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PREFACE TO THE SECOND EDITION

Although it was in print for a short time only, the original edition
of Multiplicative Number Theory had a major impact on research
and on young mathematicians. By giving a connected account of
the large sieve and Bombieri’s theorem, Professor Davenport made
accessible an important body of new discoveries. With this stimula-
tion, such great progress was made that our current understanding
of these topics extends well beyond what was known in 1966. As the
main results can now be proved much more easily. I made the
radical decision to rewrite §§23-29 completely for the second
edition. In making these alterations I have tried to preserve the tone
and spirit of the original.

Rather than derive Bombieri’s theorem from a zero density
estimate for L tunctions, as Davenport did, I have chosen to present
Vaughan’s elementary proof of Bombieri’s theorem. This approach
depends on Vaughan’s simplified version of Vinogradov’s method
for estimating sums over prime numbers (see §24). Vinogradov
devised his method in order to estimate the sum ) ,<x e(pa); to
maintain the historical perspective I have inserted (in §§25, 26)
a discussion of this exponential sum and its application to sums of
primes, before turning to the large sieve and Bombieri’s theorem.

Before Professor Davenport’s untimely death in 1969, several
mathematicians had suggested small improvements which might be
made in Multiplicative Number Theory, should it ever be reprinted.
Most of these have been incorporated here; in particular, the nice
refinements in §§12 and 14, were suggested by Professor E. Wirsing.
Professor L. Schoenfeld detected the only significant error in the
book, in the proof of Theorems 4 and 4A of §23. Indeed these
theorems are false as they stood, although their corollaries, which
were used later, are true. In considering the extent and nature of my
revisions, I have benefited from the advice of Professors Baker,
Bombieri, Cassels, Halberstam, Hooley, Mack, Schmidt, and
Vaughan, although the responsibility for the decisions taken is
entirely my own. The assistance throughout of Mrs. H. Davenport
and Dr. J. H. Davenport has been invaluable. Finally, the

vii



viii PREFACE TO THE SECOND EDITION

mathematical community is indebted to Professor J.-P. Serre for
urging Springer-Verlag to publish a new edition of this important

book.
H.L.M.



PREFACE TO THE FIRST EDITION

My principal object in these lectures was to give a connected
account of analytic number theory in so far as it relates to problems
of a multiplicative character, with particular attention to the distribu-
tion of primes in arithmetic progressions. Most of the work is by
now classical, and 1 have followed to a considerable extent the
historical order of discovery. I have included some material which,
though familiar to experts, cannot easily be found in the existing
expositions.

My secondary object was to prove, in the course of this account,
all the results quoted from the literature in the recent paper of
Bombieri' on the average distribution of primes in arithmetic
progressions; and to end by giving an exposition of this work,
which seems likely to play an important part in future researches.
The choice of what was included in the main body of the lectures,
and what was omitted, has been greatly influenced by this considera-
tion. A short section has, however, been added, giving some ref-
erences to other work.

In revising the lectures for publication I have aimed at producing
a readable account of the subject, even at the cost of occasionally
omitting some details. I hope that it will be found useful as an
introduction to other books and monographs on analytic number
theory.

§§23 and 29 contain recent joint work of Professor Halberstam
and myself, and I am indebted to Professor Halberstam for per-
mission to include this. The former gives our version of the basic
principle of the large sieve method, and the latter is an average
result on primes in arithmetic progressions which may prove to be

' On the large sieve, Mathematika, 12, 201-225 (1965).
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a useful supplement to Bombieri’s theorem. No account is given of
other sieve methods, since these will form the theme of a later
volume in this series by Professors Halberstam and Richert. ?

H.D.

? This book subsequently appeared as Sive Methods, Academic Press (London),
1974.
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NOTATION

We write f(x) = O(g(x)), or equivalently f(x) < g(x), when there
is a constant C such that | f(x)| < Cg(x) for all values of x under
consideration. We write f(x) ~ g(x) when lim f(x)/g(x) =1 as
x tends to some limit, and f(x) = o(g(x)) when lim f(x)/g(x) = O.
Moreover, we say that f(x)= Q(g(x)) to indicate that
lim sup | f(x)|/g(x) > 0, while f(x) = Qi(g(x)) means that
lim sup f(x)/g(x) > 0 and lim inf f(x)/g(x) < O.

If € is a vector, then ||€| denotes its norm, while, if 0 is a real
number then | 0| denotes the distance from 0 to the nearest integer.
In certain contexts (see p. 32), we let [x] denote the largest integer
not exceeding the real number x, and we let (x) be the fractional part
of x, (x) = x — [x]. Generally s denotes a complex variable,
s = o + it, while p = f + iy denotes the generic non-trivial zero
of the zeta function or of a Dirichlet L function. When no confusion
arises, we let y stand for Euler’s constant.

The arithmetic functions d(n), A(n), u(n), and ¢(n) are defined
as usual. Other symbols are defined on the following pages.

a 7 S(T) 98
B 80-82 S(N) 146
B(y) 83 I'(s) 61, 73
b(x) 116 £(s) 1
c (n) 148 {(s, o) 71
E(x, q) 161 &(s) 62
E*(x, q) 161 &GS, ) 71
e(0), e, (0) 7 n(x) 54
h(d) 44 DDy 160
li x 54 7(x) 65
M, M(q, a), m 146 x(n) 29
N(T) 59 W(x) 60
N(T, x) 101 Ww(x, 1) 115
N(a, T) 134 W(x, 1) 162

N(a, T, 3) 133

xiii



1

PRIMES IN ARITHMETIC
PROGRESSION

Analytic number theory may be said to begin with the work of
Dirichlet, and in particular with Dirichlet’s memoir of 1837 on the
existence of primes in a given arithmetic progression.

Long before the time of Dirichlet it had been asserted that every
arithmetic progression

a,a+gq,a+ 2q...,

in which a and ¢ have no common factor, includes infinitely many
primes. Legendre, who had based some of his demonstrations on
this proposition, attempted to give a proof but failed. The first proof
was that of Dirichlet in the memoir I have referred to (Dirichlet’s
Werke, 1, pp. 313-342), and strictly speaking this proof was complete
only in the case when g is a prime. For the general case, Dirichlet
had to assume his class number formula, which he proved in a
paper of 1839-1840 (Werke, 1, pp. 411-496). Dirichlet states at the
end of the earlier paper that originally he had a different proof, by
indirect and complicated arguments, of the vital result that was
needed [the fact that L(1, y) # Ofor each real nonprincipal character
y ; see §4], but I do not think that there is any indication anywhere
of its nature.

I shall follow Dirichlet’s example in treating first the simpler case
in which g is a prime. We can suppose that g > 2, for when q = 2
the arithmetic progression contains all sufficiently large odd
numbers, and the proposition is then a triviality.

Dirichlet’s starting point, as he himself says, was Euler’s proof of
the existence of infinitely many primes. If we write

{s)= ) n7%
n=1
for a real variable s > 1, then Euler’s identity is

{s) =11 -p™)7"
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for s > 1, where p runs through all the primes; this identity is an
analytic equivalent for the proposition that every natural number
can be factorized into prime powers in one and only one way. It
follows from the identity that

o o}
mp
=1

—ms

m

log {(s) = )

p

Since {(s) = oo as s — 1 from the right, and since
1

m—lp—ms<z Z p—m =Z_*_< 1,

2 p m=2 p P(P - 1)

™8

)

p m

it follows that

LpTT o
p

as s —» 1 from the right. This proves the existence of an infinity of
primes, and proves further that the series Zp~ ', extended over the
primes, diverges. Dirichlet’s aim was to prove the analogous state-
ments when the primes p are limited to those which satisfy the
condition p = a(mod q).

To this end he introduced the arithmetic functions called
Dirichlet’s characters. Each of these is a function of the integer
variable n, which is periodic with period ¢ and is also multiplicative
(without any restriction). Moreover, these functions are such that a
suitable linear combination of them will produce the function which
is 1 if n = a(mod ¢q) and 0 otherwise.

The construction of these functions is based on the existence of a
primitive root to the (prime) modulus g, or in other words on the
cyclic structure of the residue classes modulo ¢ under multiplication,
when 0 is excluded. Let v(n) denote the index of n relative to a fixed
primitive root g, that is, the exponent v for which g* = n. Let @ be
a real or complex number satisfying

0wt =1.
Then the typical Dirichlet character for the modulus g is
wv(n)’

which is uniquely defined, since the value of v(n) is indeterminate
only to the extent of the addition of a multiple of ¢ — 1. The definition
presupposes that n is not divisible by g, but it is convenient to
complete the definition by taking the function to be 0 when n is
divisible by g. There is one function for each choice of w, and different
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choices of w give different functions; thus there are ¢ — 1 such func-
tions. Each is a periodic function of n with period ¢, and is multiplica-
tive because, if

n = n,n, (mod g),
then
v(n) = v(n,) + v(ny)(mod g — 1).

(We have supposed here that neither n; nor n, is divisible by ¢, but
the multiplicative property is a triviality if either of them is.)

We recall the well-known fact that £ " has the value g — 1 if k
is divisible by ¢ — 1 and has the value 0 otherwise. Hence

ot fo 1 = atmodg

w

0 otherwise,

since v(n) = v(@)(modg — 1) if and only if n =a(modg). The
expression on the left, after division by ¢ — 1, is the linear combin-
ation of the various functions w(n) that was referred to above; it
serves to select from all integers n those that are congruent to the
given number a to the modulus g.

For each of the possible choices for w, Dirichlet introduced the
function

e 8}

Ls)= ) o"n°
=1
n¥ (;‘(mod q)

of the real variable s, for s > 1. Since the coeflicient of n™* 1s a multi-
plicative function of n, we have the analog of Euler’s identity:

Ls)=[] (1 — 0*Pp™)7,

pP*4q

for s > 1. A detailed proof is easily given, on the same lines as for
Euler’s original identity, by considering first the finite product over
p < N and then making N — o0.

None of the factors on the right vanishes, since |w'Pp~S| =
p~* < 4 for s > 1, and as the product is absolutely convergent it
follows that L.(s) # O for s > 1. Taking the logarithm of both
sides, we get

logL,(s)= ) Y m ‘e p™™
p¥Eqgm=1
The logarithm on the left is, in principle, multivalued if w is complex,
but the value which is provided by the series on the right is obviously
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the natural one to use, since it is a continuous function of s for s > 1
and tends to 0 as s — oo, corresponding to the fact that L,(s) = 1
(1 being the first term in its defining series).

Multiplying the last equation by o ~*® and summing over all the
values of w, we obtain

(1) L 0 "@logLy(s)= Y Y mlp™m™

q— 1 w p m=1
p"=a(mod g)

The sum of all those terms on the right for which m > 1 is at most 1,
since they are a subset of the terms considered earlier in connection
with log {(s). Hence the right side of (1) is

Y  pt+ 0.

p=a(mod q)

The essential idea of Dirichlet’s memoir is to prove that the left side
of (1) tends to + oo as s — 1. This will imply that there are infinitely
many primes p = a(mod q), and further that the series Tp™!
extended over these primes is divergent.

One of the terms in the sum on the left of (1) comes from w = 1,
and is simply log L,(s). The function L,(s) is related in a simple way
to {(s), for we have

e 8}

Lits) = 3 n™*=(1 — q7s)

n=1

qfn
Hence L,(s) » +o00 as s — 1 from the right, and therefore the same
is true of log L,(s). Hence to complete the proof it will suffice to show
that, for each choice of w other than 1,

log L,(s)

is bounded as s — 1 from the right.
At this point it clarifies the situation if we observe that, provided
@ # 1, the series which defines L (s), namely

LJSs)= )Y o™ns,

n=1
n# 0 (mod gq)

is convergent not only for s > 1 but for s > 0. It is, in fact, a series of
the type covered by Dirichlet’s test for convergence, since (a) n~*
decreases as n increases and has the limit 0, and (b) the sum of any
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number of the coefficients "™ is bounded. The justification for
(b) lies in the fact that "™ is periodic with period ¢, and

g—1 q—2
Y o™= 3 o"=0,
n=1 m=0

since the index v(n) runs through a complete set of residues to the
modulus q — 1.

It follows further from Dirichlet’s test that the series is uniformly
convergent with respect to s for s > 0 > 0, and consequently
L (s)1s a continuous function of s for s > 0. So to prove that log L (s)
is bounded as s — 1 from the right is equivalent to proving that

) L,(1) # 0.

Dirichlet’s proof of this takes entirely different forms according as
w 1s real or complex. The only real value of w is —1, since w # 1
now.
Suppose first that w is complex. If we take a = 1, and so v(a) = 0,
in (1), we get
1 a0
——YlogL(s)= Y Y m lip™ms
q — 1 w p m=1
p"=1(modg)
Since the terms on the right (if there are any) are positive, it follows
that

Y log L,(s) > 0,

which implies that

(3) [TL.Gs) > 1.

w

All this, of course, is for s > 1. :

If there 1s some complex w for which L (1) = 0, then L (1) =0
also, where @ denotes the complex conjugate of w. Thus two of the
factors on the left of (3) will have the limit 0 as s — 1 from the right.
One other factor, namely L,(s), has the limit + oc. Any other factors
are certainly bounded, being continuous functions of s for s > 0. On
examining in more detail the behavior as s — 1 of the three factors
mentioned, we shall get a contradiction to (3), in that the two factors
with limit O will more than cancel the one factor with limit + co.

As regards L,(s), we have

Li(s) = (1 — ¢79)(s) < (1 — g™ )(s)
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forl <s < 2, and

€x

{(s) = i n <1 +J x tdx =
n=1

1

Hence

Li(s) <
s — 1

for 1 < s < 2, where A is independent of s.
As regards L_(s), the supposition that L (1) = 0 implies that, for
s> 1,

L,(s) = Ly(s) = L(1) = (s — 1)L,(sy),

where s, is some number between 1 and s. The series for L;(s),
namely

Ls)=—- Y «o"(lognn*,
ni(’)l(—mlodq)

i1s convergent for s > 0 by Dirichlet’s test, since the function
(log n)n~° decreases for sufficiently large n and has the limit O.
Moreover the convergence is again uniform for s > é > 0, so that
L, (s) 1s continuous for s > 0. In particular, |L;(s)| is bounded for
s > 1, and therefore

ILo(s) < Ay(s — 1)

for s > 1, where A4, is independent of s. Naturally the same in-
equality holds with @ in place of w.

On using these inequalities in (3), and making s — 1, we get the
desired contradiction.

The argument could have been expressed more briefly by using
the elements of complex function theory. As we shall see later,
L,(s) has a simple pole at s = 1, and the supposition that L (s) and
L;(s) have zeros at s = 1 implies that the product on the left of (3)
has a zero at s = 1, which contradicts the inequality.

Suppose now that @ = — 1. The above argument is inapplicable,
since the supposition that L_,(1) = 0 would produce only a single
factor with a zero at s = 1.

We now have
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and the convention made earlier that »*™ is to be replaced by O when
n = 0(mod q) is in agreement with the usual convention for the
Legendre symbol on the right. From now on, we abbreviate L_(s)
to L(s), since this will be the only function with which we shall be
concerned. Thus we have

L= (g) n=s.
n=1

The aim is to prove that L(1) # 0. We already know that L(1) > O,
from the continuity of L(s) and the fact that L(s) > Ofors > 1 (by the
Euler product formula). It may be worth remarking that the need to
prove that L(1) # 0 is almost inevitable in the approach we are
using. If it were possible for L(1) to vanish, it would follow, on
considering log L(1), that

Z(E) p*—> - ass— L
r \9

This would imply a great preponderance of primes in those residue
classes a(mod gq) for which a is a quadratic nonresidue, and this
preponderance might (on the face of things) be such that p~!
summed over the primes in the other residue classes was convergent.

Dirichlet’s proof, in the case now under consideration, is based on
a relationship (which goes back to the work of Gauss) between the
quadratic character (n|q) and the complex exponential function
e?™™4 which 1 shall abbreviate to e(n/q) or to e,(n). (Instead of
speaking about the complex exponential function, we could speak
about the gth roots of unity; but it is necessary for some purposes to
be able to distinguish between one gth root of unity and another,
and the complex exponential function offers the simplest way of
doing this.)

Let G(n) denote the so-called Gaussian sum, defined by

-1

(4) G = Y (%) e,(mn)

m=1

By changing the variable of summation from m to m’, where
m = mn(mod ¢), we obtain the relation

(5) G(n) = (f)Gm = (f)c,
q q

say. The argument presupposes that n # 0 (mod g), but the relation
holds in the excluded case also, because then G(n) = 0.
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Assuming that G # 0 (an assumption that will be justified later),

we have e
o =ex (7]

Substituting this in the series for L(1), we obtain

1"1
L(1) ( Z—e (mn).

nln

e (mn).

The sum of the inner series is easily deduced from that of the log-
arithmic series. If |z] < 1 and z # 1, we have
© 1

n=1

where the logarithm has its principal value. That means, in the
present context, that arg(l — z) lies between — 37 and 3, since the
real part of 1 — z is positive. Taking z = &%, where 0 < 6 < 2n, we
have arg(l — z) = 3(0 — =), as is easily seen either from a picture or
by calculation. Also |1 — z| = 2sin $6. Hence

Y %ei"o = —log(2sin }0) — 3(0 — n)i.

n=1

Putting 8§ = 2nm/q and substituting in the formula for L(1), we get

(6) = —1"21 ( )[log(2sin£‘?) +i ]

As we shall prove later, the value of G is g* if ¢ = 1 (mod 4) and
iq* if ¢ = 3 (mod 4). This compels one to distinguish two cases.
Suppose q = 3 (mod 4). Since L(1) is real, we must have

mm 14

q 2

(7) L= -2Y m

and in fact the vanishing of the other part of the sum is easily verified
by taking together the terms m and ¢ — m. The last formula gives an
elegant expression for L(1) by a finite sum, the value of which is
easily computed in any particular case. For example, if g = 23, we
have

qg-—-1
D m(ﬁn—)=1+2+3+4—5+6—7+8+9—10—11+12
4 +13—-14-15+16—-17+18—-19-20-21-22

= —69,

m=1
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and
L(1) = 3m/23%.

The finite sum occurring above is always an odd integer, for it has
the same parity as

q—1

m=1

and both (g — 1) and q are odd. It therefore cannot vanish, and this
gives the proof of the desired result that L(1) # O in the case now
under consideration. It is a remarkable fact that no one has yet
given a simple and direct proof that the value of the finite sum in (7)
is negative, though we know that this must be so from the fact that
L(s) > O for s > 1 and consequently L(1) > 0.

Dirichlet gave another expression for L(1) as a finite sum, in addi-
tion to (7), which is of great interest and which is more convenient
for computation. By Euler’s product formula [or alternatively from
the original definition of L(s)], we have

o[ -2

nodd
Proceeding as before, with s = 1, and using the fact that

1 T if 0 <m < g,

3 i — e (mn) ={_

n=1 n
nodd

PRI

n ifig <m<gq

(which is easily deduced from the sum of the logarithmic series), we

obtain
ALz -0

1{2\]"t 1
o -]

2- 2/q)]q*,,.<zﬂ ( )

This shows that, for ¢ = 3 (mod 4), there are always more quadratic
residues than nonresidues in the first half of the range from 0 to 4.
Again, no direct proof i1s known.
Suppose g = 1 (mod 4). Then G = g#, and (6) gives
qg—1
9) L) = — i% (T log (2sinﬂ" .
q4° m=1 q
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This can be written as

where

_ sin(zN/q)
Q= []sin(zR/q)’

in which we use R to denote the typical quadratic residue (mod gq)
between 0 and g, and N to denote the typical quadratic nonresidue.

To prove that L(1) # O is equivalent to proving that Q # 1. For
this, Dirichlet had recourse to a result that had been proved by
Gauss in his work on cyclotomy. This is that, for an indeterminate x,

and

[Tlx — efN)] = { Y(x) + g Z(x))],

where Y(x) and Z(x) are polynomials with integral coefficients.
Assuming this, we have the identity
q—1

HY20) — 270 = [] [x — em)] = xI™" + x72 4 = + L.

m=1

Putting x = 1, we obtain integers Y = Y(1) and Z = Z(1) which
satisfy the Diophantine equation

Y? - qZ? = 4q.

[Obviously Y must be divisible by g, and the present argument
provides a method for solving the “negative” Pellian equation
qY} — Z? = 4, when ¢ is a prime congruent to 1 (mod 4).] We note
that Z 3 0, since 4q is not a perfect square.

The quotient Q which occurred above is expressible in terms of
Y and Z, as follows. We have

[1[(1 — e, (R)] = [] e,& R)(—2isin nR/q)

R R

= (=29~ Y2¢ (4 R)[]sinnR/g,
R

and a similar relation with N in place of R. Now

YR=YN=14qq-1),
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on grouping together the numbers R and R’ = g — R, and similarly
with N. Hence

[;[ sin(nN/q) Y4z
[[sin(zR/q) Y — ¢*Z"
R

Q=

Since Z # 0, we have the desired conclusion that Q # 1.

This completes the proof of Dirichlet’s theorem for a prime
modulus g, subject to the proof of the value of Gauss’ sum and the
proof of the result on cyclotomy which we have just used. These
proofs will be given in the next two sections.

I ought perhaps to add that Dirichlet derived the finite expression
(6) for L(1) by a somewhat different method from that which we have
used above. He started from the power series

o (7 xf(x)
,,;1 (5) 1 — x" ( ) 1 — x"’

say, and by putting this in the formula

1
M~ = [ x""*(logx™'y~" dx
0
he obtained

' fx)

[(s)L(s) = —f . (log x~1)*~ 1 dx.
o X' — 1

On putting s = 1 and expressing the rational function in the inte-
grand as a sum of partial fractions, and integrating, he obtained (6).
The two methods are essentially equivalent, but the last formula
written above has some independent interest in that it serves to
define L(s) as a regular function of the complex variable s for all s.



2

GAUSS’  SUM

In this section we evaluate the sum

'—") e (m),
q

q—1

6=y

m=1

where g is a prime other than 2. It is easy to prove that G? = g
if g =1 (mod4) and G*> = —q if g = 3 (mod 4), though this does
not determine G completely. The computation is as follows. We
have

eq(m1 + m,).

9-1 q-— 1(
mi=1my=1

On changing the variable of summation in the inner sum from m,
to n, where m, = m;n(mod g), we get

q—1 qg—1

= 2 Z( )e(m1+mn)

m=1n=1

Now we interchange the order of summation, and note that

qg—1 if n = —1(mod g),
L elmi(n + D) —{ -1 otherwise.

o) 5

1 { if g = 1 (mod 4),
(—q—) —g  ifq=3(moda),

q—1

Hence

as stated above.
The sign of G was determined by Gauss only after many and
varied unsuccessful attempts.! Since then several proofs have been

! See Gauss, Werke 11, p. 156.
12
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given, based on a variety of different methods.? As Gauss himself
remarked, any proof of the exact value of G must take account of
the particular ordering of the gth roots of unity, which is provided
by the complex exponential function. If instead of G we consider
the sum

where { is any gth root of unity (other than 1), its sign cannot be
specified, for it follows from (5) of the preceding section that if {
1s replaced by (", where n 1s a quadratic nonresidue (mod g), the
sign of the sum gets reversed. The evaluation of G*? given above
would, however, apply equally well to the sum with an unspecified
L.
The method used by Dirichlet in 1835 (Werke 1, pp. 237-256) to
evaluate G is probably the most satisfactory of all that are known.
It 1s based on Poisson’s summation formula, and it has the advan-
tage that once the proof has been embarked upon, no special in-
genuity is called for.
It is first necessary to express the definition of G in a form which
does not contain explicitly the symbol of quadratic character.
With the same meaning for R and N as in §1, we have

G=YeR) —YeN)=1+2Ye(R).
R N R

This can be written equivalently as

q—1

G= Y efx?)

x=0

for x? assumes the value 0 once and assumes each value R twice.
Dirichlet’s method actually evaluates the more general sum

N—-1
in2
S — Z eZmn /N’
n=0

where N is any positive integer, and the answer is that

(1 + )N*  if N = 0(mod 4),
- N? if N = 1(mod 4),
0 if N = 2(mod 4),

iN* if N = 3(mod 4).

% See Landau, Vorlesungen 1, pp. 157-171, and Estermann, J. London Math. Soc.,
20, 66-67 (1945).
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Here N?* denotes the positive square root. It may be as well to add
also that i denotes the same square root of —1 as occurs in e2™"*/N,

Poisson’s summation formula states that, under certain condi-
tions on the function f(x),

Y o= 3 [ rwene s,

where £ means that the end terms of the sum, corresponding to
n=A and n = B, are to be replaced by 1f(4) and 1f(B). In the
series on the right it may be necessary to take the terms v and —v
together to ensure convergence, but actually it will not be necessary
in the present application. Sufficient conditions for the validity of
the formula are that f(x) is a real function which is continuous
and monotonic in stretches. From the point of view of analysis
these are severe restrictions, but they are quite adequate for most
applications.

Poisson’s summation formula, which is an extremely useful
tool in analytic number theory, is easily deduced (under the above
restrictions) from the basic theorem concerning Fourier series,
which was first rigorously proved by Dirichlet himself in 1829
(Werke 1, pp. 117-132). Let f(x) coincide with f(x) for 0 < x < 1
and be defined elsewhere by periodicity with period 1; then f;(x)
1s continuous for 0 < x < 1 but has (in general) an ordinary dis-
continuity at x = 0, its values on the left and on the right being
f(1) and f(0) respectively. The Fourier series of f;(x) is

300 + Y (a,cos2nvx + b, sin 27vx),

v=1

where the coefficients are given by Fourier’s formulas:
1 \ 1 _
1a, =f f(x)cos 2nvx dx, 1b, =f f(x) sin 2mvx dx.
0 0

The theorem in question is that the above series converges for all x,
and that its sum is f;(x) at a point of continuity of f,(x), and is the
mean of the left and right values of f|(x) at a point of ordinary
discontinuity. Thus, taking x = 0, we get

o

HfO)+f) =dap+ ¥ o= 3 [ fix)cos2mxdx

v=1

This is the case A =0, B =1 of Poisson’s summation formula,
and the general case follows on replacing f(x) by f(x + n), for
n=A, A+ 1,..., B— 1, and adding the results.
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For the application to Gauss’ sum, we take f(x) = cos 2nx?/N
and f(x) = sin 2nx?/N and combine the results. Thus

w N . . 2
S — Z f e2mvx+2mx /N dx
v=—o00 °
e o} 1 . 5
— N Z f eZmN(x + vx) dx
v=—o"0

e B T
=N Z e 47Ny [‘ e niNy dy,

v

N

v=—o00
where in the last step we have put x + v = y. The value of e~ *"*’
is 1if v is even, and is e #*¥ = |~V if y is odd. We therefore divide
the sum over v into two parts, according as v is even or odd, and
we put v = 2u or 2u — 1 as the case may be. This gives

. S
S=N ) f‘ e gy + NiT8 Y f_l e2miNy? gy,
~ p=—o H77
Each series of integrals fits together to give

© iNv2
f e2m y dy
-

This is a convergent integral, and it is a matter of indifference
whether we construe 1t 1n the narrow sense, as

Y

lim ,
Y- oo¥Y-Y
or in the wider sense as
] Z
Iim
Y, Z-o v -Y

Forif Y > Y > 0 we have
Y’ iN W2 Y'Z —1 2niN:z
f e""“’dyzéf z T e*mNe (g,
Y Y2

and by the second mean value theorem, or by integration by parts,
this has absolute value O(Y " ') as Y — oc. The convergence of the
integral in the wider sense justifies our earlier remark that, in the
present application of Poisson’s summation formula, it is not
necessary to take together the terms v and —v.
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Resuming the evaluation of S, we have
S=N(1+i™M[ ey,

and this implies, on putting y = N~ *u, that
S=(1+iMCN?,

where C is an absolute constant. This constant is most easily
evaluated by putting N = I, whereupon S =1 and we get
C=(+i""' Hence

1 j~N
Sz—t—l:TN%
1+

b

and this gives the four values stated earlier, according to the residue
class to which N belongs to the modulus 4.



3

CYCLOTOMY

Cyclotomy 1s concerned with the properties of the roots of unity
of a given order, with particular reference to their algebraic char-
acter.! Our first object must be to establish the result quoted in §1,
and this we can do without going very deeply into the theory.
Afterward [ shall digress briefly from the main theme of these
lectures to discuss two topics in cyclotomy which are of general
interest.

We shall be concerned only with roots of unity of prime order.
Let g be a prime other than 2, and let { be a gth root of unity other
than 1. Then the entire set of gth roots of unity other than 1 is

(1) L0,

and the sum of these numbers is — 1. By using this relation, together
with the relation {? = 1, we can express any polynomial in { with
integral coefficients in the form

a )l +al? + - +a, 7Y

where a,,..,a,_, are integers. Moreover the expression in this
form 1s unique, since the cyclotomic polynomial

x4+ x172 4 4 1,

of which ( is a zero, is irreducible over the rational field, and there-
fore { cannot satisfy an equation of lower degree with integral
coefficients.

Let g be a primitive root to the modulus ¢, and let v(n) denote the
index of n relativeto g. As nassumes the values 1, 2...., g — 1,itsindex
v(n) assumes the same values in another order.

Now consider any factorization of g — 1, say

q—1=c¢€f.

' The standard references arc Bachmann's Kreisteilung of 1872 and Mathews’s
Theory of Numbers of 1892.

17
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The roots of unity (" enumerated in (1) can be subdivided according
to the residue class to which v(n) belongs to the modulus e. There
will be e such sets, each comprising f numbers. The sums of the
various subsets are called the Gaussian periods of f terms, and
are denoted by #g, #¢..s #.— ;- Thus

q-1
nj = ) "
=1

n=
v(n)= j(mod ¢)

It is obviously not essential to restrict j to the range 0 < j < e;
the last equation can be used for all j, and then #; is periodic in j
with period e.

In particular, if e = 2and f = 3(qg — 1), we get the two periods

no=.C% n =)0,

where, as earlier, R and N run through the quadratic residues and
nonresidues respectively, in the range from 1 to g — 1. If we fix
{ = e*™/1, we can deduce the values of these two periods from
the value of Gauss’ sum. For then

-1 I
No — M1 = -
° : mzl (q

whereeis 1 oriaccordingasq = 1or3(mod 4).Sincen, + n;, = —1,
it follows that

No = H—1 + eq?), N, = H—1 —eq?).

In the general case, if we choose { = e*™/4, the value of 7, is
uniquely determined, and in fact

q—1
no=e" ') e/ x).
x=1
But the individual values of #,,...,7._; will depend on the choice
of the primitive root, and they may get permuted if this is replaced

by another primitive root.
Now let F({) be any polynomial in {, say

q-—1
FQ) = ) AL,
r=1

and suppose F({) has the property that
F({™) = F(0)
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whenever v(m) = 0 (mod e). Then, by the uniqueness of repre-
sentation of a polynomial, we have

A, = A

whenever r = sm(mod g — 1), and this holds for all m with v(m) = 0
(mod e). Hence A, depends only on the residue class (mod e) to
which v(r) belongs. Grouping together the terms in the same residue
class, we obtain

F(C) = Al"l + -+ Aene'

Thus F({) is a linear combination of the Gaussian periods.

We have tacitly supposed that the coefficients A4, are integers
(or rational numbers), and it is only under some such restriction
that we can appeal to the uniqueness of representation of a poly-
nomial in {. But the result holds equally if the coefficients A, are
themselves polynomials in an indeterminate x with integral co-
efficients, for then it holds for every integral value of x, and there-
fore identically in x.

We apply this, with e = 2, to the polynomial

FQ) =[] (x = %)

R

When written in the standard form, the coefficients A4,(x) are poly-
nomials in x with integral coefficients. If m is any integer with
v(m) = 0 (mod 2), then m is a quadratic residue, and

F@™ = [1(x = ") =[1(x = {*) = F(Q).
R R
Hence F({) has the property postulated above, and it follows that

F(0) = Aolx)ng + A (x)n,.

