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Preface 

The theory of algebraic groups results from the interaction of various basic 
techniques from field theory, multilinear algebra, commutative ring theory, 
algebraic geometry and general algebraic representation theory of groups and 
Lie algebras. It is thus an ideally suitable framework for exhibiting basic 
algebra in action. To do that is the principal concern of this text. Accordingly, 
its emphasis is on developing the major general mathematical tools used for 
gaining control over algebraic groups, rather than on securing the final 
definitive results, such as the classification of the simple groups and their 
irreducible representations. In the same spirit, this exposition has been made 
entirely self-contained; no detailed knowledge beyond the usual standard 
material of the first one or two years of graduate study in algebra is pre­
supposed. 

The chapter headings should be sufficient indication of the content and 
organisation of this book. Each chapter begins with a brief announcement of 
its results and ends with a few notes ranging from supplementary results, 
amplifications of proofs, examples and counter-examples through exercises 
to references. The references are intended to be merely suggestions for 
supplementary reading or indications of original sources, especially in cases 
where these might not be the expected ones. 

Algebraic group theory has reached a state of maturity and perfection 
where it may no longer be necessary to re-iterate an account of its genesis. Of 
the material to be presented here, including much of the basic support, the 
major portion is due to Claude Chevalley. Although Chevalley's decisive 
classification results, contained in [6], have not been included here, a 
glimpse of their main ingredients can be had from Chapters XVII and XIII. 
The subject of Chapter XIII is Armand Borel's fundamental theory of 
maximal solvable subgroups and maximal toroids, which has made it 
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possible tc recreate the combinatorial features of the Cartan-Weyl theory of 
semisimple Lie algebras, dealt with in Chapter XVII, in terms of subgroups of 
semisimple algebraic groups. In particular, this has freed the theory from the 
classical restriction to base fields of characteristic O. 

I was encouraged to write this exposition chiefly by the appearance of 
James Humphreys's Linear Algebraic Groups, where the required algebraic 
geometry has been cut down to a manageable size. In fact, the algebraic­
geometric developments given here have resulted from Humphreys's 
treatment simply by adding proofs of the underlying facts from commutative 
algebra. Moreover, much of the general structure theory in arbitrarycharac­
teristic has been adapted from Borel's lecture notes [1] and Humphreys's 
book. 

I have made use of valuable advice from my friends, given in the course of 
several years on various occasions and in various forms, including print. It is 
a pleasure to express my thanks for their help to Walter Ferrer-Santos. 
Oscar Goldman, Bertram Kostant, Andy Magid, Calvin Moore, Brian 
Peterson, Alex Rosenberg, Maxwell Rosenlicht. John B. Sullivan, Moss 
Sweedler and David Wigner. However, it must be emphasized that no one 
but me has had an opportunity to remedy any of the defects of my actual 
manuscript. 

Gerhard P. Hochschild 
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Chapter I 

Representative Functions 
and Hopf Algebras 

This chapter introduces the basic algebraic machinery arising in the study of 
group representations. The principal notion of a Hopf algebra is developed 
here as an abstraction from the systems of functions associated with the 
representations of a group by automorphisms of finite-dimensional vector 
spaces. This leads to an initializing discussion of our main objects of study, 
affine algebraic groups. 

1. Given a non-empty set S and a field F, we denote the F-algebra of all 
F -valued functions on S by FS• In the statement of the following lemma, 
and frequently in the sequel, we use the symbol ~i.i' which stands for 1 if 
i = j, and for 0 if i ¥- j. 

Lemma 1.1. Let V be a non-zero finite-dimensional sub F-space of FS• There 
is a basis (V1" •• , Vn) of V and a corresponding subset (SIo' •• , Sn) oj S such 
that v;(Sj) = ~ij for aU indices i and j. 

PROOF. Suppose that we have already found elements S1' ••• , Sk of S and a 
basis (V1,k,"" Vn,k) of V such that the Vi,k'S and the s/s satisfy the require­
ments of the lemma for each i from (1, .. , , n) and each j from (1, . , . , k). If 
k < n, there is an element SH 1 in S such that VH 1,k(SH 1) ¥- 0, We set 

Vk+l,k+1 = Vk+1,k(Sk+1)-1 Vk +1,k' 

For the indices i other than k + 1, we set 

Vi,k+1 = Vi,l - Vi,k(Sk+1)Vk+1,k+1' 

Now the sets (S1,' •• , Sk+1) and (V1,H 1, ... , Vn,H 1) satisfy our requirements 
at level k + 1. The lemma is obtained by induction, starting with an arbitrary 
basis of V at level k = O. 0 

1 
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For non-empty sets Sand T, we examine the canonical morphism of 
F-algebras, 11:, from the tensor product FS ® Fl' toFSX T, where 

7t(~ f ® gXs, t) = ~ f(s)g(t). 

Proposition 1.2. The canonical morphism 11:: FS ® FT -+ FS x T is injective, 
and its image consists of all functions h with the property that the F -space 
spanned by the partial functions h" where t ranges over T and h,(s) = h(s, t), 
is .finite-dimensional. 

PROOF. Let Lj'= I.fj ® gj be an element of the kernel of 11:, and let V be 
the sub F -space of FS spanned by It, ... , fm. If V = (0) then our element is O. 
Otherwise choose (VI"'" vn) and (SI"'" Sft) as in Lemma 1.1, and write 
our element in the form ~7=1 Vi ® hi' Applying 11: and evaluating at (SI;, t) 
yields h,,(t) = O. This shows that each hi is 0, and we conclude that 11: is 
injective. 

It is clear that if h is an element of the image of 11: then it has the property 
stated in the proposition. Conversely, suppose that h is an element of FSXT 
having this property. This means that there are elementsfl"" ,J,. in FS such 
that each h, is an F -linear combination of the fj's. Choosing coefficients 
from F for each t in T, we obtain elements glo"" gn of FT such that, for 
each t, 

n 

h, = ~ gi(t)jj. 
i=1 

This means that 

h = 1I:(.i jj ® 9i)' 
1= 1 

o 

Let us consider the above in the case where both Sand T coincide with the 
underlying set of a monoid G, with composition m: G x G -+ G. This 
composition transposes in the natural fashion to a morphism of F -algebras 
m*: FG -+ FGXG, where m*(f) is the compositef 0 m. We abbreviate m(x, y) 
by xy, so that m*(f)(x, y) = f(xy). By transposing the right and left trans­
lation actions of G on itself, we obtain a two-sided G-module structure on 
FG, which we indicate as follows 

(x . fXy) = f(Yx), (f· x)(y) = f(xy). 

Now we see from Proposition 1.2 that m*(f) belongs to the image of 
11:: FG ® FG -+ FG x G if and only if the F -space spanned by the functions 
x·f, with x ranging over G, is finite-dimensional. If this is so, we say that/is 
a representative function. We denote the F -algebra of all F -valued representa­
tive functions on G by at,.{G), but we shall permit ourselves to suppress the 
subscript F when there is no danger of confusion. Clearly, atF(G) is a two­
sided 'sub G-module of pO, as well as a sub F-algebra. 
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Proposition 1.3. The image of the morphism of F -algebras 

x- 1 0 m*: 91,.(G) -+ FG ® FG 

actually lies in 91p(G) ® 91p(G). 

PROOF. Letfbe an element of 91p(G). Proceeding as in the proof of Proposi­
tion 1.2, we find elements Sh ••• , SII in G and elements Vh ••• , VII in FG as 
in Lemma 1.1 such that we may write 

II 

x- 1(m*(f» = LVI ® hi· 
1= 1 

Evaluating this at (si' t), we find hj(t)= f(sjt), whence hi = f . sJ. This 
shows that hi belongs to 91p(G). The conclusion is that the image of x- 1 0 m* 
lies in FG ® 91 p( G). Changing sides throughout, we find that this image 
also lies in 91p(G) ® FG. Clearly, the last two conclusions imply the assertion 
of Proposition 1.3. 0 

The morphism of F-algebras 91(G) -+ 91(G) ® 91(G) defined by Proposi­
tion 1.3 is called the comultiplication of 91(G), and we shall denote it by ~. 
For an element S of G, let s*: 91(G) -+ F denote the evaluation at s, so that 
s*(f) = f(s). Then ~ is characterized by the formula 

(x* ® y*)(~(f» = f(xy). 

More explicity, if 

~(f) = Lf/®fi'. 
then 

i 

f(xy) = L f/(x)f;'(Y)· 
I 

We adopt some general terminology. as follows. The structure of an 
F -algebra A is understood to consist of 

(1) the structure of A as an F-space; 
(2) the multiplication of A. viewed as an F-linear map JI.: A ® A -+ A; 
(3) the unit of A. viewed as an F -linear map u:F -+ A sending each element 

IX of F onto the IX-multiple tx1 A ofthe identity element of A. 

In writing the axioms, it is convenient to name the canonical identification 
maps coming from the F -space structure of A. These are 

P1: F ® A -+ A and P2: A ® F -+ A. 

Generally. we use is to denote the identity map on a set S. The axioms 
of an F -algebra structure may now be written as follows 

JI. 0 (u ® iA) = Ph JI. 0 (iA ® u) = pz. 

JI. 0 (JI. ® iA) = JI. 0 (iA ® JI.). 
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Purely formal dualization of this system yields the notion of an F­
coalgebra. Thus, the structure of an F -coalgebra C consists of the following: 

(1) the structure of C as an F-space; 
(2) the comultiplication of C, Il!l F -linear map ~: C ~ C ® C; 
(3) the counit of C, an F-linear map 6: C -+ F. 

Let ql: C ~ F ® C and q2: C ~ C ® F denote the canonical identi­
fications coming from the F -space structure of C. Then the axioms of an 
F -coalgebra structure are the following 

(e ® id 0 ~ = qh (ic ® e) 0 ~ = q2' 

(~ ® id 0 ~ = (ic ® ~) 0 (). 

It is worth noting that, in the case where the given F -space C is F, the maps 
ql and q2 coincide with a comultiplication () which, together with the identity 
map e = iF, makes F into an F -coalgebra. When F is regarded as a coalgebra 
in this way, then the counit e of any coalgebra C is a morphism of coalgebras. 
This is the formal dual of the familiar fact that the unit u of an F -algebra A is 
a morphism of F -algebras when F is viewed as an F -algebra in the canonical 
fashion. 

Now let us return to the F-algebra 9lF(G) and its comultiplication (). 
If we define e: 9lp(G) ~ F as the evaluation at the neutral element 1G of 
the monoid G then the F -space structure of 91 p( G), together with () and e, 
makes 9lp(G) into an F-coalgebra. A notable feature here is that ~ and e 
are morphisms of F -algebras. 

In general terms, let us recall that, if (A, Il, u) and (A', Il', u/) are F-algebras, 
then a morphism of F -algebras h: A ~ A' is an F -linear map satisfying 

h 0 Il = Il' 0 (h ® h) and h 0 u = u'. 
Dually, if (C,~, e) and (C', ()', e'l are F-coalgebras, then a morphism of 

F-coalgebras h: C ~ C' is an F-linear map satisfying 

()' 0 h = (h ® h) 0 () and e' 0 h = e. 

Now suppose that B is an F -space carrying both, an algebra structure 
(J.l, u), and a coalgebra structure ((), e). Suppose in addition that ~ and e are 
morphisms of F-algebras. Then (B, Il, u, (), e) is called an F-bialgebra. Our 
above discussion of 91 F( G) amounts to the definition of a bjalgebra structure. 

The usual definition ofthe tensor product oftwo F-algebras (A, J.l, u) and 
(A', Il', u/) yields (A ® A', Il ~ Il', u ® u/), where 

Il ~ Il' = (Il ® Il') 0 (i" ® s ® i".). 

Here, s stands for the canonical switch of tensor factors A' ® A ~ A ® A', 
and in writing u ® u' we have identified F ® F with F. 
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Similarly, if (C, ~, 6) and (C, ~', 6') are F-coalgebras, one defines the 
tensor product F -coalgebra (C ® C, ~ IBl ~', 6 ® 6') by making 

~ 1Bl~' = (ic ® s ® id ° (~ ® ~'), 

where now s is the switch C ® C -+ C ® c. 
We remark that, in the notation used in defining a bialgebra, the condition 

that ~ and 6 be morphisms of F -algebras is equivalent to the condition that /l 
and u be morphisms of F-coalgebras. 

Returning to 91( G), let us now suppose that G is a group. Then the inversion 
of G transposes into a map ,,: 91(G) -+ 91(G), defined by ,,(fXx) = f(x- 1). 

This is called the antipode of 91(G). 
In order to give the proper setting for the antipode, we need to develop 

more of the machinery of algebras and coalgebras. Let (C, ~, 6) be an F­
coalgebra and let (A, /l, u) be an F-algebra. Then we obtain an F-algebra 
structure on the F-space Hom,.{C, A) of all F-linear maps from C to A as 
follows. The product of two elements h and k of Homp(C, A) is defined as 
the composite /l ° (h ® k) o~. It is verified directly that this does in fact 
define an associative multiplication, for which u ° 6 is the neutral element. 

Now let (H, /l, u, ~, 6) be a bialgebra. In the definition just made, put 
C = H and A = H, so that we obtain an F-algebra structure on 

The multiplication of this structure is called the convolution. One calls 
H a Hopf algebra if iH has an inverse with respect to the convolution. The 
inverse of iH is called the antipode of the Hopf algebra H. Denoting it by", 
the defining property is 

An immediate verification shows that the map" defined above for 91( G) 
is indeed an antipode in the general sense. It can be shown that, for every 
Hopf algebra, the antipode is an antimorphism of algebras, as well as an 
antimorphism of coalgebras, where "anti" signifies the intervention of the 
usual switching of tensor factors. Also, if one of ~ or /l is commutative, then "0" = iH' In our case, H = 91(G), these properties of" are evident. For the 
general situation, see the notes at the end of this chapter. 

2. Let (C, ~, 6) be an F-coalgebra, and write CO for Homp(C, F). Viewing 
F as an F-algebra, we have the structure ofanF-algebra on CO. Let ~o denote 
the multiplication and 6° the unit of this algebra. Note that the neutral 
element for ~o is simply 6, so that 6°(a) = a6 for every element a of F. If we 
identify F ® F with F then ~o may be written simply as composition with 
~,i.e., ~O(z) = z ° ~ for every element z of Co ® Co. 
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With every element 't' of Co, we associate the F-Iinear endomorphisms 
't'[ and 't'] of C, as defined by the following formulas, where we identify C ® F 
and F ® C with C. 

't'[ = (ic ® 't') ° ~, 

't'] = ('t' ® id ° ~. 

Proposition 2.1. The map 't' H 't'[ is an injective morphism of F -algebras from 
CO to End p( C), and the map 't' H 't'] is an injective antimorphism of F -algebras 
from Co to Endp(C). Every 't'[ commutes with every a], so that these maps define 
the structure of a two-sided CO-module on C. This module is locally finite, in 
the sense that C coincides with the sum of the family of its finite-dimensional 
two-sidedly CO -stable subspaces. 

PROOF. Throughout the computations below, we identify F ® F with F, 
C ® F with C, F ® C with C, etc. Let a and 't' be elements of co. We have 

~ ° a[ = ~ ° (ic ® a) 0 ~ = (~ ® a) ° ~ 

= (ic ® ic ® a) ° (~ ® id ° ~. 

Now we use the associativity of ~, replacing (~ ® id ° ~ with (ic ® ~) ° ~. 
This gives 

~ ° a[ = (ic ® (ic ® a) ° ~) ° ~ = (ic ® a[) ° ~. 

On composition with ic ® 't', this yields 

't'[ ° a[ = (ic ® 't' 0 a[) 0 ~. 

It is clear from the definitions that t' 0 a[ coincides with the product 't'a in 
Co. Therefore, the last equality above means that 't'[ 0 a[ = ('t'a)[. Since the 
identity element of CO is 8 and since 8[ = ic, we may now conclude that the 
map 't' H 't'[ is the structure of a CO-module on C. This map is injective, 
because 8 0 't'[ = 't'. 

In the exactly analogous way, one verifies that the map 't'1-+ 't') is injective 
and a right CO-module structure on C. Note that a 0 t') coincides with the 
product 't'a in CO. In particular, 8 0 't'] = 't'. 

Next, it follows directly from the definitions that 

a) 0 't'[ = (a ® ic ® 't') 0 (~ ® id 0 ~, 

while 

't'[ 0 a) = (a ® ic ® 't') 0 (ic ® ~) 0 ~. 

By the associativity of ~, this shows that a] and 't'[ commute with each other, 
so that we have indeed the structure of a two-sided CO-module on C. 

It remains to be proved that C is locally finite. Let c be any element of C, 
and write ~(c) = Li c; ® c;'. Then it is clear from the definitions that the left 
CO-orbit C(c) lies in the F-space spanned by the CI'S, while the right Co-
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orbit q(c) lies in the F-space spanned by the ci's. Thus, each of these two 
orbits is finite-dimensional. Using the second fact for the elements ci, we 
see that the two-sided CO-orbit q(C(c» is finite-dimensional. 0 

Proposition 2.2. Each of C( and q is the commuting algebra of the other, 
in EndF(C). An element e of EndF(C) belongs to C( if and only if 
~ ° e = (ie ® e) ° b. If this holds, then e = (6 ° e)[. 

PROOF. We have already shown that the elements of C( and q commute 
with each other. Now suppose that e is any element of Endi C) that commutes 
with every element of q. This means that, for every element t of CO, we have 

eo(t®ido~ = (t®idoboe. 

We may write this in the form 

(t ® id ° «ie ® e) ° b - b ° e) = O. 

Since this holds for every t in Co, it follows that b ° e = (ie ® e) ° ~. Com­
posing this with ie ® 6, we obtain e = (6 ° e)r. The part of Proposition 2.2 
not yet proved, namely that CJ is the commuting algebra of C[ in EndF(C), 
is proved by changing sides throughout the above. 0 

Recall that, in the case where C is the coalgebra 91(G) of a monoid G, 
the evaluation at an element x of G was denoted by x·, so that x· is an 
element of Co. Now xr is the automorphism! ~ X· f, corresponding to 
the action of x on G from the right, while xt is the automorphism! ~! . x 
corresponding to the action of x on G from the lefh 

Now let us consi4er a locally finite G-module over a field F. This is an 
F-space Y, together with a morphism of monoids p from G to EndiY), 
such that every element of Y is contained in a finite-dimensional G-stable 
sub F-space of Y. Let yo denote the dual space Hom,.{Y, F) of Y. For each 
element y of yo and each element v of Y, we define an F-valued function 
y/v on G by putting 

(y/v)(x) = y(x . v). 

where X· v is the customary abbreviation for p(x)(v). Referring to the G­
module structure of FG, we have, as a direct consequence of the definitions, 
X· (y/v) = y/(x· v). Since Y is locally finite as a G-module, this shows that 
y/v belongs to 91(G). Hence, we have an F-linear map 

p': Y - HomF(Yo, 91(G», 

where p'(V)(y) = y/v. On the other hand, consider the canonical F-linear 
map 

t: Y ® 91(G) - HomF(Yo, 91(G». 

Clearly, t is injective. We claim that the image of p' lies in the image of t. 
In order to see this, choose an F-basis (Vi> • •• , VII) for the space spanned 
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by the transforms x· v of the fixed given element v of V by the elements 
x of G. Next, choose elements Y1" .• , YII of VO such that Y;(Vj) = lJjj. One 
verifies directly that 

't'(t Vi ® (YJV») (y) = it Y(Vj)yJv = y/v, 

which shows that 

p'(V) = 't'(t v;® (YJV»). 

Since 't' is injective, it follows that there is one and only one linear map 

p*: V ~ V ® BI(G) 

such that p' = 't' 0 p*. Viewing the elements of V ® fJt(G) as maps from 
G to V in the evident way, we may write 

p*(vXx) = x· v, 

which shows that 

p(x) = (iy ® x*) 0 p*. 

The fact that the neutral element of G acts as the identity map on V is 
expressed by the formula 

(iy ® e) 0 p* = iy, 

while the fact that p(xy) = p(x)p(y) for all elements x and y of G is expressed 
by the formula 

(iy ® lJ) 0 p* = (P* ® i:II(G» 0 p*. 

Generally, if(C, lJ,e) is any F-coalgebra. then a C-comodule is an F-space 
V, together with an F -linear map 

O':V~V®C 

satisfying 

(iy ® e) 0 0' = iy and (iy ® lJ) 0 0' = (0' ® id 0 0'. 

The above connections between p and p* show that the category of 
locallyfinite G-modules over thefield F is naturally equivalent to the category 
of BI,(G)-comodules. 

In the general situation, we may let Co take the place of G in the above 
discussion to show that the category of C-comodules is naturally equivalent 
to the category of those locally finite CO-modules which are of type C, in the 
sense that the associated representative functions belong to the canonical 
image of C in COO. Note that {) is a C-comodule structure on C, and that the 
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corresponding CO-module structure is given by the map y 1--+ Yl' If V is any 
locally finite CO-module of type C, then the corresponding C-comodule structure 
0': V ~ V ® C is a morphism of CO-modules when Co acts on V ® C via the 
factor C alone. 

Let (B, JI., u,~, e) be an F-bialgebra. The multiplication JI. of B comes into 
play with the construction of the tensor product of comodules, which is as 
follows. Suppose that 

0' : S ~ S ® B and t: T ~ T ® B 

are B-comodules. Then we define the map 

0' [g] t: S ® T ~ S ® T ® B 

as the composite of the ordinary tensor product of 0' ® t from S ® T to 
S ® B ® T ® B with the switch S2,3 of the middle two tensor factors and 
the map is ® iT ® JI. from S ® T ® B ® B to S ® T ® B. One verifies 
directly that this is indeed the structure of a B-comodule on S ® T. 

In the case where B = 91(G), if 0' and t are the comodule structures 
(X* and P* corresponding to G-module structures (X and P. we have 
(X* I8l P* = y*, where y(x) = (X(x) ® P(x) for every element x of G. 

Finally, let (H, JI., u, 6, e, ,,) be a Hopf algebra, where" is the antipode. 
The representation-theoretical significance of " is that it yields the con­
struction of dual comodules. This is as follows. Let 

O':S ~ S®H 

be an H-comodule, and define the linear map 

0" : So -+ Homp(S, H) 

by 

O"(Y) = (y ® ,,) ° 0'. 

Now assume that S isfinite-dimensional. Then the canonical map 

(X : SO ® H -+ HomF(S, H) 

is an isomorphism, so that we can form 0'0 = (X-1 o 0", One verifies directly 
that 

0'0: So ~ SO ® H 

is the structure of an H-comodule on So, called the dual of 0'. 

In the case where H = 91(G), with G a group, if 0' = p*, we have 0'0 = ')1*, 

where y is the familiar dual of p. given by y(x)(f) = f 0 p(x- I ) for every fin 
SUo 

In the general case, with S finite-dimensional, the tensor product 0'0 I8l t 

gives a comodule structure on Homp(S, T), because this F -space may be 
identified with So ® T. 
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3. We introduce some terminology from algebraic geometry, as follows. 
An affine algebraic F-set is a non-empty set S, together with ajinitely gener­
ated sub F -algebra (JJ(S) of FS such that the following requirements are 
satisfied 

(1) (JJ(S) separates the points of S; i.e., for every pair (St, S2) of distinct 
points of S, there is anfin (/J(S) withf(st) :F f(S2); 

(2) every F -algebra homomorphism from (JJ(S) to F is the evaluation 
s* at an element s of S. 

Frequently, we shall abbreviate "affine algebraic F-set" to "algebraic 
set". Such a set S is viewed as a topological space, the topology being the 
Zariski topology, which is defined by declaring that the closed sets be the 
annihilators in S of subsets of (JJ(S). If T is a non-empty closed subset of S 
then the annihilator, J T say, of T in (JJ(S) is a proper ideal, and T inherits 
the structure of an algebraic set, with (JJ(T) the F -algebra of restrictions 
to T of the elements of (JJ(S), so that (JJ(T) is isomorphic with (JJ(S)/J T. 

If A and B are affine algebraic F -sets then a morphism of affine algebraic 
F-sets from A to B is a set map ex from A to B such that (JJ(B) ° ex c (JJ(A). 
Note that this implies that ex is continuous. 

The elements of £~(S) are called the polynomial functions on S. A morphism 
of affine algebraic sets is also called a polynomial map. 

Let S and T be algebraic sets. We known from Proposition 1.2 that the 
canonical map from (JJ(S) ® 9'(T) to FSX T is injective. By considering 
elements of the formf ® 1 + 1 ® g, we see that the image of (JJ(S) ® (/J(T) 
in FS x 1" separates the points of S x T. Now it is clear that S x T is made 
into an algebraic set if (/J(S x T) is defined as the image of (JJ(S) ® (JJ(T) 
in F SX T. Evidently, the projection maps from S x T to S and Tare mor­
phisms of algebraic sets. Moreover, if (1 : A -+ Sand t: A -+ Tare morphisms 
of algebraic sets, then their direct product (I x t as set maps is clearly a 
morphism of algebraic sets from A to S x T. This shows that our definition 
of (/J(S x T) satisfies the categorical requirements of a direct product in 
the category of affine algebraic F -sets. 

An affine algebraic F-group is a group G, equipped with the structure 
.'3'( G) of an affine algebraic F -set, such that the composition map G x G -+ G 
and the inversion map G -+ G are morphisms of affine algebraic F -sets. 
Note that the last two requirements are equivalent to the requirement 
that (JJ(G) be a sub Hopf algebra of 91y{G). 

Now let (A, jl, u,~, e,,,) be a Hopf algebra over F. The F-algebra homo­
morphisms from A to F constitute a group, with the composition 

ab = (a ® b) ° ~ 

whose neutral element is e, and where the inverse of an element a is a ° ". 
We denote this group by ~(A). We know from Proposition 2.1 that A is 
locally finite as an AO-module. In particular, this implies that the evident 
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map from A to F,.,(A) sends A into alp("(A». Moreover, it is seen directly 
from the definitions that this map is a morphism of Hopf algebras. Let 
G = "(A), and let BP(G) be the image of A in alF(G). If &'(G) is finitely gener­
ated as an F -algebra, it makes G into an affine algebraic F -group. Conversely, 
if we are given an affine algebraic F -group G and make the above construc­
tion with A = &'(G), then we recover the given affine algebraic F-group. 
Accordingly, we shall permit ourselves to identify the elements x of G with 
the corresponding F-algebra homomorphisms x* from &'(G) to F. 

As with algebraic sets, we shall frequently abbreviate "affine algebraic 
F -group" to " algebraic group." 

There are three basic examples of algebraic groups, which we present in 
detail. The first is the additive group of F. For this, &,(F) consists of all 
those F-valued functions on F which can be written as polynomials in the 
identity map x : F -+ F. The comultiplication lJ, the counit e and the antipode 
" are the unique morphisms of F -algebras satisfying lJ(x) = x ® 1 + 1 ® x 
and e(x) = 0 and ,,(x) = - x. 

The second basic example is the multiplicative group of F, which we 
denote by F*. For this group, &,(F*) consists of all those F -valued functions 
on F* which can be written as polynomial in u and its reciprocal u - 1, where 
u denotes the identity map on F*. The formulas characterizing lJ, e and " 
as morphisms of F -algebras are 

lJ(u) = u ® u and e(u) = 1 and ,,(u) = u- 1• 

The third basic example is of a more general nature. In fact, it contains 
the last example as a very special case. Let E be any finite-dimensional 
F -algebra, and let E* denote the group of units of E, whose composition 
comes from the multiplication of E. We define ~(E*) as the smallest sub 
Hopf algebra of alF(E*) containing the restrictions to E* of the elements of 
£0. It is easy to check that this makes E* into an affine algebraic F -group. 
We proceed to obtain an explicit description of rJ'{E*). 

Let p be an injective representation of E by linear endomorphisms of a 
finite-dimensional F -space V, and let u denote the restriction of p to E*. 
Let S(u) be the F-space of representative junctions associated with u, i.e., 
the functions ')I 0 u with ')I in Endp(Vt. Let d" be the function on E* that 
maps every element e onto the determinant d,,(e) of u(e). Clearly, S(u) is 
contained in the image of EO in &,(E*). Since d" is a polynomial in elements 
of S(u), it follows that d" belongs to &,(E*). The reciprocal d; 1 of d" coincides 
with ,,(d,,), so that it also belongs to &,(E*). The explicit formula for the inverse 
of a matrix shows that, iff is an element of S(u), then ,,(f) is of the form 
d; 19, where g is a polynomial in elements of S(u). Therefore, if A is the 
subalgebra of &,(E*) that is generated by d; 1 and the elements of S(u), 
then A is stable under the antipode ", as well as under the right and left 
translation actions of E*, which evidently stabilize S(u). Therefore, A coin­
cides with rJ'{E*). 
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Finally, let (Vl> ••• , vn) be an F-basis of V. For e in E, write 

n 

p(e)(vj) = L liJ{e)vj. 
i=1 

This defines elements lij of EO. Let gij be the restriction of lij to E*. Then 
@(E*) is generated as an F -algebra by the gi/S and d;; 1. We have 

n 

s(gij) = {)ij and {)(gij) = L gil; ® g"j' 
k=1 

4. Let (C, (), s) be a coalgebra. A subspace J of C is called a coideal if 

s(J) = (0) and {)(J) c. C ® J + J ® C. 

These are precisely the conditions needed to ensure that CjJ inherit a co­
algebra structure. By a biideal of a bialgebra one means a coideal that is 
also an ideal. Note that, since a biideal is annihilated by the counit, it is 
always a proper ideal. Finally, a Hopf ideal of a Hopf algebra is a biideal 
that is stable under the antipode, so that the factor space with respect to a 
Hopf ideal inherits the structure of a Hopf algebra. 

Now let G be an affine algebraic group, and let K be a subgroup of G. 
Let J K denote the annihilator of K in @(G). Evidently, J K is a Hopf ideal of 
@(G). Conversely, if J is any Hopf ideal of @(G), then the annihilator of 
J in G is a subgroup of G. 

A subgroup K of G is called an algebraic subgroup if it is closed in G. 
The restrictions of the elements of @(G) to K make up the algebra @(K) 
of polynomial functions of an algebraic group structure on the closed sub­
group K. Clearly, @(K) is isomorphic, as a Hopf algebra, with @(G)jJK , 

via the restriction morphism. 

Proposition 4.1. Let G be an algebraic group, K a submonoid of G. Then the 
closure of Kin G is an algebraic subgroup ofG. 

PROOF. From the fact that K is a submonoid of G, it follows immediately 
that J K is a biideal of@(G). This implies that the annihilator, K' say, of J Kin G 
is a submonoid of G. 

Now let x be an element of K', and consider the translation operator 
xt on 9'(G). Evidently, this stabilizes J K, and so induces an injective linear 
endomorphism on J K' Since @(G) is locally finite as a G-module, it follows 
that this endomorphism of J K is also surjective. Therefore, the inverse (x - 1">1* 
of xt also stabilizes J K' This implies that X-I belongs to K'. Thus, we con­
clude that K' is a subgroup of G. Evidently, K' is the closure of K in G. 0 

Let G and H be algebraic groups. It is clear that the direct product struc­
ture of G x H as an algebraic set, together with its structure of an abstract 
group, is the structure of an algebraic group. Note that the coalgebra struc-
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ture of &>(G x H), via the canonical identification, becomes the tensor 
product coalgebra structure of &>(G) ® &>(H). 

By a morphism of affine algebraic F -groups one means a group homo­
morphism that is also a morphism of affine algebraic F -sets. Evidently, 
the direct product G x H, as defined above, satisfies the categorical require­
ments of a direct product in the category of affine algebraic groups. 

Since we have been casual about categorical concerns, a warning in the 
form of a classical example may be appropriate at this point. The exponen­
tial map from the additive group of complex numbers to the multiplicative 
group is not a morphism of affine algebraic groups! 

Let V be a finite-dimensional F -space, and let E stand for the finite­
dimensional F-algebra EndF(V). Then the affine algebraic F-group E*, 
as defined in Section 3, is called the full linear group on V. If G is an affine 
algebraic F -group, then a polynomial representation of G on V is a morphism 
of affine algebraic F-groups from G to E*. It is equivalent to say that V has 
the structure of a G-module such that the associated representative functions 
on G belong to &>(G). One then refers to Vas a polynomial G-module. 

Notes 

1. Let (H,j1., u, b, e,,.,) bea Hopfalgebra over the field F. At the end of Section 1, 
we mentioned some formal properties of the antipode ,., without proof. 
We sketch a procedure by which the reader can establish these properties. 
In order to show that,., is an antimorphism of coalgebras, verify first that 
eo,., = e by writing 

e = e 0 (u 0 e) = e 0 j1. 0 (,., ® iH ) 0 b = .... 

In order to show that 

b 0 y/ = (,., ® ,.,) 0 so b, 

consider the F-algebras HomiH, H) and HomiH, H ® H) constructed 
from the coalgebra structure of H and the algebra structures of Hand 
H ® H, and note that the map (X H b 0 (X is a morphism of F-algebras from 
the first to the second. Since,., is the inverse of iH in HomF(H, H), this shows 
that b 0 ,., is the inverse of b in HomiH, H ® H). Hence, it suffices to show 
that ('" ® "') 0 s 0 ~ is the inverse of b. This can be done by a direct calcula­
tion. 

Similarly, by considering the morphism of F-algebras from HomF(H, H) 
to HomiH ® H, H) sending each (X onto (X 0 j1., one can show that,., is an 
antimorphism of F-algebras. 

Using this, one obtains 

j1. 0 «,., 0 ,.,) ® ,.,) 0 ~ = j1. 0 (,., ® ,.,) 0 (,., ® iH ) 0 b 

= ,., 0 j1. 0 s 0 (,., ® iH ) 0 b 
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Now, if one of J.l or ~ is commutative, one finds that the above reduces to 
u 0 B, whence one obtains" 0 " = iH. 

2. With the help of Proposition 2.1 and the above results concerning the 
antipode, one shows that every Hopf algebra with commutative multi­
plication is the union of the family of its finitely algebra generated sub Hopf 
algebras. 
3. Let C be an F -space, and suppose that CO is endowed with the structure 
of an F -algebra, and C is endowed with the structure of a locally finite 
two-sided CO-module such that 1X(fJ· c) = P(c· IX) for all elements c of C and 
all elements IX and P of CO. Define a coalgebra structure ~, e on C such that 
the given two-sided CO-module structure of C is that of Proposition 2.1. 

4. Basic references for the machinery of Hopf algebras and the associated 
module theory are [9] and [17]. 



Chapter II 

Affine Algebraic Sets and Groups 

We begin with the basic facts concerning the irreducible components of 
algebraic sets in general, and the irreducible component of the neutral 
element in an algebraic group. The main result of Section 2 is the fact that 
algebraic subgroups are determined by their semi-invariants in the algebra 
of polynomial functions of the containing group. Section 3 contains the 
fundamental results on homomorphisms from commutative algebras to the 
base field, culminating in Hilbert's Nullstellensatz. Section 4 applies this to 
yield an important tool theorem about polynomial maps between algebraic 
groups, and then establishes the principal general result concerning factor 
groups of algebraic groups. 

1. A topological space is said to be irreducible if it is non-empty and not the 
union of two non-empty closed proper subsets. Equivalently, a topological 
space is irreducible if it is non-empty and every pair of non-empty open 
subsets has a non-empty intersection. This notion is of importance for us in 
the case where the space is an affine algebraic set, with its Zariski topology. 

Let S be such a set, and let T be a non-empty subset of S. We show that 
T is irreducible if and only if its annihilator J T in ~(S) is a prime ideal. 

First, suppose that T is irreducible, and let a and b be elements of ~(S) 
such that ab belongs to JT • If A and B are the sets of zeros in S of a and b, 
respectively, then T = (A n T) u (B n T). Since T is irreducible, it follows 
thafone of AnT or B n T coincides with T, whence one of a or b belongs 
to J T • Thus, JT is a prime ideal. 

Now suppose that T is not irreducible, so that T = (A n T) u (B n T), 
where A and B are closed subsets of S neither of which contains T. Now 
JAn J B C J T, while neither J A nor J B is contained in J T' This shows that 
J T is not a prime ideal. 

15 
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From the fact that rJP(S) is a Noetherian ring, it follows immediately 
that S is Noetherian as a topological space, in the sense that it satisfies the 
maximal condition for open sets. We use this in showing that S is the union 
of a finite family (SI"'" S,,) of maximal irreducible subsets, the uniquely 
determined irreducible components of S. 

Consider the family !JI of non-empty closed subsets of S that are not 
finite unions of irreducible closed sets. Since S is Noetherian, it satisfies 
the minimal condition for closed sets. Therefore, if!JI is not empty, it has a 
minimal member, T say. Now T is not irreducible, so that T = 11 U T2 , 

where Tl and T2 are non-empty closed proper subsets of S. By the minimality 
of T, each 1; is a finite union of closed irreducible subsets. But this implies 
that T is such a union, so that we have a contradiction. Thus, !JI is empty. 

In particular, S is therefore the union of a finite family of closed irreducible 
subsets. Let (S 10 ••• , S,,) be a family of closed irreducible subsets obtained by 
discarding redundant members from any such family whose union is S. 
Then it is easy to see that every irreducible subset of S is contained in one 
of the S/s, and hence that the family (Sh"" S,,) satisfies all of our require­
ments. Note that each irreducible component is closed. 

It is easily seen from the definition of irreducibility that every non-empty 
open subset of an irreducible space S is irreducible, and dense in S. Also, the 
closure of an irreducible subset is irreducible. 

Proposition 1.1. Let IX: S -+ T be a morphism of algebraic sets. If A is an 
irreducible subset ofS, then IX(A) is an irreducible subset ofT. 

PROOF. This follows direcly from the definition of irreducibility; using only 
the continuity of IX. 0 

Lemma 1.2. Let F be a field, S an irreducible affine algebraic F -set, B an 
integral domain F-algebra. Then rJP(S) ® B is an integral domain. 

PROOF. Let u and v be elements of rJP(S) ® B such that uv = O. Write 

" " u = LU, ® b, and v = L Vi ® bl> 
i=1 i=1 

where the b,'s are F -linearly independent elements of B, and the u/s and 
v,'s belong to rJP(S). Every element .~ of S, via evaluation at s, defines a B­
algebra homomorphism SB from rJP(S) ® B to B. If there is an index i such 
that v,es) :f:. 0, then SB(V) '# 0, whence SB(U) = 0, so that uJ{s) = 0 for eachj. 
Therefore, in any case, we have u/"'s)Vj(s) = 0 for all indices i and j and all 
elements s of S. Thus, UjV, = 0 for all indices i andj. Ifv :f:. 0 then one of the 
Vi'S must be different from 0, and it follows that u = O. 0 

Proposition 1.3. If S and T are irreducible algebraic sets, so is S x T. 

PROOF. We know from 'the beginning of this Section that rJP(S) and rJP(T) 
are integral domains. By Lemma 1.2, it follows that rJP(S) ® rJP(T) is an inte­
gral domain. Since this is rJP(S x T), we conclude that S x T is irreducible. 0 
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Theorem 1.4. Let G be an affine algebraic group. The irreducible components 
of G are mutually disjoint. The component G1 containing the neutral element 
of G is a closed normal subgroup of G, and the irreducible components of G 
are the cosets ofG1 in G. Moreover, G1 is the only irreducible closed subgroup 
offinite index in G. 

PROOF. Suppose that U and V are irreducible components of G and that each 
contains the neutral element of G. The product set UV in G is the image of 
U x V under the composition map of G. By Propositions 1.3 and 1.1, it is 
therefore irreducible. Since it contains U and V, we conclude that 

U = UV = V. 

Thus, only one of the irreducible components of G contains the neutral 
element. This defines G 1 • 

We have just seen that G 1G 1 = G 1• Since the inversion of G is a homeo­
morphism, G 11 is an irreducible component of G. Since it contains the neutral 
element, it therefore coincides with G 1• Thus, G1 is a subgroup of G. By 
considering the translation actions of G on itself, we see immediately that 
the set of left cosets of G1 in G, as well as the set of right cosets, coincides 
with the set of irreducible components of G. This evidently implies that 
G1 is a normal subgroup of finite index in G. 

Finally, let K be any closed irreducible subgroup of finite index in G. 
Clearly, the set of left (or right) cosets of K in G coincides with the set of 
irreducible components of G, i.e., with the set of co sets of G1• Hence, 
K = G1• D 

2. Let F be a field, Van F-space. The exterior algebra /\(V) built over V is 
defined as the factor algebra of the tensor algebra ®(V) mod the ideal gen­
erated by the squares of the elements of V. If G is a group and V is a G­
module, then /\(V) inherits the structure of a G-module via the tensor 
product construction, and G acts on V by F -algebra automorphisms re­
specting the grading of V by its homogeneous components /\"(V) 
(k = 0,1, ... ). A module of this type plays the decisive role in the proof of 
the following theorem. 

Theorem 2.1. Let G be an affine algebraic F-group, H an algebraic subgroup 
of G. There is a finite subset E of .?)l(G), and an element f of .?)l(G) whose restric­
tion to H is a group homomorphism from H to F*, such that 

(1) x· e = f(x)efor every x in H and every e in E 
(2) if x is an element of G such that x . e belongs to Fe for every element e 

of E then x belongs to H. 

PROOF. Let 1 denote the annihilator of H in .?)l(G). There is a finite-dimen­
sionalleft G-stable sub F-space V of .?)l(G) such that V n 1 generates 1 as an 
ideal. Let d denote the dimension of V n 1, and consider the action of G on 
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I\d(V). Let S denote the canonical image of I\d(V n I) in 1\ d(V). Clearly, S is 
I-dimensional, and we write S = Fs, fixing any non-zero element s of S. 

Since H . I c: I, it is clear that S is an H-stable subspace of I\d(V). Thus, 
for x in H, we have X· s = g(x)s, where 9 is a group homomorphism from 
H to F*. Now choose (I from (l\d(Vno such that (I(s) = 1, and letfbe the 
representative function (lIs on G. It is clear from the comodule form of the 
construction of tensor products of G-modules thatfis an element of 9i'(G). 
Evidently, the restriction off to H coincides with g. 

Now let «(11"'" (I,) be an F-basis of the annihilator of S in (l\d(V)O, 
and consider the elements (lJs of &'(G). For every element x of H, we have 

x . «(lJs) = (lJ(x· s) = g(x)(lJs. 

Conversely, suppose that x is an element of G such that X· «(lJs) is an F­
multiple of (I,ls for each i. Evaluating at the neutral element of G, we obtain 
(li(X' s) = 0 for each i. This shows that X· s belongs to S, so that X· S = S. 
Let t be an element of V n I. Then, in l\d+l(V), we have tS = (0), whence 
also x . (tS) = (0). But 

x . (tS) = (x· tXx . S) = (x . t)S. 

Thus, we have (x . t)S = (0), which means that x . t belongs to V n I. Since 
V n I generates I as an ideal, our result shows that x . I c: I, whence x belongs 
to H. This proves the theorem, with E = «(Ids, ... , (I,/s). 0 

If e is an element of &'(G), and 9 is a group homomorphism from H to 
F* such that X· e = g(x)e for every element x of H, then e is called a semi­
invariant of H, and 9 is called the weight of e. 

Theorem 2.2. Let H be a normal algebraic subgroup of the algebraic group G. 
There is a finite subset Q of 9i'( G) such that the left element-wise fixer of Q in 
G is precisely H. 

PROOF. Let E be a finite set ofsemi-invariants of H, such as given by Theorem 
2.1, and let 9 denote the common weight of the elements of E. Let J be the 
smallest left G-stable subspace of &'(G) that contains E. Since 9i'(G) is locally 
finite as a G-module, J is of finite dimension over the base field F. Those 
elements of J which are H-semi-invariants of weight 9 evidently constitute 
a sub H-module, JJ say, of J. 

If x is an element of G then x . J 1 is clearly the sub H-module of J con­
sisting of those elements which are semi-invariants of weight g;", where 
g,,(y) = g(x- 1yx) for every element y of H. Since J is finite-dimensional, 
it is therefore a finite direct H-module sum J 1 + ... + J,,, where the Ji's 
are all the distinct x . J J 's. 

Let U denote the sub F -algebra of Endp(J) consisting of the endomorph­
isms stabilizing each it. and let p: G -+ Endp(J) be the representation of 
G on J coming from the action of G on 9i'( G) from the left. It is clear from the 
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definitions that, if u is an element of U and x is an element of G, then 
p(x)up(X)-1 belongs to U. Thus, we have a representation (1 of G on U, where 

(1(x)(u) = p(x)Up(X)-I. 

It is easy to see that the representative functions associated with (1 belong 
to ~G). In fact, S(p) is the smallest left and right G-stable subspace of fJI(G) 
containing J, and S«(1) c: S(p),,(S(p», where" is the antipode of fJI(G). 
Since every element of H acts as a scalar multiplication on each Jj, the 
kernel of (1 contains H, so that the representative functions associated with (1 

must actually belong to the left H-fixed part of fJI(G), which we denote by 
fJI(G)H (the normality of H implies that this coincides with the right H-fixed 
part HfJI(G». 

Now let Q be any finite subset of fJI(G)H spanning S«(1). Let x be an element 
of G such that X· q = q for every q in Q. Then x belongs to the kernel of (1, 

which means that p(x) commutes with every element of U. It follows from 
this that p(x) stabilizes each Jj, and that the restriction of p(x) to J j is a scalar 
multiplication. Since E c: J I' the element x therefore satisfies condition (2) 
of Theorem 2.1, so that x belongs to H. 0 

We make an immediate simple application of Theorem 2.2 to the situation 
of Theorem 1.4. It is clear from Theorem 2.2 that fJI(G)G 1 separates the 
elements of GIG1.1f S is a finite set, and A is a sub F-algebra of FS separating 
the elements of S, then A must coincide with F~. Hence, viewed as an F­
algebra of F-valued functions on G/G1, the algebra fJI(G)Gl coincides with 
~/GI. In particular, the characteristic functions of the irreducible com­
ponents of G are elements of fJI(G), whence we have the following result. 

Theorem 2.3. Let G be an affine algebraic F-group. As an F-algeb/'a, 9(G) 
is isomorphic, via the restriction maps, with the direct F -algebra sum of the 
algebras ofpolynomialfuncions on the irreducible components ofG. 

3. Lemma 3.1. Let R be a subring of afield K, and suppose that J is a proper 
ideal of R. For every element u of K, if R[u]J = R[u] then 

R[u-']J #: R[u- I ]. 

PROOF. Suppose this is false. Then there is an element u in K for which we 
have relations 

'" n 
"a·u i = 1 = ~ b·u- i LoJI LoJJ' 
i= 1 i=O 

where the a/s and b/s are elements of J. We assume that the relations have 
been so chosen that m + n is as small as possible. Replacing u with u- I , if 
necessary, we arrange to have n ~ m. Since J #: R, these indices m and n 
must be greater than O. From the second relation, we obtain 

n 

(1 - bo)u'" = L bju"'- i. 
J= 1 
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Multiplying the first relation by 1 - bo and then substituting for (1 - bo)um, 

we obtain 

m-1 n 

1 - bo = L (1 - bO)aiui + am L bjUm-i. 
i=O j=1 

This may be written in the form 

m-l 

L Ci Ui = 1, 
i=O 

where each Ci is an element of J, so that we have a contradiction to the 
minimality of m + n. 0 

A subring S of a field K is called a valuation subring if, for every element 
u of K not belonging to S, the reciprocal u - 1 does belong to S. 

Proposition 3.2. Let R be a subring of afield K, and suppose that p is a ring 
homomorphismfrom R to an algebraically closed field F. Then p can be extended 
to a ring homomorphism from a valuation subring S of K to F, where ReS. 

PROOF. An evident application of Zorn's lemma shows that, among the 
subrings T of K containing R and such that p can be extended to a ring 
homomorphism T -+ F, there is a maximal one. Therefore, we assume 
without loss of generality that R is already maximal, and we show that R 
is a valuation subring of K. 

Let u be an element of K. We must show that one of u or u- 1 belongs to R. 
Let J denote the kernel of p. By virtue of Lemma 3.1, we may suppose that 
R[u]J :F R[u], and it suffices to show that then u belongs to R. The last 
assumption implies that J is contained in some maximal ideal, M say, of 
R[u]. Evidently, p can be extended to a ring homomorphism from the 
ring of fractions R[(R \ J) -1] to F, where R \ J denotes the complement 
of J in R. Therefore, the maximality of R implies that this ring of fractions 
coincides with R. This means that p(R) is a subfield of F, so that J is a maximal 
ideal of R. Therefore, M n R = J. 

Now consider the canonical homomorphism 

n: R[u] -+ R[u]/M. 

Since the kernel of n in R is J, there is an isomorphism 

(1: n(R) -+ p(R) 

such that the restriction to R of (1 0 n coincides with p. Next, we observe 
that u must be algebraic over R, because otherwise the evident extension of 
p to a ring homomorphism R[u] -+ F sending u onto 0 would contradict 
the maximality of R. Hence, n(u) is algebraic over the subfield n(R) of 
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R[u]jM. Since F is algebraically closed, the isomorphism u can therefore 
be extended to a homomorphism 

T: R[u]jM -+ F. 

Now the homomorphism T 0 1t from R[u] to F is an extension of p, and the 
maximality of R implies that u belongs to R. 0 

Theorem 3.3. Let R be a subring of afield K, and let P be afinite subset of K. 
For every non-zero element u of R[P], there is a non-zero element u' in R such 
that every homomorphism from R to an algebraically closed field F not an­
nihilating u' extends to a homomorphism from R[P] to F not annihilating u. 

PROOF. Evidently, the statement of the theorem is adapted to an induction 
on the cardinality of P. Therefore, we suppose without loss of generality 
that P consists of a single element p. First, we deal with the case where p 
is not algebraic over the field of fractions of R, which we denote by [R]. 
Write 

u = ro + ... + rnp", 

with each r, in Rand rn :i: O. Let p be a ring homomorphism from R to F 
not annihilating rn. There is an element t in F such that 

p(ro) + ... + p(rn)tn :i: O. 

Evidently, p can be extended to a ring homomorphism u from R[P] to F 
such that U(P) = t, and our choice of t ensures that u(u) :i: 0, so that we have 
the desired conclusion, with u' = r n. 

Now suppose that p is algebraic over [R]. Then we can find a non-zero 
element u' in R such that u'p and u'ju are integral over R, which implies that 
p and u- 1 are integral over R[U'-l]. Suppose that p is a homomorphism 
from R to F not annihilating u'. Evidently, we can extend p to a homo­
morphism u from R[U'-l] to F. By Proposition 3.2, there is a valuation 
subring S of K containing R[U'-l] and a homomorphism t from S to F 
extending u. Since S is a valuation subring of K, it is integrally closed in K, 
so that p and u - 1 belong to S. The restriction ofT to R[p] is an extension 
of p, and we have T(U) :i: 0, because u- 1 belongs to the domain of T and 
T(U)T(U- 1) = 1. 0 

Lemma 3.4. Let B be a commutative ring. The intersection of the family of 
all prime ideals of B coincides with the set of all nilpotent elements. 

PROOF. Evidently, every nilpotent element of B belongs to every prime 
ideal. Conversely, suppose that b is an element of B that belongs to every 
prime ideal of B. Consider the polynomial ring B[x], where x is an auxiliary 
variable. The assumption on b clearly implies that b, and hence bx, belongs 
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to every maximal ideal of B[x]. Therefore, 1 - bx is a unit of B[x], so that 
there are elements bl in B such that 

(1 + ... + bnx")(1 - bx) = 1. 

One reads otT from this that b1 = b, ... ,bn = bn- 1b, and bnb = O. This 
gives bn+ 1 = O. 0 

The following theorem is a version of the Hilbert Nullstellensatz. 

'Theorem 3.5. Let L be a field, B a finitely generated L-algebra having no 
nilpotent elements other than O. Let F be an algebraically closedfield containing 
L. Then the L-algebra homomorphisms from B to F separate the elements of B. 

PROOF. By Lemma 3.4, the assumption on B means that the intersection 
of the family of all prime ideals of B is (0). Hence, if b is any non-zero element 
of B, there is a prime ideal J in B not containing b. We identify L with its 
canonical image in the integral domain BIJ, and we regard BfJ as an L­
algebra. Evidently, it is finitely generated as such. Now we apply Theorem 
3.3, with L in the place of R, and BIJ in the place of R[P]. This shows that 
there is an L-algebra homomorphism from BfJ to F not annihilating the 
canonical image of b. The composite of this with the canonical homo­
morphism from B to BIJ is an L-algebra homomorphism from B to F not 
annihilating b. 0 

Proposition 3.6. Let F c L c K be a tower of fields. Suppose that K is 
finitely field-generated over F. Then the same is true for L. 

PROOF. There is a transcendence basis (Slo ... , Srn, t lo ••• , tn) for Kover 
F such that (Slo ... , srn) is a transcendence basis for Lover F and (t lo ••• , tn) 

is one for Kover L. Now K is finite algebraic over F(slo ... , Srn, t b ... , tn), 

whence the same is true for the subextension L(t1, ••• , tJ. Write P for 
F(Sb ... , sm>. We have just seen that L(t lo ••• , tn) is of finite dimension over 
p(ttt ... , tn). Since the t/s are algebraically independent over L, this implies 
that L is of finite dimension over P. In particular, L is therefore finitely 
field-generated over F. 0 

Proposition 3.7 (Artin-Tate). Let R, B, A be commutative rings, with 
ReB c A. Suppose that R is Noetherian, that A is finitely generated as 
an R-algebra and also that A is finitely generated as a B-module. Then B is 
finitely generated as an R-algebra. 

PROOF. Exhibiting the assumptions on the generation of A, we write 

R[ab ... ,aJ = A = BU1 + ... + BUrn 

choosing U1 = 1. Then we have 
rn . 

al = L bijuJ and 
J= 1 

rn 

UIUj = L bljtUt, 
11=1 
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where the bij's and the bijk's are elements of B. Let C denote the sub R-algebra 
of B that is generated by these elements. Since R is Noetherian and C is 
finitely generated as an R-algebra, C is Noetherian. Clearly, CUt + ... + CUm 

is a subring of A containing R as well as each ai' Therefore, this subring 
coincides with A, showing that A is finitely generated as a C-module. Since 
C is Noetherian, the sub C-module B of A is also finitely generated as a 
C-module. Now, if (b l , • .. ,bq ) is a set of C-module generators of B, then 
B is generated as an R-algebra by the bp's, the bi/s and the bijk's. 0 

Lemma 3.8. Let A be a commutative algebra over the field F that can be 
generated as such by a finite set of cardinality n. Then every chain of prime 
ideals of A has length at most n. If P and Q are prime ideals of A such that P 
is properly contained in Q then the degree of transcendence of [A/Q] over F is 
strictly smaller than that of [A/P]. 

PROOF. It is clear that the transcendence degree of [A/P] cannot exceed n. 
Hence, it suffices to prove the second assertion of the lemma. 

There is a transcendence basis (Yt, ... ,YI) of [A/Q] relative to F consisting 
of elements of A/Q. For each Yi' we choose an element Xi from A/P whose 
canonical image in A/Q is Yi' Let Xo be any non-zero element of Q/P. It 
suffices to show that the x;'s are algebraically independent over F. 

Suppose that this is not tije case, and choose a non-zero polynomial 
f with coefficients in F of the smallest possible total degree such that 
f(xo, . .. , XI) = O. We may write this in the form 

g(Xb"" XI) + h(xo, ... , xI)xo = 0 

where g and h are polynomials with coefficients in F. The canonical image in 
A/Q of the element on the left is g(Yb ... 'YI)' Since the y;'s are algebraically 
independent over F, it follows that g must be the zero polynomial, whence 
h(xo, ... , XI) = O. This contradicts the minimality of the degree of f 0 

4. Theorem 4.1. Let F be an algebraically closed field, and let G and H be 
affine algebraic F-groups, G being irreducible. Suppose that P is a polynomial 
map from G to H sending the neutral element of G onto that of H. Then the 
products of finite sequences of elements of p( G) constitute an irreducible 
algebraic subgroup P of H, and there is a natural number n such that every 
element of P is the product of n elements of p( G). 

PROOF. For every positive natural number m, let Gm denote the direct pro­
duct of m copies of G. Let Pm be the map from Gm to H defined by 

Pm(Xb"" xm) = p(x t )··· p(xm). 

Clearly, Pm is a polynomial map. Let Jm denote the annihilator of Pm(Gm) 
in &,(H). Since G is irreducible, we have from Proposition 1.3 that Gm is 
irreducible. By Proposition 1.1, this implies that Pm(Gm) is irreducible, 
whence Jm is a prime ideal of &,(H). 
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Since Pm(Gm) C Pm+I(Gm+I), we have Jm+l C Jm, and it follows from 
Lemma 3.8 that there is a natural number q such that Jm = Jq for every 
m ~ q. Clearly, Jq is the annihilator of Pin rJ'(H), where P is the union of 
the family of Pm(Gm)'s. Let Q denote the closure of Pin H. Since P is a sub­
monoid of H, we have from Proposition 1.4.1 that Q is an algebraic subgroup 
of H. Since J q is a prime ideal, Q is irreducible. 

Since F is algebraically closed, we can apply Theorem 3.3 to find that 
there is a non-zero elementfin rJ'(H) 0 Pq such that every F-algebra homo­
morphism from rJ'(H) 0 Pq to F not annihilatingf extends to an F-algebra 
homomorphism from rJ'(Gq) to F, i.e., is the restriction of an evaluation 
y*withyinGq • 

Write f = 9 0 P'l' with 9 in rJ'(H). Since f :F 0, we have 9 ~ J q • Let x be 
any element of Q. Noting that J" is stable under the action of Q on rJ'(H), 
as well as under the antipode, " say, we conclude that X· ,,(g) ~ J". This 
means that there is an element u in G" such that 

(x· ,,(g)Xpq(u» :F 0, i.e. g(x- l p,,(U)-I) :F O. 

Now x-1p,,(U)-1 is an element of Q. Therefore, it annihilates Jq, so that it 
defines an F -algebra homomorphism 

a: rJ'(H) 0 P" -+ F, 

where a(h 0 p,,) = h(x- I p,,(U)-I) for every h in rJ'(H). In particular, 

a(f) = g(x-1pq(U)-I):F O. 

By the choice of f, the homomorphism a is therefore the restriction of a 
y* with y in Gq • 

Thus, for every h in rJ'(H), we have 

h(x-1pq(u)-I) = h(pq(y», 

so that X-I p,,(U)-1 = p,,(Y), or 

X-I = p,,(y)p,,(u) 

showing that every element of Q is the product of 2q elements of p( G), whence 
alsoQ = P. 0 

Let F be an arbitrary field, G an affine algebraic F -group, ~ a field con­
taining F as a subfield. We can construct the K-Hopf algebra rJ'{G) ® K 
and the associated affine algebraic K-group t6(rJ'(G) ® K), which we denote 
by GK• It is easy to see that GK separates the elements of rJ'(G) ® K. In fact, 
the canonical extension of F-algebra homomorphisms rJ'(G) -+ F to K­
algebra homomorphisms rJ'(G) ® K -+ K defines an injective group homo­
morphism from G to GK, and the image of G in GK already separates the 
elements of rJ'{G) ® K. Hence, we may identify rJ'{GK) with rJ'(G) ® K, 
and G with a dense subgroup of GK• If G is irreducible, we see from Lemma 1.2 
that rJ'(G) ® K is an integral domain, which means that GK is irreducible. 
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Lemma 4.2. Let F be afield, G an irreducible affine algebraic F-group, B a 
sub Hopf algebra of &'(G). Then [B] (") &'(G) = B. 

PROOF. By Note 1,2, B is the union of a family of sub Hopf algebras that are 
finitely generated as F-algebras. Therefore, we assume, without loss of 
generality, that B is finitely generated as an F -algebra. 

Let L be an algebraically closed field containing F, and consider the 
extended irreducible affine algebraic L-group GL whose algebra of poly­
nomial functions is &'(G) ® L. If we prove that the intersection of [B ® L] 
with &'(G) ® L coincides with B ® L, then it clearly follows that 

[B] (") &'(G) = B. 

Therefore, we assume, without loss of generality, that F is algebraically 
closed. 

Consider an elementf of [B] (") &'(G). Let J be the ideal of B consisting 
of all elements b with the property that (x . f)b belongs to B for every element 
x of G. Since all the transforms x·f lie in a finite-dimensional subspace 
of [B], we have J ::;: (0). Evidently, J is stable under the action of G. Let j 
be a non-zero element of J, and let y be an element of ~(B). Then j . y ::;: o. 
Since G separates the elements of B, there is an element x in G such that 
U· y)(x) ::;: O. But U· y)(x) = (x· j)(y). Thus, we have (x· j)(y) ::;: 0 and 
x . j E J. This shows that J has no zero in ~(B). 

Since F is algebraically closed, this last fact implies that J = B, as is seen 
by applying Theorem 3.5 as follows. Let J' denote the radical of J. If J' ::;: B, 
we obtain a contradiction by applying Theorem 3.5 to B/J'. Hence J' = B, 
which evidently implies that J = B. From this, it is clear that f belongs to 
B. D 

Theorem 4.3. Let G be an affine algebraic F-group, B a sub Hopf algebra of 
.'3I'(G). Then B is finitely generated as an F-algebra. If F is algebraically closed 
then the restriction map G -+ ~(B) is surjective. 

PROOF. First, we deal with the case where G is irreducible. In that case, we 
see from Proposition 3.6 that [B] is finitely field-generated over F. Let 
(UIVl1, ... ,UnV;I) be a finite system of field generators for [B] over F, 
where each Uj and each Vj belongs to B. Let Bl denote the smallest sub Hopf 
algebra of B containing all these Uj'S and v;'s. By Note 1.2, Bl is finitely 
generated as an F-algebra, while [BtJ = [B]. Using Lemma 4.2, we obtain 

B = [B] (") &'(G) = [B 1] (") &'(G) = B 1, 

so that B is finitely generated as an F -algebra. 
In the case where G is not irreducible, we use Theorem 2.3, as follows. 

Let fl denote the characteristic function of the irreducible component G1 

of the neutral element in G, and letf2, ... , fm be the characteristic functions 
of the other irreducible components of G. We know from Theorem 2.3 that 
these are elements of &'(G). Now &'(G)fl may be identified with &,(G1), 
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and this identifies Bf1 with a sub Hopf algebra of &'(G1). By what we have 
already proved, Bf1 is therefore finitely generated as an F-algebra. For each 
i, there is an element Xi in G such that/; = Xi· flo and then B/; = Xi· (Bf1). 
It follows that the sub F-algebra Bf1 + ... + Bfm of &'(G) is finitely generated. 
Clearly, this sub F-algebra contains B. Now it follows immediately from 
Proposition 3.7 that B is finitely generated as an F -algebra. 

Finally, suppose that F is algebraically closed, and consider the restriction 
morphism p: G -+ f§(B). By Theorem 4.1, p(G1) is closed in f§(B). Since p(G) 
is the union of a finite family of translates of p(G1), it follows that p(G) is 
closed in f§(B). Since G separates the points of B, it is clear that p( G) is dense 
in f§(B). Therefore, we have p( G) = f§(B). D 

Our results combine to yield the following main theorem concerning 
factor groups. 

Theorem 4.4. Let F be an algebraically closed field, G an affine algebraic 
F-group, H a normal algebraic subgroup ofG. Then G/H has the structure of 
an affine algebraic F-group such that, via the transpose of the canonical 
morphism 1t: G -+ G/H, the Hopf algebra &'(G/H) is isomorphic with &'(G)H. 
Ify: G -+ K is a morphism of affine algebraic F-groups whose kernel contains 
H, then (he induced group homomorphism yH: G/H -+ K, satisfying yH 0 1t = y, 
is a morphism of affine algebraic F -groups. 

PROOF. Clearly, &'(G)H is stable under the left and right actions of G on 
&'(G), as well as under the antipode. Hence, &'(G)H is a sub Hopf algebra 
of &'(G). It follows from Theorem 2.2 that the kernel of the restriction 
morphism from G to f§(&'(G)H) coincides with H. By Theorem 4.3, this 
morphism is surjective, and &'( G)H is finitely generated as an F -algebra. 
Thus, C§(&'(G)H) is canonically isomorphic with G/H, and its algebra of 
polynomial functions may be identified with &'(G)H as indicated in the 
theorem. 

Now let y: G -+ K be as described in the theorem. Then we have 
&,(K) 0 y c: &'(G)H, showing that yH is a morphism of affine algebraic 
groups, because &,(K) 0 yH coincides with &,(K) 0 y when &'(G/H) has been 
identified with &'(G)H. D 

Notes 

1. It will become evident later on that, in Theorem 2.2, the condition that 
H be normal is not superfluous, so that the much weaker Theorem 2.1 
cannot be strengthened. The simplest example illustrating the difficulty 
with non-normal subgroups is as follows. Let G be the multiplicative group 
of all matrices 

= (a(x) !i(X») 
x y(x) c5(x) 



11.4 27 

of determinant 1, with entries in a field F. This has the structure of an affine 
algebraic F-group with f1J(G) = F[a, p, y,~] (where a~ - py = 1). Let H 
be the algebraic subgroup consisting of the elements x such that y(x) = O. 
It is not difficult to exhibit a set of H-semi-invariants characterizing H as in 
Theorem 2.1. On the other hand, taking F to be an infinite field, one can 
verify directly, though somewhat painfully, that f1J(G)H = F. 

2. Over non algebraically closed base fields, the theory of factor groups is 
deficient, because Theorem 4.3 fails easily. For example, let F be the field of 
real numbers, and let G be the multiplicative group of matrices 

( a(x) P(X») 
x = -}(x) a(x) 

with non-zero determinant d(x) = a(x)2 + P(X)2. Regard G as an affine 
algebraic F-group, with f1J(G) = F[a, p, d- 1]. Let H be the normal algebraic 
subgroup consisting of the elements of determinant 1 (i.e., the group of rota­
tions of the real plane). First, one shows that f1J(G)R = F[d, d- 1], and then 
one sees that the restriction map G -+ C§(f1J(G)R) is not surjective. 

3. The surprisingly elementary proof of the finite generation of B in Theorem 
4.3 is due to J. B. Sullivan. 



Chapter III 

Derivations and Lie Algebras 

Here, we introduce some concepts and techniques that could be described 
as the differential calculus of algebra and group theory. As in analysis, 
this is a tool for linearizing problems. 

Sections 1 and 2 deal with the basic separability and transcendence 
questions in field theory from the point of view of derivations. The results 
will be needed later on in connection with dimension-theoretical problems. 
Sections 3 and 4 begin the Lie algebra theory for algebraic groups. 

1. If R is a commutative ring, and S is an R-module, then a derivation from 
R to S is a homomorphism -r from the additive group of R to that of S such 
that 

-r(xy) = x· -r(y) + y. -r(x) 

for all elements x and y of R. This notion is the basis for the following defini­
tion of separability of a field extension, which combines the case of a separable 
algebraic extension, in the usual sense, with the case of a purely transcendental 
extension in an appropriate way. 

Definition 1.1. Let K be an extension field of afield F. We say that K is sep­
arable over F if,for every K-space S, every derivationfrom F to S extends to 
onefromKtoS. 

The natural heredity pattern is described in the following proposition. 

Proposition 1.2. Let F eKe L be a tower of fields. If K is separable over 
F and L is separable over K then L is separable over F. If L is separable over 
F, so is K. 

28 
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PROOF. The first part is clear from the definition. In order to prove the 
second part, l~t 't be a derivation from F to a K-space S. We form the L­
space L ® S, and write it as a direct K-space sum S + T. Now we may 
view 't as a derivation from F to L ® S. By assumption on L, this derivation 
extends to a derivation, u say, from L to L ® S. If 1t is the K -space projection 
from L ® S to S corresponding to our above decomposition, then the 
restriction of 1t 0 u to K is evidently a derivation from K to S extending 'to 0 

In the following proposition, "separably algebraic" has the usual meaning. 

Proposition 1.3. Let K be a field, F a sub field of K, and u an element of K. 
Let t be a derivation from F to an F(u)-space S. If u is not algebraic over F 
then,for every element s of S, there is one and only one extension of't to a deriva­
tionfrom F(u) to S sending u onto s. Ifu is separably algebraic over F then 't 

has precisely one extension to a derivation from F(u) to S. 

PROOF. First, consider the case where u is not algebraic over F. Clearly, 
there is one and only one derivation u from F[u] to S sending u onto sand 
coinciding with 't on F. In fact, u is given by 

u( ~ CiUi) = t (u' · 't(Ci) + iCiUi-l . s). 
Now u extends in one and only one way to a derivation from F(u) to S by 
the usual formula for the derivative of a fraction: 

u(ab- 1) = b- 2 • (b· u(a) - a· u(b». 

Next, suppose that u is separably algebraic over F. Letfdenote the monic 
minimum polynomial for u relative to F, and letf' denote the formal deriva­
tive off The assumption on u means thatf'(u) :F O. Let us denote the co­
efficients offby Ci (i = 0, ... , n), with Cn = 1. Let x be an auxiliary variable, 
and let us regard S as an F[x]-module via the F-algebra homomorphism 
from F[x] to F[u] sending x onto u. Let p be the derivation from F[x] to S 
that is determined by the conditions that p be an extension of 't and that 

n 

p(x) = - f'(u)- 1 . LUi. 't(C,). 
i=O 

Then p annihilates the ideal F[x]f(x), and therefore induces a derivation 
from F[u] to S extending 'to If u is any such extension of 't, we must have 

n 

o = u(f(u» = f'(u)· u(u) + LUi. 't(Ci), 
1=0 

which shows that u must coincide with the derivation induced by p. 0 

Via an evident application of Zorn's Lemma, Proposition 1.3 shows that, 
in characteristic 0, every field extension is separable, and also that every 
purely transcendental field extension is separable. 
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Lemma 1.4. Let F be afield q(non-zero characteristic p, let S be an F-space, s 
an element ofS, and u an element ofF that is not the p-th power of an element of 
F. There is a derivation. from F to S such that .(u) = s. 
PROOF. Let F[p) denote the subfield of F consisting of the p-th powers of the 
elements of F, let L be a subfield of F containing FIP), and let v be an element 
of F not belonging to L. Let f(x) denote the minimum polynomial for 
v relative to L. Then f(x) divides xP - vP = (x - v)p in F[x], so that we 
must havef(x) = (x - V)9, with 0 < q :::;; p. Now v9 and vP lie in L. If q :F p, 
there are integers rand s such that rp + sq = 1, so that v = (vP),(v9Y E L, 
contrary to assumption. Therefore, we have q = p, so thatf(x) = xP - uP. 

Let p be any derivation from L to S. Clearly, p can be extended to a deriva­
tion from L[x] to S sending x to s. This extension sendsf(x) to 0 and hence 
induces an extension of p to a derivation from L[v] to S sending v to s. 
Using this result in an evident application of Zorn's Lemma, we obtain the 
required derivation •. 0 

Proposition 1.S. Let F be a field of non-zero characteristic p, and let K be a 
field extension ofF. Then K is separable over F if and only if,for every F -linearly 
independent subset U of K, the set uIP) of p-th powers of the elements of U is 
F -linearly independent. 

PROOF. First, suppose that the condition is satisfied. Then the mUltiplica­
tion map from F ®F[P) KIP) to K is injective, so that the subfield F[KIP)] 
of K is F-algebra isomorphic with F ®F[P) KIP). Let. be a derivation from 
F to a K-space S. Evidently,. annihilates F[P), so that it is an F[ptlinear map. 
As such, it extends naturally to a KIP)-linear map from F ® Flp) KIP) to S, 
which is clearly a derivation. Because of the isomorphism noted above, 
this means that. extends to a derivation from F[KIP)] to S. It is clear from 
Lemma 1.4 that we can apply Zorn's Lemma in the usual way in order to 
extend this further to a derivation from K to S. Thus, K is separable over F. 

Now suppose that the condition of the proposition is not satisfied, and 
choose an F-linearly independent subset (U1' ... ' un) of K such that the 
uf's are not linearly independent over F, with n as small as possible. Then 
there are elements C2, ••• , Cn in F such that 

n 

uf + L cluf = O. 
j=2 

Suppose that, contrary to what we must prove, K is separable over F. 
Then every derivation. from F to F extends to a derivation (1 from K to K. 
Applying (1 to our above relation, we obtain 

II 

L .(cl)uf = O. 
1=2 

By the minimalityof n, this gives .(Cj) = 0 for each i from 2 to n. Thus, each 
Cj is annihilated by every derivation from F to F. By Lemma 1.4, this implies 
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that each Ci is the p-th power df of an element dj of F. Our original relation 
may now be written 

This contradicts the F -linear independence of the Uj's. The conclusion is 
that if the condition of the proposition is not satisfied then K is not separable 
~~ 0 

If R is any commutative ring, let us agree to call a derivation from R to R 
simply a derivation of R. The last part of the proof of Proposition 1.5 has 
shown that if every derivation of F extends to a derivation of K then the 
condition of Proposition 1.5 is satisfied. Hence, if K is an extension field of 
thefield F such that every derivation ofF extends to one of K, then K is separable 
over F. 

It follows from Zorn's Lemma and Proposition 1.3 that an extension 
that is separably algebraic in the usual sense is separable also in the sense of 
Definition 1.1. Conversely, if K is an algebraic field extension of F that is 
separable in the sense of Definition 1.1, it follows from Proposition 1.5 that 
K is separably algebraic over F in the usual sense. Thus,for algebraic field 
extensions, separability in the sense of Definition 1.1 is equivalent to separability 
in the usual sense. 

A field F is called perfect if either F is of characteristic 0, or F is of non­
zero characteristic p and coincides with FlPl. Since every extension in charac­
teristic 0 is separable, it follows from Proposition 1.5 that every field extension 
of a perfect field is separable. 

2. Theorem 2.1. Suppose that K is a separable finitely generatedfield extension 
F(Uh"" un) of afield F. Then some subset X of(u1o"" un) is a transcendence 
basis for Kover F such that K is separably algebraic over F(X). The degree 
of transcendence of Kover F is equal to the dimension of the K -space of all 
F-linear derivations of K. 

PROOF. Let S denote the K-space of all F-linear derivations of K. Since 
every element of S is determined by its values at the u;'s, it is identifiable with a 
subspace of the space of all maps from the set (U1o ... , un) to K. Hence, we 
can apply Lemma 1.1.1 to conclude that there is a K-basis (0'10"',0',) of S 
and corresponding elements Vh"" v" chosen from (U1o"" un), such that 
O'j(Vj) = ~jj' Relabelling, we arrange to have Vi = Ui for each i ~ r, and we 
take X to be the set (U1o"" u,). 

First, we show that K is separably algebraic over F(X). Let t be the 
smallest index ~ r such that K is separably algebraic over F(U1o"" ut). 

We shall obtain a contradiction from the assumption that t is strictly greater 
than r. By the choice of t, the field K is not separably algebraic over 
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F(Ul" .. ,Ur-l)' By Proposition 1.2, it follows that F(u., . .. , ur) is not sep­
arably algebraic over F(Ul"'" Ur-l)' By Proposition 1.3, the element Ur 
is therefore not separably algebraic over F(Ul, ... ,Ur-l)' 

Let us first deal with the case where Ur is algebraic over F(Ul' ... ,Ur-l)' 
In this case, F must be of non-zero characteristic p, and the monic minimum 
polynomial,fsay, for Ur relative to F(u., ... , Ur-l) must satisfy f(x) = g(x"), 
where x is an auxiliary variable, and 9 is a polynomial with coefficients in 
F(u., ... , Ur-l)' This shows that every F(Ul" .. , ur_l)-linear derivation of 
F(Ul,' .. ,Ur-l)[X] annihilates f(x), so that it yields an F(Ul"'" ur- 1)­

linear derivation of F(u., .. . , ur) in the evident way. In particular, it follows 
that there exists a non-zero F(Ul,' .. , ur_l)-linear derivation of F(u., ... , ur). 

Since K is separable over F(u., ... , ur), this extends to a derivation of K. 
On the other hand, each of U., ... , Ur belongs to F(UI"'" Ur-l) and is 
therefore annihilated by this derivation. We have the contradiction that our 
derivation is the O-map, because its coefficients with respect to 0'., ... , O'r 

are its values at u., ... , Ur • 

Now consider the case where Ur is not algebraic over F(u., ... , Ur-l)' 

In this case, Proposition 1.3 gives us the existence of a non-zero 
F(Ul' ... , ur_ 1)-linear derivation of F(u 1 , ••• , ur), whence we have the same 
contradiction as in the first case. 

Our conclusion so far is that K is separably algebraic over F(u., .. . , ur), 

and it remains only to show that the set (UI,"" ur) is algebraically free 
over F. Suppose that this is not the case, and letfbe a non-zero polynomial 
with coefficients in F of the smallest possible total degree such that 
f(UI, ... , ur) = O. Let Jj denote the formal derivative of f with respect to the 
i-th variable. Applying the derivation O'i to our relation, we obtain 
j;(Ul, ... , ur) = O. By the minimality of the degree of j~ this implies that 
Jj = O. Therefore, F must be of non-zero characteristic p, and there must be a 
polynomial 9 with coefficients in F such that 

f(x., . .. ,xr) = g(xf, ... ,xn, 

where the x;'s are independent auxiliary variables. Writing 9 as an F-linear 
combination of monomials, we see from this that there is a non-empty 
F-linearly independent set (WI"'" wm) of monomials formed from U., ••• , Ur 

such that the set (wf, ... , wf:,) is not F-linearly independent. This contradicts 
Proposition 1.5, because K is separable over F. 0 

Theorem 2.2. A field extension K of a field F is separable if and only if, for 
every field L containing F, the tensor product K <8> F L has no non-zero nil­
potent element. 

PROOF. First, suppose that K is separable over F, and let U be a nilpotent 
element of K <8>F L. We shall prove that U = O. Clearly, there is a field Kl 
between F and K that is finitely field-generated over F and such that U 

belongs to the canonical image of Kl ®F L in K <8>F L, which we may 
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identify with K 1 ® F L. Therefore, we assume without loss of generality 
that K is finitely field-generated over F. Then, by Theorem 2.1, there is a 
transcendence basis X for Kover F such that K is separably algebraic over 
F(X). In fact, since K is also afinite algebraic extension of F(X), there is an 
element sinK that is separably algebraic over F(X) and such that 
K = F(X)[s]. 

Let X' be a set of independent variables over L that is in bijective cor­
respondence with X. Then F(X) ®F L may evidently be identified with an 
F(X')-subalgebra of the purely transcendental field extension L(X') of L. 
Accordingly, we may write 

K ®FL = K ®F(X) (F(X) ®FL) c K ®F(X)L(X'), 

where L(X') is viewed as an F(X)-algebra via an F-algebra isomorphism 
from F(X) to F(X') extending a bijection from X to X'. 

Let / denote the monic minimum polynomial for s relative to F(X), 
but view / as a polynomial with coefficients in F(X') via the isomorphism 
just mentioned. Since s is separable over F(X), the polynomial/is the pro­
duct of a set of mutually distinct monic irreducible factors with coefficients 
in .l-(X'). It follows from this that K ®F(X) L(X') is a direct sum of fields, 
one for each irreducible factor off, Therefore, our nilpotent element u must 
beO. 

Now suppose that the condition of the theorem is satisfied. In showing 
that K is separable over F, we may assume that F is of non-zero characteris­
tic p. We show that then the condition of Proposition 1.5 is satisfied, so that 
K is separable over F. Let (U1o ••• , un) be an F-linearly independent subset 
of K, and suppose that C1o ••• 'Cn are elements of F such that 

n 

Lc,uf = O. 
j=1 

We construct a field extension L = F[t1o ••• , tn] of F such that tf = Cj fgr 
each i. Then the p-th power of the element L7= 1 u, ® t, of K ®F L is equal 
to 0, so that, because of the present assumption on K, the element itself 
must be o. This gives t, = 0, and hence Cj = 0 for each i. Our conclusion 
is that the set (uf, ... , u:) is F-linearly independent. D 

Theorem 2.3. Let K be a field, and let A be a group 0/ field automorphisms 0/ 
K. Then K is separable over its A-fixed part KA. 

PROOF. By Theorem 2.2, it suffices to prove that K ® KA L has no nilpotent 
element other than 0, for every field L containing KA. Since there is nothing 
to prove if K is of characteristic 0, we assume that K is of non-zero charac­
teristic p. Suppose that the result is false for some L. Then there is a non­
zero element x in K ®KA L such that xP = O. Write 

n 

X = Lkj®tj, 
'=1 
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with each ki in K and each t, in L. We suppose that x has been so chosen 
that n is as small as possible. Clearly, we must have n > 1, and we can arrange 
to have k1 = 1. Then 

" 
x = t1 + L k, ® t" 

i=2 

Now we let A act by L-algebra automorphisms on K ® KA L, via the 
factor K. For oc in A, we have 

" oc(x) = t1 + L oc(k,) ® t" 
1=2 

so that 

" x - oc(x) = L (k, - oc(k,» ® t" 
1=2 

Since (x - oc(x»" = 0, it follows from the minimality of n that x = oc(x). 
Also, it is clear from the minimality of n that the t,'s are linearly independent 
over KA. Therefore, it follows from the fact that x = oc(x) for every oc in A 
that each k, belongs to KA. This makes n = 1, and we have a contradiction. 

o 
Proposition 2.4. Let L be a field, A a .finitely generated integral domain L­
algebra, B a sub L-algebra of A. Let F be an algebraically closed field contain­
ing L. Suppose that x is an element of A with the property that L-algebra 
homomorphisms from A to F whose restrictions to B coincide take the same 
value at x. Then x is purely inseparably algebraic over [BJ. 

PROOF. First, we obtain a contradiction from the assumption that x is not 
algebraic over [B]. By Theorem 11.3.3, there is a non-zero element y in 
B[x] such that every L-algebra homomorphism from B[x] to F not annihila­
ting y extends to an L-algebra homomorphism from A to F. Write 

y = bo + b1x + ... + b"x", 

with each b, in B and b" #: O. By Theorem 11.3.5, b" is not annihilated by 
every L-algebra homomorphism from A to F. A fortiori, there is an L­
algebra homomorphism u from B to F such that u(b..} #: O. Since x is not 
algebraic over [B], (1 has infinitely many extensions to L-algebra homomor­
phisms from B[x] to F not annihilating y and therefore extending further 
to L-algebra homomorphisms from A to F. This contradicts the assumption 
on x. Thus, we conclude that x must be algebraic over [B]. 

Let p denote the characteristic of L if that is not 0; otherwise, let p = 1. 
Suppose that x is not purely inseparable over [B]. Then there is a non­
negative exponent e such that x"· is separably algebraic over [B], but does 
not belong to [B]. We can find a non-zero element b in B such that the monic 
minimum polynomial,f say, for bx'" relative to [B] has all its coefficients 
in B. Write z for bx"·. 
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As before, there is a non-zero element y in B[z] such that every L-algebra 
homomorphism from B[z] to F not annihilating y extends to an L-algebra 
homomorphism from A to F. We write 

y = bo + biZ + ... + bnz", 

with each bi in Band bn =I: 0, and n strictly smaller than the degree off Let 
g denote the polynomial whose coefficients are these b/s, so that y = g(z). 
There are polynomials u and v with coefficients in B such that uf + vg is a 
non-zero element, s say, of B. On the other hand, since f is a separable 
polynomial, there are polynomials q and r with coefficients in B such that 
qf + if' is a non-zero element, t say, of B. 

