Erich Hecke

Lectures on the Theory
of Algebraic Numbers

Translated by George U. Brauer and Jay R. Goldman
with the assistance of R. Kotzen

5

Springer-Verlag
New York Heidelberg Berlin




Erich Hecke Translators:

Jormerly of George U. Brauer
Department ®f Mathematics Ja Rg Goldman
Universitit Hambpg ¥R
Hamburg . School of Mathematics
Federal Republic of Gesmary University of Minnesota

Minneapolis, MN 55455

USA
Editorial Board
P. R. Halmos F. W. Gehring C. C. Moore
Managing Editor Department of Mathematics Department of Mathematics
Department of Mathematics ~ University of Michigan University of Caiifornia
Indiana University Ann Arbor, Michigan 48104  Berkeley, California 94720
Bloomington, Indiana 47401 USA USA
USA

AMS Classification (1980) 12-01

Library of Congress Cataloging in Publication Data

Hecke, Erich, 1887-1947.
Lectures on the theory of algebraic numbers.
(Graduate texts in mathematics; 77)
Translation of: Vorlesung iiber die Theorie der algebraischen Zahlen.
Bibliography: p.
1. Algebraic number theory. I. Title. II. Series.
QA247.H3713 512°.74  81-894
AACR2

Title of the German Original Edition: Vorlesung tiber die Theorie der algebraischen
Zahlen. Akademische Verlagsgesellschaft, Leipzig, 1923.

© 1981 by Springer-Verlag New York Inc.

All rights reserved. No part of this book may be translated or reproduced in any form
without written permission from Springer-Verlag, 175 Fifth Avenue, New York,
New York 10010, U.S.A.

Printed in the United States of America.

987654321

ISBN 0-387-90595-2 Springer-Verlag New York Heidelberg Berlin
ISBN 3-540-90595-2 Springer-Verlag Berlin Heidelberg New York



Translators’ Preface

. . . if one wants to make progress in mathematics one should study
the masters not the pupils.

N. H. Abel

Hecke was certainly one of the mastgrs, and in fact, the study of Hecke L-
series and Hecke operators has permanently embedded his name in the fabric
of number theory. It is a rare occurrence when a master writes a basic book,
and Hecke’s Lectures on the Theory of Algebraic Numbers has become a
classic. To quote another master, André Weil: “To improve upon Hecke, in
a treatment along classical lines of the theory of algebraic numbers, would
be a futile and impossible task.”

We have tried to remain as close as possible to the original text in pre-
serving Hecke’s rich, informal style of exposition. In a very few instances we
have substituted modern terminology for Hecke’s, e.g., “torsion free group”
for “pure group.”

One problem for a student is the lack of exercises in the book. However,
given the large number of texts available in algebraic number theory, this is
not a serious drawback. In particular we recommend Number Fields by
D. A. Marcus (Springer-Verlag) as a particularly rich source.

We would like to thank James M. Vaughn Jr. and the Vaughn Foundation
Fund for their encouragement and generous support of Jay R. Goldman
without which this translation would never have appeared.

Minneapolis George U. Brauer
July 1981 Jay R. Goldman






Author’s Preface to the
German Original Edition

The present book, which arose from lectures which I have given on various
occasions in Basel, Gottingen, and Hamburg, has as its goal to introduce
the reader without any knowledge of number theory to an understanding
of problems which currently form the summit of the theory of algebraic
number fields. The first seven chapters contain essentially nothing new; as
far as form is concerned, I have drawn conclusions from the development of
mathematics, in particular from that of arithmetic, and have used the notation
and methods of group theory to develop the necessary theorems about
finite and infinite Abelian groups. This yields considerable formal and
conceptual simplifications. Nonetheless there will perhaps be some items of
interest for the person who is familar with the theory, such as the proof of
the fundamental theorem on Abelian groups (§8), the theory of relative
discriminants (§36,38) which I deal with by the original construction of
Dedekind, and the determination of the class number without the zeta-
function (§50).

The last chapter, Chapter VIII, leads the reader to the summit of the
modern theory. This chapter yields a new proof of the most general quadratic
reciprocity law in arbitrary algebraic number fields, which by using the
theta function; is substantially shorter than those proofs known until now.
Even if this method is not capable of generalization it has the advantage of
giving the beginner an overview of the new kinds of concepts which appear
in algebraic number fields, and from this, of making the higher reciprocity
theorems more easily accessible. The book closes with the proof of the
existence of the class field of relative degree two, which is obtained here as
a consequence of the reciprocity theorem.

As prerequisites only the elements of differential and integral calculus and
of algebra, and for the last chapter the elements of complex function theory,
will be assumed.

vii



viii Author’s Preface to the German Original Edition

Iam indebted for help with corrections and various suggestions to Messrs.
Behnke, Hamburger, and Ostrowski. The publisher has held the plan of the
book, conceived already before the war, with perserverance which is worthy
of thanks, and despite the most unfavorable circumstances, has made pos-
sible the appearance of the book. My particular thanks are due to him for
his pains.

Mathematical Seminar Erich Hecke
Hamburg
March 1923
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CHAPTER 1

Elements of Rational Number Theory

§1 Divisibility, Greatest Common Divisors,
Modules, Prime Numbers, and the Fundamental
Theorem of Number Theory

For the time being the objects of arithmetic are the whole numbers, 0, +1,
+2, ... which can be combined by addition, subtraction,ultiplicationi and
division (not always) to form integers. Higher arithmetic u ethods of
investigation analogous to those of real or complex numbers. Moreover it
also uses analytic methods which belong to other areas of mathematics, such
as infinitesimal calculus and complex function theory, in the derivation of
its theorems. Since these will also be discussed in the latter part of this book,
we will assume as known the totality of complex numbers, a number domain,
in which the four types of operations (except division by 0) can be carried out
unrestrictedly. The complex domain is usually developed more precisely in
the elements of algebra or of differential calculus. In this domain the number
1 is distinguished as the one which satisfies the equation

l-a=a

for each number a. All successive integers are obtained by the process of
addition and subtraction from the number 1, and if the process of division
is then carried out the set of rational numbers is obtained as the totality of
quotients of integers. Later, from §21 on, the concept of “integer” will be
subjected to an essential extension.

In this introductory part the basic facts of rational arithmetic will be
presented, briefly, as far as they concern divisibility properties of integers.

1



2 I Elements of Rational Number Theory

While, from two rational integers a, b, integers are always obtained in
the forma + b,a — b, and a - b, a/b need not be an integer. If a/b is an integer,
a special property of a and b is present, which we wish to express by the
symbol b|a, in words: b divides a, or b goes evenly into a, or b is a divisor
(factor) of a, or a is a multiple of b. Each integer a (+0) has the trivial divisors
+a, +1; aand —a have the same divisors; the only numbers which divide
every number are the two “units” 1 and — 1. An integer a, different from
zero, always has only finitely many divisors, as these cannot be larger in
absolute value than |a|; on the other hand every non-zero integer divides 0.

If b # 0 and integral, then, among the multiples of b which are not larger
than a given integer a there is exactly one largest multiple, say gb, and there-
fore a — gb = r is a non-negative integer which is less than |b| This integer
r, uniquely determined by a and b by the requirement

a=gb+r, qintegral, 0 <r < |b|

is called the remainder of the division of a by b, or the remainder of a modulo
b. The statement b|a is thus equivalent to r = 0.

If we now direct our attention to the common divisors ¢ of two integers
a, b which satisfies c|a and c|b, then there is, to begin with, a uniquely de-
termined greatest common divisor (abbreviated GCD); we denote it by
(a,b) = d. According to this definition we always have d > 1. In order to
find properties of this number (a, b) we consider that we always have d Iax +
by for all integers x, y. If we now consider the set of all numbers L(x, y) =
ax + by, where x,y runs through all the integers, then d is obviously also
the GCD of all L(x, y); for it divides all L(x, y) and there is no larger number
with this property, since there can be no larger number which divides both
a=L(1,0) and b= L(0,1). Among the positive integers L(x, y), let d, =
L(x,, yo) be the smallest; thus from

L(x, y)> 0 it immediately follows that L(x, y) > d,. (1)

We now show that each n = L(x, y) is a multiple of d, and that d = d,.
Let the remainder r of n mod d,, be determined by

r=n-—q-dy= L(x — gxq, y — q¥)-

Here we have 0 < r < d,; however by (1) it would follow from r > O that
r > d,. Thus we can have only r =0, ie., n = gd,. Accordingly the num-
bers L(x,y) are identical with the multiples of d,, for each multiple gd, =
L(gx¢,9y,) also appears among the L(x, y). Consequently d,, is likewise the
GCD of all L(x, y)~hence it is identical with d. In particular this yields:

Theorem 1. If (a,b) = d, then the equation
n=ax + by

is solvable with integers x, y if and only if d|n.
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Moreover it follows from this that every common divisor of a and b
divides the GCD of g, b.

To ascertain the GCD one uses, as is well-known, a process which goes
back to Euclid, the so-called Euclidean algorithm. The main point of this
algorithm consists of reducing the calculation of (a,b) to the calculation
of the GCD of two smaller numbers. It follows from a = gb + r that the
common divisors of a and b are identical with those of b and r, hence we
have (a,b) = (b,r). Assume a >0, b > 0 for the sake of convenience, set
a = ay, b = a, because of symmetry, and then let the remainder of a; mod a,
be a;. In general let

a;, , be the remainder of g; mod a;,, fori=1,2,...
as long as the remainder can be determined, that is, a;, ; > 0, and indeed let
a4 =qbis1 + Gz 0< 0505 <aiyy

Since, according to this procedure, the g; form a monotone decreasing
sequence of integers for i > 2, the process must reach an end after finitely
many steps, which will occur when the remainder becomes zero. Suppose
a;+, = 0. Since

(ar,a5) = (az,a3) = " (@, a4 1)
= (@i+1,0i42) = (Gt 15 Gyt )
= (Gk+1,0) = a4y,

the last non-vanishing remainder g, , , is the GCD sought.

In the proof of Theorem 1 we have used only one property of the set
of numbers L(x, y), namely the property that this set is a module. Here
we define:

Definition. A system S of integers is a module if it contains at least one number
different from O and if along with m and n, m + n and m — n also always
belong to S.

Thus if m belongs to S, then m + m = 2m, m + 2m = 3m - - - belong to
S; moreover m—m =0, m —2m= —m, m — 3m = —2m - - - belong to S.
Hence, in general, mx belongs to S for each integer x provided m belongs
to S, and consequently mx + ny also belongs to S for integers x, y if this
holds for m, n.

We can prove the following very general theorem about modules with
the help of the proof of Theorem 1.

Theorem 2. The numbers in a module S are identical with the multiples of
certain number d. d is determined by S up to the factor +1.

For the proof we consider that S contains positive numbers in any case.
Let d be the smallest positive number occurring in S. If n belongs to S, then
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by what has gone before, n — gd also belongs to S for each integer g, in
particular so must the remainder of n mod d, which is <d but >0, and
thus must =0. Consequently each »n from S is a multiple of d and since d
belongs to S so do all multiples of d. Let d’ be a second number which also
has the property: the numbers of S are identical with the multiples of d'—
then d must be a multiple of d’ and conversely, that is, d' = +d.

If in an arbitrary linear form a,x, + a,x, + ** - + a,x, with integral
coefficients one lets the x,, ..., x, run through all integers, then the range
of values defined in this way is obviously a module. Hence in particular
we have

Theorem 3. The range of values of an arbitrary linear form in n variables with
integral coefficients, not all vanishing, is identical with the range of values of
a certain form of one variable d - x. Here d is the GCD of the coefficients of the
original form.

In order that the equation (a so-called Diophantine equation)
k=ax; +ax, ++ a,x,

be solvable in integers x4, . . ., X, it is necessary and sufficient that the GCD
ofa,,...,a,divides k.

If (a,b) = 1, we call a and b coprime or relatively prime. By Theorem 1, in
order that (a, b) = 1, the solvability of

ax +by=1
in integers x, y is necessary and sufficient.
As the most important rule of calculation with the symbol (a, b) we state:

Theorem 4. For every three integers a, b, c, where ¢ > 0
(a,b)c = (ac, bc). )

In fact if (@, b) = d, then the equation acx + bcy = cd follows by Theorem 1
from the known solvable equation ax + by = d; consequently cd is a multiple
of (ac, bc), again by Theorem 1. On the other hand, however, cd is a common
divisor of ac, bc and hence must be equal to (ac, bc).

In addition we note the concept of least common multiple of two numbers
a and b. This is the smallest positive number v which is divisible by a as
well as by b. For this number we have

ja- b

v= 7 where (a,b) = d. 3)

aby_, ~(8,°
73)= b v—dv,dv.

However ab/d is a common divisor of (a/d)v and (b/d)v and thus it divides v,
that is, v > |ab|/d; on the other hand, ab/d is a number which is divisible

For by (2),
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by a as well as by b, and consequently it has absolute value >v. Hence ab/d
can only be = 4.

Since the numbers divisible by a and by b form a module and v is the
smallest positive number occurring in it, every number divisible by a and by
b must be a multiple of v.

We now turn to the multiplicative decomposition of a number a. If, except
for the trivial decomposition into integral factors, in which one factor is +1
and the other is +a, there is no other, we call a a prime number (or prime).
Such numbers exist, e.g., +2, +3, +5,... . We do not wish to count the
units + 1 as prime numbers. If, for the sake of simplicity, we restrict ourselves
to the decomposition of positive numbers a into positive factors we see first
of all that every a > 1 is divisible by at least one positive prime number since
the smallest positive factor of a, which is > 1, obviously can only be a prime.
Now we split off a prime number p; from the number a by the decomposition
a = p,a,, if a; > 1 we again split off another prime p, from a, by a, = p,a,,
and so on. Since the a,, a,, . . . form a decreasing sequence of positive integers
we must arrive at an end of the process after finitely many steps, that is,
some a, must be =1. With this, a is represented as a product of primes
P1° D2 - Di- Hence the primes are building blocks from which each integer
can be built up by multiplication. We now have

Theorem 5. (Fundamental Theorem of Arithmetic). Each positive number > 1
can be represented in one—and except for the order of the factors—in only
one way as a product of primes.

For this it is sufficient to show that a prime p can divide a product of
two numbers a - b only if it divides at least one factor. But this follows from
Theorem 4. Namely, if the prime number does not divide a, then as a prime
it cannot have any factor at all in common with a, hence (a,p) = 1. Then
for each positive integer b, we have by Theorem 4

(ab, pb) = b.

Now if p|ab, then we must also have p|b, i.e., the prime p divides the other
factor b of the product ab. This theorem carries over at once to a product
of several factors.

In order to prove Theorem 5 we consider two representations of a positive
number a as a product of powers of distinct positive primes p;, q;,

PIPT Py =41 i
By what was just proved each prime g divides at least one prime factor of
the left-hand side and is thus identical with some p,. Thus the q,,..., g,
agree with py, ..., p,, except possibly for order; hence we also have k = r.
We choose the numbering so that p; = g;. Now if corresponding exponents
were not equal, say a, > b, then after division of the equation by g5t it follows

that the left-hand side still has the factor p, = q,, but the right-hand side
no longer has this factor. Hence a, = b, and in general a; = b,.
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With this theorem about the unique decomposition of each number into
prime factors we have a substantially different method of deciding the
questions treated above, e.g., whether a given number b divides another
number a, how (g, b) or the least common multiple of a and b is found, etc.
Specifically, if we think of a and b as decomposed into their prime factors
Dis- -5 DPrs

a= ptilpgz. . .p:r

b=pips o,
where zero is also allowed for the exponents a;, b;, then obviously b | a holds
if and only if we always have g; > b;. Moreover we have

(a’ b) = pl:lpgz o pgr’ di = min(ai’ bi)’ i= 19 2a R

v=p{p% P, ¢ =max(a,b)i=12,...,r

The existence of infinitely many primes follows immediately from the fact
that

Z=p; P2 Pt

is a number which is not divisible by any of the primes p,, ..., p,. Hence
z is divisible by at least one prime number distinct from p,, ..., p, and con-
sequently if there are n primes, then there are n + 1 primes.

§2 Congruences and Residue Classes

By the preceding section, an integer n # 0 immediately determines a distri-
bution of all integers according to the remainder which they yield mod n.
We assign two integers a and b which have the same remainder mod n to
the same residue class mod n or more simply, the same class mod n, and write

a = b (mod n), (a is congruent to b modulo n),

which is equivalent to n|a — b. If a is not congruent to b relative to the
modulus n we write a # b (mod n). a = 0 (mod n) asserts that a is divisible by
n. Each number is called a representative of its class. Since the different
remainders mod n are the numbers 0, 1,2,. .., |n| — 1, the number of dif-
ferent residue classes mod n is |n|. The following easily verified rules hold
for calculations with congruences: if a, b, ¢, d, n are integers, n # 0, then we
have:

(i) a = a (mod n).
(ii) If a = b (mod n), then b = a (mod n).
(iii) If a = b (mod n) and b = ¢ (mod n), then a = ¢ (mod n).
(iv) If a = b (mod n) and ¢ = d (mod n), then a + ¢ = b + d (mod n).
(v) If a = b (mod n), then ac = bc (mod n).
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(mod n). In particular we have a* = b* (mod n) for each positive integer k
whenever a = b (mod n). By repeated application of(iv) and (v) we obtain:
if a = b (mod n), then f(a) = f(b) (mod n) when f(x) is an integral rational
function of x (polynomial in x) with integral coefficients.

Hence, to put it briefly, we can calculate with congruences of the same
modulus in exactly the same way as with equations as far as the integral
rational operations (addition, subtraction, multiplication) are concerned.
With division it is different. If ca = ¢b (mod n), it does not follow that
a = b (mod n), for the hypothesis means n|c(a — b). Now if (n,c) =d, we
further have

In general from a=b (modn) and c=d (moX{é)):lfollows that ac = bd

nc n|c
(E,E>=1’ Ea(a_b)a
hence by Theorem 4,
Sla=b, ie, a= b(mod g)

For example: It does not follow from 5-4 = 5-1(mod 15) that4 = 1 (mod 15),
but rather only mod(15/5) = 3. Hence we have

Theorem 6. If ca = cb (mod n), then

a=b <m0d g), where (c,n) = d,

and conversely.
In connection with this there is the fact:

A product of two integers may be congruent to zero mod n although neither
of the factors has this property.

For example 2+ 3 = 0 (mod 6) although neither 2 nor 3 is = 0 (mod 6).
Concerning the connection between congruences relative to different moduli
we see directly from the definition: if a congruence holds mod n, then it
also holds modulo each factor of n, in particular also modulo —n. Further-
more, if

a=b(modn;) and a=b (mod n,),
then
a = b (mod v),

where v is the least common multiple of n, and n,.
Since the residue classes modulo n and the residue classes modulo —n
coincide, it is sufficient to investigate the residue classes modulo a positive .
A system of n integers which contains exactly one representative from
each residue class mod n will be called a complete system of residues mod n.



8 I Elements of Rational Number Theory

Since a complete system of residues mod n consists of |n| distinct numbers,
|n| incongruent numbers modulo n always form a complete system of residues
mod n, e.g., the numbers 0, 1, 2, ..., |n| — 1. More generally

Theorem 7. If x,,x,, . . . , X, forms a complete system of residues mod n(n > 0),
thenax, + b, . .., ax, + b is also such a system, as long as a and b are integers
and (a,n) = 1.

For by Theorem 6 the n numbers ax; + b (i=1,2,...,n) are likewise
incongruent numbers modulo .

A representation of a residue system with respect to a composite modulus,
which is often useful, is given by the following:

Theorem 8. If ay, a,, ..., a, are pairwise relatively prime integers, then a
complete residue system mod A, where A = a,a, * - - a,, is obtained n the form

L( ) + 4 +-4+=¢

XiyevesXpg) =—0C1X1 +—CXp + """ +—CpX

1 n a, 11 a, 22 a, n‘n

if the x; independently run through a complete residue system mod a; (i = 1,
2, ..., n). Here the c; may be arbitrary integers relatively prime to a;.

The number of these L values is |A| and they are incongruent mod A
since from the congruence mod A4

L(x,,...,x,) = L(x}, ...,x},) (mod A)

the same congruence follows modulo each a;. Since

aﬁE 0 (mod a;) for k # i,

'k

we havefori=1,2,...,n

A A
¢ o X; = ¢ ;i x; (mod a,).
Moreover by Theorem 6, since (¢;,a;) = 1 and (A4/a;,a;) = 1, we get x; = x;
(mod g;). Two numbers L, as they occur in Theorem 8, are thus always
incongruent mod A.

In exactly the same way one can prove that one obtains a complete system
of residues mod a - b if we let the quantity x in x + by run through a complete
system of residues mod b, and independently let the quantity y run through
a complete system of residues mod a.

A characteristic of each residue class mod n is the greatest common
divisor which an arbitrary number from the class has in common with n.
This really depends only on the class, since if a = b (mod n), thena = b + qn
with integral ¢, and hence each common factor of a and n is also a common
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factor of b and n and conversely. Thus it makes sense to speak of the GCD
of a residue class mod n and n.

In particular we ask for the number of residue classes mod n which are
relatively prime to n. This number is the Euler function ¢(n). To begin with,
@(n) is easily determined for the case n = p*, a power of a positive prime p,
as @(p*) is the number of those numbers among 1,. .., p* which are not
divisible by p. Among these the number divisible by p is the number of
multiples of p between 1 and p*, hence p*~ !, and thus

Ky _ ok _ pk—1 _ _1
@) =p"-p p"<1 p)-

In order to determine ¢(n) for composite n we now prove the
Lemma. ¢(ab) = ¢(a)p(b) if (a,b) = 1.

One obtains, by Theorem 8, a complete system of residues mod ab in the
form ax + by, if x runs through a complete system of residues mod b, and
y runs through a complete system of residues mod a. However, in order
that such a number be relatively prime to ab, i.e., relatively prime to a as
well as to b, it is necessary and sufficient that (ax,b) = 1 and (by,a) = 1, i,
since (a,b) =1: (x,b) =1 and (y,a) = 1. Hence one obtains the numbers
ax + by relatively prime to ab if we let x run through the residue classes
which are relatively prime to b mod b, and y run through those relatively
prime to a mod a; hence the lemma is proved. By repeated application, if
n is decomposed into its positive prime factors, we obtain:

for n = pi'p?* - b

1
o) = o(p1)  e®?) @) =n ]'[(1 - 1_))' 4)

pln

In the product p must run through all positive primes which divide n.

The complete system of residue classes mod n relatively prime to n is
called a reduced system of residues mod n. It contains ¢(n) classes, and a
system of one representative from each class is called a complete reduced
system of residues mod n. As in Theorem 7 one proves:

If x4, X3,..., Xy, is a complete reduced system of residues mod n, then
ax, ax,, ..., ax, is also such a system, provided (a,n) = 1.

From this we obtain a highly important fact about each number a rela-
tively prime to n. Since each of the numbers ax,, ..., ax, is congruent
mod 7n to one of the numbers x,, ..., x, by the above, then the product of
the numbers ax,, . . ., ax, is congruent to the product x, - - - x;, that is,

a'xx, X, = XXy X, (mod 1)
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and since each x is relatively prime to n, we obtain
a" = 1 (mod n),

and with this, since h = ¢@(n),

Theorem 9. (Fermat’s Theorem). For each number a relatively prime to n

a*™ = 1 (mod n).

In particular if n is a prime p (> 0), then ¢(p) = p — 1, and after multipli-
cation by a we have, for each integer a, the congruence

a? = a (mod p). (%)

The significance of this theorem and the kernel of its proof really becomes
understandable in Chapter II when we introduce the general group concept
into these investigations. The theorem contains a statement about the solu-
tions of the congruence x? — x = 0 (mod p) and forms the basis for the theory
of higher congruences.

§3 Integral Polynomials, Functional Congruences,
and Divisibility mod p

If we let ourselves be guided in the further development of the ideas pre-
sented up to now by the analogies with algebra, then the next goal is the
investigation of polynomials f(x) with integral coefficients with regard to
their behavior relative to a modulus n, and then the question of solvability
of a congruence f(x) = 0 (mod n) in integers x.

By an integral polynomial f(x)= co+ ¢;x + ** -+ ¢ x* we understand
such a polynomial, where ¢, ¢y, . . ., ¢, are integers. Two integral polyno-
mials f(x) and g(x), where g(x) = ay + a;x + - + a,x*, are said to be
congruent modulo n or
. f(x) = g(x) (mod n),

i

¢=aq;(modn) fori=0,1,2,...,k.
(For constants, i.e., polynomials of degree 0, this concept of congruence
agrees with the one used up to now. Thus this definition concerns the
behavior of f(x) and g(x) identically in the variable x, not only for special
values of x. For this reason even if for all integer values x, we have

f(xo) = g(xo) (mod n),
the polynomials f(x) and g(x) need not be congruent as the example

x? = x (mod p)
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(for p a prime) shows. By Fermat’s theorem this is a correct numerical con-
gruence for each integer x, but the polynomials x? and x are not congruent
to each other.

For these functional congruences exactly the same rules of calculation
(i)—(v) in §2 hold as for numerical congruences, and the proof is likewise
simple; for this reason we will not go into it.

Definition. For two integral polynomials f(x) and g(x), f(x) is said to be
divisible by g(x) mod n if there is an integral polynomial g,(x) such that

S(x) = g(x)g,(x) (mod n).
If moreover a is an integer such that
f(a) = 0 (mod n),

then a is called a root of f(x) mod n.

If a is a root of f(x) mod n and a = b (mod n), then obviously b is also a
root of f(x) mod n.

The connection between roots mod n and divisibility mod » is shown by
the following fact:

Theorem 10. If a is a root of the integral polynomial f(x) mod n, then f(x) is
divisible by x — a mod n and conversely.
Since f(a) = 0 (mod n) we have

J(x) = f(x) — f(a) (mod n).

However (f(x) — f(a))/(x — a) is an integral polynomial, g(x), since for each
positive m

X" —a"
=x""'tax" 2 +a’x" 34+ a" x4+ a7 !

X —a

is an integral polynomial and f(x) — f(a) is an integral combination of
expressions x™ — a™. Hence

f(x) = (x — a)g(x) (mod n).

The converse is trivial.
However if f, g, g, are integral polynomials and

J(x) = g(x)g,(x) (mod n),

then a root a of f(x) mod n need not be a root of g(x) or g,(x) mod n, as one
might conjecture by analogy with algebra. For example, we have

x? = (x — 2)(x — 2) (mod 4).
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4 is a root of x> mod 4 but not a root of x — 2 mod 4. Only for prime moduli
do we have

Theorem 11. If f(x) = g(x)g,(x) (mod p), where p is a prime, then each root
of f(x) mod pis aroot of at least one of the two polynomials g(x), g,(x) mod p.

If for the integer a, f(a) = 0 (mod p), then

9(a) - g1(a) = f(a) = 0 (mod p).

If the prime p divides the product g(a) - g,(a), then it divides one of the two
factors.

Theorem 12. An integral polynomial f(x) of degree k has no more than k
incongruent roots modulo a prime p, unless f(x) = 0 (mod p), in which case all
coefficients are divisible by p.

The theorem is true for the polynomials of degree 0, the constants. For if
f(x) = ¢, is independent of x, then f(x) = 0 (mod p) has either O solutions—
when p does not divide ¢,—or it has more than 0 solutions—namely every
integer if ¢, is divisible by p, that is, the polynomial f(x) = 0 (mod p). Suppose
now that our theorem has been proved for polynomials of degree < k — 1.
Then we show it is correct for polynomials of degree k. If a is a root of
f(x) (mod p), then by the proof of Theorem 10 we may set

J(¥) = (x — a)fy(x) (mod p),

where f;(x) is of degree at most k — 1. By Theorem 11 each root of f(x) mod p
is either a root of fi(x) or a root of x —amod p (or both). However
x — a = 0 (mod p) has only one incongruent solution and f;(x) = 0 (mod p)
has either at most k — 1 incongruent solutions, in which case f(x) has at
most k — 1 + 1 = k solutions, or the polynomial f;(x) = 0 (mod p). In the
latter case the polynomial f(x) is =0 (mod p). Thus the theorem is proved
by complete induction.

The theorem is not correct for composite moduli, as the example x2 — 1
modulo 8 shows. This second-degree polynomial has four incongruent roots
mod 8, namely x =1, 3, 5, 7.

Theorem 13. If for two integral polynomials f(x) and g(x)
f(x) - g(x) = 0(mod p), p aprime,
then either f(x) = 0 (mod p) or g(x) = 0 (mod p) or both.
Suppose the theorem is false, i.e., neither f(x) nor g(x) is = 0 (mod p).

Then let all terms of f(x) and g(x) which are divisible by p be omitted and
two nonvanishing polynomials f(x), g,(x) are obtained, all of whose coef-
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ficients are not divisible by p, while at the same time

f(x) = fi(x) (mod p),
g(x) = g(x) (mod p);

f1(x)91(x) = 0 (mod p).

The highest-degree term in f](x)g,(x) must thus be = 0 (mod p) on the one
hand, on the other hand however it is equal to the product of the highest
terms of f;(x) and g,(x). Since p is a prime and all terms of f;(x) and g,(x)
are not divisible by p, the product of such terms is also not divisible by p.
Consequently the hypothesis is false, and the theorem is proved.

it follows that

Definition. An integral polynomial is called primitive if its coefficients are
relatively prime, i.e., if for each prime p, f(x) # 0 (mod p).

Then Theorem 13 obviously allows the following formulation:

Theorem 13a (Theorem of Gauss). The product of two primitive polynomials
is again a primitive polynomial.

§4 Congruences of the First Degree

The polynomials of degree 1 and their roots mod n can be dealt with easily.
This leads to the theory of congruences with one or several unknowns.

Let the integers a, b, n (n > 0) be given. What statements may be made
about the solutions x, in integers, of

ax + b = 0 (mod n)? (6)
Since all the numbers of a residue class appear at once as solutions, if there
are any, we ask only for the incongruent solutions mod n. The answer is

Theorem 14. The congruence (6) has exactly one solution mod n if (a,n) = 1.

For by Theorem 7, ax + b falls exactly once into the residue class 0 if x
runs through a complete system of residues mod n.

If, however, (a, n) = d and (6) is solvable, then the congruence is also true
mod d and for b it yields the condition

b =0 (mod d).
Then by Theorem 6, (6) is equivalent to

b n
x+‘—i=0<mod3>

Ul
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and this equation has, by Theorem 14, exactly one solution x, mod(n/d). All
solutions of (6) are thus the numbers

n
i y

with integral y and among these there are exactly d different ones mod n.

They are obtained if y is allowed to run through a complete residue system
mod d.

x=x0+

In the case (a,n) = d > 1, (6) is thus solvable if and only if d|b. Then the
number of distinct solutions mod n is equal to d.

The congruence (6) is equivalent to an equation ax + b = nz, with z inte-
gral, i.e., its solution is equivalent to the Diophantine equation ax — nz = —b.
Of course an application of Theorem 1 to this equation also leads to the
above result. In particular, if (a, n) = 1, the congruence

aa’ =1 (mod n)

always has exactly one solution a’ determined mod n, and the solution of
the more general congruence ax + b = 0 (mod n) is obtained, by multiplying
by a’, in the form

= —a'b (mod n).

Moreover by Theorem 9 we can take the number a*™~! for q'.
We can consider several linear congruences, with one unknown x but
relative to different moduli brought into the form

x=a,(modn;), x=a,(modny), ..., x=ga (modn) (7)

If x and y are two numbers which satisfy this system, then x — yis divisible
by each n;, hence also by the least common multiple v of ny, . . ., n,, that is,
x = y (mod v); conversely, if x is a solution of (7), and x = y (mod v), then y
is also a solution of (7). Thus the solutions of (7), in case such a solution exists,
are uniquely determined mod v. We are interested only in the most important
case:

Theorem 15. The k congruences (7) have exactly one solution determined
mod n,n, - - - n, if the moduli are pairwise relatively prime.

For with Theorem 8 in mind let us set

v v v
X=—Xx;+—X,+ " +—x  (@O=mny m
m n; M

and determine the x; from the congruences

;vxisai(modn,-) (i=1,2...,k

1
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which is always possible by Theorem 14 on account of the hypothesis. An
x obtained in this way is a solution of (7).

The investigation of the roots of polynomials of higher degree mod n
then leads to congruences of higher degree in one unknown. In order to be
able to attack the elements of this much more complicated theory we must
think through the calculations with residue classes more precisely. We will
encounter the essential relationships which were presented here several
times, in the following sections, in still different forms, so that it is useful to
extract the concept which is capable of so many different kinds of realizations
and to make it the object of the investigation. This is the group concept.
The following chapter is devoted to it.



CHAPTER II

Abelian Groups

§5 The General Group Concept and Calculation
with Elements of a Group

Definition of a Group. A system S of elements 4, B, C . . . is called a group
if the following conditions are satisfied:

(i) There is a prescription (rule of composition) given according to which
from an element A and an element B, a unique element of S, say C, is always
obtained.

We express this relation symbolically

C=AB or (AB)=C.

This composition need not be commutative with respect to the elements 4
and B, that is, AB and BA may be different.
(ii) The associative law is true for this composition: For every three
elements A4, B, C,
A(BC) = (AB)C.

@iii) If A, A, B are any three elements of S, then the following are to hold:
If AB= A'B,then A = A'.
If BA =BA',then A = A’

(iv) For every two elements A, B, in S, there is an element X in S such that
AX = B and an element Y in S such that YA = B.

If the system S contains only finitely many different elements—Ilet their
number be h—then (iv) is automatically satisfied as a consequence of (i) and
(iii). To prove this, let X in AX run through the h different elements X ;, ... X,

16
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of the group. Then, by (i), AX always represents an element of the group, and
by (iii) the h elements so obtained differ from one another. Consequently in
this way each element of the group appears exactly once, in particular this
holds for the element B, thus there is an X such that AX = B.In an analogous
fashion one can deduce the second part of (iv).

If the group contains infinitely many different elements it is called an
infinite group; otherwise it is called a finite group of order h, where h is the
number of its elements.

The group property does not automatically belong to a system S but only
with respect to a definite type of composition. With one type of composition
S may be a group, while the same elements need not form a group under a
different kind of composition.

Examples of groups are the system of all integers with composition by
addition and the system of all positive numbers (integers and fractions) with
composition by multiplication.

On the other hand the system of positive integers alone with composition
by multiplication does not form a group, because requirement (iv) is not
satisfied.

Furthermore if we consider two integers as equal whenever they are
congruent relative to a definite modulus n, then the system of residues mod n
with composition by addition forms a finite group of order n.

In exactly the same way the system of residues mod n, which are relatively
prime to n, with composition by multiplication forms a group of order ¢(n).
In all these examples the rule for composition is commutative. An example
of a noncommutative group is the system of all rotations of a regular body,
e.g., a die, about its midpoint which brings the body back to cover itself.
Here the composition of two such rotations A and B, which is called 4B,
is to be that rotation which is obtained if first B and then A is performed.

The set of all permutations of n digits forms a finite group. Composition
of the permutation 4 with B means the permutation 4B which results from
the performance of B followed by the performance of A.

If two groups ®, and &, are given whose elements are to be denoted by
the indices 1 and 2 respectively and if a well-defined invertible correspondence
(denoted by —) can be exhibited such that if 4, - A, and B; — B,, then
A{B;, — A,B,, then we call the two groups &; and &, isomorphic. Two
isomorphic groups are only distinguished by the way in which the elements
are denoted and the way in which the operation of combination is denoted.
Hence all properties which are expressible strictly in terms of the group
axioms (i)—(iv) and which hold for one group, are also satisfied by isomorphic
groups. Thus isomorphic groups are not to be viewed as different for group-
theoretic investigations.

Now let ® be a group. In the following its elements are to be denoted by
capital Latin letters. The product of two elements of ® is defined by the
existence of the composition according to (i). We now define the product of
k elements by complete induction.
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Definition. Suppose we have already defined the element A, - 4, -+ A, of S
which is to denote the product of n arbitrary elements 4,, 4,, ..., A,. Then
we define the product of n + 1 arbitrary elements A4,, ..., 4,,, of ® by the
equation

Ay Ay Ager =(A Ay Ay) " Apar

We now prove the

Lemma. For an arbitrary integer k > 3
Ay Ay A=A (Ay Az A

For k = 3 this is obviously true, according to the associative law (ii). If
however the theorem is true for k = n, then also for k = n + 1 as we have

A1'Az"'An+1=(A1'A2"'An)'An+1=A1'(A2'A3"'An)'An+1
=A1'(A2’A3"‘An+1)~

Thus the lemma is proved in general.
Moreover it follows for 1 <l <k

(A Az - AY Ay Ay = [(Al “Ay e 'At—l)'At](AHl st Ay)
=(A; Ay Am (A A4 A,

that is, the two inner parentheses may be shifted one place to the left in the
original product without the result being changed. Consequently the inner
parentheses can also be shifted as many places as desired to the right or to
the left and thus

(A1Ay - A) Ay A=A Ay Ay

entirely independently of where the parentheses stand. Hence in a product
of two expressions in parentheses, the parentheses may be omitted without
the result being changed and one can easily prove the theorem for several
expressions in parentheses by complete induction:

Theorem 16. A product of r + 1 expressions in parentheses
(Al T An)(An|+l e Anz) : (An2+1 e Ang) to (An,.+1 o Ak)

does not change if the parentheses are removed and is thus independent of the
position in which the parentheses stand and therefore is equal to A, - A, - - - A,.

Theorem 17. In every group there is exactly one element E such that
AE=EA=A
for every element of the group. E is called the unit (identity) element.
By (iv), to each A there is an E such that
AE = A, thusalso YAE = YA.
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If Y runs through all elements of the group, then, by (iv) this also holds for
YA = B, hence BE = B holds for each B, and E is independent of B.
Moreover there likewise exists an E’ such that for each 4

E'A=A.
For A = E it follows that
EE=E,

and from AE = A it follows that for 4 = E’
FE=E, hence E=E,

and the theorem is proved. This unit element may be omitted as a component
of a product. Thus it plays the role of the number 1 in ordinary multiplication
and it will also be denoted by 1.

Finally, again by (iv), for each A4 there is again an X and a Y such that

AX =E, YA=E.
From this it follows by composition with Y that
YAX = YE, hence EX=YE X=Y.

We call the element X uniquely defined in this way by A4 the inverse element
(or inverse) of A and we denote it by A~ 1. It is defined by

A-A"'=A4A"1'-A=E.

We can now introduce the powers of an element A:
By A™ we understand a “product” of m elements, for positive m, each of
which is = A. Then by Theorem 16 for positive integers m, n

Am+n=Am'A"=A"‘Am.
Furthermore by Theorem 16
A™- (A" = E,

that is, (4~ )™ is the reciprocal of A™, thus = (4™)~'. We denote this element
by
A™Mm = (A—l)m — (Am)—l‘
Finally for each A we set
A°=E.

Exactly as in elementary algebra one proves for these powers with arbitrary
integral exponents:

Theorem 18. For all integers m, n

Am.An — An,Am= Am+n’
and
(Am)n — (An)m = A",
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An equation between elements of a group in one unknown can be solved
with the help of the inverse. By multiplication by 4! it follows that

if AX =B, then X = A" 'B
and
if YA=B,then Y = BA™!.

§6 Subgroups and Division of a
Group by a Subgroup

Now a subset of the elements of ® may form a group under the same rule
for composition. Such a group is called a subgroup of ®. Let a fixed subgroup
be denoted by U;let U,, U,, . . . be the different elements (finitely or infinitely
many) belonging to U. If 4 is an arbitrary element of ® then let us denote
the totality of elements AU; (i=1,2,...) by

AN = (AU, AU,, . ..).

The elements of ® may now be arranged in a sequence of the form AU;
These sequences are called cosets. We then have

Lemma. If two cosets AU, BU have one element in common, then they have
all elements in common, thus they agree except for order.

To prove this let AU, = BU, be a common element. Then it follows that
B = AU,U, *, hence

BU = (AU, U; 1U,, AU, U; 1U,, .. ).

However U,U, U, runs through all elements of U for i = 1, 2, ... because
of the group property (iv) of U, hence in fact AU and BU agree.

The number of different elements occuring in a coset AU is obviously
independent of A; it is equal to the order of U. Let this order be called N
(where N may also be = o). Each element 4 of & actually appears in one
such coset, e.g., A occurs in AU because in any case the unit element must
belong to U, since it is a group, and AE = A. Thus we obtain each element
of ® exactly once if we run through all elements of the different sequences.
In symbols we express this by the equation

G = AU+ AU+

where A, 4,U, ... denote the distinct cosets of this kind.

Now in case ® is a finite group of order h, then the order N of U is also
finite and then the number of different cosets is also finite, say = j. Since each
element of ® occurs in exactly one coset and exactly N different elements are
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contained in each coset, we have

h=j N
and thus we have shown

Theorem 19. In a finite group of order h, the order N of each subgroup is a
divisor of h.

The quotient h/N = j is called the index of the subgroup relative to .

In case ® is an infinite group, then the order of U as well as the number of
different cosets can be infinite and at least one of these cases must obviously
occur. Furthermore, the number of different cosets is called the index of U
relative to ® whether this index is finite or not.

Our further investigations deal first with finite groups.

A system S = (U,,U,,...) of elements which belong to a finite group
forms a subgroup of ® as soon as it is known that each product of two
elements U again belongs to S. For the group axioms (ii) and (iii) are satisfied
automatically, (i) holds by assumption, and with finite groups (iv) is a con-
sequence of the remaining axioms.

For example, all the powers of an element 4 with a positive exponent
always form a subgroup of ®. These powers cannot all be different, since ®
contains only finitely many elements. From A™ = A" it follows that A™ ™" = E.
Hence a certain power of A with exponent different from zero is always = E.

In order to gain an overview of those exponents g for which A7 = E, we
note that these exponents obviously form a module since from A? = E and
A" = E it follows that 49%" = E. Hence by Theorem 1 these g are identical
with all multiples of an integer a (> 0). This exponent a, uniquely determined
by A, is called the order of A. This exponent has the property:

A"=E ifand only if r =0 (mod a).

The only element of order 1 is E. More generally

Theorem 20. If a is the order of A, then
Am — An,
if and only if
m = n (mod a).

Consequently among the powers of A there are only a distinct ones, say
A°=E, A%,..., A1, and by the above these form a subgroup of & of
order a. Moreover from Theorem 19 we have

Theorem 21. The order a of each element of © is a divisor of the order h of ®
and hence

A"=E
for each element A.



22 II Abelian Groups

§7 Abelian Groups and the Product of Two
Abelian Groups

The groups which occur in number theory are almost exclusively those
whose composition laws are commutative: AB = BA for all of its elements.
Groups of this kind are called Abelian groups. In this and the next section
we will undertake a more precise investigation of the structure of an arbitrary
finite Abelian group. In the following, ® denotes a finite Abelian group of
order h.

Theorem 22. If a prime number p divides the order h of ®, then there is an
element of order p in .

Let C, C,, ..., C, be the h elements of ® and let ¢,,c,, . .., ¢, be their
respective orders. We form all products
cr oy cp ®)

in which each x; runs through a complete residue system mod c;. Then we
obtainc, * ¢, - - * ¢, formally different products, among which are all elements
of ®. Since a representation of the unit element is at once obtained from two
different representations of the same element all elements occur equally
frequently, say Q times in the form (8). Hence

CICZ“'Ch=h'Q.

The prime number p, which divides h, must therefore divide at least one c;,
say ¢y. Then
A= C¢11/P

is an element of order p by Theorem 20.

Theorem 23. Let h=a, * a, - - - a, and suppose that the integers a, ..., a,
are pairwise relatively prime. Then each element C of ® can be represented
in one and only way in the form

C=A4,"4;, 4

r

with the conditions

A= A% =+ = A% =E.
For let r integers n,, . . ., n, be determined so that
h h h
—nl +—n2+"'+—n,= 1,
a4 a a,

which is always possible by Theorem 3 because of the assumption about
the a;. If we then set
A = C(h/a-')m’
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then by Theorem 21
Al =C™=E
and with this
C=A4,"4, - - A,

is represented in the required form. To see the uniqueness of the representa-
tion let C = B, - B, - - - B, be yet another representation of this type. Then

(By By B = (4, Ay - AP, ©)

However, since composition is commutative, a fact which is used at this
point for the first time, it follows from (9) that

B';/an . Bg/an . B:t/ax — A'{/al . Ag/al Ce A:’/al‘

Now since h/a, is a multiple of each a,, as, ..., a,, the factors with the
indices 2, 3, ..., r must be equal to E by the hypotheses about the A;, B;,
hence

Bta = A}i/al-

Since (a, h/a,) = 1, there are integers x, y with a;x + (h/a;)y =1 and re-
calling that
E =B} = A,
we have
B, = B‘;lx"'(h/al)y = A‘;lx"'(h/al)y = A,.

In general, it follows in this fashion that 4; = B; and with this the uniqueness
of the representation of C.
If a; is the number of different elements 4 with the property

A% = E,

then obviously the totality of these forms a subgroup of ® of order a; because
the product of two elements of this kind again has the same property. In
any case by Theorem 23 we have

h=dia, - a. =aa, " a,. (10)

We see that we must have q; = a;, for if p is a prime, and p|a§, then by

Theorem 22 there exists among the elements A with A% = 1 one of order p,

hence p|a;. Therefore a; has no prime factors other than those of a;. Since

the g; are pairwise relatively prime, we must have, by Equation (10), a; = a;.
With this we have proved:

Theorem 24. If ¢|h, (h/c,c) = 1 (¢ > 0), then the totality of elements of ® with
the property
A =1

Jorms a subgroup of ® of order c.

Theorem 23 makes plain the necessity to introduce a special notation
for the relation of the group ® to the r subgroups A, ... A, from which
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® can be built up by this theorem. One can define ® simply as a “product”
of these subgroups. However, if starting out from two groups &, and ®,
one merely wishes to define a group ® which has &, and &, as subgroups
and which is then to be called the product of these groups, one must consider
that at the outset the product of an element of &, with an element of %, has
no meaning at all yet.

For this reason we proceed as follows: We denote the elements of the
Abelian group ®; (i = 1,2) with the subscript i. We now define a new group
whose elements are pairs (4,, A,) and we set

(1) (A,,4;) =(B,,B,) means A; = B, and 4, = B,.
(2) The rule of composition for these pairs is to be (4,,4,) (B, B;) =
(4,B,,4,B;).

In this way the h, - h, new elements (h; is the order of ®;) are combined to
form an Abelian group ®. The unit element of this group is (E,, E,), where
E, is the unit element of ;. The h, elements (4,, E,), where A, runs through
the group ®, obviously form a subgroup of ® and this group is isomorphic
to ®,; likewise the group of elements (E;, A,) is isomorphic to &,. The two
subgroups have only the one element (E,, E,) in common. Each element
from ® can be represented in exactly one way as a product of two elements
of the two subgroups:
(Ala A2) = (AI’EZ) : (El’AZ)'

Finally we define

(3) (A4, E,) = A4, (E{, A,) = A,, thus in particular E; = E,.

This use of the symbol “=" is permissible, since the relation “=" is still not
defined between elements of ®, ®,, and ®,, and composition of elements
defined as equal yields again equal elements. We call the group ® defined
in this way by (1), (2), (3), with the h,h, elements A, A4, the product of the
two groups ®, and ®, and we write

G=6,6,=06, 6,

With this terminology it then follows immediately from Theorem 23 that
the formation of products is associative:

Theorem 25. Each finite Abelian group can be represented as a product of
Abelian groups whose orders are powers of primes.

§8 Basis of an Abelian Group

Now we can prove the following theorem which gives us full information
about the structure of the most general finite Abelian group.

Theorem 26 (Fundamental Theorem of Abelian Groups). In each Abelian
group ® of order h (>1) there are certain elements By, ..., B, with orders
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hy, ..., h, respectively (h; > 1) such that each element of ® is obtained in
exactly one way in the form

C= B)ltlBﬁzcz ce B;Cr,

where the integers x; each run through a complete system of residues mod h;
independently of one another. Moreover the h; = p* are prime powers and
h=h;-hy - -h,.

r elements of this kind are called a basis for .

By our previous results the truth of this theorem is obtained at once for
arbitrary h, as soon as it is proved for all Abelian groups of prime-power
order.

Hence let h = p* be the order of ®, where p is a prime and k is an integer
> 1. Then the order of each element of ® has a value p* where 0 < o <k,
o integral.

A system of m elements A4,,..., 4, with orders a,...,a, is called
independent if from AY' - A3 - - - Ay~ = E it follows that

x;=0(moda) fori=12,...,m.

For example, each element A is an independent element. The product of
powers of m independent elements obviously forms a group which contains
exactly a, - a, - - - a,, different elements. If 4,, ..., A,, are independent then
the m + 1 elements A4,, ..., 4,,, E are always independent and conversely.
We now always agree on a numbering of the independent elements, such
that the orders form a decreasing sequence:

a,=a,=as ""=a,=1.

Let this system of numbers a,, a,,...,a, be called the system of rank
numbers of A,, ..., A, or the rank R of A,, ..., A,. We now determine a
definite ordering of the systems R. Let two independent systems

A, of order a; = p* i=12...,m),
B,oforderb,=pfs  (g=1,2,...,n)

be given. In case m # n,and saym > n,we define f,.;, = By ="" =B =
0. Both systems are said to be of equal rank if o; = f; for all i=1,...,m.
Otherwise the rank of (4, ..., A4,,) is called higher or lower than the rank of
(By, - . ., By,), according as the first nonvanishing difference o; — f; is > 0 or
< 0. Thus the omission or the addition of elements E does not change the
rank. If the rank of (44, . . .) is higher than the rank of (B, . . .) and the rank
of (By, . . .) is higher than that of (C,, . . .), then the rank of (4,, . . .) is higher
than the rank of (Cy,...). Obviously there are at most h" possibilities for
the ranks of systems of elements independent of one another and distinct
from E; consequently there are systems of independent elements of highest
rank. We will call such systems maximal systems for short. Let B,,..., B,
be a maximal system in which there is no element = E. We show that B, . . .,
B, is a system of basis elements. For this we must only verify that each
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element of ® is representable as a product of powers of the B,—and for this
the following lemmas suffice:

Lemma (a). No element among the elements B, . . ., B, can be a pth power
of an element of .

If we had B,, = CP then the system obtained from the B,,..., B, by
replacing B,, with C and possibly changing the numbering would also be
independent, but obviously of higher rank than the maximal system B;, .. .,
B,, which is impossible.

Lemma (b). If we replace one of the B, say B,,, in the system By, ..., B, by
A=B,B;ny - By,

where u # 0 (mod p), but the x; are arbitrary integers, then the rank does not
change and the new system is again a maximal system.

A has the same order as B, since the orders of B, 4, ..., B, are not
larger than that of B,,, and thus are divisors of the order of B,,. Moreover,
each product of powers from A4, B, ., ..., B, is representable as a product
of powers of B, B,.1,.-..,B,, and conversely. Consequently the new
system is also independent and thus it is a maximal system.

Lemma (c). If an element CP is representable as a product of powers of the
B;, then the same holds for C.

If, in fact,
CP =B - B*, 1)

then all x; are = 0 (mod p). For if x,, = u were the first exponent which is
not divisible by p, then let B,, be replaced by

A= B!‘Bim*1 - B = CPB{* -+ B *m-1

in the system of the B;. This new system would be again a maximal system
by (b), but it would contain the pth power of one of its elements, namely 4, in
contradiction to (a). Consequently, in (11), we may set x = py; with integral
y; and hence

(C_IB{‘ .o B')"r)P =1.

If C were not representable as a product of powers of the B;, then this would
also hold for all C* with n # 0 (mod p) and we would also have in the paren-
thesis above

C = C—IB{I B'J_’r;é 1;

hence C’ would be an element of order p. Consequently the r + 1 elements
B,, B,, ..., B,, C" would also be independent, correctly arranged according
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to decreasing order (as the order of B is greater than 1 and hence > p).
However they would have a higher rank than the maximal system B4, .. ., B,,
which is impossible. Hence the assumption is false and (c) is proved.

By repeated application of (c) however, the representability of each
element A of ® through the B, is obtained. For if A is of order p™, then

AP =1

is certainly representable by the B;. Hence, by (c), 47" is also representable
by the B;, and thus also A”™ " *if m > 1 and so on until we arrive at A?° = 4
itself.

The elements of a basis for ® are not uniquely determined by ®. Certain
properties of the basis are nevertheless characteristic of ® itself. The number
e = e(p) of those basis elements whose order is divisible by the prime p is
considered the most important constant determined by ® alone; we call e
the basis number belonging to p. Its independence of the choice of basis
elements is shown by

Theorem 27. If p is a prime, then the number of different elements of ® with
the property
AP =1

is equal to p°, where e is the basis number belonging to p.
If By, B,, ..., B, are those basis elements whose orders are powers of p,
then from
A pa— B’lle)ZQ oo B;CeBi:ﬁfll e Bi‘r and AP - 1
we have the sequence of congruences

px; = 0 (mod h,) i=12...,r,

hence fori=e+1,...,rsince (h,p') =1,
x; = 0 (mod h,)
andfori=1,2,..., e, since h; = p",

x;=0 <mod E)
p

Conversely the latter congruence has as a consequence the equation 4A? = 1.
The number of solutions of each of these congruences which are incongruent
mod h;is 1 fori=e+1,...,randpfori=1,2,..., e Consequently the
number of incongruent systems of solutions is p°.

The statement is also correct if p does not divide the order h of the group,
for then e = 0.

The simplest Abelian groups are obtained by raising one element to a
power: A°=1,4,A% ... and A"}, A~ ... If all elements of an Abelian
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group are powers of a single element A, the group is called cyclic, and 4 is
called a generator of the group. Here we have

Theorem 28. An Abelian group ® of order h is cyclic if and only if for each
prime p dividing h, the number of elements A with A = 1 is equal to p.

By the preceding theorem the condition is equivalent to: the basis number
belonging to p should be = 1.
The condition is necessary. Namely if

C,C4,...,Ct Ch=1

are the h elements of ®, then from 4? = 1 it follows that for A = C*

px=0(modh) and x=0 <mod g),
that is, x has one of the p values h/p, 2h/p, . .., ph/p mod h, and conversely
we thus also obtain p different elements 4 with 47 = 1.

