in Z.

. Show that if (X, d) is a metric space and {x, } is a Cauchy sequence such that

there is a subsequence {x, } that converges to x,, then x, = X,.

. Find a Banach space £ and a closed subspace .# such that the natural map Q:

I — &/ M is not a closed map. Can the natural map ever be a closed map?

. Prove the converse of (4.2b): If & is a normed space, # < 5, and both .# and

%/ M are complete, then & is complete. (This is an example of what is called a
“two-out-of-three” result. If any two of &, A, and Z/# are complete, 50 is the
third.)

. Let #={xel” x(2n)=0 for all n), 1 < p < oo. Show that I?/# is

isometrically isomorphic to 7.

. Let X be a normal locally compact space and F a closed subset of X. If

M={fec C(X) f(x)=0for all x in F}, then G(X)/# is isometrically
isomorphic to Cy(F).

. Prove Proposition 4.4.
. Formulate and prove a version of Proposition 4.4 for @ %,

10.

If {Z,,...,%,) is a finite collection of normed spaces and 1 < p < oo, show
that the norms on @ % are all equivalent.

Here is an abstraction of Proposition 4.4. Suppose { Z;: i € I'} is a collection of
normed spaces and Y is a normed space contained in F/. Define £= {x € [1,Z;:
thereis a y in Y with {{x(i)|| < y(i) for all i}. If x € &, define ||x|| = inf{]|y||:
llx(Dlj < y(i) for all i}. Then (%, || - |]) is a normed space. Give necessary and
sufficient conditions on Y that each of the parts of (4.4) are valid for &.

Let & be a normed space and # < % (a) If & is separable, so is Z/#. (b) If
Z/#H and M are separable, then & is separable. (c) Give an example such that
%/ M is separable but Z is not.

Letl < p < o0 and put &= €Bp5’8}. Show that & is separable if and only if I is
countable and each %, is separable. Show that @ %, is separable if and only
if I is finite and each %, is separable.

13

Show that @ %, is separable if and only if each %, is separable.
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15. Let JC 1, and Q"E@p{fl’}:ie 1}, #£= {x €Z: x(j) = 0 for j in J}.
Show that &/.# is isometrically isomorphic to @p{ﬁ’l’;: JEJ}.

16. Let 3 be a Hilbert space and suppose # < 3. Show that if Q: H#'— /A is
the natural map, then Q: #*— #/# is an isometric isomorphism.

§5. Linear Functionals

Let & be a vector space over F. A hyperplane in & is a linear manifold A4
in & such that dim(%/#) = 1. If f: #—F is a linear functional and
f# 0, then kerf is a hyperplane. In fact, f induces an isomorphism
between Z/kerf and F. Conversely, if 4 is a hyperplane, let Q: & —>Z/ #
be the natural map and let T:Z/# —F be an isomorphism. Then
f=ToQ is a linear functional on & and ker f = 4.

Suppose now that fand g are linear functionals on Z such that
kerf = kerg. Let xq €& such that f(xg)=1; so g(xy)# 0. If x €Z and
a = f(x), then x —ax, € kerf = kerg. So 0 = g(x) —ag(xy), or g(x) =
(g(xg))a = (g(xx)f(x). Thus g = Bf for a scalar B. This is summarized as
follows.

5.1.  Proposition. A linear manifold in & is a hyperplane if and only if it is
the kernel of a linear functional. Two linear functionals have the same kernel if
and only if one is a nonzero multiple of the other.

Hyperplanes in a normed space fall into one of two categories.

5.2. Proposition. If & is a normed space and A is a hyperplane in Z, then
either M is closed or M is dense.

Proor. Consider ¢l.#, the closure of 4. By Proposition 1.3, ¢l .# is a
linear manifold in Z. Since A& C cl A and dim Z/ A4 = 1, either ¢l A = A
orcl A =24%. |

If =cy and f: —F is defined by f(ay, ay,...)=a,, then kerf =
{(a,) €cy: a; = 0} is closed in ¢y. To get an example of a dense hyper-
plane, let '=c¢, and let e, be the element of ¢, such that e, (k) = O if
k #nand e(n) = 1. (It is best to think of ¢, as a collection of functions

on N.) Let xo(n) =1/n for all n; so xo€¢y and {Xgy,€e1,€5,...} 15 a
linearly independent set in ¢q. Let & = @ Hamel basis in ¢, which contains
{xg,€1,€5,...}. Put B ={xp,€,€,,...}U{bsi €I, b+x,ore, for

any i or n. Define f: ¢q—F by f(agxy+X2 a,e, + Z,8:b) = ay. (Re-
member that in the preceding expression at most a finite number of the a,
and B, are not zero.) Since e, € kerf for all n > [, kerf is dense but
clearly kerf #c,.
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The dichotomy that exists for hyperplanes should be reflected in a
dichotomy for linear functionals.

5.3. Theorem. IfX is a normed space and f: £ —=F is a linear functional,
then f is continuous if and only if kerf is closed.

ProoF. If fis continuous, ker f= f~'({0}) and so kerf must be closed.
Assume now that kerf is closed and let Q: X — Z/kerf be the natural
map. By (4.2), Q is continuous. Let T: Z/kerf —=F be an isomorphism; by
(3.4), T'is continuous. Thus, if g=T0¢ Q: X— IF, g is continuous and
kerf = kerg. Hence (5.1) f= ag for some a in IF and so fis continuous.

n

If # X —»F is a linear functional, then fis a linear transformation and
so Proposition 2.1 applies. Continuous linear functionals are also called
bounded linear functionals and

1Al = sup{If (x)I: lIxll < 1}.

The other formulas for ||f]| given in (2.1) are also valid here. Let X* = the
collection of all bounded linear functionals on X. If f,g2€ X * and a € F,
define (af + g)x) = of(x) + g(x); X ¥ is called the dual space of X.
Note that X * = Z(Z,F).

54. Proposition. If X is a normed space, X * is a Banach space.

Proor. It is left as an exercise for the reader to show that X * is a normed
space. To show that X * is complete, let B = {x € X: ||x||< 1}. If
feZ*, define p(f): B—F by p(fi(x) = f(x); that is, p(f) is the
restriction of fto B. Note that p: X* — C,(B) is a linear isometry. Thus
to show that X * is complete, it suffices, since C,(B) is complete (1.6), to
show that p(Z*) is closed. Let { f,} € X * and suppose g€ C,(B) such
that ||jpo(f,)—gll—= 0as n —»oo. Let x € X, If a, BE€F,a,# 0, such
that ax, Bx € B, then a 'g(ax) = lim a™f,(ax) = lim B~ Y, (Bx) =
B~ 'g(Bx). Define f: F—F by letting fix) = a 'g(ax) for any a# 0 such
that ax € B. It is left as an exercise for the reader to show that f€ X *
and p(f) = g. [ |

Compare the preceding result with Exercise 2.1.

It should be emphasized that it is not assumed in the preceding proposi-
tion that X is complete. In fact, if X is a normed space and Z is its
completion (Exercise 1.16), then X * and F * are isometrically isomorphic
(Exercise 2.2).

55. Theorem. Let (X,2,p) be a measure space and let 1 <p <co. If
lpp + llg =1 and g€ LU X,Q, p), define F: L?(p)>F by

F(f)= ffgdﬂ-
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Then F,€ L?(p)* and the map g — F, defines an isometric isomorphism of
Li(p) onto LP(p)*.

Since this theorem is often proved in courses in measure and integration,
the proof of this result, as well as the next two, is contained in the
Appendix. See Appendix B for the proofs of (5.5) and (5.6).

5.6. Theorem. If (X, 2,u) is a o-finite measure space and g € L*(X, 2, p),
dejine F:L'(p)—>F by

F(f) = ffgdﬂ-

Then F, € LY(p)* and the map g = F, dejines an isometric isomorphism of
L*(u) onto LY(p)*.

Note that when p = 2 in Theorem 5.5, there is a little difference between
(5.5) and (1.3.5) owing to the absence of a complex conjugate in (5.5). Also,
note that (5.6) is false if the measure space is not assumed to be u-finite
(Exercise 3).

If X is a locally compact space, M(X) denotes the space of all If-valued
regular Borel measures on X with the total variation norm. See Appendix C
for the definitions as well as the proof of the next theorem.

5.7. Riesz Representation Theorem. If X is a locally compact space and
rE€ M(X), define F,:Cy(X)—>F by

F(f) = [fdp.

Then F,€Co(X)* and the map p— F, is an isometric isomorphism of
M(X) onto Cy(X)*.

There are special cases of these theorems that deserve to be pointed out.

5.8. Example. The dual of ¢, is isometrically isomorphic to /1. In fact,
co = C(N), if N is given the discrete topology, and I = M(N).

5.9. Example. The dual of I is isometrically isomorphic to 7 . In fact,
I'= LNN,2N, p), where u(4) = the number of points in A. Also, [*® =
L*(N, 2N, u).

5.10. Example. If 1 <p <oo, the dual of /7 is /9, where 1 = 1/p + 1/q.

What is the dual of L*( X, 2, u)? There are two possible representations.
One is to identify L*( X, §, p)* with the space of finitely additive measures
defined on {2 that are absolutely continuous with respect to g and have
finite total variation (see Dunford and Schwartz [1958], p. 296). Another -
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representation is to obtain a compact space Z such that L®( X, £, p) is
isometrically isomorphic to C(Z) and then use the Riesz Representation
Theorem. This will be done later in this book (VIIL2.1).

What is the dual of M(X)? For this, define L*( M( X)) as the set of all F
in [T{L®(p):p € M(X)} such that if p<<»; then F(p) = F(v) ae. [pu]
This is an inverse limit of the spaces L™(p), g in M(X).

511, Lemma. If F€ L*(M(X)), then

|1Fll = sup||F(p)ll, < 0.
n
ProoOF. If || F|| = oo, then there is a sequence {p,} in M(X) such that
IF(p )l = 0. Let p= X527 "1,/ llkall- Then p, < p for alln, so
F(u,) = F(s) ac. [p,] for cach n. Hence IF(W)llo 2 IF(k,)l, > n for
each n, a contradiction. a

5.12. Theorem. IfX is locally compact and F € L*(M( X)), define ®:
MX)+ IF by

®,(n) = [F(n)dp.

Then @€ M(X)* and the map F — @ is an isometric isomorphism of
L*(M( X)) onto M(X)*.

ProoF. It is easy to see that P is lincar. Also, |P(p)| < [|F(p)|d|p| <
IF()llllell < 1IN} [lpll. Thus @, € M(X)* and || 4| < || F].

Now fix @ in M(X)*. If p€ M(X) and f € L'(|p|), then v = fu €
M(X). (That is, v(A) = [, fdp for every Borel set A) Also ||#|| = [|f] d|ul.
In fact, the Radon-Nikodym Theorem can be interpreted as an identifica-
tion (isometrically isomorphic) of L'(|u|) with {n€ M(X): n<<|p|}. Thus
f=®(fp) is a linear functional on L'(|u}) and |D(f)| <||D)I[If] diul-
Hence there is an F(p) in L®(|pu}) such that @( fu) = [fF(p)dp for every f
in L'(|u|) and ||F(p)ll. <||®]l. (We have been a little nonchalant about
using p or |p|, but what was said is perfectly correct. Fill in the details.) In
particular, taking f = 1 gives ®(p)= [F(p)dp. It must be shown that
FE L*(M(X)); it then follows that @ = @ and || P = || F)| -

To show that F' € L*( M( X)), let p and v be measures such that p < v.
By the Radon-Nikodym Theorem, there is an fin L'(jp|) such that v = fu.
Hence if g € LY(|v|), then gf € L'(u|) and [g dv = [gfdp. Thus,
JgF(v) dy = B(gv) = D(gfp) = [&fF(p)dp = [gF(p) dv.So F(») = F(p)
ae. [v] and F € L*( M( X)). n

EXERCISES
1. Complete the proof of Proposition 5.4.

2. Show that £ * is a normed space.
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3. Give an example of a measure space (X, £, ) that is not a-finite for which the
conclusion of Theorem 5.6 is false.

4. Let {Z:ie I} be a collection of normed spaces. if 1 < p <o, show that the
dual space of @pﬂ”, is isometrically isomorphic to & 2 wherel/p+1/ q=1.

5. ¥4,,%,,. are normed spaces, show that ( © %, )* is isometrically isomorphic
to & 2.

6. Let n> 1 and let C"[0,1] be defined as in Example 1.10. Show that ||f}| =
L2 + sup{|f"(x)|: 0 < x < 1)is an equivalent norm on C[0,1].
Show that L& (C"[0,1))* if and only if there are scalars a,, a,, ,a,_ ; and

a measure p on [0,1] such that LD = Li_§a, f40)+ [f" dp. Is there a
formula for ||L|| in terms of |ag],lay],.,|a,_,], and ||p]|?

§6. The Hahn-Banach Theorem

The Hahn-Banach Theorem is one of the most important results in
mathematics. It is used so often it is rightly considered as a cornerstone of
functional analysis. It is one of those theorems that when it or one of its
immediate consequences is used, it is used without quotation or reference
and the reader is assumed to realize that it is being invoked.

6.1. Definition. If & is a vector space, a sublinear functional is a function
q: - R such that

(@) g(x +y) < qg(x) + g(y) for all x, yin &;
(b) g(ax) = aq(x) for x in & and a > 0.

Note that every seminorm is a sublinear functional, but not conversely. In
fact, it should be emphasized that a sublinear functional is allowed to
assume negative values and that (b) in the definition only holds for a=> 0.

6.2. The Hahn-Banach Theorem. Let & be a vector space over R and let g
be a sublinear functional on Z.If # is a linear manifold in & and f: # — R
is a linear functional such that f(x) < q(x) for all x in M, then there is a

linear functional F:Z —R such that FI.# = f and F(x) < q(x) for all x in
Z.

Note that the substance of the theorem is not that the extension exists but
that an extension can be found that remains dominated by ¢. Just to find an
extension, let {e, } be a Hamel basis for .# and let {yj} be vectors in &
such that {e, } U{y,} is a Hamel basis for Z. Now define F: Z—>R by
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FQae, + L B;y)=La,f(e) = f(Lae;). This extends f. If {y,} is any
collection of real numbers, then F(X, a;e; + X 8,y,)= f(X,¢e,)+XL By, is
also an extension of f. Moreover, any extension of f has this form. The
difficulty is that we must find one of these extensions that is dominated
by 4-

Before proving the theorem, let S see some of its immediate corollaries.
The first is an extension of the theorem to complex spaces. For this a lemma
is needed. Note that if X is a vector space over C, it is also a vector space
over R. Also, if f:Z— C is C-linear, then Ref: Z— R is R-linear. The
following lemma is the converse of this.

6.3. Lemma. Let X be a vector space over C.

(@) If [:Z—R is an R-linear functional, then f(x) = f(x) — if (ix) is a
C-linear functional and f = Re f.

() If g: & - C is C-linear, f = Reg, andfis defined as in (a), then f = g.

. (¢) If pis a seminorm on X andf and f are as in (a), then |f(x)|< p(x) for
all x if and only if |f(x)| < p(x) for all x.

(d) Zf X is a normed space and f and f are as in (a), then ||f]| = |A]l.

Proor. The proofs of (a) and (b) are left as an exercise. To prove (c),
suppose |f(x)|< p(x). Then f(x) = Ref(x)<|f(x)|< p(x). Also,
-f(x) = Ref(—x)<|f(—x)|< p(x). Hence |f(x)|< p(x). Now assume
that |f(x)]< p(x). Choose 6 such that f(x) = e”|f(x)|. Hence |f(x)| =
fe™®x) = Ref(e™"x) = f(e™"’x) < p(e™"x) = p(x).

Part (d) is an easy application of (c). a

6.4. Corollary. Let Z be a vector space, let # be a linear manifold in X,
and let p: & — [0, o) be a seminorm. If f: M - F is a linear functional such
that |f (x)|<plx) forall x in M, then there is a linear functional F: X —F
such that F|A =fand |F(x)|<p(x) for all x in Z.

Proor. Case I: F = R. Note that f(x) <|f(x)|< p(x) for x in A#. By
(5.2) there is an extension F: X — R of f such that F(x) < p(x) for all x.
Hence -F(x) = F(-x) < p(—x) = p(x). Thus |F|< p.

Case 2: IF = C. Let f, = Ref. By (6.3c),|f,|< p. By Case 1, there is an
W-linear functional F;:Z— R such that Fj|.# = f, and |F}|< p. Let
F(x)=FE(x) —iF\(ix) for all x in X, By (6.3c),{F| < p. Clearly, F|# = f.

|

6.5. Corollary. If X is a normed space, # is a linear manifold in Z ,and f:
M —F is a bounded linear functional, then there is an Fin X * such that
FlA = £ and I1FIl = 1.

PRoor. Use Corollary 6.4 with p(x) = ||f]il|x||- |
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6.6. Corollary. If X is a normed space, {x,Xx,,...,X,} is a linearly
independent subset of Z,and ay,a,,...,a, are arbitrary scalars, then there
isanfin Z* such that f (x;))=a;for 1 <j<d.

Proor. Let 4 = the linear span of x,,...,x, and define g: A4 —F by
g(X,B8,x;)=X;Ba; So g is linear. Since 4 is finite dimensional, g is
continuous. Let fbe a continuous extension of g to X. |

6.7. Corollary. If X is a normed space and x € Z, then

Xl = sup{lf(x)|: f€ X* and |l<1}.
Moreover, this supremum is attained.

Proor. Let a=sup{|f(x)|:f€ X* and ||ll<1}.Iff€ X* and |If] < 1,
then SOOI < IAl x|l < |lx||; hence a <|lx||. Now let 4 ={Bx:B€F}
define g: A —F by g(Bx) = B||x||. Then g €4* and |g|]| = 1. By
Corollary 6.5, there is an fin X* such that ||f] = 1 and fix) = g(x) =
Mxl. =

This introduces a certain symmetry in the definitions of the norms in X
and X * that will be explored later (§11).

6.8. Corollary. If X is a normed space, M <X ,x,€ X\ M, and d =
dist(xq, 4 ), thenthereis anfin £* such that f(xy)=1, f(x) = 0 for all x
in A, and ||f||=d "

Proor. Let Q: &~ %/ A be the natural map. Since ||x, + || =d, by the
preceding corollary there is a g in (Z/#)* such that g(x, + #)=d and
llgll=1. Let f=d g @: —>F. Then fis continuous, fix) = 0 for x in
M, and f(x0) = 1. Also, [f(x)] = d™g(Q(x))| <d IQ(x)ll < d !ix];
hence ||f]l<d ™! On the other hand, ||g}l = 1 so there is a sequence {x,}
such that |g(x, + A#)|— 1 and ||x, + A|< 1 for all n. Let y,E .4 such
that [Ix, + /| < 1. Then |f(x, + y) = d"'[g(x, + #)| > d ", s0 |f]| =
dl. =

To prove the Hahn-Banach Theorem, we first show that we can extend
the functional to a space of one dimension more.

6.9. Lemma. Suppose the hypothesis of (6.2) is satisfied and, in addition,
dim Z/ 4 = 1. Then the conclusion of (6.2) is valid.

Proor. Fix xgin Z\A; s0 X=8&V {x,}={tx, +y:t €R,y € 4 }.
For the moment assume that the extension F: Z— R of f exists with
F <gq Let s sece what F must look like. Put ay = F(xy). If ¢t > 0 and
VM E A, then F(txg + y;) = tag + f (y) <q(txq + y;). Hence ay <
=t () + t7q(txg + y) = —f(0/1) + q(xq + y, /1) for every y, in
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M . Since y,/t € A, this gives that

6.10 ag <—f(y)+q(xg + »)

for all y, in /. Also note that if a, satisfies (6.10), then by reversing the
inequalities in the preceding argument, it follows that ragy + f(y,) <q(tx,
+ y;) whenever 1= 0.

If r = 0 and y, € # and if F exists, then F(—1xy + y,) = —tay + f(»,)
<q(—1txg + y,). As above, this implies that

6.11 ag = f(1)—q(=x + »)
for all y, in . Moreover, (6.11) is sufficient that —rag + f( 3,) <q(—tx,
+ y,) for all r= 0 and y, in A.

Combining (6.10) and (6.11) we see that we must show that a, can be
chosen satisfying (6.10) and (6.11) simultaneously. Thus we must show that

6.12 ) —q(=xq + y2)<—f(») + 9(xo+ 1)

for all y,, ¥, in . But this means we want to show that f(y; + »,) < q(x,
+ Y1) + g(-xo + Y2)-But

Fn + »)<q(y 4+ 3) = 4((31 4+ x0) +(= x4+ 1))
<q(y; + Xo) + 4(=x0 + »),

so (6.12) is satisfied. If ag is chosen with sup{ f(y,)—q(—xq + »):
neMy<ag<inf{—f(y) + 9(xg + y1): 1y €M} and F(ixy + y) =
tag + f(y,), F satisfies the conclusion of (6.2). [ ]

Proor oF THE Hann-Banaca THEOREM. Let & be the collection of all
pairs (A1, f;), where 4, is a lincar manifold in Z such that 4,2 .# and
fi:#, >R is a linear functional with fi|# = f and fi,<q on A,. If
(A, [)) and (A5, L) E S, define (M1, [1)S(M 4, [5) to mean that A,
C M, and fo|#, = f;. So (&,<) is a partially ordered set. Suppose
C={(A, [f): 1 €I} is a chain in L. I &= U{ A :i€ Z}, then the fact
that € is a chain implies that A" is a linear manifold. Define F: A4 ->R by
setting F(x) = fi(x)if x €4, Tt is easily checked that Fis well defined,
linear, and satisfies F <q on A . So (A, F) €& and (A", F) is an upper
bound for €. By Zorn § Lemma, & has a maximal e¢lement (#, F). But the
preceding lemma implies that Y = . Hence F is the desired extension.

|

This section concludes with one important consequence of the Hahn-
Banach Theorem. It will be generalized later (IV.3.11), but it is used so often
it is worth singling out for consideration.

6.13. Theorem. Zf % is a normed space and # is a linear manifold in &,
then

o =N{kerf: f€X*and #Ckerf}.
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ProoF. Let #'=N{kerf: f€ &* and A C kerf}. If fEX* and A C
ker f, then the continuity of fimplies that ¢l 4 C ker f. Hence ¢l A C A"
If x, € cl A, then d = dist(xy, #)> 0. By Corollary 6.8 there is an fin
Z* such that f(xg)=1 and flx) = O for every x in #. Hence x4, 4 A .
Thus A°Ccl A and the proof is complete. ]

6.14. Corollary. If Z is a normed space and A is a linear manifold in %,
then A is dense in & if and only if the only bounded linear functional on &
that annihilates A is the zero functional.

EXERCISES
1. Complete the proof of Lemma 6.3.
2. Give the details of the proof of Corollary 6.5.

3. Show that ¢* is isometrically isomorphic to I . Are ¢ and ¢, isometrically
isomorphic?

4, If p is a measure on [0, 1] and fx" du(x) = 0 for all n > 0, show that p = 0.

5. If n> 1, show that there is a measure g on [0, 1] such that for every polynomial
p of degree at most n,

[pdn=3 p*(k/n).
k=1

6. Ifn= 1, does there exist a measure g on [0, 1] such that p (0) = [pdp for every
polynomial of degree at most n?

7. Does there exist a measure g on [0, 1] such that [pdp = p (0) for every
polynomial p?

8. Let K be a compact subset of C and define A(K) to be {fe€ CK): f is
analytic on int KJ (Functions here are complex valued.) Show that if a € K,
then there is a probability measure p supported on JK such that f(a) = ffdp
for every f in A(K). (A probability measure is a nonnegative measure p such
that ([l = 1.

9. If K =cl D(D = {|z|<1}) and a € K, find the measure p whose existence
was proved in Exercise 8.

10. Let P ={ p|dD: p = an analytic polynomial} and consider P as a manifold in
C( dD). Show that if p is a real-valued measure on dD such that [pdp =0 for
every p in P, then p = 0. Give an example of a complex-valued measure p such
that w+# O but [pdu = 0 for every p in P.

§7*. An Application: Banach Limits

If x = {x(n)} € ¢, define L(x) = limx(n). Then Lis a linear functional,
IL{=1, and, if for x in ¢, x is defined by x = (x(2).x(3), ...), then
L(x) = L(x’). Also, if x = 0 [that is, x(n) > O for all nJ, then L{x) = 0.
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In this section it will be shown that these properties of the limit functional
can be extended to /*. The proof uses the Hahn-Banach Theorem.

7.1. Theorem. There is a linear functional L: 1 —F such that

@IL] = 1.

(b) Zf x € ¢, L(x) = lim x(n).

(©) Zf x €1% and x(n) = 0 for all n, then L(x) = 0.
(d) Zf x €1 andx = (x(2), x(3), ...), then L(x) = L(x").

Proor. First assume F = R; that is, I* = /. If x €/, let x denote the
clement of /* defined in part (d) above. Put & = {x — x ! x €/®}. Note
that (x + ay)’ = x +ay’ for any X, y in [* and & in R; hence 4 is a
linear manifold in / . Let 1 denote the sequence (1,1,1,...)in [/

7.2. Claim. dist(1, #)=1.

Since 0 € A, dist(1, #)< 1. Let x €1%;if (x — x )(n) <0 for any n,
then |1— (x —x)||,=|1— (x(n) —x’(n))|= 1. Suppose 0 < (x —
x)(n) = x(n) — x(n) = x(n) —x(n + 1) for all n. Thus x(n + 1) < x(n)
for all n. Since x €1%, a = lim x(n) exists. Thus lim(x — x )(n) = 0 and
I1—(x —x")||,= 1. This proves the claim.

By Corollary 6.8 there is a linear functional L: /*->R such that
ILIl=1, L(1) = 1, and L(A) = 0. So this functional satisfies (a) and (d)
of the theorem. To prove (b), we establish the following.

7.3. Claim. ¢y CkerL.

If x €Ecp, let xP = x  and let x"*D = (x™)’ for n > 1. Note that

xUHD — x = [xD — x4+ ... 4 [x" —x] € A. Hence L(x) =
L(x™) for all n > 1. If €> 0, then let n be such that |x(m)|<e for
m> n. Hence |L(x)| = |[L(x")| <||x™|, = sup{|x(m)|: m > n} <e.

Thus x € ker L. Condition (b) is now clear.

To show (c), suppose there is an x in /* such that x(n) > 0 for all » and
L(x) <0. If x is replaced by x/||x||,, it remains true that L(x) <O and it
is also true that 1 = x(rn) = 0 for all A. But then ||1—x||,< 1 and
L1 -—x)=1— IL{x) > 1, contradicting (a). Thus (c) holds.

Now assume that F=C. Let L, be the functional obtained on [F.If
x €1, then x = x; + ix, when x,,x, €[lg. Define L(x) = L,(x,) +
iL(x,). It is left as an exercise to show that L is C-linear. It § clear that (b),
(c), and (d) hold. It remains to show that ||L|| = 1.

Let E,,..., E,, be pairwise disjoint subsets of N and let a;,...,a, €C
with |ay|< 1 for all k& Put x = XJ'_ja,xp; 50 x €% and ||x||, < 1.
Then L(x) = Twa,L(xg) = LyarLi(xg,). But Li(xg )= 0and
LiLi(xg) = Li(xg), where E = U, E,. Hence X, Li(xg )< I. Because
e j< 1 for all £, |L(x)|< 1. (This is a small convexity argument.) If x is
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an arbitrary element of /®,||x||, < 1, then there is a sequence {x,} if
elements of /* such that |[x,— X||, — O, l|X,llo< 1, and each x, is the
type of element of /* just discussed that takes on only a finite number of
values (Exercise 3). Clearly, ||L||< 2, so L(x,)— L(x). Since |L(x,)}<1
for all n,|L(x)|< 1. Hence ||[L||< 1. Since L(1) = 1, ||L|| = 1. [ |

A linear functional of the type described in Theorem 7.1 is called a
Banach limit. They are useful for a variety of things, among which is the
construction of representations of the algebra of bounded operators on a
Hilbert space.

EXERCISES

1. If L is a Banach limit, show that there are x and y in I such that L(xy)+#
L(x)L(y).

2. Let X be a set and £ a u-algebra of subsets of X. Suppose p is a complex-valued
countably additive measure defined on £ such that ||u|| = p(X) < co. Show that
p(A)= 0 for every A in £. (Though it is difficult to see at this moment, this fact
is related to the proof of (¢) in Theorem 7.1 for the complex case.)

3. Show that if x € I, ||x||, < 1, then there is a sequence {x,},x, in I such
that I%ulle < 1, llx, = x|| — O, and each x, takes on only a finite number of
values.

§8*. An Application: Runge S Theorem

8.1. Runge S Theorem. Let K be a compact subset of C and let E be a subset
of C,\ K that meets each component of € _\ K. If f is analytic in a
neighborhood of K, then there are rational functions f, whose only poles lie in
E such thar f,— f uniformly on K.

The main tool in proving Runge § Theorem is Theorem 6.13. (A proof
that does not use functional analysis can be found on p. 198 of Conway
[1978].) To do this, let R(K, E) be the closure in the space C(K) of the
rational functions with poles in E. By (6.13) and the Riesz Representation
Theorem, it suffices to show that if p€ M(K) and [gdp = 0 for each g in
R(K, E), then [fdp=0.

Let R >0 and let A be area measure. Pick p> 0 such that B(0; R) C
B(z; p) for every z in K. Then for z in K,

f |z—w|71d}\(w)§f |z — w| " TdA(w)
B(0; R)

B(z; p)

=f02”£drdo — 2mp.
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If p € M(K), define fi:C— [0, cc] by

_ dul(z)

W) = =)
when the integral is finite, and fi(w)= o0 otherwise. The inequalities above
imply

i dlpi(z)
'/;B(O;R)#(W)d}\(W) B —[B(o R)'[K |z — wl| dh(w)
dr(w)
_'[K“B(O Ry 1z — w dui( 2 )
< 2mp|lul.
Thus f(w)< cc a.e. [A]

82. Lemma. If p€ M(K), then

ooy (au(z2)

aw) = [
is in L)(B(0; R), N\) for any R >0, i is analytic on C _\ K, and (o0) = 0.
Proor. The first statement follows from what came before the statement of
this lemma. To show that f is analytic on C_\K, let w, wy€ C\ K and

note that
(W) - H(Wo)

w =W, .[ (z—w)(z—wo)

As w = wy, [z —w)(z —wy)]' = (z—w,) % uniformly for z in K, so
that i has a derivative at w, and

G tw) = [ (z=w) Tduz).

So fi is analytic on C\ K. To show that it is analytic at infinity, note that
fi(z)— 0 as z— cc, so infinity is a removable singularity. a

It is not difficult to see that for wy in C\ K,

8.3 ( diw)nﬁ(wo) =n!f(z—w0)_n_ld.u(z)

Also, we can easily find the power series expansion of fi at infinity. Indeed,

(1 - é)ildp(z).

Choose w near enough to infinity that |z/w|<1 for all z in K. Then

84 i == = f( 2] ance)

i(w) =

=)
= -y L
n+1?
n=0 W

where a, = [z"du(z).
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Now assume p € M(K) and [gdp = 0 for every rational function g with
poles in E. Let U be a component of C,\ K, and let wo€ ENU. If
wy # o0, then the hypothesis and (8.3) implies cach derivative of f at wy
vanishes. Hence ft=0 on U.If wy =00, then (8.4) implies i =0 on U. Thus
Af=0onC_ \K.

If f is analytic on an open set G containing K, let Y10...,y, be
straight-line segments in G \ K such that

16)= % g [ 52 o

w—z
for all z in K. (See p. 195 of Conway [1978].) Thus
S f(w)
d = — = dwdu(z
Jr@ae = B 5 [ [0 dedul2)

=—§ e [ F(w)R(w) dw

by Fubini 8 Theorem. But fi(w)= 0 on v, (SC\K), so [fdu=0. By
(6.13) f€eR(K, E). This proves Runge S Theorem. [ |

8.5. Corollary. If K is compact and C \ K is connected and if f is analytic in
a neighborhood of K, then there is a sequence of polynomials that converges to
f uniformly on K.

EXERCISES

1. Let u be a compactly supported measure on C that is absolutely continuous with
respect to area measure. Show that fi is continuous on C .

2. Let m = Lebesgue measure on [0, 1]. Show that /i is not continuous at any point
of [0,1].

§9*. An Application: Ordered Vector Spaces

In this section only vector spaces over R are considered.

There are numerous spaces in which there is a notion of < in addition to
the vector space structure. The L% spaces and C(X) are some that spring to
mind. The concept of an ordered vector space is an attempt to study such
spaces in an abstract setting. The first step is to abstract the notion of the
positive elements.

9.1. Definition. An ordered vector space is a pair (X, 1) where & is a
vector space over R and < is a relation on Z satisfying

(a) x < x for all x;
b) if x <yandy <z then x < z;
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@ifx<yadzeZ thenx +z <y + z
dif x <y and a€ [0, cc), then ax < ay.

Note that it is not assumed that < is antisymmetric. That is, it is not
assumed that if x <y and y < x, then x = y.

9.2. Definition. If % is a real vector space, a wedge is a nonempty subset P
of & such that

@ifx,y€EP, thenx +y € P;
(b) if x € Pand a<€ [0, co), then axE P.

9.3. Proposition. (a) If (25 _}s an ordered vector space and P = {x €X:
x = 0}, then P is a wedge. (b) Zf P is a wedge in the real vector space & and
< is defined on & by declaring x <y if and only if y —x € P, then (¥,<)
is an ordered vector space.

Proor. Exercise.

If (#,<) is an ordered vector space, P = {x €% :x > 0] is called the
wedge of positive elements. The next result is also left as an exercise.

94. Proposition. Zf(%,< ) is an ordered vector space and P is the wedge of
positive elements, < is antisymmetric if and only if PN (= P) = (0).

9.5. Definition. A cone in & is a wedge P such that P n (—P) = (0).

9.6. Definition. If (%£,1) is an ordered vector space, a subset A of & is
cojinal if for every x > 0 in & there is an a in A such that a > x. An
element e of & is an order unit if for every x in & there is a positive integer
n such that —ne < x < ne.

If X is a compact space and &= C(X), then any constant function is an
order unit. (f < g if and only if f{x) < g(x) for all x). If F= C(r), all
real-valued continuous functions on R, then & has no order unit (Exercise
4). If e is an order unit, then { ne: n >1} is cofinal.

9.7. Definition. If (£,1) and (%,1) are ordered vector spaces and T:
> Y is a linear map, then T is positive (in symbols T > 0) if Tx > 0
whenever x > 0.

The principal result of this section is the following.

9.8. Theorem. Let (¥,<) be an ordered vector space and let Y be a linear
manifold in & that is cofinal. Zf - Y = R is a positive linear functional, then
there is a positive linear functional f:% — R such that f|Y = f.

Proor. Let P = fx €EZ:x>0) and put &, =Y + P~ P. It is easy to
see that &, is a lincar manifold in &. If there is a positive linear functional
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g: %, — Rthatextends f, let f be any linear functional on % that extends
(use a Hamel basis). If x > 0, then x € P C &, so that f(x)=g(x)>0.
Hence f is positive. Thus, we may assume that £ =% +P—P.

99. Claim. =%+ P=%- P.

Let x €EL;0Xx =y + p1— P2,y n %, py, pyin P. Since ¥ is cofinal
there is a y, in % such that y, > p;. Hence py=y,— () —p1)E¥—-P.
Thus x=y—-p,+p, € (F—-P)+(¥-P)c¥—-P. So F=%—-P.
Also, F=—-X=—-H+P =%+ P.

9.10. Claim. If x €&, there are yy, ¥, in % such that y, < x < ;.

- In fact, Claim 9.9 states that we can write X = Yy —P1= Y2+ D2, P1, P2
eprand y,y,€%. Thus ¥, < x <y,.
By Claim 9.10, it is possible to define for each x in &,

g(x)=inf{ f(y): yEHand y > x}.
9.11. Claim. The function ¢ is a sublinear functional on Z.
The proof of (9.11) is left as an exercise.

For y in %, let y, €¥ such that y,> y. Because f is positive, {(y) <
f(y). Hence f(y) < qfy) for all y in #. The Hahn-Banach Theorem
implies that there is a linear functional f:% — R such that f|]%=f and
qu on £.Ifx €P, then —x< 0 (and 0 €%¥). Hence q(— x) < f(0).

Thus —f(x)= /(- x) <q(—x) <0, or f(x) = 0. Therefore f is positive.
a

9.12. Corollary. Let (¥,<) be an ordered vector space with an order unit e.
If % is a linear manifold in & and e €%, then any positive linear functional
defined on % has an extension to a positive linear functional defined on % .

EXERCISES
1. Prove Proposition 9.3.
2. Prove Proposition 9.4,

3. Show that e is an order unit for (&,1) if and only if for every x in & there is a
8> 0 such that e + &x >0 for 0 <t <8.

4. Show that C(R), the space of all continuous real-valued functions on R, has no
order unit.

5. Prove (9.11).

6. Characterize the order units of C,(X). Does C,(X) always have an order unit?

H
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7. Characterize the order units of C,(X) if X is locally compact. Does C,(X)
always have an order unit?

8. Let =M, (R), the 2 X 2 matrices over R. Define A in M, (R) to be positive if
A = A% and (Ax, x) = 0 for all x in R2. Characterize the order units of M, (R).

9. If | <p<ccand 1= L?(0,1), define f < g to mean that f(x) < g(x) a.e.
Show that & is an ordered vector space that has no order unit.

§10. The Dual of a Quotient Space and a Subspace

Let & be a normed space and A <Z.If f €EZ*, then f|.#, the restriction
of f o A, belongs to #* and ||f|#)]| < ||f]|. According to the
Hahn-Banach Theorem, every bounded linear functional on . is obtain-
able as the restriction of a functional from £ *. In fact, more can be said.

Note that if #*={geX*.g(H) = 0} (note the analogy with Hilbert
space notation); then .4 * is a closed subspace of the Banach space & *.
Hence & * /4 * is a Banach space. Moreover, if f + # *€ & */# * , then
f+ A+ induces a linear functional on .#, namely f|.#.

10.1. Theorem. If # <% and M ={gEX*:g(M) = (), then the
map p:X*/ M+ —> MA* dejnedby

o(f+ M) =flM
IS an isometric isomorphism.

PRrooOF. It is easy to see that p is linear and injective. If f € £ * and
gEML, then ||f|A|=|I(f+8)|A||<|f + g||l. Taking the infimum over
all g we get that ||fl.Z|<|If + .#*||. Suppose ¢ € A *. The Hahn-Banach
Theorem implies that there is an fin & * such that f|l.# = ¢ and
IAl = li¢ll- Hence ¢ = p(f + A *)and [|¢]| = /Il 2 If + A *||.

Now consider Z/4; what is (Z/#4) *? Let Q: & —> %/#A be the natural
map. If f €(Z/HA)*, then foQEZ* and |f Q| <||fll. (Why?) This
gives a way of mapping (Z/#)* - Z*. What is its image? Is it an
isometry?

10.2. Theorem. If £ <% and Q: & > /M is the natural map, then
p(f) =f° Q defines an isometric isomorphism of (Z/# Y*onto M *.

PrRoOF.If f€ (Z/M#)* and y € M, then foQ(y)=0,30 foQ EM".
Again, it is easy to see that p: (Z/M)*— .# " is linear and, as was seen
earlier, lo(/ I <IIfll. Let {x, + A} be a sequence in Z/A# such that
Ix, + A <1and |f(x, + #)| — ||fll. For each n there is a y, in & such

that IIx, + Yull <L Thus lo(f)lI 2 1e(f XX, + )| = If(x, + )= I,
S0 p is an isometry.
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To see that p is surjective, let g € 4 *; then g € X* and g(A) = 0.
Define f:&/M# —F by f(x+ A) = g(x). Because g(A) =0, f is well
defined. Also, if x € X and y € A, |f(x + A)| = |g(x)| = |g(x + y)| <
liglllx + y||. Taking the infimum over all y gives |[f(x + #)|<|iglj|lx+
M. Hence f € (Z/HA)* p(f) =8 and Nl < lle(HI- [

§11. Reflexive Spaces

If X is a normed space, then we have seen that X* is a Banach space (5.4).
Because X * is a Banach space, it too has a dual space (X *)* = X * * and
X * * ig a Banach space. Hence X ** has a dual. Can this be kept up?
Before answering this question, let S examine a curious phenomenon. If
x € X, then x defines an element % of Z **; namely, define %: X * = F by

11.1 £(x*) = x*(x)

for every x* in X* Note that Corollary 6.7 implies that ||| =||x|| for all
x in X. The map x — % of &~ X** is called the natural map of X into
its second dual.

11.2.  Definition. A normed space X is reflexive if X** = {X:x €X'},
where X is defined in (11.1).

First note that a reflexive space X is isometrically isomorphic to X **,
and hence must be a Banach space. It is not true, however, that a Banach
space X that is isometric to X * * is reflexive. The definition of reflexivity
stipulates that the isometry be the natural embedding of X into X ** In
fact, James [1951] gives an example of a nonreflexive space X that is
isometric to X * *.

11.3.  Example, If 1 <p <oo, LP(X,2,pn) is reflexive.

11.4. Example. ¢, is not reflexive. We know that ¢ =J. so c&* = (1)*
= 1. With these identifications, the natural map cy,—c&* is precisely the
inclusion map ¢, — I .

A discussion of reflexivity is best pursued after the weak topology is

understood (Chapter V). Until that time, we will say adieu to reflexivity.

EXERCISES
1. Show that (2 *)** and (Z* *)* are isometrically isomorphic.
2. Show that C,(X) is reflexive if and only if X is finite.

3. Let A <% and let pg: F > ZF** and p,: M — MA** be the natural maps. If
1: # > X is the inclusion map, show that there is an isometry ¢: #**— F**
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such that the diagram

ax P G

a K

M ——— >
pu

commutes. Prove that ¢(M**)= (M)t ={x**eT**: x**(A*)=0}.

4. Use Exercise 3 to show that if & is reflexive, then any closed subspace of  is
also reflexive.

§12. The Open Mapping and Closed Graph Theorems

12.1. The Open Mapping Theorem. If &, % are Banach spaces and A:
X — Y is a continuous linear surjection, then A(G) is open in Y whenever G
is open in & .

Proor For r > 0, let B(r) = {x €Z:||x||< r].
12.2. Claim. 0 €intcl A(B(r)).

Note that because A is surjective, Y = UF_cl[A(B(kr/2))] =
Uz‘; Kl A( B( 1/2))]. By the Baire Category Theorem, there is a k> 1 such
that k cl[ A( B( #/2))] has nonempty interior. Thus V = int{ cl[ A( B( r/2))]}
# Q LIf yeV,let s> 0 such that {yE€ Y: [ly—yll<s}c¥Vc
cl A(B(r/2)). Let ye %, |y||< s. Since yy € cl A( B(r/2)), there is a
sequence {x, }in B(r/2) such that A(x,)—> y,. There is also a sequence
{z,} in B(r/2) such that A(z,)— y, + y. Thus A(z,—x,)—y and
{z,—x,}C B(r); that is, {y € Y: |lyl|<s} S cl A(B(r)). This estab-
lishes Claim 12.2.

It will now be shown that

123 cd A(B(r/2)) c A(B(r)).

Note that if (12.3) is proved, then Claim 12.2 implies that 0 € int A(B(r))
for any r > 0. From here the theorem is easily proved. Indeed, if G is an
open subset of %, then for every x in G let r, > 0 such that B(x;r,)<C G.
But 0 € int A( B( r,)) and so A(x) € int A( B(x;r.)). Thus there is an
5,> 0 such that U ={y€ Y: |y — A(x)||<s,} S A(B(x;r,)). There-
fore A(G) 2 U{ U;:x€ G}. But A(x) €U, so A(G) = U{ U,: x€ G} and
hence A(G) is open.

To prove (12.3), fix y, in cl A(B(r/2)). By (12.2) 0 € int[c] A(B2 *r))].
Hence [y, —cl A(BQ7?r))] n A( B(r/2))+0. Let x, € B(r/2) such that
A(xy) € [y, — ¢l A(BQ27*r))); now A(x;) = y;— ¥y, where », €
cl A( B(22r)). Using induction, we obtain a sequence {x, }in & and a
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sequence { y,}in % such that

@) x,€ B(27"r),
12.4 4 (i) Yo € clA(B(27"r)),
(iif) Yo = Yu— A(x,).

But ||x,/l<27"r, so L¥||x,||<oo; hence x = X% ;x, exists in X and
[|x|| < r. Also,

™=

A(x,) = Z(h‘)ﬁwl) = Yl = Yus1-
k=1 k=1

But (12.4ii)) implies {|y,|| <||4|]2""r; hence y,— 0. Therefore y, =
YP_1A(x,) = A(x) € A(B(r)), proving (12.3) and completing the proof of
the theorem. W

The Open Mapping Theorem has several applications. Here are two
important ones.

12.5. The Inverse Mapping Theorem. Zf X and Y are Banach spaces and A:
X — Y is a bounded linear transformation that is bijective, then A~ 1 is
bounded.

Proor. Because A is continuous, bijective, and open by Theorem 12.1, A is
a homeomorphism. W

12.6. The Closed Graph Theorem. Zf X and Y are Banach spaces and A:
X = Y is a linear transformation such that the graph of A,

grad={x®Ax€Z¥e,¥ xc %)
is closed, then A is continuous.

Proor. Let ¥ = gra A. Since X © ;% is a Banach space and ¥ is closed, ¥
is a Banach space. Define P: 9> X by P(x® Ax) = x. It is easy to check
that P is bounded and bijective. (Do it). By the Inverse Mapping Theorem,
P &> % is continuous. Thus A: & — Y is the composition of the
continuous map P~ ': X > % and the continuous map of ¥ > % defined by
X ® Ax — Ax; A is therefore continuous. [ |

Let X= all functions f: [0, 1]—F such that the derivative f’ exists and
is continuous on [0, 1]. Let #=C[0,1] and give both X and Y the
supremum norm: ||f]] = sup{ [f(¢#)|:#€[0,1]}. So X is not a Banach space,
though Y is. Define A: X > Yby Af = f’. Clearly, A is linear. If { f,}C X
and (f,, f[)H—=(f, g in Xx ¥, then f,’— g uniformly on [0, 1]. Hence

L) £00) = fotfn’(S) ds —>f0tg(S)dS-
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But f,(1) = £,(0) = f(r) = f(0), s0
f() = 1(0) + [(g(s) ds.
0

Thus f’ = g and gra A is closed. However, A is not bounded. (Why?)

The preceding example shows that the domain of the operator in the
Closed Graph Theorem must be assumed to be complete. The next example
(due to Alp Eden) shows that the range must also be assumed to be
complete.

Let & be a separable infinite-dimensional Banach space and let {e,:
i € I} be a Hamel basis for & with |le;]| = 1 for all i. Note that a Baire
Category argument shows that I is uncountable. If x €, then x = X,a,e;,
a,€F, and a; = 0 for all but a finite number of i in 1. Define ||x||,=L,|e,|.
It is left as an exercise for the reader to show that ||-||; is a norm on Z.
Since |le;|| = 1 for all i ||x|| <X, = ||x|l;. Let =% with the norm
I|-1l; and let T: % — % be defined by T(x) = x. Note that it was just
shown that T~ % —>% is a contraction. Therefore gra T ! is closed and
hence so is gra 7. But T is not continuous because if it were, then 7 would
be a homeomorphism. Since & is separable, it would follow that % is
separable. But % is not separable. To see this, note that |le; —el|; = 2 for
i# j and since I is uncountable, % cannot be separable.

When applying the Closed Graph Theorem, the following result is useful.

1277, Proposition. If & and Y are normed spaces and A: & = Y is a linear
transformation, then gra A is closed if and only if whenever x,— 0 and
Ax, =y, it must be that y = 0.

Proor. Exercise 3.

Note that (12.7) underlines the advantage of the Closed Graph Theorem.
To show that A is continuous, it suffices to show that if x,-— 0, then
Ax, = 0. By (12.7) this is eased by allowing us to assume that {Ax,} is
convergent.

It is possible to give a measure-theoretic solution to Exercise 2.3, but here
is one using the Closed Graph Theorem. Let (X, £, 1) be a u-finite measure
space, 1 <p <oo, and ¢: X »F an Q-measurable function such that
of € LP(p) whenever f € L?(p). Define A: L?(p)~—> L?(p) by Af = ¢f.
Thus A is linear and well defined. Suppose f,— 0 and ¢f, —> g in L?(p).
If 1 <p <oo, then f, » 0 in measure. By a theorem of Riesz, there is a
subsequence { f,, } such that f;,(x) = 0 ae. [p]. Hence ¢(x)f, (x)— 0 a.c.
[w]. This implies g = 0 and so gra A is closed. If p = oo, then f,(x) — 0
a.c. [u] and the same argument implies gra A is closed. By the Closed Graph
Theorem, A is bounded. Clearly, it may be assumed that ||4| = 1. If §> 0,
let E = {x: |¢(x)|= 1 + S}. Now [[4"||< 1, so [|¢"fll, <|Ifll, for all
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n> 1. Thus

105 = flol"ee dp = (1+8)" [ 1717 di.

But (1 + 8)"”—> 00 as n— co. Hence [g|f1?dp =0 for each f in LP(p),
and p(E) = 0. It follows that ¢ € L*(pu) and |¢|< 1 a.e. [ul

12.8. Definition. If &, Y are Banach spaces, an isomorphism of & and Y
is a linear bijection T: & — % that is a homeomorphism. Say that £ and Y
are isomorphic if there is an isomorphism of Z onto Y.

Note that the Inverse Mapping Theorem says that an isomorphism is a
continuous bijection.

The use of the word isomorphism is counter to the spirit of category
theory, but it is traditional in Banach space theory.

EXERCISES

1. Suppose % and % are Banach spaces. If A € Z(Z,%) and ran A is a second
category space, show that ran A is closed.

2. Give both CV[0,1] and C[0,1] the supremum norm. If A: C[0,1]— C[0,1] is
defined by Af = f’, show that A is not bounded.

3. Prove Proposition 12.7.

4. Let & be a vector space and suppose |||, and ||. |}, are two norms on & and
that .#, and #, are the corresponding topologies. Show that if £ is complete in
both norms and .#, 2.%, then £ = .%.

5. Let & and % be Banach spaces and let A € B(Z,%). Show that there is a
constant ¢ > 0 such that ||4x||>c||x|| for all x in & if and only if ker4 = (0)
and ran A is closed.

6. Let X be compact and suppose that % is a Banach subspace of C(X). If Eis a
closed subset of X such that for every g in C(E) there is an fin & with
N E =g, show that there is a constant ¢ > 0 such that for each g in C(E) there is
an f in & with flE = g and max{|[f(x)]: x € X} <cmax{|g(x)|: x € E}.

7 let | <p <oo and suppose (a,,) is a matrix such that (Af )(i) =X e, ;(J)
defines an element Af of [? for every f in[”. Show that A € B([*).

§. Let (X, £,p) be a u-finite measure space, 1 <p <oo, and suppose that k:
X x X —Fis an 2 X £ measurable function such that for fin L”(p) and a.e.
x, k(x, ) f(-)eIXp) and (Kfi(x) = [k(x,y)f(y)du(y) defines an element
Kf of L?(u). Show that K: L?(u)— L?(pn) is a bounded operator.
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§13. Complemented Subspaces of a Banach Space

If X is a Banach space and A < X, say that & is algebraically comple-
mented in X if there is an A< X such that # n A= (0) and A + A =X,
Of course, the definition makes sense in a purely algebraic setting, so the
requirement that . and A" be closed seems fatuous. Why is it made?

If A is a linear manifold in a vector space X (a Banach space or not),
then a Hamel-basis argument can be fashioned to produce a linear manifold
A such that £ n A= (0) and A + &= X. So the requirement in the
definition that . and A" be closed subspaces of the Banach space X
makes the existence problem more interesting. Also, since we are dealing
with the category of Banach spaces, all definitions should involve only
objects in that category.

If # and A" are algebraically complemented closed subspaces of a
normed space &, then A: A ®, A — X defined byA(m & n)=m+ nis a

linear bijection. Also, ||[A(m @ n)|| = ||m + n|| <||mi| + |in]| = ||m & n||.
Hence A is bounded. Say that 4 and A" are topologically complemented if
A is a homeomorphism; equivalently, if |||m + na||=|mi+||n|| is an

equivalent norm. If X is a Banach space, then the Inverse Mapping
Theorem implies A is a homeomorphism. This proves the following.

13.1. Theorem. If a pair of subspaces of a Banach space are algebraically
complementary, then they are topologically complementary.

This permits us to speak of complementary subspaces of a Banach space
without modifying the term. The proof of the next result is left to the reader.

13.2. Theorem. (a) If # and N are complementary subspaces of a Banach
space X and E: X — X is defined by E( m +n) = m for m in # and n in
N, then E is a continuous linear operator such that E =FE ranE= 4, and
kerE=A".(0) IfE€E®B(X) and E* = E, then # =ran E and A = ker E
are complemented subspaces of X.

If # <X and A is complemented in X, its complementary subspace
may not be unique. Indeed, finite-dimensional spaces furnish the necessary
examples.

A result due to R. S. Phillips [1940] is that ¢, is not complemented in T .
A straightforward proof of this can be found in Whitely [1966]. Murray
[1937] showed that [?,p # 2, p > I has uncomplemented subspaces. This
seems to be the first paper to exhibit uncomplemented subspaces of a
Banach space.

Lindenstrauss [1967] showed that if # is an infinite-dimensional sub-
space of I” that is complemented in I, then # is isomorphic to I. This
same result holds if I is replaced by /7,1 <p <00, ¢, or .
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Does there exist a Banach space & such that every closed subspace of &
is complemented? Of course, if Z is a Hilbert space, then this is true. But
arc there any Banach spaces that have this property and are not Hilbert
spaces? Lindenstrauss [1971] proved that if Z is a Banach space and every
subspace of & is complemented, then & is isomorphic to a Hilbert space.

EXERCISES

1. If & is a vector space and 4 is a linear manifold in &, show that there is a
linear manifold A" in & such that # N A= (0) and A + V=% .

2. Let & be a Banach space and let E: £ — % be a linear map such that E? = E
and both ran E and ker E are closed. Show that E is continuous.

3. Prove Theorem 13.2.

4. Let & be a Banach space and show that if .# is a complemented subspace of &,
then every complementary subspace is isomorphic to Z/.4.

5. Let X be a compact set and let Y be a closed subset of X. A simultaneous

extension for Y is a bounded linear map T: C(Y) — C(X) such that for each g

in CY), T()|Y =g Let G(X\Y) ={fe CX): f(y) =0 for all y in Y}.

- Show that if there is a simultaneous extension for Y, then Cy( X\ Y) is comple-
mented in C(X).

6. Show that if Y is a closed subset of [0, 1], then there is a simultancous extension
for Y (see Exercise 5). (Hint: Write [0, 1J\'Y as the union of disjoint intervals.)

7. Using the notation of Exercise 5, show that if Y is a retract of X, then
Gy (X\'Y) is complemented in C(X).

§14. The Principle of Uniform Boundedness

There are several results that may be called the Principle of Uniform
Boundedness (PUB) and all of these are called the PUB by various
mathematicians. In this book the PUB will refer to any of the results of this
section, though in a formal way the next result plays the role of the founder
of the family.

14.1. Principle of Uniform Boundedness (PUB). Ler & be a Banach space
and 9 a normed space. If L B(Z, 9) such that for each x in %,
sup{||Ax||: A €} < co, then sup{||4]: A EH}<o0.

Proor. (Due to William R. Zame) For each x in & let M(x) = sup{||Ax||:
A e}, s0l|lAx||< M(x) for all x in &. Suppose sup{ ||[4)]: A €} =o0.
Then there is a sequence {A,} ¢« and a sequence {x, } of vectors in &
such that ||x,)|=1 and ||4,x,]]> 4 . Let y,=2 "x,; thus |jy,]l=2"" and
14, yll > 2"
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14.2. Claim. There is a subsequence {,, } such that for k> 1:

(a) ”A"k+1y”k+1|| >1+ k + 27=1M(y,,/);
(b) W, <27 Msup{i4, li: 1 <j<k}]™h

The proof of (14.2) is by induction. Let n; = 1. The induction step is
valid since ||y,||— O and ||4,,l]| = cc. The details are left to the reader.

Since Zillyn Ml <00, Xyy, = yin & (here is where the completeness of £
is used). Now for any %2 = 1,

k
” nkHyH = EAnkHyn +Ank+1ynk+1 + E Ank+1yn
Jj=1 J=k+2
k o0
= A"k+1y”k+l E "k+1y” E A"k+1y”,
Jj=1 J=k+2
k
2||A"k+1-y"k+1 E "k+1y" + E A"k+1y"
j= J=k+2

oo
>1+k+ EM(y,, [EM(y,,) + 2 4.0 llyn,ll}
j=1 i j=k+2
e o]
>1+k— Yy 277!
J=k+2

> k.

That is, M(y) >k for all %2, a contradiction. ]

14.3.  Corollary. If & is a normed space and A C X , then A is a bounded set
if and only if for every fin & *,sup{|f(a)|:a € A} <.

Proor. Consider Z as a subset of (& *, IF) (= & **) by letting X(f) =
flx) for every fin & *. Since & * is a Banach space and ||x|| =||X|| for all
x, the corollary is a special case of the PUB. a

144. Corollary. If & is a Banach space and A CZ *, then A is a bounded
set if and only if for every x in &, sup{|f(x)|:f € A} <oo0.
Proor. Consider Z* as #(Z,F). [ ]

Using Corollary 14.3, it is possible to prove the following improvement of
(14.1).

14.5. Corollary. If & is a Banach space and Y is a normed space and if
L CRB(Z,Y) such that for every xin X and g in Y *,

sup{|g(4(x))|: A €/} < o0,
then sup{ ||4]|:A € ¥} <o0.
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Proor. Fix x in Z. By the hypothesis and Corollary 14.3, sup{ ||[4A(x)|:
A e/} < co. By (14.1) sup{||4]: A € F}<c0. ]

A special form of the PUB that is quite useful is the following.

14.6. The Banach-Steinhaus Theorem. Zf X and % are Banach spaces and
{A,} is a sequence in B(X,¥ ) with the property that for every x in X there
isayin ¥ such that ||A,x— y|| — 0, then there is an A in B(X, %) such
that ||A,x — Ax|| = 0 forevery x in X and sup||4,]| <oo.

Proor If x € X, let Ax = lim A,x. By hypothesis A: & > % is defined
and it is easy to see that it is linear. To show that A is bounded, note that
the PUB implies that there is a constant M > 0 such that ||[4,]] < M for all
n. If x € X and ||x||< 1, then for any n> I, ||[Ax|| <|4x — A, x| +
[4,x|| < WlAx — A,x|| + M. Letting n— oo shows that ||[Ax||<M
whenever ||x|| < 1. L]

The Banach-Steinhaus Theorem is a result about sequences, not nets.
Note that if Z is the identity operator on X and for each n > I, A,, = n~ Y
and for n < 0, A,, = nl, then {A ,:n €Z}is a countable net that converges
in norm to O. but the net is not bounded.

14.7.  Proposition. Let X be locally compact and let { f, } be a sequence in
C.(X). Then [f,du— [fdp for every p in M(X) if and only if sup,||f,||<oo
and f,(x) = fix) for every x in X.

ProoFE. Suppose [f,dp— [fdp for every p in M(X). Since M(X) =
C.(X)*, (14.3) implies that sup,||f,|| <oc. By letting p =46, the unit point
mass at x, we see that ff, d8, = f,(x) = fix). The converse follows by the
Lebesgue Dominated Convergence Theorem. L]

EXERCISES

J
1. Here is another proof of the PUB using the Baire Category Theorem. With the

notation of (14.1), let B,= {x € &:||Ax||< n for all A in &/ }. By hypothesis,
UY_,B,=%. Now apply the Baire Category Theorem.

31 <p<oo and {x,} €7, then X% ,x,(/)y(j)—> 0 for every y in [,

1/p+ l/q = L, if and only if sup,||x,||, < cc and x,(j)— O for every j > L.

3. If {x,} ¢/, then X2 1x,())y(j)— 0 for every y in ¢q if and only if
sup,||x,|l; <occ and x,,(j) — 0 for every j > 1.

e

L If (X, 82,p) is a measure space, 1 <p <oo, and { f,} S L7( X, $2, ), then

ffgdu— 0 for every g in L9(u),1/p+ l/q = 1, if and only if sup{|lf.ll,:
n 21} < oo and for every set E in 2 with p(E) < oo, [rf,dp— 0 as n - oo.

5.If (X, £2,p) is a u-finite measure space and { f,} is a sequence in L'( X, 2, ),
then ff,gdp— 0 for every g in L*(p) if and only if sup{|lf,ll,:n=1}<oo
and [¢f, dp — O forevery E in(2.
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v

6.

7.

Let ¥ be a Hilbert space and let € be an orthonormal basis for 5. Show that
a sequence {h,}in J# satisfies (h,,h) — O for every hin # if and only if
sup{|lh,ll:n=>1}< cc and (h,,e)— 0 for every e in &.

If X is locally compact and {p,} is a sequence in M(X), then L(p,)~ 0 for
every L in M(X)* if and only if sup{||u,|l:7n=1}< cc and p,(E)— 0 for
every Borel set E.

. In (14.6), show that ||4]|<limsup||4,]|.

. If (S, d) is a metric space and X is a normed space, say that a function

f:S— X is a Lipschitz function if there is a constant M > 0 such that
[f(x) = f(O)l < Md(s, ) for all s5,¢ in S. Show that if f:S— X is a function
such that for all L in &*, L of: S >F is Lipschitz, then f:S—> X is a
Lipschitz  function.

. Let X be a Banach space and suppose {x,} is a sequence in X that is linearly

independent and such that for each x in X there are scalars {a, } such that
lim,, — o0 1% —2f 210X, |[ = 0. Such a sequence is called a basis. (a) Prove that
X is separable. (b) Let ¥ = {{a,, }€ IF: X% ,a,x, converges in X} and for
y = {a,,} in ¥ define ||y|| = sup,||X;_,a, x.||. Show that % is a Banach space.
(¢) Show that there is a bounded bijectionT: ¥ —>¥. (d) If n=> 1 and f,:
¥ —F is defined by f,(EF-,0,%,) = «,, show that f,€Z*. (e) Show that
X, € the closed linear span of {x,:k #n}.



CHAPTER IV

Locally Convex Spaces

A topological vector space is a generalization of the concept of a Banach
space. The locally convex spaces are encountered repeatedly when discuss-
ing weak topologies on a Banach space, sets of operators on Hilbert space,
or the theory of distributions. This book will only skim the surface of this
theory, but it will treat locally convex spaces in sufficient detail as to enable
the reader to understand the use of these spaces in the three areas of
analysis just mentioned. For more details on this theory, see Bourbaki
[1967], Robertson and Robertson [1966], or Schaefer [1971].

§1. Elementary Properties and Examples

A topological vector space is a vector space that is also a topological space
such that the linear structure and the topological structure are vitally
connected.

1.1. Definition. A topological vector space (TVS) is a vector space %
together with a topology such that with respect to this topology
(a) the map of X & — & defined by (x, y)= x + y is continuous;
(b) the map of F x & — % defined by (a, X) = ax is continuous.
It is easy to see that a normed space is a TVS (Proposition 111.1.3).

Suppose & is a vector space and £ is a family of seminorms on %. Let
be the topology on % that has as a subbase the sets {x:p(x —x,)<e},
where p € £, x, €%, and €> 0. Thus a subset U of & is open if and only
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if for every x4 in U there are p,,..., p,in%Pande,.. . , ¢, > 0 suchthat

To{xEZ:pi(x—xy)<g}CU. Tt is not difficult to show that & with
this topology is a TVS (Exercise 2).

1.2. Definition. A locally convex space (LCS) is a TVS whose topology is
defined by a family of seminorms £ such that N pexl X p® = 0 = (0

The attitude that has been adopted in this book is that all topological
spaces are Hausdorff. The condition in Definition 1.2 that N peo{ X plx)
= 0} = (0) is imposed precisely so that the topology defined by £ be
Hausdorff. In fact, suppose that x # y. Then there is a p in & such that
p(x—3) # 0 let p(x—y) >e>0. IfU = {z: p(x—2) <3e} and V =
{zp(y —2) <3¢}, then UNV =0 and U and V' are neighborhoods of x
and y, respectively.

If & is a TVS and x,€Z, then x = x +x is a homeomorphism of %
also, if a€F and a# 0, x = ax is a homeomorphism of Z (Exercise 4).
Thus the topology of & looks the same at any point. This might make the
next statement less surprising.

1.3. Proposition. Let & be a TVS and let p be a seminorm on & . The
following statements are equivalent.

(a) p is continuous.

(b) {x €Z: p(x) <1} is open.

(c) 0 € int{x €ZX: p(x) <1}.

(d 0 € int{x €Z: px) < 1}.

(e) p is continuous at 0.

(f) There is a continuous seminorm q on & such that p < gq.

Proor. It is clear that (a) = (b) = (¢) = (d).

(d) implies (e): Clearly (d) implies that for every €>0,0 € int{ x €Z":
p(x) <e};soif {x,} is a net in & that converges to 0 and &> 0, there is
an i, such that x;€ {x: p(x) <e} for i =i, that is, p(x,)<e for i = i,
So p is continuous at 0.

(e) implies (a): If x, = x, then |p(x)— p(x;)]< p(x— x,). Since x — X,
— 0, (e) implies that p(x— x,) = 0. Hence p(x;)— p(x).

Clearly (a) implies (f). So it remains to show that (f) implies (e). If x, = 0
in &, then g(x;)— 0. But 0 < p(x,)<4q(x;), so p(x;,)— 0. [ ]

1.4. Proposition. Tf ZisaTVS and p4,..., p, are continuous seminorms,
thenp, + --- +p, and max ( p,x) are continuous seminorms. If {p;}isa
family of continuous seminorms such that there is a continuous seminormgq
with p, <q for all i, then x — sup,{ p,(x)} defines a continuous seminorm.
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Proor. Exercise.

If # is a family of seminorms on Z that makes X into a LCS, it is often
convenient to enlarge & by assuming that @ is closed under the formation
of finite sums and supremums of bounded families [as in (1.4)]. Sometimes it
is convenient to assume that & consists of all continuous seminorms. In
either case the resulting topology on & remains unchanged.

1.5. Example. Let X be completely regular and let C(X) = all continuous
functions from X into F.If K is a compact subset of X, define pe(f)=
sup{|{f(x)|: x € K }. Then { px: K compact in X} is a family of semi-
norms that makes C(X) into a LCS.

1.6. Example. Let G be an open subset of € and let H(G) be the subset of
Cc(G) consisting of all analytic functions on G. Define the seminorms of
(1.5) on H(G). Then H(G) is a LCS. Also, the topology defined on H(G)
by these seminorms is the topology of uniform convergence on compact
subsets-the usual topology for discussing analytic functions.

1.7. Example. Let & be a normed space. For each x* in £*, define
p,.(x) = |x*(x)|. Then p,.is a seminorm and if P={p . x*€eX*} P
makes % into a LCS. The topology defined on % by these seminorms is
called the weak topology and is often denoted by o(Z, Z*).

1.8. Example. Let £ be a normed space and for each x in £ define p,:
Z*— [0, o0) by p(x*)=|x*(x)]. Then p, is a seminorm and £ = { p,:
x €Z } makes £* into a LCS. The topology defined by these seminorms is

called the weak-star (or weak* or wk¥) topology on & *. Tt is often denoted
by o(Z*,%).

The spaces & with its weak topology and I* with its weak* topology are
very important and will be explored in depth in Chapter V.

Recall the definition of convex set from (1.2.4). If q, b € &, then the line
segment from a to b is defined as [a, b] ={th + (1 —t)a: 0 <1<1}. 50 a
set A is convex if and only if [a, b] € A whenever a, b € A. The proof of
the next result is left to the reader.

1.9. Proposition. (a) A set A is conuex if and only if whenever x{,...,X, €A
and t),..., t,€[0,1) with X;t; = 1, then L1, x, € A. (b) If {A: i€l}isa
collection of convex sets, then N ,;A; is convex.

1.10. Definition. If A C &, the conuex hull of A, denoted by co(A), is the
intersection of all convex sets that contain A. If & is a TVS, then the closed
conuex hull of A is the intersection of all closed convex subsets of Z that
contain A; it is denoted by co(A4).
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Since a vector space is itself convex, each subset of X is contained in a
convex set. This fact and Proposition 1.9(b) imply that co(A) is well defined
and convex. Also, co(A) is a closed convex set.

If X is a normed space, then {x: ||x|][<1} and {x: ||x||<1} are both
convex sets. If fe€Z2*, {x:|f(x)|<1}, {x: Ref(x) <1}, {x: Ref(x)>1}
are all convex. In fact, if 7: > % is a real linear map and C is a convex
subset of %, then T"}(C) is convex in X.

111, Proposition. Let Z be a TVS and let A be a convex subset of & . Then
(@) cl 4 is convex; (b)if a €int A and b € cl A, then [a,b)={th + (1 —
1)a: 0 <r<1}Cint A.

Proor. Let a €A, becl A, and 0 <r< 1. Let {x;} be a net in A such
that x, > b. Then #x, + (I —t)a = b + (I —t)a. This shows that

1.12 binclA and ain 4 imply [a, b] C cl A.

Using (1.12) it is easy to show that cl 4 is convex. To prove (b), fix 7,
O<t<1l,and put c = b + (I — t)a, where a € int A and b € cl A. There
is an open set ¥ in X such that 0 €V and @ + V C A. (Why?) Hence for
any d in A

A2d+(1 —t)a+ V)
=Hd~b)+ th+(1— t)(a +V)

= [t(d - b) +(1—-1)V]+ec.

If it can be shown that there is an element d in A such that O € d — b) +
(1 =)V =U, then the preceding inclusion shows that ¢ € int A since U is
open (Exercise 4). Note that the finding of such a d in A is equivalent to
finding a d such that 0 €t XA =)W+ (d—b)or d €b—t ‘A -1)V.
But 0 €—t71(1— )V and this set is open. Since b € cl A, d can be found
in A. |

1.13. Corollary. If A C 1, then E(A) is the closure of co(A).

A set A CZ is balanced if ax€ A whenever x €A and |a|< 1. A set
A is absorbing if for each x in X there is an &> 0 such that tx € A for
0 <t <e. Note that an absorbing set must contain the origin. If a € A,
then A is absorbing at a if the set A —a is absorbing. Equivalently, A is
absorbing at a if for every x in X there is an €> 0 such that a + x € A
for 0 <r<e.

If X is a vector space and p is a seminorm, then V = {x: p(x) <1}is a
convex balanced set that is absorbing at each of its points. It is rather
remarkable that the converse of this is true. This fact will be used to give an
abstract formulation of a LCS and also to explore some geometric conse-
quences of the Hahn-Banach Theorem.
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1.14. Proposition. If Z is a vector space over F and V is a convex, balanced
set that is absorbing at each of its points, then there is a unique seminorm p on
X such thar V = {x €Z: p(x) <1}.

Proo¥r. Define p(x) by
p(x)=inf{t: t=0and x €1V}

Since Vis absorbing, &= U ,nV, so that the set whose infimum is p(x) is
nonempty. Clearly p(0) = 0. To see that p(ax) = |a|p( x), we can suppose
that a # 0. Hence, because V is balanced,

plax) = inf{1> 0: ax€ 1V}

=inf{t>0 xel( )}
)

=inf{t>0 xe(—l

Vv
- felinf| o7 € (1)

= lajp(x).
To complete the proof that p is a seminorm, note that if &, 8= 0 and
a, b €YV, then

B
aa+Bb—(a+B)(a+B + a+Bb)e(a+B)V
by the convexity of V. If x, yE€X, p(x) = &, and p(y) = B, let §> 0.
Then x €(a + 8)V and y€(B + 8)V. (Why?) Hence x + ye(a+8)V
+ (B+ 8V =(a+ B+ 28V (Exercise 11). Letting § = 0 shows that
px+y)<a+ B=p(x)+p(y).

It remains to show that V = { p£)<1}. If p(x) = a < 1, then a<f
< 1 implies x € BV € V since V is balanced. Thus V 2 (x: p(x) < D). If
x €V, then p(x) < 1. Since V is absorbing at x, there is an &€> 0 such
that for 0 <t<e,x+m =y € V. But x = (L+¢) !y, y € V. Hence
px) = @+ p(y)< (1 + 1)<

Uniqueness follows by (111.1.4). ]

The seminorm p defined in the preceding proposition is called the
Minkowski  functional of V or the gauge of V.

Note that if & is a TVS space and V is an open set in %, then V is
absorbing at each of its points.

Using Proposition 1.14, the following characterization of a LCS can be
obtained. The proof is left to the reader.

1.15. Proposition. Let & be a TVS and let % be the collection of all open
convex balanced subsets of Z.Then % is locally convex if and only if % is a
basis for the neighborhood system at 0.
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EXERCISES

1.

10.
11.

12,

13.

14,

Let & be a TVS and let % be all the open sets containing 0. Prove the
Following. (a) If U €%, there is a V in % such that V+ VCU. (b) If U e %,
there is a V in % such that V CU and aV € V for all |a|< 1. (V is balanced.)
[Hint: If We% and aW QU for |a| <, then eW C BU for |B]= 1.)

. Show that a LCS is a TVS.

. Suppose that & is a TVS but do not assume that % is Hausdorff. (a) Show that

% is Hausdorff if and only if the singleton set {0} is closed. (b) If & is
Hausdorff, show that % is a regular topological space.

. Let & be a TVS. Show: (a) if xy,€ I, the map x = X + X, is a homeomor-

phism of & onto &; (b) if a €F and a # 0, the map x> ax is a homeomor-
phism.

Prove Proposition 1.4.

Verify the statements made in Example 1.5. Show that a net {f,} in C(X)
converges to f if and only if f,— f uniformly on compact subsets of X.

. Show that the space H(G) defined in (1.6) is complete. (Every Cauchy net

converges.)

. Verify the statements made in Example 1.7. Give a basis for the neighborhood

system at O.

. Verify the statements made in Example 1.8.

Prove Proposition 1.9.

Show that if A is a convex set and «,B8> 0, then a4 + BA = (a + /?)A. Give
an example of a nonconvex set A for which this is untrue.

If & is a TVS and A is closed, show that A is convex if and only if
1(x+ y)€ A whenever x and y € A,

Let s = the space of all sequences of scalars. Thus s = all functions x: N—F.
Define addition and scalar multiplication in the usual way. If x, y€s, define

& . 1x(n) = y(n)
d(x,y) = n§12 1+ |x(n) —y(n)

Show that 4 is a metric on s and that with this topology s is a TVS. Also show
that s is complete.

Let (X, 0, p) be a finite measure space, let .# be the space of O-measurable
functions, and identify two functions that agree ae. [p].If f, g € A, define

|f — sl
W= [

Then d is a metric on # and (#,d)is a complete TVS. Is there a relationship
between this example and the space s of Exercise 137

dp.

15. U ¥ isaTVSand 4 c ¥, thencl4 =N{A +V: 0 €V and V is open}.
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16.

17.

18.

19.

20.

21.

22,

23.

24,

If & is a TVS and # is a closed linear space, then Z/.# with the quotient
topology is a TVS. If p is a seminorm on &, define p on Z/# by p(x+ HA) =
inf{ p(x+y).ye.#}. Show that pisa seminorm on Z/#4. Show that if & is
a LCS, then so is %/ 4.

If{%:iel} is a family of TVs s, then Z=T1{Z:i€1} with the product
topology is a TVS. If each %, is a LCS, then so is &. If & is a LCS, must each
Z, be a LCS?

If & is a finite-dimensional vector space and 9,7, are two topologies on %
that make & into a TVS, then I, =9,.

If & is a TVS and A is a finite-dimensional linear manifold in &, then # is
closed and % + # is closed for any closed subspace % of %

Let & be any infinite-dimensional vector space and let J be the collection of
all subsets W of & such that if x €W, then there is a convex balanced set U
with x + UC W and U N A open in A for every finite-dimensional linear
manifold # in 2. (Each such # is given its usual topology.) Show: (a) (£,7)
is a LCS; (b) a set F is closed in & if and only if F N.# is closed for every
finite-dimensional subspace A of I, (c) if Y is a topological space and f:
Z - Y (not necessarily linear), then f is continuous if and only if f|.# is
continuous for every finite-dimensional space ; (d) if % is a TVS and T':
% —> ¥ is a linear map, then T is continuous.

Let X be a locally compact space and for each ¢ in C,(X), define p+(f) =
19l for f in C,(X). Show that p, is a seminorm on C,(X). Let B = the
topology defined by these seminorms. Show that (C,(X), B)is a LCS that is
complete. B is called the strict topology.

For 0 < p< 1, let {# = all sequences x such that X%_,|x(n)]’ < cc. Define
d(x,y)=X%_i|x(n)—y(n) (no pth root). Then d is a metric and (I7,d) is
a TVS that is not locally convex.

Let & and ¥ be locally convex spaces and let T: £ —> % be a linear
transformation. Show that T is continuous if and only if for every continuous
seminorm p on %, po T is a continuous seminorm on % .

Let 2 be a LCS and let G be an open connected subset of Z. Show that G is
arcwise connected.

§2. Metrizable and Normable Locally Convex Spaces

Which LCS’s are metrizable? That is, which have a topology which is
defined by a metric? Which LCS’s have a topology that is defined by a
norm? Both are interesting questions and both answers could be useful.

If # is a family of seminorms on % and Z is a TVS, say that &

determines the topology on % if the topology of & is the same as the
topology induced by 9.
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2.1. Proposition. Let { py, ps,..- } be a sequence of seminorms on & such
that N_{ x: pfx) = 0) = (0). For x andy in %, define

S Pulx—y)
d(x,y) = Y2 ntn= " JJ
(x,y) El T r = )

Then d is a metric on Z and the topology on Z dejined by d is the topology on
X defined by the seminorms { py, pa,...}. Thus a LCS is metrizable if and
only if its topology is determined by a countable family of seminorms.

Proor. It is left as an exercise for the reader to show that d is a metric and
induces the same topology as {p,}.If £ is a LCS and its topology is
determined by a countable family of seminorms, it is immediate that % is
metrizable. For the converse, assume that 2 is metrizable and its metric is
p. Let U, = {x: p(x, 0) < I/n }. Because & is locally convex, there are
continuous seminorms ¢i,..., ¢, and positive numbers €,,...,€, such that
ﬂle{x: q,(x) <g}CU,. If p, = e lqy + - +e'q, then x €U,
whenever p,(x) < 1. Clearly, p, is continuous for each n. Thus if x;— 0 in
%, then for each n, p,(x,) = 0 as j— co. Conversely, suppose that for
cach n, p,(x;)=>0as j—co. If e> 0, let n >¢!. Then there is a j, such
that for j = jo, p,(x,) < 1. Thus, for j=j,, x, €U, < {x: p(x,0)< E}.
That is, p(x;, 0) <& for j= j, and so x; = 0 in Z. This shows that { p,/
determines the topology on 2. (Why?) [ ]

2.2. Example. If C(X) is as in Example 1.5, then C(X) is metrizable if and
only if X = U¥_,K,, where each K, is compact, K;C K,C---, and if K
is any compact subset of X, then K C K, for some n.

2.3, Example. If X is locally compact and C(X) is as in Example 1.5, then
C(X) is metrizable if and only if X is u-compact (that is, X is the union of
a sequence of compact sets). If H(G) is as in Example 1.6, then H(G) is
metrizable.

If  is a vector space and d is a metric on %, say that d is translation
invariant if d(x + 7z, y + z) = d(x, y) for all x, y, z in &. Note that the
metric defined by a norm as well as the metric defined in (2.1) are
translation invariant.

24. Definition. A Frechet space is a TVS & whose topology is defined by
a translation invariant metric d and such that (&, d) is complete.

It should be pointed out that some authors include in the definition of a
Frechet space the assumption that £ is locally convex.

2.5. Definition. If Z is a TVS and B C &, then B is bounded if for every
open set U containing 0, there is an €> 0 such that eBC U.
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If & is a normed space, then it is easy to see that a set B is bounded if
and only if sup{ ||b}|: b € B} <0, so the definition is intuitively correct.

Also, notice that if ||-]| is a norm, {x: ||x||<1} is itself bounded. This is
not true for seminorms. For example, if C(R) is topologized as in (1.5), let
pf) = sup{ |f(¢)|:0<r<1}. Then p is a continuous seminorm. How-
ever, {f: p(f)<1} is not bounded. In fact, if f, is any function in C(R)
that vanishes on [0,1],{af,: a€R}<C {f: p(f) <1}. The fact that a
normed space possesses a bounded open set is characteristic.

2.6.  Proposition. If X is a LCS, then & is normabile if and only if  has a
bounded open set.

Proov. It has already been shown that a normed space has a bounded open
set. So assume that £ is a LCS that has a bounded open set U. It must be
shown that there is norm on Z that defines the same topology. By
translation, it may be assumed that 0 €U (see Exercise 4i). By local
convexity, there is a continuous seminorm p such that {x: p(x) <1}=V
CU (Why?). It will be shown that p is a norm and defines the topology
on Z.

To see that p is a norm, suppose that x €%, x # 0. Let W, W, be
disjoint open sets such that O €W, and x €W,. Then there is an > 0
such that W,2eU 2¢V. But eV = {y: p(y) < E}. Since x €W, p(x) =&
Hence p is a norm.

Because p is continuous on Z, to show that p defines the topology of %
it suffices to show that if ¢ is any continuous seminorm on Z, there is an
a> 0 such that ¢ <ap (Why?). But because ¢ is continuous, there is an
e> 0 such that {x: g(x) <1}2eU2eV. That is, p(x) <e implies q(x)
<1. By Lemma 111.14, g<e™'p. =

EXERCISES

1. Supply the missing details in the proof of Proposition 2.1.
2. Verify the statements in Example 2.2.

3. Verify the statements in Example 2.3.

4, Let & be a TVS and prove the following: (a) If B is a bounded subset of &, then
so is cl B. (b) The finite union of bounded sets is bounded. (c) Every compact set
is bounded. (d) If B € %, then B is bounded if and only if for every sequence
{x,} contained in B and for every {a, } incy,a,x,—>0in%. () fYisa
TVS, T4 — Y is a continuous linear transformation, and Bis a bounded
subset of &, then T(B) is a bounded subset of Y. (f) If & is a LCS and BC &,
then B is bounded if and only if for every continuous seminorm p, sup{ p(h):
beB}<oo. (g If ¥ isanormed space and B € %, then B is bounded if and
only if sup{||b|j:b €B}<co. (h) If & is a Frechet space, then bounded sets
have finite diameter, but not conversely. (i) The translate of a bounded set is
bounded.
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5. If ¥ is a LCS, show that & is metrizable if and only if & is first countable. Is
this equivalent to saying that {0} is a Gj set?

6. Let X be a locally compact space and give C,(X) the strict topology defined in
Exercise 1.21. Show that a subset of C,(X) is P-bounded if and only if it is norm
bounded.

7. With the notation of Exercise 6, show that (C,(X), B) is metrizable if and only if
X is compact.

8. Prove the Open Mapping Theorem for Frechet spaces.

§3. Some Geometric Consequences of the
Hahn-Banach Theorem

In order to exploit the Hahn-Banach Theorem in the setting of a LCS, it is
necessary to establish some properties of continuous linear functionals. The
proofs of the relevant propositions are similar to the proofs of the corre-
sponding facts about linear functionals on normed spaces given in $111.5.
For example, a hyperplane in a TVS is either closed or dense (see 111.5.2).
The proof of the next fact is similar to the proof of (111.2.1) and (1115.3)
and will not be given.

3.1. Theorem. If X isa TVS and f: L-2- -+ F is a linear functional, then the
following statements are equivalent.

(a) f is continuous.
(b) f is continuous at 0.
(¢) f is continuous at some point.
(d) kerf is closed.
(e) x = |f(x)| is a continuous seminorm.
If X is a LCS and 2 is a family of seminorms that defines the topology on
Z, then the statements above are equivalent to the following:

(f) There are py,...,p,in P and positive scalars ay,...,qa, such that
lf(x)|522=10lkpk(x) for all x.

The proof of the next proposition is similar to the proof of Proposition
1.14 and will not be given.

3.2. Proposition. Let X be a TVS and suppose that G is an open convex
subset of X that contains the origin. If

g(x) = inf{ £z >0 and x €1G},

then ¢ is a non-negative continuous sublinear functional and G = {x: q(x) <

1).
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Note that the difference between the preceding proposition and (1.14) is
that here G is not assumed to be balanced and the consequence is a
sublinear functional (¢g( ax) = ag(x)ifa> 0) that is not necessarily a
seminorm.

The geometric consequences of the Hahn-Banach Theorem are achieved
by interpreting that theorem in light of the correspondence between linear
functionals and hyperplanes and between sublinear functionals and open
convex neighborhoods of the origin. The next result is typical.

3.3. Theorem. If Z is a TVS and G is an open convex nonempty subset of &
that does not contain the origin, then there is a closed hyperplane M such that
M NG =0

PRooOF. Case 1. 2 is an R-lincar space. Pick any x, in G and let
H=x,—G Then His an open convex set containing 0. (Verify). By (3.2)
there is a continuous nonnegative sublinear functional ¢: & — R such that
H = {x: q(x) < 1}. Since x, €& H, g(xy5)= 1.

Let ={ax, a€R} and define f,: Y= R by fo(axy) = ag(x,). If
a> 0, then f(axy)=aq(xy)=q(axy); if a< 0, then f(axy) = ag(xy)=<
a<0<qg(axy). So fo<qgon Y. Let f Z—>R be a lincar functional such
that f|% = f, and f<q on Z. Put A = kerf.

Now if x € G, then xqg— x € H and so f(x,) -flx) = f(xq— %) <
q(xy — x) < 1. Therefore flx) > f(xy)— 1 = g(x4)— 1 = 0 for all x in
G. Thus #NG=0

Case 2. Z is a C-linear space. Lemma 111.6.3 will be used here. Using
Case 1 and the fact that & is also an R-linear space, there is a continuous
R-linear functional £+ & —> R such that G Nkerf = A 1L If F(x) = fix) —
if(ix), then F is a C-lincar functional and f= ReF (IIL6.3). Hence
F(x) = 0 if and only if filx) = f(ix) = 0; that is, # =kerF = kerf n
fi kerf ]. So A is a closed hyperplane and A# NG = [. L]

An affine hyperplane in & is a set 4 such that for every x,in %,
M — x4 is a hyperplane. (See Exercise 3.) An affine manifold in & is a set Y
such that for every x,in %, Y- x, is a linear manifold in Z. An qgffine
subspace of a TVS Z is a closed affine manifold.

34. Corollary. Let & be a TVS and let G be an open convex nomempty
subset of X.If Y is an affine subspace of & such that Y N G = O, then there
is a closed affine hyperplane M in X such that Y C M and 4 N G = 0.

Proor. By considering G —x, and Y — x, for any x, in %, it may be
assumed that Y is a lincar subspace of 2. Let Q: & — Z/% be the natural
map. Since Q" HQ(G)) ={y + G-y € Y}, Q(G) is open in Z/¥. It is
easy to see that Q(G) is also convex. Since Y NG =10, 0 & Q(G). By the
preceding theorem, there is a closed hyperplane A in X/Y such that
AN QG) = O. Let # =Q Y(A). Tt is easy to check that # has the
desired properties. B
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There is a great advantage inherent in a geometric discussion of real
TVS’s. Namely, if f: £— R is a nonzero continuous R-linear functional,
then the hyperplane ker f disconnects the space. That is, 2\ kerf has two
components (see Exercises 4 and 5). It thus becomes convenient to make the
following definitions.

3.5. Definition. Let 2 be a real TVS. A subset S of Z is called an open
half-space if there is a continuous linear functional f: Z — R such that
S={x€Z: f(x)>a} for some a. S is a closed half-space if there is a
continuous linear functional f: £ — R such that S = {x € 2 f(x) > «a}
for some a.

Two subsets 4 and B of & are said to be strictly separated if they are
contained in disjoint open half-spaces; they are separated if they are
contained in two closed half-spaces whose intersection is a closed affine
hyperplane.

3.6. Proposition. Let Z be a real TVS.

(a) The closure of an open half-space is a closed half-space and the interior of
a closed half-space is an open half-space.

(b) If A, B C &, then A and B are strictly separated (separated) if and only
if there is a continuous linear functional f: Z — R and a real scalar a such
that f(a) > a forallain A and f(b) < a for all bin B (f(a) = a for all
ain A and f(b) < a for all b in B).

ProOOF. Exercise 6.

In many ways, the next result is the most important “separation” theorem
as the other separation theorems follow from this one. However, the most
used separation theorem is Theorem 3.9 below.

3.7. Theorem. If % is a real TVS and A and B are disjoint open convex
subsets of X', then A and B are strictly separated.

PROOF. Let G=A4 — B={a—b: a € A,b € B}; it is easy to verify that
G is convex (do it!). Also, G = U{A4 — b: b € B}, so G is open. Moreover,
because A N B =00, 0 € G. By Theorem 3.3 there is a closed hyperplane .#
in Z such that /N G = 0. Let f: £ — R be a linear functional such that
# = ker f. Now f(G) is a convex subset of R and 0 € f(G). Hence either
f(x) > 0 for all x in G or f(x) < 0 for all x in G; suppose f(x) > 0 for all
x in G. Thus if a€ 4 and b€ B, 0 < f(a — b) = f(a) — f(b); that is,
f(a) > f(b). Therefore there is a real number « such that

sup{ f(b): b€ B} <a <inf{f(a):a€ 4}.

But f(A4) and f(B) are open intervals (Exercise 7), so f < a« on B and
f>aon A. ]
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3.8. Lemma. If Z isa TVS, K is a compact subset of &, and V is an open
subset of Z such that K C V, then there is an open neighborhood of 0, U, such
that K+ UC V.

PROOF. Let %, = all of the open neighborhoods of 0. Suppose that for each
Uin %, K + U is not contained in V. Thus, for each U in %, there is a
vector x;; in K and a y,, in U such that x, + y, € &\ V. Order %, by
reverse inclusion; that is, U, > U, if U, C U,. Then %, is a directed set and
{xy} and { y,} are nets. Now y, — 0 in Z. Because K is compact there is
an x in K such that x;,—~x ({ x,, } clusters at x). Hence x,, + y,~5~x + 0
= x. (Why?) Hence x € cl(f‘!’ \ V) =2\ V, a contradiction. ]

The condition that K be compact in the preceding lemma is necessary; it
is not enough to assume that K is closed. (What is counterexample?)

3.9. Theorem. Let Z be a real LCS and let A and B be two disjoint closed
convex subsets of Z. If B is compact, then A and B are strictly separated.

PrOOF. By hypothesis, B is a compact subset of the open set Z\ 4. The
preceding lemma implies there is an open neighborhood U, of 0 such that
B + U, € &\ A. Because & is locally convex, there is a continuous semi-
norm p on Z such that {x: p(x) <1} C U,. Put U= {x: p(x)< i).
Then (B + U)N (A + U)=0 (Verify!),and 4 + U and B + U are open
convex subsets of Z that contain A and B, respectively. (Why?) So the
result follows from Theorem 3.7. ]

The fact that one of the two closed convex sets in the preceding theorem
is assumed to be compact is necessary. In fact, if = R?, 4 = {(x, y) € R%
y =<0}, and B={(x,y)€R* y>x"1}, then 4 and B are disjoint
closed convex subsets of R? that cannot be strictly separated.

The next result generalizes Corollary 111.6.8, though, of course, the metric
content of (IIL1.6.8) is missing,.

3.10. Corollary. If & is a real LCS, A is a closed convex subset of %', and
X & A, then x is strictly separated from A.

3.11. Corollary. If Z is a real LCS and A C %, then co(A) is the
intersection of the closed half-spaces containing A.

PROOF. Let 5 be the collection of all closed half-spaces containing A.
Since each set in J# is closed and convex, co( A) € ﬂ{ H: H € 5¢}. On the
other hand, if x, & co(A), then (3.10) implies there is a continuous linear
functional f: Z - R and an « in R such that f(x,) > a and f(x) < a for
all x in co(A). Thus H = {x: f(x) < a} belongs to »# and x, & H. ]

The next result generalizes Theorem I11.6.13.
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3.12. Corollary. If ¥ isa real LCS and A C ¥, then the closed linear span
of A is the intersection of all closed hyperplanes containing A.

If & is a complex LCS, it is also a real LCS. This can be used to
formulate and prove versions of the preceding results. As a sample, the
following complex version of Theorem 3.9 is presented.

3.13. Theorem. Let & be a complex LCS and let A and B be two disjoint
closed convex subsets of &.If B is compact, then there is a continuous linear
functional f: & - C,an a in R, and an € > 0 such that fora inA and b in B,

Ref(a)<a<a + e <Ref(b).

