LECTE




Graduate Texts in Mathematics 8 2

Editorial Board
¥. W, Gehring P. R. Halmos {Managing Editor)
. C. Moore



Raoul Bott
Loring W. Tu

Differential Forms in
Algebraic Topology

With 92 Illustrations

S

Springer-Verlag
New York Heidelberg Berlin




Racul Bott Loring W. Tu

Department of Mathematics Department of Mathematics
Harvard University University of Michigan
Cambridge, Massachusetts 02138 Ann Arbor, Michigan 48109
USA USA

Editorial Board

P. R. Halmos F. W. Gelring C. C. Moore

Munaging Editor Diepartment of Diepartingnt of

Department of Mathematics Mathematics
Mathematics University of Michigan University of California

Indiana Universily Aun Arbor, MI 48109 Berkeley, CA 94720

Bloomington, IN 47401 USA USA

USA

AMS Classifications; 57 Rxx, 58 Axx, 14 F40

Library of Congress Cataloging in Publication Data
Hot(, Raoul, 1924
Differential forms in algebraic topology.
(Graduatc tcxts in mathemaltics; 82)
Bibliography: p.
Includes index.
1. Differential topology. 2. Algébraic
topology. 3, Differeatial forms. 1. Fu,
Lorving W, TI. Title. IJI. Series.
QAG13.6.B67 51472 81-9172
AACR?2

© 1982 by Springer-Verlag New York Inc.

All rights reserved. No part of this book may be transtated or reproduced in any
form without writien permission from Springer-Vertag, 175 Fifth Avenue, New
York, New York 10010, U.5. A,

Printed in the Uniled States of America.

SRE7054321

1SBN 0-387-90613-4 Springer-Verlag New York Heidelberg Berlin
ISBN 3-540-90613-4  Springer-Verlag Berlin  Heidelberg New York

For
Phyliis Bott
and
Lichu and Tsuchih Tu



Preface

The guiding principle in this book is to use differential forms as an aid in
exploring some of the less digestible aspects of algebraic topology. Accord-
ingly, we move primarily in the realin of smooth manifolds and use the
de Rham theory as a prototype of all of cohomology. For applications to
homotopy theory we also discuss by way of analogy cohomology with
arbitrary cocfficients.

Although we have in mind an audience with prior exposure to algebraic
or differential topology, for the most part a good knowledge of lincar
algebra, advanced calculus, and point-sct topology should suflice. Some
acquaintance with manifelds, simplicial complexes, singular homology and
cohomology, and homotopy groups is helpful, but not really necessary.
Within the text itself we have stated with care the more advanced results
that are needed, so that a mathematically mature reader who accepts these
background materials on faith should be able to read the entire book with
the minimal prerequisites. '

There are more materials here than can be reasenahly covered in a
one-semester course. Certain sections may be omitted at first reading with-
out loss of continuity. We have indicated these in the schematic diagram
that follows.

This book is not intended to be foundational; rather, it is enly meant to
open some of the doors to the formidable edifice of modern algebraic
topology, We offer it in the hope that such an informal account of the
subject al a semi-introductory level fills a gap in the literature.

It would be impossible to mention all the friends, colleagues, and stu-
dents whose ideas have contributed to this book. But the senior anthor
author would like on this occasion to express his deep gratitude, first
of all to his primary topelogy teachers E. Specker, N. Steenrod, and

vii



viii Preface

K. Reidemeister of thirty years ago, and secondly to H. Samelson, A.
Shapiro, I. Singer, I.-P. Serre, F. Hirzebruch, A. Borel, J. Milnor, M.
Atiyah, S.-s. Chern, J. Mather, P. Baum, D. Sullivan. A. Haefliger, and
Graeme Segal, who, mostly in collaboration, have continued this word of
mouth education to the present; the junior author is indebted to Allen
Iatcher for having iniliated him into algebraic topology. The reader wilt
find their influence if not in all, then certainly in the more landable aspects
of this book. We alse owe thanks to the many other people who have
helped with our project: to Ron Donagi, Zbig Fiedorowicz, Dan Freed,
Nancy Hingslon, and Deane Yang for their reading of various portions of
the manuseript and for their critical comments, to Ruby Apguirre, Lu Ann
Custer, Barbara Moody, and Caroline Underwood for typing services, and
to the stafl of Springer-Verlag for its patience, dedication, and skill.
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Introduction

The most intuitively evident topological invariant of a space is the number
of connected picces into which it falls. Over the past one hundred years or
so we have come to realize that this primitive notion admits in some scnse
two higher-dimensional analegues. These are the homotopy and cohomology
groups of the space in question,

The evoiulion of the higher homotopy groups from the component con-
cept is deceptively simple and essentially unique, To describe it, let nq{X)
dencie the set of path components of X and if p is a point of X, let (X, p)
denote the set ny{X) with the path component of p singled out. Also, corre-
sponding to such a point p, let ©, X denote the space of maps (continuous
functions) of the unit circle {z € C : |z| = 1} which send 1 to p, made into a
iopological space via the compact open topology. The path components of
this so-called loop space 1, X are now taken to be the elements of 7,(X, p):

(X, p= TIO(QpX; h

The composition of loops induces a group structure on n (X, p) in which
the constant map § of the circle te p plays the role of the identity; so
endowed, #,(X, p) is called the fundamenial group or the first homotopy
group of X at p. It is in general not Abelian. For instance, for a Riemann
surface of genus 3, as indicated in the figure below:
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7 (X, p) is generated by six elements {x,, Xz, X3, V1, ¥2, ¥3} subject to the
single retation

3

n [xe, pl=1,

i=1
where [x;, y;] denotes the connnutator and 1 the identity. The fundamental
group is in fact sufficient to classify the closed oriented 2-dimensional sur-
faces, but is insufficient in higher dimensions.

To return to the general casc, all the higher homotopy groups =, (X, p)

for & = 2 can now be delined through the inductive formula:

m X, p) = ﬂk(ﬂp X, p).

By the way, if p and p’ are two points in X in the same path component,
then

m(X, p) = n{X, p),

but the correspondence is not necessarily unique. For the Riemann surfaces
such as discussed above, the higher n,’s for &£ = 2 arc all trivial, and it is in
part for this rcason that =, is sufficient to classify them. The groups =, for
k = 2 turn out to be Abeclian and therefore do not scem to huve been faken
seriously until the 193(s when W. Hurewicz delined them {in the manuer
above, among others) and showed that, far from being irivial, they consti-
tuled the basic ingredicnts nceded Lo describe the homotopy-theoretic
properties of a space.

The great drawback of thesc easily defined invariants of a space is that
they are very difficult to compute. To this day not all the homotopy groups
of say the 2-sphere, ic, the space x? + ¥* 4+ z% = 1 in R?, have been com-
puted! Nonetheless, by now much is known concerning the general proper-
ties of the homotopy groups, largely due to the formidable algebraic tech-
nigues to which the “cohomological extension™ of the component concept
lends itself, and the relations between homotopy and cohomology which
have been discovered over the years.

"This cohomological extension starts with the dual point of view in which
a component is characterized by the property that on it every locally con-
stant function is globhally constant. Such a component is sometimes called a
conneclied compaonent, to distinguish it from a path component. Thus, if we
define H%X) to be the vector space of real-valued locally constant functions
on X, then dim H°(X) tells us the number of connected components of X,
Note that on reasonable spaces where path componenis and connected
components agree, we therefore have the formula

cardinality mo{X) = dim H%X),

Still the two concepts are dual io each other, the first using maps of the unit
interval into X to test for connectedness and the second using maps of X
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into I for the same purpose. One further difference is that the cohomology
group H°(X) has, by fiat, a natural R-module structure.

Now what should the proper higher-dimensional analogue of H(X) be?
Unlortunately there is no decisive answer here. Many plausible definitions
of HXX) for k > 0 have been proposed, all with slightly different properties
but all isomorphic on “reasonable spaces”. Furthermore, in the realm of
differentiable manifolds, all these theories conincide with the de Rham
theory which makes its appearance there and constitutes in some seuse the
most perfect example of a cohomalogy theory. The de Rham theory is also
unigue in that it stands at the crossroads of topolegy, analysis, and plysics,
enriching all three disciplines,

The gist of the “de Rham extension” is comprehended most easily when
M is assumed to be an open set in some BEuclidean space B”, with coordi-
nates x,, ... ,%,. Then amongst the C* functions on M the locally constant
ones are precisely those whose gradient

— &

vanishes identically. Thus here H°(M) appears as the space of solutiens of
the differential equation df = 0. This suggests that H!(M) should also
appear as the space of salutions of some natural differential equations on
the manifold M. Now consider a 1-form on A

8=3 adx,

where the s are C® functions on M, Such an expression can be integrated
along a smeoth path 9, so that we may think of 0 as a function on paths y:

yr——r.[ 8.
L7

It then suggests itseif to seck those 8 which give rise {o locally constant
functions of y, Le, for which the integral j‘y ¢ is left unaliered under small
variations of y—but keeping the endpoints fixed! (Otherwise, only the zero
1-form would be locally constant.) Stokes’ theorem feaches us that these
line integrals are characterized by the dilferential equations:

B, da

_—d_q

3% o (written d8 = 0).

On the other hand, the fundamental theorem of calculus implies that
§, df =f(Q) —f(P), where P and Q are the endpoints of y, so that the
gradients are trivally locally constant,

One is here irresistibly led to the definition of H'{M) as the vector space
of locally constant line integratls modulo the trivially constant ones. Similarly
the higher cohomology groups H¥M) arc defined by simply replacing line
integrals with their higher-dimensional analogues, the k-voltume integrals.
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The Grassmann calculus of exterior differential forms facilitates these exten-
sions quite magically. Moreover, the differential cquations characterizing
the locally constant k-integrals are seen to be C* invartants and so extond
naturally to the class of C™ manifolds.

Chapter I starts with a rapid account of this whole development, as-
suming litlle more than the standard notions of advanced calculus, linear
algebra and general topolegy. A nodding acquaintance with singular hom-
ology or cohomolopgy helps, but is not necessary. No real familiarily with
differential geometry or manifold theory is required. After all, the concept of
a manifold is really a very natural and simple extension of the calculus of
several variables, as our fathers well knew. Thus for us a manifold is essen-
tially a space constructed from open sets in R" by patching them together in
a smooth way, This point of view goes hand in hand with the “com-
putability” of the de Rham theory. Indecd, the decisive dillerence between
the x’s and the H"s in this regard is that if a manifold X is the union of
two open submanifolds U and V:

X=UwV,

then the cohomolegy groups of U, V, U m V, and X are linked by a much
sironger relation than the homotopy groups arve. The linkage is expressed
by the exactness of the following sequence of linear maps, the Mayer—
Vietoris sequence:

C_’ Ifk-i- l{X)""’ .
d

H* — HMU T s _)
(_. (X)— HY( ]% H(V) H{U 1

— B NU V)j
0— HYXy— -

starting with k& = 0 and extending up indefinitely. 1n this sequence every
arrow stands for a linear map of the vector spaces and exactness asserts
that the kernal of each map is precisely the image of the preceding one. The
horizontal arrows in our diagram are the more or lcss obvious ones induced
by restriction of functions, but the coboundary operator d* is more subtle
and uses the existence of a partition of wnity subordinate to the cover
{U, ¥} of X, that is, smooth functions py and p, such that the first has
support in I/, the second has support in ¥, and py + py =1 on X. The
simplest relation imaginable between the H¥s of U, ¥, and U v ¥V would of
course be that H* behaves additively; the Mayer—Vietoris sequence teaches
us that this is indeed the case if U and V are disjcint. Otherwise, there is a
geamelric feedback from HYU n V) described by 4%, and one of the hall-
marks of a toplologist is a sound intuition for this d*.

The exactness of the Mayer—Vietoris scquence is our first goa] once the
basics of thc de Rham theory are developed. Thereafter we establish the
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gecond essential property for the computability of the theory, namely that
for a smoothly contractible manifold M,

R for k=20,

X, —
H{M)_{o for k> 0.

This homotopy invariance of the de Rham theory can again be thought of as
having evelved from the fundamental theorem of calculus, Indeed, the for-
mula

f{x)dx =d fo{u) du

shows that every line integral {i-form) on R' is a gradient, whence
IHY(R") = 0. The homotopy invariance is thus established for the real line.
This argument also paves the way for the gencral case,

The two propertics that we have just described constitute a verification
of the Eilenberg—Steenvod axiovms for the dc Rham theory in the present
context. Combined with a little geometry, they can be used in a standard
manner to compute the cohomology of simple manifalds. Thus, for spheres
one finds

R for k=0 ar n
by
&) = {0 otherwise,
while for a Riemann surface X, with g holes,
12 for k=0 or 2
H“{Xg] = { R for k=1
0 otherwise,

A more systematic treatment in Chapler I leads to the computability
proper of the de Rham theory in the following sense. By a finite good cover
of M we mean a covering X = {U,}Y_, of M by a finitc number of open sets
such that all intersections U,, m --- m U,, are either vacuous or contract-
ible. The purcly combinatorial data that specify for each subset
{ay, ... 00 of {1, ..., N} which of these two alternatives holds are called
the incidence data of the cover, The computability of the theory is the
assertion that it can be computed purely from such incidence data. Along
lines established in a remarkable paper by André Weil [1], we show this to
be the case for the de Rham theory. Weil’s point of view constitutes an
alternate approach to the sheaf theory of Leray and was influential in
Cartan’s theorie des carapaces. The beauty of his argument is that il can be
read both ways: either to prove the computability of de Rham or to prave
the topological invariance of the combinatorial prescription.

To digress for 1 moment, it is difficult not to speculate about what kept
Poincaré from discovering this argument forty years earlier. One has the
feeling that he already knew every step along the way. After all, the homo-
topy invariance of the de Rham theory for R" is known as the Peincaré
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lemma! Nevertheless, he veered sharply from this poini of view, thinking
predominantly in terms of triangulations, and so he in facl was never able
to prove cither the computability of de Rham or the invariance of the
combinatorial definition. Quite possibly the explanation is that the whole
C™ point of view and, in pacticular, the partilions of unity were alien to him
and his contemporariss, steeped as they were in real or complex analytic
questions.

D¢ Rham was of course the first 10 prove the topological invariance of
the theory that now bears his name. He showed that it was isomorphic to
the singular colomology, which is trivially--ie., by definition—--tepologically
invariaut. On the other hand, André Weil’s approach relates the de Rham
theory to the Cech theory, which is again topologically invariant.

But to return to the plan of our book, the bulk of Chapter I is actually
devoted to explaining the fundamental symmetry in the cohomology of a
compact oriented manifold. In its most primitive form this symmetry asserts
that

dim H%(M) = dimm H"™%M).

Poincaré seems to have immediately realized this consequence of the locally
Euclidean nature of a manifold, He saw it in terms of dual subdivisions,
which turn the incidence relations upside down. In the de Rham (heory the
duality derives from the intrinsic pairing between differential forms of arbi-
trary and compact support. Indced consider the de Rham theory of R! with
compactly supported forms. Clearly the only function with compact sup-
port on R! is the zero function. As for 1-forms, not every l-form g dx is
new a gradient of a compactly supported function f; this happens if and
only if j??w g dx = 0. Thus we see that the compactly supported de Rham
theory of R' is given by

0 for k=0

k rrply
HC(R]—{R for k = 1,

and is just the de Rham theory “upside down.” This phenomenon now
extends inductively to R" and is finally propagaied via the Mayer—Vietoris
sequence to the cohomology of any compact oriented manifold.

Onc virtue of the de Rham theory is that the essential mechanism of this
duality is via the familiar operation of integration, coupled with the natural
ring structure of the theory: a p-form 8 can be muliiplied by a g-form ¢ to
produce a (p + g)-form 8 A¢. This multiplication is “commutative in the
graded sense™:

OAG = (— )" AQ.

{By the way, the commutativity of the de Rham theory is another reason
why it is more “perfect” than its other more general brethren, which
become commutative onty on the cohomology level) In particular, if ¢ has
compact supporl and is of dimension n — p, where # = dim M, then inte-
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gration over M gives rise to a pairing
@, ¢)— J OA @,
A

which descends to cohomology and induces a pairing
HA(M) @ H' (M) R.

A more sophisticated version of Poincaré duality is then simply that the
pairing above is dual; that is, it establishes the two spaces as duals of each
other.

Although we return to Poincaré duality over and over again throughout
the book, we have not attempted Lo give an exhaustive treatment, (There is,
for instance, no mention of Alcxander duality or other phenomena dealing
with relative, rather than absolute, theory.) Iustead, we chose to spend
much {ime bringing Poincaré duality to life by explicitly constructing the
Poincaré duval of a submanifold N in M. The problem is the following.
Suppose dim N =k amd dim M = n, both being compact oriented. Inte-
gration of a k-form w on M over N then defines a lincar functional from
HYM)} to R, and so, by Poincaré dualily, must be represented by a coho-
mology class in H* %(M). The gueslion is now: how is one lo construct a
representative of this Poincaré dual for N, and can such a representative be
made to have support arbitrarily close to N7

When N reduces 10 a point p in M, this question is easily answered. The
dual of p is represented by any n-form e with support in the component A,
of p and with total mass 1, that is, with

J w=1,
M,

Note also that such an @ can be found with support in an arbitrarily small
neighborhoaod of p, by simply choosing coordinates on M centercd at p, say
X1y «rey Xq, 0d setting

o = Mxydx, ... dx,

with 1 & bump function of mass 1. (In the limit, thinking of Dirac’s §-func-
tion as the Poincaré dual of p leads vs to de Rhamy’s theory of currents.)

When the point p is replaced by a more general submanifold N, it is casy
to extend this argument, provided N has a product neighborhood D{N) in M
in the sense that D(N) is diffeomorphic to the product N x D"~*, where
p"~¥ is a disk of the dimension indicated. However, this need not be the
case! Just think of the center circle in a Mobius band. {is neighborhoods
are at best smaller Mobius bands.

In the process of constructing the Poincaré dual we are thus confronted
by the preliminary question of how to measure the possible twistings of
neighborhoeds of N in M and to correct for the twist. This is a subject in its
own right nowadays, but wis initiated by H. Whitney and H. Hopf in just
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the present context during the Thirties and Forties. Its trade name is fiber

bundle theory and the cohomological measurements of the global twist in
such “local producis” as I}{N) are referred to as characteristic classes, In the
last foriy vears the theory of characteristic classes has grown to such an
extent that we cannol do it justice in our book. Still, wec hope to have
covered it sufficiently so that the reader will be able to see its ramilications
in both differential geometry and topology. We alse hope that our account
could serve as a good introduction to the connection between characteristic
classes and the global aspects of the gauge theories of modern physics.

That a connection between the equations of mathematical physics and
topology might exist is not too surprising in view of the classical theory of
electricity. Indeed, in a vacuum the electromagnetic field is represented by a
2-form in the (x, y, z, t}-space:

w=(E dx+ B, dy+E do)dt + H,dydz— H, dx dz + I, dx dy,

and the form w is locally constant in our sense, ie., dew = 0, Relative to the
Lorentz metric in 1* the star of w is defined to be

*me —(H dx+ Hydy - H, dz)dt + E, dydz — E, dx dz + E, dx dz,

and Maxwell’s equations simply assert that both w and its star are closed:
dw = 0 and d *+ w = 0. In particular, the cohomclogy class of * @ is a well
defined object and is often of physical interest.

To take the simplest example, consider the Coulomb potential of 2 point
charge ¢ at rest in the origin of our coordinate system. The field w gener-
atcd by this charge then has the description

@ = —-d(l ' dt)
2

with 7= (x> + »* + z9)1* % 0. Thus w is defined on R* — &,, where R,
denotes the f-axis. The de Rham cohomology of this set is casily computed
to be

R for k=02

HY{R* — R) = { .
( ) 0 otherwise,

The form @ is manifestly cohomologically uninteresting, since it is d of a
1-form and so is trivially “clesed ”, i.e., locally constant. On the other hand
the * of e is given by

_g_xdydz—~ydxdz+zdxdy
4 rd :

which turns out o generate H2 The cohomology class of o can thus be
interpreted as the charge of our source.

In seeking differcntial equations for more sophisticaled phenomena than
electricity, the modern physicists were led to equations {the Yang-Mills)
which fit perfectly into the framework of characteristic classes as developed
by such masters as Pontrjagin and Chern during the Forties.

*CU:

i
B
l
E
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Having sung the praises of the de Rham theory, it is now time to admit
its limitations. The trouble with it, is that it only tells part of the cohomol!-
ogy story and from the point of vicw of the homotopy theorists, only the
simplest part. The de Rham theory ignores torsion phenomena. To explain
this in a little more detail, recall that the homotopy groups do not behave
well under the union operation. However, they behave very well under
Cartesian products. Indeed, as is quite easily shown,

X % Y) = n(X)D n (¥)

More generally, consider the situation of a fiber bundle (twisted product).
Here we are dealing with a space £ mapped onto a space X with the
fibers—i.e., the inverse images of points —all homeomorphic in some uni-
form sense to a fixed space Y. For fiber bundles, the additivity of . is
stretched into an infinite exact sequence of Mayer-Vietoris type, howoever
now going in the opposite dircction:

¢ o (¥ 2 B) > mfX) - m_y (Vo> oo

"This phenomenon is of coutse fundamental in studying the twist we talked
about carlicr, but it also led the homotopy theorists to the conjecture that
in their much more flexible homotopy category, where objects are con-
sidered equal if they can be deformed into each other, every space factors
jrito a twisted product of irreducible prime factors. This turns cut to be true
and is called the Posintkov decomposition of the space. Furthermore, the
“prime spaces” in this context all fiave nontrivial homotopy groups in anly
one dimension. Now in the homotopy category such a prime space, say with
nontrivial homotopy group = in dimension n, is determined uniqucly by n
and » and is denoted K{m, #). These K(n, n)-spaces of Eilenberg and Mac-
Lane therefore play an absolutely fundamental role in homotopy theory.
They behave well under the standard group operations. In particular, corre-
sponding to the usual decomposition of a finitely generated Abelian group:

1= (@R(p)) @ il
P

into p-primary parts and a free part (said to correspond to the prime at
infinity), the K(m, 1) will factor into a preduct

K(n, n) = (]__[ K(n'?, n]) - K{(Z, ny.
p

Ii follows that in homotopy theory, just as in many questions of number
theory, one can work one prime at a time. In this framework it i3 now quite
easy to explain the shortcomings of the de Rham theory: the theory is
sensitive only to the prime at infinity!

After having encountered the Cech theory in Chapter II, we make in
Chapter 111 the now hopefully easy transition to cohomology with coeffi-
cients in an arbitrary Abclian group. This theory, say with coefficients in the
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integers, is then sensitive to all the p-primary phenomena in homotopy
theory.

The development sketched here is discussed in greater detail in Chapter
11, where we also apply the ideas to the computation of some relatively
sinple homotopy groups. All these computations in the final analysis derive
from Serre’s brilliant idea of applying the spectral scquence of Leray to
hortotopy problems and from his coining of a sufficiently general definition
of a twisted product, so that, as the reader will see, the Postnikov decompo-
sition in the form we described it, is a relatively simple matter, It remains
therefore only to say a few words to the uninitiated about what this “spec-
tral sequence” is.

We remarked earlier that homotopy behaves additively under products,
On the otber hand, cohomology does nol. In fact, ncglecting matters of
{orsion, i.c., reverting te the de Rham theory, one has the Kimneth fornuda;

HYX x Y)= Y H¥{X) @ HYY)
ptag=k

The next question is of course how cohomology behaves for twisted prod-
ucts, It is herc that Leray discovered some a priori bounds on the extent
and manner in which the Kiinneth formula can fail due to a twist. For
instance, one of the coroliaries of his spectral scquence is that if X and Y
have vanishing cohomoelogy in posilive dimensions less than p and g re-
speetively, then however one twists X with Y, the Kiinneth formula will
hold up to dimension d < min{p, g).

Armed with this sort of information, ove can first of all compute the
early part of the cohomology of the K(r, n) inductively, and then deduce
which K(m, n) must occur in a Posinikov decomposition of X by comparing
the cohomotlogy on both sides. This procedure is of course at best ad hog,
and thereforc gives us only fragmentary results. Still, the method points in
the right direction and can be codified to prove the computability (in the
logical sense) of any particular homotopy group, of & sphere, say. This
theorem is due to E. Brown in full generality. Unfortunately, however, it is
pot directly applicable to explicit caleulations-cven with large computing
machines.