The condition, however, is also sufficient; for if h = p% - - - pf= is the de-
composition of h into different prime factors then, by hypothesis, only one
basis element belongs to each p;; hence all elements of ® are of the form

A=B¥--- B~

where
Bl =1 with h=ph.
One then obtains h different elements, hence all elements of ®, if one forms
the successive powers of
C=B1'Bz"'Br.
If u is the order of C, then by the basis property of the B it follows that
u=0(modh,) fori=12,...,r,

and since the h; are pairwise relatively prime, u is divisible by h=h, - - - h,,
hence = h, since u cannot be greater than h.

§9 Composition of Cosets and the Factor Group

If U is a subgroup of the Abelian group ®, hence itself Abelian, then U gives
rise to another group as follows. By §6 the cosets AU are uniquely deter-
mined along with U. The number of cosets is /N where N is the order of
U; we denote them by R,, R,,... . We now set up a law of composition
between the R’s with the following observation. If A, and A are elements
of Ry, A, and A} are elements of R,, then 4,4, and A} A4, belong to the
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same coset R;. Since
Ay =4,U,, Ay = AU,

where U,, U, are elements of U, then 414, = A,4,U,U, (here we use the
fact that the composition of elements of ® is commutative). Since 4,4, and
A} A5 differ only by a factor from U they therefore belong to the same coset
R;. Hence R; is uniquely determined by R, and R,. We write

Rl 'R2 =R3.

The group axioms (i)—(iii) are obviously satisfied with this composition.
Furthermore this composition is obviously commutative. Consequently the
cosets R form an Abelian group R of order h/N.

Definition. The group R defined in this way is called the factor (quotient)
group of U. Its order is equal to the index of U. One writes

R = G/

We can also describe it as follows: the factor group is obtained from &
if one considers two elements of ® as not being different whenever they
differ only by an element of U, where moreover we retain the composition
rules of U.

We will apply these concepts to advantage in the case where U is the
group of those elements of ® which can be represented as the pth power of
elements of ®, where p is a prime dividing h. In particular this subgroup U
may now be denoted by U,. We have

Theorem 29. The order of ®/U, is p° if e is the basis number of ® belonging
to p. The group &/, is isomorphic to the group of elements C of ® for which
Ccr=1.

In fact we see from Theorem 26 that each element X of ® can be repre-
sented in the form
X — B’1‘1B52‘2 “ee B:eAP

where Bj, ..., B, are the basis elements belonging to the prime p and the
e numbers x, ..., x, are uniquely determined mod p by X, while A? is a
suitably chosen pth power, i.e., an element from U,. Such an element X is a
pth power if and only if all x; are = 0 (mod p). Consequently the number of
cosets determined by U, is equal to the number of different systems x; mod p,
ie., = p° The pth power of each coset is identical with the system U, i.e.,
in the group &/R, of order p°, each element, if it is not the unit element,
has order p. Hence ®/U, must contain exactly e basis elements, each of
order p. By Theorem 27 the group of all C with C? = 1 has the same structure.
Moreover it is seen that the e cosets

BU i=1,2...,e
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form a system of basis elements in the factor group, and the e elements
Blip i=1,2...,e

are basis elements in the group of those C with C? = 1. Hence the two groups
are isomorphic.

§10 Characters of Abelian Groups

Since the law of composition in an Abelian group, like ordinary multiplica-
tion, is commutative, those elements which satisfy the symbolic equation
A" = 1 behave formally like the hth roots of unity, thus like certain numbers.
The question arises whether it is not possible to transform the investigation
of Abelian groups entirely into a problem about numbers, perhaps of the
following kind:

To each element A4 of a given Abelian group G there is to be assigned a
number, denoted by x(A4), in such a way that for every two elements 4, B
from &

x(A4) - x(B) = x(AB). (12)

The composition of the elements thus corresponds to multiplication of the
assigned numbers.

The construction of all these “functions” x(A) is obtained according to
the fundamental theorem in the following way.

Let the trivial solution “y(A4) = O for all 4” be discarded.

First we must have

X(E)=1
for the unit element since for each 4

x(A)x(E) = x(AE) = x(A).

Next, if By, ..., B, is a basis for ®, then by repeated application of (12)
it follows that for

A=B’1‘"B§2"'Bf',
x(A) = x(By)™ - - x(B,)™.

Consequently yx(A) is known for each element A as soon as it is known for
the r basis elements B;. However these values y(B;) are not arbitrary, but
rather they must be chosen in such a way that all systems of exponents x;
which lead to the same A also yield the same value y(A) in (13). That is, x(B;)
must be a number such that

(13)

x(B)™

depends only on the value of x; mod h;. Since 1 = x(E) = x(BY) = x(By)",
we have y(B;) # 0 and thus it is an h;th root of unity.
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However this condition is also sufficient. To prove this let
X(Bw) = Cms
m=1,...,r, be any h,th roots of unity
{ = e@miltmm (g an arbitrary integer).

Then we define
HA) =7 L ifA=By By (14)

Since, in fact, the expression x(A4) only depends on which residue class
mod h,, the x,, are contained in, and since this is uniquely determined by
the element A, x(A) is therefore uniquely defined by these x,, and also satisfies
the requirement (12). Now there are exactly h,, different roots of unity of
degree h,, corresponding to the values a,, = 1, 2, .. ., h,,. Consequently there
exist exactly h = h, - h, - - - h, formally different functions y(A4), for which no
two are identical for all elements, since they differ for at least one basis
element. With this we have proved:

Theorem 30. There are exactly h distinct functions x(A) which have the
property: x(AB) = x(A) - x(B) and x(A) is not = 0 for all elements A of ©.
Each y is an hth-root of unity.

Each such function x(A) is called a group character or character of .

Among the characters y(A) there is one which is = 1 for all A4; it is called
the principal character. Conversely, there exists exactly one element, namely
E, such that x(E) = 1 for every character.

The characters themselves can be combined again to form a group of
order h. For if x,(A4) and y,(A) are characters, then f(4) = x,(A4) - x,(A) also
satisfies the defining equation of a y, hence it is also a character of ®. If x(A)
runs through all characters and if x,(A) is a fixed character, then y(A)x,(4)
also runs through all characters of ®. If we understand by ), a sum extended
over all h elements 4 of ® and by ) , a sum extended over all h characters
¥, then we have

Theorem 31.
if x is the principal character,
if x is not the principal character,

_(h fA=E,
§X(A)“{o if A#E.

The first half of each statement is trivial, as each summand =1. If B is an
arbitrary element, then along with 4, AB also runs through h all elements
of ®, hence

; x(A) = ; X(AB) = x(B) ; x(A), thus (1= x(B)) ; 2(A4) = 0.

h
; x(A4) = {0
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Now if x is not the principal character, then y(B) # 1 for at least one B,
hence ), is equal to 0.
Likewise let x, be an arbitrary character. Then we have

Y x(A) =3 x(Ax(A4) = x1(4) Y. 2(4)
X X X
(1 = x:(4) Y x(4) = 0.

If A # E, then for at least one character y,(A4) # 1, hence Zl is equal to 0.
The element A4 is determined uniquely by the h numbers y,(4), where g,
are the h characters for n= 1,2, ..., h. For if a second element B had the
same values x,(B), then we would have y, (4B~ !) =1 for all n, and AB™!
would be the unit element, thus 4 = B.
The h numbers y,(4) are, however, not arbitrary. On the contrary the
following holds:

Theorem 32. If A is an element of order f, then y,(A) is an fth root of unity.
Among the h numbers y,(A), n=1,..., h, all fth roots of unity occur equally
often, namely h/f times.

To begin with, since 47 = 1: y,(4)" = x(A”) = x,(1) = 1. Thus the first
part of the theorem is true. Now if { is an arbitrary fth root of unity, let us
consider the sum

h
Y ) + T 2AH) + -+ TT(AT)) = 8.
n=1

Since by hypothesis A™ is not the unit element for 1 < m < f—if we exclude
the trivial case f = 1, that is, A = E—, it follows by Theorem 31, that if we
split the sum into f individual sums, then S = h.

On the other hand the term inside each set of parentheses is equal to
e+¢&2+ -+ ¢, where

&€= C_IXn(A)a e =1

Hence it is equal to O or f, depending on whether e # or =1, that is, according
to whether x,(4) # { or = {. If k denotes the number of characters y,(4)
for which y,(A4) = ( it follows that S = kf. Therefore if we combine this with
the first result we get
h
kf = h, k=-,

f
independently of {, which was to be proved.

Moreover the group of characters is isomorphic with the group ® itself. To
see this we assign to the basis element B, a primitive h,th root of unity, say

¢, = o2milta,
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Then each character y(A4) is represented uniquely in the form
2(A) = 1 AF(A) - - 1 (A4),

— R*1 ... R%
A_Bll Brra

where

by the r basis characters
WA=G  @=1L2...,1),

where the y, are uniquely determined integers mod h,. If we now assign the
element
B{lBgz PP B').’r
to the character
X=20008 0
then an isomorphism between the group of characters and the group ® is
obviously determined.

Every subgroup can be determined with the help of the characters of an
Abelian group. If one takes some distinct characters y,, x», - - - , xx of ®, then
the totality of elements U for which y,(U) = x,(U) = - - = x(U) = 1 obvi-
ously forms a subgroup U of ®, since along with two elements U, and U,
the product U, - U, also has this property.

Moreover it can be seen, as follows, that each subgroup U of ® can be
obtained in this way: let U be an arbitrary subgroup of ®; the factor group
®/U whose elements are the different cosets AU is also an Abelian group,
and accordingly it has exactly j characters which are denoted by A,(A4),
A(AN), . .., A;(AUN). With the help of these we define a character by fixing

2(d) = 4 (AW) fork=1,2,...,].

For each k this determination is unique since each element A belongs to
only one coset. Moreover for any two elements 4 and B of ® we always have

1(A) * 1x(B) = A(AN) - 4, (BYU) = 4, (ABU) = x,(AB);

consequently y,(A) is actually a character of the group ®. The various char-
acters 4,(AUN), k=1, 2,...,j, have the value 1 simultaneously only for the
unit element of the group &/, that is, only for the coset which is identical
with . Hence the\j characters y,(A) are all equal to 1 precisely for those
elements 4 which belong to U. That is, the subgroup U is to be defined as
the totality of those elements A for which the j conditions

wA)=1 fork=1,2,...,j (15)
are satisfied.

However these j conditions, which each single element A from W must
satisfy, are not independent of one another as, along with x, and y,,
X1 ° X2 = X3 also occurs among the y,; thus the condition y;(4) = 1 already
follows from the two conditions x;(A4) = x,(4) = 1. In order to find the
number of mutually independent conditions among the j conditions (15),
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we consider that the 4,, which define the y, uniquely, form a group isomorphic
to ®/U since they are exactly the characters of ®/U. Hence they are rep-
resentable by a basis, say 4, . . ., 4,,, where r, is the number of basis elements
of ®/U. That is, each character 4, is a product of powers of these r, characters.
Hence it follows from the r, conditions

X1(A) = x2(4) = =y (4) =1

that all j conditions (15) are satisfied for 4 and with this it follows that A
belongs to . If h; is the order of the basis character A;and {;(i=1,2,...,r,)
are arbitrarily given h;ith roots of unity, then moreover there is always a
coset AU such that 4,(AW) = {;fori=1,2,...,r, Thus we have proved

Theorem 33. If W is a subgroup of ® and if the factor group &/U has r,
basis elements, then among the h characters of ® there are ry characters x;
with order h;, a power of a prime, (i= 1,2, ..., 1) such that the ry conditions

xu(A)=1 i=12...,r10)

are satisfied for all elements A of U and only for elements A of U, while on
the other hand there always exist elements B in ® for which those r, characters
x:(B) are arbitrarily prescribed h;th roots of unity.

§11 Infinite Abelian Groups

The theory of infinite Abelian groups has still not been developed in any
direction as completely as the theory of finite Abelian groups developed
above. The few theorems on infinite Abelian groups which exist refer to
groups which are specialized still further. The concepts and facts which have
an application to arithmetic in the further course of our presentation will be
explained in this section. Moreover the theory of infinite Abelian groups
will be used only later from Chapter IV on in the theory of fields.

In an infinite group ® we distinguish elements of finite order and those
of infinite order, according as some power of the element is equal to E or
not—of course the zeroth power is excluded. As will be shown later with
examples, it may happen that an infinite Abelian group has only elements
of infinite order (except E) or only elements of finite order.

We call a system of finitely many elements of ®, 4,, 4,,..., A4,, Ty,
T,,..., T, independent if a relation

AJICIAJZCZ . e A:‘»«T}l’l e T‘)I'q = 1

with integral x, y implies that all x; = 0 and each y; = 0 (mod h;), where each
A has infinite order and each T has finite order h;. In this case the expression
on the left obviously represents different elements if each x runs through
all integers (positive and negative) and each y; runs through a complete
residue system mod h;.
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A system of finitely or infinitely many elements of ®: A4; (i=1,2,...),
T, (k=1,2,...) (A; of infinite order, T, of finite order), is called a basis for
® if each element of ® can be represented in the form

AJICIAJZCZ “ e T{lT}z’z “ oo = C’
where

(1) the exponents x; and y, are integers and only finitely many are # 0,
(2) the exponents x; are determined uniquely and the exponents y, are
determined uniquely mod h; by C.

Obviously any finite set of elements of a basis must be independent.

The requirement that the h, are powers of a prime will not be imposed
here for the sake of simplicity.

A basis is called finite if it consists of finitely many elements.

Theorem 34. If an infinite Abelian group ® has a finite basis, then each subgroup
of ® also has a finite basis.

Let By, B,, ..., B, be a basis of ® where By, ..., B, are the elements of
infinite order and B, , 4, . . ., B,, are those of order hy, . . ., h,_,. We consider
the systems of exponents of all products of powers

U=B--- Bm

which belong to U, where, in addition, the last u,,,,...,u, are to run
through all numbers, not just the numbers which are distinct mod h;, as
long as the product belongs to U. By the group property of U, however, we
obviously have that along with the system of exponents (u,..., u,) and
(uy, ..., u,), the systems (u; + uy, ..., u, + u,) and (u, —uj, ..., t, — t,)
also correspond to elements U. In particular we keep in mind the elements

U=BpB - By (L<k<m) (16)

belonging to U for a definite k, thus for which u; = - - - u,_, = O—there are
such elements, since if all u; = 0 the unit element of U is obtained—then
the totality of possible first exponents z, in (16) forms a module of integers
in the sense of §1, as long as we do not always have z, = 0. However, all
numbers of this module are identical with the multiples of a certain integer;
consequently, if we do not always have z, = O, there is an element U, in U
with one such r, # 0,

U, = B;;kB;;k_:ll ce

b

such that z, in (16) is a multiple of this r,. From the U, with this r,—possibly
infinite in number—we pick out a definite one for each k=1,...,m,
where we set U, = E and r, = 01in case we always have z, = 0 for this k in (16).

We show that each element in U is representable as a product of these
elements U,, ..., U,. Let

U=BY - Bin
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be an element of U. By the preceding discussion u, is a multiple of r,, u, = v,r,
and hence
UU[" = B$B% - - - B4 @17

is a product only of powers of B,, ..., B,,, which also belongs to U by the
group property. If we should have r, = 0 and U, = E, then we should take
v, = 0. Likewise, in (17), u, must be a multiple of 7, in case this element is
# 0, uy = v,r,. Moreover if r, = 0 then ), must be = 0 and we take v, = 0.
In any case then UU[ **U; ** is an element of U and representable as product
of powers only of Bs, ..., B, etc. until we arrive at the unit element and
obtain a representation

U= Util Utéz .o U";lm

The Uy, ..., U, are of infinite order if they are # E, the other U’s are
of finite order.

The products of powers of the U, ., . .., U, form a finite Abelian group
and can hence be represented by a basis C,, ..., C,, by Theorem 26. We
assertthat Uy,..., U,, Cy, ..., C,form a basis for U if we omit the elements
U, = E. First, each element U can be represented by the U,, ..., U,, hence
also by the Uy,..., U,, Cy, ..., C,. Now if

Ul{x U'ﬁ’ e U:rctil e Cr =1 (18)

q

is a representation of the unit element where v; = 0 is assumed for U; = E
(i.e., r; = 0), then by substitution of the B, in place of the U, and C,, it follows
that

v,r; = 0;

hence either v; = 0 or r; = 0. However, in the latter case we also have v, = 0
as a consequence of our convention. Likewise v, =0, ..., v, = 0. Further-
more, since the C, form a basis of the finite group, then in (18) each ¢, must
be a multiple of the order of C,. Now since each element is represented the
same number of times by the U; as by the C;, hence the same number of
times as the unit element, these elements actually form a basis for U as was
to be proved.

Those infinite Abelian groups in which no element of finite order except
E appears are of chief interest. We call such groups torsion-free groups, the
others mixed groups.

Along with a torsion-free group ® each subgroup of ® is also torsion-free.
In particular, let U be a subgroup of ® of finite index (§6). Then a certain
power of each element of ® with exponent different from zero must always
belong to U. For if 4 is an element of ®, then the cosets

AU, A2, ..., A™U

are not all distinct, since the index is assumed to be finite. Thus for some n
A™U = A™, that is, A™ ™" must belong to U, with m — n # 0. Hence in the
above proof applied to ® and U the case r, = 0, U, = E can obviously never
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occur, since, in fact, a system of values z, # 0, z,,, = - = z,, = 0 always
exists, so that
U, = B{* belongs to .

From this we have immediately

Theorem 35. If G is a torsion-free Abelian group with finite basis B, . . ., B,
then every subgroup U of ® with finite index has abasis U, . . ., U, of the form
U, = BBy -+ Bt
U, = By --- B,

U" = B:l"",
withry #0 fori=1,2,...,n

Theorem 36. The index of Win G is j=|ryy - ryy Iyl

For the proof we must determine the maximum number of elements
which can exist in ® such that no two differ by a factor in U. We first show
that an element

B’lClB)2€2 o B:",

where all |x;| < r;;, belongs to U only if all x; = 0. By the definition of the
U; in the preceding proof x, must be divisible by r,, and since |x,| < ry,
we must have x, = 0. However then x, must be divisible by r,, and must
consequently also be = 0 etc.

From this it follows that among the j = |r,; - 7,5, * * * 7,,,| elements

Bi-B3---Bn 0<z<ry, (19)
no two can differ by a factor in 2. Hence there are at least j different cosets—
each represented by one of these elements. On the other hand, however, we
obtain all elements of ® from these elements if we multiply them by all

elements of U, and hence j is the exact value of the index. To see this note
that for an arbitrary product of the By, By, 1, . . ., B,,

P = Bi*Bi**! - - - Byn,
we can always determine an integer b, such that

PUk_bk — Bisz;f:ll e
where the first index z, satisfies the condition 0 < z, < ry,. Obviously z, is
the smallest positive remainder of x, mod ry,. By applying this conclusion

repeatedly we see that for each A in ® a sequence of exponents by, ..., b,
can be found such that

AUl-anz—bz e Un_bn
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is an element of the system (19). Consequently, 4 differs from this element
only by a factor in .

We now investigate the connection between different systems of bases of
a group ® in order to find properties of bases which are determined by ®
alone.

Theorem 37. If a torsion-free Abelian group ® has a finite basis of n elements
B, ..., B,, then n is the maximal number of independent elements of ®,
independent of the choice of basis.

Since the By, . . ., B, are independent in any case, there are n independent
elements in ® and thus we need only show that n + 1 elements in & are not
independent. In fact, between n + 1 arbitrary elements

A; = B§*- B> - B&n i=12...,n+1)
there is the relation
AT:A’ZCZ “ e A:r_;_+11 —_ 1,

if we choose the n + 1 integers x; so that they satisfy the n linear homogeneous

equations
n+1

xicik=0 (k=1,2,...,n).
i=1

1

As is known this is always possible since the coefficients ¢ are integers.

Theorem 38. From a basis By, . . ., B, of a torsion-free Abelian group & one
can obtain all systems of bases By, . .., B, of ® in the form
B; = B${*B%? - - - B, i=12...,n
where the system of exponents are arbitrary integers a;, with determinant +1.
To begin with, the B; always form a basis. To see this we need only show
that the B; can be represented through the B!. The equation
Bm - B’lxl . B’2x2 “ee B;xn
is satisfied if the integers x are chosen so that the n equations

0, ifi#m,

x1a1i+xZa2i+'.'+x"ani={1 ifi:m

hold. Since the determinant of the (integral) coefficients is = +1 and the
right side is also integral, the x; are uniquely determined integers.
Secondly, if n elements

Bi=B§ B (i=1,2...,n)
form a basis, then B, must be representable through the B;,
Bq — BllbqlB’zqu Ce B;‘bq"’ (q = 1, Ce ,n)
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and if the B’s are substituted for the B”s, then the n® equations

" 0 ifg#k
b..c. )
igl ‘1!clk {1 lfq — k,

are obtained, by the basis property of the B’s. The determinant of this array
is thus = 1; on the other hand, however, by the multiplication theorem of
determinant theory, the determinant is equal to the product of the two
determinants |by| and |c;|. Hence each of these integers must divide 1, and
therefore each integer is itself = +1; thus |c;| = +1.

Finally by combining the last three theorems we obtain

Theorem 39. If ® is a torsion-free Abelian group with a finite basis By, . . . , B,,
U a subgroup of finite index j, then U also has a finite basis U, ..., U,, and
the determinant |ay | in the n equations

U;=B{"By* "By~ (i=L12...,n

is always equal to j in absolute value.

The last assertion holds for the special basis mentioned in Theorem 36.
The passage from the special basis U’ to an arbitrary basis U is done by
Theorem 38 using an array of exponents with determinant + 1. However,
in the passage from B to U we obviously obtain an array of exponents whose
determinant is equal to the product of the determinants which appear in the
passage from B to U’ and from U’ to U, and hence which is equal to +j.

Finally we formulate a simple criterion for U to be of finite index.

Theorem 40. If & is a group with a finite basis By, . . ., B,,, then a subgroup
U is of finite index if and only if a power of each element of ® belongs to U.

If the N,th power (N, > 0) of B, belongs to U and if we set
N=N1N2...Nm’

then By also belongs to U and consequently the Nth power of each element
likewise belongs to U. Hence each element of & differs from some

Bu---B  (0<x <N)

by a factor in U; therefore there are at most N™ different cosets, represented
by the above elements. Thus the index of U is finite.
Conversely in the case of a finite index the infinitely many cosets

AN, AU, A3, . ..

cannot all be distinct, thus a power of A must belong to .

We also note that the definition of a factor group &/ carries over without
change from finite groups to infinite Abelian groups, where it is of no concern
whether the group ® has a basis.



CHAPTER 111

Abelian Groups in Rational
Number Theory

§12 Groups of Integers under Addition and
Multiplication

In the elementary theory of rational numbers we are constantly dealing with
Abelian groups. The set of integers has the properties:

(i) a + bis an integer if a and b are integers;a + b=b + a,
(i) a+b+c)=(a+b)+ec
(iij) Ifa+b=4d + b,thena=a,
(iv) For each a and b there is an integer x such that a + x = b.

Thus under composition by addition, the set of integers (positive and
negative) forms an infinite Abelian group ®. The unit element is the number
zero: a + 0 = a. This group is obtained by composition of the element 1
with itself. Hence we are dealing with a torsion-free group with one basis
element, thus with a cyclic group. The integers of a module also obviously
form an Abelian group and indeed a subgroup of . What we proved
earlier about a module in Theorem 2 is expressed as follows in the termi-
nology of group theory: Every subgroup of an infinite cyclic group is again
a cyclic group.

The module of those numbers divisible by a fixed number k forms a
subgroup U, of ®. The index of U, is the number of distinct integers which
differ by an element not in U, that is, which have a difference that is not a
multiple of k. Hence the index of U, is equal to the number of integers which
are incongruent mod k, that is, =k (k assumed >0). What we called a coset
in group theory is here the system of numbers which arise by composition
of a definite number a with all elements of U, thus which arise by adding on

40
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all multiples of k. The cosets are thus simply the different residue classes
mod k. The composition of cosets which led us to the factor group G/,
appears here as a composition of residue classes mod k, which will be
designated as addition of residue classes.

Thus the k residue classes mod k, with composition by addition, form
an Abelian group which is isomorphic to the factor group G/11,.

In all these cases we are dealing with cyclic groups, thus with very simple
groups. The investigation of another kind of composition, multiplication,
is more important and more difficult.

We first show that the positive integers do not form a group under com-
position by multiplication, since the group axioms (i)—(iii) hold but (iv) does
not: namely, for integers a, b there does not always exist an integer x with
ax = b. However if we add the fractions then we see:

Under composition by multiplication the positive rational numbers form an
infinite Abelian group, and indeed a torsion-free group M. The unit element is
the number 1. The theorem about unique decomposition of integers into
prime factors obviously asserts:

The positive primes form an infinite basis in the group IN.

The simplest subgroups of M are obtained, say, in the form of rational
numbers for whose representation only certain (finitely or infinitely many)
primes are needed.

By adding on the negative rational numbers (0 excluded) we obtain an
extended group, in which one element of finite order, namely — 1, occurs.

We now wish to compose the residue classes mod n by a kind of multi-
plication. If 4 and B are two residue classes mod »n and g, = a, (mod n),
b, = b, (mod n) are two representatives of A and B, then we have a,b, = a,b,
(mod n); the residue class to which a, - b, belongs is determined by the
classes A, B, independent of the choice of representatives. We write A - B or
more briefly AB for the class defined by 4 and B in this way. Obviously
AB = BA and A(BC) = (AB)C. However the residue classes mod n do not
form a group, since RyA = RyB for each A4, B, where R, denotes the residue
class of zero; hence axiom (iii) is not satisfied.

However, if A and B are residue classes mod n which are relatively prime
to n, then this also holds for AB. And it follows from ab = a’b (mod n) that
a=a (mod n), if b and n are relatively prime. With this we have proved:

Theorem 41. The system of residue classes mod n does not form a group with
composition by multiplication. However, the ¢(n) residue classes prime to n
form an Abelian group under composition by multiplication. Let this group be
simply called the “group of residue classes mod n” and let it be denoted by
R(n). The unit element is the class which contains 1.

From this fact we immediately infer Fermat’s theorem as a consequence
of Theorem 21 on groups: if (a,n) = 1 then 4°™ = E or a®™ =1 (mod n).
We pose the problem of giving the structure of this finite Abelian group.
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§13 Structure of the Group R(n) of the Residue
Classes mod n Relatively Prime to n

First we reduce the investigation of R(n) to the case where n is a power of a
prime by means of

Theorem 42. Suppose (n;,n,) = 1,n = ny - n,. Then
R(n) = R(n,) - R(ny).

To prove this we assign to each element 4 of R(n) a pair of elements C,
from R(n,) and C, from R(n,) as follows: If a is a number in A4, then choose
any two numbers c,, ¢, according to the conditions

¢y =a(modng), ¢, =a(modn,). (20)

The residue class C, of ¢; mod n, is determined uniquely by A, likewise the
residue class C, of ¢, mod n,. We set

A= (CI’ Cz)

where C, belongs to R(n,;) and C, belongs to R(n,). Conversely if ¢, and c,
are two numbers relatively prime to n, and n, respectively, then by The-
orem 15, since (n,,n,) = 1, there is an a determined uniquely by the modulus
n = n, - n, which satisfies (20). Moreover it obviously follows from

A=(C,Cy), A =(C1,CY
that
AA' = (C1C'1,C2 '2)-

Thus the group R(n) is represented as a product of the groups R(n,) and
R(n,).

It follows by repeated application of the theorem for a product of different
primes pq, p,, . - . , P that

R(pT'pZ - p¥) = RPTIR(PZ)R(pL).

Therefore the investigation of R(n) is reduced to the case where n is a power
of a prime.

Theorem 43. If p is a prime, then the group R(p) of residue classes mod p is a
cyclic group of order p — 1.

By Theorem 27, we need only show that if q is a prime dividing p — 1,
then the number of classes 4 with 42 =1 is equal to g (by Theorem 22 it
must be at least q). However, the number of these classes A is identical with
the number of integers a which are incongruent mod p and which satisfy
a? =1 (mod p), that is, with the number of different roots of xX2—1=0
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(mod p). By Theorem 12 this number is at most equal to the degree g, because
the modulus is a prime. Consequently it is precisely equal to q.

Hence there is a generating class mod p. Each number g from this class
is called a primitive root mod p. Accordingly g is a primitive root mod p
if g, g% g3 ..., g~ ! are all incongruent mod p. The powers g*, where
(u, p — 1) = 1, and only these, are again primitive roots. There are @(p — 1)
different primitive roots mod p.

Theorem 44. If p is an odd prime, then the group of residue classes modulo
each power p* is cyclic.

The order of this group is h = ¢(p*) = p*~!(p — 1). Here we may take
o > 2. The primes dividing h are p and the prime divisors q of p — 1. If e is
the basis number which belongs to p in R(p®), then p° is the number a of
solutions of
a? =1 (mod p% (21)
which are incongruent mod p*. By Fermat’s theorem each such a is =1
(mod p). We assume a # 1 and a = 1 + up™, where p™ is the highest power
of p dividing a — 1; hence we have

mx1,  (up) =1 (22)
It follows from (21) that
(1 + up™? = 1 (mod p%). (23)

We now expand the pth power by the binomial theorem and note that, for
a prime p, all binomial coefficients

p\_prp—D(—-2)--(p—k+1 _ _
<k>_ 123k (fork=1,2,...,p—1)

are divisible by p, since the numerators are divisible by p while the denomina-
tors are not divisible by the prime p. We now wish to show for m in (23) that
m > o — 1. If we have m < o — 2, then it would follow from (23) that

(1 + up™y = 1 (mod p"*?),
(1 + upm)p =1+ <ll’>upm 4o+ (p_pi 1>up—1pm(p—1) + u"p"“’. (24)
m+ 2

Since p > 2 and m > 1, all terms from the third on are divisible by p™™ <,
that is,

(L4 up™?P =14 up™*! (mod p™*3).
Hence it follows from (24) that

upm+1 =0 (mod Pm+2),
ie.,
u = 0 (mod p)
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in contradiction to (22). Therefore in (23), a= 1+ up™ with m > o — 1.
However, among these numbers there are at most p which are incongruent
mod p*.

The basis number e which belongs to p for the groupis thus < 1, hence = 1.
The easiest way to see that the basis number for the primes g is also equal
to 1 is the following. By Theorems 23 and 24, the elements of the group of
classes mod p* can be represented in the form

A-B

where B runs through the p — 1 classes with B°~! = 1, and A runs through
the p*~! classes with A”""" = 1. We thus need only check that the subgroup
of the B's is cyclic. Now if a is a primitive root mod p, then since a = a” =
a” =---=a” ' = b, bis also such a number. Hence the numbers b, b2, . . .,
bP~! are different mod p, thus a fortiori mod p?, while their (p — 1)th powers
are = 1 (mod p%). Hence the group of classes B is represented by the powers
of the class of b. Therefore it is cyclic and Theorem 44 is proved.
The exceptional case of the prime 2 is treated by

Theorem 45. The groups R(2) and R(4) are cyclic. If « > 3 then the group
R(2%) of order h = @(2%) = 2*~! has exactly two basis classes. One is of order
2, the other of order hj2 = 2*~ 2,

The statements are trivial for the moduli 2 and 4. Thus suppose o > 3.
The group of classes mod 2* has order h = @(2%) = 2*~!. The number of
incongruent solutions of x2 = 1 (mod 2% is 22, that is, e = 2, because x must
be odd in any case, x = 1 + 2v, and consequently

0=x*—1=(1+2v)?—1=4v( + 1) (mod 2%
v(v + 1) =1 (mod 2%~ 2).

Obviously only one of the factors can be even and it must then be divisible
by 2%~ 2, that is,

v=2"2w or v=—1+2"2y
x=14+2*"'w or x=—-1+2"1w

with integral w. Each such x is, in fact, also a solution of x? = 1 (mod 2%).
Exactly four of these numbers are incongruent modulo 2% namely for
w=0and 1.

However since there exist two basis classes in this group of order h = 2*~1,
each class can be of order at most h/2. If a class of order h/2 exists, then this
class must also be a basis class of degree h/2; the other class then has order 2.
We show that the class represented by the number 5 has order h/2 = 2*~2
modulo 2% To see this we show that

5 #1(mod2*) fora>3andk <o —2,
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but
52*7* = 1 (mod 29).

Obviously this is equivalent to
5%7* =1 4 2%, where uis odd (x > 3).

Since 25 = 1 + 8 - 3, the equation is true for « = 3. Ifit is true for  in general,
then it follows by squaring that

527 =(1+ 2% = 1 4+ 22 4 2292 = 1 4 2%F (1 + 2° ).

Therefore we have the validity of the assertion for o + 1.

We observe further that for composite moduli n, the group R(n) is not
cyclic in general. If p is a divisor of ¢(n), then, by Theorem 42, the basis
number e(p) of R(n), which belongs to p, is equal to the sum of the basis
numbers e;(p), which belong to p in R(p¥), where p = p%p% - - - is the decom-
position of n into primes. However for odd p;, 2 is a divisor of ¢(p*) and
consequently e;(2) = 1. Thus if two odd primes divide n, so does e(2) for
R(n) = 2. Hence the group is not cyclic.

§14 Power Residues

With the help of the theorems before us, the foundations of the theory of
power residues, that is, the solvability of binomial congruences of the form

x? = g (mod n) (25)

can easily be developed. If we restrict ourselves to the cases where the fol-
lowing hypotheses are satisfied:

q is a positive prime, n is odd and a power of a prime, say p* (a,n) = 1,

then the solutions x, if any, are likewise relatively prime to the modulus p?
and the problem of the solvability of (25) in integers can be formulated in
group-theoretic fashion as follows:

Let a class A be given in the group of residue classes mod p*. How many
elements X are there in the group such that

X1=A4?
We distinguish two cases:

1. The prime g does not divide the order of the group h = @(p®). Then
there is exactly one element X of the desired sort. To see this let the integers
m, n be determined so that gm + hn = 1, which is possible since (g, h) = 1.
Since X* = 1, it follows from X2 = A that

X = qu+hn — (Xq)m =A™

and this element actually satisfies X? = A.
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2. g divides h = @(p*). By Theorem 44 there is an element C (of order h),
whose powers yield all elements of the group. We set

A=C", X=C

with integral a’ and x, which are completely determined mod h. By Theo-
rem 20, it follows from

X?=A4A, c=C"
that
xq = a’ (mod h)
and conversely. However, since g|h, this congruence is solvable in integers x
only if

q|a,

and then it has exactly q different solutions mod h. That is, the equation
X9 = A has either no solutions or exactly q distinct solutions X. Since C is a
primitive class, the condition g|a’ is equivalent to

AMa — Ca'hla = (Ch)a'/q =1.

Returning to numbers from residue classes we see that we have proved

Theorem 46. The congruence
x? = a (mod p%)

where q, p are primes, p # 2 (a, p) = 1, has exactly one solution x in integers
if q does not divide ¢(p*). However if q divides @(p*), then the equation has
q solutions, and indeed exactly q, if

a*®1 = 1 (mod p®). (26)
If the exponent is also relatively prime to the modulus, that is q # p,

then Condition (26) allows a still simpler formulation. For, since ¢ is a
prime, but g # p, it follows from g|¢(p®) that

!

qlp—-1, 4q'= p__q integral,

and (26) reads
a” ™ '? =1 (mod p?); (26a)

hence in particular, because of Fermat’s theorem we also have
a? =1 (mod p). 27

This congruence, which has the solvability of x? = a (mod p) as a conse-
quence, also conversely has (26) as a consequence. Specifically for each prime
p, it follows from

m = n(mod p"), m=n+ xp" (integral x),
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that
mP=(n+ xpr)l’_—_np+<ll’>xp' + "‘En”(modp’“)

mP = n? (mod p"* 1),

since the binomial coefficients (?) are divisible by pfor k=1,2,...,p—1
as we have already used above once (see p. 43); thus (26) follows from 27.

If g|p — 1, then (27), which does not depend any more on the exponent
a, is also a condition for the solvability of x? = a (mod p*). Hence

Theorem 46a. If q is a prime factor of p — 1, p an odd prime, and (a,p) = 1,
then the congruence x? = a (mod p*) is solvable if and only if it is solvable
mod p. For this it is necessary and sufficient that

a?~ V4 =1 (mod p).

Then there are q solutions incongruent mod p*.

As moduli, the powers 2% require special treatment because of Theorem 45.

Theorem 47. With odd q and a, the congruence x* = a (mod 2% always has
exactly one solution. For ¢ =2 and odd a, x*> = a (mod 2°) is solvable for
o > 3 if and only if it is solvable mod 8, that is, if a =1 (mod 8), and indeed
the number of incongruent solutions in this case is equal to 4. For a = 1 (mod 4),
x? = a (mod 4) has two solutions, otherwise it has no solutions for odd a, and
x? = a (mod 2) always has a solution.

The first part (g odd) is proved exactly as above in Case 1. Since, by
Theorem 45, the classes mod 2% (x > 3) can be represented in the form B{'B%,
where B} = B3*"” = 1, then we see as above in Case 2 that only those classes
A = B*B%, where a, = 0, a, even, can be represented in the form X2. And
then there are as many classes X with X2 = B% as there are classes with
X? = 1, that is, 22 = 4. A simple form of the solvability condition for x* = a
(mod 2%) with « > 3 a =1 (mod 8) arises as follows:

If x? = a (mod 2% (x > 3) is solvable (let x = x, be a solution), then the
congruence is also solvable mod 2**!. For let an integer z be determined so
that

(xo +2°7 12  —a=x% —a+ 2%z + 227222 = 0 (mod 2**1)

which, since
2a—2=a+(@x—2)=>a+1,

leads to the solvable congruence

2 —_—
% + Xoz = 0 (mod 2).
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If x2 =a (mod 8) is solvable, then the congruence is consequently also
solvable mod 2% However, as we see by trying out the other cases, this
congruence is solvable only for a = 1 (mod 8).

From this we immediately obtain an overview of the solutions of

x? = a (mod n) (28)

for composite n. Suppose (a, n) = 1. In order that the congruence be solvable
mod n it must be solvable modulo each power of a prime which divides n.
If n = p}'p% - - - p¥r, where the p; are distinct primes, and if N; is the number
of different solutions mod p¥ of

z4 = a (mod pf),
then the number of different solutions of (28) is
N=N, N, --*N,.

To see this assume that the r numbers z,, ..., z, are solutions of zf=a
(mod p¥) and then let us determine x from

x = z; (mod p¥), i=12...,r.

Then
x? = z¢ = a (mod p¥),
hence
x? = a (mod n).

x is uniquely determined mod n by the z;. Two different systems z; and z;
lead to the same x mod n if and only if z; = z; (mod pf) for i = 1,2,...,r.
On the other hand every solution x of (28) is also a system of solutions of
the r single congruences, namely z; = x. Consequently N;N, - -- N, is the
exact number of solutions of (28) mod n.

§15 Residue Characters of Numbers mod »

In closing these investigations we finally wish to connect the numbers a
considered relative to a modulus n with the concepts, developed in §10,
related to characters of Abelian groups.

The elements of the group R(n) are the different residue classes mod n
which are relatively prime to n, and hence, as an Abelian group, there is
assigned to these elements a system of h = @(n) characters. Let a be an
integer from one such class 4. Then corresponding to each character x(A)
we define a number-theoretic function

x(@) = x(4),
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for each integer a, relatively prime to n, which has the following properties:

(1) x(a) = x(b), if a = b (mod n).

() x(a)x(b) = x(ab).
(3) x(a) # O for all a relatively prime to n.

We complete this definition for the remaining integers by fixing
@) x(@) =0, if (a,n) > 1.

Statements (1)—(3) are valid for this extended system of arguments where a
is allowed to run through all integers.

Each function yx(a) with the properties (1)—(4) is called a residue character
of a mod n. There are exactly h = ¢(n) different residue characters mod n
and by Theorem 31 we have

Y k)=

kmod n

{0 if x is not the principal character,

¢@(n) if x is the principal character. (29)

Here again we call that character which is equal to 1 for all a relatively prime
to n the principal character. The summation k mod n under ), signifies that
the index k runs through a complete residue system mod n. In an analogous
manner we have

0  ifks 1 (mod n),

21: = {tp(n) if k = 1 (mod n). (30)

With the help of residue characters mod n we now wish to give a different
formulation of the conditions for the solvability of a congruence

x? = a (mod n)

which were developed in the preceding section. Here we will make the
hypothesis:
(g,m)=1, qprime, and(a,n) =1.

Thus the class 4 of a should be a gth power in the group R(n). Now the gth
powers of all classes form a subgroup U, of R(n). By Theorem 29, the order
of the factor group is R/U, = g, where e = e(q) is the basis number belonging
to g in R(n) and e is at the same time the number of basis elements in R/U,.
Consequently, by Theorem 33, there exist exactly e characters for R(n) and
thus exactly e residue characters mod n

x1(a), x2(a), ..., x.(a)

such that the e equations y;(a)=1 (i=1,2,...,e) are the necessary and
sufficient conditions for the class A of a to be a gth power. These e characters
are independent of one another in the sense that there are always numbers
a for which these e characters are arbitrarily given gth roots of unity.

Until now only the fact that R(n) is a finite Abelian group was used; the
finer structure plays a role only when we try to represent e as a function of
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g and n. Now if n is a power of a prime p* then e(q) = 0 for odd p if g does not
divide ¢(p%), and e(q) = 1 if | (p®), since the group R(p”) is cyclic. However
if n is composite and odd, n = p$! - - - p¥, then by Theorem 42, e(q) for R(n)
is equal to the number of those p; for which gq|@(pf).

Each residue character yx(a), which is equal to 1 for all gth powers g, is
called a gth power character of a mod n. By Theorem 33, each qth power
character is representable as a product of powers by the basis characters
Xis v o5 Xer

The simplest case, which will concern us exclusively in what follows, is
the case with g = 2, where we are concerned with the classes which can be
represented as squares. The corresponding power characters are then called
quadratic characters.

§16 Quadratic Residue Characters mod »

An integer a relatively prime to n is called a quadratic residue mod n, or
simply a residue mod n if the congruence

x* = a (mod n)

is solvable in integers x. In the other case a is called a nonresidue mod n.
By the preceding section the conditions for the solvability are that the e(2)
given residue characters mod n, for a, have the value 1. Each of the characters
x(a) is a square root of unity, hence it can only have the value +1.

To begin with, if n = p is an odd prime, then the corresponding e(2) = 1,
as 2 divides p — 1 and the group R(p) is cyclic. Thus among the p — 1
characters mod n there is exactly one, say y(a), which is a square root of
unity but not always = +1 and y(a) = +1 is the condition that a is a
quadratic residue mod p. We set

a
x(@)= (,,)

By its definition this character is equal to 41 for each a not divisible by p.
Thus we have

(1) ¢) = () ifa = a (mod p),

@ () = @),

@) H)=1

(4) (3) is not equal to 1 for some a,

where d', a, b are integers not divisible by p. The symbol (%) is defined by
these properties alone, for each a relatively prime to p, since by (1) and (2),
it is a residue character mod p, by (3) this character has only the values +1,
and by (4), it is not always = + 1. Hence the residue classes A for which it
is 1 form a subgroup of R(p) to which all squares belong. Thus its index is
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<2 but > 1 and therefore exactly = 2. Hence (§) = +1 for the quadratic
residues a mod p and equal to —1 for the nonresidues mod p.
If we recall that since

a1l 1= 0 (mod p),
(@®~ V2 4 1)(@®~ V2 — 1) = 0 (mod p),

then in view of Theorem 46a, (%) should be defined as the one of the two
numbers + 1 for which

() = a®~ 1" (mod p). (1)

Legendre introduced the residue symbol () into number theory in this
manner.

The number of incongruent quadratic residues mod p is (p — 1)/2, so
the number of nonresidues =p—1—(p — 1)/2 = (p — 1)/2; hence there
are just as many residues as nonresidues mod p.

By Theorem 46a, the condition (§) = + 1 is at the same time the condition
that a is a quadratic residue mod p* The number of residues mod p* is
also equal to the number of nonresidues mod p* namely = @(p%/2 =
Pl —12@>1).

For a composite, and for the time being, odd n = p{'p% - - - pi, the con-
dition that a is a residue mod n is given by e(2) equations for a certain set
of e(2) characters mod n. Here e(2) = r. The number of quadratic residues
mod n is ¢(n)/2", hence for r > 1 it is not equal to the number of nonresidues.
By what was done at the end of §14, the conditions that a is a residue mod n
are that a is a residue modulo each prime p; which divides n, that is, that the

r equations
a
—]=1 i=12...,r
(Pi>

hold. As we know, for the modulus 2% > 3), the group R(2%) is no longer
cyclic, but it has two basis elements. The decision as to whether or not a is
a quadratic residue mod 2* cannot be made by statements about one residue
character mod 2* but rather for this we need two pieces of information. For
the time being we omit the introduction of a residue symbol mod 2%, and only
later, in §46, will we return to it.

On the other hand we define a symbol () for composite odd n. Let

n=p}---p¥, n odd.

O-GIGT G

provided the elements on the right side have a meaning, that is, if (a,n) = 1.

Finally let
a
-]1=0 if(a, 1.
(n) 0 if(a,n) >

We set
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For this extended symbol, we have, by definition,

C‘l.) _ (%) ifa = (mod n)
50

for arbitrary integers a, a’, b whether they are relatively prime to n or not.
Hence this symbol is alJso a residue character mod n. However we recall
once more that for composite n, no conclusion can be drawn from the value
() as to whether a is a quadratic residue mod n or not. If a is a residue mod n,
then () = +1 but not conversely.

Legendre and before him, in special cases, Euler, had already made the
following remarkable discovery about this residue symbol, which has many
consequences for all of number theory and which as the law of quadratic
reciprocity is formulated today as follows:

For positive odd a, n,

D) = (2) (= 1)te-ve-1y2)
n a

Beyond this, the so-called completion theorems hold:

<“71> = (=)™ D2 podd>0

<E> =(=1)™=VB 5 odd.

n

After Legendre published an attempted proof, which was to be sure incom-
plete in an essential point, Gauss (1796), who was nineteen years old, suc-
ceeded in finding the first proof which he published in 1801 in his classical
work Disquisitiones Arithmeticae. Since then many different proofs have been
given for the reciprocity law; the index in Bachmann’s book contains 45
entries; eight proofs are due to Gauss alone.

Modern number theory dates from the discovery of the reciprocity law.
By its form it still belongs to the theory of rational numbers, as it can be
formulated entirely as a simple relation between rational numbers; however
its content points beyond the domain of rational numbers. Gauss himself
recognized this. He first attempted to carry over the arithmetic concepts to
the complex integers a + b\/—_l where a, b are integers and he succeeded in
finding and proving a similar law for fourth power residues. (It was probably
this success of complex number theory which induced him to introduce
complex numbers, which were viewed at that time with mistrust and used
only occasionally as having equal rights with real numbers in the remaining
parts of analysis). He recognized that Legendre’s reciprocity law represents
a special case of a more general and much more encompassing law. For this
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reason he and many other mathematicians have looked again and again for
new proofs whose essential ideas carry over to other number domains in
the hope of coming closer to a general law. The last decisive step was taken
by Kummer through his introduction of ideal prime factors. Then Dedekind
laid the foundations for the general theory of algebraic number fields, and,
with this available, the formulation and the proof of the most general reci-
procity law for gth power residues, where ¢ is a prime, was finally achieved
by Hilbert and his student Furtwdngler.

The development of algebraic number theory has now actually shown
that the content of the quadratic reciprocity law only becomes understand-
able if one passes to general algebraic numbers and that a proof appropriate
to the nature of the problem can be best carried out with these higher meth-
ods. However, it must be said of the elementary proofs that they possess
rather the character of supplementary verification.

For this reason we will dispense entirely with a presentation of an ele-
mentary proof. Rather we set ourselves the problem of carrying over the
concepts of rational number theory, in particular the concept of integer, to
other domains of numbers, where new relations between rational integers
will also be obtained, e.g., the reciprocity law itself will be presented as a
side result.



CHAPTER IV
Algebra of Number Fields

§17 Number Fields, Polynomials over Number
Fields, and Irreducibility

Definition. A system of complex numbers is called a number field (or, more
briefly, a field) if it contains more than one number and if along with the
numbers o and B it always contains o + 8, a — B, af, and, if § # 0, a/p.

This means that all rational operations can be performed unrestrictedly
within the system. Following Kronecker the term domain of rationality is
also used in place of the term field. The additional condition, that the system
is to contain more than one element, only excludes the system which con-
sists of just a zero element, which satisfies the remaining conditions of the
definition.

The concept of a field is related to the concept of a group. By definition,
the numbers of a field form an infinite Abelian group under composition by
addition. Furthermore the numbers of the field, excluding 0, also form an
Abelian group under composition by multiplication.

Examples of number fields are:

The system of all rational numbers.

The system of all real numbers.

The system of all complex numbers.

The system of all numbers of the form R(w), where R(x) runs through all
rational functions of x with rational numbers as coefficients, where w is a
fixed number.

Since a/a =1, each field thus contains the number 1, and thus also
1+1=2,1-1=0 etc. Thus it contains all integers and hence also all

54
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quotients of these, that is, all rational numbers. For this reason, the field of
rational numbers, which we will denote by k(1) is called the absolute domain
of rationality. This field is contained in every number field.

In this chapter we will be concerned with the algebra of number fields
while, after introduction of certain numbers of the field as integral numbers,
the arithmetic properties of number fields will be dealt with in the remaining
chapters.

Now let k be an arbitrary number field. By a polynomial over k we mean
a polynomial all of whose coefficients are numbers from k. The quotient of
two polynomials over k is called a rational function over k. If f(x) and g(x)
are polynomials over k, then, as is known, if g(x) is of degree at least 1, two
polynomials g(x) and r(x) can be determined so that

J(x) = q(x)g(x) + r(x), (32)

where the degree of r(x) is less than that of g(x). We call r(x) the remainder
of f(x) mod g(x). The coefficients of g(x) and r(x) can be calculated entirely
from those of f(x) and g(x) by means of rational operations, and hence these
coefficients likewise belong to k. If r(x) is equal to 0, then f(x) is said to be
divisible by g(x) or g(x) divides f(x); in symbols

g(x)| f(x).

If, in (32), the degree m of f(x) is less than the degree n of g(x), then g = 0 and
r(x) = f(x). On the other hand, if m > n, then the degree of g(x) is equal to
m — n, q(x) is not 0, and the degree of r(x) is < n. Hence if each of the two
polynomials f(x) and g(x) is divisible by the other, then they differ only by
a constant factor. The trivial factors of any polynomial f(x) are the constants,
that is, the polynomials of Oth degree, and the polynomials ¢f(x). A poly-
nomial, a(x — a), of the first degree has no factors other than these trivial
ones. By the fundamental theorem of algebra each polynomial of degree n
can be decomposed in exactly one way into n factors of degree 1 such that

Jx) = clx —a)(x —ay) -+ (x — o),

where c is a constant different from zero and «,, . . ., a, are n coincident or
distinct complex numbers. Thus if we admit arbitrary coefficients for the
polynomials, then the polynomials of Oth degree play the same role as the
units +1 and the polynomials of degree 1 play the same role as the primes
in investigations about divisibility.

If we restrict ourselves to polynomials over a fixed number field k, then
these relationships are quite different. We call a polynomial f(x) irreducible
over k, or indecomposable over k, if f(x) cannot be represented as a product
of two polynomials over k neither of which is a constant.

Accordingly, for example, every polynomial over k of degree 1 is irre-
ducible over k. However since the fundamental theorem asserts nothing
about whether roots a of f(x) belong to k, polynomials of higher degree
may also be irreducible over k. For example, x* + 1 is obviously irreducible
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over the field of real numbers. Because of this we must leave the problem of
the exact nature of polynomials irreducible over k, without discussing it
here, and be satisfied with their existence.

The most important fact concerning polynomials over k is stated in the
following theorem:

Theorem 48. Two arbitrary nonzero polynomials fi(x) and f,(x) over k have
a uniquely determined greatest common divisor d(x), that is, there is a poly-
nomial d(x) with leading coefficient 1, such that

dxX)|fikx), )| f2(x)

and every polynomial which divides f,(x) and f,(x), also divides d(x).
Moreover, d(x) can be represented in the form

d(x) = g1(x)f1(x) + g2(x)f>(x), (33)

where g,(x) and g,(x) are polynomials over k, and thus d(x) is also a polynomial
over k.

The proof is well known from elementary algebra, yet no importance is
attached there to the nature of the numerical coefficients which appear. For
this reason we reproduce quite briefly a proof based on the proof of the
analogous fact for rational numbers (Theorems 1 and 2). Among the poly-
nomials

L(x) = uy(x) f1(x) + up(x)f5(x),

where u,(x) and u,(x) run through all polynomials over k, we consider such
a polynomial with leading coefficient 1 whose degree is as small as possible.
Let d(x) be such a polynomial and suppose that (33) holds. If d(x) is of
degree 0, then it is = 1 and hence it divides f;(x) and f,(x). But even if it is
of higher degree, it must divide f(x), for let the remainder r(x) of f(x)
mod d(x) be determined

J1(x) = q(x)d(x) + r(x)
r(x) = fi(x) — q(x)d(x)
r=fi—qd=f —q(g:fi +9:/2) =1 —q9)f1 — 9. f>-

Thus this r(x) also has the form L(x), while its degree (as a remainder
mod d(x)) is less than the degree of d(x). Consequently it cannot have
coefficients different from 0, hence it is 0. Thus d(x)| f;(x); in exactly the
same way we see that d(x)| f,(x).

However by (33) each common divisor of f(x) and f,(x) divides d(x). If
a polynomial dqy(x) has the property stated in the first part of the theorem,
then d(x)|do(x) holds as well as dy(x)|d(x), consequently dy(x) and d(x)
differ by only a constant factor; since their leading coefficients are 1, dy(x) =
d(x).
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We write (f;(x), f2(x)) = d(x) and call f(x) and f,(x) relatively prime if
d = 1. The greatest common divisor of two polynomials is completely
defined by this alone, not only relative to a definite field k, while, in general,
the property of irreducibility of a polynomial is relative to the field k to
which it belongs.

We have immediately from Theorem 48:

Theorem 49. If a polynomial f(x), irreducible over k, has a common zero
Xx = a with a polynomial g(x) over k, then f(x) is a divisor of g(x) and hence all
zeros of f(x) are zeros of g(x).