3.14. Corollary. If & isa LCS and Y is a linear manifold in & ,thenY is
dense in & if and only if the only continuous linear functional on ¥ that
vanishes on Y is the identically zero functional.

3.15. Corollary. If & isa LCS, Y is a closed linear subspace of &, and
Xo€E X\ Y, then there is a continuous linear functional f: & — F such that
fly) = 0 for ally in'Y and f(x,) = 1.

These results imply that on a LCS there are many continuous linear
functionals. Compare the results of this section with those of §IIL.6.

The hypothesis that & is locally convex does not appear in the results
prior to Theorem 3.9. The reason for this is that in the preceding results the
existence of an open convex subset of & is assumed. In Theorem 3.9 such a
set must be manufactured. Without the hypothesis of local convexity it may
be that the only open convex sets are the whole space itself and the empty
set.

3.16. Example. For 0 <p <1, let L?(0, 1) be the collection of equivalence
classes of measurable functions f:(0,1)— R such that

(), = follf(x)l"dx < .

It will be shown that d( f, g) = ((f — g)), is a metric on L?(0, 1) and that
with this metric L?(0, 1) is a Frechet space. It will also be shown, however,
that L7(0,1) has only one nonempty open convex set, namely itself. So
L?(0,1),0 <p < 1, is most emphatically not locally convex. The proof of
these facts begins with the following inequality.

3.17 For s,tin [0, co) and 0 <p< 1, (s +¢)” <sP +1¢2.
To see this, let fit) = s?+t?— (s + t)? for t = 0, s fixed. Then

f(t) = ptPl—p(s+t)P % Since p—1<0and s+t>¢, f (t) > 0.
Thus 0 = f(0) < ftt). This proves (3.17).
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Ifd(f,g)=({(f — g), for f,gin L#(0,1), then (3.17) implies that
d(f, g <d(f,h)+d(h,g)forall f,g hin L7(0, 1). It follows that d is a
metric on L?(0, 1). Clearly d is translation invariant.

3.18 L?(0,1),0<p< 1, is complete.
The proof of this is left as an exercise.
3.19 L?(0,1)is a TVS.

The continuity of addition is a direct consequence of the translation in-
variance of d. If f, = f and @, a,a, in IF, d(a,f,,af) = ((a,f,—af)),
< (anfy = @, ), + (S = af ), = e P(f, = [ ), +la, = al”([),
<C((f, = N, +la,— a’((f)),, where C is a constant independent of n.
Hence a,f,— af. Thus L?(0, T) 1s a Frechet space.

3.20 If G is a nonempty open convex subset of L?(0,1),then
G=L"(0,1).

To see this, first suppose f€LP(0, 1) and ((f)), =7 <R. As a function
of t, folf(x){P dX is continuous, assumes the value O at ¢ = 0, and assumes
the value r at¢t = 1. Let 0 <r< 1 such that fj|f(x)|”dx =r/2. Define
g h(0,1)>F by gx) = f(x) for x <t and 0 otherwise; h(x) = f(x) for
x >t and O otherwise. Now f=g+h=3(2g+2h) and ((2g)), = ((2h)),
=2 P(r® =r/2'77. Hence f€ co B(O;R/2'7?). This implies that
B(0; R) < coB(0;R/2'"?), or, equivalently, B(0;2! “PR) € coB(0, R) .
Hence B(0;4'"?R)CcoB(0;2' "PR)CcoB(0; R) . Continuing we see that
for all n, B(0; 2"M"PR) C coB(0; R).

So if G is a nonempty open convex subset of L”(0,1), then by translation
it may be assumed that 0 € G. Thus thereis an R > 0 with B(0; R) < G.
By the preceding paragraph, B(0;2"C"P)R)CcoB(0; R) C G foralln>1.
Therefore L?(0,1) C G.

Also note that this says that the only continuous linear functional on
L?(0,1),0<p< 1, is the identically zero functional.

EXERCISES
1. Prove Theorem 3.1

2. Let p be a sublinear functional, G = {x: p(x) <1}, and define the sublinear
functional ¢ for the set G as in Proposition 3.2. Show that g(x) = max( p( x), 0)
for all x in L

3. Let £/ CX, a TVS, and show that the following statements are equivalent: (a)
A is an affine hyperplane; (b) there exists an xgin /4 such that A —x,is a
hyperplane; (c¢) there is a linear function f:% —F and an ain F such that
M= {x €X: f(x)=a}.

4. Let & be a real TVS. Show: (a) if G is an open connected subset of &, then G
is arcwise connected; (b) if f: ¥ —R is a continuous linear functional, then
Z'\ kerf has two components, (x: f(x) > 0} and {x: f(x) < O}.

5. 1f & is a complex TVS and f:& — C is a nonzero continuous linear function,
show that &\ kerf is connected.
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6. Prove Proposition 3.6.

7.If f: & >R is a continuous R-linear functional and A is an open convex subset
of &, then ffA) is an open interval.

8. Prove Corollary 3.12.

9. Prove Theorem 3.13.

10. State and prove a version of Theorem 3.7 for a complex TVS.
11. State and prove a version of Corollary 3.11 for a complex LCS.
12. State and prove a version of Corollary 3.12 for a complex LCS.
13. Prove (3.18).

14. Give an example of a TVS % that is not locally convex and a subspace# of &
such that there is a continuous linear functional fon % with no continuous
extension to %.

§4*. Some Examples of the Dual Space of a Locally
Convex Space

As with a normed space, if & is a LCS, £* denotes the space of all
continuous linear functionals f: X - F. X* is called the dual space of X.

4.1. Proposition. Let X be completely regular and let C(X) be topologized as
in Example 1.5 If L: C(X) —F is a continuous linear functional, then there
is a compact set K and a regular Borel measure p on K such that L(‘f) =[x fdu
for every f in C(X). Conversely, each such measure dejines an element of
C(X)*.

Proor. It is ecasy to see that each measure p supported on a compact set K
defines an element of C(X)*. In fact, if pg(f)=sup{lf(x)|:x € K} and
L) = [ fdp, then |[L(H)|<|lpllp(f), and so L is continuous.

Now assume L € C(X)* There are compact sets K,,...,K, and posi-
tive numbers ay,...,a, such that |[L(f)|< ijla,,pkj(f) (3.1f). Let K =
Ut_,K, and a = max{|e;|: 1 <j< n}. Then IL(f)|<apx(f). Hence if
f€ C(X) and fIK= 0, then L(f) = 0.

Define F: C(K) —F as follows. If g € C(K ), let § be any continuous
extension of g to X and put F(g) = L(g). To check that Fis well defined,
suppose that g; and &, are both extensions of g to X. Then &, — g, =0 on
K, and hence L( g,)=L( g,). Thus Fis well defined. It is left as an exercise
for the reader to show that F: C(K) —F is linear. If g € C(K) and g is
an extension in C(X), then |F(g)|=|L(g)|<apx(g)=«allg|l, where the
norm is the norm of C(K). By (111.5.7) there is a measure p in M(K) such
that F(g)= fxgdp. If fe C(X), then g= flIK€ C(K) and so L(f) =
F(g) = Jxfdp.
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Let €, denote the extended complex plane. Thus € =Cu {0} with
the metric it obtains from its identification with the sphere. If y: [0, 1] > C
is a rectifiable curve and f is a continuous function defined on the trace of
Y, Y([0,1]), then [, f is the line integral of f over y. That is, [ f=
Jof(y(£))dy(t). (See Conway [1978].) The next result generalizes to arbi-
trary regions in the plane, but for simplicity it is stated only for the disk D.
Recall the definition of H(D) from Example 1.6.

4.2. Proposition. L& H(D)* if and only if there is an r < 1 and a unique
function g anadlytic on C _ \ B(0;r) with g( o) = 0 such that

43 L(f) = %ffg

for every fin H(D), where y(¢t)=pe',0<t<2m, andr<p< 1.
Proor. Let g be given and define L as in (4.3). If K = {z: |z| = p}, then

1| j2m,, o
IL(f>I=75- /02 f(pe”)g(pe”)ipe”dt‘

= 2177PI((f )Pk (g)2mp.

So if ¢ = ppx(g) IL(f )| < cpx(f ), and L & H(D)*.

Now assume that . € H (D) *. The Hahn-Banach Theorem implies there
is an F in C(D)* such that F|H(D) = L. By Proposition 4.1 there is a
compact set K contained in D and a measure g on K such that L (£) =
Jxf du for every fin H(D). Define gt C_\K — C by g(o0) = 0 and
g(z) = —fxkl/(w—2z)dp(w) for zin C\ K. By Lemma 111.8.2, g is
analytic on C_\K. Let p< 1 such that K < B(0; p). If y(t) = pe”,
0 <t <27, then Cauchy s Integral Formula implies

0= g 1254

for |w|< p; in particular, this is true for w in K. Thus,

L(f)= [ J(w)du()

= /;(Ii%/:"’ f(it)eitijeitdtildu(w)

pe” —
T [ ——
2,,,/f( )g(2)dz.

This completes the proof except for the uniqueness of g (Exercise 3). n
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EXERCISES

1. Let {Z;:i€ I} be a family of LCS’s and give ¥=T[1{Z;:i €T} the product
topology. (See Exercise 1.17.) Show that L € £* if and only if there is a finite
subset F contained in I and there are x¥in £* for jin F such that
L(x)=X, c x,*x()) for each x in L

2. Show that the space s (Exercise 1.13) is linearly homeomorphic to C(N) and
describe s*.

3. Show that the function g obtained in Proposition 4.2 is unique.

4, Show that L € H(D)* if and only if there are scalars by, b,,.in C such that
limsup |b,]'/"< 1 and L(D) = X2_41/(n)f"(0)b,.

5. If G is an annulus, describe H(G)*,

6. (Buck [1958]). Let X be locally compact and let 8 be the strict topology on
C,,(X) defined in Exercise 1.21. (Also see Exercises 2.6 and 2.7.) Prove the
following statements: (a) If p€ M(X) and g, ] 0, then there are compact sets
K,, K,. such that for each n> 1, K, C int K, ;; and |[p|(X\ K,)<eg,. (b) If
p € M(X), then there is a ¢ in C,(X) such that ¢ > O, |u[( X\ {x:¢(x)>0})
=0,1/¢ € L'(Ju|), and [1/¢djp|< 1. (c) Show that if p€ M(X) and L() =
ffdp forf in C,(X), then L €(C,(X),B)*. (d) Conversely,if L€ (C,(X),B)*,
then there is a p in M(X) such that L(f) = [fdp for f in C,(X).

7. Let X be completely regular and let .# be a linear manifold in C(X). Show that
if for every compact subset K of X, #|K={flK:f€ #} is dense in C(K),
then A is dense in C(X).

§5*. Inductive Limits and the Space of Distributions

In this section the most general definition of an inductive limit will not be
presented. Rather one that removes certain technicalities from the argu-
ments and yet covers the most important examples will be given. For the
more general definition see Kothe [1969], Robertson and Robertson [1966],
or Schaefer [1971].

51. Definition. An inductive system 1is a pair (Z,{Z;:i €1}), where & is
a vector space, %, is a linear manifold in £ that has a topology ., such
that (%,,.7;) is a LCS, and, moreover:

(a) I is a directed set and ZCZ ifi<]
(b)if i <jand U €7, then U NZ, €T
(¢) F=U{Z:ic I}

Note that condition (b) is equivalent to the condition that the inclusion
map %, %, is continuous.
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52. Example. Let d > 1 and let £ be an open subset of R Denote by
C{®) () all the functions ¢:§ —F such that ¢ is infinitely differentiable
and has compact support in §2. (The support of ¢ is defined by spt ¢ = cl{ x:
o(x)+ 0}.) If Kis a compact subset of £, define 2(K)={o€CP(2):
spt ¢S K }. Let 9(K) have the topology defined by the seminorms

P.m(®) = sup{lp(x)|: k| <m, x €K},
where k =(ky,..., ky), k, ENU {0}, |kj =k + - +k, and
ikl

Then (CP(2),{2(K): Kis compact in £}) is an inductive system. The
space C2() is often denoted in the literature by 2(§2), as it will be in this
book.

This example of an inductive system is the most important one as it is
connected with the theory of distributions (below). In fact, this example was
the inspiration for the definition of an inductive limit given now.

5.3. Proposition. If (£,{%,,7;})s an inductive system, let % = all con-
vex balanced sets V such thatr V NZ, €7, for all i. Let I = the collection of
all subsets U of X such that for every Xxqin U there is a V in % with
xo+ VCU. Then (%¥,9) is a (not necessarily Hausdorff) LCS.

Before proving this proposition, it seems appropriate to make the follow-
ing definition.

5.4. Definition. If (¥,{Z,;})1s an inductive system and .7 is the topology
defined in (5.3), 9 is called the inductive limit topology and (¥,.7) is said
to be the inductive limit of {Z,}.

5.5. Lemma. With the notation as in (5.3),8#C 7.

Proor. Fix Vin #. It will be shown that V is absorbing at each of its
points. Indeed, if x,€ Vand x €%, then there is an £, and an £ such
that xo€ %, and x €Z). Since [ is directed. there is a k in Z with
k> i j Hence x4, x €%,. Bt VNZ, €7,. Thus there is an £€> 0 such
that xo + ax€ VN Z, C V for |a|<E

Since Vis convex, balanced, and absorbing at each of its points, there is a
seminorm p on & such that V = {x € X: p(x) <1} (1.14). So if x, €V,
p(xg) =r,< 1. Let W = {x € X: p(x) <3(1—ry)}. Then W = 3(1—
r)V and so W € #. Since xo+ WCV, Ve T, [ ]

PrRoOOF oF PRoOPOSITION 5.3. The proof that Z is a topology is left as an
exercise. To see that (£, ) is a LCS, note that Lemma 5.5 and Theorem
1.14 imply that J is defined by a family of seminorms. u
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For all we know the inductive limit topology may be trivial. However, the
fact that this topology has not been shown to be Hausdorff need not
concern us, since we will concentrate on a particular type of inductive limit
which will be shown to be Hausdorff. But for the moment we will continue
at the present level of generality.

5.6. Proposition. Let (Z,{%;}) be an inductive system and let T be the
inductive limit topology. Then

(a) the relative topology on X, induced by T (viz., T1Z;) is smaller than T

() if % is a locally convex topology on & such that for every i, U|\%,C T,
then %4 C T,

(¢) a seminorm p on ¥ is continuous if and only if p|%, is continuous for
each i.

Proor. Exercise 3.

5.7. Proposition. Let (¥,7) be the inductive limit of the spaces {(Z,;, ;)
iel}. Zf % is a LCS and T: £ — Y is a linear transformation, then T is
continuous if and only if the restriction of T to each %, is q-continuous.

1

Proor. Suppose T: & — Yis continuous. By (5.6a), the inclusion map
(%,7)— X, ) is continuous. Since the restriction of 7T to %, is the
composition of the inclusion map &, > 2 and T, the restriction is continu-
ous.

Now assume that each restriction is continuous. If p is a continuous
seminorm on %, then p o T|%; is a g-continuous seminorm for every i By

(5.6¢), p e T'is continuous on ¥. By Exercise 1.23, T is continuous. ]

It may have occurred to the reader that the definition of the inductive
limit topology depends on the choice of the spaces &, in more than the
obvious way. That is, if #=U,% and each % has a topology that is
compatible with that of the spaces {Z,}, perhaps the inductive limit
topology defined by the spaces {%,} will differ from that defined by the

{Z,}. This is not the case.

5.8 Proposition. Let (£,{(%,,7))}) and (X ,(%),U;)}) be two inductive
systems and let I and U be the corresponding inductive limit topologies on X .
Zf for every i there is a j such that £;,C %, and U |%,C T, then U C T .

Proor. Let ¥V be a convex balanced subset of & such that for every j,
Vn % %1t %, is given, let j be such that Z,C %, and % |Z,C 7.
Hence VNZ,=(V n %) n £, €7, Thus Ve F [as defined in (5.3)]. It
now follows that # € .7. u

5.9. Example. Let & be any vector space and let { Z;:i € Z} be all of the
finite-dimensional subspaces of & . Give each &, the unique topology from
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its identification with a Euclidean space. Then (Z,{%;}) is an inductive
system. Let . be the inductive limit topology. If Y is a LCS and 7: & - %
is a linear transformation, then 7 is J~continuous.

5.10. Example. Let X be a locally compact space and let { K;: i€/} be
the collection of all compact subsets of X. Let Z; = all f in C(X) such that
spt f € K,. Then U, %; = C,(X), the continuous functions on X with com-
pact support. Topologize each %, by giving it the supremum norm. Then
(C,(X), { Z;}) is an inductive system.

Let U, be the open subsets of X such that ¢l U, is compact. Let Co(U;) be
the continuous functions on U, vanishing at oo W1th the supremum norm. If
fe G(U) and f is defined on X by lettlng it be identically 0 on X\ U,
then f € C (X). Thus (C.(X), { Go(U))}) is an inductive system. Proposition
5.8 implies that these two inductive systems define the same inductive limit
topology on C,(X).

5.11. Example. Let d > 1 and put K, = {x €R“||x||< n}. Then
(2(R?), {2(K,)}=.,) is an inductive system. By (5.9), the inductive limit
topology defined on 2(R?) by this system equals the inductive limit
topology defined by the system given in Example 5.2.

If € is any open subset of R, then & can be written as the union of a
sequence of compact subsets {K,} such that X, cint X, _,. It follows by
(5.9) that { 2(X,))} defines the same topology on 2(£) as was defined in
Example 5.2.

The preceding example inspires the following definition.

5.12. Definition. A strict inductive system is an inductive system
(Z,{%,,7,}7-1) such that for every n>1, %,c %,.,,,7,.\%,=9,, and
Z, is closed in %, ;. The inductive limit topology defined on & by such a
system is called a strict inductive limit topology and & is said to be the strict
inductive limit of { Z,}.

Example 5.11 shows that 2(R¢), indeed 2(8), is a strict inductive limit.
The following lemma is useful in the study of strict inductive limits as
well as in other situations.

5.13.  Proposition. If ¥ isa LCS, Y <%, and p is a continuous seminorm
on %, then there is a continuous seminorm p on Z such that p|¥ = p.

Proor. Let U = {y € Y: p(y) <1}. So U is open in Y; hence there is an
open subset V; of & such that ;N Y=U. Since 0 €V, and & is a LCS,
there is an open convex balanced set ¥ in & such that V' CV,. Let ¢ = the
gauge of V. Soif ye€ Y and ¢q(y) < 1, then p(y) < 1. By Lemma 111.1.4,
P <q|9.
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Let W =co(U uV); it is easy to see that W is convex and balanced
since both U and V' are. It will be shown that W is open. First observe that
W={u+Q-t)riost<1tpuclUv€V} (verify). Hence W = U{ tU
+ (1 -0V:0<t< 1). Put W,=tU+ (1 —t)V. So W, =V, which is
open. If 0 <t <1, W, =U{ tu+ (1 —¢)V:u €V}, and hence is open. But
W, =U, which is not open. However, if u €U, then there is an €> 0 such
that eu€V. For 0 <t< 1, lety, = t [1—e+ telu (EF). As t > 1,
y, = u. Since U is open in %, there is a ¢ 0 <t < 1, with y, in U. Thus
u=ty,+ (1 —t)eu)€ W, Thereforec W = U{ W:0<¢t <1} and W is
open.

5.14. Claim. WN% = U.

In fact, UCW,so UcWN#H. If weWNX, then w = tu + (1 —t)v,
uinU,vinV,0<t< 1; it may be assumed that 0 <t < 1. (Why?) Hence,
v=>_01-t) Y w—t) €¥. Sove VN ¥ U, hence w € U.

Let p = the gauge of W. By Claim 5.14, {y € #:p(y)<l}={ye¥:
p(y) <1}. By the uniqueness of the gauge, p|% =p. ]

5.15. Corollary. If X is the strict inductive limit of { %, ),k is fixed, and p,
is a continuous seminormon Z, then there is a continuous seminormp on X
such that p|%, = py. In particular, the inductive limit topology is Hausdorff.

ProOF. By (5.13) and induction, for every integer n >k, there is a continu-
ous seminorm p, such that p|Z,_,= p,_. L x €EZ, define p(x) = p,(x)
when x € Z,. Since Z,C %, ., for all n, the properties of { p,} insure that
p is well defined. Clearly p is a seminorm and by (5.6¢) p is continuous.

If x € X and x # 0, there is a £ = 1 such that x € &,. Thus there is a
continuous seminorm p, on %, such that p,(x)# 0. Using the first part
of the corollary, we get a continuous seminorm p on X such that p(x) # 0.
Thus (%£,Z) is Hausdorff. [ |

5.16. Proposition. Let X be the strict inductive limit of {%,}. A subset B of
& is bounded if and only if there is an n = 1 such that B C%, and B is
bounded in .

The proof will be accomplished only after a few preliminaries are settled.
Before doing this, here are a few consequences of (5.16).

5.17. Corollary. If X is the strict inductive limit of { %}, then a subset K of
& is compact if and only if there is an n =1 such that K C%, and K is
compact in .

5.18.  Corollary. Zf X is the strict inductive limit of Frechet spaces {%,}, %
is a LCS, and T:X - % is a linear transformation, then T is continuous if
and only if T'is sequentially continuous.
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Proor. By Proposition 5.7, T is continuous if and only if T|Z, is continu-
ous for every n. Since each %, is metrizable, the result follows. u

Note that using Example 5.11 it follows that for an open subset £ of R?,
2(2) is the strict inductive limit of Frechet spaces [each Z(K,) is a Frechet
space by Proposition 2.11. So (5.18) applies.

5.19. Definition. If £ is an open subset of R4 a distribution on £ is a
continuous linear functional on 2(£2).

Distributions are, in a certain sense, generalizations of the concept of
function as the following example illustrates.

5.20. Example. Let f be a Lebesgue measurable function on §2 that is
locally integrable (that is, fx|fldA <oo for every compact subset K of
2—here A is d-dimensional Lebesgue measure). If L,: 2(£2)—F is defined
by L( ¢) = [fodA, L, is a distribution.

From Corollary 5.18 we arrive at the following.

5.21. Proposition. A linear functional L: 2(82)—F is a distribution if and
only if for every sequence {@,}in D(82) such thar cllUS_spte¢,]=K is
compact in & and ${(x)— 0 uniformly on K as n = oo for every k =
(ki,..., ky), it follows thar L(¢,)— 0.

Proposition 5.21 is usually taken as the definition of a distribution in
books on differential equations. There is the advantage that (5.21) can be
understood with no knowledge of locally convex spaces and inductive limits.
Moreover, most theorems on distributions can be proved by using (5.21).
However, the realization that a distribution is precisely a continuous linear
functional on a LCS contributes more than cultural edification. This knowl-
edge brings power as it enables you to apply the theory of LCS’s (including
the Hahn-Banach Theorem).

The exercises contain more results on distributions, but now we must
return to the proof of Proposition 5.16. To do this the idea of a topological
complement is needed. We have seen this idea in Section 111.13.

5.22. Proposition. If & is a TVS and % <X, the following statements are
equivalent.

(a) There is a closed linear subspace & of ¥ such thatr Y NZ= (0),
Y+F=%, and the map of ¥ XZF->% given by (y, z)~>y + zis a
homeomorphism.

(b) There is a continuous linear map P:Z —> X such that P¥=Y and
P2 =P
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ProoF. (a) = (b): Define P: = Xby P(y+z)=y,for yin Y and z in
Z. It is easy to verify that P is linear and PX= Y. Also, P*(y + 2) =
PP(y +2) =Py =y = P(y +2);s0 PP=P. If { y;+ z,} is a net in X
such that y, + z,—y+ z, then (a) implies that y;— y (and z,— z). Hence
P(y,+z,)> P(y+2z) and P is continuous.

(b) = (a): If P is given, let &= ker P. So <X Also, x = Px +(x —
Px) and y = Px €%, and z = x — Px has Pz = Px —P%x = Px — Px =
0,s0z€%.Thus, Y + F=Z.IfxE€Y NZ, then Px = 0 since x €Z;
but also x = Pw for some w in X since x € Y = PX. Therefore 0 = Px =
P*w = Pw = x; that is, Y NZ= (0). Now suppose that {y,} and {z,} are
nets in Y and Z.If y,— y and z,— z, then y,+ z,—> y + z because
addition is continuous. If, on the other hand, it is assumed that y, +z, =y
+z,then y = P(y +2)=1lim P(y,+z)=1im y, and z, = (y, + z;) — ),
— z. This proves (a). [ |

5.23. Definition. If X is a TVS and Y <%, Y is topologically comple-
mented in X if either (a) or (b) of (5.22) is satisfied.

5.24. Proposition. If X is a LCS and Y < X such that either dim% < o0 or
dim X/Y <00, then Y is topologically complemented in X.

Proor. The proof will only be sketched. The reader is asked to supply the
details (Exercise 9).

(a) Suppose d =dim% < cc and let V1,..., y,; be a basis for Y. By the
Hahn-Banach Theorem (I11.6.6), there are f;,. . . , f;in &* such that
fiy)="1ifi=j and O otherwise. Define Px = L¢_,f,(x)y;

(b) Suppose d = dim X/Y <o, Q: — X/Y is the natural map, and
Z,...,24€ X such that Q(z;),..., Q( z,) is a basis for X/Y. Let &=
V{zy,..., 24} |

ProOOF OF PROPOSITION 5.16. Suppose X is the strict inductive limit of
{((Z,, Z,}) and Hs a bounded subset of X. It must be shown that there is
an n such that B C %, (the rest of the proof is easy). Suppose this is not
the case. By replacing {Z,} by a subsequence if necessary, it follows that
for each n there is an x,in B\ %Z,. Let p; be a continuous seminorm on
%, such that p,(x;)=1.

5.25. Claim. For every n > 2 there is a continuous seminorm p, on Z,
such that pn(xn) =n and pnl'%‘nf1=pn—l‘

The proof of (5.25) is by induction. Suppose p, is given and let Y = &,V
{x,41)- By (5:24), Z, and V{x,.1} are topologically complementary in Y.
Define ¢: Y — [0, )by g(x+ax,,;)=px + (n +1)|a|, where x €%,
and a €F. Then ¢ is a continuous seminorm on (%, 7, .| Y ). (Verify!) By
Proposition 5.13 there is a continuous seminorm p, . ; on £, such that

Poi1l%=gq. Thus p, |Z,=p, and p, (x,,1)=n+ 1. This proves the
claim.
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Now define p: & — [0, co) by p(x) = p,(x)if x €Z,. By (525),p is

well defined. It is easy to see that p is a continuous seminorm. However,
sup{ p(x): x € B} = o0, s0 B is not bounded (Exercise 2.4f). n

EXERCISES

L

b I R S Y

10.

1L
12.

13.

14,

15.

16.

17.

Verify the statements made in Example 5.2.

Fill in the details of the proof of Proposition 5.3.
Prove Proposition 5.6.

Verify the statements made in Example 5.9.
Verify the statements made in Example 5.10.
Verify the statements made in Example 5.11.

With the notation of (5.10), show that if X is u-compact, then the dual of C(X)
is the space of all extended F-valued measures.

Is the inductive limit topology on C(X) (5.10) different from the topology of
uniform convergence on compact subsets of X (1.5)?

Prove Proposition 5.24.

Verify the statements made in Example 5.20.

For the remaining exercises, §2 is always an open subset of RY, d > 1.
If p is a measure on £2,¢— (¢ dp is a distribution £2.

Let f:£2—>F be a function with continuous partial derivatives and let L, be
defined as in (5.20). Show that for every ¢ in @(2)and | <j<d, L( d¢/dx,)
= —L,(¢), where g =3df/dx,. (Hint: Use integration by parts.)

Exercise 12 motivates the following definition. If L is a distribution on £,
define dL/dx,;: D(2)—F by dL/dx;(¢) = —L(d¢/0x,) for all ¢ in D(£2).
Show that dL/dx, is a distribution.

Using Example 5.20 and Exercise 13, one is justified to talk of the derivative of
any locally integrable function as a distribution. By Exercise 11 we can differen-
tiate measures. Let f:R—R be the characteristic function of [0, co) and show
that its derivative as a distribution is 8,, the unit point mass at 0. [That is, &, is
the measure such that 8, (A) =1 if0€A and 8, (A) =0 if0&€ A ]

Let f be an absolutely continuous function on R and show that ( Ly =L

Let fbe a left continuous nondecreasing function on R and show that (L,) is
the distribution defined by the measure g such that uf a, b) = f(b) — fla) for
all a <b.

Let f be a C® function on £ and let L be a distribution on 2(£2). Show that
M(P)=L{ ¢f ), ¢ in 2(8), is a distribution. State and prove a product rule for
finding the derivative of M.




CHAPTER V

Weak Topologies

The principal objects of study in this chapter are the weak topology on a
Banach space and the weak-star topology on its dual. In order to carry out
this study efficiently, the first two sections are devoted to the study of the
weak topology on a locally convex space.

§1. Duality

As in 51V 4, for a LCS %, let X* denote the space of continuous linear
functionals on X. If x* y*€ X* and a€F, then (ax™* + y*)(x) =
ax*(x)+ y*(x), x in &, defines an element ax* + y* in X*, Thus X*
has a natural vector-space structure.

It is convenient and, more importantly, helpful to introduce the notation

(x,x*)
to stand for x*(x), for x in X and x*in Z *. Also, because of a certain
symmetry, we will use (x*, x) to stand for x*(x). Thus

x¥(x) = (x,x*) = (x* x).
We begin by recalling two definitions (IV.1.7 and IV.1.8).
1.1, Definition. If X is a LCS, the weak topology on %, denoted by wk”

or a( &, X *), is the topology defined by the family of seminorms { p,.:
x*e Z*}, where

Px*(x) = |<X,X*>|.



128 V. Weak Topologies

The weak-star topology on X *, denoted by “wk*” or o(Z *, X), is the
topology defined by the seminorms { p.:x € XJ, where

p(x*) = I{x, x*)|.
So a subset U of X is weakly open if and only if for every x4 in U there is
an €¢> 0 and there are x7¥,...,xJ in X * such that

n
n

N {xe Z:[{x — xq, XF)| < e} c U.

k=1
A net {x;} in X converges weakly to x, if and only if (x,, x*)—>{xg, x*)
for every x* in X *. (What are the analogous statements for the weak-star
topology?)

Note that both (&, wk) and (£ *, wk*) are LCS’s. Also, X already
possesses a topology so that wk is a second topology on X. However, X *
has no topology to begin with so that wk* is the only topology on X *. Of
course if X is a normed space, this last statement is not correct since X * s
a Banach space (111.5.4). The reader should also be cautioned that some
authors make no distinction between the weak and weak-star topologies.
Finally, pay attention to the positions of X and X * in the notation
o(Z, X¥*) = wk and o(Z*, X) = wk*

If {x;} is a net in X and x,— 0 in Z, then for every x* in Z*,
(x,, x*Y— 0. So if I is the topology on &, wk €7 (A.2.9) and each x*
in X* is weakly continuous. The first result gives the converse of this.

1.2. Theorem. Zf X is a LCS, (%, wk)* = X *.

PROOF. Let f € (&, wk)*; that is, f is a wk-continuous linear functional on
X. By (IV.3.1f) there are xf, x¥,...,xF in X* such that |f(x)| <

r=1l{x, x)| for all x in X. This implies that N}_ kerx}¥ C kerf. By
(A.1.4), there are scalars ay,...,a, such that [ = ¥7_,a, x}; hence [ € I *.

| |
There is a similar result for wk*; the proof is left for the reader.
1.3. Theorem. Zf X isa LCS, (X *, wk¥)* = %,

So X is the dual of a LCS-( X *, wk*)-and hence has a weak-star
topology—o(( &, wk*)*, X *). As an exercise in notational juggling, note
that a(( &, wk®)*, X *)=0(Z, X *).

All unmodified topological statements about X refer to its original
topology. So if A € X and we say that it is closed, we mean that A is closed
in the original topology of X. To say that A is closed in the weak topology
of X we say that A is weakly closed or wk-closed. Also ¢l A means the
closure of A in the original topology while wk —cl A means the closure of
A in the weak topology. The next result shows that under certain cir-
cumstances this distinction is unnecessary.



V.1. Duality 129

1.4. Theorem. If ¥ is a LCS and A is a convex subset of %, then
clA = wk —clA.

Proor. If J is the original topology of %, then wk €., hence cl A C
wk —cl A. Conversely, if x € X\ cl A, then (IV.3.13) implies that there is
an x* in Z*, an ain R, and an £> 0 such that

Re{a, x*y<a<a + ¢ < Re(x, x*)

for all a in ¢l A. Hence clAC B = {y € X: Re(y, x*) <a}. But B is
clearly wk-closed since x* is wk-continuous. Thus wk —cl A C B. Since
x& B, x & wk —clA. [ ]

1.5. Corollary. A convex subset of X is closed if and only if it is weakly
closed.

There is a useful observation that can be made here. Because of (I11.6.3) it
can be shown that if X is a complex linear space, then the weak topology on
¥ is the same as the weak topology it has if it is considered as a real linear
space (Exercise 4). This will be used in the future.

1.6. Definition. If A C %, the polar of A, denoted by A , is the subset of
Z* defined by

A°={x*e X*: |{a,x*)|< I for all ain A}.

If B € X *, the prepolar of B, denoted by °B, is the subset of X defined by
°B={x € %:|(x,b*)| <1forall b* in B}.

If A C X the bipolar of A is the set °(A°). If there is no confusion, then it

is also denoted by °A4°.

The prototype for this idea is that if A is the unit ball in a normed space,
A° is the unit ball in the dual space.

17. Proposition. ZfACX, then

(a) A° is convex and balanced.

(b) Zf A, C A, then A°C A7.

(c) If a € IF and a+ 0, (aA)° = a '4°.
dAac A.

(e) AO = (OAO)O.

Proor. The proofs of parts (a) through (d) are left as an exercise. To prove
(e) note that A €°A4° by (d), so (°4°)°C A by (b). But A C°(A°)°
by an analog of (d) for prepolars. Also, (A )] = (°4°)°. [ ]
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There is an analogous result for prepolars. In fact, it is more than analogy
that is at work here. By Theorem 1.3, (Z*, wk*)* = &. Thus the result for
prepolars is a consequence of the preceding proposition.

If A is a linear manifold in & and x*€ A °, then tac A for all ¢ > 0
and a in A. So 1 =|{ta, x*)| = t|{a,x*}|. Letting t = o0 shows that
A° = A+, where

A+ = {x*in F*: (a, x*)=0for all ain AJ.
Similarly, if Bis a linear manifold in & *,°B = *B, where
‘B= {xin &: (x,b*) = Oforall b* in B}.

The next result is a slight generalization of Corollary IV.3.12.

1.8. Theorem. If & is a LCS and A CZ, then °A° is the closed convex
balanced hull of A.

Proor. Let A, be the intersection of all closed convex balanced subsets of &
that contain A. It must be shown that A, = °4°. Since °4° is closed,
convex, and balanced and A C°4°, it follows that A, C°A°.

Now assume that x,€ Z\ A,. A, is a closed convex balanced set so by
(IV.3.13) there is an x*in Z*, an a in R, and an £€> 0 such that

Re{a;, x*) < a < a + € < Re(xg, x*)
for all a, in A,. Since 0 € A, 0 = (0, x*)<a. By replacing x* with
o x* it follows that there is an &> O (not the same as the first E) such that
Re{a;, x*y< 1 <1 + e<Re{xy, x*)
for all @, in A,. If a, € A, and (a,, x*) = |<a1,x*)|ei9, then e””ale A,
and so
(@, x*)] = Re(e™a,, x*) < 1 <Re(x,. x*)

for all a, in A,. Hence x*&€ A, and x4 °4°. That is, Z\ A, C X\ °4°.
B

1.9. Corollary. Zf & is a LCS and B C % *, then (°B)° is the wk* closed
convex balanced hull of B.

Using the weak and weak* topologies and the concept of a bounded
subset of a LCS (IV.2.9), it is possible to rephrase the results associated with
the Principle of Uniform Boundedness ($111.14). As an example we offer the
following reformulation of Corollary III.14.5 (which is, in fact, the most
general form of the result).

1.10. Theorem. If Z is a Banach space, Y is a normed space, and
A CRB(X, Y) such that for every x in &, {Ax: A €} is weakly bounded
in %, then & is norm bounded in (%, Y).
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EXERCISES

1. Show that wk is the smallest topology on X such that each x* in Z* is
continuous.

2. Show that wk* is the smallest topology on X* such that for each x in &,
x* = (x,x*) is continuous.

3. Prove Theorem 1.3.

4, Let X be a complex LCS and let Z denote the collection of all continuous
real linear functionals on X. Use the elements of £ to define seminorms on X
and let o(%,%}) be the corresponding topology. Show that o(%,Z*) =
o(Z,Z¥).

5. Prove the remainder of Proposition 1.7.
6. If A C &, show that A is weakly bounded if and only if A°is absorbing in Z'*.

7. Let X be a normed space and let {x,, } be a sequence in X such that x,, — X
weakly. Show that there is a sequence {y,} such that y, € co{ x|, x,,.,x,}
and ||y, — x|~ 0. (Hint: use Theorem 1.4.)

8. If »# is a Hilbert space and {h,} is a sequence in S such that h, —>h weakly
and 14,0l = llAll, then |jh, —hA||— 0. (The same type of result is true for
F-spaces if 1 <p < co.)

9. If X is a normed space show that the norm on X is lower semicontinuous for
the weak topology and the norm on X* is lower semicontinuous for the
weak-star topology.

10 Suppose X is an infinite-dimensional normed space. If S = {x € X: ||x]|=1},
then the weak closure of S is {x: ||x]|<1}.

§2. The Dual of a Subspace and a Quotient Space

In §II1.4 the quotient of a normed space £ by a closed subspace .# was
defined and in (111.10.2) it was shown that the dual of a quotient space &/ A4
is isometrically isomorphic to .#*. These results are generalized in this
section to the setting of a LCS and, moreover, it is shown that when
(Z/M)* and A+ are identified, the weak-star topology on (Z/#)* is
precisely the relative weak-star topology that .#* receives as a subspace of
T*.
The first result was presented in abbreviated form as Exercise IV.1.16.

2.1. Proposition. Let & be a LCS and let & be a family of seminorms
dejining the topology of X.Zf M <% and p € P, dejine p: X/ M — [0, )
by

p(x+A#)=inf{p(x +y):yEM}.
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Then pis a seminorm on Z/ M, and the topology on %/ defined by
P ={p:pE P}is the quotient space topology.

Proor. Exercise.

Thus if X is a LCS and & < X, then Z/4 is a LCS. Let f €(Z/ M/ )*.
IfQ: % — %/ A is the natural map, then fo Q € X*. Moreover, f¢Q €
M+ . Hence f— foQ is amap of (B/M)* - M C X*.

2.2. Theorem. If X isa LCS, 4 <%, and Q: % — X/ M is the natural
map, then [~ f o Q defines a linear bijection between (Z/.# )* and M * . If
(Z/M)* has its weak-star topology o((Z/M)* X/ M) and M * has the
relative weak-star topology a( X *, Z)| M *, then this bijection is a homeomor-
phism. If X is a normed space, then this bijection is an isometty.

ProoF. Let p: (Z/M)*—> #~* be defined by p(f) = f o Q. It was shown
prior to the statement of the theorem that p is well defined and maps
(Z/M)* into A+, Tt is casy to see that p is linear and if 0 = p(f) = f°Q,
then f= 0 since Q is surjective. So p is injective. Now let x*& .#* and
define f: Z/M# —>F by f(x + M) = (x,x%). Because A Ckerx*, f is
well defined and linear. Also, Q Y x + #:|f(x + A)|<1} = {x € X:
|{x,x*)| <1} and this is open in X since x * is continuous. Thus {x + .#:
[f(x+ A) <1} is open in Z/# and so fis continuous. Clearlyp( f) = x*,
80 p is a bijection.

If X is a normed space, it was shown in (111.10.2) that p is an isometry. It
remains to show that p is a weak-star homeomorphism. Let wk* =
o(Z* X)) and let o* = o((Z/M)*, Z/M). I { f,} is a net in (Z/A)* and
f;—=0(o*), then for each x in %, {x, p(f))= f,(Q(x))— 0. Hence p(f)
- 0 (wk*). Conversely, if p(f;)— O(wk*), then for each x in Z, fi(x +
M) ={x,p(f;))— 0; hence f,—0(c*). ]

Once again let # < X If x*&€ X *, then the restriction of x* to 4,
x*| 4/, belongs to A *. Also, the Hahn-Banach Theorem implies that the
map x*=> x*|# is surjective. If p(x*)=x*|.#, then p: X* - A * is
clearly linear as well as surjective. It fails, however, to be injective. How
does it fail? It s easy to see that kerp = .#*. Thus p induces a linear
bijection p:Z*/ M+ — M *.

2.3. Theorem. If Xisa LCS, # <% ,and p: X * — M * is the restriction
map, then p induces a linear bijection p: & * /M- M*.If X * /M " has
the quotient topology induced by o(Z *, %) and A * has its weak-star
topology o( M *, M), then p is a homeomorphism. If X is a normed space,
then p is an isometty.

ProoF. The fact that p is an isometry when X is a normed space was
shown in (IIL.10.1). Let wk* = o( A4 *, #) and let 9* be the quotient
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topology on & */#* defined by a( X * X). Let Q: X * > & * /M be the
natural map. Therefore the diagram
g * L M*

0N 7
g‘*/‘ﬁl

commutes. If y € A, then the commutativity of the diagram implies that

O Y (p Yy em*: |y, y*)<1)) = Q Hx* +4: [(y,x*)| <1}

(x* e g+ |(yx*)| <1},

which is weak-star open in Z *. Hence p:(Z */ M *,n*) > (M *, wk*) is
continuous.

How is the topology on Z*/M* defined? If x € X, p(x*) =|(x,x*)|
is a typical seminorm on X *. By Proposition 2.1, the topology on & * /A *
is defined by the seminorms { p,:x € X }, where

p(x*+ M) = inf{|{(x,x* + z*)|: 2* € M}.
2.4, Claim. If x € #, then p,=0.

In fact, let Z={ax:a €F}. If x € A, then ZNA = (0). Since
dim & < co, A is topologically complemented in &+ .#.Let x*€ X *
and define f: X+ .4 >F by f(ax +y) = (y, x*) for y in & and ain F.
Because # is topologically complemented in &+ 4, if a;x + y,— 0, then
y;— 0. Hence f(a,x +vy,) = (y,x*) — 0. Thus f is continuous. By the
Hahn-Banach Theorem, there is an x;f in X* that extends f. Note that
x¥ — xf € #*. Thus p(x*+ M) = p(xF + M) < p(x}) =
[{x,x{)| = 0. This proves (2.4).

Now suppose that {x* + 4"} is a net in & */M#* such that p(x}* +
MY = x* M > 0 (Wk¥) in A* Ifx € X and x & A, then Claim (2.4)
implies that p(x*+.#"*) = 0. If x €M, then p(x}+.A")<|(x,x})|
- (. Thus x*+ A#*+—>0(y*)and p is a weak-star homeomorphism. ]

EXERCISES

1. In relation to Claim 2.4, show that if <1, dim £ < co, and # <%, then
X+ M is closed.

2. Show that if # <% and # is topologically complemented in %, then A4~ is
topologically complemented in £* and that its complement is weak-star and
linearly homeomorphic to 2*/#*
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§3. Alaoglu s Theorem

If Z is any normed space, let S agree to denote by ball Z the closed unit
ball in Z. So ballZ= {x € ¥:||x|| <1}.

3.1. Alaoglu 8§ Theorem. If & is a normed space, then ball ' * is weak-star
compact.

Proor For cach x in ballZ, let D, ={a€ IF: |a|<1} and put D =
I{D,;: x € ball £}. By Tychonoff’s Theorem, D is compact. Define
T:bhal* > D by

(x*)(x) = (x,x*).

That is, 7(x*) is the element of the product space D whose x coordinate is
{x,x*). It will be shown that 7 is a homeomorphism from (ball Z*, wk*)
onto T(ball Z *) with the relative topology from D, and that 7(ball Z *) is
closed in D. Thus it will follow that 7(ball Z *), and hence ball & *, is
compact.

To see that 7 is injective, suppose that 7(x}) = 7(x¥). Then for each x
in ball &, (x, x;*) = (x, x¥). It follows by definition that x{ = x}.

Now let { x}} be a net in ball Z* such that x}* — x*. Then for each x in
ball &, 7(x*)}(x) = x, x}) = (xx*) = 7(x*)(x). That is, each coordi-
nate of {7(x})} converges to 7(x*). Hence 7(x})—> 7(x*) and 7 is
continuous.

Let x* be a net in ball £*, let f €D, and suppose 7(x*)—> fin D. So
flx) = lim(x, x}) exists for every x in ball Z.Ifx € Z, let > 0 such
that |Jax||< 1. Then define fix) = a~'f(ax). If also 8> 0 such that
IBxll< 1, then a™f(ax) = a”lim{ax, x*) = B Nim(Bx, x*) =
B (Bx). So f(x js well defined. It is left as an exercise for the reader to
show that f:  =F is a linear functional. Also, if ||x||< 1, fix) € D, so
[f(x)|]< 1. Thus f= x*€ballZ* and 7(x*) = £ Thus 7(ballZ*) is
closed in D. This implies that 7(ball Z*) is compact and, hence, 7 is a
homeomorphism (A.2.8). B

EXERCISES
1. Show that the functional f occurring in the proof of Alaoglu 8 Theorem is linear.

2. Let & be a LCS and let V be an open neighborhood of 0. Show that V' ° is
weak-star compact in & *.

3. If & is a Banach space, show that there is a compact space X such that % is
isometrically isomorphic to a closed subspace of C(X).
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§4. Reflexivity Revisited

In §II1.11 a Banach space X was defined to be reflexive if the natural
embedding of X into its double dual, Z **, is surjective. Recall that if
x € Z, then the image of x in % **, %, is defined by (using our recent
notation)

(x*, %) = (x,x*)
for all x* in X*, Also recall that the map x — X is an isometry.

To begin, note that X **, being the dual space of £ *, has its weak-star
topology ¢ ( X **, X *). Also note that if X is considered as a subspace of
X**_ then the topology o(Z **, X*) when relativized to X is o(Z, % *),
the weak topology on X. This will be important later when it is combined

with Alaoglu § Theorem applied to X ** in the discussion of reflexivity. But
now the next result must occupy us.

4.1. Proposition. If X is a normed space, then ball X is a{ X **, X *) dense
in ball X**.

ProorF. Let B = the o(Z **, X *) closure of ball X in Z **; clearly, B C
ball Z **. If there is an x§* in ball X** \ B, then the Hahn-Banach
Theorem implies there is an x * in X * anain R, and an €> 0 such that

Re(x,x*) <a<a + e <Re(x* x¥*)

for all x in ball X. (Exactly how does the Hahn-Banach Theorem imply
this?) Since 0 € ball Z, 0 <a. Dividing by a and replacing x * by a ™ x*, it
may be assumed that there is an x* in X* and an €> 0 such that

Re{x,x*y<1 <1 + e<Re{x*, x&*)

for all x in ball X. Since e’®x & ball X whenever x € ball Z, this implies
that |[{x,x*)|< 1 if ||x||< 1. Hence x*€ballZ*. But then 1 + &<
Re(x*, xF*) <|{(x*, xF*)| <|Ix§*||< 1, a contradiction. ]

42. Theorem. Zf X is a Banach space, the following statements are equiv-
alent.

(a) X is reflexive.

(b) X* is reflexive.

(¢c) 6(T* X)) =o(T* Z**).
(d) ball X is weakly compact.

PrOOF. (a) = (¢): This is clear since X = X **.

(d) = (a): Note that o(Z**, *)¥=0(Z, X*). By (d), ballZ is
o(X**, Z*) closed in ball & **. But the preceding proposition implies
ball Z isu(X** X*)denseinballX** HenceballX= ballX**andsoX
is reflexive.
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(¢) = (b): By Alaoglu s Theorem, ball X* is o(Z *, X)-compact. By (c),
ball X* is o(Z *, X **) compact. Since it has already been shown that (d)
implies (a), this implies that X* is reflexive.

(b) = (a): Now ball X is norm closed in X **; hence ball X is
o(Z**, F***) closed in X** (Corollary 1.5). Since X* = X*** by (b),
this says that ball X is a( X **, X *) closed in X **. But, according to (4.1),
ball X is a(Z **, & *) dense in ball X** Hence ball X= ball X** and X
is reflexive.

(a) = (d): By Alaoglu 8 Theorem, ball X** is o(Z **, X*) compact.
Since X= % **, this says that ball X is 6(Z, X *) compact. ]

4.3, Corollary. IfXisa reflexive Banach space and M <%, then M is
reflexive.

Proor. Note that ball # =.# n [ball X], so ball & is (%, X**) com-
pact. It remains to show that o(%, % *)|# = o( A, A *). But this follows
by (2.3). (How?) [ |

Call a sequence {x, }in X a weakly Cauchy sequence if for every x * in
Z* {{x,,x*)} is a Cauchy sequence in F.

4.4. Corollary. If X is reflexive, then every weakly Cauchy sequence in X
converges weakly. That is, X is weakly sequentially complete.

Proor. Since {(x,, x*)} is a Cauchy sequence in F for each x* in X *,
{x,} is weakly bounded. By the PUB there is a constant M such that
[|x,]|<M for all n > 1. But {x € X:||x||<M} is weakly compact since X
is reflexive. Thus there is an x in X such that x, 7> x weakly. But for
cach x* in &* lim(x,, x*) exists. Hence (x,, x*)— (x,x*), s0 x,— x
weakly. [ ]

Not all Banach spaces are weakly sequentially complete.

4.5, Example. C[0,1} is not weakly sequentially complete. In fact, let
() = 1 —m)ifO<t<lnand f,(f) = 0if n <t<1.If pe M[0,1],
then [f, du — p({0}) by the Monotone Convergence Theorem. Hence { f, }
is a weakly Cauchy sequence. However, { f,} does not converge weakly to
any continuous function on [0, 1].

4.6. Corollary. Zf X is reflexive, # <X, and x,€ X\ M, then there is a
pointy, in M such that ||x,— yol| = dist(x,, A).

Proor. x = ||x — x| is weakly lower semicontinuous (Exercise 1.9). If
d = dist(xq, #), then A N (x: ||x —xof|<2d} is weakly compact and a
lower semicontinuous function attains its minimum on a compact set. ]
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It is not generally true that the distance from a point to a linear subspace
is attained. If # C &, call A proximinal if for every x in & thereisa y in
A such that j|x — y|| = dist(x, #). So if # is reflexive, Corollary 4.6
implies that every closed linear subspace of Z is proximinal. If %" is any
Banach space and .# is a finite-dimensional subspace, then it is easy to see
that .# is proximinal. How about if dim(Z/.#) < o?

4.7. Lemma. If Z is a Banach space and x* € & *, then kerx* is proxim-
inal if and only if there is an x in X, ||x|| = 1, such that (x,x*) = ||x*||.

PROOF. Let & = kerx* and suppose that /# is proximinal. If f: 2/ 4 — F
is defined by f(x +.#)= (x,x*), then f is a linear functional and
I/l = lIx*||. Since dim Z/.# = 1, there is an x in & such that ||x + Z| = 1
and f(x + #) = ||f||. Because # is proximinal, there is a y in .# such
that 1 = ||x + 4| = ||x + y|l- Thus (x +y,x*) = (x,x*) = f(x + #)
== lx*l.

Now assume that there is an x, in Z such that ||x,|| = 1 and (x4, x*) =
lx*|l. If x €& and ||x +#| = « > 0, then |ja 'x +.#| = 1. But also
lIxo + 4| = 1. (Why?) Since dim 2/.# = 1, thereisa B in F, |8] = 1, such
that a 'x + 4 = B(x, + #). Hence a 'x — Bx, € A, or, equivalently,
x — afx, € A. However, ||x — (x — aBxy)ll = [|aBx,|| = a = dist(x, A).
So the distance from x to .# is attained at x — afix,. |

48. Example. If L: C[0,1] — F is defined by
1/2 1
L(f)= [T 7(x)dx = [ f(x)dx,
0 1/2

then ker L is not proximinal.

There is a result in James [1964b] that states that a Banach space is
reflexive if and only if every closed hyperplane is proximinal. This result is
very deep.

EXERCISES
1. Show that if & is reflexive and A& < %, then Z/# is reflexive.

2. If & is a Banach space, # < &, and both # and Z/# are reflexive, must £ be
reflexive?

3. If X is compact, show that C(X) is reflexive if and only if X is finite.

4 If (X,,p) is a o-finite measure space, show that L'(X, &, p) is reflexive if and
only if it is finite dimensional.

5. Give the details of the proofs of the statements made in Example 4.5.

6. Verify the statement made in Example 4.8.
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7. If (X, £, p) is a v-finite measure space, show that L*(p) is weakly sequentially
complete but is reflexive if and only if it is finite dimensional.

8. Let X be compact and suppose there is a norm on C(X) that is given by an inner
product making C(X) into a Hilbert space such that for every x in X the
functional f— f(x) on C(X) is continuous with respect to the Hilbert space
norm. Show that X is finite.

§5. Separability and Metrizability

The weak and weak-star topologies on an infinite-dimensional Banach space
are never metrizable. It is possible, however, to show that under certain
conditions these topologies are metrizable when restricted to bounded sets.
In applications this is often sufficient.

5.1. Theorem. If Z is a Banach space, then ball X * is weak-star metriz-
able if and only if X is separable.

ProoF. Assume that X is separable and let {x, } be a countable dense
subset of ball X. For each nlet D,={a€F:|aj<1}. Put X = [12 D,
X is a compact metric space. So if (ball X *, wk*) is homeomorphic to a
subset of X, ball X * is weak-star metrizable.

Define 7: ball X * - X by 7(x*) = {{x,,x*>}. If {x*} is a net in
ball Z* and x} - x* (wk*), then for each n = 1, {x,, x}*) = {x,, x*);
hence 7(x*)—> 7(x*) and 7 is continuous. If 7(x*) = 7(y*),{x,, x*—
y *y =0 for all n. Since {x,} is dense, x * —y *= 0. Thus 7 is injective.
Since ball X * is wk* compact, 7 is a homeomorphism onto its image
(A.2.8) and ball X* is wk* metrizable.

Now assume that (ball X *, wk*) is metrizable. Thus there are open sets
{Uy:n =1} in (ballX*,wk*) such that 0 €U, and NP, U, = (0). By the
definition of the relative weak-star topology on ball X *, for each n there is
a finite set F, contained in X such that {x * € ball X *: |{x,x*})|<1 for
all x in F,}CU,. Let F = U7_,F,; so F is countable. Also, *(F *) is the
closed linear span of F and this subspace of X is separable. But if
x*e F* | then for each n > 1 and for each x in F,,[{x, x*/||x*||}| = 0
< 1. Hence x*/|[x*||€U, for all » = 1; thus x* = 0. Since F*= (0),
+(F*)=Xand X must be separable. ]

Is there a corresponding result for the weak topology? If X* is sep-
arable, then the weak topology on ball X is metrizable. In fact, this follows
from Theorem 5.1 if the embedding of X into X** is considered. This
result is not very useful since there are few examples of Banach spaces X
such that X * is separable. Of course if X is separable and reflexive, then
X * is separable (Exercise 3), but in this case the weak topology on X is the
same as its weak-star topology when X is identified with X * *. Thus (5.1) is

i
i
i
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adequate for a discussion of the weak topology on the unit ball of a
separable reflexive space. If X= ¢,, then X * =1 and this is separable but
not reflexive. This is one of the few nonreflexive spaces with a separable
dual space.

If X is separable, is (ball &, wk) metrizable? The answer is no, as the
following result of Schur demonstrates.

5.2. Proposition. Zf a sequence in I* converges weakly, it converges in norm.

Proor. Recall that /® = (I )*. Since /' is separable, Theorem 5.1 implies
that ball I is wk* metrizable. By Alaoglu § Theorem, ball /* is wk*
compact. Hence (ball /*, wk*) is a complete metric space and the Baire
Category Theorem is applicable.

Let { f,) be a sequence of elements in /! such that f, — 0 weakly and let
¢> 0. For each positive integer m let

F,={¢€ balll : [{f,,9)] <e/3 for n = m).

It is easy to see that F,, is wk* closed in ball I and, because f, — 0 (wk),
m_1F,="ball 1 . By the theorem of Baire, there is an F,, with nonempty
weak 1nter10r.
An equivalent metric on (ball /*°, wk) is given by

o0
d(¢,¥) = 2. 2716(/) — v (/)i

j=1
(see Exercise 4). Since F,, has a nonempty weak interior, there is a ¢ in F,,
and a 8> 0 such that { € balll : d(¢,¢)<8}CF,.Let J =1 such
that 2°Y "D < 6. Fix n = m and define ¢ in [® by ¢(j) = ¢(j) for
1 <j<Jand y(J) = sign(£,()) for j>J. Thus $(/)f,(j) = |f,(/)| for
J>J. It is easy to see that Y€ ball 1 . Also, d(¢,¢)=2X5 ;27 N (j)—
V()< 2 2-J =2"U-D <8 So y€F, and hence |(V, fm>| <e&/3. Thus

53 Z o () (J) + Z Vv, ()l <

Jj= J=J+1

wlm

for n> m. But there is an m, > m such that for n >my, XJ_,|f,(/)l <e/3.
(Why?) Combining this with (5.3) gives that

TAENIAT)

o]

RN EHROIARIE

Jj=J+1

&
<‘§ +

+Z|f(1)l

Jj=1
< g
whenever n > m,. [ |
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So if (ball /!, wk) were metrizable, the preceding proposition would say
that the weak and norm topologies on I agree. But this is not the case
(Exercise 1.10).

Also, note that the preceding result demonstrates in a dramatic way that
in discussions concerning the weak topology it is essential to consider nets
nd not just sequences.

roof of (5.2) that avoids the Baire Category Theorem can be found in
Banach [19595], p. 218.

EXERCISES

1. Let B = ball M[0,1] and for u, v in M[0,1] define d(g, v) = £2_42 " /5x" du
— f3x"dv|. Show that d is a metric on M[0,1] that defines the weak-star
topology on B but not on M[0,1].

2. Let X be a compact space and let = {(U,V):U,V are open subsets of X and
cddUcV}. Foru= (U, V)in%,let f,: X - [0,1]be acontinuous function such
that f,=1oncl U and f,= 0 on X\ V. Show: (a) the linear span of {f,:
u€} is dense in C(X); (b) if X is a metric space, then C(X) is separable.

3.If & is a Banach space and % * is separable, show that (a) % is separable; (b) if
K is a weakly compact subset of %, then K with the relative weak topology is
metrizable.

4.If B = ball/®, show that d(¢,¥) =L 127|¢(/)—¥(j)| defines a metric on
B and that this metric defines the weak-star topology on B.

§6*. An Application: The Stone—Cech
Compactification

Let X be any topological space and consider the Banach space C,(X).
Unless some assumption is made regarding X, it may be that C,(X) is
very small. If, for example, it is assumed that X is completely regular,
then C,(X) has many elements. The next result says that this assumption is
also necessary in order for C,(X) to be large. But first, here is some
notation.

If x € X, let 8,: C,(X) = F be defined by S,(f) = f(x) for every f in
C,(X). It is easy to see that 8,€ C,(X)* and |8, = 1. Let A: X —
C,(X)* be defined by A(x) = 8,.If {x,;} is a net in X and x, = x, then
f(x;) = f(x) for every f in C,(X). This says that 8, =8, (wk*) in
C,(X)*. Hence A: X — (C,(X)*, wk*) is continuous. Is A a homeomor-
phism of X onto A(X)?

6.1. Proposition. The map A: X — (A(X), wk*) is @ homeomorphism if and
only if X is completely regular.



V.6. An Application: The Stone-tech Compactification 141

JPROOF. Assume X is completely regular. If x;+ x,, then there is an f in
\C,( X) such that f(x;) =1 and f(x,) = 0; thus 8, (f)+8, (f). Hence A
isinjective. To show that A: X — (A(X), wk*) is an open map, let U be an
open subset of X and let xyo€U. Since X is completely regular, there is an
f in C,(X) such that f(xy) = 1 and f=0 on X\ U. Let V; = {p €
Cy(X)*:(f,p)> O}. Then ¥, is wk* open in C(X)* and ¥; N A(X) =
{8;\; flx) >0}. So if V =V,N A(X), V is wk* open in A(X) and
8,,€ V< A(U). Since x, was arbitrary, A(U) is open in A(X). Therefore
A: X (A( X), wk*) is a homeomorphism.

Now assume that A is a homeomorphism onto its image. Since
(ball C,( X)*, wk*) is a compact space, it is completely regular. Since
AX) Cball C,( X)*, AX) is completely regular (Exercise 2). Thus X is
completely regular. [ |

6.2. Stone—Cech Compactification. If X is completely regular, then there is a
compact space BX such that:

(a) there is a continuous map A: X = BX with theproperty that A: X — A(X)
is a homeomorphism;

(b) AX) is dense in BX;

() if f € C,(X), then there is a continuous map fP:BX —F such that
fBoA =1,

Moreover, if £ is a compact space having these properties, then § is
homeomorphic to BX.

Proor. Let A: X — C(X)* be the map defined by A(x) = §, and let
BX = the weak-star closure of AX) in C,(X)*. By Alaoglu’s Theorem and
the fact that ||8,|| = 1 for all x, 8X is compact. By the preceding proposi-
tion, (a) holds. Part (b) is true by definition. It remains to show (c).

Fix fin C,(X) and define fA:BX — IFby fA(7)=(f ) for every 7 in
BX. [Remember that BX C C,(X)*, so this makes sense.] Clearly f# is
continuousand fAoA(X)=fB(8,)=(f,8,)=f(x).So fPoA=fand(c)
holds.

To show that BX is unique, assume that § is a compact space and w:
X — 2 is a continuous map such that:

(a) m X —=a(X) is a homeomorphism;
(b ) w(X)is dense in §2; N i
(¢) if f€ C(X), there is an f in C( ) such that few =Ff.

Define g: A(X) —= &£ by g(Ax)) = «(x). In other words, g = oAl
The idea is to extend g to a homeomorphism of BX onto £.1If 7, € B X,
then (b) implies that there is a net {x;} in X such that A(x;) -7, in BX.
Now {m(x,)}is a net in £ and since § is compact, there is an w,in £ such
that 7(x,) > w,. If FE€ C(2),let f= Fom;sofe C(X)(and F = f).
Also, f(x,)=(f,8,)=>(f,m)=fP(x). But it is also true that f(x,) =
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F(7(x,)) — F(w,). Hence F(w,) = fP(7y) for any F in C( £). This
implies that w, is the unique cluster point of {w(x;)}; thus =(x,) — w,
(A.2.7). Let g(m) = wy. It must be shown that the definition of g(m,) does
not depend on the net {x,} in X such that A(x,)— 7,. This is left as an
exercise. To summarize, it has been shown that

6.3 There is a function g BX — £
such thatif f € C,(X), then ff =fog.

To show that gz BX — & is continuous, let { 7,} be a net in BX such that
TorEFEC(2),let f=Feomso f€ C(X) and f = F. Also, fP(1)
— fB(7). But F( g( 7)) = fB(7)— fB(7) = F( g( 7)). It follows (6.1) that
g(7)— g() in £. Thus g is continuous.

It is left as an exercise for the reader to show that g is injective. Since
g(BX) 2 g(A(X)) = w(X), g(BX)s dense in §£. But g(SX) is compact,
so g is bijective. By (A.2.8), g is a homeomorphism. a

The compact set BX obtained in the preceding theorem is called the
Stone-tech compactification of X. By properties (a) and (b), X can be
considered as a dense subset of BX and the map A can be taken to be the
inclusion map. With this convention, (¢) can be interpreted as saying that
every bounded continuous function on X has a continuous extension to BX.

The space BX is usually very much larger than X. In particular, it is
almost never true that BX is the one-point compactification of X. For
example, if X = (0, 1], then the one-point compactification of X is [0, 1].
However, sin(1/x)€ C,(X) but it has no continuous extension to [0, 1], so
BX #[0,1].

To obtain an idea of how large BX\ X is, see Exercise 6, which indicates
how to show that if N has the discrete topology, then BN\N has 2%
pairwise disjoint open sets. The best source of information on the Stone-tech
compactification is the book by Gillman and Jerison [1960], though the
approach to BX is somewhat different there than here.

6.4. Corollary. Zf X is completely regular and p€ M(BX), dejine L,:
C,(x) ~Fby

Lu(f)=fBXdeu

for each f in C,(X). Then the map p = L, is an isometric isomorphism of
M(BX) onto C(X)*

Proor. Define V: C(X) = C(BX) by Vf = fA1is easy to see that V is
linear. Considering X as a subset of BX, the fact that BX = cl X implies
that ¥ is an isometry. If g € C( BX) and f= g|X, then g = P =Vf; hence
V is surjective.
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If pe M(BX)=C(BX)* it is easy to check that L,€ C(X)* and
ILJI = {lpul} since V' is an isometry. Conversely, if L € C,,(X)* then
Ley=leC(BX)*and ||L o V7! = ||L|. Hence there is a pin M(B8X)
such that fgdu =L oV 1(g) for every g in C(BX). Since Vg = g|X, it
follows that L = L, [ |

The next result is from topology. It may be known to the reader, but it is
presented here for the convenience of those to whom it is not.

6.5. Partition of Unity. I£ X is normal and{U,,...,U,}is anopen covering
of X, then there are continuous functions fi,..., f,from Xinto [0, 1)such that

@ Zi-1fi(x) = 1
) fi(x)=0 forxinX\ U,and1 <k <n.

Proor. First observe that it may be assumed that {U,,...,U,} has no
proper subcover. The proof now proceeds by induction.

Ifn=1,1let fy= 1. Suppose n = 2. Then X\ U, and X\ U, are disjoint
closed subsets of X. By Urysohn 8 Lemma there is a continuous function f;:
X — [0, 1) such that fi(x)=0for x in X\ U and f;(x) =1 for x in
X\ U,. Let f,=1—f; and the proof of this case is complete.

Now suppose the theorem has been proved for some n = 2 and
{U,...,U,, 1} is an open cover of X that is minimal. Let F =X \U,, ;
then Fis closed, nonempty, and FC U} _,U,. Let ¥ be an open subset of
X such that FCV Ccl VcU;_ U, Since clV is normal and {U; n
clV,...,U, n cl V} is an open cover of cl V, the induction hypothesis

implies that there are continuous functions gi,..., g, on cl V such that
Y8, =1and for 1 <k <n 0<g,< 1, and g(clV\U,) =0 By
Tietze S Extension Theorem there are continuous functions g&,..., &, on X

such that g, =g, onclVand0 < g, <1forl <k <n.

Also, there is a continuous function h: X — [0, 1] such that A = 0 on
X\V and h=1on F Put fr=ghforl <k<nand let f,,;=1-—
Yi_fi Clearly 0 <f,<1if 1l <k <nIf x €clV, then f, (x)=1 ~
Erioig(xNh(x)=1 — h(x); so 0 <f, (x)< T onclV. If x € X\V,
then f,,;(x)=1 since A(x) = 0. Hence 0 <f,, 1< 1.

Clearly (a) holds. Let 1 <k <n; if x € X\ U, then either x € (cl1V)\
U,orx € X\cl V)\U,. If the first alternative is the case, then g,(x) =0,
so fi(x)=0.If the second alternative is true, then A(x) = 0 so that
filx)=0.If x € X\U,,,=F, then h(x) = 1 and so f, (x)=1—
Li-18x(x) = 0. u

Partitions of unity are a standard way to put together local results to
obtain global results. If { f,} is related to {U,} as in the statement of (6.5),
then { f, } is said to be a partition of unity subordinate to the cover {U,}.
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6.6. Theorem. ZfX is completely regular, then C,(X) is separable if and
only if X is a compact metric space.

Proor. Suppose X is a compact metric space with metric d. For each n, let
{Uf:1 <k<N,)} be an open cover of X by balls of radius 1/n. Let
{(fiM:1<k<N,} be a partition of unity subordinate to {U{"™: 1 <k<
N,}. Let Y be the rational (or complex-rational) linear span of { f{":
n>1,1<k<N,}; thus Y is countable. It will be shown that Y is dense
in C(X).

Fix fin C(X) and £> 0. Since fis uniformly continuous there is a
8> 0 such that |f(x,)— f(x,)|<e/2 whenever d(x;,x,)< 6. Choose
n >2/8 and consider the cover {U{™: 1 <k <N,}. If x,, x, € U,
d(x,, x,) < 2/n <8; hence |f(x)— f(x,)| <&/2. Pick x, in U{™ and let
a, € Q+iQ such that la, — f(x,)|<e/2. Let g = L0, f{", 50 g €Y.
Therefore for every x in X,

F(x) = g() = | L) (x) = T fi(x)
< TIS(x) =~ i)

Examine each of these summands. If x € U™, then If(x) — a,| < If(x) —
FOx)l + f(x) —ag]<e If x €U, then f{"(x) = 0. Hence If(x) —
g(x)| <X, ef{"(x)=E. Thus |f—g|l <e and Y is dense in C(X). This
shows that C(X) is separable.

Now assume that C,(X) is separable. Thus (ball Cp( X)*, wk*) is metriz-
able (5.1). Since X is homeomorphic to a subset of ball Cp( X)* (6.1), X is
metrizable. It also follows that BX is metrizable. It must be shown that
X = BX.

Suppose there is a 7in BX\ X. Let {x,} be a sequence in X such that
x,— 7. It can be assumed that x,# x,, for n#+ m. Let A = {x,: n is
even} and B = {x,: nis odd}. Then A and B are disjoint closed subsets of
X (not closed in BX, but in X) since A and B contain all of their limit
points in X. Since X is normal, there is a continuous function f:X — [0, 1]
such that f=0 on A and f= 1 on B. But then fA(7)=1im f(x,,)=0
and fA(7)=lim f(x,,,,) = 1, a contradiction. Thus BX\ X = Cl. [

EXERCISES
1. f x € X and 8,(f)= f(x) for all f in C,(X), show that ||, = I.
Prove that a subset of a completely regular space is completely regular.

Fill in the details of the proof of Theorem 6.2.

Bl

If X is completely regular, £ is compact, and f: X — § is continuous, show that
there is a continuous map f#: 8 X — & such that f#| X = f.

5. If X is completely regular, show that X is open in BX if and only if X is locally
compact.
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6. Let N have the discrete topology. Let {r,: n € N} be an enumeration of the
rational numbers in [0, 1]. Let S = the irrational numbers in [0, 1] and for each s
in S let {r,: n € N,} be a subsequence of {r,} such that s = lim{s,: n € N}.
Show: (a) if s, t€ § and s# 1, N, N N, is finite; (b) if for each s in §,
cl N, = the closure of N, in BN and A, = (cIN)\N, then {4,: s € S} are
pairwise disjoint subsets of BN \ N that are both open and closed.

7. Show that if X is totally disconnected, then so is 8 X.

8. Show that if r € BX and there is a sequence { x, } in X such that x, — 7 in BX,
then 7 € X.

9. Let X be the space of all ordinals less than the first uncountable ordinal and give
X the order topology. Show that BX = the one point compactification of X.
(You can find the pertinent definitions in Kelley [1955].)

§7. The Krein—Milman Theorem

7.1. Definition. If X is a convex subset of a vector space Z, then a point a
in K is an extreme point of K if there is no proper open line segment that
contains a and lies entirely in K. Let ext K be the set of extreme points
of K.

Recall that an open line segment is a set of the form (x;, x,) = {#x, +
(1 = t)x;: 0 <t < 1}, and to say that this line segment is proper is to say
that x; # x,.

7.2. Examples.

(@ f =R?and K = {(x,y) € R%: x>+ y? < 1}, thenextK = {(x, y):
x*+y*=1}%.

(b) If Z=R? and K = {(x, y) € R%: x <0}, thenext K = 0.

(© If Z=R? and K= {(x,y) € R*: x <0} U {(0,0)}, then extK =
{(0,0).

(d) If K = the closed region in R? bordered by a regular polygon, then
ext K = the vertices of the polygon.

(e) If & is any normed space and K = {x € Z: ||x|| < 1}, thenext K C {x:
IIx|l = 1}, though for all we know it may be that ext K = 0.

(f) If = L'0,1] and K = {f € L'[0,1]: ||f||; < 1}, then ext K = O. This
last statement requires a bit of proof. Let f € L'[0, 1] such that ||f]|, = 1.
Choose x in [0,1] such that [J|f(¢)|dt = . Let h(¢) =2f(2) if t < x
and O otherwise; let g(z) = 2f(¢) if t > x and 0 otherwise. Then
A, = llgll, =1 and f= 4(h + g). So ball L'{0,1] has no extreme
points.

The next proposition is left as an exercise.
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7.3. Proposition. If Kis a convex subset of a vector space X and a € K,
then the following statements are equivalent.

(a) a € ext K.

(b) If x;,x, € X and a = 3(x; + x,), then either x;&€ K or x, & K or
X, =X, = Q.

(€ Zf x;,x, €Z,0<t < 1 and a = tx, + (1 —1)x,, then either x, &€ K,
x, & K, or x;=x, = a.

d If x;,..., x,€ Kanda €co{x,,...,x,},then a = x, for some k.

(e) K\ {a}is a convex set.

74. The Krein-Milman Theorem. Zf K is a nonempty compact convex subset
of a LCS &, then ext K #0 and K = co(ext K).

Proov. (Léger [1968].) Note that (7.3¢) says that a point a is an extreme
point if and only if K\ {a} is a relatively open convex subset. We thus look
for a maximal proper relatively open convex subset of K Let % be all the
proper relatively open convex subsets of K. Since X is a LCS and K #0
(and let S assume that K is not a singleton), % # Cl. Let %, be a chain in %
and put Uy=U{ U:U € %, }. Clearly U is open, and since %, is a chain,
U, is convex. If U, = K, then the compactness of K implies that there is a
Uin %, with U = K, a contradiction to the propriety of U. Thus U, € %.
By Zom $ Lemma, % has a maximal element U.

Ifx€Kand 0 <A< 1, let T, ,: K— Kbe defined by T,,(y) =A y +
(1 = X)x. Note that T , is continuous and T, y(X7_1a, y,) = L7 e, T, a(y))
whenever y;,..., y,€K a;,..., @,2 0, and L7_,&, = 1. (This means that
T, , is an affine map of K into K.) If x € U and 0 <A <1, then
T, \(U)C U. Thus UCT;A(U) and T A\(U) is an open convex subset of
K It yeU)\U, T,,(y) € [x, ¥) CU by Proposition IV.1.11. So
cl UCT; }(U) and hence the maximality of U implies T, x(U) = K. That
is,

7.5 T.(K)cUifxe Uand0 <A <1.

Claim. If V' is any open convex subset of K, then either V u U =U or
VuU=K.

In fact, (7.5) implies that VU U is convex so that the claim follows from
the maximality of U.

It now follows from the claim that K\ U is a singleton. In fact, if
a, b € K\U and a #b, let V,V, be disjoint open convex subsets of K
such that @ €V, and b €V). By the claim V, U U = K since a 4 U. But
b &V, U U, a contradiction. Thus K\ U = {a} and a € ext K by (7.3e).
Hence ext K #0.

Note that we have actually proved the following.
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7.6 If V is an open convex subset of & and ext K C V, then K C V.

In fact, if V is open and convex, ¥ N K € % and is contained in a
maximal element U of #. Since K\ U = {a} for some g in ext K, this is a
contradiction. Thus (7.6) holds.

Let E=co(extK). If x* €Z*, a€R,and EC {x € &: Re{x, x*) <
a} =V, then K € V by (7.6). Thus the Hahn-Banach Theorem (IV.3.13)
implies £ = K. a

The Krein—-Milman Theorem seems innocent enough, but it has
widespread application. Two such applications will be seen in Sections 8§
and 10; another will occur later when C *-algebras are studied. Here a small
application is given.

If & is a Banach space, then ball ' * is weak* compact by Alaoglu’s
Theorem. By the Krein-Milman Theorem, ball £* has many extreme
points. Keep this in mind.

7.7. Example. ¢, is not the dual of a Banach space. That is, ¢, is not
isometrically isomorphic to the dual of a Banach space. In light of the
preceding comments, in order to prove this statement, it suffices to show
that ball ¢, has few extreme points. In fact, ball ¢, has no extreme points.
Let x € ball ¢,. It must be that 0 = lim x(r). Let N be such that |x(n)| < %
for n = N. Define y,, y, in ¢, by letting y,(n) = y,(n) = x(n) for n < N,
and for n > N let y;(n) = x(n)+ 27" and y,(n) = x(n) — 27" It is easy
to check that y, and y, € ballc,, 3(y, + »,) = x, and y, # x.

In light of Example 7.2(f), L'[0,1] is not the dual of a Banach space.
The next two results are often useful in applying the Krein—-Milman
Theorem. Indeed, the first is often taken as part of that resuit.

78. Theorem. If & is a LCS, K is a compact convex subset of &, and
F C K such that K = co(F), then ext K C cl F.

ProoF. Clearly it suffices to assume that F is closed. Suppose that there is
an extreme point x, of K such that x, ¢ F. Let p be a continuous
seminormon & suchthat FN {x € ¥: p(x — x,) <1} =0. Let U = {x
EX: p(x) < %}.80(xq+ Uy) N (F + Uy) = 0; hence x, & cl( F + Uj).

Because F' is compact, there are y,,..., y, in F such that F C U}_,(y,
+ Uy). Let K, = co(Fn (y,+ Uy)). Thus K, C y, + clU, (Why?), and
K, € K. Now the fact that K, ..., K, are compact and convex implies that
co(K, U -+ UK,)=co(K, U - -- UK,) (Exercise 8). Therefore

K=co(F)=co(K, U --- UK,).

Since x, € K, xo=Xi_0,%;, x, € K;, 0, 20, ¢y + -+ +a,=1. But
x, is an extreme point of K. Thus, x, = x, € K, for some k. But this
implies that x, € K, € y, + clU, € cl(F + U,), a contradiction. ]
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You might think that the set of extreme points of a compact convex
subset would have to be closed. This is untrue even if the LCS is finite
dimensional, as Figure V-1 illustrates.

/
{

|

\
A\

Figure V-1

7.9. Proposition. If K is a compact convex subset of a LCS X, % is a 1LCS,
and T: K - % is a continuous affine map, then T(K) is a compact convex
subset of ¥ and if y is an extreme point of T(K), then there is an extreme
point x of K such that T(x) = y.

ProoF. Because T is affine, T(K) is convex and it is compact by the
continuity of 7. Let y be an extreme point of T(K). It is easy to see that
T~ '(y)is compact and convex. Let x be an extreme point of T (). It
now follows that x € ext K (Exercise 9). a

Note that it is possible that there are extreme points x of K such that
T(x) is not an extreme point of 7(K). For example, let T be the
orthogonal projection of R3 onto R? and let K = ball R>.

EXERCISES

1. I (X,2,pr) is a u-finite measure space and 1 < p <oo, then the set of extreme
points of ball LP(u)is { f€L?(u):|Ifll, = 1}.

2. If (X, 82, u) is a u-finite measure space, the set of extreme points of ball I!( ) is
{ax;: E is an atom of p,a€F, and |a| = p(E)"'}.

3. If (X, £, p) is a u-finite measure space, the set of extreme points of ball L*®(u)

is {f € L2(u):1f(0)] = | ae [pl).

4, If X is completely regular, the set of extreme points of ball C, (X)is{ f€C, ( X):
[f(x)] =1 for all x}. So ball Cg [0, 1] has only two extreme points.

5. Let X be a totally disconnected compact space. (That is, X is compact and if
x € X and U is an open neighborhood of x, then there is a subset V of X that
is both open and closed and such that x&€V CU. The Cantor set is an
example of such a space.) Show that ball C(X) is the norm closure of the convex
hull of its extreme points.

6. Show that ball/! is the norm closure of the convex hull of its extreme points.

7. Show that if X is locally compact but not compact, then ball C,( X) has no
extreme points.
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8. If & is a LCS and K,,, K, are compact convex subsets of %, then
co(K,U--- UK,) = co(K,u--- UK, ).

9. Let K be convex and let T: K =% be an affine map. If y is an extreme point
of T(K) and X is an extreme point of Tfl(y), then x is an extreme point of K.

10. If % is a Hilbert space, show that T is an extreme point of ball Z(. ) if and
only if either 7 or T* is an isometry.

§8. An Application: The Stone-Weierstrass Theorem

If f:X - C is a function, then f denotes the function from X into €
whose value at each x is the complex conjugate of f(x),f( x).

8.1. The Stone-Weierstrass Theorem. Zf X is compact and < is a closed
subalgebra of C( X) such that:

() 1 €, ,
(b) if X, yE€ X and x+ y, then there is an fIN </ such that f(x) + f(y);
(¢)iffe A, then f € ;

then o= C(X).

If C(X) is the algebra of continuous functions from X into R, then
condition (c) is not needed. Also, an algebra in C(X) that has property (b)
is said to separate the points of X (see Exercise 1).

The proof of this result makes use of the Krein-Milman Theorem and is
due to L. de Branges [1959].

ProoOF OF THE STONE- WEIERSTRASS THEOREM. To prove the theorem it
suffices to show that & * = (0) (111.6.14). Suppose .« “+# (0). By Alaoglu $
Theorem, ball & * is weak* compact. By the Krein-Milman Theorem,
there is an extreme point p of ball & *. Let K = the support of . Since
&+ 0),]pll = 1 and K #0. Fix x,in K It will be shown that
K={x,}

Let x € X, x #x,. By (b) there is an f; in & such that fi(x,)# f;(x)
= B. By (a), the function BE€ . Hence f, = fi—BE L, f(x,)# 0 =
£:(x). By (©), f5 = |fol* =L, €. Also, f3(x) = 0 < fs(x,) and f> 0,
Put £ = (Ifsll + 1)~y Then FES, flr) = 0, f(x0)> 0, and 0 < f< 1
on X. Moreover, because & is an algebra, gf and gl — f) € for every
g in &Z. Because pe L+, 0= [gfdu= [g(1—f dp for every g in <.
Therefore fu and (1 —f)pe L *.

(For any bounded Borel function k& on X, hu denotes the measure whose
value at a Borel set A is [y,hdu. Note that ||hp||= [|h]d|u|.)

Put o = ||full = [fd|p|. Since f(xy)> 0, there is an open neighborhood
U of xo and an £> 0 such that f(}) > e for y in U. Thus, a = [fd|p|>



150 V. Weak Topologies

fofdlpl = elu|(U)> 0 since UNK #+0. Similarly, since f(x,)< 1, a< 1.
Therefore, 0 <a< 1. Also, 1 —a =1~ ffdul= {1~ fHdpl =|Q-
Hwll- Since

—flp
he [ el )[u — )l

and p is an extreme point of ball.e/ *, u= fullfull '=a fu. But the
only way that the measures g and @™ 'fu can be equal is if a™!f =1 ae. [u].
Since f is continuous, it must be that f =« on K. Since x, €K, f(x,) = a.
But f(xy)> f(x) = 0. Hence x & K. This establishes that K = {x,} and
sop=7v8 where|y|=1. But pe/* and1 €,500= [ldp=1y, a
contradiction. Therefore & * = (0) and &= C(X). []

With an important theorem it is good to ask what happens if part of the
hypothesis is deleted. If x,€ X and #Z={f€ CX): f(x,) = 0}, then &
is a closed subalgebra of C(X) that satisfies (b) and (¢) but &+ C(X).
This is the worse that can happen.

8.2. Corollary. If X is compact and & is a closed subalgebra of C(X) that
separates the points of X and is closed under complex conjugation, then either
/= C(X) orthereisapoint x, in X such that /= {f € C(X): f(x,) = 0}.

Proor. Identify F and the one-dimensional subspace of C(X) consisting of
the constant functions. Since & is closed, & +F is closed (I11.4.3). It is
easy to see that &/ +[F is an algebra and satisfies the hypothesis of the
Stone-Weierstrass Theorem; hence &/+F = C(X). Suppose & # C(X).
Then C( X)/& is one dimensional; thus ./ * is one dimensional (Theorem
22). Let pe L+, |ull=1. If fE L, then fuE L *; hence there is an «a
in F such that fu = ap. This implies that each fin & is constant on the
support of w. But the functions in &/ separate the points of X. Hence the
support of wm is a single point x, and so &+ ={B8, :BE€F}. Thus
A=*rAd*={fe C(X): f(x,)=0). a

There are many examples of subalgebras of C(X) that separate the points
of X, contain the constants, but are not necessarily closed under complex
conjugation. Indeed, a subalgebra of C(X) having these properties is called
a uniform algebra or function algebra and their study forms a separate area
of mathematics (Gamelin [1969]). One example (the most famous) is ob-
tained by letting X be a subset of C and letting /= R(X) = the uniform
closure of rational functions with poles off X.

Let xo, x, € X, xy# X1, and let &= {f € C(X): f(x,) = f(x;)}. Then
&/ is a uniformly closed subalgebra of C(X), contains the constant func-
tions, and is closed under conjugation. In a certain sense this is the worst
that can happen if the only hypothesis of the Stone-Weierstrass Theorem
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that does not hold is that &/ fails to separate the points of X (see
Exercise 4).
If X is only assumed to be locally compact, then the story is similar.

8.3. Corollary. If X is locally compact and < is a closed subalgebra of
C(X) such that

(a) for each x in X there is an f in &/ such that fix) + 0;
(b) & separates the points of X;
(¢) [ €A whenever f €

then o= C,(X).

Proor. Let X, = the one point compactification of X and identify C,(X)
with { f € C( X,): f(0) = O}. So & becomes a subalgebra of C( X_).
Now apply Corollary 8.2. The details are left to the reader. a

What are the extreme points of the unit ball of M(X)? The characteriza-
tion of these extreme points as well as the extreme points of the set P(X) of
probability measures on X is given in the next theorem. [A probability
measure is a positive measure p such that u(X)=1.]

84. Theorem. If X is compact, then the set of extreme points of ball M(X)
is

{ad.:|a] = 1 andx € X}.
The set of extreme points of P( X), the probability measures on X, is
{8, x € X}.

Proor. It is left as an exercise for the reader to show that if x € X, §, is
an extreme point of P(X) and &8, is an extreme point of ball M(X)
(Exercise 3).

It will now be shown that if p is an extreme point of P(X), then p is an
extreme point of ball M( X). Thus the first part of the theorem implies the
second. Suppose p is an extreme point of P(X) and »,,», € ball M( X)
such that = §(»;+2,). Then 1 = [l < 3([lwfl + I#2l) < 1: hence [|v,]
Iyl = 2 and s0 7]l = lIpyll = 1. Also, 1= p(X) = $(2,(X) +,(X)).
Now v (X)|,|#2(X)}< 1 and 1 is an extreme point of {a E€F:|a|< 1}.
Hence for k=1,2,||v,||=»,( X) = 1. By Exercise 111.7.2, v, € P(X) for
k=1,2. Since p€ ext P( X), p = v, =»,. So p is an extreme point of
ball M(X). Thus it suffices to prove the first part of the theorem.

Suppose that p is an extreme point of ball M( X) and let K be the
support of . That is,

K= X\U{V: Visopenand |p|(V) = O}.

Hence |p|(X\ K) = 0 and [fdu = [ fdp for every fin C(X). It will be
shown that K is a singleton set.
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Fix x,in K and suppose there is a second point X in X, x # X, LetU
and ¥ be open subsets of X such that x €U, xE€V,and clU N ¢l V = Cl.
By Urysohn 8 Lemma there is an f in C(X) such that 0 < f< 1, f(y) = 1
for y in ¢l U, and f(y) = 0 for y in cl V. Consider the measures fu and
(1= fip.-Puta = |Ifpll = [Ifl dlp| = [fdlu|. Then a = [fd|p| < lull = 1
and a= [fdp|= Ju|(U) > 0 since Uisopenand U N K # 0. Also, 1 —a
1- [fdipl = (1= f)dipl = |1 — Hplland s0 1 — & > [,(1 — f) dip|
[uf(V)> 0 since x€ K. Hence 0 <a< 1.

But fu/a and (1 — f)p/(1—a) € ball M( X) and

p= a[%]w‘ﬂ - a)[(l——_fﬁ}

1l -«

Since p is an extreme point of ball M(X) and a# 0, p = fpr/a. This can
only happen if f=a <1 ae. [l But f=1o0onU and |p|(U) > 0, a
contradiction. Hence K = { x,}.

Since the only measures whose support can be the singleton set {x,} have
the form ab‘xO, ain F, the theorem is proved. a

EXERCISES

1. Suppose that o/ is a subalgebra of C(X) that separates the points of X and
| € #/. Show that if xi,. .,x, are distinct points in X and @,..,a, €F, there
is an f in & such that f(X,) =a, for | <j<n.

2. Give the details of the proof of Corollary 8.3.

3. If X is compact, show that for each x in X, 8, is an extreme point of P(X) and
ad_, (a( =1, is an extreme point of ball M(X).

4. Let X be compact and let & be a closed subalgebra of C(X) such that 1 €./
and & is closed under conjugation. Define an equivalence relation ~ on X by
declaring x ~ y if and only if f(x) = f(y) for all f in &. Let X/~ be the
corresponding quotient space and let #: X — X/~ be the natural map. Give
X /- the quotient topology. (a) Show that if f €& &7, then there is a unique
function a*(f) in C(X/~) such that #*(f)ew=f. (b) Show that n*: ./ —
C( X/~ ) is an isometry. (c) Show that 7 * is surjective. (d) Show that &/ ={ f €&
C(X): f(x) = f(y) whenever x ~ y}.

5. (This exercise requires Exercise IV.4.7.) Let X be completely regular and topolo-
gize C(X) as in Example IV.1.5. If o/ is a closed subalgebra of C(X) such that
| € o/, o/ separates the points of X, and f €./ whenever fe o, then &=
C(X).

6. Let X, Y be compact spaces and show that if fe C( X X Y) ande> 0, then
there are functions g,,g, in C(X) and h,,.h, in C(Y) such that
1f (x5, ) = Ei o1& () A ()] <€ for all (x,p)in X X Y.

7. Let o/ be the uniformly closed subalgebra of C,,(W) generated by sinx and
cos x. Show that #= {fe C,, (R): F(t) = f(t+2m)forallzinR}.

8. If K is a compact subset of C, fe ¢ (K), and &> 0, show that there is a
polynomial p(z,Z) in z and Z such that If(z) — p(z,Z)|<e¢ forall zin K .
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§9*. The Schauder Fixed-Point Theorem

Fixed-point theorems hold a fascination for mathematicians and they are
very applicable to a variety of mathematical and physical situations. In this
section and the next two such theorems are presented.

The results of this section are different from the rest of this book in an
essential way. Although we will continue to look at convex subsets of
Banach spaces, the functions will not be assumed to be linear or affine. This
is a small part of nonlinear functional analysis.

To begin with, recall the following classical result whose proof can be
found in any algebraic topology book. (Also see Dugundji [1966].)

9.1. Brouwer’s Fixed-Point Theorem. If 1 < d < o0, B = the closed unit
ball of R? and f: B — B is a continuous map, then there is a point x in B
such that f(x) = x.

9.2. Corollary. If K is a nonempty compact convex subset of a finite-dimen-
sional normed space & and f: K — K is a continuous function, then there is a
point x in K such that f(x) = x.

PROOF. Since & is isomorphic to either C¢ or RY, it is homeomorphic to
either R%? or R So it suffices to assume that =R% 1 <d < o0. If
K={xe€RY |x|| <r), then the result is immediate from Brouwer’s
Theorem (Exercise). If K is any compact convex subset of R4 let r > 0
such that K € B= {x € R* ||x|| < r}. Let ¢: B —> K be the function
defined by ¢(x) = the unique point y in K such that ||x — y|| = dist(x, K)
(I.2.5). Then ¢ is continuous (Exercise) and ¢(x) = x for each x in K. (In
topological parlance, K is a retract of B.) Hence fo¢: B—> K C B is
continuous. By Brouwer’s Theorem, there is an x in B such that f(¢(x)) =
x. Since f o ¢(B) € K, x € K. Hence ¢(x) = x and f(x) = x. a

Schauder’s Fixed-Point Theorem is a generalization of the preceding
corollary to infinite-dimensional spaces.

9.3. Definition. If Z is a normed space and F C 4, a function f: E > &
is said to be compact if f is continuous and cl f( 4) is compact whenever A
is a bounded subset of F.

If E is itself a compact subset of &, then every continuous function from
E into & is compact.

The following lemma will be needed in the proof of Schauder’s Theorem.

94. Lemma. If K is a compact subset of the normed space X, € > 0, and A
is a finite subset of K such that K C U{B(a; ¢): a € A}, define ¢, K > &
by

Y {m,(x)a:a€ 4}
> (mo(x)aca)

o4(x) =
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where m (x)=01if||x —all 2eandm (x)=¢e— ||x —a| if||x —a|]| <&
Then ¢, is a continuous function and

liga(x) — x| <&
for all x in K.