So far this introduction has been written with a lay audience in mind,
We hope that what they have read has made sense and has whetted their
appetities, For the more expert, the following summary of the plan of our
book might be helpful.

In Chapter T we bring out from scratch Peincaré duality and its various
extensions, such as the Thom isomorphism, all in the de Rham category,
Along the way all the axioms of a cohomology theory are encountered, but
at first treated only in our restricted context,

In Chapter II we iniroduce the techniques of spectral sequences as an
extension of the Mayer—Vicioris principle and so are led to A. Weil's
{ech~de Rham theory. This theory is later used as a bridge to cohomology
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in general and to integer cohomelogy in particular. We spend considerable
time patching together the Buler class of a sphere bundle and explering its
relation to Poincaré duality. We also very briefly present the sheal-theoretic
proof of this duality.

In Chapier ITI we come to grips with spectral sequences in a more
formal manner and describe some of their applications Lo homotopy theory,
for example, to the computation of 75(5%). This chapter is less self-contained
than the others and is meant essentially as an introduetion to homotopy
theory proper. In the same spirit we close with a shor{ account of Sullivan’s
rational homotopy theory,

Finally, in Chapter IV we use the Grothendieck approuch towards char-
acteristic classes to give a more or less self-contained treatment of Chern
and Pontrjagin classes, We then relate them to the cohomology of the
infinite Grassmannian.

Unforfunately there was no time left within the scope of our book to
cxplain the functorial approach to classifying spaces in general and to make
the connection with the Eilenberg—MacLane spaces. We had to rclegate this
material, which i1s most naturally explained in the framework of somi-
simplicial theory, 1o a mythical second volume. The novice should also be
warned that there are all too many other topics which we have not men-
tioned. These include generalized cohomology theories, cohomolegy oper-
ations, and the Adams and Eilenberg—Moore spectral sequences. Alas, there
is also no mention of the truly geometric achievements of modern topology,
that is, handlebody theory, surgery theory, and the struclure theory of
differentiable and piecewise linear manifolds. Still, we hope that our velume
serves as an infroduction to all this as well as to such topics in analysis as
Hodge theory and the Ativah-Singer index theorems for elliplic differenital
operators,



CHAPTER 1
de Rham Theory

§1 The de Rham Complex on R

To start things off we define in this section the de Rham cohomology and
compute a few examples, This will turn out to be the most important
diffeornorphism invariant of a manifold. So let x4, ..., x, be the linear
coordinates on R". We define £¥* to be the algebra over B generated by
dxy, ..., dx, with the relations

(dxt)z =0
dxi dxj = ’_"dxj dx;, f 5‘&_}'.
As a vector space over B, {3* has basis

1, dx;, dxydx;, dxydxgdxy, ..., dx, ... dx,.
i<j i=zj<k

The C* differential forms on B" are elements of
Q¥R = {C™ functions on B"} @ Q*.
123

Thus, if w is such a form, then @ can be uniquely written as th .
dx,1 ... dx, where the cocfficients f;, ..., are C* functions, We also write
Zf; dx, The algebra Q*(IR”)-— @:; ¢ QR" is naturally graded,
where 0°(F"} consists of the C% g-forms on R", There is a differential
opcrator
d 1 QE(R") —> Q8 (R,
defined as follows:

Niffe QUR", then df = ¥ 3ffdx; dx,
i) if o = f; dx;, then dow = Y dfy dx;.
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ExaMmpLE 1.1. If @ = x dy, then do = dx dy.

This 4, called the exterior differentiation, is the uliimate abstract exten-
sion of the usual gradient, curl, and divergence of vector calculus on R, as
the example below partiatly illustrates.

ExaMpLE 1.2. On I3, QR and Q*(R3) are each 1-dimensional and Q}(R?)
and Q3(R?) are each 3-dimensional over the €% functions, so the following
identifications are possible:

{functions} = {0-forms} = {3-forms}
—r f e fdxdydz
and
{vector fields} ~ {i-forms} o {2-forms}

X=(,i. i) fiditfidy+fidzes fy dy dz — f, dx dz -+ f3 dx dy.
On functions,

ar
dy

af

Py dz .

af
df—axdx+ dy +

On t-forms,
d{fy dx + f3 dy -+ f> dz)

afs @ fz) (6}"1 af. 3) 81, E)fl)
= =3 2 ) g R S} P (e KA Y 3
(ay Jz y dz dz  Ox dx dz ax 9y dx dy

On 2-lorms,

ofy  0fs @)‘5)
4=+ =]d .
e -+ By + A2 x dy dz

difidydz —frdxdz + fy dx dy) = (
In summary,
d(0-forms) = gradient,
dil-forms) = curl,
d(2-forms) = divergence.

The wedge product of two differential forms, written tA @ or 17 - @, is
defined as follows: ift = 3. f; dx; and w = . g; dx,, then

tha =3 figy dxydx;.
Mote that 1 A = (— [)*e# 29 A g,

T'roposition 1.3. d is an antiderivation, i.e.,

dit « Y= (d1) - @ + (— 1) ¢ - doo,
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ProOCE. T3y linearity it suffices 1o check on monomials
T fdxy, 0= gy dxy.
d(z - w) = d{frgy) dx; dxg = ([dfdgs dxy dx; + 1) doy d%; dx;
= (de) « @ + (- 1) 7 - de.

On the level of functions d{fy) = (df g + f(dg) is simply the ordinary prod-
uct rule. 0

Proposition 1.4, 42 = Q.

Proor. This is basically a consequence of the fact that the mixed partials
are equal, On functions,

20 _ A O N\ of
d3f = d(L 7x, dx,) =3 3%, 3%, dx; dx;.

! i

Here the factors 8%f/6x,;0x, are symmetric in i, j while dx; dx; are skew-
symmetric in i, j; hence d*f = 0. On forms o = f; dx;,

a2 = d¥ f; dx)) = d(d f; dx;) = 0

by the previous computation and the antiderivation property of d. O

The complex *(R" together with the differential operator 4 is called the
de Rham complex on B". The kernel of d are the closed forms and the image
of d, the exact forms. The de Rham complex may be viewed as a God-given
set of differential equations, whose solulions arc the closed forms. For
instance, finding a closed 1-form fdx + g dy on R? is tantamount to solving
the differential equation 8g/8x — 88y = 0. By Proposition 1.4 the exact
forms are automaticaily closed; these are the trivial or “uninteresting”™
solutions. A measure of the size of the space of “interesting” solutions is the
delinition of the de Rham cohomiology.

Dicfinition. The g-th de Rliam cohomology of R"is the vector space
H (W) = {closed g-forms}/{exact g - forms} .

We sometimes suppress the subscript DR and write H9(R"). If there is a need
to distinguish between a form o and its cohomology class, we denote the
latter by [a].

Note that all the definitions so far work equally well for any open subset
U of RB"; for instance,

Q* U} = {C* functions on U} 3 0¥
13

So we may also speak of the de Rham cohiomaology HEg(U) of U,
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ExamMpLES 1.5

(ayn=0
R g=0
[ —
H = {0 qg>0.
b)i=1
Since (ker d) n Q°(RY) are the constant functions,
HORY = R.

On QYRY), ker d are all the 1-forms.
If o = g{x)dx is a 1-form, then by taking

f= rg(u) du,
¢}

we find that

df = g(x) dx.
Therefore every 1-form on R! is exact and
HY(RY =0
{¢) Let U be a disjoint union of m open intervals on L.
Then
H(U) = R"
and
H (Uy==0
{d) In genecral
R in dimension 0,
AR = {{] otherwise.

This result is called the Poincaré lemma and will be proved in Section 4.

The de Rham complex is an example of a differential complex. For the
convenience of the reader we recal! here some basic definitions and resuits
on differential complexes. A direct sum of vector spaces C = @ ;zp C7? in-
dexed by the integers is calted a differential complex if there are homomeot-
phisins

d d

'Cq—l e c.q'l-l

such that d* = 0. 4 is the differential operator of the complex C. The coho-
mology of C is the direct sum of vector spaces H(C) = @ ,.z HC), where

HYC) = (ker d m CY/(im d m C9.
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A map f: A— B between two differential complexes is a chain map if it
conunutes with the differential operators of A and B @ fd = dp f.
A sequence of vector spaces

Ji-1 1
Via + W Vixa

is said to be exact if for all i the kernel of f; is equal to the image of its
predecessor f;_;. An exact sequence ol the form

0 A B » C 0

is called a short exact sequence. Given a short exact sequence of differential
complexes

0--md-tmBfac—0

in which the maps fand g are chain maps, there is a long exact sequence of
cohomology groups

C H(H-I(A] R "
C o A) — HYB) —L s HYC) )

In this sequence f* and g* are the naturally induced maps and d*[c],
¢ £ C4 is obtained as follows:

0 emows A2l LT » patt %, cotvi R

00— A7 N e LA

By the surjectivity of g there is an element b in BT such that g(b) = c.
Because g{db) = digh) = dc = 0, db = f(a) for some a in 42%!, This a is
easily checked to be closed, d*[c} is defined te be the cohomology class [a]
in H*"'(4). A simple diagram-chasing shows that this definition of d* is
independent of the choices made,

Exercise. Show that the long exact scquence of cohomolopgy groups exists
and is exact. {If you are stuck, see, for instance, MacLane [1, Ch. IT, Th. 4.1,
P 453)

Compact Supports

A slight modification of the construction of the preceding section will give
us another diffeomorphism invariant of a manifold. For now we again
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restrict our attention to R", Recall that the support of a conlinuous function
S on a lopological space X is the smallest closcd set on which £ is not zero,

we use only the C® funclions with compact support, the resulling complex
is called the de Rham complex Q¥(R") with compact supports:

QX(R") = {C* funclions on §" with compact support} & Q*
"
The cohomology of this complex is denoted by HX(R").

ExampLE 1.6,

R in dimension 0,
0 elsewhere.

(a) HXpoint) = {

(b) The compact cohomology of R'. Again the closed O-forms are the
constant functions. Since there arc no coenstant funciions on B' with com-
pact support,

HYRY) =0,

To compute HX{R'), consider the integration map

J D 0N Ry —— Rt
i

This map is clearly surjective. It vanishes on the exact L-forms df where [
has compact support, for if the support of flies in the interior of [4,b], then

j Y g = J.b -:;J—; dx = f(b) — f(a) = 0.

If g{x} dx € QLR!}is in the kernel of the integration map, then the function

£ = j a(u) du

— |

will have compact support and df = g{x) dx. Hence the kernel of [me are
preeisely the exact forms and

%ﬁ_’.}_: R,

I]‘él(Rl) = ker j.“
¢

REMARK. If g{x) dx e Q}(R") does not have total integral 0, then

fix) = .r (1) du

will not have compact supporl and g{x) dx will not be exact.
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{c) More generally,
HY®RY) = e in dimo:nsion n
0 otherwise.
This result is the Poincaré lenuma for cohomology with compact support and
will be proved in Section 4.

Exercise 1,7, Compute H%a(R? — P — @) where P and @ are {wo points in
I22. Find the closed forms that represent the cohomology classcs.

§2 The Mayer-Vietoris Sequence

In this section we extend the definition of the de Rham cohomology from
¥ to any differentiable manifold and introduce a basic technique for com-
puting the de Rham cohomology, the Mayer-Vietoris sequence. But first we
have to discuss the functorial nature of the de Rham complex.

The Functor £2*

Let x4, ..., x, and y,, ..., ¥, be the standard coordinates on B™ and R"
respectively. A smooth map f: BR" — R" induces a pullback map on C*
functions £* : Q°(R") —» Q°(R™) via

M =g-f
We would like to extend this pullback map to all forms f* : Q%(RE") --»

OQ*(R™) in such a way that it commutes with 4. The commutativity with d
defines f* uniquely:

SHE grdyy .o dy) =g o f) dfiy - dfl,

where f; = y; o f is the i-th component of the function f.

Proposition 2.1. With the above definition of the pultback wmap f* on forms, f*
commiites with d.

Proor. The proof is essentially an application of the chain rule.

dfMay dy;, - dy ) =dgr o ) dfiy ) = dlgy o Sy dfiy . A,

&
frdig; dyy . dyn)=1* (5% dy; dy;, ... dy!q)
i

gy
(o)

digr o f) df, - dfs,. o

]
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Let xg, ..., X, be the standard coordinate system and g, ... 1, 4 new
coordinate system on R ic., there is a diffeomorphism f : R" —» R" such
that u; = x; o f = f*(x;). By the chain rule, if g is a smooth function on 2",
then

og fu, ag
o9 = d
Z duy du; = Z 4 Oy 8y dx; = Z

So dg is independent of {he coordinate system,

Exercise 2.1.1. More generally show that if o = ) gy duy, thendw =
d!{; .

z dg;

Thus the exterior derivative d is independent of the coordinate system on
B"

Recall that a category consists of a class of objects and for any two
objects A and B, a set Hom{A, B) of morphisms from 4 to B, salisfying the
following properties. If fis a morphism from A to B and g a morphism from
B 1o C, then the composite morphism g « f from A to C is defined; fur-
thermore, the composition operation is required to be associative and to
have an ideniity 14 in Homn(d, A) for every object A, The class of all groups
together with the group homomorphisms is an example of a category.

A covariant functor F from a category & {o a catefory & associates to
every object A in % an object F(A) in &, and every morphism f: 4 — Bin
2 a morphism F(f): F{4} -+ F(B) in & such that F preserves composition
and the identity:

Flg « ') = Flg) = F(f)
F{lA] = Iruu-

If F reverses the arrows, ie., F{f} @ F(B)— F(4), it is said to be a contra-
variant functor.

In this fancier language the discussion above may be surmmarized as
follows: QF is a contravariant functor from the category of Euclidean spaces
{R"},.z and smooth maps: W™ — R" to the category of commutative differ-
ential graded algebras and their homomaorphisms. It is the unique such functor
that is the pullback of functions on Q°(R"). Herc the commutativity of the
graded algebra refers to the fact that

e = (— 1)deEder o gy

The functor Q* may be extended to the category of differentiable mani-
folds. For the fundamentals of manifold theory we recommend de Rham
[i, Chap. I]. Recall that a differentiable structure on a manifold is given by
an atlas, i.c, an open cover {U,},. 4 of M in which each open set U, is
homeomorphic to B" via a homeomorphism ¢, - U, =5 R", and on the
overlaps U, n Uy the transition functions
U, n Up)—

gaﬁ = ff)a ° djﬂ_] ¢3{Ua M Uﬂ}

s L pu—
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arc diffcomorphisms of open subscts of B®; furthermore, the atlas is re-
quired to be maximal with respect to inclusions. All manifolds will be
assumed to be Hausdorff and te have a countable basis, The collection
{(Uys Oudeea is called a coordinate open cover of M and ¢, is the trip-
ialization of U, Let u,, ..., #, be the standard coordinates on R". We can
write ¢, == {xq, ..., X,). where x, = u; = ¢, are a coordinate system on U_. A
function f on U, is differentiable if fo ¢, ! is a differentiable function on
it If f is a differentiable funclion on U,, the partial derivative 8 f/dx; is

defined to be the i-th partial of the pullback function f o ¢! on B&";
af (f ¢
5 @)= @00,

The tangent space to M at p, written T, M, is the vector space over R
spanned by the operators 8/dx,(p), ..., 8/8x,(p), and a smooth vector field
on U, is a linear combination X, =3 f; 8/8x, wherc the f’s are smooth
functions on U,. Relative to another coordinate system (y,, ..., »,). X, =
> g, 8/0y, where 8/8x; and 8/3y, satisfy the chaiﬁ rule:

d dy; 8
8x; 0x; 6yj

A C® vector field on M may be viewed as a collection of vector fields X, on
U, which agree on the overlaps U, m Uj.

A differential form @ on M is a collection of forms wy for U in the ailas
defining M, which are compatible in the following sense: if i and j arc the
inclusions

then *my = o in QYU n V). By the functoriality of 0%, the exterior
derivative and the wedpe product cxtend to differential forms on a8 mani-
fold. Just as for R™ a smooth map of differentiable manifolds f: M — N
induces in a natural way a pullback map on forms f* . QMN} — Q¥ M). In
this way {* becomes a contravariant functor on the category of differ-
entiable manifolds,

A partition of unity on a manifold M is a collection of non-negalive C™
functions {p,},.r such that

(a) Every point has a ncighborhood in which Zp, is a finite sum.

(B p, = 1,
The basic technical tool in the theory of differentiable manifolds is the
existence of a partition of unity. This result assumes two forms:

(1) Given an open cover {U,},.; of M, there is a partition of unity {g )y«
such that the support of p, is contained in U,. We say in this casc that
{p.} is a partition of unity subordinate to the open caver {U_).
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(2) Given an open cover {U,}, ., of M, there is a partition of unity {ppls. s
with compact support, but possibly with an index set J different from f,
such that the support of gy is contained in some U,

For a proof see Warner ['1, p. 107 or de Rham [1, p. 31.

Note that in (1) the support of p, is nol assumed to be compact and the
index set of {p,} is the same us that of {U,}, while in (2) the reverse is true,
We usually cannot demand simultaneously compact support and the same
index set on a noncompact manifold M. For example, consider the open
cover of B! consisting of precisely one open set, namely R' itself. This open
cover clearly does not have a partition of unity with compact support
subordinate to it

The Mayer-Vietoris Sequence

The Mayer-Vietoris sequence allows one to compute the cohomology of the
union of two open sels. Suppose M = U U ¥ wilh U, V open. Then there is
a sequence of inclusions

o
M—Ul[vEUnV
=]

where U] [V is the disjoint union of ¥/ and ¥ and 8, and &, are the
inclusions of I m I in V and in U respectively. Applying the contravariant
functor 0¥, we get a sequence of restrictions of forms

o3
QXM) — QHU) @ (V) 3 QXU n V),
h
where by the restriction of a form to & submanifold we mean its hmage
under the pultback map induced by the inclusion. By taking the difference
of the last two maps, we obtain the Mayer-Vietoris sequence

(2.2) 0 —» QM) — QHU) @ QXV) — U V) ~»0
(e, 1) = T -~

Proposition 2.3, The Mayer-Vieioris sequence is exact.

Proor. The exaclness is clear except at the last step. We first consider the
case of functions on M = RY, Let fbe a C™ funciion on U n ¥ as shown in
Figure 2.1. We must write f as the difference of a function on U and &
function on V. Let {py, py} be a partition of unity suberdinate to the open
cover {U, ¥}. Note that p,f is a function on U—to get a function on un
open set we must multiply by the partition function of the other open set.
Since

(po SY = (—py £) =1,
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Figure 2.1
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T

we see that QYUY ® DO(V) — QYRY) — 0 is surjective. For a general mani-
fold M, if w € QU ~ V), then (—py w, pyw) in Q90U @ Q(V) maps onto
[ (|

The Maycr-Victoris scquence
0 — QM) — OU)@ OXV) - QXU A V) -+ 0

induces a long exact sequence in cohomology, also called a Mayer-Vieloris

T sequence:

HY Y (M) - HOPYU)@ H (V) — HOWU n V) —)
(2.4) d* )
C H{M) — HY{UY@HAV) — HUANPY)

We recall again the definition of the coboundary operator ¢* in this explicit
instance. The short exact sequence gives rise to & diagram with exacl rows

t 7 t

00— OIYYAN — THY@OITYYY - QYU N T) o 0
dt - df ar

0— QM) - Q) B DAV) — QU N V) — 0
w W

¢ @ dowy = 0

Let w & QYU ~ V) be a closed form. By the exactness of the rows, there is
a & e QYU @ QY1) which maps to @, namely, & = (—py o, pyw). By the
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commuiativity of the diagram and the fact that dw =0, d¢ goes to 0 in
QU A V), ik, —dpym) and d(py w) agree on the overlap U ~ V. Hence
d¢ is the image of an element in (97 L(M). This clement is easily seen to be
closed and represents d*[w]. As remarked easlier, it can be shown that
d*[w] is independent of the choices in this consiruction. Explicitly we sce
that the coboundary operator is given by

[—dlpyw)] on U
[dlpper)] on V.
We define the support of a form @ on a manifold M lo be the smallest

closed set Z so that o restricted to Z is not 0. Note that in the Mayer-
Vietoris sequence d*w € H*¥(M) has supportin U7 n V.

(2.5 d*{w] = {

ExamrLE 2.6 (Fhe cohomology of the circle). Cover the circle with two
open sets U and V as shown in Figure 2.2, The Mayer-Vietoris sequence
gives

st Ullv Uunv
H? 0 0 0
3 —_—
—H —_— 0 — 0
d* —)
FI0 . ROR — . ROR

The difference map & sends (w, 1) to (1~ o, 71—®), so imd is 1-
dimensional. It follows that ker & is also i-dimensional. Therelore,

HYSY) =kerd=R
HY(SY) = coker & = R,

We now find an explicit representative for the generator of HY(S"). If
o € QU ~ V) is a closed O-form which is not the image under 8 of a closed
form in Q%U} @ Q°(V), then d*a will represent a generator of H(S'). As a
we may take the function which is | on the upper piece of U » ¥ and 0 on

Figure 2.2

[ [ —

©aingher e = L s
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Figure 2.3

the lower piece (see Figure 2.3), Now « is the image of {— pp o, ppor). Since
—d{py &) and dpy e agree on U ~ ¥, they represent a global form on §!;
this form is d*e. It is a bump [-forim with supportin U ~ V.

The Functor £} and the Mayer-Vietoris Sequence for Compact
Supports

Again, before taking up the Mayer-Vietoris sequence for compactiy sup-
ported cohomology, we need to discuss the functorial properties of (8 M),
the algebra of forms with compact support on the manifold M, In general
the pullback by a smooth map of a form with compact support need not
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have compact support; for cxample, consider the pullback of functions
under the projection M x R— M. Se ¥ is not a funclor on the category of
manifolds and smooth maps. IHowever if we consider not all smooth maps,
but only an appropriate subset of smooth maps, then QF can be made into
a functor. There are two ways in which this can be done.

{(a) Q3 is a contravariant functor under proper maps. (A map is proper if the
inverse image of every compact set is compact.)
(b) C¥¥ is a covariant functor under inclusions of epen sets.

1f j: U— M is the inclusion of the open subset U in the manifeld M, then
Ju 1 ONUY— QF(M) js the map which extends a form on U by zero to a
form on M.

It is the covariant nature of Q* which we shalt exploit to prove Poincaré
duality for noncompact manifolds. So from now on we assume that (FF
refers to the covariant luncior in (b). There is also a Mayer-Vietoris se-
quence for this functor. As before, let M be covered by two open sets U and
)7, The sequence of inclusions

M«-Upestvnv

gives rise to a sequence of forms with compact support

QM) QHU) @ QX 5 QXU 0 V)

signed
inclusion

EUmL

(—j*w, j*f’)] = w

Proposition 2.7. The Mayer-Vietoris sequence of forms with campact stupport
0« QHM)— QXU) & (V) — QXU N F)—10
is exact.

Proor. This time exactness is easy to check at every step. We do it for the
lust step. Let e be a form in Q¥*(M). Then @ is the image of (py @, gy ) in
QXUYPQXV). The form pyew has compact support because Supp py@
< Supp py 0 Supp @ and by a lemma. from general topology, a closed
subset of a compact set in 1 Hausdorfl space is compact. This shows the
surjectivity of the map QXUMPQHV)— QF(M). Note that whereas in the
previous Mayer-Vietoris sequence we mulliply by py to get a form on U,
here pp w is a form on U, (|

Again the Mayer-Victoris scquence gives rise to a long éxact sequence in
cohomology:

CHI* 3(My e HI*HU) @ HIV (V) o HEVHU (A V) o

d
CH?[M) —  HYU)® HYV) — HYU A V) “

(2.8)

gt
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————
\
u W uUnvy

e
K,
Figure 2.4

ExaMPLE 2.9 (The cobomology with compact support of the circle). Of
course since §! is compact, the cohomology with compact support H*sYH
should be the same as the ordinary de Rham cohomology H*(S'). Nonethe-
less, as an illustration we will compute H*(S') from the Mayer-Vieloris
seguence for compact supporis:

st uljv UnVv
H? 0 0 —
o O ror —f— ROR
m  « T —— o

Here the map 3 sends @ = (@, @,) &€ HXU n V) to (), Up) ) €
HYUY @ HY(V), where j, and j) ate the inclusions of U » ¥V in U and in ¥
respectively. Since im 6 is 1-dimensionai,

RS =kerd =R
HY(8Y) = coker 6 = R.