Appealing to Theorem 11.3.5 as in the first part of this proof, we find that 
there is an L-algebra homomorphism p from B to F such that p(st) =I: O. 
Let p(f) denote the polynomial with coefficients in F obtained by applying 
p to the coefficients off Define p(g) and p(f') in the same way. Then, since p(s) 
and p(t) are non-zero elements of F, the polynomials p(f) and p(g) are 
relatively prime, and the same is true for p(f) and p(f'). Moreover, since 
f is monic, the degree of p(f) equals that off Call this degree m, and note 
that m > 1. 

Now it is clear that p(f) has m distinct roots in F, and that none of them 
is a root of p(g). Using these roots as values for z, we obtain m different 
extensions of p to L-algebra homomorphisms from B[z] to F, none of which 
annihilates y, so that each extends further to an L-algebra homomorphism 
from A to F. The images of x under these homomorphisms are mutually 
distinct, so that again we have a contradiction. D 

3. A Lie algebra over a field F is an F -space L that is equipped with a bilinear 
composition L x L - L, indicated by (x, y) H [x, y], satisfying 

(1) [x, x] = 0, 
(2) [x, [y,z]] + [y, [z,x]] + [z, [x,y]] = O. 

The identity (2) is called the Jacobi identity. It is better to think of this 
structure as follows. For every element x of L, let Dx denote the linear endo­
morphism of L given by Diy) = [x, y]. Then, in the presence of (1), the 
identity (2) means that Dx is a derivation with respect to the composition 
of L, i.e., that 

Di[u, v]) = [Dx(u), v] + [u, Div)]. 

If A is an associative F-algebra, not necessarily having a unit, we obtain 
a Lie algebra structure on the F-space A by setting [x, y] = xy - yx. We 
denote this Lie algebra by .9'(A). 

By a derivation of A we mean an F -linear endomorphism. of A such that 

.(xy) = .(x)y + x.(y). 

The derivations of A constitute a sub Lie algebra of .9'(EndF(A», which 
we denote by.@(A), or more fully by !'I~A). 
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Now let us consider a bialgebra (B, Jl., u,~, e). Recall that the dual BO of 
B has an algebra structure coming from the comultiplication ~, where 
en; = (0" ® 1") o~. We are interested in a certain sub Lie algebra of the Lie 
algebra !R(BO). The elements of this sub Lie algebra are the differentiations 
of B, by which we mean those elements 1" of BO which satisfy 

1"(ab) = e(a)1"(b) + 1"(a)e(b) 

for all elements a and b of B. One can verify directly that the differentiations 
do indeed constitute a sub Lie algebra of !R(BO). However, we shall see that 
this is the case by the following connection between the differentiations 
of B and the F -linear derivations of B. 

Consider the two-sided BO -module structure of B, as dealt with in Proposi­
tion 1.2.1. Recall that the element 1"[ ofEnd~B) corresponding to an element 
1" of BO in the left BO-module structure of B is defined by 

1"[ = (iB ® 1") ° ~. 

One verifies directly that 1" is a differentiation if and only if 1"[ is a derivation. 
By Proposition 1.2.2, the left BO -module structure of B induces an isomor­
phism of F -Lie algebras from !R(BO) to the sub Lie algebra of !R(EndF(B» 
consisting of the endomorphisms that commute with the action of BO on 
B from the right. From our last statement about the differentiations, it is 
now clear that the differentiations of B constitute a sub Lie algebra of !R(BO) 
which, via the BO-module structure of B, is isomorphic with the sub Lie algebra 
of !5t(B) consisting of those derivations of B which are also right BO -module 
endomorphisms. 

Now let G be an affine algebraic F -group. We define the Lie algebra of G 
as the Lie algebra of differentiations of &'( G), and we denote it by !R( G). 

A morphism p: G -+ K of affine algebraic F -groups naturally induces a 
morphism of F-algebras from &'(Gt to &'(Kt; namely, the dual of the 
transpose of p. This restricts to a morphism of Lie algebras p. : !R(G) -+ !R(K) 
where 

p.(1")(g) = 1"(g ° p) 

for every element 1" of !R(G) and every element g of &,(K). We call p. the 
differential of p, and we note that the association of p. with p makes !R a 
functor from the category of affine algebraic F -groups to the category of 
F -Lie algebras, i.e., the composite of differentials coincides with the differ­
ential of the composite. 

In particular, consider the case where p is the injection G1 -+ G. Let Q 
denote the annihilator of G 1 in &'( G). It is clear from Theorem 11.2.3 that 
QQ = Q. Since e annihilates Q, it follows from this that every element of 
!R(G) annihilates Q, whence p. is injective, in the present case. Looking at 
Theorem 11.2.3 once more, we see immediately that p. is also surjective. 
Thus, via the injection morphism from G1 to G, !R( G1) is isomorphic with 
!R(G). 
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Note that 2(G) is finite-dimensional, because a differentiation of 9(G) 
is already determined by its values on a finite system of F -algebra generators. 

Theorem 3.1. Let G be an affine algebraic F-group. The 9(G)-module homo­
morphism 

9(G) ® 2(G) -+~i9(G» 

determined by the condition that it send each element 't of 2( G) onto 't[ is an 
isomorphism. 

PROOF. Let L7=1 aj ® 'tj be an element of 9(G) ® 2(G) whose image in 
~(9(G» is 0, where the 't/s are F-linearly independent elements of 2(G). 
Let a be an element of 9(G), let x be an element of G, and apply the formal 
image of our element in~(9(G» to the element a· X-I of 9(G). This yields 
the following relation in 9( G): • 

n 

Laj('tjh(a·x- 1) = O. 
i= I 

Now operate from the right with x, and use the fact that each (ri)[ commutes 
with this operation. This gives 

n 

L (ai' x)(ri)[(a) = O. 
i= 1 

Now apply e, obtaining 
n 

L ai(x)r;(a) = O. 
i= I 

Since this holds for every element a of 9(G), and since the 't/s are F-linearly 
independent, we must therefore have a;(x) = 0 for each i. Since this holds 
for every element x of G, it follows that ai = O. Our conclusion is that the 
homomorphism of the theorem is injective. 

Now let e be an element of ~(9(G». For every element x of G, define the 
endomorphism e . x of 9( G) by 

(e· x)(a) = e(a' X-I). x. 

One verifies directly that e· x is in fact an element of~(9(G», so that the 
composite eo (e· x) is an element of 2(G). Let ('t., ... , 'tn) be an F-basis 
of 2( G), and write 

n 

e 0 (e· x) = L ai(x)ri 
i= 1 

By applying this element of 2(G) to suitable elements of 9(G) one sees 
that the functions ai defined by the above relation belong to 9( G) (cf. Lemma 
1.1.1). It is verified directly that 

n 

e = L ai(ri)[ 
i= I 

showing that the homomorphism of the theorem is also surjective. 0 
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Assuming that G is irreducible, we show that tensoring the isomorphism 
of Theorem 3.1 with [9I'(G)] yields an isomorphism of [.~(G)]-spaces from 
[&'(G)] ® 9'(G) to~,.([&'(G)]). 

Let us write A for &'(G). It suffices to show that [A] ® ... ~(A) may be 
identified with !'J([A]). Let !'J(A, [A]) denote the [A)-space of all F-linear 
derivations from A to [A]. Clearly, the canonical [A]-linear map 

[A] ® ... !'J(A) -+!'J(A, [A]) 

is injective. From the fact that A is finitely generated as an F -algebra, we 
see that, for every element u of!'J(A, [A]), there is a non-zero element s in 
A such that su sends A into A. This shows that the canonical map is also 
surjective. Finally, since every element of !'J(A, [A]) extends in one and 
only one way to an element of !'J([A]), we may identify !'J(A, [A]) with 
!'J([A]). 

Theorem 3.2. Let G be an irreducible algebraic group. The dimension of 9'( G) 
is equal to the degree of transcendence of [P(G)] over the base./ield. 

PROOF. By the isomorphism established just above, the dimension of 9'( G) 
as a vector space over the base field F equals the dimension of !'J,.([&'(G)]) 
as a vector space over [&'(G)]. By Lemma 11.1.2 and Theorem 2.2, [&'(G)] 
is separable over F. Therefore, the theorem is an immediate consequence of 
Theorem 2.1. 0 

If S is an irreducible affine algebraic F -set, one defines the dimension of 
S as the degree of transcendence of [&'(S)] over F. Thus, Theorem 3.2 says 
that the dimension of G as an affine algebraic set is equal to the dimension 
of !R(G). 

Theorem 3.3. Let p: G -+ H be a morphism of algebraic groups, where G 
and H are irreducible. Suppose that p(G) is dense in H, and that [&'(G)] is 
separable over [&,(H) 0 p]. Then the differential of pis surjective from !R(G) 
to !R(H). 

PROOF. Since PeG) is dense in H, the transpose of p is injective from &,(H) 
to &'(G). Accordingly, we identify the elements 9 of &,(H) with their images 
gop in &,(G), so that we have &,(H) c: &'(G). Now let 't be an element of 
!R(H), and consider the corresponding element 'tr of !'J(&,(H». This has one 
and only one extension to an element of !'J([&'(H)]). Since [&'(G)] is separable 
over [BP(H)], our element of!'J([&,(H)]) extends further toyield an element, 
u of ~([&'(G)]). Since &'(G) is finitely generated as an algebra, there is a 
non-zero element a in &'(G) such that au stabilizes &'(G). Choose an element 
x from G such that a(x) =F 0, and consider the transform (au) . x, defined as 
in the proof of Theorem 3.1. This is equal to (a· xXu, x). We have 

e(a . x) = a(x) =F O. 
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On the other hand, the restriction of (1 • x to fII(H) coincides with 

't'[. p(x) = 't'[. 

39 

Thus, replacing (1 with (1. x, if necessary, we arrange to have e(a) ¢ O. 
This ensures that the composite eo (1 is defined on fII(G). Clearly, it is a 
differentiation of fII(G), i.e., an element of !t'(G). Its restriction to fII(H) 
coincides with e 0 't'[ = 't', and this means that 't' = p·(e 0 (1). 0 

Let G be an algebraic group, H a closed subgroup of G.1f J H is the annihil­
ator of H in fII(G) then we may identify fII(H) with fII(G)!JH. Accordingly, 
we identify !t'(H) with the sub Lie algebra of !l'(G) consisting of the differ­
entiations that annihilate J H. Moreover, as we have seen earlier in this 
section, this sub Lie algebra remains the same if we replace H with H to 

i.e., the annihilator of J H in !l'( G) annihilates also the Hopf ideal J HI' which 
contains J H. 

Now let K be another closed subgroup of G. If H 1 c: Kl (in particular, 
if H c: K) then it is clear from the above that !l'(H) c: !l'(K). Moreover, 
tf H 1 c: K 1 and !l'(H) = !l'(K), then it follows that H 1 = K 1. In order to 
see this, write P for J K I and Q for J HI' so that P c: Q. By Theorem 3.2, our 
assumption that !l'(H 1) = !l'(K 1) implies that [fII(G)/PJ and [fII(G)/QJ 
have the same degree of transcendence over the base field. By Lemma 11.3.8, 
this implies that P = Q, whence H 1 = K 1. 

In general, these results concerning the relations between algebraic 
subgroups and sub Lie algebras cannot be strengthened. In particular, if F 
has non-zero characteristic, there are cases where two distinct irreducible 
algebraic subgroups have the same Lie algebra. Also, in any characteristic, 
there are sub Lie algebras of an !t'(G) that do not belong to any algebraic 
subgroup of G. 

4. We determine the Lie algebra of the main general example of Chapter I. 
Here, we have a finite-dimensional algebra E over a field F, and we consider 
the group E* of units of E, made into an affine algebraic F -group whose 
algebra of polynomial functions is generated by the restrictions to E* of 
the elements of EO and their antipodes. In the case where F is a finite field, 
E* is a finite group, fII(E*) is the algebra of all F -valued functions on E*, and 
(E*)1 is the trivial group, so that !l'(E*) = (0). Therefore, we assume that F 
is an infinite field. In this case, it is easy to see that the restriction images in 
fII(E*) of the elements of an F -basis of EO are algebraically independent 
over F. Moreover, the sub F-algebra of fJIJ(E*) generated by these and the 
reciprocal of a certain polynomial in them (the restriction to E* of the 
determinant of any injective finite-dimensional representation of E) is a 
sub Hopf algebra of fII(E*), and so coincides with fII(E*). In particular, 
fII(E*) is therefore an integral domain. Thus, if the base field is irifjnite then 
E* is irreducible. 
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Let t be an element of .!l'(E*). Via the restriction map from EO to &I(E*), 
t yields an F-linear map from EO to F. Therefore, there is one and only one 
element t' in E such that this linear map is the evaluation at t'. Clearly, 
the map t 1-+ t' is an injective F-linear map from .!l'(E*) to E. Conversely, 
given an element e of E, it is clear from our above description of &I(E*) 
that there is a differentiation t of 9'(E*) such that t' = e. Thus, the map 
't 1-+ t' is an isomorphism of F -spaces from .!l'(E*) to E. 

Since the image of EO in &I(E*) is stable under the right and left translation 
actions of E*, the comuitiplication l> of &I(E*) sends the image of EO into 
its tensor square. Hence, if 1 is an element of EO, there are elements II and 
Ii' of EO such that 

n 

l>([f]) = L [fi] ® [f~], 
i=1 

where we have used [ ] to indicate restriction of a function on E to E*. 
Thus, if x and y are elements of E*, we have 

n 

I(xy) = L l'l..x)/~(Y)· 
1=1 

This says that a certain polynomial function on E x E vanishes on the 
subset E* x E*, which is easily seen to imply that that polynomial function is 
identically o. Therefore, the above equality holds for all elements x and y 
ofE. 

Now let (1 and 't be elements of .!l'(E*). Then we have 

1([(1, t]') = [(1, t]([f]) = «(1 ® t - t ® aXl>([f]» 
n n 

= L u([fj])'t([fj]) - L 't([fj])u([fj]) 
1=1 i=1 

n 

= L (/i(a')/~(t') - l'l..t')/'I(a'» 
1=1 

= I(O"'t' - 't'a'). 

Since this holds for every element 1 of EO, it follows that 

[a, t]' = a't' - t'u'. 

Our conclusion is that the map t 1-+ t' is an isomorphism 01 F -Lie algebras 
from .!l'(E*) to .!l'(E). 

In particular, let us consider the case where E is the F-algebra End,.{V) 
of endomorphisms of a finite-dimensional F -space V. Let G be an affine 
algebraic F -group, and suppose we are given a morphism of affine algebraic 
F -groups p: G -+ E*. Let p' denote the morphism of Lie algebras from .!l'( G) 
to .!l'(End,.{V» that is obtained by following up the differential p. of p with 
the above isomorphism from .!l'(E*) to .!l'(E). Thus, for t in .!l'(G), p'(t) 
denotes the F-linear endomorphism p·(t)' of V. 
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The definition of p' evidently generalizes to the situation where V is a 
locally finite G-module whose associated representative functions belong to 
&'(G). We call such a G-module a polynomial G-module, and we let p denote 
the group homomorphism from G to the group Autp(V) of all F-linear 
automorphisms of V that defines the G-module structure. In the evident 
way, p is the direct limit of the system of finite-dimensional polynomial 
representations of G on the finite-dimensional G-stable subspaces of V. 
It is easy to see that the differentials of these finite-dimensional representa­
tions, extended as above, fit together to yield a morphism of F -Lie algebras 
p': 2{G) -+ 2(EndF(V», which we call the extended differential of p. 

Recall from Section 1.2 that p defines the structure 

p*: V -+ V ® &'(G) 

of a &'(G)-comodule on V, from which p is recovered by the formula 

p(x) = (iy ® x*) 0 p* 

for every x in G. The following lemma records the description of p' in the 
context of &'( G)-comodules. 

Lemma 4.1. Let G be an affine algebraic F-group, and suppose that 

p: G -+ AutF(V) 

is the structure of a polynomial G-module. If p* denotes the corresponding 
comodule structure, then the following equations hold for every element -r of 
2(G): 

(1) p'(-r) = (iy ® -r) 0 p*; 
(2) p* 0 p'(-r) = (iy ® -r[) 0 p* 

PROOF. Consider an element y/v of Endp(Vt, where y is an element of V O 

and v is an element of V. The composite function (y/v) 0 p is an element of 
&'( G), and the definition of p' gives, for every -r in 2( G), 

T{{y/v) 0 p) = (y/v)(p'(-r». 

Using the above formula connecting p and p*, we write the value of (y/v) 0 p 
at an element x of G in the form 

y((iy ® x*)(P*(v») = (y ® x*)(p*(v». 

This shows that 

(y/v) 0 p = (y ® i(JJ(G» 0 p*(v). 

Substituting this in the above equation involving -r, we obtain 

y(p'{-r)(v» = (y ® -r)(p*(v». 

Since this holds for every element y of VO and every element v of V, formula 
(1) of the lemma is established. 
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Using this, we may write 

p* 0 p'(t) = (iv ® i'<G) ® t) 0 (p* ® i~(G» 0 p*. 

Now (2) is obtained from this by replacing (p* ® i~(G» 0 p* with (iv ® «5) 0 p*, 
where «5 is the comultiplication of fI'(G). D 

If L is any Lie algebra over F, if V is an F-space and p a morphism of 
Lie algebras from L to 9'(End,.(V», then we call p a representation of L 
on V, and we refer to V as an L-module. Thus, if V is a polynomial module 
for an algebraic group G, then the extended differential of the representation 
of G on V makes V into an 9'(G)-module. It is seen directly that, with this, 
a morphism of polynomial G-modules is also a morphism of 9'( G)-modules. 

Proposition 4.2. Let A and B be polynomial modulesfor an algebraic group G. 
Let oc, p, oc ® P denote the representations of G on A, B, A ® B, respectively. 
For every element t of !l'( G), one has 

(oc ® p)'(t) = oc'(t) ® iB + iA ® P'(t). 

PROOF. By (1) of Lemma 4.1, we have 

(oc ® p)'(t) = (iA ® iB ® t) 0 (oc ® P)*. 
In Section 1.2, we saw that 

(oc ® P)* = (iA ® iB ® Jl) 0 S2. 3 0 (oc* ® P*), 
where Jl denotes the multiplication of fI'(G), and S2.3 is the switching of the 
2nd and 3rd tensor factors. We substitute the expression on the right for 
(oc ® P)* in the above equation involving t, and we note that 

We obtain 
toJl=e®t+t®e. 

(oc ® P)'(t) =CiA ® iB ® e ® t) 0 S2.3 0 (oc* ® P*) 
+ CiA ® iB ® t ® e) 0 S2. 3 0 (oc* ® P*) 

= CiA ® e ® iB ® t) 0 (oc* ® P*) 
+ (iA ® t ® iB ® e) 0 (oc* ® p*). 

The formula of the proposition follows upon noting that one has 

CiA ® e) 0 oc* = iA and CiA ® t) 0 oc* = oc'(t) 

as well as the analogous relations for p*. D 

Proposition 4.3. Let V be a jinite-dimensional polynomial module for an 
affine algebraic F-group G, and let p denote the representation of G on V. 
For every element t of !l'(G), the endomorphism p'(t) of V is an F-linear 
combination of endomorphisms of the form p(x) - iv, with x in G. 
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PROOF. Suppose that ex is an element of EndF(V)O that annihilates every 
endomorphism of the form p(x) - iy. This means that the representative 
function ex ° p is a constant, whence t( ex ° p) = O. Hence, 

cx(p'(t» = p·(t)(ex) = t(ex ° p) = O. 

Thus, p'(t) is annihilated by every element of EndrlV)O annihilating each 
p(x) - iy. 0 

As we shall see in the next chapter, if F is of characteristic 0, Proposition 
4.3 has a converse, saying that every endomorphism of the form p(x) - iy 
is an F-linear combination of products of elements of p'(.!l'(G». With this, 
the Lie algebra becomes an extremely powerful tool for the structure and 
representation theory of algebraic groups over fields of characteristic O. 

Notes 

1. At the end of Section 1, we gave an intrinsic definition of a perfect field, 
and we saw that every extension of a perfect field is separable. One should 
complete the picture by showing that every non-perfect field has an insepar­
able finite algebraic extension (whose degree is equal to the characteristic). 

2. In connection with the discussion at the end of Section 3, concerning 
the correspondence between closed subgroups and sub Lie algebras, con­
sider the following example. Let F be an infinite field of non-zero charac­
teristic p. Let G be the direct product of two copies of the multiplicative 
group F* of F. Let H be the subgroup of G consisting of the elements of the 
form (a, all - I), and let K be the subgroup consisting of the elements of the 
form (a, a-I). It is easy to see that H and K are irreducible algebraic sub­
groups of G, and that 9'(H) = 9'(K). However, if p #: 2, we have H #: K. 

3. Let A be a finite-dimensional general F -algebra, i.e., a finite-dimensional 
F -space that is equipped with a bilinear composition. Let G be the group 
of all algebra automorphisms of A, regarded as an algebraic subgroup of 
the group of all F -linear automorphisms of A. By viewing the composition 
of A as a linear map from A ® A to A and using Proposition 4.2, one shows 
that 9'(G), when identified with a sub Lie algebra of .!l'(EndrlA» in the 
canonical fashion, becomes a sub Lie algebra of the Lie algebra of deriva­
tions of A. 



Chapter IV 

Lie Algebras and Algebraic 
Subgroups 

This chapter establishes the Lie algebra technique for the structure and 
representation theory of algebraic groups. Section 1 contains only special 
field-theoretical preparations. Section 2 develops the connections between 
the algebraic subgroups of an algebraic group G and the sub Lie algebras 
of .!l'(G) fully, under the assumption that the base field be of charac­
teristic O. This assumption is retained in Section 3, which is devoted to 
reducing, as far as is possible in general, the representation theory of an 
algebraic group to that of its Lie algebra. 

Section 4 determines the structurally basic adjoint representation of an 
algebraic group, as well as its differential. Again, the principal benefits can 
be had only in characteristic o. 

Section 5 returns to the characterization of algebraic subgroups by 
invariants, as given in Chapter II, providing concomitant characterizations 
of the Lie algebras of algebraic subgroups. These results play an important 
technical role in the algebraic-geometric theory of coset spaces given in 
Chapter XII. As a first application, this section establishes the expected 
relation between the dimensions of G, Hand G/H, where H is a normal 
algebraic subgroup of the algebraic group G. 

1. Lemma 1.1. Let K be a field, and let (u 1, ••• , ur) be a set of independent 
variables over K. Let S be afinite group offield automorphisms of K(Uh . .. ,ur) 
that stabilizes K as well as the multiplicative group generated by the Ui'S. 

Suppose that the representation of Son K is injective. Then K(Uh ... , ur)S is 
contained in a finitely generated purely transcendental extension field of KS• 

PROOF. Let n denote the order of S, and choose new independent variables 
Vi} over K, where i ranges from 1 to r, and j ranges from 1 to n. Note that 

44 
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the dimension of Kover K S is n, and choose a KS-basis (kh ... ,kn) of K. 
Let U denote the multiplicative group generated by the u,'s. Evidently, 
there is one and only one group homomorphism 11: from U to the multi­
plicative group of K(VI 10 ••• , v,n) such that 

n 

1I:(u,) = L kJv,j 
J= 1 

for each i. We extend the action of Son K to an action by field automorphisms 
on K(Vlh ... , v,n) leaving the v,/s fixed. 

From Galois theory, we know that the K-space spanned by the auto­
morphisms s' of K corresponding to the elements s of S is the space of all 
KS-linear endomorphisms of K. Hence, for each index q from (1, ... , n), 
there are elements Csq in K such that the endomorphism Les CSqS' sends 
kq onto 1 and annihilates every other kj. Using these in conjunction with 
the extended action of Son K(vll , ... , vrn), we obtain 

V,q = L csqs(1I:(u,». 
seS 

This shows that the rn elements s(1I:(u,» of K(Vll, ... , vrn) are algebraically 
independent over K. 

Let N denote the mUltiplicative group generated by the elements s(1I:(u,». 
We define a group homomorphism" from U to N by forming the product 
of the S-conjugates of 11:, so that 

,,(u) = n s(1I:(S-I(U») 
seS 

for every element U of U. The algebraic independence ofthe elements s(1I:(u,» 
ensures that" is injective, and that the same is true for the K -algebra homo­
morphism from K[U] to K(vll , ... , v,n) obtained from" in the evident 
fashion. By the definition of", we have ,,(s(u» = s(,,(u» for every element 
s of S and every element u of U. Therefore, our K-algebra homomorphism 
is also a morphism of S-modules, and so is therefore its unique extension 
to a field homomorphism 

1:: K(Uh ... , u,) -+ K(vll, ... , vrn). 

Now 1: restricts to a KS-linear field homomorphism from K(Uh ... , u,)S to 
K(Vl1o ... , vrn)S = KS(Vlh . .. , v,n). 0 

Lemma 1.2. Let K be a field of characteristic 0, and let K[[t]] be the K­
algebra of integral power series in the variable t. Let (al' ... , aq) be a subset 
of K that is linearly independent over the field of rational numbers. Then the 
elements t, exp(alt), ... , exp(aqt) of K[[t]] are algebraically independent 
over K. 

PROOF. Every polynomial relation among the elements figuring in the lemma 
may be written in the form 

L c(eo, ... ,eq)teO exp«elal + ... + eqaq)t) = 0, 
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where the summation goes over a finite set of q-tuples (eo, . .. , eq) of non­
negative integers. The assumption on the a/s ensures that no two of the 
linear combinations elal + " . + eqaq are equal. Therefore, the lemma will 
be established as soon as we have proved that, if bh . .. , bn are n distinct 
elements of K, the n power series exp(bit) are linearly independent over 
the polynomial algebra K[t]. 

We do this by induction on n, and accordingly suppose that the result 
holds in the lower cases. Let Ph ... ,Pn be elements of K[t] such that 

n 

L Pi exp(bjt) = O. 
i=1 

Multiplying by exp( -bnt), and then differentiating k times with respect to 
t (indicated by (k), we obtain 

n-1 

p~k) + L Pik exp«b j - bn)t) = 0, 
i=1 

where the Pik'S are elements of K[t] determined recursively by 

Pio = Pi; Pi(h+l) = p\~) + (bi - bn)Pih' 

If k is large enough, we have p~k) = 0, and then the inductive hypothesis 
gives Pik = 0 for each i. Hence, the recursion relation yields 

P\tJ-l) + (bi - bn)Pi(k-l) = O. 

Since bi - bn i= 0, this gives Pi(k-l) = 0, and we can repeat the argument 
until we obtain Pi = O. 0 

2. Let F be a field, G an affine algebraic F -group, -r an element of !R( G). 
We regard 9(G)O as an F-algebra, with the multiplication obtained by 
dualizing the comultiplication J of 9( G). Let J. denote the set of all elements 
f of 9( G) such that -rn(f) = 0 for every non-negative exponent n, where we 
agree that -r0 is the identity element 8 of 9(G)o. We wish to show that J. is 
a bi-ideal. Since J. is evidently an ideal and since 8(J.) = (0), it suffices to 
show that 

J(J.) c J. ® 9(G) + 9(G) ® J •. 

For all non-negative integers P and q, we have 

-rp +q = (-rP ® ~) ° J, 

whence ~(J.) is contained in the kernel of the element -rP ® ~ of 

(9(G) ® 9(G)t. 

The intersection of the family of these kernels is evidently 

J. ® 9(G) + 9(G) ® J .. 

so that we have the desired conclusion. 
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Let G. denote the annihilator in G of J •. Since J. is a bi-ideal of &'(G), 
we know from Proposition 1.4.1 that G. is an algebraic subgroup of G. In 
the case where F is of non-zero characteristic p, we have (f - e(f»p E J. for 
every elementf of &'(G), whence G. consists of the neutral element e alone. 
On the other hand, if F is of characteristic 0, the group G. is significant, by 
virtue of the following theorem. 

Theorem 2.1. Let F be afield of characteristic 0, and let G be an affine algebraic 
F-group. For f in !l'(G), the group G. is contained in every algebraic subgroup 
of G whose Lie algebra contains f. It is irreducible, and f belongs to !l'(G.}. 

PROOF. Let H be an algebraic subgroup of G whose Lie algebra contains f. 
Let J H denote the annihilator of H in &'( G). From the assumption that f 
belongs to !l'(H}, we have tp H) c: J l!. For every positive integer n, we have 
rn = r 0 ti - I. Since f and e annihilate J H, it follows that J H c: J to whence 
G. c: H. 

Next, we show that J. is a prime ideal. Let a and b be elements of &'( G) \ J •. 
Let p be the smallest non-negative exponent such that tP(a} =F 0. Similarly, 
define q with respect to b. Using that f[ is a derivation, we obtain 

fp+q(ab} = e(tf+q(ab» = L (p ~ ;)! t"(a}tV(b}. 
u+v=p+q u.v. 

The expression on the right reduces to the single non-zero term where 
u = p and v = q. Thus tp+q(ab} =F 0, so that ab does not belong to J •. 

Now it is clear that the theorem will be established as soon as we have 
shown that the annihilator of G. in &'(G) coincides with J •. In the case where 
F is algebraically closed, this follows immediately by applying Theorem 
11.3.5 to &'(G}jJ •. In the general case, we shall be able to replace this appeal 
with an explicit specialization argument based on the fact, to be shown, that 
/I(G)/J. is contained in a finitely generated purely transcendental exten­
sion field of F. 

Choose a finite-dimensional left G-stable sub F-space V of &'(G) that 
generates &'(G) as an F-algebra. Then V is stable under the derivation f[ 
of &'(G). There is a finite Galois extension K of F such that the characteristic 
polynomial of the restriction of f[ to V splits into a product of linear factors 
in the polynomial algebra over K. We consider the K-algebra &'(G) ® K, 
and the K-linear extensions of e, t and t[, which we continue to denote by 
the same letters. 

By the choice of K, the characteristic roots, c to ••• , Cn say, of the restriction 
of t[ to V ® K lie in K, so that V ® K is the direct sum of fE-stable K­
subspaces VI' ••. , v.. such that each V; is annihilated by some power of t[ - Cj. 

Now let t be an auxiliary variable, and form the K-algebra K[[t]] of integral 
formal power series. Then the infinite sum 

t i . 
exp(tf[) = L 7j ti 

i<!:O I. 
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has a meaning as a map from &'(G) ® K to &'(G) ® K[[t]]. Since 't[ is a 
K-linear derivation, this exponential map is a homomorphism of K-algebras. 
If III denotes the restriction of't[ - Cj to Vi> then the restriction of exp(t't[) 
to VI is evidently exp(tCj)eXP(tllj). 

Now we consider the map exp(t't) from &'(G) ® K to K[[t]]. This coin­
cides with eo exp(t't[), so that it is a homomorphism of K-algebras. Moreover, 
since some power of Ilj is equal to 0, the above expression for the restriction 
of exp(t't[) to JIi shows that exp(t't)(JIi) is contained in the K-algebra 
K[t, exp(tcj)]. Since the JIi's generate &'(G) ® K as a K-algebra, it follows 
that 

exp(t't)(&'(G) ® K) c K[t, exp(tcl), . .. ,exp(tcn)]. 

Since the additive subgroup of K that is generated by the c;'s is torsion­
free, it is the free abelian group based on a set (alo . .. , aq) of integral linear 
combinations of the c;'s. Now it is clear that the field of fractions of 

K[t, exp(tcl), ... , exp(tcn)] 

is K(t, exp(tal), ... , exp(taq». By Lemma 1.2, this last field is a purely 
transcendental extension of K, the displayed elements constituting a trans­
cendence basis. 

Let S denote the Galois group of Kover F, and let S act coefficient­
wise on K[[t]]. Since the characteristic polynomial of the restriction of 
't[ to V ® K has its coefficients in F, the set (Clo ... , Cn) of characteristic 
roots is S-stable. Therefore, S stabilizes the multiplicative group generated 
by (t, exp(tal)' ... , exp(tan» in K[[t]]. The action of Son K[[t]] extends 
uniquely to an action by field automorphisms on the field of fractions of 
K[[t]], under which the subfield K(t, exp(tal)' ... , exp(taq» is stable. We 
have 

exp(t't)(&'(G» c K(t, exp(tal)' ... , exp(taq»S 

and we can apply Lemma 1.1 to conclude that exp(t't)(&'(G» is contained 
in a finitely generated purely transcendental extension of F. Choose a set 
(Xh ... , x..,) of algebraically independent elements such that this extension 
field is F(Xh ... ' x..,). Clearly, the kernel of the restriction of exp(t't) to &'(G) 
is precisely J., and we may regard 9'(G)/J. asa sub F-algebraof F(Xh ... , xm). 

Now let J denote the annihilator of G. in &'(G). Clearly, J. c J. Suppose 
that, contrary to what we wish to prove, we have J. ¢ J, and choose an 
element b from J \ Jf. Indicate the canonical homomorphism 

&'(G) ~ 9'(G)/J. 

by a 1-+ a'. Let (Ph ... , Pj) be a system of representatives in &'(G) \ J. for a 
set of F-algebra generators of &'(G)/Jf • Write pj = !;/gj and b' = J /g, where 
theRs, g;'s,Jand 9 are non-zero elements of F[x 10 ••• , xmJ. There are elements 
rl' .. . , rm in F such that 
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Clearly, the specialization Xi f--+ ri defines an F-algebra homomorphism 
from f!J(G)!Jt to F not annihilating b'. This may be viewed as an F-algebra 
homomorphism from &J(G) to F annihilating J t but not b. Thus, we have 
an element of Gt not annihilating b, contradicting the assumption that b 
belongs to J. Therefore, we have the conclusion that J = J t • 0 

We note that Gt is commutative. This is seen as follows. Let s stand for 
the switch of tensor factors in &J(G) ® &J(G). Let p and q be non-negative 
exponents.We have 

(rP ® 1"q) 0 sob = (1"q ® 1"P) 0 b = 1"p+q = (1"P ® 1"q) 0 b, 

whence 

(tP ® 1"q) 0 (s 0 b - b) = O. 

This shows that sob - b sends &J(G) into J t ® &J(G) + &J(G) ® J t • Hence, 
if X and yare elements of Gt> we have 

(x ® y) 0 (s 0 b - b) = 0, 

which means that xy = yx. 

Theorem 2.2. Let G be an algebraic group over a field of characteristic O. For 
every sub Lie algebra L of ftJ( G), let GL denote the intersection of the family 
of all algebraic subgroups of G whose Lie algebras contain L. Then G L is an 
irreducible algebraic subgroup of G, and L c ftJ(Gd. If H and K are irre­
ducible algebraic subgroups of G, then H c K if and only if ftJ(H) c ftJ(K). 

PROOF. Evidently, GL is an algebraic subgroup of G. By the first part of 
Theorem 2.1, we have Gt c GL for every element 1" of L. This implies that 
ftJ( G t) c ftJ( G L), and now the last part of Theorem 2.1 gives 1" E ftJ( G L). 
Thus, L c ftJ(GL). Since ftJ«Gdl) = ftJ(Gd, this shows also that GL c (GL)l, 
so that GL is irreducible. 

Let H be any irreducible algebraic subgroup of G. Since G.!l'(H) c H, we 
have ftJ(G.!l'(H» c ftJ(H). From the above, we have the reversed inclusion, 
so that ftJ(G.!l'(H» = ftJ(H). Since Hand G.!l'(H) are irreducible and G.!l'(H) c H, 
we know from the end of Section 111.3 that therefore G.!l'(H) = H. Now, if H 
and K are irreducible algebraic subgroups of G, and ftJ(H) c ftJ(K), then 
we have G.!l'(H) c G.!l'(K)' i.e., H c K. Conversely, if He K, then it is clear 
from the definitions that ftJ(H) c .!l'(K). 0 

Theorem 2.3. Let p: G -+ H be a morphism of algebraic groups over a field 
of characteristic 0, and let K be the kernel of p. Then the kernel of the dijfer­
ential p. coincides with .!l'(K). 

PROOF. In any characteristic, it is clear from the definitions that .!l'(K) is 
contained in the kernel of p .. Conversely, let 1" be an element of the kernel of 
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p .. Letfbe an element of &'(H), and let x be an element of G. Then we have 

1:[(f 0 p)(x) = 1:«f 0 p) . x) = 1:«f . p(x» 0 p) 

= p·(1:)(f . p(x» = o. 
Thus, 1:[(f 0 p) = 0, whence fop - e(f 0 p) belongs to the annihilator J. 
of G •. Since this holds for every element f of &,(H), it follows that G. c K, 
whence 2'(G.) c 2'(K). By Theorem 2.1, this gives 1: E 2'(K). 0 

3. Theorem 2.1 yields the following important converse to Proposition 
111.4.3. 

Theorem 3.1. Let G be an irreducible affine algebraic F -group, where F is a 
field of characteristic O. Let p be a polynomial representation of G on a finite­
dimensional F-space V. Every endomorphism of the form p(x) - iv, with 
x in G, is an F -linear combination of products of elements of p' (2'( G». 

PROOF. Let 1:1> ••• ,1:/1 be elements of !t'(G). From Lemma 111.4.1, we obtain 

p* 0 p'(1:1)··· p'(1:/I) = (iy ® (1:1)[··· (1:II)[) 0 p*. 

Composing this with iy ® e, we find that 

p'(1:1)··· p'(1:/I) = (i y ® 1:1 ••• 1:/1) 0 p*. 

Now let v ~e an element of VO and van element of V. One verifies directly 
from the definitions that 

(v ® i~(G»(P*(v» = (v/v) 0 p. 

Next, let y be an element of &'( Gt. The last relation gives 

y«v/v) 0 p) = (v ® y)(P*(v» = (v/v)«iy ® y) 0 p*). 

Since the functions v/v span EndF(Vr over F, it follows that, for every 0( 

in EndiVt, we have 

Y(O( 0 p) = O(((iy ® y) 0 p*). 

Now apply ex to our above expression for the product of the P'(1:i)'S, and 
use the last relation for y = 1: 1 ••• 1:/1. This yields 

0(P'(1:1)··· p'(1:/I» = (1:1···1:/1)(0( 0 p). 

Suppose that 0( annihilates every non-empty product of elements of 
p'(2'(G», and fix an element 1: of 2'(G). Our last result shows that 0( 0 p is 
annihilated by every 1:/1 with n > o. Therefore, the element 0( 0 p - e(O( 0 p) 
of &'(G) belongs to the annihilator J. of G., which means that 0( annihilates 
every endomorphism of the form p(x) - iy with x in G •. We conclude 
from this that every such endomorphism is an F -linear combination of 
products of elements of p'(2'( G». 
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If Xi is an element of Gtl (i = 1, ... , n), we can write the endomorphism 
P(Xl •.• XII) - iv as an integral linear combination of products of the endo­
morphisms P(Xi) - iv, and it follows from the above that this endomorphism 
is also an F-linear combination of products of elements of p'(!l'(G». Thus, 
we conclude that every element ex of Endp(V)O with the property assumed 
above annihilates every endomorphism p(x) - i.. with X in the group 
generated by the family of all G/s. It follows that cx annihilates also the endo­
morphisms p(x) - iv with X in the closure, H say, of this group. It is clear 
from Theorem 2.1 that !l'(H) = !l'(G), whence H = G. D 

CoroUary 3.2. Let F be a field of characteristic 0, let G be an i"educible 
affine algebraic F -group, and let V be a polynomial G-module. Then, with 
respect to the structure of an !l'(G)-module given by p', the G-fixed part of V 
coincides with the !l'(G)-annihilated part, and the family of sub G-modules 
of V coincides with the family of its sub !l'( G)-modules. 

4. Let G be an algebraic group. For each element X of G, let c" denote the 
conjugation effected by X on G, so that 

ciy) = xyx- 1• 

Since c" is an automorphism of affine algebraic groups, we have the differ­
ential c~, which is a Lie algebra automorphism of !l'(G). Clearly, the map 
sending each element x of G onto c~ makes!l'( G) into a polynomial G-module. 
We shall denote this polynomial representation of G by cx. It is called the 
adjoint representation of G. Thus, 

cx(x) = c~. 

In order to make this explicit, let us regard the elements of G, as well as 
those of !l'(G), as elements of the F-algebra ~(G)o. Using some of the defini­
tions and formal results of Section 1.2, we obtain, with x in G, T in !l'(G) and 
fin~G), 

whence 

CX(X)(T)(f) = T(X- 1 . f . x)= (T ° (x- 1)! ° xI)(f) 

= (TX- 1 ° xI)(f) = (XTX-1)(f), 

cx(X)(T) = XTX- 1. 

Next, we calculate the differential of cx. Let u and T be elements of !l'(G) 
and letfbe an element of ~(G). Letr stand for the element of !l'(G)O given 
by r(p) = p(f) for every p in !l'(G). Then, if r/T has its usual meaning 
as an element of End,,(!l'(GW. the composite (r/T) ° cx is an element of 
~(G).and we have 

CX'(U)(T)(f) = r(CX'(U)(T» = (r/T)(ex'(U» 

= U«r/T) ° cx). 
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Now we obtain an explicit expression for (r /r) 0 0( as a function off. 
We have, with x in G, 

«r/t)oO()(x) = r(O(x)(t» = r(xtx- 1) = (XtX- 1)(f). 

In Hopf algebra terms, 

xtx- 1 = x 0 t[ 0 (x- 1)[ = x 0 t[ 0 (iso(G) ® x 0 '1) 0 ~ 

= x 0 (t[ ® x 0 '1) 0 ~ = (x ® x) 0 (t[ ® '1) 0 ~ 

= x 0 p. 0 (t[ ® '1) 0 ~. 

This shows that 

(r/t) 0 0( = (p. 0 (t[ ® '1) 0 ~)(f). 

From our first expression for O('(a)(t)(f) we see now that 

O('(a)(t) = a 0 p. 0 (t[ ® '1) 0 ~. 

Replacing a 0 p. with a ® e + e ® a, we find that 

O('(a)(t) = at + t(a 0 '1). 

Finally, from p. 0 ('1 ® iso(G» 0 ~ = u 0 e, we obtain 

a 0 p. 0 ('1 ® i.¥(G» 0 ~ = 0, 

whence, as just above, 

a 0 '1 + a = O. 
Thus, we have 

O('(a)(t) = at - ta = [a, tJ. 

Denoting the derivation effected by t on !l'(G) by Do we summarize 
our results as follows. 

Theorem 4.1. Let 0( denote the adjoint representation of the algebraic group G 
on its Lie algebra !l'(G). Then, for every element x of G and every element t 

of !l'(G}, we have 

O(xXt) = X'CX~l. 

The extended differential of 0( is given by 

O('(t} = D •. 

The next three theorems concern basic properties of the adjoint represen­
tation, which are decisive only in the case where the base field is of charac­
teristic o. 

Theorem 4.2. IfG is an irreducible algebraic group over afield of characteristic 
0, then the kernel of the adjoint representation of G coincides with the center 
ofG. 



IV.4 53 

PROOF. Let X be an element of the kernel of the adjoint representation. 
It is evident from Theorem 4.1 that x commutes with every element of !t'(G). 
By Proposition 1.2.1, this implies that x[ commutes with 1'[ for every element 
l' of !t'(G). Now it follows from Theorem 3.1 that x[ commutes with y[ for 
every element y of G, whence xy = yx for every y in G. 0 

A Lie algebra L is called abelian if [x, y] = ° for all elements x and y of L. 

Theorem 4.3. Let F be a field, G an irreducible affine algebraic F -group. 
If G is abelian, so is !t'( G). Conversely, if !l'( G) is abelian and F is of charac­
teristic 0, then G is abelian. 

PROOF. Suppose that G is abelian. Then the adjoint representation of Gis 
trivial, whence its extended differential is the O-map. By Theorem 4.1, this 
implies that !l'( G) is abelian. 

Now suppose that F is of characteristic 0, and that !l'(G) is abelian. 
This last assumption, in conjunction with Proposition 1.2.1, implies that 
the sub F-algebra of Endp(9'(G» generated by the elements 1'[ with l' in !t'(G) 
is commutative. By Theorem 3.1, this implies that the elements xl' with x 
in G, commute with each other, whence G is abelian. 0 

An ideal of a Lie algebra L is a subspace that is stable under every D", with 
x in L. Clearly, the ideals are precisely the kernels of Lie algebra homo­
morphisms. 

Theorem 4.4. Let F be a field, G an irreducible algebraic F -group, K an 
irreducible algebraic subgroup of G. If K is normal in G, then !l'(K) is an 
ideal of !l'(G). Conversely, if !l'(K) is an ideal of !l'(G), and if F is of charac­
teristic 0, then K is normal in G. 

PROOF. Suppose that K is normal in G. Let I be the annihilator of Kin 9'(G), 
let x be an element of G and let l' be an element of !l'(K). Then x - 1 • I . x c: I, 
i.e., xlx[-l stabilizes I, whence l' 0 XIX[-l annihilates I, i.e., X1'X- 1 annihilates 
1. By Theorem 4.1, this means that !l'(K) is G-stable under the adjoint 
representation IX. By Proposition 111.4.3, this implies that !l'(K) is !l'(G)­
stable under (X'. By Theorem 4.1, this means that !l'(K) is an ideal of !l'(G). 

Now suppose that F is of characteristic 0, and that !l'(K) is an ideal of 
!l'(G). This means that !l'(K) is !t'(G)-stable under IX'. By Corollary 3.2, 
it follows that !l'(K) is G-stable under IX. Now let x be an element of G. Then 
xKx - 1 is an algebraic subgroup of G whose annihilator in 9'( G) is x . I . x - 1, 

where I is the annihilator of K. It follows that 

!l'(xKx- 1) = !l'(K) 0 (x- 1)[ 0 Xl = x!l'(K)x- 1 = lX(x)(!l'(K» = !l'(K). 

By Theorem 2.2, this implies that xKx- 1 = K. 0 
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5. Recall that Theorem 112.1 provides a finite set E of semi-invariants for 
an algebraic subgroup H of an algebraic group G that characterizes H. 
The next result says that E also characterizes .!l'(H) as a sub Lie algebra of 
.!l'(G). 

Proposition 5.1. In the notation Qf Theorem 11.2.1, .!l'(H) consists precisely 
of those elements f of .!l'(G) which satisfy f[(e) E Fefor every e in the finite set 
E of H-semi-invariants constructed in the proof of that theorem. 

PROOF. It is clear from Proposition III.4.3 that every element of .!l'(H) 
satisfies the stated condition. Now suppose that f is an element of .!l'(G) 
satisfying this condition. Recall from the proof of Theorem II.2.1 that the 
elements of E are the functions uJs, where s is an F-space generator of the 
canonical image S of /\"(V ("\ I) in /\"(V), and the u,'s are basis elements of 
the annihilator of S in /\"(V)0. Since 1:[(uJs) is a scalar multiple of uJs, 
while I> annihilates uJs, we have 't(uJs) = O. If 1:' S denotes the transform of s 
by 1: with respect to the extended differential of the representation of G 
on /\"(V), this means that ul..f· s) = O. Thus, 1:' s is annihilated by the 
annihilator of Sin /\"(V)O, so that 1:' S belongs to S. 

Now, if t is an element of V ("\ I, we have ts = 0 in /\(V). It follows from 
Proposition III.4.2 that .!l'(G) acts by derivations on /\(V). Therefore, we 
have 

1:[(t)s + t(1:' s) = 0 

because the expression on the left is the transform of ts by 1:. By the definition 
of S, this implies that 1:[(t) belongs to V ("\ 1. Since V ("\ I generates I as an 
ideal, it follows that 1:[ stabilizes the annihilator I of H in fJJ(G). Therefore, 
f(I) = (0), which means that 1: belongs to .!l'(H). 0 

The next result makes a similar addition to Theorem II.2.2, concerning 
the characterization of the Lie ideal corresponding to a normal algebraic 
subgroup H of an algebraic group G. 

Proposition 5.2 • .In the notation of Theorem 11.2.2, .!l'(H) consists precisely 
of those elements 1: of .!l'(G) which satisfy 1:[(q) = Ofor every element q of the 
finite set Q of H -invariants constructed in the proof of that theorem. 

PROOF. One sees immediately from Proposition II14.3 that every element 
of .!l'(H) satisfies the stated condition. In order to prove the converse, we 
must consider the differential of the representation u of G on U used in the 
proof of Theorem 112.2. 

Recall that we considered a certain finite-dimensional left G-stable 
subspace J of (JJ(G), that U is a sub F-algebra of Endp(J) stable under the 
conjugations effected by the elements p(x) with x in G, where p denotes the 
representation by left translations on J, and that u is defined by 

u(x)(u) = p(x)UP(X)-l. 
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Let K denote the group of units of EndF(J), so that p is a morphism of 
affine algebraic F -groups from G to K. Let us identify !l'(K) with EndF(J) 
in the canonical fashion, so that the adjoint representation of K becomes a 
representation, y say, of K on Endp(J). Then we see from Theorem 4.1 that 
a is the representation of G on U that is induced by the representation y 0 p 
of G on Endp(J).1t follows that a' is the representation of !l'( G) on U that is in­
duced by the representation y' 0 p' of !l'(G) on Endp(J). Now we see from 
the second part of Theorem 4.1 that a'(e) = Dpo(t) for every element "C of 
L(G), where the identification of !l'(K) with Endp(J) is to be used in inter­
preting the expression on the right. This means that 

a'("C)(u) = p'("C)u - up'("C), 

for every element u of U. 
Now suppose that "C[(Q) = (0). By the definition of Q, this implies that 

"C[ annihilates the space of representative functions associated with (1, so 
that "C belongs to the kernel of a'. By the above, this means that p'( "C) commutes 
with every element of U. By the proof of Theorem 111.2.2, this implies that 
"C satisfies the condition of Proposition 5.1, whence "C belongs to !l'(H). D 

Lemma 5.3. Let F be an algebraically closed field, G an irreducible affine 
algebraic F-group, H an algebraic subgroup ofG. Suppose that the left element­
wise fixer of 9( G)H in G coincides with H. Then [9( G)]H = [9( G)HJ. 

PROOF. Let f be an element of [9(G)]H. We must prove that f belongs to 
[9(G)H]. Choose a non-zero element v in 9(G) such that vf lies in 9(G). 
Nowfbelongs to the ring of fractions ~(G)[V-l], which is a finitely generated 
integral domain F-algebra. The F-algebra homomorphisms from ~(G)[V-l] 
to F are the unique extensions of the F -algebra homomorphisms from ~(G) 
to F that do not annihilate v, i.e., of the elements x of G such that v(x) =1= O. 
Let x and y be two such elements of G that coincide on ~(G)H. Then, for 
every z in G and every gin 9(Gl', we have g . z in 9(G)H, so that 

(g. z)(x) = (g. z)(y). 

This may be written 

g(zx) = «x-1y). g)(zx) 

showing that (x - 1 y) . g = g. By assumption, this implies that x - 1 Y belongs 
to H, so thatf = (x-1y)' f. It follows that the unique extensions of x and y 
to F -algebra homomorphisms from 9( G)[v - 1] to F coincide at f. Our 
conclusion is that homomorphisms from 9( G)[v - 1] to F that coincide on 
~(G)H also coincide at f. By Proposition 111.2.4, this implies that f is purely 
inseparably algebraic over [~(G)HJ. If F is of characteristic 0, this means 
thatfbelongs to [~(G)H]. 

Now suppose that F is of non-zero characteristic p. Then our result says 
that there is a non-negative integer n such that f P" belongs to [~(G)HJ. 
Thus, there is a non-zero element u in ~(G)H such that (uf)P" belongs to 
~(G)H. Write w for uf. 
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We claim that, if Xl> ••• , Xm are elements of G such that the transforms 
Xj • ware F -linearly independent, then also the transforms Xj· wI'" are F­
linearly independent. In order to see this, let c 1> ... 'Cm be elements of F 
such that 

m 

L CjXj • wP" = 0. 
j=1 

We may write this in the form 

(.f djxj· w)P" = 0, 
,= 1 

where the d/s are the elements of F such that df" = Cj. This gives 
m 

Ldjxj·w = 0, 
j= 1 

whence each d j = 0, so that each Cj = 0, and our above claim is established. 
Since fJJ(G) is locally finite as a G-module, it follows from what we have 

just shown that the F -space spanned by the transforms X· w with x in G 
is finite-dimensional. Hence, the ideal, J say, of all elements d in fJJ(G) such 
that d(x· w) belongs to fJJ(G) for every element x of G is not the O-ideal. 
On the other hand G· J = J. Therefore, J has no zero in G. By Theorem 
11.3.5, it follows that J must coincide with fJJ(G), which means that w belongs 
to fJJ(G). Thus, we have 

uf E fJJ(G) n [fJJ(G)]H = fJJ(G)H. 

Since u belongs to fJJ(G)H, this givesf E [fJJ(G)H]. o 
Theorem 5.4. Let G be an algebraic group over an algebraically closed field, 
and let H be a normal algebraic subgroup ofG. Then 

dim(G) = dim(G/H) + dim(H). 

PROOF. We have Hie G1> and HI is of finite index in G1 n H. Hence, 
HI = (G 1 n H)l> so that dim(H) = dim(G I n H). The injection G1 -+ G, 
followed by the canonical map G -+ G/H, is a morphism of affine algebraic 
groups from G1 to G/H. The image is an irreducible normal algebraic sub­
group of finite index, so that it coincides with (G/H)l. Thus we have a sur­
jective morphism of affine algebraic groups G1 -+ (G/H)I. By Theorem 
11.4.4, the induced bijective map 

GtI(G. n H) -+ (G/Hh 

is a bijective morphism of affine algebraic groups. The transpose of 1t is an 
injective algebra homomorphism from fJJ«G/H)I) to fJJ(GtI(GI n H». By 
Proposition 111.2.4, the injectiveness of 1t implies that [fJJ(GtI(G. n H»] is 
(purely inseparably) algebraic over the field of fractions of the image of 
fJJ«G/H).). Hence, 

dim(G/H) = dim«G/H)I) = dim(GtI(G1 n H» 
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Now it is clear that we may replace G with G1 and H with G1 n H, which 
means that we may now suppose that G is irreducible. In this case, Lemma 
5.3 applies to show that [[1J(G)]H = [[1J(G~]. By Theorem 111.2.3, [[1J(G)] is 
therefore separable over [[1J(G~] = [[1J(G/H)]. Let p: G -. G/H denote 
the canonical morphism. Because of the separability just noted, we have 
from Theorem 111.3.3 that p. is surjective from .!l'(G) to .!l'(G/H). It is clear 
from Proposition 5.2 that the kernel of p. coincides with .!l'(H). Thus, we 
have 

dim(.!l'(G» = dim(.!l'(G/H) + dim(.!l'(H». 

By Theorem 111.3.2, the dimension of an algebraic group is equal to that of 
its Lie algebra. 0 

Notes 

1. Almost exclusively, the original sources for the material of this chapter 
are [4] and [5]. 

2. The proof of Theorem 2.1 gives information about the dimension of 
Gt> as follows. It is easy to see that each V j contains a non-zero element 
Vj such that 't"[(Vj) = CjVj. Replacing V with a translate V· x, where x is a 
suitable element of G, we can ensure that e(vj) :F 0 for each i. Then exp(t't")(Vj) 
is a non-zero K multiple of exp(tcj). Hence, 

K[exp(tc1), ... ,exp(tcn)] c: exp(t't"X[1J(G) ® K). 

Now one can see from the proof of Theorem 2.1 that the dimension of Gt 

is either q or q + 1, where q is the rank of the additive group generated by the 
characteristic values of't"[. In fact, the dimension is q when each Jl.j is 0, and 
q + 1 otherwise. The condition that each Jl.j be 0 is equivalent to the condition 
that 't"[ be a semisimple linear endomorphism. 

3. The following example shows how Theorem 4.3 can fail in non-zero 
characteristic. Let F be an infinite field of non-zero characteristic p. Let G 
be the group of pairs (r, s) with rand s in F and s :F 0, whose composition 
is given by 

Define the functions u and v on G by 

u(r,s) = r, vCr, s) = s. 

Then G has the structure of an irreducible affine algebraic F -group, with 
[1J(G) = F[u, v, v- 1]. One finds that .!l'(G) is abelian, although G is not 
commutative. 
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4. The bijective morphism 

1t: G1/(G1 ("\ H) -+ (G/H)1 

of the proof of Theorem 5.4 is actually an isomorphism of affine algebraic 
groups. This can be seen as follows. Using Theorem 11.2.3, one may write 
gII(G) as a direct algebra and G1-module sum of gII(G1) and the annihilator 
of G1• Then one can show that, for every element u of 

gII(Gd(G1 ("\ H» = gII(G1)(G I nH), 

the sum in gII( G) of the left transforms of u by a set of representatives of the 
elements of H/(G1 ("\ H) is an element w in gII(G~ such that w 0 1t = u. Thus, 
the transpose of 11: is seen to be surjective, whence it and 1t are isomorphisms. 



Chapter V 

Semi simplicity and Unipotency 

Section 1 is devoted to the generalities concerning simple and semisimple 
modules over a ring, and to the theory of a single linear endomorphism. 
The main result from this second area is the multiplicative Jordan decomposi­
tion of a linear automorphism, which plays an important role in the structure 
theory of algebraic groups. 

Section 2 introduces unipotent representations, which are the extreme 
opposites of semisimple representations, and the corresponding notion of 
a unipotent algebraic group. Such a group is characterized by the property 
that all its polynomial representations are unipotent. The main structural 
result is Theorem 2.3, which says that the multiplicative Jordan components 
of an element of an algebraic group belong to that group, and that the 
additive Jordan components of an element of the Lie algebra belong to that 
Lie algebra. 

Section 3 introduces the notion of a linearly reductive algebraic group, 
i.e., a group having the property that all its polynomial representations 
are semisimple. Over fields of characteristic 0, all the "classical" groups are 
linearly reductive, and the motivation for this section stems from this fact. 
Theorem 3.1 is essentially Hilbert's "first main theorem on invariants," 
in terms of Hopf algebras and comodules. 

Section 4 is devoted to semidirect products, preparing the ground for 
the structure theory of solvable algebraic groups in arbitrary characteristic, 
and of general algebraic groups in characteristic O. 

Section 5 contains the basic facts concerning the structure of abelian 
affine algebraic groups. 

1. We recall from general algebra that a module is said to be semisimpie if 
every submodule is a direct module summand, and that this is so if and only 
if the module coincides with the sum of its simple submodules. 
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Proposition 1.1. Let R be a ring, M a semisimple R-module, C = EndR(M). 
Assume that M is finitely generated as a C-module. Then the image of R in 
End(M) coincides with Endc(M). 

PROOF. Choose a finite system (m1o' .. ,mq) of C-module generators of M, 
and let S be the direct sum of q copies ofthe R-module M, so that this system 
may be viewed as an element of the R-module S. For i = 1, ... , q, let 

1t,: S -+ M and O'j: M -+ S 

denote the ith projection and injection of the direct sum structure of S. 
Let us write D for EndR(S). First, we note that every sub R-module, T 

say, of S is stable under EndD(S). In fact, since S is semisimple as an R­
module, there is an R-module projection t from S to T. Now t belongs to 
D, so that we have, for every element e of EndD(S), 

e(T) = (etXS) = (te)(S) c: t(S) = T. 

Now let y be any element of Endc(M), and let "I' denote the endomorphism 
of S given by 

y'(U1o" ., uq) = (y(U1),' •• , y(uq». 
We claim that "I' belongs to EndD(S). In order to see this, let d be an element 
of D, and put dij = 1tj dO'j. We see immediately that dij belongs to C, whence 
ydlj = d,jY' Noting that 

we see that y'd = dy', so that "I' belongs to End~S). 
Hence, the sub R-module of S that is generated by the element (m1o ... , mq) 

is stable under "1'. This means that there is an element r in R such that 

y'(m1o' •• ,mq) = r . (m1o ... , mq) 

i.e., y(mj) = r· mj for each index i. Since the m/s generate M as a C-module, 
it follows that y(m) = r' m for every element m of M. 0 

Proposition 1.2. Let Y be a vector space over a field F, and let S be a sub F­
algebra ofEndp(Y). Let K be an extension field of F.If Y ® K is semisimple 
with respect to S ® K, then Y is semisimple with respect to S. Conversely, 
if Y is finite-dimensional and semisimple with respect to S, and F is a perfect 
field, then Y ® K is semisimple with respect to S ® K. 

PROOF. Suppose that Y ® K is semisimple, and consider a sub S-module U 
of Y. The assumption implies that there is an S-module projection p. from 
Y ® K to U ® K. Choose an F-space complement C of Fin K. For v in V, 
write 

p.(v) = ~v) + P(v), 
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where IX(V) lies in U and fJ(v) in U ® C. Then one sees immediately that IX 

is an S-module projection from V to U. Our conclusion is that V is semi­
simple. 

In proving the converse, we suppose, without loss of generality, that V 
is a simple S-module. Moreover, if L is an algebraic closure of K, and if 
we show that V ® L is semisimple with respect to S ® L, it will follow from 
what we have already proved that V ® K is semisimple with respect to 
S ® K. Accordingly, we assume that K is algebraically closed. 

Let G be the group of all F -algebra automorphisms of K. Using that F 
is perfect, and the fact that every automorphism of a subfield of K extends 
to one of K, one shows that the G-fixed part KG of K coincides with F. We 
let G act on V ® K by F -algebra automorphisms via the tensor factor K. 
Clearly, G thus acts by S-module automorphisms that permute the sub 
S ® K-modules among themselves. 

Since V ® K is of finite dimension over K, it contains a non-zero simple 
sub S ® K-module, A say. Let B denote the sum in V ® K of the family of 
all transforms x(A), with x in G. Since each x(A) is a simple S ® K-module, 
B is semisimple as an S ® K-module. Therefore, it suffices to prove that 
B= V®K. 

Write the non-zero elements of B in the form L1=1 Vi ® Ci> where the 
v;'s are F-linearly independent elements of V, and the c/s belong to K. 
Take such a sum in which n is as small as possible, and mUltiply it by ci l 

to ensure that then CI = 1. Apply an element of G to this, and subtract the 
original from the result. This yields a sum in B with fewer than n summands, 
so that we must obtain O. This shows that each Ci must belong to KG, i.e., 
to F, so that B n V #: (0). Since V is simple, this implies that V c: B, whence 
B=V®K. 0 

The only purpose of the following lemma is its use in the proof of the 
next theorem, concerning the Jordan decomposition of a linear endo­
morphism. 

Lemma 1.3. Let F be a perfect field, x a variable over F. Let f be an element 
of F[x] \ F, and let g be a product of mutually inequivalent prime elements qf 
F[x]. including the prime factors of f. There is an F-algebra endomorphism 
1t of F[x] satisfying 

(1) 1t(g) E F[x]J, 
(2) 1t(x) - x E F[x]g. 

PROOF. Since F is perfect, g has no multiple roots in any extension field of 
F, so that g is relatively prime to its formal derivative g'. Thus, there are 
elements u and v in F[x] such that 

ug' + vg = 1. 
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Let q denote the F -algebra endomorphism of F[x] that sends x onto x - ug. 
Then, for every non-negative exponent e, we have 

q(xe) = xe - exe-lug + weg2, 

where We is an element of F[x]. It follows that 

q(g) = g - g'ug + wg2, 

where W belongs to F[x]. By the choice of u and v, the expression on the 
right is equal to vg2 + wg2, so that q(g) lies in F[X]g2. Since some power 
of g lies in F[x]J, it follows that there is a positive integer m such that l1"'(g) 
lies in F[x]f. 

Put n = l1"', so that n satisfies (1). Also, 
m-l m-l 

n(x) - x = L (qi+ lex) - qi(X» = L qi(q(X) - x) 
i=O i=O 

m-l 

= L qi( -ug) E F[x]g, 
;=0 

which shows that n satisfies (2). o 
Theorem 1.4. Let F be a perfect field, V a finite-dimensional F -space, e an 
F -linear endomorphism of V. There are F -linear endomorphisms e(lI) and e(S) 
of V satisfying the following conditions: e(lI) is nilpotent, e(l) is semisimple, 
the sum of these endomorphisms is e, and each is an F -linear combination of 
positive powers of e. Moreover, if a and b are linear endomorph isms of V such 
such that a is nilpotent, b is semisimple, a + b = e and ab = ba, then a = e(lI) 

and b = e(·). 

PROOF. Let p be the F-algebra homomorphism from F[x] to Endp(V) 
sending x onto e. The kernel of p is a principal ideal F[x]f. Iffis a multiple 
of x, we define g as the product of the prime factors of f; otherwise, we 
define g as this product times x. 

Now let n be the F-algebra endomorphism of F[x] that is provided by 
Lemma 1.3. Let q = p(n(x». By (2) of Lemma 1.3, q belongs to eF[e]. The 
homomorphism po n annihilates F[x]g, because n(g) lies in F[x]f. The 
image F[q] of this homomorphism is therefore a homomorphic image of 
F[x]/F[x]g, and so is a direct F-algebra sum offield extensions of F, because 
g is squarefree. This shows that q is a semisimple endomorphism of V. We 
have 

e - q = p(x - n(x» E p(F[x]g), 

whence it is clear that e - q is nilpotent. Therefore, the elements e(l) = q 
and e(lI) = e - q satisfy the requirements of the theorem. 

Finally, let a and b be as described in the theorem. Then a and b commute 
with e, and therefore also with e(l) and e(II). It follows that a - e(lI) is nilpotent 
and e(l) - b is semisimple. Since these two endomorphisms coincide, each 
is therefore O. 0 
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The decomposition of Theorem 1.4 is called the additive Jordan decomposi­
tion of e. The endomorphisms e(s) and e(R) are called the semisimple and the 
nilpotent component of e. 

In the case where e is an automorphism of V, this decomposition gives 
rise to the multiplicative Jordan decomposition of e, as follows. First, we show 
that, if e is an automorphism, so is e(S). Let W denote the kernel of e(S). Since 
e(R) commutes with e(S), it stabilizes W. Since e(R) is nilpotent, it follows that, 
if W :F (0), it contains a non-zero element w that is annihilated by e(n). But 
then w lies in the kernel of e, contradicting our assumption. Thus, we must 
have W = (0), so that e(s) is an automorphism. 

Now we define 

e(U) = iy + (e(S»-le(R). 

Then e(u) - iy is nilpotent, which is expressed by saying that eM is unipotent. 
We have e(S)e(U) = e, and e(S) and e(u) commute with each other. Since e is an 
automorphism, we have iy E eF[e], whence also e(u) E eF[e]. The auto­
morphism e(u) is called the unipotent component of e. Finally, as in the situa­
tion of Theorem 1.4, one sees readily that the decomposition e = e(S)e(U) is 
unique, in the sense exactly analogous to the uniqueness of the additive 
Jordan decomposition. 

2. Let M be a module and S a subset of End(M). We say that S is nilpotent on 
M if there is a positive integer n such that the product of every sequence of n 
elements of S is O. Let F be a field, G a group, p a representation of G by 
F-linear automorphisms of a finite-dimensional F-space V. We say that p 
is a unipotent representation and that V is a unipotent G-module if the set of 
endomorphisms p(x) - iv, with x in G, is nilpotent on V. 

Theorem 1.1. Let F be a field, and let p be a representation of a group G by 
linear automorphisms of a finite-dimensional F-space V. If p(x) - iy is nil­
potentfor every element x ofG, then p is a unipotent representation. 

PROOF. If K is an algebraically closed field containing F, we can extend the 
given structure in the canonical fashion so as to obtain a representation of 
G by K-linear automorphisms of V ® K that still has the property assumed 
for p. Therefore, we suppose without loss of generality that F is algebraically 
closed. Next, if we proceed by induction on dim(V), we reduce the theorem 
to the case where V is simple as a G-module. 

In that case, let R denote the sub F-algebra of Endp(V) that is generated 
by p(G). Since F is algebraically closed and V is simple, we have 

EndJV) = Fiy • 

Therefore, we have from Proposition 1.1 that R = Endp(V). The sub F­
space of R that is spanned by the elements p(x) - iy is evidently a two-sided 
ideal, J say, of R. If j = (0), then there is nothing to prove. Suppose that 
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J #: (0). Evidently, End,.{V) is a simple F-algebra. Therefore, we have 
J = End,.{V). On the other hand, since each p(x) - iy is nilpotent, every 
element of J has trace 0, which is clearly not the case for every element of 
End,.{V). Thus, we have a contradiction, and so conclude that J = (0). 0 

Proposition 2.2. Let G be a group of linear automorphisms of a finite-dimen­
sional vector space V. Let S and T be subgroups of G, with T normal in G. 
If V is unipotent as an S-module and as aT-module, then V is unipotent as an 
ST-module. 

PROOF. For convenience of notation, let us work with the ordinary group 
algebra ~[G] of G over the ring ~ of integers, and let us view V as a ~[G]­
module in the evident fashion. If s E S and t E T then, in ~[G], 

1 - st = s(1 - t) + 1 - s 

and 
(1 - t)s = s(1 - s-lts). 

Hence, a product (1 - Sltl )· .. (1 - s.t.), where the sts belong to S and the 
tts to T, can be written as a sum of products of the form su, where s belongs 
to S, and u is a product whose factors are either 1 - x with x in S or 1 - Y 
with yin T, the total number off actors being n. Using that 

(l - y)(1 - x) = 1 - y - x(l - x-lyx), 

we can rewrite each u as an integral linear combination of products of the 
form 

x(1 - Xl)· .. (1 - x,X1 - Yl) ... (1 - yq), 

where x and the xts belong to S, and the y/s belong to T. Moreover, q is 
the number of factors 1 - Y with y in T that occurred in the original expres­
sion for u. Therefore, if d is the dimension of V, it follows from the unipotency 
of V as aT-module that the endomorphism corresponding to u is 0 whenever 
q ~ d. On the other hand, if q < d and n ~ d2, then u must contain at least 
d successive factors of the form 1 - x with x in S, so that the corresponding 
endomorphism of V is again equal to 0, because V is unipotent as an S­
module. 0 

A subgroup T of an algebraic group G is called unipotent if the representa­
tions of T by translations from the left on the finite-dimensional left T­
stable subspaces of ~(G) are unipotent. We express this property by saying 
that ~G) is locally unipotent as a T-module. It is clear from the definitions 
that a subgroup T of G is unipotent if and only if the restriction to T of every 
finite-dimensional polynomial representation of G is unipotent. 

Let T be a unipotent subgroup of G, and let V be a finite-dimensional 
left T -stable subspace of ~ G). Let 

(0) = v,. c: ... c: Yo = V 
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be a composition series for V as a T-module. The unipotency of the rep­
resentation of T on V is equivalent to the property that the induced rep­
resentation of T on each VJV;+ 1 is trivial. This is expressible by the condition 
that T annihilate certain elements of &(G), via evaluation. It follows that 
the closure in G of a unipotent subgroup is still unipotent. Taking the above V 
so that it generates &( G) as algebra, we see that every unipotent subgroup of an 
algebraic group is nilpotent as an abstract group. 

Let Gu denote the subgroup of G that is generated by the family of all 
normal unipotent subgroups of G. We claim that Gu is a unipotent normal 
algebraic subgroup of G. In order to see this, let V be any left Gu-stable 
subspace of &(G) having finite dimension d, and consider the endomorphism 
of V that corresponds to a product in ~(G) of the form 

(1 - Xl)·· . (1 - Xd), 

where each Xi belongs to Gu • There is a subgroup K of G that contains each 
Xi and is generated by a finite family of normal unipotent subgroups of G. 
By Proposition 2.2, the representation of K on V is unipotent, whence the 
endomorphism of V corresponding to our product is o. Our conclusion is 
that &(G) is locally unipotent as a Gu-module, i.e., that Gu is a unipotent 
subgroup of G. Evidently, Gu is normal in G. By the remark just preceding 
our discussion of Gu , the closure of Gu in G is still unipotent, and it is evidently 
normal in G. Therefore, Gu must coincide with its closure in G, so that it 
is an algebraic subgroup of G. 

We call Gu the maximum normal unipotent subgroup of G. It will play an 
important role in the general structure theory of algebraic groups. 

Let (C, (), 8) be the structure of a co algebra over a perfect field F. We 
wish to examine the left CO-module structure of C with regard to the Jordan 
decompositions. Recall that the element of EndF(C) corresponding to an 
element y of CO in the left CO -module structure of C is 

y[ = (ic ® y) 0 (). 

If V is any finite-dimensional CO-stable sub F-space of C, the restriction 
of y[ to V has an additive Jordan decomposition, as described in Theorem 
1.4. It is clear from the unicity part of Theorem 1.4, in conjunction with the 
fact that C is locally finite as a CO-module, that the semisimple and nilpotent 
components of the restrictions of y[ to the various V's fit together to yield 
endomorphisms ylS) and yl") that commute with each other and whose sum 
coincides with y[, such that C is semisimple with respect to ylS) and locally 
nilpotent with respect to yl"). Since, on each V, each of these coincides with 
an F-linear combination of powers of y[, it follows from Proposition 1.2.2 
that they belong to the image of CO in EndF(V), i.e., that there are elements 
y(S) and y(lI) in CO whose images under the map t" -+ t"[ from CO to EndF(C) 
coincide with ylS) and yl"), respectively. Since this map is injective, the elements 
y(S) and yIn) are determined by this last property. In fact, they are the compo­
sites of the corresponding elements of EndF( C) with 8, as is seen from Prop­
osition 1.2.2. We call them the semisimple and nilpotent components of y. 
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In the case where y is an automorphism of C, we obtain the unipotent 
component y(Y) in essentially the same way from the finite-dimensional 
situation described at the end of Section 1. 

Theorem 2.3. Let F be a perfect field, and let G be an affine algebraic F -group. 
For every element x of G, the multiplicative Jordan components xIS) and x(u) 

belong to G. For every element -r of !R(G), the additive Jordan components 
-r(s) and -r(n) belong to !R(G). If p is a morphism of affine algebraic F-groups, 
one has 

p(x(S» = p(xYS), 
p'(-r(S» = p'(-r)(S), 

p(x(U» = p(x)(U), 

p'(-r(n» = p'(-r)(n). 

PROOF. Let V be a finite-dimensional left G-stable sub F-space of &'(G). 
For every linear automorphism e of V + V2 stabilizing both V and V2, 
we define the linear automorphism [e] of HomF(V <8> V, V2) by 

[e](h) = eo h 0 (e- 1 <8> e- 1), 

where we use the same letter for an automorphism and its restriction to 
Vor V2. It is easy to see that [e] is unipotent whenever e is unipotent. We 
claim that [e] is semisimple whenever e is semisimple. Clearly, Proposition 
1.2 enables us to reduce the proof of this to the case where F is algebraically 
closed. In that case, V and V2 are direct sums of I-dimensional e-stable 
subspaces, whence HomiV <8> V, V2) is a direct sum of I-dimensional 
[e J-stable subspaces, showing that [e] is semisimple. 

Now we know that EelS)] is semisimple and that [elY)] is unipotent. Clearly, 
they commute with each other, and their product is [e]. Therefore, we have 
from the unicity of the multiplicative Jordan decomposition that 

EelS)] = [eJ!S) 

and 
[eM] = [eJ!U). 

Now let x be an element of G, and let e be the restriction of XI to V + V2 • 

Let m: V <8> V -+ V denote the multiplication map. Since XI is an F -algebra 
automorphism of &'(G), we have [e](m) = m. It follows that [eJ!S) and [eJU) 
stabilize Fm, and hence that they also leave m fixed. By the above, this means 
that EelS)] and [elY)] leave m fixed. Since this holds for all finite-dimensional 
sub G-modules V of &'(G), we conclude that xIS) and x!U) are F-algebra auto­
morphisms of &'( G). This implies that xIS) and x(Y) are F -algebra homomor­
phisms from &'(G) to F, i.e., that they belong to G. 

The proof of the corresponding result for Lie algebra elements is the 
additive analogue of the above. If -r is a linear endomorphism of V + V2 

stabilizing V and V 2 , we define the linear endomorphism (-r) of 

HomF(V <8> V, V2) 
by 
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As above, we see that (r(s) = (r)(s) and (r(n) = (r)(n). Then we use the fact 
that the F -linear derivations of ~ G) are characterized by the property 
that their restrictions 1: to V + V 2 satisfy (1:)(m) = 0, for every Vas above. 
This proves that the additive Jordan components of the elements of Jt'(G) 
belong to !t'( G). 

Finally, consider a morphism p: G -+ H of affine algebraic F -groups. 
This makes ~H) into a polynomial G-module in the evident way. Let x 
be an element of G. We know that every polynomial G-module is locally 
unipotent with respect to x(U) and semisimple with respect to xIs). In particular, 
~H) is locally unipotent with respect to p(x(u) and semisimple with respect 
to p(x(S). Since these automorphisms commute with each other and since 
their product is p(x), they must be the components p(x)(S) and p(x)(U) of p(x). 

The corresponding results concerning p' are proved in essentially the 
same way. 0 

3. We say that a subgroup R of an algebraic group G is linearly reductive 
if ~G) is semisimple as an R-module. This property is clearly equivalent 
to the property that every polynomial G-module is semisimple as an R­
inodule. Evidently, if R is linearly reductive, so is the closure of R in G. If S 
is a normal subgroup of R then every simple R-module is the sum of the 
family of R-transforms of any simple sub S-module, and hence is semisimple 
as an S-module. Thus, a normal subgroup of a linearly reductive subgroup 
is still linearly reductive. 

It follows that, if G is a linearly reductive algebraic group, then Gu is 
trivial. The converse is true over fields of characteristic 0, but is not true in 
general. 

Finally, it is easy to see from the definitions that a direct product oflinearly 
reductive algebraic groups is linearly reductive. 

If F is any field, then the mUltiplicative group F* of F, with its standard 
structure of affine algebraic F -group, as described in Section 1.3, is linearly 
reductive. In fact, we have B'(F*) = F[x, X-I], where x is the identity map 
on F*, and, as an F*-module, this is the sum of the family of I-dimensional 
submodules generated by the powers of x. 

Therefore, the direct product of a finite family of copies of F* is a linearly 
reductive affine algebraic F -group. When F is an infinite field, this group is 
irreducible, and it is called an F -toroid. If F is algebraically closed and of 
non-zero characteristic, then every irreducible linearly reductive affine 
algebraic F -group is an F -toroid. On the other hand, over fields of charac­
teristic 0, the supply of linearly reductive groups is ample, including almost 
all the groups of classical interest. 

We wish to describe the role played by linear reductiveness in the context 
of classical invariant theory. It will be convenient to do this in terms of 
comodules, especially because the analogous results concerning Lie algebras 
can thus be covered at the same time. 
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Let C be a coalgebra over a field F. Suppose there is given the structure 
ofa C~omodule on F; say 

y:F-F®C=C. 

Then "I is determined by F-linearity and the single value "1(1) E C. If 6 and a 
are the comultiplication and counit of C, then the assumption on "I is equi­
valent to the assumption that a(y(l» = 1 and 6("1(1» = "1(1) ® "1(1). We 
identify F with its image y(F) in C. Then our assumption amounts to having 
the trivial coalgebra F contained in C as a sub coalgebra and direct F -space 
summand, in such a way that a is an F-space projection from C to F. Note 
that, in the case where C is a Hopf algebra, these extra data are contained 
in the definition of C as such. 

If Y is a C-comodule, we denote by ye the subspace of Y consisting of 
the elements v for which 6(v) = v ® 1. In the case C = &I(G), where G is an 
algebraic group, so that Y is a polynomial G-module, the subspace ye is 
precisely the G-fixed part ~ 

We are concerned with the situation where C has the property that 
every C~module is semisimple. In this case, there is one and only one 
projection of C-comodules from Y to ye. In order to see this, let us recall 
from Chapter I that the category of C-comodules is naturally isomorphic 
with the category oflocally finite CO -modules oftype C. When Y is regarded as 
a CO-module, then ye is the sub CO-module consisting of all elements v such 
that, for every IX in Co, IX' V = ot(l)v. Since Y is semisimple as a C~omodule, 
it is semisimple as a CO-module, so that there is CO-module complement, 
W say, for ye in y. By writing an element v of Y as a sum of an element of 
ye and an element of W, we see that IX' V - IX(1)V belongs to W for every 
element IX of Co. 

Let Ye denote the subspace of Y that is spanned by the elements of the 
form IX' V - IX(l)v. This is evidently a sub CO-module of W. By semisimplicity, 
there is a CO-module complement, T say, for Ye in W. It is clear that T c: ye. 
Hence, 

T c: ye n Ye c: ye n W = (0). 

Our conclusion is that Ye is the only CO-module complement for VC in V, 
i.e., the only C~module complement for ye in V, so that our above claim is 
established. 

Let H be an F -Hopf algebra, R any F -algebra. Let p: R ® R - R denote 
the multiplication of R. We say that R is an H-comodule algebra if it is 
endowed with a structure p: R - R ® H of an H-comodule that is com­
patible with the algebra structure of R, in the sense that the maps pop and 
(p ® iH ) ° (P (gJ P) from R ® R to R ® H coincide. In the case where 
H = (II( G), this means that G acts by F -algebra automorphisms on R. 

Theorem 3.1. Let F be a field, H an F -Hop! algebra with the property that 
every H-comodule is semisimple. Suppose that R is a commutative H-comodule 
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algebra that isjinitely generated as an F -algebra. Then RH is ajinitely generated 
F-algebra. 

PROOF. It follows directly from the definitions that RH is a sub F-algebra 
of R. What must be proved is that it is finitely generated. There is a finite­
dimensional sub F -space of R that generates R as an F -algebra. The smallest 
sub H-comodule of R containing this is still finite-dimensional. Hence, there 
is a finite-dimensional sub H-comodule V of R that generates R as an F­
algebra. 

Let S denote the symmetric F -algebra constructed over V. From the H­
comodule structure of V, we obtain an H-comodule structure of S in the 
canonical fashion via the tensor product construction for comodules. It 
is clear that S thus becomes an H-comodule algebra. From the multiplication 
of R, we have a surjective map 0': S --+ R, which is evidently a morphism of 
H-comodule algebras. We have S = SH + SH' R = RH + RH, O'(SH) c RH 
and O'(SH) c RH. Since the sums here are direct sums, it follows that 
O'(SH) = RH. Therefore, it suffices to prove that SH is finitely generated. 

In doing this, we use the grading of S, writing Sm for the homogeneous 
component of degree m of S. Each Sm is a sub H-comodule of S, so that 
SH is the sum of the (Sm)H's. Let 1 denote the ideal of S that is generated by 
the (Sm)H's with m > O. There are homogeneous elements Ul' ••• , Un of 
strictly positive degrees in SH such that 

1 = SUl + ... + SUn. 

We shall prove that 

SH = F[Ul' . .. ,un]. 

It suffices to show that each (Sm)H is contained in F[Ul, ... , un]. This is 
evidently true for m = O. Therefore, we suppose that m > 0, and that (S,,)H 
is contained in F[Ul' . .. ,un] for every k < m. 

