Joseph Diestel

Sequences and Series
in Banach Spaces

Springer—Verlag
New York Heidelberg Berlin

World Publishing Corporation Beijing China




Graduate Texts in Mathematics

S OXBARGN A WN —

~N ON W W N - VOO A WNEWN=OWVWONOANWNEWN=OWVOIONOWYMEWN=-—

TAKEUTUZARING. Introduction to Axiomatic Set Theory. 2nd ed.
OxTtoBY. Measure and Category. 2nd ed.

ScHAEFFER. Topological Vector Spaces.

HtLtoN/STAMMBACH. A Course in Homological Algebra.
MacLaNe. Categories for the Working Mathematician.

- HUGHES/PipeR. Projective Planes.

SERRE. A Course in Arithmetic.

TAKEUTVZARING. Axiometic Set Theory.

HuMPHREYs. Introduction to Lie Algebras and Representation Theory.
CoHeN. A Course in Simple Homotopy Theory.

CoNnway. Functions of One Complex Variable. 2nd ed.

BEaLs. Advanced Mathematical Analysis.

ANDERSON/FULLER. Rings and Categories of Modules.
GoLuBi1TSKY/GUILLEMIN. Stable Mappings and Their Singularities.
BERBERIAN. Lectures in Functional Analysis and Operator Theory.
WINTER. The Structure of Fields.

ROSENBLATT. Random Processes. 2nd ed.

HaLMos. Measure Theory.

Hawmos. A Hilbert Space Problem Book. 2nd ed., revised.
HusemoLLer. Fibre Bundles. 2nd ed.

HuMPHREYS. Linear Algebraic Groups.

BARNES/MACK. An Algebraic Introduction to Mathematical Logic.
GREUB. Linear Algebra. 4th ed.

HowLMEs. Geometric Functional Analysis and its Applications.
HEw1TT/STROMBERG. Real and Abstract Analysis.

MANES. Algebraic Theories.

KELLEY. General Topology.

ZArisk/SAMUEL. Commutative Algebra. Vol. L.

ZARiSK/SAMUEL. Commutative Algébra Vol 1I

Jacosson. Lectures in Abstract Alge%ra I Basic Concepts
JacoBsoN. Lectures in Abstract Algebra 1f. Linear Algebra
JACOBSON. Lectures in Abstract Algebra HI Theory of Fields and Galois Theory.
HirscH. Differential Topology.

Spitzer. Principles of Random Walk. 2nd ed

WERMER. Banach Algebras and Several Complex Variables 2nd ed
KELLEY/NAMIOKA et al. Linear Topological Spaces

Monk. Mathematical Logic.

GRAUERT/FriTZSCHE. Several Complex Variables

ARVESON. An Invitation to C*-Algebras.

KEMENY/SNELL/KNAPP. Denumerable Markov Chains. 2nd ed.
ApostoL. Modular Functions and Dirichlet Series in Number Theory.
SERRE. Linear Representations of Finite Groups.

GiLLMAN/JERISON. Rings of Continuous Functions.

KENDIG. Elementary Algebraic Geometry.

LokvE. Probability Theory I. 4th ed.

LokvEe. Probability Theory II. 4th ed.

Moise. Geometric Topology in Dimensions 2 and 3.

continued after Index



Joseph Diestel

Sequences and Series
in Banach Spaces

.

Springer-Verlag
New York Berlin Heidelberg Tokyo
World Publishing Corporation,Beijing,China




Joseph Diestel

Department of Math Sciences
Kent State University

Kent, OH 44242

U.S.A.

Editorial Board

P. R. Halmos F. W. Gehring

Managing Editor Department of Mathematics
Department of Mathematics University of Michigan
Indiana University Ann Arbor, Michigan 48104
Bloomington, IN 47405 US.A.

U.S.A.

C. C. Moore

Department of Mathematics
University of California
Berkeley, CA 94720
US.A.

Dedicated to
Doc Schraut

Library of Congress Cataloging in Publication Data
Diestel, Joseph, 1943-
Sequences and series in Banach spaces.
(Graduate texts in mathematics; 92)
Includes bibliographies and index.
1. Banach spaces. 2. Sequences (Mathematics)
3. Series. 1. Title. 1. Series.
QA322.2.D53 1984 515.7'32 83-6795

© 1984 by Springer-Verlag New York, Inc.

All rights reserved. No part of this book may be.-transiaicu

or reproduced in any form without written permission from
Springer-Verlag, 175 Fifth Avenue, New York, New York 10010,
US.A.

Typeset by Science Typographers, Medford, New York.

Printed and bound by R. R. Donnelley & Sons, Harrisonburg, Virginia.
Reprinted in China by World Publishing Corparation

For distribution and sale in the People ‘s Republic of Chma only
RREPEARKNBR T

ISBN 0-387-90859-5 Springer-Verlag New York Berlin Heidelberg Tokyo
ISBN 3-540-90859-5 Springer-Verlag Berlin Heidelberg New York Tokyo

ISBN 7-5062-0122- 4 World Publishing Corporation China



Preface

This volume presents answers to some natural questions of a general analytic
character that arise in the theory of Banach spaces. I believe that altogether too
many of the results presented herein are unknown to the active abstract analysts,
and this is not as it should be. Banach space theory has much to offer the prac-
titioners of analysis; unfortunately, some of the general principles that motivate
the theory and make accessible many of its stunning achievements are couched
in the technical jargon of the area, thereby making it unapproachable to one
unwilling to spend considerable time and effort in deciphering the jargon. With
this in mind, I have concentrated on presenting what I believe are basic phenomena
in Banach spaces that any analyst can appreciate, enjoy, and perhaps even use.
The topics covered have at least one serious omission: the beautiful and powerful
theory of type and cotype. To be quite frank, I could not say what 1 wanted to
say about this subject without increasing the length of the text by at least 75
percent. Even then, the words would not have done as much good as the advice
to seek out the rich Seminaire Maurey-Schwartz lecture notes, wherein the theory’s
development can be traced from its conception. Again, the treasured volumes of
Lindenstrauss and Tzafriri also present much of the theory of type and cotype
and are must reading for those really interested in Banach space theory.
Notation is standard; the style is informal. Naturally, the editors have cleaned
up my act considerably, and I wish to express my thanks for their efforts in my
behalf. I wish to express particular gratitude to the staff of Springer-Verlag, whose
encouragement and aid were so instrumental in bringing this volume to fruition.
Of course, there are many mathematicians who have played a role in shaping
my ideas and prejudices about this subject matter. All that appears here has been
the subject of seminars at many universities; at each I have received considerable
feedback, all of which is reflected in this volume, be it in the obvious fashion of
an improved proof or the intangible softening of a viewpoint. Particular gratitude
goes to my colleagues at Kent State University and at University College, Dublin,
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who have listened so patiently to sermons on the topics of this volume. Special
among these are Richard Aron, Tom Barton, Phil Boland, Jeff Connor, Joe Creek-
more, Sean Dineen, Paddy Dowlong, Maurice Kennedy, Mark Leeney, Bob
Lohman, Donal O’Donovan, and A. “KSU” Rajappa. I must also be sure to thank
Julie Frobie for her expert typing of the original manuscript.

Kent, Obio JOE DIESTEL
April, 1983



Some Standard Notations and Conventions

Throughout we try to let W, X, ¥, Z be Banach spaces and denote by w, x, y, z
elements of such. For a fixed Banach space X, with norm || ||, we denote by
B, the closed unit ball of X,

By={xeX: | x| =1},
and by S, the closed unit sphere of X,

Sy ={xeX: | x| =1}

Again, for a fixed X, the continuous dual is denoted by X* and a typical member
of X* might be called x*.

The Banach spaces ¢,, [, (1 < p= x), C(Q)) and L () 1 < p = = follow standard
notations set forth, for example, in Royden’s “Real Analysis” or Rudin’s “Func-
tional Analysis”; we call on only the most elementary properties of the spaces
such as might be encountered in a first course in functional analysis. In general,
we assume the reader knows the basics of functional analysis as might be found
in either of the aforementioned texts.

Finally, we note that most of the main results carry over trivially from the case
of real Banach spaces to that of complex Banach spaces. Therefore, we have
concentrated on the former, adding the necessary comments on the latter when
it seemed judicious to do so.
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CHAPTER I
Riesz’s Lemma and Compactness

in Banach Spaces

In this chapter we deal with compactness in general normed linear spaces.
The aim is to convey the notion that in normed linear spaces, norm-compact
sets are small—both algebraically and topologically.

We start by considering the isomorphic structure of n-dimensional normed
linear spaces. It is easy to see that all »-dimensional normed linear spaces
are isomorphic (this is Theorem 1). After this, a basic lemma of F. Riesz is
noted, and (in Theorem 4) we conclude from this that in order for each
bounded sequence in the normed linear space X to have a norm convergent
subsequence, it is necessary and sufficient that X be finite dimensional.
Finally, we shown (in Theorem 5) that any norm-compact subset X of a
normed linear space is contained in the closed convex hull of some null
sequence.

Theorem 1. If X and Y are finite-dimensional normed linear spaces of the
same dimension, then they are isomorphic.

PrOOF. We show that if X has dimension n, the X is isomorphic to /].
Recall that the norm of an n-tuple (a,, a,, ... ,a,) in /] is given by

I(ay,ay,....a,)[ = la)|+ laq]+ - - - +]a,}

Let x,, x,, ... ,x, be a Hamel basis for X. Define the linear map 7: /] = X
by

I((a;,a5,...,a,)) =ayx, +ayx, + -+ +a,x,.
I is a linear space isomorphism of /! onto X. Moreover, for each
(a, ay,...,a,)inly,

layxy + azx; + -+ + a,x,ll < ( max xl)(layl+ lagl+ - +1a),
1

thanks to the triangle inequality. Therefore, 7 is a bounded linear operator.
(Now if we knew that X is a Banach space, then the open mapping theorem
would come immediately to our rescue, letting us conclude that [ is an open



2 L. Riesz’s Lemma and Compactness in Banach Spaces

map and, therefore, an isomorphism—we don’t know this though; so we
continue). To prove /™! is continuous, we need only show that 7 is bounded
below by some m > 0 on the closed unit sphere S)» of IT'; an easy normaliza-
tion argument then shows that /~! is bounded on the closed unit ball of X
by 1/m.
To the above end, we define the function f: Sy =R by
f((ay,a,,....a,))=layx; + ayx, + -+ +a, x|

The axioms of a norm quickly show that f is continuous on the compact
subset S, of R". Therefore, f attains a minimum value m >0 at some

(a7, a3, ...,al) in Sj.. Let us assume that m = 0. Then

llafx, + adx, + - - +alx,|| =0
so that alx, + a9x, + --- +a%, =0; since x,, ..., x, constitute a Hamel
basis for X, the only way this can happen is for a =ad=---=4%=0, a
hard task for any (4, a3, ...,a2) € S,,. m]

Some quick conclusions follow.
Corollary 2. Finite-dimensional normed linear spaces are complete.

In fact, a normed linear space isomorphism is Lipschitz continuous in
each direction and so must preserve completeness; by Theorem 1 all
n-dimensional spaces are isomorphic to the Banach space /7.

Corollary 3. If Y is a finite-dimensional linear subspace of the normed linear
space X, then Y is a closed subspace of X.

Our next lemma is widely used in functional analysis and will, in fact, be a
point of demarcation for a later section of these notes. It is classical but still
pretty. It is often called Riesz’s lemma.

Lemma. Let Y be a proper closed linear subspace of the normed linear space X
and 0 <@ <1. Then there is an x4 € Sy for whick ||x4— y||> 8 for every
yevy.

ProOOF. Pick any x € X'\|Y. Since Y is closed, the distance from x to Y is
positive, i.e.,

d
0<d=inf{”x—z||:ze}’}<-§;

therefore, there is a z € Y such that

b=zl < 5.
Let
X —2
Xg =

lhx -zl
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Clearly x, € Sy. Furthermore, if y € Y, then

xX—2z
"xo—y”— ”.X-Z“ y“
f—x____z lx—zly
lIx=2z)) jx—z|l Jlx-2z|
1
==||x—z|]"x_(2_4-!{,—_2_”1),"
a member of Y
>§d=0. 0

An easy consequence of Riesz’s lemma is the following theorem.

Theorem 4. In order for each closed bounded subset of the normed linear space
X to be compact, it is necessary and sufficient that X be finite dimensional.

ProoF. Should the dimension of X be n, then X is isomorphic to /7
(Theorem 1); therefore, the compactness of closed bounded subsets of X
follows from the classical Heine-Borel theorem.

Should X be infinite dimensional, then Sy is not compact, though it is
closed and bounded. In fact, we show that there is a sequence (x,) in S
such that for any distinct m and n, ||x,, — x,|| 2 1. To start, pick x, € Sy.
Then the linear span of x, is a proper closed linear subspace of X (proper
because it is 1 dimensional and closed because of Corollary 3). So by Riesz’s
lemma there is an x, in S, such that ||x, — ax,|| > 1 for all « € R. The linear
span of x, and x, is a proper closed linear subspace of X (proper because
it’s 2-dimensional and closed because of Corollary 3). So by Riesz’s lemma
there is an x; in Sy such that ||x; -~ ax, ~ Bx,||>3 for all a,B €R.
Continue; the sequence so generated does all that is expected of it. a

A parting comment on the smallness of compact subsets in normed linear
spaces follows.

Theorem 5. If K is a compact subset of the normed linear space X, then there
is a sequence (x,) in X such that lim ||x,|| = 0 and K is contained in the closed
convex hull of {x,}.

PrOOF. K is compact; thus 2K is compact. Pick a finite { net for 2K i.e.,
pick x,,...,x,q, in 2K such that each point of 2K is within L of an x,,
1 <i<n(1). Denote by B(x,¢) the set { y: ||x — y|| <¢€}.

Look at the compact chunks of 2K:[2K N B(x,}),....[2KN
B(x,,).4)). Move them to the origin: [2K NB(x,,4)]=x,,....[2KN
B(x,) $)]— X, Translation is continuous; so the chunks move to com-
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pact sets. Let K, be the union of the resultant chunks, i.e.,
K,= {[ZK N B(x,,})]—x,}u e U “21( ﬁB(x"(,),ﬁ)] —x,,(,)}.

K, is compact, thus 2K, is compact. Pick a finite & net for 2K ), 1.€., pick
Xny+15 -+ »Xn) 0 2K, such that each point of 2K, is within & of an X,
n(l)+1<i<n(2).

Look at the compact chunks of 2X,:[2K, N B(x,1)+1, 1)) ---[2K, N
B(x,;, 15))- Move them to the origin:

[2Kz N B(x"(l)+,,1§)] T Xnt) 41 - »[2K2 n B(xn(Z)’—l%)] T Xn2-

Translation is still continuous; so the chunks, once moved, are still compact.
Let K, be the union of the replaced chunks:

Ky= {[ZKZQ B(xn(l)ﬂ'ﬁ')] —xn(l)u}u eV {[ZKz n B(x,,(z,,-,lg)]
— X} -

K, is compact, and we continue in a similar manner.

