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Preface

This volume presents answers to some natural questions of a general analytic
character that arise in the theory of Banach spaces. I believe that altogether too
many of the results presented herein are unknown to the active abstract analysts,
and this is not as it should be. Banach space theory has much to offer the prac-
titioners of analysis; unfortunately, some of the general principles that motivate
the theory and make accessible many of its stunning achievements are couched
in the technical jargon of the area, thereby making it unapproachable to one
unwilling to spend considerable time and effort in deciphering the jargon. With
this in mind, I have concentrated on presenting what I believe are basic phenomena
in Banach spaces that any analyst can appreciate, enjoy, and perhaps even use.

The topics covered have at least one serious omission: the beautiful and powerful
theory of type and cotype. To be quite frank, I could not say what I wanted to
say about this subject without increasing the length of the text by at least 75
percent. Even then, the words would not have done as much good as the advice
to seek out the rich Seminaire Maurey-Schwartz lecture notes, wherein the theory's
development can be traced from its conception. Again, the treasured volumes of
Lindenstrauss and Tzafriri also present much of the theory of type and cotype
and are must reading for those really interested in Banach space theory.

Notation is standard; the style is informal. Naturally, the editors have cleaned
up my act considerably, and I wish to express my thanks for their efforts in my
behalf. I wish to express particular gratitude to the staff of Springer-Verlag, whose
encouragement and aid were so instrumental in bringing this volume to fruition.

Of course, there are many mathematicians who have played a role in shaping
my ideas and prejudices about this subject matter. All that appears here has been
the subject of seminars at many universities; at each I have received considerable
feedback, all of which is reflected in this volume, be it in the obvious fashion of
an improved proof or the intangible softening of a viewpoint. Particular gratitude
goes to my colleagues at Kent State University and at University College, Dublin,
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who have listened so patiently to sermons on the topics of this volume. Special
among these are Richard Aron, Tom Barton, Phil Boland, Jeff Connor, Joe Creek-
more, Sean Dineen, Paddy Dowlong, Maurice Kennedy, Mark L.eeney, Bob
Lohman, Donal O'Donovan, and A. "KSU" Rajappa. I must also be sure to thank
Julie Froble for her expert typing of the original manuscript.

Kent, Ohio JOE DIESTEL

April, 1983



Some Standard Notations and Conventions

Throughout we try to let W, X, Y, Z be Banach spaces and denote by w, x, y, z
elements of such. For a fixed Banach space X, with norm we denote by
Bx the closed unit ball of X,

B. = {x e X. H x Q_< 1},
and by SX the closed unit sphere of X,

SX = {xeX: 11 x 11 = 1}.
Again, for a fixed X, the continuous dual is denoted by X* and a typical member

of X* might be called x*.
The Banach spaces co, lp (1- p< co), C(fl) and LD(µ) l s p 4 00 follow standard

notations set forth, for example, in Royden's "Real Analysis" or Rudin's "Func-
tional Analysis"; we call on only the most elementary properties of the spaces
such as might be encountered in a first course in functional analysis. In general,
we assume the reader knows the basics of functional analysis as might be found
in either of the'aforementioned texts.

Finally, we note that most of the main results carry over trivially from the case
of real Banach spaces to that of complex Banach spaces. Therefore, we have
concentrated on the former, adding the necessary comments on the latter when
it seemed judicious to do so.
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CHAPTER I

Riesz's Lemma and Compactness
in Banach Spaces

In this chapter we deal with compactness in general normed linear spaces.
The aim is to convey the notion that in normed linear spaces, norm-compact
sets are small-both algebraically and topologically.

We start by considering the isomorphic structure of n-dimensional normed
linear spaces. It is easy to see that all n-dimensional normed linear spaces
are isomorphic (this is Theorem 1). After this, a basic lemma of F. Riesz is
noted, and (in Theorem 4) we conclude from this that in order for each
bounded sequence in the normed linear space X to have a norm convergent
subsequence, it is necessary and sufficient that X be finite dimensional.
Finally, we shown (in Theorem 5) that any norm-compact subset K of a
normed linear space is contained in the closed convex hull of some null
sequence.

Theorem 1. If X and Y are finite-dimensional normed linear spaces of the
same dimension, then they are isomorphic.

PROOF. We show that if X has dimension n, the X is isomorphic to lln.
Recall that the norm of an n-tuple (al, a2, ... ,a.) in li is given by

ff(al, a2, ... (a1f+ Ia21+ ... + la.J.

Let xl, x2, ... ,x be a Hamel basis for X. Define the linear map I: 11" - X
by

I((al, a2, ... ,an)) s a1x1 + a2x2 + .. + a,xn.

I is a linear space isomorphism of li onto X. Moreover, for each
(a,, a2l...,an) in I,",

Ifa1x1 + a2x2 + ... + s ( max IIx,Ii)(Ia1I+ Ia21+ . + I anI),15iSn

thanks to the triangle inequality. Therefore, I is a bounded linear operator.
(Now if we knew that X is a Banach space, then the open mapping theorem
would come immediately to our rescue, letting us conclude that I is an open
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map and, therefore, an isomorphism-we don't know this though; so we
continue). To prove I-1 is continuous, we need only show that I is bounded
below by some m > 0 on the closed unit sphere S,, of l ; an easy normaliza-
tion argument then shows that I is bounded on the closed unit ball of X
by 1/m.

To the above end, we define the function f : S,t -, R by

f ((a1, a2, ... ,an)) = 11a1x1 + azxz + ... + anxnll-
The axioms of a norm quickly show that f is continuous on the compact
subset S, of R n. Therefore, f attains a minimum value m >- 0 at some
(a°, a?_., ann°) in Sq. Let us assume that m = 0. Then

Ila°xt + azxz + + a°xnll = 0
so that a°x1 + a2xz + + a°xn = 0; since x1, ... xn constitute a Hamel
basis for X, the only way this can happen is for a° = aZ = . =a0=0, a
hard task for any (a°, az, ... a°) E S1..

Some quick conclusions follow.

Corollary 2. Finite-dimensional normed linear spaces are complete.

In fact, a normed linear space isomorphism is Lipschitz continuous in
each direction and so must preserve completeness; by Theorem 1 all
n-dimensional spaces are isomorphic to the Banach space li .

Corollary 3. If Y is a finite-dimensional linear subspace of the normed linear
space X, then Y is a closed subspace of X.

Our next lemma is widely used in functional analysis and will, in fact, be a
point of demarcation for a later section of these notes. It is classical but still
pretty. It is often called Riesz's lemma.

Lemma. Let Y be a proper closed linear subspace of the normed linear space X
and 0 < B < 1. Then there is an xe E Sx for which 11x9 - y11 > 6 for every
yEY.

PROOF. Pick any x E X\Y. Since Y is closed, the distance from x to Y is
positive, i.e.,

0<d=inf( Ilx-zII:zE Y) < d

therefore, there is a z E Y such that

e.Ilx - zll<
d

Let
x - zxe=11x--zll
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Clearly xe E Sx. Furthermore, if y c- Y, then

X-Z
lixe-Y11=IIIIx -zll yll

x _ z _Ilx -
zll Ilx - zll Ilx - zll

Ilx

I

a member of Y

> dad = 0.

An easy consequence of Riesz's lemma is the following theorem.

11

Theorem 4. In order for each closed bounded subset of the normed linear space
X to be compact, it is necessary and sufficient that X be finite dimensional.

PROOF. Should the dimension of X be n, then X is isomorphic to l2
(Theorem 1); therefore, the compactness of closed bounded subsets of X
follows from the classical Heine-Borel theorem.

Should X be infinite dimensional, then Sx is not compact, though it is
closed and bounded. In fact, we show that there is a sequence in S.
such that for any distinct m and n, Ilxm - z Z. To start, pick x1 E S.
Then the linear span of x, is a proper closed linear subspace of X (proper
because it is I dimensional and closed because of Corollary 3). So by Riesz's
lemma there is an x2 in Sx such that 11x2 - ax,ll >- ; for all a E R. The linear
span of x, and x2 is a proper closed linear subspace of X (proper because
it's 2-dimensional and closed because of Corollary 3). So by Riesz's lemma
there is an x3 in Sx such that 11x3 - ax, - /3x211 ? a for all a, P E R.
Continue; the sequence so generated does all that is expected of it.

A parting comment on the smallness of compact subsets in normed linear
spaces follows.

Theorem 5. If K is a compact subset of the normed linear space X, then there
is a sequence in X such that 0 and K is contained in the closed
convex hull of { x }.

PROOF. K is compact; thus 2K is compact. Pick a finite -, net for 2K, i.e.,
pick x,, ... in 2K such that each point of 2K is within a of an x;,
1:5 i:5 n(1). Denote by B(x, e) the set (y: llx - yll _< e).

Look at the compact chunks of 2K: [2K n B(x,, ;)], ... j2K n
B(x (,),;)J. Move them to the origin: [2K n B(x,,;)J-x,, ... ,[2K n

J)J- Translation is continuous; so the chunks move to com-
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pact sets. Let K2 be the union of the resultant chunks, i.e.,

K2= (12KnB(x1,4))-xl)U... U{[2KnB(x"(1),4)]-Xn(1)
K2 is compact, thus 2K2 is compact. Pick a finite 6 net for 2K2, i.e., pick

Xn(1)+1, ... xn(2) in 2K2 such that each point of 2K2 is within 6 of an xi,
n(1)+15i5n(2).

Look at the compact chunks of 2K2: [2 K2 n B(x"(1)+1, 6)... 1[2K2 Cl
B(xn(2), 6)]. Move them to the origin:

[2K2 Cl B(X"(1)+1, )J - x"(1)+1, ... ,[2K2 n B(x"(2), 6)] - Xn(2)

Translation is still continuous; so the chunks, once moved, are still compact.
Let K3 be the union of the replaced chunks:

K3 = { [2K2 n B(x"(1)+1, 6)] - X"(1)+1 } v U ([2K2 n B(xn(2), 6 )[

_. Xn(2)} .

K3 is compact, and we continue in a similar manner.
Observe that if

xEK,
2xE2K,

2x - Xi(1) E K2,

4x - 2x1(1) E 2K21

4x - 2xi(1) - X.(2) E K3,

8x -4x.(1) - 2x,(2) E 2K3,

8x -4x1(1) -2x.(2) - X.(3) E K41

etc. Alternatively,

It follows that

for some 15i(1)Sn(1); so,

for some n(1)+15 i(2) s n(2); so,

for some n(2)+15 i(3) S n(3); so,

Xi(1)

2 K2'
X, x

X-

x- ()- r()E1K
2 4 3'

Xi(1) X,(2) X±(3) E K41 ...
2 4 8

X")X = lim
k" k-1 2

)CCO(a,x1,X2,

Exercises

1. A theorem of Mazur. The closed convex hull of a norm-compact subset of a
Banach space is norm compact.

2. Distinguishing between finite - dimensional Banach spaces of the same dimension.
Let n be a positive integer. Denote by li, 12, and l ; the n-dimensional real
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Banach spaces determined by the norms 111111 11 112 and 1111.1 respectively,

II(al, a2, ... ,an)H1 -1ail+ Ia2I+ ... +

I1(al,a2,...,a.)II2- (la112+1a212+ ... +IanI2)to,

5

II(a1,a2,...,an)II, -max(lail,Ia2I,...,Ianl).

(i) No pair of the spaces it", 1121, and 1; are mutually isometric.

(ii) If T is a linear isomorphism between 11 and 12 or between 1n and in, then the
product of the operator norm of T and the operator norm of T-' always
exceeds V.

If T is a linear isomorphism between I} and r ;, then IITII IIT-111 z n.

3. Limitations in Riesz's lemma.

(i) Let X be the closed linear subspace of CIO, 1J consisting of those x E C[O,11
that vanish at 0. Let Y e X be the closed linear subspace of x in X for which
fox(t) dt - 0. Prove that there is no x E SX such that distance (x, Y) z 1.

(ii) If X is a Hilbert space and Y is a proper closed linear subspace of X, then
there is an x E Sx so that distance (x, Sy) - F.

(iii) If Y is a proper closed linear subspace of 1r (1 < p < oo), then there is an
x E Sx so that distance (x, Y) z 1.

4. Compact operators between Banach spaces. A linear operator T : X -+ Y between
the Banach spaces X and Y is called compact if TBX is relatively compact.

(i) Compact linear operators are bounded. Compact isomorphic embeddings
and compact quotients (between Banach spaces) have finite-dimensional
range.

(ii) The sum of two compact operators is compact, and any product of a
compact operator and a bounded operator is compact.

(iii) A subset K of a Banach space X is relatively compact if and only if for every
e > 0 there is a relatively compact set K, in X such that

K 9 eBX + K,.

Consequently, the compact operators from X to Y form a closed (linear)
subspace of the space of all bounded linear operators.

(iv) Let T : X -. Y be a bounded linear operator, and suppose that for each e > 0
there is a Banach space XK and a compact linear operator T,: X -. X, for
which

IITxII s 117.x11+ e

for all x E BX. Show that T is itself compact.

(v) Let T : X - Y be a compact linear operator and suppose S : Z - Y is a
bounded linear operator with SZ 9 TX. Show that S is a compact operator.

5. Compact subsets of C(K) spaces for compact metric K Let (K, d) be any compact
metric space, denote by C(K) the Banach space of continuous scalar-valued
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functions on K.

(i) A totally bounded subset .7r'of C(K) is equicontinuous, i.e., given e > 0 there
is a 8 > 0; so d (k, k') < 8 implies that If(k) - f (k') 15 a for all f c- .afr.

(ii) If M is a bounded subset of C(K) and D is any countable (dense) subset of
K, then each sequence of members of Jr has a subsequence converging
pointwise on D.

(iii) Any equicontinuous sequence that converges pointwise on the set S c K
converges uniformly on S.

Recalling that a compact metric space is separable, we conclude to the Ascoli-
Arzelk theorem.

Ascoli-Arzelh theorem. A bounded subset .Kof C(K) is relatively compact if
and only if ..tis equicontinuous.

6. Relative compactness in 1p (1-< p < oo). For any p, 1:5 p < oo, a bounded subset
K of 1p is relatively compact if and only if

Go

lim 1k11"-0
n

uniformly for k E K.

Notes and Remarks

Theorem 1 was certainly known to Polish analysts in the twenties, though a
precise reference seems to be elusive. In any case, A. Tychonoff (of product
theorem fame) proved that all finite-dimensional Hausdorff linear topologi-
cal spaces of the same dimension are linearly homeomorphic.

As we indicate all too briefly in the exercises, the isometric structures of
finite-dimensional Banach spaces can be quite different. This is as it should
be! In fact, much of the most important current research concerns precise
estimates regarding the relative isometric structures of finite-dimensional
Banach spaces.

Riesz's lemma was established by F. Riesz (1918); it was he who first
noted Theorem 4 as well. As the exercises may well indicate, strengthening
Riesz's lemma is a delicate matter. R. C. James (1964) proved that a Banach
space X is reflexive if and only if each x* in X" achieves its norm on Bx.
Using this, one can establish the following: For a Banach space X to have the
property that given a proper closed linear subspace Y of X there exists an x of
norm-one such that d (x, Y) > 1 it is necessary and sufficient that X be
reflexive.

There is another proof of Theorem 4 that deserves mention. It is due to
G. Choquet and goes like this: Suppose the Heine-Borel theorem holds in
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X; so closed bounded subsets of the Banach space X are compact. Then the
closed unit ball Bx is compact. Therefore, there are points xl,... ,x E Bx
such that Bx cU _ 1(x, + JBx). Let Y be the linear span of (x1, x2, ... xn );
Y is closed. Look at the Banach space X1 Y; let p : X X/ Y be the
canonical map. Notice that cp(BX) c p(Bx)/2! Therefore, p(Bx) = (0) and
X/ Y is zero dimensional. Y = X.

Theorem 5 is due to A. Grothendieck who used it to prove that every
compact linear operator between two Banach spaces factors through a
subspace of co; look at the exercises following Chapter II. Grothendieck
used this factorization result in his investigations into the approximation
property for Banach spaces.

An Afterthought to Riesz's Theorem

(This could have been done by Banach!)
Thanks to Cliff Kottman a substantial improvement of the Riesz lemma

can be stated and proved. In fact, if X is an infinite-dimensional normed
linear space, then there exists a sequence of norm-one elements of X for
which II xm - x II > 1 whenever m # n.

Kottman's original argument depends on combinatorial features that live
today in any improvements of the cited result. In Chapter XIV we shall see
how this is so; for now, we give a noncombinatorial proof of Kottman's
result. We were shown this proof by Bob Huff who blames Tom Starbird for
its simplicity. Only the Hahn-Banach theorem is needed.

We proceed by induction. Choose x1 E X with 11xi11=1 and take x; E X'
such that 11x4* 11 1= xi xl.

Suppose xi , ... xk (linearly independent, norm-one elements of and
x1, ... Xk (norm-one elements) have been chosen. Choose y E X so that
xi y, ... , xk y < 0 and take any nonzero vector x common to n k 1 kerx*.
Choose K so that

IIyII <Ily+Kill.

Then for any nontrivial linear combination Ek 1a,x * of the xf we know
that

k

E a,x#(y+Kx)
i-1

k

a;x'(y)i-I

5
k

IIYII < a,xi fly + KxII
i-1

Let xk+ 1
- (y + Jtx )lly + KxII- I and choose xk+1 to be a norm-one func-

tional satisfying xk+lxk+1 =1. Since IEk la,x!(y + Kx)I < IfEk 1aix'II IIy +



8 I. Riesz's Lemma and Compactness in Banach Spa es

kxll, xk+1 is not a linear combination of xi , ... ,xk. Also, if 1 5 i c k, then

IIXk+1 - 41 z 1x7(xk+1- Xi)l

=1Xi*Xk+1-x,4 >1

since x7xi =1 and X'Xk+ l < 0
This proof is complete.
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CHAPTER II

The Weak and Weak* Topologies :

An Introduction

As we saw in our brief study of compactness in normed linear spaces, the
norm topology is too strong to allow any widely applicable subsequential
extraction principles. Indeed, in order that each bounded sequence in X
have a norm convergent subsequence, it is necessary and sufficient that X be
finite dimensional. This fact leads us to consider other, weaker topologies on
normed linear spaces which are related to the linear structure of the spaces
and to search for subsequential extraction principles therein. As so often
happcns in such ventures, the roles of these topologies are not restricted to
the situations initially responsible for their introduction. Rather, they play
center court in many aspects of Banach space theory.

The two weaker-than-norm topologies of greatest importance in Banach
space theory are the weak topology and the weak-star (or weak*) topology.
The first (the weak topology) is present in every normed linear space, and in
order to get any results regarding the existence of convergent or even
Cauchy subsequences of an arbitrary bounded sequence in this topology,
one must assume additional structural properties of the Banach space. The
second k the weak* topology) is present only in dual spaces; this is not a real
defect since it is counterbalanced by the fact that the dual unit ball will
always be weak* compact. Beware: This compactness need not of itself
ensure good subsequential extraction principles, but it does get one's foot in
the door.

The Weak Topology

Let X be a normed linear space. We describe the weak topology of X by
indicating how a net in X converges weakly to a member of X. Take the net
(xd); we say that (xd) converges weakly to xo if for each x* E X*.

x*xo = limx*xd.
d
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Whatever the weak topology may be, it is linear (addition and scalar
multiplication are continuous) and Hausdorff (weak limits are unique).

Alternatively, we can describe a basis for the weak topology. Since the
weak topology is patently linear, we need only specify the neighborhoods of
0; translation will carry these neighborhoods throughout X. A typical basic
neighborhood of 0 is generated by an e > 0 and finitely many members
xi,... ,x* of X*. Its form is

W(0; xi ,...,x*, e) _ (x E X: Izixl,...,Ixnxj < e).

Weak neighborhoods of 0 can be quite large. In fact, each basic neighbor-
hood W(0; x , *,. . . , x*, e) of 0 contains' the intersection n 1 kerx' of the
null spaces kerx' of the x', a linear subspace of finite codimension. In case
X is infinite dimensional, weak neighborhoods of 0 are big!

Though the weak topology is smaller than the norm topology, it produces
the same continuous linear functionals. In fact, if f is a weakly continuous
linear functional on the normed linear space X, then U = (x: I f (x) I < 1) is
a weak neighborhood of 0. As such, U contains a W(0; x*, ... , x*, e). Since
f is linear and W(0, xi , ... ,x*, e) contains the linear space n 1 kerx', it
follows that kerf contains n ,n"_ 1 kerx' as well. But here's the catch: if the
kernel of f contains rl kerx', then f must be a linear combination
xi , ... ,x*, and so f E X*. This follows from the following fact from linear
algebra. 4

Lemma. Let E be a linear space and f, g1, ... ,gn be linear functionals on E
such that ken f 2 n "_ 1 ker g1. Then f is a linear combination of the g;'s.

PROOF. Proceed by induction on n. For n =1 the lemma clearly holds.
Let us assume it has been established for k 5 n. Then, j or given
kerf : n i kergi, the inductive hypothesis applies to

f Iker8,,.1' 911kerg,,.,' 'gnIkerg,,.1.

It follows that, on kergn+1, f is a linear combination E"_laigi of g1, ... ,g,,;
f - E1_ 1a, g, vanishes on kergn+ 1. Now apply what we know about the case
n =1 to conclude that f -E -Iaigi is a scalar multiple of gn+1.

It is important to realize that the weak topology is really of quite a
different character than is the norm topology (at least in the case of
infinite-dimensional normed spaces). For example, if the weak topology of a
normed linear space X is metrizable, then X is finite dimensional. Why is this
so? Well, metrizable topologies satisfy the first axiom of countability. So if
the weak topology of X is metrizable, there exists a sequence (x*) in X
such that given any weak neighborhood U of 0, we can find a rational e > 0
and an n(U) such that U contains W(0; xi , ... ,xn(u), e). Each x* E X*
generates the weak neighborhood W(0; x*, 1) of 0 which in turn contains
one of the sets W(0; xi , x*c W(o: X*.1)), e). However, we have seen that this
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entails x* being a linear combination of 4, ... ,x.jw). If we let F. be the
linear span of 4, ... ,xm, then each F. is a finite-dimensional linear
subspace of X* which is a fortiori closed; moreover, we have just seen that
X * = u m F,,. The Baire category theorem now alerts us to the fact that one
of the Fm has nonempty interior, a fact which tells us that the Fm has to be
all of X*. X* (and hence X) must be finite dimensional.

It can also be shown that in case X is an infinite-dimensional normed linear
space, then the weak topology of X is not complete. Despite its contrary
nature, the weak topology provides a useful vehicle for carrying on analysis
in infinite-dimensional spaces.

Theorem 1. If K is a convex subset of the nonmed linear space X, then the
.closure of K in the norm topology coincides with the weak closure of K.

PROOF. There are no more open sets in the weak topology than there are in
the norm topology; consequently, the norm closure is harder to get into
than the weak closure. In other words X11 II c

If K is a convex set and if there were a point x0 E K""'k \KII'It, then there
would be an xQ E X* such that

sup x4 K'I II 5 a < 0 5 xo (x0)

for some a, P. This follows from the separation theorem and the convexity
of K 1 1 1 . However, xo r= K' implies there is a net (xd) in K such that

xo = weak limxd.
d

It follows that

xoxo = fimxoxd,

an obvious contradiction to the fact that xoxo is separated from all the xoxd
by the gulf between a and $. 0

A few consequences follow.

Corollary 2. If is a sequence in the normed linear space for which weak
0, then there is a sequence of convex combinations of the x such

that lime II X. 11 = 0.

A natural hope in light of Corollary 2 would be that given a weakly null
sequence (x,,) in the normed linear space X, one might be able (through
very judicious pruning) to extract a subsequence (y,,) of whose arith-
metic means n -'Ek _ I yk tend to zero in norm. Sometimes this is possible
and sometimes it is not; discussions of this phenomenon will appear
throughout this text.

Corollary 3. If Y is a linear subspace of the normed linear space X, then
ywuk = 171)!1_
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Corollary 4. if X is a convex set in the normed linear space X, then K is norm
closed if and only if K is weakly closed.

The weak topology is defined in a projective manner: it is the weakest
topology on X that makes each member of X' continuous. As a conse-
quence of this and the usual generalities about projective topologies, if a is a
topological space and f : SZ -+ X is a function, then f is weakly continuous if and
only if x*f is continuous for each x* E X *.

Let T : X - Y be a linear map between the normed linear spaces X and Y.
Then T is weak-to-weak continuous if and only if for each y* E Y*, y*T is a
weakly continuous linear functional on X; this, in turn, occurs if and only if
y*T is a norm continuous linear functional on X for each y* E Y*.

Now if T: X - Y is a norm-to-norm continuous linear map, it obviously
satisfies the last condition enunciated in the preceding paragraph. On the
other hand, if T is not norm-to-norm continuous, then TBX is not a
bounded subset of Y. Therefore, the Banach-Steinhaus theorem directs us to
a y* E Y* such that y*TBX is not bounded; y*T is not a bounded linear
functional. Summarizing we get the following theorem.

Theorem 5. A linear map T : A'- Y between the normed linear spaces X and
Y is norm-to-norm continuous if and only if T is weak-to-weak continuous.

The Weak* Topology

Let X be a normed linear space. We describe the weak* topology of X* by
indicating how a net (xa) in X* converges weak* to a member xo of X*.
We say that (xd) converges weak* to xo E X* if for each x E X,

xox = limxJx.
d

As with the weak topology, we can give a description of a typical basic
weak* neighborhood of 0 in X*; this time such a"neighborhood is generated
by an E > 0 and a finite collection of elements in X, say xi, ... , x,,. The form
is

W*(0;xi,.. .,x ,E)_ (x*E X*: Ix*xil,...,lx*xnl:5 E).
The weak* topology is a linear topology; so it is enough to describe the
neighborhoods of 0, and neighborhoods of other points in X* can be
obtained by translation. Notice that weak* basic neighborhoods of 0 are
also weak neighborhoods of 0; in fact, they are just the basic neighborhoods
generated by those members of X*" that are actually in X. Of course, any
x * * that are left over in X * * after taking away X give weak neighborhoods
of 0 in X* that are not weak* neighborhoods. A conclusion to be drawn is
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this: the weak* topology is no bigger than the weak topology. Like the weak
topology, excepting finite-dimensional spaces, duals are never weak* metriz-
able or weak* complete; also, proceeding as we did with the weak topology,
it's easy to show that the weak* dual of X* is X. An important consequence
of this is the following theorem.

Goldstine's Theorem. For any normed linear space X, B. is weak* dense in
Br.., and so X is weak* dense in X**.

PROOF. The second assertion follows easily from the first; so we concentrate
our attentions on proving Bx is always weak* dense in Br... Let X** E X**

be any point not in Bx"A*. Since Br* is a weak* closed convex set and
X** 6E Nx", there is an x* E X * *'s weak* dual X* such that

sup( x*y**:y**EB *)<x**x*.

Of course we can assume 11x * II =1; but now the quantity on the left is at
least IIx*11=1, and so IIx**II >1. It follows that every member of B... falls
inside B. 0

As important, and useful a fact as Goldstine's theorem is, the most
important feature of the weak* topology is contained in the following
compactness result.

Alaoglu's Theorem. For any normed linear space X, B.. is weak* compact.
Consequently, weak* closed bounded subsets of X* are weak* compact.

PROOF. If x* E B.., then for each x i=- Bx, Ix*x1 S 1. Consequently, each
x * E Bx. maps Bx into the set D of scalars of modulus S 1. We can
therefore identify each member of Bx. with a point in the product space
DBX. Tychonofi's theorem tells us this latter space is compact. On the other
hand, the weak* topology is defined to be that of pointwise convergence on
Bx, and so this identification of Bx. with a subset of DBX leaves the weak*
topology unscathed; it need only be established that Bx. is closed in DBX to
complete the proof.

Let (xd) be a net in Bx. converging pointwise on Bx to f E DBx. Then it
is easy to see that f is "linear" on Bx: in fact, if x1, x2 E Bx and al, a2 are
scalars such that alxl + a2x2 E B,., then

f (alx1 + a2x2) = limxd*(alxl + a2x2)

= limalxd(xl)+a2xd*(x2)
d

= limalxe(xl)+hma2xa(X2)

al f(xl)+a2f(x2)
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It follows that f is indeed the restriction to Bx of a linear functional x' on X;
moreover, since f(x) has modulus 51 for x E Bx, this x' is even in Bx..
This completes the proof.

A few further remarks on the weak* topology are in order.
First, it is a locally convex Hausdorff linear topology, and so the

separation theorem applies. In this case it allows us to separate points (even
weak* compact convex sets) from weak* closed convex sets by means of the
weak* continuous linear functionals on X*, i.e., members of X.

Second, though it is easy to see that the weak* and weak topologies are
not the same (unless X- X**), it is conceivable that weak* convergent
sequences are weakly convergent. Sometimes this does occur, and we will, in
fact, run across cases of this in the future. Because the phenomenon of
weak* convergent sequences being weakly convergent automatically brings
one in contact with checking pointwise convergence on Bx.., it is not too
surprising that this phenomenon is still something of a mystery.

Exercises

1. The weak topology need not be sequential. Let A e l2 be the set (e*, + me.:1 m
< n < oo ). Then 0 E A e3k, yet no sequence in A is weakly null.

2. Kelly's theorem.

(i) Given xi , ... a X*, scalars and e > 0, there exists an x,4=- X
for which Ilxll s y + e and such that x; x - al,... ,x* - a if and only if for
any scalars

a(x*JI

(ii) Let x** E X* *, e > 0 and xi , ... , xp E X. Then there exists x E X such
that Ilxll s IIx**II+ a and xi (x)- x**(xi ), ... ,x,'(x) - x**(x,!).

3. An infinite-dimensional normed linear space is never weakly complete.

(i) A normed linear space X is finite dimensional if and only if every linear
functional on X is continuous.

(ii) An infinite-dimensional normed linear space is never weakly complete. Hint:
Apply (i) to get a discontinuous linear functional 4P on X*; then using (i),
the Hahn-Banach theorem, and Helly's theorem, build a weakly Cauchy net
in X indexed by the finite-dimensional subspaces of X* with (p the only
possible weak limit point.

4. Schauder's theorem.

(i) If T: X -. Y is a bounded linear operator between the Banach spaces X and
Y, then for any y * e Y*, y *T E X*, the operator T*: Y* - X* that takes a
y* E Y* to y*T E X* is a bounded linear operator, called T*, for which
IITII - HHT*1I.
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(ii) A bounded linear operator T : X -+ Y between Banach spaces is compact if
a n d o n l y if its a d j o i n t T * : Y * -+ X * is.

(iii) An operator T: X -, Y whose adjoint is weak*-norm continuous is compact.
However, not every compact operator has a weak *-norm continuous adjoint.

(iv) An operator T : X Y is compact if and only if its adjoint is weak*-norm
continuous on weak* compact subsets of Y.

5. Dual spaces. Let X be a Banach space and E c X*. Suppose E separates the
points of X and Bx is compact in the topology of pointwise convergence on E.
Then X is a dual space whose predual is the closed linear span of E in X*.

6. Factoring compact operators through subspaces of co.

(i) A subset .(of co is relatively compact if and only if there is an x e co such
that

Ikn1 s Ixni

holds for all k E .wand all n z 1.

(ii) A bounded linear operator T : X - Y between two Banach spaces is compact
if and only if there is a norm-null sequence (x,!) in X* for which

IITxI, S suplx:xI
n

for all x. Consequently, T is compact if and only if there is a A E co and a
bounded sequence (y,*) in X* such that

IITxlI s supIA,, 2 y, xI

for all x.

(iii) Every compact linear operator between Banach spaces factors compactly
through some subspace of co; that is, if T: is a compact linear
operator between the Banach spaces X and Y, then there if a closed linear
subspace Z of co and compact linear operators A : X -+ Z and B : Z - Y such
that T - BA.

Notes and Remarks

The notion of a weakly convergent sequence in L2[0,1J was used by Hilbert
and, in Lp[0,1], by F. Riesz, but the first one to recognize that the weak
topology was just that, a topology, was von Neumann. Exercise 1 is due to
von Neumann and clearly indicates the highly nonmetrizable character of
the weak topology in an infinite-dimensional Banach space. The nonmetriz-
ability of the weak topology of an infinite-dimensional tiormed space was
discussed by Wehausen.

Theorem 1 and the consequences drawn from it here (Corollaries 2 to 4)
are due to Mazur (1933). Earlier, Zalcwasser (1930) and, independently,
Gillespie and Hurwitz (1930) had proved that any weakly null sequence in
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C[0,1] admits of a sequence of convex combinations that converge uni-
formly to zero. The fact that weakly closed linear subspaces of a normed
linear space are norm closed appears already in Banach's "Operations
Lineaires."

The weak continuity of a bounded linear operator was first noticed by
Banach in his -masterpiece; the converse of Theorem 5 was proved by
Dunford. Generalizations to locally convex spaces were uncovered
by Dieudonnb and can be found in most texts on topological vector spaces.

As one ought to suspect, Goldstine's theorem and Alaoglu's theorem are
named after their discoverers. Our proof of Goldstine's theorem is far from
the original, being closer in spirit to proofs due to Dieudonnb and Kakutani;
for a discussion of Goldstine's original proof, as well as an application of its
main theme, the reader is advised to look to the Notes and Remarks section
of Chapter IX. Helly's theorem (Exercise 2) is closely related to Goldstine's
and often can be used in its place. In the form presented here, Helly's
theorem is due to Banach; of course, like the Hahn-Banach theorem, Helly's
theorem is a descendant of Helly's selection principle.

The fact that infinite-dimensional Banach spaces are never weakly com-
plete seems to be due to Kaplan; our exercise was suggested to us by W. J.
Davis.

Alaoglu's theorem was discovered by Banach in the case of a separable
Banach space; many refer to the result as the Banach-Alaoglu theorem.
Alaoglu (1940) proved the version contained here for the expressed purpose
of differentiating certain vector-valued measures.
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CHAPTER III

The Eberlein-Smulian Theorem

We saw in the previous chapter that regardless of the normed linear space
X, weak* closed, bounded sets in X* are weak* compact. How does a'
subset K of a Banach space X get to be weakly compact? The two are
related. Before investigating their relationship, we look at a couple of
necessary ingredients for weak compactness and take a close look at two
illustrative nonweakly compact sets.

Let K be a weakly compact set in thenormed,linear space X. If x* E X
then x* is weakly continuous; therefore, x*K is a compact set of scalars. It
follows that x*K is bounded for each x* E X*, and so K is- bounded.
Further, K is weakly compact, hence weakly closed, and so norm closed.
Conclusion: Weakly compact sets are norm closed and norm bounded.

Fortunately, closed bounded sets need not be weakly compact.
Consider Bco Were Bc0 weakly compact, each sequence in B,0 would have

a weak cluster point in Boo Consider the sequence o defined by an = el
+ + e,,, where ek is the k th unit vector in co. The sup norm of co is
rigged so that II an II =1 for all n. What are the possible weak cluster points of
the sequence (an )? Take a A E Boo that is a weak cluster point of (N). For
each x * E co , (x*on) has x *,\ for a cluster point; i.e., the values of x *o,, get
as close as you please to x*A infinitely often. Now evaluation of a sequence
in co at its k th coordinate is a continuous linear functional; call it ek . Note
that ek (an) =1 for all n >_ k. Therefore, e,*E A =1. This holds true for all k.
Hence, A = (1,1, ... ,1, ...) 14 co. BB is not weakly compact.

Another example: B,, is not weaYCly compact. Since 11= co (isometrically),
were B,, weakly compact, the weak and weak* topologies on B,, would have
to coincide (comparable compact Hausdorff topologies coincide). However,
consider the sequence (en) of unit vectors in 11. If A E co, then e,,A = An - 0
as n -' oo. So (en) is weak* null. If we suppose B,1 weakly compact, then
(en) is weakly null, but then there ought to be a sequence (Yn) of convex
combinations of the en such that IIYnIIj - 0. Here's the catch: Take a convex
combination of en's-the resulting vector's li norm is 1. The supposition
that B,, is weakly compact is erroneous.
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There is, of course, a common thread running through both of the above
examples. In the first, the natural weak cluster point fails to be in co; not all
is lost though, because it is in B,m. Were Boo = B,", this would have been
enough to ensure Bra's weak compactness. In the second case, the weak
compactness of B,1 was denied because of the fact that the weak* and weak
topologies on B, were not the same; in other words, there were more x**'s
than there were x's to check against for convergence. Briefly, Boo is smaller
than B,m.

Suppose Bx = Bx... Naturally, this occurs when and only when X = X * *;
such X are called reflexive. Then the natural embedding of X into X** is a
weak-to-weak* homeomorphism of X onto X** that carries Bx exactly onto
Br... It follows that Bx is weakly compact.

On the other hand, should Bx be weakly compact, then any x** E X
not in Bx can be separated from the weak* compact convex set Bx by an
element of the weak* dual of X**; i.e., there is an x E Bx. such that

sup x*x(=11x*11=1) < x**x*.
QxH1 51

It follows that lix**UU >1 and so Bx = Br...
Summarizing: Bx is weakly compact if and only if X is reflexive.
Let's carry the above approach one step further. Take a bounded set A in

the Banach space X. Suppose we want to show that A is relatively weakly
compact. If we take A and the resulting set is weakly compact, then we
are done. How do we find A"" though? Well, we have a helping hand in
Alaoglu's theorem: start with A, look at up in X**, and see what
elements of X** find themselves in A*. We know that A` is weak*
compact. Should each element in A"'"k actually be in X, then A""* is just
A' ; what's more, the weak* and weak topologies are the same, and so
A"" is weakly compact.

So, to show a bounded set A is relatively weakly compact, the strategy is
to look at A'" and see that each of its members is a point of X. We
employ this strategy in the proof of the main result of this chapter.

Theorem (EberleinAmulian). A subset of a Banach space is relatively weakly
compact if and only if it is relatively weakly sequentially compact.

In particular, a subset of a Banach space is weakly compact if and only if it
is weakly sequentially compact.

PROOF. To start, we will show that a relatively weakly compact subset of a
Banach space is relatively weakly sequentially compact. This will be accom-
plished in two easy steps.

Step 1. If K is a (relatively) weakly compact set in a Banach space X and
X* contains a countable total set, then K" is metrizable. Recall that a set
F 9 X * is called total if f (x) = 0 for each f E F implies x = 0.
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Suppose that K is weakly compact and (x,' ) is a countable total subsetof
nonzero members of X*. The function d : X x X - R defined by

d(x, x') _ E Ix: (x - x')(IlxRll-t2-h

n

is a metric on X. The formal identity map is weakly-to-d continuous on the
bounded set K. Since a continuous one-to-one map from a compact space to
a Hausdorff space is a homeomorphism, we conclude that d restricted to
K x K is a metric that generates the weak topology of K.

Step 2. Suppose A is a relatively weakly compact subset of the Banach
space X and let (a.) be a sequence of members of A. Look at the closed
linear span of the a,,; is weakly closed in X. Therefore, is
relatively weakly compact in the separable Banach space (a.]. Now the dual
of a separable Banach space contains a countable total set: if (d ) is a
countable dense set in the unit sphere of the separable space and (d,' ) is
chosen in the dual to satisfy d,*d -1, it is easy to verify that ( is total.
From our first step we know that A !1 [ a 1' is metrizable in the weak
topology of Since compactness and sequential compactness are equiva-
lent in metric spaces, A n [ a j""t is a weakly sequentially compact subset
of In particular, if a is any weak limit point of then there is a
subsequence (a;) of that converges weakly to a in [a,,]. It is plain that
(a') also converges weakly to a in X.

We now turn to the converse. We start with an observation: if E is a
finite-dimensional subspace of X**, then there is a finite set E' of S.. such
that for any x** in E

llx**II 5 max(lx**x*l: x* E E').
2

In fact, Se is norm compact. Therefore, there is a finite net F-;
(xj *,...,x,'*} for SE. Pick xi,...,x,'ES.. so that

xk**xK*) 4
Then whenever x E SE, we have

x xk = xk *xk + (x * *xk - xk * xk )

4 4

for a suitable choice of k.
This observation is the basis of our proof.
Let A be a relatively weakly sequentially compact subset of X; each

infinite subset of A has a weak cluster point in X since A is also relatively
weakly countably compact. Consider A'. A"`'`' is weak* compact since
A, and therefore A'`, is bounded due to the relative weak sequential
compactness of A. We use the strategy espoused at the start of this section
to show A is relatively weakly compact; that is, we show AP"O actually lies
in X.
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Take x** e A"'", and let xj E Sx.. Since x** E k"k* each weak*
neighborhood of x** contains a member of A. In particular, the weak*
neighborhood generated by a =1 and x1, (y** E X** : I(y** - x**Xxi )I
< 1), contains a member at of A. From` this we get

l(x** - al)(xi )l <1.

Consider the linear span [x**, x** - all of x** and x** - a1; this is a
finite-dimensional subspace of X**. Our observation deals us xZ , ... , x*(2)

e Sx. such that for any y** in [x**, x**,- ad,

11Y**2 II 5 max{ly**(xk )I:1 <k <n(2)}.

X** is not going anywhere, i.e., it is still in ;`"°a`*; so each weak*
neighborhood of x** intersects A. In particular, the weak* neighborhood
about x** generated by 2 and x*, x2*, ... , 2) intersects A to give us an a2
in A such that

l(x** - a2)(xi)1, l(x** - a2)(x2 ) 1 , . . . , I(x** - a2)(x*(2))I < 2.

Now look at the linear span [x**, x** - a1, x** - a2] of x**, x** - a1,
and x** - a2. As a finite-dimensional subspace, [x**, x** - al, x** - a2]
provides us with x*(2)+1, ... ,4(3) in Sx. such that

1Iy**II s max{ ly**(xk )l :l S k 5 n(3)}

for any y**E[x**,x**-al x**-a2]
Once more, quickly. Choose a3 in A such that x** - a3 charges against

xi , ... ,X,*,(3) for no more than i value. Observe that the finite-dimensional
linear space [x**, x** - a1, x** - a-,, x** - a3] provides us with a finite
subset x* (3)+1, ... ,x*(4) in Sx. such that

1IY**I < max{ ly**(xk )i : l < k <- n(4)}

for any y** E [x**, x** - a) x** - a2, x** - a3].
Where does all this lead us? Our hypothesis on A (being relatively weakly

sequentially compact) allows us to find an x E X that is a weak cluster point
of the constructed sequence c A. Since the closed linear span of
the a is weakly closed, x E [ant. It follows that x** - x is in the weak*
closed linear span of (x**, X** - a1, x** - a 2, ...) . Our construction of
the x* and the a; assures us that

< sunly**x*l (1)ML m

holds for any y** in the linear span of x**, x** - a1, x** - a2, .... An
easy continuity argument shows that (1) applies as well to any y** in the
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weak* closed linear span of x, x * * - at, x * * - a2, .... In particular, we
can apply (1) to x** - x. However,

I(x**-x)(x*)IsI(x**-ak)(x*)I+Ixm(ak)-x*(x)l

P + as little as you please

if m s n (p ), p 5 k and you take advantage of the fact that x is a weak
cluster point of So x** - x = 0, and this ensures that x** = x is in X.

O

Exercises

1. The failure of the Eberlein - Smulian theorem in the weak * topology. Let r be any
set and denote by /,(r) the set of all functions x: r -' scalars for which

IIxIIi- E Ix(y)I<oo.
,Er

!,(r) is a Banach space whose dual space in the space of bounded
scalar-valued functions on r normed by the sup norm; the action of q r=
l,(r)* on x e!,(r) is given by

-F (x) - E V(y)x(y)
,Er

(i) If r is an uncountable set, then B,,(r) is weak* compact but not weak*
sequentially compact.

(ii) If r is infinite, then B,.(r). contains a weak* compact set that has no
nontrivial weak* convergent sequences.

2. Weakly compact subsets of l are norm separable.

(i) Weak* compact subsets of X* are metrizable in their weak* topology
whenever X is separable.

(ii) Weakly compact subsets of l,,,, are norm separable.

3. Gantn acher's theorem. A bounded linear operator T : X - Y between the Banach
spaces X and Y is weakly compact if 1 is weakly compact in Y.

(i) A bounded linear operator T: X - Y is weakly compact if and only if
T**(X**) c Y.

(ii) A bounded linear operator T : X - Y is weakly compact if and only if T* is
weak*-weak continuous from Y* to X*.

(iii) A bounded linear operator T : X Y is weakly compact if and only if T * is.

(iv) A Banach space X is reflexive if and only if its dual X* is.
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Notes and Remarks

Smulian (1940) showed that weakly compact subsets of Banach spaces are
weak'-y sequentially compact. He also made several interesting passes at the
converse as did Phillips (1943). The proof of the converse was to wait for
Eberlein (1947). Soon after Eberlein's proof, Grothendieck (1952) provided
a considerable generalization by showing that relatively weakly sequentially
compact sets are relatively weakly compact in any locally convex space that
is quasi-complete in its Mackey topology; in so doing, Grothendieck noted
that Eberlein's proof (on which Grothendieck closely modeled his) required
no tools that were not available to Banach himself, making Eberlein's
achievement all the more impressive.

As one might expect of a theorem of the quality of the Eberlein-Smulian
theorem, there are many generalizations and refinements.

The most common proof of the Eberlein-Smulian theorem, found, for
instance, in Dunford and Schwartz, is due to Brace (1955). Those who have
used Brace's proof will naturally see much that is used in the proof
presented here. We do not follow Brace, however, since Whitley (1967) has
given a proof (the one we do follow) that offers little room for conceptual
improvement. Incidentally, Pelczynski (1964) followed a slightly different
path to offer a proof of his own that uses basic sequences; we discuss
Pelczynski's proof in Chapter V.

Weakly compact sets in Banach spaces are plainly different from general
compact Hausdorff spaces. Weakly compact sets have a distinctive char-
acter: they are sequentially compact, and each subset of a weakly compact
set has a closure that is sequentially determined. There is more to weakly
compact sets than just these consequences of the Eberlein-Smulian theorem,
and a good place to start learning much of what there is is Lindenstrauss's
survey paper on the subject (1972). Floret's monograph also provides a
readable, informative introduction to the subject.
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CHAPTER IV

The Orlicz-Pettis Theorem

In this chapter we prove the following theorem.

The Orlicz-Pettis Theorem. Let 1,,xn be a series whose terms belong to the
Banach space X. Suppose that for each increasing sequence of positive
integers

n

weak lim E
Xn j-1

exists. Then for each increasing sequence (kn) of positive integers

norm lim E Xk
n i-1

exists.

Put succinctly, the Orlicz-Pettis theorem says that weak subseries conver-
gence implies subseries convergence in Banach spaces.

Our proof relies on the theory of the Bochner integral, and its success
derives from the marvelous measurability theorem of Pettis. It is the
exposition of the theory of the Bochner integral that occupies most of our
time in this chapter; however, with the payoff including the Orlicz-Pettis
theorem, our work will be highly rewarded.

Start by letting (SE, 2, µ) be a probability space and X be a Banach space.
We first establish the ground rules for measurability.

f : SE --+ X is called simple if there are disjoint members El, ... , En of E and
vectors x1, ... ,x,, E X for which A W) = E"-lXE,(w)x; holds for all w e St,
where X E denotes the indicator function of the set E c Q. Obviously such
functions should be deemed measurable. Next, any function f : (2 -. X which
is the µ-almost everywhere limit of a sequence of simple functions is
µ-measurable. The usual facts regarding the stability of measurable func-
tions under sums, scalar multiples, and pointwise almost everywhere conver-
gence are quickly seen to apply. Egoroff's theorem on almost uniform
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convergence generalizes directly to the vector-valued case-one need only
replace absolute values with norms at the appropriate places in the standard
proof.

A function f: 9 -+ X is scalarly is-measurable if x*f is p-measurable for
each x* E X*. A crucial step in this proof of the Orlicz-Pettis theorem will
have been taken once we demonstrate the following theorem.

Pettis Measurability Theorem. A function f : Q - X is ii-measurable if and
only if f is scalarly p-measurable and there exists an E E I with µ(E) = 0 such
that f (0 \ E) is a norm-separable subset of X.

PRoov. It is plain to see that a p-measurable function f : Q - X is scalarly
p-measurable and p-essentially separably valued. We concentrate on the
converse. Suppose f : Q -+ X is scalarly µrmeasurable and E E I can be
found for which µ(E)-0 and f(Q\E) is a separable subset of X. Let
(x.: n Z 1) be a countable dense subset of f (Q\ E). Choose (x*: n;-> 1 } c
Sx. in such a way that x*xx - Given co E Q\E it is plain that
II f (w) II - sup Ix* (f (w ))I. It follows that III(- )II is p-measurable. Similarly
for each n, Ilf(-)- x.11 is A-measurable.

Let e > 0 be given. Look at [II f(w) - x, ll < ej = E (we prefer to use the
probabilists' notation here; so [II f (w)- x.11 < ej is (w E Q : II f(w)-
e)). Each E. is almost in I (and, if p is complete, actually does belong to B),
and so for each n there is a B E E such that 0. Define

x
if w ee UB,,.

R

It is clear that Ilg(w)- f (w )II < e for any w outside of both E and
U,(E.ABe).

We have shown that given e > 0 there is a countably valued function g
and a p-null set NN E 2 such that g assumes distinct values on disjoint
members of 2 and such that f and g are uniformly within a of each other on
Q\NV. Giving a little (of Q) to get a little (and make g simple) quickly
produces a sequence of simple functions converging it-almost everywhere to
f, which completes the proof.

Now for the Bochner integral.
If f: Q -. X is simple, say f(w)=E;_1XE,(w)x;, then for any E E 1

n

f fdµ µ(Ef1EE)x;.
E ;.1

A p-measurable function f : 8 - X is called Bochner integrable if there exists
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a sequence of simple functions (fn) such that

lim fQIIfn((o)-f(W)Ildp(W) =0.

In this case fE f dp is defined for each E E 2 by

f fdp=limf f,, du.
E n E

Our first result regarding the Bochner integral is due to Bochner himself and
is in a sense the root of all that is " trivial" about the Bochner integral.

Bochner's Characterization of lntegrable Functions. A IL-measurable function
f : tt -. X is Bochner integrable if and only if follf 11 dp < oo.

PROOF. If f is Bochner integrable, then there's a simple function g such that
follf _ gll dp < 7; it follows that

f Illlldp f lif - glide+ Jllglldg <oo.

Conversely, suppose f(and so Of ID is p-measurable with f 11f 11 dp < Co.
Choose a sequence of countably valued measurable functions (fn) such that
11f - f.11 51/n, p-almost everywhere. Here a peek at the proof of the Pettis
measurability theorem is acceptable. Since II almost all
the time, we see that f 11 f,, 11 du < oo. For each n write fn in its native form

00

A(W) = E XE....(W)xn,m,
Ar-i

where En. ; n En. i = 0 whenever i * j, all E,,.,. belong to E, and all the xn. m
belong to X. For each it pick pA so large that

f - Ilfnil dp <
U E,..

e.-i.+l

What is left of fA is Edi-IXE..,,,xf.m = gn, a simple function for which

fllf - gAlldIi ' .

f is Bochner integrable, and this proof is complete. 0

In a very real sense Bochner's characterization of Bochner-integrable
functions trivializes the Bochner integral, reducing as it does much of the
development to the Lebesgue integral. This reduction has as a by-product
the resultant elegance and power of the Bochner integral. We'll say a bit
more about this elsewhere and restrict our attentions herein to a few
more-or-less obvious consequences of the work done to this point.
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Corollary

1. (Dominated Convergence Theorem). If (fn) are Bochner-integrable X-val-
ued functions on 12, f :1t - X is the almost everywhere limit of and
IIff(-)JI 5 g(-) almost all the time and for all n, where g E L1(µ), then f is
Bochner integrable and fall f - ff 11 dis - 0 and JE fn d t - JE f dµ for each
E E Y..

2. If f is Bochner integrable, then 11 JEfdµf s fE1lf II dµ holds for all E E 2.
Consequently, fEfdl~ is a countably additive p-continuous X-valued set
function on B.

PROOF. Part 1 follows from Bochner's characterization and the scalar
dominated convergence theorem: [If,(-)- f( )115

2 is obvious if f is simple and simple for other f. 13

One noteworthy conclusion to be drawn from 2 above is the fact that if f
is Bochner integrable, then (ff f dµ : E E 2) is a relatively compact subset of
X. In case f is a simple function, this follows from the estimate 11 fEf dµ115
full f II dp < oo and the resulting boundedness of (fE f d1 l: E E 2) in the
finite-dimensional linear span of the range of f. For arbitrary Bochner-inte-
grable f : SE -- X one need only pick a simple g : SE - X for which follf - gll dµ
is very small to see that (f E f d t : E E Y.) is closely approximable by
(JEg dµ : E (=- 1), a totally bounded subset of X. Of course this says that
given e > 0 each vector in ( fE f die : E E 2) can be approximated within e/2
by a vector in the totally bounded set (fEg d)A: E E 2 ), so ( JE f dµ : E E 2 )
is itself totally bounded.

Now for the proof of the Orlicz-Pettis theorem.
Let's imagine what could go wrong with the theorem. If is weakly

subseries convergent (i.e., satisfies the hypotheses of the Orlicz-Pettis theo-
rem) yet fails to be norm subseries convergent, it's because there's an
increasing sequence of positive integers for which (Ej_1xk) is not a
Cauchy sequence in X. This can only happen if there is an e > 0 and an
intertwining pair of increasing sequences and (1.) of positive integers
for which j1 < ll < j2 < l2 < satisfying IIEf_j.Xk,ll > e for all n. The series
Y.,, y, formed by letting y,, - E,_j Xk, is a subseries of E,,x and so is weakly
summable in X; in particular, is weakly null. On the other hand,
IIYRII > e for all n. In short, if the Orlicz-Pettis theorem fails at all, it is-
possible to find a weakly subseries convergent series for e

holds for all n. Preparations are now complete; it's time forthe main course.
Let 0 be the compact metric space (-1,1)"' of all sequences of signs

e 1. Let I denote the afield of Bprel subsets of 12. Let p be the product
measure on (-1,1)' resulting from the identical coordinate measures on
( -1,1) that assign to each elementary event (--1) and (1) the probability I.
The reader might recognize (St, 2, µ) as the Cantor group with its resident
Haar measure. No matter-we have a probability measure space and a
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natural function f: 11 -+ X, namely, if (en) is a sequence of signs, e,, 1,
then

f weak lim £, ekYk
n k-1

Of course the weak subseries convergence of Inyn is just what is needed to
make sense of f 's definition for any (en) E (-1,1)'. Each coordinate
function is continuous on A so that / is scalarly µ-measurable on A to
Moreover, the range off is contained in the (weakly) closed linear span of
the vectors so f (Q) is separable. Pettis's measurability theorem applies to
f; f is µ-measurable. Finally, the range off is contained in the weak closure
of (Ek E aek yk : A is a finite set of positive integers, ek = ± 1 fork (=- A), a set
easily seen to be weakly bounded; f is itself weakly bounded, hence
bounded. Bochner's characterization theorem applies to show f is Bochner
integrable with respect to µ.

Let's compute. Let E. be the set of all sequences e of ± 1's, whose nth
coordinate en is 1; En E I and du = y,/2. The sequence (yn) is weakly
null and sits inside the relatively norm compact set (2 JE f dµ : E E 2 ). It
follows that each subsequence of (yn) has a norm convergent subsequence
whose only possible limit is 0 since (y,,) is weakly null. In other words, (y.)
is norm null! This is a very difficult thing for (yn) to endure: 11y.11 > e > 0 for
all n and limn II y II = 0, a contradiction.

Exercises

1. Weakly countably additive vector measures are countably additive. Let Y. be a
a-field of subsets of the set 11 and X be a Banach space. Show that any weakly
countably additive measure F: E -+ X is countably additive in the norm topology
of X.

By means of a counterexample, show that the aforementioned result fails if E
is but a field of sets.

2. The Penis integral. Let (0, 2, µ) be a probability measure space and X be a
Banach space. A function f : 0 -y X is called scalarly measurable if x'f is measura-
ble for each x' E X'; f is called scalarly integroble if x*f r= L1(µ) for each
X* E X*.

(i) If f: 0 -+ X is scalarly integrable, then for each E E E there is an xE* E X**
such that

xE*x*- fEx'f(w)dµ(w)

holds for each x* r= X*.

(ii) If f : 0 - . X is bounded and scalarly measurable, then f is scalarly integrable
and each of the xE* from (i) is weak' sequentially continuous on X'.

We say that f is Pettis integrable if each xE*' is actually in X, in which can we
denote X E by Pettis JEf dµ.
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(iii) If f is Pettis integrable, then the map taking E E I into Pettis fEf dµ is
countably additive. Bochner-integrable functions are Pettis integrable.

A Banach space X is said to have Mazur's property if weak' sequentially
continuous functionals on X* are actually weak* continuous, i.e., belong to X.

(iv) If X has Mazur's property, then bounded scalarly measurable X-valued
functions are Pettis integrable.

(v) Separable Banach spaces enjoy Mazur's property, as do reflexive spaces.
Let r be a set and denote by co(r) the Banach space of all scalar-valued

functions x on r for which given e> 0 the set
1

C E r: Ix(7)I> e)

is finite; x c- co(r) has norm sup., c rIx(7)I; so co(r) - l,(r).
(vi) co(r) has Mazur's property.

(vii) l does not have Mazur's property.

3. A theorem of Krein and Smulian. The object of this exercise is to prove the
following:

Theorem (Krein-gmulian). The closed convex hull of a weakly compact subset
of a Banach space is weakly compact.

Let K be a weakly compact set sitting inside the Banach space X.

(i) X may be assumed to be separable. Do so!

(ii) The function 4p: K -. X defined by

q,(k)-k
is Bochner integrable with respect to every regular Borel measure defined on
(K, weak).

(iii) The operator to : C(K, weak)' - X defined by

Ir(µ)-Bochner f r(k)dis(k)

is weak'-weak continuous.

(iv) The closed convex hull of K lies inside of

4. The bounded multiplier test. A series in a Banach space X is unconditionally
convergent if and only if for any E l the series converges.

Notes and Remarks

The story of the Orlicz-Pettis theorem is a curious one. Proved by Orlicz in
the late twenties, it was lost to much of its mathematical public for most of
a decade because of a fluke. In the (original) 1929 Polish edition of Banach's
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"Operationes Lineaires," note was made of Orlicz's theorem; on translation
into French the note on Orlicz's theorem was not amended either to indicate
that with the passage of time the proof had already appeared ui to include
exact bibliographic data. As a result, when Pettis was writing his thesis, he
found himself in need of a proof of the Orlicz-Pettis theorem; in addition to
providing said proof, Pettis gave several basic applications of the result.
These applications are the bulk of Exercises 1 and 2.

Our proof is due to Kwapien (1974). It was shown to us by Iwo Labuda
and Jerry Uhl. Somehow it is appropriate that there be a proof of the
Orlicz-Pettis theorem that depends ultimately on Pettis's measurability
theorem, since so much of Pettis's mathematical work was concerned with
the subtle interplay between the weak and norm topologies in separable
Banach spaces.