PROOF. Note that for each a in 4, m,(x) = 0 and E{m,(x): a € A} > 0
for all x in K. So ¢, is well defined on K. The fact that ¢, is continuous
follows from the fact that for each a in 4, m,: K — [0, ¢] is continuous.
(Verify!)
If x € K, then
Y {my(x)la—x]:a€ 4}
T (m(x)iacd)
If m (x)> 0, then ||x — a|| < e. Hence
L {ma(x)la = x|; a €4} -
Y (m,(x); ac 4}

$q(x)—x =

llga(x) — xll <

E.

This concludes the proof. a

9.5. The Schauder Fixed-Point Theorem. Let E be a closed bounded convex
subset of a normed space ¥. If f: E > % is a compact map such that
f(E) C E, then there is an x in E such that f(x) = x.

PROOF. Let K = cl f(E), so K C E. For each positive integer n let 4, be a
finite subset of K such that K € U{B(a;1/n): a € A,}. For each n let
¢, = ¢, asin the preceding lemma. Now the definition of ¢, clearly implies
that ¢,(K) € co(K) € E since E is convex; thus f, = ¢, f maps E into
E. Also, Lemma 9.4 implies

9.6 W (x) = f(x)| <1/n forxin E.

Let Z, be the linear span of theset 4, andput £, = ENZ,.S0 %, isa
finite-dimensional normed space, E, is a compact convex subset of Z,, and
f,: E, = E, (Why?) is continuous. By Corollary 9.2, there is a point x, in
E, such that f (x,) = x,.

Now { f(x,)} is a sequence in the compact set K, so there is a point x,
and a subsequence { f(x, )} such that f(x,)— x,. Since f, (x,)= x,,
(9.6) implies ’ ’ Y ’

”an - xO” < ”fnj(xnj) —f(xnl)” + “f(xnj) - xO”
1
<=+ (x,) = xoll.
J
Thus X, ~ X Since f is continuous, f(x,) = lim f(x,,/) = X,. a

There is a generalization of Schauder’s Theorem where £ is only assumed
to be a LCS. See Dunford and Schwartz [1958], p. 456.
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EXERCISE

1. Let E = {x € P(N):|lx]|<1} and for x in E define f(x) = ((1 —|x|*),
x(1), ¥(2), ...). Show that f(E) C E, f is continuous, and f has no fixed points.

§10*. The Ryll-Nardzewski Fixed-Point Theorem

This section begins by proving a fixed-point theorem that in addition to
being used to prove the result in the title of this section has some interest of
its own. Recall that a map T defined from a convex set K into a vector
space is said to be affine if T(Xa;x;) = Le;T(x;) when x; €K, &; 2 0, and
Za,=1.

10.1. The Markov-Kakutani Fixed-Point Theorem. If K is a nonempty
compact convex subset of a LCS & and F is a family of continuous affine
maps of K into itself that is abelian, then there is an x, in K such that
T(xy)=xq forall Tin &.
Proor. If T €% and n > 1, define T™: K > Kby

n 1

TW == Z T*,

k=0
If Sand T €% and n, m > 1, then it is easy to check that S™T(™ =
TmS™ Let #'= {T( )(K): T €St n>1}. Each set in ¢ is compact
and convex. If T},. ... ?637 and n,,...,n,> 1, then the commutativity
of # implies that T("1 X (K)CNP_ T ")(K). This says that >¢
has the finite intersection property and hence there is an x,in N{ B:
B e}, It is claimed that x is the desired common fixed point for the
maps in #.

If Te% and n > 1, then x,€ T"(K). Thus there is an x in K such

that

xo=T (x) = %[x + T(x) +---+T""1(x)].
Using this equation for x,, it follows that

T(xg) = xo = 2 [T(x) + -+ T"(x)]

—%[x + T(x) +--+T" Y(x)]
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Now K is compact and so K — K is also. If U is an open neighborhood of 0
in &, there is an integer n> 1 such that n” }[K — K] CU. Therefore
T(xo)—x,€U for every open neighborhood U of 0. This implies that
T(x9)— x4 = 0. ]

If p is a seminorm on & and A C %, define the p-diameter of A to be
the number

p-diam A =sup{ p(x —y):x,y€ A}.

10.2. Lemma. Zf % is a LCS, K is a nonempty separable weakly compact
convex subset of X, and p is a continuous seminorm on &, then for every
€> () there is a closed convex subset C of K such that:

(a C #+ K;
(b) p-diam(K\ C) <e.

ProoF. Let S = {x €% p(x) <e¢/4} and let D = the weak closure of the
set of extreme points of K. Note that D C K. By hypothesis there is a
countable subset A of K such that D CKC U{ a+ S: a € A). Now each
a + S is weakly closed. (Why?) Since D is weakly compact, there is an a in
A such that (@ + §) N D has interior in the relative weak topology of D
(Exercise 2). Thus, there is a weakly open subset W of £ such that

10.3 (a+S)NnD2>WND=+DO.

Let K| = co( D\ W) and K, = co(DN W). Because K, and K, are
compact and convex and K;u K, contains the extreme points of K, the
Krein-Milman Theorem and Exercise 7.8 imply K = co( K, U K,).

10.4. Claim. K,# K.

In fact, if K; = K, then K = co( D\ W) so that ext K € D\ W (Theo-
rem 7.8). This implies that D € D\ W, or that WN D = O, a contradiction
to (10.3).

Now (10.3) implies that K, C a + S; so the definition of S implies that
p-diam K,<e/2. Let 0 <r< 1 and define f:K, X K, X [r, 1]> Kby
f(xq, x5, 8) =, + (I —t)x,. S0 f, is continuous and C,= f,(K; x K, x
[r, 1]) is weakly compact and convex. (Verify!)

10.5. Claim. C,# K for 0 <r< I

In fact, if C, = K and e € ext K, then ¢ = w, + (I —1t)x, for some ¢,
r<e<l, X; in K,. Because e is an extreme point and ¢+ 0, e = x,. Thus
ext K CK,; and K = K, contradicting (10.4).

Let y € K\ C,. The definition of C, and the fact that K = co(K;u K,)
imply y = 2x, + (1 —f)x, with x, in K, and 0 <7 <r. Hence p(y—x;)
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= p(1(x; — x,)) = tp(x;— x,) £ rd, where d = p-diam K. Therefore, if

y =tx{+ 0 —-t)x;€ K\ G, then p(y—y ) <p(y—x,)+ p(x,—
x3)+ p(xt—y ) < 2rd + p-diam K, < 2rd + €/2. Choosing r = ¢/4d
and putting C = C,, we have proved the lemma. ]

10.6. Definition. Let Z be a LCS and let Q be a nonempty subset of Z. If
& is a family of maps (not necessarily linear) of Q into Q, then & is said to
be a noncontracting family of maps if for two distinct points x and y in Q,

0 €c{T(x)- T(y): TEF)}.

The next lemma has a straightforward proof whose discovery is left to the
reader.

10.7. Lemma. IfZ isa LCS, Q C %, and & is a family of maps of @ into
Q, then & is a noncontracting family if and only if for every pair of distinct
points x and y in Q there is a continuous seminorm p such that

inf{ p(T(x)— Ty)): T €&L}> 0.

10.8. The Ryll-Nardzewski Fixed-Point Theorem. Zf % isa LCS, Q is a
weakly compact convex subset of X ,and ¥ is a noncontracting semigroup of
weakly continuous affine maps of @ into Q, then there is a point X in Q such
that T(x,) = xq for every Tin Y.

Proor. The proof begins by showing that every finite subset of % has a
common fixed point.

10.9. Claim. If {7T},..., T,,} €%, then there is an x, in Q such that
T\xg=xyfor1 <k <n

Put Ty=(Ty+--- +T,)/n;s0 T;: @ > Q and T, is weakly continuous
and affine. By (10.1), there is an xy in Q such that Ty(xy) = x,. It will be
shown that T,(xy) = xq for 1 <k <n. In fact, if T\ (x,)# x, for some %,
then by renumbering the 7, it can be assumed that there is an integer m
such that T,(xg)#x, for 1 <k <m and T,(xy)=xy for m <k <n. Let
Ty =(T, + --- +T,)/m. Then

X0 = To(xo)

=%[T1(x0) + "'+Tm(x0)]+(n;m)xo-

Hence

Ty(x0) = [Ty(x0) + -+ + T, (x0)]

- %%[Tl(xo) + o+ T(x0)]
(5]
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Thus it may be assumed that T,(x,)+ x, for all &, but To(x,) = xo. Make
this assumption.

By Lemma 10.7, there is an €> 0 and there is a continuous seminorm p
on X such that for every Tin & and 1 <k < n,

10.10 p(T(T(xy)) — T(xy)) > &.
Let &, = the semigroup generated by {T},T5,...,T,}. So €& and
={T,, -~ - T,:m=11 <l < n}. Thus & is a countable subsemi-

group of &. Put K = Co{ T(xO) T € %,}. Therefore K is a weakly

compact convex subset of Q and K is separable. By Lemma 10.2, there is a

closed convex subset C of K such that C # K and p-diam(K \ C) <e.
Since C # K, there is an S in &, such that S(x,)€ K\ C. Hence

S(xo) = STy(x,) =

x|

[ST\(x0) + -+ +ST,(xy)]€ K\C.

Since C is convex, there must be a &, I <k <n, such that ST,(xy)€ K\ C.
But this implies that p(S(T(x,)) —S(xy)) < p-diam( K\ C) <¢, con-
tradicting (10.10). This establishes Claim 10.9.

Let # = all finitc nonempty subsets of S If FEF, let Qp = {x € Q:
T(x) = x for all Tin F). By Claim 10.9, Q0O for every F in %#. Also,
since each T in &% is weakly continuous and affine, Qp is convex and
weakly compact. It is easy to see that {Q i F € % } has the finite intersec-
tion property. Therefore, there is an xqin N{Qf: F€.% ). The point x, is
the desired common fixed point for . ]

The original reference for this theorem is Ryll-Nardzewski [1967]; the
treatment here is from Namioka and Asplund[1967]. An application of this
theorem is given in the next section.

EXERCISES
1. Was local convexity used in the proof of Theorem 10.1?

2. Show that if X is locally compact and X = U?_; F,, where each F, is closed in

n=1%ns

X, then there is an integer n such that int F,# 0. (Hint: Look at the proof of the
Baire Category Theorem.)

§11*. An Application: Haar Measure on a
Compact Group

In this section the operation on all semigroups and groups is denoted by
multiplication.
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11.1.  Definition. A topological semigroup 1is a semigroup G that also is a
topological space and such that the map G X G — G defined by (x, y)— xy
is continuous. A ropological group is a topological semigroup that is also a
group such that the map G — G defined by x = x ! is continuous.

So a topological group is both a group and a topological space with a
property that ties these two structures together.

11.2. Examples

(a) Nand R _, are topological semigroups under addition.

(b) Z,R, and € are topological groups under addition.

(¢) D is a topological group under multiplication.

(d) If X is a topological space and G = {f € CX): f(X) ¢ D}, define
(fg)(x)=f(x)g(x)for f, gin G and x in X. Then G is a group. If G is
given the topology of uniform convergence on X, G is a topological
group.

(e) For n> 1, let M (C) = the n X n matrices with entries in €; O(n) =
{A €M (C): A is invertible and 47 = A*}; SO(n) = {A € O(n):
det A=1}.f M (C) is given the usual topology, O(n) and SO(n) are
compact topological groups under multiplication.

There are many more examples and the subject is a self-sustaining area of
research. Some good references are Hewitt and Ross [1963] and Rudin
[1962].

11.3.  Definition. If S is a semigroup and f:S — [, then for every x in S
define f:S—Fand fI § >Fbyf.(s)=f(sx) and .f(s) = f(xs) for all
sin S. If S is also a group, let f*(s) = f(s™') for all s in S.

11.4. Theorem. If G is a compact topological group, then there is a unique
positive regular Borel measure m on G such that

(@ m(G) = I;

(b) if U is a nonempty open subset of G, then m(U) > 0;

(¢) if A is any Borel subset of G and x € G, then m(A) = m(Ax) = m(xA)
= m(A~Y), where Ax = {ax: a € A}, xA= {xa: a € A}, and A '=
fa- 1 a€ A}.

The measure m is called the Haar measure for G. If G is locally compact,
then it is also true that there is a positive Borel measure m on G satisfying
(b) and such that m(Ax) = m(A) for all x in G and every Borel subset A of
G. Tt is not necessarily true that m(A) = m(xA), let alone that m(A) =
m(A~1) (see Exercise 4). The measure m is necessarily unbounded if G is
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not compact, so that (a) is not possible. Uniqueness, however, is still true in
a modified form: if m;,m, are two such measures, then m;=am, for
some a> (.

By using the Riesz Representation Theorem for representing bounded
linear functionals on C(G), Theorem 11.4 is equivalent to the following.

11.5. Theorem. If G is a compact topological group, then there exists a
unique positive linear functional I: C(G) —F such that

(@ Z(1) = 1,
(b) iff € C(Q), f = 0, andf * 0, then I(f) > 0;
(c) iff € C(G) andx € G, then I(f) = I(f,)=1(f)=I(f*).

Before proving Theorem 11.5, we need the following lemma. For a
compact topological group G, if x€ G, define L,: M(G) — M(G) and R,:
M(G) — M(G) by

(f L)) = [ Sfdp,

(fiR (1)) = [1.dp

for fin C(G) and p in M(G). Define S3: M(G) — M(G) by

(fSo(w)y=[£#dp

for fin C(G) and p in M(G). It is easy to check that L ,R,, and S, are
linear isometries of M(G) onto M(G) (Exercise 5).

11.6. Lemma. Zf G is a compact topological group, € M(G), and p:
G x G = (M(G),wk*) is defined by p(x,y) = L R (), then p is continu-
ous. Similarly, if py: G X G — (M(G), wk*) is defined by py(x, y) =
SoL R, (1), then p is continuous.

Proor. Let f € C(G) and let €> 0. Then (Exercise 10) there is a neighbor-
hood U of e (the identity of G) such that If (x) —f(y)|<e whenever
xy 'eU or x~lyeU. Suppose {(x,, y,)} is a net in G X G such that
(X,, y») = (x, y). Let iy be such that for i iy, x,x '€U and y; 'y € U.
If ¢ € G, then |f(x,2v,) ~ f(xzn)| < [f(x,20) — FCxay)| & |f(x2) =
f(xzy)|. But if i =i, and z € G, (x;zy,)(xzy,) ' = x,x '€U and
(xzy,) " Nxzy) = y7'y € U Hence |f(x,zy;) — f(xzy)|<2e for i 2 i, and
for all z in G. Thus lm,(f(x,zy;,)dp(z) = [f(xzy)du(z). Since fwas
arbitrary, this implies that p(x;, y,) = p(x, y)wk* in M(G). The proof for
po 1s similar. a
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Proor orF THEOREM 11.5. If e = the identity of G, then

LR, =R,
L.L,-L,
11.7 R,R, = Ry,

S¢=L,=R, =the identity on M(G)
SoL.R, = L, 1R 15,

for x, y in G. Hence
(SOLny)(SOLuRv) = (Ly"Rx"SO)(SOLuRv)
=L, R.-1L,R,
= Ly—lLqullRU
= Luy—le—lv.
Hence if S, = the identity on M(G),
&= {S,-LXR_V: i=0,1;x,y€G)

is a group of surjective linear isometries of M(G). Let Q = the probability
measures on G; that is, Q = {# € M(G): p=0and p(G)=1}. So Q is a
convex subset of M(G) that is wk* compact. Furthermore, T(Q) € Q for
every T in &.

11.8. Claim. If p& M(G) and p+# 0, then 0 4 the weak* closure of {T(p):
Te%).

In fact, Lemma 11.6 implies that {T(p): T € ¥} is weak* closed. Since
each T in & is an isometry, T(p) # 0 for every T in &.

By Claim 11.8, % is a noncontracting family of affine maps of Q into
itself. Moreover, if T = S,L, R, and {p;} is a net in Q such that p,—
p(wk*), then for every f in C(G), (f, T(p,;)) = [f(xs™ y)du,(s)—>
Jf(xs™ly)dp = (f,T(n)). So each T in & is wk* continuous on Q. By the
Ryll-Nardzewski Fixed-Point Theorem, there is a measure m in Q such
that T(m) = m for all T in &.

By definition, (a) holds. Also, for any x in G and f in C(G),
[f(xs)dm(s) = {(f,L.(m)) = [fdm. By similar equations, (c¢) holds. Now
suppose f€ C(G), f= 0, and f# 0. Then there is an £> 0 such that
U= {x € G: f(x)>e¢} is nonempty. Since U is open, G = U{ Ux: x € G},
and G is compact, there are x;,X,,...,X, in G such that G € U%_,Ux,.
(Why is Ux open?) Define g,(x)= f(xx;') and put g = X¥_,g,. Then
g € C(G) and jgdm = X}_,/g.dm = n jfdm by (c). But for any x in G
there is an x, such that xx; ' €U; hence g(x) = g(x) = flxx H>e.
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Thus

/ﬂm:%[yWZem>a

This proves (b).

To prove uniqueness, let w be a probability measure on G having
properties (a), (b), and (c). If f € CG) and x € G, then [f du = [.f dp.
Hence

[y =f[ff(y)du(y)]dm(x)

- [ [1) au()] am()
= | fry ()| aut)

- |0 amio) | ani

= [dm.

Hence p=m. a

For further information on Haar measure see Nachbin [1965].

What happens if G is only a semigroup? In this case L, and R, may not
be isometries, SO {Lny: x, y€ G} may not be noncontractive. However,
there are measures for some semigroups that are invariant (see Exercise 7).
For further reading see Greenleaf [1969].

EXERCISES

1. Let G be a group and a topological space. Show that G is a topological group if
and only if the map of G X G — G defined by (x, y)— x "'y is continuous.

2. Verify the statements in (11.2).
3. Show that Theorems (11.4) and (11.5) are equivalent.

4. Let G be a locally compact group. If m is a regular Borel measure on G, show
that any two of the following properties imply the third: (a) m (A x) = m(A) for
every Borel set A and every x in G; (b) m(xA)=m(A) for every Borel set A
and every x in G; (¢) m(A) = m(A™ 1) for every Borel set A.

5. Show that the maps S;, L., R, are linear isometries of M(G) onto M(G).
6. Prove (11.7).
7. Let S be an abelian semigroup and show that there is a positive linear

functional L:/*(S)—F such that (a) L(1) = 1, (b) L(f,) = L(f) for everyf
in I°(S).
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8. Show that if § and L are as in Exercise 7, and S is infinite, then L(f)=10
whenever {s € S: f(s) # 0} is finite.

9. If § = N, what does Exercise 7 say about Banach limits?

10. If G is a compact group, f: G — F is a continuous function, and & > 0, show
that there is a neighborhood U of the identity in G such that |[f(x) — f(y)| < ¢
whenever xy~! € U. (Note that this says that every continuous function on a
compact group is uniformly continuous.)

11. If G is a locally compact group and f € C,(G), let O(f) = the closure of { f.:
x € G} in C,(G). Let AP(G) = {f € C,(G): O(f) is compact}. Functions in
AP(G) are called almost periodic. (a) Show that every periodic function in
C,(R) belongs to AP(R). (b) If G is compact, show that AP(G) = C(G). (¢)
Show that if f € C,(R), then f € AP(R) if and only if for every ¢ > 0 there isa
positive number T such that in every interval of length T' there is a number p
such that |[f(x) — f(x + p)| < & for all x in R. (d) If G is not compact, then
the only function in AP(G) having compact support is the zero function. (€)
Prove that there is a bounded linear functional L: AP(G) — F such that
LA)=1, L(f)=0if f>0, and L(f,) = L(f) for all f in 4P(G) and x
in G.

§12*. The Krein—Smulian Theorem

Let 4 be a convex subset of a Banach space Z. If 4 is weakly closed, then
forevery r > 0, A N {x € X ||x|| < r} is weakly closed; this is clear since
each of the sets in the intersection is weakly closed. But the converse of this
is also true: if 4 is convexand 4 N { X € & ||x|| < r} is weakly closed for
every r > 0, then A is weakly closed. In fact, because 4 is convex it suffices
to prove that A is norm closed (Corollary 1.5). If {x,} € 4 and |[x, — x|
-» 0, then there is a constant r such that ||x,|| < r for all n. By hypothesis,
AN {xeZ: ||x| <r} is weakly closed and hence norm closed. Thus
X, € A.

Now let A be a convex subset of Z*, Z a Banach space. If A N {x* €
&*: ||x*|| < r} is weak-star closed for every r > 0, is 4 weak-star closed?
If Z is reflexive, then this is the same question that was asked and answered
affirmatively in the preceding paragraph. If 2 is not reflexive, then the
preceding argument fails since there are norm-closed convex subsets of 2 *
that are not weak-star closed. (Example: let x** € Z**\ % and consider
A = kerx**)) Nevertheless, even though the argument fails, the statement is
true.

12.1. The Krein—Smulian Theorem. If % is a Banach space and A is a
convex subset of Z* such that A N {x* €XZ*: ||x*|| < r} is weak-star
closed for every r > 0, then A is weak-star closed.

To prove this theorem, two lemmas are needed.
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122, Lemma. Zf Z is a Banach space, r > 0, and %, is the collection of all
finite subsets of {x €Z:||x||<r™'}, then

NF: Fe#Z }={x*eZ* |x* <r)

PrROOF. Let E = N{ F: Fe£}; it is easy to see that r(ball Z*)C E. If
x* & r(ball Z *), then there is an x in ball & such that [{x, x*)|> r.
Hence [{r~'x,x*)|> I and x*¢& E. ]

12.3. Lemma. Zf A and ¥ satisfy the hypothesis of the Krein-Smulian
Theorem and, moreover, A N ball X *=Q 1, then there is an x in L such that

Re(x, x*y> 1
for all x* in A.

ProOF. The proof begins by showing that there are finite subsets Fy, Fi,...
of & such that

(i) nF,Cbal Z;

12.4
(i) n(ballZ*) N NIZF2 n A =0

To establish (12.4) use induction as follows. Let F, = (0). Suppose that
F,,...,F,_, have been chosen satisfying (12.4) and set Q =[(n +
DballZ*1 n NF_LFS n A Note that Q is wk* compact. So if @ N F°=#0
for every finite subset F of n™'ballZ, then O+ QN N{ F% Fis a finite
subset of n ~ (ball 2)}=Q N [n(ball ¥ *)] by the preceding lemma. This
contradicts (12.4ii). Therefore there is a finite subset F, of n™'(ball Z) such
that Q n FP° = [O. This proves (12.4).

If{ F,}x., satisfies (12.4), then A N N, F? = 0. Arrange the elements
of U®_, F, in a sequence and denote this sequence by {x, }. Note that
lim||x,|| = 0. Thus if x*€ Z*, {{x,,x*)} € cy,. Define T:Z*— ¢, by
T(x*) = {{x,, x*)}. It i3 easy to see that T is lincar (and bounded, though
this fact is unnecessary). Hence T(A) is a convex subset of ¢y. Also, from
the construction of {x,} = U7 F, for each x* in A, ||T(x*)| =
sup,}{x,, x*>|> 1. That is, T(A) N ballc;=Q . Thus Theorem I11.3.7 ap-
plies to the sets T(A) and int[ball ¢,] and there is an fin /' = ¢ and an «
in R such that Re{¢, f) <a <Re(T(x*),f) for every ¢ in int[ball ¢y] and
x*in A. That fis,

12.5 Re Y o(n)f(n) <a<Re) (x,,x*)f(n)

n=1 n=1
for every ¢ in ¢ with ||¢||< 1 and for every x* in A. Replacing fby f/||fll
and « by a/||f]|, it is clear that it may be assumed that (12.5) holds with
Il = L. If $&coligpll< 1, let p&€ IF such that |u| = 1 and (ne, f) =
[{¢,f) |. Applying this to (12.5) and taking the supremum over all ¢ in
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int[ball ¢,] gives that 1 <ReX%_ (x,, x*)f(n) for all x* in A. But f €/
so x = X2 f(n)x,€ X and 1 <Re(x, x*) for all x* in A. |

Where was the completeness of X used in the preceding proof?

Proor oF THE KREIN-SMULIAN THEOREM. Let xF € X* \A; it will be
shown that xJ¢& wk* —cl A. It is easy to see that A is norm closed. So
there is an > 0 such that {x*& X*: ||x*—xF||<r} N A4 =0 But this
implies that ball X * n [r (A —x&)]= 0. With this it is easy to see that
r (A —x¥) satisfies the hypothesis of the preceding lemma. Therefore
there is an x in X such that Re{x,x*)> 1 for all x* inr (A —xg). In
particular, 0 & wk* — cl[r"}(4—x)] and hence x¥ 4 wk* —cl A. (]

12.6. Corollary. If X is a Banach space and Y is a linear manifold in X *,
then Y is weak-star closed if and only if % (ball X * is weak-star closed.

12.7. Corollary. Zf X is a separable Banach space and A is a convex subset
of X * that is weak-star sequentially closed, then A is weak-star closed.

Proor. Because X is separable, r(ball X *) is weak-star metrizable for every
r> 0 (Theorem 5.1). So if A is weak-star sequentially closed, A N
[r(ball X *)] is weak-star closed for every r> 0. Hence the Krein-Smulian
Theorem applies. ®

This last corollary is one of the most useful forms of the Krein-Smulian
Theorem. To show that a convex subset A of X * is weak-star closed it is
not necessary to show that every weak-star convergent net from A has its
limit in A; it suffices to prove this for sequences.

12.8. Corollary. If X is a separable Banach space and F:X * —F is a
linear functional, then F is weak-star continuous if and only if F is weak-star
sequentially continuous.

Proor. By Theorem IV.3.1, Fis wk* continuous if and only if ker Fis wk*
closed. This corollary is, therefore, a direct consequence of the preceding
one. ]

There is a misinterpretation of the Krein-Smulian Theorem that the
reader should be warned about. If A is a weak-star closed convex subset of
ball X *, let A& =U{ rd:r> O}). Tt is easy to sec that # is a linear
manifold, but it does not follow that # is weak-star closed. What is true is
the following.

12.9. Theorem. Let X be a Banach space and let A be a weak-star closed
subset of X *. If Y = the linear span of A, then Y is norm closed in X * if
and only if Y is weak-star closed.
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The proof will not be presented here. The interested reader can consult
Dunford and Schwartz [1958], p. 429.

There is a method for finding the weak-star closure of a linear manifold
that is quite useful despite its seemingly bizarre appearance. Let £ be a
Banach space and let # be a linear manifold in £ *. For each ordinal
number a define a linear manifold A , as follows. Let A, = .#. Suppose «
is an ordinal number and A4 g has been defined for each ordinal B<a.Ifa
has an immediate predecessor, a— 1, let A, be the weak-star sequential
closure of A, ;. If & is a limit ordinal and has no immediate predecessor,
let #,=U{ My B <a}. In cach case A, is a linear manifold in & * and
My M, it B <a

12.10. Theorem. If Z is a separable Banach space, M is a linear manifold
in £*, and M, is defined as above for every ordinal number w, then M g is
the weak-star closure of M, where 8 is the first uncountable ordinal. More-
over, there is an ordinal number o <8 such that M = M.

Proor. By Corollary 12.7 it suffices to show that 4, is weak-star sequen-
tially closed. Let {x*} be a sequence in ., such that x*—x* (wk*).
Since M o=U{ A, a<8}, for each n there is an a, <& such that
xy €M, But a=sup,a, <& Hence x}& A, for all n; thus x € 4,4
C M, and A is weak-star closed.

To see that A o= #, for some a<$£, let {x*} be a countable wk*
dense subset of ball A . For each n there is an «, such that x*€ A,. Put
a = sup,a,. So {x}*}cball A, Put ball #, is a compact metric space in
the weak-star topology, so {xX¥} is wk* sequentially dense in ball .#,.
Therefore ball #,C ball&,+, and Hgy= .4, ;. ]

When is # weak-star sequentially dense in & *? The following result of
Banach answers this question.

12.11. Theorem. Zf ¥ is a separable Banach space and M is a linear
manifold in & *, then the following statements are equivalent.

(a) A is weak-star sequentially dense in % *.
(b) There is a positive constant ¢ such that for every x in &,

[ix)l < sup{|(x, x¥Hix*e M, |ix*||< c}.

(c) There is a positive constant ¢ such that if x* €& ball L*, there is a
sequence {xF}in M,||x}|< ¢ such that x}¥— x* (wk*).

Proor. It is clear that (c) implies (a). The proof will consist in showing that
(a) implies (c) and that (b) and (c) are equivalent.

(a) = (c¢): For each positive integer n, let A, = the wk* closure of
n(ball #). If x*€ Z'*, let {x}} be a sequence in # such that x}— x*
(wk*). By the PUB, there is an = such that ||xf||<r for all & Hence
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x*e A, That is, UX_,4, = Z*. Clearly each A, is norm closed, so the
Baire Category Theorem implies that there is an A, that has interior in the
norm topology. Thus there is an x& in A, and an r > 0 such that
A, D{x*eZ*:|x*— x}l|< r}. Let {x}}<n(ball #) such that x}—
xF (wk®). If x*€ball ' *, then x¥ + rx* € A,; hence there is a sequence
{y#¥}in n(ball A) such that yF—x& + rx* (wk*). Thus r '(yF—x})
- x* (wk¥) and r~}(y¥—x¥)<ec(ball A), where ¢ = 2n/r is indepen-
dent of x*.

(c) = (b): If x € X, then Alaoglu § Theorem implies there is an x* in
ball X * such that (x,x*) = ||x||. By (c¢), there is a sequence {x}} in
c(ball.#) such that x}— x* (wk*). Thus {(x}, x)—1x|| and (b) holds.

(b) = (¢): According to (b), ball Z2°[c(ball A)}]. Hence ball X * =
(ball X) °C°[c(ball #)]°. By (1.8),°[c(ball #)]° = the weak-star closure
of c¢(ball #). But bounded subsets of X * are weak-star metrizable (5.1)
and hence (c) follows. [ |

EXERCISES

1. Suppose % is a normed space and that the only hyperplanes # in Z* such that
A N ball F* is weak-star closed are those that are weak-star closed. Prove that
% is a Banach space.

2. (von Neumann) Let A be the subset of r? consisting of all vectors {x,,:
1 <m<n<oo}wherex,,(m)=1,x,,(n)=m,and x,,, (k) =0if k # m, n.
Show that 0 € wk —cl A but no sequence in A converges weakly to 0.

3. Where were the hypotheses of the separability and completeness of % used in the
proof of Theorem 12.11?

4. Let & be a separable Banach space. If # is a linear manifold in &* give
necessary and sufficient conditions that every functional in wk* —cl A be the
wk* limit of a sequence from 4.

5. Let & be a normed space and let 7 be a locally convex topology on & such that
ball & is J~compact. Show that there is a Banach space % such that % is
isometrically isomorphic to #*. (Hint: Let ¥ ={x*€ Z*:x*|ballZ is J-con-
tinuous} .)

§13*. Weak Compactness

In this section, two results are stated without proof. These results are among
the deepest in the study of weak topologies.

13.1. The Eberlein-Smulian Theorem. If X is a Banach space and A C %,
then the following statements are equivalent.

(a) Each sequence of elements of A has a subsequence that is weakly conver-
gent.
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(b) Each sequence of elements of A has a weak cluster point.
(¢) The weak closure of A is weakly compact.

The proof can be found in Dunford and Schwartz [1958], p. 430. The
serious student should examine Chapter V of Dunford and Schwartz [1958]
for several results not presented here as well as for some of the history
behind the material of this chapter.

The following is an easy consequence of the Eberlein-Smulian Theorem.

13.2. Corollary. If & is a Banach space and A CZ, then A is weakly
compact if and only if A N M is weakly compact for every separable subspace
M of X.

If X is a Banach space and A is a weakly compact subset of X, then for
each x* in X* there is an xq in A such that [{xq, x*)| = sup{|{x, x*)[:
X € AJ. Tt is a rather deep fact due to R. C. James [1964a] that the converse
is true.

13.3. James § Theorem. If X is a Banach space and A is a closed convex
subset of X such that for each x * in X * there is an x, in A with

[{xq, x*)| = sup{|{x, x*)|: x € 4},

then A is weakly compact.

Another reference for a proof of this theorem as well as a number of
other equivalent formulations of weak compactness and reflexivity is James
[1964b]. Also, if X is only assumed to be a normed space in Theorem 13.2,
the conclusion is false (see James [1971)).

The next result, presented with proof, is also called the Krein-Smulian
Theorem and must not be confused with the theorem of the preceding
section.

13.4. Krein—Smulian Theorem. If X is a Banach space and K is a weakly
compact subset of X, then co(K) is weakly compact.

ProoF. Case 1: X is separable. Endow K with the relative weak topology;
so M(K) = C(K)* 1f p€ M(K), define F: X* »F by

FE(x*)= fK(x, x*Y du(x).

It is easy to see that F, is a bounded linear functional on X * and
£ < [iulisup{lix]l: x € K'}.

13.5. Claim. F,L:X*—>IF is weak-star continuous.



V.13. Weak Compactness 16Y

By (12.8) it suffices to show that F, is weak* sequentially continuous. Let
{x¥} be a sequence in X * such that x;— x* (wk*). By the PUB,
M =sup,|lx}|| < co. Also, (x,x,*) = (x, x*) for every x in K. By the
Lebesgue Dominated Convergence Theorem, F,(xx)= f(x,x;)dp(x)—>
Fu( X*), So (13.5) is established.

By (1.3), F,€%. That is, there is an x, in X such that F,( x *) =
(x,, x*). Define T: M(K) =% by T(p) = x,.

13.6. Claim. T: M(K), wk*) —(Z, wk) is continuous.

In fact, this is clear. If p,— 0 weak* in M(K), then for each x* in X *,
x*|K € C(K). Hence (T(p,),x*) = [{x,x*)dp,(x)— 0.

Let # = the probability measures on K. By Alaoglu 8§ Theorem & is
weak* compact. Thus T(Z) is weakly compact and convex. However, if
x € K, (T(8,), x*) = (x, x*); that is, 7(8,) = x. So T( )2 K. Hence
T(9) 2co(K) and co(K) must be compact.

Case 2: X is arbitrary. Let {x, } be a sequence in co(K). So for cach n
there is a finite subset F, of K such that x,€co( F,). Let F = U%_, F, and
let # = VF. Then K, = KN .# is weakly compact and {x,}Cco( K,).
Since A is separable, Case 1 implies that co( K,) is weakly compact. By the
Eberlein-Smulian Theorem, there is a subsequence {x,,k} and an x in
co(K;) S co(K) such that x, — x. Thus co(K) is weakly compact. a

EXERCISES
1. Prove Corollary 13.2.

2. If & is a Banach space and K is a compact subset of &, prove that co(K) is
compact.

3. In the proof of (13.4),if # = the probability measures on K, show that T(£)
= co(K).

4, Prove the Eberlein-Smulian Theorem in the setting of Hilbert space.



CHAPTER. VI

Linear Operators on a Banach Space

As has been said before in this book, the theory of bounded linear operators
on a Banach space has seen relatively little activity owing to the difficult
geometric problems inherent in the concept of a Banach space. In this
chapter several of the general concepts of this theory are presented. When
combined with the few results from the next chapter, they constitute
essentially the whole of the general theory of these operators.

We begin with a study of the adjoint of a Banach space operator. Unlike
the adjoint of an operator on a Hilbert space (Section II.2), the adjoint of a
bounded linear operator on a Banach space does not operate on the space
but on the dual space.

§1. The Adjoint of a Linear Operator

Suppose & and ¥ are vector spaces and 7: £ > % is a linear transforma-
tion. Let %’ = all of the lincar functionals of - F.If y €% ’, then
y oT: ¥—F is easily seen to be a linear functional on Z. That is,
y’oT € Z’. This defines a map

T ¥ >

by T ( y) = y’oT. The first result shows that if £ and % are Banach
spaces, then the map 7 can be used to determine when 7 is bounded.
Another equivalent formulation of boundedness is given by means of the
weak topology.
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L1, Theorem. If & and Y are Banach spaces and T:Z — Y is a linear
transformation, then the following statements are equivalent.

(a) T is bounded.
(b)) T (Y *)CX*.
(¢) T:(X, weak) = (¥, weak) is continuous.

Proor. (a) = (b): If y*€ Y * then T (y*) €%, it must be shown that
T'(y*yeZ* But [T (y*)x)| = p*eT(x)| = ((T(x), y*)|<
NTGH Y *I < 1T I 1] So T'(p*) € X%,

(b) = (c): If {x;} is a net in & and x,— 0 weakly, then for y* in &*,
(T(x,), y*> =T (y*)x;) > 0 since T (y*) € X* Hence T(x,)— 0
weakly in Y.

(¢) = (b): If y*€ Y * then y*oT: ¥ —F is weakly continuous by (c).
Hence T/(y*)=y*eT €Z* by (V.1.2).

(b) = (a): Let y*&€ Y* and put x*=T'(y*). So x*€ZX* by (b). So
if x €ball®Z, ((T(x), y*)| = |(x,x*)|<||x*||. That is, sup{|{T(x), y*)|:
x € ball £ }< cc. Hence T(ball &) is weakly bounded; by the PUB,
T(ball ) is norm bounded and so || 7| < 0. ]

The preceding result is useful, though strictly speaking it is not necessary
for the purpose of defining the adjoint of an operator A in (%, Y), which
we now turn to. If A € Z(Z,%) and y*€ Y *, then y*eo A = A(yp*) e
Z *. This defines a map A*: Y * —» &'*, where A* = 4’|% *. Hence

1.2 (x, A*(y*)) = (A(x), y*)

for x in 4 and y*in Y *. A* is called the adjoint of A.

Before exploring the concept let § see how this compares with the defini-
tion of the adjoint of an operator on Hilbert space given in § 11.2. There is a
difference, but only a small one. When 5% is identified with 5 *, the dual
space of S, the identification is not linear but conjugate linear (if F=C).
The isometry h — L, of ¥ onto 5£*, where L, (f) = {f, h), satisfies
L,,=aL,. Thus the definition of A* given in (1.2) above is not the same as
the adjoint of an operator on Hilbert space, since in (1.2) A* is defined on
Y * and not some conjugate-linear isomorphic image of it. In particular, if
the definition (1.2) is applied to a matrix A acting on € considered as a
Banach space, its adjoint corresponds to the transpose of A. If C¢ is
considered as a Hilbert space, then the matrix of A* is the conjugate
transpose of the matrix of A. This difference will not confuse us but it will
serve to explain minor differences that will appear in the treatment of the
two types of adjoints. The first of these occurs in the next result.

1.3. Proposition. I£f &% and Y are Banach spaces, A, B € Z(%, Y), and
a,BEF, then (a4 + BB)* = ad*+ SB*.
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Note the absence of conjugates. The proof is left to the reader.

IfA€RB(X,Y), then it is easy to see that A* € B(¥*, & *). In fact, if
y*eball%* and x € ballZ, then |[{x, A*y*)| = [{(Ax, y*)| <||4x|| <
[[41]. Hence |[A*p*|| <||4] if y* € ball%*, so that ||[4*|| <||4]l. This
implies that (A*)* = A** can be defined,

A** FRE > G xx
<A**x**’ y*> = <x**, A*y*>
for x** in A? ** and y* in Y*.

Suppose x €% and consider x as an element of & ** via the natural
embedding of & into its double dual. What is A*¥(x)? For y*in Y *,

(A**(x), y*) =(x,4**)
= (Ax, y*).
That is, A**|Z = A. This is the first part of the next proposition.

1.4. Proposition. Zj & and Y are Banach spaces and A € B(Z, Y), then:

(2) A*¥|Z = A;

(b) [[4*)t = I4lIs

(¢) ifA is invertible, then A* is invertible and (A*)™ ' = (A4~ H*;
(d) if Z is a Banach space and B € B(¥%,%), then (BA)* = A*B*,

Proovr. Part (a) was proved above. It was also shown that ||4*]| <[|4].
Thus ||A**|| <||4*|]. So if x € ball.%, then (a) implies that ||Ax|| =
A% *x]| < |4**|| < [|4*]|. Hence NAl| < |l4*].

The remainder of the proof is left to the reader. a

1.5. Example. Let (X, £,p) and M,: L?(p)— LP(p) be as in Example
111.2.2. If 1 <p <o and l/p + 1/q = 1, then My: L9(p) — L9(p) is
given by MJf = ¢f. That is, M} = M,,.

1.6. Example. Let K and &k be as in Example 111.2.3. If 1 £ p <o and
I/p + 1/q = 1, then K *: Li(p)— L) is the integral operator with
kernel & *( x, y) = k( y, x).
1.7. Example. Let X,Y, 7, and A be as in Example 111.2.4., Then A *:
M(Y) - M(X) is given by

(4*)(4) = p(r7'(4))

for every Borel subset A of X and every p in M(Y).

Compare (1.5) and (1.6) with (11.2.8) and (11.2.9) to see the contrast
between the adjoint of an operator on Banach space with the adjoint of a
Hilbert space operator.

1.8.  Proposition. Zj A € B(Z, Y), then ker A* = (ran A) * and ker A =
L (ran A *).
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The proof of this useful result is similar to that of Proposition I1.2.19 and
is left to the reader.
This enables us to prove the converse of Proposition 1.4c.

1.9. Proposition. ZfA € B(Z, Y), then A is invertible if and only if A* is
invertible.

Proor. In light of (1.4¢) it suffices to assume that A* is invertible and show
that A is invertible. By the Open Mapping Theorem, there is a constant
¢ > 0 such that A*(ballY *) 2{x*e X *:||x*|< c}. So if x € X, then

Il4x|| = sup{|(Ax, y*)|: y* € ball & *}
sup(|(x, A*y*)|: y* € ball ¥ *)

sup{[(x, x*)|: x* € X* and |x*|< ¢}

v

= cllx]|.
Thus ker4 = (0) and ran A is closed. (Why?) On the other hand, (ran A) -+
= ker A* = (0) since A* is invertible. Thus ran A is also dense. This implies
that A is surjective and thus invertible. ]

This section concludes with the following useful result that seems to be
somewhat unfamiliar to parts of the mathematical community.

1.10. Theorem. Zf X and Y are Banach spaces and A € B(Z, Y), then the
Jfollowing statements are equivalent.

(a) ran A is closed.
(b) ran A* is weak* closed.
(c) ran A* is norm closed.

Proor. It is clear that (b) implies (c), so it will be shown that (a) implies (b)
and (c¢) implies (a). Before this is done, it will be shown that it suffices to
prove the theorem under the additional hypothesis that A is injective and
has dense range.

Let &= cl(ran A). Thus A: X - % induces a bounded linecar map B:
Z/ker A - Z defined by B(x + ker A) = Ax. If Q: & — Z/kerA is the
natural map, the diagram

Fo ¥

2N 7 B
Z/ker A

X

commutes. (Why is B bounded?) It is easy to see that B is injective and that
B has dense range. In fact, ran B = ran A, so ran A is closed if and only if
ran B is closed. Let § examine B*: Z*—(Z/ker A)*. By (V.2.2),
(Z/ker A)* = (ker4)* = wk*cl(ran A*) C X* by (1.8). Also by (V.2.3),
since <, F*=Y*/F+=Y *(ran A) = Y */ker A* by (1.8). Thus,

B*: @*/ker A* — (kerd)™> .
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1.11. Claim. B*(y* + kerA*)= A*y* for all y*in ¥ *.

To sec this, let x€ % and y*€ % *. Making the appropriate identifica-
tions as in (V.2.2) and (V.2.3) gives (x + ker A4, B*(y* + ker 4*))
= (B(x + ker A),y* + ker A*) = (Ax,y* + (ran A) ) = (Ax,p*)
= {x, A*y*) = (x +* (ran A¥), A*Y*) = (x + ker4, A*Y*). Since x was
arbitrary, (1.11) is established.

Note that Claim 1.11 implies that ran B* = ran A*. Hence ran A* is
weak* (resp., norm) closed if and only if ran B* is weak* (resp., norm)
closed.

This discussion shows that the theorem is equivalent to the analogous
theorem in which there is the additional hypothesis that A is injective and
has dense range. It is assumed, therefore, that ker A = (0) and cl(ran A) = ¥.

(a) = (b): Since ran A is closed, the additional hypothesis implies that A
is bijective. By the Inverse Mapping Theorem, 4~ '€ #(¥,%). Hence A *
is invertible (1.4c). Since A* is invertible, ran A* = £ * and hence is weak*
closed.

(c) = (b): Since ran A is dense in %, kerA* = (ran A) * (1.8) = (0). Thus
A*: % * - ran A* is a bijection. Since ran A* is norm closed, it is a Banach
space. By the Inverse Mapping Theorem, there is a constant ¢ > 0 such that
A*y*|| = clly*|| for ail y* in ¥ *.

To show that ran A* is weak* closed, the Krein-Smulian Theorem
(V.12.6) will be used. Thus suppose {A*y*}is a net in ran A* with
[[A*y*||< 1 such that A*p* - x*o(F*, &) for some x* in £*. Thus
lly*||<c™!for all y*. By Alaoglu s Theorem there is a y*in % * such that
Y, o y*o(¥*%). Thus (1.1c), A*¥y* > A*y* o(X*, %), and so
x*= A¥p* & ran A* By (V.12.6), ran A* is weak* closed.

(b) = (a): Since ran A* is weak* closed, ran A* = (kerd)*=2%"*. Also,
ker A* = (ran A)* = (0) since A has dense range. Thus A* is a bijection
and is thus invertible. By Proposition 1.9, A is invertible and thus has
closed range. W

EXERCISES

1. Prove Proposition 1.3.

2. Complete the proof of Proposition 1.4.
3. Verity the statement made in (1.5).

4, Verify the statement made in (1.6).

5. Verify the statement made in (1.7).

6. Letl £ p < oo and define S: [* — [? by S(q;, a,, ...) = (0. ¢, ;, ...). Com-
pute S*.
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7. Let A € #B(cy) and for n> 1, define e, in ¢4 by e,(n) = 1 and e,(m) = 0 for
m #n. Put a,,, = (Ae,)(m) for m, n> 1, Prove: (a) M =sup, L7_,la,,|< co

(b) for every ", a,,, — 0 asm —oco. Conversely, if {a,,.: m,n =1} are scalars
satisfying (a) and (b), then

(Ax)(m) = ¥ apx(m)

defines a bounded operator A on ¢, and |j4]] = M. Find A *

8. Let A € B(") and for n> 1 define e, inI by e,(n) = 1, e,(m) = 0 for
m # n. Put a,, = (Ae,)(m) for m, n> 1. Prove: (a) M =sup,L%_,|a,,,|<o0;
(b) for every m, sup,|e,, .| < cc. Conversely, if {a,,,: m,n>1} are scalars
satisfying (a) and (b), then

e e}

(Af)(n) = X &, f(m)

m=1
defines a bounded operator A on I and ||4]| =M. Find A *

9. (F. F. Bonsall) Let & be a Banach space, Z a nonempty set, and u: 7 = & . If
there are positive constants M; and M, such that (i) [|u(z)||< M, for all z in Z
and (ii) for every x* in &, sup {|<u(z),x*>|:z€ Z} = M,||x*||; then for
everyx in & thereisan fin £(Z) such that (*)x= Y{f(z)u(z):z€ Z} and
M, inf |If}], < |[x|l < M, inf ||f}l,, where the infimum is taken over all fin N Z)
such that (*) holds. (Hint: define T:/"(Z) > % by Tf = Z{f(2)u(z):z € Z}.)

10. (F. F. Bonsall) let m be normalized Lebesgue measure on 9D and for |z]< 1
and |w| = 1 let p,(w) = (1 —|z]*)/|]1 —Zw|%. So p, is the Poisson kernel. Show
that if f € L'(m), then there is a sequence {z, }€ D and a sequence {A,}in T’
such that (*)f = ZZ.A, p. . Moreover, |[fll; =infX7_|A,|, where the intimum
is taken over all {A,}in /' such that (*) holds. (Hint: use Exercise 9.)

§2*. The Banach-Stone Theorem

As an application of the adjoint of a linear map, the isometries between
spaces of the form C(X) and C(Y) will be characterized. Note that if X
and Y are compact spaces, - Y — X is continuous map, and Af = for for
f in C(X), then (111.2.4) A is a bounded linear map and ||A4]| = 1.
Moreover, A is an isometry if and only if 7 is surjective. If A is a surjective
isometry, then T must be a homeomorphism. Indeed, suppose A is a
surjective isometry; it must be shown that T is injective. If y,, »; € Y and
Yo # ¥1, then there is a g in C(Y) such that g(y,) = 0 and g(y,) = 1. Let
f€ CX) such that Af = g. Thus f(7())) =8(¥) =0 and f(7(y,)) = 1.
Hence T()o) #7(¥y)-
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So if 1: Y —> X is a homeomorphism and a: Y —=F is a continuous
function, with |a( y)|= 1, then T: C(X) = C(Y) defined by (7 )(y) =
a( ¥)f(r(y) is a surjective isometry. The next result gives a converse to this.

2.1. The Banach-Stone Theorem. If X and Y are compact and T: C(X) —
C(Y) is a surjective isometry, then there is a homeomorphism .Y~ X and a
function «ain C(Y) such that|a(y)| = I for ally and

(TF)(») = a(p)f(7(»))
for all f in C(X) andy in Y.

Proor. Consider T *: M(Y) —» M(X). Because T is a surjective isometry,
T *1is also. (Verify.) Thus T *is a weak* homeomorphism of ball M(Y)
onto ball M(X) that distributes over convex combinations. Hence (Why?)

T*(ext[ball M(Y)]) = ext[ball M( X)] .

By Theorem V.8.4 this implies that for every y in Y there is a unique 7(y)
in X and a unique scalar a(y) such that |a( y)| = 1 and

T*( ) = a(y)&r(V)

By the uniqueness, a:Y —»F and 7: Y - X are well-defined functions.
2.2. Claim. a:Y —F is continuous.

If { y;} is a net in Y and y,—y, then §, -8, weak* in M(Y). Hence
a(y)8,,,=T*§,)>TH§,)= a(y)'d,( » weak* in M(X). In particular,
a(y) = (1, T*(8 ,))" (1, T*(‘S )) = a(y), proving (2.2).

23. Claim. 71 Y —» X is a homeomorphism.

As in the proof of (2.2), if y;, » y in Y, then a(y,)8,,, = a(¥)&,,,
weak * in M(X). Also, a(y;)— a(y) in F by (2.2). Thus &, ,=
a(y) " a(y)8,(,,] = 8,,,. By (V.6.1) this implies that 7(y,)— 7(y), 0
that 7: Y — X is continuous.

If y, 9, € Y and y, # y,, then a( y,)8, #a( )8, . Since T* is injec-
tive, it is easy to see that T(y,)# T(y,) and so 7 is one-to-one. If x € X,
then the fact that 7% is surjective implies that there is a u in M(Y) such
that 7T *u = §,. It must be that p€ ext[ball M(X)] (Why?), so that p= B8,
for some y in Y and Bin F with |8| = 1. Thus 8§, =T *(B3,) = ,Ba(y)'d,(y).
Hence B =a(y) and 7(y) = x. Therefore 71 Y = X is a continuous
bijection and hence must be a homeomorphism (A.2.8). This establishes
(2.3).

If f€ C(X) and y €Y, then T(f)(y) = (Tf,8,) = (f,T*,) =
(f,a(p)8, ) = a(P)f(T(y). =
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§3. Compact Operators

The following definition generalizes the concept of a compact operator from
a Hilbert space to a Banach space.

3.1. Definition. If X and Y are Banach spaces and A : % — % is a linear
transformation, then A is compact if ¢l A(ball X) is compact in Y.

The reader should become reacquainted with Section 11.4.

It is easy to see that compact operators are bounded.

For operators on a Hilbert space the following concept is equivalent to
compactness, as will be seen.

3.2. Definition. If X and Y are Banach spaces and A € #(Z, Y), then A
is completely continuous if for any sequence {x,} in X such that x,— x
weakly it follows that ||4x, — Ax||— 0.

3.3, Proposition. Let X and Y be Banach spaces and let A € B(X,Y).

(a) If A is a compact operator, then A is completely continuous.
() Zf X is reflexive and A is completely continuous, then A is compact.

Proor. (a) Let {x,} be a sequence in X such that x,— 0 weakly. By the
PUB, M =sup,||x,||<oco. Without loss of generality, it may be assumed
that M < 1. Hence {Ax,} Ccl A(ball X). Since A is compact, there is a
subsequence {x, } and a y in Y such that ||4x, — y|[[— 0. But x,, — 0
(wk) and A: (X, wk) = (%, wk) is continuous (1.1¢). Hence Ax, — A(0) =
0 (wk). Thus y = 0. Since 0 is the unique cluster point of {Ax,} and this
sequence is contained in a compact set, ||4x,||— 0. .

(b) First assume that X is separable; so (ball &, wk) is a compact metric
space. So if {x,} is a sequence in ball X there is an x in X and a
subsequence {x,, } such that x, — x weakly. Since A is completely con-
tinuous, ||4x, — Ax|| — 0. Thus A(ball X) is sequentially compact; that is,
Ais a compact operator.

Now let X be arbitrary and let {x,}C ball X. If &, = the closed linear
span of {x,}, then %, is separable and reflexive. If A, = A|Z, then A,:
&, — Yis easily seen to be completely continuous. By the first paragraph,
A, is compact. Thus {Ax,} = {A4;x,} has a convergent subsequence. Since
{x,} was arbitrary, A is a compact operator. ]

The fact that in the proof of (3.3b), A(ball X) was shown to be compact,
and hence closed, is a consequence of the reflexivity of A.

By Proposition V.5.2, every operator in (/') is completely continuous.
However, there are noncompact operators in @(11) (for example, the
identity operator).
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There has been relatively little study of completely continuous operators
that T am aware of. Most of the effort has been devoted to the study of
compact operators and this is the direction we now pursue.

3.4. Schauder 8 Theorem. [f A EB(X,Y), then A is compact if and only if
A* is compact.

PROOF. Assume A is a compact operator and let { y*} be a sequence in
ball Y *. It must be shown that { A*y*} has a norm convergent subsequence
or, equivalently, a cluster point in the norm topology. By Alaoglu § The-
orem, there is a y* in ball Y * such that y*—g> y* (weak*). It will be
shown that A*y¥ —> A*y* in norm.

Let €> 0 and fix N > 1. Because A(ball X) has compact closure, there
are vectors i, ..., ¥, in Y such that A(MallX) cUZ_{ye Y: |y — »l
<e&/3). Since yF cl_ p* (weak*), there is an n> N such that {{y,,
v*—yp¥|<e/3for 1 <k<m Let X be an arbitrary element in ball X
and choose y, such that ||Ax— y,||<e/3. Then

[(x, A*y* — A*y X3 = [(Ax, y* — y¥)|

<[Ax =y, y* = 39 -k y* = 2l
<2Ax = yll + e/3<e.

Thus ||A*y — A*¥|| <¢

For the converse, assume A* is compact. By the first half of the proof,
A**: F*¥* - FH** is compact. It is easy to check that A = A**|Z is
compact. ®

For Banach spaces X and %, %,(Z, Y) denotes the set of all compact
operators from X into ¥; %, ( X) = #( X, X).

3.5. Proposition. Let Z,%, and & be Banach spaces.

() Bo( Z,Y) is a closed linear subspace of B( %, Y).
(b) If KEBN(E,¥)and A€ B(Y,Z), then AK € By(X,Z).
QI KEB(X, Y) and A € B(Z, X), then KA€ B, (Z, Y).

The proof of (3.5) is left as an exercise.

3.6. Corollary. If X is a Banach space, Z,(Z) is a closed two-sided ideal in
the algebra S?(X).

Let Byo( &, Y) = the bounded operators T: X — Y for which ran T is
finite dimensional. Operators in %o X, Y) are called operators with finite
rank. It is easy to see that Zoo(Z,Y) S H(Z, Y) and by (3.5a) the closure
of Boo(Z,¥) is containedin Bo(X,¥ ). Is Byo(Z,%¥ ) dense in B (X, ¥ )?
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It was shown in (11.4.4) that if 5# is a Hilbert space, then %,(#) is
indeed the closure of %,,(5#). Note that the ability to find an orthonormal
basis in a Hilbert space played a significant role in the proof of this
theorem. There is a concept of a basis for a Banach space called a Schauder
basis. Any Banach space & with a Schauder basis has the property that
Boo(Z) is dense in B,(X). Enflo [1973] gave an example of a separable
reflexive Banach space Z for which #, (%) is not dense in #,(%'), and,
hence, has no Schauder basis. Davie [1973] and [1975] have simplifications
of Enflo § proof. For the classical Banach spaces, however, every compact
operator is the limit of a sequence of finite-rank operators.

The remainder of this section is devoted to proving that for X compact,
By (C( X)) is dense in Z,(C( X)). This begins with material that may be
familiar to many readers but will be presented for those who are un-
acquainted with it.

3.7. Definition. If X is completely regular and F< C(X), then F is
equicontinuous if for every e >0 and for every x, in X there is a neighbor-
hood U of x, such that If(x) — f(x,)|<e for all x in U and for all f
in &.

Note that for a single function f in C(X), #={{} is equicontinuous.
The concept of equicontinuity states that one neighborhood works for all f
in &.

3.8. The Arzela-Ascoli Theorem. If X is compact and F C C(X), then F is
totally bounded if and only if % is bounded and equicontinuous.

ProoF. Suppose # is totally bounded. It is easy to see that & is bounded.
If e> 0, then there are fi,..., [, in & such that FCU]_,{f € CX):
IV = fill<e/3).If x, € X, let U be an open neighborhood of x, such that
for 1 <k<nand x in U,|f (x)— f.(xy)|<e/3.If fe F, let f, be such
that ||f — f,ll<e/3. Then for x in U,

f(x) = f(xo)l <f(x) = i) + fi(x) — felxo)l
+Ufe(x0) = f(x0)l

< e

Hence & is equicontinuous.

Now assume that % is equicontinuous and % ballC( X). Let ¢> 0.
For each x in %, let U, be an open neighborhood of x such that
If(x) —fl y)|<es2for fin # and y in U.. Now {U,.:x € X} is an open
covering of X. Since X is compact, there are points x,,...,x, in X such
that X = U7_,U, .

Let {a,...,a,,} €D such that cdDcU}_{a:|a—a,<e/2}. Let
B = all ordered n-tuples of scalars (8,,...,8,) such that { B, ..., B,}C
{ay,..., a}. (So B has m” elements.) Let ¢,,...,¢, be a partition of unity
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subordinate to the cover {U,,..., U, } (V.6.5). For b=(p,...,B,) in B,
let g, = Z;=lﬂj¢j‘

3.9. Claim. FCU,cp{f:Ilf —goll<e}.
Note that (3.9) implies that % is totally bounded.

Forf in &, {f(xy),...,f(x,)}<SclD. Pick b = (By,...,8,)in B such
that |B,— f(x;)|<e/2 for 1 <j<n. If x €X, then ¥ ¢;(x) = 1 and so

F(x) = g () = 1f(x) - éﬂ,qb,-(X)l

[
N

f(x)= B8] ¢;(x)

< 2 1f(x) = Bl (x)l.

Now if ¢(x)> 0, x €U, and so [f(x) = B <|f(x) = f(x)| +f(x;) —
Bj| < & Hence |[f(x) — g,(x)| <e for all x in X. That is, IIf — gl <e
|

3.10. Corollary. Zf X is compact and % C C(X), then F is compact if and
only if & is closed, bounded, and equicontinuous.

3.11. Theorem. Zf X is compact, then %, (C(X))is dense in #,(C(X)).

Proor. Let T € #,(C( X)). Thus T(ball C( X)) is bounded and equicon-
tinuous by the Arzela-Ascoli Theorem. If €> 0 and x € X, let U, be an
open neighborhood of x such that |( Tf Jx) — (Tf X(y)|<e for all fin
ballC( X) and y in U,. Let {xi.. .., x,}C X such that X cUj_,U, . Let
{1, .., ¢,} be a partition of unity subordinate to {U,,...,U, }. Define T,
C(X) = C(X) by

T = L4,

Since ran T, V{ ¢,,..., ¢,},T. € By, (C( X)).
If f€ ball C( X) and x € X, then

(T )(x) = (TF )(x) = é[(Tf)(x,-)—(Tf)(x)]qb,-(x)

n

g (TS ) (x,) = (T )(x)ig;(x)

by an argument like the one used to prove (3.9). L]
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If X is locally compact, then the operators on Co( X) of finite rank are

dense in #,(Cy( X)). See Exercise 18.

EXERCISES

L.

A AW

10.

1.

If & is reflexive and A € B(Z, %), show that A(ball¥) is closed in ¥.

. Prove Proposition 3.5.

It AEBY(X,¥), show that cl[ran A] is separable.

A EB(X,¥) and ran A is closed, show that ran A is finite dimensional.
It A eBy(%) and A is invertible, show that dim % < co.

. Let (X, £,p) be a finite measure space, | <p<co, and 1/p+l/q= L1 1If k:

X x X — IF is an £ x O-measurable function such that sup{ f|k(x, y)|?du(y):

x € X} <oo, then (Kf)( x) = fk(x,y)f(y)dp(y) defines a compact operator
on LP(p).

. Let (X, £,p) be an arbitrary measure space, | <p <co, and I/p + l/q = L. If

k: XX X > F is an £ x Q-measurable function such that M =

[Nk Cx, YIP dp(x)?? dp(y)]V/? < oo and if (KF)(x) = [k(x, y)f(y) dp(p),
then K € B, (L7 (p)) and || K||< M.

. Let X be a compact space and let p be a positive Borel measure on X. Let

T eB(LP(p),C(X)) where 1 < p< co. Show that if A: LZ(p)—>L”(p) is
defined by Af = Tf, then A is compact.

. (B. J. Pettis) If & is reflexive and T€ Z(%, I ), then Tis a compact operator.

Also, if ¥ is reflexive and T € #(c,, %), Tis compact.

If X is compact and {fi,--.s f0s81s---> 8} € C(X), define k(x,y) =
N fi(x)g,(y) forx,y € X Let p be a regular Borel measure on X and put
Kf(x) = [k(x,y)f(y)dp(y). Show that K € B(C(X)) and K has finite rank.

If X is compact, 2 € C( X X X), and p is a regular Borel measure on X, show
that Kf (x) = [k(x, y) f(y) du(y) defines a compact operator on C(X).

12. Let (X, £,p) be a u-finite measure space and for ¢ in L™(p) let M:

13.

14.

15.

16.

LP(p)—> LP(p) be the multiplication operator defined in Example IL.2.2. Give
necessary and sufficient conditions on (X, &, ) and ¢ for M, to be compact.

Let 7:[0,1] — [0, 1] be continuous and define A4: C[0,1] = C[0,1]by Af = fo 1.
Give necessary and sufficient conditions on 7 for A to be compact.

Let A € #(cy) and let (a,,) be the corresponding matrix as in Exercise 1.7.
Give necessary and sufficient conditions on (a,,,) for A to be compact.

Let A Efé’(ll) and let (a,,,,) be the corresponding matrix as in Exercise 1.8.
Give a necessary and sufficient condition on (a,) for A to be compact.

If (X, d) is a compact metric space and F € C(X), show that & is equicon-
tinuous if and only if for every &> O there is a §> 0 such that If(x) — f (y)|<e
whenever d(x,y) <8 and f€ 9.
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17.1f X is locally compact and FC G, (X), show that & is totally bounded if and

18.

19.

20.

21.

only if (a) & is bounded; (b) # is equicontinuous; (c) for every £>0there is a
compact subset K of X such that [f(x)] <e¢ for all f in % and x in X\ K.

If X is locally compact and A € %,(C( X)), then there is a sequence {A,,} of
finite-rank operators such that ||4,— A||— 0.

Let & be a Banach space and suppose there is a net {F,} of finite-rank
operators on % such that (a) sup,||F||<oo; (b) ||F,x—x|[— O for all x in Z.
Show that if A € B,(Z%), then ||FFA— A||— 0 and hence there is a sequence
{A,} of finite-rank operators on % such that ||4,—A||— 0.

Let | <p <ooand let (X, £, ) be a u-finite measure space. If A € By(L”(n)),
show that there is a sequence {A,} of finite-rank operators such that |4, —A ||
— 0. (Hint: Use Exercise 19.)

Let X be compact and let % be the collection of all pairs (C, F) where
C= {U,...,U,} is a finite open cover of X and F={x,...,x,}C X such
that x, €l for 1 <j<n If (G, F) and (G, K) €%, define (C,, F)<
(G, Fy) to mean: (a) C, is a refinement of C,; that is, each member of C, is
contained in some member of C,. (b) FICFK.Ifa = (C, F) €% let
{#1,.,¢,} be a partition of unity subordinate to C. If F = {x;,., x,/,
define T,: C(X) — C(X) by

n
(T.N(x) = X f(x) ().
j=1
Then: (2) T, € Byo(C(X)); ®) || Tl = 1; (¢) (%, 1) is a directed set and {T:
a€ Y} is a net; (d) ||T,f — f||— O for each f. Now apply Exercise 19 to
obtain a new proof of Theorem 3.11.

§4. Invariant Subspaces

4.

1. Definition. If & is a Banach space and T € #(Z'), an invariant

subspace for T is a closed linear subspace .# of Z such that Tx € #
whenever x € A. .# is nontrivial if .# # (0) or Z. Lat T = the collection
of all invariant subspaces for 7. If &/C #(Z), then Lat &/={LatT:

T

e},

This generalizes the corresponding concept of invariant subspace for an

operator on Hilbert space (11.3.5). Note that the idea of a reducing subspace
for an operator on a Hilbert space has no generalization to Banach spaces
since there is no concept of an orthogonal complement in Banach spaces.

4.2. Proposition.
(a) If #,, M, < atT, then M N My=cNM + M,)ELatT and M,

ANM,=M NMH,c LatT.
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() Zf{M;:icZ}CLat T, then V{ M ;i€ Z}, the closed linear span of
U, A, and Al M ;i€ Z}) =0, M, belong to Lat T.

The proof of this proposition is left as an exercise. The proposition,
however, does justify the use of the symbol Llat to denote the collection of
invariant subspaces. With the operations v and A, Lat T is a lattice (a)
that is complete (b). Moreover, Lat T has a largest element, X, and a
smallest element, (0).

The main question is: does Lat 7 have any elements besides (0) and X7
In other words, does T have a nontrivial invariant subspace? C. J. Read
[1984] has given an example of a bounded operator on /! that has no
nontrivial invariant subspaces. This deep work does not completely settle
the matter. Which Banach spaces X have the property that there is a
bounded operator on X with no nontrivial invariant subspaces? If X is
reflexive, is Lat 7 nontrivial for every 7T in #(Z )? The question is un-
answered even if X is a Hilbert space. However, for certain specific
operators and classes of operators it has been shown that the lattice of
invariant subspaces is not trivial. In this section it will be shown that any
compact operator has a nontrivial invariant subspace. This will be obtained
as a corollary of a more general result of V. Lomonosov. But first some
examples.

43. Example. If X is a finite-dimensional space over C and T € (%),
then Lat 7 is not trivial. In fact, let X = € and let 7 = a matrix. Then
p(z) = det(T —zI) is a polynomial of degree d. Hence it has a zero, say a.
If det(T —al) =0, then (T —al) is not invertible. But in finite-dimen-
sional spaces this means that 7 —al is not injective. Thus ket(T —al)#
(0). Let A < ke(T —al) such that & # (0). If x € #, then Tx = ax <
M, 50 ME Lat T.

4.4, Example. If T[: (1)— on R?2, then Lat 7 is trivial. Indeed, if

Lat 7 is not trivial, there is a one-dimensional space .# in Lat 7. Let
M= {ac: a€R}. Since # € Lat T, Te = Ae for some A in R. Hence
T% = T(Te) = ATe = N%. But T?> = —1I, 50 -e = A% and it must be that
N =—1if e+ 0. But this cannot be if A is real.

If d > 3, however, and T € #(R¢), then Lat T is not trivial (Exercise 6).

45. Example. If V:L?[0,1]— L?[0,1] is the Volterra operator, Vf(x) =
f(tyds, and 0 <a< 1, put A, = {f€L?0,1): f(t) = 0for 0 <t<a).
Then # ,€ Lat V. Moreover, it can be shown that Lat V' ={# :0<a<
1}. (See Donoghue [1957], and Radjavi and Rosenthal [1973], p. 68).

46. Example. If S: /7> /7 is defined by S(a;, a,,..)=(0, aj,a,,...),
and A, = {x €l x(k)y=0forl <k <n}, then #, <€ LatS§.
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4.7. Example. Let (X, £,pn) be a u-finite measure space and for ¢ in
L*(p) let M, denote the multiplication operator on LP(p), 1 < p<oco.If
Ae let #My={feLP(p)f =0 ac [p]off A}. Then for each ¢ in
L*(p), My € Lat M,.

It is a difficult if not impossible task to determine all the invariant
subspaces of a specific operator. The Volterra operator and the shift
operator are examples where all the invariant subspaces have been de-
termined. But there are multiplication operators M, for which there is no
characterization of Lat M, as well as some M, for which such a characteri-
zation has been achieved. One such example follows: let u = Lebesgue area
measure on D and let (Af)(z) = zf( z) for f in L?(u). There is no known
characterization of Lat A.

It is necessary at this point to return to the geometry of Banach spaces to
prove the following classical theorem.

4.8. Mazur § Theorem. If & is a Banach space and K is a compact subset of
Z, then co(K) is compact.

Proor. It suffices to show that E(K) is totally bounded. Let £€> 0 and
choose xy,...,x, in K such that K CUJ_;B(x;e/4). Put C =
co{ xi,. .., x,}. It is easy to see that C is compact. Hence there are vectors
Yis+eos Y in C such that C € U7 B(y;e/4). If w € co(K), there is a z in
co(K) with ||w—z||<e/4. Thus z = Z;,:lapkp, where k,€ K, a,> 0,
and Xa, = 1. Now for each k, there is an x; ,, with ||k, —x,,\[[<e/4.
Therefore

= Z Iap”kp = Xl
p =

/ !
z - X XpXjcp ) ap(kp - x/(p))
p=1 p=l

< e/4.

But ¥ a,x,, € C so there is a _y, with ||X,a,x, ,, —»yll<e/4. The
triangle inequality now shows that co(K) €U’ B(y,;E) and so co(K) is
totally bounded. ®

The next result is from Lomonosov [1973]. When it appeared it caused
great excitement, both for the strength of its conclusion and for the
simplicity of its proof. The proof uses Schauder s Fixed-Point Theorem
(V.9.5).

4.9. Lomonosov § Lemma. Zf ./ is a subalgebra of B(X) such that 1 € of
and Lat o/ ={(0),Z } and if K is a nonzero compact operator on &, then
there is an A in & such that ker( AK — 1) # 0.
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Proor. It may be assumed that [|K]| = 1. Fix x, in 2 such that ||Kxyl||> 1
and put S= {x € Z:||x —xglj<1}. Tt is easy to check that

4.10 0 & S and0 4 clK(S).

Now if x €% and x # 0, cl{f Tx: T €%/} is an invariant subspace for &/
(because & is an algebra) that contains the nonzero vector x (because
1 €47). By hypothesis, cl{f Tx: T€s/}=2. By (4.10) this says that for
every Y in cl K(S) there is a T in &7 with ||Ty — x¢||< 1. Equivalently,

AdK(S)clU {y: ITy — x,ll < 1}.
Texw

Because cl K(S) is compact, there are T3,...,7T, in &/ such that

4.11 dk(S)cU {»: 1Ty — xli <1}
j=1
For y in clK(S) and 1 <j<n, let a;(y) = max{0,1—||T;y — x,|l}.
By (4.11),Z7_,a;(y) > 0 for all y in ¢l K(S). Define b;: cl K(S) >R by
a;,(y)
b(y) ==,
Zai()’)
i=1

anddefine ¢:S = Z by

Y(x) = X b(Kx)TKx.
j=1
Itis easy to see that a i cl K(S) = [0, 1] is a continuous function. Hence bj
and ¢ are continuous.
If x €S, then Kx € K(§). If bj(Kx)> 0, then a;(Kx)> 0 and so
IT,Kx — xo|| < L That is, T;Kx& § whenever b,(Kx) > 0. Since S is a
convex set and X%_1b;( Kx) = I for x in S,

v(S)cC s.

Note that T,K € By(%') for each j so that U}_;T,K(S) has compact
closure. By Mazur 8 Theorem, co(U]_,T,K(S)) is compact. But this convex
set contains Y ( S) so that cl ¢(S) is compact. That is, ¢ is a compact map.
By the Schauder Fixed-Point Theorem, there is a vector Xx; in S such that
Y(x;) =X,

Ler B; =b,(Kx;) and put A = X7_1BT;. So A €&/ and AKx; = Y(x,)
= x;.Since x; # 0 (Why?), ker(AK — 1) # (0). u

412, Definition. If T € B(Z’), then a hyperinvariant subspace for T is a
subspace A& of £ such that A# C # for every operator A in the
commutant of T, {T}; that is, A# C A whenever AT = TA.

Note that every hyperinvariant subspace for 7' is invariant.
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4.13. Lomonosov S Theorem. If T€ Z(X), T is not a multiple of the
identity, and TK = KT for some nonzero compact operator K, then T has a
nontrivial hyperinvariant subspace.

Proor. Let &= {T }". We want to show that Lat &/ # {(0), & }. If this is
not the case, then Lomonosov $ Lemma implies that there is an operator A
in o7 such that #"= ker(AK — 1) # (0). But #'€ Lat(4K) and AK|A" is
the identity operator. Since AK € Z(X), AK|N"€ Bo(A"). Thus dim A
<oo. Since AK € &= {T} , for any x in &, AK(Tx)=T(AKx) = Tx;
hence TA#"C A", But dim A" < cc so that T|.#” must have an cigenvalue A.
Thus ker(T —A)= .4+ (0). But A # % since T'is not a multiple of the
identity. It is casy to check that .# is hyperinvariant for T. u

414. Corollary. (Aronszajn-Smith [1954].).If K € #,(% ), then Lat K is
nontriviel.

The next result appeared in Bernstein and Robinson [1966], where it is
proved using nonstandard analysis. Halmos [1966] gave a proof using
standard analysis. Now it is an easy consequence of Lomonosov § Theorem.

4.15. Corollary. If & is infinite dimensional, A € B(X'), and there is a
polynomial in one variable, p, such that p(A) € Z,(%), then Lat A is
nontrivial.

ProoE. If p(A) # 0, then Lomonosov 8 Theorem applies. If p(A) = 0, let
p) = ay+az+ . ta,z"a,#* 0. For x # 0, let # =
V{x, Ax,..., A" 'x}. Since A = —a,ag + a4+ -+ +a,_ ;A" x],
M € Lat A. Since x € #, H + (0); since dim A < 0, A * X a

4.16. Corollary. If K,,K,€%\(Z) and K, K, = K,K,, then K, and K,
have a common nontrivial invariant subspace.

EXERCISES
1. Let A, B, T € (&) such that TA = BT. Show that graph (7) € Lai(A @ B).

2. Prove that # € Lat T if and only if .# * & Lat T*. What does the map A — # *
of Lat T into Lat 7* do to the lattice operations?

3. Let {e,, e, e;} be the usual basis for F*> and let &, a,,a;€F. Define T:
F’->F? by Te, = ae, 1 <j<3 (a)If a, a,, a; are all distinct, show that
A € LatT if and only if # = VE, where EC {e],e,,¢e;}. (b) If a, = a; # a3,
show that .4 € Lat T if and only if A = A +.%, where A°< V{ e,,e,} and
F<{ae;: a € F}.
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4. Generalize Exercise 3 by characterizing Lat T, where T is defined by Te, = a,e,,

l < j<d, for any choice of scalars «,,.,a, and where {e,, , ey )isthe
usual basis for F¥.

5. Let {e,,...,e,} be the usual basis for F/, let {a;,...,a,_} CF.If Te,

LRS!
for l <j<d-—1and Te, =0, find Lat T.

6. If T € B(R?) and d > 3, show that T has a nontrivial invariant subspace.

7. Show that if T € #(%) and & is not separable, then 7 has a nontrivial
invariant subspace.

8. Give an example of an invertible operator 7 on a Banach space & and an
invariant subspace # for T such that .# is not invariant for 71

9. Let K € %,(%) and show that if % is a maximal chain in Lat K, then % is a
maximal chain in the lattice of all subspaces of I

§5. Weakly Compact Operators

5.1. Definition. If X and # are Banach spaces, an operator T in Z(Z, %)
is weakly compact if the closure of T(ball X) is weakly compact.

Weakly compact operators are generalizations of compact operators, but
the hypothesis is not sufficiently strong to yield good information about
their structure.

Recall that in a reflexive Banach space the weak closure of any bounded
set is weakly compact. Also, a bounded operator 7: X — Y is continuous if
both X and # have their weak topologies (1.1). With these facts in mind,
the proof of the next result becomes an easy exercise for the reader.

5.2. Proposition.

(a) If either X or Y is reflexive, then every operator in B(Z, Y) is weakly
compact.

(b) If T: & — Y is weakly compact and A € B(¥, %), then AT is weakly
compact.

(¢) If T: > Y is weakly compact and B € B(Z, X), then TB is weakly
compact.

This proposition shows that assuming that an operator is weakly compact
is not that strong an assumption. For example, if X is reflexive, every
operator in #(%Z) is weakly compact. In particular, every operator on a
Hilbert space is weakly compact. So any theorem about weakly compact
operators is a theorem about all operators on a reflexive space.

In fact, there is a degree of validity for the converse of this statement. In a
certain sense, theorems about operators on reflexive spaces are also theo-
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rems about weakly compact operators. The precise meaning of this state-
ment is the content of Theorem 5.4 below. But before we begin to prove
this, a lemma is needed.

Let Y be a Banach space and let W be a bounded convex balanced
subset of Y. For n> 1 put U, = 2"W + 2™ "int[ball #]. Let p, = the gauge
of U, (IV.1.14). Because U,22 "int[ball#], it is easy to check that p, is a
norm on Y. In fact, p, and |}-|| are equivalent norms. To see this note that
if |ly|l< 1, then 27"y €U, so that p,(y) < 2 . Hence p,(y) <27||y|. Also,
because W is bounded, U, must be bounded; let M >sup{|y||:y€U,}.
Soif p,(v) <1, |yl < M. Thus |y|| < Mp,(y),and T . II and p, are
equivalent norms.

5.3. Lemma. For a Banach space Y let W,U,, and p, be as above. Let

> ~no

R = the set of ally in Y such thar ||y||=[Z%.,p,(¥)?1/?<oco. Then

(@ W C {y il <1}

() (Z,-D is a Banach space and the inclusion map A: Z— Y is
continuous;

(c) A¥¥: R** > Y** s injective and (A¥%)- (Y) = %,

(d) Z is reflexive if and only if ¢l W is weakly compact.

Proor (a) If w €W, then 2"w €€ U,. Hence 1 > p,(2"w) = 2"p, (W), so
p.(w) <27" Thus |Iw><Z,2 ") < 1.

(b) Let %, = Y with the norm p, and put £ =@,%, (111.4.4). Define @:
R—> X by P(y)=(y,y, ...) It is easy to see that @ is an isometry,
though it is clearly not surjective. In fact, ran @ ={(y )€ Z:y,=y,, for
all n, m). Thus # is a Banach space. Let P, = the projection of £ onto the
first coordinate. Then A = P,o® and hence A is continuous.

(c) With the notation from the proof of(b), it follows that Z ** = @ & **
and @**: Z** > X ** is given by PF¥(y**) = (A**y** A**p** | ).
Now the fact that @ is an isometry implies that @* is surjective. (This
follows in two ways. One is by a direct argument (see Exercise 2). Also,
ran@* is closed since ran@ is closed (1.10), and ran@* is dense since
+ (ran@%) = ker @ = (0).) Hence ker ®** = (ran@%) * = (0); that is, ®**
is injective. Therefore A** is injective.

Now let y**€ A** Y(#). 1t follows that @**y** = x € Z. Let {y,} be
a net in # such that |y| <|ly**| for all i and y,— y** o(RZ** X*)
(V.4.1). Thus D**(y,) = O**(p**) o(Z **, Z*). But P**(y,) =P(y)eX
and ®**(y**) = x. Hence ®(y;) > x o(%Z,Z*). Since ran @ is closed,
X € ran@; let P(y) = x. Then 0 = @**(p**— y). Since P** is injective,
Y — y € R.

(d) An argument using Alaoglu 8 Theorem shows that A*(ball #**) =
the o(# **, Y *) closure of A(ball Z). Put C = A(ball #). Suppose cl W is
weakly compact. Now C C2%l W +2 "ball Y ** and this set is
o(#** Y *) compact. From the preceding paragraph, A**(ball #Z**)C
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2%l W + 2" "ball % **. Thus,

A**(ball Z**) c () [2"%] W + 27 "ball & **]

n=1
c ) [#+2 "ball @ **]
n=1

=%,

By (€), Z** = X and # is reflexive.
Now assume £ is reflexive; thus ball #is a( #, # *)-compact. Therefore
C = A(ball #) is weakly compact in Y. By (a), ¢l Wis weakly compact.
[ ]

The next theorem, as well as the preceding lemma, are from Davis, Figel,
Johnson, and Pelczynski [1974].

54. Theorem. If %, Y are Banach spaces and T € HB(X, Y), then T is
weakly compact if and only if there is a reflexive space R and operators A in
B(R,Y) and B in B(X,R) such that T = AB.

Proor. If T = AB, where A, B have the described form, then T is weakly
compact by Proposition 5.2.

Now assume that 7 is weakly compact and put W = T(ball &). Define #
as in Lemma 5.3. By (5.3d), Z is reflexive. Let A: #— Y be the inclusion
map. Note that if x € ball &, then Tx € W. Hence 2"Tx&€ U, and so
1 >p,(2"Tx) = 2"p,(Tx). Thus p,(Tx)<2"" for x in ball Z. Hence if
X< L, || Tx||I> = X,p(Tx)><X4™" = c. So B: - R defined by Bx =
Txis a bounded operator. Clearly AB = T. [ ]

The preceding result can be used to prove several standard results from
antiquity.

5.5. Theorem. If Z, Y are Banach spaces and T €EB(X,Y), the following
statements are equivalent.

(a) T is weakly compact.
() T**(f{**)g Y.
(¢) T * is weakly compact.

Proor. (a) = (b): Let £ be a reflexive space, A € B(X, %), and B €
B(X,R) such that T = AB. So T** = A**B¥* But A**: @ — Y**
since #** = #. Hence A*¥* = A. Thus T** = AB** and so ranT**C
ran A C Y.

(b) = (a): T**(ballX**) is o(% **, Y *) compact by Alaoglu $ Theorem
and the weak* continuity of T **. By (b), T**(ball ¥ **)=C is o(¥, % *)
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compact in Y. Hence T(ball Z)C C and must have weakly compact
closure.

(¢) = (a): Let & be a reflexive space, C €EZ(F*, ), D €B(L, Z*)
such that T* = DC. So T** = C*D*, D*. Z** > ¥* and C*. ¥*—>
Y** Put #=cl D) and B = D*|4; then B: >R and 2 is
reflexive. Let A = C*|%#; so A: Z—>%** But if x€%,ABx = C*D*x
=T**x = Tx €Y. Thus A: - Y. Clearly AB = T.

(a) = (c¢): Exercise. [ |

EXERCISES
1. Prove Proposition 5.2.

2. If # and & are Banach spaces and @: % — & is an isometry, give an elementary
proof that @* is surjective.

3. Let £ be a Banach space and recall the definition of a weakly Cauchy sequence
(V.4.4). (a) Show that every bounded sequence in ¢, has a weakly Cauchy
subsequence, but not every weakly Cauchy sequence in ¢ converges. (b) Show
that if T'€ %#(cy) and T is weakly compact, then 7' is compact.

4. Say that a Banach space % is weakly compactly generated (WCG) if there is a
weakly compact subset K of & such that & is the closed linear span of K. Prove
(Davis, Figel, Johnson, and Pelczynski, [1974]) that & is WCG if and only if
there is a reflexive space and an injective bounded operator 7°%# — % such that
ran T is dense. (Hint: The Krein—Smulian Theorem (V.13.4) may be useful))

5. If (X, £2,p) is a finite-measure space, k€ L*(X X X, 8 X &,p X p), and K:

LNp)— L'(p) is defined by (Kf}x) = [k(x,y)f(y)dp(y), show that K i s
weakly compact and K? is compact.

6. Let Y be a weakly sequentially complete Banach space. That is, if {y,}isa
sequence in Y such that {{y,,y*)} is a Cauchy sequence in F for every y* in
& *, then there is a y in Y such that y,— y weakly [see (V.4.4)]. (a) If
T e%(%Z,7Y) and x**e Z** such that x** is the 6(Z**, £*) limit of a
sequence from %, show that T**(x**)€¥. Let X be a compact space and put
Z = all subsets of X that are the union of a countable number of compact G;
sets. Let = the linear span of {xp: FE #} considered as a subset of
M(X)* = C(X)**. (b) Show that if T € Z(C(X),¥), then T**(ZL)C Y. (c)
(Grothendieck [1953]) If T € B(C(X), Y), then T is weakly compact. [Hint
(Spain [1976}): Use James s Theorem [(V.13.3)].



CHAPTER VII

Banach Algebras and Spectral Theory for
Operators on a Banach Space

The theory of Banach algebras is a large area in functional analysis with
several subdivisions and applications to diverse areas of analysis and the
rest of mathematics. Some monographs on this subject are by Bonsall and
Duncan [1973] and C. R. Rickart[1960].

A significant change occurs in this chapter that will affect the remainder
of this book. In order to prove that the spectrum of an element of a Banach
algebra is nonvoid (Section 3), it is necessary to assume that the underlying
field of scalars F is the field of complex numbers €. It will be assumed from
Section 3 until the end of this book that all vector spaces are over C. This
will also enable us to apply the theory of analytic functions to the study of
Banach algebras and linear operators.

In this chapter only the rudiments of this subject are discussed. Enough,
however, is presented to allow a treatment of the basics of spectral theory
for operators on a Banach space.

§1. Elementary Properties and Examples

An algebra over F is a vector space & over F that also has a multiplication
defined on it that makes & into a ring such that if a €F and a, b € &,
a(ab) = (aa)b = a(ab).

1.1.  Definition. A Banach algebra is an algebra % over [ that has a norm
||| relative to which # is a Banach space and such that for all a, b in &,
1.2 llab|l < llall 11]]-

If o/ has an identity, e, then it is assumed that |le|| = 1.
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The fact that (1.2) is satisfied is not essential. If &7 is an algebra and has a
norm relative to which % is a Banach space and is such that the map of
X — o defined by (a, b) = ab is continuous, then there is an equiv-
alent norm on &7 that satisfies (1.2) (Exercise 1).

If o7 has an identity e, then the map a*> ae is an isomorphism of F into
& and ||ael| = |al. So it will be assumed that F S/ via this identification.
Thus the identity will be denoted by 1.

The content of the next proposition is that if %/ does not have an identity,
it is possible to find a Banach algebra &) that contains &, that has an
identity, and is such that dim «7,/%/= 1.

1.3.  Proposition. If o is a Banach algebra without an identity, let ) =
& XF. Define algebraic operations on Sy by

() (@ @)+ (b,B) = (a +b,a+B);
(i) B(a, a) = (Ba, Ba);
(iii) (a,a)(b,B) = (ab + ab + Ba,af).

Define ||(a,a)|| = ||a|| + |a|. Then £, with this norm and the algebraic
operations defined in (i), (ii), and (iii) is a Banach algebra with identity (0,1)
and a = (a, 0) is an isometric isomorphism of & into ;.

Proor. Only (1.2) will be verified here; the remaining details are left to
the reader. If (a, a), (b, B) € |, then {|(a, a)(b, B)|| = ||(ab + Ba + ab,
af)|l = llab + Ba 4 ab|| +|aB| < lla|l |6l + |Blllall + la| |16l + o] [B] =
l(a, a)|l1| (b, B)II- ]

1.4. Example. If X is a compact space, then &= C(X) is a Banach
algebra if (fgd(x) = f (x)g(x) whenever f, g€ and x € X. Note that &/
is abelian and has an identity (the constantly 1 function).

If X is completely regular and &= C,(X), then &/ is also a Banach
algebra. In fact, C,(X) =C(BX) (V.6) so that this is a special case of
Example 1.4. Another special case is [*.

1.5, Example. If X is a locally compact space, &= C,(X) is a Banach
algebra when the multiplication is defined pointwise as in the preceding
example. & is abelian, but if X is not compact, & does not have an
identity. If X is the one-point compactification of X, then C( X )2 C.(X)
and C( X_) is a Banach algebra with identity.

Note that ¢, is a special case of Example 1.5.
1.6. Example. If (X, €, p) is a a-finite measure space and &/ =L*( X, Q,p),

then & is an abelian Banach algebra with identity if the operations are
defined pointwise.
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1.7. Example. Let Z be a Banach space and put &= %(Z). If multipli-
cation is defined by composition, then % is a Banach algebra with identity,
1. If dim Z = 2, & is not abelian.

1.8. Example. If Z is a Banach space and &= %, (%), the compact
operators on %, then &/ is a Banach algebra without identity if dim 2 =o0.
In fact, #o(Z) is an ideal of B(X).

Note that a special case of Example 1.7 occurs when &= M, (F), the
nX n matrices, where & is given the norm resulting when M, (F) is
identified with Z(F”).

1.9. Example. Let G be a locally compact topological group and let
M(G) = all finite regular Borel measures on G. If u,v € M(G), define L:
Co(G) = F by

L(f) = [ [1() du(x)dv(y) = [ [1(x9) dv(y) du(x).

Then L is a linear functional on Cy(G) and

L= [ [ifGol diel(x) dipi(»)

< A el 1zl

S0 L € Cy(G)* = M(G). Define p*vby L(f) = [fdp*v for fin Co(G).
That is,

1.10 [rduxv = [ [1(x) dn(x) dv(y).

Note that |ju *#|| = [|L]| < ||plll|#]]. It follows that M(G) is a Banach
algebra with this definition of multiplication. The product p* v is called the
convolution of p and v.

Let ¢ = the identity of G and let 8, = the unit point mass at e. If
f€Cy(G), then

Jrduss. = [ [ (xy) du(x)d8,(»)
= [1(xe) du(x)

=ffdp.

So p*8, = p; similarly, 8, *u = p. Hence 8, is the identity for M(G).
If x, ye G, then it is easy to check that 8, * Sy =46,, and M(G) is
abelian if and only if G is abelian.

y

1.11. Example. Let G be a locally compact group and let m = right Haar
measure on G. That is, m is a non-negative regular Borel measure on G such
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that m(U) > O for every nonempty open subset U of G and [f( xy)dm(x)
= [f(x)dm(x) for every f in C,(G) (the continuous functions f: G —F
with compact support). If G is compact, the existence of m was established
in Section V.. If G is not compact, m exists but its existence must be
established by nonfunctional analytic methods (see Nachbin [1965]).

If f,ge L (m), let p=fm and v = gm as in the proof of (V.8.1). Then
g, v e M(G) and |||l = Ifllis 17 = 1lgll;- In fact, the Radon-Nikodym
Theorem makes it possible to identify L (m) with a closed subspace of

M(G). Is it a closed subalgebra?
Let ¢ € C,(G). Then

¢dp v = [ [o(xp)f(x)g(y)dm(x)dm(y)

fodues_ [ o) f()s(3) dm(x)
=fg(y)Lf¢(xy)f(x)dm(x)] dm(y)
= [50)] fo)1Co ) ()] am(y)

= [o(| f10o7)8() am() ] am(x)

= [8(x)h(x) dm(x),

where h(x) = [f(xy ) g(y) dm(y), x in G. It follows that h€ L (m) (see
Exercise 4). Thus u *v=hm, so L (m) is a Banach subalgebra of M(G). In
fact, the preceding discussion enables us to define f* gin L (m) for f, Jin
L'(m) by

f*e(x) = [1(xv")g(y)dm(y).

The algebra L (m) is denoted by LYG).

It can be shown that L (G) is abelian if and only if G is abelian and
L (G) has an identity if and only if G is discrete (in which case L (G) =
M(G)-what is m#?). This algebra is examined more closely in Section 9.

If {#/,} is a collection of Banach algebras, let @/, = {a €11, for
all > 0, {i: |la(i)|| =€} is finite}.

1.12. Proposition. If { &, JSa collection of Banach algebras, ® ,«/, and
@ ., are Banach algebras.

Proor. Exercise.