Observe that if
xX€K,

2x€2K,
2x - x;,€K,, forsome1<i(1) <n(1); so,

4x - 2x;,,€2K,,
4x —-2x;,,~ X,y € K;,  forsome n(1)+1<i(2) <n(2); so,
8x —4x,;, —2x,, € 2K,,
8x —4x,q,~2x,5~ x;3 € K,  for some n(2)+1<i(3) < n(3); so,
etc. Alternatively,
x = i} €iK,,

2
Xy Xi)
Xy Xy  XiQ)
- - - eikK,,....
2 4 8 K,

It follows that

" Xitk)
. 1

x = Him E _k—
" el 2

and x €¢o(0, x,q), Xz, * "+ ) S €0(0, X, X3, - ). a

Exercises

1. A theorem of Mazur. The closed convex hull of a norm-compact subset of a
Banach space is norm compact.

2. Distinguishing between finite - dimensional Banach spaces of the same dimension.
Let n be a positive integer. Denote by I{, /5, and [} the n-dimensional real
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Banach spaces determined by the norms || ||;, || |I,, and }j |I,,, respectively,

(a1, a5, ..., )y =la)l+aa)+ - - - +]a,,

. 1
(a1, a2, ... @), = (@) +1ay? + -+ +]a,12)"?,
"(al! az,... ’an)"w - max{ Iallﬁ |a2|’ ’Ianl} .

(i) No pair of the spaces /7, /3, and /7, are mutually isometric.

(ii) If 7'is a linear isomorphism between /] and /3 or between /7 and /3, then the
product of the operator norm of T and the operator norm of 7! always
exceeds Vn .

If T is a linear isomorphism between /{ and /7, then | T[T}l = n.

3. Limitations in Riesz’s lemma.
(i) Let X be the closed linear subspace of C[0,1] consisting of those x € C[0,1}

that vanish at 0. Let Y C X be the closed linear subspace of x in X for which
Jax(t) dt = 0. Prove that there is no x € Sy such that distance (x,Y)2>1.

(ii) If X is a Hilbert space and Y is a proper closed linear subspace of X, then
there is an x € S, so that distance (x, Sy)=V2.

(iii) If Y is a proper closed lincar subspace of /, (1 < p <), then there is an
x € Sy so that distance (x,Y) 21.

4. Compact operators between Banach spaces. A linear operator T: X — Y between
the Banach spaces X and Y is called compact if TB, is relatively compact.

(i) Compact linear operators are bounded. Compact isomorphic embeddings
and compact quotients (between Banach spaces) have finite-dimensional
range.

(ii) The sum of two compact operators is compact, and any product of a
compact operator and a bounded operator is compact.

(iii) A subset K of a Banach space X is relatively compact if and only if for every
e> 0 there is a relatively compact set K, in X such that
KceBy+K,.
Consequently, the compact operators from X to Y form a closed (linear)
subspace of the space of all bounded linear operators.

(iv) Let T: X — Y be a bounded linear operator, and suppose that for each e> 0
there is a Banach space X, and a compact linear operator 7,: X — X, for
which

ITx) < WTx|l+ e
for all x € B,. Show that T is itself compact.

(v) Let T: X—Y be a compact linear operator and suppose S: Z—Y is a
bounded linear operator with SZ ¢ TX. Show that S is a compact operator.

8. Compact subsets of C(K) spaces for compact metric K. Let (K, d) be any compact
metric space, denote by C(K) the Banach space of continuous scalar-valued
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functions on K.

(i) A totally bounded subset X¥'of C(K) is equicontinuous, i.e., given & > 0 there
isa 8> 0; sod(k,k’) <8 implies that | f(k)— f(k'))< e foral f € X

(i) If X’is a bounded subset of C(K) and D is any countable (dense) subset of
K, then each sequence of members of X has a subsequence converging
pointwise on D.

(iii) Any equicontinuous sequence that converges pointwise on the set SC K
converges uniformly on S.

Recalling that a compact metric space is separable, we conclude to the Ascoli-

Arzela theorem.

Ascoli-Arzela theorem. A bounded subset X of C(K) is relatively compact if
and only if X'is equicontinuous.

6. Relative compactness in |, (1 < p < 0). For any p, 1 < p <0, a bounded subset
K of I, is relatively compact if and only if

- o]
lim ) |k}’ =0
n j=n

uniformly for k € K.

Notes and Remarks

Theorem 1 was certainly known to Polish analysts in the twenties, though a
precise reference seems to be elusive. In any case, A. Tychonoff (of product
theorem fame) proved that all finite-dimensional Hausdorff linear topologi-
cal spaces of the same dimension are linearly homeomorphic.

As we indicate all too briefly in the exercises, the isometric structures of
finite-dimensional Banach spaces can be quite different. This is as it should
be! In fact, much of the most important current research concerns precise
estimates regarding the relative isometric structures of fintte-dimensional
Banach spaces.

Riesz’s lemma was established by F. Riesz (1918); it was he who first
noted Theorem 4 as well. As the exercises may well indicate, strengthening
Riesz’s lemma is a delicate matter. R. C. James (1964) proved that a Banach
space X is refiéxive if and only if each x* in X* achieves its norm on B,.
Using this, one can establish the following: For a Banach space X to have the
property that given a proper closed linear subspace Y of X there exists an x of
norm-one such that d(x,Y)>1 it is necessary and sufficient that X be
reflexive.

There is another proof of Theorem 4 that deserves mention. It is due to
G. Choquet and goes like this: Suppose the Heine-Borel theorem holds in
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X; so closed bounded subsets of the Banach space X are compact. Then the
closed unit ball By is compact. Therefore, there are points x,, ...,x, € By
such that By CU]_,(x; +1By). Let Y be the linear span of {x,, x5, ...,x,};
Y is closed. Look at the Banach space X/Y; let ¢: X— X/Y be the
canonical map. Notice that ¢(By) C ¢(By)/2! Therefore, p(B,) = {0} and
X/Y is zero dimensional. Y = X.

Theorem § is due to A. Grothendieck who used it to prove that every
compact linear operator between two Banach spaces factors through a
subspace of c,; look at the exercises following Chapter II. Grothendieck
used this factorization result in his investigations into the approximation

property for Banach spaces.

An Afterthought to Riesz’s Theorem

(This could have been done by Banach!)

Thanks to ClLiff Kottman a substantial improvement of the Riesz lemma
can be stated and proved. In fact, if X is an infinite-dimensional normed
linear space, then there exists a sequence (x,) of norm-one elements of X for
which ||x,,, — x,|| >1 whenever m # n.

" Kottman’s original argument depends on combinatorial features that live
today in any improvements of the cited result. In Chapter XIV we shall see
how this is so; for now, we give a noncombinatorial proof of Kottman’s
result. We were shown this proof by Bob Huff who blames Tom Starbird for
its simplicity. Only the Hahn-Banach theorem is needed.

We proceed by induction. Choose x, € X with ||x,|| =1 and take x} € X*
such that [x#|| =1= x{x,.

Suppose x¢, ... ,x? (linearly independent, norm-one elements of X *) and
Xy, ... X, (norm-one elements) have been chosen. Choose y € X so that
x!y,...,x2y <0 and take any nonzero vector x common to N X kerx?.
Choose KX so that

Iyl <lly + Kxil.

Then for any nontrivial linear combination I¥_,a;x* of the x* we know
that

k
2 axt(y)

im]

k
Y ax!(y+ Kx)

i=1

k

Z ax}

i=1

k
Y axt iyl < ly + Kx|.

i=1

<

Let x,,,=(y + Kx)|ly + Kx||~! and choose x?,, to be a norm-one func-
tionay satisfying x7, ,x, ., =1. Since [EF. ,a;x*(y + Kx)| < |EX e x? |||y +
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kx|l, x},, is not a linear combination of x{, ..., x2. Also, if 1 <i <k, then

Wxgsr = Xl 2 X2 (x4 00 — x;)|
= XX,y — XM*x;|>1

since x*x; =1 and x*x;,, <0.
This proof is complete.
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CHAPTER II
The Weak and Weak* Topologies:
An Introduction

As we saw in our brief study of compactness in normed linear spaces, the
norm topology is too strong to allow any widely applicable subsequential
extraction principles. Indeed, in order that each bounded sequence in X
have a norm convergent subsequence, it is necessary and sufficient that X be
finite dimensional. This fact leads us to consider other, weaker topologies on
normed linear spaces which are related to the linear structure of the spaces
and to search for subsequential extraction principles therein. As so often
happens in such ventures, the roles of these topologies are not restricted to
the situations initially responsible for their introduction. Rather, they play
center court in many aspects of Banach space theory.

The two weaker-than-norm topologies of greatest importance in Banach
space theory are the weak topology and the weak-star (or weak*) topology.
The first (the weak topology) is present in every normed linear space, and in
order to get any results regarding the existence of convergent or even
Cauchy subsequences of an arbitrary bounded sequence in this topology,
one must assume additional structural properties of the Banach space. The
second (the weak* topology) is present only in dual spaces; this is not a real
defect since 1t is counterbalanced by the fact that the dual unit ball will
always be weak* compact. Beware: This compactness need not of itself
ensure good subsequential extraction principles, but it does get one’s foot in
the door.

The Weak Topology

Let X be a normed linear space. We describe the weak topology of X by
indicating how a net in X converges weakly to a member of X. Take the net
(x,); we say that (x,) converges weakly to x, if for each x* € X*.

* = h *
x*xy= ll;nx Xy-
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Whatever the weak topology may be, it is linear (addition and scalar
multiplication are continuous) and Hausdorfl (weak limits are unique).

Alternatively, we can describe a basis for the weak topology. Since the
weak topology is patently linear, we need only specify the neighborhoods of
0; translation will carry these neighborhoods throughout X. A typical basic
neighborhood of 0 is generated by an £> 0 and finitely many members
xg,...,x¥ of X*. Its form is

W(0; x?,...,x2,¢) = {x € X:|xx|,...,|x*x| <e}.

Weak neighborhoods of 0 can be quite large. In fact, each basic neighbor-
hood W(0; x¢, ... ,x¥, ¢) of O contains the intersection N[_,kerx? of the
null spaces ker x* of the x*, a linear subspace of finite codimension. In case
X is infinite dimensional, weak neighborhoods of 0 are big!

Though the weak topology is smaller than the norm topology, it produces
the same continuous linear functionals. In fact, if f is a weakly continuous
linear functional on the normed linear space X, then U= {x:|f(x)| <1} is
a weak neighborhood of 0. As such, U contains a W(0; x¢, ..., x2, €). Since
f is linear and W(0, x7, ... ,xJ, €) contains the linear space N[, kerx?, it
follows that ker f contains N[, kerx* as well. But here’s the catch: if the
kernel of f contains N]_,kerx®, then f must be a linear combination
x$,...,x2, and so f € X*. This follows from the following fact from linear
algebra. .

Lemma. Let E be a linear space and f, g,, ... ,8, be linear functionals on E
such that ker f 2 N "_,kerg,. Then f is a linear combination of the g,’s.

PrOOF. Proceed by induction on n. For n=1 the lemma clearly holds.
Let us assume it has been established for k <n. Then, for given
kerf 2 N X' kerg,, the inductive hypothesis applies to

i=1
f‘kerg,,”’ gllkerg,,.,’ eee ’gnlkerg,.,'

It follows that, on kerg, , ,, f is a linear combination ¥]_,a;8; of g;,...,8,
f—X].,a,;8; vanishes on kerg, , ,. Now apply what we know about the case
n =1 to conclude that f —X7_,a,g, is a scalar multiple of g,,, ,. a

It is important to realize that the weak topology is really of quite a
different character than is the norm topology (at least in the case of
infinite-dimensional normed spaces). For example, if the weak topology of a
normed linear space X is metrizable, then X is finite dimensional. Why is this
so? Well, metrizable topologies satisfy the first axiom of countability. So if
the weak topology of X is metrizable, there exists a sequence (x*) in X*
such that given any weak neighborhood U of 0, we can find a rational e> 0
and an n(U) such that U contains W(0; x{,...,x%y), €). Each x* € X*
generates the weak neighborhood W(0; x*,1) of 0 which in turn contains
one of the sets W(0; x¥, ..., X 3w, x.1)) €)- However, we have seen that this
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entails x* being a linear combination of x, ..., x%,. If we let F,, be the
linear span of x{,...,x%, then each F, is a finite-dimensional linear
subspace of X'* which is a fortiori closed; moreover, we have just seen that
X* = U _F,. The Baire category theorem now alerts us to the fact that one
of the F,, has nonempty interior, a fact which tells us that the F,, has to be
all of X*. X* (and hence X) must be finite dimensional.

It can also be shown that in case X is an infinite-dimensional normed linear
space, then the weak topology of X is not complete. Pespite its contrary
nature, the weak topology provides a useful vehicle for carrying on analysis
in infinite-dimensional spaces.

Theorem 1. If K is a convex subset of the normed linear space X, then the
.closure of K in the norm topology coincides with the weak closure of K.

Proor. There are no more open sets in the weak topology than there are in
the norm topology; consequently, the norm closure is harder to get into
than the weak closure. In other words 41"l g 4™, 3

If K is a convex set and if there were a point x, € K **t\ K"l then there
would be an x§ € X* such that

supxdK'l < a<B < x3(x,)
for some a, B. This follows from the separation theorem and the convexity
of K!'l. However, x, € K ** implies there is a net (x,) in K such that
xo = weak limx,.
d

It follows that

X3xo = li‘linxgxd,

an obvious contradiction to the fact that x§x, is separated from all the x§x,
by the gulf between a and B. m)

A few consequences follow.

Corollary 2. If (x,) is a sequence in the normed linear space for which weak
lim ,x, = 0, then there is a sequence (0,) of convex combinations of the x,, such
that lim ||x,|| = 0.

A natural hope in light of Corollary 2 would be that given a weakly null
sequence (x,) in the normed linear space X, one might be able (through
very judicious pruning) to extract a subsequence ( y,) of (x,) whose arith-
metic means n~'L}_, y, tend to zero in norm. Sometimes this is possible
and sometimes it is not; discussions of this phenomenon will appear
throughout this text.

Corollary 3. If Y is a linear subspace of the normed linear space X, then
ek o Pl
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Corullary 4. If X is a concex set in the normed linear space X, then K is norm
closed if und only if K is weakly closed.

The weak topology is defined in a projective manner: it is the weakest
topology on X that makes each member of X* continuous. As a conse-
quence of this and the usual generalities about projective topologies, if Q is a
topological spuce and f. ) — X is a function, then f is weakly continuous if and
only if x*f is continuous for each x* € X*,

Let T: X - Y be a linear map between the normed linear spaces X and Y.
Then T is weak-to-weak continuous if and only if for each y* € Y *, y*Tis a
weakly continuous linear functional on X; this, in turn, occurs if and only if
y*T is a norm continuous linear functional on X for each y* € Y *.