That the Krein-Smulian theorem (Exercise 3) can be derived from the
theory of the Bochner integral seems to be due to Dunford and Schwartz.
The reader will no doubt realize that Mazur's theorem (to the effect that the
closed convex hull of a norm-compact set is norm compact) can also be
derived in this fashion.

There are other proofs of the Orlicz-Pettis theorem, and we will present
two of them in later chapters.

It is noteworthy that Grothendieck (1953) and McArthur (1967) have
proved the Orlicz-Pettis theorem in locally convex spaces.

We mention in passing that the failure of Pettis's "weak measures are
measures" theorem for algebras of sets (indicated in Exercise 1) has been
investigated by Schachermayer, who has discovered a number of non-a-
complete Boolean algebras where Pettis's theorem holds. Schachermayer
goes on to give several interesting characterizations of this phenomena and
pose a number of problems related to it.

Finally, we must mention that Kalton (1971, 1980) has underlined the
separable character of the Orlicz-Pettis theorem by proving a version of the
theorem in topological groups. Picking up on Kalton's lead, Anderson and
Christenson (1973) have established a permanent link between subseries
convergence in a space and the measure-theoretic structure of the space.

For an informative, lively discussion of the Orlicz-Pettis theorem we
recommend both Kalton's lecture and Uhl's lecture as reported in the
proceedings of the Pettis Memorial Conference.
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CHAPTER V

Basic Sequences

In any earnest treatment of sequences and series in Banach spaces a
featured role must be reserved for basic sequences. Our initial discussion of
this important notion will occupy this whole chapter. A foundation will be
laid on which we will build several of the more interesting constructs in the
theory of sequences and series in Banach spaces.

Let's give a brief hint of what's planned. After introductory remarks
about bases and basic sequences, we show how Mazur proved the existence
of basic sequences in any infinite-dimensional Banach space and take
immediate advantage of those ideas to present Pelczynski's proof of the
Eberlein-Smulian theorem. The Bessaga-Pelczynski selection principle will
then be derived and, after a brief discussion of weakly unconditionally
Cauchy series, this principle will be applied to characterize spaces contain-
ing isomorphs of co. Here we must mention that the Orlicz-Pettis theorem is
rederived along with an improvement thereof in spaces without co sub-
spaces. Finally, we see that co's appearance or absence in a dual coincides
with I,, 's and use this to describe still another sharpening of the Orlicz
Pettis theorem, this time in duals without co subspaces. It's a full program;
so it's best that we get on with it.

A sequence (xn) in a Banach space X is called a Schauder basis (or basis)
for X if for each x E X there exists a unique sequence (an) of scalars such
that

n

x =
Jim

= akXk.
" k-r

It is easy to see that a Schauder basis consists of independent vectors. Of
great importance to our goals is the notion of basic sequence: a basic
sequence in a Banach space X is a sequence (xn) that is a basis for its closed
linear span [ xn ].

Of some note is the fact that if (xn) is a Schauder basis for the Banach
space X, then each of the coefficient functionals xk : ak, that go
hand in hand with the xn, is continuous on X. Indeed, let S denote (for the
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moment) the linear space of all scalar sequences (s,,) for which limnEk_ 1skXk
exists in X. We define IIKsn)III to be supaIIEk-1skXkII Using the uniqueness of
expansions with respect to the system (xn), one sees that the operator
B : (S, III' IID --i (X, II' II) given by B(sn) = limnEk_ ISkXk is a norm-decreasing,
one-to-one, linear operator from S onto X. B is in fact an isomorphism. To
see why this is so, we need only show that (S, III III) is a Banach space and
appeal to the open mapping theorem. Now (S, III' lID is quickly seen to be a
normed linear space; so completeness is the issue at hand. Let (yr) = ((spi))
be a III' III-Cauchy sequence in S. Since

ISpi - Sgi1 l1 xi11 :5 2sup Il `sPI - Sqi )xs
n i=1

=21IIYp-YQIII,

(sp,)p converges for each i. Let (s) be the sequence of scalars obtained by
letting p oo : si = limesp,. Let r be an index so chosen that for p ? r, IIIYp
- YrIII < e, e a preassigned positive number. In light of the definition of S's
norm, we see that whenever p >- r, IIE"=1(Spi - 5 e for all n. Since
y, = (s,i) E S, there is a cutoff ne such that whenever m, n >- n, with m >_ n
say, IIE7 ns,ix,ll < e. It is now easy to see (after letting p --> oo) that for
m,n>n, we get, form>-n>-ne,

< 3e,

and so s = (s,) E S, too, and is in fact the limit of the sequence (y,) =
((spi )p z 1) from S. Now that B's isomorphic nature has been established, it
is clear that, for any k >-1, the coefficient functional xk is continuous as

Iaki IIxkII 5
2IIB-111I1

F- anxn II.n

A space with a basis is always separable, and it is indeed the case that
most of the natural separable Banach spaces have bases. It ought to be, in
fact, it must be pointed out that finding a basis for a well-known space is not
always an easy task. A few examples will be cited; proofs will not be
presented.

In the case of the classical separable sequence spaces co and 1p (for
15 p <oo), the sequence (en) of unit coordinate vectors

en - (0,0,...,0, 1, 0,0,...
nth place

is a basis.: his is easy to show. In the case of c, the space of convergent
sequences, we must supplement the sequence (en) with the constant se-
quence 1= (1, 1, ... ,1, ... ); the sequence (1, et, e2, ...) is a basis for c.
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What about function spaces? Here life becomes more complicated. In the
case of C[0,1], J. Schauder showed that the Schauder basis is a basis, where
the terms of the basis are given as follows:

fi(t) =1 for all t E [0,1].

0

1
4

i

J

f2(t)=t for each tE[0,1].

fa(t)
(

2t for each t E 10, 11,

2-2t foreachtE [},1].

41 for each tE[0,11,

f4(t)= 2-4t for each IE[1,Z],
0 for : z .

1

0 fortSZ,
fs(t)= 4t-2 for each 1 r=

4-4t foreach tE[4

Generally, if n z 1 and 15 i 5 2", then we can define f2.as follows:

f2^+;+1(t)=f3(2"t+1-i) whenever 2"t+1-i[0,1].
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In the case of LP[0,1], where 15 p < co, the Haar basis is given by

1

0

0
2 4 1

-1' -
Generally, if //n z I and I S i 5 2", then I2,+i is given by

I2"+i lt) = C[(2i-2)/2"+i (2i-1)/2"+I (t)--

It is now well known that there are separable Banach spaces without
bases. Per Enflo (1973), the first to find such a space, looked inside co and
was duly rewarded.

Therefore, the fact that a separable Banach space has a basis does provide
some structural information about the space. Unfortunately, unless the
space and/or the basis packs extra punch, little can be derived from this
minimal, yet hard-to-achieve, bit of information.

C[O, I] has a basis. This is of interest- not because it registers C[O,11 as a
member of the "basis club," but because C[0,1] plays a central role in the
theory of Banach spaces, and so the fact that it has a basis can on occasion
be exploited. One special property of C[0,1] that indicates the kind of
exploitation possible is its universality among separable Banach spaces:
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every separable Banach space is isometrically isomorphic to a closed linear
subspace of C[0,1]. C[0,1]'s universality, in tandem with the fact that C[0,1]
has a basis, pays off.

The Haar system is a basis for all the L. I < p < oo. For I < p < ao, it is
more: it is an unconditional basis; i.e., not only does each member of the
space have a unique series expansion in terms of the basis, but the series is
unconditionally convergent. The spaces spanned by unconditional bases
enjoy finer structural properties than spaces without unconditional bases;
the exercises hint at a few of the added pleasures. Incidentally, the Haar
system is not an unconditional basis for L,[0,1]; in fact, L,[0,1] does not
have an unconditional basis of any kind.

It is worth remarking that showing the Schauder and Haar systems are
bases for the spaces indicated above is not difficult; to establish the
unconditionality of the Haar system (in case 1 < p < oo) is highly nontrivial.

Oftentimes, whether a space has a basis is in itself difficult to answer, and
even on responding to this question, the possibility of the existence of an
unconditional basis looms large. For instance, it was not until 1974 that
Botschkariev showed that the disk algebra has a basis: the Franklin system
(i.e., the Gram-Schmidt orthogonalization of the Schauder system in the
Hilbert space L2[0,1]); soon thereafter, Pelczynski showed that the disk
algebra does not have an unconditional basis. Each proof has real claims to
depth. Again, the Franklin system was shown by Wojtaszczyk to be an
unconditional basis for the classical Hardy space H'(D) of functions
analytic inside the disk and with integrable boundary values; it is an
absolute must to point out that earlier, Maurey in a real tour de force of
analytical know-how had shown that H'(D) has an unconditional basis
without explicitly citing one. After Carleson had had some clarifying effect
on the question, Wojtaszczyk got into the act. None of these developments
has the faintest resemblance to "easy" mathematics. not the work of
Wojtaszczyk, or Carleson, or Maurey, especially not Maurey!

Bases are important; bases with added features, even more so. Basic
sequences are likewise important, especially for general structure-theoretic
studies. Since our purpose is, to some extent, the study of convergence of
sequences and series and the effect thereof on the structure of a Banach
space, it is not too unbelievable that basic sequences will occupy some of
our attention. How does one recognize a basic sequence?

The basic test is provided by our first real result.

Theorem 1. Let be a sequence of nonzero vectors in the Banach space X.
Then in order that be a basic sequence, it is both necessary and sufficient
that there be a finite constant K > 0 so that for any choice of scalars
and any integers m < n we have

m n

a x < a1x1
r r - r r

i-t fal
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The proof is easy but well worth the time to be carefully studied. We present
it in all its important (and perhaps in a few of its other) details.

PROOF. Suppose (xn) is a basis for its closed linear span [xn] and define
P.: [x.) - [x.] by

k

Pk(FQnxn) E anxn.
n nil

Each P. is a bounded linear operator [since each of the coordinate function-
als xj* (15 j s k) is continuous), and for any x E [xn], we have x =
limk It follows from the Banach-Steinhaus theorem that supnllPnll <
oo. Thus, should m < n and Ekakxk E X, then

gym''`

akxk I

Pmakxk
k-l

5 Ilpmll E
akxkk-1

11 n
`S snpllPnll E akxk1r

Let K = supnllPnll
Now suppose (xn) is a sequence of nonzero vectors for which there is a

K > 0 such that whenever m < n,
rm

aixi

i-1

<Iislatx,

holds. Plainly, if a vector x has a representation in the form Enanxn -
limnE"_1aixi, that representation is unique; this follows, for instance, from
the fact that for any j, k z 1,

Ia,IIIxjII = Ilajxjll s K

so that

j+k
E aixi
i-j

la,l
< IlKll Il;

.7,x, jj_

Z. j

Regarding representable elements, we notice that each vector in the linear
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span of the x is clearly representable, by a finite sum in fact. The condition
that whenever m < n,

a,x, J1I1itujxj

ensures that the operators Pm, from the linear span of { x } to itself, given
by Pm(Ea,x,) - Ek lakxk, are bounded linear operators each of whose
operator norms are s K; it follows that each P, has a bounded linear
extension, still called Pm, projecting [x,,: n zl] onto [x: 1 s n s m]=
lin{x1, ... ,xm ). A noteworthy effect of this is the continuity of the "coordi-
nate functionals" x,* defined on the span of (x ) by x,*(E,a,x,) = ak; the
xk have unique extensions to all of [x.: n Z 11, too, given by X *(X)Xk =
Pk (x) - Pt _ 1(x ). Now we're ready for some action. We claim that every
element of has a representation (necessarily unique, as we have seen) in
the form E and e> 0 be given. Then
there is a a E lin{ x1, ... x.(,) }, for some n(e), such that lix - all < e. But
now if n n, then

Ilx - s

s (1+ K)e.

It follows that x = 0

As an application of Theorem 1 we prove that every infinite-dimensional
Banach space contains a subspace with a basis. We follow S. Mazur's lead.

Lemma 2. Let F be a finite-dimensional linear subspace of the infinite-dimen-
sional Banach space X, and let e > 0. Then there is an x E X such that IIxII = I
and

Ilyll s (1+ e)11y + AXII

for all y r= F and all scalars it.

(1)

PROOF. Assuming (as we may) that e < 1, pick a finite e/2 not { yl, ... , yk }
for SF and select y,, ... , yk in Sx. so that y,*y, =1 for i =1, 2, ... , k. Take
any x in SX for which y, *x = y2 *x = . . = y,*x = 0. This x will do. In fact, if
y E SF, then there is a y, within e/2 of y; find that y. Take any scalar A and
compute

IIy+AxIIZIlyy+XxII-IIy-y;Ilzlly,+AxII- 2

Y,*(yi+Ax)-2=1-2z 1+e'

This shows (1) in case Ilyll =1; homogeneity takes care of the rest of F. 0
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Corollary 3. Every infinite-dimensional Banach space contains an infinite-
dimensional closed linear subspace with a basis.

PROOF. Let X be the ambient space and e> 0. Choose a sequence (en) of
positive numbers such that [1 (1 + 51 + e. Take xl E Sx and pick
x2 E Sx such that

IIxII 5 (1 + el)IIx + Ax211

for every scalar multiple x of x1; a look at the preparatory lemma will tell
you where to look for x2. Let F be the linear span of xl and x2. Pick x3 E SX
such that

IIxII 5 (1 + e2) IIx + 11x311

for every x in F; again, a look at the preparatory lemma should help in the
selection of x3. Continue. The sequence so generated is basic with basis
constant 51 + e. What's more, if P. is the n th projection operator, then

5 n°o-.(1 + e;). a

A short detour seems well advised at this juncture. This detour is
suggested by A. Pelczynski's proof of the Eberlein-Smulian theorem via
basic sequences. This proof, of which Whitley's is a sympathetic cousin,
builds on a modification of Mazur's construction of basic sequences.

Lemma 4. Let B be a bounded subset of the Banach space X and xo * E X
be a point of B' Qk" in X* * such that Ilxu * - bll z 8 > 0 for all b e B. Then
there exist a sequence in B and an xo E X* such that

1. lim,,xox = xo *xo >-11xa *11/2
2. (x - xo *) is a basic sequence in X**.
3. Should xo * 0 0, then xo 95 (x,, - xo* * ), the closed linear span of

(xn - xo**).

PROOF. Choose (c,), 2 0 so that 0 < c < 1 for all n z 0 and so that whenever
15 p <q <oo, I'I9 p(1-c,)>1-co.

Take any xo E X* such that x0* *xo 11x(*) *11/2. By hypothesis, there is an
x, E B such that

Ixoxi - xo *xoI <'.
Let El denote the 1-dimensional subspace of X** spanned by xt - xo *; Set
is compact, and so we can pick a cl/3 net el,... ,eNtlt for SEQ. Let
xi, ... ,xN*(l) be chosen from S x. in such a way that

Ix'e,l>1-
ci
3

By hypothesis, there is an x2 e B so that

Ixux2 - xo* *xoI < +), Ixi x2 - xo**xi I, ... , Ixivntx2 - xo *XN*(I)I < C'
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all hold. Notice that for any e r= El and any scalar t we get

lie +t(x2-xo*) jZ(I-ci)Ilell. (2)

Homogeneity of the norm allows us to prove (2) for e E SE1 and conclude to
its validity for all members of E,. Two possibilities come to mind: Itl 5 2/8
and Itl > 2/8. First, Iti 5 2/8.: pick e, so that lie - e;ll < c,/3 and look at
what happens.

lie +t(x2-xo*) 11a (e+t(x2-xa*))(x')l

Z Ix*e,l- It(x2 - xo**)(x*)I - (1x'11 lie - e;ll

((
c, 2 6c1 c,;> (I_

3)-8 6 - 3
=1- c, = (1- CO Hell-

The second possibility, Ill > 2/8, is easy, too:

lie +1(x2-xo*) IIz 842-x**II-11ell

z 88-I1ellz2-1=1z (1-c1)Ileli.

Let's check up on a linear combination of x, - xa * and x2 - xo *, say
t,(x, - 4)+ 12(x0, x4*). Letting e in (2) be 11(x, - xo *), we get

(111(x1-xp*)+12(x2-x0**) (IZ (1-c1)IIt1(x1 x0*)11-

Suppose we repeat the above procedure.
Let E2 denote the 2-dimensional subspace of X spanned by x1- x0

and x2 - xo . There are elements e1, ... ,e)V(2) E SE, (not necessarily related
to the c1 /3 net) which form a c2/3 net for SE2. Pick xi , ... E Sx. so
that

c2

Ix'efl >1- y.

By hypothesis, there is an x3 E B such that

1xox3 _X o xo*I< Ixix3 - xo -x0 *xN(2)1 < 86z

all hold. Notice that for any e c- E2 and any scalar t we have

Ile+t(X3-xa*) `I (1-c2)Ilell. (3)

We leave the verification to the reader; actually two possibilities ought to
come to mind (on reducing the problem to liell = 1), and each is handled
precisely as before with only the names being changed. If a linear combina-
tion 1,(x1 - xO**)+ 12(x2 - Xo *)+ 13(x3 - x *) is under consideration, then
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(3) tells us [on letting e - t1(xi - xo*)+ t2(x2 -- xo*); naturally] that

41'

3 [[2

'
_

ti(xi-x ") Z (1-C2) ti(xi-x0*)
i-1

Proceeding thusly, we find a sequence in B such that fir all n 1,

Ixox _ xo*xoI <.
n -

and for which given 1 s p < q < co and scalars ti, ... , tq,

P
t,(xi-xo**)

r-1

a-1(

s n 1-ci
4

ti(xi-xo**)

It is now plain that we can find and xa* to satisfy I and 2. To see that
should xo * # 0, we could achieve 3 as well, we must notice that

0C

n closed linear span (xk - xo"; xk+ 1 - X0* *, ..) 0;
k-1

so eventually the subspaces [ x - xo * J z k expel xa * from their premises. If
'done at k = k0, just lpok at the sequence c B; it achieves 1, 2,1

and 3.

Now we are ready for the Eberlein-Smulian theorem.

The Eberlein-mulian Theorem (Pelczynski Style). Let B be a bounded
subset of the Banach space X. Then the following statements about B are
equivalent:

1. The weak closure of B is not weakly compact.
2. B contains a countable set C with no weak limit point in X.
3. There's a basic sequence in B such that for some xo* 6 X*,

>0.
4. B is not weakly sequentially compact in X.

PROOF. Statement 1 implies 3. By statement 1 there must exist an xo** E
X * * \ X in the weak * closure of B up in X * *. Notice that d (x0 *,'B) z
d (xo *, X) > 0. Applying Lemma 4, we find a sequence in B- and an
xo E X* such that

(1) xo *x0 *;Z- *IV2 .

(ii) (x - xo *) is a basic sequence in X**.
(iii) xa* * ,4 [x - xo * ] = closed linear span of (x. - xa * ) z 1.

Let Z Since x** is not in nor is it in [x,,-xo*)',
each of these subspaces is of codimension I in Z. Therefore, there are
bounded linear projections A, P: Z - Z such that PZ = [x
- xo * ], where 4xo * = 0 = Pxo *. Obviously, if z* Z, then there's a
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scalar t,.. - t such that z**- Pz * - txo *; therefore, if z * * E [ x - xo * j,
Z** - Az** - APz**. By symmetry, PAx - x for any x r= [xRj. It follows
that P maps [x - xo *j onto [x.] in an isomorphic manner. Since P(x -
xo *) - x for all n, is a basic sequence which satisfies
Ilxo IV2 > 0, thanks to (i).

Statement 3 implies 2. Let C - (x ), where is the basic sequence
alluded to in 3. The inequality h,m xax > 0 eliminates the origin as a
potential weak limit point of C, yet the origin serves as the only possible
weak limit point of any basic sequence. The verdict: C has no weak limit
points.

That 2 implies I and 4 is plain; therefore, we concentrate on showing that
4 in the absence of 2 is contradictory. The assumption of statement 4 leads
to a sequence of points of B, none of whose subsequences are weakly
convergent to a member of X. Since no subsequence of (y.) is norm
convergent, we can pass to a subsequence and assume that (y,) is norm
discrete; has a weak limit point x0 in X-after all, we are denying 2.
x0 is not a norm limit point of (y ); so, with the exclusion of but a few y,,,
we can assume d(xa, (y.)) > 0. We can apply Lemma 4 again to extract a
subsequence from so that (x. - x0) is a basic sequence. Remem-
ber we're denying 2; so has a weak limit point, but x0 is the only
candidate for the position since (x, - x0) is basic! converges weakly to
x0, which is a contradiction to 4. 0

More mimicry of Mazur's technique provides us with a utility-grade
version of a principle for selecting basic sequences due to Bessaga and
Pelczynski (1958). Though we will soon be presenting the complete unex-
purgated story of the Bessaga-Pelczynski selection principle, the following
milder form is worth pursuing at this imprecise moment.

Bessaga-Pelczynski Selection Principle (Utility-Grade). Let be a weakly
null, normalized sequence in the Banach space X. Then admits of a basic
sequence.

PROOF. Let (e,), 2 0 be a sequence of positive numbers each less than 1 for
which fI,

Suppose that in our quest for a basic subsequence we have fought our
way through to choosing with n1 < n2 < < nk, of course.
Let Y(k) be the linear span of x1, ... ,XRk

Pick z1, ... ,zm in SYck> so that each y r= SYCk) lies within ek/4 of a z.
Correspondingly, there are zi, ... , zM in Sx. so that z*z, > 1- ek /4 for each
i =1,2, ... ,m. Eventually we run across an x,k+,, where nk+l > nk, for
which IZi XRk+,I, IZ2Xek+,I, ... j are all less than ek/4. We claim that
for any y c= SY(k) and any scalar a,

fly + z (I - ek) IIYII (4)
Sound familiar? It should. A quick peek at what we did in Corollary 3 or in
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Lemma 4 will tell die story: is a basic subsequence of (x.). Let's verify
(4) (again). Two possibilities come to mind: lal < 2 and 104t'-- 2. If Jai < 2,
then on picking ai (15 i s m) so that lly - z JJ < et /4, we see that

flY+ax,,.jl Z f z*(y+ax»..dl

a I=* =if - Izr(Y - z,)I - jz*(ax,,..,)j

Z
(i_ 4)-IIY-zill-21z*xR..11

Z(i-4)-4-24k=1-e =(1-e)11Yi1

If Jul k 2, then

fly + ax,,,,,II z Jul IIxa,,,11-11YN - 2-1 z (1- et)IIYII o

The natural bases for classical spaces play a central role in the study of
Banach spaces, and the ability to recognize their presence (as a basic
sequence) in different circumstances is worth developing. For this reason we
introduce the notion of equivalent bases.

Let be a basis for X and (ye) be a basis for Y. We say that and
are equivalent if the convergence of is equivalent to that of

E.a11y.

Theorem S. The bases (x,) and (yy) are equivalent if and only if there is an
isomorphism between X and Y that carries each x to y,,.

PROOF. Recall that in our-earlier-comments about
taking any x - E.s.x and defining Ilixill by

it

lllxllI'" sup -E SkXkl.
M k-1

Result: An isomorph of X in which (Xk) is still a basis but is now a
"monotone" basis, i.e., s IIIEk-1 SkXkill for any m, n z 1. Notice
that if and are equivalent, then they are equivalent regardless of
which equivalent norm is put on their spans. So we might as well assume
each is monotone to begin with; we do so and now look at the operator
T : X -, Y that takes E, ax, to (what other operator could there
be?); T is one to one and onto. T also has a closed graph; this is easy to see
from the monotonicity of each basis. T is an isomorphism and takes x,, to
y,,. Enough said about the necessity of the condition; sufficiency requires but
a moment of reflection, and we recommend such to the reader. O

Equivalence of bases is a finer gradation than the isomorphic nature of
their spans. Indeed, Pelczynski and Singer showed that any infinite-dimen-
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sional Banach space admitting a basis has uncountably many.nonequivalent
bases! What's the situation with natural bases for special spaces? How can
we recognize them? For some bases, satisfactory answers are known. Oiie
such case is the unit vector basis of co. Corollary 7 below characterizes co's
unit vector basis, and Theorem 8 gives an elegant application to the theory
of series in Banach spaces.

A series Enxn is said to be weakly unconditionally Cauchy (wuC) if, given
any permutation n of the natural numbers, (E,"F_1x,T(k)) is a weakly Cauchy
sequence; alternatively, Enzn is wuC if and only if for each x* E X*,
Enlx*xnl < oo.

Theorem 6. The following statements regarding a formal series E,,xn in a
Banach space are equivalent:

1. Enxn is wuC.
2. There is a C > 0 such that for any (tn) E=-

sup
n

Ok-I - tkxk 11 <C$upltnl-
n

3. For any (tn) E CO, Ent,,x,, converges.
4. There is a C > 0 such that for any finite subset A of N and any signs t we

have IIEn e O ± xn II 5 C.

PROOF. Suppose I holds and define T : X* - 11 by

Tx* = (x*xn).

T is a well-defined linear map with a closed graph; therefore, T is bounded.
From this we see that for any (tn) E B,. and any x* E Bx.,

[n`

x* L tkxk
k-1

= I(ti,...,tn,0,0....)(Tx* )I

<- IIT11

Part 2 follows from this.
If we suppose 2 holds and let (tn) E co, then ket.ping m < n and letting

both go off to oo, we have

II E tkxk 11<_C SUP Itkl- 0
k-m msk<n

from which 3 follows easily. -

If 3 holds, then the operator T : co --p X defined by

T(tn) = L.rtnxn
n

cannot be far behind; part 3 assures us that T is well-defined. T is plainly
linear and has a closed graph. T is bounded. The values of T on Boo are
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bounded. In particular vectors of the form En G& ± x,,, where A ranges over
the finite subsets A of N and we allow all the ±'s available, are among the
values of T on BB,, and that is statement 4.

Finally. if 4 is in effect, then for any x* E B. we have

X* V ±X,= X*Xn
nE4 qEa

SII* fxnlISC

fir any finite subset A -f N and any choice of signs ±. That E,,Ix*x,I < 00
f"'1lows directly from this and along with it we get part 1. b

Corollary 7. A basic sequence for which infnllxnll > 0 and is wuC is
equivalent to the unit vector basis of co.

PROOF. If (xn) is a basic sequence and Entx. is convergent, then (Ek-ttkxk)
is a Cauchy sequence. Therefore, letting n tend to infinity, the sequence

ItnIIIX.II =

n

tkXk '
n-t

Lr E tkXk-t k-1 11

tends to 0; from this and the restraint infnllxnll > 0, it follows that (tn) E co.
On the other hand. if txn) is a basic sequence and Enx is wuC, then

E co, thanks to Theorem 6, pert 3.
Consequently, a basic sequence with 0 and for which

Enx is wuC is equivalent to the unit vector basis of c0.

Theorem 8. Let X be a Banach space. Then, in order that each series in
X with E X* be unconditionally convergent, it is
both necessary and sufficient that X contains no copy of co.

PROOF. If X contains a copy of co, then the series corresponding to Ene,,,
where en is the nth unit coordinate vector, is wuC but not unconditionally
convergent.

On the other hand, if X admits a series Enz which is not unconditionally
convergent yet satisfies E for some
sequences (p ), of positive integers with pl < ql < p2 < q2 < , we
have xk 11 > 0. Letting y = Ek .P Xk, we see that is weakly null
and infnllynll > 0. Normalizing (yn), we keep the weakly null feature and can
utilize the Bessaga-Pelczynski selection principle and Corollary 7 to find a
basic subsequence of equivalent to co's unit vector basis. Theorem 5
takes over: a copy of co is contained in X.

The above results of Bessaga and Pelczynski can be used to give another
proof of the Orlicz-Pettis theorem. Indeed, a weakly subseries convergent
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series Enxn in a Banach space is wuC in that space. Should Enxn not be
subseries convergent, three increasing sequences (pn ), (qn ), and (r,) of
positive integers could be found with pl < q1 < p2 < q2 < , such that the
sequence (yn) given by

qw

Y. x,
Ow

satisfies IIyn11 a e> 0 for some judiciously chosen e. Now Enyn is a subseries
of Enxn and so is weakly subseries convergent too. In particular, (yn) is
weakly null and inf Ilynil > 0; there is a subsequence (zn) of (yn) that is
basic. A look at Corollary 7 will tell you that (zn) is equivalent to the unit
vector basis (en) of co, yet a further look will convince you that Ene is not
weakly convergent. This flaw proves the theorem-

The study of a sequential problem ofttimes reduces to analysis inside
some space with a basis, and approximation in terms of expansions with
respect to this basis plays an important role in the study under way.
Frequently useful in such ventures is the notion of a block basic sequence:
Let be a basis for a Banach space, (pn) and (qn) be intertwining
sequences of positive integers (i.e., p1 < q1 < P2 < q2 < ), and y,, =
EQ_owax, be nontrivial linear combinations of the x;; we call the sequence
(yn) a block basic sequence taken with respect to (xn), or simply a block
basic sequence. It is easy (and safe) to believe that (yn) is basic (just look at
Theorem 1). The following results of Bessaga and Pelczynski establishes the
fundamental criterion for locating block basic sequences.

Bessaga-Pelczynskl Selection Principle. Let be a basis for X and
suppose (x,*) is the sequence of coefficient functionals. If (yn,) is a sequence in
X for which

limllymfl > 0

and

foreachn,
m

then (yn) has a subsequence that is equivalent to a block basic sequence taken
with respect to (xn).

PROOF. First, we find a way of ensuring that a constructed basic sequence is
equivalent to an existent one. We prove a stability result of enough interest
by itself that we call it Theorem 9.

Theorem 9. Let (z,,) be a basic sequence in the Banach space X, and suppose
(z*) is the sequence of coefficient functionals (extended to all of X in a
Kahn-Banach fashion). Suppose (yn) is a sequence in X for which Enllz,'II II Ilzn
- ynll < 1. Then (y,,) is a basic sequence equivalent to (z).
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In fact, if we define T: X -> X by

TX
n

then It follows that (I+T+T2+
converges in operator norm to (I - T) -1; I - T is a bounded linear opera-
tor from X onto X with a bounded invprse. Of course, (I - T )(z.) =

Back to the Bessaga-Pelczynski selection principle, let K > 0 be chosen so
that for any m, n z 1

M

E akXk
k-1

5 K -I akXkI.

k

By passing to a subsequence, we might as well assume that IIYmil z e> 0 for
all n. With but a slight loss of generality (none of any essential value), we
can assume that =1 for all m. Now we get on with the proof.

Since is a basis for X, yl admits an expansion,

Y1 = Ex,*(Y,)Xn

Hence there is a ql such that

-9t+111k

Since limmx* 0 for each n, there is a P2 > 1= PI such that

q2 1
xk(Ypl)xk < 4K2°k-1

Again, is a basis for X; so yp2 admits a representation,

Y, = Ex:
n

Hence there is a q2 > q1 such that

E xk(yp2)xk < 1 q4K2k - q2 +1'* 11

Once more, appeal to the assumption that limmX ym = 0 for each n to pick a
P3 > P2 such that

q2

E xk (Yp2)xk
k-1

Got your p's and q's straight? Let

n

1
xk (Yl)xk 11 < 4K2r

.

I
4K2r

xk(Y,.,,)xk.

k-q+1
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5

I

qw 4n+ x

+ E + F Xk(Yp..,)Xk
k-1

qn 00

+ E Xk (Yv.+,)Xkk1
1 1

4K2n+2 + 4K2n+2 + Ilznll

It follows that Ilznll ?
i

for all n. (z,,) is a block basic sequence taken with
respect to (xn) and has the same expansion constant K as does (xn); i.e.,
whenever k s j, we have.

k

E aizi 5
I

a'zi
i-1i-1

From this and the fact that Ilznll z 2 we see that the coefficient functionals of
(zn) satisfy I I z,* I15 4K. Now we look to Theorem 9:

n

00

+ L Xk(Y,.+,)Xk
k-1

5 4K'
n

E
( 1 1 )

4K
4K2n+1 + 4K2n+z

1 + 1

2n+2

2n+2)=I.

2 O

For a quick application of the selection principle we present the following
theorem of Bessaga and Pelczynski.

Theorem 10. The following are equivalent:

1. X * contains a copy of co.
2. X contains a complemented copy of 1,.
3. X * contains a copy Z of 1 for which

a. Z is isomorphic to l when Z is given the relative weak* topology of X*
and 1. has its usual weak* topology as 1,'s dual.

b. There is a projection P : X* - X* which is weak *-weak * continuous
and for which PX* = Z.

PROOF. Only the derivation of 2 from 1 needs proof.
Our derivation of 2 will turn on the following property of /I- if 11 is a

quotient of the Banach space X, then 11 is isomnrr,,uc to a complemented
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subspace of X. The easy proof of this can be found in Chapter VII, but
insofar as it is key to the present situation, a word or two is appropriate. Let
Q: X - 11 be a bounded linear operator of X onto 11; by the open mapping
theorem there is a bounded sequence (b.) in X for which Qbn = e,,. The
sequence is equivalent to the unit vector basis of 11; furthermore, if
R: 11 - X is defined by Re - b,,, then QR is the identity operator. From
this it follows that RQ: X - X is a bounded linear projection from X onto
f bn], a space isomorphic to 11.

Let T : co --> X* be an isomorphism and denote, as usual, by (en) the unit
vector basis of co. Look at T * : X * * -11 and let S - T * I x; for any x E X,
Sx = (Te1(x), Te2(x), ...). Since T is an isomorphism, T* is a quotient
map. BX is weak* dense in BX.. thanks to Goldstine's theorem; therefore,
S(BX) is weak* dense in T *BX., a neighborhood of the origin in ll. It
follows that for some sequence (An) of scalars bounded away from 0 and
some sequence (xn) in BX, the Sx are weak* close to the Ane,*, where e,' is
the nth unit vector in /1. How close? Well, close enough to ensure that
himn(SxnXek) = 0 for each k and that the are bounded away
from zero. The norm of Sx. is kept away from zero by its value on e,,; also
the values of ek on the Sxn tend to zero as n goes off toward infinity. By the
Bessaga-Pelczynski selection principle, must have a subsequence
(Sxk.) that is equivalent to a block basic sequence taken with respect to the
unit vector basis of 11. But it is easy to sac that block bases built out of 11's
unit vectors are equivalent to the original unit vector basis of ll and, in fact,
span a subspace of /l complemented in 11 and, of course, isomorphic to 11.

Therefore, S followed by a suitable isomorphism produces an operator
from X onto a space isomorphic to 11. X admits Il as a quotient. 11 is
isomorphic to a complemented subspace of X.

Now to return to series in Banach spaces we note the following:

Corollary 11. In order that each series Enx,! in the dual X * of a Banach space
X for which xI < oo for each x E X be unconditionally convergent, it is
both necessary and sufficient that X* contain no isomorphic copy of 1,,.

PROOF. If X* contains an isomorphic copy of 1,,, then it contains a weak*
isomorphic copy Z of 1 as described in part 3 of Theorem 10. Looking at
the unit vectors of co as they appear in Z, they look just as they do in
I : Ene,, is weak* unconditionally convergent in 1 to 1 but certainly not
norm convergent to anything; the same can be done in Z.

On the other hand, if oo for each x r= X, then (Ek_ 1xk) is a
weak* Cauchy sequence in X*, and so

n

weak* lim E xk
n k-1

exists by Alaoglu's theorem. Furthermore, if E co, then oo
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for each x E X and
n

weak* lim E tkxk
n k-1

exists as well. An operator is "born"; define T: co X* by
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T((tn)) =weak* lim E tkX .

n k-1
T is linear and has closed graph; hence, T is a bounded linear operator.
Regardless of the finite set A of positive integers considered or of the choices
of signs ± made,

flE ±x,
II

T(E fen)11SIITII
nEL'

En x is wuC. If X* does not contain 1,0, it cannot contain co by Theorem
10; in such a case, E,,xn* is unconditionally convergent by Theorem 8.

Just as Theorem 9 ensures that sequences close to basic sequences are
themselves basic, our next result tells us that if a basic sequence spans a
complemented subspace and if you nudge the sequence with delicate enough
stroke, then the resulting sequence is basic and spans a complemented
subspace.

Theorem 12. Let (zn) be a basic sequence in the Banach space X with
coefficient functionals (z,*). Suppose that there is a bounded linear projection
P : X - X onto the closed linear span [zn I of the z,,. If (y,,) is any sequence in
X for which

EIIPII (Izn II I{Zn ynll < 1,
n

then (yn) is a basic sequence equivalent to (z,,) and the closed linear span t yn ]
of the yn is also complemented-in X.

PROOF. Since P is a linear projection with nontrivial range, IIPII z 1. It
follows then from Theorem 9 that (yn) is a basic sequence equivalent to
(zn ). The condition set forth in the hypotheses is easily seen to be just what
is needed to prove that the operator A : X -+ X defined by

Ax=x-Px+EzR(Px)yn
n

satisfies IIA - III <1. Therefore, A is an isomorphism of X onto itself. It is
easy to see that Azn = y,,. Finally, if we look at Q = APA " 1, then we should
see that Q 2 = APA -'APA -1 = APPA -1= APA -1= Q; since the range of Q
is [ yn 1, the proof is completq.
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We remark that Theorem 12 finds frequent use in the study of the
structure of Banach spaces; in fact, we will have an opportunity to apply it
in a somewhat typical situation in Chapter VII.

There is a more-or-less natural sequence of events that precedes the
application of Theorem 12 in special spaces. Suppose, for instance, you're
working in the space 1,, (some finite p z 1). One way to produce a comple-
mented subspace of I,, is to build vectors in the following fashion: Take
sequences (mk) and (n k) of positive integers with

15mt5 nt<m2<n2<... <mk5nk<mk+1...,

and build nonzero blocks
nk

bk = F, a,e,.
J - Mk

Then the closed linear span of the bk is isomorphic to. /P (this is not hard to
see), the sequence (bk/Ilbklp is a basic sequence equivalent to the unit
vector basis (ek) of 1P, and the closed linear span of the bk is complemented
in /.-

Indeed, only the last of these statements needs any real demonstration.
The basic sequence (bk / II bk ID has a companion sequence (fl,:') of coefficient
functionals defined on all of 1P (after suitably extending via the Hahn-Banach
theorem). If x E 1P, then Px = Ek/3k (E.";kxjef)bk/IIbkII defines a bounded
linear projection P : IP -+ lP whose range is the closed linear span of the bk.

It is one of the more pleasant facts of life that many of the situations in
which one wants to find a complemented copy of IP somewhere, there is a
sequence like bk near by, close enough in fact to apply Theorem 12.

Exercises

1. Renorming spaces to improve basis constants. Let be a basis for the Banach
space X.

(i) Show that X can be given an equivalent norm III' III such that for any scalars
a,, a2.... a,+l, ... an, we have

III a,x.4IISIII i a,xiIII

(ii) Suppose (xn) is an unconditional basis for X. Show that there is a constant
K > 0 so that given any permutation n of the natural numbers and any
x - E X, we have

I
n

II.

(iii) Show that if is an unconditional basis for X, then.X can be renormed
so that, whenever rr is a permutation of the natural numbers and x =
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E X, we have

IlJXc(n)(X)xw(n)H lS
111x: (x)x"111

(iv) If is an unconditional basis for X, x E X, and t - E 1,,, then
E (x) x a X. Show that there exists a constant K > 0 such that for
any x - E E B,., we have

I . 11-

n

(v) If is an unconditional basis for X, then X can be renormed so that for
any x X and any (:) B,,BI., we h

1 ( C)x-111-

2. The unit vector bases of co and 11.

(i) A normalized basic sequence is equivalent to the unit vector basis of
co if and only if there is a constant K > 0 such that

n

c,x; s K sup Ic;l
-t S : ! 5

holds for any n and any scalars c1, c2, ... ,c,,.

(ii) A normalized basic sequence is equivalent to the unit vector basis of ll
if and only if there is a constant K > 0 such that

Ic,l 5
I) c`x` II

holds for any it and any scalars c1, c2, ... ,c,,.

(iii) Any time there is an x* E Sx. such that x*x 2 0 > 0 for some fixed 0 and
all terms x of a normalized basic sequence (x.), then is equivalent to
the unit vector basis of I.

3. Shrinking bases and boundedly complete bases. Let be a basis for X and
(x,`) be the coefficient functionals.

(i) (x,!) is always a basis for its closed linear span in X*; further, (x,') is a
"weak* basis" for X*, i.e., each x* E X* has a unique representation in
the form x* - weak*

(ii) Each of the following is necessary and sufficient for (x,!) to be a basis for
X*:
(a) The closed linear span of {x* : it z1} is X*.
(b) lim.11x*IIm - 0 for each x* E X*, where IIx*11. is the norm of x* when

x * is restricted to the linear span of { xi+1, x t 2, ... I.
A basis having the properties enunciated in (ii) is called shrinking. A

companion notion to that of a shrinking basis is that of a boundedly complete
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basis; the basis (xn) is called boundedly complete whenever given a sequence
(an) of scalars for which (E7_la1,xk: n ;z1) is bounded, then lim,,Ek_Ia4xk
exists.

(iii) If (xn) is a shrinking basis for X, then (x:) is a boundedly complete basis
for X*.

4. Boundedly complete bases span duals. Let (x.) be a boundedly complete basis
for X, let (x,*) denote the sequence of coefficient functionals, and let [x.*]
denote the norm-closed linear span of the xn* in X*.

(i) Show that for each x** E X** the series

Ex**(x*)xn

converges to an element of X. [Hint: A diagonal argument can be used to
find a sequence (y,,) in Bx such that y - x * *xk holds for k =
1,2,.... This lets one realize vectors of the form E!" ti x * *(x *) x; as limits
of vectors that look like E 1

x! (yn) x,; these vectors-and hence their
limits-all lie inside a fixed ball of X.]

(ii) The map P that takes an x** in X** to the vector En x s * (x:) xn in X is a
bounded linear projection on X* * that has for a kernel (x * * E
X**:x**x*-0for all x*E[x,*,]).

(iii) X is isomorphic to [xf ]*.

(iv) (x,") is a shrinking basis for I x.*].

NB One can conclude from this exercise and its predecessor that a basis (y,,) for
a space Y is shrinking if and only if the sequence (y.*) of coefficient functionals
is a boundedly complete basis for Y*.

S. Bases spanning reflexive spaces. Let X be a Banach space with basis (x,,) whose
coefficient functionals will be denoted by (x:). X is reflexive if and only if (xn)
is shrinking and boundedly complete.

6. Unconditional bases. Let X be a Banach space with an unconditional basis (xn).

(i) If (xn) is not boundedly complete, then X contains an isomorphic copy of
co.

(ii) If (xn) is not shrinking, then X contains an isomorphic copy of 11.

[Hints: The renorming of Exercise 1(v) helps matters in each case. Similarly, it
helps to know what to look for if you are looking for co's unit vector basis or 11's
unit vector basis; a peek at Exercise 2 may be worth your while.]

(iii) A Banach space with an unconditional basis is reflexive if and only if the
space contains no copy of co or 11.

7. Weak * basic sequences. Let X be a separable Banach space. A sequence (y,*) in
X* is called weak* basic provided that there is a sequence in X so that
(y,,, y.) is a biorthogonal sequence (y*y - and for each y* in the
weak*-closed linear span of the y' we have y* - weak* lim,E =1y*(y,)yr*.
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If (x,*) is a weak*-null normalized sequence in X*, then (xrt) admits a
subsequence (y,*) that is weak * basic.
I Hint: Pick e > 0, e < 1 so that E. e,, and oo. Using Helly's
theorem and X's separability, extract a subsequence (y,*) of (x,) and locate an
increasing sequence of finite subsets of SX so that the linear span of U,,F is
dense in X in such a way as to simultaneously achieve (a) given p (-=
lin(yi, y.*), II9)11 - 1, there is x c= F,, so that x - p has functional norm <

on lin{ yl , ... y.*) and (b) 1yn+1(X)1 < e F,,.)

8. Unconditionally converging operators. Let X and Y be Banach spaces. A bounded
linear operator T: X --' Y is said to be unconditionally converging if is
unconditionally convergent whenever E,,x is weakly unconditionally Cauchy; T
is called completely continuous if T maps weakly convergent sequences into norm
convergent sequences; T is called weakly completely continuous if T maps weakly
Cauchy sequences into weakly convergent sequences.

(i) A bounded linear operator T : X -. Y fails to be unconditionally converging
if and only if there is a subspace S of X isomorphic to co such that the
restriction T(s of T to S is an isomorphism.

(ii) Weakly compact operators and completely continuous operators are weakly
completely continuous; in turn, weakly completely continuous operators
are unconditionally converging.

9. Auerbach bases. If X is an n-dimensional Banach space, then there exist
x, ... , x,, E S x and x', ... , x E S. satisfying xPx, = 8,J. I Hint: On choosing
x i, ... , x,, E S. so as to maximize the determinant D(xl,... with respect to
some designated coordinate system, think of Cramer's rule.]

10. A Banach space is reflexive if each subspace with a basis is. It is an easy
consequence of the Eberlein-Smulian theorem that a Banach space is reflexive if
and only if each of its separable closed linear subspaces is. In this exercise we
outline a proof that leads to the claim of the exercise.

(i) A set G in the dual Y* of a Banach space Y is called norming if for each
y E Y, IlyII - sup((g(y)(: g E G, 11g1( -1). If G is a norming set in Y* and
(y,) is a normalized sequence in Y for which 0 for each g e G,
then (y,,) has a basic subsequence, with first term yl if you please.

(ii) If X is a (separable) Banach space containing a weakly Cauchy sequence
that isn't weakly convergent, then X contains a subspace with a nonshrink-
ing basis.

[Hint: Let xt * be the weak * whwre is weakly Cauchy but not
weakly convergent, and set x: * - xi* - for n z 2. Applying (i) to (y,,) _
(x,`*), Y= X**, and G - X*, obtain a basic subsequence (x**) of (xn *) with
x *,* - xl *. Let Z1 [ Z2 " [xnk ], and Z3 - (x ,], all taken up in X**.rlk
Then Zl c X, Z3 C_ Z2, dim(Z2 / Z3) -1, Z1 S Z2, and dim(Z2 /Z1) -1. Show
Z1 and Z3 are isomorphic. Now using the fact that has no weak limit in X,
show that (x*,) and t) are not shrinking bases.]

(iii) If X is a (separable) Banach space containing a sequence in BX having
no weak Cauchy subsequence, then X contains a subspace with a non-
shrinking basis.
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[ Hint: Pick a countable norming set G in Sx., using the attainable assump-
tion of X's separability, diagonalize, and use (i) on an appropriate sequence of
differences of the distinguished sequence

11. Subspaces of to (I 5 p < oo) or co. If X ' to (1 S p < oo) or X - co, then every
infinite-dimensional closed linear subspace Y of 'X contains a subspace Z
isomorphic to X and complemented in X.

Notes and Remarks

Schauder bases were introduced by J. Schauder who, in addition to noting
that the unit coordinate vectors form a basis for the spaces co and 1, (if
15 p < oo), constructed the Schauder basis for the space C[0,1]. Schauder is
also responsible for the proof that the Haar system forms a basis for L,[0,1]
if 15 p < oo.

The automatic continuity of coefficient functionals was first noted by
Banach whose method of proof has been the model for all further improve-
ments. It's plain from the proof where the ideas behind Exercise 1 were
born. Theorem I was known to Banach, as was Corollary 3. On the one
hand, the proof of Theorem 1 appears in Banach's "Operationes Lineair6s,"
whereas only the statement of Corollary 3 is to be found there. Indeed, it
was not until 1958 before any claim to a proof of Corollary 3 was made, at
which time three proofs appeared! M. M. Day (1%2), B. Gelbaum (1958),
and C. Bessaga and A. Pelczynski (1958) each gave correct proofs of
Corollary 3. Interestingly enough it is probable that none of these proofs
was the one known to Banach; it seems likely that Banach knew of Mazur's
technique for producing basic sequences, and it is that technique that we
follow here. The first exposition of Mazur's technique for the general
mathematical public is found in a 1%2 note of A. Pelczynski. In any case,
this technique has found numerous applications since, with the exercise on
weak* basic sequences being typical; the result expressed in Exercise 7 is
due to W. B. Johnson and H. P. Rosenthal.

From Theorem 6 on, the results of this chapter are right out of the
Bessaga-Pelczynski classic, "Bases and unconditional convergence in Banach
spaces." The influence that paper has on this chapter is, or ought to be,
plain.

It is an arguable choice to include as exercises, rather than as part of the
text, the results of R. C. James (1950, 1951, 1982). In any case, it is certain
that this material is now accessible to the hard-working student, and so,
with a few hints provided, we have chosen to reward that student with
Exercises 3 to 6. It is a fact that the material of these exercises is
fundamental Banach space theory and the stymied student would do well to
take an occasional peek at the originator's words on these topics, particu-
larly his wonderful exposition in the American Mathematical Monthly,
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(1982). Actually, regarding Exercise 4, the fact that boundedly complete
bases span duals was first noted by L. Alaoglu (1940).

Exercise 9 is due to Auerbach and, as yet, has no perfect infinite-dimen-
sional analogue. On the one hand, not all separable Banach spaces even
have a basis, whereas, on the other hand, those that do, need not have a
basis where both the basis members and the coefficient functionals have
norm one; each of these facts were first found to be so by Enflo (1973).
However, there is another notion that offers a viable alternative for generali-
zation, the notion of a Markushevich basis. A biorthogonal system
(x,, x * ), E , is called a Markushevich basis for the Banach space X if the span
of the x; is dense in X and the span of the x* is weak* dense in X*.
Separable Banach spaces have long been known to have (countable)
Markushevich bases; whether one can choose the sequence (x,,, so
that IIxII =I =11x*11 as well is still unknown. The best attempt has been by
R. Ovsepian and A. Pelczynski (1975), modified by Pelczynski, to prove that
if X is a separable Banach space and e > 0, then there exists a (countable)
Markushevich basis (x,,, X*). a t for X for which II 51 + e for all n.

Exercise 10 outlines the proof of a theorem of Pelczynski, following his
footsteps quite closely. The use of bases to characterize reflexivity has been
one of the more fruitful pastimes of general basis theory. In addition to
James's results (outlined in these exercises) and Pelczynski's, we cite the
beautiful (and useful) result of M. Zippin (1968): If X is a separable Banach
space with a basis, then X is reflexive if and only if each basis of X is shrinking
if and only if each basis of X is boundedly complete.
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CHAPTER VI

The Dvoretsky-Rogers Theorem

Recall that a normed linear space X is a Banach space if and only if given
any absolutely summable series in X, exists. Of course, in
case X is a Banach space, this gives the following implication for a series

if E,,Ilx,,ll < oo, then is unconditionally convergent; that is,
converges for each permutation ,r of the natural numbers.

What of the converse? Our memories of calculus jar the mind to recall
that for a series of scalars to be absolutely convergent, it is both necessary and
sufficient that the series be unconditionally convergent. This fact, in tandem
with the equivalence of coordinatewise convergence with norm convergence
in any finite-dimensional Banach space, bootstraps to prove that in any
finite-dimensional Banach space, unconditionally convergent series are abso-
lutely-convergent.

In infinite-dimensional Banach spaces the situation is readily seen to be
quite different. For instance, in co, if we look at x = e is the
nth unit vector, then converges unconditionally to the member (1/n)
of co; of course, -1/n, and so E,,x is not absolutely convergent.
Similar examples can be constructed in any of the classical Banach spaces.
(An aside: The aforementioned examples are not always trivially discovered;
a particularly trying case is ll.) The Polish founders of Banach space theory
were led to conjecture that in every infinite-dimensional Banach space there
is an unconditionally convergent series for which oo.

In 1950, A. Dvoretsky and C. A. Rogers established this conjecture's
validity. Within a very short while, A. Grothendieck (1956) was able to give
a substantially different proof of the Dvoretsky-Rogers theorem; in fact,
Grothendieck went so far as to classify those Frechet spaces (i.e., complete
metric locally convex spaces) for which unconditionally convergent series
are absolutely convergent. The proof we give below is modeled on ideas of
Grothendieck but follows a bit more direct path to the Dvoretsky-Rogers
theorem. The ideas used will appear again later. Presently, we are concerned
with the proof of the following.
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DverNaky-Rog Theorea. If every unconditionally convergent series in the
Banach space X is absolutely convergent, then X is finite dimensional.

Let 15 p < oo and X, Y be Banach spaces.
We say that the bounded linear operator T: X -, Y is absolutely p-sum-

ming [denoted by T E fl (X; Y)j if given any sequence (xe) from X for
which EAIx*xiIP < oo, for each x* E X*, we have EAIITxi1I' < oo.

A number of remarks about the notation of an absolutely p-summing
operator are in order.

Suppose (xe) is a sequence in X for which EAIx*xiIP < oo for each
x * E X *. Then the mapping from X * to l p that takes an x * to the sequence
(x *x.) is well-defined, linear, and, having a closed graph, continuous.
Consequently, there is a C > 0 such that

sup
{EIx*xAI'}1/pSC.

(1)
IIx*gSt A

Now, a straightforward argument shows that if we consider the linear space
of sequences (xf) in X for which EA Ix *xjI P < oo, for each x * e X*, then the
resulting space, called here l'( X ), is a Banach space with the norm

O(xf)ur; *(x)s inf(C> 0:(1) holds).

Next, we have the space 11'"(Y)"(Y) of all sequences in Y for which
EAIIYAII' < 00 r°s(Y) is a Banach space with the norm

1/p

KY.) Her-4y) _ (Liiii')
A

An operator T : X -+ Y is absolutely p-sunning if and only if (Tx,) E
l; rows(Y) whenever (xi) E 1"'(X). This is trivial. Not much harder is the
fact that if T: X - Y is absolutely p-summing, then the linear operation that
takes an (xe) in l1 ` (X) to (TxA) in l (Y) has a closed graph and is,
therefore, a bounded linear operator-call it T. We define the absolutely
p-summing norm srP(T) of T to be the operator norm of T' viewed as an
operator from i (X) to lo"'°°'(Y ). A bit of care reveals that the collection
of t is a close linear subspace of the Banach space of all bounded linear
operators from l (X) to lros (Y ). From this it follows that n p (X; Y) is
a Banach space in the norm w p. Further, it is easy to see that if T is
absolutely p-summing, then

sro (T) - inf (p > 0: inequality (2) holds for any x1, x2 , ..., xA E X) ,

n 1/P A 1/P

(E IlTxill') :9.p sup (E Ix*xil') (2)
r-1 x i-l

A fundamental result linking measure theory to the theory of absolutely
p-summing operators is the following.
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Grothendieck-Pietsch Domination Theorem. Suppose T : X -*,Y is an abso-
lutely p-summing operator. Then there exists a regular Borel probability
measure µ defined on Bx. (in its weak* topology) for which

IITxHIP s rrP (T)f Ix*xlPdp(x*)
BX.

holds for each x E X.

PROOF. Suppose x1, ... , x,, E X. Define the function

xi. .x.' B. -, R

by
n n

fx,. .,(X) _.rP(T) k Ix*XklV - k IITXkJIP.
k-1 k-1

Each fx, x is weak* continuous on BX., and the collection C = { fx,, -.x
E C(BX., weak*) : x1, ... , x E X) is a convex cone in C(Bx., weak*), each
of whose members is somewhere nonnegative-this last fact being due to
the absolutely p-summing nature of T. Now C is disjoint from the convex
cone W = { f E C(Bx., weak*) : f (x *) < 0 for each x * E Bx. }, and this
latter cone has an interior. Therefore, there is a nonzero continuous linear
functional p E C(Bx., weak*)* (i.e., regular Borel measures on BX. in its
weak* topology) such that

ffd'`=µ(f)s0<p(g)= f gdp,

for f E 92, g c- C. The measure µ has the distinction of being nonpositive on
strictly negative functions; therefore, it is nonnegative on strictly positive
functions, and it follows that µ is a nonnegative measure. Normalizing µ
gives a probability measure. Also, µ is nonnegative on C; so f fx dµ >_ 0 for
each x c- X. But this just says that

IITxIIP s irI(T)f Ix*xlPdµ(x*),B.
which is what was wanted. O

Let's,look at the above inequality a bit closer.
Let T: X -+ Y be absolutely p-summing. As a bounded linear operator, T

satisfies the inequality

IITxII s IITIIIIx( )II.
for each x E X, where we may interpret each x E X as acting (continuously)
on (Bx., weak*). However, in light of the Grothendieck-Pietsch domination
theorem there is a regular Borel probability measure µ on (BX.,weak*) for
which

flTx11 s (3)
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holds for each x E X. Inequality (3) tells us that T acts in a continuous
linear fashion from X to Y even when X is viewed as sitting in LP(µ). If we
let X. denote the closure of X in LP(µ), then we can find a unique
continuous linear extension P: XP -Y of T to all of XP. Let G: X -> X. be
the natural inclusion mapping of X in its original norm into XP, the
L,(µ)-completion of X. G is a continuous linear operator too. One more
thing: T= PG. Pictorially, the diagram

TX- Y

G\, ';R P

XP

commutes.
There are two things about G that must be mentioned.
First, G is a weakly compact operator; that is, G takes Bx into a weakly

compact set in XP. If p > 1, then this follows from the reflexivity of XP. If
p =1, then one need only notice that G is the restriction to X of the
inclusion operator taking C(BX.,weak*) into L1(µ): on its way from
C(BX.,weak*) into L1(µ), the inclusion operator passes through L2(µ)----
making it, and G, weakly compact.

Next, G is completely continuous; that is, G takes weakly convergent
sequences to norm convergent sequences. In fact, if is a weakly
convergent .sequence in X and xo = then there is an M > 0
such that IIx, II s M for all n and x*xo = for each x* E X* as well.
Viewing X as acting on BX., we get xo(x*) for each x* E B.
and I )I 5 M holding for each x* E Bx.. By Lebesgue's bounded
convergence theorem, this gives us

Reflect for a moment on these developments. Since the operator P : XP Y
is weakly continuous as well as continuous, the above properties of G are
passed along to T. T is weakly compact and completely continuous.

What if T : X -* Y is absolutely p-summing and S : Y -' Z is absolutely
r-summing? Each is weakly compact and completely continuous. It follows
that for any bounded sequence in X, admits of a weakly
convergent subsequence; so (STx,,) admits of a norm convergent subse-
quence. ST(BX) is relatively norm compact. Consequently, we have the
following theorem.

Theorem. If 15 p < oo and X is infinite dimensional, then the identity
operator on K is not absolutely p-summing.

Alternatively, if 15 p <w and oo holds whenever
oo for each x * E X *, then X is finite dimensional.
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The Dvoretsky-Rogers theorem follows easily from this. How? Well
consider any Banach space X in which the unconditional convergence of a
series implies its absolute convergence. X cannot contain any isomorph of co
since we saw earlier that co admits of non-absolutely convergent uncondi-
tionally convergent series. It follows from the Bessaga-Pelczynski co theorem
that is unconditionally convergent whenever

E for each x* E X*, then EIIxnII <oo. But
this is tantamount to the identity operator on X being absolutely 1-sum-
ming.