Let u be an element of (Sm)H. Then U belongs to 1, so that 

U = SlUl + ... + SnUn, 

with each Sj in S. Moreover, if dj is the degree of Uj, we may evidently 
choose Sj from Sm-dt. Now let 1t be the unique H-comodule projection 
from S to SH. Then the restriction of 1t to S" is the unique H-comodule pro­
jection from S" to (S,,)H for every k. Furthermore, if x is a non-zero element 
of SH then the maps sx --+ 1t(sx) and sx --+ 1t(s)x must coincide, because 
each is an H-comodule projection from Sx to (SX)H. Hence, we have 

U = 1t(u) = 1t(Sl)Ul + ... + 1t(sn)un• 

Now 1t(Sj) belongs to (Sm_d;)H, and it follows from our inductive hypothesis 
that 1t(Sj) belongs to F[u l , ... ,un]. Hence, U E F[Ul' . .. , un]. 0 

The most important case of Theorem 3.1 is the case where H is the Hopf 
algebra of polynomial functions of an algebraic group. We state this as 
follows. 
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CoroUary 3.2. Let G be a linearly reductive algebraic group, and let R be a 
finitely generated commutative algebra on which G acts by algebra automorph­
isms and in such a way that R is a polynomial G-module. Then the G-fixed 
part of R is a finitely generated algebra. 

4. We discuss the general features of semidirect products of algebraic groups. 
Let F be a field, G an affine algebraic F -group, N a normal algebraic subgroup 
of G. We know from Theorem 11.2.2 that 9P(G)N separates the elements of 
GIN. By Theorem 11.4.3, the sub Hopfalgebra 9P(Gf is finitely generated as 
an F-algebra. Let K denote the group t:§(9P(G)N). This is an affine algebraic 
F-group with 9P(K) = 9P(Gf, because the restriction image of G in K 
separates the elements of 9P(Gf. We know, also from Theorem 11.4.3, that 
the restriction morphism from G to K is surjective whenever F is algebraic­
ally closed. However, this does not always hold if F is not algebraically 
closed. We shall say that N is properly normal in G if the restriction morphism 
G ~ t:§(9P(G)N) is surjective, so that GIN is an affine algebraic F-group 
with 9P(GIN) = 9P(G)N. 

Now suppose that N is properly normal in G, and that there is an algebraic 
subgroup R ofG such that the following conditions are satisfied: (1) G = NR; 
(2) N n R = (1); (3) the restriction to R ofthe canonical morphism G ~ GIN 
is an isomorphism of algebraic groups. Under these circumstances we say 
that G is the semidirect product of N and R, and we indicate this by writing 
G=N><JR. 

As to condition (3), note that, in any case, the restriction to R of the 
canonical morphism G ~ GIN is a bijective morphism of algebraic groups 
from R to GIN. The extra assumption is that its inverse is also a morphism of 
algebraic groups. This is satisfied automatically whenever the base field 
is algebraically closed and of characteristic 0, by virtue of the following 
theorem. 

Theorem 4.1. Let F be an algebraically closed field of characteristic O. Let 
G be an affine algebraic F-group, and let B be a sub Hopf algebra of BP(G). 
If the restriction morphism p: G ~ t:§(B) is injective then B coincides with 
9P(G). 

PROOF. Under the present assumptions, t:§(B) is an affine algebraic F-group 
with 9P(t:§(B» = B, and p is a bijective morphism of affine algebraic F­
groups. Clearly, this implies that p maps the set of irreducible components 
of G bijectively onto the set of irreducible components of t:§(B). We have the 
direct F-algebra decompositions of 9P(G) and B reflecting the irreducible 
components, as described in Theorem 11.2.3. From what we have just said 
concerning p, it is clear that the transpose of p respects these F -algebra 
decompositions. We see from this that it suffices to prove the theorem in 
the case where G is irreducible. In that case, we may apply Proposition 
111.2.4 and conclude that 9P(G) is purely inseparably algebraic over [B]. 
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Since F is of characteristic 0, this means that &'(G) is contained in [B]. 
By Lemma 11.4.2, this implies that B coincides with &'( G). 0 

Now let us examine the above semidirect product G = N ><I R. For 
each element f of &'( G), we denote by fR and fN the restrictions off to Rand 
N, so that fR E &,(R) and fN E &,(N). Let us denote the inverse of the restric­
tion to R of the canonical morphism n:: G ~ GIN by a: GIN ~ R. The 
transpose of a is an isomorphism of Hopf algebras, p say, from &,(R) to &'( G)N. 
On the other hand, define the polynomial projection p: G ~ N by 

P(x) = xa(n:(x»-l 

and note that P(xy) = P(x) whenever y belongs to R. It follows that the 
transpose of P is an isomorphism of F-algebras, (1 say, from &,(N) to &'(Gf, 
the inverse being the restriction map. 

We shall use p and (1 in showing that, as an affine algebraic F-set, G is the 
direct product of Nand R. In fact, we shall show that the multiplication map 

&'( G)R ® &'( G)N ~ &'( G) 

is an isomorphism of F -algebras. Then, by preceding this with (1 ® p, we 
obtain an isomorphism of F-algebras from &,(N) ® &,(R) to &'(G). 

From the fact that the set N x R separates the elements of 

&'(G)R ® &'(Gt, 

it follows that the multiplication map is injective. In order to prove the 
surjectivity, consider an element f of &'( G), and write 

~(f) = L Ui ® Vi 
i 

with the u;'s and v;'s in &'(G), so that 

f(xy) = L U~X)Vi(y)' 
i 

Here, we let x range over N and y over R. Then, from the definitions of p 
and (1, we have 

Vi(y) = P«Vi)RXXY) and Ui(X) = (1«Ui)N)(XY), 

whence the above shows that 

f = L (1«Ui)N)P«Vi)R), 
i 

so thatfbelongs to the multiplication image of &'(G)R ® &'(G)N. 0 

Theorem 4.2. Let G be an algebraic group, and suppose there is a linearly 
reductive subgroup R of G such that G = GuR. Then R is an algebraic sub­
group ofG, and G is the semidirect product Gu><l R. 
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PROOF. Let R + denote the closure of R in G. Then R + is still linearly reductive. 
The intersection R + n Gu is a normal subgroup of R +, and therefore is 
again a linearly reductive subgroup of G. On the other hand, it is clearly a 
unipotent subgroup of G. It follows that R+ n Gu = (1) and R = R+. 

Choose a finite-dimensional sub G-module V of &'(G) that generates 
&'( G) as an algebra, and let 

(0) = v.. c ... c Vo = V 

be a composition series of V as a G-module. Construct the external direct 
sum, V' say, ofthe G-modules Vi/¥;+ 1. Since V is semisimple as an R-module, 
there is an isomorphism of R-modules y: V' -+ V. Let -r and -r' denote the 
representations of G on V and V', respectively. 

aearly, there is one and only one map 0(: G -+ R such that xGu = O«x)Gu 

for every element x of G, and 0( is evidently a group homomorphism leaving 
the elements of R fixed. We shall prove that 0( is a morphism of algebraic 
groups. 

Since Gu acts trivially on each Vi/¥;+ 10 we have -r' = -r' 0 0(. Hence, for every 
element x of G, we have 

y-r'(X)y-1 = y-r'(tx(X»y-1 = -r(tx(x». 

Hence, if v is an element of V, we have 

v(O«x» = e(-r(O«x»(v» = e«y-r'(x)y-1)(v», 

which shows that v 0 0( is a representative function associated with the 
polynomial representation -r', so that v 0 0( belongs to &'(G). Since V generates 
&'( G) as an algebra, we conclude that &'( G) 0 0( C &'( G). Since 

&'(G) 0 0( = &,(R) 0 IX, 

this means that 0( is a morphism of algebraic sets, and hence a morphism of 
algebraic groups from G to R. 

Clearly, &'(G) 0 0( is element-wise fixed under the translation action of 
Gu • Moreover, iffis an element of &'(G)Gu, then! = f 0 0(. We see from this 
that the transpose of 0( yields an isomorphism of Hopf algebras 

p: &,(R) -+ &'(G)Gu. 

Now define the polynomial map p: G -+ Gu by 

P(x) = Xo«X)-1. 

Then the transpose of p yields an isomorphism of algebras 

u: &'(Gu) -+ &'(G)R 

Now the argument just preceding Theorem 4.2 applies without change to 
show that the multiplication map from &'( G)R ® &'( G)Gu to &'( G) is an 
isomorphism of algebras. From this, we see immediately that the restriction 
map from G to r§(&'(G)Gu) is surjective, i.e., that Gu is properly normal in G. 
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Our above morphism ex has Gu for its kernel, and therefore induces a 
morphism of algebraic groups from GIGu to R in the natural fashion. Clearly, 
this is the inverse of the restriction to R of the canonical morphism from G 
to GIGu • Now it is clear that G is the semidirect product Gu ><l R. 0 

5. Theorem 5.1. Let F be a perfectfield, and let G be an abelian affine algebraic 
F-group. There is one and only one linearly reductive algebraic subgroup G. 
ofG such that G is the direct product Gu x G •. The elements ofG. are precisely 
the semisimple elements of G, and every linearly reductive subgroup of G is 
contained in G •. 

PROOF. Let R be a linearly reductive subgroup of G. Since F is perfect and 
.9(G) is locally finite as an R-module, we may apply Proposition 1.2 and 
conclude that, for every field K containing F, the tensor product .9(G) ® K 
is still semisimple as an R-module. Choose K algebraically closed, and 
consider a finite-dimensional G-stable sub K-space V of .9(G) ® K. Since R 
is abelian, there is a finite family of group homomorphisms p from R to K* 
and a corresponding decomposition of V into the direct sum of sub K -spaces 
Yp such that each element x of R acts on Vp as the scalar multiplication by 
p(x). If R' is another linearly reductive subgroup of G then, since the elements 
of R' commute with those of R, each Vp is R' -stable, and has a decomposition 
as a direct sum of characteristic subspaces with respect to R'. Thus, by 
refining the first decomposition, we obtain a decomposition of V into a 
direct sum of a family of sub K -spaces such that the group generated by R 
and R' acts by scalar multiplications on each component. 

Now let (RIl ) be a totally inclusion-ordered family of linearly reductive 
subgroups of G. Since V is finite-dimensional, the decomposition refinement 
process obtained by applying the above to successive members of our family 
(RIl) must terminate, whence we see that V is a sum of I-dimensional sub 
K -spaces each of which is stable under the action of the union of our family 
(RIl). Since this holds for each V, it follows that .9(G) ® K is semisimple as 
a module for the union of the family (RIl). By Proposition 1.2, this implies 
that this union is a linearly reductive subgroup of G. At the same time, it is 
clear from the above that the subgroup generated by a pair of linearly 
reductive subgroups is again a linearly reductive subgroup. 

Now we can apply Zorn's lemma and conclude that there exists a maximal 
linearly reductive subgroup G. of G. From the last remark, it is clear that 
every linearly reductive subgroup of G is contained in G •. In particular, 
it follows that every semisimple element of G belongs to G •. On the other 
hand, it is clear from the situation in .9(G) ® K that every element of G. is 
a semisimple element. 

Now let x be any element of G, and consider its multiplicative Jordan 
decomposition x = x(u)x(·). We have x(') E G •. Since G is abelian, we have 
x(u) E Gu. Thus, G = GuG •. By Theorem 4.2, G is therefore the semidirect 
product of Gu by G •. Since G is abelian, this is the direct product. 0 
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1beoreID S.2. IfF is an algebraically closed field then every abelian i"educible 
linearly reductive affine algebraic F -group is an F -toroid. 

PROOF. Let G be such a group, and let V be a finite-dimensional G-stable 
sub F -space of &'( G) that generates rP( G) as an F -algebra. The assumptions 
on G imply that V is the direct G-module sum of a finite family of I-dimen­
sional G-modules. Say 

V = FVl + ... + Fvq • 

For each element x of G, we have X· Vj = ')Ij(x)vj, where ')Ii is an element of 
rP(G) that is a group homomorphism from G to F*. From now on, we shall 
refer to such homomorphisms as polynomial characters. 

We have Vi = e(Vi)')li. Since V generates rP(G) as an F-algebra, it follows 
that, if:E denotes the multiplicative group generated by the ')I/s, every element 
of &'(G) is an F-linear combination of elements of :E. Recall the elementary 
fact that group homomorphisms from an arbitrary group to the multi­
plicative group of a field are linearly independent over that field, as functions. 
It follows from this that every element of rP( G) that is a group homomorphism 
to F* belongs to :E. In other words, :E is the group of all polynomial charac­
ters ofG. 

Let (I be any polynomial character of G. Evidently, (I is a morphism of 
affine algebraic F-groups from G to F*. By Theorem 11.4.1, (I(G) is therefore 
an irreducible algebraic subgroup of F*. By the evident dimension consider­
ation, we have therefore u(G) = F* or (I(G) = (1). In particular, this shows 
that :E is torsion-free. Since :E is finitely generated, it is therefore the free 
abelian group based on a finite subset «(Ito ... , (I.). Since the elements of:E are 
F-linearly independent as functions, the (I;'S are algebraically independent 
over F. We have 

rP(G) = F[(lto ... ,(I., (111, ... , (1;1]. 

This is the tensor product ofthe sub Hopf algebras F[(I;, (li- 1], each of which 
may be identified with rP(F*). Accordingly, G is the direct product of a 
family of n copies of F*. 0 

TheorelD 5.3. Let F be an algebraically closed field, G an abelian affine al­
gebraic F -group, K an algebraic subgroup of G, and T a morphism of affine 
algebraic F-groups from K to an F-toroid T. Then T extends to a morphism of 
affine algebraic F -groups from G to T. 

PROOF. Evidently, it suffices to prove the theorem in the case where T = F*. 
By Theorem 5.1, we have the direct product decompositions G = Gg x G. 
and K = Kg x K •. Clearly, Kg is an algebraic subgroup of Gg, and K. is 
an algebraic subgroup of G •. Since T(Kg) is a unipotent subgroup of F*, it 
is clear that Kg is contained in the kernel of T. If we show that the restriction 
of T to K. extends to a morphism of affine algebraic F-groups from G. to 
F*, then we obtain the required extension of T by composition with the 
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projection morphism from G to Gs with kernel Gu • Therefore, we assume 
without loss of generality that G and K are linearly reductive. 

Next, we reduce the theorem to the case where G is irreducible. Let 
tl: G1 n K ~ F* be the restriction oft. Suppose that there is an extension 
of t 1 to a morphism of affine algebraic F -groups (11: G1 ~ F*. Consider the 
group homomorphism 

at: G1 x K ~F* 

where 

IX(X, y) = (11(X)t(y). 

Since (11 coincides with t on G1 n K, the kernel of IX contains the kernel of 
the composition morphism from G1 x K to G1K c: G. Therefore, IX yields a 
group homomorphism f3 from G 1 K to F* such that the restriction of f3 to 
G1 coincides with (110 and the restriction of f3 to K coincides with t. Since 
F* is a divisible group, f3 extends further to a group homomorphism from 
G to F*. Since the restriction of f3 to G 1 is a morphism of affine algebraic 
F -groups, so is this last group homomorphism from G to F*. 

It remains to deal with the case where G is irreducible. In this case, we 
know from Theorem 5.2 that G is an F -toroid. Let us regard t as an element 
of 9'(K), and let us choose an element/of 9'(G) whose restriction to K is t. 
Since G is an F -toroid,f is an F -linear combination Ii"= 1 Cih" where each 
Cj is in F, and each hi is a polynomial character of G. We choose/so that m 
is as small as possible. The F -linear combination Ii"= 1 c;(A)g of the restric­
tions to K of the h/s is the given group homomorphism t. Since m is minimal, 
the (hj)g's are mutually distinct. If t were distinct from each (hi)g, we would 
have a contradiction to the fact that distinct group homomorphisms to the 
multiplicative group of a field are linearly independent as functions. Thus, 
we must have m = 1 and t = (h 1)g, so that hi is the required extension of 
L 0 

Notes 

I. Let V be a finite-dimensional real or complex vector space, and let x 
be a linear endomorphism of V. In the notation of the Jordan decompositions, 
show that 

exp(x)(S) = exp(x(S) and exp(x)(U) = exp(x("). 

2. Let F be a field of non-zero characteristic p, and let G be an affine 
algebraic F-group. Show that, for every unipotent element x of G, there is 
an exponent n ~ 0 such that x is of order p". Assuming that F is perfect, 
deduce from this that, for every element x of G, there is an n ~ 0 such that 
xP" is semisimple. 

3. With regard to our allusions to the classical invariant theory and .. classical " 
linearly reductive groups, see [18]. 
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4. Let F be an algebraically closed field, and let p denote the characteristic 
exponent of F, i.e., the characteristic of F if that is not zero, and 1 otherwise. 
Let G be an abelian linearly reductive affine algebraic F-group. Let X(G) 
denote the group of polynomial characters of G. One sees as in the proof of 
Theorem 5.2 that X(G) is finitely generated. Moreover, it is easily seen that 
X(G) is p-torsion free. The Hopf algebra [!jJ(G) may be identified with the 
group algebra F[X(G)], whose comultiplication and antipode are given by 
tJ(f) = I ® land ,,(f) = 1-1, for every element/of X(G). 

Conversely, let A be any finitely generated abelian group without p­
torsion. One shows readily that the group algebra F[A] has no nilpotent 
elements other than 0, so that ~(F[A]) is an affine algebraic F-group with 
F[A] as its Hopf algebra of polynomial functions. Next, one can show that 
this is a group G as above, and that X(G) = A. 

The above yields a functor X(*) from the category of abelian linearly 
reductive affine algebraic F-groups to the opposite of the category of finitely 
generated abelian groups with no p-torsion, and a functor ~(F[ *]) in the 
opposite direction, by which these two categories become naturally iso­
morphic. 
5. Let F be an algebraically closed field of non-zero characteristic p, and 
suppose that U is a non-trivial irreducible unipotent affine algebraic F­
group. Let M be a finite-dimensional polynomial U -module such that 
the associated representative functions generate [!jJ( U) as an F -algebra. 
Let SP(M) denote the homogeneous component of degree p of the symmetric 
algebra S(M) built over M, and let T denote the sub U-module of SP(M) 
consisting of the pth powers in S(M) of the elements of M. 

It has been shown by M. Nagata that T is not a direct U -module sum­
mand in SP(M). This implies that, if G is an irreducible affine algebraic 
F-group having an infinite unipotent subgroup, then G is not linearly 
reductive. It will be seen later (cf. Note XIII.3) that the only irreducible 
affine algebraic F-groups having no infinite unipotent subgroup are the 
toroids. Thus, one has Nagata's result that the only irreducible linearly 
reductive affine algebraic F -groups are the toroids. 

In order to verify that Thas no U-module complement in SP(M), observe 
first (using that [[!jJ(U)] is a finitely generated separable field extension 
of F) that not every element of [!jJ(U) is a p-th power of an element of [!jJ(U). 
Let Q denote the sub F -algebra of [!jJ(U) consisting of the p-th powers of 
the elements of [!jJ(U). There is an F-basis (Xl, ... , xm) of M such that, for 
every index j and every element u of U, one has 

u . Xj - Xj = L lij(U)Xi 
i>j 

with each /;j in [!jJ(U). By assumption, these /;/s generate [!jJ(U) as an F­
algebra. Therefore, it follows from the first observation that there are indices 
rand s, with r > s, such that f.. does not belong to Q, while /;j belongs 
to Q whenever j > s, and /;. belongs to Q whenever i > r. 
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Choose the basis (Xl' ... , Xm) so that r - s is minimal. Then it follows 
that fr. is not the sum of an element of Q and an F -linear combination of 
fi:s with i =F r. In fact, otherwise there are elements (Xi in F such that 
fr. - Ls<i<, (Xifi. belongs to Q. Replacing each Xi where s < i < r with 
Xi + (XiX" one obtains a new F-basis of M with the same "triangular" 
property as (X 10 ••• , x ... ), the same "s", but a smaller "r". This contradicts the 
minimality of the original r - s, so that the claim concerning the" indepen­
dence" of fr. is established. 

Since fi. belongs to Q whenever i > r, the same is true for the translates 
lis' u, where u is an element of V. Thus, L fij(u)}js belongs to Q for every 
i> r and every element u of V. By virtue of the independence property of 
frs, this implies that fi,(u) = 0, which means that x, is V-fixed. 

Now suppose that there is a V -module complement, H say, for T in 
SP(M). For i ~ sand i =F r, let hi denote the component of xjx:- l in H. For 
every element u of V, we have (interpreting Iss as the constant 1) 

whence 

and 

u· (x.x:- 1) = L fi.(U)Xi X:- 1 

i~. 

u . h. = L lis(U)hi 
i~, 
i¢, 

u . (x.x:- 1 - h.) = fr.(u)x: + L lis(UXXjXr 1 - hi) 
i~. 
i¢, 

Since x.xr 1 - h. belongs to T, the expression on the left has the form 
LJ gJ{u)Pxf with each gJ in 9'(V). Writing each XiXr 1 - hi as an F-linear 
combination of xf's, we see that the last equation yields coefficients 'Vi in F 
such that 

fr. + L'VJis = g:eQ, 
j~. 
i¢, 

which contradicts the independence property of fr •. 



Chapter VI 

Solvable Groups 

This chapter develops the basic structure theory of solvable algebraic 
groups. For the principal results, it is assumed that the base field is algebrai­
cally closed and that the group is irreducible. In the presence of these assump­
tions, the solvable groups are characterized by the property that their simple 
polynomial modules are l-dimensional. This is the Lie-Kolchin Theorem, 
given here as Theorem 1.1. 

Section 2 is devoted to technical preparations for the proof of the main 
structural result, Theorem 3.2, which gives the decomposition of an irre­
ducible solvable algebraic group G over an algebraically closed field as a 
semidirect product of Gu by a toroid. 

In Section 4, it is shown that irreducible I-dimensional algebraic groups 
are commutative, and Section 5 deals with the structure of commutative 
groups. 

1. Theorem 1.1. Let F be an algebraically closedfield. G an irreducible solvable 
affine algebraic F-group. Then every simple polynomial G-module is I-dimen­
sional. 

PROOF. By applying Theorem 11.4.1 to the polynomial map from G x G to G 
that sends each pair (x, y) onto xyx-1y-l, we see that the commutator 
subgroup, K say, of G is an irreducible algebraic subgroup of G. Since G is 
solvable, we have K :1= G whenever G is non-trivial. Making an induction 
on the dimension of G, we assume that the theorem holds for K. 

Let V be a simple polynomial G-module. From the normality of K in G, 
it follows that V is a semisimple K-module (cf. the beginning of Section V.3). 
By our inductive hypothesis, V is therefore a direct sum of a family of l-di­
mensional K -stable subspaces. By forming the appropriate partial sums, we 
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obtain a direct K-module decomposition 

V = VI + ... + Y", 

with corresponding mutually distinct polynomial characters Yi of K such that 
each element x of K acts on each l'i as the scalar multiplication by Y~x). Since 
K is normal in G, the elements of G permute the l'i's among themselves. 
Therefore, the stabilizer of VI in G is of finite index in G. Since G is irreducible, 
this implies that the stabilizer of VI coincides with G. Since V is simple as a 
G-module, we have therefore VI = V. This result means that K acts by 
scalar multiplications on V. 

The determinants of the linear automorphisms of V corresponding to the 
elements of K must all be equal to one, because these elements are products 
of commutators. Hence, if n is the dimension of V, we have YI(X)" = 1 for 
every element x of K. This shows that the kernel of YI is of finite index in 
K. Since K is irreducible, this implies that YI is the trivial character, i.e., 
that every element of V is fixed under the action of K. Therefore, we may view 
Vasa GIK-module. Since GIK is abelian and V is simple as a GIK-module, 
while F is algebraically closed, it follows that V is I-dimensional. 0 

CoroUary 1.2. ~f G is as in Theorem 1.1 then GIGu is abelian, and every uni­
potent element ofG belongs to Gu • 

PROOF. By Theorem 1.1, the commutator subgroup of G acts trivially on 
every simple polynomial G-module. Therefore, it must be contained in Gu , 

so that GIGu is abelian. 
Now let x be a unipotent element of G, and let H be the subgroup of G 

that is generated by x and Gu • It follows from Proposition V.2.2 that H is 
unipotent. Since GIGu is abelian, H is normal in G. Therefore, we must 
have H = G .. , which means that x belongs to Gu • 0 

2. Lemma 2.1. Let F be a field, G a unipotent affine algebraic F -group, e a 
positive integer not divisible by the characteristic ofF. Then the map x 1-+ xe is 
bijective from G to G. 

PROOF. First, we deal with the case where F has non-zero characteristic p. 
Choose a finite-dimensional sub G-module V of &I'(G) that generates Bi'(G) 
as an F -algebra. Let x be an element of G, and denote the restriction of XI 
to V by x'. Since G is unipotent, there is a positive integer n such that the 
p"-th power of x' - iy is 0, so that (x')1'" = iy. Since V generates Bi'(G) as an 
F -algebra, this implies that xl'" is the neutral element of G. By the assumption 
on e, there are integers r and s such that re + sp" = 1. If y = x', we have 
ye = x. Moreover, if ze = y, and we choose rand s as above for a sufficiently 
large n, then taking the rth power yields z = y. 
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It remains to deal with the case where F is of characteristic o. Write i 
for i~(G). From the fact that B'(G) is the sum of sub G-modules on each of 
which i - x[ is nilpotent, it follows that the formal sum 

log(x[) = - L n- 1(i - xi)" 
n>O 

makes sense as a linear endomorphism of B'(G). Evidently, it is locally 
nilpotent on B'( G). Similarly, if",/ is any locally nilpotent linear endomorphism 
of B'(G), we interpret the formal exponential series exp("'/) as a linear endo­
morphism of &I(G). By a straightforward application of the calculus of 
formal power series, one verifies that, for every integer m, 

exp(m log(x[» = xi-
Using this in conjunction with the fact that x[ is an F -algebra homomorphism, 
we show that log(x[) is a derivation, as follows. 

Let t be an auxiliary variable, and extend the various F -linear endo­
morphisms of 9'(G) to F[t]-linear endomorphisms of the polynomial ring 
B'(G)[t] in the evident way. Clearly, we may extend the above so as to 
interpret exp(t log(x[» as an F[t]-linear endomorphism of &I(G)[t]. Now let 
land g be elements of &I(G), and consider the expression 

exp(t log(x[»(fg) - exp(t 10g(x[)Xf) exp(t log(x[)}(g). 

This is a polynomial p(t) with coefficients in &I(G). By the above, we have 
p(m) = 0 for every integer m. This implies that every coefficient of p(t) is O. 
Equating the coefficient of t to 0 yields 

10g(x[XIg) = log(x[)(f) g + Ilog(x[)(g). 

Thus, log(x[) is a derivation of 9'(G). A familiar formal argument shows 
that this implies that exp(e- 1 10g(x[» is an F-algebra automorphism of 
&I(G). Denoting this by u, we have u" = xI. Hence, if y = eo u, we have 
ye G and y" = x. Finally, if z is any element of G such that z" = x, we have 
zi = Yi, from which we get z = y by taking logs, dividing bye, and then 
applying e 0 expo 0 

Let S be a group, M an S-module,/a map from S to M. One says that 
lis a cocyclelor S in M if 

I(xy) = X· l(y) + I(x) 

for all elements x and y of G. Such a cocycle is called a coboundary if there is 
an element m in M such that 

I(x) = x·m - m 

for every element x of s. 
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Proposition 2.2. Let F be an algebraically closed field, G an abelian linearly 
reductive affine algebraic F -group, M a unipotent abelian affine algebraic 
F -group having a G-module structure such that the defining map from G x M 
to M is a polynomial map. Letfbe a polynomial (map and) cocyc1efor G in M. 
Then f is a coboundary. 

PROOF. By Theorem V.S.2, the irreducible component G1 of the neutral 
element in G is an F-toroid. Since F is algebraically closed, G1 is therefore a 
divisible group. Since G is abelian, it follows from this that G is the direct 
product of G1 and a finite group. With all this information, it is easy to see 
that there is an increasing sequence (G(n» of finite subgroups of G whose 
union is dense in G. In the case where F has non-zero characteristic p, the 
order of every element of each G(n) is not divisible by p, because every element 
of the abelian linearly reductive group G is semisimple. Therefore, if en 
denotes the order of G(n), then en is not divisible by the characteristic of F. 
Now we have from Lemma 2.1 that, if we write M additively, the multi­
plication by en is bijective from M to M. 

Consider the restriction off to G(n). If we sum the cocycle identity for 
all y's in G(n), we obtain 

enf(x) = s - x· s, 

where s is the sum of the f(y)'s. Since we can divide by en, this shows that 
the restriction off to G(n) is a coboundary. 

Now let M(n) denote the set for all elements m of M such that 

f(x) = x·m - m 

for all elements x of G(n). We have just seen that M(n) is non-empty. Evi­
dently, M(n + 1) c M(n) for each n. The assumption on the G-module 
structure of M implies that each M(n) is closed in M. Since M is Noetherian 
as a topological space, it follows that the sequence (M(n» is eventually 
constant. This implies that there is an element m in M such that 

f(x) = x·m - m 

for every x in the union ofthe sequence (G(n». Since this union is dense in G, 
and since f and the G-module structure are polynomial maps, it follows that 
f(x) = x . m - m for every element x of G. 0 

3. Theorem 3.1. Let F be an algebraically closed field, G an irreducible 
nilpotent affine algebraic F -group. The semisimple elements of G constitute 
a central algebraic subgroup Gs qfG such that G is the direct product Gy x Gs • 

The group Gs is an F-toroid and contains every linearly reductive subgroup 
ofG. 

PROOF. Let C denote the center of G. Since G is nilpotent, C 1 is trivial only 
if G is trivial, because the descending central series of G terminates at the 
trivial subgroup and, by Theorem 11.4.1, all its members are irreducible 
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algebraic subgroups of G. First, we show by induction on the dimension 
of G that every semisimple element of G belongs to C. In doing this, we 
assume that G, and hence Chis non-trivial, and that the assertion has been 
established in the lower cases. 

Since C 1 is non-trivial, the dimension of GIC is strictly smaller than that 
of G. Let x be a semisimple element of G, and let y be an arbitrary element 
of G. The canonical image of x in GIC is a semisimple element, so that our 
inductive hypothesis implies that yxy-l = ex, with e E C. It is clear that the 
multiplicative Jordan components of e as an element of G lie in C. It follows 
that the unipotent component of e is that of yxy-l. Since x is semisimple, so 
is yxy-l. Therefore, the unipotent component of e is trivial, i.e., e is a semi­
simple element of G. On the other hand, c belongs to the commutator sub­
group of G, which is contained in Gu, by Corollary 1.2. Therefore, c must be 
the neutral element, whence x lies in the center of G. 

Since the semisimple elements of G belong to C, we conclude from 
Theorem V.S.l that they constitute the unique maximum linearly reductive 
subgroup C. of C. Thus, the group Gs of the present theorem is C •. We know 
from Corollary 1.2 that every unipotent element of G belongs to Gu. There­
fore, the Jordan decompositions for the elements of G show that G = Gu G •. 
By Theorem V.4.2, this implies that G is the semidirect product Gu><l G •. 
Since G. is central in G, this means that G is the direct product Gu x Gs • 

Since G is irreducible, so are therefore Gu and Gs• In particular, by Theorem 
V.5.2, G. is therefore an F-toroid. 

Finally, let R be any linearly reductive subgroup of G. The image of R 
under the projection morphism from G to Gu with kernel Gs is a linearly 
reductive subgroup of Gu, and is therefore trivial. This means that ReG •. 

D 

For subgroups A and B of a group G, we denote by [A, B] the subgroup 
of G that is generated by the commutators aba- 1b- 1 with a in A and bin B. 

Let F be an algebraically closed field, G an affine algebraic F -group. 
Define a sequence of subgroups of Gu as follows. 

G~O) = Gu; G~n+1) = [G, G~nl]. 

Clearly, each G~n) is normal in G, and G~n+ 1) c G~n). The intersection of the 
family of these G~n)'s is a normal subgroup of G, and it is denoted by G:'. 

Now suppose that G is irreducible and solvable. Define a sequence of 
subgroups of G as follows. G[O] = G; G[n+ 1] = [G, G[n]]. Again, this is a 
descending sequence of normal subgroups of G. By Theorem 11.4.1, each 
Gnl is an irreducible algebraic subgroup of G, and we know from Corollary 
1.2 that G[l] c Gu. It follows that, for each n > 1, we have 

G~n) c GIn] c G~"-l). 

Since G is Noetherian as a topological space, the descending sequence of 
closed subsets G[II] must be eventually constant. Hence, the above shows that 



VI.3 83 

G: = G[II) for all sufficiently large n's. In particular, G: is an irreducible 
normal algebraic subgroup of G whenever G is irreducible and solvable. 

Theorem 3.2. Let F be an algebraically closed field, G a solvable irreducible 
affine algebraic F-group, T a maximal F-toroid in G. Then G is the semidirect 
product G" ><I T, and,for every linearly reductive subgroup K of G, there is an 
element r in G: such that rKr- 1 c T. 

PROOF. First, we show that there is an F -toroid T in G such that G is the 
semidirect product G" ><I T. By Theorem V.4.2, this will hold provided 
only that G = G" T. In the case where G is nilpotent, Theorem 3.1 contains 
the required result. Now suppose that G is not nilpotent. Then G must 
contain a non-central semisimple element, s say, because otherwise every 
commutator formed with elements of G is also a commutator formed with 
unipotent elements, i.e., elements of G", which implies that G is nilpotent. 

Let G8 denote the centralizer of s in G. Since G is irreducible and G5 ::F G, 
the dimension of G5 is strictly smaller than that of G. Proceeding by induction 
on the dimension of G, we shall have from the inductive hypothesis that 
there is an F-toroid Tin (GB)l such that 

(G8 )1 = «GB)l)" T. 

Now suppose we have G = G"Gs• Then we have also G = G,,(G5)1. By 
Corollary 1.2, «G8 )1)" c G". Hence, the above now gives G = G" T. Thus, 
we shall have the decomposition result as soon as we have shown that 
G = G"G8

• 

Let S denote the smallest algebraic subgroup of G that contains s. Since 
s is a semisimple element, S is a linearly reductive abelian algebraic subgroup 
of G. Let G(n) denote the nth member of the chain of successive commutator 
subgroups in G. Each G(n) is an irreducible normal algebraic subgroup 
of G, and G(n) is trivial for n large enough. We know also that G(I) c G", 
so that G(n) is unipotent for every n > O. Now G(n)/G(n + 1) is a unipotent 
abelian affine algebraic F -group, and we regard it as an S-module via the 
conjugation action of Son G(n). Clearly, this module structure satisfies the 
requirements of Proposition 2.2. 

Fix a positive index n, and suppose that x is an element of G with the 
property that yxy-lx -l belongs to G(n) for every element y of S. Note that 
every element of G satisfies this condition for n = 1. Let f(y) denote the 
canonical image of yxy-lx -l in G(n)/G(n + 1). Then f is a polynomial 
cocycle for S in G(n)/G(n + 1), in the sense of Proposition 2.2. By that 
proposition,fis therefore a co boundary. When this is written out, one sees 
that there is an element z in G(n) such that Y(ZX)y-l(ZX)-l belongs to 
G(n + 1) for every element y of S. Since G(n) is eventually trivial, repetition 
of this process yields an element b of G(l) c G" such that bx commutes 
with every element of S, and so belongs to GS. Our conclusion is that 

G = G"Gs. 
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As we have seen above, this suffices for establishing the result that there is an 
F-toroid T such that G = Gu><l T. 

Now let G[n] be the irreducible normal unipotent algebraic subgroup of G 
defined just above Theorem 3.2, with n > O. Clearly, the product G[n]T 
in G is an algebraic subgroup of G and, in fact, is the semidirect product 
G[n] ><I T. Let R be any linearly reductive subgroup of G, and suppose that R 
is contained in G[n] ><I T for some n > O. Evidently, G[n+ 1] ><I T is a normal 
algebraic subgroup of G[n] ><I T, and the factor group is identifiable with the 
unipotent affine algebraic F-group G[n]/G[n+1]. Since R is linearly reductive, 
its canonical image in this factor group must be trivial. Therefore, we have 
R c G[n+ 1] ><I T. The final conclusion of this argument is that every linearly 
reductive subgroup of G is contained in G:' ><I T. 

At this point, we simplify our notation as follows. We write G for G:' ><I T, 
and we write G(O) for G:'. On the other hand, for n > 0, we let G(n) stand 
for the n-th commutator subgroup of the new G. Let K be any linearly re­
ductive subgroup of G. What remains to be proved is that there is an element r 
in G(O) such that rKr- 1 c T. Replacing K with its closure in G, we reduce 
this to the case where K is an algebraic subgroup of G. From the fact that 
G/Gu is abelian, it follows that K is abelian. Suppose that, for some n ~ 0, 
we have already found an element rn of G(O) such that rnKr;;1 c G(n) ><I T. 
Note that, for n = 0, we may simply take ro to be the neutral element of G. 
Write S for r n Kr;; 1, and note that S is a subgroup of G of the same type 
as K. For every element x of S, let/ex) denote the canonical image of y(x) 
inG(n)/G(n + 1), whereyistheprojectionfromG(n) ><I Tto G(n) coming from 
the semidirect product structure. Viewing G(n)/G(n + 1) as an S-module via 
the conjugation action of S on G(n), we see directly that / is a polynomial 
cocycle as in Proposition 2.2. Therefore,jis a coboundary. Writing this out, 
we see that there is an element t in G(n) such that tSt- 1 c G(n + 1) ><I T. 
Now the element rn+1 = trn takes the place of rn on the next level. Since 
G(n) is eventually trivial, repetition of this process leads to the required 
element r, so that the conjugacy result is established. The fact that the 
place of T may be taken by any maximal F -toroid in G follows immediately 
from the conjugacy result. 0 

4. The basic example of a solvable algebraic group is the triangular group, 
T(n). This is defined as follows. Let V be a finite-dimensional vector space 
over a field F, equipped with a basis (vt> ... , vn). For each index i from 
(1, ... , n), let l'i denote the subspace of V spanned by (v 1, ••• , Vj), and let 
us agree that Vo stands for (0). Now T(n) is defined as the subgroup of 
Autp(V) consisting of the linear automorphisms that stabilize each l'i. 
Evidently, T(n) is a solvable affine algebraic F-group, and T(n)u consists 
of the elements of T(n) inducing the identity map on each VJl'i-1. We write 
U(n) for T(n)u. Clearly, T(n) = U(n) ><I D(n), where D(n) consists of the 
elements stabilizing each line FVj. Of course, D(n) is the standard model 
of an F -toroid. 
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We analyze T(n) further by introducing a chain of normal algebraic 
subgroups, as follows. For each pair (i,j) of indices with 1 s: i < j s: n, 
let U(i,j) denote the subgroup consisting of the elements of U(n) that fix 
the elements of Jj-l and induce the identity map on Jj/JIj. Evidently, each 
U(i,j) is a normal algebraic subgroup of T(n), and is contained in U(n). 
This family is totally ordered by inclusion. We have U(i,j) c U(i/,j') when­
ever j > j', and U(i, j) c U(i', j) whenever i s: i/. 

Let iij denote the function on U(n) whose value at each x is the (i, j) 
matrix entry of x with respect to our basis of V. It is easy to see that &'(U(n» 
is generated as an F -algebra by the ii/s with 1 s: i < j s: n, and that each 
U(r, s) is the set of zeros in U(n) of a certain set ofii/s. 

Now let us suppose that F is an infinite field. Then the functions iiJ are 
algebraically independent over F, whence each ~(U(r, s» is an ordinary 
polynomial algebra. In particular, each U(r, s) is now irreducible. Moreover, 
it is seen directly from the matrix description that the dimensions of succes­
sive members of the chain of U(r, s)'s differ by exactly 1. From this, we 
obtain the following general result. 

Theorem 4.1. Let F be an algebraically closed field, G an irreducible solvable 
affine algebraic F -group. There is a chain of irreducible normal algebraic 
subgroups U i of G, starting with Uo = (1) and ending with Uk = G", such 
that each U Ii U i + 1 is 1-dimensional. 

PROOF. Let V be a finite-dimensional sub G-module of &'(G) that generates 
~(G) as an F-algebra, and let p denote the representation ofG on V. Then p 
is an isomorphism of affine algebraic F -groups from G to the algebraic 
subgroup peG) of AutF(V), and we identify G with peG) by means of p. 

It is clear from Theorem 1.1 that there is a basis (VI>" ., VII) of V such 
that G is contained in the corresponding triangular group T(n) and G" is 
contained in U(n). Put V(i, j) = (G" n U(i.j»l' Then the family of V(i, j)'s 
is totally ordered by inclusion, and each member is an irreducible normal 
algebraic subgroup of G. Since the dimensions of successive U(i, j)'s differ 
by 1, the corresponding V(i, J)'s either coincide or have their dimensions 
differ by 1. The required chain of U/s is obtained simply by picking out the 
distinct terms from the sequence (V(i, j». 0 

It is true, but not obvious, that every 1-dimensional irreducible algebraic 
group is commutative. In proving this, we shall use the following elementary 
result. 

Proposition 4.2. Let F be an algebraically closed field, M afinite-dimensional 
F-space, G a group ~f linear automorphisms of M. Suppose that M is simple 
as a G-module. and that there is a positive integer e such that x e = iM for every 
element x of G. Then G is finite. 
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PROOF. Applying Proposition V.U to the subalgebra of Endp(M) that is 
generated by G, we see that G contains an F-basis (Xl"'" Xq) of Endp(M). 
Let T denote the trace function on Endp(M). The map from 

Endp(M) x Endp(M) 

to F sending each (x, y) onto T(xy) is a non-degenerate bilinear form, whence 
the linear map r from Endp(M) to Fq defined by 

r(x) = (T(XXl)" .. , T(xxq» 

is injective. For each element X of G, each T(xx/) is a sum of e-th roots of 1 
in F; namely, characteristic roots of XXi' The number of summands is dim(M). 
This shows that r( G) is a finite set. Since r is injective, G is therefore finite. 0 

Proposition 4.3. Let F be an algebraically closed field, G an irreducible 
~ffine algebraic F-group such that there is a positive integer e with xe = IGfor 
every element X of G. Then G is unipotent. 

PROOF. Let V be a finite-dimensional sub G-module of 9(G) that generates 
9( G) as an F -algebra. Let 

(0) = Vo c ... c v,. = V 

be a composition series of V as a G-module. Let H be the normal algebraic 
subgroup of G consisting of the elements that fix the elements of each VJ~ - l' 

Clearly, H is unipotent. Now let W denote the direct sum of the G-modules 
Vi/Vi-I> so that H is the kernel of the representation of G on W. By Proposi­
tion 4.2, the image of Gin Autp(W) is finite, which means that G/H is finite. 
Since G is irreducible, this implies that G = H. 0 

Theorem 4.4. Every irreducible I-dimensional algebraic group is commutative. 

PROOF. Let F denote the base field, and let F' be an algebraic closure of F. 
Let G be an irreducible I-dimensional affine algebraic F-group. We know 
from Lemma 11.1.2 that 9'(G) ® F' is an integral domain. The group 
t6(9(G) ® F') is therefore an irreducible affine algebraic F'-group. Evidently, 
it is of the same dimension, 1, as G. Since G may be identified, in the evident 
way, with a subgroup of t6(9(G) ® F'), this shows that it suffices to prove 
the theorem in the case where F is algebraically closed, which we now assume 
to be the case. 

First, suppose that G contains an element X that is not of finite order. 
Then the smallest algebraic subgroup of G containing X has strictly positive 
dimension, and hence must coincide .with G, giving the result that G is 
commutative. 

It remains to deal with the case where every element of G is of finite 
order. For every positive integer n, let G(n) be the set of elements X of G 
such that X" = IG' Clearly, G(n) is a closed subset of G. If G(n) is finite then 
it follows from the irreducibility of G and the stability of G(n) under the 
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conjugation action of G that G(n) is contained in the center of G. Therefore. 
if every G(n) is finite, then G is commutative. On the other hand, if some 
G(n) is infinite, then that G(n) must coincide with G, because it has an irre­
ducible component of positive dimension. Hence, we can apply Proposition 
4.3 and conclude that G is unipotent. This implies that the commutator 
subgroup of G does not coincide with G. Since it is irreducible and closed in G, 
it must therefore be trivial. 0 

5. If F is an algebraically closed field, and G is an irreducible I-dimensional 
affine algebraic F -group, then we have from Theorem V.5.1 that G is either 
unipotent or linearly reductive. In the second case, G is the multiplicative 
group F*, by Theorem V.5.2. We shall see that, in the case where G is uni­
potent, it is the additive group of F. However, we obtain this result from a 
more general theorem on abelian unipotent algebraic groups. This requires 
some preparation. 

Let H be a Hopf algebra. An element h of H is called primitive if 

t5(h) = h® 1 + 1 ® h 

We denote the subspace of primitive elements by PH' From (iH ® e) 0 t5 = iH, 
we see that PH lies in the kernel of e. In the following lemma, we consider 
the tensor product of two Hopf algebras A and B, and we shall identify 
A and B with their canonical images in A ® B. 

Lemma 5.1. Let A and B be Hop! algebras over afield. Then 

PA®B = PA + PB· 

PROOF. Let u = La ® b be an element of P A®B' Then we have 

L t5(a) ® t5(b) = s2it5(u» = La ® lA ® b ® IB + L lA ® a ® IB ® b 

where S23 is the switch of the 2nd and 3rd tensor factors. Now apply the 
linear map e ... ® i ... ® iB ® eB' This yields 

u = L e(a)l ... ® b + La ® e(b)IB' 

Since u is primitive, it is annihilated by the counit e ... ® eB of A ® B, whence 
we have L e(a)e(b) = O. Using this, we rewrite u by replacingb with b - e(b)IB 
in the first sum, and a with a - e(a)IA in the second sum. Then we have 

u = I ... ® s + r ® I B , 

with ea(s) = 0 = e ... (r). From the primitivity of u, we get (using S23 as above) 

lA ® lA ® t5(s) + t5(r) ® IB ® IB = lA ® lA ® (s ® IB + IB ® s) 

+ (r ® lA + lA ® r) ® IB ® lB' 

Applying e ... ® eA ® iB ® iB, we find that t5(s) = s ® IB + IB ® S, so that 
s belongs to PB • Similarly, r belongs to PA • 0 
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Lemma 5.2. Let F be a field, and let H be the polynomial Hopf algebra 
F[xt, ... ,xnJ, where the x/s are algebraically independent primitive elements. 
Then PH consists of the F-linear combinations of the powers xf', where p is the 
characteristic exponent of F. 

PROOF. Lemma 5.1 reduces the problem to the case n = 1. In this case, let 
us write x for Xl> and let us consider a primitive element u. Using that 
e(u) = 0, we write 

with each Cj in F. Then we have 

0= «5(u) - u ® 1 - 1 ® u = .f (c/f. iI( ~)xi ® Xi-i)). 
1=2 J=l~ J 

This shows that, in F, the binomial coefficients (}), with 0 < j < i, are equal 
to 0 whenever Cj ::;: O. It follows that Ci = 0 unless i is a power of p. 0 

Proposition 5.3. Let F be a perfect field, and let A be a commutative integral 
domain Hopf algebra that is generated by a finite set of primitive elements. 
Then A is generated also by a finite set of algebraically independent primitive 
elements. 

PROOF. Let (Yt, ... ,Yn) be a system of primitive elements generating A as an 
F-algebra. If n = t and Yt ::;: 0, it follows from the assumption that A is an 
integral domain that Yt is not algebraic over F, as is seen by noting that 
e(Yt) = O. Now we make an induction on n, assuming that n > t, and that 
the proposition has been established in the lower cases. 

Let H be the polynomial Hopf algebra F[x t, ... ,xnJ, where the x/s are 
algebraically independent primitive elements. Let ex be the surjective mor­
phism of Hopf algebras from H to A sending each Xi onto Yi. There is nothing 
to prove if the kernel of ex is (0). Assume this kernel is not (0), and choose a 
non-zero element h from it having the smallest possible degree. Since 
«5(h) - h ® t - t ® h is annihilated by ex ® ex, it is contained in 

J ®A + A ®J, 

where J denotes the kernel of ex. On the other hand, this element has the 
form Li ai ® b;, where each ai and each bi has degree strictly smaller than 
that of h. Since h has the smallest possible degree among the non-zero 
elements of J, this element must therefore be 0, i.e., hE P 1/. 

By Lemma 5.2, h is therefore an F-linear combination of powers xf', 
where p is the characteristic exponent of F. Since F is perfect, we may there­
fore write 

h=ho+hf+···+hf\ 
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where each hi is a linear combination of the x /s. Since h is of minimal degree, 
we must have ho # O. It follows that, with suitably relabeled y/s, we have a 
relation 

where Co # 0, Cr # 0 and at least one dis # O. From all relations satisfying 
these conditions, among all sets of primitive generators (Yl" .. , Yn), choose 
one in which r + s is as small as possible. We show that then r = O. 

If r # 0 and r ~ s, we choose an index i with dis # 0 and replace Yi with 
Yi - d/yr- S

, where df" = cr(dis)-l. Then our relation can be written as a 
relation among the new y/s in which r is strictly smaller than before, while s 
has remained unchanged. This contradicts the minimaIity of r + s in the 
original relation, so that we must have r < s. 

N I 'th "n-I d p S
-' h dP'-( )-Id ow we rep ace Yn WI Yn - f..,i= 1 iYi ,were i - Cr is' 

Then our relation can be written as a relation among the new y/s in which 
s is strictly smaUer than before, while r has remained unchariged, so that we 
have again a contradiction to the minimality of r + s. Hence, we must 
have r = 0, which means that Yn is an F-Iinear combination of yf"s with 
i < n. Now the inductive hypothesis applies, because A is generated by 

(YI" .. , Yn-I)' 0 

If G is an affine algebraic F-group such that 9(G) is generated by a finite 
set of algebraically independent primitive elements then G is the direct 
product of a finite family of copies of the additive group of F. We call such 
a group an algebraic vector group. 

Theorem 5.4. Let F be a field, G an irreducible abelian unipotent algebraic 
F-group. In the case where F has non-zero characteristic p, assume that 
xP = lGfor every element x ofG. Suppose also that there is a perfect subfield 
K of F such that [j)(G) has a K-jorm, in the sense that [j)(G) = A ®K F, where 
A is a K-Hopf algebra. Then G is an algebraic vector group, and so is ~(A), 
with [j)(~(A» = A. 

PROOF. Let us identify G with an algebraic subgroup of AutF(V), where V 
is a finite-dimensional F-space. Let U denote the subspace of EndF(V) 
that is spanned by the elements x - iv with x in G. Clearly, U is closed 
under multiplication, the elements of U commute with each other, and every 
element of U is nilpotent. 

More precisely, if u(r) is the ideal of U that is generated by the elements 
ur with u in U, there is a non-negative integer q such that U(q+ I) = (0) and 
q < p if F has non-zero characteristic p. We choose q minimal, and we 
fix an F-basis (Ul,"" un) of U such that, for each r with 1 ::;; r ::;; q, there 
is an index r* such that the u/s with i ~ r* constitute an F-basis of u(r). 
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For U in V, we define the element exp(u) of AutF(V) by 

exp(u) = L (i!)-IUi. 

Note that, in the case of non-zero characteristic p, this makes sense, because 
q < p. Now define the map IX: V -+ AutF(V) by 

IX(CIU I + ... + c"u,,) = exp(clul)··· exp(c"u,,), 

where the c/s belong to F. Clearly, IX is a group homomorphism. Since it 
is also a polynomial map, it is therefore a morphism of affine algebraic 
F-groups from the algebraic vector F-group V to AutF(V). Let S denote the 
algebraic subgroup of AutF(V) consisting of the elements iv + U with U in V. 
We shall prove that IX is an isomorphism of affine algebraic F-groups from 
Vto S. 

In doing this, we ignore the origin of V from G, so that we can proceed 
by induction on q, dealing with nilpotent multiplicatively closed subspaces 
of EndF(V). If q = 0 then V = (0), and both groups are trivial. If q = 1, 
then V(2) = (0), whence IX(U) = iv + U for every element U of V, and it is 
clear that our claim is true. 

Now suppose that q > I, and that our claim has been established in the 
lower cases. Let YI> ... , y" be the coordinate functions on V, so that, for 
every element u of V, 

n 

U = L Yi(U)Ui· 
i~ I 

Let us write t for the index 2* - 1. Then we have 

1 

U - L Yi(II)Ui E V(2). 

i= I 

It follows that 

I 

(iv + u) n exp( - Yi(II)U/) E iv + V(2). 
i~ I 

By inductive hypothesis, the restriction, IXI say, of IX to V(2) is an isomorphism 
of affine algebraic F-groups from V(2) to iv + V(2). Hence, we may write 

iv + U = lX[tYi(U)Ui + 1X~1(iv + U)i, exp(-y;(U)U;»)} 

If we denote the expression in square brackets on the right by P(iv + u), 
then P is a polynomial map from S to V such that IX 0 fl is the identity map 
on S. 

We have 

IX(C1Ul + ... + c"u,,) = (fI eXP(CiUi»)OC1(.L CiUi). 
1= 1 1>1 
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Ifthis is equal to iv, then we see that 

1 n exp(cjul) e iv + U(2). 
j=1 

It follows from this that Cj = 0 for each i ~ t, and hence that 

Of 1(L CjUj) = iv, 
1>1 

so that Cj = 0 also for each i > t. Thus, Of is injective. 

91 

With the above, this yields the result that Of is bijective, and that P is the 
inverse of Of. Thus, Of is indeed an isomorphism of affine algebraic F -groups, 
whence S is an algebraic vector group. 

Since G is an algebraic subgroup of S, it follows that !?JI( G) is generated 
as an F -algebra by a finite set of primitive elements. It is easy to see from 
this that the K-Hopf algebra A is also generated by a finite set of primitive 
elements. Since K is perfect, we can apply Proposition 5.3 and conclude that 
A = K[Xh' .. ,x,J, where the x/s are algebraically independent primitive 
elements. Since !?JI(G) = A ®K F, the canonical images in !?JI(G) of the x/s 
constitute a system of algebraically independent primitive F -algebra gener­
ators. Clearly, this establishes the theorem. 0 

Let G be any irreducible unipotent abelian algebraic group. In the case 
where the base field has non-zero characteristic p, for every non-negative 
integer e, let G(e) be the closure in G ofthe subgroup consisting ofthe elements 
xP•• This is clearly an irreducible algebraic subgroup of G, and we know 
that G( e) is trivial for some e. It follows that, if G is non-trivial, then G(l) :f: G. 
Hence, if G is l-dimensional, then G(l) is trivial, i.e., xP = lG for every x 
in G. Now it is clear from Theorem 5.4 that the following result holds. 

Corollary S.S. Let F be a field, G an irreducible unipotent affine algebraic 
F -group of dimension 1. Suppose that there is a perfect subfield K of F such 
that !?}(G) has a K-form. Then G is isomorphic with the additive group of F. 

Notes 

1. Over non-algebraically closed fields, the structure of solvable algebraic 
groups is considerably less transparent than the results of this chapter 
might suggest, even in characteristic O. For example, let V be the 2-dimen­
sional vector group over the field of real numbers, which we shall here 
denote by F. Regarding Vas the Euclidean plane, let T denote the group of 
rotations of V. This is a I-dimensional linearly reductive affine algebraic 
F-group, with !?JI(T) = F[c, s], where c2 + S2 = 1, e(c) = 1, e(s) = 0, 
I5(c) = C ® C - s ® sand I5(s) = C ® s + s ® c. Let G be the semidirect 
product V ><I T, the conjugation action of T on V being the rotation action. 
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Then Gu = V, and there is no chain as in Theorem 4.1. The group T is the 
simplest example of an irreducible linearly reductive group that is not a 
toroid. 

2. In non-zero characteristic p, the higher-dimensional abelian irreducible 
unipotent algebraic groups need not be vector groups. The simplest example 
showing this is as follows. For 0 < i < p, let Cj stand for the integer p -l(f). 
Let n denote the symmetric polynomial in two variables with integer coeffi­
cients given by 

/1-1 

n(x,y) = L c;xiyP-I. 
1=1 

Let F be a field of characteristic p, and define a composition of pairs of 
elements of F by 

(al> b l ) + (a2, b2) = (al + a2, bl + b2 - n(al> a2»· 

One shows directly that this defines a commutative group, G say (the additive 
group of Witt vectors of length 2), and that G is a unipotent affine algebraic 
F-group with 9'(G) = F[u, v], where u(a, b) = a and v(a, b) = b. The sum 
in G of p summands, each equal to (a, b), is equal to (0, aP), showing that G 
is not an algebraic vector group. If F is infinite, then G is irreducible and of 
dimension 2. 

3. The idea for the proof of Proposition 2.2 is due to Grothendieck (cf. 
[6], Expose 6). The proof of Theorem 4.4 was found with the help of David 
Wigner. 

4. Theorem 5.4, as well as the proof given here, is due to M. Rosenlicht 
[13]. 



Chapter VII 

Elementary Lie Algebra Theory 

This chapter establishes fundamental results concerning Lie algebras over 
fields of characteristic O. The principal notions involved are semisimplicity, 
solvability anG nilpotency. 

The main result of Section 1 is Cart an's solvability criterion. In Section 2, 
this is used for obtaining the salient features of semisimple Lie algebras, 
the most important result being that, in characteristic 0, every finite-dimen­
sional module for a finite-dimensional semisimple Lie algebra is semisimple. 

Section 3 begins with the theorem that extensions of Lie algebras of finite 
dimension over a field of characteristic 0 in which the image Lie algebra is 
semisimple are split. Then, it deals with the radical of a Lie algebra, with 
reference to the representation theory of the Lie algebra. Section 4 deals 
with the Levi semidirect sum decomposition of a Lie algebra with respect 
to its radical. 

The results of this chapter will be used in the next chapter, chiefly for 
proving the semidirect product decomposition theorem for algebraic groups 
over fields of characteristic 0, which extends Theorem V1.3.2 to the completely 
general situation. 

1. Let F be a field, Va finite-dimensional F-space, e an element of EndF(V). 
An easy elementary result (a special case of Fitting's Lemma) says that V 
is the direct sum of two e-stable subspaces Vo and VI such that the restriction 
of e to Vo is nilpotent, while the restriction of e to VI is a linear automorphism. 
Now suppose that F is of characteristic 0 and that the trace of every power 
of e is equal to o. Then we can conclude that e is nilpotent, as follows. Our 
assumption on e implies that, if el is the restriction of e to VI' then the trace 
of every power of el is equal to o. If VI :F (0) then the minimum polynomial 
of el has a non-zero constant term, and we get a contradiction by applying 

93 
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the trace map to the corresponding relation among the powers of e .. because 
F is of characteristic O. Thus, we have VI = (0), which means that e is nil­
potent. 

Lemma 1.1. Let F be a field of characteristic 0, and let V be a finite-dimen­
sional F-space. Let Xl' •• • , Xn and YI' . .. , Yn be elements of EndF(V), and let 

n 

e = L (XiYi - YiX;). 
i= I 

If e commutes with each Xi then e is nilpotent. 

PROOF. For every positive exponent s, we have 

n 

e = L (xi(e- l Yi) - (e'- I Yi)Xj), 
i= I 

where eO stands for iy. It is clear from this that the trace of e is equal to 0, 
so that the above remark applies. 0 

If A and B are subsets 'of a Lie algebra L, then [A, B] denotes the subspace 
of L that is spanned by the elements [a, b] with a in A and bin B. The center 
of L is the ideal consisting of the elements X such that Dx = 0, i.e., such 
that [(x), L] = (0). We say that Lis semisimple if it has no non-zero abelian 
ideal. 

Theorem 1.2. Let L be a Lie algebra of linear endomorphisms of a finite­
dimensional F -space V, where F is a field of characteristic O. Suppose that 
V is semis imp Ie as an L-module. If Z is the center of L, then LIZ is a semi­
simple Lie algebra, [L, L] n Z = (0), and every element of Z is semisimple. 

PROOF. Let A denote the (associative) sub F-algebra of EndF(V) that is 
generated by L. First, we show that A has no non-zero nilpotent left ideal. 

Suppose this is false. Then there is a non-zero left ideal B of A such that 
BB = (0). Now B· V is a sub A-module of V. Clearly, V is semisimple as an 
A-module. Therefore, there is a sub A-module W of V such that 

V=B·V+W 

and (B· V) n W = (0). Now B· W c (B . V) n W, whence B· W = (0). 
Hence B· V = B . (B . V) + B· W = (0), contradicting B :F (0). 

Let C denote the center of A. By what we have just shown, C has no 
non-zero nilpotent element. Therefore, every element of C is semisimple, 
as is seen either quite directly, or from Theorem V.1.4. In particular, every 
element of Z is semisimple. Moreover, by Lemma 1.1, every element of 
[A, A] n C is nilpotent, so that we must have [A, A] n C = (0). In particular, 
[L, L] n Z = (0). 

This last result shows that the inverse image in L of an abelian ideal of 
LIZ is an abelian ideal, J say, of L. Now consider the abelian ideal [L, J]. 
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By Lemma l.l, all its elements are nilpotent. Let B denote the subspace of 
A that is spanned by the products of elements of [L, J]. 

Then the elements of B commute with each other, and Bm = (0) for some 
positive exponent m. Directly from the definition, we see that LB c BL + B, 
whence AB c BA. Now it follows by induction that (AB)" c B" A for every 
positive integer s. Therefore, AB is a nilpotent left ideal of A, so that we must 
have AB = (0). In particular, [L, J] = (0), so that J c Z. Thus, (0) is the 
only abelian ideal of L/Z. 0 

The ideal [L, L] of a Lie algebra L is called the commutator ideal. We say 
that L is solvable if the chain of successive commutator ideals ends with 
(0). The following result is known as Lie's Theorem (cf. Theorem VI. 1.1). 

Theorem 1.3. Let L be a solvable Lie algebra over a field of characteristic O. 
Then every finite-dimensional semisimple L-module is annihilated by [L, L]. 

PROOF. Let V be such an L-module. Let L' denote the image of L in End(V), 
and let Z denote the center of L'. By Theorem 1.2, L'/Z has no non-zero 
abelian ideal. Since L'/Z is solvable, this implies that L'/Z = (0), Le., that L' 
is abelian. This means that [L, L] annihilates V. 0 

If L is a Lie algebra, Van L-module and S a subset of L then we shall say 
that S is nilpotent on V if there is a positive integer n such that p(S)" = (0), 
where p denotes the given representation of L on V. 

Lemma 1.4. Let L be a Lie algebra, V an L-module, S a subspace of L that is 
nilpotent on V. Suppose that x is an element of L that is nilpotent on V and 
such that [x, S] c S. Then x + S is nilpotent on V. 

PROOF. Without loss of generality, we assume that L is given as a Lie algebra 
of linear endomorph isms of V. Then the assumption is that there are positive 
integers p and q such that SP = (0) and xq = O. We show that (x + S)pq = (0). 

Consider a product UI ••• upq , where each Ui is either an element of S 
or equal to x. For s in S, we have 

sx = xs + [s, x] E XS + S. 

We see from this that 

pq 

U 1 ••• U E ~ xrst 
pq L. ' 

r=O 

where t is the number of indices i such that Ui belongs to S. Therefore, this 
product is 0, unless t < p. However, if t < p, there must be an index i such 
that Ui+ I, ... , ui+q are all equal to x, because there are pq - t > p(q - 1) 
elements x in the t + 1 ~ P intervals not containing elements of S. Con­
sequently, UI ••• upq = 0 in all cases. 0 
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Now we are in a position to obtain Engers Theorem, which is closely 
related to Theorem V.2.1. 

Theorem I.S. Let L be a Lie algebra, and let V be a finite-dimensional L­
module. If every element of L is nilpotent on V then L is nilpotent on V. 

PROOF. As above, we assume without loss of generality that L is given as a 
Lie algebra of linear endomorphisms of V. Let x and y be elements of L, 
and consider D~(y) for positive integers m. This is a sum of products ±xPyxll, 

where p + q = m, so that our assumption gives the result that D", is nil­
potent. 

Now we proceed by induction on the dimension of L. There is nothing 
to prove if L = (0). We suppose that L oF (0) and that the result has been 
established in the lower-dimensional cases. Among the sub Lie algebras of 
L other than L, choose one, H say, having the largest possible dimension. 
Let us view L as an H-module by the map x ~ D", from H to End(L). We 
have just seen that, for this module structure, every element of H is nilpotent 
on L. By inductive hypothesis, H is therefore nilpotent on L. It follows from 
this that there is an element yin L \ H such that [H, y] c:: H. Now we can 
apply Lemma 1.4 to conclude that y + H is nilpotent on V. Clearly, the 
subspace of L that is spanned by y and H is a sub Lie algebra of L. By the 
maximality of H, this subspace therefore coincides with L, and we have 
just seen that it is nilpotent on V. 0 

Next, we establish Cartan's solvability criterion, which is as follows. 

Theorem 1.6. Let F be a field of characteristic 0, V a finite-dimensional F­
space, L a Lie algebra of linear endomorph isms of V such that the trace function 
t)anishes on LL. Then L is solvable. 

PROOF. It is easy to see that it suffices to prove this when F is algebraically 
closed, which we shall now assume to be the case. Making an induction on 
the dimension of L, we suppose that the result holds for all Lie algebras of 
lower dimension than L. Then, if [L, L] oF L, it follows that L is solvable. 
Therefore, we assume that L = [L, L] and derive a contradiction. 

Among the sub Lie algebras of L other than L, choose a maximal one, H 
say. By inductive hypothesis, H is solvable. Consider the H-module LIH, 
where the module structure comes from the map x ~ D",. If UIH is a minimal 
non-zero sub H-module of this, we know from Theorem 1.3 that the endo­
morphisms of UIH corresponding to the elements of H commute with each 
other. Since F is algebraically closed, this implies (via Schur's Lemma) 
that UIH is I-dimensional, so that U = Fy + H, with y ~ H. Since this is a 
sub H-module of L, there is an element p. in HO such that 

[x,y] - p.(x)yeH 

for every element x of H. In particular, Fy + H is a sub Lie algebra of L, 
so that the maximality of H implies that L = Fy + H. 
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Let W be any non-zero simple L-module, and let Wo be a non-zero 
simple sub H -module of W. As above for U IH, we see that Wo is I-dimensional: 
Wo = Fwo. For i > 0, define Wj = y. Wj_ to and let JJi = Fwo + ... + FWi. 
Then, for x in H, we have 

X·Wj+l = X·(y·Wi) = [X,Y]·Wi + Y·(X·Wi) 

= ([x, y] - Jl{X)Y)· Wi + y. (Jl{X)Wj + x . wJ 

Since [x,y] - Jl{x)y belongs to H, we see from this inductively that each 
JJi is a sub H-module of W. 

Write x . Wo = o(x)wo for every x in H. Then it is easy to verify inductively 
from the above that, for each index i, the element x of H acts on WjJJi-l 
as the scalar multiplication by u(x) + iJl{x) (where we have written W- 1 for 
(0». 

Now let q be the largest index i for which the set (wo, ...• Wi) is linearly 
independent. Then W. is a sub L-module of W, so that W. = W. Hence, 
if Xw denotes the linear endomorphism of W corresponding to the element 
x of H, and if T denotes the trace function, we have 

T(xw) = (q + l)o(x) + !q(q + l)Jl(x). 

Since L = [L, L], each x is a sum of commutators of elements of L, so that 
we must have T(xw) = 0, whence 

o(x) = -fqJl(x). 

Substituting this above, we have that x acts on WilWi-l as the scalar multi­
plication by (i - !q)Jl(x), which gives 

q 

T(xfv) = L (i - fq)2Jl(X)2. 
i=O 

Now let 

(0) = J.). c ... c Vo = V 

be a composition series for the L-module V. Applying our above result 
to the simple L-modules JijlJij+ to we obtain 

T(x~) = :t:(Jo(i - tqj)2)JL{X)2, 

where qj = dim(J)/J)+l) - 1. 
If Jl(x) = 0 for every x in H, then we have [L, L] c H, contradicting 

[L. L] = L. Hence there is an element x in H such that Jl(x) :F: O. Since 
T(x~) = 0, it follows that we must have i = !qj for all the indices of the 
above sum. This is possible only if each qj is 0, i.e., only if each J}/J}+ 1 is 
I-dimensional. But then, since L = [L, L], we have L.J) c J}+1 for each 
j, so that L is nilpotent on V. Evidently, this contradicts L = [L, L]. 0 
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2. Let L be a Lie algebra. The representation of L on L sending each element 
x of L onto the derivation D" of L is called the adjoint representation of L. 
If p is any finite-dimensional representation of L, then we define the trace 
form Tp on L x L by 

Tp(X, y) = T(p(x)p(y», 

where T again denotes the trace function. Evidently, Tp is bilinear and sym­
metric. Moreover, one verifies directly that, for all x, y, z in L, 

1beorem 2.1. Let L be afinite-dimensional Lie algebra over afield of charac­
teristic O. If L is semisimple and p is an injective finite-dimensional representa­
tion of L, then the trace form Tp is non-degenerate. If the trace form of the 
adjoint representation of L is non-degenerate then L is semisimple. 

PROOF. Let H denote the set of all elements x of L such that Tp(X, y) = 0 
for every y in L. The formal property of Tp noted above shows that H is an 
ideal of L. Theorem 1.6, applied to p(H), shows that H is solvable. If H were 
not zero, then a member of the sequence of successive commutator ideals 
of H would be a non-zero abelian ideal of L. Therefore, if L is semisimple, 
we must have H = (0), which means that Tp is non-degenerate. 

Now suppose that the trace form of the adjoint representation of L is 
non-degenerate. Let I be any abelian ideal of L. If x belongs to I and y to L, 
then D"Dy sends L into I and annihilates I, so that T(D"Dy) = O. Therefore, 
our assumption implies that x = 0, so that I = (0). 0 

Proposition 2.2. Let L be a finite-dimensional semisimple Lie algebra over a 
}ield of characteristic 0, and let I be an ideal of L. There is one and only one 
ideal I' of L such that L = I + I' and I n I' = (0). Also, L = [L, L]. 

PROOF. Since L is semisimple, its center is (0), so that the adjoint representa­
tion of L is injective. By Theorem 2.1, the trace form ofthe adjoint representa­
tion of L is therefore non-degenerate. Let I' be the set of all elements x of L 
such that T(D"Dy) = 0 for every element y of I. The formal property of the 
trace form noted at the beginning of this section shows that I' is an ideal of 
L. By Theorem 1.6, I n I' is solvable, and hence (0). By definition, I' is the 
set of zeros in L of a set of linear functions in bijective correspondence with 
a basis of I. Hence dim(I') + dim(I) ~ dim(L). Since I n l' = (0) it follows 
that L = I + I'. 

In particular, L = [L, L] + [L, L]', and by applying the endomorphisms 
D" we see that [L, L], must lie in the center of L, which is (0). Thus L = [L, L]. 

Finally, suppose that J is any ideal of L such that L = I + J and 

In J = (0). 
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Using that L = [L, L], we find 

J = [L,J] = [I + I',J] = [1',J] c: I', 

and hence J = 1'. o 
Let L be as in Proposition 2.2, and let p be an injective representation 

of L on a finite-dimensional vector space V. There is a linear map 

p.: L ® L -+ End(L) 

such that 

p.(x ® y)(z) = Tp(Z, x)y 

for all elements x, y, Z of L. From the non-degeneracy of Tp , it follows that 
p. is an isomorphism. In fact, T p yields an isomorphism from L to LO in the 
canonical fashion, and p. is the composite of the induced isomorphism 
L ® L -+ L 0 ® L with the canonical isomorphism L 0 ® L -+ End(L). We 
define the Casimir element up of pin L ® L by p.(up) = iL. 

The adjoint representation of L yields a representation of L on L ® L 
by the canonical tensor product construction. This representation is charac­
terized by the formula 

t· (x ® y) = [t, x] ® y + x ® [t, y]. 

On the other hand, the adjoint representation yields a representation of 
Lon End(L), which is given by 

t·e = Dte - eDt, 

where tEL and e E End(L). Using the formal property of Tp noted at the 
beginning of this section, we see that, with respect to these L-module struc­
tures, p. is an isomorphism of L-modules. It is clear from this that up belongs 
to the L-annihilated part (L ® L)L of L ® L. 

Let p2 stand for the linear map L ® L -+ End(V) that comes from p in 
the canonical way, so that 

p2(X ® y) = p(x)p(y). 

We define the Casimir operator of p by p2(Up). Clearly, p2 is a morphism of 
L-modules. It follows that the Casimir operator is an L-module endomorphism 
of V (i.e., that it commutes with every p(x». 

Let us choose a basis (y .. ... 'YII) of L, and write 
II 

up = LXi®YI. 
1=1 

Then the trace of the Casimir operator is equal to D= 1 Tp(XI' YI). From 
p.(up) = iL we see immediately that Tp(Xio Yi) = 1 for each i. Thus, the trace 
of the Casimir operator is equal to dim(L). In particular, if L =F (0) then the 
Casimir operator of p is not nilpotent. 



100 VII.2 

For any L-module V, let us denote the L-annihilated part of V by VL, and 
let L· V denote the L-submodule spanned by the elements x· v = p(xXv) 
with x in L and v in V. 

Lemma 2.3. Let L be a finite-dimensional semisimple Lie algebra over a field 
of characteristic 0, and let V be a finite-dimension L-module. Then 

V = L· V + VL• 

PROOF. Let p denote the representation of L on V, let I be the kernel of p, 
and let I' be the ideal complementary to I figuring in Proposition 2.2. 
Clearly, I' is a semisimple Lie algebra, L· V = I' . Vand VL = Vi'. Therefore, 
restriction of p to I' reduces the problem to the case where p is injective. 
Then,let cp be the Casimir operator of p. Let V = V1 + Vo be the Fitting 
decomposition of V with respect to cp ' so that the restriction of cp to Vi 
is a linear automorphism, while the restriction of cp to Vo is nilpotent. Since 
cp is an L-module endomorphism, these components Vo and l't are sub L­
modules of V. Since Vi = cp(Vi ), we have V1 = L· V1• If V:f:. (0) then cp is 
not nilpotent, which means that Vi :f:. (0). Therefore, Vo is of strictly smaller 
dimension than V. Now it suffices to prove the result for Vo in the place of V. 
This is all we need for establishing Lemma 2.3 by induction on the dimension 
~~ 0 

Theorem 2.4. Let L be a finite-dimensional semisimple Lie algebra over a 
field of characteristic O. Then every finite-dimensional L-module is semisimple. 

PROOF. Let V be a finite-dimensional L-module, and let U be a sub L-module 
of V. We show that U has an L-module complement in V. Let H be the space 
of all linear maps f: V IU -+ v. We make H into an L-module by 

(x . f)(a) = x' f(a) - f(x· a), 

where x ELand a E V /U. The elements f of this module with the property 
that (x· fXV/U) c: U for every element x of L clearly constitute a sub 
L-module, M say, of H. By Lemma 2.3, we have M = L· M + ML. 

Now let us choose a linear map g: VIU -+ V whose composite with the 
canonical map V -+ V IU is the identity map on V /U. Clearly, g belongs to 
M. Write g = h + k, where h belongs to L . M and k belongs to ML. Then 
the composite of k with the canonical map V -+ V IU is still the identity 
map on VIU, and k is a morphism of L-modules. Hence k(V/U) is an L­
module complement of U in V. 0 

If L is a Lie algebra and V an L-module, then a cocycle for L in V is a 
linear map ffrom L to V satisfying the identity 

f([x, yJ) = X· f(y) - y. f(x). 
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Such an f is called a coboundary if there is an element v in V such that 
f(x) = x· v for every element x of L. 

Corollary 2.S. Let L be a finite-dimensional semisimple Lie algebra over the 
jield F of characteristic 0, and let V be a finite-dimensional L-module. Then 
every cocyclefor L in V is a coboundary. 

PROOF. Let f be a cocycle for L in V. We define an L-module structure on 
the direct sum V + F by setting 

x . (v, a) = (af(x) + x· v, 0) 

for every x in L, every v in V and every a in F. In fact, the cocycle identity 
is exactly what is needed for making this an L-module structure. By Theorem 
2.4, this L-module is semisimple, so that the sub L-module V has an L­
module complement. If we write the component of (0, 1) in this complement 
in the form (-v, 1), then we find thatf(x) = x· v for every element x of L, 
because the complement of V in our module must be annihilated by L. 0 

An application of direct interest is as follows. 

Proposition 2.6. Let L be a jinite-dimensional semisimple Lie algebra over a 
Jield of characteristic O. Then every derivation of L is of the form Dx , with x 
inL. 

PROOF. This is seen immediately from Corollary 2.5 by observing that a 
derivation is a cocycle for L in L, with respect to the adjoint representation. 

o 

3. Theorem 3.1. Let E and L be finite-dimensional Lie algebras over a field 
of characteristic 0, and suppose that L is semisimple. Let n: E - L be a sur­
jective Lie algebra homomorphism. There is a Lie algebra homomorphism 
p: L - E such that n 0 p is the identity map on L. 

PROOF. We prove this result by induction on the dimension of the kernel, P 
say, of n, and thus assume that P :F (0) and that the theorem has been estab­
lished in the lower cases. If E is semisimple, we know from Proposition 2.2 
that it is the direct Lie algebra sum of P and a complementary ideal P'. 
Clearly, the restriction of n to P' is an isomorphism from P' to L, and we 
may take p to be the inverse of this isomorphism. Therefore, we assume 
without loss of generality that E has a non-zero abelian ideal. Let A be a 
non-zero abelian ideal of E having the smallest possible dimension. Now 
(A + P)/P is an abelian ideal of the semisimple Lie algebra E/P, and henCe 
is (0). Thus, we have A c P. 

First, suppose that A :F P. Then we consider the surjective Lie algebra 
homomorphism n' from E/A to L that is induced by n. The kernel of n' is 
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PIA, and our inductive hypothesis ensures that there is a Lie algebra homo­
morphism lJ from L to EIA such that n' 0 lJ is the identity map on L. Write 
lJ(L) = MIA with Me E. Since dim(A) < dim(P), we can again apply 
our inductive hypothesis to conclude that there is a Lie algebra homo­
morphism (1 from c5(L) to M such that J.l 0 (1 is the identity map on c5(L), 
where J.l is the canonical map M -+ MIA = c5(L). Clearly, we may take p 
to be (1 0 c5. 

Now suppose that P = A. Since P is now abelian, the adjoint representa­
tion of E induces an L-module structure on P such that n(e)·p = [e,p] 
for every e in E and every p in P. The sub L-modules of P are precisely the 
ideals of E that are contained in P. Since P = A, the minimality of A implies 
that P is a simple L-module. If the representation of L on P is trivial then 
[E, P] = (0) and the adjoint representation of E induces an L-module 
structure of E extending that of P. By Theorem 2.4, there is an L-module 
complement Q for P in E. Clearly, Q is an ideal of E, and the restriction of 
n to Q is a Lie algebra isomorphism from Q to L whose inverse will serve 
for p in the statement of our theorem. 

Now we consider the remaining case where P is a simple non-trivial 
L-module. Let I be the kernel of the representation of L on P, and let I' 
be its complementary ideal in L. By our present assumption, I' '# (0), so 
that the Casimir element in l' ® I' of the representation of l' on P is not O. 
Since P is simple as an L-module, the corresponding Casimir operator is an 
L-module automorphism, ')I say, and we write our Casimir element as 

II 

U = LXi®Yh 
'=1 

where the x,'s and y,'s are elements of L (actually, of 1'). 
Let us choose a linear map f from L to E such that n 0 f is the identity 

map on L. We consider the deviation offfrom a Lie algebra homomorphism, 
i.e., we consider the bilinear map g from L x L to P that is given by 

g(x, y) = [f(x), f(y)] - f([x, y]). 

By the definition of the L-module structure of P, we have X· P = [f(x), p] 
for every x in L and every p in P. Using this and the Jacobi identity for E, 
we find that g satisfies the identity 

x· g(y, z) - y. g(x, z) + z· g(x, y) = g([x, y], z) 

- g([x, z], y) + g([y, z], x). 

Using this, we obtain the following expression for Yi· g(x, y): 

x·g(y"y) - y·g(yj,x) + g([Yj,x],y) - g([YhY],X) + g([x,y],y,). (*) 

Next, we write 
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Now we know that the Casimir element u is annihilated by L via the L­
module structure of L ® L coming from the adjoint representation of L. 
This means that 

" L ([x, xa ® Y/ + Xi ® [x, Y/]) = O. 
1=1 

It follows that, for every bilinear map k from L x L to P, 

" . L (k([x" x], Yi) + k(Xi' [y" x])) = o. 
i=1 

Now let us write out y(g(x, y» as L7= 1 Xi' (Yi . g(x, y» and transform 
this by applying (*), (* *) and the formula obtained by interchanging x and 
y in (**). The result is 

y(g(x, y» = X· hey) - y. hex) - h([x, y]) 

" + L ([x" x] . g(y" y) + Xi' g([Yi' x], y» 
i= 1 

" - L ([x" y]. g(y" x) + Xi' g([y" y], x», 
i= 1 

where h is given by 
II 

h(z) = LXi' g(Yh z). 
i= 1 

Using (***) with the evident k's, we see that the sums on the second and 
third lines of the above formula are O. Now define the map p from L to E by 

p(z) = fez) - y-l(h(z» 

Then the above formula shows that p is a homomorphism of Lie algebras. 
Also 1t 0 P = 1t 0 .f = iL • 0 

Let A and B be solvable ideals of a Lie algebra L. The ideal (A + B)/ A 
of L/ A is a homomorphic image of B and is therefore solvable. Since A is 
solvable, it follows that A + B is solvable. It is clear from this that every 
finite-dimensional Lie algebra L has a solvable ideal containing every 
solvable ideal of L. This unique maximum solvable ideal of L is called the 
radical of L; we denote it by L,. Clearly, L/L, is a semisimple Lie algebra. 

Theorem 3.2. Let L be a finite-dimensional Lie algebra over a field of charac­
teristic O. Then [L, L] n L, = [L, L,]. If V is a finite-dimensional L-module 
then [L, L,] is nilpotent on V. 

PROOF. If we apply Theorem 3.1 to the canonical homomorphism L -+ L/L" 
we see that there is a semisimple sub Lie algebra S of L that is mapped 
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isomorphically onto L/Lr by the canonical map. Clearly, L = 4 + Sand 
L, n S = (0). Since S is semisimple, we have [S, S] = S, whence 

[L, L] = [L, L,] + S. 

It is clear from this that [L, L] n 4 = [L, L,]. 
We know from Theorem 1.3 that [L" L,] is nilpotent on V. Let T be a 

subspace of [L,4] that contains [L" L,] and is nilpotent on V. If 
T# [L, L,] there is an element z in L and an element x in L, such that [z, x] 
does not belong to T. The sub Lie algebra of L that is spanned by z and L, is 
evidently solvable. By Theorem 1.3, its commutator ideal is therefore nilpotent 
on V. In particular, [z, x] is nilpotent on V. Since [[z, x], T] c: T, it follows 
from Lemma 1.4 that the space spanned by [z, x] and T is nilpotent on V. 
Now it is clear that if T is chosen maximal then T = [L, L,]. 0 

Theorem 3.3. Let L be a finite-dimensional Lie algebra over a field of charac­
teristic 0, and let V be a finite-dimensional L-module. There is an ideal P of L 
that is nilpotent on V and contains every ideal of L that is nilpotent on V. 
Every element of L, that is nilpotent on V belongs to P. 