Now if T: X =Y is a norm-to-norm continuous linear map, it obviously
satisfies the last condition enunciated in the preceding paragraph. On the
other hand, if 7 is not norm-to-norm_continuous, then 7B, is not a
bounded subset of Y. Therefore, the Banach-Steinhaus theorem directs us to
a y* € Y* such that y*TB, is not bounded; y*T is not a bounded linear
functional. Summarizing we get the following theorem.

Theorem S. A linear map T: X — Y between the normed lincar spaces X and
Y is norm-to-norm continuous if and only if T is weak-to-weak continuous.

The Weak* Topology

Let X be a normed linear space. We describe the weak* topology of X* by
indicating how a net (x3) in X* converges weak* to a member x3 of X*.
We say that (x3) converges weak* to x§ € X* if for each x € X,

%y — |y - %
x3x = llzn,\dx.

As with the weak topology, we can give a description of a typical basic
weak* neighborhood of 0 in X*; this time such a'neighborhood is generated
by an £ > 0 and a finite collection of elements in X, say x,, ... ,x,. The form
is

W*(0; xp,....%,, &) = { x* € X*:|x*xy],....|x*x,| <¢}.

The weak* topology is a linear topology; so it is enough to describe the
neighborhoods of 0, and neighborhoods of other points in X* can be
obtained by translation. Notice that weak* basic neighborhoods of 0 are
also weak neighborhoods of 0; in fact, they are just the basic neighborhoods
generated by those members of X** that are actually in X. Of course, any
x** that are left over in X ** after taking away X give weak neighborhoods
of 0 in X* that are not weak* neighborhoods. A conclusion to be drawn is
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this: the weak* topology is no bigger than the weak topology. Like the weak
topology, excepting finite-dimensional spaces, duals are never weak* metriz-
able or weak* complete; also, proceeding as we did with the weak topology,
it’s easy to show that the weak* dual of X* is X. An important consequence
of this is the following theorem.

Goldstine’s Theorem. For any normed linear space X, By is weak® dense in
Byes, and so X is weak* dense in X**.

ProoF. The second assertion follows easily from the first; so we concentrate
our attentions on proving B, is always weak® dense in By... Let x** € X**
be any point not in BY*°. Since B}™*" is a weak* closed convex set and
x** & BYy**, there is an x* € X**'s weak* dual X* such that

sup{x‘y" 1 y** e F}""'} < x**x”*.

Of course we can assume ||x*|| =1; but now the quantity on the left is at
least ||x*|| =1, and so ||x**|| > 1. It follows that every member of By.. falls
inside By=¥". m)

As important and useful a fact as Goldstine’s theorem is, the most
important feature of the weak* topology is contained in the following
compactness result.

Alaoglu’s Theorem. For any normed linear space X, By. is weak*® compact.
Consequently, weak® closed bounded subsets of X* are weak*® compact.

PrOOF. If x* € B,., then for each x € By, |x*x| <1. Consequently, each
x* € By. maps By into the set D of scalars of modulus <1. We can
therefore identify each member of By. with a point in the product space
D3x, Tychonoff’s theorem tells us this latter space is compact. On the other
hand, the weak* topology is defined to be that of pointwise convergence on
B,,, and so this identification of By. with a subset of D®x leaves the weak*
topology unscathed; it need only be established that By. is closed in D%~ to
complete the proof.

Let (x*) be a net in By. converging pointwise on By to f € D®. Then it
is easy to see that f is “linear” on By: in fact, if x,, x, € By and a,, a, are
scalars such that a,x, + a,x, € By, then

flayx; +ayx;) = ﬁg"‘:(al"l +a,x,)
= liznalx;(xl)"'az"':(xz)
= ﬁg‘al";("l)*’ li;nazx:(xz)

=a,f(x1)+a2f(x2).
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It follows that f is indeed the restriction to By, of a linear functional x’ on X;
moreover, since f(x) has modulus <1 for x € By, this x’ is even in B,..
This completes the proof. (m]

A few further remarks on the weak* topology are in order.

First, it is a locally convex Hausdorff linear topology, and so the
separation theorem applies. In this case it allows us to separate points (even
weak® compact convex sets) from weak* closed convex sets by means of the
weak® continuous linear functionals on X*, i.e., members of X.

Second, though it is easy to see that the weak* and weak topologies are
not the same (unless X' = X**), it is conceivable that weak* convergent
sequences are weakly convergent. Sometimes this does occur, and we will, in
fact, run across cases of this in the future. Because the phenomenon of
weak® convergent sequences being weakly convergent automatically brings
one in contact with checking pointwise convergence on By.., it is not too
surprising that this phenomenon is still something of a mystery.

Exercises

1. The weak topology need not be sequential. Let AC I, be the set (e, + me,:1<m
<n<o). Then 0 € A", yet no sequence in A is weakly null.

2. Helly’s theorem.

(i) Given xf,... ,x* € X*, scalars a,, ... ,a,, and &> O, there exists an x, € X
for which || x|| < y + e and such that x#x = a,, ... ,x¥x = a,, if and only if for
any scalars 8,, ...,8,

n
Z alxi‘

i=1

Z By

i=1

<Y

(ii) Let x** € X**, ¢>0 and x{,...,x* € X*. Then there exists x € X such
that ||x|| < ||x**||+ e and xF(x) = x**(x{), ..., X ¥ (x) = x**(x2*).

3. An infinite - dimensional normed linear space is never weakly complete.

(i) A normed linear space X is finite dimensional if and only if every linear
functional on X is continuous.

(i) An infinite-dimensional normed linear space is never weakly complete. Hint:
Apply (i) to get a discontinuous linear functional ¢ on X*; then using (i),
the Hahn-Banach theorem, and Helly’s theorem, build a weakly Cauchy net
in X indexed by the finite-dimensional subspaces of X* with ¢ the only
possible weak limit point.

4. Schauder’s theorem.

(i) If T: X =Y is a bounded linear operator between the Banach spaces X and
Y, then for any y* € Y*, y*T € X*, the operator T*:Y* — X* that takes a
y*E€Y* to y*T € X* is a bounded linear operator, called T*, for which
WTH =0T *)
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(ii) A bounded linear operator T: X — Y between Banach spaces is compact if
and only if its adjoint T*:Y* — X* is,

(iii) An operator T: X — Y whose adjoint is weak*-norm continuous is compact.
However, not every compact operator has a weak*-norm continuous adjoint.

(iv) An operator T: X — Y is compact if and only if its adjoint is weak*-norm
continuous on weak* compact subsets of Y*.

S. Dual spaces. Let X be a Banach space and E ¢ X*. Suppose E separates the
points of X and B, is compact in the topology of pointwise convergence on E.
Then X is a dual space whose predual is the closed linear span of E in X*.

6. Factoring compact operators tilrough subspaces of c,.

(i) A subset X of c, is relatively compact if and only if there is an x € ¢,, such
that

LM EJEN
holds for all k€ ¥and all n >1.

(ii) A bounded linear operator T: X — Y between two Banach spaces is compact
if and only if there is a norm-null sequence (x2) in X* for which
IiTx|l s sup|x2x|
n
for all x. Consequently, T is compact if and only if thereis aA € ¢y and a
bounded sequence (') in X* such that

ITx}| < sup|A 121 y*x]
n
for all x.

(iii) Every compact linear operator between Banach spaces factors compactly
through some subspace of c(; that is, if T: X =Y is a compact linear
operator between the Banach spaces X and Y, then there if a closed linear
subspace Z of ¢, and compact linear operators A : X = Z and B: Z — Y such
that T = BA. .

Notes and Remarks

The notion of a weakly convergent sequence in L,[0,1] was used by Hilbert
and, in L,{0,1], by F. Riesz, but the first one to recognize that the weak
topology was just that, a topology, was von Neumann. Exercise 1 is due to
von Neumann and clearly indicates the highly nonmetrizable character of
the weak topology in an infinite-dimensional Banach space. The nonmetriz-
ability of the weak topology of an infinite-dimensional hormed space was
discussed by Wehausen.

Theorem 1 and the consequences drawn from it here (Corollaries 2 to 4)
are due to Mazur (1933). Earlier, Zalcwasser (1930) and, independently,
Gillespie and Hurwitz (1930) had proved that any weakly null sequence in
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C[0,1] admits of a sequence of convex combinations that converge uni-
formly to zero. The fact that weakly closed linear subspaces of a normed
linear space are norm closed appears already in Banach’s “Operationes
Lineaires.”

The weak continuity of a bounded linear operator was first noticed by
Banach in his masterpiece; the converse of Theorem 5 was proved by
Dunford. Generalizations to locally convex spaces were uncovered
by Dieudonné and can be found in most texts on topological vector spaces.

As one ought to suspect, Goldstine’s theorem and Alaoglu’s theorem are
named after their discoverers. Our proof of Goldstine’s theorem is far from
the original, being closer in spirit to proofs due to Dieudonné and Kakutani;
for a discussion of Goldstine’s original proof, as well as an application of its
main theme, the reader is advised to look to the Notes and Remarks section
of Chapter IX. Helly’s theorem (Exercise 2) is closely related to Goldstine’s
and often can be used in its place. In the form presented here, Helly’s
theorem is due to Banach; of course, like the Hahn-Banach theorem, Helly’s
theorem is a descendant of Helly’s selection principle.

The fact that infinite-dimensional Banach spaces are never weakly com-
plete seems to be due to Kaplan; our exercise was suggested to us by W. J.
Davis.

Alaoglu’s theorem was discovered by Banach in the case of a separable
Banach space; many refer to the result as the Banach-Alaoglu theorem.
Alaoglu (1940) proved the version contained here for the expressed purpose
of differentiating certain vector-valued measures.
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CHAPTER Il
The Eberlein-Smulian Theorem

We saw in the previous chapter that regardless of the normed linear space
X, weak* closed, bounded sets in X* are weak* compact. How does a’
subset K of a Banach space X get to be weakly compact? The two are
related. Before investigating their relationship, we look at a couple of
necessary ingredients for weak compactness and take a close look at two
illustrative nonweakly compact sets.

Let K be a weakly compact set in the normed linear space X. If x* € X'*,
then x* is weakly continuous; therefore, x*K is a compact set of scalars. It
follows that x*K is bounded for each x* € X*, and so K is bounded.
Further, K is weakly compact, hence weakly closed, and so norm closed.
Conclusion: Weakly compact sets are norm closed and norm bounded.

Fortunately, closed bounded sets need not be weakly compact.

Consider B, . Were B, weakly compact, each sequence in B, would have
a weak cluster point in B, . Consider the sequence g, defined by g, =e¢,
+ --- +e,, where e, is the kth unit vector in ¢,. The sup norm of ¢, is
rigged so that ||g,|| =1 for all n. What are the possible weak cluster points of
the sequence (o,)? Take a A € B, that is a weak cluster point of (o,). For
each x* € c§, (x*0,) has x*A for a cluster point; i.e., the values of x*g, get
as close as you please to x*A infinitely often. Now evaluation of a sequence
in ¢, at its kth coordinate is a continuous linear functional; call it ef. Note
that ef(0,) =1 for all n > k. Therefore, efA =1. This holds true qu all k.
Hence, A =(1,1,...,1,...) € c,. B, is not weakly compact.

Another example: B, is not weakly compact. Since l, = c§ (isometrically),
were B, weakly compact, the weak and weak* topologies on B, would have
to coincide (comparable compact Hausdorff topologies coincide). However,
consider the sequence (e,) of unit vectors in /;. If A € ¢, thene, A=A, =0
as n = 00. So (e,) is weak* null. If we suppose B, weakly compact, then
(e,) is weakly null but then there ought to be a sequence (v,) of convex
combinations of the e, such that ||y, ||, — 0. Here’s the catch: Take a convex
combination of e,,’s—the resultiig vector’s /; norm is 1. The supposition
that B, is weakly compact is erroneous.
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There is, of course, a common thread running through both of the above
examplw In the first, the natural weak cluster point fails to be in c,; not all
is lost though, because it is in B, . Were B, = B, , this would have been
enough to ensure B .o S weak compactness In the second case, the weak
compactness of B, was denied because of the fact that the weak* and weak
topologies on B, were not the same; in other words, there were more x**’s
than there were x’s to check against for convergence. Briefly, B, is smaller
than B, .

Supposc B, = By... Naturally, this occurs when and only when X = X **;
such X are called reflexive. Then the natural embedding of X into X** is a
weak-to-weak* homeomorphism of X onto X** that carries B, exactly onto
By... It follows that B, is weakly compact.

On the other hand, should B, be weakly compact, then any x** € X**
not in B, can be separated from the weak* compact convex set B, by an
element of the weak* dual of X**; i.e., there is an x* € B,. such that

sup x*x( =|lx*||=1) < x**x*.
fixfi <1

It follows that ||x**|| >1 and so By = By...

Summarizing: By is weakly compact if and only if X is reflexive.

Let’s carry the above approach one step further. Take a bounded set 4 in
the Banach space X. Suppose we want to show that A is relatively weakly
compact. If we take A**** and the resulting set is weakly compact, then we
are done. How do we find A*** though? Well, we have a helping hand in
Alaoglu’s theorem: start with A, look at A***° up in X**, and see what
elements of X** find themselves in A"*°. We know that A¥*** is weak*
compact. Should each element in 4**** actually be in X, then A**" is just
A¥*X; what's more, the weak* and weak topologies are the same, and so
A™** is weakly compact.

* So, to show a bounded set A4 is relatively weakly compact, the strategy is
to look at A*** and see that each of its members is a point of X. We
employ this strategy in the proof of the main result of this chapter.

Theorem (Eberlein-Smulian). A subset of a Banach space is relatively weakly
compact if and only if it is relatively weakly sequentially compact.

In particular, a subset of a Banach space is weakly compact if and only if it
is weakly sequentially compact.

PrOOF. To start, we will show that a relatively weakly compact subset of a
Banach space is relatively weakly sequentially compact. This will be accom-
plished in two easy steps.

Step 1. 1f K is a (relatively) weakly compact set in a Banach space X and
X * contains a countable total set, then X **** is metrizable. Recall that a set
F c X* is called total if f(x) =0 for each f € F implies x = 0.
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Suppose that X is weakly compact and { x?} is a countable total subset of
nonzero members of X*. The function d: X X X — R defined by

d(x,x) =Y |x2(x - x")|Ix2~"2""

is a metric on X. The formal identity map is weakly-to-d continuous on the
bounded set X. Since a continuous one-to-one map from a compact space to
a Hausdorfl space is a homeomorphism, we conclude that d restncted to
K X K is a metric that generates the weak topology of K.