[Actually Ay(x) = A,(x), in the notation we have just been using.]
Substituting the values of n, and n,, we obtain

[Tx = %) = 340(x)(=1 + eg*) + 34,(x)(— 1 — eq?)
R
= Y (x) — eg*Z(x)),

where Y(x), Z(x) are polynomials with integral coefficients. If we
replace { by (%, then (R becomes (", where N is a typical quadratic
nonresidue, and 7, and 7, become interchanged. This has the
effect of changing ¢ into —e¢. Hence

[16 =% = HY(x) + eq*Z(x)].
N
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This proves the result quoted in §1; it was used there in the case
g = 1(mod 4), and so with ¢ = 1.

I shall now discuss two topics connected with cyclotomy, for
the sake of their intrinsic interest. They are (a) Gauss’ theorem
on the roots of unity of order g, when ¢ is a prime of the form
2k + 1, and (b) Kummer’s problem on the cubic periods.

GAUSS’ THEOREM

Gauss’ theorem asserts that if g is a prime of the form 2* + 1
(e.g., if g is 3 or 5 or 17 or 257 or 65537), each gth root of unity
can be expressed in terms of rational numbers by using a succes-
sion of square root signs. From this assertion, with a few supple-
mentary observations, one deduces that, for the values of g In
question, it is possible to inscribe a regular polygon of g sides in
a given circle by a Euclidean construction using ruler and com-
passes only.

We consider the various choices of e and f that are possible:

ey =2 fi=¥qg-1);
e, =4, fr=14q - 1);

1
e, = 28, f,‘=?(q—1)=1.
For the choice e,, there are e, Gaussian periods of f, terms, which
we shall denote by
"(lr)""’ "g) (e = er)
to indicate the dependence on r.
We have already evaluated the two periods 7", #\", and they are

{—1+./q), where ¢ =q if g=1(mod4) and ¢ = —q if
q = 3 (mod 4). The latter cannot happen if g > 3.
Now consider the four periods #'2, 12, 2, n{?’. By definition,

"3.2) — Z C"'
v(n)=j(mod 4)
The expression
(x — 1) (x — ),
considered as a polynomial in {, is unaltered if we replace { by
{™, provided v(m) = 0 (mod 2), for the effect of this is either to leave

n'? and ¥ unchanged or to interchange them. Hence, by our
earlier result,

(x — 7Y (x — 1) = A,0n5" + A%,
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where A,(x), A,(x) have integral coefficients. It follows that the
coefficients of the quadratic in x on the left are expressible by rational

numbers and /q’. Hence %, #'?) are expressible by means of
two square root signs, and similarly for n$, 5.

The argument continues; at the next step, the eight periods fall
into the four groups:

3 3). (3). (3) (3). (3) 3).
>, n$; S 0, Y 49, 0

and the two in each group can be evaluated in terms of the four
periods #'» by use of another square root sign.

Finally, we come to the 2* periods of one term; these are just
¢, (%,.., (% 1. Thus each of these is expressible by means of rational
numbers and k square root signs. The k ambiguities of sign attach-
ing to the square roots give the 2%(= g — 1) roots of unity.

This proves Gauss’ theorem in its first form. For the inscription
of a regular polygon of g sides in a circle, it suffices to have the
number cos 2n/q, which determines the first point of sub-division
of the circle. Now

(3)
nzs

2cos2nmjg=( + (7},

and this is one of the periods of two terms which arise at the penulti-
mate stage of the preceding construction, for then e = 2*"! =
3(q — 1), and the exponents 1 and —1 on the right above are just
the values of n for which the index v(n) is divisible by e. Thus we can
construct the length 2cos 2n/q from a unit length by solving a
succession of quadratic equations. But in order that this con-
struction shall be capable of realization geometrically, it is neces-
sary that all the quadratic equations shall have real roots. Thus
we need to know that all the periods ny’, with r < k — 1, are real.
This is in fact the case. For if 5 is one such period, then # is obtained
from 5 by changing ¢ into { ™!, and this has the effect of replacing
w(n) by W(—n). Now g% ' = g#@= U = _1(mod g), and therefore
v(—1) = 271 and so is divisible by e for each of the values e = 2,
4,.,2* !, Hence the condition of summation v(n) = j(mod e) is
unaltered if v(n) is replaced by v(—n), and therefore n = #, that is,
n is real.

KUMMER'S PROBLEM

Kummer’s problem relates to the three periods of (g — 1)
terms that exist when g — 1 is a multiple of 3. These are

=204 n =Y  n,=Y



22 MULTIPLICATIVE NUMBER THEORY

where A4 runs through those numbers n of the set 1, 2,...,q — 1 whose
indices are divisible by 3, and B through those whose indices are
= 1 (mod 3), and C through those whose indices are =2 (mod 3).
The numbers A constitute the cubic residues (mod g), and the
numbers B and C constitute the two classes of cubic nonresidues.

If we choose { = e¢2™/4 as we shall do henceforward, the value
of 1, is uniquely determined, and in fact

q—1

14 3n, = ) efx?),

x=0
since the function x> assumes the value 0 once and assumes each
of the values A three times. But the values of 5, and 1, cannot be
distinguished from one another unless we specify also the primitive
root by which the index is defined (and, as far as I know, there is
no simple and general way of doing so).

The values of n,, 17,, 1, can be expressed in terms of a Gaussian
sum which is similar to the sum G defined in (4) of §1, but is formed
with a cubic character instead of a quadratic character. Let w be a
complex cube root of unity, and define

v(n)

xn) =w
for n # 0(mod g), and put y(n) = 0 for n = 0 (mod g). Define

T = i x(n) e (n).

We first prove that |1] = g*. We have

-1 ¢q-1

=Y ¥ xn)inen, — n,),

nm=1n=1
and, with a computation similar to that at the beginning of §2,
this is
q-1 g—1 -1

S L Hoen ) = i) + ¥ 7m(~1) = g

n=1 n=1
This proves the assertion; and we can now write
T = gte®,

where 6 = 6(g). 0 is uniquely determined, as an angle, except for
sign, for the only ambiguity in the definition of 7 lies in the possibility
of replacing y by ¥, and this has the effect of changing t into T

[since y(—1) = 1 for a cubic character] and so of changing 6 into
—6.
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The expressions for #,, 1, 1, in terms of 7 are very easily derived.
It is convenient to put

1+3n,=2 (j=012).

Then
q—1
zo= Y [1 4 xx) + I(x)]lex) = = + T = 2¢* cos 6.
x=0
Similarly
q-1
zy = ) [1 4+ o®xx) + of(x)le,(x)
x=0
2
= w?t + ot = 2¢q* cos (0 - —;),
and again
q—1
z; = ) [1 + oxx) + 0?F(x)]ex)
x=0

2
=a)t+a)2f=2q*}cos(0+?7t

Kummer’s problem is essentially that of determining the distri-
bution of the angle 8 = 6(g), or rather of cos 0, as g runs through
the primes. But he put the problem in a more specific form. The
three numbers z,, z,, z, are the roots of a cubic equation with
integral coefficients, since this is true of the three periods 7, 114, #,.
It follows from the above expressions in terms of 6 that there is
just one of the three numbers z,, z,, z, in each of the intervals

(-2J4, -9, (-Va.vD 4.2/

Kummer asked : With what frequencies does the number z,, which
is uniquely defined for each g, fall in each of these intervals? On
somewhat limited numerical evidence he conjectured, very tenta-
tively, that the relative frequencies may be in the ratios 1:2:3,
but more extensive computation by Mrs. Lehmer? made this
appear unlikely. Recently, Heath-Brown and Patterson® have
shown that the 0 are uniformly distributed, so that the limiting
ratios are 1:1:1. In their proof they use, among other things, the
techniques which we develop in §24.

It may be of interest to show that cos 30 can be expressed in
terms of the representation of g in the form

4q = a* + 27b?%;

2 Math. Tables and Aids to Computation, 10, 194-202 (1956).
3 J. reine angew. Math., 310, 111-130 (1979).
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it is easily proved that this representation is unique, except of course
for the signs of a and b. We have (with variables of summation
running from 1 to g — 1)

Z Z 2X()ex + p)
= Z Z XOx(t)eg x(1 + 1)]
Z X(0) Y 7(x)e,[x(1 + 1)]

-1 X

= ¥ xx + 1)t
t#F-1

I

Multiplying by 1, we get

>=¢q) xt(1 +1)] = g4 + Bw),

where 4 and B are integers. Obviously
and on multiplying the two equations together we get

g = (A + Bw)(A + B®) = A — AB + B,
or

4q = (2A — B)? + 3B>

We now prove that Bis divisible by 3, this being necessary because
without this stipulation the representation of g in the above form is
not unique. We observe that 7 is an algebraic integer, and that

3
= | Z 1060 = T e 3% + 3¢,

where £ is an algebraic integer. Subtracting from this the corres-
ponding equation for 73, we see that t> — 73 is divisible by 3. But

3

1 — 7% = gB(w — @) = iqB/3;

hence the rational integer B is divisible by 3.
We now have

4q = a* + 27b%,
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where
a=2A— B, b =1iB;
and
gie*® = 1 = g(A + Bw) = iq(a + iB\ﬁ).
Hence

cos 30 = _a

2./q

This determines cos 30 except for sign. But the ambiguous sign,
arising from the unknown sign of a, can also be specified, for it can
be shown that

a = 1 (mod 3).

To prove this, we consider the number N of solutions of the congru:
ence

v =uu+1) (modq).

For u =0 or —1 there is just one value of v, and for any other u
there are either three values of v or none. Hence N = 2 (mod 3). On
the other hand,

N = i {14 ylu + 1] + *[uu + D]}

=g+ (A + Bw) + (A + Bw?) =q + a.

Hence a = 2 — g = 1 (mod 3).
In conclusion we remark that the cubic equation mentioned
earlier, whose roots are z,, z,, z3, 1s simply

2> —3gz — ga = 0.

This follows easily from the expressions for the z; in terms of r and 7.
We have

Yz;=(t + 7) + (@1 + 0?) + (0T + ©*T) =0,
Y 22 = (1 + 1) + (0’1 + 0?)? + (0T + 0?7)

= 61T = 6g,
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and
22,23 = 12 + 13 = g2A — B) = qa.
For further information on Kummer’s problem, see Mathews,

Theory of Numbers, §§ 196 and 197; and Hasse, Vorlesungen iiber
Zahlentheorie (2nd ed., 1964), §20.6.
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PRIMES IN ARITHMETIC
PROGRESSION: THE GENERAL
MODULUS

Dirichlet’s proof of the existence of primes in a given arithmetic
progression, in the general case when the modulus ¢ is not neces-
sarily a prime, is in principle a natural extension of that in the special
case. But the proof given in §1 that L (1) # O when w = —1, which
involved separate consideration of the casesq = 1and g = 3 (mod 4),
does not extend to give the analogous result that is needed when g is
composite.

We now suppose that g is any positive integer other than 1. (We
do not exclude q = 2, as we did in §1, though it will in fact be a
trivial case.)

The functions that take the place of the functions w*™, where
w?” ! = 1, are Dirichlet’s characters to the modulus g. These are
functions of an integer variable n which are periodic with period g
and multiplicative without restriction. The typical function is
denoted by x(n): it is defined initially when n is relatively prime to
¢, but the definition is then conveniently extended by defining y(n)
to be 0 when (1, g) > 1. The number of these functions will be ¢(q).

Dirichlet’s characters to a given modulus can be regarded as a
particular case of the characters of an Abelian group, the group
in question here being that of the relatively prime residue classes
(mod ¢) combined by {_nultiplication. But I shall follow Dirichlet in
giving a direct and constructive account of them. This is partly for
historical reasons, in that Dirichlet’s work preceded by several
decades the development of group theory, and partly for a mathema-
tical reason. namely that the group in question has a simple and
interesting structure which is obscured if one treats it as one treats
the general Abelian group.

Consider first the case when g is a power of a prime other than 2,
say g = p*. Here the construction of §1 extends quite naturally.
There is a primitive root, and the theory of the index applies, the
only difference being that the modulus to which the index is defined
is now ¢(p*) = p*~ '(p — 1) in place of p — 1. We define the charac-
ters to the modulus p* by taking any real or complex number w

27
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which satisfies
WP = 1,
and putting
x(n) = w"™ for (n, p) = 1,

where v(n) denotes the index of n relative to a fixed primitive root of
the modulus p®. The number of characters is ¢(p®).

The position is a little more complicated when g = 2°. If o = |
there is only one relatively prime residue class, and only one charac-
ter, the value of which is always 1 (for odd n, of course). If & = 2. so
that ¢(2*) = 2, there is a primitive root, namely — 1, and the pre-
ceding construction applies : the characters are "™, where w? = 1.
The effect is to give two characters, one of which is always 1 and the
other of which is 1 or — 1 accordingas n = 1 or — 1 (mod 4). But if
a > 3 there is no primitive root (mod 2%): as a substitute for this we
have the fact that every relatively prime residue class is representable
uniquely as

(_ l)vsv"
where v is defined to the modulus 2 and v’ is defined to the modulus

$¢(2*) = 2*7 2. By analogy with the previous construction, we
define the characters in the present case by

x(n) = w'()",
where

w? =1 and (0)* ' =1.

The number of charactersis 2* 7! = ¢(2%).
In the general case, when

q = 2°pi'p3...,

we define the characters to the modulus g as products of arbitrary
characters to the various prime power moduli. If y(n; 2*) denotes any
character to the modulus 2% and similarly for the other prime
powers, the general character to the modulus q is given by

x(n) = x(n; 2%)x(n; pHx(n; p%)...,

provided (n, q) = 1. (The last proviso could be omitted, for if n has
a factor in common with ¢, one of the characters in the product on
the right will be 0.) The total number of charactersis

P(2)¢(p1)(pT)-- = $(q)-
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It is plain that these characters are distinct arithmetic functions (this
being a consequence of the fact that each index assumes all values to
its appropriate modulus), and that each function is a periodic and
multiplicative function of n. One of the characters, got by taking all
the w’s to be 1, has always the value 1, for (n,q) = 1, and this is
called the principal character and denoted by y,,.

The characters to a given modulus g form themselves a group
under multiplication, with the principal character as the unit
element. This group, which has ¢(g) elements, is in fact isomorphic
to the multiplicative group of the relatively prime residue classes
(mod q). The isomorphism is most easily demonstrated by re-
writing the definition of x(n) in terms of the complex exponential
function. For the modulus p*, we have

w = > = o[m/¢(p*)],

and the different choices of w correspond to different choices of the
integer m to the modulus ¢(p®). So

x(n; p%) i

) =e| |,
o)

where v is the index of n relative to a particular primitive root of p*.

In the case 2% we have

myv mv’
;2%) = el — :
X(n ) e( 2 + 2:1‘2)

where n = (—1)" 5" (mod 2%). Putting these formulas together, we
get

m = e[’""“" o olo | Muvs | Mavy }

2 T T g T e T

for (n,q) = 1, where my,, my, m;, m,... are integers which take all
values modulo the corresponding denominators. The definition is
symmetric in the m’s and the v’s, and we see that multiplication
relative to n (with x fixed) corresponds to addition of the vectors

(Vos V05 Vis Var-),
and that multiplication relative to y (with n fixed) corresponds to
addition of the vectors

(mg, my, my, my,...),

in each case with respect to the appropriate moduli. This duality
renders visible the isomorphism mentioned earlier. We have
assumed above, for simplicity of exposition, that the exponent
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a in 2% is at least 3. It will of course be plain that if « = 2 the second
of the two terms corresponding to 2% is to be omitted, and that if
o = 1 both terms are to be omitted.

The characters have an important property that can be expressed
in either of two equivalent forms. In the first form, it states that

) ifx =y
(2 z,,: xn) = {O otherwise,

where the summation is over any representative set of residues
(mod g), though it suffices to take a set of relatively prime residues,
since y(n) = 0 for the others. The truth of the above statement is an
immediate deduction from the representation of the general charac-
ter in (1). For the summation over n is equivalent to a summation
OVET Vg, Vg, V1, V2., €aCh tO its respective modulus, and this gives 0
unless each of my, mgy, my, m,,... is congruent to 0 with respect to its
corresponding modulus. In that case, y = yx,, and all the values of
x(n) are 1 for nrelatively prime to g, and the value of the sum is ¢(g).
The second form of the property is that

#(gq) if n = 1(mod g),
(3) g x(n) = {0 otherwise,

where the summation is over all the ¢(q) characters. The same proof
applies, but with the m’s and v’s interchanged ; the only case in which
the sum does not vanish is that in which all the v’s are 0, and then
n = | (mod g). It may be of interest to remark that if the characters
are defined axiomatically, that is, by their periodic and multipli-
cative properties, instead of by construction, then (2) is readily
deducible from the definition but (3) is not. To prove this, one has
either to use similar ideas to those we have used in the construction,
or to appeal to the basis theorem for Abelian groups.

Using (3), we can prove that any arithmetic function X(n) that is
multiplicative and has period q, and is O when (n, q) > 1 but not always
0, is one of the ¢(q) characters y(n). For if (¢, q) = 1, we have

Y. X(mx(n) = Y. X(cn)x(cn) = X(O)x(c) Y X(m)x(n).

Unless X(c) = x(c) for all ¢, the sum must be 0. If this is so for each ¥,
then

0= xtm)Y) X(min) =Y X(n)Y x(m(n) = d(g)X(m).

This gives X(m) = O for all m, contrary to hypothesis.
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We can also use (3) to construct, as in §1, a linear combination of
the characters which selects those integers n which fall in a given
residue class (mod g). If (a, ) = 1, then

if n = a (mod g),
@ P(q )ZX(G)X(n) { otherwise;
for we have x(a)yx(n) = x(n'),and n’ = 1 (mod g) if and only if n = a
(mod g).

The L functions for a general modulus g are defined, in the first
place for s > 1, by

Lis,x) = Y. x(nn
n=1

Asin §1, each of them has an Euler product expression :

Ls,x) = [1[t = xtpp~17 Y,

p

and L(s,x) # O for s > 1. We have

logL(s,y) =) Y m™'x(@™p™™,

p m=1

and on forming a linear combination of these logarithms and using
the relation (4), we obtain

(5) e )Zx(a) logL(s,)= ) ) m 'p™™

p
pm=a(mod q)
Asin §1, the right side is
>, pC+ o)

p=a(modq)
as s — 1 from the right. Thus our object, as before, is to prove that
the left side of (5) tends to + oo as s — 1 from the right.
The term corresponding to the principal character yx,, 1s

1
——log L(s, xo)-
$lg) o
By the Euler product formula, we have
(6) L(s, o) = {s) [T (1 = p72),
rlq

and therefore log L(s, xo) = + o0 as s — 1. It therefore suffices to
prove that, for y # x,,log L(s, ) is bounded as s — 1, and again this
is equivalent to proving that L(1, y) # 0.
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If y 1s a complex character, that is, a character whose values are
not all real, so that ¥ # g, this follows as in §1 from the inequality

[TILGs, 0 = 1 fors > 1,
X
which is proved in the same way as before by takinga = 1in (5).

It remains to prove that L(1, y) # 0 when y is a real character
other than the principal character. Dirichlet deduced this from his
famous class-number formula, an account of which will be given in
§6. But to complete the proof of Dirichlet’s theorem now, 1 shall
deviate from the historical order of discovery and give a simple
proof due to de la Vallée Poussin,! which is based on complex
function theory.

For this proof we need to know a little about the behavior of the
L functions as functions of a complex variable s. We write s = o + it,
as is customary in this subject. The series which defines L(s, y) is
absolutely convergent for ¢ > 1, and is uniformly convergent with
respect to s for e > 1 + d for any positive 4. Hence the L functions
are defined for ¢ > 1 and are regular functions of s there. We can,
however, easily prove that each of them can be continued analytical-
ly so as to be regular for ¢ > 0, except that L(s, x,) has a simple pole
at s = 1.

We deal first with L(s, xo), and in view of the simple relation
between L(s, xo) and {(s) given in (6), it will suffice to consider {(s).
We transform the definition {(s) = Zn~*, which is applicable for
o > 1, into a form that is applicable more generally for o > 0.
This 1s done by partial summation, but it is a technical convenience
to use integrals rather than sums. We have

)= Y n*= Y nn~*—(n+1)7¥
n=1 n=1
@ wn+ 1
=5 ZnJ x5 Vdx
n=1 n
—s| [x]x~s" dx.

1

We now put [x] = x — (x), so that (x) denotes the fractional part of
x. This gives

(7) {(s) = S—S——— —s| ()x7s " dx.

! “Recherches analytiques sur la théorie des nombres premiers.” Deuxié¢me partie,
Ann. Soc. Sci. Bruxelles, 20, 281-362 (1896).
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The integral on the right is absolutely convergent for ¢ > 0, and
uniformly for ¢ > 6 > 0, and so represents a regular function of
s for 6 > 0. Thus {(s) is meromorphic for ¢ > 0, its only pole being a
simple pole at s = 1 with residue 1. In view of (6), the same is true
of L(s, xo), except that the residue is

[T =p7"=4q""¢(q.
rlq
There 1s a similar calculation when y # y,. If we define tempo-
rarily

S(x) =) xn),

n<x

then
Ls,x)= Y xmn=>= Y Sn)[n° — (n + 1)7%]
n=1 n=1

(8) — ® -s—1
= sfl S(x)x dx,

for ¢ > 1. Since x # yo. it follows from (2) that Zy(n) over any g
consecutive integeré is 0,and therefore that S(x)is a bounded function
of x. Thus the last integral gives the analytic continuation of L(s, y)
as a regular function for o > 0.

Suppose now that y is a real nonprincipal character (mod ¢) and
that L(1, y) = 0. Then L(s, x) has a zero at s = 1, and the product

L(s, )LAs. xo)

is regular at s = 1 and therefore regular for ¢ > 0. Since L(2s, x,) is
regular and different from 0 for ¢ > 1, the function

_ Lis, Y)L(s, x0)
L(2s, Xo)

W(s)

is regular for ¢ > J. We observe further that y(s) » 0 as s — 5 from
the right, since L(2s, o) = + 0. |

The Euler product formula for y/(s) contains only factors corres-
ponding to primes that do not divide ¢, and indeed contains only
factors corresponding to primes for which y(p) = 1,sinceif y(p) = — 1
the factor is

A+p ' =pt

1.
(1 _ p—Zs)—l

Thus we get

ws) = I “*p:)

xup=1 =D
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This holds foro > 1. If there were no primes with y(p) = 1 we should

have Y(s) = 1 for all ¢ > 1, and therefore by analytic continuation

for all ¢ > 1, and this is contrary to the fact that y(s) - 0 as s — 1.
Plainly the above product can be written as a Dirichlet series:

K0
Wis) = ). an”>,
n=1
where a, > 0 and a, = 1. This series i1s only valid, however, for
o > 1(asfaras weknow).
Since Y(s) is regular for ¢ > 1, it has an expansion in powers of
s — 2 with a radius of convergence at least 3. This power series is

o o}

1
W) = Y — v ™2)s = D

m=0
We can calculate ™ (2) from the Dirichlet series, and we obtain

o o)

ym(2) = (=" ) a(logny'n”? = (=1)"b,,

n=1

say, where b,, > 0. Hence

W)= 3 o bl

b, (2 — s)",

and this holds for [2 — s| < 3. If § < s < 2, then since all the terms
are nonnegative we have

W(s) = ¥(2) > 1

and this contradicts the fact that y(s) — 0 as s — 3. Thus the hypo-
thesis that L(1, y) = 0 is disproved.?

We have therefore completed the proof of Dirichlet’s theorem that
there are infinitely many primes p = a (mod q), and the series Zp~!
summed over such primes is divergent.

% A somewhat different proof, but on similar general lines, was given by Landau
in 1905 (see, for example, Prachar, Chap. 4, Satz 4.2). There is also an elementary
but rather complicated proof due to Mertens, which will be found in Landau, Vorle-
sungen 1. Satz 152.
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PRIMITIVE CHARACTERS

Many results about characters and L functions take a simple form
only for the so-called primitive characters, though they may be
capable of extension, with complications, to imprimitive characters.
We shall now explain the distinction between these two types of
character, and afterward investigate in detail the real primitive
characters.

Let x(n) be any character to the modulus g other than the principal
character. If (n,q) > 1, then y(n) = 0; if (n,q) = 1, then x(n) # 0,
being a root of unity. and is a periodic function of n with period gq.
It is possible, however. that for values of n restricted by the condition
(n,q) = 1. the function y(n) may have a period less than g. If so, we
say that y is imprimitive, and otherwise primitive. It is a matter of
personal preference whether one includes the principal character
among the imprimitive characters; I prefer to leave it unclassified.

Let y(n) be a nonprincipal character to the modulus g which is
imprimitive, and let g, be its least period. Then g, < g;and g, > 1,
for otherwise we should have y(n) = x(1) = 1 for all n satisfying
(n,q) = 1, contrary to the supposition that y is not the principal
character. Further, g, is a factor of g, for by a familiar argument if g
and ¢, are periods then so is (g, q,), and therefore this number
cannot be less than ¢,.

We shall prove that y(n) is identical, when (n, ) = 1, with a charac-
ter x,(n) to the modulus g, ; but before we can prove this we must
define yx,(n). Of course, we define y,(n) to be y(n) if (n,q) = 1; and if
(n,q,) = 1 but(n,q) > 1, we choose any integer t such that

(1) (n+tq!,q)=1

and define y,(n) = x(n + tq,). Such an integer exists, for it suffices to
have

(n+tq,,r)=1,

! Alternative terms are improper and proper.

35
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where? r is the product of those prime power constituents of ¢ which
are relatively prime to gq,. The choice of ¢, subject to (1), is immaterial,
since the value of y(n + tq,) will be the same.

We have now defined x,(n) when (n, g,) = 1, and of course we take
it to be 0 when (n, g;) > 1. Plainly yx,(n) is periodic with period q,,
and its multiplicative property follows easily from that of yx(n).
Further, ,(n) is not always 0 when (n, ¢,) = 1, for ,(1) = x(1) = 1.
Hence, by a result proved in §4, it 1s one of the ¢(q,) characters to
the modulus g,. The values of y,(n) when (n,¢q,) = 1 include the
values of y(n) when (n, q) = 1, and so cannot be periodic with period
less than g, ; nor can they all be 1. Hence x,(n) is a primitive character
to the modulus g,. We have now proved that to an imprimitive
character y (mod q) there corresponds a proper factor q, .of q and a
primitive character y, (mod q,) such that

(n) _{Xl(n) if(n9 q) =1,
K= 0 if (n,q) > 1.

We say that y, induces y. [t is clear that if g, and y, are given, and ¢
is any proper multiple of g,, the above definition of y does in fact
produce a character (mod g).

For example, the Legendre symbol (n|p) is an imprimitive charac-
ter (mod p%) if « > 1, being induced by the same character (mod p);
but this is a particularly simple case, since here the conditions
(n,q) =1 and (n,q,) = 1 are synonymous. Or again the Legendre
symbol (n|p,) induces an imprimitive character to the modulus
p.p2 (Where p, # p,) by the definition

(2)

n .
X(n) — (;‘;) if (n: p1p2) - la

0 if (n,p,p,) > 1.

As we saw in §4, any character (mod g) is representable as

x(n) = x(n; pi')x(n; p?)...,

where g = p{'p%..., and the characters on the right are to the moduli
indicated. (We allow p, to be 2 here.) It is easily seen that y is primitive
if and only if each of the characters on the right is primitive. If y is
imprimitive, one or more of the characters on the right is either
principal or imprimitive, and in the latter case y(n:p*) = y(n: p®).
where 1 < B <« Then g, is the product of the prime powers
pfi, and y, is the product of the characters y(n; p%), but omitting
any factors that are principal characters.

21 is not the same as q/(q.q,).
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Expressed in terms of the representation by the complex ex-
ponential function, in (1) of §4, a character is primitive if and only
if all the m; are relatively prime to the corresponding p; (with an
obvious modification for m, and m; depending on whether a > 2
or a = 2).

The relation (2) between an imprimitive character y and the
primitive character y; which induces it implies a simple relation
between the corresponding L functions. By the Euler product
formula,

(3) L(s,x) = IT[1 = x(p)p~°]""
rlq
= ?[1 — xipp ]!
= L(s, x;) Il1[1 = x1(p)p "]

The above argument is valid only for ¢ > 1, where the infinite
products converge: but by analytic continuation the result re-
mains true for ¢ > 0, and indeed in the whole s plane, as we shall see
later. In particular, L(1, y;) # O implies L(1, y) # 0.

We now turn to the real primitive characters, which are of
particular interest in several ways. The obvious question is: For
what moduli does there exist a real primitive character (or possibly
more than one), and how can such characters be expressed in terms
of quadratic residue symbols? The general nature of the answer
is that only for certain types of g does a real primitive character
exist, and it is then expressible (for n > 0) as

1
)

where the symbol on the right is Kronecker’s extension of Legendre’s
symbol, and d = +4. In some cases, but not in all, d can be both
+¢q and — g, and then there are two. characters.

We have seen that a primitive character (mod q) is a product of
primitive characters with the prime power constituents of g as
moduli. Consider first a prime power p* for which p > 2. The

character is

mv(n)

e—‘a_——""-" . for(n,p)=1.
[p ‘0 - l)]

x(n) =

Since e(x) is real only if x = 0 or 1 (mod 1), and since a possible value
of v(n) is 1, this is a real function only if m is divisible by p*~'(p — 1).
We must therefore have a = 1, for if « > 1 we should have m
divisible by p and the character would be imprimitive. We can take
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m = 3(p — 1), since m = 0 would give the principal character, and
now the function becomes

n

1 — _1 v(n) — il
e[zv(n)] = (—1) (p)

Thus p* must be p and y(n; p*) must be (n|p).

Now consider the modulus 2% where a > 2 of necessity, since for
a = 1 there is only the principal character. If o = 2, there is just
one nonprincipal character, namely

1 if n = 1 (mod 4),
Xa(n) = {

4) -1 if n = —1(mod 4),

and this is obviously primitive. If o > 3, the general character is

e(mv N m’v’)
2 2a—2 ’

where 0 <m < 2,0 < m' < 2*°2 and v, v’ are defined by
n=(—-1)ys (mod 2%).

The character can only be real if m’ is divisible by 2*73 and if & > 3
this implies that the character is imprimitive. We must have o« = 3,
and there are the two possibilities my = 0, my =1 and m, = 1,
mgy = 1. [The other possibility, my =1, my = 0 leads to y,(n),
which is imprimitive to the modulus 8.] The first of these gives a
character, which we shall denote by yg(n), according to the rule

1 if n = 4+1(mod8),
(5) xs(n) = o
—1 if n = +3(mod 8);
and the second possibility gives xg(n)y,(n). Both these are primitive.
Thus the only prime power moduli to which there exist real
primitive characters are:

p (>2) with the character (n|p),
(6) 4 with the character y,(n),
8 with the characters yg(n) and y,(n)xs(n).

A real primitive character exists to the modulus g if and only if g
is a product of such moduli, subject to the factors being relatively
prime, and the character is then the product of the corresponding
characters given above. There are two of them if and only if ¢
includes the factor 8. We shall call the moduli listed above the
basic moduli and the characters the basic characters.
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We can express most of the basic characters, if we limit ourselves
to positive values of n, in terms of Jacobi's symbol (m{n), which 1s
defined (by multiplying together the corresponding Legendre
symbols) when n is odd and positive. We have’

-

h

B 2 _ 8
(7) 1 xs(n) = ; =\

-1

provided n is odd, which it naturally is when the modulus is 4 or 8.
We also have, by the law of quadratic reciprocity,*

@) (") _ (a
p n
provided n i1s odd. But here the limitation to odd n is an undesirable

restriction. It is removed by employing Kronecker’s extension of
Legendre’s symbol, by which one puts

5
(213;;:) B (z;m)‘

With this extension, relation (8) holds whether n is odd or even.
It holds also in the more general form

\ Xa(n)xs(n) =

, where p' = (—1)?~D/2p,

and, more generally,

P’
(ﬁ) = (~) where P’ = (—1)}P-Dp,
P n

if P = p,p,...; that 1s, if P is any square-free odd positive integer;
for then P’ = p|p5....