For (f(x),g(x)) is at least divisible by x — & and thus not = 1. On the
other hand f(x) has no factors over k other than ¢f(x). Consequently
(f(x),9(x)) = ¢f(x) and f(x)|g(x).

In particular an irreducible polynomial over k, of degree n, has exactly n
distinct roots, since otherwise it would have a common zero with the deriv-
ative f'(x), which is also a polynomial over k but of degree n — 1, and hence
it would have to divide f'(x), which cannot be the case.

§18 Algebraic Numbers over k

Suppose that a number 6 is a root of a polynomial P(x) over k. Among all
polynomials over k, with leading coefficient 1, which have this root 6, there
is one of smallest degree. This polynomial is necessarily irreducible over
k—since otherwise 6 would already be a root of a divisor of this polynomial—
and hence by Theorem 49 it is fully determined by 6 and k.

The degree n of this polynomial is called the degree of 0 with respect to k,
or the relative degree of 0. The n roots of this polynomial, 6,, 6,, ..., 0,—
surely distinct from one another—are called the conjugates of 0 with respect
to k or the relative conjugates of 6. Each of the numbers 0; is called an
algebraic number over k. If k = k(1) is the field of rational numbers, then in
this notation the reference to k is omitted. Thus in particular a number 6 is
called an algebraic number if it is a root of a polynomial with rational co-
efficients.

Obviously the numbers in k itself are the numbers of relative degree 1.
For further investigation we need the symmetric function theorem from
algebra, which we formulate as follows:

Let a,, a5,...,a, be n independent variables and let f;, f,,..., f, be
their n elementary symmetric functions which are the coefficients of the
polynomial in x: (x — a;)(x — ;) * - - (x — a,). Then every symmetric poly-
nomial S(atq, ..., a,) in a4, ..., o, can be represented as a polynomial of f,
Sos oo fu

Sy -+ 5%) = G(f1s - - -, fo)-
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The coefficients of G can be calculated from those of S entirely by the opera-
tions of addition, subtraction, and multiplication.

If the theorem is applied twice in succession, then we obtain: If §,, ..., B,
are m additional independent variables and ¢4, . . ., @, are their elementary
symmetric functions, and if S(a,, . .. ,a,; By, - - - , B) 1S @ polynomial of the

n + m arguments which remains unchanged under each permutation of the
o among themselves and under each permutation of the f among themselves,
then S can be represented as a polynomial of the fi, ..., f,and ¢, ..., ¢,:

S(ab' . -aan;ﬁla"'aﬁm)= G(fla' --af;n(pla' . "(Pm)'

The coefficients of G can be calculated from those of S by addition, subtrac-
tion, and multiplication.
From this we note first of all:

Theorem 50. If «, f are algebraic numbers over k, then the same is true for

o+ B,a— B,ap,and, if B # 0, for a/p.

If ay, ..., a, are the conjugates of « and f§,, ..., B, are those of § with
respect to k, then the elementary symmetric functions of «, as well as those
of B, are numbers in k. The product

He) = T1 T1 6= i+ )

as a symmetric function in the «, and in the S, is then a polynomial over k
by reason of the fundamental theorem just stated, and « + f is to be found
among its roots, which accordingly is an algebraic number over k. This
likewise follows for « — f and af.

With a/f our method breaks down since the analogous product is not a
polynomial in the § and hence the fundamental theorem cannot be applied.
However if f§ # 0, then let us set x = 1/y in the irreducible equation for f
over k

X" 4 Cp X" X X+ =0

and let us multiply by y™. The polynomial in y obtained in this way then has
the root 1/B, and this number is thus likewise an algebraic number over k;
consequently by what has gone before, the product a(1/8) = &/ is also an
algebraic number over k.

Theorem 51. If w is a root of a polynomial
e(X)=x"+ax™ ' 4+ Bx" "2 4 4 A

whose coefficients are algebraic numbers over k, then w is also an algebraic
number over k.

Suppose «; runs through the conjugates of «, f, runs through the con-
jugates of B etc. Then by the theorem on symmetric functions, the polynomial
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Fx)= J] &"+oax™ '+ Bx" "2+ +4)
ik,...,s
as a symmetric expression in the conjugates has coeflicients in k; since
F(w) = 0, w is an algebraic number over k.

§19 Algebraic Number Fields over &

Each algebraic number 0 over k obviously generates a field, the totality of
all rational functions of 8 with coefficients in k. Let this field be denoted by
K(6; k) or more simply by K(6) and let us say of it that it arises by adjunction
of 8 to k. Likewise, by the adjunction of several algebraic numbers a, B, 7y, . . .
over k to k, we obtain a field K(«, 8,7, . . . ; k) whose numbers are the rational
functions of «, B, 7, . . . with coefficients in k.

Theorem 52. Every field obtained by adjunction of several algebraic numbers
over k can also be generated by adjunction of a single algebraic number over k.

Obviously, it is enough to prove the theorem for the adjunction of two
numbers. Thus let «, . .., «, be the n conjugates of a number «, of relative
degree n and B, . . ., B, the m conjugates of B, of relative degree m. We will
show that with suitable choice of u and v in k the number uoa; + vf; = w,,
is a number generating the field K(«,, 8, ; k). We must prove that «; and f,
themselves—consequently also every number from K(o, 8;; k)—are rep-
resentable as rational functions of w,; with coefficients from k.

For this purpose we choose u and v as rational numbers in such a way
that the nm numbers

Wy = U + VP i=12....,nk=12,...,m)
are all distinct. This is possible since what is required is that for all pairs of
indices i, k and 7, k/,
u(e; — o) + v(B — Bi) # 0

is to hold except if i = i’ and k = k’ hold simultaneously. The coefficients in
these linear functions of u, v never both vanish simultaneously as the o, are
distinct from one another and the g, are distinct from one another. Hence
we must choose u/v (u # 0, v # 0) different from the finitely many numbers
_ﬁk_ﬂk" l#l/’k#k/;

o — 0

then the w; are all distinct and are roots of the polynomial over k

H(x) = ]_k[ (x = (uo; + vBy)) = h:Zmo cpx".
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We now try to construct a rational function of x which takes the values f,
for x = w,, (k= 1,2,...,m). Recalling the Lagrange interpolation formula
let us consider the expression

o= 3 ¥ )

i=1 k=1 X — Wy

This @(x) is a polynomial in k. For since H(w;) = 0

H(x) H(x) — Hlwy) & ¢ X" — ol
= = h———- ——
X — W X — Wiy h=0 X — Wy

G(X, wik)
is obviously a polynomial in x and w;, with coefficients in k, hence

o) = 3 3 A, + By

is a polynomial in x, whose coefficients are polynomial expressions in the
o;, B, with coefficients in k, which are moreover formally symmetric in the
quantities &4, . . . , &, as well as the quantities 8, . . ., §,,. Consequently these
coefficients belong to k and @(x) is a polynomial in k. If we set x = w,,, then
G(w,, ;) vanishes, except if i = 1 and k = 1, since w,, is different from the
remaining w;, by construction. However from this it follows that

_ P(wy4)
b= G(@y1,®14)

We show in an analogous manner that «, can also be expressed in terms of
., and with this we have proved

K(ay, By5 k) = K(w, 45 k).

Hence it is enough to restrict ourselves to fields which arise by adjoining
a single algebraic number over k.

Now let 0 be an algebraic number of degree n over k. Then the following
holds for numbers in K(6; k):

Theorem 53. Every number in K(0) is obtained exactly once in the form

a=co+c0+c,0°++¢,_ 00" (34)

where the c, . . ., C,_, run through all numbers of the ground field k.

To prove this suppose « = P(0)/Q(6), Q(0) # 0. Then Q(x) does not have
the root § in common with the function f(x) belonging to 6 which is irreduc-
ible over k; hence by Theorem 49, Q(x) is relatively prime to f(x). Thus there
are two polynomials R(x) and H(x) over k such that

1 = Q(x)R(x) + f(x)H(x),
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and since f(0) = 0,

1 =Q(O)RO)
_PO _ _
“= 50 = PORO) = FO),

where F(x) = P(x)R(x) is again a polynomial over k. Finally let g(x) be the
remainder of F(x) mod f(x), which is also a polynomial over k of degree
<n—1.Then

F(x) = q(x)f(x) + g(»),
F(6) = g(9),

so that in fact « is put into the form (34). If there are two polynomials g(x)
and g,(x) over k, of degree at most n — 1, such that g(6) = g,(0), then g(x) —
g.(x) is a polynomial over k with the root 6, whose degree is < n. Thus
g(x) — g,(x) is identically 0, that is, the coefficients of g(x) and g,(x) agree.

Theorem 54. Every number g(0) of the field K(0) is likewise an algebraic
number over k of degree at most n. The relative conjugates of a number o. = g(0)
are the distinct numbers among the numbers g(0;) (i = 1,2, ...,n). Each con-
Jjugate to o appears equally often among the g(0,).

For if 6,,..., 0, are the conjugates of § with respect to k, we form the
product

Fe9 = [T (x~ g(6)

The coeflicients of this polynomial are integral rational combinations of
0,,...,0,, which are moreover symmetric in 6,, ..., 6§, and whose coeffi-
cients belong to k. Consequently F(x) is a polynomial over k and thus every
number g(6,) is an algebraic number over k. Further if ¢(x) is a polynomial,
among whose roots just one of the numbers «; = g(0,) occurs, then all the «;
are roots of ¢(x). Namely the polynomial ¢(g(y)) over k has a root y = 6,
in common with f(y) and hence, by Theorem 49, it vanishes for all y =
0, ...,0,; consequently, ¢(x) vanishes for each x = «a,, ..., a,.

Moreover, if ¥(x) is the irreducible polynomial over k with leading co-
efficient 1 which has a, as a root, then ¥(x) is a divisor of F(x). Let ¥(x)? be
the highest power of ¥ dividing F(x). Now if F(x)/¥(x)? were not constant,
then it would have a «;, a root of F, as a root; consequently it would still be
divisible by ¥(x), contrary to the assumption about g. Hence for a certain
integer q

F(x) = ¥ ()

That is, the n numbers
ai=g(0i) (i=1’2""9n)
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represent all conjugates to each o;; however they represent each conjugate
g times. Consequently, n is the largest relative degree which a number o in
K(6) can have with respect to k, and, with this, n is identified as a number
determined by the field K(6) alone, which is independent of the choice of the
generating number 6. Thus n is called the relative degree of the field K(0)
with respect to k. Hence the degree of each number of K(6) is a divisor of the
degree of the field.

We now modify the concept of the conjugate, keeping in mind the above
theorem, by the following:

Definition. If n is the relative degree of K(0) with respect to k and if o = g(6)
is a number of K(0), of degree n/q, then the system of n numbers «; = g(0,)
(i=1,2,...,n) will be called the conjugates of « in the field K(0) with respect
to k. These are the conjugates of « with respect to k, each one taken g times.

Accordingly the system of these conjugates as a whole depends only on
o, the ground field k, and the field K, but it is independent of the choice of
the generating 6. Since in the future we will be dealing exclusively with this
concept of conjugate, the qualifier “in the field K(0) with respect to k” will
be omitted in general for the sake of simplicity.

Once we have brought the conjugates of the generating number 0 into a
definite order by the numbering 0, 6,, ..., 0,, then the n conjugates of an
arbitrary number a in K() acquire a definite numbering by representing o
in the uniquely determined form g(f) by Theorem 53 and then calculating
the number g(6,) as the conjugate «;. We shall consider such a determina-
tion as done, then we prove:

Theorem 55. Each rational equation R(x,B,y,...) =0 between numbers
o B, 7, ... in K(0) with coefficients in k remains true if «, 8,7y, . . . are replaced
by the conjugates with the same index.

As a rational function of «, 8, 7, . . ., R is identical to the quotient of two
integeral rational expressions P and Q

R(a,ﬁ,y,.l.)z_’Q’%%%:_))

ino, B,7,....
If we substitute for «, 8, y, ... in R their representations as polynomials
in 0,
a=g@), B=h0O), y=r0),...,

then Q becomes a polynomial in 6, which does not vanish for the numerical
value 6, as it is equal to the number Q(, 8,7, . . .). Consequently, it does not
vanish for any of the conjugates 0,,...,6,. However, since R =0, the
numerical value in the numerator
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Hence this polynomial in § must vanish for all conjugates 6;, i.e.,
P(aiaﬁiayia .. ) = Oa
Q(ai’ ﬂi9yi’ . ) # Oa

Thus the n numerical values
R(aiaﬂi9))ia'~')=09 (i=1a29”‘an)

which was to be proved.
In particular, it follows for each two numbers «, §, in K(6)

} (i=1,2...,n).

o+ Bi= (=% B ;B = (@B %o <g>.,

since, for example, for a = g(0) and B = h(6),
g(0)h(6) = r(6),

where g, h, r are polynomials of degree < n — 1. By the above theorem, from
this one equation for the numerical value 6 the n equations

9(6)h(0) = r(6)

o:f; = (af); i=12,...,n).

follow, that is,

§20 Generating Field Elements, Fundamental
Systems, and Subfields of K(0)

Theorem 56. A number o in K(0) belongs to the ground field k if and only if
it is equal to its n conjugates. A number o in K(0) has degree n with respect to
k if and only if it is distinct from all its conjugates. The latter condition is at
the same time necessary and sufficient for the number o to generate the field
K(0).

The first two statements follow immediately from Theorem 54 and the
definition which follows it. Moreover, if o« in K(6) is to generate the field K(6),
thus if K(6) = K(«) is to hold, then the degree of « must be equal to the
degree of K(0), that is, it must be = n. Therefore the conjugates of « must
all be different. However, if o; = g(6;) are all different for i=1,2,...,n,
then 6 can be expressed rationally in terms of a, and hence all numbers from
K(0) are also contained in K(x).

In order to express 6 in terms of a we conclude that

H) = [T (x = o) = [T (x - g06))
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is a polynomial in k, as in the proof of Theorem 52. Likewise

H(x)
x—0;

= G(x,a;)

is a polynomial in the quantities x, a; with coefficients in k. Hence

o) = ¥ 0700 = 3 06(x,9(0))

x_ai i

as a symmetric expression in 0,, ..., 0,, is also a polynomial over k, from
which it follows for x = «; that

_ D(x;)
T Gloy, )’

because the denominator is certainly # 0 by definition.

Until now we have represented each number from K(6) as a linear com-
bination of 1, 0, 02, ..., 0"~ ! with coefficients in k. However for very many
purposes more freedom in the choice of these basis elements is desirable.

We call n numbers o, w?, ..., o™ a fundamental system of K(0) if
every number « in K(6) can be represented in the form

n
a= Y xo?
i=1
with coefficients x; in k.

Theorem 57. In order that the numbers

o® =Y c, 0! (cy numbers in k) (33)
k=1

form a fundamental system of K(0), it is necessary and sufficient that the
determinant ||cg| # 0.

Obviously we need only investigate when the numbers 1,6,...,6""!

can be represented in terms of the »® as

Pt =

-

aw?®  (p=1,...,n)(a, numbers in k). (36)
1

i

First, if the determinant in (35) is # 0, then the n equations for the unknowns
1,0,...,0" ! canbesolved and these can be obtained as linear combinations
of the ", with coefficients which are derived by rational operations on the
¢, and thereby belong to k.

Secondly, if a representation of the 6*~! in terms of the w®, as in (36), is
possible, then let us substitute the expression (35) for w into it to obtain

9"_1 = Z apic,-kek_l (P = 1, AR ’n)‘
Lk=1
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However since no linear homogeneous relation holds between 1,0, ..., " !
with coeflicients in k, unless all coefficients are 0, we have

0 ifp+#k

6kp B i;1 akiCip = {1 lfp = k

Thus the determinant ||6,,|| is = 1 and on the other hand it is equal to
the product ||ay|| - ||c;,||; hence the determinant of the ¢;, # 0.

Theorem 58. The n numbers vV, . .., @™ in K(0) form a fundamental system
if and only if there is no linear relation

u® =0 (37)

I

i=1

with coefficients in k except if all u; = 0.

The n numbers w® of this type are said to be linearly independent. For, in
the notation used above it would follow from (37) that

= Z u,- Z C,-kak_ :
i=1 k=1
and as before, if the u; belong to k and are not all = 0,

Y ucy =0, k=1,...,n);

i=1

thus
“cik“ =0

However, if this determinant is =0, then the system is not a fundamental
system, and thus, as is known, the n homogeneous equations for w;

n

zuicik=0 (k=1,...,n)

i=1
are solvable and indeed there is a solution among the nonvanishing solu-
tions which is obtained by rational operations from the coefficients ¢,
hence which also belongs to k. For this solution we then have

n
Z a)") —_

Hence the number « also determines the coefficients in

uniquely, if these coefficients also belong to k.
Let the determinant formed by the n numbers »” and their n conjugates
be denoted by
lo@|| = 4@, . .., o).
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(The index k designates the row of the determinant; the index i designates
the column.) It follows from (35) that

A, ... ™) = eyl - 41,0, ...,6"71).

By Theorem 57 this determinant is # O for each fundamental system and
only for fundamental systems since by a known formula

16, 63 - ot
10, 62 -~ 03!
41,6, =1 6, 63 - 0= ] (606,
. . . 1<i<k<n
16, 62 o

and therefore # 0. The determinant is a polynomial function of 64, ...,0,
with coefficients in k (even in k(1)). If any of the 6, are permuted, then this
determinant changes at most by the factor +1, thus its square is also sym-
metric in 04, . .., 6, and hence is a number of the ground field k. The same
also holds for A%, ... ,w,). Obviously this number is also independent
of the numbering of the conjugates.

As in the second half of the proof of Theorem 58, it is easily obtained
that among the n + 1 quantities of the field K, say BV, B, ..., B®* 1), there

is always a linear relation
n+1

Z uiﬁ(i) = Oa

i=1
where the u; denote numbers in the ground field k, which are not all 0.
Thus the degree n of K can also be defined as the maximum number of linearly
independent elements in K.

Finally let us consider the field K(6) not relative to k, but relative to
another field K(x), which is an algebraic field in its own right, say of degree
m over k, generated by the number « which satisfies an irreducible equation
of degree m in k. Suppose moreover that « occurs in K(6). Accordingly,
K(0) is an algebraic field of degree q < n over K(x), since the generating
number 0 already satisfies an equation of degree m with coefficients in k,
thus a fortiori in K(x). K() is called a subfield of K(0). If we regard K(«) as
the ground field, then every quantity in K(0) can be brought into the form

W =790+ 7,10 4+ p,-,00"
in a unique way, where the quantities y are numbers in K(x). Likewise, every
number in K(x) thus admits a unique representation
Co+ o+ + oo™l

where the coefficients ¢; belong to k. Consequently each « admits a unique
representation as a linear combination of the mq quantities o'6* (i =0,
L....m—1;k=0,1,...,q — 1) with coefficients in k. Hence these mgq
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numbers also form a fundamental system of K(8) (with respect to the ground
field k), hence mq = n, ¢ = n/m. With this the following theorem is proved:

Theorem 59. If « is a number of degree m over k and if f is a number of degree
q over K(a; k), then the field K(x, B; k) has degree mq over k. Furthermore
ifl,,...,0, (n=mq) are the conjugates of a generating number of K(a, f; k)
with respect to k, then these conjugates decompose into m sequences with q
elements in each sequence; here the q numbers of a sequence are always the
conjugates with respect to K(x;), where a4, . . ., o, are the m conjugates of o
with respect to k.

A field K(B; k), which is identical with all conjugate fields K(f;; k) (i =
1,...,n)is called a Galois field or a normal field with respect to k. A number
field K(«; k) is always contained as a subfield of a Galois field. This follows
from the proof of Theorem 52 for the field which arises by adjunction of all
relatively conjugate numbers ay, ..., a, is obviously a Galois field with
respect to k. .

From now on we will be concerned exclusively with those numbers which
are algebraic with respect to k(1); these will simply be called algebraic. Let
us merely mention the following about other kinds of numbers:

Numbers which are not algebraic are called transcendental. Liouville'
(1851) first proved that there are transcendental numbers, by giving at the
same time a method of constructing arbitrarily many such numbers. Later
George Cantor® (1874) furnished a quite different proof which shows that
the set of transcendental numbers has an even higher cardinality than the
set of algebraic numbers. Until now it has only rarely been possible to
decide whether a definite given number is transcendental or not. General
methods for this are not known. Hermite® (1873) has proved transcendency
for e, Lindemann* (1882) for m; later these proofs were greatly simplified by
Hilbert, Hurwitz, and Gordan®.

! Liouville, Sur des classes trés étendues de quantités dont la valeur n’est ni algébrique, ni
méme réductible a des irrationnelles algébriques. Journal de Mathématiques pures et appliquées,
Sér 1.T.16 (1851).

2 Cantor, Uber eine Eigenschaft des Inbegriffes aller rellen algebraischen Zahlen. Crelles
Journal f. d. reine u. angew. Mathem. Vol. 77 (1874).

3 Hermite, Sur la fonction exponentielle. Comptes rendus T. 17 (1873).
4 Lindemann, Uber die Zahl =. Mathem. Annalen Vol. 20 (1882).
5 The three papers can be found in Mathem. Ann. Vol. 43 (1892).



CHAPTER V

General Arithmetic of
Algebraic Number Fields

§21 Definition of Algebraic Integers, Divisibility,
and Units

The concepts which were developed in the preceding chapter with respect to
a ground field k are now to be understood with respect to the absolute field
k = k(1). To develop the foundations of an arithmetic of algebraic numbers
we first need a definition of algebraic integer. The following requirements
can be reasonably imposed on a concept of integer.

(1) If« and p are algebraic integers, then so are a + 8, « — f, and af.

(2) If an algebraic integer is rational, then it is an ordinary integer.

(3) If « is an algebraic integer, then the conjugates (with respect to k(1)) are
also algebraic integers.

By (1) each rational integral expression of algebraic integers with rational
integral coefficients would be an algebraic integer. In particular, by (3), all
elementary symmetric functions of an algebraic integer and its conjugates
would then be algebraic integers. On the other hand they are rational and
hence, by (2), they are rational integers. If « is an algebraic integer, then the
coefficients in the irreducible equation for « in k(1) with leading coefficient 1
would have to be rational integers. Accordingly we define:

Definition. An algebraic number « of degree n is called an algebraic integer
if in the irreducible equation for o in k(1) with leading coefficient 1, all
coeflicients are rational integers.

Henceforth we will always understand by “integer” an algebraic integer.
Requirements (2) and (3) are obviously satisfied for these integers.

68
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Theorem 60. If a satisfies any equation at all with integral coefficients whose
leading coefficient is equal to 1, then o is an integer.

Let (x) = x" + a;x¥ ! + - - - + ay with rational integral a’s and ¢(x) = 0.
Moreover let

) =cox"+ e x" 1+ g,

be the irreducible polynomial in k(1) which has « as a root and in which the
c; are already assumed to be relatively prime rational integers, with ¢, > 0.
By Theorem 49 we have f(x)|¢(x). Thus

o(x) _ bg(x)
0~ b

is a rational polynomial over k(1) where we may assume the polynomial g(x)
to be integral with relatively prime coefficients, by suitable choice of the
rational integers b and b'. It follows from

be(x) = bf(x)g(x)

that b = b', since, by Theorem 13a, f(x) - g(x), as a product of two primitive
polynomials is again primitive, and ¢(x) is also primitive. Moreover, by
comparing leading coefficients we learn from ¢(x) = f(x)g(x) that ¢, must
divide the leading coefficient of ¢, which is 1; hence ¢, = 1 completing the
proof.

In order to verify whether an algebraic number is an integer, we will most
often use this theorem, which unlike the definition does not require the
verification of the irreducibility of a polynomial.

Theorem 61. The sum, difference, and product of two integers is again an
integer. Hence every rational integral function (polynomial) of integers with
rational integral coefficients is again an integer.

For if ay, ..., a, are the conjugates of a number « and if 8, ..., 8, are
the conjugates of a number f, then

Fe) = T [T 6= G + B)

is a polynomial in x whose coefficients are symmetric in «,, ..., ®, and
Bis ..., Bm- Since the elementary symmetric functions of the o as well as
those of the f are rational integral functions then, by hypothesis, F(x) is an
integral polynomial over k(1) by the fundamental theorem on symmetric
functions. Consequently its root o + f is an integer. The assertions about
o — B and aff are proved similarly.
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In a manner quite similar to that above and by Theorem 51 we conclude:

Theorem 62. If w is a root of an equation
X" +oax™ 4 Bfxm i 4+ A=0

where a, B, . . . , A are integers, then w is also an integer.
For example the mth root of an integer is again an integer.

Theorem 63. Every algebraic number o can be transformed into an integer by
multiplication by a suitable nonzero rational number.

To prove this assume that
X"+ e xX" P+t x+6, =0

is an equation for a with rational integral coefficients and ¢, # 0. Then by
multiplication by ¢~ we obtain an integer equation for y = c,x with leading
coefficient 1, which has the root cqyo.

The definition of divisibility arises along with the concept of integer.

An integer « is said to be divisible by the integer S(8 # 0), if /B is an
integer; in symbols we write f|a.

If B|o and By, then B|da + py for arbitrary integers A, p, for

Aatpy oY

; Y

is an integer by Theorem 61.

An integer ¢ is called a unit if 1/¢ is also an integer.

If ¢ divides 1, then ¢ also divides 1 - « = «, that is, ¢ divides every integer
. The conjugates of each unit (with respect to k(1)) are also units, and each
divisor of a unit and each product of units is also a unit.

If two integers a, B differ only by a factor which is a unit, then o and f
are called associates.

In order that an integer ¢ be a unit it is necessary and sufficient that the
product of all conjugates of ¢ be equal to + 1.

For the product ¢,¢, - - - ¢, as a symmetric function, is a rational integer a,
and as a product of units it is also a unit, i.e., a| 1 and thus a = + 1. However
ifee, -6, = +1,then 1/, = +e, - - ¢, is an integer and therefore ¢, is a
unit.

Obviously all roots of unity are units and indeed they have absolute
value 1. However, there are infinitely many other units, for example 2 + /3,
since

1

2+./3

1

=2-./3, 1=
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are obviously integers. ¢ =2 — /3 is <1 and > 0, and hence there are
arbitrarily small numbers among the powers ¢, 2, €3, . . . . Thus the multiples
Nev (N = +1,4+2,...,k=1,2,...) of these numbers are obviously every-
where dense in the real line and moreover they are all integers belonging to
the field K(y/3). This fact—if the real algebraic integers are ordered according
to magnitude, there exists no next integer to a given integer—has as a
consequence that the many methods of proof with which we became ac-
quainted in rational number theory cannot be carried over to algebraic
numbers.

Every integer a (s 0) has infinitely many “trivial” divisors namely ¢ and
ea, where & runs through all units. But « is also decomposible into integers

in a nontrivial way,
a = Ja /o

neither of which factor is a unit, if & is not a unit. Hence there are no irre-
ducible numbers in the domain of all algebraic integers; thus there is surely
no analogue to rational primes.

Rather in order to obtain irreducible numbers, we must first restrict the
domain of admissible numbers to the point where we operate only with the
numbers of a certain number field of degree n.

§22 The Integers of a Field as an Abelian Group:
Basis and Discriminant of the Field

We lay the foundations for further investigations of a definite algebraic
number field K(0), which is generated by the algebraic number 0 of degree n.
It is no restriction to assume 6 is an integer since we can always transform
0 into a integer by multiplication by a rational integer. We fix a definite
numbering for the conjugates of 0; in this way according to §19 a definite
numbering of the conjugates of each number in K is also defined. From now
on the conjugates are to be denoted by superscripts.
Moreover, for each number « of the field K we set:

Norm of & = N(o) = a®Ma@ - - - a®™;  hence N(af) = N(«)N(p).
Trace of « = S(&) = a™ + a® + - -+ + a™; hence S(x + f) = S() + S(B).

These quantities are rational numbers and they are rational integers if « is
an integer. We have N(«) = O only ifa = 0.

Theorem 64. The integers of K form a (torsion-free) Abelian group under
composition by addition. This group has n basis elements. Thus there are n
integers wy, . . ., w, in K such that if the x; run through all rational integers
in the expression

o= XMW + X005 + *** + X,0,,
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we obtain each integer in K exactly once. The numbers w are called a basis
of the field.

The first part follows directly from Theorem 61. In order to prove the
second part, we first investigate those integers p of the field which have a
representation in the form

p=cotc0+ " +c,_,00"
with rational ¢. The ¢’s can be determined from the n conjugate equations
p(i) = Co + clo(i) ++ cn—le(i)n_l (i = 17 2a R n)

since the determinant A(1,0,0%,...,0" ') # 0. The solution yields 4 - ¢,
equal to a determinant, among whose elements only the p and the powers
of the 6? occur. In any case this determinant is an algebraic integer A4,, since
p and 0 are algebraic integers. However,
A* A4
“=F= g
implies that 4, 4 = 4% ¢, is a rational integer, for this number is an integer
since A4, and 4 are integers, and rational since c, and 42 are rational. Con-
sequently ¢, is a rational number,
o =2k
k=70
where x, is a rational integer and the denominator D = |4?| is independent
of p. The system of all numbers
1 02 o 0n—1
a—x03+x13+x23+ +x,,_lT,
where the x; run through all rational integers, thus contains all integral
numbers of the field. Moreover the system perhaps contains nonintegers,
and in any case forms a (torsion-free) Abelian group (with composition by
addition) with a basis of n elements namely 1/D, 6/D, . . ., 6"~ '/D. Hence by
Theorem 34 the subgroup of integers of the field contained in this group
likewise has a basis. By Theorem 40 this subgroup is of finite index since
D - o (that is, in the sense of group theory: the Dth power of each element)
is obviously an integer and belongs to the subgroup. Consequently, by
Theorem 35 the basis for the integers in the number field also consists of
n elements, say ,, ..., ®,. By Theorem 38 two different systems of basis
elements, say «; and w;, are connected by a relation
n
=Y cw, (=12...,n),
k=1
with rational integral c,, whose determinant is +1. Consequently
A*wy, . .. ,w,) is independent of the choice of basis and is determined
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completely by the field itself. Since in any case the w; represent 1,0, ..., 6" !
by linear combinations, they form a fundamental system and consequently
4% # 0.

Definition. The number A%(w,, . .. ,w,) which is independent of the choice
of basis wy, . . ., @, is called the discriminant of the field and will be denoted
by d. It is a nonzero rational integer.

We see without difficulty that |4%(x,, . . . , a,)| is always > |d| for a funda-
mental system of integers o;, and is equal to |d| if and only if the fundamental
system forms a basis for the field. For this reason the basis for the field is
also called a minimal basis.

It is appropriate to introduce the concept of a module here. By a module
of integers in a field K we mean a system of integers in K, which along with
o and B always contains o +  and « — f§, and also contains a number
different from 0.

Thus the numbers of a module form a (torsion-free) Abelian group under
composition by addition which is a subgroup of the group of all integral
elements of the field, and hence by Theorem 34 also possesses a basis of k
elements, where 0 < k < n. We call such a module a k-rank module (module
of rank k). We will be dealing only with n-rank modules. Such modules are
obviously identified by the fact that they contain n linearly independent
numbers.

§23 Factorization of Integers in K( / —5): Greatest
Common Divisors which Do Not Belong to the
Field

We now direct our attention to the multiplicative decomposition of the
integers of a field. An integer o is called irreducible in K if & cannot be repre-
sented as a product of two integers, neither of which is a unit. The property
of being irreducible thus does not belong to a number in itself but can only
be considered with respect to a definite field. Every rational prime is irreduc-
ible in k(1), but, for example, 3 is reducible into /3 /3 in K(/3).

Are there irreducible numbers also in algebraic fields of degree higher
than 1, and can every integer of the field be represented as a product of
these numbers in (essentially) one way?

We will determine numerical examples such that the uniqueness of the
decomposition does not always hold and we will try to find the reason for
this.

We consider the field K(y/—5). The generating number 8 = /=5 is a
root of x> + 5= 0 and as a nonreal number it surely does not satisfy any
equation of lower degree in k(1), hence it is of degree 2 over k(1). Hence all
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numbers in K(/ —5) have the form

a=ry 41,3

with r, and r, rational. The conjugate of « will be denoted by o'. Thus

o =r, —ry/—5, hence () = a.

The integers in K(,/—35) are the numbers m + n/ —5 with m, n rational
integers. In order that « be an integer it is necessary and sufficient that
o + o and oo’ be (rational) integers, that is,

2r, and ri+ 573
must be integers.
Accordingly, r, and r, can have denominators at most 2. We set r; = g,/2,
r, = ¢,/2. Thus we should have

2 5 2 . .
g1t 292 integral, that is, g7 + 5g3 = 0 (mod 4).

All squares are = 0 or 1 (mod 4). From this it follows that g, and g, must
be even, hence r; and r, must themselves be integers.

There are no units other than +1 in the field K(\/—_S). For a unit
& =m+ n./—5 we must have

+1=N()=¢-¢ =m?+ 5n2

If n # 0, then the quantity m? + 5n% > 5;hence wemusthaven = 0,m = +1.
The following integers are irreducible in K(/ —5):

a=1+2-5,
«=1-2-5,
B =3,
p=".

If f = 3 were decomposable into y6 and y, 6 were not units, then we would
have

9 = N(3) = N(y) - N(&).

However a decomposition of 9 into integral rational factors, none of which
= 1, is only possible as 3 - 3. Consequently we necessarily have

N(y)=N(@©)=3
and hence for y = x + y./— 5 with integral x, y,
x2+5y2=3 x*<3,  5y2<3

which is obviously impossible. Hence f§ = 3 is irreducible and in exactly the
same way p = 7 is shown to be irreducible. Finally if « were decomposable
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into yd, N(y) # 1 and N(J) # 1, then we would have
N(y) - N(6) = N(ax) = 21.

Thus either N(y) = 3, N(8) = 7 or vice versa. But we have just shown that
there cannot be any y with N(y) = 3. Thus « and hence also its conjugate o’
are irreducible.
The number 21 is thus shown to be decomposable in two essentially distinct
ways as a product of irreducible numbers in K(\/—5):
2l=o0' =3-7.

To understand this fact, that the irreducible number 3 indeed divides the
product oo, but divides neither « nor «, we note that the two numbers «
and 3 in K(y/ —5) have indeed no factor in common in K(y/ — 5) (except +1),
but that they have a common factor (not a unit) which belongs to another
field. For the squares
a?=—19+4,/-5
p*=9
are divisible by the integer
A=2+4+ /-5
which is not a unit:
w?=0Q2+=5)(=2+3/-5)
BP=2+J=-52—-J=5)

Thus a?/A, B%/A are integers, and hence by Theorem 62 the square roots
b

a
NN/
are also integers. Likewise
a2 =(=2++-5)2+3/-5)
p:P=7"=Q2+3/-502-3/-95)

1r=2+43-5;

are divisible by

hence

!

@ p

Vi Vx

are integers. Furthermore the number /4 (which does not belong to the
field K(i/ —5)) has precisely the properties of a greatest common divisor of
o and B: Each integer o—in K(,/ —5) or not—which divides « and S, also
divides /A, and any integer which divides /A is also a divisor of « and .

The last fact is self-evidently a direct consequence of the definition of divis-
ibility. In order to prove the first assertion we make use of the fact that the
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number /A can be represented in the form
Aa+ BB = /A (38)
with integers A4, B (of course not belonging to K(y/ —35)), for example,

20 4—--=-5)8
, B=——
Vi VA
Hence if |« and |, then it follows in fact from (38) that w|/A.
The double decomposition
ao’ = fp,
into irreducible factors in K(/ —5), occurs in such a way that

a=\AJ=x, B=+AJZ,
o == =7,
and the four factors not belonging to the field in the product
21 = I =11
can be put together in several ways so that they yield numbers in K, although

every pair of the numbers has no common factor.
We formulate these two most important results as follows:

(i) It may happen that two numbers, irreducible in K(\/——S), which do not
differ only by a unit factor, have a common factor, which then does not
belong to the field.

(ii) The totality of integers in K(\/——-—S) which are divisible by an irreducible
number « in K need not agree with the totality of integers in K(v/—5)
which are divisible by a nonunit factor of « (not belonging to K).

For example, a is irreducible, \/I is a factor of a, the number =3 is
divisible by /4 but not by o, although # belongs to the field K(\/—5).

Neither of these properties can occur in the field k(1). This is true since
two irreducible numbers which do not differ only by a unit factor are always
two different (thus relatively prime) prime numbers, say p, g from which 1
can be formed as a combination:

1 =px+qy

with integral rational x, y. From this it follows that all common factors of
p and g must divide 1, and hence are units.

Furthermore if p is again a prime and ¢ is an arbitrary integer (not a unit
and possibly not rational) which divides p then the set of all rational integers
which are divisible by ¢ is a module and hence by Theorem 2 identical with
all multiples of a rational integer n. Then p must divide n because otherwise
1 could be formed as a combination of p and n, and ¢ would then divide 1.
Hence n = £ p, that is, each rational number divisible by ¢ is divisible by p,
provided @ is not a unit and is a divisor of p, where p is prime.
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We have thus arrived at the insight that in the higher algebraic fields
the irreducible numbers are not the ultimate building blocks from which all
numbers of the field can be put together, that they do not have the property
just stated for primes.

It is now a question of extending the domain of numbers so that we
consider also those numbers which appear as the GCD of numbers of the
field, as \/4 and \/x above, without belonging to the field. Indeed we need
not consider the individual \/4, \/x themselves exactly, for in the investigation
within K we do not have to keep separate two algebraic numbers which have
the property that every number divisible by the one number in K is also
divisible by the other.

Consequently we will simply seek to characterize a number A4, not belong-
ing to K, by giving all numbers of the field which are divisible by A.

Such a system of integers has the property: if x and f belong to the system
and A and p are arbitrary integers of the field, then Ax + uf belongs to the
system. A result arising much later in the presentation of our theory is that
the converse also holds: if a set of integers in K has this property, then there
is an algebraic integer A, possibly not belonging to the field K, such that the
set consists of all numbers of the field divisible by 4. Such a set should thus
be regarded conceptually as a number and will be called an ideal following
Dedekind. Kummer, who earlier investigated these relations in the case of
cyclotomic fields, the first person to do so, and who should be regarded as
the creator of ideal theory, called such numbers A, which appear as the
GCD of elements of the field without belonging to the field, ideal numbers
of the field.

In the theory of ideals which is explained in what follows, we should
always keep in mind that an ideal serves only to characterize a certain
number not belonging to the field, by operations within the field, as this
anticipation of results indicates. In the domain extended by ideals the concept
of primes and the fact of unique decomposition into primes will be found
again, exactly as in rational number theory.

§24 Definition and Basic Properties of Ideals

Definition. A system S of integers of the field K is called an ideal in K (for
short: an ideal) if whenever « and B belong to S, every combination Ax + uf8
with arbitrary integer coefficients 4, u in K, also belongs to S."

Thus the property of being an ideal does not belong in an absolute sense
to a system S, but only in reference to a specific field K. Hereafter ideals will

! From §31 on, a somewhat more general definition of ideal is used, in which nonintegral
numbers are also admitted.
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be denoted by German letters a, b, ¢, ... . The ideal which consists of the
single number 0 may be denoted by (0); in several respects it plays a special
role. Two ideals a, b are said to be equal (a = b) if they contain exactly the
same numbers.

Examples of ideals are:

I. The set of numbers S which is represented by a specific linear form
iy + -+ &, With ay, ..., a, integers in K, where £;,..., ¢, run
through all integers in K. This set of numbers is called the range of values
of the form. We denote this ideal by («,, . . . ,,).

II. The set of integers in K which are divisible by a definite integer 4, no
matter whether A belongs to the field or not.

A final result of our theory, as has already been mentioned, will be that
every ideal is of the form I as well as of the form II (§33). For the time being
we show:

Theorem 65. Every ideal a can be written in the form (ay, . . . ,a,) with the a
suitably chosen integers in K. Moreover, we may even take r < n.

The numbers of an ideal a which is not (0) (the case a = (0) is trivial)
obviously form an infinite Abelian group, under composition by addition,
which is a subgroup of the group of all integers in K. Consequently by
Theorem 34 the ideal a has a basis, whose size is < n. On the other hand,
by Theorem 37, the number of elements in this basis is equal to the number
of independent elements in a; hence it is = n, since, indeed, if a (¢ # 0)
belongs to a, the n independent elements a, O, 0%, . .., 0" 'a must also
belong to a. Thus in each ideal a # (0) there are exactly n numbers «,, ..., o,
such that

o= X0 + 4+ X,

represents all numbers of the ideal exactly once, if x4, . . ., x, run through
all rational integers. Such a system a4, ..., o, is called a basis of the ideal
(or ideal basis). According to the definition the numbers in a simultaneously
form the range of values of the form

oy + o+ Eay, SO a= (0, ...,0).

We have (a5, ...,%,)=(By,...,B) if and only if each a can be linearly
represented by the f and if each f can be linearly represented by the a with
integer coefficients in K. Thus in particular, if  is an arbitrary number in
a, A an integer in K,

a=(0tg,...,0)=(A...,0,0)=(; — Ao, oy, ...,0q,0). (39)

Anideal a is called a principal ideal if there is an integer o such that a = («).
Note that for two principal ideals () and (), («) = (f) if and only if « and
B are associates, i.e., they differ only by a unit factor.
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Every ideal in the field k(1) is a principal ideal by Theorem 2, since it is
a module if it is # (0). On the other hand, the ideal (1 + 2./ -5, 3) in the
field K(/ — 5)is not a principal ideal because of what was said in the preceding
section. This ideal consists of all numbers divisible by /4.
If
(g, ...,0)=(A4y,...,4) and (By,...,B,) =(By,...,B)),

then
(alﬂla e aaiﬂka cees O, p) = (AlBla e aAlea ce. aAqu)

since

ai = IZ )'ilAla Bk = Z ﬂkmBm

implies that
B = ). AutimAiBm
* lzm e

with integral A, 4 and conversely each A,B,, is a combination of the a;f,.
By the product ab of two ideals a = (ay,...,a,) and b= (B,,...,8,) we
mean the ideal
ab = (B, .- -, By - - -0, B)

thus defined uniquely by a and b.
It follows directly from this definition that multiplication of ideals is
commutative and associative:

ab = baq, a(bc) = (ab)c.

We set a = a® and for each positive rational integer m we set a™*! = a™a
so that a?*? = afa? as with ordinary powers.

We call an ideal a divisible by an ideal ¢ or ¢ a factor (divisor) of a if ¢ # (0)
and there is an ideal b such that a = bc. In symbols we write ¢|a.

The connection between divisibility of numbers and of ideals is made by
the following fact: The principal ideal («) is divisible by the principal ideal
(y) # (0) if and only if the number « is divisible by the number Y.

This follows since (a) = (y)(By,...,B8) = (¥B1,...,7yB,) implies
a=Y; AyBi =7 Y A:p; with integers A;; hence y|a. Conversely, if y|«, then
for some integer B, « = yB, and we also have («) = (y) - (8) and (y)|(«).

The unit ideal (1) consists of all integral elements of the field. If an ideal
contains the number 1, then it contains all integers, and is thus = (1). For
each ideal a # (0)

a=a-(l), ala, (1)]a, and al(0).

Each ideal a has the “trivial” factors a and (1).

Definition. An ideal p is called a prime ideal if it is different from (1) and has
no factors other than p and (1).

We do not yet know whether there are prime ideals.
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Indeed the fact that divisibility of ideals can be reduced to divisibility of
numbers, that not only the converse holds, is of basic significance for the
foundations of ideal theory by virtue of the following theorem:

Theorem 66. For each ideal a there is an ideal b different from (0) such that
ab is a principal ideal.

The different ways of laying the foundations of ideal theory are distin-
guished in the proof of this theorem. Here we will use a method of Hurwitz
which was greatly simplified by Steinitz. It rests on a generalization of the
theorem of Gauss about polynomials which have algebraic integers as
coefficients:

Theorem 67. Let
AX) =) + oy X 4oy, BOX) =X+ By X T+ B

be polynomials with integer coefficients, a,, B, # 0. Then if an integer 6
divides all coefficients y of

C(x) = A(x) - B(x) = px* 4+ P 1X° 4+ Y1 X’ L+ + 7,

it also divides all products a;f,.
In order to prove this assertion, we need the following two lemmas:

Lemma (a). If
f(X) =06, X" + 6y X" 1+ +6,x + J, 0, #0)

is a polynomial with integral coefficients and p is a root, then f(x)/(x — p)
also has integer coefficients.

To begin with, J,,p is an integer in any case, as we see immediately by
Theorem 62 in a manner similar to that of the proof of Theorem 63.

Moreover the lemma is true for m = 1, in which case f(x)/(x — p) = 4,
where p = —6,/0,.

Suppose that this lemma has already been proved for all polynomials of
degree < m — 1. Since

P(x) = f(x) = 3,x" " !(x — p)
is obviously an integral polynomial of degree < m — 1 with p as a root,
o) _ ()
X—p XxX—p
is thus integral. Therefore the same holds for f(x)/(x — p), whence Lemma
(a) follows by complete induction.

6mxm— 1
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Lemma (b). If, in the above notation

JX) = 0(x — p1)(x — p2) - (X — pm),

then 8,,p1p5 * * * Py is an integer for each k with 1 <k < m.
This follows by repeated application of Lemma (a) from which we obtain

JS(x)
(¢ = Pra1)(x = Prs2) 7 (x = pp)

as an integral polynomial whose constant term is +4,,0; * * * py.
We now arrive at the proof of Theorem 67 as follows: let the decompo-
sition into linear factors be

=0ux—py) - (x—py)

A(x) = op(x — pr)(x = p2) "~ (x — pp)
B(x) = B,(x — 01)(x — 03) - (x — 7,).
By hypothesis
C
€O _%bex p e o,

has integral coefficients, hence by Lemma (b) each product

a,pB,
—%-— : pmpnz e Pn,»Um, e amk (40)

is an integer, where n,, ..., n; and likewise m,, ..., m, are any distinct
indices (i < p, k <r). However, since o;/a, and B,/f, are elementary sym-
metric functions of the p and of the g, «;f,/0 is a sum of terms of the form
(40), and consequently an integer, as was to be proved.

We are now finally able to prove Theorem 66 about ideals. Let a =
(@, . . .,a,). We form the integral polynomial

g(x) = ayx + opx? 4+ -+ + X"
and the conjugate polynomials
gx)=ofx + oaPx* + -+ %,  (i=12,...,n)
among which the original polynomial g(x) occurs, say for i = 1. The product
Fe)= T g9Cc) = X c,x”
i=1 P

as a symmetric function of the conjugates is a polynomial with integral
rational coefficients c,. F(x) is divisible by g(x) and the quotient

Fx) [~ ..
=——=[] ")

g(x) =2
is thus a polynomial with coefficients in K which are moreover integers, say

h(x) = Bix + Box? + -+ + Bux™

h(x)
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with the B; integers in K. If we denote the GCD of the rational integers ¢,
by N, so that f(x)/N is a primitive polynomial, and set

b = (ﬂla .. aﬂm)a
then we assert that the equation
ab = (N)

is true. Now ab = (..., o8y, . . .). By Theorem 67, N divides all «;8,, since it
divides each coefficient of g(x)h(x). Hence

;B = AgN

where 4,, is an integer, and thus all ;8, and consequently all numbers of ab
belong to (N). Secondly, however, N is the GCD of all the coefficients c, of
h(x)g(x), and hence there are rational integers x,, such that

N=cix; +c%x5 4+ .
Each cis a sum of products a;,; consequently N is representable in the form

N = Z Uy B
ik

with p; integers (actually rational integers). Thus N and all numbers of (N)
belong to ab, that is, (N) = ab.

By reason of the preceding theorem we see the uniqueness of division of
ideals:

Theorem 68. If ab = ac, thenif a # 0,b = ¢.

To see this we determine an ideal m such that am = () is a principal ideal.
Then
amb = ame, ()b = (a)c.

The latter equation asserts that a times every number from b is of the form
o times a number from ¢, that is, every number of b belongs to ¢, and likewise
the converse is true; thus b = c.

And now we obtain a new definition of divisibility:

Theorem 69. An ideal ¢ = (y,,...,y,) is a divisor of a = (ay, . .. ,qa,) if and
only if every number of a belongs to c.

If ¢|a, then thereis a b = (B, . . ., B,) for which b # (0) and
(aI’ e ’am) = (ﬁa e ’ﬁp) ! (yl’ e ,)’r) = ( . ’Biyks . ');
hence every number « of a can be represented in the form

a= Zk: AiwBive = kgl Pk <.§":1 j’ikﬁi)

with integral A;, and thus belongs to c.
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Conversely if every number in a is also a number in ¢, then for all integers
Ay there exist integers u,, for which

Z Ay = Z Hpil¥ps
i P
then for each d = (64, ...,0,)

Z Z A O = ; Z HpiYp O,
ki P

that is, each number in ab belongs to ¢d. Now let us choose d so that ¢d = ()
is a principal ideal (6 # 0). If ad = (p,, p,, . . .), then each p; is a number
from (6); thus it is of the form 4,6 with integral A; and hence

(P1:P25 - - ) =0)A1, 42, . . ),
D= (A dg .. .)
a=c'(A,4z,...), ie, c|a

As an immediate consequence of this theorem we emphasize:

Let a be an ideal which is not = (0).

The integer a occurs in a if and only if a|(«). If a|(x) and a|(B), then also
a|(Ao + pp) for all integers 4, p.

It follows from ab = (1) that a = (1) and b = (1).

If each of two ideals is a divisor of the other, then they are equal.

§25 The Fundamental Theorem of Ideal Theory

Theorem 70. For every two ideals a = (o, . . .,a,), b = (B, . .., B,) which are
not both = (0), there is a uniquely determined greatest common divisor d = (a,b)
which has the following property: d is a divisor of a and b. Furthermore if b, |a
and b, |b, then d, is a divisor of d. Indeed d = (aty, . .. ,&,, By, . . ., B).

We show that d = («q,...,q,,B,...,0,) has the stated properties of
divisibility. Since every sum “number in a + number in b” obviously belongs
to D, then all the numbers of a and of b belong to d, and consequently by
Theorem 69 d|a and d|b.

Moreover if d;|a and d,|b, then all numbers of a and of b and conse-
quently also each sum “number in a + number in b” belong to d,, that is,
each number of D belongs to b;. Again we have b, |b.

If an ideal b, likewise has this property, then d,|d and d|b, thus d = b,.
Consequently d is uniquely determined by this property.

We see, accordingly, that an ideal a = (a,, . . . ,a,) can be regarded as the
GCD of the principal ideals (o), (o3), - - - , ().

We conclude immediately from the expression for d that

¢ (a,b) = (ca, cb). 1)
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Thus from this follows a part of the fundamental theorem:
Theorem 71. If p is a prime ideal and p|ab, then p divides either a or b or both.

For if p does not divide the factor b, then
®,b) = (1),

since, as a prime ideal, p has no factors except (1) and p. It follows from (41)
that
a = a(1) = a(p,b) = (ap, ab)

and since p | ab, p must divide a.

From this we obtain, as in rational number theory (Theorem 5), that a
representation of an ideal as a product of prime ideals is possible, if at all,
only in one single manner, except of course for the order of the factors.

However, we are still missing the proof that a decomposition into prime
ideal factors is always possible. For this we must show:

(a) Every ideal a which is not (0) has only finite many divisors.
(b) Every proper divisor of a (a # (0)) has fewer divisors than a.

For the proof of (a) we recall that every ideal a which is not (0) divides
a certain principal ideal (x), and that each divisor of a is also a divisor of
(«). Thus it is sufficient to verify the finiteness of the number of divisors of
each principal ideal («), and here we may take « as a rational integer, since
o| N(«) implies («)| N(«) and N(«) = N is such a number.

By Theorem 69, an ideal (N) is divisible only by those ideals a in which
N occurs. Now let a = (%4, . . . ,&,) be a divisor of (N), hence let N occur in
a. It is sufficient to assume r < n, since, for example, we can indeed choose
for the a; a basis for a. Now

Oy s0)=(tg,...,0,N)=(t; — NA;, 2 — NA,,...,0, — N4, N)

is true for arbitrary integers A;. We show that the 4; can be chosen so that
the o; — N4, belong to a definite finite range of values. Let w,, ..., ®, be a
basis for the field. To each integer o = x;w, + -+ + X,®,, an integer
A=uw; + -+ u,w, (x; and u; rational integers) can obviously be deter-
mined so that in

o — NA=(x; — Nu))w, + -+ (x, — Nu,)w,

the n rational integers x; — Nu; belong to the interval 0,..., N — 1. Among
these numbers, which we call “reduced mod N” for the moment, there are
only |N|" distinct ones. We now choose the 4; so that all numbers «; — 4N
are reduced mod N; then the, at most, n numbers «; — 4,N belong to a
definite finite set of numbers determined only by N, and hence they can give
rise to only finitely many distinct ideals a; that is, (N) has only finitely many
divisors and Lemma (a) is proved. Now in order to prove Lemma (b), let
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¢ be a proper divisor of a. Thus a = bc where b # (1), ¢ # a. Then ¢ surely
does not have a as a divisor, and consequently ¢ has at least one less divisor
than a.

Now at least one prime ideal must occur among the finitely many, say m,
divisors of a which are not =(1), unless a itself is (1). Namely the divisor
or divisors which have as few divisors as possible are obviously prime
ideals by Lemma (b). Consequently, we can split off a prime ideal p, from
a, a = p,a,, where a, has at most m — 1 divisors which are # (1). In case
we do not have a; = (1), we can again split off a prime ideal p, from a,
where a, has at most m — 2 divisors # (1), a = p,p,a, and so on. Since the
a;, a,, ...always have decreasing numbers of divisors, the process must
come to an end after finitely many steps, which can only occur if a, = (1).
Then a = p,p, - - p, is represented as a product of prime ideals, and we
have proved

Theorem 72 (Fundamental Theorem of Ideal Theory). Every ideal in K dif-
ferent from (0) and (1) can be written in one and only one way (except for order)
as a product of prime ideals.

§26 First Applications of the Fundamental Theorem

We see at once that this theorem on ideals can be used in the investigation
of divisibility properties of numbers, e.g., this theorem gives an entirely new
method for deciding whether or not an integer « is divisible by an integer S.
By §24 we must investigate whether («) is divisible by (f). First we decompose
both ideals into their distinct prime factors:

(@=p1p2 P (a:=0),
By =p4p% oy (b;20)

By the fundamental theorem, § divides « if and only if a; — b; > 0 for i =
L2,...,k

Theorem 73. There are infinitely many prime ideals in each field.