Step 2. Suppose A is a relatively weakly compact subset of the Banach
space X and let (a,) be a sequence of members of A. Look at the closed
linear span [a,] of the a,; [a,] is weakly closed in X. Therefore, A N[a,] is
relatively weakly compact in the separable Banach space [a,). Now the dual
of a separable Banach space contains a countable total set: if (d,} is a
countable dense set in the unit sphere of the separable space and {d*} is
chosen in the dual to satisfy d*d, =1, it is easy to verify that {d?*} is total.
From our first step we know that 4 N[a,]*** is metrizable in the weak
topology of [a,]. Since compactness and sequential compactness are equiva-
lent in metric spaces, 4 N l a,]"* is a weakly sequentially compact subset
of [a,]. In particular, if a is any weak limit point of (a,), then there is a
subsequence (a,) of (a,) that converges weakly to @ in [a,). It is plain that
(a;) also converges weakly to a in X.

We now turn to the converse. We start with an observation: if E is a
finite-dimensional subspace of X**, then there is a finite set £’ of S,. such
that for any x** in E

Ix**1
2

In fact, S; is norm compact. Therefore, there is a finite 1 net F=
{x*, ...,x2*} for Sg. Pick x¢, ... ,x* € S,. so that

A d
xPtxr> 3.

< max{|x**x*):x* € E’}.

Then whenever x** € S, we have
x**xp =x2*x? +(x**xf — x}*x?)
2i-4=%
for a suitable choice of k.
This observation is the basis of our proof.

.Let A be a relatively weakly sequentially compact subset of X; each
infinite subset of A has a weak cluster point in X since 4 is also relatively
weakly countably compact. Consider A", A***" is weak® compact since
A, and therefore A~*°, is bounded due to the relative weak sequential
compactness of A. We use the strategy espoused at the start of this section
to show A is relatively weakly compact; that is, we show A***t* actually lies
in X.



20 III. The Eberlein-Smulian Theorem

Take x** € A**°, and let x} €S,.. Since x** € 4" each weak*
neighborhood of x** contains a member of A. In particular, the weak*
neighborhood generated by e=1 and x, { y** € X**: {y** - x**}x}")|
<1}, contains a member a, of 4. From this we get

|(x** —a,)(x)[ <1.
Consider the linear span [x** x** —q,] of x** and x** —q,; this is a

finite-dimensional subspace of X**. Our observation deals us x3, .
€ Sy. such that for any y** in [x** x** —q,],

Ly~
2

x** is not going anywhere, i.., it is still in A*%*; so each weak*
neighborhood of x** intersects 4. In particular, the weak* neighborhood
about x** generated by 1 and x, x3,...,x%s, intersects A to give us an a,
in 4 such that

|(x** - ap) (x|, | (x> - “2)(x?)|"'-'|("" - “2)(x:(2))|<5'

Now look at the linear span {x**, x** — a,, x** — a,] of x**, x** —q,,
and x** —a,. As a finite-dimensional subspace, [x**, x** —a;, x** — a,]
provides us with x}, .}, ..., X%, in Sy. such that

®
-9 Xp02)

< max{ly"(x,f)l:lsk Sn'(Z)}. |

”_yi___ﬂ Smax{|y*‘(x,f)|:l skSn(3)}

for any y** €[x**, x** —a,, x** — a,].

Once more, quickly. Choose a; in 4 such that x** — a, charges against
x{, ..., X5, for no more than 4 value. Observe that the finite-dimensional
linear space [x**, x** —a,, x** — a,, x** — a,] provides us with a finite
subset X334 1, -+ » Xn4) iN Sy such that

Ly**Ii
2

for any y** € [x**, x** —a,, x** —a,, x** — a3].

Where does all this lead us? Our hypothesis on 4 (being relatively weakly
sequentially compact) allows us to find an x € X that is a weak cluster point
of the constructed sequence (a,) C 4. Since the closed linear span {a,] of
the a, is weakly closed, x € [a,]. It follows that x** — x is in the weak*
closed linear span of {x**, x**—a,,x**~a,,...}. Our construction of
the x* and the a, assures us that

Ly**il

T S suply*txgl (1)
2 m

< max{‘y"(x,‘(')l:] <kcx< )1(4)}

holds for any y** in the linear span of x** x**—a,,x**—a,,.... An
easy continuity argument shows that (1) applies as well to any y** in the
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weak* closed linear span of x**, x** — a,, x** — a,, .... In particular, we
can apply (1) to x** — x. However,

|(xo* =) (e )l s [(x** = g )(x3)[ +|xm(ae) — x5(x)|
S % + as little as you please

if m<n(p), p<k and you take advantage of the fact that x is a weak
cluster point of (a,). So x** — x =0, and this ensures that x** = x is in X.
o

Exercises

1. The failure of the Eberlein- Smulian theorem in the weak* topology. Let T be any
set and denote by /,(T") the set of all functions x: I' - scalars for which

ixlh= X |x(y)|<oo.

7EP

1,(T") is a Banach space whose dual space in /(T'), the space of bounded
scalar-valued functions on I"' normed by the sup norm; the action of p € /(') =
4,(T)* on x €I,(T) is given by

e(x)= X o(v)x(v)

vyeTl

(@) If T is an uncountable set, then B, ) is weak® compact but not weak*
sequentially compact.

@) If T is infinite, then B, r)s contains a weak® compact set that has no
nontrivial weak® convergent sequences.

2. Weakly compact subsets of |, are norm separable.

(i) Weak* compact subsets of X* are metrizable in their weak* topology
whenever X is separable.

(ii) Weakly compact subsets of /, are norm separable.

3. Gantmacher’s theorem. A bounded linear operator T: X — Y between the Banach
spaces X and Y is weakly compact if TB, is weakly compact in Y.

(i) A bounded linear operator T: X —» Y is weakly compact if and only if
T"( x‘t) Cc Y.

(ii) A bounded linear operator T: X — Y is weakly compact if and only if T; is
weak *-weak continuous from Y* to X*.

(iii) A bounded linear operator T: X =Y is weakly compact if and only if T* is.
(iv) A Banach space X is reflexive if and only if its dual X* is.
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Notes and Remarks

Smulian (1940) showed that weakly compact subsets of Banach spaces are
weak'y sequentially compact. He also made several interesting passes at the
converse as did Phillips (1943). The proof of the converse was to wait for
Eberlein (1947). Soon after Eberlein’s proof, Grothendieck (1952) provided
a considerable generalization hy showing that relatively weakly sequentially
compact sets are relatively weakly compact in any locally convex space that
is quasi-complete in its Mackey topology; in so doing, Grothendieck noted
that Eberlein’s proof (on which Grothendieck closely modeled his) required
no tools that were not available to Banach himself, making Eberlein’s
achievement all the more impressive.

As one might expect of a theorem of the quality of the Eberlein-Smulian
theorem, there are many generalizations and refinements.

The most common proof of the Eberlein-Smulian theorem, found, for
instance, in Dunford and Schwartz, is due to Brace (1955). Those who have
used Brace’s proof will naturally see much that is used in the proof
presented here. We do not follow Brace, however, since Whitley (1967) has
given a proof (the one we do follow) that offers little room for conceptual
improvement. Incidentally, Pelczynski (1964) followed a slightly different
path to offer a proof of his own that uses basic sequences; we discuss
Pelczynski’s proof in Chapter V.

Weakly compact sets in Banach spaces are plainly different from general
compact Hausdorfl spaces. Weakly compact sets have a distinctive char-
acter: they are sequentially compact, and each subset of a weakly compact
set has a closure that is sequentially determined. There is more to weakly
compact sets than just these consequences of the Eberlein-Smulian theorem,
and a good place to start learning much of what there is is Lindenstrauss’s
survey paper on the subject (1972). Floret’s monograph also provides a
readable, informative introduction to the subject.
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CHAPTER IV
The Orlicz-Pettis Theorem

In this chapter we prove the following theorem.

The Orlicz-Pettis Theorem. Let 2 x, be a series whose terms belong to the
Banach space X. Suppose that for each increasing sequence (k,) of positive
“integers

n
weak lim Y x,
n j=1 4

exists. Then for each increasing sequence (k,) of positive integers

n

norm lim ) x,

n j-l

exists.

Put succinctly, the Orlicz-Pettis theorem says that weak subseries conver-
gence implies subseries convergence in Banach spaces.

Our proof relies on the theory of the Bochner integral, and its success
derives from the marvelous measurability theorem of Pettis. It is the
exposition of the theory of the Bochner integral that occupies most of our
time in this chapter; however, with the payoff including the Orlicz-Pettis
theorem, our work will be highly rewarded.

Start by letting (2, =, p) be a probability space and X be a Banach space.
We first establish the ground rules for measurability.

f: @ = Xis called simple if there are disjoint members E,, ..., E, of 2 and
vectors x,, ...,x, € X for which f(w)=X_,x ¢ (w)x; holds for all w €Q,
where x ; denotes the indicator function of the set E c Q. Obviously such
functions should be deemed measurable. Next, any function f: & — X which
is the p-almost everywhere limit of a sequence of simple functions is
p-measurable. The usual facts regarding the stability of measurable func-
tions under sums, scalar multiples, and pointwise almost everywhere conver-
gence are quickly seen to apply. Egorofl’s theorem on almost uniform
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convergence generalizes directly to the vector-valued case—one need only
replace absolute values with norms at the appropriate places in the standard
proof.

A function f: Q — X is scalarly p-measurable if x*f is p-measurable for
each x* € X*. A crucial step in this proof of the Orlicz-Pettis theorem will
have been taken once we demonstrate the following theorem.

Pettis Measurability Theorem. A function f: Q — X is p-measurable if and
only if f is scalarly p-measurable and there exists an E € T with p(E) = 0 such
that {(Q\ E) is a norm-separable subset of X.

PROOF. It is plain to see that a u-measurable function f: @ — X is scalarly
p-measurable and p-essentially separably valued. We concentrate on the
converse. Suppose f:Q — X is scalarly p-measurable and E€ X can be
found for which p(E)=0 and f(Q\ E) is a separable subset of X. Let
{x,:n =1} be a countable dense subset of f(3\ E). Choose {x*:n>1}C
Sys in such a way that x¥x, =|x,]l. Given w €Q\ £ it is plain that
[ f(w)|| = sup,|x*( f(w))| It follows that || f(-)|| is p-measurable. Similarly
for each n, || f(-)— x,|| is p-measurable.

Let e> 0 be given. Look at (|| f(w)— x,|| <e]= E, (we prefer to use the
probabilists’ notation here; so [||f(w)— x| <e] is {w € Q: || f(w)~—x,ll <
e}). Each E, is almost in Z (and, if g is complete, actually does belong to ),
and so for each n there is a B,€Z such that u(E,AB,)=0. Define
g: 2 - Xby

x, ifweB\(BU---UB,_)),
g(@)={0 ifuels,

It is clear that ||g(w)— f(w)]l<e for any w outside of both E and
U,(£,AB,).

We have shown that given e > 0 there is a countably valued function g
and a p-null set N,€2 such that g assumes distinct values on disjoint
members of £ and such that f and g are uniformly within & of each other on
O\ N,. Giving a little (of @) to get a little (and make g simple) quickly
produces a sequence of simple functions converging u-almost everywhere to
f, which completes the proof. a

Now for the Bochner integral.
If f: 8 > X is simple, say f(w) =L].,Xg(w)x;, then for any E € 2

[1an= £ w(ENE)x.

i=1

A p-measurable function f: & — X is called Bochner integrable if there exists
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a sequence of simple functions ( f,) such that
tim [ |f,(0)~ f(@)]du(w) = 0.
In this case [, fdp is defined for each E € = by
j;fdp= li:n/;f,,dp.

Our first result regarding the Bochner integral is due to Bochner himself and
is in a sense the root of all that is “trivial” about the Bochner integral.

Bochner’s Characterization of Integrable Functions. 4 p-measurable function
J: 8 = X is Bochner integrable if and only if [g||f|ldp < co.

ProOF. If fis Bochner integrable, then there’s a simple function g such that
follf — glldp < 7; it follows that

Jifde s fif - gldu+ figldn <oo.

Conversely, suppose f(and so || f]]) is p-measurable with [||f|/dp < .
Choose a sequence of countably valued measurable functions ( f,) such that
[lf = £l s1/n, p-almost everywhere. Here a peek at the proof of the Pettis
measurability theorem is acceptable. Since || £,(-)|| < il /(-)||+1/n almost all
the time, we see that [|| f,||du < co. For each n write f, in its native form

Q0
f(@)= X xg, (€)%, m,
m=1
where E, ;N E, ;=@ whenever i # j, all E, , belong to Z, and all the x,, ,,
belong to X. For each n pick p, so large that

[ o maesg.

L]
me=p,+1

What is left of £, is Zfw X, X, » = 8, a simple function for which

2
J17 - glidu< =~
f is Bochner integrable, and this proof is complete. m]

In a very real sense Bochner’s characterization of Bochner-integrable
functions trivializes the Bochner integral, reducing as it does much of the
development to the Lebesgue integral. This reduction has as a by-product
the resultant elegance and power of the Bochner integral. We'll say a bit
more about this eclsewhere and restrict our attentions herein to a few
more-or-less obvious consequences of the work done to this point.
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Corollary

1. (Dominated Convergence Theorem). If ( f,) are Bochner-integrable X-val-
ued functions on @, f:Q — X is the almost everywhere limit of (f,) and
150N < g(-) almost all the time and for all n, where g € L (p), then f is
Bochner integrable and [gl|f — f,||dp— 0 and [cf,dp— [cfdp for each
EeX.

2. If f is Bochner integrable, then || [¢fdpl| < [ell flldp holds for all E € Z.
Consequently, [pfdp is a countably additive p-continuous X-valued set
function on 2.

PrROOF. Part 1 follows from Bochner’s characterization and the scalar
dominated convergence theorem: {{f,(-)— f(-)ji < 2g(-) almost all the time.
Part 2 is obvious if f is simple and simple for other f. [m]

One noteworthy conclusion to be drawn from 2 above is the fact that if f
is Bochner integrable, then { [cfdp: E € 2} is a relatively compact subset of
X. In case f is a simple function, this follows from the estimate || [z fdp| <
Jallflldp <00 and the resulting boundedness of { [cfdu: E€Z} in the
finite-dimensional linear span of the range of f. For arbitrary Bochner-inte-
grable f: € — X one need only pick a simple g: € — X for which fp|i f — gl dp
is very small to see that { f.fdu: E€X} is closely approximable by
{ Jegdp: E €T}, a totally bounded subset of X. Of course this says that
given € > 0 each vector in { fgfdu: E € 2} can be approximated within e /2
by a vector in the totally bounded set { [cgdp: EEZ},s0 { [fdp: EEZ}
is itself totally bounded.

Now for the proof of the Orlicz-Pettis theorem.

