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Preface

The present volume is the culmination of ten years’ work separately and joint-
ly. The idea of writing'this book began with a set of notes for a course given
by one of the authors in 1970-1971 at the Hebrew University. The notes
were refined serveral times and used as the basic content of courses given sub-
sequently by each of the authors at the State University of New York at
Stony Brook and the Hebrew University.

In this book we present the theory of Riemann surfaces and its many dif-
ferent facets. We begin from the most elementary aspects and try to bring the
reader up to the frontier of present-day research. We treat both open and
closed surfaces in this book, but our main empbhasis is on the compact case.
In fact, Chapters III, V, VI, and VII deal exclusively with compact surfaces.
Chapters I and IT are preparatory, and Chapter IV deals with uniformization.

All works on Riemann surfaces go back to the fundamental results of Rie-
mann, Jacobi, Abel, Weierstrass, etc. Our book is no exception. In addition
to our debt to these mathematicians of a previous era, the present work has
been influenced by many contemporary mathematicians.

At the outset we record our indebtedness to our teachers Lipman Bers and
Harry Ernest Rauch, who taught us a great deal of what we know about this
subject, and who along with Lars V. Ahlfors are responsible for the modern
rebirth of the theory of Riemann surfaces. Second, we record our gratitude
to our colleagues whose theorems we have freely written down without attri-
bution. In particular, some of the material in Chapter II is the work of
Henrik H. Martens, and some of the material in Chapters V and VI ultimately
goes back to Robert D. M. Accola and Joseph Lewittes.

We thank several colleagues who have read and criticized earlier versions
of the manuscript and made many helpful suggestions: Bernard Maskit,
Henry Laufer, Uri Srebro, Albert Marden, and Frederick P. Gardiner. The
errors in the final version are, however, due only to the authors. We also
thank the secretaries who typed the various versions: Carole Alberghine and
Estella Shivers.

August, 1979 H. M. FARKAS I KRA
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CHAPTER 0
An Overview

The theory of Riemann surfaces lies in the intersection of many important
areas of mathematics. Aside from being an important field of study in its
own right, it has long been a source of inspiration, intuition, and examples
for many branches of mathematics. These include complex manifolds, Lie
groups, algebraic number theory, harmonic analysis, abelian varieties, alge-
braic topology.

The development of the theory of Riemann surfaces consists of at least
three parts: a topological part, an algebraic part, and an analytic part. In
this chapter, we shall try to outline how Riemann surfaces appear quite
naturally in different guises, list some of the most important problems to
be treated in this book, and discuss the solutions.

As the title indicates, this chapter is a survey of results. Many of the
statements are major theorems. We have indicated at the end of most
paragraphs a reference to subsequent chapters where the theorem in question
is proven or a fuller discussion of the given topic may be found. For some
easily verifiable claims a (kind of) proof has been supplied. This chapter
has been written for the reader who wishes to get an idea of the scope of
the book before entering into details. It can be skipped, since it is independent
of the formal development of the material. This chapter is intended primarily
for the mathematician who knows other areas of mathematics and is inter-
ested in finding out what the theory of Riemann surfaces contains. The
graduate student who is familiar only with first year courses in algebra,
analysis (real and complex), and algebraic topology should probably skip
most of this chapter and periodically return to it.

We, of course, begin with a definition: A Riemann surface is a complex
1-dimensional connected (analytic) manifold.
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0.1. Topological Aspects, Uniformization,
and Fuchsian Groups

Given a connected topological manifold M (which in our case is a Riemann
surface), one can always construct a new manifold M known as the universal
covering manifold of M. The manifold M has the following properties:

1. There is a surjective local homeomorphism n:M — M.

2. The manifold M is simply connected; that is, the fundamental group of
M is trivial (n,(M) = {1}).

3. Every closed curve which is not homotopically trivial on M lifts to an
open curve on M, and the curve on M is uniquely determined by the

curve on M and the point lying over its initial point.

In fact one can say a lot more. If M* is any covering manifold of M, then
n,(M*) is isomorphic to a subgroup of n,(M). The covering manifolds of
M are in bijective correspondence with conjugacy classes of subgroups of
m;(M). In this setting, M corresponds to the trivial subgroup of =n;(M).
Furthermore, in the case that the subgroup N of n,(M) is normal, there is

a group G = m,(M)/N of fixed point free automorphisms of M* such that’

M*/G = M. Once again in the case of the universal covering manifold M,
G = n,(M). (1.2.4; IV.5.6)

If we now make the assumption that M is a Riemann surface, then it is
not hard to introduce a Riemann surface structure on any M* in such a
way that the map n:M* — M becomes a holomorphic mapping between
Riemann surfaces and G becomes a group of holomorphic self-mappings of
M* such that M*/G = M. (IV.5.5-1V.5.7)

It is at this point that some analysis has to intervene. It is necessary to
find all the simply connected Riemann surfaces. The result is both beautiful
and elegant. There are exactly three conformally (= complex analytically)
distinct simply connected Riemann surfaces. One of these is compact, it is
conformally equivalent to the sphere C U {c0}. The non-compact simply
connected Riemann surfaces are conformally equivalent to either the upper
half plane U or the entire plane C. (IV.4)

It thus follows from what we have said before that studying Riemann
surfaces is essentially the same as studying fixed point free discontinuous
groups of holomorphic self mappings of D, where D is either C U {0}, C,
or U. (IV.5.5)

The simplest case occurs when D = C U {w0}. Since every non-trivial
holmorphic self map of C U {20} has at least one fixed point, only the
sphere covers the sphere. (IV.5.3)

The holmorphic fixed point free self maps of C are z+» z + b, with
be C. An analysis of the various possibilities shows that a discontinuous
subgroup of this group is either trivial or cyclic on one or two generators.
The first case corresponds to M = C. The case of one generator corresponds
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to a cylinder which is conformally the same as a twice punctured sphere.
Finally, the case of two generators z — z + @, 2+ = + w, with w, /o, =1
and Im 7 > 0 (without loss of generality) corresponds to a torus. We consider
the case involving two generators. This is an extremely important example.
It motivates a lot of future developments. The group G is to consist of
mappings of the form

Z—2zZ+n+mr,

where 7 € C is fixed with Im t > 0, and m and n vary over the integers. (This
involves no loss of generality, because conjugating G in the automorphism
group of C does not change the complex structure.) If we consider the
closed parallelogram .# with vertices 0, 1, 1 + 7, and ras shownin F igure 0.1,
then we see that

1. no two points of the interior of .# are identified under G,

2. every point of C is identified to at least one point of .# (.# is closed), and

3. each interior point on the line a (respectively, b) is identified with a unique
point on the line &’ (respectively, b').

From these considerations, it follows rather easily that C/G is .# with the
points on the boundary identified or just a torus. (IV.6.4)

These tori already exhibit a very important phenomenon. Every 1€ C,
with Im 7 > 0, determines a unique torus and every torus is constructed as
above. Given two such points 7 and 7/, when do they determine the same
torus? This is the simplest illustration of the general problem of moduli of
Riemann surfaces. (IV.7.3; VIL.4)

The most interesting Riemann surfaces have the upper half plane as
universal covering space. The holomorphic self-mappings of U are z
(az + b)/(cz + d) with (a,b,c,d} € R and det[* ] > 0. We can normalize so
that ad — bc = 1. When we do this, the condition that the mapping be
fixed point free is that |a + d| > 2. It turns out that for subgroups of the
group of automorphisms of U, Aut U, the concepts of discontinuity and
discreteness agree. Hence the Riemann surfaces with universal covering
space U (and these are almost all the Riemann surfaces!) are precisely U/G
for discrete fixed point free subgroups G of Aut U. In this case, it turns out
that there exists a non-Euclidean (possibly with infinitely many sides and

; T d 1+7
b Z
Im z=0 .O 5 i
Rez=0
Figure 0.1
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possibly open) polygon contained in U and that U /G is obtained by certain
identifications on the boundary of the polygon. (IV.5 and IV.9)

We thus see that via the topological theory of covering spaces, the study
of Riemann surfaces is essentially the same as the study of fixed point free
discrete subgroups of Aut U, which is the canonical example of a Lie group,
SL2,RY/ +1.

It turns out that the Riemann surfaces U/G are quite different from those
with C as their holomorphic universal covering space. For example, a
(topological) torus cannot have U as its holomorphic universal covering
space. (111.6.3; I1L.6.4; IV.6)

Because we are mainly interested in analysis and because our objects of
study have low dimensions, we shall also consider branched (= ramified)
covering manifolds. The theory for this wider class of objects parallels the
development outlined above. (IV.9)

In order to obtain a clearer picture of what is going on let us return to the
situation mentioned previously where M = C and G is generated by z
z+ 1,z z 4 1, withte U. We see immediately that dz, since it is invariant
under G, is a holomorphic differential on the torus C/G. (Functions cannot
be integrated on Riemann surfaces. The search for objects to integrate
leads naturally to differential forms.) In fact, dz is the only holomorphic
differential on the torus, up to multiplication by constants. Hence, given
any point z € C there is a point P in the torus and a path ¢ from 0 to that
point P such that z is obtained by integrating dz from 0 to P along ¢. Now
this remark is trivial when the torus is viewed in the above way; however,
let us now take a different point of view.

0.2. Algebraic Functions

Let us return to the torus constructed in the previous section. The mero-
morphic functions on this torus are the elliptic (doubly periodic) functions
with periods 1, 7. The canonical example here is the Weierstrass p-function
with periods 1, 1:

P ==+ L t

z? mmzo,0 \(Z—n—m1)? (n+ mr)? )’
(nm)ez?

The g-function satisfies the differential equation

P =4p —e)lp ~ &,)(p —e)
The points ¢ can be identified as

1 T 1+1
el=@5, ez=@§, ey =g > )
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It is important to observe that g’ is again an elliptic function; hence a
meromorphic function on the torus. If we now write w= p’, z =g, we
obtain

w?l=4(z —e))(z — ex)(z — &3),

and we see that w is an algebraic function of z. The Riemann surface on
which wis a single valued meromorphic function is the two-sheeted branched
cover of the sphere branched over z=e;, j = 1,2, 3, and z = o0. Now it is
not difficult to show that on this surface dz/w is a holomorphic differential.
Once again, given any point z in the plane there is a point P on the surface
and a path ¢ from 20 to P such that z is the result of integrating the holo-
morphic differential dz/w from.co to P. That this is true follows at once by
letting z = (). So we are really once again back in the situation discussed
at the end of the previous section. This has, however, led us to another
way of constructing Riemann surfaces.

Consider an irreducible polynomial P(z,w) and with it the set S = {(z,w) €
C?; P(z,w) = O}. It is easy to show that most points of S are manifold points
and that after modifying the singular points and adding some points at
infinity, § is the Riemann surface on which w is an algebraic function of z;
and S can be represented as an n-sheeted branched cover of C U {0}, where
n is the degree of P as a polynomial in w. The branch points of S alluded to
above, and the points lying over infinity are the points which need to be
added to make S compact. (IV.11.4-IV.11.11)

In the case of the torus discussed above, we started with a compact
Riemann surface and found that the surface was the Riemann surface of an
algebraic function. The same result holds for any compact Riemann surface.
More precisely, given a compact Riemann surface (other than C U {o0})
there are functions w and z on the surface which satisfy an irreducible
polynomial P(z,w)=0. Hence every compact Riemann surface is the
Riemann surface of an algebraic function. Another way of saying the pre-
ceding is as follows: We saw in the case of the torus that the field of elliptic
functions completely determined the torus up to conformal equivalence.
If M is any compact Riemann surface and (M) is the field of meromorphic
functions on M we can ask whether the field has a strictly algebraic charac-
terization and whether the field determines M up to conformal equivalence.
Now if

f:M->N

is a conformal map between Riemann surfaces M and N, then

J*:H(N) > H (M)

ffo=9f, @eX(N),

is an isomorphism of 2 (N) into 2’ (M) which preserves constants, If M agd
N are conformally equivalent (that is, if the function f above, pas an an?Iytlc
inverse), then, of course, the fields o#(M) and J'(N) are isomorphic. If

defined by
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conversely, @: A4 (N) —» ¥ (M) is an isomorphism which preserves constants, |

then there is an f such that @9 = f*¢, and M can be recovered from H(M)
in a purely algebraic manner. The above remarks hold as well in the case
of non-compact surfaces. The compact case has the additional feature that
the field of meromorphic functions can be characterized as an algebraic
function field in one variable; that is, an algebraic extension of a transcen-
dental extension of C. (IV.11.10)

0.3. Abelian Varieties

Every torus is a compact abelian group. When we view the torus as C/G
yvhere G is the group generated by z+—z + 1, 2+ z + 7, addition of points
is clearly well-defined modulo m + nt with m, n € Z. What can we say about
other compact surfaces? The only two compact surfaces we have actually
seen are the sphere and the torus. The sphere is said to have genus zero
and the torus genus one. In general a compact surface is said to have genus

g, if its Euler characteristicis 2 — 2g. Examples of compact Riemann surfaces

of genus g are the surfaces of the algebraic functions

2g+2
w? = Hl(z—ej), e;# e forj#k
j=

We will show that on the above surfaces of genus g, the g differentials
dz/w, ...,z Ydz/w are linearly independent holomorphic differentials. In
.fact, on any compact surface M of genus g, dim #(M) = g, where X (M)
is the vector space of holomorphic differentials on M. F urthermore, the
rank of the first homology group (with integral coefficients) on such a sur-
{zt\cg is 2g..inet a,, h <> Gy, b{), ..., b, be a canonical homology basis on M.

is possible to choose a basis g,,. .., 13 =
(= Klr)onecker delta). o @ f 74D so that LJ =

In this case the matrix

1= (njk)’ i = J;, Px

is symmetric with positive definite imaginary part. It then follows that C?
factored by the group of translations of C? generated by the columns of
the matrix (1,IT) is a complex g-torus and a compact abelian group. Hence
we will see that each compact surface of genus g has associated with it a
compact abelian group. (I11.6)

In the case of g = 1, we saw that choosing a base point on the surface
and integrating the holomorphic differentials from the base point to a
variable point P on the surface gave an injective analytic map of the Riemann
surface onto the torus. In the case of g > 1 we have an injective map into
the torus by again choosing a base point on the surface and integrating the
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vector differential @ = (¢,,...,p,) from a fixed base point to a variable
point P. In this case the map cannot, of course, be surjective. If we want to
obtain a surjective map, we must map unordered g-tuples of points into the
torus by sending (P, ...,P,) into the sum of the images of the points P,.
This result is called the Jacobi inversion theorem. Two proofs of this theorem
will be found in this book; one of them using the theory of Riemann’s theta
function. (I11.6.6; V1.3.4)

A complex torus is called an abelian variety when the g x 2g matrix
(A,B), whose columns are the generators for the lattice defining the torus,
has associated with it a 2g x 2g rational skew symmetric matrix P with the

property that -~ .

-
(4,B)P (, B) =0

i(A,B)P(Zg—)

is positive definite. In this case one can demonstrate the existence of multi-
plicative holomorphic functions. These functions then embed the torus as
an algebraic variety in projective space. In our case the matrix P can always
be chosen as the intersection matrix of the cycles in the canonical homology
basis; that is, [ - ¢].

and

0.4. More Analytic Aspects

The most important tools in studying (compact) Riemann surfaces are the
meromorphic functions on them. All surfaces carry meromorphic functions.
(I1.5.3; IV.3.17)

What kind of singularities can a meromorphic function on a compact
surface have? The answer is supplied by the Riemann-Roch theorem.
(I1.4.8-11L4.11; IV.10)

We finish this introductory chapter with one last remark. Let M be a
compact Riemann surface. Assume that M is not the sphere nor a torus;
that is, a surface of genus g > 2. For each point P € M, we construct a se-
quence of positive integers ’

v1<v2<“‘<Vk<"',

as follows: v, appears in the list if and only if there exists a meromorphic
function on M which is regular (holomorphic) on M\{P} and has a pole
of order v, at P. Question: What do these sequences look like? Answer:
For all but finitely many points the sequence is

g+1’g+2,g+3,....
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The finite number of exceptions are the Weierstrass points; they carry a
lot of information about the surface M. One of the fascinating aspects of
the study of Riemann surfaces is the ability to obtain such precise information
on our objects. (IIL5)

We shall see how to use the existence of these Weierstrass points in order
to conclude that Aut M is always finite for g > 2. (V.1)

Another object of study which is extremely important is the Jacobian
yariety J(M). It, together with the theory of Riemann’s theta function, also
1s a source of much information concerning M. (IIL6; II1.8; II1.11; VI; ViI)

CHAPTER 1
Riemann Surfaces

In this chapter we define and give the simplest examples of Riemann surfaces.
We derive some basic properties of Riemann surfaces and of holomorphic
maps between compact surfaces. We assume the reader is familiar with the
elementary concepts in algebraic-topology and differential-geometry needed
for the study of Riemann surfaces. To establish notation, these concepts
are reviewed. The necessary surface topology is discussed. In later chapters
we will show how the complex structure can help obtain many of the needed
results about surface topology. The chapter ends with a development of
various integration formulae.

I.1. Definitions and Examples

We begin with a formal definition of a Riemann surface and give the simplest
examples: the complex plane C, the extended complex plane or Riemann
sphere € = C U {c0}, and finally any open connected subset of a Riemann
surface. We define what is meant by a holomorphic mapping between
Riemann surfaces and prove that if f is a holomorphic map from a Riemann
surface M to a Riemann surface N, with M compact, then f is either constant
or surjective. Further, in this case, f is a finite sheeted ramified covering map.

L1.1. A Riemann surface is a one-complex-dimensional connected com-
plex analytic manifold; that is, a two-real-dimensional connected manifold
M with a maximal set of charts {U, z,},. , on M (that is, the {U,}, 4 con-
stitute an open cover of M and

z,: U, -» C (L.LY)



10 I Riemann Surfaces

is a homeomorphism onto an open subset of the complex plane C) such that
the transition functions

Jop=z,025 zgU, n Up) = 24U, Up) (1.1.2)

are holomorphic whenever U, n U s # . Any set of charts (not necessarily
maximal) that cover M and satisfy condition (1.1.2) will be called a set of
analytic coordinate charts.

The above definition makes sense since the set of holomorphic functions
forms a pseudogroup under composition.

Classically, a compact Riemann surface is called closed; while a non-
compact surface is called open.

L1.2. Let M be a one-complex-dimensional connected manifoid together
with two sets of analytic coordinate charts Ay ={U,.2,} 504, and U, =
{Va:ws}ge 5- We introduce a pariial ordering on the set of analytic coordinate
charts by defining A, > U, if for each « € A, there exists a B € B such that

UscVy and z, = wyly,.

It now follows by Zorn’s lemma that an arbitrary set of analytic coordinate.
charts can be extended to a maximal set of analytic coordinate charts. Thus
to define a Riemann surface we need not specify a maximal set of analytic
coordinate charts, merely a cover by any set of analytic coordinate charts.

Remark. If M is a Riemann surface and {U.z} is a coordinate on M, then
for every open set ¥ < U and every function J which is holomorphic and
injective on z(V), {V, f o (zy)} is also a coordinate chart on M.

L1.3. Examples. The simplest example of an open Riemann surface is the

complex plane C. The single coordinate chart (C,id) defines the Riemann
surface structure on C.

Given any Riemann surface M, then a domain D (connected open subset)
on M is also a Riemann surface. The coordinate charts on D are obtained
by restricting the coordinate charts of M to D. Thus, every domain in C is
again a Riemann surface.

The one point compatification, C U {0}, of C (known as the extended
complex plane or Riemann sphere) is the simplest example of a closed (= com-
pact) Riemann surface. The charts we use are {U,,z;},., , with

U, =C
U, =(Q\{0}) u {0}
and
2=z zelU,
Zy(2) = 1/z, ze U,.
(Here and hereafter we continue to use the usual conventions involving
meromorphic functions; for example, 1/c0 = 0.) The two (non-trivial) tran-

i
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sition functions involved are

Lii€o} - €0}, k#j,kj=12
with

fiil2) = 1)z

I.1.4. Remark. Coordinate charts are also called local parameters, local
coordinates, and uniformizing variables. From now on we. shall use thege
four terms interchangeably. Furthermore, the local coordinate {U,z} will
often be identified with the mapping z (when its domain is clear or not mate-
rial). We can always choose U to be simply connected and f(U) a bounc!ed
domain in C. In this cgse U will'be called 2 parametric disc, coordinate disc,
or uniformizing disc.

L1.5. A continuous mapping
S M- N (1.5.1)

between Riemann surfaces is called holomorphic or analytic if for every
local coordinate {U.z} on M and every local coordinate {V,{} on N with
U n f~YV) # &, the mapping

Lofoz"tiz(Un fTHV)) = (V)

is holomorphic (as a mapping from C to C). The mappir}g S is called con-
Jormal if it is also one-to-one and onto. In this case (since holomorphic
mappings are open or map onto a point)

AN M
is also conformal.

A holomorphic mapping into C is called a holomorphic function. A hqlo-
morphic mapping into C U {0} is called a meromorphic function. The ring
(C-algebra) of holomorphic functions on M will be denoted by #(M); Fhe
field (C-algebra) of meromorphic functions on M, by J#(M). The mapping
S of (1.5.1) is called constant if f(M) is a point.

Theorem. Let M and N be Riemann surfaces with M compact. Let f-M — N
be a holomorphic mapping. Then { is either constant or surjective. (In the latter
case, N is also compact.) In particular, # (M) = C.

Proor. If f is not constant, then f(M) is open (because f is an open mapping)
and compact (because the continuous image of a compact set is compact).
Thus f(M) is a closed subset of N (since N is Hausdorff). Since M and N are
connected, f(M) = N. d

Remark. Since holomorphicity is a local concept, all the usual local properties
of holomorphic functions can be used. Thus, in addition to the openess
property of holomorphic mappings used above, we know (for example) that
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holomorphic mappings satisfy the maximum modulus principle. (The prin-
ciple can be used to give an alternate proof of the fact that there are no non-
constant holomorphic functions on compact surfaces.)

1.1.6. Consider a non-constant holomorphic mapping between Riemann
surfaces given by (1.5.1). Let P € M. Choose local coordinates Z on M van-
ishing at P and { on N vanishing at f(P). In terms of these local coordinates,

we can write
C = f(z) = Z akzky
k=n

n>0a,#0.

Thus, we also have (since a non-vanishing holomorphic function on a disc
has a logarithm) that ]
{ = THEY = ()Y,

where h is holomorphic and h(0) # 0. Note that Z— 3h(Z) is another local
coordinate vanishing at P, and in terms of this new coordinate the mapping
f is given by

{=2" (1.6.1)

We shall say that n (defined as above—this definition is clearly independent
of the local coordinates used) is the ramification number of fat P or that f takes
on the value f(P) n-times at P or f has multiplicity n at P. The number (n — 1)
will be called the branch number of f at P, in symbols b (P).

Proposition. Let f:M — N be a non-constant holomorphic mapping between
compact Riemann surfaces. There exists a positive integer m such that every
Q € N is assumed precisely m times on M by f—counting multiplicities; that is,
forallQeN,
Y P+ )=m
Pef~YQ)

Proor. For each integer n > 1, let

2..={Q6N; >

b P)+ 1) > n}.
Pe f-UQ)

The “normal form” of the mapping f given by (1.6.1) shows that X, is open
in N. We show next that it is closed. Let Q = lim,, , Q, with Q, € X,. Since
there are only finitely many points in N that are the images of ramification
points in M, we may assume that b (P) = 0 for all P ¢ f~!(Q,), each k. Thus
S 1(Q)) consists of > n distinct points. Let Py, . . ., Py, be n points in £ ~1(Q,).
Since M is compact, for each j, there is a subsequence of {P,;} that con-
verges to a limit P;, We may suppose that it is the entire sequence that
converges. The points P; need not, of course, be distinct. Clearly f(P,) = 0,
and since f(Py;) = Q,, it follows (even if the points P; are not distinct) that
Ypes-1o(bs(P)+ 1) = n. Thus each X, is either all of N or empty. Let
Qo e N be arbitrary and let m =) p. ;-19,(b;(P)+ 1). Then 0 < m < oo,
and since Qo € Z,,, Z,, = N. Since Qo ¢ X, 1, 2,4, must be empty. O

P

PO
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Definition. The number m above, will be called the degree of f (= deg f),
and we will also say that f is an m-sheeted cover of N by M (or that f hasm
sheets).

Remarks

1. If f is a non-constant meromorphic function on M, then (the theorem
asserts that) f has as many zeros as poles.

2. We have used the fact that (compact) Riemann surfaces are separable, in
order to conclude that it suffices to work with sequences rather than nets.
We will establish this in IV.5.

3. The above conside¥itions have established the fact that a single non-
constant meromorphic function completely determines the complex structure
of the Riemann surface. For if f € X' (M\C.and Pe M, and n — 1 = by(P),
then a local coordinate vanishing at P is given by

(f — S(P)Y™ if f(P) # oo,
and
fm if f(P) = oo.

I.1.7. Since an analytic function (on the plane) is smooth (C®), every
Riemann surface is a differentiable manifold. If {U,z} is a local coordinate
on the Riemann surface M, then x=Rez, y=1Imz (z=x +iy) yield
smooth local coordinates on U. In L3 we shall make use of the underlying
C®-structure of M.

Remark. Every surface (orientable topological two-real-dimensional mani-
fold with countable basis for the topology) admits a Riemann surface struc-
ture. We shall not prove (and not have any use for) this fact in this book.

1.2. Topology of Riemann Surfaces

Throughout this section M denotes an orientable two-real-dimensional
manifold.

We review the basic notions of surface topology to recall for the reader the
facts concerning the fundamental group of a manifold and the simplicial
homology groups. This leads us naturaily to the notion of covering manifold
and finally to the normal forms of compact orientable surfaces. Covering
manifolds lead us to the monodromy theorem, and the normal forms lead
us to the Euler—Poincaré formula. As one application of these ideas, we
establish the Riemann-Hurwitz relation.

1.2.1. We assume that the reader has been exposed to the general notions
of surface topology, in particular to the fundamental group and the simplicial
homology groups. We thus content ourselves with a brief review of these
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ideas. In this section the word curre on M will mean a continuous map c of
the closed interval I = [0,1] into M. The point (0) will be called the initial
point of the curve, and c(1) will be called the terminal or end point of the
curve. Furthermore since we shall be primarily interested in compact
Rfemann surfaces, we shall (in general) assume that the manifold is compact
triangulable, and orientable. (All Riemann surfaces are triangulable and’
orientable.)

1.2.2. n, (M) = Fundamental Group of M. If P, Q are two points of M and
¢y and ¢, are two curves on M with initial point P and terminal point Q, we
say that ¢, is homotopic to ¢, (¢, ~ ¢,) provided there is a continuous map
h:I x I — M with the properties h(t,0) = ci(t), h(t,1) = c,(1), h(O,u) = P and
h(Lu) = Q (for all t, u e I).

If P is now any point of M, we consider all closed curves on M which pass
thr.ough P. This is the same as all curves on M with initial and terminal
point P. We say that two such curves c,, ¢, are equivalent whenever they are
homotopic. The set of equivalence classes of closed curves through P forms a
group in the obvious manner. This group is called the Jundamental group of
M based at P. 1t is easy to see that the fundamental group based at P and

the fundamental group based at Q are canonically isomorphic as groups. .

The fundamental group of M, n,(M), is therefore defined to be the fundamental
group of M based at P, forany P e M.

Remark. It is easy to see that the fundamental groupis a topological invariant.

1.2.3. Homology Groups. In a triangulation of a manifold we call the tri-
angles .two—simplices, the edges one-simplices, and the vertices zero-simplices.
The orientation on the manifold induces an orientation on the triangles and
ed_ges. Further, the vertices {P,,P,,P5, . . .} can be used to label the edges and
triangles. Thus (PP, is the oriented edge from the vertex P, to P,
and (P,P,,Ps) is the oriented triangle bounded by the oriented edges’
CPuPy), (P3,P3d, (P3,P). We identify the triangle (P,,P, P;> with
.——<P3,P2,P1> and the edge (P,,P,> with —<{P3,P1). An n-chain (n = 0,1,2)
is a finite linear combination of n-simplices with integer coefficients. We
define an operator § from n-chains to n — I chains as follows: For n= 0,
we define d(P) = 0. For n =1, we define 0{P,P,y = (P,> — (P,). For
n= 2, wedefine 6{P,,P,,P3> = (P,,P;> — (P,P3) + (Py,P,). The preced-
ing defines & on an n-simplex and we extend the definition to n-chains by
linearity.

. It is clear that the set of n-chains forms a group under addition and that
0 is a group homomorphism of the group of n-chains to the group of (n — 1)-
chains. We denote the group of n-chains by C, (C, = {0} for n> 2). Let
Z, denote the kernel of §:C, — Cp-1. Furthermore, let B, denote the image
of C, 1 in C, under 6. Since 6% = 0, it is clear that B, is a subgroup of Z
and in fact since all groups in sight are abelian, a normal subgroup. It therg-’
fore follows that C,/Z, is isomorphic to B,_,. The group we are interested
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in is, however, H (M) = H, = Z, /B, and we call this group the ath simplicial
homology group (with integer coefficients). (By definition H, = {0} forn > 2))

Let us now denote by [z] the equivalence class in H, of z € Z,. We shall
say that [7;],j=1,..., B, are a basis for H, provided each element of H,
can be written as an integral linear combination of the [z;] and provided the
integral equation ) %z, a,[z;] = 0 implies «; = 0. In this case we shall call
the number f§, the nth-Betrti number of the triangulated manifold.

It is very easy to describe the groups H, and H,, and thus the numbers
Bo and B,. In fact it is apparent that 8, = 1, and that H, is isomorphic to the
integers. As far as H, is concerned, a little thought shows that there are
exactly two possibiliti'gs. If M is compact, then H, is isomorphic to the
integers and §, = 1. If M is not ¢ompact, then H, is trivial and 8, = 0.

The only non-trivial case to consider is H, and §,. We have seen in the
previous paragraph that H, and H, are independent of the triangulation.
The same is true for H; although this is not at all apparent. One way to see
this is to recall the fact that H, is isomorphic to the abelianized fundamental
group. We shall not prove this result here. Granting the resuit, however, and
using the normal forms for compact surfaces to be described in 1.2.5, it will
be easy to compute H,(M) and hence 8, for compact surfaces M.

1.2.4. Covering Manifolds. The manifold M* is said to be a (ramified) cover-
ing manifold of the manifold M provided there is a continuous surjective
map (called a (ramified) covering map) f:M* — M with the following prop-
erty: for each P* € M* there exist a local coordinate z* on M* vanishing at
P*, a local coordinate z on M vanishing at f(P), and an integer n > 0 such
that f is given by z = z*" in terms of these local coordinates. Here the integer
n depends only on the point P* ¢ M*. If n > 1, P* is called a branch point of
order n — 1 or a ramification point of order n. (Compare these definitions with
those in 1.1.6.) If n = 1, for all points P* € M* the cover is called smooth or
unramified.

ExaMPLE. Proposition 1.1.6 shows that every non-constant holomorphic
mapping between compact Riemann surfaces is a finite-sheeted (ramified)
covering map.

Continuing the general discussion, we call M* an unlimited covering mani-
fold of M provided that for every curve ¢ on M and every point P* with
J(P*) = ¢(0), there exists a curve ¢* on M* with initial point P* and f(c*) = c.
The curve c* will be called a lift of the curve c.

There is a close connection between n,(M) and the smooth unlimited
covering manifolds of M. If M* is a smooth unlimited covering manifold of
M, then n,(M*) is isomorphic to a subgroup of m,(M). Coversely, every
subgroup of n,(M) determines a smooth unlimited covering manifold M*
with n,(M*) isomorphic to the given subgroup. (Conjugate subgroups deter-
mine homeomorphic covers.)
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This is also a good place to recall the monodromy theorem which states:
Let M* be a smooth unlimited covering manifold of M and c,, ¢, two curves on
M which are homotopic. Let c*, c* be lifts of ¢y, ¢, with the same initial point.
Then c¥ is homotopic to c%. In particular, the curves ¢t and c% must have the
same end points.

If M* is a covering manifold of M with covering map f, then a homeo-
morphism h of M* onto itself with the property that fo h = f is called a
covering transformation of M*. The set of covering transformations forms
a group, which is called transitive provided that whenever JPY) = f(P¥)there
isa covering transformation h which maps Pf onto P%. For the smooth unlim-
ited case, the group of covering transformations is transitive if and only if
m,(M*) is isomorphic to a normal subgroup of n,(M) and in this case the
group of covering transformations is isomorphic to n,(M)/x (M*).

Let us now assume that M is a Riemann surface. Then the definition of
covering manifold shows that M* has a unique Riemann surface structure
on it which makes f a holomorphic map. Furthermore, the group of covering
transformations consists now of conformal seif maps of M. In the converse
direction things are not quite so simple. If M is a Riemann surface and G is a

group of conformal self maps of M, it is not necessarily the case that the orbit_

space M/G is even a manifold. However, if the group G operates discon-
tinuously on M, then M/G is a manifold and can be made into a Riemann
surface such that the natural map f: M — MG is an analytic map of Riemann
surfaces. More details about these ideas will be found in IV.5 and IV.9.

1.2.5. Normal Forms of Compact Orientable Surfaces, Any triangulation of
a compact manifold is necessarily finite. Using such a triangulation we can
proceed to simplify the topological model of the manifold. We can map
Successively each triangle in the triangulation onto a Euclidean triangle and
by auxilliary topological mappings obtain at each stage k, a regular (k + 2)-
gon, k > 2. This (k + 2)-gon has a certain orientation on its boundary which
is induced by the orientation on the triangles of the triangulation. When we
are finished with this process we have an {n + 2)-gon (n being the number of
triangles in the triangulation). Since each side of this polygon is identified
with precisely one other side, the polygon has an even number of sides. This
polygon with the appropriate identifications gives us a topological model
of the manifold M.

In order to obtain the normal form we proceed as follows: We start with
an edge of the triangulation which corresponds to two sides of the polygon.
The edge can be denoted by (P,Q>, where both P and Q correspond to two
vertices of the polygon. In traversing the boundary of the polygon we cross
the edge (P,Q) once and the edge {Q,P> once. We will label one of these
edges by c and the other by ¢!, In this way we can associate a letter with
each side of the polygon, and call the word obtained by writing the letters in
the order of traversing the boundary the symbol of the polygon. The re-
mainder of the game is devoted to simplifying the symbol of the polygon.
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If the sides @ and a™! follow one another in the polygon, and there is at
least one other side then you can remove both sides from the symbol and the
new symbol still is the symbol of a polygon which is a topological model
for M. .

The polygon’s sides have been labeled and so l.lave the vertices .Of the
polygon. We now wish to transform the polygon into a polygon Ymh. all
vertices identified. This is done by cutting up the polygon and pasting in a
fairly straight forward fashion. To illustrate, suppose we have a vertex Q not
identified with a vertex P, as in Figure L.1. Make a cut joining R to P and
paste back along b to obtain Figure 1.2. We note that the number of-Q
vertices has been decrgased by one. Continuing, we end up after a finite
number of steps with a triangulation with all the vertices identified.

Figure L1 Figure 1.2

The final simplification we need involves the notion of l.inked edges. We
say that a pair of edges a and b are linked if they appear in the symbol of
the polygon in the order a-+-b---a~!---b~1--- It is easy to see that
each edge of the polygon is necessarily linked with some other edge (unless
we are in the situation that there are only two sides in the polygon). 'W‘e
can then transform the polygon, by a cutting and pasting argument simi-
lar to the one used above so that the linked pair is brought together as
aba™'b~'. We finally obtain the normal form of the surface. Tl}e normal
form of a compact orientable surface is a polygon whose symbol is aa™! or
aibyattby -+ -ab,a;'b; L. In the former case we say thz‘at the genus of M
is zero and in the latter case we say that the genus is g. It is clear that g is a
complete topological invariant for compact orientable surfaces. .

From the normal form we can, of course, reconstruct the original surface
by a “pasting” process. Figures 1.3 and L4 explain the procedur.e.

In particular, a surface of genus g is topologically a sphere w‘xth g handles.
A surface of genus 0 is topologically (also analytically—but this will not be

a;’ by

Gy
b:‘ b‘ b-: ’ b1

[N \

Figure 1.3. Surface of genus 1.
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Figure 14.  Surface of genus 2,

seen until I11.4 or IV.4) a sphere. A surface of genus 1 is topologically a rorus.
There are many complex tori. (In fact, as will be seen in IV.6, a one-complex-
parameter family of tori.)

Using the common vertex of the normal form as a base point for the
fundamental group, one shows that =,(M) is generated by the 2g closed
loopsa,,...,a,b,,..., b subject to the single relation Il_ aba; b1 = 1.
Hence H,(M) is the free group on the generators [g i [bli=1,..., g.In

J
particular for a compact surface of genus g, H (M) >~ Z* and g, = 24.

Remark, The “pasting” process is, of course, not uniquely determined by the

symbol. For example, in the case of genus 1, after joining side a; ! to a,;, we
may twist the resulting cylinder by 2% radians before identifying by ! with b,.
The “twisted” surface is, of course, homeomorphic to the “untwisted” one.
The homeomorphism is known as a Dehn twist.

1.2.6. Euler-Poincaré. The Euler-Poincaré characteristic x of compact
surfaces of genus g is given byyx=ap—oa, + %5, where a, is the number of k
simplices in the triangulation, A triangulation of the normal form gives
X = 2 — 2g. The Euler-Poincaré characteristic is also given by Bo — By + B,,
where B, is the kth Betti number. Thus the computations of the Betti numbers
in1.2.4 and 1.2.6 yield an alternate verification of the value of X

L.2.7. As an application of the topological invariance of the Euler— Poincaré
characteristic, we establish a beautiful formula relating various topological
indices connected with a holomorphic mappin g between compact surfaces.

Consider a non-constant holomorphic mapping between compact
Riemann surfaces given by (1.5.1). Assume that M is a compact Riemann
surface of genus g, N is a compact surface of genus y. Assume that fisof
degree n(that s, [~ (Q) has cardinality » for almost ajl Q € N). We define the
total branching number (recall definition preceding Proposition I.1.6) of

/ by
B= Z bf(P)-

PeM
Theorem (Riemann-Hurwitz Relation). We have

g=nly—1+1+Bp
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PrOOF. Let S = { f(x); x& M and b(x) > 0}. Since § is‘ a ﬁnite. set, we can
triangulate N so that every point of § is a vertex of the.tnang‘ulatl.on. .Assume
that this triangulation has F faces, E edges, and V vert{ces. Lift this triangula-
tion to M via the mapping f. The induced triangulation of M. has :'1F faces,
nEedges,and nV — Bvertices. We now compute the Euler—Poincaré charac-
teristic of each surface in two ways:

F-E+v=2-2
nF—nE+nV-B=2-2g

From the above we obtain
- " 1—g=n(l -y~ B 0

1.2.8. We record now (using the same notation as above) several immediate
consequences.

Corollary 1. The total branching number B is always even.

Corollary 2. Assume that f is unramified. Then

a.g=0=>n=1landy=0.
b. g =1 =y =1 (narbitrary).
c.g>l=g=yforn=1. N

g >7y>1 for n > 1(and n divides g — 1).

Corollary 3

a. Ifg=0,theny=0.
b. I;gl < g =79, then either n = 1 and (thus) B=0o0r g = 1 and (thus) B = 0.

1.3. Differential Forms

We assume that the reader is familiar with the theory of integration on a
differentiable manifold. We briefly review the basic facts (to fix notation),
and make use of the complex structure on the manifolds under consxderatlfm
to simplify and augment many differential-geometric concepts. The necessity
of introducing differential forms stems from the d§s1re to have an object
which we can integrate on the surface. The introduct.lon of l-fgnns allows us
to consider line integrals on the surface, while the introduction qf 2-forrps
allows us to consider surface integrals. Various operators on differential
forms are introduced, and in terms of these operators we define and charac-
terize different classes of differentials.

Remark. We shall use interchangeably the terms “form”, “differential”, and
“differential form”.
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L3.1. Let M be a Riemann surface. A O-form on M is a function on M. A

1-form ¢ on M is an ( ordered) assignment of two continuous functions f and
g to cach local coordinate z (=x + iy) on M such that

fdx +gdy (3.1.1)

is invariant under coordinate changes; thatis, if Zis another local coordinate
on M and the domain of 7 intersects non-trivially the domain of z, and if ¢
assigns the functions f, § to 2, then (using matrix notation)

ox dy

fo)_léx ax|{ fiz)

[g(aJ‘ éx dy [g(z(zn] (312
oy oy

on the intersection of the domains of z and 7. The 2 x 2 matrix appearing in
(3.1.2) is, of course, the Jacobian matrix of the mapping z — z.

A2-formQonM isan assignment of a continuous function ftoeachlocal
coordinate z such that

Sdxndy (3.1.3)-

is invariant under coordinate changes; that is, in terms of the local coordinate
% we have

f(3) = ¥ _a_.,(x__’_‘} I‘)
J®) = f(z2(2)) AT (3.1.4)

where d(x,y)/3(%,7) is the determinant of the Jacobian. Since we consider
only holomorphic coordinate changes (3.1.4) has the simpler form

fij 2
dz|’

7® = flz) (3.1.42)

I.I.i.Z. Mfmy times it is more convenient to use complex notation for
(dlﬁ'er_entlal) forms. Using the complex analytic coordinate z, a 1-form may
be written as

u(2) dz + v(z) d7, (3.2.1)
where
dz =dx + idy,
dz =dx — i dy, (322
and hence comparing with (3.1.1) we see that
S=u+v,
g =i(u—v).
Similarly, a 2-form can be written as

g(z)dz ndz.
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It follows from (3.2.2) that
dzadZ= =2idxAdy. (3.2.3)

1.3.3. Remark. To derive (3.2.3), we have made use of the “exterior” multi-
plication of forms. This multiplication satisfies the conditions: dx Adx =
0 =dy Ady, dx Ady = —dy Adx. The product of a k-form and an /-form
is a k+ 1 form provided k+ 1< 2 and is the zero form (still k + {) for

k+1>2
In view of the last remark, we let /\* denote the vector space of k-forms,

we see that \* is a mqdule over /\° and that A* = {0} for k > 3. Further
AN=NeN &N

is a graded anti-commutative algebra under the obvious multiplication of

forms.

1.3.4. A O-form can be “integrated” over O-chains; that is, over a finite
set of points. Thus, the “integral” of the function f over the 0-cycle

SnP, P,eMneZ

2nf(P,).
A 1-form  can be integrated over 1-chains (finite unions of paths). Thus,

if the piece-wise differentiable path c is contained in a single coordinate disc
z=x+1iy,c:] - M (I = unit interval [0,1]), and if v is given by (3.1.1), then

d dy
fo=1, {f(x(r),y(r)) T+ gLx(,)(0) Ei—} dt.

By the transition formula for w, (3.1.2), the above integral is independent
of choice of z, and by compactness the definition can be extended to arbitrary
piece-wise differentiable paths.

Similarly, a 2-form Q can be integrated over 2-chains, D. Again, restricting
to a single coordinate disc (and Q given by (3.1.3)),

Ie= [[, fexp) dx nay.

The integral is well defined and extends in an obvious way to arbitrary
2-chains.

It is also sometimes necessary to integrate a 2-form Q over a more general
domain D. If D has compact closure, there is no difficulty involved in extend-
ing the definition of the integral. For still more general domains D, one must

use partitions of unity.

is

Remark. We will see in IV.5 that evaluation of integrals over domains on an
arbitrary surface M can always be reduced to considering integrals over
plane domains.



22 1 Riemann Surfaces

'I.3.5. For C 1-fo.rms (that is, forms whose coefficients are C! functions), we
introduce the differential operator d. Define

df = f,dx + f,dy
for C* functions f. For the C! 1-form w given by (3.1.1) we have (by definition)
do = d(fdx) + d(g dy) = df Adx + dgndy
=(frdx + f,dy) ndx + (g, dx + g, dy) A dy
=(g, — ) dxady.
For a 2-form Q we, of course, have (again by definition)
dQ = 0.

The most important fact concerning this operator is contained in Stokes’
theorem. If w is a C! k-form (k = 0,1,2) and Dis a (1 + k)-chain, then

J;Dw=fbdw.

(Of course, the only non-trivial case is k = 1)
Note also that
d? =0,

whenever 42 is defined.
1.3.6. .Up to now we have made use only of the underlying C* structure of
the Riemann surface M—except, of course, for notational simplifications

provided by the.complex structure. Using complex analytic coordinates we
introduce two differential operators @ and & by setting for a C! function f,

¢f = f,dz and of = f,dz7;
and setting for a C' 1-form w = u dz + v dz,

Cw = Cundz + év A dz= v, dz A d7,

0w =Cundz + BvAdZ=u,d7 ndz = —uodzAd5
where ’ ’

L= %(fx -1 y)a
= %(fx + ly)
For 2-forms, the operators @ and @ are defined as the zero operator.

Recall. The equatioq Jz = O is equivalent to the Cauchy-Riemann equations
for Re f, Im f; thatis, f, = 0 if and only if f is holomorphic.

It is easy to check that the operators on forms we have defined satisfy
d=238+7.
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It is also easy to see that
F=00+c8=0"=0,
whenever these operators are defined.

1.3.7. In the previous paragraph the complex structure on M was stiil
not used in any essential way. We shall now make essential use of it to define
the operation of conjugation on smooth (C* or C?—as is necessary) differ-
ential forms.