Each rational prime p defines an ideal (p), and moreover if p and g are
distinct positive primes, then (p,q) = 1 in the sense of our ideal theory, since
the number 1 occurs in the form px + qy in (p, q). Consequently, the same
primes never divide (p) and (q); hence there are at least as many prime ideals
as there are positive primes p.

We now simplify the notation in that when designating principal ideals ()
we omit the parentheses whenever there is no danger of misunderstanding;
however we must keep in mind that from the equality of the ideals « and
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it only follows that: « = f x unit. Likewise, in all statements which concern
the divisibility of an (x), we replace the ideal by the number a. Thus « is
divisible by a means that («) is divisible by a. The statement |« already has
meaning, it actually agrees with (f)|(«) by what we have done earlier. The
greatest common divisor of ay, . . . , &, isaccordingly theideala = («, . . . ,,).
If this ideal = (1), then we call the numbers «, . . ., o, relatively prime. In
order that the numbers be relatively prime it is necessary and sufficient that
a contains the number 1, that is, that there are integers 4; in K such that

).1(11 + Azaz + e + A:rar = 1.
It follows from a|« and a|p that a| Ao + pp for all integers A and p in K.

Theorem 74. If a and b are ideals distinct from (0), then there is always a
number w for which

(w,ab) = a.

This w then obviously has a decomposition w = ac where (¢,b) = 1.
Thus the theorem asserts that each a can be made into a principal ideal by
multiplication with such a ¢ which is relatively prime to the given b.

For a proof, let py, ..., p, be all the distinct prime ideals which divide
ab, and let a = p§ - - - p? (a; = 0). We define the r ideals b, ..., d, by

pgi+lbi=0p1"'pr (i=1,...,r)

so that D, is relatively prime to p;, but contains all remaining prime ideals
p to a higher power than in a. Since these D, in their totality are relatively
prime, there are numbers J; in D, such that

Sy 40,4+ +8,=1

Here d; is divisible by d;, hence by all p, (k # i). Consequently, since 1 is not
divisible by p;, 9, is surely not divisible by p;.

We now determine r numbers o;, such that pfi|a; but pfi*! does not
divide o;, which is obviously always possible since for this to happen «; need
only be a number from p{ which does not occur in p#*!. Then the number

60=a151+(1252+"‘+06,5,.

has the property asserted in Theorem 74. For each of the prime ideals p;
occurs in r — 1 summands at least to the power p%*?!; however, it occurs
precisely to the power pf in the ith summand; consequently w is divisible
by precisely the g;th power of p;, but no higher power.

By taking ab itself as a principal ideal f, which is divisible by a, we obtain

Theorem 75. Every ideal a can be represented as the greatest common divisor
of two elements of the field: a = (w, p).
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§27 Congruences and Residue Classes Modulo
Ideals and the Group of Residue Classes under
Addition and under Multiplication

We now carry over the concept of congruence in rational number theory to
ideal theory. Only slight modifications are needed in the methods of proof
used earlier, which we deal with very briefly.

For two integers a, B and an ideal a, which is always assumed to be different
from O in this section,

o = B (mod a) (o congruent to f mod a)
is to mean

ala— B.

If a does not divide « — f, then we write a #  (mod a).

These congruences satisfy the same rules of calculation given in §2 for
congruences in the rational number field and in the case where «, f and a
are rational numbers, they mean exactly the same things as earlier.

All numbers which are congruent to each other mod a form a residue
class mod a.

Theorem 76. The number of residue classes mod a is finite. If the number
of residue classes is denoted by N(a) and if a4, ..., o, is a basis for a, then
N(a) = |4(ay, . . . ,&,)/x/d|. For a principal ideal a = o, N(a) = |N(a)|-

The numbers of a form a subgroup of the group ® of all integers of the
field. The different cosets in ® determined by a obviously form the different
residue classes mod a. Hence the number of distinct residue classes mod a
is the index of a in &. This index is finite. For if « is any nonzero number
in a, then the positive rational number a = |N(oc)| also belongs to a, since
oc|N(oc), and consequently the product a x arbitrary integral field element
belongs to a. Thus in group-theoretic terms the ath power, in the sense of
composition, of each element of ® belongs to a. Consequently by Theorem 40
the index of a is finite; it is denoted N(a) (norm of a). If a4, . . . ,a, is a basis
for a, w,, ..., w, a basis for ®, then there exists a system of equations

= oy  (=12...,n),
=

with rational integers c;, and by Theorem 39 the absolute value of the
determinant ||c, || is equal to the index N(a). On the other hand, by passage
to the conjugates

Ay, . 00) = ||ewl| - Ay, . . . 0,),
and since
Aoy, ... 0)=d#0,
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we thus have
Aoy, - .- 50,)

Ja

With a principal ideal («) we obviously obtain a basis of the form aw;, . . . , 2w,
thus

N(a) =

Aoy, . . . ,aw,) = N@) A(wy, . .. ,@,),  N(a) = |N(®)|.

Theorem 78. For given o and f the congruence
af = f (mod a)

can be solved by an integer & in K if and only if (a,0)|B. If (¢,a) =1, then
the solution is completely determined mod a.

If we assume (x,a) = 1 to begin with, and let ¢ run through a system of
N(a) numbers which are incongruent mod a, then af runs through all the
residue classes mod a, for it follows from aé; = a, (mod a) that a|a(é; — &,).
However, since («,a) = 1 we must have ca|§1 — &,, that is, &, = £, (mod a)
by the fundamental theorem. Thus, among the numbers &, one from the
residue class of f also occurs. For the same reason the solution is obviously
determined uniquely mod a.

Moreover if we now have (x,a) =D and there is an integer &, with
alo = B (mod a), then afy, = B + p, where a|p. Thus d|p and d|aé, — p,
that is, b| 8.

Conversely, if

D'ﬁa ﬁ = bb,

then let us set o = da,, a = da, so that (a;,a,) = 1, and let us determine a
number y = ma, such that (4, a,;da,) = a,, thus (m, da,) = 1. This is possible
by Theorem 74. Then da, |ma,db, hence «|uB and the congruence

is solvable for ¢ by what has just been proved, since (u,a,) = (ma,,a,) =1
follows from (m, a,) = 1 and (a,,a,) = 1. From a,| & — (up/a) it follows that

aay | (opué — pup),

dajay (W@ — B),  Ddaja|may(af — p)
bay|mal — f),  day|al — B

(as (m,da,) = 1), ie., af = B (mod a).

Two numbers congruent modulo a have the same GCD with a so this
property is thus a property of the whole residue class. The number of residue
classes relatively prime to a is denoted by ¢(a).

ie.,
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Theorem 79. For two ideals a and b, we always have
N(ab) = N(a) - N(b).

Let o be a number divisible by a such that («,ab) =a. If we let ¢;
(i=1,2,...,N(b)) run through a complete system of residues mod b and let
m (k=1,2,...,N(a)) run through a complete system of residues mod a,
then no two of the numbers a; + #, are congruent mod ab. On the other
hand, each integer p is congruent mod ab to one of these numbers a&; + #,.
For let n, be determined so that

M = p (mod a)
and then let £ be determined so that
af = p — n, (mod ab).

Since (¢, ab) = a and a|p — #, this congruence can be solved by Theorem 78
and ¢ can be determined mod b so that ¢ can be chosen equal to &;. Conse-
quently the N(a) - N(b) numbers a&; + #, form a complete system of residues
mod ab and thus there must also be N(ab) of them.

Theorem 80. If (a,b) = 1, then @(ab) = @(a) - @(b) and in general

1
¢(a) = N(a) l_[ <1 - W)

pla

where p runs through the distinct prime divisors of a.

To see this let o be chosen so that (x,ab) = a and S so that (8, ab) = b.
Then if ¢ runs through a complete system of residues mod b and # runs
through such a system mod a in af + By we obtain a complete system of
residues mod ab. These numbers are relatively prime to ab if and only if
(¢,b)=1and (n,0) = 1.

For a power p® of a prime ideal p, the numbers which are not relatively
prime to p® are those which are divisible by p. Among these there are
N(p*~ 1) = (N(p))*~ ! incongruent modulo p® Therefore

ay — a __ a—1 — a _L)
@(P?) = N(p)* — N(p) N(p )(1 Np))

Theorem 81. The norm of a prime ideal p is a power of a certain rational
prime p, N(p) = p’. f is called the degree of p. Every ideal (p), where p is a
rational prime, can be decomposed into at most n factors.

For each prime ideal p divides certain rational numbers and consequently
also certain rational primes p. Suppose that p|p, p=pa. Then N(p) =
N(p) - N(a) and consequently the rational integer N(p) divides N(p) = p";
hence N(p) = p’ and f < n. If we think of (p) as decomposed into its prime
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factors p = p,p, - - - p,, then the positive rational integers N(p,)- - N(p,)
have as product N(p) = p", while none of these integers is = 1; thus their
number r must be < n.

In this way we obtain one of the few statements which connect the degree
of a field with other properties of the numbers of the field. If it is known that
a rational prime p is decomposable into k ideal factors in a number field,
then the degree of the field is at least = k.

One proves, as we did Theorem 12 about rational primes:

Theorem 82. A congruence modulo a prime ideal p
X"+ o x™ o, Xx™ ! + a, = 0 (mod p),

with integer coefficients o, has at most m solutions x which are incongruent
modulo p.

The system of N(a) residue classes mod a again forms an Abelian group
under composition by addition in that two integers a and § determine by
their sum a + B another residue class mod a which depends only on the
classes of « and B. Let the Abelian group of order N(a) which is defined in
this way be called ®(a). Theorem 19 of group theory (4" = E) asserts that
for all

o+ N(a) = 0 (mod a),

since the unit element is represented by the residue class of 0. In particular
it follows that for a = 1
N(a) = 0 (mod a) 42)

In general the group G(a)is not cyclic as it is in the field K(1). For example let
a=(a) where a is a positive rational integer. Since a number x;w, +**+ x,w,
(where the x; are rational integers and the w; a basis of the field) is divisible
by a if and only if all x; are divisible by a, we obtain all residue classes mod a
exactly once in the form x,w, + - - - + x,w, where 0 < x; < a. Consequently,
for each prime p dividing a there exist exactly n basis classes whose order
is a power of p. Moreover, for a prime ideal p we have:

Theorem 83. The group of residue classes mod p is an Abelian group ®(p)
of order N(p) = p’ under composition by addition and the number of basis
elements is equal to the degree f of the prime ideal p.

For since p|p, the number of residue classes whose elements o satisfy the
congruence
pa = 0 (mod p)

is equal to the number of all residue classes, thus p’. Consequently, by
Theorem 27, f is equal to the number of basis elements. Therefore there arée
exactly f elementswy, . . ., @, such that all residue classes mod p are obtained
exactly once by the representatives x,w; + - - * + x,w,, where the rational
integers x; satisfy the inequalities 0 < x; < p.
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Thus the group ®(p) is cyclic for the prime ideals of degree 1 and only for
these. The prime ideals of degree 1, of which an infinite number always
exist, as will be seen in §43, play a decisive role in investigations of number
fields.

Moreover the system of residue classes mod a relatively prime to a, forms
a finite Abelian group under composition by multiplication in that two
numbers «, § relatively prime to a determine, by their product, a residue
class « - § mod a, which is completely determined by the residue classes of
« and f and which is, of course, also relatively prime to a. Thus we have
exactly as before

Theorem 84. The residue classes mod a relatively prime to a, under composition
by multiplication, form an Abelian group of order @(a), which will be denoted
by R(a). For each prime ideal p, R(p) is a cyclic group.

A number p whose powers yield all classes of R(p) is called a primitive
root mod p.

In particular for a prime ideal p and every integer « of the field the general-
ization of Fermat’s theorem

aV® = g (mod p)
holds.

On the other hand we cannot conclude from this that all groups R(p?)
are cyclic.

Those classes of R(p) which can be represented by a rational number
obviously form a subgroup of R(p); these are the classes of 1,2,...,p— 1,
if N(p) = p’. These classes are also distinct mod p, since a rational integer
a, not divisible by p, is relatively prime to p in k(1); thus the number 1 occurs
in the form ax + py. Consequently (a) and (p) are also relatively prime in
K and therefore (a,p) = 1 and a is not divisible by p. For each class 4 of
this subgroup, which thus consists of p — 1 elements, 47! is the unit class.
Since the entire group R(p) is cyclic, there are no more than p — 1 classes
C for which C?~! = 1. Thus the subgroup of the rational residue classes of
R(p) is identical with the group of classes whose (p — 1)th power is the unit
class. With this we obtain

Theorem 85. In order that a number o be congruent to a rational number
mod p, it is necessary and sufficient that o? = o (mod p).

§28 Polynomials with Integral Algebraic Coefficients

To conclude these elementary considerations about congruences we consider
functional congruences. They play a decisive role in the foundations which
Kronecker gave for ideal theory. Indeed, even today, certain facts of ideal
theory can be proved most easily with these methods.
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In this section a polynomial is an integral rational function of an arbitrary
number of variables x4, . . . , X,,, in which the coefficients of the various products
of powers are all integers in K.

A polynomial P(x,,...,x,) is said to be = 0 (mod a) if all coefficients
are divisible by a. Moreover two polynomials P and Q are congruent to
each other mod a if the polynomial P — Q = 0 (mod a). For polynomials
which reduce to constants, this agrees with the definition of congruence of
numbers.

Theorem 86. Ifp is a prime ideal, and if for two polynomials P and Q the product
P(xla e axm) ' Q(xla e 9xm) = O(mOd p)a

then at least one of the polynomials is = 0 (mod p).

The theorem is true for polynomials of O variables, that is, for constants.
We show that it is correct in general by passing from m to m + 1. Assume
it is already proven for all polynomials with m or fewer variables. Each
polynomial of m + 1 variables can be put into the form

P(Xgy -+ sXm) =2, XEPu(X1s -« - 5 Xpn)
x

where the P, are polynomials in x4, . . ., X,,. Obviously P = 0 (mod p) means
that all P, = 0 (mod p). Without loss of generality we may replace P and Q
by polynomials which are congruent to them mod p in which the terms with
the highest powers of x, are not congruent to zero, provided not all members
are congruent to zero. If the leading terms are x§P,(x,...,x,) and
x3Q,(xy, . . ., X,,), then the highest term of PQ in x, is equal to the product
x§*P 0, and it follows from

P(Xo, . .., Xp) * Q(xo, - - -, Xp) = 0 (mod p)
that
P,(X1, ... 3% Quxq, ..., X,) = 0 (mod p).

However since we are dealing here with polynomials in m variables, at least
one of the factors must be = 0 (mod p). That is, either in P(x,, . .., X,,) or in
O(xgs - - - »X,,) there is no term which is not = 0 (mod p). Thus one of the
two polynomials P, Q must be = 0 (mod p).

Furthermore from this it follows that if p? and p® are the highest powers
of a prime ideal p which divides all coefficients of the polynomials
A(Xy, .. X, and B(xy, . . ., X,,) respectively, then p®*? is the highest power
of p which divides all coefficients of the product A(xy, ..., X,)  B(Xy, .. ., Xm)-

To prove this we choose integers, say a,,a,, in K such that
(ay/a)A(x4, - . ., X,,) is @ polynomial which has coefficients not all divisible
by p. For this purpose we choose

o, = ap?, oy, = am, where (a,p) =(m,p)=1.
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In an analogous fashion we choose f; and f, to be integers such that
(B1/B2)B(x1, . - . , X, also has integer coefficients which are not all divisible
by p. Then, by Theorem 85 the product

ay By

a—Z-EA(xl, e X)) " B(Xg, X)) = C(Xgy - -y X)
is a polynomial which is not = 0 (mod p), while 4 - B = («,f,/x,,)C also
has integer coefficients. Hence p®*? is precisely the highest power of p
dividing A4 - B because of the numerical factor o, f,/a,8;.

We now define the content, J(P), of a polynomial to be the ideal which
is equal to the GCD of the coefficients of P. Then it follows from what has
been proved:

Theorem 87. The content of a product of two polynomials is equal to the
product of the contents of the two factors.

With this we have achieved a considerable strengthening of Kronecker’s
Theorem 67 and also the generalization of Theorem 13 of Gauss to several
variables and arbitrary algebraic number fields.

If in a valid congruence for a polynomial mod a, we replace the variables
Xy, ... by integers of the field K to which the ideal a belongs, then obviously
we obtain a valid numerical congruence mod a between the integers in K.
Finally from

oaV® = ¢ (mod p) (43)
for each integer a, it follows that for each polynomial P(x,...,Xx,,)
Pxss. %)™ = POY®, x§®), . x¥®) (mod p). (44)

This statement is obviously true for a polynomial which consists of only a
single term by (43). Suppose that it has already been proved for polynomials
which contain at most k terms. Now if G is such a polynomial and « is any
integer of K, then for each positive rational prime p

(Glxy, - o5 Xp) + 0xX§ - Xpr)P = GP + aPx§™ -+ xpP» - (mod p)

because, by the properties of the binomial coefficients (%), the difference of
the two sides of this equation has only coefficients which are divisible by p.
By repeatedly raising this congruence to powers we obtain

(G + axf - x%pP" = G¥ + aP'xp’ - xPlem  (mod p)

for each positive rational integer f. If the prime ideal p divides (p), then this
congruence is also true mod p. If in addition N(p) = p’, then by our assump-
tion about G, the truth of the assertion (44) also follows for the polynomial
in parentheses, which has at most k + 1 terms. Consequently, (44) holds in
general.
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§29 First Type of Decomposition Laws for Rational
Primes: Decomposition in Quadratic Fields

As we have established the connection between the rational primes and the
prime ideals of an algebraic number field in §27, the question of the exact
nature of these relations naturally arises. We are interested in the following
three points:

(1) How many different prime ideals of a given number field divide a given
rational prime?

(2) What are the degrees of these prime ideals?

(3) To what power do they divide p?

We first mention a result concerning (3) of great generality, for which we
are indebted to Dedekind:

The prime ideals dividing the discriminant of the field have the characteristic
property that they and only they are divisible by a power of a prime ideal
higher than the first. (Compare §§36, 38.)

On the other hand our knowledge about the answers to (1) and (2) is
extremely slight. At this time we can make a general and exhaustive statement
about the number and degree of a prime ideal dividing some prime p only
for quite special kinds of algebraic fields. These fields are completely charac-
terized by a property of their “Galois groups” as defined in algebra®. Thus
two formally entirely different types of decomposition laws, with which we
now wish to become acquainted, appear. With all remaining fields we have,
at this time, no idea at all even of the approximate nature of the decompo-
sition laws valid in these fields.

Before the investigation of the two known kinds of fields we make a
general remark about Galois fields.

Each ideal a = (a4, ...,a,) of a field determines a sequence of n ideals
a (i =1,...,n) which arise from a when all numbers of a are replaced by
the conjugates with the same upper index i; obviously a® = (a), . . ., a®).
These n ideals form the conjugate ideals to a. By Theorem 55 each valid
congruence remains valid, if we replace all numbers occuring in the congru-
ence by their conjugates.

In a Galois field (end of §20) the conjugate ideals can be multiplied with
one another since these ideals belong to the same field. Hence we have

Theorem 88. For each ideal a of a Galois field the principal ideal (N(a)) =
aMa® - .. a® (compare with Theorem 107).

2 These are the fields whose generating numbers can be represented by radical signs laid one
upon the other. The corresponding equations are the so-called algebraically solvable equations
with rational coefficients.
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For the proof, we form the polynomial P(x) = a;x + a,x? + - - + a,x"
from a new variable x and a = (¢, . . . ,,) where the GCD of the coefficients
= a. The product of the conjugate polynomials

£ =TT @+ + %)
i=1

is then a polynomial with rational integral coefficients whose GCD we set
= a, where a is a rational integer. Since 1 is a linear combination of the
coefficients of (1/a)f(x), the ideal (a) is also the GCD of the coefficients as
an ideal in the field under consideration. Hence, by Theorem 87,

aWa@ ... = (a).
Now obviously the conjugates have equal norm. Consequently on applying

N@®)+ - N@®) = N@OF = N((@) = |af
we have
NG = ta,  (N@")=(@=aD - a®,

for each i, and the theorem is proved. This relation justifies the name norm
for the number of incongruent elements mod a.
In particular, for a prime ideal of degree f

pf = N(p) = p(l) o p(")'

Consequently, no prime ideals other than the conjugate prime ideals
divide p. Furthermore if p is not divisible by the square of any prime ideal,
then among the p'Y), ..., p® each is repeated f times and p is the product
of the k = n/f distinct prime ideals among the n conjugate prime ideals p®.

Hence if a rational prime p in a Galois field is a product of k prime ideals
which are distinct, then these prime ideals are conjugate and have the same
degree f = n/k which is thus a divisor of n.

We now turn to the quadratic number field which may be assumed,
without loss of generality, to be generated by the root of an equation x> —
D =0, where D is a (positive or negative) rational integer which is not
divisible by any square except 1. This field K(/D) is a Galois field; its
numbers can be brought into the form

a=x+ y/D

in a unique way, where x, y are rational. Here /D is an arbitrarily fixed
value of the two roots. Let the conjugate of « be denoted by «/,

o =x — y/D, (@) = o
In order that « be an integer it is necessary and sufficient that

o+ o and oo
are integers.
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If 2x and x2 — Dy? are integers, then since D was assumed squarefree, y
as well as x can have denominator at most 2. If we set x = /2, y = v/2 with
rational integers u, v then

u? — Dv? = 0 (mod 4).

If D =2 or 3 (mod 4), then since a square can only be congruent to 0 or
1 mod 4 it obviously follows that u, v are both even; consequently x and y
are both integers. However, if D =1 (mod 4), then it follows that u=v
(mod 2). Hence « is an integer if

@ D=2,3(mod 4):a=x+ y\[IS x, y both integers; a basis for K(\/T))
is 1, /D and the diseriminant d = 4D,

(b) D=1 (mod 4): a =g + v(1 + \/—)/2; g = (u — v)/2, v an integer; a
basis for K(/D) is 1, (1 + +/D)/2 and the discriminant d = D.

Thus in each case if d is the discriminant

d+./d
L, —5

is a basis,

for both these numbers are integers and their discriminant is equal to d. We
now prove the decomposition theorem:

Theorem 89. Let p be a rational prime which does not divide d. Then p splits
in the field K(\/E) into two distinct prime ideals p, p’ provided the congruence

x? = d (mod 4p) (45)

can be solved in rational integers x. If, however, the congruence cannot be
solved, then p is a prime ideal in K(/d).

If the prime p which does not divide d splits in K(\/E), then p can only
split into prime factors p, p’ which are of degree 1. By Theorem 85, each
integer in K is congruent mod p to a rational number, and hence there is a
rational integer r such that

d+ f

III

r (mod p).

From this it follows that

2r—d= \/d_ (mod 2p),
(2r — d)* = d (mod 4p).

Moreover this congruence between rational numbers is also true mod 4p.
Hence x = 2r — d is a solution of (45). The ideal

o259
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is obviously divisible by p and

aa'=(Pzap<r—d+2\/g>,11<r—d_2\/‘_1>,(2r_j)2 _d>
d—-\/zr_d+\/d_ (2r—d)2—d>
2 7 ’ '

2 4p
However, the last ideal factor is = (1), for this ideal contains p and the

difference between the second and the third numbers, which is \/E ; thus this
ideal contains the two relatively prime numbers p and d. Finally we obtain

from this
d+/d , d—Jd
p= <pa r— 2\/—>9 p = <P, r— 2\/7>

The two prime ideals are moreover distinct, thus relatively prime, as (p, p’)
contains the two coprime numbers p, d.
Conversely, if x is a solution of (45), then the number

w=x+2\/3

= (p)(p, r—

is obviously an integer; moreover w/p is not an integer, as ((w — w')/p)® =
d/p? is not an integer. Thus, since p does not divide @ or ', but does divide
the product @ ', p cannot be a prime ideal. Thus it splits in K(\/E) into two
prime factors which are distinct from one another by the above.

Moreover if ¢ is an odd prime factor of d, then the ideal

= (q’ ‘ +2\/3> = (q, w + d) = <q, 4 _2‘/E> =q,
d +2\/2, d—./d dd - 1)>.

2 ’
q°=qq = ‘1<q, 2 4
However, by the definition of the discriminant d, d(d — 1)/4q is certainly
not divisible by g, that is, d(d — 1)/4q is relatively prime to q. Consequently
q% = q and q is the unique prime ideal dividing q.

Finally, in case d is even, 2 is also the square of a prime ideal, namely
the square of g = (2, \/5) forD=2(mod4)orofq=(2,1+ \/B), ifD=3
(mod 4).

If we now keep in mind that by §14, since d = 0 or 1 (mod 4), the solvability
of (45) for an odd prime p is equivalent to the solvability of y? = d (mod p),
then we can also formulate this theorem as follows:

Theorem 90. If p is an odd prime, then in a quadratic field with discriminant d

p splits into two distinct factors of degree 1, if (%) = +1.
p splits into two identical factors of degree 1, if (%) =0.
p is itself a prime ideal (of degree 2), if (3) = —1.



98 V General Arithmetic of Algebraic Number Fields

The prime 2 splits into two distinct factors, if d is odd and a quadratic residue
mod 8; 2 is itself a prime ideal, if d is odd and a quadratic nonresidue mod 8.
If d is even, 2 is a square.

§30 Second Type of Decomposition Theorem for
Rational Primes: Decomposition in the Field
K( eZm/m)

We now investigate the fields generated by mth roots of unity, where m is a
rational integer > 2. The mth roots of unity are the m roots of x™ — 1 =0,
hence they are algebraic integers. The primitive mth roots of unity are the ¢(m)
numbers e2™%™ where (a,m) = 1; these numbers are not roots of unity of
lower order. If we form

m—1
9t = [T 1)

then a root of g(x) is also a root of f(x) = x™ — 1 if and only if it is a non-
primitive mth root of unity. Consequently

x"—1
F(x) = g5
is a polynomial with rational integral coefficients all of whose roots are
primitive mth roots of unity. Finally, since among the primitive mth roots
of unity each root is a power of every other root, the field K(e?"/™) is a
Galois number field of degree h < @(m). (That the degree is exactly @(m), i.e.,
F(x) is irreducible, will not be needed in this section and will emerge as a
side result in §43.)

We set { = e?™/™ and keep in mind, that according to the proof of Theo-
rem 64 all integers of k({) can be uniquely represented in the form

where d(x) = (f(x),g(x)),

w=r0+rlc+"'+rh_lch_l,

where the r; are rational numbers such that their denominators are all
divisors of a fixed integer D, the discriminant of F(x).

Now let p be a rational prime which does not divide D, and let D’ be
determined so that D'D = 1 (mod p). Then we see that in each residue class
modp in k({) there exist numbers for which r,, r, . . . are all rational integers,
since for each integer w

w = DD'w (mod p),

and by the above the DD'r; are rational integers. Hence we do not need to
first construct a basis for the field in the investigation of p.
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Lemma. If the prime p does not divide D - m, then for each integer w of the

field K(0),

o?” = w (mod p).

Here f is the smallest positive exponent such that p’ = 1 (mod m).

For the proof we think of w as chosen in its residue class so that
wo=ay+al+ " +a_, "
with rational integers a;. Then, by (44), for the integral polynomial
Q(x)=ag+ayx+ "+ a,_x" !
over k(1), we derive the functional congruence
Q(x)P = Q(x*) (mod p), more generally (Q(x))” = Q(x*) (mod p).

We obtain a valid numerical congruence from the functional congruence if
we replace x by the algebraic number {, and thus the lemma is proved.

Theorem 91. If the prime p does not divide D - m, then p is not divisible by the
square of a prime ideal in K({).

For if p?|p, then let us choose a number w which is divisible by p but not
by p2. It follows from the lemma that
o?” = » (mod p?).
Since p’ > 2, and therefore w?’ = 0 (mod p?),
o = 0 (mod p?),
contrary to the hypothesis.

Theorem 92. If the prime p does not divide D - m, and if f is the smallest
positive exponent such that p’ = 1 (mod m), then p splits into exactly e = hjf
distinct prime factors in K({). Each factor has degree f.

Let p be a prime factor of p of degree f;. Then, by (43), for each integer w
in K({),
®?' = o (mod p) (46)

and this congruence holds for each integer w with no value smaller than f;.
Hence by the lemma we have f; < f. On the other hand, it follows from (46)
for w = { that

(" = { (mod p).

Here, however, we must have p* = 1 (mod m), for otherwise {*’* would be
a primitive mth root of unity different from ¢ and {?’* — ¢ would be a factor
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of the discriminant D of F(x). Thus p would be a factor of D, contrary to
hypothesis.

However by the definition of f, the equation f; = f follows from p/* =1
(mod m)and f; < f.

Since, by Theorem 91, the conjugate prime ideals divide p only to the
first power, then, by the remark in §29, p splits into exactly h/f factors and
everything is thereby proved.

Accordingly, the field K({) is closely related to the group of residue
classes mod m in the field k(1). Primes which belong to the same residue class
mod m split in K({) in exactly the same way—except for finitely many excep-
tions. Later, in §43, we will also show that the field K({) has degree ¢(m),
thus the same degree as the group R(m) in k(1). Finally we state without
proof that the so-called Galois group of K({) is isomorphic to the group
R(m).

For these reasons K({) is called a class field which belongs to the classi-
fication of rational numbers into residue classes mod m.

It is known from the theory of cyclotomic numbers that K({) contains
one or more quadratic fields and each quadratic field is also always contained
in a K({). Then we see that from the decomposition laws in K({) we can
deduce those in every subfield, and in this way we obtain, for quadratic
fields, an entirely different decomposition law than the one we found in the
preceding section. The comparison of the two then yields the proof of the
quadratic reciprocity laws® mentioned in §16.

§31 Fractional Ideals

We now introduce fractional ideals—systems of numbers which may also
contain nonintegral numbers of the field and, when they contain only integers,
agree with the ideals discussed until now.

A system S of integral or fractional numbers of the field is to be called an
ideal from now on if :

(1) Along with o« and B, Ax + uB belongs to S, where A and u are arbitrary
integers in K.

(2) There exists a fixed non-zero integer v such that the product (v x each
number of S) is an integer.

Ideals which contain only integers will be designated as integral ideals,
the other ones will be designated as fractional ideals. Two ideals are said to
be equal if they contain exactly the same numbers.

3 The idea of this proof of the quadratic reciprocity law originates with Kronecker. Compare,
say, the representation of this proof in Hilbert’s Bericht iiber die Theorie der algebraischen
Zahlkorper, §122. This proof is not used in this book. The connection is shown in principle
in the field K(/—3), of third roots of unity, in which both forms of the decomposition law hold.
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Theorem 93. Each ideal g is the range of values of a linear form

élpl +...+€rpn

where py, . . ., p, are certain integers or fractions in g, while the &; run through
all integers in K. We write g = (py, - - . ,P,)-

Let v be chosen for g according to (2). Then all products of v with the
numbers in g obviously form an integral ideal a = (a4, ...,,) and then
g=(a/v,...,0/v).

Ifa,,...,a,is a basis for the integral ideal a, then, if we again regard g
as an infinite Abelian group, a;/v, . ..,a,/v is obviously a basis for g.

The product of two ideals g = (y, ...,7,) and * = (p,, . . ., p,) is defined
in the same way as for integral ideals:

gt =1(...,7Pk -

and this multiplication is also commutative and associative. Each ideal
g # (0) can be made into an integral ideal by multiplication by a suitable
integral ideal (v). Consequently it can also be made into a principal ideal (w)
by multiplication by an appropriate integral ideal.

If g # (0), then it follows from gt = gy that x = 1.

The proof is word for word the same as for Theorem 68.

If g, and g, are arbitrary ideals, g, # (0), then there is exactly one ¢ such
that

gt = 8.

One writes t = g,/8,, and calls v the quotient of g, and g,. This notation is
meaningful only for g, # (0).

Let us choose a # (0) so that ag, = (w) is a principal ideal; thus (w) # 0.
Ifag, = (py, .- - ,P,), We set

=(.P_P_)
()] ()]

Then in fact ag, = (w)r = ag;t, g, = g1, and, by what has been said before,
v is uniquely determined.

The equation a/b = ¢/d is accordingly equivalent to ad = bc; in particular
for each ideal m # (0),

a_am a m_q

e @ mo

Thus each ideal can be represented as the quotient of two relatively prime
integral ideals which we designate, as with numbers, as numerator and
denominator. In particular each fractional principal ideal @ can also be
represented as a quotient of integral ideals which we again express by an
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equation

omitting parentheses.

With fractional ideals we also wish to speak of divisibility in the sense
that a|b or a divides b is to mean that b/a is an integral ideal. If a and b are
integral ideals, then this definition agrees with the earlier definition of
divisibility. 7

Accordingly, an integer w occurs in an ideal g if and only if (w) is divisible
by g, that is, (w) has a decomposition

(w) = mg,

with m an integral ideal.

Hence the number 1 occurs in all ideals which are the reciprocals of
integral ideals q, that is, equal to 1/a, and only in such ideals.

If an ideal g is represented as the quotient of two relatively prime ideals
a and b, then we define the norm of g:
__N(a) . fa— a
“Ney "0TE
This equation is also correct if a, b are not relatively prime or if they are
fractional ideals. Again we have

N(g; - 82) = N(gy) - N(gy)-
Between the basis and the norm there is again the relationship:
If ay,...,q,is a basis for g, then
Ay, ... ,0,)
Ja
To prove this choose an integer v # 0 so that vg is an integral ideal b, with
basis B, ..., Bn- Then B,/v, ..., B,/v is a basis for g and

N(g)

N(g) = : 47)

(B )
N®) _ APy -B) _ “\v' "7
N() INO)|/d Jd '

N(g) =

§32 Minkowski’s Theorem on Linear Forms

In the subsequent development of algebraic number theory, the concept of
magnitude will now play an essential role whereas earlier everything de-
pended on the concept of divisibility and the formal algebraic processes.
The most important method here is a theorem about the solvability of linear
inequalities by rational integers which goes back to Dirichlet and which was
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subsequently extended and sharpened considerably by Minkowski. This
theorem and its proof is quite independent of the theories which were treated
earlier. It reads as follows:

Theorem 94. Assume we are given n linear homogeneous expressions

L(x)= Y aux, (p=12...,n),
q=1

with real coefficients a,,, whose determinant D = |a,,| is different from zero,
as well as n positive quantities %, . . . , x,, for which

%1'%2..'%nZIDI‘

Then there are always n rational integers x,, . . ., x,, not all equal to 0, such
that
IL,x)| <%, (p=1,...,n). (48)

The proof is along the lines of Minkowski’s contribution to the geometry
of numbers. To begin with we ask: “What can we say about the quantities
x if the n inequalities (48) have no solution in rational integers x, # 07" We
show that under these conditions x, - %, * - * %, < |D|.

To this end, we consider the parallelotope in the space of n dimensions
with Cartesian coordinates x,, . . ., x, such that

Vi
L<2  (=12....n

and think of the same parallelotope displaced parallel to itself so that its
center, that is, the point O, . . ., 0, corresponds to all lattice points g, . . . , g,
where the g; run through all rational integers. In this way we have infinitely
many parallelotopes I1,, 4. given by

.....

V4
ILx—-9l<Z  (=1....n.

If (48) cannot be solved no two of the parallelotopes have a point in common.

For if a point (x) belongs to the two parallelotopes IT,, . , and I, i
then from
-2<L(x—-9g)< %‘3
and
%
_P < Lp(x _ gr) < 7}7

it follows by subtraction that
ILo(g — 9| < %y,
that is (48) would have a solution x, = g, — g;.
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Consequently the sum of the volumes of all the I which belong to a
definite square |x,| < L (g = 1,2, ..., n) must be less than the volume (2L)"
of this square, from which the assertion follows immediately. To see this we
first let ¢ be a number such that the coordinates of all points of the initial
figure I1, . , are all < cin absolute value. Then in any case all IT,,
such that

s 9n

lg<L (g=1,...,n)

belong to the square |x,| < L + c. Since from |L,(x — g)| < »,/2and |g,| < L
it follows that |x,| = |x, — g, + g,| < |x, — 94| + |9,] < ¢ + L. Hence if L is
a positive rational integer, then there are (2L + 1)" such IT,, . and their
total volume is

..... g
QL + 1)"J < 2L + 20",

where J is the volume of a single I1. After division by L" and passage to the
limit as L — oo it follows that

J<1.
On the other hand we have

s= [ dxn"'dxn=|—11,|f“'fdyn"'dyn

ILp(e)| <xp/2 [ypl<2xp/2

gty
D]

Thus if these inequalities cannot be solved in integers except O, . . ., 0, then
1, ..., %, < |D|. However, in this assertion the sign < necessarily holds
since the unsolvability for the values %, ..., %, implies, by continuity, the
unsolvability for sufficiently near larger values of the ¥ whose product must
thus likewise be still < |D|. Therefore the product of the original x is neces-
sarily < |D|.

Moreover, with this, we have proved that if the product of the » is equal
to |D| or greater, then the inequalities (48) must have a solution in integers.

Later, we will take the L,(x) to be the conjugates of a linear form and
complex coefficients must also be allowed. By a simple modification of the
above theorem we obtain in this connection:

Theorem 95. Let n linear forms L,(x)=Y"_, a,x, (p=1,...,n) be given
with real or complex coefficients whose determinant D # 0. Moreover if one
of the forms is not real, we assume the complex conjugate of a form also occurs
among the L,(x). Finally let x,, . . ., x, be positive quantities such that if the
forms L,(x) and Ly(x) are complex conjugate, x, = . Then there are rational
integral x,, not all vanishing, such that

ILx)|<x%, ((@=1...,n),
if

%y %yt %y = D]
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To prove this we replace the system L,(x) by that system of real forms
L'(x) which arises if the real and imaginary components of the L,(x) are
considered by themselves. We take L (x) = L,(x) if L,(x) is a real form; on
the other hand if L,(x) and Lg(x) are conjugate imaginary and, say, a < f3,
then we set

L,(x) + Ly(x)

L,(x) — Lyx)
5 , .

Lix) = 5

Liy(x) =

In the latter case we define

and, on the other hand,
in the first case.
The system of real forms L' now obviously has a determinant D’ with
D] =27"D],

where r, denotes the number of pairs of complex conjugate forms among
the L,(x). Hence since ¥ - - %, > |D’|, there are rational integers x,, which
are not all 0, such that

IL|<x, (p=1,...,n).
For a nonreal form L,(x) we now have
IL0* = L) + LF(x) < o> + o = o

from which the stated theorem follows.

§33 Ideal Classes, the Class Group,
and Ideal Numbers

We can now attack the problem which we posed in §23, at the beginning of
the ideal theory, namely, we can investigate whether all ideals of a field can
always be represented by numbers, which perhaps belong to other fields.
To this end we introduce the concept of equivalence and with it a partition
of all ideals of K into classes as follows:

Definition. Two integral or fractional ideals a,b are said to be equivalent, in
symbols
a~b,

if they differ only by a factor which is a principal ideal, that is, if there is a
(integral or fractional) principal ideal () # (0) such that

a = wb.
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This concept of equivalence has the following properties:

1) a~a.

(2) From a ~ b it follows that b ~ a.

(3) From a ~ b and b ~ ¢ it follows that a ~ c.

(4) From a ~ b it follows that ac ~ bc and if ¢ # (0) the converse also holds.

The collection of all ideals equivalent to a fixed a forms an ideal class. In
particular all principal ideals (# 0) are equivalent to each other. They form
the principal class.

By (4), the classes can be immediately made into an Abelian group. If by
a and b we understand any ideals in the classes 4 and B respectively, then
by (4) the product ab belongs to a class determined by 4 and B alone and
does not depend on the choice of a and b within their class. We denote the
class of ab by AB and with this we have defined a composition of ideal classes,
under which the ideal classes form a (finite or infinite) Abelian group, the
class group of the field K. The unit element is the principal class.

The passage from ideals to ideal classes corresponds precisely to the
passage from numbers to residue classes with respect to a modulus since
the collection of integral and fractional ideals of K which are # (0) obviously
forms an infinite Abelian group under ordinary multiplication. (This group
has a basis of infinitely many elements, in the sense of §11, namely the set
of all prime ideals.) This group IR contains the subgroup of all principal
ideals (s 0). The latter subgroup will be denoted by $. Moreover, the class
group defined above is obviously the factor group /9. Indeed its elements
are the different cosets which consist of all ideals which differ only by an
element of §, that is, by a factor which is a principal ideal.

It is one of the principal problems of number theory to investigate the
finer structure of these class groups. They play an essential role in almost all
statements about the numbers in K. Yet our knowledge about the class
group in general fields is still extremely slight. We state the most important
general fact in the following theorem:

Theorem 96. In each ideal class of K there is an integral ideal whose norm is
< |\/d|. Thus the number of ideal classes in K is finite.

To prove this let a be an integral ideal in the class B~!, where B is an
arbitrarily given class. If a4, . . ., a, denotes a basis of a, then, by Theorem 95,
there are rational integers x,, . . ., X,, not all vanishing, such that

Y x| <[4 (=1,...,n)
k=1

where 4 = A(ay, . . . ,&,) = N(a)/d is the determinant of the a®. Thus we
have for the product of these conjugates ®

IN(@)| < |4] = N(a)]/d|. (49)

<

o) -
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Now, by definition, w is a nonzero integer, which is divisible by a; hence w
has a decomposition
w = ab

where b is a certain nonzero integral ideal. Obviously b lies in the class B,
which is reciprocal to B~1, as ab ~ (1). Then it follows from (49) that

N(®) <./d (50)

whereby the first part is proved.

However there are only finitely many integral ideals whose norms have
a given value z, for, by (42) in §27, they must be divisors of the ideal (z). Con-
sequently, there are also only finitely many integral ideals, whose norms lie
below a given bound, as the norms are rational integers. Hence there are
only finitely many integral ideals b which satisfy Condition (50); thus the
number of distinct ideal classes in K is finite.

Henceforth the class number will be denoted by k. As an immediate con-
sequence of the finiteness of h we obtain from Theorem 21:

Theorem 97. The hth power of each ideal in K is a principal ideal.
From this we can finally prove the statement formulated in §24.

Theorem 98. For each ideal a in K there is a number A which generally does
not belong to the field K, such that the numbers of a are identical with those
numbers of the field K which are divisible by A.

By Theorem 97 o” is equal to a principal ideal (). The number A = ¥/
has the asserted property for if « is a number in a, then " belongs to a* and
therefore o”/w is an integer and oc/(‘/& = a/A is thus also an integer.

Conversely if o is a number of the field such that «/A4 is an integer, then
o"/w is an integer, that is, o"/a" is an integral ideal. By the fundamental
theorem «/a is also an integral ideal, that is, « occurs in a.

Because of the group property of the ideal classes, the numbers 4 which
are needed to represent all ideals of the field K can now be chosen in such a
way that they all belong to a field of relative degree h over K, and indeed in
the following way:

If h > 1, then as a finite Abelian group the class group has a basis, say the

classes By, . . ., B,, with orders ¢, . . ., c,, respectively. If we now choose an
ideal b, (9 = 1, ..., m) from each class, then by the definition of a basis, each
ideal a is equivalent to exactly one product of powers

..., bim O<x,<cpiq9=1,...,m). (51)

That is, we obtain all ideals g (integral and fractional) exactly once if in
g = pb¥i - bm (52)
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we let the number p run through all numbers of the field which are not
associated and x, run through all rational integers with the conditions (51).
Thus if we determine the number B, for each b, according to Theorem 98,
where

B, =B, by=(B)
then obviously to each g of the form (52) there is assigned the number
I =pB} - By (53)

such that the numbers of g are identical with those numbers of the field
which are divisible by I'. If, in (53), we let p run through all numbers of the
field, as well as the associated numbers, then we obtain a system of numbers
which is called a system of ideal numbers for K. This system splits into h
classes of ideal numbers, corresponding to the ideal classes. Each class
contains the numbers (53) with the same system of exponents x,, and the
set of all numbers of the same class (0 included) is closed under addition and
subtraction. The set of all nonzero ideal numbers is also closed under
multiplication and division. In this sense each ideal of K is really represent-
able by a number in the sense of Theorem 98.

This representation has gained a particular significance in the more recent
investigations in analytic number theory. Yet, above all, it should be explicitly
stated that the number field K(B,, . . ., B,,) which has relative degree h with
respect to K, is in general not identical to the so-called Hilbert class field of K.

§34 Units and an Upper Bound for the Number of
Fundamental Units

In this and the following section we will gain a complete overview of the
units which exist in a field K by proving a fundamental theorem of Dirichlet
which is formulated later. The existence in K of infinitely many units is in
general, along with the necessity of introducing the concept of an ideal, the
second essential criterion which distinguishes the higher algebraic number
fields from the field of rational numbers.

First of all, the set of all units of the field K obviously forms an abelian
group under composition by multiplication. Let this group of all units be
denoted by €. The group 2, of all roots of unity in K, which contains at
least two elements, namely + 1, is contained as a subgroup in €.

Lemma (a). There are at most finitely many integers in K, which together
with all their conjugates, do not exceed a given constant in absolute value. If
all the conjugates of an integer in K have absolute value 1, then this integer is
a root of unity.
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Assume for the integer o in K that the inequalities |«”| < C hold, for
i=1,2,...,n Then from this an upper bound for the absolute values of
the elementary symmetric functions of the «?, depending only on C and n,
follows immediately. However these functions have integral rational values
and they are the coefficients of the equation of degree n with roots a?; hence
only finitely many possibilities exist for these coefficients. Therefore there
are only finitely many equations of nth degree whose roots are integers and
at the same time are all < C in absolute value.

Moreover, if « is an integer in K and || =1 for i=1,...,n, then the
same holds for all infinitely many powers a? (¢ = 1, 2, . . .). By what has just
been proved, these cannot all be distinct. Consequently some power of is
=1 and « is a root of unity.

Theorem 99. The group W of all roots of unity in K is finite, and indeed it is
a cyclic group of order w > 2.

Since all roots of unity, including all conjugates, have absolute value 1,
the first assertion follows from the lemma. Moreover if p is a prime dividing
the order of 1B, then the number of solutions of x? = 1 is equal to p!, and
thus, by Theorem 28, the basis number of the group B belonging to p is
equal to 1. Thus the group is cyclic.

For further investigations we introduce a definite numbering of the
conjugate fields K. Let 6 be a number generating the field K and suppose
that among the conjugates 8%, 0, ..., 6" are real, and the remaining 2r,
of the 0 are nonreal. In fact, assume that

0®*r2) is complex conjugate to 0P forp=r, +1,...,r; +1,.

By §19, this numbering carries over to the conjugates of all numbers in K,

and thus we also have for each number « in K, a'¥, ..., a real and
|o?*d)| = |a®@| forp=r;+1,...,r +7,. (54)
Finally we define
1 forp=1,2,...,rq,
e =
P2 forp=r,+1,...,n;

thus

ry+ra

e, =n.
p=1

Now our goal is the following fundamental theorem of Dirichlet:

Theorem 100. The group € of all units in K has a finite basis. Furthermore
this basis consists of precisely r =r, +r, — 1 elements of infinite order,
while the remaining basis elements are roots of unity.
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Thus this means:
There are r + 1 units {, 1,15, . - . , 1,, where { is a wth root of unity, such
that each unit of the field is obtained exactly once in the form

=",

where ay, . . . , a, are all rational integers and a can only take the values 0, 1,
2,...,w— 1. The r units 54, . . . , 1, are called fundamental units of the field.

As preparation for the proof, which we will treat in this and the next
section, we recall that k units ¢,, . . ., ¢, of infinite order (that is, those which
do not belong to M) are said to be independent in the sense of group theory,
if a relation

e ek =1 (55)

with rational integers a only exists if all a; = - - - = a, = 0. However, along
with the one relation (55) the analogous ones always hold for all conjugates
and hence

ePlfedler - Pl =1 (=1,2,...,n)
or

k
Y a,logled| = 0. (56)
m=1

(Here we mean the real values of the logarithms). Conversely, by Lemma (a),
it follows immediately from the fact that relations (56) hold with rational
integersaforalli=1,2,...,n,thate,,...,¢ cannot be independent since
then the number

8‘;1 PR ezk

would be an integer of K, which along with all conjugates would have
absolute value 1. Hence it would be a root of unity with its wth power = 1.
Now, however, from the r equations

k
Y Ymlogle@] =0 fori=1,2,...,r, +r,—1 (57
m=1

(for some 7), the truth of these equations follows automatically for the
remaining indices i = r, + 75, ..., n. For since ¢, is a unit

ry+r
lzz e, logle?| =0 (m=12...,k),
p=1
and hence
k ri+ra—1 k
€ritra Zl m loglggﬁr:)' = _Z €p Z Pm 10g|8§,‘,’)| = 0;
m= p=1 m=1

hence (57) is also true for i = r; + r, and with this it is true, by (54), for
i=1,2,...,n Consequently the k units ¢, ..., g are independent if and



§34 Units and an Upper Bound for the Number of Fundamental Units 111

only if the r linear homogeneous equations for the k unknowns y,, ..., 7
k
Y ymlogle@l=0 (i=1,2...,r) (58)
m=1

have no solutions in rational integers y except y,, = 0.
Next we obtain an upper bound for the number k of independent units
by the following

Lemma (b). If the r relations (58) hold for the k units €,, ¢,, . . . , & with some
real y,,, which are not all zero, then r such relations also hold with rational
integers v,,, which are not all zero.

Obviously it is enough to prove this for those units which are not roots
of unity. Suppose we choose a number ¢ such that the r equations among
the units &;,&5,..., 8,4

q—1

Y o, logle® =0 (i=1,...,r)

m=1
hold only for «; =+ =a,_; =0 and on the other such that between the
q units such a system

q
Y Bulogle?=0 (=12...,r (59)
m=1

holds with real B,,..., B, not all vanishing. Thus 2 < g <k, and by the
assumption about g we necessarily have B, # 0 and the g — 1 quotients
Bi/Bys - - -5 By 1/B,in (59) are uniquely determined. Lemma (b) will be proved
once we show that these ¢ — 1 quotients B,/B, (m=1,2,...,q — 1) are
rational numbers.

If we set
B—"‘=—ocm, m=12...,q9—1),
Bs
then it is a matter of checking the n equations
q—-1
logle?| = > a,logled] (i=12...,n) (60)
m=1

More generally, we now consider all units # whose logarithms can be repre-
sented in the form

q-1
loglp®| = Y pnlogle?] (=12,...,n (61)
m=1
with some real p,,. If this representation is at all possible, the p,, are uniquely

determined by # (because of the hypothesis about q). Among the systems
(P1, - - -, Pg—1) Which appear here there are only finitely many whose elements
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all have absolute value < 1, since for the corresponding 5 we have

‘log|n""|’ < qil ’log|a$,?|l (i=12...,n
m=1

and by Lemma (a) there can only be finitely many integers of the field with
this property. Let H be the number of distinct systems p with |p] < 1. On
the other hand, the set of all systems (p,,...,p,—;) appearing in (61) has
the property that along with (py, ..., p,_ ) the system

(Npl — Ny, NpZ — Ny, .. -aNpq—l - nq—l),

where N, n, n,, ..., n,_, are arbitrary rational integers, also occurs in this
set. Now for each N the n,, ..., n,_; can be chosen so that for all numbers
|Np; — n;] <% and for different values of N, if p, is irrational, the numbers
Np, — n, always have different values. Thus, infinitely many systems
(P1, - - - »Pg—1) are obtained, where all |p;| < 1, contrary to what was proved
above. Hence neither p, nor p,, ..., p,_ can be irrational, so all «,, in (60)
are rational, and the lemma is proved.

Moreover, we obtain at the same time, with respect to the denominators
which may appear in the p,,, that there exists a fixed rational integer M # 0,
which depends only on ¢4, ..., ¢,_{ but not on 7 in (61), such that Mp,, is
arational integer. In abbreviated notation, if p, has the form a/b with rational
integers a, b (b > 0), then among the numbers |[Np; — n,|, there are exactly
b distinct numbers, namely 0, 1/b, . .., b—1/b, which are < 1. Consequently
b is not greater than the number H, defined above, of all systems (py, . . .,
pq-1) where all |pi| < 1; thus H!p, is an integer, and hence we may choose
M = H!. With this we have proved:

Lemma (c). Assume that ¢4, . . . , & are units such that the r equations

k
Y Ymlogled]=0 (i=12...,r),
m=1

with y,, real, hold only for y,, = 0. Then there is a fixed rational integer M # 0
such that the n expressions

k
S pulogle)
m=1

can be = log|n®| (fori=1,2,...,n), wheren is a unit in K, only if Mp,, is a
rational integer.

Furthermore, from Lemmas (b) and (c), it follows immediately that the
number k of independent units of infinite order is at most r since for k > r
the r linear homogeneous equations (58) for the k unknowns y,, ..., y, can
surely be solved by real nonvanishing values, as the coefficients are real.
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Moreover, from (c) we have:

Lemma (d). The group ® of all units has a finite basis, and the number k of
basis elements of infinite order is < r.

For the proof let ¢, . . ., g be k units of infinite order and suppose there
do not exist k + 1 independent elements of infinite order. Then, by (b) and
(c), for each unit 7 in K a system of equations

k
logly®| = 3. L logle?] (i=12...,n)
m=1 M
holds, for a certain positive rational integer M, where the g,, are rational
integers. From this it follows by Lemma (a) that

M
v = 8’{‘8%2 [N ﬁﬁ"c,
where ( is a root of unity in K, that is, a wth root of unity. Hence we have
n= 8’{‘/M8%2/M e eik/MCi‘)’ where Co — eZm‘/Mw,

with rational integral x. We now consider* the totality of products of powers
of the k + 1 numbers

1M 1M
H1=£1/a ~~-aHk=8k/, Hy =0

with arbitrary but fixed values of the roots. The set of these numbers form a
(mixed) Abelian group for which H,,..., H,,, is a basis. By what has
already been proved, the group € of all units of K is contained as a subgroup,
and indeed as a subgroup of finite index, since the Mth power of each element
belongs to €. Thus, by Theorem 34, € also has a finite basis, and the number
of basis elements of infinite order in € is < k. However, in any case, the wth
powers of all units, hence also the k independent units &}, &%, . . ., &', must
occur among the products of powers of these base elements of infinite order.
Consequently the number of these basis elements is exactly = k, and Lemma
(d) is proved.