EXERCISES

l. Let & be an algebra that is also a Banach space and such that if ¢ €, the
maps X = ax and X ~> xa of &/ — &/ are continuous. Let &/, =/ X F as in
Proposition 1.3. If a €&/, define L,: | — & by L,(x,§) = (ax + £a,0).
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Show that L,€ #(«)) and if |||la|ll = {|L,|l, then {||-}i| is equivalent to the
norm of & and &/ with |||- ||| is @ Banach algebra.

2. Complete the proof of Proposition 1.3.
3. Verify the statements made in Examples (1.4) through (1.9) and (1.11).

4. Let G be a locally compact group. (a) If ¢ €C, (G) and £> 0, show that there is
an open neighborhood U of e in G such that ||¢, —¢,|| <& whenever xy leu.
[Here ¢,(z)=¢( xz).] (b) Show that if f€L?(G), 1l <p <cc, and £€> 0, there
is an open neighborhood U of e in G such that ||fx—fv||p<e whenever
xy ' €U.(c) Show that if f€ L(G and ge€L*®(G), hx =
ff(xy~ YYg( y)dm( y) defines a bounded continuous function h: G —F. (d) If
f,g€IG)and h is defined as in (c), show that he€ L (G).

5. Prove Proposition 1.12.

6. Let { ;i€ I] be a collection of Banach algebras. (a) Show that @0% is a
closed ideal of @_.o,. (b) Show that 57 %, has an identity if and only if each
#, has an identity. (c) Show that @ ,.%, has an identity if and only if I is finite
and each %7, has an identity.

7. If X, Y are completely regular, show that C,(X) &,C,( Y) is isometrically
isomorphic to C,(X @ Y), where X @ Y is the disjoint union of X and Y.

8 If X and Y are locally compact, show that C,(X) @, Co( Y) is isometrically
isomorphic to C( X ® Y).

9. Let {X,: i €I} be a collection of locally compact spaces and let X = the
disjoint union of these spaces furnished with the topology {U <€ X: U N X, is
open in X, for all i}. Show that X is locally compact and @OCO( X,) is
isometrically isomorphic to C,(X).

§2. Ideals and Quotients

If o/ is an algebra, a left ideal of & is a subalgebra A of & such that
ax € M whenever a €, x € M. A right ideal of & is a subalgebra A
such that xa € # whenever a €, x € . A (bilateral) ideal is a
subalgebra of & that is both a left ideal and a right ideal.

If a €/ and & has an identity 1, say that a is left invertible if there is
an X in & with xa = 1. Similarly, define right invertible and invertible
elements. If a is invertible and x, y €% such that xa = 1 = ay, then
y=1ly=(xa)y =x(ay)= xl = x. So if a is invertible, there is a unique
element a ~! such that aa '=a"'a = 1.

If A is a left ideal in &7, a € A, and a is left invertible, then A = 7.
In fact, if xa = 1, then 1 € 4 since A is a left ideal. Thus for y in &,
y=yle #. This forms a link between ideals and invertibility.

In the case of a Banach algebra some bonuses occur due to the interplay
of the norm and the algebra. The results of this section will be for Banach
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algebras with an identity. To discuss invertibility this is, of course, the only
feasible setting. For Banach algebras without an identity some analogous
results can be obtained, however, by a consideration of the algebra obtained
by adjoining an identity (1.3). The concept of a modular ideal and a
modular unit can also be employed (see Exercise 6).

The next proof is based on the geometric series.

2.1. Lemma. zf £ is a Banach algebra with identity and x € % such that
|lx—1||< 1, then x is inuertible.

Proor.Let y = 1 — x; so ||y||=r< 1. Since |p"||<|¥)|"=r" (Why?),
T2y ll<oc. Hence z = L ,p" converges in & Ifz, =1+ y +y?
+ ... +y",

n

zn(l_ =0+y+. --—+—y") -(y —+—y2 + .. .+y"+l)= 1 _yn+1.

But ||y" Y <r"* so y"** > 0 as n > oc0. Hence z(1—y) = limz,(1-
y) = 1. Similarly, (1 —y)z = 1. So (1 — y) is invertible and (1 —y) =1z
=Y®" Butl—y=1-(1-x =x ®

Note that completeness was used to show that Ly”" converges.

2.2. Theorem. zf & is a Banach algebra with identity, G;,= {fa € a is
left invertible), G, = {a € a is right invertible}, and G = {a € a is
invertible}, then G, G,, and G are open subsets of . Also, the map
a —a ' of G- G is continuous.

Proor. Let a, € G and let by € & such that bya, = 1. If ((@ —ayl|<
|boll ~1, then ||bga —1|| = ||bo(@a — ap)|l< 1. By the preceding lemma, x =
boa is invertible. If b = x~'b,, then ba = 1. Hence G, 2 {a E:|la—ay
<|iboll "} and G, must be open. Similarly, G, is open. Since G = G, NG,
(Why?), G is open.

To prove that @ —a~ ~ is a continuous map of G — G, first assume that
{a,}is a sequence in G such that @, = 1. Let 0 <8< 1 and suppose
la, —=1||<8. From the preceding lemma, a,;'= (1 — (1 -a,)" =
Xy od-a)k =1+ X ,(1-a,)* Hence

1

la;' -1 = TY (1—a,)f
k=1

IA

o0
1= a,l*
k=1

<8/(1— 6.

If e> 0 is given, then & can be chosen such that §/(1 —8) <e. so
lla, — 1|| <8 implies |la,!—1}|<E Hence lima; = 1.
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Now let a € G and suppose {a,} is a sequence in G such that a, — a.
Hence a 'a,— 1. By the preceding paragraph, a,'a=(a"'a,) ' 1.
Hence a,'=a,'aa '—»a™’. =

Two facts surfaced in the preceding proofs that are worth recording for
the future.

2.3.  Corollary. Let & be a Bunuch algebra with identity.

(a) If la—1||< 1, then a ' = T2 o(1—a)~.
b)Y If byay = 1 and ||a—ay||<||byl| =", then a is left invertible.

A maximal ideal is a proper ideal that is contained in no larger proper
ideal.

24. Corollary. If & is a Bunuch algebra with identity, then

(a) the closure of a proper left, right, or bilateral ideal is a proper left, right,
or bilateral ideal;
(b) a maximal left, right, or bilateral ideal is closed.

Proor (a) Let A be a proper left ideal and let G, be the set of
left-invertible elements in 7. It follows that .4 n G, = Cl. (See the intro-
duction to this section.) Thus 4 C &\ G, By the preceding theorem,
&\ G, is closed. Hence ¢l A4 C &\ G,; and thus cl A4 + /. It is casy to
check that ¢l . is an ideal. The proof of the remainder of (a) is similar.

(b) If A is a maximal left ideal, cl A is a proper left ideal by (a). Hence
M =cl A by maximality. ]

If &7 does not have an identity, then . may contain some proper, dense
ideals. For example, let % =Cy(R). Then C.(R), the continuous functions
with compact support, is a dense ideal in Cy(R). There is something that can
be said, however (see Exercise 6).

2.5. Proposition. Zf &/ is a Bunuch algebra with identity, then every proper
left, right, or bilateral ideal is contained in a maximal ideal of the same type.

The proof of the preceding proposition is an exercise in the application of
Zom § Lemma and is left to the reader. Actually, this is a theorem from
algebra and it is not necessary to assume that &/ is a Banach algebra.

Let & be a Banach algebra and let # be a proper closed ideal. Note
that &7/ A becomes an algebra. Indeed, (x + AW y+ H#)=xy + MH is a
well-defined multiplication on /4. (Why?)

2.6. Theorem. If & is a Bunuch algebra and M is a proper closed ideal in
&, then /M is a Bunuch algebra. If &£ has an identity, so does /M.
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Proor. We have already seen that /4 is a Banach space and, as was
mentioned prior to the statement of the theorem, &/ # is an algebra. If
x, ye€ and u,v € A, then (x +u)(y+v) =xy + (xu + uy+uv) € xy
+ M. Hence |[(x + ANy + A)|| = |Ixp + A <||(x + u)(y+v)ll <|x
+ ul|||y + v||. Taking the infimum over all w,vin A gives that ||(x +
MYy + )| <|ix + A||ly + A||. The remainder of the proof is left to
the reader. ®

It may be that &/ has an identity even if & does not. For example, let
= C,(W) and let A ={¢<€ C,(R): ¢(x) = 0 when |x|< 1). If ¢, €
C,(W) such that ¢4(x) =1 for |x| < 1, then ¢+ A is an identity for
/M. In fact, if ¢ € Cy(R), (p, — $)(x) = 0 if {x|< 7. Hence (¢ +
MY by + A )=¢ + A (see Exercises 6 through 9).

EXERCISES

1. Let o be a Banach algebra and let Z be all of the closed left ideals in . If
I,I,e %, define LvL=c(+L)and I, Al, =1,n1I,. Show that with
these definitions £ is a complete lattice with a largest and a smallest element.

2. Let X be locally compact. For every open subset U of X, let I((/) = {¢ €
C,.(X): ¢ =0 on X\ U}. Show that U = I(U) is a lattice monomorphism of
the collection of open subsets of X into the lattice of closed ideals of C,(X). (It
is, in fact, surjective, but the proof of that should wait.)

3. Let (X, £, 1) be a u-finite measure space and let 7 be an ideal in L*( X, 2, )
that is weak™® closed. Show that there is a set A in £ such that I = {¢ €
L*(X,2,8):¢ =0 o0n A}.

4 . Let M={[; 2]: a,,BeIF} andletﬂ={[g 8] ,BEIF}. Show that &

is a Banach algebra and # is a maximal ideal in /.
5. Show that for n> 1, M,,(C) has no nontrivial ideals. How about M,,(R)?

6. Let & be a Banach algebra but do not assume that ./ has an identity. If 7 is a
left ideal of &, say that I is a modular left ideal if there is a u in & such that
L(1—u)={a —au: a e} I; call such an element u of & a right
modular unit for 1. Similarly, define right modular ideals and left modular units.
Prove the following. (a) If u is a right modular unit for the left ideal I and
uel, then I = «. (b) Maximal modular left ideals are maximal left ideals. (c)
If I is a proper modular left ideal, then 7 is contained in a maximal left ideal.
(d) If I is a proper modular left ideal and u is a modular right unit for I, then
flu—xjj= 1 for all xin I and ¢l I is a proper modular left ideal. (¢) Every
maximal modular left ideal of &/ is closed.

7. Using the terminology of Exercise 6, let I be an ideal of /. Show: (a) if uis a
right modular unit for 7 and v is a left modular unit for 7, then u—v €1. (b)
If I is closed, «2/I has an identity if and only if there is a right modular unit
and a left modular unit for 7. Call an ideal Z such that o//7 has an identity a
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modular ideal. An element u such that ¥ + I is an identity for /I is called a
modular identity for L.

8. If & is a Banach algebra, a net {e,} in & is called an approximate identity for
& if sup,jle,||< cc and for each a in &, e;a > a and ae, — a. Show that &
has an approximate identity if and only if there is a bounded subset E of &/
such that for every €> 0 and for every a in & there is an e in E with
llae — all + llea — al| < &

9. Show that if X is locally compact, then C,(X) has an approximate identity.
10. If ¥ is a Hilbert space, show that %,(#) has an approximate identity.

11. If G is a locally compact group, show that LI(G) (1.11) has an approximate
identity. [Hint: Let % = all neighborhoods U of the identity e of G such that
cl U is compact. Order % by reverse inclusion. For U in %, let f;; = m(U) 'x,.
Then { f,;UE¥} is an approximate identity for L'(G).]

12. For 0 <r<1,let B,: 0D — [0,00) be defined by P.(z) = L3 __ r'"'z" (the
Poisson kernel). Show that { P,} is an approximate identity for Z!( D) (under
convolution).

13. If 5 is a Hilbert space and P is a finite-rank projection, show that &, (#) P is
a closed modular left ideal of %;( ¥). What is the associated right modular
unit?

14. Find the minimal closed proper left ideals of M, (F).

15. Find the minimal closed proper left ideals of %,(J¢), # a Hilbert space. How
about for #,(Z),Z a Banach space?

16. What are the maximal modular left ideals of %,(5¢), # a Hilbert space?

§3. The Spectrum

3.1. Definition. If & is a Banach algebra with identity and a € &, the
spectrum of a, denoted by a(a), is defined by

o(a) = {a€1F: a — aisnotinvertible}.

The left spectrum, o,(a), is the set {a €F:a —a is not left invertible}; the
right spectrum, o,(a), is defined similarly.

The resolvent set of a is defined by p(w) = F \ u(a). The left and right
resolvents of a are p,(a)=F \ u,(a) and p,(w = IF \ u,(a).

32. Example. Let X be compact. If f€ CX), then u(f) = AX). In fact,
if a =f (x,), then f—a has a zero and cannot be invertible. So fAX) C
o(f). On the other hand, if @€ fiX), f —a is a nonvanishing continuous
function on X. Hence (f—a) '€ CX) and so f—a is invertible. Thus
aé¢o(f).
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3.3, Example. If & is a Banach space and A € B(%), then a(A) = {a €
IF: either ker( A —a) = (0) or ran( A —a)# % }. In fact, this means that
p(A) = F\ o(A) = {a€ IF: A —a is bijective}. If a € p(A), there is an
operator T in #(Z) such that T(A — a) = (A —a)T = I; clearly, A —«a
is bijective. On the other hand, if A —a is bijective, (A —a)'€ B(X) by
the Inverse Mapping Theorem.

34. Example. If 5 is a Hilbert and A € #(5¢), then a,( A) = {a € IF:
inf{||(4—a)h):|lhl| =1} = 0}. In fact, suppose B € #(5¢) such that
B(A —a)= 1 If J|a]| = 1, then 1 = ||Af| = |B(A— a)h|| <||B|||I(A4-
o)h||. So ||(A—a)h||=||B||”' whenever [|A|| = L

Conversely, suppose |[(4—a)h||=8> 0 whenever ||h|| = 1. Note that
ker( A —a) = (0). It will now be shown that ran(4 —«) is closed. In fact,
assume that (A —a)f, = g Then OlIlf, = full < H(A— ) f, — )l = liI(4
—a)f,— (A —a)f,|l. Thus { f,}is a Cauchy sequence. Let f,—f Then
g = lim(4 —a)f, = (A —a)f; hence g € ran(A — a). Let A= ran(A —
a); so (A —a):#— X is a bijection. Thus (A —a) A > H# is
bounded. Define B: #— # by letting B(k + h) = (A —a) % when
LeX and heX *. Thus BEB(H#) and B(A—«a) = 1.

3.5. Example. If &= M,(R) and A =[(1’ “(1)], thena(A)= O ! In fact,

A —a is not invertible if and only if 0 = det(A —a) = a’> + 1, which is
impossible in R.

The phenomenon of the last example does not occur if & is a Banach
algebra over C.

3.6. Theorem. If  is a Banach algebra over C with an identity, then for
each a in &, u(a) is a nonempty compact subset of C. Moreover, if
la|>|la]l,a & u(a) and z = (z — a) ~'is an SfLvalued analytic function
defined on p(a).

Before beginning the proof, a few words on vector-valued analytic func-
tions are in order. If G is a region in C and & is a Banach space, define the
derivative of f: G =% at zy to be lim, o2~ [ f(zq+ B — f(2,)} if the
limit exists. Say that fis analytic if fhas a continuous derivative on G. The
whole theory of analytic functions transfers to this situation. The statements
and proofs of such theorems as Cauchy S Integral Formula, Liouville §
Theorem, etc., transfer verbatim. Also, /- G = % is analytic if for each z,
in G there is a sequence Xg, Xy, X5, ... in & such that flz) = ¥ _o(z—
zo)*x, whenever z € B(zy; r), where r = dist(z,, dG). Moreover, the con-
vergence is uniform on compact subsets of B(zgy; r).

There is also a way of obtaining the vector-valued case as a consequence
of the scalar-valued case (see Exercise 4).
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ProoF oF THEOREM 3.6. If |a|>||af|, then a— a = a(l1—a/a) and ||a/«al|
< 1. By Corollary 2.3, (1 — a/a) is invertible. Hence a — a is invertible
and so a & o(a). Thus o(a)S{a€C:|a|<|all} and o(a) is bounded.

Let G be the set of invertible elements of /. The map a—>(a— a) is a
continuous function of € — 7. Since G is open and p(a) is the inverse
image of G under this map, p(a) is open. Thus e(a) = C\p(a) is
compact.

Define F: p(a)— & by F(z) = (z —a) ' In the identity x '—y ' =
x Yy—x)y L let x = (a¢+h—a)and y = (a— a), where a € p(a)
and A€ C such that A+ 0 and a+h € p(u). This gives

Fla + h) -F(a) _(a + h —a) (=h)a—a)"!
h h

= (a + h —a) (a—a) "

Since (a+h —a) ™ > (a—a) tash - 0, F(a) exists and

Fla) = -(a —a)™".

Clearly F : p(a)— & is continuous, so F'is analytic on p(u).
From the first paragraph of the proof and Corollary 2.3, if |z|>]all,

F(z) = %(1‘2)\1 = %é(g)k'

z

Hence

1< 5 (%)k

o
1 1
Iz T — llall/|z]
-1
= Iz —ljall) -
Thus F(z) — 0 as z - 0. Therefore if p(a)=C, Fis an entire function

that vanishes at co. By Liouville § Theorem Fis constant. Since F' # 0, this
is a contradiction. Thus p(a)#C, or o(a)# 0. ]

Because the spectrum of an element of a complex Banach algebra is not
empty, the following assumption is made.

Assumption. Henceforward, all Bunuch spaces and all Bunuch algebras are
over C.

3.7. Definition. If & is a Banach algebra with identity and a € 7, the
spectral radius of a, r(u), is defined by

r(u) = supfla|:a€ u(u)}.
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Because a( @) # | and is bounded, r(a) is well defined and finite; because
a(a) is compact, this supremum is attained.

W M,(C) and let A =[(1) 3_ Then A% = 0 and o(A4) = {0}; so
== 0. So it is possible to have r(A) = 0 with A # 0.

3.8. Proposition. If o is a Banach algebra with identity and a € «,
lim||a"||'/" exists and

r(a) = lim|a"||}/".

Proor. Let G = {z € C: z =0 or z '€ p(a)}. Define f: G > by
f(0) = 0 and for z # 0, f(z) = (z '—a)™". Since (@ —a) !> 0as a—
o0, [ is analytic on G, and so f has a power series expansion. In fact, by
Corollary 2.3, for |z]<|la] "%
fz)=Ya/(z )" =z ¥ 2%
n=0 n=0

From complex variable theory, this power secries converges for [z|<R =
dist(O, 9G) = dist(0,0(a) ") (Here o(a) '={z % z€ a(a)}). Thus R =
inf{ |aj:a”! € u(a)} = r(a)- . Also, from the theory of power series,
R~!=limsup|la”||*". Thus

r(a) = limsup|la”||*/".

Now if a€C and n 2 1, a"— a = (a—a)a" !+ a" “a

+ - Fa" H=(""'+a"%a+---+a""Ya— a). So if a"—a" is
invertible, a— a is invertible and (a—a)™' = (& —a") Yo" !
+ -+ +a - ). So for ain ufa), a"— a" is not invertible for every n = 1.
By Theorem 3.6, |a}|”<|la”|l. Hence |a|<||a”||*/" for all n > 1 and a in
u(a). So if a € u(a), |a| < liminf||d’|'/". Taking the supremum over all «
in u(a) gives that r(a) <liminf}ja”||'/" <limsup|la”||'’" = r(a). So r(a)
= lim|ja”|". =

3.9. Proposition. Let & be a Banach algebra with identity and let a € .

(a) If a € p(a), then dist(a,o(a))=|(a—a) |~ L
(b) If o, B € p(a), then

(@ —a) ' =(B~a) " = (B~a)(a—a) (B—a)"

= (B~-a)B-a) (a—a) "

Proor. (a) By Corollary 2.3, if a€ p(a) and ||lx—(a—a)|<|[(a—
a) Y7, x isinvertible. Soif € C and |B| < (e — @) Y| "L (B+a— a)
is invertible; that is, a + B € p(a). Hence dist(a, u(a) =||(a—a) || ~L
(b) This follows by letting x = a—a and Y = B—a in the identity
x =y loxTiy —xyTl=y iy -xxTh .
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The identity in part (b) of the preceding proposition is called the resolvent
identity and the function @ — (a — a) ' of p(a) — & is called the resolvent
of a.

EXERCISES

1. Let S be the unilateral shift on /2 (I1.2.10). Show that S is left invertible but not
right invertible.

2. If &/ is a Banach algebra with identity and a € & and is nilpotent (that is,
a" = 0 for some n), then o(a) = {0}.

3. Let (X,2,p) be a o-finite measure space and let &= L*(X,Q,p) (1.6). If
¢ €./, show that the following are equivalent: (a) a € o(¢); (b) 0=
sup{inf{j¢(x) —a|: x € X\A}: A €  and p(4)=0};()if e > 0, p({x € X:
|¢(x) — a| < e}) > 0; (d) if » is the measure defined on the Borel subsets of C
by »(4) = (¢ !(4)), then a € the support of ».

4. If G is an open subset of C and f: G — % is a continuous function such that for
each x* in &*, x*o f: G — C is analytic, then f is analytic.

5. If &/ is a Banach algebra with identity, {a,} € &, 4, — a4, a, € ¢(a,), and
a, — a, then a € o(a).

6. If o/ is a Banach algebra with identity and r: & — [0, o) is the spectral radius,
show that 7 is upper semicontinuous. If a € & such that r(a) = 0, show that r
is continuous at a.

7. If &7 is a Banach algebra with identity, a, b € &, and « is a nonzero scalar such
that (a — ab) is invertible, show that (a — bg) is invertible and (& — ba) ™' =
a '+ a"'b(a — ab) 'a. Show that o(ab) U {0} = o(ba) U {0} and give an
example such that o(ab) # o(ba).

§4. The Riesz Functional Calculus

Before coming to the main course of this section, it is necessary to have an
appetizer from complex analysis. Many of these topics can be found in
Conway [1978] with complete proofs. Only a few results are presented here.

If vy is a closed rectifiable curve in € and a & {y} = {y(¢): 0 <t < 1},
then the winding number of y about a is defined to be the number

1 1
n(y,a)—z—w—i/;z_adz.

The number n(y; a) is always an integer and is constant on each component
of C \ {v)} and vanishes on the unbounded component of C \ {y}.

Let G be an open subset of € and let & be a Banach space. If f: G > &
is analytic and x* € £'*, then z — (f(z), x*) is analytic on G and its
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derivative is (f (z), x*). By Exercise 4 of the preceding section, if f:
G — % is a continuous function such that z - (f(z), x*) is analytic for
cach x* in &*, then f: G —>% is analytic. These facts will help in
discussing and proving many of the results below.

If v is a rectifiable curve in G and fis a continuous function defined in a
neighborhood of {y} with values in Z, then [, f can be defined as for a
scalar-valued [ as the limit in & of sums of the form

> [Y(tj) —Y(tﬁl)]f(tj)’

where {fo,1,,...,1,}is a partition of [0, 1]. Hence [,f = [of(v(1))dv(t)€E
Z. 1t is easy to see that for every x*in Z* ([ f,x*) = [{(f(-), x*).

4.1, Cauchy 8 Theorem. If Z is a Banach space, G is an open subset ofc, f:
G - Z is an analytic function, and v,, .. . , Y,, are closed rectifiable curves in
G such that L7_in(y;a) = 0forall ain C\ G, then Z;’;lfylf: 0.

Proor If x*€ Z'*, then (Z;-'Llfyjf,x*) = Z;”=1fyl<f(~), x*) = 0 by the
scalar-valued version of Cauchy § Theorem. Hence X7, fyj f=0. .

4.2. Cauchy § Integral Formula. If & is a Banach space, G is an open subset
of C, f: G- X is analytic, v is a closed rectifiable curve in G such that
n(vy;a)=0foreveryainC\ G, and A€ G \{7}, then for every integer
k=0,

n(v; N FO) = E%fY'(z-)\)""“’f(z)dz.

4.3, Definition. A closed rectifiable curve vy is positively oriented if for
every @ in G\ { vy}, n(v;a) is cither O or 1. In this casec the inside of v,
denoted by ins v, is defined by

insy = {a€ C\{v}: n(y;a)=1}.
The outside of v, denoted by out vy, is defined by
outy = fa €C\{v}:n(y;a) = O).

Thus €C={y}Uinsy U out y.

A curve y: [0, 1] > Cis simple if y(s) = y(t) implies that either s =1¢ or
s =0 and r= 1. The Jordan Curve Theorem says that if y is a simple
closed rectifiable curve, then C\{y} has two components and {7y} is the
boundary of each. Hence n(y;a) takes on only two values and one of these
must be 0; the other must be + 1.

IfT={vy,..., Yy} is a collection of closed rectifiable curves, then I is
positively oriented if: (a) {y,} n {yj}= Q fori+j; () forain C\
UT_ (v}, n(T5 a) = X7 n (v; @) is either O or 1. The inside of I',ins I', is
defined by

insI'= {a: n(I';a) = 1}.
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The outside of I', out I', is defined by
outI'= {a: n(I';a) = 0}.

4.4, Proposition. If G is an open subset of C and K is a compact subset of G,
then there is a positively oriented system of curves I' = {y1,...,¥, } in G\K
such that K CinsI” and C\G C out I'. The curves ¥i,-.-,Ym can be found
such that they are infinitely differentiable.

The proof of this proposition can be found on p. 195 of Conway [1978],
though some details are missing.
IfI' = {v;,...,v,} and each y; is rectifiable, define

f[f= 2 |1
=17y
whenever f is continuous in a nelghborhood of {I'}.

Let & be a Banach algebra with identity and let a € %/. One of the
principal uses of Proposition 4.4 in this book will occur when K = afa). If
/- G = C is analytic and o(a)< G, we will define an element f{a) in &
by
45 1(@) = 37 [ 1) = @) Ve
where I' is as in Proposition 4.4 with K = a(a). But first it must be shown
that (4.5) does not depend on the choice of 1. That is, it must be shown that
fla) is well defined.

2mi

4.6. Proposition. Let &/ be a Banach algebra with identity, let a € &, and
let G be an open subset of C such that u(a) € G. If I' ={vi,..., ¥} and
A = {A,..., A} are two positively oriented collections of curves in G such
thato(a)cins I’ and u(a) Cins A and if f: G = C is analytic, then

frf(z)(z—a)“ldz = fAf(z)(z—a)*ldz.

Proor. For 1 <j<k let v,., = A" that is, y,+,(1) = A(1—1) for
0<t<1.1fz & G\ o(a) then éitherz € C\ G orz € o(a). Iz € C\ G,
then Lrtfn(viz) = () —n(A;2) = 0 — 0 = 0. If z € u(a), then

n(yj, z) =nIz) —n(A; z) =1 — 1= 0. Thus 2={y:1<j<m
+ k} is a system of closed curves in U = G\ o( a) such that n(2;z) = 0

for all z in C\U. Since z = f (z)(z —a) ! is analytic on U, Cauchy §
Theorem implies

=Lﬂﬂw—w”ﬂ=ﬁﬂnw—w-&—AﬂA&—w-%

]
As was pointed out before, Proposition 4.6 implies that (4.5) gives a
well-defined element f{a) of & whenever f is analytic in a neighborhood
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of a(a). Let Hol(a) = all of the functions that are analytic in a neighbor-
hood of a(a). Note that Hol(a) is an algebra where if f, g € Hol(a) and f
and g have domains D(f) and D(g), then fg and f+ g have domain
D( f )N D(g). Hol(a) is not, however, a Banach algebra.

4.7. The Riesz Functional Calculus. Let <7 be a Banach algebra with identity
andlet a € .

() The map f— fla) of Bol(a) — & is an algebra homomorphism.

(b) If f(z)= X% s, 2% has radius of convergence > r(u), then f € Hol(a)
and f(a) = LL_qa,a*

(©) If f(z)= 1, then flu) = 1.

(d) If f(z) =z for all z, fla) = a.

© zf f. /1, frs-.. are all analytic on G, 6(a)C G, and f(z) — flz)
uniformly on compact subsets of G, then ||f,(a)— f(a)||— Ous n— .

Proor. (a) Let f, g €Hol(a) and let G be an open neighborhood of u(a)
on which both f and g are analytic. Let I" be a positively oriented system of
closed curves in G such that e(a)CinsI. Let A be a positively oriented

system of closed curves in G such that (ins I') U { I'} = cl(ins I')Cins A.
Then

f@s(a) = - | [16)0: - 7 a| [s©)e - o) ]

1

-~ L[ 1860 @) ¢ o) e

_ 1 i (z-a)'-@-a)'| .
et AL )g(§)[ — }d{d_

s 10| [ B i) e

1

4‘772 A

[by (3.9b)]

g(§)[ 1), ](r—a)‘ldg.

But for § on A, §€ out I' and hence [ {f(z)/(§—z)]dz = 0 (Cauchy $
Theorem). If z €{I'}, then z €insA and so [,[g($)/({— »)] d¢ =
27ig( z). Hence

f(a)g(a) = 2,,,/f( 2)g(2)(z—a) ' dz
= (fg)(a).

The proof that (af + Bg)a) = af(a)+ Bg(a) is left to the reader.



VIL4. The Riesz Functional Calculus 207

(¢) and (d). Let f(z) = z* k = 0. Let y(t) = Rexp(2mit), 0 <1< 1,
where R >||a||. So a(a) ¢ insy, and hence

1 _
fla) = g [2(z - ) e

1 ;a7
ZWifz (1 ;) dz

Y

1 B 0
mfzk IZa"/z"dz,
Y n=0

since ||a/z||< I for |z| = R. Since this infinite series converges uniformly
for z on v,

=1 1
fla) = = dz|a".
( ) n§0 2ai '/;l zn*k-ﬁ—l
If n# k then z="~*+D has a primitive and hence f,z~ " **Ddz = 0. For
n =k this integral becomes f,z~'dz=27ri. Hence fla) = a*.
() LetI’ = {v,..., v} be a positively oriented system of closed curves
in G such that a( a) CinsI. Fix 1 <k < m; then

fyfn(z)(z —a)- dz —[yf(z)(z—a)fldz

= ”_[)l[fn(ﬁ’k(t))—f(Yk(t))][yk(t)—a]vldYk(t)H
S'[)llfn(Yk(t))_f(Yk(t))l ||[yk(t)—a]‘1|| dlv,|(1).

Now t —||[y,(#)—a] Y| is continuous on [0, 1] and hence bounded by
some constant, say M. Thus

fyf,,(Z)(z —a)*ldz—/yf(zxz—a)”dz

< M||yllmax{|f,(z) = f(2)l: z € {v } },

where ||v,|| is the total variation (length) of y,. By hypothesis it follows that
I, (a) — f(a)ll > 0 as n = oo.

) If p(z) = ):2=0akzk is a polynomial, then (a), (¢), and (d) combine to
give that p(a) = Xi_oa,aX. Now let f(z) = ¥ ,a,z* have radius of
convergence R > rfa), the spectral radius of a. If p,(z) = Zi_pa,z¥
p,(z) — f(z) uniformly on compact subsets of {z: |z|< R}. By (e), p,(a)
— f(a). So (b) follows. [ ]

The Riesz Functional Calculus is used in the study of Banach algebras
and is especially useful in the study of linear operators on a Banach space
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(Sections 6 and 7). Now our attention must focus on the basic properties of
this functional calculus. The first such property is its uniqueness.

4.8. Proposition. Let & be a Banach algebra with identity and let a € «.
Let 7:Hol(a) —» & be a homomorphism such that (a) T(1)=1, (b) 7(2)=a,
(@ if { f,} is a sequence of analytic functions on an open set G such that
u(a) € G and f,(z)— f(z) uniformly on compact subsets of G, then 7( f,)—
7(f). Then 7(f) = fa) for every f in Hol(a).

Proor. The proof uses Runge $ Theorem (111.8.1), but first it must be shown
that 7(f) = fla) whenever fis a rational function. If n > 1 7(z") = 71(2)"
= a ; hence 7(p) = p(a) for any polynomial p. Let ¢ be a polynomial
such that ¢ never vanishes on u(a), so ljg €Hol(a). Also, 1 = 7(1) =
(q-q7 Y =7(q9)7(¢" ") = g(a)7(q¢™!). Hence g(a) is invertible and
g(a) '=71(q'). But using the Riesz Functional Calculus, a similar argu-
ment shows that g(a)™! = (). Thus 7(¢~') = (k). Therefore if
f =plg, where p and g are polynomials and g never vanishes on u(a),
(f)=1(p-qg Y=1(p)r(g" ") = pla)1l/9Xa) = f(a).

Now let f€Hol(a) and suppose fis analytic on an open set G such that
a(@) € G. By Runge 8 Theorem there are rational functions { f,} in Hol(a)
such that f,(z) — f(z) uniformly on compact subsets of G. By (iii) of the
hypothesis, 7(f,)—=7(f). But 7(f,) = f.(a) and f,(a) = fla) by (4.7¢).
Hence 7(f) = fla). [ ]

A fact that has been implicit in the manipulations involving the func-
tional calculus is that fla) and g(a) commute for all f and g in Hol( @). In
fact, if 7:Hol(a) = & is defined by 7(a) = fla), then f(a)g(a) = 7(fg)=
7( gf ) = g( o)f (@). Still more can be said. »

4.9. Proposition. If a, b €, ab = ba, and f € Hol(a), then fla)b =
bf(a).

Proor. An algebraic exercise demonstrates that f (@b = &f (a) if fis a
rational function with poles off u(a). The general result now follows by
Runge s Theorem. W

4.10. The Spectral Mapping Theorem. If a € %/ and f € Hol( a), then
o(f(a)) = f(o(a)).

Proor. If a € u(a), let g €Hol(a) such that f(z) -fla) = (z —a)g(z).
If it were the case that fla) 4 o( f (a)), then (@ —a) would be invertible
with inverse g(a)ff(a) — f(a)]~'. Hence fla) €a(f(a)); that is, f(o(a))
¢ o(f(a)).

Conversely, if B¢ f(o(a)), then g(z) = [f(z)—B] '€Hol(a) and so
gla) fla)y—B] = 1. Thus B 4 o(f(a)); that is, o(f(a))< f(e(a)). =
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This section closes with an application of the functional calculus that is
typical.

4.11. Proposition. Suppose a € o/ and o(a) = F, U F,, where F, and F,
are disjoint nonempty closed sets. Then there is a nontrivial idempotent e in
such that

(a) if ba = ab, then be = eb;
(b) if a; = ae and a, = a(l — e), then a = a, + a, and a,a, = a,a; = 0;
(©)o(ay) = F,U{0},0(a,) = F,U{0}.

Proor. Let G, G, be disjoint open subsets of C such that F;c¢ G;, 7 = 1,2,
Let I' be a positively oriented system of closed curves 1n Gy such that
F,Cins T, F,Cout I.If f = the characteristic function of G,, f €Hol(a);
lete =f{w). Since £ 2 = 7, e? - . Part (a) follows from (4.9).

Note that e(1—¢) =0 = (1 — e)e. Hence (b) is immediate. Let f,(z) =
2f(z), f,(z) = z(1= r(z)). Tt follows from (4.7a) that a, = f(a), j = 1,2.
Hence the Spectral Mapping Theorem implies that o(a;)= f,(u(a)) = F, U
{0). =m

Part (c) of the preceding proposition has the somewhat unattractive
conclusion that o(a;)=F, U{0}. It would be much neater if the conclu-
sion were that o(a;)= F,. This is, in a sense, the case. Since a,(1—¢) =0
and 1 —e# 0, a, cannot be invertible. However, consider the algebra
&, =sle. Tt is left to the reader to show that &7, is a Banach algebra and ¢
is the identity for 7. If a, is considered as an element of the algebra =7,
then its spectrum as an element of &) is F}. This is an illustration of how
the spectrum depends on the Banach algebra (the subject of the next
section; also see Exercise 9).

EXERCISES

1. Let &= C(X), X compact (see Example 3.2). If g€ C(X) and f €Hol(g),
show that f(g) = feg.

2. Let a be a nilpotent element of /. For f, g in Hol(a), give a necessary and
sufficient condition on f and g that f(a) = g(n).

3. Let d > 1andlet A € M;(C). Give a necessary and sufficient condition on f in
Hol( A) such that f(u) = 0. (Hint: Consider the Jordan canonical form for A .)

4. If & is a Banach algebra with identity, a € &, f € Hol( a), and g is analytic in
a neighborhood of f(@(a)), then geof € Hol(a) and g(f(a)) = gof(a).

5. If & is a Banach space, A € B(X), and # <& such that (A —a)" M C A
for all a in p(A), show that f(A).# C.# whenever f€Hol(A).

6. If & is a Banach space, A € Z(%X), and f €Hol(A), show that f{A)* = f(A*).
(See (6.1) below.)
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7. If S is a Hilbert space, A € B(H), and f € Hol(A), show that f(A)* =
f( A*%), where f(z) = f(Z). (See (6.1) below.)

8. If # is a Hilbert space, A is a normal operator on 5, and f &€ Hol(A), show
that f(A) is normal.

9. Let & be a Banach space and let A € Z(%). Show that if 6(4)=F U F,
where F, F, are disjoint closed subsets of C, then there are topologically
complementary subspaces 2%, %, of £ such that (a) BZ,C % (j=1,2)
whenever BA=AB; (b)if A, = A |L’Z;, o(A;) = F; (c) there is an invertible
operator R: ¥— %, ®,%, such that RAR"! = A, & A,

10. Let A €M (C), o(A) = {a, , a,}, where a,+ a, for i+ j. Show that for
1 < j<n there is a matrix A, in MdJ(C) such that a(4,) = {a, } and A is
similar to A, & ... @A,.

§5. Dependence of the Spectrum on the Algebra

If 0D = {z €C:|z| =1}, let £ = the uniform closure of the polynomials
in C( dD). (Here polynomial means a polynomial in z.) If &= C(ID),
then the spectrum of z as an element of &7 is dD (Example 3.2). That is,

0,(z) = dD.

Now z €% and so it has a spectrum as an element of this algebra;
denote this spectrum by 04(2). There is no reason to believe that og(z) =
0.,(z). In fact, they are not equal.

5.1. Example. If % = the closure in C( dD) of the polynomials in z, then
o4(z) = clD.

To see this first note that {|z|| = 1, so that u,(z) CclD by Theorem 3.6.
If|A]< 1 and A € 064(2), there is an f in & such that (z —A)f = 1. Note
that this implies that |A|< 1. Because f € %, there is a sequence of
polynomials { p,} such that p, — f uniformly on dD. Thus for every >0
there is a N such that for m,n>= N, ¢>|p, — p.llsn = sup{|p,(z) -
p,(2)]:z€dD}. By the Maximum Principle, € >||p, — Pullap for m n=
N. Thus g(z) = lim p,(z) is analytic on D and continuous on cl D; also,
g|dD = f. By the same argument, since p,(z}(z—A)— 1 uniformly on
D, p,(z)(z—=A)— 1 uniformly on D. Thus g(z)}(z—A) =1 on D. But
1 =g(AXA—A) = 0, a contradiction. Thus, ¢l DCogk(2).

Thus the spectrum not only depends on the element of the algeb}ra, but
also the algebra. Precisely how this dependence occurs is given below, but it
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can be said that the example above is typical, both in its statement and its
proof, of the general situation. To phrase these results it is necessary to
introduce the polynomially convex hull of a compact subset of C.

5.2. Definition. If A is a set and f: A = C, define
I1£ls=sup{If(z)l: z € 4 }.

If Kis a compact subset of C, define the polynomially convex hull of K to
be the set K-given by

K'={z € C: |p(z)| < ||plix for every polynomial p}.
The set K is polynomially convex it K = K.

Note that the polynomially convex hull of dD is ¢l D. This is, again, quite
typical. If K is any compact set, then C\ K has a countable number of
components, only one of which is unbounded. The bounded components are
sometimes called the holes of K; a few pictures should convince the reader
of the appropriateness of this terminology.

5.3. Proposition. If K is a compact subset of C, then C\ K is the unbounded
component of C\ K. Hence K is polynomially convex if and only if C\ K is
connected.

Proor. Let Uy, Uj,... be the components of C\ K, where U, is un-
bounded. Put L = C\U; hence L = K U UZ_ U,. Clearly K C K 1f
n > 1, then U, is a bounded open set and a topologlcal argument implies
dU, < K. By the Maximum Principle U, C K. Thus, L C K.

If a€l,, (z —a) ! is analytic in a neighborhood of L. By (IIL8.5),
there is a sequence of polynomials { p,} such that ||p,— (z —a) ~ ||, — 0.
If q, = (z —a)p,, then ||g,—1||, = 0. Thus for large =, ||q,, 1HL<1/2
Since K ¢ L and |g,(a)—1| = 1, this implies that a& K. Thus K'C L.

]

5.4. Theorem. If & and # are Banach algebras with identity such that
BC A and a €A, then

(a) 04(a) C og(a) and dog(a) C da(a).

(b) o (a) = og(a).

o) If G is a hole of o ,(a), then either G Cog(a) or G Nagla)=0. .
(d) If # is the closure in & of all polynomials in a, then og(a)=o,(a) .

Proovr. (a) If a & og(a), then there is a b in # such that b(a —a) =
(a —a)b=1. Since #C A, a4 0,(a) Now assume that A Edog(a).
Since int 6,(a)C int og(a), it suffices to show that A € o (a). Suppose
A& o, (a); there is thus an x in & such that x(a—a) = (@ —a)x=1.
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Since A € dog(a), there is a sequence {A,}in C\ag(a) such that A, — A,
Let (a —A,)" ! be the inverse of (a — A,) in #;s0 (a — A,)) €., Since
A, =X (a—A,) = (a—X). By Theorem 2.2, (a —A,) ! - x. Thus x €
% since # is complete. This contradicts the fact that A € ogh(a).

(b) This is a consequence of (a) and the Maximum Principle.

(c) Let G be a hole of o,(a) and put G; = G Nog(a) and G, = G\
o4(a). So G =G, UG, and G, nG, =0. Clearly G, is open. On the other
hand, the fact that dog(a)Co,(a) and G Na,(a) =0 implies that G, =
G N int og(a), so G, is open. Because G is connected, either G, or G, is
empty.

(d) Let_ # be as in (d). From (a) and (b) it is known that 6(a) Cog(a)
Coy(a). Fix A in g (a). If A€og(a), (a —A) 'eBC. Hence
there is a sequence of polynomials { p,} such that p,(u) — (a —A)~ L Let
g,,(z) = (z —A)p,(z). Thus |q,(a)—1]|— 0. By the Spectral Mapping
Theorem, 0.,(q,(a) = q,(0,(a). Thus, because AE€a,(a),

lg.(a) = 1| = r(g,(a) — 1)
sup{|z—1}:z€ 0,(q,(a))}
sup{lg,(w) —1|: w € 0,(a)}

1g,(A) — 1]
= 1.

[\

This is a contradiction. [ ]

EXERCISES

1. If K is a compact subset of C,let P(K) be the closure of the polynomials in
C(K). Show that the identity map on polynomials extends to an isometric
isomorphism of P(K) onto P(K ).

2. If K is a compact subset of C, let R(K) be the closure in C(K) of all rational
functions with poles off K. If f&€ R(K), show that oz x,(f) = f(K). If f€
P(K), show that 6px,(f) = f(K ).

3. Let &/, % be as in Theorem 5.4. If a €% and o4(a) CR, show that ogh(a) =
o, (a).

4. Let & be a Banach algebra with identity and let a €% If G|,G,, are the
holes of 6,(a) and 1 <n <n,., show that there is a subalgebra % of &
such that a € # and og(a) = a,(a) U UF_,G,,.

5. If &/,%, and a are as in Theorem 5.4, & is not abelian, and & is a maximal
abelian subalgebra of &/, show that o, (a) = o4(a).

6. If K is a nonempty compact subset of C that is polynomially convex, show that
the components of int K are simply connected.
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§6. The Spectrum of a Linear Operator
The proof of the first result is left as an exercise.

6.1. Proposition.

(a) If & is a Banach space and A€ B(X),6(A*) = a(A).
(b) If S is a Hilbert space and A € B( ), a( A*) = a(A)* where for any
subset A of C,A*={Z:z€A}.

In this section only results about operators on Banach spaces will be
given. For the corresponding results about operators on a Hilbert space
involving the adjoint, the reader is asked to supply the details. The preced-
ing proposition should be kept in mind as a model of the probable
differences.

In this section and the next & always denotes a Banach space over C.

6.2. Definition. If A € B(X), the point spectrum of A, o,(A), is defined
by
op(A) ={A€C: ker(A — A) = (0)).

As in the case of operators on a Hilbert space, elements of 6,(A4) are called
eigenuufues. If)\Eop(A), vectors in ker(A —A) are called eigenuectors;
ker( A —A) is called the eigenspuce of A at A.

6.3. Definition. If A € Z(&), the upproximutepoint spectrum of A, o,,( A),
is defined by

0,,(A)={A € C: thereisasequence {x,}in &
such that ||x,|| =1 for all n and ||( A —A)x,||— O}
Note that op( A) C%p( A).

6.4. Proposition. If A EZ(X) and AEC, the following statements ure
equivalent.

(a) NEo,,(A).
(b) ker( A —X) = (0) and ran( A —X) is closed.
(¢) There is a constant ¢ > 0 such that |(A—A)x||=c||x|| for all x.

Proor. Clearly it may be assumed that A = 0.

(a) = (c): Suppose (c) fails to hold; then for every n there is a vector x,
with 14l < X0 /n. 1f 3, = x,/lI%,]. [yl = 1and |4y, - 0. Hence
0 €o0,,(4).

(c) = (b): Suppose ||4x||=c]||x||. Clearly ker4 = (0). If Ax, — y,||x, —
x|l < ¢ YA4x, — Ax,|l, so {x,}is a Cauchy sequence. Let x = limx,;
therefore Ax = y and ran A is closed.
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(b) = (a): Let = ran A; so A: X —>% is a continuous bijection. By the
Inverse Mapping Theorem, there is a bounded operator B: # —» % such
that BAx = x for all x in 1. Thus if ||x|| = 1, 1 = ||BAx| <||B|j||4x]-
That is, ||Ax||=||B|| ' whenever ||x|| = 1. Hence 0 & u,,(A). ]

It may be that 6,(A) is empty, but it will be shown that ¢,,(A) is never
empty. The first statement follows from the next result (or from other
examples that have been presented); the second statement will be proved
later.

6.5. Proposition. If 1 <p <oo, dejine S: 17 =17 by S(x;,X,,...)=
©,x),%5,...). Then a(S) = cID, u,($) = T, and 0,,(S)=3D. Moreover,
for [\|< L ran(S — A) is closed and dim[l? /ran(S — X)] = 1.

Proor. Let S, be the shift on /7. For 1 <p <oo, define T,:17 =17 by
T,(xy, x5,. ) =(x2,X;,...). It is easy to check that for 1 <p <co and
1/p + UVg = 1, S} =T, Since ||S,]| = 1, 6(S,) SclD.

Suppose x = (xy,x3,...)E,A# 0. If S,x = Xx, 0 = Ax,, x; =
XX,,... . Hence 0 = x;=x,="---. Since SI;IS an isometry, ker S, = (0).
Thus 6,(S,) =0

Let 1 <p <oo and |A|< 1. Put x, = (1, A, N%,...). Then x|} =

2_olA|"< co. Also, T,x, = (A, X°,...)=Ax,. Hence A€0,(7,) and
xAEker(T;,— h). If 1 <p <oo and Ip + Vg = 1, T, = S} so DC
o(T,) = o(S,). Also, S, = T\*, so DCo(S,). Thus for all p,DCo(S,)
Ccl D. Since o(S,) is necessarily closed, 6(S,)=clD.

If Aj< 1 and x €17, I(S, = M)x|, = [IS,x — Ax||, = |||S,xl, —
XL = 1, = XL = (3= ADIix]],- By (6.4), A € 0,,(S,). Hence
0,,(S,)SdD. The fact that o,,(S,)=dD follows from the next proposi-
tion (6.7).

Fix |A|< 1, so ran(S,—A) is closed. If 1 <p <oo, then dim[/?/ran(S,
— X)] = dim[ran(S, - A) 1] (Why?) = dim ker(S*—A). (VI.1.8) =
dim ker( T, — X). Also, dim[/* /ran(S,, — A)] = dim[ “ran(S,, — A)] (Why?)
= dim ker(7; — X). So to complete the proof it suffices to show that
dim ker(T,— A) = 1 for 1 <p <co. If x €/7 and T,x = Xx, then
(x5, X3,...)=(Axy,Ax,,...). So x,.; = Xx, for all n. Thus x, = Xx,;
X3 = Xx, = ANx,,.... Hence x,,, = N'x,. That is, if x, = (1, A, A%,...),
then x = x,x,. Since it has already been shown that x, € ker(T,—A), this
completes the proof. L]

6.6. Corollary. If 1 <p <cc and T:1? - [? iy dejined by T(xy,%,,...)=
(x5, %X3,...), then w(T) = cl D and for |A|< 1, ker(T —A) is the one-
dimensional space spanned by the vector (1, \,A%,...).

The next result shows that if S is as in (6.5), then D C o, (S).
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6.7. Proposition. If A€ B(Z), then do(A)C u,,(A).
ProoF. Let A€do(A) and let {A,} CC\a(A) such that A,—A.

6.8. Claim. |[(A—A,) }{— o as n = oo.

In fact, if the claim were false, then by passing to a subsequence if
necessary, it follows that there is a constant M such that [[(A—A,) " }|l<M
for all n. Choose n sufficiently large that |JA,—A|<M . Then ||[(4—\)
— (A =AN<NI(A=A)"Y "% By (2.3b), this implies that (A —A) is
invertible, a contradiction. This establishes (6.8).

Let x| = 1 such that &, =[[(A—=A,) 2> l(A=A,) Y =nY,
so a,— co. Put y,=a,(A—-X,)"x,; hence ||y,]| = 1. Now

(A - A)yn = (A - )\n)yn +()\ - )\n)yn
=a,'x, +(A=X,),

Thus [[(A=M)y,l[<ea;' + A=A, so that [[(4A—A)y,]|= 0 as n — c0.
That is, A € u,,(A). [ ]

Let A € Z(Z) and suppose A is a clopen subset of u(A); that is, A is a
subset of o(A) that is both closed and relatively open. So 6(A)=A U
(0(A)\ A). As in Proposition 4.11 (and Exercise 4.9),

6.9 EA) = E(A; 4) = ﬁf(z —4) 'dz,
r

where I' is a positively oriented Jordan system such that A CinsI’ and
o(A)\AC out I', is an idempotent. Moreover, E(A)B = BE(A) whenever
AB = BA and if %, = E(A)Z,0(A|%,) = A. If A = a singleton set {X},
let E(X) = E({A)}) and &, = £,,. Note that if A is an isolated point of
a(A), then { A } is a clopen subset of o( A).

6.10. Example. Let {a,}€/®, 1 <p <oo, and define A: [ —[? by
(Ax)(n) = a,x(n). Then a(A) = cl{a,} and 0,(4) = {a,}. Let ek) = 0
if k# nand 1 if k = n. For each k define N, = {n €EN;a, = a,} and
define P,: [? =[P by P,x = xyx.If @, is an isolated point of u(A), then
{ay) is a clopen subset of 6(A4) and E(f a,}; A) = P,.

Suppose A € B(Z) and A, is an isolated point in o( A). Hence E(Ag) =
E(Ag; A)is a well-defined idempotent. Also, A, is an isolated singularity of
the analytic function z — (z — A)"' on C\ o( A). Perhaps the nature of
this singularity (pole or essential singularity) will reveal something of the
nature of A, as an clement of o( A). First it is helpful to get the precise
form of the Laurent expansion of (z —A) ' about Ag.

6.11. Lemma. If A, is an isolatedpoint of u(A), then

(z =4 = ¥ (z —Xp)"4,

n
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for 0 <z — Ayl <ry=dist(Ay, uw(AN {Ay)}), where
1 —n—1 —1
A= 5 [(z Ao) (z—A4) dz
for Y = any circle centered at A, with radius <r,.

The proof follows the lines of the usual Laurent series development
(Conway [1978])).

6.12. Proposition. If A, is an isolated point of a(A), then X, is a pole of
(z —A) ' of order n if and only if (A\g— A)"E(X,) = 0 and (A, -
AY'IE(N) * 0.

ProoF. Let (z —A) '=X% _ _(z2—Ay)"4, as in (6.11). Now A, is a pole
of order n if and only if A _,#0and A _,=0for 2 >n Let I be a
positively oriented system of curves such that a( A) \ {Ay,}C ins I' and
Ag€ out I'. Let y be a circle centered at A, and contained in out I'. Let
e(z) = 1 in a neighborhood of y Uins y and e(z) = 0 in a neighborhood of

I'uinsI. So ¢ €Hol(A) and e(A) = E(Ay). If &k > 1,

I R DAY S v
A,k—zm,fy(z M) N z= A)- dz

_ L _ k=1, -1
= 2m‘fy+re(“(z No) N z-4) az
k-1
= E(X)(4 = Xo)
since a( A) Cins(y + 1) = ins y U ins I'. The proposition now follows.
u

6.13. Corollary. If A, is an isolated point of 6( A) and is a pole of
(z —A)™, then Ao E0,(4).

In fact, the preceding result implies that if n is the order of the pole, then
0) #(Ag—A)" E(A)ZC ker(A — h,).

6.14. Example. A measurable function k: [0, 1] X [0,1]—=C is called a
Volterra kernel if k is bounded and k(x,y) =0 when x <y. If 1 <p <00
and % is a Volterra kernel, define V,:L*(0, 1) = L7(0, 1) by

Vief(x) - folk(x,y)f(y)dy ] foxk(x,y)f(y)dy-

Then V,€ZB(L?) and ||V, | <]kl (VI.2.3).
If k, h are Volterra kernels and

(hk)(x,y) = f;h(x,r)k(r,y)dr,
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then hk is a Volterra kernel, ||hk|| , <)kl |1kl s and Vo = V,V,. Note
that if k(x, y) is the characteristic function of {(x, y)€ [0, 1]x[0,1]:
y<x}, then V, is the Volterra operator (11.1.7).

If 2 is a Volterra kernel, then

o(V,) = {0}.

Indeed, from the preceding paragraph it is known that V! =V, This will
be used to show that the spectral radius of V is 0.

1Al

6.15. Claim. |k"(x,y)ls—(n Y

(x — y)" !for y< x.

This is proved by induction. Clearly it holds for n = 1. Suppose (6.15) is
true for some n=> 1. Then

k"1, p)l =

f:k(x, k"1, y) dt'

sfjk(x,t)nk"(t,yn dt

4118 x .
< Kl [ (=00

L
<

(x —y)".
This establishes the claim.
From (6.15) it follows that

&l
(n =1

VeI < 11k"o <

Therefore
e < ikl (n = 1] 7
Since [(n —1)!]"Y" —> 0asn — oo, r(V,) = 0. ThusO # o(V,) C {A € C:
[A|< O}; that is, a(V}) = {0).
It is possible for ker ¥, to be nontrivial. For example, if k(x,y) =
X©1,2(y) when y< x and O otherwise, then

foxf(y) dy  ifx <3,

Vif (x) = 1/2
fo/f(y)dy if x >3
Soif ly) = 0for0<y< 5,V f = 0.

On the other hand, the Volterra operator V[ = V, for k(x, y) = the
characteristic function of {(x, y): y< x}] has ker V = (0). In fact, if
0 = Vf, then for all x, 0 = [f (»)dy. Differentiating gives that f = 0.
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Is there an analogy between V, for a Volterra kernel 2 and a lower

triangular matrix?

EXERCISES \

L.
2.

10.
1.

Prove Proposition 6.1.

Show that for & a Banach space and A in Z(%), u,(A) = o,(4*). What
happens in a Hilbert space?

.If 5 is a Hilbert space and K is a compact subset of C, show that there is an A

in Z(s#) such that o(A) = K. Can A be found such that o(A) = u,(A) = K?

. Let K be a compact subset of C. Does there exist an operator A in Z(C[0,1)])

such that uw(A) = K?

. If & is a Banach space and A € (X)), show that A is left invertible if and

only if ker4 = (0) and ran A is a closed complemented subspace of & .

. If & is a Banach space and A € (%), show that A is right invertible if and

only if ran A = & and ker4 is a complemented subspace of £.

. If & is a Banach space and T: & = % is an isometry, then either o(T)C oD or

uw(T) = clD.
. Verify the statements made in Example 6.10.

. Let1 <p < oo and suppose 0 < &; < &, --- such that r = limea, < c0. De-
fine A: 1P =17 by A(xy,X%5,...) = (0,1%;, 5%,,...). Show that u(A) = {z
€C:lz|<r} and o,,(A) = do(A). If |]\|<r, then ran(A —A) is closed and
has codimension 1. Also, @,(4) =0.

Verify the statements made in Example 6.14.

Let | < p<oo and let (X, £,) be a u-finite measure space. For ¢ in L*(p),
define M, on L7(p) as in Example II1.2.2. Find 0(M,),0,,(M,), and o,(M,).

12. If A €B(X), f€Hol(4), and A €0,(A4), does f(A) €a,(f(A)? If A€

0,,(A), does £(X) €0,,(f(A4))? Is there a relation between f(a,,( A)) and
0., (f(A)?

If A € B(X) say that a complex number A has finite index if there is a positive
integer k such that ker( A —A)* = ker( A —A)**1; the index of A, denoted by
v(h) or v (A), is the smallest such integer k. (a) Show that if A is an isolated
point of u(A) and a pole of order n of (z — A)~!, then v(X) = n. (b) If
v(X) <0, show that ker(A — A’ = ker( A —A)*™*4 for all k> 0. (c) If

0

1 0

1

F=C" and 4 = , then 6(A4) = {0} and »(0) = n

1 0

14. If V' is the Volterra operator, show that 0 is an essential singularity of

15.

(z ~V) L

Let &/ be a Banach algebra with identity. If a € &, define L,,R, € () by
L,(x) = ax and R,(x) = xa. Show that o(L,)=0(R,) = u(a).
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§7. The Spectral Theory of a Compact Operator

Recall that for a Banach space %, %,(%) is the algebra of all compact
operators. This, Banach algebra has no identity, so if A € %,(%), then
a( A) refers to the spectrum of A as an element of #(Z'). Of course, if
o =RB,(X)+C, then & is a Banach algebra with identity (Why?) and we
could consider o,(A) for 4in #,(Z ). By Theorem 5.4, o(A) Co,( A),
do,(A)C o(A), and u(A) = u,(A) . Below, in Theorem 7.1, it will be
shown that a(A) is a countable set and hence u(A) = do(A) =o(A) .
Thus u(A) = u,(A).

7.1. Theorem. (F. Riesz) If dim Z = cc and A € B(X), then one and only
one of the following possibilities occurs.

(@ o(4) = {0}.

) wAd) = {O,A,,..., A}, where for 1 <k <n,A, # 0, each A\, is an
eigenvulue of A, and dim ker(A —A ;) <oo.

() 6(A)={0, Ay, A,, ... Y,where foreach k =1, A, is an eigenvulue of A,
dim ker( A —A ) <oo, and, moreover, lim A , = 0.

The proof will use several lemmas. The first lemma was given in the case
that & is a Hilbert space in Proposition 11.4.14. The proof is identical and
will not be repeated here.

12. Lemma. IfA € By(%Z),A# 0, and ker(A —A) = (0), then ran(A —
A) is closed.

The proof of the next lemma is like that of Corollary 11.4.15.

13. Lemma. If A €%,(%),A# 0, and A\ € u(A), then either A€o,( A)
or A€ (A%).

74 Lemma. If A <N <X, M+ N, and ¢> 0, then there isay in N
such that ||y||= 1 and dist(y, #)=1—E.

Proor. Let 8(y) = dist( y, A) for every y in A". Now if y, € A, there is
an xqin A such that 8( y,) <|[xg —yll< (1 + €)8( ). Let y, = y, — x,.
Then (1 + &)8(y,) = (1 + e)inf{|ly, —x|l: x € A} = (1 +e)inf{|ly, — x,
—x|:xeH} = (1 +£)8(y) since x,€ 4. Thus (1 + &)8(y,)>|lxo—
ydl =12l Let y = [v2ll 'y So Iyl = 1, y € 47, and if x € A, then

Iy — x| = LIyl ~yp — x|l

all Mz = Ivallxll > [(1+ ) 8(r2)] iy, = yalixl
>(1+e) '>1—e |

If # and 4" are finite dimensional in the preceding lemma, then y can
be chosen in 4" such that ||y|| = 1 and dist( y, .#) = 1 (seec Exercise 1).
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7.5. Lemma. If A€ B,(%X)and {\,} is a sequence of distinct elements in
0,(A), then lim A, = 0.

Proor. For each nlet x, € ker(A — A,) such that x,# 0. It follows that if
M, =V{x, ..,x,}, then dim #,=n (Exercise). Hence A4 ,<.#, | and
M, # M, . By the preceding lemma there is a vector y, in .4, such that
lt = 1 and dist(y,, #,_,)>3. Let y, = ayx; +---+a,x,. Hence

(A =Xy, = ag(A;,=A)x, + - +a,_1(A,_1—\,)x, EA,_,.
So if n > m,
ACATD) = ACAD) = A (A=) 5, = N A= N Y+ Ya ™ Vm
= 2= [P A A A= N0 3 = A (A=A 3]

But the bracketed expression belongs to ., ,. Hence ||A(A,'y,) —
ANy, ) = dist(y,, #,_,)> L. Therefore A(A,'y,) can have no conver-
gent subsequence. But A is a compact operator so that if S is any bounded
subset of &, cl A(S) is compact. Thus it must be that {A;'y,} has no
bounded subsequence. Since |[y,]| = 1 for all n, it must be that ||A, 'y, =
A,|"'—o00. That is, 0 = imA,. ®

Proor o THEOREM 7.1. The first step is to establish the following.
7.6. Claim. If A€ a( A) and A+ 0, then A is an isolated point of a( A).

In fact, if {XA,} < a(A) and A, = A, then each A, belongs to either
op(A) or 6,(A*) (7.3). So either there is a subsequence {)\nk} that is
contained mo,(A4) or there is a subsequence contained in o,(A4*). If
{A, }S0,(A), then Lemma 7.5 implies A, — 0, a contradiction. If {A,, }
C 0,(A*), then the fact that A* is compact gives the same contradiction.
Thus A must be isolated if A= 0.

7.7. Claim. If A € u(A) and A # 0, then A €0,(A4) and dim ker( A —A)
< c0.

By (7.6), A is an isolated point of o( A) so that E(h) can be defined as in
(6.9). Let &, = E(A).% and A, = A|Z,. By Exercise 4.9 [also see (4.11))],
o( A) = {A}. Thus A, is an invertible compact operator. By Exercise
VI1.3.5, dim &, <cc. If n=dim %,, then A, — A is a nilpotent operator on
an n-dimensional space. Thus (A, —A)" = 0. Let » = the positive integer
such that (A, —A)” = 0 but (A, —A)" '# 0. Let x €Z, such that
0+# (A, —X)""'x = y; then (A —X)y = 0. Thus AE€q,(A).

Also, ker(A —A)€ Lat A and Alker(A— A) is compact. But Ax = Ax
for all x in ker( A —A), so dim ker( A — A) <oo0.

Now for the dénouement. If dim Z' = cc and A € #,(%), then A cannot
be invertible (Exercise VI.3.5). Thus 0 €o( A). If A€ u(A) and A # 0,
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then Claim 7.7 says that A € ¢,(4) and dimker(4 — A) < oo. Soif o(A)is
finite, either (a) or (b) of (7.1) hold. If a(A) is infinite, then Claim 7.6
implies that o(A4) is countable. So let a(A4) = {0,A},A,,...}. By Lemma
7.5 and Claim 7.7, (c) holds. ]

Part of the following surfaced in the proof of the theorem.

7.8. Corollary. If A € B,(%) and X\ € o(A) with A # 0, then X is a pole
of (z — A)7}, ker(4 — A\) € E(MZ, and dim E(M)Z < 0.

PrOOF. The only part of this corollary that did not appear in the preceding
proof is the fact that ker(4 — A) € E(A)Z.

Let A = a(A)\{A), %, = E(A)%, A, = A|Z,. By Exercise 4.9, 0(A4,)
= A; so A, — A is invertible on Z,. If x € ker(A4 — A), then x = E(A)x +
E(A)x. Hence 0 = (A — N)x = (4 — A)E(M)x + (4 — N)E(d)x = (4,
—~ME(M)x + (4, — ME(A)x. But %, and %, € Latd, so (4, —
ME(Mx € %, and (4, — N)E(A)x € %y; since 2y N %, = (0), 0 = (A,
—MNE(M)x = (A, — N E(A)x. But A, — A is invertible so E(4)x = 0;
that is, x = E(A)x € Z,. Hence ker(4 — A\) C %, a

If k is a Volterra kernel (6.14), then ¥V, is a compact operator (Exercise
VL3.6) and o(V,) = {0}. So the first possibility of Theorem 7.1 can occur.
If V is the Volterra operator, then o,(V) = .

Let V be the Volterra operatoron L#(0,1),1 <p < o0. If A;,...,A, €C,
le¢ D: C”— C” be defined by D(zy,...,2,)=(N\z,...,A,z,). Then
A=V e®Don L?0,1)®C"” is compact and o(A4) = {0,A,...,A,}. So
the second possibility of (7.1) occurs. If {A,} € € and limA, = 0, then
define D: 1?7 > [P (1 <p < o) by (Dx)}n)=A,x(n). If A=V &Don
L?(0,1) ® [7, A is compact and o(A) = {0, A, A,,...} (see Exercise 3).

The next result has a number of applications in the theory of integral
equations.

7.9. The Fredholm Alternative. If 4 € #B,(%), A€ C, and A # 0, then
ran{ A — M) is closed and dimker(A4 — A) = dimker(4 — A)* < oo.

ProoF. It suffices to assume that A € o(A4). Put 4 = s(A)\ {A}, &), =
EMNZ, Z,=E(QAZ, Ay =A%), and A, = A|%,. Now A € A = a(4,),
so A, — A is invertible. Thus ran(A4, — A) = Z,. Hence ran(4 — A) = (4
- M, + (4 - N)Z, = ran(4, — A) + Z,. Since dim Z, < o0, ran(4 —
A) is closed (I11.4.3).

Also note that

Z/ran(A — \) = (£, + &) /[ran( 4, — A) + 2]
= %,/ran( 4, — \).
Since dim %, < oo, dim[Z/ran(4 — A)] = dim £, — dimran(4, — A) =



222 VIL Banach Algebras and Spectral Theory for Operators on a Banach Space

dim ker(4, —A) = dim ker(4—A)<oo since ker(A—A)C & (7.8). But
[Z/ran(A — A)]* = [ran(4 —A)]* (111.10.2) = ker(4—A)*. Hence
dimker(A — A) = dimker(A4 — A)*. |

7.10. Corollary. If A € B(ZX),NEC, and A+ 0, then for every y in &
there is an x in & such that

7.11 (A —AN)x=y

if and only if the only vector x such that (A —N)x = 0 is x = 0. If this
condition is satisfied, then the solution to (7.11) is unique.

This corollary is a rephrasing of part of the Fredholm Alternative
together with the fact that an operator has dense range if and only if its
adjoint has a trivial kernel.

The applications of the Fredholm Alternative occur by taking the com-
pact operator to be an integral operator.

EXERCISES

1. If A, A" are finite-dimensional subspaces of X and A <A, # + A", then
there is a y in A" such that ||y|| = | and dist(y, #) = 1.

2. Let A € (%) and let A,, , A, be distinct points in g,(A4). If x, € ker(A —
A, Il <k<n, and x, # 0, show that { xi,.. , x,, } is a linearly "independent set.

3. Let %1, %,,... be Banach spaces and put X= @ %,. Let A, € B(Z,) such
that sup,||4,]l <oo and define A: X+X by A{x,}={4,x,}. Show that
A € B(Z) and ||A]|| = sup,||4,]|. Show that A € By (&X) if and only if each
A, € By(%) and Lim|j4, ]| = 0.

4. Suppose A € B(%) and there is a polynomial p such that p(A) € B,( X).
What can be said about a(A)?

5. Suppose A € Z(%) and there is an entire function f such that f(A) € Z,(%).
What can be said about o(A)?

6. With the terminology of Exercise 6.13, if A € By(X),A€ 0(A), and A # 0,
what can be said about the index of A?

§8. Abelian Banach Algebras

Recall that it is assumed that every Banach algebra is over C. Also assume
that all Banach algebras contain an identity.

A division algebra is an algebra such that every nonzero element has a
multiplicative inverse. It may seem incongruous that the first theorem in this
section allows the algebra to be nonabelian. However, the conclusion is that
the algebra is abelian-and much more.
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8.1. The Gelfand—Mazur Theorem. If & is a Banach algebra that is also a
division ring, then &/ =C(={Xl: A€C}).

ProoF. If a €7, then u(a) #0O.If A € u(a), then @ —A has no inverse.
But & is a division ring, so @ —A = 0. That is, ¢ = A. [ ]

As a corollary of the preceding theorem, the algebra of quaternions, H, is
not a Banach algebra. That is, it is impossible to put a norm on H that
makes it into a Banach algebra. Can you show this directly?

82. Proposition. Zf & is an abelian Banach algebra and M is a maximal
ideal, then there is a homomorphism h: & ~>C such that M =ker h.
Conversely, if h: o — C is a nonzero homomorphism, then ker h is a
maximal ideal. Moreover, this correspondence h — ker h between homomor-
phisms and maximal ideals is bijective.

PrOOF. If A is a maximal ideal, then # is closed (2.4b). Hence 22/ A is a
Banach algebra with identity. Let #: .o/~ &/ # be the natural map. If
a €« and w(a) is not invertible in /A, then 7(Ha) = w(a) L/ HA] is
an ideal in /4 that is proper. Let I = {b €L w(b)En(Ha)} =
a~(w(Ha)). Then Iis a proper ideal of & and A C I Since A is
maximal, # = 1. Thus w(af)Cw(I) = m(A) = (0). That is, m(a) = 0.
This says that &/ # is a field. By the Gelfand-Mazur Theorem /% =C
= {A + #:\ € C). Define h: /M — C by h(A + #) = X and define h:
#~>Cbyh=hox Then his a homomorphism and ker A = /.

Conversely, suppose h: & —C is a nonzero homomorphism. Then
ker A = A is a nontrivial ideal and &/ A4 =C. (Why?) So # is maximal.

If h, B are two nonzero homomorphisms and ker & = ker A , then there is
an a in C such that A = ah (A.14). But 1 = (1) = ah’ D) =a,so h =
h . [ ]

8.3. Corollary. If & is an abelian Banach algebra and h: &/ —Cis a
homomorphism, then h is continuous.

Proor. Maximal ideals are closed (2.4b). [ ]

The next result improves the preceding corollary a little. Remember that
by (8.3) if h: &/ -»C is a homomorphism, then kA € .2 * (the Banach space
dual of 7).

84. Proposition. If .« is abelian and h: &/ —C is a homomorphism, then
Al = 1.

PrOOF. By (8.3), h €.7* so that ||h]| <oco. Let a € and put A = h(a).
If |A| > {la||, then|la/A|| < 1. Hence 1 — a/X is invertible. Let b = (I —
a/)\)fl, so 1 =b(1—aX) =b —ba/\. Since k(1) = 1, 1 = h(b —ba/N)
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= h(b) — h(b)h(a)/\ = h(b) — h(b) =0, a contradiction. Hence ||a|| =
IA] = h(a)]; so |Jh)|< 1. Since h() = 1, ||A)] = 1. |

8.5. Definition. If o is an abelian Banach algebra, let 2 = the collection
of all nonzero homomorphisms of & —C. Give 2 the relative weak*
topology that it has as a subset of & *.2 with this topology is called the
maximal ideal space of 2.

8.6. Theorem. zf & is an abelian Banach algebra, then its maximal ideal
space 2 is a compact Hausdorff space. Moreover, if a € «, then u(a) =
2(a)y= {h(a): h € 2}.

Proo¥. Since 2 C ball &7 *, it suffices for the proof of the first part of the
theorem to show that & is weak* closed. Let {h,} be a net in 2 and suppose
h € ball &* such that A, > h weak*. If a, b €., then h(ab) =
lim,h,(ab) =lim h,(a)h,(b) = h(a)h(b). So h is a homomorphism. Since
A = lim;h (1) =1, h €X. Thus 2 is compact.

Ifhe and A = h(a), then a —A € kerh. So a — A is not invertible
and A € u(a); that is, E(a) € u(a). Now assume that A€ ufa); so a —A
is not invertible and, hence, (@ —A)/ is a proper ideal. Let # be a
maximal ideal in & such that (& —A)LCA.If h €2 such that A =
kerh, then 0 = A{a —A) = h(a) — A; hence u(a) C E(a). [ |

Now it is time for an example. Here is one that is a little more than an
example. If X is compact and x €X, let § : C(X) = C be defined by
S,(H) = fix). Tt is easy to see that §, is a homomorphism on the algebra
C(X).

8.7. Theorem. Zf X is compact and X is the maximal ideal space of C(X),
then the map x — 8, is @ homeomorphism of X onto 2.

Proor. Let A: X — 2 be defined by A(x) = §,. As was pointed out before,
A(X) € 2. Tt was shown in Proposition V.6.1 that A: X — (A(X), weak*)
is a homeomorphism. Thus it only remains to show that A(X) = X. If
h €2, then there is a measure p in M(X) such that A(f) = [fdu for all f
in C(X). Also, ||ull=|lAll=1 and p(X)= f1du = h(1) = 1. Hence u=0
(Exercise 111.7.2). Let x € support (). It will be shown that A = §,.

Let £ ={f€ C(X): filx) = 0}. So A is a maximal ideal of C(X).
Note that if it can be shown that ker A C ., then it must be that ker A = &
and so h = 8,. So let f € kerh. Because kerh is an ideal, |f|*> = ff € kerh.
Hence 0 = h(|f|1*) = [If}*du.Since w= 0 and |f)>> 0, it must be that
f=0ae. [p] Since fis continuous, f=0 on support (@). In particular,
flx) = 0 and so fe 4. [ ]

It follows from the preceding theorem that the maximal ideals of C(X)
are all of the form {f € C(X): fix) = 0} for some x in X.
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8.8. Definition. Let ./ be an abelian Banach algebra with maximal ideal
space 2. If a € .o/, then the Gelfand transform of a is the function a:
3 — C defined by a(h) = h(a).

8.9. Theorem. If & is an abelian Banach algebra with maximal ideal space
= and a € o, then the Gelfand transform of a, &, belongs to C(2). The map
a— a of o into C(Z) is a continuous homomorphism of « into C(Z) of
norm 1 and its kernel is

N{A: M is a maximal ideal of & }.
Moreover, for each a in o,

lall,g = lim fla/".
PROOF. If h, — h in =, then h, > h weak* in &/*. Soif a €&, a(h;) =
h(a)— h(a) = a(h). Thus a E C(2).

Define y: &/ — C(2) by y(a)=a.1f a,b € o/, then y(ab)(h) = ab(h)
= h(ab) = h(a)h(b) = a(h)b(h). Therefore y(ab) = y(a)y(b). It is easy
to see that v is linear, so y is a homomorphism. Also, by (8.4), if a € &,
la(h)| = |h(a)| < llall; thus [¥(a)|l,, = 1all,, < Jlall. So v is continuous
and ||y|| < 1. Since y(1) = 1, Iy}l = L.

Note that a € kervy if and only if @ = 0; that is, a € kery if and only if
h(a) = 0 for each h in Z. Thus a € ker vy if and only if a belongs to every
maximal ideal of /.

Finally, by Theorem 8.6, if a € &, then ||a||,, = sup{|A|: A € o(a)}. The
last part of this theorem is thus a consequence of this observation and
Proposition 3.8. [

The homomorphism a — a of & into C(2) is called the Geifand trans-
form of /. The kernel of the Gelfand transform is called the radical of
«,rad . So

rad o = N{ A : # is a maximal ideal of .« }.

If X is compact and X, the maximal ideal space of C(X), is identified
with X as in Theorem 8.7, then the Gelfand transform C(X) — C(2)
becomes the identity map.

If o7 is an abelian algebra, say that a in &/ is a generator of & if { p(a):
p is a polynomial} is dense in 7.

Recall that if 7: X — Y is a homeomorphism, then A: C(Y) —» C(X)
defined by Af = fer is an isometric isomorphism (VI.2.1). Denote the
relationship between 4 and 7 by 4 = 7.

8.10. Proposition. If ¢ is an abelian Banach algebra with identity and a is a
generator of o, then there is a homeomorphism 1. £ — o(a) such that if v:
& — C(Z) is the Gelfand transform and p is a polynomial, then y( p(a)) =
(p).
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Proor. Define 7: £ = o(a) by r(h) = h(a). By Theorem 8.6 7 is surjec-
tive. It is casy to see that 7 is continuous. To see that T is injective. suppose
t(h;)=7(h,), so h,(a) = h,(a). Hence h(a")=h,(a”") for all n= 0. By
linearity, 4 ,(p (@) =k ,(p (@) for every polynomial p. Since a is a genera-
tor for &« and h, and k, are continuous on &, h, = h,, and 7 is injective.
Since X is compact, 7 is a homeomorphism.

The remainder of the proposition follows from the fact that y and 7* are
homomorphisms. Hence y(p(a))(h)=p(v(a))(h)=p(a)h)=p(a(h))=
p(7(h)) = 7*(p)(h).

8.11. Corollary. If o has two generators, a, and a,, then 6(a,) and 6(a,)
are homeomorphic.

The converse to (8.11) is not true. If &/=C[—1,1], then f(x) = «x
defines a generator f for 7. If g(x) = x2, then u(g) = g({—1,1)) =[0,1).
So a(f) and a(g) are homeomorphic. However, g is not a generator for .

In fact, the Banach algebra generated by g consists of the even functions in
C[-1,1).

8.12. Example. If ¥: L%(0, 1) - L*(0, 1) is the Volterra operator and & is
the closure in Z( L*(0, 1)) of { p(V): p is a polynomial in z}, then &/ is an
abelian Banach algebra and rad &= cl{ p(V): p is a polynomial in z and
p(0)=0j. In other words, & has a unique maximal ideal, rad . In fact, if
B = B(L*0,1)), Theorem 5.4 implies that do,(V)C og(V)C g (V).
Since og4(V) = {0} (6.14), 0,(V)={0}. The statement above now follows
by Proposition 8.10.

8.13. Example. Let « be the closure in C( D) of the polynomials in z. If
2 is the maximal ideal space of 7, then 2 is homeomorphic to ¢,(z).
(Here z is the function whose value at A in dD is X.) Now o,(z)=cl D as
was shown in Example 5.1. If f € o7, then the Maximum Modulus Theorem
shows that f has a continuous extension to clD that is analytic in D [see
(5.1)). Also denote this extension by f. The proof of (8.10) shows that the
continuous homomorphisms on & are of the form f — f(A) for some A in
CID.

In the next section the Banach algebra L'(G) is examined for a locally
compact abelian group and its maximal ideals are characterized.

EXERCISES

1. Let ## be a Banach algebra with identity and let J be the smallest closed
two-sided ideal of o containing { xy — yx: X, y € #}. J is called the commu-
tutor ideal of . (a) Show that =#/J is an abelian Banach algebra. (b) If 7 is a
closed ideal of  such that &#/I is abelian, then 71D J.(c) If h: o/ > Cis a
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10.

11.
12.

homomorphism, then JCker £ and A induces a homomorphism iz:.://J—-»C
such that fom = h, where 7%/ — d/I is the natural map. Hence ||iz|| = 1. (d)
Let ¥ be the set of homomorphisms of & — C and let 3 be the set of
homomorphisms of &/J. Show that the map h—F defined in (c) is a
homeomorphism of X onto 3.

. Using the terminology of Exercises 2.6 and 2.7, let % be an abelian Banach

algebra without identity and show that if 4 is a maximal modular ideal, then
there is a homomorphism A: %/ — C such that # = ker h. Conversely, if A:
&/ — C is a nonzero homomorphism, then ker /4 is a maximal modular ideal.
Moreover, the correspondence h+—> kerh is a bijection between homomor-
phisms and maximal modular ideals.

. If & is an abelian Banach algebra and h: %/ —C is a homomorphism, then A

is continuous and |A||< L. If &/ has an approximate identity {e,} such that
jle,li< 1 for all i, then ||A|| = | (see Exercise 2.8).

. Let & be an abelian Banach algebra and let X be the set of nonzero

homomorphisms of & — C. Show that X is locally compact if it has the relative
weak* topology from &/* (Exercise 3).

. With the notation of Exercise 4, assume that &/ has no identity and let 7, be

the algebra obtained by adjoining an identity. For a in &7, let 0(a) be the
spectrum of « as an element of «; and show that 6(a) = {h(a): h € 2} U {0}.
Also, show that the maximal ideal space of %, X, is the one-point compactifi-
cation of X.

. With the notation of Exercise 4, for each a in & define a: 3 — C by

B(h) = h(u). Show that a € Cy(Z) and the map a = a of & into Cy(2) is a
contractive homomorphism with kernel = N{ A: A is a maximal modular ideal
of &}

. If X is locally compact, show that x =68, is a homeomorphism of X onto the

maximal ideal space of C,(X).

. Let X be locally compact and for each open subset U of X let C(U)={f€

C,(X): f(x) = 0 for x in X\ U}. Show that Cy(U) is a closed ideal of C,(X)
and that every closed ideal of C,(X) has this form. Moreover, the map
U~ Cy(U) is a lattice isomorphism from the lattice of open subsets of X onto
the lattice of ideals of C,(X).

. With the notation of the preceding exercise, show that Cy(U) is a modular ideal

if and only if X\ U is compact.

If &7 is an abelian Banach algebra and a € &7, say that a is a rational generator
of & if (f(u): f is a rational function with poles off o(u)} is dense in .
Show that if a is a rational generator of &, then X is homeomorphic to a( a).

Verify the statements made in Example 8.12.

Say that a,, . , a, are generators of & if & is the smallest Banach algebra
with identity that contains {a,.,a,}. Show that a, .,a, are generators of
& if and only if &= cl{ p(a,...,a,): p is a polynomial in n complex
variables z,.,z,}, and if ¥ is the maximal ideal space, then there is a
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homeomorphism 7 of X onto a compact subset K of C” such that if p is a
polynomial in n variables, then y(p(ay,.,a,))=7%( p).

13. Verify the statements made in Example 8.13.

14. (Zelazko [1968).) Let & be a Banach algebra and suppose ¢:/— C is a linear
functional such that ¢(a?) = &(a)? for all a in /. Show that ¢ is a
homomorphism.

15. Let & be an abelian Banach algebra with identity that is semisimple [that is,
rad &= (0)]. If || - |} is the norm on & and ||-||; is another norm on & that
also makes & into a Banach algebra, then these two norms are equivalent.
(Hint: use the Closed Graph Theorem to show that the identity map i:
&) — (&, |-l is continuous.)

16. Let & be as in Example 8.13 and let K = {¢ € L *:¢(1) =||$]| = 1). Show
that ext K = {8,:]z|= 1). (See (V.7).)

17. Show that f(x) = exp( nix) is a generator of C([0,1]) but g(x) = exp(2mix) is
not.

§9*. The Group Algebra of a Locally Compact
Abelian Group

If G is a locally compact abelian group and m is Haar measure on G, then
L (G) = L (m) is a Banach algebra (Example 1.11), where for f, g in L (G)
the product £ * g is the convolution of f and g:

f*g(x) =f(;f(xy")g(y)dy-

Note that dy is used to designate integration with respect to m rather than
dm( Y). Because G is abelian, L (G) is abelian. In fact, g * f(x) =
fg(xy ™ Hf(y)dy. If y~!x is substituted for y in this integral, the value of
the integral does not change because Haar measure is translation invariant.
Hence & * fiw) = J&NS(y™"%)dy = (V) f(xy~ Y dy = f+ g(x).

Let e denote the identity of G. If G is discrete, then 8,€ LY(G j and §, is
an identity for LY(G). If G is not discrete, then L (G) does not have an
identity (Exercise 1).

Some examples of nondiscrete locally compact abelian groups are R” and
T", where T = the unit circle dD in € with the usual multiplication. Note
that T* is also a compact abelian group while R® fails to be locally
compact. The Cantor set can be identified with the product of a countable
number of copies of Z, and is thus a compact abelian group. Indeed, the
product of a countable number of finite sets (with the discrete topology) is
homeomorphic to the Cantor set, so that the Cantor set has infinitely many
nonisomorphic group structures.
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For a topological group G, L (G) is called the group algebra for G. If G
is discrete, the algebraists talk of the group algebra over a field K as the set
of all f=2X,ca,8, where a,€ K and a,# 0 for at most a finite number
of gin G. If K = C, this is the set of functions f: G — C with finite
support. Thus in the discrete case the group algebra of the algebraists can be
identified with a dense manifold in L (G) = /YG).

Unlike §V.11,if f: G »C and x € G, define f: G = C by f.(y) =
f(yx~1; s0 f(y)= f(x"'y) for G abelian. We want to examine the
function x = f, of G > L?(G),1< p <co. To do this we first prove the
following (see Exercise V.11.10).

9.1. Proposition. If G is a topological group and f: G — Cis a continuous
function with compact support, then for any &> 0 there is a neighborhood U of
e such that If(x) — f(y)|<e whenever x 'yeU.

Proor. Let # be the collection of open neighborhoods U of e such that
U =U"" Note that if ¥V is any neighborhood of e, then U=V NV e
and U CV. Order % by reverse inclusion.

Suppose the result is false. Then there is an &> 0 such that for every U in
U there are pomts Xy, ¥, in G with x5y, in U and |f(x,)— f(yy)l=e.
Note that either x, or y, € K = support f. Since U =U"! we may
assume that x, € K for everyU in %. Now {x,;UE %} is a net in K.
Since K is compact, there is a point x in K such that x,, > x. But
xy'yy — e. Since multiplication is continuous, y, = x,(x5'y) 5> x.
Therefore if W is any neighborhood of x, there is a U in # with
Xy Yy € W. But fis continuous at x so W can be chosen such that
If(x) — f(w)|<e/2 whenever w € W. With this choice of W,|f(x,)—
f(yu)i<e, a contradiction. [ ]

One can rephrase (9.1) by saying that continuous functions on a topologi-
cal group that have compact support are uniformly continuous.

In the next result it is the case p = 1 which is of principal interest for us
at this time. The proof of the general theorem is, however, no more difficult
than this special case.

9.2. Proposition. If G is a locally compact group, 1 <p <ooc,and f €
L?(G), then the map x — f, is a continuous function from G into L?(G).

Proor. Fix fin L?(G),x in G, and &> 0; it must be shown that there is a
neighborhood ¥ of x such that for y in V,[|f, — f.ll, <e. First note that
there is a continuous function ¢: G — € having compact support such that
||f—¢||p<s/3. Let K = spt ¢. Note that because Haar measure is transla-
tion invariant, for any y in G, |If,—¢ll, = If —¢ll,<e/3. Now by
Proposition 9.1, there is a neighborhood U of e such that [¢(y) — d(w)]
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<1e[2m(K)) V7 whenever y 'weU. Put V = Ux. If y €V, then

19, = oullh = f1o(2v™1) = ¢(ax 1 dz.

But y = ux for some uin U, so (zy™ ') Nzx ") = yx '=ueU. Thus

lo, = ol = [ 16(2r ") —o(ax N d:

UKx

£

(g)p[zm(K)]“lm(Kyqu)

(5]

Therefore if y €V, If = fll, <Ife = &dl, + 16— S, + g, — Sl <e.
]

IA

The aim of this section is to discuss the homomorphisms on L (G) when
G is abelian and to examine the Gelfand transform. There is a bit of a
difficulty here since L (G) does not have an identity when G is not discrete.
If 8, is the unit point mass at e, then §, is the identity for M(G) and hence
acts as an identity for L (G). Nevertheless 8,€ L (G) if G is not discrete.
All is not lost as L (G) has an approximate identity (Exercise 2.8) of a nice

type.

9.3. Proposition. Iff€ L (G) and £> 0, then there is a neighborhood U of
e such that if g is a non-negatiue Borel function on G that vanishes off U and
has fg(x)dx =1, then |f~ " gl <e

Proor. By the preceding proposition, there is a neighborhood U of e such
that ||f — f |l <e whenever y€ U. If g satisfies the conditions, then
fv) -f * 8(x) = J1f(x) — f(xy~)g(») dy for all x. Thus,

I/~ f gl = /’fu[f(x) —f(x )] s(y)dy|dx
< [ 80 Y =1 (o iy

= [ 8N = flldy
U

< e&. [ ]

9.4. Corollary. Thereis a net {e;} of non-negative functions in L (G) such
that [e,dm =1 for all i and |le;* f — fil, = O for all f in L G).

Proor. Let % be the collection of all neighborhoods of e and order % by

reverse inclusion. Let % ={U:i € I} where ¢ <jif and only if Uj cU.

For each i in Z put e,= m(U)) " 'x,, 50 ;>0 and fe,dm = 1. Iff L(G)
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and > 0, let U, be as in the preceding proposition. So if j >1i, e, satisfies
the conditions on g in (9.3) and hence ||f —f * e, <e. ]

9.5. Corollary. Zf h: L (G) —C is a nonzero homomorphism, then h is
bounded and ||h|| = L

Proor. The fact that h is bounded and ||k||< Iis Exercise 8.3. In light of
the preceding corollary if A(f) # 0, k() = lim h(f*e) = h( f)lim h(e,).
Hence h(e;)— 1. Since |le;]| = 1 for all 4, ||h||=1. ]

Even though Haar measure on most of the popular examples is u-finite,
this is not true in general. For example, if D is an uncountable discrete
group, the Haar measure on D is counting measure and, hence, not u-finite.
Similarly, Haar measure on D xR is not u-finite. Nevertheless, it is true
that L (G)* = L (G) for any locally compact group because (G, m) is an
example of a decomposable measure space. This fact will be assumed here.
The interested reader can consult Hewitt and Ross [1963].

9.6. Theorem. Zf G is a locally compact abelian group and y: G ->Tisa
continuous homomorphism, define f (y) by

9.7 f(y) = ff(X)Y(X’l) dx

for every f in LY(G). Then f = f(y) is a nonzero homomorphism on L (G).
Conversely, if h: L (G) —Cis a nonzero homomorphism, there is a continu-
ous homomorphism y: G — T such that hf) = f(v).

Proor. First note that if y: G —= T is a homomorphism, y(xy)=v(x)y(y)
and y(x ') = y(x)"! = y(x), the complex conjugate of y(x). If f,g€
LY(G), then

Fee(v)= [(f *))V(x7) g
= [v(x) [1(xv7")8(») dydx
= [8(»)¥(y" [ff (o ) v((or 1)I)GIXJ dy

But the invariance of the Haar integral gives that [f(xy HDy((xy 1) ') dx
= [f(x)y(x ') dx. Hence

T80 = [80) v f1 V() ag dv= F()8(1)

So f— fly) is a homomorphism. Since ¥y is continuous and y(G) €T,
Y€ L (@) and {ly||, = 1. Thus f~> f(y) is not identically zero.

Now assume that i: L (G) — C is a nonzero homomorphism. Since h is
a bounded linear functional, there is a ¢ in L {G) such that A( f) =
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Jf(x)é(x)dx and ||9ll,, = |Ih]l = 1. If f, g € LY(G), then h(f* g) =
JOF * @)(x)b(x) dx = fg(f(xp~Do(x) dx]dy = [g(»)h(f,) dy. [Note
that y = h(f,) is continuous scalar-valued function by Proposition 9.2.]

But h(f * &) = h(/Ih(g) = fg(Mh(/HS(») dy. So

0= [g(W[A(£) = h(f)s(y)] v

for every gin L'(G). But Y = h(f,)— h(H)+(Y) belongs to L (G), so for
any f in L (G),

9.8 h(f,) = h(f)e(y)

for almost all Y in G. Pick f in LY(G) such that h(f) # 0. By (9.8),
o(y)=h(f,)/h(f) ae. But the right-hand side of this equation is continu-
ous. Hence we may assume that ¢ is a continuous function. Thus for every f
in L (G), (9.8) holds everywhere.

In (9.8), replace Y by xy and we obtain A(f)o(xy) = h(f,,)="h((f,),)
Now replace f in (9.8) by f, to get A(f)d(y) =h(f,,). Thus A(f)d(xy)
= h(f)9(¥) = [h(N)e()e(y). If h(f) # 0, this implies ¢(xy) =
¢(x)p(y) for all x, Y in G. Thus ¢: G - € is a homomorphism and
|[¢(x)]< 1 for all x. But 1 = ¢(e) = ¢(x)p(x 1) = d(x)Pp(x) ' and
[6(x)|,1o(x) < 1. Hence |¢p(x)| = 1 for all x in G. If y(x) = ¢(x 1),
then y: G =» T is a continuous homomorphism and A = f(y) for all f
in L(G). =n

Let £ be the set of nonzero homomorphisms on L (G), where G is
assumed to be abelian (both here and throughout the rest of the chapter). So
3 c ball LN(G)*. If b €ball LN(G)* and {h,} is a net in 3 such that
h, — h weak*, then it is easy to see that A is multiplicative. Thus the weak*
closure of 2 C X U {0}. Hence the relative weak* topology on 2 makes X
into a locally compact Hausdorff space (see Exercise 8.4).