Let’s imagine what could go wrong with the theorem. If £, x, is weakly
subseries convergent (i.e., satisfies the hypotheses of the Orlicz-Pettis theo-
rem) yet fails to be norm subseries convergent, it’s because there’s an
increasing sequence (k,) of pesitive integers for which (X}.,x, ) is not a
Cauchy sequence in X. This can only happen if there is an ¢>0 and an
intertwining pair of increasing sequences (j,) and (/,) of positive integers
for which j, <, < j, <I, <--- satisfying |}, x, || > e for all n. The series
=, , formed by letting y, = Zj», x, is a subseries of Z,x, and so is weakly
summable in X; in particular, (y,) is weakly null. On the other hand,
13, > e for all n. In short, if the Orlicz-Pettis theorem fails at all, it is:
possible to find a weakly subseries convergent series 2, y, for which4| y,|{ > e
holds for all n. Preparations are now complete; it’s time fortke main course.

Let © be the compact metric space { — 1,1}V of all sequences (2,) of signs
e, = 1. Let T denote the o-field of Borel subsets of §. Let p be the product
measure on { —1,1}" resulting from the identical coordinate measures on
{—1,1) that assign to each clementary evem { --1} and {1} the probability 4.
The reader might recognize (2, Z, p) as the Cantor group with its resident
Haar measure. No matter—we have a probability measure space and a
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natural function f: £ — X, namely, if (e,) is a sequence of signs, ¢, = +1,
then

1((2)) = weak lim ¥ e, 3.
k=1

Of course the weak subseries convergence of 2, y, is just what is needed to
make sense of f’s definition for any (e,) € {—1,1}™. Each coordinate
function is continuous on A so that f is scalarly u-measurable on A to
Moreover, the range of f is contained in the (weakly) closed linear span of
the vectors y,; so f() is separable. Pettis’s measurability theorem applies to
f; fis p-measurable. Finally, the range of f is contained in the weak closure
of {¥, catryx: A is a finite set of positive integers, e, = +1fork €A}, a set
easily seen to be weakly bounded; f is itself weakly bounded, hence
bounded. Bochner’s characterization theorem applies to show f is Bochner
integrable with respect to pu.

Let’s compute. Let E, be the set of all sequences e of +1’s, whose nth
coordinate ¢, is 1; E, €2 and [; fdu = y,/2. The sequence (y,) is weakly
null and sits inside the relatively norm compact set {2/ fdu: E€Z}. It
follows that each subsequence of (y,) has a norm convergent subsequence
whose only possible limit is 0 since ( y,) is weakly null. In other words, ( y,)
is norm null! This is a very difficult thing for (y,) to endure: ||y, || > ¢ > 0 for
all n and lim, || y,|| = 0, a contradiction.

Exercises

1. Weakly countably additive vector measures are countably additive. Let = be a
o-field of subsets of the set @ and X be a Banach space. Show that any weakly
countably additive measure F: Z —» X is countably additive in the norm topology
of X.

By means of a counterexample, show that the aforementioned result fails if 2
is but a field of sets.

2. The Pettis integral. Let (2,2, p) be a probability measure space and X be a
Banach space. A function f: @ — X is called scalarly measurable if x*f is measura-
ble for each x* € X*; f is called scalarly integrable if x*f € L (p) for each
x*e X"

(i) If f: & = X is scalarly integrable, then for each E € T there is an x2* € X**
such that

xpx = fs x*f(w) dp(w)

holds for each x* € X*.

(ii) If f: @ = X is bounded and scalarly measurable, then f is scalarly integrable
and each of the x2* from (i) is weak® sequentially continuous on X*.
We say that f is Pettis integrable if eachr x3* is actually in X, in which case we
denote x by Pettis ffdp.
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(iii) If f is Pettis integrable, then the map taking E€ = into Pettis [cfdp is
countably additive. Bochner-integrable functions are Pettis integrable.

+ A Banach space X is said to have Mazur’s property if weak® sequentially
continuous functionals on X* are actually weak® continuous, i.c., belong to X.

(iv) If X has Mazur’s property, then bounded scalarly measurable X-valued
functions are Pettis integrable.

(v) Separable Banach spaces enjoy Mazur’s property, as do reflexive spaces.
Let T be a set and denote by cy(T') the Banach space of all scalar-valued
functions x on I for which given ¢> 0 the set

{yeI‘:|x(7)|> z}
is finite; x € co(T') has norm sup, ¢ r|x(y)}; s0 co(T)* = /,(T).
(vi) ¢o(T) has Mazur’s property.
(vii) /,, does not have Mazur’s property.
3. A theorem of Krein and Smulian. The object of this exercise is to prove the
following:

Theorem (Krein-Smulian). The closed convex hull of a weakly compact subset
of a Banach space is weakly compact.
Let K be a weakly compact set sitting inside the Banach space X.
(i) X may be assumed to be separable. Do so!
(ii) The function ¢: K — X defined by
p(k)=k

is Bochner integrable with respect to every regular Borel measure defined on
(K, weak).

(iii) The operator I,: C(K, weaf); — X defined by
Iy(#) = Bochner [o (k) dp(k)
is weak *-weak continuous.
(iv) The closed convex hull of K lies inside of 7,(Bgx, wesk)*)-

4. The bounded multiplier test. A series 2, x, in a Banach space X is unconditionally
convergent if and only if for any (¢,) €/, the series 2,1,x, converges.

Notes and Remarks

The story of the Orlicz-Pettis theorem is a curious one. Proved by Orlicz in
the late twenties, it was lost to much of its mathematical public for most of
a decade because of a fluke. In the (original) 1929 Polish edition of Banach’s
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“Operationes Lineaires,” note was made of Orlicz’s theorem; on translation
into French the note on Orlicz’s theorem was not amended either to indicate
that with the passage of time the proof had already appeared ur to include
exact bibliographic data. As a result, when Pettis was writing his thesis, he
found himself in need of a proof of the Orlicz-Pettis theorem; in addition to
providing said proof, Pettis gave several basic applications of the resuit.
These applications are the bulk of Exercises 1 and 2.

Our proof is due to Kwapien (1974). It was shown to us by Iwo Labuda
and Jerry Uhl. Somehow it is appropriate that there be a proof of the
Orlicz-Pettis theorem that depends ultimately on Pettis’s measurability
theorem, since so much of Pettis’s mathematical work was concerned with
the subtle interplay between the weak and norm topologtes in separable
Banach spaces.

That the Krein-Smulian theorem (Exercise 3) can be derived from the
theory of the Bochner integral seems to be due to Dunford and Schwartz.
The reader will no doubt realize that Mazur’s theorem (to the effect that the
closed convex hull of a norm-compact set is norm compact) can also be
derived in this fashion.

There are other proofs of the Orlicz-Pettis theorem, and we will present
two of them in later chapters.

It is noteworthy that Grothendieck (1953) and McArthur (1967) have
proved the Orlicz-Pettis theorem in locally convex spaces.

We mention in passing that the failure of Pettis’s “weak measures are
measures” theorem for algebras of sets (indicated in Exercise 1) has been
investigated by Schachermayer, who has discovered a number of non-o-
complete Boolean algebras where Pettis’s theorem holds. Schachermayer
goes on to give several interesting characterizations of this phenomena and
pose a number of problems related to it.

Finally, we must mention that Kalton (1971, 1980) has underlined the
separable character of the Orlicz-Pettis theorem by proving a version of the
theorem in topological groups. Picking up on Kalton’s lead, Anderson and
Christenson (1973) have established a permanent link between subseries
convergence in a space and the measure-theoretic structure of the space.

For an informative, lively discussion of the Orlicz-Pettis theorem we
recommend both Kalton’s lecture and Uhl’s lecture as reported in the
proceedings of the Pettis Memorial Conference.
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CHAPTER V
Basic Sequences

In any earnest treatment of sequences and series in Banach spaces a
featured role must be reserved for basic sequences. Our initial discussion of
this important notion will occupy this whole chapter. A foundation will be
laid on which we will build several of the more interesting constructs in the
theory of sequences and series in Banach spaces.

Let’s give a brief hint of what’s planned. After introductory remarks
about bases and basic sequences, we show how Mazur proved the existence
of basic sequences in any infinite-dimensional Banach space and take
immediate advantage of those ideas to present Pelczynski’s proof of the
Eberlein-Smulian theorem. The Bessaga-Pelczynski selection principle will
then be derived and, after a brief discussion of weakly unconditionally
Cauchy series, this principle will be applied to characterize spaces contain-
ing isomorphs of ¢,. Here we must mention that the Orlicz-Pettis theorem is
rederived along with an improvement thereof in spaces without ¢, sub-
spaces. Finally, we see that c,’s appearance or absence in a dual coincides
with /_’s and use this to describe still another sharpening of the Orlicz-
Pettis theorem, this time in duals without c, subspaces. It’s a full program;
so it’s best that we get on with it.

A sequence (x,) in a Banach space X is called a Schauder basis (or basis)
for X if for each x € X there exists a unique sequence («,) of scalars such
that

n
x=1lim ) a,x,.
" k=1

It is easy to see that a Schauder basis consists of independent vectors. Of
great importance to our goals is the notion of basic sequence: a basic
sequence in a Banach space X is a sequence (x,) that is a basis for its closed
linear span [x,,].

Of some note is the fact that if (x,) is a Schauder basis for the Banach
space X, then each of the coefficient functionals x}:¥ a,x, = a,, that go
hand in hand with the x,, is continuous on X. Indeed, let S denote (for the
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moment) the linear space of all scalar sequences (s,,) for which lim £} _ s, x,
exists in X. We define J|(s, )|l to be sup, |IL% -, 5, x|l Using the uniqueness of
expansions with respect to the system (x,), one sees that the operator
B:(S,|IIlID = (X, |I-{) given by B(s,) =lim, X% _,s,x, is a norm-decreasing,
one-to-one, linear operator from S onto X. B is in fact an isomorphism. To
see why this is so, we need only show that (S, [||-|ll) is 2 Banach space and
appeal to the open mapping theorem. Now (S, [||ll) is quickly seen to be a
normed linear space; so completeness is the issue at hand. Let (y,) = ((s,,))

be a (|| [[-Cauchy sequence in S. Since
lspi - sqi, ”xl” < 2sup Z (Jpl - ‘yqi)xl
n fli=1
=2[I[y, = Yqlll,

(s,,), converges for each i. Let (s;) be the sequence of scalars obtained by
letting p — 00 5; = lims,,,. Let r be an index so chosen that for p > r, |||y,
— y|ll <&, € a preassigned positive number. In light of the definition of S”’s
norm, we see that whenever p >r, |7 (s, — s, )x;|| < € for all n. Since
y, =(s,;) € S, there is a cutoff n, such that whenever m,n > n, with m>n
say, =7, s,.x,)| < e It is now easy to see (after letting p — o) that for
m,n>n_ weget, form>n=n,,

m
E S;X;

< 3¢,

and so s =(s,)E€ S, too, and is in fact the limit of the sequence (y;)=
((s,,),»1) from S. Now that B’s isomorphic nature has been established, it
is clear that, for any k > 1, the coefficient functional x} is continuous as

Ea"x’l ¢
n

|l lxelh < 21187

A space with a basis is always separable, and it is indeed the case that
most of the natural separable Banach spaces have bases. It ought to be, in
fact, it must be pointed out that finding a basis for a well-known space is not
always an easy task. A few examples will be cited; proofs will not be
presented.

In the case of the classical separable sequence spaces ¢, and /, (for
1< p <o), the sequence (e,) of unit coordinate vectors

e,=(0,0,....0, 1, 0,0,...)

nth place

is a basis. This is easy to show. In the case of c, the space of convergent
sequences, we must supplement the sequence (e,) with the constant se-
quence 1=(1,1,...,1,...); the sequence (1,e,e,,...) is a basis for c.
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What about function spaces? Here life becomes more complicated. In the
case of C[0,1)], J. Schauder showed that the Schauder basis is a basis, where

the terms of the basis are given as follows:

f,(1)=t foreacht€[0,1).

for each 1 € [0, 1],
for each r € [4,1].

for each r € 0,1},
for each 1 € [4,1],

fort>1.

fort <4,
for each 1 € [4,3],
foreachte[%,l].

1
fi(1)=1 forallz€([0,1).
v 1
0 1
1
2t
A 2-2t
o
3
4¢
fi()=(2-%
0
1
4
0
4-—-4¢
T

Generally, if n>1 and 15 < 2", then we can define forsisy as follows:

frorer(£) =27 +1-i) whenever 2"t +1-i€[0,1].
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In the case of L,[0,1], where 1< p < oo, the Haar basis is given by

1

fi(t)=1 for all r €0,1].

op—=t— TAQ LTS O X ARV (3}

S(1) = cpo 1(0)— (3, 1(2).

Ja(®) = c 1(0)— ¢ 1f2)-

-1 —
Generally, if n 21 and 1 <i < 2", then f,.,, is given by
forii(2)= c[(2i~2)/2"”.(2i—-l)ﬂ"'](t)_c((2i—l)/2"”.2l/2"”](’)'

It is now well known that there are separable Banach spaces without
bases. Per Enflo (1973), the first to find such a space, looked inside ¢, and
was duly rewarded.

Therefore, the fact that a separable Banach space has a basis does provide
some structural information about the space. Unfortunately, unless the
space and/or the basis packs extra punch, little can be derived from this
minimal, yet hard-to-achieve, bit of information.

C[0,1] has a basis. This is of interest— not because it registers C[0,1] as a
member of the “basis club,” but because C[0,1] plays a central role in the
theory of Banach spaces, and so the fact that it has a basis can on occasion
be exploited. One special property of C[0,1] that indicates the kind of
exploitation possible is its universality among separable Banach spaces:
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every separable Banach space is isometrically isomorphic to a closed linear
subspace of C[0,1]. C[0,1]'s universality, in tandem with the fact that C[0,1]
has a basis, pays off.

The ‘Haar system is a basis for all the L,1<p<ow. Forl<p<oco,itis
more: it is an unconditional basis; i.e., not only does each member of the
space have a unique series expansion in terms of the basis, but the series is
unconditionally convergent. The spaces spanned by unconditional bases
enjoy finer structural properties than spaces without unconditional bases;
the exercises hint at a few of the added pleasures. Incidentally, the Haar
system is not an unconditional basis for L,[0,1}; in fact, L,[0,1] does not
have an unconditional basis of any kind.

It is worth remarking that showing the Schauder and Haar systems are
bases for the spaces indicated above is not difficult; to establish the
unconditionality of the Haar system (in case 1 < p <o) is highly nontrivial.

Oftentimes, whether a space has a basis is in itself difficult to answer, and
even on responding to this question, the possibility of the existence of an
unconditional basis looms large. For instance, it was not until 1974 that
Botschkariev showed that the disk algebra has a basis: the Franklin system
(i.e., the Gram-Schmidt orthogonalization of the Schauder system in the
Hilbert space L,[0,1]); soon thereafter, Pelczynski showed that the disk
algebra does not have an unconditional basis. Each proof has real claims to
depth. Again, the Franklin system was shown by Wojtaszczyk to be an
unconditional basis for the classical Hardy space H'(I?) of functions
analytic inside the disk and with integrable boundary vaiues; it is an
absolute must to point out that earlier, Maurey in a real tour de force of
analytical know-how had shown that H'(D) has an unconditional basis
without explicitly citing one. After Carleson had had some clarifying effect
on the question, Wojtaszczyk got into the act. None of these developments
has the faintest resemblance to “easy” mathematics. not the work of
Wojtaszczyk, or Carleson, or Maurey, especially not Maurey!