PROOF. Let (0) = Yo c: ... c: v,. = V be a composition series for the L­
module V. Let P, be the kernel of the induced representation of L on l'i/l'i-l' 
and put P = n~= 1 Pi. Clearly, P is nilpotent on V. 

Now let J be any ideal of L that is nilpotent on V, and let W be one of 
the factor modules VJl'i-I. From the fact that J is an ideal of L, it follows 
that J . W is an L-submodule of W. Since W is simple as an L-module, we 
have therefore either J. W = W or J. W = (0). The first possibility is 
ruled out because J is nilpotent on V. Therefore, J annihilates W, and we 
conclude that J c: P. 

Now let x be an element of L, that is nilpotent on V. By Lemma 1.4, the 
space spanned by x and P is nilpotent on V. We know from Theorem 3.2 
that [L, L,] is nilpotent on V, so that, from what we have just proved, 

[L,L,] c: P. 

Since [L, x] c: [L, L,] c: P, the space spanned by x and P is actually an 
ideal of L, so that it must be contained in P. 0 

4. Let L be a Lie algebra. Define L 0 = Land L i + 1 = [L, L']. Clearly, the 
L"s constitute a descending chain of ideals of L. We say that L is nilpotent 
if this chain ends at (0). Ifwe apply Theorem 3.2 to the adjoint representation, 
we find that, if Lis afinite-dimensional Lie algebra over afield of characteristic 
0, then [L, L,] is a nilpotent ideal ofL. 

Write L~O) = L" and L~i+ 1) for [L, L~')]. Assuming that L is finite-dimen­
sional, we have L~i+ 1) = L~') for all sufficiently large indices i, and we denote 
this limit by L~ao). Clearly, this is a nilpotent ideal of L. If x is an element of 
L~ao), then D" is nilpotent, so that exp(D,,) becomes a polynomial in D" and 
has a meaning as a Lie algebra automorphism of L. 
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Theorem 4.1. Let L be afinite-dimensional Lie algebra over afield of charac­
teristic 0, and let S be a semisimple sub Lie algebra of L such that L = Lr + S 
(the existence of S is guaranteed by Theorem 3.1). Let T be any semisimple 
sub Lie algebra of L. There is an element x in L~ao) such that exp(Dx)(T) c S. 

PROOF. Suppose that T c L~i) + S, for some index i. Then, since T = [T, T], 
it follows that T c L~i+ 1) + S. Thus, we have T c L~ao) + S, so that it 
suffices to prove the theorem when Lr = L~ao). Accordingly, we assume that 
Lr is nilpotent and then proceed by induction on dim(Lr)' Our inductive 
hypothesis is now that the theorem has been established in the cases of lower 
dimensional radical, and we suppose that Lr #= (0). 

Since Lr is nilpotent, its center, Z say, is not (0). It is easy to see that Z 
is an ideal of L, so that we can apply our inductive hypothesis to LIZ. This 
gives the existence of an element y of Lr such that exp(Dy) sends T into 
Z + S. Now suppose that there is an element z in Z such that exp(Dz) sends 
exp(DyXT) into S. Then we note that, since Dy and Dz commute with each 
other, we have 

exp(Dz)exp(Dy) = exp(Dz + Dy) = exp(Dy+z), 

so that we may take the required element x to be z + y. Thus, it remains 
only to deal with the case where Lr is abelian. 

In this case, we consider the linear maps p and (1 from T to Lr and S, 
respectively, such that, for every t in T, t = p(t) + (1(t). We see directly that 
(1 is a homomorphism of Lie algebras, and that p is a cocycle for Tin Lr, 
with respect to the T -module structure of Lr coming from the adjoint 
representation of L. Since T is semisimple, we have from Corollary 2.5 that 
there is an element x in Lr such that p(t) = [t, x] for every element t of T. 
Now we have 

exp(Dx)(t) = t + Dx(t) = t + [x, t] = t - p(t) = (1(t), 

which shows that exp(Dx) sends T into S. o 

Notes 

1. The most transparent general example of a semisimple Lie algebra 
is as follows. Let F be a field of characteristic 0, and let V be a finite-dimen­
sional F-space. Let L be the sub Lie algebra of .!l'(EndF(V» consisting of 
the linear endomorphisms of trace O. It is easy to show directly that Land 
(0) are the only ideals of L, and that the trace form of the identity representa­
tion of L on V is non-degenerate. Using our earlier results on algebraic 
groups and their Lie algebras, one can show that L is the Lie algebra of the 
subgroup of AutiV) consisting of the automorphisms whose determinant 
is equal to 1. 

2. For the basic generalities of Lie algebra theory, see [3]. For a full develop­
ment of the theory, see [8]. 



Chapter VIII 

Structure Theory in 
Characteristic 0 

The theme of this chapter is the use of Lie algebras in the structural analysis 
of affine afgebraic groups over fields of characteristic O. In addition to giving 
far more incisive results than the general structure theory, this Lie theory 
has the important feature that the basic general results hold over arbitrary, 
not necessarily algebraically closed fields of characteristic 0. 

Section 1 reduces the study of unipotent algebraic groups completely 
to the study of representation-theoretically nilpotent Lie algebras. As a 
consequence, the theory of factor groups of unipotent algebraic groups is 
free of any limitations. 

Section 2 establishes the result that, in characteristic 0, the tensor product 
of semisimple group representations is semisimple. This fact is decisive 
for the role played by linearly reductive groups in the general structure 
theory. Although the result, Theorem 2.2, has a completely elementary 
statement, it has never been proved without the use of algebraic groups and 
their Lie algebras. 

Section 3 deals with the "algebraic hulls" .!t'(GJ of sub Lie algebras L 
of the Lie algebra of an algebraic group G. An important result is that if 
L = [L, L], then L coincides with its algebraic hull. In addition, Section 3 
contains the semidirect sum decomposition of .!t'(G) underlying the semi­
direct product decomposition of G, which is the main result of Section 4. 

1. Let F be a field of characteristic 0, and let G be an affine algebraic F -group. 
If T is a unipotent algebraic subgroup of G, it is clear from Theorem 111.4.3 
that .!t'(T) is locally nilpotent on &'(G). Consequently, exp(r[) has a meaning 
as an element of Endrl&'(G» for every element f of .!t'(T). Since f[ is a deriva­
tion, exp( f[) is an F -algebra endomorphism, and e 0 exp( f[) is an element of G. 
Clearly, this element of G annihilates the annihilator of Tin &'(G), so that it 
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actually belongs to T. We denote it by exp( t). In the statement of Theorem 1.1, 
we view !R(T) as an affine algebraic F -set, the polynomial functions being the 
polynomials in the elements of !l'(T)o. 

Theorem 1.1. Let F be a field of characteristic 0, let G be an affine algebraic 
F-group and T a unipotent algebraic subgroup of G. Then T is irreducible, 
and the map sending each element t of !R(T) onto the element exp(t) of Tis 
an isomorphism of affine algebraic F-sets from !R(T) to T. In this way, the 
family of all unipotent algebraic subgroups of G is in bijective correspondence 
with the family of all those sub Lie algebras of !R( G) which are locally nilpotent 
on ~(G). 

PROOF. Consider the representation of T on ~(T)T,. This factors through 
the finite group T IT1• Since F is of characteristic 0, it follows that the repre­
sentation of T on ~(T)T, is semisimple. On the other hand, T is locally 
unipotent on ~(T). Therefore, the representation of T on ~(T)TI is trivial. 
By Theorem 11.2.2, the element-wise fixer of ~(T)T, coincides with T1• 

Thus, we have T = T1• 

Let t be an element of T. Then t[ is locally unipotent on 9(G), so that the 
expression 

log(t[) = - L n -1(igo(GI - t[Y' 
n>O 

makes sense as an element of End,.(~(G». In proving Lemma VI.2.1, we 
showed that this is a derivation. Clearly, it stabilizes the annihilator of T in 
~G). Therefore, So log(t[) is an element of !R(T). We shall denote it by log(t). 
From the formal properties of the power series for exp and log, together with 
what we have just shown, it is clear that the maps 

exp: !l'(T) -+ T and log T: -+ !R(T) 

are mutually inverse polynomial maps. 
What remains to be shown is that, if L is any sub Lie algebra of !R(G) 

that is locally nilpotent on ~(G), then exp(L) is a unipotent algebraic sub­
group of G. In order to see this, we need more information about the exponen­
tial map. 

Let p be a polynomial representation of G on a finite-dimensional F­
space V, and consider the extended differential p': !R(G) -+ End,.(V). We 
claim that, for every element t of !R(T), 

p(exp(t» = exp(p'(t». 

In order to prove this, consider the comodule structure 

p*: V -+ V ® ~G) 

corresponding to p. By Lemma 111.4.1, we have 

(iy ® t[) ° p* = p* ° p'(t). 
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It follows directly from this that 

exp(iy ® t[) 0 p* = p*o exp(p'(t». 

The expression on the left is equal to (i y ® exp(t[» 0 p*, and our claim 
follows upon applying iy ® 8. 

Now let p be the adjoint representation of G on .fl1(G). By Theorem 
IV.4.1, we have p'(t) = Dt and 

p(x)(O') = xO'x- 1 

for every element x of G and every element 0' of .fl1(G). Hence, our above 
general result gives 

exp(t)O' exp(t)-l = exp(DtXO') 

for every element 0' of .fl1(G) and every element t of .fl1(T). In the case where 
0' also belongs to .fl1(T), we may apply the exponential map, which yields 

exp(t)exP(O')exp(t)-l = exp(exp(DtXO'». 

Now consider any sub Lie algebra L of .fl1(G) that is locally nilpotent 
on fJJ( G). We wish to prove that exp(L) is a unipotent algebraic subgroup of G. 
First, consider the case where L is l-dimensional; say L = Ft. Evidently, 
exp(L) is a unipotent subgroup of G, in this case. Let K denote the closure 
of exp(L) in G. Then K is a unipotent algebraic subgroup of G, and 

L c: .fl1(K). 

Now exp(L) is the inverse image of L with respect to the polynomial map 
log: K -+ .fl1(K), so that exp(L) is closed in K. Thus, exp(L) = K, so that 
exp(L) is a I-dimensional unipotent algebraic subgroup of G. 

Now suppose that dim(L) > 1 and that the result has been established 
in the lower-dimensional cases. Since L is a nilpotent Lie algebra, we have 
L = J + Ft, where J is an ideal not containing t. By our inductive hypothesis, 
exp(J) is a unipotent algebraic subgroup of G, and by the above exp(Ft) 
is a I-dimensional unipotent algebraic subgroup of G. 

It is clear from our above result on conjugation of exponentials that 
exp(Ft) normalizes exp(J). Thus, the product set exp(J)exp(Ft) is a subgroup 
of G. By Proposition V.2.2, it is a unipotent subgroup of G. Let M denote 
its closure in G, so that M is a unipotent algebraic subgroup of G. The compo­
sition map of G yields a morphism of affine algebraic sets 

exp(J) x exp(Ft) -+ M 

whose image, exp(J)exp(Ft), is dense in M. It follows from this that the 
dimension of M is at most equal to that of exp(J) x exp(Ft) which is evi­
dentlyequal to dim(L). Now we have L c: .fl1(M), and dim(9'(M» S dim(L), 
whence L = .fl1(M). By the part of the theorem we have already proved, 
M = exp(.fl1(M». Hence, exp(L) = M. 0 



VIII.I 109 

Theorem 1.2. Let F and G be as in Theorem 1.1, and let U be a unipotent 
affine algebraic F -group. Let p be a morphism of affine algebraic F -groups 
from U to G. Then p(U) is a unipotent algebraic subgroup ofG. 

PROOF. It follows directly from the definitions that p"(.ft'(U» is a sub Lie 
algebra of 9'(G) that is nilpotent on (II(G). By Theorem 1.1, U = exp(9'(U». 
From what we have seen in proving Theorem 1.1 concerning the behavior 
of exp with respect to polynomial representations, it is clear that, for every 
element r of 9'(T), we have 

p(exp(r» = exp(p·(r». 

Hence, we have p(U) = exp(p·(9'(U») which, by Theorem 1.1, is a unipotent 
algebraic subgroup of G. D 

Theorem 1.3. Let G be a unipotent affine algebraic F -group, where F is a 
field of characteristic O. Let H be a normal algebraic subgroup of G. Then the 
restriction map from G to ~«(II(G)H) yields a bijective group homomorphism 
from G/H to ~«(II(G)H), so that G/H is an affine algebraic F-group with 
(ll(G/H) = f!J'(G)H. Moreover, there is a polynomial map G/H -+ G whose 
composite with the canonical map G -+ G/H is the identity map on G/H. 

PROOF. Let p denote the restriction map from G to ~(f!J'(G)H). By Theorem 
II.2.2, the kernel of p coincides with H. By Theorem II.4.3, f!J'(G)H is finitely 
generated as an F-algebra, so that ~(f!J'(G)H) is an affine algebraic F-group 
whose algebra of polynomial functions may be identified with f!J'(G)H. By 
Theorem 1.2, p(G) is a unipotent algebraic subgroup of ~(f!J'(G)H). 

We have 9'(p(G» = p·(9'(G», and we choose a linear map 

y: 9'(p( G» -+ 9'( G) 

such that p. 0 y is the identity map on 9'(p(G». Now we define the polynomial 
map (X from p(G) to G as the composite exp 0 y 0 log. Using that 

po exp = exp 0 p., 

we verify directly that p 0 IX is the identity map on p( G). 
Clearly, f!J'(p(G» 0 p C (II(G)H. Since p 0 (X is the identity map, the trans­

pose of p is injective from f!J'(p(G» to (II(G)H. We claim that this map is also 
surjective. In order to see this, let 9 be an element of (II( G)H and consider the 
element go (X of f!J'(p(G». We have, for every element u of 9'(G), 

(g 0 (X 0 p)(exp(u» = (g 0 cx)(exp(p·(u») = g(exp(y(p·(u»». 

On the other hand, 

p(exp(y(p·(u») = exp(p·(u» = p(exp(u». 

Since the kernel of p is H, it follows that exp(y(p·(u») belongs to the coset 
exp(u)H. Therefore, the above gives 

(g 0 (X 0 p)(exp(u» = g(exp(u», 

showing that g 0 (X 0 p = g. 
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Our conclusion is that the transpose of p is an isomorphism of Hopf 
algebras from 9I(p(G» to ~(G)H, whence it is clear that p is surjective. 0 

2. Let F be a field, G a group, B a sub Hopf algebra of 9l F( G). By a B-represen­
tation of G, we mean a representation of G by linear automorphisms of a 
finite-dimensional F-space whose associated representative functions belong 
to B. Let K be a normal subgroup of G, and denote the restriction image of B 
in 9l~K) by BK • 

Proposition 2.1. In the above notation, suppose that every B-representation 
of G whose kernel contains K is semisimple, and that the tensor product of 
semisimple Brrepresentations of K is always semisimple. Then every B­
representation of G whose restriction to K is semisimple is semisimple also with 
respect to G. 

PROOF. Let V be a B-representation space for G that is semisimple as a 
representation space for K. Let W be a sub G-module of V, and let n denote 
the dimension of W. Consider the homogeneous component /\n(v) of the 
exterior F-algebra built over V, viewing it as a G-module in the usual way. 
Clearly, this is a B-representation space of G, and /\"(W) may be identified 
with a l-dimensional sub G-module of /\n(v) in the canonical fashion. 
For u in /\"(W) and x in G, we have x' u = f(x)u, wherefis a group homo­
morphism from G to F*, and fEB. Since /\"( V) is a homomorphic image of 
the n-th tensor power of V, our assumption on K implies that /\"(V) is semi­
simple as a K-module. It follows that there is a direct K-module decomposi­
tion 

/\,,(V) = P + Q, 

where P consists of all elements p such that x· p = f(x)p for every element 
x of K, and Q consists of all sums of elements of the form x· p - f(x)p 
with x in K and p in /\"(V). Using thatfis a group homomorphism from G 
to F* and that K is normal in G, one sees directly that both P and Q are 
actually sub G-modules of /\"(V). 

Now we define a new representation of G on P by setting 

x(P) = f(x- 1)x·p 

for every element x of G and every element p of P. Evidently, this is again a 
B-representation of G, and its kernel contains K. By assumption, it is there­
fore a semisimple representation. Therefore, the sub G-module /\"(W) of P 
has a G-module complement, R say, in P. However, the G stable subspaces 
of P for our new representation are clearly the same as those for the original 
representation. Thus, R is a sub G-module of P also with respect to the 
original representation. Let S = R + Q. Then S is a G-module complement 
for /\n(w)in /\"(V). 
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Let WI denote the sub F -space of V consisting of the elements v for which 
the exterior product v 1\/I-l(W) is contained in S. Since Sand 1\/I-l(W) 
are G-stable, so is WI' Now observe that S is of codimension 1 in I\/I(V), 
so that it is the space of zeros of some element II. of (1\"(V»o. The space 
1\/I-l(W) is of dimension n, and if (U1o"" U/I) is an F-basis for it then an 
element v of V belongs to WI if and only if J1.(VUj) = 0 for each i. This shows 
that, if m is the dimension of V, then the dimension of WI is at least m - n. 

Let WI be any non-zero element of W, and choose elements W2,"" W" 
such that (WI' ... , w/I)is an F-basis of W.Then W2'" W/I belongs to 1\/I-l(W), 
and WI ... W/I is a non-zero element of I\/I(W). This shows that WI does not 
belong to WI' and we have the conclusion that W n WI = (0). With the 
above, this implies that V is the direct sum of the sub G-modules Wand WI' 
Our conclusion is that every sub G-module of V has a G-module comple­
ment in V, which means that V is a semisimple G-module. 0 

Theorem 2.2. Let G be an arbitrary group, and let U and V be finite-dimensional 
semisimple representation spaces for G, over a field of characteristic O. Then 
the tensor product G-module U ® V is semisimple. 

PROOF. Let S denote the closure of the image of G in the affine algebraic 
group of all linear automorphisms of the direct sum U + V. Clearly, S 
stabilizes U and V, and the S-stable subspaces of U and V coincide with the 
G-stable subspaces. Moreover, the images of Sand G in the group of all 
linear automorphisms of U ® V have the same closure, so that the S-stable 
subspaces of U ® V coincide with the G-stable subspaces. Therefore, it 
suffices to prove the theorem for the S-modules U and V. Accordingly, we 
assume that G is an affine algebraic group, and that U and V are polynomial 
G-modules. 

Since G/G1 is finite and since our base field is of characteristic 0, every 
representation of G/G1 over our base field is semisimple. Therefore, it follows 
from Proposition 2.1 that no generality is lost in assuming that G is irreduc­
ible. In that case, we know from Corollary IV.3.2 that the G-stable subspaces 
of U, V and U ® V coincide with the 9'(G)-stable subspaces. 

Hence, it suffices to prove that if L is a Lie algebra over a field of charac­
teristic 0, and if U and V are finite-dimensional semisimple L-modules, then 
the tensor product L-module U ® V is semisimple. In doing this, we may 
evidently replace L with its image in End(U + V). Therefore, we assume 
that L is given as a Lie algebra oflinear endomorphisms of U + V stabilizing 
U and V. and that U + V is semisimple as an L-module. 

By Theorem VII.1.2, [L, L] is semisimple, L is the direct Lie algebra 
sum of [L, L] and its center, Z say, and every element of Z is a semisimple 
linear endomorphism of U + V. Appealing to Proposition V.1.2, we assume 
without loss of generality that our base field is algebraically closed. Then 
U and V are direct sums of I-dimensional Z-stable subspaces to each of 
which there corresponds an element II. of ZO such that every element z of Z 
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acts as the scalar multiplication by J.l(z) on that subspace. Adding together 
all those 1-dimensional Z-stable subspaces of U, or of V, for which the linear 
functions J.l coincide, we obtain direct L-module decompositions 

U = U 1 + ... + Up and V = VI + ... + v" 
such that Z acts on each U i via a certain element (1i of zo and on each Jj 
by a certain element tj of ZOo Now it suffices to show that each Ui ® Jj is 
semisimple as an L-module. Since Z acts on Ui ® Jj by scalar multiplications, 
the sub L-modules of Ui ® Jj coincide with the sub [L, L]-modules. Since 
[L, L] is semisimple, we know from Theorem VII.2.4 that Ui ® Jj is semi­
simple as an [L, L]-module. Therefore, Ui ® l'J is semisimple as an L­
module. 0 

• Let G be an algebraic group. A sub Lie algebra L of .!l'(G) is called an 
algebraic sub Lie algebra if there is an algebraic subgroup K of G such that 
L = .!l'(K). If the base field is of characteristic 0, there is an algebraic sub 
Lie algebra of .!l'(G) containing L and contained in every other such. This 
is .!l'(GL), where GL is the group of Theorem IV.2.2. We call it the algebraic 
hull of L in .!l'( G), and we denote it by L + • 

Let W be a polynomial G-module, and let U and V be subspaces of W 
such that U c V. The elements x of G with the property that x . v - v belongs 
to U for every element v of V evidently constitute an algebraic subgroup K 
of G.lfthe base field is of characteristic 0, it follows from Proposition 111.4.3 
and Theorem IV.3.1 that .!l'(K) consists precisely of those elements of !l'(G) 
which map V into U. Hence, if L is any sub Lie algebra of .!l'(G) that maps 
V into U then L + also maps V into U. 

Proposition 3.1. Let G be an affine algebraic group over a field of charac­
teristic 0, and let L be a sub Lie algebra of !l'(G). Then [L, L] = [L +, L +]. 

PROOF. Consider the adjoint representation of G on .!l'(G). In the above 
remark, let W = .!l'(G), V = Land U = [L, L]. The remark shows that 
[L +, L] c [L, L]. Now apply the remark again, with V = L +. This gives 
[L +,L +] c [L,L]. 0 

Theorem 3.2. Let G be an affine algebraic group over afield of characteristic 0. 
Every semisimple sub Lie algebra of !l'( G) is an algebraic sub Lie algebra. 

PROOF. Let L be a semisimple sub Lie algebra of .!l'( G). By Theorem VII.2.4, 
~ G) is semisimple as an L-module. By the remark just preceding Proposition 
3.1, the sub L-modules of ~(G)coincide with the sub L + -modules. Therefore, 
~(G) is semisimple as an L + -module. In particular, if V is a finite-dimensional 
sub G-module of 9'(G) generating 9'(G) as an algebra, then the representation 
of L + on V is injective and semisimple. By Theorem VII. 1.2, L + is therefore 
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the direct sum of its center, Z say, and [L +, L +]. By Proposition 3.1, we 
have [L +, L +] = [L, L]. Since L is semisimple, we have [L, L] = L. Thus 
L + is the direct sum of L and Z, so that it suffices to prove that Z = (0). 

Let F' be an algebraic closure ofthe base field F, and let us make the canon­
ical base field extension, replacing G with t6(fP(G) ® F'). This replaces 
!l'(G) with !l'(G) ® F', and we consider the sub Lie algebra L ® F'. It is 
clear from Theorem VI1.2.1 that L ® F' is a semisimple Lie algebra. Its 
algebraic hull in !R(G) ® F' is L + ® F'. The direct decomposition of L + 

has now become the direct decomposition of L + ® F' as the direct sum of 
its center, Z ® F', and L ® F'. It is clear from this that we do not lose gen­
erality in assuming that F is algebraically closed. 

In this case, let z be an element of Z, let r be a characteristic root of the 
element of End,.{V) corresponding to z, and let v,. be the corresponding 
characteristic subspace of V. Evidently, this is stable under the action of L +. 
Let (Vh"" v,,) be an F-basis of v,., and consider the exterior product VI' .. V" 
in the polynomial G-module I\"(V). The transform by the endomorphism 
corresponding to z is 

Z • (VI' .. V,,) = TYr(Z)vI ... V" = (dr)VI ... V", 

where T stands for trace. On the other hand, the sub F-space of I\"(V) 
spanned by VI ... V" is L-stable. Since L = [L, L], it is therefore annihilated 
by L. It follows that it is annihilated also by L +. Therefore, we must have 
r = O. Thus, 0 is the only characteristic root of the endomorphism of V 
that corresponds to z. On the other hand, we know from Theorem VII.1.2 
that this endomorphism is semisimple. Therefore, this endomorphism is 0, 
whence z = O. 0 

Theorem 3.3. Let F be a field of characteristic 0, and let G be an irreducible 
affine algebraic F-group. Let [G, G]+ denote the closure in G of[G, G]. Then 
[!l'(G), !l'(G)] = !R([G, G]+). 

PROOF. First, we deal with the case where F is algebraically closed. By Theorem 
VII.3.l, applied to the canonical homomorphism from !l'(G) to !l'(G)/!R(G)r' 
there is a semisimple sub Lie algebra S of !l'(G) such that !l'(G) is the semi­
direct Lie algebra sum of !l'(G)r and S. Hence we have a semidirect sum 
decomposition 

[!l'(G), !l'(G)] = T + S, where T = [!l'(G), !l'(G)rJ. 

It follows from Theorem VII.3.2 that T is locally nilpotent on fP(G). By 
Theorem 1.1, T is therefore an algebraic sub Lie algebra of !R( G). By Theorem 
3.2, S is an algebraic sub Lie algebra of !l'(G). 

Thus, we have S = !l'(Gs) and T = !l'(GT). Since T is an ideal of !l'(G), 
we know from Theorem IV.4.4 that GT is normal in G. Therefore, GTGS 

is a subgroup of G. Since F is algebraically closed, we may apply Theorem 
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11.4.1 and conclude that GTGS is an irreducible algebraic subgroup of G. 
Since it is the image of GT x Gs by the morphism of affine algebraic sets 
coming from the composition of G, its dimension is at most 

dim(GT x Gs) = dim(T) + dimeS). 

Clearly, T + S c !l'(GTGS)' Hence, our dimension inequality shows that 
T + S = !l'(GTGS)' i.e., 

[9'(G), 9'(G)] = 9'(GTGS)' 

In particular, [9'(G), 9'(G)] is an algebraic sub Lie algebra of 9'(G), and 
so coincides with !l'(G[.2"(G),.2"(G)~' 

As above for T, we know that G[.2"(G), .2"(G)) is normal in G. It follows from 
Theorem III.3.3 and Theorem IV.2.3 that the differential of the canonical 
morphism from G to G/G[.2"(G),.2"(G)) induces a Lie algebra isomorphism from 
!l'(G)/[!l'(G), !l'(G)] to the Lie algebra of G/G[.2"(G),.2"(G))' Hence, we have 
from Theorem IV.4.3 that G/G[.2"(G),.2"(G)) is abelian, which means that 
[G, G] is contained in G[.2"(G),.2"(G)]' By Theorem 11.4.1, [G, G] is an irreduc­
ible algebraic subgroup of G. The last i~clusion relation implies that 

!l'([G, G]) c [!l'(G),9'(G)]. 

On the other hand, since G/[G, G] is abelian, so is its Lie algebra. This Lie 
algebra is the image of !l'( G) under the differential of the canonical morphism 
from G to G/[G, G], whose kernel is 9'([G, G]). Therefore, we have 

[9'(G),9'(G)] c 9'([G, G]). 

With the above, this gives [9'(G), 9'(G)] = 9'([G, G]). 

If F is not algebraically closed, let F' be an algebraic closure of F, and let 
G' = f§(~G) ® F'). From the above, we know that 

9'([G', G']) = [9'(G'), !l'(G')] = [9'(G), 9'(G)] ® F'. 

Clearly, ([G, G]+)' c [G', G']. On the other hand, !JI(G)[G, G] ® F' is a Hopf 
algebra whose comultiplication is commutative, whence the restriction 
image of [G', G'] in f§(!JI(G)[G, G] ® F') is trivial. It follows that 9'([G', G']) 
is contained in the kernel of the representation of 9'(G') on !JI(G)[G,G] ® F'. 
By Proposition IV.S.2, the kernel of the representation of 9'(G) on !JI(G'jG,G] 
is the Lie algebra ofthe element-wise fixer of !JI(G)[G, G] in G, i.e., of [G, G]+. 
It follows that the kernel of the representation of !l'(G') on !JI(G)[G, G) ® F' 
is 9'([G, Gr) ® F'. Thus, we have 9'([G', G']) c 9'([G, G]+) ® F'. The 
reversed inclusion holds because ([G, G]+)' c [G', G']. Therefore, our 
conclusion is that 

!l'([G, G]+) ® F' = [9'(G), !l'(G)] ® F', 

which clearly yields the conclusion of the theorem. o 
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Theorem 3.4. Let F be afield of characteristic 0, and let G be an affine algebraic 
F-group. Let U and V be irreducible algebraic subgroups of G, and let W be 
the closure in G of the subgroup generated by U and V. Then ..<l'(W) coincides 
with the sub Lie algebra of ..<l'(G) that is generated by ..<l'(U) and ..<l'(V). 

PROOF. First, we deal with the case where F is algebraically closed. In this 
case, we know from Theorem 11.4.1 that W is the group generated by U 
and V. Let S denote the sub Lie algebra of ..<l'(G) that is generated by ..<l'(U) 
and ..<l'(V). It is easy to see that we must have Gs = W, so that S+ = ..<l'(W). 
By Proposition 3.1, we have therefore [S, S] = [..<l'(W), ..<l'(W)]. By Theorem 
11.4.1, [w, W] is an irreducible algebraic subgroup of G, so that Theorem 3.3 
gives [..<l'(W), ..<l'(W)] = ..<l'([W, W]). Thus, [S, S] = ..<l'([W, W]). 

Now let n denote the canonical morphism from W to W /[W, W], and let 
p: U x V -+ W be the polynomial map sending each (u, v) onto the product 
uv in W. Put (J = n 0 p. Then q is a surjective morphism of affine algebraic 
F-groups from U x V to W/[W, w]. By Theorem 111.3.3, the differential 
q. is surjective from ..<l'(U x V) to ..<l'(W/[W, W]). Since ..<l'(U x V) is the 
direct sum of the canonical images of ..<l'(U) and ..<l'(V), we have 

..<l'(W /[W, W]) = q·(..<l'(U x V» = n·(..<l'(U» + n·(..<l'(V». 

By Theorem IV.2.3, the kernel of n· is ..<l'([W, W]) = [S, S]. Hence, the above 
shows that 

..<l'(U) + ..<l'(V) + [S, S] = ..<l'(W). 

Evidently, the sum on the left coincides with S, so that we have the required 
result in the case where F is algebraically closed. 

In the general case, let F' be an algebraic closure of F, and put 

G' = ~(&(G) ® F'), 

etc. Then W' is the subgroup of G' that is generated by U' and V'. By the 
above, the sub Lie algebra of ..<l'(G') that is generated by ..<l'(U') and ..<l'(V') 
coincides with ..<l'(W'). This means that S ® F' coincides with ..<l'(W) ® F', 
so that S = ..<l'(W). 0 

If G is an algebraic group, and L is a sub Lie algebra of ..<l'(G), then we 
say that L is a linearly reductive sub Lie algebra of ..<l'( G) if every polynomial 
G-module is semisimple as an L-module. In characteristic 0, this condition 
is equivalent to the condition that GL be linearly r~ductive, as is easily seen 
from the discussion immediately preceding Proposition 3.1. It follows that, 
if L is linearly reductive, so is L +. 

Theorem 3.5. Let F be afield of characteristic 0, and let G be an affine algebraic 
F-group. There is a linearly reductive algebraic sub Lie algebra T of ..<l'(G) 
such that ..<l'(G) = ..<l'(G,,) + T. 
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PROOF. We know from Theorem VI1.3.1 that there is a semisimple sub Lie 
algebra S of 9'(G) such that 9'(G)r + S = 9'(G). By Theorem Vll2.4, S 
is linearly reductive. Among the linearly reductive sub Lie algebras of 9'(G) 
containing S, choose a maximal one, T say. Since the adjoint representation 
of 9'(G) on 9'(G) is the differential of the adjoint representation of G on 
9'(G), we have that !l'(G) is semisimple as a T-module, with respect to the 
restriction of the adjoint representation. Clearly, 9'(GJ and 9'(G)r are sub 
T-modules of !l'(G), and 9'(Gu) c 9'(G)r' Hence, !l'(Gu) has aT-module 
complement, P say, in !l'(G)r' By Theorem VII.3.2, [9'(G), !l'(G)r] is locally 
nilpotent on ~(G). By Theorem 1.1, this implies that G[Z(G),Z(G)rl is uni­
potent. Since [9'(G), !l'(G)r] is an ideal of 9'(G), this group is also normal 
in G, and hence is contained in Gu • Therefore, [9'(G), 9'(G)r] is contained 
in !l'(Gu). In particular, it follows that [T, P] = (0). The maximality of T 
implies that T is an algebraic sub Lie algebra of !l'( G). 

Evidently, it suffices to show that 9'(G)r = 9'(GJ + 9'(G)r n T. Suppose 
this is not the case. Then there is an element a in P that does not belong to 
9'(GJ + T. By Theorem V.2.3, the semisimple and nilpotent components 
als) and al") belong to 9'(G)r, because 9'(G)r is an algebraic sub Lie algebra 
of !l'(G), as one sees easily from the remark just preceding Proposition 3.1. 
Since [9'(G), 9'(G)r] c 9'(GJ, it is clear that 9'(GJ + Fa(n) is an ideal of 
!l'(G). Since it is locally nilpotent on ~G), it must therefore coincide with 
9'(GJ, by the same argument we used just above for [9'(G), 9'(G)r]. This 
means that a(lI) belongs to !l'(GJ. Since a does not belong to !l'(GJ + T, 
it follows that als) does not belong to T. 

Since [a, T] = (0), a[ commutes with 't[ for every element 't of T. There­
fore, the same is true for o1B). It follows that T + Fa(S) is a sub Lie algebra, 
U say, of 9'(G), and that ~(G) is semisimple as a U-module. Thus, U is a 
linearly reductive sub Lie algebra of 9'( G), in contradiction to the maximality 
~T. 0 

4. Now we are in a position to establish the basic semidirect product decom­
position for affine algebraic groups over a field of characteristic O. This is a 
substantial extension of Theorem VI.3.2, and it is obtained by strengthening 
the auxiliary results that entered into the proof of that theorem with the 
aid of Lie algebras. 

Lemma 4.1. Let G be a linearly reductive algebraic group, and let V be a 
finite-dimensional polynomial G-module. Then every polynomial cocycle for 
G in V is a coboundary. 

PROOF. We proceed in exact analogy with the proof of Corollary VII.2.S. 
Letfbe a polynomial cocycle for G in V. and let F denote the base field. We 
define an action of G on the direct sum V + F by 

x . (v, a) = (af(x) + x . v, a), 
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where x E G, v E V and a E F. This is a G-module structure by virtue of the 
cocycle identity, whence it is clear that V + F thus becomes a polynomial 
G-module containing V as a sub G-module. Since G is linearly reductive, 
there is a G-module complement for V in V + F. Let v be the element of V 
such that (v, 1) lies in this complement. Then we must havef(x) + X· v = v, 
because the action of G on the complement of V is trivial. This shows that f 
is a coboundary. D 

Proposition 4.2. Let G be an algebraic group over the field F of characteristic 
0, and suppose that there is a linearly reductive subgroup P of G such that 
GuP = G. Let Q be any linearly reductive subgroup of G. Then there is an 
element t in Gu such that tQt- 1 c P. 

PROOF. By Theorem V.4.2, P is an algebraic subgroup of G, and G is the 
semidirect product Gu><l P. If Gu is trivial, there is nothing to prove. If 
Gu is non-trivial, then the center of Gu is non-trivial, because Gu is nilpotent. 
Let C denote this center. We know from Theorem 1.3 that C is properly 
normal in Gu, in the sense of the beginning of Section V.4. From the semi­
direct product decomposition of G, it is clear that C is therefore properly 
normal in G, and that G/C is identifiable with the semidirect product 
(GJC) ><I P. Assuming that the proposition has been established in the 
cases of lower-dimensional Gu, we obtain an element s in Gu such that 
SQS-l c C><I P. Thus, proceeding by induction on the dimension of Gu, 
we reduce the proposition to the case where Gu is abelian. 

In that case, we know from Proposition VI.S.4 that Gu is an algebraic 
vector F -group. Let f denote the restriction to Q of the projection G -+ Gu 
coming from our semidirect product decomposition. Then we see directly 
that 

f(xy) = f(x)xf(y)x- 1• 

Replacing Q with its closure in G, we arrange that Q is an algebraic subgroup 
of G. Writing Gu additively and viewing it as a polynomial Q-module, with Q 
acting by conjugation, we see that the above identity means thatfis a cocycle 
for Q in Gu. Evidently, f is a polynomial map. By Lemma 4.1, it follows that 
there is an element tin Gu such thatf(x) = xtx- 1t- 1 for every x in Q. This 
gives txt- 1 EP, so that tQt- 1 c P. D 

Theorem 4.3. Let F be afield of characteristic 0, and let G be an affine algebraic 
F-group. There is a linearly reductive algebraic subgroup P ofG such that G 
is the semidirect product Gu><l P. If Q is any linearly reductive subgroup of G, 
there is an element t in Gu such that tQt -1 C P. 

PROOF. In view of Theorem V.4.2 and Proposition 4.2, all that remains to 
be proved is that there is a linearly reductive subgroup P of G such that 
G = GuP. First, we do this in the case where G is irreducible. 
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By Theorem 3.5, there is a linearly reductive algebraic sub Lie algebra 
T of !.t(G) such that !.t(G) = !.t(GJ + T. Consider the corresponding 
irreducible algebraic subgroup GT of G. By Corollary IV.3.2, GT is linearly 
reductive. The Lie algebra of the closure (GuGT)+ of GuGT in G contains 
!.t(G .. ) and T, and therefore coincides with !l'(G). Since G is irreducible, we 
have therefore (GuGT)+ = G. We shall prove that, actually, GuGT = G. 

In order to do this, we extend the base field F to an algebraic closure 
F' of F. We write G' for ~([P(G) ® F'), etc., and we identify G with its canon­
ical image in G'. Now (G .. )'{GT)' is an algebraic subgroup of G' containing 
GuGT , so that (GJ'(G'J!)' = G'. Let 1: denote the Galois group of F' relative 
to F. We let 1: act on [P(G) ® F' via the tensor factor F', and we identify 
the elements of 1: with the corresponding F -algebra automorphisms of 
[P(G) ® F'. It is then clear that an element x of G' belongs to G if and only 
if (loX 0 (1- 1 = x for every element (I of 1:. 

Let x be an element of G, and write x = yz with y in (Gu)' and Z in (GT)'. 

Then we have 

whence 

y-1«(lo yo (1-1) = z«(lo Zo (1-1)-1. 

In the second relation, the element on the left belongs to (GJ', while that on 
the right belongs to (GT)'. Thus, each belongs to (GJ' () (GT)" which is 
trivial, because it is both linearly reductive and unipotent. Our conclusion 
is that y = (loy 0 (1-1 and Z = (10 Z 0 (1-1, so that y belongs to 

(GJ' () G = Gu , 

and Z belongs to (GT), () G = GT • Thus, G = GuGT , so that the theorem 
is established in the case where G is irreducible. 

In the general case, we proceed by induction on the dimension of Gu • 

lf Gil is trivial, then we know from what we have just proved that G1 is 
linearly reductive. This implies that [peG) is semisimple as a G1-module. 
Since G/G1 is finite and F is of characteristic 0, every G/G1-module over F 
is semisimple. Hence, we can apply Proposition 2.1 and conclude that [peG) 
is semisimple as a G-module, i.e., that G is linearly reductive. 

Now suppose that Gu is non-trivial, and that the theorem has been 
established in the cases of lower-dimensional Gu • Let C denote the center 
of G ... From the proof of Proposition 4.2, we know that C is properly normal 
in G1• Since C is normal in G, it is clear from Theorem 11.2.3 that C is therefore 
properly normal also in G. By inductive hypothesis, there is a linearly 
reductive algebraic subgroup L of G/C such that G/C is the semidirect 
product (G..IC)~L. On the other hand, by what we have already proved, 
there is a linearly reductive algebraic subgroup P of G1 such that 

G1 = Gu~P. 
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The canonical image of P in G/C is a linearly reductive subgroup of G/C. 
By Proposition 4.2, it is contained in a conjugate of L. Therefore, we may 
choose L so that it contains the canonical image of P. Now we have 

(GJC)L 1 = (G/C)l = G1/C = (GJc)«CP)/c), 

which shows that Ll coincides with the canonical image (CP)/C of P. 
Moreover, it is clear from the semidirect product decompositions of G1 

and G/C that the canonical map from P to Ll is an isomorphism of algebraic 
groups. 

Let M denote the inverse image of Lin G, so that M/C = Land 

M 1/C = L 1• 

Make a coset decomposition L = u~= 1 x,L 1, choosing Xl to be the neutral 
element. For each i, choose an element Y, in M whose canonical image in 
L is X" taking the neutral element of M for Yl. Define the map p: L -+ M 
by making the restriction of P to Ll the inverse of the canonical isomorphism 
P -+ Ll and setting P(X,U) = YiP(U) for every element U of L 1• Then P is 
clearly a polynomial map, and the composite of P with the canonical map 
M -+ L is the identity map on L. 

We obtain the structure of a polynomial L-module on the algebraic 
vector F -group C by defining the transform of an element c of C by an 
element X of L to be 

x·V = p(x)Cp(X)-l, 

noting that P is a group homomorphism mod C, so that the map sending 
each X onto the conjugation of C effected by p(x) is indeed a group homo­
morphism. Finally, define a map/from L x L to C by 

I(x, y) = p(x)p(y)p(xYr 1. 

Writing this in the form p(x)p(y) = I(x, y)p(xy), we see from the associa­
tivity of the group composition of M that I satisfies the identity 

(x· 1(Y, z»/(x, yz) = I(x, y)/(xy, z). 

For each fixed X in L, let fx denote the map from L to C given by 
fx(y) = I(x, y). Then the above identity may be written in the form 

(x· 1,(z»/"{yz) = I(x, y)/x,(Z). 

Now write C additively, and identify the elements c of C with the constant 
maps from L to C with values c. Then the last identity may be written as an 
identity among maps from L to C, as follows 

X· J, + Ix· Y = I(x,y) + lx" 

where the left and right transforms x . hand h . x of a map h from L to C 
by an element x of L are defined by 

(x· hXz) = X· h(z) and (h· xXz) = h(xz). 
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All the maps involved above are polynomial maps, and therefore may 
be viewed as elements of C ® &J(L). Since L is linearly reductive, &J(L) 
is semisimple as a right L-module. Hence, there is a right L-module pro­
jection n from &J(L) to &J(Ll = F. Define the map g from L to C by 

g(x) = (ic ® n)(fJC)' 

If we apply ic ® n to our above identity for f, we obtain 

x . g(y) + g(x) = f(x, y) + g(xy). 

Reverting to the multiplicative notation, we have 

(x· g(y»g(x) = f(x, y)g(xy). 

This shows that if h is the map from L to M defined by 

hex) = g(X)-lp(X) 

then h is a group homomorphism. Clearly, the composite of h with the 
canonical map M -+ L is the identity map on L. Moreover, h is evidently 
a polynomial map, and so is a morphism of algebraic groups. We have 
M = Ch(L), and h(L) is linearly reductive as a subgroup of G. Since 

(GjC)L = GIC, 

we have GuM = G, i.e., Guh(L) = G. o 
Theorem 4.4. Let p: G -+ H be a morphism of algebraic groups over a field 
of characteristic O. Suppose that peG) is dense in H. Then p(Gu) = Hu' 

PROOF. Clearly, p(Gu) is a normal unipotent subgroup of H, so that 

p(Gu) c H u • 

Let L denote the inverse image of Hu in G. Then L is a normal algebraic 
subgroup of G containing Gu, whence Lu = Gu. By Theorem 4.3, there is a 
linearly reductive subgroup P of L such that L = GuP. Now pCP) is a linearly 
reductive subgroup of H, and pCP) c Hu' Therefore, pep) is trivial, so that 
p(L) = p(Gu). Since peG) is dense in H, we know from Theorem 111.3.3 
that p·(.!e(G» = .!e(H). The inverse image of .!e(Hu) in .!e(G) is .!e(L), and 
p·(.!e(L» = p·(.!e(Gu», because peL) = p(Gu). Hence, we have 

p"(.!R(Gu» = .!e(H u)' 

Now we apply Theorem t. t. obtaining 

Hu = exp(.!e(Hu» = exp(p·(.!e(Gu») = p(exp(.!e(Gu») = p(Gu)· 0 

Notes 

1. In order to see how Theorem 2.2 can fail in non-zero characteristic, 
consider the following example. Let F be a field of non-zero characteristic 
p, and let V be an F -space of dimension p. Let J be the kernel of the canon-
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ical map from ®P(V) to the 1-dimensional space /V(V). Let G be the group 
of all F-linear automorphisms of V, and regard ®P(V) and /\P(V) as G­
modules in the canonical fashion, so that the canonical map is a morphism 
of G-modules. Now one can show that J has no G-module complement in 
®P(V), as follows. 

Suppose that U is a G-module complement of J in ®P(V). Then, as a 
G-module, U is isomorphic with /\P(V). Therefore, every element x of G 
acts on U as the scalar multiplication by the determinant det(x) of x. Let 
(VI' •• • , vp) be an F-basis of V, and let S be the subgroup of G consisting 
of the elements that stabilize our basis. By writing VI ® ... ® vp as the sum 
of an element of U and an element of J, one sees that 

L det(x)x . (VI ® ... ® vp) = 0, 
xeS 

which is clearly a contradiction. 

2. Theorem 4.3 is due to G. D. Mostow [to]. Note that, in the above example, 
Gu is trivial, showing that Theorem 4.3 fails in non-zero characteristic. 

3. Regarding the conjugacy part of Theorem 4.3, if F is algebraically closed, 
one can show, as in the proof of Theorem VI.3.2, that t may be chosen 
from G;:'. Actually, this holds even if F is not algebraically closed, but the 
proof then requires more information on the exponential map than we 
have at this point (the Campbell-Hausdorff formula). 

4. Let G be an affine algebraic group over a field of characteristic 0, and let 
U be a normal unipotent algebraic subgroup of G. It follows from Theorems 
4.3 and 1.3 that U is properly normal in G, in the sense of Section VA, and 
that there is a polynomial map from GjU to G whose composite with the 
canonical map from G to GjU is the identity map on GjU. 



Chapter IX 

Algebraic Varieties 

This chapter is devoted entirely to basic concepts of algebraic geometry. 
The point of view adopted is that an algebraic variety is a topological space, 
equipped with a superstructure of functions. Section 1 introduces pre­
varieties, a preliminary notion slightly more general than that of a variety, 
which is convenient for developing the basic technical results concerning 
varieties. Section 2 is devoted to products of prevarieties and the notion of a 
variety. 

In Section 3, we discuss projective varieties, which are fundamental for 
algebraic group theory, because all the varieties that occur are open sub­
varieties of projective varieties. The most important example of a projective 
variety, the Grassmann variety of d-dimensional subspaces of an n-dimen­
sional vector space, is introduced in Section 4. This plays a vital role later 
on, in the theory of Borel subgroups. 

Section 5 deals with the notion of completeness of a variety. In particular, 
it is shown here that projective varieties are complete. As in all subsequent 
applications, it is assumed here that the base field is algebraically closed. 
In the interest of technical clarity, this assumption is made explicitly wherever 
it is meant to be in force. 

1. Let S be a topological space, F a field. A sheaf of F -valued functions on S 
is a function fF s associating with each non-empty open set U of S a sub 
F-algebra fF s(U) of the F-algebra FU of all F-valued functions on U, subject 
to the following conditions, where we agree that fF s(0) = (OF) and coincides 
with the restriction image of every fF s(U). 

(1) If U and V are open sets with U c: V then the restrictions to U ofthe 
elements of fF s(V) belong to fF s(U). 

122 
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(2) Let "Y be a family of open sets of S. Suppose that, for each member V 
of "Y, there is given an element fy of IF S<V) such that the restriction 
images of fy, and fVl in IF S<V1 n V2) coincide, for all pairs (V .. V2) of 
members of "Y. Then the function, with domain the union of the family 
"Y, that is defined by the fy's belongs to IF s<u ("Y». 

If T is any subspace of S then the restriction maps yield a sheaf offunctions 
on T, from IF s. The resulting 1FT is called the induced sheaf. 

For our purposes, the basic example of a sheaf of functions is the sheaf 
of regular jUnctions of an irreducible affine algebraic F -set. This is defined 
as follows. 

Let S be an irreducible affine algebraic F -set, and let [9'(S)] denote the 
field of fractions of the F-algebra 9'(S) of polynomial functions on S. We say 
that an element f of [9'(S)] is defined at a point s of S if there are elements 
u and v of 9'(S) such thatf = u/v and v(s) =F 0.1f (u', v') is another such pair 
of elements of 9'(S) we have v'u = vu' and hence u(s)/v(s) = u'(s)/v'(s). Thus, 
if f is defined at s, then it determines an element f(s) of F, where 

f(s) = u(s)/v(s), 

whenever f = u/v and v(s) = O. This defines f as a rational function on S. 
One says thatfis regular on a subset U of S iff is defined at every point of U. 

Now we define IF s by making IF s< U) the F -algebra of the restrictions 
to U of the rational functions that are regular on U. It is evident that sheaf 
condition (1) is satisfied. In order to verify (2), consider two non-empty 
open sets V1 and V2 of S, and elementsfy, andfY2 of IF S(V1) and IF S<V2) whose 
restrictions to V1 n V2 coincide. Choose u .. V1 and U2, V2 from 9'(S) such 
that fy, = U1/V1 and fYl = U2/V2. For i = 1 or 2, let PI be the set of non­
zeros of VI in S. Then, since S is irreducible, P 1 n P 2 n V1 n V2 is a non-empty 
open set of S, and we have U1 (S)/U2(S) = UiS)/V2(S) for every point s in this 
set. Therefore U1 V2 - U2 V1 vanishes on this non-empty open set of S, whence 
it is 0, so that U1/V1 = U2/V2. This means that fv, and fYl are represented 
by the same element of [9'(S)]. It is clear from this that, if (fy) is a family 
of functions as described in sheaf condition (2), then there is an element of 
[9'(S)] that represents each member fy, showing that condition (2) is satisfied. 

The space S, equipped with the sheaf IF s just defined, is called an irre­
ducible affine F-variety. 

Definition 1.1. An irreducible prevariety over the field F is an irreducible 
Noetherian topological space S, equipped with a sheaf IF s ofF-valued functions 
satisfying the following condition: S is the union of a finite family of open sets, 
called affine patches, each of which is an irreducible affine F -variety, with 
the sheaf induced by IF s as the sheaf of regular functions. 

By a prevariety is meant a Noetherian topological space S, equipped with 
a sheaf IF s of functions such that each irreducible component of S becomes 
an irreducible prevariety when equipped with the induced sheaf of functions. 
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Clearly, if S is a Noetherian topological space, and if each irreducible 
component S, of S is equipped with the structure of an irreducible prevariety 
such that, on each S,n Si' the sheaves induced by fFsl and fFsJ coincide, 
then the fF s, 's fit together so as to yield a sheaf fF s of functions on S with 
which S is a prevariety. 

An irreducible closed subset of an irreducible affine variety clearly 
inherits the structure of an irreducible affine variety, the sheaf of regular 
functions being the induced sheaf. It is easy to see from this that a closed 
subset of a prevariety becomes a prevariety when equipped with the induced 
sheaf. It is called a closed sub prevariety. 

Let S be an irreducible affine variety, and let a be a non-zero element of 
~(S). We denote the set of non-zeros of a in S by Sa, and we call this the 
principal open set defined bya. Now form the sub F-algebra ~(S)[l/a] of 
[9I'(S)]. Like 9I'(S), this is a finitely generated integral domain F -algebra, 
and it is clear that Sa has the structure of an irreducible affine F-variety, 
with 9I'(Sa) = 9I'(S)[l/a], and fF s. coinciding with the sheaf induced by fF s. 

Now consider an arbitrary non-empty open subset U of S. Let J be the 
annihilator in 9I'(S) of S \ U, and let (al> ... , all) be a system of ideal gener­
ators of J. Then we have 

U = Sal U ••• uSa". 

By the above, each Sa, becomes an irreducible affine variety when equipped 
with the sheaf induced by fF s. Therefore, the sheaf induced on U by fF s 
makes U into an irreducible prevariety, the Sa,'s being affine patches. 

It follows that every open subset of a prevariety becomes a prevariety 
when equipped with the induced sheaf. This is called an open sub prevariety. 
Putting this result together with the one above concerning closed subsets, 
we see that if S is a prevariety, T a closed subset of S and U an open subset 
of S, then the induced sheaf makes Tn U into a prevariety. Sets like Tn U 
are called locally closed subsets. A union of a finite family of locally closed 
subsets is called a constructible subset. This is still a prevariety, when equipped 
with the induced sheaf. 

If U is a non-empty open subset of the irreducible affine variety S, then the 
rational functions on U, each with its maximum possible domain, constitute 
a field that is isomorphic, in the evident way, with [9I'(S)]. This is called the 
field of rational functions ofU. For every such U, this field is isomorphic, via 
restriction, with the field of rational functions of S. 

Proposition 1.2. Let S be an irreducible affine variety over an algebraically 
closed field F. The rational functions that are regular on all of S are precisely 
the elements of 9I'(S), i.e., fF I,.S) = 9I'(S). 

PROOF. Letfbe a rational function that is regular on all of S, and let JIbe the 
ideal of all elements v of 9I'(S) such that vfbelongs to 9I'(S). The assumption 
on f means that J I has no zero in S. Since F is algebraically closed, this 
implies that J I = 9I'(S), which means thatfbelongs to 9I'(S). 0 
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If S and Tare prevarieties then a morphism of prevarieties from S to T is a 
continuous map (J from S to T such that, for every open set V of T, one has 
, :r<V) 0 (J C , ,,(J-l(V». In general terms, this condition is that (J be a 
morphism of sheaves. 

Proposition 1.3. Suppose that (J is a map from a prevariety S to a prevariety T 
satisfying the following condition. There are open sets U h ..• , U 11 of S and 
VI, ... , v,. of T such that S is the union of the U /s and T is the union of the 
Jij's, u(Ui) C Jij, each Jij is an affine patch ofT, and the restrictions to U,ofthe 
elements of' :r<V;} 0 (J belong to , s(U ,). Then (J is a morphism of prevarieties. 

PROOF. Each U i is the union of a finite family of affine patches. Not requiring 
that the Jij's be mutually distinct, we enlarge the index set so as to achieve 
that each new U, is an affine patch. 

Let (J, denote the restriction of (J to Ui> regarding it as a map from the 
irreducible affine variety U, to the irreducible affine variety J'i. By assumption, 
we have ':r<Jij) 0 (Ji C ,,,Ui)' In particular, iffis an element of 9i'(J'i), and 
if x is a point of U, such thatf«(J~x»::F 0, then we may writef 0 (Ji = alb, 
where a and b are elements of ~(Ui) not vanishing at x. The set of non-zeros 
of ab in Ui is open, contains x and is mapped by (J, into the set of non-zeros 
offin V;. It is clear from this that (J, is continuous. Since the J'i's constitute 
an open covering of T, it follows that (J is continuous. 

Moreover, if V is any open set of T, we may represent the elements of 
!F:r<V fI V;) by fractions formed from elements of 9i'(V;). Using that 

~(V;) 0 (J, c !F "Ui), 

we conclude that the restrictions to Ui fI (J-l(V fI Jij) of the elements of 
':r<V fI V;) 0 (J belong to , "U, fI (J-l(V fI V;». Since 

(J-l(V) fI Ui C (J-l(V fI V;), 

this says that the restrictions to (J-l(V) fI Ui of the elements of 

!F:r<V fI V;) 0 (J 

belong to !F ,,(J-l(V) fI Ui)' Now it follows from sheaf condition (2) that 
!F :r<V) 0 (J C !F S<(J-l(V». D 

2. We construct direct products of prevarieties as follows. First, let us 
consider irreducible prevarieties Rand S. If U is an affine patch of R and V 
is an affine patch of S, then the direct product in the category of affine alge­
braic sets gives us the structure of an irreducible affine variety on U x V. 
If P is an open subset of this irreducible affine variety, then P is called an 
elementary open subset of R x S. 

If A is an open subset of U and B is an open subset of V, then (U \ A) x V 
and U x (V \ B) are closed subsets of U x V, and their union is 

(U x V) \ (A x B), 
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so that A x B is open in U x V. It follows that, if Y is open in R and Z is 
open in S, then P () (Y x Z) is open in U x V, and thus is an elementary 
open subset of R x S. If we choose Y and Z to be affine patches, we see 
from this that the intersection of a pair of elementary open subsets of R x S 
is again an elementary open subset of R x S. Therefore, we obtain a topology 
on R x S by defining the open sets to be the unions of families of elementary 
open subsets. It is easy to see that this makes R x S into a Noetherian 
topological space. Moreover, if the sets Y and Z above are non-empty, then 
P () (Y x Z) is non-empty for every non-empty elementary open subset P. 
Hence, the intersection of every pair of non-empty open sets of R x S is 
non-empty, so that R x S is irreducible. 

Now we define a sheaf 'RXS of functions on R x S as follows. Let X be 
an open subset of R x S. Then we make a function / on X an element of 
, R x s(l() if and only if, for every pair (U, V) as above, the restriction of/to 
X () (U x V) belongs to 'uxy{X () (U x V». The verification of the sheaf 
conditions involves no difficulties. If R is written as the union of a finite 
family of affine patches U, and if S is written as the union of a finite family 
of affine patches V, then R x S is the union of the family of products U x V, 
each of which is open in R x S, and is an irreducible affine variety. Thus, 
R x S is an irreducible prevariety, the U x V's being affine patches. 

We verify that the categorical requirements for a direct product are 
satisfied. Denote the projections from R x S to R and S by p and (1. Since 
the projections of a product of irreducible affine varieties are morphisms of 
affine algebraic sets and hence of prevarieties, an evident application of 
Proposition 1.3 shows that p and (1 are morphisms of prevarieties. Now let 
T be a prevariety, and let IX and fJ be prevariety morphisms from T to Rand 
S. We must show that the map IX x fJ from T to R x S, where 

(IX x fJ)(t) = (tx{t), fJ(t» 

is a morphism of prevarieties. In the case where R, Sand T are all irreducible 
affine varieties, we know this from the corresponding fact in the category of 
affine algebraic sets. The general case follows from an evident application of 
Proposition 1.3. 

If Rand S are general, not necessarily irreducible prevarieties, let 
R1, ••• , Rp and Sh"" Sq be the irreducible components of Rand S. We 
define a topology on R x S by declaring a subset X to be open if and only if 

X () (R, x Sj), 

is open in R, x Sj for all i andj. We define a sheaf of functions on R x S by 
making a function on an open set X an element of' R xS<x) if and only if 
its restriction to each X () (R; x Sj) belongs to , Rc xSJ(X () (R, x SJ». 
clearly, this makes R x S into a prevariety satisfying the requirements 
for a direct product in the category of prevarieties. 

A variety is a prevariety R with the property that the diagonal, «r, r»r&R' 
is closed in R x R. The significance of this restriction becomes clear with 
the following proposition. 
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Proposition 2.1. A prevariety R is a variety if and only ifit satisfies thefollowing 
condition. For every pair (p, 0') ofmorphismsfrom a prevariety S to R, the set 
of points s in S such that p(s) = O'(s) is closed in S. 

PROOF. Suppose the condition is satisfied. Choose p and 0' to be the projec­
tions from R x R to the first and second factor. Then the set described in the 
condition is the diagonal, whence R is a variety. 

Conversely, suppose that R is a variety, and let p and 0' be as in the con­
dition. Consider the morphism p x 0' from S to R x R. The set described 
in the condition is the inverse image of the diagonal of R x R with respect 
to p x 0'. This is closed in S, because p x 0' is continuous. D 

We remark that there is no terminological conflict: an "irreducible 
affine variety" in the sense of Section 1 is clearly a variety in the sense of the 
above definition. A general, not necessarily irreducible affine variety is a 
closed subvariety of an irreducible affine variety. Clearly, its irreducible 
components are irreducible affine varieties, in both senses. 

Proposition 2.2. If R and S are varieties, so is R x S. 

PROOF. Let p and 0' denote the projections from R x S to Rand S, and let 
oc and P be morphisms from a prevariety T to R x S. Let Em•1I denote the 
set of all points t in T such that oc(t) = pet), and use the same notation for 
other pairs of morphisms. Then we have 

Since R and S are varieties, we know from Proposition 2.1 that each of the 
two sets figuring on the right is closed. Therefore, Em. II is closed. By Proposi­
tion 2.1, this shows that R x S is a variety. D 

Proposition 2.3. Suppose that S is a prevariety for which there exists an 
injective morphism into a variety. Then S is a variety. 

PROOF. Let t: S ....... T be an injective morphism, where T is a variety. Let oc 
and P be morphisms from a prevariety V to S. Using the same notation as in 
the last proof, we have from Proposition 2.1 that Eo•m• o•1I is closed. Since t 
is injective, we have E o• m•o• 1I = Ell. II' Now the result follows from Proposition 
2.1. D 

Proposition 2.4. Let oc be a morphism from a variety S to a variety T. Then 
the graph of oc is closed in S x T. 

PROOF. Define the map D from S x T to TxT by 

D(s, t) = (oc(s), t). 
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Then the graph of IX is the inverse image, with respect to {), of the diagonal in 
TxT. Clearly, {) is a morphism of prevarieties, so that {) is continuous. 
Since T is a variety, the diagonal is closed, whence also its inverse image is 
closed. 0 

3. Let F be a field, and let A be a finitely generated integral domain F -algebra 
that is graded, in the sense that A is the direct F -space sum of sub F -spaces 
An (n = 0, 1, ... ) such that Ao = F and A,As c: A,+s for all rand s. Write 
A+ for Ln>o An. We assume that A+ ::;: CO), and that the F-algebra homo­
morphisms from A to F separate the elements of A, so that the elements of 
A may be regarded as F -valued functions on the set of these homomorphisms. 

We consider the F-algebra homomorphisms from A to F not annihilating 
A+. Two such homomorphisms, p and a, are said to be equivalent if there is a 
non-zero element c in F such that, for every n and every element a of An, one 
has pea) = c-a{a). We denote the set of all F-algebra homomorphisms from 
A to F by 9'{A), and the set of equivalence classes of elements of 9'{A) not 
annihilating A+ by Jt'{A). 

We define a topology on Jt'{A) by declaring a subset C to be closed if 
and only if there is a set T of homogeneous elements of A such that the 
elements of C are the equivalence classes of those homomorphisms which 
annihilate T. It is equivalent to say that the closed sets are the sets of equi­
valence classes of the elements of 9'{A) annihilating homogeneous ideals of 
A, but not A+. It is clear from this that our definition makes Jt'{A) into 
a Noetherian topological space. 

We show that Jt'{A) is irreducible, as follows. Suppose that X and Y 
are closed sets in Jt'(A) such that X u Y = Jt'(A). For every subset S of 
Jt'{A), let Is denote the ideal of A that is generated by those homogeneous 
elements of A which are annihilated by the representatives in 9'(A) of the 
elements of S. Then we have Ix Ii Iy c: II(A). Iffis an element of II(A) then 
fA + is annihilated by every element of 9'{A). Since 9'{A) separates the points 
of A, this implies thatfA + = CO). Since A + ::;: CO) and A is an integral domain, 
this gives f = O. Thus, II(A) = (0), so that I x Ii I y = CO). Since A is an 
integral domain, it follows that one of Ix or Iy is CO); say Ix = (0). By the 
definition of a closed set of Jt'(A), this means that X = Jt'(A). 

Let [A]o denote the subfield of [A] consisting of the fractions alb, where 
a and b are homogeneous elements of the same degree. Each such fraction 
determines an F -valued function on a certain non-empty open subset of 
Jt'{A), as in the definition of a rational function on an affine algebraic set, 
because p(a)/p(b) = cr(a)/cr(b) whenever p and a are equivalent elements of 
9'(A) not annihilating b. Now we define a sheaf of F -valued functions on 
Jt'(A), as follows. 

If U is a non-empty open subset of Jt'(A), then !F I(A)(U) consists of the 
restrictions to U of those elements of [A]o which are defined at every point 
of U. As before, we agree that !F I(A)(0) = (OF). Evidently, sheaf condition 



IX.3 129 

(1) is satisfied. The verification of sheaf condition (2) is almost identical with 
the verification of this condition in the case of an irreducible affine variety, 
as carried out in Section 1. 

Now we assume that A is generated as an F-algebra by AI. Since A is 
finitely generated as an F -algebra, A I is finite-dimensional, and since 
A+ ':# (0) we have Al ':# (0). Let d be any non-zero element of Ah and let 
A(d) denote the sub F-algebra of A[d- l ] consisting of the sums of elements 
of the form a/d", where a is an element of An (n = 0, 1, ... ). If (ai' ... , a",) 
is an F -basis of A I, then A(,,) is generated as an F -algebra by the elements 
al/d, ... , a"jd. Thus, A(,,) is a finitely generated integral domain F-algebra. 
Let Jt'(A)" denote the complement in Jt'(A) of the closed set determined by 
d. If r is a point of Jt'(A)", and if p is a representative of r in 9'(A), then 
p(d) ':# 0, so that p defines an element of 9'(A(,,) by canonical extensio~. 
Clearly, this element depends only on r, not on the particular choice of the 
representative p. Thus, we have a map 

b: Jt'(A)" ~ 9'(A(,,). 

We regard 9'(A(,,) as an irreducible affine variety whose defining a~gebra of 
polynomial functions is A(d). Then it is clear from the definitions that b is a 
morphism of sheaves when Jt'(A)" is equipped with the sheaf induced from 
'I(,(). 

We wish to prove that «5 is actually an isomorphism of sheaves. In order 
to construct the inverse of ~, choose an F -basis (ah . .. , a",) of A1 such that 
al = d. Then the elements of A(,,) may be written in the form P(a2/d, ... , a"jd), 
where p is a polynomial in m - 1 variables with coefficients in F. Let e be 
the degree of p, and let p* denote the polynomial in m variables Xh ••• , XIII 

given by 

P*(Xh ... , XIII) = X~P(X2/XI' ... , X"jXI)· 

Then, if P(a2/d, ... , a"jd) = 0, the element p*(ah ... ' a",) of A is 0. Using 
this, we see that, given an element (I of 9'(A(,,), there is an element (I' of 9'(A) 
such that (I'(al) = 1 and (I'(aj) = u(aJd) for every i > 1. If s is the equivalence 
class of (I' in Jt'(A), then s belongs to Jt'(A)" and ~(s) = (I. In this way, we 
obtain a map 

y: 9'(A(,,) ~ Jt'(A)" 

such that ~ 0 y is the identity map on 9'(A(,,). Also, it is clear from the above 
construction that, for every r in Jt'(A)", the element b(r)' of 9'(A) is a repre­
sentative of r, so that yo b is the identity map on Jt'(A)". Finally, one sees 
directly from the definitions that y is a morphism of sheaves. 

Thus, Jt'(A)" , with the sheaf off unctions induced by' I(,(). is isomorphic 
with the irreducible affine variety 9'(A(d). Since Jt'(A) is the union of the 
family of open subsets Jt'(A)"" this proves that Jt'(A) is an irreducible 
prevariety. In order to show that, actually. Jt'(A) is a variety, we use the 
following lemma. 
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Lemma 3.1. Suppose that V is a prevariety such that,for every pair (x, y) of 
points of V, there is an affine patch of V containing x and y. Then V is a variety. 

PROOF. Let p and a be morphisms from a prevariety W to V, and let Ep , .. be the 
set of all points w in W such that pew) = a(w). By Proposition 2.1, it suffices 
to show that Ep, .. is closed in W. Let w be a point of the closure of Ep, ... 

By assumption, there is an affine patch S of V containing pew) and a(w). 
Now p-1(S) n a- 1(S) is an open subset of W containing w. Let p' and a' 
be the restrictions of p and a to this subset. These are morphisms from the 
prevariety p-1(S) n a-1(S) to the variety S. By Proposition 2.1, the set 
Ep' ... ' is therefore closed in p-1(S) n a- 1(S), i.e., Ep, .. n p-1(S) n a- 1(S) is 
closed in p-1(S)na- 1(S). Every open subset of p-1(S) n a- 1(S) containing 
w has a non-empty intersection with Ep ... , because it is open also in W. 
Therefore, w belongs to Ep.... D 

Now let r and s be points of Jf'(A). Choose representatives p and a for 
rand s in 9'(A). There are elements a and b in A1 such that pea) #: 0 and 
a(b) #: 0, because p and a do not annihilate A+. If a(a) = 0 and pCb) = 0, 
we have pea + b) #: 0 and a(a + b) #: O. Thus, in every case, there is an 
element c in A1 such that p(c) #: 0 and a(c) #: O. This shows that both rand s 
belong to the affine patch Jf'(A)c' By Lemma 3.1, it follows that Jf'(A) is a 
variety. We call Jf'(A) the projective variety defined by A. We know that it is 
irreducible. A general, not necessarily irreducible projective variety is a closed 
subvariety of an Jt"(A). Its irreducible components are again Jf'(A),s, as is 
easy to see from the definitions. 

Next, we show that the direct product Jf'(A) x Jf'(B) of two irreducible 
projective varieties is again an irreducible projective variety. Let A . B denote 
the subalgebra of A ® B that is generated by the subspaces An ® Bn. We 
regard this as a graded algebra, with (A· B)n = An ® Bn. Clearly, this 
algebra satisfies all the conditions we imposed above in defining projective 
varieties. Accordingly, we have the projective variety Jf'(A . B). The canonical 
map from 9'(A) x 9'(B) to 9'(A ® B) evidently induces a map lj from 
Jf'(A) x Jf'(B) to Jf'(A . B), which we shall prove to be an isomorphism of 
varieties. 

Let (al>"" alii) be an F-basis of Al> and let (bl>"" bn) be an F-basis of 
B1. Then (a1 ® bi> ... , a... ® bJ is an F-basis of (A· Bh. Each product 
Jf'(A)", x Jf'(B)"J is open in Jf'(A) x Jt"(B), and the restriction of lj to this is a 
morphism of varieties to the affine patch Jf'(A· B)"'®"J of Jf'(A . B). By 
Proposition 1.3, this implies that lj is a morphism of varieties. 

Next, we show that lj is injective. Let (r, s) and (r', s') be points of 
Jf'(A) x Jf'(B) such that lj(r, s) = lj(r', s'). Choose representatives p and p' 
of rand r' in 9'(A), and representatives a and a' of sand s' in 9'(B). Then 
we have, for all indices i and j, 

p(aaa(bj ) = cp'(a,)a'(bJ), 
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where c is a non-zero element of F. There is a pair (p, q) of indices such that 
p(ap) =F 0 and a(bq) =F O. Then the above relations give 

p(aj) = (ca'(bq)/a(bq»p'(al) 

and 

for all indices i and j. This shows that r = r' and s = s', and we have the 
conclusion that ~ is injective. 

Now let u be a point of Jf'(A . B), and let II. be a representative of u in 
9'(A . B). There is a pair (p, q) of indices such that p.(ap ® bq) =F O. We 
claim that there is an element p in 9'(A) such that p(al) = J1.(al ® bq) for 
each i. In order to see this, consider a polynomial 1 in m variables with 
coefficients in F such that I(al"'" a,J = O. Write 1 = 10 + ... + ft, 
where eachjj is homogeneous of degree i. Thenjj(ah"" alii) = 0 for each i. 
Hence 

It 

I(al ® bq, . .. , a... ® bq) = L I;(ah' .. ,alii) ® b~ = O. 
1=0 

It is clear from this that the required element p of 9'(A) exists. Similarly, 
there is an element a in 9'(B) such that a(bj ) = J1.(ap ® bJ) for eachj. Now p 
and a do not annihilate all of A + or B + , respectively. Therefore, they repre­
sent elements rand s of Jf'(A) and Jf'(B). If we define the element p. a of 
9'(A . B) so that (p. a)(a ® b) = p(a)a(b) then p. a represents ~(r, s). We 
have 

(p . aXal ® bj ) = p(al)a(bj ) = p.(al ® bq)J1.(ap ® bj ) 

= J1.(alap ® bqbj ) 

= J1.(ap ® bq)p.(al ® bj ) 

for all indices i andj. Since J1.(ap ® bq) =F 0, this shows that p . a is equivalent 
to 1'. so that c5(r, s) = u. Thus, ~ is surjective. 

Our conclusion is that ~ is a bijective morphism of varieties. Moreover, 
the above shows that, for each index pair (p, q), the restriction of ~-1 to 
Jf'(A . B)"p®"" is a morphism of varieties to Jf'(A)"p x Jf'(B)"q' It follows, by 
Proposition 1.3, that ~-1 is a morphism of varieties. Thus, ~ is an iso­
morphism of varieties from Jf'(A) x Jf'(B) to Jf'(A . B). 

4. For our purposes, the most important projective variety is the Grassmann 
variety t6 tV), whose points are the d-dimensional subspaces of an n-dimen­
sional vector space V over a field F. We consider the exterior F-algebra 
I\(V0), and we let V act on this by homogeneous derivations of degree -1. 
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Explicitly, if Pl··· P", is the product in /\"'(VO) of m elements PI of yo, and 
if v is an element of V, then the transform is given by 

'" V· (Pl· .. p".) = L (_1)'-1 P,(V)Pl ... P,· .. p"" 
1=1 

where the A indicates omission. From this action, we have the canonical 
homomorphism of F -algebras 

n: /\(V) - Endp(/\(v°». 

For each index d with 0 < d ~ n, this map n induces a linear isomorphism 
from /\d(V) to (/\d(Vo»O. 

Let A denote the symmetric algebra built over the F-space /\d(VO), so 
that A is graded, and generated as an F -algebra by A 1 = /\d(VO). We assume 
that F is infinite, so that we have the irreducible projective variety Jr(A). 
Via the above linear isomorphism, the 1-dimensional subspaces of /\d(V) 
may be identified with the points of Jr(A). 

The d-dimensional subspaces of V are in bijective correspondence with 
those 1-dimensional subspaces of /\d(V) which are spanned by decomposable 
elements, i.e., products of d-tuples of elements of V. We shall show that they 
constitute a closed subvariety of Jr(A). This comes from the following 
criterion. 

Let p be a non-zero element of the 1-dimensional F-space /\n(vo). Then a 
non-zero element z of /\ dey) is decomposable ~,. and only if n(z) (p)n(zx)(p) = 0 
for every x in /\"-d-l(V). 

In order to establish this, let us first suppose that z is decomposable; 
say z = Vl ... Vd. The criterion is trivially satisfied if z = O. Therefore, we 
assume that z #: 0, so that the set (Vl> ... ' Vd) is linearly independent. We 
complete it to an F-basis (Vl> ... , vn) of V, and we let (Pl' ... ' Pn) be the 
dual basis of yo. We may take p = Pl ... Pn. If x = V'\ .•. v," _II -1 then 
zx = 0 unless each il; > d. If each iii: > d and zx #: 0 there is exactly one Vj 
different from each v'" and withj > d, and we have n(zx)(p) = ±PJ. On the 
other hand, n(z)(p) = ±Pd+l ... Pn. Therefore, n(z)(p)n(zx)(p) = 0 in every 
case, and hence for every x in /\n-d-l(V). 

Now suppose that z satisfies the above vanishing conditions, and write z 
as an F-linear combination of products of basis elements Vl' ... ' Vn of V, 
as follows 

z = L c(il> ... , id)vi, ... v,,,. 
1\<···<1" 

We may suppose that c(l, ... ,d) #: 0, and hence that c(l, .. . ,d) = 1. For 
j = d + 1, ... , n, put xJ = Vd+l ... Dj"·· Vn • Then, for each i > d, we have 
ZXjV, = ±cSijVl ... Vn, whence we see that the elements ZXj are linearly 
independent. Therefore, the elements n(zxj) of Endp(/\(v°» are linearly 
independent. They belong to n(/\n-l(v», and it is easy to see that the 
evaluation at p is injective from n(/\n-l(V» to yo. Therefore, the elements 
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7t{zxj)(P) of Vo are linearly independent. For eachj > d, put Pj = 7t{ZXj)(P), 
and choose PI"'" Pd from Vo such that (Ph"', Pn) is an F-basis of yo. 
Let (WI"'" wn) be the dual basis of V. Then our assumption on z gives 
7t{z)(P)Pj = 0 for every j > d. This implies that n(z)(p) is an F-multiple of 
PHI'" Pn' whence z is an F-multiple of WI •.• Wd' 

It is evident from the criterion we have just established that z is decom­
posable if and only if it is a zero of a certain set of elements of A2 • Therefore, 
the set of d-dimensional subspaces of V is identified, via n, with a closed 
subset of Jt'(A). 

Finally, we show that this is an irreducible subset, so that, if the base 
field is infinite, l6iV) is an irreducible projective variety. 

Let G denote the irreducible affine algebraic F-group Aut,.(V). In the 
evident fashion, G acts transitively on our variety of d-dimensional subspaces 
of V. Fix a d-dimensional subspace S of V. It is easy to see that the map 
associating with each element (J of G the subspace a(S) of V is a morphism 
of varieties from G to I6d(V). Since it is surjective, and since G is irreducible, 
it follows that ~~V) is irreducible, by continuity. 

5. Definition 5.1. A variety X is said to be complete if, for all varieties W, the 
canonical projection from X x W to W is a closed map. 

The following proposition contains suggestions regarding the significance 
of the completeness property. 

Proposition 5.2. Let X and Y be varieties. 

(1) If X is complete and Y is a closed subvariety of X then Y is complete. 
(2) If X and Yare complete, so is X x Y. 
(3) If X is complete and y is a morphism of varieties from X to Y then y(X) is 

closed in Y and complete. 
(4) A complete irreducible affine variety consists of a single point. 

PROOF. Evidently, (1) follows immediately from the definition. 
As for (2), it suffices to observe that the projection from X x Y x W 

to W is the composite of the projection to Y x W with the projection from 
Y x W to W, each of which is a closed map. 

In order to establish (3), consider the graph, Gy say, of y in X x Y. By 
Proposition 2.4, Gy is closed in X x Y. Since X is complete, the projection 
image of Gy in Y is therefore closed, i.e., y(X) is closed in Y.1f n denotes the 
canonical projection from X x W to W, and n' denotes the canonical 
projection from y(X) x W to W, then n = n' ° (')I x iw). If C is a closed 
subset of y(X) x W, then (')I x iW)-I(C) is closed in X x W. Since X is 
complete, it follows that n«y x iw)-I(C» is closed in W, i.e., that n'(C) is 
closed in W. This shows that ')I(X) is complete. 
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Finally, suppose that V is a complete irreducible affine variety, and let 
f be an element of rJf( V). If the base field is finite then V consists of a single 
point, because it is finite and irreducible. Therefore, we assume without 
loss of generality that our base field is an infinite field F. Then we regard F 
as a I-dimensional irreducible affine algebraic variety in the usual way. 
Our element f of ~(V) is a morphism of varieties from V to F. By part (3) 
above,f(V) is closed in F and complete. Since fey) is an irreducible subset 
of F, it follows that either fey) = F, or fey) consists of a single point. In 
the first case, it would follow that F is a complete variety. However, this is 
not the case, because the closed subset of F x F consisting of the points 
(Q, b) with ab = 1 projects onto the non-closed subset F \ (0) of F. There­
fore, fey) consists of a single point. Our conclusion is that the constants 
are the only elements of ~(V), so that V consists of a single point. D 

Theorem 5.3. Every projective variety over an algebraically closed .field is 
complete. 

PROOF. Evidently, it suffices to prove that every irreducible projective 
variety P = Jt'(A) is complete. We must show that, for every variety W, 
the canonical projection from P x W to W is a closed map. Now W is the 
union of a finite family of affine patches U. A subset of W is closed in W if and 
only if its intersection with each U is closed in U, and a subset of P x W is 
closed in P x W if and only if its intersection with each P x U is closed in 
P x U. Therefore, it suffices to deal with the case where W is an irreducible 
affine variety, fI'(B) say. 

Let (a" ... , aJ be a basis of A" so that P is the union of the affine patches 
Pa• = fI'(A(ad)' in the notation of Section 3. Accordingly, P x W is the 
union of the family of open subvarieties P a. X W, each of which is an irre­
ducible affine variety fI'(A(all) ® B). 

Consider a closed subset C of P x W, and put Ci = C n (P a. X W). Let 
I( Ci) denote the annihilator ideal of Ci in A(all ® B. Regarding A ® B as a 
graded algebra with the grading coming from that of A, let I be the homo­
geneous ideal of A ® B whose homogeneous components I" consist of 
those elements 

L (al)'" ... (aJ"" ® b(e" ... , ell) 
BI +···+e,.=e 

for which the corresponding elements 

L (ada/)"! ... (aJa/)"" ® b(e" ... , en) 
Bl+"'+en=e 

belong to I( C/) for each i. Working in A[al l , • .• , a; l] ® B, consider an 
elementfof I(C/). There is an exponent e ~ 0 such that «a/)" ® l)fbelongs 
to A ® B. Then, for each j, 

«aJaJ)" ® l)f E A(aJ) ® B 
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and this element vanishes on 

Ci n (Pili x W) = CJ n (Pili x W). 

On the other hand, the element 

«aJa)e+ 1 ® l)f = «aJa) ® 1)«aJaj)e ® l)f 

vanishes on the part of Cj that does not lie in Pili x W. Since j is arbitrary, 
this shows that the element «a,)e+1 ® l)fbelongs to I e+ 1• 

Now let w be a point of W not belonging to the projection image of C. 
Then C, and Pili x (w) are disjoint closed subsets of the irreducible affine 
variety Pili X W. Let J be the annihilator of w in B. Then ACllj) ® J is the 
annihilator of Pili ® (w) in ACllj) ® B. Since F is algebraically closed, it follows 
from the disjointness ofthe sets Ci and Pili x (w) that we must have 

I(C,) + ACllj) ® J = A CII,) ® B. 

This means that there are elements.li in I(C,), gij in ACllj) and ml} in J such 
that 

.Ii + L g'j ® mlj = 1. 
j 

By the above, there is an exponent e such that «a,)e ® 1).Ii belongs to Ie 
for each i, and (ai)egij belongs to A for all i andj. With this, the above expres­
sion for 1 yields the result that (ai)e ® 1 belongs to Ie + (A ® J)e. By 
enlarging e, if necessary, we obtain the result that all monomials of total 
degree e in alo ... , a,. belong to Ie + (A ® J)e. This means that 

(A ® B)e = Ie + (A ® J)e. 

Now consider the finitely generated B-module R = (A ® B)e/Ie. Our 
last result means that J. R = R. If (r1' . .. , rl:) is a system of B-module 
generators of R, we have therefore relations 

I: 

rll = L uJHJrq 
q=1 

with each uJHJ in J. The determinant,fsay, ofthis system is ofthe form 1 + u, 
with U E J, and f . R = (0). Thus, we have Ae ® Bf c Ie and f ¢ J. In parti­
cular, (a,)e ® f belongs to Ie, so that f vanishes on the projection image of 
C in W, while f(w) :F o. Thus, WI is an open subset of W containing w and 
not meeting the projection image of C. Our conclusion is that the complement 
in W of the projection image of C is open. 0 

Notes 

1. The simplest example of an open subvariety of an affine variety that is 
not an affine variety is as follows. Let F be an algebraically closed field, x 
and y independent variables over F, and S the irreducible affine F-variety 
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9'(F[x, y]). Identifying the points s of .s with the corresponding pairs 
(s(x), s(y» of elements of F, let U denote the open subvariety S \ (0, 0) of S. 
One can show that every rational function of S that is defined at every point 
of U belongs to F[x, y J. If U were affine, &'(U) would therefore be the 
restriction image of F[x, y], by virtue of Proposition 1.2. But then (0, 0) 
would belong to U. [In order to prove the assertion concerning the rational 
functions, let f be an element of !F S<U), and consider the ideal J f of all 
elements u of F[x, y] such that ufbelongs to F[x, yJ. Then the only zero of 
J f in S is (0, 0), which implies that J f contains some power of x, as well as 
some power of y. Using unique factorization in F[x, y], one sees from this 
thatfmust belong to F[x, y]]. 