Let I' = all the continuous homomorphisms y: G — T. By Theorem 9.6,
2 and I' can be identified using formula (9.7). In fact, the map defined in
(9.7) is the Gelfand transform when this identification is made. (Just look at
the definitions.) Since 2 and I' are identified and £ has a topology, I' can
be given a topology. Thus I' becomes a locally compact space with this
topology. (For another description of the topology, see Exercise 6.) The
functions in I" are called characters and are sometimes denoted by I = G
and called the dual group.

Also notice that in a natural way I is a group. If v,,v, €T, then
(172 Xx) = (%) v2(X) and N2 €T

9.9. Proposition. I' is a locally compact abelian group.
Clearly I' is an abelian group and we know that I' is a locally compact

space. It must be shown that I' is a topological group. To do this we first
prove a lemma.
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9.10. Lemma.

(a) The map (x, Y)—> y(x) of G X I' > T is continuous.
(b) If {v,}isanetinI and v, = v in I, then v,(x) = y(x) uniformly for x
belonging to any compact subset of G.

Proor. First note that if x € G and f€ L (G), then for every yin T,

£y = [LOv( )y
= [1x v dy

[1G)v(zx e
v(x ) f(v).

So if y,>yin T and x, > x in G,
(v v (%) = F)Y = 1 () = fr (D)
< (V) = fr (0 + U () = ()

But If-1(v) = s <Ifi1 = Sl = 0 by (9.2). Because fo1€
L\G), f; 1(Y,)—*f «(¥) since ¥~ 7v- Thus f(¥)v.(x; )= f()¥(x). If 7
is chosen so that f(y) # 0, then because f( v,) — f(y) there is an i, such
that f(y,-)# 0 for i > i, Therefore y,(x;,)— y(x) and (a) is proven.

Now let K be a compact subset of G and let { v;} be a net in I' such that
Y, Yo Suppose {y,(x)} does not converge uniformly on K tO y,(x). Then
there is an £> O such that for every i, there is a j,>i and an x; in K such
that 1Y, (x;) = Yo(x;)| = €. Now {y; } is a net and y; =y, (Exercise). Since
K is compact, there is an x; in K such that x,—> x,. Now part (a)
implies that the map (x,v)= (v(x),Y(x)) of G X I"into T x T is con-
tinuous. Since (X Yj,) - (X0 Y) in G x I, (Yj‘(xi), Yo(x)) ¢l
(Yo(X0)s Yo(X4))- So for any iy, there is an i > iy such that |y, (x;) = Yo(Xo)
<e&/2 and [Yo(%;) = Yo(X)| < €/2. Hence |y, (x;) = Yo(x;)| <& a con-
tradiction. ®

Proor or Proposition 9.9. Let { v,},{A,} be nets in I" such that vy, -y
and A,— A. It must be shown that yA;7'—yA™". Let ¢ € C,(G) and put

= spt¢ Then S(YATY) = [xd(x)v,(x DA, (x)dx. By the preceding
lemma Y,(x > y(x™") and A, (x)> X(x) uniformly for x in K. Thus
é(yik',_l)—éé(y}fl). IffEL (G and ¢> 0, let € C,_(G) such that
If — &Il <&/3. Then

AT = FOAT < 2+ b(vATY) = S(aA ).

It follows that f(y,A71) = f(YA™!) for every fin L (G). Hence yA;' —
yA~lin I [ ]
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Since I' is a locally compact abelian group, it too has a dual group. Let I
be this dual group, If x € G, define p(x): ' =>T by p(x)(y) = yx). It is
easy to see that p is a homomorphism. It is a rather deep fact, entitled the
Pontryagin Duality Theorem, that p: G > is a homeomorphism and an
isomorphism. That is, G is” the dual group of its dual group. The
interested reader may consult Rudin [1962). We turn now to some examples.

9.11. Theorem. Ify €R, then y,(x) = €' defines a character on R and
every character on R has this form. The map y =Y, is a homeomorphism and
an isomorphism of R onto R.Ify €R and f € L'(R), then

9.12 F) =7 = [7 f(x)e > ax,

the Fourier transform off.

Proor . If y €R, then [y, (x)] = 1 for all x and y,(x; + x;) =

Y (X1)7,(X2)- So ¥, €ER. Also, V), +,,(X) = ¥,,(X)7,,(X). Hence Y7, is a
homomorphism of R into R.

Now let 76@.7(0) = 1 so that there is a 8> 0 such that [Jy(x) dx = a
# 0. Thus

av(x) = v(x) [ ¥(1) ds
= f:y(x +t)dt

_ fx+6Y todt

X

Hence y(x) = a’lx’”‘sy(t) dt. Because y is continuous, the Fundamental

Theorem of Calculus implies that y is differentiable. Also,

e hh)—y(x) =y(x)[l(%:—l}-

So y (x) = v(0)y(x). Since y(0) = 1 and |y(x)] = 1 for all x, the clemen-
tary theory of differential equations implies that y = Yy for some y in R.
This implies that y~>vy, is an isomorphism of R onto R.

It is clear from (9.7) that (9.12) holds. From here it is easy to see that
y =7, is a homeomorphism of R onto R. L]

So the preceding result says that R is its own dual group. Because of
(9.12), the function f as defined in (9.7) is called the Fourier transform of f.
The next result lends more weight to the use of this terminology.

9.13. Theorem. Ifn €Z, define y,: T—>T by y,(z) = z". Then yngfl'
and the map n — v, is a homeomorphism and an isomorphism of Z onto T.If
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n€Zand f € LX(T), then
9.14 F4) = F(n) = 3 [TH(e)e 0 do.

Proovr. It is left to the reader to check that v, et and n—vy, is an
injective homomorphism of Z into T. Ify eT, define a:R—>T by
a(t) = y(e'); it follows that o €R. By (9.11), o(1) = e’ for some y in R.
But o(t+27) = u(t), so e>"™” = 1. Hence y = n€Z. Thus y(e'?) = a(6)
=e¢" y=y_, and n—vy, is an isomorphism of Z onto T. Formula (9.14)
is immediate from (9.7). The fact that n—v, is a homeomorphism is left as

an exercise. a
So T =2, a discrete group. This can be generalized.

9.15. Theorem. If Gis compact, G is discrete; if G is discrete, G is compact.

Proor. Put I'=G. If G is discrete, then L (G) has an identity. Hence its
maximal ideal space is compact. That is, I' is compact.

Now assume that G is compact. Hence I' € L (G) since m(G) =
Suppose yE€TI and y# the identity for I, then there is a point x, in G
such that y(x,)+# 1. Thus

ly(x) dx = /y(xxo_lxo) dx
= Y(xo)/y(xxo_l)dx
= 1(x0) [(x) dx.

since Haar measure is translation invariant. Since y(xy)# 1, this implies
that

fG y(x) dx

Of course if y=1, [ldx=m(@) = 1. Soif f = 1 on G, f € L{(G) and
fly) = [y(x YHdx = X (1;(v)- Since f is continuous on I, {1} is an
open set. By translation, every singleton set in I' is open and hence I is
discrete. B

0 ify+ 1

9.16. Theorem. If a €T, definey,:Z—>T by y,(n) = a . Then yagi
and the map a — v, is a homeomorphism and an isomorphism of T onto Z.If
acTandfe L (B) =Z (k), then

0.17 f) =f(a) = % f(n)a.

n=-o0
Proor. Again the proof that @ — y,is a monomorphism of T-2Z is left to
the reader. If yeZ,let y(1)=a €T. Also, yn) = yY(I)"=a , so y=17,.
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Hence a =y, is an isomorphism. It is easy to show that this map is
continuous and hence, by compactness, a homeomorphism. a

For additional reading, consult Rudin [1962].

EXERCISES

1.
2.

10.

11.

Prove that if L'{G) has an identity, then G is discrete.

If f e L”(G), show that x — f, is a continuous function from G into
(L*(G), wk*).

. Is there a measure g on R different from Lebesgue measure such that for f in

L'(p),x— f_is continuous? Is there a measure for which this map is discon-
tinuous?

. If fe C(G), show that x— f, is a continuous map from G — C,(G).

If f€L®(G) and f is uniformly continuous on G, show that x> f, is a

continuous function from G — L (G). Is the converse true?

. If K is a compact subset of G, Y, €I, and £> 0, let U( K, vy, E) = {y€I"

|y(x)—v,(x)|<e for all x in K}. Show that the collection of all such sets is a
base for the topology of I'. (This says that the topology on I' is the compact-open
topology.)

. Show that there is a discontinuous homomorphism y: R—>T.If yy R—>T isa

homomorphism that is a Borel function, show that y is continuous.

. If G is a compact abelian group, show that the linear span of I' is dense in

C(G).

. If G is a compact abelian group, show that I' forms an orthonormal basis in

L2(G).

If G is a compact abelian group, show that G is metrizable if and only if I is
countable.

Let { G, } be a family of compact abelian groups and G = II G, . If I, = G.»
show that the character group of G is {{v,}€IIl I, v, =e except for at most
a finite number of a}.



CHAPTER VIII
C *-Algebras

A C*-algebra is a particular type of Banach algebra that is intimately
connected with the theory of operators on a Hilbert space. If # is a Hilbert
space, then Z( ) is an example of a C*-algebra. Moreover, if & is any
C*-algebra, then it is isomorphic to a subalgebra of Z(5#¢) (see Section 3).
Some of the general theory developed in this chapter will be used in the next
chapter to prove the Spectral Theorem, which reveals the structure of
normal operators.

A more thorough treatment of C*-algebras is available in Arveson [1976]
or Sakai [1971].

§1. Elementary Properties and Examples

If o/ is a Banach algebra, an inuolution is a map a — a* of & into & such
that the following properties hold for a and b in & and & in C:

1) (@9* = a
(i) (ab)* = b*a™;
(iii) (aa + b)* = ada* + b *.

Note that if &/ has involution and an identity, then 1*-a=(1*-a)**
= (a*-1)* = (a*)* = a; similarly, a - 1* = a. Since the identity is unique,
1* = 1. Also, for any a in C,a* = @.

1.1. Definition. A C*-algebra is a Banach algebra ./ with an involution
such that for every a in &,

lla*all = llall®.
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1.2. Example. If 5 is a Hilbert space, & =% () is a C*-algebra where
for each A in #(5¢), A* = the adjoint of A. (See Proposition 11.2.7.)

1.3, Example. If 5 is a Hilbert space, # () is a C*-subalgebra of
H(), though #,(H) does not have an identity.

1.4. Example. If X is a compact space, C(X) is a C*-algebra where
f*(x) = f(x) for f in C(X) and x in X,

1.5. Example. If (X, £,n) is a u-finite measure space, L*(X,82,n)is a
C*-algebra where the involution is defined as in (1.4).

1.6. Example. If X is locally compact but not compact, Co(X) is a
C*-algebra without identity.

1.7. Proposition. If &/ is a C*-algebra and a € o, then \|a*|| = ||a||.
Proor. Note that ||a||? = ||la*al| <||a*|i|jall; so |lali<|la*||. Since a = a**,

substituting a* for a in this inequality gives |la*|| <] all. ]

1.8. Proposition. If &7 is a C *-algebra and a € &, then

llall = sup{llax||: x € o, ||Ix|| < 1}

sup{||xall: x € &, ||x|| < 1}.

Proor. Let a =sup{|lax|:x €&,||x]|<1}. Then |lax||<]|al|]|x|] for any

x in #; hence a <|(lall. If x = a*/|a||, then {|x]| = 1 by the preceding
proposition. For this x, |lax||=]||a||, so a =]al|. The proof of the other
equality is similar. ]

This last proposition has an alternate formulation that is useful. If
a €, define L, /> by L,(x) = ax. By (1.8),L, € #() and
L = llal}. If p: & — #() is defined by p(a) = L,, then p is a
homomorphism and an isometry. That is, & is isometrically isomorphic to
a subalgebra of #(). The map p is called the left regular representation
of .

The left regular representation can be used to discuss the process of
adjoining an identity to &7. Since & is isomorphic to a subalgebra Z (/)
and Z(&7) has an identity, why not just look at the subalgebra of #(</)

generated by &7 and the identity operator? Why not, indeed. This is just
what is done below.

1.9. Proposition. If & is a C *-algebra, then there is a C *-algebra £, with
an identity such that £, contains & as an ideal. If & does not have an
identity, then S,/ is one dimensional. If € is a C*-algebra with identity,
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and v:f =€ is a *-homomorphism, then v: %/ — €, defined by v ,(a+
a) = via) + afor ain & and ain C, is a *-homomorphism.

Proor. It may be assumed that &/ does not have an identity. Let =/, = {a
+aa€f,a€C} (a+ ais just a formal sum). Define multiplication
and addition in the obvious way. Let (a + a)* = a* + @ and define the
norm on &, by

lla + af| = sup{flax + ax||: x €., ||x|| < 1}.

Clearly, this is a norm on 7. It must be shown that ||y*y| = ||y||*> for
every y in ;.

Fix a in o and a in C. If ¢ > 0, then there is an x in & such that
x|l = 1 and

la+ all* —e<llax + ax||* = ||(x*a* + ax*)(ax + ax)||

= Ix*(a + a)*(a + a)x||<|(a + a)*(a + a)|.
Thus |ja + a)*<||(a + @)*(a + a)||.

It is left to the reader to prove that the norm on .%/; makes &; a Banach
algebra. For the other inequality, note that |[(a + a)*(a+ &)} <|j(a +
a)*||lja + «f|. So the proof will be complete if it can be shown that
[(a + a)*|| <|la+ af|. Now if x, y €% and ||x|,|[yl|< 1, then |y(a +
a)*x|| = [lya*x + ayx| = Ilx*ay* + ax*y*|| = [x*(a + a)y*|<|la + al.
Taking the supremum over all such x, y gives the desired inequality.

It remains to prove the statement concerning the *-homomorphism v.
Note that being a *-homomorphism means, besides being an algebra
homomorphism, that v(a*) = w(u)*. The details are left to the reader.

[ ]

If o is a C*-algebra with identity and a € &7, then a(u), the spectrum
of a, is well defined. If &7 does not have an identity, o(a) is defined as the

spectrum of a as an element of the C*-algebra %, obtained in Proposition
L.9.

1.10. Definition. If &7 is a C*-algebra and a € &, then (a) a is hermitian
if a=a* (b) ais normal if a*a = aa*; (c¢) a is unitary if a*a=aa* =1
(this only makes sense if %/ has an identity).

1.11. Proposition. Let & be a C*-algebra and let a € .

(a) If a is invertible, then a* is invertible and (a*)™' = (a~")*.

(b) a = x + iy where x and y are hermitian elements of .

(¢) If u is a unitary element of S, |lu||=1.

(d) Zj # is a C*-algebra and p: - X is a *-homomorphism, then
le(a)ll < Hal|.

(e) If a=a¥*, then |a|| = r(a).
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Proor. The proofs of (a), (b), and (c) are left as exercises.

(¢) Since a* = a, ||a?|| = |la*al| = ||al|*; by induction, ||a*"|| = |la||*" for
n> 1. That is, |a®"|'/*" = ||a|| for n> 1. Hence r(u) = lim|la®"||'/*" =
lall.

(d) A * -homomorphism p: %~ % is an algebra homomorphism such
that p(u)* = p(a*) for all a in /. If &/ has an identity, it is not assumed
that p(1) = the identity of %#. However, it is easy to see that p(1) is the
identity for ¢l p(&). If & does not have an identity, then p can be
extended to a *-homomorphism p;: ;= %, such that p,(I) = 1 (1.9).
Thus it suffices to prove the proposition under the additional assumption
that & and # have identities and p(1) = 1.

If x € &, then it follows that o( p(x)) € a(x) (Verify!) and hence
r( p(x)) < r(x). So, using part (¢) and the fact that a*a is hermitian,
llo(a)l? = lle(a*a)ll = r(p(a*a)) < r(a*a) = lla*all = al®. =

1.12.  Proposition. If & is a C*-algebra and h: &£ — C is a homomorphism,
then

(a) W(u) €R whenever a = a*;

(b) h(a™) = h(u) for all a in ,

(¢) h(a*a)= 0 for all a in «;

(@) if 1 € and u is unitary, then |h(u)| = 1.

Proor. If & has no identity, extend 4 to &7, by letting h(1) = 1. Thus, we
may assume that &/ has an identity. By Exercise VIL8.1, ||A|| = I. If
a = a* and tER,

|h(a + it)> <la + it)? = [(a + it)*(a + it)]

(a—it)(a + i)

lla? + ¢ < ||al|* + ¢2

If i(u) = a + if, a, Bin R, then this yields
llall* + 2= ]a + i(B+1)?
=a’+(B + 1)2
=a®+ B2+ 2Bt + 1%

hence |a||?=a®+ B + 2Bt for all ¢ in R. If B+ 0, then letting ¢ — + o0,
depending on the sign of B, gives a contradiction. Therefore 8 = 0 or
h(u) € R. This proves (a).

Let a = x + iy, where x and y are hermitian. Since h(x), h(y) €ER by
(@) and a* = x — iy, (b) follows. Also, h(a*a) = h(a*)h(a) = |h(a)|*= 0,
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so (¢) holds. Finally, if u is unitary, |h(u)|® = h(u*)h(u) = h(u*u) = h(l)
= 1. ]

Note that part (b) of the preceding proposition implies that any homo-
morphism A & > Cisa *-homomorphism. This, coupled with (VIL8.6),
gives the following corollary.

1.13.  Corollary. If & is an abelian C*-algebra and a is a hermitian element
of #, then u(a) C R.

This corollary is short-lived as the conclusion remains valid even if & is
not abelian.

1.14. Proposition. Let &/ and % be C*-algebras with identities such that
HCRBIf a €A, then 9,( a) = ag(a).

Proor. First assume that a is hermitian and let ¥ = C*(a), the C *-algebra
generated by a and 1. So € is abelian. By Corollary 1.13 o,(a) CR. By
Theorem VIIL.5.4, g,(a)< u(a) = dog(a)Co,(a); soa,( a) = a,(a)C
R. By similar reasoning, og(a) = 04( a), and hence 0,( a) = ag4( a).

Now let a be arbitrary. It suffices to show that if a is invertible in %, a is
invertible in 7. So suppose there is a b in & such that ab = ba = 1. Thus,
(a*a)(bb*) = (bb*)(a*a) = 1. Since a*a is hermitian, the first part of the
proof implies a*a is invertible in &7/, But inverses are unique, so bb* =
(a*a) e /. Hence b = b(b*a*) = (bb*)a* € . [ ]

This result must, of course, be contrasted with Theorem VII.5.4.

EXERCISES

L. Verify the statements made in Examples 1.2 through 1.6.

2. Let &= {f€C(cID): f is analytic in D} and for f in &/ define f* by
t*(z) = f(Z). Show that %/ is a Banach algebra, f * €&/ when f €., and
IIf* = 1Ifll, but &7 is not a C*-algebra.

3.If {#:i€ 7] is a collection of C*-algebras, show that @ . and @ ./ are
C*-algebras.

4. Let X be a locally compact space and let & be a C*-algebra. If C,( X, &) = the
collection of bounded continuous functions from X — &7, show that C,( X, &) is
a C*-algebra. Let Cy( X, &) = all of the continuous functions f:X — ./ such
that for every > 0, {x € X: ||f(x3| £ s compact. Show that Gy( X, #)isa
C*-algebra.
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§2. Abelian C *-Algebras and the Functional Calculus
in C *-Algebras

The next theorem is the basic result of this section. It will be used to develop
a functional calculus for normal elements that extends the Riesz Functional
Calculus.

2.1. Theorem. Zf & is an abelian C*-algebra with identity and 2 is its
maximal ideal space, then the Gelfand transform y:— C(E) is an
isometric *-isomorphism of &7 onto C(2).

Proor. By Theorem VIL8.9, [|%|| < ||x|| for every x in . But ||X||,, is the
spectral radius of x, so by (1.11e), [|x||=||%||, for every hermitian element
x of &. In particular, ||x*x|| =|x*x|, for every x in .
AIfa €/ and h € 2, then ii*(h) = h(a*) = h(a) = ii(h). That is,
a * = 4. Equivalently, y( a*) = y(a)* since the involution on C(Z) is de-
fined by complex conjugation. Thus, y is a * -homomorphism. Also, llall? =

lla*all = lla*all, = 114, = lall%; therefore |jal| = [|4l|,, and v is an
isometry.

Because vy is an isometry, it has closed range. To show that v is surjective,
therefore, it suffices to show that it has dense range. This is accomplished by
applying the Stone-Weierstrass Theorem. Note that 1= 1, so Y(H)is a
subalgebra of C(Z) containing the constants. Because y preserves the
involution, y(%) is closed under complex conjugation. It remains to show
that y( %) separates the points of 2. But if h, and h, are distinct
homomorphisms in Z, they are distinct because there is an a in &/ such
that h,(a) # h(a). Hence a(h))#a(h,). L]

By combining the preceding theorem with Proposition 1.9 and Exercise
VIL.8.6, the following is obtained.

2.2. Corollary. Zf & is an abelian C*-algebra without identity and X is its
maximal ideal space, then the Gelfand transform v: s — Cy(2) is an
isometric * -isomorphism of % onto Cy(X).

In order to focus our attention on the key concepts and not be distracted
by peripheral considerations, we now make the following.

Assumption. Al C*-algebras that are considered have an identity.

Let & be an arbitrary C*-algebra and let a be a normal element of £. So
if &= C*(a), the C*-algebra generated by a (and 1), % is abelian. Hence
& = C(Z), where £ is the maximal ideal space of %. So by Theorem 2.1 if
f € C(Z), there is a unique element x of & such that £ = £ We want to
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think of x as f(a) and thus define a functional calculus for normal elements
of a C*-algebra. To be useful, however, we should have a ready way of
identifying 2. Morcover, since = C*(a) and thus depends on a, it should
be that 2 depends on a in a clear way. The idea embodied in Proposition
VIL.8.10 that £ and o(a) are homeomorphic via a natural map is the key
here, although (VIL.8.10) is not directly applicable here since a is not a
generator of C*(u) as a Banach algebra but only as a C*-algebra. [If
a=a*, then a is a generator of C*(a) as a Banach algebra.] Nevertheless
the result is true.

2.3. Proposition. If & is an abelian C*-algebra with maximal ideal space 2
and a € such thar = C*(u), then the map 7.2 — u(a) defined by
r(h) = h(u) is a homeomorphism. If p( z, Z) is a polynomial in z and z and
y: A - C(2) is the Gelfand transform, then y(p(a,a*))=por.

The proof of this result follows, with a few variations, along the lines of
the proof of Proposition VII.8.10 and is left to the reader.

If 7. ¥ —>a(a) is defined as in the preceding proposition, then 1%:
C(o(a)) — C(Z) is defined by 7¥#( f) = f o 7. Note that r* is a * -isomor-
phism and an isometry, because 7 is a homeomorphism. Note that /=
C*(u) is the closure of { p(a,a*):p(z,Zz) is a polynomial in z and 7 }.
Now such a polynomial p(z,Z) is, of course, a function on a(u). [Just
evaluate the polynomial at any z in u(u).] The last part of (2.3) says that
y(p(a,a*)) = v*(p). We define a map p: C(o(a))— C*(u) so that the
following diagram commutes:

C*a) —— C(3)

24 AN P
C(o(a))

Note that if # is any C*-algebra and a is a normal element of £, then
&= C*(u) is an abelian C*-algebra contained in & and so (2.4) applies.
Moreover, in light of Proposition 1.4, the spectrum of a does not depend on
whether a is considered as an element of &7 or #. The following definition
is, therefore, unambiguous.

2.5. Definition. If & is a C*-algebra with identity and a is a normal
element of 4, let p: C(o( a)) » C*(u) €& be as in (2.4). If f eC(o( a)),
define

fla)=o(f)
The map f — f(a@) of C(a(a))—> % is called the functional calculus for a.
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Note that if p(z,z) is a polynomial in z and Zz, then p( p(z,2)) =
p(a, a*). In particular, p(z"z™) = a"a*" so that p(z) = a and p(Z) = a*.
Also, p(1) = 1.

The properties of this functional calculus can be obtained from the fact
that p is an isometric *-isomorphism of C( o( a)) into #—with one excep-
tion. How does this functional calculus compare with the Riesz Functional

Calculus? If f € Hol( a), flo(a) € C( a( a)); so f(a) has two possible inter-
pretations. Or does it?

2.6. Theorem. If & is a C*-algebra and a is a normal element of &, then
the functional calculus has the following properties.

(a) f— fla) is a * -monomorphism.
®) If (Dl = M-

(¢ ) f fta) is an extension of the Riesz Functional Calculus.

Moreover, the functional calculus is unique in the sense that if 7. C( a( a))
— C*a) is a * -homomorphism that extends the Riesz Functional Calculus,
then 7(f) = fla) for every f in C(o(a)).

Proor. Let p: C(o( a)) = C*(a) be the map defined by p(f) = fla). From
(2.4), (a) and (b) are immediate.

Let 7:Hol(a) » &/ C % denote the map defined by the Riesz Functional
Calculus. Since p(z) = m(z) = a, an algebraic manipulation gives that
o( f)=aP for every rational function f with poles off a( a). If f € Hol(a),
then by Runge § Theorem there is a sequence {f,} of such rational
functions such that f,(z) = fliz) uniformly in a neighborhood of u(a).
Thus 7(£,) = 7(f). By (0),p(f,) = p(f). Thus p(f) = 7(f).

To prove uniqueness, let 7:C(o(a))—> % be a *-homomorphism that
extends the Riesz Functional Calculus. If f &€ C(a(a)), then there is a
sequence { p,} of polynomials in z and Z such that p,(z z)— f(z)
uniformly on u(a). But 7( p,) = p,(a, a¥, 7( p,) = 7(f), and p,(a, a*) —
f(w). Hence 7(f)= f(a). ]

Because of the uniqueness statement in the preceding theorem, it is not
necessary to remember the form of the functional calculus f+— fla), but
only the fact that it is an isometric * -monomorphism that extends the Riesz
Functional Calculus. Indeed, by the uniqueness of the Riesz Functional
Calculus, it suffices to have that f= f@)is an isometric * -monomorphism
such that if f(z) = 1, then fiu) = 1, and if fiz) = z, then flw) = a. Any
properties or applications of the functional calculus can be derived or
justified using only these properties. There may, however, be an occasion
when the precise form of the functional calculus [viz., (2.4)] facilitates a
proof. There are also situations in which the definition of the functional
calculus gets in the way of a proof and the properties in (2.6) give the clean
way of applying this powerful tool.
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2.7. Spectral Mapping Theorem. If & is a C*algebra and a is a normal
element of s, then for every fin C(a(a)),

o(f(a))=r(a(a)).

Proor Let p:C(a(a))— C*(a) be defined by p(f) = fla). So p is a

*-isomorphism. Hence a(f(a))=0a(p(f)) = u@. But u(f) = f(a(a))
(VII.3.2). 1

Once again (1.14) was used implicitly in the preceding proof.

EXERCISES

1. Prove a converse to Proposition 2.3. If K is a compact subset of C, C(K) is a
singly generated C*-algebra.

2. If & is an abelian C*-algebra with a finite number of C*-generators a,, ., a,,
then there is a compact subset X of C” and an isometric *-isomorphism p:
& — C(X) such that p(ay) =2z, 1 <k <n, where z,(A,...,A,)=A, (see
Exercise VIL8.12).

3. A Stonean space is a compact space X such that the closure of every open subset
of X is open. (a) Show that the Cantor set is a Stonean space. (b) Show that a
compact space X is a Stonean space if and only if each connected subset of X is
a singleton set. (¢) Show that X is a Stonean space if and only if C(X) is the
closed linear span of its projections (= hermitian idempotents).

4. Using the terminology of Exercise 3, show that if (X, £, ) is a u-finite measure
space, the maximal ideal space of L* (X, £, p) is a Stonean space.

5.If & is a C*-algebra with identity and a = a*, show that exp( ia)=u is unitary.
Is the converse true?

6. Let X be compact and fix a point x5 in X. Let &/={{f,}: f, € C(X),
sup,||f.ll<oo, and { f, (x,)} is a convergent sequence}. Show that &/ is an
abelian C*-algebra with identity and find its maximal ideal space.

7. If X is completely regular, then C,(X) is a C*-algebra and its maximal ideal
space is the Stone-Cech compactification of X.

§3. The Positive Elements in a C*-Algebra

This section is an application of the functional calculus developed in the
preceding section. The results here are very useful in the study of operators
on a Hilbert space and they demonstrate the power of the functional
calculus.

If &7 is a C*-algebra, let Reo/ denote the hermitian elements of .
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3.1. Definition. If & is a C*-algebra and a € &, then a is positive if
a€Rew and g(a)C [0, o0). If a is positive, this is denoted by a = 0. Let
7, be the set of all positive elements of 7.

3.2. Example. If &= C(X), then f is positive in & if and only if
f(x) = 0 for all x in X.

33. Example. If &=L%(p) and fE€L®(n), then f=> 0 if and only if
f(x) = 0 ae.[u}

34. Proposition. zf a € Resd, then there are unique positive elements u,v
in & such that a=u —Vv and uv = vu = 0.

Proor. Let fit) = max(t, 0), g(t) =—min(z, 0). Then £, g € C(W) and
f(t) — gt) = t. Using the functional calculus, let u =f(w) and v = g(a).
So u and v are hermitian and by the Spectral Mapping Theorem u,v = (.
Also, u— v = fla) —gla) = a and uv = vu = (gf)(a) = 0 since fg= 0.

To show uniqueness, let u;, v; €%, such that u; —v; =a and uv; =
viu; =0. Let { p,j be a sequence of polynomials such that p,(0) = 0 for all
n and p,(t) = fit) uniformly on u(a). Hence p,(uw) —u in &. But
u,a = auy. So uyp,(a)= p,(a)u; for all n; hence wuyu = uu,. Similarly, it
follows that a, u,v, u;, and v, are pairwise commuting hermitian elements
of /. Let # = the C*-algebra genecrated by a, u, v, 4y, and v; so Z is
abelian. Hence #= C(Z) where X is the maximal ideal space of . The
uniqueness now follows from the uniqueness statement for C(Z) (Exercise
1. u

The next result follows in a similar way.

3.5. Proposition. Zfa €, and n 2 1, there is a unique element b in S,
such that a = b .

The decomposition a = u—v of a hermitian element @ is Sometimes
called the orthogonal decomposition of a. The elements u# and v are called
the positive and negative parts of a and are denoted by u=a+andv=a _.
Note that a_= 0.

If e € &7, then the unique b obtained in (3.5) is called the nth root of a
and is denoted by b = a’/™ Note that if bis not assumed to be positive, it
is not necessarily unique (see Exercise 5).

If X is compact and f€ C(X)+, then notice that If(x) — ¢ <t for
every real number ¢ >||f||. Conversely, if Ifix) —¢|<t for some ¢ =|lf],
then fix) > O for all x and so f= 0. These observations are behind some
of the statements in the next result.

3.6. Theorem. Zf & is a C*-algebra and a € &, then the following state-
ments are equivalent.

(a) a = 0.
(b) a = b? for some b in Res.
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(¢) a = x*x for some x in A.
(d) a=a* and ||t —al| <t forallt > ||a].
(e) a =a* and ||t — a|| <t for some t > |a||.

PROOF. It is clear that (b) implies (c) and (d) implies (e). By (3.5), (a) implies
(b).

(e) = (a): Since a = a*, C*(a) is abelian. If X = 0(ad), X € R and
f = f(a)is a *-isomorphism of C(X) onto C *(a). Using this isomorphism
and (e), |t — x{ <t for some ¢ > ||a}]] = sup{|s|: s € X} and all x in X.
From the discussions preceding this theorem (with f(x) = x), x > 0 for all
x in X. Thatis, X = a(a) € [0, o). Hence a > 0.

(a) = (d): This proof follows the lines of the preceding paragraph and is
left to the reader.

() = (a): If a = x*x for some x in ./, then it is clear that ¢ = a*. Let
a=u — v, where u,v > 0 and uwv = vu = 0. It must be shown that v = 0.

If xv'/? = b + ic, where b,c € Res/, then (xv'/?)*(xv"/?) = (b — ic)
(b + ic) = b* + ¢* + i(bc — cb). But also (xv'/?)*(xv*/?) = v/ 2x*xv'/? =
v?(u — v)v*/?* = —v% So the uniqueness of the Cartesian decomposition
implies that b? + ¢ = —v? and bc = ch. Thus %, the C*-algebra gener-
ated by b and c, is abelian. Hence if A € a(b? + ¢?), there is a homomor-
phism h: % — C such that A = h(b? + c2) = h(b)? + h(c)?. Since
h(b), h(¢) € R (1.12), A = 0. Thus b* + ¢ €o/,. But — (b2 + ¢?) = v?
and the same type of argument shows that v € o/,. Thus v? € o, N(—Z,).
By Proposition 3.7 below, v> = 0. Since v >0, v =03.5). =

The next result will be proved only using the equivalence of (a), (d), and
(e) from the preceding theorem.

3.7. Proposition. If o/ is a C*-algebra, then &, is a closed cone.

PROOF. Let {a,} € _«/, and suppose a, — a. Clearly a € Re /. By (3.6d),
lla, = lla,llll < lla,)l. Hence lla — [lall|| < flall so by (3.6¢), a > 0.
Clearly, Aa 20 if a >0 and A > 0. Let a,b € &,; it must be shown
that @ + b > 0. It suffices to assume that ||q||, ||| < 1. But ||1 — 4(a + b)||
=3|l(1 —a)+ (1 — b)|| <1 by (3.6d). So by (3.6e), (a + b) > 0.
Ifa e/ N(—,), then a = a* and o(a) = {0}. But ||a|| = r(a) (1.11e).
|

Now to look at one more example—a very important one,

3.8. Theorem. If ¥ is a Hilbert space and A € B(3X), then A > 0 if and
only if {Ah,h) = 0 forall hin .

ProoF. If A4 = 0, then (3.6c) A = T*T for some T in #(s¢). Hence
(Ah, by = || Th||*> = 0. Conversely, suppose ( Ah, h) > 0 for all h in ). By
(I1.2.12), 4 = A*. It remains to show that o(4) C [0, ). If h € 5 and
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A< 0, then
11(A = A)A||? = ||[4h||1> = 2X{Ah, k) + N2||h))?
> —2N(Ah, h) + N||h||> = N2||h|)?

since A< 0 and (Ah, A)> 0. By (VIL6.4),A & u,,(A). But this implies
that A — A is left invertible (Exercise VIL6.5). Since A —A is self-adjoint,
A — X is also right invertible. Thus A € a(A) and A > 0. ]

3.9. Definition. If &/ is a C*-algebra and a, » €Re s, then a < b if
b—ae,.

This ordering makes a C*-algebra into a partially ordered vector space
(over O).

Note that if A and B are hermitian operators on the Hilbert space 52,
then A < B if and only if (Ah, h) <{Bh,h) for all hin .

This section closes with an application of positivity to obtain the polar
decomposition of an operator. If A €C, then A = |A|e”? for some 8; this is
the polar decomposition of A. Can an analogy be found for operators? To
answer this question we might first ask what is the analogy of |A|and e’
among operators. If A € (), then the proper definition for JA | would
seem to be |4]=(A4*4)"/? [see (3.5)]. How about an analogy of e’®? Should
it be a unitary operator? An isometry? For an arbitrary operator neither of
these is correct. The following new class of operators is needed.

3.10. Definition. A partial isometry is an operator W such that for % in
(ker W) *,||Wh||=||h|l. The space (ker W)* is called the initial space of
W and the space ran W is called the final space of W. See Exercises 15-20
for more on partial isometries.

3.11. Polar Decomposition. If A€ B (), then there is a partial isometry W
with (ker A) L as its initial space and cl(ran A) as its final space such that
A = W|A|. Moreover, if A = UP where P >0 and U is a partial isometry
with initial and final spaces (kerA)~* and cl(ran A), respectively, then
P= |A| and U= W.

Proor. If h € J#, then ||4h||> = (Ah, Ah) = (A*Ah, h) = (|A|h,|A|R).
Thus

3.12 NAR(* = T}A|hlI%

Since (ran A*) * = ker A, ran A* is dense in (kerd)*.If f € ran A%, f =
A*g for g in (kerA4*)* = clran A. Therefore, { A*Ak: k € 5} is dense in
clfran A*] = (kerA)*.But A*Ak = |A|* = |A|h, where h = |A|k. That is,
{|A\h: h € '} is dense in (kerA)*.If W:ran|4|— ran A is defined by

3.13 W(A|h) = Ah,
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then (3.12) implies that Wis a well-defined isometry. Thus W extends to an
isometry W: (ker4)* - cl(ran A). If Wh = 0 for / in ker A, W is a partial
isometry. By (3.13) Wi4| = A.

For the uniqueness, note that A*A = PU*UP. Now U *U = E = the
projection onto the initial space of U (Exercise 16),(ker4)*. But ker 4D
ker P, so (kerA)*C(kerP)* = cl(ran P), since P = P*, Hence EP = P.
Thus A*A = PEP = P2 By the uniqueness of the positive square root,
P = |A4]. Since A = Uj4|,U|A|h = Ah = W|A|h. That is, U and W agree
on a dense subset of their common initial space. Hence U = W. ]

EXERCISES

1. Prove the uniqueness statement in Proposition 3.4 for the case that & is
abelian.

2. Prove Proposition 3.5.

3. Let A € B(L*(0, 1)) be defined by (Af)(¢)=tf( ). Show that A > 0 and find
A

4. Let (X, £, p) be a u-finite measure space, let ¢ € L”(X, 2, ), and define M,
as in Theorem 11.15. Show that M, > O if and only if ¢(x)=0 ae. [p]. What
is M;,/ "71f M, €Re# (), find the positive and negative parts of M,.

5. Find an example of a positive operator on a Hilbert space that has a nonhermi-
tian square root.

(2

. If a €Re, show that |a|=(a?)? =a,+ a_.

~J

. Ifa €, , show that x*ax € &/ for every x in .
8 Ifa, hbeZ,0<ax<h and a is invertible, then b is invertible and b~ '<a™ 1.

9. If a, b €ReAd,a< b, and ab = bu, then f(u) < f(b) for every increasing
continuous function f on R.

10. If a €Rew/ and ||a|| < |, show that @ is the sum of two unitaries. (Hint: First
solve this for &= C.)

1. If a> 0, define f:(—a"',o0)=Rby £, () =t/(L + at) = a '[1— (1 +
at)- ']. Show:
(@ If a <bin &, f,(a) < f,(b) for all a > 0,
(b) f,(t)<min{t,a '} for > 0,
(¢) lim, _, f,(¢) =t uniformly on bounded intervals in [0, cc);
(d) if «<B, fo<fp
(e) fa ofﬂ = fa+ﬂ;
(H im, _ ,af,(t)= 1 uniformly on bounded intervals in [0, cc).

12. ifa, b €, and a < b, show that a? <bf for 0 <8< 1. (a® = f(u) where
f(t)=1tP) (Hint: Let f, be as in Exercise 11 and show that [Cf,(¢t)a Pda =

vt? where y> 0. Use the definition of the improper integral and the functional
calculus.)
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13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

Give an example of a C*-algebra &7 and positive elements a, b in & such that
a<bbut b —a’ g ,.

Let o = B(1?), let @ = the unilateral shift on /%, and let b = a* Show that
o(ab) # a(ba).

Let W € () and show that the following statements are equivalent: (a) W is
a partial isometry; (b) W* is a partial isometry; (¢c) W* W is a projection; (d)
WW?* is a projection; (e) WW* W = W;(D) W* WW* = W+,

If W is a partial isometry, show that W* W is the projection onto the initial
space of W and WW# is the projection onto the final space of W.

If Wy, W, are partial isometries, define W, W, to mean that W* W, <W;*W,,
WIW*<W,Wy*, and W, h =W, h whenever h is in the initial space of W|.
Show that < is a partial ordering on the set of partial isometries and that a
partial isometry W is a maximal element in this ordering if and only if either W
or W*is an isometry.

Using the terminology of Exercise 17, show that the extreme points of ball Z(#)
are the maximal partial isometries.

Find the polar decomposition of each of the following operators: (a) M, as
defined in (11.1.5); (b) the unilateral shift; (c¢) the weighted unilateral shift
[A(x], Xy, . -.) =(0, 0%, ,X,,...) for x in /2 and sup,|a,| < cc] with non-
zero weights; (d) A @ a (in terms of the polar decomposition of A).

Let 4 € #(5) such that ker4 = (0) and 4 > 0 and define S on X'=¥® ¥
@--- by S(hy,h,,...)=(0, Ah,, Ak ,,..). Find the polar decomposition of
S, S =W|S], and show that S = |S| W.

Show that the parts of the polar decomposition of a normal operator commute.

If A € Z(5#), show that there is a positive operator P and a partial isometry
W such that A = PW. Discuss the uniqueness of P and W.

If A is normal and a(A) N{re?: r>0and a <0 < B} =0, where0 < B -«
<2, show that the parts of the polar decomposition of A belong to C*(A).

Give an example of a normal operator A such that the partial isometry in the
polar decomposition of A does not belong to C*(A).

§4*. Ideals and Quotients for C*-Algebras

We begin with a basic result.

4.1.

Proposition. Zf Z is a closed left or right ideal in the C*-algebra %/,

a s Zwitha=a* andif f €C(o(a)) with fl0) = 0, then fla) €1.

ProOOF. Note that if Z is proper, then 0 € ufa) since a cannot be invertible.
Since ufa) CR, the Weierstrass Theorem implies there is a sequence {p,}
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f polynomials such that p,(t)— f(t) uniformly for ¢ in a( a). Hence
,(0)— £(0) = 0. Thus ¢,(2) = p,.(t) -p,,(0) - f(t) uniformly on o(a) and
1,(0) = 0 for all n. Thus ¢,(u) €I and by the functional calculus, ||g,(a)
— f(a)|| = 0. Hence f(a)< 1. u

1.2. Corollary. If I is a closed left or right ideal, a € I with a = a*, then
1., a_, |a|, and |a|*? € 1.

Note that if I is a left ideal of ./, then {a*:a &1} is a right ideal.
[herefore a left ideal Z is an ideal if a*& ] whenever a € 1.

1.3. Theorem. If I is a closed ideal in the C *-algebra Z, then a*€ 1
vhenever a € I.

Proor. Fix a in I. Thus a*a €1 since Iis an ideal. The idea is to construct
1 sequence {4, } of continuous functions defined on [0, cc) such that

(i) u(0) = 0 and u,(t) = 0 for all t;

(ii) llau,(a*a)—al|— 0 as n —o0.

4.4

Note that if such a sequence {u,} can be constructed, then u,(a*a)> 0
and u,(a*a)€ 1 by Proposition 4.1. Also, u,(a*a)a* € Z since I is an
ideal and ||lu,(a*a)a*—a*| = ||au,(a*a)—a||—> 0 by (ii). Thus a*& 1l
whenever a € 1. It remains to construct the sequence {u, }.

Note that

llau,(a*a) - a||*
= ||[au,(a*a) — a]*[au,(a*a) — a]||
= |lu,(a*a)a*au,(a*a) — a*au,(a*a) — u,(a*a)a*a + a*a||.

If b = a*a, then the fact that bu,(b) = u,(b)b implies that |lau,(a*a)—
2 = [If,(B) < sup{|£,(D)]: £ 2 0}, where £,(1) = tu, (1) = 2nu, (1) + 1
= t{u,(t)=112 If u,(t)=nt for 0 <t <n~' and u(t)=1 for t=2n"1
then it is seen that sup{ [f,(#)|:7=0}=4/2Tn— 0 as n = o0; 50 (4.4) is
satistied. u

Notice that the construction of the sequence {u,} satisfying (4.4) actually
proves more. It shows that there is a local approximate identity. That is,
the proof of the preceding theorem shows that the following holds.

4,5. Proposition. If & is a C*-algebra and I is an ideal of &, then for every
a in Z there is a sequence {e,} of positive elements in I such that:
(a) e, <ey,<--- andlle,ll< 1 foral n;

(b) jlae, — a|| = 0 as n — co.

In the preceding proposition the sequence {e,} depends on the element
(a}. It is also true that there is a positive increasing net {e, }in/ such that
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lle;a—al|— 0 and |lae,—al| -» O for every a in I (see p. 36 of Arveson
[1976)).
We turn now to an important consequence of Theorem 4.3.

4.6. Theorem. If & is a C*-algebra and I is a closed ideal of #, then for
each a + I in /1 define (a + I)* = a* + I. Then /1 with its quotient
norm is a C *-algebra.

To prove (4.6), a lemma is needed.

4.7. Lemma. If I is an ideal in a C*-algebra & and a € o, then ||la + ||
= inf{lfla—ax|: x €L, x>0, and ||x|| <1}.

Proor. If (balll) = {x €ballI: x> 0}, then clearly |la + I||<inf{|la—
ax]: x €(ball I),} since al C I Let y €1 and let {e,} be a sequence in
(ball I}, such that |[[y— ye,]] = 0 as n >o0. Now 0 <1 —e,< 1, so
(@ + y)A —e,)ll <lla + yll. Hence

la + yl|=liminfl|(a + y)(1—e,)

liminf||(a — ue,) +(y— ye,)|
liminfila — ae,)|]

since |y — ye,ll— 0. Thus |la + y||=inf,|la — ae,|| > inf{||a — ax||: x €
(ball I),}. Taking the infimum over all yin I gives the desired remaining
inequality. W

Proor or TueEOrREM 4.6. The only difficult part of this proof is to show that
lla + I}* = ||a*a + I]| for every a in &.If x €1, then

lla + x> = lI(a + x)™(a 4+ x)|
= |la*a + a*x + x*a+x*x||>inf{|la*a + y||:y €1}
= |la*a + I||

since a*x + x*a + x*x €7 whenever x €1 (4.3). On the other hand, the
preceding lemma gives that

lla + I||* = inf{|la — ax||*: x € (ballT), }

inf{|la(1 — x)||*: x € (ballI), }
inf{||(1- x)a*a(l —x)||: x €(balll), }
inf{|la*a(1 — x)||: x € (ballT), }
inf{lla*a — a*ax||: x € (ball 1)}

IA

= |la*a + 1. ]

If o/, # are C *-algebras with ideals I,J, respectively, and 9: & — % is
a *-homomorphism such that p(Z) CJ, then p induces a * -homomor-
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phism p: /1 — %/J defined by p(a + I)= p(a) + J. In particular, if
I = kerp, then p: /kerp - # is a *-homomorphism and pe7 = p,
where 7: &/ — 2//kerp i1s the natural map. Keep these facts in mind when
reading the proof of the next result.

4.8. Theorem. If o/, # are C *-algebras and p: &/ — & is a *-homomor-
phism, then ||p(a)|| < ||a|| for all a and ranp is closed in B. If p is a
*-monomorphism, then p is an isometry.

PrOOF. The fact that ||p(a)|| < ||a|| is a restatement of (1.11d). Now assume
that p is a *-monomorphism. As in the proof of (1.11d), it suffices to
assume that &/ and # have identities and p(1) = 1. (Why?)

If a €/ and a = a*, then it is easy to see that p(a) = p(a)* and
o(p(a)) C o(a). If a(p(a)) # a(a), there is a continuous function f on
d(a) such that f(¢) = 0 for all ¢ in o(p(a)) but f is not identically zero on
o(a). Thus f(p(a)) =0, but f(a) # 0. Let { p,} be polynomials such that
p,(1) = f(1) uniformly on o(a). Thus p,(a) > f(a) and p,(p(a)) -
f(p(a)) = 0. But p,(p(a)) = p(p,(a)) = p(f(a)). Thus p(f(a)) = f(p(a))
= 0. Since p was assumed injective, f(a)= 0, a contradiction. Hence
o(a) = o(p(a))if a = a*. Thus by (L11e), [lall = r(a) = r(p(a)) = [|p(a)]
if a =a* But then for arbitrary a, |a|®> = |la*a|| = ||p(a*a)|| =
lp(a)*e(a)ll = |lp(a)||* and p is an isometry.

To complete the proof let p: & — # be a *-homomorphism and let p:
H/kerp = # be the induced *-monomorphism. So p is an isometry and
hence ran p is closed. But ran p = ranp. |

We turn now to some specific examples of C *-algebras and their ideals.

4.9. Proposition. If X is compact and I is a closed ideal of C(X), then there
is a closed subset F of X such that I = {f € C(X): f(x) =0 forall x in F}.
Moreover, C(X) /1 is isometrically isomorphic to C(F).

PROOF. Let F = {x € X: f(x)=0for all fin I}, so F is a closed subset
of x. If p€ M(X) and p L I, then [|f|*du =0 for every f in I since
Ifi* = ff € I whenever f € I. Thus each f must vanish on the support of u;
hence |p|( X\ F) = 0. Conversely, if p € M(X) and the support of p is
contained in F, [fdu=0 for every f in I Thus I*+= {p & M(X):
|u|( X\ F) = 0}. Since I isclosed, I =+(I*) = {f€ C(X): f(x)=0 for
all x in F}. The remainder of the proof is left to the reader. ]

4.10. Proposition. If I is a closed ideal of #B(¥), then I D B,(¥) or
I = (0).

PrOOF. Suppose I # (0) and let T be a nonzero operator in I. Thus there
are vectors fy, f; in 5% such that Tf, = f, = 0. Let g,, g, be arbitrary
nonzero vectors in J. Define 4: J#— 5 by letting 4h = ||g,l| ~ Xk, g0 ) fo-
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Then Ag, = f, and Ah = 0 if h 1l g,. Define B: #'— 3 by letting
Bh = ||f\l "% h, f)g:. So Bf, = g, and Bh = 0 if h L f,. Thus BTAh = 0
if h Lg, and BTAg, = g,. Hence for any pair of nonzero vectors g, &; in
J the rank-one operator that takes g, to g; and is zero on [g,]* belongs
to I. From here it easily follows that Z contains all finite-rank operators.
Since Z is closed, Z 2 %,(H#). [ ]

It will be shown in (IX.4.2), after we have the spectral theorem, that if Z is
a closed ideal in #(X) and S is separable, then Z = (0), B, (), or
B(H).

EXERCISES
1. Complete the proof of Proposition 4.9.
2. Show that M, (C) has no nontrivial ideals. Find all of the left ideals.

3. If @ is an infinite cardinal number, let J = {A € #(5¢): dimcl(ranA) <a}.
Show that 7, is a closed ideal in Z(5¢).

4. Let S be the unilateral shift on /2. Show that C*(S) 2 %,({*) and
C*(S)/%,(I*)is abelian. Show that the maximal ideal space of C*(S)/%,(*)
is homeomorphic to JD.

5. If ¥ is the Volterra operator on L?(0,1), show that C*(V) = C + B, (L*0, D).

6. If &7 is a C*-algebra, I is a closed ideal of &, and & is a C*-subalgebra of &,
show that the C*-algebra generated by T U ZisI + &.

7. If & is a C*-algebra and I and J are closed ideals in &, show that / + J is a
closed ideal of 7.

§5*. Representations of C*Algebras and the
Gelfand-Naimark-Segal Construction

5.1. Definition. A representation of a C *-algebra is a pair (7, ), where H#
is a Hilbert space and 7: /> #( ) is a * -homomorphism. If & has an
identity, it is assumed that #(1) = 1. (The algebras considered in this book
are assumed to have an identity. This proviso is given for the reader $
convenience when consulting the literature.) Often 5 is deleted and we say
that o is a representation.

5.2. Example. If 3¢ is a Hilbert space and & is a C*-subalgebra of
B( ), then the inclusion map &= F(H#) is a representation.

5.3. Example. If n is any cardinal number and ¥ is a Hilbert space, let
H# (M denote the direct sum of ¥ with itself n times. If A € #(H#), then
A is the direct sum of A with itself » times; so A € B(H# ™) and
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|4 = ||4|l. The operator A 1s called the inflation of A. If =: o/ —
B(H#) is a representation, the inflation of w is the map 7 ": o/ = B(H# M)
defined by 7#((a) = #(a)'™ for all a in .

5.4. Example. If (X, £, p) is a u-finite measure space and S#= L*(p), then
7 Lo(pn)—> B(H) defined by #(¢) =M, is a representation.

5.5. Example. If X is a compact space and p is a positive Borel measure
on X, then m: C(X) - B(L*(p)) defined by #(f) = M, is a representa-
tion.

5.6. Definition. A representation 7 of a C*-algebra % is cyclic if there is a
vector ¢ in J¢ such that cl[7 (7 )e] = 5 e is said to be a cyclic vector for
the representation .

Note that the representations in Examples 5.4 and 5.5 are cyclic (Ex-
ercises 2 and 3). Also, the identity representation ir () —> B(IF) is
cyclic and every nonzero vector is a cyclic vector for this representation. If
& =C+ B,(57), then the identity representation is cyclic. On the other
hand, if n > 2, then the inflation 7® of a representation of C(X) is never
cyclic (Exercise 4).

There is another way to obtain representations.

5.7. Definition. If{(m, 5;):i<€l} is a family of representations of .,
then the direct sum of this family is the representation (=, ¢), where
H=® 5 and w(a) = {r(a)} for every a in &.

Note that since ||m(a)l <|la|| for every i (4.8),7(a) is a bounded
operator on . It is easy to check that # is a representation.

5.8. Example. Let X be a compact space and let {u,} be a sequence of
measures on X. For each nlet m,: C(X) — #(L*(u,)) be defined by
7,(f)= M, on L*(p,). Then 7 = @ 7, is a representation. If the measures
{u,} are pairwise mutually singular, then # is equivalent (below) to the
representation f — M, of C(X) — B(L*(n)), where p =X 1, /2"l
(Exercise 5).

The concept of equivalence for representations is that of unitary equiv-
alence. That is, two representations of a C*-algebra &, (w, ;) and
(m,, ), are equivalent if there is an isomorphism U: ¥ — 5, such that
Um (a)U '=m,(a) for every a in &/. The importance of cyclic representa-
tions arises from the fact, given in the next result, that every representation
is equivalent to the direct sum of cyclic representations.

5.9. Theorem. If 7 is a representation of the C*-algebra </, then there is a
family of cyclic representations {m } of & such that m and ®,m are
equivalent.
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Proor. Let &= the collection of all subsets E of nonzero vectors in ¢
such that w(Z)e La(Z)f for e, f in E with ¢ # f. Order & by inclusion.

An application of Zorn 8 Lemma implies that & has a maximal element E,.
Let 3 = ®{cl[n(H)e]: ¢ €E,}. If h€ #6 X, then 0 = (7(a)e, h)
for every ain & and e in E. So if a, b € and ¢ €L, 0 =

(m(b*a)e, h) = (w(b)*m(a)e, h) = (w(a)e,n(b)h). That is, m(H)e L
w(Z)h for all ¢ in E,. Hence E, U {h} € 6, contradicting the maximality
of E,. Therefore 5= J,.

For ¢ in E, let 5, = cl[7(H)el. If a € #, clearly 7(a)i¥, C .. Since
a*€ o and w(a)* = w(a*), ¥, reduces w(a). So if w,: A > B() is
defined by 7.(a)=w(a)l#,, 7, is a representation of a. Clearly 7 =@ {m,:
e <€ E,}. n

In light of the preceding theorem, it becomes important to understand
cyclic representations. To do this, let 7: &/ = B( ) be a cyclic representa-
tion with cyclic vector e. Define f:.«/ — C by {(a) = (w(a)e, ¢). Note that
f is a bounded linear functional on &/ with ||f]|<[le||%. Since f(1) = |e]?
I£l = llel]>. Moreover, f(a*a) = {m(a*a)e, ¢) = (m(a)*m(a)e, ¢) =
ll7(a)el>= 0.

5.10. Definition. If & is a C*-algebra, a linear functional f:.&/ —C is
positive if f(a) = 0 whenever a € &7,. A state on & is a positive linear
functional on & of norm 1.

5.11. Proposition. Zf f is a positive linear functional on a C *-algebra
then

F(y*x)i* < f(y*y) f(x*x)
for every x, y in .

Proor. If [x, yl =f (y*) for x, y in &, then [-,-] is a semi-inner product
on . The proposition now follows by the CBS inequality (1.1.4). ]

5.12. Corollary. Zf f is a positive linear functional on the C *-algebra <, then
[ is bounded and ||f|} = f(1).

5.13. Example. If X is a compact space, then the positive linear functionals
on C(X) correspond to the positive measures on X. The states correspond
to the probability measures on X.

As was shown above, each cyclic representation gives rise to a positive
linear functional. It turns out that each positive linear functional gives rise
to a cyclic representation.
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5.14. Gelfand-Naimark-Segal Construction. Let % be a C*-algebra with
identity.

(a) If f is a positive linear functional on &, then there is a cyclic representa-
tion (m;, H;) of & with cyclic vector e such that fla) = (m/(a)e, e for
all a in .

(b)) If (a, ) is a cyclic representation of & with cyclic vector e and
f(a) =(m(a)e,e) and if (m;, H}}s constructed as in (a), then 7 and m;
are equivalent.

Before beginning the proof, it will be helpful if the theorem is examined
when & is abelian. So let & = C(X) where X is compact. If fis a positive
lincar functional on &, then there is a positive measure p on X such that
f(¢) = [¢dp for all ¢ in &. The representation (=, ;) is the one
obtained by letting 5 = Lz(u) and 7, (¢) = M, but let us look a little
closer. One way to obtaln L*(p) from C(X) and p is to let L={¢ € CX):
J|#|*> dp = O). Note that & is an ideal in C(X). Define an inner product on
X))/ Loyl{d+ZL,y+F)= [oydu. The completion of C( X)/&¥ with
respect to this inner product is L*(p).

To see part (b) in the abelian case, let 71 C(X) = Z(5¢) be a cyclic
representation with cyclic vector e. Let u be the positive measure on X such
that fodu = (7 (d)e,e) = f(¢). Now define U;: C(X) — 3¢ by U(¢) =
m(¢)e. Note that U; is linecar and has dense range. If &£ is as in the
preceding paragraph and ¢ €.%, then ||Uj(¢)|*> = (w(¢)e, n(P)e) =
(m(¢*)e, ©) = [|o|*dp = 0. So U L= 0. Thus U, induces a linear map
U: C(X)/L—> H# where Uo + L) =a(d)e. If {(p + L, ¢ + &)=
Jo¥ dp, then (U(é + L1UW + L)) = (m(d)e, m(¥)e) = {m(¢y*)e, e)
= foydu= (o + L,y + L) Thus U extends to an isomorphism U from
the completion of /%= L*(u) onto . So U: L*(u)—>H# and if
¢ C(X) and we think of C(X) as a (dense) subset of Lz(u), U =m(d)e.
If ¢,y € C(X), then UMy = U(¢y) = m(opy)e = m($)7(¥)e =
7(¢)YU(Y); that is, UM¢_77(¢)U on a dense subset of Lz(u) and, hence,
UM, =7(¢)U for every ¢ in C(X). In other words, 7 is equivalent to the
representation ¢~—>M¢.

Proor or THEOREM 5.14. Let fbe a positive linear functional on & and
put L= {x €&: fix*x) = O}. Tt is easy to seec that £ is closed in .
Also if a € and x €%, then (5.11) implies that

F((ax)*(ax))’ = f(x*(a*ax))’
f(x*x)f(x*a*aa*ax)
= 0,

That is, £ is a closed left ideal in /. Now consider &Z/% as a vector
space. (Since & is only a left ideal, /% is not an algebra.) For x, y in &,

IA
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define
(x +Z,y+2)=f(y*x).

It is left as an exercise for the reader to show that ( -,-) is a well-defined
inner product on &Z/%.Let 5, be the completion of /& with respect to
the norm defined on /% by this inner product.

Because & is a left ideal of &7, x + & ax + &£ is a well-defined linear
transformation on /L. Also, |jax + Z||*> = (ax + &, ax + &) =
f(x*a*ax). Now if ||a*a|| is considered as an element of & (it is a multiple
of the identity), then an appeal to the functional calculus for a*a shows that
lla*al|— a*a= 0. Hence (Exercise 3.7) 0 <x*(|la*al|—a*a)x =|a||>x*x
— x*a*ax; that is, x*a*ax <||a||®>x*x. Therefore ((ax + Z||* <|lal|*f(x*x)
= |lall*|lx + £||%. Thus if 7 (a): /L /L is defined by 7, (a)(x + L)
= ax + 8, m,(a) is a bounded linear operator with ||7,(a)||<||al|. Hence
7.(a) extends to an element of (). It is left to the reader to verify that
7,0/ — JB(H;) is a representation.

Put e = 1 + & in /. Then m(H)e = {a+ZL:a€ A }=/L which,
by definition, is dense in .)t’f Thus e is a cyclic vector for 7. [Also note that
(fnf(a)e, e) = f(a).] This proves (a).

Now let (7, 3¢), e, and f be as in (b) and let (77/,%’/) be the representa-
tion constructed. Let e, be the cyclic vector for , so that f(u) =
{m(a)e, e;) for all a in &/. Hence (m(a)es, e;) = (m(a)e, e) for all a in
&/. Define U on the dense manifold 7,(%/)e, in 5 by Um,(a)e, = m(a)e.
Note that ||m(a)e|l> = {n(a)e, m(a)e) = (m(a*a)e, e) = (M (a*a)e,e;)
= ||77f(a)ef|]2. This implies that U is well defined and an isometry. Thus U
extends to an isomorphism of J; onto . if x, a € &, then Um,(a)m(x)e,
= Um(ax)e; = m(a)m(x)e = m(a)Um(x)e;. Thus w(a)U = Um(a) so
that 7 and 7, are equivalent. ]

The Gelfand-Naimark-Segal construction is often called the GNS con-
struction.

It is not difficult to show that if f is a positive linear functional on ¢ and
a> 0, then the representations 7 and Ty AIC equivalent (Exercise 8). So it
is appropriate to only consider the cyclic representations corresponding to
states. If &7 is a C*-algebra, let S, = the collection of all states on 7. Note
that S, C ball & *. S, is called the state space of .

5.15. Proposition. Zf & is a C*-algebra with identity, then S, is a weak*
compact convex subset of £ *and if a € _, then ||a|| = sup{ f(a):fES,}
and this supremum is attained.

Proor. Since S, C ball & *, to show that S, is weak* compact, it suffices
to show that S, is weak* closed. The reader can supply this proof using
nets. Clearly S,, is convex.
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If &= C(X) with X compact and f€ C(X)+, then there is a point x in
X such that f(x) = |[fll. Thus |fll = [fd6, = sup{ [fdupm€
(ball M(X))+}. If & is arbitrary and a €, then [la||=sup{ f(a):
fE€S,,). Also, from the argument in the abelian case, there is a state f; on
C*(a) such that f,(a) =|la)|. If we can show that f; extends to a state f on
&, the proof is complete. That this can be done is a consequence of the next
result. L]

5.16. Proposition. Let </, % be C *-algebras with ZC /. If f, is a state on
B, then there is a state fon & such that f|% = f.

ProorF. Consider the real linear spaces Res/ and Re#. If a € &/, then
a<|alin & Since 1 € Re #, Re # has an order unit. By Corollary
111.9.12, if f, € S4 there is a positive linear functional f on ResZ such that
fIRe# = f,. Since ¢ €%, £(1) = f;(1) = 1. Now let flw) = f((a+a*)/2)
+ if((a —a*)/2i) for an arbitrary a in . It follows that f €S, and
fB=f. w

The next result says that every C*-algebra is isomorphic to a C*-algebra
contained in Z () for some H. Thus each C*-algebra is an algebra of
operators.

5.17. Theorem. Zf « is a C *-algebra, then there is a representation ( w, )
of & such that = is an isometty. If &/ is separable, then 5 can be chosen
separable.

ProoOF. Let F be a weak™ dense subset of S, and let 7w = GB{wf:fe B,
H=® {s:f <€ F). Thus lla]|? = |7 (a)||?* = supfllvrf(a)||2. If e, is the
cyclic vector for my, then ||ef||2= (e, e;)=(m(l)es,e,) = f(1) = 1. Hence
lm(@I1* = 7 (a)ef” = (ma*a 9y e,) = f(a*a), and |al? = [|l7(a)|?
> sup{ f(a*a):f€ F}. Since Fis weak* dense in S, Proposition 5.15
implies sup{ f(a*a):f <€ F} = ||a*a|| = ||a||>. Hence 7 is an isometry.

If &« is separable, (ball &/*, wk*) is a compact metric space (V.5.1).
Hence S, is weak* separable so that the set F of the preceding paragraph
can be chosen to be countable. Now if f€ F,n(.«)fis a separable dense
submanifold in S, since &/ is separable. Thus % is separable. It follows
that 2 is separable. ]

Actually, more can be said if &/ is separable. In fact, every separable
C*-algebra has a cyclic representation that is isometric (Exercise 12).

EXERCISES

1. Let & be a C*-algebra with identity and let #: .« — 2(5¢) be a *-homomor-
phism [but dont assume that (1) =1]. Let P, = n(1). Show that P, is a
projection and 5 = P, reduces w(&). If m(a)=w(a)|#,, show that =;:
o — B(HH)) is a representation.
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2. Show that the representation in Example 5.4 is a cyclic representation and find
all of the cyclic vectors.

3. Show that the representation in Example 5.5 is a cyclic representation and find
all the cyclic vectors.

4. If X is compact and p is a positive measure on X, let m,: C(X) — &( L*(p)
be the representation defined in Example 5.5. If p,» are positive measures on X
show that @ @, is cyclic if and only if pLw. If plw, then 7, ®m, is

equivalent to 7, ,. Also, 'n‘f") is not cyclic if n> 2,

5. Verify the statements in Example 5.8.

6. If #=C + By(5#) and 7 & > B(H) is the identity representation, show
that ¢ is a cyclic representation.

7. Fix a Banach limit LIM on /*(N) and let 3 be a separable Hilbert space with
an orthonormal basis {e,}. Define f:Z(s#)—C by (T) = LIM{(Te,, e,)}.
Show that f is a state on Z(F). If m; is the corresponding cyclic representa-
tion, show that kern, = %, (). Hence 7, induces a cyclic representation of
B(H)/ By (H) that is isometric. Is H#; separable?

8 If f is a positive linear functional on & and a € (0, ), show that 7, and 7,
are equivalent representations.

9.If a €, then a > 0 if and only if f(a) > O for every state f.
10. If a € & and a # 0, then there is a state f on . such that f(a) # 0.

L1 If f is a state on & and =, is the corresponding representation, then ; is
injective if and only if {x €& f(x*x) =0} = (0).

12. If & is a separable C*-algebra and {f, s a countable weak* dense subset of
Sy, let f=3%,27"f. Show that m, is an isomelry.




CHAPTER IX

Normal Operators on Hilbert Space

In this chapter the Spectral Theorem for normal operators on a Hilbert
space is proved. This theorem is then used to answer a number of questions
concerning normal operators. In fact, the Spectral Theorem can be used to
answer essentially every question about normal operators.

§1. Spectral Measures and Representations
of Abelian C *-Algebras

Before beginning this section the reader should familiarize himself with the
definitions and examples in (VIIL5.1) through (VIILS.8).

In this section we want to focus our attention on representations of
abelian C *-algebras. The reason for this is that the Spectral Theorem and its
generalizations can be obtained as a special case of such a theory. The idea
is the following. Let N be a normal operator on 5#. Then C*(N) is an
abelian C*-algebra and the functional calculus f~ f(N) is a * -iso-
morphism of C(a( N)) onto C*(N) (VIIL.2.6). Thus f— f(N) is a repre-
sentation C( a( N)) — () of the abelian C *-algebra C( a( N)). A diag-
nosis of such representations yields the Spectral Theorem.

A representation p: C(X) —» Z(s¢) is a * -homomorphism with p(1) = 1.
Also, |lp|l=1 (VIIL1.11d). If f€ C(X)+, then f=g? where g € C(X)+;
hence p(f) = p(g)?=p(g)*(g)= 0. Sopis a positive map. One might
expect, by analogy with the Riesz Representation Theorem, that p(f) =
[fdE for some type of measure E whose values are operators rather than
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scalars. This is indeed the case. We begin by introducing these measures and
defining the integral of a scalar-valued function with respect to one of them.

1.1.  Definition. If X is a set, £ is a u-algebra of subsets of X, and 3¢ is a
Hilbert space, a spectral measure for (X, £, 3¢) is a function E: 2 —» ZB(¥)
such that:

(a) for each A in £, E(A) is a projection;

(b) E(O) = 0 and E(X) = 1;

(¢c) E(A, N A,) = E(4,)E(4,) for A, and 4, in £;
(d) if {4,}%., are pairwise disjoint sets from {2, then

E(’QIA,,) _ g:lE(A,,).

A word or two concerning condition (d) in the preceding definition. If
{ E,) is a sequence of pairwise orthogonal projections on 5, then it was
shown in Exercise IL1.3.5 that for each A in 3¢, X7 E (h) converges in #
to E(h), where E is the orthogonal projection of 5 onto V{ E, ()
n >1}. Thus it is legitimate to write E = X2_E,. Now if A, n A, = 0,
then (b) and (c) above imply that 0 = E(A,)E(4,) = E(A,)E(A)); that is,
E( A) and E(A ,) have orthogonal ranges. So if {A, }T is a sequence of
pairwise disjoint sets in £, the ranges of { E(4,)} are pairwise orthogonal.
Thus the equation E(U{A,) = EPE(A,) in (d) has the precise meaning just
discussed.

Another way to discuss this is by the introduction of two topologies that
will also be of value later.

1.2. Definition. If 5 is a Hilbert space, the weak operator topology (WOT)
on #(s¢) is the locally convex topology defined by the seminorms { p, ,:
h,ke€ #} wherep, ((A)= ((Ah, k})|. The strong operator topology (SOT)
is the topology defined on () by the family of seminorms { p,:
hest}, where p,(A4) =|A4h|.

1.3.  Proposition. Let 5 be a Hilbert space and let {A,} be a net in B().

(a) A, > A (WOT) if and only if (Ah, k) — (Ah, k) for all h, k in 5.

(b) If sup,|l4,|| <oo and J is a total subset of H, then A,—> A (WOT) if
and only if (A;h, k) — (Ah, k) for all h, k in T

(¢) A, = A (SOT) if and only if ||A;h— Ah||— O for all h in 7.

(d) If sup,||4,|| < o0 and T is a total subset of ¥, then A, = A (SOT) if
and only if ||A;h— Ah||—> O for all h in T .

(e) If ¥ is separable, then the WOT and SOT are metrizable on bounded
subsets of B(H).
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Proor. The proofs of (a) through (d) are left as exercises. For (e), let {4,}
be any countable total subset of ball . 1If A, BE Z(5¢), let

d(A4,B)= 2 27"(4 - B)h,|,
n=1
d,(4,B)= X 27" "K(A4 = B)h,, h,)|.

m,n=1

Then d, and d,, are metrics on #(5¢). It is left as an exercise to show that
d, and d,, define the SOT and WOT on bounded subscts of (). .

14, Example. Let (X, £, n) be a u-finite measure space. If ¢ € L=(p), let
M, be the multiplication operator on L?*(p). Then a net {¢,} in L¥(p)
converges weak* to ¢ if and only if M,—> M, (WOT). In fact, if f,g€
L* (1) and ¢,— ¢ weak* in L™(n), then (M f.8)= [ f8du— [ofgdu

= (M,f, g) since fg € L'(p). Conversely, if M,— M, (WOT) and [ €
L(.“) then f = g,g, where g1, 8> € L (p). (Wh}’(’) So [¢,fdp =
(M, 81, 820 = (M,81, 82) = [ofdp.

1.5. Example. If {E,} is a sequence of pairwise orthogonal projections on
M, then L E, converges (SOT) to the projection of # onto V{ E, (5#):
n =1}

In light of (1.5), a spectral measure for (X, £2,5¢) could be defined as a
SOT-countably additive projection-valued measure.

1.6. Example. Let X be a compact set. £ = the Borel subsets of X,p=a
measure on £, and = L?(p). For A in @, let E(A) = multiplication by
X 4, the characteristic function of A. Eis a spectral measure for (X, 2, 5#).

1.7. Example. If Eis a spectral measure for (X, 2, 5¢), the inflation, E®™,
of E, defined by EV(A) = E(A)"™, is a spectral measure for (X, 2, ¢ ).

1.8. Example. Let X be any set, £ = all the subsets of X, #= any sep-
arable Hilbert space, and fix a sequence { x,}in X. If {e,, e,,...} is some
orthonormal basis for M, define E(A) = the projection onto V{ e, x,€A}.
E is a spectral measure for (X, 2, 5¢).

The next lemma is useful in studying spectral measures as it allows us to
prove things about spectral measures from known facts about complex-
valued measures.

1.9. Lemma. If E is a spectral measure for (X, £,5¢) and g, h € ¥, then
E_,(A)=(E(d)g, h)

defines a countably additive measure on 8 with total variation <||g||||hll.
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Proor. That p = E, , as defined above, is a countably additive measure is

left for the reader to verify. If A,, ..., A, are pairwise disjoint sets in £, let
aJeC such that la;} = 1 and |(E(Aj)g,h>| = aJ(E(A,)g, h). So
()] = L,aE(A)g h) = (,E(A)a,g, h) <||L,E(4))agllhl.

Now {E(A )a g 1 <j<n)is a f1n1te sequence of pa1rw1se orthogonal

vectors_so that | Z,E(A Dagl® = ZIIE(A gl = 1EU)-14)gll” < ligll*;
hence ¥ |u(4))| < IIgIIIIhII Thus [|ufl < IIgllllhll "

It is possible to use spectral measures to define representations. The next
result is crucial for this purpose. It tells us how to integrate with respect to a
spectral measure.

1.10. Proposition. If E is a spectral measure for (X, 2, ) and ¢: X - C
is a bounded Q-measurable function, then there is a unique operator A in
B(H) such that if €> 0 and {A,, . . ., A,,} is an Q-partition of X with
sup{ [¢p(x)—¢(xN|:x,x’ €A, }<e for ] <k <n, then for any X, in A,,

=Y o(x)E(4,) < .
i k=1 i

Proor. Define B(g, h) = [¢dE, , for g hin . By the preceding lemma it
is easy to see that B is a sesquilmear form with |B(g, h)|<|¢[lgllllAl.
Hence there is a unique operator A such that B(g, ) = (Ag, h) for all g
and h in 52.

Let {4,,...,A,} be an O-partition satisfying the condition in the state-
ment of the proposition. If g and h are arbitrary vectors in 5 and x, € A,
for 1 <k <n, then

k=1

¢(x, )] d(E(x)g. h)

IA

¥ [ 6() = $(xICE()g, )

IA

e[di(E(x)g. k)| < ellglllhll.

The operator A obtained in the preceding proposition is the integral of ¢
with respect to E and is denoted by

f¢dE.

Therefore if g, & € 2 and ¢ is a bounded &?-measurable function on X, the
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preceding proof implies that

111 <([¢dE)g,h> - [sdE,

Let B( X, §2) denote the set of bounded &measurable functions ¢:
X — C and let ||¢]| = sup{|p(x)|: x € X}. Tt is easy to see that B( X, £) is
a Banach algebra with identity. In fact, if ¢*(x)=¢(x), then B( X, 2) is
an abelian C *-algebra. The properties of the integral f¢ JE are summarized
by the following result.

1.12.  Proposition. Zf Eis a spectral measure for (X,$2, #°) and p: B( X,{2)
— B () is defined by p(¢)= [¢ dE,then p is a representation of B( X, ).

Proor. It will only be shown that p is multiplicative; the remainder is an
exercise. Let ¢ and ¢y € C(X). Let £> 0 and choose a Borel partition
{4,,.. ,A,} of X such that sup{|w(x)—w(x)|: x,x € A,} <e for
w=¢,yor ¢y and for 1 <k < n. Hence, if x, €A, (I <k < n),

n

fwdE - Y w(x)E(4,)

< &

for w = ¢, ¢y, or ¢¢. Thus, using the triangle inequality,

o

S PYEAMENEIEN —[ > ¢(xi)E(Ai)][ ¥ () E(4)

. [ ,-Z::1¢(Xi)E(Ai)H Z::I\p(xj)E(Aj)} _(frde)(f\PdE) :

But E(A)E(4;)=E(A,NA) and (4, ,..., A} is a partition. So the
middle term in this sum is zero. Hence

|fovaz = (foar | foue)]

+ [ Zn_: ¢(xi)E(Ai)][Zj:1‘P(xj)E(Aj) _f\PdE

i [Z ¢(x)E(4)) —fqdeH[ xpdE} ca T wewn

Since & was arbitrary, oy dE=( [oy dE) (Y dE). [

113, Corollary. Zf X is a compact Hausdorff space and E is a spectral
measure defined on the Borel subsets of X, then p: C(X) — () defined by
p(w = fudE is a representation of C(X).
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The next result is the main result of this section and it states that the
converse to the preceding corollary holds.

1.14. Theorem. If p: CX) — B( ) is a representation, there is a unique
spectral measure E defined on the Borel subsets of X such that

plu) = fudE

for everyu in C(X).

Proor. The idea of the proof is similar to the idea of the proof of the Riesz
Representation Theorem for linear functionals on C(X). We wish to extend
p to a representation p: BX) — (), where B(X) is the C*-algebra of
bounded Borel functions. The measure E of a Borel set A is then defined by
letting E(A) = p(x4)- In fact, it is possible to give a proof of the theorem
patterned on the proof of the Riesz Representation Theorem. Here, how-
ever, the proof will use the Riesz Representation Theorem to simplify the
technical details.

If g, h €5, then u—>{p(u)g, ) is a linear functional on C(X) with
norm <||g|[[|#]]. Hence there is a unique measure, f, 4, in M(X) such that

1.15 (p(u)g, h) =fudug,h

for all u in C(X). It is easy to verify that the map (g, ) —p,, is
sesquilinear (use uniqueness) and ||, Al <|igllllAl]. Now fix ¢ in B(X) and
define [g, Al = f¢pdp, ,. Then [-, -] is sesquilinear form and |[g,h]|<
llolllglllk]]. Hence there is a unique bounded operator A such that [g, AJ =
(Ag, h) and ||4| <||¢|] (11.2.2). Denote the operator A by p(¢). So p:
B(X) - #(s#) is a well-defined function, ||p(¢)||<]|¢|l, and for all g, A
in ¢,

1.16 (p(d)g, h) =f¢dug,h-

1.17. Claim. p: BX) —» #(s°) is a representation and p|C( X) =p

The fact that p(u) = p(w) whenever u€ C(X) follows immediately from
(1.15) and (1.16). If ¢ € B(X), consider ¢ as an element of M(X)*
(= C(X)**); that is, ¢ corresponds to the linear functional p— ¢ dp. By
Proposition V.4.1, {ue CX): |lul|<|l¢ll}is o(M( X)*, M(X)) dense in
{Le MX)*: ||L||<||¢|l}. Thus there is a net {#;} in C(X) such that
< |||l for all u; and fu,dp— fodu for every p in M(X). If ¥ € B(X),
then yp € M(X) whenever p€ M(X). Hence fuydu— (¢pdp for every
¥ in B(X) and p in M(X). By (1.16) p(u)— p(d¥) (WOT) for all ¥ in
B(X). In particular, if ¥ € C(X), then p(¢¢) = WOT —limp(u,{) =
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WOT —limp(u,;)p(¢) =p(¢)p(¢¥). That is,

pley) = p(d)e(¥)
whenever ¢ € B(X) and ¢ € C(X). Hence p(u,¥) = p(u,)p(¢y) for any ¢
in B(X) and for all u,. Since p(u,) = p($) (WOT) and p(u,$)— p(é¥)
(WOT), this implies that

p(oy) = p(e)p(¥)
whenever ¢,y € B(X).

The proof that p is linear is immediate by (1.16). To see that p(¢)* =
p(¢), let {u;} be the net obtained in the preceding paragraph.
If p€ M(X), let fi be the measure defined by ®(4)= u(A). Then p(u,) —>
p(¢) (WOT) and so p(u,)*— p(¢)* (WOT). But [@,dp = [u,dii~ [6dR
= f¢dp for every measure p. Hence p(#,)— p(e). But p(u,)* = p(i,)
since pis a * -homomorphism. Thus p(¢)* = ﬁ(qb-) and p is a representa-
tion.

For any Borel subset A of X let E(A) =p(x,4). We want to show that E
is a spectral measure. Since X, iS a hermitian idempotent in B(X), E(A) is
a projection by (1.17). Since xg=0and x, =1, E@)=0and EX) = 1.
Also, E(A;NA4y) = p(Xa, na,) = P(Xa,Xa,) = E(A)E(4,). Now let
{4, ) be a pairwise disjoint sequence of Borel sets and put A,=U%?,..A .
It is easy to see that E is finitely additive so if h&€ ¥, then

2
4Umy—zamw
k=1 k=1

= (E(A)h,E(A,)h)

= (E(A,)h, h)
(B(xa,)h.h)

fXA,,dHh,h

Z nu‘h,h(Ak) -0

k=n+1

as n— cc. Therefore E is a spectral measure.

It remains to show that p(u) = fudE. It will be shown that p(¢) = f¢ dE
for every ¢ in B(X). Fix ¢ in B(X) and ¢> 0. If {A,, . .., A} is any
Borel partition of X such that sup{lp(x)—¢(x")|: x,x €4,}<e for
1 <k <n, then ||¢—ZZ=1¢(xk)XAk||w<e for any choice of x, in A,.
Since ||p]| = 1, e>||p(P) — Xi_10(x ) E(A ). This implies that p(¢) =
f¢ dE for any ¢ in B(X).

The proof of the uniqueness of E is left to the reader. |

EXERCISES
1. Prove Proposition 1.3.

2. Show that ball #(5#) is WOT compact.
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3. Show that Re Z(5#) and B(#), are WOT and SOT closed.

4, If L: B(H#)—C is a linear functional, show that the following statements are
equivalent: (a) L is SOT-continuous; (b) L is WOT-continuous; (c) there are
vectors hy,.., h,,8,.., g, in # such that L(A) = L_,{4h,, g,).

5. Show that a convex subset of B(H#) is WOT closed if and only if it is SOT
closed.

6. Verify the statement in Example 1.5.
7. Verify the statements made in Examples 1.6, 1.7, and 1.8.

8. For the spectral measures in (1.6),(1.7), and (1.8), give the corresponding
representations.

9. If { E, } is a net of projections and E is a projection, show that E — E (WOT)
if and only if E,— E (SOT).

10. For the representation in (VIIL.5.5), find the corresponding spectral measure.

11. In Example VIIL5.4, the representation is not quite covered by Theorem 1.14
since it is a representation of L*(p) and not C(X). Nevertheless, this represen-
tation is given by a spectral measure defined on £2. Find it.

12. Let X be a compact Hausdorff space and let {x,} be a sequence in X. Let {e,, }
be an orthonormal basis for ¥ and for each # in C(X) define p(u) in B(H#)
by p (u)e,=u( x,) e, Show that p is a representation and find the correspond-
ing spectral measure.

13. A representation p: & — B(3#) is irreducible if the only projections in B(¥)
that commute with every p(a), a in &, are 0 and 1. Prove that if % is abelian
and p is an irreducible representation of &, then dim& = 1. Find the corre-
sponding spectral measure.

14. Show that a representation p: C(X) — Z(3) is injective if and only if
E(G) # 0 for every open set G, where E is the corresponding spectral measure.

15 Let {A, } be a net of hermitian operators on S and suppose that there is a
hermitian operator T such that A, <T for all i. If {{A4,h, h)} is an increasing
net in R for every hin S, then there is a hermitian operator A such that
A, = A (WOT).

16. Show that there is a contraction 7:%B(#)* * — B(H#) such that 7(T) = T for
T in B(#). It p: C(X) » B(H) is a representation, show that the map p in
the proof of Theorem 1.14 is given by p(¢) =T p**(d).

§2. The Spectral Theorem

The Spectral Theorem is a landmark in the theory of operators on a Hilbert
space. It provides a complete statement about the nature and structure of
normal operators. This accolade will be seen to hold when in Section 10 it is
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used to give a complete set of unitary invariants. Two operators A and B
are unitarily equivalent if there is a unitary operator U such that UAU * = B;
in symbols, A = B. Using the Spectral Theorem, a (countable) set of objects
are attached to a normal operator N on a (separable) Hilbert space. It is
then shown that two normal operators are unitarily equivalent if and only if
these objects are equal.

The Spectral Theorem for a normal operator N on a Hilbert space with
dim 5#=d <oo says that N can be diagonalized. That is, if «,..., a, are
the eigenvalues of N (repeated as often as their multiplicities), then the
corresponding eigenvectors ey, e,,..., e, form an orthonormal basis for .
In infinite-dimensional spaces a normal operator need not have eigenvalues.
For example, let N = multiplication by the independent variable on L?(0, 1).
So an alternate formulation that can be generalized is desired.

Let N be normal on 5, dim s#=d <oo. Let A(,..., A, be the distinct
eigenvalues of N and let E, be the orthogonal projection of 3 onto
ker( N —A,), 1 <k <n. Then the Spectral Theorem says that

2.1 N = )Y A\E,

k=1

In this form a generalization is possible. Rather than discuss orthogonal
projections on eigenspaces (which may not exist), the concept of a spectral
measure is used; rather than the sum that appears in (2.1), an integral is
used. It is worth mentioning that the finite-dimensional version is a corollary
of the general theorem (see Exercise 4).

2.2. The Spectral Theorem. ZfN is a normal operator, there is a unique
spectral measure E on the Borel subsets of a(N) such that:

(@ N = [zdE(z);

(®) if G is a nonempty relatively open subset of a(N), E(G) # 0;

(c) if A € B(H), then AN = NA and AN * = N *A if and only if AE(A) =
E(A)A for every A.

Proor. Let &= C*(N), the C*-algebra generated by N. So & is the
closure of all polynomials in N and N*. By Theorem VIIL2.6, there is an
isometric isomorphism p: C( a( N)) = & C B(H) given by p(u) = u(N)
(the functional calculus). By Theorem 1.14 there is a unique spectral
measure E defined on the Borel subsets of a(N) such that p(u) = fudE for
all u in C(o( N)). In particular, (a) holds since N = p(z).

If G is a nonempty relatively open subset of u(N), there is a nonzero
continuous function u on u(N) such that 0 <u <x. Using Claim 1.17,
one obtains that E(G) = p(xs)= p(u) #+ 0; so (b) holds.

Now let A € Z(#) such that AN = NA and AN * = N *A. Tt is not
hard to see that this implies, by the Stone-Weierstrass Theorem, that
Ap(u) = p(u)A for every u in C(o(N)); that is, Aw(N) = u(N)A for all u
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in C(o(N)). Let £ = {A: A is a Borel set and AE(A)= E(A)A}. It is left
to the reader to show that £ is a u-algebra. If G is an open set in a( N ),

there is a sequence {u,} of positive continuous functions on o(N) such that
u,(z)Txs(z) for all z. Thus

(AE(G)g.h) = (E(G)g, A*h)
Eg,A*h(G)

limfun dE, 4

lim(u,(N)g, A*h)
lim{Au,(N)g, h)
lim(u, (N ) g, k)

= (E(G)Ag, h).
So £ contains every open set and, hence, it must be the collection of Borel
sets. The converse is left to the reader. [ ]

The unique spectral measure E obtained in the Spectral Theorem is called
the spectral measure for N. An abbreviation for the Spectral Theorem is to
say, Let N = [AdE(A) be the spectral decomposition of N. 1If ¢ is a
bounded Borel function on u(N), define ¢(N) by

o(N) = [odE,

where FE is the spectral measure for N.

2.3. Theorem. If N is a normal operator on ¥ with spectral measure E and
B( a(N)) is the C *-algebra of bounded Borel functions on u(N), then the map

¢~ ¢(N)
is a representation of the C*-algebra B(o(N)). If {$,} is a net in B( o(N))
such that [¢,dp — 0 for every p in M(a( N)), then ¢,(N)— 0 (WOT). This
map is unique in the sense that if v:B(a( N)) = B(H) is a representation
such that 7(z) = N and 7(¢;) > 0 (WOT) whenever {¢,;} is a net in
B(a( N)) such that [¢,dp — 0 for every p in M(a(N)), then 7(¢p) = ¢(N)
for all ¢ in B(a(N)).

Proor. The fact that ¢ —» ¢(N) is a representation is a consequence of
Proposition 1.12. If {¢,} is as in the statement, then the fact that E, , €
M(o(N)) implies that ¢,(N)— 0 (WOT).

To prove uniqueness, let 7: B(o( N)) = #(5#) be a representation with
the appropriate properties. Then 7(u) = uN) if u€ C(a(N)) by the
uniqueness of the functional calculus for normal elements of a C*-algebra
(VIIL.2.6). If ¢ € B(o(N)), then Proposition V.4.1 implies that there is a
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net {u,} in C(o(N)) such that |lu]|<|i¢| for all u, and fu,dp— (¢ du
for every pin M(o( N)). Thus u;(N) = ¢(N) (WOT). But 7(¢) = WOT
—lim7(u,) = WOT — lim u,( N); therefore r(¢)=¢o(N). [ |

It is worthwhile to rewrite (1.11) as

2.4 (¢(N)g, h) = f¢dEg,h

for ¢ in B(o(N)) and g, hin . 1If ¢ € B(C), then the restriction of ¢ to
a(N) belongs to B(a(N)). Since the support of each measure E, , is
contained in u(N), (2.4) holds for every bounded Borel function ¢ on C.
This has certain technical advantages that will become apparent when we
begin to apply (2.4).

Proposition 2.3 thus extends the functional calculus for normal operators.
This functional calculus or, equivalently, the Spectral Theorem, will be
exploited in this chapter. But right now we look at some examples.

2.5. Example. If p is a regular Borel measure on C with compact support
K, define N, on L*(u) by N, f = zf for each f in L*(p). It is casy to check

that Nﬂ*f = zf, and, hence, Nﬂ is normal.

(@) o(N,) =K = support of p. (Exercise.)
(b) If, for a bounded Borel function ¢, we define M, on L*(p) by M, f=]1,
then ¢(N,) = M,.

Indeed, this is an easy application of the uniqueness part of (2.3).

(c) If E is the spectral measure for Nn, then E(A) = M, .

A4

Just note that E(A) = x4(N).

2.6. Example. Let (X, £,1) be any u-finite measure space and put =
L*(X,Q,p). For ¢ in L*(p)=L*( X, Q, p), define M, on 3¢ by M, f = ¢f.

(a) M, is normal and M= Mz (11.2.8).

(b) ¢ > M, is a representation of L*(p) (VIIL5.4).
(© 1t $ €L=(), ]l = [IM,]] ALLS).

(d) Define the essential range of ¢ by

ess-ran(+) =N{cl(¢(4)): A €L and p(X\4) = 0}.

Then ao(M,) = ess-ran($). (This appears as Exercise VIL.3.3, but a proof
is given here.)

First assume that A & ess-ran(+). So there is a set A in £ with p( X\ A)
= 0 and A not in cl(¢(4Q)); thus, there is a § > 0 with |¢(x)—A|= 8 for
all x in AL If ¢ =(¢p— A)) , yEL¥(p) and M, = (M¢—}\)’1.

Conversely, assume A€ ess-ran(+). It follows that for every integer n
there is a set A,, in £ such that 0 <p(d,) <oo and |¢(x)— A|< I/n for
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all x in A, Put f, = (p(4,)) " V2x4,:50 [, € L2(p) and |If,]l, = 1. How-
ever, (M, = M£I1* = (#(4,)) Ya,l¢ — Al dp <1/n% showing that A€
0,,(M,).

(e) If E is the spectral measure for M, [so E is defined on the Borel subsets
of a(M,) = ess-ran(+) CC], then for every Borel subset A of a( M,),
E(A) = M,

2.7. Proposition. If for k > 1, N, is a normal operator on 3, with
sup, || Ni|| <oo, E, is the spectral measure for N, and if N= @7 | N, on
H=®_ |, then:

(a) o(N) = clUF-0(N]; X
(b) if Eis the spectral measure for N, E(A) = ®_E,(Ano(N,)) for
every Borel subset A of u(N).

PrROOF. Exercise.

A historical account of the spectral theorem is an enormous undertaking
by itself. One such account is Steen [1973]. You might also consult the notes
in Dunford and Schwartz [1963] and Halmos [1951].

EXERCISES
Throughout these exercises, N is a normal operator on # with spectral measure E.

I. Show that A€a,( N) if and only if E({A})# 0. Moreover, if A€a,( N),
E({A}) is the orthogonal projection onto ker( N —A).