§3 Orientation and Integration

Orientation and the Integral of a Differential Form

Let x4, ..., x, be the standard coordinates on R". Recall that the Riemann
integral of a differentiable function f with compact support is

.[ fldxy ... dx,| = lim Y fAx, ... Ax,.

R* Axy=e(t

We define the integral of an n-form with compact support o = fdx; ... ddx,
to be the Riemann integral IRn‘ﬂdxl ... dx,|. Note that contrary to the
usual calculus notation we put an absolute value sign in the Riemann
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integral; this is L0 emphasize the distinction between the Riemann integral
of a function and the intcgral of a differential form. While the order of
Xy, ..., X, matters in a differential form, it does not in a Riemann integral; if
7 is a permutation of {1, ..., »}, then

J.fdxn(l} e dx:c(rl) = (SSn J’I} Ifldxl e dxn';

but
-[fidxntl}"' dx!!{l’l)1 = jf|dxl dxn’-

In a sitnation where there is no possibility of confusion, we may revert to
the uswnal caleulus notation,

So defined, the integral of an n-form on R" depends on the coordinates
Xy, -5 Xp. From our point of view a change of coordinates is given by a
diffeomorphism T :[®"-+ R" with coordinates yq, ..., y, and x,, ..., x,, re-
spectively:

Xp=X o Ty, ooy 3) = TiJss oy Yn)e

We now study how the integral jo transforms under such diffcomor-
phisms.

Exercise 3.1. Show that dT,...dT, = JT)dy, ... dy,, where J(T}=
det(dx, /dy;) is the Jacebian determinant of 7',

Hence,

IHT*mzj (fe T)dTy ... dT,,=J. (f o« TWHT) dy; ... dy,

relative to the coordinate system yy, ..., y,. On the other hand, by the
change of variables formula,

J. w=j f(xls"'!xn)dxl"'dxn=f (f= T} IHT)dyy ... dy,,

f T*w = iJ. w
" R

depending on whether the Jacobian determinant is positive or negative, In
general if T is a diffcomorphism of open subsets of B* and if the Jacobian
determinant J(T) is everywhere positive, then T is said to be arientation-
preserving. The integral en R" is not invariant under the whole group of

Thus

r?\‘;.; -
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diffeomorphisms of B", but only under the subgroup of orientation-
preserving diffeormorphisms.

Let M be a differentiable manifold with atlas {U,, ¢,)}. We say that the
atlas is oriented i all the (ransition functions g =, ¢;' are
orientation-preserving, and that the manifold is erientable if it has an orien-
ted atlas,

Proposition 3.2. A manifold M of dimension it is orientable if and only if it has
a glabal nowhere vanishing n-form.

Proor. Observe that T: R" -+ R" is orientation-preserving if and only if
T* dx, ... dx, s a positive multiple of dx, ... dx, at cvery point.

(==) Suppose M has a global nowhere-vanishing n-form w. Let ¢, : U, =
1" be a coordinate map. Then ¢F dx, ... dx, = [, where f, is a nowhere-
vanishing real-valucd function on U,. Thusf, is either everywhere positive
or everywhere negative. In the latter case interchange x; and x,. Since
¢F dx, dxy dxy...dx, = —¢F dx, dx, dxs...dx, ={(--f)o, we may
assume f, to be positive for all «. Hence, any transition function ¢, ¢, ' : B
— R" will pull dx; ... dx, to a positive multiple of itself. So {(U,, ¢.)} is an
oriented atlas.

(=} Conversely, suppose M has an oriented atlas {{U,, ¢,)}. Then
(Do da V¥ (dxy ... dx) =% dx, ... dx,

for some positive funclion 4. Thus
¢F dxy .odx, = (GF ApF dxy ... dx,)

Denoting ¢f dx, ... dx, by w,, we see that wg = fo, wheref=@¥l=10-
¢, is a posilive function on U, n Uy,

Let o =Y. p, m, where p, is a partition of unity subordinate to the open
cover {U,}. At each point p in M, all the forms o, , if defined, are positive
multiples of one another. Since p, = 0 and not all p, can vanish at a point,
w is nowhere vanishing. 0O

Any two global nowhere vanishing n-forms @ and ' on an orientable
manifold M of dimension n differ by a nowhere vanishing function: w = fiw'.
It M'is connected, then fis either everywhere positive or everywhere nega-
tive. We say that v and ' are equivalent if fis posilive. Thus oh a connec-
ted orientable manifold M the nowhere vanishing n-forms fall into two
equivalence classes. Either class is called an orientation on M, written [M].
For example, the standard orfentation on R is given by dx, ... dx,,.

Now choose an orientation [M] on M, Given a top form t in Q1(M), we

dcfine its integral by
=
(a1 @ JU,
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where jr»',, pot means [p. (¢s ')*(p, 1) for some oricntation-preserving triv-
ialization ¢, : U, =% I§"; as in Proposifion 2.7, p,t has compact support,
By the orientability assumption, the integral over a coordinate patch [, @
is well defined. With a fixed orientation on M understood, we will ofien

write [yt instead of [, ¢. Reversing the orientation results in the negative
of the integral.

Proposition 3.3. The definition of the integral [yt is independent of the
oriented atlas {(U,, §.)} and the partition of unity {p,}.

Proor, Let {¥,} be another oriented atlas of M, and {y;} a partition of
unity subordinate to {V,}. Sinve 3 4 x5 = 1,

) L“Pﬂ =7

w, f U,

PaXp?

Now p, xp 7 has support in U, n ¥, so

J. pﬂxﬂr =.{ PrXpt
Uy Ve

S| pt=% PuXﬂT=ZjX.ﬂT- O
U o, § JVg £ JVg

a

Therefore

A munifold M of dimension n with boundary is given by an atlas {(U,, ¢,)}
where U, is homeomorphic to either B® or the upper half space
H"= {(x), ..., x)|x, = 0}. The boundary dM of M is an (n—1)-
dimensional manifold. An oriented atlas for M induces in a natural way an
orienied atlas for M. This is a consequence of the following lemma.

Lemma 34, Let T:H — H" be a diffeomorphism of the upper half space
with everywhere positive Jacobian determinant, T induces a map T of the
boundary of W to itself, The induced map T, as a diffeomorphism of R"™ 1,
also has positive Jacobian determinant everywhere.

PProor, By the inverse function theorem an interior point of H* must be the

image of an interior point. Hence T maps the boundary to the boundary.

We will check that T has positive Jacobjan determinant for n = 2; the

general case is similar.

Let T be given by

x; = Ti{y1, ¥2)

. x; = Talyy, ¥2).

Then T is given by
x; = Ti(yy, 0).

[ —
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Figure 3.1
By assumption

: aT T,
El (Ul (7R
ay, dy;
i a7 =0,
a1 a7,
— {y, 0 —=(p, 0
. 0n0 FELO

Since 0 = T3 (y,, 0) for all y,, 83T,/8y, (¥1, 0) = 0; since T maps the upper
half plane to itself,

Therefore

Y1

Let the upper half space H" = {x, = 0} in B" be given the standard
orientation dx, ... dx,. Then the induced orientation on ils boundary
2H" = {x, = 0} is by definition the equivalence class of (—1)" dxy ... dx,_1;
this sign is needed to make Stokes' theorem sign-free. In general for M an
oriented manifold with boundary, we define the induced orientation [M]
on 8M by the following requiremeni: if ¢ is an oricntation-preserving
diffeornorphism of some open set U in M into the upper half space H”, then

¢*[H"] = [0M |ev,
where 8U = (8M) n U (see Figure 3.1).

Stokes’ Theorem
A basic result in the theory of integration is

Theorem 3.5 (Stokes’ Theorem). If @ is an (n — 1)-form with compact support
on an oriented manifold M of dimension n and if 8M is given the induced
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J Aoy =J‘ w.
ae oM

We first examine two special cases.

orientation, thew

SrEcIAL Casg 1 {®"), By the linearity of the integrand we may take o to be
Fdx,...dx,_;. Thendw = 4 8f/dx, dx, ... dx,. By Fubini's theorem,

© af
J;,dw = + J(J_w adx,,) dxy .oodx,y.

But I?m af,"raxn dxn :f[xla ey Xp—1s OO) _f{xla sy Xp— g T CO} =0 be-
cause f has compact support. Since R has no boundary, this proves Stokes’
theorem for B,

SPECIAL CASE 2 {The upper half plane). In this case (see Figure 3.2)
@ =f{x, y} dx + g(x, y) dy

_{_ ég)
dcu-( 6y+6x dx dy.

and

Note that

] @i e g
J- Eq-dxdy=J (J a—gdx)dy=J‘g(oo,y)~g(-"OO,y}dy=0,
nr 9x o - DX

since g has compact support. Therefore,

o= S o = L[5 w) e

- f " (G @) — f(x, O dx

Jw Jlx, O dx=J @
~m aH*

Figure 3,2
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where the last equality holds because the restriction of glx, y)dy to 887 is 0.
So Stokes’ theorem holds for the upper half plane.
The case of the upper hall space in R is entirely analogous.

Exercise 3.6. Prove Stokes’ theorem for the upper half space.

We now consider the general case of a manifold of dimension n. Let {U,}
be an oriented atlas for M and {p,} a parlition of unity subordinate to
{U,.}. Write w=z p. . Since Stokes’ theorem _[M dm = j'ﬁMa) is lincar in w,
we need to prove it only for p,w, which has the virtue that its support is
contained entirely in U, . Furthermore, p, @ has compact support because

Supp g, = Supp p, N Supp @

is a closed subset of a compact set. Sinee U, is diffeomorphic to cither R” or
the upper half space H", by the computations above Stokes’ theorem holds
for U, . Consequently

Jdpaw=j dp¢w=f paw=j Pat2,
Af 1 B0, nne

This concludes the proof of Stokes’ theorem in general.

§4 Poincare Lemmas

The Poincaré Lemma for de Rham Cohomelogy

In this section wc compuie the ordinafy cohomology and the compactly
supported cohomology of B” Let n: B" x B! — R" be the projection on
the first factor and 5 : " —» R" x R! the zero section.

B x B! O¥R" < 1BYH
" " mx, £ = x
1T ST s(x) = (x, 0)
E" (1"

We will show that these maps induce inverse isomorphisms in cohomology
and therefore F*{["* 1) ~ H*(R"). As a matter of convention all maps are
assumed to be C*® unless otherwise specified.

Since n = s = 1, we have trivially s* o #* = 1. However sv 1 1 and
correspondingly n* o s* ¥ 1 on the level of forms. For example, a* o g*
sends the function f{x, t) to f{x, (), a function which is constant along every
liber. To show that n* » §* is (he identity in cohomolegy, it is encugh to
find a map K on Q¥R" x R!) such that

1 —7* e g% = 4-{dK + Kd),
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for dK & Kd maps closed forms to exact forms and therefore induces zoro
in cohomolagy. Such a K is called a homotopy operator; if it exists, we say
that n* o 5% is chain homotopic to the identity. Note that the homotopy
operator K decreases the degroe by 1.

Every form on R* x (@ is uniguely a linear combination of the following
two types of forms:

(I} (@*¢)f(x, 1),

() (=*@)f(x, o) dt,
where ¢ is a form on the base R™. We define K : QYR" x f)--
QLR x R) by

M) (=*d)f(x, ) — 0,

(I (*¢)f(x, ) dt — (n*¢) [ f.

Let’s check that K is indeed a homotopy operator. We will use the
simplified notation 8f8x dx for ¥ 8f/dx, dx;, and Jg for fa(x, £) dt. On forms
of type (1),

w = (r*g) - fix, 1), deg @ = g,
(1 — a*s*)w = (r*e) - fx, ) — =¥ - fix, G),
o

(K — Kdyn = — Kdew = -K((dn*q’)]f+ (—1¥m*h (%: dx + 2 dt))

= (1) 'n¥g .[ g—":= (=1 LS (x, ) — £ (x, 0)).
L3
Thus,
1 —a¥s* =(—12"{dK — Kd).
On forms of type (10),
w={x*d)fdt, degw=agq,

dw = (7% dp) fdt + (— 1) (n*¢) g—){dx dt.
{1 — *s*)w» = ¢ because s*(dt) = d(s*1) = d(0} = 0.

Kdo = (n* d(fi)rf +(—1¥" Yrn* ) a'xj.: ;_f ,
0 o OX

dKw = (z* dg) J s+ (—U*”(n*@[dx(f' g) v f dt].
Thus

@K — Kdw = (~ 1y~ ',
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In either cuse,
I — 7% o g* = (1} YK - Kd) on (H{R" x R).

This proves
Proposition 4.1, The maps H*(R" x R"Y) % H*(R™ are isomorphisms.

By induction, we obtain the cohomology of ®",

Corollary 4.1.1 (Poincaré Lemma).
R in dimension 0

HA(®) = H*(point) = {0 elsewhere

Consider more generally

M x R?

g

M

I {U,} is an atlas for M, then {U, x R'} is an atlas for M x R'. Again

every form on M x ®' is a linear combination of the iwo types of forms (I)
and (I1). We can define the homotopy operator K as before and the proof
carries over word for word to show that H*(M x RY) = H*(M) is an iso-
maorphism via n* and s*.

Coroltary 4.1.2 (Homotopy Axiom for de Rham Cohomology). Homotopic
maps induce the same map in cohomolagy.

Proor. Recall that a hemotopy between two maps fand g from M {0 N is a
map F: M x R! — N such that

{F{x, N=f(x) for £=1
Fi{x, 1) = g{x} for t=<0.

Equivalently if s, and s, : M — M x R are the O-section and 1-section
respectively, i.e., 5,(x) == (x, 1}, then

f=F°sl)
g:FUSOA

Thus
¥ =(F o sy =st o FY,
g* = (F o s5o)* = 5§ o F*,
Siuce st and s¥ both invert n*, they are equal. Hence,
Ir=g* a
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Two manifolds M and N are said to have the samc homotopy type in the
C” sense if there are C* maps f: M — N and g: N -~ M such that g o f
and fo g are C™ homotapic to the identity on M and N respectively.* A
manifold having the homotopy type of a point is said to be contractible.

Corollary 4.1.2.1. Twe manifolds with the same homotopy type have the same
de Rham cohomology.

Ifi: A = M is the inclusion and »: M — A is a map which restricts to
the identity on A, then r is called a retraction of M onto A. Equivalently,
rei:d-» 4 is the identity. If in addition i« »: M — M is homotopic to
the identity on M, then r is said to be a deformation retraction of M onto 4.
In this case A and M have the same homotopy lype.

Corollary 4.1.2.2. If A is a deformation retract of M, then A and M have the
same de Rham cohomology.

Exercise 4.2. Show that » : B% — {0} —> S! given by r(x) = x/| x | is a dcfor-
mation reteaclion.

Exercise 4.3. The cohomology of the n-sphere 8°. Cover §" by two open sets
U and V where U is slightly larger than the northern hemisphere and V

slightly larger than the southern hemisphere (Figure 4.1} Then U n V is

diffeomorphic to 877! x R' where §"7! is the equator. Using the Mayer-
Vietoris sequence, show that

HA(S") = R in dimensions O, n
~ 10 otherwise,

We saw previously that a gencrator of HY(S) is a2 bump I-form on §!
which gives the isomorphism HY(S') ~ B! under integration (see Figure

"/

v
Figure 4.1

* In fact two manifolds have the same homotopy type in the € sense if and ooly if they have
the same homotepy type in the usual (continuous) sense. This is because every continnous
map belween Lwo manifolds is continuously homotopic to a C* map (sce Proposition 7.8}
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Figure 4.2

4.2), This bump 1-form propagates by the boundary map of the Mayer-
Vietoris sequetice to 4 bump 2-form on $%, which represents a generator of
HYS%. In general a generator of H"(S™ can be taken to be a bump n-form
on 8"

Exercise 4.3.1 Volume form on a sphere, Lot 8"(r) be the sphere of radius r
T

in B"*', and let

| —

n+1
w==F (=80 "V xde; o dx e dx,eq.
=1

-

(a} Write §” for the unit sphere $"(1). Compute the integral f, o and
conclude that w is not exact.

{(b) Regarding r as a function on R"*! — 0, show that (dr) @ = dx, -~
dx, . Thus o is the Buclidean volume form on the sphere ().

From (a) we obtain an explicit formula for the generator of the top
cohomology of §” (although not as a bump form). For example, the gener-
ator of H?($?) is represented by

g = ?4‘;[;[ {xl dx;;_ dx3 - X3 dx] dx:! -+ X3 dxl dX2).

The Poincaré Lemma for Compacily Supborted Cohomology

The computation of the compactly supperted cohomology H*(R") is again
by induction; we will show that there is an isomorphism

H¥ R x RY) ~ H¥RY).

Note that here, unlike the previous case, the dimension is shifted by one.
More generally consider the projection z : M x R' — M. Since the pull-
back of a form on M to a form on M x R' necessarily has noncompact
support, the pullback map =* does not send QM) to QXM x RBY), How-
ever, there is a push-forward map =, : QXM x R — QF~4(M), called inte-
gration wlong the fiber, defined as follows. First note that a compactly
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supported form on M x R' is & linear combination of two types of forms:
I 7% - fx, 0, .
() n*¢ - f(x, 1) dt,

where ¢ is a form on the base (not necessarily with compact support), and
J(x, ¢) is a fanction with compact support. We define n, by

() 7*¢ - flx, ) — 0,

4.4) ®
(1) 7%  f(x, ) dt r> j fix o) de.

Exercise 4.5, Show that dn, = =,d; in other words, n, : QF(M x R') —
OQF - YM) is a chain map.

By this exercise n, induces a map in cohomelogy #, : H¥ — H¥*-1. To
produce a map in the reverse direction, let e = &li) dr be a compactly sup-
ported 1-form on B! with total integral I and define

e, QF(M) — QF+YM x BY)
by
P dAe

The map e, clearly commutes with 4, so it also induces a map in cohomol-
ogy. It follows direcily from the definition that n, « ¢, = 1 on Q¥R"). Al
though e, o 7, # 1 on the level of forms, we shall produce a homotopy
eperiator K between 1 and ¢, o n, ; it will then follow that e, o r, = 1 in
cohomology.

To streamline the notation, write ¢ - f for #*¢ « fix, £} and {f for
[f{x. ©) dr. The homotopy operator K : QXM x B — *=~1(AM x RY) is
defined by

M ¢-fr=0 ' r
(II) ¢ « fdi— ¢ J. Jf— Al J f where A(f) = J e,

Proposition 4.6, 1 — e, n, = (— 1} "YdK — Kd) on HIM » R").
Proor. On forms of type (I), assuming deg ¢ = ¢, wc have

(I —emp - f=¢-f,
(dK — Kdyp - f = —K(drf) S (=1 gfdx (=17 ¢ gd:)

at
T a . @ ’)
=(—”"“(¢f_ a‘f“*ﬁ““‘}f_ %;f)

= (—1]‘?“4{)}’_ [Here J_w §{=f(x, @) = f{x, —e0) = 0.]
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So
l—e,n,={(=~1)7"'(dK — Kd).
On forms of type (E), now assuming deg ¢ = g — 1, we have

Lral

(1 —e,m)pfdt = $fde— ¢(j f)/\e,

- o

axxesan=ap | rrep | Lo -nosa

~apaw [* - comgle [T an( T )il

(Kd)(eh [ dty = K((d(,!)] fd (=1 gj{dx dr)

~a [ r-apan | s

4 (—1ynt [qu g{ dx dt — q’:A(r}( f g) dx] .

(dK — Kd)p fdt = (—l}“_’[f.f?fdf - ¢(Jm f)e]

—aa

So

and the formula again holds, [

This concludes the proof of the following
Proposition 4.7. The maps

HYM x RY) %H;““I(M)
are isomorphisms,

Corollary 4.7.1 (Poincaré Lemma for Compaet Supports).

B in dimension n
* MY .
H () {0 otherwise.
Herc the isomorphism HXR™ = R is given by iterated ., ic., by inte-
gration over R".

To determine a generator for HA{(R™, we starl with the constant function
1 on a point and iterate with e, . This gives e(x ) dx, e(x2) dxz ... e(x,} dx,.
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So a generator for H7(1R") is & bump n-form «(x) dx, ... dx, with

j ofx} dxy ..o dx, = L,
-
The support of & can be made as simall as we like.

Remark. This Poincaré lemma sliows that the compactly supported coho-
mology is not invariant under homotopy equivalence, although it is of
course invariant under diffcomorphbisms,

Exercise 4.8. Compute the cohomology groups H*(M)} and H¥(M) of the
open Mobius strip M, ie, the Mdbins strip without the bounding edge
(Figure 4.3), [Hint: Apply the Mayer-Vietoris sequences.]

The Degree of a Proper Map

As an application of the Poincaré lemuna for compact supports we intro-
duce here a C™ invariant of a proper map betweecn two Euclidean spaces of
the same dimension. Later, after Poincaré duality, this will be generalized to
a proper map between any lwo oriented manifolds; for compact manifolds
the properness assumption is of course redundant.

Let /" — R" be a proper map. Then the pullback f*: HI(R") —
HX®" is defined. Tt carries a generator of HXR", ic., a compactly sup-
ported closed form with total integral one, to some multiple of the gener-
alor. This multiple is defined to be the degree of /. If ¢ is a generator of
HI{R"), then

deg f= j J*e
ar

A priori the degree of a proper map is a real number; surprisingly, it {furns
out to be an integer, To see this, we need Sard’s theorem. Recail that a
critical point of a smooth map /' B — RB™ is a point p where the differ-
ential (f,), ! T,H" — T,,,R" is not surjective, and a critical value is the
image of a critical point. A point of R" which is not a critical value is called
a regutar value. According to this delinition any point of B" which is not in
the image of f'is a regular value so that the inverse image of a regular value
may be empty.

Figure 4.3
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Theorem 4.9 (Sard’s Theorem for R"), The set of critical values of a smooth
mapf : R" — R" has measure zero in B for any integers m and n.

This means that given any & > 0, the set of critical values can be covered
by cubes with total volume less than & Important special cases of this
theorem were lirst published by A. PP, Morse [1]. Sard’s proof of the general
case may be found in Sard [17.

Proposition 4,10 Let f : " — R” be a proper map. If [ is not surjective, then
it has degree 0.

Proor. Since the image of a proper map is closed (why?), if f misses a point
g, it must miss some necighborhood U of g. Choose a bump s-form « whose
support lies in U. Then f*g = 0 so that deg f= 0, ]

Exercise 4.10.1. Prove that the image of a proper map is closed,

So to show that the degree is an integer we only need to look at surjec-
tive proper maps fram R" to R". By Sard’s theorem, almost all peints in the
image of such a map are regular values. Pick one regular value, say g. By
hypothesis the inverse image of g is nonempty. Since in our case the twe
Euclidean spaces have the same dimension, the differential f, is surjective if
and only if il is an isomorphism. So by the inverse function theorem,
around any point in the pre-image of g, f is a local diffeomorphism. It
follows that £ ~'(g) is a discrete set of points. Since fis proper, £~ Yq) is in
fact a finite set of points, Choose a generator o of HY{R"} whose support is
localized near ¢. Then f*« is an n-form whose support is localized near the
points of /" Y{g) (see Figure 4.4). As noted carlier, a diffeomorphism pre-
serves an integral only up to sign, so the integral of f*x near each point of
F Ugis +1. Thus

ff*u: Y 41,
R" S~ Lig)

This proves that the degree of a proper map between two Euclidean spaces of
the same dimension is an integer, More precisely, il shows that the number of

Figure 4.4
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points, counted with multiplicicy +1, in the inverse image of any regular value
is the same for all regular values and that this number is equal to the degree of
the map.

Sard’s theorem for B", a key ingredient of this discussion, has a natural
extension to manifolds. We take this opportunity to state Sard’s theorem in
general. A subset S of a manifold M is said to have measure zero if it can be
covered by countably many coordinate open sets U; such that {5 n U
has measure zero in [B"; here ¢, is the trivialization on U;. A eritical point of
a smooth map f : M — N between two manifolds is a point p in M where
the differential (), : T,M — T,V is not surjective, and a critical value is
the image of a critical point.

Theorem 4.11 (Sard’s Theorem). The set of eritical values of a smooth map
f: M — N has measure zero,

Exercise 4.11.1. Prove Theorem 4.11 from Sard’s theorem for R

§5 The Mayer-Vietoris Argument

The Mayer-Victoris sequence relates the cohomology of a union to those of
the subseis. Together with the Five Lemma, this gives a method of proof
which procesds by induction on the cardinality of an open cover, called the
Mayer-Vietoris argument. As evidence of its power and versatility, we derive
from it the finite dimensionality of the de Rham cohomology, Poincuré
duality, the Kiinneth formula, the Leray-Hirsch theorem, and the Thom
isomorphism, all for maunifolds with finite good covers.