2. The recipe we have used for constructing the direct product of projective 
varieties is due to M. E. Sweedler. 
3. The proof of Theorem 5.3 is due to Grothendieck. Generally, the above 
treatment of the completeness property comes from D. Mumford [11]. 



Chapter X 

Morphisms of Varieties 
and Dimension 

This chapter is concerned mainly with the dimension-theoretical analysis 
of morphisms between varieties. This involves substantially more com­
mutative algebra than has been used up to now. Thus, Section 1 establishes 
Noether's Normalization Theorem, which is used for reducing some of the 
required ideal theoretical considerations to the situation of an ordinary 
polynomial algebra. The remaining results of Section 1 concern the connec­
tions between the dimensions of irreducible closed subvarieties of irreducible 
affine varieties and the generation of their annihilating ideals. 

Section 2 contains the "Going Down Theorem" of Cohen-Seidenberg 
for prime ideals with respect to integral ring extensions, which is used in 
proving Proposition 2.4. This proposition is an important step in the exam­
ination of inverse images with respect to morphisms. 

Section 3 deals with the commutative algebra underlying the notion of a 
normal variety. Every variety has a non-empty open normal subvariety, 
and the morphisms to a normal variety are far more tractable than morphisms 
are in general. This fact appears in Section 4, especially in Theorem 4.3, 
which enables one to exploit the vital criterion of Theorem 4.5 for a morphism 
to be an open map. 

1. Proposidon 1.1. Let F be a field, and let A = F[al> . .. ,all] be a finitely 
generated commutative F-algebra. Let I be an ideal of A, other than A. There 
are elements bl> ... , bll in A, and an index r ~ n, such that bi belongs to I for 
each i < r, In F[br , ••• , b,,] = (0) and A is integral over F[bl> ... , b,,]. 

PROOF. We make an induction on n. If n = 0 we have A = F and I = (0), 
so that the proposition holds trivially. Now suppose that n > 0 and that the 
proposition has been established in the lower cases. If I = (0) we may evi­
dently take r = 1 and each bi = ai. Therefore, we assume that I :F (0). 

137 
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Choose any non-zero e1e~ent bl from I, and let XI> ••• , Xn be independent 
variables over F. Write 

bl = f(al'·· . , a,,), 

where f e F[x I> ••• ,xJ, and let d denote the total degree off. Since 1 :;: A, 
we must have d > O. For each i > I, put 

nen we have 

C - a a(4+1)'-1 
1- i-I • 

b f( 4+ I (d+ 1)"-1) 
I:;:: alt Cl + al , ••• ,c. + al • 

The term of the highest degree in XI in the expansion of 

(XI)el(Xl + ~+I)ez ••• (x. + xr+ I )"-I)e", 

is x~, where 

e = el + el(d + 1) + ... + e.(d + 1)"-1. 

As the e,'s range over the natural numbers from 0 to d, the exponent e of 
X I here is never repeated. It follows that, if we arrange the full expansion 
of our above expression for bl according to the powers of alt we obtain 

e-I 

bl = u(al)e + L !.{C2'···' cn)(aj)i, 
;=0 

where u is a non-zero element of F, the exponent e is greater than 0 and the 
fi's belong to F[X2' ... , xn]. Hence, al is integral over F[bl , C2, ... , cn]. 

Now write B for F[C2' ... ,cJ and J for 1 f"I B. By our inductive hypothesis, 
there are elements b2 , • •• ,bn in B and an index r ;S; n such that b, belongs 
to J for each i with 2 ;S; i < r, J f"I F[br , ••• , bJ = (0) and B is integral 
over F[b2 , ••• , bJ. Clearly, b, belongs to I for each i < r, and 

I f"I F[br , ••• , b.] = (0). 

Finally, each ai is integral over F[bl> C2, ... ,cn], while F[b lt Cl, ••• ,c.] is 
integral over F[blt ••• ,b.]. Therefore, each a, is integral over F[blt • •• , bJ. 

o 

The following almost immediate consequence is known as Noether's 
Normalization Theorem. 

Theor_ 1.1. Let F be a field, and let R be a finitely generated commutative 
F-algebra. There is a subset (Zit ••• , z.) of R that is algebraically free over F 
and such that R is integral over F[z I> ••• , z.]. 

PROOF. Write R = F[Xh . .. , xJlI, where the x,'s are independent variables 
over F. Let (bh .•• , bll) and r be as obtained from Proposition 1.1, with 
F[Xh .. . , xJ in the place of A. Let Z, denote the canonical image in R of 
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hi +r- I (i = 1, ... , n + 1 - r). Since F[xl> ... , xn] is integral over 
F[bl>"" bn], it follows that R is integral over the canonical image of 
F[bl>"" bJ in R. This image is F[zl>"" z,,+ I-r], because bi belongs to I 
for each i < r. Clearly, the set (bb"" bn) must be algebraically free over F. 
Since InF[br, ... ,bJ = (0), it follows that the set (Zl>""Zn+l-r) is 
algebraically free over F. 0 

Let X be an irreducible algebraic variety, U and V affine patches of X. 
By restriction to an affine patch W contained in U n V, each, the field of 
rational functions of U, and the field of rational functions of V, is isomorphic 
with the field of rational functions of W. Thus, we may identify all the fields 
of rational functions of affine patches of X, and so arrive at the notion of 
the field of rational functions of X. The degree of transcendence of this field 
over the base field is the dimension of X, denoted dim(X). This is equal to 
the dimension of every affine patch of X. 

Proposition 1.3. Let X be an irreducible variety, and let Y be a closed irre­
ducible subvariety of X, other than X. Then dim(Y) < dim(X). 

PROOF. There is an affine patch U of X such that Y n U #= 0. Now Y n U 
is closed in U, and Y n U #= U, because otherwise Y contains the closure of 
U, which is X. Also, Y n U is open in Y, and hence is irreducible. We have 
dim(X) = dim(U) and dim(Y) = dim(Y n U). Since U is an irreducible 
affine variety, we can apply Lemma 11.3.8 in the evident way to conclude 
that dim(Y n U) < dim(U). 0 

Corollary 1.4. Let X be an irreducible affine variety, and let Y be a closed 
irreducible subset of X such that dim(Y) = dim(X) - 1. Then, for every 
non-zero element f of &J(X) such that f( Y) = (0), Y is an irreducible component 
of the set of zeros offin X. 

PROOF. Evidently, the irreducible set Y is contained in some irreducible 
component, Z say, of the set of zeros of f By Proposition 1.3, we have 
dim(Z) < dim(X), and dim(Y) s; dim(Z). Since dim(X) - dim(Y) = 1, 
this gives dim( Y) = dim(Z). By Proposition 1.3, this implies that Y = Z. 0 

Proposition 1.5. Let X be an irreducible q/fine variety, and let f be a non-zero 
element of &J(X). Suppose that Y is an irreducible component of the set of 
zeros off in X. Then dim(Y) = dim(X) - 1. 

PROOF. Let Yl>"" Y, be the irreducible components of the set of zeros off, 
with Y1 = Y. Let J i denote the annihilator of Y; in &J(X). For any ideal I, 
let 1* denote the radical of I. Then we have (&J(X)f)* = J 1 n ... n Jt • 

Choose an element 9 from the non-empty set (J 2 n ... n J t ) \ J 1 (if t = 1, we 
interpret this expression as &J(X) \ J I), and consider the principal open 
subset Xg of X. This is an irreducible affine variety, and Y n Xg is precisely 
the set of zeros of fin X g' Moreover Y n X 9 = 1';,., where g' is the restriction 
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of g to Y, so that Y n X g is an irreducible affine variety of the same dimension 
as Y. Since dim(Xg) = dim(X), it suffices to prove that 

dim(Y n Xg) = dim(Xg) - 1. 

Thus, we may replace X with Xg and Y with Y n X g. Then we have the 
simplified situation where Y is the set of zeros off in X, and the annihilator 
of Yin ~(X) is (~(X)f)*, for which we shall simply write J. In this situation, 
we proceed as follows. 

If d = dim(X), we have from Theorem 1.2 that there is a subset (z 10 ••• , Zd) 

of ~X) that is algebraically free over the base field F and such that ~(X) 
is integral over F[Z1o ••• ' Zd]. Let us write A for ~(X) and B for F[Z1o ••• , zJ, 
and let us consider the finite algebraic extension [A] of [B]. Sincefis integral 
over B, and since B is integrally closed in [B], the monic minimum polynomial 
forfrelative to [B] has all its coefficients in B. Let J.l denote the norm map 
for [A] relative to [B]. Then J.l(f) is, up to sign, a power of the constant 
term of the minimum polynomial forf, so that J.l(f) lies in (Bf) nBc: J n B. 
Hence we have (BJ.l(f)* c: J n B. Conversely, let g be an element of J n B. 
There is a positive integer m such that g'" = hf, with some h in A. Applying 
J.l, we obtain gem = J.l(h)J.l(f), where e is the degree of [A] relative to [B]. 
As with J.l(f), we find J.l(h) E B, so that our last equation shows that g lies in 
(BJ.l(f»*. Thus, we have J n B = (BJ.l(f)*. 

Since B is a unique factorization domain, and since (BJ.l(f)* is the prime 
ideal J n B, the element J.l(f) must be a non-zero F -multiple of a power of a 
prime element p of B, so that (BJ.l(f)* = Bp. Now p is an irreducible poly­
nomial in Z1o ••• , Zd with coefficients in F. By relabeling, if necessary, we 
arrange to have Zd actually occur in p. 

Now dim(Y) is the transcendence degree of [AIJ] over F, which is equal 
to the transcendence degree of [BI(J n B)] over F. If Yi denotes the canon­
ical image of Zj in BI(J n B), we have 

F[Yl' ... , Yd- a c: BI(J n B). 

If the elements Y1o ... , Yd-l were not algebraically independent over F 
there would be a non-zero polynomial q in d - 1 variables with coefficients 
in F such that q(Yh ... , Yd-l) = o. This means that q(Z1o ... ' Zd-l) belongs 
to Bp. Since Zd actually occurs in p, this contradicts the algebraic independence 
of Z1o ••. , Zd. Therefore, the transcendence degree of BI(J n B) over F is at 
least equal to d - 1, whence dime Y) ~ d - 1. By Proposition 1.3, we have 
dim(Y) <d. Hence, dim(Y) = d - 1. 0 

CoroUary 1.6. Suppose X is an irreducible affine variety and Y is a closed 
irreducible subset of X, with dim(Y) = dim(X) - r, where r > O. There are 
closed irreducible subsets ¥, of X such that Y = Y,. c: ... c: Yt and 

dime¥,) = dim(X) - i, 

foreachi. 
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PROOF. If r = 1 there is nothing to prove. Suppose r > 1 and the corollary 
established in the lower cases. Since Y :F X there is a non-zero element f in 
9<X) that vanishes on Y. Now Y is contained in some irreducible component 
Y1 of the set of zeros off in X. By Proposition 1.5, dim( Y1) = dim(X) - 1. 
Now apply the inductive hypothesis with Y1 in the place of X. 0 

CoroUary 1.7. Let X be an irreducible affine variety, and let flo." ,/r be 
elements of ~X). Suppose Y is an irreducible component of the set 1'(fl' ... ,/r) 
of common zeros in X of the fj's. Then dim(Y) ~ dim(X) - r. 

PROOF. This follows by induction on r, using Proposition 1.5 for the inductive 
step. In fact, Y is an irreducible closed subset of some irreducible component, 
Z say, of 1'(fh ... , J..- 1). Since Y is a maximal irreducible subset of 
"Y(fh ... ,J..), it follows that Y is an irreducible component of Z n 1'(J..). 
By inductive hypothesis, dim(Z) ~ dim(X) - r + 1. If the restriction of 
J.. to Z is 0, then Y = Z. If the restriction of J.. to Z is not 0, we have from 
Proposition 1.5 that dim(Y) = dim(Z) - 1 ~ dim(X) - r. 0 

Lemma 1.8. Let T be a commutative ring, P to .•• , Pic prime ideals of T, and K 
a subset of T that is closed under addition and multiplication. Then, if the 
union of the family of P/s contains K, one of the P/s contains K. 

PROOF. Making an induction on k, we may suppose that k > 1 and that K 
is not contained in the union of any proper subset of the set of Pi'S, and 
show that then K is not contained in U~=1 Pi. Choose aj from K \ U'¢j P, 
for each j, and put 

bi = al ... ttj···a", b = b1 + ... + b". 

If K is contained in the union ofthe set of P;'s, we must have aj E Pj' so that 
bi E Pi for each i other thanj. On the other hand, bJ¢ Pi' because none of its 
factors a, belongs to P j.1t follows that b does not belong to Pj. Since b belongs 
to K, this contradicts the assumption that the union of the family of P;'s 
contains K. 0 

Theorem 1.9. Let X be an irreducible affine variety. Suppose that Yh ···, Y,. 
are irreducible closed subsets of X such that Y,. c . .. C Y1 and 

dim(Yj) = dim(X) - i, 

for each i. Then there are elements flo . .. ,J.. in 9J(X) satisfying the following 
conditions,for each i with 1 ~ i ~ r: 

(1) Yj is an irreducible component of1'(fl, ... ,fj); 
(2) every irreducible component of 1'(fh ... ,fj) has dimension dim(X) - i. 

PROOF. By Corollary 1.4, there is an element fl in 9J(X) such that Y1 is an 
irreducible component of 1'(f1). By Proposition 1.5, every irreducible 
component of 1'(f1) has dimension dim(X) - 1. 
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Now suppose we have already found /1' ... ,Ji satisfying (1) and (2). 
Write ZI for Yi, and let Z2, ... , Zm be all the other irreducible components 
of 1'(fh ... ,Ji). The dimension of each of these components is dim(X) - i, 
which is greater than the dimension of Yi + 1. Therefore, none of Z 1, ••• , Zm 
is contained in Yi+ 1. Let Pj denote the annihilator of Zj in &,(X), and let K 
denote the annQiilator of Yi + 1 in &'(X). By our last remark, K is not contained 
in any Pj. By Lemma 1.8, this implies that K is not contained in the union 
of the set of P is. Thus, there is an element Ji + 1 in &,(X) that vanishes on 
Yi + 1 but not on any Z j. Let Z be an irreducible component of 1'(fh ... ,Ji + 1). 
Then Z c Z j for some j and Z c 1'(Ji+ 1). By Proposition 1.5, every irre­
ducible component of Zj n 1'(Ji+ 1) is of dimension 

dim(Zj) - 1 = dim(X) - (i + 1). 

Therefore, we have dim(Z) ~ dim(X) - (i + 1). On the other hand, by 
Corollary 1.7, we have dim(Z) ~ dim(X) - (i + 1). Thus, 

dim(Z) = dim(X) - (i + 1). 

Since Yi+l c 1'(Ji+l) n Yi, we have Yi+l c 1'(/10 ... , Ji+l). Since 
dim(Yi+ I) = dim(X) - (i + 1), which is the dimension of every irreducible 
component of 1'(/1> ... ,Ji+ 1), it follows that Yi+ 1 is an irreducible compo­
nent of 1'(/10 ... ,Ji+ 1). Thus, the set (/10 ... ,Ji+ 1) satisfies conditions (1) 
and (2) for i + 1 in the place of i. 0 

2. Let (1 be a morphism from an irreducible variety X to a variety Y. We say 
that (1 is dominant if a(X) is dense in Y. If X is not irreducible, we say that (1 

is dominant if the restriction of (1 to each irreducible component of X is a 
dominant morphism from that component to some irreducible component 
of Y and a(X) is dense in Y. 

Theorem 2.1. Suppose (1: X ~ Y is a dominant morphism between irreducible 
varieties. Let W be a closed irreducible subset 0/ Y, and let Z be an irreducible 
component 0/ (1-1(W) such that (1(Z) is dense in W. Then 

dim(Z) ~ dim(W) + dim(X) - dim(Y). 

PROOF. There is an affine patch U of Y such that U n W :F 0. Then U n W 
is a closed irreducible subset of the irreducible affine variety U, and 
dim(U n W) = dim(W). Now (1 induces a morphism of varieties from 
(1-1(U) to U, and Z n (1-1(U) is an irreducible component of (1-1(U n W) 
whose image is dense in U n W. We have dim(Z n (1-1(U» = dim(Z), 
dim(U n W) = dim(W), dim(U) = dim(Y) and dim«(1-1(U» = dim(X). 
Therefore, it suffices to prove the theorem in the case where Y is affine 
(Y = U), which we shall now assume. 

Let r = dim(Y) - dim(W). By Corollary 1.6 and Theorem 1.9, there 
are elementS/h ... ,J,. in &,(Y) such that W is an irreducible component of 
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"Y(fl, ... ,J,). Let gl = Jj 0 a, so that gl is an everywhere regular function 
on X. Then we have Z c -r(g1o ... , gr). Since Z is irreducible, it is contained 
in some irreducible component Zo of -r(g1o ... , gr). If T' denotes the closure 
of a set T, we have 

W = a(Z)' c a(Zo)' c -r(fl'··· ,J,). 

Since W is an irreducible component of -r(f1o ... ,J,) and since a(Zo)' is 
irreducible, it follows that W = a(Z)' = a(Zo)', whence Zo c a- 1(W). 
Since Z is an irreducible component of a- I(W), we must therefore have 
Z = Zo, so that Z is an irreducible component of -r(g I, ••• , gr). Intersecting 
with a suitable affine patch of X and applying Corollary 1.7, we see that 
therefore dim(Z) ~ dim(X) - r = dim(W) + dim(X) - dim(Y). 0 

A morphism a: X -+ Y between affine varieties is called finite if 9(X) 
is integral over 9( Y) 0 a. 

Proposition 2.2. Let a: X -+ Y be a finite dominant morphism between irre­
ducible affine varieties over an algebraically closedfield F. Then a is surjective. 

PROOF. Let y be a point of Y, and view y as an F -algebra homomorphism 
from 9(Y) to F. Since a is dominant, its transpose is injective from 9(Y) 
to 9(X). Consequently, y defines an F -algebra homomorphism y' from 
9( Y) 0 a to F. By Proposition 11.3.2, y' extends to an F -algebra homomor­
phism y" from some valuation subring S of [9(X)] containing 9(Y) 0 a 
to F. Since 9(X) is integral over 9( Y) 0 a, we have 9(X) c S. If x is the 
restriction of y" to 9(X), then a(x) = y. 0 

Theorem 2.3. Let R be an integral domain that is integrally closed in its field 
of fractions. Let S be an integral domain containing R and integral over R. 
Let Q be a prime ideal of S, and let Po be a prime ideal of R that is contained 
in Q. There is a prime ideal Qo in S such that Qo c Q and Qo n R = Po. 

PROOF. Let D denote the multiplicatively closed subset of S consisting of 
the products rs with r in R \ Po and s in S \ Q. First, we show that it suffices 
to prove that (SP 0) n D = 0, where SP 0 denotes the ideal of S generated 
byPo· 

If this is the case, we can apply Zorn's Lemma in the evident way to show 
that there is an ideal Qo in S that is maximal in the set of all ideals of S con­
taining SPo and not meeting D. We show that Qo is a prime ideal. Since 
Qo does not meet D, we have Qo ::;: S. Let u and v be elements of S \ Qo. 
Then, by the maximality of Qo, both Qo + Su and Qo + Sv meet D. There­
fore, Qo + Suv also meets D, so that uv cannot lie in Qo. Thus, Qo is a prime 
ideal of S. We have 

Po c (SP 0) nRc Qo n R. 
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On the other hand, 

(Qo n R)\Po c: Qo n D = 0, 

so that Qo nRc: Po. Thus, Qo n R = Po. Finally, 

Qo c: S \ D c: S \ (S \ Q) = Q, 

so that Qo satisfies the requirements of Theorem 2.3. 
It remains to be proved only that (SP 0) n D = 0. Suppose this is false, 

and choose r from R \ Po and S from S \ Q such that rs belongs to SP o' 
Then 

rs = L SiPio 
i 

with each Si in S and each Pi in Po. Now Si is a root of a monic polynomial 
with coefficients in R, whence SIPi is a root of a monic polynomial whose 
coefficients other than the leading one lie in Po. We show that the sum of 
two elements a and b having this property also has this property. Suppose 
m and n are the degrees of polynomials as described just above for a and b, 
respectively. Let Uh"" Um" be the products aib j , with 0::;; i < m and 
O::;;j < n. 

Then every monomial aebf with e + f ~ m + n - 1 is a linear combina­
tion with coefficients in Po of the u,:s. Hence, for t = m + n - 1 and 
i = 1, ... ,mn, 

mil 

(a + b)tuj = L PIjUj, 
j= 1 

with each Pij in Po. It follows that, if T is the determinant with entries 
(a + b)t Ojj - Pii' we have TUi = 0 for each i. Since one of the u;'s is 1, this 
gives T = 0, showing that a + b has the property in question. 

Now we conclude that rs is a root of a monic polynomial, h say whose 
coefficients other than the leading one lie in Po. Let fbe the monic minimum 
polynomial of rs with respect to [R]. Then h = fg, where g is a monic 
polynomial with coefficients in [R]. The roots (in an algebraic closure of 
[R]) off and g are roots of h, and thus are integral over R. Therefore the 
coefficients of f and g are integral over R. Since R is integrally closed in 
[R], it follows that the coefficients off and g belong to R. We claim that 
these coefficients, except for the leading ones, actually belong to Po. 

In order to see this, let m and n denote the degrees offand g, respectively, 
and write f = x'" + flo g = x" + gh where fl is a polynomial of degree 
less than m, and gl is a polynomial of degree less than n. Indicating the 
canonical homomorphism from the polynomial ring R[x] to the polynomial 
ring (R/Po)[x] by', we have, from h = fg, 

(xm + (fd'Xx" + (gin = xm+lI, 

whence 
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This implies that (fl)'(gl)' = 0, because otherwise the product of the non­
zero terms of lowest degree in (fl)' and (g1)' cannot cancel out. Moreover, 
the above relation shows that the vanishing of one of (fl)', (g1)' implies 
that of the other. Therefore, we have (fl)' = 0 = (gl)', which establishes 
our claim. 

Thus, we have 

f m + m-l + = X PIX ••• + Pm' 

with each PI in Po. Now 

xm + (~l)xm-l + ... + (~). 
is the monic minimum polynomial for s relative to [R]. Since s is integral 
over R, it follows, by a now familiar argument, that pJri belongs to R for 
each i. But ri(pJri) belongs to Po, while ri does not belong to Po. Hence 
pJri belongs to Po. But this gives sm E SP 0 c Q, contradicting the fact that s 
does not belong to Q. 0 

Proposidon 2.4. Let u: X -+ Y be a finite dominant morphism between affine 
varieties over an algebraically closed field. Let W be a closed irreducible 
subset of Y, and let Z be an i"educible component of u- 1(W). Then u(Z) is 
closed in Y, and dim(u(Z» = dim(Z). For at least one such Z, one has 
u(Z) = W. If X and Yare irreducible and 9f(Y) is integrally closed in its 
field of fractions then u(Z) = W for every irreducible component Z of u - l(W). 

PROOF. Clearly, Z and the closure, u(Z)' say, of u(Z) are irreducible, and the 
restriction of u to Z is a dominant morphism u 1 : Z -+ u(Z)'. Let J be the 
annihilator of Z in 9f(X), so that 9f(Z) = 9f(X)/J. Let I be the annihilator 
of u(Z) in9f(Y). Then 9f(u(Z)') = 9f(Y)/I, and9f(u(Z)') 0 Ul may be identified 
with (9f(Y) 0 u)/(I 0 u). Now Iou = J n (9f(Y) 0 u), so that 

9f(u(Z)') 0 u 1 = (9f(Y) 0 u)/(J n (9f(Y) 0 u». 

Since 9f(X) is integral over 9f( Y) 0 u, this shows that 9f(Z) is integral over 
9f( u(Z)') 0 U 10 i.e., that u 1 is a finite morphism. Now we have from Proposi­
tion 2.2 that u 1 is surjective, which means that u(Z) is closed in Y. From the 
factthat 9f(Z) is integral over 9f( u(Z» 0 u I, it is clear that dime u(Z» = dim(Z). 

Now let P be the annihilator of W in 9f(Y), and Q the annihilator of 
u- 1(W) in 9f(X). Then po u = Q n (9f(Y) 0 u). Write Q = J 1 n ... n J", 
where the J/s a,re the annihilators in 9f(X) of the irreducible components, 
Z, say, of u- 1(W). Then po u is the intersection of the family of ideals 
Ji n (9f(Y) 0 u). Since po u is a prime ideal, there is an index i such that 
po u = J i n (9f(Y) 0 u). We claim that W = u(Zi)' In order to see this, 
let 9 be an element of 9f(Y) and suppose that g(u(Z,» = (0). Then go u 
belongs to J i n (9f( Y) 0 u), i.e., go U E P 0 u. Since u is dominant, it follows 
that 9 belongs to P, i.e., that yeW) = (0). Since u(Zi) is closed in Y, this 
shows that W = U(Zi)' 
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Now suppose that X and Y are irreducible and that ~(Y) is integrally 
closed in its field of fractions. For each i, we have 

po (I = Q () (~Y) 0 (I) c J j () (~Y) 0 (I). 

By Theorem 2.3, there is a prime ideal T in ~(X) such that T c J/ and 
T () (~(Y) 0 (I) = po (I. Now o(1""(T» c W, so that 1""(T) is an irreducible 
subset of (I-l(W). Since Zj c 1""(T), we must therefore have 1""(T) = Zit 
whence T = J j • Thus we have J j () (~(Y) 0 (I) = po (I for each i. As we have 
seen above, this implies that (I(Z/) = W for each i. 0 

3. Leauna 3.1. Let A be a Noetherian integral domain that is integrally closed 
in its field offractions [A]. Let L be afinite separable algebraic field extension 
of [A]. Then the integral closure of A in L is Noetherian as an A-module. 

PROOF. Let f denote the trace map L -+ [A]. Since L is separable over [A], 
the [A]-bilinear trace form (u, v) 1-+ f(UV) on L x L is non-degenerate. 
Let AL denote the integral closure of A in L. Clearly, AL contains an [A]­
basis (Uh ••• ' u,,) of L. Because of the non-degeneracy of the trace form, 
we can find elements t h ••• , tIl in L such that f(U/tj) = b/j for all i and j. 
Evidently, (t h • •• , tIl) is also an [A]-basis of L .. 

Now let u be any element of AL, and write 

" u = La/tit 
/=1 

with each a/ in [A]. MUltiplying by Uj and then applying f, we find aj = f{uu). 
Since UUj belongs to AL, this shows that aj is integral over A. Since A is 
integrally closed in [A], we have therefore aj E A. Thus, AL is contained 
in Atl + ... + At". Since A is Noetherian, it follows that AL is Noetherian 
as an A-module. 0 

1beoreDl3.1. Let F be afield, A afinitely generated integral domain F -algebra. 
Let L be afinite algebraic field extension of [A]. Then the integral closure of A 
in L is Noetherian as an A-module. 

PROOF. By Theorem 1.2, there is a finite subset (z 10 ••• , z.) of A that is alge­
braically free over F and such that A is integral over F[z 10 ••• ,zJ. Write 
B for F[z 10 ••• , z.], and note that the integral closure BL of B in L coincides 
with the integral closure AL of A. If BL is Noetherian as a B-module then, a 
fortiori, it is finitely generated as an A-module, and therefore Noetherian 
as an A-module, because A is Noetherian. Therefore, it suffices to prove 
Theorem 3.2 in the case where A is an ordinary polynomial algebra 
F[Xh' .. ,x,,]. We assume this from here on. 

Let L' be an algebraic closure of L. Then L' contains a purely inseparable 
algebraic field extension P of [A] such that P is a perfect field. Let (Yh ... ,YIII) 
be a set of field generators for L over [A]. The coefficients of the monic 
minimum polynomials of the y /s relative to P generate a finite purely 
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inseparable algebraic field extension S of [A], and the subfield S[L] of L' is a 
finite separable algebraic field extension of S. Write S = [A][Ulo .. . ,uJ. 
There is a power, q say, of the characteristic of F such that u1 belongs to 
[A] for each 1; if the characteristic of F is 0, we define q as 1. 

Now each u1 is a fraction formed with two polynomials in the x;'s with 
coefficients in F. Let a1' .. . , as be all these coefficients. Working in L', put 

C = A[xt'f, ... , X~'f, at'f, ... , a:'f]. 
Then C is integral over A. Let K denote the field extension of F that is 
generated by the elements at'f. Then (xt'f, ... , X~'f) is algebraically free 
over K, and C is the polynomial algebra over K that is generated by this 
set. Hence, C is integrally closed in its field of fractions, which is 

[C] = [A][xt'f, ... , X~'f, at'f, ... , a:'']. 
Clearly, S c [C], and the integral closure AS of A in S is contained in C. 
Since C is finitely generated as an A-module and A is Noetherian, AS is 
therefore Noetherian as an A-module. A fortiori, AS is a Noetherian ring. 
Moreover, AS is integrally closed in its field of fractions, because this field 
of fractions coincides with S. 

Now we can apply Lemma 3.1 to conclude that the integral closure of 
AS in the finite separable field extension S[L] of S is Noetherian as an AS_ 
module. Since AS is Noetherian as an A-module, it follows that the integral 
closure of AS in S[L] is Noetherian also as an A-module. Evidently, this 
integral closure contains AL. Since A is Noetherian, it follows that AL is 
Noetherian as an A-module. D 

If Rand S are commutative rings with ReS then the conductor ~(R, S) 
of R in S is defined as the largest ideal of S that is contained in R. It consists 
of the elements r of R for which rS c R. 

Let us say that an integral domain A is normal if it is integrally closed in 
its field of fractions. If A is normal, and S is a multiplicatively closed subset 
of A, then A[S-1] is normal, as is easy to verify. Conversely, suppose that 
the integral closure A * of A in [A] is finitely generated as an A-module 
and that A[(A \ pr 1] is normal for every maximal ideal P of A. Then A is 
normal. Indeed, otherwise we have ~(A, A*) =1= A, so that there is a maximal 
ideal P in A containing ~(A, A*). Since A[(A \ p)-1] is normal and A* is 
finitely generated as an A-module, there is an element u in A \ P such 
that uA * c A. But this means that u belongs to ~(A, A *) and hence to P, 
so that we have a contradiction. 

Let X be a variety, p a point of X. The local ring at p is the direct limit of 
the system of rings ~ x(U), where U ranges over the open subsets of X 
containing p, with respect to the restriction maps ~ x(U) -+ ~ x< V) for the 
pairs (U, V) with V c U. This is also called the stalk at p of the sheaf of 
regular functions, and is denoted by ~ x(p). Its elements are the equivalence 
classes of functions regular on a neighborhood of p, two such functions 
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being called equivalent if their restrictions to some neighborhood of p 
coincide. If U is an affine patch of X containing p, and if P is the annihilator 
of pin 9(U), then § x<P) may evidently be identified with the ring of fractions 
A[(A \ p)-I], where A = 9(U). The point p of X is called a normal point 
if § x(p) is normal. The variety X is said to be a normal variety if every 
point of X is normal. 

Let X be an irreducible affine variety. By Theorem 3.2, the integral 
closure of 9(X) in its field of fractions is Noetherian as a 9(X)-module. 
If the base field is algebraically closed then every maximal ideal of 9(X) 
is the annihilator of a point of X. Hence we see from our above discussion 
of normal integral domains that an irreducible affine variety X over an 
algebraically closed field is normal if and only if 9(X) is normal. Of course, 
the sufficiency of this condition holds even if the base field is not algebraically 
closed. 

Let X be an irreducible affine variety, and write A for 9(X). Let A* 
denote the integral closure of A in [A]. Let (ut> ... , un) be a system of A­
module generators for A*. There is a non-zero element a in A such that 
aUi belongs to A for each i, whence aA * c: A, i.e., a E ~(A, A *). Consider 
the principal open subset Xa = .9'(A[a- I ]) of X. We have -

(A[a- I ])* = A*[a- I ]. 

Since aA* c: A, we have A* c: A[a- I ], whence (A[a- I ])* = A[a- I ]. Thus, 
Xa is a normal variety. 

We summarize as follows, for reference. 

Proposition 3.3. Let V be a variety, and let X h' .. , Xn be affine patches 
of V covering V. If 9(X /) is integrally closed in its field of fractions for each i 
then V is a normal variety. The converse holds whenever the base field is 
algebraically closed. Every variety has a non-empty normal open subvariety. 

4. Proposition 4.1. Let A and B be commutative rings, with A c: B. Suppose 
that f is an element of the polynomial ring B[x] that is integral over A[x]. 
Then the coefficients off are integral over A. 

PROOF. By assumption, there are elements Ph"" Pm in A[x] such that 

fm + pt!m-I + ... + Pm = O. 

Let r be an integer greater than the maximum of the degrees of f and the 
p/s. Put g = f - x'. In the above, substitute g + x' for f and write the 
resulting relation for g over A[x] in the form 

(_g)[gm-I + qIgm-2 + ... + qm-I] = qm' 

where the q/s are elements of A[x]. By the choice of r, the polynomial 
- g is monic. On the other hand, 

qm = x,m + PIX,(m-l) + ... + Pm_IX' + Pm' 
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showing that q", is monic. Therefore, the above relation shows that 

is monic. 
Generally, if u and v are monic polynomials in B[x] such that the coeffi­

cients of uv are integral over A, then the coefficients of u and v are integral 
over A. This is proved by constructing a commutative ring C containing B 
such that u and v are products of polynomials x - c with c in C. Then, 
since the coefficients of uv are integral over A, so are all these c's, whence 
the same holds for the coefficients of u and v. 

Applying this to the above, since the coefficients of q", lie in A, we see 
that the coefficients of g are integral over A, which means that the coefficients 
offare integral over A. 0 

Lemma 4.2. Let A be an integral domain, B a subring of A such A is finitely 
generated as a B-algebra. Then there is a finite subset (Xl> ••• , Xr) of A that 
is algebraically free over [B], and a non-zero element b of B, such that A[b - I] 
is integral over B[b -I ][Xh ... , Xr]. 

PROOF. Let A' be the sub [B)-algebra of [A] that is generated by A. Then A' 
is a finitely generated [B]-algebra to which we can apply Theorem 1.2. 
This yields a finite subset (Xl> • •• , xr) of A' that is algebraically free over 
[B] and such that A' is integral over [B][xI' ... ,Xr ]. Each XI is a fraction 
aJbi where ai lies in A and bl in B. Multiplying each Xi by bi does not disturb 
the relevant properties. Thus, we see that the x;'s may be chosen from A. 
Since A is finitely generated as a B-algebra, and since every element of A 
is a zero of a monic polynomial with coefficients in [B][Xh ... ,xr ], we can 
clearly find a non-zero element b in B such that A[b - I] is integral over 
B[b-I][xI' ... 'xr ]. 0 

Theorem 4.3. Let F be an algebraically closed field, and let a: X -+ Y be a 
dominant morphism between irreducible varieties over F. Then a(X) contains a 
non-empty open subset U of Y. Moreover, U may be so chosen that, if W is a 
closed irreducible subset of Y meeting U, and Z is an irreducible component of 
a- leW) meeting a-I(U), then dim(Z) = dim(W) + dim(X) - dim(Y). 

PROOF. Appealing to Proposition 3.3, we reduce the theorem to the case 
where Y is a normal variety. As in the beginning of the proof of Theorem 2.1, 
we see that no generality is lost in assuming that Y is affine. Now write X 
as a union of affine patches X h ... , X n. Then, if U i is an open subset of Y 
satisfying the requirements of the theorem for the restriction of a to Xi> the 
intersection of the family of U;'s satisfies the requirements for a. Therefore, 
it suffices to deal with the case where X is affine. Accordingly, we assume 
that both X and Yare affine, and that Y is normal. 
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Write A for &I(X), and B for &I(Y) 0 (I. Let (Xl" .. , X,) and b be as obtained 
in Lemma 4.2, so that A[b- l ] is integral over the polynomial algebra 
B[b-l][X1o"" x,]. We have b = co (I, with c in &,(Y), and 

B[b- l ] = &,(Ye) 0 (I. 

We shall show that Ye satisfies the requirements for U in Theorem 4.3. 
We have (I-l(Ye) = X", and &I(X,,) = A[b- l ]. Let us regard the poly­

nomial algebra F[X1o" ., x,] as the algebra &I(F') of polynomial functions 
on the direct product F' of r copies of F, with its standard structure of an 
affine F-variety. Consider the affine F-variety Ye x P. We have 

&,(Ye x F') = &,(Ye) ® F[X1o' .. ,x,]. 

Using the composition with (I on the factor &I(Ye), we obtain an F -algebra 
injection &'( Ye x F') -+ &I(X,,) whose image is B[b - 1 ][x 10 ... ,x,]. This 
defines a dominant morphism 't': X" -+ Ye x F'. Since &I(X,,) is integral 
over B[b-l][xh'''' x,], this morphism 't' is a finite morphism. By Proposi­
tion 2.2, 't' is therefore surjective. Clearly, the restriction of (I to X" is the 
composite of't' with the canonical projection Ye x F' -+ Ye. Hence 

Ye = (I(X,,) c u(X). 

Now let Wand Z be as in the statement of Theorem 4.3. We may replace 
W with W n Ye, and Z with Z n X", and (I with its restriction to X". Thus, 
we may assume that W c Ye and that Z is an irreducible component of 
(I-l(W) in X" = (I-l(Ye). Then Z is an irreducible component of 
't'-l(W x F'). Now W x F' is a closed irreducible subset of Ye x P. The 
integral closure of &I(Ye x F') in its field offractions is contained in 

[&I(Ye)][X1o' •• , x,]. 

By Proposition 4.1, the elements of this integral closure, when written as 
polynomials in Xl"'" x" have their coefficients integral over &,(Ye). Since 
Y is a normal variety, so is Ye. Therefore, we have from Proposition 3.3 
that &I(Ye) is integrally closed in [&,(Ye)]' Thus, &I(Ye x P) is integrally 
closed in its field of fractions. Now we can apply Proposition 2.4 to conclude 
that 't'(Z) = W x P and dim('t'(Z» = dim(Z). Therefore, we have 
dim(Z) = dim(W) + r. Finally, it is clear that r is equal to the transcendence 
degree of [&I(X)] over [&I(Y) 0 (I], so that r = dim(X) - dim(Y). 0 

Recall from Section IX.1 that a constructible subset of a variety is a finite 
union of locally closed subsets, and that it inherits a variety structure in the 
natural way. 

Theorem 4.4. Let (I: X -+ Y be a morphism between varieties over an alge­
braically c1osed./ield. If A is a constructible subset of X then u(A) is a construct­
ible subset of Y. 
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PROOF. Since a constructible subset of X is a subvariety, it suffices to prove 
that o{X) is a constructible subset of Y. Moreover, no generality is lost in 
assuming that X is irreducible. Hence, it suffices to prove that a(X) is con­
structible in the case where both X and Yare irreducible and 0' is dominant. 

We assume this and proceed by induction on the dimension of Y. The 
result is trivial if dime Y) = O. Suppose dime Y) > 0, and that the theorem 
has been established in the lower cases. By the first part of Theorem 4.3, 
a(X) contains a non-empty open subset U of Y. Let Wi>"" W, be the irre­
ducible components of Y\ U; evidently, we may assume that U =1= Y. By 
Proposition 1.3, each W; is of strictly smaller dimension than Y. Let 
Zil"'" Zii', be the irreducible components of a-l(W;). By our inductive 
hypothesis, each a(Zjj) is a constructible subset of W;, and hence also is a 
constructible subset of Y. Now a(X) is the union of U and the a(Zij)'s, and 
thus is constructible. 0 

Theorem 4.5. Let 0': X ~ Y be a dominant morphism between irreducible 
varieties over an algebraically closed field. Suppose that, for every closed 
irreducible subset W ofY, each irreducible component of a-leW) has dimension 
dim(W) + dim(X) - dim(Y). Then 0' is an open map. 

PROOF. If we apply the assumption with Wany I-point subset of Y, we find 
that 0' is surjective. Now let W be any closed irreducible subset of Y, and let 
Zl"'" Z" be the irreducible components of a-leW). Put 

r = dim(X) - dim(Y). 

Indicating the closure of a set by', note that Zj is also an irreducible compo­
nent of a-l(a(Zi)')' so that the assumption of the theorem gives 

dim(a(ZJ) + r = dim(Zj) = dim(W) + r, 
whence dim(a(Zi)') = dim(W), and therefore a(Zj)' = W. Thus, the restric­
tion of 0' to Zj is dominant from Zj to W. 

Now let x be a point of X, and let U be an open subset of X containing x. 
We must show that a(x) lies in the interior of a(U). Suppose this is not the 
case, so that a(x) E (Y \ a(U»'. By Theorem 4.4, a(U) is a constructible 
subset of Y. Therefore, also Y \ a(U) is constructible. Hence, there is a closed 
set C in Y and an open set E in Y such that a(x) E (C n E), and 

C n E c: Y \ a(U). 

Moreover, we may choose C to be irreducible, so that C n E is dense in C. 
We know from the above that the irreducible components of a-l(C) all 
dominate C, via 0'. It follows that a-leE) meets each of these components, 
whence a-leE) n a-l(C) is dense in a-l(C). On the other hand, 

a-leE) n a-l(C) = a-l(E n C) c: a-l(y \ a(U» c: X \ U. 

Since X \ U is closed, it follows that a-l(C) c: X \ U. Since x E a-l(C) n U, 
this is a contradiction. 0 
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5. We append three purely technical results which will be needed when we 
return to algebraic groups. 

Proposition 5.1. Let X be an irreducible variety, x a normal point of X. Let 
f be a rational function on X that is not defined at x. There is a closed sub­
variety Y of X such that x E Y, 1/ f is defined at some point of Y and 1/ f takes 
the value 0 at every point of Y where it is defined. 

PROOF. Let R denote the local ring of x. Without loss of generality, we 
assume that X is affine. Then we may identify R with the appropriate ring 
offractions of 9'(X), and we may regardfas an element of [9'(X)]. Working 
in this field, let I denote the ideal of R consisting of the elements g for which 
gf E R. Since R is a Noetherian ring, it follows from elementary ideal theory 
that the set of prime ideals of R that are minimal among the prime ideals 
containing I is finite (see Note 3 at the end of this chapter). Let Ph···, Pt 

be all the prime ideals minimal prime over I. Their intersection is the radical 
of I, and there is a positive integer n such that Pr ... P': e: I. Write R1 for 
the local ring R[(R \P1)-1]. Then we have P,R1 = R1 for each i> 1. 
It follows that P~R1 e: IR1. Since Ife: R, we have therefore Prf e: R1. 
Let k be the smallest non-negative integer m for which P'f f e: R 1. If we 
had k = 0, we would havef ERh so that there would be an element g in 
R \ PI with gf E R, giving gEl, which contradicts I e: Pl. Thus, we have 
k > o. 

Now choose an element g from (l~-l f) \ R 1• Since x is a normal point, 
R is integrally closed in [R], whence also R1 is integrally closed in [R]. 
Therefore, g is not integral over R 1. It follows that gP1R 1 ¢ P 1R1. In order 
to see this, note that P 1R1 has a finite system (U1' ... ' u,) of R 1-module 
generators. If gP1R1 e: P1R1 we have 

, 
gUj = L cijUj, 

j= 1 

with Cjj in R 1. Hence the determinant of the matrix with entries g~ij - cij is 
equal to 0, showing that g is integral over R 1 ; a contradiction. 

On the other hand, we have gP1 e: Pf.f e: R 1• Since, as we have just 
seen, (gP1)R1 ¢ P1R h and since P1R1 is the maximum ideal of the local 
ring Rh it follows that gP1R 1 = Rlo so that R 1(1/g) = P1R 1. 

Now put h = fir!. Then hEPf.f e: R 1. Moreover, h is a unit of R 1. 
Indeed, otherwise hEP1R1 = R1(1/g), so that flr!-l = ghERh whence 
/P"i-1 e: Rh contradicting the definition of k. Hence, we have 

1/ f = (l/h)(I/gl:) E P1R 1• 

Let P be the prime ideal P 1 n 9'(X) of 9'(X), and let Ybe the set of zeros 
of Pin X. Then Y is an irreducible closed subvariety of X, and x E Y (because 
P1 is contained in the maximum ideal of the local ring R at x). Now 1/f 
defines a rationalfunction on Y. Since 1/ f E P 1Rh it is clear that (1/ f)(y) = 0 
for every point y of Y at which 1/ f is defined. The elements of R1 may be 
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written as fractions ulv, with u and v in 9J(X) and v j P. There are points 
yin Y with v(y) ~ 0, i.e., points y at which ulv is defined. In particular, Ilf 
is defined at some point of Y. 0 

Proposition S.2. Let (1: X -+ Y be an injective and dominant morphism 
between irreducible varieties over an algebraically closed field F. Then the 
field of rational functions of X is afinite purely inseparable algebraic extension 
of the image, under the transpose of (1, of the field of rational functions of Y. 

PROOF. Applying Theorem 2.1 with a I-point subset of Y in the place of W 
and using that (1 is injective, we see that we must have dim(X) = dim(Y). 
Therefore the field of rational functions of X is a finite algebraic extension 
of the image of the field of rational functions of Y. There is an affine patch U 
of X such that (1(U) is contained in some affine patch V of Y. Let A = 9J(U), 
B = 9J(V) 0 (1. Let a be an element of A, and suppose)' and bare F-algebra 
homomorphisms A -+ F whose restrictions to B coincide. Then }' and b 
are points of U whose images, under (1, in Y coincide. Since (1 is injective, 
we have)' = b. Now we can apply Proposition 111.2.4 to conciude that a 
is purely inseparably algebraic over [B]. Since the field of rational functions 
of X may be identified with [A] and, compatibly, the image of the field 
of rational functions of Y with [B], this is the required result. 0 

Proposition 5.3. Let p: X -+ Y be a morphism between irreducible varieties 
whose transpose is an isomorphism of the field of rational functions of Y onto 
the field of rational functions of X. Then there is an open non-empty subset U 
of Y such that p induces an isomorphism of varieties from p - 1( U) to u. 
PROOF. Without loss of generality, we assume that Y is affine. Let V be an 
affine patch of X, and let W denote the closure of p(X \ V) in Y. Since the 
irreducible components of X \ V are of dimension < dim(X), the irreducible 
components of Ware of dimension < dim(Y). Therefore, there is a non­
zero element fin 9J(Y) such thatf(W) = (0). Now we have 

p-l(yf ) = X fop C V. 

This shows that no generality is lost in assuming that both X and Yare 
affine. 

Then, by assumption, the transpose pO of p maps [9J(Y)] isomorphically 
onto [9J(X)]. Write 9J(X) = F[fl> . .. ,J.], where F is the base field and 
}; = Wj 0 p)/(h 0 p), with gj and h in 9J(Y). Then pO maps 9J(Y)[h- 1] iso­
morphically onto 9J(X)[(h 0 p)-l], so that p induces an isomorphism from 

X"op to Y". 0 

Notes 

1. The dimension-theoretical analysis of morphisms, as presented here, 
comes from [11]. 

2. Theorem 4.5 and Proposition 5.1 are due to C. Chevalley. 
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3. In proving Proposition 5.1, we have used the fact that, in a Noetherian 
commutative ring R, the set of prime ideal minimal over a proper ideal, 
J say, is finite. It suffices to show that the radical of J is the intersection of a 
finite family of prime ideals. Suppose this is false. From the family of ideals 
that are intersections offamilies of prime ideals, but not offinite such families, 
choose a maximal one, Q say. There are elements a and b in R \ Q such that 
ab belongs to Q. Let A be the radical of Q + Ra, and let B be the radical of 
Q + Rb. It is easy to see that A n B = Q, and this gives a contradiction. 



Chapter XI 

Local Theory 

The content of this chapter is the dimension theory of local rings, and its 
application to the investigation of tangent spaces to varieties and local 
properties of morphisms. The resulting technique enables us to use Lie 
algebras in dealing with coset varieties arising from algebraic groups later on. 

Section 1 deals with general results centering around the notion of length 
of modules. In Section 2, these results are used for defining the "charac­
teristic degree" of a Noetherian local ring. With this, it is shown that, for 
such a ring, the Krull dimension is equal to the parametric dimension. This 
equality connects the maximum length of chains of prime ideals with the 
minimum cardinality of systems of generators for ideals whose radical is 
the maximum ideal. 

The main result of Section 3 is the equality of the Krull dimension with 
the degree of transcendence of the field of fractions for finitely generated 
integral domain algebras over a field. 

Section 4 contains the background in local ring theory for the notion of 
singular point of a variety. The basic results concerning singular points are 
established in Section 5. 

In the varieties arising directly from algebraic groups, all points are non­
singular, which has the effect that the local behavior of a morphism reveals 
its properties with regard to the dimensionalities of its image and its fibers. 
The general auxiliary results used later on for exploiting this are developed 
in Section 6. 

1. We begin with preparations for the dimension theory of local rings. 
The first lemma is known as the Artin-Rees Lemma. 

155 
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Lemma 1.1. Let R be a commutative Noetherian ring, M a finitely generated 
R-module, N a sub R-module of M, and J an ideal of R. There is a non-negative 
integer k such that,for every n ~ k, 

(In.M) n N = In-J:.((JJ:.M) n N). 

PROOF. Let (ato ... , a,) be a system of R-module generators of J, let t be an 
auxiliary variable over R, and let S be the sub R-algebra R[alt' ... ' a,t] 
of the polynomial algebra R[t]. Since R is Noetherian and S is finitely 
generated as an R-algebra, S is Noetherian. 

We imbed the given R-module M in the R[t]-module M[t] = L~o Mrn 
in the evident fashion, and we consider the sub S-module S· M of M[t]. 
Oearly, every system of R-module generators of M is also a system of 
S-module generators of S . M, so that S· M is finitely generated as an S­
module. Since S is a Noetherian ring, S . M is therefore Noetherian as an 
S-module. 

Let (flo . .. ,ft) be a system of S-module generators for (S . M) n N[t], 
and let k be the maximum of the degrees of the fj's. Suppose x is an element 
of (r . M) n N, where n ~ k. Then xrn belongs to (S· M) n N[t], so that 
there are elements s, in S such that 

xrn = SI • fl + ... + s,,· ft· 

The coefficient of rn in s,· Ji is 
I: 
L si(n - e)Ji(e), 

e=O 

where s/...n - e) is the coefficient of rn- e in s, andJi(e) is the coefficient of te 

injj. This shows that x belongs to In-I:. «JI:. M) n N), so that 

(In.M) nNe In-J:.((JI: ·M) n N). 

The reversed inclusion relation is evident. o 

Proposition 1.2. Let R be a Noetherian commutative ring, M a finitely gener­
ated R-module, J an ideal of R. Suppose that,for every a in J and every non-zero 
element x of M, we have (1 + a)· x#: O. Then nn>o I n • M = (0). 

PROOF. Put N = nn>O J". M. Then we have (Jm • M) n N = N for every 
non-negative integer m, so that Lemma 1.1 gives N = In-I:. N for all n ~ k. 
ThusN = J·N. 

Now let (Xto .•• , x,,) be a system of R-module generators of N. Then we 
have 

" Xi = LC,jXj, 
}=1 

with c'} in J. This gives D . x} = 0 for each j, where D is the determinant 
of the matrix with entries ~'} - clj. Since D is of the form 1 + a, with a in J, 
our assumption implies that each x j = 0, so that N = (0). 0 
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Let R be an arbitrary ring, and let M be an R-module having a finite 
composition series 

(0) = Mo C ••• c M" = M. 

By the 10rdan-Hoelder Theorem, the length n of such a series is determined 
by M. We call it the R-Iength of M and denote it by LR(M). 

A ring R is called an Artin ring if it satisfies the minimal condition for 
left ideals. This implies that R also satisfies the maximal condition for left 
ideals. We shall not use this result, but we shall define an Artin ring as a ring 
satisfying both the minimal and the maximal condition for left ideals. 
Familiar elementary arguments show that R is an Artin ring if and only if 
every finitely generated R-module has a finite composition series. 

Let A be an Artin ring, and consider the polynomial ring A[Xl" .. , xq], 
where the x;'s are variables, central in A[Xl" .. , Xq]. We regard this as a 
graded ring, the elements of A being of degree 0, while each Xi is of degree 1. 

Theorem 1.3. Let A[Xlo"" Xq] be as described just above, and let M be a 
finitely generated graded A[Xh"" xq]-module. There is a polynomial PM 
of degree strictly less than q, with rational coefficients, such that,for all suffi­
ciently large n's, L,.(M,,) = PM(n), where M" is the component of degree n 
ofM. 

PROOF. If q = 0 then, since M is finitely generated, we have M" = (0) for all 
sufficiently large n's, and PM is the zero polynomial. Now we suppose that 
q > 0, and that the theorem has been established in the cases of fewer than q 
variables. 

The endomorphism of M corresponding to Xq yields a morphism of 
A-modules from M" to M,,+ 1> whose kernel is K", where K is the kernel of 
the endomorphism corresponding to xq • This gives an exact sequence of 
morphisms of A-modules 

(0) -+ K" -+ M" -+ M"+ 1 -+ M"+ dxq· M" -+ (0). 

The alternating sum of the lengths of the terms of an exact sequence must 
be 0, whence we obtain 

Now we can apply ourinductivehypothesis to the graded A[xt> ... , Xq-l]­
modules M/(xq· M) and K. This gives the existence of polynomials PM ;Xq'M) 
and P K of degree strictly less than q - 1 such that, for all sufficiently large n's, 

LA(M,,+ 1) - LA(M") = PM/(Xq'M)(n + 1) - PK(n). 

As a function of n, the expression on the right is a polynomial of degree 
strictly less than q - 1. It follows that, for all sufficiently large n's, LA(M,,) 
is given by a polynomial of degree strictly less than q. 0 
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Theorem 1.4. Let B be a Noetherian local ring, m(B) its maximum ideal, J 
an ideal such that m(B)1I c J c m(B) for some positive e. Let q denote the 
minimum number of B-module generators of J, and let E be a./initely generated 
B-module. There is a polynomial PE•J of degree no greater than q, with rational 
coefficients, such that, for all sufficiently large n's, LJ..E/Jn. E) = PE.in). 

PROOF. Consider the filtration of B by the powers of J, and let G(B) denote 
the associated graded ring r..~o J"/Jn+ I, Similarly, let G(E) denote the 
graded G(B)-module r..~o (In • E)/(P+ 1. E). Since E is finitely generated 
as a B-module, G(E) is finitely generated as a G(B)-module. 

Now choose a system (bh .•. ,b,) of B-module senerators of J. There is a 
surjective morphism of graded'rinp from the polynomial ring 

(B/JXXh' .. ,x,] , 

to G(B) sending each Xi onto the dement hi + J2 of J/J'/. and coinciding 
with the injection on B/J. Usmc this, we obtain ~ structure of a graded 
(B/J)[Xh ... ,x,]-module on G(E1 ror ~ G(E) is clearly still finitely 
generated. ' 

We show that B/J is an Artin rina, so that we may then apply Theorem 
1.3. Since B/J is a homomorphic image of B/1I(B)II, it will suffice to show 
that B/m(B)' is an Artin ring for every positive exponent t. Evidently, this 
is true for t = 1, because B/m(B) is a field. Suppose we have already shown 
that B/m(B)' is an Artin ring for some t. Consider the canonical exact sequence 
of morphisms of B-modules 

(0) -+ m(B)'/m(B)'+ 1 -+ B/m(Br 1 -+ B/m(B)' -+ (0). 

The sub B-modules of m(B)'/m(B)'+ 1 are the subspaces for the vector space 
structure over the field B/m{B). Since m{BY is finitely generated as a B­
module, m(B)'/m(Br 1 is of finite dimension over B/m(B), and so has a 
finite composition series as a B-module. By inductive hypothesis, H/m(B)' 
has a finite composition series as a JJ.module. The exact sequence shows 
that therefore the same holds for B/~.)'+ 1, so that B/m(H), + 1 is an Artin 
ring. 

Now we can apply Theorem 1.3 t9 the (B/J)[Xh . ,., x.}module G(E) 
and conclude that there is a poi)'ft01'l1ial P of degree strictly less than q 
such that LB/iJn • E/JR+ 1 • E) = p(n) for all sufficiefttly large n's. We consider 
the canonical exact sequence of morphisms of B-modules 

(0) -+ In . E/Jn+ 1 • E -+ E/J"+ 1 • E -+ E/Jn. E -+ (0). 

For n = 0, we have E/Jn • E = (0). Suppose we have already shown that 
E/Jn • E has finite B-Iength for some n. Clearly, JII . E/Jn+ 1 • E has the finite 
B-Iength LJ..Jn. E/Jn+ 1 • E) = LB/iJn . E/Jn+ 1 • E). The exact sequence 
shows that E/Jn+ 1 • E again has finite B-Iength. Thus, EjJn. E has finite 
B-Iength for all n, and the exact sequence shows, moreover, that 

LJ..E/Jn+ 1 • E) - L.(E/Jn. E) = p(n) 
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for all sufficiently large n's. It follows that, for large n, LJ.,E/J" . E) is given 
by a polynomial of degree no greater than q. 0 

2. Consider the result of Theorem 1.4 in the case where E = B. This says 
that there is a polynomial P J of degree no greater than q, with rational 
coefficients, such that LJ.,B/J") = PAn) for all sufficiently large n's. We 
claim that the degree, dJ say, of PJ is the same for all J's. In order to see this, 
suppose that J' is another ideal like J. There is an exponent e > 0 such 
that Je c: J'. Now Je" c: (J')" for all n, so that B/(J')" is a homomorphic 
image of B/Je". Hence, for all sufficiently large n's, we have PAn) S PAen), 
which clearly implies that dJ • S dJ • By symmetry, it follows that dJ • = dJ • 

We shall denote this degree by d(B) and call it the characteristic degree 
of B. Note that d(B) is at most equal to the minimum number of generators 
for an ideal with radical m(B). This minimum number will be called the 
parametric dimension of B, and denoted by r(B). Thus, d(B) S r(B). 

On the other hand, we consider chains of prime ideals of B, 

Po c: . . . c: p" c: B, 

where the inclusions are proper. The index n is called the length of the chain. 
The largest such length, or 00, if there is no largest, is called the Krull dimen­
sion of B and denoted k(B). The main result concerning these invariants is 
as follows. 

Theorem 2.1. If B is a Noetherian local ring then d(B) = r(B) = k(B). 

PROOF. As long as we can, let us choose elements blo b2 , ••• from m(B), 
as follows: b l is any element of m(B) not belonging to any minimal prime 
ideal of B; if b1, ••• , b. have been chosen, choose bs + 1 from m(B) not belonging 
to any prime ideal minimal among those containing Bb1 + ... + Bbs • 

Since B is Noetherian, this process must come to a halt, i.e., we must reach 
an index q (q = 0 being possible) such that the union of the family of prime 
ideals minimal among those containing Bb 1 + ... + Bbq (= (0) in the case 
where q = 0) is m(B). Then we see from Lemma X.1.8 that m(B) is the only 
prime ideal of B containing Bb1 + ... + Bbq • 

Now we need the elementary result that if S is a commutative ring, Q a 
prime ideal of S and I an ideal contained in Q, then there is a prime ideal Qo 
such that I c: Qo c: Q and Qo is minimal among the prime ideals containing I. 
In order to prove this one applies Zorn's Lemma to the family of all prime 
ideals between I and Q, endowed with the reversal of the inclusion order. 
The applicability of Zorn's Lemma comes from the nearly evident fact that 
the intersection of a totally ordered family of prime ideals is a prime ideal. 
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Thus, m(B) contains a prime ideal Pq - I minimal over Bb i + ... + Bbq - I • 

Next, Pq - I contains a prime ideal Pq - 2 minimal over Bb i + ... + Bbq - 2 , 

etc. In this way, we obtain a chain of prime ideals 

Po c: ... c: Pq = m(B), 

where the inclusions are proper, by the choice of the b/s. Since m(B) is the 
only prime ideal containing Bb i + ... + Bbq , it is the radical of this ideal. 
It follows that, for some e > 0, 

m(B)e c: Bb i + ... + Bbq c: m(B). 

By the definition of the parametric dimension, this shows that reB) ::;; q. 
The above chain of prime ideals shows that q ::;; k(B). Thus, we have 
reB) ::;; k(B). We have already seen that deB) ::;; reB). Therefore, it will 
suffice to prove that k(B) ::;; deB). 

If deB) = 0 then LJ..B/m(B)") becomes constant as n is made large, and 
it is easy to see that therefore m(B)" + I = m(B)" for all sufficiently large 
n's. An evident application of Proposition 1.2 (noting that 1 + a is a unit of 
B for every element a of m(B» shows that n"~O m(B)" = (0). Hence, we 
must have m(B)" = (0) for some n, which implies that m(B) is the only 
prime ideal of B, so that k(B) = O. 

Now suppose that deB) > 0 and that the theorem has been established 
for all local rings whose characteristic degree is strictly smaller than deB). 
Consider a chain of prime ideals 

Po c: ... c: P t = m(B), 

with proper inclusions and t > O. Put B' = B/P o. Then B' is a Noetherian 
local ring, with m(B') = m(B)/Po. Now B'/m(B')" is isomorphic with 
B/(m(B)" + Po), and LB,(B'/m(B')") = LJ..B/(m(B)" + Po» ::;; LJ..B/m(B)"). 
Hence, deB') ::;; deB). 

In order to proceed, we need the general result that if A is a Noetherian 
local ring, and a is a non-zero element of A that is not a zero divisor, then 
d(A/Aa) < d(A). This is proved as follows. By Lemma 1.1, there is a non­
negative integer k such that, for all n ~ k, 

Aa n meA)" = (Aa n m(At)m(A)"-k c: Aam(A)"-k. 

Using this and the canonical A-module isomorphism between the modules 
(Aa + m(A)")/m(A)" and Aa/(Aa n meA)"), we obtain 

LA«Aa + m(A)")/m(A)") ~ LA(Aa/Aam(A)"-k). 

Since a is not a zero divisor, the multiplication by a is an isomorphism of 
A-modules from A to Aa, so that the length on the right above coincides 
with LA(A/m(A)"-k). Using this, we get 

LA/Aa(A/(Aa + meA)"»~ = LA(A/(Aa + meA)"»~ 
= LA(A/m(A)") - LA«Aa + m(A)")/m(A)") 

::;; LA(A/m(A)") - LA(A/m(A)"-k). 
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This shows that, for all sufficiently large n's, we have 

LA1A(J(AI(Aa + m(A)R» ~ P m(A)(n) - P m(A)(n - k). 

The module figuring on the left is isomorphic with (A/Aa)/m(AIAa)". Hence, 
for large n, the left side is equal to P m(AIA(J)(n). As a function of n, the expression 
on the right is a polynomial of degree strictly smaller than d(A). Hence our 
inequality shows that d(AIAa) is strictly smaller than d(A). 

Now choose a non-zero element a from PdPo, and put BO = B'IB'a. 
By what we have just proved, we have d(BO) < d(B'), and so d(BO) < d(B). 
Hence, our inductive hypothesis gives k(BO) ~ d(~), so that k(BO) < d(B). 

On the other hand, the chain 

(Pt/Po)/B'a c: ... c: (P,/Po)/B'a 

is a chain of prime ideals of BO with proper inclusions, so that k(BO) ~ t - 1. 
With the last inequality above, this gives t ~ d(B). Thus, we conclude that 
k(B) is finite and at most equal to d(B). D 

The following generalization of Krull's principal ideal theorem is an almost 
immediate consequence of Theorem 2.1. 

Theorem 2.2. Let R be a Noetherian commutative ring. Let P be a prime 
ideal of R that is minimal prime over an ideal J generated by n elements. Then 
every properly increasing chain of prime ideals ending at P has length at most n. 

PROOF. Let Po c: ... c: Pic = P be such a chain. We must prove that k ~ n. 
Replacing R with RIP 0, if necessary, we reduce the problem to the situation 
where R is an integral domain. Consider the local ring Rp = R[(R \ p)-I]. 
The only prime ideal of Rp containing JRp is PRp. Thus, the radical of JRp 
is PRp. Since JRp is generated by n elements, we have r(Rp) ~ n. By Theorem 
2.1, this implies that k(Rp) ~ n. But 

PoRp c: ... c: P"Rp = PRp 

is a properly increasing chain of prime ideals of Rp. Therefore, we must 
havek ~ n. D 

3. LeDlDla 3.1. Let R be a commutative ring, x a variable over R. Suppose 
that Po c: PI c: P2 is a chain of prime ideals of R[x], with proper inclusions. 
Then Po n R =F P2 n R. 

PROOF. Put P = (Po n R)R[x]. This is clearly a prime ideal of R[x] that is 
contained in Po. We may identify R[x]IP with (RI(Po n R»[x], and PdP, 
P21P are prime ideals of this polynomial ring such that, with proper inclu­
sions, 
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Now let K denote the field offractions ofthe integral domain R/(Po n R), 
and consider the ideals KPl/P and KP2/P of K[x]. First, suppose that 
KPJP = K[x]. Then P2/P contains a non-zero element Jl of R/(Po n R), 
and if u is a representative of Jl in R we have u e (P 2 n R) \ (Po n R), so that 
Po n R #: P2 n R. 

If KP2/P #: K[x] then both KP2/P and KPl/P are non-zero prime 
ideals of K[x]. Since every non-zero prime ideal of K[x] is maximal, we 
must therefore have KPl/P = KPJP. Choose an element p from P2 \ Pl' 
By the last equality, there is a non-zero element Jl in R/(Po n R) such that 
Jl{p + P)ePl/P. Let u be a representative of Jl in R. Then upePb whence 
uePl n R, while u'Po n R. Thus, Po n R #: Pl n R. 0 

Theorem 3.2. Let R be a commutative ring. If R satisfies the maximal condition 
for prime ideals, so does the polynomial ring R[x]. If R has finite Krull dimen­
sion then the same holds for R[x], and 

k(R) + 1 ~ k(R[x]) ~ 2k(R) + 1. 

PROOF. Let Po c: P 1 c: ... be a properly ascending chain of prime ideals of 
R[x]. By Lemma 3.1, the chain Po nRc: P2 nRc: ... formed with the 
even indices is properly ascending. Evidently, this gives the first part of 
Theorem 3.2. 

Now suppose that k(R) = n. Then it is clear that the second ch~n above 
must stop at P 2n n R or before, whence the original chain must stop at 
P2n + l or before. Thus, k(R[x]) ~ 2n + 1. 

On the other hand, let Qo c: ... c: Qn be a properly ascending chain of 
prime ideals of R. Then 

QoR[x] c: ... c: QnR[x] c: QIIR[x] + xR[x] 

is a properly ascending chain of prime ideals of R[x], showing that 

k(R[x]) ~ n + 1. o 

Lemma 3.3. Let P be a minimal non-zero prime ideal of the Noetherian com­
mutative ring R. Then PR[x] is a minimal non-zero prime ideal ofR[x]. 

PROOF. Let p be a non-zero element of P. We show that PR[x] is minimal 
prime over pR[x]. Suppose that Q is a prime ideal of R[x] containing p and 
contained in PR[x]. Then Q n R is a non-zero prime ideal of R contained 
in P. By assumption on P, we have therefore Q n R = P, so that Q = PR[x]. 

Now let J be any prime ideal of R[x] that is contained in PR[x]. Then 
either J n R = P or J n R = (0). In the first case, J = PR[x]. In the second 
case, (0) is a prime ideal of R, and hence also a prime ideal of R[x]. We have 
(0) c: J c: PR[x]. Since PR[x] is minimal prime over the principal ideal 
pR[x], we have from Theorem 2.2 that the inclusions here cannot both be 
proper. Thus, either J = (0) or J = PR[x]. 0 
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Theorem 3.4. Let R be a Noetherian commutative ring, and assume that R 
has finite Krull dimension k(R). Then k(R[x]) = k(R) + 1. 

PROOF. If k(R) = 0 then Theorem 3.2 gives k(R[x]) = 1. Now assume that 
k(R) = n > 0, and that the theorem has been established in the lower 
cases. Let Poe ... c P". be a properly ascending chain of prime ideals of 
R[x]. In view of Theorem 3.2, it suffices to show that m :s;; n + 1. Write 
QI for Pi f"\ Rand QI[X] for QIR[x]. 

First,supposethatQl oj: Qo.Thenk(R/Ql) < n, and we have the following 
properly ascending chain of prime ideals of (R/Ql)[X]: 

(0) c P,,/Ql[X] c ... c P"./Ql[X]. 

By inductive hypothesis, this gives '" - 1 ;S; n, i.e., m :s;; n + 1. 
Now consider the case Ql = Qo. Then PI oF Ql[X], because otherwise 

PI cPo. Hel1(le we have the proper indusions 

(0) c Pt/Ql[X] c P,,/Ql[X] 

showing that PZ/Ql[X] is not minimal among the non-zero prime ideals of 
(R/Ql)(X]. 

If P" c Q,,[x] then P,,/Ql[X] = (Q,,/Ql)[X], and it follows from Lemma 
3.3 that Q,,/Ql is not a minimal non-zero prime ideal of R/Ql' Hence we have 

k(R/Q,,) :s;; k(R/Qt) - 2 :s;; n - 2. 

Therefore, the properly ascending chain 

(0) c P3/Q,,[x] c ... c P"./Q,,[x] 

of prime ideals of (R/Q,,)[x] and our inductive hypothesis give 

m - 2 S n -1, 

i.e., m :s;; n + 1. 
Finally, if P" oF Q,,[x], we have the properly ascending chain 

(0) c P,,/Q,,[x] c ... c p .. /Q,,[x] 

of prime ideals in (R/Qz)[x], By Lemma 3.1, Q" oF Qo, so that k(R/Q,,) < n. 
Therefore, the chain and the inductive hypothesis give m - 1 :s;; n, i.e., 
m;S;n+1. 0 

Corollary 3.S. Let R be a N ~therian intBgral domain, S an integral domain 
containing R and algebraic over [R]. Then k(S) :s;; k(R). 

PROOF. We suppose, without 108s of generality, that k(R) is finite; say 
k(R) = n. Assume the corollary is false, and consider a properly ascending 
chain (0) c Ql C •.• c Qn+l of prime ideals of S. Choose an element ql 

from QI \ QI-l (where Qo = (0», and put PI = QI f"\ R[q h ... , qn+ 1]. Then 
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the P,'s are prime ideals of R[q 10 ••• , qn + a, and we have the proper inclusions 
(0) c P 1 C ••. C Pn+ l' Now R[q1o"" qil is isomorphic with 

R[q 10 ••• , ql-1][X]/1/, 

where 1/ is a non-zero prime ideal. Hence, 

k(R[q 10 ... ,qil) S k(R[q 10 ... , qi-a [x]) - 1. 

By Theorem 3.4, the right side is equal to k(R[q1"'" ql_ a). Hence, we have 
k(R[q1o" . ,qn+ 1]) S k(R) = n, contradicting the existence of the above 
~.~~ 0 

Theorem 3.6. Let Rand S be integral domains such that ReS and S is integral 
over R. Let Q be a prime ideal of S, and let P 1 be a prime ideal of R containing 
Q n R. There is a prime ideal Q1 of S such that Q1 n R = P l and Q c Q1' 

PROOF. Let 1 denote the canonical homomorphism R/(Q n R) ~ R/P1. 
The inclusion map R ~ S clearly induces an injective ring homomorphism 
R/(Q n R) ~ S/Q, by means of which we identify R/(Q n Q) with a subring 
of S/Q. Evidently, S/Q is integral over R/(Q n R). By Proposition 11.3.2, 
1 extends to a ring homomorphism from a valuation subring T of [S/Q], 
containing R/(Q n R), to an algebraic closure, F say, of [R/PtJ. Since 
S/Q is integral over R/(Q n R), we have S/Q c T. Thus, 1 extends to a ring 
homomorphism 1': S/Q ~ F. The kernel of l' is of the form Qt/Q, where 
Q1 is a prime ideal of S containing Q. The kernel of the restriction of l' to 
R/(Q n R) is the kernel Pt/(Q n R) of1. Hence, Ql n R = Pl' 0 

CoroUary 3.7. Let Rand S be as in Theorem 3.6. Then S has finite Krull 
dimension if and only ifR hasfinite Krull dimension, and k(S) = k(R). 

PROOF. Let Poe P 1 C ••• be a chain of prime ideals of R. It follows at once 
from Theorem 3.6 that there is a chain Qo c Q1 C .•• of prime ideals of S 
such that QI n R = PI for each i. Therefore, if k(S) is finite, so is k(R), and 
k(S) ~ k(R). By Corollary 3.5, if k(R) is finite, so is k(S), and k(S) S k(R). 0 

Theorem 3.8. Let F be afield, and let R be afinitely generated integral domain 
F-algebra. Then R hasfinite Krull dimension, and k(R) is equal to the degree 
of transcendence of[R] over F. 

PROOf'. Let r denote the degree of transcendence of [R] over F. By Theorem 
X.1.2, there is a transcendence basis (Z1o"" zr) for [R] over F such that R 
is integral over the polynomial F-algebra F[Z1o"" zr]. By Corollary 3.7, 
we have k(R) = k(F[z 1, .•. , Zr])' By Theorem 3.4, we have therefore k(R) = r. 

4. Let R be a Noetherian local ring, meR) the maximum ideal of R. It is 
clear from Theorem 2.1 that the cardinality of every system of R-module 
generators of meR) is no smaller than the Krull dimension k(R). One calls R 
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regular if meR) has a system of R-module generators of cardinality k(R). 
We let G(R) denote the graded ring derived from the filtration of R by the 
powers of meR), so that G(R)n = m(R)"/m(R)"+l. Evidently, G(R) is an 
algebra over the field R/m(R) in the natural way. 

Theorem 4.1. In the notation introduced above, let (Yl> . .. , Yq) be an R/m(R)­
basis of m(R)/m(R)2, and let Xi be a representative of Yi in meR). Then 
(Xl' ... ' Xq) is a system of R-module generators ofm(R). If R is regular, then 
G(R), as a graded R/m(R)-algebra, is isomorphic with the polynomial algebra 
(R/m(R»[tl> . .. , td], where the t/s are independent variables, and d = k(R). 
Conversely, if G(R) is isomorphic with such a polynomial algebra then R is 
regular and d = k(R). 

PROOF. Put P = meR) and Q = RX1 + ... + Rxq. Then P = Q + p2, 
and it follows inductively that P = Q + P for every positive exponent n. 
Now R/Q is a Noetherian local ring, with m(R/Q) = P/Q. From Proposition 
1.2, we see that nn>O (p/Q)n = (0). Here, we have 

P/Q = (Q + P)/Q = (p/Q)n, 

so that we must have P/Q = (0), i.e., P = Q. 
Now suppose that R is regular, and put d = k(R). Let (Xl> .. . , Xd) be a 

system of R-module generators of P, and let t1, ... , td be independent 
variables over R/P. Consider the surjective morphism of graded R/P­
algebras 

'7: (R/P) [t 1, ••• , t d] -+ G(R), 

where 

'7(ti) = Xi + p 2 E G(R)l. 

The kernel of '7 is a homogeneous ideal whose component of degree 0 is (0). 
We shall derive a contradiction from the assumption that '7 is not injective, 
in which case the kernel of '7 contains a non-zero homogeneous element u 
of strictly positive degree, n say. If m ~ n then the kernel of the restriction 
of '7 to the homogeneous component of degree m contains 

u(R/P)[t 1,···, td]m-n· 

The dimension of the component (R/P)[tl> ... , td]q of degree q is the 
number of monomials of total degree q in d variables, which is the binomial 
coefficient C(q + d - 1, d - 1). Thus, the above part of the kernel of '7 is 
of dimension C(m - n + d - 1, d - 1). Therefore, the dimension of G(R)m 
is no greater than C(m + d - 1, d - 1) - C(m - n + d - 1, d - 1). With n 
and d fixed, this last integer is of the formf(m), wherefis a polynomial of 
degree strictly less than d - 1, and if LR denotes R-module length we have 
LR(pm/pm+ 1) ~ f(m). Applying this to the exact sequences 

(0) -+ pm/pm + 1 -+ R/pm+ 1 -+ R/pm -+ (0), 
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we find that, for m > n, 
m-l 

LR(R/pm) ~ LR(R/pn) + L f(q)· 
f=n 

Here, the expression on the right is a polynomial in m, of degree strictly less 
than d. 

On the other hand, we know from Theorem 2.1 that the characteristic 
degree d(R) is equal to k(R), i.e., d(R) = d. Hence, for all sufficiently large 
m's, we have LR(R/P"') = g(m), where g is a polynomial of degree d. This con­
tradicts the above. The conclusion is that" is an isomorphism. 

Now suppose that G(R) is isomorphic with a polynomial algebra 
(R/P)[t l •••• , tf]' Then the dimension of G(R)n is the number of monomials 
of de green in q variables, i.e., LR(pn/pn+l) = C(n + q - l,q - 1). It follows 
that, for m > 0, 

m-l 

LR(R/P"') = L C(n + q - 1, q - 1). 
n=O 

The sum on the right is the number of monomials in q variables of degree 
< m, and so is equal to C(m + q - 1, q). Therefore, the above expression 
for LR(R/P"') shows that d(R) = q, whence also k(R) = q. By the first part 
of Theorem 4.1, P has a system of R-module generators of cardinality q, 
so that R is regular. 0 

CoroUary 4.2. If R is a regular Noetherian local ring then R is an integral 
domain, and integrally closed in [R]. 

PROOF. By Theorem 4.1, G(R) is an integral domain. Clearly, this implies 
that R is an integral domain. In order to proceed, we introduce the following 
notation. For a non-zero element x of R, let J4.x) be the largest exponent n 
such that x belongs to pn, where P = m(R). Let x' denote the element 
x + p,..xl + 1 of G(R)"'Xl' If x and y are non-zero elements of R, since G(R) 
is an integral domain, we have x'y' = (xy)'. 

Now let x be a non-zero element of [R], and suppose that x is integral 
over R. Write x = alb, with a and b in R. There is a non-zero element d in R 
such that dx' lies in R for every positive exponent q, i.e., daf e Rbf. We show 
that, for all non-negative exponents n, we have a e Rb + pn. Evidently, 
this holds for n = O. Suppose it holds for some n; say a = cb + e, with c 
in R and e in pn. Then, for all q, 

de' = d(a - Cb)f e Rbf , 

whence d'(e')f belongs to G(R)(b'), for all q. Since G(R) is a unique factoriza­
tion domain, this implies that e' belongs to G(R)b'. Since e belongs to pn, 
this shows that there is an element Cl in R such that e - Ctb belongs to 
pn+l, whence aeRb + pn+l. 

Thus, a E Rb + pn for all n. If b does not lie in P then x is evidently in R, 
because b is then a unit. Now suppose that b lies in P, and consider the local 
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ring R/Rb, with m(R/Rb) = P/Rb. If aO is the canonical image of a in R/Rb, 
then aOenn>o m(R/RbY' = (0). Thus aO = 0, which means that aeRb, so 
thatxeR. 0 

5. Let X be a variety, p a point of X, and , x(p) the local ring at p. Since 
this is the direct limit of the system formed with the algebras' xCU) of regular 
functions on open neighborhoods of p, the evaluations at p define an F­
algebra homomorphism' xCp) -+ F, where F is the base field. We indicate 
this by f 1-+ f(P). A tangent to X at p is a differentiation t:' xCp) -+ F, based 
on the evaluation f 1-+ f(P). These tangents constitute an F-space, which 
we call the tangent space at p, and which we denote by X". 

Let U be an affine patch of X containing p. We may evidently identify 
X" with U". Therefore, it suffices to examine X" in the case where X is an 
irreducible affine variety. Assuming this, write A for a-(X), and M for the 
annihilator of p in A. Then' xCp) may be identified with A[(A \ M)-l], 
which is a Noetherian local integral domain with maximum ideal 
MA[(A \ M)-l]. Let us write R for this local ring, and P for its maximum 
ideal. Since R/P is isomorphic with F, we have R = F + P, and clearly 
F n P = (0). Let or be an element of X". Then or annihilates p2 and hence 
induces an F-linear map or': P/p2 -+ F. Conversely, if a is any F-linear map 
from P/p2 to F, then we can define an F-linear map a* from R to F by 
a*(cx + u) = a(u + p2), where cx is an element of F and u is an element of P. 
It is verified directly that a* belongs to X". This shows that the F-space 
Xp is isomorphic with the dual space (P/p2 )O of P/P2 • Since P is finitely 
generated as an R-module, it follows that X p is finite-dimensional. 

Write d for the F-dimension of P/p2, and choose elements Ub'''' u" 
from P such that (Ul + p2, ••• , U" + p2) is an F-basis of P/p2• Then 
P = RUl + ... + Ru" + p2, and if we write S for the R-module 

P/(RUI + ... + Ru,,) 

we have S = p. S. Now we see from an evident application of Proposition 1.2 
that S = (0), i.e., that P = RUl + ... + Ru". Thus, dim(X,,) is equal to 
the (minimum) cardinality of a system of R-module generators for P, so that 
dim(X p) is no smaller than the parametric dimension r(R) of R. By Theorem 
2.1, this means that dim(X,,) ~ k(R). By Theorem 3.8, k(R) is equal to the 
degree of transcendence of [R] over F, i.e., the degree of transcendence of 
the field of rational functions of X over F. Our conclusion is that 
dim(X p) ~ dim(X). We call p a singular point of X if dim(X p) > dim(X). 

Next, we show that the singular points constitute a closed subset of X. 
Let us write A as a homomorphic image of an ordinary polynomial F -algebra, 
by y: F[Xb"" xn] -+ A. Let I denote the kernel ofy, and I" the kernel ofthe 
homomorphism p ° y from F[Xb" ., xJ to F. Clearly, I p is generated by the 
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elements XI - Y(Xj)(p), and Ie Ip- For an element / of F[Xh"" xn], 

let/; denote the formal derivative of/with respect to XI' Now define 

()~f) = y(fi)(P), 

and (): F[X1o"" xn] -+ F" by {)(f) = ({)I(f), ... , ()n(f). Then the images 
{)(Xj - y(Xj)(p» are the canonical basis elements of F", while {)(l;) = (0). 
It is clear from this that () induces an F-linear isomorphism {)O from 1,,11; 
to FR. 

Now let g1o"" gt be a set of ideal generators of I, and consider the 
Jacobian matrix J p whose rows are the {)(g.),s. Evidently, the rank of J p is 
equal to the F-dimension of {)(l). We have {)(l) = ()O«I + 1;)/1;). Since ()O 

is an isomorphism, it follows that the rank of J p is equal to the F -dimension 
of (I + 1;)/1;. 