We introduce the conjugation operator * as follows: For a 1-form w given

by (3.1.1), we define
~ -

s = —gde+ T dy. (3.7.1)

This is the most important case and the only one we shall need in the sequel.
To define the operator * on functions and 2-forms, we choose a non-vanishing
2-form A(z) dx A dy on the surface. (Existence of such a canonical 2-form will
follow trivially from IV.8.) If fis a function, we set

* = f(2)(A(z) dz A dy).
For a 2-form Q, we set
*Q = Q/i(z) dx Ady.
It is clear that foreach k=0, 1, 2,
* :/\k — /\Z—k’
and ** = (—1)*. Further, if @ is given in complex notation by (3.2.1), then
*w = —iu(z) dz + iv(z) dz. (3.7.2)

The operation * defined on 1-forms w has the following geometric inter-
pertation. If f is a C! function and z(s) = x(s) + iy(s)is the equation of a curve
parametrized by arc-length, then the differential df has the geometric
interpretation of being (8f/8t) ds, where df/d7 is the directional derivative of
£ in the direction of the tangent to the curve z. In this context, *df has the
geometric interpertation of being (¢f/n) ds, where &f/én is the directional
derivative of f in the direction of the normal to the curve z. (Note that
ds = |dz| in this discussion.)

Remark. The reader should check that the above definitions (for example
(3.7.1)) are ail well defined in the sense that * is indeed a 1-form (that is,
it transforms properly under change of local coordinates).

1.3.8. Our principal interest will be in 1-forms. Henceforth all differential
forms are assumed to be 1-forms unless otherwise specified. A form w is called
exact if w = df for some C? function f on M; w is called co-exact if *w is
exact (if and only if w = *df for some C? function f'). We say that w is closed
provided it is C! and dw = 0; we say w is co-closed provided *w is closed.
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Note that every exact (co-exact) differential is closed (co-closed). Whereas
on a simply connected domain, closed (co-closed) differentials are exact
(co-exact). Hence, closed (co-closed) differentials are locally exact {co-exact).
If f is a C? function on M, we define the Laplacian of f, Af in local coor-
dinates by

Af = (fux + f,y) dx A dy.

The function f is calied harmonic provided 4f = 0. A 1-form  is harmonic
provided it is locally given by df with f a harmonic function.

Remarks
1. Itis easy to compute that for every C? function f,
~2i 00f = Af = d*df. (3.8.1)

2. It must, of course, be verified that the Laplacian operator 4 is well defined.
(Here, again, the fact that we are dealing with Riemann surfaces, and not
Just a differentiable surface, is crucial.)

3. The concept of harmonic function is, of course, a local one. Thus we know

that locally every real-valued harmonic function is the real part of a.

holomorphic function. Further, real valued harmonic functions satisfy
the maximum and minimum principle (that is, a non-constant real-valued
harmonic function does not achieve a maximum nor a minimum at any
interior point).

Proposition. A differential «» is harmonic if and only if it is closed and co-closed.

PROOF. A harmonic differential is closed (since d2 = 0). It is co-closed by
(3.8.1). Conversely, if w is closed, then locally w = df with f a C? function.
Since w is co-closed, d(*df) = 0. Thus, f is harmonic. O

At this point observe that we have a pairing between the homology group
H, and the group of closed n-forms of class C!. This pairing is interesting
for n = 1, and we describe it only in this case. If cis a 1-cycle and w is a closed
1-form of class C*, define {c,w) = [, . The homology group H, is defined by
Z,/B,, where Z, is the kernel of & and B, is the image of the 2-chains in the
one chains. The operator d on functions of class C? and differentials of class
C! gives rise also to subgroups of the group of closed 1-forms. In particular
the exact differentials are precisely the image of C? functions (0-forms) in
the group of 1-forms, and the closed forms themselves are the kernel of d
operating on C! I-forms. Hence the quotient of closed I-forms by exact
1-forms is a group and we have for compact surfaces a nonsingular pairing
between H, and this quotient group. We shall soon see that this quotient
group is isomorphic to the space of harmonic differentials. (See 11.3.6.)

1.3.9. A 1-form w is called holomorphic provided that locaily @ = df with
f holomorphic.
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Proposition. a. If u is a harmonic function on M, then du is a holomorphic

differential. .
b. A differential @ = udz + vd7 is holomorphic if and only if v =0 and u is
a holomorphic function (of the local coordinate).

PROOF. If u is harmonic, then dou = 0. Since du = u,dz, we see that‘ u, ‘is
holomorphic (u;; = 0) and thus it suffices to prove only part (b), which is,
of course, trivial (since we can integrate power series term by term). |

1.3.10. Assume @ = udz + vdz is a C' differential. Then (using d = 9 + 0)
we see.that >~ . -

dw = (u; — v,)dZ A dz,
and
d*w = —i(u; + v,)dz A dz.

Thus, we see that @ is harmonic if and only if 4 and 7 are holomorphic.
Hence, we see that if w is harmonic, there are unique holomorphic differentials

w; and w, such that
= G)l + (1_)2.

L3.11. Theorem, A differential form w is holomorphic if and only if 0 = x + i*a
Jor some harmonic differential a.
PRrOOF. Assume that x is harmonic. Then
& =qw; + D,
with w;{(j = 1,2) holomorphic. Thus
*a = —iw, + i@,.

Thus,
o+ i*y = 2w,

is holomorphic. Conversely, if w is holomorphic, then w and @ are harmonic
and so is

_0-0
o= >
Further
. —iw — i@
=T
Thus
W =q+ i*o d

Corollary. A differential w is holomorphic if and only if it is closed and
*0 = —io.
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PRrOOF. The forward implication has already been verified (every holomorphic
differential is harmonic). For the reverse, note that if o is given by (3.2.1)
and *w = —iw, then (3.7.2) implies that w = udz. Since do =0, u is
holomorphic. O

I.4. Integration Formulae

In this section we gather several useful consequences of Stokes’ theorem.,

L4.1. Theorem (Integration by Parts). Let D be a relatively compact region
on a Riemann surface M with piecewise differentiable boundary. Let f be a
C! function and & a C* 1-form on a neighborhood of the closure of D. Then

st = [[, fde = [[, wndr. @.11)

PROOF. Apply Stokes’ theorem to the 1-form Jw and observe that d( fuw) =
Sdw+df Aw. O

Corollary 1. If w is a closed (in particular, holomorphic) 1-form, then (under

the hypothesis of the theorem)

ww=0

Proor. Take f to be the constant function with value 1. O

Corollary 2. Let f be C! function and w a C* 1-form on the Riemann surface
M. If either f or @ has compact support, then

fdw — wAdf =0. 4.1.2)
[frdo- [,

Prookr. If M is not compact, then take D to be compact and have nice bound-
ary so that either f or w vanishes on 8D and use (4.1.1). If M is compact
cover M by a finite number of disjoint triangles 4 pJ=1,...,n Over each
triangle (4.1.1) is valid. We obtain (4.1.2) by noting that

Z M»fw = 0’
j=1¥%

since each edge appears in exactly 2 triangles with opposite orientation. []

1.4.2. We fix a region D on M. By a measurable 1-form w on D, we mean
a l-form (given in local coordinates by)

w=udz + vdz,

where u and v are measurable functions of the local coordinates. As usual,
we agree to identify two forms if they coincide almost everywhere (sets of
Lebesgue measure zero are well defined on M ). We denote by L*(D) the
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complex Hilbert space of 1-forms w with
loll = [, 0 r*® < . (42.1)
Note that in local coordinates
WOA*@ = i(uli + 1D)dz A dT
=2(|uf? + |o])dx A dy.
We also define the inner product of w,, w, € L*D) by
= *@,. 422
. - (wx,wz?-o ‘U;,. (Uj AT,y ( )
Using obvious notational conventions, we see that
Wy A Y@y = (uydz + v,d7) A (—iuydz + iv,dT) = i(uyT, + v,Ta)dz A dF,
and thus

((1)1,0)2)1) = J:[D wy A *(!.52 =i ff(ulﬁz -+ L‘IEZ) dZ/\ d?

= iff(ﬂluz + T0,)dz AdZ = ffb Wy A*@,

= (3,01)p,

as is required for a Hilbert space inner product. Further,

(*w1,*w,)p = ffb ¥ A —@,

= ffD (UZ A *51 = (w27wl)D = (wlwa)D‘

Remark. Whenever there can be no confusion, the domain D will be.dropped
from the symbois for the norm (4.2.1) and inner products (4.2.2) in L*(D).

1.4.3. Proposition. Let D be a relatively compact region on M .with pigcewise
differentiable boundary. Let ¢ be a C* function and « a C* differential on a
neighborhood of the closure of D. Then

(dp,*a) = f fD pdi— | _om 43.1)
ProoF. By Stokes’ theorem

3D ¢x = ffb (o) = ffb ¢ da + ffl’d(p ne

= f fD o di — (dp,*). a

L.4.4. Proposition. If ¢ and y are C* functions on a neighborhood of the
closure of D, then

dodh) =~ [[, ¢ 37 + [, o 7. (44.0
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PRroOF. By Stokes’ theorem

Lo @ *dj = H,, d(p*d)
- [ doncai + [f, 07
= [do.dp) + [[, 0 47. O
Corollary. We hae
[ wdy -y a0)= [ (o*ay - yrdg). (442)

PROOF. Rewrite (4.4.1) with § replacing . Rewrite the resulting expression
by interchanging ¢ and . Subtract one from the other, and use the fact

that (dgy,df) = (df:dp). O
L.4.5. Proposition. We have
(o dy) = - [ odf.

PROOF. The notation is of Proposition 1.4.4. Apply Proposition 1.4.3 with

o = dij (recall that 4° = Q). O

L4.6. We apply now the previous results (D is as defined in Proposition
1.4.3) to analytic differentials.

Proposition. If ¢ is a C! function and w is an analytic differential on a neigh-
borhood of the closure of D, then

o cp&i:ffbdcp/\d‘).

PRrOOF. Use (4.3.1) with a = o and observe that @ is closed. Od
Corollary. If f and g are holomorphic functions on a neighborhood of the closure
D, then

ot @@=~ aar.

ProoF. By the proposition

Jt = [[,arn7G.

Jw34 = [[, @ nar. O

L.4.7. Proposition. If f is a holomorphic function and w is a holomorphic dif-
Jerential on a neighborhood of the closure of D, then

‘UDdea_) =2 LD(Ref)&j =2 J;D(Im Na.

Also,
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PRroOOF. Observe that
o (Re f—ilm f)d = me =0

by Cauchy’s theorem (or because d( fw) = O since fwisa holomorphic form).
Thus

2LDRefa—)=LD(Ref+ilmf)a-)=ﬂpdfm.
Thus, also

2 LD Re(f)& = :_‘ﬂbdf/\a“). 0

~



CHAPTER II
Existence Theorems

One way to study Riemann surfaces is through the meromorphic functions
on them. Our first task is to show that every Riemann surface carries non-
constant meromorphic functions. We do so by constructing certain harmonic
differentials (with singularities). From the existence of harmonic differen-
t_ials, it is trivial to construct meromorphic differentials, A ratio of two
linearly independent meromorphic differentials produces a non-constant
meromorphic function.

Our basic approach is through the Hilbert space L3(M) introduced in
L4.2. Tt is the key to the existence theorem for harmonic differentials with
and without singularities. This method should be contrasted with the
equally powerful method to be developed in Chapter 1V.

I1.1. Hilbert Space Theory—A Quick Review

W'e need only the first fundamental theorem about Hilbert space: the
existence of projections onto arbitrary closed subspaces.

ILL1. Let H be a (complex) Hilbert space with inner product (-,-) and
norm ||-||. If F is any subspace of H, then the orthogonal complement of F in

k]

F*={heH;(fh)=0allfeF)

is a closed subspace of H (hence a Hilbert space). About the only non-trivial
result on Hilbert spaces that we will need is

11.2. Weyl's Lemma 31

11.1.2. Theorem. Let F be a closed subspace of a Hilbert space H. Then every
h € H can be written uniquely as

h=f+g

with f € F, g € F*. Furthermore, f is the unique element of F which minimizes
lh-ol  oeF.

IL1.3. Writing f = Ph, we see that we also have the following equivalent
form of the previous

o~ . 'hl - rd
Theorem. Let F be a closed subspace of a Hilbert space H. There exists a
unique linear mapping

P:H-F

satisfying:
a. ||P||=1,
b. P? = P (P is a projection), and
c. ker P = F-,

The mapping P is called the orthogonal projection onto F. The proofs of
the above theorems may be found in any of the standard text books on
Hilbert spaces.

I1.2. Weyl’s Lemma

We have introduced, in 1.4.2, the Hilbert space L*(M) of square integrable
(measurable) 1-forms on the Riemann surface M. In this section we lay the
ground-work for characterizing the harmonic differentials in L%(M). The
characterization is in terms of integrals. We show that a “weak solution” to
Laplace’s equation is already a harmonic function. The precise meaning of
the above claim is the content of

I1.2.1. Theorem (Weyl’s Lemma). Let @ be a measurable square integrable
Junction on the unit disk D. The function ¢ is harmonic if and only if

[, oan=0 2.1.1)

or every C*™ function n on D with compact support.
n

Remark. In the above theorem, the sentence “p is harmonic” should, of
course, be replaced by “g is equal almost everywhere (a.e)) to a harmonic
function”. We will in similar contexts make similar identifications in the
future.
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PROOF OF THEOREM. Assume that ¢ is harmonic. Let D, = {zeC;ld <r},
and assume that 5 is supported in D,. Use 1(4.4.2) and conclude that

oot —nto)= [, ean—neapy-0 @12
(because n and *dy vanish on 8D,). Thus

Jf, o= [ondo=0 (2.1.3)

(because 4¢ = 0). But
ffo ¢dn= ffp @ 4n, (2.1.4)

and thus the necessity of (2.1.1) is established.

To prove the converse, we assume first that @ is C%. Choosing 0 < r < 1
as before, we obtain (2.12) as a consequence of 1(4.4.2), and hence (2.1.3)
because of (2.1.1). As a consequence of (2.1.4) we may assume r = 1, Equation
(2.1.3) shows that d¢ =0 in D. To verify this claim it clearly suffices to
consider only real-valued functions ¢ and n. Let ¥(z) = 40%¢p/0z0z. If

Y(zo) > 0 for some z, € D, we choose a neighborhood U of z, such that .

Cl U (= the closure of U) = D and such that ¥ > 0in U. Select a C* function
n with 5(z) > 0 and 5 supported in U. It is clear that for such n, {{onAp > 0.
Thus 4¢ = 0 and ¢ is harmonic in D.

The heart of the matter is to drop the smoothness assumption on ¢. Fix
0 < & < . Construct a real-valued C® (= smooth) function p on the positive
real axis [0,2) such that

0<p<i,
p(r)=0 ifr>e,
and
p=1 if0<r<ep
(See Figure II.1)
Set for r > 0,

1
wlr) = ~5 p(nlogr.
(See Figure 11.2)

wl(r)

p(r)

t I r i I r
€/2 € e/2 €
Figure I1.1 Figure I1.2
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Defineon C x C
az
. do—oz={) fz#¢
Hzl)=q o=z

0 ifz=1{.

Since log|z — | is a harmonic function on QL yz) =0for |z — {| < &2
(also for |z — | > ¢).
Let y be a C* function with support in D, _,,. Consider

dEAdT

T ¥(2) ='~f fD o= zhuO===, zeC. 2.1.5)

-

Itis clear that y is a continuous function on C with support in D 1 —¢- Observe
that we may integrate over C instead of over D, and that by a change of
variable (after extending u to be zero outside its support)

dg A dt
4= [l + 9558,

Thus
2o [ otthZuc + 2%0E
= ffc “’(|C|)%u(f§ + Z)dc_f\ 2?2
- Jf. ottt - D Fu0EAE.
Similarly,

oy o . diadt
5 = JJ ol - D0 =52

Thus ¢ is C*. We claim that

2 d
P A [}, re0u@ C_“f- (2.L.6)

07 0z

Note that A d
1 A
V) = -5 | Jc e MO ORI — —;

Y14
+ ffl;-ﬂzc/z w(lc - z’)ﬂ(g) —AZi

= a(z) + B(2).
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Note further that

a2 d
s2b o fflc_,,m Yz0u(d) %‘;—f (2.1.7)

070z
dl Ad?
2i

= [[. v=0m©

We have already shown that Aw exists ( is C*). Thus we may compute
formally. Now ¢/dz can be computed formally without any difficulty (since

differentiating under the integral sign leads to a Lebesgue integrable function).
First

é.]o I,'._ql—‘_._l____?__lv | ...l 1
oz OBl T _IC—-z]ézg AT -7
and thus
a1 pg) di A dl
9z 4n Mc—z:wz T—z =21 (2.1.8)
That
4 9% _
=k 219)

will follow from

11.2.2. Lemma (Cauchy’s Integral Formula). Let B be connected open subset

of C bounded by finitely many C* Jordan curves. If ue CY(Cl B), then for
z€ B,

Iniu(z) = L ’ C“(_C)z  + f fB ‘;“ﬁ af A dt. 2.2.1)

PROOF. Let ¢ > 0 be chosen so that the closed ball of radius & about z is
contained in B. Let B, be the complement in B of this ball. Start with Stokes’

theorem
u(¢) d [ u(l)
f""-C —2% = ff” @_E<C - z)dz,\ “

B Be
Figure II.3 Figure 11.4
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and obtain
‘F

J.J. X g“_/_@:dz-/\dc = J;B'nglz’dc —i J.ozx u(z + €€y do.

Letting & — 0, we obtain (2.2.1). O

11.2.3. Proof of Weyl’s Lemma (Conclusion). To verify formula (2.1.9), it
suffices to assume that y has support in [{ — 2| < ¢/2, and thus that the
integral in (2.1.8) extends over C. To check this last claim, define

~ -

WO = pl ~ 2D, CeC.

Note that
(&) diadl v() M
.”IC-:R:& [—z -2 = ff:—:lwz T
+ ﬂu-zm/z MO—::”——;(C) d_C_%cli_Z (23.1)
v =p) for|l — 2 <e/4,
and that

W) =0 for|l —z|=e2

The third integral in (2.3.1) represents a holomorphic function of z, and thus
the z-derivative of the first and second integral in (2.3.1) must coincide. So
now we assume that y has support in |{ — z| < &2. As before (when we
computed 0/0Z),

o 1 pp o+ 2)diadl
Z;z.”c I i’

9z —2i
and thus
a1 pppll+2diAdl 1 op ol +2)dAdl
e o el | Sy s
LR
by (2.2.1).

We now use condition (2.1.1) with n = (of the previous construction
via (2.1.5)). Thus we obtain

0= [f, 040 = - JT, otou 5+ [, ota (4 25 ) 2557
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where (4?23/63 0z) is given by (2.1.7). Hence for every C* function p with
support in D, we have by Fubini's thcorem

T =5 = [, 009 [ e S5 S

- =2 =2
d
= [[oox0 [ [y 9@7(0) Z_Afdc_"z‘:z. 232)

(In t'he above D(z) is just another symbol for D, and the (z) is supposed to
remind the reader' that we are integrating with respect to z.) It thus follows
(because C* functions of compact support are dense in the L2 functions) that

dzadz

-2

f oo P(EL =o(l),ae. (e D. (2.3.3)
Clearly the left-hand side is C* (in {), and thus the proof is complete.

Remark. We dc; not need to know that C* functions of compact support
are dense in L*(D). We show that we can do with slightly less. Let &(0)

denote the left-hand side of (2.3.3). If (2.3.3) is not true then (for real ¢) .

one of the sets

D. = {zeC; ¢(2) > o(z)}

D_ ={zeC; 4(:) < pl2)}
I":as positive measure. Hence we may assume that one of these sets has
interior. If we now choose u to be non-negative and to have support in this
set, then we.obtam a contradiction to (2.3.2) as in the arguments that estab-
lished sufficiency for a C? function ¢. Thus u could have been assumed to

have support in an arbitrarily small set to begin with, simplifying slightly
the reasoning at the beginning of this paragraph.

EXERCISE

?rove the fo]loyving alternate form of Weyl's lemma: Let ¢ be a measurable square
integrable function on the unit disk D. The function ¢ is holomorphic if and only if

on
f fD ol dzn d7=0 (2.3.4)
Jor every C* function n on D with compact support.
Hints.
(1) Let ¢ be holomorphic and 5, smooth with compact support. Then
0=, pndz= f fD 3on d2). (2.3.5)

This establishes necessity of (2.3.4). (The fact that @ is not defined on 6D should
not cause any trouble.)
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(2) For sufficiency, first assume ¢ is C ! Use that for every n with compact support
(2.3.5) holds, and thus

“prwf"d:A dz = ffanEdZAd? =0.

From this equation deduce the Cauchy-Riemann equations.

(3) Now take arbitrary ¢. Note that for arbitrary with compact support,

[Je ci:zgz"“"‘f= ffp‘ﬂgf(%g)dudf,

Thus by the form of Weyl's lemma at our disposal, ¢ is C®.
The above form of eyl’s lemma can, of course, also be proven directly, and
our form recovered (with a few more technical complications) from this form.

11.2.4. Exercise

Let f € L%[0,1]). Show that f equals almost everywhere a constant if and only if
fo fxgeadx =0

for all C* functions g on (0,1) with compact support.
This is the one-dimensional analogue of Weyl’s lemma.

I1.3. The Hilbert Space of Square Integrable Forms

We decompose the space of square integrable 1-forms into closed subspaces.
The basic tool is Weyl's lemma. The decomposition will prove to be most
useful for compact surfaces. In general, we establish a sufficient condition
for the existence of a non-zero square integrable harmonic 1-form. For
compact surfaces, the condition is also necessary.

1L.3.1. Throughout this section, M will denote a Riemann surface and
L3*(M), the Hilbert space of (measurable) square integrable 1-forms with inner
product (-,-) and norm ||-|| (as defined in 1.4.2). Throughout this chapter

the word smooth will denote C*.
Definition. We denote by E the L*(M) closure of
{df ; f is a smooth function on M with compact support},

and by
E* = {we L*(M); *w € E}.

Thus, for every w € E(E*), there exists a sequence of smooth functions
f, on M with compact support such that

w = limdf, <=lim *df,,).
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Corresponding to these closed subspaces we have orthogonal decom-
positions of L%(M),
L*My=E®E*

= E* @ E*, (3.1.1)
where, as usual,

E' = {w e L¥(M); (w,df) = 0, for all smooth functions fon
M with compact support},

E* = {0 e L*(M); (0,*df) = 0, all f as above}.
I1.3.2. Proposition. Let x € L*(M) be of class C*. Then o € E** (respectively,
EY) if and only if o is closed (co-closed).

PROOF. Assume that & is closed. Let S be a smooth function on M with
support inside D (with CI D compact). Then

o*df) = ~ [, andl = ~ [[ [de]) - dxn]]
=~ [[dan=~[ o =0
Thus x € E**. Conversely, we have starting from the second equality
ffM doa f=0, all smooth f on M with compact support.

This, of course, is sufficient to conclude da = 0, The argument for o € E*

is similar. 'm|
We let
H = E* ~(E*)*,
and obtain the following orthogonal decomposition
LXM)=EQ®E*® H. (3.2.1)

Note that from Proposition 11.3.2 we deduce that E and E* are orthog-
onal subspaces. It then follows that the direct sum E@® E* is closed and
thus also a Hilbert subspace of L%(M). By orthogonal decomposition
(Theorem I1.1.1), we therefore certainly have L3(M) = (E@® E*) @ (E® E%)*,
and all we need to establish (3.2.1) is to verify the easy identity (E@® E*)! =
E* A (E*)*. Comparing (3.2.1) with (3.1.1) we see that

E'=E*@H
E* =E@®H.
I1.3.3. Let ¢ be a simple closed curve on M. Cover ¢ by a finite number
of coordinate disks and obtain a region Q containing ¢. We call this region

£, a strip around c. By choosing € sufficiently small, we may assume that
it is an annulus and that \c consists of two annuli Q7, Q*. We orient ¢

39
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so that Q7 is to the left of c. We put a smaller strip, Q,,(with correspond‘ing
one-sided strips Qg , 27 ) around c in . We construct a real-valued function
J on M with the following properties (see Figure 11.5):

JP)=1, PeQq,

J(P)=0, PeM\Q",

and
fisof class C® on M\c.

We now define a C* differential

{df on Q\c,_

- - .
i 0 on(M\Q)uc

Hc =

Figure II.5

It is clear that n is a closed, smooth, real differential fqrm with compac;
support. It is, in general, not exact. We call it the differential form associate

with the closed curve c.

Proposition. Let « € LA(M) be closed and of class C'. Then

= (o,* (3.3.1)
ProoF. We compute f‘ %= @"n)
(o,*n,) = -—ffM AAT = —JL_ andf = ffn_ df na
=[], dm— [[, frda=[[,_dim

= fa=ﬁa. 4

= Jaa-
jti ! Then « is exact (respectively,
11.3.4. Proposition. Let « € L>(M) be of class C'. : :
co-exact) 1}) and only if (a,B) = O for all co-closed (closed) smooth differentials
B of compact support.

ProOF. If ¢ is C! and exact, then a = df with f of class C2. If # is co-closed,
smooth, with support in D (with C1 D compact), then

@B = [[, 4 n*B= [[,[dr*B) ~ fi*E]
= an*B =0.
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'qu establish the converse, it suffices to show (because « is closed by Propo-
sition 113.2) that [, a =0 for all simple closed curves. But this fol]opws
from the hypothesis and (3.3.1). The assertion for the co-exact differentials
follows from the part of the proposition already established. O

I1.3.5. The most important result about L*(M) is contained in the following

Theorem. The Hilbert space H consists of the harmonic differentials in LY(M),

PRrOOF. If w € LM) is harmonic, then o is smooth
s , Closed, and co-
Thus by Proposition 113.2, w € E* ~ (E*)* = H. and co-closed.

FOI.' the converse, let w € H. Choose a coordinate disk D on M with local
coordmate'z = X + iy. Choose a real-valued function n that is smooth and
supporte.:d inD.Leto = ¢n/2x and § = én/éy. Then o and y are C* functions
on M with support in D and 0p/0y = dy/0x. Write w as pdx + qdy (with p
and ¢ measurable) on D, Since o € E* A (E*)*,

0= (wdg) = [[, (bo. +a0,)dx ndy, (3.1

0= @*dp) = [[, (~py, + ap)dx ndy. (352)

Thus
0= (@,dp — *dy) = [[ (o + y,)dx ndy

= f f pan. (3.5.3)

By Weyl’s lemma, p is harmonic and hence Cl. A i i
' s - Applying this result to
*o (which also belongs to E* n E*') we see that g is C!. Hence w is of class

C*. Proposition 11.3.2 now yi ;
-3 yields that « is cl " .
harmonic). is closed and co-closed (that %

I?emarff. The space L%(M) can best be represented by the “three” dimen-
sional “orthogonal” diagram given in Figure I1.6.

///////Kﬁ/::: E'feo-exact

co-closed ——

—_— T

(harmonic)H
Figure I1.6
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Corollary

a. The LXM) closure of the square integrable closed (respectively, co-closed)
differentials is E ® H (E* @ H).

b. The square integrable smooth differentials are dense in L*(M).

b'. The smooth differentials with compact support are dense in L*(M).

The verification of (a) and (b) is at this stage trivial. For example, if & is closed,
then w € E** = E@® H. Conversely, if w € E@ H, then o = v, + w, with
w, € E and w, € H. Thus, w, is closed (it is harmonic) and @, = lim, df,
with f, smooth of compact support. We have shown that w is the limit of
closed differentials. " - s

We cannot at this point establish (b'). We need to know that

iw = U Dm
where

D, is open,

Dn < Dn+ 1s
and

Cl D, is compact

(a fact that will follow from IV.5). Having such an “exhaustion” of M, we
construct a sequence of smooth functions {f,} on M with

0<f=s,
fr=1 onD,
(support of f,) = D, ,.

It clearly suffices to show that every € H can be approximated in L*(M)
by smooth forms with compact support. Now f,x € L%(M) is smooth and
has compact support. By the Lebesgue dominated convergence theorem,

tm {17l = [l

Caution. Not every exact (co-exact) differential is in E(E*). For example:
consider the unit disk D. Let f be a function holomorphic in a neighborhood
of the closure of D. Then df € H. Clearly, df is exact as well as harmonic.

For compact surfaces E does, of course, contain all the exact differentials.
Thus, our picture is quite accurate in this case. (The above analysis shows
that a compact surface carries no non-constant harmonic functions. The
differential of such a function would have to be in both E and H, which would
imply the function is constant. This fact can, of course, also be established
as a consequence of the maximum and minimum principles for real valued
harmonic functions.)

I1.3.6. As a digression, we consider the situation of a compact Riemann
surface M, and expand slightly our discussion of 1.3.8. We define, the first
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de Rahm cohomology group of M, H '(M), as the smooth closed differentials
modulo the smooth exact differentials. If a is a closed smooth differential,
then its equivalence class in H'(M) is called the cohomology class of «. There
is a pairing
H, (M) x H{(M) > C
which maps the pair (c,x), where c¢ is a closed piecewise differentiable path
on M and « is a smooth 1-form, onto Je o Tt is quite clear that this integral
depends only on the homology class of ¢ and the cohomology class of «.
It vanishes for a given cohomology class « over all curves ¢ if and only if «
is the zero class (represented by an exact differential). Thus the above pairing
is non-singular. Further, every homomorphism of H,(M) into C is given by
integration over curves against some o € H Y(M). (See also 111.2).
Note also that
H' M)~ H, (3.6.1)

and that the cohomology class of the 1-form 7. constructed in 11.3.3 is
uniquely determined by equation (3.3.1) and depends only on the homology
class of ¢. The isomorphism of (3.6.1) is the surface version of the much more
general Hodge theorem.

11.3.7. Theorem. A sufficient condition Jor the existence of a non-zero harmonic
differential on a Riemann surface M is the existence of a square integrable
closed differential which is not exact. If M is compact, the condition is also
necessary. Explicitly, for every closed w e L3 (M), there exists a w, € H such
that [, 0 = {, w, for all closed curves ¢ on M.

PROOF. Let € L*(M) be closed and not exact. Then e(E)' =E ® H.
Thus, w = w; + w, with w, € E and w, € H. Note that w; must be CL.
Since w is not exact, there is a closed curve ¢ with fe @ #0. Since [, @, =0,
we must have {, @, = {, w 5 0. Hence w, # 0.

If M is compact, then there are no exact harmonic differentials so that any
0 # w € H is closed and not exact. O

I1.3.8. In view of Theorem I1.3.7 we see that in order to construct harmonic
differentials, we must construct closed differentials that are not exact,

Let ¢ be a simple closed curve on the Riemann surface M that does
not separate (that is, M\c is connected). We construct now a closed curve

AN

Figure I1.7
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c* (a dual curve to c) by starting on the right(+) side of ¢ and ending up on
the other (= left (—)) side of ¢. (See Figure ]I.7).' . '

The curve c* will intersect ¢ in exactly one point P. Using the construction
and notation of 11.3.3, we see that

fume= Jim 7@~ lim @) =1

(here, of course, limg_. p- means you approach P th.rough Q7). This remark
together with Theorem I1.3.7 establishes the following

Theorem. If the RiemanA surface M carries a-closed curvezthat does not sep-
arate, then there exists a closed non-exact differential in L*(M) and therefore
a non-zero harmonic differential.

11.4. Harmonic Differentials

We have seen in the previous sections that on a compact surfaﬁe there do
not exist exact (non-zero) harmonic differentials. T'o‘ construct “exact har-
monic differentials” we must hence allow singula.rmes. In th{s sec.tnon we
construct harmonic functions and differentials with a prescribed isolated
singularity.

I1.4.1. Let D be a parametric disc with local cqordinate z=x+iyon 3
Riemann surface M. It involves no loss of generality to assume that z maps
onto the open unit disc. We assume that z = 0 corresponds toothe pou}t
P, € M. We define a function h on M by choosing a real number 4,0 <a < 1,
an integer n > 1, and setting

7"+ 7; if Pe D and |z(P)| < g,
h(P) = a

0 otherwise.

(In the future we will identify the point P e D with its image z(P) € C and
hence write the above equation for h

27"+ z for|z| < g,
a2n

h(z) =
0 for |z| > a.

3
In this convention the points in M\D are denoted by =110
We define another function 6 on M by setting

0(z) = h(z) forl|z| = a/2,

and requiring 6 to be smooth in {|z| < a}.
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We form the differential d0 € L%(M) (this terminology involves some abuse
of notation since 6 is C* only on M\{}z| = a}). It is smooth whenever 0 is,

Note that because of the discontinuity of 6, 40 does not have to belong to
E*L Write

d0 = o + o, 4.11)
withae Eand we E* = E* @ H.

Let U be a parametric disk about the point QoeM.Let{=¢4inbea
local coordinate vanishing at Qo. We choose a real-valued smooth function
p on M with support in U and set ¢ = dp/¢, = &p/én (as in 11.3.5). Write
@ = pd{ + qdn in U. Since x € E*, obtain as in (3.5.2),

0= (*dy) = [[, (~py, + apdé n i,

Also since w € E*, we obtain as in (3.5.1),

(@0,dp) = (wdg) = [[, (pp; + a0, dé A,

The difference of the last two expressions yields (as in (3.5.3))
(d0,dgp) = f fu pdp. (4.1.2)

Similarly, by interchanging the roles of ¢ and ¥ and adding (rather than
subtracting) the two resulting expressions, we obtain

(d0,dy) = f fu q4p. (4.1.3)

We know that « € E**. Thus « is annihilated by all co-exact differentials
with compact support. Thus if  is C! on a given open subset of M, it must
be a closed form on that subset by Proposition 11.3.2. As an illustration we
assume that Q, does not belong to {|z| < a} = Cl D,, and we take U also to
belong to the complement of Cl D, In this case (since d0 vanishes on {lz| > a}p

(d0,dys) = 0 = (d0,do),

and we conclude from (4.1.2) and (4.1.3) and Weyl's lemma that p and g
are harmonic (thus C®) in U. In particular, « is a smooth closed differential
on M\CI D,. (The above was not necessary because of the stronger statement
we are about to prove. We included it to help the reader.)

Our first step is to show that « is harmonic on M\C1 D,;,. So we assume
that U = M\CI D,,. We compute (using (4.1.2))

I, p4p = @0.do,

= (d0do)p,,, + (devd(p)b.\D,,z + (d6,d@) -
We have
(d6.do)p,,, =0, sincedp =0 on D,,,
(d0.d@)p, =0, since d) = 0 on M\D,.
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It remains to evaluate the middle integral. We will show that is it. zero. If
U  M\D,, the integral vanishes because dp =0 on D,. It hence involves
no loss of generality to assume that U < D and that z = {.

We recall the formula [{4.4.1)
(d(p7d9)Da\D¢/2 = ffDn\DnIZ d(p A *dy

= —ffba\bnll ¢ 40+ f&(Da\Da/l) o (*dD).

Again, the double integral (on the right-hand side) vapishes because 0 is
harm(;nfc on D,\Cl D,,,: Similarly; the line ifitegral vanishes because ¢ =0
on {|z| = a/2}, while by a simple calculation

co 00
= — = = d:
x40 = |dz| o |d=|

(where 00/én is the normal derivative of & and_ 80/0r is the radial derivative
of ) vanishes on {|z| = a}. Thus we see that o is clpsgd on M\CL D,,,.
We compute next for p with compact support inside M \Dy,:

= (d6.dp)p, 0., = 0

by the argument just used. Thus x is co-closed on M\C1 D, by Proposition
11.3.2; that is, « is harmonic on M\Cl D,,. .
Finally, what happens close to the singularity of h? Assume that the
support of p is now contained inside D,. We have
(d0.dg) = [, Oupu + 0,0 dx A dy,
and
0= (d0,*dy) = — [[, (Oupyy = Byp52) dx A dy.

The first equality on the last line follows from the fact that d@ is clqsed on
D. and hence € E** (with respect to D,). As a consequence we obtain from

the above two equations:
(0,dg) = [[, 0ulpes + py)dx ndy = [, 00
It follows therefore from (4.1.2) that
o= [[, (r-0)4p.
Similarly, we can obtain

0= .”Da (g = 0,) 4p.

Thus, by Weyl’s lemma, p — 0, and g — 0, are harmonic in D,. In particular,
p and g are smooth on D,.
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We have sho‘wn that' @€ £ = (E* @ ) is smooth. Since E* @ H contains
]t;lg :o-lfllosed differentials with compact support, x is exact by Proposition
-3.4. Hence there is a smooth function S on M with df = i i
harmenic on M'C1 D, ,, so is f. /= Since s

By (4.1.1?, d© ——.f) = w € E*. Since 0 — f is smooth on D, df—f)isa
co-closed dlﬂerenUgl on D,. Since d(6 — f) is clearly closed on D,, we con-
F]ude that d(0 — f) is a harmonic differential on D, or that @ — f is harmonic
in D,. We now define a function u on M

u=f—~0+h

For0 < |z| <a,f - 0 and h are harmonic. For |z| > a/2, f is harmonic and
h — 9 = 0. Thus u is harmonic on M\{P,}.
We summarize our conclusions in the following

;I)'heorem. Let M b.e a Riemann surface with z a local coordinate vanishing at
0 € M. There exists on M a function u with the Jollowing properties:

u is harmonic on M\{P,}, (4.1.4)

u — z7" is harmonic on every sufficiently small neighborhood N of P,, (4.1.5)
[Saw dun*da < 0, and (4.1.6)

(dudf) = 0 = (du,*df) for all smooth Junctions f on M that have
compact support and vanish on a neighborhood of P,,. (4.1.7)

Pl}OOF. Only (4.1.7) needs verification, and this follows because du is in H
with respect to the surface M'Cl N. O

II.4.2.' Note that condition (4.1.5) is invariant under a limited class of
;oordnnate changes. (Determine this class!) It can, of course, also be replaced
y
u—Rez "(resp,u—1Imz")is (4.2.1)
harmom'.c in a neighborhood N of P,,.
In this case we may require u to be real valued.

Observe also that if M is compact, then u is unique up to an additive
constant.

11.4.3. We note that our arguments to prove Theorem I1.4.1 did not depend

on the choice of the particular form of the function / with singularity as

long as

h is harmonic in {a/2 < 2| < a},

and
*dh =0 on {|z| = a}.

Thus, another candidate for 4 is the function

_ 25
h(z) = log|Z T2 2= /%
(2) gz—zzz—az/fz’ lz‘Sa,O<‘zl,22|<a/2_
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Theorem. Let M be a Riemann surface and P, and P, two points on M. Let
zj (j = 1.2) be a local coordinate vanishing at P;. There exists on M a real-

valued function u with the following properties:

u is harmonic on M\{P,P,}, 4.3.1)
u — log|z,| is harmonic in a neighborhood of P,

and u + log|z,| is harmonic in a neighborhood of P,, (4.3.2)
{fany du A *du < oo, for every open set N containing P, and P,,

and 4.3.3)

~ - . .-

(dudf) = 0 = (du*df) for all smooth functions f on M that have

compact support and vanish on a neighborhood of Py and P,. (4.3.4)

Note that condition (4.3.2) is invariant under coordinate changes.

ProoF oF THEOREM. The arguments preceding the statement of the theorem,
establish it for P, and P, sufficiently close. If P, and P, are arbitrary, we can
join P, to P, by a chain P, = Q,, Q4,..., Q, = P, so that Q; is close to
Q;-1,j =1,...,n For each pair of points there is a function u; with appro-
priate singularity at Q;_, and Q;. Let

U=u; +- - +u,

and note that uis regularat Q,, ..., Q,_,, and has appropriate (logarithmic)
singularities at Qo and Q,,. 0

Remark. For compact M, the function u is unique up to an additive constant.

11.4.4. We can also let

z2~2,2—0a%7%,

1—21,2z—a%%,

h(z) = arg( ) 2| < a,0 < |zy, |z5| < a2,

This case is slightly different from the previous one. The function h is not
well defined on M. It is well defined on M\{slit joining z, to z,}. Of course,
the differential du obtained by this procedure is well defined. We leave it
to the reader to formulate the analogue of Theorem [1.4.3 in this case.

11.4.5. The decomposition (3.2.1) is closely related to the Dirichlet Principle,
which we proceed to explain. Let D be a domain on a compact Riemann
surface M, whose boundary 6D consists of finitely many simple closed
analytic arcs. Thus, topologically D is a compact Riemann surface of genus
g = 0 from which n > 0 discs have been removed. Consider now two copies
D and D’ of D. We shall construct a compact Riemann surface M = CI1D u D’
known as the double of D. We use the usual local coordinates on D. A function
z is a local coordinate at P’ € D’ if and only if Z is a local coordinate at the
corresponding point P € D. We now identify each point P € D with the
corresponding point P’ € 6D, To construct local coordinates at points of
oD, we map a neighborhood U of P € 4D by a conformal mapping z into the
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closed upper half plane such that U A 0D goes into a segment of the real axis.
By the reflection principle z is a local coordinate at P e M. Note that M is a
compact Riemann surface of genus 29 +n— 1, and that there exists on M
an anti-conformal involution J such that j(D)= D’ and J(P)y=P for all
P € D. From now on we may forget about M, and think of D as a domain
on its double M. (The above discussion is not strictly necessary for what
follows. It was introduced for its own sake.) We consider now the following
problem:

Fix a C? function g, defined on a neighborhood of C1D. Among all functions
@, C* on a neighborhood of Cl D, find (if it exists) one u that has the same
boundary values (on 5D) as ¢, and minimizes ldo||p over this class.

Assume that u is a harmonic function with the same boundary values as
®o- We cmpute for arbitrary ¢ with the same boundary values;

ol = (d(¢ — u) + du, d(o — u) + du)
= [ld(o = w)l> + ldul]® + 2 Re(d(p — u),du).

Now use Proposition 144 to conclude that (d(¢ — u),du) =0 (since
¢ —u=00ndDand 4u = 0 on D). Thus

ldell® = lldt — w)* + ldulf? 2 [laul.

Thus our problem has a unique solution—if we can find a harmonic
function with the same boundary values as ¢,. We shall in IV.3 solve this
problem by Perron’s method. Here we outline how the decomposition of
L*D) given by ( 3.2.1) can be used to solve our problem. Finding a function
for which a given non-negative function on L2(D) achieves a minimum is
known as the Dirichlet Principle.

Consider the function ®o- Since dg, is exact (and thus closed), dg, €
E@® H. Now let o be the orthogonal projection of dp onto H. We have
already seen that w is exact and harmonic. Thus w = du, for some harmonic
function u on D, Now d(u — ¢@,) € E. Thus

(d(u— o)) =0, allaeH.

Let up,p, be the function produced by Theorem I11.4.3. By letting o run
over the set of differentials

{dupp; P eD, P,e D},

one can show thatu — ¢ is C2ona neighborhood of C1 D and that y — Qo =
0 on éD.

I1.5. Meromorphic Functions and Differentials

Using the results of the previous section, we construct first meromorphic
differentials on an arbitrary Riemann surface M and then (non-constant)
meromorphic functions.
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11.5.1. By a meromorphic differential on a Riemann surfgce we meinhar:
assignment of a meromorphic function f to each local coordinate z such tha

fl2)dz

is invariantly defined.

Theorem
a. Let Pe M and let z be a local coordinate on M uafzislxzng at P: F or every

‘ integer n > 1, there exists a meromorphic diﬂlerentzal on M which is holo-

- . . . St P
hic on M\{P} and with singularity 1/z"" " at P. . .

b g;)vrfn two distirict}poitrs P, and P, on M and local coordinates z; vams.hmg

‘ at P, j =1, 2, there exists a meromorphic differential w, holomorphic on

M‘\{}”I,Pz}, with singularity 1/z, at P, and singularity —1/z, at P,.
i i hose existence is asserted by

PROOF. Let x = du where u is the function w
Theorem 11.4.1 for part (a) and by Theorem 11.4.3 for part (b). In the former
case set

w = _—l(i -+ i*a),
2n

and in the latter
= + i*a- D

11.5.2. Let g be an integer. By a (meromorphic) g-differential w on (11\4 v:e
m;aa.n an assignment of a meromorphic function f to each local coordinate
z on M so that S0y d 521
is invariantly defined. For g = 1, these are just the mer‘omorp'hic differentials
previously considered, and they are called abelian dnﬁergntlals. - :

If w is a g-differential on M, and z is a local coordinate vanis mgfa
P e M, and o is given by (5.2.1) in terms of z, then we define the order of w

t Pb
: g ord, w = ord, f.
(If we write f(z) = z°g(z) with g holomorphic and non-zero at z = 0, then
ord, f = n.) It is an immediate consequence of the fact 'that local garagleterli
are 0home:omorphisms that the order of a g-differential at a point is we

d. ' .
deﬁlgzte that {P e M; ordp w # 0} is a discrete set on M; thus a finite set,

if M is compact. '
l If lo is anp;be]ian differential, then we define the residue of w at P by
res,w=4a_,,

where w is given by (5.2.1) in terms of the local coordinate z that vanishes at
P, and the Laurent series of f is

o0

f@= 3 az"

n=N
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The residue is well-defined since

1
respw=~fw
2ride

where c is a simple closed curve in M that bou i i
imp J nds a disk D containing P
that ¢ has winding number 1 about P and w is holomorphic in Cng\s{l;’c}h

11‘/1153 Theorem. Let P, . . ., Py be k > 1 distinct points on a Riemann surface

Letey,..., c be complex numbers with y*_, ¢; = 0. Then there exists a

meromorphic abelian differential » on M » holomorphic on M \{P, P} with
R

ordp w = —1, resp = c;.
5:;3(5);1 Lett};o e‘M, P, #P, j= 'l, .-+, k. Choose a local coordinate =,
ngatP;, j=0,...,k For j= 1,...,n let w; be an abelian differ-

ential with singularitie : : - ;
o g s1/z;at P;and —1/z4 at P and no other singularities.
k

= j=zl Cjwj. D

Corollary. Every Ri

. lemann surface M carries non-c i
‘ -CO

oronary nstant meromorphic

PROOF. Let P,, P, P, be three distinct poj
» Fa, mnts on M. i i
holomoratie o WP i p n M. Let w, be a differential
ordp, w, = ~1 = ordp, w,
Iesp wy = +1, resp, wy = —1.
Let w, be a differential holomorphic on M \{P2,P3} with

ordp, wy; = —1 = ordp, w,,
reSPz Wy = 1, l'eSp3 Wy = -1,
Set f = w,/w,. Note that f has a pole at P, and a zero at P,. ]

11.5.4. Proposition. Ler M be a compact Ri ‘
differential on M. Then pact Riemann surface and w an abelian

2 respw =0, (5.4.1)

PeM

ProOF. Triangulate M so that each singularity of w is in the interior of one

tr la"gle. Let A A .~ A be a (o] Of the 2-511[1])11065 m the
P’ ’ s i n enllﬂleratl n
1 2 h

Y re ! <
Sp ) = ——
&, T 27”.; sa; @ (54.2)
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where 34, is the (positively oriented) boundary of 4;. Since each 1-simplex
appears twice, with opposite signs, in the sum (5.4.2), we conclude that
(5.4.1) holds. a

EXERCISE

Using only formal manipulations of power series show that the residue of a meromorphic
abelian differential is well defined.