Existence of a Good Cover

Let M be a manifold of dimension n. An open cover W = {U,} of M is
calted n good cover if all finite intersections U,, n -+ n U, are diffco-
morphic to R". A manifold which has a (inite good cover is said to be of

Jinite type.

Theorem 5.1. Every manifold has a good cover. If the munifold is compact,
then the cover may be chosen to be finite.

To prove this theorem we will need a little differential geometry. A
Riemannian structure ont a manifold M is a smoothly varying metric { , >
on the tangent space of M at each point; it is smoothly varying in the
following scnse: if X and ¥ are two smooth vector fields on M, then
¢X,Y> is a smooth function on M. Bvery manifold can be given a
Riemannian structure by the following splicing procedure. Let {U,} be a
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coordinate open cover of M, ¢ , >, a Riemannian metric on U,, and {p,} a
partition of unity subordinate to {U,}. Then {(,> =2 p,{,>, is a
Riemannian metric on M,

Proor oF THEGREM 5.1. Endow M with a Riemannian structiure. Now we
guote the theorem in differential geometry that every point in a Riemannian
manifold has a geodesically convex neighborhood {Spivak {1, Ex, 32(f}, p.
4917). The intersection of any two such neighborhoods is again geodesically
convex. Since a geodesically convex neighborheod in a Riemannian mani-
fold of dimension r is diffeomorphic to B" an open cover consisting of
geodesically convex neighborhoods will be a good cover. H|

Given two covers UM = {U,},.; and B = {¥},.;, if every V} is contained
in some U,, we say that B is a refinement of U and writc U > B. To be
more precise we specify a refincment by a map ¢:J — I such that
V; = Ugy,- By a slight modification of the above proof we can show that
every open cover on a manifeld has a refinement which is a good cover: simply
take the geodesically convex neighborhoods around cach point Lo be inside
some open set of the given cover,

A directed set is a set I with a partial order = such that for any two
clements g and b in I, there is an clement ¢ with @ > ¢ and b > ¢. The set of
open covers on & manifold is a directed sct, since any two open covers
always have 2 common refinement. A subset J of a dirccted set [ is cofinal
in I if for every iin f there is a j in J such that i > j. It is clear that J is alse
a directed set.

Corollary 3.2, The good covers are cafinal in the set of all covers of a
manifold M.

Finite Dimensionality of de Rham Cohomology

Proposition 5,3,1. If the manifold M has a finite good cover, then its cohomol-
ogy is finite dimensional.

Proor. From the Mayer-Vietoris sequence

e HTNU V)L HYU O V) D H(OU)DH(V) > -
we get
HAU v V)= ker r@im r ~im d*Pim r.

Thus,
(«} if the gth cohiomology of U, V, and U n V are finite dimensional, then so
is the gth cohomology of U W V.

For a manifold which is diffeomorphic to i", the finite dimensionality of
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(M follows from the Poincare lemma (41.1). We now proceed by induc-
tion on the cardinality of a good cover. Suppose the cohomology of any
manifold having a good cover with at most p open sets is finite dimensional.
Consider a manifold having a good cover {U,, ..., U,} with p+ 1 open
scts. Now (Ug w ... u Up ) U, has a good cover with p open sets,
namely {Uq,, Ugyy ooy Upe 1, mt By hypothesis, the gth cohomology of
Ugu...uUp_Ujand (Ugu ... v U, U, are finite dimensional;
from Remark (%), so is the gth cohomology of UD ... w U,. This com-
pletes the induction. O

Similarly,

Proposition 5.3.2. If the manifold M has o finite good cover, then its compact
cohomology is finite dimensional.

Poincaré Duatity on an QOrientable Manifold

A pairing between lwo finite-dimensional vector spaces
< 4 > W & W R

is said 1o be nondegenerate if (v, w)> =0 for all w implies v = 0; equiva-
lenily, the map v = (v, ) should define an isomorphism V 23 W*

Because the wedge product is an antiderivation, it descends to cohomol-
ogy; by Stokes' theorem, integration also descends to cohomology. So for
an orienled manifold M there is a pairing

f C HYMY @ HY (M) — R

given by the integral of the wedge product of two forms. Qur first version of
Poincaré duality asserls that this pairing is nondegenerate whenever M is
arientable and has a finite good cover; equivalently,

(5.4) HAM) = (H? 7 M)*.

Note that by (5.3.1) and (5.3.2) both HM} and H} 9(M) arc finite-
dimensionat.
A couple of lemmas will be needed in the proof of Poincaré duwllty

Exercise 5.5, Prove the Five Lemma: given a commutative diagram of
Abelian groups

i d g L0 S p LN

I

A’ B c D E e
£ I i N
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in which the rows are exac, if thec maps «, f§, § and ¢ are isomorphisms, then
50 is the middle one y.

Lemma 5.6. The two Mayer-Vietoris sequences (2.4) and (2.8) may be puired
together to form a sign-commutative diagram

N H,Q(U y V) res[llcllon IIG(U}&)HG(V} diiference ,Hq(U ~ V}

EEARIC NVY
& ® @ ®

= U O V)

J.UUV

B R

d
H(U n Pje—— B9 NU U ¥)

J;’n}' LUV

B 3]

H U@ 79V «
o
vl ¥

Here sign-commutativity means, for instance, that

j wAd, 1= if (d*w)Ax,
v oV

for we HU n V), 1e H;"*"Y(U w V). This lemma is equivalent to
saying that the pairing induces a mup from the upper exact sequenge to the

dual of the lower exact sequence such that the following diagram is sign-
commutative:

— }i"i — Hi@ He —~ HT
I !
T PO - mY —

Proof. The ﬁrs} two squares are in fact commutative as is straightforward
to check. We will show the sign-commutativity of the third square.
Recall from (2.5) and (2.7) that d*e is a form in H?* YU U V) such that

oy = —dipy )
o, = dpyw),
and d, © is a form in II2~%¥ ~ V) such that
{—(extension by 0 of d, 1 1o U), (extension by 0 of d,zto V)
= {d(py 1), d(py1)).
Note that d(py 7) = (dpy)r because 1 is closed; similarly, d(py w) = {dp, ).

j whd, 1= J. wAldpy)t = (— 1)t j (dpy)o At
[N [N i

nV

Since d*w has supportin U ~ F,

J d*oht = —J {dpp)o At
LAV UtV
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Therefore,

-[ wAd, tv=(— Jjleret! .f d¥m At [}
UnV¥ Fu¥

By the Five Lemma if Poincaré duality holds for U, ¥, and U n V, then
it holds for I/ v V. We now proceed by induction on the cardinality of a
good cover. For M diffcomorphic (o B", Poincaré duality follows from the
two Poincaré lemmas

B in dimension 0
E NPT =
FPHR) {0 elsewhere

and

in dimension »

HXR") = {R
¢ 0 elsewhere.
Nexi suppose Poincaré duality holds for any manifold having a good cover
with at most p open sets, and consider a manifold having a good cover
{Uo,...., U} with p+ 1 open sets. Now (Ugw - v U,_;) n U, hasa
good cover with p open sets, namely {UOP, Uipy oo Up_l_P}. By hypothesis
Poincaré duality holds for Uy v ... U,_y, Uy,and(Ug v ... wU,_y)
n U,, so it holds for Uy v ... w U,_; u U, as well. This induction argu-
ment proves Poincaré duality for any orientable manifold having a finite
good cover. O

REmMARK 5.7. The finiteness assumption on the good cover is in fact not
necessary. By a closer analysis of the topology of a manifold, the Mayer-
Vietoris argument above can be cxtended to any orientable manifold
{Greub, Halperin, and Vanstone [§, p. 198 and p. 14]). The statement is as
follows: if M is an orientable manifold of dimension n, whose cohomaology is
not hecessarily finite dimensional, then

H(M) =~ (H M)* , for any integer gq.
However, the reverse implication HI(M) ~ (H"79%M))* is not always t'ruc.
The asymmetry comes from the fact that the dunal of a direct sum is a direct

product, but the dual of a direct product is not a direct sum. For example,
consider the infinite disjoint union

M= ]_[M(,
=1

where the Ms arc all manifolds of finite type of the same dimension n.

Then the de Rham cohomology is a direct product

(5.7.1) HYM) =[] HU(M),
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but the compact cohomology is a direct sum

(5.7.2) HIM) = @ HiM,).
i

Taking the dual of the compact cohomolagy H3{(AM) gives a direct product
(5.7.3) (ITHM)* = [| HYM,).

i
So by (5.7.1) and (5.7.3}, it follows from Paincaré duality for the manifolds
of finite type M, that

HYM) = (HI™(M))*.

Corollary 5.8. If M is a connected oriented manifold of dimension n, then

HiM)=~R. In particular if M is compact oriented and connected,
HYM) = R.

Let f: M — N be a map between two compact oriented manifolds of
dimension . Then there is an induced map in cohomology

% HYN) - HY{M),

The degree of fis defined to be ,; f*o, where w is the generator of HY{(N).
By the same argument as for the degree of a proper map between two
Euclidean spaces, the degree of a map befween two compact oriented mani-
folds is an intcger and is equal to the number of points, counted with
multiplicity % 1, in the inverse image of any regular peint in N,

The Kiinneth Formula and the Leray-Hirsch Theorem

The Kiinneth formula states that the cohomology of the product of two
manifolds M and F is the tensor product

(5.9) H*(M x F) = H*M) @ H*(F).
This means

H{M xF)= @ H(M)® BYF) for every n,

ptg=n

More generally we arc interested in the cchomology of a fiber bundle.

Definition. Let G be a topological group which acts effectively on a space F
on the left. A surjection n: £ — B between topolopical spaces is a fiber
bundle with fiber F and structure group G if M has an open cover {U/,} such
that there are homeomorphisms

¢y Ely, s U, % F
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and the transitions functions ate continuous functions with values in G:

Gup) = o5 faxr € G-

Sometimes the fotal space E is referred to as the fiber bundle. A fiber bundle
with structure group @ is also called a G-bundie, If x e B, the set
E. = n~Y(x)is called the fiber at x.

Since we are working with de Rham theory, the spaces E, B, and F will
be assumed to be €™ manifolds and the maps C* maps. We may also speak
of a fiber bundle without mentioning its structure group; in that case, the
group is understood to be the group of diffeomorphisms of F, denoted
Dill(F).

REMARK. The action of a group G on a spacc F is said to be effective if the
only element of & which acts trivially on F is the idenfity, ie,if g - y=y
for all y in F, then g == 1 € G. In the C™ case, this is equivalent to saying
that the kernel of the natural map G — DIfl(F} is the identity or thal G is a
subgroup of Difi{F), the group of diffeomorphisms of ¥, In the definition of
a fiber bundle the aclion of G on F is required to be effective in order that
the diffeomorphism

Ga i |oywr

of F can be identified unambiguously with an clement of G,
The {ransition functions g, : U, n Uy — G satisfy the cocycle condi-
tion :

ga.B ' gﬂy = g.xy'

Given a cocycle {g,,} with values in G we can consiruct a fiber bundle E
having {g,s} as its transition functions by setting

(5.10) E = (11 U, x F}f(x, Y)LAx, gaptx)3)
for (x, y)in Uy x F and (x, gs(x)y}in U, x F.

The following proof of the Kiinneth formuta assumes that M has a finite
acod cover. This assumption is necessary for the induction argument.
The two natural projections

MxF—2 LF

T

M
give rise to a map on forms

0@ d o wtoAprg
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which induces a map in cohomology (exercisc)

¥ HM) @ H*(F) — H*(M x F).

We will show that  is an isomorphism.
If M = R, this is simply the Poincaré lemma,
1o the following we will regard M x F as a product bundie over M. Let

U and ¥ be open sets in M and »n a fixed integer. From the Mayer-Vietoris
sequence

o HAU v V) - H{U)@ HYYV)— HU V)
we get an exact sequence by tensoring with H”~#(F)
= HAU VY@ H"™MF)— HAU)® H™ X F)y @ (H(V) ® H" " #(F))
-> HYU n VY ® HF(F) - -
since tensoring with a vector space preserves cxactness. Summing over

p=10,...,n yields the exact sequence

C = D HNU O V)@ HE)

p=0

- @D(H”(U) @ H"H(F)) @ (H'(V) @ H" ™ "(F))

o @ HAU A V)@ HHE) -

p=0
The following diagram is commutative

@0(H"{Uu VY@ H"HF)— @ (HAU)@ H" AP @ (HV) @ H ~H(F)— @ HNU n V) @ H%F}
P l'r"" n=0 Ju‘; p=0 Jw

H(U UV X F)— HWU = F)'® IV x F) — —

HYU A VY x F)

The commutativity is clear except possibly for the square
@ (HI(U A V)® H™ X)) ~——— ® HFY YU U V) ® B 7(F)
it l J;"f;
H(U A V) x F)——X L HYWWU u V) xF,

which we now check. Let o ® ¢ be in HXU ~ V)& H*"*F). Then
Pd*(w ® @) = M)A pred
d¥filer @ @) = dHm*w A p*o).
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Recall from (2.5) that if {p,, py} is a partition of unity subordinate to
{U, ¥} then

N —dippw) on U

PO =1 dpgw) on V.

Since the pullback functions {a*py, n*py} form a partitic[rjl Of]/l)m;t)_;? on
(U u V) % F subordinate to the cover {UxF,V xF},on{U n
A*(*w A pr¢) = d(n*puyn*wo A p* )
= (da*(py ) A p*e
= n*(d*w) A p*.
So the diagram is commutative. ) . -
By the f?ivc Lemma if the theorem is true for U, V, and U s V, lh;n it is
also true for UJ w V. The Kiinneth formula now f0110w§ by 1.ncluct1011 on
the cardinality of & good cover, as in the proof of Poincaré duality. ]

since ¢ is closed

Let w: E —» M be a fiber bundle with fiber F. Sup_pose there are Cf]}ho~
mology c.lasses e,, ..., e on E which restrict to a basis of the cohomology

of each fiber. Then we can define a map
¥ 1 H¥(M) ® Riey, ..

The same argument as the Kiinneth formula gives

., &} — H*¥E).

Theorem 5.11 (Leray-Hirsch), Let E be u fiber btmd!be ?verhM n;ith ﬁ:{z’;&i
. ini 2 ¢ global cohomology 33

M has a finite good cover, If there are g y

xjuppﬂsee on E which when restricted to each fiber freely generate thel cohamel!

o:;:y o.j; tir:e fiber, then H*(E) is a free module over H*(M) with basis {ey, ...,

e, e
H*(E) =~ H{M)QR{e,, ..., ¢} = H}M)QH*F).

Exercise 5.12 Kiinneth formula for compact cohomology. T_he KijnMnethc{o;
mula for compact cohomology states that for any manifolds an

having a finite good cover.
HXM x N) = H}{M)® HI(N).

(a) In case M and N are crientable, show that this is a conslequcnce of
Poincaré duatity and the Kiinneth formula for de Rham follol‘;mforggl.uh o

(b) Using the Mayer-Vietoris argument prove tl:ne Kunélct 1 f i
compact cohomology for any M and N having a finitc good cover.

The Poincaré Dual of a Closed QOriented Submanifold

Let M be an oriented manifold of dimension n and S a c]o]ied orlzrfn:;l
submanifold of dimension k; here by “clozscd:{’ov}vc tr)ncta;_ai:cs; 251?;10;1301 Tc;
i i i f R* — ut Fig - .
Yigure 5.1 is a closed submanifold o » ; \ 0
g\fry closed oriented submanifold i : 8§ ¢, M of dimension k, one ¢an associ

§5  The Mayer-Vietoris Argument 51

ate 2 unique cohemology class [ns) in H" (M), called its Poincare dugl, as
follows. Let @ be a closed k-form with compact supporl on A{. Since § is

o

Figure 5.1 Figure 5.2

closed in M, Supp(wly) is closed not only in &, but also in A. Now because
Supp(els) < (Supp ) A S is a closed subset of & compact set, i*w also has
compact support on S, so the integral _f_g *w is defined. By Stokes's theorem
Integration over S induces a linear functional on HYAN). It follows by
Poincaré duality: (HYM))* ~ H" ¥ M), that integration over S corresponds
to a unique cohomology class Lis] in H" M), We will often call both the
cohomology class [5,] and a form representing it the Poincaré duai of 5. By
definition the Poincaré dual 4s is the vnique cohomology class in H*~¥M)
satisfying

(5.13) f oy = J @ Mg
s A
for any @ in FI%(A).

Now suppose § is a compact oricated submanifold of dimension & in M.
Since a compact subset of 4 Hausdorff space is closed, 5 is also a closed
oriented submanifold and hence has a Poincaré dual 5y € " ¥(Af). This s
we will call the closed Poincaré dual of 3, to distinguish it from the compact
Poincaré dual to be defined below. Because § is compact, one can in fact
integrate over S nol only k-forms with compact support on M, but any
k-form on M. In this way S defines a linear functional on HYM) and so by
Poincaré duality corresponds (o a unique cohomology class [#%] in
HEXAM), the compaci Poincaré dual of S. We must assume here that M has
a finite good cover; otherwise, the duality (HYM)* ~ HiYAL) does not
hold. The compact Poincare dual [#51 is uniquely characterized by

(5.14) f i*w = j tw Ais,
5 M

for any @ e H¥M). If (5.14) holds for any closed k-form @, then il certaiuly
holds for any closed k-form w with compact suppert. So as a form, n% is also
the closed Poincaré dual of $, ie, the natural map H!MAD — H" (M)
sends the compact Poincaré dual to the closed Poincaré dual. Therefore we
can in fact demand the closed Poincaré dual of a compact oriented sub-
manifeld to have compact support. However, as cohomology classes, [75] €
H*"%M) and [75] € H*"%M) could be quite different, as the following
examples demonstrate,
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ExamPLE 5.15 (The Poincaré duals of a point P on R"). Since AI"(R") =0,
the closed Poincaré dual g is trivial and can be represented by any closed
n-form on R, but the compact Poincaré dual is the nentrivial class in
HYR" represented by & bump form with total integral 1.

ExAMPLE-EXERCISE 5.16 (The ray and the circle in R2 — {0}). Let x, y be the
standard coordinates and r, # the polar coordinates on R* - {0].

(a) Show that the Poincaré dual of the ray {(x, 0)}|x > 0} in B® — {0} is
d6/2m in H(R2 — {0}).

(b) Show that the closed Poincaré dual of the unit circle in H{(R? — {0}
is 0, but the compact Poincaré dual is the nontrivial generator p{y)dr in
TR’ — {0}) where p(r) is a bump function with total integral 1. {By a
bump function we mean a smooth function whose support is contained in
some disc and whose graph locks like 2 “bump™.}

Thus the generator of H'(R* — {0}) is represented by the ray and the
generator of H}(R? - {0}) by the circle (sce Figure 5.3).

REMARK 5.17. The two Poincaré duals of a compact eriented submanifold
correspond to the two homology theories—closed homology and compact
homotlogy. Closed homology has now fallen into disuse, while compact
liomology is known these days as the homology of singular chains. In
Example-Exercise 5.16, the generator of H; 0.0 (R? — {0}) is the ray, while
the generator of Hy, compne (2 — {0}) is the circle. (The circle is a boundary
in closed homology since the punctured closed disk is a closed 2-chain in
R* — {0}.) In general Poincaré duality sets up an isomorphism between
ctoscd homology and de Rham cohomology, and between compact homol-
ogy and compact de Rhamn cohomology.

Let § be a compact oriented submanifold of dimension & in M. If
W < M is an open subset containing S, then the compact Poincaré dual of
Sin W, 5 w e H' W), extends by 0 to a form # in H2~*(M). y5 is clearly
the compact Poincaré duat of S in M because

.[ i*(x)=f w A w =.[ W AR5,
35 w M

Figure 5.3
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Thus, the support of the compact Poincaré dual of S in M may be shrunk inte
any open neighborhood of S. This is called the localization principle. For a
noncompact closed oriented submanifold S the localization prineiple also
holds. We will take it up in Proposition 6.25.

In this beok we will mean by the Poincaré dual the closed Poincaré dual.
However, as we have seen, if the submanifold is compact, we can demand
that its closed Poincaré dual have compact support, even as a cohomology
class in H"~(M). Of course, on a compact manifold M, there is no dis-
tinction between the closed and the compact Poincaré duals.

§6 The Thom Isomorphism

So far we have encountered two kinds of C™ invariants of & manifold, de
Rham cohomology and compactly supported cohomology. For vector bun-
dles there is another invariant, namely, cohomology with compact support
in the vertical direction. The Thom isomorphism is a statement about this
last-named cohomology. In this section we use the Mayer-Vietoris argu-
ment to prove the Them isomorphism for an orientable vector bundle. We
then explain why the Poincaré dual and the Thom class are in fact one and
the same thing. Using the interpretation of the Poincaré dual of a sub-
manifeld as the Thom class of the normal bundle, it is easy to write down
explicitly the Poincaré dual, at least when the normal bundle is trivial, Next
we give an explicit construction of the Thom class for an oriented rank 2
bundle, introducing along the way the global angular form and the Euler
class. The higher-rank analogues will be iaken up in Sections [1 and 12. We
conclude this section with a brief discussion of the relative de Rham theory,
citing the Thom class as an example of a relative class,

Vector Bundles and the Reduction of Structure Groups

Let n: E— M be a surjective map of manifolds whose fiber =~ '(x} is a
vector space for every x in M. The map = is a C® real vector bundle of rank
n if there is an open cover {U,} of M and fiber-preserving diffecmorphisms

d)a: EIU, = n_l(Ua) p Ua x R"
which are linear isomorphisms on each fiber, The maps
Geodpt (U, n U xR - (U, n Up x B
are vector-space aulomorphisms of B” in each fiber and hence give rise to
maps
g Uy n Uy — GL{1, B)
gaﬁ{x) = ¢, ‘f’pﬂ l[x}KR" .

In the terminology of Section 5 a vector bundle of rank # is a fiber bundle
with fiber RB" and structure group GL(n, B). If the fiber js € and the
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structure group is GL(n, C), the vector bundle is a complex vector bundle.
Unless otherwise. stated, by a vector bundle we mean a C* real vector
bundle.

let U/ be an open sel in M. A map s: U -+ E is a section of the vector
bundle E over U if  « s is the identity on U. The space of all sections over
U is written [(U, E). Note that every vector bundle has a well-defined
global zero section, A collection of sections s,, ..., 5, over an open set I in
M is a frame on U if for every point x in U, 5;(x}, ..., s,(x) form a basis of
the vector space E, = 1~ 1{x).

The (ransition functions {g,} of a vector bundle satisfy the cocycle
condition

Gap © Gpy = Gy ON Uy n Uy Uy,

The cocycle {g.,} depends on the choice of the trivialization.

Lemma 6.1. If the cocycle {g.s} comes from another trivialization {¢}, then
there exist maps A, + U, — GL(n, R) such that

Gap = 2allig Az ' on U, N Ug.
Proor, The two trivializations differ by a nonsingular transformation of R”
al each point:
$u=Abe + LU, > GLn, B).
Therefore,

Gop = PuPi ' = APy A5 = Aettip Ag O

Two coeycles related in this way are said 10 be eguivalent.

Given a cocycle {g,s} with values in GL(n, 1) we can construct a vector
bundle E having {g.s} as its cocycle as in (5.10). A homomorphism between
two vectior bundles, called a bundle map, is a fiber-prescrving sniooth map
S+ E— E' which is linear on corresponding fibers,

Exercise 6.2. Show that {twa vector bundles on M are isomorphic if and
only if their cocycles relative to some open cover are equivalent.

Given a vector bundle with cocycle {g,q}, if it is possible to find an
equivalent cocycle with values in a subgroup H of GL{n, R), we say that the
structure group of E may be reduced to H, A vector bundle is orientable if its
structure group may be reduced to GEY(n, B), the lincar transformations of
" with positive determinant. A trivialization {(U,, ¢)}zc; on E is said to
be oriented if for every o and § in I, the transition function g, has positive
determinant, Two oriented trivializations {(U,, @)}, {(Vs. )} are equival-
ent if for every x in U, n V3, ¢, o (u’;ﬁ]"‘[x) : R"— B has positive determi-
nant. It is easily checked that this is an equivalence rclation and that it
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partitions all the oriented trivializations of the vector bundle E into two
equivalence classes. Either equivalence class is called an orientation on the
vector bundle E.