Exercises

1. Hilbert-Schmidt operators and absolutely 2-summing operators. Let E and F be
Hilbert spaces with complete orthonormal systems (e;), E t and (f respec-
tively. An operator T : E -, F is called a Hilbert-Schmidt operator if

E
I(Tei,f)Iz

<oo+
1'j

where (,) will be used to denote the inner product.

(i) Show that E,IITe;I11 =E,.JXTe;,fj)I2 'sErIIT'fII2 and conclude that the
quantity E, ,jKTe;, f )12 is independent of the complete orthonormal systems
(e,), . t,(f )j * f. Naturally, we consider for a Hilbert-Schmidt operator T
the functional (E,.;KTeo f,)I2)t/2 and can this functional the Hilbert-Schmidt
norm of T, denoted by a(T ).

(ii) Every finite-rank bounded linear operator from E to F is a Hilbert-Schmidt
operator, and every Hilbert-Scbmidt operator is the limit in Hilbert-Schmidt
norm of a sequence of finite-rank operators. Consequently, since IITO 5 o(T),
every Hilbert-Schmidt operator is compact. Notice that not every compact
operator S : E -' F is a Hilbert-Schmidt.

(iii) Every absolutely 2-summing operator T: E - F is a Hilbert-Schmidt opera-
tor with sr2(T) 2 o(T). [Hint: You might notice that as a consequence of (i),
T is a Hilbert-Schmidt operator precisely when E1IITe,I12 < oo for each
complete orthonormal system (e; ) F , in E.)

(iv) If T: E-. F is a Hilbert-Schmidt operator, then T can be realized in the
form

where E 12, (en) is an orthonormal sequence in E and is an
orthonormal sequence in F, and 100112 - V(T)'

(v) Every Hilbert-Schmidt operator T: E F is absolutely 2-summing with
a(T) Z w2(T).

2. iro (X; Y) c rra(X; Y), 15 p < q < co. Show that if 15 p < q < oo and T is abso-
lutely p-summing, then T is absolutely q-summing with sr9(T) s AD(T ).
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3. Composition of absolutely summing operators. Suppose r,s > 1 and 1/r + 1/s a 1.
If R En,(X;Y) and SEI1s(Y; Z), then SRE111(X; Z), and

ir(SR) S n(R)er(S).

4. The composition of absolutely 2-summing operators. If G: X - Y and A : Y Z are
absolutely 2-summing, then AG: X Z is nuclear (i.e., can be written in the
form AGx - E,,X where (An) E 11, (IIxn11) E co and (IIznII) E c0)

5. Absolutely p-summing operators on co. A bounded linear operator T: E - F is
called p-nuclear (p z 1) whenever T can be written in the form Tx - EW 1x,!(x) yn,
where (xn*) a E and (yn) c F satisfy

1/D
EIIx:II° <oo and sup (Ely-yx,) X00.
n Ily'Ql 1 n

Here 1/p + 1 /P'- 1, and in case p -1, the condition on the sequence (yn) just
requires that IIyyII - 0.

Show that any absolutely p-summing operator T : co - X is p-nuclear.

Notes and Remarks

In case p =1 or 2, the absolutely p-summing operators were introduced and
studied by A. Grothendieck (1956) in his infamous resume. For general p,
A. Pietsch (1967) is responsible for the initial study of the class of absolutely
p-summing operators. It is to Pietsch that we owe the final form of the
Grothendieck-Pietsch domination theorem, though Grothendieck's contri-
bution in this regard is not to be slighted. Who is to be given the lion's share
of credit is not at issue; rather, it is the result that counts, and the
domination theorem is a basic one at that. Introducing measures where
none were apparent is the theme of the theorem; the effects in Banach space
theory (and abstract analysis in general) are only now beginning to be felt.
We refer the reader to Pelczynski's (1976) lectures on applications of
summing operators in the study of spaces of analytic functions or to J.
Diestel's (1980) remarks regarding the absolutely 2-summing operators for a
hint at the power provided by the machinery of the theory of absolutely
p-summing operators.

Incidentally, our proof of the domination theorem is probably due to B.
Maurey; we "discovered" it after several sessions of reading papers by him
in various volumes of the Maurey-Schwartz seminar notes. It is practically
the same as the proof found in Lindenstrauss-Tzafriri I.

As mentioned in the text, we have followed Grothendieck's approach to
the Dvoretsky-Rogers theorem. Their original proof proceeded from the
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Dvoretsky-Rogers lemma: Let B be an n-dimensional normed linear space;
then there exist points x1, ... x of norm one in B such that for each i 5 n and
all real tI, ... , t,,,

tixij-1
(i+/i(i;) )(Lt1

1/2

-1

Their proof is particularly recommended to the geometrically minded stu-
dents. From this lemma, Dvoretsky and Rogers were able to build, for any
preassigned nonnegative sequence in 1Z, an unconditionally convergent
series in the infinite-dimensional Banach space for which tn.

A decade after the Dvoretsky-Rogers lemma had been discovered, A.
Dvoretsky returned to this topic and formulated his famous spherical
sections theorem: For each infinite-dimensional normed linear space F and
each n z 1 and each e > 0 there is a one-to-one linear mapping T of 12 into F
such that I I T II I I T- III < 1 + e. This result has had a profound effect upon the
directions taken by Banach space theory and, with developments related to
the theory of absolutely p-summing operators, has played an important role
in the disposition of numerous old problems in Banach space theory.

The Dvoretsky e-spherical sections theorem was the object of an extensive
study by T. Figiel, V. Milman, and J. Lindenstrauss (1977). By-products of
their efforts include a new proof of the Dvoretsky-Rogers theorem and the
easiest existing proof of the spherical sections theorem.

Exercise 1 is mentioned in passing by Grothendieck; a much finer thing
can be said and will be said in the exercises following Chapter VII. Exercise
5 is due to C. Stegall and J. R. Retherford (1972); their paper is filled with
important connections between operator theory and the classification of
Banach spaces. Exercise 3 is a very special case of a result of A. Pietsch
(1967), and Exercise 4 was known to A. Grothendieck (1956).

Related to issues raised in this chapter is the notion of an absolutely
(p, q )-summing operator and particularly the work of B. Maurey and A.
Pelczynski (1976), who give criteria for the composition of (p;, q)-summing
operators to be compact.
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CHAPTER VII

The Classical Banach Spaces

To this juncture, we have dealt with general theorems concerning the nature
of sequential convergence and convergence of series in Banach spaces.
Many of the results treated thus far were first derived in special cases, then
understood to hold more generally. Not too surprisingly, along the path to
general results many important theorems, special in their domain of applica-
bility, were encountered. In this chapter, we present more than a few such
results.

There are three main objectives we hope to achieve in this chapter. First,
we hope to reveal something of the character of Banach spaces that have
likely already been encountered by the student and provide insight into just
how the weak and norm topologies interact with familiar concepts in these
more familiar acquaintances. Again, the classical Banach spaces play a
central role in the development of general Banach space theory; coming to
grips with their special properties is of paramount importance if one is to
appreciate how and why this is so. Lastly, many of the more interesting
phenomena to be discussed in these deliberations require some deeper
understanding of the geometry of the classical spaces before these phenom-
ena can be recognized as natural.

Weak and Pointwise Convergence of Sequences in
C(u)

The heart and soul of this section are each devoted to proving the following
two theorems.

Theorem 1. Let SZ be any compact Hausdorff space, and let be a sequence
of continuous scalar-valued functions defined on 12.

1. In order that be weakly convergent in C(Q) to f E C(it ), it is necessary
and sufficient that sup,,llf,ll0, < oo and f(w)= for each w E 51.
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2. In order that (fn) be a weak Cauchy sequence in C(0), it is necessary and
sufficient that co and dim, exist for each w Q.

Theorem 2 (Baire's Classification Theorem).

1. Let 0 be any topological space each closed subset of which is of the second
category in itself. Then any bounded scalar-valued function on 0 which is
the pointwise limit of a sequence of continuous scalar-valued functions on sa
has a point of continuity in each nonvoid closed subset of 0 (relative, of
course, to the closed subset).

2. Let 0 be a separable metric space and f be a bounded scalar-valued function
defined on U. If f has a point of continuity in each nonvoid closed subset of Q
(relative to the `closed subset), then there exists a uniformly bounded
sequence of continuous scalar-valued functions on 0 converging pointwise
to f.

The proof of part 1 of Theorem 1 is easy. We need to recall that the
members of C((2) * act on C((2) like integration via regular Borel measures
on S2. This in mind, suppose f, fn E C((2) (n 21) satisfy f (w) = limn fn(w)
for each w E 0, where supra II fn II,, < oo. Each regular Borel measure u is a
linear combination of (at most) four probability regular Bored measures
(thanks to the Hahn-Jordan decomposition theorem). Therefore, to check
that f = limn fn(weakly), it is enough to check that f f dp = limn f fn dµ holds
for regular Borel probability measures µ, and this is clear from Lebesgue's
bounded convergence theorem. On the converse side, we notice that weak
convergence of a sequence (fn) implies boundedness in any Banach space;
so f = weak limn fn in C(S2) ensures supnllfnll, <oo. Further, for each t2

the point charge (or paint evaluation or point mass or Dirac 8-functl al)
S., whose value at f r= C(52) is

8 (f)=f(w),
is clearly in C(U)*; that limn f (w) = f (w), for every to E 9,,clearly follows
from this and with it part 1.

The proof of part 2 is similar to that of part 1. In fact, if limn fn(w) exists
for each w e 0, where (fn) is a uniformly bounded sequence of continuous
functions defined on 0, then

lim f fn dµ = f fn dit

holds for each p r= C(52)*, by Lebesgue's bounded convergence theorem,
and so (fn) is weakly Cauchy in C(U). Conversely, weakly Cauchy se-
quences are always bounded in norm, and a careful test again with the S
shows that weakly Cauchy things in C(O) are pointwise Cauchy (hence,
convergent).

Theorem 1 has an easy proof and many applications. The proof of
Theorem 2 lies deeper, and its applications are correspondingly more subtle.
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Baire's category theorem is at the base of our considerations with the aim
being the proof of the following result of which Theorem 2 (part 1) is an
easy consequence.

Let SZ be a topological space, each closed subset of which is of the second
category in itself, and (fn) be a (uniformly bounded) sequence of continuous
scalar-valued functions converging pointwise on St. Then the set of points
w E 2. where (fn) is equicontinuous, is a dense 1,g-subset of Q.

Let's see why this is so.
Take any e > 0 and let U(e) be the (open) subset of it consisting of all

those w for which there is an open set D(w) in 11 containing w such that if
w', w" E D(w), then I fn(w')- fn(w")I < e holds for all n. Plainly, as a de-
creases, so too do the sets U(e). We claim that U(e) is dense in a for each e.
Of course, the points of n m_ lU(1 /m) are precisely the points of equicon-
tinuity of the sequence (fn); so once our claim has been established, we will
be done with the present task.

Let 0 be any open set in f2. Let

En ,n=

and let

Fp = l i En m.
m, n2 p

Since each fn is continuous, all the sets En ,n and FP are closed subsets of 2.
Moreover, the assumption that limn f,(w) exists for each w r= 2 (and hence
for each w e O) certainly lets us conclude that

U Fp = U.
p

Well! There must be a p so that Fp has nonempty interior (in 0). This
(relative) interior necessarily intersects 0 in an open subset of S2-call it V;

,,, too. Letwe may choose V small enough that any point of V belongs to F
WO E Fi, fl V. Of course, for m, ri >_ p we have If .. (w) - f,,(w)15 e/6 for all
w e V. Hence, for n >- p we have

e e E E6662
so long as w E V. We can achieve strict inequality by shrinking V a bit; this
shrinking can be done since fp is continuous. Notice that there are only
finitely many n smaller than p; so (after possibly p shrinkings) we can find
an open subset V about wo (contained in Fp n 0) such that for any n >_ 1 and
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any wEV

If.(WO)-f,,( )I< 2

Of course, such things force V to be a part of U(e); U(e)n 0 is not empty,
and this (because of O's arbitrariness) yields U(e)'s density.

What of Theorem 2 (part 2)? Let f be a bounded real-valued function (we
leave to the reader's imagination what variations in theme must be sought
after in the complex case) defined on the separable metric space 12 having a
point of continuity in each nonvoid closed subset (relative to that closed
subset) of S2. We will show that there is a sequence of continuous
real-valued functions defined on S2 for which f(w) = lim j,,(w) holds for
each w r= Q. This we do in two steps: first, we show that for each real
number y, the set [ f > y ] = (w E 0: f (w) > y ) is an .-set in S2; then
(building on our first step and the faith inherent therein) we'll show that any
such f must be the uniform limit of a sequence of functions each of the first
Baire class (i.e., pointwise limit of a sequence of continuous functions).

Step 1. For each real number y, if > y] is an .moo set in S2_
Suppose that z > Y. Take any w E 12. Either w E [ f > y] or w E [ f < zJ.

For any nonempty closed subset F of S2, there is a point WF E F at which f IF
is continuous. If cop E If > yJ, then there is an open set U(cF) in St
containing wF such that F n U(cF) c If > y]. Should WF find itself in
[ f < z ], then there would be an open set U(wF) in Q containing wF such that
F n U(('>F) c If < z I. Whatever the situation may be, each nonempty closed
subset F of St contains a proper closed subset F3( = F\U(wF)) such that
F\F1 is contained entirely in either [f > y] or [f <4

Can F1 be nonvoid? Well, yes! But if F, is nonempty, then there is a
closed set F2 properly contained in F, such that F1\F2 is contained in either
[f>y}or(f<z].

Can F2 be nonvoid? If so, there is a closed set F3 properly contained in F2
such that F2\ F3 is contained in either [ f > y ] or [ f < z ].

Proceeding in this manner we generate a transfinite sequence (FE : i; < the
first uncountable ordinal) of closed subsets of SZ (with F. = 0) for which
whenever FF is nonempty, FF+ t is a closed proper subset of FF for which
Ft\ FF+ i is a subset of either [ f > y ] or of [ f < z J; in case rl is a limit
ordinal, we have F,, = n

F
,, Ft.

Here is where we use our hypotheses. 12 is assumed to be a separable
metric space. Therefore, there is a first F,, after which F,, = Fq + 1 = . By
construction, F,, is empty. Therefore,

S2= U (FE\Fe+t),

where each FF\ FF is contained in either [ f < y] or [ f > z ]. Each of the sets
IF\Ff,,, is an.;,,!
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What have we done? We have represented St as the union of two
ffl;-subsets: one formed by taking the (countable) union of those FF\ FF+

1

contained in If > y J; the other formed by taking the (countable) union of
those Ft\ FF+ 1 contained in [ f < z 1.

Let z ' y. For each n, set 0 = A U B,,, where A. and B. are .W.-subsets
of 0 such that A. S If > y] and B c If < zn]. A = U,A,, B = n .B., and
C = n n[ f < zn ] are sets worth watching. First, C = [ f s y]; so C u [ f > y]
= Q. Further, A U B is a decomposition of (2 into disjoint sets satisfying

y] and It follows that A=
[I>y],andsoIf>y]isan. -set.

Step 1 has been taken.
The argument above can be modified to show that for each real y, [ f < y]

is an A.-subset of 0, too.
Step 2. If f is a bounded real-valued function defined on metric space fZ

for which [ f < y] and [ f > y] are .-sets regardless of the choice of real
number y, then f is of the first Baire class. We'll sneak up on this one bit by
bit.

To start, notice that the indicator function cF of a closed subset F of a
metric space (2 is of the first Baire class (think about it). Moreover, if S is an
A. in the metric space a, then there is a (bounded) function g of the first
Baire class such that S = [ g > 0]; indeed, if S = U. F. (F closed, F,, c Fn+ 1),
then g = E. 2 - "cF is the absolute sum of bounded functions of the first
Baire class (and so of the same first Baire class) with [g > 0] = S.

To work! Take a bounded real-valued function f on SZ for which [ f > y]
and If < z] are .W-sets regardless of y, z. Suppose for this argument that
0 < f (w) < I holds for any w E 0. Take an n z 1. For m = 0,1, ... , n -1,
look at the 9d-sets [ f 5 m/n], [(m + 1)/n 5 f ]; for each we can find
bounded real-valued functions g;,,, gm, of the first Baire class such that

If [g,_,-90] and [m+'
The functions

sup(gm,,, 0)
gm sup(g ,,0)+sup(g;;,,0)

are also bounded, of the first Baire class, and satisfy
g0(w)=g1(w)=... =gm-1(w)=0, gm+1(w)=... =gn-1(W)

whenever m /n s f (w) s (m + 1)/n with gm(w) somewhere between 0 and
1. Consequently,

g(w) m n-1(go(w)+ ... + gn-1(w))
is a bounded function of the first Baire class defined on SZ within 1/n of f
throughout Q. f is a uniform limit of such as g. f is itself of the first Baire
class.

All's well that ends well.
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The Classical Nonreflexive Sequence Spaces

Some Special Features of c0, 11, 1..

71

Presently we derive a few of the most basic structural properties of the
nonreflexive sequence spaces co, 11, and 1,,; we also discuss in some detail
the dual of I. Again, our main purpose is to gain insight into the very
special nature of the spaces co, 11, and 1,,. The properties on which we
concentrate are categorical (i.e., homological) in nature and as such find
frequent application in matters sequential.

Our first result says that / is "injective."

Theorem 3 (R. S. Phillips). Let Y be a linear subspace of the Banach space X
and suppose T : Y -+ 1 is a bounded linear operator. Then T may be extended
to a bounded linear operator S : X - I., having the same norm as T.

PROOF. A bit of thought bangs one to observe that the operator 7' must be
of the form

Ty= (y:y)
for some bounded sequence (y,') in Y*. If we let x* be a Hahn-Banach
extension of y,* to all of X, then the operator

Sx=(x*x)

does the tuck. 0

Supposing 1 to be a closed linear subspace of a Banach space X, we can
extend the identity operator 1: 1 -+ l to an operator S : X - 1 with
I I S I I = 1. The operator S is naturally a norm-one projection of X onto I.
thus providing-us with an alternative description of Phillips's theorem: 1 is
complemented by a norm-one projection in any superspace.

co enjoys a similar property to that displayed by 1,,, at least among its
separable superspaces.

Theorem 4 (A. Sobczyk). Whenever co is a closed linear subspace of a
separable Banach space X, there is a bounded linear projection P from X onto
co.

PROOF (W. Veech). Let e* denote the nth coordinate functional in 1, = co;
for each n, let x* be a Hahn-Banach extension of e,*, to all of X.

Look at F = (x* (=- BX.: x* vanishes on co ). Any weak* limit point of
{ x* } belongs to F; indeed, if x * be such a limit point of ( x* ), then the
value of x * at any unit vector em must be arbitrarily closely approximated
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by infinitely many of the numbers (x,*(e,J: n E fl -only-only one of which is
not zero.

Defined: X* x X* - [0, oo) by

d(x*, y*) = F,2-°I(x* - y*)(x,,)I,
n

where is a sequence dense in Sx. Notice that d generates a topology on
X* that agrees on Bx. with the weak* topology.

As noted above, any weak* limit point of the sequence (x,*) is in F. With
the metrizability of F in our hands, we can restate this in the following (at
first glance obscure) fashion: given any subsequence (y,,) of (x,) there is a
subsequence (z,*) of (y,*) which is weak* convergent to a point of F.
Alternatively, the sequence of real numbers given by d = d-distance of
x* to F has the property that each of its subsequences has a null subse-
quence. The result: (xn, F) = 0.

For each n pick a z,* E F close enough to xn (in the d-metric) that
x,) = 0. This just says that 0 = z,"). Now define

P: X - co by Px = (x,*x - z,*x); P is the sought-after projection.

Similar to the case of 1. the "separable injectivity" of co has another side
to it: if Y is a linear subspace of a separable Banach space X and T : Y - co is
a bounded linear operator, then there is a bounded linear operator S : X - co
extending T to all of X. To see why this is so, we use the Phillips theorem to
extend T : Y -i 1. to a bounded linear operator R : X - I.. The separability
of X implies that of the closed linear span Z of RX U co. But now Sobczyk's
theorem ensures the existence of a bounded linear projection P : Z --i co of Z
onto co. Let S = PR.

We turn now to a brief look at /1. It too possesses some striking mapping
properties. In the case of 11, the "projectivity" of 11 comes about because of
the strength of its norm. Face it: the norm of a vector in 11 is as big
as it can be if respect for the triangle inequality and the
" unit" vector is to be preserved. As a consequence of this, we note the
following theorem.

Theorem S. If X is any Banach space and T : X - l1 is a bounded linear
operator of X onto 11 then X contains a complemented subspace that is
isomorphic to 11. Moreover, among the separable infinite-dimensional Banach
spaces, the above assertion characterizes 11 isomorphically.

As is only fair, we start with the proof of the first assertion. Suppose
T : X - 11 is as advertised. By the open mapping theorem there is a bounded
sequence in X such that Tx - e,,. Consider the bounded linear
operator S: 11 X that takes e to x,, -the existence of a unique such S is
obvious. Clearly, TS: 11 - 11 is naught else but the identity on 11 and
"factors" through X. It follows that ST: X - X is a bounded linear opera-
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for whose square [STST = S(TS)T = ST j is itself and whose range is
isomorphic to the closed linear span of the x,,. But if (tn) is any scalar
sequence with only finitely many nonzero terms, then

Eftnl=I1 tnenlll
E

s IITIHI(E tnXn
it

- IITIill E tnSen
II

- IITIIIISE then II

s 11TIIIISAIIEtne,f
I

=11TII IISfIEIt.J.

It follows that the closed linear span of the xn is isomorphic to 11, and the
first assertion has been demonstrated.

To prove the second, we need a couple of facts about 11 that are of
interest in theipselves. The first is a real classic, due to Banach and Mazur:
every separable Banach space X admits of a continuous linear operator
Q:11-# X of 11 onto X. In fact, if we let (xe) be a sequence in Bx that is
dense in Bx, then we can define the operator Q: Il - X by Qen = it is
again a consequence of the strength of 11's norm that Q is a well-defined
bounded linear operator. If x e Bx is given, then we can find an xni so that

fix - xn'lls 212
and

112(X-Xn.)1IkI.

Next pick n2 > n1 such that

so that

112(x - xn,) - xn2 1k
2

1

2

+14(x - s 22
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Continue in this vein with the kth choice producing an nk > nk_1 > ... > n1
for which

II2k_1(X-xn,)-2k-2x.2- ... -2X,,.-i-Xnk IIS
k2

The result is that

Ilx_21-kxnk-22-kX,,
k

`- ... -4x,, -X,t IIS k'2

It follows from this that the vector

2 2
e,, +1e,,,+ ... +

2
E11L

is carried by Q right onto x.
Returning to our second assertion, we see now that if X is a separable

infinite-dimensional Banach space with the property that X is isomorphic to
a complemented subspace of any separable space of which X is a quotient,
then X is isomorphic to a complemented subspace of 11. What are the
complemented infinite-dimensional subspaces of 11? Well, all of them are
isomorphic to 11. Of course, this takes proof, and we set forth to prove this
now. We follow the direction of Pelczynski in this matter.

The first thing to show i3 the following.

Theorem 6 (Pelczynski). Every infinite-dimensional closed linear subspace of
11 contains a complemented subspace of 11 that is isomorphic to 11.

PROOF. Let Z be an infinite-dimensional closed linear subspace of 11.
Choose any z1 in Z having norm one. Let k1 be chosen so that the

contribution of the coordinates of z1 past k1 to the norm of z1 amounts to
no more than 1.

Since Z is infinite dimensional, there is a z2 in Z of norm one the first k1
coordinates of which are zero. Let k2 be chosen so that the contribution of
the coordinates of z2 beyond k2 to the norm of z2 amounts to no more than A.

Again, since Z is infinite dimensional, there is a z3 in Z of norm one the
first k2 of whose coordinates are zero. Let k3 be chosen so that the
contribution of the coordinates of z3 past k, to the norm of z3 amount to no
more than 6.

The inductive step is clear.
Agree that ko = 0. Let

k
b _ F, zr. fej,

j-k,_I+1
where z,,, i denotes the j th coordinate of z and ej denotes the j th unit
vector. Notice that the closed linear span Ibn] of is isometric to 11 and
is the range of a norm-one projection P. Moreover we have IIz,, - not
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exceeding 2-"-' for any n. Let (b,') be the sequence in biorthogonal
to (b,,); we have

b 1 1 __ 1
lI n!1=

IIb,II - llznll - Ilz"- bnll 1-2-"-'
Consider the operator T: 11 +' 11 defined by

Tx=x-Px+F. b,*(Px)z".
n

Since Px a [b"3 and (b,") is biorthogonal to (b") with [b"1 isometric to 11, we
see that (b,*Px) a 11; it follows that T is well-defined, bounded, and linear.
Moreover, if x e 11 and IIx1I1 S 1, then

Ilx - Txli = IIPx - Lb,*(Px)zn II s IIPIIENbn'll Ilbn - znll

2-n-1
E (2n` 1-1)
n

1 -2-n-1
n

l /

Therefore, II I - T II < 1. It follows easily from this that T-' exists as a
bounded linear operator on 11; i.e., T is an isomorphism of 11 onto itself. To
see what T-' looks like, just consider the equation

[I-(I-T)J>(I-T)"=I,
n

and you can see that T-' = En(I - T)". Clearly, T takes [b1] onto [z"]; so
[ zn J is isomorphic to 11. Finally, Q = TPT-' is a bounded linear projection
of 11 onto [ z"] c Z. 0

With Theorem 6 in hand we are ready to finish the proof of the second
assertion of Theorem 5. Before proceeding with this task, we establish some
notational conventions. Suppose (X") is a sequence of Banach spaces. Then
(E" X" )1 denctes the Banach space of all sequences (x.), where x" E X", for
each n, IKxn)11= E"llxnll < oo It is plain that if each X. is isomorphic to 11
with a common bound for the norms of the isomorphisms, then (E"X"), is
isomorphic to 11. Sometimes (E" X" )1 is denoted by (X1®X2 )1. Also, if
X and Y are Banach spaces, then X X Y is isomorphic to (X(DY)1. Now we
finish off Theorem S.

Let X be an infinite-dimensional complemented subspace of 11 (recall this
is what we have been able to conclude about any Banach space X with the
property that it is complemented in any space of which it is a quotient). We
will assume that the symbol " - " will signal the existence of an isomor-
phism between the left- and right-hand extremities. If Y is a complement of
X, then 11 - (X®Y)1. By Theorem 6, there are closed linear subspaces Z1
and Z of X that are complemented in 11 such that X -- (Z1®Z)1 and Z1-11.
The punch line comes from the "Pelczynski decomposition method"; all of
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the following are easy to see:

11-(X(D Y)1-(ZI®Z®Y)1

- ((1194(DY)1

- (11®Z®Y)1
- (11®11(D ... ®Z®Y)1

- ((X9Y)19(X®Y)11S ... ®Z®Y)I
- ((X®X® ... )1®(Y®Y®... )1®Z(DY)I

- ((X®X®... )1®(Y®Y® ... )I®Z)1
- ((X®Y)1®(X®Y)1® ... 9Z)1
- (I1®Il®... ®Z)i'
- (11®Z)1

- (Z1®Z),
- X.

This completes the proof of Theorem 5.
The fanciest of our footwork is done. We have seen that both co and 1.

share injective-type properties while 11's strength of norm ensures that every
separable Banach space occurs as a quotient of 11 (with Theorem 5 telling us
that 11 is the smallest such space in some sense). We will in the next few
sections follow up on more sequentially oriented properties of these spaces,
but it seems that this is as likely a place as any to discuss one more space
that naturally enters the study of the spaces co, 11, and I : ba, the dual of
1,,. Curiously it will be through the study of ba that two of the most striking
sequential properties of these spaces will be unearthed.

Take an x * E l Then for each Q c N, the characteristic function of A, cs
belongs to 1,,, and so we can evaluate x*(ce). It is easy to see that x*(cs) is
an additive function of A; furthermore, given any pairwise disjoint subsets
DI,A2,...,A of N we have

R R`

Ix *CA, I x *C,&. SVI x *c,&,

= x * sgn x *ca, c0,

s
I IE; _ 1 sgn x *co, cA ,II ,,, 51. So members of 1.* lead us naturally to

finitely additive measures whose total variation is bounded. This natural
intrusion of-finitely additive measures into the study of 1 (through duality)
is worth spending some time on; it is even worth exploring in some
generality.
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Suppose ) is a set ands is a a-field of subsets of fl. Denote by B(s) the
Banach space of bounded, s-measurable scalar-valued functions defined on
Sl with the supremum norm II- II and denote by ba(s) the Banach space of
bounded additive scalar-valued measures defined on s with variational
norm 11- 111. We plan to show that B(s)* = ba(s) with the action of a
p E ba(s) given by means of integration. It is plain that a computation
virtually identical to that of the previous paragraph gives a member of
ba(s) for each member of B(E)*, namely, p(E) = x*(cE). Moreover,
I1µ111 s 11x*1(. Next, if It E ba(s), we can define an integral f dp in such a way
that every f E B(s) can be integrated. How? Start with a simple function
f = E"_1a;cA, where a1, a2, ... ,an are scalars and A1, A2, ... ,An are disjoint
members of s; then ffdp is defined in the only sensible way:

n n

ffdp= f E a;cA,dp= a,p(A;)-i ;-1
Observe that if IIIII 51, then

Iff
dµ1 = E aµ(A,)

i
fr

E la;llµ(A,)I;-i
n

5 sup lail E Ip(Ai)Iisisn i-i
s I1µ111

It is now clear that f dµ acts in a linear continuous fashion on the simple
functions modeled on s endowed with the supremum norm. As such it can
be uniquely extended to the uniform closure of this class in a norm-preserv-
ing fashion; the uniform closure of these simple functions is just B(s).
Whatever the extension is, we call its value at an f E B(s) "ffdp."

To summarize, start with an x* E B(Z)*, define p E ba(s) by p(A)
x*(cA), and note that 11#111:5 Ilx*II. Observe that p generates f du, which
precisely reproduces the values of x*. Moreover, f dp as a functional has
functional norm no more than IIp9I1. We have proved the following theorem.

'Theorem 7. The dual of B(s) is identifiable with the space ba(s) under the
correspondence

x* E B(s)* H p E ba(s)

given by

x*f = ffdp.

Furthermore, (Ix*II - I1µ111-
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The alert reader will notice that the above reps sentation theorem is really
quite formal and cannot be expected to produce much of value unless we go
quite a bit deeper into the study of finitely additive measures. Tl-'- calls for
a few words about bounded additive measures; in other werd3, we digress
for a bit. We hope to make one overriding point: a scalar-valued measure
being bounded and additive is very like a countably additive measure and is
not (at least for the purposes we have in mind) at all pathological.

For instance, suppose p E ba(s) and let be a sequence of disjoint
members of E. For each n we have _

n

E Ip(Ak)I S ullul
k-1

so that

L l (An )I i iIN'II1
0

and is an absolutely convergent series. The point is that p adds up
disjoint sets-even countably many of them-it just may not be judicious
enough to add up to the most pleasing sum.

In reality the fact that and might disagree is not p's
"lack of judgment" but a failure on the part of the underlying a-field 1.
Suppose, for the sake of this discussion, that p has only nonnegative values.
Then for any sequence of pairwise disjoint members of 2 we have

E L(A,,)

That strict- inequality above might occur is due to the "featherbedding"
nature of unions in 2. If we look at the proper model for the algebra 2, then
on that model p is- countably additive. This statement bears scrutiny.

Recall the Stone representation theorem. It says that for any Boolean
algebra . V there is a totally disconnected compact Hausdorff space £1l ,for which
the Boolean algebra ." (d) of simultaneously closed and open subsets of Q e is

f.isomorphic (as a Boolean algebra) to W.
Start with B, pass to 0.1, then to SP(M). p has an identical twin !l working

on Y(l ), but fi has better working conditions than p. In fact, if (K.) is a
sequence of disjoint members of ."(l) whose union K belongs to ,9'(M),
then (since K is compact and each K. is open) only a finite nur 'er.of the
K are nonvoid! µ is countably additive on .9'(X) and so has a unique
(regular) countably additive extension to the a-field of subsets of (
generated bySP(Z).

What happened? To begin with, if we have a sequence of disjoint
members of I and we look at U, A, = A, each A, and A correspond to a K;
and K in .9'(l). The isomorphism between 2 and .V(2) tells us that K is the
supremum in the algebra .9'(2) of the Kn. However, K is not (necessarily)
the union of the K,,. No; in fact, Stone showed that whenever you take a
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family ( K.).E A of "clopen" sets in the Boolean algebra Y(s), then the
supremum of the K.-should such exist in Y(s)-must be the closure of
the union. It follows that K = UK over in SZK. Returning to our An, we see
that µ's value at the union of the A included not only Enu(An) but in a
phantom fashion µ(K\U.K.). This justifies the claim of featherbedding on
part of union in s.

What about integrals with respect to members of ba(s)? They respect
uniform convergence and even some types of pointwise convergence. Of
course, one cannot expect them to be like Lebesgue integrals without
countable additivity. On the other hand, one is only after integrating
members of B(s) wherein uniform convergence is the natural mode of
convergence; so this is not too great a price to pay.

Finally, it ought to be pointed out that members of ba(s) are like
countably additive measures: if It E ba(s) and (An) is a sequence of disjoint
members of s, then there is a subsequence (Be) of (An) such that It is
countably additive on the a-field 9 generated by the B. Why is this?
Suppose µ has all its values between 0 and 1. Let K and N be infinite
disjoint subsets of the set N of natural numbers. Then either E,E KP(A,,) or
En E xp(A,,) is less than or equal to #. Whichever the case, call the infinite
subset N1 and let B1 be An, where n1 is the first member of N1. Now break
N1\(n1) into two disjoint infinite subsets K and N; either En E Kp(A) < I
or En _,v1(An) s J. Whichever the case, call the indexing set N2 and let B2
be A,, , where n2 is the first index occurring in N2. Repeat this procedure,
and A it of thought will show that the resulting sequence (B,) satisfies our
claim for it.

! Schur's Theorem about 1l, and the Orlicz-PettiF
Theorem (Again).

We saw in the preceding section that 1.* is not quite so unwieldy as might be
guessed. In this section a few of the truly basic limiting theorems regarding
/.* are derived. They include the Nikodym-Grothendieck boundedness
theorem, Rosenthal's lemma and Phillips's lemma. From this list we show
that in 11 the weak and the norm convergences of sequences coincide-an
old fact discovered by Schur in 1910. Then we derive the Orlicz-Pettis
theorem much as Orlicz and Pettis did in the 1930s.

Throughout this discussion tI is a set, Y. is a a-field of subsets of 52, and
ba(s) = B(s) is the space of bounded, finitely additive scalar-valued
measures defined on s. For p E ba(s) the variation I#I is the member of
ba(s) whose value at a member E of s is given by

1µ1(E) = sup(sIp(E,)J),

where the supremum is taken over all finite collections (E1, ... , En) of
pairwise disjoint members of s contained in E: Of course, IpKSE) is just the
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variational norm fl
j of µ. It is noteworthy that for any E E I we have

sup JA(F)J 5 Ipl(E) 5 4 sup Ip(F)J.
Fe! FEEFcE FcE

The left side holds trivially, whereas the right follows from considering for a
fixed E E and a given partition it of E into a finite number of disjoint
members of I the real and imaginary parts of each value of µ on members
of 7r and checking the positive and negative possibilities of each.

Let us start our more serious discussion with a fundamental bounding
principle.

Nikodym-Grothendieck Houndedness Theorem. Suppose Jr P,: t E T } is
a family of members of ba(I) satisfying

sup lµ,(E)l <oo

for each E E E. Then

sup lp,(E)I<oo.
,.Ee2

PROOF. Should the conclusion fail, there would be a sequence
members of .'for which

sup Jpn(E)J=oo.
n.EEI

(i) of

Suppose such is the case.
Observe: If p > 0, then there is an n and a partition ( E, F) of SZ into

disjoint members of 2 such that both 11An(E)J, 1µn(F)J > p. In fact, choose n
and E so that E E 7, and

Then

Jµn(E)l> SUP kµk(l)`+p
k

IA,,(1\F)l _ lun(E)-pn(a)J

lAn(E)l - > p.

Now let n1 be the first positive integer for which there is a partition
{ E, F) of ft into disjoint members of I for which

`l'ln,(E)I.Ipn,(F)I> 2.

One of the quantities

sup Jpn(EnB)J, sup Ipn(FnB)I
n.BEI n.BE1:

is infinite. If the first, set B1 = E and G1= F; otherwise, set BI = F and
G1-E.
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Let n2 > n1 be the first such positive integer for which there is a partition
(E, F } of B1 into disjoint members of M such that

I1in2(E)I,IAn,(F)l>lu.,(Gl)I+3.

One of the quantities

sup Iµn(EnB)I, sup Jµn(FnB)I
it. BEE n,BEE

is infinite. Should it be the first of these, set B2 = E and G2 = F; __...rwise,

set B2 = F and G2=E.
Continue.
We obtain a sequence (Gk) of pairwise disjoint members of X and a

strictly increasing sequence (nk) of positive integers such that for each k > 1
k-1

IFrnk(Gk)I> F. JµnJGJ)I+k+1.

j-1
Relabel (µ,,) by (µ k ).
Partition the set N of natural numbers into infinitely many disjoint

infinite subsets N1, N2,.... The additivity of 11A1l gives

L.+ U Gn
k-1 .,ENk n

s

It follows that there is a subsequence (Gk) of (Gk)k, 2 such that
00

UGk,)<1.

Repeat the above argument; this time work with Iµk,l instead of 1µ1l and
(Gk), a 2 instead of (Gk )k a 2. You'll find a subsequence (Gk,,) of (Gk)i > 2

such that
00

IN,I( U Gk,, <1.
j-1

Repeat with 1µk I replacing Iµk,I and (Gk )I 1 2 in lieu of (G. ), z 2.

Let G,,,, denote first member of the ith subsequence so generated
(m1=1,m2.=k1, n3=k,,,...).Thenforeachj,

W. U G.n, <1.4 00
_j+1

If we let



82 VII. The Classical Banach Spaces

then

IAm,(D)I=
j-1 a,

U G.,UGmiU U Gm,i-1 i- j+1

Zljtm,(Gm,)I-
j-1

gym, U Gm+i-i
00

U Gm+ )-j+1i

1

Iµmi(Gmi)I ' E Iµm,(Gm,)H ulZni,l U Gm)
i-1 L j+1

ZmjT00,

a contradiction. n

Rosenthal's lemma is our next stop. It provides the sharpest general
disjointification principle there is.

Rosentha"s Lemma. Let (µn) c ba(E) be uniformly bounded. Then given
e > 0 and a sequence of disjoint members of I there is an increasing
sequence (kn) of positive integers for which

U Ek,) <e
j+n

for all n.

PROOF. We may assume that sup. I ,KU.E.) 51.
Partition N into an infinite number of infinite (disjoint) subsets (Nk). If

for some p there is no k E NP with

IPkl U Ej z e,
jtk
j E N,

then for each k c- N. we have

IN] U Ej < e.
j+k
j E N,

Enumerating N. will produce the sought-after subsequence. What if no such
p arises? Well, then it must be that for each p there's a k p E N. for which

I1k,I U Ej Ze.jfk,
jEN,
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Notice that

IP.k,I(UEk,,)+Iµk,I(UEn\UEk.,) - IILk,I(UEn) 51,
n n n n

which, since

U Ej 9 UEf\UEk,,,
j ; kn it n
jENN

gives us

51-e
n

.83

for all p.
Repeat the above argument starting this time with the sequences µ;, = k.

and E,- Ek.; our starting point now will be the inequality

V 51-e.
n

Proceeding as above, either we arrive immediately at a suitable subsequence
or extract a subsequence (jk.) of (kn) for which another a can be shaved off
the right side of the above inequality making

Iu,,,I(UEjj 51-2e
n

hold for all p. 0

Whatever the first n is that makes 1- ne < 0, the above procedure must
end satisfactorily by n steps or face the possibility that 0 51- ne < 0.

From Rosenthal's lemma and the Nikodym-Grothendieck boundedness
theorem we derive another classic convergence theorem pertaining to l,*p.

Phillips's Lemma Let µn E ba(2^') satisfy 0 for each A c N.
Then

limEfµn((j))I=0.
it j

PROOF. The Nikodym-Grothendieck theorem tells us that supnllµnll < 00,
and so the possibility of applying Rosenthal's lemma arises.

Were the conclusion of Phillips's lemma not to hold, it would be because
for some 8 > 0 and some subsequence [which we will still refer to as (µn )] of
(µn) we have

E.Iµn((j))Iz68
j

for all n.
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Let Fl be a finite subset of N c. c which

Jai(F1)+> S.

Using the fact that is null for each A, choose n2 > n1=1 so that

E IA.,((J})I<a.
jeFF

Next, let F2 be a finite subset of N\Fi fbr which

Ipn2(F2)Iz s E IP,,j(J) )I
leFi

A
J

zs(66-6)a.
Using the fact that is null for each A, choose n3 > n2 so that

E -a.
jeFFUF2

Let F3 be a finite subset of N\(F1 U T2) for which

IPn,(F3)I s E IN,({j})I
/ F, F15

j
J JFF,UF.

5(68-S)S.
Our procedure should now be clear. We extract a subsequence of

(µn) and a sequence of pairwise disjoint finite subsets of N for which
given n

j,Ivn(( j))I?68,
n

E
j6FIU ... U/',_1

and

Rosenthal's lemma allows us to further prune and (F,,) so as to attain

lynl( U Ft) < .

ktn
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On so refining, we see that

F, )l an(U
M

vv(F,)+Vn( U Fm)I
m#n

Ivnl( U Fm)
m4n

Schur's Theorem. In 11, weak and norm convcrgences of sequences coincide.

PROOF. Each x E 11 defines a µx E ba(2N) =1* = li * by looking at x's
image µx under the natural imbedding of 11 into /,**, where for any 4,
is given by

µx(0) _ E x(n),
nEA

x=(x(n))E11.

Should (xk) be a weakly null sequence in 11, then the corresponding
sequence (s = µxk) in ba(2N) satisfies

limµn(A) = lim F, x,,(m)
it n mEA

= limxA(xn) = 0.
n

Phillips's lemma now tells us that

0=urn Itn({J})j=Jim EIxn(J)I=limIIxnpI1
n n if

Okay, it is time for the Orlicz-Pettis theorem again-only this time we
prove it in much the same way Orlicz and Pettis did it in the first place using
Schur's theorem except that we use Phillips's lemma.

PROOF OF THE ORLIcz-PErris THEOREM. As usual, there is some initial
footwork making clear that if anything could go wrong with the Orlicz-
Pettis theorem, it would happen where a weakly subseries convergent series
Enxn could be found for which Ilxnll Z e> 0 holds for all n. This proof
shows that whenever is weakly subseries convergent, there is a subse-
quence (xnA) of (xn) that is norm null.

Whatever goes on with the series E,,xn, all the action happens in the
closed linear span [xn] of the xn; so we may as well assume that X is
separable. For each n choose an x* E Bx. such that x*xn = Ilxnll Since X is
separable, Bx. is weak* compact and metrizable (the proof of this will be
given later in detail; however, a look at step 1 of the proof of the
Eberlein-Smulian theorem ought to be convincing of this fact). Therefore,
there is a subsequence of (x*) which is weak* convergent, say, to yo ;
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let be the corresponding subsequence of (x ). is weakly subseries
convergent. Therefore, is weakly null. It follows that for very large n,
(y,* - yo)(yy) is very close to IIyyII Since the series Ey, is weakly subseries
convergent, for any A c N the series E. c j y converges weakly to some
ao E X. Define µ E /,,*, at A c N by

AJA) = yo*)(a4)
Because yo = weak* lim y,*, limn 0 for each A c N. Phillips's lemma
concludes that limn ))I = 0. But (y,* - with the
left side being a good approximation of IIyyII for n big and the right side
being a good approximation of 0 for n big. Enough said.

Weak Compactness in ca(l) and L1(µ)
Let St be a set and E be a a-field of subsets of 11. Denote by ca(E) the linear
subspace of ba(E) consisting of the countably additive measures on E. It is
clearly the case that ca(E) is a closed linear subspace of ba(E) if the latter is
normed by Iljull = sup(I s(E)I: E E E); from this and the inequality lll`II.
s IIl<Ill = variation of s = IµKa) s 4IItII,,, we see that (ca(E), II II1) is a
Banach space. Further, it is a standard exercise that JAI E ca(E) whenever
pEca(E).

It is our purpose in this section to derive criteria for weak compactness in
ca(E). On doing so, we will derive the classical conditions for a subset of
L1(µ) to be weakly compact and recognize both ca(M) and L1(µ) as Banach
spaces in which weakly Cauchy sequences are weakly convergent. The
Kadec-Pelczynski theorem, recognizing the role of Il's unit vector basis in
nonweakly convergent sequences in L1(µ), will be given its due attention,
and the Dieudonnb-Grothendieck criterion for weak compactness in rca(E)
will be established. Here rca(E) denotes the space of regular members of
ca(E ), where E is the Borel a-field of subsets of a compact Hausdorff space
5t. A well-known consequence of this and Phillips's lemma, i.e., weak*
convergent sequences in 1.* are weakly convergent, will finish this section.

We begin our discussion with an idea of Saks. Take a nonnegative
A E ca(E). For A, B E E define the pseudo A-distance between A and B by

dA(A, B) = A(AAB),
where AAB - (A\B)U(B\A) is the symmetric difference of A and B. The
seed of Saks's idea is in the following easily proved result.

Theorem & (E, da) is a complete pseudometric space on which the operations
(A, B) - A U B, (A, B) -i (A r) B), and A - A` are all continuous (the first
two as functions of two variables).

Saks's program is to study convergence of sequences of countably addi-
tive measures on E by means of viewing the measures as continuous
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functions on pseudometric spaces of the (E, dA) ilk; particularly useful in
this connection is the completeness of (2, d.) since it brings to mind the
Baire category technique, a technique mastered by none more thoroughly
than Saks.

Completeness being so crucial to the implementation of Saks's scheme, we
would be remiss if we didn't say at least a few words toward the proof of the
completeness aspect of Theorem 8 (other assertions can be safely left to the
enjoyment of the careful reader).

To see that (E, da) is complete, notice that for A, B E 2,

da(A, B) =11c4 - cDI1L,(a)

Therefore, if is a d,,-Cauchy sequence in Z, (c,t) is norm Cauchy in
L 1(A ), hence convergent in L1(A)-mean to some f r= L1(A ). Passing to an
appropriate subsequence will convince you that f is itself of the form cA for
some A E 2. Of course, A is the d,\-limit of

Naturally, if k E ba(Z) is continuous on (2, d,,), we say it is A continuous.
Notice that A-continuity of p automatically implies p is itself in ca(l). In
this connection it is noteworthy that the A continuity of µ E ba(E) is just
saying that µ satisfies the condition: for each e > 0 there is a 8 > 0 such that
I, (E)-p(F)Ise whenever IA(E)-A(F)I=IA(EAF)Is8; in particular,
whenever X(E) 5 8, then Ip(E)1 S e, and so µ is absolutely continuous with
respect to A. The converse is also true; i.e., if p is absolutely continuous with
respect to A, then p is a continuous function on (E, da).

Suppose iris a family of finitely additive scalar-valued measures defined
on E. We say (for the moment) that .%'is equi-A-continuous at E E I if for
each e > 0 there is a 8 > 0 such that if F E I and d,,(E, F):5 8, then
Ip (E) - p(F)1 5 e for all p e .X'; uniformly equi-A-continuous on I if for
each e > 0 there is a 8 > 0 such that given E, FEE with da(E, F) 5 8, then
Ip(E)- p(F)I 5 e for all p E X; uniformly countably additive provided for
each decreasing sequence (En) of members of E with n E = 0 and each
e> 0 there is an Ne such that 5 e for n beyond NN and all p E X.

The momentary excess of verbiage is eliminated by the next theorem.

Theorem 9. Let Mb e a family of finitely additive scalar-valued measures
defined on E. Then the following are equivalent (TFAE):

1. *'is equi-A-continuous at some E E 2.
2. -*'is equi-A-continuous at 0.
3..X''is uniformly equi-A-continuous on E.

Moreover 1 to 3 imply that .fis uniformly countably additive.

PROOF. Suppose 1 holds. Let e > 0 be given and choose 8 > 0 so that should
B E I be within 6 of E, then I p(B)-- p(E)I s e for all µ E Jr.
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Notice that if A E 2 and A(A) S 8, then A((E U A)AE) --,,,\(A) 5 8 and
A((E\A)AE) 5 A(A) 5 S. It follows that if A E E and ,\(-A) 5 8, then

Ip(A)I - Iit(A U E)-µ(E\A)I

s Iµ(A U E)-µ(E)I+Ip(E)-µ(E\A)I
Se+e=2e

for all it E. '. This is 2.
Next, if C, D E I and

A(C\D)+A(D\C) - A(COD) S 8,
then for all it E .a['we have

Ip(C)-,i(D)1= I,L(C\D)-µ(D\C)I

s Iµ(C\D)I +Ip(D\c)I
52e+2e=4e,

and now 3 is in hand.
The last assertion follows from 3 and A's countable additivity.
From now on a .'satisfying I to 3 will be called uniformly A-continuous;

sometimes this is denoted by .« A and sometimes by
unit

lim µ (E) = 0 uniformly for it E Jr.
A(E)-0

A bit more about uniformly countably additive families is in order.

Theorem 10. Let .i c ca(l). Then TFAE:

1. If is a sequence of disjoint members of 2, then for each e > 0 there is
an n, such that form > n > n,

i-n
for all µ E Jr.

2. If is a sequence of disjoint members of 2, then for each e > 0 there is
an n, such that for n > n

µ(Ei) 5 e
inn

for all µ E X.
3. If is a sequence of disjoint members of 1, then for each e > 0 there is

an n, such that for n -- n,

I#(E.)ISe

for all µE.X'.
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4. If is a monotone increasing sequence in YE, then for each e > 0 there is
an n, such that if in, n n,, then

for all g E Jf''.
5. If is a monotone decreasing sequence in B, then for each e > 0 there is

an n, such that if m, n > n,, then

IA(L,,,)-ts(EJ:5- e
for all kEX.

6._V'is uniformly countably additive on Y

PROOF. The proof is purely formal and proceeds as with one measure at a
time with the phrase "for all u E A"' carefully tacked on; for this reason we
go through the proof that 3 implies 1, leaving the details of the other parts
of proof to the imagination of the reader.

Suppose (En) is a sequence of disjoint members of 2 for which l failed;
then there would be an e > 0 such that for any N there would be mN >_ n N >_ N
with an accompanying µN E for which

M ,V

E PN(E,)
' -nN

ze.

Take N =1 and choose m, >_ n, >_ 1 in accordance with the above quag-
mire. Let Ft = U-11 e1E;. Let vt = µi.

Next, take N = m, + I and choose m2 z n 2 >_ N, again according to the
dictates above. Let F2 be U _n2E,, and let v2 =µN.

Our procedure is clear; we generate a sequence (Fk) of pairwise disjoint
members of E along with a corresponding sequence (vk) in .X'for whichjVk(Fk)If

Z e,
thereby denying 3. O

Formalities out of the way, we recall from the first section that we proved
the following: let (X, d) be a complete (pseudo) metric space, and let (f,,) be
a sequence of continuous scalar-valued functions defined on X. Suppose that for
each x e X, lime fe (x) exists. Then (x E X : is equicontinuous at x) is a
set of the second category in X.

An almost immediate consequence of this is the following classical result.

Vitali-Hahn-Saks Theorem. Let (jie) be a sequence in ca(E) each term of
which is A-continuous, where A is a nonnegative member of ca(E). Assume that
limnµn(E)=µ(E)exists for each EE2. Then (µn) is uniformlyA-continu-
ous and t is both A-continuous and countably additive.

PROOF. Viewing the µe as functions on the complete pseudometric space
(E, d,\), we can apply the cited result from the first section. The equicon-
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tinuity of the family (µ,r) on a set of second category implies its equicon-
tinuity at some E E I and brings Theorem 9 into play.

Another "oldie-but-goodie":

Nikodym's Convergence Theorem. Suppose is a sequence from ca(E) for
which

limµn(E)=µ(E)
n

exists for each E E E. Then is uniformly countably additive and µ E
ca(l).

PaooF. Consider the absolutely convergent series

IµnI(-)
(1+II,t II1)2n

in ca(s); its sum A E ca(E) is nonnegative, and together (µn) and A fit
perfectly in the hypotheses of the Vitali-Hahn-Saks theorem. Its conclusion
suits and µ well.

Weak convergence in ca(s)? No, we haven't forgotten!

Theorem 11. A sequence (isn) in ca(M) converges weakly to µ E ca(E) if and
only if for each E E E, µ(E) = limµn(E).

PROOF. Since the functional v -,v(E) belongs to ca(l)' for each E E E,
the necessity of µ(E) = lim,,p (E) for each E E E is clear.

Suppose for the sake of argument that µ(E) = lim,,p (E) holds for each
E E E. Now Nikodym's boundedness theorem allows us to conclude that
the µn are uniformly bounded, and so oo. It follows that the
series

E IN'nI(-)
' 2"
n

is absolutely convergent in the Banach space ca(l); let A be its sum. For
each n there is an f E L 1(A) such that

1Rn(E)=
r

f1Ef^dA'

this thanks to the Radon-Nikodym theorem. Similarly, there is an f E L1(A)
such that

µ(E) = f fdA
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for each E E 2. Since supnlpnKU) < oo and II4II1- Ipj1), (4) is an
L1-bounded sequence. Sincep(E) = holds for each E E Y.,

f fgdx=lim f fngdX

holds for each simple function g. But the collection of all simple g is dense
in L (A) so that an easy e/2 + e/2 = e argument shows

f fhdA=lim ff. h A

holding for all h r=- L1(A)*. It follows that (fn) converges weakly to
f in L1(A), which in turn implies that (pn) converges weakly top in ca(s). O

Immediate from the above is the following corollary.

Corollary. A sequence (fn) in L1(A) converges weakly to f in L1(A) if and
only if fE f d A= lim f E fn d A for each E E M.

In tandem with the Vitali-Hahn-Saks-Nikodym convergence principles
the above proofs suggest the following important theorem.

Theorem 12. Weakly Cauchy sequences in ca(B) are weakly convergent.
Consequently, for any A E ca+(I), weakly Cauchy sequences in L1(A) are
weakly convergent.

PROOF. Let be a weakly Cauchy sequence in ca(E). Since each E E I
determines the member v -+ r(E) of ca(B)*, limnpn(E) -;&(E) exists for
each E E B. The Vitali-Hahn-Saks-Nikodym clique force p to be a member
of ca(I). The just-established criteria for weak convergence in ca(I) make p
the weak limit of (pn ).

The second assertion follows from the first on observing again that for
A E ca+(I), L1(A) is a closed subspace of ca(l). O

We are closing in on weak compactness criteria for both ca(I) and L1(A).
The next lemma will bring these criteria well within our grasp.

Lemma. Let d be an algebra of sets generating I and suppose (;&,) is a
uniformly countably additive family for which limnp (E) exists for each
E E ,ref. Then lim, pn(E) exists for each E E I.

PROOF. Look at A = (E E 2: exists). By hypothesis, V c A.
We claim that A is a monotone class; from this it follows that A= B,
proving the lemma.

Let (Em) be a monotone sequence of members of A with E. -+ E. By the
uniform countable additivity of the p,,,

pn(E) = limpn(Em)
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uniformly in n; one need only glance at and believe in Theorem 10 to see
this. So given e > 0 there is an m such that

11A,,(E.)-µ"(E)lse
for all n. But (µn(Em))n converges; so there is an N, such that if p, q z N,
then

(µp(Em)-µ4(E.)1 s e.

Plainly

Ili,(E)-µq(E)I53e

should p, q exceed N,. It follows that (µ,,(E)) is a convergent sequence. O

Theorem 13. Let X be a subset of ca(l ). Then TFAE:

1..7'is relatively weakly compact.
2. Jfris bounded and uniformly countably additive.
3. J(is bounded and there is a A E ca+(1) such that.7!'is uniformly A-continu-

ous.

PRooF. Suppose -l is relatively weakly compact. Then there is an M > 0
such that l1µ1115 M for all µ (=- A. We claim that given e > 0 there is a finite
set tµ1, ... ,µ") C 1'and a 8 > 0 such that I14E),1µ2KE), ... ,IµjjE) 5 S
implies Iµ(E)I 5 e for all µ E X. Indeed if this were not the case, then there
would be a bad e > 0 for which no such finite set or 8 > 0 exists. Take any
µ1E .1. There must be E1 e Y. and µ2E X for

Iu1i(E1) 51, lµ2(E1)j> e.

Further there must be E2 E Z and µ3 E .''such that

IK1I(E2), 1µ21(E2) 5; and J1L3(E2)1> e.

Continuing in this fashion, we get a sequence (µn) in Xand a sequence (En)

in I such that

Iµ11(E'n),...,Iµnl(En) 5 2-n and Iµn+1(En)!> e. (1)

Passing to a subsequence, we can arrange that (µn) converges weakly to
some µ E ca(l ); if (n k) denotes the indices of this extracted subsequence
and we replace Em by En.,, _ , then for the weakly convergent sequence we
can assume (1) as well. Let A = E"2-"Iµ.1; by the Vitali-Hahn-Saks theo-
rem, (µ") is uniformly A-continuous. But A(E,.) tends to 0. Therefore,
limml<n(Em) - 0 uniformly in n, a hard thing to do in light of 1µn+1(En)I > e

for all n; that is, we reach a contradiction.
Our claim is established; we now use the claim to show how I implies 3.

From the claim we see that there is a sequence (vn) in .t such that if
IrnKE) = 0 for all n, then 1µ(E)) - 0 for all µ E X. If we look at A =
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E 2 `11r I E ca+(E ), then it is plain that each p in .. is A-continuous. Were i
not uniformly A-continuous, there would exist an e > 0, a sequence of
members of E, and a sequence from such that even though 0 =
lim.A(E ), I )I Z e for all n. Passing to a subsequence, we could as well
assume the sequence is, eakly convergent to a p E ca(E). But this
would say something which, in view of Theorem I1 and the Vitali-Hahn-Saks
theorem, is not possible.

It follows that 1 implies 3.
Since Theorem 9 tells us that 3 implies 2, we aim for 1 with 2 in hand.

Suppose X is bounded and uniformly additive. Take a sequence from
.af'', and let A 3 E. 2`11s.1 E ca+(E). For each n, let f be the Radon-
Nikodym derivative of p with respect to A. Since each f is the pointwise
limit of a sequence of simple functions, there is a countable collection
r c E such that f, is measurable with respect to the a-field E,, generated byr . Look at u. r = r, and let _V be the algebra generated by r. Both r and
dare countable. An easy diagonal argument produces a subsequence (p;,)
of that converges on each member of d. It follows from our lemma
that (p;,) converges on each member of the a-field a(d) generated by d.
Therefore, (f,) converges weakly in LI(A, a(d)), a subspace of L1(A).
Hence, (f,) converges weakly in L1(A) and so (#') converges weakly in
ca(E). The Eberlein-Smulian theorem comes to our rescue to conclude that
.imust be relatively weakly compact. 0

An immediate consequence of the above corollary and the Radon-
Nikodym theorem is the following.