We have now expressed all the basic characters by quadratic
residue symbols; they are

G5 )

? Landau. Vorlesungen, Satz 92 and Satz 93.
* Landau. Vorlesungen. Satz 95.
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and the modulus of each character is the absolute value of the upper
number. Moreover, we have

_ (41} [42

Anfln

dd,
"
provided d, and d, are relatively prime. This is a consequence of
the multiplicative property of the Jacobi symbol (and so of the
Legendre symbol) if n is odd, and a consequence of Kronecker’s
definition if n is even (which it can only be if d,, d, are odd).

It follows that the real primitive characters are identical with the
svmbols (d|n), where d is a product of relatively prime factors of the
form
9) —4, 8 =8 (—1)"Yp  (p>2);

and the symbol is a real primitive character to the modulus |d|.

There is an intimate connection between the real primitive
characters and the theory of binary quadratic forms, or the equivalent
theory of quadratic fields. We prove, in the first place, that the
numbers d described above are identical with the numbers that
arise as fundamental discriminants in the theory of quadratic forms,
or as discriminants in the theory of quadratic fields.

The numbers (— 1)*?~ Yp are all congruent to 1 (mod 4), and the
products of relatively prime factors (i.e.. distinct factors) each of
this form comprise all square-free integers, positive and negative,
that are congruent to 1 (mod 4). In addition, we get all such numbers
multiplied by —4, that is, all numbers 4N, where N 1s square-free
and congruent to 3 (mod 4). Finally, we get all such numbers multi-
plied by +8, which is equivalent to saying all numbers 4N, where
N is congruent to 2 (mod 4). Thus we get (a) all integers, positive
and negative, that are =1(mod 4) and square-free, and (b) all
integers, positive and negative, of the form 4N, where N = 2 or 3
{mod 4) and square-free.

These are just the discriminants of quadratic fields. For a quadratic

field is generated by \/N, where N is a square-free integer (positive
or negative); and an integral basis of the field is given by

(1,/N)  if N =2 or 3(mod 4),

(1,4 + 4 /N)  if N = 1(mod 4).

The discriminant, being the square of the determinant formed
by an integral basis and the (algebraically) conjugate basis, is 4N
in the first case and N in the second case. Hence the discriminants
are just the numbers described in (a) and (b) above.
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In the theory of quadratic forms, the discriminant of
ax? + bxy + cy?

is the familiar algebraic invariant D = b? — 4ac. In this theory one
presupposes that D is not a perfect square, since in that case the
form has rational linear factors. Thus a discriminant is an integer,
not a square, which is congruent to 0 or 1 (mod 4). A fundamental
discriminant is one which has the property that all forms of that
discriminant have (a, b, ¢) = 1. We can easily prove that the funda-
mental discriminants are just the numbers d described in (a) and
(b). First, if D =d and (a,b,c) = m > 1, then m? divides d, and
therefore d must be of the type (b) and m must be 2. But then g = 2a,,
b=2b,, c=2c,and

which contradicts the fact that N =2 or 3(mod4). Second, if
D # d, we easily see that D = dm? for some m > 1, and then there
is either the imprimitive form with coefficients

m.m, —im(d — 1)
or the imprimitive form with coefficients
m,0, —imd,

of discriminant D. This proves the assertion.

In the theory of quadratic fields, the value of (d|p) determines
the way in which a prime p factorizes in the quadratic field of dis-
criminant d; it remains a prime if (d]p) = — 1, and factorizes into
two prime ideals if (d|p) = 1. Similarly, in the theory of quadratic
forms, p is not representable by any form of (fundamental) dis-
criminant d if (d|p) = — 1, but is representable by at least one form
if (d|p) = 1.

In connection with primitive real characters, it may be noted that
x(—1) has the value +1 or —1 according as d is positive or negative.
It is sufficient to prove this for the “prime discriminants” listed in
(9), as the general character is a product of basic characters, and
both the value of y(—1) and the sign of d are multiplicative. For
d = —4 the character is y,(n) and y,(—1) = —1. For d = 8 the

character is yg(n), and xg(—1) = 1. For d = —8 the character is
Xa(n)xs(n), and x,(—1)xs(—1) = —1. For d = (=D~ VYp the
character is (n|p), and for n = —1 it is +1 or —1 according as

p = 1 or —1(mod 4), that is, according as d is positive or negative.
Hence the result.
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Thus a real primitive character is associated with a real quadratic
field or with an imaginary quadratic field, according to the value
of y(—1).

Finally, we observe that the L function of any real primitive
character can now be expressed as

wen- § [0

for o > 1.
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DIRICHLET'S CLASS NUMBER
FORMULA

Dirichlet’s class number formula, in its simplest and most striking
form, was conjectured by Jacobi' in 1832 and (as we said in §1)
proved in full by Dirichlet in 1839.

There are two stages in Dirichlet’s work. In the first stage, the
class number of quadratic forms of given (fundamental) dis-
criminant d is related to the value of L(1, ), where yx is the real
primitive character (d|n). This relation renders visible the fact that
L(1,x) > 0. In the second stage, the value of L(l1,y) is expressed
in terms of a finite sum by an argument which is essentially the same
as that used in §1.

In this section we shall give the substance of Dirichlet’s work,
but to avoid excessive length we shall quote a number of results
concerning quadratic forms from Landau’s Vorlesungen 1. We
cannot follow Dirichlet in detail, because he used the notation

ax? + 2bxy + cy?

for a quadratic form, whereas (following Lagrange and most
modern writers) we shall use the notation
ax? + bxy + cy.

The forms of given (fundamental) discriminant d fall into classes
of mutually equivalent forms under linear substitutions of the

type
(1) x =ax + By, y =yx" + 9y,
with integral coefficients a, f, y, d satisfying ad — fy = 1. We call

these unimodular substitutions. As Lagrange showed, every class
contains at least one form whose coefficients satisfy the inequalities

bl < la] < cl,

! See p. 51 below, and Bachmann, Kreisteilung, Vorlesung 20, or H. J. S. Smith,
Report on the Theory of Numbers, §121.

43



44 MULTIPLICATIVE NUMBER THEORY

and it follows easily that the number of classes, for a given dis-
criminant d, is finite.?

If d is negative, the forms of discriminant d are definite. Half
of them are positive definite and half are negative definite, the
latter being obtained from the former by replacing a,b, ¢ by —a,
—b, —c. It is obviously sufficient to consider the positive definite
forms, which is equivalent to saying that we restrict ourselves to
forms with a > 0. If d is positive, each of the forms of discriminant
d is indefinite. It is therefore equivalent to some form with a > 0,
for we can choose some positive number represented properly by
the form (that is, with x and y relatively prime), and any such
number occurs as the first coefficient of some equivalent form.
We can select a representative from each class of equivalent forms
with @ > 0, and it is convenient to do so. We denote the number of
classes of forms (positive definite if d < 0) by h(d).

There i1s always at least one form of discriminant d, namely, the
principal form

) { x? — 1dy? if d = 0(mod 4),

x? + xy — 3d — 1)y? if d = 1(mod 4).

Hence h(d) is a positive integer.

In the relationship between h(d) and L(1, x), the proof of which
represents the first stage of Dirichlet’s work, there intervenes a
factor depending on the automorphs of the forms of discriminant d,
that is, the unimodular substitutions that transform a form into
itself. There are always two trivial automorphs, namely, the identity
x =x', y=y and the negative identity x = —x', y= —y" If
d < 0, there are in general no others, but there are two exceptions
to this: when d = —3 or —4. In both these cases there is only one
class of forms, represented by the principal form. If d = —3, the
principal form is x? + xy + y?, and this has the additional auto-
morphs

x=—=y, y=x"+1yY, and x=x"+y, y=—x

and their negatives. If d = —4, the principal form is x? + y?, and
this has the additional automorph

? Landau, Vorlesungen, Satz 197.
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and its negative. We denote by w the number of automorphs, so
that

2 ifd < —4,
(3) w=<4 ifd = —4,
6 ifd = 3.

(Another interpretation for w is that it is the number of roots of
unity in the quadratic field of discriminant d.)

The position is quite different when d > 0. Each form has in-
finitely many automorphs, and these are determined by the solu-
tions of Pell’s equation

(4) t?2 — du?® = 4.
For the form with coefficients a, b, c, the automorphs are given by>

{a=%(t—bu), B = —cu,

5
©) y = au, d = 3(t + bu).

The trivial automorphs correspond to the trivial solutions t = +2,
u = 0 of Pell’s equation. The equation (4) has infinitely many solu-
tions, and if ¢y, u, is that solution with t; > 0, u, > 0 for which u,
is least, then all solutions are given by*

(6) 4t + uy/d) = +[3(to + uo /D",

where n is an integer (positive or negative). That (5) actually does
give an automorph is easily verified by factorizing the form ax? +
bxy + cy®. We have

(7 ax® + bxy + cy? = a(x — Oy)(x — 0'y),

where

0_—b+ﬂ 0,_—b—\/3
- 2 22

2a

and the effect of the unimodular substitution with the coefficients
(5) 1s expressed by

{ x — Oy = 3t — u /A - 0y),

x— 0y =3t + uﬁ)(x’ - 8'y");
the product of the constant factors is 1 by (4).

(8)

)

3 Landau, Vorlesungen, Satz 202.
4 Landau, Vorlesungen, Satz 111.
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We now turn to the question of the total number of representa-
tions of a positive integer n by a representative set of forms of given
(fundamental) discriminant d. This question was answered (im-
plicitly, at least) in the classical theory of quadratic forms, developed
by Lagrange and further by Gauss.

If d < 0, so that the forms are positive definite, the number of
representations of n by any form is finite. We denote by R(n) the
total number of representations by the various forms of a representa-
tive set. But if d > O there are infinitely many representations, since
any one representation gives rise to an infinity of others by the
application of the automorphs of the form. We shall select one
representation from each such set, and call it primary, and it will
transpire that the number of primary representations is finite. If
x,y and X, Y are two representations of the same integer that are
related by an automorph, then by (9) we have

x =0y Y+ufd X-0Y
x — Oy %(t—u\/c}) X -0y’

Let & = 4t + ug/d) > 1. Then, by (6),

e +u/d)= tem, Mt —uSd) = +e",

for some integer m. There is just one choice of m (for given X and Y)
which will ensure that
x—0y

< &%,
x — Oy

(10) 1 <

and then by choice of the ambiguous sign we can further ensure
that

(11) x — 0y >0.

A representation that satisfies these two conditions will be called
primary. The number of primary representations of a given integer
n by a given form is finite, since the product of the linear forms
x — 0y and x — @'y is n/a by (7), and their quotient is bounded
both ways by (10). For d > 0 we denote by R(n) the total number of
primary representations of n by a representative set of forms of
discriminant d.
The basic result of the theory of quadratic forms is as follows.>

* Landau, Vorlesungen, Satz 204.
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Ifn > 0and(n,d) = 1 then

d
(12) R = w3 4).
where w is given by (3) ifd <O and w =1 ifd > 0.

This is proved by expressing R(n) in terms of the number of solu-
tions of the congruence z?> = d (mod 4n), and then evaluating this
number in terms of quadratic character symbols.

The basic idea in the first stage of Dirichlet’s work is to deter-
mine, from the above expression for R(n), the average value of
R(n) as n varies. It is convenient (and it suffices for the purpose

in view) to limit oneself to values of n that are relatively prime to d.
We have

mimy<N ml
(nd)y=1 (mima,d)=1 -
d d
P - DR S N e
ml <N/ ml
mxﬁ\/ﬁ '(”Z-d)/:mll m2<\/ﬁ\/—ﬁ<m|SN/mz
mz (m3,d)=1

since the first sum comprises all pairs m,, m, for which m; < \/N

and the second sum all pairs for which m, > \/N The first inner
sum is

N ¢(ld))

270 .
e qa + OL]

so the first double sum is

N?%‘D y i(‘—’)+0(\/ﬁ),

m, \m
mli\/ﬁ 1 1

for fixed d and arbitrarily large N. Since (d|m,) is a nonprincipal
character to the modulus |d|, the sum of its values as m, varies over

any range 1s bounded. Hence the second double sum is 0(\/N ). Thus

wt Y R(n)=NM y l(ﬁ)+0(\/ﬁ).

|d] m \m
(nd)=1 m<J/N

We can extend the sum over N to infinity, and the remainder is
estimated by

miym
m> /N

1[d ,
) —(—) = O(N™Y),
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on using partial summation. This again contributes an error

O(ﬁ) in the above asymptotic expression. In particular,=we
conclude that

1 ¢(dl)
(13) am N Z Rim =w=a 2 1m( )

(nd) 1

Since ¢(/d|)/|d] measures the density of the integers n for which
(n,d) = 1, we can express the result in the form: The average with
respect to n of R(n) is wL(1, ), where y(m) = (d|m).

The next step is to evaluate the average of R(n) from its original
definition. Let R(n,f) denote the number of representations of n
(primary if d > 0) by a particular form f of discriminant d. Then

(14) R(n) = ) R(n,f),
s

where the summation is over a representative set of forms (with
a > 0), so that the number of terms in the sum is h(d). We shall now
evaluate

fmy 3 K

(n, d) 1

and it will turn out to be independent of f. Comparison of the two
limits will give the relation between h(d) and L(1, x).
Take first the case d < 0. Then

Z R(n,f)

(n, d) 1
is the number of pairs of integers x, y satisfying
0<ax?+bxy+cy*) <N, (ax? + bxy + cy?,d) = 1.

The second condition limits x, y to certain pairs of residue classes to
the modulus |d|, and it is easily proved® that the number of these pairs
is |d|¢(|d|). Hence it suffices to consider the number of pairs of integers
X, y satisfying

ax> + bxy + cy* < N, x=xq Jy=y,(mod|d|).

The first inequality expresses that the point (x, y) is in an ellipse with
center at the origin, and as N — oo this ellipse expands uniformly.

¢ Landau. Vorlesungen. Satz 206.



DIRICHLET'S CLASS NUMBER FORMULA 49

The area of the ellipse is
2n 2n

A N=E
4dac — b? |d|*

Intuition suggests—and a rigorous proof is easily given by dividing
the plane into squares of side |d|—that the number of points is
asymptotic to

N.

1 2=
\d|? |d|*

as N — oo. We have to multiply this by |d|¢(|d]) to allow for the
various possibilities for x,, yo. Thus the conclusion is that

$(ldl) 2n

1 N
lim— Y Rnf)= 20
N R =S

N—= o
(nd)=1

Comparison with (13) and (14) gives

_ w|d|*
T 2n

(15) h(d) L(1, y) ford < 0.

Now take the case d > 0. Arguing as before, we need the number
of integer points (x, y) satisfying
x—0y

ax> + bxy +cy* <N, x-0y>0 1< < g2,
x — Oy

and
= X, Y=y, (mod d).

The first set of conditions represents a sector of a hyperbola bounded
by two fixed lines (or rather half-lines) through the origin. The area
of this sector is easily calculated by changing the coordinates from
x, y to &, n, where

E=x— 0y, n=x-—0y.
We have
5(6,'1)_0_0,__:\/3

ax,y) a

In the &, 5 plane, the sector is given by
&n < N/a, E>0, E<n < el
These conditions are equivalent to

0 < & < (N/a)t, & < n < min(e?¢, N/ag).
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Hence the area is

&1 (N/a)"2 N
2 o de.
fo (e°¢ — &)d¢ +L (aé é) ¢

where &, = ¢~ (N/a). This is
(€2 — 1)3¢% + (N/a)* log(N/a) — (N/a)log &, — ¥(N/a) + 31,

which reduces to
(N/a)loge.

This has to be divided by d*a~! to give the area in the x, y plane. We
have then to divide this by d? to allow for the congruences to the
modulus d, and to multiply by d¢(d) to allow for the choices of
Xo. Vo- This gives

llm— Z R(n,f) =

N= o d% ’
(nd) 1

and comparison with (13) and (14) gives

1
2

(16) Wd)= - L(1.y)  ford> 0.
loge

This completes the first stage of the work, and, as we said earlier,
the results (15) and (16) render visible the fact that L(1, y) > 0.

There remains the question of expressing L(1.x) by means of a
finite sum, as was done in §1 in the particular case when |d] is a prime.
The work is on the same general lines as there, but one needs the
evaluation of a slight extension of Gauss’ sum. This takes the form’

ld|

> (%)e(mn/ldl) - (g

m=1

eld?,

wheree = 1ifd > 0and ¢ = i if d < 0. I will merely quote the final
results®:

|4]

(17) L1,y = |d|% Z m( ) if d <0,

log sin C'g—t ifd > 0.

(18) L(1, ) = Z (

7 Landau, Vorlesungen, Satz 215.
8 Landau, Vorlesungen, Satz 217.
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Here (17) is the more general form of (7) of §1 [there is similarly a
more general form of (8)], and (18) is the more general form of (9)
of §1.

The case whend = — g, where g is a prime congruent to 3 (mod 4),
is particularly simple and interesting. We suppose that g > 3 so as
to avoid any complication with the value of w. We have w = 2,
and on combining (15) with (17) we get

] qzl lq 1
o e L)
ldl, q ,..Zl
It was this particular case of the class-number formula that was
conjectured originally by Jacobi, and the considerations that led
him to make the conjecture are curious. The number on the right
of (19) is certainly an integer, say H, since by Euler’s criterion

q—1 m

2 m|—

m=1
Jacobi proved, by an ingenious argument involving products and
quotients of Gaussian sums, that H has the following property:

for every prime p = 1 (mod q), there is a representation of p!*! in
the form

qg—1
= ) m*** = 0(mod g).
m=1

ap = x2 4 gy2.

(The reader will not be surprised to learn that Jacobi was unable
to prove that H is positive.) On the other hand, it can be deduced
from the theory of quadratic forms that the same property is
possessed by the class number h(—g). This led Jacobi to look for a
connection between them, and after examining a number of parti-
cular cases he formulated the conjecture that h(—q) = |H|.

We conclude this section by stating briefly the connection between
the theory of classes of equivalent quadratic forms and the theory of
ideals in quadratic fields, but we shall omit the proofs.’

Let K be a quadratic field of discriminant d and let a be an integral
ideal in K. The general integer £ of a is given by

where a, § 1s a basis of a and x, y run through all the rational integers.
Thus

N& = (ax + By)(@'x + B'y).

® See Landau, Vorlesungen 111, pp. 186198 or Hecke, Algebraische Zahlen, §53.
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and this is a quadratic form in x and y with rational integral coeffi-
cients. All three coefficients are divisible by Na, and if we write

Ne _ ax? + bxy + cy?,

Na
the discriminant of this form is d. The class to which the form belongs
is independent of the choice of basis for the ideal, and is also the same
for two equivalent ideals, provided that equivalence of ideals is
defined in the narrow sense. That means that two ideals a,b in K
are said to be equivalent if there is a number 4 of K with NA >0
such that

a=(A)b

(of course A need not be integral). Further, there is a one-to-one
correspondence between a representative set of forms of discriminant
d (positive definite if d < 0) and a representative set of ideals relative
to equivalence in the narrow sense.

If d < 0 there is no distinction between equivalence in the narrow
sense and in the ordinary sense, for then N4/ is necessarily positive.
Ifd > 0 and there is a unit in K of norm — 1, there is also no distinc-
tion, for we can ensure that NA > 0 by multiplying A by such a unit
if necessary. If d > O but there is no unit of norm —1, each ideal
class in the ordinary sense comprises two ideal classes in the narrow
sense. It follows that, if we denote by h,(d) the number of ideal classes
in K in the ordinary sense, then:

h(d) = hl(d)
if d < 0orifd > 0 and there is a unit in K of norm —1; but
h(d) = 2h,(d)

if d > 0 and there is no unit of norm —1.

There is a similar one-to-one correspondence between the
automorphs of the fields, when d > 0, and the unitsin K of norm + 1.
If ¢, denotes the fundamental unit of K, then¢ = ¢, if Ne; = + 1, but
¢ =¢7if Ne, = — 1.

Combining these results, we have in both cases

h(d)log e = 2h,(d)log ¢, for d > 0.

Thus the final expressions for the class number h,(d) of a quadratic
field become

w & fd
=—=—) — if d
h,(d) 2.2 m( ) if d <0,
h,d)] Ly log sin — ifd >0
= — = —| log sin — )
1(d) log ¢, 2 & \m g P fd>
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Dirichlet’s class-number formula, as given in (15) and (16), can
be regarded as a special case of a theorem!? that applies to any
algebraic number field K, by which the product of the class number
and the regulator is expressed in terms of the residue at s = 1 of the
Dedekind { function of K. If K is a quadratic field, the Dedekind {
function is simply {(s)L(s, x), and the residue is L(1, ). But this
special case 1s of interest in its own right, particularly in view of the
fact that L(1, x) can be expressed by a finite sum, as in (17) and (18).

'® Hecke, Algebraische Zahlen, Satz 125.
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THE DISTRIBUTION OF
THE PRIMES

Legendre was the first, as far as we know, to make any significant
conjecture about the distribution of the primes. Let n(x) denote the
number of primes not exceeding x. Then Legendre conjectured,
somewhat tentatively, that for large x the number n(x) is given
approximately by

X

logx — 1.08...

This would presumably imply, at the very least, that the ratio of
n(x) to x/log x tends to 1 as x — o0 ; and this is the celebrated Prime
Number Theorem, which was first proved by Hadamard and de la
Vallée Poussin independently in 1896. If we construe the conjecture
in the more precise form that

X

mlx) = log x — A(x)’

where A(x) — 1.08... as x — o0, then it is erroneous, since (as we shall
see) the limit of A(x)1s 1.

Gauss, in a letter of 1849 (which, however, was not published until
much later), related that as a boy he had thought much on this
question, and had reached the conclusion that a good approximation
to n(x) was given by

. Y odt

lix = —.
. logt
He certainly believed that the ratio n(x)/li x has the limit 1, which
again is equivalent to the prime number theorem: how much more
he believed is uncertain.! The asymptotic expansion of li x, found by
integrating by parts several times, is

X 11x qlx

log x * (log x)? ot (log x)1*! [T+ e(x)]

! See Landau. Handbuch. Kap. 1.
54
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for any fixed g, where g(x) — 0 as x — oco. If the second term of this
is significant in the approximation to n(x) by li x, as we now know
that it is, the limit of Legendre’s A(x) 1s 1.

The first mathematician of all time to prove any worthwhile results
about the behavior of n(x) as x — o0 was Tchebychev, in 1851 and
1852. In his first paper he provided some measure of justification for
Gauss’ conjectural association of n(x) with li x. He proved that

llm—(—) <1 <an_(x_)
I x lix’

so that if the limit exists it must be 1. But he further proved (in effect)
that if there is a function with an asymptotic expansion of the same
general character as li x which gives a good approximation to n(x),
then this function can only be li x itself. The proof is based on the
asymptotic behavior of various combinations of {(s), {'(s), {"(5),... as
s — 1 from the right.?

In his second paper Tchebychev gave definite inequalities for
n(x): he proved that

) (0-92---)5);—)‘ < m(x) < (1.105..,)52;

for all sufficiently large x.
The proof depends on an interesting identity satisfied by the
arithmetical function A(n), which is defined by
log p if n 1s a power of a prime p,
2) A(n) = { 0 P
otherwise.

The identity states that

(3) Y. A(m) = logn.

min
Although this can be proved directly, the simplest way of deriving
this and similar identities is by comparing coefficients in two
Dirichlet series which have the same sum. By logarithmic differ-
entiation of Euler’s identity,

\ & 00
P =) Z (logpp™™ = ) Almn~

(:(S p m=1 n=1

(4)

2 See Landau. Handbuch. Kap. 10.
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Multiplying this by {(s), we get

(Z A(n)n~* (z n's) = — CC((:)) {(s) = Z(log nn- >,

for s > 1, and comparison of coefficients gives (3).
If we sum (3) over positive integers n < x, we obtain

m<x n<x

T(x)= )Y A(m) [%:' = ) logn = log[x]!,

and the number on the right is x log x — x + O(log x) by Stirling’s
formula. This was the basis for Tchebychev’s proof of (1).

A result of the same general character as (1), but with less precise
constants, can be proved by considering the combination

T(x) — 2T¢x) = ¥ A(m)([i} . 2[1}

m<x m 2m

The left side is asymptotic to x log 2, and the right side is

]
< Y Am) =) (og p)[l—zz—;:l < (log x)n(x).

m<x P<x

This yields a.lower bound for n(x) of the desired character. The right
side above is also

> ) Am)= ) logp = (logjx)[n(x) — n(zx)]
ix<m<x Ix<p<x
This gives an upper bound for n(x) — n(3x), from which an upper
bound for n(x) is easily derived by an inductive argument. Tcheby-
chev’s proof of (1) was based on the consideration of the more
elaborate combination?

T(x) — T(3x) — T(3x) — T(Ex) + T(35x).

The next substantial progress was made by Mertens in 1874. He
proved that

(5) Y L loglogx + A + O[(log x)™ '],

P<x

a result which (even in a less precise form) had been attempted by
Tchebychev without success. The proof, as one now sees it, is not
particularly difficult. We have seen that

5 A(m)[ﬂ = T(x) = x log x + O(x).

m<x

3 Landau, Handbuch, Kap. 5.
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The contribution of the prime values of m is

Y (log p)[ﬂ = X Z P+ Ol(log x)m(x)]

pPEX p<x

. z logp

pP<x

+ O(x).

Other values of m contribute O(x). Hence
log p
2

p<x

= log x + O(1).

Denoting the sum on the left by s(x), we have

Y=Y lstn

p<xp 2<n<x

and on applying partial summation we obtain (5).

Another result of Mertens is of interest in connection with
Dirichlet’s work on primes in an arithmetic progression. If y is any
nonprincipal character (mod g), it follows from the results of §4
that

x(p)
r P
has a finite limit as s — 1 from the right ; for the amount by which this
series differs from log L(s, x) is trivial. Mertens proved the deeper
result, which is suggested by the preceding one but cannot be
deduced directly from it, that

(6)

1)
pp

converges. From this and (5) he easily deduced, by taking a linear
combination of characters in the usual way, that

1 1
- = ——1loglogx + A(q.a) + O[(log x)™'].
p?xd P P(q)
p=a(modgq

We have here a more precise form of Dirichlet’s theorem that the
series on the left, when extended to infinity, is divergent.

The proof of the convergence of the series (6) is simple and
ingenious. Using (3), we have

x(n)logn x(my)x(my)A(m,)
z n - mn%ix mm,

Z X(ml)A(ml)‘ z X(mz).

m; <x ml mZSx/ml m2

n<x

Il
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The inner sum on the right differs from L(1, ) by a remainder that is
O(m,/x), by partial summation. Hence the last expression is

)Z )(m)

m<x

x~ 1Y Am)).

m=<x

The last error term is O[x ™ !(log x)n(x)] = O(1), by (1). Since the
series Xy(n)(log n)/n is convergent, by Dirichlet’s test, it follows that

5y x(m)A(m)

m<x

= O(1),

and from this the convergence of the series (6) is deduced by partial

summation.
It may be of interest to observe that the convergence of the series
(6) implies the convergence of the Euler product for L(s, x) when

s = 1. Hence

L(L.y) = T[1 — xpyp™'17".
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RIEMANN’'S MEMOIR

In his epoch-making memoir of 1860 (his only paper on the theory
of numbers) Riemann showed that the key to the deeper investigation
of the distribution of the primes lies in the study of {(s) as a function
of the complex variable s. More than 30 years were to elapse, how-
ever, before any of Riemann’s conjectures were proved, or any
specific results about primes were established on the lines which
he had indicated.

Riemann proved two main results:

(@) The function {(s) can be continued analytically over the whole
plane and is then meromorphic, its only pole being a simple pole
at s = 1 with residue 1. In other words, {(s) — (s — 1)"! is an
integral function.

(b) {(s) satisfies the functional equation

n” PEs)(s) = n I — )1 — s),

which can be expressed by saying that the function on the left is an
even function of s — 1. The functional equation allows the properties
of {(s) for ¢ < 0 to be inferred from its properties for ¢ > 1. In
particular, the only zeros of {(s) for ¢ < 0 are at the poles of I'(3s),
that is, at the points s = —2, —4, —6..... These are called the trivial
zeros. The remainder of the plane, where 0 < ¢ < 1, is called the
critical strip.

Riemann further made a number of remarkable conjectures.

(@’) {(s) has infinitely many zeros in the critical strip. These will
necessarily be placed symmetrically with respect to the real axis,
and also with respect to the central line ¢ = 4 (the latter because of
the functional equation).

(b’) The number N(T) of zeros of {(s) in the critical strip with
0 < t < T satisfies the asymptotic relation

T T T
(1) N(T) = —log— — — + O(log T).
2n 2n 2=

59
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This was proved by von Mangoldt, first in 1895 with a slightly less
good error term and then fully in 1905. We shall come to the proof
in §15.

(c') The integral function (s) defined by

&(s) = 35(s — D~ FT(39)l(s)

(integral because it has no pole for ¢ > § and is an even function of
s — 1) has the product representation

(2) é(S) — eA+Bsn

p

S
1" e,
3

where A and B are constants and p runs through the zeros of {(s)
in the critical strip. This was proved by Hadamard in 1893, as also
was (a') above. It played an important part in the proofs of the prime
number theorem by Hadamard and de la Vallée Poussin. We shall
come to the proof in §§ 11 and 12.

(d’) There is an explicit formula for n(x) — li x, valid for x > 1,
the most important part of which consists of a sum over the complex
zeros p of {(s). As this is somewhat complicated to state, we give
instead the closely related but somewhat simpler formula for
Y(x) — x, where

(3) Yix) = Y A(n).
It 1s:

_ X YOy -
@ ) —x = = T - ot Hlogll - x7)

This was proved by von Mangoldt in 1895 (as was Riemann’s original
formula), and we give the proof in §17. In interpreting (4) two con-
ventions have to be observed : first, in the sum over p the terms p and
p are to be taken together, and second, if x is an integer, the last term
A(x) in the sum (3) defining /(x) is to be replaced by 1A(x).

(¢') The famous Riemann Hypothesis, still undecided: that the
zeros of {(s) in the critical strip all lie on the central line 6 = 1. It was
proved by Hardy in 1914 that infinitely many of the zeros lie on the
line, and by A. Selberg in 1942 that a positive proportion at least of
all the zeros lie on the line.

There is very little indication of how Riemann was led to some of
these conjectures. In 1932 Siegel’ published an asymptotic expan-

! Quellen und Studien zur Geschichte der Mathematik. 2, 45-80 (1932).
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sion for {(s), valid in the critical strip, which had its origin in notes
of Riemann preserved in the Gottingen University Library. From
Siegel’s description of the notes, it is plain that Riemann had more
knowledge about {(s) than is apparent from his published memoir ;
but there is no reason to think that he had proofs of any of his
conjectures.

In the present section we shall prove what Riemann proved, that
is (in effect) the functional equation, and we shall follow one of his
two methods. Many other proofs have since been given,? but this
one is still the most elegant.