ExAMPLE 6.3 (The tangent bundle), By attaching to each point x in a mani-
fold M, the tangent space to M at x, we obtain the tangent bundle of M

Ty= \J T M.
xe M

Let {(U,, @)} be an atlas for M, The diffeomorphism

li’ﬂ : UC[ -ﬂ—; R”

induces a map
(w«}* : }J, ,3 TR" H]

which gives a local trivialization of the tangent bundle ¥),. From this we
see that the transition functions of T, are the Jacobians of the transition
functions of M. Therefore M is orientable if and only if its tangent bundle is.
Iy = (x4, .00y %) then 8/8x;y, ..., 8/8x, is a frame for T over U,. In the
language of bundles a smooth vector field on U, is a smooth section of the
tangent bundle over U,.

We now show that the structure group of every real vector bundle E may
be reduced to the orthogonal group. First, we can endow E with a Rieman-
nian structurc--a smoothly varying positive definite symmetric bilincar
form on cuch fiber—as follows. Let {U_} be an open cover of M which
trivializes E. On each U,, choose a frame for E|,, and declare it to be
orthonormal. This defines a Riemannian structure on E|u,.- Let {, >,
denale this inner product on E|Uﬂ. Now use a partilion of unity {p,} to
splice them together, i.e., form

<’>=me<»>a'

This will be an inner product over all of M.

As trivializations of E, we take only those maps ¢, that send orthoner-
mat frames of E (relative to the global metric < , ») to orthonormal frames
of R Then the transition functions g,; will preserve orthonormal frames
and hence take values in the orthogonal group Ofn). If the determinant of
Hap 13 DPositive, g,; will actually be in the special orthogonal group SO(n).
Thus

Proposition 6.4, The structure group of a real vector bundle of rank n can
always be reduced to O{n); it can be reduced to SO(n) if and only if the vector
bundle is ovientable.
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Exercise 6.5. (a) Show that there is a direct product decomposition
GL(n, R) = O(n) » {positive definite symmetric matrices}.

(b) Use (a) to show that the structure group of any real vector bundle
may be reduced to O(x) by finding the 4,'s of Lemma 6.1,

Operations on Vector Bundles

Apart from introducing the functerial operations en veetor bundles, our
main purpose here is 1o establish the triviality of a vector bundle over a
contractible manifeld, a fact needed in the proof of the Thom isomorphism,

Functorial operations on vector spaces catry over to vector bundles. For
instance, if E and E’ are vector bundles over M of rank n and m respect-
ively, their direct sum E@ E’ is the vector bundle over M whose fiber at the
point x in M is E, €D E,. The local trivializations {¢,} and {¢.} for E and £’
induce a local trivialization for EQ E":

P @b, E@F

v, 3 U, x (R" @ R™).

Hence the transition matrices for E @ E’ are

(5 5)
0 g

Similarly we can define the tensor product E® £, the dual E* and
Homu(E, E). Note that Hom(E, E’) is isomorphic to E* ® E'. The tensor
product E @ E’ clearly has transition matrices {g,; ® g.p}, but the tran-
sition matrices for the dual E* are not so immediate, Recall that the dual
F* of a real vector space 1 is the space of all linear functionals on V), ie,
V* »~ Hom(V, R), and that a linear map f: V — W induces a map f*;
W*— V* represented by the transpose of the matrix of f. If

$a i Ely, = U, x R
js a trivialization for F, then
(¢2) 7' E*|y, = U x (BM*

is a trivialization for E*. Therefore the transition functions of E* are

(6.6) (P 0 = (Pa i )™ ={gip) ™"
Let M and N be manifolds and = : E — M a vector bundle over M. Any

map f : N -» M induces a vector bundle f “'E on N, called the pulthack of
E by f. This bundle f ~'E is defined to be the subset of N x E given by

{0, &) f(n) = n(e)}.
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It is the unique maximal subset of N x E which makes the following di-
agram cormutative

The fiber of f™'E aver a point y in N is isomorphic to E.,. Since a
product bundle pulls back to a product bundle we see that f “'F is locally
trivial, and is therefore a vector bundle, Furthermore, if we have & com-
position

MY # v MY s M,

then

(feg) 'E=g (f'E).

Let Vect, (M) be the isomorphism classes of rank % real vector bundles
over M. It is a pointed set with base point the isomorphism class of the
product bundle over M. If f ; Af - N is a map between two manifolds, let
Vect,(f) =f ! be the pullback map on bundles. In this way, for each
integer k, Veety( ) becomes a functor from the category of manifolds and
smooth maps to the category of pointed sels and base point preserving
maps,

Remark 6.7 Let {U,} be a trivializing open cover for £ and Gqp the tran-
sition functions. Then {f ~'U,} is a trivializing open cover for /" 1E over N
and (f ~'E) Lr—w, ﬁf”i(E|Ua). Therefore the transition functions far £~ 1E
are the pullback functions f*g,,, .

A basic property of the pullback is the following.

Theorem 6.8 (Homotopy Property of Vector Bundles). Assume Y to be a
compact manifold. If fo and fy are homotopic maps from Y to a manifold X
and E is a vector bundie on X, then f§'E is isomorphic to f{E, i.e., homo-
topic maps induce isomorphic bundles.

Proor. The problem of constructing an isomorphism between two vector
bundles V and W of rank k over a space B may be turned into a problem in
cross-scctioning a fiber bundle over B, as follows. Recall that
Hom(V, W) = V* ® W is a vector bundle over B whose fiber at each point
p consists of all the lincar maps from ¥, to W,,. Define Iso(V, W) to be the
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subsct of Hom({¥, W) whose fiber at cach point consists of all the isomar-
phisins from ¥, to W,. (This is like looking at the complement of the zero
seetion of a line bundle.} Iso(V, W) inherits a topology from Hom(V, W),
and is a fiber bundle with fiber GL{#, R). An isomorphism between V and
W is simply a scction of Iso{V, ).

Let f:¥ xI— X be a homotopy between f; and f;, and let
m: ¥ x I-» Y be the projection. Suppose for some ¢, in I, £ 'E is isomor-
phic te some vector bundle F on ¥. We will show that for all t near &,
f'E ~ F. By the compactness of the unit interval I it will then follow that
fiYE = Fioralltin I

Over Y x I there are two pullback bundles, f 'E and =" 'F. Since
FTi'E =~ F, Iso{f "*E, = 'F) has a scction over Y x tg, which a priori is
also a section of Hom(f ~'E, z~'F). Since Y is compact, ¥ x t; may be

covered with a finite number of trivializing open sets for Hom({f " 1E, n~1F).

{sce Figure 6.1). As the fiber of Hom(f ~'E, =~ ' F) are Buclidean spaces, the
section over ¥ x tg may be extended io a section of Hom(f "'E, n™'F)
over the union of these open sets. Now any linear map near an isomor-
phism remains an isomorphism; thus we can extend the given section of
Iso{f “'E, #~'F) to a slrip containing ¥  f,. This proves that {7 'E~ F
for ¢ near to. We now cover ¥ x I with a finitc number of such’ strips.
Hence f 'E = F o f1E m

N .. . Y.
| S A A= A

b
Figure 6.1

ReMmark. If Y is not compact, we may not be able to find a strip of constant
width over which Iso(f ~'E, n~ 'F) has a section; for example the strip may
leok like Figure 6.2,

But the same argument ¢an be refined to give the theorem for Y a paracom-
pact space. See, for instance, Husemoller { 1, Theorem 4.7, p. 29]. Recall that
Y is said to be paracompact if every open cover Y of Y has a locally finite
open refinement W, that is, every point in Y has a neighborhood which
meets only finitely many open sets in W, A compact space or 4 discrete
space arc clearly paracompact. By a theorem of A, H. Stone, so is every
metric space {Dugundji [1, p. 186]). More importtantly for us, every mani-
fold is paracompact (Spivak [1, Ch. 2, Th. 13, p. 66]). Thus the homotopy
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ty

Y
Figure 6.2

property of vector bundles (Theorem 6.8) actually holds over any manifold
Y, compact or not,
Corollary 6.9. A vector bundle over a contructible manifold is trivial.

Proor. Let E'be a vector bundle over M and let fand g be maps

i
M < point
[

such that g o fis homotopic to the identity 1,,. By the homotopy property
of vector bundles

Ex{gof) 'Exf"' g™ B).
Since g~ 'E is a veclor bundie on a point, it is trivial, hence so isf Yy LE).

0

So for a contractible manifeld M, Vect,{M) is a single point.

REMARK, Although all the results in this subsection are stated in the differ-
entiable category of manifolds and smooth maps, the corresponding state-
ments with “manifold” replaced by “space” also hold in the continuous
catcgory of topological spaces and continuous maps, the only exception
being Coroliary 6.9, in which the space should be assumed paracompact,

Exercise 6.10. Compule Vect,(S).

Compact Cohomology of a Vector Buadle

The Poincaré lemmas -
H*(M x B = H*M)
HXM x B") = H* ~(M)
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may be viewed as results on the cohomology of the trivial bundle M x R"
over M. More generally let E be a vector bundle of rank n over M. The zero
section of E, 5 : x—(x, O), embeds M diffeomorphically in E. Since M x {0}
is a deformation retract of E, it follows from the homotopy axiom for de
Rham cohomology (Coroliary 4.1.2.2) that

H*(E) ~ H*M).
For cohomology with compact support one may suspect that
{6.11) HFE) == H ™ "M).

This is in general not true; the epen Mébius sirip, considered as a vector
bundle over S*, provides a counterexample, since the compact cohomology
of the Modbius strip is identically zero (Exercise 4.8). However, if E and M
are orientable manifolds of finite type, then formula (6.11) holds. The proof
is based on Poincaré duality, as follows. Let m be the dimension of M. Then

HHE} = (H"*"~*(EN* by Poincaré duality on E
=~ (H™*7~*(A))* by the homotopy axiom for de Rham cohomology
o= H* 7Y MA) by Poincaré duality on M.

Lemma 6.12. An orientable vector bundle E over an orientable manifold M is
an grientahle manifold.

Proor. This follows from the fact that if {(U,, ¥, )} is an oriented atlas {or
M with transition functions h,, = ty, ° Y7 ! and
$a Ely, 3 Uy x BT

is a local trivialization for E with transition functions g,,, then the com-
position

Elg, 3 Ugx R” 5 R™ x R*

gives an atlas for £, The typical transition function of this atlas,

(e Doyl o Wil x 1): R" x R — R" x R"
sends (x, ¥) to (h,g(x), g5, (%)) and has Jacobian matrix

D(lip) * )

6.12.1 ( _ ,
(6121 0 gD
where D{h,,) is the Jacobian matrix of 4,,. The determinant of the matrix
{6.12.1) is clearly positive. (]
Thus,

Proposition 6.13, If n: FE — M is an orientable vector bundle and M is
orientable, then H¥(E) ~ H* "M}
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REMARK 6.13.1. Actually the orientability assumption on M is superfiuous.
See Exercise 6.20,

ReMARK 6.13.2. Let M be an oriented manifold with oriented atlas {(U,,
#)} and #n: E s M an oriented vector bundle over M with orientation
{Us, ¢.)}. Then E can be made into an oriented manifold with orientation
given by the oriented atlas

(27 NUY), (o x Do by i n~HU) = Uy x B> R™ x R,

This is called the local product orientation on E,

Compact Vertical Cohomology and Integration along the Fiber

As mentioned earlier, for vector bundles there is a third kind of cohomo-
logy. Instead of QXE), the complex of forms with compact support, we
consider Q¥ (¥), the complex of forms with compact support in the vertical
direction; in other words, a form in QX (F) necd not have compact support
in E but its restriction to each fiber has compact support. The cohomology
of this complex, denoted HX(E), is called the cohomalogy of E with compact
support in the vertical direction, or compact vertical cohomalogy.

Let E be oriented as a rank s vector bundle. The formulas in {4.4) extend
to this situalion e give integration along the fiber, n, : QX(E) — OQ* 7"(M),
as follows, First consider the case of a trivial bundle E= M x R" Let
ty, ..., t, be the coordinates on the fiber B". A form on E is a real linear
combination of two types of forms: the type (I) forms are those which do
not contain as a factor the n-form dt, ... dt, and the type {II) lorms are
those which do, The map #,, is defined by

O (@ *)flx, by it dy o dty, — 0, r<n
[11) {ﬂ*(p]f[x! ['1) ey In] dtl me dtn = Q” IR" ﬂx: f-l! LR 'En] drl d'[n)

where f has compact support for each fixed x in M and ¢ is a form on M.
Next suppose £ is an arbitrary oriented vector bundle, with oriented triv-
ialization {{U,, ¢)}.c1- )6t x4, ..., x,, and ¥y, ..., ¥, be the coordinate
functions on U, and Uy, and ¢4, ..., ¢,, tiy, ..., u, the fiber coordinates on
E|y, and Elb‘g given by ¢, and ¢, respectively. Because {{U,, ¢,)} is an
oriented trivialization for E, the two sets of fiber coordinatest,, ..., ¢, and
uy ..., u, are related by an element of GL'(n, R) at each point of U, n Uy.
Again a form « in QX(E) is locally of type {I) or (II). The map n, is defined
to be zero on type (I) forms, Te define n, on type (1I) forms, write @, for
m],,- L,y Then

@y ={n*¢))f(‘x1! cees Xy tls LERE ] t"} dt]_ i dr,,

and

g = (T 1s oy Yo Uas oo, W) dtty oo iy,
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Define
R, @, = ¢ J. Sl By dey oo dey,.
Ien

Exercise 6.14. Show that if E is an oriented vector bundle, then n_ e, =
7, Hence {n w.}, .\ plece together to give a global form mm on M.
Furthermore, this definition is independent of the choice of the oriented
trivialization for E.

Proposition 6.14.1. Integration along the fiber n, cowmutes with exterior
differcntiation d.

Proor. Let {U,, ¢,)} be a trivialization for E, {p,} a partition of unity
subordinate to {U,}, and & a form in {3%(E). Sinccw =Y p, o, and bothz,
and d are linear, it suffices to prove the proposition for g,m, that is,
7, d(p, 0) = du{p, ). Thus from the outset we may assume E to be the
product bundle M x B". If @ = {w*¢) f(x, £) dt; ... dt, is a type {II) form,

dn. o = d(d jf(x, t)dt, ... dt,)

= (d¢) If{x, gy dey oode, + (— 1% g 3 doy f% (x, 1) dty ... di,
and

8
ny dew = m{(a*dg) fdiy ... dt, + (—1)% 1% ¥ % dx dty ... dt,)
i

= (dp) decl vty {—1)teE? Z_ & dx; J% dty ... de,.

Sodn, @ = n dw for a type (I1) form. Next let w = (x*¢) f(x, 1) dt,, ... 41, ,
F < n, be a type (1) form. Then

dr, =0

and
5]
Ryt = (~ 1% 5 7 (09) L (5, 1) dt de .. di,)
! 1

=0 if dyde, ...ody # kdry o dL.

If d; diy, ... dt, = +dey ... dt,, then [ 8f/0tdx, £} dt, dey, ... di;, is again O:
because f has compact support,

J'oo .g_f_:(X, Ode=f(..,00,..)0—f..., —co,...)=0 O

=) i

Note that integration along the fiber, =, @ Q¥(E) — Q* M) lowers the
degree of a formy by the fiber dimension,
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Proposition 6,15 (Projection Formula). (a) Let n: E — M be an oriented
rank n vecror bundle, v a form on M and w a form on E with compact Support
along the fiber. Then

"} - w) =1 m o

(b} Suppoese in addition that M is oriented of dimension m, o & 04.(E), and
T € ST M), Then with the local product orientation on E

J~ {m*1) A w =J. T, .
K M

Proor. {a) Since two forms are the same if and only if they are the same
locally, we may assume that E is the product bundle M x " If e is a form
of type (1), say @ = n*¢ - f(x, 1) dt,, ... dt, , where r < n, then

T l(n%7) - @) = m (n™(r ) - fix, D) dt,, ... d )l =0=1"n_0o

If wis a form of type (II), say w = n*¢ - f(x, t) dt; ... dt,, then

(¥t - w) =1 gé.[ flx, thdey . dt, =772, 0.

{b) Let {{U,, ¢,)}.c be an oriented trivialization for E and {p.},.; a
partition ol unity subordinate to {U,}, Writingw = 5. p, , where p, @ has
support in U, we have

J (r*)Aw =3 j {#* ) A (pg 09)
£ & v E|,

and
J 'c/\n*w=ZJ‘ tAmp, w),
M 2 JU,

Here © A {p, w) has compact support because its support is a closed subset
of the compact set Supp v; similarly, (n*1) A(p, w) also has compact sup-
port. Therefore, it is enough to prove the proposition for M = U, and E
trivial. The rest of the proof proceeds as in (a). (|

. The proof of the Poincaré lemma for compact supporis (4.7) carries over
verbatim to give

Proposition 6.16 {(Paincaré Lemma for Compact Vertical Supporis), Inte-
gration along the fiber defines an isomorphism
n, T HA(M > R™ > H* (M),
This is a special case of

Theorem 6.17 (Thom Isomorphism). If the veetor bundle m: E — M over o
manifold M of finite type is orientable, then

HE(E) = H*™"(M)
where n is the rank of E.
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Proor. Let U and V be open subscts of M. Using a partition of unity from
the base M we sce that

0= Qi (Ely L v) — QUEIW) D QLEL) — QUE |y A v) — 0

is exact, as in (2.3). So we have the diagram of Mayer-Vietoris sequences

-
s HE(E |y, ) ——HLEL ® HYER)—— HL(El ) ALHENE |y ) —

e

T (4 b4

* *

S ST MU W V)l AU @ HY = (V) ol o U V) e U P

*

The commutativity of this diagram is trivial for the first two squares; we
will check that of the third. Recalling from {2.5) the explicit formula for the
coboundary operator d*, we have by the projection formula (6.15)

i, d¥w = 1 (n* dpy) + w) = (dpy) - B, 0 = d*n, o,

So the diagram in question is commutative,

By (6.9) if U is diffeomorphic to ", then K}y is trivial, so that in this case
the Thom isomorphism reduces to the Poincaré lemma for compact vertical
supports (6.16). Hence in the diagram above, n, is an isomorphism for
coniractible open sets. By the Five Lemma if the Thom tsomorphism holds
for U, V, and U m ¥, then it halds for Y v V. The proof now proceeds by
induction on the cardinality of a good cover for the base, as in the proof of
Paoincaré duality. This gives the Thom isomorphism for any manifold M
having a finite good cover. 0

REMark 6.17.1. Although the proof above works only for a manifold of
finite type, the theorem is actually true for any basc space. We will reprove
the theorem for an arbitrary mauifold in {12.2.2).

Under the Thom isomorphism & : H¥*(M) = HXT7(E), the image of 1 in
HO(M) determines a cohomology class @ in H" (E), called the Them class of
the oriented vector bundle E. Because n, @ = 1, by the prajection formula

(6.15)
A {T*o AD) =whng, @ =
So the Thom isomorphism, which is inverse to n,, is given by
F( Y=n* IAD

Proposition 6.18. The Thom class © on a rank n oriented vector bundle E can
be uniquely characterized as the cohamology class in H] (E) which restricts to
the generator of H)F) on each fiber F.

ProoF. Since 7, & =1, ®ly,,. is a bump form on the fiber with total in-
tegral 1. Conversely if @' in H!,(F) restricits to a generator on each fiber,
then

(T AD) = wAn, D =wm
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Hence z*{ ) A ® must be the Thom isomorphism & and @' = (1) is the
Thom class. 0

Proposition 6.19. If E and F are two oriented vector bundles over a manifold
M, and m, and n, are the projections

E®F
™ L)
N
then the Thom class of E @ F is ®(E @ F) = nfQ(E) A n3D(F).

PROOF. Let m = rank E and n = rank F. Then afD(E) A n3D(F) is a class in
HM*"E @ F) whose restriction to each fiber is a generator of the compact
cochomology of the fiber, since the isomorphism

H:!"'H{Rm ® RJ‘\) o~ H:l(Rﬂ’l) @ II?(R!I]

is given by the wedge product of the generators. O

Exercise 6.20. Using a Mayer-Vietoris argument as in the proof of the
Thom isomorphism (Theorem 6.17), show that it n: B — M 15 an orient-
able rank s bundle, then

HHE) ~ H¥7"(M).
Note that this is Proposition 6.13 with the orientability assumption on M
removed.

Poincaré Duality and.the Thom Class

Let S be a closed oriented submanifeld of dimension k in an oriented
manifold M of dimension ». Recall from {5.13) that the Poincaté dual of S is.
the cohomology class of the closed (# — k)-form ns characterized by the

‘property
(6.21) J w= J. w A ns
s M

for any closed k-form with compact support on M. In this section we will
explain how the Poincaré dual of a submanifold relates to the Thom class
of a bundle (Proposition 6.24). To this end we first intraduce the notion of a
tubular neighborhood of § in M; this is by definition an open neighborhood
of § in M diffeomorphic 1o & vector bundle of rank n-k over §. Now a
sequence of vector bundles over M,

0~ E—E — E" —+0,
is said to be exact if at each point p in M, the sequence of vector spaces
0—E,—E,—E —0
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is exact, where E, is the fiber of E at p. If S is a submanifold in M, the

normal bundie N = Ngj; of 8 in M is the vecior bundle on § defined by the
exact sequence

(6.22) 0—Ts— Ty is — N —Q,

where T |5 is the restriction of the tangent bundle of M 1o 8. The tubular
neighborhood theorem states that every submanifold § in M has a tubular
neighborhood T, and that in fact T is diffeomorphic to the normal bundle
of S in M (sec Spivak [1, p. 465] or Guillemia and Pollack [1, p. 76]). For
example, if § is a curve in R?, then a tubular neighborhood of § may be
counstructed nsing the metric in R? by attaching to each point of S an open
disc of radius one perpendicular to § at the center. The union of all these
discs is & tubular neighborhood of § {Figure 6.3{a)).

M

(a) (b)
Figure 6.3

In genecral if 4 and B are two oriented vector bundles with oriented
trivializations {(U,, ¢} and {(U,, )}, respectively, then the dircet sum
orientation on A @ B is given by the oriented trivialization {(U,, ¢, @ ¢J}.
Returning to our submanifold Sin M, we letj: T o M be the inclusion of a
tubular neighborhood T of S in M (see Figure 6.3(b)}. Since S and M are
orientable, the normal bundle Ny, being the quotient of T}, |S by Tg, is also
orientable. By convention it is oriented in such a way that

Ns®Ts= Tafls '

has the direct sum orientation. So the Thom isomorphism theorem applies
to the normal bundle T' = N over § and we have the sequence of maps

fI*(S) ?:;D I’I*‘F,'_R(T] _if___, I:I* +n—k(M}

v
where @ is the Thom class of the tube T andj, is extension by O; here j, is
defined becanse we are only concerned with forims on the tubular neighbor-
hood T which vanish ncar the boundary of 7. We claim that the Poincaré
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dual of § is the Thom class of the normal bundle of 8; more precisely
(6.23) Hs = j @A) =j, @ in H"YM).

To prove this we merely have to show that j, @ satisfies the defining prop-
erty (5.13) of the Poincaré dual ns. Let @ be any closed k-form with
compact suppotrt on M, and i: § — T the inclusien, regarded as the zero
section of the bundle #: 7" — S, Since » is a deformation retraction of T
onto S, #* and i* are inverse isomorphisms in cohomology. Therefore on
the level of forms,  and n*i*w differ by an exact form: @ = #**w -+ dt.

J wAj, D
M n

= | wAD because j, © has support in T
T

o
= | (m**w +dr)AD
T

= | (r¥i*o)A D since -I. (doyAh = J. d{zr A®) = 0 by Stokes’
ST T T
theorem
= | FowAn,® by the projection formula (6.15)
Js
= | *w because %, P = 1.
W5

This concludes the proof of the claim. Note that if S is compact, then its
Poincaré dual g = j, @ has compact support.

Conversely, suppose E is an oriented vector bundle over an oriented
manilold M. Then M is diffeomorphically cmbedded as the zerc section in
E and there is an exact scquence

0— Ty -+ {Tg)lsy — E— 0,

i.c., the normal bundle of M in E is E itself. By {6.23), the Poincaré dual of M
in E is the Thom class of E. In summary,

Proposition 6.24. (a) The Poincaré dual of a closed oriented submanifold § in
an oriented manifold M and the Thom class of the normal bundle of S can be
represented by the same forms,

{b) The Thom class of an oriented vector bundle n: E — M over an
oriented manifold M and the Poincaré dual of the zero section of E can be
represented by the same form.