Now the annihilator M of p in A is isomorphic with I "II, whence M/M2 
is isomorphic with 1,,1(1 + I;). On the other hand, M/M2 is isomorphic 
with p/p2. Hence, we have dim(I"I(l + I;» = dim(Xp), so that 

dim(Xp) + rank(Jp) = dim(l"lI;) = n. 

Thus, dim(X p) is strictly larger than dim(X) if and only if rank(J p) is strictly 
smaller than n - dim(X). If dim(X) = d, this means that the singular points 
of X are precisely the common zeros in X of the determinants of the n - d 
by n - d submatrices of the matrix with rows (y«gj)i), ... , y«gi)~» (whose 
value at p is J p)' In particular, the set of singular points is therefore closed 
inX. 

Now we assume that our base field F is algebraically closed, and we 
show that then not every point of X is singular. Recall from Section 111.1 
that, since F is algebraically closed (and hence perfect), the field [A] of 
rational functions on our variety X is a separable extension of F. Therefore, 
by Theorem 111.2.1, there is a transcendence base (t1o ••• , tm) of [A] relative 
to F such that [A] is a finite separable algebraic extension of F(th .•• , tm). 
Thus, we may write [A] = F(t1o . •. , tm)[c], where c is separably algebraic 
over F(th • .. , tm>. Let / denote the minimum polynomial for c relative to 
F(t l , •.. , tm), with denominators cleared so that the coefficients of / are 
polynomials in F[t 10 ••• , tmJ. Now let us view f as an element of F[to, ... , tm], 
where to is an auxiliary variable, and let Y be the set of zeros off in Fm + I. 
Then Y is clearly an irreducible (because / is an irreducible polynomial) 
affine variety whose field of rational functions is isomorphic with [A]. 
Using an F-algebra isomorphism, 1t say, from the field of rational functions 
of Y to [A], it is easy to construct a morphism from an appropriate irreducible 
open subvariety of X to Y whose transpose is 1t. By Proposition X.5.3, 
it follows that there is a non-empty open subvariety ,U say, of X that is 
isomorphic with an open subvariety, V say, of Y. This shows that it will 
suffice to prove that not every point of Y is singular. Indeed, since we have 
already shown that the set of non-singular points is open, we can then con­
clude that not every point of V is singular, so that not every point of U is 
singular. 
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Now suppose that, contrary to what we have to show, every point of Y 
is singular. Let us apply our above Jacobian criterion, viewing ~(Y) as a 
homomorphic image of F[to,"" tm], the kernel of the homomorphism 
being the ideal generated by f In the present case, the dimension of our 
variety Y is m, and the number of auxiliary variables (denoted n earlier) 
is m + 1. The assumption that every point is singular therefore is equivalent 
to the assumption that the Jacobian matrix be of rank O. This means that all 
the partial derivatives off vanish on Y, and so belong to the ideal generated 
by f, and therefore are equal to O. As a polynomial in to, our f is irreducible 
and separable, so that the derivative offwith respect to to is different from 0, 
giving the desired contradiction. 

We summarize our results as follows. 

Theorem 5.1. For every point p of the i"educible variety X, we have 
dim(X p) ~ dim(X). If the base field is algebraically closed then the set of 
points where the equality holds, i.e., the set of non-singular points, is non-empty 
and open in X. 

It is clear from the definitions that a point p of X is non-singular if and 
only if the local ring at p is regular. From Corollary 4.2, we have that every 
non-singular point is a normal point. 

6. Proposition 6.1. Let X be an irreducible variety over a perfect field F. 
Suppose that p is a non-singular point of X. There is an F(X)-basis (t5 h ..• , t5m) 

of the F(X)-space of F-linear derivations from F(X) to F(X) satisfying the 
following requirements: 

(1) each t5 i stabilizes the local ring' x(P); 
(2) if t5ip:' x<P) - F is the tangent at p defined by t5ip(f) = t5t..f)(P) then 

(t51P'" ., t5mp) is an F-basis of X p; 
(3) there are elements flo' .. , fm in , x<P) such that t5i(}j) = t5ij. 

PROOF. Without loss of generality, we assume that X is affine, and we write 
A for ~(X). Then F(X) = [A], and 

, x<P) = A[(A \ M)-l], 

where M is the annihilator of p in A. 
Now let us use the notation and the Jacobian criterion of Section 5. If 

m = dim(X) then the rank of the Jacobian matrix J" is n - m exactly, while 
the rank ofJ" is at most n - m for every point q of X. Write aij for the element 
y«gi)j) of A, and let J be matrix with rows (all, . .. , ain), so that J(q) = J". 
Then the rank of the matrix J is n - m, and we choose the indexing of the 
ideal generators gi and the variables xJ such that the determinant, D say, of 
the matrix with entries aiJ' where 1 S; i S; n - m and 1 S; j S; n - m, 
does not vanish at p. 
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For k = 1, ... , m, define elements Uth"" Ub of [A] as follows: for 
j > n - m, put UtJ = 0, except when j = n - m + k, in which case put 
UtJ = 1; since the rank of J is n - m and since D .;. 0, there is one and only 
one choice of elements ul:J of [A], withj ~ n - m, such that, for all i and k, 

n 

La'JutJ = O. 
J=1 

In fact, each ul:J belongs to A[D- 1]. 

Now let 't'1; be the F-linear derivation from F[Xh"" xJ to [A] (viewed 
as F[x h ••• , xJ-module via l') sending each x J onto UtJ' From the defining re­
lations for the Utjs, we have then 't't(l) = (0), so that 't't induces a derivation 
from A to [A], and so defines an F -linear derivation bt from [A] to [A]. Since 
't'tCA) c: A[D - 1] and D(p)';' 0, it is clear that bt stabilizes jIi' xCP). If 
jj = ')'(xn- III+ J) for j = 1, ... , m then we have b,(jj) = b'J' by the choice of 
the ul:J's with j > n - m. It is clear from this that the b,'S are linearly inde­
pendent over [A]. Since F is perfect, [A] is a separable extension of F. 
Hence, by Theorem 111.2.1, the [A]-dimension of the space of F-linear 
derivations of [A] is equal to m. Therefore, (610 "" b...) is an [A]-basis of 
this space. From 6,(jj) = b'J' we see also that the tangents 6,p are linearly 
independent (i = 1, ... , m). Hence, they constitute a basis for the m-dimen­
sional F -space X p' Thus, (6 h ••• ,6...) satisfies all the requirements of the 
Proposition. 0 

Let p: X -+ Y be a morphism of varieties, and let p be a point of X. Then 
p defines an algebra homomorphism from the local ring at pCp) to the local 
ring at p, and this transposes to a linear map p~: X p -+ ¥PCP)' called the 
differential of p at p. 

Let p: X -+ Y be a dominant morphism between irreducible varieties. 
One says that p is a separable morphism if F(X) is separable over F(Y) 0 p. 

PropositloD 6.2. Let p be a dominant morphism from an i"educible variety X 
to an i"educible variety Y over a perfect field F. Suppose that p is a non­
singular point of X such that pCp) is non-singular and p~: Xp -+ YPCp) is surjec­
tive. Then p is a separable morphism. 

PROOF. For a commutative algebra R over our base field F, and an R-module 
M, we denote the R-module of F-linear derivations from R to M by 
Der,(R, M). In particular, we consider the F(X)-space Der,(F(X), F(X», 
and the F(Y)-space Der,(F(y), F(X», where F(X) is viewed as an F(y)­
module via the injection 9 -+ gop from F(Y) to F(X). 

In the evident way, the second of these may be viewed as an F(X)-space, 
and we consider the F(X)-linear map 

p': Der,(F(X), F(X» -+ Der,(F(Y), F(X», 

where P'(b'M) = cS(g 0 p). From Section 111.1, it is clear that F(X) is separable 
over F(Y) 0 p if (and only if) p' is surjective. 
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By Theorem 111.2.1, the F(Y)-dimension of Derp(F(Y), F(Y» is equal to 
dim(Y), for which we shall write n. Choose an F(Y)-basis of Derp(F(Y), F(Y» 
satisfying the requirements of Proposition 6.1 with respect to the non­
singular point pep) of Y. Via the injective map g 1-+ gop from F(Y) to F(X), 
this yields a system ('710"', '7n) of elements of Derp(F(Y), F(X». Evidently, 
this system is linearly independent over F(X). On the other hand, by choosing 
a transcendence basis (tl> ... , tn) for F(Y) over F such that F(Y) is separably 
algebraic over F(tl>"" tn), we see that the F(X)-dimension of 

Derp(F(Y), F(X», 

cannot exceed n. Therefore, ('710' •• , '7,,) is an F(X)-basis of Derp(F(Y), F(X». 
On the other hand, let (<<510' .. ,«5",) be an F(X)-basis of Derp(F(X), F(X» 

satisfying the requirements of Proposition 6.1 with respect to the non­
singular point p of X, and write 

" 
p'(<<5j ) = L hi'7j, 

j= 1 

with eachjjj in F(X). 
Now there are elements gl, ... ,gn in ~Y(P(P» such that '7~/lJ) = «5 jj , 

so that hj = p'(<<5/)(gj) = «5!..gj 0 p). But gj 0 p belongs to ~ x(P), which is 
stabilized by «5 j • Hence, we havejjj E ~ x<P) for all i andj.1f t is any element 
of Derp(F{Y), F(X» that sends ~ y{p{p» into ~ x<P), let tp(p) denote the 
tangent to Y at pep) that is obtained by following up the restriction to 
~y(p(P» of t with the evaluation at p. Then we have 

II 

p'(<<5 j)P(P) = L jj,{P)'7jP(P)' 
j= 1 

The expression on the left coincides with P~(<<5iP)' Since p~ is surjective, and 
(«5 1P , ... ,<<5",p) is an F-basis of Xp, while ('71p(p),""'7"P(P) is an F-basis of 
Y,,(P)' it follows that the rank of the matrix with entrieshJ{P) must be equal to 
n, whence the rank of the matrix with entries hj must also be equal to n, 
so that p' is surjective. 0 

Proposition 6.3. Let p: X -+ Y be a dominant morphism between irreducible 
varieties over an algebraically closed field. Suppose that p is separable. Then 
there is a non-empty open subset U of X such that,for every p in U, the points 
p and pCp) are non-singular and p~ is surjective. 

PROOF. Since p is separable, the map p' from Derp(F{X), F(X» to 
DerF(F{Y), F(X» used in the proof of Proposition 6.2 is surjective. It is 
clear from Theorem 5.1, applied first to Yand then to X, that the set, S say, 
of points p of X such that both p and pep) are non-singular is non-empty 
and open in X. With reference to anyone point pinS, choose bases 
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(1510'",15m) of Derp(F(X), F(X» and ("10"', fin) of Derp(F(Y), F(X» as 
in the proof of Proposition 6.2, and, as done there, write 

n 

p'(t5 j ) = L jjl"i' 
i= 1 

Then the matrix with entries jjl has rank n, because p' is surjective. Hence 
the set, T say, of points p of X such that each./jl belongs to fF x<P) and the 
matrix with entries Jjh) is of rank n is non-empty and open in X. Finally, 
the set, L say, of the points p such that each t5i stabilizes fF x<P), each "i 
sends fF y{p{P» into fF x<P) and the t5 jp's and "iP(PI'S are linearly independent 
is non-empty and open in X. If we set U = S n T n L then it is clear from 
what we saw in proving Proposition 6.2 that U satisfies the requirements 
of Proposition 6.3. 0 

Notes 

1. The development of Sections 1 and 2, where it goes beyond the classical 
theory in generality, efficiency and elegance, is due to P. Samuel and J-P. 
Serre. 

2. A standard example of a non-regular local integral domain is as follows. 
Let F be a field, x and y independent variables over F. Let R be the factor 
ring of F[x, y] mod the ideal generated by x 3 - y2. Let I be the ideal of R that 
is generated by the cosets of x and y. Note that I is a prime ideal, and consider 
the corresponding local ring S = Rr whose maximum ideal is J = I Rr. 
It is easy to see from Theorem 3.8 that the Krull dimension k(S) is equal to 1. 
One can verify directly that J is not a principal ideal, showing that S is not 
regular. 



Chapter XII 

Coset Varieties 

At this point, we have accumulated enough from algebraic geometry for 
dealing with coset varieties. Suppose that G is an irreducible algebraic 
group over an algebraically closed field F, and H is an algebraic subgroup 
of G. The main task for this chapter is the construction of an appropriate 
variety structure on G/H. In Section 1, it appears that [9'(G)]H is a suitable 
candidate for the field F(G/H) of rational functions. Starting with this field, 
Section 2 provides an imbedding of G/H as an open irreducible subset of a 
projective variety, and shows that the resulting variety structure of G/H has 
all of the desirable properties. 

Section 3 begins with the presentation of the Grassmann variety as a 
coset variety. The rest of this section is devoted to an examination of con­
ditions under which a coset variety is quasi-affine, i.e., an open subvariety 
of an affine variety. 

In Section 4 it is shown that if G is as above and solvable then G/H is 
affine for every algebraic subgroup H. Section 5 is concerned with the 
representation-theoretical significance of the condition that a coset variety 
be quasi-affine. It is shown that this condition is equivalent to the condition 
that every polynomial representation of the subgroup extend to one of the 
whole group, allowing enlargement of the representation space. 

1. Proposition 1.1. Let G be an algebraic group, H an algebraic subgroup ofG. 
Let N be a finite-dimensional polynomial H-module. There is a polynomial 
character g of H and a finite-dimensional polynomial G-module M, with 
module structure (x, m) 1--+ x(m), such that N is a sub vector space of M and 
x(n) = g(x)x· nfor every element x of H and every element n of N, where the . 
indicates the given H-module structure of N. 

173 
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PROOF. Let S denote the space of representative functions on H that is 
associated with N. Then, via its comodule structure, N may be identified 
with a sub H-module of the direct sum of a finite family of copies of S. Since 
every polynomial function on H is the restriction to H of a polynomial 
function on G, it follows that N may be written in the form U IV, where U 
is a sub H-module of some finite-dimensional G-module, T say, and V is a 
sub H-module of U. 

Let n = dim(V), and consider the homogeneous component 

M = /\"+l(T) 

ofthe exterior algebra built on T. This contains U /\ "(V) as a sub H-module, 
which is H-module isomorphic with N ® /\ ,,(V), owing to the fact that 
V /\"(V) = (0). Now /\"(V) is I-dimensional, and the action of an element 
x of H on /\"(V) is the scalar multiplication by the determinant, g(x) say, 
of the linear automorphism of V that corresponds to x. If u is any fixed 
non-zero element of /\"(V), then the composite of the map from N to 
N ® /\ n(V) sending each n onto n ® u with the injection 

N ® /\n(V) -+ /\"+l(T) 

coming from N = U IV identifies N with a sub vector space of M so as to 
satisfy the requirements·ofthe proposition. 0 

Proposition 1.2. Let G be an i"educible algebraic group, H an algebraic 
subgroup ofG. Letfbe an element of[9'(G)]H. There is a polynomial character 
g of H and elements s and t of 9'(G) such that f = sit and,for every x in H, 
x· s = g(x)s and x· t = g(x)t. Kith respect to the action of G on [~(G)] 
from the left and the induced action of !l'(G) by derivations, the element-wise 
fixer of [9'(G)]H in G coincides with H, and the annihilator of [9'(G)]H in 
!l'(G) coincides with !l'(H). 

PROOF. We assume, without loss of generality, thatf¢ 0, and we consider 
the polynomial H-module (~(G)f) ("\ 9'(G). This contains a simple sub 
H-module V ¢ (0). Let VO denote the dual H-module, and let g and M be as 
in Proposition 1.1, with Vo in the place of N. Evidently, Vo is a simple 
H -module also with respect to the H -module structure of M coming from 
its G-module structure. Like every finite-dimensional polynomial G-module, 
M is isomorphic with a sub G-module of the direct sum of a finite set of 
copies of ~(G). Therefore, the simplicity of VO implies that there is an 
injective morphism, p say, of H-modules from yo, viewed as a sub H-module 
of M, to 9'(G). With the original H-module structure of yo, we have, for every 
x in H and every oc in Vo, 

x· p(oc) = g(x)p(x· oc). 

Now let (Vi> ••• , v,.) be an F-basis of V such that vl(IG) ¢ 0, while 
vj(lG) = 0 for every i > 1. Let (OCl' ... , an) be the dual basis of yo, so that 



XII.l 175 

a.l...vJ) == (),j. Put k, == p(a.,), so that each kj is a non-zero element of gJ(G). 
Choose an element y from G such that k1(y) #: 0, and put 

" 
S == L (k j • Y)Vj. 

j=l 

For x in H, write 

" 
X· v, == L hj,(x)Vj. 

'=1 
Then we have 

" 
X· k j == g(x)p(x· a.j) = g(x) L h,jx- 1)kj • 

J= 1 

By direct substitution, we find that x· s == g(x)s for every x in H. Now s 
belongs to (gJ(G)f) n gJ(G), so that we have s == if, with t in gJ(G). Since 
s(lG) == k1(y)V1(lG) #: 0, we have s #: 0, whence also t #: 0. From the fact 
thatfis fixed under the action of H, we see that X· t = g(x)t for every x in H. 
Thus,f == sit, with sand t as required. 

Now let E be a finite set of H-semi-invariants in rJi'(G) such as is given by 
Theorem 11.2.1. Let U denote the sub G-module of gJ(G) that is generated 
by the elements of E, and let Y be the direct sum of n copies of U, where n 
is the number of elements of E == (e" ... , ell). Let v stand for the point 
(e" ... ,e,,) of V. Then, by Theorem 11.2.1, an element x of G belongs to H 
if and only if x . v is a scalar multiple of v. Clearly, this implies that, for every 
element t' of .!Z'(H), the transform t'. v is also a scalar multiple of v. Con­
versely, it follows from Proposition IV.S.l that every element t' of .!Z'(G) 
satisfying this condition belongs to .!Z'(H). 

Suppose that x is an element of G that fixes every element of [gJ(G)]H. We 
wish to show that x belongs to H. Suppose this is false. Then the elements v 
and x . v of Y are linearly independent. Therefore, there are elements a. and 
P in yo such that 

a.(v) = 1, a.(x· v) = 0, P(v) = 1, P(x· v) == 1. 

Now the rational function (a./v)/{p/v) belongs to [gJ(G)]H, by the choice of v. 
It is defined at IG and at x, and takes the values 1 and ° there. Hence, the 
transform of this rational function under the action of x on [rJi'(G)] is defined 
at IG and takes the value ° there. This contradicts our assumption that x 
fixes the elements of [gJ(G)]H. Our conclusion is that the element-wise 
fixer of [gJ(G)]H in G coincides with H. 

Finally, let t' be an element of .!Z'( G) such that the corresponding derivation 
of [gJ(G)] annihilates [gJ(G)]H. We wish to show that t' belongs to .!Z'(H). 
Suppose this is false. Then the elements v and t' • v of Yare linearly indepen­
dent. Therefore, there are elements a. and P in yo such that 

a.(v) == 0, a.(t'. v) == 1, P(v) = 1. 
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We have 

T· [(a./v)/(P/v)] = «P/V)T· (rJ./v) - (rJ./V)T· (P/v»/(P/V)2. 

This is defined at IG, and its value there is 

T(a./V) - a.(V)T(P/V) = T(rJ./V) = a.(T· v) = 1, 

contradicting our assumption that the derivation corresponding to T annihi­
lates [9'(G)]H. Our conclusion is that the annihilator of [9'(G)]H in !l'(G), 
with respect to the action by derivations, coincides with !l'(H). 0 

2. Let F be a field, G an irreducible affine algebraic F -group, H an algebraic 
subgroup of G. Let (flo ... ' In) be a system of field generators for [9'(G)]H 
over F. We know from Proposition 1.2 that each Ji can be written as a 
fraction of H-semi-invariants. An evident adjustment of numerators and 
denominators yields H-semi-invariants Uo, ••• , Un in 9'(G), all of the same 
weight, such thatJi = uJuo for i = 1, ... , n. Let S denote the sub G-module 
of 9'( G) that is generated by all the u/s, and let T be the direct sum of n + 1 
copies of S. Let t denote the point (uo, ... , uJ of T. We consider the projective 
variety T* whose points are the I-dimensional subspaces of T, and we let 
t* be the point of T* corresponding to t. The action of G by linear auto­
morphisms on T induces an action of G by algebraic variety automorphisms 
on T*. We know from Proposition 1.2 that the element-wise fixer of [9'(G)]H 
in G coincides with H. It is clear from this that the fixer of t* in G is precisely 
H. 

The map a. from G to T* defined by a.(x) = x . t* is evidently a morphism 
of algebraic varieties. We assume that our base field is algebraically closed. 
Then we have from Theorem X.4.4 that a.(G) is a constructible subset of T*, 
so that it inherits a variety structure from T*. Moreover, since G is irreducible, 
so is a.( G). The closure of a.( G) in T* is therefore an irreducible projective 
variety. By Theorem X.4.3, rJ.(G) contains a non-empty open subset of its 
closure in T*. Evidently, this closure is stable under the action of G, and G 
acts transitively on a.(G). It follows that a.(G) is open in its closure. Thus, 
rJ.(G) is an open subvariety of a projective variety. Such varieties are called 
quasi-projective varieties. 

Dearly, a. induces a bijective map ~ from the set G/H of cosets to a.(G). 
We endow G/H with the variety structure coming from that of a.(G) via a.H. 
If 11: is the canonical map from G to G/H then 11: = (~) - 1 0 rJ., so that 11: is now 
a morphism of varieties. It is clear from the construction of a. that the field 
of rational functions of the variety G/H is mapped isomorphically onto 
[9'(G)]H by the transpose of 11:. By Theorem 111.2.3, [9'(G)] is separable 
over [9'(G)]H. Thus, the canonical map 11:: G -+ G/H is a separable morphism 
of varieties. 

By Proposition XI.6.3, there is a non-singular point x in G such that 
n(x) is non-singular and the differential1l:~ is surjective from Gx to (G/H)xH. 
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Since 11: is compatible with the actions ofG on G and G/H, it follows from the 
transitivity of the action of G on G that all the points of G and G/H are 
non-singular and that 11:~ is surjective for every x in G. Taking x to be the 
neutral element 1 of G and identifying .ftJ( G) with the tangent space to G at 1, 
we have that 11:~ maps .ftJ(G) surjectively onto the tangent space to G/H at H. 
From the last part of Proposition 1.2, we see that the kernel of 11:~ is precisely 
.ftJ(H). Therefore, 11:~ induces a linear isomorphism from .ftJ(G)/.ftJ(H) to the 
tangent space to G/H at H. Since H, like every point, is a non-singular 
point of G/H, this shows that 

dim(G) = dim(H) + dim(G/H) 

By Theorem X.4.3, there is a non-empty open subset U of G/H having the 
following property: if W is a closed irreducible subset of G/H meeting U, 
and Z is an irreducible component of 11:- l(W) meeting 11:- l(U), then 

dim(Z) = dim(W) + dim(G) - dim(G/H). 

Now the G-translates of U cover G/H, and their inverse images in G are the 
corresponding G-translates of 1I:- 1(U). It follows that the above dimension 
relation holds for every closed irreducible subset W of G/H and every 
irreducible component Z of 11:- l(W). Therefore, we can apply Theorem 
X.4.5 and conclude that 11: is an open map. 

In order to analyze 11: further, we need the following technical result 
concerning regular functions. 

Lemma 2.1. Let a: X -+ Y be an open surjective and separable morphism 
between irreducible varieties over an algebraically closed field. Assume that 
Y is a normal variety, and that f is a regular function on X that is constant on 
each a- 1(y) with y E Y. Then f = h 0 a, where h is a regular function on Y. 

PROOF. Let F denote the base field, and define a map 

p:X -+ Y x F, 

by p(x) = (a(x),f(x». Let Z denote the closure of p(X) in Y x F. Then Z 
is an irreducible subvariety of Y x F. By Theorem X.4.3, p(X) contains an 
irreducible open subset V of Z. Let '1: Z -+ Y denote the restriction to Z of 
the canonical projection morphism from Y x F to Y. It is clear from the 
constancy property off that the restriction of '1 to V is injective. Indicating 
restrictions by subscripts, we have '1v 0 P = ap-1(V). Since p-l(V) is open in 
X and since a is an open map, a(p-l(V» is open in Y, and therefore dense in 
Y. Thus, '1v is dominant from V to Y. 

Consider the field map q H q 0 p from F(V) to F(p-l(V» = F(X). 
This sends the subfield F(Y) 0 '1v of F(V) onto the subfield F(Y) 0 ap-1(V) of 
F(p -l(V». Since a is a separable morphism, F(X) is separable over F(Y) 0 a, 
i.e., F(p-l(V» is separable over F(Y)oap-1(V). Therefore, also the subfield 
F( V) 0 p is separable over F( Y) 0 a p- 1(V). Thus, F( V) 0 p is separable over 
F(Y) 0 '1v 0 p. Since the transpose of p is injective, this implies that F(V) 
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is separable over F(Y) 0 fly. Our conclusion is that fly is a separable mor­
phism. Now we know that "y is injective, separable and dominant. By 
Proposition x'S.2, we must therefore have F(Y) 0 fly = F(V). Thus, the 
transpose of the morphism ,,: Z -+ Y is an isomorphism of F( Y) onto 
F(Z). 

Let g denote the restriction to Z of the canonical projection Y x F -+ F. 
Clearly, g is a regular function on Z. By what we have just seen concerning ", 
we have g = h 0 ", where h is an element of F(Y). Now 

f = gop = h 0 " 0 p = h 0 a. 

It remains only to show that h is actually a regular function on Y. Suppose 
this is not the case. Since Y is a normal variety, we can apply Proposition 
X.S.1 and conclude that l/h is defined at some point y of Y and takes the 
value 0 at y. On the other hand, we have «1/h) 0 a)f = 1. Evaluating this 
at a point x of X such that a(x) = y, we get a contradiction. Thus, h is indeed 
regular on Y. 0 

Essentially, the above establishes the following main result on coset 
varieties. 

Theorena 2.2. Let F be an algebraically closed field, G an irreducible affine 
algebraic F-group, H an algebraic subgroup ofG. Then G/H can be endowed 
with the structure of an F-variety, actually, a quasi projective variety, such that 
the following requirements are fulfilled: 

(1) dim(G/H) + dim(H) = dim(G); 
(2) the canonical map x: G -+ G/H is a separable open morphism of varieties; 
(3) F(G/H) = [at(G)]B; 
(4) for every morphism a: G -+ Y of algebraic F-varieties that is constant 

on the cosets xH, the induced map aB from G/H to Y is a morphism of 
algebraic F -varieties; 

(S) the canonical mapfrom G x (G/H) to G/H comingfrom the composition 
of G is a morphism of varieties. 

PROOF. We have already established (I), (2) and (3). Clearly, (S) follows from 
our above construction of the variety structure on G/H. It remains only to 
verify (4). 

Let U be an open subset of V. Then a- 1(U) is an open subset of G. Since 
x is an open map, x(oc- 1(U» is open in G/H. Since n(a- 1(U» = (as)-l(U), 
this shows that aB is continuous. 

Now letfbe an element of' y(U). Thenf 0 oc is an element of' G(a- 1(U» 
that is constant on the intersections of a- 1(U) with the cosets xH. We 
know that every point of G/H is non-singular. By the remark at the end of 
Section XI.S, this implies that G/H is a normal variety. Therefore, we can 
apply Lemma 2.1 in the evident way and conclude thatf 0 oc = h 0 x, where h 
is an element of , G,s«aS)-l(U». Since f 0 a = f 0 as 0 x, it follows that 
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f 0 rx!' = h, showing that a.H satisfies the sheaf condition for a morphism of 
varieties. 0 

Note that (4), together with the crude part of (2) that 11: is a morphism of 
varieties, determines the algebraic variety structure of G/H. This remedies 
the defect that our above construction of the variety structure of G/H was 
not technically natural. 

The appropriate extension of Theorem 2.2 to the case where G is not 
irreducible is as follows. Let Gl denote the irreducible component of the 
neutral element in G. By writing G as a union of cosets xG1H, we see that 
G/H is a disjoint union of a finite family of subsets that are G-translates of 
(G1H)/H, which may be identified with Gl/(H n Gl ). Transporting the 
variety structure of Gl/(H n Gl ) to each of these G-translates, we obtain a 
variety structure on G/H satisfying all the requirements of Theorem 2.2, 
with the evident modification of (3). 

Let F, G and H be as in Theorem 2.2. In the case where H is normal in G. 
Theorem 11.4.4 establishes the structure of an affine algebraic F -group on 
G/H. We claim that, in this case, the variety structure ofG/H given by Theorem 
2.2 is the same as that obtained from Theorem 11.4.4. 

In proving this, let us denote the factor group with its variety structure 
as obtained from Theorem 11.4.4 by G//H. We have &J(G//H) = &J(G)H, 
so that F(G//H) = [&J(G)H]. Since the element-wise fixer of &J(G)H in G 
coincides with H, we know from Lemma IV.5.3 that [&J(G)H] = [&'(G)]H. 
Now let us apply part (4) of Theorem 2.2 to the canonical morphism 
G -+ G//H. This gives the conclusion that the identity map y: G/H -+ G//H 
is a morphism of varieties. The equality [&J(G)H] = [&J(G)]H says that the 
transpose of y is an isomorphism of F(H//G) onto F(G/H). By Proposition 
X.S.3, this implies that there is a non-empty open subset U of G/ /H such that 
the restriction of y to y-l(U) is an isomorphism of varieties. Here, this 
means simply that U is open also for the topology of G/H and that the 
variety structures of U induced by those of G/H and G//H coincide. Clearly, 
the same is therefore true for every G-translate xU of U. Since G//H is 
the union of a finite family of these translates, we can apply Proposition 
IX.1.3 and conclude that y-l is a morphism of varieties, thus establishing 
our above claim. 

In particular, it is now clear that the universal mapping property described 
in Theorem 11.4.4 extends from the category of affine algebraic groups to 
the category of algebraic varieties, where it is part (4) of Theorem 2.2. 

3. Let F be an algebraically closed field, V an n-dimensional F -space, d an 
integer with 0 < d ::5: n. We consider the Grassmann variety ~d(V) whose 
points are the d-dimensional subspaces of V. Let G be the group of all linear 
automorphisms of V, viewed as an irreducible affine algebraic F -group in 
the canonical fashion. Let s denote a point of~iV), to be kept fixed in our 
discussion. We consider the morphism of varieties 0": G -+ ~iV), where 
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o'(x) = x(s). Let H denote the stabilizer of sin G. Then (I is constant on the 
cosets xH and induces the bijective map qH: G/H -+ ~,,(V) in the canonical 
fashion. Let 1t denote the canonical morphism from G to G/H, so that 
qH ° 1t = (I. We know from Theorem 2.2 that (lH is a morphism of varieties. 
By Proposition X.5.2, the field F(G/H) is (purely inseparably) algebraic 
over F(~,,(V» ° (lH. Hence, we have dim(~,,(V» = dim(G/H). 

In order to determine this dimension, choose an F -basis of V whose 
initial section of length d is an F -basis of s. Let iij denote the corresponding 
matrix entry functions on G. These are algebraically independent and, 
together with the reciprocal of the determinant function, generate &'(G) as 
an F-algebra. The annihilator of H in &'(G) is generated as an ideal by the 
functions fij withj ~ d and i > d. This shows that dim(H) = n2 - d(n - d), 
so that dim(G/H) = d(n - d). 

We identify !e(G) with EndrtV) in the canonical fashion, and we denote 
the matrix entry functions on !e(G) that correspond to our basis of V by 
gij, so that each iij is the restriction of gij to G. The Lie algebra !e(H) is 
evidently contained in the stabilizer of s in EndF(V). The annihilator in 
EndrtV)O of this stabilizer is spanned over F by the functions gij withj ~ d 
and i > d. This shows that the dimension of the stabilizer of s in EndF(V) 
is equal to n2 - d(n - d), which we know to be the dimension of !e(H). 
Therefore, !e(H) coincides with the stabilizer of s in EndrtV). 

We shall prove that qH is actually an isomorphism of varieties, so that 
~,,(V) may be identified with G/H. This will follow from arguments we have 
used before once we have shown that qH is a separable morphism of varieties. 

Let us view the differential (1'1 of (I at the neutral element 1 of G as a linear 
map from !e(G) to ~,,(V)s' From the fact that (I is constant on H, it is clear 
that !e(H) is contained in the kernel of (I~. Conversely, let t be an element 
of the kernel of (I~. Let a and b be elements of /\ d(Vo), choosing b so that it 
does not vanish on the line in /\d(V) that is determined by s. Then alb is 
an element of the local ring of ~,,(V) at s. The action of G by algebra auto­
morphisms on /\(V0) induces an action of !e(G) by derivations, which we 
indicate by a dot. Then (I'l(t)(a/b) is the value at s of the rational function 
represented by «t· a)b - (t· b)a)/b2• Let s* denote an F-space generator 
ofthe canonical image of sin /\ d(V). Then, since (1'1 (t) = 0, we have 

(t· a)(s*)b(s*) - (t· b)(s*)a(s*) = O. 

We choose s* so that b(s*) = 1. Then the above gives 

a(t· s*) = -(t· a)(s*) = -(t· b)(s*)a(s*), 

where t· s* is the transform of s* by the derivation of /\(V) corresponding 
to t. Keeping b fixed and letting a range over /\d(VO ), we see from this that 
t· s* E Fs*, which means that t stabilizes s. From the above, we know that 
this means that t belongs to !e(H). Our conclusion is that the kernel of (I~ 
coincides with !l'(H). 
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Since G acts transitively on C§ I.. V) by variety automorphisms, every 
point of C§I..V) is non-singular. In particular, the dimension of the tangent 
space C§I..V)s is equal to the dimension of C§I..V), which we have shown to 
be equal to dim(~(G)/9'(H». This shows that 0'1 is surjective. Since 
0'1 = (O'H)8° 1tl, this implies that (O'H)8 is surjective. By Proposition XI.6.2, 
it follows that uB is a separable morphism of varieties. Since uB is bijective, 
this implies that the transpose of uB is an isomorphism from F(f§I..V» to 
F(G/H). By the same argument we made at the end of Section 2, we see from 
this that O'H is an isomorphism of varieties. 

We know from Theorem IX.S.3 that f§I..V) is a complete variety. Hence, 
G/H is a complete variety. The elements of &'(G)H may be regarded as 
everywhere regular functions on the variety G/H. By (3) and (4) of Proposi­
tion IX.S.2, the only everywhere regular functions on an irreducible complete 
variety are the constants. Thus, we have &'(G)H = F. 

This phenomenon, representing an extreme opposite to the situation 
of a normal subgroup H, should be viewed in the light of Theorem 3.1 below. 
There, and subsequently, a variety is called quasi-affine if it is isomorphic 
with an open subvariety of an affine variety. 

Theorem 3.1. Let G be an irreducible algebraic group over an algebraically 
closed field, H an algebraic subgroup of G. The following conditions are 
mutually equivalent: (1) the element-wise fixer of~(G)H in G coincides with H; 
(2) [p(Gf] = [p(G)]H; (3) the variety G/H is quasi-affine. 

PROOF. Lemma IV.S.3 says that (1) implies (2). Now suppose that (2) holds, 
and let K be the element-wise fixer of ~(G)H in G. Evidently, it follows from 
(2) that the elements of [~(G)]H are fixed under action of K. By Proposition 
1.2, we must therefore have K = H. Thus, (1) and (2) are equivalent. 

Next, we show that (2) implies (3). Let F denote the base field. By Proposi­
tion II.3.6, [~(G)]H is finitely generated as a field over F. Therefore, it 
follows from (2) that there is a finitely generated sub F-algebra A of ~(G)H 
such that [A] = [&'(G)]H. Since ~(G)H is locally finite as a right G-module, 
we may choose A so that it is stable under the action of G from the right. 
Let 9'(A) denote the irreducible affine algebraic F -variety whose points 
are the F-algebra homomorphisms from A to F. Clearly, G acts by variety 
automorphisms on 9'(A) via the right G-module structure of A. Let 
p: G ~ 9'(A) be the restriction morphism. Evidently, p is compatible 
with the actions of G on G from the left and on 9'(A). It is clear from Theorem 
11.3.3 that p(G) contains a non-empty open subset of 9'(A). Since G acts 
transitively on p(G), and since p is a G-morphism, it follows that p(G) is 
open in 9'(A), so that it is a quasi-affine variety. 

Clearly, p is constant on the cosets xH, and we know from Theorem 2.2 
that the induced map pH: G/H ~ 9'(A) is a morphism of varieties. Since A 
separates the points of G/H, this morphism is injective. Thus, pH defines a 
bijective morphism of varieties 0': G/H ~ p(G). Since p(G) is open in 9'(A) 
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and since [A] = F(GIH), the transpose of (1 is an isomorphism of F(P(G» 
onto F(G/H). Now the argument ofthe end of Section 2 can be applied again 
and shows that (1 is an isomorphism of varieties. Thus, (2) implies (3). 

Finally, we show that (3) implies (2). Assuming that (3) holds, we show 
that every element of [~(G)]H belongs to [~(G)H]. Write such an element, 
fsay, in the form sit, where sand t are H-semi-invariants in ~G) ofthe same 
weight, p say. We know from Proposition 1.2 that this is possible. It suffices 
to show that, for some x in G, we havef . x E [~G)H]. Therefore, we assume 
without loss of generality that t does not vanish at the neutral element I 
of G. Let V denote the set of zeros of tin G. Since t is an H-semi-invariant, 
we have VH = V. Let 'It denote the canonical morphism from G to GIH. 
Using our last remark and the. fact that 'It is an open map, we see that n:(V) 
is closed in GIH. Since t(1) ::!: 0, the point H of GIH does not belong to 
'It(V). By assumption, GIH is an open subvariety of some affine variety, S say. 
Let T denote the closure of n:(V) in S. Since 'It(V) is closed in the open subset 
GIH of S, we have Tn (G/H) = n:(V). Therefore, the point H of GIH does 
not belong to T, so that there is an element of ~S) that vanishes on T but 
not at H. The restriction of this function to GIH is an everywhere regular 
function g on GIH such that g(n:(V» = (0), but g(H) ::!: o. Put h = go 'It. 
By Proposition IX.1.2, h belongs to ~G)H. Clearly, h(V) = (0) and h(1) ::!: O. 
By Theorem 11.3.5, the vanishing of h on the set V of zeros of t implies that 
there is some positive exponent e such that he belongs to ~ G)t. Accordingly, 
let us write he = ut, with u E ~G). Since he is fixed under the action of H, while 
t is a semi-invariant of weight p, it is clear that u is a semi-invariant of weight 
lip. Hence, both us and ut are elements of ~G)H. Sincef = (us)/(ut), this 
shows thatfbelongs to [~G~]. 0 

4. Let G be an algebraic group, Van algebraic variety. Suppose there is given 
a group homomorphism from G to the group of variety automorphisms of V 
such that the corresponding map from G x V to V is a morphism of varieties. 
Then we say that V is a strict G-variety. 

Lemma 4.1. Let G be a unipotent algebraic group over an algebraically closed 
field, and let V be an qffine strict G-variety. Then every G-orbit in V is closed. 

PROOF. Without loss of generality, we assume that G is irreducible. Let T 
be a G-orbit in V. In proving that T is closed, we assume without loss of 
generality that T is dense in V. Then we know from Theorem X.4.3 that T 
contains a non-empty open subset, U say, of V. Now suppose that, contrary 
to what we wish to prove, we have T::!: V. Then U::!: V, so that there is a 
non-zero elementfin ~V) such thatf(V \ U) = (0), and hence 

f(V \ T) = (0). 

The action of G on V defines the structure of a right polynomial G­
module on ~(V), in the evident way. Let M denote the right sub G-module 
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of at(V) that is generated by f. Since G is unipotent, there is a non-zero 
element m in M such that m . x = m for every element x of G. This implies 
that m is constant on T. Since T is dense in V, it follows that m is a constant. 
Since / vanishes on V \ T, so does every element of M. This gives the con­
tradiction m = O. D 

ProposidOD 4.2. Let G be an i"educible algebraic group over an algebraically 
closed./ield, H an algebraic subgroup o/G.I/the variety GIH1 is affine, so is 
the variety GIH. 

PROOF. It is clear from Proposition IX.1.2 that the transpose of the canonical 
morphism from G to GIH1 is an isomorphism of at(GIH1) onto at(G)"I. 
Let us write A for ~G) and identify AHI with fJ'(GIH 1). We know that the 
element-wise fixer of [A]H in G coincides with H. Hence, [A]HI is a finite 
Galois extension of [A]H whose Galois group is isomorphic with HIH 1 in 
the evident way. 

Let -r denote the trace map from [A]HI to [A]H. Then -r is not the zero 
map and, if XI' ••• , Xn is a system of representatives in H for the elements of 
HIH l' we have 

n 

-r(f) = r. Xi • f. 
i-I 

Now let / be an element of [A]H. Since [A]HI coincides with [AHI], by 
Theorem 3.1, we can write / = ulv, where u and v are elements of AHI. 
There is an element g in [A]HI such that -r(vg) =I: o. Write g in the form alb 
with a and b in AHI, and put 

n 

h = gnxj·b. 
i=1 

Then h belongs to AHI and we still have -r(vh) =I: O. Since/is fixed under the 
action of H, and since / = (uh)/(vh), we have / = -r(uh)/-r(vh), which shows 
that/belongs to [AH]. Thus, [A]H = [AH], which implies that the element­
wise fixer of AH in G coincides with H. 

Now AHI is finitely generated as an algebra. Since HIH 1 is finite, it follows 
that AHI is finitely generated also as an AH-module. By Proposition 11.3.7, 
it follows that AH is finitely generated as an algebra. Let p denote the res­
triction map from G to the affine algebraic variety 9"(AH). By Theorem 2.2, 
the induced map ~ from GIH to 9"(A~ is a morphism of varieties. Since 
the element-wise fixer of AH in G coincides with H, this map pH is injective. 

Now let F denote the base field, and let u: AH - F be an element of 
9"(AH). Since AHI is integral over AH, it follows from Proposition 11.3.2 that 
u extends to an F-algebra homomorphism v: AHI - F. By assumption on 
H 10 this point v of 9"(AHI) is a point of GIH l' and therefore is the canonical 
image of an element x of G. Thus, p is surjective, so that pH is bijective. 

Since F(GIH) = [A]H = [AH], the transpose of pH is an isomorphism 
of F(9"(AH» onto F(GIH). By an argument used already several times in 
this chapter, we can now conclude that pH is an isomorphism ofvarieties. D 
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Theorem 4.3. Let G be an i"educible solvable algebraic group over an alge­
braically closed field, H an algebraic subgroup ofG. Then the variety G/H is 
affine. 

PROOF. Proposition 4.2 reduces the theorem to the case where H is irreducible. 
Then, by Theorem VI.3.2, we can write H = Hu><l T, where T is a toroid, 
and G = G" ><I S, where S is a toroid containing T. It follows immediately 
from Theorem V.S.3 that S is a direct product TxT'. By Corollary VI.1.2, 
every unipotent element of G belongs to Gu. Hence, we have Hu c Gu. 
Now G is the semidirect product (G" ><I T) ><I T', and H is an algebraic 
subgroup of G" ><I T. This shows that it suffices to deal with the case where 
S = T, so that G = G,,><I T and H = H,,><I T. 

In this case, we consider the variety morphism p from G to G"/H,, that is 
defined as the composite ofthe projection G -+ G" of the semidirect product 
presentation with the canonical morphism Gu -+ G"/H,,. This is constant 
on the cosets xH, and we know from Theorem 2.2 that the induced map 
pH from G/H to G"/H,, is a morphism of varieties. On the other hand, let 't 

be the morphism from G" to G/H coming from the injection Gu -+ G and the 
canonical morphism from G to G/H. This is constant on the cosets xH" and 
induces the morphism 'tH .. from the variety G"/H,, to the variety G/H. 
Evidently, pH and 'tHu are mutually inverse. Thus, the variety G/H is iso­
morphic with the variety G"/H,,. 

Now consider Proposition 1.2 in the case where H is unipotent. In this 
case, the weight of the semi-invariants s and t is necessarily the constant 1, 
so that the first part of Proposition 1.2 says that [~(G)]H coincides with 
[~(G)H]. By Theorem 3.1, this implies that G/H is quasi-affine. Moreover, 
the proof of Theorem 3.1 has shown that G/H is isomorphic with a G-orbit 
in an affine strict G-variety. If G is unipotent, it follows therefore from 
Lemma 4.1 that the variety G/H is affine. Thus, the above G"/H,, is affine, 
whence also the original G/H is affine. 0 

5. Theorem 3.1 has a representation-theoretical aspect involving the follow­
ing notion. An algebraic subgroup H of an algebraic group G is said to be 
observable if every finite-dimensional polynomial H-module is a sub H­
module of a polynomial G-module. 

PropositiOli 5.1. Let G be an algebraic group, H an algebraic subgroup of G. 
Suppose that, for every 1-dimensional polynomial H-module that is a sub 
H -module of a polynomial G-module, the dual H -module is also a sub H-module 
of a polynomial G-module. Then H is an observable subgroup ofG. 

PROOF. Let N be a finite-dimensional polynomial H-module, and let M and 
g be as in ProPQsition 1.1. Let R be the 1-dimensional polynomial H-module 
determined by the polynomial character g, so that the automorphism of R 
corresponding to an element x of H is the scalar multiplication by g(x). 
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In our proof of Proposition 1.1, R appeared as a sub H-module of the 
polynomial G-module 1\ "(T). Therefore, it follows from our present assump­
tion that there is a polynomial G-module, S say, such that the dual of R, 
whose associated character is 11g, is a sub H-module of S. Now it is clear 
from Proposition 1.1 that N may be identified with a sub H-module of 
M®£ 0 

Theorem 5.1. Let G be an irreducible algebraic group, H an algebraic subgroup 
ofG. Then H is observable in G if and only if[&'(G)]H = [&'(G)H]. 

PROOF. First, suppose that H is observable in G, and let f be a non-zero 
element of [&'(G)]H. We must show thatfbelongs to [&'(G)H]. For this, it 
evidently suffices to show that the H-fixed part ofthe polynomial G-module 
(&'(G)f) n &'(G) is not (0). We do this by copying the construction of the 
first part of the proof of Proposition 1.2. Thus, we start with any non-zero 
simple sub H-module Y of this module. By the present assumption, yo is a 
sub H-module of some finite-dimensional polynomial G-module W. Since 
W is isomorphic with a sub G-module of a direct sum of a finite family of 
copies of &'(G) and since yo is simple, it follows that there is an injective 
morphism of H-modules y: yo _ &'(G). Choose a vector space basis 
(VI"", V,,) of Y such that VI(1G) ¢ 0 and vj(1G) = 0 for every i > 1. Let 
(/ll"'" /l,,) be the dual basis of yo, and put gj = y{J.tj). Then L7= I Wj' x)Vj 
is an H-fixed element of (&'(G)f) n &'(G) for every element x of G. Choose x 
so that gl(X) ¢ O. The value at IG of our element is gl(X) ¢ 0, so that our 
element is not O. This proves the necessity of the condition of the theorem. 

In order to prove the sufficiency, we show first that it suffices to deal 
with the case where the base field, F say, is algebraically closed. Let F' be 
an algebraic closure of F, and let G' and H' be the affine algebraic F'-groups 
obtained from G and H by canonical base field extension. Thus, we have 
&,(G') = &'(G) ® F', and when we identify G with its canonical image in 
G' then G is dense in G', and H' is the closure of H in G'. It follows that 

It is clear from this that if the condition of the theorem holds for the pair 
(G, H) then it holds also for the pair (G', H'). A similar but easier considera­
tion shows that if H' is observable in G' then H is observable in G. 

It remains only to establish the sufficiency of the condition in the case 
where F is algebraically closed. We show that if F is algebraically closed 
and [&'(G)]H = [&'(G)H] then the condition of Proposition 5.1 is satisfied, 
so that H is then observable in G. 

Suppose that Y is a I-dimensional polynomial H -module that is contained 
in a polynomial G-module. Let V be an F-space generator of V, and letfbe 
the element qlv of &'(G), where q is the element of yo such that q(v) = 1. 
For every element y of H, we have y. f = f(y)f. Moreover, for every 
element x of G, we have y' (f . x) = f(y)f . x whenever y belongs to H. 
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Hence, each fraction (f. x)/ J belongs to [9'(G)]H. By our present assump­
tion, there is a non-zero element g", in 9'(G~ such that (J. x)g", belongs to 
9'{G)Hf. Let Z denote the set of zeros ofJin G, and write Z' for the comple­
ment of Z in G. Clearly, g", must vanish on Z n x-1Z'. Since the family of 
open sets x-1Z' covers the closed set Z and since G is a Noetherian space, 
there is a finite set (Xl>' •. ,xn) in G such that Z is the union of the family of 
sets Z n x/-1Z'. Put 9 = g"'l ... g"'n' Then 9 is a non-zero element of 9'(G)H 
that vanishes on Z. Since F is algebraically closed, we can apply Theorem 
11.3.5 and conclude that there is an exponent e > 0 such that ge = hi with 
hin9'(G). Sinceg is fixed under the action of H, we must have y. h = J(y)-lh 
for every element y of H. This shows that the sub H-module of 9'(G) that is 
spanned by h may be identified with Vo, so that VO is contained in a poly­
nomial G-module. 0 

Notes 

1. The simplest example of a coset variety that is quasi-affine but not 

affine is as follows. Let G be the multiplicative group of matrices (; ~) 
with ad - bc = 1, over an algebraically closed field F. Let H be the subgroup 

of matrices (~ ~). Let ex, p, y, b be the matrix entry functions on G with 

values a, b, c, d, respectively. We regard G as an affine algebraic F-group 
with 9'(G) = F[cx, p, y, b], where exb - py = 1. Let A be the sub F-algebra 
F[ex, y]. One verifies directly that A is stable under the action of G from the 
right, and that the element-wise fixer of A with respect to the action of G 
from the left coincides with H. With a little more computation, one sees that, 
actually, A = 9'(G~. From the proof of Theorem 3.1, it is now clear that the 
variety G/H is isomorphic with the restriction image of Gin 9'(A). Clearly, 
9'(A) is the 2-dimensional F -space, and the image of G is the complement 
of the point (0,0). From Note IX.1, we know that this quasi-affine variety 
is not affine. 

2. The following corollaries are worth noting: if G is an irreducible solvable 
algebraic group over an algebraically closed field then every algebraic 
subgroup of G is observable in G; if G is any irreducible algebraic group 
over an algebraically closed field, and H is an algebraic subgroup of G that is 
either unipotent or coincides with its commutator subgroup, then G/H is 
quasi-affine. 

3. The following procedure shows that, ifG is an irreducible affine algebraic 
group over the algebraically closed field F, and if H is a linearly reductive 
algebraic subgroup oJG, then the variety G/H is affine. 

First, observe that, since H is linearly reductive, the module V in the 
proof of Proposition 1.1 may be taken to be (0), whence the polynomial 
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character 9 of Proposition 1.1 may be taken to be the constant 1. Therefore, 
the polynomial character 9 of Proposition 1.2 may also be taken to be the 
constant 1, whence [.9(G)]H coincides with [.9(G)H]. 

By Corollary V.3.2, .9(G)H is finitely generated as an F-algebra, so that 
we have the irreducible affine F-variety .9'(.9(G)H). By the above, the canon­
ical map from G/H to this variety is injective. We have the canonical H­
module decomposition .9(G) = .9(G)H + .9(G)H. Now let (1 be an element 
of .9'(.9(G)H), and let J be its kernel in .9(G)H. Our decomposition of .9(G) 
shows that J.9(G) c: J + .9(G)H' whence we see that J.9(G) does not 
coincide with .9(G). If M is a maximal ideal of .9(G) containing J.9(G) then 
M n .9(G)H = J, and it follows that (1 extends to an F-algebra homo­
morphism from .9(G) to F. Thus, the canonical map from G/H to f//(.9(G)H) 
is actually bijective. Now it follows as in Section 2 (for the case where H 
is normal in G) that this map is an isomorphism of varieties. 

4. The discussion preceding Lemma 2.1 of the differential of the canonical 
morphism 7t from G to G/H appealed to Proposition 1.2 for the conclusion 
that the kernel of 7t~ coincides with !t'(H). This is justified by noting that if or 
is an element of the kernel of 7t~ in !t'(G) then the derivation of [.9(G)] 
effected by or annihilates [.9(G)]H. Indeed, if f is an element of [.9(G)]H, so 
is f· x for every element x of G, and this is defined at 1 for all elements x of 
some non-empty open subset Sf of G. Indicating the action of r as a derivation 
of [.9(G)] by a dot, we have 

(r· f)(x) = «r· f). x)(l) = (r· (J. x»(1) = r'l(J· x) = 0 

for every x in Sf' whence r· f = O. 



Chapter XIII 

Borel Subgroups 

This chapter contains the basic ingredients for the detailed structure theory 
of algebraic groups that leads to the classification of the simple groups. 
This theory is based on certain families of subgroups, such as toroids and 
Borel subgroups, i.e., irreducible maximal solvable subgroups. To some 
extent, the consideration of Borel subgroups reduces the structure theory 
to that of solvable groups. 

The principal result of Section 1 is Borel's fixed point theorem concerning 
actions of solvable groups on complete varieties. This is the key for the 
study of groups via their Borel subgroups. 

Let G be an irreducible algebraic group over an algebraically closed 
field. Section 2 establishes the conjugacy of the Borel subgroups of G and 
characterizes the subgroups P of G that contain a Borel subgroup by the 
property that GIP is a complete variety. Section 3 shows that G is the union 
of the family of its Borel subgroups. The main result of Section 4 is that the 
centralizer of a toroid SinG is irreducible and that its Borel subgroups 
are its intersections with the Borel subgroups of G that contain S. Section 5 
shows that the algebraic subgroups of G containing a Borel subgroup are 
irreducible and coincide with their normalizers. Finally, it introduces the 
Weyl group of G, deriving the simplest basic property with regard to a maximal 
toroid ofG. 

1. Proposldon 1.1. Let G be an irreducible algebraic group over an algebrai­
cally closed field, and let V be a strict G-variety. Each G-orbit of minimal 
dimension is closed in V. 

PROOF. By Theorem X.4.4, each orbit G· v is a constructible subset of V, 
and thus a subvariety. Since G is irreducible, so is G· v. Without loss of 
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generality, we replace V with the closure of G . v in V, and so assume that 
G . v is dense in V. Then we know from Theorem X.4.3 that G . v contains a 
non-empty open subset of V. From the transitivity of the action of G on 
G· v, it follows that G· v is open in V. Now V \ G . v is stable under the 
action of G, and every irreducible component of V \ G . v is of strictly 
smaller dimension than V, i.e., of strictly smaller dimension than G· v. If 
G . v is of minimal dimension among the G-orbits, V \ G . v must therefore 
be empty. 0 

Lemma 1.2. Let F be an algebraically closed field, and let p: X -+ Y be a 
bijective morphism between irreducible algebraic F -varieties. Suppose that an 
arbitrary group G acts transitively by variety automorphisms on X and on y, 
and that p commutes with the action ofG. Then p is a closed map. 