§35 Dirichlet’s Theorem about the Exact Number
of Fundamental Units

For a complete proof of Dirichlet’s Theorem 100, we must still verify that
the number k, which so far we have seen to be < r, is exactly equal to r =
ry+r,—1.

Since n=r, +2r,,r=%(m+r;)—1and thus r =0 only if n + r; =2,
thatis, n=2,r;, =0 or n= 1, r; = 1. These are the cases of the imaginary
quadratic field and the trivial case of the rational number field.

4 Here we recall the analogous method for the verification of the existence of a basis in §22.
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Lemma (a). If r =0, the group € is identical to the group 1B of the roots of
unity in K.

For in the imaginary quadratic field it follows immediately from N(e) =
+1 that V- ¢® = +1, and since |[¢M)] = |e?)], this unit, along with its
conjugate has absolute value 1; hence this unit is a root of unity.

Lemma (b). If r > 0, then to each system of real numbers ¢y, . . ., c,, not all
vanishing, there is associated a unit ¢ such that

L(e) = ¢, log|e™| + ¢, log|e®| + - - - + ¢, log|e®| # 0.

This second important conclusion in Dirichlet’s train of thought rests on
Minkowski’s Theorem 95.
If %,,..., %, are n positive quantities such that

Ky Ky k= |/,

% =x%, forp=ri+1,...,r +71,

ptra 4

then by Theorem 95 there is a nonzero integer « in K (whose norm thus has
at least absolute value 1) such that

P <%; fori=1,2,...,n,1<|N(@)| <./d

From this it follows that

1

¥ 2 o @]+ o D[ - o ] -~ [ ®]

> X N
SCREAN
(Moreover we may conclude from this that |[d| > 1, for if |d| = 1 the equality

sign would have to hold in each of these inequalities.) For this number «,
the expression

L= ) c,logja™|
m=1
satisfies

r

L= Y cplogn, < Y e, log|/d| < 4
m=1

m=1

where A4 is chosen independent of « and the x. The r quantities %, . . ., %,
are positive numbers which can be chosen arbitrarily, so we can find a
sequence of systems »{", ..., »® (h = 1,2,...) such that

r

Y cplogx® =240 (h=1,2,...),

m=1
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and for the corresponding a, we have
|L(oy) — 24h| < A
A(2h — 1) < L(y,) < AR + 1).

Consequently
L(oty) < L(ap) < L(ots) - - - (62)

while at the same time
IN(w)| < [/dl.

These infinitely many principal ideals («,) whose norms are not greater than
\/E, cannot all be distinct; hence there must exist at least two distinct indices
h and m such that

(o) = (o), hence o, = eay,
where ¢ is a unit in k. For this ¢, by (62),
L(o) # L(ot) = Lleoty)
L(e) = L(ex) — L(ot) # 0,
and Lemma (b) is proved. From this we obtain

Lemma (c). If r = 0, then the number k of independent units of the field is
exactly =r.

By (b) there is a unit ¢, such that
log|e{)| # 0.

Then if r > 1, there is likewise a unit &, such that

logle|  logle

oglel2 | oglaz2 1

logle®| logle?|
and so on. Thus we conclude from (b) the existence of r units ¢, . . ., ¢, for
which the determinant

log|e®)] - - - log|e")|

log|e®)] - - - log|e®| 20

log|.s‘{)| e logieﬁ"[

It follows immediately from the nonvanishing of this determinant that none
of these units is a root of unity and, at the same time, that the r linear homog-
eneous equations for y,, ..., y,

Y tmlogle? =0  (=12...,n
m=1

have the single solution y, =y, =+ =y, = 0. Consequently, by the theo-
rems of the preceding section the number k of independent units of infinite
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order is exactly = r, and together with Lemma (d), the validity of Dirichlet’s
unit theorem, Theorem 100, is established.
By Theorem 38, §11, we see at once that between two systems of units in
K:%y,...,n.and g, . .., &, equations of the form
N = (et - 52 - - - glmr m=12...,r

hold, where the {,, are roots of unity, while the a,, are rational integers with
determinant + 1. Thus for each system of fundamental units of K the abso-
lute value of the determinant

log|n{V| - - - log|n")|

log|n{| - - - log|n®”
has the same nonzero value; thus this value is a constant of the field.
The absolute value R of the determinant
ey logln{®| -+ eloglnt")
: | ==r
e logln{| -+ elogn?
is called the regulator R of the field K.

§36 Different and Discriminant

In this section we concern ourselves with deeper properties of the discrimi-
nant d of the field K. Hitherto d was defined rather formally as the deter-
minant of a basis of the field; we now try to find a definition of d based on
intrinsic properties, which then has the advantage that it can be carried over
to relative fields (§38).
We first define the different of the number o'P in KP as the number
5(0("’)) — l‘[ (a(p) — o((h)).
h#p

If F(x) is the nth-degree polynomial with rational coefficients and leading
coefficient 1 which has the n quantities «/*), . . ., «™ as roots, then obviously

8(w) = F'(a). (63)

Accordingly, 6(«'?) is a number in K” and, by Theorem 54, it vanishes if
and only if « is a number of lower degree than n. We then find the value

d@= T @ -a®y

n2i>kx1
= (~ 1y~ V2N ()

for the discriminant of the number a.
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Now let a (# 0) be an arbitrary ideal in K with the basis a4, . . ., o,.
Theorem 101. The set of numbers A in K, for which the trace

S(a) = Y AP = integer (64)

p=1

Jor each number o in a, forms an ideal m. Here ma is an ideal independent of
a, determined only by the field K, and it is the reciprocal of an integral ideal d.

A basis for m can be formed from the n numbers B4, . .., B, which are deter-
mined along with their conjugates by the equations
S(Bw) =ex  (bk=1,2,...,n) (65)

where ey, = 1 if i = k, otherwise ey = 0.

PROOF. The numbers A with the property (64) cannot have arbitrarily large
ideal denominators. This is true since the hypothesis is equivalent to n
equations

S(}'ak) =Gk (k = 13 23 e 9n)a

where the g, are rational integers, and from the n linear equations for
AV, A™ these AV are obtained as quotients of two determinants. The
denominator is the fixed determinant of the af? which is equal to N(a)/d.
The numerator is an integral polynomial in the «{?. Consequently there is an
integer  depending only on the a, such that wA is an integer. Moreover, if
A, and 1, belong to this set of A, then for all integers &£,, &,

S((A1¢1 + 4285)0) = S(A,&,9) + S(A,8,0)

is also an integer, since &,a, &,a belong to the ideal a; thus 4,&, + 1,¢, also
belong to the set of A. By §31 this set is thus an ideal which depends on a and
is denoted by m = m(a). Furthermore we have am(a) = m(1) which is thus
independent of a since if A belongs to m(a), then for each &, S(Ao,€) is also an
integer, that is, Ao, belongs to m(1). Conversely, if u belongs to m(1) and
P1s - - - » Py denotes a basis for 1/a, then ap, is an integer and hence S(up,x)
is an integer, that is, the products of u with every number in 1/a belong to
m(a), thus u belongs to am(a).

Moreover m(1) is the reciprocal of an integral ideal d, as the number 1
obviously belongs to m(1). Consequently

m = m@ = —,
where D is an integral ideal independent of a.
Finally if we define the n? numbers S{? by the uniquely solvable equations

Y BPuP =ey  (Lk=12,...,n) (65)

p=1
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and if we set
S(Ao) = gi k=1,2,...,n),

where A satisfies (64), then we also have

S(Aooy) = g for Ao =g,1B1 + " + guPn-
Consequently
A=Ay =911+ "+ guPn

and the B, ..., B, form a basis for m(a), provided they are numbers in K.
The latter fact is obtained directly from the representation of the solutions
of (65) as a determinant. Alternatively by multiplication by «{® and summa-
tion over i we can deduce from (65) the equivalent system of equations

Yo Y pPa = ¥ eyo® = off = Y eg0f?
p i i i

and from this we can deduce

Z ﬂg")a,f’” = e, Z /ggp) Z a(iq)a}cq) — z epqa}‘q)
i 13 q q

or

2 BPS(uo) = .
i=1

Since the coefficients on the left-hand side are now rational, the B{P are
numbers in KP. Hence Theorem 101 is proved.

For later applications (Chapter 8), we formulate this result in yet another
way:

Theorem 102. If o, ..., a, are basis elements of the ideal a, then the n se-

quences of numbers BP, ..., P (p =1, ...,n), which are defined by (65), are

conjugate sequences of numbers in K, and B, ..., B, forms a basis for 1/ad.
Since, moreover,

1 1

A2+ = A%ay, ... a)  dN¥a)

and by (47)

d

Az(ﬂl’ s aﬂn) = Nz(m)d = ma

we have

Theorem 103. N(d) = |d|.

This ideal d defined by Theorem 101 is called the different or the basic
ideal of the field.
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Now in order to discover the fundamental connection between this dif-
ferent of the field and the differents of the numbers in K, we must investigate
the set of numbers in K which can be represented in the form

GO) =ay+ a;0 + a,0* + - +a,_ 60"

with rational integers g;. Let 0 be an integer which generates the field K. Let
the set of numbers g(6) with rational integers a; be called a number ring or an
integral domain and let it be denoted by R(6). In the first place, the numbers
of the ring certainly form a module with basis elements 1,6, 6%, ...,0"" !,
and secondly they are closed under multiplication.

Lemma (a). Each number o of the field, for which da is integral can be rep-
resented in the form

-_P_

0

where p is an integer of the ring R(0) and F'(0) is the different of 0 as in (63).

For the proof we consider the polynomial in x

6 = ¥ a0 0

i=1 X — O(i)’
i=

(66)
where

F)=J] x=09) =co+cyx+ - +cpyx" 1+ X"
i=1

G(x) is a polynomial with rational integral coefficients since

F(x) _F(x) F(O) i Z Xor-r-t

x—0 x—0 h=1 O<r<h-1

and hence

Gx)= Y ¢ Y XS 1.
h=1 O<r<h-—-1
However since abd is integral by hypothesis, the traces appearing here are
rational integers by Theorem 101. If we set x = 6 in (66) we obtain

_ GO
~FOy
where, in fact, G(6) is a number of the ring.
From this it follows that F'(0) - « is an integer if da is integral, thus F'(6)
has the decomposition
F'(6) = bf (67)
where f is an integral ideal.
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Lemma (b). For each number p which belongs to the ring R(6), we have

P\ _ .
S ( F( 0)> = integer.
-1

Obviously this assertion needs only to be proved for p =1,6,...,6"" 1,
where it follows directly from the so-called Euler formulas
i 6% (0 fork=0,1,2,...,n-2,
S FOP) |1 fork=n—1.
These formulas follow, as we mention for the sake of completeness, from
the Lagrange interpolation formula
50K F(x)  fxk! fork=0,1,...,n—2,
S FO9)x — 09 |x"—F(x) fork=n—1,

if we set x = 0 (or also if we expand in powers of 1/x after division by F(x)).

Theorem 104. All numbers of the ideal f = F'(0)/d belong to the ring R(0), and
if all numbers of an ideal a belong to the ring R(0), then a is divisible by {.

If w = 0 (mod f), then & = w/F'(0) is a number with denominator d, and
by Lemma (a), aF'(f) must be a number of this ring. Hence the first part of
our theorem is proved.

Conversely, if all numbers of a are numbers of the ring, then by Lemma (b)
S(a/F'(0)) is an integer for all numbers « in a. Consequently, by Theorem 101,
1/F'(0) is a number of the ideal m(a) = 1/ad; thus F'(6) = df divides ad so
f|a, which was to be proved.

This theorem thus yields a new definition of f; f is the GCD of all ideals
in K which contain only numbers of the ring. The ideal { is called the conductor
of the ring.

Lemma (c). There are always rings R(0) in K whose conductor { is not divisible
by an arbitrary prime ideal p.

If w is an integer divisible by p but not p2, then the expression

Yo + V10 + P07 + -+ + P00 (68)

obviously represents all residue classes mod p"*?, if y,, . .., y, run indepen-

dently through a complete system of residues mod p. Now let 6 be a primitive
root mod p such that for the number,

w=0"® _¢9

which is divisible by p is not divisible by p2. (If @ does not have the latter
property, then nonetheless 6 + 7 surely does as long as n is a number which
is divisible by p but not by p2.) Moreover, by a modification mod p? we can
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arrange that 0 is different from all of its conjugates, and in addition
0 = 0 (mod a), where p = p®a, (a,p) =1, (69)

and p is the rational prime which is divisible by p.
If we now let ; in (68) run through the N(p) numbers

0,0,6%...,6"®"1

which are incongruent mod p, we see that each residue class mod p” can be
represented by a number of the ring R(6). But then, if (69) holds, the conductor
f of the ring cannot be divisible by p. For if

N(df) = p*a, where (a,p) =1,

then to begin with, by the above, to each integer  there is a number p of

the ring such that

T =w—p=0(mod p*%)

Here naf* is divisible by F'(f) = df, as the decomposition
nad*  n0*N(df) N(df) =6
F@)  bdip*  bdf p*a*

shows by (69). Hence by Lemma (a), this number can be represented in the
form

nat*  p,

m—m, thus & =

P
ad®’
where p, is a number in R(6). However, then

ab*w = ab*(p + n) = ab*p + p,

is likewise a number of the ring, and the ideal a6* (which is not divisible by
p) contains only numbers of the ring. Thus by Theorem 104 it is divisible
by f; consequently f is also not divisible by p. From this we immediately
obtain the main theorem of this theory:

Theorem 105. The greatest common divisor of the differents 6(0) of all integers
0 in K is equal to the different d of the field.

It is a noteworthy fact that in contrast to the different, the discriminant d
of the field is indeed a common divisor of the discriminant d(6) of all integers
0 in K, but need not be the greatest common divisor of the same”>.

5 R. Dedekind, Uber den Zusammenhang zwischen der Theorie der Ideale und der Theorie
der hoheren Kongruenzen, and: Uber die Diskriminanten endlicher K érper, Abh. d. K. Ges. d.
Wiss zu Gottingen 1878 and 1882 and as well the later papers of Hensel in Crelles Journal,
Vol. 105 (1889) and Vol. 113 (1894).
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§37 Relative Fields and Relations between Ideals
in Different Fields

We now turn to the problem of how to modify the concepts which were
developed in the preceding sections to the case in which the field K is no
longer considered relative to k(1), but rather to any algebraic number field
k which is a subfield of K. Of course the ideal theory developed until now
holds in k just as in K. Can a relationship be found between the ideals in K
and the ideals in k?

We agree to denote elements of K (numbers or ideals) by capital letters,
while small letters always denote elements in k. Let K have relative degree
m with respect to k (compare §20, Theorem 59), while the degrees of K and
k with respect to the rational number field are N and n respectively. Then

N=n'm

Furthermore, g arbitrary numbers a, ..., «, of k define an ideal in K
and an ideal in k, both ideals to be denoted by («y, .. .,,) which we dis-
tinguish by

a=(ay,...,0) and W= (a,...,0q)x. (70)

Moreover, if a number  belongs to a, then it of course also belongs to 2.
The converse is also true:

Lemma (a). If B belongs to W, then, provided (70) holds, B also belongs to a.

If an equation

B= Z Iyay,
h
with integers I, in K holds, then the equations

B=Y TP, (i=12...,m)
h

with the corresponding relative conjugates also hold and by multiplication
it follows that

- [ (pre)

i=1

Obviously, for indeterminates x;, . . ., x,, the expression
m q
[1 < > I E”xh> = 2 Vmma...nXIXT X (71)
i=1 \h=1 niy .. ng
is a homogeneous polynomial in x, . . ., x, of degree m where

netn, 4t =m



§37 Relative Fields and Relations between Ideals in Different Fields 123

These coefficients y, as symmetric integral expressions in the I'{?, are integers
in k. For x, =a, (h=1,2,...,q) Equation (71) is thus a number from the
ideal a™. Consequently f™/a™ is an integer; hence f/a is also an integer,
that is, § occurs in a.

Thus, by (70), if we have a further pair of corresponding ideals,

b= (Bys -+ sB) and B =(By,...,B)k

then we have
Lemma (b). If a = b, then A = B and conversely.

The first part is obvious. For the converse, if 2 = B, then each B belongs
to A, and by Lemma (a) it then also belongs to a. Likewise each a belongs
to B, thus also to b; consequently a = b.

Let us now assign to each ideal a in k an ideal % in K by the following
prescription: we set a = (x,...,%) and define A = (ay,...,a)k. By
Lemma (b) this prescription yields an ideal U fully determined by a (inde-
pendent of the representation of a) and indeed in this way we obviously
arrive at every ideal in K which can be represented as the GCD of numbers
of the ground field. This correspondence, expressed by symbols

a9 (72)

according to Lemma (b) is moreover a unique one-to-one mapping. Conse-
quently, we have

Theorem 106. By (72) there exists a well-defined invertible correspondence
between all ideals in k on the one hand and all ideals in K which can be rep-
resented as the GCD of numbers in k on the other hand, such that for an arbi-
trary number o in k the two statements “o belongs to a” and “o belongs to A”
are true simultaneously, if (72) holds. Moreover we also have

ab 2 UB,ifa2 Uand b =2 B.

Definition. We thus call two ideals connected by (72) equal to one another
and we say that the ideal U in K lies in the field k.

Since the relation “=" between ideals of different fields has not yet been
defined, this definition contains no contradiction to earlier stipulations. By
Theorem 106 the following rules hold:

(1) From a = A and a = b it follows that b = A.

(2) From a = A and b = A it follows that a = b.

(3) From a = A and A = B it follows that a = B.

(4) From a = A and b = B it follows that ab = AB.

(5) From a? = A? it follows that a = A (p a rational integer).
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The meaning of these assertions is that the relation “=" between ideals
in different fields is a generalization of the already defined relation, likewise
indicated by the symbol “=,” between ideals of the same field.

Thus, by the above definition, we can decide whether two symbols

(g, ..., in Kk, (44,...,4)in K

are to be regarded as equal or not. Here K is to be regarded as an extension
field of k. However in some cases the two symbols can already have a meaning
in a subfield K’ of K, and now we wish to see whether from equality in one
field one can also deduce equality in other fields.

In fact this is the case since if K’ is an extension field of k but a subfield
of K, such that A belongs to K’, then it obviously follows immediately from

(ala R aaq)K’ = (AI’ e aAs)K’ (73)
that

(O(l, PPN ,O(q)K = (Al, .« ’AS)K‘

Conversely, however, if the latter equation is valid, then by the second part
of Lemma (b) applied to the extension field K of K’, Equation (73) is also
valid in K'.

Accordingly the symbol (a4, . . . ,a,) defines the same ideal in every field
in which it has any meaning at all. And now we can decide whether or not
two ideals a, and a,, which are defined as the GCD of numbers of two
arbitrary fields k,, k, respectively, are equal. To do this consider any field
K which contains k, as well as k, and determine whether or not these two
GCD:s are equal in K in the sense of our very first definition of equality of
ideals (§24). The result is the same in all fields. Thus in the notation a =
(@4, ...,,) we need not make reference to a definite field. By rule 4 the
product of two ideals a, b is an ideal which is completely determined by
a and b; the same holds for the quotient and the GCD.

In particular the statement “The algebraicintegersa;, . . ., o, are relatively
prime (have the GCD (1))” is independent of reference to a special number
field and is equivalent to the statement “There are algebraic integers 4, ..., 4,
for which

Aoy 4+ A, =17

It is then a remarkable fact, which follows immediately from our stipulations,
that if any integers A with this property exist, they may always be chosen
from the number field, which is generated by «,, . . ., a,.

It should be emphasized, however, that although an ideal a distinguishes
a definite number field in this way, in general a does not lie in each number

field in the sense of the above definition. For example

a = (5410 = (/5)

holds because the square is equal to (5). Thus, for example, a belongs to the
two quadratic number fields k(,/10) and k(y/5) but not to the field k(1).
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The property of being a prime ideal belongs to an ideal only with respect
to a definite field in which it lies.

If we now connect these concepts with the theorems in §33 about ideal
numbers, then we obtain the following: If a is an ideal in k and a” is equal to
the principal ideal () in k, then the equation

a= (/)

has meaning according to our present stipulation and indeed it is a valid
equation. Furthermore, if the number A4 in the system of ideal numbers of
k is assigned to the ideal a, then likewise a = (4) holds. The set of all ideal
numbers belongs to a field of relative degree h over k, and this fact can then
also be expressed as follows: if h is the class number of k, then there is a
relative field of relative degree h over k in which all ideals of k become
principal ideals. The relative field is not uniquely determined by this require-
ment, by any means. Also its class number need not be 1.

§38 Relative Norms of Numbers and Ideals, Relative
Differents, and Relative Discriminants

If A is some number in K and if A? (i = 1, ..., m) are its relative conjugates
with respect to k, then

Sk(A) =AM 4 4@ ... 4 gm

Nk(A) =AM . 42 ... gm
are called the relative trace and the relative norm of A respectively (with
respect to k). They are numbers in k. If S and s denote the traces in K and

in k, with respect to k(1), likewise N and n denote the norms in K and in k,
then, by Theorem 59,

S(4) = s(S5x(4));  N(A) = n(N(A)). (74)
The number

5k(A(q)) — 1’1 (A(q) _ A(i))

i=1,i#q

is called the relative different of A9 in the field K with respect to k; it is a
number in the field K@, If

Dx)=[] (x—AD) =x"+ a; X" "1+ + tp_ 1 X + Oy
i=1
(where the «, are obviously numbers in k), then
5(A4) = D'(A).
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The product

dk(A) = 1"[ (A“’ — A(q))z =(— l)rn(m—l)/z ﬁ ¢/(A(i))
i=1

i<i<g<m i=
= (=" V2N (6,(4))

is called the relative discriminant of A; it is a number in k.

If A is an ideal in K, then the relative conjugate ideal AP arises if one
replaces each number 4 in A by A?. Obviously for two ideals A and B
we have

(91 . Q;)(i) = 6 . YO,
Definition. The ideal
N (@) = AW - Y@ - .. gem
is called the relative norm of U with respect to k. We have N, (UB) =
Nk(QI) : Nk($)~

Theorem 107. The ideal N, (N) is an ideal in k. If k is the field of rational
numbers, then N, () = (N(A)).

To begin let A = (4,,...,A4,) be an integral ideal, where the A; are
numbers in K. Then, by §28, for any variables u,, . . ., u,, the content of the
conjugate polynomials

FOu) = APu, + -+ - + APy,
is equal to AY. Hence, by Theorem 87,
D) (CVIRINEY) (Lo J(Fm) e J(F("')) — J(F(l) ‘e F("')).
However the polynomial
Q(u) = FV . p@)... pm

is obviously a polynomial over k; thus J(Q) is an ideal in k. Thus the first
part of Theorem 107 is proved, if we recall that each ideal can be written as
the quotient of two integral ideals, and by definition

N A\ N
\8) N®)
For the proof of the second part of Theorem 107, let & be the class number
of K. Then A" = (A4), where A is a certain number in K, and

Ny (W' = N (U") = N((4)) = (N(A4)).
Since
+N(A) = N(U") = N(W)" = a", where a = N(U),
we have
Ny = (@, N (W) =(a)
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Thus Theorem 88 of §29, which was only proved in the case of Galois
fields, is now seen as valid for every number field, and at the same time the
terminology “norm of A” for the number of residue classes mod A has
received its justification.

Theorem 108. For each prime ideal B of K there is exactly one prime ideal p
in k which is divisible by B. Then

Nk(%) = pfl,

where f, is a natural number < m. f, is called the relative degree of B with
respect to k. p splits into at most m factors in K.

By Theorem 107 N, () is an ideal in k which, by definition, is divisible
by . If N,(B) is decomposed into its prime factors, then by the fundamental
theorem P must divide at least one of these prime ideals in k. If P were to
divide two distinct prime ideals p,, p, in k then it would also have to be a
divisor of (p,, p,) = 1, which, however, cannot be the case. Thus there exists
exactly one prime ideal p in k which is divisible by $B. If the decomposition
of p into prime ideals in K is, say,

p=" B P,

then it follows that for the relative norm

Ni(B1) - Ni(B2) - - Ni(B,) = Nilp) = p™

By the preceding theorem, each factor on the left is an ideal in k and by this
equation each factor must be a power of p. Therefore

N®)=p" and fi+fo+ " +f,=m
hence
fi<m and v<m

Theorem 109. If N denotes the norm in K and n denotes the norm in k, then
for each ideal U in K
N(A) = n(N,(%)).

To begin with, this assertion follows immediately for each number 4 in
K, by (74). By Theorem 107, or also by consideration of the principal ideal
A", the result is also obtained for each ideal in K.

Theorem 110. If the relative degree of the prime ideal B is equal to 1, then
each number in K is congruent modulo B to a number in k.

By Theorem 108, N(PB) = n(p)’*; hence for f; = 1 the number of residue
classes mod B in K is equal to the number of residue classes mod p in k.
However if a number « in k is divisible by 9B, then (o, p) is divisible at least
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by B, so that («,p) # 1. Hence as an ideal in k, (o, p) is necessarily = p. Con-
sequently a system of incongruent numbers mod p in k is also incongruent
mod P and thus there are n(p) = N(B) incongruent numbers modulo P in k.

We take special note of the following fact: If a number A4 in K is equal to
its relative conjugates then, by Theorem 56, it is a number in k. However the
corresponding statement is not valid for ideals. For example the ideal (v/5)
is equal to its conjugates with respect to k(1) in K(y/5), but (/5) is not an
ideal in k(1).

Finally the concepts in §36 can be extended to relative fields and lead to
a definition of relative discriminant.

Definition. The set of numbers 4 in K, such that for each integer A in K the
relative trace S,(44) is an integer forms an ideal 9% in K. Furthermore,
1
m

is an integral ideal and is called the relative different of K with respect to k.

=D,

The proof that 9 and D, are ideals runs parallel to that of Theorem 101.
Theorem 111. If D and d are the differents of K and k respectively, then for
the relative differents D, the relation

D=Dd (75)
holds.

PROOF. If 4 is a number in K such that 4D,b is integral, then by the definition
of D,

0S,(44) is integral (76)
for each integer A, since for each number ¢ in k which is divisible by d
Si(4A48) = £S(44)

is an integer. From the definition of d, s(S,(44)) is an integer by (76). Hence
S(4A) is an integer and thus

D4 is integral if D, - 24 is integral.

Conversely, if D4 is integral, then for each integer 4 in K and each integer
£ in k, S(4A¢) is integral; hence

$(Sk(448) = s(ESk(44))
is an integer. Thus
DS, (4A) is integral, that is, S, (p 4A4) is integral

if p is any number of d in k and hence p 4D, is integral. Thus we have shown
that if D4 is integral, D,04 is also integral, from which Theorem 111 follows.
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The meaning of the relative different which already emerges from this
simple equation (75) will become yet more evident when we prove the
following fact, which can also serve as the definition of D,.

Theorem 112. The relative different of K is the GCD of all relative differents
of integers of K with respect to k.

For the proof of this theorem we must proceed almost exactly as in the
proof of Theorem 105.
If 0 is an integer generating the field K, then the relative ring R,(0) is the
set of all numbers,
g + 0010+ + o 0™

where a4, ..., a,_; run through all integers in k. If @(x) is the irreducible
polynomial over k with leading coefficient 1 which has the root 6, then we
have the following lemmas which are proved as in §36:

Lemma (a). If A is an integer in K such that AD, is integral, then A can be
represented in the form
B

= W’
where B is a number in R, (0). Thus &'(0) is divisible by D,.

A

Lemma (b). For each number B in R,(0)

B \. .
S <W> is integral.

Theorem 113. The GCD of all ideals in K which contain only numbers in
R,(0) is &, where D, = D'(0).

Lemma (c). Corresponding to each prime ideal ‘B in K there is a relative ring
R, (0), where B does not divide F = &'(0)D; .
To see this let p be the prime ideal in k which is divisible by B,
p = PeA,, where (U, P) = 1.

Let 4 be a primitive root mod B such that each integer in K is congruent
to a number in R,(4) modulo each power of B, and such that

A = 0 (mod ).

Finally let § be a number in k which is divisible by #'(4) = D, & and assume
that p® is the highest power of p dividing . Then an appropriate power of
B, say a = B* furnishes a decomposition into two numerical factors in k,

a=m-pu, wheren =p", (u,p) = 1.
o = 0 (mod FD,).
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Then let us determine, for an arbitrarily given integer 4 in K, a number I’
in R, (A), such that
4 =T (mod Perb).

The number BuA"™ = (4 — I')uA™ is then divisible by D,F = ®'(4), since

BuA"™  au BA"™ o BA® |
o) - DF n - ZD,“’E- IO is integral.
If we apply Lemma (a), we thus obtain a representation

AuA* = number in R,(4)

for each 4, from which by Theorem 113, uA" generates an ideal which is
divisible by §. Thus, in any case, it follows that & is prime to P.

With this Theorem 112 is also proved.

We then define the relative discriminant of K with respect to k to be the
relative norm of the relative different of K. By Theorem 103 the discriminant
ideal with respect to k(1), defined in this way, is then the same as the ideal
(d), where d is the discriminant of K. However we must distinquish the
discriminant of a field, which is a well-defined number d, from the relative
discriminant of the same field with respect to k(1), which is an ideal, namely
).

To finish the investigations about differents we finally prove the following
theorem, which is tied to the general problem which we posed at the beginning
of §29 for the ground field k = k(1):

Theorem 114. If a prime ideal B in K divides a prime ideal p in k to a higher
power than the first, then B is a factor of the relative different of K with respect
to k. Thus there can only exist finitely many prime ideals ‘B of this kind.

For a proof, let the decomposition of p in K be
p=PA, where (W, P)=1,e=>2.

For each integer A in K we now have, by the often used properties of the
binomial coefficients (2),

Sk(A)? = S, (AF) (mod p), hence also mod p, (77)
if p is the rational prime which is divisible by p. If we now choose

A =0 (mod Pe1A),
then since e > 2

AP =0(modp) and S,(A4F) = 0 (mod p). (78)
Hence, by (77), it follows from (78) that
S,(A) = 0 (mod p) if 4 = 0 (mod P°~'A). (79)
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Now let « be a nonintegral number in k with ideal denominator p,
a
o=-, (a,p)=1.
p

By (79), if A runs through all numbers of ¢~ !9, that is, all numbers of
a/P, then
oS (A4) = Si(xA) is integral.

Thus by definition P divides the relative different D,.
The converse of Theorem 114 is also valid but more difficult to prove.
Here we only treat the special case of relative Galois fields K.

Theorem 115. Suppose that K is identical with all relative conjugate fields
with respect to k (that is, suppose that K is a relative Galois field). Then the
only prime ideals of K dividing the relative different D, of K are those which
divide a prime ideal of k to a power higher than the first.

If p is a prime ideal in k and ‘B is a prime divisor of p whose square does
not divide p, then the relatively conjugate prime ideals P also divide p to
exactly the first power. The relative norm p’ of P is the product of all the
PO, and the latter split into sets, each consisting of f primes which coincide
with one another; there are exactly m/f distinct ones among the P®. Let
P, ..., PY be those which are identical with P.

For the proof of Theorem 115 it suffices, by Theorem 112, to display a
number A4 in K whose different is not divisible by this PB. We choose A4 to be
a primitive root mod P which is divisible by p~1. Now, by the above,
PUHH . P™ are different from P so

P

20 is divisible by Pfori=f +1,..., m.

Consequently,
AP=0(mod P) fori=f+1,...,m.
On the other hand, if

D(x) = l_m[ (x — A)

is a polynomial over k, then, by (44),
(@(x) )n(D) = ¢(X"(p)) (mod p);

consequently in any case ®(x) = 0 (mod ) has the roots 0, 4, 4A"®, ...,
A"’ "' Since A is a primitive root mod 9P, these f + 1 numbers are surely
distinct mod P. Because of the decomposition of @(x) into factors there
must occur at least f + 1 distinct numbers mod ¥ among the numbers
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AD 4™ and since the last m — f are congruent to zero mod P,
AV AW are distinct mod P. The relative different

S (AW) = (4D — A@). .. (4O — gom)

is thus not divisible by P and our theorem is proved.

§39 Decomposition Laws in the Relative
Fields K(/n)

We now investigate, as a most important example, the decomposition laws
of prime ideals of a ground field k in a relative field K which arise by adjoining
an I-th root of some number y in k. In this case we make the

Hypothesis: The field k contains the Ith root of unity { = e?™" where
l is a positive rational prime (possibly 2).

Lemma. The numbers 1 — {* (a # 0 (mod 1) are all associated. They satisfy
the ideal equation

hH=1-0"" (80)
To see this let a and a, be rational integers coprime to I. Then we determine
a positive rational integer b such that
ab = a, (mod 1), thus{* = {®.
Consequently,
1 — Cal B 1— Cab
1—-¢ 1=
is an integer and the same follows for the inverse quotient; thus this quotient

must be a unit.
Moreover the polynomial

=1+Ca+cza+...+c(b—l)a

!

= Ok =) (e 0

L+x+x2+-+x7=

evaluated at x = 1 yields
I=1-00-8--1=-¢7Y,

from which the ideal equation (80) follows, by what we have just done.

Moreover, from this lemma we infer the fact that the field k() has degree
exactly | — 1. For by §30 the degree of k({) is at most ¢(l) = [ — 1. On the
other hand, the prime [ becomes the (I — 1)st power of an ideal in k({);
consequently, by Theorem 81, the degree is at least / — 1, thus exactly [ — 1.
Moreover, 1 — { is accordingly also a prime ideal in k(¢).
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Theorem 116. If p is a number in k which is not the Ith power of a number
in k, then the field K(3/u; k) has the relative degree | with respect to k. The
field K(/u; k) is identical with its relative-conjugate fields.

The number M = \’/ﬁ (suppose that the value of the root is somehow
fixed) satisfies the equation x' — u = 0, whose roots are the I numbers

M (@=0,1,...,1—1).

In any case all relative conjugates of M must occur among them. Let these
conjugates be the m (m < I) numbers (M, ..., (*"M. As a relative norm
of M, their product is a number in k; accordingly M™ belongs to k, but so
does M' = p. Since I is a prime if m < I, then m is relatively prime to I. Con-
sequently M itself can be represented as a product of powers of M' and M™
and thus is a number in k, in which case the relative degree is = 1. Therefore
the only possibilities are m = 1 or m = [; with this the theorem is proved.

From here on we assume that the relative degree of K(\'/;c; k) is equal to
l. The numbers M; = {/u; and M, = J/u, obviously generate the same
relative field if an equation

pips =o

holds, where o is a number in k and a and b are rational integers not divisible
by L. Each number in K can be put in the form

A=ao+a1M+"'+a’_1Mt_1

in exactly one way, where the o, ..., o_; are numbers in k. The rela-
tive conjugates of A are obtained by replacing M successively by (M,
*M, ..., ' M. In general sA denotes that number among the relative
conjugate numbers which arises if M is replaced by {M:

SA = ag + ay (M) + (M) + -+ + oy ((M)' 1

sM = {M.
For each rational integer n (n > 1)

s'A = s4, s"A = s(s""*A4), thuss"M = ("M
so that we always have
f4=5s"4=--=s"4=4

for each positive rational integer m. These [ “substitutions” s, s, . . ., s’ then

obviously form a cyclic group of order I, where s' plays the role of the unit
element. The negative powers of s are then defined as in §5:

sP4A=4, s 'A=5"14, s"A=s5s""V4 (n>0).

From Theorem 55 it follows immediately that every rational equation
between the numbers Ay, A,, . ..in K with coefficients in k remains valid if
Ay, A,, . .. are replaced simultaneously by sA,, sA,, . . . and consequently also
if Ay, A,,...arereplaced by s"A,, s"A,, ... .
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Because of this fact, the cyclic group: (s,s2,...,s'"1,s') is called the
Galois group of the field K with respect to k and K is called a relatively
cyclic field with respect to k.

Since the relative degree [ is a prime, by Theorem 54 a number 4 in K
is either distinct from all numbers sA4, s%4, ..., s' 14 or it is equal to all
these numbers.

We also use the substitution symbol s™ with ideals so that s"2 is to denote,
among the ideals conjugate to U, that ideal which arises when all numbers
A in U are replaced by s™A.

Theorem 117. Only the following possibilities exist for the behavior of a prime
ideal p of k under passage to K :

p remains a prime ideal in K,
p becomes the Ith power of a prime ideal in k,
p becomes the product of 1 distinct prime ideals in K.

Let B be a prime ideal in K which divides p. Then, by Theorem 107, the
relative norm of P is
PosP-o-stTIP =pl,
where f] is the relative degree of B; thus no prime ideal other than the prime
ideals s™P divides p. Now if B is equal to one of the s™P (m # 0 (mod 1)),
and consequently equal to all s™P, we then have, for a rational integer a

p =P
By taking relative norms it follows that p' = p/% | = f,a; thus a = 1 and
p remains a prime ideal in K or a = l and p becomes the Ith power of a prime

ideal B. On the other hand if P is distinct from all relatively conjugate
ideals then a decomposition

p=P (sP)H - (s IP)H-
holds. If we apply the substitutions s, s2, ..., s~ ! to this, we obtain
a=a,="""=q-y,
and
p=(B-sP---s'TIP)*=phe
1 = fia, a=f; =1

In this case p is the product of ! distinct conjugate ideals B, ..., s' "1,
which are all of relative degree 1.

Theorem 118. Suppose that the prime ideal p divides the number u exactly to
the power p°. Then, if a is not divisible by I, p becomes the Ith power of a prime
ideal in K:p = P'. However if a = 0 and p does not divide |, then p becomes
the product of | distinct prime ideals in K provided the congruence

p = ¢ (mod p)
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can be solved by an integer & in k. On the other hand p remains a prime ideal in
K if this congruence cannot be solved.

PROOF. 1. If a is not divisible by /, then we may assume a = 1. To see this we
choose an integer B in k which is divisible by p but not by p2. Then since
(a,l) = 1, we can choose the rational integers x, y in such a way that u* =
w*B” is divisible by p but not by p2, while /u* generates the same relative
field as /. Thus the new exponent for this u* is a = 1, which we thus wish
to assume already for u. Taking the /th power of the ideal

‘B = (p’ \I/ﬁ)a

we obtain P! = (p', u) = p. Thus, by Theorem 108, P is a prime ideal in K.
II: Suppose that a is divisible by L. Then we again wish to replace u by
some u* = puf~* = u(B~ ") which generates the same field K = K(-/u*) and
where the corresponding exponent a = 0.
II(1): Suppose that p divides neither [ nor g, and that there exists a £ in
k such that
p = ¢ (mod p).

Accordingly p divides the product
p=C=M-96sM =) ("M = ¢). @81)

However it divides no factor, since, then, as an ideal in k it would have to
divide all (relatively conjugate) factors, thus also the difference of two factors,
that is,

PICM — "M, p|(*— M.
However, since p is relatively prime to M, it would have to divide (¢ — (b,

that is, by the lemma it would have to divide I, contrary to hypothesis. Thus
p is not a prime ideal in K and

is a factor of p which is distinct from 1 and which is distinct from its relative
conjugates. Obviously the relative norm is p.

II(2): Suppose that p divides neither [ nor u and that p splits into I distinct
factors in K,

P=‘B'S‘B"'Sl_1‘3.

Then B has relative degree 1. By Theorem 110, each number in K is thus
congruent to a number in kK modulo B, hence there is a & such that

M = £ (mod P);

the relative norm of M — ¢, that is, u — &, is hence divisible by the relative
norm of P, that is,
= &' (mod p).

Thus Theorem 118 is proved.
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So just as the decomposition of a prime p in the quadratic field K(/d)
is connected with quadratic residues in k(1), we see in general the connection
between the decomposition of p under passage to K(/u; k) with the Ith
power residues in the field k. The decomposition of factors of [ is given by
the following theorem:

Theorem 119. Let | be a prime factor of 1 — {, which divides 1 — { exactly to
the ath power: 1 — { = I°l,. Suppose that | does not divide p. Then | splits
into | factors which are distinct from one another in K(J/u; k) if the congruence

p= ¢ (mod I*Y) 82

can be solved by a number & in k. The ideal | remains prime in K if the con-
gruence
u =& (mod I*) (83)

can indeed be solved, but (82) cannot be solved. Finally, | becomes the Ith power
of a prime ideal in K, if the congruence (83) is also unsolvable.

I: The solvability of (82) is identical with the decomposition of [ into
distinct factors in K. Namely from [ = € - s€ - - - s'~ 12, where the conjugates
are distinct from one another, it follows as in the proof of Theorem 110
that every integer in K is congruent to an integer in k modulo every power
of 8. Thus to each rational integer b there corresponds & in k such that

M —E(=0(2;

consequently the relative norm of this number M — ¢ is divisible by N, (L)* =
I* and thus u = &' (mod I) is solvable for £. Conversely suppose that u =
& (mod [**1), Let p be a nonintegral number in k which can be represented
as a quotient

p=m @D=1,

with an integral number ideal r which is relatively prime to [. Then the
number 4 = p(M — &) is an integer for it is a root of the polynomial

S(x)=(x+ p&)t — p'u

:xl+<i>p€xl—l +<é>p252xl—2+...+<l_l1>pl—lél—1x+pl(él_u)'

The binomial coefficients are divisible by I, hence by assumption and by (80)
they are divisible by ¢~V so that p' ~![*¢ ™1 is an integer, and the constant
term is an integer by (82). If we set & = ([, A), then this ideal is not 1, as
Ni(A4) = p(&" — p)is divisible by I. Furthermore € is coprime to all conjugates,
since the number

A —sA=pM(1 =10,
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which is obviously relatively prime to I, is contained in (£, s€). Hence [ con-
tains a factor in K which is distinct from all conjugates; thus, by Theorem 117,
it splits into I factors which are distinct from each other.

II: If u = £Y(1*)is solvable, then we see in the same way that 4 = p(M — &)
is an integer in K whose relative different is relatively prime to 1. Conse-
quently, by Theorem 114, | cannot be the Ith power of a prime ideal in K,
and hence, if (82) is unsolvable, I does not split into / distinct factors, by L.
Thus, by Theorem 117, [ must also be a prime ideal in K.

III: Suppose that u = £{(1*)is unsolvable and let u be the highest exponent
for which pu = & (mod 1*) is solvable. In any case u > 1 since, by Fermat’s
theorem, every number is congruent to an Ith power modulo I. Moreover
u is not divisible by L. For if

p=E@modl®), O<b<a-1,

can be solved, then this congruence can also be solved modulo [*'*?! since
if A is an integer in k such that

A is divisible by I° but not by [°*1,
then for every integer w
(¢ + Aw)' = & + ANo' (mod IP*1)

provided b < a — 1. But since o' represents every residue class modulo I,
can be determined in such a way that

p= €+ o) =0,

from which it follows, since u < al, that u is not divisible by . Let u = bl + v
O<v<l-1),and u<al, and let

p be a number with ideal denominator I°.

Then we see as above that 4 = p(M — &) is an integer which is not divisible
by L, if u = &' (mod [*), but N,(A) is divisible by I". Hence € = (I, A) is an
ideal in K which is different from [ and from (1). Thus [ is not a prime ideal
in K and since case I does not hold, then by Theorem 117, [ can only be the
Ith power of a prime ideal in K.

Moreover, we obtain immediately from Theorem 118 and 119

Theorem 120. The relative discriminant of K(/u; k) with respect to k is equal
to 1 if and only if u is the Ith power of an ideal in k, and at the same time,
provided i is chosen relatively prime to I, the congruence p = & (mod(1 — {)%)
can be solved by a number & in k.

As was mentioned previously, the discriminant of a field can never be
equal to + 1. Now it is a fundamental fact for all of arithmetic that the relative
discriminant with respect to number fields other than k(1) can very easily
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be equal to 1. This development originates with Kronecker. Hilbert recog-
nized the significance of these fields for general arithmetic and based the
theory of the higher reciprocity laws on them. There is, for example, the
theorem® that a field K(v/u); k) with relative discriminant 1 exists if and only
if the number of ideal classes’ in k is divisible by L Such a relative field is
called a Hilbert class field of k.

6 For these problems compare §54-58 in Hilbert’s Zahlbericht as well as Hilbert’s basic paper
Uber die Theorie der relativ Abelschen Zahlkérper, Acta mathematica, Vol. 26 (1902) and
Gottinger Nachrichten 1898. The contributions of Hilbert have been continued and partly
brought to a conclusion by Furtwéngler in a long sequence of papers (the two most impor-
tant are: Allgemeiner Existenzbeweis fir den Klassenkorper eines beliebigen algebraischen
Zahlkorpers Math. Ann. Vol. 63 (1906) and Die Reziprozitatsgesetze fiir Potenzreste mit
Primzahlexponenten in algebraischen Zahlkérpern LILIII, Math. Ann. Vol. 67, 72, 74 (1909
through 1913).

7 In the case / = 2, the foundations must be laid for a more narrow class concept. (Compare
with the last section of this book.)



CHAPTER VI

Introduction of Transcendental Methods
into the Arithmetic of Number Fields

§40 The Density of the Ideals in a Class

In 1840, Dirichlet, in his pioneering paper “Recherches sur diverses appli-
cations de I’analyse infinitésimale a la théorie des nombres” (Crelles Journal,
Vol. 19. Werke Vol. 1 p. 411), showed how the powerful methods of the
analysis of continuous variables can be used in the solution of purely arith-
metic problems. These methods have become of great significance for
the arithmetic of number fields. Even today the problem of the class number
and the problem of the distribution of prime ideals are still only approachable
by these transcendental methods, and at this time they still completely evade
a purely arithmetic treatment.

In this chapter we discuss the two problems mentioned and their solutions
by Dirichlet’s methods.

The basic fact which Dirichlet discovered! is that one may speak of a
“density” of ideals in a fixed class of ideals of a field K, and that this density
is the same for all classes of ideals of K. Indeed, to be more precise the fol-
lowing theorem holds:

Theorem 121. Let A be an arbitrary class of ideals'of K, and let Z(t; A)
denote the number of integral ideals in the class A whose norm is < t. Then
the limit

. L A
lim &4 _ %

t> o
! Dirichlet developed his results only for quadratic fields and not for the ideals discussed here
but in the context of quadratic forms (compare §53). The considerations were carried over to
general algebraic number fields by Dedekind.

139
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exists, and is given by the formula
2r1 +'27'['2R
w/d|

which is independent of A and is determined by the field alone.

(The notation is that of §§34, 35).
Proof: Let a be an integral ideal of the class 4!, reciprocal to 4, so that
each ideal of 4 becomes a principal ideal by multiplication by a. Accordingly,
for each integral ideal b in A there exists a single principal ideal (w) which is
divisible by b such that

ab = w.

Consequently Z(t; A) is equal to the number of nonassociated integral
numbers w of the field which are divisible by a and whose norm is < ¢ - N(a)
in absolute value.

We now attempt to extract a single element from each system of associated
numbers by means of inequalities. For this purpose let ¢, €5,...,¢, be a
system of r basic units as in §35. To each number w of the field different
from 0, there is a uniquely determined system of real numbers cq, ¢5,..., ¢,
such that for the first r conjugates we have:

(p)

3 N(w)

Let us call the ¢; the exponents of w. Again e, =1 if K® is real, e, = 2
otherwise. Then since

log =c; logle?| + -+ ¢, logle®|  (p=1,2,...,r. (84)

ri 1 I w®
e,log|——
=1 I N(w)
Equation (84) also holds for p = r + 1 and consequently for all conjugates.
Now since by Theorem 100 each unit has the form

r+1

=0 and ) e,loglef|=0,
p=1

Ca'{lle'sz [P 8:."',
where ( is one of the existing roots of unity in the field K, while the m; are
rational integers, then the system of associated w has the exponents

ci+my, Cc3+my,..., ¢ +m,.

Consequently, to each w there is an associated number whose exponents
satisfy the conditions

0<¢<l1 i=12,...,r.

Furthermore among the elements associated to w there are exactly w distinct
elements of this kind. From this it follows that w - Z(¢; A4) is equal to the
number of those integral elements of the field which are divisible by a and
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which satisfy the conditions

|N(@)| = |0+ @@ - - - ™| < N(a)t (85)
1 ? ‘ Zr: logle?)|
) =Y ¢, logle®;
s JNw) <1 ° Blfa

(86)
0<c¢ <1 (pr=1,...,n).

However, in order that o be divisible by a it is necessary and sufficient that
0P = Z X, 08P p=12...,n (87)

with rational integers x4, ..., x,, where a4, ..., «, denotes a definite basis
of the ideal a. Consequently, w - Z(¢; A) is the number of rational integers
X1, ..., X, which satisfy the three conditions (85), (86), (87), where not all
x; =0.

If we now choose arbitrary real values for the x;, then to the corresponding
P there is associated a uniquely determined real number c,, by Equation
(86), provided all »® # 0. Now let x, ..., x, be the Cartesian rectangular
coordinates of a point in n-dimensional space and, to begin with, consider
only those points which do not lie on one of the manifolds ©® = 0 of lower
dimension. Then Inequalities (85) and (86) obviously define, in the comple-
mentary space, a domain B, lying entirely in finite space; for we have

)E cq logle )|
|0®)] = |/ N(w)|es=* 4l < JiN@e™,  (p=1,2,...,n)
where M denotes the absolute value of the numerically largest of the values
log|e®’|. We now complete the domain B, to a closed domain B} which
likewise still lies in finite space, by adding on to B, those finitely many parts
of the linear manifold »® = 0 which moreover satisfy the conditions

lo®| < eMYIN@;  (p=12,...,n)

and at least one w® = 0. The number of lattice points x,, ..., x, (that is,
the points with rational integer coordinates) which belong to this closed
domain Bf, is the number w - Z(¢; 4) increased by 1 (corresponding to the
origin). However, the number of lattice points is asymptotically equal to the
volume of this domain. To see this we set x, = y, %/t and then the domain B}
in the x-space goes over into the domain B¥ in y-space. The lattice points x
correspond to those points y whose coordinates have the form

rational integer

{‘/; bl
thus it is the y-space covered with a net of cubes with length of edges 1//t,
and by the definition of volume, or of the multiple integral, we thus have

m W LG A gy =
llmf“f(gg)fdyl dy,=J.

t— o0



142 VI Introduction of Transcendental Methods into the Arithmetic of Number Fields

At the same time B¥ is that domain which is described by the following
inequalities. Let us set

o? =Y yaP (pr=12,...,n

k=1

and now we have
0< |a)‘” P C) a)""l < N(a)

(p)

J N(w)
with0<c¢,<1(p,g=12,...,r)or
|w®| < e™7/N(a) and at least one w® = 0.

Since this last condition defines only manifolds of lower dimension, this
part of the domain makes no contribution to the n-fold integral and these
conditions can be omitted.

To evaluate the integral J we introduce the real and imaginary parts of
the w® as new variables in place of the y’s.

We set

r

= Z Cq 10g|81(1p)|

q=1

log

z,=0? forp=12...,r,
Z,+izpe, =P forp=ri+1,...,r +71,
so that the functional determinant (as in Theorem 95)

0z, ... \2p) _
A LARSR LA (I :
a(yl’ e ayn) N(a)l\/zl

If we then introduce polar coordinates for z, and z,,,,:

Zp=ppCOS(pp—r1 (pp>O,OS(pp—r1<2n9p=rl+1a-"arl+r2),

. Zp+r, = PpSIN QPp—y,
and if we set

zp:ppa p=1,2a"'ar1a
for the sake of symmetry, then

0(21’ LEC] 9zn)
a(pb- s Pr+r15P15P25 - - - ’(Prz

) =Pr.+1 U Pritrg

and the domain B is described in the new variables by

r+1

0< ]_[1 |p,|7 < N(a)
=

r+1 r

1
loglp,| = Jlog [T leu™+ ¥ c;logle”],  0<C, <1
= pe

pp>0 and 0<¢,_, <2n forp=ri+1,...,r  +715.
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The integration with respect to the ¢; can be carried out; besides we need
only integrate over the portion of the domain with p; >0,..., p, >0, if
we put the factor 2" before the integral. Thus we obtain

2r1 +r2nr2

J =—_f : 'fpr1+l “Priv2 'pr1+r2dpldp2 o ‘dpr+1

N@IV

:wf---fdvldvz---dv,ﬂ

N@)| /4]
if we introduce v = p§*. Then the conditions for the v; read:

0<vy vy 041 < N(a), v, >0
r

log v, = ] log(vy " " v,41) + € ¢, logle®, 0<ec,<1.
p n p | q q q
a=

Finally we introduce the ¢;, . . ., ¢, as new variables in place of the v; and set

U=TDV1 V3" " Upyy,
and we thus obtain

r
log v, = % logu+e, Y c,logle?],
n q=1
e, loglel")] . . . e, loglet™)|

0(01,---avr+1)_l’1‘Uz"‘l’r+1. = +R.

ou,cq,y...,c) u

e, l(.)g|e(1')| - e,loglei')l
Finally we obtain

2r|+r2 ro a 2r1+r2 r2R
i RfN()dufoéc-;lfdcldcz-“dc,: n

and with this Theorem 121 is proved.

§41 The Density of Ideals and the Class Number

If we apply the limit equation just proved for each individual ideal class
and then sum over all classes, we obtain at once the connection, found by
Dirichlet and Dedekind, between the density of integral ideals of the field
and its class number, namely

Theorem 122. Let Z(t) denote the number of integral ideals of the field whose
norm is < t. Then

lim @ = hx, (88)

t— o0

where h is the class number of the field.



144 VI Introduction of Transcendental Methods into the Arithmetic of Number Fields

The number Z(%), in whose definition the concept of class does not occur
anymore, can now be calculated by another method, namely with the help
of our knowledge of the decomposition of rational primes in the field. In
this way the class number is connected with the decomposition laws, and
thereby in certain cases a remarkably simple expression for the class number
can be derived, of which no other way has led until now.

If F(m) denotes the number of integral ideals of the field whose norm is
equal to the positive number m, then obviously

Z(t) = ; F(m).