Riemann started from the classical definition of the I' function:

Fds)=[ et ',
0
valid for ¢ > 0. Putting t = n’nx, we get
n”BC(Es)h~* =f x¥sTlemmmx gy
0
Hence, foro > 1,
¥ (ds)(s) =f xis1 (Z e"'z"") dx,
0 1
the inversion of order being justified by the convergence of
Zf Xt 1pmnnx gy
TJo
Writing
w(x) =Y e ",
1

we have
BT ds)(s) = J: x5 1y(x) dx
= f:o x¥ to(x)dx + f:o x ¥ 1o(1/x) dx.
Plainly

2w(x) = 0(x) — 1,

? See Titchmarsh, Chap. 2.
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where

(5) O(x) = Y e "
This function satisfies the simple functional equation
(6) 0(x~ 1) = xt0(x) for x > 0,

as we shall prove below: this equation is a special case of those
satisfied by the 3 functions of Jacobi. It follows that

o(x™ Y = =1+ It + xtw(x).
Hence

f x~ B lg(x " dx =f xTET L 4 bt 4ot o(x)] dx

1 1

1 1 2.
= —--+ +f X" 2w(x) dx.
s s—1 )

We have therefore proved that

1

() T HTENE) =

+J (T 4+ xTETHe(x) dx.
1

This holds for ¢ > 1. But the integral on the right converges
absolutely for any s, and converges uniformly with respect to s in any
bounded part of the plane, since

w(x) = O(e™ ™)

as x —» + o0. Hence the integral represents an everywhere regular
function of s, and the above formula gives the analytic continuation
of {(s) over the whole plane. It also gives the functional equation,
since the right side is unchanged when s is replaced by 1 — s.

We note that the function

&(s) = 3s(s — Dr~+T(3s)(s)

is regular everywhere. Since 3sI'(3s) has no zeros, the only possible
pole of {(s) is at s = 1, and we have already seen (p. 32) that this is
in fact a simple pole with residue 1.

Since I'(3s) ~ (35)” ! as s — 0, we deduce from (7) that {(0) = —1.
It is easily verified that

ox)=e ™ +e 4 e . <ix"t forx > 1,
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so if 0 < s < 1 the integral in (7) is less than {s(1 — s)} ~'. Hence
{(s) < O for 0 < s < 1. [The same conclusion may be drawn, more
simply, from (7) of §4.]

It remains to prove the functional equation (6) of the 8 function.
We shall prove this in the more general form

(8) i e—(n+a)21t/x — xlf i e—nzux+2m'na

— — 0O

which reduces to (6) when o = 0, since we shall need this in the next
section. It is supposed in (8) that x > 0 and that a is any real number
(though actually the equation holds for complex x and «, provided
Rx > 0, with the value of x~* which has argument between —in
and in).
By Poisson’s summation formula (§2),
i' e-—(n+a)2u/x — i fN e—(t+a)21t/x+ 2mivt gy
n=—-N v=—o" N

Here we can replace N by oo, since

o0 00
e+ 1 : _
et nxcos 2mvt dt = ——— | sin 2mvt d[e ¢ +@/x)
N 2nv J

by integration by parts, and therefore

—(N + 2
< Ce~ WN+a@n/x

o0
ZJ e~ t+a’n/x o8 vt dt

v¥Q N

where C is a constant. Since this disappears as N — oo, the limit
operation is justified. Thus

e ¢} [e o]

Z e—(n+a)2u/x —= Z fw e—(t+a)2u/x+2m'vt dt

- v=—o0w" " ®

a
= x Z e—Znivaf00 e*uxu2+2uivxu du.
: -

V= —
The quadratic in the exponent is
—nx(u — iv)? — nxv2.

Now

P et p)? P g mxo? -
f e ™ du=f e ™ dv = Ax "4,

- o0 — a0
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where A is a positive constant ; this holds for any f (real or complex)
and simply expresses a movement in the path of integration from the
real axis to another line parallel to it. Hence

©
Z e—(n+a)2n/x= Axa} Z e—nxvz—Zm‘va'

- o V= — o

If we now take « = 0 and apply this formula twice, we get A2 = 1,
whence A = 1. This proves (8), on replacing v by —v on the right.
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THE FUNCTIONAL EQUATION
OF THE L FUNCTIONS

The functional equation for Dirichlet’s L functions was first
given by Hurwitz in 1882 (Werke 1, pp. 72-88), though he confined
himself to real characters since he was primarily interested in
L functions in relation to quadratic forms. He first obtained the
functional equation for the more general { function {(s, w), which
will be given below, and deduced that of the L functions from it. We
shall follow the method used by de la Vallée Poussin in 1896, which
is an extension of that of Riemann used in the preceding section.

The functional equation is valid only for primitive characters.
We need the expression for x(n) as a linear combination of imaginary
exponentials e (mn), which we used earlier in §1 [(4) and (5)] in the
case when the character is the Legendre symbol.

For any character y(n) to the modulus g, the Gaussian sum
7(x) is defined by

(1) w(y) = }_:1 x(m)e (m).

If(n,q) = 1, then

q

XD = X Femnlem)
@ = 3 q(hje,nh),
h=1

on putting m = nh(mod q). This gives the desired expression for
x(n), provided that (n, g) = 1 and that (y) # 0.

We now prove that, if y is a primitive character, the last relation
holds also when (n, q) > 1. We put

n_n
qg q,
65
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where (n,,q;) = 1 and q,|q,q, < q. We can suppose that q, > 1,
since the relation holds trivially if n is a multiple of g. We have to
prove that

q
Zl X(h)e(n,h/q,) = 0.
h=

Write ¢ = q,q, and put h = uq, + v, where
0 <u<aq,, 1 <v<q,.

Then the exponential depends only on v, and it will suffice to prove
that

q:—1

Z X(ug, +v) =0

u=0

for every v. Considered as a function of v, the last sum, say S(v), is
periodic with period g, for the effect of replacing v by v + g, is to
change the range foru into 1 < v < g,, and v = q, 1s equivalent to
u = 0. If ¢ is any number satisfying

(3) .9 =1 c¢=1(modgq),

then
q -1 q:—1

@) x)S(w) = Y Xlcug, +cv) = Y Fl(ugy + cv) = S(v).
u=0 u=0

We now appeal to the characteristic property of primitive
characters (§5), namely that for (n, q) = 1, the function y(n) is not
periodic to any modulus g, that is a proper factor of g. This implies
that there exist integers c,, ¢, such that

(c1,9) =(c2,9) = 1, ¢y = ¢;(mod q,), x(cy) # x(c,).

Hence there exists ¢ = c,c; ' which satisfies (3) and has y(c) # 1.
It follows from (4) that S(v) = O for any v, as was to be proved.

We have proved that (2) holds independently of whether (n, q) = 1
or not. We now prove that, for a primitive character g,

(5) lt(ol = q*.

The proof given in §3 for a cubic character to a prime modulus
applies equally to any nonprincipal (and therefore primitive) charac-
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ter to a prime modulus, but does not readily extend to a composite
modulus. The simplest proof is an indirect one. By (2),

a 4
Pl = Y Y A(hoxthole[nthy — hy))

h1=lh2=l

Now sum for n over a complete set of residues (mod g). The sum of
the values of |x(n)|? is ¢(q), and the sum of the exponentials is O unless
hy = h,. Hence

d@I* = g 3 Ix(h)l* = q4(q),
h
giving (5).
Although it is not necessary for our purpose, it may be of interest

to evaluate 7(x) for a nonprimitive y in terms of (x,), where yx, is
the primitive character (mod q,) that induces y. We have

q q
) = Y, xmle(m/qg) = Y x,(m)e(m/q).
m=1 m=1

(m,q_)= 1

Put g = q,r. We first prove that 7(y) = 0if g, and r are not relatively
prime. Put D = (q,, r); then the values of m that occur in the sum
can be expressed as

m = m, + tq,r/D,
where
(my,q) =1, 0 <m, <gq,r/D, 0<t<D.

But then yx,(m) = x,(m,), since q,r/D is an integral multiple of ¢,.
Hence the sum for t()) contains, as a factor, the sum

D

Y. e(t/D),

t=1

and this is 0 since D > 1. Thus it remains only to consider the
case in which (q,,7) = 1. Here we can put

m = uq, + vr, where O<u<r, O<v<gq,.
This gives
4 4 u v
= 2 > Xl(v")e(— + —)
u=1 v=1 r q,

(u,r)=1 (n.q._)= 1

= pl(r)x,(r)e(x,).
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We can now rewrite (2) in the form
(6) x(n) = — Z (m)e(mn/q).

The functional equation of an L function takes different forms
according as y(—1) = 1 or y(—1) = —1. One of these must hold,
since y(— 1) = x(1) = 1.

Suppose that y(—1) = 1. We have

n” 1 qi-sl—*(ls)n s _f —nzux/qxlfs 1 dx,
and on multiplying by x(n) and summing over n we get
() 7T p) = [ x¥ ‘[ Y x(n)e‘"z"x’qJ dx,
Y n=1

for @ > 1. Since y(—1) = 1 and x(0) = 0, we can write this as

1

—f x¥™hy(x, y) dx,
2 0

where

ix,y) = Z x(nje™ ",

A functional equation that relates y(x, y) to Y(x~!, ¥) can be
deduced from (6) and the functional equation (8) of §8, with x re-
placed by x/q. We have

~n2nx/q+ 2rimn/q

Il
|| [\/]-h
=
g
DM s

OOV (x, X)

= Z Z(m)(CI/X)% Z e"(""'"'/Q)zuq/x
=1

=@} 3 m) § emowmne

= (g/x)* _Z (e ~rimxa

(o ¢]

= (q/x %!//(X 1’ Z)
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Now we split the integral in (7) into two parts, as in §8, and obtain

n g T (3s)L(s, x)

———%f x*“‘lﬁ(x,x)anL%f x“FETh(x T, p)dx
1 1

1~ 1 gt [©
—- - 1s—1 d s —4s—1 by .
ZJ; X Y(x, x)dx + 2 1) 1 X Ww(x, x)dx

This expression represents an everywhere regular function of s,
and therefore gives the analytic continuation of L(s, y) over the
whole plane, regular everywhere since I'(}s) is never 0. Moreover,
if we replace s by 1 — s and yx by ¥, the above expression becomes

3+ [® 1~
1"—J xFN(x, ) dx + ~J. X~y (x, 7) dx,

2 1(x)) 2),

which is equal to the previous expression multiplied by gq*/t(y),

since
(X)) = g

The last relation is a consequence of (5) and y(—1) = 1, since the

latter implies that Tx) = 1()).
We have now obtained the functional equation for L(s, x) in the
form

n_%(l_s)qw—”l"[%(l — s)]L(1 — s, %)

(8) = ——q g3 (ds)L(s, x),

q%

(x)

and this is valid for any primitive character y to the modulus ¢
for which y(—1) = 1. Since L(1 — s, %) has no zeros for 1 — ¢ > 1,
that is, for ¢ < 0, and I'[$(1 — s)] has no zeros at all, the only zeros
of L(s,x)forc < Qareats = —2, —4, —6, ..., corresponding to the
poles of I'(1s). There is also a zero of L(s, y) at s = 0, corresponding
to the pole of I'(1s) there.

Suppose that y(—1) = —1. The previous argument fails, since
now the function y(x, x) simply vanishes. We modify the procedure
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by writing 3(s + 1) in place of 1s in the original formula, so that this
becomes

P Lo l)qi(s+ l)r‘[%(s + 1)]n—s — J“’o ne_nznx/qxis—i dx,
0
and gives
1 (e 0]
r™ 400 0gHeT DTTY(s 4 1]L(s ) = 5 f W(x, x8 dx,
0

where

(o ¢]

ilx, x) = Y nx(n)e™ ",

- 0O

The functional equation satisfied by ¥ ,(x, x), analogous to that
satisfied by ¥(x, x), is

©) OO 1(x, X) = igx ™}, (x 7, 7),

and this is proved by the same reasoning as before, but with an
appeal to the relation

(o ¢]

(10) Z ne—nzux/q+ 2nimn/q _ i(q/x)-g- Z (n + m/q)e_u("+m/q)2q/x,

- 0O

The latter is deduced from (8) of §8 as follows. We have

@ @
Z e—nzuy+21u'na = y—% Z e—(n+a)2u/y.

- o0 -

Differentiation with respect to a, justified by the uniform conver-
gence of the differentiated series, gives

0 @
2nti Z ne—nzuy+2m'na - _2ny—g~ Z (n + a)e-(,,+a)2u/y,

= - o

and, on replacing y by x/q and a by m/q, we get (10).
Using (9) in the integral above, as in the preceding case, we obtain

L l)q%(s+ ”l"[%(s + 1)]L(s, x)

1~ ss—3 1ig* [© o 3s
=3 W 0c, x)x dx + 3 77 W (x, x)x " dx.
. (X)),

This again gives the continuation of L(s, x) as a regular function over
the whole plane. If we replace s by 1 — s and y by ¥, the expression
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becomes equal to its previous value multiplied by ig*/t(y), since
now

(X)) = —q.

Thus the functional equation in the present case takes the form

(11) n3CTIGECTINH2 — $)IL( - s, %)

. 3
=4 n ¥ DA D (s + 1)]L(s, ).
(%)

The zeros of L(s, x) for ¢ < 0 are now at the poles of I'T3(s + 1)],
thatis,ats = —1, —3, —5,....

It is possible to put together the two forms of the functional
equation in (8) and (11) by introducing a number a, depending on
x> defined by

(12)

[0 if-n=1,
°_{1 ify(—1) = —1.

Then the functional equation takes the form: if

(13) Es, ) = (m/g)~ ¥ OTGs + a)lL(s, ),
then

‘a4
(14) E1 = 5.7) = —&s. ).

(%)

Another method of proof, as mentioned at the beginning of this
section, is to relate L(s, x) to the function {(s, a), which is defined
for0<a<1by

(15) {(s,a) = i (n+ a)".
n=0

This reduces to {(s) when a = 1 and to (2° — 1){(s) when o = 1.
The relationship follows at once from the periodicity of x(n): We
have

(16) Ly =Y xm Y @n+m*
m=1 n=0
=q7% Y x(m)(s. mlg).
m=1

The function {(s, «), like {(s), can be continued to be regular every-
where except for a simple pole at s = 1. For ¢ < 0, it is expressible
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in terms of two other convergent Dirichlet series, with 1 — s in
place of s, by the formula!

1 — o o 3
U(s, a) = —*2(1;(7!)1_55) sin %ns;——w;??:na + cos 3ns zlz___sn:’j?rsna .
The use of this relation in (16) leads again to the functional equation
for L(s,y), though in an unsymmetric form.

There is nothing corresponding to a Euler product for {(s, ),
except when o = 1 or 1, and it behaves in many ways quite dif-
ferently from {(s). Heilbronn and I proved? that, if « is rational
(#1 or }) or transcendental, then {(s, «) has zeros in ¢ > 1, and
Cassels® proved the same in the more difficult case when « is an
algebraic irrational.

! See, for example, Titchmarsh, §2.17.
2 J. London Math. Soc., 11, 181-185 (1936).
3J. London Math. Soc., 36, 177-184 (1961).
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PROPERTIES OF THE I
FUNCTION

We collect some properties of the I' function for convenience
of reference.! The usual definition is by means of Euler’s integral:

(1) I'(s) = fwe"'tﬂ dt,
0

but this applies only for ¢ > 0. Weierstrass’ formula

(2) = ¢ ﬁ (1 + s/n)es",
n=1 -

sI'(s)

where y is Euler’s constant, applies in the whole plane, and shows
that I'(s) has no zeros and has simple poles at s =0, —1, —2,....
Among the functional relations satisfied by I'(s) are

. I'(s + 1) = sTs),
)1 — s) = nfsines, TS + 1) = 21~ 2740(2s),

the last being Legendre’s duplication formula. Combined, they
give

I@s)yrE — is) = n 2! "% cos isnl'(s),
and if this is used in the functional equation of {(s) (p. 59), it gives
the unsymmetric form of the functional equation:

4) (1 — s) = 21 s~ 5(cos Ism)T(s)¢(s).
Stirling’s asymptotic formula, in the simple form
(5) logI'(s) = (s — Hlogs — s + 1log2n + O(s| ™),

is valid as |s| —» o0, in the angle —n + § < args < n — §, for any
fixed 6 > 0. Under the same conditions,

I(s)
I'(s)

(6) = logs + O(s]™1).

! Proofs will be found in many books, e.g., in Whittaker and Watson, Modern
Analysis, Chaps. 12 and 13. See also Ingham, footnote on p. 57, with reference to (6).
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INTEGRAL FUNCTIONS OF
ORDER 1

The next important progress in the theory of the { function,
after Riemann’s pioneering paper, was made by Hadamard, who
developed the theory of integral functions of finite order in the early
1890’s and applied it to {(s) via &(s). His results were used in both
the proofs of the prime number theorem, given by himself and by
de la Vallée Poussin, though later it was found that for the parti-
cular purpose of proving the prime number theorem, they could
be dispensed with. .

An integral function f(z) is said to be of finite order if there exists
a number o such that

(1) f(z) = 0@ aslz] - .

We must have a > 0, excluding the case when f(z) is just a constant.
The lower bound of the numbers a with the property (1) is called the
order of f(z).

An integral function of finite order with no zeros is necessarily
of the form €2, where g(z) is a polynomial, and its order is simply
the degree of g(z) and so is an integer. For g(z) = log f(z) can be
defined so as to be single valued, and is itself an integral function.
It satisfies

Rg(z) = log| f(z)] < 2R"
on any large circle |z] = R. If we put
g(z) = Z(a,, + ib,)z",
0
then
Reg(z) = Y a,R"cosnf — Y b,R"sin nd,
0 T
for z = Re®. If we assume g(0) = 0, as we may, then
2n . 2n . .
nla|R" < j  IRg(Re)dO = j {|Rg(Re®) + Rg(Re®)}dO < 8nR™,
0

74
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It follows, on making R — oo, that a, = 0if n > «, and similarly for
b,. This proves that g(z) is a polynomial, and it is then obvious that
the order of f(z) is equal to the degree of g(z).

We observe, for future reference, that in the preceding argument
it suflices if the estimate for f(z) on |z| = R holds for some sequence
of values of R with limit infinity, instead of for all large R.

Now suppose that an integral function f(z) of finite order p has
zeros at z,, z,,... (multiple zeros being repeated as appropriate).
The question arises: How is the distribution of the zeros related
to the order p? This question is most easily answered by means of
Jensen’s formula®: if z,,..., z, are the zeros of f(z) in |z| < R, and
there is no zero on |z] = R, then

n

1 [ .
(2 7 f log| f(Re*)| d6 — log| f(0) = log
n 0

|24]...12,]

[We suppose, for convenience, that f(0) # 0.] An alternative
expression for the right side is

R
f r~n(r)dr,
0

where n(r) denotes the number of zeros in |z| < r. For if |z,| = r,,
and so on, the value of the integral is

logr,/ry + 2logry/r, + - + nlog R/r, = log(R"/r,r, ..r,).
Jensen’s formula is easily established by factorizing f(z) as
(z — zy)(z — 2,)F(2)

and proving the formula for each factor separately.
It follows from Jensen’s formula that the zeros of an integral
function of given order p cannot be too dense. For if « > p, we have

log| f(Re®)] < R®
for all sufficiently large R, whence
R
fo r~n(r)dr < R* — log| f(0)| < 2R™
Since

2R 2R
J r~in(r)dr > n(R)f r~tdr = n(R)(log 2),
R R

! Strangely enough, Jensen’s formula was not discovered until after the work of
Hadamard.
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it follows that

(3) n(R) = O(R?).

A consequence of this estimate is that ) r. ? converges if § > «,
and therefore converges if f > p. For

o}

Y.t =foo r=8dn(r) = ,Bfw r %" In(r)dr < oo.

1 0 0

We are now in a position to represent f(z) by a simple canonical
product, of the kind introduced by Weierstrass. From now on we
suppose that p = 1, since this is the only case with which we shall be
concerned later. We can then assert that r, ! ~¢ converges for any
¢ > 0, and in particular that Zr, 2 converges. Hence the product

P@) = IT (L — Z/z)e™

(if it does not terminate) converges absolutely for all z, and con-
verges uniformly in any bounded domain not containing any of
the points z,. Hence it represents an integral function with zeros
(of the appropriate multiplicities) at z,, z,,.... If we put

(4) f(2) = P(2)F(2),

then F(z) is an integral function without zeros.

We cannot immediately conclude that F(z) = ¥, where g(z) is
a polynomial, because it is not obvious that F(z) is of finite order.
The most direct way of proving the desired result is to obtain a
lower bound for |P(z)|, and hence an upper bound for |F(z)|, on a
sequence of circles |z| = R, and then appeal to the result proved
earlier. The values of R must be kept away from the numbers r,.
Since Tr, ? converges, the total length of all the intervals (r, — r, 2,
r, + r; %) on the real line is finite, and consequently there exist
arbitrarily large values of R with the property that

(5) IR —r,| >r;? for all n.

Put P(z) = P,(z)P,(z)Ps(z), where these are the subproducts
extended over the following sets of n:

Pl: ,an < %Ra
P,: IR < |z,| < 2R,
Py |z, > 2R.
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For the factors of P, we have, on |z| = R,
(= 2/z,)e™) = (12/z,) — De™ Vel > =R,

and since

—-1-¢
n M

r

M8

2 . <GRy

rn<3iR n

i

1

it follows that
|P,(z)] > exp(— R'* %),
For the factors of P,, we have
(1 — z/z,)e**"| > e~ %)z — z,J/2R > CR™3,

where C is a positive constant, by (5). The number of factors is less
than R'**, by (3). Hence

|Pyz)l > (CR™?"" > exp(—R'* %),

Finally, for the factors of P;, we have

(1 = z/z,)el™| > =i
for some positive constant c, since |z/z,] < 3. We also have

Y ri<@RYICY i

rn>2R n=1

and therefore

P3(z)| > exp(—R'*%),
It follows that, on |z] = R, we have

|P(z) > exp(—R'"%),
whence

[F(z)l < exp(R'™*)

by (1) and (4). By what was proved earlier, this inequality, since it
holds for a sequence of values of R with limit infinity, implies that
F(z) = ¢*®, where g(z) is a polynomial of degree at most 1. Finally
we have, therefore,

e e}

(6) f@) =" I (1 = z/z,)e™,

n=1

where A and B are constants.
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We know that the series Xr, ! ~¢ converges for any ¢ > 0. The
series Tr, ! may or may not converge, but if it does then f(z) satisfies
the inequality

(7) If@) < e

for some constant C. This follows at once from the inequality (valid
for all {)

(1 = e < ¥,

which itself follows from the power series for (1 — {)é’.

To summarize the results of the present section:

An integral function of order 1 necessarily has the form (6). If
r, = |z,|, where the z, are the zeros of f(z), then Zr, ! ~¢ converges for
any ¢ > 0. If Zr, ! converges, then f(z) satisfies (7).
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THE INFINITE PRODUCTS FOR
E(s) AND E(s, 1)

We apply the conclusions of the preceding section to the integral
function

(1) £(s) = 3s(s — ™ FT(s)(s).
We first prove that
(2) E(s)| < exp(Clsl loglsl)  as |s| — oo,

for some constant C; this will establish that £(s) 1s of order 1 at most.
Since &(s) = &(1 — s), it will suffice to prove the inequality when
¢ > 3. Obviously!

l3s(s — D~ *| < exp(Clsl),
and
IT(3s)l < exp(Cls| logls])

by Stirling’s formula, which is applicable since —in < args < in.
Thus it remains to estimate {(s), and this is possible on the basis of
the representation obtained in (7) of §4, namely

{(s) = > _ sr(x — [xPx~*" 'dx,

s —1
valid for ¢ > 0. The integral is bounded for ¢ > 1, and therefore

3) (s)l < Cls|

when |s| is large. This completes the proof of (2).

We see further that, as s — + oo through real values, the inequality
(2) is substantially (that is, apart from the value of C) the best pos-
sible, since log I'(s) ~ slog s and {(s) — 1. Consequently &(s) does
not satisfy the more precise inequality (7) of the preceding section.

" The constant C is not necessarily the same at each occurrence.
79
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It follows that &(s) has an infinity of zeros, say p,, pj,..., such that

(4) Y lpl='7¢  converges for any ¢ > 0
and

(5) Z 1pal ! diverges;

and that

(6) &s) = A BT (L = s/p)e™.

P

The zeros of £(s) are the nontrivial zeros of {(s), for in (1) the trivial
zeros of {(s) are cancelled by the poles of I'(3s), and 3sI'(3s) has no
zeros, and the zero of s — 1 1s cancelled by the pole of {(s). Hence {(s)
has an infinity of nontrivial zeros p in the critical strip0 < ¢ < 1, and
these have the properties (4) and (5).

The product formula (6) leads to an expression for {'(s)/{(s) as a
sum of partial fractions. Logarithmic differentiation of (6) gives

&'(s) 1 1
‘ =B -
0 ¢(s) +§,,:(s—p+p

’

and, combined with the logarithmic derivative of (1), this gives

. 1, 1TGs + 1) L1
® 9P T T T s e 1)+Z@~p+p>

This exhibits the pole of {(s) at s = 1 and the nontrivial zeros at
s = p. The trivial zeros at s = —2, —4,.. are contained in the
I" term, since

ITds+ 1)

©) TaTgs ey 7L

1
s+2n %)

by logarithmic differentiation from (2) of §10. The representation
of {'/{ in (8) will be the basis for much of the later work on {(s).

The constants 4 and B, though not very important, can be eval-
uated. By (1),

1) = 3n A0 lim (s ~ 1){(s) = 4,

s— 1

whence &(0) = 1 and therefore e# = 1 by (6).
As regards B, we have

0 &)

B=%0 = ~an
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from (7) and the functional equation &(s) = £(1 — s). By (1),

¢'(s)  L(s) 1 . 1TGs + 1)
85 Q) Ts—1 2Tt Tasy

It follows from (9) and the series for log 2 that

1TGQ)

o214y 14 log2.
2T T TR

Hence

’ 1
B=3y—1+3 log4n~lirr:|icc((:))+s_ J.

To evaluate the limit, we have recourse again to (7) of §4:

{(s) = > — sl(s I(s) = f (x — [x]x " tdx.

s — 1

A simple calculation shows that

. [l(s) 1 .
fim [C(s) iz 1} =1-1).

Now
" NS
= lim logN Zn 1 1):1-—-—'})
N
Hence
(10 B= -4 —1+}logdn

We can give another interpretation for B, as follows. Although the
series T |p|~! diverges, the series Zp~! converges, provided one
groups together the terms from p and p. For if p = B + iy, then

1,1 28 _2
p b B+

[S=Y
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and we know that X|p|~2? converges. it follows from (7) and the
functional equation for £(s) that

N o

1—5pp ,,s——pp

and the terms containing 1 — s — p and s — p cancel, since if p
is a zero thensois 1 — p. Thus

(11) B=—Z:—,=——2Z

y>0 BZ + ')’
The numerical value of B is about —0.023; from this it can easily
be seen that |y| > 6 for all zeros.

We now apply similar considerations to the Lfunctions. Let y be a
primitive character to the modulus g, and define, as in (13) of §9,

(12) &s, 1) = (g/m)** T (3s + za)L(s, x),

where ais O or 1 asin (12) of §9. [Note that there is no need to include
the factor s(s — 1), which was inserted in the definition of &(s) to
cancel the poles of I'(3s) and {(s) at s = 0 and s = 1 respectively.]
As we saw in §9, &(s, x) is an integral function and satisfies the
functional equation

(13) &1 —sx) =

i‘q*

q
0 (s, x),

in which the multiplying factor has absolute value 1.

We need first an estimate for L(s, x) when |s| is large, and this is
deduced on the same lines as for {(s), starting from (8) of §4. This
states that

L(s, ) = s_f S(x)x*"'dx,  where S(x) = ) x(n),

n<x

and is valid for ¢ > 0. Since |S(x)| < g, it implies that

(14) |L(s, Y| < 24s| for o > 1.
Hence
(15) €Gs, )| < 2g%° 3| T[3(s + w)]

< g¥** % exp(Cls| log ls|)

when |s| is large. A similar result holds for ¢ < 4, by the functional
equation. Again this inequality is substantially the best possible as
s — + oo through real values, since then L(s, ) = 1. We conclude,
as for {(s), that L(s, x) has an infinity of zeros p in the critical strip
0 < ¢ < 1, which have the properties (4) and (5). We also have

(16) &s, ) = B[] — s/p)e,

P
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but 4 and B will now depend on x. One can express et = &0, x) in
terms of £(1, 7) and therefore in terms of L(1, ).

The analog of (8), obtained by logarithmic differentiation from
(16) and (12), is
L1 _ 11559 _ 1 TGs + 20)

(17) +B(X)+Z(—1—+£).

Lsy)  * °x 2T0s + o) \s—p 7 p
This, again, is the basis for much of the later work.

The number B(y) can be expressed in terms of the expansion of
L'/Lin powers of s, but it seems to be very difficult to estimate B(y)
at all satisfactorily as a function of g. (In subsequent arguments it will
usually be eliminated from the above equation by subtraction.) If
we argue as in the proof of (11), we get

_E0p_ &,
0.0 LD

=—HD-ZFLﬂé)

s\—-p P

B(x)

As B(¥) = B(y), it follows that

1 1
2RB(y) = — (SR*‘-——_-FSR:)
; 1—-p p
We now write p in place of 1 — p; this is permissible since permu-
tation of non-negative terms does not alter a sum. Hence

g=—zm3
In particular, if y is a real character, B(y) is negative and is expressed
in terms of the zeros p by (11). The difficulty of estimating B(y) is
connected with the fact that, as far as we know, L(s, y) may have a
zeroneartos = 0.

We observe that, for a complex y, the zeros of L(s, x) are still
symmetric about the line ¢ = 1, since 1 — p = p’, but not about
the real axis.

1 1
(18) RB(x) = — 3 Y (; +



13

A ZERO-FREE REGION FOR ((s)

It was proved independently by Hadamard and de la Vallée
Poussin in 1896 that {(s) # 0 on ¢ = 1. This was a vital step in their
proofs of the prime number theorem, and it remained a vital step in
all subsequent proofs until the discovery of an elementary proof’ by
Selberg and Erdos in 1948.

For ¢ > 1, we have

log {(s) = )

)
Z —1 —mo —umlogp

m

If {(s) had a zero at 1 + it, then Rlog {(¢ + it) would tend to — o0
as ¢ — 1 from the right. This suggests that the numbers cos (tm log p)
would be predominantly negative. But then we should expect the
numbers cos (2tm log p) to be predominantly positive, and it seems
likely that this would contradict the fact that Rlog{(c + 2it)
remains bounded above as ¢ — 1.

The line of reasoning just indicated was worked out in rigorous
detail by Hadamard and (somewhat differently) by de la Vallée
Poussin. Mertens? put the proofin a more elegant form by employing
the inequality
(1) 3+4cosf + cos20 >0,

which holds for all 6 because the left side is 2(1 + cos 0)?. Applied
to

Rlog{(s) =), Z m~1p~™ cos(t log p™)

p m=1
with ¢ replaced by 0, ¢, 2t in succession, it gives

3log (o) + 4R log {(c + it) + Rlog{(c + 2it) > 0.

Hence
(2) C(0)lo + i(e + 2it)] > 1

' For an account of this, see Hardy and Wright, Introduction to the Theory of
Numbers (4th ed.), Chap. 22.

2 Sitzungsber. Akad. Wiss. Wien., Math.—N aturwiss. Classe, 107, 1429-1434 (1898).
84
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for ¢ > 1. As ¢ = 1, we have {(6) ~ (6 — 1)~ L. If {(1 + it) = O for
some t (which is necessarily not 0), then

|t + it) < A(e — 1)

for some constant 4, as ¢ — 1. Since {(¢ + 2it) remains bounded as
¢ — 1, we get a contradiction to the inequality (2). It will be seen that
the success of the proof depends on the fact that the coeflicient 4
in (1) is greater than the coeflicient 3.