Theorem (Dunford- Pettis). Let X E ca+(E) and Xbe a subset of Ll (A). Then
TFAE:

1..l'is relatively weakly compact.
2.. (is bounded and the indefinite integrals of members' of .aE''are uniformly

countably additive.
3. sups. ,x-IIf II1 < oo, and given e > 0 there is a S > 0 such that if A(A) 5 6,

then f,, If I dA s e for all f E X.

Corollary (Kadec-Pelczynski). Suppose iris a nonweakly compact bounded
subset of L1(A), where A is a nonnegative member of ca(E). Then .teontains a
sequence (f,,) which is equivalent to the unit vector basis of 11.

PRooF. By the Dunford-Pettis theorem, we know that the measures
( f(.)f A: f E .X'') are not uniformly countably additive on E. Therefore,
there is a sequence (f,) in ., a disjoint sequence in E, and a S > 0
such that for all n,

f If.1 A>8.
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By Rosenthal's lemma we can (pass to an appropriate subsequence so as to)
assume that

4! JnI A > 8 and fUEJIfRIda<2.
Jon

If then
00

fr YnfnX I.E.
R-1 1

E Yn fR
n-1

IYnf Ida-I1 YnfnXUM.NE.
n-1 E. n-1

Z S E IYnI- 2 Y, IYnI
R

=2LrIYnI
n

O

As one can quickly gather from the above corollary, the Dunford-Pettis
criterion is a powerful tool in the study of L1 and its subspaces; when
combined with some ideas from basis theory, this power is displayed in' a
stunning dichotomy for subspaces of L1[0,1], also discovered by Kadec and
Pelczynski. An exposition of this dichotomy, following closely along the
original path cleared by its discoverers, is our next task.

Theorem (Kadec-Pelczynski). Let X be a nonreflexive subspace of L1[0,1].
Then X contains a subspace complemented in L1 and isomorphic to !1.

To help us get started, we first provide a way of producing complemented
copies of li inside L1[0,1].

Lemma. Let be a sequence from L1[0,1], and suppose that for each e > 0
there is an n, such that the set ( t: I z FIIfR,II1) has measure < e. Then

has a subsequence (gn) such that (g / II g It) is a basic sequence equivalent
to 11's unit vector basis and for which the closed linear span [ g ] of the g is
complemented in L1[0,11.

PROOF OF LEMMA. We first take care to see just what the set ( t : I f (t) I;->
ell f II1) having measure < e entails. Call this set E. Then

f If(t) dt= (' (t)dt -ffit} dt
E III I! a 11f 11 E` Of 11

r
w(r)y<ditu] IIIII

dt>1-e.
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Therefore, under the hypotheses of the lemma, we can find E, and n1 so
that

X(E,) < 42

and

N"'(t)4dt>1- 1
1E, 11 fn,11 42

Next, applying the hypouteses again and keeping the absolute continuity
of integrals in mind, we can find E2 and n2 > n, so that

A(E2) < 13
4

dt>1- 1
IEZ 114211- 43

and

If"=(t){dt< 1 .4: Ilf",II 43

Continually applying such tactics, we generate a subsequence (g") of (f")
and sets E" so that

%n(t)ldt>1-
1fE 119"11 4"+t

and

E.k_1 PI9kII 4

Now we disjointify: let

00A" " En\ U Ek
k-a+1

and set

h"(t): g"(t)XA,.
11%"11
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Some computations:

Ilg-II - h" II A's IIg II 1 di
II " 1

5 / Ig-(t)1 dr f Ig-(t)1 dr
E IIg-II E. 4 IIg"II

1

Therefore,

4

00
Ig"(t)I dtS "+1 + E

4

k-n+1 Ek I1g-11

1
}00

1 1

"n+1 + ` k+I 44k-"+l

1;-* IIhnII1=
Ig"(t)I d,4. IIg-II

zIg-(t)I 1g-(1)I

IER IIg-Il dt - k - n +1 JEk II9-II
dt

00
1z1- -4-+1

k -+1 4k+1-

So,

Ilgnll IIh-II s II Ilgnll 1lhnll +I

54-"+(1-11h"II)s4"

Some reflections:
The hn are disjointly supported nonzero members of L1[0,1]; therefore,

(h./11h-1D is a basic sequence in L1[0,1] equivalent to the unit vector basis
of l1, [h-] is complemented in L1[0,1] by means of a norm-one projection P,
and the coefficient functionals qtr' of (h-) extend to members of L1[0,11
having norm one. All this was noticed in our earlier work.

.Our computations alert us to the proximity of the g-, on normalization, to
the hn, on normalization. In particular,

EIIPII 11aNII
11g

gn h.
"11 11h-11

An appeal to Theorem 12 of Chapter V concludes the proof of the lemma. 0

1
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Now for the proof of the main theorem we start with the nonweakly
compact closed unit ball Bx of X. Let 0 < p 51 and set, for any f r= L1[0,1],

a(f, K) = sup( f l f(t)Jdt: A(E) -p).

If ax(p) = supf E aa(f, p), then the nonreflexivity of X is reflected by the
conclusion that

a* lmax(p)>0.
i-'0

Therefore, we can choose f a Bx, measurable sets E c (0, 11, and pR > 0
such that

limp.=0,
n

f (f»(t)Idt=p,,,
E,

and

ti

Consider the functions f, given by
r

Notice that given e > 0 there is an n, so that the set (t: I )I z till II1 ) < e;
in other words, we have established the hypotheses of our lemma. Rewarded
with the conclusions of that lemma, we can find an increasing sequence
of positive integers such that the sequence (fk ) satisfies the following: first,
(fk. / II fk ID is a basic sequence equivalent to tie unit vector basis of 11, and
second, tine closed linear span [fk.] of the f is complemented in L1[O,11
(and, of course, isomorphic to 11).

Let g,, fk,, g, s fk., and g - g r.
Of course, (g;; : n;-* 1) is relatively weakly compact in L1[0,1]; so with

perhaps another turn at extracting subsequences, we may assume (g;') is
weakly convergent. Now notice that we've located a sequence g in Bx that
can be expressed in the form

gn = g,. + g.",

where (g;) spans a complemented 11 in L1[O,11 and (g;') is weakly conver-
gent. It is important to keep in mind that neither the g nor the g need find
themselves in X. Regardless, we show that some suitable modification of the
g;,, when normalized, are close enough to X to ensure the applicability of
Theorem 12 of Chapter V, thereby establishing the existence in X of an
isomorphic copy of 11 that is complemented in L1[0,11.

Since (g.) is weakly convergent, (gi,. - g2".+1) is weakly null; thanks to
Mazur's theorem, there is a sequence (h;;) of convex combinations of
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(g2n - g2n+ ) tending to zero in norm. We may assume h;; to be of the
following form: for some kl < k2 < < kn < ..

kmtl-1
hit
m aim) g2i - g2i+1)+

k,,,

where, naturally, a(T) + + ak) =1 and all the a are z 0. It is im-
portant to keep tabs on the vectors

km+i-1
hm - a1 (-)(g2',-g2',.,)

i-km

and

k,,,+t-1
(m)(hm = ai \g21 g2i+1)

In particular, we should notice that

hm = hm + h"M1

that due to the nature of the sums involved in the definition of h' ,, the
closed linear span of the hm is a complemented copy of 11 found inside the
closed linear span of the g;,, itself a complemented subspace of L1(0,11, and
that each h,,, belongs to X. What is important here is the fact that

0 = Limllh;,ll = limllhm - h;nll.
n m

It follows that passing to a subsequence of the hm, we can force (Il hm - h;nll)
to tend to zero as quickly as we need to. How quickly ought we shoot for?
Well, quickly enough to apply Theorem 12 of Chapter V. A word of
warning in this connection. The hm span a complemented copy of 11 in
L1[0,1 ], but only on normalization do we get the vector basis of this copy;
not to worry, since !1 hmll is close to 41h;,,11 for m large enough. This remark in
hand, Theorem 12 of Chapter V ought to be applied easily.

If SZ is a compact Hausdorff space, then C(SZ)* can be identified with the
space rca(s) of regular Borel measures defined on U. Recall that a measure
p E rca(s) precisely when for any Borel set B in 0, Ipl(B)=sup{ lpl(K): K
is a compact subset of B).

Theorem 14 (Dieudonne-Grothendieck). Let it be a compact Hausdorff
space and I be the a-field of Bore! subsets of Il. Suppose .x''is a bounded subset
of rca(E ).

In order for .(to be relatively weakly compact, it is both necessary and
sufficient that given a sequence (On) of disjoint open subsets of Sl, then

limp(O,,)=0
n

uniformly for p E Jr.
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PROOF. Necessity is clear from the uniform countable additivity of rela-
tively weakly compact subsets of ca(l).

To establish sufficiency we will mount a two pronged attack by proving
that should the bounded set Xsatisfy 0 uniformly for any
sequence of disjoint open sets in Sl, then

1. Given e > 0 and a compact set K e Sl there is on open set U of 11 containing
K for which

Ip1(U\K) <e
for all It E A'.

2. Given e > 0 and an open set U c 0 there exists a compact set K c U for
which

Ipl(U\K) s e
for all p E X.

In tandem I and 2 will then be used to derive the relative weak
compactness of X. Before proceeding, it is worthwhile to make a couple of
points: first, conditions 1 and 2 obviously say that fis "uniformly regular"
with I expressing uniform outer regularity and 2 expressing uniform inner
regularity; second, although we do not pursue this here, each of 1 and 2 by
itself is equivalent to the relative weak compactness of X, and so their
appearance in the present proof ought not to be viewed as at all accidental.
On with the proof.

Suppose 1 fails. Then there is a compact set Ko and an eo > 0 such that
for any open set V containing Ko we can find a p, E for which

I1AVI(V\K0)>e0.

Starting with 0 we know that there is a p1 E .''such that

1µ11(9\Ko) > eo.

Since p1 is regular there is a compact set K1 c SZ\K0 such that

1p1(K1)I>
e

2

Notice that Ko and K1 are disjoint compact sets so there are disjoint open
sets Y and Z that contain Ko and K1, respectively. By regularity, Z can be
chosen to satisfy

Ip11(Z\K1) 5 4

Let U1= Z and V1 = Y. Then

U1cSZ\V1, KocVlcV0=f2, K1cU1=Z.

It follows that

p1I(U1\K1) 5 4
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so that

Ip1(U1)I Z I1L1(K1)I - Iptl(U1\K1)

to !0- to
Z2 4 4

Back to the well once again. V1 is an open set containing Ko. Hence there
is a p2 E .rsuch that

Ip2K V1\Ko) > to.

Regularity of 142 gives a compact set K2 c V1\K0 such that
e

Ip2(K2)I>

K. and K2 are disjoint compact sets, and so they can be enveloped in
disjoint open sets Y and Z; again the regularity of p2 allows us also to
assume that

Ip2KZ\K2
e

) 5 4 '
Let U2 - Z f V1 and V2 = Y n V1. Then

U2cV1\V2, Ko9V2SV1, K2!9 U2 9 Z'
So

Ip2I(U2\K2) s Ip2KZ\K2) 5
to
4

and

I1&2(U2)I Z I142(K2)I- Ip2KU2\K2)

Lo - Lo . to
2 4 4

Our procedure is clearly producing a sequence of disjoint open sets
and a corresponding sequence of members of .rfor which Ipx(U.) 12
eo/4, a contradiction.

Before establishing 2, we make a fuel stop:

2'. Given e > 0 there exists a compact set K c 0 such that

IpKO\K)se
for all p E X.

If not, then there exists to > 0 such that for any compact set K c 0 there
is a px E ,l with

IpxKO\K) > eo.

Starting with the compact set 0, there is a it, E for which

(p1K0) > eo.
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Since µ1 is regular, there is a compact set K1 c Q for which
e

I,1(K1)I > .

By 1 there is an open set V1 containing K1 for which

I &I(v1\K1) S 4 2
for all p a Jr. Let U1 be an open set satisfying

K1cU1cV V1.

Then

IMI(Ui\K1) 5 4
for all µ e ,Wand

Iµ1(U1)I Z Iµ1(K1)I - Iµ1i(U1\K1)

>

Z 8
> 4.

Next, there is a µ2(-= .'such that

Iµ21(0\K1) > eo-
It follows that

1µ2i(0\Ui) z Iµ2Ka\K1)-1µ2KUi\Kl)

>eo - 8.

Since 1A2 is regular, there is a compact cet K2 c Q\Ut such that

(µ2 2(K )I z 2 (e0 - 8 ).
Of course, K2 and U1 are disjoint; so there is an open set V2for which

K29V2c_172cf\U1
and for which (using 1)

IµKr2\K2) < q 22

for all is E Jr. Now pick an open set U2 for which
K2cU2cU2CV2.

Notice that U1 and U2 are disjoint,

IsI(U2\K2) < 4 22

for all µ E -V', and

101

1 to) eo 1 ro

> 2(eo- 81- 4 222 4.
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The inductive procedure should be clear. Again, we produce a sequence
of disjoint open sets and a corresponding sequence of members of

.af'for which I s I z eo/4, again, a contradiction.
Now to establish 2, we know by 2' that given e> 0 there is a compact set

F C St such that

IµI(Q\F) s e

for all p. E .af'. Given an open set U, (f2\U)n F is compact, and so by 1
there's an open set V containing (fZ\U)n F for which

IpI(V\[(f2\U)n Fl) 5 e
holds for all µ E A. Let K = F\V. Then K c U n F ana

IAI(U\K) s Iµl(f2\F)+IIAI(V\[((\U)nF]) s 2e.

1 and 2 have been established. Now we show that iris relatively weakly
compact. By the Eberlein-Smulian theorem we can restrict our attention to
the case where can be listed in a single sequence (IL,,). each term of which
can be assumed to be A-continuous with respect to a fixed A E rca'+(2). Let
f denote the Radon-Nikodym derivative of u,, with respect to A;
(f,,) is a bounded sequence in L 1(A ).

Were .af'' not relatively weakly compact, then we could find an e > 0, a
subsequence (g,,) of (f,), and a sequence of Borel sets in fZ for which

X (B,,) s
2n+1

yet

IB Ign(w)IdA(w) > e
,,

for all n. By regularity, we can enlarge the B,, slightly to open U. and obtain

s 2
and

f ig,, IdAze
U

for all n. Looking at V = U 10-,U., we get a decreasing sequence of
open sets with

n

and

IgIdAat
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for each n. By 2 we have that for each n there is a compact set Kn c V such
that

E

\K
IgkldA <-

2n+1n n

for all k. Looking at F = K1 n n K,, c K c Vn, we see that

IgnldA,
fnIg.IdA=f

nIgnld-f
Vn\Fn

which, since Vn\ F. C_ (V1\ Kt )U . . . U (Vn\ Kn ), is less than or equal to

f
n n

gnlda- E f.\
K4

{gnldX ze-
k 1 2

k+1k-1 Vk
'

Vn -
The sequence (Fn) is a decreasing sequence of compact sets whose A
measures tend to 0; consequently, n n F. is a compact set of X-measure 0. By
1 there is an open set W containing n n Fn such that for all k,

1gk)dX s

4
.

fW\nnFn

Since A(nnF.)=0,

f IgkldA<4
for all k. But W is an open set containing n n Fn; so there is an m such that
F,n c W from which we have

2 Sf Ig,,IA f
F. W

another contradiction. At long last we're home free! 0

One striking application of the Dieudonne-Grothendieck criterion in
tandem with the Phillips lemma is to the study of /,,. To describe this next
result of Grothendieck, we need to notice the following about 1,,: I is
isometrically isomorphic to C(K ), where K is the Stone space of the Boolean
algebra 21 of all subsets of the natural numbers. This is an easy consequence
of the Stone representation theorem and the Stone-Weierstrass theorem.
After all, in the notation of the second section, l is just B(21). Now the
map that takes a simple function E"_1a;c4, in B(2') to the function
E;_1a,c,, (where A -.4 is the Stone representation of 2N as the algebra of
clopen subsets of K) in C(K) is a well-defined linear isometry on the simple
functions. The domain of the map is dense, and its range is also (thanks to
K's total disconnectedness and the Stone-Weierstrass theorem). Therefore,
the isometry extends to a linear isometry of B(2N) =1 onto C(K ).

Theorem 15 (Grothendieck). In l*, weak* convergent sequences are weakly
convergent.
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PROOF. Let K be as described in the paragraph preceding the statement of
the theorem and suppose that is weak* null in C(K) *. We show that
(p.) is relatively weakly compact. From this it follows that is weakly
null.

Suppose such is not the case. Then the Dieudonnl -Grothendieck criterion
provides us with an e> 0 and a sequence of open disjoint subsets of K
and a subsequence of (p,,) for which we always have

IF.(o0 Ize-

Using the regularity of the P. and K total disconnectedness, we can (and do)
assume that the O are clopen as well. Now we take note and make use of
the fact that the Boolean algebra 2N is a-complete in the sense that every
countable collection of elements in 21 has a least upper bound therein; this
a-completeness is of course shared by the Stone algebra of clopen subsets of
K and allows us to unravel the procedure described in the second section,
The Classical Nonre$exive Sequence Spaces. More precisely we can define
i (=- ba(2N) by

IVA)_r"(supOk)
kea

for any 0 c N. Since is weak* null and supk E sOk is a clopen set in K
for any A N,

0 = liM in (A)

for any A. It follows from the Phillips lemma that

0=limE1°,,((k))1
of k

= I'M E IV. (001
a k

a contradiction.

Weakly Convergent Sequences and Unconditionally
Convergent Series in Lp[0,1J (15 p < oo)

In this section we present a couple of the finer aspects of "Sequences and
series in Banach spaces" in case the terms live in L(0,1) for 15 p < oo. We
give complete proofs of the pertinent facts only in case 15 p 5 2; what
happens (and why) in case p > 2 is outlined in the exercises. To be frank,
this latter case causes only minor difficulties once the case 15 p:5 2 is
understood. In addition, the situation in which unconditionally convergent
series in LP[0,1J, for 15 p 5 2, find themselves is one of the central themes
of present-day "Sequences and series in Banach spaces"; so special atten-
tion to this case seems appropriate.
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We start this section with the beautiful Khinchine inequalities, proceed
directly to Orlicz's theorem about the square summability of uncondition-
ally convergent series in Lp[0,1] for 15 p 5 2, pass to a proof of Banach
and Saks that weakly convergent sequences in Lp[0,1] for 1 < p <_ 2 admit
subsequences whose arithmetic means are norm convergent and close with
Szlenk's complementary result to the same effect as that of Banach and Saks
in case p = 1.

Recall the definition of the Rademacher functions; each acts on [0,1] and
has values in [ -1,1]. The first rt is just 1 everywhere. The second, r2, is I on
[0,

Z)
and -1 on 11, 1]; r3 is 1 on [0, 1) and [1, , ;) but -1 on [;, ') and [;, 11.

Get the picture? Okay.

Theorem (Khinchine's Inequalities). Let (rn )n Z t denote the sequence of
Rademacher functions. Then for each 15 p < oo there is a constant k p > 0
such that

t/2
kp

t(Ea2)112

sllF_a,r, ll
_<kp(

i p f

holds, for any finite sequence (ai) of reals.

PROOF. The Rademacher functions are orthonormal over [0, 1] and belong
to with sup norm 1. Consequently, we need only show the existence
of constants in the following situations:

(i) If 2:5 p, then we need to show there is a K > 0 such that II;a,r,Ilp -<
K(Ei a Z )1/2.

(ii) if 15 p < 2, then we need to show there is a k > 0 such that k(Eia2 )1/2

sI1 is;rillp

Let's establish Khinchine's inequalities for p z 2 then. Again the monotonic-
ity of the Lp norms lets us concentrate on p an even integer, say p = 21,

where / >_ I is a whole number. Look at
n

Sn = air,
i-1

and take the integral over [0,1] of its pth power. We write down what
results; the reader is advised to reflect on what's written down in light of the
binomial (and multinomial) formula!

f'S,?(t)dt= fo'S21(t)dt

n 21

f Flairi
i-1

= EA asl ... aa, raf ... ra;,
0, ... R it 1l rl ;



106 VII. The Classical Banach Spaces

al, ... a1 are positive integers,

Eat = 21,

(a,)! ... (ai)' ,

and i 1, ... , i f are different integers between 1 and n. Thinking about the fact
that the rr (under the last integral sign above) are the Rademacher functions,
we see that the form of JS,? is really considerably simpler than at first
guessed, namely,

fS.p z' zR,... 20;
J.j

since Jr'1 rr i is 0 or 1 depending on the existence of odd powers
a1, ... ,aj or nonexistence thereof. Of course, in this form of JS,?, we know
that are positive integers and Eig, = 1. Writing JSS again, we have

`4213,,...,2$,
AjS° = F, '4$,.... $,a 2r P, ... a 22 8,.

We wish to apply Hblder's inequality; so we estimate the ratios

(21)! (PI)! ... (pO!

A,e,,...,8, (2R1)! ... (2g.)! (1)!

(21)(21-1)...(J+1)(1)!(

(211... (01 +1)($ )! ... (2$1)... (igj +1)(80! (J)!

_ (21)(21-1)... (1+1)
(201)... (fit+1)... (20j)... (Pj +1)

s

This gives

2R, ... 20, 2p1+...+p,

fs,1's( 1 )'( "

iE1

a,
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From this we see that

(Is:)
1/P

=
(f1/21

l R 1/2

2E
S 2 li!-rla'
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and (i) has been established.
To establish (ii), we have need of an old friend: Liapounov's inequality.

Recall what this says: If f Z 0 belongs to all the L,[0,1] for p > 0, then
log jo f P is a convex function of p > 0.

Liapounov's inequality is an interesting consequence of Holder's inequal-
ity that ought to be worked out by the reader. Let's get on with (ii). We are
only concerned with 15 p < 2. Pick Al and A2 so that A1, A2 > O, Al + A2 =1
andpA1+4X2=2. Then

aZ = IISRIIi

S. PP [r2 (
R 1/2 4A2

a
i-1

5 (by Liapounov's inequality)

V

by (i). On dividing both sides by the appropriate quantity we get (with
careful use of pAl +4A2 = 2)

)1/2 s IISRIiP

and with it (ii). 0

Let 15 p < oo and suppose that Ek fk is unconditionally convergent in
LP(0,1). Let rR denote the nth Rademacher function. By the bounded
multiplier test if (a.) is a sequence of numbers with IaRI s I for all n, then
there is a K > 0 such that

R

aklkl SK
-1 P

for all n. It follows that if 0 s t 51, then

f
I

l

R P

rklt)fk(s) I
ds

=

II E rk(t)Jk
k-1 k-1 f,

5KP

holds for all n. Khinchine's inequality alerts us to the fact that there is an
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A > 0 such that for any scalar sequence ($r) we have

f

1/2
p p

s

1kE A 5 All
F"

fikrkllk-l P

Combining these observations, we conclude that

1
p/2

f 12(S) dS f AP
0 k=-1 0

fk(S)rk
k=1

P

ds

P

r
= AP / 1 J1 i Ifk(s)rk(t)

=: AP
o 0 kLlfk(s)rk(t)

:5 APf 1KPdt=APK-.
0

Summarizing we get the following fact.

P

dtds

P

ds dt

General fact. If Ekfk is unconditionally convergent in LP(0,1), then there is
a C > 0 such that

p12
1(>fk (t)) dt SC.

J0
k

Our way is paved to prove the following.

Theorem (Orlicz). Let 1:5 p:5 2 and suppose that E,,fn is unconditionally
convergent in LP(0,1). Then

E 11fkI1p <00.
k

PROOF. Let n be any positive integer. Then if i + 1/q = I/p, we have

n

(k1I1kt1'1k) =II(fk(t)dk/P)II,v

I!(fk(t)) II,2l,(d"
for any d1, ... , dn - 0. A bit of computation shows that q = 2p/(2 - p). On
taking p th powers, we have for the same d that

n
tt

n''`` P/2 n (2- P)12

E Ifk(t)yy IPdk S ( E dkA2-P)

-t kit k-1
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Term-by-term integration gives

f 1

n
II {{ f

n+ - P)/Z
'

P/2

E1 !!k(t)IPdkdts f 1(L Ifk(t)I2) dt(n

(2-p)/2
J

5 ( dx,(z-p)) C,
k-i
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where C was awarded us as an upper bound for the integral involved
through the graces of our general fact. It now follows that if r is conjugate
to 2/(2 - p), then

k-1 0

Computing what exactly it means for r to be such as it is, we see that
r = 2/p and so

IIfkIIp3 f llfk(t)t dt 2/PsCr<00.
k-1 (k-1 )

The arbitrary nature of n and the fixed nature of C force

EIIf,TIIP<00
n

Theorem (Banach-Saks). Suppose I < p S 2. If (fn) is a weakly null sequence
in L,,[0, 11, then (fn) admits a subsequence (fk*) for which IIE -1 fk, II = 0(n'/p).

PROOF. Since (fn) is weakly null, we may as well assume that each fn has
norm S 1. Because 1 < p 5 2, it is easy to convince yourself that there is a
constant A > 0 for which

la+blpsla1P+plaI"-bsign(a)+AIbI' (2)

holds regardless of the real numbers a, b considered. Now, let S1= A. = f1
Choose k2 > k1 so that

1vkt(t)r-,sign( fk,(t))fkz(t)dtf 5 _-
0

Let S2 = fkl + fki Choose k3 > k2 so that

J1Sign(S2(t))fk,(t)d1 .
The path to the choice of ought to be clear. Notice that

IISRII; S Ilsn-111D + pf'ISn-1(t)P-l sig(Sn-1(t))fk^(t) dt

+ All fk.II;,
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as follows from inequality (2) in the obvious fashion,

IIS.-lip+1+A.
Running through this last inequality a few times gives

p

Efk,
i 1 p

for some C > 1. This, though, is what we wanted, since it tells us that

fk,
i-1

5 Cl/Pnl/P. 11

p

Corollary. If 1 < p 5 2, then any bounded sequence in Lp[0,11 admits a
subsequence whose arithmetic means converge in norm.

PROOF. If is a bounded sequence in L p(0,1 J, then (g,,) admits a
subsequence (gm) weakly convergent to some go E Lp[0,11-this thanks to
the reflexivity of the Lp in question. On replacing by go), we find
ourselves with a sequence (fn) = (gm. - go) that satisfies the hypotheses of
the Banach-Saks theorem. The conclusion of that theorem speaks of a
subsequence (fk) of for which

fk, 5 Cnl/P

for all n and some C > 0 independent of n. What does this mean for
(gm4 g0)? Well,

(n ! 8m,, - go ! n E (g."I - g0) lip
1 11P

- 1 S Cn(l -P)/Pfk,
n t1 p

What about p =1? Again, weakly null sequences admit of subsequences
whose arithmetic means.converge in norm to zero. Here, however, we have
the opportunity to use the weak-compactness criteria developed in the third
section, Weak compactness in ca(I) and L1()&)-an opportunity not to be
denied.

First, we provide a small improvement on the argument given in the
Banach-Saks theorem in case of L2[0,11 to prove that if is a weakly null
sequence in L2[0,1], then there is a subsequence (fk.) for which

lim sup
n Jl<... <Je n fk'' a0.

1i- 2

As before, we assume II4112 s 1 for all n and that is weakly null. Let
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k, -I and choose k2 > k 1 so that

Iifk,(')fA: (t)di<#.

Next, let k3 > k2 with

f Ifk,(t)fky(t)dt, f Ifk2(t)fk,(t)dt < J.

Again, let k4 > k1 be chosen so that

f f Ifk2(t)fk,(t) dt,f dt <

The extraction procedure should be clear. Let j1 < < jn. Then

n n

i

1,,112

E 2+ 2 f12 f-1 15I<iSn 0

n i-1 i-1n+2 E F. ()-n+2 F.S 1

-21-1 i-2
Sn+2n-3n.

The assertion we are after follows quickly from this.

III

O

Diagonal Lemma. Let (fn) be a weakly null sequence in L1[0,1). Then for
each e > 0 there is a subsequence (gn) of (fn) such that

k

1m sup k k gn, S e.
k n1<... <nk i-1

P1tooF. We may assume that IIfnII1 s I for all n. Let m, n be positive integers
and set

Em.nwt (t:Ifn(t)IaM);

on so doing, notice that (if X denotes Lebesgue measure)

If Ii = f 1lfn(t)I Z f Ifn(t )I Z mA(Em n),
0 Ewe.

or

A(Em n) 5 I .

The set (f,: n z 1) is relatively weakly compact in L1[0, lj; so the Dunford-
Pettis criterion supplies us with an n > 0 for which JEl fn(t)i dt 5 e/3
whenever ,\ (E) 5 i. In tandem with the simple calculation mode above, we
find that there is an mo so that

f Ifn(t)Idt5 e
Em,.
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for all n. Define 7. by

if tEEmo.n,

t 0 otherwise.

It is plain that fn(t)-};,(t) is just s mu), and so f,, -..E mOBL:lo 11
Thanks to the weak compactness of moBL2to,11, we can find an increasing
sequence (nk) of positive integers and an h E mOBL:[0.11 such that

h =weak limk -JZ;

our earlier remarks let us assume even more, namely,
k

lim sup k h = 0.
k !i<... <ik

11

j-1
2

Since (f,, - f,, ) converges weakly to h in L2101 11, the same holds true in
L1[0,1]; but (f,,,) is weakly null in L,[0, 1J; so - h = weaklimk It now
follows from the fact that

f Ifnk(()I dt S E/3 for all k, that 11hll1 s e/3.(lfnkNi =
Em, Mk

Putting all the parts together, we have that if k is big enough, then

sup
k

E (fn,, - fn,') - h

j-1
5 sup

1 ;1<. <
F.

1

E
15-

3

which tells us that for the same large k,

sup k E fn,
11

k

it<... <ik j-1

it<... <ik
5 E.

1 k
5 sup k E (f -f )-h

j-1

2

k

1

0(gk - fnk) is our subsequence.

Theorem (Szlenk). In L1[0,1], every weakly convergent sequence has a subse-
quence whose arithmetic means are norm convergent.

PROOF. We suppose that (fn) is a weakly null sequence in BL,(o.11. If the
many virtues claimed of the diagonal lemma are to be believed, then we can
find a sequence (nk(!))' 1 of strictly increasing sequences of positive
integers, each subsequent sequence a subsequence of its predecessor such
that for any I we have

FIM- sup
k E In,` S 1

11

1 k

k ii<... <ik j-1 1



Weakly and Unconditionally Convergent Series in 1 IO.1111 < p X) 113

Of course, the subsequence we are looking for is precisely the sequence (g,)
whose mth item is f,.(m). Let's check it out: If k > 1, then

k ! ki k-1 1

g <
1k gJ + 1 k-1

1g)

Now

Fm
k-+oo

5 flm
F k-'oo11 f=1

I k - t

k -1 Yf,.,(i+J)J1

+ )im
A - ac

1

1 k-1

k -1 JLF f",, ( 1 + j)
1

The first of these dominating terms (iTmk_ jK1/k)E'_IgJR) is 0; after all,
k > I fixes 1 but lets k go wild! The second dominating term is no more than
1/1 because of the diagonal lemma. But this gives us

Tim
k oo

1
k

regardless of what the 1 is. It must be that

lim
k

Exercises

= 0. 0
I

1. The Dunford -Pettis property. A Banach space X enjoys the Dunford-Pettis
property if given weakly null sequences and in X and X , respectively,
then 0.

- (i) A Banach space X has the Dunford-Pettis property if and only if for any
Banach space Y, each weakly compact linear operator T : X -+ Y is com-
pletely continuous, i.e., takes weakly convergent sequences in X to norm
convergent sequences in Y.

(ii) For any compact Hausdorif space tl, C(S2) has the Dunford-Pettis prop-
erty. (Hint: Think of Egorov's theorem.)

(iii) If X' has the Dunford-Pettis property, then so does X.

2. Operators on co. The bounded linear operators from co to a Banach space X
correspond precisely to the weakly unconditionally Cauchy series in X.

(i) A bounded linear operator T : co -+ X is weakly compact if and only if the

series is weakly subseries convergent.

(ii) A bounded linear operator T: co -+ X is compact if and only if the series
is norm subseries convergent.
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3. Operators into ll. The bounded linear operators from a Banach space X into 11
correspond precisely to the sequences (x,*) in X* for which oo, for
each x C= X, i.e., the weakly unconditionally Cauchy series in X*.

(i) An operator T: X -. 11 is weakly compact if and only if the series is
weakly subseries convergent in X*.

(ii) An operator T: X -+ 11 is compact if and only if the series E,,x' is norm
subseries convergent in X*.

4. Operators into co. The bounded linear operators from a Banach space X into co
correspond precisely to the weak* null sequences in X*.

(i) A bounded linear operator T : X -+ co is a weakly compact operator if and
only if the sequence (T *e,*) is weakly null in X*.

(ii) A bounded linear operator T : X - ca is a compact operator if and only if
the sequence (T *e:) is norm null in X*.

(iii) For X any pf the spaces ca, 1,,, 10 (15 p < oo), L .10,I) (15 p 5 oo), or
ba(B) there exists a noncompact linear operator from X into co.

(iv) Every bounded linear operator from 1m to co is weakly compact; therefore,
co is not isomorphic to a complemented subspace of I..

5. Operators on 11. The bounded linear operators from 11 to a Banach space X
correspond precisely to the bounded sequences in X.

(i) A bounded linear operator T: 11 - X is weakly compact if and only if the
set (Te : n z 1) is relatively weakly compact.

(ii) A bounded linear operator T :11-+ X is compact if and only if the set
(Te : n z 1) is relatively norm compact.

6. The sum operator: a universal nonweakly compact operator.

(i) The operator a: 11 -. l defined by
n

a((tn)) - ti
il

is a nonweakly compact bounded linear operator.

(ii) A bounded linear operator T : X - Y is not weakly compact if and only if
there exist bounded linear operators S :11- X and U: Y -+ 1 such that
UTS - a. [ Hint: Pelczynski's proof of the Eberlein-Smulian theorem gives
an inkling of how to find a bounded sequence whose image is basic
and satisfies y*Tx z S for some y* 6 Y*. The operator S is induced by
(x,,) and leaves little choice as to how U is to be defined.]

7. A universal noncompact operator.

(i) The formal identity operator I: 11- 1 is a noncompact bounded linear
operator that has the sum operator a as a factor.

(ii) A bounded linear operator B : X -. Y is not compact if and only if there
exist bounded linear operators J :11-" X and W : Y - 1 such that WB l - i.
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[ Hint: In case B is weakly compact but riot compact, aim the
Bessaga-Pelczynski selection principle toward inducing a weakly compact
operator from !t into X.j

8. Edgar's ordering of Banach spaces, I. Following G. A. Edgar, a partial ordering
of Bausch spaces can be defined: Given Banach spans X and Y, we say that
X <Yif X- n TE srtx:

r>T**-i(}.)

(i) Banach space X satisfies Mazur's condition (weak* sequentially continuous
functionals on X*' are in X) if and only if X < co.

(ii) co < X if and only if co is isomorphic to a subspace of X.

9. Edgar's ordering of Banach spaces, II.

(i) X < l if and only if any x ** E X'* which is weak* continuous on
bounded weak' separable subsets'of X* is in X.

(ii) l < X if and only if t is isomorphic to a subspace of X.

10. The Yosida - Hewitt decomposition theorem. Let U be a set and E be a a-field of
subsets of U. Suppose µ, r E ba(s). Define

(µ V v)(E) a sup (µ(F)+r(E\F)).
Fc E,Fel

(i) µ V P E ba(l). Further, if il r= ba(B) satisfies ii(E) Z µ(E) and ij(E) z r(E)
for all E E E, then n (E) a (µ V r)(E) for all E E 2.

(ii) If µ, r E ca(I), then is v r c= ca(l).

We say >I E ba(l) is purely finitely additive if given a countably additive µ on
E for which IµKE) S [TIKE) holds for each E E E, then µ - 0.

(iii) Let µ E ba(E ). Then µ can be written in the form µ - µ, + µPra where
µ, E ca(l) and µPt, is a purely finitely additive member of ba(l). [Hint:
By considering µ,

µ- 2+") 2

as the difference of two members of ba+(E), one need only consider
nonnegative µ. Now let r c ca+(l) be the set {y e ca+(l): y(E) 5µ(E)
for all E E E). Choosing y E T so that yn(U) T sup(y(a): y r. r) and
letting µ - yt V yZ V V y,,, notice that exists for all E E 2.1

(iv) If 1] is the set N of natural numbers and E is the a-field of all subsets of 0,
then any purely finitely additive measure on I vanishes on finite sets.

11. Edgar's ordering of Banach spaces, III.

(i) X < 11 if and only if any x'* E X*' such that x**(weak*
E,,x * *x. , for each weakly unconditionally Cauchy series E x. in X*,
belongs to X.

(ii) 1t < X if and only if X is nonretlexive.
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12. Pelczynski's property V. A Banach space X has property V whenever given any
Banach space Y, every unconditionally converging operator T : X -* Y is weakly
compact.

(i) For any compact Hausdorff space Q, C((2) has property V. (Hint: Use the
Dieudonne-Grothendieck criterion and Gantmacher's theorem.)

(ii) If X has property V, then a subset K of X* is relatively weakly compact
whenever

lim x *x = 0 uniformly for x* E K
n

for any weakly unconditionally Cauchy series E,,x,,. [Hint: The condition
cited implies not only the boundedness of the linear operator T: X -
defined by (Tx)(x*) - x*x but also the fact that T is unconditionally
converging.]

(iii) If X* has property V, then weak* null sequences in X** are weakly null.
(Hint: Phillips's lemma is worth keeping in mind.)

(iv) The converse of (ii) also holds.

(v) If X has property V, the weakly Cauchy sequences in X* are weakly
convergent. (Hint: Schur's lemma is worth keeping in mind.)

13. Relatively disjoint families of measures. Let EZ be a set, Y. be a a-field of subsets
of St and 0 < e < 8. A sequence in ca(E) is called (8, e)-relatively disjoint if
sup I Sl) < oo and there exists a sequence of pairwise disjoint members
of I such that for each n

I1p,,I(E.,)>8 and E lµnl(Em)<e.
m#n

The sequence is called relatively disjoint if it is (8, e)-relatively disjoint for
some choice of a and 8.

Relatively disjoint sequences in ca(l) are basic sequences equivalent to the
unit vector basis of 1, with a closed linear span that is complemented in ca(E).

14. Phillips's lemma and limited sets. A subset B of a Banach space X is limited if
0 uniformly for x e B whenever (x') is a weak* null sequence in

X*.

(i) Limited sets are bounded.

(ii) Relatively compact sets are limited.

(iii) In separable Banach spaces limited sets are relatively compact.

(iv) The set (e : n ;-> 1) of unit coordinate vectors is limited in 1,,, but not in co.

15. A theorem of Buck. In a finite-dimensional Banach space, a bounded sequence
each subsequence of which has norm convergent arithmetic means is itself
convergent.

16. Weakly null sequences in co. If is a weakly null sequence in co, then
has a subsequence each subsequence of which has norm-null arithmetic means.
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17. CIO, 11 fails the weak Banach-Saks property.

(i) For fixed positive integer k, show that there exists a nonnegative sequence
(g, ) n t in Bclo.11 such that
(a) g (t) - 0 if t O ((k -1)/k, k/(k + 1)).
(b) lim ngR (t) - 0, for all t e [0, 11.
(c) If n 1 < n2 < < n*, then there is a toe [0,11 such that

gR,(to)-.....gn,,(to)-1.

(ii) Following (i), prove that the sequence (fn) defined by

f-8n+8n + ... +gn
is a weakly null sequence in C[0,11 for which given n 1 < n2 < . < n,n <
nm+ t . < n2,n we have (fn, + - + fn=-)(t) I f o r all t [0,11.

18. Orlicz's theorem in L,,,, p > 2. Let p > 2.

(i) There is M > 0 so that for any real numbers a, b

lal,P
+pblalp-'spa +blp.

(ii) There is M > 0 so that for any f, g in Lp10,1]

f f'V(t)+ag(t)IP dt

holds for some sign a - ± 1.

(iii) From (ii) derive Orlicz's theorem for p > 2, i.e., if E. fn is an uncondition-
ally convergent series in Lr[0,1], then Enllfnllp < oo-

19. The Banach-Saks theorem for L., p > 2. Let p > 2 and denote by [ p J the
greatest positive integer < p.

(i) There are A, B > 0 such that for any real numbers a, b

lpl
la + blV S l al p + plat p' 'hsgn a + Alblp + B E lalp-'lhl'

J-2

(ii) If (fn) is a weakly null sequence in l.r, [0,11, then (f) has a subsequence
(gn) such that

f
I

l

n p
1g,(t} dts f

-1 0

lin-I p-I (n - I
+ p f g,(t) sgn+ g;(t))gn(t)dt

Ipl

+A fo'Ign(t)IPdt 4 B
ft

-2

n-1
g,(t)

;-1

p

dt

(iii) The subsequence (gn) extracted in (ii) satisfies an estimate 11E7_ g; I[p s Mrn
for some M > 0.

E $i (t) Ign(t)I'di.

,-I



118 Y 1l. The Classical Banach Spaces

20. Absolutely p-swnming operators in Hilbert spree.

(i) Using Khinchine's inequalities, prove hat the natural inclusion map I: 11
12 is absolutely 1-summing.

(ii) Let H, K be Hilbert spaces. Recall that ? oc;wded linear operator T : H - K
is a Hilbert-Schmidt operator when T admit, a representation in the form
Tx - E 12, the) an orthonormal sequence in
H and is an orthonormal sequence n. K. Show that every Hilbert-
Schmidt operator has the natural iaclucic._ -yap i : !j 12 as a factor.

Consequently, every Hilbcrt-Scbmidt cp'-ator is absolutely 1-summing
and the absolutely p-summing opc.at'-.rs . , H to K coincide with the
Hilbert-Schmidt class for every 1 < , : s "

21. Weakly compact sets In and the Dunjora-Fettis property for L110,1].

(i) Weakly compact sets in L.[0,1] are norm separable.

(ii) If iris a weakly compact subset of L. l,,) ! J, then for each e > 0 there is a
measurable set B c [0,1] whose complem..t has measure less than e such
that (fc8 : f r.1) is relatively norm compact in L. [0, 1].

(iii) L1[0,1] has the Dunford-Pettis property.

22. Cotype 2. A Banach space E has Cotype 2 if there exists a c(E) > 0 such that
given x1, x2, ... , x a E; then

1/2

Ii

2 1/2

( f :(t)x, dtIlx,H) s c(E)
t

,-1 o l-1

where is the sequence of Rademacher functions.

(i) If E has Cotype 2, then np (X; E) -3 +r2 (X; F' for any 2 5 p < od and any
Banach space X.

(ii) Hilbert spaces have cotype 2.

(iii) Let H, K be Hilbert spaces- and 15 p < oo. Then irp(H; K) coincides with
the class of Hilbert-Schmidt operators from H to K.

(iv) I i i 5 p 5 2, then Lp(0,1) has cotype 2.

Notes and Remarks

Banach proved Theorem 1 in case 0 is a compact metric space; however, his

proof carries over to the general case. Once the dual of C(f) is known as a
space of measures, the weak convergence or weak Cauchyness of a sequence
is easily recognized. Banach was in 'position to recognize this (at least in case
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Sl is a compact metric :; .i, c' being close to Saks and recognizing the
relevance of integration

Theorem 2 is due, to R. 13aitr It provides an elegant internal characteriza-
tion of fun. Lions of the t f -:r class. For an enjoyable read we recom-
mend Hausdorfi's discus r{ Baire's classification'scheme of the bounded
Bore] functions.

Theorem 3 is du:: to R Phillips (1940) and Can be found in his
contnhutton "Or ti-near transformations," a paper filled with still delicious
tidbits. The injectivity of lam, is shared by other Banach spaces including
1,.(t )- and L.Jµ )-spaces The complete characterization of spaces comple-
mented by a norm-one projection in any superspace was obtained by
L. Nachbin (1950), D. Goodner (1950), and J. L. Kelley (1952) in the real
case and M. Hasumi (1958) in the complex case. Their result is a Banach
space X is complemented by a norm-one projection in- any super space if and
only if there exists a - extremain' disconnected compact Hausdorff space 11 sWch
that X is isometricalh' isomorphic to C(1J). If you relax the demand that tl'fe;'
projection be of norm o'ie. then you are face to face with a long-standing
open problem in Banach space theory: Which Banach spaces are comple-
mented in dry sue. er space?

Theorem 4 is a marvelous discovery of A. Sobezyk (1941). Naturally,
Sobczyk's prooi d;ficrs +'.o-;t the proof of Veech presented in the text.
Another pr' ;f, dre to A.. I'elczynski and found in his "Projections in certain
Banach spaces" (196(,), strongly recommended, too.

The stateiuent oot 'Theorem 4 actually characterizes co among the separable
Banach spaces; i.e.. any infinite-dimensional separable Banach space com-
plemented ,Ii any s para'-le super space is isomorphic to co. That this is so is
an admirable achievement of mr-dern Banach space theory with the deciding
blow being struck by )`: i 1977).'

The fact that every separable Hanach space is a quotient of 11 is, as we've
already noted in the text, due to S. Banach and S. Mazur (1933). The
corollary fact that t, is the unique "projective" object among the separable
infinite-dimensional Banach spaces seems to be due to J. Lindenstrauss. G.
Kdthe has extended the result to nonseparable spaces.

The description of B(E)* is due to T. H. Hildebrandt (1934) and,
independently, G. Fichtenholtz and L. V. Kantorovich (1934). The paper of
K. Yosida and E. Hewitt (1952) is must reading in coming to understand the
exact nature of individual members of ba(E); Exercise 10 is due to Yosida
and Hewitt.

Each of the results of the section on l,*o, Schur's theorem about 11, and the
Orhcz-Pettis theorem is a "name" theorem; each has earned its place as
such. The Nikodym boundedness theorem in ca(E) was already referred to
in Dunford and Schwartz as a "striking improvement of the principle of
uniform boundedness" in that space. Grothendieck's generalization spent
some years in surprising anonymity, although it appeared in his widely
ignored Sao Pauio lecture notes from the mid fifties.
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Rosenthal's lemma was instrumental in H. P. Rosenthal's (1970) study of
operators on C(fl) spaces, where Sl is an extremally disconnected compact
Hausdorff space. Using variations on a common theme of disjointification,
Rosenthal showed that nonweakly compact operators on such C(fl) fix a
copy of l and that a dual containing a copy of co(I') also contains a copy
of 1.(F). Exercise 13 is to be found in this study. We follow Kupka's
approach in the text but recommend the reader treat himself to a reading of
Drewnowski's generalization (1975) of the Rosenthal lemma.

Our presentation of many of the results of this chapter was inspired by an
unpublished manuscript of J. Jerry Uhl, Jr., accompanied by many enjoy-
able conversations with that individual regarding this material. This is
especially true of Phillips's lemma and Schur's theorem, two grand old
interchange-of-limits jewels. Incidentally, the original objective of Phillips's
lemma was part (d) of Exercise 14.

Everything that appears in the third section, Weak Compactness in ca(Y.)
and L1(µ), save the results of M. 1. Kadec and A. Pelczynski (1962) is at
least stated in Dunford and Schwartz, and to a greater or lesser extent we
have followed the spirit of their presentation. It was R. E. Huff who pointed
out the proof of Theorem 9 and its natural similarity to many of the
"continuity at a point implies global continuity" style results that occur in
topological algebra.

M. Fr6chet introduced the metric d), and O. Nikodym took over the study
of (2, d.\). The upshot of Nikodym's efforts is the fundamental Nikodym
convergence 'theorem.

G. Vitali (1907) showed that if is a sequence of Lebesgue-integrable
functions on [0,1] which converge almost everywhere to f, then fo f (s) ds
and lim fo f,,(s) ds exist and are equal if and only if the indefinite integrals
of the f are uniformly absolutely continuous with respect to Lebesgue
measure. H. Hahn proved that if is a sequence of Lebesgue-integrable
functions on [0,1] and if lim,, fE f (s) ds exists for every measurable set E,
then the indefinite integrals are uniformly absolutely continuous and con-
verge to a set function continuous with respect to Lebesgue measure. These
set the stage for the Vitali-Hahn-Saks theorem proved in the generality set
forth herein by S. Saks, by much the same method as employed here.

The weak sequential completeness of ca(E) and L1(X) is an easy conse-
quence of the Vitali-Hahn-Saks and Nikodym convergence theorems.

Theorem 13 is due in the main to V. M. Dubrovskii (1947); we follow
Dunford and Schwartz in principle for our presentation. Naturally the
Dunford-Pettis theorem can be found in their memoir "Linear operations
on summable functions" (1940).

The paper of M. I. Kadec and A. Pelczynski (1%2) analyzes the structure
of subspaces of LP[0,1] for p z 2 in addition to containing the gems treated
in the text. Among the noteworthy results contained in Kadec-Pelczynski is
their proof that Hilbertian subspaces of LP[0,1] are complemented whenever
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p Z 2, and their discovery that regardless of p > 1, if X is a complemented
infinite-dimensional. subspace of L.[0,1], then either X is isomorphic to 12 or X
contains a complemented subspace isomorphic to Ii,.

The Kadec-Pelczynski alternative for subspaces of L1[0,1J was substan-
tially improved by H. P. Rosenthal (1970). In his quest to know all there is
to know about subspaces of Ll10,1], Rosenthal discovered the following.

'Theorem (Rosenthal). Let X be a closed linear subspace of L1[0,1J. X is
reflexive if and only if X does not contain Il uniformly; in which case, X is
isomorphic to a subspace of L1[0,1) for some I < p 5 2.

The proof of this theorem depends on some diabolically clever change-
of-density arguments that evolve from the Grothendieck-Pietsch domination
scheme. It was an analysis of Rosenthal's argument that, in part, put
B. Maurey and G. Pisier on the right path toward their "Great Theorem."

The Dieudonnb-Grothendieck theorem was proved in a special case by
J. Dieudonn6 and given general treatment by A. Grothendieck in his
Canadian Journal of Mathematics memoir (1953). It was there that the
Dunford-Pettis property was first isolated and the results of Exercise I
derived. Theorem 15 is also found in this basic contribution; spaces X with
the property that weak* null sequences in X* are weakly null are often
called Grothendieck spaces.

Khinchine's inequalities are an old and venerable contribution due to
A. Khinchine. It is only recently that S. Szarek and U. Haagerup found the
best constants in these inequalities.

Our presentation of Orlicz's theorem follows W. Orlicz's original proof
(1930); Exercise 18 indicates the modification necessary in case p > 2.
Actually with a bit of tender love and care Orlicz's proof can t-A made
to prove the following: Suppose E f is a series in Lp[0, lj for whic.,
E a fn converges for almost all sequence of signs in (±1) N. Then

f 11 o
type L'fo' 1I < o o. Here cotype Lp[0,1j = 2 if 15 p 5 2, whereas cotype

Lo10,1] = p if p > 2. In light of our first proof of the Orlicz-Pettis theorem, it
seems fitting that this sharpening of Orlicz's theorems apparently involves
some apparent relationship to the behavior of sums of independent random
variables having values in a Banach space.

The application of Khinchine's inequalities to p-summing operators was
first broached by A. Pelczynski (1%7) and A. Pietsch (1967).

The Banach-Saks phenomenon in L.10, 11 for 1:5 p < oo has a curious tale
accompanying it. In their original note Banach and Saks (1930) make
special mention of the failure of the phenomenon in L110,11; indeed, they
claim to produce a weakly null sequence in L1[0,1] without any subse-
quences having norm convergent arithmetic means. Of course, W. Szlenk's
proof (1%5) bares the Banach-Saks slip.

We cannot leave our discussion of the Banach-Saks-Szlenk theorem
without recalling the now celebrated discovery of J. Komlbs (1967): Given a
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bounded sequence in L1[0,1] there exists an f EL1[0,1) and a subse-
quence of such that each subsequence (h,,) of satisfies

f = lim 1 F. hk almost everywhere.
n k-1

i nat C[0,1] fails the so-called weak Banach-Saks property was first
shown by J. Schreier; we take our proof (Exercise 17) from J. Bourgain's
(1979) penetrating study of operators on C(U) that fix copies of C(a) for
various ordinals a.

The uncovering of the sum operator as a universally nonweakly compact
operator was the work of J. Lindenstrauss and A. Pelczynski (1968) while
W. B. Johnson (1971) used this to show. the universality of the formal
identity 1: 1. --+ 1. as a noncompact operator.
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CHAPTER VIII

Weak Convergence and Unconditionally
Convergent Series in Uniformly Convex
Spaces

In this chapter, we prove three results too stunning not to be in the
spotlight. These results are typical of the most attractive aspects of the
theory of Banach spaces in that they are proved under easily stated,
commonly understood hypotheses, are readily appreciated by Banach spacers
and non-Banach spacers alike, and have proofs that bare their geometric
souls.

The fundamentally geometric concept underlying each of the results is
that of uniform convexity. Recall that a Banach space X is uniformly convex
if given e > 0 there is a 8 > 0 such that whenever x, y e SX and llx - yll = e,
then IKx + y)/21151- S. An illustration should enlighten the reader as to
the origin of the name.

Since the notion of uniform convexity involves keeping (uniform) control
of convex combinations of points on the sphere, we worry only about real
Banach spaces.

Let X be a (real) uniformly convex Banach space. For 0 s e 5 2 let 8X(e)
be defined by

8X(e)_inf{1-Ilx
2 yIl:x'yEsx,llx-yll=e}.

The function 8X: [0, 2] -' [0,1J is called the modulus of convexity of the space
X and Plainly 8X(e) > 0 whenever e > 0. Often we suppress X's role and
denote the modulus by just 8(e). Naturally, the modulus of convexity plays
a key role in all that we do throughout this chapter.

Our attention throughout this chapter will be focused on the following
three theorems:

Theorem I (S. Kakutani). Every bounded sequence in a uniformly convex
Banach space admits of a subsequence whose arithmetic means are norm
convergent.
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Theorem 2 (M. Kadet). If is an unconditionally convergent series in the
uniformly convex space X, then

<ao
n

Theorem 3 (N. and V. Gurarii). If the normalized Schauder basis spans
a uniformly convex space X, then there is a p > I and an A > 0 such that

E E /p

NF-anx"
11:5 All(a,,)11,.

We start by studying 8; more precisely, we show

1. 8(e)=inf(1-IKx+y)/211: x,
2. 8(el)58(e2)whenever 05else252,
3. 8(el)/el S 8(e2)/e2 whenever 0 < el 5 e2 5 2.

These facts follow from the corresponding facts about uniformly convex
Banach spaces of finitely many dimensions and the following more or less
obvious consequence of the definition of the modulus of convexity:

8(e) - inf (8,(e): Y is a finite-dimensional subspace of X ).

This in hand we will prove statements 1, 2, and 3 for finite-dimensional X;
as one might expect, the compactness of closed bounded sets eases the proof
of each claim.

In each of the next three lemmas, X is a finite-dimensional uniformly
convex space.

Lemma 4. 8(e) = inf(1-IKx+ y)/211:l(x1l.llyll51,llx - Yll=e).

PROOF. We begin with a remark about local maxima for linear functionals:
whenever q> E S.. achieves a local maximum at x E S., then Igv(x) I is a global
maximum for IrpI on S x.

Why is this so? Well, take any e > 0 and find u r= SX so that p(u) > 1- e.
If h is close enough to 0, then

x+1A1u
V (Ilx

+ Null
9)(x);

so

p(x + NO - 4F(x)+ IXI'W(u) S lie + IXIu119)(x)
and

IXI-F(u) 5 (IIx + Null -1)T(x) 5 IAIIT(x)l.
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From this we conclude that f p(x) I Z c(u) > 1- E. a is arbitrarily chosen
after the identity of x has been established; so JT(x)f =1.

Now let's see that 8(e) is indeed the quantity:

infiI - IIx 2 y f.x,YEB.,fix _ylf=e

What we show is that the above inf is attained (in the presence of the added
hypothesis that dim X < cc) when on the unit sphere.

Let 0 < e 5 2 and choose x, y E BX so that

lix+yJi=sup (Ilu+vil:u,VEBX,1Iu-oil=E).

Assume that flxll s IIYII (so IIYII * 0).
First we show that IIYII is necessarily 1. In fact, if we let c = (1- IIYII)/2

then 0:< c51. Considering the vectors

(1-c)x+cy _ (1-c)(Y)+cx
x' IIYII

and
y' IIYII

we find that x1, y1 a B. and IIx1 - Y111= E. Therefore,

'i1xi+Y111sfix +Y11.

But

1ixt + Y111=
IIYII

fix +

SmLe Ifyfi 51, it follows from this last inequality and our choice of x, y that
ilyi' -1.

1 Paving ascertained that IIYII = 1, what about x? Of course, if Ilxll -1, too.
then we are done. Suppose fix Ii < 1. Pick q' E S. so that

x+Y
fix + Yll

=1.

For anyzEBXwithi(z - yii=awehave

q(z+Y)sllz+Yfisllx+Y11-9 (x+y),
and so

9)(Z) --L 4P(X).

9) attains its maximum value on BX fl (y + eSX) at x. Suppose that we let
U = (u e Sx: y + Eu E BX\SX}. U is relatively open in SX and contains
(x - y)/e. By what we have just done, p attains its maximum value
throughout U at (x - y)/e. Our opening remark alerts us to the fact that I4PI
attains its global maximum on SX at (x - y)/e. Plainly fip((x - y)/e)I =1.
Recalling that e = fix - yll, we are left with the possibilities that 4p(x - y) =
Jix - Yll or qp(x - y) = - JJx - y1 l. The first of these possibilities is ruled out
b) our supposition that Jfxii <1; indeed,

p(x)_Jiq'((x+y)+(x- y))= (iIx+Yfl+IIY-xfl)z5ii2y11=1
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makes sense if ;v(x - y) = IIx - yll and forces IIxII >-1. The second possibil-
ity, V(x - y) _ - IIx - yll, is then the reality of the situation. This firmly in
mind, take any z (=- By with llz - yll = E. Then

1q) (z - y)I s ic(x - y)I = e;

-e=97(x-Y)5 p(z - Y)

p (x) 5 p(z).

4P(x + y) S y)(z + y),

IIz+YII=IIx+Y11.
In short, should Ilxll <1, then any z E Bx such that IIz - yll = e satisfies
IIz + yll - IIx + y11. Our poor first choice of x just has to be replaced by a z
in SX such that IIz - yll = e.

An important consequence of the above is the nondecreasing nature of 8.

Lemma 5. 8 is a nondecreasing function of e in (0, 21.