Here ) _, means that the summation index m runs through all rational
integers for which 1 < m < . Now, moreover, for two rational integers a, b

F(ab) = F(a) - F(b) if(a,b) = 1. (89)

For, from two integral ideals a and b with N(a) = a, N(b) = b, an ideal
¢ = ab arises with N(c¢) = ab. And conversely if ¢ is an integral ideal with
norm ab, let us set

(c,a) = ay, (¢,b) =by; (90)

from this it follows by multiplication that
a,;b; = (%, ca, cb,ab) = c<c,a, b, gg) =

By passage to the conjugate, we obtain from (90) that N(a,), as a divisor
of a", is thus coprime to b and N(b,) is coprime to a, while the product
N(a,) - N(b,) = ab. Consequently, N(a,) = a, N(b,) = b, and ¢ is thus de-
composed into two factors whose norms are a and b respectively. The
assertion (89) follows from this.

Generally, by use of this formula, the calculation of F(m) can be reduced
to the calculation of F(p*) where p* is a power of a prime.

The calculations for determining F(p*), and with this F(m), are now
simplified considerably by the introduction of a new function, by which the
limit process (88) is transformed into a limit process which is more con-
veniently accessible to calculation. This function is the zeta-function of
Dirichlet-Dedekind.

§42 The Dedekind Zeta-Function

By a Dirichlet series, we mean a series of the form

[e¢)

y .

s
n=1M

where ay, a,, . . . is a given sequence of numbers, s is a variable which assumes
only real values in the following discussion, and the symbol n* denotes the
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positive value of the power. The a, are called the coefficients of the series.
In case the series converges, it represents a function of s.

Lemma (a). The series Y o 1/n° converges for s > 1, and represents a con-
tinuous function of s, the so-called Riemann zeta-function {(s). Moreover

lim (s — 1)¢(s) = 1.

s—1

It follows from the definition of the definite integral that
n+1 dx 1 n dx
J; ;<E<L—1F (n>1)

Hence the series converges for s > 1; consequently, as a series with only
positive continuous terms it represents a continuous function {(s), and

w dx o dx
[P S << [P5+1
1<(s—=1)s)<s

from which the limit relation follows.

Lemma (b). Let us set
Sm)=a, + a, +** + a,; hence a, = S(n) — S(n — 1).
If there exists a number o (¢ > 0) for which the quotient

S(m)

<4, (m=12..) 91)

where A is a constant independent of m, then the series Y oy a,/n° converges
for s > o and represents a continuous function of s.

Namely, for all positive integers m and h

m+h a, m+h S(n) _ S(n _ 1)
; n_ "Zm n
S(m + h) Sm—1) mth-1 1
C (m+ by m + Z S\ n (n+1°)
Since
1 n+1 dX
» (n+1)s_sfn PEab
it thus follows, if we keep (91) in mind, that for s > ¢
mtha, 24 As 1
ngm_s sa+Af sa+l— a+s_0.ms—a'
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Consequently, the series converges for s > ¢, and indeed uniformly in each
interval 6 + 6 < s < ¢ + &' (where §’' > 6 > 0); thus it represents a continuous
function of s there.

Lemma (c). If in the above notation

lim M =,

m— oo m

then, if s approaches 1 (from s > 1),

lim (s — 1)

s—1

"MS

a,
—=C.
n

By (b) the series converges for s > 1. If we set
S(n) = cn + ¢g,n,
where lim, _, ., ¢, = 0 by hypothesis, and
[ee] an
(p(S) - ";1 F’
then, as above, it follows that for s > 1

+1 dx i +1dx
S [ A< S [
n=1

For an arbitrary 6 > 0 we now choose an integer N such that |£,,| < ¢ for
n > N, and we choose C in such a way that |e,| < C for all n. It then follows
that

I(s = Dp(s) — e(s — 1)(s)| < Csls — 1) Z [

lo(s) — cl(s)] = s

n+1dx n+1 dx

+ 6s(s — I)Zf

< Cs(s—1)log N+ oss — 1) [ ;x
Since the last expression tends to J as s tends to 1, we have
lljrll {(s = Do(s) — c(s — 1)(s)} = 0
and, keeping (a) in mind, our Lemma (c) is proved.

We now assign to each algebraic number field k a function of a continuous
variable s, the so-called zeta-function of k, namely

L) = ZN(I—Q) 92)

which Dirichlet introduced for quadratic fields and which Dedekind intro-
duced for arbitrary k. Here a is to run once through all ideals of k which are
different from zero. If we use the notation F(n) from the preceding section,
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then the series can also be written as

Lo =3 @

n=1

and from Theorem 122 and Lemmas (b) and (c) we obtain

Theorem 123. {,(s) is defined by the convergent series (92) for s> 1 as a
continuous function of s and as s approaches 1

lim (s — 1){,(s) = hax.
s—1

From this formula we now have a chance of calculating h if we express {,(s)
in an essentially different form with the help of the prime ideals of k.

Theorem 124. For s > 1, the equation

1
G =11 — (93)

p — en——
N(p)®
holds where p runs through all distinct prime ideals p of k.

To begin with, this product converges, since ), 1/N(p)* converges as the
constituent of the series for {,(s). For a single factor we obtain a convergent
series of positive terms

1 1 1

S U . 94
[=NE N NG 9

If we multiply these expressions in a purely formal way for all p, then we
obtain a series with terms
1
N(pip% - p7)”
where each product of powers of prime ideals appears exactly once in the
norm symbol. However, by the fundamental theorem we obtain each
integral ideal of k exactly once in this form, that is, all terms of the convergent
series {,(s) appear exactly once. Since the series converges absolutely for
s > 1 in each single factor and the product converges for s > 1, the equality

of the values of the series, that is, the validity of (93), follows from the formal
agreement of the terms of the series.

Theorem 125. Following Dedekind the determination of the class number h is
reduced to the determination of the prime ideals of the field by the equation
h-»=1lim(s — l)l_[—l——

s—1 P 1

NGy

95)
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This fundamental fact is only another way of writing (88), as has been
mentioned already; however, it is more convenient as a starting point for
the further calculation than the former equation.

While a useful expression for the class number can now be derived in
those fields, where the decomposition of the rational primes p is known
(compare §51, where the calculation is carried out for quadratic fields), in
the reverse direction we can also derive results about the prime ideals from
Theorems 123 and 124 if we make use only of the fact that in any case h - »
is different from zero. This will be discussed in the next sections.

§43 The Distribution of Prime Ideals of Degree 1,
in Particular the Rational Primes in Arithmetic
Progressions

From Theorem 123, we obtain immediately: The Dedekind zeta-function
{i(s) becomes infinitely large to the first order, as s approaches 1, so that

log {,(s) = log + g(s), (96)

s—1
where g(s) is a function which remains bounded as s tends to 1. From the
product representation (93) we then have

Theorem 126. If p, runs through the distinct prime ideals of degree one in k,
then, for s > 1,
1 1
- —log —— 97
where g(s) again remains bounded as s tends to 1. Hence there are infinitely
many prime ideals of degree one in k.

Proof: Let p, run through the distinct prime ideals of degree f for f =
1,2,...,n (Of course p, need not exist for each f.) Since at most n distinct
prime ideals of k divide a given rational prime p then, in any case, for s > 1,

1 1

1<T] <T1 == L(H)"

e
N(py)® p’

Thus as s tends to 1, the product over p, remains between two fixed

positive bounds for f > 2. The fact that {;(s) becomes infinite is thus brought
about by the prime ideal p, alone, and indeed by passing to the logarithm,

08 149 = ~ Y1081 = x5 ) + 6 o9
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where again f(s) remains bounded. However, since N(p,) = 2, we have for
s>1

1 1
1081 = ) = 90

1 1 1

1
— +_ +...
2N(p)* 3 N(py)™

0<op,9) =

< L <1+1+1+--->< 2
N(py)* r 4 N(py)*”’

and hence the sum over p, is

1
O<Z¢(p1’s)—2ZN( )25— Z 2sS Z—Z

that is, bounded for s > 1. Hence, in combination with (98) it follows that

log {i(s) — z W

remains bounded as s tends to 1, and with this, by (96), we have proved (97).
Hence if s approaches 1 the sum over p,; becomes arbitrarily large and thus
it must consist of infinitely many terms.

This general theorem, valid for every algebraic number field, now permits
us to prove very important facts of rational arithmetic, which relate to the
distribution of primes.

We choose the field of mth roots of unity for the field k. By Theorem 92,
the norms of the prime ideals of degree 1 are precisely the rational primes
with the congruence property p = 1 (mod m) except for finitely many ex-
ceptions. Consequently, from Theorem 126 follows

Theorem 127. There are infinitely many positive rational primes with the
property p = 1 (mod m).

If ny is the degree of the field of mth roots of unity (which by §30 is no
larger than ¢@(m)), then exactly n, distinct prime ideals of k divide such a
number p, and Equation (97) thus reads

1
n — =log
opszl(m)p s—1

+ 91(9). (99)

Dirichlet has shown how one can also obtain information about the
existence of primes in other residue classes mod m by relatively simple
formal considerations. For this purpose we introduce the residue characters
modulo m, as they were defined in §15.
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Theorem 128. If y(n) denotes a residue character of n mod m, then the Dirichlet
series

Lis,p)= Y X,(:)

n=1

is absolutely convergent for s > 1 and as long as s > 1 we have the product
representation

L(s,x) =1 0 (100)

p
1-— p‘
in which p runs through all positive rational primes. If moreover, y is not the

principal character, then the infinite series for L(s,x) is convergent even for
s> 0.

First of all the absolute convergence of the series and the product rep-
resentation for s > 1 are obtained immediately from the fact that the coeffi-
cients y(n) are not larger than 1 in absolute value, as y(n) is either a root of
unity, or, in case (n,m) > 1, equal to 0. Since the rule

x(ab) = y(a)x(b)
holds for all pairs of positive integers a, b, we now obtain

2
1 X(f)+X(€s)+“'
X p p
ps
for each individual factor of the infinite product; by absolute convergence
we thereby obtain Equation (100) from this by multiplication, in the same
way as above in the proof of Theorem 124.

Finally, if y is not the principal character y; mod m, then, by the basic
property of characters, Y., x(n) = 0, where n runs through any complete
system of residues mod m. Thus if the integer x = y - m + r, where y and r
are integers and 0 < r < m, then

S xn) S )
n=1 n=0

is thus bounded as x grows to infinity and, by Lemma (b) of the preceding
paragraph, the Dirichlet series converges for s > 0. In particular it follows
from this that if y is not the principal character, the functions L(s, x) are also
still continuous at the point s = 1.

<m

iZml x(n) + go x(n)

Theorem 129. For each character y mod m, if s > 1,

x(p)
pS

where g(s, x) remains bounded as s approaches 1.

log L(s,x) =Y, =5 + 4(s,%),
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If we define the log function, for s > 0, by the convergent series
1L x  1x(0® 120 ) fsp)
T s 5 2 2 p3s + = s + 2s
(_xp) P 2p 3p p p
ps

where obviously

log

|f(s,p)|<1 forp>2,5s>1,

then the sum of these expressions, extended over all positive primes, con-
verges for s > 1, and thus this sum represents one of the infinitely many values
of log L(s, x). Then Theorem 129 holds for this value.

Moreover, for the principal character y = y, we have, more precisely,

L(s, 1) = log + H(s), (101)

s—1

where H(s) remains finite for s > 1.
For if we choose the field k(1) for k in (97), then we obtain that

1 1
=1
%p‘ 51

remains finite as s — 1; on the other hand y,(p) is equal to 1 in general and
different from 1 (i.e., equal to 0) only for the finitely many primes p which
divide m. Thus (101) is, in fact, proved.

In order to go from here to sums which are extended only over the primes
of a residue class mod m, let a be an arbitrary rational integer which is
coprime to m and let b be a rational integer such that

ab =1 (mod m).

Then, as long as s > 1, if ZX denotes a sum to be extended over all characters
x mod m, we have

S 2(b) log L(s, ) = X 1(5) ¥ ";ﬁ’ ) £'S 2(b)g(s, )

The last sum, which we denote by f(s), remains finite in any case as s tends
to 1. However, in the double sum
0, if bp # 1 (mod m),
b - bp) =
gx( )x(p) gjx( p) { o), ifbp = 1 (mod m)

so that we obtain

1
2x®)log Lis,) =om) Y  —+f0s), (102)

p=a (mod m)

where the sum is to be extended only over the positive primes p which are
= a (mod m).
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Finally, let us now allow s to tend toward the critical value 1. On the
left-hand side, by (101), the term which is formed by the principal character
x = x1 becomes infinitely large and positive. Thus if the remaining summands
remain finite, the entire lefi-hand side of (102) grows beyond all bounds.
Consequently the sum on the right must contain infinitely many terms;
hence there are infinitely many p which are = a (mod m).

Accordingly, the verification of the following assertion remains the es-
sential point in Dirichlet’s train of thought:

If x is not the principal character, then the quantities log L(s, x) remain
finite as s tends to 1.

Since these L(s,y) are continuous functions of s, for s > 0, by the last
part of Theorem 128, the assertion is identical with

Theorem 130. If y is not the principal character, then
L(1,x) = lim L(s, x) # 0.
s—1

The nonvanishing of the L-series is now an immediate consequence of
the fact that {,(s) becomes infinite to the first order at s = 1. For by (102)
it follows for a = b = 1 that

1
Z log L(S, X) = (p(m) Z s + G(S),
X p=1 (mod m)
and, if we use (99), it follows from this that

@(m)

——log
ho

Y log L(s, ) = +G4(9) (103)

s—1
with G(s) and G,(s) remaining finite. On the left-hand side only the term
corresponding to the principal character y,(s) becomes infinitely large, by
(101), and for the remaining part we thus obtain

Y log L(s,x) = (@ - 1) log L + G,(s),
0

XF 21 s—1

1 (p(m)/no) — 1
[T L= (—1> €020,

XF X1 S

As has been mentioned already, we have @(m) > ny. The right-hand side
now becomes infinitely large as s tends to 1, if ¢(m) > n,, while the product
on the left surely remains finite, since this holds for each factor. Thus it
follows first that ¢(m) = ngy; secondly, then, the entire right-hand side is

€52,

which as an exponential quantity surely does not tend to 0. Hence this is
also the case for the left-hand side, that is, since each factor on the left has
a finite limit, Theorem 130 is in fact true.

With this, as shown above, the famous result of Dirichlet is proved.
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Theorem 131. If (a,m) = 1, then there are infinitely many positive primes p,
for which p = a(mod m). That is p = mx + a represents a prime infinitely
often forx =1,2,3,... .

As a side result we obtain
@(m) = no

from the proof, that is, the exact degree of the field of mth roots of unity also
follows from the decomposition laws. With this it is thus proved that the
algebraic equation for { = e*™/™ is irreducible over the field of rational
numbers.

If we go once more through the chain of conclusions which led us to the
proof of Theorem 131, then the verification that L(1,y) # O appears as the
most difficult point, and this verification was carried out from Equation (103)
and the fact that the function {,(s) becomes infinite to the first order at s = 1.
This last fact was again based on the theorems in §40 about the density of
ideals, in whose proofs the entire theory of units was required. It is now of
importance that instead of these number-theoretic methods, more precise
knowledge of the function-theoretic properties of the L(s,x) can be used
with the same success. Several remarks about this follow for purposes of
orientation.

To begin with, it can be proved by Lemma (b), §42, that L(s, x) is differ-
entiable at s = 1 (by termwise differentiation of the series) and that hence,
if L(1,%) = 0, this function would have a zero of at least the first order at
s = 1, for then

s=1 §— s—1 s—1 ds

s=1

exists. On the other hand, the product of all ¢(m) series is a convergent series
with only positive terms for s > 1. For if p is an element of order f in the
group of residue classes mod m, then, by Theorem 32, the ¢(m) numbers y(p)
are all fth roots of unity, each root occurring equally often. Thus

(-2)-(-3). (-2%)

and accordingly [, L(s, ) is a series with positive coefficients, and indeed
> 1 for all s > 1. Now since the series L(s, x;) corresponding to the principal
character agrees with {(s), except for unimportant factors, this series becomes
infinite to the first order at s = 1. Furthermore, since the remaining L(s, x)
either become zero to at least the first order at s = 1 or in any case have a
finite limit, at most one single factor L(s, x) can be equal to zero. And indeed,
the y for which this happens must then be a real character (which takes only
the values +1, 0, that is, a quadratic character mod m). For if y is not a real
character, then the conjugate imaginary function ¥ is likewise a character
mod m, but different from y, and the vanishing of L(1,y) implies the non-
vanishing of the conjugate imaginary quantity L(1,%) which, by the above,
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cannot occur. Thus we need only verify that L(1,y) # 0 for all quadratic
characters y.

Mertens* has proved this assertion by a direct estimate of all the real
terms of the series. In this way we obtain a proof of Dirichlet’s theorem which
is independent of the theory of fields.

Dirichlet himself used the quadratic reciprocity law with which it is seen
that the series L(s, x) corresponding to real characters appear as factors in
the zeta-functions of certain quadratic number fields, and so, for this reason,
cannot be zero at s = 1. In contrast to the proof given above he does not
need the arithmetic of cyclotomic fields, but only that of quadratic fields.

Pure function-theoretic proofs comprise the latter group; they are capable
of the farthest generalization. In these proofs the functions L(s,y) are in-
vestigated as analytic functions of the complex variable s. It is shown that
the L(s, x) are regular analytic functions of s for all finite values of s with the
exception of L(s, x;) which has a pole of the first order only at s = 1. Now if
one of the L-series were zero at s = 1, the product of all these series would
have to be a regular function of s everywhere in the finite plane. The contra-
diction is then obtained, with the help of a general theorem of function
theory, from the fact that such a Dirichlet series with positive coefficients
must have at least one singular point in the finite plane.>

This idea, which is the foundation of Dirichlet’s method of introducing
group characters, is capable of far-reaching generalization. We can start,
instead of from the classification of rational numbers in k(1) by residue
classes mod m, with the numbers of any field, which are divided, in another
way, into classes which form an Abelian group.* Finally Theorem 126 can
also be directly applied to other fields instead of k(e*™/™), even to relative
fields. Moreover, each time we obtain verification of the existence of infinitely
many primes (prime ideals) of the ground field with certain properties from
a knowledge of the decomposition laws. These contributions will be carried
out more precisely in the next chapter (§48) for quadratic fields.

2 Mertens Uber das Nichtverschwinden Dirichletscher Reihen mit reellen Gliedern. Sitzungsber.
d. Akad. d. Wiss. in Wien. math.-naturw. Klasse, Vol. 104 (1895).

3 See E. Landau, Hq_ndbuch der Lehre von der Verteilung der Primzahlen (Leipzig 1909) Vol.
I §121; or Hecke, Uber die L-Funktionen und den Dirichletschen Primzahlsatz fiir einen
beliebigen Zahlkorper, Nachr. v.d. K. Ges. d. Wissensch. zu Géottingen 1917.

4 A general contribution in this direction is due to H. Weber, Uber Zahlengruppen in algebra-
ischen Korpern LILIIL. Math. Ann. 48, 49, 50, (1897-1898).



CHAPTER VII
The Quadratic Number Field

§44 Summary and the System of Ideal Classes

The quadratic number field, which was already treated as an example in §29
is to be discussed in more detail in this chapter. First we recall once more
what was proved in §29.

Let D be a positive or negative rational integer, different from 1, and
divisible by no rational square except 1. The number /D then generates the
most general quadratic field. Its discriminant is

de D, if D=1 (mod 4),
"~ 14D, if D =2 or 3 (mod 4).

In each case 1, (d + \/:l) /2 is a basis. Each integer of the field has the form
o=(x+ yﬁ)/Z with rational integers x, y. An odd positive prime p splits
into two distinct or equal prime factors or remains irreducible according to
whether the quadratic residue symbol (%) has the value 1, 0, or —1.

We now define the quadratic residue symbol with denominator 2, but only
for those numbers d which are discriminants of quadratic fields.

If d is even, let (§) = 0. If d is odd, let (4) = +1 if d is a quadratic residue
mod 8, and (4) = —1 if d is a quadratic nonresidue mod 8.

Then the decomposition law for the number 2 in k(\/z ) reads exactly the
same formally as the law stated above for odd p.

In a real quadratic field the number of fundamental units is equal to 1 by
Theorem 100. Since the only real roots of unity are +1, the numbers +¢"
(n=0,4+1,42,...), where ¢ is a fundamental unit, are all the units of the
field; the latter is obviously uniquely determined by the additional condition
¢ > 1. All the units = (x + y+/d)/2 are obviously obtained from the solution
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of the equation N(n) = +1, that is,
x? —dy?* = +4 (104)

with rational integers x and y. This is the so-called Pell equation.

In imaginary quadratic fields every unit # is a root of unity. For d < 0 the
above equation (where of course the upper sign must hold) has solutions only
for d > —4 except for the trivial solutions, y =0, x = +2, thatis, n = +1.
Indeed for d = —4, the equation has the two additional solutions x = 0,
y = +1, and for d = — 3 the equation has four additional solutions x = +1,
y = +1. Thus the number w of roots of unity in k(\/——?’), the field of the
third root of unity, is equal to 6 and the number of roots of unity in k(\/:‘l )
is equal to 4. In all other quadratic fields it is equal to 2.

We now try to find a method from the general theory to decide whether
or not two ideals a, b of a quadratic field are equivalent and, by this, to give
a complete system of nonequivalent ideals, thus also to calculate the class
number.

Since N(b) = bb’ is a rational principal ideal, the equivalence a ~ b means
the same thing as ab’ ~ 1; thus we must decide whether a given ideal is a
principal ideal. If the integral ideal a is a greatest common divisor of two
principal ideals («, B), then a is the content of the form au + fv. Consequently
aa’ = N(a) is the content of (au + Bv)('u + fv) = a'u® + uv(e'p + af’) +
BBv?, that is, N(a) is the greatest common divisor of the rational numbers
oo, o' B + aff, BB If the positive rational number n is obtained for this GCD,
then the additional question is whether +n is the norm of an integer of the
field and then moreover if N(w) = +n whether the equation (@) = (a, f) is
correct. This is again the case if and only if a/w and f/w are integers, for in
this case the ideal (a/w, B/w) is an integral ideal with norm 1 by construction,
thus it is itself equal to (1).

Thus the only difficulty is in finding all different principal ideals (w) whose
norm has a given value. This leads to the problem of finding all rational
integers x, y for which (if we set w = (x + y~/d)/2)

x? —dy* = +4n. (105)

For imaginary quadratic fields all solutions can be obtained easily in finitely
many attempts. Since d < 0 we need test only those pairs of rational integers

x, y for which
W <2ym Vb 24w,

that is, we determine, by calculation, for which rational integers y with
0 < y < 2|/n/d| the expression \/4n + dy? is a rational number.

In order to find the solutions of (105) with d > 0, in the real quadratic
field, knowledge of a unit different from + 1 (not necessarily the fundamental
unit) is required. If we assume

=t s
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is a unit in k(ﬁ) with # > 1, then among the numbers a = wy" (n =0,
+1,+2,...)associated to a given w we can surely find one such that

1<

o
2
07‘“7

(compare Equation (86)). It is thus sufficient, for our problem, to look only
for those solutions @ = (x + y+/d)/2 for which these inequalities are also
satisfied. The inequalities can also be written in the form

o] < Jof <Jen® or |oln™? < o] < ol

Jn<lo| <nn
n~1/n < || < /n (106)

Moreover if we assume w > 0, then by Equation (105) with the plus sign,
o’ > 0 and it follows from (106), by addition, that

or, since |ww'| = n,

™'+ D/n<x <@+ 1)/n; (107)
on the other hand, by Equation (105) with the minus sign,
™'+ DJ/n< yJd <@+ Dy/n. (108)

In any case we need only examine whether a finite number of values x, y
satisfy Equation (105). Then we can determine by simple division whether
among the numbers ® = (x + y./d)/2 found in this way, there are still
associated numbers.

Obtaining a unit 7 can be achieved in various ways. The proof of Dirichlet’s
unit theorem (Lemma (b) in §35) yields a process immediately. This is essen-
tially a matter of expanding \/E as a continued fraction. The result of §52
about the class number will yield another expression for a unit in k(\/d)
which can also be built up from the dth roots of unity.

In any case, in this way a method is given of deciding by finitely many
rational operations, whether two given ideals of a quadratic number field
are equivalent.

In order to find the class number in this way, we keep in mind that, by
Theorem 96, an integral ideal exists in each class whose norm < I\/EI
Hence we first list all integral ideals whose norms satisfy this condition. To
begin with, this can be done for prime ideals by the decomposition theorems
(§29), and from this we find all ideals of this type by multiplication. Then the
class number is the number of nonequivalent ideals among these finitely
many ideals. It is useful to clarify the relationships with several numerical
examples.

1. k(\/——l), k(\/_——3), and k(v/+2) have class number h = 1. The next
smallest integers to |ﬁ | are 1, 1, 2 respectively. In the first two fields there
is an integral ideal with norm <1 in each class; this ideal is necessarily (1),
thus a principal ideal. In k(r/ +2) we moreover have to investigate the ideals
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with norm 2. Here 2 becomes the square of a prime ideal p; this is obviously
= (/+2), so it is a principal ideal.

2. In k(\/7) with d = 28, the ideals with norms 2, 3, 4, 5 are to be found.
Here the primes 2, 3, 5 now split into prime ideals as follows:

2=p3, 3=psps5, Sitselfis a prime ideal.

Hence there is only one ideal with norm 4, namely p3 = 2, thus a principal
ideal. Thus, except for the principal class, only the classes represented by
P2, P3, P3 occur. We find, by trial 2 = 32 — 7 - 12, that is, p, = (3 + /7),
thus p, ~ 1. Since p, ~ p5, 3 + \/7 and 3 — \/7 must be associated, hence

the quotient

1= v
is a unit. If p, were a principal ideal (a + b+/7), then

+3 = a? — 7b?, thus +3 = a? (mod 7)

would have to hold. Accordingly, only the lower sign can hold, as +3 is a
nonresidue mod 7. Thus, for b, by (108) we need only test the values b with

© = 3VDV3 <by28 <9 + 373,

0<b<(VE+33<3+JE, 0<b<s

Already b = 1 yields
a=-3+7-1*=2

so that p; = (2 + 4/7) is a principal ideal. So here also h = 1.

3. By the calculations in §23 the class number of k(,/—5) is diffzrent from
1, since it was shown there that the ideal p; = (3,4 + 4/ —5) is not a principal
ideal; however p3 = (2 + \/—5) is indeed a principal ideal. By the above,
since d = — 20, the ideals with norms 2, 3, 4 are to be investigated. We obtain
2 = p2; here p, is not a principal ideal, since 2 is not of the form a® + 5b>.
The only ideal with norm 4 is the principal ideal p3 = 2; finally since p3p3 = 3
and p% ~ 1, p3 ~ p5 and, except for the principal class, the ideal classes
represented by p,, p3 occur here. If p, were not equivalent to p;, we would
have exactly three distinct classes, and because of the group property the
third power of p, would have to be a principal ideal; it would follow already
that since p3 ~ 1, p, ~ 1 which is not the case. Thus p, ~ p; and conse-
quently h = 2.

4. In k(y/ —23), d = —23; the values 2, 3, 4 are possible for the norm.
We have

that is,

(F)=+1,  2=p.p,
(F)=+L  3=psps.
Hence the ideals with the norms 2, 3, 4 are

P2, Plz, Ps, p’3a p%a plzza prIZ (109)
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Obviously the last one is a principal ideal. In order that p, ~ p3, we would
have to have p,p3 ~ 1. Since N(p,p3) =6 we must see whether 6 is the
norm of a number; this is the case

_ X2 4 23y?
- 4

which only holds for x = +1, y = + 1. Hence there are exactly two principal
ideals with norm 6, and these are conjugate so that either p,p3 or p,p; are
equal to a principal ideal. Let the notation relative to the conjugates be
chosen so that p,p5 ~ 1. Consequently by (109) at most

6

1, P2, p’29 p%a pl22

remain as nonequivalent ideals. The ideal p, is equivalent neither to p3 nor
to p3; indeed, however, p, ~ p52, which means p3 ~ 1. Then N(p3) = 8 and
8 is the norm of the integer (3 + / —23)/2, which is obviously divisible by
no rational number except + 1. The only ideals, however, which are without
rational factors and which have norm 8 are p3 and p,>® and consequently
one of these, and hence also the other, is a principal ideal.

Thus we find h = 3 and the three classes

2 3
P2, P32, P2~ 1
as representatives.

§45 The Concept of Strict Equivalence and the
Structure of the Class Group

For the investigation of quadratic fields it is useful to introduce a some-
what modified concept of equivalence.

Definition. We call two nonzero ideals a, b of the quadratic field k equiv-
alent in the strict sense, if there is a number A in k such that

a=Ab and N(A4)>0.
We write
ax~b

and consider a and b in the same ideal class in the strict sense.

The classes can be combined in the manner familiar to us to form an
Abelian group. If M is the group of all nonzero ideals, $, is the group of all
principal ideals (1) with N(u) > 0,and $) is the group of all nonzero principal
ideals where multiplication means multiplication of ideals, then the ideal
classes in the strict sense are cosets or residue classes which arise from the
decomposition of MM modulo Hy; the factor group IM/H, is the group of
ideal classes in the strict sense. Here the unit element is the system of ideals
in $,. The class group, in the sense used until now, is the factor group /9.
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It follows from a =~ b that a ~ b. Conversely, if a ~ b, then obviously
a~bor a~xb\/d A class in the wider sense thus splits into at most two
classes relative to the strict concept of equivalence. Hence the class number
hy in the strict sense is also finite and <2h.

Since the number p is determined only up to a unit factor by the ideal
equation a = ub, the two concepts of equivalence are identical if in each
complete sequence of associated numbers some with positive norm occur.
That is, if k is imaginary or k is real and the basic unit in k has norm —1,
then hy = h.

In the cases yet remaining in which k is real and each unit in k has norm
+1, a and a./d are obviously not equivalent in the strict sense, and then
ho = 2h.

Now the main problem is to investigate the structure of the class group.
However, at present, only a very small part of this has been achieved. The
result is formulated in the following theorem.

Theorem 132. The basis number of the strict class group belonging to 2 is
eo(2) =t — 1, where t denotes the number of distinct primes which divide the
discriminant d of k.

1

By Theorem 28, we must show that there exist exactly 2'~! classes in k
whose square is the strict principal class. For this purpose we keep in mind
that the ¢ distinct prime ideals qy, . . ., g,, which divide d, have the property
that their square is a rational principal ideal, thus ~ 1, by the decomposition
laws mentioned above. We first show that each ideal a with a? & 1 is neces-
sarily equivalent to a product of powers of these q. From a®> ~ 1 and aa’ ~ 1,
it follows that

where « is a number with positive norm, which we also take > 0 if it is real.
It is a quotient of two conjugate ideals, hence N(x) = 1. Consequently, this
number is also a quotient of two conjugate numbers,

1+w
o= .
1+
The ideal
a a’
l+o 1+o

is equal to its conjugate, hence by the decomposition laws

— =y Q% ..M
1+w rql qt



§45 The Concept of Strict Equivalence and the Structure of the Class Group 161

where r is a rational number and the g; are 0 or 1. However, this means
ax q‘;l “en q?t
as claimed since N(1 + 0) = (1 + »')* > 0.
Such integral ideals in k(,/d), which are equal to their conjugates but
which do not contain a rational factor (except + 1), are called ambiguous
ideals. Ideal classes which are equal to their conjugates are called ambiguous

classes. Furthermore the above proof shows that an ambiguous ideal occurs
in each ambiguous class.

Now we must still show that among the ¢ ambiguous classes Q,,..., Q,
which are defined by qy, . . ., g, respectively, there are exactly ¢t — 1 indepen-
dent classes (in the sense of group theory). Now if there is a relation

01 Q=1 (110)

which is not the trivial relation where all g; are even, then there is a number
o such that

a=q7 " -rq  N@>0. (111)

Here we then have (&) = (o), & = no!, where 7 is a unit, N(y) = + 1. We now
distinguish three cases:

(a) d < 0, where we at once assumed < —4,sinceford = —3ord = —4
our Theorem 132 is already seen to be true because of h = 1 and ¢ = 1. Then
there are only the units +1 in k, hence

a=+a, a=rK/d (®r=0o0rl), (112)

where r is a rational number. With n = 0 all exponents q; in (111) are even.
With n = 1 at least one g; is odd, since d is not a square.

(b) d>0 and the norm of the fundamental unit is —1. Here # >0
because N(x) > 0. Hence 5 = &2" with n a rational integer. Since

2_ & _ 3\/3
g _8’\/3

&

we thus obtain

« o
(eJar (—eay
with rational r. Again, to an even n there corresponds a system of exponents

a; consisting only of even numbers. With n odd at least one q; is odd.
(c) d> 0and the norm of the fundamental unit ¢ (¢ > 0) is + 1. Here

a = r(e/d) (113)

n = a—1+8‘ n__(1+a)"
’ 1+¢” (1+ey (114)

oa=r(l+ ¢
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The ideal (1 + &) is equal to its conjugate, but surely not equal to any rational
principal ideal. For if
1+e=re

held with rational r,, then we would have

1+¢
&= = g2, e2k-1
1+e¢

which is not the case. Consequently, (1 + ¢) has a decomposition
(1 + &) = rational ideal x g% - - - q%,

where at least one of the exponents b, is odd.

Thus in each case we obtain that if a decomposition (111) for « holds,
where the exponents g; are not all even, then « must be of one of the three
forms (112), (113), (114), where n is odd. Consequently the exponents a; in
(110) are uniquely determined modulo 2. Hence there is at most one nontrivial
relation between the ¢ classes Q,, ..., Q,. Conversely, however, there is
actually one such relation as the decomposition of the principal ideals (in
the strict sense) \/E, e+/d, 1 + ¢ shows in the cases (a), (b), (c) respectively,
where at least one of the exponents a,, ..., a, is odd.

This means that among the classes Q, there are exactly ¢ — 1 independent
ones; thus Theorem 132 is proved.

We formulate two important consequences of this:

Theorem 133. If the discriminant d of k(\/d) is divisible by a single prime
(t = 1), then hy and hence also h is odd and thus, provided d > 0, the norm
of the fundamental unit = —1.

Theorem 134. If d is the product of two positive primes q, q,, which are
= 3 (mod 4), then either q, or q, is the norm of a principal ideal in the strict

sense in k(x/q192)-

To begin with the norm of each unit = +1 in such a field. For from
N(x) = —1 for o = (x + y+/9192)/2 it would follow that

—4 = x? (mod ¢,9,);

thus —1 would be a quadratic residue mod q,. However, by Equation (31)
in §16, the residue symbol is

-1
) (@2 = .
(5)=c»

Moreover, it follows from the proof above that an equivalence
qi'q7 ~ 1 (115)
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holds in k(~/q:92;), where a, and a, are not both even. If both were odd,
then we would have q;q, = \/¢19> = 1, thus there would be a unit # such
that N(n+/q192) > 0, that is, N(y) = — 1, which is impossible as has just
been shown. Hence we may take one of the exponents = 1, the other =0
in (115); thus Theorem 134 is proved.

Since in the field hy = 2h must hold, in view of Theorem 132, there remains
the possibility that h is perhaps odd. This is actually the case here, as one can
convince oneself without difficulty by a proof analogous to that of Theorem
132.

§46 The Quadratic Reciprocity Law and a
New Formulation of the Decomposition Laws in
Quadratic Fields

Theorem 135. If p and q are odd positive primes, then we have the relations
M) (G4 = (=1ev2,

(II) (%) = (%)(_ 1)((p— 1)/2)«41—1)/2)’

() () = (==,

We obtain the first formula directly from the definition of the residue
symbol, Equation (31) in §16. We can also deduce it from field theory, in a
somewhat more involved way, but analogous to the subsequent proof of
(IT) and (III) as follows: If (1) = +1, then p splits in k(y/—1) and since
ho = 1, p is the norm of a principal ideal x; hence p = a* + b?. Since each
square is =0 or 1 (mod 4), we hence have p =1 (mod 4). Conversely, if
p =1 (mod 4), then, by the second part of Theorem 133, the number —1
is the norm of an integer & = (a + b+/p)/2 in k( /p), hence —4 = a? (mod p),
that is, — 1 is a quadratic residue mod p; with this (I) is proved.

In the proof of (II) we distinguish three cases:

1. Suppose p = g = 1 (mod 4). We show that (§) and (£) are simultaneously
+1 and, consequently, also simultaneously — 1. Thus they are equal to one
another, as required by the claim in this case.

For if () = +1, then the prime p splits into two distinct factors p, p’ in
k(/q). Moreover, we can set

ho =x-i_y\/a
) ’

pr=ua
where « is a number of positive norm; thus

2 .2
po=2—2 4qy ., 4p™=x*(mod g).
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Accordingly p™ is a quadratic residue mod g, and since h, is odd by Theorem
133, p itself is a residue mod g, that is, (2) = +1. Since the hypothesis is
symmetric in p and ¢, Formula (II) is proved in our case.
2. Suppose g =1(mod 4), p = 3 (mod 4). It follows from () = +1, as
above, that also () = + 1; therefore by (I), (5%) = (FY)(&)= +1.
Conversely, if (%) = + 1, we conclude in the same way with the help of
the field k(\/t;)), that (%) = +1; thus we always have

(-6 e (-0

in accordance with (II).
3. Finally if p = g = 3 (mod 4), then we can likewise draw the conclusion

that
<2> = +1 implies (_‘_ﬂ) = -1,
q p

but the converse cannot be proved in this way. For this we go over to the
field k(./pq) in which, by Theorem 134, p or q is the norm of an integer

(x + y+/Pg)/2. Suppose

4p = x* — pqy*.
Here x must be divisible by p, x = pu, so 4 = pu?> — qy?. From this equation
we obtain
<E>= +1 and <;‘1>= +1,
q p
that is,

(-

hence (§) and (3) are different and (II) is also true.
Finally in order to prove Formula (IIT), we assume that (2) = + 1. Then
p splits in k(,/2) and since h = hy = 1, p is the norm of an integer,

p = x% — 2y

From this it follows that p = x2 (mod 8), if y is even and p = x* — 2 (mod 8),
if y is odd, that is, since x is odd, p = +1 (mod 8).

Conversely, if p = +1 (mod 8), then we go over to the field k(,/+p) in
which hg is odd by Theorem 133. In this field 2 splits into distinct factors by
the decomposition laws; consequently 2 is a quadratic residue mod p.

Thus we have shown

2
<I_’> = +1 ifandonlyif p= +1 (mod 8).

However, this is equivalent to (I1I).
We now generalize the formula to the case where the two numbers
p and g are composite positive odd numbers. The symbol introduced by
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Legendre whose “denominator” is a prime was also defined for composite
denominators at the end of §31. It should now be noted that the same
reciprocity formulas also hold for this “Jacobi symbol.”

For the proof let a and b be any odd integers. Since

(a— 1) — 1) =0 (mod 4),
we have
ab—1=a—-1+4+b—1(mod4)
ab—1 a—-1 b

-1
>—=—3 + 5 (mod 2). (116)

In the same way it follows from

(a* — 1)(b* — 1) = 0 (mod 16)
that
a’h* -1 a*>—-1 b>2-1
= 2). 117
g g+ (mod2) (117)
By repeated application of this process we thus obtain for r odd integers

Di>-- -5 Dr

Py P2 p—1
2

VB

piz_l(mod 2)

1

i

‘pyp)i—1 & op?P—1
(p1p2 . p,) =y Pi 5 (mod 2).
i=1

Now suppose that the positive odd numbers P and Q are decomposed into
their prime factors

P=py'py P Q=4q1"92" g5
Then, by the definition in §31 and by application of (116) and (117),

_._-_1 —1 -1 -1 i (pi—1)/2
= ... = (—1)=t — _l(p_l)/z 118
<P> (m)(m) <p,> (=1) (=1F=Dz, - (118)

2 £ (r?

(F) = (=) BT o (e (119)

and finally

p 0 Pi> 2 w-1y2 i_ (ax—1)/2 <¢1k>
— | — )= | = _1 i=1 k=1 4k
<Q> <P> i=1!-—.—[..,r<qk (=1 i=1!—.[..,r Di
k=1 s k=1

<g> - <%>(_ 1)P =12 (@~ 1)/2), (120)

Finally we further extend the definition to negative denominators, by setting

9+
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Then in order to formulate the reciprocity laws for negative numbers we
use the symbol sgn a (read signum a):

_(+1 ifa>0,
SBA=1_1 ifa<o.

Note that |a| = a - sgn a. With the help of this symbol we obtain at once
from (116) that for odd P

(i) = (= 1)IPI=1/2 = (_1)P-1/2+(en P-1)/2,
p

Consequently for odd P, Q

(0)-(%")()

= (_ 1)((Sgn P—1)/2)((Q—1)/2) +((sgn P—1)/2)((sgn Q- 1)/2) (

SI]

)

Moreover, by (120)

(ﬂ) — <ﬂ> — (M)(_ 1)((|P|— 1)/2)(1Q]—1)/2)
0 0] |P|

_— <g (__ 1)((Sgn Q- 1)/2)((IP| = 1)/2) + ((IP] = 1)/2)((1Q| — 1)/2)
P .

Finally we obtain from these formulas

Theorem 136. (General Quadratic Reciprocity Law) If P and Q are odd ratio-
nal integers, then

- 1) _ _ 2 -
<____ — (_ 1)(P 1)/2 +(sgn P 1)/2, <_> — (_ 1)(P 1)/8
P p

E = g .(__1)((1’—1)/2)((Q—1)/2)+((SgnP—1)/2)((sgnQ—1)/2)'
(0] P

Finally we generalize the definition of the residue symbol to even denom-
inators, although we restrict the numerator. By Theorem 45 the residue
class group mod 8 and modulo higher powers of 2 is no longer cyclic, but
instead it has two basis classes. Each odd number is = (—1)*5” (mod 2¥)
(k = 3), where the exponent a is uniquely determined mod 2 and the exponent
b is uniquely determined mod 2*~ 2. The numbers with a = 0 (mod 2) form a
cyclic subgroup of R(2¥); these are the numbers which are = 1 (mod 4).
Among the classes of this subgroup, those classes which are squares are to
be fixed by a single character. Corresponding to this we define:
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Definition. If a is a rational integer = 0 or 1 (mod 4) we set
0, ifa=0(mod 4),
(g) = (iz) ={+1, ifa=1(mod 8), (122)
h —1, ifa=>5(mod 8).

By Theorem 136, (§) = (2) if the first symbol has a meaning. Moreover for
two such numbers a and 4’ it follows that

(‘5’>= (“-) if a = @ (mod 8)
a-d)_(a) (@
2 ) \2) \2)
Finally, in general we set

G-6 @0

for arbitrary denominators, if a = 0 or 1 (mod 4). This definition remains in
agreement with the stipulation in §44 because each field discriminant is
=0 or 1 (mod 4).

[\

Theorem 137. If d is the discriminant of a quadratic field and n, m are positive
integers, then

(d—> = <i> if n = m (mod d), (124)
n m
(%) = <-:7> -sgnd ifn= —m(mod d). (125)

Accordingly, (%) thus represents a residue character mod d for positive n.
For the proof we must split off the highest power of 2 dividing d, n, m. Let

d=2d, n =2, m=2m
with odd d', n', m'.
Case 1: a > 0. The case b > 0 is trivial here, since then, by hypothesis,

we must have ¢ > 0, and both symbols in (124) and (125) have the value zero.
Thus suppose that b = ¢ = 0. Then by Theorem 136

<2‘;d1> _ (%>a (%) — (- l)a(nz— 1)/8 <§>(_ 1)«n— 1)/2)((d’ - 1)/2) (126)

and the analogous equation holds for m. Since d is divisible at least by 4,
the first factors for n and m agree. The same holds true for the other two
factors in case n = m (mod d); however if n = —m (mod d), then the factors
differ precisely by the factor sgn d'.
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Case 2: a =0, thusd =1 (mod 4).

B-00-G0-0 o

from which the assertion can be read off immediately.

Now we see from this theorem that the decomposition law for quadratic
fields, as it was proved in §29, is indeed formally of a quite different type
than that for cyclotomic fields, but on the other hand shows a great similarity
relative to content. Theorem 137 shows that if two positive primes belong to
the same residue class mod d, then they split in exactly the same manner in
k(\/d). Thus k(s/d) is also a class field which belongs to a classification of
the rational numbers mod d. For if we consider those numbers n for which
(%) has the same nonzero value to be of the same “type,” then the positive
integers relatively prime to d split into two types. By Theorem 137 all natural
numbers congruent to a mod d belong to the same type as a. Consequently,
one type consists of certain 1¢(d) residue classes mod d, which are relatively
prime to d. If we assume that a,, a,, ..., a, (m = 3¢(d)) are the numbers
which are incongruent mod d which belong to the same type as 1 (all qua-
dratic residues mod d occur among them), then the decomposition law reads:

Let p be a positive prime relatively prime to d and let f be the smallest
positive exponent such that p’ is congruent to one of the numbers a,, .. ., a,
modulo d. Then p splits into 2/f distinct prime ideals in k(\/ﬁ ). All of these
have degree f.

In particular, if the discriminant d is an odd prime, d = (—1)4~1/2g, then
by Formula (126), (%) = (%) and moreover

(g) =n"“" Y2 (mod g).

The exponent f, which has just been discussed, is thus the smallest positive
exponent for p for which

p’@= 172 = 1 (mod g).

§47 Norm Residues and the Group of
Norms of Numbers

By means of the quadratic field k(,/d), a distinguished group of residue
classes among the rational numbers is defined for each modulus n. Namely,
let n be a rational integer. In the group R(n) of residue classes relatively
prime to n we then consider those residue classes which can be represented
by norms of integers in k(,/d). These obviously form a subgroup of R(n),
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which we call the group of norm residues mod n (for the field k(,/d)), and
which we denote by R(n). In particular, an integer a which is relatively
prime to nis called a norm residue mod n, if there is an integer « in k such that

a = N(«) (mod n),

otherwise a is called a norm nonresidue mod n. (Those a not relatively prime
to n thus remain quite outside of consideration in this sense.)

It will now be shown that in general 9(p) and R(p) are identical; these
two groups are distinct only if the prime p divides the discriminant d.

Theorem 138. If the odd prime p does not divide the discriminant d, then each
rational integer relatively prime to p is a norm residue mod p for k(\/d).

We distinguish two cases in the proof.

1. p splits into two distinct factors p and p’, of degree 1, in k(,/d). Then
there is a number 7 in k(,/d) which is divisible by p but not by p’, and for
each integer a

N(7'a 4+ 7) = 7'%a (mod p).

From this it follows that the rational numbers N(n'a + n) run through a
complete system mod p, hence also mod p, if « runs through a complete
system of residues mod p.

2. pis irreducible in k(\/a ), thus p is a prime of degree 2. Let p be a prim-
itive root mod p in k(,/d). Then

p? = p' (mod p) and hence N(p)= pP*! (mod p). (128)

For if the quadratic function f(x) = x* + ax + b with integral coefficients
has the roots p, p’, then the functional congruence

S(x)? = f(xP) (mod p)
implies
0= f(p") = (p* — p)(p” — p) (mod p),
from which (128) follows. Hence the residue classes of
N(p®) = p*** " (mod p)

are mutually distinct, for a=1,2,...,p — 1, since two powers of p yield
the same residue class only if the exponents are congruent mod (N(p) — 1),
that is, mod(p? — 1). Hence there are N(p®) rational residue classes modulo p
which are relatively prime to p.

Theorem 139. If the odd prime q divides the discriminant d of k(,/d), then
exactly one half of the classes of R(q) are norm residues mod q, and indeed
these are the classes of R(q) which can be represented as the square of a class.
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If q is the prime ideal of k(,/d) which divides g, then each number o in
k is congruent to a rational number mod g, say r. However, since q = q’ it
follows from « = r (mod q) that & = r (mod q) and

N(«) = r* (mod q), hence also mod g,

(M) = 41
q

Conversely if the condition (§) = +1 is satisfied, then there is a rational
integer x with a = x? (mod q), and since a = N(x) (mod g), a is a norm
residue. Moreover we see that for arbitrary composite moduli m, n:

that is, if (r,q) = 1,

Lemma. Suppose that (m,n) = 1. Then if for each a there exist two integers
a and B in k(,/d) such that

a= N(o)(modm) and a= N(B)(mod n),
there is also an integer v in k(\/ﬁ ) for which
a = N(y) (mod mn).

To see this we choose positive exponents b, ¢ such that
mt=1(modn) and n°=1(modm)
(say b = ¢(n) and ¢ = @(m)). Then
y = n‘q + m°B

has the asserted properties.
As far as the prime 2 is concerned, we consider the group R(2°) for a = 2
or 3.

Theorem 140. If the discriminant d of k(\/d) is odd, then each odd number is
anormresidue mod 8. However, if d is even, then exactly half of all incongruent
odd numbers mod 8 are norm residues mod 8.

For the proof we test the residue classes in k(,/d) mod 8. We find, with
a = x + y./d and d odd, that
x=01,21
y=10,1,2
N(@)=3,1,7,5(mod 8), ifd=5(mod 8)
N@=17,1,3,5(mod8), ifd=1(mod 8)

and thus the first assertion is proved.
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We deal with the second part of the theorem in the same manner. For
even d exactly the following residue classes mod 8 appear as norm residues
mod 8:

N(x) = 1 or 5 (mod 8), if g = 3 (mod 4)
. d

N@)=1or —1(mod8), if 1= 2 (mod 8) (129)
. d

N(x) =1 or 3 (mod 8), if 7 = 6 (mod 8).

Note that for d/4 = 3 (mod 4) the only norm residues mod 4 lie in the residue
class of 1 mod 4, hence also that 9t(4) is different from R(4).

We now wish to express this state of affairs somewhat more clearly by
using the general concepts of group theory from §10. Only the norm residues
modulo the divisors of d will be of interest. Let q;, ¢», . . . , ¢, be the ¢ distinct
positive primes dividing d, with the exception that when d is even, the number
q, denotes the highest power of 2 dividing d. Then for each i =1,...,¢ the
group N(q;) of the norm residues in k(\/ﬁ) is a group of index 2 in R(q,).
By Theorem 33, the fact that a class in R(q;) belongs to this subgroup is
thus expressed by the fact that a completely determined character of the
group R(q;) has the value 1 for this class. This character y;(n) can be given
immediately, where we denote the representative of the residue class by the
argument n, as is common with residue classes. For by Theorem 139

xi(n) = <71"-> if g, is odd. (130)

The group R(8) has two basis classes, each of order 2; consequently it has
three distinct subgroups of index 2, and as (129) shows, each of these also

appears once as (8). The three quadratic characters mod 8 which are
different from 1 are

(_ 1)(n— 1)/2, (_ 1)(n2— 1)/8, (_ 1)(n— 1)/2 +(n2— 1)/8,

and for even d we thus find the last character

d
(=1)m-viz) if 1= 3 (mod 4),
d
xu(m) = (= 1)~ DIE, if 7=2(mod8) (131)
(—1)m-D2+E =18 g f-: = 6 (mod 8),

that is,
xe(n) = (= 1)@~ VBH@ =12 =1/2) jf d = 294" @’ odd. (132)
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In view of the lemma, it thus follows immediately that

Theorem 141. The group R(d) of norm residues mod d for a quadratic field
with discriminant d has index 2' in R(d), where t is the number of distinct prime
factors of d. In order that a number n be a norm residue mod d, it is necessary
and sufficient that the t residue characters

xun  (=1...,9
defined by (130) and (132), have the value +1.

To make a study of the literature easier let us note that Hilbert also
defined the norm residue concept for those numbers n which are not coprime
to p, and that in the remaining cases the definition has a different form:

Definition of the Hilbert norm residue symbol: Let n and m be rational
integers, m not a square, p a prime (including 2). If the number » is congruent
to the norm of an integer in k(/m) modulo each power p*, then let us set

<n,m> _ 41
p

and call n the norm residue of the field k(\/ﬁ) mod p. In each other case let
this symbol be equal to — 1, and let n be called a norm nonresidue mod p.
If n is not divisible by p and p divides the discriminant of k(\/—r?z), then

(”‘;d> — () (g 0dd)

i

<"’2d> = (1) (deven).

On the other hand, if p does not divide nd, then we have (%’) =+1.

§48 The Group of Ideal Norms, the Group of
Genera, and Determination of the Number of
Genera

As in the case of norms of numbers, the norms of ideals of k can now also
be studied. Those residue classes mod d which can be represented by norms,
taken to be positive, of ideals of k(,/d) relatively prime to d obviously form a
subgroup of R(d). Let this subgroup be called the group of ideal norms
mod d and let it be denoted by J(d). R(d) is obviously a subgroup of J(d).
For if a class mod d can be represented by the norm of a number N(x), then
N(a + dx) belongs to the same class for x a rational integer, and for sufficiently
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large x N(« + dx) is obviously positive. Thus it is the norm of the principal
ideal (a + dx).

Since the structure of N(d) is already known to us by Theorem 141, we
need only investigate the factor group J/9. Since N has order ¢(d)/2', the
order of J(d) is a multiple of this number; on the other hand, the order is
a divisor of the order ¢(d) of R(d). Consequently the degree of J/M is
equal to 2%, where the integer u < . The first principal result will be the
equation n =t — 1; the second important result will be the disclosure of
the connection of this group with the group of ideal classes and Theorem 133.

The factor group J/M arises if we do not regard as distinct norms of
ideals which differ mod d only by a factor which is the norm of a number in
k. For these ideals we obtain a division into classes which we can define in
a useful way as follows:

We consider two integral ideals a and b in k, coprime to d, to be of the
same genus if there is a number « in k such that

IN(a)] = N(@)|N(b)| (mod d).

In the manner familiar to us we combine the genera in k to form the
Abelian group of genera by defining the product of two genera G, and G, as
that genus to which the ideal a, - a, belongs, where a, and a, are ideals
from G, and G, respectively. The group of genera is obviously isomorphic
to the group J/9t. The unit element of this group is called the principal
genus; it is that genus which contains the ideal 1, thus the principal ideal,
in the strict sense. Ideals which are equivalent in the strict sense obviously
belong to the same genus if they are coprime to d; consequently each genus
consists of a certain number of ideal classes in the strict sense. Since the
classes which belong to the principal genus—Ilet their number be f—ob-
viously form a subgroup of the class group, f is a divisor of h,, and each
genus contains exactly f classes. If g denotes the number of different genera,
then

ho=g"f.

The square of each genus is the principal genus. Namely, if for each a, we

set a = |N(a)|, we have
|N(a?)| = N(a).