Bases are important; bases with added features, even more so. Basic
sequences are likewise important, especially for general structure-theoretic
studies. Since our purpose is, to some extent, the study of convergence of
sequences and series and the effect thereof on the structure of a Banach
space, it is not too unbelievable that basic sequences will occupy some of
our attention. How does one recognize a basic sequence?

The basic test is provided by our first real result.

Theorem 1. Let (x,) be a sequence of nonzero vectors in the Banach space X.
Then in order that (x,) be a basic sequence, it is both necessary and sufficient
that there be a finite constant K > Q so that for any choice of scalars (a,),»,
and any integers m < n we have

S ax | <

i=1

S ax,|.

i=1




V. Basic Sequences 37

The proof is easy but well worth the time to be carefully studied. We present
it in all its important (and perhaps in a few of its other) details.

PROOF. Suppose (x,) is a basis for its closed linear span [x,] and define
Py:[x,]—[x,] by
k
Pk(zanxn) = Z ApXp.
n n=1

Each P, is a bounded linear operator [since each of the coordinate function-
als x! (15 jsk) is continuous), and for any x €[x,}, we have x =
lim, _, P, x. It follows from the Banach-Steinhaus theorem that sup,|| P, || <
oo. Thus, should m < n and £, a,x, € X, then

m
E G Xi || = szakxk
k=1 k
= Pnzakxk
k
n
=P, E ap Xy
k=1
S|Pl
k=1
< supl| Bl

Let K=sup, Pl
Now suppose (x,) is a sequence of nonzero vectors for which there is a
K > 0 such that whenever m <n,

m
E a;Xx;

i=1

n
Z a;x;

i==]

holds. Plainly, if a vector x has a representation in the form ¥, a,x
lim,Y"_,a;x;, that representation is unique; this follows, for instance, from
the fact that for any j, k =1,

Jj+k

E a;x;
i=j

la,lllx = lla;x;ll < K|

so that

Y ax,|.

izy

=x ll

Regarding representable elements, we notice that each vector in the linear
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span of the x,, is clearly representable, by a finite sum in fact. The condition
that whenever m < n,

n
Z a;x;

i=1

m
2 a;x;

i=1

<K

ensures that the operators P,,, from the linear span of {x,} to itself, given
by P,(Za,;x,)=1X}.,a,x,, are bounded linear operators each of whose
operator norms are < K; it follows that each P, has a bounded linear
extension, still called P,, projecting [x,:n2>1] onto [x,:1<n<m]=
lin{ x,, ..., x,, }. A noteworthy effect of this is the continuity of the “coordi-
nate functionals” x? defined on the span of {x,} by x?(X,a,x,) = a,; the
x: have unique extensions to all of [x,: n>1}, too, given by xf(x)x, =
P,(x)— P,_,(x). Now we’re ready for some action. We claim that every
element of [x,] has a representation (necessarily unique, as we have seen) in
the form lim,X;_,a,x, =X,a,x, Let x<€[x,] and e> 0 be given. Then
there is a o €lin{x,, ...,x,,}, for some n(e), such that ||x — o|f <e. But
now if n > n,, then

lx — Px|| <|lx — o[+ |lo — Poll+||P0 — P,x]|
= lix = ol|+ fjo — ol|+ [|P,(c — x)|
Se+|PJles(1+K)e.
It follows that x = lim P, x = lim X} _, x¥(x)x,. ]

As an application of Theorem 1 we prove that every infinite-dimensional
Banach space contains a subspace with a basis. We follow S. Mazur’s lead.

Lemma 2. Let F be a finite-dimensional linear subspace of the infinite-dimen-
sional Banach space X, and let ¢ > 0. Then there is an x € X such that ||x|| =1
and

Iyl < (1+ e}y + Ax|l (1)
for all y € F and all scalars \.

PROOF. Assuming (as we may) that e <1, pick a finite /2 net { y,, ...,y }
for Sy and sclect y?, ..., yf in Sye so that y*y,=1 for i=1,2,... k. Take
any x in Sy for which y¥x = y¥x =--. = y#x = 0. This x will do. In fact, if
y € S, then there is a y, within £/2 of y; find that y,. Take any scalar A and
compute

4
ly + Axfl 2 lly, + Axll=lly = yll 2 lly, + Axll - 5

e € 1
2}’1‘()’i+xx)_5=1—52 1+e¢"

This shows (1) in case || y|| =1; homogeneity takes care of therestof F. O
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Corollary 3. Every infinite-dimensional Banach space contains an infinite-
dimensional closed linear subspace with a basis.

PROOF. Let X be the ambient space and &> 0. Choose a sequence (e,) of
positive numbers such that [13.,(1+e¢,)<1+e. Take x, €S, and pick
X5 € Sy such that .

lxll < (14 &) lIx + Ax,|)

for every scalar multiple x of x,; a look at the preparatory lemma will tell
you where to look for x,. Let F be the linear span of x, and x,. Pick x; € S
such that

Ixll < (1+ ;) lIx + Ax,)f

for every x in F; again, a look at the preparatory lemma should help in the
selection of x;. Continue. The sequence (x,) so generated is basic with basis
constant <1+ . What’s more, if P, is the nth projection operator, then
"Pn" Snﬁn(l"'ei)' (m)

A short detour seems well advised at this juncture. This detour is
suggested by A. Pelczynski’s proof of the Eberlein-Smulian theorem via
basic sequences. This proof, of which Whitley’s is a sympathetic cousin,
builds on a modification of Mazur’s construction of basic sequences.

Lemma 4. Let B be a bounded subset of the Banach space X and xg* € X**
be a point of B***** in X** such that ||x3* — bl| > 8 > O for all b € B. Then
there exist a sequence (x,) in B and an x§ € X* such that

1. lim, x8x, = x3*xg 2 lixg*|l/2.

2. (x,— x3*) is a basic sequence in X**.

3. Should x§* *0, then x3* &([x,— x§*], the closed linear span of
(x, = x5°).

ProoF. Choose (c,), o S0 that 0 <c¢, <1 for all n > 0 and so that whenever
1< p<g<oo,I1f2)1-¢)>1—c,.

Take any x§ € X * such that x3*x§ > ||x§ *||/2. By hypothesis, there is an
x, € B such that

|xgx, — x3*xg| <1.
Let E, denote the 1-dimensional subspace of X** spanned by x, — x3*; S,
is compact, and so we can pick a ¢;/3 net ey,...,eyq, for Sg. Let
xt, ..., XN, be chosen from Sy. in such a way that

[
Ixtel>1- 3.
By hypothesis, there is an x, € B so that

8¢, -
xa - X3 xSl < Iy = X3 o lx Ry % — X8 KRl < ¢t
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all hold. Notice that for any e € E, and any scalar ¢ we get
le+1(x, = x3*) |2 @ =c))llell 2)

Homogeneity of the norm allows us to prove (2) for e € Sz, and conclude to
its validity for all members of E,. Two possibilities come to mind: |t| < 2/8
and || > 2/8. First, |t] < 2/8: pick e; so that |je —¢,|| <, /3 and look at
what happens.

"e + t(x2 - xg‘) " Zl(e + t(x2 - x3‘))(x,‘)|
> |xfe|—|t(xa = x§* ) (x|~ IxFlille — el

=1-¢,=(1-¢)llell.
The second possibility, |z > 2/8, is easy, too:

2
le +¢(xa = x3*) || 2 Flx2 = x3*II~ el

2
> 38 ~lell22-1=12(1-¢,)|lell-

Let’s check up on a linear combination of x, — x§* and x, — x3*, say
1,(x, = x3*)+1,(xq, x3*). Letting e in (2) be 1,(x, — x§*), we get

Ity (xy = xg*)+6:(x, = x3*) | 2 (1= &) er (x, = x5°) |-

Suppose we repeat the above procedure.

Let E, denote the 2-dimensional subspace of X** spanned by x, — xg*
and x, — x3*. There are elements e,, ... ey, € Sg, (not necessarily related
to the ¢, /3 net) which form a ¢, /3 net for Sg . Pick x§,...,x%) € Sx. s0
that
)

'5‘ .

By hypothesis, there is an x, € B such that

x¥e|>1—

dc,

jxgx; — xg*xg| < i, [xfx3 = xg*xP), ..., | XXy X3 — x5 * X%l < 6
all hold. Notice that for any e € E, and any scalar 7 we have

lle + ¢(xs = xg*) |2 (1= c2)llell. (3)

We leave the verification to the reader; actually two possibilities ought to
come to mind (on reducing the problem to |le|| =1), and each is handled
precisely as before with only the names being changed. If a linear combina-
tion £,(x, — x3*)+ 1,(x, — x3*)+1;,(x; — x3*) is under consideration, then
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(3) tells us [on letting e = #,(x; — x§*)+ 1,(x, - x3*); naturally] that

Hz:(x-xm 5 (x|

=] =1

>2(1-¢,)

Proceeding thusly, we find a sequence (x,) in B such that for all n > 1,
bex, — x§ ol <3

and for whichgiven 1< p<g<oo and scalars ¢, ... ,1,,

ST (o) £t

i=p
It is now plain that we can find (x,) and x3 to satisfy 1 and 2. To see that
should xg* # 0, we could achieve 3 as well, we must notice that
oc
M closed linear span { x, — x3*, x;,, — x§*,...}’=0;
k=1 ’

A x; = x§*)
fe]

so eventually the subspaces [x, — x3*], . « expel x3* from their premises. If
done at k k,. just lpok at the sequence (x,,,,‘o),,zl C B; it achieves 1, 2,”
and 3. a

Now we are ready for the Eberlein-Smulian theorem.

The Eberein-Smulian Theorem (Pelczynski Stylej. Let B be a bounded
subset of the Banach space X. Then the following statements about B are
equivalent:

1. The weak closure of B is not weakly com;vact. .

2. B contains a countable set C with no weak limit point in X.

3. There’s a basic sequence (x,) in B such that for some x§ € X*, lim x8x,
> 0. '

4. B is not weakly sequentially compact in X.

PROOF. Statement 1 implies 3. By statement 1 there must exist an x3* € -

X“\X in the weak®* closure of B up in X**. Notice that d(x§*,'B) >

d(x3*, X)> 0. Applying Lemma 4, we find a sequence (x,,) in B and an
x3 € X* such that

(i) lim,xgx, = x§*xg = ||xg*|l/2.
(i) (x, — x§*) is a basic sequence in X**,
(ili) x3* & [x, — x§*] = closed linear span of {x, — x3*},.

Let Z = [x8*,{x,},21)- Since x3* is not in {x,], nor is it in [Xx, — xg*],
each of these subspaces is of codunension 1 in Z. Therefore, there are
bounded linear projections A, P: Z — Z such that PZ =[x,] and AZ =[x,
— x3*), where Ax3*=0= Pxg§*. Obviously, if z** € Z, then there’s a



42 V. Basic Sequences

scalar #,.o =t such that z** — Pz** = (x3*; therefore, if z** &x, - x3*),
2%* = Az** = APz** By symmetry, PAx-x for any x €[x,). It follows
that P maps [x, — x3*] onto {x,] in an isomorphic manner. Since P(x,—
x3*)=x, for all n, (x,) is a basic sequence which satisfies lim lim, x3x, >
[Ixgil/2 > O, thanks to (i).

Statement 3 implies 2. Let C = {x,}, where (x,) is the basic sequence
alluded to in 3. The inequality lim, x3x, >0 eliminates the origin as a
potential weak limit point of C, yet the origin serves as the only possible
weak limit point of any basic sequence. The verdict: C has no weak limit
points.

That 2 implies 1 and 4 is plain; therefore, we concentrate on showing that
4 in the absence of 2 is contradictory. The assumption of statement 4 leads
to a sequence (y,) of points of B, none of whose subsequences are weakly
convergent to a member of X. Since no subsequence of (y,) is norm
convergent, we can pass to a subsequence and assume that { y,} is norm
discrete; { y,} has a weak limit point x, in X —after all, we are denying 2.
X, is not a norm limit point of { y, }; so, with the exclusion of but a few y,,
we can assume d(x,,{ y,}) > 0. We can apply Lemma 4 again to extract a
subsequence (x,) from (y,) so that (x, — x,) is a basic sequence. Remem-
ber we're denying 2; so {x,} has a weak limit point, but x, is the only
candidate for the position since (x, — x,) is basic! (x,) converges weakly to
xo, which is a contradiction to 4. ]

More mimicry of Mazur’s technique provides us with a utility-grade
version of a principle for selecting basic sequences due to Bessaga and
Pelczynski (1958). Though we will soon be presenting the complete unex-
purgated story of the Bessaga-Pelczynski selection principle, the following
milder form is worth pursuing at this imprecise moment.

Bessaga-Pelczynski Selection Principle (Utility-Grade). Ler (x,) be a weakly
null, normalized sequence in the Banach space X. Then (x,) admits of a basic
sequence.

PROOF. Let (e,), o be a sequence of positive numbers each less than 1 for
which [13.,(1—¢,) >1—¢,.

Suppose that in our quest for a basic subsequence we have fought our
way through to choosing x,,, x, , ...,x,, Withn; <n, <-.- <n,, of course.
Let Y(k) be the linear span of x,, ... ,x -

Pick z,,...,2,, in Sy, so that each y € Sy, lies within ¢, /4 of a z.
Correspondingly, there are z¢, ... ,z3 in Sy. so that 27z, >1— ¢, /4 for each
i=1,2,...,m. Eventually we run across an x, _— where n, ., >n,, for

which |28x,  |123x,, | ....|znx,, | are all less than e, /4. We claim that
for any y € Sy(k) and any scalar a,
Iy +ax,, J2(1=¢)iyl 4)

Sound familiar? It should. A quick peek at what we did in Corollary 3 or in
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Lcmmaf will tell the story: (x,,) is a basic subsequence of (x,). Let’s verify
0)) (agam?. Two possibilities come to mind: |a] <2 and |a] 2 2. If |a] <2,
then on picking z, (1 <i < m) so that ||y — z,{| <e, /4, we see that
Iy +ax,, 2|z (y +ax,,, )|
2 |zpz)= |22 (y — 2))| = |2# (ax,, )|

e
> (1- %)=ty - 2~ 24z, |

e € 2e
2(1-%)-% -2 o1 = (-l
If jaf 2 2, then
Iy +ax,, ll2|alix,, I-lly}=2-12(1-¢)yll. o

The natural bases for classical spaces play a central role in the study of
Banach spaces, and the ability to recognize their présence (as a basic
sequence) in different circumstances is worth developing. For this reason we
introduce the notion of equivalent bases.