PROOF. Let 0 5 el < e2 S 2.
Pick x, y r= SX so that IIx - YN = e2 and Ilx + yll = 2(1- 6(e2)). Let c =

(e2 -el)/2e2. 05c51. Set
xl=(1-c)x+cy and y1=(1-c)y+cx.

Plainly x1, Yl E BX and it is quickly checked that I1x1- y111 = el. Further-
more, Ilxt + Y111= IIx + yil; so by the previous lemma we see that

S(el) 51-II x1 2 Yl 11=1-I)
x 2 y II=8(e2). U

Lemma 6. Let 81(s) be defined for 0-,s s by

81(s)= inf (max(Ilu+svll,llu-still)-1}.
U,V6S

Then f(s) = 81(s)/s is nondecreasing on (0, oo) and

8(e) = if e

Y9 2f 2(1-8(e))

PROdF. Fixing u, v E SX momentarily and letting g,,.,,(s) be defined by

gv.a(s)= max( Ilu+svll, Ilu-svII)-1,
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we see that g., is a convex function on [0, oo) that vanishes at 0. Therefore,
whenever 0 5 s 5 t,

t-s
gw. t 0+ t)

t t s5 gv.V(0)+ -g,,.0(1)=

Consequently, g,,.,,(s)/s is nondecreasing for s E [0, oo). Taking infima, we
find that f(s)/s is nondecreasing, too.

Now we establish the beautiful formula

8(e) - 1 e

e 2f(2(1-8(e))
Let 0 < e :s 2 be given. Choose x, y E SX so that IIx - yll = e and

II(x+y)/211=1-8(e). Let

u= x+y and v= x-y
IIx+y11 IIX+y11

Of course,

u I and v1i=
e e

it II= II
IIx + yll 2(1- 8(e))

We consider s = Ilvll. Since IIuI t vjjj1/[I- 8(e)],

8t{s) s Iluf llvllljUll

I -1= 8(e)
1-8(e) 1_8(e)

On the other hand, we can pick u' and v' so that Ilu'Il =1, (lv'II = s and
max(Ilu'+ v'll,Ilu'- v'11) =I+81(s)=I/a. Letting

x'- a(u'+ v') and y'=a(u'- v')
we get x', y' r= BX and llx'- y'll = gas. It follows that

8(2as) 51-I
2

=1-a=1-

81(s)

1+81(s)

1+81(s)

Since t/(1 + t) is increasing on [0, oo) and 81(s) -< 8(e)/[l - 8(e)], the last
quantity above is

1 + 8(e)/[1- 8(e)]
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Ah ha! 8 is nondecreasing. Should S(2as) = 8(e), then

8(e) 81(s)
+81(s)

So

8(e) S 81(s)(1- 8(e)),

or

129

8(e)
< 81(s).

1- 8(e) -
On the other hand, 8(2as) < 8(e) ensures that 2as < e so that

S1(s)= 1
1 2s -1= 8(e) ,

a e 1-8(e)
as an easy computation involving s = e/2(1- 8(e)) shows. The upshot of all
this is that thanks to 8's monotonicity,

81(s) = 8(e)

It is pretty straightforward to derive the sought-after formula from this.

Theorem 2 is now an immediate consequence of the next lemma.

Lemma 7. Let x1, x2, ... ,x E X satisfy max,,_±111E"_1e,x;ll 5 2. Then

E,"_1S(IIx;IDs1.

PROOF. We suppose of course that the x, are nonzero.
Let e1=1 and S1= e1x1.
Let e2 be the sign that produces the longer vector of e1x1 + e2x2, i.e.,

e2=1 if 11 x1+x211ZI1x1-x211ande2=-1 if 11x1--x211>11x1+x211
Let S2 = esx1 + e2x2.
Consider the vectors

x = Sz and S2 - 2e2x2
115211

y
115211

then x, y (=- Bx so that

11X+Y1118(1111)

If we look to the definition of x and y, then this last inequality quickly
translates into

IIS2 - e2x211 51 _ 8
IIS211 ( 115211

211x211
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which in turn is the same as

8
211x211 s1- I1x1II = IIS2II- IISIII

IIS211 , IIS211 IIS211

We record this fact in the more convenient form

IIS2II8(
1'5211) 5 US2U-11111 (1)

Pursuing things a bit further, we notice that 2/115211 z I so that

llxzll)8(1Ix211) 81IIS211

IIxzl

IIS211Rx211

by the monotonicity of 8(e)/e. It follows that

28(11x211) 5
IIS2118(2Nx211 } (2)

IIS211 J

Getting expressions (1) and (2) together but eliminating the middle man,
we get

28(11x211) s HS211- 11S111-

Let e3 be the sign that produces the longer vector S2 + E3x3; i.e., e3 =1 if
US2+x311ZIIS2-x3fl,but e3=-1 if 11S2+X311<IIS2-x311

Let S3 = S2 + e3x3. As we did above, we now are ready to set

x = S3 and
S3 - 2E3X3

IIS311

Y

IIS311

Proceed along a parallel to that followed above, and on arrival at your
planned destination you ought to find

28(IIx3II) S IIS311- IIS21I-

After repeating this argument a number of tunes and making the usual
allowances for So (set it - 0), we have in our telescopic sights the following

28(flxlll) s IHS111-11So11

2801x210 s 115111- 11S111

28(Ifx3II) s I1S311- IIS2II

s IIS»-111. 0

In making our way to the proof of Kakutani's Theorem 1 the following
result of V. P. Milman and B. J. Pettis plays an important role. Its
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exceedingly short proof is due to J. Lindenstrauss and L. Tzafriri and serves
as an excellent example of the clarity of view improving with the years.

Theorem (Milman-Pettis). Unipformly convex Banach spaces are reflexive.

PROOF. Let x** E Sx... Select a net (xd)d 11) from Bx such that x**
weak* lundxd; such a net exists through the good graces of Goldstine's
theorem. Since 2x** is the weak* limit of the doubly indexed net (xd +
Xd )(d, d ) C.D x D and the norm in X** is weak* lower semicontinuous, we
know that lim(d,d-)IIXd + xd.ll = 2. The uniform convexity of X allows us to
conclude that lim(d, d')Il xd - xd.Il = 0. Since X is complete, (Xd) converges
in norm to a member of X; this can only be x**. O

PROOF OF THEOREM 1. In light of the Milman-Pettis theorem and the
Eberlein-9mulian theorem, it is enough to show that each weakly null
sequence of terms from BX admits of a subsequence having norm-con-
vergent arithmetic means.

Let be such a sequence.
Let 6 be the bigger of 1- 8(4) and
Letml2.
If lIx211 s :, then 1Kx2 + x3)/2115; 5 6; in this case we let m2 = 3.
If 11x211 > i, then there is an m > 2 so that 11x2 - XmII > i

In fact, were IIx2 - xmll s 5 for all m > 2, then we would have for any x* in
Bx. that

Ix*x21= lilIx*x2-X*XmISUMIIx2-Xml1s1.
M m

Let m2 be the first m> 2 for which IIx2 - xmll z Z. Since xm=E Bx we
have IKxm, + x.)/211 51- 6(4) s 0.

In any case we can choose m 2 > ml so that

Ilxm'Xm2

2

Let m3=m2+1.
If Ilxm,II5 ,thenIKxm,+xm3+1)/2i15i56.In thiscaseletm4=m3+1.
If IIXm,I1 > 5, then there is an m4 > m3 so that Ilxm, - X..11 ;>- 1. Since

X13 , Xm4 are in Bx we have

11IXm3 +Xm.
6(1)56.

1 2 II

In any case we can choose m4 > m3 so that

Ilxm3

Xm,2

Let ms=m4+1.
Continue in this vein.
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We obtain a subsequence (x,,) of (xe) for which given any k

IIXm2k-1 + Xm 2k115 26.

Before proceeding to the next step, we take note of a fact about the
modulus of convexity which follows by means of an easy normalization
argument involving statement 1 cited in the proof of Kadee's theorem,
namely, the fact that whenever Ilx - yll z emax(I(x((, I(ylp, then l(x + yll 5
2(1 - 8(e))max(IIxII, IIYII).

Let (x,',) be the sequence defined by

Xm2.-t + XM2.

Ilxt,41 S 6 for all k. Moreover, (x,,) is weakly null.
Let ml(1) = 2.
If IIx21I s 6/2, then I(x'2 + x3)/211 5 30/4 5 62.
If IIx111 > 6/2, then there is an m > 2 so that IIx2 - 6/2. Indeed,

were IIx2 - for all m;-> 2, then for any x * E Bx. we would have

Ix*x21= limfx*x2 - 5 Ilxi -x'11 5 6/2.
m m

Now, once IIx2 - x, z 6/2, we have that 11x2 + 5 (1- 6(j)), and so

11A + 5 2(1 - 8(1))max(IIx111, IIx,,11) s 202.2 2

In any case there is a first m2(1)> mt(1)= 2 for which

IIXm1(1) = X+1,,2(1)f l
-2192.

The attentive reader can see how we now go about selecting
m3(1), m4(1), ... , in an increasing fashion (with m3(1) = m2(1)+1] so as to
ensure that

14

I t
XM2.-,(t) +Xm2.(')Il -< 262

holds for all n.
Let be the sequence given by

i t t2x Xm2.-,(t) + X,,2.(1).

Then IIx 11 5 62 for all n. Moreover, (x,2,) is weakly null.
Proceeding as before, we can select an increasing sequence (mk(2)) of

indices with m1(2) = 2 so that for every n

2 2 3
(lx2.-t(2) +Xmz.(2) I s 26 .

Let be the sequence defined by
3= X2 22x = Xm2.-,(2) + Xm2.(2).

The iteration seems clear enough: at the pth stage we have a sequence
(xc) of vectors each of norm :5. 8 and such that 0. We select
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an increasing sequence (mK(p)) of indices [with m1(p) = 2] in such a
manner that

IIX'^2.-t(P) + XP s 26P+1_

This lets us define the sequence (x P+ 1) by

2xit +1 - XPmz.-,(P)
+ Xm2.(P)

and on so doing obtain a weakly null sequence each term of which has norm
5 gP+1

Now to keep careful books, we tabulate

X11 = (xm1 + xm2 ,

2 1 1

XL = `(Xmt(1) + Xmz(1)

4((Xm2 (l)1 + Xm2,.1(l))+ 2 (Xm2.,2(1) -1 + Xm2,.2(1)))

4 (Xm2 _1(1) -1 + X-2.,(1) + Xm2..2(1)- 1 + xlq 2w.2(1) }'

where we note that the indices in this last expression are strictly increasing
as one proceeds from left to right. If we continue to backtrack, we find that
for any p z 1 the vector x f is representable in the form

lxf = 2-P(x,,(P)+X12(P)+ ... +X12P(P))

where 1 < 11(1) < 12(1) < 11(2) < 12(2) <13(2) <14(2). . Further, we have
arranged things so that if q < p and 15 i 5 2 P - 4, then the average of the i th
block of 29 members of xi,(,), 'X121(P)'

2 X,('-1)2a,1(P)+ ... +x,,2-(P)}

is a member of the sequence (XD and as such has norm 5 84.
Let n1=1,n2=11(1),n3=12(1),n4= 11(2),n5=12(2),....

Take any k z 1 and suppose r2° 5 k 5 (r + 1)24. Then
iJ

IIX,, I + ... + X,tkll 5 IIXnI + ... + XR2q-lll

r

+ E IIXn,,-t)2V
+ ... +X, 2q- III

j-2

+ IIxn.N + ... + xn.ll

5 (2Q-1)+(r-1)24e4+24.

It follows that

lim IIXnt+

.k +x., II <
(241

1) +

1k)2q*q

+ k4
k k.4

= 0. 11
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Before embarking on the proof of Theorem 3, we wish to make a point
about the inclination of a basic sequence. If is a basic sequence, then
the inclination of is the number

k = inf distance (Slzl, k > n]),
n

where [Al denotes, as usual, the closed linear span of A. Our point is just
this: if the basic sequence (x,,) has basis constant K and inclination k, then
kK=1.

In fact, we know that f o r any scalars b1, ... ,b,,,, bm+l, .. ,b, +n that
m

L b,x,
i-1

5 KI
m+n

b,xj
i-1

so that should E 1 b,x, E SX, then regardless of b,.+,,... , bm+,,, we would
have

m m m+ h

l=l
ff1Eb,x1

5 11Eb1x1-
1:

b,xf11-1 ,-I i-m+1

It follows that

K-15

or

in

bixl -
m+n

bjxj ,
-1 i-m+1r

K-1sk, that is,1SKk.
On the way toward establishing equality, take any vector of the form

E =inb,x, and look at E' tbix, r= [x1, ... ,xm]. Suppose Em tb,x, * 0. Then

1 in

distance

I

i-1

M ,[x!'>>mI

11

b,x,1I

z k.

Therefore, recalling an idea of Banach, we can find an x'' such that

x * vanishes on [x1: j > MI,

(
[mom

L 1
m

x* bixi1S E b,x,
f-1 J i-1

and

1

distance (E brxi/O b,xi xj. i > m
1i-1 r-1
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a number S 1/k. It follows that

HPmbjXi it = l

i-1

k

m m+n
x'E biz) = xs bixi

i-I i-1
m+n
E bixi
i-1

From this we see that I1Pm11<1/k, and so, keeping in mind the fact that
K = supmllPmll, we see that k 51/K or Kk 51.

Now suppose we have a normalized basic sequence (xn) that spans a
uniformly convex space. Suppose (xn) has a basic constant K and, corre-
spondingly, an inclination of k =1/K. Let p be chosen so that

(2[1- 8[x.1..1(k)D P < 2.

Since given x, y E Sx for which Ilx - yll z k we have

lix + y11:5 2(1 - Six.].kl(k)),

it follows that the continuous functions w(t) and X(t) given by

p(t)=IIX+tyil", x(1)=1+10
satisfy ip(l) < X(1); consequently, there is an rl > 0 so that

IIX+tyllp<1+tP,

whenever III - t11 -< n. Of course, we can assume ti is very small, say i <1.

Claim. For any finitely nonzero sequence (am) of scalars we have!(3)
The proof of this claim (and, consequently, of Theorem 3) will be an
induction on the number I of nonzero terms in vectors of the form E-laixi.
For 1=1, expression (3) is plainly so. So suppose (3) holds for vectors
Emamxm that have no more than / nonzero ai, where 1;-> 1, and consider a
vector Em bmxm, where I+ 1 of the bm are nonzero. For sanity in notation,
we assume we are looking at a vector E;:ibxi, where all the bi are nonzero.
Of . ourse, if just one of the coefficients exceeds the left side of (3) in
modulus, then we are done; so we need to see what happens when all 1 + 1
of the b; satisfy

11 t+1

Ibil<2 bix
i-1
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For 1 s j s I, consider the vectors
j 1+1

yj - L bix;, F. b;x; = zj.

Plainly,

i-1 i-j+1

IIIYj+III -- IIY;III, IIIzj+lll- IIzjIII < 22

for j =1, 2, ... ,1, where z,+ I = 0 and y,+ 1 - Ei=ibx;. It follows easily that
for some special j, 15 j 5I

11

!+1

IIIYjIi- IIzjIII <

2

E bix; . (4)
i-1

We suppose that IIYjII z iiz II and for reasons of homogeneity assume IIYjII =1
Since

1+1

b;x;=Yj+z,,
i-1

it follows that

s IIYjfI+ IlzjlI s 2.

Expression (4) assures us that
!+1

I1-IIzjIII=IIIY;II-IIzjIIIs 2
bix;

i-1
In light of (3) this tells us that

!+1 P P

2 i bixi
= (211Yj + z;ll)

s n.

= (2 )Plly, +
IlzjlI 'Ilz1Il k

s (2)P(IIYjIIP + IlzjiiP) [(3) enters here]

(LbixiH)'+(1±'bixiff)-1 15 -1 11

which by our inductive hypothesis,

s 1I(bl, b2,...,bj,0101 ...)
11v

P

P

P

=II(bi)IIPP.

,
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Exercises

1. No trees grow in uniformly convexifiable spaces. A finite tree in the Banach space
X is a set of elements of the form (x1, x2, x3, ... ,x2._1 ), where for each
plausible index k we have

Xk X2k + X2k+1
2

The height of the finite tree (x1, x2, X3, ... ,x2....1} is the integer n -1. If the
finite tree (x1, x2, x3, ... ,x2' - 1) also satisfies the conditions

IIXk - X2k11 Z 8, IIXk - X2k+111 8

for all plausible k, then it is called a 8-tree of height n - 1. A Banach space X has
the finite tree property if there is a 8 > 0 such that Bx contains 8-trees of arbitrary
heights.

(i) Uniformly convex spaces do not have the finite tree property.

(ii) The finite tree property is an isomorphic invariant.

(iii) If there is a constant K > 0 such that for each n, a one-to-one linear operator
T,,: !i -. X can be found with IIT 1II.L,(T.(/; ); /;) s K, then X has the finite
tree property.

2. An analysis of Kakutani's proof of Theorem 1. Suppose we are given a positive
integer m z 2. We say the Banach space X has property Am if X is reflexive and
there is a, 0 < a <1, such that given a weakly null sequence in Bx we can
find n1< < n. such that

F.
k-1

< am sup
lsksm

We noticed in the above proof that uniformly convex spaces have A 2.

(i) If m2 z m1 and X has Amy, then X has Amt.

(ii) If X has Am for some m 2, then X enjoys the Banach-Saks property.

3. Kakutani's theorem via the (Gurarii)2 theorem.

(i) If (x,,) is a bounded sequence in a Banach space X and ((Ek -1 k 1xk) , a 1 is
norm convergent, then so, too, is the sequence (n-14k-1xk)nZ1 norm
convergent.

(ii) Derive Kakutani's theorem from the (Gurarii)2 theorem, (i), and the results
of Chapter VI.

4. Upper and lower l p-estimates of (Gurarii)2 type. Suppose there are constants A > 0
and p > 1 so that given a normalized basic sequence in the Banach space X,
then

II( a,,) lJp 5 A11>a,, x,,

HI

A2II(a.)
lip'.

p -1 + (p') -1-1 holds for all scalar sequences Show that each normalized
basic sequence in X is boundedly complete.
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Notes and Remarks

At the instigation of J. D. Tamarkin, J. A. Clarkson (1936) introduced the
class of uniformly convex spaces. His avowed purpose, admirably achieved,
was to prove the following theorem.

Theorem (J. A. Clarkson). If X is a uniformly convex Banach space and
f : [0,1) -+ X has bounded variation, then

f'(t)= lien f(t+h)-f(t)

h

exists almost everywhere.
Furthermore, should f be absolutely continuous, then for all t,

f(t)- f (0) + ( Bochner) f'f'(s)ds.

By way of exhibiting nontrivial examples of uniformly convex spaces,
Clarkson established " Clarkson's inequalities" and, in so doing, proved that
L,,10, 11 is uniformly convex whenever 1 < p < oo. It's a short trip from the
uniform convexity of LP[0,11 to that of L.(µ), for any u and 1 < p < oo.

Since the appearance of uniformly convexity on the scene, many im-
portant classes of function spaces have been thoroughly researched with an
eye to sorting out the uniformly convex members. It has long been known,
for instance, that if 1 < p < oo and X is a uniformly convex space, then the
space L..(µ, X) is uniformly convex for any µ; the discovery of this fact
seems to be due to E. J. McShane (1950). Indeed, McShane gave a proof of
the uniform convexity of L, (µ, X) which in order to encompass the
vectorial case considerably simplified the existing proofs for plain old
L"(µ)

A complete characterization of the uniformly convex Orlicz spaces, re-
gardless of whether the Orlicz norm or the Luxemburg norm is used, has
been obtained through the efforts of W. A. J. Luxemburg, H. W. Milnes
(1957), B. A. Akimovit (1972), and A. Kamifiska (1982).

The Lorentz spaces have proved to be somewhat more elusive. The spaces
L,,q are uniformly convexifiable whenever they are reflexive, i.e., if 1 < p,
q < oo; whether these spaces are uniformly convex in certain of their
naturally occurring norms remains an enigma of sorts. For the Lorentz
spaces L,,,P, I. Halperin (1954) has given some criteria for the uniform
convexity; in the case of the Lorentz sequence spaces d(a, p), Z. Altshuler
(1975) proved that their uniform convexity is equivalent to their uniform
convexifiability and gives criteria in terms of the weight a for such.

The Schatten classes CP were shown to be uniformly convex whenever
1 < p < oo by C. A. McCarthy (1967). J. Arazy (1981) has proved that for a
separable symmetric Banach sequence space E the associated Schatten
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unitary matrix space CE is uniformly convexiflable if and only if E is; Arazy
leaves open the determination of whether CE is uniformly convex when E is,
however.

The reflexivity of uniformly convex spaces was established independently
by D. P. Milman (1970) and B. J. Pettis (1939). For some reason, Milman's
role in this matter is more widely known; in any case, the original proofs
by Milman and Pettis vary greatly. Milman's proof was an early model
upon which S. Kakutani (1939) made substantial improvements; both
J. Dieudonnt (1942) and A. F. Ruston (1949) effected further streamlining
with Dieudonnh's proof quite close in spirit (if not in execution) to the proof
given in this text. We owe to J. Lindenstrauss and L. Tzafriri (1977, 1979)
the proof found in these pages.

Pettis's approach to the Milman-Pettis theorem is often a surprise to
present-day mathematicians: he calls upon finitely additive measures for
help. Actually, the main idea behind Pettis's prbof comes from H. H.
Goldstine (1938) who used the idea in establbhing "Goldstine's theorem";
since Pettis's proof is so different from the others, we discuss it a bit further.

Here is the setup: realize that for any Banach space X, X* is always
(isometrically isomorphic to) a closed linear subspace of Therefore,
following the directions provided us b y C h a p t e r VII, any X** E (X * )* has
a Hahn-Banach extetlsikn to a member X of 1(B.) * which we know to be
ba(2sx). It follows that x * * has the form

X**/ s f f(x) dX(x),$

for all f E moreover, Ilx**II = IxKBx). So far the fact that BX is the
closed unit ball of a Banach space has been exploited but sparingly. Look at
x+andX-

X+ - IX z x , x_ = IXI2 x

which are both nonnegative members of ba(26x). Of course, X - X+ - X ;
for E 5 BX define pE - - E and consider µ(E) = X+(E)+ X`(pE). µ it a
nonnegative member of ba(28x) for which

x**x* - fBxx*(x) dp(x)

holds for all x* E X*. Moreover, IIx**II = s(Bx). Using the integration with
respect to finitely additive measures that was developed in Chapter VII, it is
now easy to prove Goldstine's theorem.

What about the Milman-Pettis theorem? Well, suppose X is uniformly
convex and x** E SX... There is a sequence (xR) in S. with x**(x,!) at
least 1-1/n and, naturally, one locates a sequence in SX for which

1; the uniform convexity of X can (and should) be used to see that
each x,, is unique in SX with respect to the condition x,'x,, -1. All this is a
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rather typical warm-up for the main effort of this proof: show x** E X. We
assert, with Pettis, that is a Cauchy sequence with limit x**; of course,
we represent x** by µ h la Goldstine.

Let e> 0 be given and look at (x E BX: lix - x,,115 e). By uni-
form convexity, there is a Se > 0 so that for any x* E X* if x E SX, y r= BX,
x*x = llx*Il, and Ilx - yII z e, then x*y s (1- 8)11x*11. Now integrating x*
over BX = oughj to lead to the estimate
(n6e)-1. From this one quickly deduces that for m, n large enough, Bm(E)
and intersect, i.e., is a Cauchy sequence. Suppose its limit is
denoted by x0. Then B0(e) contains for all n sufficiently large,
allowing us to conclude that BX\ Bo(e) has u-measure zero. Now it is easy to
see that xo = x**. In fact, if x* E X*,

lx**x* - x*xol = fBXx*xdu(x)_f *xodµ(x)f
I I

5f lx*x-x*xoldp(x)
BX

=fO (e)

B+ f
X \ Bo (e)

B=fO(e) lx*x-x*xoldµ(x)
B

5 Ilx*II E Fi(B0(e)) s Ilx*IIE,

which completes our proof.
We have repeated Kakutani's original proof with nary a change to be

found. An alternative proof, building on the (Gurarii)2 theorem, is indicated
in the exercises; it was shown to us by D. J. H. Garling in 1978. The exercise
analyzing Kakutani's proof is inspired by work of J. R. Partington (1977).

T. Nishiura and D. Waterman first demonstrated that a Banach space with
the Banach-Saks property is reflexive. Other proofs have been offered,
notably by J. Diestel (1975) and D. van Dulst (1978); still another can be
found in the exercises following Rosenthal's dichotomy. A. Baernstein II
(1972) gave the first example of a reflexive Banach space that does not have
the Banach-Saks property; C. Seifert (1978) showed that the dual of
Baernstein's space has the Banach-Saks property leaving open the question
of just what property is dual to the Banach-Saks property. In affairs of a
Banach-Saks nature, the wise thing is to consult the works of B. Beauzamy
(1976, 1979), who gives apt characterizations of the Banach-Saks property,
the Banach-Saks-Rosenthal property, and the alternating-signs Banach-Saks
property.

M. Kadeir (1956) first proved Theorem 2; however, we follow T. Figiel's
(1976) lad in this matter with A. T. Plant's (1981) hints along the way
being of obvious help. The attentive reader will, no doubt, be suspicious of
possible connections between Kadet's result and Orlicz's theorem found in
Chapter VII. In fact, if 1 < p < oo, then Theorem 2 encompasses Exercise 20
of Chapter VII. This follows from the determination by Hanner (1956)) of
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the asymptotic behavior of the modulus of convexity of LP(µ); precisely, for
any nontrivial measure fL,

re2 ifl<p<2,
aL,(u)e) eP if2Sp<oo,

where " - " indicates that we are detailing asymptotic behavior up to a
constant for e close to zero.

While Kadeb's result does not cover the case of Li(p) (as Orlicz's theorem
does), it does give very sharp information about uniformly convex spaces
once accurate estimates have been made regarding their moduli of convex-
ity.

For Orlicz spaces, R. P. Maleev and S. L. Troyanski (1975) have given the
tightest possible estimates for the moduli of convexity; moreover, their
estimates involve, in a natural way, the generating Orlicz function.

Though the moduli of convexity for Lorentz sequence spaces have been
worked out by Z. Altshuler (1975, 1980), the problem for Lorentz function
spaces remains wantonly open.

In a striking tour de force of Rademacher know-how, N. Tomczak-
Jaegermann (1974) has shown that for 1 < p < oo, the C. classes have
moduli that behave like the LP(µ)-spaces. Ms. Tomczak actually proves
more: C. has cotype 2, if I < p < 2, and cotype p, if 2 < p < oo. Furthermore,
she shows that the dual of any C *-algebra has cotype 2.

Following B. Maurey and G. Pisier (1976), we say that a Banach space X
has cotype p if there is a constant K > 0 for which

IIxiIIP KP-'11 ri(t)xi 1 dt
r-1 J i-l

for any finite set (xi, ... , in X; here, as usual, the functions rl, ... , r are
the first n Rademacher functions. Thanks to J. P. Kahane (1968), we can
paraphase cotype p as follows: a Banach space X has cotype p provided
Ellx.IiP converges whenever is convergent for almost all sequences
(an) of signs a = ± 1 in (-1,1)N, where ( -1,1 )N is endowed with the
natural product measure whose coordinate measures assign each singleton
the fair probability of 2.

Although the precise definition of cotype did not appear on the mathe-
matical scene until the early seventies, W. Orlicz's original results regarding
unconditionally convergent series in LP[0,11 already had delved into the
notion; in fact, with but a bit of doctoring Orlicz's proofs show that LP[0,11
has cotype 2 in case 1 S p5 2 while it has cotype p for p z 2. What relation
then, if any, does the cotype of a uniformly convex space bear to its
modulus of convexity? In answering this question we pass over some of the
most beautiful and richest terrain in the theory of Banach spaces; the
ambitious reader would do well to study the fertile land we are treading.
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Our response starts by recalling the notion of uniform smoothness: a
Banach space X is said to be uniformly smooth whenever the limit

lim IIx+ryll - Ilxll
t..., 0 t

exists uniformly for all x, y e Sx. This notion was studied extensively by
V. L. 9mulian (1941), who showed that X is uniformly smooth if and only if
X0 is uniformly convex and X is uniformly convex if and only if X" is
auformly smooth. Along the way, §mulian also showed that if X' is
wniformly smooth [in fact if we only ask that limr.o(Ilx + lull- llxlp/t exist
uniformly for y E Sx for each x E Sx], then X is reflexive; thus, yet another
proof of the reflexivity of uniformly convex spaces emerges. Now uniformly
smooth spaces have a modulus of their own, a modulus of smoothness
whose value for any -r > 0 is given by

P('r)=sup(1Ix2YIl+llx2YIl-1:xEsx,11Y{1=T

A surprising development relating the modulus of convexity of X" and the
modulus of smoothness of X took place in the early days of Lindenstrauss:
for 0<e52 and for0<-r<oo

Px(O = sup ( 2 -8x.(e)).
0<es2

From this formula, Lindenstrauss was able to deduce that whenever
E P(Ilx,,ll) < oo, then converges for some sequence (a,,) of signs
a = ± 1. In passing it should be recalled that G. Nordlander had shown in
1960 that the modulus of convexity always satisfies

tam 8(2) <oo;
e

consequently, Hilbert space is as convex as possible; as one might expect,
Hilbert space is also as smooth as possible. Lindenstrauss showed that
if a Banach space X has an unconditional basis and is as convex and smooth
as Hilbert space, X is isomorphic to Hilbert space. He asked if such were so
for any Banach space.

T. Figiel and G. Pisier (1974) gave much more in response to
Lindenstrauss's query than was asked for. Recall that LAO, 1), X) is uni-
formly convex if X is-thanks to McShane-how does the modulus of
convexity of L2(10,1], X) compare with that of X? Figiel and Pisier showed
that L2(10,11, X) has a modulus of convexity which is asymptotically the
same as that of X; i.e., there are constants c, C > 0 such that

c 5 lim
8L2®.1i, x)(e) s 1i 82(10,1), X)(e) S C.

e-.0 8x(e) 8X(e)
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Therefore, if X is as convex as possible, so too is L1([O,1], X) and similarly
for X* and LAO, 1], X*) - L2([O,11, X)*. But now the Kadeir theorem
comes into play. Using it, Figiel and Pisier conclude that for a Banach space
X that is maximally. smooth and convex one has the following analogue to
Khintchine's inequalities: there is a K > 0 so that for any finite set
(x1,...,x"} inX

1(

1/2

K- iIIxiII2 ) s
r

2 1/2 1/2

r,(t)x, 11
dt S K(n IIx;112,01II `

"I -1

however, S. Kwapien (1972) had already noticed that such an inequality is
enough to identify X as among the isomorphs of Hilbert space.

What Figiel and Pisier had shown however was more. In light of Kahane's
discovery that (Jo IIEi_1n(t)x,II2 dt )1/2 and (Jo IIE,""-lrr(t)x,I P dt)1 /P are
equivalent expressions, the fact that L2([0,1], X) and X are equally convex
may be translated to the statement that if X has a modulus of convexity of
power type 6(e) = eP for some p ;?t 2, then X also has cotype p. Again,
Kadee's theorem now allows one to conclude that if E"a"x" is convergent
even for almost all choices (a") of signs, then E"IIx"IIP <co: indeed,
E"a"x"'s convergence for almost all choices of signs is tantamount to the
unconditional convergence of E"r"®x" in L2([0,1], X).

The story is not yet over. In fact, we have left the best part of this
particular tale to the last. In a remarkable chain of developments, R. C.
James had introduced the super reflexive Banach spaces; P. Enflo (1972)
had shown them to be precisely those spaces which can be equivalently
normed in a uniformly convex manner (which might as well be our
definition), or precisely those spaces which can be equivalently nonmed in a
uniformly smooth manner, or precisely those spaces which can be equiva-
lently normed in a simultaneously uniformly convex and uniformly smooth
manner; and G. Pisier had shown that every uniformly convexifiable
Banach space has an equivalent norm which is uniformly convex with power
type modulus of convexity.

For the case of Banach lattices there are finer notions than cotype (and
type) that have allowed for a very fine gradation of the classical function
spaces. For the rundown on these events the reader is referred to the
monograph of W. B. Johnson et al. (1979) and the appropriate sections of
the Lindenstrauss-Tzafriri books. With particular attention to the Lorentz
spaces, J. Creekmore (1981) has computed the type and cotype of the
L,.4-spa ces, and N. Carothers (1981) has gone on to solve the more difficult
problem of the type and cotype of the LP, w spaces.

Theorem 3 is due to V. I. Gurarii and N. I. Gurarii (1971); our proof
follows their lead all the way. As noted in the exercises, the existence of
upper and lower 1, estimates for all normalized basic sequences is a tight
restriction indeed. Actually, the restriction is much tighter than one might
glean from the exercises; in fact, R. C. James (1972) has shown that in order
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for the conclusion of Theorem 3 to apply in a Banach space X, it is
(and, from Theorem 3, sufficient) that X admit an equivalent

uniformly convex norm.
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CHAPTER IX

Extremal Tests for Weak Convergence of
Sequences and Series

This chapter has two theorems as foci. The first, due to the enigmatic
Rainwater, states that for a bounded sequence in a Banach space X to
converge weakly to the point x, it is necessary and sufficient that x*x =
limnx*x hold for each extreme point x* of Br.. The second improves the
Bessaga-Pelczynski criterion for detecting co's absence; thanks to Elton, we
are able to prove that in a Banach space X without a copy of co inside it,
any series for which co for each extreme point x* of B.. is
unconditionally convergent.

The inclusion of these results provides us the opportunity to present the
geometric background that allows their proof. This is an opportunity not to
be missed! The Krein-Milman theorem and its converse due to Milman,
Bauer's characterization of extreme points, and Choquet's integral represen-
tation theorem are all eye-opening results. Each contributes to the proof of
Rainwater's theorem.

The approach to Elton's theorem requires a discussion of some of the
most subtle yet enjoyable developments in geometry witnessed in the recent
past. Our presentation is based on the Bourgain-Namioka "Superlemma."
From it we derive another result of Bessaga and Pelczynski, this one to the
effect that in separable duals, closed bounded convex sets always have
extreme points. Using Choquet's theorem and the Bochner integral, we then
show that dual balls with a norm separable set of extreme points are norm
separable. This arsenal stockpiled, we describe the delightful arguments of
Fonf that serve as a necessary but engaging prelude to the proof of Elton's
theorem.

Rainwater's Theorem

Our interests in representation theory are quite mundane. We want to be
able to test convergence in the weak topology with but a minimum of muss
or fuss; more particularly, we want to be able to test weak convergence of
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sequences by the most economical means available and integral representa-
tion theory opens several avenues of approach to such possibilities.

For the remainder of this section, E will be a real locally convex
Hausdorff linear topological space with topological dual E*.

Before starting with the famous theorem of Krein and Milman, we recall
that a point x of a convex set K is called extreme if x cannot be written
as a convex combination A y + (1 - A) z, 0 < A < 1, of two distinct points y, z
of K.

The Krein-Milman Theorem. Let K be a nonempty compact convex subset of
E. Then K has extreme points and is, in fact, the closed convex hull of its
extreme points.

PROOF. We start by introducing the notion of "extremal subset." A subset
A of a convex set B is extremal in B if A is a nonvoid convex subset of B
with the property that should x, y E B and Ax +(1 - X) y E A for some
0 < A < 1, then x, y r= A. Of course, an extremal set with but one element
consists of an extreme point. Naturally, we are looking for small extremal
subsets of K.

Let be the collection of all nonempty closed extremal subsets of K
(plainly, K E ¢); order J by K15 K2 whenever K2 c K1. The compactness of
K along with a bit of judicious Zornication produces a maximal Ko E J. We
claim Ko is a singleton. Indeed, if x, y e Ko are distinct, there is a linear
continuous f on E with f(x) < f(y). Ko f1(z: f(z) = max f(Ko)) is then a
proper closed extremal subset of K0, a contradiction.

K has extreme points.
Let C be the closed convex hull of the set of extreme points of K. Can

K \C have any points? Well, if x r= K \C, then there is a linear continuous
functional f on E such that max f(C) < f (x). Looking at (z E K: f(z) =
max 1(K)), we should see a closed extremal subset of K which entirely
misses C. On the other hand, each closed extremal subset of K contains an
extreme point on K, doesn't it? This completes our proof.

Suppose C is a compact subset of E and let p be a regular Borel
probability measure on C. We say a point x of E is represented by µ (or is the
barycenter of it) if for each f e E* we have

f(x) = f f(c) dµ (c)

To be sure of our footing, we prove that every regular Borel probability
measure on a reasonable compact set has a barycenter.

Theorem 1. Suppose the closed convex hull K of a closed set F( 5; E) is
compact. Then each regular Borel probability measure p on F has a unique
barycenter in K.
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PROOF. The restriction f I F of any f (-= E * to F is plainly µ-integrable for any
regular Borel probability measure µ on F. Take any such µ. We claim that
the hyperplanes

(xEE:f(x)=ffdP)E,,feE*

intersect K in a common point.
Since K is compact, we need only show that given fl, ... ,fn E E*, then

K0Ef,nEfzn nEf.*0.
From this the existence of a barycenter (for µ) in K follows. Consider the
operator T: E - R" given by Ty = (fl(y), ... , ,,(y)); TK is compact and
convex, T being linear and continuous. Should (fFfl dµ, ... , fFfn dµ) not
belong to TK, then there would be a functional a = (al, ... , an) E R "* = R "
such that

sup( y(=- K) fldµ,...,f f dµ).
F F"

Let g = E"_ la; f . Then

sup(g(y):yeK) f
"

°suPS aaf(y):yEK

sup( yEK}

<a-(ffidµ,..., ff"dµ)
F

n n

= E a;f ffda = f E auf,dµ ° f gdR
i_1 F Fi_I F

Ssup(g(y):yEF)
5sup(g(y):y(=- K);

this is a contradiction, and the proof is complete. 0

Uniqueness of barycenters is, or ought to be, obvious.
With an eye to Banach spaces it ought to be recalled that whether you are

looking at a Banach space in its norm topology, a Banach space in its weak
topology, or the dual of a Banach space in its weak* topology-in each case
the fact is that the closed convex hull of a compact set is compact, too.

Being the barycenter of a regular Borel probability measure that lives on
a given compact set C in E means being some sort of average of points of C.
More precisely, we have the following theorem.

Theorem 2. For any compact subset C in E, a point x of E belongs to the
closed convex hull of C if and only if there exists a regular Borel probability
measure µ on C whose barycenter (exists and) is x.
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PROOF. If p is a regular Bore] probability measure on C and has x as its
barycenter, then for any f E E * we know

f(x)= f fdµ_supf(C)ssupf(coC).
C

Were x not in coC, there would be an f E E* violating f(x) 5 supf(coC).
Conversely, suppose x Eco(C). Then there is a net (ad)deD of members

of co(C) converging to x. Each ad is of the form

ad = E adyd (finite sum),

where ad > 0, E; ad =1, and yd E C. Let µd be the regular Borel probability
measure

lid= adsy

where 8, E C(C)* is the usual evaluation functional at c E C. Directed as
they are by the same set D as the net (ad)dE D, the pd form a net with values
in the weak* compact set Bc(c). and as such have a convergent subnet
(µs ): E s with a limit µ that is quickly seen to also be a regular Borel
probability measure on C. Naturally, x is the barycenter of p; in fact, if
f E E* is given, then

f(x)=limf(a,)
S

= lim f f(c) dµs(c) = f f(c) dµ(c). 0
C C

Now for a real touch of elegance we characterize the extreme points of a
compact set by means of their representing measures.

Theorem 3 (Bauer's Characterization of Extreme Points). Let K be a non-
empty compact convex subset of E. A point x of K is an extreme point of
K if and only if 6 is the only regular Borel probability measure on K that
represents x.'

PROOF. It x E K is not an extreme point, then there are y, z E K with y # z
so that x - #y + #z. Plainly, j8y + 18, is a regular Borel probability measure
on K that represents x and differs from 8x.

Suppose x is an extreme point of K and p is a regular Borel probability
measure on K that represents x. We claim that p(C) = 0 for each compact
subset C of K \(x ). The only alternative is that p(C) > 0 for some compact
set C c K \( x ). An easy compactness argument shows that there is a point
y in this C for which p(U n K) > 0 for each neighborhood U of y in E.
Letting U be a closed convex neighborhood of y for which x e U fl K, we
get a particularly interesting nonempty compact convex proper subset
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U n K of K. Why is U n K of interest? Well, its µ-probability cannot be I
because p represents x 0 U n K, yet its µ-probability is not 0! 0 <;&(U n K)
<1. If we define µ, and µ2 by

µ1(B)- p(BnUnK) (B)-µ(Bn(UnK)`)µ2 ,

p(UnK) 1-µ(UnK)
we get regular Borel probability measures on K. Let x, be the barycenter of
µ, and x2 be the barycenter of µ2. Each of x, and x2 belongs to K; x, is in
U n K and so is not x. On the other hand,

µ=µ(UnK)µ1+(1-µ(UnK))µ2,
forcing

x=µ(UnK)x,+(1-µ(UnK))x2,
which is a contradiction.

Corollary 4 (Milman's Converse to the Krein-Milman Theorem). Let K be a
compact convex subset of E. If K is the closed convex hull of a set Z, then
every extreme point of K lies in Z's closure.

PROOF. Suppose x is an extreme point of K =co(Z). Then x is the bary-
center of a regular Borel probability measure p that lives on Z (Theorem 2).
We can extend It to all of K by making µ(B) = µ(B n Z) (it is plain that
this makes sense) for Bore] sets B C_ K. The resulting measure still represents
x. But now Bauer's theorem enters the foray to tell us that p must be k;
since p is supported by Z, it follows that x E Z.

We start now on our way to Choquet's theorem.
For a compact convex subset K of E we denote by A(K) the space of all

affine continuous real-valued functions defined on K; f E C(K) is affine if
f(tx+(1-t)y)=tf(x)+(1-t)f(y) for all and all t, 0<t51.
A(K) is a closed linear subspace of C(K) whose members separate the
points of K. Among the members of A(K) the discerning viewers will surely
find the constants.

Let f E C(K) and define f : K (- oo, oo) by

f (x)=inf{h(x):hEA(K), f Sh}.

Lemma 5. For f, g t=_ C(K) we have

1. f is a concave, bounded, upper semicontinuous function on K; hence f is
Bore! measurable and universally integrable on K with respect to the class of
all regular Bore/ measures on K.

2.fsf.
3. f=f if and only iffisconcave.
4. f+g 5/+g',butf+g-f+g, ifgEA(K),and rf=rf,ifOSr<oo.
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PROOF. Parts 1 and 2 are plain, simple calculations and are corollaries to
well-known facts.

Part 3 is not so direct. Suppose f is concave. Let Kf = ((x, r) E
Kx(- oo, oo) : f (x) z r). Kf is closed and convex since f is continuous and
concave. Suppose there is an x0 E K such that f(xo) < f(xo). It follows that
there is a real-linear continuous functional A on E X R such that

supA(Kf) <Ao <A((xo,f (xo)))

for some fixed real value A0 of A. In particular,

A((xo,f(xo))) <A((xo,f (xo)))
It follows that

0 < A((0, f (xo)-f(xo)))

and from this that for any a > 0,

0 <A((0,a)).
Of course, from this we see that for any x e K,

A((x,t))- too as
The continuity of A((x, )) for each x E K now tells us that given x E K
there is an r, a (- oo, oo) such that

A((x, rx)) = Ao.

Notice that

A((x, r)) = A((x, r'))
if and only if

0=A((0,r-r'))=(r-r')A((0,1)),
which, in light of the fact that A((0,1)) > 0; holds if and only if

r = r'.
It follows that the association x - r,, is a well-defined function h : K -> R.
We claim for h the following:

a. f <h.
b. h(xo) <f(xo)
c. h c- A(K), i.e., h is affine and continuous.

Of course, a, b, and c together contradict the definition of f and compel us
to reject any alternative to f = f.

a. Take x E K. Then (x, f (x )) E K1. Thus,

A((x, f(x))<Ao=A((x,h(x))),
so

0 < A((0, h(x)- f(x))) - (h(x)- f(x))A((0,1))
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b. Similarly,

so

A((xo, h(xo))) = A0 < A((xo, f (xo)));

153

0 < (f (x0)-h(xo))A((0,1))
c. If x,yeKand 0<t<1,then

A((tx+(1-t)y,th(x)+(1-t)h(y)))=tA((x,h(x)))
+(1- t)A((y, h(y)))

=tA0+(1-t)Ao=Ao
=A((tx+(1-t)y,h(tx+(1-t)y))).

As in a and b, we can conclude that

0=A((0,1))(th(x)+(1-t)h(y)-[h(tx+(1-t)y)]),
and the affinity of h is established.

Finally, h is continuous. Let (xd)D be a net in K converging to x. Let
rd = h(xd) and r = h(x). Notice that (rd) is a bounded net of reals. In fact,
otherwise, there'd be a subsequence (rd") such that Ird"I - oo. From this we
see that

x
0= HIM ° =limX (- rdd",1) =A((0,1))>0.

n r4 " "

The boundedness of (rd) implies that any subset has a further subnet that
converges; if (rde) is a subnet of (rd), then there is a subnet (rdq)Q that
converges to some real ro. Now,

A((x, r)) = A((x, h(x))) = A0

= A0 = A((xd4' h(xd9)))

= A((xdy, rd)) -+ A((x, r0))

r = ro and h(xd9) - h(x). The continuity of h is established.
Part 4 involves some relatively straightforward computations which are

just as well left to the reader's diligence. 0

Lemma 6. Let K be a nonempty compact convex metrizable subset of E. Then
C(K) contains a strictly convex member.

PROOF. The metrizability of K ensures the separability of C(K) and hence
that of A(K). Let (ha) be a dense sequence in SA(K); define h
The M-test assures us that h E C(K). Plainly, h is convex. In fact, h is
strictly convex. Indeed, if x, y E K and x * y, then there is an n so that

0 A(K) separates the points of K. If we now
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consider 0 < t < 1 and let s -1- t, then

sy) = t2hn(x)+s2hn(y)+2sthn(x)hn(y)

=

h too satisfies the strict inequality

h(tx + sy) < th(x)+sh(y),
i.e., h is strictly convex. 0

We are ready for the real highlight of this section: Choquet's theorem. It
is from this remarkable theorem that we derive the result of Rainwater.

Choquet's Integral Representation Theorem. Let K be a nonempty compact
convex metrizable subset of a locally convex Hausdorf space E. Then each
point of K is the barycenter of a regular Borel probability measure that is
concentrated on the extreme points of K.

More precisely, if x e K, then there is a regular Borel probability measure µ
defined on K for which µ (extreme points of K) -1 and for which given any
f e A(K),

f (x) .. f f (k) dp(k)

PROOF. First things first. The set of extreme points of K is a Borel set. In
fact, the complement of this set is easily seen to be

00

U (fy + jz - x: y,zEK,d(x,y),d(x,z)n-1 n

where d is a metric generating- K's topology. The point of this remark
should be well-taken: The set of extreme points of K is a gra-set, and so
µ(extreme points of K) =1 makes sense fot any Borel measure µ.

Now on to the proof proper.
Let x c- K, and let h e C(K) be strictly convex. Define F,,: linear span

(A(K),h)
F,, (a + th) = a(x)+th (x).

Clearly Fx is linear on its indicated domain.
Define p : C(K) -- (- oo, oo) by

p(f)=f(x).
p is a sublin.;ar, positively homogeneous functional on C(K).

Claim. p dominates FX on the linear span of A(K) and It.
To see the claim's basis, look at a vector a + th. If I Z 0, then Fr(a + th)

= a(x)+ th(x) = a + t x) = p(a + th). If 0 > t, then a + th is concave; so
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Fx(a + th) = a(x)+ th(x) 5 a(x)+ th(x) =a + tti(x) = p(a + th). Either
way the claim is well-founded.

The Hahn-Banach theorem now lets us extend F,, to all of C(K) keeping
the domination by p as a control. Call the extension F., too, and study it for
a bit. First, note that if g e C(K) and g .-:t 0, then - g:5 0 so that

-F:(g)=1 (-.g)Sp(-g)_=g(x)50,

and Fi(g) z 0. Fx is a positive linear functional on C(K). F,, is represented
by a positive regular Bore] measure µ on K. Since F,,(1) = 1, the measure µ is
a probability measure. Of course, p represents x. In fact, if f e A(K), then

f(x)-FF(f)= f f(k)da(k)

It remains to be seen that µ (extreme points of K) =1. This we do in two
steps:

1. Jh(k)dg(k)= Jh(k)dµ(k).
II. (x E K: h(x) - h(x)} consists of only extreme points of K.

1. h(x)=F(h)- JhdtsJhdsS Jadµfor all aGA(K)such that hsa.
It follows that for each such a,

h (x)= f hdµ5 f hdµs f adµ=F.(a)=a(x)=a(x),

and so by definition of h we get all the quantities to the left of Ja dIt the
same, including Jh dµ and fh dµ.

II. If x is a nonextreme point of K, then there are distinct points y, z E K
such that x - ly +

z
z. Since h is strictly convex,

+ 2) <
h(2) + h (z)h(x)=h(2 Z.i

sh(Y)+h(z)5h Y+z h (x).
2 2 ( 2 )

i his completes the proof. 13

Now as a corollary to the Choquet theorem, we present Rainwater's
theorem.

Rainwater's Theorem. Let X be a Banach space and be a bounded
sequence in X. Then in order that converge weakly to x E X, it is both
necessary and sufficient that x *x - holds for each extreme point x*
of Br..

PROOF. We take two small steps before arriving at the finish. Before
the first, we notice that the theorem need only be proved for real Banach
spaces X.
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Our first step entails proving the theorem in case X is a separable Banach
space. For such a space, B. is weak* compact, convex, and metrizable.
Therefore, we are set up for Choquet's .heorem should we find a way to use
it- and be sure we will! Suppose (xn) is a bounded sequence in X such that
x *x = *xn holds for each extreme point x* of BX., where x is the
hoped-for weak limit of (xn). Take any x* E Bx.. Then Choquet's theorem
gives us a regular Borel probability measure µ on Bx.(weak*) such that

a(x*) = f a(y*)dtr(y*)
ex Bx.

for each a E A(BX. (weak*)) where ex B. denotes the set of extreme points
of BX.. Viewing members of X as being in A(Bx.(weak*)), we get

xx*= f
xB

x(Y*)d1r(y*)`fxe limxn(y*)dz(y*)
X

X.

=lim

by the boundedness of (xn) and Lebesgue's bounded convergence theorem.
It follows that x is the weak limit of (xn).

For a general Banach space X, we suppose (xn) is a bounded sequence in
X and x is an element of X such that

limx*xn = x*x
n

holds for every extreme point x * of BX.. Let Xo be the closed linear span of
(xn : n z 1) U (x ). Then X0 is a separable Banach space. We claim that x is
the weak limit of (xn) in X0; once verified, the Hahn-Banach theorem
assures us that (xn) converges to x weakly in X, too. To show that x is the
weak limit of (xn) in X0, we will show that y*x = limn y*xn for each extreme
point y* of Bx: and then apply the known verity of the theorem for
separable spaces.

Well, take any extreme point y* of BXo. Let HB(y*) denote the set of all
x * E BX. such that x * J Xo = y *. It is easy to see that HB(y *) is a nonempty
convex weak* compact subset of Br.; furthermore, since y* is an extreme
point of BXp, HB(y*) is an extremal subset of BX.. It follows that HB(y*)
contains some extreme point z* of BX.; of course, now we know that

y*x - z*x = limn*xn = limy*xn.
n n

Corollary. A bounded sequence (xn) in the Banach space X is weakly Cauchy
if and only if limnx*xn exists for each extreme point x * of Bx..

PRooF. It need only be remarked that a sequence (xn) is weakly Cauchy if
and only if given increasing sequences (kn) and (jn) of positive integers the
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sequence (xk.- xt.) is weakly null. In light of Rainwater's theorem, this
remark is enough to prove the corollary.

Elton's Theorem

Rainwater's theorem gives a strong hint of the control extreme points of a
dual ball exercise on weak convergence. There is a corresponding result in
the theory of series due to John Elton. It can be formulated as follows: for a
Banach space X to be without ca subspaces it is necessary and sufficient that

converges whenever E,,Ix*x,,I < oo for each extreme point x* of Bx..
The purpose of this section is to prove this elegant result of Elton.

We start the section with a treatment of the Superlemma. Though we
need only the weak* version of this stunning geometric fact, a complete
exposition hurts no one. We then apply the Superlemma to derive a theorem
of Bessaga and Pelczynski to the effect that in separable dual spaces, closed
bounded convex sets have extreme points; here we follow Isaac Namioka's
lead. This having been done, we supply a natural criterion for the dual of a
Banach space to be separable, namely, that the dual ball have a norm-sep-
arable set of extreme points; Choquet's theorem plays an important role
here. After all the groundwork has been laid, we pass to a proof of Fonf's
theorem: whenever the dual of a Banach space has only countably many
extreme points the space is co rich. From here it is clear (though not easy)
sailing to Elton's theorem.

We start with a lemma discovered initially in its second, or weak*, version
by Isaac Namioka and sharpened by Jean Bourgain. This mild-looking
lemma of Namioka and Bourgain is known to its public as "Superlemma"!

A slice of a set is the intersection of the set with a half-plane.

Superlemma. Let C, Co, and Cl be closed bounded convex subsets of the
Banach space X and let e > 0. Suppose that

1. Co is a subset of C having diameter < e.
2. C is not a subset of C1.
3. C is a subset of co(Co U C1).

Then there is a slice of C having diameter < e that intersects Co.

PROOF. For O 5 r S 1 define

Dr= ((1-X)xo+Ax1:r5A_51,x0ECo,x1EC1).
Each D, is convex, D0 contains C -this is just 3-and D1= C1.

Notice that for r > 0, Dr does not contain C. To wit: since we've supposed
C C1, there must be an x* E X* such that

supx*C1 < supx*C;
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were C c D, (r > 0), then we would have

supx*C < supx*D,

= sup x *Dr

<_ (1- r)supx*Co + rsupx*C1

< (1- r)supx*C + rsupx*C1,

which leads to the conclusion that

supx*C -.5 sup X *C1.

Now notice that C \ D, c Do\ D, and Do\ D, is dense in Do\ Dr. Take
x E Do\D,. Then x is in D0; so x is a convex combination (1- X) xo + Ax1,
where x0 E Co and x1 E C1. x is not in D,; so 0 5 A < r. It follows that

But now ob-
serve that any y in C \ D, can be approximated by an x in Do\ D, as closely
as you please; each such x is itself within r8 of a point in Co. The upshot of
this is that the diameter of C \,U,, is 5 2 rS + diam Co.

If we choose r > 0 to be very small indeed, then 2 rS + diam C. < E; now
the fact that C\Dr is nonvoid allows us to pick a slice of C disjoint from Dr.
Since C1 is a subset of Dr, Co\ D, is nonempty; so we can even pick our slice
of C to contain a given point of Co\ D,. Let it be done. 0

Of great value in studying duals is the following:

Superlemma (Weak* Version). Let K, Ko and K1 be weak* compact convex
subsets of X* and let e > 0. Suppose that

1. Ko is a subset of K'having diameter < r-
2. K is not a subset of K1.
3. K is a subset of co(K0 U K1).

Then there is a weak * slice of K of diameter < e that intersects K0.

The proof of the weak* version of the Superlemma is virtually identical
with that of the Superlemma itself; certain minor modifications need to be
made. These are that the sets D, are of the form

D,= {(1-\)xo+\xl :r<A<1,xo*EKo,xi EK1}.
The D, are weak* compact and convex with Do = co(KQ U K1); (3) tells us
that Do contains K. Now when we separate K from K1, we can do so with a
weak* continuous linear functional, if we wish. In any case, the end result is
the same: for r > 0, K is not a subset of D,. Next, a computation (here
things are a bit quicker because K c co(K0 U K1)). As in the proof of the
Superlemma, we see that the diameter of K \ Dr is strictly less than
2rsup(Ilu0 * - u1 *11: uo E K0, ui E K1)+diam K0; on choosing r very small,
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we arrange things so that K \ D, has diameter < e. K1 is a subset of D, so
Ko\ D, is nonempty. Taking a point xo of KO\D, and slicing in a weak*
continuous fashion by the separation theorem, we obtain a weak* slice of K
that contains xa and is contained in K\D,. This is the slice we want!

Theorem 7. Let X be a separable Banach space with separable dual x*,. Then
the identity map idx on K is weak *-norm continuous at a weak* dense 9d set
of points of K whenever K is a weak* compact subset of X*.

PROOF. For each e > 0 let A, be the union of all W Cl K, where W is a
weak* open set in X * for which the norm diameter of W n K is s e. Plainly
each A, is weak* open in K. Moreover, the points of weak*-norm continuity
of idx are exactly those of n All.. Should we show that each A, is weak*
dense in K, then Baire's category theorem will let us conclude that n Al/
is weak* dense, too, and, of course, a weak* 9a in K.

X* is separable; so we can find a sequence (x'(e)) in X* such that

KUKn(x,*+2Bx.))-

Each of the sets K n(xq +(e/2)BX.) is weak* closed; hence, Baire's
category theorem assures us that if we let W be the relative weak* interior
of K n(x,' +(e/2)BX.) in K, then U.W. is weak* dense in K. Since the W
clearly have norm diameter 5 e, they are among those sets that go into
making A. what it is, which, in part, is weak* dense in K.

Theorem 7 is due to Isaac Namioka and so is Theorem 8.

Theorem 8. Let X be a separable Banach space with separable dual X*. Let K
be a weak* compact convex subset of X *. Then the set of points of weak *-norm
continuity of the identity map idx of K meets the set ext K of extreme points of
K in a set that is a dense 9a subset of (ext K, weak * ).

PROOF. We already know from Theorem 7 that idx has lots of points of
weak*-norm continuity in (K,weak*)-a dense 98-set of them in fact. In
proving the present result, we will follow the lead of the proof of Theorem 7
and apply the weak* version of Superlemma to pull us through any
difficulties encountered.

To start with, for each e > 0 let B, be the set

{ u * e ext K : u * has a neighborhood W* in (K, weak*) with I . II diem < e) .

Each B, is open in (ext K, weak*); we claim that each is dense therein as
well.