Thus the order g of the group of genera must be a power of 2, g = 2% as we

already found above for the group J/9. However, we obtain at once a more

precise statement about u if we keep in mind that the number of distinct

classes, which can be represented as squares is, by Theorem 133 exactly

ho/2'~! because of Theorem 129. Consequently,

h h

2,—31, g=7°s2“1, u<t—1. (133)
Now to prove the equation u = ¢t — 1, we attempt to construct the group

characters for the group of genera. We obtain these at once from the ¢

f=
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functions y;(n) of the preceding section. For each norm residue n mod d, the
xi(n) have the value 1. If we now define for each integral ideal a from k(\/d),
relatively prime to d, the ¢ functions

v@=x(N@) G(=1...,9, (134)

then each y;(a) has the same value for ideals of the same genus. Moreover,
7i(ab) = yi(a) - ;(b), so we have:

Theorem 142. The ¢t functions y,(a) are group characters of the genus rep-
resented by a.

Now by §10, the group of characters of an Abelian group is isomorphic
to the group. There are u independent elements in the group of genera and
no more, because this group is of order 2* and each element has at most
order 2. Consequently, there are also exactly u independent characters.
Hence, among the ¢ characters at least ¢ — u relations must hold. That is,
since t —u>1:

Theorem 143. At least one relation must hold for all ideals a of the field which
are coprime to d, namely,

t
IT ¥ =1,
i=1

where the rational integers c; are independent of a and are not all divisible
by 2.

Thus for ¢ = 1 the equation

71(0) = x1(|N(@)]) = 1
must hold. In fact this is exactly one part of the quadratic reciprocity law,
which has not been used until now (in §47 and 48). We see that the proof of
this equation is essentially reduced to the fact that h, is odd for fields with
t = 1, as in our proof in §46.
Conversely, we now wish to obtain the equation

t

[T vi@=1 (135)

i=1

from the quadratic reciprocity law. For this we show that for each positive
integer n relatively prime to d the equation

ﬁ xi(n) = <%> (136)

i=1

is valid. For odd d we have

feo=11(6)= ()= (@)




§48 The Group of Ideal Norms, the Group of Genera 175

and, by (127), this quantity is equal to the reciprocal symbol. However, if
q: = 2°(a > 0) and d = 2°d’, then

t—1
[T ) = <%>, xi(n) = (= 1)o* = /8 +(@ = /2= 1)/2)
and (136) likewise follows from (126).

From this we now obtain at once the character relation (135) for prime
ideals of degree 1. Namely, for such a = p, by the decomposition theorems,
we have (y&;) = +1. However if a is a prime ideal of degree 2, then N(a) is
a rational square, hence each y;,(a) = 1. However, if (135) is valid for each
prime ideal not dividing d, then it is also valid for each a with (a,d) = 1.

The fact that the number of genera g is exactly 2! is now proved most
easily with the use of transcendental methods if we show that there is only
the one relation (135) between the ¢ characters y,(a) and hence that there
are t — 1 independent characters y;(a) of the group of genera, whose degree
is at least 2' !, consequently exactly 2:~1, by (133).

i=1

Theorem 144, Let e, e,, . . ., e, be t numbers +1 such that e, -e, - - ¢, = 1.
Then there are infinitely many prime ideals p of degree 1 in k(\/—zf ) for which

W =e (=12...,0.

If we set N(p) = p, then the assertion obviously states that there are
infinitely many rational primes p which satisfy the conditions

xi(p) = ¢ i=1...,9

5o

By (136), the last condition is now a consequence of the first ¢ conditions,
since e; - e, ' - ¢, = + 1. Thus we need only keep these conditions in mind.

Since each y;(n) is a residue character mod g;, the single equation

xi(n) =¢;

thus requires that n belong to certain residue classes mod g;, and there are
always such rational integers n. The fact that the ¢ equations hold simulta-
neously thus requires that n belong to certain residue classes modulo each
of the ¢+ moduli ¢;. By Theorem 15, this means that n belongs to certain
residue classes mod q; - g, - - - g, that is, n belongs to certain residue classes
mod d (which are of course relatively prime to d). Now however, by Theorem
131, in each residue class mod d which is relatively prime to d, there are also
infinitely many positive rational primes. Thus our theorem is proved.

We proved the existence of these primes by the theory of cyclotomic fields
of the |d|th roots of unity in §43. It is important that the existence of infinitely
many p with x,(p) = e; can also be deduced from the theory of quadratic
fields alone (as well as by transcendental methods) as we still wish to show
in §49.

and
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As already shown above, it follows from Theorem 144 that g = 2' !, thus
f = ho/2'~1. That is, the number of classes in the principal genus is equal to
the number of those ideal classes which can be represented as squares of
classes. Thus we have proved:

Theorem 145. (Fundamental Theorem of Genera). In the quadratic field with
discriminant d the number of genera is equal to 2'~*. A complete system of
independent characters of the genus group is formed from any t — 1 of the
functions

i@ =x(N@) G=1,...,9
In order that an ideal class be a square, it is necessary and sufficient that it

belongs to the principal genus.

Gauss first found this theorem and gave a purely number-theoretic proof
for it. Such a proof is also presented in Hilbert’s Bericht.

From the last part of the above theorem we can further conclude that
in order for the ideal g, relatively prime to d, to be equivalent to the square
of an ideal, it is necessary and sufficient that |N(a)| be a norm residue mod d,
that is, that the congruence

|N(a)| = x* (mod d)

be solvable with x a rational integer. Then the ideal norm |N(a)| is also the
norm of an integral or fractional number of the field. For from a ~ b? there
follows the existence of a number o, of the field, with

a = ab?, N(x) > 0.
Hence

IN(a)| = N(@) - |N(52)|.= N(a) - N(b)? = N(ab), where b = [N(b)|.

§49 The Zeta Function of k(\/fi ) and the
Existence of Primes with Prescribed Quadratic
Residue Characters

In order to express the zeta-function {(s) of k(,/d) by simpler functions, we
consider those factors in the infinite product

1
{ils) = l;[ = Np)©™

which are derived from prime ideals p which divide a definite rational
prime p. By the decomposition laws we see at once that this partial product

[0 - N =1 =571 (5)o~).
vlp
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Consequently {,(s) becomes the product
1 1
Gls) =11 =11 s
s 1l—p™ 4, <d> _
1—-{=)p¢
p

where p runs through all positive primes, which likewise converges for s > 1.
Hence

Ci(s) = L(s) - L(s)
Lis)=]] ——Z—
Lo

p

If we substitute this expression for {,(s) into Formula (95) for the class
number, then we obtain

(137)

h - % =lim L(s). (138)

s—1
From this we conclude that L(s) tends to a finite limit different from 0 as
s approaches 1. Now we wish to derive results about the distribution of the
symbol (2) from this fact in a manner similar to that used in §43. It follows
from (138) that
lim log L(s) is finite. (139)

s=1

As with L(s, ) in §43, we find

il ()
_gmil p" <p>m

= % <I;> E + H(s),

where H(s) is a convergent Dirichlet series for s > 1, which thus has a limit
as s — 1. Hence by (139)

. ay1. .
lim )’ <—> — is finite. (140)
s=1 p \P/ P

This assertion is obviously still true if we omit finitely many p from the sum,
and consequently also if we replace d by an integer differing from d by a
rational square. That is,

Theorem 146. If a is an arbitrary positive or negative rational integer, which
is not a square, then the function
a\ 1
L(s; a) = <—> —
,,;z p)r
has a finite limit as s — 1.
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A formalism similar to that of §43 then leads us to

Theorem 147. Let ay, a,, . . ., a, be any rational integers such that a product
of powers
a';laZZ “ e a:“r

is a rational square only if all u; are even. Moreover, let ¢y, c,, . . ., ¢, take
arbitrary values +1. Then there are infinitely many primes p which satisfy
the conditions

p

For the proof we set, for the sake of symmetry,

(‘1’) —¢ fori=1,2,...,r (141)

1
L(s; 1) = —
) p§2 p
(a function which grows beyond all bounds as s — 1 by §43), and we form
the sum
Y ety crL(s et ay e a) = o) (142

consisting of 2" terms (s > 1), where each u; runs through the values 0, 1.
Thus the definition of L yields

o(s) = pgz (1 Yo <%>)<1 + c2<%>> e (1 + c<%>> %. (143)

As can be easily seen, in this sum over p, only the terms p~* in which p
satisfies Conditions (141) of the assertion have a nonzero factor (and in
fact the factor 2"), except for the finitely many p dividing a. Now

lim ¢(s) = ©

s—1
since L(s,1) grows beyond all bounds in each sum (142), while, by our
hypothesis, all remaining L(s; a) remain finite by Theorem 146. Consequently,
infinitely many nonzero terms must also appear in (143) and our theorem
is proved.

In particular, from this it follows for r = 1:

In each quadratic field there are infinitely many prime ideals of the first
degree as well as of the second degree.

If, in the notation of the preceding section we choose the a; = +¢; and
r = t,s0 that each g; itself is a discriminant of a field and the product
a; - a, - a,is exactly d, then by Formula (136) applied to each individual

field k(./ay),
xp) = (“;) (i=1,...,
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and thus Theorem 144 of the preceding section has been proved without
the Dirichlet theorem on primes, that is, without the theory of cyclotomic
fields.

§50 Determination of the Class Number of k(,/d)
without Use of the Zeta-Function

We now turn to a determination of the number h of ideal classes (in the
wider sense) by the methods of Chapter 6. At first we wish to undertake this
determination, as in §41, just from the density of ideals, without use of {,(s).
Afterwards we wish to apply the formally more elegent method of Theorem
125 with the help of {,(s).

To use the first method we must determine the function F(n), the number
of integral ideals of the field with norm n. By (89), F(ab) = F(a)F(b) for a
and b relatively prime.

Lemma. For each power p* of the prime p,

k k i
Fp) = 3, <§> =1+ -; <g> (144)

i=0

Case (a): (ip) = —1. If N(a) = p*, then we must have a = p* with positive
rational u; hence 2u = k, i.e.
1, ifkeven
k — 2
F = {o, if k odd

in agreement with Equation (144).

Case (b): (%) = 0. p is the square of a prime ideal p, and it follows from
N(a) = p* that a = p*, so u = k and F(p*) = 1.

Case (c): (&) = +1. pis the product of two distinct prime ideals p, p’ and
it follows from N(a) = p* that a = p*-p™ with u + ' = k. Then, for
u=0,1,...,k the k + 1 pairs of numbers u, k — u yield exactly k + 1
distinct ideals a and we obtain

) Fp"=k+1
as asserted in the lemma.

Theorem 148. For each natural number n we have

=2 (o)

where m runs through all distinct positive divisors of n.

If we decompose n into its distinct prime factors

— pki . pk2 ... pk
n=pi' - p7? J 24
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then

i=1¢=

d d
Fn = _ ] = — 1.
" c1=o,z.:..,zl (p‘l‘p‘f o 'p£'> ,§<m>

We henceforth set
d
<;> - X(n), n>0

in order to thereby emphasize the fact already proved by Theorem 137, that
for positive n, () is a residue character mod d.

We now substitute the expression found for F(n) into Formula (88) of
§41 and we obtain

F(n) = F(p}") - F(p%) - - F(p}) = H Z ( )

Y. F()
h-%=lim*2Z=* llm—Z Y x(m).

X0 X— 00 n<x m|n

In the finite double sum we set (with m’ integral)

n=m-m, ) Fm= ) x(m),
n<x m,m’>0
m-m'<x
where m, m’ run through all natural numbers whose product is < x. Thus
m’ is to run through those integers with the property

x
l<m<—
m’

whose number is [x/m], where [u] denotes the largest integer < u. Conse-
quently we obtain

S Fm= ¥ x(m)[ ]

1<n<x 1<m<x

_ x(m) x
_xls§<x m +1<Zm<xX(m)<|: jl_;>

After division by x the first sum has the limit

5 um)

as x — o0, since the series converges for s = 1 by Theorem 128 since it is the
series L(s, x) for s = 1. Thus we obtain

X(n) X X
Z + J!Loo X 1<Zn:sx X(n)<|:;i| a E)
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However, the last limit is equal to 0, by the following general limit
theorem:!
Let a,, a,, . . . be a sequence of coefficients such that

lilea,,=0 and ) |a|<x forallx>0.

x>0 X p<x n<x

1 X X
lim - X1-%)=o.
xl_ﬂx,g‘x a"([n] n) 0

By the proof of Theorem 128, these hypotheses agree for a, = y(n). Thus we
obtain

Then

hex= ..i @ (145)

In the next section this equation will be proved in a shorter way using the
zeta-function and accordingly the sum will be treated further.

§51 Determination of the Class Number with the
Help of the Zeta-Function

In §49 we have already represented {,(s) as {(s) - L(s) where

1
Lo =]] ————— 137)
( Ip] 1 — x(p)p (
and concluded from this that
h - % =lim L(s). (138)

s—1
Now since x(n) is a residue character mod d for natural numbers n, the
function defined by (137) is identical with some L(s, ) from §43 and

S x(n
L=y X
n=1
from which, by Theorem 128, the equation

hex=r)=3 4 (145)

s
n=1

follows, which we have just obtained in §50 without using the zeta-function.
If we compare the two proofs of this formula, then we see, by the decomposi-
tion laws, that the representation of {,(s) as {(s)L(s) means the same thing as
the determination of F(n) by Theorem 148 as far as content is concerned.

! For this theorem compare E. Landau, Uber einige neuere Grenzwertsitze. Rendiconti del
Circolo Matematico di Palermo 34 (1912).
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We now know that for the quadratic field with discriminant d

2loge

V4|
T fd<0;w=2ford < —4)

N

Thus, for positive d we obtain from (145) the remarkable

if d > 0 and ¢ is the fundamental unit, ¢ > 1,

Theorem 149. The expression

£2h _ eﬂz;?: 1 (%)/"

represents a unit of infinite degree in k(,/d) with d > 0. And
g2h 4 g2h = g2h 4 g=2h _ GVAL(L) 4 VAL — 4

is a rational integer such that this unit is the larger of the two roots of the
equation
x> —Ax+1=0.

The rational integer A can thus also be calculated numerically by esti-
mating the remainder of the convergent series L(1) and with this we have a
transcendental method for finding a unit in real quadratic fields.

However, in each case the series L(1) can be summed in a very visible way,
and in particular a surprisingly simple expression is obtained for h for
imaginary quadratic fields.

Since y(n) is a periodic function of the integral argument n with period
|d| for n > 0, the idea of expanding x(n) in a kind of finite Fourier series
seems natural. Thus we try to determine the |d| quantities ¢, (n =0, 1,...,
|d| — 1) in such a way that

ld] -1

W)=Y ol™ (=) (146)
n=0
for

a=0,1,...,|d -1

These |d| linear equations for the ¢, can certainly be solved uniquely, as the
determinant of the coefficients {*" is surely different from 0. For the calcula-
tion it is useful to define x(n) and ¢, for arbitrary n, therefore for negative
rational integers n, by setting

x(n)=yx(m) and ¢, =c, ifn=m(modd).

With this equation (146) is true for each rational integer a.
(For x(n) with negative n, this does not always correspond to the condition
x(n) = (9), since by our earlier agreement (%) = (£,).)
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By Theorem 137, we obtain
x(n) = x(—n) - sgnd, (147)
and from this follows an analogous property of ¢,. For if we set

X(—'a) = Z cng—an,

n

where n runs through an arbitrary complete system of residues mod d, then
since the same holds for —n, we obtain

x(—a)=Y c_ (™ x@=Y c_,sgnd (™

Since the c, are uniquely determined by (146)
C_p,=c,sgnd. (147a)

We will take up the determination of the c, later; however, even now we can
put L(1) into an essentially different form:
© 1 |d|-1

L) = 2 x(n) _ I

nlan

Now as is known from {? # 1, |{| = 1,

© rqn

~log1 —¢9= ¥ %,

in particular, this series converges for q # 0 (mod d). Thus we must have
¢o = 0 since Y 2, 1/n diverges but the whole series L(1) converges. Hence

we write
14— 1

L=% ¢

q=1 n

5
1 h

If we take the terms with g and with |d | — g together and we consider (147a),
we obtain
1 14l-1 © (a4 osgnd- (T
L(l)== Z g

n 1 n

and thus obtain two essentially different expressions for d > 0 and for
d<0:
1.d<0
2nqn
-1 e |d|
L(l)=i Zl C, Z :
e =

However, it is known that

© sin 2
ZS‘“ ™ —x) for0<x<l.
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dl—1

Ly =2 Zc i Z ¢ T

By (146), if we set a = 0 the first sum is equal to 0, hence
Ti |d|—1

L(1)= T Z ne,
wi M1
h= _m ngl nc,. (148)
2.d>0
d-1 © qn d-1
L) =3 3 ¢ 3 = 3 o Rellog(t ~ 09)

da—1 d—

1
= - Z ¢, logll — {9 = — Z ¢, log|e™a/d — g~ miald],
where Re(u) denotes the real part of u and the last symbol log denotes the

real value. Thus
— d—1
V4| 7n (149)

= Jloge ..21 ¢, log sin i

In the two final formulas for h, the ¢, must still be calculated from Equations
(146), which will now be done.

§52 Gauss Sums and the Final Formula
for the Class Number

To derive ¢, we obtain immediately from the defining equations, by multipli-
tion by {~“" and summation over a mod d,

ld|—1 || -1 |d|-1

T s ="5 e, ; e = |
14l —1
|| z X( )C a"— |d| ZX( a)C an
|d' 1
= Z 2@

This last sum is called a Gauss sum. Gauss first investigated it and obtained
its value, where the chief difficulty is the determination of the sign. In this
section we wish to establish only its simplest properties, and to postpone
closer investigation to the next chapter, where we treat the analogue of Gauss
sums for arbitrary algebraic number fields.
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In this section we set, for an arbitrary discriminant d of a quadratic field
and an arbitrary rational integer n,

Gnd)= Y x(ae*™ e (150)
amod d
where

x(—a)=x(a)sgnd

x(a) = <§>

It follows from the definition that
G(ny,d) = G(n,,d) if ny = n, (mod d).

We show moreover that calculating G(n,d) can be reduced to calculating
G(n, q), where q is a discriminant which is divisible only by a single prime.
For this purpose, we set, in the notation of §47, in case ¢ > 1,

d=(%q) (£q2) - (x4q),

where the signs are chosen so that each + g; itselfis a discriminant. Moreover,
we define the residue character

_ (x4
%n) ( n ) r=1,...,0,n>0, (151)

Xr( - n) = Xr(n) sgn (i qr)

so that the Gauss sum G(n, +¢,) can also be formed from the y,(n). Finally,
we choose a special system of residues a mod d, namely,

o, 14 ++a ldl
1 t s
q1 q:

where each a, is to run through a complete system of residues mod g,. Here

and for a positive a

a=

x(n) = x1(n) - x2(m) - - x:(n)
%@ = x(a,) x,<| |>

Gond)= T gla): - ulaetmmesars- . aioc

c- 1140 a5y

qr

with

Hence we have

t
G(nd)=C [] G(n, £q), C==L (153)
r=1

From this equation we obtain
G, d)=0 if(nd)+#1, (154)
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for if n has one odd prime g, as a common factor with d, then for this g,
G(n’ iqr) = G(Oa iqr) = Z Xr(a) =

a mod g,
by Theorem 31, since y, is a character mod g,. However, if n and d have 2
as a common factor, then G(n, —4) or G(n, +8) appears as the last factor in
the product (153). But for even n this product is 0, as one can convince
oneself by a calculation.
As the third property for G we find that for rational integers ¢, n

G(en, d) = x(0)G(n,d), if(c,d) = 1. (155)

For
x()Glen,d) = Y yl(ac)e* ¥l = G(n,d),

amod d

since, along with a, ac also runs through a complete system of residues mod d.
Since y%(c) = 1, the assertion then follows.

Theorem 150. For each rational integer n
G(1,d
Gnd) = 10G(Ld), =1l oD,

For if n and d are not coprime, then by (154) both sides of the first equation
are equal to 0. However, if (n,d) = 1, then we choose ¢ in (155) in such way
that cn = 1 (mod d); thus x(c) = x(n).

For the complete determination of ¢, we are only lacking the value of
G(1,d), which is independent of n.

Theorem 151. G*(1,d) = d.
By Equation (153) we need only prove the theorem for those d which are

divisible by only a single prime. For d = —4 or d + 8 the truth follows by a
direct calculation. However for |d| an odd prime we find

q—1 q—1
G*(1,£q) = Zb 2@y ()t = ; x(@) bz:,l x(ab);*

q-1 q-1
= ¥ xb) ¥ Lo
b=1 a=1

Now
_ 0, if(n,q) =1,
no... @—1)n _
L&+ g {q, if n = 0 (mod g).
Thus
G(L,xg= —=)  xb)+(q—hx(-1
b= —1 (mod q)

=q(-)- Y xb)=

bmodd
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Now the problem arises of finding which of the two values of \/d defines
the number G(1,d), which was given in a transcendental way by means of
the exponential function. This is the famous problem of determining the
sign of the Gauss sums, which we will settle in the next chapter.

Theorem 152. The class number h of the quadratic field with discriminant d
has the value

ld| -1 —i
h=—-P Y n<é>, p=—l—GM +1 ford < —4.

]

T & " v
na
[]sin—-
h=21§ 8log“ fb’ p=G(1’d)=i1 ford > 0.
g []sin— |‘/E|
b d
In the second expression a and b run through those numbers 1,2,...,d — 1

for which

(G-t (-

respectively. The final result will be that we always have p = +1 (§58). The
formula for the class number of an imaginary field then becomes remarkably
simple, and from its structure it appears to belong completely to elementary
number theory. In spite of this, until now no one has succeeded in proving
this formula by purely number-theoretic methods without the transcendental
techniques of Dirichlet. Up to now we have not been able to even show that
the expression for & is always positive by other methods. At present we can
only take this formula, which is still completely incomprehensible to us, as
a fact for calculations.

The second formula behaves likewise. In particular, we obtain from it the
fact that the quotient [],/[ ], is a unit of the field k(/d). This latter formula
can also be proved rather easily from the theory of the 2dth roots of unity,
to which this number obviously belongs. However, until now it also has not
been proved by purely number-theoretic methods that this unit is > 1 and
that it is connected with the class number in the manner described above.

§53 Connection between Ideals in k(,/d) and
Binary Quadratic Forms

To conclude this chapter we present the connection between the modern
theory of quadratic fields and the classical theory of binary quadratic forms,
for which Gauss laid the foundations.
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By a binary quadratic form in the variables x, y we mean an expression
of the form
F(x, y) = Ax* + Bxy + Cy?,

where the coefficients of the form, 4, B, and C, are quantities independent
of x and y and not all 0. Obviously such a form can always be represented
as a product of two homogeneous linear functions of x, y:

F(x, y) = (aa + By)('x + B'y). (156)

The four quantities o, f, o, f’ are, of course, not uniquely determined by
A, B, C. For example, if A # 0

e e -

By comparing coefficients we confirm at once that

2

B
ﬁl
This expression is called the discriminant (or also the determinant) of the

form.
If we apply a homogeneous linear transformation

D =B?—44AC = (af — «p)* = (157)

x = ax} + by}, y = cxi + dy}, (158)
to the variables x, y, then F(x, y) is transformed into a quadratic form in
x', y'. If we choose the form (156), then

F(ax, + by, cx; + dy,)
= ((aa + Bo)x; + (ab + Bd)y,)((e'a + B'e)xy + (b + 'd)y;)
= Ax{ + Byxyy; + C1yi = Fi(xy, y1)-
The connection between the A, B, C, and the 4,, B;, C, does not matter
for us. However, we note that for the discriminant,
aa + Bc ab + Bd|?

D, =B? —44,C, =
! ! 1= o«a+ fc ob+ pd

a Pl*la bl?

o B |c 4’
D, = D(ad — bc)%.

If the discriminant of the transformation, ad — bc, is different from 0, then

conversely the form F(x,, y,) transforms into the original form F(x, y) by a
suitable transformation of x,, y,. For it follows from (158) that

(159)

dx — by —cx + ay

1= be’ = Td —be
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This transformation is said to be reciprocal (inverse) to the transformation
(158). Its determinant is 1/(ad — bc).

We now consider exclusively those transformations where the coefficients
a, b, ¢, d are rational integers with determinant ad — bc = + 1, the so called
integral unimodular transformations. The reciprocal of such a transformation
likewise has this property, as the above formulas show.

Definition. If a form F(x, y) is transformed into the form F,(x,, y,) by an
integral unimodular transformation, then we say F is equivalent to F,, in
symbols

F~F,.

By what has just been demonstrated, we also have F; ~ F, as F is
transformed to F by the reciprocal transformation. Thus the equivalence is
symmetric in F and F;. Furthermore F ~ F always holds.

Lemma (a). If
Fl ~ F and Fl ~ F2
holds for the three quadratic forms F, Fy, F,, then
F ~ Fz.

In fact if there are two unimodular transformations with integral coeffi-
cients a, b, ¢, d and a,, b,, ¢,, d, respectively, for which

F(ax + by, cx +dy) = Fy(x,y) and Fy(a;x + byy, ¢;x + d,y) = Fa(x, ),
then, in the first equation, we set
X = a;xy + byy,, y=cx; +diyy

From now on we omit the index 1 from the variables x;, y; whose designa-
tion does not really matter. By combination with the second equation it
then follows that

F((aa; + bcy)x + (aby + bd,)y, (cay + dcy)x + (cby + ddy)y) = F,y(x, y).

The arguments of F are obtained from x, y by an integral homogeneous
linear transformation, and the determinant of its coefficients is

aa, + bc; ab, + bd,

cay +de, cb, +dd,| (ad — be)(aydy — bycy) = 1.

That is, F ~ F,. Thus the equivalence is transitive.

By a class of equivalent forms we mean the collection of all forms which
are equivalent to a given form, say F, and we call F a representative of the
class. By (159), all forms of a class have the same discriminant.

We restrict ourselves mainly to real forms, that is, to those forms with
real coefficients. If F is a real form, then the same holds for all forms equivalent
to F.
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Theorem 153. If D is the discriminant of F and D > O, then F(x, y) may take
positive as well as negative values for appropriate real values of x, y. If D < 0,
then either the value of F is > 0 for all real x, y or F(x, y) < 0 for all real
x, y; F(x, y) = 0 is possible only for x =y = 0.

For the proof we consider the decomposition

B\ D,
A F(x,y)—<Ax+7y> —zy.
Now if D = B> — 44C < 0, then we must have A4 # 0 and it follows from
the equation that
AF(x, y) =0,

where the equality sign holds only if y = 0 and Ax + §y = 0, thatis,x = y =
0. Consequently, F(x, y) always has the sign of 4 if x* + y* # 0.

On the other hand, if D > 0, then, to begin with, suppose that 4 # 0.
Then

A-F(1,0)=A42>0
A-F(B, —24) = —DA* < 0;

hence both signs are possible for F and F can obviously also be zero for real
x, y without x and y both vanishing.
If D > 0 and A = 0, then the equation

F(x, y) = y(Bx + Cy)

shows the truth of the assertion.

The form F is called indefinite if D > 0; on the other hand it is called
definite if D < 0, and in the latter case it is called positive definite (respectively
negative definite) if F(x, y) > 0 (respectively F(x, y) < 0).

From now on we consider integral forms exclusively, that is, forms with
integral coefficients. The discriminant D is obviously congruent to O or
1 (mod 4).

Now let e be the discriminant of the quadratic field k(,/e). We wish to
develop a method by which we can assign to each ideal class of k(\/Z) (in the
strict sense) a class of equivalent forms with discriminant e.

For this purpose let a be an arbitrary integral ideal of a given class of
k(o)

We let

oy, o, be a basis for a, for which
a0y — a0 = N(a)\/e is positive or
positive imaginary. (161)

To each ideal a we assign the form

(a3x + azy)(ayx + a3y)

F(x,y)= |N(a)|
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This form obviously has rational integral coefficients, as the divisor of
the coefficients of the numerator is equal to the product aa’ = N(a) by
Theorem 87. Furthermore, by Equation (157) the discriminant is

D= (g0 — op004)? _
N(a)?

If a form F is derived from the ideal a in this way, then we say: F belongs
to a and we write F — a.

With e < 0 we obviously obtain only positive definite forms, for the first
coefficient is

_ 010 _ |N(°‘1)|
A= RNEl = e

Lemma (b). For each indefinite (e > 0) or positive definite (e < 0) integral
form F with discriminant e there is an ideal a such that F — a.

To begin with, the form F(x, y) = Ax? + Bxy + Cy?, where B> — 4AC =
e, is a primitive polynomial since if p divides 4, B, C, then e/p? must also be
a discriminant, which is possible only for discriminants of fields when
p = +1. We now consider the ideal

m=<A,B_\/E>,

2

where /e denotes the positive (respectively positive imaginary) value. By
Theorem 87, N(m) = m - m’ is the content of the form

<Ax +B——-2£y><Ax +ﬁ2£y>= AF(x, y)

N(m) = |4|.

Consequently the two numbers A and (B — \/e)/2 in m are a basis for m,
since the square of their determinant has the value N?(m)e. Hence in exactly
the same way a; = A4 and a, = A(B — \/Z')/2 is a basis for Am if A is a num-
ber in k (A # 0). Since

a0y — a0y = AV AN/e,
this basis still has Property (161) if
AMA>0.

Hence we choose

(1) ife < 0, A = 1 (since by hypothesis A4 is then > 0),
(2) fe>0and 4 > 0,again A =1,
3) ife>0and 4 <0, = \/e.
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Then in each case
MA= IN(lm)I

and consequently F — Amt.

Theorem 154. Equivalent forms belong to equivalent ideals (in the strict sense)
and conversely.

We obtain
(g x + ) x + oh )
(B1x + B2y)(B1x + B2Y) (62
P 2 1 2
G(xa _V) - |N(b)| ’

respectively from the basis o, a, for a and the basis f;, , for b. Thus the
two bases have Property (161).

Now if F ~ G, then there are rational integers a, b, ¢, d, with ad — bc = 1
such that

F(ax + by, cx + dy) = G(x, y), (163)
((ac; + coy)x + (bay + doy)y) - ((acy + caz)x + (bay + doy)y)
IN(a)]
_ (Bix + Bay)(Brx + B2y)
N(b)

Since the quotients —f,/f; and — f,/B; are defined uniquely (except for
order) as the zeros of G(x, 1), we have

aony + co ﬁlo Bl
bay + da, B, ﬁz

Thus there is a A such that
aoy + cop, = Af, or AS
bo; + day = AB, or ABS.

In both cases we have by (163)

N(@)

N(b)

Consequently only the first of these two cases can hold, as in the second we
would have

AN = > 0.

(ad — be)(agay — az0y) = —AX(B1B2 — B21)
contrary to the assumption (161).
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Since ad — bc = 1, Af,, AB, is now also a basis for a; thus

a=ABy,B)=4"b
a=xb.

Conversely, suppose that a ~ b and A is a number with positive norm
such that a = Ab. Then Af;, 18, must be a basis for a which thus arises from
oy, o, by an integral transformation with determinant + 1. Hence there are
rational integers a, b, ¢, d, such that

aal + Caz = A’ﬂl’ bal + daz = },ﬁz
It follows from Property (161) for both pairs and N(1) > Othatad — bc = +1
and
N(a)

A = 'N(b)

and from this Equation (163) follows, that is, F ~ G.

By virtue of the fact stated in Theorem 154, the h, ideal classes of k(\/?l )
are assigned in a well-defined and invertible manner to the classes of forms
of discriminant e (when e < 0 only to the positive definite forms). The number
of nonequivalent integral forms with discriminant d is hence finite, and indeed
equal to hg, or, with e <0 equal to 2h,, if we include positive definite and
negative definite forms. For example, each positive form with discriminant
—4 is equivalent to x2 + y?, since k(,/—4) has class number 1.

A large part of ideal theory can then be translated into the language of
the theory of forms and vice versa. The latter is of particular interest for
the classical theory of reduced forms, with the help of which it is possible
to set up, by inequalities, a complete system of nonequivalent forms and to
give, with this system, a far more convenient process for setting up all ideal
classes than in §44.2

The theory of units (with norm + 1) again appears in the theory of forms
in the following way. All integral unimodular transformations which take
a given form into itself can be listed. In fact for each unit ¢ with N(g) = +1,
along with «; and a,, ¢, and ea, is also always a basis for a, and thus there
is a relation

gy = ao; + coy, en, = bay + doy

where a, b, ¢, d are rational integers with determinant + 1. If F again is taken
as in (162), then obviously

F(ax + by, cx + dy) = F(x, y).

2 This reduction theory likewise appears in the theory of elliptic modular functions which has
a close relationship to quadratic number fields. Compare, for example, Klein-Fricke Vori. iib.
d. Theorie d. Ellipt. Modulfunktionen, Leipzig 1890-1892, Vol. I, 243-269, Vol. II, 161-203,
as well as H. Weber, Elliptische Funktionen and algebraische Zahlen (= Lehrbuch d. Algebra
Vol. III) 2nd edition, Braunschweig 1908.
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To a large extent the theory of forms is concerned with the problem of
which numbers can be represented by F(x, y) if x, y run through all pairs of
rational integers. Obviously this goes back to the problem of which numbers
appear as norms of integral ideals in a given ideal class.

The difficult composition theory of classes of forms can be expressed
very simply in the language of ideal theory if composition of forms is defined
by that of the ideal classes.

The investigation of those forms whose discriminant is Q%e, where Q
denotes a rational integer, is reduced to the number ring in k(\/E) with
conductor @ (§36). Of the numbers which occur in an ideal, only those which
belong to this ring will be considered. In this way the concept of ideals of a
ring and the concept of ideal classes arise. These concepts are then applied
to a class of forms of discriminant QZe.



CHAPTER VIII

The Law of Quadractic Reciprocity in
Arbitrary Number Fields

§54 Quadratic Residue Characters and Gauss Sums
in Arbitrary Number Fields

We first encountered Gauss sums when determining the class number of
quadratic fields. Expressions of this type occur in many other problems and
Gauss was the first to recognize the great importance which these sums
have in number theory. His attention was directed to the connection between
these sums and the quadratic reciprocity law and he showed how a proof
for the reciprocity law is obtained by determining the value of these sums.
Today we know a number of methods of evaluating these sums. Among
them there is a transcendental method, due to Cauchy, which is of particular
interest since it is capable of generalization.

The concept of the Gauss sum for an arbitrary algebraic number field
was formulated by the author in 1919.! The Cauchy method of determining
the value can in fact be carried over, thereby yielding a transcendental proof
of the quadratic reciprocity law in each algebraic number field. This proof
is to be presented in the following.

We lay the foundations for the investigation of an algebraic number field
k, of degree n. First we will extend the concepts and theorems of §16, about
quadratic residues, to the field k. We can be very briefhere, as we have become
sufficiently acquainted with the basic general group-theoretic concepts.

An integer or an integral ideal in k is called odd if it is relatively prime
to 2.

! The so-called Lagrange resolvents in the theory of cyclotomic fields are generalizations in
another direction.

195
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Definition. Let p be an odd prime ideal in k, « an arbitrary integer in k which
is not divisible by p. We call a a quadratic residue mod p and set

-

if there is an integer ¢ in k such that « = £2 (mod p). In the other case we
call a a quadratic nonresidue mod p and we set

(-~

(g) =0 ifo=0(modp).

Finally we set

By Theorem 84 we see, as in §16, that for each integer « the symbol (£)
denotes that one of the three numbers 0, 1, — 1 for which

N - 1/2 = <§> (mod p). (164)

If we have to deal with residue symbols in different number fields, we will
distinguish them by attaching an index.
For integers «, f we have, once again,

(- seenmas
(-0

Now let an odd integral ideal n be decomposed into its prime ideal factors

n=p; P2 Py
We then define for an arbitrary integer « (in k)

OG- -

Thus this symbol is zero if « is not relatively prime to n, otherwise it is + 1.
We again have the rules of calculation

o B\ .. _
<E> = <E>’ ifa = f (mod n)
BY_(#). (8
n) \n) \n
for any integers a and . If k is the field of rational numbers, then the two
definitions (164) and (165) agree with the earlier ones in §16.
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We now assign a sum to each nonzero integer or fraction w of k in the
following manner:

Let d denote the different of k and let bw be represented as the quotient
of relatively prime integral ideals a and b:

b
=—; ,b)=1.
w o (a,b)
By Theorem 101 the trace S(vw) is a rational integer for each integer v which
is divisible by a. Consequently for integral v the number

£2miSv@)

depends only on the residue class to which v belongs mod a. If we now

form the sum

C(CO) — Z eZm'S(/Azw)’ (166)

pmod a

where p runs through some complete system of residues mod a, then we
obtain a number which depends only on w, and which is independent of
the special choice of the system of residues. We call such a sum a Gauss
sum in k which belongs to the denominator a. We agree here that an addition
to the ) sign, like “4 mod a” is to mean that the summation letter x is to
run through a complete system of residues mod a possibly with further side
conditions which will be stated.

In the rational number field these C(w) are formally different from the
Gauss sums defined in §52; however, as we will see at once, the latter can be
reduced to the C(w). If the denominator a is = 1, then obviously C(w) = 1.

We write

e =expx

whenever the formulas become more easily visible in this way.

Lemma (a). Let dw have denominator a. Then, if a # 1,

Y e2miste) —

pumod a

If o is an integer, then u + o runs through a complete system of residues
mod a whenever u does. If we denote the value of the above sum by A, then
we have

A=A - e*miseo) (167)

The exponential factor cannot be equal to 1 for each integer «, since then
S(aw) would always be a rational integer and so, by Theorem 101, dew would
have to be an integer contrary to the hypothesis. Hence it follows from (167)
that A = 0.

If %4, %5, a are integers, relatively prime to the denominator a of dew, then

C(x,w) = C(xp) if %, = %,a% (mod a), (168)
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since pa runs through a complete system of residues mod a simultaneously
with u; thus C(x,w) = C(x,a*w). However, for u an integer,

S(1Pn10) — S(uPn0%0) = S(p(ey — ,0%)w)
is then a rational integer because of the hypothesis; hence
C(x%,0%w) = C(x,0).

We show moreover that the Gauss sums belonging to the denominator
a can be reduced to those with denominator a; and a,, if a = a,a, and the
integral ideals a, and a, are relatively prime.

To prove this let ¢y, ¢, be auxiliary integral ideals such that

a;¢; = oy, A6 = Ay
are integers and (q, ¢;¢,) = 1. In (166) we set

ﬂ bC1C2
= N h = —_—
w s where >

We obtain a complete system of residues mod a, in the form

b= pio; + paog,
where each of p, and p, run through a complete system of residues mod a,
and mod a, respectively. Then

2miSre) — e2miS(piazplas) + 2miS(p3u1 Blaz).
9’

Clo) = c(i) - c<‘iﬁ>c<ﬂ). (169)
g0y oy oy

Using Equation (169), the calculation of C(w) can be reduced to the calcula-
tion of a Gauss sum, whose denominator is a power of a prime ideal.

For odd denominators the reduction can be carried still further, namely
until the denominators are prime ideals.

For let the denominator a = p® be the power of an odd prime ideal p,
with a > 2. If ¢ again denotes an integral auxiliary ideal which is not divisible
by p, such that pc = « is a number, then

B be?

= — h = N
® = where 5

hence

a’

and we have the recursion formula

B\ _ B
C<§> - N(p)C(aa_2> (170)

a—2

The sum on the right obviously belongs to the denominator p
To prove our formula, we choose a complete system of residues mod p*
in the form
B+ pott,
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where
pmod p*~ !, pmodp

each run through a complete system of residues. Then

C (é) = Y Y exp {ZniS <(u+—poi’:£/_3>}
o pumod pa—1 pmod p o

=S dorpm (), B g ()

By Lemma (a) the sum over p is equal to zero if 2u is not divisible by p,
that is, (since p is odd) if u is not divisible by p. In the other case this sum is
equal to N(p), since each of its terms is equal to 1. Consequently

c(aﬁ> = N(p) mogﬂ_l exp {ms (":ﬁ>}

1 =0 (mod p)

Thus p is assumed to run through all numbers va where v is a complete
system of residues mod p®~ 2, that is, the asserted Equation (170) is true.

By repeated application of this formula, for even a, we arrive at the sum
C(p), which belongs to the denominator 1 and thus is equal to 1. Thus we
obtain

Lemma (b). If the denominator of df/o® is equal to p°®, where p is an odd
prime ideal which divides o precisely to the first power, then

p N(p)¥?, if a is even,
clP)=
(a"> N(p)‘“_”/zC(g), if ais odd.

A similar reduction is possible for prime ideals p which divide 2. However,
we do not need to use this in later applications.

Theorem 155. Suppose that the denominator a of dw is an odd ideal. Then for
every integer » which is relatively prime to a

C(xw) = (Z) C(w).

To begin with, the theorem is true if a is a prime ideal p, since if we apply
Lemma (a), we have

Z <ﬁ> P2TS (o) z <<ﬁ> n 1> p2iS(e)
pmod p P umod p p

In this second sum only those terms where u is a quadratic residue mod p
have a value different from zero, except for the term which corresponds to
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the residue class u = 0. Hence the value of this sum is
1 + 2 Z e21ziS(/42w)

u2
where u? now only runs through the distinct quadratic residues, excluding
0. This is precisely the sum C(w), since each square except O occurs in this
sum exactly twice. Hence

Cw)= Y (g)ez’"'swwa 171)

pmod p

If we replace u by ux, a process which does not change the value of the sum,
we obtain the equation stated in the theorem.

By Lemma (b) the assertion is also valid if the denominator a is a power
p® of a prime ideal since, for even a, (%)= (¥)°=1 and the Gauss sum
actually has the same value for w and for xw. However, by what has just
been proved, the additional factor (%) = (%) appears for odd a.

Finally, Formula (169) then immediately implies the truth of our theorem
for an arbitrary odd denominator.

We deduce from (171) that in fact the sums G(1,d), defined in §52 for the
rational number field, are closely connected to the Gauss sums C(w); and
if C(w) is determined, then G(1,d) is also determined.

Finally we further conclude from (169) and Lemma (b):

Theorem 156. If the Gauss sum C(w) belongs to the denominator a, and if a
is the square of an odd ideal then

C(w) = VN@)|-

§55 Theta-Functions and Their. Fourier Expansions

The analytic tool which will lead to the determination of the Gauss sums is
the theta-function of n variables. The two concepts are connected in the
following way.

Let us take the ground field k = k(1) as the simplest case. We then in-
vestigate the function of T defined by the following series:

oo

br)= Y e ™™
m= — oo
This series (a so-called simple theta-series) converges as long as the real part
of 7 is positive. The imaginary axis is seen to be the natural boundary
(“singular line”) of the analytic function 0(t). Now we investigate the behavior
of 0(t) as © approaches the singular point t = 2ir, where r is a rational
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number. It is seen that 6(t) becomes infinite and that
lim /0(t + 2ir)

=0
exists. This limit is the Gauss sum C(—r) defined in the preceding section,
except for unimportant numerical factors. Moreover, the behavior of 6(z)
can be determined in yet a second way. There exists a “transformation

formula” for 6(z):
0(%) = J10(x).

By this formula the behavior of 0(t) at the point t = 2ir is related to the
behavior of 0(z’) at the point

1 2i

2ir 4
As stated above, the behavior of the latter is related to the Gauss sum
C(1/4r). By comparing the two results we obtain a relation between C(r)
and C(—1/4r) from which C(r) can be determined and from which, with the

help of the formulas of the preceding section, the reciprocity law follows.

Suppose that the field k has degree n, and that k as well as all of its con-
jugate fields k” are real. Then in place of the simple theta-series, the n-tuple

theta-series
Z o~ MU+ U@t pu)?)

"

arises, where ¢, . . ., t, are variables with positive real part, and the summa-
tion is to be extended over all integers u of the field k. In this series, we set
t, = w + 2iw® where w is a number from k and let the positive quantity w
tend to zero.

Finally, if k is a general algebraic number field, among whose conjugates
KV ... k" are real and the remaining conjugates are not real, then we
again have to investigate an n-tuple series. But then we do not get by with
one and the same function of ¢,, . . ., #, to obtain all sums C(w), but rather
we need the functions

n n
Zexp{—n Yt |uPP + 2mi Y w‘”’u“”z},
u p=1 p=1
which depend on w, in the neighborhood of the point ¢, = t, =+ =1¢,=0.
Here p again runs through all integers of k.

Even in this sketch of the proof, we should note what these arguments
have in common with the transcendental methods of Chapter VI. The fact
is that precise knowledge of the behavior of an analytic function in the neigh-
borhood of its singular points is a source of number-theoretic theorems.

Because the absolute values of the u® appear in the individual terms, the
derivation of the necessary formulas in the most general case becomes more
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complicated. In order to make the main ideas of the proof more easily
understandable, we first discuss in the next section the formally simpler case
in which all conjugate fields of k are real.
To begin with, we develop the train of thought which leads to the defini-
tion and exposition of the theta-series and their transformation formulas.
By a quadratic form in the n variables x, x,, . . . , X, We mean an expression
of the form

n
O(xy, .- ,X,) = ‘kzl apXiXy = a1 X3 + 201X, %, +
i
where the coefficients a; are real or complex quantities independent of
X4, - - .5 X, With the symmetry property a; = ay;.
A quadratic form with real coefficients is called positive definite, if for all
real xq,..., X,
O(xgy...,X) =0,

and the equality sign holds only for x; =x,=---=0. For example
x? + x3 + - - - + x2 is a positive definite form in x;, . .., X,.

Lemma (a). For each positive definite form Q(x,, .. .,X,) there is a positive
quantity c, such that for all real x,, . . ., x,

Q(xy, ..., X =c(x?+x3 4+ + x2). (172

By hypothesis Q(yq,..., ¥, >0 for all points of the n-dimensional
sphere y? + y3 + - - - + y2 = 1. Consequently the continuous function Q has
a positive minimum c¢ on the surface of the sphere, that is,

Q(yy, ..y =c ifyi+--+yi=1
Thus if we set
X

y.=—
BERVE IERRERNp:

for arbitrary real x; not all 0, Formula (172) then follows.

Theorem 157. Let Q(Xy, ... ,X,) = D 1x=1 duX:X; be a quadratic form with
real or complex coefficients such that the real part of Q is positive definite.
Moreover, let u,, . . ., u, be real variables. Then

= — o0

09

Z e—nQ(m|+u1,...,m,.+u,.) (173)
my,...,myu
is an absolutely convergent series and thus represents a function T(uy, . . . ,u,).
This function, together with all its derivatives with respect to the u;, is contin-
uous and moreover has period 1 in each of the variables.
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The series (173) is called an n-tuple theta-series.
To prove this let the real part of Q be denoted by Q,. By Lemma (a) there
is a positive ¢ such that

Qomy + uy, ..., m,+u) = c((m; + uy)® + -+ + (m, + u,)?.

Furthermore

1M

nc

o] = &0 < ¢ " T

If we now restrict the real numbers u; to a domain |u,-| < C/2, then we obtain

_ —me }'f (m¢—C|m;|)+K
le"™ <e ,
where K is an appropriate constant.

However, since the inequality

Imy| + -+ |m,| < /n(mi + -+ m2) < e/nm? + -+ m?)

is true for every ¢ > 0, provided that

1
mf+--~+m,?>?, (174)

we obtain the estimate
le™™| < exp{—mc(1 — eC/n)(m? + - - - + m2) + K}

If we take ¢ sufficiently small, then a = ¢(1 — ¢C ﬁ) > 0 and the terms of
the given series are thus smaller in absolute value than the corresponding
terms of the obviously convergent series with constant terms

Z e—na(m%+'-~ +m2)+K

my,...,my

(with at most finitely many exceptions which do not satisfy (174)). Thus the
series of absolute values of (173) is uniformly convergent and the sum is
a continuous function of u, ..., u,. This function T(u,, ... ,u,) has period
1 in each of the variables. For example, if we replace the summation index
my; by m;y — 1, T(u, + 1, u,, ... ,u,) is transformed to T(u,,...,u,).

In the same way we can see that the series which arise from T by differen-
tiating termwise, one or more times, converge uniformly. Since

n
Q(ml + ula e ety mn + un) = Q(mb LY 7mn) + 2 Z aikmiuk + Q(ul’ LY 9un),
iL,k=1
it is sufficient to investigate the termwise differentiation of
n
Y exp{—nQ(my,...,m)—2n Y azmu}.
my,...,my i,k=1

Under differentiation, products of powers of m,, ..., m, and linear com-
binations of such expressions are adjoined to the individual terms as factors.
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Since |m| < e!™ we have
|m‘il o m:nl < ec1|m1|+ st en|ma| (ci > 0)

and, reasoning as above, we then have the uniform convergence of the
differentiated series. Therefore the theorem is completely proved.

We now obtain the transformation formula for the theta-function, which
we discussed at the beginning of this section, by expressing the periodicity
of the function T in terms of its development in a Fourier series and indeed
by using the following fact which we quote from analysis.

Let ¢(uy, . . ., u,) be a (real or complex) function of n real variables, which
is periodic with period 1 in each argument. Moreover, suppose that all partial
derivatives of @ up to order 2n are continuous. Then ¢ can be expanded in an
absolutely convergent Fourier series

(p(ula LU aun) = Z a(ml’ e ’mn)e—Zm'(mlu1+ o +m,.u,.),

my,...,my

in which the coefficients have the following values :
1 1 .
a(ml, e, mn) = fo oo fo e2m(m1u1+ +m,,u,,)¢(u1, o, un)dul du2 N du,,.

For n =1 this theorem is usually proved in textbooks in analysis. Then
it can easily be proved in general by induction on .

If we set ¢ equal to the theta-function, which indeed does satisfy our
hypotheses, then we obtain

a(ml, R ’mn)

1 1 + o0
— f v J‘ eZni(m,u, + o0 muuy) z e—nQ(h tug, ... ’k"+“")dU,
0o 0 k

1,...,k,.=—oo

for the coefficients, where we set dU = du, du, * - - du,. Now we interchange
summation and integration, which is permissible because of the uniform
convergence and then we introduce u, — kq, ..., u, — k, as new variables
of integration. As a result the ky,...,k, disappear from the integrand;
instead they appear in the limits of integration and we obtain

a(mla e ,mn)

= Z f_k""l . e f_k"+1 e2miltmyur + - - +muup) = Qs . . ., un) JTJ.
kis ..., kn ks

—kn

The sum of all these integrals can be written as a single integral over the
entire infinite space and with this we have proved:

Theorem 158. The n-tuple theta-function

+ o0
T(ul, e ,un) = z e_"Q(ml tug, ..., mptuy)

my, ..., Mmp=—00
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admits the representation

+

T(ula P ,u") = Z a((m))e—Zni(mlul + - tmpuy)

my,...,mp=—00

where
a((m)) = a(mla e ,mn)

= J‘.*."? e~ "W, ..., up) + 2mi(myuy + - - - tmin) dyy duy -+ - du,.

We now wish to substitute specially chosen forms for Q and then evaluate
the integrals.

§56 Reciprocity between Gauss Sums in Totally
Real Fields

In this section we assume that the algebraic number field k in which we
investigate the Gauss sums of §54 is totally real, that is, all conjugate fields
kP are real. Moreover let a denote a nonzero ideal in k (# 0) with basis
%y, ..., 0, Then by ¢4, ..., t, we understand, for the time being, n positive
real variables and we choose for the quadratic form Q of Theorem 158

n
Oxy, .. X)) = Y, 1aPxq + -+ + aPx,)?,
p=1

which is obviously positive. The corresponding theta-function is

0(t,z;a)= ) exp{—n Y 1, (u® + zp)z}, (175)
uina p=1
where
Z,=Y «Pu, (p=1,...,n). (176)
q=1

In the series (175) u runs through all numbers in a exactly once. The
Fourier coefficients a(m,, . . .,m,) from Theorem 158 have the values

a(my, ..., m,) = f;ffexp{—-n 21 t,22 + 2mi 21 mpup}dU,
p= p=

where the z, are again connected with the variables of integration u, by (176).
We now introduce the z, as variables of integration in this integral. The
inverse of Equations (176) is

n

U = Z Bgcp)zp (k= 1,...,"),

r=1
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where by Theorem 102, the numbers f,, ..., f, form a basis for the ideal
1/ad in k. We then have

Z muy, = Z l(")zp (177)
k=1 p=1
where 4 = Y 4_, Bym, is a number from 1/ab.
1 + o0 n n
a((m)=——— 1| --|ex {—-n t,22 + 2mi APz }dz e dz,.
|N(a)\/El f—oo f p p;l p=p pgl P 1
Now for positive ¢ and real 4 we have

—mA2ft
J‘+00 e—nt22+21tilz dz = e_nlz/, J'+oo e—m(z—il/t)2 dz = e \/‘ , (178)
t

-0 — o0

where ./t denotes the positive value. Thus the coefficient a is the product of
n such integrals, and with this we finally obtain from the theorem of the
preceding section:

Theorem 159. The theta-series defined by (175) also admits the representation

0(t,z;a)

1 no )2 n
= exps —m Y — —=2mi » APz } 179)
N N P R SRR o

On the right side A runs through all numbers of the ideal 1/ad in k.

We now see at once that this equation also holds for nonreal ¢, provided
only that the real part of each ¢, is positive. For then the real part of 1/2, is
also positive and the series on both sides of the formula represent analytic
functionsof ¢, . . ., t,, which are regular for R(z,) > 0(p=1,...,n) by the
uniform convergence in ¢. Thus the above formula also holds for arbitrary ¢
which belong to the right half-plane, if by /t, we understand those single-
valued analytic functions which are positive for positive ¢ and thus whose
argument lies between —n/4 and + n/4, where we set

If we take z, = -+ = z, = 0 and write { instead of a, then we conclude
from Theorem 159:

Theorem 160. The transformation formula

6(z; 1) (180)

1 11
= 0 —;—
N[ty t (t fb)
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holds for the functions of tq, ..., t,

05 1) = 0(6,0;7) = ¥ exp{-—n Z wmz}

winf
Moreover, we deduce from Theorem 159

Lemma (a). If the complex variables t,, . . . , t, simultaneously tend to zero in
such a way that the real parts of 1/t, tend to plus inﬁnity, then

lim /¢, t,0(t )=
o (hz30 ()ﬁ

independently of z.