The argument was extended by de la Vallée Poussin in 1899 to
show that {(s) # O in a thin region to the left of ¢ = 1, the breadth
of which at height t is proportional to (log t) ! for large t. In proving
this, it is more convenient to work with the function {'(s)/{(s) than
with the function log {(s), since the analytic continuation of the latter
to the left of ¢ = 1 is obviously difficult, whereas the former has its
only poles for ¢ > 0 at the zeros of {(s). By logarithmic differenti-
ation of the Euler product, asin (4) of §7, we have

— R (s)/L(s) Z A(m)n~? cos(t log n)

fore > 1. Hence, by the same argument as before,
B C_’@ B {'(e + i1) B {'(o + 2it)
O 3[ C(G)] e [ T m] * [ Ao+ 2ir)] =9

The behavior of —{'(6)/{(¢) as ¢ — 1 from the right presents no
difficulty ; in view of the simple pole of {(s) at s = 1, we have

U@ 1
{o)

for 1 < 0 < 2, where A denotes a positive absolute constant (not
necessarily the same at each occurrence).

The behavior of the other two functions near ¢ = 1 is obviously
much influenced by any zero that {(s) may have just to the left of
o = 1, at a height near to ¢t or 2t. This influence is rendered explicit
by the partial fraction formula

C(S) 1 1F(2s+1)
© s =1 —~B—3logn +

which was (8) of §12. The I' term is less than 4 logt if t > 2 and
1 < ¢ < 2. Hence, in this region,
{'(s)

1
4 —Rj _
4) SRC()<Alot ;m(s—p p)

A
N +

L
2Tds + 1) Z(s—p+5

b
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The sum over p is positive, since

1 c—f

1
= 3 and R - i
s—p |Is—opl

o Ipl*

We obtain a valid inequality when s = ¢ + 2it by just omitting the
sum:

(5) —R—— < Alogt.

Asregards s = ¢ + it, we choose ¢ to coincide with the ordinate y of
a zero f + iy, with y > 2, and take just the one term 1/(s — p) in the
sum which corresponds to this zero:
(o + it
- M < Alogt — :
{(o + i) o—f

Substituting these upper bounds in the basic inequality (3), we
obtain

4 3
Alogt.
o—,8<cr——1+ 8

Take o = 1 + d/log t, where d is a positive constant. Then

<1+ 0 49
logt (3 + Ad)logt’

and if § is suitably chosen in relation to A, this gives

¢
1 —
b < logt’

where c is a positive constant to which a numerical value could be
assigned. Thus we have proved:

There exists a positive numerical constant ¢ such that {(s) has no
zero in the region

In view of the fact that {(s) has no zero arbitrarily near ¢ = 1 with
1| < 2, we can also say that there exists a positive constant ¢ such
that {(s) has no zero in the region

c

>1-— <
¢ log(f] + 2)



A ZERO-FREE REGION FOR {(s) 87

The breadth of the zero-free region was enlarged to
cloglogt
logt
by Littlewood in 1922, and to>

c(a)
(log 1)*

for any « > %, by Vinogradov and Korobov independently in 1958.
These improvements depend on upper bounds for {(s) in a region
just to the left of ¢ = 1, which are deduced from somewhat elaborate
estimations of exponential sums.*

3 For the sake of simplicity, I give a slightly weakened version of the result.
*For an account, see A. Walfisz, Weylsche Exponentialsummen in der neueren
Zahlentheorie, Berlin, 1963, Chaps. 2 and 5.
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ZERO-FREE REGIONS FOR
L(s, x)

There is no difficulty in extending the results of the preceding
section to the zeros of L(s, ) when y is a fixed character. But this is of
limited value ; for many purposes it is important to allow g to vary
and to have estimates that are explicit in respect of g. This raises
some difficult problems, and the results so far known are better for
complex characters than for real characters.

We no longer suppose that t > 2 but merely that t > 0. There is
no loss of generality in the latter supposition, for the zeros of
L(s, x) with t < 0 are the complex conjugates of the zeros of L(s, })
with t > 0. We are concerned with nonprincipal characters only,
and therefore g > 3 throughout.

Logarithmic differentiation of the Euler product formula gives

itlogn

njn~°y(n)e”

Lo _ ¢
L(s, x) g

for ¢ > 1. We can represent the real part of y(n)e *'°¢" for (n, q) = 1
as cos 6, and 6 has to be replaced by 26 if y is replaced by y* and t by
2t, and has to be replaced by O if y is replaced by yx, and ¢ by 0.
Hence the analog of the inequality (3) of the preceding section is

L'(a, xo) L'(e + it, x)
b 3 [_ L(o, Xo):l +4 li—‘R L(c + it, X)j|

L 2it, y?
L{e + 2it, x°)

If y is a real character (but only then) we have 3? = y,, and this
affects the argument. The effect is important only when ¢ is small and
we come under the influence of the pole of L(s, x,) ats = 1.

We suppose first that y is a complex primitive character, and
follow as closely as possible the argument of the preceding section.

88
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Again the first term presents no difficulty ; we have

Lioge) & o)
Lo gg) ~ & omAtn™® < =23

+cl

for 1 < o < 2, where ¢, denotes a positive absolute constant (and
similarly for c,,... later?).

For the other two terms in (1), we have recourse to (17) of §12.
This gives

I'(zs + 30)
IG3s + 20)

—RB(y) — R (§——

L'(s, x)
L(s, x)

= 3log— +

g 1
n 2
1
ol

where ais 0 or 1. We can eliminate B(y) and X1/p by appealing to (18)
of §12. Since the I" term above is O[log(t + 2)], we can express the
result in the form

L'(s, 1) 1

<c, -)>)R ,
Ao =© ;s—,p

where we have written for brevity

@)

(3) £ =logq + log(t + 2).

This holds (for ¢ > 1) for any primitive y, whether real or complex.
Since

1 e-p
s—p Is—pP"
we can as before omit the series or any part of it.

We omit the whole series when estimating L'(¢ + 2it, x*)/
L(e + 2it, ¥*). There is the minor complication that y?, though
nonprincipal, may not be primitive. However, if y, is the primitive
character that induces y?, it follows from (3) of §5 that

R

bl

L, x’) _ Ll xi)| _ 5P "logp
L(S’ Xz) L(S’ Xl) B rlq 1 - p—o'
< Y logp < logg.

plq

Hence the upper bound in (2), namely ¢, ., remains valid.

' To leave the constants unnumbered, as we have done hitherto, would lead to
confusion in the present section.
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We choose t to be the ordinate y of a zero f§ + iy of L(s, x), and by
retaining on the right of (2) only the one term corresponding to this
zero, we obtain

L'c +it,y) 1

T Lo +it,y) 2 c—f

The three estimates, when substituted in the basic inequality (1),
give

4 < 3 + 3.7
-— 4+ 3.
6—f o—1
Wetakeo = 1 + ¢,/&, witha suitable ¢,, and by the same argument
as in the preceding section we obtain

(4) B<l—cs/&.

This has been proved for any complex primitive y, but the restriction
to primitive y can be removed, since, by (3) of §5, any zeros of
L(s, x) additional to those of L(s, x,), where y, induces y, are the
zeros of a finite number of factors 1 — y,(p)p~° and are on ¢ = 0.
We can accordingly assert that there exists a positive absolute
constant c¢5 such that, if y is a complex character to the modulus g,
any zero f + iy of L(s, x) satisfies (4), where

(5) &L =logq + log(ly| + 2).

[We have modified the definition of % in (3) to accord with the
choice t = y.]

Suppose next that y is a real primitive character. The preceding
argument needs modification only in one respect: The inequality
for —RL'/L with s = ¢ + 2it and y replaced by x? is no longer
applicable since yx is the principal character. We must now relate
L'/L to {'/{, and by the same argument as that used above when y?
was imprimitive, we have

L(s,x0) _{(5)
L(S’ XO) C(S)

foro > 1. Asregards — '/, we cannot quote the inequality (5) of §13,
because this was proved only for large t. In proving it,aterm 1 /(s — 1)
was neglected. When this is restored, the same argument as was
used there gives

< loggq

{(s) 1
— Z(?)<9is——_—1+c610g(t+2).
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Hence

L'(o + 2it, x?) 1
—R R 2,
Lo+2ityd) o-1+m @

where Z is again defined by (3).
Using this in place of the stronger inequality that was available
for complex y, we deduce from (1) that

4 3 1
w{— -
a—ﬂ<a—1+ (6—1+2it>+08$’

where now t =y. If we take 0 =1 + 6/, and postulate that
y > 0/%F, we get

4 <3$+$+ P
c_B 8 T8
whence
4 — 5¢g0 O
B<1_16+5085§.

If J is sufficiently small in relation to cg, we get an inequality of the
form (4) but subject to the condition y > §/.%, where & is given by
(5). This condition is satisfied if y > d/log g. We have therefore
proved that there exists a positive absolute constant cy such that,
if0 < 8 < cqg and y is a real nonprincipal character to the modulus q,
then any zero B + iy of L(s, x) for which

o
vl = Tona
ogq
satisfies
o
1 —
p<1-5o

where £ is given by (5). We have omitted the requirement that y
should be primitive, for the same reason as before.

It remains to consider what can be proved about the zeros of
L(s, x), for real nonprincipal y, with

o
Itl < 1.
logg

where J is a small positive constant. We shall show that there is
at most one zero with ¢ > 1 — §'/log q for a suitable positive
constant ¢’ and that, if there is one, it must be real. The final clause
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is in fact a corollary, for if there were a nonreal zero, there would
be two zeros at conjugate complex points.
The inequality (2), with s = ¢ > 1, can be written

L'(a, x) 1

< 1 — ,
Lo,y ~ 84 Za—p

the last sum being real since the zeros occur in conjugate complex
pairs. In quoting this inequality we have assumed, as we may without
loss of generality, that y is primitive. If there were zeros at f§ + iy,
where y # 0, we should have

2c — p)
(6 — B + 7

L'(a, %)
L(a, )

< ¢y lOgq —

For the left side, there is the crude lower bound

L © & ' 1
( . Zl: x(MA(nn=° > — ZI:A(n)n”" =%> o
Thus
1 | 2a — P)
"o___l<012 ogqg (U—ﬁ)2+))2

We takeo = 1 + 24/log gq; then

o
b <= =4c— 1) < 3o - h)
0gq
and the last inequality implies that

_8
5o — B)

a_1<clzlogq_

If the J of the previous result is sufficiently small in relation to c¢,,,
we get f < 1 — d/log q.

The argument is substantially the same if, instead of two con-
jugate complex zeros, there are two real zeros (or a double real
zero). Thus we have proved: There exists a positive absolute con-
stant ¢,z such that, if 0 < § < c¢,3, the only possible zero of L(s, x)
for a real nonprincipal y, satisfying

Iyl < B>1-—

logq’ logq

is a single (simple) real zero.
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The three results proved so far can be fitted together to give the
following theorem, which we state for convenience of reference. It
simplifies the statement to consider two cases according as |t| > 1
or |t] < 1, since in the former case the number £ is essentially
log q|t| and in the latter case it is essentially log q.

THEOREM. There exists a positive absolute constant c,, with
the following property. If y is a complex character modulo q, then
L(s, x) has no zero in the region defined by

" logglt

(6) o> 24l
ll_ Cig

logg

[1 LI

if it < 1.

If x is a real nonprincipal character, the only possible zero of L(s, y)
in this region is a single (simple) real zero.

These results are due partly to Gronwall? and partly to Titch-
marsh.’

We shall now prove a result due to Landau,* the effect of which is
to assure us that if there exist values of g for which an L function
formed with a real primitive character (mod gq) has a zero with
B > 1 — c/logq, then such values of q are very rare. He proved
that if y,, x, are distinct real primitive characters to the moduli
4,4, respectively, and if the corresponding L functions have real
zeros B,, B, then

(7) min(By, By) <1 — — 25—
logq,q,

where c¢,s is some positive absolute constant. The possibility that
g, = q, 1s not excluded.

The proof is based on the fact that y,(n)y,(n) is a character to the
modulus q,q,, being multiplicative and periodic. It is not in general
a primitive character, but it is nonprincipal. For if y,(n)x,(n) = 1
whenever (n,q,q9,) = 1, we should have y,(n) = x,(n) whenever
(n,q,9,) = 1, and this would mean that the primitive characters
x1 and y, would induce the same character to the modulus ¢,q,.
This is impossible by the results of §5.

2 Rendiconti di Palermo, 35, 145-159 (1913).
3 Rendiconti di Palermo, 54, 414-429 (1930); 57, 478-479 (1933).
4 Gottinger Nachrichten, 1918, 285-295.
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For o > 1, we have

Lo, a0

< ¢, lO :
Lo, axa) 00

this is proved by the same argument as that which we applied to
L(s, y*) when y* was nonprincipal but not necessarily primitive.
Further, by (2),

L'(a, y; 1
j Vi

the symbol R in (2) being now superfluous.
Now consider the expression

{'(6) Lo, x1) _ L'(a, x») _ L'(o, x1x2)
{(6) L(o,x1) Lio,x2) Lo, x1x2)

Z [1 + % (m][1 + xa(m)n~ > 0.
On substituting the previous upper bounds and also that for
—{'(0)/L(0), we get .

1 1
1 .
s~ B, +0'——/32<0'—-1+C18 02419>

If o is taken to be 1 + d/logq,q,, for a sufficiently small positive
constant 9, the last inequality shows that 8, and f, cannot both
be greater than 1 — d'/log q,9,, for a suitable positive §'. This proves
(7).

Various deductions can be made from the last result. In particular
one sees that for at most one of the real nonprincipal characters
x (mod q) can L(s, x) have a zero in the region (6). [We assume here
tacitly that c,4, in the definition (6), is diminished if necessary so as
to satisfy ¢,4 < 3cys.]

Another deduction concerns the possible sequence ¢, q,,... of
positive integers g with the property that there is a real primitive
x (mod q) for which L(s, x) has a real zero f§ satisfying

(8) B>1-—cy/logg.

If ¢, is suitably chosen, say c,q = 3c,s, then

2
dj+1 > q;j.
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For (7) implies that

Ci9 Cys
1

_logqj _log‘Iﬂj+1’

whence the result.

A deduction made by Page’ and applied by him to the prime
number theorem for arithmetic progressions (see §20) concerns
the set of positive integers q < z, where z > 3. If ¢, is a suitable
positive constant, there is at most one real primitive y to a modulus
q < z for which L(s, x) has a real zero f satisfying

(9) B>1-—22
log z

The last inequality is, of course, of a somewhat more stringent
nature than (8). The proof is immediate; if there were two such
characters, both the zeros would satisfy

c 2c

20 > 1 20 ,
log z log 4,4,

g>1-—

and this would contradict (7) if ¢, = 3c;s.

If there 1s such an ‘‘exceptional” real character y, to a modulus
q, < z, then g, will be a function of z, and the only real nonprincipal
characters y to moduli g < z for which L(s, y) has a real zero satis-
fying (9) will be y; and the imprimitive characters induced by ;.
Their moduli will be multiples of q,.

The only obvious general upper bound for a real zero f of an L
function corresponding to a real primitive y is that which can be
derived from the lower bound for L(1, y) provided by the class-
number formula. Since h(d) > 1, the formulas (15) and (16) of §6,
in which d = +g¢, give

(10) L, ) > ¢3q ™%
We can easily prove that
(11) |IL'(a, )| < cy, log?q  for1 —1/logg <o <1,

and it then follows, by the mean value theorem of the differential
calculus, that

L(1,x) = L(1, ) — L(B, x) < (1 — B)cy, log’ g,

5 Proc. London Math. Soc., (2)39, 116-141 (1935).
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whence

€23
(12) p<1-— oz’ q’
By the usual argument, this holds also for real nonprincipal x, even
if imprimitive. If y(—1) = 1, which corresponds to the case d > 0,
the inequality (12) can be improved® to the extent of a factor log g,
since in (16) of §6 there is a factor log ¢, and log ¢ > log (1 + ¢*).
The proof of (11) 1s as follows. We have

e 8}

Lo, y) = — lex(n)(log mn~°

4 —ologn

foro > 0.Sincen™ = e < en~!for n < q, we have

(lognn™! < c,, log?q.
1

<e

||M.=

Z x(n)(log n)n~°

By partial summation, noting that (log n)n~? decreases for n > g,
we have |

00 N
Y. x(n)(lognn~° S(logq)q“’m]gx Zl x(n)
n=q+1 q+

< (logqleq™'q.

These results imply (11).
We remark, for convenience of reference, that the same argument
applied to L(o, x) gives

(13) |L(o, )| < c,5loggqg for1 —1/logg <o < 1.

In §21 we shall prove a theorem due to Siegel, which establishes
a much more precise inequality for a real zero than that given in (12).
But whereas all the results of the present section have been “‘effec-
tive,”” in the sense that numerical values could be assigned to all
the constants, it does not seem to be possible to derive an effective
inequality from Siegel’s theorem.

® Goldfeld and Schinzel (Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 2, 571-583 (1975)),
have shown that f <1 — ¢q "2 if y(—1) = —1, and that <1 — cq~ 2 log g if
(=1 =1
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THE NUMBER N(T)

In this section we prove the approximate formula for N(T),
the number of zeros of {(s) in the rectangle 0 < 6 < 1,0 <t < T,
which was stated by Riemann and established by von Mangoldt.
It was stated as (1) in §8.

It is convenient to work initially with &(s) rather than with {(s)
because of its simple functional equation. Assuming for simplicity
that T (which we suppose to be large) does not coincide with the
ordinate of a zero, we have

2nN(T) = Agarg ¢(s),
where R is the rectangle in the s plane with vertices at
2,  24iT, —1+iT, -1,

described in the positive sense. There is no change in arg &(s) as s
describes the base of the rectangle, since &(s) is then real and no-
where 0. Further, the change as s moves from 3 + iT to —1 + iT
and then to —1 is equal to the change as s moves from 2to 2 + iT
and then to 3 + iT, since

Co+it)y=¢41 —a—it)= &1 — o + it).
Hence
nN(T) = A arg &(s),

where L denotes the line from 2 to 2 + iT and then to 1 + iT.
The definition of &(s), in (1) of §12, can be written as
&s) = (s — D~ ¥I(Es + 1Y),
We have

Aparg(s — 1) = arg(iT — H) = in + O(T ™),
Apargn ¥ = A (—3tlogn) = —3Tlogn.
97
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Also, by Stirling’s formula (§10),

ApargT(ds + 1) = Slog 4T + 3)
= J[GiT + P logBiT + 3) — 3T — 3
+ $log2n + O(T )]
=1TlogiT — iT + 3n + O(TY).

Hence

T T T 7 4
(1) N(T)—Z;logz—[——z}z-i-§+ S(T) + O(T™ ),
where

nS(T) = AL arg {(s).
To prove (1) of §8, it suffices to prove that
(2) S(T) = O(log T).

This is one of the few estimates connected with {(s) that has not,
as far as I know, been improved upon during the present century.
Since arg {(2) = 0, we can express the definition of S(7T') in the form

nS(T) = arg {3 + iT),

provided this argument is defined by continuous variation along
L, or, equivalently, by continuous horizontal movement from
+ o0 + iT to 3 + iT, starting with the value 0. In view of our
limited knowledge about S(T), it would seem at first sight that we
might as well omit the term 4 in (1); but as we shall see later, it has a
certain significance.

We shall base the proof of (2) on the following

Lemma. If p = B + iy runs through the nontrivial zeros of {(s),
then for large T

1

© gl + (T —y)

5 = O(log T).

For the proof, we refer to (4) of §13, which states that

2(s) 11
—SR—CGj<Alogt—-§$R(s_p+;)

for 1 <o <2 and t > 2. In this formula we take s =2 + iT.
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Since |{'/{] is bounded for such s, we obtain

YR

p

1) <AlogT.
s—p p

As we have seen earlier, all the terms in both series are positive, and
since
1 2-p 1

R T =B+ T = S a7 (T

we obtain the assertion in the lemma.

Two immediate corollaries are: (a) The number of zeros with
T—1<y<T+1is O(logT); (b) the sum X(T — y)~? extended
over the zeros with y outside the interval just mentioned is also
O(log T). '

Another deduction is that for large t (not coinciding with the
ordinate of a zero) and —1 < 0 < 2,

(4) PRy ),

where the sum is limited to those p for which |t — y| < 1. For by
(8) of §12, applied at s and at 2 + it and subtracted,

{s) _
) = O(log ) +Z(

1
s—p 2+it—p|

For the terms with |y — ¢t} > 1, we have

1 1 ’_ 2—-0 - 3
s—p 2+4it—p| |5=-pR+it—p| " Iy—1¥

and the sum of these is O(log t) by (b) above. As for the terms with
ly — t| < 1, we have |2 + it — p| > 1, and the number of terms is
O(log t) by (a) above. Hence the result.

The estimate (2) for S(T) follows easily from (4). For the definition
of S(T) implies that

2+
wS(T) = o) [ 3{es)/c(s)] ds.
++iT
the O(1) term coming from the variation along ¢ = 2. Now

2+iT
[/ S — p)7tds = Aargls — p),
3 +iT '
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and this has absolute value at most n. The number of terms in the
sum in (4) is O(log T) by (a) above, and therefore (2) follows.!

We have now proved the approximate formula for N(T), from
which it follows, incidentally, that if the ordinates y > 0 are enumer-
ated in increasing order as y,, ¥,,... then

v, ~ 2nnflogn as n — oo.

It does not follow that y,, , — y, — 0, but this result was proved by
Littlewood in 1924. The formula for N(T) shows that

N(T+ H)— N(T)> AlogT (T>T,)

if H is greater than some positive constant, and Titchmarsh proved
the more precise result that this holds for any fixed positive H,
with some positive A that depends on H. It may be noted that, in
consequence, the estimate O(log T) in corollary (a) to the lemma is
best possible.

As regards the function S(T), it was proved by Littlewood that

T
[ Swdt = 0log T),
and this indicates a high degree of cancellation among the values
of the function. The result just stated would, of course, become
false if the term % had not been retained in (1).

For proofs of the results just stated, and for other results relative
to the zeros, see Titchmarsh, Chap. 9.

! For another proof, see Titchmarsh, §9.4.
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THE NUMBER N(T7. x)

Let y be a primitive character to the modulus ¢, and let N(T, y)
denote the number of zeros of L(s, y) in the rectangle

O0<o<|, [t < T.

(It is no longer appropriate to consider only the upper half-plane,
since the zeros are not in general symmetrically placed with respect
to the real axis.) In the present section we prove the approximate
formula for N(T, y) which corresponds to that for N(T) proved
in the preceding section. Since we regard N(T, y) as a function of the
two parameters T and g, it is no longer appropriate to suppose T
arbitrarily large, and we merely assume that T > 2. The formula is
(1) IN(T, y) = —T—logﬂ I + O(log T + logq).
2n 2n 2=

[1 have inserted a factor 3 on the left for ease of comparison with
N(T), and to compensate for the rectangle being doubled.]

The proof is on the same lines as for N(T). But it is convenient
now to consider the variation in arg (s, x) as s describes the rect-
angle R with vertices at

so as to avoid the possible zero at s = — 1. This rectangle includes

just one trivial zero of L(s, x), at either s = O or s = —1, and there-
fore

2a[N(T, y) + 1] = Agarg (s, y).

The contribution of the left half of the contour is equal to that
of the right half, since

arg&(o + it,y) = argé(l — o + it x) + c,

where c is independent of s.
101
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By the definition of &(s, x) in (12) of §12, we have to form the sum
of

Aarg(g/m*** ¥ = Tlog(q/n),
AargI(34s + 3a) = TlogiT — T + 0(1),

and Aarg L(s, x), and then multiply by 2. The terms above give
the main terms in (1), and it remains to prove, in effect, that

(2) arg L(3 + iT, y) = O(log T + log q).

This follows, as before, from the following modified
Lemma. If p = B + iy runs through the nontrivial zeros of
L(s, x), where y is primitive, then for any real t,

1
3) Ztﬁ;gv=m$x

where & = log q(|t] + 2).

The proof is as before, but the reference is now to (2) of §14.

As in the preceding section, it follows from this lemma, in con-
junction with (17) of §12, that for t not coinciding with the ordinate
of azero,and —1 < 6 <2,

LI(59 X) — Zr

Loy 2s=pt 0D

4)

where the sum is limited to those p for which |t — y| < 1.

The approximate formula (1) implies, in particular, that for
large g the number of zeros with |t < T,, where T is a suitable
absolute constant, is greater than a constant multiple of log q. This
shows that the estimate

1
. —0a

p

is essentially the best possible.!

For some purposes it is convenient to have an analog of (1) for
characters that are not necessarily primitive. If y is an imprimitive
character, induced by the primitive character y,(mod ¢,), then (1)
remains valid for N(T, x) as defined, provided we replace g by q,.

! For some results on the zeros of L(s, y) when ¢ is large and ¢ is bounded, see
Siegel. Annals of Math., 46, 409-422 (1945), or Gesammelte Abhandlungen 111, 47-60.
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But if Ng(T, x) denotes the number of zeros in the rectangle R
defined above, we must include the zeros on ¢ = 0 of

[T = x:p)p ™",

plg

in accordance with (3) of §5. These are (for each p not dividing q,)
spaced at equal distances 2n/log p apart. Their number, with
lt| < T, 1s

O[Z(Tlogp + 1):] = 0(Tlog q).
rlq

Hence

T T
(5) Ni(T, y) = ;10g2_£ + O(Tlog q) for T > 2.
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THE EXPLICIT FORMULA
FOR V(x)

In this section we shall prove von Mangoldt’s formula for y(x),

which was stated in §8. We recall that
Y(x)= ) Aln)= ) logp.
n<x pm<x

This function has discontinuities at the points where x is a prime
power, and in order that the formula may remain valid at these
points, it is necessary to modify the definition by taking the mean of
the values on the left and on the right. In other words, we define y/4(x)
to be y(x) when x is not a prime power, and y(x) — 3A(x) when it is.
The formula asserts that, for x > 1,

1
(1) bolx) = x = L=~ S = 5 logll = x7?),

where the sum over the nontrivial zeros p of {(s) is to be understood

in the symmetric sense as .

P
lim ¥ =
T-o |y[<T P
The value of the constant {'(0)/{(0) is log 2=, as can be deduced from
(8) and (10) of §12. The last term of the formula is equivalent to
—2,x%/w extended over the trivial zeros of {(s) given by w =
-2, —4, —6,...

To avoid some minor complications we shall suppose that x > 2,
though as stated above the formula is valid for x > 1.

The general lines on which such a formula can be proved, provided
that the argument can be justified, were indicated by Riemann in
connection with his explicit formula for n(x). The basic idea is to
use the discontinuous integral

ctioo 0 if0<y<l,
2 1 ysds_ N T
2ni ) s )72 1 y=>=5
e 1 ify>1,
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where ¢ > 0, to pick out the terms in a Dirichlet series with n < x,
by taking y = x/n. Since

2 Almn™* = —L(s)/L(s)
n=1

for ¢ > 1, the result takes the form

B 1 c+io CI(S) Xs
Yolx) = i - [—ag—):l —S"dS

for ¢ > 1. If we can move the vertical line of integration away to
infinity on the left, we shall express i/ (x) as the sum of the residues
of the function [ — {'(s)/{(s)]x*/s at its poles. The pole of {(s)at s = 1
contributes x; the pole of 1/s at s = 0 contributes —{'(0)/{(0); and
each zero p of {(s), whether trivial or not, contributes — x*/p.

To carry out this proof, we have to start with an integral from
¢ — iTto ¢ + iT, and regard this as one side of a rectangle extending
to the left. It is necessary to choose T with a little care, so that the
horizontal sides of the rectangle shall avoid, as far as possible, the
zeros of {(s) in the critical strip. After the argument has been carried
out in detail, we shall have a finite form of (1), with an explicit
estimate for the error; and this will be much more useful than (1)
itself.

As a first step we prove the following

Lemma. Let d(y) denote the function of y on the right of (2), and
lé’t c+iT
! )—’i ds.

2ni) .S

I(y, T)

Then, for y > 0,c > 0, T> 0,

y'min(l, T Ylogyl™") if y#1,

cT ™! if y=1
Proof. Suppose first that 0 < y < 1. The function y*/s tends to

0 as ¢ - + o0, and does so uniformly in ¢. Hence we can replace the
vertical integral by two horizontal integrals:

1I(y, T) — o(y)| <{

w+iT ¢ 1 w—iT ¢
LdS + — L(I'S
S 27i S

1

2ni
c+iT

Iy, T) =

Now
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and similarly for the other integral. This proves one of the two in-
equalities. The other is most easily obtained by replacing the vertical
path by a circular path with center O, on the right side. The radius is
R = (¢ + T*?*, and on the circular arc we have [y*| < ) and
|s| = R. Hence

c

I Ly
Iy, T)) < —aR~— ‘.

The proof when y > 1 is similar but uses a rectangle or ctrcular
arc to the left. The contour then includes the pole at s = 0, where
the residue is 1 = é(y).

There remains the case y = 1, which is easily treated by direct
computation. With s = ¢ + it, we have

T

0Ty = 2 =t " du
(1, )_ﬂocz+t2 —no 2

and the last integral is less than ¢/T. This proves the lemma.*
Applied to ¢(x), the result of the lemma gives

(3) Wol®) — Jx. T < 3. Aln)(x/n) min(1, T~ llog x/ni ")

n+x
+ T~ 'A(x),
where ¢ > | and
1 c+iT C,(S) xs
= — ———>| —ds.
@ I 1) =55 . [ s “

It is to be understood that the term containing A(x) is present only
if x 1s a prime power.

We choose ¢ =1 + (log x)™?!, since this gives a good result
without excessive work, and note that x° = ex. We have to estimate
the series on the right of (3), and we take first all terms for which

'1t is an interesting exercise to prove the results for y < 1 and y > 1 by real
variable methods.
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n < 3x or n > 3x. For these, |log x/n| has a positive lower bound,
and so their contribution to the sum is?

<xT! i Amn=¢ = xT! [——CE(%)] < xT " Y(log x).

n=1

Consider next the terms for which 3x < n < x. Let x, be the

largest prime power less than x; we can suppose that 3x < x; < x,

since otherwise the terms under consideration vanish. For the term
n = x,, we have

x—xl x_xl
>

1 —

logE = —log
n

H

X X

and therefore the contribution of this term is

. X . X
< A(x,) min l:l, m] < (log x) min [:1, ?(—)C——-Tl)}

For the other terms, we can put n = x, — v, where 0 < v < 1x, and
then

logzc— > logﬂ = —log
n n

Hence the contribution of these terms is

< Y Alxy — T 'x;/v < xT '(log x)*.

O<v<ix

The terms with x < n < 3x are dealt with similarly, except that x,
is replaced by x,, the least prime power greater than x.

[t is convenient to write {x) for the distance from x to the nearest
prime power, other than x itself in case x is a prime power. Collecting
the estimates, we deduce from (3) that

(5) W) — J(x, T)| < -x—“%g,li

+ (log x) min |1,

X
T{x>
The next step is to replace the vertical line of integration in (4) by
the other three sides of the rectangle with vertices at
c—IiT c¢+iT, -U+iT, -U —iT,

2 From now on, we make use of Vinogradov’s symbolism 4 < B, as an equivalent
for A = O(B).
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where U is a large odd integer. Thus the left vertical side passes
halfway between two of the trivial zeros of {(s). The sum of the
residues of the integrand at its poles inside the rectangle is

x? L(0) X7

6 S YL .
(©) X LT 0iley —2m

The choice of T demands consideration. We saw in a corollary
to the lemma of §15 that, for any large T, the number of zeros with
ly — T| < 1 is < log . Among the ordinates of these zeros there
must be a gap of length > (log T)"'. Hence by varying T by a
bounded amount, we can ensure that

Iy — T| > (log T)™!

for all the zeros f# + iy.
We recall further the result of §15 that

é’.@:
C(‘Y) |~,:—T|<1S 4

+ O(log T)

fors =0 + iTand —1 < ¢ < 2. With the present choice of T, each
term is <log T, and the number of terms is also <log T; so that on
the new horizontal lines of integration we have

@=O(log2 T) for -1 <o <2

£(s)
The contribution made to the horizontal integrals by this range of ¢
is therefore

¢ s

X
S

(7) < log? TJ

-1

log? T[° log? T
do < gT f_w x"da<<xT(;§gx.