Remark. The above proposition shows that the sufficient condition in
Theorg_m I1.5.3 is also gecessary if the surface M is compact.

EXERCISE

Give an alternate proof of Proposition 1.1.6 in the special case that N = C u {c0}.
First reduce to showing that it suffices to establish that f has as many poles as zeros.

Then relate ord, f to resp(df/f).

I1.5.5. Remark. The existence of meromorphic functions shows at once
that every compact Riemann surface M is triangulable. Let

[:M—= C U {w}

be a non-constant meromorphic function. Triangulate C U {c0} with a
triangulation 4,, 4,, ..., 4, such that the image under f of every ramified
point (points P e M with b.(P) > 0) is a vertex of the triangulation and
such that f restricted to the interior of each component of f ~!(4}) is injective.
It is clear that this triangulation of C U {c0} lifts to a triangulation of M.

The existence of meromorphic functions has many other important
consequences. We will discuss these in IV.3 and IV.5. Also, in IV.3 we will
establish the existence of meromorphic functions without relying on integra-
tion (for which triangulations are needed). Thus we will be able to derive the
above topological facts from the complex structure on the Riemann surface,



CHAPTER III
Compact Riemann Surfaces

This is one of the two most important chapters of this book. In it, we prove

(based on the existence theorems of the previous chapter) the three t
important theorems concerning compact Riemann surfaces: the Riemzrirl o
Rocl? th.eorem, Abel’s theorem, and the Jacobi inversion {heoreln any
apphcatxons of these theorems are obtained; and the simplest c;)
Riemann surfaces, the hyperelliptic ones, are discussed in greaI: detail

Many
mpact

IIL.1. Intersection Theory on Compact Surfaces

genus, g, can be obtained topologically by j ifying i i i

' . Y identifying in pairs appropriat
md;s of‘a 4g-sided poly_gon. The reader should at thijs point ﬁaview Ip;?gugza; ;
anl L4in I._2.5. Thus, with each surface of genus g > 0 we associate a 4g-sidt;d
polygon with symbol a,b,a; b7 --- g b a5 'b;* (as in 1.2.5). The sides of

%IVI.II;I. Let c be a simple closed curve on an arbitrary Riemann surface M.
3 ; ave seen (11.3.3) that we may associate with ¢ a (real) smooth closed
ifterential n, with compact support such that

fc“ = (%) = ‘ff,ﬂ/\nc, (1.1.1)
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for all closed differentials . Since every cycle c on M is a finite sum of cycles
corresponding to simple closed curves, we conclude that to each such c,
we can associate a real closed differential 5, with compact support such that

(1.1.1) holds.
Let @ and b be two cycles on the Riemann surface M. We define the

intersection number of a and b by
a'b= [ narn,=(r,—*n). (1.1.2)

Proposition. The intersection number is well defined and satisfies the following
properties (here a, b, ¢ are cycles on M):
f.

a - b depends only on the homoiog} classes of a and b, (1.1.3)

a-b=—b-aq, (1.1.4)
(a+b)y:c=ac+b-q (L.1.5)

and
abel. (1.1.6)

Furthermore, a - b “counts” the number of times a intersects b.

ProoF. To show that (1.1.2) is well defined, choose #, and #, also satisfying

(1.1.1). We must verify
f.[u Ma Aty = ffu Na ANy

Note that while , and 5} are only closed, their difference #, — 5, = df,
where f is a C* function with compact support. Thus it suffices to show

ffu df An, =0, all fasabove.

But [{, df Ay = —(df *n,) = 0, because df € E and *1, € E* (by Proposition
11.3.2).

The verification of (1.1.3), (1.1.4), and (1.1.5) is straightforward. To check
(1.1.6), it suffices to assume that a and b are simple closed curves. Therefore

we have (as in 11.3.3),

a-b =ffM Na Aty = —ffu My Al
= (nb’*ﬂa) = J; Np-
But [, 1, contributes +1 for each “intersection” of a with b. (This can be

verified as in I1.3.7 using Figure I11.1.) O

II1.1.2. We now consider a compact Riemann surface of genus g > 0, and
represent this surface by its symbol
aa”! (genus 0),

g
H ajbjaj-lb_,j_l (geﬂus g 2 1)'
j=1
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Figure 11L1

The sides of the polygon corresponding to the symbol give a basis for the
homology, H, = H 1(M), of M. Assume now that g = 1. It is easy to check
that this basis has the following intersection properties

0 j+#k
aj'ak=0=bj'bk.
We can represent all this information in an intersection matrix J. ThisJisa
29 x 2g matrix of integers. If we label :
Nj=a,j=1,...,9 and Ry=b;_,,j=g+ L...,2, (121

then the (jk)-entry of J is the intersection number N; - NX,. Thus J is of the

form
0 I
-1 0/

where Ois the g x g zero matrix and I is the g x g identity matrix.

Any basis {X,, . .. N2} of H, with intersection matrix J will be called a
canonical homology basis for M. Given a canonical homology basis we can
use (1.2.1) to define the “a” and “p” curves. Note that we do not claim that
these curves come from a polygon in normal form.

1.2 Harmonic and Analytic Differentials
on Compact Surfaces

We compute the dimensions of the spaces of holomorphic and harmonic
differentials on a compact Riemann surface. Certain period matrices are

introduced and we determine some of their basic properties. The key tool
is Theorem I1.3.5.

II1.2.1. Theorem. On q compact Riemann surface M of genus g, the vector
space H of harmonic differentials has dimension 2g.
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ProoF. The theorem is easy to prove if g = 0. For in this case, let « be a
harmonic differential on M. Fix Poe M and define

u(P) = f: «, PeM.

The function u is well defined (since M is simply connected). By the max%mum
principle for harmonic functions, u is constant. Thus « = 0. (The maximum
principle implies, of course, that there are no non-constant harmonic func-
tions on any compact Riemann surface.) ‘
Assume g > 0. Let {N,,...,N;,} be a canonical homology basis on M.
Construct a map ':b HoC® or B R

depending on whether we are interested in complex-valued harmon?c differ-
entials or real-valued harmonic differentials, by sending a € H into the

2g-tuple -

If dim H > 2g, then @ has a non-trivial kernel; that is, ther§ existsan a € {1,
all of whose periods are zero. Such an « must be the diﬂ'eregt:al of a harmonic
function. Since there are no non-constant harmonic functions on a compact
surface, dim H < 2g. The above argument also establishes the'injectlvxty of
&. It remains to verify surjectivity. As we saw in the previous chapter,
(Theorem I1.3.7) it suffices to find a closed differential with period 1 over
a cycle X; and period 0 over cycles Xy, k # j.
Let
“j=’1bj’ j=1,...,g,
o= Mg, J=g+1,...,29.

Then we see (by(1.1.1)) thatfork=1,..., g,

Lk %= _.UM % " Ma

_ ak'bj=6kj’ j=1’~'-’g,
=ffu’7""/\aj— _(ak.aj_”)=0, j=g+1,...,2g,

and

fbk %= —ffu ®pA Ny, = ffu N A O

_ b bj=0, i=L...,g
N —(b,“aj_.y)=aj_”'bk=5j_g,k, j=g+1,...,2g.

We summarize the above information in

1, k=j, f L k=j-g
Lk “j = 0, Otherwise, bx a" - 0, otheI'Wise.
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In other words,

fN G=6p jk=1,...2 @11 0O
Thus we have proven the following.
Corollary. Given a canonical homology basis {R,... N} for H (M) there

is a unique dual basis {ay, ... a0} of H; that is, a basis satisfying (2.1.1).
Furthermore, each » 5 is real.

Thus given any set of 2g complex numbers iy v yCay,
29
o = Z o]

i=1

is the unique harmonic differential whose N, period (that is s 2) i ¢, for
k=1,...,2g.

II1.2.2. We have seen that the 29 x 2g matrix with (k, Jlentry | 5 % 18 the

identity. We note that

ffu“k/\“j-(-g’ Jj=1...,g
j;‘,“k'"_ffwdk/\ﬂh‘,_ _ffug(k/\ﬁj—,, j=g+1,.”’2g.

From this it is evident that the matrix whose (k, Jrentryis [faonc ;s of the
form [_9 {1 = J. We conclude that

(o, — *oy) = Ry - R;.

We will investigate a companion matrix I" whose (k,j)-entry is (op,0) =

Jfse @A *a;. We note immediately that I' is a real matrix, Further from 1.4,

@) = (ar) = [ o nvta, = [ ante, = (@),

Thus, I' is symmetric, Before continuing our investigation of the matrix " R
we establish the following

H1.2.3. Proposition, If 0 and 8 are two closed differentials on M (compact of

genus g), then
ffMeA§=§l[ﬁjeﬁjé—f'qeﬁjé’]. 2.3.1)

PROOF. The right-hand side of (2.3.1) is obviously unchanged if we replace
@by 0 + df with fa C *-function. The left-hand side is also unchanged since

ffM(0+df)A§=(0+df,—*5’):(0,—*5)=ffut9/\§,
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by Proposition I1.3.2. Replacing thus @ and § by harmonic differentials
with the same periods, we may assume

29 - 2g -
0= pp, 0=Y Ao, pj;eC, (23.2)
=1 i1

where {a;} is the basis dual to the canonical homology basis {a,,... Ags
by, ... b} = {Ry, ..., Ry} Thus,

[[ond= 3 i [f o= kf NIORN

k

e i} .
Hilg+ iR N+ ) | Hibli=oR 7y (233)
j

=g+

~

~

-

I
el

4
Now it follows immediately from (2.3.2) that

¢ p=1 0 2.3.4)
#J = fx, 0 dnd Pl = fNJ 0. (

We now substitute (2.3.4) into (2.3.3) and obtain, using th? fact thatlfor
59 (N Ryy)=Landforj=g+1,...,29,(N;*N;_)) = —1,

2
fﬂleA§=j=il f“:e -“gw‘g_ i J‘Nie “1—:5

j=g+1
) 7] g. : a
= - 6.
_j;fwefbje hel.
Corollary. If 8 is a harmonic 1-form on M, then

el = jé [ f 0f, 8- 0 . j *9]. (235)

PROOF. Since @ is harmonic, *8 is also closed. Thus, we compute

lollz = [f, 01

by (2.3.1) and obtain (2.3.5).

j=1,...

O

i i M as a polygon .# whose
k. We may view the Riemann sprface
ger:':g(:l is[[¢=, a;bja; b *. Since A is simply connected 6 = df on .#. Thus,

[fuont=[[ arnd=[[ ard= ], 10
= i [Ljf§+ﬁjf§+ﬁj_lf§+ﬂflf§].

Let z, € # be arbitrary, then for z € A,

f@=e.



58

HI Compact Riemann Surfaces

Letting z and 2’ denote two e

quivalent points on the s ; Tt
o ing z 2 po he sides ajand a; ! of 6.#

[0 fog0= L[ fz0- [ oo
=L,“[ﬁ,9]§=“ﬂ,9.ﬁ,g‘

The remaining terms can be treat

of Formula (2.3.1), ed similarly to obtain an alternate proof

I11.2.4. We return to the matrix I" and note that its (k, j)-entry Yx; is given by

g
k =J‘J‘ 2 A ¥ = f *,

dy —
= Lk “j_ N,”‘*aj’ k-—l,.__’g’
- *y
Lk_' &j = J;.k_’ *11, k=g+1,..., 2g.

We show next that the real and S

(T > 0), Let ymmetric matrix I is positive definite

2g 2g
0= kZl S withé eC, Y |62 >o.
= k=1

Recall that the differentials «, are real and that flol| # 0. Thus, by (2.3.5)

g 2g 29 g g
w;M;mhymﬂémdim]
= T1=1

2

=k,: 5@1 [f ockf “"f“kf ]

5&31?1‘1-

T
2

k,

It is now convenient to write

r- A B
C D
with 4, B, C, D, g x g matrices. Not

e that we h i i =
and I > 0) these are real with ave established (since T =T

B=" - —
G A='4 D=, (24.1)

A> 0, D>0. (242)

and
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I1L.2.5. Let us consider * as an operator on the space of real valued
harmonic differentials. It is clearly C-linear and *? = —I. We represent *
by a 2g x 2g real (since * preserves the space of real harmonic forms) matrix
% with respect to the basis z, ..., 23,

Y = (A, kj=1,...,2g,
Thus

2g
=Y Aiitjs k=1,...,2.
i=1

If we represent by o the column vector of the basis elements xy, .. ., a,,
then we can consider 4 28 defined by the equatlon

*of = gd
Since ** = —I, 9% = —I. We wish to compute the matrix 4. We note that

Y = (@) = (F2,%x) = ( Z Ajat )
2g
= Z lu(aj,*“k) = Z llj ffu “k A “j‘
i=1 j=1

In I11.2.2 we saw that, the matrix with (k, j)-entry [[y % A ; is given by J =
[_% %] It therefore follows that the above equation can be written as

r=9J. (2.5.1)

_| M 4
o[ 7l

we find as a consequence of (2.5.1) that

1, —A
r_[h _13].

We therefore conclude, because of (2.4.1) and (2.4.2), that

If we now write

lg= —"4,, sy ="As, Ay =123, (2.5.2)
and
Ay >0, —13;>0. (2.5.3)
Since ¥ + I 20 = 0, we see that ¢ satisfies the additional equations:
A+ A+ 1,=0, Ady =14, Aydy =4 As. (2.5.4)

II1.2.6. Up to now we have essentially used only the space of real-valued
harmonic forms. (A basis over R for the space of real-valued harmonic
forms is also a basis over C for the space of complex-valued harmonic forms.)
We construct the holomorphic differentials

wy=o;+ %, j=1,...,2g,
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and a matrix whose (k,j)-entry is
Hopw) = Ho2)) + Fai*ay) + Fi*o,2) + Hi*a,i*a)
= (%,2;) — i, *2) = (% + *ay) = (ark,wj).
We see from the above that this is the matrix

I+iJ,
and since (recall 1.3.11)

@) =i [[ wnd, = ié [f o [, @ [ akﬁlcru]
if, @ k=1,...,q,

—if @, k=g+1,...2

this matrix can be viewed as a period matrix,
Observe also that

%.'(wk’wj) = %(wj:wk) = (“jawk)

_'fb,-w"’ j=1...,g,

if Wy, j=g+1,...,2. (2.6.1)
dji-g
Before continuing our investigation of the matrix I + iJ, we establish

IH1.2.7. Proposition. On q compact Riemann surface of genus g, the cector

space S = H#Y(M) of holomorphic differentials has dimension g. F urthermore,
{w, ... .0} forms a basis for .

ProOF. We show that we have a direct sum decomposition of the space H
of complex-valued harmonic forms

H=x@ 2, (2.7.1)
where # represents the anti-holomorphic (= complex conjugates of holo-
morphic) differentials. It is obvious that # A 52 = {0). It remains to
verify that the decomposition (2.7.1) is possible. If x € H, then 2 + i*x € H,
o« — i*xe H (since & + i*3 € H#), and o = e+ *0) + o — i*q).

Since w > @ is an R-linear isomorphism of % onto J, it follows from
(2.7.1) that

1 1

To show that {wy, ..., .+ form a basis for # it suffices to show that this is
a linearly independent set. Let
'C=(cl,...,cg),withcjeC,A =ReC,B=1ImC,
Q=(w,,... W),
tml = (“1, P ’“0)’ tQ[z = (“g+ TR ’“ZE)‘
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Assume (recall that 4, and 2, have been defined in 111.2.5)

0="CQ=(A+IBYA; +*A) = (A4 +IB)[U + i(4, Y, + 4,%,)]
="AU; —'BA, U, + 4, ) + i['BA, + AL U, + 4,U,)]
Thus, we obtain two equations:
(4 -'Bi)U, ='BA,U,, (B+'41)¥U, = ~'41,%,.

Since the differentials in W, are linearly independent from the differentials
in A,, we conclude that

- By =0="dl,.
e

Since Z, is non-singular,
‘B=0="4. a

111.2.8. We return now to the matrix I' + iJ. In particular, we restnc;t
our attention to the first g rows of this matrix; that is, the g by 2g matrix
(;.2, _j‘l + 11).

We have shown by (2.6.1) that the (jk)-entry of 4, is —i [y, w;; and the
jk)-entry of —4, + ilisi [, w,. _ .

U We conclude lthm if we consider iw,, ..., iw, as a ba'51s for the vector

space J#, of holomorphic differentials on M', thcn the period matrix (whose

(j.k)-entry is [, iw;) with respect to this basis is

(=4, +il, —4,)

ic di i ¢ linearly indepen-
Similarly, the holomorphic differentials w, . 15+« s W2q AT :
d:ant (ov);r C), and the last g rows of the matrix I' + iJ is the g x 2g matrix

(=thy — i, —4).

Thus, the period matrix of iw,.,y, ..., iw,, (Whose (j,k)-entry is [y, i®;-,)
is of the form .
(=43, + iI).

We now make another change of basis. Let

E=tlh. . L) =(=43) Yoy, . . si03,).
With respect to the basis £ of #, we obtain the period matrix
(I, (= 43)™ Vg + i(=43)7 1) = (L.I). 28.1)
Proposition. There exists a unigque basis {{,, . g} for the space of _hoélo—
morphic abelian differentials (= space #) with the property _[,,J. (=04

. ; . e tric
Furthermore, for this basis, the matrix IT = (ny) with 7, = |, , Cx is symmetr
with positive definite imaginary part.
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PROOF. We must only verify that [T is symmetric and Im 17 > 0. To show
that 7 is symmetric it suffices (because 23 = 43) to show that (—43) 71,
is symmetric. But (recall (2.5.4))

'[(_)-3)-“11] = '11(""{3)_1 = '3-1(")-3.)—1 = (_':-3)_1 x':-1-

Note that since Im IT = (—43)™%, positive definiteness is not anissue. [

Remark. Note that (~ 45) = I if and onlyiffork,j=g+1,..., 2g,

1 . L k=j

i(wk’wf)_lﬁj_' Wy = {0’ k#

if and only if (0, , //2, . . . ,,/\/3) is an orthonormal basis for # viewed
as a Hilbert subspace of LM ). Can this happen? Yes, if and onlyiflm il =1
(see (2.8.1)). '

II1.3. Bilinear Relations

We start with a compact Riemann surface M of positive genus g > 0, and
a canonical homology basis {a,,... 85by, ... ,bg} on M. Let {... Lo}
be the dual basis for holomorphic differentials (thatis, [, ¢ i = 0;). Represent
the Riemann surface M by a 4g-sided polygon .# with identification. Our
starting point is Formula (2.3.1) for the “inner product” of closed differentials,
Let 0 and 0 be closed differentials, Since .4 is simply connected, & = df on
~# with f a smooth function on . (note that at equivalent points on 5.4,
/ need not take on the same value). As we have seen in the remark in [11.2.3,
formula (2.3.1), may be viewed as a consequence of two identities -

Jfuoro=1 78 (.0.)

Jia 0= li [f 0f0-fof (9’]. (3.02)

We shall see in this section that normalizing a set of meromorphic differ-
entials (with or without singularities) forces certain identities between
their periods. These are the “bilinear relations” of Riemann. They will turn
out to be useful in the study of meromorphic functions on M.

and

IN.3.1. Let us assume that 0 and § are holomorphic differentials, then

0= Igl [L, ber o~ Lz 6 L« §:’ G.L1)

Equation (3.1.1) follows from (3.0.2) bz Cauchy’s theorem, or from (2.3.1)
since 0 A8 = 0 for holomorphic 6 and 6. We now let6={;and = s, and
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obtain LJ - J;k . 012

Of course, (3.1.2) is just another way of saying that the matrix [T introduced
in I11.2.8 is symmetric.

IL.3.2. Next we let 0 ={; and § =T,. We note that (df = {; on .#) by
Stokes’ theorem (Formula (3.0.1))

J:mf‘fk = _”1” C;A?fk-

r»_\_i(g;z,;)‘___ IJ—; _Z'J;k ¢

= —2i(Im 7;,)

We conclude that
~

(as usual m is the (jk)-entry of the matrix ). In particular,
Imn; > 0.
Applying the same argument to
g
0= Z ¢l e €C,
k=1

we conclude that
ImIT>0.

These facts have already been established in 1I1.2.

IT1.3.3. Proposition. Let @ be a holomorphic differential. Assume either

a. all the “a” periods of 0 are zero (that is, j',,j 0=0,j=1,...,9),0r
b. all the periods of 0 are real.
Then 6 = 0.

PROOF. We compute

|1o||2=ﬂMeA*v=iﬂweAv_
=il=§l[ﬁlem-ﬁleﬁle}

In either case (a) or (b) we conclude that ||0]|* = 0, and hence 6 = 0. O

Remark. The above observation (plus the fact that dim # =g, wh;re
X = #(M)) can be used to give an alternate proof of the theorgm that
there is a basis for # dual to a specific canonical homology basis. (The

reader is invited to do so!)
I1.3.4. We shall now adopt the following terminology: Recall that

i i i ials. The abelian differ-
meromorphic one-forms are called abelian differentia abe ‘
entials v:gich are holomorphic will be called of the first kind; while the
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meromorphic abelian differcntials with zero residues will be called of the
second kind. Finally, a general abelian differential (which may have residues)
will be called of the third kind. Before proceeding let us record the following
consequence of the previous proposition.

Corollary, We can prescribe uniquely either
a. the “a” periods, or
b. the real parts of all the periods

Jor an abelian differential of the first kind.

PROOF. Consider the maps # —C¢ and H# - R defined by s
Ua, @+ - -.fa, @) and o+ (Im fay @, ..., Im Joo@Im [y 0,... ,Im fs, @), re-
spectively. The map J# — C% js a linear transformation of s viewed as a
g-dimensional vector space over C, and the map # — R js a linear trans-
formation of # viewed as a 2g-dimensional vector space aver R. The
preposition tells us that these maps have trivial kernels and thus are iso-
morphisms (since the domains and targets have the same dimensions). [

Remark. Parts (a) of the proposition and its corollary have previously been
established (Proposition I11.2.8).

IH.3.5. Let us consider abelian differentials of the third kind on M.

Choose two points P and Q on M. Itinvolves no loss of generality to assume
that the canonical homology basis has representatives that do not contain
the points P and Q. Let us consider a differential ¢ regular, (= holomorphic)
on M\{P,Q}, with

ordpt=—] = ord, 1,

351
respt =1, resg T = —~1, ( )

T— |, 1= 2min. (3.5.2)
-]

The easiest way to see (3.5.2) is as follows: Let @ be an arbitrary abelian
differential of the third kind on M. Let Py, ..., Py (k > 1) be the singularities
of 0. Assume that the canonical homology basis for M does not contain

any of the points P, Let ¢ipj=1,...,k be a small circle about P, We
may assume that the curves

ay,...,a, bl,...,bg, CpsenyCy

are mutually disjoint. It is €asy to see that on M’ = M\{P,,.. P}, ¢, is
homotopic to

g k-1
—1p-1

H aibjaj bj ” Cj,

j=1 i=1
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and that the curves
Ay, ..y, by, ..., b, Crye s Choy
form a basis for H(M"). The differential 0 is closed on M', Hence, if ¢ is a curve

on M which is homologous to zero, then on M’ it is homo}ogous to a linear
combination of ¢y, ..., ¢;_. Thus there are integers n; with ¢ homologous

to Y %21 njc;. Hence 5
k—1 -

fe: 5 n,f 0=2ni Y nresp, 0. (3.53)
¢ i=1 € j=1

Clearly (3.5.2) is a special case of (3.5.3). .
eIn g'a(rticular, for © a% before, [ , T is defified only modulo 2niZ (hereafter,

mod 2xi).

11L3.6. To get around the above ambiguity, we consider Af.l as rcpre;ent(.:d
by the polygon .# with identiﬁcation;. We choosp two points P an 3% ;;1
the interior of .#. Let ¢ be a differential of the thlrd kind satlsf.ymg 3. h t
By subtracting an abelian differential of the first kind, we normalize 7 so tha

fr=0, ji=1...,9 (3.6.1)
ay

fN 7is purely imaginary, j=1,...,2g. (3.6.2)
J

We denote the (unique) differential ¢ with the first normalization by
1pg and the one with the second normalization by wpy.

i i finite curve—not its homology
Warning. In (3.6.1) we think of q; as a de
cla‘:: Ifgwe want to think of it as a homology class, (3.6.1) must be replaced

by
f t=0(mod2xi), j=1,...,9 (3.6.1)
aj

and 1, is no longer unique.
Applying (3.0.2) with @ = {; and § = 1, we obtain

J:)Jl ﬁPQ = fbj tPQ'

The line integral around the boundary of .# can be evaluated by the residue
theorem, since

f@=[.¢
with the path of integration staying inside .#. Thus we obtain
[a fire =2milf(P) = £1Q)),
y
° 2ni f: (= fb,. Tros (3.6.3)

as long as we integrate {; from Q to P along a path lying in .#.
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Similarly,

20 [T )
zj; (= ﬁu Wpg —:; Tt fa, @ro;
where n;; is the ( Jd)-entry of the period matrix II.

I1L.3.7. We treat now the case where

B=TPQ, g=TRS

(P, Q, R, S are all interior poj
» &, R, lor points of .#). Here we cannot =
on .#. To get around this little obstruction, we cut .# by jo?xj?:;tat I;ti:t ESZ

0.# to P by one curve and to O b
anoth { in thi i
connected region .#' (see Fngurey I1L.2). Freure. We obtain this vayasimely

In A, 0= df where

fa=["o. \

Now a simple calculation yields

L#, S0 = 2ni[res, 10+ ress f9]
=2mi( f(R) ~ £(S))

=2 .
The formula analogous to (3.0.2) is

Lﬂ,f5=‘§1[ﬁleﬁ'§ LIBL'§]+£f§,

where ¢ is a curve from 0 to @ back to 0 (¢
0. 1\'Iow the value of f on the + side of
— side by 27i (by the residue theorem),

Thus
ﬁf@=2ni[ﬂpg—j;q§]=2nij;‘p§.

We summarize our result in

on _the other side”) to P and back to
¢ differs from the value of S on the

R P
fs Tpg = j;z TRs

Figure II1.2. Tllustration for genus 2,
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(where as before each path of integration is restricted to lie in 4" = .4\
{lines joining R and S to 0j). For the differential wpy, a similar formula can
be derived; namely

R P
RC J; pr =Re fQ Wpgs-

[I1.38. Let Pe M and choose a local coordinate z vanishing at P. We
have seen that there exists on M ,{P} a holomorphic differential & whose
singularity at P is of the form

”"7
- - z v

Assume that 8 is normalized so that it has zero periods over the cycles
ay, ..., a, Let
6={= (Z aﬁ"’z’) dz atP. (38.1)
=0
Then, as before,
2ni
— T D
fb!é i LN (382)
We will denote the differential @ considered above by the symbol

),

and note it depends on the choice of local coordinate vanishing at P. (For
our applications, this ambiguity will not be significant.)

IIL.3.9. A few other possibilities remain. We will not have any use for
other bilinear relations. The reader who is looking for further amusement
may derive more such relations.

II1.4. Divisors and the Riemann—Roch Theorem

‘We come now to one of the most important theorems on compact Riemann
surfaces—the Riemann-Roch theorem, which allows us to compute the
dimensions of certain vector spaces of meromorphic functions on a compact
Riemann surface. The beauty and importance of this theorem will become
apparent when we start deriving its many consequences in subsequent sec-
tions. As immediate corollaries, we obtain the fact that every surface of genus
zero is conformally equivalent to the Riemann sphere and give a new (an-
alytic) proof of the Riemann-Hurwitz relation.

Although many definitions will make sense on arbitrary Riemann surfaces,
most of the results will apply only to the compact case. We fix for the duration
of this section a compact Riemann surface M of genus g > 0. We let £ (M)
denote the field of meromorphic functions on M.
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IM1.4.1. A divisor on M is a formal symbol

QI: P}IP::Z I)'zk’
- A

. | (4.1.1
with P;e M, ;€ Z. We can write the divisor U as )
A= PR
| PIJM , {4.1.1a)
wn&/ :(I:t) Ie) Z, a(P) # 0 for only finitely many Pe M
grou (wr'tW(M) defloye th'c group of ditisors on M it is the free ¢ i
: p (written multiplicatively) on the points in M. Thus, ; s givon by
AN M. Thus, if U is given by
B = H pa®
then Fe ’
AB = H PrPYBP) |
and relt ’
A~ = H p-ap)
The unit el o ‘
unit element of the group Diy(/ i
: en ' p Div(M) will be d
For A € Div{v) given by (4.1.1a), we define noted by 1
deg A= 3 y(P).
It is qui o
quite clear that deg establishes a homomorphism
f deg:Div(M) - 7
rom the multiplicative groy ivi '
: group of divisors onto the addit; i
If f & 4 (M).{0}, then / determines a divisor ( fj edgli‘\l/ifflr)o;)? efintegers
()= [T poror.
ﬂ, (4.1.2)

It is clear that we have established a homomorphism

( )yxEn: - Div(M)

from the multiplicati
phcative group of t
of degree zero (see Pro P of the field

called principal. The gro
as the divisor class
factors through to th
divisors introduces
are called equivalent
then

Mi .
positon LL6). A divisor i 1 e 1L 0T
up of .leiS'Ol’S modulo principal divisors is kno)wlz
é]gqug. It is quite clear that the homomorphism, de
o ivisor class group. The (normal) subgroup of prix;cipz%l’
eqlflvalencg relation on Div(M). Two divisors 91 B
(2 ~ B) provided that /% is principal. If f € A (a),C

f_l(oo) = H Pmu(—ordpf,o)

PeM
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defines the divisor of poles of (or polar divisor of) f. Similarly,
f— I(O) = n Pmax:ordp 7.0}

PeM

defines the divisor of zeros of (ot zero divisor of) f. Both divisors have the
same degree as the function f, and since

_ SO
()= =iy
they are equivalent. More generally, for c € C,
" ~ fTHo=(f - 0=,

Thus the divisor class of £~ !(c) is independent of c € C U {wo}. (It will be
clear from the context when f ~ {c) stands for a divisor or just for the under-
lying point set.)

One more remark about equivalent divisors: Let [, and f> be mero-
morphic non-constant functions on M. Assume that f; = Ao f, for some
Mobius transformation A. Then £ (0) = f3 (47 }(s0)). Thus f1 (0) ~
f3l(=)

If 0 # w is a meromorphic g-differential, then we define the divisor of
w in anology to (4.1.2) by

()= [T Prre.
PeM

A divisor of a meromorphic g-differential is called a g-canonical divisor,
or simply a canonical divisor if ¢ = 1. We note that if w, and w, are two
non-(identically) zero meromorphic g-differentials, then w,/w;€ X (M)*
and hence the divisor class of (®,) is the same as the divisor class of (w,).
We will call it the g-canonical class (canonical class, if ¢ = 1). Since abelian
differentials exist, the g-canonical class is just the gth power of the canonical

class.

I11.4.2. The divisor U of (4.1.1a) is integral (in symbols, U > 1) provided
«(P) = 0 for all P. If, in addition, A = 1, then U is said to be strictly integral
(in symbols, A > 1). This notion introduces a partial ordering on divisors;
thus 9 > B (or A > B) if and only if AB~' = 1 (or AB~! > 1)

A function 0 # f € X (M) (resp., a meromorphic g-differential 0 # w) is
said to be a multiple of a divisor 2 provided (f)U~ 1> 1 (resp., (@A~ = 1).

In order not to make exceptions of the zero function and differential, we
will introduce the convention that () ~! > 1, for all divisors A € Div(M).
Thus, f is a multiple of the divisor U of (4.1.1a) provided f = Qor

ordpf > a(P), allPeM.

Hence such an f must be holomorphic at all points P € M with a(P) =0;
f must have a zero of order = «(P) at all points P with (P) > 0; and f
may have poles of order < —a(P) at all points P with 2(P) < 0.
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I11.4.3. For a divisor A on M, we set

_ L(Ql)={f61’(M);(f)2Q‘}~
1s obvious that L{A) is a vector s i
- : ace. Its d i i
(), and we will cal] 1t the dimension Ef the dsivi;r;-e;:]on il be denoted >

Proposition. Let U, B € Div(M). Then
B>UA= L(B) < ().
PROOF. Write
. B =AJ
with 3 integral. If f € L(B), then (NB~!'> 1. But
-1 _ -1
Thus, f ¢ L(2n), R MRS =t /
I1.4.4. Proposition. We have L(1) = C, and thus r( 1)=1
Proor. If f ¢ L(1), then (f) = 1; that is

N ordp f >0 aliPe .
nce f has no poles it is constant by Proposition I1.1.6
.1.6. O

n14.5. p iti g .

o Toposition. /f U € Div(M) with deg A > 0, then r(20) =
OOF. If 0 3 f e I(9 e

16 S € L(), then deg(f) = deg A > contradicting Proposition

11L.4.6. For % ¢ Div(M), we set "

Q = . 1 . .
and (0 = {; w is an abelian differentia] with () > 9}

N {A) = dim Q).
e call i(A), the index of specialty of the divisor 9,
Theorem. For 91 ¢ Div
(M), r(¥) and i(2
v ‘ . i() depend on] jvi,
urthermore, if 0 £ o is any abelian differentia) ot';::noi,;é?)e d“r};sQ(;E- 0)1‘151; i
, = w)™h),

PROOF. Let 9, be equi
- quivalent to A, (that j -1 —
or WAz " = () for some 0 % fe }((M))‘ lls"hegéﬁfé ml:pz; iﬁrgmcxpal divisor

L¥y)3 his bf e L,

establishes a C-linear isomorphism, proving that

Next, the mapping r(¥U,) = r(A,). 46.1)

¢
200 302 e L)
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also establishes a C-linear isomorphism proving that
i(A) = r(Ww) ™). (4.6.2)

Finally, if U, is equivalent to U,, then (4.6.1) and (4.6.2) yield (upon
choosing a non-zero abelian differential w)

i(Uy) = r(Uy(w)™ ) = r(Uyw)™") = i(Ay). g

H1.4.7. It is quite easy to verify the following

Proposiftjon. We have Q(1) = #'(M), the space of holomorphic abelian
differentials (see Proposition 111.2.7) and thus i(1) = g.

TI1.4.8. We will first prove our main result in a special case.

Theorem (Riemann—Roch). Let M be a compact Riemann surface of genus g
and U an integral divisor on M. Then
HA ) =degU—g+ 1+ i) (4.8.1)

ProoF. Formula (4.8.1) holds for % = 1 by Proposition 111.4.4 and Prop-
osition 111.4.7. Thus, it suffices to assume that % is strictly integral.

A=Pp---Pw, PjeM,neZn;>0,
deg A=Y n;>0.
j=1

Note that C < L{A~1). Furthermore, if f € L(2™1), then f is regular on
M\{P,,...,P,} and f has at worst a pole of order n; at P;. Choosing a local
coordinate z; vanishing at P;, we see that for such an f, the Laurent series
expansion at P; is of the form

0

Y caZh
k=-—ny
Consider the divisor
A’ =PT+1 .. ,an,,.+l.

Let {ay,....a,by,...,b,} be a canonical homology basis on M. We think
of the elements of this basis as fixed curves in their homology classes and
assume they avoid the divisor U. Let Q4 ') be the space of abelian
~differentials of the second kind that are multiples of the divisor % ™! and
have zero “a” periods. We can easily compute the dimension of Qo(U'” n,
Recall the abelian differentials % introduced in 1I1.3.8. For P = P; and

2<n<n+ 1,19 e QW) Thus

dim QoW > ¥ n; = deg U.
j=1



- I Compact Riemann Surfaces
Conversely, if e Qo(W 1Y), then

C()=( Z djsz)dzl' Withdj,_l =O
(3

= ~n,~1

in terms of the local coordinates z;. Thus we define a mapping

S:Qo(A 1) o Clezn
by setting

S(CD) = (dl’—Zi e rdl, —n,—l,d2’—2) LN ,d2, ~my=1s+ 4. d

“m,—-25. .. adm, —nm—l)'

If w e Kernel S, then w is an abelian differential of the first kind with zero
“a” periods, and hence ¢ = 0 by Proposition II1.3.3, Hence § is injective,
dim Qu(A'~1) = deg U, and every o € Qo(A™1) can be written uniquely as

-2

Y dyre (4.82)

1Lk=-n~

w =
J

™a

We consider the differential operator
LAY S Qo(U—Y,

Since Kernel d = Citis necessary in order to compute r(A~1) to charac-
terize the image of d. Now wedL(U™Yifand only if & has zero “p” periods.
We conclude that

dim Image d > deg A — 4 (4.8.3)

(since each “b” curve imposes precisely one ligear condition). Using the
“classical” linear algebra equation

r(U™Y) = dim Imaged + 1, (4.8.4)
we obtain from (4.8.3), the Riemann inequality,

MU > deg U — g 4 1.

m -2

2ri o7 4@y (P) =0, 4.8.5
B X TP 483)
where {{,, ... £} is a basis for the holomorphic differentials of the first
kind dual to our canonical homology basis and the power series €Xpansion
of {; in terms of z; is given (in analogy to (3.8.1)) by

{= ( ) ag"(P,.)z;) dz; at P,

=0
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We recognize from (4.8.5) that the image of d is the kernel of a certain operator
re 8
froem Cd=® to €. Consider the operator
T:Q(1) — Coee¥
-1), where we

. ’em,nm

defined by T(w)={(ey,0s--- 1.y~ 1:€2,05 - - - 1€m,05 - -
(1) has Taylor series expansion

k=0

Represent the linear operator T with respect to the basis {{,, . .
and the standard basis gf Cdee® a5 the matrix
~

L, of (1)

e ) )
:x(.l)_ (Py) ‘ (xfﬁ)_ +Py)
OC(011)(}32) o§(Py)
A4(P,) ' (Pa)

A (P W2 (P e A0 (Pa)

Thus we recognize that
Image d = Kernel ‘T.

We thus conclude that ‘ ‘
dim Image d = dim Kernel ‘T = deg & — dim Image ‘T
=deg A — dim Image T
= deg A — (dim Q(1) — dim Kernel T).
t
Since Kernel T = Q(2), and dim Q(1) = g, we have shown tha
dim Image d = deg A — g + i(N),

and (4.8.4) yields (4.8.1).
111.4.9. We collect some immediate consequences of our theorem.

) . th
Corollary 1. If the genus of M is zero, then M is conformally equivalent to the
oro .
complex sphere C L {c0}.
Proor. Consider the point divisor, P € M. Then
P~ 1) =2

i i i ~1). Such a
Thus, there is a non-constant meromorphic fun;tgt z{ Q}Léfpn))position
funct’ion provides an isomorphism between M an x

1.1.6.
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Corollary 2. The degree of the canonical class Z is 29— 2.

PROOF. If g = Q, then compute the degree of the divisor ¢z (which is regular

except for a double pole at ). Thus we may assume g > 0. Since the space

of holomorphic abelian differentials has positive dimension, we may choose

one such; say {. Since (¢) is integral
r((©)7") = deg(0) ~ g + 1 + i((Q)).

By Theorem I11.4.6 we have r((©)"") = i(1) and i(({)) = r(1). Thus we have

g=deg({) —g +1 + 1, and hence the corollary follows. 0

Corollary 3. The Riemann-Roch theorem holds for \the divisor U provided
that

a. Wis equivalent to an integral divisor, or
b. Z/W is equivalent to an integral divisor for some canonical divisor Z.

Proor. Statement (a) follows from the trivial observation that all integers
appearing in the Riemann-Roch theorem depend only on the divisor class
of A (by Theorem 111.4.6). Thus, to verify (b), we need verify Riemann-Roch
for U provided we know it for Z/U. Now
(W =rW2Z) = deg Z/N—g+1 4+ i(Z/)

=degZ —degU—g+1 +r(¥UY

=20-2—degA—g+1 + A,
Hence, we have proven the Riemann-Roch theorem for 9I. 0
II1.4.10. To conclude the proof of the Riemann—Roch theorem (for arbitrary

divisors), it suffices to study divisors U such that neither A nor Z/9 s equi-
valent to an integral divisor, for all canonical divisors Z.

Proposition. If r(A~1) > 0 Jor We Div(M), then U s equivalent to an
integral divisor.

Proor. Let f € L(A~1). Then (/) is integral and €quivalent to 9. ]

Corollary. If i() > 0 for A e Div(M), then Z/U is equivalent to an integral
divisor.

PROOF. Use i(¥) = r(%/Z). ) ]

H1.4.11. If A € Div(M ), and neither U nor Z/9 is equivalent to an integral
divisor, then (W) =0=rA") Thus, the Riemann-Roch theorem asserts

in this case (to be proven, of course)
deg W=g—1. (4.11.1)

Thus verification of (4.11.1) for divisors U as above will establish the following
theorem.
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- ;
Theorem. The Riemann-Roch theorem holds for every divisor on a compac
surface M.
PrOOF. We write the above divisor o as
A=A /A,
with %, (j = 1,2)integral and the pair relatively prime (no pointsin common).
j — Ly
have
Wenow deg U = deg A, — deg A,,
i i lity
and by the Riemann inequa. o
r(%f‘)zdegﬁl{l —gi1=deg¥, +degA—g+ 1
t
Assume tha deg ¥ > g
We then have AU > deg O, + 1.
i 1 i h point in %,.
L(A[ ") that vanishes at eac
s o 2. 1o i conditions on the vector
ishi ints of 9, imposes deg U, linear . .
(VamShlr\ll%_alt)pﬁ_ rArY i: big enough, linear algebra Rrovxdes the des:.rgii1
T‘pacfiol;l( ) 'lrhl;s fe Ll(‘llz /U,) = L(A"), which contradicts the assumpti
unction.
that r(A~!) = 0. Hence

degU<g-—-1L
Since 0 = i(A) = r(U/2), it follows that
deg(Z/W) <g -1,
. degU>g—1,

a
concluding the proof of the Riemann-Roch theorem.

€
I11.4.12. As an immediate application of Cprollary 21 to Thl;zc;;rlnllélﬁﬂo ‘:,1;
v .an;)ther proof of the Riemann—ngw:tz formula (T . Le.t f ; ur
rst f was topological. This one will be complex analytic. e e
o P o map f a compact Riemann surface M of genus g onto a sur acew
s maiot n = deg f. Let  be a meromorphic g-differential on Nl. i
Qf s :romorphic g-differential Q on M as follows: Let z be a oc(a:f
léci;to?iiitr(:a?ergn M and { a local coordinate on N. Assume that in terms

these local coordinates we have

: ¢ = flz).
fois B g8

/in terms of {, then we set Q to be

h(f(z))f'(2)*dz* (4.12.1)
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in terms of z. Note that if z is replaced by z,,
of z; the map f is given by

C=(S =Wz,

and thus we assign to -,

h(f Wz ) (w(z1))ow/ (2, ) d4

which shows that © is indeed a meromorphic q-diﬂ“eren{'ial. Without loss of
generality, we may assume that for P e M, z vanishes at P, [ vanishes at

J(P),

{= PP+
From this and (4.12.1) we see that

ordp @ = (b,(P) + 1)ord ;py @ + gb(P). 4.12.2)

Formula (4.12.2) will be very useful in the se

quel. For the present we merely
use it for ¢ = 1. We rewrite it as {forg=1)

ordp Q = (bf(P) + 1) Ordf(p) w + bf(P) (412.3)
Let us choose an abelian differential ¢ t

at the images of the branch points of f. (With the aid of Riemann-Roch
(and allowing lots of poles) the reader should have no trouble producing
such an w. If 7 > 0, w can be chosen to be holomorphic.) We wish to add
(4.12.3) over all P € M. Observe that Corollary 2 of Theorem I11.4.8 gives
' Y ordp Q=292
PeM
and recall that by definition

Y b(P)=B.
PeM
We need only analyze
Z (bf(P) + 1) ordf(p) = Z ordf(p) w
PeM PeM
be(Py=0
= ) nordgw=n(2y - 2).

QeN

This last equality is a consequence of the fact that each Q e M with
ord, w # 0 is the image of precisely n points on M.