Because the normal bundle of the submanifold § in M is diffu_eomorphic
to any tubular neighberhood of S, we have the following propositich.

Proposition 6.25 (Loculization Principle). The support of the Poincaré dual of
a submanifold § can be shrunk into any given tubular neighborhood of 8.
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Figuze 6.4

EXAMPLE 6.26.

(a) The Poincaré dual aof a point p in M.
A tubular neighborhood T of p is simply an open ball around p {Figure 6.4).
A generator of H?(7T) is a bump n-form with total integral 1. Sc the
Poincaré dual of a point is a bump n-form on M. The form need not have
support at p since all bump si~forms on a connected manifold are cohomol-
ogous.

(b) The Poincaré dual of M.
Herc the tubular neighborhood T is M itself, and HA(T) = H¥{M). So the
Poincaré dual of M is the constant function 1.

(c) The Poincaré dual of a circle on a torus.

Figure 6.5

The Poincaré dual is a bumyp [-form with support in a tubular neighbor-
hood of the circle and with total integral 1 on each fiber of the tubular
neighborhood (Figure 6.5). In the usual representation of the torus as a
square, if the circle is a vertical segment, then its Poincaré dual is p{x} dx
where g is a bump function with total integral 1 (Figure 6.6}

Using the explicit construction of the Poincaré dual #y =7, as the
Thom class of the normal bundle, we now prove two basic propertics of
Poincaré duality. Two submanifolds R and S in M are said to iniersect
transversafly if and only if

(627 T.R+T,S=T.M

§6 The Thom Tsontorphism 69

Figure 6.6

at all points x in the interscetion R v S (Guillemin and Pollack [1, pp.
27-32]) For such a4 transversal intersection the codimension in M is addi-
tive:

(6.28} codim R » § = codim R + codim S.
This implics that the normal bundle of B » Sin M is
(629) NRnﬂzNR®NS'

Assume M 1o be an oriented manifold, and R and § te be closed oriented
submanifolds. Denoting the Thom class of an oriented vector bundle E by
@(E), we have by (6.19) i

{6.30) O(Npns) = VN @D Ns) = B(Ng) A PNs).
Therefore, _
(6.31) Hrns = e A Rs

Le., under Poincaré duality the transversal intersection of closed oriented
submanifolds corresponds to the wedge product of forms.

If f: M' — M is an orientation-preserving map of oriented manifolds, T
is a tubular neighborhood of the closed oriented submanifold S in M, and
F(M*) is transversal to § and T, then f~'T is a tubular neighborhood of
718 in M'. From the commutative diagram

D{T} ;
H¥S) - . HEHT) .

cr

-1

H*M)

STy 4
I¥(f7IS) ——— HE™MT'T) —— ¥,

we see that if o is the cohomology class on M representing the submanifold
§in M, then f* is the cohomology class on M’ representing £~ (S), ie.,
under Poincaré duality the induced map on cohomeology corresponds to the
pre-image in geometry, ie., no-ys = f*s.
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The Global Angular Form, the Euler Class, and the Thom Class

Tn this subsection we will construct explicitly the Thom class of an oriented
rank 2 vector bundle = : E — M, using such data as a partition of unity on
M and the transition functions of E. The higher-rank case is similar but
more invelved, and will be taken up in (11.11) and (12.3). The construction
is best understood as the vector-bundle analogue of the procedure for going
from a generator of H"~1(5"~ ") = H"~'(R" — {0}) to a gencrator of H{R"),
So let us first try to understand the situation in R,

We will call a top form on an oriented manifold M positive if it is in the
orientation class of M. The standard orientation on the unit sphere $"~! in
" is by convention the following one: if ¢ is a generator of H”~Y{S"~!) and
n R~ {0} — 87! is a deformation retraction, then o is positive on §771
if and only if dr - #*g is positive on R" — {0},

Exercise 6.32. (a) Show that if ¢ is the standard angle functicn on R2,
measured in the counterclockwise direction, then 48 is positive on the circle
st

(b} Show that if ¢ and 8 are the spherical coordinates on R?* as in Figure
6.7, then d¢ A d8 is positive on the 2-sphere 52,

AN

Figure 6.7

Let ¢ be the positive generator of H*~'(§"™') and = n*¢ the corre-
sponding generator of H" 1(R* — {0});  is called the angular form on
K" — {0}. If p(r) is the function of the rading shown in Figure 6.8, then
dp = p'{r}dr is a bump form on R' with total integral 1 (Figure 6.9). There-
fore (dp) - ¥ is a compactly supported form on R” with total integral 1, ie,
{dp} - W is the generator of HYR"). Note that because f is closed, we can
write

(6.33) (dp) - ¢ = d(p - ).

§6 The Thom Isomorphism A

p(r)

Figurc 6.8

Now let E be an oriented rank n vector bundle over M, and E° the
complement of the zero section in E. Endow E with a Riemannian structure
as in (6.4) so that the radius {unction » makes sense on E. We begin our
construction of the Thom class Dy finding a global form ¢ on E® whose
restriction to each fiber is the angular form on R* — {0}.  is called the
global angular form. Once we have the angular form W, it is then easy to
check that @ = d{p - /) is the Thom class.

Now suppose the rank of E is 2, and {U,} is an open cover of M. Since
E has a Riemannian structure, over each U, we can choose an orthonormal
frame. This defines on E°|, polar coordinates r, and 8, ; if x,, ..., x, are
coordinates on U,, then =*x,, ..., ®*x,, re, 8, are coordinates on E°| U,
On the overlap U, m Uj, the radii r, and r; are equal but the angular
coordinates 8, and 0, differ by a rotation, By the orientability of E, it makes
sense to speak of the “counterclockwise direction” in each fiber. This allows

o'

Figure 6.9
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us to define unambiguously ¢,, as the angle of rotation in the counterclock-
wisc dircetion from the ¢-coordinate system to the f-coordinate system:

(6.34) Op = 0, T 0, 0 < @y < 27

Altheugh rotating from o to § and then from f to p is the same as
rotating from « to yp, it is not true that ¢ + @z, — @4, = 0; indeed all that
one can say is

(vocu‘.i + q');?-y - q’a}' e 2nZ.
AsIDE. To each triple intersection we can associate an integer
1
(635] Eapy = 5;; ((paﬁ — Py + Doy )
The collection of integers {&,p, } measures the extent to which {¢,,} fails to

be a cocyle. We will give another interpretation of {#,,, } in Section 11.

Unlike the functions {g,s}, the 1-forms {de,s} satisfy the cocycle condi-
tion.

Exercise 6.36. There exist 1-forms £, on U, such that

g = £y

b Pap = Sp a-

{Hint: Takeé, = Z? py dp,,, where {p,} is a partition of unity subordinate
to {U,}.]

It follows from Exercise 6.36 that d&, = d&; on U, n Ug. Hence the d¢,
piece together to give a global 2-form ¢ on M. This global form e is clearly
closed. Tt is not necessarily exact since the ¢, do not usually piece together
to give a global 1-form. The cohomology class of ¢ in HXM) is called the
Euler class of the otiented vector bundle E. We sometimes write e(E) instead
of e

Claim. The cohomology class of e is independent of the choice of ¢ in our
construction,

Proor or CLa, IT{€,} is a different choice of 1-forms such that

1 - -
ﬁ d(paﬂ = éﬁ - éu = éﬁ — 5;9
then

EH_CB=Ea_¢a=é
is a global form. So d&, and d¢&, differ by an exact global form, [}

g The Thom Isoinorphism 13

By (6.34) and (6.36), on E°|y;, , o,

d6 do

ke S
(6.36.1) o " ¢, 7y &g .
These forms then piece together 1o give a global 1-form ¥ on E°, the global
angtilar form, whose resiriction to each fiber is the angular form (1/2x} 46,
ie, if 1, : R* ~ E is the orthogoenal inclusion of a fiber over p, then 4l =
(1/2r) df. The global angular form is not closed:

dé,
dy = d(_j; - ?I*tf,,) = —a*dl, = —n*dé, .

Therefore,
{6.37} iy = — n*e .

When E is a produet, ¥ could be taken to be the pullback of {I/2r) 40
under the projection E® = M x (R* — 0) » R? — 0. In this case ¥ is closed
and e is 0. The Buler class is in this sense & measure of the (wisting of the
oriented vector bundle E.

The Euler class of an eriented rank 2 vector bundle may be given in
terms of the transition functions, as follows. Let gp: U, n Uy — SO(2) be
the transition functions of E. By identifying SO{2) with the unil circle in the
complex plane via (¢ ~908) = ", g,; may be thought of as complex-
valued functions. In this context the angle from the f-coordinate system to
the a-coordinate system is (1/i)log g5 Thus

0; — 85 = w*(1/i)log gog,
and
n* dpg = —n*(1f)log g.s.
Since the projection = has maximal rank, =* is injective, so that
dpap = —~(1/)log gup.
Let {p,} be a partition of unity subordinate to {U,}. Then

i
5.-?; d{paﬁ' = {ﬂ = &a)

where
(6.37.1) rf:in,dqo =—L_Zp dlog g,,.
*o2m g e 2mi r
Therefore,
{(6.38) e(E) = - L Y dp,dlogg,) onlU,.
2mi 4
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Proposition 6.39. The Euler class is functorial, ie, if {1 N — M is a C* map
and E is ¢ rank 2 oriented vector bundle over M, then

e(f ~'E} = f* e(E) .

ProoF. Since the transition functions of f ~'E are f *g,4, the proposition is
an immediate consequence of (6.38), ]

We claim that just as in the untwisted case (6.33), the Thom class is the
cohomology class of

(6.40) ® = dip(r) - ) = dp(r) - y — plriw*e .
Although ¥ is defined only outside the zero section of E, the form @ is a
global form on E since dp = 0 near the zero section. ® has the following
properties:

() compact support in the vertica!l direction;

(b) closed: db = — dp(r) - df — dp(r)n¥e = O
{c) restriction {o each fiber has total integral 1:

w2z
mard= || dptr) L < peo) ~ p0) = 1,
L 2?1.
)] o

where 1,: E,— E is the inclusian of the fiber E into E;

(d) the cohomelegy class of @ is independent of the choice of plr). Sup-
pose plr} is another function of r which is —1 near 0 and 0 near infinity, and
which defines @. Then

® — @ = di(p(r) — p0) - ¥)

where (5() — B(r)) - @ is a global form on E because p(r) — f(r) vanishes
near the zero section.

Therefore @ indeed defines the Thom class, Furthermore, il s 1 M— E is
the zero section of E, then

s*D = Hp(0) + s*fr — p(D)s* nre=e.

This proves

Proposition 6,41, The pullback of the Thom class to M by the zero section is

the Euler class.

Let {U,} be a trivializing cover for E, {p,} a partition of unity subordi-

nate to {U,}, and g,, the transition functions for E. Since
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|I£f - daa - ﬂ*déc
in

do, 1
=5 " 5 7% ; 2, dlog g,,.

{ef (6.36.1) and (6.37.1)), we have by (6.40),

a1
(6.42) P = d(p(r} 2::) + — dlpr)n* Zy; p,dlogg.,.

2ni

This is the explicit formula for the Thom class.

Exercise 6.43. Let m : E -> M be an oriented rank 2 bundle. As we saw in
the proof of the Thom isomorphism, wedging with the Thom class is an
isomorphism AD : H*{M) = H%"*(E). Therefore every cohomology class
on E is the wedge product of ® with the pultback of 4 cohomology class on
M. Find the class 4 on M such that

@? = & Ar*uin H* (E) .

Exercise 6.44. The complex projective spuce CP" is the space of all lines
through the origin in C"**, topologized as the quotient of C**! by the
equivalence relation

z~ 2z for zeC"', Ja nonzero complex number,

Let z4, ..., z, be the complex coordinates on C"*!, These give a set of
homogeneous coordinates [z, ..., z,] on CP", determined up to multi-
plication by a nonzero complex number 2. Define U, to be the open subsct
of CP* given by z; # 0. {U,, ..., U,} is called the standard open cover of
TP

{¢) Show that CP" is a manifold.
{(t) Find the transition functions of the normal buadle Nepiep: relative
to the standard open cover of CP!.

ExaMPLE 6.44.1, (The Euler class of the normal bundle of CF! in CP®). Let
N = Ngpyge: be the normal bundle of CP' in CP?. Since CP! is u compact
orieni¢d manifold of real dimension 2, its top-dimensional cohomology is
HYCP') = R We will find the Euler class e{N) as a multiple of the gener-
ator in H*(CPY),

By Excreise 6.44 the transition function of N relative to the standard
OPEN COVer IS go, = zg/z, at the point [z, z,]. Letz = zo/z; be the coordi-
nate of U, which we identify with the complex plane C. By (6.38) the Euler
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class e{N} on U is given by

e(N)

1
— — dpy d log
Dl Po CE do

K

i
_ 2 dpy dlog z,
o 9Po 4108 2

where pg is 1 in a neighborbood of the origin, and 0 in a neighborhood of
infinity.

Fix a circle C in the complex plane with so large a radius that Supp py is
conlained inside C. Let A, be the annulus centered at the origin whose
auter circle is € and whose inner circle B, has radius r (Figure 6.10). Note
that as the boundary of 4,, the circle C is oriented counterélockwise while

B is oriented clockwisc.

Figure 6.10

Now

1
= - di s
Lme(N) i L dpo diogz

6 The Thom lsomorphism 77

and

J. d{po dz/z) = lim J. d{po dz/z)
s A

r— 0

= lim J Po dzfz -+ j po dzfz by Stokes® theorem
C B,

r—+0

= lim J dz/z
r=0 r
= — 2,

where the minus sign is due to the clockwise orientation on B,. Therefore,
1
eN)= ——(—2a))= L
cAL 2ni

Exercise 6.45. On the complex projective space CP” there is a tautological
line bundle S, called the wniversal subbundle; it is the subbundie of the
product bundleCP" x C**! given by

S={{t 2)ze )

Above each point £ in CP", the fiber of § is the line represented by £, Find
the transition functions of the universai subbundle § of CP! relative to the
standard open cover and compute its Enler ¢lass,

Exercise 6.46. Let 5" be the unit sphere inf2"*' and i the antipodal map on
s

FBr(xgy cois Xpp b= (=20, o0y —Xpi )

The real projective space RP" is the quotienl of §* by the equivalence
relation

x ~ i{x), for x e R

{a) An invariant form on 8" is a form @ such that i*w = w. The vector
space of invariant forms on §°, denoted Q*(S")', is a differential complex,
and so the invariant cohomology H*(5")' of 5" is defined. Show that
H*(RP") ~ H*5%".

(b} Show that the natural map H*(S"Y — (S} is injective. [Hint: Il w
is an invariant form and w = dr for some form t on S then @ =
d{z + i*1)/2.]

(¢) Give §" its standard crientation (p. 70). Show that the antipodal map
ir§" -+ 8" is orientation-preserving for » odd and orientation-reversing for
n e¢ven. Hence, if [¢] is a generator of H"S"), then [¢] is an invariant
cohomology class if and only if » is odd.
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(4) Show that the de Rham cohomology of RP" is

R for g =0,
forO<qg<n,
HYRP" =
R for g =n odd,
0 for g =neven,

Relative de Rham Theory

The Thom class of an oriented vecter bundle may be viewed as a relative
cohomology class, which we now define. Let f: S M be a map between

two manifolds. Define a complex Q*(f) = @430 4 f) by
QYf) = QM) @ Q7 (S),
die, 0) = (de, f*ew — db).

It is easily verified that 42 = 0. Note that a cohomology class in Q*( /) is
represented by a closed form @ on M which becomes exact when pulted

back to §.
By definition we have the exact sequence

0 —Qu71(8) > Q1(f) > QM) — O

with the obvious maps « and f§ : a(f) = (0, 8} and S(w, #) = w. Clearly ,B isa
chain map but o is not quitc a chain map; in fact it anticommutes with 4,

ad = —do. In any case there is still a long exact sequence in cohomology
(6.47) oo HYS) S BN D HIMYD HY(S)— -+

Claim 6,48, 8* =f*,
Proor oF Cram. Consider the diagram
0— O%S) — Q) — QM) 0
di dt a1
0 QN - Q) — (M) 0
w W

(o, B) w

Let w & QM) be a closed form and (w, 6} any element of £29( /) which maps
to @, Then d(w, 0) = (0, f*w — d0). So 8*[w] = [/*w — d6] = [[*»]. ]
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Combining (6.47) and (6.48} we have

Proposition 6.49. Let {1 S— M be a differentiable map between two maini-
folds. Then there is an exact sequence

o HY() 5 By B HUS) S B ()

Exercise 6.50, If f, g: §— M are homotopic maps, show that H*(f} and
H*(g) are isomorphic atgebras.

If S is a submanifold of M angd i: §— M is the inclusion map, we define
the relative de Rhomn cohiomology HYM, S) to be HYJ).

We now turn to the Thom class. Recall that if n: E— M is a rank »n
oriented vector bundle and E° is the complement of the zere section, then

there is a global angular form  on E° such that diy = —n¥e, where ¢
represents the Buler class of E (6.37). Furthermore, if s: M — E is the zero
scciion, then ¢ = s*@ (Proposition 6.41). Hence, (s « 7)*P = —dy, where

sox: E°— E. This shows that (@, —y} is closed in the complex {¥(s = n)
and so represents a class in H"(s « ). Since the map s o n : E®— E is clearly
homotopic to the inclusion i: E®-— E, by BExercise 6.50, H"s « m) = H().

~ Henee, (@, — ) represents a class in the relative cohomology H™(E, £,

§7 The Nonorientable Case

Since the integral of a differential form on RB" is not invariant under the
whole group of dilfeomorphisms of 8", but only under the subgroup of
orientation-preserving diffeomorphisms, a differential form cannot be inte-
grated over a nonorientable manifold. However, by modifying a differcntial
form we obtain something called a density, which can be integrated over
any manifald, ovientable or not. This will give us a version of Poincaré
duality for nonorientable manifolds and of the Thom isomerphisim for non-
orientable vector bundles.

The Twisted de Rham Complex

Let M be a manifold and £ a vector space. The space of differential forms on
M with values in E, denoied Q*(M, E), is by definition the vector space
spanned by w ® v, where w e P*(M), v € E, and the fensor product is over
. This space can be made naturally into a differential complex if we let the
differential be

dleo ® v) = {dw) ®

S0 the cohomotogy H*(M, E) is defincd. Tndeed, if £ is a vector space of
dimension #, then H*(M, E) is isomaorphic to n copies of Hf.(M).
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Now let E be a vecior bundle. We definc the space of E-valued g-forms,
Q%M, E), to be the global sections of the vector bundle (AT} @ E. Lo-
cally such a g-form can be written as > e, ®e¢;, wherew, are g-forms and e,
are sections of E over some open set U in M, and the tensor product is over

the C® functions on U, For these veetor-valued differential forms, no na-

{ural extension of the de Rham complex is possible, unless one is first given
a way of differentiating the scctions of .

Suppose the vector bundle £ has a trivialization {(U,, ¢} relative to
which the transition functions are locally constant. Such a vector bundle is
called a flat vector bundle and the trivialization a locally constant triv-
ialization. For a flat vector bundle £ a diffcrential operator on Q%M, E)
may be defined as follows. Let el ..., el be the sections of £ over U,
corresponding to the standard basis under the trivializatien ¢, E]Unzx
U, x ", We declare these to be the standard locally constant sections, ie,
del = 0. Over U, an E-valued g-form s in (M, E} can be written as
Y. oy ® el, where the oy, are g-forms over U,. We define the exterior deriva-
tive ds over U, hy linearity and the Leibnitz rule:

d(z (42 ® ef,) = Z (dm,] ® EL .
It is easy to show that, because the transition funclions of E relalive to
{(U,, $,)} arc locally constant, this definition of exterior differentiation is
independent of the open sets U,. More precisely, on the overlap U, m Uy,
if
s=Zw,®eL=er®ef,
and e, = Z L e;,‘, where the ¢;; are locally constant funetions, then
Tj = z CU oy
and
d(z TJ ® e.{;) = Z (dtj) ® ef;
= 2 (g dw) @ efz
=2, ([da) ®e,
= d[z ar; (B e;)
Hence ds is globally defined and is an element of *L4M, E). Because d” is
clearly zero, Q*M, E) is a differential complex and the cohomology
H*(M, E) makes sense. As defined, d very definitely depends on the triv-
ialization {{U,, ¢,)}, for it is through the trivialization that the locally

constant sections are given. Hence, d, Q*(M, E), and H*(M, E) arc more
properly denoted as dy , %M, E), and 3(M, E).

ExameLe 7.1 (Two trivializations of a vector bundle E which give rise to
distinct cohomology groups H¥{(M, E)).

L. ogy HY
: piece together to form a global section {except for the zero section).

" §7 The Nonoricutable Case g1

. Let M l.)e t.he circle ' and E the trivial line bundle 5! x R! over the
circle. ¥f E is given the usual constant trivialization ¢:
¢(x, ¥y =7 for

then the cohomology HS(S', E) = R.

However, we 1can define another locally constant trivialization  for E as
follows. Cover % with two open sets U and ¥ as indicated in Figure 7.1

xe &t and re R,

u 7

Figure 7.1

Lt p(x) be the real-valued function on V whose graph is as in Figure 7.2

* The trivialization i is given by

for x e U, r e BY,
forxe V, r e R

N L
#ix, 1) {p[x}r

The stundard locally constant sections over U and V are ey(x) =(x, 1) and

ep(x) = [xl, L/ p(x)) r_egpectively. Relative to the trivialization , the cochomol-
{$°, E) = 0, since the locally constant sections over U and ¥ do not

It is natural to ask: to what extent is the twisted cohomology H}(M, E)

independent of the trivialization ¢ for £?
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f .

v
Figure 7.2

Proposition 7.2, The twisted cohiomology is invariant under the refinement ‘of

open covers. More precisely, let {(U,, q_!'},]}“, ke a locally cons}tm;t tat:iz,j-

ialization for E. Suppose {Vi}p.sis a refinement of {U},rand the co(.nt !}

nates maps Yz on Vy < U, are the ;-es;-ricu?ns af ¢,. Then .‘.I}?e I;vo tv::s e('

complexes QF(M, E) and QF(M, E) are identical and so are their cohomology
H¥(M, E) = H} (M, E).

ProOE. Since the definition of the dilferential operator on a wisted complex
is local, and ¢ and @ agree on the open cover {Vj}, we h_ave dy =dy.
Therefore the twe complexes QE(M, E) and QF(M, E} are identical. |

Still assuming E o be u flat vec_to_r ‘bur{dlc, Suppose {U.. d),,)} alllld
{(U,., ¥} are two locally constant EF'IVI!aIIZElIlO‘I’}S which duﬁferdby; lac?]]y
constant comparisen O-cochain, ie., if e, .at?ld ‘f, are the standar ?.ca]y
constant sections over U, relative to the trivializations ¢ and  respectively,

then -
ey =3 afl
i
for some locally constant {unction
a, = (af): U, GL(n, R).
In this case there is an abvious isomorphism
F: Q3(M, E)— QYM, E)
given by o
-2 alfl.
ki
1t is easily checked that the diagram
QM. E) -~ Q} TH(M, E)
F F
Qf(M, E) —— Qx* (M, E)
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commutes. Hence F induces an isomorphism in cohomology. Next, suppose
we are given two localty constant trivizlizations {tU,, ¢} and {(Va, ¥}
for E, with possibly different open covers. By taking a common refinement,
which does not affect the twisted cohomology (Proposition 7.2}, we may
assume that the two open covers are identical. The discussion above there-
fere proves the following.

Proposition 7.3, (a) Let E be a flut vector bundle over M, and {(U,, ¢.)} and
{(Va, )} two locally constant trivializations Jor E. Suppose afier a common
refinement the two trivializations differ by a locally constant comparison 0-
cochain. Then there are isomorphisms

QFM, E) o Qi(M, E)
and
H3(M, E) = H}(M, E).

This proposition may also be stated in terms of the transilion funclions
for F.