Let W * be a weak* open subset of X* that intersects ext K; of course
W * n ext X""" t`' is nonempty, too. By Theorem 7, the set of points
of weak *-norm continuity of ids - &' is a dense 9a-subset of
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(extC'"k%weak* ). It follows that there must be a weak* open set V* in
X* such that V* intersects ext K"k' in a nonvoid subset of W * n ex "'"k*
having norm diameter s e/2, say. Define Ko and K1 as follows:

Ko = weak* closed convex hull of V * next "`°k

and

Kl = weak* closed convex hull of ext "'`-\V*.
K. is weak* compact and convex and so is K1. The norm diameter of Ka is
5 e/2, and Ko is contained in K. Since the set ext K"'-`' \V is weak* closed
in Kt, it is weak* compact; Milman's theorem alerts us to the fact that
ext Kt c ex-tW"k \ V *. On the other hand, K is the convex hull of K. U K1,
and V* does intersect ext Hence K1 does not contain K, and the
stage has been set for the entrance of Superlemma. On cue Superlemma
produces a weak* slice S* of K having norm diameter < e that intersects Ko
and misses Kt. S* contains a point u* of ext K in its weak* interior. Since
S* has norm diameter < e, we know that u* E B1. Finally, notice that
ext K"'"'`' \V * c Kt, a set disjoint from S*; therefore, u* a ext K""ak` n V
c W *, and so u * E W *, too. u * E B, n W* and B, is dense in ext K,', A`.

Naturally, the points of weak*-norm continuity of idK inside ext K are
precisely those points that find themselves in n B11.. It suffices, therefore,
io note that in the weak* topology ext K is a Baire space. Why is this so?
Well, X is separable so weak* Compact subsets of X* are weak* metrizable.
Further, we saw in the proof of Choquet's theorem that in a metrizable
compact convex set the complement of the set of extreme points is a
countable union of closed sets; the set of extreme points is a 9Fa. Of course,
9a-subsets of completely metrizable spaces are Baire spaces, as the usual
proof of the Baire category theorem so obviously indicates. The proof of
Theorem 8 is complete. 0

Okay, let X* be separable and let C be a nonempty closed bounded
convex subset of X*. C's weak* closure K is weak* compact and convex,
and Theorem 8 applies to K. Let Z be the set of points of weak*-norm
continuity of idK. Take a z* s Z. Since C is weak* dense in K, there is a net
(xa )D in C that converges to z* in the weak* topology-actually we have a
sequence in C converging to z* because K is weak* metrizable. Of course,
z* being a point of weak*-norm continuity assures us that z* is the norm
limit of (xa )D, too. But C is norm closed; so z* E C.

We have just demonstrated the following.

Theorem 9 (Bessaga-Pelczynski). In separable dual spaces, nonempty closed
bounded convex sets have extreme points.

Our next stepping stone involves recognizing a separable dual by how
many extreme points its dual ball has. Here's the main result.
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Theorem 10. Let X be a separable Banach space and suppose the set ext B.
of extreme points of Bx. is a norm separable set. Then X* is separable.

PROOF. Several ingredients provide just the right mix to make a proof to
Theorem 10. We present them in more-or-less arbitrary order.

1. Let S he a separable metric space and Y be a Banach space. Suppose
f : S - Y is a continuous bounded function and µ is a probability Bore]
measure defined on S. Then f is Bochner integrable with respect to A.

We denote by Cb(S) the Banach space of all continuous bounded
real-valued functions defined on the separable metric space S and by 9(S)
the convex set of all probability Borel measures defined on S. Take special
note of the inclusion of 9(S) within Bcs(s)., making it natural to consider
9(S) in its weak* topology.

2. Let S be a separable metric space and Y be a Banach space. Suppose
f : S Y is a continuous bounded function. Then the map If: 9(S) Y

given by If(t) = Bochner f f dµ is weak*-weak continuous.
In fact to show If is weak*-weak continuous, it suffices to show that y*If

is weak* continuous on 9(S) for each y* E Y*. Since

Y*If(µ) =Y* f fd1L = f Y*fdµ,

a useful property of the Bochner integral, this weak* continuity is an
immediate consequence of y*f 's membership in Cb(S) for each y* Y*.

Closer to the spirit of the theorem itself is item 3.
3. Let S be a norm-separable subset of Bx.. Then the norm Borel subsets

of S and the sets of the form S n B, where B is weak* Borel subset of B..
coincide.

Let °d/ denote the collection of all subsets of S having the form S n B,
where B is a weak* Borel subset of Br.. &' contains a base for the norm
topology of S, namely, sets S n B, where B is a closed ball of X*. Take a
norm open set U in S. Each x'E U is contained in the interior of a closed
ball Bx for which S n Bx c U. Since S is separable, a countable number of
closed balls B,, are needed to cover U. Of course, U is therefore a member of
9. It follows that all the norm Borel subsets of S belong to 9, and 3 is
proved.

We are now ready to prove Theorem 10. S will be used to denote the set
ext Bx. in the norm topology, and the function f encountered in 1 and 2 will
be the formal identity from S into X*. As we saw in 1 and 2, If is
weak*-weak continuous from 9(S) into X*.

Take a point mass SS E 9(S): If (SS) = f (s) = s E S.
Take a convex combination E .1a;Ss of point masses:

n n

if f ai6s,

=
J a,f(s,) Eco(S).

r-t r-t
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Take a weak* limit µE. (S) of convex combinations (µ4)D of point
masses: If(µ)= If(weak*hmD sd)-weaklimDlf(Ad)Eco(S) W

Of course, each µ E 9(S) is such a weak* limit; so we get 1f(R(S))'s
containment in co(S) , the weakly closed convex hull of S. By Mazur's
theorem, If (9(S )) is contained in the norm closed convex hull of S and so
is norm separable.

Now let us see that B. is itself contained in If ^S)).
Take x* E BX.. X is separable making B. weak* metrizable and ext B.

a weak* Sid-subset of BX.. By Choquet's theorem there is a regular Borel
probability measure µ on ext B. with

x*x y*(x) dµ(y*);
ext BX.

part 3 assures us that we need not worry about whether we are speaking
about the Borel sets of S in the norm topology or the weak* topology. Of
course, the Bochner integral fs f dµ is actually at work above, and the
formula above just says

x*x (ffdµ)(x)
S

for each x e X; in other words, x fs f dµ = If (A).
Mn"

BX. C if (-*(S)) C-co(S)

Our next lemma, due to John Elton, indicates the severe limitations on
the separability of the set of extreme points. Its proof will soon make
another appearance.

Lemma 11. Let X be a separable real Banach space and suppose that the set
ext Bx. of extreme points of B. can be covered by a countable union of
compact sets. Then X can be renormed so that its new dual unit ball has but
countably many extreme points.

PROOF. Let (Ku) be a sequence of compact subsets of X* (each contained
in BX.) for which

ext Bx. c UK..
n

Let (en) be a sequence of positive numbers for which 1 > el > e2 > > en
> ei+t --' 0. For each n let 9rn be a finite en/2 net for K,,. Define Illxlll by

00

Illxlll=sup U r= -,V,, };
n-1

Illxltl satisfies llxli s lllxill s (1 + et)1lxll and so is an equivalent norm on X.
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Obviously, B. c B( X, Ill. III).. Not so obvious is the fact that

BX.c (x*Ex*:IIIx*III<1).

To see that this is so, suppose otherwise. Then there exists an xo E X* for
which

II1xo111-1-11411.

Pick xa * E X** such that

1114"111 = 1= xo *(xo).

Plainly 11xo * II =1, too. Now the set (x* E X*: IIx*II =1= xo *x*) is a
nonempty closed convex subset of X*. By Theorem 10, X* is separable; so
by Theorem 9, the set (x* E X*: IIx*II =1= xo *x*) has an extreme point,
say x* . x, belongs to K. for some m; therefore,l(x* - xmll < em/2 for some
xm E Am. Of course,

X0** Xm*) Z x0**(Xr*)-X**(Xe*-X*)0 m

(IT),
and so

xo*((1+em)xm) > (1+em)(1- 2)>1.

xo * has committed the gravest of mathematical sins: while proclaiming that
IIIx0 *II1=1, xo * has achieved a value > 1 at an element, (1 + having
III -III length no more than 1.

Next we notice that for each n, (1 + e*).. is a subset of and
that, in fact, B(X,

HI III).
is the weak * closed convex hull of (1 +

Why is this last assertion so? Well, if there were an x* in absent
from the weak* closed convex hull of U.(± (I+ e ). ), then there would
exist a weak* continuous linear functional x E X of III III length 1 and an
e > 0 so that x*x =1, yet KI + S 1- a for all n and all y,! E.. A
look at the definition of IIIxIII will establish our assertion.

Since (1 + e ).9R) generates B(X, a. NI)., Milman's theorem assures us

that each extreme point of belongs to u n(± (1 + en) . e)
Let's look and see where the weak* limit points of fall.
Take a weak* convergent sequence (u*) the terms of which belong to
U.(± (1 + If (uk) repeatedly returns to one of the sets ± (1 +
then it is clear from the finiteness of, that the weak* limit of (uk) is also
in ± (1 + e ).. Otherwise, there is an increasing sequence (n k) of positive
integers and a subsequence (vk) of (uk) for which vk E By
our judiciously placed constraints on we see that IIweak* lim 011:5 1;
therefore, Iliweak* lim vk III < 1 and weak* lim vk is not an extreme point of
B(X, tI . It). ! In other words, all extreme points of B(x. M. pl). are in the countable
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set

U (f (l + F.) .)
n

We are rapidly closing in on the finis of Elton's theorem. One giant step is
contained in the next beautiful result of V. Fonf.

Theorem 12, Let X be a separable real Banach space of infinite dimension
whose dual unit ball has but countably many extreme points. Then X contains
an isomorph of co.

PROOF. Suppose ext B.. = (f x* } n Z 1 and let 1 > el > e2 > > en 10.
Define a new norm on X by

IIIxIII=sup{Ix*xI:x*Ecot t(1+en)x*:n>_1 `a`*

Then III II! is a norm on X satisfying IIxII < IIIxIII 5 (1 + e1)IIxII for all x.
Correspondingly, B. c B(x jn.ilI)' c (1+e1)Bx.. As in Lemma 11, we claim
that Bx. c (x*: IIIx*III < I). (Were this not so, there would be an xo E X*
for which Ilx* II =1= Illxo III Take xo * E X** such that xo *xo =1 = Illxa *III.
Plainly, Ilxo *II = 1, too. B. has but a countable number of extreme points;
so Theorem 10 ensures the separability of X*; Theorem 9 now assures us of
the presence of an extreme point xe* in the norm closed bounded convex set
{ x* : IIx*II =1= xo *x* }. Since this set is extremal in BX., xe is in the list
{ t x }n Z r Therefore, xe x and so (1 + en,)x.*, has III III-length 1. But
this gives Ixo *(x*,)I =1 + en,> 1, a contradiction.

An easy separation argument shows that B(..
III . HD,

is the weak* closed
convex hull of { t (1 + of )x*: n,-> 1); so ext B( x.lil IID' is contained in
{ ± (1 + en) x* : n 1Twe thanks to Milman's theorem. A weak* conver-
gent sequence taken from the set (±(1 + en)x* : n >_ 1) converges either to a
point of the set or to a point of BX. (which cannot be an extreme point of

B(x. 1I1 IID'
); it follows that all the extreme points of B(x,

Iil IID' find themselves
in (± (1 + en )x* : n a 1) . In other words, there is a subsequence of
(x*) and a subsequence (Sn) of (en) such that

extB(x,III. HD'c (t(1+& )y,*:nZ1}.

A key consequence of the above development is this: given a finite-dimen-
sional subspace F of (X, III IID there is an n F such that

extB(F,11111I)'C (t(1+an)y,'IFJtsnsnp

Since every member of ext B(F, In - IID'
has an extension that's extreme in

B(x. III lll)' >
it is clear that each extreme point of B(F. III . nI).

is of the form
an (1 + Sn) I F for some n and sign an. This, in tandem with the nondecreas-
ing nature of the linear subspaces of F* spanned by (f (1+ Sm)yn :15 m
5 n ), will soon produce the required nF.
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We now build a normalized sequence (xn) in (X, III' III).
Take any xI E X such that IIIx1111=1. The collection (x*: IIIx*III =1=

x*x1 } is a nonempty extremal weak* compact convex subset of B(x.II,.fll)*;
as such it contains an extreme point of an,(1+8.Of
course, I (1 + 8n,) (x I) I =1.

Take x2 E X such that IlIx2111=1 and yl (x2) _ = y,*(x2) = 0. Let F be
the linear span of xI and x2. Pick n2 > nI so that

extB( F,IU.NU*C if{1+Sn)Y IF}ISnsh=

Take x3EXsuch that 111x3111=1 and yl(x3)_ =y,*(x3)=0. Let Fbe
the linear span of xl, x2, and x3.. Pick n3 > n2 so that

extB(F,II III)*C {t(1+8n)YnIF}ISnsn

Et cetera.

It is easy to see that (xn) is a monotone basic sequence, i.e., for any
j, k ? 1 we have

j Fl
a'x'

S

Z = [x]1 be the closed linear span of the xn. Then BIZ,
III III)* has

but countably many extreme points, each a restriction of some extreme
point of B(X.III.$1I)* to Z. List the extreme points of B(z,111_111). as (± z:).
Keeping in mind the origins of the extreme points of B(x,III.III)*, two key
properties of (z,*) come to the fore:

First, any weak* limit point of { t z,* } that does not belong to { f z,' }
has III -III length < 1.

Second, given any n there is a k (n) such that z* x,n = 0 for all m z k(n ).

Now we take dead aim on finding a co in Z.
Set 31l =1.
Suppose coefficients ztn have been chosen so carefully that

Lr
i-I

<2

for any signs al, a2,; .. an, yet for some signs a', ... a we have
n

i a,n'1'1txil
I `

We show how to pick ,% + t .

Set

#n+,=min maxt, 2:0: aMixi+an+lhxn+llll
)1l III it
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where the minimum is taken overall 2i+1(n +1)-tuples (al, az, ... ,an+i) of
signs. Just what does signify? Well, given signs al, ... ,an, a"+, the
function 9>: [0, oo) - 10, oo) defined by

tp(h)=
n

`

F, ai9iixt + a"+lhXn+l
i

is continuous and nondecreasing (since (xe) is monotone) and has value
IIIE"-la,,q,x;lll at 0. Therefore, the number $n+1 has the property that any
number h bigger than +1 opts for some (n + 1)-tuple of signs (ol,
such that

[F-1
8MAIll< l

rn

I L.r 6,%xi + an+ihxn+i (r-l
This is mind (along side our hopes for Yin+1), we choose An+1 > 0 so that for
any (n + 1)-tuple (al, ... an+ 1) of signs

11

yet for some (n +1&'d signs (al, ... ,8n+1) we have

U iE
a 1f;x; +

1 III
set'In+t Mi'n+i+ n+1

Plainly, we have built the series En*i"xn to be a wuC. Can it converge
unconditionally? If so, then the set (Enanrinx":(an) is a sequence of signs)
would be a relatively norm compact set in Z; of course, our choice of % - I
and the monotonicity of (xn) assures us that for any sequence (an) of signs
we have IIIEnantinxnlll Z 1.

Here is the hitch: if K is a compact subset of (z r= Z: IIIzIII z 1), then
there is an N so that each z - Entnxn E K is actually of the form z =
E,_ it"x". The contradiction attendant to this fact for the set (Ena"rinxn : (a")
is a sequence of signs) will prove that Z contains a divergent wuC and so a
copy of co by the Bessaga-Pelezynski theorem of Chapter V.

Let's establish the aforementioned striking feature of norm-compact
subsets K of ( z E Z : 111z III z 1) by supposing it did not hold and deriving a
suitable contradiction. Were K a norm compact subset of (z E Z: 111z III ? 1)
that does not depend on but a finite number of the x,,, then there would be
a sequence (un) in K and a sequence (u*) among the extreme points of
Btz each u,' of the form f 1) for some subsequence (zk
of (z,*) such that

Un un = IIIunlll

The compactness of K and the compact metric nature of (Bt z.1U. Nil., weak*)
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allows us to assume that

uo = norm lim un

and

ua = weak*Iimu,'
n

both exist. Of course, IIIuoIII <1; so

IIIuoIII = hmlllunlll = limu*un,
n n

yet

limU*U,, = uo(uo) <lIIuoIIIIIIuoIII <IIIuoIII
n

167

O

Lemma 13. Let (x,,) be a normalized basis for the Banach space X and
suppose that En I x *xn I < oo for each x * E ext Bx.. Then the sequence (x,) of
coefficient functionals is a basis for X *.

PROOF. First, we take special note of the following: if (u;) is a normalized
block basis built on (xn ), then (u.,) is weakly null. In fact, since II u, II =1, the
uj have uniformly bounded coefficients in their expansions according to the
basis (xe ). Because we have assumed that En Ix *xn I < oo for each extreme
point x* of Br., we can conclude that (x*u1) is null for each extreme point
x * of Bx.. Now we need only apply Rainwater's theorem.

Now we show that limmllx*Pm - x*p =0 for each x* E X*, where Pm:
X --> X is the mth expansion operator with respect to the basis (xn),
Pm (E. a,, xn) = En"'- t a,, xn. But x * is always the weak* limit of the sequence
(x*Pm); so the only thing that can go wrong with limmllx*Pm - x*II = 0 for
each x* E X* would have to be the existence of an xo such that the
sequence (xo*Pm) is not even Cauchy. For such an xo we could find an
increasing sequence (m n) of positive integers such that

x0Pm.«. - x0P,,,, C

for all n and some e > 0. Correspondingly, there is for each n a vn E Bx such
that

I(xo*P,, ,-x4Pm.)(vn)I=Ix4((Pm,,,.'-Pm,.)Un)I >

Look at u,, = (Pm, - Pm^)( v,,). The sequence (u,,) is a block basic sequence
built from (x,,), IlunlI > e/Ilxo*If for all n, and Ilu,Il s 2supmIIPmII In light of
our opening remarks, (u,,) must be weakly null yet Ixounl> a for all n,
which is a contradiction. It follows that limmllx*Pm - x*JI = 0 for each
x*F V. -
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As a point of fact, we are done. The expansion operators Pm have adjoints
P.*: X* - X* whose form is given by

(P,*X*)(x) = (X*Pm)(X) = X*(xe)x*.
i-1

Since 1I P, II = II supmII Pm II < oo, the sequence (x') satisfies the crite-
rion for basic sequences; (x:) is a basis for its closed linear span. In light of
the previous paragraph the closed linear span of (xn) is all of X* -remem-
ber P*x* = x*Pm.

One last step:

Theorem 14. Suppose that the Banach space X has a normalized basis (xn )
for which En Ix *x I < oo for each extreme point X* of BX.. Then X contains a
copy of co.

PROOF. Lemma 13 assures us that the sequence (x:) of coefficient function-
als is itself a basis for X*. Consequently, the operator T: li -- X* given by
T(tn) = L.ntnx*, is a well-defined bounded linear one-to-one operator from 11
into X*. Denote by (en) the usual sequence of unit coordinate vectors in 11.

If there is an N such that TII,.1.: N is an isomorphism, then (x. )n 2 N is
equivalent to the unit vector basis of li. It is easy to deduce from this that
(X.). z N is equivalent to co's unit vector basis.

If there is no N for which TI N
is an isomorphism, then it's easy to

manufacture a normalized block basis (u,,) with respect to (en) in 11 such
that IITu,II < 2-n; these un are of the form

q.
un = E s;ei,

r - P.

where 15 Pi < qi < P2 < q2 < . . and Ef p. Is,I = 1. Of course, is equiv-
alent to the unit vector basis of 1i and the closed linear span U of the un is
itself an isomorphic copy of 1i. Further T(Bu) is a relatively compact subset
of X*.

Let yn E X be the vector yn - Ef; ,, sign(s; )x, and consider the closed
linear span Y of the yn; we are going to find a co inside Y. (yn) is a basis for
Y. Since Enlx*y l < oo for each extreme point x* of B. and since each
extreme point of By. admits of an extreme extension in BX., Enly*ynl < 00
for each extreme point y * of Br- Notice that the sequence (y.*), where
y,* - Tun 1 y, is biorthogonal to (yn ). Normalizing (yn) we can apply Lemma
13; in any case, (y,') is a basis for Y*.

Let

K,,,- lx*EX*:EIx*xnl5mj.
n JJJ
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Our hypotheses assure us that
00

ext Bx. c U Km.
rn-1

Notice that if x* E Km, then

EIx*ynl s EIx*xnl s m;

from this it follows that for x* E Km, if we let y*=x*iy, then y* is of the
form where

EIbn1= Ely*y,l = Fix*ynl s m.
n n

Thus, any vector Enb,,y for which Enlbnl 5 m belongs to the relatively
compact set T(mBu)ly. What we have then is

ext By* c (x*ly: x* E ext B..)
00

U (x*Iy:x*EKm)
M-1
00

U T(mBu) I Y.

M-1

Lemma 11 and Theorem 12 now combine to locate a cp inside Y.

Finally, we are ready for John Elton's extremal test for unconditional
convergence. It follows from Theorem 14 and the Bessaga-Pelczynski selec-
tion principle.

Theorem 15. A Banach space X contains a copy of co if and only if there is a
divergent series E,, xn in X for which E.Ix*xnl < oo for each extreme point x
of Br..

Exercises

1. Deniable sets. A bounded subset B of a Banach space X is called deniable if it has
slices of arbitrarily small diameter.

(i) A set B is dentable if and only if its closed convex hull is dentable.

(ii) A set B is dentable if and only if given e > 0 there is a point x, e B such that
x.4`Eo-(B\(y: Ifx,- yll < e)).

(iii) A set B is dentable if each of its countable subsets is dentable.

(iv) Compact sets are deniable.

(v) Closed bounded convex subsets of uniformly convex spaces are dentable.

(vi) Weakly compact sets are dentable.
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2. Extremal scalar integrability. Let (0, 1, µ) be a probability measure space and x
be a Banach space. Suppose f : SE X is (strong)y) µ-measurable. If X contains no
copy of co and if

fflx*f(w){dµ(w)

for each extreme point x* of Bx., then f is Pettis integrable.

3. Nondual spaces, Neither co nor L110,11 are isomorphic to a subspace of any
separable dual space.

Notes and Remarks

The original proof of the Krein-Milman theorem took place in a weak*-
compact convex subset of the dual of a normed linear space; J. L. Kelley
(1951) is responsible for the proof presented in the text.

Our treatment of the simplest elements of the barycentric calculus owe an
obvious debt to R. R. Phelps's lectures (1966). We have added a few details,
but in the main we have followed his wise leadership. The observation that
extreme points have extremal extensions is due to I. Singer and is often
referred to as "Singer's theorem"; it allows us to prove Rainwater's theorem
by direct appeal to Choquet's theorem without recourse to the more delicate
Choquet-Bishop-deLeeuw setup.

Only by exercising a will power all too rarely displayed has our discussion
of Choquet theory been curtailed. This beautiful corner of abstract analysis
has been the object of several excellent monographs making what we would
say redundant at best. It behooves the student to study these basic texts: for
a quick fix on the subject, Phelps's "Lectures on Choquet's theorem" (1966)
can not be beat; a more extensive treatment is found in E. M. Alfsen's
"Compact Convex Sets and Boundary Integrals" (1971), and a reading of
Choquet's "Lectures on Analysis" (1969) affords the student the rare
opportunity to learn from the master himself.

Some surprising advances in the theory of integral representations, closely
related to the material of the section titled Elton's Theorem, have appeared
since the publication of the aforementioned monographs. The most spectac-
ular turn of events has been G. A. Edgar's proof (1975) of a Choquet
theorem for certain noncompact sets. We state Edgar's original theorem.

Theorem. Let K be a closed bounded convex subset of a separable Banach
space. Suppose K has the Radon-Nikodym property. Then every point of K can
be realized as the barycenter of a regular Borel probability measure on K
supported by the extreme points of K.
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Naturally the "catch" in the above theorem is the assumption that the set
K has the Radon-Nikodym property. A subset K of the Banach space X has
the Radon-Nikodym property whenever given a probability measure space
(c2,1, µ) and a countably additive µ-continuous F: B - X for which
( F(E )/µ (E) : E (=- X, µ (E) # 0) c K, there is a Bochner integrable f : f - X
such that

F(E) = f f(w) dµ(w)
E

for each E E 2. It is not yet known if the Radon-Nikodym property needs
to be assumed in Edgar's theorem, but there is considerable evidence that it
must.

Edgar's theorem has a nonseparable version, also due to Edgar, that is not
possessed of as elegant a formulation. P. Mankiewicz has been able to prove
the more general representation theorem of Edgar by reductions to the
separable version. In all instances, some assumption of the Radon-Nikodym
property is present.

Superlemma is due to I. Namioka in its weak* version'and J. Bourgain in
general. There is no better way to see the Superlemma in action than to read
the Rainwater seminar notes from the University of Washington, where the
raw power of this lemma is harnessed; the result is a masterful demonstra-
tion of the equivalence of the Radon-Nikodym property with a number of
its sharpest geometric variants. We've used the weak* version of Super-
lemma much as Namioka did in his derivation of the Bessaga-Pelczynski
theorem.

Incidentally the main concern of Exercise 1, deniable sets, has its roots
again in matters related to the Radon-Nikodym property. The notion of
dentability originated in M. A. Rieffel's study of Radon-Nikodym theorems
for the Bochner integral. As a consequence of the combined efforts of
Rieffel, H. Maynard, R. E. Huff, W. J. Davis, and R. R. Phelps, we can state
the basic geometric characterization of the Radon-Nikodym property as
follows:

Theorem. A nonempty closed bounded convex subset K of a Banach space has
the Radon-Nikodym property if and only if each nonemply subset of K is
deniable.

A finished product by summer of 1973, the dentahility theorem (as it's
come to be known) signaled the start of a period of excitement in the
geometric affairs of the Radon-Nikodym property. Not to stray too far
afield, we mention just one result that evolved during this "gold rush" and
refer the student to the Diestel-Uhl AMS Surveys volume for a more
complete story of the early happenings and to Bourgin's Springer Lecture
Notes volume for recent developments.
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Theorem (N. Dunford, B. J. Pettis, J. Lindenstrauss, C. Stegall, R. E. Huff,
P. D. Morris). Let X be a Banach space. Then the following are equivalent:
1. Each separable subspace of X has a separable dual.
2. Each nonempty closed bounded convex subset of X* is deniable.
3. Each nonempty closed bounded convex subset of X* has an extreme point.

Theorem 10 was established by R. Haydon (1976), K. Musial (1978), and
V. I. Rybakov (1977); our proof was inspired by Haydon's, but its execution
differs at several crucial junctures. Subsequent to stumbling onto this
variation in approach, E. Saab (1977) pointed out that he had used the same
tactics to much greater advantage in deriving several generalizations of
Haydon's result.

The ideas behind the proofs of Lemma 11 and Theorem 12 are due to V.
Fonf (1979). They were most enjoyable to encounter, to lecture on, and to
write about. Plainly speaking, they are too clever by half. Of course,
Theorems 14 and 15 are due to J. Elton (1981).
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CHAPTER X

Grothendieck's Inequality and the
Grothendieck-Lindenstrauss-Pelczynski
Cycle of Ideas

In this section we prove a profound inequality due, as the section title
indicates, to Grothendieck. This inequality has played a fundamental role in
the recent progress in the study of Banach spaces. It was discovered in the
1950s, but its full power was not generally realized until the late 1960s when
Lindenstrauss and Pelczynski, in their seminal paper "Absolutely summing
operators in.Z, spaces and their applications," brutally reminded functional
analysts of the existence and importance of the powerful ideas and work of
Grothendieck. Since the Lindenstrauss-Pelczynski paper, the Grothendieck
inequality has seen many proofs; in this, it shares a common feature of most
deep and beautiful results in mathematics. The proof we present is an
elaboration of one presented by R. Rietz. It is very elementary.

Some notational conventions are in order.
For a vector x in R" the euclidean norm of x will be denoted by 1x1. If

x, y are in R", then their inner product will be denoted by x - y.
By dz we mean Lebesgue measure on R", by dG(z) we mean normalized

Gaussian measure of mean zero and variance 1. Don't be discouraged by the
fancy description. dG(z) is given by

IZ1dG(z)=(29r) "/'2e_ 2'2dz;

in other words, for any Lebesgue-measurable real-valued function f on R"

f f (z) dG(z) = (2ir)" fR f(z)e_122FI2dz.

Particularly noteworthy (and crucial for our purposes) is the fact that the
Gaussian measure is a product measure of smaller Gaussian measures. In
particular, if k + m = n, then the product of k-dimensional Gaussian mea-
sure and m-dimensional Gaussian measure is n-dimensional Gaussian mea-
sure.

We denote by L2 the L2-space L2(R", dG) of n-dimensional Gaussian
measure. If f E L2, then the norm off will be denoted by Y112112 and the inner
product off with a g E L2 will be denoted by (f, g).
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Finally, some functions of special interest: if x e R", then we define
(px:R"+R by and s,,:R"-+R by .r where s
denotes the signum function.

Lemma I. If Ixl =1= lyj, then (px, py) = x y.

PROOF. Since I x =1= y1, there is a vector y' orthogonal toy such that

x = (x'Y)Y + y'.

For this y' and all z we have

(x-Y)(Y'z)+Y''z,
and so

(x'z)(Y'z) = (x'Y)(Y'z)2+(Y''z)(Y'z).

Integrating with respect to z (and changing to the q>,, notation), we have

(q>s,4p )= f

(x'Y)(py, 4PY)+(.Fy', q9y).

Let's compute.

(py,TO =
1 00 00 00 2f f z(Yz + y2z2 + .. + Y )I

1
2

(Ytzt + 1{zt))
ao00 0o

x e`zj/2dzte-(s2+...+s')/2-dz2...
dz"

00 " "
00(2 rY

x +z.2)/2 dzt dz2 ... A,

where I(zt) = y222 + - - + y"z" is independent of the coordinate zl,

00...f
(2 lT) " 00 00 - 00

X e-(zi+ ... +z2)/2 dz2 ... dzn

(1)

Yizi
+2Yiz11(zt)+I2(zt))e-z,/2dzt1

00

= f o... f 2 (Y2 + 1'2(Z,))
_

00

xe-(z2+ ...dz
"

where j° ,,2ylxtl(zl)e z1/2dzt = 0 since the integrand is an odd function
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of z1,

{Y+f00...f00(y2z2+... 2( ) +YnZn)
00

2 n>

which after n -1 more such computations will eventually be reduced to
being

=Y1+yz+...+Y.2_IY12=1.

On the other hand,
00 00 00

( ) 00 J
r f +Y., 'z")f2 00 00

+y"z")dG(z)
f00 f_

(Yizz + I

X e- 9?/2 dzle-(sl+ +zz,)/2 dig ... dzn,

where I(zl) a y2 z2 + + Yn zn and I'(zt) - Yiz2 + + are inde-
pendent

1 00

of the coordinate zl,
j

(2=)n f .... f [ylyIZ2

e - -
z . ' / 2X .. dzn

which again taking into account the oddness of certain integrands,

m
1 `00 ... (00

n -
))e-(zl+...+z.2)/2dz ... dZ2zr (V,V + I'(z )I(z 2 n

00 00

1 0... 1, (y2z + ... +Y + ... +y zY z z)(Y2 n" 2 2 "n
1

1

('Zir )n7 00 00

X e-(zl+... dz2 ... dZn+

which after another n -1 such computations is seen to be
=yizl+ ...

Now a look at Eq. (1) will provide the finishing touches to the proof. 0

The proof of the previous lemma, viewed from the proper perspec-
tive, illuminates the special role of the Gaussian distribution in the present
setup. Consider for a moment what is going on when you try to com-
pute the expected value of a real-valued random variable with respect to the
Gaussian distribution. How can one cut back on the amount of actual
computation to be done?
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First, note that the measure one is integrating with respect to has two
pieces so to say: The Lebesgue measure dz and the Gaussian weight
(21r )-n/2e-JzJ2/2.

A well-known and important property enjoyed by Lebesgue measure is
the fact that it is invariant under isometrics. So, should f and g be different
real-valued random variables on R" such that, for some isometry z of R",
f (z) = g(rz) holds for all z e R ", then Jf (z) dz = fg(z) dz automatically
obtains.

Now take into account the second piece of our amusing little puzzle: the
Gaussian weight

(27r)-"/2e-IX12/2.

The values of this weight agree at any
x, y E R" having the same lengths. Therefore, should f and g be real-valued
random variables such that whenever f attains the value f(x) at a vector x,
then there is one and only one vector yx of the same length as x such that
g(yx) attains the same value f(x), then the Gaussian weight of itself cannot
tell the random variables apart:

f(x)(21r)-"/2e-Ixlz=

g(yx)(27r)-"/2e-lyx12/2.

Therefore, taking into account the Lebesgue measure's disregard for
isometries and the Gaussian weight's laissez faire attitude toward vectors of
the same length we see that: should f and g be real-valued random variables
such that there is a linear isometry -r of R" onto itself for which f (z) = g( rz )
for all then Jf(z)dG(z)= Jg('rz)dG(z)= Jg(z)dG(z) holds.

Lemma 2. Suppose 1x1=1= Iyl. Then

1. ((Px,SO 2/7r.
2. Ills SX 112 = 2 - 2 2/7r .

PROOF. As in Lemma 1, we let y' be a vector perpendicular to y so that
x = (x . y)y + y'. Now we note that

((Px, Sy) = f (x-z)s(y-z) dG(z)

= (x.y)f f (y'.z)s(yrz)dG(z)

= (x.y) f f (y'-z)s(y.z)dG(z).

Now it is clear that J I y z I dG (z) = 2/7r fore- `2/z dt. Indeed, by our
remarks above, the integral f 1Y z I dG (z) has the same value as Jg(z) dG(z )
for any real-valued random variable g on R" obtained from l y - z 1 by means
of an isometry of R". Which g to choose? Well, the function g(z) = Izt1 is
easily seen to be obtainable from by composition with a suitable
isometry of R". Therefore,

fly. zIdG(z)= f IzrldG(z)



X. Grothendieck's Inequality and the GLP Cycle of Ideas 177

and this latter integral is quickly seen to be equal to 21ir .

What of f(y'- z)s(y z) dG(z )? Of course, its value is 0. Since y' and y are
perpendicular, we can move y' to (Iy'I, 0, 0, ... ,0) and y to (0,1,0, ... ,0) by
means of a linear isometry of R" onto itself. Therefore,

f fzlsign z2dG(z)=0

by direct and simple computation.
If we take all these comments to account, we get

Part 2 is now easy to derive. In fact,

I1ex-Sz112=(pz-Sx,px-S.)

_(4p.r,vex)-2(9)X,SY)+(s ,SX),
which be Lemma 1 and part 1 of this lemma is

= x-x -2x-x1 + f Ix.zI2dG(z)

2 21-2 +1=2-2

since fix z I2 dG(z) =1 (something we saw in Lemma 1).

We now can state and prove the "fundamental theorem of the metric
theory of tensor products."

Grothendieck's Inequality. There is a universal constant KG > 0 such that for
any n and any n X n real matrix (a, j) we have

n n

I(aij)I,7e=sup L., a, (xi,yj)
i-1 j-1

fin'`

L.r aijxj
j-1

x,, yj E some common Hilbert space,

1141,Ilyjlls1

x e Hilbert space, Ilxjll < 1

n n

< KGsup F F ai js,tj : Isil, (tji 51
i-1 i-1
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PROOF. For the sake of normal relations we assume (a1 j) satisfies

sup
(nom n

L E aijsirj =1.

To start, we pick unit vectors y1, ... , y, in some Hilbert space that closely
approximate the quantity Ka;j)I,r = sup(E;-1l1t;-laijxjll: xj an element of
a Hilbert space, llx111 S 1). Lets say that y1, ... , y" are selected to satisfy

it it

II)E a,'yj11

The span of the vectors y1, ... , yn is at most n dimensional; so we can put
them in R" quite comfortably. Now choose unit vectors x1, ... xn in R" so
that

_ aijyj
j-1

,

this we can do for each i =1, ... , n through the use of the Riesz representa-
tion theorem. Of course,

I(aij)I., n n

l+e - E-1-1 i.j
Preparations are completed; let's calculate.

Notice that for any x, y E R",

(sz,s

Therefore,

L.,aij(sx,,s,,,)=Ea,j(,px,,sy,)+E
a1j i, j i. j

- r
L+aij(,px,,gy.,

)-Ea,,(W.,-sx,,sy,-Tv,

i. j i.j

E.

n i.J Y 71_ arjxj yiV- + aijxt yj 1

- aijx, yj, a1,(px,-sx,,sy,-Ty)
i.j i.j

rlv-
=l2V -' -1)Ya,jxi.yj-Eaij(9)x,-sx,,

a i. ; i.i
sy, - yoy,).
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Let's rewrite the pertinent parts of the above identity:

r2
EQ,j(Sx,S,)={2- -1)Laijxi Yj-L,aij(,px,-sx,sy,''ry,

i, j i, j

Observe that each of the terms on the right involves in some way quantities
related to Kai j)Ir. The first does so because of our choice of the x; and yj,
whereas the second is dominated by a constant multiple of Kaij)I.7r; indeed,
a simple normalization argument shows that

Ea,j(fix,-Sx,'s,
lpy)l51(a,j)1,11,Fx,-Sx,II2IIs,, p.1II2

,,j

which by part 2 of Lemma 2 is

(

2
1/2 22 1/2

<_I(a,2_212

I
(2-2i/)

F2=I(a,j)Ix,(2-2 - ).
2

It now follows that

2 2/rr -1)
Y

atj(S.,,S, ( 1+E
-(2-2

(atl)Ii,j
But our assumption on (aij) that

supl I aijsitjl:IS,I, Itj1 511 =1

assures us of a bound on IEi, jaij(sx,,sy )I:

I
Ea,j(S,,S')I
i,j

f Eaijs(xi dG(z)
,,j

5f
i,j

which, since Is(x, z)I, Is(yi z)I 51 for any z, is

5 f 1dG(z)=1.

It follows that for a fixed (but arbitrary) E> 0,

la (-1)(1+e)-1-(2_2iT))I(aii)i.r.
ir it
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On reflection one that this implies

Iz
zr 1(2-2 zr

z (4,
i.

an estimate good enough to prove Grothendieck's inequality. t7
4

One quick corollary to Grothendieck's inequality follows.

Generalized Littlewood Inequality. Let (aii )°°J -1 be an infinite real matrix
and suppose that for each N

N

E a,Jt;Si 5M
I '.i i I

whenever all the t, and sl have absolute value _< 1. If (xk i) k i _ 1 is any real
matrix such that

for each i, then

1/2

<C

2 1 /2

E(F, (Fxkiaii)) 5KGCM.
j k i

PROOF. It is clear that our hypothesis about (air) implies that

laillSM
for each j>_1. Further, the class of (xki) under consideration are plainly
subject to the restrictions

Ixkil < C

for each k, i. Hence, all the series Eixk;aij are absolutely convergent
(regardless of k, j); this allows us to assume each sum arising has but N
summands with full confidence that the usual limiting arguments will be
available to carry the argument to its natural conclusion.

Let xi = (x1i, X21, .. ,XN,) denote the ith column of (xk,)k,_1 View x, as
a vector in 12 ; Ilz; lI 5 C for each i - this is precisely what the hypothesis on
the admissible class of (xki) means. Grothendieck's inequality now tells us
that

iF1 II i
ai, x, 11:5 KGM 1 sup II i ll

s KGMC;
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from here to the desired conclusion is just an easy exercise in interpreting
the norms involved. o

The Grothendieck-Lindenstrauss-Pelczynski Cycle

We turn now to some of the early applications of Grothendieck's inequality.
More precisely, we exhibit several instances of pairs (X, Y) of Banach
spaces for which every bounded linear operator from X to Y is absolutely
2-summing. Of interest here is the pleasant fact that the X and Y arising
include spaces that are truly classical Banach spaces.

First, isolate the Y -spaces of Lindenstrauss and Pelczynski.
Let 1 < A < oo and 15 p:5 co. A Banach space X is called a Zp. x-space if

given a finite-dimensional subspace B of X there is a finite-dimensional
subspace E of X containing B and an invertible linear map T : E - I dim E

such that IITII IIT-111 _< A.
Every Lp(µ)-space is a r,.,\-space for all A>1; co and all C(K)-spaces

are 2'..,\-spaces for each A > 1. Once a space is an .gyp, a-space for some
A > 1, it is called an 2'p space. The next two results were proved (more or
less) for the classical infinite-dimensional models of Y.-spaces by
Grothendieck and clarified by Lindenstrauss and Pelczynski, who also
recognized the finite-dimensional character of their statements.

Theorem (Grothendieck-Lindenstrauss-Pelczynski). If X is a 2'1-space and

Y is a Hilbert space, then every bounded linear operator T : X -+ Y is abso-
lutely 1-summing.

PROOF. Let x1, ... ,x" X be given and suppose E;-lIx*xiI < Cllx*II holds
for every x * E X *. Suppose X is a 2l, a-space; there is an integer m > 0 and

an invertible operator G: ll'"
(into)

X whose range contains xl,... ,xn with

IIGII =1 and IIG-1115 A. Suppose yl,... , y" E li are chosen so that Gy; - xi
for i =1, 2, ... , n. Put

m

YI = a11e1 + a12e2 + ... + almem = E al,ej
j-1

Y2 = a21e1 + a22e2 + ... + a2mem = L a2 je,
j-1

m

yn a anlel + a"2e2 + + almem = E a"jej.
j-1

Let y* = (s1, ... sm) E lm, = (I' n)* have norm 51 and take any real numbers
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t1, ... ,t,, of absolute value S 1. Then

IEa;jt,sjl5 EItiI(I

` "a`'s'I)

s CIIG-1*y*II s CIIG-lII s CA.

Therefore, by Grothendieck's inequality,

n n n m

IITxiII IITGyiII = E T . a, jGej
j-1

aijTGej
j-t

S KoCX sup IITGee11
15j5m

s KGCXIITII < oo.

That T is absolutely 1-summing follows from this. G

Theorem (Grothendieck-Lindenstrauss-Pelczynski). Every operator from a
2',.-space to a'91-space is 2-summing.

PRooF. Let X be a 9., a-space, Y be a 21.,,-space and S : X -* Y be a
bounded linear operator.

Take any xl, ... , xN E X. There is a c > 0 such that

N

E Ix*xti12 5 c211x*112
A-1

for any x * E X *. There is an m z 1 and an invertible operator T from 1;
into X such that (x1, ... ,xN) is contained in T1;, 11TH =1 and 11T-1115 A.
Let z1, ... , zN ell" be chosen so that Tzh = X. Again, there's a finite-dimen-
sional subspace E of Y containing ST1.1 and an invertible operator R : E - 11
(k - dim E) with 11 R11=1 and 11 R -11f 5 p. Together, we conclude to the
existence of an operator So - RST :1.1,, - 11 and elements z1, ... , zN of 1,
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such that given any z* E 11 = (l," )*,
N

IZ*Zhl2'
N

X IZ*T-XhI2

h-1 h-1
N

_ 2L IT-1*z*(xh)I
h-1

s c'IIT-1*z*112

s c2A211Z*112.

183

(2)

Our special purpose is to show that Eh IIISOZh1I2 is bounded by some
constant dependent only on c, A, and 115011. Once this is done, it will follow
that

N N

E IISx1,112 = E IIR-SozhII2
h-1 h-1

N

s IIR-1112 E IISoZhII2
A-1

is bounded by a constant dependent only on c (a scaling factor), X,
IIS0II s IIS11, and p; i.e., S is 2-summing.

Okay, let's bound EN 111SOZh 112.
Let e1, ... ,e,,, be the usual unit vector basis of 1; and f1, ... ,fk be the

usual unit vector basis of 1k. Define the matrix (a,) by
k

SOe; _ F. a;,fj
i-1

Notice that for any u* = (u1, ... ,uk) E S(/l). = S,.. and any reals
t1, ... ,t,,,, S1, ... ,Sk satisfying 11,I, Is;l <1 we have

1!_

M

(uis1,...,uksk)(So E 1,e,
i-1

M

SII(u1S1,...,UkSk) II/;IIS0II E t,e,
i I.,

s IISoII

Look at z1, ... ZN and their representation in terms of e1, ... ,em:
M

Zh = Zkjej
,-1

(3)

From (2) (letting z * take turns being each of the m different coordinate
functionals on 1;) we get

N

IZhil2.e C2A2
h-1

(4)
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for each i = 1, ... , m. In tandem with (3) and the generalized Littlewood
inequality, (4) gives us

k N r m 2 1/2

Ui Zh,a,j) S cAKG11SOII,
j-1 h-1 i-I

and this is so for any (u1, ... , uk) a S(,,").. It follows that the k-tuple
Zhiaa)2

1 h i h ,

has /1-norm _< cXKGIISOII Equivalently,

k N m

Zh,arj
j-1 h-1 i-I

h-1 h-I j-t i-I
s C2a2KC2IIS0II2.

s cAKGIIS011

Looking carefully at what is involved in this last inequality, we see that it
just states that if the vectors U1, ... V, in I are given by

v. R L Z1iai j,..., L ZNiaij ,
r-1 i

then

k

llvjll,2 s cAKGQQS011
J-1

The triangle inequality to the rescue:
N

E uj S cXKollS011,

j-I Il
or

Since

we see that

N"` k

JmL F, E(z*.aiih-I-I i-1

IISOZhII,t =

1'

1/2

t < c2X2KcIIS0112.

Zh,aij
r-1

N` N"`` k ``m

L IISOZh112 = L L I L zhiaij

This ends the proof. 0
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We rush to point out that 12 is isomorphic to a subspace of L1[0,1],
thanks to Khintchine's inequality. Consequently, every operator from a
2 -space to l2 is absolutely 2-summing.

Banach Spaces Having Unique Unconditional Bases

Theorem 3 (Lindenstrauss-Pelczynski). Let (x,,) be a normalized uncondi-
tional basis fvr I. Then (xn) is equivalent to the unit vector basis.

PROOF. Suppose K > 0 is chosen so that

11F,b"a"x"11:
K11Y_anx"11

holds for any (b") E Bt. and any sequence of scalars (an) for which
Enanxn E 11. Since 11 imbeds isometrically into L1[0,1] and E"anxn is
unconditionally convergent,

Ejan,2 = YIlanxnll2 <°O
n n

by Orlicz's theorem. It follows that the operator T:11--> 12 defined by
T(Enanxn) = (an) is well-defined. T is linear, one to one, and bounded, too;
the boundedness of T follows from the proof of Orlicz's theorem or from a
closed-graph argument, if you please. By Grothendieck's inequality we
know that T is absolutely summing. Consequently, if (an) is a scalar
sequence for which Enanxn E 11, then

r,lanl = EIITanxnll

n n

Es r1(T) sup Ilyn nanx"e-tl

7r1(T)
11Y-anx"11

< ir1(T)KElan!
n

It follows from this that (xn) is equivalent to 11's unit vector basis.

Remark: If one feels like bypassing Orlicz's theorem for another application
of Grothendieck's inequality, then accommodations can be made. What is
needed, of course, is the assurance that Enlan12 < 00 for any Enanxn E 11. To
achieve this %yithout recourse to Orlicz, one can define the operator S : co - 11
by S(An) = E"A,,a xn; Grothendieck's inequality leads us to believe S is
absolutely 2-summing from which the square summability of (a") is an easy
consequence.
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A result parallel to that expressed about 11 in Theorem 3 holds for co as
well. In fact, suppose is a normalized unconditional basis for co and let
(x*) be the sequence of (x )'s coefficient functionals. It is plain that

oo for each extreme point x* of Bca = B,1; so (x*) is a basis for
11, this because of Lemma 13 in Chapter IX. It is easy to see that the
pleasure derived from unconditionality is shared by (x*); the se-
quence (x*) is an unconditional basis for 11. The fact that IIxRII =I for all n
tells us that 15 Ilx* II s 2M, where M is the basis constant of (x.). It follows
from Theorem 3 that the normalized unconditional basis (x*/11X:11) of 11 is
equivalent to the unit vector basis of 11; from this it is easy to conclude that
(x') is equivalent to the unit vector basis of l1, too. This, though, is
tantamount to (x )'s equivalence with the unit vector basis of co. For
recording purposes, we summarize the above discussion.

'Theorem 4 (Lindenstrauss-Pelczynski). Let be a normalized uncondi-
tional basis of co. Then is equivalent to the unit vector basis.

What spaces other than co and 11 have unique unconditional bases? Here
is one: !2. In fact, if x1, ... ,x E 12, then it is an easy consequence of the
parallelogram law to show that given y1, ... , Y. 12,

2 e

E g1Ya 2" E IIy1112.i-iE 1 ' t-1

From this it follows easily that if is a normalized unconditional basis
for l2, then Eia;xi E 12 if and only if Ei1ai12 < oo.

co, l1, and 12 all have unique normalized unconditional bases. Any others?
The startling answer is No! This result, due to Lindenstrauss and Zippin, is
one of the real treasures in the theory of Banach spaces. It is only with the
greatest reluctance that we do not pursue the proof of this result here.

Exercises

1. LD [0,1] is a.P space. L;,10,1] is a. , 1 + -space for every e > 0-

2. C(K) is a 2.-space. If K is a compact Hausdorff space, then C(K) is a
Y,,,1 + ,-space for each e > 0. (Hint: You might find that partitions of unity serve
as a substitute for measurable partitions of [0,11.)

3. Lattice bounded operators into L210,1). Let T: X - L2[0,11 be a bounded linear
operator. Suppose there is a g E L2[0,11 such that

lTxl 5 g almost everywhere

for each x E B. Show that T is absolutely 2-summing.

4. Hilbert-Schmidt operators on L2[0,1]. Let T: 1,2[0,1]-'L2[0,1] be a bounded
linear operator for which T(L2 [0,1n T. setwise. Then T is a Hilbert-

Schmidt operator.
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The importance of the Lindenstrauss-Pelczynski paper to the revival of
Banach space theory cannot be exaggerated. On the one hand, the challenge
of Grothendieck's visionary program was reissued and a call to arms among
abstract analysts made; on the other hand, Lindenstrauss and Pelczynski
provided leadership by crystalizing many notions, some perhaps only im-
plicitly present in Grothendieck's writings, central to the development of a
real structure theory. They solved long-standing problems. They added
converts to the Banach space faith with enticing problems. Their work led to
meaningful relationships with other important areas of mathematical en-
deavor.

No doubt the leading role in the Lindenstrauss-Pelczynski presentation
was played by Grothendieck's inequality. They followed Grothendieck's
original scheme of proof, an averaging argument pursued on the n-sphere of
Euclidean space with rotation invariant Haar measure gauging size, though
they did provide, as one might expect, a few more details than Grothendieck
did.

Interestingly enough, many of the other proofs of Grothendieck's inequal-
ity have come about in applications of Banach space ideas to other areas of
analysis.

B. Maurey (1973) proved a form of Grothendieck's inequality while
looking for the general character of his now-famous factorization scheme.
He borrowed some ideas from H. P. Rosenthal's work (1973) on subspaces
of LP, improved on them and, with G. Pisier, molded them into the notions
of type and cotype.

G. Pisier settled a problem of J. Ringrose in operator theory by proving
the following stunning C* version of Grothendieck's inequality.

Theorem. Let of be a C *-algebra and E be a Banach space of cotype 2;
suppose either -ofor E satisfies the bounded approximation property. Then every
operator from d to E factors through a Hilbert space.

The result itself generalizes Grothendieck's inequality but more to the
point, Pisier's proof suggested (to him) a different approach to the original
inequality through the use of interpolation theory.

J. L. Krivine (1973) in studying Banach lattices proved the following
lattice form of Grothendieck's inequality.

Theorem. Let X and Y be Banach lattices and T : X -' Y be a bounded linear
operator. Then for any x1, ... xn E X we have

1/2 n 1/2

KGII IXI12f E
I TxaI21 11 S di

where KG is the universal Grothendieck constant.
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Of course, sense must be made of the square of a member of a Banach
lattice, but this causes no difficulty for a Krivine; he made sense of it and
derived the above inequality, thereby clearing the way for some remarkably
sharp theorems in the finer structure theory of Banach lattices.

To cite but one such advance, we need to introduce the Orlicz property: a
Banach space X has the Orlicz property if given an unconditionally conver-
gent series in X, then E' 11X'112 < ao. Orlicz showed that LP[0,1] has the
Orlicz property whenever 1:< p < 2. As we mentioned, Orlicz's proof can be
easily adapted to shoal the somewhat stronger feature of the spaces L,[O,1]
for 1:s p::5 2, namely, they have cotype 2. With Krivine's 'version of
Grothendieck's inequality in hand, B. Maurey was able to establish the
following improvement of a result of Dubinsky, Pelczynski, and Rosenthal
(1972).

Theorem. If X is a Banach lattice, then X has cotype 2 if and only if X has the
Orlicz property.

Generally, it is so that spaces having cotype 2 have the Orlicz' property;
however, it is not known if every Banach space with the Orlicz property has
cotype 2.

A. Pelczynski and P. Wojtaszczyk were studying absolutely summing
operators from the disk algebra to I2 when they discovered their proof of
what is essentially Grothendieck's inequality. They observed that an old
chestnut of R. E. A. C. Paley (1933) could, with some work, be reinterpreted
as saying that there is an absolutely summing operator from the disk algebra
onto I2. Using this and the lifting property of 11, they were able to deduce
that every operator from 11 to 1z is absolutely summing. Incidentally, they
also noted that the existence of an absolutely summing operator from the
disk algebra onto 12 serves as a point of distinction between the disk algebra
and any space of continuous functions. Any absolutely summing operator
from a £.-space to I2 is compact; so the existence of a quotient map from
the disk algebra onto 12 implies that the disk algebra is not isomorphic as a
Banach space to any C(K )-space.

. It is of more than passing interest that the Pelczynski-Wojtaszczyk proof
that the disk algebra is not isomorphic to any had already been
employed by S. V. Kisliakov, at least in spirit. Kisliakov (1976) showed that
fqr n z 2 the spaces C'(I^) of k-times continuously differentiable functions
on the n-cube are not .r°,,-spaces by exhibiting operators from their duals to
Hilbert space that fail to be absolutely 1-summing.

As is usual in such matters, the precise determination of the best constant
that works in Grothendieck's inequality has aroused considerable curiosity.
Despite the optimistic hopes of a number of mathematicians, this constant
appears on the surface to be unrelated to any of the old-time favorite
constants; J. L. Krivine has provided a scheme that hints at the best value of
the Grothendieck constant and probably sheds considerable light (for those
who will see) on the exact nature of Grothendieck's inequality.
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We have presented the results of the section entitled The Grothendieck-
Lindenstrauss-Pelczynski Cycle much as Lindenstrauss and Pelczynski did
without confronting some small technical difficulties which arise when one
pursues the full strength of Theorem 4, namely, if 1 5 p 5 2, then every
operator from a Y. to a _VP is absolutely 2 -summing.

The development of the structure of 2p spaces has been one of the
crowning successes of Banach space theory following the Lindenstrauss-
Pelczynski breakthrough. This is not the place for one to read of the many
nuts cracked in the subject's development; rather, we preach patience while
awaiting volume III of the Lindenstrauss-Tzafriri books wherein the com-
plete story of the 2p spaces is to be told.

A Banach space Y is said to have the Grothendieck property if every
operator from Y to 12 is absolutely 1-summing. Theorem 3 shows that
21-spaces have the Grothendieck property. S. V. Kisliakov (1976) and G.
Pisier (1978) have each shown that if R is a reflexive subspace of L1[0,1),
then L1[0,1]/R has the Grothendieck property; so 21-spaces are not alone
in the enjoyment of the Grothendieck property. S. Kaijser (0000) has given
another view of the Kisliakov-Pisier theorem with an eye toward broader
applications. More recently, J. Bourgain (0000) has shown that L1/Hl has
the Grothendieck property. For which subspaces X of L1[0,11 does L1/X
have the Grothendieck property? If X is a subspace of L1[0,11, is isomorphic to
a dual space, then does L1/X have the Grothendieck property?

Returning again to Banach spaces of cotype 2, we ought to mention that
the-spaces have cotype 2 whenever 15 p 5 2. Again they are not alone in
this situation. N. Tomczak-Jaegermann (1974) has shown that the dual of
any C*-algebra as well as the Schatten classes C, for 15 p 5 2 have cotype
2. Gorgadze and Tarieladze (1980) have found criteria for Orlicz spaces to
have cotype 2, and J. Creekmore (1981) has determined which of the
Lorentz spaces LPV have cotype 2. Again, G. Pisier and S. V. Kisliakov
found that L1 [0,1 ]/X has cotype 2 whenever X is a reflexive subspace of
L1[0,1] and, in an awesome display of analytical power, J. Bourgain has
shown that L1 /H1 has cotype 2. Pisier builds on Bourgain's result to settle
in the negative one form of an early conjecture of Grothendieck in tensor
products; on the other hand, Pisier uses the considerable machinery avail-
able in spaces with cotype to give an alternative solution to the same
Grothendieck conjecture in the presence of some approximation property.
We cite Pisier's factorization theorem.

Theorem. Let X and Y be Banach spaces with both X * and Y having cotype 2.
Then every approximable operator from X to Y factors through a Hilbert
space.

This generalizes Pisier's C* analogue of Grothendieck inequality and the
original Grothendieck inequality.

There have been many applications of absolutely summing operators and
Grothendieck's inequality that bear close study. Instead of going into an
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encyclopedic account, we state a coupe of our favorites and hope the
student will bear in mind the rapidly growing body of splendid examples
that solidify the position of, importance held by the theory of absolutely
p-summing operators. The following results depend on the theory of abso-
lutely summing operators and are but two of our favorites.

Theorem (G. Bennett, B. Maurey, A. Nahoum). If ER f,, is an unconditionally
convergent series in L1[d,1), then converges almost every-
where.

An elegant proof of this is was uncovered by P. Orno (1976).

Theorem (A. Tonge, N. Varapoulos). If a Banach algebra is a
then it is an algebra of operators.

A. Tonge and his co-workers have developed the ideas essential to the
proof of the above theorem to give a number of striking criteria for the
representation of a Banach algebra as an algebra of operators or, even, as a
uniform algebra.

As we noted in the text, the fact that co, 11, and 12 have a unique
normalized unconditional basis characterizes these spaces. To be fair, the
realization by Lindenstrauss and Pelczynski that co, 11, and 12 have unique
unconditional bases was quite startling. Earlier, A. Pelczynski and I. Singer
(1964) had shown that once an infinite-dimensional Banach space has a
basis, it has infinitely many nonequivalent bases; so the Lindenstrauss-
Pelczynski discovery was bound to be a surprise of sorts. The proof by
Lindenstrauss and M. Zippin (1969) that only the spaces co, 11, and 12 have
unconditional bases was based in large part on Zippin's earlier isolation of
co and the separable l , as the only spaces with perfectly homogeneous bases.
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An Intermission: Ramsey's Theorem

Some notation, special to the present discussion, ought to be introduced. If
A and B are subsets of the set N of natural numbers, then we write A < B
whenever a < b holds for each a E A and b E B. The collection of finite
subsets of A is denoted by 9< (A) and the collection of infinite subsets of
A by More generally for A, B c N we denote by 9< (A, B) the
collection

and by 9 (A, B) the collection

It might be useful to think of 9< (A, B) as the collection of finite subsets
of A U B that "start with A" and similarly of B) as the collection of
infinite subsets of A U B that "start with A." Of course, A) and

A) are just 9, (A) and 9.(A), respectively; we use 9, .(A) and
9.(A) in such cases-it's shorter.