PROOF. By Proposition X.S.2, F(X) is a finite algebraic extension of F(Y) 0 p. 
As in the proof of Theorem X.4.3, with r = 0, we see from this that there are 
affine patches U of X and V of Y such that p restricts to a finite morphism 
from U to V. By Proposition X.2.2, this finite morphism is a closed map. 
The same is therefore true for the restriction of p to 9 . U for every element 
9 of G. Now let C be a closed subset of X. Then, for every 9 in G, the image 
p( C r'I 9 . U) is closed in 9 . V, i.e., p( C) r'I 9 . V is closed in 9 . V. Since Y is 
the union of a finite family of such affine patches g. V, it follows that p(C) 
~~~~~ 0 

The next theorem is a fundamental tool theorem for the structure theory 
ofalgebraic groups. It is known as Borefsfixed point theorem. 

Theorem 1.3. Let G be an irreducible solvable algebraic group over an alge­
braically closed field, and let X be a complete strict G-variety. Then the set 
xG of G-fixed points of X is not empty. 

PROOF. Making an induction on the dimension of G, we suppose that the 
theorem has been established in the lower cases. Then we know that X1G, G) 

is not empty. Be~g closed in X, this is a complete variety, and it is evidently 
stable under the action of G. This action factors through G/[G, G], and we 
see from Theorem XII.2.2 that X[G, G) thereby becomes a strict G/[G, G]­
variety. This reduces the theorem to the case where G is commutative. 

In this case, choose a point x from X such that the orbit G . x is of minimal 
dimension. We know from Proposition 1.1 that G· x is closed in X, so that 
it is a complete variety. Let G" denote the fixer of x in G. Then the map 
from G to G . x sending each element 9 of G onto 9 . x induces a bijective 
morphism of varieties 

'1: G/G" -+ G· x. 

Since G is commutative, it is clear that G/G" is an affine variety (note that 
we could get to this point without making an induction by using Theorem 
XII.4.3). 
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On the other hand, from the fact that G· x is complete, we find that 
G/Gx is complete, as follows. Let V be an arbitrary variety, and consider 
the projection morphism 

x: (G/GX ) x V -+ V. 

Using the above '1, we may factor this as shown: 

(G/GX ) x V --+ (G·x) x V --+ V. 
"xlv ,.' 

Since G . x is complete, the projection x' is a closed map. Applying Lemma 
1.2, we see that '1 x iy also is a closed map. Therefore, the composite x is a 
closed map, showing that G/Gx is complete. 

Since G/Gx is also affine, we must therefore have G = GX, which means 
~x~oo~~~ D 

2. Let G be an irreducible algebraic group. A Borel subgroup of G is an 
irreducible solvable algebraic subgroup of G that is maximal in the family 
of all such subgroups. We shall see later on that a Borel subgroup is actually 
maximal in the family of all solvable subgroups of G. 

Let V be a vector space of finite dimension n > O. A full flag in V is an 
n-tuple (S h •.. ,Sn) of subspaces of V such that SI is of dimension i and 
Si c Si+1' These flags may be regarded as points of the projective variety 
~1(V) x ... X ~n(V), It is easy to see from the definition of the variety 
structure of ~ ,,(V) as given in Section IX.4 that the full flags constitute a 
closed subset of ~1(V) x ... X ~n(V)' Now let us suppose that the base 
field is algebraically closed, and let G be the irreducible algebraic group of 
all linear automorphisms of V. In the canonical fashion, G acts by variety 
automorphisms on ~1(V) x ... X ~n(V), and the set of full flags is stable 
under the action of G. Moreover, it is clear that G acts transitively on this 
set. It follows that the full flags constitute an irreducible closed subvariety of 
~ 1 (V) X ••• x ~ R(V), In particular, the variety offullflags is an irreducible pro­
jective variety. 

lbeorem l.l. Let G be an irreducible algebraic group over an algebraically 
closed./ield. For every Borel subgroup B ofG, the algebraic variety G/B is a 
projective variety, and every Borel subgroup of G is a conjugate of B. 

PROOF. Let C be a Borel subgroup of the largest possible dimension. By 
Theorem 11.2.1, there is an injective polynomial representation of G on a 
finite-dimensional vector space V having a I-dimensional subspace Sl 
whose stabilizer in G coincides with C. Consider the induced representation 
of Con V/S1• By Theorem IV. 1.1 , C stabilizes a full flag in V/S1• Hence, 
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there is a full flag (S to ••• , S,,) in V whose stabilizer in G is precisely C. We 
regard this flag as a point, p say, of the irreducible projective variety of all 
full flags of V. Let 

,,:G/C~G·p, 

be the canonical bijective morphism. Clearly, 

dim( G . p) = dim( G) - dim( C). 

For every full flag q, the identity component of the fixer of q in G is an irre­
ducible solvable algebraic subgroup T, and 

dim( G . q) = dim( G) - dim(T) ~ dim( G) - dim( C). 

Thus, the orbit G . p is an orbit of minimal dimension. By Proposition 1.1, 
this implies that G· p is closed in the flag varie~y, so that it is a projective 
variety. By Lemma 1.2, the map" is a closed map, and the argument of the 
end of Section 1 shows that G/C is therefore a complete variety. We know 
from Theorem XII.2.2 that G/C is a subvariety of a projective variety, W 
say. Since G/C is complete, it must be closed in W, so that it is a projective 
variety. 

Now consider the canonical action of an arbitrary Borel subgroup B 
on the projective variety G/e. By Theorem 1.3, there is a point xC of G/C 
that is fixed under the action of B. This means that BxC = xC, whence 
x-IBx c C. Since x-IBx is a Borel subgroup, it follows that x-IBx = C. 

o 

'Theorem 2.2. Let G be an irreducible algebraic group over an algebraically 
closed field. An algebraic subgroup P of G contains a Borel subgroup of G if 
and only ifG/P is complete. 

PRooF. If P contains a Borel subgroup B of G, then the canonical morphism 
11: from G to G/P is constant on the cosets xB and therefore induces a mor­
phism 'Jr!l from G/B to G/P. Since G/B is complete and 'Jr!l is surjective, it 
follows from Proposition IX.S.2 that G/P is complete. 

Now suppose that G/P is complete, and let B be any Borel subgroup of G. 
By Theorem 1.3, there is a point xP of G/P that is fixed under the action of B. 
Thus, BxP = xP, showing that P contains the Borel subgroup X-I Bx of G. 

o 

Proposition 2.3. Let G be an irreducible algebraic group over an algebraically 
closed field. Let ex be an automorphism of G leaving the elements of some 
Borel subgroup B fixed. Then ex is the identity automorphism. 

PROOF. Consider the map ~ from G to G where ~(x) = ex(x)x- l • This is a 
morphism of varieties that is constant on each coset xB. Therefore, ~ defines 
a morphism of varieties ~B from G/B to G. Since G/B is complete, we 
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know from Proposition IX.S.2 that {)B(G/B) is closed in G and complete. 
Since G is affine, this implies that {)B(G/B) consists of a single point, which 
means that oc is the identity map. 0 

Proposition 2.4. Let G be as above. If a Borel subgroup of G is nilpotent then 
it coincides with G. 

PROOF. We make an induction on the dimension of G, and suppose that the 
proposition has been established in the lower cases. Let B be a nilpotent 
Borel subgroup of G.1f B is trivial then it follows from Theorem 2.1 that G 
is trivial. Therefore, we suppose that B is non-trivial. For any group K, let 
~(K) denote the center of K. By Proposition 2.3, we have ~(B) c ~(G), 

and it is clear from Theorem 2.1 that Cl(G)1 c B. Hence, we have 
Cl(G)1 = ~(Bh. The nilpotency of B implies that Cl(B)1 is non-trivial. Now 
B/~(G)1 is a nilpotent Borel subgroup of G/~(G)1' and our inductive hypo­
thesis gives B = G. 0 

We denote the normalizer of a subset K of G by ,AI" G(K), and the centra­
lizer by ClG(K). 

PropositloD 2.S. Let G be as above, and let T be a maximal toroid in G. Let 
C = ClG(T)1' Then C is nilpotent and coincides with ,AI" G(C)1' 

PROOF. There is a Borel subgroup S of C such that T c S. Evidently, T is a 
maximal toroid in S. By Theorem VI.3.2, we have S = S" ~ T. Since T is 
central in S, this means that S is the direct product of S" and T, so that S is 
nilpotent. By Proposition 2.4, C is therefore nilpotent. 

Now consider the map from ,AI" G(C)1 X T to C that sends each (x, t) 
onto xtx - 1. Since T is stable under every automorphism of C, this map 
defines a morphism of varieties 

{): ,AI" G(C)1 x T - T. 

For every positive integer e, let T(e) denote the subgroup of T consisting 
of the elements t such that te = IT' If t belongs to T(e) then {)(,AI"G(C)1 x (t» 
is evidently contained in T(e). Since T(e) is finite, while {)(,AI" G(Ch x (t» is 
irreducible, it follows that t belongs to the center of ,AI" G(C)1' Thus, every 
T(e) is contained in the center of %G(C)1' Since the union of the family of 
subgroups T(e) is dense in T, it follows that T lies in the center of ,AI" G(C)h 
whence ,AI" G(C)1 = C. 0 

3. Lemma 3.1. Let G be an irreducible algebraic group over an algebraically 
closed field, and let H be an irreducible algebraic subgroup of G. If G/H is 
complete then u xeGxHx- 1 is closed in G. If there is an element ofH whose set 
offixed points in G/H is finite then u xe GxHx- 1 contains a non-empty open 
subset ofG. 
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PROOF. Let 't denote the map from G x G to G x G sending each (x, y) onto 
(x, xyx- 1). Evidently, 't is an automorphism of the variety G x G. Let 7t 

denote the canonical morphism from G to G/H, and consider the map 
(7t x iG) 0 't from G x G to (G/H) x G. Let S denote the image of G x H 
under this map. We claim that S is closed in (G/H) x G. Since 7t x iG is an 
open map, it suffices to show that (7t x iG)-l(S) is closed in G x G. This 
set is easily seen to coincide with 't( G x H), which is closed in G x G. Thus, 
S is closed in (G/H) x G. 

Now suppose that G/H is complete. Then the canonical projection from 
(G/H) x G to G is a closed map, so that the projection image of Sin Gis 
closed. This projection image is precisely uxfiGxHx- 1, so that the first 
part of the lemma is established. 

For each point xH of G/H, the inverse image of xH in S with respect to 
the projection from (G/H) x G to G/H is isomorphic with xHx- 1 as a 
variety, and thus has always the same dimension dim(H). By Theorem X.4.3, 
this implies that dim(H) = dim(S) - dim(G/H), whence dim(S) = dim(G). 

Now suppose that there is an element h in H whose set of fixed points in 
G/H is finite. This means that the inverse image of (h) in S, with respect to 
the projection from S to G, is finite. By Theorem X.2.1, it follows that the 
dimension of the projection image of S in G is at least equal to dim(S), i.e., 
by the above, at least equal to dim( G). Thus, the projection from S to G 
is a dominant morphism. By Theorem X.4.3, the projection image of S in G 
therefore contains a non-empty open subset of G. This establishes the 
second part of the lemma. 0 

Proposition 3.2. Let G be as above, and let S be any toroid in G. There is an 
element s in S such that every element of G that commutes with s belongs to 
rtG(S). 

PROOF. Let V be a finite-dimensional polynomial G-module such that the 
representation of G on V is injective. We may write V as a direct sum of 
S-stable subspaces J./ corresponding to mutually distinct polynomial 
characters Ji such that every element s of S acts as the scalar multiplication 
by J.{s) on J./. For each index pair (i,}), let SI} be the set of all elements s of S 
for which fl..s) = Its). For i "" j, Slj is closed in S, but does not coincide 
with S. Since S is irreducible, there is an element s in S not belonging to 
anyone of these Si/S. Now, if x is an element of G that commutes with s 
then x stabilizes each J./, whence it commutes with every element of S. 0 

Theorem 3.3. Let G be an irreducible algebraic group over an algebraically 
closed./ield, and let B be a Borel subgroup of G. Then uxfiGxBx- 1 coincides 
with G. 

PROOF. Choose a maximal toroid Tin G, and write e for rtG(T)l. By Proposi­
tion 2.5, e is nilpotent, so that it follows from Theorem V1.3.1 and the maxi­
malityof Tthat e = eu x T. By Proposition 3.2, there is an element t in (T) 
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such that ~G(T)l = ~G(t)l. We show that the fixed point set for t in GIC is 
finite, and then apply Lemma 3.l. 

Let x be an element of G such that txC = xc. Then x-1tx is a semisimple 
element of C, and therefore belongs to T. Hence, every element of T commutes 
with x-1tx or, equivalently, every element of xT.x- 1 commutes with t. By 
the choice of t, this implies that xTx- 1 c: C, whence xTx- 1 = T. Thus, 
the conjugation effected by x on G stabilizes T, so that it must also stabilize 
C, which means that x belongs to .;V G(C). We know from Proposition 2.5 
that .;V G(C)l = C. Therefore, the fixed point set for t in GIC is in bijective 
correspondence with a subset of the finite set .;V G(c)/.;V G(C)l. 

Now we have from Lemma 3.1 that uxeGxCx- 1 contains a non-empty 
open subset of G. The nilpotent irreducible algebraic subgroup C of G is 
contained in some Borel subgroup, B say, of G, and uxeGxBx- 1 contains a 
non-empty open set of G. On the other hand, by the first part of Lemma 3.1, 
U xEGxBx- 1 is closed in G. Therefore, it must coincide with G. 0 

We shall see later on that B = .;V G(B). At this point, we record the follow­
ing weaker result. 

CoroUary3.4.lfGand B areas in Theorem 3.3 then B = .;V G(B) 1· 

PROOF. Evidently, B is a Borel subgroup of .;V G(B) 1· Since B is normal in 
.;V G(B)h the corollary follows at once from Theorem 3.3, with .;V G(B) 1 in 
the place of G. 

4. Lemma 4.1. Let G be an algebraic group over an algebraically closed field, 
and let U be an irreducible unipotent algebraic subgroup of G. Suppose that s 
is a semisimple element ofG that normalizes U. Then the centralizer ofs in U 
is irreducible. 

PROOF. First, we deal with the case where U is commutative. Let U' denote 
the centralizer of sin U, and let U. be the subgroup of U consisting of the 
elements sUS-1U- 1 with u in U. We claim that U· n U. = (1). In order to 
see this, consider an element v = sUS-1U- 1 of this intersection. Let S be the 
closure in G of the group generated by s. Since s is semisimple, S is linearly 
reductive. We have sus- 1 = vu, whence seus-e = veu for every integer e. 
Hence xUX-1U- 1 belongs to U· for every element x of the group generated by 
s, and therefore also for every element x of S. Consider the map ~ from S to 
U· that sends each x onto xUX-1U- 1• One sees directly that ~ is a morphism 
of algebraic groups. It follows that ~(S) is a reductive subgroup of u·. 
Since U' is unipotent, ~(S) is therefore trivial. In particular, v = ~(s) = l. 
Thus, U' n U. = (1). 

Now consider the map y from U to U. that sends each u onto SUS-1U- 1• 

This is evidently a surjective morphism of algebraic groups, whence U. is 
irreducible. The kernel of y is U', whence 

dim(U) = dim(U") + dim(U.). 
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Since U· n U. = (1), the morphism of algebraic groups from U· x U. 
to U coming from the composition of U is injective. This implies that 

dim«U4) 1 U.) = dim«U4)l xU.) = dim(U), 

whence (U4)l U. = U. Hence, the images of U· x U. and (U4)l x U. in U 
coincide, so that we must have U· = (U4)l. This establishes the lemma in 
the case where U is commutative. 

Now we proceed by induction on the dimension of U, and so suppose 
that U #= (1) and that the lemma has been established in the lower cases. 
Let Z denote the irreducible component of the neutral element in the center 
of U. Since U is unipotent and non-trivial, we have Z #= (1). Hence, our 
inductive hypothesis implies that (U /Z)· is irreducible. 

Let uZ be an element of (U /Z)·, so that sUS- 1U- 1 belongs to Z. It follows 
that xUX- 1U- 1 belongs to Z for every element x of S. Now consider the map 
~ from S to Z that sends each x onto xux- 1u -1. One verifies directly that ~ is a 
polynomial cocycle for S in Z with respect to the conjugation action of S 
on Z. By Proposition VI.2.2, this cocycle is a coboundary, i.e., there is an 
element z in Z such that xUX- 1U- 1 = xzx- 1z- 1 for every element x of S. 
This shows that Z-lU belongs to u·. 

Our conclusion is that (U /Z)· coincides with the canonical image of U·. 
The kernel of the canonical morphism from U· to (U /Z). is Z·, which we 
know to be irreducible. Since this morphism is surjective to the irreducible 
group (U /Z)', it follows that u· is irreducible. 0 

Theorem 4.2. Let G be an irreducible algebraic group over an algebraically 
closed field, S a toroidal algebraic subgroup of G. Then ~G(S) is irreducible. 

PROOF. Let x be any element of ~G(S), and let B be a Borel subgroup of G. 
By Theorem 3.3, x belongs to some conjugate of B. This means that the 
fixed point set, P say, for x in G/B is non-empty. Being closed in the complete 
variety G/B, this set P is a complete variety. Since the elements of S commute 
with x, it is clear that P is stable under the action of Son G/B. Therefore, 
we know from Theorem 1.3 that there is a fixed point for S in P. If this is 
zB then zBz- 1 contains S as well as x. Now x belongs to the centralizer 
of S in zBz - 1. If we show that this centralizer is irreducible we may conclude 
that x belongs to ~G(S)l. Thus, it suffices to establish the theorem in the case 
where G is solvable. 

In that case, we have G = Gy ><I T, where T is a maximal toroid in G 
containing S. Clearly, ~ G(S) is the semidirect product (~G(S) n Gy ) ><I T. 
By Proposition 3.2, there is an element s in S such that ~G(S) = G·. Now 
we have ~G(S) = G: ><I T. By Lemma 4.1, G: is irreducible, so that ~G(S) 
is irreducible. 0 

Lemma 4.3. Let G and S be as in Theorem 4.2, and let B be a Borel subgroup 
ofG containing S. Let P be the fixed point setfor S in G/B, and let p be afixed 
point for B in G/B. Then ~ G(S) . P coincides with the irreducible component 
ofp in P. 
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PROOF. Let Q denote the irreducible component of pin P, and let x be the 
canonical map from G to G/B. First, we note that x- 1(Q) is irreducible. In 
order to see this, let H be an irreducible component of x- 1(Q). Since B is 
irreducible. so is the product set HB, whence HB = H. It follows that 
Q\x(H) coincides with x(x- 1(Q)\H). Since x is an open map, this shows that 
1t{H) is closed in Q. Since Q is irreducible, we must therefore have x(H) = Q 
for at least one of the irreducible components H of x- 1(Q). Since HB = H, 
it follows that H = x- 1(Q). 

Let x be an element of x- 1(Q). Then S ·1t{x) is the singleton (x(x», which 
means that x- 1Sx is contained in B. Let ~ be the variety morphism from 
x- 1(Q) x S to B/B .. that sends each (x, s) onto x- 1sxB ... If s is an element of S 
that is of finite order, then the image of x- 1(Q) x (s) under ~ lies in a finite 
subgroup of the toroid B/B ... Since it is irreducible, this image is therefore 
the singleton (t - 1 stBJ, where t is an element of G such that p = tB. Thus, we 
have 

(t- 1s- 1tXx- 1sx) E B .. , 

for every element x of x- 1(Q) and every torsion element s of S. Since the 
torsion subgroup of S is dense in S, it follows that the above holds for every 
element s of S. Hence, we have x - 1 Sx c t - 1 StB .. for every element x of 
x- 1(Q). From the fact that p is fixed under the action of B, it follows that t 
normalizes B, and hence also B ... Therefore, C 1 StB .. is actually a subgroup 
of G. Clearly, it is therefore an irreducible solvable algebraic subgroup of G, 
and its maximum unipotent normal subgroup coincides with Bu' Each of the 
groups t- 1St and x- 1Sx is a maximal toroid in t- 1StB ... Therefore, there is 
an element b in B .. such that b- 1x- 1Sxb = t- 1St, so that xbt- 1 belongs to 
..tV G(S), Thus, we have x- 1(Q) c ..tV G(S)tB. 

Evidently, '8G(S)tB is contained in x- 1(Q), so that we have the inclusions 

fBG(S)tB c x- 1(Q) c ..tV G(S)tB ... 

The set ..tV G(S)tB .. is the union of a finite family of translates of the closed 
irreducible subset ..tV G(S)1tB ... By considering the conjugation action of 
..tV G(S)1 on the torsion subgroup of S, we see that ..tV G(S) 1 is contained in 
'8G(S). By Theorem 4.2, '8G(S) is irreducible, and therefore ..tVG(Sh = '8G(S). 
Thus, the irreducible components of ..tV G(S)tBu are translates of fBG(S)tB ... 
Since x- 1(Q) is irreducible, it must be contained in one of these translates. 
Since it contains fBG(S)tB .. , we must therefore have x- 1(Q) = '8G(S)tBu ' 

Applying x, we find Q = '8G(S)· p. 0 

Theorem 4.4. Let G be an i"educible algebraic group over an algebraically 
closed./ield. Let S be a toroidal subgroup ofG, and let B be a Borel subgroup 
ofG containing S. Then '8G(S) n B is a Borel subgroup offBG(S). 

PROOF. Applying Lemma 4.3, with the point B of G/B taking the place of p, 
we conclude that the canonical image of'8G(S) in G/B is closed in G/B, and 
therefore complete. The canonical map induces a bijective morphism from 
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rtG(S)/(rtG(S) ('"\ B) to the canonical image of rtG(S) in G/B. Therefore, we 
can apply the argument of the end of Section 1 and conclude that the variety 
rtG(S)/(rtG(S) ('"\ B) is complete. By Theorem 2.2, this implies that rtG(S) ('"\ B 
contains a Borel subgroup of rtG(S)' We have rtG(S) ('"\ B = rtIl..S), so that 
we know from Theorem 4.2 that this group is irreducible. Since it is solvable, 
it must therefore coincide with the Borel subgroup it contains. 0 

5. Theorem 5.1. Let G be an irreducible algebraic group over an algebraically 
closed field, and let B be a Borel subgroup of G. Then % G(B) = B. 

PROOF. Let x be an element of % G(B), and let T be a maximal toroid in G 
that is contained in B. Then xTx- 1 is also a maximal toroid in G that is 
contained in B. Because the maximal toroids in B are conjugates in B, there 
is an element b in B such that xb normalizes T. In order to conclude that x 
belongs to B, it suffices to show that xb belongs to B. Thus, we assume 
without loss of generality that x normalizes T, as well as B. We proceed by 
induction on the dimension of G, and so assume that the theorem has been 
established in the lower cases. 

Let S = rt.,.(X)l' and let us first deal with the case where S is non-trivial. 
We know from Theorem 4.2 that rtG(S) is irreducible, and from Theorem 4.4 
that rt G(S) ('"\ B is a Borel subgroup of rt G(S), From the inductive hypothesis, 
we have that every Borel subgroup of rt G(S)/S coincides with its normalizer. 
Clearly, S must be contained in every Borel subgroup of rtG(S). Hence, 
it follows that every Borel subgroup of rt G(S) coincides with its normalizer 
in rtG(S). In particular, this applies to rtG(S) ('"\ B. Since x belongs to rtG(S) 
and normalizes B, we have therefore x E B. 

It remains to deal with the case where S is trivial. We know from Corollary 
3.4 that B = % G(B)l' It follows that some power of x belongs to B, so that 
the subgroup, H say, of G that is generated by x and B is an algebraic sub­
group of G, with H 1 = B. Let ~ be the algebraic group endomorphism of T 
that sends each tonto xtx- 1t- 1• Our assumption that S is trivial means 
that the kernel rt.,.(x) of ~ is finite. This implies that dim(~(T» = dim(T), 
so that ~ is surjective. In particular, this shows that T is contained in [H, H]. 
Since B = Bu T, it follows that B is contained in Bu[H, H]. 

By Theorem 11.2.1, there is a finite-dimensional polynomial G-module 
V such that H coincides with the stabilizer in G of some I-dimensional 
subspace L of V. Let Jl be the corresponding polynomial character of H, 
so that every element h of H acts on L as the scalar mUltiplication by Jl(h). 
Then, since B c: Bu[H, H], it is clear that B is contained in the kernel of Jl. 

Now let v be a non-zero element of L, and consider the map p from G 
to V that sends each g onto g . v. Since B lies in the kernel of Jl, the map p 
is constant on the co sets gB, and so induces the morphism pB from G/B to V. 
Since G/B is complete and V is affine, the image of G/B under pB reduces to 
the single point v. By the definition of L, this implies that G = H. Since G 
is irreducible, it follows that G = H 1 = B, so that x E B. 0 
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Corollary 5.1. With G as in Theorem 5.1, let P be an algebraic subgroup ofG 
containing a Borel subgroup of G. Then P is irreducible, and P = % G(P). 

PROOF. Let B be a Borel subgroup of G that is contained in P, and let x be an 
element of % G(P). Then Band xBx - 1 are Borel subgroups of Pl. Hence, 
there is an element p in P 1 such that px normalizes B. By Theorem 5.1, px 
belongs to B, so that x belongs to P 1B = Pl. Thus %G(P) = P 1 = P. 0 

It is an immediate consequence of this corollary that every Borel subgroup 
of G is maximal in the family of all solvable subgroups of G. 

Corollary 5.3. Let G be as above, B a Borel subgroup ofG. Then B = % G(Bu). 

PROOF. Write P for %G(Bu). Since P contains B, we know from Corollary 5.2 
that P is irreducible. From the conjugacy of Borel subgroups, it follows that 
Bu is maximal in the family of irreducible unipotent subgroups of G. Hence, 
P/Bu has no non-trivial irreducible unipotent subgroups. Therefore, if C 
is a Borel subgroup of P/Bu , then C is a toroid. Now it follows from Proposi­
tion 2.4 that P/Bu = C. Thus, P/Bu is solvable, whence P is solvable, so that 
P=& 0 

Let G and B be as above, and let 91 denote the set of all Borel subgroups 
ofG. We define a map y: G/B -+91 by y(xB) = XBX-l. By Theorems 2.1 and 
5.1, y is bijective. If L is any subset of G, we denote the fixed point set for 
Lin G/B by (G/B)L. Then y maps (G/B)L onto the set9l(L) of all Borel sub­
groups of G that contain L. 

In particular, let T be a maximal toroid in G, and choose B so that T c: B. 
Oearly, (G/B)T is stable under the action of % G(T). We claim that % G(T) 
acts transitively on (G/B)T. By the above, this is equivalent to saying that 
% G(T) acts transitively on9l(T), by conjugation. Let X and Y be members 
of9l(T). There is an elementg in G such thatgXg- 1 = Y. Now TandgTg- 1 

are maximal toroids in Y. Therefore, there is an element y in Y such that yg 
belongs to % G(T). Since (yg)X(yg)-l = Y, this proves the transitivity. 

Next, we show that ~G(T) is contained in every member of 91(T). We know 
from Theorem 4.2 that ~G(T) is irreducible. Hence, we have from Proposi­
tion 2.5 that ~G(T) is nilpotent and coincides with % G(T)l. In particular, 
it is clear from the irreducibility and nilpotency that ~G(T) is contained in 
some member, X say, of 91(T). As above, for every member Yof 91(T) there 
is an element z in % G(T) such that zXz- 1 = Y. Hence 

~G(T) = z~G(T)Z-l c: y. 

It follows that the action of % G(T) on (G/Bl factors through the finite 
group % G(T)/% G(T)l = % G(T)/~G(T). In particular,91(T) is therefore 
finite. Finally, suppose that x is an element of % G(T) such that xBx- 1 = B. 
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Then x belongs to B, by Theorem 5.1. Thus x belongs to .H'I..T). Hence, 
for every element tofT, we have 

xtx-1t- 1 E T ("\ [B, B] c: T ("\ Bu = (1), 

so that x lies in ~G(T). 
The group.H' G(T)/~G(T) is called the Weyl group of G with respect to T. 

Since all the maximal toroids T of G are conjugates, the isomorphism class 
of the Weyl group is determined by G. The above has shown that the Weyl 
group acts simply transitively on the finite set of all Borel subgroups of G con­
taining T. 

Notes 

1. Let V be a finite-dimensional vector space over an algebraically closed 
field F. It is easy to see that the Borel subgroups of Aut,,(V) are precisely 
the stabilizers of the full flags in V. 

2. It is not true that every maximal solvable subgroup of an irreducible 
algebraic group over an algebraically closed field is a Borel subgroup. For 
example, let F be an algebraically closed field of characteristic other than 2. 
Let G be the group of all n by n orthogonal matrices of determinant 1 with 
entries in F, where n > 2. Let D be the subgroup of G consisting of the 
elements whose entries off the diagonal are all equal to O. Then D is the 
direct product of n - 1 copies of the group of order 2, and D coincides with 
its centralizer in G. If D were contained in a Borel subgroup of G, it would 
follow from Theorem V1.3.2 that D is contained in a toroid of G. Thus, D 
is not contained in any Borel subgroup of G. 

3. Let G be an irreducible algebraic group over an algebraically closed 
field. Suppose that G has no infinite unipotent subgroup. Use Proposition 
2.4 for showing that G is a toroid. 

4. For the detailed structure and classification theory, we refer the reader to 
[6], [1], [16] and [7]. 



Chapter XIV 

Applications of Galois Cohomology 

The theme of this chapter is the use of Galois theory for extending the 
structure theory of algebraic groups. The applicability of Galois theory 
stems from the fact that solvable algebraic groups are made up from the 
additive and mUltiplicative groups of the base field, and Section 1 provides 
the technical preparations for exploiting this. 

The main result of Section 2 is the extension of the basic semidirect 
product decomposition for solvable groups from the case of an algebraically 
closed base field to that of a perfect base field. 

Section 3 contains the crucial cross-section result that is used in Section 4 
for showing that if G is an irreducible algebraic group over an algebraically 
closed field, and H is a unipotent irreducible algebraic subgroup of G such 
that G/H is an affine variety then, as a variety, G is the direct product of 
G/H and H. This cross-section result is of considerable importance for the 
theory of group extensions, of which we give only a glimpse in Theorem 4.2. 

1. Let F be a field, G an affine algebraic F-group. One says that G is defined 
over a sub field K of F if there is given a K-form for the Hopf algebra ~(G), 
i.e., a K-Hopf algebra A such that ~(G) = A ® F. In this situation, an 
algebraic subgroup H of G is said to be associated with A if the kernel of the 
restriction map from P1(G) to #(H) is generated as an ideal by its intersection 
with A, so that ~(H) = AH ® F, where AH stands for the restriction image 
of A. Thus, H is then defined over K, by the K-form AH of ~(H). 

We are interested in the case where K is the fixed part FS for a group S 
of automorphisms of F. In this case, if G is defined over K, the group S 
acts on G by abstract group automorphisms in the following way. Regard G 
as the group of all K-algebra homomorphisms from A to F. Then the trans­
form of an element x of G by an element u of S is simply the composite u 0 x. 

200 
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If a' is the automorphism of G corresponding to the element a of S, we have 

f 0 a' = a 0 (i.d~ a-1)(f), 

for every element f of &'(G). In particular, this shows that, although a' is 
not an automorphism of affine algebraic F -groups, it is a homeomorphism 
from G to G with respect to the Zariski topology of G. In fact, if J Q is the 
annihilator of a subset Q of Gin &'(G), then (iA ® a)(JQ) is the annihilator 
of u'(Q) in 9'(G), and if Q is the annihilator in G of a subset J of ~(G), then 
a'(Q) is the annihilator in G of (iA ® a)(J). 

Proposidon 1.1. Let F be a Galois extension of a field K, with Galois group S. 
Let G be an affine algebraic F-group that is defined over K by the K{orm A 
of&'(G). Then the S-stable algebraic subgroups ofG are precisely the algebraic 
subgroups that are associated with A. 

PROOF. Let H be an algebraic subgroup of G, and let J be its annihilator in 
&'(G). First, suppose that H is associated with A, so that J is generated as 
an ideal by A n J. Clearly, this implies that (iA ® u)(J) = J for every element 
u of S. By the remark just preceding the statement of the proposition, this 
means that a'(H) = H for every a in S. 

Now suppose that H is S-stable. Then J is S-stable with respect to the 
S-module structure of &'(G) coming from the action of S on the tensor 
factor F of A ® F. Let f be an element of J, and write it in the form 
1:7= 1 fi ® Cj, where the c/s are K-linearly independent elements of F, 
and the fi's belong to A. Let M be the smallest Galois extension of K that is 
contained in F and contains each Cj. Then M is finite over K, and S induces 
the full Galois group of M relative to K. Therefore, every K-linear endo­
morphism of M is an M -linear combination of restrictions to M of elements 
of S. In particular, this holds for the endomorphisms sending one of the 
c/s to 1 and annihilating all the others. Since J is S-stable, it follows that each 
fi belongs to J. Hence, we have J = (J n A) ® F, which means that H is 
associated with A. 0 

Proposition 1.2. Let F, K, S, G and A be as in Proposition 1.1. Suppose that H 
is a properly normal algebraic subgroup of G that is associated with A. Then 
G/H is defined over K, with AH as the K{orm of &'(G/H). 

PROOF. Let f be an element of &'(G/H) = (A ® Ff. For every element y 
of G, every element x of H and every element a of S, we have 

(iA ® a)(f)(u'(y)a'(x» = a(f(yx» = a(f(y» = (iA ® u)(f)(a'(y», 

whence 

u'(x) . «iA ® a)(f) = (iA ® a)(f). 

Since H is S-stable (by Proposition 1.1), this shows that (A ® F)H is S-stable 
with respect to the S-module structure of A ® F coming from the action of S 
on the tensor factor F. Exactly as in the proof of Proposition 1.1, we see 
from this that (A ® F)H = AH ® F. 0 
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Lemma 1.3. Let S be afinite group of automorphisms of afield F. Then every 
multiplicative and every additive cocycle for S in F is a co boundary. 

PROOF. There is an element tin F such that Laes u(t) = 1. Letfbe an additive 
cocycle for S in F, so that 

f(u1:) = u(f(t» + f(u), 

for all elements u and t of S. Put c = LteS 1:(t)f(1:). One verifies directly 
that c - u(c) = f(u) for every element u of S, which means that f is a co­
boundary. 

Now let fbe a multiplicative cocycle, so that 

f(ut) = u(f(1:»f(u), 

for all elements u and 1: of S, and all the values of f are different from o. 
Since the elements of S are linearly independent as maps from F to F, there 
is an element u in F such that Ltd J(t)t(u) =F o. If e denotes this element 
of F, one verifies directly that eu(e)-l = J(u) for every element u of S, 
which means thatfis a coboundary. 0 

Let F be a Galois extension of a field K. We endow the Galois group S 
for F relative to K with the Krull topology, in which a fundamental system 
of neighborhoods of the neutral element of S consists of the element-wise 
fixers of the finite Galois extensions of K that are contained in F. If G is an 
affine algebraic F -group that is defined over K, we shall, from now on, 
write u(x) for the transform of an element x of G by the automorphism u' 
corresponding to an element u of S. A Galois cocycle Jor S in G is a map 
Jfrom S to G that satisfies the identityJ(u1:) = u(J(1:»J(u) and is continuous 
with respect to the Krull topology of S and the discrete topology of G. For 
every element x of G, the map g from S to G defined by 

g(u) = U(X)-l J(u)x, 

is also a Galois cocyc1e for S in G. In the case where f is the constant map 
whose value is the neutral element of G, this shows that the coboundaries 
are actually Galois cocyc1es. 

Suppose that G has a series of S-stable algebraic subgroups 

(1) = Go c ... c Gn = G, 

such that each Gj is properly normal in Gj + 1 and Gi+ dG j is isomorphic, as 
an affine algebraic F -group and S-module, with either the additive group of 
F or the multiplicative group. Then we say that G is split solvable with 
respect to the S-fixed part K of F. 

Proposition 1.4. Let F be a Galois extension of afield K with Galois group S. 
Suppose that G is an affine algebraic F -group that is defined over K so as to 
be split solvable with respect to K. Then every Galois cocycle for S in G is a 
coboundary. 
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PROOF. Letfbe a Galois cocycle for S in G, and let the G;'s be as in the above 
definition of "split solvable." Starting with i = n, suppose that we have 
already found an element Uj of G such that q(Uj)-1 f(q)uj belongs to Gj 
for every element q of S. Write this element of Gj as g(q), and let g' be the 
map from S to GdGj- 1 obtained by composing g with the canonical map from 
Gj to Gi/Gj- l . Then g' is a Galois cocycle for S in Gi/Gj- l. By assumption 
on the series of G/s, we may regard g' as an additive or multiplicative cocycle 
for S in F. 

By the continuity assumption on Galois cocycles, there is a finite Galois 
extension M of K that is contained in F and such that, if T is the element­
wise fixer of M in S, our cocycle is constant on the cosets of T in S. This, 
together with the cocycle identity, implies that g' actually maps S into M 
and defines a cocycle for the Galois group of M relative to K in the additive 
or multiplicative group of M. By Lemma 1.4, this cocycle is a coboundary. 
For the original cocyclef, this means that there is an element U in Gj such that 
q(Uj)-1 f(q)uj belongs to q(U)-luGj_1 for every element q of S. Put 
Uj-l = uju- l • Then q(Uj_I)-1 f(q)u j- l belongs to Gj- l for every element 
q of S. When we reach the index 0, we have the desired conclusion. D 

2. Theorem 2.1. Let K be a perfect field, F an algebraic closure of K and S 
the Galois group of F relative to K. Let V be an irreducible unipotent affine 
algebraic F-group that is defined over K. Then every Galois cocyclefor S in V 
is a coboundary. 

PROOF. Making an induction on the dimension of V, we suppose that the 
theorem has been established in the lower cases. First, we deal with the case 
where V is non-abelian. Evidently, [V, VJ is S-stable. It follows from 
Propositions 1.1 and 1.2 that V /[V, VJ is defined over K such that, if A 
is the given K-form for 9(V), then A[U,Ul is the K-form for 9(V/[V, VJ). 
Let f be a Galois cocycle for S in V. In the canonical fashion, f defines a 
Galois cocycle for S in V/[V, VJ, which we denote by 1'. Our inductive 
hypothesis applies to I' and gives the result that there is an element U in V 
such that f(q) belongs to q(u)u-I[V, VJ for every element q of S. If 
g(q) = q(U)-1 f(q)u, then g is a Galois cocycle for S in [V, VJ to which we 
can again apply our inductive hypothesis. It follows thatfis a coboundary. 

It remains to deal with the case where V is abelian. Let p be the charac­
teristic of F. There is a non-negative integer r such that upr is the neutral 
element for every element u of V. Let e be the smallest such r; in the case 
where p = 0, we agree that e = 1. If e > 1, let V be the image ofthe morphism 
from V to V sending each u onto upe - I

• Then V is an irreducible algebraic 
S-stable subgroup of V, and V is neither trivial nor coincides with V. There­
fore, we can apply the inductive hypothesis to V and to V IV, which reduces 
the problem to the case where e = 1. 

In that case, we know from Theorem VI.5.4 that, if A is the given K -form 
of 9(V), the affine algebraic K-group ~(A) is an algebraic vector group 
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whose algebra of polynomial functions is A. Evidently, this implies that U 
is identifiable, as an affine algebraic F-group and S-module, with the direct 
product of a finite family of copies of the additive group of F, so that the 
result follows from Lemma 1.3. 0 

Theorem 2.2. Let K be a perfect field, G an i"educible affine algebraic K­
group, U an irreducible unipotent normal algebraic subgroup of G. Then U is 
properly normal in G. 

PROOF. Let F and S be as in Theorem 2.1, and let GF and UF denote the groups 
obtained from G and U by the canonical base field extension. Then every 
element h of ~(~(G)U) is the restriction to ~G)U of an element x of GF• For 
every element (J of S, the restriction of (J(x) to ~(G)U also coincides with h. 
Therefore, (J(x)x- I belongs to UF, so that the map sending each element (J 
of S onto u(x)x- I is a Galois cocycle for S in UFo By Theorem 2.1, there is an 
element y in UF such that (J(x)x- I = o(y)y-I for every element (J of S. 
This says that the point y -I x of GF is fixed under the action of S, which means 
that y-Ix belongs to G. Since its restriction to ~(G)U coincides with h, this 
shows that the restriction map from G to ~(~G)U) is surjective, i.e., that U 
is properly normal in G. 0 

Theorem 2.3. Let K be a perfect field, G an irreducible solvable affine algebraic 
K-group. There is a linearly reductive algebraic subgroup R of G such that 
G = G.><IR. 

PROOF. Let F be an algebraic closure of K, and let S be the Galois group 
of F relative to K. Let us write H for the extended group GF• We have 
H = H u ><I T, where T is a toroid. 

By Theorem 2.2, GIG. is the affine algebraic K-group ~(~G)G .. ). Since 
it is abelian and since (G/G,,). is trivial, we know from Theorem V.5.1 that 
G/Gu is linearly reductive. Since K is perfect, we can apply Proposition 
V.1.2 and conclude that ~(G)G .. ® F is semisimple as a G-module, and 
therefore also as an H-module. This shows that H/G';, is linearly reductive, 
whence Hu must coincide with G~. Thus, H" is S-stable. We shall show that 
T may be chosen so as to be S-stable. 

Let Z be the normalizer of T in H u. It is seen immediately from the 
semidirect product decomposition that Z coincides with the centralizer 
of T in Hu. First, we deal with the case where Hu is abelian. In this case, Z 
is clearly the intersection of H u with the center of H, whence Z is S-stable. 
By Proposition 1.2, the definition of Hu over K yields a definition of HJZ 
over K. By Theorem 2.1, every Galois cocycle for S in HJZ is a coboundary. 

Let (J be an element of S. We know that u(T) is an algebraic subgroup 
of H, that H = u(H,,)u(T) = Huu(T), and that H" n (J(T) = (1). Thus H 
is the semidirect product Hu><l u(T), whence (J(T) is a maximal toroid of H. 
Therefore, there is an element h" in H u such that u(T) = h" Th;; I. Let f«(J) 
denote the canonical image of h" in HJZ. Then f«(J) depends only on (J, 
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and not on the particular choice of h". We see directly from this and the 
definition offthatf(O'.) = O'(f(.»f(O') for all elements 0' and. of S. From 
the fact that the annihilator of T in &,(H) is finitely generated as an ideal, 
one sees that the stabilizer of T in S is an open subgroup of S. Hence,fhas 
the continuity property making it a Galois cocycle for S in Hu/Z. From 
the above, we know that there is therefore an element h in H u such that h" 
belongs to u(h)h- 1Z for every element 0' of S, whence we see that h- 1Th 
is S-stable. 

Now we deal with the general case by making an induction on the dimen­
sion of Hu' Identifying T with its canonical image in H/[Hu• Hu], we write 
H/[Hu, HJ = (HJ[Hu , HJ) Xl T. Applying what we have just proved to 
this situation, we conclude that there is an element h in H u such that 
[Hu' Hu] Xl h- 1Th is S-stable. Clearly, we can apply the inductive hypothesis 
to this group, thus obtaining an element hi of [Hu, HJ such that 
(hh1)-1 T(hhl) is stable under the action of S. 

Now we have H = Hu Xl T, where T is an S-stable toroid. Let x be any 
element of G, and write x = yz, with y in Hu and z in T. Then, for every 
element 0' of S, we have x = u(x), and therefore O'(y)-ly = O'(Z)Z-l. This 
element belongs to Hun T, so that it must be the neutral element. Thus, 
y and z are fixed under the action of S. In particular, y belongs to H~ = Gu • 

This shows that G is the semidirect product Gu Xl TS, and it is clear that 
TS is linearly reductive. 0 

3. Proposition 3.1. Let F be an algebraically closed field, G an irreducible 
affine algebraic F -group. Suppose that H is an irreducible solvable algebraic 
subgroup of G, and that the variety G/H is affine. Then there is a non-empty 
open subset U ofG/H and a variety morphism pfrom U to G whose composite 
with the canonical map from G to G/H is the identity map on U. 

PROOF. Let 11: denote the canonical map from G to G/H, and consider the 
image &'(G/H) 011: of &'(G/H) in &'(G). Evidently, this is contained in &'(G)H. 
Conversely, iff is an element of &'(G)H, we see immediately from part (4) 
of Theorem XII.2.2 thatfbelongs to &'(G/H) 011:. Thus, we have 

&'(G/H) 0 11: = &'(G)H. 

Accordingly, we identify &'(G/H) with &'(G)H. 
Let us write K for the field [&'(G)H] which, here, coincides with the 

field [&'(G)]H of rational functions of G/H. Let A denote the sub K-algebra 
of [&'(G)] that is generated by &'(G). Our aim is to show that there is a K­
algebra homomorphism from A to K. In fact, if a is such a K-algebra homo­
morphism, and if U is the set of points of G/H at which every element of 
a(&'(G» is defined, then U is a non-empty open subset of G/H, and the 
restriction of a to &'( G) transposes into a variety morphism p from U to G 
such that 11: 0 P is the identity map on U. 

We know from Theorem 111.2.3 that [&'(G)] is separable over K. By 
Theorem 111.2.1, this implies that there is a transcendence basis (Xl"'" Xn) 
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for [~(G)] over K such that [~G)] is a finite separable algebraic extension 
of K. Accordingly, we write 

[~(G)] = K(XI" .. ,xn)[a], 

where a is separably algebraic over K(XI"'" xn). 
Now let (PI" .. ,PI,) be a system of K-algebra generators of A, and write 

Pi in the form L Pijai, where each Pij belongs to K(x" ... , xn). Since a is 
separable over K(XI'" ., xn), we have f'(a) oF 0, where fis the monic mini­
mum polynomial for a relative to K(x" ... , xn), andf' is the formal deriva­
tive off. Let qo,' .. , qs be the coefficients off, and let 

R = K[PIO'" . , Pld' qo, ... , qs]. 

By Theorem 11.3.3, there is a non-zero element r in R such that every K­
algebra homomorphism from R to an algebraic closure, L say, of Knot 
annihilating r extends to a K-algebra homomorphism from R[a] to L not 
annihilatingf'(a). Clearly, we can find elements k" .. . , kn in K such that r, 
the q,'s and the Pij's are in the specialization sub K-algebra of K(x" ... , xn) 
for the specialization XI H k/o and such that this specialization does not 
annihilate r. The restriction to R ofthis specialization extends to a K-algebra 
homomorphism u from R[a] to L such that u(R) c: K and u(f'(a» oF O. 
If u(f) denotes the polynomial whose coefficients are the u(q,)'s, we have 
u(f)(u(a» = 0, but u(f)'(u(a» = u(f'(a» oF O. This shows that u(a) is 
separable over K. 

Let K' denote the composite in L of the family of all intermediate fields 
between K and L that are separable over K. Our conclusion is that there is a 
K-algebra homomorphism from A to K'. 

Now let us make the canonical base field extension from F to K' and 
consider the extended group GK' with the algebraic subgroup HK'. Let us 
denote these groups more simply by G' and H'. We have ~(G') = ~G) ® K' 
and ~G')H' = ~(G)H ® K'. It is clear that the element-wise fixer of ~(G)H 
in G coincides with H. The condition that an element of G' leave the elements 
of ~(Gf fixed is equivalent to the condition that this element be a zero of a 
certain ideal, Q say, of ~(G). Let J be the annihilator of H in ~(G). The re­
mark we just made concerning H implies that the radical of Q coincides 
with J.1t follows that every element of G' leaving the elements of ~(Gf fixed 
is a zero of J, which means that it belongs to H'. Thus, the element-wise 
fixer of ~(Gf in G' coincides with H', whence also the element-wise fixer of 
~(G')H' in G' coincides with H'. It follows that G'/H' may be identified with 
the affine algebraic K'-variety resulting from G/H by the canonical base 
field extension, and that the canonical map from G' to G'/H' then becomes 
the canonical extension rr of 11:. 

The injection &'(G)H -+ K' defines a point of our affine algebraic K'­
variety G'/H'. Let X denote this point. As we have shown above, there is a 
K-algebra homomorphism from A to K'. Let y denote its restriction to 
!JI(G). Then y may be viewed as a point of G', and it is clear that 1I:'(y) = x. 
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Let S denote the Galois group of K' relative to K, and consider the natural 
actions of Son G', H' and G'/H'. Evidently,.,r is compatible with the actions 
of Son G' and G'/H', in the sense that, for every u in S and every z in G', 
we have n'(u(z» = u(n'(z». Since the point x of G'/H' is fixed under the 
action of S, it follows that n'(o(y» = x. Since .,r-l(X) is the coset yH', it 
follows that y-lu(y) belongs to H'. 

Define thc;..-mapffrom S to H' byf(o) = o(y)-ly. Then it is easy to see 
thatfis a Galois cocycle for S in H'. Since F is algebraically closed and H' 
comes from H by canonical base field extension, it is clear that H' is split 
solvable relative to K. Therefore, it follows from Proposition 1.4 that there 
is an element z in H' such that f(u) = U(Z)Z-l for every element u of S. 
This is equivalent to the statement that yz is fixed under the action of S, 
so that yz belongs to GK • Since z belongs to H', we have g(yz) = g(y) for 
every element g of ~(Gf. Using this and the fact that y is the restriction 
to ~G) of a K-algebra homomorphism from A to K', we see that yz extends, 
by K-linear extension, to a K-algebra homomorphism from A to K. 0 

4. Theorem 4.1. Let F be an algebraically closed field, G an irreducible affine 
algebraic F -group, H an irreducible unipotent algebraic subgroup of G such 
that G/H is affine. There is a variety morphismfrom G/H to G whose composite 
with the canonical map nfrom G to G/H is the identity map on G/H. 

PROOF. Using the result of Proposition 3.1 and the translation action of G 
on G/H in the evident way, we obtain a covering of G/H by a finite family 
of non-empty open sets Ui' with associated morphisms Pi to G, as described 
in Proposition 3.1. Then, for every element u of Ui n Ui , we have 

p/{u)-lpl..u)eH. 

We shall prove by induction on the dimension of H that the Pi'S can be so 
modified that they fit together to make up a morphism (1 from G/H to G 
such that no u is the identity map on G/H. 

First, suppose that H is I-dimensional. Then, by Corollary VI.5.5, H is 
identifiable with the additive group of F. By refining the above covering 
of G/H, we arrange that each Ui is a principal open set (G/H)", where qi is 
a non-zero element of i¥(G/H). If t is our isomorphism from H to F, then 
the function on Ui n Ui whose value at each point u is t(p/{U)-lpi(U» is an 
elementfi} of ~(Ui n Ui) = ~G/H)[l/(qiqj)]' There is a positive integer e 
such that, for each index pair (i,}), we have qffije~(Ui)' Since the Ui'S 
cover G/H, the q,'s have no common zero in G/H. This implies that there 
are elements ri in ~(G/H) such that Li riqf = 1. Now define the element 
g} of ~(Uj) by 

Let "Ii denote the morphism from Uj to H given by to "Ii = gi' and define 
the morphism ui from Ui to G by uJ<u) = piu)"I/{u). Identifying H with F 
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by means of t and writing out O'tU)-lO'i(U) additively, one sees that the 
restrictions to Ui n Uj of 0', and O'j coincide. Thus, the O'/s fit together to 
make up the required morphism 0' from G/H to G. 

Now suppose that the dimension of H is greater than 1, and that the 
existence of a 0' has been established in the lower cases. There is an irreduc­
ible normal algebraic subgroup Q of H such that H/Q is of dimension 1. 
Let the Ui'S and p/s be as above, let" denote the canonical map from G 
to G/Q, and put 't'i = "0 Pi. Now observe that, with u in Ui n UJ, the element 
PJ{U)-l Pi(U)Q of H/Q depends only on 't'J{u) and 't'i(U), and that the map 
sending each u in Ui n Uj onto this element is a morphism from Ui n UJ to 
G/Q. Clearly, the above proof of the existence of 0' in the case of a I-dimen­
sional H extends without change to the present situation and yields the 
existence of a morphism 't' from G/H to G/Q whose composite with the 
canonical morphism from G/Q to G/H is the identity map on G/H. The 
existence of 't' shows that the variety G/Q is isomorphic with the direct 
product of the varieties G/H and H/Q, so that the variety G/Q is affine. 
Therefore, we can apply our inductive hypothesis to the pair (G, Q) and 
conclude that there is a morphism y from G/Q to G such that" 0 y is the 
identity map on G/Q. Clearly, the morphism yo 't' from G/H to G satisfies 
our requirement. 0 

Theorem 4.1 can be applied to the structure theory of unipotent groups. 
In particular, it yields the following result. 

Theorem 4.2. Let H be an irreducible unipotent algebraic group over an 
algebraically closed field F. Then rJI(H) = F[t" .. . , tn], where the t;'s are 
algebraically independent over F, and b(ti) - ti ® 1 - 1 ® ti belongs to 
F[t 1, ••• , t i - tJ ® F[t1,···, ti- a for each i> 1 and is 0 for i = 1. 

PROOF. Clearly, the result holds when H is of dimension 1. Therefore, we 
suppose that the dimension of H is greater than 1, and that the theorem has 
been established in the lower cases. There is a I-dimensional irreducible 
central algebraic subgroup Z of H. Let n be the canonical morphism from 
H to H/Z, and let 0' be a morphism of algebraic varieties from H/Z to H 
as obtained in Theorem 4.1, so that no 0' is the identity map on H/Z. Let y 
be the variety morphism from H to Z given by y(x) = xO'(n(x»-l. Then 
we have x = y(x)u(n(x», whence we see that the multiplication map is an 
isomorphism of F-algebras from (rJI(Z) 0 y) ® (rJI(H/Z) 0 n) to rJI(H). We 
know that the transpose of n is an isomorphism of Hopf algebras from 
rJI(H/Z) to rJl(H)z. 

By inductive hypothesis, rJl(H/Z) = F[t" . .. , tn- a, where the ti'S are as 
described in the theorem. We regard them as elements of rJI(H)Z by identify­
ing them with the ti 0 n's. On the other hand, we have rJI(Z) = F[t], where t 
is a group homomorphism from Z to F. Put tn = toy. Then it is clear from 
the above that rJI(H) = F[t1, ••• , tn], that the t;'s are algebraically indepen­
dent over F and that, for i < n, the b(ti)'S are as required by the theorem. 
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In order to analyze b(tn), consider two elements x and y of H. We have 

tn(x) + tn(y) = t(xa(1t(x)}- 1 ya(1t(y)}-l) 

= t(xya(1t(y»-la(1t(x»-l) 

= tn(xy} + t(a(1t(x}1t(y»a(1t(y»-la(1t(x»-l}. 

The second summand on the right is clearly of the formf(1t(x}, 1t(y», where 
fis a polynomial function on (HIZ) x (HIZ). Hence, it is clear that b(tn} is 
as required. 0 

Notes 

1. Proposition 3.1 is a specialized adaptation of a basic cross-section 
result on orbit varieties of solvable groups due to M. Rosenlicht [12]. 

2. Essentially, the material of Section 4 is due to J-P. Serre, who analyzed 
the structure of commutative unipotent groups with a group extension 
technique based on Theorem 4.1. See Chapter VII of [14] for this. 

3. Let F be an algebraically closed field, G an irreducible solvable algebraic 
F -group, H an irreducible algebraic subgroup of G. Recall that, by Theorem 
XII.4.3, the variety GIH is affine. Using the reduction to the case where G 
is unipotent that is made in the proof of that theorem, one can apply Theorem 
4.1 and show that there is a variety morphismfrom GIH to G whose composite 
with the canonical morphismfrom G to GIH is the identity map on GIH. 



Chapter XV 

Algebraic Automorphism Groups 

For an algebraic group G, let "IJf(G) denote the group of all algebraic group 
automorphisms of G. In this chapter, we examine the possibility of endowing 
"IJf(G) with the structure of an algebraic group in such a way that G becomes 
a strict "'/Y( G)-variety. The example of a toroid of dimension greater than 1 
shows that this is not always possible. However, good questions remain 
concerning suitable subgroups of "IJf(G) or suitably restricted groups G. 

Section 1 gives a general description of the appropriate algebraic group 
structures for the "algebraic" subgroups of "IJf(G). Section 2 deals with the 
passage from "IJf(G) to "IJf(H), where H is an algebraic subgroup of G, and 
with the passage to "IJf(G/H) in the case where H is normal in G. Also, it 
contains the general results concerning the canonical map from "IJf(G) to 
the group of Lie algebra automorphisms of 'p(G). 

The principal results are developed in Sections 3 and 4. They depend 
on the assumption that the base field is algebraically closed and of charac­
teristic o. In particular, Theorem 4.3 characterizes the groups G for which 
"IJf(G) is an algebraic group in the appropriate way. 

1. Let F be a field, G an affine algebraic F-group, "IJf(G) the group of all 
affine algebraic group automorphisms of G. Let K be a subgroup of "IJf(G), 
and suppose that K has been endowed with the structure of an affine algebraic 
F -group such that G is a strict K -variety, i.e., such that the map from K x G 
to G that sends each (ex, x) onto ex(x) is a morphism of varieties. Then, for 
every element f of [J'(G), the F-valued function on K x G sending each 
(ex, x) onto f(ex(x» is an element of [J'(K) ® ~(G). This means that there are 
elements gl, ... , gn of [J'(G) and elements hi' ... ' hn of ~(K) such that 

n 

f 0 ex = L hi(ex)gj, 
i= I 

210 



XV.I 211 

for every element a of K. This shows that a necessary condition for the 
existence of an affine algebraic group structure on K for which G becomes a 
strict K-variety is that 9"(G) be locally finite as a right K-module. Moreover, 
the above shows that, for every element f of ~(G) and every linear function 
or on 9P( G), the function or/ f on K that is defined by 

(or/ f)(a) = or{f ° IX), 

must then belong to 9P(K). We say that a subgroup K of ;r(G) is an algebraic 
automorphism group of G if 9P(G) is locally finite as a right K-module, and K 
is endowed with the structure of an affine algebraic F -group such that 
9P(K) coincides with the smallest sub Hopf algebra of 9lF(K) containing all 
these functioJ]s or/ f 

Let L be any subgroup of ;r(G) with the property that 9P(G) is locally 
finite as a right L-module. Clearly, the functions on L of the form or/ f as 
above are then representative functions on L. Let 9lG(L) denote the smallest 
Hopf algebra of representative functions on L that contains all these func­
tions or/ f We show that 9lG(L) is finitely generated as an F -algebra. 

Evidently, there is a finite-dimensional L-stable sub F-space S of rJ'{G) 
that generates 9P(G) as an F-algebra. Let T denote the sub F-space of 9f.G(L) 
spanned by the functions or/ f with f in S and or in .1'(G)o. If (g., ... , gIl) 
is an F -basis for the space spanned by the transforms f ° a with a in L, and if 

" f 0 IX = L h/(IX)gjo 
i= I 

then the space of functions or/ f, with or ranging over 9P(Gt, is the space 
spanned by the functions hi'" ., h". This shows that the space T is finite­
dimensional. One verifies directly that T is stable under the right and left 
translation actions of Lon 9lG(L). 

Now let f and g be elements of 9P(G), and let or be an element of 9P(G)o. 
The restriction of or to the L-orbit (fg) ° L is an F-Iinear combination of 
evaluations at the elements of G. Since these evaluations are F-algebra 
homomorphisms, it follows that or/{fg) is contained in the F -algebra generated 
by the functions p/fand u/g, where p and u range over 9P(Gt. This shows 
that the sub algebra of 9lG(L) that is generated by the elements of T contains 
every function or/ fwithfin 9P(G) and or in 9P(G)o. Since T is stable under the 
translation actions of L, it follows that 9lG(L) is generated by the elements 
of T and ,,(T), where " is the antipode of 9lG(L). Thus, 9f.G(L) is finitely 
generated as an F -algebra. 

Theorem 1.1. Let G be an algebraic group over the field F, and let K be a 
subgroup of ;r(G) such that 9P(G) is locally finite as a right K-module. Then 
~(91G(K» may be identified with a subgroup of 1Y(G) so as to become an 
algebraic automorphism group of G whose algebra of polynomial functions is 
9lG(K). As such, it coincides with the intersection of the family of all algebraic 
automorphism groups of G that contain K. 
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PROOF. Let (I be an element of ~(91G(K», and let x be an element of G. 
Regarding x as an element of ~(G)O, we consider the values a(xl f), where 
I ranges over ~(G). Define the F-valued function (1% on ~(G) by setting 
(I%(f) = a(xlf). Using that x and (I are F-algebra homomorphisms, we see 
immediately that (1% is an F-algebra homomorphism, i.e., that (1% belongs to 
G. 

Let ~ denote the comultiplication of ~(G), let I be an element of ~(G), 
and write 

n 

~(f) = L III ® 12i· 
1=1 

Then, for every element (X of K and all elements x and y of G, we have 

«xy)II)(a.) = (xy)(f 0 (X) = 1«(X(x)(X(y» 
n 

= L lli(~x»f2i«(X(y»' 
i=l 

which shows that 
n 

(xy)1 I = L (xllli)(Y1 12J 
1= 1 

This gives 
n 

(I%,(f) = L (I%(fli)(I,(/21)· 
i= 1 

Hence, we have 

(1%, = «(1% ® (I.,) 0 ~ = (1%(1,. 

Thus, the map sending each element x of G onto (1% is a group homomorphism 
(1*: G -+ G. 

For a fixed element f of ~(G), the functions xl fwith x in G all lie in some 
finite-dimensional sub F-space of ~G(K). In fact, if 

n 

f 0 (X = L hi(a.)gj, 
j=1 

then we have 
n 

xl! = Lgj(x)hi· 
1=1 

Therefore, the restriction of (I to the set of these functions xl f coincides with 
a finite F -linear combination of evaluations at elements of K, i.e., there are 
elements Cl' •••• Cn of F and elements (Xl' ••• ' (Xn of K such that 

n 

(I(xl f) = L cjx(1 0 a.,) 
j= 1 

for every element x of G. This means that 
n 

1 0 (1* = Lcd 0 a.i . 
j= 1 
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In particular, this shows thatf 0 0'* belongs to .o/'(G), so that 0'* is a morphism 
of affine algebraic groups from G to G. 

Next, we observe that if the element 0' of ~((JtG(K» is the canonical 
image of an element IX of K we have 0'* = a. Indeed, for every fin &(G) and 
every x in G, we have 

f(O'*(x» = O'(x/ f) = (x/ f)(a) = f(a(x». 

Now let y denote the comultiplication of (JtG(K), let 0' and r be elements 
of ~((JtG(K», and let h be an element of (JtG(K). Writing i for the identity 
map on (JtG(K), we have 

(O'r)(h) = r«O' ® i)(y(h»). 

If 0' is the canonical image, IX' say, of an element a of K then (0' ® i)(y(h» is 
simply the translate h . IX, and the above reads 

(a'r)(h) = r(h· IX). 

On the other hand, 

(a'r)(h) = a'((i ® r)(y(h») = (i ® r)(y(h»(IX). 

Thus, we have 

(i ® r)(y(h»(IX) = r(h· a). 

In particular, for h = x/ f, this gives 

(i ® r)(y(x/f)(IX) = r(x/U 0 a» = U 0 lX)(r*(x» = (r*(x)/f)(IX). 

Hence, we have 

(i ® r)(y(x/ f) = r*(x)/ f. 

Applying an arbitrary element 0' of ~({JtG(K» to this last equality, we obtain 

(0' ® r)(y(x/ f) = f(O'*(r*(x»). 

The expression on the left is equal to f«O'r)*(x». Lettingfrange over &(G), 
we conclude from this that (O'r)*(x) coincides with O'*(r*(x». Since this 
holds for every element x of G, we have (O'r)* = 0'* 0 r*. 

Clearly, if e is the neutral element of ~((JtG(K» then e* is the identity 
map on G. Therefore, the last result above shows that every 0'* is in fact an 
element of 1r(G), its inverse being (0'-1 )*. The map sending each 0' onto 0'* 
is therefore a group homomorphism from ~((JtG(K» to 1r(G). Evidently, 
this homomorphism is injective, and we use it for identifying ~((JtG(K» 
with a subgroup of 1r(G). This subgroup contains K, because (a')* = IX for 
every element a of K. 

Now it is clear that, by the above identification, ~({JtG(K» is an algebraic 
group of automorphisms of G, that K is dense in ~({JtG(K», and that the 
restriction map is an isomorphism of Hopf algebras from &(~({JtG(K») to 
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9lG(K). Finally, if L is any algebraic group of automorphisms of G con­
taining K, then the restriction map from 9lG(L) to 9lG(K) is evidently sur­
jective and transposes to an injective morphism of algebraic groups from 
~(91G(K» to ~(91G(L» = L. In 1I'"(G), this becomes the statement that 
~(91G(K» is contained in L. 0 

2. Proposidon 2.1. Let G be an algebraic group over an algebraically closed 
field, and let K be an algebraic automorphism group of G. Suppose that H is a 
K-stable algebraic subgroup of G. Then the image KH of K in 1I'"(H) is an 
algebraic group of automorphisms of H, and the canonical map K -+ KH is a 
morphism of algebraic groups. If H is normal in G then the same facts hold for 
G/H in the place of H. 

PROOF. Let '[' denote the canonical map from K to K H , and let p denote the 
restriction map from fJ(G) to fJ(H). Evidently, for fin fJ(G) and (X in K, we 
have p(f 0 (X) = p(f) 0 '['«(X). This shows that fJ(H) is locally finite as a right 
KH-module, and also that '[' is a morphism of algebraic groups from K to 
~(91H(KH»' Since the base field is algebraically closed, it follows that KH 
is an algebraic subgroup of ~(91H(KH»' whence these two groups coincide. 

Now suppose that H is normal in G, and let (1 denote the canonical map 
from K to the corresponding subgroup KGIH of 1I'"(G/H). The KG1H-module 
structure of fJ(G/H), i.e., of fJ(G)H, when lifted to a K-module structure via (1, 

becomes the restriction to fJ(G)H of the K-module structure of fJ(G). It 
is clear from this that fJ( G/H) is locally finite as a KG1H-module, and that (1 

is a morphism of algebraic groups from K to ~(91GIH(KGIH»' This yields the 
second part of the proposition in the same way by which we obtained the 
first part. 0 

Proposidon 2.2. Let G and K be as in Proposition 2.1. Suppose that L is 
another algebraic automorphism group of G that is normalized by K. Then 
LK is an algebraic automorphism group of G. 

PROOF. It is easy to see that fJ(G) is locally finite as a right LK-module. 
Evidently, the restriction maps from 9lG(LK) to 9lG(L) and 9lG(K) are 
surjective morphisms of Hopf algebras. Their transposes are injective 
morphisms of affine algebraic groups from Land K to ~(91G(LK». Since 
the base field is algebraically closed, Land K thus become algebraic sub­
groups of ~(91G(LK», and it follows that LK is an algebraic subgroup 
of ~(91G(LK». Therefore, LK coincides with ~(91G(LK». 0 

Proposidon 2.3. Let F be afield, G an affine algebraic F-group, K an algebraic 
automorphism group of G. Then the restriction to K of the canonical group 
homomorphism from 11'"( G) to the affine algebraic group of all Lie algebra 
automorphisms of !l'(G) is a morphism of affine algebraic F-groups. 
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PROOF. For every element « of 1Y(G), let IX' denote the corresponding Lie 
algebra automorphism of !R( G). Then the transform by IX' of an element l' 
of !R(G) is given by 

«'(1')(f) = 1'(f a IX) 

for every element f of fJ'(G). Let r denote the element of !R(Gt given by 
r(1') = 1'(f). Accordingly, we denote by r/1' the element of Endp(!R(Gno 
defined by 

(r/1')(e) = r(e(1'» = e(1')(f). 

The algebra of polynomial functions of the group of all Lie algebra 
automorphisms of !R(G) is generated by the restrictions of the elements of 
Endp(!R(Gno and their antipodes. Since Endp(!R(GW is spanned over F 
by the functions r /1', it suffices to show that, for each of these, the function 
on K sending each« onto (r/1')(<<') belongs to fJ'(K), i.e., to atG(K). A direct 
check shows that this function is simply the element 1'/ f of atG(K). 0 

3. For an algebraic group H, the irreducible component of the neutral 
element in the center of H will be denoted by ~ 1 (H). 

1beorem 3.1. Let F be an algebraically closed field of characteristic 0, and let 
G be an affine algebraic F-group. Let K be a subgroup of 1Y(G). Then fJ'(G) 
is locally finite as a right K-module if and only if the canonical image of K 
in 1Y(~ 1 (G1/G,,» is finite. 

PROOF. First, we reduce the theorem to the case where G is irreducible. 
Let K' denote the canonical image of K in 1Y(G1). If fJ'(G) is locally finite 
as a K-module, then it is clear that fJ'{G 1) is locally finite as a K'-module. 
Therefore, if the theorem holds for G1, it follows that the image of K' in 
1Y(~l(Gl/G,J) is finite. But this coincides with the image of K. 

Conversely, suppose that the canonical image of K in 1Y(~l(Gl/Gu» is 
finite. If the theorem holds for G1, it follows that fJ'(G 1) is locally finite as a 
K'-module. Choose representatives Xl' ••• ,X" in G for the elements of G/G1• 

For every element f of fJ'( G), let Ji denote the restriction of Xi . f to G 1. In 
this way, we obtain an injective F-linear map from fJ'(G) to the direct sum 
of n copies of fJ'(G 1), sending each f onto (flo ... , I.). If « is any element 
ofK, we have 

(f 0 «)i = (XI· (f a «»Gt = (<«Xi)· f) a «)Gt = (<«Xi)· f)Gt 0 IX', 

where IX' is the image of« in K'. Using that fJ'(G) is locally finite as a G-module 
and ;1'(G1) is locally finite as a right K'-module, we see directly from this 
that all the functions (f a «)jo with i and f fixed and « ranging over K, lie in 
some finite-dimensional space of functions. It follows that the same is true 
for the functions f a IX, so that fJ'{G) is locally finite as a right K-module. 

Now we assume that G is irreducible, and that fJ'(G) is locally finite as a 
right K-module. It is clear from Proposition 2.1 that, consequently, 
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f/(fl1(G/Gu» is locally finite with respect to the action of the canonical 
image of Kin "!Y(fl1(G/Gu». The group fl1(G/Gu) is a toroid, T say, and we 
have 

f/[T] = F[h1, ... , hm' hi 1, ••• , h; 1], 

where the hi'S are algebraically independent polynomial characters of T. 
For every element IX of "!Y(T), hi 0 IX is again a polynomial character of T, 
so that there are integers ajl such that hi 0 IX is the product of the hjJ"s with 
j = 1, ... , m. If IX ranges over an infinite subset of "!Y(n, the corresponding 
set of exponents ajl is unbounded. This shows that, if the canonical image of 
K in "!Y(T) is not finite, then f/(T) is not locally finite as a module for this 
group. Thus, our assumptions on G and K imply that the canonical image of 
K in "!Y(fl1 (G/Gu» is finite. 

Now suppose that G is irreducible and that the canonical image of K 
in "!Y(fl1(G/GJ) is finite. We must show that then f/(G) is locally finite as a 
right K-module. Let G' denote the group of inner automorphisms of G. 
Since the canonical image of G'K in "!Y(fl1(G/Gu» coincides with that of K, 
we may replace K with G'K. Therefore, we now suppose that K contains G'. 
We may write G = Gu ><I P, where P is linearly reductive. Let L denote the 
stabilizer of P in K. Since the maximal linearly reductive subgroups of G 
are conjugate under G', we have G'L = K. 

Put T = fl1 (P), and let Z denote the element-wise fixer of T in L. Suppose 
that I' is an element of L whose canonical image in "!Y(fl1(G/Gu» is trivial. 
Then we have l'(t)Gu = tGu for every element t of T. This gives 

t-1y(t) E Gu n T = (1), 

so that I' E Z. Since the canonical image of L in "!Y(fl1(G/Gu» is finite, this 
shows that Z is of finite index in L. Hence, G'Z is of finite index in G'L = K. 
Evidently, G'Z is normal in K. Therefore, it suffices to show that f/(G) is 
locally finite as a G'Z-module. Since, in any case, f/(G) is locally finite as a 
G'-module, this simply means showing that f/(G) is locally finite as a Z­
module. 

The algebra f/(G) is the tensor product f/(Gt ® f/(G)Gu • Evidently, 
f/(G)Gu is stable under the action of "!Y(G). Since Z stabilizes P, the tensor 
factor f/(Gt is stable under the action of Z. Now it suffices to prove that each 
of f/(Gt and f/(G)Gu is locally finite as a right Z-module. 

First, we deal with f/(Gt. By the restriction map, this is isomorphic 
with f/(Gu), and it is clear that the restriction map is a morphism of right 
Z-modules. Therefore, what we wish to show here is an immediate conse­
quence of the general fact that if U is a unipotent affine algebraic group over a 
field of characteristic 0 then f/(U) is locally finite as a right "!Y(U)-module. 

In order to see this, recall from Theorem VIII.l.1 that the exponential 
map is a variety isomorphism from JR(U) to U. In proving this theorem, 
we showed that if p is any polynomial representation of U then 

po exp = exp 0 p', 
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where p' is the extended differential of p. This shows that the transpose of 
the exponential map is an isomorphism of right 1r(U)-modules from &'(U) 
to 9(!l'(U». Since 1r(U) acts by linear automorphisms on !l'(U), and since 
&'(!l'(U» is the symmetric algebra built over !l'(U)O, it is clear that 9(!l'(U» 
is locally finite as a 1r(U)-module, so that the same holds for 9(U). 

It remains to be shown only that 9(G)Gu is locally finite as a Z-module. 
We identify 9(G)Gu with 9(P), noting that this identification is compatible 
with the actions of Z. It follows from Theorems IV.2.2, VII.3.2 and VII.1.2 
that P = T[P, P], and that !l'([P, P]) is semisimple. The surjective multi­
plication map from T x [P, P] to P transposes to an injective F-algebra 
and Z-module homomorphism from 9(P) to 9(T) ® 9([P, P]). By defini­
tion, Z leaves the elements of 9(T) fixed, and it clearly stabilizes &,([P, P]). 
Therefore, it suffices to prove that if S is an irreducible affine algebraic group 
over an algebraically closed field of characteristic ° such that 2(S) is semi­
simple then 1r(S)/S' is finite. 

In order to see this, consider the canonical image of S' in the group of all 
Lie algebra automorphisms of !l'(S), which we denote by 1r(!l'(S». This is 
the image of S under the adjoint representation, and therefore is an algebraic 
subgroup of 1r(!l'(S». By Theorem IV.4.1, its Lie algebra is the Lie algebra 
of all inner derivations of !l'(S). Since S is semisimple, we know from Pro­
position VII.2.6 that this coincides with the Lie algebra of all derivations 
of !l'(S), i.e., with the Lie algebra of 1r(!l'(S». Therefore, the image of S' 
coincides with the irreducible component ofthe neutral element in 1r(!l'(S», 
and so is of finite index in 1r(!l'(S». Since the base field is of characteristic 
0, it follows from Corollary IV.3.2 that the canonical map from 1r(S) to 
1r(!l'(S» is injective. Hence, we conclude that 1r(S)/S' is finite. 0 

4. Deorem 4.1. Let F be an algebraically closed field of characteristic 0, 
and let G be an affine algebraic F -group. Let Q be the kernel of the canonical 
homomorphism from 1r(G) to 1r('lil(GdG.». Then Q is an algebraic auto­
morphism group of G, and every irreducible algebraic group of automorphisms 
of G is an algebraic subgroup of Q. 

PROOF. By Theorem 3.1, 9(G) is locally finite as a right Q-module. Consider 
the algebraic automorphism group ~(a1G(Q» of G. We can apply Proposition 
2.1 three times in succession and conclude that the canonical map is a mor­
phism of algebraic groups from ~(91G(Q» onto an algebraic group of auto­
morphisms of 'li1(GdGJ. Since Q is the kernel of this morphism, it is an 
algebraic subgroup of ~(a1G(Q», and therefore coincides with it. 

Now let R be any irreducible algebraic automorphism group of G. Again, 
the canonical map is a morphism of algebraic groups from R onto an alge­
braic group of automorphisms, S say, of 'Ii 1 (G 1/G.). Since R is irreducible, 
so is S. On the other hand, we know from Theorem 3.1 that S is finite. There­
fore, S is trivial, which means that R is contained in Q. Since a1G(R) is the 
restriction image of a1G( Q), it is clear that R is an algebraic subgroup of Q. 0 
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TheoreID 4.2. Let F be an algebraically closed field of characteristic 0, and let 
G be an irreducible ~lJine algebraic F -group. A subgroup qf 1f"( G) is an alge­
braic group of automorphisms.qf G if' and only if its canonical image in 1f"(~( G» 
is an algebraic subgroup of1f"(~(G». 

PROOF. It is clear from Proposition 2.3 that the condition of the theorem is 
necessary. In order to prove the sufficiency, let K be a subgroup of 1f"(G) 
whose image in 1f'(~(G» is an algebraic subgroup of 1f"(~(G». First, we 
show that the canonical image, Q say, of K in 1f"(~1(GIG.» is finite. Let us 
write T for ~1(GIG.). The stabilizer of ~(G.) in 1f"(~(G» is evidently an 
algebraic subgroup of 1f"(~(G» containing the canonical image of K as an 
algebraic subgroup. The canonical map from this stabilizer to 1f"(~(T» is 
clearly a morphism of affine algebraic groups. It follows that the canonical 
image of Q in 1f"(~(T» is an algebraic subgroup of 1f"(~(T». Hence we 
shall know that Q is finite as soon as we have proved that if H is any algebraic 
subgroup of1f"(~(T» that lies in the image of1f"(T) then H isfinite. 

From our discussion of T in the proof of Theorem 3.1, we see that there 
is an F -basis of ~(T) with respect to which the image of 1f"(T) appears as 
the group of all integral matrices of determinant 1 or -1. Let gl} be the 
polynomial function on H 1 such that, for every element IX of H l' giJ<lX) is the 
(i, j)-entry of the matrix representing IX. If H 1 is non-trivial, then at least 
one of these gij's is non-constant, and hence is transcendental over F. Let u 
be such a gij' By Theorem 11.3.3, there is a non-zero polynomial p(u) in 
F[u] such that every F-algebra homomorphism F[u] -+ F not annihilating 
p(u) extends to an F-algebra homomorphism f1J(H1) -+ F, i.e., is the evalua­
tion at some element of H l' Clearly, this contradicts the fact that u takes 
only integer values. Thus, H 1 must be trivial, so that H is finite. 

Our conclusion is that the canonical image of K in 1f"(~1(GIG.» is 
finite. By Theorem 3.1, f1J(G) is therefore locally finite as a right K-module, 
so that we have the algebraic automorphism group f6(BlG(K». By Proposi­
tion 2.3, the canonical homomorphism from this group to 1f"(~(G» is a 
morphism of affine algebraic groups, and we know that this morphism is 
injective (cf. the end of Section 3). Now K is the inverse image in f6(BlG(K» 
of an algebraic subgroup of the image of f6(BlG(K» in 1f"(~(G». Hence, K 
is an algebraic subgroup of f6(BlG(K» and therefore coincides with it. 0 

1beorem 4.3. Let F be an algebraically closed field of characteristic 0, and let G 
be an irreducible affine algebraic F-group. Then 1f"(G) is an algebraic auto­
morphism group of G if and only if one of the following two conditions is 
satisfied: (1) <l1(G) is unipotent; (2) the dimension of the center of GIG. is 
at most 1. 

PROOF. Clearly, (2) implies that 1f"(~1(GIGJ) is finite. By Theorem 3.1, 
this implies that f1J(G) is locally finite as a 1f"(G)-module, which evidently 
implies that 1f"( G) is an algebraic automorphism group of G. Thus, condition 
(2) is sufficient. 
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In order to establish the sufficiency of condition (1), let us write, as in the 
proof of Theorem 3.1, G = G u Xl P, and T = C6 I (P). Let L be the stabilizer 
of Pin "/r(G). Then G'L = "/r(G), so that the canonical image of "/r(G) in 
"/r(C6I (GIGu» coincides with that of L. In view of Theorem 3.1, it suffices 
therefore to prove that the canonical image of L in "/r(C6 1 (GIGu» is finite, 
whenever (1) is satisfied. For this, it clearly suffices to show that the image of 
Lin "/r(T) is finite. 

Consider the adjoint representation of T on .!e(Gu). Since T is a toroid, 
we can decompose .!e(Gu) into a direct sum V" + ... + Vin of sub T­
modules, where the j;'s are mutually distinct morphisms T -+ F*, and 
t· v = .t;(t)v for every element t of T and every element v of VI;' If a. is an 
element of L, and a.T is its restriction image in "/r(T) then the automor­
phism of .!e(Gu) corresponding to a. maps each VI; onto some VIi' where 
jj = j; 0 a.i 1. In this way, we obtain a homomorphism b from L to the 
finite group of permutations of the set (fh ... , f,.). Now let a. be an element 
of the kernel of (). Then the adjoint action of a.(t)C 1 on !l'(GIl) is trivial for 
every element t of T. Hence each a.(t)t- l centralizes Gil' and therefore lies 
in the center of G. Let u be the map from T to the center of G defined by 
u(t) = a.(t)t- l • Clearly, u is a morphism of affine algebraic groups, whence 
u(T) is an irreducible algebraic subgroup of the center of G, so that 

u(T) c C6 1(G). 

Since T is linearly reductive, while C6 1(G) is unipotent (condition (1», it 
follows that u is the trivial map, which means that a. leaves the elements of T 
fixed. Thus, () induces an isomorphism from the image of L in "/r(T) to a 
finite group, so that the image of L in "/r(T) is finite. Our conclusion is that 
condition (1) is sufficient. 

It remains to be shown that if neither (1) nor (2) is satisfied then "/r(G) 
is not an algebraic automorphism group of G. By Theorem V.S.3, every 
subtoroid of a toroid is a direct factor. Hence we may write T = To X T1, 
where To is the irreducible component of the neutral element in the inter­
section of T with the center of G, and TI is a complementary subtoroid. First, 
we consider the case where the dimension of To is greater than 1. Recall that 
P = TS, where S = [P, P]. Hence G = (Gil T1S)To. The factor Gil TIS is an 
algebraic subgroup of G, and its intersection with To is finite. Therefore, as is 
easy to see, there are infinitely many elements of "/r(To) that leave the 
elements of (Gu TIS) n To fixed. Clearly, each of these extends to yield an 
element of "/r(G) leaving the elements of Gu TIS fixed. By Theorem 3.1, 
"/r(G) can therefore not be an algebraic automorphism group of G, in this 
case. 

Now suppose the dimension of To is not greater than 1. If To were trivial, 
condition (1) of our theorem would be satisfied. Thus, we are left with the 
case where To is of dimension 1. Since condition (2) is not satisfied, the 
toroid Tl is non-trivial, in this case. Therefore, there are infinitely many 
morphisms {J of affine algebraic groups from TI to To whose kernels contain 
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the finite group (Gy ToS) n T1• For each such p, we have an element p* of 
"IY(G) such that p* leaves the elements of Gy ToS fixed, while p*(t) = tp(t) 
for every element t of T1• Again by Theorem 3.1, "IY( G) is therefore not an 
algebraic automorphism group of G. 0 

Notes 

1. Evidently, Theorem 4.1 implies that if Rand S are irreducible algebraic 
automorphism groups of G then so is the group generated by Rand S in 
"IY(G). The following example shows that this fails in non-zero charac­
teristic. 

Let F be an algebraically closed field of non-zero characteristic p, and let 
G be the 2-dimensional algebraic vector F-group, so that 9'(G) is the poly­
nomial algebra F[x, y], where x and yare the usual coordinate functions 
on G. For every element a of F, define the automorphisms Pa and (1a of G by 

paCu, v) = (u, v + auP), (1a(u, v) = (u + avP, v). 

Clearly, the Pa's constitute an algebraic automorphism group R of G, and 
the (1a'S constitute an algebraic automorphism group S of G, each of Rand S 
being isomorphic, as algebraic group, with the additive group of F. Let y 
denote the automorphism P1 a (11 of G. Then we have 

x a y = X + yP, 

which shows that 9'(G) is not locally finite as a module for the group gener­
ated by Rand S. 

2. In the situation of Theorem 4.1, if Rand S are algebraic automorphism 
groups of G, and if R is irreducible, it follows from Theorem 3.l that 9'(G) 
is locally finite as a right module for the subgroup of "IY(G) that is generated 
by Rand S. The following example shows that this can fail if neither R nor S 
is irreducible. 

Let G be the 2-dimensional F-toroid. Then "IY(G) is isomorphic with the 
multiplicative group of the 2 by 2 integer matrices of determinant 1 or -1, 
as is seen from the proof of Theorem 3.1. Let (1 be the automorphism corre-

sponding to the matrix (-~ -~), and let r be the automorphism corre­

sponding to the transpose of this matrix. Then each of (1 and r is of order 3, 
while r a (1 has infinite order. 

3. The automorphism groups of affine algebraic groups over fields of 
characteristic 0 are analyzed by A. Borel and J-P. Serre in [2]. 



Chapter XVI 

The Universal Enveloping Algebra 

The universal enveloping algebra of a Lie algebra is the analogue of the 
usual group algebra of a group. It has the analogous function of exhibiting 
the category of Lie algebra modules as a category of modules for an asso­
ciative algebra. This becomes more than an analogy when the universal 
enveloping algebra is viewed with its full Hopf algebra structure. By dual­
ization, one obtains a commutative Hopf algebra which, in the case where 
the Lie algebra is that of an irreducible algebraic group over a field of charac­
teristic 0, contains the algebra of polynomial functions of that group as a 
sub Hopf algebra in a natural fashion. This theme is developed in Section 3. 

Section 1 is devoted to the Poincare-Birkhoff-Witt Theorem, which is 
needed in Section 2 for establishing the Campbell-Hausdorff formula. 
This formula concerns the formal exponential map and is decisive in many 
applications of Lie algebra theory to algebraic groups or Lie groups. Section 
4 is devoted to our principal application of the Campbell-Hausdorff formula 
in perfecting the theory of unipotent algebraic groups over fields of charac­
teristic 0 by reducing it completely to that of nilpotent Lie algebras. 

1. Let L be a Lie algebra over a field F. If A is an associative F-algebra, 
we may consider the Lie algebra ~(A), whose underlying F-space is A and 
whose Lie composition is defined by [u, v] = uv - vu. By a Lie homo­
morphism from L to A, we shall mean a homomorphism of Lie algebras 
fromLto~(A). 

Let ®(L) denote the tensor F -algebra built over L, and let J(L) denote 
the two-sided ideal of ®(L) that is generated by the elements of the form 
a ® b - b ® a - [a, b], with a and b ranging over L. The associative 
F-algebra ®(L)/J(L) is called the universal enveloping algebra of L, and we 
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denote it by t:¥I(L). The canonical injection from L to ®(L) yields the canon­
ical map y: L -+ f//(L), which is a Lie homomorphism by virtue of the defi­
nition of J(L). It is easy to see that the pair (t:¥I(L), y) is characterized up to 
isomorphisms by the following universal mapping property. For every Lie 
homomorphism oc from L to an associative algebra A, there is one and only 
one homomorphism oc* of associative algebras from t:¥I(L) to A such that 
oc* 0 y = oc. 

The following Poincare-Birkhoff-Witt Theorem says that the canonical 
map from ®(L) to t:¥I(L) is as non-degenerate as one could wish. 

Theorem 1.1. Let L be a Lie algebra over a field F, and let X be a totally 
ordered F -basis of L. Let SeX) denote the set of all finite non-decreasing 
sequences of elements of X. For (Xl> ••. , x,.) in SeX), put 

Y(Xb .. . , x,,) = Y(XI)·· . y(x,,) 

and y(0) = 1. Then y is a bijection from seX) to an F -basis oft:¥l(L). 

PROOF. An evident "straightening" procedure, based on the relations 

y(X)y(y) = y(y)y(x) + y([x, y]) 

for all elements x and y of L, shows inductively that the set y(S(X» spans 
t:¥I(L) over F. Therefore, it suffices to show that y maps SeX) injectively onto a 
linearly independent subset of t:¥I(L). This will be clear once we have proved 
the following fact. There is an F-linear map (/ from ®(L) to the symmetric 
algebra fJ'(L) built over L satisfying the following conditions. 

(1) (/(1) = 1; 
(2) i/(Xl' .•• , x,,) belongs to SeX) then 

a(XI ® ... ® XII) = Xl ••• X,,; 

(3) (/ annihilates J(L). 

Let Bo(X) = (1) and, for n > 0, let B,,(X) be the subset of ®(L) consisting 
of the elements Xl ® ... ® X,,, with each Xi in X. Clearly, B,,(X) is an F-basis 
of ®"(L). Let B(X) denote the union of the family of B,,(X)'s. For each 
element u = Xl ® ... ® X" of B,,(X), define the disorder D(u) as the number 
of index pairs (i, j) such that i < j and Xi> XJ. Let ®"(L)q denote the 
subspace of ®,,(L) that is spanned by the elements u of B,.(X) with D(u) ~ q. 

Now observe that J(L) is spanned over F by the elements of the form 

u ® X ® y ® v - u ® y ® X ® v - u ® [x, y] ® v, 

where u and v are elements of B(X), and X and y are elements of L. Therefore, 
it suffices to define (/ as an F-linear map satisfying the above conditions (1) 
and (2) and annihilating each of these elements. Condition (1) serves to 
define (/ on ®O(L) = F. Proceeding inductively, suppose that (/ has already 
been defined on L:=o ®"(L), for some r ~ 0, so that (1) and (2), for n :S; r, 
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are satisfied, and such that (1 annihilates J(L) n (B=o ® ft(L». Using (2) 
for n = r + 1, we extend the definition of (1 to the domain 

r 

®r+ 1(L)0 + L ®"(L). 
"=0 

It is easy to see that this does not create a violation of (3). 
Now suppose that (1 has already been defined on ®r+ 1(L)s + L:=o ®"(L), 

with some s ~ 0, in such a way that (1 annihilates the intersection, J(L)r.s 
say, of J(L) with this space and satisfies (2) for all n :5;; r + 1. Let w be an 
element of Br + 1(X) such that D(w) = s + 1. We may write 

w = u®x®y®v, 

where x and y are elements of X such that x > y, and u and v are elements 
of B(X). Evidently, we have D(u ® y ® x ® v) = D(w) - 1, so that 
u ® y ® x ® v belongs ®r+ 1(L)s. Condition (3) demands the equality 

(1(w) = u(u ® y ® x ® v + u ® [x,y] ® v). 

Conversely, if (1 has been defined on ®r+ 1 (L)s + 1 + B=o ®"(L) so that all 
these equalities, for all elements w of Br+ 1(L) with D(w) = s + 1 and all 
possible choices of (x, y), are satisfied then (1 annihilates J(L)r.s+ l' Clearly, 
this extension of the domain of definition of (1 is possible, provided that, 
for each w, the right side of the above equality is the same for every possible 
choice of (x, y). Thus, it suffices to show that if w can also be written 
u' ® x' ® y' ® v' with x' > y' then (1 annihilates the element 

u ® y ® x ® v + u ® [x, y] ® v - u' ® y' ® x' ® v' - u' ® [x', y'] ® v'. 

Ifthe indicated positions in w of the elements x, y, x', y' are all distinct from 
each other, we have (possibly only after exchanging the primed and the 
unprimed labels) 

w = u ® x ® y ® a ® x' ® y' ® b. 

Then the above element is 

u ® y ® x ® a ® x' ® y' ® b + u ® [x, y] ® a ® x' ® y' ® b 

- u ® x ® y ® a ® y' ® x' ® b - u ~ x ® y ® a ® [x', y1 ® b. 

Addition of suitable elements of J(L)r.s has the effect of replacing each 
factor x ® y with y ® x + [x, y], and each factor x' ® y' with 

y' ® x' + [x', y']. 

The resulting sum is O. This shows that the above element belongs to J(L)r." 
so that it is annihilated by (1. 

We are left with the case where x' coincides, literally, with y. Writing z for y', 
we have 

w = u ® x ® y ® z ® b. 
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and x> y > z. We must show that the element 

u ® y ® x ® z ® b + u ® [x,y] ® z ® b 

-u ® x ® z ® y ® b - u ® x ® [y, z] ® b 

is annihilated by (I. Addition of suitable elements of J(L)"s has the effect 
of replacing each factor x ® z with z ® x + [x, z]. Similarly, the resulting 
factors y ® z and x ® y may be replaced with 

z ® y + [y, z], and y ® x + [x, y], 

respectively. Finally, again by adding elements of J(L),.s' we can replace 
the factors [y, z] ® x, y ® [x, z] and [x, y] ® z with 

x ® [y, z] + [[y, z], x] etc. 

After evident cancellations, there remains a sum of three terms, which is 0 by 
virtue of the Jacobi identity. 

This completes the inductive step for extending the domain of definition 
of (I to L~~ ~ ®"(L) by induction on the disorder s. The result is the inductive 
step for the degree r of the main induction. It is clear that the existence of (I 
so established implies the theorem. 0 

Usually, one identifies L with its canonical image y(L) in <fI(L), by means 
of y. Now, there is a Lie homomorphism from L to <fI(L) ® <fI(L) sending 
each element x of L onto the element x ® 1 + 1 ® x of <fI(L) ® <fI(L). 
By the universal mapping property, this defines a morphism of F-algebras, ~ 
say, from <fI(L) to <fI(L) ® <fI(L). Next, note that <fI(L) is the direct F-space 
sum F + L<fI(L). Let e denote the projection <fI(L) -+ F with kernel L<fI(L). 
Making an induction on the formal degree with respect to L of expressions 
for the elements of <fI(L), one verifies easily that ~ and e make <fI(L) into 
a coalgebra. Together with the multiplication, Jl say, from <fI(L) ® <fI(L) 
to <fI(L), this makes <fI(L) into a bialgebra. Finally, it is easy to see that this 
bialgebra has an antipode, " say, which is characterized as an anti endo­
morphism of the F-algebra <fI(L) by ,,(x) = -x for every element x of L. 
Thus, <fI(L) has the structure of a Hopf algebra. The identities relating to ", 
Jl and ~ are established inductively. 

2. Let V be a vector space over a field F, and write T for the tensor algebra 
®(V) built over V. Actually, T has the structure of a Hopf algebra, as follows. 
The counit e is the projection ®(V) -+ ®O(V) = F of the graded structure of 
®(V). The comultiplication ~ is the unique F-algebra homomorphism 
from T to T ® T sending each element t of Tonto t ® 1 + 1 ® t. The 
antipode " is characterized as an anti-endomorphism of the F -algebra T 
by ,,(t) = - t for every element t of T. 

Let L denote the sub Lie algebra of !l'(T) that is generated by V. Now 
suppose that p is a linear map from V to an F-Lie algebra M. Let at denote 
the canonical map from M to <fI(M). By the universal mapping property 
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of T in the category of F -algebras, there is one and only one morphism of 
F-algebras p* from T to o//(M) whose restriction to V is a 0 p. The restriction 
of p* to L is clearly a morphism of F -Lie algebras from L to a(M). By Theorem 
1.1, the map a is injective. If we compose the restriction of p* to L with the 
inverse a(M) -+ M of a, we obtain a morphism (1 of Lie algebras from L 
to M that extends p. Since V generates L as a Lie algebra, there can be at 
most one such (1. The property of L with respect to V we have thus established 
means that L is a model for the free Lie algebra based on V: for every linear 
map p from V to a Lie algebra M, there is one and only one morphism of 
Lie algebras from L to M that extends p. 

Let t be a Lie homomorphism from L to an associative F-algebra A. 
There is one and only one morphism t* of F-algebras from T to A that 
extends the restriction of t to V. Evidently, the restriction of t* to L coincides 
with t. This shows that T has the same universal mapping property with 
respect to L as o//(L). Therefore, T is naturally isomorphic, as a Hopj algebra, 
with o/i(L). We shall make use of this fact after some general preparation. 

Theorem 2.1. Let L be a Lie algebra over a field F oj characteristic O. Then 
the space ojprimitive elements ofO//(L) coincides with L. 

PROOF. Choose a totally ordered F-basis (x~) for L. By Theorem 1.1, the 
element 1 of F and the ordered monomials x:: ... x:~, where the e;'s are 
strictly positive integers, and X~1 < ... < x~n' constitute an F-basis ofo//(L). 
We have 

where I is the sum of the terms in (Lo//(L» ® (Lo//(L» resulting from the 
expansion of O(X~lyl ... O(x~yn. These terms are 

C i'" C x el - it ... x en - in 101 Xft ... Xi. 
el, 1 en, J n ell an \OJ al an' 

where the Cel,i:s are the binomial coefficients, and the summation goes over 
all n-tuples (fl"'" J,.) such that 0 ~ /; ~ ei and 0 < If= I/;< If= 1 ei' 

Since F is of characteristic 0, all these binomial coefficients are different from 
O. Hence, it follows from the linear independence of the ordered monomials 
in the xrz's that, if u is a linear combination of such ordered monomials and 