Proposition 7.3. (b) Let E be a flat vecior bundle of rank n and {9e8) and {h.}
the transition functions for E relative to twe locally constant trivializations ¢
and 3 with the same open cover, If there exist locally constant functions

A Uy~ GL(n, [B)

such that
Hop = zaha.ﬂ ZEIa

then there ure isomorphisms as in 7.3{a).

Proposition 7.4. [/ E is a trivial rank 1 vector bundie over a manifold M, with

¢ a trivialization of E given by n globul sections, then

HY(M, E) = H*M, R") = é H*{M).

Proor. Let ¢y, ..., e, be the n global sections corresponding to the standard
busis of R", Then every element in Q*(M, E) can be written uniquely as
Z @ & ¢, where o; & (M) and the tensor product is over the € func-
ticns on M. The map

Z o; @ e wy, ..., o)

gives an isomorphism of the complexes (M, E) and Q*(M, RY). [

Now let {(U_, ¢,)} be a coordinate open cover for the manifold M, with
lransition functions g,; = ¢, © ¢; 1, Define the sign function on B! 10 be
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41 for x positive
Sgn[x) — Q0 for x =0
—1 for x ncgative.

The erientation bundle of M is the fine bundle L on M given by transitio'n
functions sgn J(g,p), where J(g,g) is the Facobian dctcrminan? 1_0f the malrl‘x
of partial derivatives of g,g. It follows directly from the definition that M is
orientable if and only if its orientation bundle is triufaf._ ) ‘

Relative Lo the allas {(U,, ¢, for M with transition functions g.s, the
orientation bundle is by definition the quotient

(Um x Rl)f{(xs U) ~ (x’ 32411 J(gcﬂ(x))u}’
where (x, 1) e U, x r! and {x, sgn J(g.(xDv) e Uy x R!. By construction
therc is a natural trivialization ¢’ on L,

¢, L]y, 3 Uy x RY

which we call the sriviglization induced from the atlas {(U., ¢)} on M.
Because sgn Jig,s) arc locally constant functions on M, the locally constant
sections of L relative to this trivialization are the cquivalence classes of
{(x, v)| x € U,} for v fixed in R

Proposition 7.5, If ¢’ and ' are two trivializations for L induced from two
atlases ¢ and § on M, then the two twisted complexes Q&(M, L) and Q3,(M,
L) are isomorphic and so are their cohamology HE(M, L) and H}LM, L),

Proor. By going to a common refinement we may assume that the two
atlases ¢ and v have the same open cover. Thus on each U, there are two
sets of coordinate functions, ¢, and y, (Figure 7.3.).

¢ o

Figure 7.3
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The transition functions g,, and h,, for the two atlases ¢ and  respeclively
are related by

Fap(%) = G tbi |y wms

= e Wb M dp | x

= pia(X e x)ex),
where g0 U, v Uz— GL{1, R} is the function

1) = b e
1t follows that

Sgn J(g,g) = sgn J(i,) - sgn J(itp) - sgn J(gp) ™t

Since sgn J(i,) = + 1, by Proposition 7.3(b}

QF(M, L) =2 Q3(M, L). O

We define the twisted de Rham complex Q¥(M, L) and the twisted de

. Rham cohomology HX(M, L) to be Q(M, L) and Hi(M, L) for any triy-

ialization ¢ on L which is induced from M. Similarly on¢ also has the
twisted de Rham cohomology with compact support, H¥(M, L).

:' Remark, If a trivialization  on L is not induced from M, then H}(M, L)
may not be equal to the twisted de Rham cohomology H¥(M, L).

The following statement is an immediate consequence of Proposition 7.4
and the friviality of L on an orientable manifold.

Proposition 7.6. On an orientable manifold M the wwisted de Rham coliomol-
ogy H*(M, L) is the same as the ordinary de Rham colontology.
Integration of Densities, Poincaré Duality, and the

Thom Isomorphism

Let M be a manifold of dimension n with coordinate open cover {{U,, ¢}

. and transition functions g,;. A density on M is an element of Q"(M, L), or
.- equivalently, a section of the density bundle (A"T#)®L. One may think of a

density as a top-dimensional differential form twisted by the orientation

:"'_. bundle. Since the transition function for the exterior power A"T'} is 1/J(g,z),

the transition function for the density bundle is

© SEN J(gtp) =

I(Gup) | J(gastl
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Let ¢, be the section of L1y, corresponding to 1 under the trivialization
of L induced from the atlas {(U,, ¢} U ¢, = {x,, ..., X,) are the coordi-
naies on U, , we define the density |dx, +++ dx, | in T{U,, (A"T$)@L)) to be

ldx, - - dx, | =e,dx, -~ dx,.

Locally we may then write a density as glx,, ..., x,){dx; - dx,] for some
smooth function g.

Let T : R" — R be a diffeomorphism of B* with coerdinates x,, ..., x,
and ¥y, ..., ¥, Tespectively. If @ = g|dy; ... dy, | is a density on R*, the
pullback of w by T is

T*w =(g o THdy o T} ... dy, » T)|
= (g DI(D)dx; ... dx, ).

The density gldy, ... dy, | is said to have compact support on B" if g has
compacl suppert, and the integral of such a density over R” is defined to be
the corresponding Riemann integral. Then

j Trm = | (g e TJD)||dx; ... dx, |
R" JAn

o

=} gldy dy,| by the change of variable formula

r-

= o,
VR

Thus the integration of a density is invariant under the group of all diffeo-
morphisms on ®”. This means we can globalize the integration of a density
to a manifeld. If {p,} is a partition of unity subordinate to the opea cover
{(U,, ¢} and @ e QNM, L}, define

j W= J. (o 'Y (p ).
M a R

It is easy to check that this definilion is independent of the choices involved.
Tust as for differential forms there is a Stokes’ theorem for densities, We
stale below only the weak version that we need.

Theorem 7.7 (Stokes™ Theorem for Densities). On any manifold M of dimen-
sion n, orientable or not, if 0 € (Y M, L), then

J. de = 0.
M

The proof is esscntially the same as (3.3).
It follows from this Stokes’ theorem that the pairings

MM, L) — R

§7 The Nonoricatable Case &7

and
QUM Q" (M, L) R
given by

wht r—»J. wAT
A

descend to cohomology.

Theorem 7.8 (Poincaré Duality). On a manifold M of dimension n with a finite
good cover, there are nondegenerate pairings

Hi(M) @ HI7%(M, L) R
R
and

(M) @ H M, L) R
=

Proor. By tensoring the Mayer-Vietoris sequences {2.2) and (2.7) with
I'(M, L) we obtain the corresponding Mayer-Vietoris sequences for (wisted
cohomology. The Mayer-Victoris argument for Poincaré duality on an
orientable manifold then carries over word for word. i

Corollary 7.8.1, Let M be a connected manijfold of dimension n having a finite
good cover. Then

R i M is compact orientable

0 otherwise.

(M) = {

Proor, By Poincaré duality, H{(M) = H2{M, L), Let {U,} be a coordinate
apen cover for M. An element of HXM, L} is given by a collection of
constanis f, on U, satisfying

S = (sgn J(g.g) /5 -

If f, = 0 for some «, then by the connectedness of M, we havef, = 0 for all
. It follows that & nonzero clement of HY(M, L) is nowhere vanishing.
Thus, HX(M, L) % 0 if and only if M is compacl and L has a nowhere-
vanishing section, i.e., M is compact orientable. In that case,

HOM, L) = HY(M) = R, 0
Exercise 7.9, Let M be a manifold of dimension n. Compute the cohomal-
ogy groups HYM), H"(M, L), and HX(M, L) for each of the following four
cases: M compact orientable, noncompact orientable, compact nonorient-

able, noncompact nonoricatable.

Finally, we state but do not prove the Thom isomorphisn theorem in all

= orientational generality. Let E be a rank » vector bundle over a manifold
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M, and tet {(U,, ¢,)} and g, be a trivialization and transitton functions for
E. Neither E nor M is assumed to be orientable. The oriem.a'tion blmd!_e of
£, denoted ofF), is the line bundie over M with transnthn _functlons
sgn J(g,z). With this terminology, the orientation bundlc of M is simply th_e
oricntation bundte of its tangent bundle Ty, . Tt is easy to see that when E is
not orientable, integration along the fiber of a form in QX (E) does not yield
a global form on M, but an element of the twisted complex Q*(M, o(E)).

‘Theorem 7.10 (Nonorientable Thom Isomorphism). Under the hypothesis
above, integration along the fiber gives an isomorphism

n, : HXTE) = H*M, o(E)).

Exercise 7.11. Compute the twisted de Rham cohomology H*(BF", L).

CHAPTER IT
The Cech~de Rham Complex

§8 The Generalized Mayer—Vietoris Principle

Reformulation of the Mayer-Vieloris Sequence
Let U and ¥ be open sets on a manifold, In Section 2, we saw that the
scquence of inclusions
UuV«UlVveEUnV
gives rise to an exact sequence of differential complexes
0-ONU LU V) - QY U)@Q* V) - QXU n V)~ 0

called the Mayer—Vietoris sequence. The associated long exact sequence
s HYU U V)2 HY(U) @ H(V) S HYU A V) S HP W U V) - .-

allows one to compute in many cases the cohomology of the union U v ¥
from the cohomology of the open subsets U and ¥. In this secticn, the
Mayer-Vietoris sequence will be generalized from two open sets to count-
ably many open sets, The main ideas here are duc to Weil [1].

To make this generalization more transparent, we first reformulate the
Mayer-Vietoris sequence for two open sets as follows, Let I be the open
cover {U, V}. Consider the double complex C*1, Q*) = @ K"? =
@ CPAL, Q%) where

K% = ¢, ) = QYUY @ QY1)
KYa= N, Q9 = QYU A V),
Efr?e=0, px>2.

89
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q

3 . .

2| U@ QW) | AU n V)
d1
0

0
QU@ QYY) | QYU ~ V)| 0
QU @O | QU ~ W] 0

2

0 1

iR

&
=

This double complex is equipped with iwo differcntial operators, the
exterior derivative 4 in the vertical direction and the difference opcrator din
+he horizontal direction. Of course, & is O after the first column, Because d
and & are independent operators, they commute, :

In general given a doubly graded complox K* * with commuling differ-
entials ¢ and &, onc can form a singly graded complex K* by summing
along the antidiagonal lines

i

"3

I

@

N
o\ LV

1 2 3 P

and defining the differential operator to be
D =D+ D" with I¥ =, D" = (—1)’d on KP2

REMARK ON THE DEFINITION OF D

s
L 8 d

If D were naively defined as D = d + &, it would not be a differential oper-

ator sinee D? = 245 # 0. However, if we alternate the sign of d from one
column to the next, then as is apparent from the diagram above,

§8 The Generalized Mayer-Vietoris Principle a1

D? == g? 4 8d —dd + 8 =0,

In the sequel we will use the same symbol CH1IL Q%) to denote the
double complex and its associated single complex. In this setup, the Mayer-
Vietoris principle assumes the following form.

Theorem 8.1, The double complex C*(U, £¥) computes the de Rham cohomol-
ogy of M:

| H{CHU, @} = Hpx(M).

Proor. In one direction there is the natural map
r: QM) - QXU QXV) = CHU, O*)

given by the restriction of forms. Qur first observation is that » is a chain
map, i.c., that the following diagram is commutative:

i

¥(M) — C¥U, 0%

1 o

QM) — CHU, Q%) .

This is because

g
i

(6 + (=1 dyr [here p=10]

dr

f

= pd .
Consequently » induces a map in cochomology
* 1 Hp(M)— Hp{(CHU, Q).
q

o

B
A g-cochain « in the double complex C*(U, £2*) has two components

o=ty + ty, oy € KO9, oy & Kleaml,

By the exactness of the Mayer—Victoris sequence there exists a f# such that
88 = u,. With this choice of 8, « — Df has only the (0, gl-component. Thus,
every cochain in C*(U, Q%) is D-cohomologous to a cochain with only the top
comipanent,
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We now show r* to be an isomorphism,

Step 1. r* is surjective,

By the remark above we may assume that & given cohomology class in
Hp{CHY, 0%} is represented by a cocycle ¢ with onty the top component.
In this case

D¢ =0 if and only if dip =8 =0
So ¢ is a global closed form.

Step 2. r* is injective.

Suppose r{m) = D$ for some cochain ¢ in C*(L, 0%, Again by the
remark above we may write ¢ = ¢’ + D¢", where ¢ has only the top
component, Then

o) = DY = dg', 5¢' = 0.

So w is the exterior derivalive of a global form on M.

o -

i
T
1>

L

Generalization to Countably Many Open Sets and Applications

Instead of & cover with two open sets as in the usual Mayer-Vietoris se-
quence, consider the open cover H = {U Jues of M, where the index set J is
a countable ordered set. Of course J may be finite. Denate the pairwise
intersections U, n Uy by U, triple intersections U, n Ug m U, by U,p,,
ete. There is a sequence of inclusions of open sets

8g
] — .
= &1 I_[ — .
M I,l Ucto Ay ]_[ Uauﬁl ~—— Uanouaz ::
€-— #p Ty f; X THELTaL
—

where &, is the inclusion which “ignores™ the ith open set; for example,

50:U

—r
o0 E1ED Uamz *

This sequence of inclusions of open sets induces a sequence of re-
strictions of forms

oo Sl lavw,) :t];lQ*(Umm}—» IT 0%Uspaer =5
) SaL

g TaL TR

—
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witcre &g, for instance, is induced from the inclusion

do 1_1 Ugpy — Up,y
and therefore is the restriction
8o 1 Q¥Ug,) — |1 QU

We define the difference operator 8 [ [Q¥(U,, o)) [ [Q*(Uq u 2,) 1o be the
alternating difference &, — 8, +- d,. Thus

[éé}ao ayjzz éataz - ém} az -+ ‘fn:o Iy

More generally the difference aperator is defined as follows.

Definition 8.2, If w e [JQ%U,, ) then @ has “components” w,, o, €
QU(U,,...q,) and

ptl
(8t0)ss.. aptl Z;EO( - l)[wao.mii-uaﬁ »

where on the right-hand side the restriction operation to U,
suppressed and the caret denotes omission.

has been

eEptl

Proposition 8.3. 52 = 0.

Proor. Basically this is truc because in (6%w),,,.
¢, o twice with opposite signs. To be precise,

{52('r))¢0...ap+3 = z ("_ 1)’(6&)):‘10“.&{...&9-}2
= er{_ 1)f(_' 1]}wao...&;,,.&1.<,ap+z

+ jzt{_ l){(_ 1)1_ lwan.,.ai..,&_,...np-i-z

=0

we omit two indices

“@pl

(]

Convention. Up until now the indices in w,, ., are all in increasing order
g < ... < o, More generally we will allow indices in any order, even with
repetitions, subject to the convention that when two indices are inter-
changed, the form becomes its negative:

w.,.a...ﬂ... = T g ..

In particular a form with repeated indices is 0. In the following exercise the
reader is asked to check that this convention is consistent with the defini-
tion of the diffcrence operator 6 above.

Exercise 8.4. Suppose o < . Then (dw) 5 .  may be defined either as
—{8w), .. ... or by the difference operator formula (8.2). Show that these
two definitions agree.
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Proposition 8.5, (The Generalized Maycr--Victoris Ssquence). The sequence
0— Q*(M} - lqlﬂ*{Uao] 'i’ HQ*(U«WJ] _a’ HQ*(UGUGNIZ) “5_) e

is exact: in other words, the S-cohomology of this complex vanishes ident-
fcally.

Prook. Clearly Q*(M) is the kernel of the first 8 since an clement of
[I9%U,,) is 2 glebal form on M if and only if its components agree on the
overlaps.

Now let {p,} be a partition of unity subordinate to the open cover
M = {U,}. Supposc w e [[Q*U,, ,) is a p-cocycle. Define a (p— 1)-
cochain 7 by

Tﬂ[}.-.ﬂp—l = 2 PaWazy. ap.tt
o

Then
{5T)ac...ap = 2 (-~ I}itao,.‘&(.‘.a},

= Z(_ 1]‘}0« wuaa.uﬁi...ap' i

i a
Becanse o is a cocycle,
it 1 .
[5(ﬂ)aﬁo...ap = Wy, .ap + ; (“‘ l} Wyag...dt.mp = 0.
S0

000y = 2 Pa 2 (= 1) Do 1.
= ; Pﬂ wﬂc-..ﬂp

= Wyp, ey

This shows that every cocycle is 2 coboundary. The exactness now follows
from Proposition 8.3. |

In fact, the definition of 7 in this proof gives a homotopy ¢perator on the
complex. Write K for 7:

(8.6) (K®)ag...ip1 = 2 PaDasi.aper
Then ’
(K Deg...a, = 2 (— D (K)o, .00
= 2 A= ) Pa Oy biay
(K6W)gy...ap = 2. Pal0@)auo...cp

= (z ﬂg)mm.,.a,, + z (‘_ 1]t+1pam¢ao...&f..,ap
= {‘Gﬂu...ﬁp - {5“(@)&3,.‘1; '
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Therefore, K is an operator from [ JQ*(U,, )} to I_[Q*{Uag..,a,,_;] such that
(8.7 oK 4+ Kd=1.

As in the proof of the Poincaré lemima, the existence of a homotopy oper-
ator on a dilferential complex implies that the cohomology of the complex
vanishes.

For future reference we note here that if ¢ is a cocycle, then by (8.7),
6K ¢ == ¢b. So on cocycles K is a right inverse to &. Given ¢, the set of all
solutions & of 6 = ¢ consists of K¢¢ + S-coboundaries.

The Mayer-Victoris sequence may be arranged as an augmented double
complex

p P

0— QM) | K2 | K!?

0 — QM) - | KO | Kt

0— Q%M) | KHO | Ko

where K79 = CAU, Q%) = HQQ{UW..,.:,.) consists of the “p-cochains of the
cover M with values in the g-forms.” The horizontal maps of the double
complex are the difference operators & and the vertical ones the exterior
derivatives d. As before, the double complex may be made into a single
complex with the differential operator given by

D=D+D"=8+(—1pd
A D-¢cocyele is a string such as ¢ = a + b + ¢ with

q

da =10, 1]

t
da = +db ap,
b = +dc 5‘%
Sc =0, T ¢-b0

P
(To be precise we should write §a = —D"b, b = — D"c)) So a D-cocycle

may be pictured as a “zig-zag.”
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A D-coboundary is a string such as ¢ = a + b + ¢ in the figure below,
where a = day + D"a,, el

'y

q
]
. 1 -
i a
+
[ b
= .
3T C
+
a0
s
p

The double complex

CHIL Q%) = @ O, Q9
pg=EQ
is called the Cech—de Rham complex, and an element of the (?ech—-dc Rhamn
is called a Cech-de Rham cochain. We sometimes rcfer to a Cech-de Rham
cochain more simply as a -cochain.
‘The fact that all the rows of the augmented complex are exact is the key
ingredient in the proof of the following,

Proposition 8.8 (Generalized Mayer—Vietoris Principle}, The double com-
plex C*(UT, Q%) computes the de Rham cohomology of M ; more precisely, the
restriction map r (M) — C*U, Q%) induces an isomorphism in cohomol-

ogy:

#* s HEe(M) — Hp {CHU, Q%))
PROOF. Since Dy = {5 + d) ¥ = dr = rd, r is a chain map, and so it induces a
map r* in cohomology.

Step 1. r* is surjective.

* * —— 0

sol cthing-|—% —|— 0 0

P P

Let ¢ be a cocycle relative to D. By d-exactness the lowest component of
¢ s ¢ of something. By subtracting D(something) from ¢, we can remove
the lowest component of ¢ and stilt stay in the same cohomology class as ¢.
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After iterating this procedure enough times we can move ¢ in its cohomol-
ogy class to a cocycle ¢ with only the top component. ¢' is a closed global
form because d¢' = 0 and é¢’ = 0.

Step 2. r¥ is injective.

4 g
0— QM) 5
0— QM) — | ¢

0 — QM) 5
00— QM) — #

v I

If #{ew0) = D¢, we cdn shorten ¢ as before by subtracting bonndaries until
it consists of only the top component. Then because &6 is 0, it is actually a
global form on M. So @ is exact. O

The proof of this proposition is a very general argument from which we
may conclude: if ail the rows aof an augmented double complex are exact, then
the D-cohomology of the complex is isomorphic to the cohomology of the
initial column,

Tt is natural to augment cach column by the kerne!l of the bottom 4,
denoted C*{1[, R). The vector space CP(L, ) consists of the locally constant
functions on the (p + I)-fold intersections U, .-

g

0 2on-5 | TI0U)
0 — QUMY | []ONU,)
0 0°M) - | TIW.o) | [1Q°Wee0) | T10°Warsy )

it i7 it r
CfE R - CHUL R — CHU, B) - -

T T ¥

] 0 0

The bottom row
oo, B) 5 ot B S iy, By -

is a differential complex, and the homology of this complex, H*(1I, R), is
called the Cech coliomolagy of the cover U, This is a purely combinatorial
object, Note that the argument for the exactness of the generalized Mayer-
Vietoris sequence breaks down for the complex C*(Q2I, B), because here the
cochains are locally constant functions so that partitions of unity are not
applicable,

If the augmented columns of the complex C*(1I, {3*) are exact, then the
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same argument as in {8.8) will yield an isomorphism between the Cech
cohomology and the cohomology of the double complex

HHQL, R) = H {CH1, Q%)

and consequently an isomorphism between de Rham cohomelogy and Cech
cohomology

H¥p (MY ~ H*U, R),
Now the failure of the p™ column to be exact is measured by the colio-
mology groups

[T HY Uy o)
g=1
o e <y
So if the cover is such that all finite nonempty intersections are contractible,
e.g., 2 goad cover, then all augmented columns will be exact. We have
proven

Theorem 8.9. If 1l is a good cover of the manifold M, then the de Rham
cohomuology of M is isomorphic to the Cech colomology of the good cover

Hpp{M) =~ H(, R).

Let us recapitulate here what has transpired so far. First, the basic
sequence of inclusions

o
MeUEULEUp & -

efl =

gives rise to the diagram

differential
geometry of 0 -— Q¥(M) -5 C*U, O
forms

i

CHl, B)
T
0
combinatorics

of the cover

Along the left-hand side is the differential geometry of forms on M, aleng
the bottom is the combinatorics of the cover i = {U,}, and in the double
complex itself the two are mixed. As the complex is the generalized Mayer—
Vietoris sequence, the augmented rows are exact, for any cover. It follows
that the de Rham cohomalogy of M is always isomorphic to the cohomol-
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ogy of the double complex:
HjW(M) = Hp {C*Q1, 09}

If in addition U is a good cover, then by the Poincare lemma the
augmented columns are exact. In that case the Cech cohomology of the
cover is also isomorphic to the cohomology of the double complex:

HQL, ) ~ Hy {CH, %),

flence there is an isomorphism between de Rham and Cech. This result
provides us with a way of computing the de Rham cohomology by means
of combinatorics, since from Section 5 we know that every manifold has a
good cover. All three complexes here can be given product structures, in
which case the isomorphisms between them are actually isomorphisms of
algebras, as will be shown in (14.28).

A priori there is no reason why different covers of M should have the
same Cech cohomology. However, it follows from Theorem 4.9 that

Corollary 89.1. The Cech cohomology H*(U, W) is the same for all good
covers t af M.

If a manifold is compact, then it has a finite good cover. For such a cover
the Cech cohomology H*(U, R) is clearly finite-dimensional. Thus,

Corollary 8.9.2. The de Rham cohomology (M) of a compact manifold is

finite-dimensional.

Tn fact,

Corollary 8.9.3. Whenever M has a finite good cover, its de Rham cohomology
Higr{M) is finite-dimensional.

Both the proof here and the inducticen argument in Section 3 of the finite
dimensionality of the de Rham cohomelogy rest on the Muyer-Vietoris
sequence, bul they are otherwise independent of each other. -

§9 More Examples and Applications of the
Mayer—Vietoris Principle

In the previous section we used the Maver-Vietoris principle to show the
jsomorphism of the de Rham cohomology of a manifold and the Cech
cohomology of a good cover; from this, various corollariss follow, In this
section, after some examples in which the combinatorics of a good cover is
used to compute the de Rham cohomology, we give an explicit isomor-
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phism from Cech to de Rham: given a Cech cocyele, we construct the
corresponding global closed differential form by means of a collating for-
mula {9.5) based on the homotopy operator K of (8.6). To conclude the
scotion, we give as another application of the Mayer—Vietoris principle a
proof of the Kiinneth formula valid under the hypothesis that one of the
factors has finite-dimensional cochomelogy.