2. If A is a clopen subset of u(N), show that E(A) is the Riesz idempotent
associated with A.

3. Prove Theorem 115.1 and its corollaries by using the Spectral Theorem.
. Prove Theorem 11.7.6 and its corollaries by using the Spectral Theorem.

. Obtain Theorem 11.7.11 as a consequence of (2.3).

N

. Verify the statements in Example 2.5.

. Verify (2.6e).

~J

8. Let A be a hermitian operator with spectral measure FE on a separable space.
For each real number ¢ define a projection P(t) = E(— 00, t). Show:
(a) P(s)< P(t) for s<t;
(b) if t,<t,,, and t, = ¢, P(2,) > P(t) (SOT);
(c¢) for all but a countable number of points ¢, P(2,) = P(t) (SOT) if ¢t,—¢;
(d) for f in C(a(A4)), flA) = [*f(t) dP(t), where this integral is to be
defined (by the reader) in the Riemann-Stieltjes sense.

9. Show that a normal operator N is (a) hermitian if and only if a(N) € R; (b)
positive if and only if u(N) € [0, cc); (c) unitary if and only if w(N) € JD.
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10.

1L

12.

13.
14.

15.

16.

17.

18.

19.

Show that if 3 is separable, there are at most a countable number of points
{z,}in 6(N) such that E(z,)# 0. By Exercise |, these are the eigenvalues of
N.

Show that E(o(N) \g,( N)) = 0 if and only if N is diagonalizable; that is,
there is a basis for S consisting of eigenvectors for N.

Show that if N = UJN|(|N| = (N*N)/?) is the polar decomposition of N,
U=¢(N) for some Borel function ¢ on (p(N). Hence U|N|=|N|U.

Show that N = W|N| for some unitary W that is a function of N.
Prove that if A is hermitian, exp( i4) is unitary. Is the converse true?

Show that there is a normal operator M such that M? = N and M = ¢(N) for
some Borel function ¢. Is there only one such normal operator?

Define N: L*(R)— L*(R) by (Nf)(¢) = f(t+ 1). Show that N is normal and
find its spectral decomposition.

Suppose that Np,, N, are normal operators such that N, N* = N*N, for
1 <j,k<d Show that there is a subset X of C¢ and a spectral measure E
defined on the Borel subsets of X such that N, = fz, dE(z) for 1| <k<d
( z, = the k th coordinate function)(see Exercise VII1.2.2).

If N,., N, are as in Exercise 17 and each is compact, show that there is a
basis for 3 consisting of eigenvectors for each N,. (This is the simultaneous
diagonalization of Ny,., N;.)

This exercise gives the properties of Hilbert-Schmidt operators (defined below).
() If {e, } and { £} are two orthonormal bases for # and A € Z(X¥’), then

LlAel? = LIALIP = X XK 4e,, f)1
1 J g
(b) If A € B( ) and {e,} is a basis for H#, define
1/2
i4ll2 = [Z||Ae,||2] :

By (a) ||[4]l, is independent of the basis chosen and hence is well defined. If
[|A|l; <00, A is called a Hilbert-Schmidt operator. %, = %,(#) denotes the
set of all Hilbert-Schmidt operators. (c) ||A|l<||4|l, for every A in B(#) and
|-l is 2 norm on %,. (d) If T € B = B(H#) and A € %,, then ||TA|, <
ITNIAlL, 4%1, = (1411, and [IAT]ly < |4 [1,[ITIl. (¢) B, is an ideal of & that
contains %y, the finite-rank operators. (f) A €%, if and only if |A|=
(A*4)!/? € B,; in this case ||4]|, = |||4|lf>. (g) B, < B,; moreover, if A is a
compact operator and A, A,,. are the eigenvalues of |4|, each repeated as
often as its multiplicity, then A € B,(#)iff L2 A% <oo. In this case,
14, = N2 (h) If (X, £,p) is a measure space and k € L2(p X p), let K :
L*(p)— L*(p) be the integral operator with kernel k. Then K € B, ( L?(p))
and [|K]|, = ||k||, (see Proposition 11.4.7 and Lemma 11.4.8). (i) Interpret part
(h) for a purely atomic measure space. More information on %, is contained in
the next exercise.
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20. This exercise discusses trace-class operators (defined below) and assumes a

21.

22.

23.

knowledge of Exercise 19. &, () ={ AB: A and B €%, (5#)}. Operators
belonging to B, () are called fruce-class operators and B,(#)= B, is called
the trace class. (a) If A €%, () and {e,} is a basis, then L |(Ae,, € )| <o0.
Moreover, the sum Y (Ae,, ¢) is independent of the choice of basis. (Hint: If
A = C*B, B,C in @,, show that [(Ae;, e)|=%(||Be|* + ||Ce,l?).) (b) If
{e,} is a basis for 5, define tr: %, — C by

tr(4) = X (e, e,).

1

By (a) the definition of tr( A) does not depend on the choice of a basis; tr( A) is
called the fruce of A. If dim J£< co, then tr( A) is precisely the sum of the
diagonal terms of any matrix representation of A, (c) If A € B(3¢), then the
following are equivalent: (1) A € 9,; (2) |4| = (4*4)/2 € B,; (3) |41/ e
By; @) tr(JA]) < 0. () If A € Band T € B, then AT and TA are in B, and
r( A T) = tr( TA). Moreover, tr: %; —C is a positive linear functional such that
ifA€®B,A >0 and tr( A) = 0, then A = 0. (e) If A € B,, define ||A|,=
tr(|A)). £ A € @, and T € @, show that |te(TA)| <||T||||4];. @ ||4]l; =
A*)|, if A €%B,. (g) f T €& and A € B, then ||TA|, <||T||||4]; and
AT, < ITINAll;. (h)y T |l; is @ norm on 2. It is called the truce norm. (i)
B, is an ideal in B(H) that contains Byy. () A € B, and {e, } and {f,} are
two bases for 3, theny,|(Ae,, f, )| <||4|,. (d) B,C B,. Also, if A € B, and
ALLA,, are the eigenvalues of |A|, each repeated as often as its multiplicity,
then A € B, if and only if X% ,A, < co. In this case, ||[4]; = ZF_;A,. (D) If A
and B € %,, define (A, B) = tr( B*A). Then (-,-) is an inner product on %,,
|| <]l is the norm defined by this inner product, and %, is||-||, complete. In
other words, %, is a Hilbert space. (m) (|- |l;) is a Banach space. (n) %,
is dense in both %, and %,. (For more on these matters, see Ringrose[1971]
and Schatten [1960].)

This exercise assumes a knowledge of Exercise 20. If g,h€ ¥, let g ®h
denote the rank-one operator defined by (g ® h)(f) = (f, h)g. (a) If g, heH
and A € B(#), tr(A(g ® h)) = {(Ag,h). (b) If T € B, then ||T|; =
sup{|tr(CT)|: C € %B,,||C||<1}. (c) If T € B,, define L;:%B,—C by L,(C)
= tr( TC) (= tr( CT)). Show that the map 7> L, is an isometric isomorphism
of &, onto BF. (d) If B € B, define Fz: B, - C by F,(T) = te(BT). Show
that B — Fy is an isometric isomorphism of % onto @}. (e) If L € B* show
that L =L, + L, where L, L, € #*, L(B) = tr(BT) for some Tin %, and
L(C) = O for every compact operator C. Show that ||L|| =||Lyl| + ||L,]| and
that L, and L, are unique.

Prove that if U is any unitary operator on S, then there is a continuous
function u:[0,1]— B(H) such that u(z) is unitary for all ¢ w(0) = U, and
u =1

If N is normal, show that there is a sequence of invertible normal operators that
converges to N.
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§3. Star-Cyclic Normal Operators

Recall the definition of a reducing subspace and some of its equivalent
formulations (Section 11.3).

3.1. Definition. A vector ey in H# is a star-cyclic vector for A if H# is the
smallest reducing subspace for A that contains e,. The operator A is szar
cyclic if it has a star-cyclic vector. A vector e, is cyclic for A if 5 is the
smallest invariant subspace for A that contains eg; A is cyclic if it has a
cyclic vector.

3.2. Proposition. (a) A vector eq is a star-cyclic vector for A if and only if
H=cl{Te,;: T € C*(A)}, where C¥*A) = the C *-algebra generated by A.
(b) A vector eq is a cyclic vector for A if and only if #=cl{ p(A) e¢,: p=a
polynomial }.

Proor. Exercise.

Note that if e, is a star-cyclic vector for A, then it is a cyclic vector for
the algebra C*(A).

3.3. Proposition. Zf A has either a cyclic or a star-cyclic vector, then 3 is
separable.

Proovr. It is easy to see that C*(A) and {p(A): p = a polynomial} are
separable subalgebras of Z(5¢). Now use (3.2). [ |

Let p be a compactly supported measure on € and let N, be defined on
L*(p) as in Example 2.5. If K = support p, then C*(N,) = {M,: u€
C(K)}. Since C(K) is dense in L*(u), it follows that 1 is a star-cyclic
vector for N,. The converse of this is also true.

3.4. Theorem. A normal operator N is star-cyclic if and only if N is unitarily
equivalent 10 N, for some compacily supported measure p on C.Zfeyisa
star-cyclic vector for N, then p can be chosen such that there is an isomorphism
V:#— L*(p) with Vey = 1 and VNV ™! = N,. Under these conditions, V is
unique.

Proor If N =N,, then we have already seen that N is star cyclic. So
suppose that N has a star-cyclic vector e, If Eis the spectral measure for
N. put #(4) = |E(A)egll* = (E(A)eg, ep) for every Borel subset A of €
(see Lemma 1.9). Let K = support p.
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If € B(K), then (2.4) implies
le(N)eoll® = ($(N)eq, (N )eo)
= <|¢|2(N)eo’eo>

= f|q§(z)|2d<E(z)eO,eO>

= [I6*dp.

So if B(K) is considered as a submanifold of L*(p),Ve = ¢(N)e, defines
an isometry from B(K) onto {¢(N)ey:¢p€ B(K)}. But ey is a star-cyclic
vector, so the range of V is dense in J#. Hence V' extends to an isomor-
phism V:L?(u)— 5#.

If ¢ € B(K), then VNV~ I(¢(N)ey) = VN, (9) = V(z2¢) = No(N)e,.
Hence VNV 1= N on {qb(N)eO ¢ € B(K)}, Wthh is dense in 5#. So
VNV~ 1=

The proof of the uniqueness statement is an exercise. [ |

Any theorem about the operators N, is a theorem about star-cyclic
normal operators. With this in mind, the next theorem gives a complete
unitary invariant for star-cyclic normal operators. But first, a definition.

3.5. Definition. Two measures, u, and p,, are mutually absolutely continu-
ous if they have the same sets of measure zero; that is, p,;(4)=0if and
only if u,(A)= 0. This will be denoted by [p;]=[p,]. (The more standard
notation in the literature is p, =pu,, but this seems insufficient) If [p,] =
[u,], then the Radon-Nikodym derivatives dp,/dp, and du,/du, are well
defined. Say that p, and u, are boundedly mutually absolutely continuous if
[#,]=[m,] and the Radon-Nikodym derivatives are essentially bounded
functions.

3.6. Theorem. N, =N, ifand only if [p]=[p,]

PrOOF. Suppose [p;] = [1,] and put ¢ = dp,/dp,. So if g € L'(py), g6 €
L'(p,) and [gddp, = [gdw. Hence, if f€L*(uy)/of €L*(p;)and
Vo flla = IIfll,; that is, U: L?(p,) = L¥(p,) defined by Uf = /o f is an
isometry. If g € L%(p,), then f = qb’l/ngLz(p,l) and Uf = g; hence U is
surjective and U''g = ¢7V2%g for g in L¥(u,). If g ELZ(p.Z) then
UN, U 'g =UN, ¢ /*g=Uz¢ '/’ = zg, and so UNU '=N, .

Now assume that V:L%(p, )—>L (ny) is an 190m0rph19m such that
VN, V~"'=N,.Puty = V(1); so Y € L*(n,). For convenience, put N; =
N ,_] =1,2. Tt is easy to see that VNfV~1= NS and VN* V1= N*"

®,



1X.3. Star-Cyclic Normal Operators 277

Hence Vp(N,, N*)V ! = p(N,, N;*) for any polynomial p in z and Z.
Since N, =N,,0(N;) = o(N,); hence support m; = support p, =K By
taking uniform limits of polynomials in z and Z,Vu(N;)V"'=u(N,) for u
in C(K). Hence for u in C(K), V(u) = Vu(Nl)l = u(Nz)Vl = uy. Be-
cause V is an isometry, this implies that [|u|*dp, = [|u|*[y|*dp, for every
uin C(K). Hence fvdu, = foly|*du, for v in C(K), v= 0. By the
uniqueness part of the Reisz Representation Theorem, p; = |¢|%u,, so
By < By

By using V! instead of ¥ and reversing the roles of N; and N, in the
preceding argument, it follows that p, << pu,. Hence [pq] =[p,] |

EXERCISES

1. If pis a compactly supported measure on € and f € L*(pn), f is a star-cyclic
vector for N if and only if p({ x: f(x) = 0}) = 0.

2. Prove Proposition 3.2.

3. If pu, and p, are compactly supported measures on C, show that the following
statements are equivalent: (a) pu, and u, are boundedly mutually absolutely
continuous; (b) there is an isomorphism ¥:L>( ) — L?( ) such that VN, Vf

= N,, and VL*(p;) = L*(u,); () there is a bounded bijection R: Lz(pl)—>
L? (pz) such that Rp(z,z)= p(z,z) foreverypolynomialin z and Z.

4. Show that if N is a star-cyclic normal operator and A €0,( N), then dim ker( N
- =L

5. If N is diagonalizable and star cyclic and if o,(N)={A;,A,,}, show that N
is unitarily equivalent to N,, where u=2f2127"8>\" (see Exercise 2.11).

6. Let N be a diagonalizable normal operator. Show that N =M if and only if M
is a diagonalizable normal operator, 6,(N)=0,(M), and dim ker( N —-A) =
dim ker( M — A) for all . (Compare this with Theorem 11.8.3.)

7. Let U be the bilateral shift on /*(Z). If e, is the vector in /*(Z) that has | in the
zeroth place and zeros elsewhere, then e, is a star-cyclic vector for U.If p is the
compactly supported measure on € and V:/*(Z)— L*(p) is the isomorphism
such that Ve, = 1 and VUV™' = N,, then
() w=m = normalized arc length on JdD;

(b) ¥~ ! = the Fourier transform on Lim) = L2( JD).

8. Suppose N, , N, are normal operators such that N NX*=N*N for | <j, k
< d and suppose there is a vector e, in S such that J# is the only subspace of
J# containing e, that reduces each of the operators N, ., N,. Show that there
is a compactly supported measure w on C¢ and an isomorphism V:5#— L%(u)
such that VN, V~!f = z, ffor fin L*(w)and | <k <d(z,=the kth coordi-
nate function) (see Exercise 2.17).
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§4. Some Applications of the Spectral Theorem

In this section a few diverse applications of the Spectral Theorem are
presented. These will show the power and finesse of the Spectral Theorem as
well as demonstrate some of the methods used to apply it. One result in this
section (Theorem 4.6) is more than an application. Indeed, many regard this
as the optimal statement of the Spectral Theorem.

If N is a normal operator and N = [zdE( z) is its spectral representation,
then ¢ = ¢(N)= fpdFs a *homomorphism of B(C) into & (5#). Thus,
it @, ‘f € B(C), ([¢dE) Y dE) = [¢¥ dE and ||[¢ dE|| <sup{|e(z)|: z €
o(N)}.

4.1. Proposition. If N is a normal operator and N = jz dE(z), then N is
compact if and only if for every €> 0, E({ z: |z|> E}) has finite rank.

Proor. If €> 0, let 4, = {z: |z|>¢} and E, = E(A,). Then

N — NE, = deE(Z)_fZXA,(Z) dE(z)

= [2xena ) dE(2) = $(N)

where ¢(z) = zx¢\a(2). Thus [|[N = NE || <sup{|z]: z €C \,} <e If
E, has finite rank for every €> 0, then so does NE,. Thus N € Z,(5#).

Now assume that N is compact and let €> 0. Put ¢(z) = z‘leF(z);
so ¢ € B(C). Since N is compact, so is N¢(N). But N+(N) =
fzz‘le’(z) dE(z) = E,. Since E, is a compact projection, it must have
finite rank. (Why?) |

The preceding result could have been proved by using the fact that
compact normal operators are diagonalizable and the eigenvalues must
converge to O.

4.2. Theorem. Zf 3¢ is separable and Z is an ideal of B(#) that contains a
noncompact operator, then Z = B(F).

Proor. If A € Z and A & HB,(s#), consider A*A; let A*4 = [tdE(t)
(6(A*A)C [0, co)). By the preceding proposition, there is an &> 0 such
that P = E(e,00) has infinite rank. But P = ( ft'lx(&w)(t)dE(t))A*AeI.
Since s is separable, dim Pi#f= dim #=N,. Let U:#— P# be a
surjective isometry. It is easy to check that 1 = U*PU.But Pel,50 1 €1.
Hence Z = B(F). ]

In Proposition VII1.4.10, it was shown that every nonzero ideal of Z(#)
contains the finite-rank operators. When combined with the preceding
result, this yields the following.
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4.3. Corollary. If 5 is separable, then the only nontrivial closed ideal of
B(H) is the ideal of compact operators.

The next proposition is related to Theorem VIIL.5.9. Indeed, it is a
consequence of it so that the proof will only be sketched.

Let N be a normal operator on 5 and for every vector ¢ in 3¢ let
H,={N**NJe: k, j> Q). So ##, is the smallest subspace of 5# that
contains e and reduces N. Also, N|#, is a star-cyclic normal operator.

4.4, Proposition. If N is a normal operator on 3, then there are reducing
subspaces { K i€} for N such thatr #=® ¢, and N|HK, is star cyclic.

1

Proor. Using Zorn 8§ Lemma find a maximal set of vectors & in 5# such
that if e, f€¢& and ¢ # f, then J#, L #. It follows that #=@ . ]

4.5. Corollary. Every normal operator is unitarily equivalent to the direct sum
of star-cyclic normal operators.

By combining the preceding proposition with Theorem 3.4 on the repre-
sentation of star-cyclic normal operators we can obtain the following
theorem.

4.6. Theorem. If N is a normal operator on 3, then there is a measure
space (X,8,p) and a function ¢ in L*( X, ,u) such that N is unitarily
equivalent 10 M, on L*( X, Q, ).

Proor. If # is a reducing subspace for N then N = N|.# & N|.# *; thus
a( N|AZ )< a(N). So if {N,} is a collection of star-cyclic normal operators
such that N =®,N, (4.5), then o(N,)<S a(N) for every N,. By Theorem 3.4
there is a measure p, supported on a(N) such that N,=N, . Let X, = the
support of p, and let £, = the Borel subsets of X,. Let X the disjoint
union of { X,}. Define £ to be the collection of all subsets A of X such that
ANX e, for all i It is easy to check that £ is a u-algebra. If A € let
p(Ay=Xp,(ANX,); then (X,Q, u) is a measure space. If f€L?(X,82,p)
then f,= f|X,€ L%(y,;). Moreover, the map U:L*(p)— &,L*(n,) defined
by Uf = ®,(f]X;) is easily seen to be an isomorphism. Define ¢: X — € by
letting ¢(z) =z if z €X,(c C); since X,C a(N) for every i, ¢ is a
bounded function. If G is an open subset of C,¢ Y(G)NnX, =GN X, €2;
hence ¢ is O-measurable. Therefore ¢ € L*( X, £, u). It is left to the reader
to check that UM U™ = @ N, = N. n

47. Proposition. If 32 is separable, then the measure space in Theorem 4.6
is u-finite.

Proor. This is true because if L*( X, 2, ) is separable, then (X, £, u) must
be u-finite. Indeed, let & be a collection of pairwise disjoint sets from £
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having nonzero measure. A computation shows that {(p(4)) /*x,:A €&}
are pair-wise orthogonal vectors in L?(w).If L%(p) is separable, then &
must be countable. Therefore (X, £, p) is u-finite. a

Of course if (X, £, ) is finite it is not necessarily true that L*(u) is
separable.

The next result will be useful later in this book and it also provides a
different type of application of the Spectral Theorem.

4.8. Proposition. If o is an SOT-closed C*-subalgebra of B(H), then o
is the norm closed linear span of the projections in .

PrROOFR.If A€/, A + A* and A — A* € &/; hence & is the linear span
of Res/. Supposec A €Res/ and A = (tdE(t).If [a, b] CR, then there is
a sequence {u,}in C(R) such that 0 <u,<1,u, (t)=1fora <t<b -
nl u(1) = 0 for t<a—n"'and t= b Hence u,(1) = X[, (1) as
n —>o0.If h €5, then

1 n(A) = E[@,B)}AI = fluag(1) = Xam (112 dE, (1) = 0

by the Lebesgue Dominated Convergence Theorem. That is, u,(A) —
E[a,b) (SOT). Since & is SOT-closed, E[a,b)<€ /. Now let (a, 8) be an
open interval containing a( A). If e> 0, then there is a partition {a=17,<
- <t,= B} such that |t —Xf_1t; X, .. (8)|<e for tin a(A); hence
A= X712 Elt, 1, 1)l <& Thus every self-adjoint operator in =/ be-
longs to the closed linear span of the projections in 7. |

EXERCISES

1. If N is a normal operator show that ran N is closed if and only if 0 is an isolated
point of u(N).

2. Give an example of a non-normal operator A such that 0 is an isolated point of
0(A) and ran A is closed. Give an example of a non-normal operator B such that
ran B is closed and O is not an isolated point of a(B).

3. If 5 is a nonseparable Hilbert space find an example of a nontrivial closed ideal
of #() that is different from %,(¥).

4. Let (X, §2,u) be the measure space obtained in the proof of Theorem 4.6 and
show that L'( X, £, u)* is isometrically isomorphic to L*¥(X,£,p).

5. Show that J# is separable if and only if every collection of pairwise orthogonal
projections in () is countable.

6. If (X, £2,p) is a measure space, then (X, £2,u) is u-finite if and only if every
collection of pairwise orthogonal projections in {M,:¢ & L*(p)} is countable.

7.1f N = [zdE(z) and € > 0, show that ran E({ z:|z|> E}) € ran N.
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8. Let A be a linear manifold in 5 and show that .# has the property that 4
contains no closed infinite-dimensional subspaces if and only if whenever A €
B(#) and ran A C A, then A is compact.

9. Show that the extreme points of {A € B(H): 0 <A <1} are the projections.

§5. Topologies on #( )

In this section some results on the SOT and WOT on #(5°) are presented.
These results are necessary for understanding some of the results that are to
follow in later sections and also for a proper comprehension of a number of
other subjects in mathematics.

The first result appeared as Exercise 1.4.

5.1.  Proposition. If L: B(#)—C is a linear functional, then the following
statements are equivalent.

(a) L is SOT continuous.

(b) L is WOT continuous.

(c) There are vectors gy,..., &Ny h,in H# such that L(A)=
Yi_(Agi, hy) for every A in B(H).

Proovr. Clearly (¢) implies (b) and (b) implies (a). So assume (a). By

(IV.3.1f) there are vectors gq,..., &,in S such that

n n 1/2
IL(A) < ¥ |l4gll < Vn [ )y uAgkuz]
k=1 k=1

for every A in #(5¢). Replacing g, by \/r:gk, it may be assumed that

n 1/2
IL(A4) < [‘é IIAngZ] = p(4).

Now p is a seminorm and p(A) = 0 implies L{A) = 0. Let ¥'=cl{ Ag,®
Ag, ® - ®Ag, A ERB(H)); s0 HCH®---®H (n times). Note that
if Ag, ®--- ®Ag, = 0, p(A) = 0, and hence, L(A) = 0. Thus F(Ag,
@ --- ®Ag,) = L(A) is a well-defined linear functional on a dense mani-
fold in X" But

|F(A8:® ... ®4g,)|<p(4) =45, @ .. ©4g,.

So Fcan be extended to a bounded linear functional F; on 5#™. Hence,
there are vectors hy,...,h,in 3 such that

Fl(fl ® - 8f,) = (fi® - --®f,,h & - -Oh,)
= X (Sl
k=1
In particular, L(A) = F(Ag, ®---®Ag,) = Li_{Ag. hy). [ ]
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5.2. Corollary. If € is a convex subset of #(H), the WOT closure of €
equals the SOT closure of 6.

Proor. Combine the preceding proposition with Corollary V.1.4. ]

When discussing the closure (WOT or SOT) of a convex set it is usually
better to discuss the SOT. Shortly an algebraic characterization of the
SOT closure of a subalgebra of Z(s#) will be given. But first recall
(VIIL5.3) that if 1 <n<cc, # denotes the direct sum of 5 with itself
n times (R, times if n = cc). If A € B(#), A is the operator on ("
defined by A™(hy.raph) = (Ah, ,..., Ah,). It ST B(H), S M=
{A:A € ). Tt is rather interesting that the SOT closure of an algebra
can be characterized using its lattice of invariant subspaces.

5.3. Proposition. If & is a subalgebra of #(5) containing 1, then the SOT
closure of A is

54 {B € B(H): for every finite n, Lat o/ " C Lat B }.

Proor. It is left as an exercise for the reader to show that if B € SOT —
cl &7, B belongs to the set (5.4). Now assume that B belongs to the set (5.4).
Fix fi, f5,..., f, in 5 and €> 0. It must be shown that there is an A in &/
such that ||(A—B)f,l|<e for 1 <k < n.

Let M =V{(Afy,..., Af,): A €/}. Because & is an algebra, /4 €
Lat &/‘"; hence A € Lat B"™. Because 1 € %, ( f1,...,f,)EH#. Since
((Af,..., Af,); A €/} is a dense manifold and (Bf,,...,Bf,)E A,
there is an A in & with e2>X7_ ||(4— B)f. % hence B € SOT -
cl . [ ]

5.5. Proposition. The closed unit ball of B(# )is WOT compact.

Prookr. The proof of this proposition follows along the lines of the proof of
Alaoglu § Theorem. For each 4 in ball J# let X, = a copy of ball 5 with
the weak topology. Put X = II{ X,:||#||<1}.1f A € ball B(5F) let 1(A)
€ X defined by 1(A4), = Ah. Give X the product topology. Then
(ball #(s#), WOT) —» X is a continuous function and a homeomorphism
onto its image (verify). Now show that r(ball Z(5£)) is closed in X. From
here it follows that ball #(5#) is WOT compact. a

EXERCISES
1. Show that if B&€ SOT —cl &/, then B belongs to the set defined in (5.4).
2. Show that %, is SOT dense in Z.

3. If {A, } and {B,} are sequences in &(H) such that A, > A(WOT) and
B, —» B(SOT), then A, B, » AB(WOT).
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B,, € (). Since 8 %)I € {A® A}, matrix multiplication shows that
B,, = B, and B, = 0. Similarly, the fact th[{t (1)1 commutes with

A ® A implies that Bj; = 0. fC=B;(=B,),B=C& C IfTe {A} ,
then T®Te€ fA® A}, so B(T ® T) = (T & T)B. This shows that C €
(A} . [ |

6.3. Corollary. If T RB(H),{FL M) = {F"}M.

Say that a subspace # of # reduces a collection . of operators if it
reduces each operator in &. By Proposition 11.3.7, . reduces & if and
only if the projection of 5# onto 4 belongs to %, This is important in the
next theorem, due to von Neumann [1929].

6.4. The Double Commutant Theorem. Zf &7 is a C*-subalgebra of B(H)
containing 1, then SOT —cl &/= WOT —cl &/ ="

Proor. By Corollary 5.2, WOT —cl &= SOT —cl &. Also, since %" is
SOT closed (Exercise 2) and &/ C /", SOT —cl L/ C "

It remains to show that &/ C SOT —cl &/. To do this Proposition 5.3
will be used.

Let Be”, n=>1, and let 4 € Lat . It must be shown that
B # C . Because & is a C*-algebra, so is &/ (™. So the fact that
M e Lat o and A*(M e o/ whenever A" € /™ implies that A
reduces A'™ for each A in 7. So if P is the projection of " onto ./,
Pe{«Z(M). But BE€”; so by Corollary 6.3, B e { /™ }”. Hence
B"P = PB and A € Lat B'"™. [ ]

6.5. Corollary. If o« is a SOT closed C*subalgebra of B(¥) and A €
B(H) such that A( PHYC P for every projection P in &', then A € «.

Proor. This uses, in addition to the Double Commutant Theorem, Proposi-
tion 4.8 as applied to &/’ Indeed, &/’ is a SOT closed C*-algebra and
hence it is the norm-closed linear span of its projections. So if A € ZB(¢)
and APH#C P for every projection P in &/’, then A(I —P)#cC (1 —
P)Ys# for every projection P in &’ Thus P> reduces A and, hence,
AP = PA. By 48),Ace " = . [ ]

6.6. Theorem. If (X,8,p) is a a-finite measure space and ¢ € L®(p),
define M, on L*(u) by M,f = ¢f. Zf o, ={M,: ¢ € L*(p)}, then o/ =
o, = /.
Proor. It is easy to see that if &/= /' then &= /", Since yiﬂgyiﬂ', it
suffices to show that Mu’gﬂu. So fix A in yiu’; it must be shown that
A = M, for some ¢ in L*(u).

Case 1:u(X)<oo. Here 1 €L?(u); put ¢ = A(I1). Thus ¢ & L?(p). If
Y € L®(p), then € L3(pn) and A($) = AM) = M Al = Myp = ¢y
Also, l[oyll, = [14¥IL, < [I4][[I¥ll,-
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Let A, = {x€ X: |¢(x)|> n/. Putting ¢ = x, in the preceding argu-
ment gives

AN (A,) = 1412901 = eyl = fA 9> dp > n’n(4,).

So if w(A,)# 0, ||4)|=n. Since A is bounded, u(4,) = 0 for some #;
equivalently, ¢ € L®(p). But A = M, on L*(p) and L*(u) is dense in
L*(p), so A = M, on L*(p).

Case 2: u(X) =o0. If p(A)< cc, let L*(pld) = {f € L*(pn): f= 0 off
A}. For fin L*(ujd), Af = Ax,f= xaAf € L*(p|4d). Let A, = the
restriction of A to L?(u|A). By Case 1, there is a ¢, in L®(p|4) such that
A,=M, Nowif u(4;)<coand p(4;) <00, ¢ |4; N A, = ¢,,|4; n A,
(Exercise).

Write X = U%_,4,, where A, €8 and p(4,)< cc. From the argument
above, if ¢(x) = ¢, (x) when x € A, ¢ is a well-defined measurable
function on X. Now |[l¢yll = IM,, |l (11.15) = ||[45ll <|I4]l; hence [|¢lo
<||4lj. It is easy to check that A = M,,. [ ]

The next result will enable us to solve a number of problems concerning
normal operators. It can be considered as a result that removes a technical-
ity, but it is much more than that.

6.7. The Fuglede-Putnam Theorem. Zf N and M are normal operators on 3¢
and A", and B: X' — ¥ is an operator such that NB = BM, then N *B =

BM *.

ProoF. Note that it follows from the hypothesis that N*B = BM* for all

k> 0. So if p(z) is a polynomial, p(N)B = Bp(M). Since for a fixed z in

C, exp( izN) and exp( izM) are limits of polynomials in N and M, respec-

tively, it follows that exp( iZN) B = B exp( izM ) for all z in €. Equivalently,

B= e *NBe*M_ Because exp( X + Y) = (exp X)(expY) when X and Y

commute, the fact that N and M are normal implies that

_ * : *
f(Z) =e 1zN Bele
—jzN* —i3 iz i *
_ éIZN e zzNBezzMezzM
7i(zN*+ZN)Bel(EM+zM*)

But for every z in C,zN * + ZN and zM™* + ZM are hermitian operators.
Hence exp[ — {zN * + zN)] and exp[i(zM* -+ zM)] are unitary (Exercise
2.14). Therefore |f(z)||<| B]|. But f: C > B(H, #) is an entire func-
tion. By Liouville § Theorem, fis constant.

Thus, 0 = f (2) =— N *e~=N*BE1M" + je 1N"BAf*¢1M" Putting z =
0 gives 0 = —iN *B + iBM *, whence the theorem. [}

This theorem was originally proved in Fuglede [1950] under the assump-
tion that N = M. As stated, the theorem was proved in Putnam [1951]. The
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proof given here is due to Rosenblum [1958]. Another proof is in Radjavi
and Rosenthal [1973]. Berberian [1959] observed that Putnam S version can
be derived from Fuglede § original theorem by the following matrix trick. If

_IN 0 _10 B

L‘[o M]andA [0 0]

then L is normal on #® s and LA = AL. Hence L*4 = AL* and this
gives Putnam $§ version.

6.8. Corollary. Zf N = [zdE(z) and BN = NB, then BE(A) = E(A)B for
every Borel set A.

Proorv. If BN = NB, then BN * = N *B; the conclusion now follows by The
Spectral Theorem. B

The Fuglede-Putnam Theorem can be combined with some other results
we have obtained to yield the following.

6.9. Corollary. Zf u is a compactly supported measure on C, then
(M) == (M6 L2(w).

Proor. Clearly &, C{N, }.IfA&€{N,}’, then Theorem 6.7 implies AN*
= NJ*A. By an casy algebraic argument, AM, = M A whenever ¢ is a
polynomial in z and z. By taking weak* limits of such polynomials, it
follows that A € /. By Theorem 6.6 A € %7, [ ]

Putnam applied his generalization of Fuglede § Theorem to show that
similar normal operators must be unitarily equivalent. This has a formal
generalization which is useful.

6.10. Proposition. Let N, and N, be normal operators on ) and 3,. Zf X:
H,— MK, is an operator such that XN, = N, X, then:

(a) cl(ran X) reduces N,;
(b) ker X reduces Ni;
(c) If M, = N,|(ker X)) and M, = N,|cl(ran X), then M,=M,.

ProovF. (a) If f, € #, N, Xf, = XN, f,€ ran X; so cl(ran X) is invariant
for N,. By the Fuglede-Putnam Theorem, XN* = N,*X, so cl(ran X) is
invariant for N,*.

(b) Exercise.

(c) Since X(kerX) *C cl(ran X), part (c) will be proved if it can be
shown that N, =N, when ker X = (0) and ran X is dense. So make these
assumptions and consider the polar decomposition of X, X = UA. Because
ker X = (0) and ran X is dense, A is a positive operator on S, and U:
M, — H, is an isomorphism. Now X*N* = N*X* so X*N,= N, X* A
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calculation shows that 4% = X*X €{N,}’, so A €{N,}". (Why?) Hence
NUA = N, X = UAN, = UN, 4; that is, N,U = UN, on the range of A. But
ker4 = (0), so ran A is dense in ;. Therefore N,U = UN,, or N, =
UNU™L. m

6.11. Corollary. Two similar normal operators are unitarily equivalent.

The corollary appears in Putnam [1951], while Proposition 6.10 first
appeared in Douglas [1969].

EXERCISES

—_

I P CRB(H), show that &' = &7

N

L If LCB(H), show that &’ is always a SOT closed subalgebra of Z(%).
3. Prove Proposition 6.1.

4. Let 5 be a Hilbert space of dimension a and define S: (™) — (=) by
SChy,hy,..)=(0, hy,hy,). S is called the unilateral shift of multiplicity a.
(a) Show that A = [A,,] €{%} if and only if A, = 0 for j>iand A,, =
A,y o1 for iz j. (b) Show that A = [A,] €{&}” if and only if A, = 0 for
J>iand A, = 4iv1,,+1 = @ multiple of the identity for i > j.

5. What is {N,®N,}"?{N, ® N,}"?

6. If & is a subalgebra of B(H#), show that & is a maximal abelian subalgebra
of B(s#) if and only if &/ =",

7. Find a non-normal operator that is similar to a normal operator. (Hint: Try
dim = 2)

8. Let p be a compactly supported measure on C and let )" be a separable Hilbert
space. A function f:C— X is a Borel function if f (G) is a Borel set when G
is weakly open in . Define L?>(p, ¥ )to be the equivalence classes of Borel
functions f:C— X such that f||f(x)|*dp(x)<o0. Define (f,g) =
(), g(x))dp(x) for f and g in L*(p, X#"). (a) Show that L*(p, X¥’) is a
Hilbert space. Define N on L%(u, ") by (Nf)(z) = zf(z). (b) Show that N is a
normal operator and o(N) = support g. Calculate N *. (c) Show that N EN‘L("),
where a = dim J". (d) Find { N }*. (Hint: Use 6.1.) (e) Find { N }".

9. Let # be separable with basis {e,}. Let A be the diagonal operator on #
given by Ae, = A,e,, where sup,|A,|< cc. Determine {A} and {A} . Give

n-ns

necessary and sufficient conditions on {A, } such that {A } = (A }”.

10. Let & be a C*-subalgebra of Z( ) but do not assume that & contains the
identity operator. Let & = V{ran A:A € &/ } and let P = the projection of #
onto . Show that SOT —cl &= "P = P&,
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§7. Abelian von Neumann Algebras

7.1.  Definition. A von Neumann algebra &/ is a C*-subalgebra of #(¢)
such that &= /.

Note that if & is a von Neumann algebra, then 1 € % and & is SOT
closed. Conversely, if 1 €& and & is a SOT closed C*-subalgebra of
HB(H), then & is a von Neumann algebra by the Double Cornmutant
Theorem.

7.2. Examples. (a) Z(s ) and C are von Neumann algebras.

(b) If (X, £,p) is a u-finite measure space, then .M”E{M¢:¢EL°°(M)}
C B(L*(p)) is an abelian von Neumann algebra by Theorem 6.6. In fact, it
is a maximal abelian von Neumann algebra.

It will be shown in this section that %/, is the only abelian von Neumann
algebra up to a *-isomorphism. However, there are many others that are
not unitarily equivalent to .

For o, CRB(X),j= 1, &, ® - is used to denote the I direct
sum of &), &,, ... . Thatis, &/, @/, ® --- = {4, &8 4,8 ---: 4, €,
for j> 1 and supjl4,|<oo}. Note that & @, @ --C B(H, ®
® ---) and [|[4,® A, &. .. | =supjl4,.

7.3. Proposition. (a) If ¥, %,,... are von Neumann algebras, then so is
o ® A, ® -+ . (b) 2f o is a von Neumann algebra and 1 <n <0, then
"M is a von Neumann algebra.

Proor. Exercise.
The proof of the next result is also an exercise.

7.4. Proposition. Let %, be a von Neumann algebra on X,,j=1,2.ZfU.
H,— H#, is an isomorphism such that Ust\U ' = of,, then Ust{U™ ' = ;.

Now let (X, £,p) be a u-finite measure space and define p: MM%M'}Z)
by p(T) = T® T Then pis a * -isomorphism. However, MM and Mﬂ(z) are
not spatially isomorphic. That is, there is no Hilbert space isomorphism U:
L*(p)— L*(p)® L*(p) such that UZ,U " = &/>. Why? One way to sce
that no such U exists is to note that &/, has a cyclic vector (give an
example). However, Mn(z) does not have a cyclic vector as shall be seen
presently (Theorem 7.8).

7.5. Definition. If &/ C #( ) and e, € I, then e, is a separating vector
for & if the only operator A in & such that de, = 0 is the operator
A =0
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If (X, Q, 1) is a u-finite measure space and f € L?(p) such that u({ x € X:
f(x) = 0} = 0 (Why does such an f exist?), then f is a separating vector for
«, as well as a cyclic vector. If &/=%( ), then no vector in X is
separating for &/ while every nonzero vector is a cyclic vector. If &/=C
and dim 5> 1, then & has no cyclic vectors but every nonzero vector is
separating for .

7.6.  Proposition. Ife,is a cyclic vector for &, then e, is a separating vector
for 7.

Proor. f TE€ " and Te, = 0, then for every A in &/,TAey= ATe, = 0.
Since Vle, = H#, T = 0. u

7.7. Corollary. Zf & is an abelian subalgebra of #B(#), then every cyclic
vector for & is a separating vector for «.

Proor. Because & is abelian, of C 7", [ |

Since #( )" =C, Proposition 7.6 explains some of the duality exhibited
prior to (7.6). Also note that if (X, £,p) is a finite-measure space, 1 & 0,
0@ 1,and 1 @ 1 are all separating vectors for & . Because &> # (),
the next theorem says that Mf) has no cyclic vector.

Although it is easy to see that conditions (a) and (b) in the next result are
equivalent, irrespective of any assumption on 3¢, the equivalence of the
remaining parts to (a) and (b) is not true unless some additional assumption
is made on ¥ or &/ (see Exercise 5). We are content to assume that # is
separable.

7.8. Theorem. Assume that  is separable and & is an abelian C *-subal-
gebra of B( ). The following statements are equivalent.

(a) & is a maximal abelian von Neumann algebra.

(b) o ="

(¢) & has a cyclic vector and is SOT closed.

(d) There is a compact metric space X, a positive Borel measure p with
support X, and an isomorphism U:L*(p)— 5 such that UMMU_1= .

Proor. The proof that (a) and (b) are equivalent is left as an exercise.

(b) = (¢): By Zorn 8 Lemma and the separability of 5, there is a
maximal sequence of unit vectors {e,} such that for n# m, cl[&e,] L
c[.«Ze,]. It follows from the maximality of {e,} that H#'=€ clf.Ze,].

Let e, = X5,/ V2". Since e, Le,, for n# m, |leg)|>=£27"= 1. Let
P, = the projection of 3 onto J, = cl{Ze,]. Clearly & leaves 3, in-
variant and so, since & is a *-algebra, S, reduces &7. Thus P, € &' =/
and cl[ ey} 2cl[Pe,] = cl{e,] = H#,. Therefore cl{ ey} = # and e,
is a cyclic vector for .



290 IX. Normal Operators on Hilbert Space

(¢) = (d): Since H is separable, ball &/ is WOT metrizable and compact
(1.3 and 5.5). By picking a countable WOT dense subset of ball & and
letting &7, be the C*-algebra generated by this countable dense subset, it
follows that &7, is a separable C*-algebra whose SOT closure is &. Let X
be the maximal ideal space of &7, and let p: C(X) = &/, C & CRB( ) be
the inverse of the Gelfand map. By Theorem 1.14 there is a spectral measure
E defined on the Borel subsets of X such that p(u) = fudE for u in C(X).
If ¢ € B(X) and {u,} is a net in C(X) such that fu; dv — [¢ dv for every
v in M(X), then p(u;) = fu,dE — [¢dE (WOT). Thus { f¢dE:p €
B(X)} c & since & is SOT closed.

Let e, be a cyclic vector for & and put p(4d) = HE(A)ey|* =
(E(A)ey, eyy. Thus {(f¢pdE)e,, e,) = [¢pdu for every ¢ in B(X). Con-
sider B(X) as a linear manifold in L*(x) by identifying functions that agree
a.c. [p]. If ¢ € B(X), then

[(feaz)e] = { foae)( foae)s

=f|4>|2du-

This says two things. First, if ¢ = 0 a.e.[p], then (f¢ dE)e, = 0. Hence U:
B(X) — 5 defined by U = (fpdE)e, is a well-defined map from the
dense manifold B(X) in L*(u) into 5. Second, U is an isometry. Since the
domain and range of U are dense (Why?), U extends to an isomorphism U:
L2(p) > .

If $€ B(X) and ¥ & L*(n), then UM = U(¥$) = ([¥$dE)e, =
(JWdEX [¢ dE)e, = ([ dE)Ué. Hence UMU ' = [¢ dE and U, U™ 'C
&Z. On the other hand, U.MMU'1 is a SOT closed C*-subalgebra of #()
that contains UC(X)U ' = o/,. (Why?) So U U '= .

Because &) is separable, X is metrizable.

(d) = (b): This is a consequence of Theorem 6.6 and Proposition 7.4.

|

7.9. Corollary. If &/ is an abelian C*-subalgebra of %B( ) and ¥ is
separable, then & has a separating vector.

Proor, By Zorn § Lemma, & is contained in a maximal abelian C *-alge-
bra, &,. It is easy to see that &7, must be SOT closed, so &, is a
maximal abelian von Neumann algebra. By the preceding theorem, there is
a cyclic vector e, for &Z,,. But (7.7) ey is separating for 7, and hence for
any subset of &7, ]

The preceding corollary may seem innocent, but it is, in fact, the basis for
the next section.
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EXERCISES

1.

11.

Prove Proposition 7.3

. Prove Proposition 7.4.
. Why are &/, and &42) not spatially isomorphic?

. Show that if X is any compact metric space, there is a separable Hilbert space

S and a * -monomorphism 7: C(X) — % (). Find the spectral measure for .

. Let & be an abelian C*-subalgebra of %(J#) such that &’ contains no

uncountable collection of pairwise orthogonal projections. Show that the follow-
ing statements are equivalent: (a) & is a maximal abelian von Neumann
algebra, (b) & =%"; (c) & has a cyclic vector and is SOT closed; (d) there is a
finite-measure space (X, £,p) and an isomorphism U;L*(p)— 5% such that
UJE/‘LU’1 = .

. Let {P,} be a sequence of commuting projections in #(#) and put A =

% ,37"(Q2P,— 1). Show that C*(A) is the C*-algebra generated by {P,}. (Do
you see a connection between A and the Cantor-Lebesgue function?)

. If & is an abelian von Neumann algebra on a separable Hilbert space 5, show

that there is a hermitian operator A such that %/ equals the smallest von
Neumann algebra containing A. (Hint: Let { P,} be a countable WOT dense
subset of the set of projections in % and use Exercise 6. This proof is due to
Rickart [1960], pp. 293-294.)

. If X is a compact space, show that C(X) is generated as a C*-algebra by its

characteristic functions if and only if X is totally disconnected. If A is as in
Exercise 6, show that a( A) is totally disconnected.

. If X and Y are compact spaces and 7: C(X) = C(Y) is a homomorphism with

7(1) = 1, show that there is a continuous function ¢:Y — X such that r(u) =
uo ¢ for every u in C(X). Show that 7 is injective if and only if ¢ is surjective,
and, in this case, T is an isometry. Show that 7 is sugjective if and only if ¢ is
injective.

. Let X and Z be compact spaces, Y = X X Z, and let ¢: Y — X be the

projection onto the first coordinate. Define 7: C(X) — C(Y) by 1(u)=u-°¢.
Describe the range of 7.

Adopt the notation of Exercise 9. Define an equivalence relation ~ on Y by
saying Y1 ~ ¥z if and only if é(y) =¢(y;). Let g¢: ¥ — Y/~ be the natural

map and g4: C( Y/ ~)— C(Y) the induced homomorphism. Show that there is
a * -epimorphism p: C(X) = C( Y/~ ) such that the diagram
T
C(X) —— CY)
PN 7 q*
Cy/~)

commutes. Find the corresponding injection Y/~—X
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12. If X is any compact metric space, show that there is a totally disconnected
compact metric space Y and a continuous surjection¢:Y — X. (Hint: Start by
embedding C(X) into B(I¢) and use Exercises 7 and 8.)

13. Show that every totally disconnected compact metric space is the continuous
image of the Cantor ternary set. (Do this directly; do not try to use C*-algebras.)
Combine this with Exercise 12 to get that every compact metric space is the
continuous image of the Cantor set.

14. If & is an abelian von Neumann algebra and X is its maximal ideal space, then
X is a Stonean space; that is, if U is open in X, then ¢l U is open in X.

15. This exercise assumes Exercise 2.21 where it was proved that %y = %. When
referring to the weak* topology on % = %( ), we mean the topology % has as
the Banach dual of £,. (a) Show that on bounded subsets of & the weak*
topology = WOT. (b) Show that a C*-subalgebra of %(s#) is a von Neumann
algebra if and only if & is weak* closed. (¢) Show that WOT and the weak*
topology agree on abelian von Neumann algebras. (d) Give an example of a
weak* closed subspace of & that is not WOT closed.

§8. The Functional Calculus for Normal Operators:
The Conclusion of the Saga

In this section it will always be assumed that
all Hilbert spaces are separable,

Indeed, this assumption will remain in force for the rest of the chapter. This
assumption is necessary for the validity of some of the results and minimizes
the technical details in others.

If N is a normal operator on J, let W*(N) be the von Neumann
algebra generated by N. That is, W*(N) is the intersection of all of the von
Neumann algebras containing N. Hence W*(N) is the WOT closure of
{p(N, N*): p(z,%) is a polynomialin z and Z}.

8.1. Proposition. If N is a normal operator, then W*N) = {N} 2
{¢(N): ¢ € B(a(N))}.

Proor. The equality results from combining the Double Cornmutant Theo-
rem and the Fuglede-Putnam Theorem. If ¢ € B(a(N)), N = [zdE(z),
and T€{NY}, then TE{ N, N*}’ by the Fuglede-Putnam Theorem and
TE(A) = E(A)T for every Borel set A by the Spectral Theorem. Hence
T+(N) = ¢(N)T since ¢(N) = [¢dE. |

The purpose of this section is to prove that the containment in the
preceding proposition is an equality. In fact, more will be proved. A
measure p whose support is a(N) will be found such that ¢(N) is well
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defined if ¢ & L (p) and the map ¢ — ¢( N) is a * -isomorphism of L (p)
onto W*(N). To find p, Corollary 7.9 (which requires the separability of
) is used.

By Corollary 7.9, W*IN), being an abelian von Neumann algebra, has a
separating vector e,. Define a measure u on o(N) by

8.2 p(4) = (E(A)eq, e0) = |E(A)ey).

8.3. Proposition. u(A)=0if and only if E(A)=0.

Proor If u(A) = 0, then E(A)e, = 0. But E(A) = x,(N)E W*(N).
Since e, is a separating vector, E(A) = 0. The reverse implication is clear.
|

8.4. Decfinition. A scalar-valued spectral measure for N is a positive mea-
sure u on a(N) such that u(A) = 0 if and only if E(A) = 0; that is, u and
E are mutually absolutely continuous.

So Proposition 8.3 says that scalar-valued spectral measures exist. It will
be shown (8.9) that every scalar-valued spectral measure is defined by (8.2)
where e, is a separating vector for W#*(N). In the process additional
information is obtained about a normal operator and its functional calculus.

If he s, let p,=E, , and let ), =cl[W *(N)h]. Note that ¢, is the
smallest reducing subspace for N that contains h. Let N, = N|5¢,. Thus N,
is a * -cyclic normal operator with +-cyclic vector A. The uniqueness of the
spectral measure for a normal operator implies that the spectral measure for
N, is E(A)|9#,; that is, x 4(N,) = X a(N)|, = E(A)|5¢,. Thus Theorem
3.4 implies there is a unique isomorphism U,: 3¢, — L*(u,) such that
U,h =1 and U,N,U; 'f = =f for all fin L?(p,). The notation of this
paragraph is used repeatedly in this section.

The way to understand what is going on is to consider each N, as a
localization of N. Since N, is unitarily equivalent to M, on L*(u,) we can
agree that we thoroughly understand the local behavior of N. Can we put
together this local behavior of N to understand the global behavior of N?
This is precisely what is done in $10.

In the present section the objective is to show that if his a separating
vector for W*(N), then the functional calculus for N is completely de-
termined by the functional calculus for N,. The sense in which this
determination is made is the following. If A & W¥*WN), then the defini-
tion of 5, shows that A, C H,. Since A* &€ WHN), s, reduces cach
operator in W*(N); thus A|#, is meaningful. It will be shown that the
map A — A, is a * -isomorphism of W*(N) onto W*(N,)if his a
separating vector for W*(N). Since N, is *-cyclic, Theorem 6.6 and
Corollary 6.9 show how to determine W *(N,).

We begin with a modest lemma.
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85. Lemma. Zf h € and p,: WHN) =W *(N,) is defined by p,(A) =
A\, then p, is a *-epimorphism that is WOT-continuous. Moreover, if
V€ B(o(N)), then pa(¥(N)) = ¥(N,) and if A € WHN), then there is a
¢ in B( 6( N,,)) such that p,(A) = ¢(N,).

ProOF. First let us see that p, maps W*(N) into W¥( N,). If p(z,z) is a
polynomial in z and Zz, then p,[ p(N,N*)] = p(N,,N*) as an algebraic
manipulation shows. If { p,} is a net of such polynomials such that
P,-(N, N*) _)A(WOT)’ then for fagin Xh’<pi(N7N*)fv g>_‘)<Afv g)’
thus p,(N,, N*)— p,(A)WOT) and so p,,(A) EW*(N,). It is left as an
exercise for the reader to show that p, is a *-homomorphism. Also, the
preceding argument can be used to show that p, is WOT continuous.

If &€ B(a( N)), there is a net { p,(z,z)} of polynomials in z and Z such
that [p,dv — f{ dv for every v in M(a(N)). (Why?) Since 6(N,)C u(N)
(Why?), fp,dn— [y dny for every nin M(o(N,)). Therefore p(N,N % —
Y(NYWOT) and p,(N,, N¥) > $(N,)XWOT). But p,(p,(N, N*)) =
PNy, Ny¥)and py(p (N, N#)) = pp(¥(N)); hence p,(Y(N)) = ¢(N,).

Let U,: #,— L*(p,) be the isomorphism such that Uh=1 and
U,NU'=N, . If A € W*(N) and A, = p,( A), then A,N, = N, A,
thus U,,A,,U,,‘le{NM}’. By Corollary 6.9, there is a ¢ in B(a(N,)) such
that U, A,U; ' =M,. 1t follows (How?) that A, = ¢$(N,).

Finally, to show that p, is surjective note that if B € W # N, ), then (use
the argument in the preceding paragraph) B = ¢(N,) for some ¢ in
B(o(N,)). Extend ¢ to u(N) by letting ¢ = 0 on o(N)\o(N,). Then
G(N) € WH(N) and P,(¥(N) =¢(N,)=B. =

8.6. Lemma. Zfe €5 such that p, is a scalar-valued spectral measure for N
and if v is a positive measure on u(N) such that v <<y, then there is an h in
H such that v = J,.

Prookr. This proof is just an application of the Radon-Nikodym Theorem
once certain identifications are made; namely, f=[dv/dp |'/?€L*(p,),
so put h = U 'f. Hence h € 5,. For any Borel set A, v(A) = [x,dv =
Ixaffdpe = (M, f, f) = (UM, f,UTf ) = (E(A)h,h) = py(B). m

87 Lemma. WHN) = {¢(N):¢ €B(c(N))}.

Proor. Let o/ ={¢(N):¢ €B(o(N))}. Hence & is a *-algebra and
& € WHN) by Proposition 8.1. Since N €4 it suffices to prove that & is
WOT closed. Let {¢,} be a net in B(a(N)) such that ¢,(N)— A (WOT);
s0o A € WXN). By (8.5) ¢;(N,)—> A|,(WOT) for any s in 5. Also, by
Lemma 8.5, for every A in S there is a ¢, in B(C) such that 4|5, =
¢,(N,). Fix a separating vector ¢ for W*(N); hence p, is a scalar-valued
spectral measure for N.

If h €5, then the fact that ¢,(N,)— ¢,(N,)WOT) implies ¢, = ¢,
weak* in L®(u,). Also, ¢,—~> ¢, weak* in L®(p,). But p, << p, so that
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dp,/dp,€ L'(p,); hence for any Borel set A
dp,
/;‘i)id,’l‘h - '/,;(i)id,'l‘g d,'l‘e - /;‘i)ed,’l‘h‘
But also
_/¢idﬂh - /‘f’hdﬂh-
4 A

So 0 = [4(¢,—¢,)dp, for every Borel set A. Therefore ¢, =, a.c. [y
But if 8 €%, then (Pn(Ni)8: 8) = ($x(N)8, 8) = [ordp, - [¢.dp,
since g, < g, Thus {Pa(Ny)8s 8) = (P(N,)g, 8); that is,¢s(N,)=
¢,(N,). In particular, Ah = ¢,(N,)h = ¢,(N,)h = ¢,(N)h. Since h was
arbitrary, A = ¢,(N). ]

8.8. Corollary. If p,: WXIN) —> W *( N, ) is the * -epimorphism of Lemma
8.5, then kerp, = {¢(N):¢ = 0 a.e.[u,l}.

8.9. Theorem. If N is a normal operator and e € 3, the following state-
ments are equivalent.

(a) e is a separating vector for W¥(N).

(b) p, is a scalar-valued spectral measure for N.

(c) The map p,; WHN) — W *( N,) defined in (8.5) is a * -isomorphism.
(d) (¢ € B(a(N)):9(N) = 0} = {¢E€B(a(N)):¢ = 0 ae. [p.]}-

Proor. (a) = (b): Proposition 8.3.

(b) = (c): By Lemma 8.5, p, is a *-epimorphism. By Corollary 8.8,
kerp, = {¢(N):¢ = 0 aec. [p,]}. Butif ¢ = 0 ac. [p.], (b) implies that
¢ = 0 off a set A such that E(A) = 0. Thus ¢(N)= [ dE = 0.

(¢) = (d): Combine (c) with Corollary 8.8.

(d) = (a): Suppose A € WHN) and Ae = 0. By Lemma 8.7, there is a ¢
in B(a(N)) such that ¢(N) = A. Thus, 0 = ||de|* = (A*4e, ¢) =
[1¢|*dp,. So ¢ =0 ae. [p.] By (d), A = 0. [

These results can now be combined to yield the final statement of the
functional calculus for normal operators.

8.10. The Functional Caleulus for a Normal Operator. Zf N is a normal
operator on the separable Hilbert space 3 and p is a scalar-valued spectral
measure for N, then there is a well-defined map p: L*(p)— WHN) given
by the formula p(¢)= ¢(N) such that

(a) p is a * -isomorphism and an isometry;
(b) p: (L (p), weak*) — (W¥N), WOT) is a homeomorphism.

Proor. Let € be a separating vector such that =g, [by (8.6) and (8.9)]. If
¢ € B(a(N)) and ¢ = 0 ae. [p], then ¢(N) = 0 by (8.9d); so p(¢) = ¢(N)
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is a well-defined map. It is left to the reader to show that p is a *-homo-
morphism. By Lemma 8.7, p is surjective. Also, if p{¢) = (P(N) = 0, then
¢ =0 ae. [p] by (8.9d). Thus p is a *-isomorphism. By (VIIL.4.8) p is an
isometry. (A proof avoiding (VIIL4.8) is possible-it is left as an exercise.)
This proves (a).

Let {¢;} be a net in L*®(u) and suppose that ¢;(N)—> O(WOT). If
fel(p)and f>0, fu < p = p,. By Lemma 8.6 there is a vector A such
that fu = p,. Thus [¢ fdu = [¢,dp, = ($,(N)h, h) — 0. Thus ¢,— 0
(weak*) in L™(u). This proves half of (b); the other half is left as an
exercise. L]

8.11. The Spectral Mapping Theorem. If N is a normal operator on a
separable space and p is a scalar-valued spectral measure for N and if
¢ L*(u), then af ¢( N)) = the p-essential range of .

Proor. Use (8.10) and the fact (2.6) that the p-essential range of ¢ is the
spectrum of ¢ as an element of L®(u). L |

8.12. Proposition. Let N, u,¢ be as in (8.11). If N = [zdE, then po¢ 'is
a scalar-valued spectral measure for ¢( N) and E° ¢~ ' is its spectral measure.

Proor. Exercise.

EXERCISES
1. What is a scalar spectral measure for a diagonalizable normal operator?

2. Let N, and N, be normal operators with scalar spectral measures p; and p,.
What is a scalar spectral measure for N, & N,?

3. Let {e,,} be an orthonormal basis for 5 and put p(4) =X, 2"||E(4A)e,|?.
Show that p is a scalar spectral measure for N.

4. Give an example of a normal operator on a nonseparable space which has no
scalar-valued spectral measure.

5. Prove that the map p in (8.10) is an isometry without using (VIIL.4.8).
6. Prove Proposition 8.12.

7. Show that if p and » are compactly supported measures on C, the following
statements are equivalent: (a) N, ® N, is *-cyclic; (b) W*(N,@N,) =
W*(N)®W*(N); (©) pLv.

8. If M and N are normal operators with scalar spectral measures g and v,
respectively, show that the following are equivalent: (a) W*(M & N) =
WH*M) & W*(N); (b) {M®NY}Y = {M) & {N}; (c) there is no operator A
such that MA = AN other than A = 0; (d) p L.

9. If M and N are normal operators, show that C*( M & N) = C¥M) & C*(N)
ifandonlyife(M) n a(N) = 0.
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10. Give an example of two normal operators M and N such that W*( M & N) =
W(M) ® W¥N) but C*( M & N) + C¥M) & C*N). In fact, find M and
N such that W* M & N) splits, but aM) = ufN).

L1. If U is the bilateral shift and ¥ is any unitary operator, show that W*( U ® V)
= W¥*U) & W*V) if and only if V' has a spectral measure that is singular to
arc length on JD.

12. If & is an abelian von Neumann algebra on a separable space, show that there
is a compactly supported measure p on R such that & is *-isomorphic to
L>*(p). (Hint: Use Exercise 7.7.)

13. (This exercise assumes a knowledge of Exercise 2.21). Let N = [zdE(z)be a
normal operator with scalar-valued spectral measure p and define a: &, () —
L}(p) by a(T)(A) = t( TE( A)). Show that a is a surjective contraction. What is
a*? [L'(u) is identified, via the Radon-Nikodym Theorem, with the set of
complex-valued measures that are absolutely continuous with respect to p.]

§9. Invariant Subspaces for Normal Operators

Remember that we continue to assume that all Hilbert spaces are separable.

Every normal operator on a Hilbert space of dimension of at least 2 has a
nontrivial invariant subspace. This is an easy consequence of the Spectral
Theorem. Indeed, if N = /z&(z), E(A).% is a reducing subspace for
every Borel set A.

If A €%B(3¥), # is a linear subspace of #, and P is the orthogonal
projection of 3# onto 4, then 4 reduces A if and only if P€ {A} . Also,
A € Lat A (= the lattice of invariant subspaces for A) if and only if
AP = PAP. Since the spectral projections of a normal operator belong to
W*(N), they are even more than reducing.

9.1. Definition. An operator A is reductive if every invariant subspace for
A reduces A. Equivalently, A is reductive if and only if Lat A = Lat A*.

Thus, every self-adjoint operator is reductive. Every normal operator on a
finite-dimensional space is reductive. More generally, every normal compact
operator is reductive (Ando[1963]). However, the bilateral shift is not
reductive. Indeed, if U is the bilateral shift on [%(Z), #={f €1*(Z):
fin) = 0 if n< 0} € Lat U, but 3£¢€ Lat U*. Wermer [1952] first studied
reductive normal operators and characterized the reductive unitary oper-
ators. A first step towards characterizing the reductive normal operators will
be taken here. The final step has been taken but it will not be viewed in this
book. The result is due to Sarason[1972]. Also see Conway [1981],§ VILS.

9.2. Definition. If u is a compactly supported measure on C, P (p)
denotes the weak* closure of the polynomials in L™(u).
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Because the support of p is compact, every polynomial, when restricted to
that support, belongs to L*(u).

For any operator A, let W(A) denote the WOT closed subalgebra of
B( ) generated by A; that is, W(A) is the WOT closure in B(H#) of the
polynomials in A. The next result is an immediate consequence of The
Functional Calculus for Normal Operators.

9.3. Theorem. If N is a normal operator and p is a scalar-valued spectral
measure for N, then the functional calculus, when restricted to P*(p),is an
isometric isomorphism p: P®(p) —» W(N) and a weak*-WOT homeomor-
phism. Also, p(z) = N.

9.4. Definition. An operator A is reflexive if whenever B € Z(3# ) and
LatAC Lat B, then B € W(A).

It is easy to see that if B € W(A), then Lat A C Lat B (Exercise). An
operator is reflexive precisely when it has sufficiently many invariant sub-
spaces to characterize W(A). For a survey of reflexive operators and some
related topics, see 5adjavi and Rosenthal [1973].

9.5. Theorem. (Sarason[1966).). Every normal operator is reflexive.

ProoF. Suppose N is normal and Lat N C Lat A. If P is a projection in
{NY}, then P and (P#)* € Lat N C Lat 4, so AP = PA. By Corollary
6.5, A € WHN). Let 4 be a scalar-valued spectral measure for N. By
Theorem 8.10, there is a ¢ in L>(p) such that A = ¢(N). By Theorem 9.3,
it must be shown that ¢ € P>(p).

Now let s focus our attention on a special case: Assume that N is
*-cyclic; thus N = N,. Suppose f€L'(p) and [fydu =0 for every ¢ in
P>(p). If it can be shown that [f¢du =0, then the Hahn-Banach Theo-
rem implies that ¢ € P*(p). This is the strategy we follow. Let f= gh for
some g, hin L*(p). Put A = V{ z*g: & = O}. Clearly # € Lat N, so
M€ Lat A = Lat ¢( N) = Lat M,. Hence ¢g &€ A. But 0 = [z¥fdp =
[z*ghdp = (N*g, h) for all k >0; hence h L .#. Thus 0 = (¢g, h) =
Joghdp = [¢fdp, and ¢ € P*(p).

Now we return to the general case. By Theorem 8.9 there is a separating
vector ¢ for W*(N) such that p(A) =||E(A)el|?, where N = [2dE(z). Let
H'=V{ N *NJe:k, j = 0}. Clearly X reduces N and N|#" is *-cyclic.
Hence X reduces A and A|X'=¢(N[X'). By the preceding paragraph
€ P(p). =m

An immediate consequence of the preceding theorem is the first step in
the characterization of reductive normal operators.
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9.6. Corollary. If N is a normal operator and p is a scalar spectral measure
for N, then N is reductive if and only if P®(p) = L®(p).

Proor. If # € Lat N, then # € Lat ¢(N) for every ¢ in P*(u). So if
P>(p) = L*®(p),Z € P*(p) and, hence, # € Lat N* whenever Z €
Lat N.

Now suppose N is reductive. This means that Lat N C Lat N *. By the
preceding theorem, this implies N* € W(N); equivalently, z € P®(u).
Since P™(p) is an algebra, every polynomial in z and Z belongs to P*( ).
By taking weak* limits this implies that P*(p) = L>(p). ]

The preceding corollary fails to be a good characterization of reductive
normal operators since it only says that one difficult problem is equivalent
to another. A way is needed to determine when P*(p) = L*(p). This is
what was done in Sarason [1972].

Are there any reductive operators that are not normal? This natural and
seemingly innocent question has much more to it than meets the eye. Dyer,
Pedersen, and Porcelli[1972] have shown that this question has an affirma-
tive answer if and only if every operator on a Hilbert space has a nontrivial
invari/ant subspace.

EXERCISES

1. (Ando[1963].) Use Corollary 9.6 to show that every compact normal operator is
reductive.

2. Determine all of the invariant subspaces of a compact normal operator.

3. (Rosenthal [1968].) Show that every reductive compact operator is normal.

§10. Multiplicity Theory for Normal Operators:
A Complete Set of Unitary Invariants

Throughout this section only separable Hilbert spaces are considered.

When are two normal operators unitarily equivalent? The answer to this
question must be given in the following way: to each normal operator we
must attach a collection of objects such that two normal operators are
unitarily equivalent if and only if the two collections are equal (or equiv-
alent). Furthermore, it should be easier to verify that these collections are
equivalent than to verify that the normal operators are equivalent. This is
contained in the following result due to Hellinger [1907]. Note that it
generalizes Theorem 3.6.
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10.1. Theorem. (a) If N is a normal operator, then there is a sequence of
measures {p,} ( possibly finite) on C such that p, + | << p, for all n and

10.2 N=N, &N &. ...

(b)If Nand {p,} areasin(a)and M =N, & N, & ---, where v, | <,
for all n, then N = M if and only if [n,] = [v,] for all n.

The proof of this theorem requires several lemmas. Before beginning, we
will examine a couple of false starts for a proof. This will cause us to arrive
at the correct strategy for a proof and show us the necessity for some of the
lemmas.

Let N = [zdE(z). If e € and 5, = clfW*(N)e], then N|3#, is a
*-cyclic normal operator. An application of Zorn § Lemma and the sep-
arability of 5 produces a maximal sequence {e,} in J# such that
o, L ¥, . By the maximality of e,, #'=@ i, .1f N,=N|#, N,=N,,
where p,(A)=|E(A)e,|% thus N = '® N, . The trouble Here 1§ that T
is not necessarily absolutely continuous w1th respect to p,,. Just using Zorn §
Lemma to \produce the sequence { i, } eliminates any possibility of having
{p,} canonical and producing the unitary invariant desired for normal
operators. Let’s try again.

Note that if p,,, <p, for all » in (10.2), then p, << p,; for all . This
in turn implies that w; is a scalar-valued spectral measure for N. Using
Lemma 8.6 we are thus led to choose p, as follows. Let e; be a separating
vector for W*(N); this exists by Corollary 7.9 and the separability of 3.
Put p,(4) = [|[E(4)e,||* If ) = cl[W*(N)e,], then N|J#;=N,. Let
N, = N|3#,*; so N, is normal. A pair of easy exercises shows that the
spectral measure E, for N, is given by E,(A) = E(A)|5#," and W*(N,) =
W*(N)H#E (= (A € B(H): A = T, for some T in W*(N)}).
Let e, be a separating vector for W *(N,) and put u,(4) = ||E,(A)e,|>. B
the easy exercises above, p,(4) = ||E(A)e,||?, so that pu, <<, and 3 =
c[W*(N)e,] = cl[W*(N,)e,] <+ . Also, N|o#, =N,

Continuing in this way produces a sequence of vectors {e,} such that if

= cl[W*(N)e,] and u,(A) = |[E(A)e,||% then I, L 5, for n + m,
‘U."+1 < p,, and N, =N, . The difficulty here is that S is not neces-
sarily equal to @€, so that N and &, N, cannot be proved to be
unitarily equivalent. (Actually, N and @ N e, "are unitarily equivalent, but
to show this we need the force of Theorem 10.1. See Exercise 2.) The
following provides us with a look at an example to see what can go wrong.

10.3. Example. For n = 1 let g, = Lebesgue measure on [0, 1 +2"]and
let Mo = Lebesgue measure on [0, 1]). Put N = GB:LIN#”@N“&. If the
process of the preceding paragraph is followed, it might be that vectors {e,}
that are chosen are the vectors with a 1 in the L?(g,) coordinate and zeros
elsewhere. Thus the spaces {J#,} are precisely the spaces { L*(p,)} and
[@ 596,14 = L),
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(Nevertheless, N =@ °N, . Indeed, let v, =p,|[1,1+2 "};s0 p, = p
+v, and p, L, Thus N N ®N, . Therefore

N = eBlNMeaNﬂw

n

®FN, ® N\ @ N,

il

DN, & Nu(f)

I

SN, )

After an examination of the statement of Theorem 10.1, it becomes clear
that some procedure like the one outlined in the paragraph preceding
Example 10.3 should be used. It only becomes necessary to modify this
procedure so that the vectors {e,} can be chosen in such a way that
H# =@, For example, let, as above, e; be a separating vector for
W*(N) and let { f,} be an orthonormal basis for 5# such that f; = e,. We
now want to choose the vectors {e,} such that {fi,...,f,}C
® --- @5, In this way we will meet success. The vital link here is the next
result. |

104. *position. If N is a normal operator on 3 and e € 3¢, then there is
a separating vector ey for W¥N) such that e€cll W *( N)ey].

ProoF. Let f, be any separating vector for W*(N), let E be the spectral
measure for N, let p(A) =||E(A)fl|%, and put ¥=cl[W*(N)f,]. Write
e=g, +h,, where g, €% and €9+

Let n(4) = ||[E(A)A]|? and let L=cl[W*(N)h,]. Hence n< g, N is
reduced by both & and &, and £ L 9. Moreover, N|¥ =N, and NZ= N,
Now the fact that << p implies that there is a Borel set A such that
[n] =[pnl4d]. (Why?) Hence N|F=N, if v = uJA (Theorem 3.6). Let U:
e L LY (p)®L*(v) be an isomorphism such that U(N|9 & L)U ! =
N,®N,. Since e =g, + h€9 DL, let Ue = g & h. Because hyis a
*_cyclic vector for N| &, h(z) # 0 a.e. [v].

This reduces the proof of this proposition to proving the next lemma. ®

10.5. Lemma. Let g be a compactly supported measure on C, A a Borel
subset of the support of p,andputv = p|A. Zf N = N,® N, on Lz(,u)@Lz(v)
andg ®heL*(p)®L*(v) such that h(z) +0a.e. [v] then there is an f in
L? (1) such that f ® h is a separating vector for WXN) and g ®h €
c[W*(N)(f & h)].

Proor. Define flz) = g(z) for z in A and ffz) = 1 for z not in A. Put
H=cll W 5N)( f ® h)] = clf ¢f Ddh:p€ L™(pn)} since p is a scalar-val-
ued spectral measure for N. If A = the complement of A, then note that
OX 4 ® 0 = dxX4(fO ) €3 for all ¢ in L=(p). Hence L*(pjA)® 0 C #.
This implies that (1 — g)x, ®0€ X, sog@h=f@h— (1 —g)x, ®0
€ H.
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On the other hand, if ¢ € L®(p) and 0 = ¢f & ¢h, then of =0h =0
a.e. [p]. Since A(z) # 0 ae. [»], ¢(z) =0 ae. [p] on A. But for z in A
f(z) =1; hence ¢(z) =0 ae. [p]on A Thus, f® hisa separating vector
for W*(N) ]

PROOF OF THEOREM 1.10 (a): Let e, be a separating vector for W*(N) and
let {f,} be an orthonormal ba51s for  such that f, =e,. Put # =
c{W*(N)e,), p(4)=|E(A)e,|’, and N, = N|#L. Let fy = the or-
thogonal projection of f, onto 5#,* . By Proposition 10.4 there is a separat-
1ng vector e, for W*(N,) such that fy € cl{ W *(N,)e,] = #,. Note that

= Cl[W*(N)eyland { fy, fy} € #, @ ;. Put py(4) = [|E(A)es|| Now
contlnue by induction. L]

Now for part (b) of Theorem 10.1. If {u,] = [»,] (the notation is that of
Theorem 10.1) for every n, then N, w, = N, by Theorem 3.6. Therefore
N = M. Thus it is the converse that causes difficulties. So assume that
N=MItMe B(X), U: #- X is an isomorphism such that UNU ! =
M, and e, is a separating vector for W*(N), then Ue, = f1 is easily seen to
be a separating vector for W*(M). Since p, and v, are scalar-valued
spectral measures for N and M, respectively, it follows that | gl = [v,]; thus
N, = N, by Theorem 3.6. However, here is the difficulty—the isomor-
phism that shows that N,, =N, may not be related to U; that is, if
H= 8 K, = dx,, where N|9£’ N, and M\|X, , then N|#
=M If 1 but we do not know that Ux¥| = Ji” Thus we want to argue that
because N = M and N|J#, = M|¥, then N|9£”l = M|o¢;* . In this way we
can prove (10.1b) by induction. This step is justified by the following.

10.6. Proposition. If N, A, and B are normal operators, N is *-cyclic, and
N@®A=No®B, then A =B.

PROOF. Let N € B(X'), A € B(H,), B € B(H;), and let U: e H, -
XH'® Hp be an isomorphism such that UN @ A)U ! = N @ B. Now U can
be written as a 2 X 2 matrix,

U U
U= I: 11 12],
Uy Uy
where Uy: H'— o, Uy K, »> X, Uy K> Hy, Uy H, — H#p. Ex-
pressing N @& A and N @ B as
N 0 N 0
[o A] and [0 B]
respectively, the equation U(N @ A) = (N @ B)U becomes

[UHN UIZA}_[NUH NUIZJ

107 UpN U4 BU, BU, |
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Similarly, U(N @ A)* = (N @ B)*U becomes
U,N* Up,Aa*
UyN* Upd*
Parts of the preceding equations will be referred to as (10.7),, and (10.7)F,
i, j=12

An examination of the equations U*U =1 and UU * = 1, written in
matrix form, yields the equations

N*U,, N*U,
B*U,y, B*U,,

10.7*

(a) Uil + UitUy, = 0 (on #,)
10.8 (b) Ul +UpUs =1 (on X')
/ (¢) UyUpdt + UU% = 0 (on X7) .

Now equation (10.7),, and Proposition 6.10 imply that (ker U,,) " reduces
A, cl(ranU,,) = (ker U)* reduces B, and

10.9 Al(ker Uy) " = B|(ker Us) " .

What about A|ker U,, and Blker UX? If they are unitarily equivalent, then
A =B and we are done. If & € ker Uy, C J#,, then

Uy Uy H _ [

U, U,l|h 0
Since U is an isometry, it follows that U, maps ker U,, isometrically onto a
closed subspace of . Put #; = U,(kerU,;). Equations (10.7);, and
(10.7)¥, and the fact that ker U,, reduces A imply that 4, reduces N.
Thus, the restriction of Ui, to kerA,, is the required isomorphism to show

that
10.10 Alker U,; = N\#,.

Similarly, U,¥ maps ker U3 = (ranUy)* isometrically onto 4, =
Upjker Up%), # , reduces N, and

10.11 BlkerUj = N\A ,.

Note that if 4, = .#,, then (10.9),(10.10), and (10.11) show that A = B.
Could it be that ., and A, are equal?

If h € ker U,,, then (10.8a) implies that U*U,,h = — U,¥U,,h = 0. Hence
M = U (ker Uy) C ker Ut On the other hand, if f € ker U, then (10.8b)
implies f= (U, UX + U,U%)f = UpUs £ But by (10.8¢), UU3f =
—UyUt f= 0, so UL f€ ker Uy,. Hence f€ Up,(kerUy). Thus,

M =ker U,
Similarly,
./”2 = ker Ull'



304 IX. Normal Operators on Hilbert Space

Until this point we \\lave not used the fact that N is *-cyclic. Equation
(10.7),, implies that U;; € {N} . By Corollary 6.9 this implies that U, is
normal. Hence, ker U} = ker U, or A= M ,. ]

If the hypothesis in the preceding proposition that N is *-cyclic is
deleted, the conclusion is no longer valid. For example, let N and A be the
identities on separable infinite-dimensional spaces and let B be the identity
on a finite-dimensional space. Then N & A =N @ B, but A and B are not
equivalent. However, the requirement that N be * -cyclic can be replaced by
another, even when N, A, and B are not assumed to be normal. For the
details see Kadison and Singer [1957].

The proof of Theorem 10.1(b) is now a straightforward argument as
outlined before the statement of Proposition 10.6. The details are left to the
reader.

If p and v are measures and ¥ <y, then there is a Borel set A such that
[v]=[n|A]. Using this fact, Theorem 10.1 can be restated as follows.

10.12.  Corollary. (a) If N is a normal operator with scalar spectral measure
M, then there is a decreasing sequence {A, } of Borel subsets of a(N) such
that A, = a(N) and

N;Nu@NulAz@Nulda@

() If M is another normal operator with scalar spectral measure v and if
{2} is a decreasing sequence of Borel subsets of 6{M ) such that M =N, ®
Nz, ®N, =, ® -, then N =M if and only if (i) (] = [v] and (ii)
p(A,\2,) =0=pE,\4,) for al n

10.13. Example. Let p be Lebesgue measure on [0, 1] and let @, be
Lebesgue measure on [l + 1,1/n] forn= 1. (So p=2p,.) Let N = N,
& NP @ N®@-.. The direct sum decomposition of N that appears in
Corollary 10.12 is obtained by letting A, = [0,1/n], n > 1. Then N =N,
® Nyja, ® Nya, @ -+ -

What does Theorem 10.1 say for normal operators on a finite-dimensional
space? If dim #<co, there is an orthonormal basis {e,} for 7 consisting
of eigenvectors for N. Observe that N is cyclic if and only if each eigenvalue
has multiplicity 1. So each summand that appears in (10.2) must operate on
a subspace of J# that contains only one basis element e, per eigenvalue.
Moreover, since p, is a scalar spectral measure for N, it must be that the
first summand in (10.2) contains one basis element for each eigenvalue for
N. Thus, if aN)= {A;,A,,..., A}, where A, #)\j for i # j, then (10.2)
becomes

10.14 N =D,®D,®---®D,,
where D, = diag(A,A,,...,A,) and, for £ > 2, D, is a diagonalizable
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operator whose diagonal consists of one, and only one, of each of the
eigenvalues of N having multiplicity at least k.

There is another decomposition for normal operators that furnishes a
complete set of unitary invariants and has a connection with the concept of
multiplicity. For normal operators on a finite-dimensional space, this de-
composition takes on the following form.

Let A , = the eigenvalues of N having multiplicity & So for A in A,
dim ker(N—A) =k If A, = (A1 <j<m,}, let N, be the diagonaliz-
able operator on a km, dimensional space whose diagonal contains each
A repeated k times. So N =N @&N,®...8N, if oN) = A,
U -+ uA, Now a( Ny)=A, and each elgenvalue of Nk has multiplicity
k. Thus N,(_AS("), where A, is a diagonalizable operator on an m
dimensional space with o(A4,) = A,. Thus

10.15 N=zA odPe... 04,

and o(A;)No(A4;)=0 for i # .
Now the big advantage of the decomposition (10.15) is that it permits a
discussion of { N }’. Because the spectra of the operators A, are disjoint,

(N} = (M) e{N} e - ofN}.

(Why?) If 56 =ker(N —A{®), then dim H 9 =k and @) = the
domain of N,. Since )\(");é)\(") for i # J,

(NY =8(HP) e oz( £5),

and each #( X)) is isomorphic to the & X k matrices.

The decomposition of an arbitrary normal operator that is analogous to
decomposition (10.15) for finite-dimensional normal operators is contained
in the next result. The corresponding discussion of the cornmutant will
follow this theorem.

10.16. Theorem. If N is @ normal operator, then there are mutually singular
measures f My, ho,... (Some of which may be zero) such that

= N () Dg ...
N_N#:}o GBNMGBN#2 5]

Zf M is another normal operator with corresponding measures v,.,v,,v,,...
then N =M if and only if [p,]=[v,1for 1 <n <co.

»

Proor. Let p be a scalar spectral measure for N and let {A,,} be the
sequence of Borel subsets of u(N) obtained in Corollary 10.12. Put 2.

n:o=lA" and Zn = An\An+l fOr 1 n <w let lu'n - nu'lzn’ n < 00.
Put Vn=|u'|An’1sn<w‘ Now A’ - 2:oo[J(An\An-#l)]J(Arr+l\An+2)
U~.'=200U2nu2n+lu.."Hence l)n=|""oo+l""n_*_nu'n+l-'-”'

and the measures ., H,, K, 1,--- are pairwise singular. Hence N, =N,
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® N, &N,  ---.Combining this with Corollary 10.12 gives
N =N, eN, &N, &...

=(V,_eN ®N, ®.--)&(N,_®N, &N, &. -)
®(N,_@N, &N, & )&

= N(®) () 3)
=N>'eN, eNeNS . ...
The proof of the uniqueness part of the theorem is left to the reader. W

Note that the form of the normal operator presented in Example 10.13 is
the form of the operator given in the conclusion of the preceding theorem.

Now to discuss { N }". Fix a compactly supported measure g on € and let
J, be an n-dimensional Hilbert space, 1 <n <oo. Define a function f:
C— %, to be a Borel function if z — (f(z), g) is a Borel function for
cach g in 5. 1If f:C— 5, is a Borel function and {e,} is an orthonormal
basis for J,, then If(2)I% = £,1(f(2).¢,)[% so z = [f(2)|I* is a Borel
function. Let L*(p;#,) be the space of all Borel functions f:C— %,
such that INI> = [lIf(2)||* dr@)< oo, where two functions agreeing a.e. [p]
are identified. If f and g € L*(p; 5%, (£, g = [{f(2), g(2)) du( z) de-
fines an inner product on L%(p;J3#,). It is not difficult to show that
L*(p; 5#,) is a Hilbert space.

10.17.  Proposition. If N is multiplication by z on L*(p;¥,,), then N =N\".

Proor. Let{e;:1<j<n}be an orthonormal basis for 5, and define U:

L2(; ) = L2(0)™ by Uf = ((f(-),€1),{f(-),€2), . .). Then U is an
isomorphism and UNU™!= N}L"". The details are left to the reader. [ ]

Combining the preceding proposition with Proposition 6.1(b), we can find
{N} namely, { N}’ = all matrices (T;,) on Z(L*(p)") such that

T,,€{N,}’ for all i, j. By Corollary 6.9, {N(")} = all matrices (M,, ) that
belong to B(L*(n)"), such that b, ELw(u) Now the idea is o use
Proposition 10.17 to bring this back to B(L*(w; %)) and describe { N }".

A function ¢:C— #(5,) is defined to be a Borel function if for each f
and g in £,z (¢(z)f,g is a Borel function. If { f,} is a countable
dense subset of the unit ball of 5,[l¢(2)ll = sup{ [{¢(2)f, f[)I:1<i, j<
00}, s0 z —||¢(2)|| is a Borel function. Let L*(u; #(5#,)) be the equivalent
classes of bounded Borel functions from € into #(5¢,) furnished with the
p-essential supremum norm.

If ¢ € L°(p; B(X,)) and f € L*(p; #,), let f(z) = Lf(z)e;, where
{e,} is an orthonormal basis for £, and f(z)_ (f(z), e) S0 }:[f(z)]2
If()> Thus ¢(z)f(z) = L f(z)qb(z)e So for any e in ¥,
((2)f(2),e) = Lfi(2){(¢¢ gej,i$ a Borel function. It is easy to check
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that ¢f € L(p; #,) and (] < (Il Let M, Ly #,) —
L?(p; 5£,) be defined by M,f = ¢f. Combined with the preceding remarks,
the following result can be shown to hold. (The proof is left to the reader.)

10.18.  Proposition. ZfN is multiplication by z on L>(w; 3,), then
(N} = (M eeL"(u; B(H))].
Also, |Myll = |19l for every ¢ in L=(p; B(I,)).

The next lemma is a consequence of Proposition 6.10 and the fact that
unitarily equivalent normal operators have mutually absolutely continuous
scalar-valued spectral measures.

10.19. Lemma. Zf N, and N, are normal operators with mutually singular
scalar spectral measures and XN;= N, X, then X = 0.

Using the observation made prior to Corollary 6.8, the preceding lemma
implies that { Ny@ N, }’  ={N,;}  ®{N,}’ whenever N, and N, are as in
the lemma.

The next theorem of this section can be proved by piecing together
Theorem 10.16 and the remaining results of this section. The details are left
to the reader.

10.20. Theorem. Zf N is a normal operator on S, there are mutually
singular measures p,fy, ], ... andan isomorphism

U: > L (po; #,) © Lpy) @ L2(py; #5) @ - -
such that
UNU'=N_ &N &N, -
where N, = multiplication by z on L*(p,; ). Also,
{(N,@NON,® - ) =L"(p,; B(H,)) & L™(p,)
& L*(py; B(H)) @ - - -

Using the notation of the preceding theorem, if p is a scalar-valued
spectral measure for N, then there are pairwise disjoint Borel sets A,, A,, ...
such that [p,]=[pl4,] Define a function my:C—{0,1,...00} by letting
My = 00Xa_ + Xa, *+ 2Xa, T - - As it stands the definition of m, de-
pends on the choice of the sets {A,, } as well as N. However, any two choices
of the sets {4,} differ from one another by sets of p-measure zero. The
function m 5 is called the multiplicity function for N. Note that m y is a
Borel function.

If m: €© - {0,0,1,2,...} is a Borel function and p is a compactly
supported measure such that p({z: m(z) = 0}) =0, let A, = {z: m(z) =
n},n=00,12...1f N, =N, then N = NS ON &N ®--is a
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normal operator whose spectral measure is u and whose multiplicity func-
tion agrees with m a.e. [u].

10.21. Theorem. Two normal operators are unitarily equivalent if and only if
they have the same scalar-valued spectral measure p and their multiplicity
functions are equal a.e. {p].

There is some notation that is used by many and we should mention its
connection with what we havejust finished. Suppose m: € —{c0,0,1,2,...}
is a Borel function and p is a compactly supported measure on € such that
p({z2m(z) = 0})) = 0. If ze€C let #(z) be a Hilbert space of dimension
m(z). The direct integral of the spaces S(z), denoted by [#(z)dp(z), is
precisely the space

L*(pld; ) @ L2(pld)) © L (pdy; 565) @ - - -,

where A, = {z: m(z) = n} and dim 5, =n. If $:C—> B(H#,) u Z(C) u
B(H5)u ... such that ¢(z)EB(H,) when z € A,,, ¢: A, > FB(H) s a
Borel function, and there is a constant M such that ||¢(z)||< M ac. [u],
then f¢(z)dp(z) denotes the operator My, & My, @--- as in (10.20).
Although the direct integral notation is quite suggestive, one must revert to
the notation of (10.20) to produce proofs.

Remarks. There are several sources for multiplicity theory. Most begin by
proving Theorem 10.16. This is done for nonseparable spaces in Halmos
[1951] and Brown [1974]. Another source is Arveson [1976], where the
theory is set in the context of C*-algebras which is its proper milieu. Also,
Arveson shows that the theory can be applied to some non-normal oper-
ators. The details of this more general multiplicity theory are carried out in
Ernest [1976] as part of a more general classification scheme. Another
source for multiplicity theory is Dunford and Schwartz [1963].

By Theorem 4.6, every normal operator is unitarily equivalent to a
multiplication operator M, on L*(X,,p) for some measure space (X, £, ).
The scalar-valued spectral measure for M, is po ¢~ 1. What is the multiplic-
ity function for M¢? One is tempted to say that m,,,,(z) = the number of
points in ¢ ~!(z). This is not quite correct. The answer can be found in
Abrahamse and Kriete [1973]. Also, Abrahamse [1978] contains a survey of
spectral multiplicity for normal operators treated from this point of view.

EXERCISES

1. Let A and B be operators on » and X, respectively. Let 5%, and X be
reducing subspaces for A and B and suppose that A = B|¥; and B = A |4,
Show that A = B.

2. Let py, 1o, . .. be compactly supported measures on C such that p,, , , << p,, for
all n. Show that if M is any normal operator whose spectral measure is
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10.

11.
12.

13.

14.

absolutely continuous with respect to each u,, then N,®N, & =
N,®..)eM

N
z
52}

(231

If o = Lebesgue measure on [0,1], show that N, =NF for 0 < p<oo.

Let p = Lebesgue measure on [0, 1] and characterize the functions ¢ in L™ (p)
such that N, =¢(N,).

. Let p = area measure on D and show that N, and M} are not unitarily

equivalent.

Let p = Lebesgue measure on [0, 1] and let v = Lebesgue measure on [ — 1, 1].
Show that M25M$M. How about N}>?

. Let p be Lebesgue measure on R and N = multiplication by sin x on L?( ).

Find the decompositions of N obtained in Theorems 10.1 and 10.16.

. If p is Lebesgue measure on R and N = multiplication by e'* on L?(g), show

that N = N!®) where m = arc length measure on dD.

Define U:L*(R)— L*>(R) by (Uf)(¢) = f(t— 1). Show that U is unitary and
find its scalar-valued spectral measure and multiplicity function.

Represent N as in Theorem 10.1 and find the corresponding representation for
N &N = N@; for N®, for N, (Are you surprised by the result for N(*)?)

Prove the results and solve the exercises from § 11.8.

Let N be a normal operator and show that N =N if and only if there is a
* _cyclic normal operator M such that N = M(*®), What does this say about the
multiplicity function for N?

Let ( X,8,p) be a measure space such that L2 () is separable, let ¢ € L®(p),
and let N = M, on L?(p). Find the decompositions of N obtained in Theorems
10.1 and 10.16.

Let u be a compactly supported measure on C,¢ a bounded Borel function on
C, and suppose {A,, } are pairwise disjoint Borel sets such that ¢ is one-to-one
on each A,, and p(C\UF.,4,) = 0. Let ¢, = x4, and g, = pog ! for
nx 1. Prove that M, on L*(p) is unitarily equivalent to GB:;INM".



CHAPTER X

Unbounded Operators

It is unfortunate for the world we live in that all of the operators that arise
naturally are not bounded. But that is indeed the case. Thus it is important
to study such operators.

The idea here is not to study an arbitrary linear transformation on a
Hilbert space. In fact, such a study is the province of linear algebra rather
than analysis. The operators that are to be studied do possess certain
properties that connect them to the underlying Hilbert space. The properties
that will be isolated are inspired by natural examples.

All Hilbert spaces in this chapter are assumed separable.

§1. Basic Properties and Examples

The first relaxation in the concept of operator is not to assume that the
operators are defined everywhere on the Hilbert space.

1.1. Definition. If ¥, are Hilbert spaces, a linear operator A: #—> X
is a function whose domain of definition is a linear manifold, dom A, in J#
and such that A( af + Bg) = aAf + BAg for f, g in dom A and a, B in C.

A is bounded if there is a constant ¢ > 0 such that ||Af)| <c|if]} for all f in

dom A.