Let (x,) be a basis for X and ( ,) be a basis for Y. We say that (x,) and
(»,) are equivalent if the convergence of L, a,x, is equivalent to that of
r.a,),.

Theorem 8. The bases (x,) and (y,) are equivalent if and only if there is an
isomorphism between X and Y that carries each x,, to y,.

PROOF. Recall that in our-easliercomments about bases-we-renormed X-by
taking any x = L s, x, and defining ||| x||j by

n
lix{il-= sup “'Z "kxk;l'
N It
Result: An isomorph of X in which (x,) is still a basis but is now a
“monotone” basis, i.c., IE7. 5 X, lll < X2 s, x|l for any m, n > 1. Notice
that if (x,) and (y,) are equivalent, then they are equivalent regardless of
which equivalent norm is put on their spans. So we might as well assume
each is monotone to begin with; we do so and now look at the operator
T: XY that takes L, a,x, to X,a,y, (What other operator could there
be?); T is one to one and onto. T also has a closed graph; this is easy to see
from the monotonicity of each basis. T is an isomorphism and takes x, to
y.- Enough said about the necessity of the condition; sufficiency requires but
a moment of reflection, and we recommend such to the reader. m]

Equivalence of bases is a finer gradation than the isomorphic nature of
their spans. Indeed, Pelczynski and Singer showed that anv infinite-dimen-
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sional Banach space adrmttmg a basis has uncountably many.noneguivalent
bases! What’s the sifuation wnh natural bases for special spaces? How can
we recognize them? For some bases, sansfactory answers are known. Orte
such case is the unit vector basis of ¢,. Corollary 7 below characterizes c,’s
unit vector basis, and Theorem 8 gives an elegant application to the theory
of series in Banach spaces.

A series L, x, is said to be weakly unconditionally Cauchy (wuC) if, given
any permutation = of the natural numbers, (X} _;x,,,) is a weakly Cauchy
sequence; alternatively, X, x, is wuC if and only if for each x* € X*,
T, Ix*x,| <o0.

Theorem 6. The following statements regarding a formal series X,x, in a

Banach space are equivalent.

1. £,x, is wuC.
2. There is a C > 0 such that for any t)el,

Z L Xy

k=1

sup

n

<Csup|1 |-

3. For any (1,) € ¢y, L,t,X, converges.
4. There is a C > O such that for any finite subset A of N and any signs + we
have IlZnEA * xn“ <C
PROOF. Suppose 1 holds and define T: X* — [, by
Tx* = (x*x,).

T is a well-defined linear map with a closed graph; therefore, T is bounded.

From this we see that for any (¢,) € B, and any x* € By.,

x* ¥ txg = (11 r1,0,0... )(Tx*))|
k=1

<IITH

Part 2 follows from this.
If we suppose 2 holds and let (¢,) € ¢, then keeping m <n and letting
both go off to oo, we have

n
Y X,

k=m

<C sup |t{]|—0

m<k<n

from which 3 follows easily.
If 3 holds, then the operator T: ¢, — X defined by

T(1,)= Zrnxn

cannot be far behind; part 3 assures us that T is well-defined. T is plainly
linear and has a closed graph. T is bounded. The values of T on B_ are
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bounded. In particular vectors of the form L, ¢ , + x,,, where A ranges over
the finite subsets A of N and we allow all the +’s available, are among the
values of T on B, , and that is statement 4.
Finally, if 4 is in effect, then for any x* € B,. we have
x* Y tx,= ¥ tx%,

n€A nel

Y +x,|sC

nel

for any finite subset 4 of N and any choice of signs +. That ,|x*x,| < o0
fullows directly from this and along with it we get part 1. (m]

Corollary 7. A basic scquence for which inf, ||x,|| >0 and ¥, x, is wuC is
equivalent to the unit vector basis of c,.

Proor. If (x,) is a basic sequence and L, ¢, x,, is convergent, then (L} _,¢, x,)
is a Cauchy sequence. Therefore, letting n tend to infinity, the sequence

n n—-1
It i3l =K X texe ~ X tex,
k=1 k=1

tends to 0; from this and the restraint inf,,|ix,|| > 0, it follows that (¢,) € ¢,.
On the other hand. if {x,) is a basic sequence and L, x, is wuC, then

L,t,x, converges for each (,) € c,, thanks to Theorem 6, part 3.
Consequently, a basic sequence (x,) with inf, ||x,[l >0 and for which

L, x, is wuC is equivalent 10 the unit vector basis of c;. o

Theorem 8. Let X be a Banach space. Then, in order that each series L, x,, in
X with L, |x*x,| <oc for each x* € X* be unconditionally convergent, it is
both necessary and suffictent that X contains no copy of c,.

PrOOF. If X contains a copy of c,, then the series corresponding to ¥,e,,
where e, is the nth unit coordinate vector, is wuC but not unconditionally
convergent.

On the other hand, if X admits a series L, x,, which is not unconditionally
convergent yet satisfies ¥,)x*x,| <oo for each x* € X*, then for some
sequences ( p,),(q,) of positive integers with p, <gq,<p,<g,<---, we
have inf,[E" , x,|| > 0. Letting y, = Ziv , x,, we see that ( y,) is weakly null
and inf, )|y, |l > 0. Normalizing ( y,), we keep the weakly null feature and can
utilize the Bessaga-Pelczynski selection principle and Corollary 7 to find a
basic subsequence of (y,) equivalent to c,’s unit vector basis. Theorem $
takes over: a copy of ¢, is contained in X. a

The above results of Bessaga and Pelczynski can bée used to give another
proof of the Orlicz-Pettis theorem. Indeed, a weakly subseries convergent
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series L, x, in a Banach space is wuC in that space. Should T,x, not be
subseries convergent, three increasing sequences (p,), (g,), and (r,) of
positive integers could be found with p, < ¢, < p, <g, <---, such that the
sequence ( y,) given by

9n
o= X x,
1™ Pa

satisfies || y,[| = €> 0 for some judiciously chosen e. Now L, y, is a subseries
of ¥,x, and so is weakly subseries convergent too. In particular, (y,) is
weakly null and inf, || y,]| > 0; there is a subsequence (z,) of (y,) that is
basic. A look at Corollary 7 will tell you that (z,) is equivalent to the unit
vector basis (e,) of ¢y, yet a further look will convince you that Le, is not
weakly convergent. This flaw proves the theorem.

The study of a sequential problem ofttimes reduces to analysis inside
some space with a basis, and approximation in terms of expansions with
respect to this basis plays an important role in the study under way.
Frequently useful in such ventures is the notion of a block basic sequence:
Let (x,) be a basis for a Banach space, (p,) and (g,) be intertwining
sequences of positive integers (e, p,<¢q,<p,<¢,<--), and y,=
' £f2, a,x, be nontrivial linear combinations of the x,; we call the sequence
(»,) a block basic sequence taken with respect to (x,), or simply a block
basic sequence. It is easy (and safe) to believe that ( y,) is basic (just look at
Theorem 1). The following results of Bessaga and Pelczynski establishes the
fundamental criterion for locating block basic sequences.

Bessaga-Pelczynski Selection Principle. Ler (x,) be a basis for X and
suppose (xY) is the sequence of coefficient functionals. If ( y,,) is a sequence in
X for which

lim|| y,,|{ > 0

m
and
limx2y, =0 foreachn,
m

then (y,) has a subsequence that is equivalent to a block basic sequence taken
with respect to (x,).

PRrOOF. First, we find a way of ensuring that a constructed basic sequence is
equivalent to an existent one. We prove a stability result of enough interest
by itself that we call it Theorem 9.

Theorem 9. Let (z,) be a basic sequence in the Banach space X, and suppose
(z}) is the sequence of coefficient functionals (extended to all of X in a
Hahn-Banach fashion). Suppose ( y,) is a sequence in X for which L |22\ |||z,
= Y\l <1. Then ( y,) is a basic sequence equivalent to (z,).
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In fact, if we define T: X - X by
Tx=Y z*(x)(z,— y,),
n

then ||T||<Z,llz2)llz, — yall <1. It follows that (I+T+T*+ --- +T")
converges in operator norm to (I —T)~!; I — T is a bounded linear opera-
tor from X onto X with a bounded inverse. Of course, (I — T Xz,) = y,.

Back to the Bessaga-Pelczynski selection principle, let X > 0 be chosen so
that for any m,n>1

m m+n
E @, X SK Z GeXp it
k=1 k=1

By passing to a subsequence, we might as well assume that | y,|| = e> 0 for
all n. With but a slight loss of generality (none of any essential value), we
can assume that || y,,|| =1 for all m. Now we get on with the proof.

Since (x,) is a basis for X, y; admits an expansion,

h= Zx:(yl)xn'
n
Hence there is a g, such that
Y mO0% < s
xg(r)x, || < .
ka1 4K?’

Since lim,, x2*(y,,) = 0 for each n, there is a p, >1= p, such that

91

1
x? X g < —.
k);l k(}’p,) k N aK2*

Again, (x,) is a basis for X; so y, admits a representation,

Ypr= L2 (5,,) %0
L

Hence there is a g, > g, such that

©

Z x2( yp,)"k

k’q:*l

1
< .
4K2¢

Once more, appeal to the assumption that lim , x%y,, = 0 for each n to pick a
P3 > P, such that ‘

92

Z x:(yp,)xk

k-l.

1
<—.
4K2?

Got your p’s and g’s straight? Let
G+

Z,= Z xl’(yp,,,,)xk'
k=g,+1
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Note that

dn+1 oc

1=||yp,‘.u=(2‘f+ r + X )x:‘(yp...)n
k

=1 k=gq,+1 k=gq,,1+1

-]

n
< ( >+ Y )x,f(ypm)x,‘

k=1 k=g, +1

izl

SRS S
aK2"*? " 4K2"*?

It follows that ||z,|| > 4 for all n. (z,) is a block basic sequence taken with
respect to (x,) and has the same expansion constant K as does (x,); i.e.,
whenever k < j, we have.

S K‘

k
E a;z;

i=1
From this and the fact that ||z,)| > 4 we see that the coefficient functionals of
(z,) satisfy ||2¥|| < 4K. Now we look to Theorem 9:

Yhzxlz, =y, IS 4K Nz, — y,. I
n n

+liz,\.-

J
z Q,Z,-

=1

0

q’l
(z+ 5 )x:u,,‘,)xk
k=1

k-qn+l+l

<4KY

n

54K§:( 1 _, 1)

4K2"1 | 4K2+?
=z(

1 1 1
2n+2+2n+2)=-2-' o

For a quick application of the selection principle we present the following
theorem of Bessaga and Pelczynski.

Theorem 10. The following are equivalent:

1. X* contains a copy of c,.
2. X contains a complemented copy of I,.
3. X* contains a copy Z of |, for which
a. Z is isomorphic to I when Z is given the relative weak* topology of X*
and |, has its usual weak* topology as l,’s dual.
b. There is a projection P: X* — X* which is weak*-weak* continuous
and for which PX* = Z,

PROOF. Only the derivation of 2 from 1 needs proof.
Our derivation of 2 will turn on the following propetty of I, if I, is a
quotient of the Banach space X, then |, is isomorsuc (0 a complemented
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subspace of X. The easy proof of this can be found in Chapter VII, but
insofar as it is key to the present situation, a word or two is appropriate. Let
Q: X — 1, be a bounded linear operator of X onto /,; by the open mapping
theorem there is a bounded sequence (b,) in X for which @b, =e,. The
sequence (b,) is equivalent to the unit vector basis of /;; furthermore, if
R:l, - X is defined by Re, = b,, then QR is the identity operator. From
this it follows that RQ: X — X is a bounded linear projection from X onto
[b,), a space isomorphic to /,.

Let T: ¢y = X* be an isomorphism and denote, as usual, by (e,) the unit
vector basis of ¢y. Look at T*: X** =/, and let S =T*|,; for any x € X,
Sx = (Te,(x), Tey(x),...). Since T is an isomorphism, T* is a quotient
map. B, is weak® dense in By.. thanks to Goldstine’s theorem; therefore,
S(By) is weak® dense in T*B,., a neighborhood of the origin in /. It
follows that for some sequence (A,) of scalars bounded away from 0 and
some sequence (x,) in By, the Sx, are weak* close to the A ey, where e} is
the nth unit vector in /;. How close? Well, close enough to ensure that
lim,(Sx,Xe,)=0 for each k and that the (Sx,Xe,) are bounded away
from zero. The norm of Sx,, is kept away from zero by its value on e,; also
the values of e, on the Sx, tend to zero as n goes off toward infinity. By the
Bessaga-Pelczynski selection principle, (Sx,) must have a subsequence
(Sx,,) that is equivalent to a block basic sequence taken with respect to the
unit vector basis of /,. But it is easy to see that block bases built out of /’s
unit vectors are equivalent to the original unit vector basis of /, and, in fact,
span a subspace of /, complemented in /, and, of course, isomorphic to /;.

Therefore, S followed by a suitable isomorphism produces an operator
from X onto a space isomorphic to /,. X admits /, as a quotient. /, is
isomorphic to a complemented subspace of X. o

Now to return to series in Banach spaces we note the following:

Corollary 11. In order that each series L, x?* in the dual X* of a Banach space
X for which ¥,|x*x| < oo for each x € X be unconditionally convergent, it is
both necessary and sufficient that X* contain no isomorphic copy of .

PrROOF. If X* contains an isomorphic copy of /., then it contains a weak*
isomorphic copy Z of /_, as described in part 3 of Theorem 10. Looking at
the unit vectors of c, as they appear in Z, they look just as they do in
1,:L,e, is weak* unconditionally convergent in /, to 1 but certainly not
norm convergent to anything; the same can be done in Z.

On the other hand, if L, |x*x| < oo for each x € X, then (X_,x?) is a
weak* Cauchy sequence in X*, and so

weak* lim ) x?
" k=1
exists by Alaoglu’s theorem. Furthermore, if (2,) € ¢,, then L, |1, x*(x)| < 00
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for each x € X and
weak* lim ) ¢, x}
" k=1
exists as well. An operator is “born”; define T: ¢, » X* by
T((t,)) = weak* lim Z ,x}.
k=1

T is linear and has closed graph; hence, T is a becunded linear operator.
Regardless of the finite set A of positive integers considered or of the choices
of signs + made,

> tx:

nel

<|IT.

A5+

nej

L, xy is wuC. If X* does not contain /, it cannot contain ¢, by Theorem
10; in such a case, X, x* is unconditionally convergent by Theorem 8. O

Just as Theorem 9 ensures that sequences close to basic sequences are
themselves basic, our next result tells us that if a basic sequence spans a
complemented subspace and if you nudge the sequence with delicate enough
stroke, then the resulting sequence is basic and spans a complemented
subspace.

Theorem 12. Let (z,) be a basic sequence in the Banach space X with
coefficient functionals (z*). Suppose that there is a bounded linear projection
P: X = X onto the closed linear span [z,)] of the z,. If (y,) is any sequence in
X for which

LAIPY Nz Nz, — yall <1,
then (y,) is a basic sequence equivalent to (z,) and the closed linear span | y,|
of the y, is also complemented.in X.