IIL5. Applications of the Riemann—-Roch Theorem

What can we say about the meromorphic functions on the compact Riemann
surface M with poles only at one point? What is the lowest degree of such a
function? In this section we shall show that on a compact Riemann surface
of genus g > 2, there are finitely many points Pe M (called Weierstrass

with z = w(z,), then in terms

hat is holomorphic and non-zero
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points) such that there exists on M a meromorphic function f regular on
\{P} withdeg f< g. o .
" \\{V}::) srall seegv{hen we study hyperelliptic surfaces (in III.7)Vamdhwthetrl1'l :Zz
study automorphisms of compact surfages (in Chapter_ )t asurfaoe
Weierstrass points carry a lot of information about the R}Znolar:; b g
1 i i t Riemann sur
Throughout this section, M is a compac : fac
(usualrly pgc?sitive), and Z e Div(M) will denote a canonical divisor.

111.5.1. We recall (to begin) that the Riemann—Roch theorem can be written
for D € Div(M) as

(D" =degD—g+1+r(D/2) (5.1.1)
Furthermore r(‘;) — 0 provided deg D > 0, (5.12)
nd i(D) = 0 provided deg D > 2g — 2. (5.1.2a)
Ifdeg D = 0, then (D)< 1, (5.13)
e r(D) = 1 < D is principal. (5.1.4)

Finally, foranyge Z f
L(Z™% = #%M), the vector space O
7 holomorphic ¢-differentials. (5.1.5)

belian differential w such
ify (5.1.5) note that we can choose_an.a . : h
tha’f(()a:/)e: )é(and )now observe that fe L(Z~% if and only if fw? is a holo
morphic g-differential. The mapping
L(Z™ Y 3 f i fwle #YM)

establishes a C-linear isomorphism between the spaces.

[IL5.2. Proposition. Let g € Z. The dimension of the space of holomorphic
q-d.ijferentials on M is given by the following table:

Genus Weight  Dimension
g=0 g<0 1—2g
g>0 0
=1 allg i
g>1 g<0 0
g=0 i
g=1 g

g>1 (q-Dig-1

.
/

~

.Let D = Z%in (5.1.1), then .
proor. Le HZ 9 =Qg—Dg—1+r2Z"). (5.2.1)

From (5.1.5), the dimension to be computed is r(Z™9).
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Assume that g > 1. If 4 <0, then
deg Z79 = —g(2g — 2)>0,

and thus r(Z"%) =0 by (5.1.2). We alrcady know that r{l) =1, and that
HZ7Y)=g. For ¢ > 1, r(Z%71) = 0 (by what was said before), and (5.2.1)
gives a formula for r(Z -9,

Next forg =1, (5.2.1) reads -

NZ™9) = r(zea Y, (522

If0#wisa holomorphic g-differential, it must also be free of zeros (deg(w) =
0). Thus @™ is a (— g)-differential, Hence,

HZ™9) = r(z9) (5.2.3)
We conclude from (5.2.2) and (5.2.3), that r(Z% = r(Z%" '), From r(l) =1,
we conclude that r(Z9) = 1, by induction on q.

Finally, for g=0,deg Z= -2, Thus nZ"=0forn< —1, and (5.2.1)
yields the required results. a

EXERCISE

Establish the above proposition for g =0and 1 without the use of the Riemann-Roch
theorem. (For g = 0, write any w € #%YM) as w = fd=7 with JSeX(M). Thus f is a
rational function. Describe the singularities of f.)

I1.5.3. Theorem (The Weierstrass “gap” Theorem)., Let M hare positive
genus g, and let P e M be arbitrary. There are precisely g integers

I=n <nm<<n <y (5.3.1)

such that there does not exist a Junction f € (M) holomorphic on M\{P}
with a pole of order n ;at P,

Remarks

1. The numbers appearing in the list (5.3.1) are called the “gaps” at P. Their
complement in the positive integers are called the “non-gaps”. The
“non-gaps” clearly form an additive semi-group. There are precisely g
“non-gaps™ in {2,...,2¢} with 2g always a “non-gap.” These are the
first ¢ “non-gaps” in the semi-group of “non-gaps.”

2. The Weierstrass “gap” theorem trivially holds for ¢ = 0. Since on the
sphere there is always a function with one (simple) pole, there are no
“gaps”.

3. The Weierstrass “gap” theorem is a special case of a more general theorem
to be stated and proven in the next section.

IIL5.4. We stay with the compact Riemann surface M of positive genus
g. Let

P19P2,P3,...
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be a sequence of points on M. Define a sequence of divisors on M by
Do=1, Dy, =DiP;j.,, Jj=01,....
We now pose a sequence of questions.

uestion*j” (j=1,2,...) . . ‘
¢ Does there exist a meromorphic function f on M with

()= Dj' and (f)#Dj,? .
We can also phrase the qlielstion i{llar})other way. Does there exist a (non-
constant) function f € L‘Dj )\L(Dj_ 1) | | n
Theorem (The Noether *“gap” Theorem). There are precisely g integers ny

satisfying (5.3.1) such that the answer to Question j” is no if and only if j is

one of the integers appearing in the list (5.3.1).
k. Takin -
Remar. g PP —pym = Py=

i i oether
we see that the Weierstrass “gap” theorem is a special case of the N

jisa“gap” ided the answer to Question
“gap” em. We shall say thatjisa“gap” provi answ n
“%?I;s trlllsoierr;en there is need, we will distinguish the “Weierstrass gaps
j : At
from the “Noether gaps”.

ion “1” is always no, since g > 0.

HEOREM. The answer to Question " is alw _ >

?tmpnoiTl as asserted. The answer to Questlon. j7is ¥es if z;)n?l (;riy(;)

r(Du‘S‘) = r(lS-'_‘l) = 1 (the answer is no if and only if /(D; ") — r{D;-, .

F ro!m the Rie]mann—Roch theorem sa
r(D;y ') —r(Dj ) =1+ D)) — i(Dj- 1) 4.

Thus for every k > 1: )
rDy ) —r(D5) =Y, (D; ")~ r(Dj-4)
i=1

=k+ f (iD;) — i(D;_1)) = k + i(Dy) — i(Do),
j=1

” ADF Y~ 1=k +i(D) g 2
and this number is the number of “non-gaps” <k. Thus for k> 2g —
(thus deg D > 2g — 2 and i(D) = 0)

k — (number of “gaps” < k) =k —g. -

13 " < — 1‘
Thus there are precisely g “gaps” and all of them are __2g. ) -
IM1.5.5. We now begin a more careful study of the Weierstrass “gaps’.
Let. P & M be arbitrary, and let
I<o;<o,<- - <a,=2g

be the first g “non-gaps”.
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Proposition. For each integer j, 0 < j < g, we have
oG+ o, ;> 2
PRroOF. 3 »
pRooF iuppose that %+ %, ;< 2g. Thus for each k <j we would also
Ly :1 %y J < 2g. Since the sum of “non-gaps” is a “non-gap”, we would
¢ atleastj"non-gaps” strictly between %-jand o,. Thus at leas’t g—-7+

J+1=g+1 “non-gaps” <2 icti
3 such “aon-gane PS" =<Zg, contradicting the fact that there are only
]

111.5.6. Proposition, If %y =2, then o; = 2j and to_;=2g9for0<j<g
- .

PROOF. If o; = 2, then 2, 4 2 “ ”
are all the “mom sy S,zg, -+» g are g "non-gaps” <2g, and hence these
0

IL5.7. Proposition. If oy > 2, then for some Jwith0 <j < g, we have

o ta, > 2g.
Proor. We assume that o
j+ %y =2g for all j wi j
letz[q] t;e the greatest integer _<_qg. 'I{hen gl 24, pagisg Foracth,
<2g. If a; > 2, then the above ac ts for
R counts for at most 29 < g “non- ”,
and th.ere must be anqther one <2¢g. Let o be the ﬁgrit “flo:-oz %aps ’
appeariiig in our previous enumeration. For some integer g1p i
[2g/2,] < g, we must have srnsrs
ray <x<(r+ 1)a;.
Thus we have “non-gaps”

o A, = 20
15 2 15 ey % = ro,, o 4 =,
T 1 r+1 3

and by our assumption
Og—y =29 —
-1 =29 — o, oy, =2g ~
’ g—r 29 ray, Ag—r+ n= 2g -a

(note thatifr + 1 =g, then o, = 2

=9, = 2g and the last equality reads u, = O—whj
can be added consistently to our data). These are all);he “noflo- a N 2 w‘l?Ch
are 2o,y and <2g. It follows that Bipe” which

Oy + Xyoprgy = 0 +2g—a=2g—(a—a1)>2g—roz1 =g
g-r
It therefore follows that there is a “non-gap” < 2g, greater than o and not
g—r

in the list o is i i
91>+ 3 %-¢4yy. This is an obvious contradiction. O

Corollary. We have

g—1
_Zl %2 g(g — 1),
i=

with equality if and only if oy =2.

fRSO; Erom Proposition‘ HL5.5, 23921 o > 2g(g — 1). Furthermore if
1 = 2, then we hgvg equality in the above by Proposition 111.5.6. If %, > 2
we must have strict inequality by Proposition I11.5.7. T 1 >{j

-+ [2g/2, ], are “non-gaps”
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I11.5.8. We have seen in I11.5.4, that j > 1 is a “gap” at P € M if and only if
HP ) —r(PTIT) =0,
if and only if ‘
(P — i) = 1;
that is, if and only if there exists on M an abelian differential of the first kind
with a zero of order j — | at P. Thus the possible orders of abelian differential
of the first kind at P are precisely
O=n—-l<n-—-1<-<n—-1<529-2,

where tlie n;’s are the “gdz;ps” at P-(appearing in the list (5.3.1)). The above
situation is a special case of a general phenomenon, which we shall proceed

to study.
Before proceeding to study the general situation, let us observe that we

have established the following basic Fact. Given a point P on a compact
Riemann surface M of genus g > O, then there exists an abelian differential
w of the first kind (w € #'(M)) that does not vanish at P (that is, ordp @ = Q).

Let A be a finite-dimensional space of holomorphic functions on a
domain D < C. Assume that dim A =n> 1. Let ze D. By a basis of A

adapted to z, we mean a basis {@, .. . ,@,} With
ord, @, < ord, @, < - < ord; @, (5.8.1)

To construct such a basis, let

1 = min {ord, ¢},
ped

and choose @, € A with ord, ¢, = g,. Then
~ Ay ={peA;ord;, o> py}
is an (n — 1)-dimensional subspace of A, and we can set

Yy = min {Ordz (p}.

peAd,

By induction, we can now construct the basis satisfying (5.8.1). The basis
adapted to z is (of course) not unique. We can make it unique as follows:
Let yu; = ord, ¢;. Consider the Taylor series expansion of ¢; at z (in terms
of {) ©

@i(0)= Z a(§ — 2.

k=0

We may and hereafter do require that
L, k=],
B T10, k)
wherej,k=1,...,n

Remark. On a Riemann surface “the unique” basis adapted to a point will,
of course, depend on the choice of local coordinate.
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It is obvious that Ky 2 j — 1. We define the weight of z with respect to A by
W)=y (#j—j+1). (5.8.2)

i=1

Proposition. Let {oy, ... ,@a} be any basis Jor A. Consider the holomorphic
Junction (the Wronskian)

?1x) 0 @y2)
o)=der | MO 00 (583)
PY0E) - eI
Then
ord, @ = 1(z),

PROOF. It is easy to see that a change of basis will lead to a nomn-zero constant
multiple of ®. Hence we may assume, whenever necessary, that the basis
used is adapted to the point z. Let us abbreviate equation {5.8.3) by

Q(Z) = det[q)l(z)’ A ,(D"(Z)]-

In order to prove the proposition we derive some easy properties of the
function &, First: for every holomorphic function f,

det[ fo,, ... Jou = det[e,, ... Pul- (5.8.4)
This follows from well-known properties of determinants, Explicitly,

det[ fo,, ... .fp,]

(f(pl S ]
Jo1 + fe, v Jen+ S,
=det| fo + 210} + [0, Jou + 2o + fo,
| for b 4 e fthg L Som=b 4 ... +f"'"”<P,,J
q)l e (pn T
= [ det| 01 T S0s  Sen+ S,
_f(”‘ln—l) 4o +f("_”(p1 N f(Pf,"_” 4o 4 f(n-l)(pnj
’— (01 (pn ]
— f det| 11 e,
—fqo(lﬁ_l)+...+f("*1)(pl . qu'(‘l‘l)_*_....*.f("‘l)q)"J

where the last equality arises from multiplying the first row of the determinant
by —f’ and adding the result to the second row. In a similar fashion we can
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. . o th the
remove from each column the appropriate multiple of @; leaving us with
previous expression equal to

@y fq’:'
Jo' @n

< Son + 2,

Sdet] foi + 2oy

: - ’ n—1) - {n=2) :.
oD 4+ (n - D" D Jol N4 n = 1)f" %0
(Pll
@n
=T fon + 2 en

4}
¢4
, ™~
= fdet| o + 20}
f‘;,(n—l) o+ (n - 1)f"'°2)‘l’/1 . f(pf‘"_” 4 (n— l)f"'_z)(p;,
1
o-

We now repeat the same procedure to remove frqm each colurgp the a‘f)ﬁr[o
priate multiple of ¢j. This clearly terminates with the preceding eq

f" det{(pl’ e ’q)n]’

L . be
We now turn our attention to the proof of the proposition WhIChuil::ltlhat
by induction on n. Clearly the result is true for n = 1. Let us nc;:v a[sl:at
the proposition is true for n = k. Explicity we are thus assuming

k

ord, detfey, ... o] = 3, (=i + D)
=

i th

where g, = ord, ¢;. Consider now det[@,, ... ,@;+1] It is clear from the

] z
preceding remarks that
det[@y, ... @ee1] = @47 det[L0:/@1, - - Pus1/P1]:

. ! 4 . ’rhe
Now the right-hand side is simply @%** det[(@2/@1), - - - Px+1/@1)]

induction hypothesis now gives that
ord, {@}* " det[(@2/01); . - - {@esr/e)]}

k+1 .
=(k+ Dy, + Zz{(u,-—ux -1)-(-2)}
k+1

=p+ 2 m—itl
ji=2

i ; basis
provided that for each j, g; — (j = 1) = 41 2 0. S(;nce ;:ie{(pj} are a
adapted to z, this inequality is always satisfied, and we
k+1

ord, det[o,, . . . Prr1) = j;l (gj—Jj+ 1.

This concludes the proof of the proposition.
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Remark. Let {g,,... 0.} be any set of n holomorphic fanctions of D, We
can define @ = det[q,, . .. +0,]). Our argument here shows that @ is iden-
tically zero if and only if the functions ¢, . .. Py are linearly dependent.

Corollary 1. Let A be g finite-dimensional space of holomorphic Junctions on
a domain D < C. The ser of z €D with positive weight with respect to A is
discrete.

Corollary 2. Under the b ypothesis of Corollary 1, Jor an open dense set in D,
the basis {¢,, . . . ®a} of A adapted to z has the property

Ordz (p] =j e 1.
ProOOF. By the hypothesis ord. @; = p;. It follows from Corollary 1 that
W) =371, (1t;—j+1)=0 for an open dense set. Since (as we have pre-

viously remarked) #j2j—1 we have y;=j—1 for each J, on this open
dense set. 0

HI.5.9. The considerations of the last paragraph apply (of course) to the

space #(M) of holomorphic g-differentials (7 > 1) on a compact Riemann -

surface of genus g > 1. A point P e M will be called a g-Weierstrass point
provided its weight with respect to #YM) is positive, A 1-Weierstrass point
is called simply a Weierstrass point or a classical Weierstrass point. 1t is clear
from the ideas in the previous paragraph that we have the following

Proposition. A point P on q Riemann surface M of genus g > 2 isa g-Weier-
strass point if and only if there exists q (not identically zero) holomorphic g-
differential on M with q zero of order > dim HUM) at P. For q = 1, this
condition is equivalent t0 either (and both)

a. i(P?) >0, or
b. r(P7%) > 2 (that is, at least one of the integers 2, . . ., g is not a “gap”).

II1.5.10. There are clearly no ¢-Weierstrass points (for any g > 1) on a
surface of genus 1. We assume thus that g > 2,

Proposition. For g > 2, 4> 1, let 1(P) be the weight of P e M with respect
to H#U(M). Let W, be the Wronskian of a basis for HYM). Set d = d,=
dim S#YM). Then W, is a (non-trival ) holomorphic m = m,-differential where
m=(d/2)(2q — 1 + d). Hence

2 ©(P)=(g— 1)d2g - 1 + d).
PeM
PrOOF. We must merely verify that the determinant @ defined by (5.8.3)

transforms as an m-differential under changes of coordinates, Explicitly,
let {{4,...,{4} be a basis for HYM). Let z and 7 be Jocal coordinates with
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7 = f(2) on the overlap of their respective domains. Assume that
{j = @a)dz* = §yz)dz*

(that is, FALEEP = o42)

in terms of the local coordinates z and Z. We must show that
(det[oy, . .. @ ])dz™ = (det[ By, . . . ,Ba])dZ™ (5.10.1)

But it is easy to verify that )
det[o,, . .. "gd] = det[(@, ° f)gf:.)q’ o ABae FUSN]
_ =(/)"(det[y, . .. .Bal > )

which is equivalent to (5.10.1).

Corollary. For g > 2 there are q-Weierstrass points for every ¢ > 1.
g

PrOOF. Any m,-differential always has zeros.

111.5.11. We now finish the study of classical Weierstrass points (the case
g=1).
/el int with respect to the holomorphic
| . For g > 2, the weight of a point wit . ’ .
:l?;(i);;emdiﬁerengtials is <g(g — 1)/2. This bound is artained only for a point P
where the “non-gap” sequence begins with 2.

ProoF. We have seen that (Proposition I11.5.10)
Y wP)=(g— glg + 1)

PeM
The above, of course, gives a trivial estimate on z(P). }2\/@t r;fe’lc}hz::f;:elr ::;al.
’ -+« < %, = 2g be the first g “non-gaps” at P. =N
. f 0!1 -<<ar21 << 2g bégthe g-“gaps” at P. (That is, the sequence lcl)fl FI] ; S
t;enéomplemengt in {1,...,2g} of the sequence of ;s.) Then (reca 5.

(5.11.1)

g 29 g g
(URPNUEDEDWEIETPW
i=1 i=1 j=

2-1 91 3g -1
- i— Y o, <—=—(g—-1)—glg
j=gz+1] 1‘;1 ! 2
=g(g— /2,

by the Corollary to Proposition 11L.5.7, with equality holding if and onlg]
ifo, =2

Corollary. Let W be the number of Weierstrass points on a compact surface of
genusg =2 then2g +2<W<g’ —g.
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PROOF. The first inequality follows from (5.11.1) and the fact that the max-
imum weight of a Weierstrass point is g{g — 1)/2 > 0. The second from the
fact that the minimum weight of a Weierstrass point is 1 (so called simple
Weierstrass points). ]

Remark. The first equality is attained if and only if at every Weierstrass
point the “gap” sequence is 1,3,...,29 — 1. These are the hyperelliptic sur-
faces to be studied in II1.7. The second equality is attained if and only if the
“gap” sequence at each Weierstrass pointis 1,2, ..., g— I, g + 1. Existence
of such surfaces will be demonstrated in VIL39.

IL.6. Abel’s Theorem and the Jacobi
Inversion Problem

In this section we determine necessary and sufficient conditions for a divisor
of degree zero to be principal (Abel’s theorem), and begin the study of the
space of positive (integral) divisors on a compact Riemann surface. To each
compact surface of positive genus g, we attach a complex torus (of complex
dimension g) into which the surface is imbedded. This torus inherits many of
the properties of the Riemann surface, and is a tool in the study of the surface
and the divisors on it.

The Riemann-Roch theorem showed that every surface of genus 0 is
conformally equivalent 10 the sphere C U {oo} (Corollary 1 in 111.4.9). Abel’s
theorem (Corollary 1 in I11.6.4) shows that every surface of genus 1 is a torus
(Cmodulo a lattice). These are uniformization theorems for compact surfaces
of genus g < 1. For uniformization theorems for surfaces of genus g > 2,
we will have to rely on different methods (involving more analysis and
topology). These methods, which will be applicable to all surfaces, will be
treated in IV.4 and 1V.5, -

Throughout this section M Iepresents a compact Riemann surface of
genus g > 0.

IM1.6.1. We start with

{a,,... Agsby, ... by} = {ab},

a canonical homology basis on M , and

{Cb e y(g} = {c}’
the dual basis for #'(M); that is,

Lk§j=5ﬂ;, j,k=1,2,...,g.

We have seen in II1.2, that the matrix IT with entries

njk:j;ij’ Lhk=1,...,g,
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is symmetric with positive definite imaginary part. Let us denote by L = L}(%)
the lattice {over Z) generated by the 2g-col}xmns of. the g x 2g matrix ﬂ% , ! .
Denote these columns (they are clearly lmearly‘ mdepcpdent over R) by
eV e Y 2@ A point of L can be written uniquely as

j=1

g g .
mje(ﬁ + Z njnm, with my, n; € Z,
ji=1

or
Im+In withm="m,,.. . m)eZand n="(ny,... n,)e 7"
We shall call J(M) = €%/L(M) the Jacobian variety of M. It is a compact,
commutative, g-dimensional complex Lie group. We define a map
@:M — J(M)

by choosing a point P, € M and setting
P P P,
o= =.( Pogl,.,.,fhgg)

Proposition. The map ¢ is a well defined holomorphic mapping of M into J(M).
It has maximal rank.

PROOF. Let ¢, and ¢, be two paths joining P, to P, then c,c; ! is homologous
to (a,b)[ 7] for some m, n € Z%. Thus

L :C_thC=]m+HneL(M).

If z is a local coordinate vanishing at P and ¢, .. ., @, are the components
of ¢ (in C?), then writing {; = n,dz, we have

P 'z
(p](z) = J‘Po C] F‘fo r],(z) d27
and we see that
0¢;

oz =n j(Z)-

i i int at which all the
Thus ¢ would not have maximal rank if tl}ere WEIE a poir
abelia(g differentials of the first kind vanished. Since this does not occ1[1]r
(recall I11.5.8), the rank of ¢ is constant and equals one.

II1.6.2. Let, for every integer n > 1, M, denote the set of integral divisors
of degree n. We extend the map ¢:

oM, - JM)
by setting for
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Note that (since (D) = (P,D)) d

PMast) 2 QM) 2+ 5 (M) = p(M).

We can also obtain a mzp that does not depend on the base point P,.
Let Div(®(M) denote the divisors of degree zero of M; define

@:Div(M) — J(M)
by setting
D)= Y o(P)~ ¥ ¢(Q)
j=1 ji=1
for
D=Py PO, - Q,.

Itis clear that if r = 5, (D) is independent of the base point; that is, the map

@:DivO(M) > J(M)

is independent of the base point.

I11.6.3. Theorem (Abel). Let D e Div(M). A necessary and sufficient con-

dition for D to be the divisor of a meromorphic function is that
®(D) = 0 mod (L(M)) and deg D=0, (6.3.1)

PROOF. Assume that fisa meromorphic function. Let D = ( f). We have seen
(Proposition I.1.6) that deg D = 0. Since for D = 1, Abel’s theorem trivially
holds, we assume that f ¢ C. Write

D=py.- .. prjoh e QFr k>1r>1, (6.3.2)
with
Pj # Qly a” jr l;
P, 2P and i # 0y, allj#1;
i# B Qi# 0y allj#l; (6.3.3)

r

k A
Z aj= Z Bj(—>-1)'
i=1 =1

Without loss of generality, we may assume that none of the points P;, Q;
liec on the curves representing the canonical homology basis. Recall the
normalized abelian differentials Tpg Of the third kind introduced in 1113,
Observe that df/f is an abelian differential of the third kind with simple
poles and

resp ‘_i}:: orde f, forallPe M.
Thus

d k r
%_ (/;1 %Tepe — ;1 BﬂQ,Po)

(where Py is not any of the P; or Q; nor on the curves a;, by is an abelian
differential of the first kind. Hence, we can choose constants Cpi=1,...,g,
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such that

g
d k - )
S P I 3
[ = j=1 j=1

It follows that

4

— =,
a

and by the bilinear relations for the normalized differentials tpy,

d & Py : @, > c. o
fb'—;:= 2m£j§l a;fpo &~ ,-;1 ?i Po s:>+ ;lc’n"
.~ °

Since df/f = d log f, we see that

~ df _
Ll fd% = 2nimy, Jb, —f- = 2xin,,

where m,, n; are integers. It follows that the /th component of ¢(D) is

: P; . o, 1 fi.f__Lgc.n,

j;llifpo Cl‘-l‘;l Bj Po g1_27'51"["1 f 2751'];1 i

g
=m— ) mm,,
j=1

and thus @(D) = 0 mod(L{M)). We have used P, as the base point for ¢.

X . S (P
that since D is of degree 0, (D) is mdependent of Py..
Re?[ﬂl pl:ca;ves the converse, we let D be given by (6.3.2) subject to (6.3.3).

Choose a point Q, not equal to P,, nor any of the P; nor any of the Q; nor
lying on any of the curves a;, b;. Set

k P r I’ g ' P >
flp)= exp(i; % fQo Tppo — ;;1 B; fQo Topo + j; € fQo s

P
= exp fQo T, |
where the constants c¢y,. .., ¢, are to be detetrmined. .It i§ clear thatdf 1&/ :
meromorphic function with (f) = D, provided f is single-valued.
compute

k r
=C
f 7= z o; J;' TPjPO - 21 ﬁj L' 1QJP0 +¢ i
ar ]':

J
and 9

k r
—_ . — A 4 + Ciltj
fbl T jgl % J;l TPiPa ,';1 ﬂ] J;' @sFe 1‘;1' o

k - Q; g

Py . J .

= 21l Z ajfpjg,—2m Z ﬁj o O+ Z Cilty.
j=1 ° i=1 =t
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For f to be single-valued, we must have that Ja T, §5, T are of the form 2nin,
ne€ Z. Now (6.3.1) yields,

k 'y r 0 / g

Jy j
Z’ ajfro ) ﬂffro’ G=m+ 3 mm;
i=1 i=1 Jj=1

with m, m; e Z, I=1,...,9,j=1,..., g. This means we can choose paths
7; and ¥; joining P, to P; and Q; respectively, such that integrating over
these paths, leads to the above equation. It is clear that if we choose ¢; =
—2nim;, f will be single-valued. ’ (]

EXERCISE

We outline an alternate proof of the necessity part of Abel’s theorem. Let f be a non-
constant meromorphic function on M. For each ae C U {o0}, let £~ 1(x) be viewed as
‘the integral divisor of degree deg f, consisting of the preimage of o. Then g +— o(f ")
isa holomorphic mapping of C {0} into J(M). Since C U {cc} is simply connected,
irlifts to a holomorphic mapping of C U {oc} into C¥. Since C {oo} is compact this
mapping is constant and thus ¢(f~ H0)) = o(f ~Y(=¢)).

111.6.4. For g = 1, J(M) is of course a compact Riemann surface. We have
the following

Corollary 1. If M is of genus 1, then

M- J(M)

is an isomorphism (conformal homeomorphism).

Proor. Clearly ¢ is surjective (since it is not constant). Let P, QeM,P+Q.
If o(P) = ¢(Q), then P/Q is principal by Abel’s theorem. Thus there is a

meromorphic function on M with a single simple pole. This contradiction
shows that ¢ is injective. 0O

Corollary 2. If M has genus > 1, then ¢ is an injective holomorphic mapping
of M onto a proper sub-manifold p(M) of J(M).
I11.6.5. Let D be an integral divisor of degree g on M that is,
D=P,---P,  (PjeM,j=1,...4). (6.5.1)
Then by the Riemann-Roch theorem
(D™ HY=1+iD)>1.
We call the divisor D special provided rD~H>1,
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Theorem. Let D € Div(M) with D> 1 and deg D = g. There is an int'egral
divisor D' of degree g close to D such that D' is not special. Further D' may
be chosen to consist of g distinct points.

Remark. Write D as in (6.5.1), and choose a neighborh’ood U; of P;. The
condition that D’ be close to D is that D’ = P} -+ - P, with P;e U,.

ProoF OF THEOREM. Note that for divisors of degree g,
D™ =1<iD)=0
Assume that D is given by (6.5.1) and define
~ [ o

Dj=P,---P; (j=1,....9)
Thus D, = D. Set Dy =1. We prove by induction that fo'r j=z 1, we can
find a divisor Dj of the form Dj_,P; (Do = 1) with Pj arbitrarily close to
Pjand iD)=g—j,j=1,...,9. The Riemann—Roc:'h' theorem (or lmea}r
algebra) implies that i(D}j) > g — j (for any integral divisor D} of degree j).
Note that for arbitrary P, (as we have seen before),

iPY)=rPiY~1+g~1=rP{)+g—2=g—1

(since C = L(P7"), because a surface of positive genus does not admit a
meromorphic function with a single pole). Thus, it suffices to take P{ =_P‘.
Assume that for some 1 < j < g, we have constructed a D} Qf the required
type. Let {@,,...,0,-;} be a basis for the abelian differentials of the first
kind vanishing at Py, ..., Pj. Look at ¢,. If ¢(P;4,) # 0, then iDiP; ) <
g — (j+ 1), and we are done. If ¢,(P;, ) = 0, then arbxtranly clfase/ t? Py
there is a point Pj,, with ¢(Pj,;)# 0 and once again i(D}P},,) <
g—(U+D
IL.6.6. We consider now the map
oM, - J(M).

We will show that this map is always surjective (generalizing the first cqrollary
in I1L6.4). To this end let Dy = P, --- P, with P,e M, P; # P,“for] # k be
such that i(Dy) = 0. Let U; be a coordinate disk around P; with local co-
ordinate t; vanishing at P;. Let K = (P, --- f”). In terms of the local
coordinates t; we write {; = ny(t;)dt; and thus in terms of th‘e'local coor-
dinates t; at P; the mapping ¢ in a neighborhood of the origin (0, . . .,0)
is simply

(1, .2 P K+ (@121, .- ,20, -5 @421, - . - ,2))),
where

g
oilzy,....2) = .Zl fo it dt;.
j=
Thus

SO0, .. 0) = nal0) = (P
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(the last equality is merely a convenient abbreviati i
f 1ation). Thus the J
ofthemap at P, --- P, is ) © Jacobian

(Py) oo {uP,)

C”(}’l) ... gy(jog)

The condition i(P, P,) = 0, however, gi i i
ni(Py, ... P, 3 , gIves us immediately that th
of the Jacobian is g. Ther;fore, the map Y that the rank

Uy x - x U, - C*

is 2 homeomorphism in a neighborhood of (0, . . . ,0) by the inverse function
theo'rem; and thus covers a neighborhood U of K (in £ or in J(M)). Let
¢="cy,...,c,) = C% Then for a sufficiently large integer N, K + ¢Ne U
and thus there existsa @, . . . ,0, such that ,

@Q; Q) =K+ ¢/N

N@(@Q, Q) —K)=c.

T'hl_xs to show that ¢ € Image ¢, it suffices to show that there exists an integral
divisor D of degree g such that

?(D) = N(o(Qy, ...,Q,) — K).
Consider the divisor (P, - -+ P)"/(Q, - - - Q,)"P4. The Riemann-Roch theo-

rem gives
_(’l;iel"_)_ (0, 0P8
'<<Ql oym) T (TP‘“?T) =t

Hence, there is an fe L((P, - -- P)V/(Q, - - Q.)"P)): i i
. « . ? th t ’
integral divisor D of degree ¢ Such” that L) R fhere is an

D(P, ...P”)N
‘Ql ...Qg)NP%'

or

N=
By Abel’s theorem

@(D)+ No(P,---P))=No(@Q,---Q,).

We have solved the Jacobi inversion problem:

Theorem (Jacobi Inversion). Every point in J(M) i . .
. Eve ¢
divisor of degree g. VP (M) is the image of an integral

Corollary. As' a group J(M) is isomorphic to the group of divisors of degree
zero modulo its subgroup of principal divisors.

Remark. We ha}ve shown (Corollary 1 of 111.6.4) that every surface of genus
one can be realized as C modulo a lattice. This is the uniformization theorem
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for tori. We shall return to this topic (including uniformization theorems
for surfaces of genus > 1) in the next chapter.

111.6.7. Exercise

We have seen that every torus M is conformally equivalent to C/G where G is the

group generated by two elements z+—>z + 1and z—>z+ 17, Im7> 0. Further, the

origin of C/G may be made to correspond to any point in M.

(a) Every meromorphic function f on M can be viewed as a doubly periodic function
f (this identification should cause no confusion) on C; that is, a meromorphic
functton fon C with - -

fe+=f(=flz+7), al:-eC
The Weierstrass p-function is defined by
1 1 1
==+ - ,ze L.
o) z? (,.,,,;(0_9, ((z —n—mt)* (n+ mt)2>
(nmje X

Note that @ is an even function. Let P, @ € M. Let f e L{1/PQ\C. Show that there
exists x € Aut M (the group of conformal automorphisms of M), f & Aut(C U {oo}),
such that

f=Bep o
(For a discussion of Aut M, see V.4.)

(b) Show that every meromorphic differential on M is of the form f(z)dz where f is
a doubly periodic function. If we choose the loop corresponding 10 z+— z + 1 as
the “a-curve” and z ~» z + 7 as the “b-curve”, then we have a canonical homology
basis on M. The basis for #!(M) dual to this canonical homology basis is then
{dz}.

(c) From what we said above, f(z)dz is an abelian differential of the third kind with

zero residue and singularity 1/z% at the origin. Hence there eXists a meromorphic
function { on C such that {' = —g. This function { cannot be doubly periodic

(why?). However, { satisfies forall ze C
{z+ )=+,
{z+ 1) =L+ 12
where 7, and n, satisfy Legendre’s equation

T — N, = 2ni. 6.7.1)
Derive (6.7.1) from (3.8.2).

I11.7. Hyperelliptic Riemann Surfaces

In this section we study hyperelliptic Riemann surfaces—the simplest
surfaces. These are the two-sheeted (branched) coverings of the sphere. We
shall see that there exist hyperelliptic surfaces of each genus g, and that these
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surfaces are the ones for which the number of Weierstrass points is precisely
2g + 2. These surfaces thus show that the lower bound obtained in the
Corollary to Theorem 111.5.11 is sharp.

HIL7.1. 'A compact Riemann surface M is called hyperelliptic provided
there exists an integral divisor D on M with '

degD=2 D Y22

Equivaleml)", M is' hyperelliptic if and only if M admits a non-constant
meromorphxc l."uncuo‘n with precisely 2 poles. If M has such a function, then
ea((:jh }rlamlﬁcauon point has branch number 1, and hence the genus g of M
and the number B of branch points (= ramification points) of

(using Riemann-Hurwitz) points) ol fare elated by

Remarks

I. We can hence describe a hyperelliptic surface of genus g as a two-sheeted
covering of the sphere branched at 2g + 2 points.

2. Some authors restrict the term hyperelliptic to surfaces of genus > 2 that -

satisfy the above condition.

H1.7.2. Proposition. Every surface of genus <2 is hyperelliptic.

ProoF. Let D be an integral divisor of degree 2. Riemann-Roch yields
DY) =2~g+1+iD) (7.2.1)

Thus r(D~") > 2 for g < 1, and the only issue is g = 2.

First proof for g = 2: Let P be a Weierstrass point on a surface of genus 2.
Then thereis a non-constant f € L(P~ 2). (This function cannot have degree 1.)

Second proof for g = 2: Choose w # 0, an abelian differenti i
: , tial of
on M. T, s Gt rential of the first kind

(w) = PQ.
Since i(PQ) = 1, (7.2.1) yields r(P™1Q~ 1) = 2. O

Remark. Surfaces of genus 1 are also called elliptic (tori). Surfaces of genus

zero admit, of course, functions of degree 1. Thus, h ipti
1t, urse, fur . , hyperellipt
those which admit functions of lowest possible degrgg pric surfaces are

III.7._3. Let M be a hyperelliptic Riemann surface of genus > 2. Choose a
funcflo'n cof degree 2 on M. Let f be another such function. We_claim that f is
a Moblus transformation of z. Let the polar divisor of z be P, 1 and the polar
divisor of f be P,Q,. It suffices to show that P,Q, ~ P,Q,. For then there is
an he X (M)1 such that multiplication by h establishes an isomorphism
between L(P;'Q;!) and L(P;'Q;"). Since {1,z} and {1,} are bases for
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these spaces, there are constants «, §, 7, 0 such that

1=ah + Bhz
or
_y+dz
f_a+ﬂ2'

To establish the above equivalence, we observe first that the branch points
of f are precisely the Weierstrass points of M. To see this let Pe M be a
branch point of f. Then f is locally two-to-one at P. Thus if f(P) = oo, f has
a pole of order 2 at P (agd no other poles) and then P is a Weierstrass point.
If f(P) # o0, then -

1
f-1p)

has a pole of order 2 at P, proving that P is a Weierstrass point on M. It now
follows by Proposition I11.5.6 that the “gap” sequence at any of the 2g + 2
branch points of f is

1,3,...,29 -1,
and thus the weight of any of these points is
g g (g+1)
2k—-1)— k=g2 P92 -1
5L 2y~

Thus these 2¢g + 2 points contribute g(g> — 1) to the sum of the weights of the
Weierstrass points. Since the sum of the weights of all the Weierstrass points
is precisely g(g — 1) there are no other Weierstrass points.

Let us choose any Weierstrass point P on M. We claim that the polar
divisor of f is equivalent to P2 If f(P)= oo, there is nothing to_prove.
Otherwise, look at the function 1/(f — f(P) = F. Its polar divisor is P% which
is equivalent to the polar divisor of f since F is a M&bius transformation of
F o)~ f7HS(P).

We have therefore established most of the following

Theorem. Let M be a hyperelliptic Riemann surface of genus g > 2. Then the
function z of degree 2 on M is unique up to fractional linear transformations.
Furthermore, the branch points of z are precisely the Weierstrass points of M.
The hyperelliptic surfaces of genus g > 2 are the only ones wi th precisely2g + 2
Weierstrass points.

PROOF. Only the last statement needs verification. It is clear that if a surface

has precisely 2g + 2 Weierstrass points, then the weight of each such point
must be 1g(g — 1) by 111.5.10 and 1I1.5.11, and thus, as we saw there, the

“non-gap” sequence must begin with 2. 4

Remark. We show next that on a hyperelliptic surface each of the Weierstrass
points is also a g-Weierstrass point for every g > L. It follows from the fact
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that the “gap” sequence is 1, 3,..., 2g — 1 for each Weierstrass point P,
that there is an abelian differential ¢ of the first kind with divisor P29~ 2
Thus ¢?isa holomorphic g differential with divisor P42~ 2 Since q(2g —2) >
(2¢g — I)(g — 1) — 1, P must also be a q-Weierstrass point.

I1L.7.4. We now wish to construct another function on a hyperelliptic
surface of genus g > 1. Let z be a function of degree2. Let Py, ..., Py, be
the branch points of z. Without loss of generality we assume that

ZP)# o, j=1,...,29+2

Consider “the function”
gt
w= []] (z— 2(P)). (7.4.1)
ji=1

Remark. We have introduced above a multivalued function which we will
show to be single-valued. Multivalued functions are treated in 1ILS. InIV.11,
we will show how the function w can be obtained without the use of multi-
valued functions.

Proposition. The above defines w as a meromorphic function on M whose
divisor is
Py---P 2g+2
Qq+ ‘Q%+ 1

where Q,Q, is the polar divisor of .

(14.2)

ProoF. Since all the branch points of z have ramification number 2, w
locally defines a meromorphic function on M which is two-valued. We must
show we can choose a single valued branch. It is convenient at this point
to introduce a “concrete” representation of the surface M as a two-sheeted
covering of the sphere C U {0}. If Pe M, z(P) # o and P is not a branch
point of z, then z — z(P) is a local coordinate vanishing at P. If z(P) = o0
(recall we have assumed that P is not a branch point), then 1/z is a local
coordinate vanishing at P. If P is a branch point, then either branch of
vz —z(P) is a local coordinate vanishing at P. With slight and obvious
modification, the above procedure could have been carried out with any
meromorphic function on any (compact or not) surface {recall Remark 3
in 1.1.6). We define now e; = z(P)). Then these e; are distinct; and z7!(g)
consists of precisely two points on M for all x e C U {oN\{es, .. e 2},
whereas z"(ej) consists only of the point P;. We picture now two copies
of the sphere. We label these two copies sheet I and sheet 1. On each sheet
foreach k=1,...,g9 + 1, we draw a smooth curve called a “cut” joining
€3;—1 10 e5,. We may assume that the e;’s have been ordered so that these
cuts do not intersect. Each “cut” is considered to have two banks; an N-bank
and an S-bank. We construct a Riemann surface 3 by joining every S-Bank
on sheet I to an N-bank of the corresponding “cut” on sheet II, and then
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Figure I1L3. Cross “cuts” for a hyperelliptic surface of genus 2.

joining the corresponding S-bank on sheet II to Ehf.: N-bank of the' corre-
sponding “cut” on she;:} I It is quite clear‘ t~hat M is a c9mpact Riemann
surfacé and z is a meromorphic function on"M. Thus M is indeed a concrete
model for M. We remark that a simple closed curve around a point e, that
does not go around any e, with k # j, may be Qlctured as beginning mﬂ on)e
sheet say at R, continuing around until the point, R;, on the second ahec;
with z(R,) = z(R,) and returning back to R,. We now con§truct a canqmc?

homology basis for M using this two sheeted representation. Dr“aw ilmp e
smooth closed curves g, k = 1, ..., g, winding once ar.ounc.i the “cut froxp
21— 10 ey, in one sheet of M oriented as indicated in Figure III._’:‘. Th}?
curve g, exists because we cross between sheets only thrpugh the (‘:‘uts .
Next choose curves b, k= 1,...,g, starting fr'om a g01r}} on the “cut

from e, _; to ey going on the first sheet_to a point on cut” from ezgﬂ tg
€54+ and returning on the second sheet (indicated in Flgl_xre III'.3-bly otted
lines) to the original point. The orientation of thf: b-curves'xs again il ustrz;te

in Figure IIL3. Let us stop to analyze what is happening on the surface
itself. .

The reader should convince himself (or herself) th'at the picture on the
surface (Figure I11.4) is actually the lift of the picture in ghe gxtended plane
via the two-sheeted covering z. (Note that all. we are using is that a curve
in the plane passing through e; can be lifted in two ways as a curve 11)1 M
passing through P;) We have actually consm'xct'ed a canonical homology
basis, since by inspection the intersection matrix is of the form

alb
a o1
bli-110

Figure 111.4. The hyperelliptic model in genus 2.
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We return—after this lengthy digression—to investigate the behavior of
our function w. We need only look at what happens in the plane if we continue
analytically a branch of /= — e;. The analytic continuation of this function
element around a closed path changes sign if and only if the path has odd
winding number about e; (i it has even winding number, we return to the
original function element). Thus w changes sign if we continue it along a
simple closed path in C U {0} that encloses an odd number of the e, Ifa
curve in Cu{cfife,, ... e, ,} begins at z and returns to this point,
enclosing an odd number of e;, then this curve must cross one of the “cuts”
and thus its lift to M is a curve joining the points Pand Q, P # Q, on M with
z(P) = z{Q). Thus w can be continued analytically along all paths in M.
Furthermore, continuation along any closed path in M (which must encircle
an even number of ¢;’s when viewed in the plane) leads back to the original
value of w. Thus w is single-valued on M, and for any P, Q on M with P # Q,
we have

2(P) = 2(Q) = w(P) = —w(Q).
The fact that (w) is given by (7.4.2) is an immediate consequence of (7.4.1).

O
H1.7.5. The above proposition has some immediate consequences.
Corollary 1. The g differentials
i dz .
o j=0,...,9-1, / (7.5.1)

Jorm a basis for the abelian differentials of the first kind on M.
ProOOF. Without loss of generality z(P;) # 0, and

219, ‘
0.2,

It is clear of course that the differentials in (7.5.1) are linearly independent,
and all we must show is that they are holomorphic. Since

() =

P, -..p
dz =_1~“2”_+2’
=5
we see that
2dz g-i-1ng-i-1ni i
T =0 Q8 Q{;Q“

This divisor is integral as long as j < g — 1 and therefore these differentials
are holomorphic. O

Corollary 2. On a hyperelliptic surface of genus g > 2 the products of the
holomorphic abelian differentials (taken2 at atime) form a(2g — 1)-dimensional
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subspace of the (3g — 3)-dimensional space of all holomorphic quadratic
differentials.
Proor. Using the basis constructed in Corollary 1, the span of the products
has a basis consisting of

2’ G g2, (152 O

’
W2

Remarks

. T
1. Note that 2g — 1 = 3g ~ 3 ifand on!y ifg o .
2. Torobtain a basis {ot the holomorphic quadratic dxﬂ'erex?ual's for a hyper-
- elliptic surface of genus g > 2 we must add to the list in (7.5.2), the
differentials 4
i(dz)?
w

R j=0,...,9-3

EXERCISE |
Obtain a basis for the holomorphic ¢-differentials on a hyperelliptic surface. What is

the dimension of the span of the homogeneous polynomials (of degree q in g variables)
of the abelian differentials of the first kind?

111.7.6. Recall the injective holomorphic mapping
@:M — J(M)

of a Riemann surface M into its Jacobian variety i.ntroduced in III.6.11.1 Let
n be a positive integer. Since J(M) is a (commutative) group, we say that a
point e € J(M) is of order n, provided ne = 0.

Proposition. Let M be a hyperelliptic Riemann surface of genus '2 2. CZOOSS
a Weierstrass point as a base point for the map ¢. Then @(P) is of order
whenever P is a Weierstrass point.