The notation settled, we introduce a topology on by taking for a
basis, sets of-the form B), where A E and B E It is
easy to show that the collection of sets 9,,(A, B) of the prescribed form do
indeed form a base for a topologyr on -0.(N) which on a bit of reflection is
seen to be stronger (has more open sets) than the relative product topology
(henceforth called the classical topology) on We find in what follows
that the topology r is particularly well suited for proving results with a
combinatorial bent.

Before studying r, we investigate a bit of mathematical sociology.
Let .Y c A E 9,,,(N) and B E We say that B accepts A

(into SY) if B) c Y. Should there be no infinite subsets C of B that
accept A into ,Y, then we say that B rejects A (from ,Y).

For the time being, keep .Y c fixed and address all acceptances
and rejections as relative to Y.
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Lemma 1. Let A E and B E

1. Suppose B accepts A. Then each C E 900(B) also accepts A.
2. Suppose B rejects A. Then each C E 9 (B) also rejects A.

PROOF. Part 1 is immediate from the fact that whenever C E 900(B),
9 9,,,, (A, B).

Part 2 is clear, too, since were there a C E 9,0(B) that did not reject A it
would be because there is a D E that accepted A. Plainly, this is
unheard of for members D of 9,0(B) once B rejects A. 0

Lemma 2. There is a Z E which accepts or rejects each of its finite
subsets.

PROOF. (By diagonalization.) To start with we observe a more-or-less obvi-
ous consequence of the notions of acceptance and rejection: given A E
9, 00 (N) and B E 9 ,(N) there is a C E 9 (B) that either accepts or rejects
A; in other words, B is never entirely ambivalent towards A. Why? Well, if
you consider the possibilities, either there is a C E 90,(B) that accepts A or
there isn't. If no C E .90(B) accepts A, it's tantamount to the rejection of A
by B.

Now let B E 900(N).
Choose X0 E such that X0 either accepts or rejects 0; such an X0

can be found by our initial comments.
Let zo = min X0.
Again by our opening marks we see that there is an X1 E

such that X1 accepts or rejects (z0 }. Take particular note: X1 is an infinite
subset of X0 and as such must accept or reject 0 according to X0's whimsy;
this is in accordance with Lemma 1.

Let z1= min X1 and notice that z0 < z1.
Once again observe that there is an X 2 E z1 )) suca that X2

accepts or rejects (z). Taking particular notice of what went on before, we
mark down the fact that X2 accepts or rejects (zn) and 0 in accordance
with X1's treatment of them. Now observe that there must be an X2 E

that either accepts or rejects { z0, z1). Again, Lemma 1 ensures that
X2 accepts some of the sets 0, {Z), {z}, and (z0, z1) and rejects the rest.

Briefly our next step finds us letting z2 - min X2, taking X3" E
(z2 )) to accept or reject (z2) with us mindful of the fact that X3 "' a fortiori
treats 0, (zn ), (z1 }, and (z0, z1) as X2 does. Pick X3" E to
accept or reject (Z0, Z2 ), X3 E 9O0(X3') to accept or reject { z1, z2 ), and
X3 E to accept or reject { Z0, z1, z2 ). The last pick of the litter, X3,
accepts some of the subsets of (z0, z1, z2 ) and rejects the rest.

Our procedure is clear. Z = ( z0, Si, z2, ...) is our set. El
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We have proved more than advertised; we have actually shown the
following.

Lemma 2'. Given Y E 9.(N), there is a Z (=- 9 (Y) that accepts some
members of 9, (Z) and rejects the rest.

Lemma 3. Suppose Z E (N) accepts or rejects each of its finite subsets (on
an individual basis).

1. If A e 9,,,(Z) and Z rejects A, then Z rejects A U (n) for all but finitely
many n E Z.

2. If Z rejects 0, then there is a C E that rejects each of its finite
subsets.

PROOF. 1. By hypothesis, Z accepts any A U (n } (n E Z) it does not reject;
hence, were part 1 to fail,

B= (ncZ: ZacceptsAU(n))
E X A

X X\ A; and A U ( n). It follows
that

Furthermore,

by choice of n. In sum we have

U
nEB

which is a contradiction. Z rejects A; so B has to, too.
Part 2 follows from part 1 in much the same way as Lemma 2 was

deduced. o

It is now time for a rare treat-an application of -sociology to mathe-
matics. We say a collection .of members of is a Ramsey collection if
there exists an S E such that either .Yor c
5"..5o is called a completely Ramsey collection if for each A E 9, (N) and
each B E there is an S E such that either 900(A, S) c .rP or

S) c

Lemma 4. Every r-open set in is a Ramsey collection.

PROOF. Let .9' be a T-open subset of 9,,(N). By Lemma 2, there is a
Z E that accepts or rejects each of its own finite subsets on an
individual basis, acceptance (and rejection) being relative to Y. Of course, if
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Z accepts 0, then c Y. If Z rejects 0, then Lemma 3 tells us there
is a Y E 9 (Z) that rejects each of its finite subsets. We claim that
9 (Y )n ," = 0. In fact, were X E 9 (Y) n b , then there would be an
A E 9, (N) and a B E such that X E B) c 5° since 5° is
,r-open. But B)'s containment in .SP entails B accepting A, whereas
X E B) implies that X also accepts A by Lemma 1. Since A c X is
part and parcel of X E B), we have X accepting one of its own finite
subsets. Since X E 9.(Y), Y cannot reject this same finite subset of X, by
Lemma 1--a contradiction. Our claim follows and with it Lemma 4.

We are ready for a major step.

Theorem (Nash-Williams). Every r-open set is completely Ramsey. Conse-
quently every T-closed set is completely Ramsey.

PROOF. Let $"be T-open, A E '<0,(N) and B E Suppose P: N -> B
is a one-to-one increasing map of N onto B: /3 induces a T-continuous
function f from ' (N) into itself. Define g:.9 (N) - -0.(N) by

g(Y)=YuA;
g is also T-continuous. Since .Yis T-open, (g o f)-'(.9') is too; by Lemma 4,
(g o f)-'(,°) is Ramsey. Hence, there is an X E such that either

-'.(X)9; (g°f)-1(5°)
or

9.(X)c9. (N)\(g°f)_'(Y).
Looking at f (X) = Y, we get a member Y of . ,(B) which satisfies either

9-1(SP)

or

c 9.(N)\g-'(.°).
Now notice that 9.(A, Y) is a subcollection of -(D U A: A c D U A!-!: Y U
A, D E 91.(N)) c g(Y (Y )). Reflecting on this we see that either

Y) 9 p(g.(Y)) c 5°
or

Y) c g(9.(N)\g-1(Y))

(EUA:
c (N)\5°

This is as it should be and proves that T-open sets are completely Ramsey.
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That -r-closed sets are completely Ramsey is an easy consequence of the
completely Ramsey nature of -r-open sets and the observation: .9' c
is completely Ramsey if and only if 9. (N)\$°is.

Corollary. Every classical open set and every classical closed set in is
completely Ramsey. Consequently, given such a set .9, if M E then
there is an L E such that either c .Yor c

For many applications the above corollary is enough; however, as aware-
ness of the power inherent in such combinatorial results has spread, more
sophisticated constructions have been (successfully) attempted exploiting a
remarkable feature of completely Ramsey collections: every classical Borel
subset of is completely Ramsey. The proof that this is so will
proceed in two steps: first, we show that subsets of (9 (N), T) enjoying the
Baire property are completely Ramsey; then we demonstrate that the Baire
property is shared by a a-algebra of subsets of T) that contains the
open sets.

If T is a topological space and S c T, we say S has the Baire property if
there is an open set U whose symmetric difference with S is meager (of the
first category, is the countable union of nowhere dense sets).

Lemma S. Every subset Yof ( , (N), r) having the Baire property is com-
pletely Ramsey.

PROOF. First notice that if Sois nowhere dense, then given .4 E -'<,,,(N) and
B E there is a C E 9 (A,C) c In fact,
.So is completely Ramsey; so there is a C E 9.9 (B) such that 9.(A, C) c

9 (N)\.9'or 9 (A, C) c S9. But Y's interior is empty and so
$°cannot contain any C).

Next, we show that if .50 is meager, then given A, A E 9< (N) and
B E there is a C E such that C) c Sup-
pose .9"if of the form U 10.5 R, when each Y. is nowhere dense. Let A0 = A
and pick B0 E 9.(B) such that BO) is a subset of and
A0 < BO; this is the gist of our opening observation. Let a0 be the first
member of B0 and set Al = A0 U (a0). Pick B1 E ,(B0\{ a0 )) such that
91.(41, Bt)c-,P.(N)\BicBo; so and Al<B1.
Suppose we've defined A and B with A < B and c
for any A. c Ac A,,. Set A,+1 A. U { a ), where a,, is the least element of
B,,; choose B. ( B.\ so that for each A0 c A c 1 we have

Bi+1) c +1. Let C = U R 0A,,. Then 9,,(A, C) is disjoint
from .9 for all n; indeed, C) c U A,, Q L A for each n,
itself a set disjoint from .9 .

It is worth pointing out at this juncture that we have shown that a meager
set Yin T), in addition to being completely Ramsey, is actually
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nowhere dense. Remember that the sets C) form a neighborhood
basis for r.

Now letb°be a subset of (9r (N),,r) having the Baire property; represent
So in the form .9'OA,°t, where $o is open and $° is meager. Take any
A E 9r< .(N) and any B E We know that there is a e E such
that e) is contained in 9? (N)\.9'1 from the preceeding paragraphs;
since each T-open set is completely Ramsey, we can also find a C E 9.(C)
such that 91.(A, C) c 9a.(N)\Yo or 91,.(A, C) C- Yo. Let's check C)
for containment in 9.(N)\$or Y. If C) c Sao, then 9.(A, C) c So
since -,V. (A, C) c 9.(A, e) a set disjoint from .°i. On the other hand, if
9.(A, C) c Yo, then 91.(A, C) c C) and so is disjoint from
Y I; 9.(A, C) is disjoint from .9 and 6°f, hence from 9 C) c

Regardless of the case in hand, 9,(A, C) is contained in either
0or 0

Lemma 6. Let T be a topological space. Then the collection of subsets of T
having the Baire property forms a a-algebra containing the open sets of T.

PROOF. First of all, if a set has the Baire property, so does its complement.
To see this, notice that closed sets have the Baire property differing as they
do from their interior by their nowhere dense boundary. Notice too that any
set with a meager symmetric difference from another having the Baire
property has the Baire property. Consequently, if A is a Baire set and U is
an open set for which AM] is meager, then A`AU` is meager, too; hence A`
enjoys the Baire property as often as A does.

Next, if is a sequence of sets with the Baire property, then U B has
the Baire property. In fact, each B differs from an open set U by a meager
set A,,, so that differs from the open set in a (meager) subset of
the meager set U 0

Theorem (Galvin-Prikry). Every Borel subset of -r) is completely
Ramsey.

Corollary (Galvin-Prikry). Every classical Bore! subset of is com-
pletely Ramsey. Consequently if M is a classical Bore! subset of 9,,(N) and
M E then there is an L E such that either 9,,(L) c 9 or

c 91.(N)\-Q.

Notes and Remarks

The elegant combinatorial principle known as Ramsey's theorem has had a
strong impact on the theory of Banach spaces. We have recourse to use this
principle in our treatment of Rosenthal's 11 theorem (following the lead of J.
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Farachat) in Chapter XI and call on it frequently in recounting the proof of
the Elton-Odell separation theorem in Chapter XIV. Its effects on these
deliberations are so basic that a reasonably self-contained treatment seemed
in order.

The roots of the combinatorial theory reach back to the classical formula-
tion of the Ramsey theorem due to the remarkable F. P. Ramsey, himself.
The original foundation:

Theorem (Ramsey). Let /be a family of doubletons from the set N of positive
integers. Then there exists an M E #.(N) so that either .rah contains all the
doubletons from M or ./contains none of the doubletons from M.

Though the proof of the above is short and sweet, we prefer to send the
student to E. Odell's survey of applications of Ramsey theorems to Banach
space theory to find the proof, feeling sure that once started on that survey
the rewards of continuing will be too obvious to leave it unstudied.

Our discussion of the infinite versions of Ramsey's theorem were in-
fluenced greatly by a seminar lead by G. Stanek and D. Weintraub on
applications of Ramsey's theorem and descriptive set theory in functional
analysis. In turn they were following E. E. Ellentuck's proof (1974) of
the completely Ramsey nature of analytic sets. Earlier, C. St. J. A.
Nash-Williams (1965) had shown that closed subsets of 9,,(N) are com-
pletely Ramsey (we use this in Chapter XI), F. Galvin and K. Prikry (1973)
showed that Borel sets are completely Ramsey, and J. Silver (1970), using
metamathematical arguments, extended the Galvin-Prikry search to find
analytic sets among the completely Ramsey family.

Though Ellentuck's approach bypasses the need to know even the basics
about mathematical logic, we would be remiss if we did not suggest that
Bartach space theory is enjoying the fruits of the logician's labors. Be it
under the guise of nonstandard analysis or ultraproduct arguments, modern
model theory has seen too many victories in the investigation of Banach
space questions to be dismissed as being of tangential interest. Rather than
survey the contributions of these all-too-alien disciplines, we recommend the
student make a careful study of the surveys cited in our bibliography, as
well as pertinent references contained in those surveys.
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CHAPTER XI

Rosenthal's 11 Theorem

The Eberlein-Smulian theorem tells us that in order to be able to extract
from each bounded sequence in X a weakly convergent subsequence it is
both necessary and sufficient that X be reflexive. Suppose we ask less.
Suppose we ask only that each bounded sequence in X have a weakly
Cauchy subsequence. [Recall that a sequence in a Banach space X is
weakly Cauchy if for each x* E X* the scalar sequence is conver-
gent.] When can one extract from each bounded sequence in X a weakly
Cauchy subsequence?

Of course, a quick sufficient condition (reflexivity) is provided by the
Eberlein-Smulian theorem. But, can one extract weakly Cauchy subse-
quences from arbitrary bounded sequences in nonreflexive Banach spaces?
The answer is "it depends on the space-sometimes yes, sometimes no."

Sometimes you can. In fact (and this was known to Banach), if X is a
separable Banach space with X* also separable, then bounded sequences in
X have weakly Cauchy subsequences. Let's quickly recall the proof. Let
be a dense sequence in Sx. and let (xk) be a bounded sequence in X. The
sequence (dlxk) is a bounded sequence of scalars and, therefore, has a
convergent subsequence, say (dlxk). Now look at (d2xk); it is a bounded
sequence of scalars and so has a convergent subsequence (d2xk ). Of course,
(d ixk) is also convergent. The coast is clear. Follow your nose down the
diagonal.

Sometimes you cannot. If e denotes the nth unit vector in 11, then (e )
has no weakly Cauchy subsequence. In fact, if (nk) is any strictly increasing
sequence of positive integers, and if we consider A E 1. =11 defined by

=
h i

( I ifj = n2k for some k,
erw-1 ot se,

then is not a convergent sequence of scalars.
The purpose of this chapter is to present a startling discovery of Haskell

P. Rosenthal which says that the above counterexample is, in a sense, the
only one. Precisely, we show the following.
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Rosenthal ll Theorem. In order that each bounded sequence in the Banach
space X have a weakly Cauchy subsequence, it is both necessary and sufficient
that X contain no isomorphic copy of 11.

In fact, we do a bit better than as claimed above; we show that if (xn) is a
bounded sequence that has no weakly Cauchy subsequences, then (xn) admits
of a subsequence (x;,) that is the unit vector basis of 11. [Here, when we say
that (::;,) is the unit vector basis of 11, we mean that there are constants
a, b > 0 so that

aLIcils
i-1

Ecixi 11 b n

E1cil
i-1 ' i-1

for any scalars c1,... ,c,, and any n.] This finer result is due to Rosenthal in
the case of real scalars and to Leonard Dor (1975) in the complex case.

How to Imbed 11 in a Banach Space

To find a copy of 11 in a Banach space, the obvious thing to look for is 11's
unit vector basis. If one can find a sequence (xn) in a Banach space X such
that for some a, b > 0.

a Icil

i-1

n n

cixi b Icil (1)

holds for any scalars c1, c2, ... ,cn and any n, then one has an isomorphic
copy of 11 inside of X. We will continue to say that such a sequence is the
unit vector basis of 11.

An example might help illustrate how such a sequence might look.
Suppose we let X = L1 [0,1 ], the space of Lebesgue-integrable functions on
10,11 with the usual norm Ilxlil = fo Ix(t)I dt. If we pick (xn) to be a sequence
of members of L1[0,11 for which IIx,, III =1 and 0 for n # m (that is,
the x,, are disjointly supported), then

n

E cix,
i-1

f'Icixl(t)+ ... + cnx,, (t)I dt
1

= f 1Jc1x1(t)+ + ... +Icnxn(1)I d!

(since the xn have disjoint supports)
»

Icil llxilll = Icil
i=1 i-1

So such a selection of x gives an exact replica of the unit vector basis of 11.
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It does not take much imagination to see that if we let the x stay
disjointly supported in L1[0,1J but let their norms wander between a and b,
where 0 < a < b, then we would still have a unit vector basis of l1, but now
(1) would express the degree of similarity present.

In fact, if one wants to get just a bit fancier, then one can even dispense
with the disjointness of supports. One must take care that on the set of
common support the relative contribution to the norms of the x is not too
great. One still can get the unit vector basis of 11 in this way.

There are at least two drawbacks to this method of producing an 11. The
first, and most obvious, is the special nature of the space X. Isn't X = L1[0,11,
a very special space? Our construction is definitely tied to the structure of
this particular space. Should we be looking for a way of adapting this
construction to a much broader class of spaces, however, we would soon
come to grips with the second drawback in the construction. Proceeding as
above the resulting copy of 11 does not sit just anywhere in L1[0,1J= X, it is
a complemented subspace; i.e., there is a continuous linear projection from X
onto the constructed copy of l1. It would be too much to expect that
anytime we find a copy of 11 in a space, one can find a complemented copy
of 11 in the space. We shall see later why this is too much to expect; for now
let us mention that despite the more-or-less simpleminded manner in which
we have built our l1 in Ll[0,1], until late 1979, no other method of building
an 11 in L1[0,1J had been found.

If the above approach is not to be generally followed, how then to
proceed? By its very statement, the Rosenthal 11 theorem indicates the need
to use duality. This suggests that we look at X as a space of functions on
X'; more precisely, we view .Y as a subspace of the continuous functions on
BX. in its weak* topology. In this way, the question of whether or not a
given sequence in X has a weak Cauchy subsequence is reduced
(enlarged?) to the question of whether or not the corresponding sequence of
functions on B. has a pointwise convergent subsequence. It is in this
setting that Rosenthal's 11 theorem will be treated.

Our setup: We have a set iI and a uniformly bounded sequence (f,) of
scalar-valued functions which is without a pointwise convergent subse-
quence. We want to extract a subsequence which in the l (U)-norm is the
unit vector basis of 11.

The first task is to guess more or less what such a subsequence has to look
like. Then we see if things that look right are right. These will be the chores
of this section. The pruning work will be the work of the next section; the
first harvest will be gathered in the last section.

What does the unit vector basis of 11 look like when it appears in a space
of bounded functions? To get a hint, we look at a bit easier problem: what
does one look like in a space C(Sl) of continuous functions on a compact
Hausdo.if space 0; in fact, we consider an extra replica of the unit vector
basis, and to get things under way, we worry only about real Banach spaces.
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Let (f,,) be a sequence in C(0) for which

Ic*fn
R pp M

for any (ce) E l1. Then for any k we know that
k

F. ±fR -k.
n-I 100

Of course, this means in particular that f1 has norm 1; so there is a
nonempty closed subset 01 c 0 such that

01= (we0:[f1(w)t=1).
But both f1 + f2 and f1- f2 have norm 2; so there are nonempty closed sets
02, 03 S 01 such that

02= {wE0:V1(w)+f2(w)J=2)
and

03 = (w E 0: V1(to)-f2(to)1- 2).
Since f2 also has norm 1 and since f2 has the same sign as does f1 on 02 but
opposite sign on 03, 02 and 03 must be disjoint. Again, f1 + f2 + f3,
f1 + f2 - f3, ft - f2 + f3, and f1 - f2 - f3 all have norm 3; so there are
nonempty closed sets 04, US c 02 and 06,07 c 03 such that

04 = { w E 0: V1(w)+f2(w)+f3(w)f = 3),

OS to e a: IJ1(w)+f2(w)-f3(w)(I = 3),

06= (w(=O:If1(w)-f2(w)+f3(w)1=3),
and

07= { w E 0: If1(w)-f2(w)-f3(w)f = 3).
As before 04, 05, '16, and 07 are disjoint; this time 04 being the set where
fl, f2, and f3 have the same signs, 05 being the set where f1 and f2 agree in
sign while f3 disagrees, 06 being the set where f1 and f3 agree while f2
disagrees, and 07 being the set where f1 is the disagreeable one. The
procedure is set. The point is that if you have l1's unit vector basis in a
C(0), then there has to exist some sort of "dyadic splitting" of subsets of 0
along with a sequence of functions that agree to change signs on the
successive parts of the splitting.

The idea now is search for this kind of a sequence of functions in
A handy model already exists-the Rademacher functions.

A basic fact: In real l. ([0,1]), the Rademacher functions are the unit vector
basis of I. In fact, suppose are real numbers; let's calculate
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IE"_ 1 t, r; I1 . Of course, the most we can expect is L"_ 11 t; [; our claim is that
we actually get this much. Since

d-i
n

E (- te)r,
i-I

we can assume it > 0, and therefore, 11r1 is {t11 on all of [0,1]. Looking at
t2r2, we see that on half of [0,11, 12r2 is 1121; so on this half, t1r1 + t2r2 is
I11I+ 1121. Again, on the half where t1r1 + t2r2 is Itll+ 1t21, 13r3 achieves both
values 1131 and - It31 throughout subintervals of length 1. The idea is (or
should be) clear by now. On some interval of length 21-", the function
tlrl + - - - + torn achieves the value Itll+ + Itnl.

The purpose of the rest of the present section is to discuss just how
Rademacher-like a sequence must be in order to identify it with 1,'s unit
vector basis.

Let S1 be a set. A sequence (s,,) of nonelnpty subsets of S11 is called a tree
of subsets of 51 if for each n, S12,, and S12n'

1
are disjoint subsets of fl,,.

Pictorially, we have

5120 S°3
4\ / 5\ / 6\

f28 129 210 all u12 f215 014 915

where across the rows the sets are disjoint and connecting lines indicate that
lower ends are subsets of the upper.

The purpose of introducing trees of sets is obviously to mimic the dyadic
splittings of [0,1) so basic to the nature of the Rademacher functions. The
next fact we note is a special case of a much more general scheme due to A.
Pelczynski.

Proposition 1. Let 9 be a set, (Stn) be a tree of subsets of 2, B be a bounded
subset of 1.(R) and S > 0. Suppose we have a (Rademacher-like) sequence
(b") in B such that whenever 2n -1 5 k < 2", (-1)kb"(w) >_ S for all w E Stk.
Then (b") is equivalent to the unit vector basis of 11.

PROOF. Let t1, ... t" be real numbers. We look at IIE;_1tzbbII,,; its biggest of
possible values is (sup8IIbII) In the generality we're dealing with,
there's no hope of attaining this value; we settle for a goodly portion of this
maximum possible. Similar to the case of the Rademacher functions, no
harm will come our way in supposing that t1 < 0. It follows that tlbl(w) >_
It118 for all wES11.

The values 12b2 attains on S12 and those it attains on S13 are opposite in
sign and in each case all have modulus > V2 18; so on one of these "halves"
all of the values of (t1b, + 12b2) are >- S(I1,1+ 1121)

----- a) ---_
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Again, inside whichever half it is on which all of the values of (11b1 + t2b2)
are z 8(It1I+ 112 D, we have a pair of disjoint St; ("quarters") on one of which
t3b3 has positive values, on the other of which t3b3 has negative values;
regardless of which quarter we are on, the moduli of t3b3's values exceed
It31S. On the positive quarter, t1b1 + t2b2 + 13b3 stays z (Iti1+ 1121+ I13D.

It should be clear how the argument continues. Our conclusion is that the
sequence (bn) satisfies

8(E11tJI) 5
J

n

s ( sup IlbJ)) f Itjl
bEB i-t00

for any sequence (t,,) of real numbers and all n. Of course this just says that
(bn) is equivalent to the unit vector basis of l1.

Proposition 1 is oftentimes quite useful as is. It can, however, be signifi-
cantly improved upon. Such improvements are crucial to our discussion of
Rosenthal's theorem and are due to Rosenthal himself.

The first improvement:

Proposition 2. Let 0 be a set, (Sl,) be a tree of subsets of 2, r be a real
number, (b") a bounded sequence in l,0(St) and 8 >-O. Suppose that for n if
2":5 k < 2"+' and k is even, then b"(w) >_ r + S for all w E SZk, whereas if
2"< k < 2"+' and k is odd, then b"(w) _< r for all w E Stk.

Then (b,,), Z 2 is equivalent to the unit vector basis of 11.
Our attentions are restricted to it >- 2 for the sake of cleaner details only.

PROOF. Some initial footwork will ease the pain of proof. First notice that
we can assume that r + 8 # 0. In fact, if r + 8 = 0, notice that r + 8/2 < 0
and the hypotheses of the proposition are satisfied with 6 replaced by 8/2.
Next, we assume that r + 8 > 0.

Should this state of affairs not be in effect, we multiply all the b" by -1 to
achieve it; if (- b") is equivalent to the unit vector basis of ll, so is (b").
Finally, since r + 6 > 0, we might as well assume r > 0 too since otherwise,
we are back in the situation (more or less) of (our special case of)
Pelczynski's proposition. So we prove the proposition under the added
hypotheses that r + S > r >- 0.

What we claim is true is that for any sequence (t") of real numbers we
have (independent of n)

n

2 E Itki
k-2

E tkbk
k-2 00

(2)

the boundedness of. the sequence (be) gives us the upper estimate and
consequently the equivalence of (b") with the unit vector basis of 11. Of
course, actually we need only establish (2) for finitely nonzero sequences
(t" ), and for these we can assume that their 11 norm is 1; normalization gives
(2) in general.
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So we have 12, ... , to real with Ek _ 2Ilk I =1, and we want to show that for
some w E 0, Ilk -1 tk bk (w) I exceeds 8/2. To this end, suppose 1:5 m 5 n and
let

2" _1 2`1-1
Em U aik, 0. = U Uk'

k-2m k-2m
k even k odd

On Em, bm Z r + S, whereas on Om, bm s r. The important point about the
Em and Om is the following property acquired from the treelike nature of
the sequence (SZn ): if you intersect E and 0 being careful not to pick two with
the same subscript, the result is nonempty. This allows us to estimate the size
Of IIEk-21kbklIoo

Let P = (k : tk > 0) and N = (k: tk < 0). Then there are points wl, w2 E SZ
such that

w 1 E n Ek ( n Ok and W2 s n Ek n n Ok .

kEP kEN kEN kEP

For w1 and w2 this means that if tk > 0, then bk((41) >_ r + S and bk((42) < r,
whereas if tk < 0, then bk(wl) <_ r while bk((02) >_ r + S.

At wl we get
n

L tkbkl(4l)
k-2

E tkbk(wl)+ E tkbk(wl)
kEP kEN

rtk(r + S)+ E tkbk(wl)+ E
kEP kEN keN

bk(wt)>0 bk(w,)<0

z E tk(r+S)+ Y, tkbk(w1)
keP kEN

bk(wl)>0

tk(r+8)+ L tkr
keP kEN

bk(wt) > 0

_ E ItkI(r+8)+ E ItkI( - r)
k cm P keN

bk(wt) > 0

E Itkl(r+S)+ L Itkl(-r).
kEP keN

Summarizing, we have
nr ``
Le tkbk(wl)Z L Itki(r+8)+ E Itkl(-r).

k-1 kEP kEN

In a similar fashion we get

tkbklwl)

n

- F. tkbk(w2)Z E Itkl(r+8)+ L Itkl(-r).
k-1 kEN kEP



XI. How to Imbed 11 in a Banach Space 207

Adding together the right sides, we get something >- S. It follows that one of
the numbers on the left is at least 8/2, and this is good enough to finish the
proof. p

If we dbstract from the above proof the key features, we are led to the
following concept: let St be a set and (En, O") be a sequence of disjoint pairs
of subsets of Q. If for any finite disjoint subsets N, P of the natural numbers
we have that

n Enn n On*o,
nN nEP

then the sequence of pairs (En, On) is called independent. In turn we get the
following proposition.

Proposition 3 (Rosenthal). Let SZ be a set, (En, On) be an independent
sequence of disjoint pairs of subsets of St, r be a real number, (bn) be a bounded
sequence in 1. (0) and 8 > 0. Suppose that bn (w) > r + 8 for all w E En and
bn(w)Srfor all wEOn.

Then (bn) is equivalent to the unit vector basis of 11.

We conclude this section with the complex version of the above result; it
is due to Leonard Dor.

Proposition 4. Let (En, On) be an independent sequence of nonempty disjoint
pairs of subsets of S2, let D1 and D2 be disjoint closed disks in C with centers c1
and c2, respectively, and let (bn) be a uniformly bounded sequence of complex-
valued functions defined on Q. Suppose that D1, D2 have the same diameter
<

i
(S = distance from D1 to D2). Assume that

D,

Dz ifwEOn.

Then (b,,) is equivalent to the unit vector basis of 11.

PRoof. We will show that for any sequence (yn) of complex numbers and
any finite set J of positive integers that

E IYnl `II E Y"b"I)nCJ nEJ ao

First, we observe that we may assume of cl and c2 that their difference
c2 - c1 is real and positive. In fact, otherwise, just rotate until the b,,, D1,
and D2 are properly aligned to satisfy this additional assumption; multipli-
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cation by K = Ice - c1I/(c2 - c,) will achieve this effect. If (Kbn) is equiva-
lent to the unit vector basis of 1,, so too is (b,,).

Now suppose yn = an + /3,,i and assume (without any great loss in general-
ity) that EJCE JIaJI? Let

P= J: a, z0}, N= (jEJ:aj<0).

By the independence assumption, there are points w,, w2 E SZ such that

w, E n En rl n o. ,
?IEP ncN

w2E n Enn n 0n-
nEN nEP

This implies that if Re yj = aJ > 0, then b,(wt) E D, and b,(w2) E D2; while
if Re y, = a,< 0, then bj (w,) E D2 and b( w2) E D, . Note that for any
zl E D, and z2 E D2 we have Re(z2 - z,) > 8 and Im(z2 - z,):5 diam D, _
diam D2 <- S; a suitable picture will aid in explanation.

This holds in particular for z, = b,(w,) when j E P or z, = b,(w2) when
j E N or z2 = b3(w,) when j E N or z2 = b,(w2) when j E P. Whatever the
case may be, we have

E y, b,
j E J

= sup yjb,(w)
JEJ

i Rel Y,b,(w2)- E I,bJ(wi))
\,EJ jEJ

[since Re(uv)+Ilm(u)Im(v)I - Re(u)Re(v)]

2 a.Re(b,((j2)-b,(wi))
JEJ

1-8JIm(b,(w2)-bj(w,))I.

JEJ

[Now note that for any j E P, aj >- 0; so b,(w,) E D, and b,(t ,) E D2,
forcing Re(bj (w2) - b, (w, )) to be >- S. On the other hand, if j E N, aJ < 0;
so b, (w,) E D2 and b, (w2) E D,, forcing Re(b,(w2) - bj (w, )) <-- - S. This

makes the difference above]

2 IajlS - 2
JEJ JEJ

S
2 2 IaII 2JEJ JCE J

8
= 4 E IaJI > 8 Y. IYjl.

JEJ jEJ

Done. 0
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The ;'roof of the Rosenthal-Dor lI Theorem

Now that we know how to recognize an l1 if we see one, we go about the
business of finding one in the most general possible circumstances; i.e., we
will prove the Rosenthal-Dor theorem cited in the opening paragraph. Our
proof is adapted from J. Farahat's exposition of Rosenthal's theorem as
found in the notes of the Seminaire Maurey-Schwartz on "Espaces LP,
Applications Radonifiantes et Geometrie des Espaces de Banach,"
1973-1974. It constitutes a beautiful variation on the original proof of
Rosenthal's and an important variation because of its use of combinatorial
ideas which have so recently pervaded many of the best results in Banach
space theory.

Suppose is a bounded sequence in the Banach space X and 'suppose
has no weakly Cauchy subsequence. Imbedding X into I D (BX. ), (x1d

has no pointwise convergent subsequence. Using Propositions 3 and 4 as
our guides, we will select a subsequence of that is the unit vector basis
of11.

Step 1. Let 9 be the (countable) collection of all pairs (D', D 2) of open
disks in C each of whose centers has rational coordinates, each disk having
a rational radius and satisfying: diam D' = diam D2 51 distance (D', D2).
List the members of 9 as ((Di, Dk )). We make a claim: There is a K E N
and an infinite subset P of the natural numbers such that for any infinite
subset M of P there is an xM in B. for which (xkXM*)k E M has poirif -

accumulation in both Dx and D.
Otherwise, for each k z 1 and each infinite subset P of N there would be

an infinite subset M of P such that for any x* in BX., the sequence
xk x *) k E M would not have accumulation points in each of D,'F and Dk .

So there is an infinite set M1 such that for each x* in BX., the sequence
(x,,,x* ),,, E M, does not have points of accumulation in Di and D1. Again,
there is an infinite subset M2 of M1 such that for each x * in BX., the
sequence (xx*)m E M, does not have points of accumulation in D2 and D21.
Continuing in this fashion, we get a decreasing sequence of infinite
subsets of N for which given n if x * is in BX., then the sequence
(x,,x does not have points of accumulation in D,11 and D,2.

Let P be an infinite subset of N whose nth member p belongs to Mn;
clearly we may assume the p form a strictly increasing sequence. Recall that
no subsequence of converges pointwise on BX.; consequently, there is
an xo E Bx. for which (x xo) is not convergent. However, (xpxo) is a
bounded sequence, and so there must be (at least) two distinct numbers d'
and d 2 that are points of accumulation for (x p xo ). Now d' and d 2 lie in
some DK and D, , respectively, where (DK, Dx) E 9. A moment's reflection
reveals the fix we're in: for any j z 1 the sequence (xo,xo ) 2, i has both d'
and d 2 as points of accumulation yet is a subsequence of (xmxo )m E M,, this
forces the latter sequence to also have d' and d' as points of accumulation
violating M1's very definition. Claim established.
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In the interests of "sanity jn indexing" we may as well assume that
(x.),, E P is in fact and call DK and DK simply Dl and D2.

To recapitulate, is a bounded sequence in X without a subsequence that
is pointwise convergent on Br., Dl and D2 are disjoint disks of the same
diameter, Dl and D2 are separated by at least twice that diameter, and given
any infinite subset M of N there is an XM* in B. such that (xmxM)m E M has
points of accumulation In both Dl and D2.

In preparation for our next step we let E,,, O be the sets defined by

0.- (x*EBX.:xx*ED2).
Key to our discussion is the following easily observed consequence of our
earlier spade work: regardless of the subsequence (nk) of positive integers one
chooses, neither limkcE.k(x*) = 0 nor limkco.k(x*) = 0 holds for each x* in
BX..

For notational purposes we will denote by - Ej the set Oj. For each
positive integer k let 9k denote the collection of all infinite subsets (n1) of
N for which

k

n (-1)'E,,,*0.

We We identify each subset of N with a point in-(0,1)N and claim that (lk9k is
a closed subset of 9.(N), the collection of all infinite subsets of N, in the
relative topology of (0,1)''. Indeed, if we fix k, then 9k = {(n1) E
9 (N):(1; 0 0) is itself relatively closed in To see this,
let (n?) be any member of 90(N) in Pk's closure. Consider the basic
neighborhood B of (n?) given by

no

B= n((EP) E

j-1
B intersects 9k so there is a (nl) in 9k such that (n') agrees with (ny) in its
first k entries, i.e., n° = n11, n2 = n2, ... ,n,°F = n'k. It follows that

k k

n (-1),E.,= n 1)'E,,; #0.
!-1 1-1

We now apply the following combinatorial result of C. St. J. A. Nash-
Williams: If .his a relatively closed subset of then given an infinite
subset K of N there is an infinite subset M of K such that either 9,. (M) c For
9,,(M)c Jr .

This applies in particular to.F = n k9k.
We get then the existence of an increasing sequence (mP) of positive

integers such that either mP )) c n k9k or 9 ((mP )) c (n k9k )`. But
we have seen that given any such M = ( mP) there is an x,*y in Bx. such that
(xmxM)m E M has points of accumulation in both Dl and D2. It follows that
there is an infinite subsequence (m,) of (m,) such that if q is odd, xmn x,*y
is in Dl, whereas if q is even, then Xmv x,*y is in D2; alternatively, for q odd,
xM is in Omao, whereas for q even, 'x,*y is in EmDa ; that is, for any q,
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x f e (-1)QEmpQ This gives (m p.) E n k 9ak, thereby ruling out the possibil-
ity that is contained in (nkgk)`-forcing 9.({mp}) to lie in
n kYk.

We now have that (mp) is a strictly increasing sequence of positive
integers such that given any subsequence (m p) of (mp )

k

nP1
for all k E N. Let's look at this statement for a moment. By agreement - E.
and O are the same sets; so the sequence (mp) has the somewhat agreeable
property that if we look at any subsequence (m') of (mp) and intersect Om
with Em2 with 0,,,, with Emi etc., finitely many times, then the resultant set is
nonempty. Now this is almost the degree of independence for (0,,, , Em )
that is required; if we could but eliminate the need to switch from b to E
and back again, we would have an independent sequence of pairs of disjoint
subsets of B. and a corresponding (bounded) subsequence of (x,,) such
that the action of the x on the 0 and E fulfills the criteria set forth in
Proposition 4. To achieve this added feature, we look at the subsequence
(m 2p ). Given any subsequence (m 2p) of (m2,,), if we look at the intersec-
tion of finitely many E and 0 indexed by (m2p), should successive terms
both be E, say Em, and Em,

,,,
then their intersection contains Em2o n Om*

n Em2(p+1), where k is any integer such that m2p < mk < m2( p+1) Similarly,
if two O occur back to back, we can always find inside their intersection
an alternating intersection of the form 0m n Em,, n 0m,, where j < k < 1.
Now falling back on the basic distinguishing property of (mp), we see that
the sequence (Em2o,Om2,,) is an independent sequence of disjoint pairs of
subsets of BX.. Furthermore, the sequence (xm2j) in X is a bounded
sequence such that for x* in 0m2 , xm2 (x*) E Dl, whereas for x* in
Em2 xm2 (x*) E D2. It follows that ('Xm2 ) is a Rademacher-like system in

hence equivalent to the unit vector basis of ll.

Exercises

1. Cardinality consequences of /1's presence.

(i) / contains l1(2N) isometrically.

(ii) If X contains an isomorphic copy of 11, then X* contains 11(2N)

(iii) If X contains an isomorphic copy of 11, then X**'s cardinality exceeds that
of the continuum.

2. L110,1] in duals.

(i) A Banach space X is isomorphic to L1[0,1] if and only if X is the closed
linear span of a system (h n, 0" 2 I satisfying

isk52"
(1) (h k) n Z 1 is a dyadic tree; that is, for each n and k

Isks2'
hn.k ` 2hn+1.2k-1 + 2hn+1.2k
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(2) There is a p > 0 such that for each n and each 2"-tuple (a1, ... ,a2,) of
scalars we have

2-

p E Iakl s
2"
L akhn.k
k-1

(2"

L jakl
k-1 k-1

(ii) Suppose Y is a closed linear subspace of X and L1 [0,11 is isomorphic to a
subspace of Y". Then L1 [0,1] is isomorphic to a subspace of too.

(iii) 1. contains an isomorphic copy of L1[0,1].

(iv) If X contains an isomorphic copy of 11, then X' contains an isomorphic
copy of L1[0,1].

3. The Schur property. A Banach space X has the Schur property if weakly conver-
gent sequences in X are norm convergent.

Any infinite dimensional Banach space with the Schur property contains an
subspace isomorphic to 11.

4. The Schur property for dual spaces.

(i) The dual X' of a Banach space X has the Schur property if and only if X has
the Dunford-Pettis property and does not contain a copy of 11.

(ii) If both X and X* have the Schur property, then X is finite dimensional.

5. Lohman's lifting of weakly Cauchy sequences.

(i) Let Y be a closed linear subspace of the Banach space X and suppose that Y
contains no isomorphic copy of 11. Then each weakly Cauchy sequence in
X/Y is the image under the natural quotient map of a sequence in X having a
weakly Cauchy subsequence.

(ii) If X has the Dunford-Pettis property and Y is a closed linear subspace of X
such that X/Y fails the Dunford-Pettis property, then Y contains a copy of
l1

6. Spaces with the Banach-Saks property are reflexive. A Banach space X is said to
have the Banach-Saks property if given a bounded sequence (x") in X there is a
subsequence (y") of (x") such that the sequence (a)= (n' 1 Ek _ 1 xk) is norm
convergent.

(i) The Banach-Saks property is an isomorphic invariant.

(ii) If a Banach space X has the Banach-Saks property, then so do all of X's
closed linear subspaces.

(iii) The Banach space 11 fails to have the Banach-Saks property.

(iv) A weak Cauchy sequence (x") for which
n

norm lim n - t Y- xk
n k-1

exists is weakly convergent (with an obvious weak limit).

(v) Banach spaces with the Banach-Saks property are reflexive.
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7. Dunford-Pettis subspaces of duals.

(i) If Y is a space with the Dunford-Pettis property that does not have the
Schur property and X* contains a copy of Y, then X contains a copy of lt.

(ii) If X* contains an isomorphic copy of L1 [0,1 ], then X contains a copy of 11.

(iii) L1[0,1] and co are not isomorphic to subspaces of any separable dual.

Notes and Remarks

Arising from the devastation caused by a spate of fundamental counterex-
amples, Rosenthal's i, theorem provided a rallying point for members of the
Banach space faith. In its pristine form Rosenthal's l1 theorem is basic
analysis; with hardly a pause for breath, the material of the second section,
The Proof of the Rosenthal-Dor 1, Theorem, proves the following variation.

Rosenthal's Dichotomy. Let fZ be a set and suppose is a uniformly
bounded sequence of scalar-valued functions defined on 12. Then precisely one
of the following is the case.

1. Every subsequence of (f,) has in turn a pointwise convergent subsequence.
2. There is a subsequence of (fn), a tree of subsets of fl, and disjoint

disks D,, D2 of scalars such that gk(w) E D1 for w r= Sty, j odd, and
gk (w) E D2 for W E II ., j even.

Plainly, Rosenthal's 11 theorem gives the last word (in some regards)
about It's presence in a Banach space. Others, however, have had something
to say, too. Several beautiful contributions to the detection of copies of 1,
were made in the late sixties by A. Pelczynski; our treatment of the first
section, How to Imbed 11 in a Banach Space, owes an obvious debt to this
work of Pelczynski (1968). We cite but one particularly noteworthy result of
his.

Theorem (Pelczynski). Let X be a separable Banach space. Then TFAE:

1. X contains a copy of 11;
2. C[0,1] is a quotient of X;
3. X* contains a copy of rca(R10.11);
4. X * contains a copy of L110,1].
5. X * contains a copy of 11([0,1 ]).

A very few words about the proof of Pelczynski's theorem might be in
order. Actually it is easier to work with the Cantor set A than with [C,1]; no
matter, C(0) and C[0,1 ] are isomorphic, as are L1(i) and L1 [0,1 ], where A
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is viewed as the compact abelian group ( -1, + 1)' accompanied by its
Haar measure. Pelczynski's approach to the implication "1 implies 2" is just
this: Like all separable Banach spaces, C(t)) is a quotient of 11 via some
bounded linear operator q, say. Viewing C(A) as a subspace of 1,x(0), we
can extend the operator q to a bounded linear operator Q from X into
1.(A). Now, QX is separable and thus is isometric to a subspace of C(A);
without losing any sleep we may as well view Q as an operator from X into
this bigger copy of C(A), keeping in mind the fact that our original copy of
C(0) is contained in the range of Q! Were the original copy of C(A)
complemented in this late entry C(s), all would be well-we would merely
follow Q by the bounded linear projection onto the original C(s) and be
done with the implication. Though this need not be the case, Pelczynski
would not be deterred. Rather, he found a way around the difficulty. His
path was cleared by the following appealing, but hard-earned, shortcut.

Theorem (Pelczynski). Let K be any compact metric space and suppose X is a
closed linear subspace of C(K) which is isomorphic to C(K ). Then X contains
a closed linear subspace Y isometric to C(K) which is complemented in C(K)
by a norm-one projection.

This in hand, one need only follow Q by some projection onto a more
suitably located copy of C(t) inside the original copy of C(ti) to obtain
C(0) as a quotient of X.

The trees of the first section were first planted by Pelczynski with the
express purpose of finding a 11 back in X from hypotheses similar to
conditions 3, 4, and 5.

J. Hagler (1973) was able to show that 1, 3, and 4 are equivalent without
separability assumptions. Incidentally, the proof outlined in Exercise 2 that
1 implies 4 was shown to us by J. Bourgain.

Of course, the weight of Pelczynski's results might move one to be
suspicious of the possibility that the absence of a copy of 11 in a separable
Banach space ensures the separability Wits dual; after all, 11's presence
makes the dual very nonseparable. What evidence there was to support this
possibility was very special indeed. R. C. James has shown that if a Banach
space has an unconditional basis with no copy of 11 inside it, then its dual is
separable. C. Bessaga and A. Pelczynski (1958) extended James's result to
subspaces of spaces with an unconditional basis. This was soon extended by
H. Lotz to separable Banach lattices and H. P. Rosenthal showed that any
quotient of C[0,1] with a nonseparable dual contains a copy of C[0,1]. A
considerable body of information had accumulated that might be viewed as
supportive of the possibility that a separable Banach space with no copy of
1, has a separable dual.

In 1973, R. C. James constructed a Banach space JT (called James tree
space) that is separable, contains no 11-indeed is "12 rich" and has
nonseparable dual. A complete examination of James's construction was
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performed by J. Lindenstrauss and C. Stegall (1975), who also analyzed
several other counterexamples discovered by Lindenstrauss, independently
of James.

It is important to realize that the counterexamples discussed by James,
Lindenstrauss, and Stegall seemed to be part of an emerging trend in
Banach space theory. In the space of two years, P. Enflo found a separable
Banach space without the approximation property or a basis, B. S. Tsirelson
gave a scheme for producing spaces without.. copy of co or any l, new and
strange complemented copies of L,[O,1] were being discovered and R. C.
James had built a uniformly nonoctahedral space that is not reflexive.
Pathology seemed the order of the day. Actually, as any mature mathemati-
cian realizes, pathology only highlights the natural limits of a strong and
healthy subject. Nonetheless, the onslaught of counterexamples experienced
in the early seventies seems to have left an impression that little could be
salvaged in the general theory.

Rosenthal's 1, theorem served notice to the doomsday soothsayers of the
errors of their way.

Soon after Rosenthal's l1 theorem hit the newstands. true understanding
of 11's absence developed. Through the combined efforts of Rosenthal, F_
Odell, and R. Haydon the following characterizations were formulated and
established.

Theorem. Let X be a separable Banach space. Then TFAE:

1. X contains no copy of 11.
2. Each element of Br.. is the weak* limit of a sequence from B.
3. X and X * * have the same cardinality.
4. BX.. is weak* sequentially compact.

(Incidentally, we prove this theorem in our discussion of Banach spaces
with weak* sequentially compact dual balls.)

Theorem. Let X be any Banach space. Then TFA E:

1. X contains no copy of l1.
2. Each weak* compact convex subset of X * is the norm-closed convex hull of

its extreme points.
3. Each x * * e X * * is measurable with respect to each regular Borel probabil-

ity measure on (Br., weak*).

Each of these results at some stage calls on either Proposition 3 (due to
H. P. Rosenthal) or Proposition 4 (due to L. Dor). By the way, our proof of
Rosenthal's 11 theorem follows J. Farahat in his use of Ramsey theory.
Rosenthal's original proof did not rely explicitly on any Ramsey theorems;
apparently Rosenthal rederived the infinite version of Ramsey's theorem
necessary in his "good-bad" description without recognizing that he had
done so.
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As oae might suspect, a theorem that packs the punch of Rosenthal's 11
theorem sagn leads somewhere. It was not long after Rosenthal and his
followers stored their fruitful search for variations on the l1 theorem that
the close con.aections with pointwise compactness in the class of Baire-1
functions were uncovered.

Rosenthal himself initiated a penetrating investigation into pointwise
compact subsets of Baire class 1. Though stymied by several problems, his
work pointed the way for a real breakthrough by J. Bourgain, D. Fremlin,
and M. Talagrand (1978). We quote several of their results and urge the
student to carefully study their fundamental paper, which is just starting to
find serious applications in integration theory and the study of operator
ideals.

Theorem. Let St be a Polish space (i.e., homeomorphic to a complete separ-
able metric space). Then the space B1(Q) of real functions of the first Baire
class is angelic in the topology of pointwise convergence.

Here we must recall that a topological space T is angelic if relatively
countably compact subsets of T are relatively compact and the closure of a
relatively compact set in T is precisely the set of limits of its sequences.

'T'heorem. Let St be a Polish space and A a countable relatively countably
compact subset of the space of real Borel functions defined on St endowed with
the topology of pointwise convergence. Then the closed convex hull of A is
compact and angelic.

Rosenthal's 11 theorem has had a synthesizing effect on a number of
problems previously attacked by pretty much ad hoc techniques.

For instance, our presentation of the Josefson-Nissenzweig theorem was
made possible largely through the graces of Rosenthal's It theorem. It has
allowed for considerable progress in the study of the Pettis integral, starting
with the discovery by K. Musial and L. Janicka that duals of spaces not
containing 11 have a kind of weak Radon-Nikodym property and continuing
on through the work of J. J. Uhl and his students. Applications to operator
theory, always close to the representation theory by integrals, have been
uncovered by H. Fakhoury and L. Weis; the fact that operators on a C(S2)
space fixing a copy of !1 must also fix a copy of C[0,11, due to H. P.
Rosenthal, is key to J. Diestel and C. J. Seifert's study of Banach-Saks
phenomena for operators on C(1) spaces (1979). Rosenthal's !1 theorem is
an essential ingredient to B. Beauzamy's elegant presentation of "spreading
models" and their attendant applications (1979). No doubt it will continue
to play a greater and greater role in the synthesis of modern Banach space
developments.
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Finally, we must mention a recent and penetrating advance of M.
Talagrand (I984), who has proved a random version of Rosenthal's 11

theorem that incorporates the Kadec-Pelczynski theorem with Rademacher-
like pathology for vector-valued functions.
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CHAPTER XII

The Josefson-Nissenzweig Theorem

From Alaoglu's theorem and the F. Riesz theorem, we can conclude that for
infinite-dimensional Banach spaces X the weak* topology and the norm
topology in X* differ. Can they have the same convergent sequences? The
answer is a resounding "no!" and it is the object of the present discussion.
More precisely we will prove the following theorem independently dis-
covered by B. Josefson and A. Nissenzweig.

Theorem. If X is an infinite-dimensional Banach space, then there exists a
weak* null sequence of norm-one vectors in X *.

The original proofs of both Josefson and Nissenzweig were rather un-
wieldy; so we follow the spirit of another proof due to J. Hagler and W. B.
Johnson.

A key ingredient in our proof will be the following lemma concerned with
real Banach spaces and l1's appearance therein.

Lemma. Suppose X * contains a copy of 11 but that no weak * null sequence in
X* is equivalent to the unit vector basis of 11

Then X contains a copy of 11.

PROOF. Suppose (y,') is a sequence in B.. equivalent to the unit vector
basis of 11. Define

Y,`} = sup Um-
IIxII-1 n

S(y,') > a just means that for some x E Sx, I exceeds a infinitely often.
Since (y,,*) is equivalent to the unit vector basis of 11 our hypotheses ensure
that is not weak* null; therefore, S(y,*) > 0.

Suppose is a sequence in Bx. equivalent to the unit vector basis of
11, and suppose (z,*) is built from y,* as follows:

z,* _ Y, a, y,*,
iEA.
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where is a sequence of pairwise disjoint finite subsets of N and
Y_i a A. I a; I =1. Then we call (z,*) a normalized 11-block of (y,,*). Notice that
such a sequence (z,*) is also equivalent to the unit vector basis of 11 and
satisfies

6(Z'*') 5 a(

Finally, for a sequence in B)r. equivalent to the unit vector basis of
11, we define

inf ( 8(z,*,): (z:) is a normalized 11-block of

Plainly for any normalized 11-block (z:) of we have

Claim. If (v,*) is a sequence in Bx. equivalent to the unit vector basis of 11,
then we can find a normalized 11-block (y,!) of (v,*) for which

a( Y.*) 8(zn )
holds for all normalized 11-blocks (z,!) of (y.*).

In fact, let be a normalized 11-block of (v,*) such that

8(Y,'1) 5 iev:
Let (Y,* 2) be a normalized 11-block of (y.,,) such that

a( Y.,2) 5ie(Y, r)11
et cetera. Let y,* = y,*,,. Then (yR) is a normalized 11-block of for
which it is clear that

and e(Ynk)se(Y,, )

hold for every k. Our method of selecting dictates that

a(Y,*) s h'm8(y k) 5 limey, k) <e(YR) 58(y )
k k

Claim established.
All of our building will be atop the sequence (y,*) resulting from our

claim. Set 8 = 8(y.*).
Let e > 0 be given.
There is an x1 E SX and an infinite set Nl in N such that for any n c- Nl

YRxI<-8+e.

Suppose 0 < e'< e/3. Partition N1 into two disjoint infinite subsets enu-
merated by the increasing sequences (mk) and (nk) of positive integers. The
sequence (I (y - is a normalized 11-block of (y ); so there is an
x2 E S. and an infinite set of k for which

I(YR*t

)x2>a-e'.
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Of course, (y,*) and (y,,*,) are also normalized 11-blocks of (y,*) which for
all but finitely many k must satisfy

Iy,:x21,IY,,*,kx2l<S+e'.

It follows that for those k commonly enjoying both the above estimates (and
there are infinitely many of them) we have

S-y kx2> 3E'

and

ynkx2 < - S +3E'.

We show the first of these; the second has a similar derivation. Suppose k
satisfies

2(Yn , Y,,*, X;>s-E', [Y, kX21<S+E', IymkX21<S+E',

but

ykX2<S-3E'.

Then we would have

2(yk-Ymk)X2

-2(y:X2-ymkx2)

< Z(6-3E'+S+ E')

a contradiction.
Keeping in mind the choice 0f F'< e/3, we see that the sets

p"2= (hk:y,*kX2>a-E),

are infinite disjoint subsets of N1.
Let0<E.<e/7.

We can decompose N2 into two disjoint infinite subsets which we enu-
merate as increasing sequences (nk(i)),(nk(2)) of positive integers and
similarly decompose N3 into sequences (mk(1)),(mk(2)). Then the sequence
(4(Yk(1) - Y k(2) t Ynk(1) - V, (2))) is a normalized 11-block of (y,*). So there
is an x3 F S. such that for infinitely many k

4(Ynk(1)-Yk(2)+Ymk(1) Ymk(2)J X3)>E'.

Of course, each of the sequences (Y, (1))' (Y,`(2))1 (Y,nk(1)), and (y,,* (2)) are
normalized 11-blocks of (v,* ), and so for all but a finite number of k we
must have

IYk(1)X3 I, I.yk(2)-Y 3 I+ IY,k(1)X3I, IYmk(2)X3I < 6 + E'.
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It follows that for those k satisfying all the above relationships simulta-
neously (and, again, there are infinitely many such k) we have

"
> -'7eY, (1)X3+ (1)X3

and

Y^k(2)X3, Ym,,(2)X3 < +7e

As before, we establish the first of these relationships; the rest follow a
similar path. Suppose k were such that

4(Yk(1)-Y p(2)+Y: s-e',

Iy k(1)x3 11 Iyk(2)X3 I, IYrk(1)X3 I'
I4k(2)X3

I < 8 + E'

yet

Y^k(1)X3 5 6 - V.

Then

8 - E" < 4(yk(1)x3 - Y ,(2)X3 + Yrrt,(1)X3 Ymk{2)X3)

s4(8--7e'+8+E'+8+e'+8+ e')
-e,.

a contradiction.
Keeping in mind the choice of e' < e/7, we havel that the sets

N4 = { nk (1) : y k(1)X3 > 8 - E

Ns- {nk(2):Y k(2)x3 <=8+e}

are disjoint infinite subsets of N2 and the sets

N6=

N7 = { mk(2): Ymk(2)x3 < - 8 + E}

are disjoint infinite subsets of N3. I

The continuing procedure is clear. Where does it lead us to? Well, letting
St" - (yk : k E IV"), we get a tree of subsets of BX.. Furthermore, (xe) has
been so selected from Sx that if 2`1 5 k < 2", then (-l)'x"(y *) z S - e
for all y* a Stk. We have created a Rademacher-like sequence (x"); in other
words, we have a l1 unit vector basis in X and X contains a copy of /1.

Let's prove the Josefson-Nissenzweig theorem.
First we suppose X is a real Banach space. Suppose that in X*, weak*

null sequences are norm null. Then either X* contains an isomorph of 11 or
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it does not. If not, then each bounded sequence in X* has a weakly Cauchy
subsequence which, with our supposition in place, is a fortiori norm
convergent; X* (and hence X) is finite dimensional.

Okay, our result is so if X* does not contain 11; what if 11 is isomorphic to
a subspace of X*? Clearly in this case no weak* null sequence can be
equivalent to the unit vector basis of 11, since weak* null sequences are
norm null. Therefore, X contains an isomorphic copy of 11-thanks to our
lemma. Let's produce a weak* null sequence in X* that is not norm null!

To produce such sequences we will use the following correspondence:
weak* null sequences (y,!) on any Banach space Y are in one-to-one
correspondence with the bounded linear operators from Y to co; this is an
easy exercise, and we omit the few details needed to prove it. We make the
following claim: Regardless of where 11 finds itself inside a Banach space X
the natural inclusion map i of 11 into co extends in a bounded linear fashion
to an operator T from X to co. Of course, x,'x = (Tx),, defines the sequence
(xn) sought after.

Let's see why i :11-, co extends to any superspace. First, look at the
operator R :11- L.[0,11 defined by Re. = r,,, where e is the nth unit vector
and r is the nth Rademacher function; R is an isomorphism of 11 into
LJ0,11. Notice that the operator L: L, [0,11-. co defined by Lf =
(f0 f (t) r (t) dt) is a bounded linear operator, well-defined because of the
orthonormality of Moreover,

i - LR.

Recall now the standard proof of the Hahn-Banach theorem: to extend a
linear continuous functional, you use the order completeness of the reals
and the fact that the closed unit ball of the reals has a biggest element.
These ingredients are also supplied by the lattice L.[0,1]. The Hahn-Banach
conclusion applies to L.[0,1]-valued operators. In particular, R extends to a
bounded operator N from X to By construction LN = i I tj.