PROOF. Since P is a linear projection with nontrivial range, ||P)| >1. It
follows then from Theorem 9 that ( y,) is a basic sequence equivalent to
(z,)- The condition set forth in the hypotheses is easily seen to be just what
is needed to prove that the operator 4 : X — X defined by

Ax=x—Px+ Y z*(Px)y,

satisfies |4 — I]) <1. Therefore, 4 is an isomorphism of X onto itself. It is
easy to see that Az, = y,. Finally, if we look at Q = APA !, then we should
see that Q% = APA-YAPA~'= APPA~'= APA~'= Q; since the range of Q
is [ ,], the proof is complete.
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We remark that Theorem 12 finds frequent use in the study of the
structure of Banach spaces; in fact, we will have an opportunity to apply it
in a somewhat typical situation in Chapter VII.

There is a more-or-less natural sequence of events that precedes the
application of Theorem 12 in special spaces. Suppose, for instance, you're
working in the space /, (some finite p >1). One way to produce a comple-
mented subspace of /, is to build vectors in the following fashion: Take
sequences (m, ) and (n,) of positive integers with

lsmsm<mysn,<---<m,<n,<my ., -,

and build nonzero blocks

nx
b= ) age,.
)= my
Then the closed linear span of the b, is isomorphic to./, (this is not hard to
see), the sequence (b, /|b.|]) is a basic sequence equivalent to the unit
vector basis (e, ) of /,, and the closed linear span of the b, is complemented
inl,

Indeed, only the last of these statements needs any real demonstration.
The basic sequence (b, /|5, ) has a companion sequence (8;') of coefficient
functionals defined on all of /, (after suitably extending via the Hahn-Banach
theorem). If x €1/, then Px =X, B¥(X* x;e,)b, /|\b;|| defines a bounded
linear projection P:/, — I, whose range is the closed linear span of the b,.

It is one of the more pleasant facts of life that many of the situations in
which one wants to find a complemented copy of /, somewhere, there is a
sequence like b, near by, close enough in fact to apply Theorem 12.

Exercises
1. Renorming spaces to improve basis constants. Let (x,) be a basis for the Banach
space X.

(i) Show that X can be given an equivalent norm ||| || such q:at for any scalars
a),d5,...,8p,dpmi1s ... ,4,, We have

m
Z a;x;

i=1

n
2 a;x;

<

(i) Suppose (x,) is an unconditional basis for X. Show that there is a constant
K >0 so that given any permutation  of the natural numbers and any
x=3 x¥*(x)x, € X, we have

Zx:(n)(x)xw(n)
n

<K
|

Lt (x)x, |-

(iii) Show that if (x,) is an unconditional basis for X, then.X can be renormed
so that, whenever 7 is a permutation of the natural numbers and x =
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L.x*(x)x, € X, we have

Zx:(n)(x)xq(,,) <
n

Lx2(x)x,

(iv) If (x,) is an unconditional basis for X, x € X, and t=(t,)€l,, then
L t,x3(x)x, € X. Show that there exists a constant K > 0 such that for
any x =% x*(x)x,€ X and any (¢,) € B, , we have

I Ztnx(x)x, sKI Zxr(x)x, ]

(v) If (x,) is an unconditional basis for X, then X can be renormed so that for
any x € X and any (1,) € B, , we have

n

<

Lxr(x)x,

2. The unit vector bases of c, and I,.

(i) A normalized basic sequence (x,) is equivalent to the unit vector basis of
¢, if and only if there is a constant X > 0 such that

n
z clxi

i=1

<K sup |c}
1sisn

holds for any » and any scalars ¢y, ¢,, ... ,c,.

(ii) A normalized basic sequence ( x,) is equivalent to the unit vector basis of [,
if and only if there is a constant X > 0 such that

n ”n
z Ic,lski Y ax,
iw=1

1=1
holds for any n and any scalass ¢, ¢,, ... ,¢,.

(iii) Any time there is an x* € Sy. such that x*x, > 8 > 0 for some fixed 8 and
all terms x,, of a normalized basic sequence (x,), then (x,) is equivalent to
the unit vector basis of /.

3. Shrinking bases and boundedly complete bases. Let (x,) be a basis for X and
(xY) be the coefficient functionals.

(i) (x2) is always a basis for its closed linear span in X*; further, (x*) is a
“weak* basis” for X*, i.e., each x* € X* has a unique representation in
the form x* = weak* lim, X} _,a, x}.

(ii) Each of the following is necessary and sufficient for (x*) to be a basis for
X*:
(a) The closed linear span of {x*:n2>1}is X*.
(b) lim,,||x*}], = O for each x* € X*, where ||x*||, is the norm of x* when
x* is restricted to the linear span of {x,.,q, X,,2,..-}.
A basis having the properties enunciated in (i) is called shrinking. A
companion notion to that of a shrinking basis is that of a boundedly complete
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basis; the basis (x,) is called boundedly complete whenever given a sequence
(a,) of scalars for which {}_,a,x,:n2>1} is bounded, then im,X}_,q, x,
exists.

(iii) If (x,,) is a shrinking basis for X, then (x?) is a boundedly complete basis
for X*.

4. Boundedly complete bases span duals. Let (x,) be a boundedly complete basis
for X, let (x*) denote the sequence of coefficient functionals, and let [x?*]
denote the norm-closed linear span of the x? in X*.

(i) Show that for each x** € X** the series

gx“(x:)x,,

converges to an element of X. [ Hinr: A diagonal argument can be used to
find a sequence (y,) in By such that lim,x2y, = x**x? holds for k =
1,2, .... This lets one realize vectors of the form L., x**(x*)x; as limits
of vectors that look like ¥, x*(y,)x,; these vectors—and hence their
limits—all lie inside a fixed ball of X]

(i) The map P that takes an x** in X** to the vector L, x**(x})x,in X is a
bounded linear projection on X** that has for a kemel {x**€
X**: x**x* =0 for all x* €[x7]}.

(iii) X is isomorphic to [x7}*.

(iv) (x?) is a shrinking basis for {x}].

NB One can conclude from this exercise and its predecessor that a basis ( y,) for

a space Y is shrinking if and only if the sequence ( y,") of coefficient functionals

is a boundedly complete basis for Y*.

8. Bases spanning reflexive spaces. Let X be a Banach space with basis (x,) whose

coefficient functionals will be denoted by (x2). X is reflexive if and only if (x,)
is shrinking and boundedly complete.

6. Unconditional bases. Let X be a Banach space with an unconditional basis (x,).
(i) If (x,) is not boundedly complete, then X contains an isomorphic copy of
Co-
(ii) If (x,) is not shrinking, then X contains an isomorphic copy of /,.
[Hints: The renorming of Exercise 1(v) helps matters in each case. Similarly, it
helps to know what to look for if you are looking for c,’s unit vector basis or /,’s
unit vector basis; a peek at Exercise 2 may be worth your while.]
(iii) A Banach space with ar unconditional basis is reflexive if and only if the
space contains no copy of ¢, or /.

7. Weak* basic sequences. Let X be a separable Banach space. A sequence (y,") in
X* is called weak® basic provided that there is a sequence (y,) in X so that

(7. »,¥) is a biorthogonal sequence (ym),=3,.) and for each y* in the
weak*-closed linear span of the y* we have y* ~ weak® lim,X7_, y*(y,) y*.
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If (x7) is a weak*-null normalized sequence in X*, then (x*) admits a
subsequence ( y,*) that is weak* basic.
[Hint: Pick e,>0, e, <1 so that X, e, and I1,(1~¢,) ' <oo. Using Helly’s
theorem and X’s separability, extract a subsequence ( y,*) of (x*) and locate an
increasing sequence (F,) of finite subsets of Sy so that the linear span of U, F, is
dense in X in such a way as to simultaneously achieve (a) given ¢ €
Lin{y?, ....»*), lloll =1, there is x € F, so that x — ¢ has functional norm <
e./3on lin{yf,...,y*} and (b) |y, 1(x)|<e,/3, x€F, ]

. Unconditionally converging operators. Let X and Y be Banach spaces. A bounded

linear operator T: X — Y is said to be wnconditionally converging if ¥, Tx, is
unconditionally convergent whenever L, x, is weakly unconditionally Cauchy; T
is called completely continuous if T maps weakly convergent sequences into norm
convergent sequences; T is called weakly completely continuous if T maps weakly
Cauchy sequences into weakly convergent sequences.

(i) A bounded linear operator T: X — Y fails to be unconditionally converging
if and only if there is a subspace S of X isomorphic to ¢, such that the
restriction T'|g of T to S is an isomorphism.

(i1) Weakly compact operators and completely continuous operators are weakly
completely continuous; in turn, weakly completely continuous operators
are unconditionally converging.

. Auerbach bases. If X is an n-dimensional Banach space, then there exist
Xj,....X, €Sy and x{, ... ,x; € Sy. satisfying x*x, =3, . [ Hint: On choosing
Xy, ..., X, € Sy 50 as to maximize the determinant D(x,, ... ,x,), with respect to

sonic designated coordinate system, think of Cramer’s rule.}

A Banach space is reflexive if each subspace with a basis is. It is an easy
consequence of the Eberlein-Smulian theorem that a Banach space is reflexive if
and only if each of its separable closed linear subspaces is. In this exercise we
outline a proof that leads to the claim of the exercise.

(i) A set G in the dual Y* of a Banach space Y is called norming if for each
y €Y, liylt=sup{Ig(»)i: g €G. l|gll=1}. I G is a norming set in Y* and
(y,) is a normalized sequence in Y for which lim,g(y,) =0 for each g € G,
then (y,) has a basic subsequence, with first term y, if you please.

(ii) If X is a (separable) Banach space containing a weakly Cauchy sequence
that isn’t weakly convergent, then X contains a subspace with a nonshrink-
ing basis.

[Hint: Let x?* be the weak*lim,x,, where (x,) is weakly Cauchy but not
weakly convergent, and set x** = x¥* — x,_, for n > 2. Applying (i) to (y,) =
(x7*), Y=X**, and G = X*, obtain a basic subsequence (x,*) of (x7*) with
xp*=xp*. Let Z, =[x, ), Z;=[x2*], and Z; = [x7" ], all taken up in X**.
Then Z,C X, Z,¢€ Z,, dinZ,/2Z,)=1, Z,C Z,, and dim(Z, /Z,) =1. Show
Z, and Z, are isomorphic. Now using the fact that (x, ) bas no weak limit in X,
show that (x7*) and (x." ) are not shrinking bases.]

Rye
(iii) If X is a (separable) Banach space containing a sequence (x,) in By having
no weak Cauchy subsequence, then X contains a subspace with a non-
shrinking basis.



Notes and Remarks 55

[Hint: Pick a countable norming set G in Sy., using the attainable assump-
tion of X’’s separability, diagonalize, and use (i) on an appropriate sequence of
differences of the distinguished sequence (x,,).]

11. Subspaces of I, (1< p <o) or cy. If X=1, (1< p <o) or X =c,, then every
mﬁmtc-dlmensxonal closed linear subspaoc Y of X contains a subspace Z
isomorphic to X and complemented in X.

Notes and Remarks

Schauder bases were introduced by J. Schauder who, in addition to noting
that the unit coordinate vectors form a basis for the spaces ¢, and /, (if
1 < p <o), constructed the Schauder basis for the space C[0,1]. Schauder is
also responsible for the proof that the Haar system forms a basis for L,[0,1)
if 1< p<oo.

The automatic continuity of coefficient functionals was first noted by
Banach whose method of proof has been the model for all further improve-
ments. It’s plain from the proof where the ideas behind Exercise 1 were
born. Theorem 1 was known to Banach, as was Corollary 3. On the one
hand, the proof of Theorem 1 appears in Banach’s “Operationes Lineaires,”
whereas only the statement of Corollary 3 is to be found there. Indeed, it
was not until 1958 before any claim to a proof of Corollary 3 was made, at
which time three proofs appeared! M. M. Day (1962), B. Gelbaum (1958),
and C. Bessaga and A. Pelczynski (1958) each gave correct proofs of
Corollary 3. Interestingly enough it is probable that none of these proofs
was the one known to Banach; it seems likely that Banach knew of Mazur’s
technique for producing basic sequences, and it is that technique that we
follow here. The first exposition of Mazur’s technique for the general
mathematical public is found in a 1962 note of A. Pelczynski. In any case,
this technique has found numerous applications since, with the exercise on
weak® basic sequences being typical; the result expressed in Exercise 7 is
due to W. B. Johnson and H. P. Rosenthal.

From Theorem 6 on, the results of this chapter are right out of the
Bessaga-Pelczynski classic, “ Bases and unconditional convergence in Banach
spaces.” The influence that paper has on this chapter is, or ought to be,
plain.

It is an arguable choice to include as exercises, rather than as part of the
text, the results of R. C. James (1950, 1951, 1982). In any case, it is certain
that this material is now accessible to the hard-working student, and so,
with a few hints provided, we have chosen to reward that student with
BExercises 3 to 6. It is a fact that the material of these exercises is
fundamental Banach space theory and the stymied student would do well to
take an occasional peek at the originator’s words on these topics, particu-
larly his wonderful exposition in the American Mathematical Monthly,
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(1982). Actually, regarding Exercise 4, the fact that boundedly complete
bases span duals was first noted by L. Alaoglu (1940).

Exercise 9 is due to Auerbach and, as yet, has no perfect infinite-dimen-
sional analogue. On the one hand, not all separable Banach spaces even
have a basis, whereas, on the other hand, those that do, need not have a
basis where both the basis members and the coefficient functionals have
norm one; each of these facts were first found to be so by Enflo (1973).
However, there is another notion that offers a viable alternative for generali-
zation, the notion of a Markushevich basis. A biorthogonal system
(x,, x*); e 1s called a Markushevich basis for the Banach space X if the span
of the x; is dense in X and the span of the x* is weak* dense in X*.
Separable Banach spaces have long been known to have (countable)
Markushevich bases; whether one can choose the sequence (x,, x}),,, so
that ||x,Jl =1=||x7|| as well is still unknown. The best attempt has been by
R. Ovsepian and A. Pelczynski (1975), modified by Pelczynski, to prove that
if X is a separable Banach space and €> 0, then there exists a (countable)
Markushevich basis (x,, x}), >, for X for which ||x,||||x¥|| <1+ ¢ for all n.

Exercise 10 outlines the proof of a theorem of Pelczynski, following his
footsteps quite closely. The use of bases to characterize reflexivity has been
one of the more fruitful pastimes of general basis theory. In addition to
James’s results (outlined in these exercises) and Pelczynski’s, we cite the
beautiful (and useful) result of M. Zippin (1968): If X is a separable Banach
space with a basis, then X is reflexive if and only if each basis of X is shrinking
if and only if each basis of X is boundedly complete.
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CHAPTER VI
The Dvoretsky-Rogers Theorem
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