PROOF. Let P, be the base point (a Weierstrass point) and P another Wetnlzler;
strass point. Since @(P,) = 0, we may assume P # P,. We hav.e j::zens' (Z:C
there is a meromorphic function f on M whgse 2polalr dmszor 1; P~ dmb
P, is a branch point of f, (f — f(P,)) = P5/P*. Thus Pg ~ and by
Abel’s theorem,

20(P) = (P?) = ¢(P}) = 0. 0

EXERCISE

Let M be an arbitrary compact Riemann surface. of genus gz 1. Let p: M —: l.ll(:\/l)(l;;
the embedding of M into its Jacobian variety with base 'pomt P,. AssLme b ;1 ( }p) )
has order n, for some P e M, P # P,. Show that there exists an f e X’ ( ) wi )=
P"/P%. In particular if g > 1 and 2 < n < g, then both P and P, are Weierstrass po

on M.
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For g =1, return to the Weicrstrass i i
R : S p-function considered in Exerci I
Show that the 4 branch points of o are precisely the 4 half periods of J(M;Se et

NL.7.7. If M is an arbitra iemz

ry Riemann surface, we denote by Aut M th
group of conformal automorphisms of M & finite sub.
B ot ) . Let H = Aut M be a finite sub-

Hp={he H; h(P)= P}.

Then Hp is clearly a sub i
group of H. We cl i i iS i
consequence of the following i that f1p s eyclic. This is

}l:rososmon. L',e-t hy, ..., h, be n holomorphic functions defined in a neighbor-
ood of the origin. Assume that hj(0) =0,j=1,..., n,and that these n- i

Sorm a group H wnder composition. Then H i,s a ;‘()t’ation el “?;"f“”"t; oo
/ ; ' ' L b group (that is, there
is a simply 'con.nected neighborhood D of the origin and a conformal mappir:
fof thfe unit disk 4 onto D such that f(0)=0, h(D)=D and f ! o} .
ar:gz_tgtwnforj:l,...,n). ’ b s

Remark. The existence of a simply connected D invariant under H implies -

the f pr p 1t lll lhlS case, choose to be a R cemann "ldp O‘ A
rest o ﬂ 1€ oposition.
onto L 'lth f(o) O‘ Ihen , h f l

| Ej':f—l‘:hjof
is a conformal self-mapping of the unit disk that fixes 0, and hence of the form
hiz)= ez, 0<6,<2n

Choosing the smallest iti ing i ‘
positive 6; and calling it 6, we see that h(z) = 2™
generates the group f~'Hf. Thus we also have @)=

Corollary. The group H, is cyclic.

P_ROOF OF THE P'ROPOSITION, Let h be a typical element of H. Then #'(0) # 0
Zl_nce h is invertible. We claim that there is an ¢ > 0 such th.at h maps ever :
.flsk_{lzl <r<g} onto a convex region. Such a region is convex if and only
if ¢ = (h{|7] = r}) is a convex curve if and only if the direction of the taneen};
Zi(l:toirf gtt? ¢ is a monotonically increasing function of arg z; that is, if and
{Myz i Z z;?lilel(%n 1+ arg z + arg H'(2)) is an increasing function of a’rg zon
the monotonicty afthe drction of (he tangont lne. The Ao of i
of the . N
above angle with respect to arg z is (recan2226}1;;21)1113-R1;}(1i??;1;’i§;\)’6 of the
zh”
1+ Re W
and this derivative is positive as long as |z| is small.
Now choose ¢ so small, so that letting 4, = {z € C;

z| < &} we have that

hi4)isconvexforj=1,...,n

3
5
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Let D = [j-, hi(4); D is convex and hence simply connected. Furthermore
h;D = Dforj=1,...,n By the remark preceding the proof, we are done.

Remark. The material of the next chapter (in particular IV.8 and 1V.9) will
allow us to present at least two other proofs of the corollary to the above

proposition.

I1L.7.8. We continue to use the notation introduced at the beginning of
111.7.7. We give a Riemann surface structure to the orbit space M/H as
follows. First, we topolo'giize M/H such that the natural projection

M~ M/H

from a point onto its orbit is continuous. It is straightforward to check
that this makes M/H into a Hausdorll space and 7 an open mapping. We
introduce next a complex structure on M/H. 1f Pe M, and Hp is trivial,
then any local coordinate at P serves as a local coordinate at n(P) on M/H.
In general, choose a neighborhood U of P in M so that Hp fixes U and so
that in terms of some local coordinate vanishing at P, the action of the
generator of Hpon U is given by

2nifk

Zr— e Z.

Then = is a local coordinate on M/H vanishing at n(P).

Remark. The Riemann—-Hurwitz relation allows us to compute the genus of
M;H in terms of the genus of M and the branch points of = (= fixed points
of elements of H). We will use this fact in V.1.

[11.7.9. Proposition. Let M be a compact Riemann surface of genus g. Then
M is hyperelliptic if and only if there exists a conformal involution J (J € Aut M
with J2 = 1) on M that fixes 2g + 2 points.

PrOOF. Assume M is hyperelliptic. Let z be a function of degree 2 on M.
For Pe M set J(P) to be the unique point @ such that z(P) = z(Q) and
Q # P if such a point exists and J(P) = P otherwise. It is clear that J is
conformal and that if { is a local coordinate, { = /2 — z(Py)ina neighborhood
of a branch point P; of z, then J({) = —{. It should be obvious to the reader
why J will also be called the sheet interchange or the hyperelliptic involution.
The fixed points of J are clearly the 2g + 2 branch points of z.

Conversely, let J be a conformal involution of M with 2g + 2 fixed
points. Consider the subgroup of order 2, {J), generated by J, and the

two-sheeted covering .
M~ M[KT>

which is branched at the 2g + 2 fixed points of J. Riemann—Hurwitz implies

that M/¢J) has genus 0, and thus M has a meromorphic function of degree 2.
O
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'If = ' ' ” '
C()l()"aly l g > 2, lh th )i. p pei(—’Ulpl n ()lu[ on are
en I? fed omnts Of lhé hy IC nv 1 are

COI Onary 2 If en e -
. g 2 2, lh 4 th 4 h er R, OF e
- o vp e”lptlc n Olull 1 1S the l"“qu 4 lﬂLOlu

E:&ozé;ettii bg anothe; involution with 2g + 2 fixed points. Then, as
fave se o,f dzgr::dz pozms must be the Weierstrass points. Also itz z iSW§
M, sois zo J. Thu i
;ath?/b].us transtrmation A such that zo J ib} };hel?crte nI: HL7.3,Pthcrc .
y ; ) glgerjtrza;s' points o%;\/l. Then z(P)) = :(f(Pj)) = A( -(Pl),)- "Ill;uszféxze
(P, 2g 1stinct complex numb : st be id ;
Hotne b1 o dising ol bers (or o), and must be the identity,
]

COl‘()"dI y 3. Fhe hlp 4 1 lp ype p - 4
ere. l LC the 1
2 f R 0\/””0" J on a (h p9791“ llC) SuifaC(—’ M Of

PROOF. Let h e ] i i
Ant M. Thenh > J > h~! is an involution and fixes the 2¢ 4- 2

points #(P). Thus it is the h iptic i i
pownts h(P) st yperelliptic involution. Hence ho J o p~! = J,
0o

UL.7.10. Proposition. On }
i . a hyperellipti 1
degree < g must be of eren de};ﬁee. e sunface of genus g any fumetion of

p .
ROOF. Clearly the proposition has content only for ¢ > 3. Let f be a mero

morphic function wit} ar divi i
ith polar divisor D with deg D < g. Riemann—Roch says

2<rD™ Y =degD—g+1+ i(D).
Thus i . s
us (D) > 1 and there is a holomerphic abelian differential w such that

Jo is also a holomorphic abelian differential. Using the basis for abelian

differentials of the first kind i i
e soonial introduced in Corollary 1 to Proposition I11.7.4,

g Jj—1
o = ajz dz
=1 w
g J-1
Joo = ﬂ.z dz
J 3
i=1 w

with a;, 8; € C. Thus
f = Z.?:l ﬂ.izj_I
' AT
is . . .
a rational function of z (a function of degree 2), and must be of even degree
0

HL7.11. iti
Proposition. Let M be g hyperelliptic Riemann surface of genus > 2

Let TeAut M. Assume T
: : 7 h .
T has at moat o P fi :ts'), where J is the hyperelliptic involution. Then
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PrOOF. Let z be a function with two poles on M. For T € Aut M, z » T is also
a function with two poles. Thus there is a Mobius transformation 4 =

[2 5] # 1 such that

c

_az+b

o T = =Aooz.
z cz+d

We thus obtain an anti-homomorphism
Aut M - SL(2,C)/+1.

The kernel of this anti-homomorphism is (J ). If P is a fixed point of T, then
'h.
° z(P) = 2AT(P)) = Alz(P)),

and z(P) is a fixed point of 4. Since 4 # 1, A can have at most 2 fixed points
and T can have at most 4. M

Corollary. If T fixes a Weierstrass point, then T has at most 2 other fixed
points.
PrOOF. Without loss of generality, we may assume the Weierstrass point

is a pole of order 2 of z. Thus the 4 above fixes , and must be affine (of
the form [% 37). Since such an A4 has at most one other fixed point, T can

have at most two other fixed points. (]

I1L. 8. Special Divisors on Compact Surfaces

Throughout this section, M is a compact Riemann surface of positive genus
g. As before, Div(M) denotes the group of divisors on M and Z denotes
a canonical divisor (usually integral). ,

In this section we use the Clifford index (an integer invariant of a divisor
class) to characterize hyperelliptic surfaces and to show (among other things)
that every surface of genus 4 can be represented as cither a two- or three-
sheeted cover of the sphere (this is an improvement over the Weierstrass
“gap” theorem).

The object is to represent a compact Riemann surface of genus g as a
branched m-sheeted covering of the sphere, with m as small as possible.
The methods of this section give sharp answers only for small g.

I1.8.1. Let D € Div(M). We define the Clifford index of D by
c(D)=degD —2r(D™") + 2.

The fact that we have introduced a useful concept is not at all clear.
Clifford’s theorem (II1.8.4) will convince the reader of the usefulness of this

definition.
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We are intercsted in special divisors; that is, integral divisors D such that
there exists an integral divisor D* with

DD* = Z.

We call D* a complementary divisor of D.

Trivial (but Important) Remark. From the definition of c(D) it follows that
¢(D) and deg D have the same parity (both are even or both are odd).

M1.8.2. It is clear that the Clifford index depends only on the divisor class.
More is true. ~

Proposition. For D e Div(A), c(D) = ¢(Z,;D).

PROOF. We compute

o(Z/D) = deg(Z/D) ~ 2r(D/Z) + 2
=2g-2—degD —2iD)+2
=29—2—degD - 2((D"")—degD + g — 1)+ 2
=degD - 2r(D"") + 2 = ¢(D). 0

Remark. Again, from Riemann~Roch,

¢(D)=deg D —2(deg D — g + 1 + i(D)) + 2
= —deg D + 2g — 2i(D). 8.2.1)

Thus, the proposition can be restated as

2i(D) + deg D = 2i(Z/D) + deg(Z/D).
or

D)~ i(Z/D) = (g — 1) — deg D.
In particular, if deg D = g — 1, then i(D)=1i(Z/D).

I1.8.3. Let D, and D, be integral divisors. The greatest common divisor

(gcd) of D, and D, is the unique integral divisor D satisfying the following
two properties:

a. D<D,,D<D,, and
b. whenever D is an integral divisor with B < D, and b < D,, then D < D,
If the divisor D; is given by

D;= [T P®  (4(P)>Oforall Pe M and
PeM %;(P) > 0 for only finitely many P ¢ M), (8.3.1)
then
g8ed(Dy,D;y) = (Dy,Dy) = [] PprintaPraxpy,

PeM

105
111.8. Special Divisors on Compact Surfaces

Similarly, the least common multiple (Icm) of D, and D, is the unique
integral divisor D satisfying:

a. D>D,and D > D,, and ' .
b. whenever D is an integral divisor wit
If D; is given by (8.3.1), then

mnx(:;(P).lz(P)).
1Cm(D1,D2) = l—lw P
Pel

hD>D,and D> D,, then D 2 D.

hermore, _
Furtherm lem(D4,D,) ged(D1.D2) = D,D;.
Proposit?on. LetD,, Dr be integrul divisors.Set D = (D;,D3). Then

D
DY) + 103 ) — D7) < ’(1715‘)‘

1¥72

¢ that )

PrOOF. Observ Loy N

.. is 5D,

This inclusion follows from the fact that D,D,/D is integral and is 2D;
forj= 1,2 Thus )

L(DTYv L(D; Y < L(DDT D3 1), (832

where v denotes linear span. Next we show 05
LT Y A L(D;Y) = LI, (8.3.
! >Yhasa
To verify (8.3.3) assume D; is given by 8.3.1).If fe L(Dy ) n L(D3 ")
pole at P of order a > 1, then
a<afP), Jj=12
1
Thusalse a < min{a,(P)2:(P)},
and f € L(D™"). We have established
L(D;Y) A L(D5Y) = LID7Y).
j =1, 2. This ver-
The reverse inclusion follows from the fact that D; > D, j 1, 2. Thi

i 3.3). _ _
lﬁelii(fally) using (8.3.2) and (8.3.3)and a little linear algebra,

1 i 2 )—di THNLD: 1Y)
I =1y _ (D~ Y=dim L(D} )+ dim L(Dz ")—dim(L(D} )r_\
e )=dliZ(L(Dl;‘)vL(D;‘))sdimL(DD;luz1)
=r(DD7'D3 ).

O

Corollary 1. Under the hypothesis of the proposition, -
c(Dy) + ¢(D3) = e(D) + o(D,D,D™ ). (8.3.

O

ProoF. The proof is by direct computation.
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Corollary 2. If D is a special divisor with complementary divisor D*, then
c(D) = ¢((D,D*)).
Proor. By Corollary | and Proposition 11.8.2,

2¢(D) = ¢(D) + ¢(D*) > ¢((D,D* bp*
co(D*) = c((D,D ))+c<(D,D*)

= 2¢((D,D*)).
111.8.4. Theorem (Clifford). Let D be a special ditisor on M. We have:
a, ¢(D) 2 0. ‘
b. Ifdeg D =0or deg D = 2g — 2, then ¢(D) = 0.

c. Ifc(D):O,thendegD:Ood D=2g— i
M is hyperliie r deg 29 — 2 unless the Riemann surface

PRrOOF. Since ¢(D) = ¢(D*) and d

g D + deg D* = 2g — 2. where D* |
complementary divisor of D, the the 4 re is a
divisors of degree < g — 1. orem need be verified only for special

. dI: gt:)gl_) 1= ?1’1;2621;(00;(3)2 llanvc:, (D) = 0. Thus part (b) is verified. Next. -
=1, = 1. We proceed i i :
that 1 < degD < g — 1, and ¢(D) < 0. Thus ¥ induction. Suppose now

D7) >4deg D+ 1> 2

}hgs there is a hon-constant function in L(D™!). Let D* be a complementary
a;vn;;mw lzeplacmg D by a1}1l equivalent divisor (it has the same Cliford inde;(
: X may assume that (D,D*) 3£ D, (This last assertion i iti
’ . (D, . is of crit
lxlxzxportanf}e. .It-wxll bv.? used in ever more sophisticated disguises. V.’ersli(:llll
D*nce. \ilern y it in det_axl: We must show that there is P ¢ M which appears in
i bv:na nloa\;e;_ mug'xghcny than in an integral divisor equivalent to D. Let
clian differential of the first kind such th *,
SeL(D™"C. Then forall ce C f s intogr. i ot i
C. The » (f — ¢)D is integral and equivalent to D
(ny _propDerl)" choosu_1g c (for. example, f ™ !(c) should contain a point not in D*)'
] c)D will contain a point not in D*. Now (f — ¢)D and D* are still com-,
pr:r?zlll]tary dw1sgrs since (f — c)DD* = ((f - c)w).) By Corollary 2 to our
;)S p;ci;j ;rqposxgon, c((D,D*)) < 0. But deg(D,D*) < deg D and'(D D*) is
tvisor. By repeating the procedure we ultimate] i divi
peat arriveatad
of degree zero or 1, which is a contradiction. This establisyhes (a). e diiser

It remains to verify (c). We have see i
- n that if .
oD)=0,then 1 <deg D <29~ 3,and e D <22 with

(D™ =4degD + 1. (8.4.1)

g 4 ( ) .
“ de D 2 ﬂ 1€ 7 D 2 and t]le sur ‘ace 1S h cretiptic NOW simnce

1 # (D.D*) # D. (8.4.2)
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This can be done since r(D~') > 3. All we want is a function in L(D™Y
that vanishes at some point of D* and at one point not in D*. Let f be sucha
function. Then (f)D is integral, equivalent to D, and satisfies (8.4.2). We
have produced a special divisor (D.D*) with 0 < deg(D,D*) < deg D and
¢((D,D*)) = 0. Thus 2 < deg(D,D*) < deg D — 2, and we can arrive at a
special divisor of degree 2, with Clifford index zero. 0

111.8.5 We now derive some consequences of Clifford’s theorem. If
D € Div(M) is arbitrary with 0 < deg D < 2g — 2, then ¢(D) > deg D unless
r(D™1) > 2. In the latter case (since there is a non-constant function f in
L(D™')) we have D' = (f)D is integral and equivalent to D. Since linearly
equivilent divisors have the same Clifford index, we have almost obtained

Corollary 1. Let D be a divisor on M withQ < deg D < 2g - 2. Then ¢(D) > 0.
Equality occurs if and only if D is principal or canonical, unless M is a hyper-
elliptic Riemann surface.

PRrOOF. The remarks preceding the statement of the corollary show that unless
HD™Y) > 2, ¢(D) = deg D. If r(D ™) > 2, we have D equivalent to an integral
divisor D' of the same degree. Proposition TI1.8.2 allows us to assume with
no loss of generality that deg D < g — 1. Now D’ is a special divisor. The
fact that ¢(D’) = c(D) > 0 follows from Clifford’s theorem. If D is neither
principal nor canonical (and since as already stated we may restrict our atten-
tion to divisors of degree <g — 1, we are only interested in the case of D
not principal), we have ¢(D) =0 gives r(D™') = 1 + 3deg D. If deg D >0
we have once again r(D~1) > 2, and as before D is equivalent to a special
divisor and Clifford’s theorem implics that M is hyperelliptic. If deg D =0,
we have r(D™ ) = 1 and D is principal. O

Corollary 2. If D is a divisor on M with0 < deg D < 2g — 2, then

. deg D
i(D) < g — —>—.

Equality implies that D is principal or canonical, unless M is hyperelliptic.

PROOF. In view of (8.2.1), this is a restatement of Corollary 1. (]

Corollary 3. Let M be a compact Riemann surface of genus g > 4. Let D,
and D, be two inequivalent integral divisors of degree 3 such that r(D; ") =
2 = r(D3%). Then M is hyperelliptic.

PRrOOF. Choose non-constant functions f; € L(D; !),j = 1, 2. We may assume
that each f; is of degree 3 as otherwise there is nothing to prove. Since D
and D, are inequivalent, f; # ¢f; for any c € C. As a matter of fact, we have
that f, # Ao f, for any Mobius transformation 4 (of course, Ao f, =
(af> + b)/(cf, + d) where a, b, ¢,d € C, ad — be # 0). For if f; = A o f,, then
the divisor of poles of f; would be equivalent to the divisor of poles of f;
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(since the polar divisor of f; is equivalent to the polar divisor of A - £
This would contradict the fact that f; is of degree 3, and that the two divisors
D; are inequivalent. Thus, we have 4 linearly independent functions in
L(D{'D3; "), namely: 1, f,, f», f1 f». For if

cot+efi+cerfatesfif=0

with ¢; € C, then f is a Mdbius transformation of f,. Thus r(1/D,D,) >
4=1%deg DD, + 1, and c(D,D,) = 0. Since deg D,D, = 6 < 2g — 2, Clif-
ford’s theorem implies that M is hyperelliptic. 4

Remark. Since M is hyperelliptic Proposition 111.7.10 implies that M has
no functions of degree three. Hence the functions f; and f; are really funcuons

of degree 2. and thus by Theorem 111.7.3. £ is indeed a Mébius transfor-
mation of f5.

Furthermore, the above remark and the proof of Corollary 3 yield

Corollary 4. If a surface of genus g > 4 admits a function f of degree 3, then

any other function of degree 3 must be a fractional linear transformation of .

J. Further, on this surface we cannot find a function of degree 2.

I11.8.6. What happens in genus 4? We prove a special case of a more general
(see the Corollary to Theorem I111.8.13) result.

Proposition. Every surface M of genus 4 has a special divisor D of degree 3
with r(D™1Y) = 2.

Proor. Let {{,,...,(s} be a basis for the abelian differentials cf the first
kind on M. Then

2 P P v
Cl, C),QZr vy CIC‘U C%v CZC:’»’ e /53g4a Si

are 10 holomorphic quadratic differentials on M. They are linearly dependent
since the dimension of the space of holomorphic quadratic differentials on
M is 9. Hence, there are constants ap (1 <k<4,1<j<k)such that

Z a3 e = 0.

isk

We write this dependence relation in matrix form

ay, 3ay, %a13 %au {4

Ciialals) J%_au 1“22 1a,; %024 {2 —0.
%13 3833 A3z 3434} | {3 (8.6.1)
11 as, 334 Gy {4

Let £ be the column vector of differentials appearing in (8.6.1), = =
€y, .. . L4). We rewrite (8.6.1) as

'ZA

[43]

=0. (8.6.2)
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Since A4 is symmetric. there exists a non-singular rpatrlx B sugh t’has
{BAB is a diagonal matrix with 1 on the first 1(5_4) dmgomfl entriecs ‘tu;
zeros on the rest of the diagonal. Thus, we rewrite (8.§.2) with respect to
B~ 1=, a new basis for abelian differentials of the first kind, as

(B~ 'EyBAB(B™'E)=0. (8.6.3)

: ZbyB'Z.
now on we replace 4 by 'BAB and = by »
Fr‘z’lvne claim now that A has rank 3 or 4. It clearly has' pgsltwe.rank. It
cannot have rank 1, since in this case (8.6.3) reads {2 = 0. Similarly, it cannot
have rank 2, since in this case (8.6.3) reads

’ T 3=0
which implies that ({;) = ({3) and hence that J, and {, are dependent. Thus,
the relation (8.6.3) is of the forn

G+2+3=0 or J+G+3+E=0

asi = iy, 0= — i, 03 =
Another change of basis (for example, 0, ={; + i : 2 —
{3+ ila wq={3—ils In the second case) leads to the simpler relatio

. ‘v (8.6.4)

=0, or $182 = {ada
Write
(C1)=P1"'P6-
Thus either {5 or {4 (say {5) must vanish at at least 3 of the zeros of 'C 1- Tpm
{/liisa non-constant function with at most three p(l)lcs. This function Iglnée:
rilse to a special divisor D of degree 3 with r(D™') > 2. Theorem III. []
shows that r(D™!) < 2. Hence r(D™ ") = 2.

II1.8.7. Theorem. Let M be a compact Riemann surface of genus 4. Then one
and only one of the following holds:
a. M is hyperelliptic. - .
b ‘M has)apfunction f of degree 3 such that () = A/D with 'D, A z.ntegral and
. D? ~ Z. Any other function of degree 3 on M is a fractional linear trans-
ation of f. . .
c f’\(:lni:’as exac{Iy two functions of degree 3 that are not Mébius transformations
of each other. . l
Proor. Proposition I11.7.10 implies that (a) cannot occur simultaneously
with (b) or (c). We have already shown that every compact surface 01;i genus
4 admits a non-constant function of degree <3. Note that for any divisor
D of degree 3 on M (of genus 4), we have
rD™Y) = i(D). (8.7.1)
i there is an integral divisor
Suppose we are in case (b). Let us assume s . or
D :%Dwith deg D, =3 and r(D;')=2. Let f; € L(D; ‘)\C.' If Dlhxs ?}ujl\‘/;)
al;nt to D, then f, is a Mobius transformatipn of f. To_slee this, lv.;t _e ! (f !
be such that (h)D, = D. Then L(D™") = (1,f}and L(D] ") = {h, /i }={Lfi}-
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Thus, there are constants a, B, v, 6 such that

I =ah + Bfh
Ji=vh+dfh
or
f=7+6f -
! o+ Bf

Thus we assume that f, is not a Mobius transformation composed with f,
which implies that D, is not equivalent to D. We therefore have 1, f, f,, ff;
are 4 linearly independent functions in L(D™'D{"). Then nD~'D{ ) > 4
and hence

{DD)=rD™'Di Yy~ 6+4—1> 1.

Because deg DD = 6, DD, must be canonical, and hence i(DD,) = 1. Since
also i(D?) =1 by hypothesis, we conclude D 1 is equivalent to D. This con-
tradiction establishes the uniqueness of f up to Mdbius transformations,

We consider case (¢). We assume that for no function S of degree 3 is it
true that the square of the polar divisor D of /f is canonical. Let (f) = /D.
Choose D, integral of degree 3, such that DD ~ Z. Note that D and D,
are inequivalent (otherwise D? ~ Z). Since rD™') =2, we conclude from
(8.7.1) that there is a divisor D, of degree 3 such that D, # D, and DD, ~ Z.
Choose holomorphic abelian differentials @; such that (w;) = DD(j = 1,2)
and set f; = w,/w,. Thus, since the polar divisor D, of f; is not linearly
equivalent to D, we produced a function of degree 3 which is not a Mébius
transformation of f.

If A is the polar divisor of an arbitrary function h of degree 3, and h is
not a Mébius transformation of £, then 1, £, h. fh are 4 linearly independent
functions in L(1/D). Thus r{1/DA) = 4 and by Riemann—Roch we must
have equality, and also conclude that DY is canonical. Hence DY is the
divisor of the differentjal €10y + 2w, for some constants c;, ¢, {not both
zero). Say ¢, # 0. Then w,/(c,w, + €,w3) is a meromorphic function with
divisor D,/. Hence h is a Mébius transformation of f,. O

Remark. Cases (b) and (c) correspond to the relations of rank 3 and 4 of
(8.6.4) respectively. In case (c) we have (f)=UD, (f;)=A,/D, = D,/D,.
Consider the identity

(DDl)(QIﬂl) = (QIDJ(DQIQ
There are holomorphic differentials (hi=1,...,4, satisfying

(C,)=DD,, (§4)=(f1§1)=DQ[1,
i
(Cz) = (fC4) = —D— Dmx = 919[1,

DU
(3) = (ff‘fs%) = _Q—[il—D— DU, = D,.

111
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Thus, by multiplying these differentials by constants, we obtain,
{1l = {3ls
The four differentials we have produced are linearly indf:pgndent, since otl}er-
wise the functions f and f; would be related by a Mdbius transf;olrfma}rtlx]our;.
This follows from the fact that {,/{s = f1 % Co/la = 1, Cs/C_s = fl . ,
we have a relation of rank 4. In case (b), we start from the identity
(DD )* = D*D?,
. We know there are differentials

where D, # D ischosen 13 be equivalent to D
{; satisfying -

s . DD Dy D?

(51)’—“1)2, ;)= DDy, (53)=(51f1)= tp T

(where (f,) = D,/D). Thus, we obtain the relation of rank 3 (after adjusting
JLU = - ]

constants)

C% = C2C3o

Again, the three differentials in question are inerendent, sinceDD1 ;?vle)s.
Thus ’if a;{y + a,; + a3{3 =0, choosing a point Pe Di.}(; ¢D, g
a, = 0. Similarly, choosing a point P € Dy, P ¢ D, gives a, = 0.

111.8.8. Proposition. Let B be the polar divisor of a meromorphic function on
M. Let A be an arbitrary divisor on M. Then

A Y <A™ B + r(BA™Y). (8.8.1)

PRrooOF. If B = 1, the result reduces to a trivial equali'ty. So assume_tlil 1sorigi
the unit divisor. Thus, there is a non-constant function f on M with p

divisor B. We can now find integral divisors B’ and B" such that
BI ~ B ~ BI!,

and such that the above three divisors have no points in common (for
example, B' = f ~1(0), B" = f~'(1)).
We claim that
LA YN LB'AYB)Y Y= L(B"A™Y). (8.8.2)

1t is clear that o
L(B’'A™Y < LA™Y, L(B"A Yy < L(B"A™Y(B)7),

i i i 1 tion.

d thus L(B"A™') is contained in the mtel:lrse_c n. )
anCon‘\l'ersély, suppose f e L(4™1) n L(le‘A. YB )h‘)tlo’;;l;:ss ( tfh )iefof é :1}:13
'/B” = I, with I, and I, integra ivisors. '
(If)f%’/’l /B §ince B’ 1and B’ have no points in common, [ can be mFegI::
0;11 if I 2is a multiple of B'. Thus I, = B'Iyand I, = B"I;, and in pafrtgc; o
(f)/);/ o I, /B'=10r fe L(B”A™"). This concludes the proof o 8.8.2).

-4
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We observe next that
LA™ e LA™Y(B)™,  LB"A™\B) ') Ita~(B)" h.
It thus follows that
A+ r(B"A™YB) )~ r(B"A~ Y= dim(L(A™")v L(B"A~Y(B)" 1))
SHATYB)Y Y.
Since B ~ B’ ~ B", (8.8.1) follows from the above. O

Corollary 1. Under the hypothesis of the proposition,

2¢(4) 2 ¢(AB) + ¢(AB™Y).

Corollary 2. Let M be a compact Riemann surface of genus g > 4. Let A and
B be inequivalent integral divisors with

I3<degB<degAd<g-—1,
and

c(A)=1 = ¢(B).
Then unless B = A* (a complementary divisor of A) M is hyperelliptic.

PrOOF. From the definition of Clifford index,
2r(47 ) =1 +deg 4 > 4.
Thus r(47') > 2 and #(B~') > 2. There are now two possibilities.

Case I B is not the polar divisor of a function. Then there is at least one
P e B such that r(PB~!) = r(B™"). Let B = B'P and observe that
ZSdegB’sg—Z,/
and
o(B) =deg B’ - 2r((B)" V) + 2
=degB—1—-2r(B"")+2=¢(B)—1=0.
Hence the surface is hyperelliptic by Clifford’s theorem.

Case I1: B is the polar divisor of a function. In this case we apply Corollary 1
and Corollary 1 to Clifford’s theorem (I11.8.5), to obtain

2 =2¢(A) > ¢(AB) + c(AB™Y) > 0,

Recall that the degree and Clifford index of a divisor have the same parity.
Thus, A, B have odd degree and AB and AB™! have even degree and also
even Clifford index. Thus either ¢(AB) =0 or c(AB 1) = 0. If ¢(4B) = 0,
then by Clifford’s theorem (Corollary 1 in II1.8.5), M is hyperelliptic unless
AB ~Z. 1f ¢(AB™") =0, then M is hyperelliptic unless AB™! is principal.
In this latter case A ~ B, contrary to hypothesis. . O
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I11.8.9. Propesition. Let A and B be integral divisors of the same degree
<g—1withr(A™Yy=r(B"')=t+1,t> 1. Then,

c(AB) < deg(A4,B) — c{(A.B)) + 2(c(A) — 3), (8.9.1)
whenever s is defined by
r(DA™'B Yy =r(4"'B™") -5, 8.9.2)
for some integral divisor D of degree s <t with (4,B)/D integral.

Proor. We write
~ ™A =AD, B=.B'D,

with A4’, B’ integral divisors. Clearly L{(A,B)/AB)CL(D/AB). Hence
r((4,8)/4B) < r(D,;4B), and thus (8.9.2) implies

1 (A,B)
r(Z—E)—SZr< 4B )
Translating the above inequality to Clifford indices, we obtain

AB
deg(AB) — c(AB) — 25 = deg AB — deg(4,B) — C((_A_f))’

or

—2s
(4,B)
We now use Corollary 1 to Proposition I11.8.3 in the form 2¢(4) 2 ¢((4,B)) E

AB
¢(AB) < deg(A,B) + ¢ <

- ¢(AB/(4,B)) to obtain {8.9.1).

I11.8.10. Let A’, B’ be two integral divisors of the same degree. Assurn; that
A~ Y =rB"')=1t+1, with t > 1. For almost all (to be deﬁqed in the
proof of the assertion) integral divisors D of positive degree s < t,1t 15 possible
to find integral divisors A, B satisfying

A~A, B~F (8.10.1)
{(A4,B)/D is integral, (8.10.2)
o HA™'B™Y) —s=r(DA"'B™Y). {8.10.3)

To verify the above claim, we begin by showing thatr f?r every s ; ,21 'TB /1
there is an integral divisor D = P, - - - P, such that r(}/A B)—s=r(D/ ;
This is clearly equivalent to showning that the matrix (fi(P)), k=1,.. ﬁ , {
j=1,...,s, with f;,..., f; a basis for L(1/A'B), has rank s. Note firs

1>s.
tha\tvfi fhto:se P—1 such that P, does not appear in A'B’ and such that f,(P,) #
0. Consider now the meromorphic function of P:

a| 1P fz(m}
CLAP) AP
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Since {f,f,} are linearly independent, the determinant is naot identically
zero, and thus we can find #, such that P, does not appear in A’B’ and
such that the determinant does not vanish at P,. Hence

SiPy) -+ fi(PY) _
rank[fl(Pz) fa(Pk):,_z’

Having now chosen P, . .. Py~ 1 such that no P, appears in A’B’ and such
that det(f (P, m=1,... k— Lj=1,...,k—1(k<s) does not vanish,
we consider

SulPy) o filPY)
det| : : .
fl(Pk—l) fk(Pk—l)
Ji(P) L)
The linear independence of {f,, ..., Ji} assures us that the determinant

does not vanish identically so that we can choose P, not to appear in A’'B’
and such that det(f,(P)), m=1,...,k j=1,..., k does not vanish. Hence

H(Py) - fdP)

rank =k

AP - fuPy

This verifies the existence of a divisor D of degree s with the required
properties and in fact, shows that almost all divisors D of degree s would
work. :

Finally, we need show the existence of divisors 4 ~ A’ and B ~ B’ such
that (4,B)/D is integral. To this end consider L(D/A’). Clearly (for s < 1)
r(D/A)=t+1—s52>1,and thus there is a non-constant function f e L(D/A")
such that (f) = DI,/A" and we may take A = DI,. Similarly there is an
integral divisor I, such that B may be chosen as DI,.

II1.8.11. Theorem. Let M be a compact Riemann surface of genus g > 4.
Assume that M is not hyperelliptic. Let U be an integral divisor of degree
Sg—1withe(W) = 1. Thenr(A~ V) < 2 (and thus deg A < 3) except possibly
if g = 6. In this case it is possible that (U™ = 3 and U is canonical.

PROOF. Suppose that (A~ 1) >2. Let 5= HUA™1) —2. Choose integral
divisors A4, B, D with deg D = s such that they satisfy (8.10.1), (8.10.2), and
(8.10.3) with 4’ = A = B’. We use now {8.3.4) to obtain
AB
¢l =} + c((A,B)) < ¢(A) + ¢(B) = 2.
QABJ ((4,8)) < c(4) + ¢(B)

From (8.10.2) we see that
1 <s=deg D <deg(4,B) <deg 4 < g—1, (8.11.1)

115

111.8. Special Divisors on Compact Surfaces

and hence, AB

1sdeg<(41—33)52g——3.

Thus, by Clifford’s theorem,

AB
P V=1 = B)).
c<( ,B)) 1 = ¢((4,B))

We now consider cases:
Casel: r(1/{A,B)) = 1.
Fromrthe definition of~Clifford index, . -
1 = ¢((A,B)) = deg(4.B).
But Proposition 111.8.9 implics that
¢(A?) = ¢(AB) < deg(A4,B) — c({4,B)) + 2(1 — 5) = 2(1 — 3).

-1 =
Since s > 1, we see by Clifford’s theorem thats = 1, N2~ Z,andr(A 1) =3.

Furthermore,
1 =c(W)y=deg U ~ 4,

shows thatdeg Z =2 deg A =10o0rg = 6.
Case II: r(1/(A,B)) > 2 (thus deg(4,B) > 3).

In this case we may assume that (4,B) is the polar divisor of a function.
(Note first that if P € M appears in the divisor (4,B5), then

AR
rQAﬂb—r(Aﬂ) '
Otherwise,

1 — =
c@g) = deg(4,B) — 1 — 2r< ( A,B)) +2=c((4B)-1=0,

contradicting that M is not hyperelliptic. A function belonging to

1 P )
- Li——
L <(A’B))\ PEH,B) <(A9B)

(this is non-empty since every term in the ﬁnit§ union is of codimensionll
in L(1,(4,B)) will necessarily have polar divisor (4,B).) We thus apply
Corotlary 1 to Proposition I11.8.8,

A
2 = 2¢(A) > c(W(A4,B)) + c<———) (8.11.2)

(4,B)

Since U and (4,B) have odd Clifford index, they also l?ave onddegrfret; gegrclz
(A4,B) and A/(A,B) have even degree and even Clifford in eéx us one
of the terms on the right hand side of (8.'11.2) must be zero.f fmce: sl
A(A4,B) nor A/(4,B) is principal or canonical we are done. (If, for example,
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U/(A,B) were principal, then A ~ B ~ 9 ~ (A.B). Thus 4 = (,A{.B) = B, which
clearly can be avoided from the beginning because r(D/U) > (1) —s=2)

|

H1.8.12. To change the pace slightly, we prove a resuit in linear algebra. For
the proposition of this section, we will need some elementary results from
algebraic geometry.

To begin with, the set of r x r symmetric matrices can be viewed in a

natural way as a vector space of dimension ir(r + 1) which we identify
with CH/2rtr+ 1)

Proposition. The set V, of r x r symmetric matrices of rank <p is an irre-
ducible homogeneous, algebraic subrariety of C/nr+D of dimension
(172)p(p + 1) + pir - p).

PROOF. The points in ¥, are those r x r symmetric matrices which satisfy
the homogeneous equations of degree p + 1 obtained by equating all
(p + 1) x (p + 1) subdeterminants to zero. Thus V, is a homogeneous alge-

-~

braic subvariety. F' urtheninore, for every T e V,, there exists an r x r, matrix
T such that

T="'TE,T, (8.12.1)
where E, is the diagonal matrix with ones along the first p diagonal entries
and zeros on the remaining r — p diagonal entries. Thus V, is connected
and irreducible. To compute the dimension of V., we may consider only
the matrices in ¥, of rank precisely p. Consider such a

- [A B
=|x <leV
T ,: G D] el,
with Aa p x p non-singular symmetric matrix and thus B is a px(r—p)
matrix . .. etc. By (8.12.1) we see that there exists an r x r matrix

o[t ]

such that ~

‘A 'CIf1 014 B]_['44 '4B] [A B
['B '1)] [o o] [c D|™ ['BA ‘BB |~ [C‘ 5]‘
From the above it follows that A is non-singular (‘44 = A implies (det A)? =
det 4 # 0). We claim that 4, B uniquely determine C, D. It is clear that
C="8. Further, since B =‘AB and A4 is non-singular D = 'BB =
‘B(AA) 'B='BAi 1B Conversely, given a non-singular symmetric 4 as
above, it can be written as ‘44 for some A. Also given an arbitrary B as
above, we can define a matrix T of the above form. Thus we see that dim V,

is equal to the sum of the dimension of all possible 4 and the dimension
of all possible B. O
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Corollary. Let V be a k-dimensional vector space of :wy'mmetric. rxr matrices.
A sujﬁci;nt condition for V n\ V, 1o contain a non-trivial matrix is that
rir+1)
2

1
<k+§p(p+1)+p(r—p)-

i i i us subvariet
ProOF. The vector space V is clearly an irreducible homggc?nep ubvar ty
of C/2r* 1 Sq is V. The intersection of two such varieties is never empty

and in our case has dimension

2k +dp(p + Vpr = p) Zdrr + N2 1. O

~
I11.8.13. Theorem. Let M be a compact Riemann surface of genus g and let

A be an integral divisor of degree n>g. If r(lA") > %(%r: + 7 —g), then
there is an integral divisor B on M withdeg B < inandr(B”") > 2.

Proor. From the Riemann-Roch theorem,
rHA %) =2n—g+ 1.

Let r=r(A™Y). Let {f,,...,/,} be a basis for L(4™"). Then f;f, e L(A7?)
for 1<j<k<r and these 3r(r + 1) clements are dependc.nt (because
ir(r +—1) > 52n+8—¢g)2n+12—g)>2n—g+ 1), and §atlsfy at least
k=4r(r + 1)— 2n — g + 1) linearly independent symmetric relations of
the form

L aufifk=0.
k=1

By the corollary to the previous proposition, a necessary condition for the
existence of a non-trivial rank <4 relation among these is that

rr+ )<k +10+4(r—4),
which is precisely the condition imposed on r= r(A~1Y). By a change gf
basis in L(4™!), we may assume the relation is of the form (it cannot be
of rank £2)

fifi=fifs or fi=fifs
From here it is easy to get the desired conclusioq. We use a variatiqn of z}
previous argument. Let A = P, - - - P,. Assume (in case of the relation o
rank 3 set f, = f})

Q'l'.'Q'n s — .4
(fj)=————1;1'_,P: ., J=L...,

(we are not assuming that Q # Py for all j, I, k). Then
Qi1 Qunlar Qan=03 """ 03,041 Q-
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p f L :
Half the {Q; k= 1,..., n} occur in 1934} or [Qy}). Say in the {Qsx}, then

(1‘{):9&@12;_@ ’

J3 03,0;: "'Qan’

and f = fl/fs has not more than n/2 zeros and is not constant. We can set
B = the divisor of zeros of f, and observe that 1/fe L(B™Y). O

Corollary. .{.01 M l.)e a sz.trface of genus g > 4. Then M carries a non-constant
meromorphic function of degree <%(3g + 1).

PrOOF. Let D be a special divisor of de ith 3
. @ gree n with 3¢ <n<2g—~2. T
Riemann-Roch theorem implies that z!] ? e

D™ =n—-g+1+iD)2n—g+2.

The assumption that n > 3y implies n — g + 2 > i(2n =g+ 7) and allows

;s tfod apply th? theorem. We conclude that there exists an integral divisor
ofdegree < sn, with L(B~') > 2. Choosing the inteeer 1 : : i

the Corollary follows. : sermaslowas POSSIUS

Remark. The above result generalizes Proposition 11.8.6.

III.8.14.'We consider a special case of the preceding theorem. Let 7
be an integral canonical divisor (then HZ7')=gj. Note r(Z:‘) ;
$2deg Z + 7 — g) if and only if in, in thi
g y if g > 3. Hence we obtain. in this case, from
Theorem II1.8.13, an integral divisor B of degree <g — 1 with r(l/B,) >0
IIIIIu;;s,1 ;1])30 i(B) = 2. (The above also follows from the corollary to Theo:er—r;
We have produced the divisor B as a consequence of a quadric relation
of r.ank <4 among products of meromorphic functions. It could have
equivalently been produced as a consequence of a quadric relation of rank
<4 lamong products of abelian differentials of the first kind. Now there
are zg(g'+ 1} such products and 3g — 3 linearly independent holom:)rphic
9uadratxc differentials. Thus there are at least g +1)~(3¢g-3)=
29 — 2)(g — 3) linearly independent symmetric relations )

g

Z AP Py = 0
Lk=1
among products of a basis {on ... @4} of abelian differentials of the first

kind. The space of syn'lmetrgc g % g matrices of rank <4 has dimension
4th- 6, and thus the dimension of the “space of relations of rank <4 is
at least -

@9-6)+2g—-29-3)~g(g+ 1) =(4g—6)~(3g —3) =g — 3,

Thus (another loose sta‘tement), the dimension of the space of integral divisors
of degree =g — 1 and index of specialty >2is >g ~ 3. The proofs of these
assertions involve new ideas, and will be presented in II1.11.
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111.8.15. The next lemma is both technically very uscful, and explains
what it means for an integral divisor to have positive dimension. Roughly
it says that an integral divisor D has dimension >s if and only if D has
s — 1 “free points”, and gives a precise meaning to this statement.

Remark. The lemma could have been established at the end of IIL4. We
have delayed its appearance because its proof uses techniques of this sec-
tion. In fact, we have already used and proved part of the lemma in 111.8.10.

Lemma. Let D be an int&gral divisor on M. A necessary and sufficient condition
for r(1/D) = s is: given any integral divisor D' of degree <s — 1, there is un
inteyral divisor D" such that D'D” ~ D. Further. for sufficiency it suffices to
assume that D' is restricted to any open subset U of M_,, the (s — 1)-
symmetric product of M.

Proor. To prove the sufficiency, we assume r(1;D) = d and that {f},...,f;}
is a basis for L(1/D). As in IT1.8.10, we construct a divisor D’ = Q; - - Q,—,
such that rank (f(Q@)), k=1,...,d, j=1...,5—1 s precisely
min{d, s — 1} and such that none of the points Q; appear in D. If d <s —1
we would have that the only function which vanished at Q,,..., Q;_, in
L(1/D) would be the zero function contradicting the fact that we can choose
an integral divisor D" such that D'D” ~ D. Hence d > s.

To show necessity assume that r(D~') = s > 1. Note that for arbitrary
divisor U and arbitrary point P € M, r(PA 1) > r(U~ ') — 1. Now let D’ be
integral of degree <s — 1. By the above remark, r(D'/D)=>s—(s—1)=1
Now choose f € L(D'/D). Thus there exists a divisor D" such that D'D" ~ D.