For if we denote the smallest of the n numbers R(1/t,) by r, then

n n
expl —1 1 AP < expld —qr AL o —mre(m?+- - +mfl),
p P P

p=1"‘p r=1

where, according to (172), ¢ is a suitably chosen positive constant independent
of the ¢,. The sum on the right side of (179) with the termm; = ---=m, =0
excluded is thus numerically

s( > e-mm’> —1<<1+2 ) e—mm> —1=<1+-1—2—e7_m> -1
m=— oo m=1 -

from which Lemma (a) follows if we take the limit as » — oo.

Formula (180) will now yield the relation we sought between two Gauss
sums in k if we take f = 1. Let w be a number different from zero in k and let
dw have denominator a and numerator b:

b
w_ab’ (a,b) = 1.
In (180) we set
t,=x = 2i0?, f=1,

where x is a positive quantity.

Now, by Lemma (a), we determine how both sides of (180) behave as x
approaches 0.

To begin with,

0(x — 2iw; 1) =Y, exp{—n Y (x— 2iw“”)u“’)z}
u p=1

Z e2niS(wp2) Z exp{—-n Z x(v(")+p("))2}

pmoda vina p=1

since u = v + p runs through all integers of the field if p runs through a
complete system of residues mod a and v runs through all numbers from a.
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Here the inner sum over v is again a theta-series, hence

O(x —2iw; )= Y *™SC*)(x, p; a).

p mod a

Finally by Lemma (a) we have

. C
lim x"20(x — 2iw; 1) = L),
N[V
where C(w) denotes the Gauss sum of §54.
In exactly the same way we deduce the behavior of the right side in (180)
at x = 0. We set
1 i —ix

t_p = 3@ + 1, Wwherert, = 5P — 2™’ x = 2i®)

(181)

and thus the real part of 1/7,, is

(L) -4
Tp X

as x — 0it grows beyond all bounds. Furthermore, by ¢ we mean an integral
auxiliary ideal so that ¢d is a principal ideal ¢d = §, and (¢,2b) = 1. The
numbers of 1/d are then of the form u/6 where u runs through all numbers
in ¢. In this way we obtain

11 n i #(p)z
0<t D) ”éc exp{——n p;l (T + 20 (p)> o@ ("

2

Now let

a
405?46
Then let us set y = v + p in this sum, where p runs through a complete

residue system mod by, in which each element is divisible by ¢ and v runs
through all numbers of b, c. We obtain

9(1; %) = Y e S0 Y exp{— Z 5@)2 O + p(p))Z}

t

b, be the denominator of —— (182)

p mod b vinb ¢
p=0(c)
= Z e - ans(p2/4w62)0 (52 2 p 9 b >
pmodb,
p=0()

Thus by Lemma (a) we know that if x, that is, 7, tends to zero

. 11"'%9(1.1)_ A
=0\ N@)? \1'd) " N(by,0l/d|

A= Z e~ 2miS(p?/4wd?) (183)
pmodb,
p=0()

where we set



§56 Reciprocity between Gauss Sums in Totally Real Fields 209

From our convention for the meaning of the square root signs we have

1 Ty """ Ty 1

o T N TNGRE - NGwo)|

so that we can also write

lim x"/20<1 1) _ _INCGwd)] A. (184)
x=0 t'd IN(blc)\/zl

Finally, after multiplication by x"?, if we then let the quantity x tend to
zero in Formula (180) with f = 1 and keep in mind that in the denominator

lim \/(x = 2io®) - - - (x — 2iw™)
x—0

— l N(2w)le—(ni/4)(sgn oM +sgnw +- - - +sgn m(")),
it follows from (181), (184), and |d| = N(b) that

C(w) ' \/_l v V2o) N (260) i/ $)S(5gn ©)

n/2

N(a) N(by)
C(w) VN (2b) £mil#)S(sgn @) < _ . (m)
N(a)| NG A S(sgn w) = p;1 sgn 0® ).

Now the quantity A4 is likewise a Gauss sum and it indeed belongs to the
denominator b,. For if « denotes an integer divisible by ¢ such that a/c is
coprime to by, then we can replace p by pa in (183), and let p run through a
complete system of residues mod b, ; from this we see that

1 a?
A= c<~5§>.

If we set «/6 = 7y, we finally obtain

Theorem 161. The reciprocity

C((D) V N(2 ) (m/4)S(sgn w)C<_ 1 )
|./N(a)| N(b,) 4o
holds between the Gauss sums where a denotes the denominator of dw, and
b denotes the numerator of dw. Moreover, b, is the denominator of a/4b and
y is an arbitrary number of the field such that dy is integral and relatively
prime to b,.

The method of proof, with which we have just become acquainted, will
become more transparent if it is first carried out for the special case where
the different d of the field is a principal ideal, because the introduction of
an auxiliary ideal ¢ becomes superfluous.
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§57 Reciprocity between Gauss Sums in
Arbitrary Algebraic Number Fields

Now let the number field k of degree n be arbitrary and let the conjugates
be numbered as in §34, such that for all numbers u in k, u® is real for
p=1,2,...,r, while y® is the complex conjugate of u®?*? for p =r, +
1,...,r; + r,. We now consider the function
0(t,z,w;0) = Y, exp{—n Y. [0 ® + z,|* — 2i®(u® + zp)z]}, (185)
pina p=1
belonging to an arbitrary nonzero ideal a of k, where u runs through all
numbers of a and the symbols have the following meaning:
t,>0 forallp=1,...,n,
toer,=t, forp=r;+1,...,r+7r,,
z,, P realforp=1,2,...,r,
ZP
w®

Zp+r,

P+ forp=r +1,...,r  + 71,

} are complex conjugates to {

Ifay,...,a, again denotes a basis for a, and we set

n n
Zp = Z a}cp)uka ‘u(p) = z a;cp)mka (186)
k=1 k=1

where the u,,...,u, are real and m,,...,m, are rational integers, then
we see that the exponent appearing in (185) is a quadratic form in
my; + uy,...,m, +u, whose real part is positive definite. Consequently
the series converges and Theorem 158 can be applied ot it.

The Fourier coefficient here has the following value:

a((m)) = f-_+ffexp{—n il [t,)z,)* — 2iw®z2 — 2impup]}dU, (187)

where the z,, . . ., z, are again related to the variables of integration uy, ..., u,
by (186). If we express the u’s in terms of the z’s then, by Theorem 102, the
exponent takes the following form as does the analogous formula in the
preceeding paragraph:

n
-n 21 [t)z,)* — 2i0Pz2 — 2iA®Pz ],
p=
where

A= Z Bimy
k=1

is a number in 1/ad and the B form a basis for 1/ad defined by

" 0 forq+#k
(P)y(P) — ?
,,;1 P {1 for q = k.
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We now introduce the real and imaginary parts of the z, as real variables
of integration in place of the u,. We set
Z, =X, + iy,

; }p=r1+1,...,r1+r2

z =X, — iy,

ptrz
and

The functional determinant of the uy, ..., u, with respect to the x, y has
absolute value

27
IN(@)/d]

as was used already in §40 and the exponent becomes

(188)

ri
- Y (t, — 2i0?)x2
p=1

ry—rz
-y, [2tx2 + y2) = 2i(@P(x, + iy,)* + @Px, — iy,))]
p=ri+1
ry ritry _
+2mi Y APx,+2mi Y [APAx, + iy,) + APA(x, — iy,)].
p=1 p=r1+1

(The bar again denotes the complex conjugate.) By this substitution the
integral in (187) becomes a product of r single integrals, each with respect
to one of the variables x,, . . ., x,,, and a product of r, double integrals with
respect to the r, pairs x,, y,.

Forp=1,...,r; we obtain

f io exp{—n(t, — 2iwP)x? + 2riAPx} dx

N e~ Pl 2i0P)  (180)

— iy ®
Vi, — 2iw®

Here the square root should be taken with real part positive.
The double integrals are of the following form

+ 0
J= ff exp{—2nt(x* + y*) + 2mi(w(x + iy)* + @(x — iy)®

+ Ax + iy) + A(x — iy))} dx dy.
Now if @ = 0, we obtain, just as before, the value of the integral:
el 2mmlal?

J_—2t ifw=0.
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On the other hand if w # 0, then we bring the quadratic form in x, y
into the form of a sum of squares by introducing the real variables u, v:

\/5(x+iy)=u+iv
\/E(x—iy)=u—-iv.

Here we choose some fixed \/w, and we choose /@ as its complex conjugate.
For the functional determinant we obtain

oxy 1 1 1

o(u,v) \/— \/_ || ’
and the exponent in the integrand now reads

u? + v?

—2nt ol + 4mi(u® — v?) + 27ri<—\/)'—6 (u + iv) + % u-— w))

=( - |+4m>u +2nl<\;5+\/l5>u
+<——T—|——4m>v +2m<\}_ \7,)

Thus J is represented as a product of two simple integrals and indeed we find

_ 1 ex{ —2mt IAIZ_ 2
NCET A Y

a formula which is clearly still valid for w = 0.

If we choose A and w real in this expression, then the exponent is exactly
twice the exponent appearing on the right-hand side of (189).

Finally for a(my, . . .,m,) we obtain the value

t2 +’:|w|2 (A5 + Izw)}, (190)

1 n
amy,...,m) =———0—0—€xXp{ — AP|2 4 27 }J’”z%"”}
(m ) N(a)|/d|W (2, ) p{ ,,; B4 Z
—_ tp
P21 AP

— P
(P) — @

- 1
2+ Ao (191)

—a

r ritr
W(t, o) = ﬁ [t, — 2™ - 'nz mw(T)lz
p=1 p=r1+1

AP — Z ﬁ;p)mq.

q=1 )

Here the square roots are to be taken with positive real parts.
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If, in (185), we choose z;, .. ., z, as well as u,, . . ., u, equal to zero, then
we obtain the following transformation formula:

Theorem 162. The transformation formula

1 1
0t,0,0;7) = ———=——0( 1,0, — |; 192
N N (v0i3) .

is true for the function defined by (185), where the relation between t, w and
T, % is given by (191).

In order to find the behavior of the two theta-series appearing here as
we approacht; =t, = - - - = t, = 0, we must know the behavior of 0(t, z, w; f)
at this point. This is determined by

Lemma (a). Let 6,(t,), 6,(t2), . . . , 6,(t,) be functions of t,, ..., t, respectively
such that ¢,,,,=3, for p=ri+1,...,ri+7r, and o, is real for
p=12...,r,. Thenift,,...,t,tendto0 simultaneously,

lim /4 t,0(t,z,t - o; ) =
=0 s N(f)lf |

independently of z, provided
lim o,(t,) = 0.
tp,—0
To prove this we need only apply Theorem 158 to the series and substi-
tute the value of the coefficient a found above. Specifically if we choose the

number A to denote a single term in place of m,, . .., m,, we have
0zt -0:)=M ¥ b@e 5" (193)
Ain 1/fd
with the values
_ 1
N(®)|Vd|W(z, to)
n l(p)IZ n AP’ }
b(A) =exp<—m= l——Zni o e
? p{ pgl tp(l + 4[‘71)'2) pgl tp(l + 4|Gp|2)
Now since
. 1 VTR 1
lim/t; - t,-M = lim
o N({|Va| 0 Witio) ~ NIV

and if we move the term with A = 0 to the other side, in the series in (193),
then we obtain the inequality

n l(p)ll
o,..)0—M <M eXP{—n ) m}

Ain 1/fd p=1
A¥0
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from which we can read off the statement of Lemma (a) in the same way as
in the preceding section.

We now obtain a Gauss sum if, in (192), we take w equal to a number in
k different from O and f = 1:

a)=3 (a,b) = 1.

ad’
We have
0(t,0,m; 1) = Y €*™S*)(4, p,0; a).
p mod a
Thus by Lemma (a)
lim /7, 0(t,0,00; 1) = —C @) (194)

N@[Vaf

To investigate the right-hand side of (192) we introduce an auxiliary integral
ideal ¢ such that

¢d = 0 is a number in k and (c,4b) = 1.
Moreover let

b, be the denominator of %.

Again it follows directly from the definition of the theta-series that

1 T % T %
anl) o) 5 onins)
0(c)

p=0(c

By (191) we now have
— P 1 tIZ)

%(I’) = — — +
2+ 40P 40P " 40P + dwP])

(r) — _ —_P
®'P) = 4w"’)+r”a’” where g, 0™

T ® T -1 10
0<W’ ps 52 b1¢> = 9(@23 ps 2002 + 52 blc>

£27iS(— p?/4082)g 10 be).
<|6|2’ P 3 62,

Lemma (a) can again be applied to the last theta-series if we let the ¢, that is,
the 1, tend to zero, so we obtain

T 1 1 .
lim [ (10,05 )= —— e~ 2miS(2/40d) (195
0 N(é)2 < b) N(blc)lﬁlpmgibl (199
p=0(c)
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As was proved at the end of the preceding section, the last sum is again
C(—7%/4w), where y is an arbitrary number in k for which

Dy is integral and relatively prime to b;. (196)

@)

Finally if, after multiplication by /¢, - - - ¢,, we let all the ¢ tend to zero in
Formula (192), and keep in mind that

lim W(t,®) = |/NQuw)|e™~ @/9Seen ),
10

Then Equation (195) can be written

1 NQw)
lim /1, 0(1, , % ,—> IN(b)\/_

t—0

where
S(sgn ) =sgn oM + -+ + sgn @™ (= 0ifr; = 0), (198)
then we obtain from (194) and (197):

Theorem 163. The reciprocity

C(Q)) A/ N(2 ) (m/4)S(sgn w)c< > (199)
Q/N(a)| N(by) 40
holds for Gauss sums in k. Here a, b are relatively prime integral ideals, o =

b/ad, b, is the denominator of a/4b and y and S(sgn w) are defined by (196)
and (198).

This equation agrees formally with the conclusion of the preceding sec-
tion, where, however, it was proved only for totally real fields.>

§58 The Determination of the Sign of Gauss Sums
in the Rational Number Field

Formula (199) makes it possible for us to determine the value of Gauss
sums. In this section we wish to undertake this determination for the field
of rational numbers and to settle the question raised at the conclusion of
§52, Theorem 152.

The different of k(1) is 1.

2 L. J. Mordell (1920), proved this reciprocity formula for quadratic fields without the theta-
function, by using only the Cauchy integral theorem: On the reciprocity formula for the Gauss’s
sums in the quadratic field, Proc. of the London Math Soc., Ser. 2, Vol. 20 (4). A related formula
can already be found in A. Krazer, Zur Theorie der mehrfachen Gausschen Summen, Weber
Festschrift (1912).
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Thus if a, b are relatively prime rational integers, then
C <E> — Z e2m'(n2b/a)‘
a nmod a

For odd a the reciprocity formula, Theorem 163, asserts

1

C(E) _ emil4) sgna C(__a> _ m Z e—2m'('l2“/4)
|\/E| 2\/§ 4 2\/—2 n mod 4

C<_Ta> =2(1 +e” "D = 21 + (=) =21 - #)

e(ni/4) sgna ﬁ

=7(1+isgna)
1

30 -
a/ _ 1 . oy 1 ifa>0a=1(4)
Ja = 3(1 + i sgn a)l l)—{i £ > 0, 6 34

C(%) =.,/(=1)e" V2, fora>0,

where the root is to be taken positive (respectively positive imaginary). On
the other hand, for primes a we have

1 n .
cl-—)= i e2nl(n/|al)
()-.2.0)

by (171). However, we have for an odd discriminant a = d, by (127),

(- wrns

Hence we have for odd prime discriminant a

la| -

Zl (‘.;) e2mitllah — [C-TY-D72[g] = /q,
=1

n

where the root is to be taken positive (positive imaginary).
For odd field discriminant d, by Equation (150), the Gauss sum G(1,d)
is thus

G(1,d) = \/d ifdis an odd prime, (200)

with \/d equal to a positive or positive imaginary quantity.
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Now if d; and d, are two odd relatively prime discriminants, then by §52

n n .
G(l,dd,) = — | = ) e2mitn/\d1d2D)
( ! 2) nmo?d;dz (d1> <d2>

_ (1dal [ 1di]

— (_ 1)((sgn d1—1)/2)((sgnd2— 1)/2)G(1’ dl)G(l, d2)~

From this it follows that if (200) holds for two relatively prime discriminants
d,, d,, then it is also valid for the product. Consequently, (200) is also true
for each odd discriminant.

Finally G(1, —4) and G(1, £ 8) must still be calculated. We find

G(l,-4)=2i, G(1,8)=22|, G@,-8=2iy/2|. (201)

Finally, if u is an odd discriminant and q is a discriminant without odd prime
factors, then by (152) and (153) in §52 we again have

G(1,qu) = (g)(g) G(L,q)G(L,u) = (= 1)sna=D/Aemu=IDG(1, g)G(1, u),
from which, with the values (201), it finally follows that

Theorem 164. The Gauss sums G(1,d) for the discriminant d of a quadratic
number field have the value

G(1,d) = /d

with positive (respectively positive imaginary) root.

The numerical factor p in the class number formula of Theorem 152 thus
has the value +1 as was already stated there.

§59 The Quadratic Reciprocity Law and the
First Part of the Supplementary Theorem

We will now derive the quadratic reciprocity law for an arbitrary algebraic
number field from Formula (199). First we define:

An integer in k is said to be primary if it is odd and congruent to the
square of a number in k modulo 4.

A number « in k is said to be totally positive, if among its conjugates, the
r, numbers oY), . .., o are positive.

If all the fields conjugate to k are not real (r, = 0), then each number in
k is said to be totally positive. Even then we may not overlook the fact that
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the statement “a is totally positive” has a meaning only with respect to a
given field which contains «. For example — 1 is not totally positive in k(1),
however it is indeed totally positive in the field k(i).

In order to make the simple ideas underlying our proof clear, we first
make the simplifying assumption that the different d of the field k is a prin-
cipal ideal (in the broadest sense), that is, there is a number 6 in k such that

(0) =0d.
Now let « and f be two relatively prime odd integers. If in (199) we set
1 1
= — = — = = = 4
w 25’ y 5 a=apf, b=1, b, )

then

1
C <%> £i14)S(sgn aBd) c < - aﬁ)
VNGH] N\ )

Moreover by (169) and Theorem 155

(i) = (3)(2)(a5) ()

If we now assume that all Gauss sums with odd denominator and also all
those with denominator 4 are different from 0 (which will be proved generally
afterwards) then we can apply the reciprocity formula to the three sums
which occur:

C ( — Z—E> VN(@8)
f . E — p(mi/4)S(sgn apd —sgn ad —sgn o) . 0
e . (202)
B) \a cl[=*\c —5
46 46
Now if at least one of the numbers «, f, say a, is primary, then we have
by (168)
—a -1 —af —-B
“=cl=— =cl=£
(w)=<(z) <(@)-<)
and it follows from (202) for «f = 1 that
-1
(%)

JN@®)

=e (mi/4)S(sgn 6)‘

In this way we obtain

(z) . <E> — e(m'/4)S(sgn afd —sgn ad —sgn o +sgn J)
B o
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However, for real a, §, 0

sgn ofié — sgn ad — sgn B6 + sgn 6 = (sgn a — 1)(sgn f — 1) sgn &
= 0 (mod 4).

a\ (B _ (- l)p'):fl«sgn )= 1/2)sam $7) = 1)/2)
B o

And this is the quadratic reciprocity law for two odd relatively prime numbers
of which at least one is primary.

We now omit any special assumptions about the field k. The general case
in which the different of k is not a principal ideal is made formally more
complicated by the fact that we must still introduce accessory auxiliary ideals
into the proof.

Hence

Lemma (a). All Gauss sums which belong to odd denominators are nonzero.

If C(w) is a sum belonging to the odd denominator a, then we obtain all
sums with denominator a in the form C(xw), where x runs through a reduced
residue system mod a. For if C(w,) also belongs to the denominator a, then
the integer x can be determined so that that d(xw — w,) is an integral ideal
and for this ideal C(xw) = C(w,) by (168). However, by Theorem 155 C(xw)
only differs from C(w) by the factor + 1. Thus it is enough to verify the non-
vanishing of a single Gauss sum which belongs to the denominator a.

Let us choose, corresponding to a, an integral odd ideal ¢ relatively prime
to a such that

acd = x is an integer in k.

By (169) the sum C(1/4x) can be represented as a product of three Gauss
sums, belonging respectively to the denominators 4, a, c. Consequently for
the proof of our lemma it is sufficient to show that C(1/4x) # 0. However
this follows from (199), for w = 1/4x%, because the sum on the right-hand side
of that equation belongs to the denominator 1 and hence = 1.

Lemma (b). Each Gauss sum which belongs to the denominator 4 is # 0.

To prove this let a be an odd ideal such that ad is some number %. Then,
for each odd integer u, C(1/ux) # 0 by Lemma (a). Thus, by (199), we also

have
2
— Y xU
0.
c( A );e

However, if ¢ is any number of the field such that d¢ has denominator 4,
then there is an odd integer u for which

2
I\ <(p + %) is an integral ideal.
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Since

=Y en
C(<p)—0< . )

we have C(p) is also # 0.
Now let « and f be odd relatively prime integers in k. Let

W=

D
where b is integral and relatively prime to «f. By (169) and Theorem 155

we hae (=)l ?> . 5}% -()5)e(2)<(3)
-0

We now apply Theorem 163 to each of these three sums. In this case we have
b, = 4b and

2 2
GG o R)dw)
x ﬁ 1 4('0 4(0 . e(ui/4)S(sgn wa+sgn wpf —sgn waﬂ).

C(g) NG C(_yz_a,;>

of 4w

Hence we again express  / N(8b) as a Gauss sum by taking « = f = 1 in this
equation, by which the left-hand side becomes 1. By substitution we obtain

C_@H@ = (0, f) CCL:O‘)C(—“Z‘??),
() <))

U(d ﬁ) = e(m'/4)S(sgn wa+sgn wf —sgn waf —sgn w)
b

(204)

where

is independent of w since for real w, «, B, sgn wa + sgn wf — sgn waf —
sgn w = —sgn w(sgn « — 1)(sgn B — 1) is divisible by 4 and consequently
) sgn alpP) — sgn B(P) —

oo, B) = (— 1)"; ((sgn atP) — 1)/2)((sgn BP) - 1)/2) (205)
We make the dependence of the right-hand side of (204) on the accessory o
clearer by splitting the Gauss sum with denominator 4b into two such sums
with denominators 4 and b. Namely, we represent y as the quotient of two
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integral ideals, say
y= t_(;’ where (c,4b) = 1,

and choose an auxiliary integral ideal m such that

2 2

bm = u odd; u ya = % is set equal to x.

Then by (169) and Theorem 155 we have

2
—y%a — %o — xuo — 4o o — o —4x
C = C = C C =1 - N
(G7) () <) () -6)e (=)< (5)
and we obtain three more equations if we replace o by 1, 8, aff. Furthermore

%u = wo> where ¢ = mc is an integer. In this way we finally obtain from
(203) and (204)

D () )
<—>' (—) = v(a, B) ’ (206)
: (=)e(=¢)
4 4
where w is now an arbitrary number of the field for which bw is integral
and odd.
If we assume that at least one of the numbers o, B, say «, is primary, then

by (168)
—waf\ '—-wﬂ ) AN -
(=)-(F) ()-=)

and from this follows

Theorem 165 (Law of Quadratic Reciprocity). For two odd relatively prime
integers a, f of which at least one is primary

ri
a\ (B :(_l)pgl((sgnam—1)/2>«sgnﬁ<w—1»/2)
p) \a

The unit on the right is surely + 1 if at least one of the two numbers «, 8
is totally positive.

From this we deduce the following fact for the residue characters of
certain distinguished numbers. Let § be a unit or the square of an odd ideal
so that in any case (§) = +1 for each odd relatively prime a, by definition.
If we now choose « such that

o = ac® and « is totally positive and primary,
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§-6)-)--

Theorem 166. Each odd ideal a, which can be made into a totally positive
primary number by multiplication by a square ideal, has the property

(-

for all units and squares of ideals ¢ as long as they are relatively prime to a.

then by Theorem 165

that is,

We will prove in the next section that the converse of this theorem also
holds.

In addition, Equation (206) yields the value (,%)(%) in every case where
o and f are odd nonprimary numbers. If we set

)

r(o) = r(ay) if oy = a2 (mod 4)
for some odd &; and (206) becomes
2\ (B\_ . r@r).
() (5)-ven "G o

valid for all odd relatively prime « and .

The second supplementary theorem concerns the case where one of the
numbers o, f is no longer odd.

Suppose that the integer A splits into two ideal factors Ir, such that r is
odd, while [ contains no odd prime factor:

A=, 2,r)=1.
Let « be an odd number relatively prime to 4, w = b/d, (b,2¢4) = 1. From

the equation
o o o

which is true by Theorem 155, we conclude, by applying the reciprocity
formula (199), that

).CO —_ ’yza
A ¢ <7> ¢ < 4(0}' ) e('"'/“)S(Sgn Awa —sgn wa)
(“) B = o (208)
“ c<g> c(l“) VNG|

4w

r(a) =

with fixed w, then
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In particular for « = 1, we obtain from this

<— ;

c[=)

4 l) (ni/4)S(sgn Aw —sgn ©)

R : (209)

() W@

4w

Now as in the preceding proof, since 44 and b are relatively prime,
2
—y%a — %o —4ixa o —4x — U
C =C C P
<4wﬂ> <4,1> < K > <b>c< w )\ )
2
— 92 o —4x — XU
= —)C{—)C .
(%) (6)e()e=)
Again in the special case o = 1, if we divide we have
—4Ax —xu
4co/l u ) 41
( ) C( “") (‘““)
U
—9? xua cf =+
4wl 4wl 4
2
y*a ®i — nuo
C( =) C<4w> C( D)
where finally we can still replace xu by w. If we divide (210) by (209) and
apply (208) we find
— o —w
() ()
4
<§> = v(a, ) _'; —tooc .
(5) (=)
The Gauss sums with denominator 44 = 4[r can again be reduced to those

with denominator 4] and r by (169). Then, if we choose auxiliary ideals
m, n which are odd and relatively prime to ra and for which

=M=

(210

(211)

we have
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Finally if we set o = 1 and substitute the results in (211), we obtain

A\ (e =v(“).c<%fza>‘c(:2@>'
o) ey )

Here p is an arbitrary odd number which is divisible by . These last sums
depend only on the behavior of « mod 4l. In particular if we choose « to be
a quadratic residue mod 4l, then we obtain

Theorem 167. If [ is an integral ideal without odd prime factors and A is an
integer with the decomposition A = It, where t is an odd integral ideal, then

A\ [« -1) 5 ((sgn a®) — 1)/2)((sgn AP — 1)/2)
— — )= (—1)r=
o X

if the odd number o is a quadratic residue mod 4l and relatively prime to A.

§60 Relative Quadratic Fields and Applications
to the Theory of Quadratic Residues

We now consider the field K = K(/u, k) which is generated, relative to k,
by the square root of a number u in k. The theorems in §39 with | = 2 hold
for this field. It is useful to introduce a residue character which deviates
somewhat from the quadratic residue symbol.

Definition. For an arbitrary prime ideal p in k we set

-

1, if p splits into two distinct
factors in K(y/u, k).
—1, if p remains irreducible in
,P) =1
Q(u,p) K( ﬁ, k).
0, if p is the square of a prime
ideal in K(y/p, k).

By the results of §39, Q(u, p) is defined for all prime ideals if x4 belongs to k
but /¢ does not. Moreover we have

O, p) = (%) if p is odd and does not divide u (212)
Q(ua?,p) = Q(u,p) for each a # 0 in k.

Moreover for arbitrary integral ideals a (# 0) in k we set

Q(u,0) = Q(p,p)™ - Q1, p2)™ - Q1 P)™™ (213)
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if a has the decomposition
a =Py P
and for each square p? in k
Q(u?a)= 1.

Thus we have for two integral ideals a, b in k

Q(n, ab) = Q(u, )Q(u, b).

Finally for odd a, which are relatively prime to the integers u and v, we have

Q(uv,a) = Q(u,0)Q(v, a).

In the rational number field the introduction of this symbol would be
superfluous, since there the number u can always be assumed to be free of
unnecessary square factors. But in other fields, where the class number is
even, u can have accessory square factors which can not be avoided.

With the help of the symbol Q, the zeta-function of K can be expressed
through that of k and an additional series, as was shown in §49 for the
quadratic fields. For if B denotes a prime ideal of K then, in the notation
of Theorem 108, the relative norm with respect to k is N(P) = p or p? and
N(B) = n(p) or n(p?), where p is the prime ideal in k which is divisible by
$B. In the infinite product

1
(k(s) = l;[ 1—-71\1(‘305

we extract those factors which can be derived from all prime divisors P of
a fixed p. For these factors we then have

[T =NEPB)™)=1-np) )1 - 2up)np) ")

Blp
and hence

Ck(s) = Lk(5)Z(s)

_ 1 O(u, )
20 =T =G0 e~ 2 ny -

By the formula for the class number in Theorem 123

. Cx(s)
11_{1‘11 Cu(s)

is equal to a finite nonzero value and thus we conclude:

Theorem 168. lim log Z(s) is finite.

s=1



226 VIII The Law of Quadratic Reciprocity in Arbitrary Number Fields

From this fact we obtain the analogue of Theorem 147:

Theorem 169. Let u,, u,,..., WU, be integers in k such that a product of
powers ui* - - - uym is the square of a number in k only if all the exponents
X1,..., Xy are even. Let ¢y, c,, ..., c, be arbitrary values + 1. Then there
are infinitely many prime ideals p in k which satisfy the m conditions

(e.)z(ﬂ_)=
p p

For by the hypothesis, the square root of each of the 2" — 1 products
of powers u= uj' - - usm (x; =0 or 1, not all x; = 0) defines a relative
quadratic field K(/u, k). However, it now obviously follows as in §49, that

fors>1
log [] (1 - Q,fg}?) ==X Q,fg;)f) + o(u,s),

where ¢(u,s) tends to a finite limit as s — 1. Hence by Theorem 168 the
first sum on the right also has this property. Consequently

Lis,p =% <E> 1

> \p/ npy

also remains finite since, by (212), this sum differs from the former only in
finitely many terms. The prime on the summation sign is to indicate that p is
only to run through the odd prime ideals which do not divide u,, ,, . . ., Up-
On the other hand it again follows from the fact that {,(s) becomes infinite
as s — 1 that

Q0.

Ls)=Y" n(:a)s -

Consequently, the left-hand side of the equation

m X1 . X2 ... Xm
Y it L, Uit R

= )’ & Pm 1
-3 (<)) )

becomes infinite as s — 1 since only a single term becomes infinite. However,
on the right-hand side only those terms whose p satisfy the requirement of
our assertion remain. Consequently there must be infinitely many p of this
type.

This existence theorem is the most important aid in the proof of the
converse of Theorem 166 and Theorem 167, which we will now carry out.
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§61 Number Groups, Ideal Groups, and
Singular Primary Numbers

In subsequent investigations we are concerned with those factor groups of
Abelian groups which are determined by the squares of elements. If ® is
an Abelian group and 1, is the subgroup of squares of all elements of &,
we wish to designate each of the cosets which are defined by U, as a complex
of elements of . The factor group &/, is the group of complexes by §9.
The unit element in the factor group is the principal complex, that is, the
system of elements of U,. The square of each complex is the principal
complex. If ® is a finite group, there are exactly 2¢ different complexes where
e is the basis number of ® belonging to 2. The number of independent
complexes, that is, the number of independent elements of &/ ,, is then e.

We now introduce an important series of groups, complexes, and related
constants:

1. The units of k form a group under composition by multiplication. The
number of different unit complexes is 2™, where m = (n + r{)/2, since there
are ry + r, — 1 = m — 1 fundamental units and in addition there is still a
root of unity in k whose square root does not lie in k.

2. All the nonzero numbers of k form a group under composition by
multiplication. Thus the system of all numbers a2, where a is fixed and ¢
runs through all numbers of k is a number complex. If we designate the r,
values +1 given by sgn 0™, ..., sgn o™ as the sequence of signs of a
number w in k, then all numbers of the same number complex have the
same sequence of signs. (For r; = 0 we understand the sequence of signs to
be the number +1.) The group of all totally positive number complexes
forms a subgroup of index 2" in the group of all number complexes. For
if r{ > 0, there are numbers w in k with an arbitrarily prescribed sequence
of signs. To see this let § be a generating number of k; then the r, expressions
ao+ a0 +---+a, 09 Yi=1,...,r) take on each system of real
values for real a. Hence for rational a they take on each combination of signs.

3. In the group of ideal classes of k, there are exactly 2° different class
complexes, where e denotes the basis number belonging to 2 of the class
group.

4. Those number complexes whose numbers are squares of ideals in k
form a subgroup in the group of all number complexes. The order of this
subgroup is 2"*¢. For by 3, there are e ideals a,, ..., a, which define e
independent class complexes and whose squares are principal ideals, say
a?=0a;(i=1,2,...,e). The e numbers «,...,a, define e independent
number complexes. If @ is a number which is the square of an ideal ¢ in k,
then ¢ is equivalent to a product of powers of the ay,...,a, and, after
multiplication by a suitable unit, @ differs from a product of powers of
oy,..., 0% by a square factor. We call a number in k singular, if it is the
square of an ideal in k. Thus there are m + e independent singular number
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complexes. They are represented by ay,...,a, and m units from the m
independent complexes.

5. Let p denote the number of independent singular number complexes
which consist of totally positive numbers. Accordingly there are 27 singular
totally positive number complexes. The 2™ * ¢ singular number complexes thus
indicate numbers with only 2™*¢~? different sequences of signs.

6. We regard two nonzero ideals a, b in the same strict ideal class and
all a and b equivalent in the strict sense if a/b can be set equal to a totally
positive number of the field. We again write a = b. The strict classes are
again combined into an Abelian group, the strict class group. Those strict
classes which contain a principal ideal in the broader sense form a subgroup
of index h. The principal ideals obviously define at most 2" distinct strict
classes. Thus the strict class group has order at most 2"h. Let ¢, be the basis
number belonging to 2 of this strict class group. We denote the group of the
strict ideal class complexes by J,. Its order is thus 2°°. By determining the
order of J, in a second way we obtain the equation

eg=p+r,—m (214)

To see this we denote that subgroup of J, whose class complexes can be
represented by principal ideals (in the broader sense) by . Then by the
general theorems on groups, the order of J, is equal to the order of the
factor group J,/$ multiplied by the order of $. Now the factor group
To/9 has order 2¢. For if by, b,, ..., b, are representatives of the e inde-
pendent class complexes (in the broader sense), then the 2° products of
powers b = b}* - - - b¥e (x; = 0 or 1) define exactly 2¢ distinct cosets in J,
with respect to $. On the other hand to each ideal a there exists a product
of powers b and a square of an ideal ¢2 such that a ~ be?; hence a = abc?
for a certain number a. The complex to which a belongs thus differs from
the complex to which b belongs by the complex of «, that is, a complex from
the group $. Hence the order of J,/9 is equal to 2°.

Now a principal ideal (y) belongs to the unit element of J, if and only
if () is equivalent to the square of an ideal in the strict sense, that is, if y is
equal to a totally positive number multiplied by a singular number, that is,
if and only if y can be made totally positive by multiplication by a singular
number. Of the 2™ possible sequences of signs for y exactly 2™*¢~7 are
realized by singular numbers by 5, so that the principal ideals define exactly
2ri=m*e=p) distinct strict ideal class complexes. Hence this is the order of
$. Thus assertion (214) is proved.

7. Among the odd residue classes mod 4 there are exactly 2" distinct
residue class complexes mod 4. It follows from £2 =1 (mod 4) that ¢ =1
(mod 2), ¢ =1+ 2w with w an integer. Among these numbers there are
N(2) = 2" incongruent ones mod 4.

8. We consider two numbers « and f to be in the same strict residue class
mod g, if « = f mod a and «/f is totally positive. In each residue class mod a
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moreover there are obviously numbers o whose r; conjugates have the same
sign as the arbitrarily given integer  since a + x|N(a)|w belongs to the
same residue class mod a as « for each rational integer x and has the desired
sign properties for all sufficiently large x. Thus each residue class mod a splits
into exactly 2" strict residue classes mod a. In particular there are thus
2"*r distinct strict residue class complexes mod 4.

9. Let [ be a prime factor of 2. Among the odd residue classes mod 4I,
there are 2"*! distinct residue class complexes mod 4l. It follows from &2 = 1
(mod 4l)that £ = 1 + 2w with w an integer and with w satisfying the condition
o(w+ 1) =0 (mod I). Thus w =0 or 1 (mod [) and this yields exactly
2N(2) = 2"*! incongruent numbers for ¢ mod 4l. In the corresponding
fashion there are 2"+ *! distinct strict residue class complexes mod 41.

10. The singular numbers which are at the same time primary numbers
without being squares claim our main interest. Such numbers are called
singular primary numbers. By Theorem 120 the singular primary numbers
o yield those fields K(+/w, k) which have relative discriminant 1 with respect
to k. Suppose that there exist g independent complexes of singular primary
numbers. Thenby 4,q < m + e. The 2™*° different singular number complexes
thus define 2™* ¢~ distinct residue class complexes mod 4, since precisely
2% of these are primary, that is, they belong to the principal complex of
residue classes mod 4.

11. Likewise let g, denote the number of independent complexes of singular
primary numbers which are totally positive. The 2™ * ¢ different singular number
complexes thus define only 2™*¢ 7 distinct residue class complexes mod 4
in the strict sense, because each 2% of the singular number complexes define
the same strict residue class complex mod 4.

12. Finally we are led, by Theorem 166, to a new classification of all odd
ideals modulo 4. Two integral odd ideals are considered to be in the same
“ideal class mod 4” if there is a square ideal ¢? in k such that a ~ b¢? and
integers «, B can be chosen so that aa = fbc? with « = f =1 (mod 4). The
composition of these classes defined by multiplication of ideals determines
the “class group mod 47; let it be denoted by B.

To determine the order of B we introduce the subgroup $ of those
classes of B which can be represented by odd integral principal ideals. The
order of B is then equal to the order of $ multiplied by the order of the
factor group B/9. Now this factor group has order 2° since if by, ..., b, are
odd representatives of the e independent ideal class complexes, then the 2°
products of power bj'---b¥ =Db (x; =0 or 1) define exactly 2¢ distinct
cosets in B with respect to $. Furthermore for each odd ideal a there exists
one of these products b and an odd ideal square ¢? such that a ~ bc?. Thus
the equation aa = Bbc? holds with odd numbers «, f. By multiplying by the
same numerical factor on both sides, we can assume that « = 1 (mod 4).
Consequently a and b belong to the same ideal class mod 4. However b
and b differ only by an ideal in $ and hence each coset in B is also represented
by some b, that is, B/$ actually has order 2°.
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In order to make further progress in determining the order of § we
consider that in any case two odd integers y,, 7, define principal ideals (y,)
and (y,) from the same ideal class mod 4, whenever y; and 7y, belong to the
same residue class complex mod 4. The ideal class mod 4 to which the ideal
(1) belongs consists of all odd ideals (y) for which y is congruent to a singular
number mod 4. By 10 moreover, singular numbers define exactly 2™* ¢4
distinct residue class complexes mod 4. Consequently among the 2" residue
class complexes mod 4 each 2™¢~? belong to the same ideal class mod 4.
Thus the order of § is 2"~ ™*¢~9 From this we obtain

the order of B is equal to 2" ™1 = 2mr1te

13. If r; > 0, then in the corresponding fashion we define the group B,
of strict ideal classes mod 4. We consider two odd ideals a and b to be in the
same strict ideal class mod 4, if there is a square of an ideal ¢* such that
a ~ bc? and the numbers « and f can be chosen so that aa = fbc2, a = f =1
(mod 4) and moreover « and f are totally positive.

The order of B, is determined in a manner similar to that in which the
order of B is determined. If §, is the subgroup of B, which is represented
by odd principal ideals, then the order of B,/9, is again 2¢. However, by 11,
the order of §, is found to be 2"*"1~m*e~40) gince among the 2"*"* strict
residue class complexes mod 4, each 2™*¢~ % differ by a singular number
complex.

Hence

the order of B, is equal to 2" "Mt 0 = Jm+do,

§62 The Existence of the Singular Primary Numbers
and Supplementary Theorems for the
Reciprocity Law

Now we determine q and g, by a very simple enumeration method.

Lemma (a). We have q, < e and q < e,

Suppose that there are g, independent totally positive singular primary
numbers w,, @,, . . ., w,, and let us consider the g, functions

Xi(a) = Q(wi,a) i= 1, «++5» 405

of the odd ideal a. These depend only on the ideal class complex to which a
belongs. For if a ~ be? holds with odd a, b, ¢ and if the odd numbers « and
B are chosen so that «a = Bbc?, then if we assume the w; relatively prime to

oa, we obtain
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However, by the reciprocity law, we have

(5)-6)

for each integer y which is relatively prime to 2w; since w; is primary and
totally positive. The last symbol, moreover, is +1 because w; is singular.
Hence it actually follows that

xi(a) = (%) = (%) = x(0) ifa~ bc2

Furthermore, since y;(a;a,) = x(a,) - x(a,), the g, functions y;(a) are group
characters of the group of ideal class complexes, by §10. By Theorem 169
they are also independent characters. On the other hand, by Theorem 33
the group of ideal class complexes has exactly e independent characters
since this group has order 2°; hence g, < e.

When we get to the bottom of the concept of strict equivalence we prove
the relation q < ¢, in analogous fashion.

Lemma (b). Let ¢4, ..., &,.+. be m + e independent singular numbers. Then
the m + e functions of the odd ideal a

0O(e;, a) i=12...,m+e

form a system of independent group characters of the group B,.

It again follows from Theorem 165 that these functions are group char-
acters of B,. Theorem 169 shows that they are independent.
By the general theorems on groups of §10 we thus have

m+e<m+ qo,

since by 13 the order of B, is m + q,. Hence g, > e and consequently, by
Lemma (a), we have g, = e. With this lemma the following two theorems are
proved.

Theorem 170. There are exactly e independent singular primary numbers, say
Wy, ..., w,, which are totally positive. Here e is the basis number belonging
to 2 of the group of broader ideal classes of the field. The e characters Q(w;, a)
form the complete system of characters of the group of class complexes.

Theorem 171. In order that an odd ideal a can be made into a totally positive
and primary number of the field by multiplication by the square of an ideal,
it is necessary and sufficient that the conditions

Q(e,a) = +1

are satisfied for every singular number ¢.
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If we consider the group B instead of B, it follows in analogous fashion:

Lemma (c). Let ey, .. ., &, be the p = ey + m — ry independent totally positive
singular numbers. Then the p functions Q(g;,a) (i =1, ..., p) form a system of
independent group characters of the group B for odd a.

Since B has order 2™ "4, it again follows from this that
m-—ri+q2p=m-—r;+eo, € =4

Hence by lemma (a) e, = ¢, and thus B has order 2°. With this we have
proved:

Theorem 172. There are exactly e, independent singular primary numbers,
5ay @y, ..., w,,. Here e, is the basis number belonging to 2 of the group of
strict ideal classes of the field. The e, characters Q(w;, a) form the complete
system of characters of the group of the strict class complexes for odd a.

Theorem 173. In order that an odd ideal a can be made into a primary number
of the field by multiplication by a square of an ideal, it is necessary and sufficient
that the conditions

Qe,a) = +1

are satisfied for each totally positive singular number &.

One usually calls Theorems 171 and 173 the first supplementary theorem.

In similar fashion we obtain the converse of Theorem 167 which concerns
the residue character modulo numbers which are not odd. We call an odd
integer o hyperprimary modulo 1, where [ denotes a prime factor of 2, if
o = ¢2 (mod 4l) can be satisfied by a number ¢ in k. Thus the hyperprimary
numbers modulo | define the principal complex of residue classes mod 4.
By Number 9 of the preceding section there are 2"*! distinct complexes
mod 4[ but only 2" distinct complexes mod 4. Hence each complex mod 4
contains exactly two distinct complexes mod 41. Hence the primary numbers
define exactly two distinct residue class complexes mod 4l. Let these be
denoted by R, and R,, where we choose R, as the principal complex mod 4l.

Theorem 174. If the prime ideal | which divides 2 belongs to the principal class
complex in the strict sense, then all e, independent singular primary numbers
are also hyperprimary modulo 1. On the other hand, in the other case, only
eo — 1 independent singular primary numbers are also hyperprimary modulo .

Proof : Let ¢ be an odd ideal chosen so that [¢? = 4 is a totally positive
number, which is possible in the first of the cases stated in Theorem 174.
Then for each odd number «, which we assume at first to be relatively prime
to I¢, we have by Theorem 167

(£)-C)E)-
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provided « belongs to the complex R;. If we now just consider the functions
() = Q(4,®) for primary numbers «, then we have Q(4,a,) = Q(4,,) if &,
and o, belong to the same complex R; or R,. Moreover, Q(4,a,a,) =
Q(4,21)Q(A, &), so that Q(4, ) is a group character of the group of order two
which is formed from the elements R;, R, where R3 = R,. Nevertheless this
character is not the principal character; for by Theorem 169 there are in-
finitely many prime ideals p for which (&) = — 1 while the characters Q(e,p)
are equal to +1 for each of the p independent totally positive squares ¢ of
ideals. Then by Theorem 173, p can be made into a primary number by
multiplication by a suitable m?, say a = pm?. Then Q(4a) =)= —1.
Consequently Q(A,«) is the uniquely determined group character of the
group (R, R,) which is not the principal character; hence it is = 1 if and
only if the primary number « belongs to R,, that is, if « is also hyperprimary
modulo 1. Now for each singular primary number w we have Q(4, w) = +1,
thus all odd singular primary numbers modulo [ are also hyperprimary
modulo L.

Secondly, if [ does not belong to the principal class complex in the strict
sense, then let us choose an odd ideal r such that A = It is a totally positive
number. Since r also does not belong to the strict principal class complex,
there are, by Theorem 172, among the e, singular primary numbers exactly
e, — 1 independent numbers, say w,, ..., ,,, such that Q(w;,r) = +1 for
i=23,...,ey and one number w,, independent of these numbers, for
which Q(w,,r) = — 1. This w, is then surely not hyperprimary modulo [ for

otherwise
(- G))-
r Wy T

would hold, by Theorem 167, while the product is equal to — 1 by the defini-
tion of w,. Hence w; belongs to the complex R, mod 4l. Therefore every
primary number belongs to the complex w, or w? mod 4. If, however, the
odd numbers « and B belong to the same complex mod 4l, then, if we set
x(a) = (B)($), we have

x(0) - x(B) = x(xp) = 1

because aff is hyperprimary mod I, that is,

2@ = x(B).
Consequently, none of the numbers w,, . .., w,, can belong to the complex
R, represented by w;, since then y(w,) would be = — 1, while y(w,) is equal
to 1 by the definition of w,. Consequently, w,, ..., w,, are hyperprimary

modulo [ and w, is not; with this Theorem 174 is proved.

Theorem 175. Let A = It be a totally positive number, r an odd ideal, and let
[ be a prime factor of 2. In order that the primary integer «, which is relatively
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prime to A, be hyperprimary, it is necessary and sufficient that

()

Theorem 167 asserts that the condition is necessary. The proof of the
preceding theorem shows in the following way that it is sufficient. First
suppose that [ is equivalent in the strict sense to the square of an ideal.
Then we can find integers S, p, 4 such that

AB* = Aop, Ao = I}
p =13, Ao, p totally positive,

where f is odd and relatively prime to ar. Then

- () (2)6)- (I 2)

and as shown above, (£) = +1 is the necessary and sufficient condition
that the primary number « is also hyperprimary.

However, if [ is not in a principal class complex, then there is indeed a
singular primary number w,, for which (%$*) = —1; and 1, w, represent
simultaneously the two distinct residue class complexes mod 4! which arise
from primary numbers. If « and w$ (a = 0 or 1) belong to the same complex
mod 41, then by Theorem 166 y(x) = (%) = (—1)*. Thus y(x) = +1, ifa is
hyperprimary mod [; otherwise y(a) = —1.

Theorem 175 is called the second supplementary theorem.

§63 A Property of Field Differents and the
Hilbert Class Field of Relative Degree 2

In conclusion we wish to make two applications of the reciprocity law. The
first deals with the ideal class to which the different d of the field belongs.

Theorem 176. The different d of the field k is always equivalent to the square
of an ideal in k.

If we choose an integer w in k, which is divisible by d with the decom-
position
= abd, a odd,
then, by Theorem 170, we need only show for the proof of our theorem that

for each singular totally positive primary number ¢, such that (g,a) = 1, the
residue symbol is (£) = +1.
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To prove this we go back to Formula (199) for Gauss sums and use
Theorem 156 which determines the value of a sum that belongs to a square
denominator. By (169) we decompose the sum C(z;) belonging to the de-
nominator 4a, where (¢,a) = 1, into a sum with denominator 4 and a sum
with denominator a, by introducing an odd auxiliary ideal ¢ such that

o ¢
ac = a number o, y=—=r_.
o D

() =c(e)=<(%)<()

and if ¢ is primary, the right-hand side is

= (5)<(<(3)

In particular, it follows for ¢ = 1 that

“fas)=<()<(¥)

Then by (169)

and consequently

(215)

We now apply reciprocity formula (199) to the last sums, by which these sums
transform into sums with denominator ¢, which can be determined directly
by Theorem 156.

Le |
o

— \/'—)|e(m/4)s(sgnw)
v |

Thus it follows from (215) that

e(m/4)S(sgn we)c( Y (l))

Likewise

2
—Y"w
<E> = e(ni/4)$(sgn we—sgn w) €
a

VNG|
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is valid for each primary number ¢ relatively prime to a. If we now assume
that ¢ is also a singular number then, by Theorem 156, we obtain the value
|/N(g)| for the sum C(—y*w/e). Consequently

& : - .
(_) — e(m/4)S(sgn we—sgn W) ifow = ab, a Odd,
a

and ¢ is a singular primary number, (g, a) = 1.

Finally if, in addition, ¢ is totally positive, it follows that (£) = +1 and,
by Theorem 170, that a as well as the different d belongs to the principal
class complex.

Since the differents of relative fields compose according to Theorem 111,
it also follows from what has just been proved:

The relative different D, of a field K with respect to a subfield k is always
equivalent to the square of an ideal in k.

Moreover, since the relative norm of D, is equal to the relative dis-
criminant of K with respect to k, we see that the relative norm is also equiv-
alent to a square in K. Thus we have shown

Theorem 177. If the ideal d, in k is the relative discriminant of a field with
respect to k, then b, is equivalent to a square in k.

As a second application of the reciprocity theorem we wish to investigate
the Hilbert class fields of k of relative degree 2. Following Hilbert we call a
field unramified with respect to k if its relative discriminant is equal to 1.
The unramified fields which are obtained by adjoining to k the square root
of a number in k can then be specified, for, by Theorem 120, these fields
arise by adjoining the square root of a singular primary number in k.
However, the number of distinct complexes of singular primary numbers
in k is equal to 2°° — 1 by Theorem 172 (the square numbers are not to be
considered as singular primary numbers).

Hence we have

Theorem 178. Relative to k there are exactly 2°° — 1 distinct unramified fields
of relative degree 2.

Accordingly, these fields are related to the ideal classes of k. If the class
number, in the strict sense, of k is odd, then there is no unramified field of
relative degree 2 at all. The connection with the ideal classes shows up
even more clearly in the formulation of the decomposition theorem.

Theorem 179. Let w be a singular primary number. Then there is a subgroup
®(w) of order hy/2 in the group of the hy ideal classes in the strict sense such
that a prime ideal p splits in the field K(~/w, k) if and only if p belongs to ®(w).
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The set of odd ideals r, for which Q(w,r) = + 1, determines a subgroup
of order 2°°~! in the group of class complexes in the strict sense, by Theo-
rem 172. Since each class complex consists of hy/2°° classes in the strict
sense, the odd ideals r with Q(w,r) = +1 are identical with the odd ideals
which lie in the h,/2 strict classes of this group ®(w).

Moreover, this also holds for the prime ideals [ which divide 2 since by
Theorem 119 we have Q(w,I) = +1 for the splitting symbol defined in §60,
if the odd number w is congruent to the square of a number in k mod 1¢*1,
where I° is the highest power of [ dividing 2. In the other case Q(w,l) = —1
for odd w. Now, however, w is primary and [>*! and 4/2c are relatively
prime; hence Q(w, 1) is = +1 if and only if w is a quadratic residue mod 41.
However, by Theorem 175 only the ideal class to which I belongs actually
satisfies this condition. For if A = It is totally positive and r is odd, then w is
hyperprimary relative to l if and only if (¥) = +1.

Because of this close relation to the ideal classes, the fields K( /o, k) are
called the class fields of k.

In the manner in which we have laid the foundations for the theory of
relatively quadratic fields, the reciprocity law appears as the first result; the
existence of class fields appears as a consequence of this law. In the classical
development of Hilbert and Furtwdngler (also in the investigation of residues
of higher powers) the train of thought runs in the reverse direction. First the
existence of class fields is proved by another method which, by the way, is
very complicated. Their connection with ideal classes is then discussed, and
from this the reciprocity law is then derived. For this the so-called Eisenstein
reciprocity law is an indispensible aid. One proceeds in this way in all cases
which are concerned with fields of relative degree higher than 2. No tran-
scendental functions have yet been discovered which, like the theta-functions
of our theory, yield a reciprocity relation between the sums which occur for
higher power residues in place of the Gauss sums. A new and very fruitful
contribution which is related to that of Hilbert has been made by Takagi®
who also has succeeded in gaining a complete overview of all relative fields
of k, which are “relatively Abelian,” that is, which have the same relation to
k as cyclotomic fields do to k(1).

3 Uber eine Theorie des relativ-Abelschen Zahlkorpers, Journal of the College of Science,
Imperial University of Tokyo, Vol. XLI (1920).



Chronological Table

Euclid (about 300 B.C))
Diophantus (about 300 A.D.)
Fermat (1601-1665)
Euler (1707-1783)
Lagrange (1736—1813)
Legendre (1752-1833)
Fourier (1768—1830)
Gauss (1777-1855)
Cauchy (1789-1857)
yAbel (1802-1829)
Jacobi (1804—1851)
Dirichlet (1805-1859)
Liouville (1809-1882)
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Hermite (1822-1901)
Eisenstein (1823-1852)
Kronecker (1823-1891)
Riemann (1826-1866)
Dedekind (1831-1916)
Bachmann (1837-1920)
Gordan (1837-1912)

H. Weber (1842-1913)
G. Cantor (1845-1918)
Hurwitz (1859-1919)
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