For complex Banach spaces we proceed as follows: if X is a complex
Banach space, then X is a real Banach space as well; let (xR) be a weak*
null sequence of real linear functionals of norm 1 and define by
z,*,(x) = x*(x)- ix,*(ix). (zM) is weak* but not norm null.

Exercises

1. The existence of noncompact operators into co. For any infinite-dimensional
Banach space X there exists a noncompact bounded linear operator T: X -. co.

2. Weak sequential density of spheres. Let X be an infinite-dimensional Banach
space.

(i) Sx. is weak* sequentially dense in Bx..

(ii) Sx is weakly sequentially dense in B. if and only if X does not have the
Schur property.
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3. Fixing/,.

(i) Let T: X Y be a bounded linear operator whose adjoint ; * : Y* X*
fixes a copy of 1,. Suppose, however, that whenever (y,*) is the unit vector
basis of a copy of 1, in Y* that is fixed by T* the sequence (T *y,*) is not
weak* null. Then T fixes a copy of l,. (Hint: Look very carefully at the
proof of the Josefson-Nissenzweig theorem.)

(ii) Suppose weak* null sequences in X* are weakly null. Show that any
non-weakly compact operator T: X -+ Y fixes a copy of 1,.

(iii) A bounded linear operator T: X -+ Y is called strictly cosingular if given any
Banach space Z, if there are quotient operators cpx: X Z, 9) y: Y - Z for
which

9'rT = Tx,

then dim Z < oo. If X is a Banach space with the Dunford-Pettis property in
whose dual weak* null sequences are weakly null and if T: X Y fixes no
copy of l,, then T is strictly cosingular.

4. Relative weak compactness of limited sets.

(i) If is a sequence from the limited subset K of a Banach space X, then
has a weak Cauchy subsequence.

(ii) Limited subsets of weakly sequentially complete spaces are relatively weakly
compact.

(iii) Limited subsets of spaces containing no copy of 1, are relatively weakly
compact.

5. The Szlenk index. Let X be an infinite-dimensional Banach space.

(i) If X* is separable, then there exist a weakly null sequence in X and a weak*
null sequence (x,') in X* such that 0.

Let K and K * be nonempty subsets of X and X*, respectively, with
K bounded and K * weak* compact. For e > 0 define the set P (r, K; K * )
to ne the totality of all x * in K * for which there are sequences in K and
(x,) in K * such that weak 0, x* =weak* and I xnx,, e

for all n.

P(E, K, K *) is a weak * closed, weak* nowhere dense subset of K *.

(iii) For each ordinal number a we define the sets S,,(E) as follows:

(a) So(e) = P(E, Bx; Bx.).
(b) SQ+1(E)= P(e, Bx; S. (e)).
(c) If a is a limit ordinal, then S0(E) = n r 1.S,,(E).Let

a(E) = sup(a: S.(E) #0 )

and define the Szlenk index of X to be the ordinal a(X) given by

V(X) = sup G(E).
>o

If X* is separable, then a(X) < w,, the first uncountable ordinal.
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Notes and Remarks

The object of our attentions in this chapter was conquered independently by
B. Josefson and A. Nissenzweig. Our proof follows the instructions set forth
by J. Hagler and W. B. Johnson (1977) with a few variations in execution
aimed at lightening the necessary background. Incidentally, although we do
not present them, the original solutions are all the more impressive because
of their bare knuckles frontal attacks.

Josefson's interests were sparked by problems arising in infinite-dimen-
sional holomorphy. An excellent description of those problems that aroused
Josefson, as well as their present status, can be found in the monograph of
S. Dineen (1981). It was Dineen who wanted to know if the closed unit ball
of a Banach space is ever limited; the Josefson-Nissenzweig theorem pro-
vides a negative answer. A related question of Dineen remains open: In
which Banach spaces X are limited subsets relatively compact?

The observation that limited sets are conditionally weakly compact is due
to J. Bourgain and J. Diestel, who also noted that in spaces with no copy of
It limited sets are relatively weakly compact.

The Szlenk index was invented by W. Szlenk (1968) in his solution of a
problem from the Scottish book. We have taken our exercise from Szlenk's
paper and a related note of P. Wojtaszczyk (1970). The upshot of their
efforts is the nonexistence of a universal object in the classes of separable
reflexive Banach spaces (Szlenk) or separable dual spaces (Wojtaszczyk).
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CHAPTER XIII

Banach Spaces with Weak* Sequentially
Compact Dual Balls

Alaoglu's theorem ensures that every bounded sequence (xi) in X* has a
weak* convergent subnet. When can one actually extract a weak* conver-
gent subsequence? As yet, no one knows. In this chapter a few of the most
attractive conditions assuring the existence of such subsequences are dis-
cussed.

To be sure, it is not always possible. Consider X = 11(R). BX. is not
weak* sequentially compact. To see this, let denote the collection of
infinite subsets of the natural numbers; the cardinality of 900(N) is that of
R. Let p: R - be a one-to-one onto mapping. Consider the sequence
(x:) in B,(R 1= B11(R). given by

x*(1) _
f 1 if n E ye(t),

0 if n e p(t).

Evaluating a subsequence (x*,,) of (x,*) at the real number r whose image
under p is { n 21, ), we see that

x* (r)
1 if k is even,
0 if k is odd.

Therefore, (x* ) is not pointwise convergent. Alternatively, (x,*) admits of
no subsequence that converges at each of the (continuum of) unit vectors in
11(R).

It follows from this (and the stability results presented below) that any
space containing an isomorph of 11(R) cannot have a weak* sequentially
compact dual ball. So, in particular, if X contains a copy of 1,,, then BX. is
not weak* sequentially compact. What about some positive results?

If X is a separable Banach space then BX. is weak* metrizable and so,
being also weak* compact, is weak* sequentially compact. This sometimes
happens even in nonseparable situations. For instance, if bounded se-
quences in X* were assured of weakly Cauchy subsequences, the would be
sure of weak* convergent subsequences as well; in other words, BX. is
weak* sequentially compact whenever X ! does not contain a copy of l1. In
particular, BX. is weak * sequentially compact whenever X is reflexive. Of
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course, this last fact can also be seen to follow (more easily, in fact) from
Eberlein's theorem.

We begin our more serious discussion by noting a few of the basic
stability properties enjoyed by the class under investigation.

Lemma 1. The class of Banach spaces having weak* sequentially compact
dual ball is closed under the following operations:

1. Taking dense continuous linear images
2. Quotients
3. Subspaces

PROOF. If T : X - Y is a bounded linear operator with dense range, then
T * : Y * - X * is a bounded linear operator that's one to one. It follows that
T* is a weak* homeomorphism between B. and T *BY.. This proves 1
from which 2 follows. Part 3 is a consequence of the Hahn-Banach theorem.

0

Lemma 2 (A. Grothendieck). Let K be a weakly closed subset of the Banach
space X. Suppose that for each e > 0 there is a weakly compact set K, in X

- such that

KcK,+eBX.
Then K is weakly compact.

PROOF. Let K"""* denote K's weak* closure up in X**. If K`k-

should
find itself back in X, then we are done. In fact, K, sitting as it does in
Kt + BX for some weakly compact set Kt corresponding to a = 1, must be
bounded; so K"A' is weak* compact. Consequently, if K`k* lies in X it is
weakly compact and is nothing but K's weak closure, i.e., K.

Now each hypothesized Kt is weakly compact and so for each e > 0
K. This, plus the continuity of addition, gives

K'"k* a weak* closure (K,+ eBX)

c K" a*+eB `°i`X

e K, + eBX...

Consequently,

Kweak* c n,
> 0(K,+ eBX*.)

c X.

Lemma 3 (W. J. Davis, T. Figiel, W. B. Johnson, A. Pelczynski). Let K be a
weakly compact absolutely convex subset of the Banach space X. Then there is
a weakly compact absolutely convex set C c X that contains K such that X. is
reflexive, where Xc is the linear span of C with closed unit ball C.
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Remark. It is well known and easily verified that Xc is in fact a Banach
space.

PROOF. For each n let B" = 2"K +2-"BX. Since K is weakly compact and
absolutely convex, B" is weakly closed and absolutely convex. Further, B"
has a nonempty interior since it contains 2-"Bx. In other words, renorming
X to have B" as a closed unit ball leads to an equivalent norm 11 11. on X.

Let C = (x E X:E"1#x112 51). Then C= n"{x e X:E,,_iIIxIIk 51); so C
is closed and absolutely convex, hence, weakly closed. Moreover, if we look
in Xc, then the Minkowski functional 11 IIc of an x is given by IIxJ1c =
(E 11 x 11

n
)t /2. Some noteworthy points to be made in favor of C:

1. K c C. Indeed, if x E K, then 2"x E 2"K which is contained in B.
Therefore, 112"x11" I or IIx11n 5 2-". It follows that IIxJJc s (E"2 -2n)1/2

51.
2. C is weakly compact in X; this follows from Grothendieck's Lemma if

you just notice that C is weakly closed and C c 2"K +2-"B By for each n.
3. On C the weak topology of X and that of Xc agree. Here we observe that

the map from Xc to (E" X" ),Z that takes x E Xc to (x, x, ... ,x, ...) in
(E" X" ),2 is an isometric imbedding. It is easy to believe (and not much
harder to prove) that (E" X" )*2 is just (E" X,,*),, and that in (E" X,,*),, the
subspace (E" X,,*),, of finitely nonzero sequences is dense. Therefore, on
the bounded set C in (En X01,1 the weak topology generated by (E" X,* ),2
and the topology of pointwise convergence on members of (E" X"' )q, are
the same. But on C the topology of pointwise convergence on members of
(E" X,' }, is just the weak topology of X! This follows from the fact that
x E C corresponds to an (x, x, ... , x, ...) in (EX,),

2
so the action of

(x*,, ... , x,*, 0, 0, ...)-typical member of (EX,'),-on x is given by
(Ek-txk )(x).

In all,1 through 3 add up to a proof of Lemma 3.

A Banach space X is said to be weakly compactly generated if X contains a
weakly compact absolutely convex set whose linear span is dense in X.

Theorem 4 (D. Amir, J. Lindenstrauss). Any subspace of a weakly compactly
generated Banach space has a weak* sequentially compact dual ball.

PROOF. Suppose first that X is a weakly compactly generated Banach space
and assume that K is a weakly compact absolutely convex set in X, whose
linear span is dense in X. Let C be the weakly compact absolutely convex
set produced in Lemma 3. The linear operator S : Xc -o X defined by Sx = x
is easily seen to be bounded, with dense range. Since reflexive spaces have
weak* sequentially compact dual balls, this shows that weakly compactly
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generated spaces do too by using Lemma 1 (part 1). To finish fully the proof
of the whole assertion in the theorem, apply Lemma I (part 3). . O

Before presenting our next result, we establish some notation. If A C X*,
then the weak* closed convex hull of A will be denoted by co*A and the set
of weak* points of accumulation of A will be denoted by A-. One further
notational device will allow us to dispense with a great deal of sub- and
superscripting. This device was used already in proving Rosenthal's 1,
theorem. Instead of denoting a subsequence of a sequence (x*) by directly
indexing the x* belonging to the subsequence, we restrict the subscripts to
infinite subsets of N keeping in mind that such subsets always carry with
them a natural ordering between their elements. For instance, if is a
subsequence of the natural numbers, then instead of listing the correspond-
ing subsequence of (x*) as where

as (x*)
the notation has been cared for, let's see how a given bounded

sequence in X* can fail to have a weak* convergent subsequence. Suppose
(x*) is such a poor specimen. Then it must be that given any subsequence
(x," ) . M of (x.*), there are at least two distinct weak* points of accumula-
tion-say, y* and z*. Let W(y*) and W(z*) be disjoint weak* closed
convex neighborhoods of y* and z*, respectively. For infinitely many n in
M we have x* in W(y*), and for infinitely many n in M we have x* in
W(z * ). List the n of the first case as Mo and the n of the second case as Ml.
Then co*(x*)Mu and co*(x*}a are disjoint weak* compact convex
sets, the first being contained in W(y* ), the second in W( z * ). Conse-
quently, co*(x *) Mp and c0*(}Mi can be separated by at least E by some
weak* continuous norm-one functional and some e > 0. We have proved the
following lemma.

Lemma 5. Let (x*) be a sequence in Bx. with no weak* convergent subse-
quence. Then for any subsequence M of N

0 < 6(M) = supinf Iy*(x)- z*(x)I,
y* Z*

where the supremum is taken over all the subsequences Mo and Ml of M and
all y* Eco*[(x*)Mo] and z* Eco*[(x*)yl], and all x E B.

The modulus S() gives an estimate as to just how weak* divergent a
given subsequence of (x*) is.

Lemma 5 will be our key "splitting" tool. What we do is start with a
bounded sequence (x*) admitting no weak *-convergent subsequence. We
split (x*) by extracting two subsequences according to the dictates of
Lemma 5. Neither of these subsequences are weak* convergent, nor do they
admit of any weak* convergent subsequence. So we can split them as well.
We continue this process. Keep in mind that at each stage we get pairs of
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subsequences and an element of BX on which the value of the differences of
the pairs of subsequences stay far away from zero. The hope is that with a
bit of judicious pruning we can find a branch of the splitting along which
the different pairs act on the corresponding members of BX to have
differences that stay uniformly away from zero. The attentive reader will
observe that the diagonalization procedure employed here is the same in
spirit as that used in proving the Josefson-Nissenzweig theorem. A derived
benefit will be the following theorem.

Theorem 6 (J. Hagler, W. B. Johnson). If X * contains a bounded sequence
without a weak * convergent subsequence, then X contains a separable subspace
with nonseparable dual.

Paoor. We start with more notation! Before entering the notation be
assured that the notation already introduced and that about to be intro-
duced will indeed soften the proof considerably. In fact, a worthwhile lesson
in the value of clever notation may be gained if the reader will attempt to
redo this proof using the standard subscripting and superscripting associ-
ated with multiple passage to subsequences.

Suppose Fdenotes the set of finite sequences of 0's and l's. If ,, X E IF,
we say p z X if p is as long or longer than X and the first IXI ( = number of
entries in X) members of p are X. Given p E . the member of Orwhose first
1go1 terms are just p and whose next term is i (= 0 or 1) is denoted by p, i.
0 E Fdenotes the empty sequence. We denote by A the set of all infinite
sequences of 0's and l's. If J E A, then we can associate with J the sequence
(p,,) from.Fwhere p is formed by taking the first n terms of t.

Let (x*),, be a sequence from B. without a weak* convergent subse-
quence. By Lemma 5 there are subsequences No and N1 of N and an element
X0 in BX such that

(Y* ` z*)(x) z
S(N)

2

for anyy* Eco*[(X4 )N0) and z* eco*[(x* )N1).
Again by Lemma 5 there are subsequences Np o and Np 1 of N. and

subsequences N1 0 and N1,, of N1 as well as elements xo and x1 in BX such
that

(Y* _ z*)(Xi) ?
S( ,)

2

for anyy* Eco*[(xn )N o) and z* co*[(x,*)N,,}
Continuing in this fashion, we see that given any p E .F we get a

subsequence N, of N from which we can extract subsequences N,,o and N,.1
for which there is an x, E BX such that

N
(y* - z*)(xc)?

8(2v)

for anyy* Eco*[(x*)Noo) and z* Eco*[(x*)No.l
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Claim. There is a pa E .F and a S > 0 so that for all X > q,0 we have
S(NX)zS.

Once this claim is established the proof of Theorem 6 follows easily.
Indeed, the claim in hand, by reindexing, we can assume 970 = 0 so that for
all q) E JFif y* Eco*[(x*)N I and z* Eco*[(x*)Nthen

for some xg, E B. Since.97is countable, the closed linear span X0 of the x%
(p running through.) is separable. On the other hand, if we take a A
and let be the corresponding sequence of members of then we can
find an xE E fl ()(x*)N, this follows from the fact that the sequence

is a decreasing sequence of nonempty weak* compact sets. Now if
J and i are distinct members of A with corresponding sequences and

of members of ffl, then eventually qp, 0 X,; let jo = max(j : pj = X,, )
and let p = pj = x10. then xt E (x*)-,,() and x,* E (x*)-,, (or vice versa).
Thus,

114 - xnllx"> (xt -x,')(x,)>6,
and Xo is nonseparable since A is uncountable.

So we are left with establishing our claim. Were- the claim groundless,
there'd be a sequence (%,) of members of J F, T1:5 P2 < such that for
each k

k

If we now choose M so that its nth term is the nth term of N,., then the nth
tail end of M would be a subsequence of N,. from which it follows that
S(M) 5 S(N9,) < 1/n for all n. But this says that S(M) = 0 contradicting
Lemma 5 and establishing our claim. 0

A number of other conditions related to those presented in Theorem 4
and Theorem 6 are discussed in the Notes and Remarks section at the end
of the chapter. All these are primarily concerned with Bx.'s weak* sequen-
tial compactness. What of BX..? Of course, it is too much to expect much in
such a case, but surprisingly there is a very sharp result even here.

We saw in Goldstine's theorem that every Banach space is weak* dense in
its bidual; in fact, for each X, BX is weak* dense in BX... Of course, this
says that given x** E BX.. there is a net (xa) in BX converging to x** in the
weak* topology. When can one find a sequence in BX that converges to
x** in the weak* topology? The rest of this chapter is devoted to char-
acterizin, those separable Banach spaces X in which BX is weak* sequen-
tially dense in BX... We see that the absence of a copy of 1, is precisely the
catalyst for approximating members of BX.. by sequences in B. Along the
way we also characterize those separable X having weak* sequentially
compact second dual balls.
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A key role in our presentation is played by Baire's characterization of
functions of the so-called first Baire class, presented in the first section of
Chapter VII. Let us recall that theorem in the form we find useful for the
present setup.

Baire's Characterization Theorem. Suppose Sa is a compact Hausdorf space.

1. If is a sequence in which

n

exists for each w e S2, then for every nonempty closed subset F of 12, f I F has
a'point of continuity relative to F.

II. Supposing A to be metrizable, any scalar-valued function f on SZ having the
p r o p e r t y that f I F has a point of continuity relative to F for each nonempty
closed subset F of SZ is the pointwise limit of a sequence of functions in
c(a).

Let's get some terminology straight. An element of X** is called a
Baire-1 functional provided it is the weak* limit of a sequence of elements of
X. Denote by 21(X) the set of all Baire-1 functionals in X**.

To get some idea of what R1(X) entails, suppose X is the space C(2) of
continuous real-valued functions on the compact Hausdorff space S2. We
can imbed St into Bc(a). in its weak* topology by the map 8: w - 8,,. Here

f(w), for f E C(2) and w e U. Notice,that the map 8°: C(12)** -
defined by (8°x**Xw)= x**(8,) assigns to each x** E.1(C(12)) a

bounded function on Sa that belongs to the first Baire class. Conversely, if g
is a bounded function on 0 belonging to the first Baire class, then there is a
sequence of members of C(2) such that g (w) -. g(w) for each w E S2.
Without any loss of generality we may assume that IIgII 5 sup(Ig(w)I: to
(=- St) for all n; a suitable truncation may be necessary here, but it won't
seriously injure anything. Now the bounded convergence theorem steps
forward to say "for each µ E M(U) we have fg dft -+ fgd i." In other
words, g is the weak* limit of a sequence of members of C(2), where g is
viewed herein as a continuous linear functional on M(2) = C(2)*.

In this way we see that .1(C(12)) and the class of bounded functions of the
first Baire class on 0 are identifiable.

For our purposes we need more. Another natural compact Hausdorff
space is on the horizon, namely, Bc(u). in the weak* topology, and it is the
one that allows a general argument to be brought to bear on the question at
hand. For the rest of this section we refer to Bc(a). in the weak* topology as
BIG Q.

St is of course imbedded into BIG tl by the map 8: SZ --* BIG SZ that takes
w E SZ to 8,,. It is a special feature of this imbedding that an element
X** 'E C(SI)** belongs to A(C((2)) if and only if x**IBIGU is a bounded
function of the first Baire class on BIG SZ.
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Let's see why this is so.
Let µ E M(12). Denote by suppµ the set of all w c- 0 for which JMKU) > 0

for any open set U containing w; suppµ is a closed subset of Q. If S is a
closed subset of 9 we let i(S) denote the set of all probability measures
µ E M(U) whose support, suppµ, is contained in S : 9(S) is a closed subset
of BIG Q.

We're going to show that if x**'s restriction to BIG 11 is a bounded
function of first Baire class on BIG 0, then x** is a member of .1(C(U));
since the converse is so, we have accomplished what we set forth to do.

Our setup: We have an x** in X ** that is not in M1(C(U)), and we want
to show that x * 's restriction to BIG 0 must fail to be in the first Baire
class over BIG 0. Try the contrary. Then x** a R1(C(U)), yet x**JBIGD
belongs to the first Baire class of functions defined on BIG 12; of course, this
gives us the immediate consequence that x** 8 is in the first Baire class of
functions defined on 0. From this it is easy to see that the functional
y** E M(U)* defined by

Y**(µ) = fox`*80dµ(w)

belongs to 21 (Q11)). Look at z* = x - y**. Z** is a function of the
first Baire class on BIG Q.

Some noteworthy observations about z**:
First, for any point wo E U, z**(8,) = 0; indeed

Since every purely atomic member of M(o) is
in the norm-closed linear span of the point charges, it follows that z**
vanishes on the subspace of purely atomic members of M(S2 ).

Next, z** # 0; otherwise, x** = y** E.1(C(S1)). Therefore, z**(v) # 0
for some v E M(Q ). We can assume v z 0 since if z * * vanishes on all
nonnegative measures, it will vanish on all differences of such; as is well
known, this takes into account all measures. By normalization and possibly
by multiplying z by -1, we may as well assume z**(v) > 0 for some

Let Z = (A E M(11) : A « v ). By the Radon-Nikodym theorem Z may be
identified with L1(v). Therefore, if we restrict z** to Z, we get a member of
Z * = L,, (v ). Consequently, there is a bounded Borel-measurable function 4p
for which

z**(X) = f 9) d

for each A v. In particular,

z**(v) = f 4pdv> 0.

This gives us that

fqp+dv>0,
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where q>' - max(q),0). Let c > 0 be such that

v[qP (w);-- c]>0.
Notice that if A E g(SI) vanishes on [qp(w) < c), then

f pdx f 4pdX >_ c.
fp(w)>il

Therefore, letting .t f=- -60(Sl) be defined by

v[wEBand p(w) _ c]
1(B)=! v[IF(w)>_c]

we know that if X E 9(suppA) and A << t, then

Z** (X) gidX? c> 0.
[w(w)zcl

The result-. z * * (X) >_ c > 0 for each X E 9 (supp µ) such that A « A.
Z** is a most interesting character. It vanishes on the purely atomic

members of M(Sl) and is bigger than con those probability measures on the
support of µ that are µ-continuous. Can z** have any points of continuity in
the set'(suppµ)? No, it cannot. In fact, both (A E ' (supp u): A is purely
atomic) and (X E Y(suppµ): A <<µ) are weak* dense in g(suppµ), and
Z** behaves much too loosely on these sets to have any points of continuity
on'(suppµ). Since 9(suppµ) is a closed subset of BIG S2, we see that z**
could not have been of the first Baire class on BIG Sa--- we have done what
we said we could.

To push this a bit further we need the next lemma.

Lemma 7. Suppose X is a subspace of the Banach space Y. Identify X * * with
the subspace X 11 in Y * *. Let G e X * * be a Baire-1 member of Y * Then
G is a Baire-1 member of X* *; in fact, if IIGII =1, there is a sequence of
norm 51 members of X converging weak * to G.

PROOF. Let yn c- Y be chosen so that G = weak* We claim that
distance (BX, co(yn, yn+ t , ... )) = 0 for all n. In fact, were this not so then
there would be an n so that distance (BX,co(yn, y, t, ... }) > 0. By the
Hahn-Banach theorem this would imply the existence of a y* E Y* such
that

0 5 supy*BX < inf y*yk
n<k

But Goldstine's theorem applies to give

IG(y*)1 5 suply*Bxl

< inf Iy*ykl
n!5 k

5 limy*yk = Gy*.
n
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The obvious contradiction proves that the distance from Bx to
co( y, is zero for each n.

Therefore, for each n we can find x E Bx and a a,, in the convex hull of
{ y,,, y., 1, - ) so that IIx,, - a,,11 tends to 0 as n -* oo. Since y - G weak* in
Y * *, a - G weak* in Y * *. But this implies that x - G weak* in Y * * and
of course by the Hahn-Banach Theorem this implies that x - G weak* in
X**.

One now need only imbed a Banach space X into C(Bx., weak *) and
apply the results above to deduce the next lemma.

Basic Lemma. If X is any Banach space and x** E X**, then x** E RI(X)
if and only ifx**'s restriction to BX. (in its weak* topology) is a function of
the first Baire class on this compact space.

Our strategy now will be to show that if X is separable and there is an
x * * E X * * that is not a -4I( X) functional, then X contains a copy of l1. We
know, of course, from the "if" part of the Baire characterization theorem
and the Basic Lemma above that a non-RI(X) functional x** gives rise to a
weak*-closed subset K of Bx. such that x** is everywhere weak* discon-
tinuous on K. That x** is actually quite radical follows from the next
lemma.

Lemma 8. If K is a compact Hausdorf space and f : K - R is a bounded
function with no points of continuity, then there exist a nonempty closed subset
L of K and real numbers r, 8 with 8 > 0 so that

(*) For every nonempty relatively open subset U of L there are y, z E U
such that fly) > r + 8 and f (z) < r.

holds.

PROOF. For each n let

C. = ( x e K : if U is open and contains x, there are y, z r= U with

f(y)-f(z) >
n

).

Since f is nowhere continuous, K = It is easy to see (using nets for
instance) that each C is closed. By the Baire category theorem, one of the
C,,, say CN, has nonvoid interior UN. Let K. = UN and let 0 =1/N. We now
have that if V is a nonempty relatively open subset of KN, then U. fl V is a
nonempty open subset of KN, and so there are y, z E UN fl V for which
f(y)-f(z)> 8.
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Let (r,,) be an enumeration of all the rational numbers. For each n let F,
be the set

(x c- KN : if U is open and contains x there are y, z in U n KN with

Again it is easy to see that each F. is closed and by the first paragraph
KN = Applying the Baire category theorem once more, we derive the
existence of an FM with a nonempty interior VM. Letting L = [VM and r = rM
we get (* ). 0

This lemma in hand, we know that if x** a X** is not a Baire-1
functional, then there is a weak*-closed subset of B. on which not only is
x * * totally discontinuous but somewhere x * * is oscillating very rapidly. In
tandem with Goldstine's theorem this will allow us to build a Rademacher-
like system back in X and so conclude that X contains 11. The technical
vehicle for such a construction is the next lemma.

Lemma 9. Let L be a compact Hausdorff space and f :.L --' R be a bounded
function. Suppose r, 8 are real numbers with 8 > 0 and assume that

(*) For each nonempty relatively open subset U of L there are y, z e U with
f(z) < r andf(y) >r+8

holds. Assume further that f is in the pointwise closure of some bounded family
9 of C(L). Then there exists a sequence C OF such that the sequence of
pairs of sets ([ g,, (x) < r], [ g. (x) > r + 8]) is an independent sequence.

PttooF. By (*) there are Yl, y2 e L with f(y1)> r + 8 and f(y2) < r.
Choose gt e T so that gl(yl) > r + 8 and gl(y2) < r. Consider the non-

empty open subsets A1= [g,.(x) > r + 8] and B1= [g1(x) < r] of L. There
are points 51, 92 in Al and 31, j2 in B1 for which f (91), f(21) > r + 8 and
f(Y2), f(Y2) < r.

Choose g2 E 9F so that g2(Y1), 82(91) > r + 8 and 92(h), g2(92) < r. Con-
sider the disjoint nonempty open sets A2 - [82(x) > r + S] and B2 = [82(x)
< r.] Notice that Al n A2, Al n B2, B1 n A2, B1 n B2 are all nonempty
containing >31, 92, Y1, and y2, respectively. Now there are points
Yi`, y2*, y3*, y4 in A2, where f is bigger than r + 8, and points

Y1*' Y2*, y3**, y4** in B2, where f is less than r. The procedure is clear
from here or should be. 0

We are now ready to prove the following.

Theorem 10 (Odell-Rosenthal). Let X be a separable Banach space. Then the
following are equivalent:

1. X contains no isomorph of 11.
2. Bx is weak* sequentially dense in Br...
3. Br.. is weak* sequentially compact.
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PROOF. Suppose x* * E Br.. is not the weak* limit of any sequence of
terms from X. Since X is separable, Bx. is weak* compact, weak* metriz-
able; therefore, our Basic Lemma tells us that is not of the
first Baire class. Baire's characterization theorem implies that there is a
nonvoid weak* compact subset M of Bx. such that x**I,,f has no points of
(weak*) continuity. Lemmas 8 and 9 in tandem with Proposition 3 of
Chapter XI allow us to conclude that X contains a copy of l1; after all x**
is in the pointwise closure of Bx. Taken in toto the above argues that "1
implies 2."

It is plain from Rosenthal's l1 theorem that "3 implies 1," and "2 implies
3" is an easy diagonal argument, whose details we leave to the imagination
of the student. 0

Exercises

1. Factoring weakly compact operators. Every weakly compact linear operator fac-
tors through a reflexive Banach space; i.e., if T : X -, Y is a weakly compact linear
operator, then there is a reflexive Banach space Z and bounded linear operators
S:X- Z, R:Z-+YsuchthatRS=T.

2. Conditionally weakly compact sets. A subset K of a Banach space is conditionally
weakly compact if each sequence in K has a weakly Cauchy subsequence.

(i) A closed bounded set is conditionally weakly compact if and only if it
contains no basic sequence equivalent to the unit vector basis of 11.

Let K be a closed bounded subset of the Banach space X. Suppose that for
each e> 0 there is a conditionally weakly compact set K, such that

KeK,+eBx.

Then K is conditionally weakly compact.

(iii) A bounded linear operator R : X -' Y fixes no copy of 11 if and only if there
is a Banach space Z containing no copy of 11 and bounded linear operators
P : X -" Z, H : Z -Y such that

HP - R.

3. Having weak* sequentially compact dual ball is not a three -space property.

(i) There is a well-ordered set (I, <) and a collection (M.)QE t of infinite
subsets of the set N of natural numbers such that (1) for a<# either
M, n M,9 have only finitely many members in common or all but finitely
many members of M. belong to Ma and (2) if M E 9., (N), then there is
a c= I such that both M n M. and M \ M. are infinite.

(ii) Let X be the closed linear subspace of 1 spanned by the set

(XM.:aEI)Uco.

Then is a sequence in B. without a weak* convergent subsequence.
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(iii) B(X/co ). is weak* sequentially compact. (Hint: Any norm-one sequence in
without a weak* convergent subsequence would have to have a

subsequence that acts in a Rademacher-like fashion on the set (X A, : a r= 1).)s

4. Limited sets and sequential compactness.

(i) If BX. is weak* sequentially compact, then limited subsets of X are relatively
compact.

(ii) If S2 is a compact, sequentially compact Hausdorff space, then limited subsets
of C(U) are relatively compact.

5. 41( X). Let X be any Banach space. then -4t (X) is a norm-closed linear subspace
of X**.

6. Pettis integrability in dual spaces. Let (Sl, M, µ) be a probability measure space, X
be a separable Banach space, and F: - X* be a countably additive measure for
which «F(E)I(< µ(E) for each E E E.

(i) There exists an f: Sl - X* such that f(-)(x) E L.(µ) for each x E X and

F( E)(x) ° f f(w)(x) d%(x)

for each x E X and each E E I.

(ii) If X contains no copy of Ir, then fin (i) is PettiS integrable.

(iii) If X* is separable, then f is Bochner integrable.

7. Weak* continuity on B,,. If F e f.\co, then any point of B,, - Bra at which F is
weak* continuous (relative to Bt,) lies in S,1.

Notes and Remarks

Our presentation of Lemma 3 resulted from a conversation with Walter
Schachermayer, in which he made the point of noting just how overlooked
Grothendieck's observation (Lemma 2) really is. Anyone who has read the
Davis-Figiel-Johnson-Pelczynski factorization paper (1974) will recognize
the purely cosmetic changes made in the original proof. There are a number
of consequences of Lemma 3, including Exercise 1, to be found in Davis
et al. (1974); the paper is so elegantly conceived and executed that it would
be a shame if the earnest student did not spend a reasonable amount of time
in its mastery. Exercise 2 is essentially due to Davis, Figiel, Johnson, and
Pelczynski, too.

Theorem 4, due to D. Amir and J. Lindenstrauss (1968), is but a simple
example of the good life enjoyed by the weakly compact subsets of a Banach
space and subspaces of the spaces weakly compact sets generate.
Lindenstrauss's survey paper (1972) on weakly compact sets presents a
plethora of fascinating faces of weak compactness and the review of
Lindenstrauss's survey gives a lead to many of the later works on the
subject.
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Theorem 6 is in the same paper of J. Hagler and W. B. Johnson (1977)
that formed the basis of our presentation of the Josefson-Nissenzweig
theorem.

There are two other particularly noteworthy conditions in which the dual
ball is weak* sequentially compact: if a Banach space X has an equivalent
smooth norm or if a Banach space X is a weak Asplund space, then Bx. is
weak* sequentially compact. Recall that a norm is smooth if each element
of the unit sphere has a unique support functional; J. Hagler and F. Sullivan
(1980) gave an elegant argument that the dual ball of a smoothly normed
Banach space is weak* sequentially compact based, ultimately, on some
rough ideas of E. Leach and J. H. M. Whitfield (1972). Following I.
Namioka and R. R. Phelps (1975), we say a Banach space X is a weak
Asplund space if every convex extended real-valued function defined on X is
Gateaux differentiable on a dense Ga subset of its domain of finiteness; C.
Stegall (1971) showed that if X is a weak Asplund space, then there exists a
Banach space Y, each separable subspace of which has a separable dual, and
a bounded linear operator T : Y -+ X with the dense range- an appeal to
Theorem 6 and part 1 of Lemma 1-consequently, weak Asplund spaces
have weak* sequentially compact dual balls. D. Larman and R. R. Phelps
(1979) have given an intriguing view of Stegall's theorem.

To date, there is no characterization of those Banach spaces X having
weak* sequentially compact dual balls. Furthermore, it appears that none of
the classes of Banach spaces presently under study offers any hope of a
viable candidate for the characterization of spaces with sequentially com-
pact dual balls.

One class of spaces that ought to have weak* sequentially compact dual
balls consists of spaces without a copy of 11. However, J. Hagler and E.
Odell (1978) have provided an example of a space without a copy of 11
whose dual ball is not weak* sequentially compact. Their construction is not
unlike that of the example of Exercise 3, which is due, incidentally, to J.
Bourgain.

A problem related to the characterization of spaces with weak* sequen-
tially compact dual balls but conceivably more tractable is to determine
which Banach spaces X have weak * angelic dual balls. This too remains open
and surprisingly untested.

The characterization of which separable Banach spaces have weak*
sequentially compact dual balls is due to E. Odell and H. P. Rosenthal.
Actually, it is the equivalence of the noncontainment of ll with the weak*
sequential density of X in X** that elicits the greatest interest in the
Odell-Rosenthal theorem; the fact that the second dual ball's weak* sequen-
tial compactness fits so nicely into the scheme of things just provides us with
a ready-made excuse to include a discussion of this theorem in the text. The
application of the Odell-Rosenthal theorem to the Pettis integral cited in
Exercise 6(ii) is due to K. Musial; parts (i) and (iii) were known to N.
Dunford, B. J. Pettis, and I. M. Gelfand.
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The results of Exercies 4 are due to CM. Gelfand (1938). The fact that
B1(X) is always a Banach space (Exercise 5) is due to R. D. McWilliams
(1968).
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CHAPTER XIV

The Elton-Odell (1 + E) -Separation
Theorem

In this concluding chapter we prove the following separation theorem, due
to J. Elton and E. Odell.

Theorem. If X is an infinite-dimensional normed linear space, then there is an
e > 0 and a sequence (x,,) of members of S x such that llx,n - xnll >_ 1 + e
whenever m ' n.

Once again, Ramsey set theatrics dominate a good part of the action.
To get us on our way notice that in co the sequence (xn) given by

xn = Ek _ Iek - en+ 1 is ideal for the role described in the theorem with E =I.
Of course, this says that whenever a Banach space contains "very good"
copies of co, then a substitute sequence may be constructed that will still do
the trick. Actually whenever co is isomorphic to a subspace of X, X contains
very good copies of co.

Theorem I (R. C. James). If a Banach space X contains a subspace isomor-
phic to co, then for any S > 0 there is a sequence c BX such that

(1-- S)supla,l 5 II a,u11l s supla,l

holds for any (a) co.

PROOF. Let (xn) be the preordained unit vector basis of co in X. that is,
suppose m, M > 0 exist for which

msupla,l s 1jEarx,l _< Msupla;l

holds for any (a;) E co.
For each n E N, let's define

K,, = sup (11
T-

aixill :11(a1)11c0 =1, (a;) finitely nonzero,
i

Xa1=a2=... =an-1=0).
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Observe that (Ku) is a monotone sequence of reals all values of which lie
between m and M; it follows that m < K = limn K < M. Let 0 < 8 < 1 < or
and suppose we pick p1 so that KP, < 8'K. Take advantage of the definition
of the K to select P2 < P3 < . < pn < (all greater than p,, of course)
and a"., ... ,a,, scalars such that II(0, ... ,0, a'., ... , aP a 1 -1, 0, ... Alco = 1

as well as

P,,.,-1

Ily"- 'F. a,"x,
>8K.

P
11

Once this is done notice that for any sequence (a1) E co

117ai y;II <_ KP, supla; 15 8'Ksupla, I.

If we now let

the result will be that
IIMa,u;ll s suplaj

holds for any (a,) E co. Let's check to see what else comes from one choice
of u;. Let a1, ... an be scalars with sup,., , s "la;l =1. Pick ak so that lakI =1.
Write

w = akYk + Flay,,

where a'= a, for i # k and a' = 0. Then
20K<1l211ykII=112akykll

w +akYk - Lary1 J

< IIw11+ I k'iyk - Flaiy1 (

<- Ilwll+ 8'Ksup(la1l, ... ,Ia"1)

<- Ilwll+ e'K.

Therefore,

Ilwll > (28 - 0')K.
A look at the scaling that changes y, to u, tells us that

-8'
Il7-a,uill>

28

8
supla1l;

it remains only to choose 8, 0' so that (20 - 8')/8' > 1- 8. 0

The upshot of Theorem 1 is that the Elton-Odell theorem holds for
Banach spaces containing isomorphic copies of co.
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Our next four lemmas provide the backdrop for the combinatorial softshoe
needed to set up the proof of the Elton-Odell theorem. These lemmas aim at
providing a sufficiently sharp criterion for determining co's presence in a
Banach space that any alternative to the Elton-Odell theorem's verity will
prove untenable.

Lemma 2. Let (xn) be a sequence in the Banach space X. For any K > 0, the
set

i-1

is relatively closed in

PROOF. We show that 9,(N)\S@K is relatively open. Take an M = (m& E
IP(N)\.VK. There must be some n such that

xm, 11 > K.
i-1

If L = (1i) E and L satisfies

11=m1, 12=M In =Mn,

then

n

E xi
1-

n

F, x,n, (l > K,
i-1i-l

and so L too belongs to The set of L of the above prescribed
form constitute a relatively open neighborhood of M in Enough
said.

A technical tool is needed before we proceed much further: bimonotone
basic sequences. A basic sequence (x,) is called bimonotone if for each n,

.Il

00

l aixi 5 11 i
00

aixili -0
k+ -1

holds for any sequence (an) of scalars that let Enanxn converge. It is not
difficult to see that if (xn) is a basic sequence with closed linear span [xnJ,
then [xn} can be equivalently renormed so as to make (xn) bimonotone;
indeed, if (an) is a sequence of scalars for which Enanxn converges, define
IIIEnanxnIH = sup..,(IW _1aixiII, IIE, n+laix1II). You will notice that if each
xn started with (IxnII =1, the renorming still leaves IIIxnIR -1; in fact,
IIIXNIII - Iixnli regardless. a

The bimonotonicity of a basic sequence has combinatorial consequences
as we see in the next lemma.
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Lemma 3. Suppose (xn) is a bimonotone basic sequence in the Banach space
X and for each K > O let

SK).
I 1JJJIlll n l I

Suppose M e 40.(N) satisfies

c U 9K.
K>0

Then there is an M' r= 9.(M) and a KM > 0 such that

9. (M') c 9KM.

PROOF. By Lemma 2, the set 91 is relatively closed in therefore, 91
is completely Ramsey. It follows that there is an M1 E 9.(M) for which

9 (M1) c 91, we are done; if, on the other hand, 90, (M1) and 91
are disjoint, then we look to 92. By Lemma 2 we know that 92 is relatively
closed in 9.(N) and so 92 is completely Ramsey. It follows that there is an
M2 E 9 (M1) for which

gao(M2)c. 2 or 9.(M2)C92.
In case 9 (M2) c 92 we are done; if, on the other hand, -0.(M2) and 92
are disjoint then we look to 93.

The way seems clear. Unless we come to a sudden stop, we produce a
sequence of infinite subsets of N satisfying

M,, 1E9oo(Mn) and 9.(Ma)C-qn
for all n E N. Now we can pick a pathological subsequence of Indeed
let (kn) a 9 (N) be selected so as to satisfy (kn )n Z i E 9.(Mi) for each j.
Then for each j we have [on applying our construction to the bimonotone
basic sequence (xk,) xk,,,, ... ,xk,, _1, ...)]

j < sup
n

5 sup
n

It follows that

sup
n

(by bimonotonicity).

- 00

even though (k n) a 9,,(M) c U K > a 9K. This is a contradiction, which
completes the proof.
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Though we are not quite through with our combinatorial trials, it is worth
observing here that Lemmas 2 and 3 are almost pure combinatorics. The
easy method used in their proof ought to be closely studied. We've seen it
before. It made its first appearance in these discussions in the proof of
Rosenthal's dichotomy. As in that appearance, here too combinatorics are
not the whole show, but they are a featured part of the program. To prepare
us for the finale, we need to start mixing combinatorics with things having a
real Banach space flavor. This we start doing shortly.

The next lemma is key to the success o('our program.

Lemma 4 (W. B. Johnson). Let be a seminormalized sequence in the
Banach space X each subsequence of which admits of a subsequence for
which sup IjE"_ 1 y, I I < oo. Then has .a subsequence equivalent to the unit
vector basis of co.

PROOF. First, we set the stage for the Bessaga-Pelczynski selection principle
by showing that a sequence satisfying the hypotheses of this lemma is
necessarily weakly null. If not, there would be an x* E SX. and an e> 0
such that

Ix C

for infinitely many n. In case X is a real Banach space this means that (on
maybe doctoring x * by a sign) we can assume that

X*Xm >e

for each i, where (m i) = M E 9.(N); this in turn gives the contradictory
conclusion that for some (k1) a 9.(M)

ne 5 x Xk, 5
i-1

n

Xk,
i-t

5 sup xk
^ i-1

< 00,

for all n. In case X is a complex Banach space we can conclude that there is
an (m) = M e 9.(N) such that either IRex*xm I or Ilmx*xm I exceed e/2
for all i; whichever the case might be, similar reasoning to that of the real
case leads to a contradiction of similar proportions.

Okay, we can apply the Bessaga-Pelczynski selection principle. On doing
so, we can assume that is a seminormalized weakly null' basic sequence.
More can be assumed: since the hypotheses pertaining to subsequen-
tial behavior and the existence of a subsequence of equivalent to co's
unit vector basis are plainly invariant under (equivalent) changes of norm in
the closed linear span of the x,,, we can assume that is also a
bimonotone, seminormalized weakly null basic sequence! Now Lemmas 2 and
3 are standing by ready to get in on the action. We use the notation of these
lemmas. By Lemma 2, U K- 1_4K is an.1;-subset of 9. (N); hence U K-IRK
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is completely Ramsey. There is an M E 9,,(N) for which

00

00 C

9.(M)S U 5gK or 9.(M) ( U aK)
K-1 K-1

Our hypotheses preclude the latter possibility, and so we can find M E
such that

00

K-1

Lemma 3 now alerts us to the fact that there's an M'= (m;) e 9..(M) and
a K'> 0 such that

What does this mean? Well, it means that if (yn) is the subsequence of (xn)
indexed by the members of M', then given any subsequence (zn) of (yn ),

sup
n

It is easy to see from this that for any finite set A in N and any signs t,

Iln ±yn(Is2K'.

Of course, this just says that (yn) satisfies the Bessaga-Pelczynski criterion
for equivalence to co's unit vector basis. 0

Much in the same spirit as Lemma 4 and dependent on it is the next
lemma, also due to Bill Johnson. It is precisely the criterion we are seeking.

c U RK

I

-IZkIIsK'.

Lemma 5. Let (xn) be a normalized basic sequence in X. Suppose that each
subsequence of (xn) has a subsequence (yn) such that

sup
n

n

(-WA 11 <oo.
-1

Then the closed linear span [x,] of (x,) contains a copy of co.

PROOF. Plainly the statement of the lemma allows us to equivalently renorm
[xn] to achieve our goal: locate a copy of co inside [xn]. We do so to make
(xn) a bimonotone normalized basic sequence. O

Now looking at the proofs of Lemmas 2 and 3, we see quite easily that the
following can be proved
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Lemma 2'. For any k r= N, the set

.s+lk=
n

is closed in

Lemma Y. dk as in Lemma 2', if M E (N) and e u k k-1-Wk, then
there is an M' C and a kM >_ 1 so that

'Wk,,

Armed with these and proceeding similarly to the way we did in the proof
of Lemma 4, we can find an M E 90,p(N) for which given L = (l,) E
then

n

sup (-Wx4 II < 00.
n ;_1

If we now let yn = xm2. xm2.+1' then for any L = (11) E we have

Sip II

Y,, 11

and so (y,) satisfies the hypotheses of Lemma 4 (with subsequences to
spare). Thus, (ye) has a subsequence equivalent to co's unit vector basis and

contains a copy of co.
Now we are ready for the main act: the Elton-Odell theorem itself.
Let (xe) be a normalized basic sequence in X satisfying the condition

n 00

a;xj (1+20-n)IIF
a;x; IIIIiE

for all n and all sequences (a;) of scalars for which Et 1a;x; E X. A look at
Mazur's method for constructing basic sequences will reassure you of the
existence of such; also we might as well suppose (xe) spans X.

If X contains an isomorphic copy of co, then we are done. So we assume
X does not contain any copy of co. The Johnson criteria show us that (by
passing to a subsequence, if necessary) we may assume that for each
increasing sequence (me) of positive integers,

sup
k

k

E 00.
i-1

Suppose a is any limit point of the real sequence(IIxn - xn+1 + xn+2ll)n Z1;
plainly, 15 3a:!5 3.

Let's establish a bit of notation especially useful for the present proof.
Suppose 8 > 0. Call the vector b in X a 8-block of (or simply a 8-block)
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if IlbII =1 and b is of the form

r

b=j6 E (-1)i+1XM,= e(XMI-XM2+ ,.. +X.),

where m1<m2< <m1,Ia/P-I(< 8, and I is an odd number - 3. Let's
agree to write n < b1 < b2 < < bk (where b1, b2, ... , bk are 8-blocks) if the
b; admit a representation

p,+1

bi= F. ajx,,
j-p,+1

wheren < p, <P2 <... <Pk+1
Notice that our choice of a ensures that given a S > 0 and n >_ 1 we can

always find a S-block b with n < b.
Our proof will focus attention on the following technical condition:

(*) For each 8 > 0 and each n E N, there are 8-blocks b1, ... , bk with
n < bl < < bk so that if b is a 8-block with bk < b, then one of the b, lies
within 1 8 of b.

Our interest in (*) derives from the following:

(not *) There exists a S > 0 and an n E N so that for all S-blocks
b1, ... , bk with n < b1 < - - < bk there is a 8-block b with bk < b such that b
is at least 1 + 8 from each of b1, ... , bk.

It is a short step from (not *) to the Elton-Odell theorem; we plan to
show, on the other hand, that assuming (*) leads to nothing but mathemati-
cal trouble (i.e., a contradiction).

We assume that (*) holds. Letting 8, = 20--1(80 = 1), choose Sj blocks as
follows -

bl<b2<... <M <b2<b2<... <b2 <...
k, 1 k2

81-blocks S2-blocks

in such a way that if b is a Sj-block with bk, < b, then ((b; - b(( < 1 + Sj for
some 15 i 5 k j. We make the following claim.

Claim. We can select from each pack (bi < ... < bk.) of -blocks a term

b,,
1)k+lXnk,

k

so cleverly that if

'",,
dam'-

(
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then

sup
k

it

E (-1)'d',,
j-1

< 00.

Since X's containment of co has already been ruled out, a look at Lemma 5
will hint at the trouble caused by the assumption of ( ).

The search for the appropriate will proceed in two stages.
First, we show how, given n, you can find dn',1, d,,2 '1=, ... , d, in such a way

that

E (-1)'d,'n
j-1

5 3.

Our choice here of the n-tuple ,d',.) will depend on n; it is possible
that on passing from n to n + 1, the (n + 1)-tuple (d,,,1, ... , do 1) has little
or nothing to do with the previous selection. A bit of patience on the part of
the reader might be needed here-the fact that our notation hints that
perhaps we are extending n-tuples to (n + 1)-tuples is unfortunate, but if the
notation is a bit troublesome, as it is, at least it is not sadistically cumber-
some! Actually, in this first stage, we will choose 2n-tuples of dn, , the idea
being that each d j,, involves an odd number of Xk of which we can clip off a
goodly number (say n -1) without seriously affecting the norms of inter-
esting sums while achieving other goals. Starting with 2nd,{,. we are able to
eliminate a few at the upper end and achieve the finitary condition

j-t
< 3.

The second stage involves a diagonalization procedure the purpose of
which is to show that under the assumption of (*), we can select in one fell
swoop a sequence (d".) so that

sup E (-1)'d, 56.
11

k

it j-1

Because X contains no copy of co, this consequence of (s) plainly leads to a
contradiction.

Start by looking at the 82-blocks: b2 < b2 < < b2 Take any one of
these, say b 2, where 1 s i2 5 k2. 82-blocks are 81-blocks; so there must be an
i1, 15 i1 5 k1, such that

Ijbl,-b2II51+81.
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Correspondingly,

If(d-d2)-(b,'-b2)

1 2-11<61+82<281,
,, ,_

and

11(d -d2)1Mitsi..t Oxktermlls
(1+20_1)Iid -d2fl

11

< (1+20-1)(1+381).

Next, let's look at the 84-blocks: bi < b2 < -< I4. Pick any one of
these vectors, say b, , where 15 i4 5 k4. We know that there is an i3,
15 i3 5 k3, such that

Ob? - b1151+83;

after all, 84-blocks and 83-blocks. Of course,

11 (d,-d.)-(b2-b )I1SIId2-62II+IId:-b.II

slur
-1I<83+84<283,

forcing JJd,I- d JJ <1+383, and

11(d2-d i4 W=)ieuiiiiast

(1+20-3)(1+383)

<1+82.

Further,

N(d3-d4'
11z

Hdll
13 i4 Ieu its 1Yt nomerO Xk term 1 + 20-3

1-83
-

Z1-d2.
1+20

Notice that if we let

3 4)zlsa (dit - di.
ku itS h0 U0MM* Xk tam'

then z1/11z111 is a 82-block having all its support to the right of bk2's support.
As before, there is an i2, 15 i2 -,!g k2, such that

IJIz1U1I<1+82.
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J2

t_ 2 )(bit
IIz111

(d2-b.2 2)-((d3-d4 )
z1

)ii1z 13 4 kas its last nomero xk term
11Zll

Therefore,

4

E 1)'dl
( -

less its last noazero xR term

less its last two nonzero xk terms

5 (1+20'2) (j(_1)id);
j-2 less its last eoozero xk trim

< (1+20'2)(1+382) <1+81.

As before, if 22 is given by

4

t2 = F, (-l)1d
J - 2 ka its last tw o aoOZe o xk teems

then 11z211 lies between 1- 81 and 1 + 81. (Notice how few of the Xk terms we
have clipped off the odd-lengthed d/; at present we have wiped out only the
last two nonzero xk terms f r o m d There are lots of nonzero xk terms left).
In light of z2's length we know that z2/11z211 is a 81 block whose support lies
to the right of blkt's support. Consequently, there is an i1, 15 its k1, for
which

11b' 11221l
II 51 + 51.

It follows that

14
(-1)j+Idi

J-l less its last two no:aero xk terms

z2
b'

- IIt211

4

(d; - b)- E (-1)'dj-2 less its last two nosaero xk tams

+ IZ2
lIZ2I1 II < 251.
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Therefore,

4

(_1)j ''di
j less its last three nonzero X k terms

5 (1+20-1)
4

E (-1)'+'di
i-1 less its last two non ero xk terms

5 (1+20-')(1.+381) <1+80.

Since each d has odd support size at least 3, we get

2

i-i I

(-1)i+ldi <2(1+20-2) <3.

It should be clear that repeating the same kind of argument (starting with
clipping away (n -1)xk terms, looking at E;-(-1)j+1d /), we

can obtain, for any n, an n-tuple (&,...,d") such that
11

n

(-1)1 +ld/
i-l

Now to diagonalize, each step of our procedure produced an n-tuple
(d

11

... , d °) corresponding to and depending on that step. Let's commem-
orate the fact that (di, ... ,dj1) was selected as part of the nth step by
tagging the indices i1, ... , i,t with an extra name tag i1(n ), ... , We
have then that for each it we've chosen 11(n), i2(n), ... ,i,,(n) so that
1511(n) 5 k1,1512(n) 5 k2, ... ,15 'n(n) S k,,, and

n (-1)i''dj,
i-t

5 6.

There are lots of n but only so many choices of i1 (k1 choices, in fact). It
follows that there is some i1, 15 i1 s k1 and an infinite set N1 of it such that
for each it E N1, i1(n) - i1. There are lots of it in N1 but only so many
choices of i2 (k2 of them). It follows that there is some i2, 1 S i2 5 k2, and
an infinite subset N2 of N1 such that for each it e N2, i2(n) = i2. Continuing
in this fashion, we get a sequence (ii) of indices 15 ii 5 ki and a sequence
( 1 1 ) of infinite sets of positive integers satisfying N 1 2 N 2 2 N 3 , such
that if k r= N and j 5 k, then i1(n) = ii for all n r= Nk. Let nk be the kth
element of N. Then the sequence (dk(.,)) has the property that

sup
k

k

(-1)'+ldi
i-t

56<oo.
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Exercises

1. Distorting I. If X contains a subspace isomorphic to 11, then for any 8 a 0 there
is a sequence c Bx such that

Ik ta,l

holds for any (a,) E ll .

2. The Banach-Saks property.

(i) Let be a bounded sequence in the Banach space X. The set A - ((m,) -
M E normlimkk-'Ek lxm, exists) is a Borel subset of

(ii) If X has the Banach-Saks property, then each bounded sequence in X has a
subsequence each of whose subsequences have norm-convergent arithmetic
means with a common limit.

Notes and Remarks

Though we've belabored some details of the original, it is the proof of J.
Elton and E. Odell that we follow religiously in the' text. Quite frankly,
we've gained some sense of satisfaction from finishing up with such a
natural improvement of the principal result of our first chapter, Riesz's
lemma.

Plainly our analysis revolves about recognizing a copy of co. The char-
acterizations of co's unit vector basis due to W. B. Johnson and found in
Lemmas 4 and 5 have been sharpened considerably. E. Odell and M. Wage,
pursuing ideas quite similar to those in the text, have shown that if is a
normalized weakly null sequence without any subsequence equivalent to the unit
vector basis of co, then there is a basic subsequence (yy) of for which given
any subsequence of and any sequence of 0's and 1's for which
(e,) it co, then

n

In a devious departure from the usual combinatorial maneuvers but still
calling on Ramsey's theorem at a crucial juncture, J. Eton has improved the
Odell-Wage characterization to establish the following.

Theorem (Elton). Let be a normalized weakly null sequence having no
subsequence equivalent to the unit vector basis of co. Then has a basic
subsequence for which given any subsequence of and any
(ale)'t Co

k

lim a. z, a oo .
!,1k

11
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An interesting corollary of this was noted by E. Odell in his fast-paced
survey of applications of Ramsey theorems to Banach space theory.

Theorem. An infinite-dimensional Banach space without a copy of either co or
ll contains a subspace without the Dunford-Pettis property.

The distortion theorem of R. C. James presented in the text as well as his
companion theorem for ll (Exercise 1) are natural allies of anyone working
on the detection of co and 11. It is an open question whether the correspond-
ing theorem holds for 1p when 1 < p < oo. Here we might mention, too, the
absence of any useful criterion for a Banach space to contain an isomorph
of a fixed lp 1 < p < oo even in case p = 2. It is natural to suspect that any
erstwhile answer will involve operator theoretic notions and so may, because
of its intricacy, lose some of the elegance of statement enjoyed by Rosenthal's
11 theorem or Elton's co dilemma.

Returning momentarily to the Odell-Wage characterization of co, we
would be remiss in our duties if we did not mention the crisp theorem of S.
Kwapien bringing randomness to task in the affairs of co.

Theorem (S. Kwapien). A Banach space X fails to contain a copy of co if and
only if given a series in X for which has bounded partial sums for
almost all choices of signs ± 1, then x is norm convergent in X for
almost all choices (a,,) of signs.

We take special pleasure in once again acknowledging that Kwapien's
proof was the inspiration behind the first of our demonstrations of the
Orlicz-Pettis theorem.

Ramsey theorems have played an important part in the Banach space
theory of the past decade. Exercise 2, due to P. ErdOs and M. Magidor
(1976), gives but an inkling of the surprises that lay in store for the student
when dealing with infinite-dimensional phenomena while in possession of a
tool as powerful as Ramsey's theorem. The relevance of Ramsey theorems
to this sort of averaging in Banach spaces is further borne out in the work of
B. Beauzamy (1979, 1980), A. Brunel and L. Sucheston (1974), T. Figiel and
L. Sucheston (1976), and J. R. Partington (1982) cited in the bibliography.

Other opportunities for the case of Ramsey theorems in Banach space
theory are discussed by E. Odell in his aforementioned survey and it is to
that survey that we direct the student.

Finally, we close with open problems.

Problem. For which infinite-dimensional Banach spaces X is there an E > 0
such'that given any infinite-dimensional closed linear subspace Y of X, then one
can find a (1 + e)-separated sequence in By?

Problem. Which infinite -dimensional Banach spaces X have an equivalent
norm 111.1i1 for which there is an e > 0 such that if Y is an infinite-dimensional
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closed linear subspace of X, then B(J
Y. AI . HD

contains a (1 + c)-III - III-separated
sequence?
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