0O

I11.9. Multivalued Functions

We have on several occasions referred to certain functions as being {perhaps)
multivalued, and then proceeded to show that they were single-valued.
Examples of this occurred in the proof of the Riemann-Roch theorem, in
the proof of the sufficiency part of Abel’s theorem (Theorem I11.6.3), and
in the section on hyperelliptic surfaces. In this section we give a precise
meaning to the term multivalued function and generalize Abel’s theorem
and the Riemann-Roch theorem to include muitivalued functions. Multi-
valued functions will also be treated in IV.4 and [V.11. Analytic continuation
(= multivalued functions) is one of the motivating elements in the develop-
ment of Riemann surface theory. Riemann surfaces are the objects on which
multivalued functions become single-valued. This aspect of multivalued
functions will be explored in IV.11.
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I1.9.1. Let M be a Riemann surface. By a function efeniont (f,U)on M
=3 13 “ o~ 0 : ’ ’ ’
we mean an open set U < M and a meromorphic function

SU-Cuixl

Two.function elgments (fU)and (g,V) are said to be equivalentat Pe U n V,
provided there is an open set Wwith Pe W< U AV and ’

fIW = gjw.

The equivalence class of (f,U) at P € U is called the germ of ( f,U) at P and
will be denoted by (f,P). It is obvious that the set of germs 61" all function
elements at a point Pe M is in bijective correspondence with the set of
convergent Laurent series at P (in terms of some local parameter) with
finite singular parts. We topologize the sct of germs as follows. Let (f.P) be
a germ. Assume it is the equivalence class of the function element ( f,U)
with Pg U. By a neighborhood of (f,P), we shall mean the set of ger’rns
(/,Q) with Q € U. It is obvious that each connected component &, of the
set of germs, is a Riemann surface equipped with two holomorphic r,naps

F—— Cu )

M
eval(f,P) = f(P)
proj(f,P) = P.

The veriﬁ.cation of the above claims is routine, and hence left to the
reader. In this connection the reader should see also IV.11.

where

III.9.2:_We shall be interested exclusively in a restricted class of compo-
nents # as above. Namely, we require that

x proj be surjective, and that
il. for. every path g:I - M, and every f e F with proj(f) = c(0), there
exists a (necessarily) unique path &:1 — # with &(0) = fand ¢ = ;;roj XA

We shall call ¢ the analytic continuation of &(0) along c.
Note that by the Monodromy theorem &(1) depends only on the homotopy
class of the path ¢ and the point &0). (In the language of 1.2.4, we are con-

Sldellllg Ollly thOSC COIHpOI’l s #
) ents Wthh are SIIlOOth uIlllmlted COVCIIIlg

I11.9.3. Let M be a compact Riemann surface and 7,(M), its fundamental
group. By a chgracter x on n,(M) we mean a homomorphism of n,(M) into
tbe multiplicative subgroup of C, C* = C\{0}. Since the range is clommuta-
tive, a character y is actually a homomorphism

2H (M) - C*.
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The character y is normalized if it takes values in the unit circle {z e C;
|z| = 1}. If M has positive genus g, and {X,... Ny} ={a,..-.a5bs,... b}
is a canonical homology basis on M, then y is determined uniquely by its
values on a canonical homology basis, and these values may be arbitrarily
assigned.

The set of characters on =,(M) forms an abelian group (under the obvious
multiplication) that will be denoted by Char M.

[11.9.4. We are finally ready to define a multiplicative multivalued function
belonging to a character x on M. By this we mean a component # of the
germs ol meromorphic fgnctions on M satisfying the two properties listed
in I11.9.2 and the following additional property:

iii. the continuation of any f € # along a closed curve ¢ leads to a point

fi with
eval f; = y{c) eval f.
[11.9.5. We examine more closely a multiplicative function # belonging
to a character y. Let ¢ be a closed path in M and Z a path in # lying above
it (proj o & = ¢). For each point t € [0,1], the point Z(t) is represented by a
function element (£, U(z)) with U(t) open in M and c(t) € U(t). By the con-
tinuity of the map Z:/ —» % and the compactness of I, we can find a sub-
division

O=to<t1<t2<---<t,,<t,,ﬂ=l

and function elements (fo.Uo) (f:U1)-- s (foUn) such that &(t) is the
equivalence class of (f;,U)) for t e [t)tj410,7=0,...,n Furthermore, if c
is a closed path, ¢(0) = ¢(1), we may assume without loss of generality that
U, = U,. We say that the function element (f,,U,) has been obtained from
the function element (f,,Uq) by analytic continuation along the curve c.
Since F belongs to the character y, we see that

Ja= 1(c)fo-
Thus, we may view a multiplicative function & belonging to a character
x as a collection of function elements (f,U) on M with the properties
(i) given two elements (f;,U,) and (f;,U,) in &, then (f;,U,) has been
obtained by analytic continuation of (f,,U 1) along some curve ¢ on M, and
(ii) continuation of a function element (f,U) in # along the closed curve
¢ leads to the function element (x(c)f,U).

[11.9.6. To define muitiplicative differentials belonging to a character, we
proceed as follows: Consider the triples (w,U,z) where U is an open set in
M, z is a local coordinate on U, and o is a meromorphic function of z. If
(w,,V,0) is another such triple and Pe U n V, then the two triples are
said to be equivalent at P provided there is an open set W< UnV, with
PeW,and for all Qe W

d
,(((2)) dé =w(z), z=1z(Q)
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Repeating the previous arguments, with this equivalence relation, one
arrives at multiplicative (or Prym) differentials belonging to a character ha
To fix ideas, this involves a collection of triples (.U, 2). (®6,Up,z0) and
(0,,U,,,z,,) are two such tri ples, then we can find a chain of triples

(w;,U;,z)), J=0,...,n
such that
Uin U,  # @, Jj=0,...,n~1,
and

dz;
ofz4z;4 1)) a- = Dy (254 1), Ziw1 = Zj4 1(Q), Qe Uyn Ujir
i+

Furthermore, if we continue an element (»,U,7) alon g aclosed curve ¢ to the
clement (w,,U,z), then

y(2) = ylc)o(z),  z=1z(Q), Qe U.

IL9.7. 1t is quite clear that if fii =1.2) is a multiplicative function be-
longing to the character %> then £, f; is a multiplicative function belonging

to the character y, 3, (f,/f, is a multiplicative function belonging to y,; !

provided f, # 0). Similarly, if @; (j =3.4) is a multiplicative differential
belonging to the character X then fiw; is a muitiplicative differential be-
longing to the character 1143 and w3/w, is a multiplicative function belong-
ing to the character 575 !, provided Wy # 0.

Proposition. If f £0 is multiplicative function belonging to the character
%> then df is a multiplicative differential belonging to the same character and
df/f is an abelian differential.

PROOF. We need only assure the reader that df is exactly what one expects
it to be. If £ is represented by (f,U) on the domain of the local parameter z,
then df is represented by (f (@,U,2). O

IIL9.8. It is quite obvious that a multiplicative function (and differential)
has a well-defined order at every point, and thus we can assign to it a divisor.

Corollary 1. If f £0 is a multiplicative function, then deg(f) = 0.

PROOF. The order of f at P, ord e f, just as in the ordinary case is given by
the residue at P of df/f. Since df/f is an abelian differential, the sum of its
residues is zero. O

Corollary 2. If w £ 0 is a multiplicative differential, then deg(w) = 2g — 2.

PrOOF. Choose an abelian differential @y on M, o, # 0. Then w/w, is a
multiplicative function belonging to the same character as w. Since deg(w,) =
29 — 2, Corollary 1 yields Corollary 2. |

123

111.9. Multivalued Functions

111.9.9. If f is a multiplicative function withogt zeros anfiu poles,w then
dfif = d(log f) is a holomorphic abelian differential. Letting {{;, . .. ,;_g}' bei
a basis for the abelian differential of the first kind on M dual to the canonica

homology basis, we see that
Y —dtogs=3 ek
f =1
and thus
f(P) = f(Pg) exp f:; jé ¢l withc;eC. 9.9.1)
-~

- . = LT
The character y of the function f is then given by

A
zla,) = exp ¢, k=1,...,9, 9.9.2)

g
z(b,‘)=exp<; cjn,k), k = 1,...,g<njk=ﬁk g,). 9.9.3)
j=1
We shall call a character x as above inessential, and f as above a unit.

Proposition. If y is an arbitrary character, then there exists a unique inessential
character x, such that y/y, is normalized.

PROOF. Assume

xa) = e%r i S e R,

yb) = et w0 eR,
for k=1,...,g. To construct an inessential charact'er %1 With le(C)l =e
|x(c)| for all c € H,(M), we choose constants ¢, = &, + if, so that (compar
with 9.9.1, 9.9.2, and 9.9.3),

| = e =e* or a =s,

and

P g
=R o e or Y Recmy =ty (994)

i R
et
j=1

To see that this choice is indeed possible and in fact unique, recall that we
can write the matrix IT = (n;) as

D=X+1iY

with Y positive definite, and thus non-singular. To solve (9.9.4) we vsl'nte
c="c c,), 2 ="Yay a,), etc., . .., and note that we want to solve
- 15 ¢+« sbgh PICE ) > s

Re[(X + iY)(a + if)] = u.
Since we have already chosen o = s the equation we wish to solve is

Re[(X +iY)(s + if)] = u,
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or what amounts to the same thing
Y= —u+ Xs.

Since Y is non-singular there is a unique B which solves this system of
equations. 0

Corollary. A normalized inessential character is trivial,

111.9.10. Theorem. Every divisor D of degree zero is tHe divisor of a unique
(up to a multiplicative constant) multiplicative Junction belonging to a unique
normalized character.

PROOF. Let D=P -+ P,/Q,---Q, with P, Q, all j k=1,.. .r>0. If
f; is a multiplicative function belonging to the normalized character 7
(J=12), and (f}) = D, then f,/f, is a multiplicative function without zeros
and poles. Thus, y,7; ! is inessential and normalized; hence trivial. Thus
it suffices to prove existence for the divisor D = P/Q,, with P,.Q, e M,
Py # Q. Recall the normalized abelian differential Tp,, introduced in
I11.3.6. Define

P
f®y=exp [ 2p,q,
The character to which f belongs is not necessarily normalized. But the

arguments in I11.9.9 showed how to get around this obstacle, O

Corollary. Every divisor D of degree 29 — 2 is the divisor of a unique (up to a
multiplicative constant) multiplicutive differential belonging to a unique
normalized character.

PROOF. Let Z be a canonical divisor, and apply the theorem to the divisor
of degree zero D/Z. 0
I11.9.11. Theorem. Every character 1 is the character of a multiplicative

Junction (that does not vanish identically).

PRrROOF. Let {al,...,ag,bl,.,.,bg} be a canonical homology basis on M.
It is obvious that y may be replaced (without loss of generality) by xy, with
X1 inessential (a unit always exists with character x1)- Since the value of an
inessential character can be prescribed arbitrarily on the “a” periods (see
I11.9.9), we may assume

xla) =1, j=1...,g. 9.1L.1)
Furthermore, writing
wb)=exp(B), j=1,...,4,
and fixing ¢ > 0, we may assume in addition

Bl <e j=1,...,q (9.11.2)
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(For if y is arbitrary and satisfies (9.11.1), then choose an integer N > 0 so
that .
IB/N|<e j=1,...,4
Set .
i(aj) = 1’ i(bj) = eﬁj/N! J= 1, s g
If f is a function belonging to the character 7, then f~ i§ a function be:longing
to the character y.) Let us now fix a single parameter disc U on M with local

" coordinate z. We may assume U is equivalent via z to the unit disc. Choose

a point (z,,...,z,) € U? such that the divisor D = P, --- P, (P; = z7Y(z)) is
not special. (This is, as*we have previously-seen, always pqsmblg.) We use
once again the normalized abelian differential 7,, of the third kind (intro-
duced in IIL3).

We define

[l
Py =exp 3 [y 7o
2

where Z = (Zy,...,%,)€ U’ is a variable point, and P(,?é U. For fixed 2 we
get a multiplicative function with character x, satisfying (9.11.1). This is,
of course, a consequence of the fact that [,, tpo = 0,fork = 1,. .., g. Further-

more, , , .
xs(b) =exp Y f Te. =eXp ). ZmL_ x 9.11.3)
j=1 I i=1 g

by the bilinear relation (3.6.3), where {(y,....{,} is the normalized basis
for the abelian differentials of the first kind dual to the given holomogy

basis. . ’
Now (9.11.3) obviously defines a holomorphic mapping ¢:U? - C*

@ = (¢1, e ’¢g)
q ;
o5 =exp Y 2mi Lj li
=

Dy, .oz =(1,...,1)

The theorem will be established if we show that ¢ covers a neighborhood
in C? of (1,...,1). By the inverse function theorem it suffices to show th?t
the Jacobian of @ at (z, .. . ,z,) is non-singular. Write 27i{(z) = ¢;(z)dz in
terms of the local coordinate z, and note that

0¢k = (pk(zj)’ j, k = 1’ s g
azi 25
Thus, we have to show that the matrix
©1(z1) @2 o @ulzy)

@z} 92(z))

%(.Z g q’aiza)
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1s non-singular. If this matrix were singular, then a non-trivial linear com-
bination of the rows would be the zero vector in C%. That is (since {,....,¢,
are linearly independent), there would be a non-zero abelian differential of
the first kind vanishing at P,, ..., P,, contradicting the assumption that

the divisor D is not special.
pe - a

Remark. The reader should notice the similarity between the proof of the
above theorem and the proof of the Jacobi inversion theorem.

H1.9.12. Let A be an arbitrary divisor on M. In analogy to our work in 1114,
we define for an arbitrary character %,

L) = (multiplicative functions f belunging to the character y such that
()=,

r() = dim L (20),

Q2,(A) = {multiplicative differentials @ on M belonging to the character X
such that (w) > A}, and

(W) = dim Q ().
Theorem (Riemann—Roch). Let M be a compact surface of genus g, and y
a character on M, Then for every divisor A on M, we have
rdU ) =deg A — g + 1 +1i,-,(AN). 9.12.1)

Proor. Choose a multiplicative function 0 # f belonging to the character y.
(Theorem II1.9.11 gives us the existence of such an f.) Then

he LA™ Yeh/fe LAY (f)™Y, (9.12.2)
and

we Q- (W< of € AAS)). (9.12.3)
Thus

P07 = r((U()7Y) and i,-(A) = i S)). (9.12.4)

We apply now the standard Riemann-Roch theorem (4.11) to the divisor
A(f) and obtain

r((U())™Y) = deg((U(/))) — g + 1 + i(A(S)),
which is equivalent to (9.12.1) in view of (9.12.4) and the fact that
deg(U(f)) = deg U + deg(f) = deg U.

Remark. The isomorphisms established in (9.12.2) and (9.12.3) are also useful
in their own right.

I11.9.13 An important class of characters are the so-called nth-integer
characteristics. Let {ay, ... g by, ... ,b,} be a canonical homology basis on
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M. Consider an integer n > 2 and a 2 X g matrix

£ &/n, ... ,ag/n]

¢ |, h gy/n, ... Ey/n
with &;¢; integers between 0 and n — 1. The sym.bol [+]. will be called an
nth-integer characteristic. 1t determines a normalized character y on M via

x(a;) = exp(2rie;/n),
%(b;) = exp(2rig;/n), j=1...,9.

~ .

It is clear that for every multiplicative function f ‘ belor}ging to such a
character y, | f]is a (single-valued) functionon M, and f itselflifts to a function
on an n-shected covering surface of M. Furthermore, we can constru.ct such
an f by taking nth roots of a meromorphic funptxon h on M provided (h)
is an nth power of a divisor on M (that is, provided the order of zeros and
poles of h are integral multiples of n).

111.9.14. Proposition. For y € Char M,
. g if x is inessential,
)= g —1 ifyis essential.
Proor. The Riemann-Roch theorem says:
re-il)y=—g+ L+ i(1)

Thus, i,(1) > g — 1, and i(1) < g. Furthermore. i,(1) = g '{f ?.nd or}ly if'there
isan f le L,-1(1), f # 0. Since such an f must be a unit if it is not identically
zero, we are done. .

I11.9.15. We end this section with the statement of Abel’s tt;eorerp for r.nul-
tiplicative functions belonging to a character . The proof is omitted since
it is exactly the same as the proof already studied (in I1L.6.3).

Theorem (Abel). Let D € Div(M), y € Char M. A necessary and sufﬁcient con-
dition for D to be the divisor of a multiplicative function belonging to the
character y is

1 1 3 ()
=— Y log x(b)e? — — ¥ log y(a)n" (mod L(M)),
o) =55 % log xlb)e? ~ 55 L log e,

and
deg D =0.

I11.9.16. Exercise
Define a mapping
@:Char M - J(M)
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as follows. For y € Char M. select a non-constant meromorphic function f belonging
to the character . Let ¢(y) = @(( f)), where. as before, p({ f)) is the image of the divisor
(f) in the Jacobian variety. Show that:

(1) The mapping ¢ is a well defined group homomorphism.

(2) The mapping g is surjective.
(3) x € Kernel ¢ if and only if y is an inessential character. Con@tie that as groups
J(M) = Char M/(Inessential characters on M)

(4) Obtain an alternate proof of the Jacobi inversion theorem as follows. First show
that every e € J(M) is the image of a divisor of degree zero. {(We established this fact
by the use of the implicit function theorem.) Thus every ¢ € J(M) is the image
of some y e Char M. Now use Theorem 111.9.12 (Riemann-Roch) to show that
rd1.Py) = 1. Thas there is a multiplicative function belonging to the charucter y
with < g poles. Jacobi inversion follows from this observation, The same method
(see ITL11) can also determine the dimension of the space of divisors of degree g that
have image e.

Remark. The reader should at this point review the remark at the end of H19.11.

111.9.17. Exercise

(1) Let Pe M and let z be a local coordinate vanishing at P. LetneZ, n> 1. By a
principal part (of a meromorphic function) at P we mean a rational funciion of z of
the form

f(z)= X .

(2) Let {Py,...,P,} be m distinct points and z; a local coordinate vanishing at P,
Let f; be a principal part of a meromorphic function at P; (in terms of the local
coordinate z)). The collection F = {fis+- .S} will be called a system of principal
partsat {P,,....P,}.

(3) Let F be a system of principal parts at {P,,....P,}. Let @ be an abelian differential
on M that is regular at P for j = 1,..., m. Then

Flp)= Zx RCSP_, fo
J:

is a well-defined linear functional on the space of all such @. In particular, F induces
a linear function on #'(M), the vector space of holomorphic differentials on M.

{4) Let y € Hom(H (M),C); that is, y is a homomorphism from the first homology
group of M into the complex numbers. By an additive multivalued JSunction belonging
lo y we mean a component # of the germs of meromorphic functions on M satisfying
the two properties listed in I11.9.2, and (iii)’ the continuation of any f € # along a
closed curve ¢ leads to f, € # with

eval f; = eval f + g(c).

Show that for every additive function &, d% is a (well-defined) holomorphic
differential. Further # defines a system of principal parts and this induces a linear
functional on #'(M).
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(5) Using the normalized abelian differentials of the second kind introduced in II1.3,

show that o o

(a) Every system of principal parts is the system of principal parts of an additive
Fo v i dditive function belonging to x

b) For every x € Hom(H (AM),C) there is an additive func ion be .

ic)) Let {a,...,8, by, ... ,b,} be a canonical homology basis 09 M. A homomor-
phism y € Hom(H,(M).C) is called normalized if z(.a,-) =0,j= ‘1, ..., d. Show
that every system of principal parts belongs to a unique normalized homomor-
phism.

(6) Prove that a system F of principal parts is the system of principal pzjlrts ofa (si.ngle-
valued) meromorphic f#hction on M if and onlyif F induces the zero linear functional

on H#1(M).
{(7) Use the notation of 111.3, and show that

-2 _ (P m

TR >
n-—1 ok

where ®
tpe =2, (2')dz atP,
i=0

and
R, P, Q, are three distinct points on M.

(8) Let F be a system of principal parts at {P,, ... ,P,}. Let Q be arbitrary but distinct
from Py, j=1,...,m Define for P# P, P #Q,

E(P) = —F(tpq),

Show that E agrees on M\{P,, ... ,P,.Q} with the unique (up to additive ctonstant)
additive function & with F as its system of principal parts and belonging to a
normalized homomorphism.

II1.10. Projective Imbeddings

Throughout this section, M is a compact Riemann surface of genus g > 2,4
is an integer >1, and d = dim #Y(M) (=g for g = 1,‘ ={2q — 1)(g — l)ff?é
q = 2). We show that every such surface M can be realized as a submanifo
of three-dimensional complex projective space.

I11.10.1. We have seen that for each P €M, there is a w e #'(M) wit'h
w(P) # 0 (thus also @? € #YM) with ©¥(P) # 0). Let {{y, ... L4} be a basis
for #%M). The preceding remark shows that we have a well-defined
holomorphic mapping, called the g-canonical mapping, of M into complex
projective space

9:M d Pd_l)
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where §(P) is given by ({,(P),....Z,(P)} in homogeneous coordinates. We
are using here our usual conventions: Let z be any local coordinate on M.
Express the differential

¢j=@(z)d=* "

in terms of this local coordinate. Then

0(z) = (94(2), - .. @4(2))
in terms of the local coordinate z. The image of Pe M in P~ ! s clearly
independent of the choice of local coordinate used, and a change of basis of
H#YM) leads to projective transformation of P?~!. Hence the map 6 is
canonical, up to the natural self-maps of projective space.

I1.10.2. Theorem. The g-canonical holomorphic mapping 0:M - $4=1 js
injective (and of maximal rank) uniess ¢ = 1 and M is hyperellipticorg = 2 = q.
In these exceptional cases 0 is two-to-one.

PRrOOF. Assume that for P e M, 2 is a “g-gap” (that is, there exists a holo-

morphic g-differential with a simple zero at P). Then by choosing a basis for

H(M) adapted to P, we see that (z = local coordinate vanishing at P)
e(zy=(1+ O(|z|))dz", z -0,

@y(2) = (z + O(|z*))dz8,  z 0.
Thus

Z@)=z4 043  z-0,
Pt

and we conclude that @ has a non-vanishing differential at P (z=10) and is,
hence, of maximal rank at P.

Now assume there exist P and Q e M, P # Q, with 0(P) = 6(Q). By
choosing a basis adapted to P as above, we see that in homogeneous co-
ordinates

0Py = (L,0,...,0).
(d — 1)-times -
Thus, if (P) = 0(Q), we must have,
0(Q)= (4,0,...,0), A#0.
(d — 1)-times

In particular, we see that every holomorphic g-differential that vanishes
at P also vanishes at Q, or

L(ZP) = L(Z™PQ), (10.2.1)

since L(Z~?P) and L(Z~?PQ) are isomorphic to the vector spaces of holo-
morphic g-differentials which vanish at P and P and 0, respectively. Hence

HZ~P) =1 (Z PQ) =d — 1. (10.2.2)
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Let us assume ¢ = 1, and use (10.2.2) and Riemann-Roch to compute

PO

Thus M must be hyperelliptic. Next we assume ¢ > 1, and compute

r(—l—-> =2—g+1+r(PQ/Z)y=2.

r(Z7PQ)=4q(2g —2)—2—g + 1 +r(Z*"'/PQ)
=(29 - g —-1)—2+r(Z/PQ)
Now for (10.2.2) to hold we must have that
- Tz PQ) =T

which implies that
deg(Z¢~/PQ) < 0.

This last statement is equivalent to
(g—Yg—-1 =1L
Since g > 2 and ¢ = 2, this is only possible for g = 2 = g. Note that }he above
argument also establishes that for each P € M, 2 isa “g-gap” except ifg=2=
q or ¢ = 1 and M is hyperelliptic.
111.10.3. To study the excluded cases, we represent a hyperelliptic surface
M by
wh=(z~e) (2~ exy+2)
with distinct e;. We have seen that a basis for #"'(M) is then
{dz zdz 2! dz}

w W w

Thus in affine coordinates
O(P) = (Lz(P), ... ,z(P¥™ ).

Thus 6 is clearly two-to-one in this case (since z is two-to-one), and not of

maximal rank at the Weierstrass points z ™ '(e;). . o '
For the other excluded case (g = 2 and g = 2), M is hyperelliptic again.

A basis for #4(M) is
dz? dt d._j_
PEAREVE AL S ¢

O(P) = (1,2(P),z(P)*)

is independent of w, and the 2-canonical map (for genus 2) is two-to-one, and
not of maximal rank at the Weierstrass points. O

Again

I11.10.4. Since the image of a compact manifold under an analytic mapping
of maximal rank is a sub-manifold, we have obtained
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Corollary 1. Every Riemann surface of genus >2isa submanifold of a complex
projective space.

Corollary 2

—

a. Every non-hyperelliptic surface of genus 3 is a sub-manifold of P2,
b. Every other surface of genus g 2 2 is a sub-manifold of P2,

PROOF. Part (a) has already been proven. We have also seen that every surface
is a submanifold of P4~! for large d. Now assume that a Riemann surface
M can be realized as a submanifold of P* for k > 3. Call a point x € PA\M
good, provided for all P e M, the (projective) line joining x to P is neither
tangent to M at P, nor does it intersect M in another point. Say that we can
find a good point x. We may assume that

x=(10,.... 0).
e
k-times
A line L through x may be represented thus by any other point y on it

Since y # x, y = (4g,24, ... ) where (Ay, ... 4,) = J{(L), determines a well
defined (depending only on L) point in P*~!, Now the mapping

MsPw p(L)e Pr-1,

where L is the line joining x to P, is a one-to-one holomorphic mapping of
maximal rank. Thus we are reduced to finding good points. The tangent
lines to M form a two-dimensional subspace of P*, and the lines through
two points of M form a three dimensional subspace of P¥. Thus a good point
(a point not in the union of these two subspaces) can certainly be found
provided P* has dimension >4. O

We also saw in the above proof that the embedding of M as a submanifold
of P? can be achieved by using 3 or 4 linearly independent holomorphic
g-differentials (g = 1 except in the few exceptional cases). We will show in
1V.11 that every two meromorphic functions on M are algebraically depen-
dent. Hence we will also have

Corollary 3. Every compact Riemann surface of genus g > 2 can be realized
as an algebraic submanifold of P3.

III.11. More on the Jacobian Variety

This section is devoted to a closer study of various spaces of divisors on a
compact Riemann surface M, and the images of these spaces in the Jacobian
variety J(M). We show that J(M) satisfies a universal mapping property
(Proposition IIL11.7). The technical side involves the calculation of di-
mensions of subvarieties of J(M). The most important consequence is
Noether’s theorem (1IL.11.20). Throughout the section, we assume that the
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reader is familiar with elementary properties of complex manifolds of di-
mension > 1.

. ) .
MNL11.1. By a complex torus T, we mean the quotleqt space, T= Cd,Gt,
where G is a group of translations generated by 2n R-linearly independen

* vectors in C". A torus T is thus a group (under addition modulo G) and a

complex analytic manifold with the natural projection
p:C"=>T,

holomorphic local homeomorphism. ' .
: \(?)Vce) intr%duce now some notation that we w1ll.follovf throughout this
sectionaIf u & T, then ke C" will denote a point wnl}) p(f) = ;:én')l’hec §er}ehr-
ators of G will be denoted by the column vectors II'V, ..., II ; . ) e
j-th component of the vector IT® will be denoted by n. The n x 2n matrix

) = IT will be called the period matrix of T. ' . '
(njk())ur first observation is that the 2n x 2n matrix 2[%] is non-smlgulai.
To see this, assume that there exists a vector ¢ € C*" such that [ﬁ]ch—
[§]=0. Then MI(c +¢) =0 = I(c — 7). Th}llls Rec0= 0 =Imc, by the

-li independence of the columns of I1. Thus ¢ =0.
§ lll';leer?;elr\lwe Il):zwe for 'x, 'y e C", 'c € C?* the equation (x,y)[f]=chas a

unique solution. In particular if c € R?" < C**, then
xI1 + yl1 = ¢ =¢ = %Il + VII.
or _
(x =PI + (y — DT =0.
=7, and
Thisx =7 ¢ =2 Re(xIT). (11.1.1)
I11.11.2. Since G acts fixed point freely on C", n,(T) = G, and §ince G hlS
abelian H,(T,Z) = G. As a matter of fact, the paths corresponding to the
columns of IT (that is,
ts tlI® te[01], k=1,...,2n)

j i that the holomorphic I-
roject to a basis of H,(T,Z). We observe next ! .
gifférentials, dit; are invariant under G, and hence project to holomorphic

1-differentials du; on T.

i i i . By definition, a

k. Let V be a complex manifold of d1m§nsxon m
ﬁcflrz‘rzr:orphic 1-form w on V is one that can be wptten locally as dF for‘ some
locally defined holomorphic function F on V, or in terms of local coordinates,

Z = (Zl, e ,zm)’ as

w= i Sfiz)ydz;,
i=t

with f; holomorphic. In particular, w is closed. Since

dw = i i g‘fldz,‘/\dzj=0,

i=1 k=1 ozk
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we also have

of, ¢
-;j;= (ff'—‘, allk,j=1, ,m '/
0z Cz
Lemma. The projections to T of the differentials di,, . .., ds, form a basis

Jor the holomorphic 1-differentials on T, that will be denoted b y {duy, ..., du,}

ProOF. Let {ay, ... ,a,,} be a basis for H (T,2) corresponding to the gener-
ators of G. Then

ﬁkduj=rcjk, J=4L...,nk=1...2n

Thus, letting ¢ € R*, it follows by (11.1.1) that there is a unique vector'x € £”
such that

Re [ ¥ xjduy=c,, k=1...,2n (11.2.1)
K j= 1
Now (11.2.1) shows that the differentials du,, dus, . . ., du, are linearly inde- .

pendent over C. Furthermore, given any holomorphic 1-differential 5 on T,
there exists a differential w = Y}, x;du; such that

Reﬁk(S:Reﬁkm, k=1,...,2n (11.2.2)

Define a function F on T by

F(P) = Re fo"(é ~w), PeT.

By (11.2.2), F is well-defined. Since § — w is holomorphic, F is locally
the real part of a holomorphic function. Thus F satisfies the maximum (and

minimum) principle. Since T is compact, F is constant and thus = 0. By the
Cauchy-Riemann equations

Im fo’(a — w) =0,
and thus § = w.

O

Definition. By du we will denote the column vector of l-differentials
Hduy, ... du,).

HNI.11.3. Let V be any connected compact m-dimensional complex an-
alytic manifold, and let #:V — T be a holomorphic mapping. Let z =

(21, . . . ,z,) be a local coordinate at a point #(P)e T.If w is a holomorphic
I-form on T, then locally

w= ‘il Ji(2)dz;.
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i P on V. The pullback of w via @,
t¢=(,....¢n)bealocal coordmatc'at : a
Idﬁcf is t(;xé holomorphic 1-form defined in terms of the local coordinate { by

m
P*o =3 g,0)di)
“~

J
where we write z = h({) = (h,({), . . . ,ha({)), and
() = ; éihﬁ i=1,...,m
g0y = k}; Slh(©)) )

Letd,, .~ , d,denote thepullbacks of duy, . . ., du, vig ®. Let dbe tll'? coll}mn
vector’ formed by the §;, and p be, as before, the projection from " — T.

Proposition. Let Poe V. Then

P
@(P) = B(P) + p( N 6). (11.3.0)
PrOOF. Since 8§ = &* du, and
Fo= 00 11.32)
= — B(P)— B(P (
Poé - ,[ou’o) du = ®(P) (Po)

O

modulo periods, the result is clear.

1IL11.4. Corollary. Let @;:V—>T be holomorphic mappings for j=0,L.
As;ume @, is homotopic to @,. Then there exists a ¢g € T such that

®o(P) = D,(P) + Co allPeV.

PROOF. Since @, is homotopic to @, there exists a continuous function

OV xI->T
(I = [0,1]) such that
@(.)O)'—;éo, ¢(’1)=¢1

i i ic to ®,(a). Let 8 =

closed curve a in V, ®(a) is homotopic 1 :
;hfjur(grz‘;rexﬁl 3.2) we see that 8 = 8{" (since they have tl;el s3a§r)10 ;:c:}r:c:ﬁz
oxller every closed curve a on V). Thus @, and @, satisfy ( e

same J.

M.11.5. Let T, =C"/G, and T,=C"/G; be two con:;:ilexﬂtlc;;l.thlgz
@:T, — T, be a holomorphic mapping. As above, let d T d*du. PR
exists an n x m matrix A such 6= A4 dv where dv ="{dv,, ..., e,,,of 22
basis for the holomorphic 1-forms on T}. .Henc‘e, as a consequenc
previous proposition, the map & can be written in the form

$(P)=pyoAopi’(Py+co PeTy
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for some cye T,. (Since 4 is an n x m matrix it also rcpresents a linear
transformation from C™ into C°)

We have thus established the following

Proposition. The only holomorphic maps of a complex torus into a complex
torus are the group homomorphisms composed with translations.

MX.11.6. By an underlying real structure for the complex torus T = C"/G
we mean the real torus R?*/Z*" together with the map R?"/Z*" — T induced
by the linear map

R*> x> Mx e C".

We have seen (as a consequence of Proposition TI1.11.5) that any
endomorphism of T is induced by a linear transformation A:C" - C" that
preserves periods. Thus if A represents the matrix of this linear transformation
with respect to the canonical basis for C", then there exists a 2n x 2n integral
matrix M such that AII = IIM. The matrix M now induces an endomorphism

of the underlying real structure. The endomorphism 4 is completely deter- .

mined by M (since [§] is nonsingular), and the following diagrams commute:

R2" n » Cn RZ"’/ZZ" a

Rln 4] > C" RZu/ZZn 7 > T
which is simply another way of saying AIT = ITM.

It follows immediately from the previous remarks that a holomorphic
injective map of one complex torus into another torus of the same dimension
is necessarily biholomorphic. If 17, and II, are the period matrices of the
two tori, the map can be represented by a matrix 4:C" — C" such that
AlIl, = IT, M for some M as above. It is necessarily the case that both 4 and
M are non-singular. Thus we have established the following

Proposition. Two complex tori Ty = C"/G, and T, = C™/G, are holomorphi-
cally equivalent if and only if n =m and there are matrices A € SL(n,C),
M e SL(2n,Z) such that AIl| = I1,M where II; is a period matrix of T,

i=L2
Let A4 represent an endomorphism of a complex torus
A:C"G - C"G.

Let II,, II, be two period matrices for this torus. Then for some M;e
GL(2n,2),

AH1=H1M1 and AH2=H2M2.
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h ’
Further M,=M,M, MeSL2nD)

Thus |
1M M = AL M = All, = [1;M; = MM,
and hence (since [T, :R?*" - C"is an isomorphism)
MM = MM,

It thus follows, since M is non-singular, that trace M, = trace M,.

Corollary. The trace of tRe endomorphism A iswell defined by setting it equal
to trace M, (or M ).

I1.11.7. We return now to the situation of 11_1.6. Let M beba Forr;pz;\;t
Riemana surface of genus g >0, Hab} a canonical homology gslls 1(1)1 atri;
and {{} the dual basis for #(M). As 'before 1 denotes thJe peél.on e
of the surface. (Here [Tisag x g mamx.)' Let J(.M) be th? z}cIoI 1aLet v
of M; it is, of course, a complex torus (w1th. period ma.trxx ( ,d )fz. Le I:pIOte
the mapping of M into J(M) with base point P, previously defined.
*du,=C,j=1,...,9 -
thalt\l(cl;wdluejt GDCJI,VI] - T be agy holomorph?c mapping of M 1}r11.todz'1ﬁconr11t)ilael);
torus T = C*/G. Let {dv,, . .. ,dv,} be a basis for the h'olomorp1 1:/1 i tr}:lre als
on T. Let §; = ® *dv; € #'(M). Since {¢} is a basis for (M), there
unique complex numbers such that

g
§,= Y apley  J=L..M

k=1
(0[‘ 5 = AC, o= '{61, v ,6"}, A= (ajk)). Then
Co5 i p(AR) + P(Po)e T
defines a unique mapping
g JM)—T.
It now follows from (11.3.1) that
P =op. (11.7.1)
We have established the following

Proposition. Let &:M — T be a holomorphic mapging of a Riemqnn surche
M into a complex torus T, then there exists a unique holomorphic mapping

y:J(M)— T such that (11.7.1) holds.

The above proposition shows that J(M) is determined by Acfll upt(t)oazri1
canonical isomorphism. The mapping ¢ is, of course, determined up
additive constant by the canonical homology basis on M.
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I1.11.8. We have seen in II1.6, that the mapping ¢ extends to divisors
on M. Let W, be the image in J(M) of the integral divisors of degree n. Set
by definition W, = {0}. It is then clear that

VVu < VVu+ls

(because @(D) = ¢(DP,) for every divisor D) and W, = J{M)(Jacobi inversion
theorem).

Let W}, be the set of points in J(M) which are images of integral divisors
D that satisfy the two conditions deg D =n, and D~ Y) > r + . Denote
by K the image under ¢ of the canonical (integral) divisors. By Abel’s theorem,
K consists of one point.

Proposition. {K} = Wy 1,

PROOEF. Let D be an integral with deg D = 29 ~ 2. Then r(D~ ') > ¢ if and
only if i(D) > 1 if and only if D is canonical. O

HL11.9. Let M be a Riemann surface and n > 0 an integer. The n-fold

Cartesian product, M", is naturally a complex manifold of dimension n. By
M, we denote the set of integral divisors of degree n on M. We topologize
and give a complex structure to M, as follows: Let &, be the symmetric
group on n letters. An element ¢ € &, acts on M" by:

,P a‘(u))-

As point sets M, and M"/%, can clearly be identified. We shall show that
much more is true. A function S on M, is said to be continuous (holomorphic)
provided f o p is continuous (holomorphic) on M*, where

G(Pl,"'7Pn)=(Pa(l),"'

pM M,

.

is the canonical projection. This gives a natural topology and complex
structure to M,. To see that with this structure M, is a complex manifold,

let (Py,...,P,) € M" and let z; be a local coordinate at P;. Define the ele-
mentary symmetric functions of z;:
Li=(-1) Z Zj
J
{5 = (“1)2 Z ZiZy
: j<k -

Go=(=1)z -2,
Notice that {; is (locally) a holomorphic function on M » and that the ordered
set {{y,...,(,} determines the unordered set {zy,...,z,} uniquely as the
roots of the polynomial z" + {,z*"! 4 -+ 4 [, = 0, Hence T (ST
is a local homeomorphism of a neighborhood of p(P,,...,P) €M, and
thus { serves as a local coordinate at p(Py,....PY)e M,
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Another useful set of local coordinates on M, is thaincd by considering
the elementary symmetric functions of the second kind:
of k=1,...,n /

Zj
1

M:

L =

j
An easy induction argument shows that for edalc)h l;,“l <k § ‘n, {ty, ..ot}
i i i i s el
iquely determines and is uniquely determine by (&1 ' '
um\?\?cer)émark that with the choice of local coordinates made, p is obvxously;
a holomorphic map (between complex manifolds)' and that M, is compac
if and omly if M is. We Htive established the following

Proposition. If M is a compact Riemann surface, thfn M, canl b;,g;:f,':;,
i i i ex structure so that the natura
unique n-dimensional complex s uctuy - . ] ”
p'IgI" — M, is holomorphic. Further, if V is a complex manifold, and the diagra
: o b

M" fi V
» i)
M,

commutes, then [ is holomorphic if and only if fy is.

Remarks '
1. Let f be a holomorphic function in a neighborhood of 0 in C. Thus

f@= kz,o ",

" wi i I Fzyy .. 520 = 35=1 f(2)
2 ,...,z) € C" with |z;| sufficiently small F(zy, .
g:ffxfezsl a symmetric holorr;orphic function in a nqlghborhood of the
origin in C". On the quotient space C"/%,, we can write

Fzg. .z =Y 2 &l

k=0 j=1
M n
and conclude that in terms of the local coordinate (¢, . . . ,t,) on C* S
oF 1 df .
el = = a;.
Otili=0,....0 J! dzl ;=0

2. 1fD=P, - P,e M,and the P; are distinct, we can identify ii ne}ilghb:)hr;
" hood of D in M, with a neighborhood of (Py, ... ,11’,,) etz\fh.o m 1;:) the
i tric functions enter only a
symmetric group and symmet : . . lose poinis
i i - tries. It is also clear from

D € M, which contain non-distinct en m this remat

i i i hood of D by considering blo

t in general we can describe a nelgl}bor [ ' 18 bloc
z:gisistigng of the distinct points of D listed according to their multiplicities.
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1I1.11.10. Let 6 be a holomorphic 1-differential on J(M). Let ae M)
and set @,(P)=¢(P)+a, PeM. Then & = @0 is a holomorphic -
differential on M, and is independent of a. Thus there is a canonical identifi-
cation via ¢ of the space of holomorphic 1-differentials on M and J(M).

Let Q,,..., Q; be distinct points on M and let z, be a local coordinate
vanishing at Q. Assume s < n, and let m,, . .. , m be positive integers with

s
Z mj=n-
J=1

Consider the map
o:M, W

in a neighborhood of the n-tuple 4 made up of each Q, appearing m, times.
Let 0” be § pulled back to M,. A neighborliood of the point 4 consists of
points

Q%’Qé""’Q:ﬂ’ %""’Q:l;""’ sl""’ 'sw_"

with Q% near Q,. Consider the point

A=Qly'"7Q1)QZ’--"QZ)Q3,...,Q,,...,QSEJM".
———— — ——— S—————
m,-times  m,-times mg-times

A local coordinate (on M") vanishing at this point is therefore given by

(le’ e ’zmib 2125+ 1zm227 e 9zm,.t);
where

zjk(Q)=zk(Q): j=1,--~,mk, k=1,...,s.

Let hy(z,) be a local primitive of & near Q, on M. Without loss of generality
h(0) = 0. The sum

s

Z mhy(z:)

k=1

defines a function on M, whose differential is & (To see this recall the
definition of the pullback of a differential. The differential § can be written
as df with f a linear function on C?. Now h, is simply f ¢ ¢. The differential
of fo @, is 6", where @, is ¢ viewed as a map of M, into J(M). Since f is
linear, f(Py - P)) = f(p(P)) + - + @(P) = f(o(Py)) + - +
S(@(P,)).) Assume now that §” vanishes at the point 4. Since the pullback
of 5" to M" vanishes at 4, we must have dh/dz; = Oatz, = Ofork =1,...,s
We need more accurate information about the differential & in the case that
at least one m, > 1. In this case, the function

hzy) + - + hy(zpm) (11.10.1)

can be expressed as a power series in the elementary symmetric functions
of the second kind of the m, variables z - 1f we write

* o)
h(z) = Y a2},
v=1
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we see that the coefficient of the /-th symmetric function of the second kind
in (11.10.1) is precisely a,. We sce therefore that

5,/ = d( Z m,‘hk>,
k=1

vanishes at 4 = Q7' - - - O™ if and only if dh, vanishes at zero to order = m;.
Thus the differential §’ vanishes at Q, to order > m,. We have thus proved
the following.

Lemma. If § is a holomorphic 1-differential on J(M), »)hos.e pullback to M,
via thermap @: M, - JEM) vanishes at a preimage of a point ue W, corre-
sponding to an integral divisor D of degree n on M, then'the Ixolomf)rphlc
differential & on M which corresponds to & under the canonical map ¢:M —
J(M) has the property that (6')/D is integral.

I1.11.11. Before proceeding we define a filtration of M, that is analogous
to the filtration of W, by W7 described in II1.11.8. Let

M,={DeM,;r(D"Y=r+1}
(We abbreviate M7 by M,). It is obvious that
My = o Y(Wy).

Proposition

a. Let D e M,. The Jacobian of the mapping ¢:M, - W, < J(M) at D has
rank equal ton + 1 —r(D™1). ' .

b. The fiber ¢~ '(@(D)) of the mapping is an analytic subvariety of M, of
dimension v=r(D~')— 1, which can be represented as a one-to-one

analytic image of P". o .
c. Theymapping @:M, — W, establishes an analytic isomorphism between

M, M} and W,\W,}. . .
PRrOOF. Let us examine the differential dg), of the analytic mapping ¢ M, -
J(M)at apoint D= Q7 - @ (where my + -+ + my= n). It is, of course,
a linear mapping between tangent spaces
dop: Tp(M,) — T¢(D)(J(M))-

Let us denote by z, a local coordinate vanishing at Q} and let C ;» the j-th
normalized differential of first kind, have the power series expansion

( i "‘z{‘> dz,
=0

in a neighborhood of Q,. The matrix which represents dgp, is then

12 ... l2 P ls
ab! v Gm-185° T Gmy-d ag s - 1
. : ,
) s ... g8s
a8t ooatt_, e ab Py~ 1



142

Il Compact Riemann Surfaces

or interpreting the number af* in the obvious manner the matrix can be
written (up to certain obvious constants) as

;'1(Q1) g e Q) e e (ON)
: i : (11.1L1)
@) - LMm7Qy) o [(Q) - Q)

The rank of the above matrix is g — i(D), whi i -
D Ao Mt g — i(D), which by Riemann-Roch equals
- Let Dje M,/ M, j=1,2.1 (D) = ¢(D,), then by Abel’s theorem D, /D
is principal. Hence D, = D, unless r(D; ') > 2. The latter would imply 1that
D, e M. We have thus established (c).