Examples: Computing the d¢ Rham Cohomology from the
Combinatorics of a Good Cover

Let ¥ = {U,} be an apen cover of a manifold M. The nerve of W is a
simplicial complex constructed as follows. To every open set U,, we associ-
ate 4 vertex a. If U, m Uy is nonempty, we connect the vertices o and
with an edge. If U, n U; n U, is nonempty, we {ill in the face of the
triangle affy. Repeating this procedure for all finite intersections gives the
nerve of 11, denoted N(U). For the basics of simplicial complexes, sec¢ Croom

[i1.

ExampLy 9.1 (The circle). Let Il = {U,, U,, U,} be the good cover of the

circle as shown in Figure 9.1. The Cech complex has two terms:
CULR=RD R D R = {{wrg, @y, w3)| &, is a constant on U},
C'AUAR =R P R D R = {1, Hoz, H12) | g is @ constant on U}

Ug

|35

3P
Figure 9.1

The coboundary 8 : C° — C' is given by (6w = 0 — @, Theref;)re,
ker 8 = {(wo, @1, w3)|@p = w, =w,} =R
and
HSY = R,
Since im 6 = B2, HY(S") = R¥/im & = R,
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ExAMPLE 9.2 (A nontrivial 1-cocycle on the circle). If a 1-cocycle i = (o1,
Hozs Hi2) is a coboundary, then 7oy — 7oz + 12 = 0. 805 =(1,00)is a
nontrivial 1-cocycle on the circle.

ExAMPLE 9.3 (The 2-sphere). Cover the lower hemisphere of Figure 9.2 with
three open sets as in Figure 9.3. Together with the upper hemisphere Uy,
this gives a good cover of the entire sphere, The nerve of the cover is the
surface of a tetrahedron as depicted in Figure 9.4. The Cech complex has

ol

Figure 9.2

2

Uy

&

3

Figure 9.3

VAN

Figure 9.4
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three terms:

U, &) o clan ey B o m
I I I

RERERER HORGEREROGRPH RPEREREER
4] 1 2

a2 o (1} 03 12 13 23 o132 013 023 1123
ker 8 = {{wo, w1, @3, W3}y =, = w; = W3} =B
So im 8, =M and HYS*) =R, If y is in ker §,, then y is completely
determined by #g4, Hoz, and #os . Therefore ker 6, — R* and
HY(S*) = ker 8,/im 8, = O.
Since im &; = C*/ker §;, = R?,
H* S = RYim 6, = R.

Explicit Isomorphisms between the Double Complex and de Rham
and Cech

We saw in Proposition 8.8 that tire Cech—de Rham complex C*{(U, £¥)
and the de Rham complex %A} have the same cohomology. Actually,
what is true is that these two complexes are chain homolopic. To be more
precise, there is & chain map

9.4) S CFQUL Q%) — O (M)
such that

(8) for=1,and
(b} r o fis chain homotopic to the identity,

We may think of f as a recipe for collating iogether the compenents of a
Cech-de Rham cochain into a global form, The not very intuitive formulas
below were obtained, after repeated tries, by a careful bookkeeping of the
inductive steps in the proof of Proposition 8.8.

Proposition 9.5 (The Collating Formula). Let K be the homotopy aperator
defined in (8.6). If @ = Y Y_¢ @; is an n-cochain and Do = B = Y124 By, then
" R 1
f@) = T(—D"K)ay — Y, K(—D"K)~1f, e COM, )

i=0 i=0

is a global form satisfying the properties above. The homotopy operator
L: C*U, Q%)= CH*U, Q%)

suchthat 1 — v o f = DL -+ LD is given by

n—1
Lo = Y (La),,
S5

58  More Examples and Applications of the Mayer—Vietoris Principle 103

where

(La), = E K(—D"R)=t+ g e Pl =1 -8),

i=p+1
Bo
“a | Pu
oy | fiz

o2 | B3

oy )Sn+l

ReMARK, To strip away some of the mysteries in the expression for f(a), it
may be helpful 1o observe ithat the operator D"K sends an clement of
CPQLL Q%) into CPTMAU, Q1Y) so that (D"KYe; and K(D"K)Y™18; are col-
fections of n-forms on the open sets U,. The coliating formula says that a
suitable linear combination of these locul n-forms, with &+t as coefficients,
is the restriction of a global form.

The proof of Proposition 9.5 requires the following technical lemma.

Lemma 9.6.
SD"K) = (D"K) & — (D"K)'~4D",
Proor or LemMma 9.6, Since § anticommutes with D" and since
dK + Kéd =1,
' S(D"KXD"K)' ™' = —-D"SK(D"KY ™'
— D1 — K&D"K)' !
(D"K)8(D"KY~ 1.
8o we can commute D”K and 8 until we reach (D"KY ~'8{(D"K). Then,
S(D"K) = (D"Ky~'8(D"K)
= —(D"K)'"'D(1 — K$)
= —(D"K)'"'D" 4- (D"K)'S. {:1

Proor oF PROPOSITION 9.5. Te show that f{«) is a glebal farm, we compute
8f (). Using the lernma above and the fact that de; + P4, = fi;4(, thisis
a steaightforward exercise which we leave to the reader.
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Exercise 9.7. Show that &f () = 0.
Next we check that fis a chain map.

nt+l

T (Do) = f(By = (Zﬂ(— DYD"KYBr.

ntl

df (@) = D°f (@) = fo + 3, (—~D(D"K)Br.

i=1

So
S (Do) = df{).

The verification of Property (a) is easy, since if & is a global form, then
o = gy and

Jorle) =) =0y = o
Property (b) follows from the fact that
1 —rof=DL+LD,

As its verification is straightforward and not very illuminating, we shall
omit it. The skeptical reader may wish to carry it out for himself. Apart
from the definitions, the only facts needed are Lemina 9.6 and the chain-
homotopy formula (8.7} 0

REMARK. Actually the existence of the chain-homotopy inverse f and the
homotopy operator L is guaranteed by a general principle in the theory of
chain complexes (See Spanier [1, Ch. 4, Sec. 2; in particular, Cor. 11,
p. 1671,

We can now give an explicit description of the various isomorphisms
that follow from the generalized Mayer-Vietoris principle. For example, by
applying the collating formula (2.5), we get

Proposition 9.8 (Explicit lsomorphism between de Rham and Cech). Ifn e
CYAL, B) is a Cech cocyele, then the global closed form corresponding to it is
given by [ (g} = (— 1)"(D"K)" .

EXAMPLE 9.9, Let U be a good cover of the circle §'. We shall construct
from a generator of the Cech cohomology H*(M, R) a differential form
representing a gencrator of the de Rham cohomology Hjx(SY).

As we saw in Example 9.2, a nontrivial 1-cocycle on S! is

1 = {fo1s oz H12) = {1, 0, O},
If {p, } is a partition of unity, then
Ky ={-~p1, po, 0.

.
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$o the generator —D"Ky of Hhg (8') is represented by —d(—p,), a bump

" form en U, n U, with total integra! 1.

Exercise 9.10. The real projective plane RP? is obtained by identifying the
boundary of a disc as shown in Figure 9.5, Find a good cover for RP? and

Figure 5.5

compute its de Rham cohomology from the combinatorics of the cover.

Onc possible good cover has the nerve depicted in Figure 9.6,

Figure 8.0

Exercise 9.11, Let Figure 9.7 be the nerve of a good cover U on the torus,
where the arrows indicaie how the vertices are ordered. Write down a
nentrivial 1-cocycle in C'(15, R).

L The Tic-Tac-Tee Preof of the Kiinneth Formula

We now apply the main theorems of the preceding section to give another

proof of the Kiinneth formula, This proof, admittedly more involved in its
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1\\[\F
3

‘F

Figure 8.7

construction than the Mayer—Vietoris argument of Section 5, is a prototype
for the spectral sequence argument of Chapter IIL Tt will also allow us to
replace the requirement that M has a finite good cover by the slightly
weaker hypothesis that F has finite-dimensional cohomology:

Before commencing the proof we make some general remarks about a
technique for studying maps. Let n: E — M be a map of manifolds. A
cover i on M induces a cover n7 'Y on E, and we have the inclusions

EwlinU, e lln ' Usk

T

M I_lUm = HU«,B E

In general U, n U, # ¢ is not equivalent to n™'U, n &~ 'Up # ¢. How-
ever, if 7 is surjective, then the two statements are equivalent, so that in this
case the combinatorics of the covers ¥ and ™1l are the same. The double
complex of the inverse cover computes the cohomology of E, which can
then be related to the cohomology of M, because the inverse cover comes
from a cover on M, This idea will be systematically exploited throughout
this chapter and the next.

A quick example of bow the inverse cover #7'1 may be used to study
maps is the following, Note that although the inverse image of a good cover
is usually not a good cover, for a vector bundle =: E— M the “goodness”
of the caver is preserved. Since the de Rham cohomology is determincd by
the combinatorics of a good cover, this implies that

HEp(E) o HEp(M).
Of course, this also follows from the homotopy axiom for the de Rham
cohomology (Corollary 4.1.2.2).

Proposition 9.12 (Kiinneth Formula). If M and F are two manifolds and F
has finite-dimensional cohomology, then the de Rham cohomology of the prod-
wuct M x F s

H*{M x Fy= H¥*M) & H*F).
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PROOF, Lot U = {U,} be a good cover for M and z: M x F— M the pro-
jection onto the first factor. Then n~ ' = {a~'U_} is some sort of a cover
for E == M x F, though in general not a good cover, There is a natural map

C*{r~ 1L, Q%)
oA

CHU, Q%)

which pulls back differcntial forms on open sets. Choose a basis for H*{F),
say {[»,]}, and choose differential forms e, representing them. These may
be used to define a map of double complexes

C*{z™ 110, )

H*(F) @ C*1I, )
by
milod & ¢) = pru,An g
where p is the projection on the fiber

Fi

M.

Since FI*(F) is a vector space, H*(F) (% C*(l, £}*) is a number of copies of
.C*[II, *) and the differential operator D on the double complex C*(U, O*)
induces an operator on H*(F) & C*(U, £2*) whosc cohomalogy is

HXF) @ Hp{CHU, Q%)} = H¥F) @ H*M).
Since the D-cohomology of C*(n ™11, (3*) is [I*(E), if we can show that

C*n ™, Q%)
il
HYF) @ ¢, Q%)

induces an isomorphism in [D-cohemeoelogy, the Kiinneth formula will
follow.

The proof now divides into two sieps:

Step I
For a good cover W, the map nf induces an isomorphismt in Hy of these
complexes,
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Step 2.

Whenever a homomorphism f: K-~ K' of double complexes induces
H sisomorphism, it also induces H p-isomorphism. (By a homomosphism of
double complexes, we mean a vector-space homomeorphism which preserves
bidegrees and commutes with d and &)

ProoF oF STEP 1. The p™ column CP(z ™!V, Q) consists of forms on the
(p - 1)-fold intersections I~ 'U,, . and C7Q, Q%) consists of forts on
U, ... o, The d-cohomology of CHm™ 1, Q%) is

(9.12.1) [1H* U, o) = H* (@] XUy .o

the isomorphism being given by the wedge product of pullbacks. So nff
induces an isomorphism of the d-cohomology of CHr~ ', 0% and
H*(F) 2 C*L, 0*). O

Exercise 9.13. Give a proof of Step 2.

REmMARrK. This argument for the Kiinncth formula also proves the Leray-
Hirsch theorem (5.11), but again instead of assuming that M has a finite
good cover, we require the cohomology of F to be finite-dimensional. If
both M and I have infinite-dimensional cohomology, the isomorphism in
{9.12.1) may not be valid. .

The following example shows that some sort of finiteness hypothesis is
necessary for the Kiinneth formuia or the Leray-Hirsch thecrem to hold.

BxAMPLE 9.14 (Counterexample to the Kiinneth formula when both M and
F have infinjte-dimensional cohomotogy). Let M and F each be the set zt
of all positive integers. Then

H%M x F) = {square matrices of real numbers (ay), i,/ € Z*}

But HO(M) @ HO(F) consists of finite sums of matrices (a;) of rank 1. These
two vector spaces are not equal, since a finite sum of matrices of rank 1 has
finite rank, but H%M x F) contains matrices of infinite rank.

§10 Presheaves and Cech Cohomology _

Presheaves

The funclor ©*( ) which assigns to every open set U on a manifold the
differential forms on U is an example of a presheaf. By definition a preshedf
# on a topological space X is a function that assigns to every open set Uin
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X an abelian group % (U) and to every inclusion of open sets
ihV - U
a group homomaorphism, calted the restriction,
L F) FU > FO)
satisfying the following properties;
{a) F(iV) = identity map
(b) transitivity: FGY) F(ih) = F{5).

The restriction F{i}) : F(U) — F(V) is often denoied p}. A homomorphism
of _two presheaves, [ F — 4, is a collection of maps fy : F(U) — &{U)
which commule with the restrictions:

FU) = @)

oyl 1 o%

F(V) ~> %(V)
fv

Let Open[X} be the calegory whaose objects are the open sets in X and
whose mprphlsms are inclusions of open seis. In functorial language, a
presheaf is simply a coniravariant functor from the category Open(X) to the

- category of Abelian groups, and & homomorphism of two presheaves,

F1F — %, is a natural transformation from the functor & to the functor %.

The trivial presheaf with group G is the presheafl % which associates to
every connected open set the group G and to every inclusion V' <= U the
}dtfnt.lty map: F(U) — F(V). We say that a presheaf is a constant presheaf
if it is isomorphic to the trivial presheaf, and that it is a locally constant
presheaf if it is locally isomorphic to the trivial presheaf, i.e., every point has
a neighborhood U so that % | is a constant presheaf,

Examrie 101, Tet n:E — M be a fiber bundle with fiber F. Definc a
presheaf 377 on M by #(U) = HYr~'U). For U contractible, H{n " U} =
HA(F} by the Kunneth formula, and if V « U with V connected, then the
restriction pp i H4n~'U) — H%xn"'V) is the identity. Therefore 57 is a
locally constant presheaf en M,

’ Now consider the trivial bundle £ = M x F, Assume that F has finite-
dimensional cohomology. Since M#UM) = HYE) = D4,-, (H(M) @
Hi(F)) is not vsually equal to HAF), a locally coistant preshecgf on M need
not be a constant presheaf, even if M is simply connected *

* " H
However, a locally canstant sheaf on a simply connected space is constant,
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Cech Cohomology

Let 1t = {U,},.s be an open cover of the topological space X, T.he 0-
cochains on U with values in the presheaf % are functions which assign to
cach open set U, an element of #F(U), i, COU, #) = 11,.; F(U,). Sim-
ilarly the 1-cochains are clements of

cim, #) = [ #F(U, ~ Ug)

e f

and so on.
The sequence of inclusions

o —
— -
Uo: 46— Ua:ﬁ :_

gives rise to a sequence of group homomorphisms
NFu)3TFUHT -

We define & : C7(1l, £} — CPI(U, #) to be the alternating difference of the
F(8,7s; for example,
51 COU, ) — CHU, F)
is given by .
8 = F(0g) — F(By).
In general
& CPQU, F) > CPTIU, )
is given by
6= F(Bo) — F(B1) + - +{—1)2"1F (0,4 4).
Explicitly, if @ e CP(Q1, %), then

p+1

z (_ 1):'03“0 veellj o @p+1?

i={

(10.2) (Bw)sq ... apes =

where on the right-hand side the restriction of @u, . s .. apey 0 Usg.. aper 18
suppressed, I follows from the transitivity of the restrictio_n }:IDIT'IOI}IDrphlS.n‘l
that 62 = 0 (proof as in Proposition 8.3). Thus C*(l, #) is a_clllferentml
complex with differential operator & The cohomolagy of this complex,
denoted by H; CHY, %) or FI*(11, &), is called the Cech cohomology of the
cover W with values in #.

REMARK 10.3. [[ & is a covariant functor from the category Open(X) to the
category of Abelian groups, and W is an open cover of X, one can define
analogously a chain complex C, (U, %) and its homoelogy H, (M, #). Apart
from the direction of the arrows, the only difference from the case of a
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presheaf is in the definition of the coboundary operator & (G, Fy—
C,—1(U, 5}, which is now given by

(aw)rxu g 2‘ Wiz ... dpe1”
ax

One verifies easily that this § also satisfies 8% = 0, The functor #? which
associates to every open set U on a manifold the compact cohomology
H3(U) is covariant.

Because of the antisymmetry convention on the subscripts, in this for-
mula there is ne sign in the sum. Of course, if we had written cach term
@ug ... ap, With the subseript « inserted in the i-th place, then therc would be
a Sigﬂ: Z! (_ l)i(ua:o v X LY

Returning to the discussion of the Cech cohomology of a presheal &,
rccall that the cover B = {V;},.; is a refinement of the cover ¥ = {U_}, .,
written U > 3, if there is a map ¢ :J — I such that ¥, © U, . The refine-
ment ¢ induces a map

¢®: O, F) - OB, F)

in the obvious manner:

(% eX(Vio ... 8) = (Usiaot .. o(8,).

' Lemma 10.4.1, ¢* is a chain map, i.e., it commutes with 8.

Proor, (87" (Vo ... g, ) = 2~ D" 0NV, 4,.p,.)

= 20~ Wex(Uppy.. f..oi5,.,1)
[r,b*&cu)(Vﬂa etign) = O U a0 aisen )
=3(~ infumm e BTB o $(Bg s O

O

Lemma 10.4.2. Given U = {U,}, ., an open cover and B = {V;}p.; a re

- finement, if ¢ and W are two refinement maps: J— I, then there is a homotopy
8.5 operator between ¢¥ and ¥,

ProoF. Define K : CH(U, ) ~» CI™ 1B, &) by
KoV, g, ) = 200Uy gipasian ... stoe-n-
Exercise 10.5. Show that

¥ — " = 8K + Ké.
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A direct system of groups is a collection of groups {G}ior indexed by g
directed set 1 such that for any pair @ > b therc is a group hamomorphism
ft:G, — G, satisfying

(1) £ = identity,
(2) fe=f20f%.

On the disjoint union 11G; we introduce an equivalence relation ~ by de-
creeing two elements g in G, and k in G, to be equivalent if there is some ¢
in I such that f2g) =f%(#) in G.. The direct limit of the direct system,
denoeted by lim, ., Gy, is the quatient of I1G; by the equivalence relation ~ ;
it other words, two elements of 1IG; represent the same element in the
direct limit if they arc “eventualiy equal™.

It follows from the two lemmas above that if ¥ > B, then there is a
well-defined map in cohomology

H*(, %) — H*B, ),

making { H*{[, #)}y into a direct system of groups. The dircct limit of this
direct system.

HMX, &) = lim H¥ M, %)
3
is the Cech cohomology of X with values in the presheaf #.

Proposition 10.6. Let R be the constant presheaf on a manifold M. Then the
Cech cohomology of M with values in R is isomorphic to the de Rham
cohomelogy.

ProoF. Since the good covers are cofinal in the set of all covers of M
{Corollary 5.2}, we can use only good covers in the direct limit

H*M, ®) = lim H*(I, R),
u

By Fheorem 89,
H*U, R) =~ Hfp{M)
for any good cover of M. Therefore, there is an isomorphism
H*(M, R) ~ Hia(M).
W

Exercise 10.7 (Cohomology with Twisted Coefficients). Lel & be the presheaf
on S' which associates to every open sct the group Z. We define the
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restriction homomorphism on the good cover = {Ug, Uy, U} (Figure
10.0) by

po1 = pos =1,

piz=pis=1,

b Pi2=—L poa=1,

where PE} is the restriction from U, to U, n U;. Compute H*({, 5},

Ug

u,

U
Figure 10.1

L §11 Sphere Bundles

Let 7 E— M be a fiber bundle with fiber the sphere S, n > 1. As the
structure group we pormally take the largest group possible, namely the
" diffsomorphism group Diff{S"), but sometimes we also consider sphere bun-
dies with structure group Ofn + 1). These two notions are not equivalent;
" there are examples of sphere bundies whose structure groups cannot be
“ reduced to the orthogonal group. Thus, every vecior bundle defines a
- gphere bundle, but not converscly. By the Leray-Hirsch theorem if thercis a
" closed global a-form on E whose restriction to each fiber generates the
cohomology of the fiber, then the cohomology of E is

H¥*(E) = H*(M) @ H*(S".

It is therefore of interest to know when such a global form exists.

© In Section & we consiructed the global angular form ¥ on a rank 2
vector bundle with structure group SO(2). This formn Jr was seen to have the

following two properties:

(1) ¥ restricts to the volume form on each fiber
(b)dyy = —=n*e

_where e is the Euler class. Bxactly the same procedure defines the angular
orm and the Buler class of a circle bundle with structure group SO(2).
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Consequently, for such a bundle also, if the Euler class vanishes, then i iz
closed and satisfics the cendition of the Leray—Hirsch theorem.

We now consider more generally a4 sphere bundle with struciure group
Difi(S") or O(n + 1). We will sce that the existence of a global form as above
entails overcoming two obstructions: orientability and the Euoler class.

QOrientability

In this section the base space of the bundle is assumed to be connected. A
sphere bundle with fiber 8", » = 1, is said to be orientable if for each fiber F,
it is possible to choose a generatar [o,] of H(F,)satisfying the local com-
patibility condition: around any point there is a neighborhood U and a
generator [ay] of FINEly) such that for any x in U, [on] resiricted to the
fiber F, is the chosen generator [¢.]; equivalently, there is an open
cover {U,} of M and generators [a,] of H(Ely,) so that [o,} = [o,] in
H'(E o, o)

Since a generator of the top cohomology of a fiber is ap n-form with
totul integral 1, there are two possible generators, depending on the orienta-
tion of the fiber. A priori all that one could say is that [o.} = t[7g] on
U, n U,. For an orientable sphere bundle either choice of a consisient
sysiem of generators is called an orientation of the sphere bundle. A bundle
with a given orientation js said to be oriented. An §%bundle over a mani-
fold M is a double cover of M: such a bundie over a connected basc space
is said to be orientable if and only if the total space has iwo connected
components,

CaveaT. The fact that the cohomology classes {[¢,]} agrec on overlaps
does not mean that they picce together to form a global cohomology class,
A global cohomology class must be representied by a global form; the
equality of cohomology classes [a,] = {g,] implics only that the forms a,
and o differ by an exact form.

Recall that in Section 7 we called a vector bundle of rank n 4 | orient-
able if and only if it can be given by transition functions with values in
SO + 1). We now study the relation between the orientability of a sphere
pundle and the orientability of a vector bundle.

Let E be a vector bundle of rank n + 1 endowed with a Riemannian
metric so that its siructure group is reduced to O(n -+ 1). Its unit sphere
bundle S(E) is the fiber bundle whose fiber at x consists of all the unit
veclors in E. and whose transition functions are the same as those of E.
S(E) is an $"-bundle with structure group Ofn + 1).

ReMARK 11.1. Fix an otientation on the sphere S If the linear trans-
formation g jis in the special orthogonal group SO{(n + 1) and [c] 15 3
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generator of H'(S" with [y, ¢ = 1, then the image g(57) is the sphere S* with
the same orientation, so that

jg*g—:j‘ gz.(‘a'.:l.
5" g{5") 5"

Thus for an orthogenal transformation g, g*e and a represent the same
coliomology class if and only if g has positive determinait.

Proposition 11.2. 4 vector bundle E is orientable if and only if its sphere
Sundie S{E) is orientable.

PrOOF. (== ) Fix a generator ¢ on $* and [ix a trivialization {U,, ¢} for E
so that the transition functions g,y assume valugs in SO(n + 1). Let

P U, x 8"— 5"

be the projection and lst m~!(x) be the fiber of the spherec bundle
7 S(E)— M at x. Define {a,] in H(S{E)|y) by

[o.] = ¢35 pilo].

To avoid cumbersome notations we will write [a,} |, and ¢, for the re-
strictions [6,] - 1y @0 @ be— 19 Tespectively. Then for every x in U,

Lo, = (Ba[0*[o].
It follows that if x € U, n Uy, then
(o], = {¢s|)* 0T
= (g l)* (e 0|
= gus(x)*[0,] |
= o]}

since g,q{x) has positive determinant. Therefore, [a,] = [6.] on U, n Uy
and the sphere bundle S(E) is orientable.

(<=) Conversely, let {U,, [6,]} be an orientation on the sphere bundle S(F)
and let (5", ¢) be an oriented sphere in R"*! where ¢ is a nontrivial top
form on S Choose the trivializations for S(E)
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