It remains to estimate the contribution made by the horizontal
lines of integration for —U < ¢ < —1 and by the vertical line
o = —U. We need an estimate for |{'/{| for ¢ < —1, and we shall
prove that

(8) I(s)/L(s)] < log(2ls])

in this half-plane, provided that circles of radius 3 (say) around all
the trivial zeros at s = —2, —4,... are excluded. It will follow that
the contribution of the remainder of the horizontal integrals is

log 2T log T
< los f i < 08T
T J, Tx log x
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which is negligible compared with (7), and the contribution of the
vertical integral is

log 2U T Tlog U
< UIXM%UW’

T
which vanishes as U — oo.
Adding the estimate in (7) to that in (5), and making U — o0 in (6),
we obtain

ey X O
9)  Yolx) = x M};T > T 70) slog(l — x™ %) + R(x, T),
where
log2(xT |
M)lMﬂKﬁ%QHMMMW%.

The estimate (8) i1s deduced from the functional equation, which is
best taken in its unsymmetric form [(4) of §10)|

{1 = s) = 2" "*n"%(cos 3ms)[(5){(s),

since, iIf | — g < — 1 the functions on the right have to be considered
only for ¢ > 2. The logarithmic derivative of the right side, apart
from an added constant, is

The first term is bounded if |s — (2m + 1)| > 3, that is, if
(1 — s) + 2m| > &

The second term is <log|s|, and therefore <log?2|1 — s| for ¢ > 2.
The third term is bounded. Hence (8) follows.

The results (9) and (10) constitute the more precise form of
the explicit formula (1). As T— oo for any given x > 2, we have
R(x, T) — 0, and therefore (1) follows. The convergence is uniform
in any closed interval of x which does not contain a prime power,
but not otherwise, since y/,(x) is discontinuous at each prime power
value of x.

We proved (9) and (10) subject to a restriction on T, but this can
now be removed. The effect of varying T by a bounded amount is to
change the sum over p by O(log T) terms, and each term is O(x/T).
Hence the variation in the sum is O[x(log T)/T], and this is covered
by the estimate on the right of (10).
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We note for future reference that, if x is an integer, then (x> > 1,
and (10) takes the simpler form

(11) IR(x, T) < x(log xT)?T ™"

The results (9) and (10) continue to hold® for | < x < 2. with a
slight modificatton in the form of the estimate for R(x, T).

* For this, and for a discussion of the series Xx"/pwhen0 < x < l.see Ingham, p. 81.
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THE PRIME NUMBER THEOREM

We shall now deduce, from the results of the last section and those
of §13, that

(1) Y(x) = x + O{xexp[ —c(log x)*]},

and from this the analogous result for n(x), which includes the prime
number theorem. This is by no means the easiest way of proving
the prime number theorem, but it is an instructive way. It is also very
close to the method used by de la Vallée Poussin, though he worked
with the function

instead of the function y(x).

The main question is that of estimating the sum Zx?/p in (9) of the
preceding section, and obviously any effective estimate must be
deduced from the fact that the real part f§ of p is not too near 1. It
follows from the result of §13 that if |y| < T, where T is large, then
p <1 — c,/log T, where c, is a positive absolute constant. Hence

|x*| = x* < x exp[—c,(log x)/(log T)].

Also |p| = y, for y > 0; so it remains to estimate

Y 1y

O0<y<T
If N(t) denotes, as in §15, the number of zeros in the critical strip
with ordinates less than 1, this sum is

T

JTt’l dN(t) = %N(T) + j t72IN(t) dt.

0 0

Since N(t) < tlogt for large ¢, this is <log? T. Hence

)

[»I<T

< x(log T)? exp[ — ¢, (log x)/(log T)].

m
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We can take x to be an integer, without loss of generality. It
follows from (9) and (11) of §17 that

x log?(xT)

W) = x| < =

+ x(log T)? exp[ —c,(log x)/(log T)},

for large x. If we determine T as a function of x by
(log T)* = log x,
so that
T~1 = exp| —(log )*],
we get
lW(x) — x| < x(log x)? exp[ —(log x)*] + x(log x) exp[ —c,(log x)*]
< x exp[ —c,(log x)*],

provided ¢, is a constant that is less than both 1 and c,. This proves
(1).

The transition to an asymptotic formula for n(x), instead of for
Y(x),1s elementary and is essentially an exercise in partial summation. -
First we pass to the function

A
) = ¥ A

n<x 10g n.

This is expressed in terms of the function y/(x) by

dt 1

= A
9= 280 i g 5,
[T yd )

1 logZt  logx’
The effect of replacing y(t) by t is to give
Y d 1 2
t— |— —|dt = Ii —,
fz dt( log ¢ log x 1x+log2

on integrating by parts. Thus it remains to consider the estimate for
the error term, which 1s

< f: exp| — c,(log )] dt + x exp[ —c,(log x)*].

The contribution of the range t < x* to the integral is trivially less
4 4

than x*, and in the rest of the range we have (log t)* > 1(log x)
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Hence
n(x) = li x + O{x exp[ —c;(log x)*1},
where ¢; = 1c,.

Finally, since

pr ey M
= m(x) + In(x?) + In(x?) + -,

n(x) = li x + O{xexp[—c;(log x)*]}.

This is the form of the prime number theorem proved by de la
Vallée Poussin in 1899. It was improved to

n(x) = lix + O{xexp[—c(@)(log x)°]}

for any 0 < 2, by Vinogradov and Korobov in 1958. The improve-
ment comes from the result on a zero-free region for {(s), mentioned
at the end of §13. One uses this in the explicit formula for y(x), and
chooses T'so that (log T)' ** = log x, where « is any number greater
than 3.

The assumption of the Riemann hypothesis implies a much better
estimate for the error term, as was pointed out by von Koch in 1901.
We then have |x?| = x*, and as we proved earlier that X1/|p| over
0 < y < Tis O(log? T), the explicit formula gives

W(x) — x| < x*log? T + xT ~'log? xT,
if x is an integer. Choosing T = x?*, we get
Y(x) = x + O(x* log? x).
From this it follows, by the same argument as above, that
n(x) = li x + O(x* log x).

The situation is exactly similar, with x® in place of x*, if one assumes
only that all the zeros have f < ©, where ® is a number between
1
3 and 1.

There is also an implication in the opposite sense, by an argument
which is quite elementary. If we assume that

Y(x) = x + O(x7)
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for some fixed a < 1, it follows that all the zeros of {(s) have f < a.
For if 6 > 1, we have

R
_Y_ e A s
G &, Aom

and this is easily rearranged in the form

{sy ” e
~ W) sjl Y(x)x 5 Ldx,

as on similar occasions earlier. If y(x) = x + R(x), we get

_L s + sr R(x)x~*"'dx.
1

{s) s-—1

The supposition that R(x) = O(x*) implies that the integral re-
presents a regular function of s for ¢ > «, and then {(s) can have no
zeros in this half-plane.

There is the curious conclusion, from the last two results, that if
Y(x) = x + O(x®*%) for each ¢ > 0, where © is a fixed number
between 4 and 1, then necessarily

Y(x) = x + O(x® log? x).

Grosswald® has shown that if © is strictly larger than 1 then the
factor log® x can be deleted.

' C.R. Acad. Sci., Paris, 260, 3813-3816 (1965).
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THE EXPLICIT FORMULA FOR
v(x, x)

For any character y to the modulus g, we define

(1) wix, x) = Y. x(mA(n)

n<x

These sums play much the same part in the prime number theorem
for arithmetic progressions as that played by (x) in the prime
number theorem itself, but now there is an aggregate of ¢(q) such
sums, one for each character, instead of a single sum. In this section
we shall establish the explicit formula that is analogous to that
proved for y(x) in §17. As there, we modify y(x, x) to Y(x, ) in
case x is a prime power.

The general lines of the argument are the same as in §17, but with
L'/L in place of {'/{. Suppose x is a primitive character (mod g).
Consider first the computation of the residues of

The only poles are at the zeros of L(s, y) and at s = 0; and there is
a slight complication in that, if y(— 1) = 1, one of the zeros of L(s, x)
is itself at s = 0, so that the function has a double pole there.

Suppose first that y(—1) = — 1. Then the complication just men-
tioned does not arise, and the explicit formula is

/0 o0 1-2m
( X)+ 3 X ’
aX) m=12m_1

(2) Yolx, x) = —Z——

the expression on the right being the sum of the residues of the
function mentioned above. There is the same understanding about
the sum over the nontrivial zeros p of L(s, x) as in §17. The value of
L'(0, x)/L(0, x) can be expressed in terms of the constant B(y) of
§12 by putting s = 0 in (17) of §12.

115
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Suppose next that y(—1) = 1. Since L(s, x) has a simple zero at
s = 0, the expansion near s = 0 of L'/L is of the form

L'(s, x)
L(s, x)

1
=+ b+
S

where b = b(x). Since

N

X 1
— = -+ (logx) + -,
s S

the residue of the function mentioned above ats = Ois —(log x + b).
The explicit formula therefore takes the form

3) wwv=—z%—mw~mm+z

Once again, b(x) can be expressed in terms of B(y) by using (17) of
§12.

We now outline the proof, and the estimation of the error term
when the sum is taken over |y| < T. We suppose that x > 2 and
T > 2. The character x(n) plays no part in the estimation of the
sum on the right of (3) of §17, and therefore the inequality analogous
to (5) of §17 is still valid. In the choice of a modified value of T,
we have to appeal to the lemma of §16 instead of that of §15, and
accordingly we get

L'(e +iT, x)
— = % — 0(log?qT for —1 < 2.
Lo 41T,y ~ Olegdl)  for—l<o<

The contribution made to the horizontal integrals by this range of &
is therefore
2
< x log qT'
Tlog x

The estimate for L'/L in the half-plane ¢ < —1, when circles of
radius } around the trivial zeros are excluded, is

L'(s, x)
me)—Omemn

This follows by logarithmic differentiation from the functional
equation of L(s, x) in its unsymmetric form, namely,

L(1 = s, %) = e(x)2' *n~%¢* " * cos in(s — a)['(s)L(s, i),
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where le(y)l = 1 and a = 0 or 1. This form is deduced from the
symmetric form in the same way as (4) of §10. The contribution of
the rest of the horizontal integrals is therefore

logqT
P
Tx log x’
and as before it 1s negligible.
The result is that
(4) ol 1) = — Y = — (1 — a)log x — b(y)
lii<T P
[o0) a—2m
R(x, T),
Z‘, 2m — a + R T)
where
(5) IR(x, T)| < = log? ¢xT + (log x)min |1, = —
X, T og”q g T |

Again, if x is fixed, this tends to 0 as T — oo, and so we have the
results given in (2) for the case a = 1 and in (3) for the case a = 0.
If x is an integer, we can replace (5) by

(6) IR(x, T)| < xT~log*(gxT).

From the point of view of application to the distribution of primes
in arithmetic progressions with a variable modulus, formula
(4) is of little use as it stands. It contains the unknown b(y), and it
contains terms x?/p for which p may be very near either 1 or 0.
It will be recalled that the results of §14 state that there is at most
one zero within a distance c/logq of s = 1 (and so also of s = 0),
and this one zero can only occur when y is a real character and is
itself real. It is important to have this zero visible explicitly in the
formula.

We need no longer distinguish between { and v, as we are not
aiming at exactitude, and we can simplify (4) by absorbing log x
and the sum over m into the error term. We can usc the form (6)
of the error term, since the effect on y4(x, x) of replacing x by the
nearest integer is O(log x); and for simplicity we suppose now that
T < x. Then

)

(7) V)= — 3 = — bx) + Ry(x, T),

i<t P

(8) IR(x, T)| < xT~!log?gx.
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The first step is to express b(x) in another form. By (17) of §12,

L 1 1 (s + 4 l
(0 _1ygd 1TGs+30) g 0+ 3 |
L(s, x) 2 n 2 T(Es + 1a) s—p p
Replacing s by 2 and subtracting, we obtain
L'(s, 1 I'(Gs + 1a 1 1
(9)()___0(1)___ (125 12)+Z . ’
L(&X) 2r(78+7a) o \S — P 2_/)
where the O(1) 1s absolute. If y(—1) = —1, so that a = 1, the term

["/T is regular at s = 0; if y(—1) = 1, so that a = 0, its expansion
near s = 0 is s~! + const. +--. Hence the number b(x), which we
defined earlier as the value of L(0, x)/L(0, x) in the former case, and
as the constant term in the expansion of L'(s, x)/L(s, x) near s = 0
in the latter case, satisfies

1
b(x) Z( )
P 2-p
For the terms in this series with |y| > 1, we have
1 1 1 1

4 ——|=2 <
2—-p |y|221|p(2—p)! %IZ—p

3
ly[>1]|P |

The last sum can be estimated as O(log ¢) using (3) of §16 with ¢t = 0.
The same estimate applies to
B2 =

since for |[y| < 1 we have |2 — p| > |2 — p|2. It follows that

b(x) = O(logq) — Z -

Y4
We can therefore rewrite (7) as
bd 1
9) W, )= — Y —+ Y —+ Ryx,T),
i<t P <1 P

where R,(x, T) satisfies (8).
By the theorem of §14, there is no zero of L(s, y) satisfying
(10) <1,  B>1-c/logg,

except possibly when y is real, when there may (as far as we know)
be one simple real zero. Here ¢ is a numerical constant, which we
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can suppose less than 1 whence f > 3, since ¢ > 3. We call such
a real zero exceptional and denote it by B,. There will also be a
zeroat1l — .
Let X' denote a summation over the zeros which excludes the
possible zeros f; and 1 — f§,. Then we can rewrite (9) as
' 1 xPr— 1 xR

— - — — + R,(x, T).
lyl<T P |y|z<:1P B 1 — B ?

'»{/(xa X) = -

The second sum can be absorbed in the error term, since

p~ ! =0 (logq)

for the zeros in question, and their number is O(log g) by (1) of §16
with T = 2. We can also omit the term B ', which is O(1). Finally,

xI7h —
for some o between 0 and 1 — f3,, and the last expression is less than
x* log x.

We now have the convenient expression (valid for primitive y
and 2 < T <-x)

= x%log x

. X

(11) Y, x) = — — — Y — + Ry(x, T),
By pizre

where

(12) IR5(x, T)| < xT ™ 'log*(gx) + x* log x.

The term —x*'/B, in (11) can only occur if y is real.

Finally, we prove that (11) and (12) hold for any nonprincipal
character y, whether primitive or not. Suppose y Is imprimitive
and is induced by the primitive character y, (mod ¢,). The difference
between y(x, x) and y(x, x,) i1s at most

Y Am =Y Y logp <(logx)y logp < (log x)(log g),

n<x pla v plg
(n,g)>1 pY <x

which is negligible compared with the expression in (12), where
T < x. This expression applies to the error term in the formula for
Y(x, x,) because g > ¢,.

There is, however, a logical point that needs consideration. The
definition of the exceptional zero f, is a definition that involves
the modulus, and, assuming we use the same definition when ¥

is imprimitive, an exceptional zero for L(s, x) will certainly be an
exceptional zero for L(s, x,), but not necessarily vice versa. However,
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if a zero is exceptional for y, but not for y, the term —x?t/B,, which
is explicit in the formula for y(x, x;), will still be present in the
formula for y(x, x), since it will occur there in the sum —) 'x*/p.

Thus the formula remains valid, and we restate it for convenience
of reference:

If x is a nonprincipal character to the modulus q, and 2 < T < x,
then

xﬂl . xP

(13) Yy, x) = — — — Y =+ Ry(x, T,
Br =re

where

(14) IRs(x, T)| < xT~'log? gx + x* log x.

The term —x*'/B, is to be omitted unless y is a real character for
which L(s, x) has a zero ; (which is necessarily unique and simple)

satisfying
(15) pi>1—c/logyg,
where c is a certain absolute constant ; and the sum X' excludes f3,
and 1 — B, (if they exist).
As we saw in §14 there is at most one real character (mod q) for

which such a zero fi; can exist. It may be noted that the term
x* log x in (14) can be omitted unless 8, exists.



20

THE PRIME NUMBER THEOREM
FOR ARITHMETIC
PROGRESSIONS (1)

We now apply the last result of the preceding section to obtain
approximations to

(1) Yixiga)= Y An)

n<x
n=a(modq)
From this it is an elementary matter to deduce approximations
to n(x; g, a), the number of primes up to x that are congruent to
a (mod q). ‘
The relationship between y(x;q, a) and the sums y(x, y) of the
preceding section follows immediately from (4) of §4; we have

(2) Wix;q,a) = F 2 Ha(x, ),
where the sum is over all the characters y to the modulus ¢.

The contribution of the principal character y, to the sum on
the right provides the main term. By an argument similar to one
used in the preceding section, we have

W(x, x0) — ¥(x) < Y Aln) < (logg)(log x).

n<x
(ng)>1

By de la Vallée Poussin’s form of the prime number theorem,
namely (1) of §18,

Y(x) = x + O{x exp[ —c,(log x)}]},

where ¢, is a positive constant. Hence

X
3 5 g, a) =
G) vixig.a) ¢(c1) d>(q X:Z‘XOX(G

a(——{x exp[ — ¢, (log x)*] + log? gx}|.

121
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For y(x, x) when y # x,, we have the expression (13) of the last
section, namely

xﬁl

- Z +R3(x T),
ﬁl |y|<T

(4) Yix, x) = —
where

IR5(x, T)| < xT ™ 'log? gx + x*logx
provided 2 < T < x. The term in (4) containing f, occurs for at
most one real nonprincipal y.

By the results of §14, and the remarks at the end of §19, all the
zeros p in the sum on the right of (4) satisfy

p<1—cy/lloggT
for a certain positive absolute constant ¢,. Hence
Ix?| = x¥ < x exp[—c,(log x)/(log g T)].

The sum Z|p| " ! extended over the zeros in (4) with |y| > 1 can be
estimated as in §18, and is

T T

< j t72N(1, ) dit < j t~log(gt) dt < log?qT < log?gx.

1 1
The same sum over the zeros p with |y| < 1 is O(log? g), since
lp|~! = O(log q) for each of them. Hence

ﬁx

(5) Yix, ) = — /T + Ry(x, T),
where
(6) IR4(x, T)| < x(log? gx) exp[ —c,(log x)/(log qT)]

+ xT " 'log? gx + x*log x.

Some condition must be imposed on the size of ¢ in relation to
that of x. If we suppose that

(7) q < exp[C(log x)*],
where C is any positive constant, and choose

T = exp[C(log x)*],
then all the terms on the right of (6) are

< x exp[ — C'(log x)]
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for some positive C’ depending only on C. Hence, subject to (7),
we have

(8) Wix, 1) = —xP/By + O{x exp[—C'(log x)*]}

for each nonprincipal y to the modulus q.
Substituting in (3), and recalling that the term containing f,
occurs for at most one y, we get the following result for y(x ; g, a):
Let C be any positive constant. Then

X _X-l(a)xﬁ
T 99 9B,

for a positive constant C' depending only on C, and this holds uni-
formly with respect to q in the range (7). Here y, is the single real
character (mod q), if it exists, for which L(s, x,) has a real zero f,
satisfying B, > 1 — c/log q for a certain positive absolute constant c.

It is in the possible term containing f, that one of the main diffi-
culties in the theory of the distribution of primes in arithmetic pro-
gressions shows itself. The only universal upper bound that we
have for f, is (12) of §14, which states that 8, < 1 — ¢;/q* log?g.
The term containing f, is therefore

9)  ¥lix;q,a) | + O{x exp[—C'(log x)*]}

< iex —C
#(q) p(

This will only be of the same order as the other error term in (9) if
we impose a very severe limitation on g, such as

log x
*gtlog?q|’

(10) g < (logx)!~°

for some fixed 6 > 0. We then obtain the following result.
Provided q satisfies (10) for some fixed 6 > 0, we have

(1) Wlxig,0) = —— + Olxexp[—cy(log x)'1},
¢(q)
where c, is an absolute constant.

This 1s a weak result, but as far as I know it is as yet the only result
of the kind (apart from minor variations) that is effective, in the
sense that, if  is given a numerical value, both ¢, and the constant
implied by the symbol O can be given numerical values.

As Page showed, we can obtain a similar result in the wider range
(7), provided g does not coincide with a multiple of a particular
integer g, depending on x. In his result, given in §14, we take

z = exp[C(log x)*].



124 MULTIPLICATIVE NUMBER THEORY

Then the result tells us that there is at most one real primitive charac-
ter to a modulus not exceeding z for which
Cs

s . cs
Bl>1_logz_1 C(log x)*’

Denote the modulus of this character (if it exists) by g,. Then if g 1s
not a multiple of g, we have

Cs

<! - —
b= C(log x)?

for every real nonprincipal y(mod g), whether primitive or not.
We then obtain the same type of estimate for the term containing
B, as before. Note that, if g, exists, it must satisfy

1 — _Ci__t <1-— «_LC3_2’
C(log x)? gilog g,

that is,
(12) g, log*q, > log x.

Hence we have proved :
Let C be any constant. Then, except possibly if q is a multiple of a
particular integer q, depending on x, we have

X

" %)

for a positive constant C” depending only on C, and this holds uniformly
withrespect to q in the range (7). The integer q , satisfies (12).

In the next section we shall prove Siegel’s theorem, which gives a
much better upper bound for f#, than we have had hitherto, and then
in §22 we shall return to the question of the distribution of primes in
arithmetic progressions.

We conclude this section by stating the consequences of the
generalized Riemann hypothesis, that is, the hypothesis that not
only {(s) but all the functions L(s, y) have their zeros in the critical
strip on the line ¢ = §. (This conjecture seems to have been first
formulated by Piltz in 1884.) Then

(13) Y(x;q, a) + O{x exp[— C"(log x)*]}

Y(x) = x + O(x* log? x),

as we saw in §18, and the same holds for y(x, x,), by the inequality
for |y(x, xo) — W(x)| at the beginning of this section, provided we
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suppose (say) that ¢ < x. When y # x,, (13) of §19 implies that, on
the above hypothesis,

lYix, )l < x* +xt Y p|™' + xT~'log? gx + x* log x

Byl<T

for2 < T < x.Asproved earlier in this section,
Y lol"! < log? gx.
Taking T = x?, we get
W(x, 2)l < x*log? x

for y # yoand g < x. It now follows from (2) that on the generalized
Riemann hypothesis, if ¢ < x,

(14) Y(x;q,a) = ﬁtﬁ + O(x* log? x).

It will be seen that even this powerful hypothesis gives only a poor
result if g is larger than x*.
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SIEGEL'S THEOREM

Siegel’s theorem,! in the first of its two forms, states that:
For any ¢ > 0O there exists a positive number C,(¢) such that, if
is a real primitive character to the modulus q, then

(1) L(1, x) > Cyle)g "
This implies, by (15) and (16) of §6, that
(2) hd) > C,(e)|d|* " ford <0
and
(3) hd)log n > C,(e)d* ¢ ford > 0,

where n = 3ty + uo\/a) and t,, uy have the same meaning as in §6.
Inits second form, the theorem states that:
For any ¢ > 0 there exists a positive number C(g) such that, if y is
any real nonprincipal character, with modulus q, then L(s, y) # O for

4) s>1— Cselg "

The second form follows easily from the first, by virtue of the
inequality

L'(s, y) = O(log’ q)
for1 — 1/logq < s < 1,whichwas (11)of §14. If g is large, as we may
suppose, then a zero f of L(s, ) satisfying (4) will lie in the interval
Just specified, and it will follow that
L(1, ) = L(1, x) = L(B, 1) < ¢,(log* q)Cx(e)g %,

which contradicts (1) if we there replace ¢ by §¢. This proves the
second form of the theorem (assuming the first) when y is primitive,
and this suffices to prove it when y is any real nonprincipal character.

Y Acta Arithmetica, 1, 83-86 (1935).
126



SIEGEL'S THEOREM 127

It follows that any real zero B of L(s, x), for real nonprincipal g,
satisfies
(5) B <1 —Cile)g™,
and this is a much superior estimate, in principle, to any we have had
hitherto. It has, however, the disadvantage of being noneffective,
in the sense that it is not possible, with existing knowledge, toassign a
numerical value to C,(¢) for a particular value of ¢ (for example, 3).

Siegel’s theorem was the culmination of a series of discoveries by
several mathematicians. The problem of proving that h(d) - o
as d » — oo, or even of proving that h(d) > 2 if —d is sufficiently
large, was propounded by Gauss, but no progress toward its solution
was made until modern times. Hecke? proved that if the inequality
p < 1 — c,/log g holds for the real zeros of L functions formed with
real primitive characters, then h(d) > c;|d|*/log|d|. In particular
this conclusion would follow from the generalized Riemann hypo-
thesis.

In 1933, Deuring? proved the unexpected result that the falsity of
the classical Riemann hypothesis for {(s) implies that h(d) > 2 if —d
is sufficiently large, and shortly afterward Mordell* proved that this
assumption also implies that h(d) - o0 as d - — 0. Their work was
based on a study of the behavior, asd - — oo, of

¥ Y00,y

Q x,y

where Q runs through a representative set of forms of discriminant d.

In 1934, Heilbronn® took a further important step forward. He
proved that the falsity of the generalized Riemann hypothesis
implies that h(d) - oo as d - —oo. Combined with the result of
Hecke, this gave an unconditional proof that h(d) —» oo, and so
solved Gauss’ problem.

Also in 1934, Heilbronn and Linfoot® proved that there are at
most ten negative discriminants d for which h(d) = 1. As nine such
d were known,

-3, —4, -7, -8, —11, —19, —43, —67, —163,

the question was whether there is a tenth such discriminant. If there
were, then the L function L(s, x;) would have a real zero f larger

? See Landau, Géttinger Nachrichten, 1918, 285-295. The same argument allows
one to deduce the first form of Siegel’s theorem from the second.

3 Math. Zeitschrift, 37, 405-415 (1933).

4J. London Math. Soc., 9, 289-298 (1934).

5 Quarterly J. of Math., 5, 150-160 (1934).

® Quarterly J. of Math., 5, 293-301 (1934).
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than 1. In 1966, Baker’ and Stark® proved independently that there
is no such tenth discriminant. Baker noted that his fundamental
theorem in transcendence theory provides a solution of this class
number problem in view of earlier work of Gelfond and Linnik.
Stark was inspired by a paper of Heegner® in which elliptic modular
functions were used to show that there is no tenth discriminant with
class number 1. It was long thought that Heegner’s argument was
incomplete, partly because it seemed to depend on an unproved
conjecture of Weber. However, in retrospect it has now been found
that Heegner’s proof is essentially correct; the obscure details have
been clarified by Deuring®® and Stark!’.

Baker and Stark have found!? all quadratic discriminants d < 0
for which h(d) = 2, but for h(d) = 3 the problem of finding all such d
is still open. The fact that it has not been possible to find all such d,
or to reduce the problem to one of computation, reflects the fact
that the more powerful arguments that have been developed for this
problem are of an indirect character.

We shall now prove Siegel’s theorem, in the form first stated, using
the simplified method given later by Estermann.!? The basic idea is
to combine the L functions of two characters. Let y,, y, be real |
primitive characters to the distinct moduli ¢, g, ; as we saw in §14,
X1X2 1s a nonprincipal (though not necessarily primitive) character
to the modulus ¢,q,. Let

(6) F(s) = C(s)LAs, x1)L(s, x2)L(s, x1%2)-

Then F (s) is regular in the whole plane except for a simple pole at
s = 1, and its residue at this pole is

(7) /o= L1, x1)L(1, 3o )L(1, % x2).
An essential part in the proof is played by the inequality

Cal

(8 F(s) >4 - (q.q,)8" 79 forg <s < 1.

I —s

An inequality of the same general character as (8) was used by
Siegel, and was deduced by him from the work of Hecke on the

" Mathematika, 13, 204-216 (1966). See also Chapter S of Baker, Transcendental
Number Theory, Cambridge University Press, 1975.

8 Michigan Math. J., 14, 1-27 (1967).

9 Math. Z., 56, 227-252 (1952).

10 Invent. Math., 5, 169-179 (1968).

'1.J. Number Theory, 1, 16-27 (1969); Modular Functions of One V ariable 1,
Springer-Verlag, Berlin, 1973, pp. 153-174.

2 Ann. Math., 94, 139-152, 153-173 (1971).

'3 J. London Math. Soc., 23, 275-279 (1948). Other simple proofs have been given
by Chowla, 4nnals of Math. (2) 51, 120-122 (1950) and by Goldfeld, Proc. Nat. Acad.
Sci. US.A., 71, 1055 (1974).
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functional equation of the Dedekind { function of an arbitrary
algebraic number field. The function F(s) is essentially the Dedekind
{ function of a biquadratic field. A simple proof of Siegel’s inequality
was given by Heilbronn,'4 but even this requires some knowledge of
algebraic number theory and contains some complications of detail.

Estermann’s proof of (8) is relatively simple. The multiplication of
the Euler products gives

a0
= > an”
n=1

for ¢ > 1, where a, = 1 and a, > O for all n. The last fact follows
from

2 m7 T+ (eI + (™),

m=1

log F(s) = ).
p

where the coefficients are obviously nonnegative. As in de la Vallée
Poussin’s argument in §4, we obtain

= Y b2
m=0

for|s — 2| < 1, where by > 1 and b,, > O for all m.
It follows that

9) F(s) — A/(s — 1) = i £)(2 = s)™,

and this must be valid for |s — 2| < 2, since the left side is regular
there.

On the circumference of the circle |s — 2| = 3, the function {(s)
is bounded, and the L functions satisfy

IL(s, x1)| < c¢sq1, IL(s, x2)| < €542, IL(s, X122l < 54192
by (14) of §12. (This inequality was proved for any nonprincipal
character, whether primitive or not.) Hence

[F(s)l < ceqiq3

on the circumference, and the same applies to 4/(s — 1), since / is the
product of three L functions which satisfy the above inequalities. It
follows from Cauchy’s inequalities for the coefficients of a power
series, applied to the function (9), that

(10) b, — Al < 2¢691q53)™

Y% Quarterly J. of Math., 9, 194-195 (1938).



130 MULTIPLICATIVE NUMBER THEORY

For § < s < 1, we have

D bw— A2 — 9" < Z 2c64193[32 — s)I
m=M

< 2¢69145 Z @

m=M

2.2(3\M 2.2 -M/4
< 1919:(3)" < c1qiqse 4,

Hence, in this interval,

M-1
Fs) = Ms = 1) =1 =1 Y (2= )" — coqlqle™
m=0
Q2 - s - _
=1-14 1 — s — c,qiqze M4,
We choose M to satisfy
1/4<cqqe M/4<%
and obtain
1 )‘ M
F(s) > 3 — (2 —5)
1l —s
Since
M < 2logq,q, + cs,
so that
M < 8log g9, + co,
we have

(2 — sy = exp[M log(l + 1 — 5)] < exp[M(1 — )] < ¢;olq,q,)*" ~*.

This proves (8).

To deduce Siegel’s theorem, we distinguish (following Estermann)
two cases, the distinction depending on the given positive number &.
If there is a real primitive character for which L(s, ) has a real zero
between 1 — {keand 1, we choose y, to be such a character and f, to
be the zero in question. Then F(ff,) = 0, independently of what
%, may be. If there is no such character, we choose y, to be any real
primitive character and f, to be any number satisfying 1 — {¢ <
B, < 1. Then F(B,) < 0, independently of what y, may be, for
{(s) < OwhenO < s < 1 by (7)of §4, and the three L functions in (6)
are positive when s = 1 and do not vanish for f; < s < 1. Thus in
either case F(f,) < 0, and the inequality (8) gives

Cah > %(1 - /31)(‘11‘12)_8“_‘3”~
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From now on we keep x, and f3, fixed. Let y, be any real primitive
character to a modulus g, > q,. It follows from (13) of §14 that

i < (cyy log g L1, x5)(cy, logq.q5).
Hence
L(1, ;) > Cq; *' P )logg,) ',

where C depends only on yx,, and therefore only on ¢ Since
8(1 — B,) < %, the last inequality implies (1) if ¢, is suthiciently
large (as we may suppose). This establishes Siegel’s theorem.
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THE PRIME NUMBER THEOREM
FOR ARITHMETIC
PROGRESSIONS (I1)

By appealing to Siegel’s theorem we can obtain a better approxi-
mation to ¥(x; g, a) than was possible in §20.
If we suppose that

(1) q < exp[C(log x)*]
for some positive constant C, then (8) of §20 tells us that (for y # x,)

B1
Yix, x) = — x4 0{x exp[ — C'(log x)*1},

where C' is a positive constant depending only on C. Here the term
in f§; occurs for at most one real character (mod q). Siegel’s theorem
states that for any ¢ > 0 there exists C,(¢) such that

B, <1~ C,lelg*
Hence
xPr < x exp[— C,(e)(log x)q ~*].