Sm.cc @: M, — J(M)is analytic, the fiber ¢~ Y(p(D)) is a subvariety of M
Thus it suiﬁces. in order to establish (b). to produce a one-to-one suricctiv;
holopﬂorph'lc mapping ¥:F* — ¢~ (@(D)). By Abel's theorem, ¢~ Y(p(D))
consists of 1qtegml divisors of degree n equivalent to the divisor D. Let D’ be
an arbitrary integral divisor of degree n equivalent to D, then D’/D is principal
and we conclude that every such D' is of the form (f)D for some J e L(D™Y
) Let {f, - L fis....fi} be a basis for L(D"Y), Send the point 0 %

0:Cts -+ 6) = ¢ onto the divisor Y(¢)= D(f) with [ = ", ¢c.f,
thatif ¥(c) = ¥(2), then ( f)/( f) is the unit divis{n)' andf 11; a cgr::s_t;nctJ {x%uf\ltigiz
of f. Thus we have produced a well defined one-to-one surjective mapping

PP — o YoD) = M,
It remains to show that this mapping is holomorphic. Let us write
D= [] P, Y afP)=n

PeM
Note that ) re
11/((.) = n P(Dl’dp S +alP) )‘
PeM
Fix a point 0 # (c§, ... ,c]) = c® e C"*!. Let (co, . . . ¢,) = ¢ be sufficiently

0 v
ccllgs§ to ¢° Let f°o= Y=o S Let {Py,...,P,} be a list consisting of the
( 1st'1n§t) zeros of /° and the (distinct) points in D. Let z; be a local coordinate
vanishing at P; defined in the closure of U ;- The image of ¢® in M, is, of
course, (t.l, ot = (0, ... ,0). (We are using the symmetric functions"of ’the
sgcond kind as local coordinates on M, at ¥(c%).) If ¢ is sufficiently close to
¢’ the function

f= i il
j=0

will have zeros only close to the zeros of f© or close to the distinct points of D
TQ see that this is the case, we first observe that if P is a zero of £ of multi-.
plicity m then f has m zeros in a neighborhood of P. It is, however, possible
tha} new zeros are introduced which are not in these neighborhc’)ods We
claim that the new zeros must be in neighborhoods of the distinct points ‘of D
(Delete from M the open neighborhoods of the distinct zeros of f© and thé
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distinct points of D. On M\{Jt., Uy, |f°| is bounded and bounded away
from zero. For ¢ sufficiently close to ¢ the same is true for f. Hence the only
place the zeros of f can be are in the sets U,, k=1,...,u) We compute
¥(c) in terms of the local coordinates

m
t_] = Z Zxs .’= 1, , N
k=0
Clearly
& i1 ¢ JE)
tic) = ZleY = — z} dz,,
I( ) j=zl {e) 2mi kgl i f(z) T
and we have ¢; as a complex analytic function of ¢. O
Remarks

1. We saw in the proof that the rank of the Jacobian of p at D € M, can be
written as g — i(D).

2. A “generic” (see 111.6.5) divisor De M,, n<g, has index of specialty
i(D) = g — n. Thus W, for n < g has dimension precisely n {as expected),
by Remark (1).

I11.11.12. By the inverse function theorem it follows that at the image of an
integral divisor D of degree n < g with r(D~ 1) = 1, there are local coordinates
<oy 2, for J(M) so that the points of W, are given by the equations

o
-+ =z, =0. We say in this case that W, is regularly embedded at

LIRS e

@(D).
Conversely, if W, is regularly embedded at a point u € J (M), then there are

g — n linearly independent holomorphic differentials on J(M) whose pull-
backs to M, vanish at the pre-image of u on M,. We have seen (Lemma
111.11.10) that such a holomorphic differential corresponds to a differential
5 on M such that (8) is a multiple of D for all D e ¢ '(u). Now ifue Wi,
then for any Q € M there is a divisor D of degree n containing Q such that
@(D) = u. Hence the differential 6 must vanish identically on M. But then
it vanishes identically on J(M). Now if g —n > 1, and W, is regularly im-
bedded at u, there is at least one differential on J(M) that vanishes on W,
and is not identically zero. We have established the

Proposition. [f n<g— 1, then ue W, is a singularity of W, if and only if
ue Wl

Remarks

1. The above considerations allow us to describe more intrinsically the
tangent space to J(M). Let uy, .. ., u, be the canonical coordinates on C*.
Then these also serve as local coordinates at an arbitrary point x & JM) =
C%G. In terms of these coordinates, a natural basis for the (complex)
tangent space T (J(M)) of the manifold J(M) at the point x is given by
the vectors 8/duy,...,d/0u,. On the cotangent space T*J(M)), the
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covectors duy, . . ., du, provide a basis. The dual pairing

T (J(M)) x THJ(M)) - C, (11.12.1)
is then given by

g b} g []
(Z % 517) X (Z b; d“i) = X ab,
j=1 J j=1

J=1

here a;, b; € C. Of course, every cotangent vector may also be viewed as a
holomorphic 1-form on J(M) and conversely. As we have already seen the
holomorphic 1-forms on J(M) restrict to holomorphic 1-forms on W,
J(M) and pull back via an isomorphism to elements of # '(M). Thus the
cotangent space to the complex manifold J(M) at any point x is naturally
identified with the abelian differentials of the first kind on M.

We return briefly to the differential do,, discussed in IT1.11.11. The image
of doy is spanned by the column vectors of the matrix (11.11.1). The
linear subspace of T%*p,(J(M)) dual to the image of dg,, consists (by

definition) of those cotangent vectors (Z‘,?:l b;du) that annihilate the -

J
image of dp, under the pairing (1 1.12.1); in other words, of those covectors

(byduy + *- - + b, du,) which are annihilated by the transpose of the above
matrix. Under the natural identification of T3/ (M)) with # (M), these
covectors correspond to those w € # (M) with (w) > D.

2. If V = J(M) is any analytic subvariety, then R(V) denotes the regular
points of V; that is, those points v € V at which V is an analytic sub-
manifold of J(M). The remaining points are called singular, and the set
of singular points is denoted by S(V). To any point x € V, there is asso-
ciated a linear subspace T*(V) < T*J(M)) spanned by those covectors
of the form df,, where f is any analytic function in an open neighborhood
of the point x in J(M) which vanishes (identically) on V. The natural dual
to the subspace T¥(V) is a linear subspace T(V) < T(J(M)) called the
tangent space to the variety V < J(M) at the point x, and dim TAV)is
called the embedding dimension of the variety V at the point x. The
embedding dimension is the dimension of the smallest submanifold of
J(M) which contains the intersection of ¥ with a small neighborhood of x
in J(M). It is thus clear that the embedding dimension of x e R(V) is
precisely the local dimension of x at V. The proposition preceding these
remarks has shown that W, has embedding dimension g precisely at the
points of W} forn < g — 1. (Hence for n > g as well.)

III.11.3. We introduce now some useful operations on subsets of J(M). If
S = J(M) and a € J(M), then we set

S+a={s+a;seS},
—S={~s5;5€S}.
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If S, T< J(M), then we set ‘
S®T=ulS+a;aeT)={s+1t;s€8,teTy,
SOT=n{S—a;aeT}. .

i 1) is irreducible if ev -omorphic function on

A subvaricty S of J(Af) is irreducible if every mero N

J(M) that vanishes on an open subset of S vamshe_s on S. Proposition

111.11.11 has as an immediate consequence the following

Corollary. For eachn < g, W, is an irreducible subvariety of J(M) of dimension
n.

-

1IL.11.14. Proposition. F&r any a e J(M),
-W, y—a=W,_,—a~- K.

Proor. For any integral divisor D of degree g~ 1, we can find an integral

divisor D’ of the same degree such that DD’ is canonical. Thus

@(D) + (D) = K,
showing that
g L1’;_1=K_VI/!,_1. D
111.11.15. Proposition. Ler 0 < r<t<g— 1. Let ae J(M), be J(M). Then

(W, + @)= (W, + b)<=ae (W,_, + by=be(-W_, +a).

i = b, xeW,_,ob=a—-x,
oor. First note that ae(W,_, + b)<>a xf X V- ;
1‘:2 W, obbe( —W,_, + a). Hence the last equivalence is trivial. Also if
- t-r N r b).
W,_, + b), it is easy to see that (W, + a) = (W, + ' o
’ Eksstm;w an that (W, + a) < (W, + b). Thus for every integral divisor
D of degree < r there is a D’ € M, such that

o(D) + a = (D) + b. (11.15.1)

We need show that there is an Ae M,_, such that a= @(4) +b Nlc;w tille1
Jacobi inversion theorem implies that there is an integral dxlejsor o silzor
that @ = @(B) + b, and (11.15.1) implies that deg B<t. Let AA ¢ a ;}I o
of minimal degree such that a= @(4) +b. It {olllows tlLat Alfv uu1 51 be,
since r(4~") is necessarily equal to one. Ifra™)>1t er}x) o _(_) s
equivalent to a divisor which contains Py. Thus ¢(4) = '(P}(l o h— ‘;p tha;
contradicting minimality of the degree of 4. We now wis th;I sho v that
deg A <t — r. We now have for every De M,, there is a D’ € M, suc

@(D) + ¢(4) = @(D), wheredegd =s5<1 (11.15.2)

To show that s <t — r, we assume that s >t —r. We can nO\ivl zh_o:;si 1a
divisor D of degree t + 1 — s <rsuch that Po¢ D and such that r_(,;l ) N-c—)w.
(We are here using the facts that deg 4 + deg D <g and r(:iDl})——. “.,hich i;
(11.15.2), (4"'D~'y =1, and Abel's theorem give us AD = Po; vhich i
a contradiction since Pg ¢ A, Po ¢ D. Hence we conclude s<t—ra e
ae W, +b
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Remark. The proposition shows that the subvarieties W, « J(M) for t < g

are as far from being translation invariant as possible. Specifically an
inclusion W, + u « W,<>ue W, = {0}.

111.11.16. Proposition
a. Foranyr, t > 0and any a, b e J(M), we have
W+a+W+b=W.,., +a+b)

b. For 0<r<t<g—1 and any a, beJM), (W
B , M), W +a)O (W, +b)=

PROQF. Part (a) is a triviality. To prove (b) we use Proposition I1L.11.15 to
obtainue(W,_, + (a ~ b))« (b — agje (W, —u) <> (W, + (b — ‘a))c
(W —w)=(W, + b) = (W, +a — u). Assume now that u er(W,_ +a-0b)
[and thus (W, + b) = (W, + a — u)] and v e (W, + b). Thus v E(Wr+ a—u)
or ue W,+a— v for all ve (W, + b). Hence u e (W, + a) © (W, + b). Con-
versely, if ue (W, + a)© (W, + b) then ue W, + a — v for all vre W, + b or

ve(W +a—u). Hence(W, +b)c (W, +a—uorue(W,_,+a—b. O

Remarks

1. The condition that t <g — 1 in (b) is necessary because W, = J(M) for
t>g. chce forany S < J(M), W,© S = J(M)fort > g.
2. A special case of the proposition is also worthy of mention here:
M=We180Wa= () Woi—u
ueWy_»

Thus W; = M can be recovered from W
/ -, and W _,. i
determined by W,_, and W, _,. ~ sie Hones Mis

I11.11.17. Proposition. For anyn > 0 and any r > 0,

W, =W,_,0(—W,), wheneverr < n,and (11.17.1)
W, =& wheneverr > n. (11.17.2)

g?:,g;}m]“eﬁoﬁhe tV}Il/f,. Then x = <p(D)1, DeM,, and r(D"Y)=>r+1. The
‘ - eorem gives (D™ )y =n — ] is i
irosblwhen s o ) g + 1 + i(D). This is clearly

We have previously seen (Lemma I11.8.15) .
.8.15) that ue W}, if and i
for every v e W, there is a v’ € W, _, such that u = v + v". Hence nd only if

Wh= () (W, +0). (11.17.3) O

veW,
Remarks

1. qumulii (11.17.3) can be reformulated as u e W< —(W, —u) <= W,
Clifford’s theorem gives a necessary condition that W7, not be emln);)rl:
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The condition is that 2r < n or that r < n — r. Hence the above gives
a geomctric interpretation of this theorem.

It is an immediate conscquence of the proposition (in the form of
Equation (11.17.3)) that the subsets W’ are complex analytic subvarieties
of J(M).

3. If we define W, to be the empty set for n <0, then (11.17.2) becomes a

special case of (11.17.1), and (11.17.3) is always valid. We shall adopt
this convention.

9

III.11.18'..Proposition. Leeg <n<g— 1andletx = @(Q)withQ # P,. Then
W, o (W, + x) = (Wy_y +x) U Wiy (11.18.1)
PROOF. Assume u € W, n (I, + x). Then

u=p(Q,- Q)+ @@ =Py P

Thus QQ, -+ @y ~ PoPy -+~ P, If ~ can be replaced by =, then  appears
among P,, ..., P, and we may assume Q = P,. Thus

“=(P(P1"'Pu~1)+‘P(Q)E(Wu—1+x)-

If the two divisors are not identical, then r(Pg' -+ Py ') > 2and ue Wi, ..
The reverse inclusion is trivial. O
Remark. A non-empty component of W, cannot be a subset of W,_, +x
for all x € W,. For if V is a component of Wi, and V<o W,_, +x for
all x e Wy, then
VC ﬂ (VV’I"I +x)= W:
xeW,

Now Ve W! certainly implies that V + Wy < Wi, .. Since V + W, is an
irreducible subvariety of J(M) contained in Wi, (it is the image of the
irreducible subvariety V x W, under the mapping (x,))—=x + y) that con-
tains V, it must agree with V. Thus in particular we have W, invariant

under translations by ve V. This contradicts the remark following
Proposition IIL11.15.

111.11.19. Theorem

a. Let r be the dimension of a non-empty component of Way withl<n<
g — 1. Then
m—g<r<n—L
b. 4 component of W,.,, 1 <n<g—1, has dimension n — 1 if and only
if M is hyperelliptic.

ProoF. Let V be a component of W1, 1. By the above remark we can choose
an x € W, such that V & (W,_; + x). By (11.18.1), ¥ must be a component
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of the intersection W, N (W, + x). Hence dim V' > 2n — g. Since W, is irre-
ducible, and W, + x # W,, for each component ¥ of the intersection, we
must have dim V< n — 1.

Assume now that M is hyperelliptic. Then W1 is non-empty and consists
of a single point x. Hence x + W,_, isa component of W}, | of dimension
n—1.

Conversely, assume W}, has a component V of dimension n — 1. If
n=1, then W} is not empty and M is hyperelliptic. Thus assume n > 2.
Let us choose a point x € W,, and a point u e R(V)< W, n (W, + x) that
is a manifold point of the two varieties of the intersection. (This is possible
since V has dimension n — 1 and each of the two singular sets WL, (W} + x)
have dimensions at most n —2.) The tangent space to W},, at u has
dimension n — 1. Thus the dual cotangent space has dimension g — n + 1.
Now the point u e W, n (W, + x) is given by

u=@Q; - Q)+ @(Q) =P, -+ P+ @(Py),

where x = ¢(Q). Assume now that P, - - - P,P, is the polar divisor of a
function. We can then choose Q so that neither Q nor any of the 0 ; appear
among the P,. The space of differentials vanishing at u on W}, , is the span °
of those vanishing at « on W, and on W, + x, which are, respectively those
vanishing at P,,..., P, and Q,,..., Q,. However, r(P;! PP Y =
r(Pyt++P7Y) 4+ 1 implies that i(Py -+ P,Po)=i(P;--P,). Thus every
differential vanishing at P,,..., P, also vanishes at Py. Similarly, every
differential vanishing at Q, . . ., Q, also vanishcs at Q. Each of these spaces

are of dimension g — n. Their span must have dimension g —n+ 1. Thus
their intersection has dimension

Hg—m—-@g-—n+)=g—n-1,
The intersection is Q(Q, - - - Q,QP, - - - P.Py) = Q(D). Now

r(D")=2n+2—g+1+(g—n—1)=n+2,
and hence
eD)=2m+2-2n+2)+2=0.

By Clifford’s theorem, M is hyperelliptic unless D ~ Z.

If D~ Z, then 2n+2=2g—2orn=g—2.In this case 2u = K, which
has only finitely many solutions in J(M). But n> 2 implies (g > 4 and)
dim V'=n— 12> 1. Thus V is a continuum and u could be chosen so that
2u # K (from the beginning). ’

There remains the possibility that D = P, - - - P,P,is not the polar divisor
of a function for every D € ¢~ (V) with D containing P,. Note that every
D’'eM,,, is equivalent to a D € M!,, that contains P,. Thus for every
Deg~!(V) there is a PeD, such that r(PD™!) = r(D™1'); showing that
every u € V can be written in the form u = v + y with v e W? and yew,.
Thus W, must have a component of dimension > n — 2. By induction this
implies the hyperellipticity of M. O
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111.11.20. An application of the above results on the dimension of W},
yields the following.

; ipti e enus g = 3, for every
Theorem (Noether). On a non-hyperelliptic surfalte of g :
g=2 the( g-fold products of the abelian differentials of the first kind span the
space of holomorphic g-differentials.

Before we prove Noether’s theorem we makel the following useful 01::,;
vation: we can always find two elements of # (M) tha't haye no com n
zeros. Choose any w, € #'(M) and let Py, ..., {’, be its distinct zeros,iSh
the result were not true, &very other element of J? (M) would have to van
at one or more of the points P, ..., P,. Consider, ]'1ow'ever, Q(fl)f\;fl ML))
Q(P,). Eachsetisg — 1 dimensional, so that the union is not alf oh. (f IS.
Thus there is an w, € # (M) which does not vanish at any of the poin

., P, ' '
Pl,’I:he ’pre’ceding implies that the function f = w,/w, gives rise to ?C (g - 21-
sheeted cover of the sphere with the Rroperty that for ea'chbz € h:d 10036;
f ~!(z) is a canonical integral divisor. Since the function f is rztmT ed over
only finitely many points we can even assume that the differentials w,

only simple zeros.

mz:as":nilaryargurr)nent applied to Q(P,) shows that we can alw;ys \f)i\?eds;l‘;ﬁ
clements w,, @, € X '(M) with precisely one common zero at Pg.
use these results in the proof of Noether’s theorem.

ProOOF OF THEOREM., Assume that M is a non-hyperelliptichsuhrfz:c.e(.D ')Fllui
there exists on M an integral divisor D of degree g — 2, such tha zthat—fo.;
and for each Q € M we have i(DQ) = 1. As‘sume, on the cofntralrly, hae
every De M,_,, thereisa Q € M such that i(DQ) '>I 2. Thus ‘(;la v@(_%z),
there is an x € W, such thatv+xe W,_,, orve Wy_, —xch %_.1 o 1>
But then W,_, = W,_; ® (—W)), and it must ble the case that c;n:hatg;\/} >
g — 3. Theorem HI11.19 implies that dim W,_, <g — 3, an

hyr}’f;f I(iiptl;- span Q(D) and let w; be any holomorphic dif.ferential wh{ch
does notl,vanzish at any of the zeros of w;w,. Ou_r assumptions 02153 ilr\;cei
that »,/w, is a meromorphic function on M with lprel;:lse ‘)J/sg (f,) s an
i((w,)/D) = 1. The function w,/w, .has precisely g poles Eca. e 2) oy 1;
have no common zeros other than in D. The assertion on the in ' 29 }
follows from the equality i((w,)/D) =r(D™ )= —1+ 1(12)). Lfat {0y,....0,
be a basis for s#1(M) and consider the 2g elements of H#*(M):

©,0,,...,00, a0y, ..., 030,

Note that the first g products are linearly independent ar;d SO are il:dl::)s;
g products. Let 4, and 4, denote the S}lbspaces (?f H (Mll.spa:ll o
these products. Now dim(4; N 4,) = dim 41 + dx.m A, —-_ grl;( ',= 1 22,
and dim(4, N A4,) = 1. To verify the last as;ertxpn write ((f}i? = fj, ée e; é
and note that D, and D, are relatively prime integral divisors of degr
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(vwith ((lu,/a)z) = D,V/Dz). Now if € 4, n 4,, then n=_{mwy;, j=1, 2, with
(e A (M) (these {; need not be normalized). Thus J,,J, = ®,/w,. In par-
tieular, (§,) = DD, and ({,) = DD, for some Be M,_,. Since i(D,) = 1 =
fl(‘ﬁ)l)’(;\'le ?:lust l};ve ity and {y/w, € Cand A, Ay is spanned by w,w,

us dim{A, v 4,) = 2g — 1, and the 2g products span : ‘ (M)
of dimension 2g — 1. P pana subspace of 2(M)

2We now adjoin w,f,, ..., @30, to our list, and denote the subspace of
H .(M) spanncd by these g linearly independent products by A4;. Once
again

dim((A;vA4,) N Ay) = dim(A, v A,) + dim 4, ~ dim(4, v 4, v 4;)
=29 —1+g~dim(d,vA4,vA4,).
We show that dim((4, v 4,) A A;) = 2. and in fact the space in question is
spanned by ww;, @,w,. Note that if 1 e (A vAy) N Ay, then = (o, =

;),l%u, + Cz?’z- Since the right-hand side vanishes at D, it follows that ({;) =
-Thus {3 = x,0, + x,w, (with x; € C)and the dimension is 2, as claimed.

Thus dim(A4, v A4, v A,) = 3g — 3 = dim H*(M). This concludes the proof

forgq = 2.
‘ For the case g = 3, we start by choosing two elements w,, w, € HUM)
such that w,; and w, have precisely one common zero at Py, and w, € M)
such that w; does not vanish at the zeros of W,

Let {fi,...,f5,- 3} be a basis of #%(M) with ¢

R . ith each f; a 2-fold product of
elements of # (M), Let 4; be the (3g — i iona
. A; 3g — 3)-dimensional space spanned

O;f1s ., @ f3,- 3. As before pace spanned by

dim(4, N 4;) = dim 4, + dim 4, — dim(4, v 4,).

Ifof),ry1 = WMy € A} N A,, then n,/w, is an abelian differential with at most
asingle pole at'P0 and therefore holomorphic at P,. Hence n, can be written
as 1, = w,0 with w € #'(M). This shows that dim(4, ~ A,) =g, and thus
that dxm(A 1V Az) = 5g — 6. Clearly w3 does not vanish at Py w’hile every
element in 4, v A, does. Hence w}isnotin 4, v A,. Adjoim'ng,it to our list
we have a space of dimension 5g — 5 = dim H#}(M), spanned by three-fold’
products. This concludes the proof for q=23.

For g > 4 we now can proceed by induction. We let w,, w, € #(M) be
sucb that w, and w, have no common zeros. Let {is - Soam— }bea
baslls for S#™(M), with m > 3, composed of m-fold products ’:)f e)ﬁ:;nle):nts of
H (M).. Let A; denote the space spanned by w;fy, ..., of
('Ii'ihenA dlm,gAl NA))=22m~— 1)g - 1) — dim(A4, v 4,). Cleajrl;'zm};ol\):/ge-v::;
djz(xlﬁl(i/)j),— (2m —3)(g — 1), and thus dim(4, v 4,))=2m+ 1)(g — 1) |=:]
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Recall the exercises of 111.7.5 and com i i
. plete the above d ipti
surfaces (including the case g = 2), wession {or hypereliptc

CHAPTER IV
Uniformization
~ - . -

This chapter has two purposes. The first and by far the most important is to
prove the uniformization theorem for Riemann surfaces. This theorem
describes all simply connected Riemann surfaces and hence with the help
of topology, all Riemann surfaces.

The second purpose is to give different proofs for the existence of mero-
morphic functions on Riemann surfaces. These proofs will not need the
topological facts we assumed in Chapter II (triangulability of surfaces). As a
matter of fact, all the topology can be quickly recovered from the complex
structure.

This chapter also contains a discussion of the exceptional surfaces (those
surfaces with abelian fundamental groups), an alternate proof of the
Riemann-Roch theorem, and a treatment of analytic continuation (algebraic

functions on compact surfaces).

IV.1. More on Harmonic Functions
(A Quick Review)

In this paragraph we establish some of the basic properties of harmonic
functions. The material presented here is probably familiar to most readers.

IV.1.1. We begin by posing a problem that will motivate the presentation
of this section. Details will only be sketched. For more see Ahlfors’ book
Complex Analysis.

DIRICHLET PROBLEM. Let D be a region on a Riemann surface M with
boundary &D. Let f be a continuous function on 6D. Does there exist a
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<€ H (M) (these J; need not be normalized). Thus [,;7, = ©y/w,. In par-
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morphic functions on Riemann surfaces. These proofs will not need the
topological facts we assumed in Chapter II (triangulability of surfaces). As a
matter of fact, all the topology can be quickly recovered from the complex
structure.

This chapter also contains a discussion of the exceptional surfaces (those
surfaces with abelian fundamental groups), an alternate proof of the
Riemann-Roch theorem, and a treatment of analytic continuation (algebraic

functions on compact surfaces).

IV.1. More on Harmonic Functions
(A Quick Review)

In this paragraph we establish some of the basic properties of harmonic
functions. The material presented here is probably familiar to most readers.

IV.1.1. We begin by posing a problem that will motivate the presentation
of this section. Details will only be sketched. For more see Ahifors’ book
Complex Analysis.

DIrICHLET PROBLEM. Let D be a region on a Riemann surface M with
boundary &D. Let f be a continuous function on éD. Does there exist a
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continuous function F defined on D u 8D such that
i. F|D is harmonic, and
ii. F |5D =f?

l -1- . g i h IC t T 1SLS,
v 2 Let be a Iedl leued armon fUIIC on mn {IZ' < p}- Ihe € exist: y
Of COUISC, a hOlOIllOI pth fuuCthll deﬁlled on Z p With g = Re .

Im f(z) = foz *dg,

'fmd. obferve that the integral is independent of the path (because {|z| < p}
1s simply connected). The Taylor series expansion of f about the origin is

o

f(re"“) _ Z a"rﬂeina, O<r< ..

n=0

Without loss of generality a, € R. Hence

g(re®) = %(f (re®) + f(re®))

1 )
=do+ 3 Y. r(a.e™ + aemi™).

“n21

Multiplying the above by e~ and integrating, we get
1 in
ag > fo g(re'®) do,

6, n>1.

a _—._l.fz"g(’ew)
n T Jo (reio)n

Thus for 2] < r, we have

1 f2n . n
fi= g [ o[ o2 5 (5 Jo

n>1
1 rox o re® 4z
= — i6
i 27 J;" atre ) oo 40, (1.2.1)
1 2 . 0
g(z) = Re f(z) = o fo g(re®) Re ::Té—fd()
1 2n : r2 — |—/-|2
_— ig nd

2n fo glre )|rei" — de. (1.2.2)

. 2 ; .
31“}516 e);p're;s.swn (rt - |z|2)/|re“’ = z|? is known as the Poisson kernel (for the
isc of radius r about the origin). It has the following important properties:

Lol
smdo =l k< (123)
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P2 — l:lz
——— >0 for lz| <. (1.2.4)
|re® — z|

2 |2
i — S - —— _— 7 =
zix::}ao 5 fw—oohn o = o dg=0 forO<py<m (1.2.5)
fzl<r

From the reproducing formula (1.2.1) we also get a formula for the har-
monic conjugate of g that vanishes at z = 0, namely,

N 8 ré + z
, Im f(z) =5 fo gire") Im *—5——do
1 21:* pePz — ret*z
- i df. 2.6

IV.1.3. Theorem. The Dirichlet problem for the disc has a unique solution;
that is, given a continuous function f defined on {|z| = r}, there exists a con-
tinuous function F on {|z| < r} such that F is harmonic in {2 < r}and F(re) =
f(re®),0< 0 < 2m.

Proor. Without loss of generality f is real-valued. Since real harmonic func-
tions satisfy the maximum and minimum principle, uniqueness is obvious.
For existence, one sets for [z| <r

2

1 pe P2 =122 . 4
F@) = 5 fo T F(re®)d8 (1.3.1)
and uses the properties of the Poisson kernel (1.2.3)-(1.2.3). O

Corollary. If f is a continuous function on a domain D = C, and f satisfies
the mean-value property in D, then f is harmonic inD.

PrOOF. Again without loss of generality f is real-valued. Solve the Dirichlet
problem for f|{|z — zo| = r} with {|z— zo| < r} = D. Call the solution F.
Then F — f satisfies both minimum and maximum principles, since the
mean value property is all that one needs to prove these principles. Hence
F=fon{|z—z|<r} andfis harmonic.

1V.1.4. For |z| <, it is easy to se¢ that

r—lg -l _rtid
r+|z|_|re""—z|2_r—|z|'

These estimates on the Poisson kernel imply almost immediately

Harnack’s Inequality. Let D be a domain in Cand D, cc D(thatis, D, isa
relatively compact subdomain of D). Let u be a positive harmonic function on D.
Then there exists a constant ¢ = c(D,,D) that depends only on D and D (not on
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u) such that

1 u(zy)
ES u—(ﬁs ¢, allz,z,eD,.
IV.1.5, Because harmonicity is a local property and we have the Poisson

reproducing formula (1.2.2) for harmonic functions, we can establish the
following

Proposition. If {u,} is a sequence of harmonic functions on a Riemann surface

M and {u,} concerges to u uniformly on compact subsets of M, then u is also
harmonic.

This can be scen from the fact that the limit function is continuous and
necessarily has the mean-value property.

IV.1.6. Harnack’s Principle. Consider a sequence of real valued harmonic
) ) . .
Junctions {u,} each defined on a domain D, on the Riemann surface M. Assume

that each Po € M has a neighborhood U such that U < D, for all but finitely

many n. Further assume that

un(P) Su,+(P)y, PelUn large.
Then either

L lim u, = + co, uniformly on compact subsets of M, or

n=r 0

ii. im wu, = u, uniformly on compact subsets of M with u a harmonic function.

n—x0

OUTLINE OF PrOOF. Without loss of generality we may assume u, are positive
harmonic functions. Define

u(P) = lim u,(P).
n
Harnack’s inequalities show that the sets

{PeM;uP)= +}
{PeM;u(P) < + o0}

are both open. Hence one of them is empty. The same inequalities show that

the convergence is locally uniform. Thus the result follows from the previous
proposition. O

IV.L7. Theorem. Let u be a harmonic function on {0 < |z| < 1}. Then there
exist constants a, f§ such that for 0 <r <1,

{37 ulre®)do = o log r + . (L7.1)
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Proor. Recall Formula I (4.4.2). For uy, u, harmonic and 0 < p < r (and
the usual counterclockwise orientation for the circles) we have:

<£ = fl | )(ul*duz —uy*duy) = ffp<lzl<r Uy Auy — ty Auy = 0.
z|=r zi=p

Now we let u = u,, and set
u,(z) = log|z|

(recall that on |z| =, (3u;/0r) rd6 = *du)), t0 obtain
* (*Ix ou 2r io £
~ —pB= ff‘ logrgr:rd()—fo-u(re )rrd()

(— B is, of course, the value of the right-hand side of the above equation for
r = p, which we take to be a fixed value). Thus

f:” u(re®)dd = B +logr flzl:r*du =f+alogr

The last equality holds because Fiei= *du is indepe}'xdent qf r. T‘his is simply
Cauchy's theorem for du + i*du is a holomorphic differential in {0 < |2] < |1:}]
—alternatively, because *du is closed.

Remark. The above also shows how to evaluate «:

o = fl=l - *du.

Furthermore, we may view (1.7.1) as a formula for computing B, especially
when we know that x = 0.

Corollary 1. If u is harmonic and bounded in (0< 2] <1}, thena = 0.

ProOF. If M = supju| on 0 < |z| < 1, then

foh u(re’®) dé| < M2m. O

Corollary 2. If u is harmonic and bounded in {0 < |z} < 1}, then u can be
extended as a harmonic function to {|z| < 1}.

ProoF. Since @ = 0, {i;=, *du = 0. Thus (we assume u is real, !this involvles
no loss of generality) there exists an analytic function fon{0<|gd< },
with u = Re f on {0 < |z] < 1}. Set F =exp f. Since |F| = expu, and ut:s
bounded, so is |F|. By the Riemann removable sgngular}ty theorem F cant. i
extended to z] < 1. Since a pole or an essent}al singularity of f is an essen 1;1
singularity for F, f hasa removable singularity at z = 0.

Remark. As a consequence of the preceding, we have the following: The
Dirichlet problem does not have a solution for D = {0 < 2| < 1}, f(0) =1,
f(z) =0for |z = L.
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IV.2. Subharmonic Functions and Perron’s Method

The linear functions f{x) = ax + b in one (real) variable satisfy the mean-
value property. The harmonic functions in two variubles are the natural
generalization. Similarly, both classes of functions satisfy the (appropriate)
Laplace equations. Subharmonic functions are the natural generalization
of convex functions. Throughout this section, M is a Riemann surface, A/l
Sunctions considered will be real-ralued.

In this section we establish Perron’s principle which gives sufficient con-
ditions for the supremum of a family of subharmonic functions to be a
harmonic function. Using this principle, the Dirichlet problem is solved.

IV.2.1. A continuous function u on M is called subharmonic on M if and
only if for every domain D on M and every harmonic function h on D with
u< honDwehaveu=honDoru< hon D. The function u is called super-
harmonic if and only if — u is subharmonic. Obviously every harmonic func-
tion is both subharmonic and superharmonic.

Proposition. 4 continuous function u is subharmonic on M if and only if for -

every domain D = M and erery harmonic Sunction h on M, u + h has no max-
imum in D unless u + h is constant.

PROOF. Say u is subharmonicand u + h < H with H constant and H assumed
by u + h at some point in D, then u < H — h in D. Since H — h is harmonic
in D and equality holds at least one pointinD,u =H — h. Thus,u + h = H,
and u + h is constant.

Conversely,sayu <hon D. Thenu + (—h) < 0. Theneitheru + (~h) < 0
onDoru +(—h)equalszeroata point in D. In the latter case, the hypothesis
implies u + (~ h) is constant {(and =0). Thus u is subharmonic, O

Corollary. Subharmonicity is a local property (that is, a function subharmonic
in a neighborhood of every point is subharmonic).

IV.2.2. A conformal disc K = M is an open set (K) whose closure (Cl K)

1s in a single coordinate patch (with local coordinate z) such that z(CI K)
is a closed disc in C of radijus > 1, and center z = 0.

Let u be a continuous function on M(u e C{M)). Fix a conformal disc K on
M. We define a new function u® on M as follows:

u® e C(M),
uP|M\K = ulM\K,
u® is harmonic in K.

The solution of the Dirichlet problem for the disc gives the existence and
uniqueness of u®), Furthermore,

CM)3urs u® e C(M)
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defines an B-lincar operator (to be called harmoni:afion) on C(M). Also, u
is harmonic if and only if u = u® for all conformal discs K on M.

Proposition. Let u€ C(M). The function u is subharmonic if and only if u <
u® for every conformal disc K on M.

PROOF. Assume u is subharmonic. Consider
u — u®,

This function vanishcs on#\K. It has no maximum in K(unless it is constant).

i ‘hus u — u'® < 0.
Its maximum must be on 6K. T ' , ‘ .
To prove the converse, let h be harmonic on D. We show that thc maximum

principle holds for u + h. Assume u + h achieves a maximum H on D, a
domain in M. Set

Dy = {PeD;u(P)+ h(Py=Hj.
Then Dy, is non-empty and closed in D. Pick a conformal disc_ K" f:, Dr a;lroun{.;
P € Dy with the local coordinate =. Now for0 <r <1, K, =z ({Jz} < r}
is also a conformal disc, and

H = u(P) + h(P) = u(0) + h(0) < 10y + h(0)

= 1 2"(u(r'e"") + h{re’®))df < H.
2n 0
Thus u(re®) + hreé®) = Hallr, 0<r<1,and all 6, 0 < 0 < 2n. Hen?e Dy
is open in D. Since we have taken D to be connected (V{xthout loss o ' getr)l-
oralit D - D. and u + h is constant in D. Hence u is subharmonic by
> H— Y, «

erality) 2

Proposition IV.2.1.

Corollary (of Proof). Let u € C(M). Then u is subharmonic if and only if
1 2n ;
o) < 3- fo w(e®)do

for every conformal disc on M.

% i M. Assume that ue C(Cl D)
Hary (of Corollary). Let D be a domam. on -
i(s:();:bhar);?fonic and non-negative on D and identically zero on oD. Extend u

to be zero on M\D. Then u is subharmonic on M.

i i > 0.
1V.2.3. Proposition. Let u, v be subharmonic functions 0)(1 M) and ; eul&t, cr;_a”
Let K be a conformal disc on M. Then cu, u + v, maxiuty, ané == a

subharmonic.

Proor. That cu and u + v are subharmonic follows immediatel)f fromb::h:el
above corollaries. Next assume that max {u,v}(Po) = u(Po). Letting z
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loc:llh coordinate vanishing at Py, corresponding to a conformal disc, we
see that

. 1 2n .
max{ic}(Po) = u(Po) < 5- fo u(e™®) do

1 2n .
<5 {77 max{u} (e do,

showing_ that maz<{ w0} is also subharmonic. Finally, u® is clearly sub-
harmonic on M'§K. Thus, let P, e 5K. Using the same notation as above
we see that ,

1 2n N 1 2
KN A N i f2n (K ioy gy
u®(0) = u(0) < 5 fo u(¢”)do < 52 Jo u®(e™) do),

proving that u® is subharmonic. 0

IV.2.4. Proposition. Let ue C(M). Then u is harmonic if and only if u is

subharmonic and superharmonic.

PRrOOF. If u is subharmonic, then u < u™® for all conformal discs K. If u is
superharmonic then u > u®, Thus, if u is both, u = '™, Since harmonization
does not affect such a function u, it must be harmonic. The converse is of
course, as previously remarked, trivial. ’ |

Iv.2.5. iti 2 1 ic |
AuZZ O'Proposmon. Let ue CX(M). Then u is subharmonic if and only if

PROOF._Since subharmonicity is a local property, it involves no loss of
generality to assume that M is the unit disc {z = x + iy; lz| < 1}. Further-
more, 4u > 0 is a well-defined concept on any Riemann surface (because
we are interested only in complex analytic coordinate changes). We view A
as an operator from functions to functions:

*u %

A= — 4
! 6x2+6y2'

Say Au > 0. Thus u has no maximum on M. (If u had a relative maximum
at Py, then

u S2u
7z P <0, W(mﬁo or Au(Py) <0)

If h is harmonic on M, then 4(u + h) > 0, and, as seen above, this implies
that u + h has no maximum on M. Thus u is subharmonic,
Suppose now Au > 0. Let & > 0 be arbitrary. Set

v(x,y) = u(x,y) + (x> + y2).
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Then v e CYM) and 4t = Au + 4¢ > 0. Thus, by the first part, v is sub-
harmonic. Hence, for every K, a conformal disc on M, v < X or

u® 4og > uk 4o + yHR 2w+ e(x? + )7,

or (by letting & approach zero) u < u®; that is, u is subharmonic.
Conversely, say u is subharmonic and Au <0 at some point. Then also
in a neighborhood D of this point. By the above, u is superharmonic in D.
Hence, we conclude that such a u must be harmonic in D, and we arrive
at the contradiction Au =0 in D. O

1V.2.6. A family & of subharmonic functions on a Riemann suface M
is called a Perron family (on M) provided:

F is non-empty, (2.6.1)

for every conformal disc K « M and every u € 7,

there is a v € & such that v| K is harmonic and v > 1, (2.6.2)
and
for every u, € F and every u, € F, thereis a
v € F such that v > max{u,,u,}. (2.6.3)
Remarks

1. In most applications the functions v satisfying (2.6.2) and (2.6.3) will be
u® and max{u,,u,}, respectively.

2. If # is a Perron family on M, if K is a conformal disc in M, andifu; € #,
j=1,...,n, then there is a ve F such that u]K is harmonic and v > uj,

j=1...,n

Theorem (Perron’s Principle). Let # be a Perron family and define
u(P) = sup v(P), PeM.
ve F

Then either u = + o0 or u is harmonic.

Proor. Cover M by a family of discs {D,}. If we have the theorem for discs,
we have it for all of M. We claim that if u is harmonic on one disc in the
cover, say D,, then u is harmonic on all discs. Let D, be another such disc.
Since M is connected we can find a chain of discs
D,.Ds, ..., Dy =Dy

with

D; n D;,, non-empty forj=1,...,n (2.6.4)
By the theorem for discs u|D; is either harmonic or = + 0. Since we have
(2.6.4), it is impossible for u|D, to be harmonic and u|Dpy, to be = + 0.
Thus we may assume

K={zeC;lzd<1}c{zeC;lf<r}=M, r>1,
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and prove the theorem for K. Let {z;}?2, be a dense set of points in M. (We
cannot at this point choose a countable dense set in our original M, .since
we do not know yet that every Riemann surface is second coumablc;) For
each j, choose a sequence t, € .# such that '

u(z) = klim vilz)).

Choose any v, € # suc . .
‘ 1 € % such that v, is har < S L
chosen ! monic on K and r; > r;,. Having

{y, ...t} = F,

choose v, , € # such that

ta41| K is harmonic,

lrn+1 20
and "
vn+lzvmla allmS"-}-l,aUlSn-}-l

We now observe that
vz;) 2 vplzy), forn> ]
and thus () 2 one) ek
lim v,(z;) = sup v,(z;) = u(z)).
n—0 n
Assume u # + co. Without loss of generality we assume that u(z,) < + oo
By Harnack’s principle .
W = lim , (2.6.5)

k

is harmonic in K. We must verify W = u. Since v, € Z, vy < 4, and hence
W< u‘by (2.6.5). Further W = u on a dense set (we do not know ;'et however
that u is even continuous). Thus W > v on a dense set for all v e #. Since
all ve # are continuous, W > v for all v € #. Thus, W > u on K. ' O

Remark. The_above proof also showed how to obtain the function u. Let
f(Kbe. anlarbltra}ry compact subset of M. Cover K by finitely many discs
i»J=1,...,n}. For each j, there is a sequence of increasi ¢ i
functions {v;} such that ! creasing hamonie

u = lim v; on K.
k
Choose v; € # such that v, > max{v,;j=1,... ,n}. Then

u = lim v,
k

uniformly on K. In general, the functions v, are o i
' nly subh:
(that is, not always harmonic). * ¢ armonic on £

Iv.2.7. We now return to the Dirichlet problem introduced in IV.1.1. We
take a region D with boundary 3D on a Riemann surface M.
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Let P € 6D. We shall say that § is a barrier at P provided there exists a
neighborhood N of P such that

B e C(CHD n N)), (2.7.1)
B is superharmonic on Int(D N N), (2.1.2)
B(P) =0, (2.7.3)
and
B(Q)>0 for Q #P,QeCl{D N N). (2.7.4)

Remark.Jf P € 8D can kg reached by an z}nglytic arc (=image of straight
line under holomorphic mapping) with no points in common with CI D,
then there exists a barrier at P.

ProoF. This is a local problem and so we may assume that P can be reached
by a straight line with no points in common with D and D < C. Furthermore,
we may assume P = 0, and the line segment is y = 0, x < 0. Choose a single-
valued branch of \/zin the complement of this segment and set 8(z) = Re Jz.
Writing z = re®, we see that f(z) = r'/? cos /2 with —n < § <m, and is
thus a barrier at 0. 0

We need a slight (fre¢) improvement. Let § be a barrier at P e D with

N (as in the definition) a relatively compact neighborhood of P. Let us
choose any smaller neighborhood N, of P with CI No = Int N. Set

m = min{$(Q); Q € (C{N\No) n Cl D)} > 0.
Then set
50 = min{m,{Q)}, Qe NnD,
T m, 0 € C(D\N).
Then J is continuous on D, § > 0, f(Q) = 0 if and only if 0 = P, and B is
superharmonic on D. Further f/m is again a barrier at P with g/m =1
outside N. (It is defined on all of C1 D.) We shall call §/m a normalized

barrier at P.

IV.2.8.Let D = M. A point P e 8D is called a regular point (for the Dirichlet
problem) if there exists a barrier at P. A solution u to the Dirichlet problem
for a bounded f € C(3D) is called proper provided

inf{f(P); P € 6D} < u(Q) < sup{f(P); Pe 6D}, allQeClD.

Theorem. The following are equivalent for D = M:

a. There exists a proper solution for every bounded f e C(éD).

b. Every point of 8D is regular.

PROOF. (a) = (b): Let P e éD. It is easy to construct an f e C(6D) with

0< f < 1and f(Q) =0 if and only if Q = P. Let u be a proper solution to
the Dirichlet problem with boundary value f. Then 0 Su<1. We claim
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u>0in ierwi =0 ..
Simo it I.; Otlic rwise, u = 0 in D (by the minimum principle) and f =0
W is narmounic, it is superharmonic, and thus a busrier at P -

{b) = (a): Let .

F = {ve C(C1 D); v is subharmonic in D,
mo = inf f < v < sup f = my, and (Q) < Q)
forall Q € 6D}.

rCr;ldearly the function which is identically m, is in &, If u,, u; € %, then

) Pl _ . b ’

uu{)xﬁu;uz} e/.ﬁz'%lso for every ue # and every conformal disc K in D
€ #. Thus # is a Perron family on D. Let ,

u(Q) = sup v(Q), QeD.

Then u is harmonic in P and Mo < u < my
We verify two statements for P ¢ 8D:

l. h”l “lf u ‘2’ F

2, lirgiv;lp u(Q) < f(P).