Note that if A is bounded, then A can be extended to a bounded linear
operator on cl[dom A] and then extended to J# by letting A be 0 on
(dom A)*. So unless it is specified to the contrary, a bounded operator will
always be assumed to be defined on all of 7.
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If A is a linear operator from S into ", then A is also a linear operator
from cl[dom A] into #". So we will often only consider those A such that
dom A is dense in J#; such an operator A is said to be densely defined.
Z(H) still denotes the bounded operators defined on .

If A, B are linear operators from J# into ¢, then A + B is defined with
dom(A + B) = dom AN dom B. If B: > X and A: X' — %, then AB
is a linear operator from 5 into £ with dom(AB)= B~ '(dom A).

1.2. Definition. If A, B are operators from £ into ¢, then A is an
extension of B if dom B C dom A and Ah = Bh whenever A € dom B. In
symbols this is denoted by B C A.

Note that if A € Z(5F), then the only extension of A is itself. So this
concept is only of value for unbounded operators.
If A: 58— X, the graph of A is the set
grad= [(h @ AheH#® N h €domA}.

It is easy to see that B C A if and only if gra B C gra A.

1.3. Definition. An operator A: #— X" is closed if its graph is closed in
H® A . An operator is closable if it has a closed extension. Let € (¢, X")
= the collection of all closed densely defined operators from S# into J¢.
Let €(°)=€(5#,5). (It should be emphasized that the operators in
€(H, A) are densely defined.)

When is a subset of £ ¢ a graph of an operator from S into X¢'? If
¥ = gra A for some A: H#— X, then ¢ is a submanifold of @& X such
that if k€ ¥ and 0 @k € ¥, then k = 0. The converse is also true. That
is, suppose that ¢ is a submanifold of #® X such that if kK € ¢ and
0@ke¥9, then k = 0. Let @ = |{h €#: there exists a k in ¥ with
hek in 9. If h€P and ki, k,€X suchthath® k , hdk, € Y,
then 0 ® (k, —k,)=h ®k;—h ®k,€%. Hence k; = k. That is, for
every h in @ there is a unique k in X such that h ® k €¥; denote k by
k = Ah. Tt is easy to check that A is a linear map and ¥ = gra A. This gives
an internal characterization of graphs that will be useful in the next
proposition.

1.4. Proposition. An operator A: H#— X is closable if and only if cligra A]
is a graph.

Proovr. Let cligra A] be a graph. That is, there is an operator B: #— X
such that gra B = cl[gra A]. Clearly gra A C gra B, so A is closable.

Now assume that A is closable; that is, there is a closed operator B:
H—->H with ACB IfO®keclgra A], 0 ® k€ gra B and hence k = 0.
By the remarks preceding this proposition, cl{gra A]is a graph. ]

If A is closable, call the operator whose graph is cl{gra A] the closure
of A.
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1.5. Definition. If A: ¥ — X is densely defined, let
dom A* = (k€ X": h —» (Ah, k)is a bounded linear
functional on dom A }.

Because dom A is dense in J%,if k € dom A*, then there is a unique vector
fin 5 such that (Ah, k) = (h, ) for all & in dom A. Denote this unique
vector f by f = A*k. Thus

(Ah,k) = (h,A*k)
for hin dom A and k in dom A *.

1.6. Proposition. ZfA: - X is a densely defined operator, then:

(a) A* is a closed operator;
(b) A* is densely dejined if and only if A is closable;
(c) if A is closable, then its closure is (A%)* = A%*,

Before proving this, a lemma is needed which will also be useful later.

1.7. Lemma. Zf A: > X is densely defined and J: SN > KH'® K is
defined by J( h ® k) = (-k) ® h, then J is an isomorphism and

graA* = [Jgrad]®*

Proovr. It is clear that Jis an isomorphism. To prove the formula for
gra A*, note that gra A* = {k ® A*k € X® H: k € dom A*}. So if k €
domA*and A €dom A,

(k ® A*k, J(h @Ah)) = (k ® A*k, -Ah ® h)
= —(k, Ah) +{A*k, h) =

Thus gra A*C[Jgra A]*. Conversely, if k®f<| Jgra A] *+, then for
every h in domAd, 0 = (k & f, -Ah ® h) = —(k, Ah)+(f h),
(Ah, k) = (h, f). By definition k € dom A* and A*k = f.

Proor or ProrosiTioN 1.6. The proof of (a) is clear from Lemma 1.7. For
the remainder of the proof notice that because the map Jin (1.7) is an
isomorphism, J* = J ! and so J¥ k ® h) = h & (-k).

(b) Assume A is closable and let k,€ (dom A*) *. We want to show that
ko= 0. Thus ko® 0 € [gra A¥] * = [J gra A] **+ =cl[J] gra A] =
Ilcl(gra A)]. So 0 ®@—k,=J*(k,® 0) €J *J[cl(gra A)] = cl(gra A). But
because A is closable, cl(gra A)is a graph; hence k, = 0. For the converse,
assume dom A* is dense in X", Thus A** = (A*)* is defined. By (a), A**
is a closed operator. It is easy to see that A C A** s0 A has a closed
extension.

(¢) Note that by Lemma 1.7 gra A ** = [J*gra A*]*+ =[J*[Jgra 4] *]*
But for any linear manifold .# and any isomorphism J, (J#)* = J( 4 1)
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Hence J*[(JA#)*1=#* and, thus, [J¥[JA| |t =4+ *=cl.#. Put-
ting A = gra A gives that gra A* = cl gra A. u

18 Corollary. ZfA €€ (#,X"), then A* is densely defined and A* = A.

1.9. Example. Let ey, eq,... be an orthonormal basis for # and let
a4, &y, ... be complex numbers. Define 2 = {h € #:L¥|a,(h &) |><cc)}
and let Ah = XJa,( h, e,)e, for hin 2. Then A € €(#) with dom A = .
Also, dom A* = @ and A%h = L¥a,( h e,)e, for all hin 2.

1.10. Example. Let (X, £, ) be a u-finite measure space and let ¢: X - C
be an O-measurable function. Let @ = { f€ L*(u):¢f <€ L?(n)} and
define Af = ¢f for all fin @. Then A € €(L*(n)), dom A* = @, and
A*f = ¢of for fin 9.

1.11. Example. Let £ = all functions f; [0, 1]—C that are absolutely
continuous with f’€ L%(0, 1) and such that fA0) = A1) = 0. 2 includes all
polynomials p with p(0) = p(1) = 0. So the uniform closure of 2 is
{f €C[0,1]: i) = (D) = 0). Thus D is dense in L?(0, 1). Define A :
L(0,1) > L?(0, 1) by Af = if for fin @. To see that A is closed, suppose
{(/,YCSD and [,® if, > f®gin L*® L% Let h(x) = —ifgg(t)dt; so h
is absolutely continuous. Now using the Cauchy-Schwarz inequality we get
that If,(x) —hCOl = |[G1L(1) + gl dil < |If, + igl, = lif,) — gl
Thus f,(x) — h(x) uniformly on [0, 1]. Since f,~— fin L%(0,1), fix) =

h(x) ac. So we may assume that fix) = —ifsg(¢) df for all x. Therefore f
is absolutely continuous and f,(x) - ficaniformly on [0, 1]; thus f0) =

f)=0and f = —ige L?(0,1).So0f€ P and fOg=f® if € gra A;
that is, A € €( L*(0, 1)).

Note that { f:f€D} = (h€L*0, D: [ph(x) dx = 0} = [1]*.

Claim. dom A¥* = {g: g is absolutely continuous on [0,1], g €L*(0,1)}
and for g in dom A* A*g = ig.

In fact, suppose g € dom A* and let A = A*g. Put HX) = [Fh(1)dt.
Using integration by parts, for every fin 2, illfg=WAfg =N =
Jo fi= 4 f(x)dH(x) = = [} f'(OH(x) dx; that is. (f , -ig) =
(f’,—H)forall fin 2. Thus H—-ige {ffe@}*'=[1]*"; hence
H — 1g = ¢, a constant function. Thus g = ic —iH so that g is absolutely
continuous and g = -ih €L% Also note that A% = h = ig . The other
inclusion is left to the reader.

1.12. Example. Let & ={ f€ L*(0, 1): fis absolutely continuous, f’€ L2,
and fl0) = fil)). Define Bf = if for fin &. As in (1.11) B€ 4 (L*0, 1)
and ran B =[1]".

Claim. dom B* = 6 and B¥g = ig for gin &.
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Let g € dom B*. Put 2 = B*g and H(x) = [fh(t)dt. As in (1.11),
H(0) = H(1) = 0 and for every f in &, ifif'g = — f& f'H. Hence 0 =
Jo(if'g+ fH)= [ if( g + iH). Thus g + iH L ran B and so g + iH = ¢,
a constant function. Thus g = ¢ —iH is absolutely continuous, g = — ik
€L? and g0) = g(1) = c. Thus g €& and B¥¢ = h = ig. The other
inclusion is left to the reader.

The preceding two examples illustrate the fact that the calculation of the
adjoint depends on the domain of the operator, not just the formal defini-
tion of the operator. Note the fact that the next result generalizes (11.2.19).

1.13.  Proposition. Zf A: X — A is densely dejined, then

(ran A)" =ker A*.
Zf A is also closed, then

(ran A¥) t = ker 4.
Proor. If h L ran A, then for every fin dom A, 0 = (Af, h). Hence
h € dom A* and A*h = 0. The other inclusion is clear. By Corollary 1.8, if

AE€G(H, X)), A** = A, So the second equality follows from the first.
]

1.14. Definition. If A: S#—> X is a linear operator, A is boundedly
invertible if there is a bounded linear operator B: ¥ — 5 such that
AB =1 and BA C 1.

Note that if BA C I, then BA is bounded on its domain. Call B the
(bounded) inverse of A.

1.15. Proposition. Let A: ¥ — X be a linear operator.

(a) A is boundedly invertible if and only if kerA = (0), ran A = X, and the
graph of A is closed.
(b) Zf A is boundedly invertible, its inverse is unique.

Proor. (a) Let B be the bounded inverse of A. So dom B = 2. Since
BA C1,kerd = (0); since AB = 1, ran A = X" Also, gra A = {h & Ah:
h € dom A} = { Bk ® k: k € X"}. Since B is bounded, gra A is closed.
Conversely, if A has the stated properties, Bk = 4 'k for kin 2 is a
well-defined operator on . Because gra A is closed, gra B is closed. By the
Closed Graph Theorem, B € Z(X, ).

(b) This is an exercise. ]

1.16. Definition. If A: s — 5F is a linear operator, p(A), the resolvent set
for A, is defined by p(A) = {A €C:A—Ais boundedly invertible}. The
spectrum of A is the set a( A) = C \ p(A):

It is easy to see that if A: #— ¢ is a linear operator and A€C, gra A
is closed if and only if gra(A —A) is closed. So if A does not have closed
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graph, a( A) = 0. Even if A has closed graph, it is possible that o(A) is
empty (see Exercise 10). However, some of the other properties of the
spectrum hold. The proof of the next result is left to the reader.

1.17.  Proposition. If A: ¥ 5 is a linear operator, then a( A) is closed
and z = (z — A) Yisan analytic function on p(A).

Note that if A is defined as in Example 1.9, then a( A) = cl{ a,}. Hence it
is possible for u(A) to equal any closed subset of C.

1.18. Proposition. Let A €€ ().

(@) A€ p(A) if and only if ker(A —X) = (0) and ran( A —A) = .
(b) 0(A*) = [X: A€ u(A)} and for A in p(A), (A —N)*"' = (A —
AT

Proor. Exercise.

EXERCISES

1. If A, B, and AB are densely defined linear operators, show that (AB)*2 B*A4*.
2. Verify the statements in Example 1.9.

3. Verify the statements in Example 1.10.

4. Define an unbounded weighted shift and determine its adjoint.
5. Verify the statements in Example 1.11.
6

. If ¥ is infinite dimensional, show that there is a linear operator A : ¥ — ¢
such that gra A is dense in J#® 5. What does this say about dom A*?

7. Let @ be the set of absolutely continuous functions f such that f*€L?(0, 1).
Let Df = f for fin 2 and let (Af)(x)= xf(x) for f in L?(0, 1). Show that
DA — AD C 1.

8. If &/ is a Banach algebra with identity, show that there are no elements a, b in
&/ such that ah — ha = 1. (Hint: compute a"b—ba".)

9. Prove Proposition 1.18.

10. Define A: L?>(R)— L?>(R) by (Af)(x) = exp(—x?)f(x — Dforallfin L*(R).
(a) Show that A € B(L2*(R)). (b) Find ||4"|| and show that r(A) = O so that
a( A) = {0}. (c) Show that A is injective. (d) Find A* and show that ran A is
dense. (¢) Define B= A ! with dom B = ran A and show that BE ¥ ( L2(R))
withe(B)=0

1. If A €€ (), show that A*A €% (). Show that — 1 &€ a( A*A) and that if
B=(+ A*4) L, ||B|| < 1.

12. If B is the bounded operator obtained in Exercise 11, show that C = AB is also
bounded and ||C||< 1.
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§2. Symmetric and Self-Adjoint Operators

A correct introduction to this section consists in a careful examination of
Examples 1.11 and 1.12 in the preceding section. In (1.11) we saw that the
operator A seemed to be inclined to be self-adjoint, but dom A* was
different from dom A so we could not truly say that A = A% In (1.12),
B = B* in any sense of the concept of equality. This points out the
distinction between symmetric and self-adjoint operators that it is necessary
to make in the theory of unbounded operators.

2.1. Definition. An operator A: H#— J# is symmetric if A is densely
defined and (Af, g) = (f Ag) for all f, g in dom A.

The proof of the next proposition is left to the reader.

2.2. Proposition. If A is densely dejined, the following statements are
equivalent.

(a) A is symmetric.
(b) (Af, f)eR for allf in dom A,
() AC A*

If A is symmetric, then the fact that A € A* implies dom A* is dense.
Hence A is closable by Proposition 1.6.

It is easy to check that the operators in Examples 1.11 and 1.12 are
symmetric.

2.3, Definition. A densely defined operator A: - H# is self-adjoint if
A = A*

Let us emphasize that the condition that A = A* in the preceding
definition carries with it the requirement that dom A = dom A* Now
clearly every self-adjoint operator is symmetric, but the operator A in
Example 1.11 shows that there are symmetric operators that are not
self-adjoint. If, however, an operator is bounded, then it is self-adjoint if
and only if it is symmetric. The operator B in Example 1.12 is an
unbounded self-adjoint operator and Examples 1.9 and 1.10 can be used to
furnish additional examples of unbounded self-adjoint operators.

Note that Proposition 1.6 implies that a self-adjoint operator is neces-
sarily closed.

2.4. Proposition. Suppose A is a symmetric operator on H.

(a) If ran A is dense, then A is injective.
(b) Zf A = A* and A is injective, then ran A is dense and A~ is self-adjoint.
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(¢) Zf dom A = 5, then A = A* and A is bounded.
(A)Zf ran A =, then A = A* and A~ € B(H).

Proor. The proof of (a) is trivial and (b) is an easy consequence of (1.13)
and some manipulation.

(¢) We have A € A* If dom A = 5%, then A = A* and so A is closed. By
the Closed Graph Theorem A € Z(5¢).

(d) If ran A = H#, then A is injective by (a). Let B = A ! with dom B =
ran A = #.If [ = Ag and h = Ak, with g, k in dom A, then (Bf, h) =
(g, Ak) = (Ag, k) = (f, k) = (f, Bh). Hence B is symmetric. By (c¢),
B = Bx €B(H). By (b), A = B! is self-adjoint. W

We now will turn our attention to the spectral properties of symmetric
and self-adjoint operators. In particular, it will be seen that symmetric
operators can have nonreal numbers in their spectrum, though the nature of
the spectrum can be completely diagnosed (2.8). Self-adjoint operators,
however, must have real spectra. The next result begins this spectral
discussion.

2.5. Proposition. Let A be a symmetric operator and let A = o + i3, a and
B real numbers.

() For each [ in dom A,||(A—=MA* = lI(4—)A> + B2IIfI”.
(b) Zf B+ 0, ker(A — A) = (0).
(¢c) Zf A is closed and B+ 0, ran( A —A) is closed.

Proor. Note that
N(4=2A7 = I(4— a)f — iBAI?

= I(4=a)A> + 2Rei{(A—a)f, Bf ) + BIIAII>
But

(A —a)f,Bf) = BLASf. [)— aBlfI”* €R,
S0 (a) follows. Part (b) is immediate from (a). To prove (c), note that
(A —M)A1% = BAIfII% Let {f,} € dom A such that (A —A)f,— g. The
preceding inequality implies that { f,}is a Cauchy sequence in 5; let
f=1lmf. But f,® (A —-AN)f,€ gra(A —Nand f,® (A —N)f,> [ g
Hence f@ g€ gra( A —A) and so g = (A —A)f € ran( A — X). This
proves (c). B

2.6. Lemma. Zf M, N are closed subspaces of # and M n N+ = (0), then
dim A < dim A",

Proor. Let P be the orthogonal projection of S onto A~ and define T
M >N by Tf = Pf for fin M. Since #/ n A+ = (0), Tisinjective.If &
is a finite-dimensional subspace of A&, dim £ = dim 7.4 < dim A". Since &
was arbitrary, dim 4 < dim A" [ |
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2.7. Theorem. Zf A is a closed symmetric operator, then dim ker( A* —A) is
constant for Im A > 0 and constant for Im A < 0.

ProoFr. Let A =a+if,a and 8 real numbers and B8 # 0.
Claim. Tf A — p|<|Bl, ker(A* — p) N [ker(A*—\)]* = (0).

Suppose this is not so. Then there is an fin ker{4*—p) N [ker( A* —
M)+ with ||f]] = 1. By (2.5¢), ran(A — A) is closed. Hence f€ [ker(A* —
M]* = ran(A —A). Let g €dom A4 such that f = (A — A\)g. Since f &
ker(A* —pu),

0 = ((A* —u)f,8) = (f.(4-p)g)
= (fL(A=A+X-])g)
= AP +(A —p){f. 8).

Hence 1 = ||f||? = (A — ISy gl <|A—plllgll. But (2.5a) implies that
1= I/l = (4~ Mgl = 1B llgll; so igll < |B]~". Hence 1 < |\ — p} Iig]
<A =py|1Bl ' < 1if \—u|<|B|. This contradiction establishes the
claim.

Combining the claim with Lemma 2.6 gives that dim ker(A* —p)<
dim ker( A * — A) if A —u|<|B] = |ImA|. Note that if |A—p|<3|8
then |A—p|<|Im p|,so that the other inequality also holds. This shows
that the function A+~ dim ker(A* —A) is locally constant on C\R. A
simple topological argument demonstrates the theorem. |

2.8. Theorem. Zf A is a closed symmetric operator, then one and only one of
the following possibilities occurs:

(a) a(A) = C;
(b) a(A) = {A€ C: Imh > O};
(¢) a(A) = {A€C:ImA< O};
(d) o(4)CR.

Proor. Let H,={A€C:xImA> O}. By (2.5) for Ain H,,A - A is
injective and has closed range. So if A — A is surjective, A € p(A) (2.4d).
But [ran(A — X)] * = ker( A* —X). So the preceding theorem implies that
cither H, C u(A) or H N u(A) = O. Since u(A) is closed, if H,C u(A),
then either u(A) = Corw(A) = ddH . IfH NnuA)=Q , uA) CR.

|

2.9. Corollary. Zf A is a closed symmetric operator, the following statements
are equivalent.

(a) A is self-adjoint.
(b) 6(4) C R.
(c) ker(A* — i) = ker(A* + i) = 0.
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ProOOF. If A is symmetric, every eigenvalue of A is real (Exercise 1). So if
A=A*and Im A # 0, ker( A* —X) = ker(A =A) = (0). By Theorem 2.8,
a(A) CR, so (a) implies (b).

If a(A) CR, ker(A* + i) = [ran(A +1)] *=£+ = (0). Hence (b) im-
plies (c).

If (c) holds, then this, combined with (2.5) and (1.15a), implies A +1iis
boundedly invertible. By (1.18), A* +iis boundedly invertible. Let h €
dom A*. Then there is an f in dom A4 such that (A + i)f = (A* + )h But
A* + iDA+i,s0(A*+ i)f= (A* + i)h. But A* + i is injective, so
h =fe domA. Thus 4 = A*. [ |

2.10. Corollary. If A is a closed symmetric operator and a(A) does not
contain R. then A = A%

It may have occurred to the reader that a symmetric operator A fails to be
self-adjoint because its domain is too small and that this can be rectified by
merely increasing the size of the domain. Indeed, if A is the symmetric
operator in Example 1.11, then the operator B of Example 1.12 is a
self-adjoint extension of A. However, the general situation is not always so
cooperative.

Fix a symmetric operator A and suppose B is a symmetric extension of
A: A CB Tt is easy to verify that B* C A* Since B CB*, we get
A CBC B*C A* Thus every symmetric extension of A is a restriction of
A*.

2.11. Proposition. (a) A symmetric operator has a maximal symmetric
extension. (b) Maximal symmetric extensions are closed. (c) A self-adjoint
operator is a maximal symmetric operator.

ProoF. Part (a) is an easy application of Zorn § Lemma. If A is symmetric,
A € A* and so A is closable. The closure of a symmetric operator is
symmetric (Exercise 3), so part (b) is immediate. Part (c) is a consequence of
the comments preceding this proposition. |

2.12. Definition. Let A be a closed symmetric operator. The deficiency
s&paces of A are the spaces

P, = ker(A* — i) = [ran(A +i)]",
P = ker(A* + i) = [ran(A — )] .

The deficiency indices of A are the numbers n , = dim & ,.

It is possible for any pair of deficiency indices to occur (see Exercise 6).
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In order to study the closed symmetric extensions of a symmetric oper-
ator we also introduce the spaces

'%/;={f@ it: f€$+},
X ={go®ig. gL }.

So A < #® H. Notice that X', are contained in gra A* and are the
portions of the graph of A* that lie above £ .. The next lemma will
indicate why the deficiency subspaces are so named.

2.13. Lemma. If A is a closed symmetric operator,
gra A¥ = gra A®XA . & _.
Proor. Let f€Z, and h€ dom A. Then
(h®Ah, foify=(h,f) —i(Ah, [

= -i((A + i)h, f)

=0
since &, = [ran( A + §)] ~. The remainder of the proof that gra A, ), and
X~ are pairwise orthogonal is left to the reader. Since it is clear that
grad ® X & X C graA*, it remains to show that this direct sum is dense
in gra A%

Let he dom A* and assume h® A*h 1 gra A @ X, & H_. Since h®
A*h 1 gra A, for every fin domA,0=(h @ A*h, f® AfYy =(h, f) +
(A*h,Af). So (A*h,Af) = —(h,f) for every fin dom A. This implies
that A*h € dom A* and A*A*h = -h. Therefore (A* — )( A* + Dh =
(A¥A* + 1)h = 0. Thus (A* + Ph €.%,. Reversing the order of these
factors also shows that (A* —i)h €L _.Butif g € £,, 0 = (hDA*h,g®
ig) = (h, g — i(A*h, @ = -i((A* + i)h, g. Since g can be taken equal
to (A* + h, we get that (A* + Dh = 0, or h €Z_. Similarly, h €2Z,. So
hefZN¥=(0). n

2.14. Definition. If A is a closed symmetric operator and # is a lincar
manifold in dom A¥ then A is A-symmetric if (A*f, g = (f, A% for all
f. gin A. Call such a manifold A-closed if {f® A*: fE€ .4 )} is closed in
HD .

So A is both A-symmetric and A-closed precisely when A*|.#, the
restriction of A* to ., is a closed symmetric operator; if .# 2 dom A, then
A*| A is a closed symmetric extension of A.

2.15. Lemma. If A is a closed symmetric operator on X and B is a closed
symmetric extension of A, then there is an A-closed, A-symmetric submanifold
M of L, + L such that

2.16 gra B=graA+gra(A*|Jl).
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Conversely, if M is an A-closed, A-symmetric manifold in £, +&L_, then
there is a closed symmetric extension B of A such that (2.16) holds.

Proor. If the A-closed, A-symmetric manifold 4 in &£, + % is given, let
29 =domA + . Since @ C dom A4*, B = 4*|2 is well defined. Let f = f
+ f1.8 =80+ & fo,8 in dom A and f},g; in A. Then

(A*fo + A*fpgo + 81

(Afo, 80) + (Afo, 81) + {A*1, 80) + (A*f1, &1)-

Using the A-symmetry of #, the symmetry of A, and the definition of A*
we get

(A, g = (fo> Ago) + (fo»A%81) + {f1s Ago) + (fr,A%81)

= <f’A*g>

So B = A*|2 is symmetric. Note that gra A L gra( A*|.#) in H# & .
Since both of these spaces are closed, gra B, given by (2.16), is closed.

Now let Bbe any closed symmetric extension of A. As discussed before,
ACBC A% so gradACgraBCgrad* = grad®@ X, X . Let 9=
gra BO(X, @ X" ) and let # = the set of first coordinates of elements in
9. Clearly, A is a manifold in &, +&_ and .# C dom B. Hence for £, g
in A, (A%f,g) = (Bf,g) = (f.Bg) = (fA*g). So #A is A-symmetric.
Clearly, gra( A*|.#)=¥9,s0 M is A-closed. If h @ Bh € gra B, let h @ Bh
=(f®Af)+ k when fedomA and k €X , ®H_. Since A C B,k €
gra B; so k €¥9. This shows that (2.16) holds. [ ]

(A*f > g

2.17. Theorem. Let A be a closed symmetric operator. If W is a partial
isometty with initial space in &, and final subspace in £, let

2.18 Dy= {f+g+ Wg: fe domAd, g € initial W}
and define A, on 2, by
2.19 Ay (f+g+ Wg)=Af +ig — iWg.

Then A, is a closed symmetric extension of A. Conversely, if B is any closed
symmetric extension of A, then there is a unique partial isometty W such that
B = A, as in (2.19).

If W is such a partial isometry and W has finite rank, then

n,(Ay) = n(A) — dim(ranW).

Proor. Let W be a partial isometry with initial space I, in &, and final
space I_in &_. Define 2, and A, as in (2.18) and (2.19). Let A = {g +
Wg: g¢ € I+); so A is a manifold in £+ .1f g h €I,, then
(Wg, Wh) = (g, h). Hence (A*( g + Wg), h + Wh) = (A*g, h) +
{A*g, Wh) + (A*Wg, b) + (A*Wg, Wh). Since g € ker(A* —i and Wg
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€ ker(A* + i),
(A*(g + Wg),h + Wh) = i(g,h) + i{g, WhY—i(Wg, h)— i(Wg,Wh)
= i{g, Wh) —i{Wg, h).
Similarly, (g + Wg, A*(h + Wh)) = i{g, Wh) —i{Wg, h), so that A is
A-symmetric. If {g,} €I, and (g, + Wg,) ® (ig, —iWg, )= f@®hin
HD H, then 2ig, =i( g, + Wg,) + (ig, —iWg,)—=if + h and 2i Wg, =
i(g, + Wg,) — (ig, —iWg,)=if —h If g = 2))"'(if + ), then f=g +
Wg and h = ig —iWg. Hence A is A-closed. By Lemma 2.15, A, is a
closed symmetric extension of A.
To prove that n (Ay) = n+(A) —dim I, let fEdom A, gl . Then
(A, +i)(f+g+ Wg)=(A+i)f+ig-iWg+ig+iWg
= (A + if + 2ig.
Thus ran(A4,, + i) = ran(A + i) ® 1, and so n, (A, )= dim[ran(4,, +
D*=dim &, 61,=n+(A) —dim[7,. Similarly, n_(Ay) = n_(A) —
dim/ =n (A) —dim/,.

Now let Bbe a closed symmetric extension of A. By Lemma 2.15 there is
an A-symmetric, A-closed manifold & in &, + %_ such that gra B =
gra A + gra(A*|A). I feH, let f= f*+ ", where f*€ZL ;put I =
{(ff:feA). Since A is A-symmetric, 0 = (A*f, p — (f, A*f) =
2i(f*, F) =2i{f7, f7); hence||f*|| = /f"|| for all fin . So if Wf+= f~
whenever f= f"+ f-e€# and if I, is closed, W is a partial isometry and
(2.18) and (2.19) are easily seen to hold. It remains to show that Z+ is
closed. Suppose {f,}S A and ff—g"* in Z,. Since || —fil=1fi —
fll, there is a g~ in & such that f, »g~. Clearly f,—»g"+g = g
Also, A*f,*=xif,*>+ig* It follows that g ® A*g & cl gra(A*|A) =
gra(A*|.#); thus gTeI™ |

2.20. Theorem. Let A be a closed symmetric operator with deficiency indices

n,.

(a) A is self-adjointif and onlyifn =n_=0.

(b) A has a self-adjoint extension if and only if n, =n_.In this case the set of
self-adjoint extensions is in natural correspondence with the set of isomor-
phisms of £, onto £_.

(c) A is a maximal symmetric operator that is not self-adjoint if and only if
either n = 0 and n_>0orn,>0and n_= 0.

Proor. Part (a) is a rephrasing of Corollary 2.9. For (b), n,=n _if and
only if &, and % are isomorphic. But this is equivalent to stating that
there is a partial isometry on # with initial and final spaces <&, and £,
respectively. Part (c) follows easily from the preceding theorem. L

2.21. Example. Let A and @ be as in Example 1.11; so A is symmetric.
The operator B of Example 1.12 is a self-adjoint extension of A. Let us
determine all self-adjoint extensions of A. To do this it is necessary to
determine . Now f € % if and only if f € dom 4* and tif = A*f =
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if’,s0 % ,= {ae**: a € C}. Hence n ,= 1. Also, the isomorphisms of &,
onto & are all of the form Wye* = Ae”* where |A| = 1. If |A| = 1, let

Dy, ={f+ae*+ N ae :a€C,fED},
A(f + ae* + hae ™) = if + aie™—ikae *,

if fe2, aeC.

According to Theorem 2.17, {(A,, Z,):|A\|=1} are all of the self-adjoint
extensions of A. The operator B of Example 1.12 is the extension A,.

For more information on symmetric operators and the relation of the
problem of finding self-adjoint extensions to physical problems, see Reed
and Simon [1975] from which much of the present development is taken.

EXERCISES
1. If A is symmetric, show that all of the eigenvalues of A are real.

2. If A is symmetric and A, p are distinct eigenvalues, show that ker(4— A) 1
ker(4 — p).

3. Show that the closure of a symmetric operator is symmetric.

4, Let @ = {f € L*0,»0): for every ¢ >0, f is_absolutely continuous on [0, c],
f(0) = 0, and f’€L*(0, co)}. Define Af = if " for f in 2. Show that A is a

densely defined closed operator and find dom A*. Show that A is symmetric with
deficiency indices n, =0and n_ = 1.

5. Let I= {f € L*( —0,0): for every ¢ <0, fis absolutely continuous on {c,0},
f(0) = 0, and f €L?>(—o0,0)}. Define Af = if for fin &. Show that A is a
densely defined closed operator and find dom A* Show that A is symmetric with
deficiency indices n, =1,n_=0.

6. If k, I are any nonnegative integers or co, show that there is a closed symmetric
operator A with n+ = k and n_=/. (Hint: Use Exercises 4 and 5.)

7. Let C*(0, 1) be all twice continuously differentiable functions on (0,1) with
compact support and let Af = -f for fin C?(0,1). Show that the closure of A
is a densely defined symmetric operator and determine all of its self-adjoint
extensions.

8. If A € (), show that A*A is self-adjoint (see Exercise 1.11).

§3. The Cayley Transform

Consider the Mobius transformation

z— i

z+i

It is immediate that M(0) = — 1, M(1) = —i, and M(c0) = 1. Thus M

M(z) =
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maps the upper half plane onto D and M(R U occ)=dD. So if A is
self-adjoint, M(A) should be unitary. Suppose A is symmetric; does M(A)
make sense? What is M(A)?

To answer these questions, we should first investigate the meaning of
M(A) if A is symmetric. We want to define M(A) as (A —i)}(A +1) L As
was seen in the last section, however, ran(A + i) is not necessarily all of 5
if A is not self-adjoint. In fact, (ran(A + i) * = &£, and (ran(A — i) * =
Z_, the deficiency spaces for A. However (2.5),if A is closed and symmetric,
ran( A + i) is closed. Also, realize that if w = M(z), then z = M Y(w) =
iA+w)/(1— w).

3.1. Theorem. (a) If A is a closed densely defined symmetric operator with
deficiency subspaces & +, and if U: #— 3 is defined by leting U = 0 on
&L, and -

3.2 U=(A-iA+ i)

on L.*, then U is a partial isometry with initial space 2£,*, final space L+,
and such that (1 —UX L") is dense in H#.

(b) If U is a partial isometry with initial and jinal spaces M and N,
respectively, and such that (1 —U)M is dense in I, then

3.3 A = i1+U)1-U)"!

is a densely defined closed symmetric operator with deficiency subspaces
L=M"and L =N".

(©) If A is given as in (a) and U is dejined by (3.2), then A and U satisfy
(3.3). Zj U is given as in (b) and A is defined by (3.3), then A and U satisfy
(3.2).

ProOF. (a) By (2.5¢), ran(A # i) is closed and so & ;= ran(A % i). By
(2.5b), ker(A + i) = (0), so (A + i)' is well defined on ZL,*. Moreover,
(A + i) X2*c dom A so that U defined by (3.2) makes sense and gives a
well-defined operator. If h € £,*, then h = (A + i) j for a unique f in
dom A. Hence [|UR| = [I(A=D)fI12 = Q5a)lAN> + A7 = (4 + )1
= ||h||%. Hence U is a partial isometry, (ker U) *= Z,*, and ran U = £L.*.
Once again, if j € dom A and h = (A +i)f, then (1 —U)h=h — (A —
ij= (A + i)j- (A ~Df = 2if. So (I —U)&*=dom4A and is dense
in M.

(b) Now assume that U is a partial isometry as in (b). It follows that
ker(1—U) = (0). In fact, if f €kex(1—U), then Uf = f; SO |Ifll = USI
and hence j € initial U. Since U *U is the projection onto initial U, j =
U*Uf=U*f; so fekerl - U*)y=ran(1 - U)*C[Q1-U)A]*= (0)
by hypothesis. Thus j = 0 and 1 —U is injective.

Let 2 = (1 —U)A and define (1 —U) ! on 2. Because 1 —U is
bounded, gra(1—U) ! is closed. If A is defined as in (3.3), it follows that
Ais a closed densely defined operator. If f, g €D, let j = (1 —U)h and
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g=(1 —-U)k,h,k € 4. Hence
(Af, ® = (1 + U)h, (1 =U)k)
=i[¢(h, k) + (Uh, k) — (h, UR) — (Uh, UR)].

Since h, & € M#,(Unh,Uk) = (h, k); hence (Af, g) = i[{Uh, k) —
(h, Uk)]. Similarly, (f, Ag) = —i{(1—U)h,(1 + U)k) = —i[{h, Uk) —
(Uh,k]={Af,g). Hence A is symmetric.

Finally, if A €4 and f= (1 —U)h, then (A + i)f = Af +if = i(1 +
U)h +i(1—U)h = 2ih. Thus ran(A +i) =.#. Similarly, (A —i)f =i(1
+U)h—i(1—U)h = 2Uh, so that ran(A —i) =ranU = A"

(c) Suppose A is as in (a) and U is defined as in (3.2). If g € (1 —U)Z,*,
put g = (1 —U)h, where h € £, = ran(A + i). Hence h = (A +i)f for
somef indomA. Thus g=h -Uh=(A+i)f—(4A—-i)f=2if,s0f=
—4ig. Also,

i(1+UY1-U)""g = i(1 + U)h

=i[h+ UhnJ
= i[(A+i)f +(A —i)f]
= 2IAf
= Ag.
Therefore (3.3) holds.
The proof of the remainder of (c) is left to the reader. [ |

3.4. Definition. IfAis a densely defined closed symmetric operator, the
partial isometry U defined by (3.2) is called the Cayley transform of A.

3.5. Corollary. If A is a self-adjoint operator and U is its Cayley transform,
then U is a unitary operator with ker(1—U) = (0). Conversely, if U is a
unitary with 14 0,(U), then the operator A dejined by (3.3) is self-adjoint.

Proor. If A is a densely defined symmetric operator, then A is self-adjoint
if and only if £ = (0). A partial isometry is a unitary operator if and only
if its initial and final spaces are all of . This corollary is now seen to
follow from Theorem 3.1. ]

One use of the Cayley transform is to study self-adjoint operators by
using the theory of unitary operators. Indeed, the preceding results say that
there is a bijective correspondence between self-adjoint operators and the
set of unitary operators without 1 as an eigenvalue.

EXERCISES

1. If U is a partial isometry, show that the following statements are equivalent: (a)
ker(1—-U) = (0); (b) ker1—U*) = (0); (Qran(l —U) is dense; (d) ran(l -
U*)is dense.
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2. Let U be a partial isometry with initial and final spaces .# and A", respectively.
Show that the following statements are equivalent: (a) (1 —U)# is dense; (b)
(1 —U*)" is dense; (¢) ker(U*—-U*U) = (0); (d) ker(U —UU*) = (0).

3. Find a partial isometry U such that ker(1 —U) = (0) but (1 —U)(kerU)* is
not dense.

4. If A is a densely defined closed symmetric operator and B and C are the
operators defined in Exercises 1.11 and 1.12, then the Cayley transform of A is
(C —iBYC + iB) L.

5. Find the Cayley transform of the operator in Example 1.9 when each «, is real.
6. Find the Cayley transform of the operator in Example 1.10 when ¢ is real valued.

7. Let S be the unilateral shift of multiplicity 1 and find the symmetric operator A
such that S is the Cayley transform of A.

8. Let U =S8*, where S is the unilateral shift of multiplicity 1. Is U the Cayley
transform of a symmetric operator A? If so, find it.

§4. Unbounded Normal Operators and the
Spectral Theorem

If A is self-acljoint, the classical way to obtain the spectral decomposition of
Aistolet U be the Cayley transform of A, obtain the spectral decomposi-
tion of U, and then use the inverse Cayley transform to translate this back
to a decomposition for A. There is a spectral theorem for unbounded
normal operators, however, and the Cayley transform is not applicable here.

In this section the approach is to prove the spectral theorem for normal
operators by using that theorem for the bounded case. The spectral theorem
for self-adjoint operators is then only a special case.

4.1. Definition. A linear operator N on 5 is normal if N is closed,
densely defined, and N *N = NN *.

Note that the equation N *N = NN * that appears in Definition 4.1
implicitly carries the condition that dom N *N = dom NN *. The operators
in Examples 1.9 and 1.10 are normal and every self-adjoint operator is
normal. Examining Example 1.9 it is easy to see that for a normal operator
it is not necessarily the case that dom N *N = dom N.

Parts of the next result have appeared in various exercises in this chapter,
but a complete proof is given here.

42, Proposition. If A€ E (), then

(a) 1 + A*A has a bounded inverse defined on all of H#.
() If B = (1 + A*4)™ Y, then ||B||< 1 and B = 0.
(c) The operator C = A(1 + A*4)" ' is a contraction.
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(d) A*A is self-adjoint.
(e) th ® Ah: h € dom A*A} is dense in gra A.

PrOOF. Define J: #® #— #®# by J(h® k)= (—k)® h. By Lemma
1.7, gra A* = [Jgra A] . So if h €, there are f in dom A and g in
dom A* such that 0 ®h=J(f® Af) +g® A*g = (-Af) ®f + g & A*g.
Hence 0 = -Af+ g, or g = Af: also, h=f+A*g = f+ A*Af= (I +
A*A)f. Thus ran(l1+ A*A) = 2.

Also, for f in dom A*4, Af € dom A* and ||f + A*4f)]> = |IflI> + 2|4/
+ ||[A*4f]12 = |If|>. Hence ker(1 + A*A) = (0). Thus (1 + A*4)™' exists, is
closed, and is defined on all of J#. It must be that (1 + A*4) '€ B(H#)
(1.15). This proves (a).

It was shown that ||(1+ A*4)f||=||f]] whenever f€ dom A*A, If h = (I
+ A*A)f and B = (I + A*4)™!, then this implies that ||Bh| <|k||. Hence
|Bl|< 1. In addition, (Bh, h) = (f,(1 + A*A)f) = |IfII* + [l4f]|>= 0, so
(b) holds.

Put C = A(1 + A*4) ! = AB; if f € dom A*A and (1 + A*A)f = h, then
ICh||? = |AAIZ <||(1 + A*4)f1|*> = ||k]|* by the argument used to prove
(a). Hence ||C|I< 1, so (c¢) is proved.

Now to prove (e). Since A is closed, it suffices to show that no nonzero
vector in gra A is orthogonal to {h & Ah: h € dom A*A)}. So let g € dom A
and suppose that for every h in dom A*4,

0={(g®Ag h & Ah)
(8. h)+{Ag, Ah)
(8. h) +<8 A*Ah)
= (g, (1+A*A)h).
So g Lran(l1+ A*A) = 5; hence g = 0.

To prove (d), note that (e) implies that dom A*A is dense. Now let
f.ge dom A*4; s0 f, g€ dom A and Af, Ag € dom A* Hence (A*Af, g)
= (Af, Ag) = {f, A*Ag). Thus A*A is symmetric. Also, 1 + A*A has a
bounded inverse. This implies two things. First, 1 + A*A is closed, and so
A*A is closed. Also, — 1 &a(A*4) so that by Corollary 2.10, A*A is
self-adjoint. W

4.3. Proposition. If N is a normal operator, then dom N = dom N * and
INAIl = |IN *fl| for every fin dom N.

PrROOF. First observe that if # € dom N *N = dom NN *, then Nh €
dom N* and N*h € dom N. Hence ||Nh||* = (N*Nh, h) = (NN*h, h) =
|N *h||%. Now if f€ dom N, (4.2e) implies that there is a sequence {h,} in
domN*N such that 4,® Nh, — f® Nf: so ||Nh,— Nfll— 0. But from
the first part of this proof, ||N*h,— N*h,| =|Nh,— Nh,||. So there is a
g in S such that N *h, — g. Thus h, ®@ N*h,—f& g. But N * is closed;
thus fedom N* and g=N*f. So dom N CdomAN* and ||Nf]| =
lim||Nh, | = Lm||N*A ]| = [IN*f).

On the other hand, N * is normal (Why?), and so dom N * C dom N **
=domN. &
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44. Lemma. Let J,, ,,... be Hilbert spaces and let A, € B( ) for all
nz> 1L IfD={(h)ED H: L |4, h > <) and A is defined on
H=@ H, by A(h,) = (A,h,)wheneuer (h,) €D, then A €G(H). A is
a normal operator if and only if each A,, is normal.

Proor. Since J,C & for cach n, & is dense in . Clearly A is lincar. If
{(h}cdom 4 and K@ 4R > h @ g in H#'® H, then for each n,
e A,n)—>h,® g, Since A, is bounded, A4,h, = g. Hence L,[|A4h,|*
= Zlg,lI* = ligl|* <o0; so h € dom A. Cleatly Ah = g, s0 A €EG(H).

It is left to the reader to show that dom A* = {(h,) € H: L= |||A*h,|I?
< co} and A*(h,) = (A*h,) when (h,) €dom A*. From this the rest of
the lemma easily follows. ]

If (X, £) is a measurable space and J# is a Hilbert space, recall the
definition of a spectral measure E for (X, £,5¢) (1X.1.1). If h, k € H#, let
E, . be the complex-valued measure given by E, ,(4) = (E(A)h, k) for
each A in £.

Let ¢: X =€ be an O-measurable function and for each nlet A, = {x
€ X: n—1<|¢(x)|<n} So xr¢ is a bounded Q-measurable function.
Put #, = E(A,)5#. Since U”_;A4, = X and the sets {A,] are pairwise
disjoint, ®> 5, = # . If E(A) = E(A n A,), E, is a spectral measure
for (X, £, ). Also, [¢ dE, is a normal operator on J#,. Define

o0 2
4.5 2,= {he%: v (/¢dE,,)E(A,,)h < oo}.
n=1
By Lemma 44, N,:5'— 3 given by
4.6 Nyh = Z(f¢dE,,)E(An)h
n=1

for hin &, is a normal operator. The operator N, is also denoted by

N¢=/¢dE.

47. Theorem. If E is a spectral measure for (X, 2, 5#),6:X —>C is an
O-measurable junction, and 9, and N, are defined as in (4.5) and (4.6),
then :

(a) @, = {he . [\¢|*dE, , < 0};
(b) for h in D, and j in .9?,¢€L1(|Eh'/|) with

1,2
48 fiordiE, j < w{ fior ae, )

4.9 <(f¢dE)h,f> =/¢dE,,‘f.
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Proor. Using the *-homomorphic properties associated with a spectral
measure (1X.1.12) one obtains

o] -] s

= / |‘15|2 dEh,h'
A!l

From here, (a) is immediate.

Now let he 9,, f€#. By the Radon-Nikodym Theorem, there is an
O-measurable function u such that |u|=1 and |E, |=uE, ;,, where |E, |
is the variation for E, ;. Let ¢, = Li_;Xa9; 50 ¢, is bounded as is udy,.
Thus

Ji6l diE, i = [10,JudE, ,
= <(f|¢n|udE)h,f>
s||f||“(f|¢,,|udE)h”.

But

”(j|¢,,|ud5)h”2 =<( fl%nludE)h,(f|¢,,|udE)h>
=<( f|¢nlsz)h,h>

=/|¢n|2dEh,h

< [162dE, .

Combining this with the preceding inequality gives that [|¢,| d|E, /| <
I I S\@|> dE,, )2 for all n. Letting n— cc gives (4.8). Since ¢, is bounded,
{(Jo dEYh, ) = [$,dE, ;. If h€ D, and f €5, then (4.8) and the
Lebesgue Dominated Convergence Theorem imply that f¢, dE, ; — [¢dE, ,

(fxpndE)h - ( f¢dE)E

= 5| Qs | Joae)r

Since EWU".,4,)— E(X) = 1 (SOT) as n— co. {(f,dE)h, f) —
{(f$pdE)h, f) as n— co. This proves (4.9). u

UAj)h
J=1
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Note that as a consequence of (4.7) dom N, and the definition of N, do
not depend on the choice of the sets {A,,} as would seem to be the case
from (4.5) and (4.6).

4.10. Theorem. If (X, 2) is a measurable space, 5 is a Hilbert space, and
E is a spectral measure for (X, $,3¢), let ®(X,82) be the algebra of all
O-measurable functions ¢: X —= C and define p: ®(X,2) > C(HK) by
p(¢)= [$pdE. Then for ¢,y in P(X, 52):

(@) P($)* - p(d);

(b) p(d¥) 2 p(¢)p(¥) and dom(p(¢)p(¥)) = 2D, N D,
(c) If ¥ is bounded, p(<l>)p(¢) =p(P)p(¢) = p(P¥);
) p($)*(d) — p(l).

The proof of this theorem is left as an exercise.

4.11. The Spectral Theorem. Zf N is a normal operator on H , then there is a
unique spectral measure E defined on the Borel subsets of C such that:

(8) N = fzdE(z);

(b) E(A) = 0 ifAno(N)=0O

() if U is an open subset of C and U N a(N) #0, then E(U)# 0;

(d) if A € B(H) such that AN C NA and AN*C N*4, then A( [¢dE)C
( J¢ dE ) A for every Borel function ¢ on C.

Before launching into the proof, a few words motivating the proof are
appropriate. Suppose a spectral measure E defined on the Borel subsets of
C is given and let N = fzdE(z).It is not difficult to see that if 0 <a<bd
< oo and A is the annulus (z: a <|z|< b}, then 5, = E(A)& = {h €
dom N: h €dom N” for all rn and a”||h|| <||N"h|| < b"||h||}. 5, is a
closed subspace of # that reduces N and N|5#, is bounded. The idea
behind the proof is to write C as the disjoint union of annuli {A, } such that
for each A; there is a reducing subspace # for N with N =N|#,
bounded, and, moreover, such that .92’-@ .92’ Once this is done the
Spectral Theorem for bounded normal operators can be applied to each N,
and direct sums of these can be formed to obtain the spectral measure
for N.

So we would like to show that for the annulus {z: a <|z|< b}, {h €
dom N: & € dom N for all n and a™|h|| <||N"h|| < b"||h]|} is a reducing
subspace for N. To facilitate this, we will use the operator B = (1 + N *N)~!
which is a positive contraction (4.2). To understand what is done below note
that z — (1 +|z|>)"! maps € onto (0,1} and a <|z|< b if and only if
1 +a>) =20+ 1z =20 + b L

4.12. Lemma. Zf N is a normal operator, B = (1 + N*N) ! and C = N(1
+ N*N)™ L then BC = CB and (I + N*N) INC C.
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Proor. From (4.2), B and C are contractions and B = 0. It will first be
shown that (1 + N *N)’INQ C; that is, BN C NB. If f € dom BN, then
f€ dom N. Let g € dom N*N such that f = (I + N*N)g = Bg. Then
N *Ng € dom N; hence Ng € dom NN * = dom N *N. Thus Nf = Ng +
NN*Ng = (1 + N*N)Ng. Therefore BNf = B(l + N*N)Ng = Ng. But
NBf = Ng, so BN = NB on dom N. Thus BN C NB.

If he H#, let f€ domN*N such that &A= (1 + N*N)f. So BCh =
BNBh = BNf = NBf = NBBh = CBh. Hence BC = CB. |

4.13. Lemma. With the same notation as in Lemma 4.12, if B = {tdP( 1) is
its spectral representation, 1 >8>0, and A is a Borel subset of [8,1], then
Hy=P(A)H#C dom N, 5, is invariant for both N and N *,and N\, isa
bounded normal operator with |N|#,| <[(1—8)/8]'/2

ProoF. If h € 5, then because P(A) = x(B),||Bhl|> = (B*P(A)h, h) =
Jat?dP, , > 8%||h||%. So B|#, is invertible and there is a g in #, such
that # = Bg. But ran B = dom(1 + N*N) C dom N. Hence # € dom N;
that is, £, C dom N.

Let h € #, and again let g € 5, such that h = Bg. Hence Nh = NBg
= Cg. By Lemma 4.12, BC = CB; so by (1X.2.2) P(A)C = CP(A). Since
g € #,, Nh = Cg € #,. Note that if M =N* and B, = (1 + M*M)™ |,
then B, = B. From the preceding argument N *3#, = Mo, C 5#,. It easily
follows that N|#, is normal.

Finally, if h € %, then

[INh||* = (N*Nh, h)
([(N*N + 1) —1]h, h)

= [ = 1) apy (1) S IR 8) /8.
Hence ||N|#) <[(1—8)/8]2 =

PROOF OF THE SPECTRAL THEOREM.Let B = (1 + N *N) ! and C = N(I +
N *N) ! as in Lemma 4.12. Let B = [}tdP(t) be the spectral decomposi-
tion of B and put P, = P(1/(n + 1), I/n] for n = 1. Since ker B = (0) =
P({O}),X>*_,P, = 1. Let #,= P,#. By Lemma 4.13, 5, C dom N, #,
reduces N, and N,= N|5#, is a bounded normal operator with ||N,||<n'/2
Also, if h € H#, (1 + N*N,)Bh = B + N*N,)h = h; that is,

B|#,= (1 + N*N,) .

Thus if A €6(N,), 1 + A\ teo(BlH#)C[1/(n+ 1), I/n]. Thus
o(N)C {z €C: (n =) <zl <n'/?y= A,,. Let N, = [zdE,(z) be
the spectral decomposition of N,. For any Borel subset A of C, let E(A) be
defined by

4.14 E(A) = Y E (AN A,).

n=1
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Note that E, (AN A,) is a projection with range in J£,. Since J, L,
for n# m, (4.14) defines a projection in Z (). (Technically E(A) should
be defined by EA) = >, E (ANA, )P, But this technicality does not
add anything to understanding.)

To show that E is a spectral measure, it is clear that E(C) = I and
E(O) = 0. It A, and A, are Borel subsets of C, then

E(A,NnA) =Y E(ANA NA,)
n=1

Z En(Al N An)En(AZ N An)'
n=1
Again, the fact that the spaces {Jf,} are pairwise orthogonal implies

E(A, N A,) = ( Y E (4, N A,,))( Y E(A,N4,)

n=1 n=1
- E(A)E(A,).
If h €5, then (E(A)h, h) = L3 (E(ANA)h, h). So if {A;}72, are

pairwise disjoint Borel sets,
[e<] [>o] [ 0]
E UAj)h,h )y Ua ) )h h
Jj=1 n=1 Jj=1
Y Z(En(A, N A,)h, h).

n=1j=1
Since each term in this double summation is positive, the order of summa-
tion can be reversed. Thus

<E

So E(US_1A ;) = L5, E(A)); therefore E is a spectral measure.

Let M = {zdE( z) be defined as in Theorem 4.7. Thus 5%, C dom M and
by the Spectral Theorem for bounded operators, Mh = N, h = Nh if he 5,
If his any vector in dom M, h = Lh,, h, € #,, and L||Nh,||? < 0.
Thus 4 € dom N and Nk = Mh. This proves (a).

]

j=1 Jj=1n=1
= L (E(A))h, by
Jj=1

4.15. Claim. a(N) = cl C[lo(N )

It is left to the reader to show that U%_;6(N,)C a(N). Since a(N) is
closed, this proves half of (4.15). If A4 cl[U¥_,0(N,)}, then there is a §> 0
such that |A—2z|=8 for all z in U%_;0(N,). Thus (N, —A)~! exists and
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(N, —A) Y <8 ! for all n. Thus A = &2 (N,—A) ! is a bounded
operator. It follows that A = (N —A)" ! s0 A& a(N).

By (4.15) if A N aN) = 0,ANae(N,) = | for all n. Thus E,(A) = 0
for all n. Hence E(A) = 0 and (b) holds.

If U is open and U N o(N) #0, then (4.15) implies U Ne(N,)*0 for
some n. Since E,(U) # 0, E(U) #0 and (c) is true.

Now let A €B(H#) such that AN C NA and AN¥ C N #*A, Thus A(1 +
N #N) C (1 + N *N)A. It follows that AB = BA. By the Spectral Theorem
for bounded operators, A commutes with the spectral projections of B.In
particular, each s, reduces A and if A, = A|5,, then A,N, = N,A4,.
Hence A,$(N,)=¢(N,)A, for any bounded Borel function ¢. The remain-
ing details are left to the reader. |

The Fuglede-Putnam Theorem holds for unbounded normal operators
(Exercise 8), so that the hypothesis in part (d) of the Spectral Theorem can
be weakened to AN C NA.

4.16. Definition. If N is a normal operator on 5, then a vector eokis a
star-cyclic vector for N if for all positive integers % and /, e, € dom( N *' N')
and #=V{N**Nle, k, > 0].

4.17. Example. Let p be a finite measure on C such that every polynomial
in z and Z belongs to L*(p). Let @, ={f € L*(p):zf € L*(p)} and define
NJ = zf for f in &,. Then N, is a normal operator and 1 is a star-cyclic
vector for N,.

Note that du(z) = e !?'d Area(z) is a measure satisfying the conditions
of (4.17).

4.18. Theorem. Zf N is a normal operator on J with a star-cyclic vector €,
then there is a finite measure pon C such that every polynomial in z and Z
belongs to L*(p) and there is an isomorphism W:#— L*(1) such that
We, = 1 and WNW™'=N,.

The proof is similar to the proof of Theorem 1X.3.4 and is left to the
reader.

4.19. Theorem. Zf N is a normal operator on the separable Hilbert space 5,
then there is a a-jinite measure space (X, §2,11) and an Q2-measurable function
¢ such that N is unitarily equivalent to My on L3(p).

The proof of Theorem 4.19 is only sketched. Write N as the (unbounded)
direct sum of bounded normal operators {N,}. By Theorem 1X.4.6, there is
a u-finite measure space (X,,$2,,1,) and a bounded §,-measurable func-
tion ¢, such that N,=M, . Let X = the disjoint union of {X,} and let
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Q={ACX ANX,€Q, for every n}. If A €2, let p(4) = L, (4N
X,). Let ¢: X —C be defined by ¢(x) = ¢,(x) if x € X,. Then ¢ is
Q-measurable and N =M, on L?( X, 2, p).

EXERCISES
1. Prove Theorem 4.10.
2. Show that if A is a symmetric operator that is normal, then A is self-adjoint.
3. Using the notation of Theorem 4.10, what is o( f¢ dE)?

4, If A, and E, are as in the proof of the Spectral Theorem, show that E, (4,,;)
= En(Anfl) = 0

5. Use the Spectral Theorem to show thatif 0 <a < b < o0, A= {z€ C: a < |z|
<b}, and N = {zdE(z) is the spectral decomposition of the normal operator
N, then E(A)3¥= {h € dom N: a”||h|| <||[N"h{|<b"||A| for all n= 1).

6. State and prove a polar decomposition for operators in F(H#,X").
7. If A is self-adjoint, prove that exp(i4) is unitary.

8. (Fuglede-Putnam Theorem.) If N, M are normal operators and A is a bounded
operator such that AN € MA, then AN * C M*A.

9. Prove Theorem 4.18.

10. If u,, p, are finite measures on € and N, N,, are defined as in Example 4.17,
show that N, =N iff (] =[p,]

11. Fill in the details of the proof of Theorem 4.19.

§5. Stone S Theorem

If A is a self-adjoint operator on J¢, then exp(i4) is a unitary operator
(Exercise 4.7). Hence U(t) = exp(itA) is unitary for all # in R. The purpose
of this section is not to investigate the individual operators exp(it4), but
rather the entire collection of operators {exp(itd):¢€R}. In fact, as the
first theorem shows, U:R— unitaries on 5 is a group homomorphism
with certain properties. Stone § Theorem provides a converse to this; every
such homomorphism arises in this way.

5.1. Theorem. If A is self-adjoint and U(t) = exp( itA) for t in R, then
(a) UQ) is unitary;

(b) U(s+1) = U(s)U(r) for all s in R,

(c) if h €, then lim__ U(s)h =U(t)h;

(@) if he dom A, then

5.2 lim l[U(z)h— h] = idh;
(-0 I

st

(e) if h € and lim,_ ot "YU(t)h— h] exists, then h € dom A.
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ProoF. As was mentioned, part (a) is an exercise. Since exp(itx)exp(isx) =
exp(i(s +t)x) for all x in R, (b) is a consequence of the functional calculus
for normal operators [(4.10) and (4.11)}. Also note that U(0)U(r) = U(t), so
that U(0) = 1.

(¢) If he s, then ||U()h—U(s)h|| = |U(t=s + s)h—U(s)h|| = [by
()] |UHU(t ~ s)h—h]|| = |\U(t — s)h— k|| since U(s) is unitary. Thus
(¢) will be shown if it is proved that || U(t)h—h||— 0 as t— 0. If
A= [® xdE(x) is the spectral decomposition of A, then

U= P = [ e =112 dE, 4(x)
Now Ej » is a finite measure on R; for each x in R,|e"* =11 0 as
t— 0; and |e"*— 1)< 4. So the Lebesgue Dominated Convergence
Theorem implies that U(t)h— h as t — 0.
(d) Note that t~HU(t)—1]—id= f,(A), where f,(x) = ¢t '[exp(itx)—
1} — ix. So if A € dom 4,

2

= A (A) Al

e

As t— 0, t~'[e"™*— 1}—ix — O for all x in R. Also, |e** —1|<|s| for all
real numbers s (Why?), hence |f,(x)|<|f|™ e — 1] + |x| < 2|x|. But
|x| € LY E, ;) by Theorem 4.7(a). So again the Lebesgue Dominated
Convergence Theorem implies that (5.2) is true.

(e) Let @ ={he K lim,_, ot '[U(t)h — h} exists in 5 }. For h in 9,
let Bh be defined by

“%[U(l)h—h]—iAh

2
dE,,‘h(x).

t—0 t

It is easy to see that £ is a linear manifold in 5 and B is linear on Z.
Also, by (d), B2 A so that B is densely defined. Moreover, if h, g €%,
then

(Bh,g) = ~i1in(1)<—U(—t)f—'——h,g>-

By (b) and the fact that each U(r) is unitary, it follows that U(r)* = U(r)™*
= U(—r). Hence
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Hence B is a symmetric extension of A. Since self-adjoint operators are
maximal symmetric operators (2.11), B = A and 2 = dom A. ]

Inspired by the preceding theorem, the following definition is made.

5.3. Definition. A strongly continuous one-parameter unitary group is a
function U:R— #(5F) such that for all s and ¢ in R (a) U(t) is a unitary
operator; (b) U(s + 1) =U(s)U(2); (c) if h € 3, then U(t)h > U(ty)h as
t -1,

Note that by Theorem 5.1, if A is self-adjoint, then U(r) = exp(itd)
defines a strongly continuous one-parameter unitary group.

Also, U(0) = 1 and U(-t) = U(t)-, so that {U(t): + ER} is indeed a
group. Property (c) also implies that U:R— (#(s¢), SOT) is continuous.
By Exercise 1, if U is only assumed to be WOT-continuous, then U is
SOT-continuous. However, this condition can be relaxed even further as the
following result of von Neumann [1932] shows.

5.4. Theorem. If 3¢ is separable, U:R — B(¥) satisfies conditions (a)
and (b) of Definition 5.3, and if for all h, g in I the function t — (U(t) h, g)
is Lebesgue measurable, then U is a strongly continuous one-parameter unitary
group.

Proor. If0 <a<oo and h, g €5, then t— (U(2)h, g) is a bounded
measurable function on [0, af and hence

[ 10k, 8] di < allhllg).
Thus
= [U(e)h, gy di
0
is a bounded linear function on . Therefore there is a g, in  such that
5.5 (h, 8) = fO<U(t)h, g) dt
and lg.ll < aligll-

Claim. (g,: g €9, a> 0} is total in 5.

In fact, suppose h €3¢ and h L {g,; g €I, a > O). Then by (5.5), for
every a > (0 and every g in 5,

0 =f0"<U(z)h,g>dt.

Thus for every g in &¢,{U(t)h, g) = 0 a.e. on R. Because H is separable
there is a subset A of R having measure zero such that if ¢4 A, (U(t)h, g)
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= 0 whenever g belongs to a preselected countable dense subset of .
Thus U(t)h = 0 if t & A. But ||k]| = ||U@)A||, so h = 0 and the claim is
established.

Now if s €R,

(h,U(s)g,) = (U(=s)h,g,)

=foa<U(t—s)h,g)dt

= [ Ute)n, gy dr.

Thus (h,U(s)g,) = {(h, 8,y as s— 0. By the claim and the fact that the
group is uniformly bounded, U:R— (#(5¢), WOT) is continuous at 0. By
the group property, U:R— (#(5), WOT) 1s continuous. Hence U is
SOT-continuous (Exercise 1). |

We now turn our attention to the principal result of this section, Stone $
Theorem, which states that the converse of Theorem 5.1 is valid. Note that
it U(t) = exp(itA) for a self-adjoint operator A, then part (d) of Theorem
5.1 instructs us how to recapture A. This is the route followed in the proof
of Stone 8 Theorem, proved in Stone [1932].

5.6. Stone S Theorem. IfU is a strongly continuous one-parameter unitary
group, then there is a self-adjoint operator A such that U(t) = exp(itA).

ProOF. Begin by defining & to be the set of all vectors A in S# such that
lim, _, ot “YU(t)h— h] exists; since 0 € 2,2 #0. Clearly 2 is a linear
manifold in 5.

5.7. Claim. 2 is dense in 5.

Let %= all continuous functions ¢ on R such that ¢ € L}(0, co). Hence
for any h in 5#,t— ¢(2)U(z)h is a continuous function of R into 7.
Because J|U(2)h| = ||A|| for all ¢, a Riemann integral, [{°p(¢)U(¢)hdr. can
be defined and is a vector in S#. Put

5.8 Th= "o ()U(1)hdr.

0

It is easy to see that T,:5#— 5 is linear and bounded with ||T,|| <
[&19(2)) dr. Similarly, for each ¢ in #

5.9 S,h = f:qs(t)U(—t)hdt

defines a bounded operator on #.
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For any ¢ in % and ¢ in R,
U()T,h = U(t) [~ (s)U(s)hds
0
= fmqb(s)U(t + s)hds
0
= fm(i)(s — 1)U(s)hds.
Similarly,
U(1)Syh = [ ¢(s + )U(=s5)hds.
-t

Now let M = all ¢ in & that are continuously differentiable with ¢’ in
Z. For ¢ in LD,

- L[U(r) - 1] T,k = —ff ¢(s — 1)U(s)hds + ffo &(s)U(s)hds
= _l‘/;w[qb(s — t)t_ o (s) 1U(s)hds
+ ;]:¢(s)U(s)hds.

Now
[fee=ms]

<||hf|sup{le(s — 1) — &(s)]: 0 < s <t}
-0

as t = 0. Hence

lim w[¢(s —1) = ¢(s) lU(s)hds — —fw¢’(s)U(s)hds

t—0 Yy ! 0
= —T,h.

Since s— ¢(s)U(s)h is continuous and U(0) = 1, the Fundamental Theo-
rem of Calculus implies that

.1 p
}%7‘[()¢(S)U(s)hds = (0)h.
Hence for ¢ in W and h in #,
5.10 lim —~[U(t) =1 T,h = iTyh +ip(0)h.
t—0 t
Similarly, for ¢ in £V and h in H#,

. i . .
5.11 lim —7 [U(r) —1]S,h = —iSyh — ig(0)h.
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So (5.10) implies that
D2{T,h: ¢ LD and h € #}.
But for every positive integer n there is a ¢, in £ such that ¢,> 0,
¢,(¢) =0 for t = In, and [{°p,(2)dt = 1 (Exercise 2). Hence
1/n
T,h—h = [p o, ()[U(£)— 1] hdt

and so (| T, h— h||<sup{[|U(t)h—h||: 0 < t < l/n}. Therefore || T, h—
h||— 0 as n— cc since U is strongly continuous. This says that £ is dense.
For A in @, define

5.12 Ah = —ilin(l)%[U(t)—l]h.
t—
5.13. Claim. A is symmetric.

The proof of this is left to the reader.

By (2.2¢), A is closable; also denote the closure of A by A. According to
Corollary 2.9, to prove that A is self-adjoint it suffices to prove that
ker(A* +i) = (0). Equivalently, it suffices to show that ran(A4+i) is
dense. It will be shown that there are operators B , such that (A +i) B | = I,
so that A i is surjective.

Notice that according to (5.10),

(A +i)T, = AT, + iT, = i(T, + T,) + i$(0).

So taking ¢(t)=—ie”™", (A +i)T, = 1. According to (5.11)
(A —i)S, = AS,—iS, = —i(S, + S,)—iy(0).

Taking y(¢)=ie ', (A —i)S, = 1. Hence A is self-adjoint.

Put V(t) = exp(iAr). It remains to show that ¥V =U. Let h € . By
Theorem 5.1(d),

sTHV(t+s) —V()]h = s [V(s)— 1]V(t)h - iAV(e)h;
that is, V’(¢)h = iAV(r)h. Similarly,
sTHU(t+ s) —U()]h = s H{U(s) = 1]U(t)h - iAU(2) h.
So if h(r) = U(t)h—V(t)h, then h: R— 5 is differentiable and
h (r) = iAU(t)h—iAV(t)h = idh(t).
But

%Hh(t +5)—h()? = < h(r + ss) “h(r) Jh(t+s)— h(r)>.

Thus (d/dt)||h(2)|}> = 0 and so ||h||:R—> R is a constant function. But
h0) = 0, so h(r) = 0. This says that U(z)h = V(t)h for all & in 2 and all ¢
in R. Since 2 is dense. U =V. ]



340 X. Unbounded Operators

5.14. Definition. If U is a strongly continuous one-parameter unitary
group, then the self-adjoint operator A such that U(t) = exp(it4) is called
the infinitesimal generator of U.

By virtue of Stone § Theorem and Theorem 5.1, there is a one-to-one
correspondence between self-adjoint operators and strongly continuous
one-parameter unitary groups. Thus, it should be able to characterize
certain properties of a group in terms of its infinitesimal generator and vice
versa. For example, suppose the infinitesimal generator is bounded; what
can be said about the group?

5.15. Proposition. IfU is a strongly continuous one-parameter unitary group
with infinitesimal generator A, then A is bounded if and only if lim, _, o|| U(?)
=1 =

ProoF. First assume that A is bounded. Hence || U(z) —1|| = ||exp(it4) —

1|| = sup{le’™ —1|: x € a(A)} = 0 as t = O since a(A) is compact.
Now assume that || U(t) —1||— 0 as t = 0. Let 0 <e <7/4; then there
is a ty> 0 such that ||U(t)—1)<e for |t <1, Since Ui) — 1 =

Joay(e™ — 1) dE(t), sup{ |e™" = 1]: x € a(A)} = |U(t)—1||<e for |1
<ty. Thus for a small 8, x €eUP__ (2wn—8,27n + 6) = G whenever
X € a(A) and |t| <ty In fact, if ¢ is chosen sufficiently small, then § is
small enough that the intervals {(2wn—8,27n+ S)} are the components
of G. If x € u(A), { &x: 0 <t<t,} is the interval from O to tgx and is
contained in G. Hence = € (—8,8) for x in 6( A) and |t|<t,. In particu-
lar, t0( A) C[—8,8]s006( A)is compact and A is bounded. ]

Let p be a positive measure on R and let 4,f = xffor finP, ={f€
L*(p): xf € L*(p)}. We have already scen that A is self-adjoint. Clearly
exp(itd,) = M’ on L*(R), where e, is the function e(x) = exp(itx). This
can be generaffzed a bit.

5.16. Proposition. Let (X, £, p) be a o-finite measure space and let ¢ be a
real-valued O- measurable Junction on X. If A = M, on L*(p) and U(t) =
exp(itA), then U(1) = M, , where e(x) = exp(itdp(x)).

Since each self-adjoint operator on a separable Hilbert space can be
represented as a multiplication operator (Theorem 4.19), the preceding
proposition gives a representation of all strongly continuous one-parameter
semigroups.

EXERCISES

1. If U:R— B(5¥) is such that U(t) is unitary for all 7, U(s+1¢)=U(s)U(¢) for
all s,t, and U: R — (2(5¥), WOT}s continuous, then U is SOT-continuous.

2. Show that for every integer » there is a continuously differentiable function ¢,
such that both ¢, and ¢, € L'(0, co), ¢,(1) = 0 if 1> In, and [, (1) dt = 1
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3. Prove Claim 5.13.

4. Adopt the notation from the proof of Stone s Theorem. Let ¢,y €% and show
@ T3 = S ) T,T, = Ty, and 5,5, = Sy5 (©) TAC AT,

5. Let U be a strongly continuous one-parameter unitary group with infinitesimal
generator A. Suppose e is a nonzero vector in J# such that Ae = Xe. What is
U(t) e? Conversely, suppose there is a nonzero such that U(t) has an eigenvec-
tor. What can be said about A? U(s)?

§6. The Fourier Transform and Differentiation
Perhaps the best way to begin this section is by examining an example.

6.1. Example. Let 2 ={f<L*R):f is absolutely continuous on every
bounded interval in R and f’€ L*(R))}. For f in &, let Af =if’. Then A
is self-adjoint.

First let s show that A is symmetric. If f €2, note that f(x) — O as
x = +oosince f€ LXR). Soif f,g € 2,0 <a < oo,

i 1008 dx = i 7(@)s(@) ~ f(~a)g=a)] ~if* f(x)g"(x)ax

Hence (Af, g = (f, Ag) and A is symmetric.

Now let g € domA*andfor0 <a<owolet 2, ={fe€ P: f(x)= 0 for
|x|=a}. The proof that g € dom A follows the lines of the argument used
in Examplel.ll. In fact, let h= A*g. So if f € D, then [f(x)h(x)dx =
iff’(x)g(x)dx. Let HxX) = [;h(t)dt. Then using integration by parts we
get that for fin 2,

f_" ﬁ’:mf(a)_H(—a)f(—a)— f_aaf’ﬁ
f g

Therefore [ ,f '[H — (ig)] = 0 for every [ in @,. As in (1.11), it follows
that H — ig is constant on [—a,a] and g is absolutely continuous. More-
over, 0 =H —ig =h—ig, hence A*¢ = h = ig. Thus g€ P and A is
self-adjoint.

If A is the differentiation operator in Example 6.1, what is the group
U(t) = exp(itA)? Since A is not represented as a multiplication operator,
Proposition 5.16 cannot be applied. One could proceed to try and discover
the spectral measure for A. Since A = [xdE(x), U(r) = [e"*dE(x). Or
one could be clever.

Later in this section it will be shown that if #:L*(R)— L*(R) is the
Fourier-Plancherel transform, then % is a unitary operator (6.17) and
F 'AF = the operator on L*(R) of multiplication by the independent
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variable (6.18). Thus F 'U(¢)% is multiplication by e'*. But it is possible
to find U(t) directly.
Recall that if f€ dom A,
Af — —ilimL)tf——z.

t—0

Flx) - (UON() = f(x)

t—0

Being clever, one might guess that (U(2)f)(x)= flx — t).

6.2. Theorem. IfA and 2 are as in Example 6.1 and U(t) = exp( itA), then
U f)x) = fix — t) for allf in LXR) andx, t in R.

Proor. Let (V(¢)f)x) = flx — t). Tt is easy to see that V is a strongly
continuous one-parameter unitary group. Let B be the infinitesimal genera-
tor of V. It must be shown that B = A.
Note that f &€ dom B if and only if lim,, ot YV (¢)f —f) exists. Let
f € CH(R); that is, fis continuously differentiable and has compact
support. Thus for ¢ > 0,
V(it)f— x—1)—f(x x

t

and

V(t)f(xt) SIETRNI

IA

e o
sup{lf"(x) = f(y):|x =yl < 1}.

Because f’ is continuous with compact support, f is uniformly continu-
ous. Let K = {x:dist(x, spt f’)< 2). So K is compact. For ¢> 0, let
S(E) < 1 be such that if jx— y|< S(8), then If {x) -f ‘(y)|<e. Hence
e YVf—f1+f'll,<&*K]|, where |K|= the Lebesgue measure of K. Thus
C(R)C dom B and Bf = Af for fin CO(R). But if £ € dom A, there is a
sequence { f,} S CP(R) such that f, ® Af, »f® Af in gra A (Exercise 1).
But f,®Af,= f,® Bf,, € gra B, so f ® Af € gra B; that is, A € B. Since
self-adjoint operators are maximal symmetric operators (2.11), A = B.

|

IA

To show that the Fourier transform demonstrates that M, and id/dx are
unitarily equivalent, we introduce the Schwartz space of rapidly decreasing
functions.

6.3. Definition. A function ¢:R - R is rapidly decreasing if ¢ is infinitely
differentiable and for all integers m, n = 0,

6.4 191lm,» = sup{|x"$"(x)]: x ER} < 0.
Let #=%(R) be the set of all rapidly decreasing functions on R.
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Note that if ¢ € %, then for all m, n > 0 there is a constant C,
that

such

.n

9 (x)] < G, plx] ™"

Thus if p is any polynomial and n> 0, |[p(x)$'(x)|— 0 as |x| > 0. In
fact, this is equivalent to ¢ belonging to & (Exercise 3). Also note that if
¢S, then x"pM €. ¥ for all m, n = 0.

It is not difficult to see that ||-||,, ,is a seminorm on &. Also, % with
all of these seminorms is a Frechet space (Exercise 2). The space & is
sometimes called the Schwartz space after Laurent Schwartz.

6.5. Proposition. IfI1<p <co, FCLP(R).Zf1 <p <00, is dense in
L?(R); % is weak-star dense in L*(R).

ProoF. We already have that £ CL¥(R).If 1 <p <oo and ¢ €.%, then

[T erdx = [T e x?) P+ 22l dx

<11 + xH) |p? * 1 +x2) Pdx.
13+l (1 +x%)
Since (1 +x2)?>1 4 x?,

gl < 7' /211 + x2) 9|l

<7Pliolloo + Nell20l-

Since C(*(R)C ., the density statements are immediate. |

6.6. Definition. If f€ LY(R), the Fourier transform of fis the function f
defined by

A 1 )
x)=—| f(t)e "*dr.
fe) = == [ 1)
Because f€ L (R), this integral is well defined.
The interested reader may want to peruse §VIL.9, where the Fourier
transform is presented in the more general context of locally compact

abelian groups. That section will not be assumed here.
Recall that if f,g € L', then the convolution of fand g,

£ og(x) = (2W)_1/2Lf(x—t)g(t)dt,

belongs to LY(R) and ||f * gll; <|Ifll;llgll,- It is also true that if f€L?(R),
1 <p<oo, then f* g &L?(R) and ||f *gll, <II/ll,li8ll; (see Exercise 4).
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6.7. Theorem. (a) Zff€ L (R), then f is a continuous function on R that
vanishes at 0. Also, ||f]l, <IIfll;-
(b) If p€F, ¢ €. Also for m,n = 0,

m{ d\"~ d
6.8 (ix) (Fx') ¢=[(E)

©Iff,8.€ L'R), then (f *8)=f&.
{(Note: [ | = the Fourier transform of the function defined in the brackets.)

~

((-x)"9)]

m

Proovr. (a) The fact thatf is continuous is an easy consequence of
Lebesgue § Dominated Convergence Theorem; it is clear that || f]|°os|| il
For the other part of (a), let f=the characteristic function of the interval
(a, b). Then f(x)=iQRm) Y2 e i* —e 9|50 as |x|— co. So f(x)
vanishes at +ooif fis a linear combination of such characteristic functions.
The result for a general ffollows by approximation.

(b) It is convenient to introduce the notation D¢ = ¢’. Thus D" = ¢,
Also in this proof, as in many others of this section, x will be used to
denote the function whose value at tis ¢z and it will also be used
occasionally to denote the independent variable.

If ¢ €%, then differentiation under the integral sign (Why is this
justified?) gives

(Do) (y) =—2‘/l‘—w—f_mm(—it)eiyr¢(t) dt
= [(=ix)e] (»).

By induction we get that for n > 0,
(6.9) D" = [(~ix)"s] .

Using integration by parts,

(08) () = = [ (1) a

== [ e gle

= ‘/%y;fme“-”(p(t) dt.
That is, (D¢) = (ix)& By induction,

6.10 (D7) = (ix)"$

for all n > 0. Combining (6.9) and (6.10) gives (6.8).
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By (6.8) if m, n = 0, then for ¢ in &,
¢ll,» = sup{]x™(D"$)(x)I: x € R}

sup | 2= [ e[ 4)"[(=i"e )] a
= I |(&) reton]a

since D" (x"p)e L (W) (6.5).
(c) This is an easy exercise in integration theory and is left to the reader.
[ ]

:xER}

IA

The fact that f(x)—» 0 as |x| oo is called the Riemann-Lebesgue
Lemma,

The process now begins whereby it will be shown that the Fourier
transform on L'N L? extends to a unitary operator on L*(R). Moreover,
the adjoint of this unitary will be calculated and it will be shown that if
i d/dx is conjugated by this unitary, then the resulting self-adjoint operator
is M,.

Changing notation a little, let U, [instead of U(y)] denote the translation
operator. Moreover, think of U, as operating on all of the L” spaces, not
just L2, so (U, f)(x) =f( x —y) for fin L?(R). Also, let e, be the function
e (x) = exp(ixy).

6.11. Proposition. If f € LR) andy €R, then

~

[ny] = e—yf’
[e./] =4/

Proor. If [ € LY(R),
[U,/]7(x) = @7) " [[U,f](1)e > ar
= @m) 7 [f(1 = y)e s

= 2m) 2 [f(s) e ds
= e_(x)f(x).

The proof of the other equation is left as an exercise. L4

In the proof of the next lemma the fact that f Twe_’z dt =m is needed.
Those who have never seen this can verify it by putting Z = 0"°e‘)‘2 dx,

noting that I2 = [§°[g%e~ "+ dx ¢, and using polar coordinates.
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6.12. Lemma. If > 0 and p,(t) = e ", then

p(x) = —ze T/
&/2

Proor. Note that p, € . By (6.8), Dp, = (— ixpE)A. Using integration by
parts,

— > ' 2,2 ;
Dp)(x)=— e e ™M dt
(DR)(x) == |

—1 -1 @ : _ap
«.z—,?(ﬁ)f_;‘”‘"’(" )

e (—ix)e " dt

262\/27J "

=, —b.(x).
Let ¢ (x) = e™*/%_Then both o, and , satisfy the differential equation
u (x) = —(x/2e*)u(x). Hence p, = cy, for some constant c. But ¢ (0) = 1,
and
1 2,2
5.(0) = e " dt
5.(0) m [ e
= e ds
g\/ﬁJ_w
1 1
= v = ——.
&2 &2

6.13. Proposition. If ¢ € LY(R) such that 27) Y *fgy(x)dx = 1 and if

for e> 0, ¥ (x) = e N (x/¢), then for every fin Co(R), ¥ * f(X)— f(x)
uniformly on R.

Proor Note that (2w) /[y (x) dx = 1 for all €> 0. Hence for any x
in R,

ber f(x) -f) = 2m) P f[f(x= —f(X)]%xp(é)dt

= (m) " [[f(x = 0 = 1()] ¥ (s) ds.

Put w(y) = sup{|f(x—y) — f(x)|:y € W} Now f is uniformly continu-
ous (Why?), so if £> 0, then there is a 6 > 0 such that w(y) <eif |y} <.
Thus w(y) — 0 as |y]— 0. Moreover, the inequality above implies

We* f = Ml < 2m) "7 [ (se)g () ds.

Since y € LY(R), the Lebesgue Dominated Convergence Theorem implies
that [I¥e, *f — fllo = O whenever ¢ — 0. This proves the proposition.
[ ]
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The next result is often called the Multiplication Formula. Remember that
if f€LYR), f<€Cy(R). Hence fg<€ L'(R) when both f and g € LY(R).

6.14. Theorem. Iff, g € LN(R), then
[f(x)g(x) dx = [ 7(x)i(x) dx.
R R

Proor. The proof is an easy consequence of Fubini § Theorem. In fact, if
f. g € L\R), then

[7(x)g(x) dx = f[%ff(z)evmdt]g(x)dx

= ff(t)[—‘/—zl_?fg(x)e“”dx} dt
= [rana. =
6.15. Inversion Formula. If ¢ € &, then
1 < . ixt
¢(x) = E/_@(ﬁ(’)e dr.

ProoF. Let p(x) = e =% and put ¥(x)=p,(x). Then by Lemma 6.12
Y. (x)=¢e WY(x/e) = p(x). Also,

(277)—1/2f¢(x)dx=(27r)—l/2foo 212 ¥ gy = .
So ¢, * h(x) = h(x) uniformly for any 2 in Cy(R). If ¢ €&, put f = ¢

and g = e,p, in (6.14). By Proposition 6.11 and Lemma 6.12, §=1Up,
U,. Thus

1 ® . itx,,—e*t? 1 <
ﬁfﬁo)e e " dt = E/ﬂwmu ~ x)dr
=o*¢.(x)
- ¢(x)
as ¢ > 0. The Lebesgue Dominated Convergence Theorem implies the

left-hand side converges to (27)~1/%(¢(t)e’*"dt and the theorem is proved.
[ |

In many ways the next result is a rephrasing of the preceding theorem.
6.16. Theorem. zf F: S — % is defined by F¢ = %,fisabijection with

(#7)(x) = o= [ a0y ar



348 X . Unbounded Operators

Moreover, if & is given the topology induced by the seminorms {||-||,, .:
m, n> 0} that were defined in (6.4), % is a homeomorphism.

Proor. By (6.7b), F¥C &. The preceding theorem says that % is bijective
and gives the formula for % 1. The proof of the topological statement is left
to the reader. [ ]

6.17. Plancherel § Theorem. If ¢ €., then ||¢}, = ||<i>||2 and the Fourier
transform F extends to a unitary operator on L*(R).

Proor. Let ¢ €.% and put ¥(x) = ¢(—x) x)._Sop = qb*xl/ELl(IR) and
p= ¢1[/ An easy calculation shows that x[/ ¢ hence p = |¢| Also, the
Inversion Formula shows that p(0) = 27) ?[p(x) dx = (27) /2
[19(x)|? dx. Thus

J1d(x)Pax = (27)p(0)
= (27)" 6%y (0)

= [6(x)¥(0 —x) dx

= fle(o) dx.

So if & is considered as a subspace of L*(R), %, the Fourier transform, is
an isometry on &. By Proposition 6.5 and the preceding theorem, %
extends to a unitary operator on LZ(R). u

Warning! The content of the Plancherel Theorem is that the Fourier
transform extends to an isometry. The formula for this isometry is not given
by the formula for the Fourier transform. Indeed, this formula does not
make sense when fis not an L' function. However, the same symbol, %,
will be used to denote this unitary operator on L?*(R). For emphasis it is
called the Plancherel transform.

6.18. Theorem. Let A be the operator on L*(R) given by Af = id/dx and let
M be the operator defined by Mf = xf. Zf F:L*(R)—> L*(R) is the
Plancherel Transform, then Fdom M = dom A and

FUF=M

Proor. The fact that AF=FM on & is an immediate consequence of
Theorem 6.7(b). Since & is dense in both dom A and dom M, the rest of the
result follows (with some work-give the details). [ |

Fourier analysis is a subject unto itself. One source is Stein and Weiss
[1971]; another is Reed and Simon [1975].
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EXERCISES

1. If 2 is as in Example 6.1, show that for every f in 2 there is a sequence { f, } in
CM(R) such that £, f and f; - f’ in L*(R).

2. Show that the Schwartz space & with the seminorms {|[|,, ,: m, n>0}is a
Frechet space.

3. If ¢ is infinitely differentiable on R, show that ¢ € & if and only if for every
integer n> 0 and every polynomial p,¢'"(x)p(x)— 0 as |x|— co.

4.1f feLP(R),1 <p <0, and g € L'(R), show that f * g € L7(R) and |If * gl|,
<|Ifll,llgll;- (Hint: See Dunford and Schwartz [1958], p. 530, Exercise 13 for a
generalization of Minkowski’s Inequality.)

5. If y and ¥, are as in Proposition 6.13 and f€ L?P(R),1 <p <oo, show that
I)f *¥.— fll,= 0 ase— 0. If f € L*(R), show that f =y, > f (weak*).

6. If fe L/(R) and f e L'[R), show that f(x) = Q7)) *fg f(1)e'™™ dt ae.

7. If #:L*(R) - L*(R) is the Plancherel Transform and f € L*(R), show that
(FHXx) = (FFH(=x).

8. Show that #% =1 but #?= 1. What does this say about ¢(.%)?
9. Find the Fourier transform of the Hermite polynomials. What do you think?

§7. Moments

To understand this section, the preceding two sections are unnecessary.

Let p be a positive Borel measure on R such that [|t|"du(t)=m ,<o0
for every n> 0. The numbers { m,} are called the moments of u in analogy
with the corresponding concept from mechanics. The central problem here,
called the Hamburger moment problem, is to characterize those sequences of
numbers that are moment sequences. Just as self-adjoint operators are
connected to measures, the theory of self-adjoint operators is connected to
the solution of this moment problem.

7.1. Theorem. If { m,:n=0} is a sequence of real numbers, the following
statements are equivalent.

(a) There is a positive regular Borel measure pon R such that {|t|"dp(t) <oco
for alln> 0 and m, = [t"du(t).

(Y If g, .., @, €C, then L7 ,_om; 0,8, > 0.

(c) There is a self-adjoint operator A and a vector e such that e € dom A for

all n and m,={A",e) for all n > 0.

Before proving this theorem, a preliminary result is needed. This result is
useful in many other situations and is one of the standard ways to show that
a symmetric operator has a self-adjoint extension.
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7.2. Proposition. Let T be a symmetric operator on 3 and suppose there is a
function J: ' — H having the following properties:

(a) J is conjugate linear (that is, J(h + g) = Jh + Jg and J(ah) = aJh);
() J*=1;

(c) Jis continuous;

(d) Jdom T € dom T and TJ C JT.

Then T has a self-adjoint extension.

Proor. First note that if # € dom 7, then Jh € dom T and h = J( Jh).
Hence Jdom 7 = dom T and JT = TJ.

Let h € and define L: #—C by L(f) = (h, Jf ). Since J is con-
jugate linear, L is a linear functional. By (c), L is continuous. Thus there is
a unique vector A* in 3¢ such that L(f) = (f, h*). Let J*h = h* Thus
J*: - 5 and

7.3 (f,T*h)y = (h,Jf).
It is clear that J* is additive. If a €C, then (f,J*(ah)) = (ah Jf)
al f,J *h) = (f, aJ*h). Thus J * is conjugate linear. Since J? it

follows that J*2? = 1.

Let h €domT* and fE€domT. Then (TJf, h) = (Jf, T*h) =
(J*T*h, f) by (7.3). But also by (d), {TJf, h) = {JTf, h) = (J*h,Tf).
So (J*¥T*h,f) = (J*h,Tf) for all h indomT* and findomT.Butthis
says that J *h € dom T * whenever A € dom T * and, furthermore, 7 *J *h
= J*T*h, Since J*? = 1, it follows that J*dom T* = domT* and J*T*
= T*I*.

Now let h € ker(T* =+ i). Then T*J*h = J*T*h = J*(xih) = FiJ*h
Thus J*ker(T* + i) € ker(T* F i). Since J** = I, J*¥ker(T* +i) =
ker( T * F i). But J * is injective. Indeed, if J *h = 0, then h = J *( J *h) = 0.
Thus the deficiency indices of T are equal. By Theorem 2.20, 7 has a
self-adjoint extension. ®

Proor or Turorkm 7.1. (a) implies (b). If ay,...,a,EC, then
Y m; o8, = f 3 aj.&ktj+kdu( 1)
Jok=0 j k=0

=f(é:0a’tj)(éoaktk)d“(t)
Xn: a,t* 2

=fk=0

(b) implies (c). Let H#, = the collection of all finitely nonzero sequences
of complex numbers {a,:n > O} That is, {ag, ay,...}EH, if a,€C
for all n > 0 and «, = O for all but a finite number of values of n. If

du(t) = 0.
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x ={a,},y={B,} €#, define [x, y] by
7.4 [x’ Yl = ij+kajEk'

Jrk=0
It is easy to see that J, is a vector space and (7.4) defines a semi-inner
product on 5#,. In fact, it is routine that [-, -] is sesquilinear and condition
(b) implies that [x, x] = 0 for all x in 3¢,
Let o, = {x €5, [x, x] = 0} and let 5, be the quotient vector space
Ko/ Hy. IEh=x + Ay and [ =y + Hy € H), then

7.5 (h, fy=[x, ]

can be verified to be a well-defined inner product on ). Let 3¢ be the
Hilbert space obtained by completing 5 with respect to the norm defined
by the inner product (7.5).

Now to define some operators. If x = {a,} €, let Tyx =
{0, ay, ay,...}. It is easy to check that Tj is a linear transformation on 5.
Also, if x = {a,}, y={B,}€ H,, let Tyx ={v,}. So v, = 0 and v, =
a,_ifn> 1. Hence

s

[T, y] = mj+ijEk

“~
Il
(=]

f
M8

mj+kaj—1'Bk

X~
I o
o]

1
8

mj+k+1aj:Bk

~.
[
<

[
8 =

mj+kaj:Bk—]

— s
=
- -0
>3
~

In particular, if x € X, then the preceding equation and the CBS in-
equality imply that
I Tox, Tyx]| I[Tozx,xhS[Tozx,Tozx][x,x]
= 0.

Hence Ty, C A, Thus T, induces a linear transformation 7 on 3
defined by T(x +X,) = Tyx + A,. It follows that {Th, f) = (h, Tf) for
all A, f in 5#,. Since 3, is, by definition, dense in 3¢, T is a densely
defined symmetric operator on J#. Now to show that T has a self-adjoint
extension.

Define J,: #, = #, by Jy({a,})={a,}. It is easy to sce that J, is
conjugate linear and J; = 1. Also, J,T, =Ty J,. An easy calculation shows
that [Jyx, Jy¥] = [x, y] for all x, y in 5¢,. So J, ¢, C X, and J; induces a
conjugate linear function Jy: 3¢, — 3¢, defined by J,(x + XH}) = Jox + X,
It follows that J;T =TJ;,J? =1, and ||J,A| = ||A|| for all A in . Thus



352 X. Unbounded Operators

J, extends to a conjugate linear J: H#'— 5 such that J? = I and ||JA|| = ||A]|
for all & in 5#. Hence J is continuous. Also, Jdom T = J,3£,C#| =
dom T and 7J € JT. By Proposition 1.2, 7 has a self-adjoint extension A.

Let ey ={1,0,0, ... }€ 5, Hence Tj'e, has a 1 in the nth place and

zeros elsewhere. If e = e, + ), then e € dom T"C dom A  for all n> 0.
Also,

(A"e,e) = [To"eo,e()] =m,
for n> 0.