o(u) = u ® 1 + 1 ® u, then u must actually be a linear combination of the 
xrz's. This means that every primitive element of o//(L) belongs to L. 0 

Now let us return to the free Lie algebra L based on the F -space V. If F 
is of characteristic 0, we know from Theorem 2.1 that L is precisely the 
space of primitive elements of the Hopf algebra T = ®(V), because T may 
be identified with o//(L) as a Hopf algebra. 

Proposition 2.2. Let F, V, T, L be as above, and aSSlime that F is of characteristic 
O. For every element t of T, let Dr be the derivation effected by t in T, so that 
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D,(u) = tu - ut. There is an F-linear projection 11: of Tonto L such that 
1t(1) = o and 

-'t1···t)=q-l(D .. ·D )(t) "\ q h '.-1 q 

for every q-tuple (t lo ••• , tq) of elements of V, where q > 1. 

PROOF. Oearly, there is one and only one linear endomorphism 11: of T 
satisfying the equalities of the proposition and the condition 1I:(v) = v for 
every element v of V. Moreover, it is evident from these properties that 1I:(T) 
is contained in L. It remains only to prove that 1I:(x) = x for every element 
xofL. 

Let p denote the F-algebra homomorphism from T to Endp(T) that is 
determined by the condition p(v) = DI) for every element v of V. Making 
an induction on the degree relative to V, one shows that p(x) = Dx for every 
element x of L. Define the linear endomorphism 11:' of T such that 11:' coincides 
with n1l: on each ®"(V). Then we have 

1t'(ut) = p(u)(1I:'(t», 

for all elements u of T and t of VT. If x and yare elements of L, we have 

1I:'([x, y]) = 1I:'(xy - yx) = p(x)(1I:'(y» - P(y)(1I:'(x» 

= Dx(1I:'(y» - D,(1I:'(x» = [x,1I:'(y)] + [1I:'(x), y]. 

Thus, the restriction of 11:' to L is a derivation of L. Using this, one shows 
easily by induction on the degree that 1I:'(x) = nx for every element x of 
L n ®"(V), whence we have 1I:(y) = Y for every element y of L. 0 

Let A be any F -algebra that is graded by the non-negative integers, and 
let A + denote the ideal of A that consists of the elements whose components 
of degree 0 are equal to O. We regard A as a topological algebra by making 
the powers of A + a fundamental system of neighborhoods of O. As such, A 
has a completion, A' say, which is a complete topological F-algebra con­
taining A as a dense subalgebra. Here, completeness means that every 
Cauchy sequence is convergent, and the elements of A' are the usual equi­
valence classes of Cauchy sequences in A, i.e., of the sequences (all) with the 
property that, for every m, there is an M such that all + 1 - all belongs to 
(A+Y" for every n ~ M. The elements of A' are most conveniently viewed 
as formal infinite sums L,.~o til' with each til in the homogeneous component 
All of A. We write A'+ for the ideal A+ A' of A', and we note that the powers 
of A'+ constitute a fundamental system of neighborhoods of 0 for the topology 
ofA'. 

Let F be a field of characteristic 0, and suppose that B is any complete 
topological F -algebra, the topology being defined by the powers of some 
ideal J. Then we can define the exponential map Exp: J -+ 1 + J, where 
Exp(x) is the limit in B of the Cauchy sequence whose nth term is L;=o(xq/q I). 
Similarly, we define the map Log: 1 + J -+ J, where Log(l - x) is the 
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limit in B of the Cauchy sequence whose nth term is - L;=I(Xq/q). Note 
that these maps are continuous and mutually inverse. 

In particular, we consider the completions T' and (T ® T)" where Tis 
our above tensor algebra ®(V). The comultiplication fJ from T to T ® T 
is evidently continuous, so that it extends to a morphism of F-algebras from 
T' to (T ® T)" which we shall still denote by fJ. We regard T' ® T' as a 
sub F-algebra of(T ® T)', in the evident way, and we denote the closure of L 
in T' by L'. We know that L consists precisely of the primitive elements 
of T. By an evident continuity argument, this implies that L' consists precisely 
of all elements x ofT' for which fJ(x) = x ® 1 + 1 ® x. 

Let X denote the set of all elements x of 1 + T'+ for which fJ(x) = x ® x. 
Clearly, XX c:: X. Moreover, every element x of X is a unit of T', with 
X-I = L~o(1 - x)". It follows that x ® x is a unit of (T ® T)" with 
(x ® X)-l = X-I ® X-I. Now fJ(x- l ) = fJ(X)-1 = X-I ® x-I, showing 
that X-I belongs to X. Thus, X is a subgroup of the group of units of T'. 

Let y be an element of L'. Noting that we have Exp(u + v) = Exp(u)Exp(v) 
whenever uv = vu, we obtain 

fJ(Exp(y» = Exp(fJ(y» = Exp(y ® 1 + 1 ® y) = Exp(y) ® Exp(y). 

Thus, Exp(L') c:: X. Now let x be an element of X. Then we have 

fJ(Log(x» = fJ(Log(1 - (1 - x» = Log(1 ® 1 - fJ(1 - x» 

= Log(fJ(x» = Log(x ® x). 

Applying Exp, we see that Log(uv) = Log(u) + Log(v) whenever uv = vu. 
Hence, the above gives 

fJ(Log(x» = Log(x ® 1) + Log(1 ® x) 

= Log(x) ® 1 + 1 ® Log(x). 

Our conclusion is that Log(X) c:: L'. Thus, Exp maps L' bijectively onto 
X, and the inverse map is the restriction of Log to X. 

Using Exp and Log, we can transport the group structure of X to a group 
structure on L'. We examine the "product" of two elements x and y of V. 
This is expressible as follows. 

Log(Exp(x)Exp(y» = Log(1 - (1 - Exp(x)Exp(y») 

= L (_l)n+ In-I(Exp(x)Exp(y) - 1)". 
n>O 

Expansion of the terms of the last sum yields the double sum 

L(-1)"+ln- l ( L (P1! ... Pn!ql! ... qn!)-IXPI~I ... xpnyqn). 
n>O ~+~>O 

Since this sum is an element of L', each of its homogeneous partial sums 
must lie in L. By Proposition 2.2, we may therefore replace each term with 
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its image under the map 1t of that Proposition without changing the sum 
of the whole series. Let us write flex, y) for the resulting series of elements 
of L. The Campbell-Hausdorff Formula is the identity 

Exp(x)Exp(y) = Exp(,,(x, y», 
in the freely non-commuting variables x and y or, in more rigorous terms, 
the equality of these series as elements of T', with V = Fx + Fy. 

We shall write "k(X, y) for the sum of the terms of degree :s; k of the series 
flex, y). Then, if M is any Lie algebra over F, "k(X, y) defines a map "k from 
M x M to M, where "k(a, b) is the result of substituting a for x and b for y 
in the expression of "k(X, y) in terms of iterated commutators. For example, 
we have 

"l(a, b) = a + b, "2(a, b) = a + b + t[a, b], 

and 

Ih(a, b) = a + b + t[a, b] + /2[a, [a, b]] + l2[b, [b, a]]. 

3. Let F be a field, (C, D, e) an F-coalgebra and (A, Jl, u) an F-algebra. We 
know that HomF(C, A) inherits the structure of an F-algebra in a natural 
fashion. The dual question, concerning a natural coalgebra structure on 
HomF(A, C) is somewhat more subtle. Let us regard A as a topological 
algebra, not necessarily Hausdorff, by making the two-sided ideals of finite 
codimension in A a fundamental system of neighborhoods of O. On the 
other hand, we endow C with the discrete topology. Now let Homj..(A, C) 
be the F-space of all continuous F-linear maps from A to C. We use the 
topological language only for -brevity; an element of HomF(A, C) belongs to 
HomF(A, C) if and only if it annihilates some two-sided ideal of finite co­
dimension in A. We shall see that Hom~(A, C) is an F-coalgebra in a natural 
way. 

Writing simply Hom(A, C) for HomiA, C), etc., we consider the natural 
F -linear map 

0': Hom(A, C) ® Hom(A, C) -+ Hom(A ® A, C ® C), 

where O'(f ® gXu ® v) = feu) ® g(v). It is easy to see that 0' is injective. 
If f and g belong to Hom'(A, C), let I and J be two-sided ideals of finite 
codimension in A such thatfannihilates I and g annihilates J. Then O'(f ® g) 
annihilates I ® A + A ® J, which is a two-sided ideal of finite codimension 
in A ® A. Thus, 0' maps Hom'(A, C) ® Hom'(A, C) injectively into 
Hom'(A ® A, C ® C). We claim that this restriction of 0' is also surjective. 

In order to see this, consider an element h of Hom'(A ® A, C ® C). 
There is a two-sided ideal K of finite codimension in A ® A that is anni­
hilated by h. Let I and J be the intersections of K with the first and second 
tensor factors A, respectively. Then I and J are two-sided ideals of finite 
codimension in A. In order to conclude that h belongs to the image of 
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Hom'(A, C) ® Hom'(A, C), it is evidently sufficient to prove that the natural 
map (defined as was 0) 

Hom(A/J, C) ® Hom(A/J, C) -+ Hom«A/I) ® (A/J), C ® C) 

is surjective. Since A/I and A/J are finite-dimensional, this amounts to show­
ing this in the case where C is finite-dimensional. Since the map is injective, 
and since then the space on the right has the same dimension as the space 
on the left, the surjectiveness follows. 

Now we know that the natural map (obtained by restricting 0) 

a': Hom'(A, C) ® Hom'(A, C) -+ Hom'(A ® A, C ® C) 

is a linear isomorphism. Let 't' denote the inverse of a', and define the map y 
from Hom'(A, C) to its tensor square as the following composite 

Hom'(A, C) Hom'(I'.d Hom'(A ® A, C) Hom'(A®A • .,1 Hom'(A ® A, C ® C) 

~ Hom'(A, C) ® Hom'(A, C). 
t 

This means that, for fin Hom'(A, C), we define 

y(f) = (a')-I(o ° f ° J.t). 

One checks in the straightforward fashion that y is a comultiplication 
making Hom'(A, C) into an F -coalgebra. The counit sends each f onto 
e(f(l». 

We shall be concerned with the special case where A is actually a Hopf 
algebra, and where C is the trivial coalgebra F. In this case, let us write A' 
for Hom'(A, F). Then A' has the above structure of an F-coalgebra. The 
map a is now just the usual injection AO ® AO -+ (A ® At, where the 
superscript ° denotes the full dual. If I and J are two-sided ideals of finite 
co-dimension in A then the inverse image in A of I ® A + A ® J with 
respect to the comultiplication of A is evidently a two-sided ideal of finite 
codimension. Using this, we see immediately that A' is a subalgebra of AO. 
Moreover, one verifies directly from the definitions that the coalgebra 
structure of A', together with the algebra structure inherited from AO, 
makes A' into a Hopf algebra. We call this the Hopf algebra dual to A. 

We are especially interested in the case where A is the universal enve­
loping algebra d//(L) of a Lie algebra L. Since the comultiplication of d//(L) 
is commutative, the multiplication ofthe dual algebra d//(L)O is commutative. 
Moreover, if F is of characteristic 0 then d//(L)O, and therefore also d//(L)', 
is an integral domain. 

In order to see this, let (x,,) be a totally ordered F -basis of L, so that, 
by Theorem 1.1, the elements of d//(L) may be identified with the finite 
F-linear combinations of the ordered monomials in the x,,'s. For each (x, 

letfr. be the element of d//(L)O that takes the value 1 at x" and the value 0 at 
every other ordered monomial in the x,,'s. It is easy to verify that each 
monomial f el ... fe.. takes the value el!'" e ! at xel ••• xe.. and the 111 II,. II III (III' 
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value 0 at every other ordered monomial in the xa.'s. Let <fJ(L)d denote the 
sub F-space of <fJ(L) that is spanned by the ordered monomials in the xa.'s 
of total degree ::::;; d. Then every element of <fJ(L)O coincides on <fJ(L)d with 
one and only one linear combination of monomials in the Ia.'s of 
total degree ::::;; d (the empty monomial is the projection from <fJ(L) to F 
with kernel L<fJ(L». The result follows easily from this by considering the 
terms of lowest degree in a product. 

Now let G be an affine algebraic F -group, L the Lie algebra of G, and U 
the universal enveloping algebra <fJ(L). Note that L is a sub Lie algebra of 
the Lie algebra ~(&'(Gt) defined from the F-algebra structure of &'(G)o. 
By the universal mapping property of U, it follows that there is one and only 
one morphism of F-algebras from U to &'(G)O that extends the injection 
map from L to &'(G)o. It is easy to verify from the definitions that the trans­
pose of this morphism is a morphism of F-Hopf algebras from &'(G) to U'. 
We shall denote this last morphism by 11:. 

If we regard &'(G) as an L-module, via the differential of the left translation 
representation of G on &'( G), we see that &'( G) is naturally also aU-module 
(again by the universal mapping property of U). In terms of this U-module 
structure, the map 11: is given by 1I:(fXu) = (u· fXIG) for every elementfof 
&'(G) and every element u of U. 

Now let us suppose that F is of characteristic 0 and that G is irreducible. 
Then we see immediately from Theorem IV.3J that 11: is injective. We record 
these facts for reference. 

Theorem 3.1. Let G be an affine algebraic group over a field F. There is a 
natural morphism of Hopf algebras 

11:: &'(G) .... <fJ(~(G})', 

which is injective whenever G is irreducible and F is of characteristic O. 

4. Lemma 4.1. Let L be a finite-dimensional nilpotent Lie algebra. Then the 
intersection of the family of powers of the ideal L<fJ(L) of<fJ(L) is (0). 

PROOF. There is a basis (Xl' ... ,xn) of L such that each [Xi' Xj] belongs to 
the subspace of L that is spanned by the Xk'S with k > max(i, }). By Theorem 
1.1, every element of <fJ(L) has one and only one expression as a linear com­
bination of ordered monomials xii ... x:n. We define a weight function w 
on <fJ(L) as follows: (1) w(1) = 0; (2) W(Xi) = 2i; (3) the weight of an ordered 
monomial is the sum of the weights of its factors; (4) the weight of a linear 
combination of ordered monomials is the minimum of the weights of the 
monomials occurring with non-zero coefficients. Now one shows by an 
evident induction on the degree that, if u is an ordered monomial, one has 
W(XiU) ~ w(Xi) + w(u). Evidently, this implies that the same holds for 
every non-zero element u of <fJ(L). It follows that, given any natural number 
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p, there is a natural number q such that every non-zero element of (L'¥t(L»' 
has weight at least p. 0 

Retaining the notation of Lemma 4.1, let !f(L) denote the sub Hopf 
algebra of '¥teL), consisting of the elements annihilating some power of 
L'¥t(L). We call !f(L) the algebra of nilpotent representative functions on 
'¥teL). Indeed, the elements of !f(L) are precisely the functions on '¥teL) that 
are associated with nilpotent representations of L, in the evident way. 

Now let us assume that our base field F is of characteristic O. Let 
.f1' ..• ,J" be the elements of '¥t(L)O that we used in Section 3 for showing 
that '¥t(L)O is an integral domain, so that fi(xj) = 1, while ii takes the value 
o at every other ordered monomial in Xl' ••• ' xn • Evidently, eachfi belongs 
to !f(L). Moreover, it is clear from what we have seen in Section 3 that Lemma 
4.1 implies that every element of !f(L) is a polynomial in f1' . .. ,J". We 
know from Section 3 that the functions fi are algebraically independent 
over F. Thus, as an F-algebra, !f(L) is the ordinary polynomial algebra 
F[f1' ... , J,,]. Finally, it is clear from Section 3 that the natural map from 
'¥teL) to F[f1' .. . , J"r is injective. Evidently, this map sends each element 
of L to a differentiation of !f(L). Since L is of dimension n, which is equal to 
the dimension of the space of all differentiations of the polynomial algebra 
!f(L) in n variables, we conclude that the natural map from '¥teL) to !f(L)O 
identifies L with the Lie algebra of all differentiations of !f(L). 

Since !f(L) is an ordinary polynomial algebra, the F-algebra homo­
morphisms from !f(L) to F separate the elements of !f(L). Therefore, we 
may regard !f(L) as the algebra of polynomial functions of the affine algebraic 
F-group <1(!f(L», and it is clear from the definition of !f(L) that the repre­
sentation of L by derivations of !f(L) is locally nilpotent. By Theorem 
IV.3'!, this implies that <1(!f(L» is unipotent. 

Conversely, let G be a unipotent algebraic F-group. By Theorem VIII.1.1, 
G is irreducible, so that we may appeal to Theorem 3.1 and identify &I(G) 
with its canonical image in '¥t(.!e( G»'. Since G is unipotent, the representation 
of .!e( G) by derivations of &I( G) is locally nilpotent. With our identification, 
this means that &I(G) is contained in !f(.!e(G». Let us write L for .!e(G), 
and let us consider the restriction morphism from <1(!f(L» to G. Since the 
Lie algebra of <1(!f(L» is the Lie algebra L of G, the differential of the re­
striction morphism is an isomorphism from the Lie algebra of <1(!f(L» to 
the Lie algebra of G. By Theorem VIII. 1.1 and the property po exp = exp ° p. 
of the exponential map, this implies that the restriction morphism is sur­
jective. Moreover, since the differential of this morphism is injective, the 
kernel is a finite subgroup of <1(!f(L». Since F is of characteristic 0 and 
<1(!f(L» is unipotent, it follows that the restriction morphism is also in­
jective. 

In the case where F is algebraically closed, it follows from this and Pro­
position 111.2.4 that &I(G) = !f(L). In the general case, let F' be an algebraic 
closure of F. The extended group G' = <1(&I(G) ® F') has L ® F' as its Lie 
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algebra, and what we have just said shows that 9'(G) ® F' coincides with 
~(L ® F'). It is not difficult to see that £f(L ® F') = £f(L) ® F'. From 
(/,(G) ® F' = £f(L) ® F', we obtain (/,(G) = £f(G) immediately. We sum­
marize our results in the following theorem. 

Theorem 4.2. Let F be a field of characteristic O. For every finite-dimensional 
nilpotent F-Lie algebra L, the affine algebraic F-group t6(£f(L» is unipotent, 
its algebra of polynomial junctions coincides with £f(L) and its Lie algebra 
coincides with L. This construction yields a junctor t6 0 £f from the category 
of finite-dimensional nilpotent F-Lie algebras to the category of unipotent 
affine algebraic F -groups, inverse, up to natural isomorphisms, to the Lie 
algebra junctor !l', so that these two categories are naturally equivalent. 

Notes 

I. In dealing with unipotent groups over fields of characteristic 0, the 
Campbell-Hausdorff formula can serve to remove the assumption that F 
be algebraically closed from basic structural theorems. We sketch an example 
of such an application. Let F be a field of characteristic 0, let G be an affine 
algebraic F-group, and let U be a unipotent normal algebraic subgroup of 
G. Let [G, U] denote the subgroup of G that is generated by the elements 
of the form xux- 1u- 1, with x ranging over G and u ranging over U. The 
objective is to show that [G, U] is an algebraic subgroup of G. Let a denote 
the adjoint representation of G on !l'(U), and let S be the sub F-space of 
.!l'(U) that is spanned by [.!l'(U), !l'(U)] and the elements of the form 
a(x)(O') - 0' with x in G and 0' in !l'(U). It is easy to see that S is actually an 
ideal of .!l'(G). Using the formal properties of the exponential map and the 
Campbell-Hausdorff formula, one can show that [G, U] coincides with 
exp(S). In particular, it is therefore an algebraic subgroup of G. 

2. Using the result of 1, above, one can strengthen the conjugacy part of 
Theorem VIII.4.3 by showing that the element t of that theorem may be 
chosen from G:'. In fact, the result of 1, above, enables one to proceed in­
ductively, much as in the proof of Theorem V13.2. 



Chapter XVII 

Semisimple Lie Algebras 

This chapter is devoted entirely to the classical representation theory of 
semisimple Lie algebras. Our principal goal is the basic result that, if L 
is a finite-dimensional semisimple Lie algebra over a field of characteristic 
0, then the continuous dual d/l(L)' of the universal enveloping algebra is 
finitely generated as an algebra. This will be used in the final chapter for 
constructing the "simply connected" affine algebraic group with Lie algebra 
L. The required finite generation of d/l(L)' is obtained from the classification 
of the finite-dimensional L-modules by the theory of weights. 

This theory is based on the technique of analyzing the structure and the 
representations of a semisimple Lie algebra L by considering the action of a 
certain abelian subalgebra of L, called a Cartan subalgebra, on L and its 
modules. The Cartan subalgebras are introduced in Section 1, and the 
elementary facts concerning their actions on L and on L-modules are dealt 
with in Sections 2 and 3. 

Section 4 develops the principal results concerning the structure of L 
with regard to a Cartan subalgebra. The main representation theoretical 
results are obtained in Sections 5 and 6. 

1. Let L be a finite-dimensional Lie algebra over a field F. A Cartan sub­
algebra of L is a nilpotent sub Lie algebra H that coincides with its stabilizer 
in L, i.e., has the property that the only elements x of L for which [x, H] is 
contained in H are the elements of H. It follows from this definition that a 
Cartan subalgebra H ~r L is a maximal nilpotent subalgebra. In order to see 
this, suppose that N is a nilpotent sub Lie algebra of L containing H. Consider 
the representation of H on NIH that is induced from the adjoint represen­
tation of N. Since this is nilpotent the assumption N -:F H would yield an 
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element x in N \ H such that [H, x] c H, and this contradicts the definition 
ofH. 

Proposition 1.1. For an element x of L, let L" denote the subspace of L con­
sisting of all elements that are annihilated by some power of D". Then L" 
is a sub Lie algebra of L and coincides with its stabilizer in L. 

PROOF. The formula expressing D~[u, v]) as a sum of terms [D~(u), D~(v)], 
where p + q = n, shows that [L", L"] c L". 

Next, if y is an element of L such that D,(L") c L", we have [x, y] E L", 
because x belongs to L". Evidently, this implies that y belongs to L ". 0 

Proposition 1.2. In the notation of Proposition 1.1, L" has an F-space com­
plement L" in L such that [L", L,,] c L". 

PROOF. We let L" be the subspace of L obtained from Fitting's Lemma, so 
that L" is the largest subspace of L on which D" induces a linear automor­
phism. We have L" = D~(L) for some positive exponent p, and it remains 
only to be shown that [L ", L,.] is contained in L". 

We shall prove by induction on m that if D';(Y) = ° then D,(L,,) c L". 
For m = 0, the assumption means that y = 0, so that the implication holds 
in the case m = 0. If m = 1 we have [x, y] = 0, whence D"Dy = DyD". 
Since L" = D~(L), this shows that D.,(L,,) c L". 

Now suppose that m > 1 and that the implication has been established 
in the lower cases. Let y be an element of L such that D':(y) = 0, and let u 
be an element of L". Write u = D~v), with v in L". Then we have 

[y, u] = [y, D~v)] = D~([y, v]) - t (P)[D!(Y), D~-q(v)]. 
q=1 q 

The first term on the right belongs to L", because L" = D~(L). The terms 
of the sum that follows belong to L" by the inductive hypothesis, applied 
to each ~(y) in the place of y. 0 

Theorem 1.3. Let L be a finite-dimensional Lie algebra over an infinite field 
F, and let x be an element of L such that L" is of the smallest possible dimension. 
Then L" is a Cartan subalgebra of L. 

PROOF. By Proposition 1.1, it suffices to prove that L" is a nilpotent Lie 
algebra. By Theorem VI1.1.5, it suffices to show that, for every element y 
of L ", the restriction of D., to L" is nilpotent. Let J., denote the characteristic 
polynomial of D.,. By Propositions 1.1 and 1.2, both L" and L" are stable 
under D.,. Therefore, we have f., = g.,h." where g., is the characteristic poly­
nomial of the restriction of D., to L ", and h)' is the characteristic polynomial 
of the restriction of D., to L" (we assume L" :F (0), as we may). 

Let t, t 1, ••• , t", be auxiliary variables over F, and let t" be the highest 
power of t that divides g.,(t) for every element y of L". Let (yl' ... ' y",) be a 



XVII.2 235 

basis of L". There exists a polynomial u(tt, ... , tm) with coefficients in F 
such that the coefficient of tn in gy(t) is u(Ct, .. . , c .. ), where the c/s are the 
coefficients of the y/s in y. By the definition of n, the polynomial U is not the 
zero polynomial. Also, there is a polynomial v(tt, ... , tm) such that 

hy(O) = v(Ct, •.• , cm). 

Since no non-zero element of L" is annihilated by D", we must have h,,(O) :F O. 
Therefore, v is not the zero polynomial. Since F is infinite, it contains ele­

ments Ct, ••• , c)II such that U(Clo ... ' c .. )v(Ct, . .. , cm) :F O. Now, if 

y = CtYt + ... + C .. Y .. , 

then this is the coefficient of tn infy(t), so thatfy(t) is not divisible by tn+t. 

Since the dimension of L" is minimal, we have dim(U) ~ m. On the 
other hand, fy(t) is divisible by tdim(L"), and we have seen that f,(t) is not 
divisible by tn+t. Hence, we must have dim(U) s: n, so that m s: n. Now 
let y be an arbitrary element of L". By what we have just proved, gy(t) is 
divisible by t". Since the degree of gy is equal to m, we must therefore have 
g,(t) = em, which shows that the restriction of Dy to L" is nilpotent. 0 

2. From now on, we assume that our base field F is algebraically closed and 
of characteristic O. Let L be an F-Lie algebra, Van L-module, ')I an element 
of L 0. Let Vy denote the subspace of V consisting of all elements that are 
annihilated by some power of p(x) - y(x)iy for every element x of L, where 
p is the given representation of L on V. If Vy :F (0) then ')I is called a weight 
of p, and Vy is called the corresponding weight space. 

Theorem 2.1. Let L be a finite-dimensional nilpotent Lie algebra over the 
algebraically closed field F of characteristic 0, and let p be a representation 
of L on a finite-dimensional F -space V. Each weight space Vy is a sub L-module 
q{ V. and the set of endomorph isms p(x) - y(x)iy is nilpotent on Vy. The sum 
in V of the Vy's is direct and coincides with V. 

PROOF. It is easy to verify by induction on m that (p(x) - y(x)iy)"p(y) is a 
sumofendomorphismsoftheformp(D~(y»(p(x) - y(x)iy)9,withp + q = m. 
Using the nilpotency of L, we see from this that Vy is a sub L-module of V. 

Let M denote the Lie algebra of linear endomorphisms of Vy that is 
generated by the restrictions to Vy of the endomorphisms p(x) - y(x)iy • 

Then [M, M] is contained in the restriction image of p(L), which shows 
that M is solvable. By Theorem VII.1.3, it follows that [M, M] is nilpotent 
on Vy. Since each p(x) - y(x)iy is nilpotent on VY' it follows from Lemma 
VIll.4 that every element of M is nilpotent on Vy. By Theorem VII.1.5, 
this implies that M is nilpotent on Jo; .. 

Let Yt,. .. , Yt be a finite set of distinct weights. Since F is infinite, there 
is an element x in L such that the values Yi(X) are all distinct. The endo­
morphism p(x) - Yi(x)iy is nilpotent on VYi • On the other hand, for each j 
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other than i, the restriction of p(x) - Yi(x)i y to VYJ is invertible, because it 
is the sum of the non-zero scalar multiplication by yf..x) - ylx) and the 
nilpotent endomorphism induced by p(x) - yJ{x)iy • Evidently, we may 
conclude from this that the sum of the family of V~'s is direct, whence the 
set of weights is finite. 

It remains only to show that the sum of the family of Vy's coincides with V. 
Let Y1' .•. ' Yk be all the weights, and choose x as just above. For every 
element c of F, let Yc denote the subspace of V consisting of the elements 
that are annihilated by some power of p(x) - ciy • The argument of the 
very beginning ofthis proof shows that Yc is a sub L-module of V. By Theorem 
VII.1.3, every simple sub L-module of Vr is annihilated by [L, L]. Since F is 
algebraically closed, it follows from this and Schur's Lemma that the non­
zero simple sub L-modules of Vr are one-dimensional. Therefore, if Vr =F (0), 
there is an index i such that Vr n Vy/ =F (0). Clearly, we must have YiCx) = c. 
By the elementary theory of a single linear endomorphism of a finite­
dimensional space over an algebraically closed field, V is the sum of the 
family of Yc's. Therefore, it suffices to show that Vy/(X) coincides with Vy/. 

Let Y be an element of L, and let lti,c denote the subspace of Vy/(x) con­
sisting of the elements that are annihilated by some power of p(y) - ciy • 

As above, if lti,c =F (0), there is an indexj such that lti,c n VyJ =F (0). We must 
haveyf..x) = Yi(x),sothatj = i. Also, we must haveyJ{y) = c,andsoYi(Y) = c. 
Since Vy/(x) is the sum ofthe lti, :s, this shows that Vy/(X) = lti, y/b')' Since this 
holds for every element Y of L, we conclude that Vy/(X) = Vy/. 0 

Now let L be an arbitrary finite-dimensional Lie algebra over F. Using 
Theorem 1.3, let us choose a Cartan subalgebra H of L. A weight of the 
representation of H on L coming from the adjoint representation of L is 
called a root of L with respect to H. The corresponding weight spaces Ly are 
called the root spaces of L with respect to H. 

Theorem 2.2. Let F be an algebraically closed field of characteristic 0, and 
let L be a finite-dimensional F -Lie algebra. Let H be a Cartan subalgebra of L. 
For all elements IX and p of HO, one has [LIZ, L,JJ c LIZ+(h and Lo = H. 

PROOF. The first statement follows immediately from the formula 

where Dz•r = D: - y(z)iL , which is easily established by induction on n. 
Since H is nilpotent on H, we have He Lo. Since H is nilpotent on L o, 

the assumption Lo =F H would imply that there is an element v in Lo \ H 
such that [H, v] c H, which contradicts the fact that H coincides with its 
stabilizer in L. Therefore, we must have Lo = H. 0 
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Theorem 2.3. Let F, L and H be as in Theorem 2.2, and let B denote the trace 
form of the adjoint representation of L. For yin HO, put dy = dim(Ly). Then, 
for all elements x and y of H, one has 

B(x, y) = L dyY(x)y(y), 
y 

where the summation goes over the set of all roots y. 

PROOF. By Theorem 2.1, L is the direct sum of the family of sub H-modules 
Ly. Hence, if T stands for trace and D",y for the restriction of D" to Ly, we 
have 

B(x, x) = T(D;) = L T(D;,y), 
y 

for every element x of H. Next, we have 

D;/y - y(x)2iLy = (D,,/y - y(x)iLy)(D,,/y + y(x)iL). 

The first factor on the right is nilpotent and commutes with the second 
factor. Therefore, D;/y - y(x)2iLy is nilpotent, whence we have 

T(D;/y) = T(y(x)2iL) = dy Y(X)2. 

This is the required result in the case where x = y. Applying this with 
x + y in the place of x, we obtain the general result. D 

Theorem 2.4. In the notation of Theorem 2.3, if ex and P are elements of HO 
such that ex + P#:O then B(L,., LII) = (0). 

PROOF. By Theorem 2.2, if x belongs to L,. and y to LII , then D"Dy maps 
each Ly into L"+II+Y. Now, it y is a root then ex + P + y is either no root or a 
root distinct from y. In either case, D"Dy sends Ly into the sum of the L,/s 
with b #: y, which is an H-module complement of Ly in L. Clearly, this 
implies that T(D"Dy) = O. D 

3. Let L be a finite-dimensional semisimple Lie algebra over the algebraically 
closed field F of characteristic O. Let H be a Cartan subalgebra of L, and let 
B denote the trace form of the adjoint representation of L. Let ex and P be 
roots of L with respect to H, with P #: o. We denote by exll the non-negative 
integer defined by the condition that ex + mp be a root for all integers m 
with 0 ::s; m ::s; exll, while this is no longer the case for m = exll + 1. Similarly, 
we define exll by the condition that ex - mp be a root for all integers m with 
o ::s; m ::s; exll' while this is no longer the case for m = exll + 1. 

Let ex be a root, and let x be a non-zero element of L,.. We know from 
Theorem VH.2.1 that B is non-degenerate. Therefore, there is an element y 
in L such that B(x, y) #: O. By Theorems 2.1 and 2.4, it follows that -ex is 
also a root and that we may choose y from L_,.. This yields the following 
conclusions. Ifex is a root, so is -ex, and B induces a non-degenerate pairing 
from L,. x L_,. to F. In particular, B is non-degenerate on H x H. 
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From the last statement, we have that,jor every element IX of HO, there is 
one and only one element h", in H such that B(h, h",) = IX(h)for every element h 
ofH. 

Suppose that IX is a non-zero root. Since the set of endomorphisms 
D" - IX(h)iL with h in H is nilpotent on L"" there is a non-zero element x'" 
in L", such that [h, x",] = IX(h)x", for element h of H. Let y be any element 
of L_",. By Theorem 2.2, we have [x"" y] E H. Recall from the beginning 
of Section VII.2 that B satisfies the identity B([u, v], w) = B(u, [v, w]). 
Using this, we find that, for every element h of H, we have 

B(h, [x"" y]) = B([h, xJ, y) = IX(h)B(x"" y) = B(h, B(x"" y)h",). 

Since B is non-degenerate on H x H, it follows that 

[x"" y] = B(x"" y)h"" 

for every element y of L_",. We shall use this fact in proving the next theorem. 

Theorem 3.1. In the notation introduced above, let IX and 13 be roots, with 
IX #: O. Then the following statements hold: 

(1) IX(h",) LY(Y", - ')1"')2 = 4, the summation going over the set of all roots ')I; 

(2) 2p(hJ = (13", - P"')IX{h",); 
(3) the only F -multiples of IX that are roots are 0, IX, - IX; 

(4) dim(LJ = 1. 

PROOF. Let U = rt."= -II" LII+".,..1t is clear from Theorem 2.2 that U is stable 
under the endomorphisms Dz with z in L", + L_",. Let x", be an element of 
L", as discussed just above the statement of our theorem. We know that 
there is an element y in L_", such that B(x"" y) #: O. We have shown above 
that [x"" y] = B(x"" y)h",. Therefore, we may choose y so that [x"" y] = h",. 
Now D"" = [Dx", Dy], whence it is clear that the restriction of D"" to U is of 
trace O. Since D"" - (p + mIXXh",)iL is nilpotent on L II +m"" the trace of the 
restriction of D"" to LII +m", is equal to (p + mIX)(h",)dim(LII+mJ. Therefore 
the sum of these elements of F from m = - 13", to m = P'" is equal to O. We 
deduce from this fact that IX(hJ #: O. Indeed, otherwise we obtain P(h",) = 0, 
and since this then holds for every root P we see from Theorem 2.3 that 
B(h, h",) = 0 for every element h of H, which contradicts our assumption 
that IX #: O. Thus, we have IX(h",) #: O. 

Now let V = H + Fx", + Lm<o Lm",. Evidently, V is stable under Dx" 

and Dy • Hence, we see as above with U that the restriction of D"" to V is of 
trace O. Thus, we have 

IX(h",)(1 + L m dim(Lmrz») = O. 
m<O 

Since IX(h",) #: 0, this implies that L".,. = (0) for m < -1, and dim(L_J = 1. 
This gives (4), by replacing IX with -IX. Moreover, this shows that the only 
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integral multiples of IX that are roots are 0, IX, -IX. Hence, we have o~ = 1 = o~, 

~ = 0 and IX~ = 2. In particular, this shows that (2) holds in the case where P 
is an integral multiple of IX. 

Now suppose that P is not an integral multiple of IX. Then we have from 
(4) that dim(LII +IIIIlt ) = 1 for every integer m with - P~ ~ m ~ p. We have 
seen above that the sum of the expressions (P + mlX)(hllt)dim(LII + IIIIlt ) for 
these values of m is equal to o. This yields (2) upon replacing each dim(LIl +III1lt) 
with 1. 

From (4), (2) and Theorem 2.3, we obtain 

lX(hllt) = B(h(J' hilt) = I dIl P(hllt)2 = I P(hllt)2 
II II 

= ~ I (p(J - P)21X(h(J)2, 
II 

whence we have (1). 
Finally, suppose that P is a root of the form CIX, with c in F. Then it follows 

from (2) that c = p12, where p is an integer. If c#:O we may exchange IX 

and p, and so conclude that llc = q12, where q is an integer. Now we have 
pq = 4, and we have already seen that the only possible integral values of c 
are 0, 1, - 1. This leaves us with the case where p is odd. Then pq = 4 allows 
only p = 1 and p = -1, which give IX = 2P and IX = -2P, respectively. 
Since the only integral multiples of p that are roots are 0, p, - p, these cases 
are ruled out. Thus (3) holds. D 

Theorem 3.2. In the above notation, H is abelian, and the roots of L with 
respect to H span HO over F. 

PROOF. Let IX be a non-zero root. Since dim(LIlt) = 1, DII acts as the scalar 
multiplication by lX(h) on Lilt, for every element h of H. Now let N be the 
subspace of H consisting of the elements that are annihilated by every root. 
By what we have just seen, we have [N, Lilt] = (0) and [H, H] eN. Since 
L is the sum of H and the family of L(J's with IX a non-zero root, N is therefore 
an ideal of L. Since N is nilpotent and L is semisimple, it follows that N = (0). 

D 

Proposition 3.3. In the above notation, let (Ph .. . , Pr) be any maximal F­
linearly independent set of roots of L with respect to H. Then every root is a 
rational linear combination of the p;'s. 

PROOF. Let P be any root. Then P = I,=1 biPh with each bi in F. Applying 
this to hllJ , we obtain 

r 

B(hll , hllJ) = I biB(hll,hIlJ)· 
1= 1 

By (1) and (2) of Theorem 3.1, all the values of B occurring here are rational 
numbers. It follows from Theorem 3.2 and the non-degeneracy of B that the 
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hllj'S constitute an F -basis of H and that the determinant of the matrix with 
entries B(hllj , hllJ) is different from O. Therefore, the above system of equations, 
for j = 1, ... , r, determines the b,'s as rational numbers. 0 

4. Theorem 4.1. Let L be a finite-dimensional semisimple Lie algebra over an 
algebraically closed field F of characteristic 0, and let H be a Cartan sub­
algebra of L. There is an F-linearly independent set (oc 1, ••• , ocr) of roots of L 
with respect to H such that, for every root oc, either oc or - oc is a sum of oc,os, 
with repetitions allowed. 

PROOF. Let (Ph . .. , Pr) be any maximal F-linearly independent set of roots. 
By Proposition 3.3, every root is a rational linear combination of the p;'s. 
We define an ordering of the set of all roots from the lexicographic order 
based on their coefficients when expressed in terms ofthe p,'s. We call a posi­
tive root simple if it is not the sum of two positive roots. Let OCh ... ,OCs be 
all the simple roots. Evidently, every positive root is a sum of oc/s. Therefore, 
all that remains to be proved is that the oc/s are F-linearly independent. 

We suppose that this is false and derive a contradiction. Let R denote the 
space over the field of rational numbers that is spanned by the roots. We 
know already that the oc/s span R over the field of rational numbers. We 
know also that the P/s constitute an F-basis of R ® F. Since the oc/s are 
not F-linearly independent and span R ® F over F, we must have s > r. 
It follows that the oc/s are not linearly independent over the field of rational 
numbers either. Hence, there is a non-trivial relation 

L njOCj = L njocj, 
jel jeJ 

where the n/s and n/s are positive integers, and I n J = 0. Let 

h = Lnjh",j. 
jel 

Then we have also h = LeJ njh"'J' whence 

B(h, h) = L L njnjoc,(h"'J). 
jel jeJ 

Now observe that OCj - OCj cannot be a root. For otherwise OCj - OCj is also 
a root, and one of these is positive, so that either oc, or OCj is the sum of two 
positive roots, contradicting their choice as simple roots. By (2) of Theorem 
3.1, we have 

OCj(h"'J) = iocJ<h"'JX(OCj)"'J - (OCj)"'J). 

By what we have just seen, (oc')"'J = O. By (1) of Theorem 3.1, oc}(h"'J) > O. 
Hence, we have oc,(h",) ~ 0, so that the above gives B(h, h) ~ O. By Theorem 
2.3, B(h, h) is a sum of terms y(h)2, with y ranging over the set of all roots. 
Since each y(h) is a rational number, it follows that each y(h) must be O. By 
Theorem 3.2, this implies that h = O. Hence, we have 

L n,oc, = 0 = L njocj. 
jel jeJ 
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Since the n/s and n/s are positive integers and the a.j'S and a./s are positive 
roots, these relations cannot hold, unless both I and J are empty, so that 
we have the required contradiction. 0 

A system (a.1> ... , a.,) as in Theorem 4.1 is called a fundamental system of 
roots. 

Let V denote the space over the field of rational numbers that is spanned 
by the hll's, where a. ranges over the set of all roots. We know that the restric­
tion of B to V x V is positive definite and takes on only rational values. 
Thus, V carries a rational-valued inner product: u . v = B(u, v). In particular, 
we have hll · v = a.(v) for every root a. and every element v of V. Let P II be the 
kernel of a. in V, where a. is a non-zero root. In geometrical terms, P II is the 
hyperplane orthogonal to hll in V. Let rll denote the reflection of V in P II , 
so that 

rll(v) = v - 2(:IIII.":)hll = v - 2 ;~~) hll . 

In particular, if P is a root, we see from (2) of Theorem 3.1 that 

rihp) = hp - (PII - P«)hll · 

By the definitions of PII and plI, the element P - (PII - P«)a. of HO is a 
root. If P is a non-zero root then rll(hp) ¥- 0, because rll is a linear auto­
morphism of V. This shows that P - (PII - PII)a. is a non-zero root if P is a 
non-zero root. We shall write 1CII(P> for this non-zero root, so that 

rll(hp) = h"..<P)· 

The group of linear automorphisms of V that is generated by the re­
flections r II is called the Weyl group of (L, H), and it is denoted by W. A 
Weyl chamber is a maximal convex subset of V \ UIIPII . If (a.1' ... ' a.,) is a 
fundamental system of roots, then the set C(a.1, ... , a.,) of all points v in V 
such that a.,(v) > 0 for each i is evidently a Weyl chamber. We have 

1CII(p)(rll(v» = rll(hp)· rll(v) = hp· v = P(v), 

which shows that rll(Pp) = p" .. (P). Thus, the elements of the Weyl group 
permute the PII's among themselves, and hence permute also the Weyl 
chambers among themselves. A wall of a Weyl chamber is a non-trivial 
intersection of its "boundary" with one of the PII'S. 

Theorem 4.2. Let F, L, H be as in Theorem 4.1, and let (a.1' ... ' a.,) be afun­
damental system of roots. Then the Weyl group is generated already by the 
r II,'S. Furthermore, the Weyl group acts transitively on the set ofWeyl chambers, 
and every non-zero root is the image of an a.j by an element of the root permuta­
tion group generated by the 1CII/S. 
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PROOF. For every non-zero root IX, we denote the linear automorphism of 
Vo dual to r" by '11:". Note that vo may be identified with the space R spanned 
over the field of rational numbers by the roots, and that the above '11:" is then 
the restriction to the set of roots of the new '11:". Let p stand for half the sum 
of all the positive roots. From the original definition of '1I:"f and Theorem 
4.1, we see that, if IX is a positive root other than IXh then '1I:"f(lX) is a positive 
root, while '1I:"f(lXj) = -lXj. It follows immediately from this that 

'1I:"f(P) = P - IXj. 

Let W' be the subgroup of W that is generated by the r rtf'S, let C be a 
Weyl chamber, and let v be a point in C. Choose an element t from W' for 
which p(t(v» is as large as possible. Then we have p(t(v» ~ p(r"ft(v» for 
each i. On the other hand, 

p(r"ft(v» = '1I:",(pXt(v» = (p - IXjXt(V» = p(t(v» - IXj(t(V». 

Hence, we must have IXI(t(V» ~ O. Since v is in a Weyl chamber, so is t(v), 
and we must actually have lX~t(V» > O. Thus, t(v) belongs to C(1Xl>' •• , IXr)' 

Since the Weyl chambers are permuted among themselves by the elements 
of the Weyl group, this proves that t(C) = C(1X1, ••• , IXr)' 

Now let IX be any non-zero root, and let C be a Weyl chamber one of whose 
walls lies in P", Then, with t as above, one of the walls of C(1X1, ••• , IXr) lies 
in t(P J, i.e., there is an index i such that t(P J = P"f' Hence, if '11: is the linear 
automorphism of VO dual to t, we must have '1I:(IX) = ± lXi' If '1I:(IX) = -lXi 

then ('1I:lXf '1l:)(IX) = IXI' Hence, in any case, there is an element sin W' such that 
the corresponding root permutation sends IX onto lXi' Finally, we have 

-I W' 0 r" = S r"fsE • 

S. Let L be a finite-dimensional semisimple Lie algebra over the algebraically 
closed field F of characteristic 0, and let H be a Cartan subalgebra of L. 
Let V be an L-module. If "/ is a weight of the representation of H on V then 
we shall call "/ simply a weight of V, or a weight of the representation of L 
on V. We denote by V7 the sub F-space of V consisting of all elements v 
such that h . v = ,,/(h)v for every element h of H. In the cases of interest to us, 
and in particular whenever V is finite-dimensional, this space V7 coincides 
with the weight space Yy defined in Section 2, as we shall see shortly. Through­
out this section, we shall refer to V7 as the weight space belonging to "/. 
Observe that if "/ is a weight then V7 #: (0). 

We choose a fundamental system (1Xl>"" IXr) of roots, and we make an 
ordering of the set of roots such that IXI is positive for each i. We say that "/ 
is a dominant weight of V if the following two conditions are satisfied: 

(1) L,,' V7 = (0) for every positive root IX; 

(2) there is an element v in V7 such that the sub L-module of V generated 
by v coincides with V. 
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TheoremS.t. Let F, L and H be as above, and let V be an L-module having a 
dominant weight y. Then P is 1-dimensional, each weight space V" is finite­
dimensional, and V is the direct F -space sum of the family of v"'s. Moreover, 
y is the only dominant weight of V, and every weight of V is of the form 
y - ~J= 1 m,IX" where the mj's are non-negative integers. Finally, for every 
element p of HO, there is one and only one isomorphism class of simple L­
modules having p as a dominant weight. 

PROOF. Choose an element v from V1 that generates V as an L-module. 
Consider the subspace Fv + L" V" of V, where ~ ranges over the set of 
weights y - I~= 1 m,IX" other than y, as described in the statement of the 
theorem. Let (Ph"" Pm) be the set of all positive roots. For each non­
zero root IX, choose an element XIX from L such that L/X = Fx/X. Then the 
elements of IfI(L) are the F -linear combinations of the products 

where u belongs to 1fI(H), and the ej's and fj's are non-negative integers. 
Since the x{J/s annihilate v, such a product maps v into our subspace 
Fv + I" V", so that this subspace coincides with IfI(L)· v = V. More pre­
cisely, each V" is spanned over F by the transforms X"-!{JI ... x':..Pm· v with 
Ii= 1 eJpJ = Y - ~. This shows that P = Fv, that every weight of V is of 
the form y - I~= 1 mjIX" where the m/s are non-negative integers, and that 
every weight space is finite-dimensional. 

If w is an element of V" that is annihilated by L/X for each positive root IX 
then IfI(L) . w cannot contain v, unless ~ = y, as is evident from the above. 
Therefore, y is the only dominant weight of V. 

In order to prove the last statement of the theorem, let 

Each of these is clearly a nilpotent sub Lie algebra of L. Put U + = IfI(N +), 
U _ = IfI(N _) and U 0 = IfI(H), regarding each as a subalgebra of IfI(L). 
Also, write U for IfI(L). Let p be an element of HO, and let J p be the left ideal 
of U that is generated by N + and the elements h - p(h) with h in H. If V 
is an L-module having p as its dominant weight and J denotes the annihilator 
of VPin U then, as a U-module, Vis isomorphic with UIJ. Evidently,Jp c J, 
so that V is a homomorphic image of U I J p' Therefore, it will suffice to prove 
that,for every pin HO, there is one and only one maximal left ideal in U that 
contains J p' 

Let Kp be the left ideal of U 0 U + that is generated by N + and the elements 
h - p(h) with h in H, so that Jp = U _ Kp. As an F-space, U is the tensor 
product U _ ® (Uo U +), and hence Jp = U _ ® Kp. We have 

(Uo U +)/Kp ~ Uo/(Uo n Kp), 

and U 0 n Kp is the ideal of U 0 that is generated by the elements h - p(h), 
so that U 0 n Kp :F U o. Therefore, J p :F U. 
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Now let I be any left ideal of U containing J P' and consider the sub 
L-module IjJp of the L-module UjJp, with L acting via the multiplication 
of U. Clearly, p is a dominant weight of UjJp, the coset 1 + Jp being an 
F-space generator of (UjJp)P. By the part of the theorem already proved, 
we have 

UjJp = (UjJp)P + L (UjJp)/, 
I 

where the l5's are as described above. It is easy to see that the submodule 
IjJ P' like every submodule, coincides with the sum of the family of its inter­
sections with the weight subspaces of UjJp. If the intersection of IjJp with 
(U jJ p)P is not (0) then (U jJ p)P is contained in Ij J p' because it is I-dimensional, 
and it follows that I = U. If the intersection of IjJ p with (U jJ p)P is (0), 
we have IjJp C L~UjJp)'. Let M be the inverse image of L(UjJp)1 in U. 
Then we have J pel c M, and M :F U. It is clear from this that there is 
only one maximal left ideal of U containing J p. 0 

6. Retaining the notation of Section S, let us put 

2 
hl=-(h )h,w 

al II. 

Generally, if a is any non-zero root, we put 

2 
HII = a(hJ hll , 

so that H II• = hi. 
We shall use the Weyl group in its dual form, as a group of linear auto­

morphisms of the rational subspace R of HO that is spanned by the roots. 
We know from Theorem 4.2 that it is generated by the 7tIl,'s. It follows from 
the definitions and (2) of Theorem 3.1 that, for every non-zero root a and 
every element p of R, we have 7t1l(p) = P - p(HII)a. 

Theorem 6.1. Let V be a finite-dimensional simple L-module. Then V has a 
dominant weight. If 15 is any weight of V and (J is an element of the Weyl group, 
then u(15) is also a weight of V. If a is a root such that 15 + a is a weight of V 
then LII • VI :F (0). For a simple L-module with dominant weight}' to befinite­
dimensional, it is sufficient that each y(h,) be a non-negative integer, and it is 
necessary that each y(h,) be non-negative and that I5(H II) be an integer for 
every weight 15 and every root a. 

PROOF. The set of weights of V is finite and non-empty. Pick a weight 15 and 
a non-zero element v of VI. Since tf/(L) . v = V, every weight of V is the sum 
of 15 and an integral linear combination of the a;s. This yields an ordering 
ofthe weights compatible with that ofthe roots. Clearly, the largest weight of 
V is a dominant weight. 
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Let c5 be a weight of V, and let ex be a non-zero root. Define c5« and c5« as in 
the case where c5 is a root from the condition that c5 + kex be a weight. Choose 
a non-zero element Uo from Vd- d,"",. Choose x from L« and y from L_« so 
that [x, y] = H«. Put Uj = x j • Uo. and let J be the smallest non-negative 
integer j for which U j+ 1 = 0. Agreeing that U_ 1 = 0, we claim that 
y. Uj = CjUj-1 with some Cj in F for all indices j in the interval [0. J]. This 
holds for j = 0, with Co = 0, because y. Uo belongs to V"-(1 +cIa l«, which 
is (0) since c5 - (1 + c5«)ex is no longer a weight of V, by the definition of c5«. 
Suppose our claim has already been established for some j < J. Then we 
have 

Y·Uj+1 = y·(x·u) = x·(y·Uj) + [v,x] ·Uj = CjUj - H«·Uj 

= (Cj - (c5 + U - c5«)ex)(H«»uj. 

Thus, our claim holds for j + 1, with 

Cj+1 = Cj - (c5 + U - c5«)ex)(H«). 

This establishes our claim inductively. Since uJ+ 1 = 0, the above, with 
j = J,gives 

CJ = (c5 + (J - c5«)ex)(H«). 

Hence we obtain 

J-1 J ° = L (Cj+ 1 - Cj) - CJ = - L (c5 + U - c5«)oc)(H«), 
j=O j=O 

which yields 

(J + 1)c5(H«) = (J + 1)c5«ex(H«) - tJ(J + l)ex(H«). 

Since ex(H«) = 2, our result is 

c5(H«) = 2c5« - J. 

In exactly the same way, using - ex in the place of ex, we find that 

c5(H _«) = 2c5_« - J', 

i.e., 

c5(H«) = J' - 2c5«, 

where J' is the analogue of J. 
Since c5 + U - c5«)ex is a weight of V for eachj in [0, J], we have 

J - c51% ~ c5«. 

Similarly, since c5 + U - L«)( -ex), i.e., () - U - {)«)ex is a weight of V for 
each j in [0, J,], we have J' - c5« ~ c5«. Thus, each of J and J' is at most 
equal to c5« + ()«. From the above, we know that 2c5« - J = J' - 2c5«, i.e., 
J + J' = 2(c51% + c5«). It follows that J = c5« + c5« = J'. With the above, this 
yields c5(H«) = c5« - c51%. In particular, this shows that c5(H«) is an integer. 
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We know that ~ + U - ~«)a is a weight of V for every j in 

[0, J] = [0, ~« + ~1, 

and hence, in particular, for j = ~«. Thus, ~ + (~« - ~«)ex is a weight of V, 
i.e., Te«<~) is a weight of V. Since the Te«'s generate the Weyl group, it follows 
that o{~) is a weight of V for every element (1 of the Weyl group. 

Ify is the dominant weight of V then, since Te«(Y) is a weight of V, Theorem 
5.1 shows that y ~ Te«(y). This says that y ~ y - y(H«)a. If ex > 0, this gives 
y(HJ ~ O. In particular, y(h j ) ~ 0 for each i. 

If ~ + ex is a weight of V then ~IZ > 0, so that J is strictly greater than 
~«. Therefore, in the notation ofthe definition of J, 

o =F U1 +cJ~ = X • U6~ E L« . V.s, 

which shows that L« . vcJ =F (0). 
Now let V be any simple L-module having a dominant weight y, and 

suppose that y(h j ) is a non-negative integer for each i. Choose Xj from LIZ, 
and Yi from L_«J such that [x;, y;] = hi· Let Li = FXj + FYi + Fhi. This is a 
sub Lie algebra of L, and its only ideals are (0) and L j • In particular, L j is a 
semisimple Lie algebra. Let v be a non-zero element of V1, and let J'i denote 
the sub Li-module of V that is generated by v. For every element p of HO, 
we denote the restriction of p to Fhi by p', while we keep i fixed. Then J'i 
has y' as its dominant weight. We know from the proof of Theorem 5.1 that 
J'i is spanned over F by the elements /;<. v. For j =F i, we have [x), y;] = 0, 
and Xj· v = 0 for every j. It follows that each Xj with j =F i annihilates V;. 
By Theorem 5.1, we have 

J'i = Fv + LVi, 
t 

where 't' ranges over the set of elements y' - kexi of (Fhit, with k = 1, 2, .... 
We claim that J'i is a simple Li-module. In order to prove this, consider 

any sub Li-module, P say, of J'i other than J'i. We have 

P = P 11 (Fv) + L P 11 Vi. 
t 

Since P =F J'i, we must have P 11 (Fv) = (0), so that P c: Lt Vi. Now, if 
't' = y' - kex;, then Vi = F/;<· v c: Vy-k«,. Thus, we have P c: Lr.>o Vl'-klZ" 
and we know from the above that x j • P c: P for each indexj. 

By the part of the theorem we have already proved, applied to the simple 
sub L-modules of L, we know that if ex, P and ex + P are roots and ex =F 0 
then [L«, Lp] =F (0). If, moreover, ex and P are positive it follows that 

[L«, Lp] = L«+p, 

because L«+p is I-dimensional. Therefore, we conclude from the above 
that X«· P c: P for every positive root ex. Since P is contained in L ""1 V 6, 

and since this space is stable under the action of H and the L_IZ's with ex a 
positive root, it follows that the sub L-module of V that is generated by P 
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is contained in L"T'7 V". Since V is a simple L-module, this implies that 
P = (0). Our conclusion is that V, is a simple LI-module with dominant 
weight i. 

On the other hand, we can exhibit a finite-dimensional simple LI-module 
with dominant weight i. This module has an F-basis fo, ... , h(hd' and the 
action of LI is given by the following formulas: 

XI . h = kh- h 

YI . h = (')I(h,) - k)h+ h 

hi' h = (y(hl ) - 2k)h· 
By the unicity part of Theorem 5.1, this LI-module is isomorphic with v" 
so that V, is finite-dimensional. 

Let M be any finite-dimensional sub LI-module of V. We have 

Li · (L . M) c: L· (LI · M) + [L" L] . M c: L . M, 

so that L . M is again a finite-dimensional Li-module. This shows that the 
sum of the family of all finite-dimensional sub LI-modules of V is a sub 
L-module of V, so that it coincides with V. In other words, V is locally finite 
as an Lrmodule. 

Now let ~ be any weight of V. The space Lt VlI+hl, where k ranges over the 
set of integers, is evidently a sub LI-module of V. Since V is a locally finite L1-

module, there is afinite-dimensional non-zero Li-module M c: It VlI+tlZl. We 
may apply our above argument involving the indices J and J', operating on M 
and letting Xi and YI play the roles ofthe former X and y. In this way, we obtain 
the conclusion that 1t1Z1(~) is also a weight of V. It follows, as in the finite­
dimensional case, that O'(~) is a weight of V for every weight ~ of V and every 
element 0' ofthe Weyl group. 

We know from Theorem 5.1 that every V" is finite-dimensional. There­
fore, in order to prove that V is finite-dimensional, it suffices to show that 
the set of weights of V is finite. Let ~ be a weight of V, and let J.l be the largest 
among the weights u(tS) with 0' in the Weyl group. Then J.l ~ 1t1Z(J.t) for every 
non-zero root oc. Let R denote the space spanned by the set of all roots over 
the field of rational numbers. Since each ')I(hl) is aJl integer, R contains ')I, 

and hence all the weights of V. We have 

J.l·OC 
1t1Z(J.t) = J.l - 2-oc. 

oc·oc 

Hence, if oc > 0, we have J.l' oc ~ O. Thus, every weight of V is the transform 
by an element ofthe Weyl group of a weight J.l with the property that J.l • oc ~ 0 
for every positive root oc. Since J.l = ')I - p, where p is a sum of positive 
roots, we have 

')1'')1 = J.l'J.l + 2J.l·p + p.p ~ J.l'J.l, 
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which shows that the set of these weights Jl is bounded in R. Since these 
weights are all of the form ')I - LI mlIX" where the mts are non-negative 
integers, they make up a discrete subset of R. It follows that the set of Jl'S 
is finite. Since the Weyl group is finite, this implies that the set of all weights 
of V is finite. 0 

Notes 

1. Let G be an irreducible algebraic group over an algebraically closed 
field of characteristic 0, and suppose that !t'(G) is semisimple. Then the 
Cartan subaIgebras of 9( G) are the Lie algebras of the maximal toroids 
in G and, via this correspondence, the Weyl group of this chapter is iso­
morphic with that of the end of Chapter XIII. 

2. A concise account of the representation theory of semisimple Lie algebras 
is given by J-P. Serre in [15], part of which has been embodied above. 

3. In the notation of Theorem 6.1, let V be a finite-dimensional L-module, ~ 
a weight of V and IX a non-zero root. If k is an integer such that ~ + kIX is a 
weight of V then k must belong to the interval [-~II.' ~~. In order to see this, 
suppose that there are integers k > ~II. such that ~ + kIX is a weight, and let 
k1, ... , kp be all of them. By the definition of ~II., we must actually have 
kl > 1 + ~II. for every i. Put 

p 
W = L v.,+A:,II.. 

1=1 

Clearly, W is stable under H + LII. + L_II.' As in the proof of Theorem 
3.1, one sees that the trace of the endomorphism of W corresponding to 
H II. is O. This yields 

p 

L (~HJ + 2kl)dim(Vl+l11I.) = 0, 
i=1 

whence we see that ~(HII.) + 2(1 + ~~ < O. Since ~HII.) = ~II. - ~II., this is a 
contradiction. Similarly, one sees that there can be no integer k < -~II. such 
that ~ + kIX is a weight of V. 



Chapter XVIII 

From Lie Algebras to Groups 

In this final chapter, we apply the above results on Lie algebras in order to 
bring the Lie theory of algebraic groups over fields of characteristic 0 to a 
satisfactory state of completeness. 

Section 1 establishes the adjoint criterion for a Lie algebra to be that of an 
algebraic group. This is refined in Section 2, where it is shown that the 
isomorphism classes of Lie algebras satisfying the adjoint criterion are in 
bijective correspondence with the isomorphism classes of irreducible 
algebraic groups with unipotent centers. 

In Section 3, we deal with the basic facts concerning group coverings and 
simply connected groups. 

Section 4 prepares the ground for Section 5, which provides a construction 
of the simply connected algebraic group with a given Lie algebra. For 
this to exist, it is necessary and sufficient that the radical of the Lie algebra 
be nilpotent. An irreducible affine algebraic group over an algebraically 
closed field of characteristic 0 has a universal covering in the category of 
affine algebraic groups if and only if its radical is unipotent. 

1. Let G be an affine algebraic group over an algebraically closed field F 
of characteristic 0, and let oc denote the adjoint representation of G. Then 
oc(G) is an algebraic subgroup of AutF(.!l'(G», and its Lie algebra is the image 
of .!l'(G) in the Lie algebra End~.!l'(G» of Aut~.!l'(G» under the adjoint 
representation T 1-+ D. of .!l'(G). Thus, the image of .!l'(G) under its adjoint 
representation is an algebraic sub Lie algebra of .!l'(Autrt.!l'(G», in the 
sense of Section VIII.3. We are concerned with a converse of this result, 
whose crude part is as follows. 

249 
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Theorem1.1. Let F be afield of characteristic 0, and suppose that L is afinite­
dimensional F -Lie algebra having the property that its adjoint image in Endp(L) 
is the Lie algebra of an i"educible algebraic subgroup H of Autp(L). Then 
there is an affine algebraic F -group G such that !R( G) is isomorphic with L. 
In the case where F is algebraically closed, G may be so chosen that its center is 
unipotent. 

PROOF. Appealing to Theorem VIII.4.3, we make a semidirect product 
decomposition H = H. ><I P, where P is linearly reductive. Let ex: L - !R(H) 
be the surjective Lie algebra homomorphism defined by the adjoint repre­
sentation of L, and let M denote the maximum nilpotent ideal of L. Now, 
!R(H) is the semidirect Lie algebra sum !R(H.) + !R(P). Since the action of 
!R(P) on L is semisimple and !R(H.) is an ideal of !R(H) whose action on L 
is nilpotent, it follows that oc(M) = !R(H u). 

Let us write S for the sub Lie algebra ex- l(!R(P» of L, so that L = M + S. 
Evidently, S and M n S are stable under the action of !R(P) on L. Since this 
action is semisimple, it follows that there is an !R(P)-module complement, 
T say, for M n S in S. The restriction of ex to T is a linear isomorphism 
from T to !R(P), because the kernel of ex is contained in M. Moreover, we 
have 

[T, T] = oc(TXT) = !R(PXT) c T, 

showing that T is a sub Lie algebra of L. From L = M + S, we see that L 
is the semi direct Lie algebra sum M + T. 

Now let us consider the unipotent affine algebraic F-group f§(£f(M» 
obtained from M by Theorem XVI.4.2. Via the composite functor f§ 0 £f, 
the action of P by Lie algebra automorphisms on M determines an action 
of P by affine algebraic group automorphisms on f§(£f(M». Using this, 
we define a semidirect product group f§(£f(M» ><I P. The algebra of poly­
nomial functions of f§(£f(M» is ~(M). In proving Theorem XV.1I, we 
showed that the algebra of polynomial functions of a unipotent algebraic 
group over a field of characteristic 0 is locally finite under the action of the 
group of algebraic group automorphisms. In particular, £f(M) is locally 
finite as a right P-module. It is easy to see from this that f§(£f(M» ><I P is 
an affine algebraic F -group whose algebra of polynomial functions is 
£f(M) ® (JJ(P). The Lie algebra of this semidirect product is the semidirect 
Lie algebra sum M + !R(P), and we have seen above that this is isomorphic 
withL. 

Now let Z denote the center of f§(~(M» ><I P. Then !R(Z) may be identi­
fied with the center of L, so that !R(Z) c M. This shows that Z t is contained 
in rJ(£f(M». Since f§(~(M» is unipotent, so is therefore Zt, and we have 
Zl = Z n f§(~(M». Now it is clear that Z = Zt x D, where D is a finite 
central subgroup of P. 

If F is algebraically closed, then the factor group (f§(£f(M» ><I P)/D is an 
affine algebraic F-group whose Lie algebra is isomorphic with M + !R(P), 
via the differential of the canonical morphism. The center of this factor 
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group coincides with the canonical image of Z, because the original group 
is irreducible and the kernel of the canonical morphism is the finite group D. 
Thus, the center of our factor group is the canonical image of Z b and this is 
unipotent. 0 

2. Let L be a finite-dimensional Lie algebra, and let M be the maximum 
nilpotent ideal of L. We say that L is regular if the centralizer of M in L 
is contained in M. 

Lemma 2.1. Let L be a finite-dimensional Lie algebra over a field of charac­
teristic O. There is one and only one direct Lie algebra decomposition 

L = Lo + Lb 

where Lo is semisimple and L t is regular. 

PROOF. Let K denote the centralizer of M in L, and let T be the radical of K. 
Since K is an ideal of L, its radical T is contained in the radical of L. An 
application of Theorem VII.3.2 shows that [T, T] c: M, whence 

[T, [T, T]] = (0). 

Thus, T is a nilpotent ideal of L, so that we must have T c: M and 
[T, K] = (0). Using Theorem VII.3.1, we write K as a semidirect Lie algebra 
sum T + S, where S is a semisimple sub Lie algebra of K. Since [T, K] = (0), 
this is actually a direct Lie algebra sum, and S = [K, K]. 

We put Lo = [K, K], and we define L t as the centralizer of Lo in L. 
From the fact that Lo is a semisimple ideal of L, it follows that L is the 
direct Lie algebra sum Lo + Lt. In fact, if x is any element of L, the derivation 
effected by x in Lo is of the form Dy with y in Lo, by Proposition VII.2.6. 
Now x = Y + (x - y), and x - y belongs to Lt. Evidently, the maximum 
nilpotent ideal of L t is M, and the centralizer of M in Lt is T, which we 
know to lie in M. Thus, L t is regular. 

Now consider any direct Lie algebra decomposition L = U + V, where 
U is semisimple and V is regular. Evidently, the maximum nilpotent ideal 
of V coincides with M, and we have K = U + (K n M). This shows that 
U = [K,K] = Lo.Clearly, VisthecentralizerofUinL,sothat V = Lt. 0 

In connection with the relations between isomorphisms of algebraic 
groups and isomorphisms of their Lie algebras, there is an unavoidable 
difficulty, as follows. Let H be an irreducible algebraic group, and let .I(H) 
denote the ideal !l'(Hu) + [!l'(H), !l'(H)] of !l'(H). We assume that the base 
field is algebraically closed and of characteristic O. Then 

Let ~(H) denote centralizer of !l'(H) in !l'(Hu)' Now suppose that s is a 
linear map from !l'(H) to !r(H) whose kernel contains .I(H). Let (1 be the 
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map from !t'(H) to !t'(H) given by O'(x) = X + s(x) for every element x 
of !t'(H). One verifies directly that 0' is a Lie algebra automorphism of 
!t'(H). However, unless s = 0, 0' is not the differential of an algebraic group 
automorphism of H. Indeed, if 't is a morphism of algebraic groups from 
H to H such that 'to = 0', then 't(h) = hp(h), with p(h) in the centralizer of H 
in Hu' Now p is a morphism of algebraic groups from H to Hu, and the 
kernel of p contains Hu' Since H/Hu is linearly reductive, it follows that p 
is trivial, so that 't is the identity map. 

Let us call Lie algebra automorphisms like the above 0' exceptional. 

Theorem 2.2. Let F be an algebraically closed field of characteristic 0, and 
suppose that G and H are irreducible affine algebraic F -groups with unipotent 
centers. Suppose that p is a Lie algebra isomorphism from !l'(G) to !t'(H). 
Then there is an algebraic group isomorphism 0' from G to H such that 0" 0 P - 1 

is an exceptional automorphism of !l'(H). 

PROOF. Let the subscripts 0 and 1 on Lie algebras indicate the components 
of the decomposition given by Lemma 2.1. Clearly, a Lie algebra isomorphism 
from !t'(G) to !t'(H) restricts to Lie algebra isomorphisms !l'(G)o -+ !l'(H)o 
and !t'(G)1 -+ !t'(H)I' It is clear from the definition of these components 
that they are the Lie algebras of irreducible normal algebraic subgroups 
Go and G1 of G, and Ho and HI of H. Moreover, the Lie algebra of Go n G1 

is (0), so that Go n G1 is a finite central subgroup of G. Since the center of G 
is unipotent, it follows that Go n G1 is trivial, so that G is the direct product 
Go x G1• Similarly, H is the direct product Ho x HI' 

This reduces the theorem to two special cases, where !l'(G) and !l'(H) 
are semisimple, and where !l'(G) and !t'(H) are regular. In the first case, 
the adjoint representations of G and H are isomorphisms identifying G 
and H with the irreducible components of the identity in the groups of all 
Lie algebra automorphisms of !t'(G) and !t'(H). The proof of this fact 
consists in combining the result of the end of Section XV.3 concerning the 
image of the adjoint representation with the remark that the kernel of the 
adjoint representation is a finite central subgroup and hence trivial. Now, 
if p is a Lie algebra isomorphism from !t'(G) to !t'(H), the required iso­
morphism from G to H is the map sending each element x of G, viewed as 
an automorphism of !t'( G), onto the automorphism pox 0 p - 1 of !l'(H). 

We are left with the case where !t'(G) and !l'(H) are regular. In this case, 
we make a semidirect product decomposition G = Gu><l P, where P is an 
irreducible linearly reductive algebraic subgroup of G. Then !l'(P) is the 
direct Lie algebra sum of its center, T say, and a semisimple Lie algebra, S 
say. Moreover, the adjoint representation of T on !t'(G) is semisimple. 
Evidently, the maximum nilpotent ideal M of !t'( G) is of the form!l'( Gu) + T1, 
with Tl c: T. The adjoint representation of Tl on !l'(G) is semisimple, as 
well as nilpotent, so that Tl lies in the center of !t'(G). Since the center of G 
is unipotent, we must therefore have Tl c: !l'(GII), whence Tl = (0). Thus, 
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M = !l'(Gu). Since !l'(G) is regular, it follows that the centralizer of !l'(GJ 
in !l'(P) is (0), which implies that the centralizer of G .. in P is finite. Since 
this group centralizer is a normal subgroup of the irreducible group P, it 
must lie in the center of P, and therefore in the center of G. Since the center 
of G is unipotent, it follows that the centralizer of G .. in P is trivial. Therefore, 
the adjoint representation of P on !l'(Gu) is an isomorphism of affine algebraic 
groups IX: P -+ IX(P), where IX(P) is an irreducible algebraic subgroup of 
the group of all Lie algebra automorphisms of !l'(GJ, the Lie algebra of 
IX(P) being the adjoint image of !l'(P) in the Lie algebra of all derivations 
of !l'(G .. ). 

The given Lie algebra isomorphism p from !l'( G) to !l'(H) must send the 
maximum nilpotent ideal !l'(G .. ) of !l'(G) onto the maximum nilpotent 
ideal !l'(Hu) of !l'(H).1t is clear from Theorem XVI.4.2 that there is an alge­
braic group isomorphism (1 .. from G .. to H .. whose differential is the restriction 
of p to !l'(G .. ). 

From the situation in !l'(G), it is clear that !l'(H) is the semidirect Lie 
algebra sum !l'(H .. ) + p(!l'(P», that the adjoint representation of p(!l'(P» 
on !l'(H) is semisimple, and that the adjoint representation of P(!l'(P» on 
!l'(Hu) is injective. Let Q denote the smallest algebraic subgroup of H whose 
Lie algebra contains p(!l'(P». It is clear from the results of Chapter IV that the 
sub Q-modules of !l'(H) coincide with the sub p(!l'(P»-modules. Therefore, 
the adjoint representation of Q on !l'(H) is semisimple. It follows that Q .. 
is contained in the center of H. Since the center of H is unipotent, it is contained 
in Hu, whence Qu c Hu. 

Since !l'(P) is the direct sum of its center T and the semisimple ideal S, the 
group Q is the product in H ofthe element-wise commuting subgroups Hp(T) 
and Hp(s), where we use the notation of Theorem IV.2.2. The semisimple Lie 
algebra P(S) is an algebraic sub Lie algebra of !l'(H), whence we have 
!l'(Hp(s) = p(S). On the other hand, !l'(Hp(T) lies in the center of !l'(Q). 
Consequently,!l'( Q) is the direct Lie algebra sum !l'(H pm) + p(S). Moreover, 
it is now clear that H pIT) is the direct product Q .. x R, where R is a toroid 
contained in the center of Q. 

For every element x of p(T), let us write 

x = s(x) + (x - s(x» 

with s(x) in !l'(Q .. ) and x - s(x) in !l'(R). Next, observe that !l'(H), as an 
F-space, is the direct sum of !l'(Hu), p(S) and p(T), and that [!l'(H), !l'(H)] is 
contained in !l'(H u) + p(S). Therefore, we have 

p(T) ("\ (!l'(H .. ) + [!l'(H), !l'(H)]) = (0) 

Since !l'(Qu) is contained in ~(H), it is clear from this that s can be extended 
to yield a linear map from !l'(H) to ~(H) whose kernel contains !l'(H .. ) + 
[!l'(H), !l'(H)]. If '7 is the isomorphism from !l'(G) to !l'(H) that is obtained 
by composing p with the exceptional automorphism of !l'(H) defined by -s, 
we have 

'7(!l'(P» = !l'(R) + p(S) = !l'(RHp(s). 
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This reduces the theorem to the case where p(!l'(P» is the Lie algebra of a 
linearly reductive subgroup Q of H such that H is the semidirect product 
H,. ><I Q. We shall show that, in this case, p is the differential of an algebraic 
group isomorphism (f from G to H. 

As in the case of G and P treated above, we see that the adjoint representa­
tion of Q on !l'(H,.) is actually an isomorphism of affine algebraic groups 
p: Q ~ P(Q), where P(Q) is an irreducible algebraic subgroup of the group 
of all Lie algebra automorphisms of !l'(H ,.), its Lie algebra being the adjoint 
image of p(!l'(P» in the Lie algebra of all derivations of !l'(H,.). Clearly, 
we have 

P(Q) = Pu ° a(P) ° p; 1, 

where p,. is the isomorphism from !l'(G,.} to !l'(H,.) obtained from p by 
restriction. Hence, we have an isomorphism of algebraic groups (fr: P ~ Q, 
where 

(fr(P) = P- 1(p,. oa(p) op;l) 

for every element p of P. The required isomorphism (f from G to H is given by 
u(xp) = (fu(x)(f,(P) for every element x of Gu and every element p of P. 0 

Combining Theorems 1.1 and 2.2, we have the result that if L is a finite­
dimensional Lie algebra over the algebraically closed field F of characteristic 
o whose adjoint image is algebraic, then there is one and only one isomorphism 
class of irreducible affine algebraic F -groups with unipotent centers whose 
Lie algebras are isomorphic with L. 

If G is as in Theorem 2.2 then it is easy to see that the group of exceptional 
automorphisms of !l'(G) is normalized by the image in Aut(!l'(G» of the 
group "/r(G) of all algebraic group automorphisms of G. Directly, from the 
definition, one sees that the group of exceptional automorphisms is an 
algebraic subgroup of the group of all Lie algebra automorphisms. Theorem 
2.2 yields the following corollary. 

Corollary 2.3. Let F be an algebraically closed field of characteristic 0, and 
let G be an irreducible affine algebraic F -group whose center is unipotent. Then 
the group of all Lie algebra automorphisms of !l'( G) is the semidirect product 
E><I W, where E is the group of exceptional automorphisms, and W is the 
canonical isomorphic image of "/r( G). 

PROOF. By Theorem XV.4.3, "/r(G) is an algebraic automorphism group 
of G, and thus is an affine algebraic F-group in the canonical fashion of 
Chapter xv. By Proposition XV.2.3, the canonical map from "/r(G) to 
Aut(!l'( G» is a morphism of affine algebraic groups. It follows from Corollary 
IV.3.2 that this morphism is injective. Since F is of characteristic 0, it is 
therefore an algebraic group isomorphism from "/r(G) to W. By Theorem 
2.2, EW coincides with the group of all Lie algebra automorphisms of 
!l'(G). Since En W is trivial, it follows that the group of automorphisms 
of !l'(G) is the semidirect product E><I W. 0 
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3. Suppose that G and H are irreducible affine algebraic groups over an 
algebraically closed field F. A surjective morphism of affine algebraic 
F -groups from G to H is called a group covering if its kernel K is finite (and 
hence central in G) and the induced bijective morphism GIK -+ H is an 
isomorphism of algebraic groups. If F is of characteristic 0 then the last 
requirement is always satisfied, so that then a group covering is simply a 
surjective morphism between irreducible groups with finite kernel. We say 
that an irreducible algebraic group H is simply connected if every covering to 
H is an isomorphism of algebraic groups. 

Proposition 3.1. Let G be a simply connected affine algebraic group over an 
algebraically closed./ield, and let N be a normal irreducible algebraic subgroup 
ofG. Then GIN is simply connected. 

PROOF. Let 1t denote the canonical morphism from G to GIN, and consider a 
group covering ,,: H -+ GIN. We must show that the kernel, K say, of" is 
trivial. Consider the fibered product P = H X(II.It) G, i.e., the algebraic 
subgroup of the direct product H x G consisting of the elements (h, g) such 
that ,,(h) = 7t(g). The factor group of P by the canonical image of N is iso­
morphic with H. Since Hand N are irreducible, it follows that P is irreducible. 
Let y denote projection from P to G. It is easy to see that y is a group covering 
whose kernel is the canonical image of K in P. Since G is simply connected, 
it follows that K is trivial. 0 

Let G be any affine algebraic group over an algebraically closed field. 
The subgroup of G that is generated by the family of all irreducible solvable 
normal algebraic subgroups of G is still a member of this family. It is called the 
radical of G. Evidently, it contains Gu whenever Gu is irreducible. 

Proposition 3.2. Let G be a simply connected affine algebraic group over an 
algebraically closed./ield of characteristic O. Then the radical ofG is unipotent. 

PROOF. Write P for GIGu, and note that P is an irreducible linearly reductive 
affine algebraic group. Appealing to Theorems VII.l.2 and VIII.3.3, we see 
that ~([P, P]) is semisimple. By Proposition 3.1, P, and hence also PI[P, P], 
is simply connected. On the other hand, PI[P, P] is an irreducible abelian 
linearly reductive algebraic group, and therefore a toroid. Evidently, a 
non-trivial toroid is not simply connected. Hence, we have P = [P, P], so 
that ~(P) is semisimple. This implies that P has no non-trivial irreducible 
solvable normal algebraic subgroup, because the Lie algebra of such a 
subgroup is a solvable ideal of ~(P). Therefore, G" coincides with the 
radical of G. 0 

Theorem 3.3. Let G be an irreducible affine algebraic group over an algebrai­
cally closed ./ield of characteristic 0, and let R denote the radical of G. Then G 
is simply connected if and only if R is unipotent and GIR is simply connected. 
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PROOF. The necessity of the conditions has already been established in 
Proposition 3.1 and 3.2. Now suppose that the conditions are satisfied, 
and consider a group covering,,: H -+ G, with kernel K. Let S denote the 
irreducible component of the neutral element in ,,- l(R). Then S is an irre­
ducible normal algebraic subgroup of H, and" induces a group covering 
,,': HIS -+ GIR. Since GIR is simply connected, the kernel of ,,' is trivial, 
which means that K c: S. Clearly, the restriction of" to S is a group covering 
of R. We have just seen that the kernel of this group covering coincides 
with K. Since R is solvable, so is S. Hence, S = SII ><I T, where T is a toroid. 
Since R is unipotent, ,,(T) must be trivial, so that T c: K. Since K is finite, 
this shows that T is trivial, which means that S is unipotent. Finally, since 
the base field is of characteristic 0, the finite subgroup K of S must therefore 
be trivial. 0 

Proposition 3.4. Let G be as in Theorem 3.3. If G is simply connected, so is 
every irreducible normal algebraic subgroup of G. 

PROOF. Let R denote the radical of G, and let N be any irreducible normal 
algebraic subgroup of G. Clearly, N (') R is a normal algebraic subgroup 
of N, and NI(N (') R) may be identified with its canonical image in GIR. 
Since !l'(GIR) is semisimple, so is the ideal !l'(NI(N (') R» of !l'(GIR), and 
!l'(GIR) is the direct Lie algebra sum of !l'(N I(N (') R» and a complementary 
semisimple ideal, J say. By Theorem VIII.3.2, J is an algebraic sub Lie 
algebra of !l'(GIR). Thus, there is an irreducible normal algebraic subgroup 
Q of GIR such that !l'(Q) = J.1t follows that GIR is the image of the direct 
product (NI(N (') R» x Q by the evident morphism of algebraic groups. 
Since the intersection of J with the Lie algebra of N I(N (') R) is (0), the 
intersection of Q with NI(N (') R) is finite, so that the kernel of our morphism 
of algebraic groups is finite. By Proposition 3.1, GIR is simply connected, 
which implies that this finite kernel is trivial. Hence, N I(N (') R) is iso­
morphic with (GIR)IQ. Since Q is irreducible, it follows, by virtue of Pro­
position 3.1, that N I(N (') R) is simply connected. By Proposition 3.2, R is 
unipotent, so that N (') R is unipotent. Now Theorem 3.3 applies and shows 
that N is simply connected. 0 

4. Let L be a finite-dimensional Lie algebra over a field F, and suppose 
that L is a semidirect Lie algebra sum K + H, where K is an ideal and H a 
complementary sub Lie algebra of L. Then we may write tf/(L) as the tensor 
product F-algebra tf/(H) ® tf/(K). We describe a corresponding tensor 
product decomposition of the continuous dual tf/(L)'. Note that L acts 
on tf/(L)' by F-algebra derivations, making tf/(L)' an L-module. The trans­
form of an elementfof tf/(L)' by an element x of L is given by 

(x· f)(u) = f(ux). 
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Via the canonical morphism L ~ L/K = H, we obtain an identification 
of t1/J(H)' with the K-annihilated sub F-algebra (t1/J(L)')K of t1/J(L)'. 

On the other hand, we make t1/J(K)' into an L-module as follows. Let J 
be an element of t1/J(K)'. If k is an element of K, we define the transform 
k· fas above by 

(k· f)(u) = f(uk). 

If h is an element of H, we define h . f by 

noting that, for every element u of t1/J(K), the element uh - hu of OU(L) 
actually belongs to t1/J(K), owing to the fact that K is an ideal of L. One 
verifies directly that these definitions, extended additively, make OU(K), 
into an L-module, the main point being that 

h . (k . f) - k· (h . f) = [h, k] . f 
This shows also that, iff is the restriction to t1/J(K) of an element of t1/J(L)" 
then f generates afinite-dimensional sub L-module of OU(K)'. 

Conversely, suppose that f is an element of t1/J(K)' belonging to some 
finite-dimensional sub L-module, T say, of t1/J(K)'. Using the canonically 
induced t1/J(L)-module structure of T, define the function f+ on t1/J(L) by 
f+(u) = (u . f)(1) for every element u of t1/J(L). The finite-dimensionality 
of T implies that f + belongs to t1/J(L)'. It follows directly from the definition 
that the restriction off + to t1/J(K) coincides withf, and thatf + is annihilated 
by H under the right L-module structure ofOU(L)', which is given by (/. u)(v) 
= f(uv). 

Our conclusion is that the restriction image of t1/J(L)' in t1/J(K)' coincides 
with the sum of the family qf all finite-dimensional sub L-modules of OU(K)" 
and the map sending each f onto f + pre inverts the restriction map and has 
the right H-annihilated part H(OU(L)') of t1/J(L)' as its image. 

Finally, we show that the multiplication map 

(OU(L),)K ® H(t1/J(L)') ~ OU(L)" 

is an isomorphism of F-algebras. In order to show that this map is surjective, 
consider an arbitrary element f of t1/J(L)" and let (/1' ... , In) be an F -basis of 
the space spanned by the L-transforms off. This yields elements g 1, ... , gn of 
t1/J(L)' such that 

n 

V· f = L gi(V)/;, 
i= 1 

for every element l' of t1/J(L). If u is in t1/J(H) and v is in OU(K), we obtain 
n 

f(ur) = L Ji(u)gll')· 
i= 1 

Let gi be the element of H(t1/J(L)') obtained by first restricting gi to OU(K) and 
then applying the above map, indicated by +. Similarly, let fi denote the 
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element of ('PI(L)'f corresponding to the restriction of it to 'PI(H). If ~ is 
the comultiplication of 'PI(L), we have 

(f;g;)(uv) = (f, ® g;)(~(u)<5(v». 
Writing this out, and noting that g, vanishes on H'PI(L) and fi vanishes on 
'PI(L)K, we see that it reduces to the single term f'(u)g'l..v) = .r.{u)g~v). 
Hence, the above expression for f(ul') yields 

f(uv) = (t fi9i) (uv), 
1=1 

whence f = L7 = 1 fig;, showing that fbelongs to the image of 

('PI(L)')K ® H('PI(L)') 

We have just seen that (fg)(uv) = f(u)g(v) whenever f E ('PI(L),)K, 
9 E H('PI(L)'), u E 'PI(H) and v E 'PI(K). From this, it is easy to see that our multi­
plication map is also injective. 

Now let us suppose that the ideal K of L is nilpotent. Letfbe an element 
of 'PI(K)' that vanishes on some power of the ideal generated by K. Then it 
is clear that every L-transform off vanishes on the same power of the ideal 
generated by K. Therefore, the sub L-module of 'PI(K)' generated by f is 
finite-dimensional, so thatfbelongs to the restriction image of'PI(L)'. Thus, 
if Q denotes the sub Hopf algebra of 'PI(L)' consisting of the elements whose 
restrictions to 'PI(K) lie in the algebra ~(K) of nilpotent representative 
functions, we have Q = ('PI(L),)K ® HQ, and the restriction map induces an 
isomorphism from HQ to ~(K). 

We apply the above to the following situation. Let L be a finite-dimen­
sional Lie algebra over a field F of characteristic 0, and assume that the 
radical, R say, of L is nilpotent. We have a semidirect decomposition 
L = R + S, where S is a semisimple sub Lie algebra of L. Extending the 
notation of Section XVI.4, we define ~(L) as the sub Hopf algebra of 'PI(L)' 
consisting of the elements whose restrictions to 'PI(R) belong to ~(R). 
From the above, we see that, as an F-algebra, ~(L) is isomorphic with 
'PI(S)' ® ~R). 

We claim that 'PI(S)' is finitely generated as an F-algebra. First, consider 
the case where F is algebraically closed. In this case, we fix a Cartan sub­
algebra of S and a fundamental system of roots. By Theorem XVII.6.1, 
there is a set (Yl"'" Yr) of weights such that the finite sums, with repetitions 
allowed, of the Yt's are precisely the dominant weights of the finite-dimen­
sional simple S-modules. For each i, choose a finite-dimensional simple 
S-module Mi having YI as its dominant weight. Now observe that, if Ph' .. ,Pr 
are non-negative integers, then the tensor product S-module 

®1'1(M1) ® ... ®Pr(Mr) 

has an S-simple component whose dominant weight is LI= 1 PiYj' Con­
sequently, every finite-dimensional S-module is isomorphic with a sum of 
submodules of tensor products of the M/s. It follows immediately from 
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this that every representative function on q{(S) is a sum of products of 
representative functions associated with one of the M/s. In particular, 
q{(S)' is finitely generated as an F -algebra. 

IC F is not algebraically closed, let F' be an algebraic closure of F, and 
consider the Lie algebra S' = S ® F'. Evidently, ~(S') = ~(S) ® F'. Let 
M' be a finite-dimensional S'-module. Choose an F-basis (St, ... , sn) of S, 
and an F'-basis (Uh"" Uk) of M'. Write each Sj' Uj as an F'-linear combina­
tion of the u,'s, and let K be the field generated over F by the coefficients in 
F' that appear. Then K is of finite F -dimension, so that the K -space spanned 
by the u/s is a sub S-module, M say, of M' that is of finite dimension as an 
F-space. We have M' = M ®KF', which is an S'-module homomorphic 
image of M ®F F'. This shows that ~(S')' coincides with q{(S)' ® F'. More­
over, it shows that every finite-dimensional S'-module is semisimple. From 
S = [S, S], we have S' = [S', S']. Therefore, Theorem VII.1.2 shows that 
S' is semisimple, and we have from the above that q{(S)' ® F' is finitely 
generated as an F' -algebra. Clearly, this implies that ~(S)' is finitely generated 
as an F -algebra. 

We know from Section XVI.4 that !f(R) is finitely generated as an F­
algebra. Therefore, we may summarize as follows. 

Theorem 4.1. Let L be afinite-dimensional Lie algebra with nilpotent radical R 
over afield oj characteristic O. Then the Hopj algebra !f(L) ojthe R-nilpotent 
representative junctions on q{(L) is finitely generated as an F-algebra, and 
F-algebra isomorphic with ~(L/R)' ® !f(R). 

5. Let us suppose that our base field F is algebraically closed and of charac­
teristic O. Then the Hopf algebra !f(L) of Theorem 4.1 may be regarded as 
the algebra of polynomial functions of the affine algebraic F -group <6(!f(L». 
We wish to show that the Lie algebra of this group may be identified with 
L. The evaluations at the elements of R annihilate the factor q{(LjR)', and 
we know from Theorem XV1.4.2 that they make up the Lie algebra R of 
<6(!f(R» on the factor !f(R). On the other hand, the evaluations at the 
elements of S = L/R annihilate the factor !f(R). Therefore, we shall have the 
desired conclusion once we have established it in the case where L is semi­
simple. 

In that case, let G be the irreducible component of the identity in the 
group of all Lie algebra automorphisms of L. We know that !£(G) may be 
identified with L, via the adjoint representation of L. By Theorem XVI.3.1, 
&'(G) may therefore be identified with a sub Hopfalgebra ofq{(L)'. It follows 
that the map associating with each element of L the evaluation of ~(L)' at 
that element is an injective Lie algebra homomorphism from L to the Lie 
algebra of <6(q{(L)'). 

Now write K for <6(q{(L)'), and let M be a finite-dimensional sub K­
module of q{(L)' that generates ~(L)' as an F-algebra. We may identify K 
with its image in AutF(M). The image of L in EndrlM) is a sub Lie algebra 
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of 9'(K). Since L = [L, L], the image of L in Endp(M) is an algebraic sub 
Lie algebra of .!l'(K). Let KL be the corresponding irreducible algebraic 
subgroup of K, so that .!l'(KL) is the image of Lin Endp(M). Now we drop M 
from our situation, merely retaining the conclusion that there is an irreduc­
ible algebraic subgroup KL of K whose Lie algebra is the canonical image 
of L in 9'(K). Let Q be the annihilator of KL in '¥I(L)'. Then Q is stable 
under the action of KL, and hence stable also under the action of '¥I(L). 
Therefore, iffis an element of Q and u an element of '¥I(L), we have 

(u· f)(lK) = 0, 

i.e.,f(u) = 0. Thus, Q = (0), whence KL = K and L = .!l'(K). 
We shall write t6(L) for the affine algebraic F -group t6(!f(L». 

Theorem 5.1. Let F be an algebraically closed field of characteristic 0, and let 
L be a .linite-dimensional F-Lie algebra with nilpotent radical R. Then f'§(L} 
is simply connected, its Lie algebra may be identified with L, and its algebra 
of polynomial functions is !f(L). IfG is an irreducible affine algebraic F-group 
with unipotent radical, and if (I is a surjective homomorphism from L to 9'( G), 
then there is a surjective morphism of affine algebraic groups (1+: t§(L) -+ G 
whose differential coincides with (I. 

PROOF. What remains to be proved is the last statement concerning (I, and the 
fact that t6(L) is simply connected. However, if the last statement is applied 
to the inverse of the differential of a group covering oft6(L), it shows that the 
group covering is an isomorphism. Thus, it suffices to prove the last state­
ment of the theorem. 

The surjective Lie algebra homomorphism (I defines a surjective morphism 
of Hopf algebras from '¥I(L) to '¥I(9'(G» in the canonical fashion. This 
dualizes into an injective morphism of Hopf algebras from '¥I(.!l'(G»' to 
'¥I(L)'. Composing this with the morphism 11: of Theorem XVI.3.1, we obtain 
an injective morphism of Hopf algebras (1* from &'(G) to '¥I(L)'. 

The restriction of (I to R is a surjective Lie algebra homomorphism from 
R to the radical of .!l'(G). Since the radical of G is unipotent, &'(G) is locally 
nilpotent as a module for the radical of .!l'(G). This shows that (1* actually 
sends &'(G) into the sub Hopf algebra !f(L) of '¥I(L)'. The transpose of (1* 

is the required morphism (1+. D 

Theorem 5.2. Let F be an algebraically closed field of characteristic 0, and let 
,,: H -+ G be a covering of irreducible affine algebraic F -groups. Suppose 
that T is a simply connected affine algebraic F-group, and T is a morphism 
of affine algebraic F-groups from T to G. Then there is one and only one 
morphism of affine algebraic F-groups T": T -+ H such that" 0 -r" = T. 

PROOF. By Theorem 5.1, we may identify T with t§(.!l'(T». Now T(T) is an 
irreducible algebraic subgroup of G, and there is evidently an irreducible 
algebraic subgroup K of H such that the restriction of " to K is a group 
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covering of T(T). Therefore, we now assume without loss of generality 
that T is surjective. Then the radical of G is the image under T of the radical 
of T, whence the radical of G is unipotent. The radical of H is the irreducible 
component of the neutral element in the inverse image of the radical of G, 
with respect to ". Since unipotent affine algebraic F-groups are simply 
connected, it follows that the restriction of " to the radical of H is an iso­
morphism onto the radical of G. Therefore, the radical of H is unipotent. 
Now the differential of" is a Lie algebra isomorphism from .!l'(H) to .!l'(G), 
and ("r 1 0 T· is a surjective Lie algebra homomorphism from .!l'(T) to 
!f'(H). Applying Theorem 5.1, we conclude that there is a morphism 
of affine algebraic groups 't": ~(!f'(T» ~ H whose differential is (,,·)-1 0 T·. 
We know that, over a field of characteristic 0, a morphism of algebraic 
groups is determined by its differential. Hence, " 0 T" = T and there is only 
one such T". 0 

Notes 

1. If L is a finite-dimensional Lie algebra over a field F of characteristic 0, 
then tIII(L), is finitely generated as an F -algebra if and only if L = [L, L]. 

In order to see this, first suppose that the condition is satisfied, and let R 
denote the radical of L. One sees readily that R is nilpotent, and that the 
restriction image of tIII(L)' in tIII(R), coincides with £feR). Hence, tIII(L)' 
coincides with the finitely generated F-algebra £f(L). If L ::;: [L, L], choose 
an ideal M of codimension 1 in L. Then tIII(L/M)' may be identified with 
its canonical image in tIII(L)'. It is not hard to determine tIII(L/M), explicitly. 
As an F-algebra, it is isomorphic with a polynomial algebra T[x], where T 
is the group algebra over F of the additive group of F. The field of fractions 
of T has infinite transcendence degree over F, so that tIII(L)' cannot be finitely 
generated. 

2. The following examples show that Theorem 2.2 cannot be improved 
so as to admit homomorphisms other than isomorphisms. In each example, 
there are no non-trivial exceptional automorphisms. 

Let F be an algebraically closed field of characteristic 0. Let H be the 
additive group of F, and let G be the semidirect product of H with the multi­
plicative group of F, where 

(a, uXb, v) = (a + ub, uv). 

Then !f'(G) has an F-basis (x, y), where [x, y] = y, .!l'(H) = Fyand Fx is 
the Lie algebra of the multiplicative group of F. Let p be the Lie algebra 
homomorphism from .!l'(G) to !f'(H) that sends x onto y and annihilates y. 
Then p is surjective. However, p is not the differential of an algebraic group 
homomorphism t1 from G to H, because then t1 would map the multiplicative 
group of F onto its additive group, which is impossible. 
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Let Q denote the group of all 2 by 2 matrices of determinant 1 with 
entries in F. The center of Q is of order 2, and we let G be the factor group 
of Q modulo its center. Let V denote the canonical 2-dimensional repre­
sentation space for Q. Accordingly, construct the semidirect product 
H = V Xl Q. The group covering Q -+ G induces a Lie algebra isomorphism 
!l'(Q) -+ !l'(G). The inverse of this isomorphism yields an injective Lie 
algebra homomorphism p: !l'(G) -+ !l'(H). Both G and H have trivial 
center, and !l'( G) is semisimple. Here again, p cannot be the differential 
of a homomorphism of algebraic groups u: G -+ H, because then u would 
yield an inverse of the group covering Q -+ G, which is impossible. 

3. Theorem 1.1 is due to M. Goto. 
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