In order that this expression may be small compared with x, we
must impose a more severe restriction on g than that expressed by
(1). Suppose that

(2) g < (log x)",

for some positive constant N. Then, on taking ¢ = (2N)™!, we get
q° < (log x)*, and

x? < x exp[— C,(N)(log x)*].
Thus, subject to (2), we have
3) [W(x, )| < x exp[—C;(N)(log x)*],

for any nonprincipal y (mod gq).
132
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Substituting in (3) of §20, we obtain the following result for
Y(x; g, a), which represents the best form so far known of the prime
number theorem for arithmetic progressions.’

Let N be any positive constant. Then there exists a positive number
C,4(N), depending only on N, such that if q satisfies (2) then

@) W(x:q,a) = &% + 0{x exp[— C3(N)(log x)}]}

uniformly in q.

The various results for y(x; g, a), which have been found in §20
and here, have analogs for n(x; g, a), the number of primes up to x
that are congruent to a (mod q). These are derived by partial summa-
tion, as in §18. The main term is now (li x)/¢(q) in place of x/¢(q),
and the error terms are all reduced by a factor log x. But the latter
change is of no significance except for the analog of (14) of §20, which
was based on the assumption of the generalized Riemann hypothesis.

As we have seen, the main difficulty in approximating to y(x; ¢, a)
arises from the term containing f§,. But if this term is retained, so
that one is prepared to accept a result of the form

X Il(a)x_ﬂ‘ n
o) o) B

where y, is the possible real character with the exceptional zero f,,
further progress 1s possible. The error term then comes essentially
from

() Y(x;q,a) =

0(..),

5 )ZZI x*/pl,

and here it 1s not essential to have a good estimate for the real part
of each p, provided one can handle the above average over the ¢(q)
characters. Results in this direction can be based on estimates for

(6) Y N, T,

where N(a, T, y) denotes the number of zeros of L(s, ) in the rectangle
a<o<l, It < T.

Such estimates were obtained? by Rodosskii and Tatuzawa, building
upon work of Linnik, and as a consequence they were able to obtain

! This application of Siegel’s theorem to primes in arithmetic progressions was
made by Walfisz, Math. Zeitschrift, 40, 592-607 (1936).
2 For an account of their work; see Prachar, Chap. 9.
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an improved error term in (5), or alternatively the same error term
for a longer range of q.

The value of a result of the type (5) is mainly in connection with
the distribution of primes in a relatively short segment of an arith-
metic progression. When such a formula is applied with two values
of x that are not far apart, and the results subtracted, the terms
containing f, largely cancel.

The methods for estimating the sum (6) are based to a considerable
extent on earlier work® by a large number of mathematicians on
the estimation of N(a, T), the number of zeros of {(s) in the rectangle
a<o<],0<t<T

From now on, we shall be concerned primarily with the proof of an
estimate for

Y(x; g, a) — x/¢(q),

not for an individual value of g but on the average over g up to a
certain bound. Such results are obtained by the ‘“‘large sieve”
method, which we discuss in §27.

The first result of this general nature was given by Reny1 He
proved* that, for primes ¢ < (5N)?*, the inequality

(x4, @) = (5 0/9la) < oy
holds, apart from certain possible exceptional pairs ¢, a; the number
of exceptional g is < N*log N, and the number of exceptional a
for each g is < g*.

In §28 we shall prove the following simple and far-reaching
result of Bombieri: For any positive constant A, there exists a
positive constant B such that

Y, max max [Y(y;q,a) — y/p(q)l < x(log x)”*

g<x (a@d=1 y=x
if
X = x*(log x)™B.

The form of the inequality, with two maxima, may at first sight seem
complicated, but it is one that is very convenient for applications.

* See Titchmarsh, Chap. 9.
4 Compositio Mathematica, 8, 68-75 (1950).
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THE POLYA-VINOGRADOV
INEQUALITY

Suppose that y is a nonprincipal character (mod ¢). Since
Ya_, x(n) = 0, it is clear that Y MY | x(n) < q for any M and N.
However, a sharper bound is needed to describe the distribution of
power residues within the interval 1 < n < ¢. In 1918 Pélya® and
Vinogradov? proved independently that

M+N

1) Y x(n) < gtlog g

n=M+1

for nonprincipal characters y (mod g). By taking y(n) = (n|p), we
deduce that the interval M + 1 <n < M + N contains N +
O(p* log p) quadratic residues (mod p). The Pélya-Vinogradov
inequality will be used in our arguments of §28.

Pélya considered the sum ) , ... x(n) as a function with period 1,
and determined its Fourier expansion. The Fourier expansion is
not absolutely convergent, and so does not immediately provide a
proof of (1), but Pélya also derived a truncated expansion which
suffices. Polya’s analysis is fundamental to more detailed investiga-
tions, but for our purposes an elementary argument of Schur? suffices.

We first prove that

M+N

> x(n)

n=M+1

) <q'logqg

for primitive characters y (mod g), g > 1. In §9 we saw that for such y
and any n,

) = = }: a)e< )

' Gottinger Nachrichten, 1918, 21-29.
2 Perm. Univ. Fiz.-mat. ob-vo Zh., 1, 18-28, 94-98 (1918).
3 Géttinger Nachrichten, 1918, 30-36.
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Hence the sum in question is

G )aZ #(a) MiN ( )

n=M+1

Here |7(¥)| = q*/?, and the inner sum is a geometric series with sum

_ ((M + 2N + 2)61) sin nNa/q

q sin ma/q
Consequently
M+N g—1 1
)| <q Y ——.
n=1§+1 1 a;1 |sin ma/q|

For convex functions f(a),

ro<3 [ rwa
44

oa—

Taking f(«) = (sin na) !, 6 = 1/g, we see that the sum above is

1-(3q) 3
< qJ (sin nf)" 1 dp = 2q J (sin )~ ' dp.
24 34

Now sin nf > 2 for 0 < B < 4, so that the above is

3 dﬁ
<2qJ — =gqlogq.
1q Zﬁ
Hence we have (2) for primitive y.
Suppose now that y is a nonprincipal character (mod g), induced
by the primitive character y;(mod q,). Then ¢,|q, and we write

q = q,r- Hence
M+N M+N

2 my= Y .
n=M+1 n=M+1
(n,r)=1

Now ) 4, #(d) = 1 or 0 according as n = 1 or n > 1, so that the
above is

M+N M+N
Y MY ud) =Y ud Y xin)
n=M+1 dn dir n=M+1
d|r d|n
= ). wd)y,(d) > Xa(m).
dlr (M +1)/d<m<(M+N)/d

In view of (2), the inner sum has modulus <q}/? log g, so that

M+N
Y x(n)| < qi(log q1) Y lu(d)| = 2°Vg3log q;.
n=M-+1 d|r
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But 2°" < d(r) < r* for any & > 0, and in particular for & = 3,
which gives (1). In fact we can obtain a good numerical constant
by noting that

dn=Y1<2Y 1<2/r

d|r dlr
d<.r
The inequality (1) is close to best possible, for Schur also proved
that
|
max | Y. x(n)| > o \/cE
N |n<N n

for all primitive y (mod q). In 1932 Paley* showed that

()

for infinitely many quadratic discriminants d > 0. In the opposite
direction Montgomery and Vaughan® have shown recently that,
assuming the generalized Riemann hypothesis,

max > 1 /dloglogd

N

M+N
Y x(n) < \/(; log log ¢
n=M+1
for all y # yo(mod q). Although (1) is close to being best possible,
for many purposes it is useful to have an estimate which is sharper
when N is small compared with q; Burgess® has made some progress
in this direction.

*J. London Math. Soc., 7, 28-32 (1932).
5 Invent. Math., 43, 69-82 (1977).
¢ Proc. London Math. Soc., (3) 13, 524-536 (1963).
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FURTHER PRIME NUMBER SUMS

When f is monotonic we can use the prime number theorem and
partial summation to estimate ),y f(p). For certain multiplicative
functions, namely those of the form f(n) = y(n)n™", we can estimate
Y ,<nf(p) by using the zero-free region of L(s, x). In 1937 Vinogradov
introduced a method for estimating sums ),y f(p) in which f is
oscillatory but not multiplicative.! His starting point was a simple
sieve idea. Let P = [],<n+ p. For n in the range 1 < n < N the
sieve of Eratosthenes asserts that (n, P) = lifand onlyifn = 1 orn
is a prime number in the interval N* < n < N. Hence

M+ Y = Y fm= Y Y f@o).

N¥<p<N n<N t|P r<Njt
(n,P)=1 t<N

Thus we are led to bound sums of the kind Y , . v, f(rt). We need to
show that these sums are small. However, we cannot hope to get
much cancellation when ¢ is nearly as large as N, for then the sum
contains few terms. Therefore Vinogradov rearranged the terms
arising fromt| P, 0N < t < N, but this entailed great complications.
Recently Vaughan? found a new version of Vinogradov’s method in
which the details are much simpler.
Following Vaughan, we let
F(s) = ) Amm™,  G(s)= Y ud)d>

m<U a<v
and we note the identity
{'(s)

M) Q)

= F(s) — {()F(9)G(s) — {'(9)G(s)

+ (-— %(%) - F(S)) (1 = Us)G(s)),

! See Chapter IX of Vinogradov, The Method of Trigonometrical Sums in the
Theory of Numbers, Interscience, London, 1954.
2 C.R. Acad. Sci. Paris, Sér A, 285, 981-983 (1977).
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valid for ¢ > 1. Calculating the Dirichlet series coefficients of the
four functions on the right-hand side, we see that

A(n) = ai(n) + ay(n) + a3(n) + ay(n),

where

_(Am) ifn<U,
ay(n) = 0 ifn>U;

a(m) = = 3 Amu(d);
i<

az(n) = ) pu(d)logh;
hd=n
d<V

and

mk=n d|k
m>U a<v
k> 1

a,(n) = — ) A(m)< >, u(d))-

We multiply throughout by f(n) and sum; then

Y fmA®m) = S; + S, + Sy + S,

n<N

where

S; = Z S (m)ai(n).

n<N

In applications we shall bound S, trivially; the remaining S; are
treated individually.
We write S, in the form

Sa= =Y (2 MdAm) 3 f(r).

t<UV| md=t r<Njt

m<U

d<v
Again we have a linear combination of the sums ), .y, f(rt), but
now we can control the range of t by ensuring that UV is sub-
stantially smaller than N. As ), A(m) = logt < log UV, we see
that

(2) S, <(log UV) >

tsUV

> f@)

r< N/t
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The sum S is of the same form, since

= Y ud) Y f@hlogh= Y wd) Y f(dh) f

asVv h<Nj/d i<V h<N/d

® =| Tun T jan®

1 d<V w<h<N/d

< (log N) ) max

<V w

f(dh) '

w5h<NM

The sum S, has a more complicated shape. We note that

Y, u(d) =
i<

for 1 < k < V, so that

Se= Y Am) Y (Z u(d)>f(mk)-

U<m<N/|V V<k<N/m\ d|k
a<sv

Suppose that A = A(f, M, N, V) is such that

M 3 3
<a(2inat)( 3 far)

M k<N/M
for any complex numbers b,,, ¢;; such bilinear form inequalities are
familiar, and we have means of estimating A. Thus

4) Y, bn ) af(mk)

M<m<2M V<k<N/m

+
S, < (log N) max A(ZA(m) )%< Y d(k)z).

U<M<N|y k<N/M

Here the sum over m is estimated by noting that

Y. A(m)* < (log z) ), A(m) < zlog z.

m<z m<z

As for the sum over k, we observe that d(k)? =) 4, f(d), where
f(d) is the multiplicative function for which f(p®) = 2a + 1. Thus

Ydky =% Y f(d)= ) f(d)z/d]

k<z k<z d|k d<z
< de S@d<z[[(A+f@)/p +f@p* +--)

-3
<z[] (1 — %) < z(log 2z)>.
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Combining these estimates, we see that

(5) S, < N*(log N)® max A.
U<M<N/V

To be more specific we now suppose that | f(n)| < 1for all n. Then
the estimate Y, .y f(n)A(n) < N is trivial, and we seek a sharper
estimate. Clearly S; < U. From (2) we obtain the trivial estimate
S, < N(log UV)?; hence we do not require much cancellation in the
sums Y, .y, f(rt) to show that S, = o(N). Similar remarks apply
to S;. For S, we obtain a trivial bound for A by applying Cauchy’s
inequality:

N\ /2M 1 4
2 bm 2 Ck< (MM) (Zlbmlz) ( Z lckiz)'
M<m<2M V<k<N/M M k<N/M

Hence the gstimate A < N?* is trivial, which in (5) gives S, <
N(log N)3; %ms we need only a slightly sharper bound for A.
Note however that no such improvement is possible if f is totally
multiplicative and unimodular, since we may take b, = f(m),
¢, = f(k). For this reason the principal applications of the method
involve functions f which are not multiplicative.

For most f we are not able to determine the least A for which (4)
holds. However, the following approach is very useful: By Cauchy’s
inequality, the left-hand side of (4) is

2M 4 /2M 2\
()3 )
M
Here the second sum over m is
2 ¢ 2 & ) f(mjf(mk).

M
V<j<N/M V<k<N/M M<m<2M
m<N/j
m<N/k

2. o f(mk)

V<k<N/m

We note that |c;6;| < 7l¢;|* + 3lc.[?; hence the above is

< XY g X | X f(mj)f(mk)‘-
V<jsN/M V<k<N/M| M<m<2M

m<N/j
m<N/k

Thus

V<j<N/M V<k<NM|M<m<2M
: m<N/j
m<N/k

A<( max Y ' > f(mj)f(m—@‘ ¢

This bound is largest when f = 1, and then we obtain again the
trivial bound A < N%. If f is totally multiplicative and unimodular
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the bound is unchanged, but otherwise we may expect some cancel-
lation in the inner sum, and hence a nontrivial bound for A.

Combining our estimates, we see that if | f(n)] < 1 for all n,
U>2V>2 UV < N,then

(6) Z f(M)A(n) < U + (log N) Z max Z f(rt)
n<N t<Uv w w<r<N/t
+ N*(log N)® max max ( > Y. f(mj)f(mk) ’)7
USM<N/V V<j<N/M\V<k<N/M M’:rsnﬁ/%M
m<N/j

In conclusion we remark that in some situations sharper estimates
can be obtained by treating S, more carefully. Write

S;=Y =Y+ Y =5+8;.

t<Uv t<U U<t<UV

Then treat S as we did S,, and S; as we did S,.



25

AN EXPONENTIAL SUM FORMED
WITH PRIMES

Vinogradov first used his method to estimate the important sum

S(@) = Y. A(n)e(na).
n<N
We now use our general estimates of the previous section to bound
S(2). We find that our results depend on rational approximations
to a: If

a 1
1 *0—=|<—=, (a9 =1,
(1) | =7 (a, q)
then
) S(x) < (Ng~* + N* + Nig¥H)(log N)*.
To prove this we first note that
& e(N, + 1)) — e(N,f) : ( 1 )
e(np) = <mm|(N, - N,,—1].
2 <h) B -1 2= No

Here ||f]| denotes the distance from f to the nearest integer. Hence

N 1
< min{—,——].
tsZT (t []td“)

We assume for the moment that this latter expression is

Y elrta)

). max
Y | w<r<Nit

t<T

N
(3) < (E + T+ q)log 2qT
for o satisfying (1). Then the upper bound (6) of §24 gives

N
S(a) < U + (E + UV + q)(log 2gN)?

1 ti
+ NY*(log N)® max  max ( Y min(M, —————))
USM<N/V V<j<N/M\V<k<N/M |k — pof
143



144 MULTIPLICATIVE NUMBER THEORY

This last term is s
N 1
< N*(log N)® max (M + ) mi n( ———))
1<m<N/M

U<M<N/V " || ma|
and by (3) again this is
<N?*(log N)> max |[M+ —+ — + q) (log gN)
U<M<N/V M q

<(NV™* + NU* + Ng~* + Nig*)(log gN)*.
Hence altogether we have

S(a) < (UV +q+ NU* + NV~ 4+ Ng~ % + Nig¥)(log qN)*.

The estimate (2) is trivial if ¢ > N, so we may assume that g < N.
Then we obtain (2) by taking U = V = N%.

It remains to establish the estimate (3). Write t = hq + r with
1 <r<gq,and put f = a — a/q. Then

ol ), 3, Sl

t<T O0<h<T/q r=1

\.—/

N
~sllra/q + hap + rpll ™!

We consider first those terms for which h = 0,1 < r < 3q. For such
r we have [rf| < 1/2q, so that the contribution of these terms is

1
< ——— < g log q.
15rZSq/2 El_i 1708
q 2q

For all remaining terms we have hq + r > (h + 1)q. Let h be given,
and let I be an interval in [0, 1] of length 1/q4. There are at most 4
values of r, 1 < r < ¢, for which

rq—“ + hgB + rfel (mod 1).

Hence

=4 hqp + rp

q N -1
s ™ <<h+1> )

Tigr=1

N
< + g log 2‘1)
OséT/q<(h + 1)q

< (ﬂ + T+ q)log 24T,
q

and the proof is complete.

One may note that our estimate (3) is sharp, even in the special
case o = a/q, but that if the hypothesis (1) is weakened then the
bound (3) must be correspondingly weakened.
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SUMS OF THREE PRIMES

Hardy and Littlewood' showed, assuming the generalized
Riemann hypothesis, that every sufficiently large odd number is a
sum of three primes. In their argument, the hypothesis was required
to provide estimates corresponding to our estimates of S(x) in §25.
In 1937 Vinogradov? used his new estimates to treat sums of three
primes unconditionally. Instead of considering the number of
representations of n as a sum of three primes, we deal with the related
quantity

r(n) = 3, Alk)Ak;)Aks),

where the sum is extended over all triples ky, k,, k3 of numbers for
which k; + k, + k3 = n. Thus r(n) is a weighted counting of the
number of representations of n as a sum of three prime powers.
In additive questions it is appropriate to use a power-series generat-
ing function or exponential sum. Taking

S(0) = 3 A(k)e(ka),

k<N

we see that

S(@)? = Y. r'(n)e(na),

n

where r'(n) is defined in the same way as r(n) but with the further
restriction that the k; do not exceed N. Hence r'(n) = r(n) for
n < N. As S(a)® is a trigonometric polynomial, we can calculate
r(N) by the Fourier coefficient formula

€)) r(N) = JIS(ocf’e(—Noc) do.

0

' Acta Math., 44, 1-70 (1922).
2 Mat. Sb., N.S. 2 (O.S. 44), 179-195 (1937).
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We shall find that the integrand is large when o is near a rational
number with small denominator; by estimating the contributions
made by these peaks, we prove the following:

THEOREM (Vinogradov). For any fixed A > 0,
r(N) = 1&(N)N? + O(N?(log N)~4),

= (111~ 53 (11 )

The above is of little use when N is even, for then S(N) = 0, at
least one of the k; is a power of two, and hence r(N) < N(log N)*.
However, if N is odd, then &(N) = 1, and hence r(N) > N? for all
large odd N. The contribution made to r(IV) by proper prime powers
is easily seen to be < N*(log N)?;hencealllarge odd N can be written
as a sum of three primes in > N?*(log N)~ 3 ways.

We now divide the range of integration in (1) into subintervals
for detailed treatment. Let P = (log N)®, Q = N(log N)~ 5, where B
will be chosen later in terms of 4. Forg < P,1 <a < ¢,(a,q) =1,
let M(q, ) denote the interval |a — a/g| < 1/Q. Here we are
considering the real numbers modulo 1, so that MM(1, 1) can be
thought of as the interval |a| < 1/Q. Let 9 denote the union of
these “major arcs.” We note that two major arcs Wi(q, a) and
I(q', a’) are disjoint if a/q # a'/q’, since

where

!/

a a 1 1 2

— = =5 > .
q¢ ~ P*" Q

qg 49|

We let m (standing for “minor arcs”) denote the complement in
[0, 1] of 9.

We now estimate the contribution of the major arcs to the
integral (1). To this end we first determine the size of S() for
a € M(q, a). We easily see that

- eh/q) if(h,q) =1,
<z>()Z ") = { i (h, g) > 1.

Hence if (a, q9) = 1, « = a/q + B, then

> Alke(ka) = — Y (D@ Y. x(AK)ekp),
k<N ¢( ) k<N

*k,g)=1
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so that

d’( )2 T(X)X(a)k;NX(k)A(k)e(kﬁ) + O((log N)?).

It is easy to verify that the inner sum here is

@) S(0) =

3) = NN, )~ 2mif | ey, ) du

If x # x0, then by estimate (3) of §22, the above is

<(1 + |BIN)N exp(—c./log N).

To treat xo, we let Y(u, xo) = [u] + R(u), and we put T(f) =
Y c<n e(kB). Again it is easily seen that

T(B) = e(NB)N — 2mif f e(np)[u] du.
1

By subtracting this from (3) we find that

2. Xo(k)Ak)e(kB) = T(B) + e(NB)R(N) — 2mifs f e(up)R(v) du

k<N
= T(B) + O((1 + |BIN)N exp(—c./log N)).

In §9 we saw that t(x,) = u(q) and that |(x)| < g* for any y(mod q).
On combining these estimates in (2) we conclude that

S(a) = % T(B) + O((1 + |BIN)G*N exp(—c/Iog N)).

But g < P and [f]| < 1/Q for a € (g, a), so that

S(a) = %((ﬂ) T(B) + O(N exp(—cy+/log N))

for o € M(q, a). Consequently

S(@)° = df‘((q))s T(B)® + ON® exp(—c1/Tog W),

and hence the contribution of (g, a) to the integral (1) is

1/Q
#(4)3 ( _ f’ﬂ) j / T(B)*e(—NP) df + O(N? exp(—c,+/log N)).
#(q) q9)J)-10
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Summing over the various major arcs, we see that
3 B u(q) e s
@ | S@e(—Noyda= Y —~5¢(N)| Ty e(~Np)dp
m g<P é(q) -1/0
+ O(N? exp(—c3+/log N)),

where ¢ (n) is Ramanujan’s sum,

4 an
cn)= ) e(—).
a=1 q
(a,9)=1

We now estimate the integral and the sum occurring on the right-
hand side of (4). The sum T(f) is a geometric series with sum
e((N +1)p)—1

B 1 < minV, 1817,

Hence
1-1/0
f ITB)P dB < Q* < N*(log N)~*%,
1/Q

so that

1/Q 1
J T(B)’e(—Np) df = J T(B)’e(—Np) dp + O(N*(log N)~?%).

-1/0 0

The integral on the right is equal to the number of ways of writing N
intheform N = k, + k, + k3, and thisis

N — DY(N - 2) = IN? + O(N).

Hence
®) [} TPe(—Np)df = IN* + O(N*(log N)~2»).

To deal with the sum in (4) we first evaluate Ramanujan’s sum
c,(n). Grouping residue classes a (mod ¢q) according to the value of
(a, q), we see that

}Ee(gf) => }q: e(gf) = Y ¢, dn).
a=1 q dlq(‘:;id q dlg
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Here the sum on the left vanishes if g does not divide n, and is equal
to q if g divides n; thus by M&bius inversion,

(6) c(n) = 3. du( )

din

dlq
It is now clear that c,(n) is a multiplicative function of g for any
fixed n. Let p* be the highest power of p dividing n. Then c,s(n) =
¢(@*) for B < a, cpu+i(n) = —p% and cpe(n) =0 for f> o + 1.
Hence

_ ug/(n, 9))p(q)
@) D= = 5/ @)

From the trivial estimate [c(n)| < ¢(q) we see that
1q)
L5 < T g

The sum in (4), when extended over all g, can be written as an
absolutely convergent product,

2 < (log N)~8+1,

(@) o)
,,Zl gy N = [1(1 o~ 1)3)
1t
pIN - D? o @-1°

so that

) “(q)a cg(N) = &(N) + O((log N)~*1).
g<P ¢( )
We combine this with (5) in (4) to see that
®) [ S@?e(~Na)do ='§&(N)N? + O(N*(log N)™**1).
m

To complete the argument we must show that the minor arcs
contribute a smaller amount. We note that

]L S()%e(~No de | < (m,,a}XIS(a)l ) fm 1S(2) |2 det

< (maxis@!) [, 1P de.
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This last integral is

> Aky) X A(kZ)J‘le((kl — ko)) da = ), A(k)* < N log N.
0

ki <N ka<N k<N

Dirichlet’s theorem on Diophantine approximation asserts that for
any real o and any real number Q > 1, there is a rational number a/q
such that |o — a/q| < 1/9Q, 1 < g < Q, and (a,q) = 1. If g < P,
then o € Y(q, a); hence if « € m, then P < g < Q. That is, for each
a € m we have a/q with |a — a/q| < 1/9Q < 1/4%, (a,q) = 1, and
P < g < Q. Hence by our estimates in §25,

S(a) < N(log N)~®B/2+4

for o € m, and therefore
f S(x)*e(— Na) do < N*(log N)~B/D+3,

This with (8) gives the desired result, on taking B = 24 + 10.
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THE LARGE SIEVE

The large sieve was first proposed by Linnik! in a short but
important paper of 1941. In a subsequent series of papers, Rényi
developed the method by adopting a probabilistic attitude. His
estimates were not optimal, and in 1965 Roth? substantially
modified Rényi’s approach to obtain an essentially optimal result.
Bombieri® further refined the large sieve, and used it to describe the
distribution of primes in arithmetic progressions; this we shall
discuss in the following section.

Rényi’s approach to the large sieve concerns an extension of
Bessel’s inequality. We recall that Bessel’s inequality asserts that if"
b4, §,, ..., Py are orthonormal members of an inner product space
V over the complex numbers, and if § € V, then

Y I& 6P < &)

In number theory we frequently encounter vectors which are not
quite orthonormal. Thus, with possible applications in mind, we
seek an inequality

(1) le(i, o)|* < AlE|?,

valid for all §, where 4 depends on ¢, ..., ¢g; we hope to find that
A is near 1 when the ¢, are in some sense nearly orthonormal.
Boas* has characterized the constant A for which (1) holds: The
inequality (1) holds for all & if and only if

@ Z w0, 6) < AY |uP

I/\ I/\
|/\ I/\

! Dokl. Akad. Nauk SSSR, 30, 292-294 (1941).
2 Mathematika, 12, 1-9 (1965).

3 Mathematika, 12, 201-225 (1965).

4 Amer. J. Math., 63, 361-370 (1941).
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for all complex numbers u,. To see this, suppose first that (2) holds.
Then

R 2 R
0< ” s Lud | =87 - MY G 6) + X uid, b,

and by (2) this is

r=1 r=1

We now take u, = (&, ¢,)/4, and then the above simplifies to read

0< I8 - 5 L 1G F,

which gives (1). We note that if the ¢, are orthonormal then equality
holds in (2) with A = 1, and then our argument reduces to the usual
proof of Bessel’s inequality.

To demonstrate the converse, we assume that (1) holds for all &,
and we take & = Y X, u,¢,. Then the left-hand side of (2) is

R

18112 = 3 &, by
s=1
By Cauchy’s inequality this is

R £/ R %
s(Z Iuslz) (;I(&, ¢s)|2) ;

s=1

and by (1) this is

R %
sA*nan( y |us|2) .
s=1
We divide both sides by ||§|| and square, to see that
R
IBI? < A ) lul?,
s=1
which is (2).
A great deal is known concerning bounds for bilinear forms such

as (2); we content ourselves with a simple argument which is not
always efficient but which suffices here. We note that

lu, | < 3lu,l® + $ul?;
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hence the left-hand side of (2) is

R
<2 Glu? + 3Hu ) (s, &)1 = X |u|? ;I(tbr, 8]

< (max le((br’ (bs)l) gllurlz'

r

Thus (2) holds with

R
3) A =max ) (¢, §,)l,

r s=1
and we have proved
THEOREM 1. Let ¢4, d,,..., g and & be arbitrary vectors in
an inner product space V over the complex numbers. Then

Y 16 601" < Alg1”

where A is given by (3).

If the ¢, are orthonormal, then 4 = 1 in (3), and we see that the
above includes Bessel’s inequality as a special case. Moreover, if
the inner product matrix [(¢,, ¢,)] is near the identity, then 4 is
near 1.

Rényi applied inequalities such as the above directly to arithmetic
sequences. One of Roth’s innovations was to begin with exponential
sums; this yielded vectors which are more nearly orthogonal.
Following Davenport and Halberstam®, we consider the large sieve
to be an inequality of the following kind: Let

M+N

“4) S =) ane(na)

n=M+1
where M and N are integers, N > 0, let oy, a,,..., oz be distinct
(mod 1), and let § > 0 be such that |, — agl| > 6 for r # s. Then
for arbitrary a,,

R M+N
(5) 2 IS@)P <A Y a,l*
r=1 n=M+1

Here A is to depend only on N and d; our first concern is to determine
how A depends on these two parameters. In passing we note that the
value of M is irrelevant, since for any K we can put

K+N

T@= ) ay-x+ne(n®) = e(K — M)a)S(w),

n=K+1

> Mathematika, 13, 91-96 (1966); 14, 229-232 (1967).
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so that T has frequencies in the range K + 1 <n < K + N, and
| T()| = [S()].
If R = 1 then the situation is particularly simple, for by Cauchy’s

inequality

M+N
(6) IS@I* < N ), |a, %

M+1
This is best possible, since equality occurs when a, = e(—na) for
all n. Hence A > N. On the other hand,

M+N

[ ZIS(oc + B2 dp =R f SPPdB =R Y la,l,

M+1

so that there is a f for which

M+N

Z S(2, + AP = R ), la,|*

M+1

If 6R < 1, we can choose R points separated by at least (mod 1);
hence R can be as large as [0~ '] > 6! — 1 and we see that A >
5~1 — 1. These considerations show that the following theorem is
essentially the best possible.

THEOREM 2. Let S(a) be given by (4). Then (5) holds with
A=N+35"L

Proof. We first observe that in view of (6) we may restrict our
attention to cases in which R > 2, so that é < . Also, by our remark
about the role of M we may assume that M = —[3(N + 1)]; thus
it suffices to show that

R 2

)

r=1

K

2. aelka,)

k=—-K

K
< (2K + 3671 |a,?
-K
for 6 < 1. We appeal to Theorem 1 with the usual inner product,
(b, V) = Z Oy, taking & = {akbk_%}fs _xand
(br = {bl?e(_ kOC,.)} : 2 .

Here the b, are nonnegative, and strictly positive for —K < k < K.
Then by Theorem 1,

R K 2 K
YUY aetka,)| < AY |a )b,
r=1{| -K -K

where

R
A =max ) |B(, — a)l;
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here
B(a) = fbk e(ko).