(c) implies (a). Let & be the closed linear span of { A"e:n=0}. For & in
LN dom A, let Bh = Ah. Tt follows that B is a self-adjoint operator on &
and e is a cyclic vector for B. By Theorem 4.18, there is a positive measure
on R (because B is self-adjoint) such that f|#]" du(t) < cc for every n> 0

and an isomorphism W: £ — L*(n) such that We = 1 and WBW ! = M,.
Thus

[rrau(e) = (M1

= (W M1, W)
(A", e)

m_. [ ]

n

EXERCISES

L. (Steltjes.) Let {m,: n=>0} be a sequence of real numbers and show that the
following statements are equivalent. (a) There is a positive regular Borel measure
p on [0, co) such that m,, = ft"du(?) for all n> 0. (b) If a,.,a,€C, then
2 oM, x®& = 0 and X k—0™Mjsk+12,82-0. (c) There is a self-adjoint
operator A with 6(A)C [0, co) and a vector e in dom A for all n> O such that
m, = (A%, e) for n> 0.

2. (Bochner.) Let m: R—C be a function and show that the following statements
are equivalent. (a) There is a finite positive measure p on R such that m(z) =
fe'*"du(x) for all ¢t in R. (b) m is continuous and if ag,., a, €C and
to. t, ER, then L7, _om(1 —t,)a &, > 0. (c) There is a strongly continu-
ous one-parameter umtary group U(t) and a vector e such that m(z) =

(U(t)e, e) for all ¢ (Hint: Let 5%, = all functions f:R—C that vanish off a
finite set.)

3. Let {m,: n€Z}cC and show that the following statements are equivalent. (a)
There is a positive measure p on D such that m, = [z dp( z) for all nin Z. (b)
Ifa,.  .,¢ a8, .. ,a, €Cthenl’, ,m _,aa=>0. (c) There is a
unitary operator U and a vector e such that m, = {(U”"e,e) for all n.

4. Show that the operator A that appears in the proof that (7.1b) implies (7.lc) is
cyclic.



CHAPTER XI

Fredholm Theory

This chapter is entirely independent of the preceding one and only tangen-
tially dependent on Chapters VIII and IX.

The purpose of this chapter is to study certain properties of operators on
a Hilbert space that are invariant under compact perturbations. That is, we
want to study properties of an operator A in #(3¢) that are also possessed
by A + K for every K in Z,(3¢). The correct view here is to consider this
undertaking as a study of the quotient algebra B(3¢)/B,(HK) =
%/ B ,—the Calkin algebra. Any property associated with an element of the
Calkin algebra is a property associated with a coset of operators and vice
versa. It is useful-indeed essential-to relate these properties to the way in
which the operators act on the underlying Hilbert space.

§1. The Spectrum Revisited

In Section VIL6 we saw several properties of the spectrum of an operator on
a Banach space. In particular, the concepts of point spectrum, o,(A), and
approximate point spectrum, u,,(A), were explored. It was also shown
(VIL6.7) that ao(A)goap(A). Recall that u,(A) is the left spectrum of A
and u,.(A) is the right spectrum of A.

1.1. Proposition. Zf A € B(H), the following statements are equivalent.

(a) A4 u,(A); thar is, inf{||(4—A)A|: |l = 1}> 0.
(b) ran( A —A) is closed and dim ker( A —A) = 0.
(©) A & o,(A).
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(d) A&o,(A*).
(e) ran(A*— A) = 3.

Proor. By Proposition VIL6.4, (a) and (b) are equivalent. Also, if BE
B(H), then B(A—A) = 1 if and only if (A* —A)B* = 1 so that (c) and
(d) are easily seen to be equivalent.

(b) implies (c). Let M =ran(A—A) and define T: # — A by Th = (A
—A)h; then T is bijective. By the Open Mapping Theorem, T 1: A — #
is continuous. Define B:#— 3 by letting B =T 'on.# and B = 0 on
M+, Then B € B(H#) and B(A—A) = 1. (Note that we used a property
of Hilbert spaces here; see Exercise VIL6.5.)

(d) implies (e). Since A&ao,(A*), there is an operator C in Z(I¥) such
that (A* —A)C = 1. Hence #'= (A* — A)CHCran(A*— A).

(e) implies (a). Let A =ker(A*— A)* and define T: & — # by
Th = (A* —A)h. Then T is bijective and hence invertible. Let C: H#— #
be defined by Ch = T 'h. Then C#¥= A" and (A* —A)C = 1. Thus
C*(A—A) = 1 so that if B €2, ||h|| = [|C*A—N)A| < ||IC*|||I(4-
Ma|l. Hence inf{(|(4—M)A|:||A]| = 1}=||IC*||"". =

IfACC, &*={A: A€ A).

1.2. Corollary. If A € B(H), then Jo(A) S a(A) N o (A4) = 0,,(4) N
0, (A*)*.

Proor. The equality is immediate from the preceding theorem. In fact,
u, (&) = 0,,(A4) and 0,(A4) = 6,(A*)* = 0,,(A*)*. If A€ Jo(A), then
(VIL.6.7) A€ u,(A). But A€do(A4*) so that A€o, ,(4*). ]

For normal elements there is less variety. The pertinent result is proved
here in a more general setting than that of operators.

1.3. Proposition. Let & be a C*-algebra with identity. If a is a normal
element of &, then the following statements are equivalent.

(a) a is inuertibfe.
(b) a is left invertible.
(c) a is right invertible.

Proor. Assume that a is left invertible, so there is a b in & such that
ba = 1. Thus for any x in &,||x{| = ||pax||<||bllllax||, and hence ||ax|| =
Ib)] " Yx||. In particular, this is true whenever x € C*(a). Because a is
normal, C*(a) is isomorphic to C(K) where K = u(a) and where the
isomorphism takes a into the function z (z(w) = w). The inequality above
thus becomes: ||zf]|=]|b|| " ||| for every f in C(K). It must be shown that
0 & K (= a(a)). If 0 € K, then for every integer n there is a function f, in
C(K) such that 0 <f < I, f(0O) = 1 and f,(z) = 0 for z in K and



X1.2. The Essential Spectrum and Semi-Fredholm Operators 355

|z|=n"% Since 0 € K, ||f,|| = 1. But ||zf,)ij< U/n. This contradicts the
inequality and so O & a(a); that is, a is invertible.

The argument above shows that (b) implies (a). If a is right invertible,
then a* is left invertible. By the preceding argument a* is invertible, and
hence so is a. |

1.4, Proposition. If N is a normal operator, then a(N) = o,(N) = a,(N).
If X is an isolated point of u(N), then A€ 0a,(N).

Proor. The first part of the proposition is immediate from the preceding
result. If is an isolated point of u(N) and N = fzdE(z), then 0 #
E({A}) ="ker(N —A) (Exercise 1X.2.1). [ ]

EXERCISES

1. Let S be the unilateral shift of multiplicity 1 on /*(N) and find u,(S) and 6.(S).

2. The compression spectrum of A, o (A), is defined by 0,(A) = {A €C:ran( A -A)
is not dense in A }. Show: (a) A€ u.(A) if and only if A€o,(A4*). (b)
u,.(A) €o,( A) but this inclusion may be proper. (c) 6, (A) is not necessarily
closed. (d) u(A) = o,,(4) u o.(A).

3.1 A € B(#) and feHol(A4), then f(5,,(4)C0,,(f(4)) and f(o,(A)C
0, (f(A)).

4.1f f is a rational function with poles off u(A), show that f(o,, (4)) =0,,(f( A)

and f( 0, (A)) = 6,( f(A)). Give necessary and sufficient conditions on a function
f in Hol( A) that these equalities hold.

§2. The Essential Spectrum and Semi-Fredholm
Operators

Let #B/%, be the Calkin algebra and let 7: % — #/%, be the natural map
(¥ is being suppressed here). Since %, is an ideal in &, B/%, is a Banach
algebra with identity.

2.1. Definition. If A € Z(3¢), then the essential spectrum of A, o,( A), is
the spectrum of n(A) in %/%,; that is, 0,( A) = o(7w( A)). Similarly, the left
and right essential spectrum of A are defined by o,,(A) =0,(7( A)) and
6., (A)Y=o,(7(A)), respectively.

2.2. Proposition. Ler A € B(H).

(a) ole(A) U ore(A) = oe(A)'
(b) 0,(A4) = 0, (A")*
(©) 0,,(A) C 0,(A), 6,,(A) C 0,(A), and o,(A) C o(A).



356 XI. Fredholm Theory

(d) 0,.(A), 0,.( A), and o,( A) are closed sets.
(e) IfKe‘QO(‘%)’ an(A) = ole(A+ K) and M,,(A) = ore(A + K)

Proor . Parts (a), (b), (¢), and (e) are trivial, and part (d) is a consequence of
a general fact about Banach algebras. u

In order to best appreciate and use the idea of essential spectrum, a better
understanding of invertibility in %/%, is needed. The following terminol-
ogy is traditional.

2.3. Definition. If A €ZB(), Ais a left Fredholm operator if n(A) is left
invertible in #/%,; A is a right Fredholm operator if m(A) is right
invertible in %/%,; A is a Fredholm operator if w(A4) is invertible in
B/ B, Let F,,%,,% denote the set of left Fredholm, right Fredholm, and
Fredholm operators. So % =%,N%,. Operators in the set LF=F, U %,
are called semi-Fredholm operators.

2.4. Proposition. The sets F,, %, F are all open in B(H¥)and A € %, if
and only if A* € %,

Proor. Each of these sets is the inverse image under « of an open subset of
%/ %, The other statement is trivial. [ |

The next result, characterizing left Fredholm operators, is from Wolf
[1959] and Fillmore, Stampfli, and Williams [1972].

2.5. Theorem. Zf A € B(H#), the following statements are equivalent.

(a) A is a left Fredholm operator.

(b) ran A is closed and dim ker 4 <oo.

(c) There is no sequence { h,} of unit vectors in 3 such thar h,— 0 weakly
and lim||4h,|) = 0.

(d) There is no orthonormal sequence {e,} in 3 such thar lim||Ae,| = 0.

(e) There is a 8> 0 such that {h € 3:\|Ah|\ < 8\||h||} contains no infinite-
dimensional manifold.

(f) Zf the positive operator (A*A)'/? = [t dE(t), then there is a 8> 0 such
that E[0,8]5¢ is finite dimensional.

(8) Zf K € B,(H), then dimker(A + K) < co.

Proor. (a) implies (b). According to (a) there is a bounded operator B such
that w(B)w(A) = 1; that is, 7(BA—1) = 0. Hence BA = 1 + K for some
compact operator K. But ker4 C ker BA = ker(l + K ). Since the eigen-
spaces corresponding to nonzero eigenvalues of compact operators are finite
dimensional, dim ker A <oo. Also, the Fredholm Alternative (VIL.7.9) im-
plies ran BA = ran(K + 1) is closed. Hence there is a constant ¢ > 0 such
that for h 1 ker(BA),||BAh|| = c||h|l. Thus if h € [ker BA]*, c|h| <
| B||||4A||, or [|[ARl| = (c/||BID||A||. This implies that A(/kerBA] *) is closed.
But ran A = A(kerBA] *) + A(kerBA). Since A(kerBA) is finite dimen-
sional, ran A is closed.
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(b) implies (c). Let P be the projection of ¢ onto (ker A)*. Since ran A
is closed and A is a bijective map of (kerA)* onto ran A, there is a
bounded operator B on J¢ such that B = 0 on (ran A) and BAh = h for
h in (kerA)*. Thus BA = P. Now 1 — P has finite rank. So if {h,}is a
sequence of unit vectors such that A,— O weakly, then ||k, — Ph,|— 0.
But 1 = [|h,/1> = 1= P)h,JI> + |PhJI> = |(1— P)h N> + ||BAR,|.
Hence ||BAh,||— I so that liminf}|4A, || > 0.

(¢c) implies (d). Orthonormal sequences converge weakly to zero.

(d) implies (e). If (e) is false, then for every positive integer » there is an
infinite-dimensional subspace .#, such that ||4h|| < (1/n)||k|| for all & in
A . Let e; be a unit vector in A,. Suppose e,,. . .,e, are orthonormal
vectors such that e, € #,,1 <k<n. Let E be the projection of 5 onto
Vie,,...,e,}. If £, N[ey,...,e,]* = (0), then E is injective on A ,,,..
Since dim 4, ,= oo and dim ran E < co, this is impossible. Thus there is
a unit vector e,,,in .4, , such that e,,;L {e, ..., e,}. The orthonor-
mal sequence {e,} shows that (d) does not hold.

(e) implies (f). Let |[A|= [tdE(t) and let 8> 0. If A€ E[0, 8], then

IAR|? = (A*Ah, h)
= {|A)?h, k)
— [*dE, (1) < 8°E, ,[0, 6]
i}

£ 82)|h|%.

So E[0,8]5£C [h: ||Ah||<d|All}. By(e) there is a 8> 0 such that E[0, 8]5#
is finite dimensional.

(f) implies (a). Let M 5={E[0,8]5¢}* . Now |A| maps # s bijectively
onto 5. In fact, the inverse of |A|: M yz— M sis ( [Pt dE(1))|M 4. Let
A =U|A| be the polar decomposition of A. Since A ;Cran|4|= initial U,
U maps #; isometrically onto some closed subspace . of ran A. Let
V = the inverse of U on & and V = 0 on £ *; that is, V&€ * = 0 and
V|#=(U|#s)"'. Hence V is a partial isometry. Let By = [t 'dE(t) and
put B = BV.If he #s, then BAh = BYU|Alh = h. If h € Mg =
E[0, 81h,|Alh € A4 and so Ujd|h L &L, thus BAh = 0. Hence BA =
E(8,0)=1—-E[0, §]. Since E[0,8] has finite rank, a( B)w(A)= 1.

(a) implies (g). If K is a compact operator, 7(A) =7( A — K). Thus
7(A+ K) has a left inverse in the Calkin algebra. Since (a) implies (b),
dim ker(A+ K) < co.

(g) implies (d). Suppose (d) does not hold. So there is an orthonormal
sequence {e,} such that ||[4e,}|— 0. By passing to a subsequence if
necessary, it may be assumed that Ef=1||Ae,,||2< cc. Thus for any h in 5%,

1,2 1,2
YICk, elllell< [ ZiCh e, ][ Zie, ]
< Clia|l,
where C = [L||4&)/?.Thus Kh = ¥%_(h,e,)Ae, defines a bounded
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operator. Moreover, if Knh\'= j=1<h, e,)Ae,, it is easy to see that ||K,, —
Kj}— 0. Thus K is compact. But (A — K )e, = 0 for every n, so dim ker( A
- K)= o0. |

Each of the parts of the preceding theorem can be used to give a
statement equivalent to the fact that a point belongs to the left essential
spectrum. Only one of these statements will receive such a translation.

2.6. Corollary.

(a) A€o, ( A) if and only if dim ker(A — A) = ooor ran(A —A) is nor
closed.

(b) AE€g, (A) if and only if dim[ran(A — X)] * = cc or ran(A — A) is not
closed.

Proor. Part (a) is straightforward. Part (b) follows immediately from the
facts that o,.( A) = 0,,( A*)* and that ran(A —A) is closed if and only if
ran(A —A)* is closed (VI.1.10). u

In order to prove part (b) of the preceding corollary it is not necessary to
quote Theorem VI.1.10. For operators on a Hilbert space it is possible to
give a direct proof that is easier than the Banach space case (see Exercise 2).

The reader should compare Corollary 2.6 and Proposition 1.1.

2.7. Proposition. If A € B(H), then o,,( A) = 0,,(A) U {AE0,(A):
dimker(A —A)< cc}.

Proor. If A€ u,(A), then (1.1) either ran(A — A) is not closed or ker(A
—A)=# 0. If ran(A —A) is not closed or if dim ker(A —A) = co, then
A€o, (A) by (2.6). The other inclusion is left to the reader. u

2.8.  Proposition. If N is a normal operator and A€ u(N), then ran( N —A)
is closed if and only if A is an isolated point of u(N).

Proor. Assume A is an isolated point of u(N); thus X = u(N\ {A}is a
closed subset of u(N). If N = [zdE(z) and 5, = E( X)J#, then /),
reduces N and o(N|3#,) = X. Hence (N —A)s#, is closed. Since )+ =
ker( N —AX), ran{ N —A) = (N —A)5#,; hence N —X has closed range.

Now assume that A€ u(N) but A is not an isolated point. Then there is
a strictly decreasing sequence {r,} of positive real numbers such that r, — 0
and such that each open annulus A, = {z: r,,,<|z—A|<r,} has non-
empty intersection with u(N). Thus E(A4,)5#+# (0); let e, be a unit vector
in E(A,)#. Then e, Lker(N —A) (= E{A})5#) and

(N =A)e,l? = f,,lz —N2dE, . (2) <1 0.
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That is, inf{ |[(N =XA)A|:||h|| = 1, h Lker(A— X)} = 0 and so, by the
Open Mapping Theorem, N — A does not have closed range. u

2.9. Proposition. If N is a normal operator, then a(N) = ¢,(N) =0,(N)
and o(N)\o,(N)={A € uN): A is an isolated eigenvalue of N having
finite multiplicity }.

Proor, The first part follows by applying Proposition 1.3 to the Calkin
algebra. If A is an isolated point of u(N), then ran( N —A) is closed by the
preceding proposition. So if dim ker(N—A)<cc, A € u,,(N) = u,(N) by
Corollary 2.6. Conversely, if A€o(N)\ 6,(N), then ran( N —A) is closed
and dim ker( N —A)<oo. By the preceding proposition, A is an isolated
point of u(N). Thus A is an eigenvalue of finite multiplicity. [ |

It is also worthwhile, before proceeding, explicitly to reformulate Theo-
rem 2.5 to give a characterization of Fredholm and semi-Fredholm oper-
ators. The proof is left to the reader.

2.10. Proposition.

(a) An operator A is a Fredholm operator if and only if ran A is closed and
both ker A and ker A* = (ran A) * are finite dimensional.

(b) An operator A is a semi-Fredholm operator if and only ifran A is closed
and either ker A or (ran A) * is jinite dimensional.

2.11. Example. Let G be a bounded region in € and, to avoid pathologies,
assume dG = d[clG]. Let 5= L2%(G) (1.1.10) and define S:#— # by
(Sf)z) = zf(z). Then o(S) =clG, u,(S) = u,,(S) = 0,.(5)=9G =
u,,(S), op(S) =0, and for A in G, ran(S —A) is closed and dim[ran(S —
Mt =1.

To show that these statements are true, begin by proving:
2.12 If A€ G, ran(S—A) = {f € L32(G): f(A) = 0}

In fact, if h € L2(G), then [(S —A)h}(z) = (z —A)h(z) so that f = (z
— A)h vanishes at A. Conversely, suppose f€ L2(G) and f(A) = 0; then
f(z) = (z —A)h(z) for some analytic function A on G. It must be shown
that o € LX(G). Let r >0 such that D = {z: |z—A|<# C G. Then

Jlwe= [ fme e [] -

Now [fplh|* <oo since h is bounded on D. For z in G\ D, |h(z)| =
1f(2)1/1z =N <r~"|f(2)|. Hence

[ s [ f e <.

Thus k€ L2(G) and f= (S—A)h. This proves (2.12).
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Using Corollary 1.1.12, f-f(A) is a bounded linear functional on
L2(G) whenever A€ G. By (2.12),ran(S — A) is the kernel of this linear
functional and hence is closed.

Because G is bounded, the constant functions belong to L2(G). So if
feLXG), f=[f—f(M]+ f(A) and f— f(A) €ran(S —A). Thus
L2(G) = ran(S —A) + C. Therefore dim[ran(S — A)}* = dim[L(G)/
ran(S— A)] = 1 when A€ G.

If A€ G, then S —A is not surjective; hence G C a(S). If A& ¢l G,
then (z —A)~!is a bounded analytic function on G. If Af =(z —A)" !/,
then A is a bounded operator on L2(G) and it is easy to check that
A(S—A) = (5 —A)A = 1. Thus a(S) €clG. Combining these two con-
tainments, we get a(S) = clG.

From Proposition 2.10 we have that S —A is a Fredholm operator
whenever A€ G; thus G no,(S)=0 . So a,(S) €dG =3[cl G]. It A€ 3G,
then A€ da(S); thus A€ u,,(S) (1.2). Since ker(S —A) = (0), ran(S —A)
is not closed. Thus dG C u,,(S) n ¢,.(S). This proves that u,(S) = u,,(S)
= u,,(8) = dG =0,,(S).

EXERCISES
1. Give a direct proof that (b) implies (a) in Theorem 2.5.

2.I1f A €ZB(H) and ran A is closed, prove that ran A* is closed without using
Theorem VI.1.10. [Hint: Show that there is a bounded operator B on 5# such
that BA = the projection of S onto (ker A)™".]

3. (Putnam [1968]) If A € B(H),A€da(A), and A is not an isolated point of
o(A), then ran( A —\) is not closed. Give an example of an operator A such
that O is an isolated point of o{A) but ran A is not closed.

4. Let G be a bounded region in C such that dG = d[cl G] and let ¢ be a function
that is analytic in a neighborhood of ¢l G. Define A : L2( G) = L2( G) by
Af =¢f. Find all of the parts of the spectrum of A.

5. Let S be the unilateral shift and show that o(S) = ¢.(S)=cl D, u,(S) =
u,,(S) = u,,(S) = ID, u,(S) = O, and for |A|< I, ran(S —A) is closed with
dim[ran(S — X)] *+ = 1.

6. Let S be the unilateral shift and put A = S ® S* Find the parts of the
spectrum of A.

7. Let S be the unilateral shift and put A = S, Show that u(A) = 6,(A) =
g,,(A) = clD and u,,(A) = ID.

8. Let A, B, C € B(s#) and define X: # @ — #P by the matrix X = A

(a) Show that if A €%, then X € % if and only if C € %. (b) If A € F, show
that X € L& if and only if C € L. (c) Suppose A, C € LF with dim kerA
= o0 and dimkerC* = oo. Show that 0 €g,,( X) Na..( X).
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9. (Fillmore, Stampfli, and Williams [1972].)If A € 0,,(A), then there is a projec-
tion P, having infinite rank, such that #(A—A)a(P)= 0.

10. (Fillmore, Stampfli, and Williams [1972].) Let A € #(5¢). (a) If A has a cyclic
vector e, show that dim{ Ae,A%,}* < 1. (b) Let A€ a,,( A*). Ife> 0, let
f1, f» be orthonormal vectors such that [|(A* —A)f]|<eforj=1,2 and let
P = the projection onto V{f,,f;}. Put B=AP + (1 — P)A. Show that ||B—
A||<2e. (c) Show that the noncyclic operators are dense in Z ().

§3. The Fredholm Index

The author would like to acknowledge that James P. Williams made
available to him a set of unpublished notes on the Fredholm index which
formed the basis of this section.

If A is a semi-Fredholm operator, define the (Fredholm) index of A,
ind A, by

3.1 ind A = dim ker4— dim(ran A) *

= dim ker4 — dim ker A*,

Note that ind A €Z U { + o0} and it is necessary for either kerA or
ker A* to be finite dimensional in order for (3.1) to make sense. For ind A to
be well defined, it is not necessary that ran A be closed (the other part of the
characterization of semi-Fredholm operators), but this property will be used
in a critical way when the properties of the index are established. The main
result of this section is the following.

3.2. Theorem. If the set of semi-Fredholm operators, FF, has the relative
norm topology from %B( ) and Z U { £ co} has the discrete topology, then
ind: PF—>ZU {+ co} is continuous. Moreover, if A €FLZF and K €
Bo(H), then ind A = ind(A4 + K).

One of the uses of Theorem 3.2 is in the study of various integral and
differential equations. More recently it has been used to study a variety of
approximation questions in Z( ) as well as several connections between
topology and operator theory.

Before proving Theorem 3.2, which will require a few lemmas, we will
examine some additional properties of the index and a few examples.

First observe that the Fredholm Alternative (VIL7.9) is an easy conse-
quence of Theorem 3.2. Indeed, if A €C,A# 0, then the operator A is
invertible and so ind(A) = 0. If K € B,(5¢), then (3.2) implies that ind(A
—K)=0. Thus dim ker( A— K) = dim[ran( A— K)]* and we have the
Fredholm Alternative.
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3.3. Proposition.

(a) If A€ SPF, then A* € SF and ind A = —ind 4*.
) If N is normal and N € SF , then N € F and ind N = 0.

Proor. (a) is clear. If N is normal and N € %%, then N € #, u #,. By
Proposition 1.3, N € %. Also, ||N *h|| = ||Nh||, so ket N = ker N *. Hence
ind N = 0. L

It is a good thing to keep in mind that if A € %% and ind A is a finite
number, then A € % since both kerA and ker A* must be finite dimen-
sional.

The continuity statement in Theorem 3.2 has an easy interpretation.
Because £ is an open set, its components are open. Since Z U { + oo}
has the discrete topology, the continuity of the index is equivalent to the
statement that the index is constant on the components of #%. This is
quite useful in applications.

One of the uses of the index is to examine ind( A —A) for all A for which
this makes sense. When does it make sense? It must be that A —A&€FF
and this is true precisely when A 4 0, ( A) No,.( A). The next result is a
consequence of (3.2).

34. Proposition. If A € B(H), then ind( A —X) is constant on the compo-
nents of C\ u,,(A) N u,,(A). If ks an isolated point of o( A) and A&
0,,(A) No, (A), then ind( A — A) = 0.

Proor. The map A=A —A is a continuous map of € \ u,(A) No, ( A)
into F%. So the first part of the proposition follows from the preceding
remarks, If A is an isolated point of u(A) and A€o, (A)nNn o,.(A) then
there is a sequence {A,}in C\u(A) such that A, —A. Thus ind( A —A))
— ind( A — X). Since ind(A —A,) = 0 for all n, the result follows. a

3.5. Example. Let G be a bounded region in € such that 3G = d[cl G] and
define S:L%a(G)— L2(G) by Sf = zf. Then u,,(S) n 0,,(S) = 3G and
ind S—A)=—1for Ain G. If A4 ¢cl G, S—A is invertible.

In fact, in Example 2.11 it was shown that G =0,,(S) =0,.(S) = u(S),
0,(S)=0 , and dimfran(S—h)] * =1 for A in G.

3.6. Example. Let S be the unilateral shift on /2. Then u,(S) No,,(S) =
D and ind(S —A) = -1 for [A|< 1.

In Proposition VIL6.5 it was shown that o(S)=clD,0,(S)=0, and
0,,(S)=0D. Thus for |A| = 1, ran(S —A) is not closed and hence JDC
0,.(S)N u,(S). Also, if |A[< 1, it was shown that ran(S —A) is closed and
dim[ran(S — X)] * = 1. This implies that dD = u,(S) N u,.(S) and ind(S
—A)= -1 for A in D.
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3.7. Proposition. If AABEF, then A®BEF and ind A®B = ind A
+ ind B.

Proor . Exercise.

Using this pfoposition and the preceding examples, more examples can be
manufactured. Here is an interesting one.

3.8. Example. Let S be the unilateral shift on /> and put A = S*&S.
Then u,,(A) Na,.(A) = 0D,0(A)=clD, and for A< 1, ind( A —A) = 0.

One of the most important properties of the index is contained in the next
result. Note that Theorem 3.2 is not used in its proof so it can be used in the
proof of (3.2).

3.9. Theorem. If A, BE€ %, then AB € F and ind AB = ind A + ind B.

Proor. Since #(#) is the group of invertible elements of %#/%,, it is clear
that AB € # whenever A and B € #.

Clearly ker B C ker AB. Also, if h € ker AB, then Bh € ker A N ran B.
In fact, B maps ker AB onto kerA N ran B. Thus B induces a bijection of
ker AB/ker B onto ker A Nran B and so

3.10 dim ker AB = dim kerB + dim[ker 4N ran B].

(Note that because A, B € %, all of the dimensions that appear in (3.10) are
finite integers.)

Since ker A is finite dimensional, there is a finite-dimensional subspace .#
of ker A such that # N[kerA Nran B] = (0) and ker A = 4 + ker AN
ran B. Hence

3.11 dim kerd = dim # + dim[ker A Nran B].

It must be that A& Nran B = (0). In fact, # Nran B = A NlkerA N
ran B] = (0) since # < ker A. Because dim 4 <oo, # + ran B is closed
(111.4.3). Let Q = the projection of »# onto (A +ranB)* = . #* Nran B+
and let T eran B*; so T is surjective. If h € ker 7, then h € ran B *
and 0 = = Qh; thus h €kerQ = (A + kerB)*+ = # + kerB. Since
h € ran B L, thlS implies that dim ker 7 = dim 4. Since all of the spaces
are finite dimensional, we have

3.12 dimran B* = dim # + dim[# * Nran B*].
Now note that
A(ranB) NA(A *Nran B*+) = (0).

In fact, if /€ A(ran B) N A(# *Nran B*), then f = Ah = Ag, where
h €ranB and ge A+ *NranB*. Thus A( h—g) =0, so h —g&kerd
= # +ker AN ran B. Let h — g =m + k, where m € # and k €ker A4
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)
n ran B. Therefore (h — g, g =(m+ k g) = (m g) + (k g) = 0.
Hence 0 = (b, g) = (g, g) = llgll% so f = 0.
Now we show that

ran A = A(ranB) + A(A# *Nran B*).

In fact, #=(# + ran B) & (A + tan B)' = (A + tan B)® (M~
N ran B *). Since .# < ker A, we get the desired equality.

Now an argument like that used to obtain (3.12) coupled with the fact
that A(ran B) = ran AB, gives

3.13 dimran AB* = dimran A* +dim[.# * Nran B*].

We can now put the pieces of the puzzle together. Indeed, first using
(3.13) and (3.10), we get

ind AB = dim ker AB — dim ran AB *
= dimker B + dim[kerA N ran B]

—{dimran A* +dim[.# * Nran B*])
dimker B + {dimker 4 — dim .# }
—dimran A* —dim[.# * Nran B*]
= ind 4 + dimkerB -{dim&+ dim[.#* Nran B']}
(3.12) = ind A + ind B. [ |

(3.11)

3.14. Corollary. IfA € % and R is an invertible operator, then RAR™ '€ F
and ind RAR ! = ind A.

We now begin to prove Theorem 3.2. If A € Z(#), define
y(A) =inf{||Ah||:||h|| = 1. h LkerA}.

3.15. Proposition. If A € B(#), then y(A) = sup{y > 0: ||Ah|| > v||h||
Sfor all h L ker A} = inf{||Ah||/||h||: h € kerA4}.

The proof of this proposition is left as an exercise.

3.16. Proposition. Let A € B(¥).

(a) y(A) > 0 if and only if ran A is closed.
(©) y(A) = y(4%).

Proor. The proof of (a) has appeared several times in this book under
different guises. The proof here is left to the reader. To see (b), let
h sLkerA. Then ([A*4k|| = |||4||4|h|| = ||A|A4lk]l. But |[A]h € clran A*
(Why?) = kerA*. Hence the definition of y(A) implies that ||4*4h| =
YCANALRY = Y(A)|A4RY; that is, A%/ = y(A)f)| for every f in ran A.
Since ran A is dense in (ker A*)*  y(A*)= y(A). But A = A** 50 y(A)
> y(A*). [ |
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From here we get the following consequence.

3.17. Corollary. If A€ B(#), then ran A is closed if and only if ran A* is
closed.

3.18. Lemma, Zf A, N < ¥ and dim A > dim A", then there is a vector m
in A such that {|mi| = dist(m, A").

PrOOF. Let P be the projection of 3 onto A, so dim P(A")< dim A<
dim #. Thus P(A") is a proper subspace of #;let m € A NP(A) L. If
n€ A, then 0 = (Pn, m) = {(n, Pm) = (n, m), so m LA". Hence ||m||
= dist(m, A"). u

3.19. Lemma. Zf h € ¢, then y(A)dist(h, ker A) <||Ah||.
ProoF. Let P be the projection of # onto kerd*; then |[Ph| =

3

dist(h, ker A). Hence ||Ah|| = |[APh]| = y(A)||Ph|| = y(A)dist(h, ker A).
[ ]

The next result has some interest by itself as well as being a major
stepping stone to the proof of Theorem 3.2. If the role of y(A) in the next
and subsequent propositions impresses the reader as somewhat mysterious,
reflect that if A is invertible, then y(A) = ||4 ||~} (Exercise 7). Now in
Corollary VIL.2.3, it was shown that if ./ is a Banach algebra, a, € ./, and
boay = 1, then a + b is left invertible whenever ||b||<||by|| ~*. Of course, a
similar result holds for right-invertible elements. The number y(A) is trying
to play the role of the reciprocal of the norm of a one-sided inverse.

For example, if A is left invertible, then ran A is closed and ker A = (0);
hence A € £%. The next result implies that if ||B]| < y(A), then A + B is
left invertible.

3.20. Proposition. Zf A € % and B € B( ) such that || B||< y(A), then
A+ BEeSF and:

(a) dim ker( A + B) < dim ker A;
(b) dimran(A + B)* <dimranA*.

Proor. First note that because A € LF, y(A) > 0.

If h € ker(A + B) and h # 0, then Ah = — Bh. By Lemma 3.19,
y(A)dist(h, ker A) < ||Bh|| < | Bll}iAll < y(A)||All. Thus dist(h, ker4) <
||A)| for every nonzero vector h in ker(A + B). By Lemma 3.18, (a) holds.

Since ||B|| = ||B*|| and y(A) = y(A*), (a) implies that dimker(A* +
B*) < dim ker 4*. But this inequality is equivalent to (b).

It remains to prove that ran(A + B) is closed. Since A € L%, either
dim ker A <oo or dim ker A* <oo. Suppose dim ker A < co. It will be
shown that A + B € %, by using Theorem 2.5(¢) and showing that if
8 =y(A) —||B||, then {h: |[(A4 + B)h||<¥é||h||} contains no infinite-dimen-
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sional manifold. Indeed, if it did, it would contain a finite-dimensional
subspace # with dim .# > dim ker A. By Lemma 3.18 there is a vector A in
M with ||h|| = dist(h,ker A). Now ||(4 + B)h|| < 8]|k||, so Lemma 3.19
implies that y(A)||A|| = y(A)dist(h, ker A) <||4h|| <||(4 + B)h|| + | Bh|
< (8 + |B|DA]] = v(A)||A], a contradiction. Thus A + B € %, and so
ran(A + B) is closed.

If dim ker A = oo, then dim ker A* <oo. The argument of the preceding
paragraph gives that ran(A* + B*) is closed. By Corollary 3.17, ran(A + B)
is closed. ®

3.21. Proposition. IfA € % and ind A < 0, then there is a jinite-rank
operator F such that ker(A + F) = (0) and ind( A + F) = ind A.

ProoF. Since 0 > ind A = dim ker A — dim ran A *, dim ker4 <oo and
dim ker A < dim ran A . Let {e,, . . . , ¢,} be an orthonormal basis for
ker A and let { fi,. . ., f,} be orthonormal vectors in ran A * Define F:
H—>H by Fh = L}_(h e,)f. Thus Fis a finite-rank partial isometry with
initial F = ker A and final F <ran A, *

If h € ker( A + F), then Ah = — Fh, hence Ah €Eran A N ran A * So
0 = Ah = Fh; that is, h €kerA = initial F. So ||h|| = ||[Fh|| = 0, and,
therefore, ker( A + F) = 0. Also, since ran F <ran A *, and initial F =
ker A, ran(A + F) =ran A ® ran F. Thus ind(A+ F) =
-dim ran(A + F)* = —dim#6[ranA®ranF] = -dim ranA* +
dimranF= ind4. =

322. Corollary. If A is invertible and K € B, then ind( A + K) = 0.

Proor. By considering A* + K * if necessary, it suffices to assume that
ind( A + K) < 0. By the preceding proposition, there is a finite-rank oper-
ator F such that ker( A + K+ F) = (0) and ind( A + K) = ind( A + K +
F). Let L=K+F. Since A+ L=A(1 + A 'L),ker(1 + A" 'L) = (0);
thus -1 €o,(4 'L). But A" 'L€%;, s0o 1 + A”'L is invertible. By
Theorem 3.9, ind(A+ K) = ind(A+ L) = ind A(] +A4 'L)=1ind A +
ind1+A4 "Ly=0. =

3.23. Corollary. If A€ F, then the following statements are equivalent.

(a) ind A = 0.
(b) There is a compact operator K such that A + K is invertible.
(¢) There is a jinite-rank operator F such that A + F is invertible.

ProOOF. (a) implies (c). By Proposition 3.21 there is a finite-rank operator F
such that ker( A + F) = (0) and ind( A + F) = ind A = 0. Hence
dim ran( A + F)* = dim ker(A + F) = 0 and A + Fis invertible.

(¢c) implies (b). Clear.

(b) implies (a). Apply Corollary 322 to A + K. |
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3.24. Proposition. If A € %, kerd = (0), and B € () with ||B|| <
y(A), then ker(A + B) = (0) and ind(A+ B) = ind A.

Proor By Proposition 3.20, A + B € %, ker(A + B) = (0), and
dimran(A +B)*<dimran A+ . It remains to show that dimran(A +
B)!t > dimran A*.

Let n> 1 such that y(A) —||B||>||B|ln " For 0 <k<n— 1, ||(1—
k/n)B|| < y(A). So Proposition 3.20 implies that A + (1 —k/n)BE SF
and is injective. So if h € 57, ||h|| = 1, then

HA +(1 —~ %)B]h“ > ||Ah]| —(1 - §)||Bh||

> y(A) —||B]| > 0.
Thus y(A + (I —k/n)B)= y(A) —||B||>||—(1/n)B||. Again, applying
(3.20) to A + (I —k/n)B and —(1/n)B, we have that
A+ 1 —E)B—1B=A +(1—£€——+——1—)Beyﬁ7
( n n n

and

1

k+1 + k
dimran(A +(1 — . )B) < dimran(A +(1—;)B)
for 0 <k <n— 1. Looking at these n inequalities and noticing that the
left-hand side for k = n — 1 is dim ran A * and that the right side for £k = 0
is dimran(A + B)*, we get that dimran A+ < dimran(4 + B)*. [ |

3.25. Lemma. If A € % and F is ajinite-rank operator, then ind( A + F)
= ind A.

Proor. If ind A = + oo, then either ker A or ran A * is infinite dimensional.
Because F has finite rank, the same is true of A + F. Thus ind A = ind( A
+ F). Therefore it may be assumed that ind A is finite; that is, it may be
assumed that A is a Fredholm operator. The proof is by cases.

Case 1: ker F* CkerA. Hence kerA*CkerF = 4. So ran A =
Aker AYYC AN =(A+F)A ' Cran( A + F). This implies that ran A *2
ran( A + F) * and therefore

3.26 dimran A*= dimran(A +F)" +dim[ran(A + F) © ran A].

Also, ran A + ran F = A(kerA *) + F(kerF *) = ran( A + F) since ker A
D kerF+. Since ran A Cran( A + F), ran( A + F) © ran A and ran( A +
F)/ran A are isomorphic as vector spaces. Also, the natural map of
ran( A + F) onto ran( A + F)/ran A when restricted to ran F remains
surjective. Thus ran F/ran F N ran A and ran( A + F)/ran A are isomor-
phic as vector spaces. Combining these isomorphisms gives

dim[ran( A + F) © ran A] = dimran F — dim[ran FNran A].
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If we combine this with (3.26) we obtain
3.27 dimran A+ = dimran(A + F)"

+ dim ran F — dim[ran F N ran A].

Since we want to show that ind A = ind(A4 + F), formula (3.27) demon-
strates how dim ran A * and dim ran{ A + F) * differ. Now we must see
how dim ker A and dim ker( A + F) differ.

Note that A~ Xran F) = kerA®[A 'ran F n ker A*]. Hence

328 dimkerd = dim A '(ran F) —dim{ 4 'ran Fn ker4'].

But A is injective on ker A+ and A[A4 !'ran F N kerA*]=ran F N ran A.
Thus

3.29 dim|[ A 'ran F NkerA*] = dim[ran F N ran A].

Also, (A + F)[A’lran F] =ran F. If h€ ker(A + F), then Ah = — Fh,
so that h€[A 'ran FJ; that is, ker(A + F) €[4 'ran F]. Hence ker(( A
+ F)|[4 " 'ran F]) = ker(A + F) and so

dim[ A ~'ran F] = dim ker( A + F) + dim ran F.
If we combine this formula and (3.29) with formula (3.28), we obtain
3.30 dimker A = dimker(A + F)
+ dim ran F — dim[ran FNran AJ.

Combining (3.27) and (3.30) it is clear that ind A = ind(A4 + F).

Case 2: ran F Cran AL . Hence ker F** = ran F CkerA*. So Case 1
implies that ind A = -ind A* = —ind(A*+ F*) = ind(4 + F).

Case 3: kerF*CkerA* and ran F C ran A. Let A, and F; be the
operators defined from ker A * into ran A by letting them be the restrictions
of A and F to kerA*. We want to apply Corollary 322 to A, and F,. In
fact, A,: kerA+ — ran A is invertible, but there is a bit of a difficulty here
since A, does not map a Hilbert space into itself. But this can be overcome
since ker A+ and ran A are isomorphic Hilbert spaces. (Why?) The details
are left to the reader. By Corollary 3.22, ind( A, + F;) = 0. We now want to
relate these dimensions to the corresponding dimensions for A and A + F.

Since kerAC ker F,kerACker( A + F). Thus ker( A, + F)) = ker( A +
F) © ker A. Therefore,

3.31 dimker4 = dimker(A + F) —dimker(4;+ F,)

Also, since ker( A + F) *Ckerd*,ran( A, + F)) = (A, + F))kerA* =
ran( A + F). Hence ran( A, + F))* =ran A ©ran( A + F). So
dimran(A4, + F))* = dimran A — dimran(A + F) = dimran(A + F)*
dim(ran A)*. (Why?) Therefore

dim(ran A)* = dimran(A + F)" —dimran(4,+ F,)" .

Combining this equation with (3.31) gives that ind A = ind(A+ F) —
ind( A, + F}) = ind(A4 + F).
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Case 4: The general case. Let A € % and let Fbe a finite-rank operator.
Let P be the projection of ¥ onto ker 4+ and let Q be the projection of &
onto ran A. So QFP is a finite-rank operator and ker QFP 2 ker A. Hence
(ker QFP)*C ker A" and clearly ran QFP Cran A. By Case 3,

ind A = ind(A4+ QFP).

Also, (1 — Q)FP is a finite-rank operator and ran(l— Q)FP Cran A *
C [ran(A + QFP)] *. 8o Case 2 implies

ind( A+ QFP) = ind( A + QFP + (1 — Q) FP)
= ind(A4 + FP).

But F(I — P) has finite rank and [ker F(1— P)] *CkerAC ker( A +
FP). So Case 1 implies that

ind( A + FP) = ind( A + FP + F(1 — P))
= ind(A4 + F). [ |

Proor oF THEOREM 3.2. The continuity of the index is the first order of
business. Let A € LF and assume that ind A < 0. It must be shown that
there is a 8> 0 such that if C € £F and ||[4—C|| <8, then ind A = ind C.

By Proposition 3.21 there is a finite-rank operator F such that ker(A +
F) =0 and ind A = ind(A + F). Let 6 =y(A+ F). By Proposition 3.24,
if ||C — A|| <9, then ind(A4 + F) = ind(C + F). But Lemma 3.25 implies
that ind C = ind(C + F); thus ind A = ind Cif |[A—C||< 6. If ind A = 0,
then the preceding argument shows that the index is continuous at A* It
follows that it is continuous at A.

If K is a compact operator, let { F,} be a sequence of finite-rank
operators such that ||F,— K||— 0. By the first part of the proof, ind(A+
F,)—ind(A + K). But ind(4+ F,) = ind A by Lemma 3.25. Hence ind A
=ind(A+K). &

For a more detailed treatment of the index applicable to unbounded
operators on a Banach space, see pp. 229-244 of Kato [1966].

EXERCISES
1. Prove Proposition 3.7.
2. Verify the statements made in Example 3.8.

3. If § is the unilateral shift, show that for every £¢> 0 there is a rank-one
operator F with [[F||<e such that a(S*® S+ F) = dD.

4, Let G be an open connected subset of a(A)\ o, (A4)U 0,.(A) and suppose
A € G such that ind(4—Ay) = 0. Show that there is a finite-rank operator F
such that A + F — A is invertible. Show that A + F — A is invertible for every
Ain G.
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5. If AeZ(#) and ran A is closed, show that ran A is closed. If A € ¥F
and ker 4 = (0), show that 4’ € Y% and ind A = — o0 or 0.

6. Prove Proposition 3.15.
7. If A is invertible, show that y(A) =}j4'}~ L

8. Let A € # and suppose f is analytic in a neighborhood of o(A) and does not
vanish on g,(A). Show that f(A) € # and find ind f( A).

9. Let S be the unilateral shift and let f be an analytic function in a neighborhood
of ¢cID such that f(z) # 0if |z|] = 1. Let y(t) = f(exp(2mit)), 0 <t < 1. Show
that a,(f( S)) = f(ID) = {y(®): 0 <t <1} and that if A& f(ID), ind(f(S)
—A)=—n(y;A), where n(y;A) = the winding number of y about A. More-
over, show that if ind( f(S)—A)=0, then A& a( f(S)).

10. Let S be the operator defined in Example 2.11 where G = D. Show that there is
a compact operator K such that S + K is unitarily equivalent to the unilateral
shift.

1. Does the unilateral shift have a square root?

12. Show that for every nin Z u {4+ o} there is an operator A in % such that
ind A = n.

13. If A € %, then forevery n > 1, A" € ¥F and ind 4” = n(ind 4).

§4. The Components of S F

Since the index is continuous on &% and assumes every possible value
(Exercise 3.12), % cannot be connected. What are its components?

Note that because &% is an open subset of a Banach space, its
components are arcwise connected (Exercise TV.1.24).

4.1. Theorem. If A, B € L%, then A and B belong to the same component
of L& if and only if ind A = ind B.

Half of this theorem is easy. For the other half we first prove a lemma.

42, Lemma. Zf A € £F and ind A = 0, then there is a path y: [0, 11> S F
such that y(0) =1 and y(1) = A.

Proor. By Corollary 3.23 there is a finite-rank operator F such that A + F
is invertible. If y(t)=A + tF,y(0) = A, Y1) = A + F, and y(t) € FF
for all . Thus we may assume that A is invertible.

Let A = U|A| be the polar decomposition of A. Because A is invertible,
U is a unitary operator and |A4| is invertible. Using the Spectral Theorem,
U =exp(iB) when B is hermitian. Also, since 0 & a( |4}),|4]| =
Jts.n*¥dE(x), where 0 <8< r = ||A||. Define y: [0,1] > B(#) by

y(t) — eith

[8,r

x'dE(x) = e"8l4]".
]
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It is easy to check that y is continuous, y(0) = 1, and y(1) = A. Also, each
y(t) is invertible so y(t) € LF. [ |

Proor or THEOREM 4.1. First assume that A, BE€ % and ind A = ind B. So
there is an operator C such that CB = 1 + K for some compact operator K.
Thus C € % andindC= -indB= —ind 4. Hence AC € # and ind AC
= 0. By the preceding lemma there is a path y: [0, 1]—= % such that
v(0) = 1 and y(1) = AC. Put p(¢) = y(¢)B —t4K. Because AK € %,
p(t)E F for all tin [0,1]. Also, p(0) = B and p(1) = ACB — AK =
A(l + K) — AK = A
Now assume that ind A = —oo; so dim(ran A) * = oo and dim kerA4 <
oo. Let F be a finite-rank operator such that ker(A + tF) =0 for ¢+ 0.
(Why does F exist?) This path shows that we may assume that ker A = (0).
Let V be any isometry such that dim(ran¥)+ = cc and consider the polar
decomposition A = UJA| of A. Since A € LF and kerd = (0),|4]| is
invertible and U is an isometry. Also, ranU =ran A, so (Exercise 4) there is
a unitary operator W such that WUW* = V. Let y: [0, 1]> % such that
v(0) = |A4| and y(1) = 1 and let p:[0,1] = # such that p(0) = 1 and
p(1) = W. Then o(2) = p(1)Uy(t)p(2)* defines a path o6:[0,1] » L&
(Why?) such that o(0)=A and o(1) = V. Similarly, if ind B = — co, there
is a path connecting B to V;s0 A and B belong to the same component of
FPF.
If ind A = ind B = + oo, apply the preceding paragraph to A* and B*.
u

4.3. Corollary. The component of the identity in % ,%,, is a normal sub-
group of F and F/ %, is an injinite cyclic group.

ProoF. By Theorem 3.9, ind #—1Z is a group homomorphism and it is
surjective (Exercise 3.12). By Theorem 4.1, ker(ind) = %, u

EXERCISES

1. Let G be any topological group and let G, be the component of the identity.
Show that G, is a normal subgroup of G.

2. What are the components of the set of invertible elements in C( 9D)?

3. If § = the unilateral shift, what are the components of the set of invertible
elements of C*(S)?

4. If Vv and U are isometries and dim(ran V)* = dim(ranU)*, then there is a
unitary W such that WUW* = V.

5. Find the components of the set of partial isometries. Find the unitary equivalence
classes of the set of partial isometries.
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§5. A Finer Analysis of the Spectrum

In this section we will examine the spectrum and the index more closely. For
example, if A € ¥%, then Theorem 3.2 implies that there is a §> 0 such
thatif ||B — A|| < §, then B € ¥% and ind B = ind A. How does dim ker B
differ from dim ker A? In general a lot cannot be said; the next result is the
best that can be said.

5.1. Proposition. If A € % and either ker A = (0) or ran A = 3¢, then
there is a 8> 0 such that if |B— A|| <8, then dimker B = dimker A and
dim ran B = dim ran A.

ProOF. By Proposition 3.20 and Theorem 3.2 there is a 8> 0 such that if
||B— A]| <8, then ind 4 = ind B, dimker B < dimker 4, and dimran B+
< dimran A~ . Since one of these dimensions for A is 0, the proposition is
proved. u

If both kerA and ran A are nonzero, then there are semi-Fredholm
operators B that are arbitrarily close to A such that dim ker B < dim ker A
(see Exercise 1). In fact, just about anything that can go wrong here does go
wrong. However, dim ker(A —A) does behave rather nicely as a function
of A.

5.2. Theorem. If A4 a,(A) N u,(A), then there is a 6> 0 such that
dim ker( A —p) and dimran(A —pu)* are constant for 0 <|u—A|< 6.

ProOOF. We may assume that A =0, so A € L. Tt follows that A €LF
for every n > I (Exercise 3.13). Hence ran A = #, is closed. Let . # =

©_#, Note that #, S A, and AH, = #, |; hence AH C M. Let
B = A|#.

Claim. BA = A .

If h €M, then h € ran A and there is a unique vector [ in (ker A)* such
that Af = h. Now h € #, , = AH , = A(MA ,©ker A), so there is a vec-
tor f, in #,©kerA such that Af, = h. But the uniqueness of f implies
that f = f, € A, for every n. Hence f € # and h = Af = Bf € BA.

Thus B € % and ind B = dimker B. By (3.2) and (3.20) there is a
8> 0 such that if |u| <8, then dim ker( B —p) < dim ker B, dim ran( B —
p)* =0, and ind( B —p) = ind B. Thus dim ker( B —p) = dim ker B for
|| <8. Also, choose 8 such that ind(A—u) = ind A for |u|<8.

On the other hand, if p+# 0, then ker(A —u)C #. In fact, if h € ker(A
— ), then A" = p"h, so that h = A™(p " "h) € A, for every n. Thus for
0 <|p|<$é, dim ker(A —pu) = dim ker( B —p) = dim ker B; that is,
dim ker(A —p) is constant for 0 <|u|<8. Since ind(A4—p) is constant
for these values of m, dim ran( A —p)= is also constant. |

The next result is from Putnam [1968].
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5.3. Theorem. IfAEdo( A), then either A is an isolated point of a( A) or
A < ole(A) N ore(A)'

Proor. Suppose AE€a( A) but A is neither an isolated point of o( A) nor a
point of u,,(A) N u,(A). It must be shown that A € int u(A). In fact, since
Ao (AN u,(A), A —AEFF. Let §> 0 such that A —pe FF,
dimker(A —pu) = dimker(A — A), and dimran(A —pu)*= dimran(A —
A)*for O <|p—A|< 6. Since A€ u(A), at least one of ker(A —A) and
ran( A —p)* differs from (0). Hence pE€o( A) for |u—A|<$. |

What happens if A is an isolated point of u(A)?

5.4. Proposition. zf Ais an isolated point of o( A), the following statements
are equivalent.

(a) A & o[e(A) N ore(A)'

(b) X is a pole of the function z — (z — A)™".
(¢) The Riesz idempotent E(X) has finite rank.
(d) A —AeF and ind(4—AN) = 0.

Proor. Exercise 3.

Ifn€eZu {ioo} and A € #(s), define
P(A)={A€ u(A): A —A€FF andind(A ~A)=n}.

So for n # 0, P,(A) is an open subset of the plane; the set Py(A) consist of
an open set together with some isolated points of o( A). In fact, Proposition
5.4 can be used to show that P,,(A) contains precisely the isolated points of
o( A) for which the Riesz idempotent has finite rank. The proof of the next
result is easy.

5.5. Proposition. zf A € B(H#), then u,(A) = [0,,(A) N o, (A)] u
P, (A)y P__(A).

5.6. Definition. If A € B(5¢), then the Weyl spectrum of A, o,( A), is
defined by

u(A) = N{o(A4 + K): K €3B,}.

Note that since o,(A + K) = u,(A) for every compact operator, u,(A) is
nonempty and o,( A) € u,(A). The way to think of the Weyl spectrum is
that it is the largest part of the spectrum of A that remains unchanged
under compact perturbations. It is clear that o,(A) = o0,(A + K) for every
K in %, but it is not so clear that 6,( A) Co( A). The following result of
Schechter [1965] gives this and some more.

5.7. Theorem. zf A€ RB(H), then u(A) = u,(A) U U, oP,(A).

Proor. Clearly X =0,(A)u U ,.,P,(A) € u(A). Now suppose A 4 X.
Then A —A € F and ind(4— A) = 0. By Corollary 3.23 there is a finite-
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rank operator F such that A + F — A is invertible. Hence A&o( A+ F)
so that A& a,(A). |

So for every operator A in B( ) there is a spectral picture for A (a term
coined in Pearcy[1978]). There are the open sets {P,(A): 0 <|n|<co}, the
set Po(A) =G, U D where D consists of isolated points A for which
dim E(A) = n, < cc, and there is the remainder of a(A), which is the set
6,.( A) n o,,( A). The next result is due to Conway [1977].

5.8. Proposition. Let K be a compact subset of C,let {G,:—o0<n <c0}
be open subsets of K (some possibly empty), let D be a subset of the set of
isolatedpoints of K, and for each X in D let ny€{1,2,...}. Then there is an
operator A on H# such that u(A) = K, P,(A) = G, for 0 <|n|< o0,
Py(A)Y=G,UD, and dim E(X) = n, for every X in D.

We prove only a special case of this result; the general case is left to the
reader. Let K be any compact subset of C and let G be an open subset of
K. Put H = int[clG]; so G CH, but it may be that H # G. However,
dH = d[cl H]. Let Tf = zf for fin L2(H), so H = P_(T), w(T) = <l H,
and wu,,(T) N u,(T) = dH = 9[clG]. Let {A,} be a countable dense subset
of K\ G and let N be the diagonalizable normal operator with ¢,(N) =
{A,} and such that dimker(N —A,) = cc for each A,.If 0 <n <oo and
A=NoT™, then u(A) = K, P_(A) = G, and K\ G = u,,(A) n
0,.(A).

EXERCISES

1. Let A € %% and supposc that ker4d+# (0) and ran 4+ +# (0). Show that for
every 8> 0 there is an operator B in &% such that |[B— A || <8, dim ker B<
dimkerA, and dimran B <dimran A4+ .

2. f A €%F, show that there is a § >0 such that dim ker( A —p) = dim ker 4
and dimran(4 —p)t =dimran A+ for |u|<8& if and only if ker4C ran 4”
for every n> 1.

3. Prove Proposition 5.4.
4. Prove Proposition 5.5.

5. f A€dP, (A) and n# 0, show that ran( A —A) is not closed. What happens if
n=0?

6. (Stampfli [1974]) If A € B(5¥), then there is a K in %,(#) such that
a(A+ K) = o,(A).

7. Prove Proposition 5.8.



APPENDIX A

Preliminaries

As was stated in the Preface, the prerequisites for understanding this book
are a good course in measure and integration theory and, as a corequisite,
analytic function theory. In this and the succeeding appendices an attempt
is made to fill in some of the gaps and standardize some notation. These
sections are not meant to be a substitute for serious study of these topics.

In Section 1 of this appendix some results from infinite-dimensional
linear algebra are set forth. Most of this is meant as review. Proposition 1.4,
however, seems to be a fact that is not stressed or covered in courses but
that is used often in functional analysis. Section 2 on topology is presented
mainly to discuss nets. This topic is often not covered in the basic courses
and it is especially useful in discussing various ideas and proving results in
functional analysis.

§1. Linear Algebra

Let & be a vector space over F =R or C. A subset E of & is linearly
independent if for any finite subset {e,, . . ., e,} of E and for any finite set
of scalars {ay,...,a,},if X7 _jo,e, =0, then ¢y =...=a, =0. A Hamel
basis is a maximal linearly independent subset of % .

1.1. Proposition. If E is a linearly independent subset of %, then E is a
Hamel basis if and only if every vector x in & can be written as x = L} _ 0,€,
for scalars a,...,a, and {e,.... e} CE.

PrROOF. Suppose E is a basis and x €Z,x & E. Then E U {x } is not
linearly independent. Thus there are ay, a,...,ea,infFande,,...,e,in E
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such that 0 = agx + aye; + --- +a,e,, with a, # 0. (Why?) Thus x =
Lio(—a/ap)e,.

Conversely, if & is the linear span of E, then for every x in &\ E,
E U {x} is not linearly independent. Thus E is a basis. &

1.2. Proposition. If E, is a linearly independent subset of &, then there is a
basis E that contains E.

ProOF. Use Zorn’s Lemma.

A linear functional on ¥ is a function f: & — F such that f(ax + By) =
af(x)+ Bf(y)forx,yin & and o, B in F. If & and % are vector spaces
over F, a linear transformation from & into % is a function 7. ¥ — % such
that T(a,x, + a,x,) = a;T(x;) + a,T(x,) for x|, x, in & and «;,a, in F.

IfA,BCcZ,then A+B={a+b:a€A, beEB}; A—B={a—b:
ac€A beB}. ForainFand ACE, ad={aa: ac A} If # isa
linear manifold in & (thatis, # C ¥ and .# is also a vector space with the
same operations defined on %), then define Z/.# to be the collection of all
the subsets of & of the form x + .#. A set of the form x + .# is called a
coset of #. Note that (x + #)+ (y + #A)=(x + y)+ A and a(x + A)
= ax + # since A is a linear manifold. Hence %/.# becomes a vector
space over F. It is called the quotient space of & mod 4.

Define Q: - 2/ # by Q(x)=x + .#. It is easy to see that Q is a
linear transformation. It is called the quotient map.

If T: & — % is a linear transformation,

kerT= {x € &: Tx = 0},
ran7T = {Tx: x € ¥ };
ker T is the kernel of T and ranT is the range of T. If ranT = %, T is
surjective; if ker T = (0), T is injective. If T 1s both injective and surjective,
then T is bijective. It is easy to see that the natural map Q: ¥ — /4 is
surjective and kerQ = /.

Suppose now that T: & — % is a linear transformation and .# is a linear
manifold in . We want to define a map 7: &/.# — ¥ by T(x + #) = Tx.
But 7' may not be well defined. To ensure that it is we must have Tx, = Tx,
ifx, + M =x,+ M. But x, + #=x,+.# if and only if x;, — x, € A,
and Tx, = Tx, if and only if x, — x, € ker7T. So T is well defined if
M C kerT. It is easy to check that if T is well defined, T is linear.

1.3. Proposition. If T: & — % is a linear transformation and M is a linear

manifold in & contained in ker T, then there is a linear transformation T-
X/ M — ¥ such that the diagram

r 5 g
Q\S‘Z’///{/‘T

commutes.
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The preceding proposition is especially useful if 4 =ker T. In that case
T is injective.
The last proposition of this section will be quite helpful in the book.

1.4. Proposition. Let f, f,...,f, be linear functionals on Z.If kerf D
N _.kerf,, then there are scalars ay,...,a, such that f= X} _ a, f, (that is,
flx) = Xi_1a, f,(x) for every x in X).

Proor. It may be assumed without loss of generality that for 1 <k <n,

N kerf, # N ker f,.
j=1

J*k

(Why?). So for 1 <k <n, there is a y, in N, kerf, such that y, 4
Nj_ kerf,.So fi(y,) = 0 for j#k, but fi(y,)# 0. Let X, = [£f,(¥)] 'y
Hence fi(x,)=1 and f(x;) =0 for j+ k.

Now let fbe as in the statement of the proposition and put a, = f(x,).
If x €&, let y = x—Xio1fu(x)x,. Then f(y) = £fx) -
Li_1fi(x)f(x,) = 0. By hypothesis, fiy) = 0. Thus

0=f(x)- g;lfk(x)f(xk)

n

=f(x) - Z a fi(x);

k=1

equivalently, f=X}_,a,f;- .

§2. Topology

In this book all topological spaces are assumed to be Hausdorff.

This section will review some of the concepts and results using nets as this
idea is frequently used in the text.

A directed set is a partially ordered set (I, <) such that if i;,i, €], then
there is an i; in Z such that i3>, and 73> 4. A good example of a
directed set is to let (X, J°) be a topological space and for a fixed x, in X
let ={U in I:x,€U}. f U, Ve, define U=V if UC V (so
bigger is smaller). % is said to be ordered by reverse inclusion. Another
example is found if S is any set and % is the collection of all finite subsets
of 8. Define F; > F, in & if F;2 F, (bigger means bigger). Here % is said
to be ordered by inclusion. Both of these examples are used frequently in the
text.

A net in X is a pair (I, 1, x), where (I, <) is a directed set and x is a
function from Z into X. Usually we will write x, instead of x(i) and will use
the phrase let {x,} be a net in X.”
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Note that N, the natural numbers, is a directed set, so every sequence is a
net. If (X, J7) is a topological space, x, € X, and  ={U in T:x,€U },
then let x, €U for every Uin %. So {x,; UE%} is a net in X.

2.1. Definition. If {x;} is a net in a topological space X, then {x,}
converges 1o x; (in symbols, x, = x, or x, = limx,) if for every open
subset U of X such that x, €U, there is an i, =iy(U) such that x, €U
for i =i, The net clusters at x, (in symbols, x,—g> x,) if for every i, and
for every open neighborhood U of x,, there exists an i =i, such that
X; € u.

These notions generalize the corresponding concepts for sequences. Also,
if x,— x,, then x, —g> x,. Note that the net { x,:U €%} defined just
prior to the definition converges to x,. This is a very important example of a
convergent set.

2.2. Proposition. Zf X is a topological space and A C X, then x € cl A
(closure of A) if and only if there is a net {a, } in A such that a, — x.

PROOF. Let = {U: U is open and x € U}. If x € cl A4, then for each U
in % there is a point a, in A N U. If U, €%, then a, €U, for every
U = Uj; therefore x = lima,. Conversely, if {a,} is a net in A and a, - x,
then each U in % contains a point a, and a,€ AN U. Thus x €cl A.

|

2.3. Proposition. Zf A C X, {a,} is a net in A, and a, —g> x, then
x €clA.

Proor. Exercise.

There is a concept of a subnet of a net and with this concept it is possible
to prove that if a net clusters at a point x, then there is a subnet that
converges to x. The concept of a subnet is, however, somewhat technical
and is not what you might at first think it should be. Since this concept is
not used in this book, the interested reader is referred to Kelley [1955] Tt
might also be appropriate to mention that a topological space is Hausdorff
if and only if each convergent net has a unique limit point.

2.4. Proposition. Zf X and Y are topological spaces and f: X —Y, then f is
continuous at X if and only if f(x;)— f(xy) whenever x,— x,,.

Proor. First assume that fis continuous at x, and let {x,} be a net in X
such that x, = x, in X. If ¥ is open in Y and f(x,) €V, then there is an
open set U in X such that x, €U and f(U) CV. Let iy be such that
x, €U for i 2 i,. Hence f(x;,)€V for i =i, This says that f(x,)— f(x;).

Let % ={ U:U is open in X and x, €U }. Suppose fis not continuous
at xy. Then there is an open subset ¥V of Y such that f(xy)€V and
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fU)\V# Q for every U in %. Thus for each U in % there is a point X, in
U with f(x,)€V. But {x,} is a net in X with x, = x, and clearly
{ f(x,)} cannot converge to f(xg). [ ]

2.5. Proposition. Zff: X =Y, f is continuous at xy, and { x;} is a net in X
that clusters at x,, then { f(x,)} clusters ar f(xq).

Proor. Exercise.

2.6. Proposition. Let K C X. Then K is compact if and only if each net in K
has a cluster point in K.

Proovr. Suppose that K is compact and let {x,: i € Z} be a net in K. For
each ilet F; = cl{ x,: j= i}, so each F, is a closed subset of K. It will be
shown that { F;:i € Z} has the finite-intersection property. In fact, since Z
is directed, if iy,...,7,€ I, then there is an i=iy,..., 4. Thus FCNZ_; F,
and { F,} has the finite-intersection property. Because K is compact, there is
an x, in N, F. But if U is open with x, in U and iy €1, the fact that
xyo€cl{x;:i= i}, implies there is an i =i, with x, in U. Thus x, —>x,.

Now assume that each net in K has a cluster point in K. Let {K,:
a € A} be a collection of relatively closed subsets of K having the finite-
intersection property. If %= the collection of all finite subsets of A, order
Z by inclusion. By hypothesis, if F € %, there is a point x, in N{ K,:
a€ F}. Thus { x5} is a net in K. By hypothesis, { xz} has a cluster point
xoin K. Let a € A, so {a}€ % . Thus if U is any open set containing x,
there is an F in % such that « € F and xz € U. Thus x€U n K_; that
is, for each ain A and for every open set U containing x,, U n K, # 0.
Since K, is relatively closed, x,€ K, for each a in A. Thus x,€N K,
and K must be compact. ]

The next result is used repeatedly in this book.

2.1. Proposition. Zf X is compact, {x,} is a net in X, and x is the only
cluster point of {x;}, then the net {x,} converges 1o x,.

Proor. Let U be an open neighborhood of x, and let J ={j€1I:
x, €U }.If { x,} does not converge to x,, then for every iin Z there is a j
in J such that j>i In particular, Jis also a directed set. Hence {x,:
JE€ J}is a net in the compact set X\ U. Thus it has a cluster point y,. But
the property of J mentioned before implies that y, is also a cluster point of
{x,;:i € Z}, contradicting the assumption. Thus x, — x,. .

The next result is rather easy, but it will be used so often that it should be
explicitly stated and proved.

2.8. Proposition. Zff: X = Y is bijective and continuous and X is compact,
then f is a homeomorphism.
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Proor. If F is a closed subset of X, then F is compact. Thus f(F) is
compact in Y and hence closed. Since f maps closed sets to closed sets, f!
is continuous. u

Note that the Hausdorff property was used in the preceding proof when
we said that a compact subset of Y is closed.

In the study of functional analysis it is often the case that the mathemati-
cian is presented with a set that has two topologies. It is useful to know how
properties of one topology relate to the other and when the two topologies
are, in fact, one.

If X is a set and J, 7, are two topologies on X, say that 7, is larger
or stronger than J,if 9,2 .7;; in this case you may also say that 7 is
smaller or weaker. In the literature there is also an unfortunate nomencla-
ture for these concepts; the words finer and Coarser are used.

The following result is easy to prove (it is an exercise) but it is enormously
useful in discussing a set with two topologies.

29. Lemma. If 9,9, are topologies on X, then I, is larger than I if
and only if the identity map i: (X, 7,)— (X, 9,) is continuous.

2.10. Proposition. Let 7,7, be topologies on X and assume that I, is
larger than 7.

(a) If F is I -closed, F is Ty-closed.

) If f: Y > (X, T3) is continuous, then [, Y — (X, T) is continuous.
() If f: (x, T)— Y is continuous, then fix F,)— Y is continuous.
(d) If K is I,-compact, then K is T-compact.

(e) If X is Ty-compact, then I, = 7.

Proor. (b) Note that f:y- (X, J,) is the composition of f: ¥ — (X, I,)
and i: (X, ,)— (X, J;) and use Lemma 2.9.
(d) Use Lemma 2.9.
(e) Use Lemma 2.9 and Proposition 2.8.
The remainder of the proof is an exercise. .



APPENDIX B
The Dual of L?(p)

In this section we will prove the following which appears as 111.5.5 and
I11.5.6 in the text.

Theorem. Let (X, 2,p) be a measure space, let 1 <p <oo, and let lI/p +
l/q = 1. If g € L9(p), define F,: L?(p)—>F by

F(f)= [fedp.

If 1 <p <oo, the map g = F, defines an isometric isomorphism of L(p)
onto LP(p)*. If p = 1 and (X, @, p) is o-finite, g = F, is an isometric
isomorphism of L®(p) onto L'(p)*.

Proovr. If g € L), then Holder s Inequality implies that |F,(f)[<
IA1l,11gll, for all fin LP(p). Hence F, € LP(p)* and ||F |l <]8ll,- There-
fore g = F, is a linear contraction. It must be shown that this map is
surjective and an isometry. Assume F € L?7(p)*.

Case I: u(X)<oo. Here x4 € LP(p) for every A in £. Define »(4) =
F(x,)- It is easy to see that » is finitely additive. If {A,} €& with
A, DA D2+ and NT_,4,=0, then

L/p
xa =1 [ 1xA"|Pdn]

= p(4,)"" = 0.

Hence »(A,)— 0 since F is bounded. It follows by standard measure
theory that » is a countably additive measure. Moreover, if p(4) = 0,
X4 = 0in L?(p); hencer(4) = 0. That is, v < p. By the Radon-Nikodym



382 Appendix B. The Dual of L?(p)

Theorem there is an Q-measurable function g such vwA) = f,gdp for every
A in 2; that is, F(x4) = [xagdp for every A in £. Tt follows that

B.1 F(f) = [fedp

for every simple function f.
B.2. Claim. g € L9%u) and ||gll, <|lF]l.

Note that once this claim is proven, the proof of Case 1 is complete.
Indeed, (B.2) says that F, € LP(p)* and since F and F, agree on a dense
subset of L7(p)(B.1), F = F,. Also, |Igll,<IIFll = |l = llgl,-

To prove (B.2), let 1 > 0 and put E, = {x € X:|g(x)|< ). If fE€L(p)
such that f = 0 off E,, then there is a sequence { f,} of simple functions
such that for every n,f, = 0 off E,|f,|<|fl, and [,(x) — {(x) a.e. [u]
(Why?) Thus I(f, = /gl <2:fland [ifldp = [If] - Ldp < |Ifll,p(X)"7
< oo. By the Lebesgue Dominated Convergence Theorem, F( f,)= [f, g dp
~ [fgdp. Also, |f, — fI” < 27|17, so IIf, = fll, = 0: thus F(f,) = F(f).
Combining these results we get that for any ¢#>0 and any f in L7(p) that
vanishes off E,, (B.) holds.

Case la: 1<p <oo.So I <q<co. Let f=xg|8|7/8, where g(x) # 0,
and put f(x) = 0 when gx) = 0. If A = {x: gx) # 0}, then

Jipv dp = f Igl" u—f 1217 dp.

since pg — p = g. Therefore

[, 181%d = [fgdn = F(f) < |FUIfI, = I1F)

1/p
f gl7dp|
EI

Thus
1/q

1-1/p
1Al = 1f, 18‘1] > [ fE|g|qdp.]

Letting ¢t — o0 gives that |[gll, <||F]l.
Case lb: p = 1. S0 ¢ = c0. For €> 0 let A = {x: [g(x)|>||F|| + E).
For t> 0 let f=Xg ~48/18l- Then ||fll; = p(AN E,), and so

IFIp(ANE) > [fedp = fm lgl du = (1Pl + e)p(A N E,).

Letting 7 — cc we get that ||Fl|jp(A)=(||F)| + e)p(A), which can only be if
#(A4) = 0. Thus I8lle <.

Case 2: (X, £,p) is arbitrary. Let &= all of the sets E in £ such that
p(E)<oco. For E in 2 let 2, = {A €2: A C E} and define (p|E)A) =
p(4) for A in 9,. Put L?(p|E) = LP(E, g, p|E) and notice that LP(u|E)



Appendix B. The Dual of L?(u) 383

can be identified in a natural way with the functions in L?( X, £, p) that
vanish off E. Make this identification and consider the restriction of F:
LP(p)y—>Fto LP(p|E); denote the restriction by Fg:L?(p|E)— IF. Clearly
F, is bounded and |[Fg||<||F|| for every E in &.

By Case 1, for every E in & there is a gz in LY p|E) such that for f in
LP(u|E),

B.3 F(f)= fE fegdp and ||ggll, < ||Fl.

If D, E €&, then L?(p|DN E) is contained in both LP(u|D) and LP(p|E).
Moreover, Fp|L?(p|DN E) = Fg|LP(W| DN E) = Fpng. Hence gp = 8¢
=gp~ g a€ [p]lon D N E. Thus, a function g can be defined on U{ E:
E€&) by letting g=gon E; put g=0off U{ E: E€&}. A difficulty
arises here in trying to show that g is measurable.

Case 2a:1<p< co. Put o =sup{||ggll,; E €€}; so o <||F||< co.
Since ||gpll, <IIggll, if D € E, there is a sequence {E.} in & such that
E,C E,,, for all n and |ggll, >o0. Let G = U7_,E,. If E €& and
ENG =0, then llggy g llf = 8619 + 182,15 = IgAlS + 0% thus g, = 0.
Therefore g = 0 off G and clearly g is measurable. Moreover, g€ L(p)
with {|g]|, = o.

If feL?(p), then {x: f(x) # 0} = UY.,D, where D,€¢& and D,C
D, for all n. Thus x p f— fin L?(p) and so F(f) = lim F(xp f) = (B.3)
lim fp, gfdp = fgfdp. Thus F = F, and |F|l = |, = ligll, < o <||F}.

Case 2b: p = oo and (X, , p) is u-finite. This is left to the reader. .

EXERCISE

Look at the proof of the theorem and see if you can represent LN X, 8, 1)* for an
arbitrary measure space.
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The Dual of Cy(X)

The purpose of this section is to show that the dual of C(X) is the space of
regular Borel measures on X and to put this result, and the accompanying
definitions, in the context of complex-valued measures and functions.

Let X be any set and let £ be a u-algebra of subsets of X; so (X, £)is a
measurable space. If p is a countably additive function defined on £ such
that p(d) =0 and 0 < p(A)<oo for all A in 2, call p a positive measure
on (X, 2); (X, 2, p) is called a measure space.

If (X, £) is a measurable space, a signed measure is a countably additive
function p defined on £ such that p(0) = 0 and p takes its values in
Ru {+ co}. (Note: p can assume only one of the values +o0.) It is
assumed that the reader is familiar with the following result.

C.l. Hahn-Jordan Decomposition. If p is a signed measure on (X, ), then
B = My— l,, where |, and p, are positive measures, and X = E U E,,
where E,, E,€Q E NE,=0p(E)) =0 = p,(E)). The measures pn,
and p, are unique and the sets E| and E, are unique up to sets of p,+u,
measure zero.

A measure (or complex-valued measure) is a complex-valued function p
defined on £ that is countably additive and such that pw(O) = 0. Note that p
does not assume any infinite values. If p is a measure, then (Rep)(A) =
Re(p(4)) is a signed measure, as is (Imp)(A) =Im(p(A)); hence p=Rep
+ iImp. Applying (Cl) to Rep and Imp we get

C2 po=(pr— ) + i(ps— pa)

where p (1 <j< 4) are positive measures, p;Lp, (g, and p, are



Appendix C. The Dual of Cy(X) 385

mutually singular) and p, L p,. (C.2) will also be called the Hahn-Jordan
decomposition of p.

C.3. Definition. If w is a measure on (X, £) and A €2, define the
variation of p,|p|, by
m|(A) = sup{ Y Ir(E;): {E,}, is a measurable partition of A}.

j=1

CA4. Proposition. Zf p is a measure on (X, Q), then |p| is a positive jinite
measure on (X, ). Zf p is a signed measure, |p| is a positive measure. Zf
(C.2) is satisfied, then |pl(A)<Xi_p(A);if p is a signed measure, then
el = 1t ps

ProovF. Clearly |p|(4)= 0. Let {A,,} be pair-wise disjoint measurable sets
and let A = U5_,4,.Ife> 0, then there is a measurable partition { E;}7
of A such that |uj(4) —e <X |p(E;)|. Hence

i i_o: I‘(Ej N An)

j=1

kI(4) — ¢

IA

o0 m

Z Z |N(Ej N An)l'

n=1 j=1

IA

But {E, n 4,}L, is a partition of A,, so |#|(4) —e< X3 ,|pl(4,). There-

fore |p|(A)<X¥_,|p|(4,). For the reverse inequality we may assume that

[pl(A)<oo. Tt follows that ||(4,) < cc for every n. (Why?) Let €> 0 and

for each n> 1 let {E{™,...,E{"’} be a partition of A, such that

Zp(EM™)|>|p|(4,) —e/2" Then
N

. II(4,) < X

n= n=1

3+ ZI(E™)

<e 4 |pl(4).

Letting N — cc and e~ 0 gives that Z°|pl(4,) <|pl(4).

Clearly |p(Q)|<Zi_ p (D), so |u|<Xi_ ps It is left to the reader to
show that |p|=p, + m,if p is a signed measure. Since f, ft;, 3, 4, are all
finite, |u|is finite if p is complex-valued. a

C.5. Definition. If p is a measure on (X, £) and v is a positive measure on
(X, ), say that p is absolutely continuous with respect to v (p<<v) if
p(A) = 0 whenever v(A) = 0. If v is complex-valued, p << v means p<<|»|.
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C.6. Proposition. Let p be a measure and v a positive measure on (X, 2).
The following statements are equivalent.

(a) p < ».
(b) |pl < ».
(© If (C.2) holds, p,<v for1 <k <4

Proor. Exercise.

The Radon-Nikodym Theorem can now be proved for complex-valued
measures p by using (C.6) and applying the usual theorem to the real and
imaginary parts of u. The details are left to the reader.

C.7. Radon-Nikodym Theorem. If (X, 2, v) is a a-jinite measure space and
p is a complex-valued measure on (X, ) such that p<< v, then there is a
unique complex-valued function f in LN X,, v) such that p(A)= [, fdv for
every A in §2.

The function fobtained in (C.7) is called the Radon-Nikodym derivative
of w with respect to v and is denoted by f=du/dv.

C8. Theorem. Let (X, 2, v) be a a-finite measure space and let p be a
complex-valued measure on (X, §2) such that p<<v andlet f=dp/dv.

(@) If g €L X, 2,|u), then gf €LNX,2, v) and [gdu = [gfdv.
(b) For A in Q|pl(4) = [,If] dv.

Proor. Part (a) follows from the corresponding result for signed measures
by using (C.2) and a similar decomposition for f.
To prove (b), let { £ } be a measurable partition of A. Then

Li(EN <X [ 1f1dv = [ in1dv.

For the reverse inequality, let g(x) = f(x)/If (x)|if x € A and f(x)# 0;
let g(x) = O otherwise. Let {g,} be a sequence of G-measurable simple
functions such that g,,(x) =0 off A,(g,| < |g| < I, and g,.(x) = g(x) a.e.
[»). Thus £g, — Iflxa ae.[v]. Also,|fg,/<|fIxsand fxs € L'(») [see
(C.2)]. By the Lebesgue Dominated Convergence Theorem, [fg,dv —
falf|dv. If g, = ZjaijJ, where {E,} is a partition of A and |a;|< 1, then
|[fg,dv] = |[g,dul = E,au(E)| < |ul(A). Thus [,If] dv < [p|(4). m

One way of phrasing (C.8b) is that |du/dv|=d|u}/dv. The next result is
left to the reader.

C.9. Corollary. Zfu is a complex-valued measure on (X, §2), then there is an
D-measurable function f on X such that |f|=1 ae. [|u|] and p(A)= [, fd|pu|
for each A in £2.
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C.10. Definition. Let X be a locally compact space and let £ be the
smallest u-algebra of subsets of X that contains the open sets. Sets in £ are
called Borel sets. A positive measure s on (X, 2)is a regular Borel measure
if (a) p(K)<oo for every compact subset K of X; (b) for any E in £,
p(E) =sup{u(K): K C E and K is compact}; (¢) for any E in £,
p(E) =inf{p(U): U2 E and U is open}. If u is a complex-valued
measure on (X, £),u is a regular Borel measure if |u| is. Let M(X) = all of
the complex-valued regular Borel measures on X. Note that M(X) is a
vector space over C. For p in M(X), let

c.11 lll = Il(X).

C.12. Proposition. (C.1) defines a norm on M(X).

Proor. Exercise.

C.13. Lemma. If p€ M(X), define F,: Co(X)—>C by F,(f) = [fdp.
Then E,€Co( X)* and ||EJ| = |lul].

Proor. If f€ C,(X), then |E(f)<[Idp <Ililpll. Hence F, €
Co(X)* and [|E| < [lull-

To show equality, let f, be a Borel function such that |fo| =1 a.e. [|u]
and u(A)=f,fod|pl.By Lusin 8 Theorem, if £> 0, there is a continuous
function ¢ on X with compact support such that f|¢—_f0|d|,u|§s and
lioll < suplfo(x)| = 1. Thus llull = [fofodlul (C.82) = [fodu = |[fodul <
1/(fo — @)dul + |fédul < & + |E($)| < ¢ + [IEJ|. Hence |lul| < |IEIl.

[ ]

C.14. Corollary. (a) If U is an open subset of X and p€ M(X), then
WI(U) = sup{|féduj: ¢ € C.(X), spte € U, and ||g| < 1}. (b) If p 2 O,
p(K) =inf{ fodu:d¢ €Co(X) and ¢ = xg}-

Proov. (a) If U is given the relative topology from X, U is locally compact.
Let » be the restriction of pto U. Then (a) becomes a restatement of (C.13)
for the space U together with the fact that C,(U) is norm dense in C,(U).

(b) If ¢ > x g, then because p is positive, [¢du= p(K). Thus p(K)<a
= inf{ [¢pdu:dpE€Cy(X) and ¢ = x5 }. Using the regularity of u, for every
integer n there is an open set U, such that K CU, and p(U,\ K) <n~ L.
Let y,€ C,(X) such that 0 <y,< 1,¢,=1on K, and ¢, = 0 off U,.
Thus ¢, >xg and so a< (Y, dp<p(U)<p(K) +n" L [

The next step in the process of representing bounded linear functionals
on C,(X) by measures is to associate with each such functional a positive
functional. If p€ M(X), then the next lemma would associate with the
functional I';L the positive functional Z = Flu|.
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C.15. Lemma. If F: C(X) - C is a bounded linear functional, then there is
a unique linear functional I: C(X) = C such that if f € C,(X) and f = 0,
then

C.16 I(f) = sup{|F(g)l: g € Co(X) and |g| < [ }.

Moreover ||I||=||F|.

Proor. Let Cy( X)) + be the positive functions in C,(X) and for fin C(X) +
define Z(f) as in (C.16). If a> 0, then clearly I(af)=al(pif fE C,X)+.
Also, if g € Cy(X) and |g} < f, then |F(g)] < IFIgll < IFNIN. Hence

zZ(p) < NI < oo.

Now we will show that Z( f;+ f,)=I(f)) + I(f,) whenever f, f,E€
C(X)+. If > 0, let g1, 8, € C,(X) such that [g]<f, and [F(g)|>I(f)
—1¢ for j = 1,2. There are complex numbers B;,j =1,2, with Bl =1
and F(gj) = Bj‘F(gj)|' Thus

I(f1) + I(f,) <e 4+ [F(g)l + [F(g)l
=€+ EIF(gl) + :EzF(gz)
=& 4+ |[F(Big + B.8))-

But |B1g1 + B:g2)| <&l + 18l < fi + fo-Hence I(f) + I(f) <e &+
I(f, + f,). Since ¢ was arbitrary, we have half of the desired equality.

For the other half of the equality, let g € C,(X) such that |g|< f,+ f,
and I(f; + f,) < |F(g)| + & Let hy = min(|g|, f;) and &, = |g]~ h,.
Clearly hy,h,€ C,(X)+, h < fi,h,<f,, and h; + h, = |g|. Define g,:
X - C by

0 if gx) = 0,
g(x) ={ h;(x)g(x)
1g(x)l

It is left to the reader to verify that g€ C,(X) and g, + g, =|g|- Hence
I(fi+ f,)<|F(g)+ F(g)| + ¢
< |F(g)l + |F(g) + ¢
<I(f))+1(f;) +e

if g(x) # 0.

Now let e—> 0.

If fis a real-valued function in C,(X), then f= f; — f, where fi, L, €
C,(X)+. If also f=g,—§&, for some g, &, in C,(X)+, then g, + fL= /i
+ g,. By the preceding argument I(g,)+ I( f;)=1(f,)+ 1(g;). Hence if
we define I'ReCy(X)— R by Z(f) = I(f))—1(f,) where f=fi—f>
with f,, f, in Co(X),, I is well defined. It is left to the reader to verify that
I is R-linear.

If f€ C,(X), then f = f, + if,, where f}, f,€ Re Cy( X). Let Z(f) =
I(f)) +iZ( f,). It is left to the reader to show that /: C,(X) = C is a lincar
functional.
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To prove that ||{]| = ||Fll, first let f€ C,(X) and put Z(f) = a|I(f)]
where |a| = 1. Hence af = f, + if,, where f, f,E€ReCy(X). Thus |I(f)I
=al(p=2Z( f))+iZ( f,). Since |I(f)| is a positive real number, Z( f,) =0
and I(f;) = [I(f)|- But f; = Re(af) <|af] = |f]l. Hence

<IN

From here we get, as in the beginning of this proof, that ||f||<||F||. For the
other half, if e> 0, let f € C,,(X) such that |f]|< 1 and ||F||<|F(f)| + &.
Thus ||Fli<I(MH+e<|| + & ]

C.17. Theorem. Zf I:Co( X)— C is a bounded linear functional such that
Z(f) = 0 whenever f € C,(X)+, then there is a positive measure v in M(X)
such that Z(f) = [fd pr every fin C,(X) and ||I|| = v(X).

The proof of this is an involved construction. Inspired by Corollary C.14,
one defines v(U) for an open set U by

v(U) = sup{I{(¢):9€ c,(x)+, $< 1, sptop U }.
Then for any Borel set E, let
v(E) = inf{ v(U): E CU and U is open}.

It now must be shown that v is a positive measure and Z(f) = [f dv. For
the details see (12.36) in Hewitt and Stromberg [1975] or §56 in Halmos
[1974]. Indeed, Theorem C.17 is often called the Riesz Representation
Theorem.

C.18. Riesz Representation Theorem. Zf X is a locally compact space and
LeE M(X), deﬁneF,L: C,(X) »C by

E(f) = [fdu.

Then I‘LE C,(X)* and the map p '—>F,L is an isometric isomorphism of
M(X) onto Cy(X)*.

Proor. The fact that p— F, is an isometry is the content of Lemma C.13.
It remains to show that pw—> F, is surjective. Let F € Co( X)* and define I:
C,(X) »C as in Lemma C.15. By Theorem C.17, there is a positive
measure v in M(X) such that Z( f) = [f dv for all fin C(X). If f € Cy( X),
then the definition of Z implies that |[F(f)|<I(|f]) = f|f] dv. Thus, f—
F( f) defines a bounded linear functional on C,(X) considered as a linear
manifold in L (v). Now C,(X) is dense in L (v) (Why?), so F has a unique
extension to a bounded linear functional on L (v). By Theorem B.l there is
a function ¢ in L (v) such that F(f) = [f¢ dv for every fin C,(X) and
lplle < 1. Let p(E) = [g¢pdv for every Borel set E. Then pw€ M(X) and
by Theorem C.8(a), F(f) = [f du; that is, F = F,. ]
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ordered vector space, 83
orthogonal, 7

orthogonal difference, 38
orthogonal projection, 10, 37
orthonormal subset, 14
outside of curve. 204

Pairwise orthogonal, 55

Parallelogram Law, 8

Parseval s Identity, 17

partial isometry, 248, 250

partition of the identity, 55

partition of unity, 143

p-diameter, 156

Plancherel s Theorem, 348

Plancherel transform, 348

point spectrum, 213

Poisson kernel, 199

polar, 129

polar decomposition, 61, 248, 273

polar identity, 4

polynomially convex, 211

polynomially convex hull, 211

Pontryagin Duality Theorem, 234

positive element in a C*-algebra, 246

positive functional, 89, 256

positive linear map, 59, 89

positive measure, 384

positive operator, 59, 89

positive part, 246

positively oriented, 204

prepolar, 129

Principle of Uniform Boundedness, 98,
100, 130

probability measure, 84, 151

product of normed spaces, 74

projection, 10, 37

proximinal, 137

PUB, 98

Pythagorean Theorem, 7

Quotient map, 376
quotient space, 73, 131, 376
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Radical, 225

Radon-Nikodym derivative, 386

Radon-Nikodym Theorem, 386

range of an operator, 376

rapidly decreasing function, 342

rational generator set, 227

real part of an operator, 34

reducing subspace, 39

reductive operator, 297

reflexive operator, 298

reflexive space, 92, 135

regular Borel measure, 387

representation, 254

resolvent, 203

resolvent identity, 203

resolvent set, 199, 314

restriction of an operator, 40

retract, 152

retraction, 71, 153

Riemann-Lebesgue Lemma, 22,345

Riesz Functional Calculus, 206, 272

Riesz Representation Theorem, 12, 78,
389

right essential spectrum, 355

right Fredholm operator, 356

right ideal, 195

right invertible, 195

right modular ideal, 198

right modular unit, 198

right resolvent set, 199

right spectrum, 199

Runge s Theorem, 86

Ryll-Nardzewski Fixed Point Theorem,
157

s, 107

scalar-valued spectral measure, 293
Schauder Fixed Point Theorem, 154
Schauder s Theorem, 178

Schur test, 30

Schwartz space, 343

second dual, 92

self-adjoint, 33, 316
semi-Fredholm operator, 356
semi-inner product, 1

seminorm, 65, 103

semisimple, 228

separated, 113
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separate points, 149
separating vector, 288
sesquilinear form, 31
0,,(4), 213
u-compact, 70, 109
0,(A), 45,213
signed measure, 384
simple curve, 204
simple compact normal operator, 63
simultaneous diagonalization, 273
simultaneous extension, 98
smaller topology, 3 80
SOT, 262, 281, 284
spatially isomorphic, 288
spectral decomposition, 270
Spectral Mapping Theorem, 208, 245,
296
spectral measure, 262, 270
scalar-valued, 293
spectral picture, 374
spectral radius, 201
Spectral Theorem
for compact normal operators, 56
for compact self-adjoint operators, 47,
50
for normal operators, 269, 330
spectrum, 199, 314
star-cyclic, 275, 277, 333
*-homomorphism, 239, 253
state, 256
state space, 258
Stonean space, 245, 292
Stone-Cech compactification, 141, 142,
245
Stone s Theorem, 337
Stone-Weierstrass Theorem, 149
strict inductive limit, 122
strict topology, 108, 111, 119
strictly separated, 113
strong operator topology, 262, 281, 284
stronger topology, 380
strongly continuous group, 336
Sturm-Liouville operator, 51
Sturm-Liouville system, 51
sublinear functional, 80, 111
subordinate to a cover, 143
support, 69, 120
surjective, 376
symbol, 28
symmetric operator, 316
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Topological group, 159 Vanish irdinity, 67

topological semigroup, 159 variation of a measure, 385
topological vector space, 102 Volterra integral operator, 216
topologically complementary, 11, 97, 125 Volterra kernel, 216

totally disconnected, 148 Volterra operator, 29, 45, 183, 216
trace, 274 von Neumann algebra, 288

trace-class operator, 274
trace norm, 274

translation invariant, 109
trigonometric polynomial, 21

Weak operator topology, 262, 281, 284
weak topology, 104, 127
weaker topology, 380

TvS, 102 weakly Cauchy sequence, 136, 190
weakly compact operator, 187
weakly compactly generated, 190
weakly sequentially complete, 190
weak-star (weak* or wk*) topology, 104,
Unconditional convergence, 19 128
uniform algebra, 150 wedge, 89
unilateral shift, 29, 33, 203, 214, 287, weighted shift, 250, 315
355, 360, 362, 370, 371 Weyl spectrum, 373
unitarily equivalent, 61, 62, 269, 299, winding number, 203
308 WOT, 262, 281, 284

unitary, 20, 239 Wronskian, 52
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