It now suffices to choose nonnegative b, such that b, > 1 for
—K < k < K, and such that

) ilB(oc,—ocs)l <2K + 35671
s=1

for all r. If we were to take b, = 1 for — K < k < K, b, = 0 other-
wise, we would obtain the inferior estimate

R
Y, |Be, — )| < 2K + O3~ log 67 1).
s=1
To obtain a sharper estimate we take smoother b,, namely

1 if [k| < K,
m=%—UM—KMJHKSWsK+L
0 if k| > K + L,

where L is a positive integer to be selected later. To write B(a) in
closed form we appeal to the identity
2 [sinnJa\?
~\sinma /)’

firstly with J = K + L and secondly with J = K, for by subtraction
we then find that

J

2. e(jo)

i=1

> (= ljDe(je) =

il<J

B(a) = %((sin (K + L)x)? — (sin nKa)?)(sin o)~ 2,
Hence B(0) = 2K + L, and
1B@)| < 7 (sin )~ < (ALl
so that

R ©
Y IB(a, — o)| < 2K + L + 2 ) (4Lh*6*)7 1,
s=1 h

=1

To evaluate this last term it is useful to know that

7L'2

© 2 _n’
h;1h =@ 6



156 MULTIPLICATIVE NUMBER THEORY

However, for our purposes it is sufficient to note that

Zh_2<1+f u ?du =2,
h=1

1

by the integral test. Hence

R 1
Y |B(o, — o) <2K + L + —.
s=1 L5

We now let L be the least integer >J~ !, for then the above is

2K +067 '+ 1461 <2K +3571,

since < }. Thus we have (7), and the proof is complete.

A. Selberg chose the b, more carefully, and obtained the sharper
value A = N + 6~ ! — 1; this and other refinements are found in
the survey article of Montgomery®.

Gallagher” has devised a different approach to the large sieve; his
method gives A = N + 6~ ! which is sharper than Theorem 2 when
N is small. We do not need his results, but we describe his method as
it is very flexible, and can be used to advantage in other contexts.
If fhas a continuous first derivative in [0, 1] then

1 x 1
f(x) = fof(u) du + fouf’(u) du + f (u—1)f"(u)du

for 0 < x < 1, as we may verify by integrating by parts. Hence

f@< Llf(u)l + 31 f' (W)l du,

and in general

1 f() < L | f@)] + | f' W) du

for 0 < x < 1. After a change of variables the first inequality takes
the form

a+ %6

| f(@)] < f %If(u)l + 21/ (W) du.

a—40
We take f (o) = S(«)? and sum, to see that

a,+ 30

R R 1
> IS@)? < < 1S@)F + [ S(@)S'(@)]de
r=1 r=1 Ja,—490

® Bull. Amer. Math. Soc., 84, 547-567 (1978).
7 Mathematika, 14, 14-20 (1967).
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The intervals of integration are nonoverlapping and the integrand

1s nonnegative, so the above is
1 1
J |S(a) |? do + j | S(ex)S'(r) | do.
0

By Parseval’s identity the first integral is > 317 |a,|?; this is easily
verified by expanding and integrating term-by-term. By Cauchy’s

inequality, the second integral is
1 1/ m £3
< ( Jo 5@ doc) (f0|s'(a)|2 da) .

Again by Parseval’s identity, this is

( i lanlz) (MiNIana,,lz)

M+1 M+1

Without loss of generality we may suppose that M = —[3(N + 1)]
sothat|n] <iNfor M + 1 < n < M + N. Then the above is

M+N

<=aN ) la,l?
M+1

and we have the large sieve with A = 61 + nN.
In our applications of the large sieve we shall take the points «, to

be the Farey fractions a/q, (a,q) = 1,q < Q.If a/q and d'/q’ are two
distinct such fractions, then

/

aq'—a’qH>i>_1_.

a_a
q q aq | 99 " 0%’
hence we can apply the large sieve with 6 = Q™2 to obtain the
inequality
q a M+N
@®) L X S(~) < (N +30° ¥ |a, ™.
9<Q q M+1

a=1
(a,9)=1

We now use the above result to formulate the large sieve in the

manner of Rényi. Let 4" be a set of Z integers in the interval M + 1 <
n<M+ N, and let Z(q, h) denote the number of these integers

wtﬁch are congruent to 4 (mod q). Clearly

Y Z(g. h)=Z
h=1
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so that the average of Z(q, h) is Z/q. Rényi considered the mean
square error, i.e., the “variance”

q yA 2
Vg = ). (Z(q, h) — —) :

r=1 q
From the large sieve we find that the numbers V(p) are on average
small; we find that
®) > pV(p) < (N + 30%)Z.

p<Q
To see this we let a, be the characteristic function of the set A", so
that
S(a) = ). e(nw).

net

Then

> |s

a=1

@) =22 2

The innermost sum is =g or 0, according as m = n (mod q) or not;
hence the above is

qy ZI=QZZ(q,h)2

meA ne
m = n(mod)q

Thus when we expand the square in ¥(q), we see that

aV(@)=q Y Z(g, h? — 2Z hiZ(q, h + 22

|4

2
— Z2.

q
= 2
a=1

But S(0) = Z, so that

q—-1 a 2
V)= ) S(—) ,
a=1 q
and consequently by (8),
2
ZQpV(p) ZQ Zl (—) < (N +30%)Z.

Using (9) we can now present the large sieve as a sieve in the
elementary sense. Suppose that from the interval M + 1 <n < M
+ N we remove several arithmetic progressions, and we let. 4 ‘denote
the remaining set. For example, suppose that we have removed those
numbers congruent to h (mod ¢). Then Z(g, h) is not near Z/q as
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would normally be the case, but instead Z(q, h) = O. If this occurs
for many h (mod g), then V(q) is large, and if V(p) is large for many
primes p, then Z is small. More specifically, we have

THEOREM 3. Let A beaset of Z integers in the interval M + 1
<n <M+ N. Let 2 be a set of P prime numbers p, with p < Q for
allpe 2. Let 0 < © < 1, and suppose that Z(p, h) = 0 for at least tp
values of h (mod p), for all p e #. Then

N + 30?

7z <
- P

To see this we note that if p € 2, then V(p) > tp(Z/p)?, so that by
),

tPZ* < (N + 30%)Z.

This gives the desired bound.

To appreciate the strength of this bound, suppose that .4"is the
set of squares in the interval 1 <n < N, let Q = N?*, and let # be the
set of odd primes p < N%. Then Z(p, h) = 0 for quadratic non-
residues h (mod p), so that Z(p, h) = 0 for at least 3(p — 1) values
of h. Hence © = { and P ~ 2N*/log N, and we obtain the bound
Z < Ntlog N, which is not far from the truth, Z ~ N*.

To derive (9) from (8) we used only prime moduli. By taking more
care we can use composite moduli as well, and thus obtain a sharper
bound. This was first done by Bombieri and Davenport® in a special
case, and by Montgomery® in general; the result is that if A" is a
set of Z members in the interval M + 1 <n <M + N, and if
w(p) 1s the number of h (mod p) for which Z(p, h) = 0, then

2
Zs_ly_ﬂ’
L

where

L = 2 Cl)(p)
q;Q“ @ ﬂ, p—o(p)

The large sieve, in the form of inequality (8), is useful also in
estimating averages of character sums, as was first observed by
Rényil®. Gallagher!! found the following elegant formulation.

8 Abh. aus Zahlentheorie und Analysis zur Erinnerung an Edmund Landau, VEB
Deutsch. Verlag Wiss., Berlin, 1968, 11-22.

 J. London Math. Soc., 43, 93-98 (1968).

10 I7v. Akad. Nauk SSSR Ser. Mat., 12, 57-78 (1948); Amer. Math. Soc. Transl.,
(2) 19, 299-321 (1962).

Y Mathematika, 14, 14-20 (1967).
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THEOREM 4. Let x be a character (mod q), and put T(x) =
M+¥ a,x(n). Then for any Q > 1,

>, DXITP < (N +30% ). la,l*
9<Q ¢( ) M+1

2

(10) Z*l T(I* <

2

¢
. 2

Here Y * denotes a sum over all primitive characters y (mod g).
It suffices to show that
a
a=1 q
(@q9=1

for then the result follows from (8). To establish (10), we recall fron
§9 that if y is primitive (mod q) then

A = Z X(a)e( )

for all n. On multiplying both sides by a, and summing, we see that

T0) =5 (a)s( )

As |1(3)| = q? for primitive y, we find that
, 1 & fa\?
DT ==-2*| Y ©@s (—)
X q 4 a=1 q

The right-hand side is increased if we drop the condition that y be

primitive, and
2
) le(cos() - () (g) Hayb)
a
= ¢(q) azl (a)

X
@ q)=1
Thus we have (10), and the proof is complete.
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BOMBIERI'S THEOREM

Rényi used the large sieve to show that prime numbers are well
distributed in arithmetic progressions (mod g) for most g; his
rather complicated result allowed him to show that every large even
number is representable in the form

P+ DPiP2---Dss

where r is bounded by some absolute constant. The subsequent
refinements of Bombieri'! and A. I. Vinogradov? enable one to take
r = 3, and recently Chen® has added an ingenious new idea to
obtain r = 2.

We now develop Bombieri’s elegant estimate, without pursuing
its applications. For brevity we put

X

E(x; q,a) = ¥(x; q,a) — 5@

for (a, q) = 1, we let
E(x;q) = max [E(x;g,a)l,
(a,q‘;= 1
and
E*(x, g¢) = max E(y, q).

y<x
We prove that E*(x, q) is significantly smaller than x/¢(q) for most
g < x*(log x)~“.
THEOREM. Let A > 0 be fixed. Then
(1) 2. E*(x, 9) < x*Q(log x)°
q<Q

provided that x*(log x)™4 < Q < x*.

! Mathematika, 12, 201-225 (1965).

2 Izv. Akad. Nauk SSSR Ser. Mat., 29, 903-934 (1965); 30, 719-720 (1966).

3 Sci. Sinica, 16, 157-176 (1973); see also Chapter 11 of Halberstam and Richert,
Sieve Methods, Academic Press, London (1974).
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To assess the strength of this bound we note that there are at most
y/q + 1 integers n <y, n = a(mod q), and hence ¥(y;q, a) <
xq~log xforg < x,y < x,sothat E*(x, q) < xq~'log xforg < x.
Consequently the bound

Y. E*(x, q) < x(log x)*

a<Q

is trivial for Q < x. On the other hand, from (1) we see that if
Q = x¥(log x)"2#7¢, then

Y(x; g, a) = (1 + O((log x)™®))

¢()

for all reduced residue classes @ (mod g), and for all g < Q with the
possible exception of at most Q(log x) ~? values of g.
Halberstam has conjectured that

2, E*(x,q) < x(logx)™*

g<x 1—&
for any fixed positive 4 and ¢; such a strengthening of Bombieri’s
theorem would have important consequences.

Our proof of the theorem falls in two parts. First we use our esti-
mates of §22 to show that the theorem follows from the bound

@ X 5@ )Z*maXIlﬁ(v 0l < (x + x*Q + x*@?) (log @x)*,

9<Q y<x

which is valid for all x > 1, Q > 1. Then we establish (2) by com-
bining the large sieve with the method of §24.
We recall that

¥(y; g, a) = Y. XaW(, x).

¢()

From y(y, xo) we wish to subtract the main term y; accordingly we
put

, G, 0 if x # o>
Vi) = {t/f(y, %) =y ifx=xo-
Then

W(y; 4, a) — #— Y H&)V'G, 1),

and hence

|E(y; ¢, @)| < Z V', 0.



BOMBIERI’S THEOREM 163

As this estimate is independent of a, we see that E(y; q) satisfies the
same bound. If y (mod g) is induced by y,(mod g,) then ¥/'(y, y) and
V'(y, x1) are nearly equal, for

V', ) - v, 0 = ; 11(pM)log p

pla

< [ ]log
,,ZM log

< (log y) Y log p < (log gy)*.

rla

Hence

E(y, 9) < (log g)* + — Y ¥y, x4,

¢( )
and thus

EX(x, q) < (log gx)* + Y max|[y'(y, xy)I.

¢()x y<x

We now combine all contributions made by an individual primitive
character. A primitive character y (mod q) induces characters to
moduli which are multiples of g; hence the left-hand side of (1) is

1
<0( 2 ) ' A
<0og @7 + 3, T+ maxtvu I ¥ )

Here the first term is negligible. As for the second term, we note that

P(kq) = P(k)p(g), so that
1 1 1
L 30D = 5@ % 500

Moreover,

1 1 1
ksz@spl;lz<l+p_1+p(p—1)+“')

Hence the second term above is

<(log x) ¥ max [y'(y, x)I,

g<Q ¢( ) y<x
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and so it suffices to show that

3) y ;5(1—) * max|¥'(y, )| < x*Q(log x)*

9<Q ysx

for x*(log x) ™4 < Q < x*. We now consider large and small values
of g separately. From (2) we see that

1 ; ,
Y @ * max |Y(y, x)| < (% + x* + x7U>(log Ux)*.
U<g=<2U X y<x

By summing this over U = 2* for an appropriate range of k, we see
that

2 * max [Y(y, | < (Qi + x¥log Q + xi*Q)(lOg 0x)*.

Q1<g<Q d)(Q) X y<x

This is acceptable in (3) if @, = (log x)*. If x is a primitive character
(mod g), g < (log x)*, y < x, then by estimate (3) of §22,

V'(y, 1) < x(log x) ™4,

and hence the contribution of g < (log x)* in (3) is <x(log x)™4,
which is also acceptable. Thus the theorem follows from (2).

We now prove the estimate (2). In §24 we observed that our method
of estimating ), .y f(n)A(n) fails if f is multiplicative; in particular
we are not able to bound Y(x, x) by this method. Nevertheless we
can use the method to bound an average of |(x, x)| over various g,
by using the large sieve. More precisely, we use the large sieve in the
form of the inequality

M+N M+N
4) Yo ——=2* Y nx(n) <N +0% 3 la,l?
q<Q ¢( ) M+1 M+1
to show that
(5) Y 1 Z max a, b, x(mn)
g<Q ¢ X u 1<m<M 1<n<N

3 %
< (M + Q%N + Qz)%< 2 lamlz) ( Ibnlz) log 2MN;
1<n<N

1<m<M

we use this in the method of §24.
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To derive (5) we first note that by (4) and Cauchy’s inequality,

4 o M N
qSZQ ¢(q) X mgl nglamb" X(mn)
<<Z LZ* f a,.x(m) Z)%<Z B o ibX(n) 2>%
~ \d<0 ¢(q) x | m=1 " q4<Q &) T |a=1 "

M +/ N 3
(6) < (M + Q*)*(N + Qz)*< leamP) (Z Ibn|2> :

To introduce the condition mn < u we appeal to the Lemma of §17
(with ¢ tending to 0), from which we see that if T > 0, # > 0, and «
is real, then

J‘T it sin tﬁdt _ {713 + O(T_l(ﬁ _ |al)-1) if o] < B,

O(T™(lal = B)™H) if || > B.

-T

Putting f = log u, we find that

T .
j sin(t log u) i
nt

Y Y anbyx(mn) = _TA(t, 0B, x)

m=1n=1
4 mn {1
+0[T" ') |a,b,||log— ,
m,n u
where
M . N .
A D) = Y amxmm™, B, x) = ). byx(mn~"
m=1 n=1

Without loss of generality we may assume that u is of the form
u = k + 3, where k is an integer, 0 < k < MN. Then

>1>1
> — >
u MN’

lo mn
gu

and
sin(t log u) < min(1, |t| log 2MN),

so that the right-hand side above is

T (1 MN
< J‘ |A(t, x)B(t, x)im1n<l—t|, log 2MN) dt + = Y |apbal.
T m,n
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We now apply (6) to the first term, and Cauchy’s inequality to the
second, in order to see that the left-hand side of (5) is

M 3
<M + Q°)(N + QZ)*( leamlz)

N 1 (T 1
X (Z |b,,|2> J min< .
n=1 -T

g § 1) (£ )’

, log 2MN> dt

With T = (MN)Z, (5) now follows.

If 0? > x, then (2) follows from (5) on taking M = 1, a, = 1,
b, = A(n), N = x. We now assume that Q% < x, and prove (2)
using the identity of §24. We have

Y, 1) =81+ S, + 53+ 8,

where

(7 Sy = ZUA(n)X(n) <U,

® 5= = (2 unm) 3 00
9) S3 < (log y) ), max x(h)’
and

(10) Se= Y. Am) Y (z u(d))x(mk)-

U<m<y/V V<k<ym\d|k
dsv
Here y depends on x, y < x, but we shall choose U and V later as
functions of Q and x only.
To treat S, we first note that by (5),

Y - Y% max 2. Am) Y (Z /l(d))x(mk)\
a<Q ¢( ) y<x 1&1<ms;g‘; V<k<ym ddll;/
x + /2M 3 %
<(Q* + M)*(Q2 +M) (ZA(m)z) ( Y d(k)z) log x
M k<x/M

(11) <(0%x* + OxM~* 4+ Ox*M? + x)(log x)3.
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Here we have used the elementary estimates for Y A(m)*> and
Y d(k)*> which we proved in §24. We sum (11) over M = 2* for
1U < 2¥ < x/V, and thus find that

1) % L ISl

< (0%x* + OxU % 4+ OxV~* + x)(log x)*.

To treat S, we consider two ranges of ¢, by writing

5= L =Y+ Y =8+5

t<UV t<U U<t<UV

We deal with S exactly as we did with S,, and we find that

13 3 gL maxisy

< (Q%* + OxU* + Ox*U*V? + x)(log x)2.
On the other hand,

<(log )Y

t<U

Y x|,

r<yjt

and by the Polya-Vinogradov inequality of §23 we see that
§3 < ¢*U(log qU)?

uniformly for y < x. However, this applies only when g > 1; for
q = 1 we have the trivial bound

S, < x(log xU)2.

On combining these estimates we find that

(14) Y Y * max|S,| < (Q*U + x)(log Ux)>.
g<Q d)( ) y<x
We treat S5 as we did S, and find that
(15) Y -2 % max|S,| <(QV + x)(log Vx)2.
q<Q ¢(q) X y<x

On combining estimates (7), (12)-(15), we see that the left-hand
side of (2) 1s
<0 + x4+ OxU 2 4+ OxV ™t + Utrigx?
+ QU + Q%V)(log xUV)*.

If we allow U and V to vary in such a way that the product UV is
fixed, we see that the above is minimized by taking U = V. If
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x* < Q < x%, then the terms involving U are minimized by taking
U = x*Q ™!, and then their contribution is

<03t < Q%%

If 1 < Q < x7, then the terms involving U are minimized by taking
U = x*, and then their contribution is <x*Q. Hence we have (2),
and the proof is complete.

We have followed here Vaughan’s proof* of Bombieri’s theorem,
which differs significantly from the approach used previously by
Rényi and Bombieri. They used the large sieve to estimate the
number of zeros of L functions in various rectangles, and then they
derived an estimate corresponding to (2) by means of the explicit
formulae of §19. Let N(o, T, y) denote the number of zeros p of
L(s, y) in the rectangle 6 < B < 1, |y| < T. Bombieri® proved that

Z Z*N(a’ T, X) < T(QZ + QT)4(1—O')/(3—20')(10g QT)IO;

4<Q x
this was subsequently improved by Montgomery® (see also Bom-
bieri’). Gallagher® proved Bombieri’s theorem without discussing
zeros, by applying the Mellin transform to the identity

L L
——=——(1-LG)?*-2L 'LG>.
I I ( G) L'G+ LLG
Vaughan® found that it was more efficient to use the identity
LI LI
(16) —Z=F—LFG——L’G+(—Z—F)(I—LG);

he showed that

Y L S* max|y(y, n)| < (Q%xF + QF x* + x)(log 0x)*.
q<Q ¢(q) X y<x

Then Vaughan discovered that the identity (16) could be used to

provide a new form of Vinogradov’s method; this permitted us to
derive the sharp estimate (2) by essentially elementary means.

* To appear in the Turan memorial volume of Acta Arithmetica,37,111-115 (1980).

° Mathematika, 12, 201-225 (1965).

¢ Topics in Multiplicative Number Theory, Springer-Verlag, Berlin (1971) Chapter
12.

" Le grand crible dans la théorie analytique des nombres, Astérisque No. 18, Soc.
Math. France, Paris, 1974.

8 Mathematika, 15, 1-6 (1968).

® J. London Math. Soc., (2) 10, 153-162 (1975).
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AN AVERAGE RESULT

We now consider the mean square error in the prime number
theorem for arithmetic progressions. Work in this direction was
initiated by Barban', and by Davenport and Halberstam?. Their
results were sharpened by Gallagher?, who showed that

6)) Y i (l//(x q,a) — e )>2 < xQ log x

g<Q a=1
@q=1
for x(log x)™4 < Q < x; here A > 0 is fixed. This estimate is best
possible, for Montgomery* has shown that the left-hand side is
~Qx log x for Q in the stated range. Moreover, Hooley> has shown
that (1) can be combined with some of Montgomery’s ideas to give,
in a simple way, a very precise asymptotic estimate.

The estimate (1) differs from Bombieri’s theorem of §28 in that we
have a much longer range of ¢, and we consider a mean over residue
classes instead of the maximum. We again use the large sieve, but
now the proof is simpler than in the case of Bombieri’s theorem. In
fact, by the large sieve in the form of Theorem 4 of §27, with a, =
A(n), we have

2 . DX W0 0P < (x + Q%)x log x,
<0 ¢( ) %
since X, <. A(n)*> < x log x. We now derive (1) from (2) in much the
same way that we derived (1) from (2) in the previous section. As in
that argument,

A3) W(x; g, a) — 2. Ha'(x, ).

x 1
@ ¢

! Dokl. Akad. Nauk UzSSR, 1964, No. 5, 5-7.

2 Michigan Math. J., 13, 485-489 (1966); 15, 505 (1968).
3 Mathematika, 14, 14-20 (1967).

4 Michigan Math. J., 17, 33-39 (1970).

5 J. Reine Angew. Math., 274275, 206-223 (1975).
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We now form the square of the modulus of both sides, and sum overa.
We expand the right-hand side and take the sum over « inside, to
see that

q

| 2 1@ Cx, 0)* = (g) LIY'Cx, 0l

(a?;)il
since
q o@) ifx; = x5
Y. X1(@iz(a) = { )
(a,q=)i1 0 if x4 # x2-
Thus from (3),
Z ("’(" 29~ 5 )) 5 SV 0P
(a,q)=1

As in the previous section, if y is induced by y,, then
V'(x, 1) = ¥'(x, x1) + O((log gx)?).
Hence

q

a; (‘//(X q,a) — m) < (log gx)* +

(@, 9=1

e )le/f(x 11"

Here the first term on the right is negligible, so that to prove (1) it
suffices to show that

DI I
q;mb( )leﬁ(x x| < xQ log x.

If x is primitive (mod q), then y induces characters to moduli which
are multiples of g; hence the left-hand side above is

2 XG0l X

1
4<Q x k<Q/q ¢(k4).

As in the previous section, the innermost sum is < ¢(q)~* 10g(2Q/q).
Hence it suffices to show that

1

3
() q<Q¢()

(log )Z*w/(x 01 < xQ log x
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for x(log x)~* < Q < x. We consider large and small q separately.
From (2) we see that

1 " 2

<(x U-t!+ Ux)(log x)(log 2—3—)

for 1 < U < Q. Summing over U = Q27% we find that
1
*Y(x, 01
Qs <Zq<Q ¢( ) ( ) z
< x?Q1 '(log x)* + Qx log x.

This suffices in (3), if x(log x)™* < Q < x and Q; = (log x)**'. By
estimate (3) of §22,

Y'(x, x) < x exp(—cy/log x)

for g < (log x)***; hence the contribution of g < Q, in (3) is

<Q,(log Q)x? exp(—=c./log x) < x*(log x)~* < Ox log x.
Thus we have established (3), and the proof is complete.
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REFERENCES TO OTHER WORK

The principal omission in these lectures has been the lack of any
account of work on irregularities of distributions, both of the primes
as a whole and of the primes in the various progressions to the same
modulus g.

As regards irregularities in the distribution of the primes as a
whole, the first point to be noted is that in this connection it is no
longer possible to make inferences from the behavior of ¥/(x) to that
of n(x). It was proved by E. Schmidt in 1903, by relatively elementary
arguments, that

Y(x) — x = Q. (x}),

where the notation means that there exist arbitrarily large values of
x for which

Y(x) — x > cx?,

where ¢ 1s some positive constant, and other arbitrarily large values
of x for which

Y(x) — x < — ext
But the analogous problem for n(x) — li x was much more difficult.
It had been conjectured, on numerical evidence, that n(x) < lix

for all large x. This was disproved by Littlewood in 1914 ; he showed,
in fact, that

x¥log log log x

(x)— hx=Q,

- log x
Littlewood’s proof' was divided into two cases, according as the
Riemann hypothesis is true or false, the former being the difficult
case. Owing to its indirect character, the proof did not make it

! See Ingham, Chap. 5, or Prachar, Chap. 7, §8.
172



REFERENCES TO OTHER WORK 173

possible to name a particular number x, such that n(x) > li x for
some x < X,. It was not until 1955 that such a number was found,
namely by Skewes?; his number was 10,(3), where 10,(x) = 10%,
10,(x) = 10'°'™ and so on.

Questions concerning the irregularity of distribution of the primes,
as between one residue class to the modulus g and another, have been
deeply studied in recent papers® on comparative prime number
theory, by Turan and Knapowski. It is impossible to give any useful
account of their work here, but one particular result may be men-
tioned as a sample. Suppose that, for each character y (mod ¢), the
function L(s, ) has no zero in the rectangle

O<o <, [t] < 0.

Then, if a, # a, (mod q), the difference
'MX; q, al) - 'MX .4, a2)

changes sign at least once in every interval

w<x< exp(2\/a-)),

provided w 1s greater than a certain explicit function of ¢ and .
Some of their results are independent of any such unproved hypo-
thesis. The work of Turdn and Knapowski is based in part on some
of the methods developed by Turan in his book Eine neue Methode in
der Analysis und deren Anwendungen (Budapest, 1953).

The problem of finding an upper bound for the least prime in a
given arithmetic progression has received a remarkably satisfactory
solution (considering its inherent difficulty) at the hands of Linnik.
He proved* that there exists an absolute constant C such that, if
(a,q) = 1, there is always a prime p = a(mod q) satisfying p < ¢°.
The proof is difficult.

A subject that has attracted attention, but concerning which the
known results leave much to be desired, is that of the behavior of
Pn+1 — Ps Where p, denotes the nth prime. As regards a universal
upper bound for this difference, the first result was found by Hoheisel,
who proved that there exists a constant a, less than 1, such that
Pu+1 — Pn = O(p}). The best result so far known is due to Ingham,’
who showed that this estimate holds for any a greater than 38/61.

2 Proc. London Math. Soc., (3)S, 48-69 (1955).

* The main series consists of eight papers in Acta Math. Hungaricae. 13(1962) and
14(1963), and a sequel of three papers in Acta Arithmetica 9, 10, 11 (1964 -1965),
together with a paper in J. Analyse Math., 14(1965).

4Sce Prachar, Chap. 10.

S Quarterly J. of Math., 8, 255-266 (1937).
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In both cases, what is actually proved is that

x

n(x + x%) — m(x) ~ as x — oo.

log x

In a crude sense one can say, in view of the prime number theorem,
that the average of p,., — p, is log p,. Erdos was the first to prove
that there are infinitely many n for which p,,, — p, is appreciably
greater than logp,, and Rankin® proved that there are infinitely
many n for which

(log?. pn) (]Og4 pn)
(logs p.)?

Pn+1 — Pn > c(logp,)

where log, x = loglog x and so on, and ¢ is a positive constant.
In the opposite direction, Bombieri and | proved recently’ that
there are infinitely many n for which

Prnv1r — Pn < (046) lOg Pn-

Of course, if the ““prime twins’’ conjecture is true, there are infinitely
many n for which p,,, — p, = 2.

There is a somewhat paradoxical situation in connection with the
limit points of the sequence ‘

Pn+1 — Pn
log p,

Erdos.and Ricci (independently) have shown that the set of limit
points has positive Lebesgue measure, and yet no number is known
for which it can be asserted that it belongs to the set.

For references to other work in multiplicative number theory,
one should consult, in the first place, the articles of Bohr and
Cramér, and of Hua.

©J. London Math. Soc., 13, 242-247 (1938).
" Proc. Royal Soc. (London), A, 293, 1-18 (1966).



INDEX

B

Baker 128

Barban 169

Bessel’s inequality 151

Boas 151

Bohr 174

Bombieri 134, 151, 159, 161, 168,
174

Bombieri’s theorem 134, 161—168

Burgess 137

C

Cassels 72

Character 2, 27-30
complex 32
exceptional real 95
primitive 35-42
principal 29
real 32

Chen 161

Class number formula 1, 43—53

Cramér 174

Cyclotomy 10, 17—-26

D

Davenport 72, 153, 159, 169, 174
Dedekind zeta function 53, 129
Deuring 127-128

Dirichlet 1-11, 13, 43-53, 57

E

Erdos 84, 174
Estermann

Euler 1

constant
integral

Discriminant
fundamental

40

40

13, 128

73
73

product formula 1
Explicit formula
for y(x) 60, 104—110

for Yi(x,

F

Xx)

115-120

Functional equation
for L functions 65—72

for a theta function 62—63

for the zeta function 59-62, 73

G

Gallagher

156, 159, 168, 169

Gamma function 61, 73
Gauss 7, 10, 54, 127

Gaussian period
Gaussian sum 7, 12—16, 50,

65—67
Gelfond

128

18

175



176

Generalized Riemann
hypothesis 124
Goldfeld 96
Gronwall 93
Grosswald 114

H

Hadamard 54, 60, 74, 84
Halberstam 153, 161, 162, 169
Hardy 60, 84, 145

Hasse 26

Heath—Brown 23

Hecke 127

Heegner 128

Heilbronn 72, 127, 129
Hoheisel 173

Hooley 169

Hua 174

Hurwitz 65

I

Ingham 73, 110, 173
Integral basis 40
Integral function, order of 74

J

Jacobi 43, 51, 62
Jensen’s formula 75

K

Knapowski 173

von Koch 113

Korobov 87, 113
Kronecker 37

Kummer’s problem 21-26

L
Lagrange 43
Landau 13, 34,4346, 48, 50—51,

54-56, 93
Large sieve 134, 151—160
Legendre 54
duplication formula 73
symbol 36

MULTIPLICATIVE NUMBER THEORY

Lehmer, E. 23
L function 31

zero-free region 88—96
Linfoot 127
Linnik 128, 133, 151, 173
Littlewood 87, 100, 145, 172

M

von Mangoldt 60, 97, 104

Mathews 26

Mertens 34, 56—58, 84

Montgomery 137, 156, 159, 168,
169

Mordell 127

P
Page 95, 123
Paley 137

Patterson 23
Pellian equation 10

Piltz 124

Poisson summation formula 13—15,
63 :

Pélya 135

Pélya— Vinogradov
inequality 135-—137

Prachar 34, 133

Prime number theorem 54,
111-114

for arithmetic progressions 115,

121-125, 132—-134

Q

Quadratic fields 40
Quadratic forms 41

R

Rankin 174
Rényi 134, 151, 157, 159, 168
Ricci 174
Richert 161
Riemann 59, 97
hypothesis 60
Rodosskii 133
Roth 151



INDEX

S

Schinzel 96

Schmidt, E. 172

Schur 135

Selberg, A. 60, 84, 156

Siegel 60, 96, 102, 126
theorem of 126—131

Skewes 173

Stark 128

Stirling’s formula 73

T

Tatuzawa 133
Tchebychev 55—56
Theta function 62

Titchmarsh 61, 72, 93, 100, 134

Turan 173

\Y

de la Vallée Poussin 32, 54, 60, 65,

84, 111, 113

Vaughan 137, 138, 168
Vinogradov, A. 1. 161

177

Vinogradov, I. M. 87, 113, 135,

138, 143, 145

W

Walfisz 87, 133
Watson 73

Weber 128
Weierstrass’ formula 73
Whittaker 73

Wright 84

Z

Zero, exceptional 119
Zeta function 1
Euler product formula

functional equation 59-62, 73

trivial zeros 59

zero-free region 84—87



TR L OE IR
#,FEF BT K