PROOF OF (1). If f(P) = m,, there is nothing to prove. So assume f(P)y>m
0-

Choose ¢ > 0 : _ . 5
such that such that f(P) — & > m,. There is then a neighborhood N(P)

S(Q)= f(P)—¢ forall Qe N(P) ~ oD.
Let B be a normalized barrier at P which is = 1 outside N(P). Set
WQ) = —(f(P) —mo ~e)B(Q) + f(P) —e, QeCID.
Clearly, w e C(C1 D) and w is subharmonic. For QeClD,
w@) < f(P)—e<m,,

w(Q) = moB(Q) + (f(P) — &)1 — (Q))
2 moP(Q) + my(1 — B(Q)) = my.

and

Finally, for Q € 6D,
w@) =my < f(Q), Q¢ N(P),

and
W< fP)—e< fQ, QeN(P).
We have shown that w e &, Hence, w(Q) < u(Q), all Q € D, and thus
lierii;lfu(Q) = w(P)= f(P) —¢.

Since ¢ is arbitrary, (1) follows. O
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PRrOOF OF (2). There is nothing to verify if f(P) = m,. Assume f(P)<m,.
Choose & > 0 so that f{P) + & < m,. Choose N = N(P), a relatively compact
neighborhood of P, such that

flO)< fiP)+¢ forall Qe N(P)n éD.

Let v € & be arbitrary. We claim
Q) — (my — fiP) - OP@Q < f(P)+¢&  QeNP)nD. (28.1)

(Here B is again a normalized barrier of P, that is = 1 outside N(P).) Since
the function on the left of the inequality is subharmonic, it suffices to check
the inequality on 8(Ng D). If Q€ d(N n_D), then either (i) Q€ dN n
ClDor (i) Qe CIN ndD. In case (i), the left-hand side of (2.8.1) satisfies

=v(Q)—m, + fIP)+ e < fIP) + &
In case (ii) we have the estimates (for the same quantity)
<) < fQ) < f(P) + e
We have thus verified (2.8.1). Thus for Qe N(P)n D
o(Q) < fIP) + & + (my — f(P) — &)B(Q),
and hence also
Q) < f(P) + & + (my — f(P) — )f(Q)-
From this last inequality we conclude
lirg S’l;lp uQ) < f(P) +e.

Since ¢ can be chosen arbitrarily small, we have (2). O

IV.3. A Classification of Riemann Surfaces

In this section we partition the family of all Riemann surfaces into three
mutually exclusive classes: compact (=elliptic), parabolic, and hyperbolic.
The partition depends on the existence or non-existence of certain sub-
harmonic functions. It will turn out (next section) that each of these classes
contains precisely one simply connected Riemann surface. Perhaps of
equal importance is the fact that this classification also enables us to con-
struct non-constant meromorphic functions on each Riemann surface. The
constructions in this section differ in a few important respects from the
constructions in 11.4. We do not need here the topological facts that were
previously used (triangulability of surfaces and existence of partitions of
unity), and we get sharper information about the meromorphic functions
that we construct (see, for example, Theorem 1V.3.11).
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IV.3.1. Lenma. Let K be a compact connected region on a Riemann surface

M, with K # M. There exists a domuin D on M such; thar

K< D, (3.1.1)
CL D is compact, {3.1.2)

and
8D consists of finitely many closed analytic curves. (3.1.3)

PRrOOF. If M is compact the lemma is trivial. Choose P ¢ K and a small
disc U about P in M K. In the general case, every Pe K is included in a
conformal disc. Finitely many such discs will cover K. Let D, be the union
of these discs. By changing the radii of the discs, if necessary, we may assume
that the discs intersect only in pairs and non-tangentially. Dclete from D,
asmall disc U in D, K and call the resulting domain D,. Sohve the Dirichiet
problem with boundary yvalues 1 on U0 on 3D, (note it R. =D ClU
has a regular boundary). Let D be the component containing K of

{PeDy;ulP)y>e> 0},

where ¢ < min{u(P); Pe K}. The critical points of the harmonic function
u {the points with du = 0) form a discrete set. By changing & we climinate
them from &D. Thus, the domain D satisfies (3.1.1)-(3.1.3). O

IV.3.2, Let M be a Riemann surface. We will call M elliptic if and only
if M is compact (=closcd). We will call M parabolic if and only if M is not
compact and M does not carry a negative non-constant subharmonic
function. We will call M hyperbolic if and only if M does carry a negative
non-constant subharmonic function.

Remark. 1t is obvious that a hyperbolic surface cannot be compact (by the
maximum principle for subharmonic functions), and thus we have divided
Riemann surfaces into three mutually exclusive families.

IV.3.3. Subharmonic functions on a parabolic surface satisfy a strong
maximum principle.

Theorem. Let D be an open set on a parabolic surface M. Let ue C (CI D).
Assume u is subharmonic in D. Furthermore, assume there exist my, m, € R
such that w < m, on 8D and u < my on C1D. Thenu < m, on Cl D.

PROOF. Assume m; > m, {otherwise there is nothing to prove). Choose &,
0 <& <m, ~m,. Define

max{u,m, + ¢} ~m, inD,
v= .
m,+¢e—m, in M\D.

It is clear that p is subharmonic on M, y < 0. Thus » is constant: that is

]

max{u,:1, + &} =m, +¢ inD.
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Hence
u< n + &,

a

and since ¢ is arbitrary, we are done.

Corollary 1. Let u be a bounded real-valued harmonic funcn’o'? onan og)}e)n sfstl_) l;
on a parabolic surface M. Assume that u € C(C1 D), with m0D= inf{u(P); P e
and m; = sup{u(P); P € 6D}. Thenmg < u < m, (on Cl ).

Corollary 2. On a parabolic Riemann surface, the Dirichlet problem has at

most one bounded solution.
~ - . .-

i i eral, have uniqueness of
.3.4. On hyperbolic surfaces we do not, in general, hav .
:le[ions to tgg Dirichlet problem. To see this we first establish the following

Theorem. Let M be a hyperbolic Riemann surface and K a c?rnpart sub..seI
with (S(I\;I\K) regular and M'\K connected. Then there exist a function

w € C(CHM'K)) such that

i. o is harmonic on M\K,
ii. w =1o0n 6(M\K), and
ili. 0<w<1on M\K.

Remark. We will call the smallest w as above, the harmonic measure of K.

ProOF OF THEOREM. Let 4 be a non-constant superharx_rll;))n:lc !/flunicsu;)&lpg:
M with ¥, > 0. Let my = min(|K) and ¢, = !/Io{mo. en
harmonic on M, non-constant, , > 0 and y, | K > b learly. since K s

We claim there exists P, € 3K such that y(Po) = 1. ed'sy(;onstant I
compact we can find such a Poe K. If Py e Int K, the}r}x t,[;Jl 1ndary ant on
the component of K containing P,, and thus a}so on t' e hou any
component. Thus we can find a P, € 8K at which ¢, bas the ;al and. Gnce

There exists a Qo € M\K with npngo) <t1.n ?therwxse Yy =

i an that ¢, is constant. .

lpl(}‘}‘)i(ga.l——lyl,,vg:;v:?//uf zf: {n l,tlpl},!/.l':llnd note that y is superharmonic on M,
O<y <L(Qy)<Ly|K=1

We define

. . . < ¥ |(M\K)}.
# = {ve C(CUM\K)); v is subharmonic on M\K and v < /[(M\K)}

The family # is clearly closed under formation of maximg anil undter
harmonization. Thus % is a Perron family on M\K provided it 1s 1_"10t :;rslgnyg.
C‘Iearly — € #. However, we have to show that # has more inte
funétllxggss.e a domain D 2 K with Cl1D compact, and 5DI ;(;nls)istlijxegt l(;f

is 1 ible by Lemma IV.3.1). o
itely many) Jordan curves (this is possi . ' L
ii:ntlh?;olutioyrz to the Dirichlet problem on D\K with boundary values 1 on
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6K and O on §

i O%I;c(:?é tChlactalxtlyi,s(; sbgo <l on Cl{D' K). Extend o to be zero on

on V35, o 15 subharmonic on M (by the Corollary to Proposi-

We show that v, e . 7. W i

Y . 0 €.7. We must verify that v, < (. N

:}?e—nﬁ is subharmonic on M, and Ly — 1 <0 onod_b lpax?:i] :ﬁ{:f\' NC;“C g
., . . s ? > ‘ \
Ximum principle vy — < 0 on D because C] D is com;:c; I\)De:ﬁBy

. ne
w(P) = sup v(P), P e CI(M\K),

veF

then
o<y,
and in particular ¢ j ;
is harmonic on M\K
MK, and o =1 on §K (
and alsow e

C(CH{M\K))). The funct; i
. 0N w s non-constant s :
Furthermore, 0 < < 1 on CI(M K)and thus 0 <SIZ)CC< TL%O)WSZ’/(QO) <[5

IV.3.5. Important Additi
v-3.5. Inpo ition. We can obtai i i
slight modification of the above argum:liltl‘ lSheet netmonie measure of K with

F,={ve F-ph
and define 1 = {v € #; v has compact support}
@(P) = sup v(P), P e Cl(M\K).

ve

Note that %, ai :
) contains rg and is hence n
the propertie . on-empty. Furthermore, w, has &
; propertics of w. We cluiin that o, < @ for all @ enjoying the 1 has all
of the theorem. Consider joying the properties

@ — v, ve F,.
Assume that | M\K' = 0 for some compact set K’. Thus
@—v>0 ondK"K)
(since @ > 0on dK',p =0 "
@200 »0=00nd6K';d >vonsK D '
(M\K"), and since v is arbitrary & > w, on R/I\K)' Henes & 2 v on (RAK) v

Corollary. . s

regu lairl;‘oui;;x sbec;: z;wer‘zogc Riemann surface and D a domain in M with
. Y Su at ] isc C

solutions for the Dirichlet I’rOb\lem fog'g’aﬂ. Then we have non-uniqueness of

PR()OF. If uis d[ly S Oluthﬂ to a Dltlchlet pIOblenl, then SO 18 (1 (U' u,
wiiere w 18 he (o] measure fO M\D.
]l T ISt l[d[]l[ nic ASUT 1 D

Remark. Any D as above
' : cannot have compact closure i it di
would have a unique solution to the Dirichlet problem ?olrnDM‘ i did, we

IV.3.6. Let M be a Rie
, . mann surface and Pe M i i
Green’s function for M with singularity at P provide(? : pnetion g is called a

g is harmonic in M\{P}. {(3.6.1)
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g > 0in M\{P}. (3.62)

If z is a local parameter vanishing at P, then

g(z) + log|z] is harmonic in a neighborhood of P. (3.6.3)

If § is another function satisfying (3.6.1)-(3.6.3), then g > g. (3.6.4)

Remark. Condition (3.6.3) is independent of the choice of local parameter

vanishing at P (that is, the condition makes sense on M). For if { is another
such parameter, then (with a; # 0)

(o) =z + a4+
a;
=q,z 1+a—z+"' = a,zf(z2),

~

1

where f is holomorphic near z = 0 and f(0) # 0. We write f(z) = ¢"?, with
h holomorphic near z = 0, and conclude that

log|¢| = logla,| + log|z| + Re h(2)-

Since Re h(z) is harmonic, we see that g(z) + log|z| is harmonic if and only if
g() + loglc] is.

A CLASSICAL ExaMpLE. Let D be a domain in C with Cl D compact and 6D

for example 8D consisting of finitely many analytic arcs). Let zo € D.

regular (
find a function y € C{Cl D) such

By solving the Dirichlet problem we can
that v is harmonic in D and

y(z) =loglz — zof,  z€dD.

Set
g(z) = —loglz — zo| + ¥(2)y  z€D.
Show that g is the Green’s function for D with singularity at zo. {The

f this assertion follows the proof of Lemma IV.3.8) Formulate

proof o
ple and Lemma IV.3.8 become

and prove a general theorem so that this exam
special cases of the theorem.

EXERCISE
b C'l

Let D < C be a domain bounded by finitely many disjoint Jordan curves Cj, . ..
. ,n) with respect to D is classically defined as the

uous on C1 D and has boundary values
es sense and relate this concept to the
1 and discuss the propertics of the

The harmonic measure of C(i=1,..
unique harmonic function w, in D that is contin
Spk=1,...,n Show that this definition mak

one introduced in IV.3.4. Show thatw + -~ + @, =
(n— 1) by (n — 1) “period” matrix {e, *doy.

Theorem. Let M be a Riemann surface. There exists a Green's function

1v.3.7.
if M is hyperbolic.

on M (with singularity at some point P e M) if and only
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})R—??;n[%f:, g}bcfr a;] Gr}qn’slfunction on M with singularity at P. Let m > 0. Set
= gj- then fis clearly superharmonic in‘M\ P}.Si : '
}- The _ . Since
Zslsg - P‘,) J =m in a neighborhood of P. Thus f is{su}pex'harrgg%)ic:n+€?
df > 0.If f were constant, then g = m, and thus g — m would be : l; :
csn idate for the Green’s function with g — m < g. This contrad; t'L ‘mzt <
that f cannot be constant and hence M is hyperbolic onshows
Conversely, assume that M js hyperbolic. Let P e M. Let K be a con

formal disc about P with Joca] coordinate z. Set
# = {v; vis subharmonic in M\{P},
v 2 0, v has compact support, and
©(z) + log|z| is subharmonic in 7] < 1).
To note that 7 is non-empty, we define

volz) = —loglz,  0<]<1
0, =1,
and observe that vy € #, It i
Mo, o - It 1s easy to see that # is a Perron family (on
We establish now the following

Lemma. Outside every neighborhood of P, % is uniformly bounded

P
{‘lzlozFr}OF(II;E'MMAi Choose r, 0 < r < 1. Let @, be the harmonic measure of
is h;rm. 'L 15 only here that we use the fact that M is hyperbolic.) Thus «
i =ma;{nal)c(;>)r.1,z[fj~>llr,](j;], =01 on |z =r, and 0 < w, < 1 for lz[ >r Let’
A (2); ;- ThusO0 <2 <1.Forue 7 let 4, = max{u(z); z =r}.
U, —u20 forlz|>r. (3.7.1)
Clearly u,w, — u is su i _
L@, perharmonic on 2] > r, and
y » and u.w, —u >0 z| =
Hztﬂit;‘ t(;; ;hle s:plzort ofu. Thenu = Qondx , and thus (3.7.1) hol(ci);1 on 5.){: .
harmonic. filr:cti(c)mss ﬁ]neqﬁgtlilé;}l)byb tbe Hllinimllm e for SUPCI‘-‘
: - Ine -/.1) obviously holds on M\
Finally, u(z) + lo ici 4 inuou
Fi glz| is subharmonic in 2| < 1 and continuous on |7 < L

u,+1ogr=ﬁ1‘:ixu+logrslnllaxu+log1=maxu<ul
=r z|=1 lzi=1 -
(the last inequality is a Consequence of (3.7.1)). Thus

—logr
-,

u <

Sinceu =Qoff a compact set Jf", we conclude that

max{u(z); |z] > r} < Il,g%' 372y 0O
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CONCLUSION OF PROOF OF THEOREM. Set
g(Q) = sup u@), QeM\{P}

Inequality (3.7.2) implies that g(Q) < w for Q # P. Thus, by Perron’s prin-
ciple, g is harmonic in M\{P}. The fact that g > 0 on M\{P} follows from
the corresponding fact that u > 0 on M\{P} for all ue #. Next we show

(3.6.3). Note that for |z| < r,ue #,

1 A1
u(z) + loglz} < u, + log r < :_O_g_r_ +logr="- o8 '
- A, - 1 Ap — 1

-
Thus also
i logr
g(2) + loglz| < 208 for <.

G-
Hence z = 0 is a removable singularity for the bounded harmonic function
g(z) + loglz|.

To finish the proof that g is the Green’s function, let § be a competing
function satisfying (3.6.1)~(3.6.3). Let u € #. Then the function § ~ uis super-
harmonic on M. Since u has compact support, say K, § — u > 0 on M\K’

and by the minimum principle for superharmonic functions also on K.
‘Thus § > uon M'{P}. Thus § > g.(In fact, either § > g or § = g on M\{P}.)
O

Remark. We have shown a little more than claimed in the theorem:

Existence of Green’s function at one point
Y
Hyperbolic
Y

Existence of harmonic measures
Y

Existence of Green’s function at every point.

We hence define g(P,Q) as the value at Q of the Green’s function (on the
hyperbolic surface M) with singularity at P.

IV.3.8. Lemma. Let M be a hyperbolic Riemann surface. Let D be a domain
on M with C1 D compact and 8D regular for the Dirichlet problem. Let P € D.
Let u be the unique harmonic function on D with u(Q) = g(P,Q) on 6D. Then
go(P,0) = g(P,Q) — u(Q), Q€D defines the Green’s function for D with
singularity at P.

ProoE. The function gp is harmonic in D\{P}. Take a small disc 4 about P
so that g — u is positive in its interior. Thus by the minimum principle for
harmonic functions, g — u > 0 on D\{P} since we also have these estimates
on §(D\d4). Condition (3.6.3) is trivially satisfied. Let § be another candidate
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for the Green’s function, and let Qo € D\{P}. It suffices to show that
9(Q0) 2 gp(P.Qy) — ¢

for all ¢ > 0. For cach Qed i
. oD, there exist g :
C1D\{Qy} such thar In <200 Uy S0t 1sts a neighborhood Ug of Q in

U= U,.
ng ¢

Th e g i

5(‘{31}:1;5\15;3/(: h{veg — gp = —esimce we have this estimate on S(D\U) =

Fight Mot ar,.g(Qo) —gp(P.Qo) > —&. (Intuitively g, is necessariiy the
ce since it has the smallest possible value on &D, namely 0.) a

1V.3.9. Lemma. In addition
na. to the hypothesis of the ‘ious le ;
that 8D consists of closed analytic urcs, and P é € DP::Z‘;?Z;["'""’@ e
S . wi'e
90(P.Q) = g,(Q,P), all P,QeD.

PROOF. Let U, U, be two small disjoint discs abou

= D\(U t P and oti
Let D= D\(U, U U,). For Re D\(P.Q) set Q respectively.

u(R) = g,(P.R)
t(R) = gp(Q,R).

Then by 1 (44.2),

0= ffﬁ (udv - vAu) = f’ﬁ (u*dv — v*du)

0.

- _j;Ul'FdUz (u*dv — v *du), (3.9.1)

N . .
th::z t::‘; t?y the ggﬂectlop principle for harmonic functions, we may assume
vare C* in a neighborhood of the closure of D. We introduce now a

conformal disc (U,) at P wi . .
1 with local coo = roi® .
coordinate, we wri rdinate z = re®. In terms of this local

| u(z) = @i(z) — log r
with # harmonic in lz| < 1. Thus

j;v‘ u*do — p*dy = j;Ux (@ —logr) *dv — v*d(ii — log r)
= va fi*dy — p*di — j;z}, (logr)*dvy — v*d(log r)
= ffv A4 — p 4if — ﬂu, (log ) *dv — v(re®) %rd()
= ﬁ:" v(re®)df = 270(0) = 2ngp(Q,P).

Similarly,

j:wz u*dy ~ v*dy = — anD(P,Q). 0
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1V.3.10. Theorem. If M is hyperbalic, then
g(P.Q)=glQ,P), allP,QeM.

Proor. Fix a point P € M. Consider the collection 2 of all domains D = M
such that

i. PeD,
2. C1 D is compact, and
3. 8D is analytic.

Note tHat if D;je 2 (j =12), then there is also a D € @ with D, U D, < D.
Extend each of the Green’s functions gp(P,-) to be identically zero outside D.

Let
F = {golP,’): D& Z}.

The last corollary in 1V.2.2 shows that the functions in . are subharmonic

on M\{P}.

Let K be any conformal disc on M\{P}. Let D € 2. Choose D* € & such
that D* ¢ D U K. Thus gp(P,") = gp(P,") and gp.(P,")|Int K is harmonic.
Similarly, if D,, D, € @, we can choose D € @ with D > D, U D, and observe
that gp(P,") = gp(P,), j = 1,2. Thus the family % is a Perron family. By

Perron’s Principle
HQ) = sup {9u(PQ)}, Qe M\ (P}

is harmonic on M\{P}, since
go(P,') < g(P,)
shows that y(Q) < + oo, all @ € M\{P}. The last inequality also shows that
y < g(P,”) on M\{P}.

Since y is a competitor for the Green's function (it clearly satisfies (3.6.2) and
(3.6.3)), y = g(P,") on M'{P}. We have thus shown that

nQ) = g(P.Q) = sup {go(PO)}, QM.
Hence for Q, Pe D
go(P,Q) = gp(Q.P) < g(Q.P).
Now fixing P and taking the supremum over D € &, we see that
g(P,0) < g(Q,P).

Reversing the roles of P and Q gives the opposite inequality. Thus the
proof of the theorem is complete.
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EXERCISE
Show that the Green’s function is a conformal invariant; that is, if
S:M o N
is a conformal mapping and g is the Green’s function on N with singularity at S(P) for

some P e M, then g  f is the Green’s function on M with singularity at P,

DiGression. Let D be a domain on a Riemann surface M with §D consisting
of finitely many analytic arcs. Let us generalize the Dirichlet problem and
(recall 11.4.5) our earlier discussion of the Dirichlet principle. Let Q be a
2-form which is C2on a neighborhood of the closure of D. (We shall show in
IV 8 that there is a C* 2-form Qo on M that never vanishes. Thus Q = FQ,
for some function Fe C2(C) D)) Let feC(éD). We want to solve the
boundary-vatue problem for u e CHCl Dy:
du = Q,
u|éD = f.
Let Poe D be arbitrary and assume our problem has a solution u. Let us
take a conformal disc z centered about P, and let
D,=D\{lz|l<r}, O0<r<l.

Apply Formula 1 (44.2) on D, with ¢ =uand y = g(P,,-), the Green’s
function for the domain D. Recall that u=f on 5D and that 4g9(Py,") =
0on D\{Po} while g(P,") = 0 on §D. Thus

o * 48P0 )~ [ (u(z) x dg(Po,2) — g(Po,2) 4 dulz)) = — {]l, atPor2

Letting r — 0, we see that

muPo) = = [[ gPo)0~ [ frdgPo).  (i0y)
Conversely, it can be shown that Formula (3.10.1) does indeed provide a
solution to our problem.

IV.3.11. Theorem. Let M be g non-hyperbolic Riemann surface. Let D be a
domain on M with Pe D. Let f be a holomorphic Junction on D\{P}. Then
there exists a unique harmonic Sunction u on M\{P} such that

u — Re f is harmonic in D and vanishes at P, and (3.11.1)

u is bounded outside every neighborhood of P. (3.11.2)

Remarks

1. The theorem should be contrasted with Theorem 11, 4.1 (and its com-
panions). What is important for us is not the more general singularity at P
that we can produce, but the boundedness statement (3.11.2).
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. e _ .
2. If f has no singularity at P, then exxstt::nce is l[‘l\"lill. lWe ts(rjteuS tab(]li{s; fl)} 1‘)1
3. The uniqueness part of the thcorem is also quite edsyl; o e o
. and u, satisfy the conditions for u, tk}en Uy — Uy 18 ;) ounded bar
function on M and hence constant. Since (1t; — t,)( , Uy

Before obtaining existence, we must establish some lemmas.
. D,
IV.3.12. Lemma. Let D < C. Let u be harmonic in D and |uf <m. Let Pe

then am
a”(grad wl| < F’TSD"

with ¢ a universal constant.

i : e vee _.u.), and by its norm we mean
.. First: by grad u we mean the vector (1.u,), an . "
PRm(O(?[‘z't I|:I|u |} éﬁoose r > 0 such that the clc.)se.d disc of radl}lls] ruat!tig:st A
mcont;i,nezi in D. The function u, is harmonic in D. Thu§ (}mt :i)ons
lgsccnerality P = 0), by the mean-value property for harmonic func

1 2r i .
u (0) = 5 J‘o u pe®ds, O0<p<r

i i “areal
Multiplying both sides by p and integrating from 0 to r we obtain the “ar
mean-value property”
1
=— dx dy.
ud0) = nrt jLz|<r Un O3 0y

Thus

lel o U dxdy

[ (=529 = == )y

4m

1
u(0)] = —

1
;

i

tl\) 3
3

r = .
r nr

A
A
N

O

From the above we see that ¢ = 4/n.

] ti a domain
IV.3.13. Lemma. Let {u;} be a sequence of harmonic functions g:zion Lomaln
D c.:.C .If {u;} converges uniformly on compact subsets to a fun X
: J

. ; mpact subsets to u,.
{u; .} converges uniformly on comp

ue[
assume that D 1S the unit dISC and to ShOW lmlfOI m conver ge])CC on a sma

disc. Now choose analytic functions f; such that
uj=Ref; and fi(0) = u)(0).
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Formula (1.2.1) shows that f;converges uniformly to S (similarly constructed).
Thus f7 converges uniformly 10 ' (on any compact disc) and since

Tj=uj, —iuj,
we are done. -

EXERCISE

Reprove the above lemma using the methods and result of Lemma 1V. 3.12,

IV.3.14. Lemma. Let {u;} be a uniformly bounded sequence of harmonic
Junctions on a Riemann surface M. Then there exisis a subsequence converging
uniformly on compact subsets of M.

Proor. If D is a closed disc contained in M, then the sequence {fJ} con-
structed in the proof of the previous lemma is uniformly bounded on the
closure of any smaller disc Dy and thus contains a subsequence converging
uniformly on Dg4. The same holds for the sequence {u;}—the real part of
the sequence {fj}. If M were second countable (it is—but we have not yet
established this) the general result follows by a “diagonalization” procedure
to be described in detail in IV.3.16. For the present we can use t e lemma
only for surfaces we know to be second countable. O

1V.3.15. Lemma. Let M be a non-hyperbolic Riemann surface, and K a con-

Jormal disc. Let u be a bounded harmonic Sunction on M\K. Assume that u is
C! on CYM\K). Then

LK*du =0.

PROOF. Without loss of generality we may assume (by adding a constant)
that u > 0 on M\K. Let z be the local coordinate corresponding to K so
that 6K = {|z} = 1}. Since

ﬁ:l___l *du = lim *du

p—1+ Iz}=p

it suffices to assume that u is harmonic in {|z| > r}, r < 1 and to show that

.ﬂz|=1*du =0

Let 2 be the collection of all domains D such that K == D =< M and §D
is analytic. Let uj, be the solution to the Dirichlet problem on CI{D\K,) with
up|dK, = u|8K, and u,|3D = 0, where K, = {|z| < r}. Extend u,, to be zero
outside D. Let

F = {up;De P},
and

Y = Sup up.
De2
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The reasoning in Theorem 1V.3.10 shows & isa Per.ron il'jmil)(f1 o(x; h\f ;I(Ijllof{(.:
‘ — y is a boundeq h:
or every D€ 2, up, < u; hence y < u. Now u — 71 h
?uci:‘ctcion)on M\Cl 1'5,. By Theorem 1V.3.3, the maxunumhand minimum of
this function occur on 8K,. Thus u = y. We have shown that
u=lim up = sup up on{lz]>r}
De2 De2
Let wp, be the solution to the Dirichlet problem on Cl(D\K,) with op|0K, =1
and wp|6D = 0. Then (as a special case of the previous argument)
lim wp = sup wp=1 onlz>r.
~ Ded & Ded L -

Now note that by the reflection principle, up and ep have hirmomcdcﬁien-
sions (which we do not use) across 6D. It thus follows that *dup an wp

defined and smooth on CH{D\K,). o
arch:v:fn use the remark following Perron's principle (IV.2.6), and choose

sequences of domains {D{"'} = 2, {D{?} = 2, such that

u=lim Upg, = 111:11 Wpary
j i
i

; that

uniformly on a neighborhood of 6K = {llzl =1}. C:ic;(c)):ren ll;, :ng; ;l;?ghb:r-
.= D U D@, Then u = lim; up, 1 = lim; wp, 4 neighbor
géo:; c;f oK. jFurther, the fuilctiéms involved are all harmonic in this

neighborhood. Finally,

*du, — up. *dwp)
- : = Wp; "aUp D D
0= jbj\x(w,,,_zlunj up, dwp,) Lm,\x)( p, *dup, — up,*dwp,

= —f (*dup, — u*dwp).
sK J . D
By Lemma IV.3.13. this last integral converges to — [ox *du.

IV.3.16. Proof of Theorem IV.3.11. Choose a local parameter z<viin;f(:1:1:‘%
at P. We may assume that {|z| < R} = D with R > 1. Let Oh< [;'~‘|-| L
be the solution to the Dirichlet problem on M\{l] < P} w1tdu l[ (o—f s
Ref|{|z| = p}. We claim that there is a constant ¢(r)—independent of p

thatforO0<p<r<l,
| < c(r) forlz| 2. (3.16.1)

It suffices to verify (3.16.1) on {|z| = r}.
Now, Lemma [V.3.15 implies that
J‘ *qy» =0, forp<t<R
lzi=1t

Thus we can define a holomorphic function F? on {p < |z| < R} by choosing
2o with p < |zo| < R and setting
FP(2) = w(zo) + j * (duf + i),
Zo
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We know that Re F(
. Z) = uP Z), <z
Laurent series expansions on ;5 )< ]/_:l <!Rl ja;{' Now both F* and f have

PR ~fo)= ¥ az

Th i nang
us, taking real parts, we obtain

: : ' after i
in the Fourier series) for z = ¢ (after changing the names of the constants

W(te®) — Re f(re®) = %0 4 ¥ (,opm
S(te®) >+ "; (288" + 2 .t ") cos nh
.+. P y -n :
..; (Bat" + B2 ,t™™ sin nd. (3.16.2)

Multiplying (3.16.2) by cos k@ or sin k

get(forp <t <R) 6 and integrating from 0 to 27, we

1 2x P i0
- fo (u*(te®) — Re f(te®))d0 = 5,
! fzn (uP(te® i
=)o ) — Re f(te'®)) cos kB dl = ofr* 4 22 ¢k k=12

1 2 :
= fo ((te”) — Re f(te)) sin k0dO = Bor + po 4% k=1 2

We first use each of th . (3163)
obtain (k = 123, . ) ¢ above equations for t = p (u”(pe'®) = Re f(pe®) to
(X‘(’) = O,
ot"_,‘ = _kaag
’ 3.16.
/_‘}P_k — PZkﬂf. ( 4)

We let

m = sup{|f(2)]; |2| = 1},

| m(p) = sup{|w(z)]; |2| = 1).
Using Equation (3.16.3) for ¢t = 1, we obtain

lof + o | < 2(m(p) + m),
N 1B + 24| < 20m(p) + m).
Combining the above result with (3.16.4) we have:

ol [1 = p™ < 20m(p) + m),

and for p < 4: B2 1 — p™] < 2(m(p) + m);

let] < 4(m(p) + m),
IB2] < 4(m(p) + m).
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Also with the same restrictions on p:
2| < 4(m(p) + m)p™,
|B2.4] < 4m(p) + m)p™.
Thus (using (3.16.2))
o 2n
max ¥ = c(r,p) < max|Re f| + 8 3, (m(p) + m) (r" + %—)
jzi=r laf=r aml
Since p2/r < r, we conclude that
(3.16.5)

c(r,p) < I}{l;zix|Re £+ 16(m(py + m)i,

To finish verifying our claim (that c(r,p) = ¢(r)) we must show that m(p) is

bounded independently of p. Now
m(p) = max [w’| < max |u?| = c(r.p)
fzj=1

fz|=r

(by the maximum principle).
Thus by (3.16.5)
r

r
m(p) < x‘:}glkeﬂ + 16m(p)I—_—; + 16m T

Choose r small so that rf{l —r)=¢ < ¢ (for example, r < +5). Hence, we
have

1 r
m(p) < 1 16q(1"?lz£§|Re fl+ 16m T:-r) < o).

We have now verified (3.16.1) as well as the following estimates (by adjusting

c(r))
log] < e(r)s el < c(r)p?, k=1,23,....

We now let A be the annulus
A={r<ld<1}, p<r<is
The set of harmonic functions
(wip<r}
is uniformly bounded in A (actually in {|z} = r}). Thus we can choose a
sequence converging uniformly on 4. By the maximum principle this se-
quence converges uniformly on {|2| = r} and the limit function is harmonic.

Let us choose now a decreasing sequence of radii r; — 0 and the cor-
responding annuli 4;. Let {p1,02, . . .} be a sequence with

and
limu*=u on {jzd =n}
k
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We relabel /
¢ P1.2.P3, ...} as {
P1:P2:P3 - AS 1P 11,012, 3- - - .}. Now we can choose a sub-

sequence
{P21:P22:P23, - -} OF {P11,p12P13s - - .} so that u®2 converges uni-

formly towon {|= :
n {|z| = r,}. By inductic
. (=] 2 r2}. By mduction the !
satisfies _ SEQUENCE { P 1 1,05~ 1,2:P5-1,3>-+-}

Pi-11> Pj-12>""",

and pj_l,,‘<r,‘, k=1,2,...,

im Ptk =
lim s =u o {lf 2 r;-,}.

So we can choose a subsequence

Pi1sPj2,Pj3s -+ - .
so that i Piz:Pjs }of {pj—l,l,pj—-l,z:pj—l,g,, .

lim ufi = {lz
I u on{lz >r}.
We _ s —
now let 4 = py, (the “diagonalization” procedure) and observe that u
k

is a decreasing se v iti
reasing scquence of positive real numbers with g, < r, such that

— .
im i = u uniformly on {|z| > r} for all r > 0.

Note that
(u — Re f)(te") = i (2, cos n@ + B, sin n)"
with "
%, = ‘1’1_1’1(1) %, B.= ‘1){{1(1) B
(‘l’iirtl)ac".,=0=‘l’ii1(1)ﬁ"_,,) forn=1,2,....

Thus, in particular i m

1s, , taking subsequences w

the uniqueness part of our theorem.q 7 completely unneccssary by
O

IV.3.17. As we saw i i

. n II.5, existence of harmoni i

' o S
the existence of meromorp’hic functions. nie functions alrcady implies

Theorem. Ep j

. ery Riemann surfac ]

, e M carr -

functions. e rries non-constant meromorphic

PROOF. Let P,e M for j ;
- j or j=1,2 with P , .
that vanishes at P;. We consider two c;s;;Pz' Let z; be a local coordinate

M is hyperbolic. Let u, be
_ 4 - ; be the Green’s function with si i
z = x + iy be an arbitrary local coordinate on M. The;mgulamy 2ty Let

Yo —
o(z) = _l"_m_ll
Uze — Uy,
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defines a meromorphic function with a pole (of order = 1) at P, and a zero
(of order > 1) at P,.

M is elliptic or parabolic. Choose u; harmonic on A P;} such that

1
u;= Re-; + 7(z)
J

with y; harmonic in a neighborhood of zero. Define ¢ as before. This time
ordp, ¢ S —2 and ordp, ¢ = 2. O

1V.3.18. Pheorem IV.3.171as many consequences.

Corollary 1. On every Riemann surface M we can introduce a C*-Riemannian
metric consistent with the conformal structure.

Proor. Let f be any non-constant meromorphic function on M. Let
{P,P,,...} betheset of poles and critical values (those P € M with df(P) =
0) of f. Let =; be a local coordinate vanishing at P, with the sets {|z{ <1}
all disjoint. Let0 < ry <r; <1 and let w;bea C” function with 0 < w; < 1,

w;=1 on{lzj<r} and w;=0 on{|z]=ra}.

Define arc length ds by
dsz = %dfll (1 - z (Uj> + Z wj|dzj|2 D
J J

Remark. We shall (see IV.8) be able to do much better. We shall show that the
metric may actually be chosen 1o have constant curvature.

Corollary 2. Every Riemann surface is metrizeable.

Corollary 3. Every Riemann surface has a countable basis for its topology-

Corollary 4. Every Riemann surface may be triangulated.

While it is possible to prove the last two corollaries at this point, we shall
delay the proof until after IV.5 when we will be able to give shorter proofs.

IV.4. The Uniformization Theorem
for Simply Connected Surfaces

The Riemann mapping theorem classifies the simply connected domains in
the complex sphere. It is rather surprising that there are no other simply
connected Riemann surfaces. Our development does not require the Riemann
mapping theorem, which will be a consequence of our main result.
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IV.4.1. Our aim is to prove the following

'l“heorem. Let M be a homologically trivial (H (M) =10)) Riemann surfac
Then M is conformally equivalent 1o one and onl_.v one o'f ;he Jollowing thr;ec"
a. Cu {0}, '
b. C,

¢ 4={zeC;|]<1}.

These correspond to the surface M being

a. elliptic,
b. parabolic,
c. hyperbolic.

Of course, C U {oc} is not even to i i i
3 pologically equivalent to either of th
other two, and C and 4 are conformally distinct by Liouville’s theorem, Th:

fact that these three cases are mutually exclusive will also follow from our

proof of the theorem, and the fact that the types (elliptic, parabolic hyper-

bolic) are conformal invariants.

IV.4.2. We recall the machinery introduce in IJ1.9. Let M be an arbitrary

Riemann surface. Let Pe M Denote by ¢
: . L M. v Cp(M) the i
functions at P e M. Let o) germs of holomorphic

OM) = ) 0p(M)

PeM

denote the sheaf of germs of holomorphic functions. This space is given a
topology and conformal structure as in I11.9. The natural projection

proj = n:O(M) > M
is holomorphic and locally univalent. Similarl
. . , we define thy
of meromorphic functions on M > H(M). ¢ ne the sheafof germs

Theox:em. Let o be a discrete set on a Riemann surface M. Let u be a harmonic
Junction on M\ and assume that for each P e M, there is q neighborhood
N(P) and a meromorphic Junction f, defined on N(P) with either

a. log|fo| =u on N(P) ~ (M\o), or
b. Re fp=u onN(P)n (M\o).

Take any fp, as above, and let ¢ € .# P, be the germ of Sp, at Py M. Then
i. @ can be continued analytically along any path in M beginning at P,, and

ii. the continuation of ¢ along any cl inni 1
y closed path (beginning and end
depends only on the homology class of the path. ! eing ot Fo)

Remark. The hypothesis ((a) or (b)) is automatically satisfied on M \o.
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Proor oF TurorReM (The proof is almost shorter than the statement of the
theorem and has implicitly been estublished in the section on multivalued
functions.) Let ¢:[0,1] - M be a continuous path with ¢(0) = P,. Let

6 = {t € [0,1];  can be continued along ¢, = ¢|[0,t]}.
It is easy to see that 6 is non-empty (0 € 6), open (without any hypothesis),

and closed (by use of (a) or (b}). Note also that the analytic continuation

satisfies (a) or (b).
Let ¢ be a closed path beginning at P,. Let ¢, be the continuation of ¢
along c. Then, assuming kypothesis (a), we have

loglp| = u = loglp,| near P,.
Thus there is a z(c) € C, |x(c)] = 1, such that
@1 = x{c}p near P. 4.2.1)

Since ¢, depends only on the homotopy class of ¢, y determines a homo-
morphism

1 (M,Pg) - S!
fromn the fundamental group of M (based at P,) into the unit circle (viewed
as a multiplicative subgroup of C). Since S' is a commutative group, the
kernel of ¥ contains all commutators and thus y determines 2 homomorphism
from the first homology group

x: Hy(M) - St (42.2)
In case (b), (4.2.1) is replaced by

@1 = ¢ +ix(0)
with y{c) € R, and (4.2.2) is replaced by a homomorphism

CH (M) - R O

Corollary. Let M be a Riemann surface with H (M) = {0}. Let ¢ be a discrete
subset of M, and u a harmonic function on M'\c. If u is locally the real part
(respectively, the log modulus) of a meromorphic function on M, then u is
globally so.

IV.4.3. As an application of the above corollary we establish the following

Proposition. Let D be a domain in the extended plane C U {o0} = §? with
H (D) = {0}. Then D is hyperbolic unless S\D contains at most one point.

Remarks

1. The two sphere S? is of course elliptic. If $?\D is a point, then (via a
Mébius transformation) D = C. The plane C is parabolic. (Prove this
directly. This is also a consequence of Theorem IV.4.5.)
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2. The proposition can be viewed as a consequence of the Riemann mapping
theorem. It can also be obtained by examining any of the classical proofs
ofthe Riemann mapping theorem. The proposition together with Theorem
1V.44, imply the Ricmann mapping theorem.

ProOF OF ProposiTION. Say SA\D contains 2 points. By replacing D by a
conformally equivalent domain, we may assume that S\D contains the
points 0, =,

We now construct a single valued branch of 'z on D. Observe that
3 log|z] is a harmonic function on D. Thus there exists a holomorphic func-
tion f on D with

log|f(z)] = §loglz|, zeD.
Thus

log|f(z)* =logls, zeD,

and thereisa e R
SEP =6%, -eD,
Set
g(z)=e ®2f(z),  zeD.
Then

g(z*=:z  zeD.

Let ae D and g(a) = b. We claim that g does not take on the value —b
on D. For if g(z) = —b, then z = g(2)? = b2 = g(a)? = a. This contiadiction
shows that g misses a ball about —b (using the same argument—since g
takes on all values in a ball about b). We define a bounded holomorphic
function

1

h(z) = Py D. )

Since D carries a non-constant bounded analytic function, it is hyperbolic.

IV.4.4. Theorem. If M is a hyperbolic Riemann surface with H,(M) = {0},
then M is conformally equivalent to the unit disc A.

PrOOF. Choose a point P ¢ M. Let g(P,") be the Green’s function on M with
singularity at P. The function g(P, ) satisfies the hypothesis (a) of Theorem
IV.4.2. (The only issue is at P. Let z be a local coordinate vanishing at P.
Then g(P,2) + log|z| = v(z) is harmonic in a neighborhood of z = 0. Choose
a harmonic conjugate v* of v, write f = "***. Then

9(P.z) + log|z| = Relog f(2) = log|f(2)], near 0,

1)
z 3

or

g(P,z) = log near 0.
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By Corollary 1V.4.2, (applied to —g(P,)) there exists a meromorphic
function, f(P,') on M such that

log|f(P.Q)| = —~g(P,Q), all Qe M.

The function f(P,) is holomorphic: For @ # P,g(P,Q) > 0, thus|f(P,Q)| < 1
By the Riemann removable singularity theorem, f(P,) extends to an analytic
function on M — that is, to the point P. Furthermore,

f(PP=0, f(PQ)#0 forQ #P. (4.4.1)

We want to show that f¢P,-) is one-to-one and on‘to.
Let R, S, T € M with R and § fixed and T variable. Set

_fRS) = fIRT)
Y = T TRSIRT)

Since ¢ is f(R,-) followed by a Mébius transformation that fixes the unit
disc, ¢ is holomorphic, ¢(S) = 0, and

lo(T)| <1, TeM.

Let { be a local parameter vanishing at S. We may assume t.hat { maps a
neighborhood of S onto a neighborhood of the closed unit disc. Then

P@)=al"1+al+a*+ ...), n=1a#0.
Set

1
w(T) = - log|p(T)|.
Then u is harmonic and >0 except at the (isolated) zeros of ¢. Also

~~ loglp(0)| + logk!

is harmonic for [(| small. Let ve #, where # is the family of subharmonic
functions defined in the proof of Theorem 1V.3.7, with P repla}ced by §
{(and z by {). Let D be the support of v, and D, be D with small discs about
the (finite number of) singularities of u deleted such that u — v > 0 on (D\D).
By the maximum principle u > v on D,. Hence, on M\{S}. We conclude that

- loglo(T)] = u(T) 2 sup o(T) = ¢(5.T)
= —log|f(S,T)],
N lo(T)] < |o(T)]'" < | £(5,T)]. 4.42)
Setting T = R, we get (by (4.4.2))
RS) <SSR
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or (since R and S are arbitrary)

[f(RS)| = [/(S,R)].
Remark. The above equality also follows from th ’
function (Theorem 1V.3.10). o e symmetry of the Green's

CONTINUATION OF PROOF OF THEOREM. We consider once again a holo-

morphic function of T, mapping M into the closed unit dj
@(T)/f(S,T). By (4.4.2), 1sc, namely h(T) =

T <1
and since <1,

[h(R)| = —"1&’=!.{(_R£).:_f,@ﬁ 1
LSR)| ™ [T = TIRS)F(RR) FS.R)

- in&*) -1
SR 7
we conclude that
o(T)=xf(ST), jeC, [x] = L
We rewrite the above equation as

f(R.S) - f(R.T)

¢« (S,T) = SR St
WO = RS R Ty

and deduce that
JRS) = f(RT)< f(ST)=0<sS =T

We have shown that f| (P,-) Is an injective holomorphic function of M into 4.

Remark. If we are willing to use the Ri i
- €mann mapping theore; i
nothing more to prove. pping m, there is

CZONCLUS.ION (;F PROOF OF THEOREM. We shall show that f(P,") is onto. Let
a‘ e 4 with a’ ¢ Image f(P,-). Since S(PP)=0, a® # 0. Let us abbre;/iate
f (P.,-) by f. Since f(M) is homologically trivial, we can take a square root
(as in IV.4.3) of a non-zero holomorphic function defined on S(M). Let

z—a .
Vi<az "
Wo)=——Ze  zesm,

l+ig [Z- 9%

1-3a%
where we choose that branch of the square root with \/—a? = jg. Now
1 4 |af?

2/a]

D) <1 for ze f(M), (44.3)

hO) =0, [nO)|=

>1

s
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We now define

FIQ)=hfQ) QeM.

Then F is a holomorphic function of M into 4 with a simple zero at P and no
others. Thus —log|F| is a competing function for the Green’s function and

we have
—log|F(Q)] = g(P,Q) = —log|f(P.Q)],

or
IFQ)| < | /(@)

Hence we conclude that

~ -0 . -

) <1 for |z| small,
and
o<1

contradicting (4.4.3) O

1V.4.5. Theorem. Let M be a Riemann surface with H, (M) = {0}. If M is
compact (respectively, parabolic), then M is conformally equivalent to the
complex sphere, C U {0} = $? (the complex plane, C).

Before proceeding to the proof of the theorem, we must establish some
preliminary results.

IV.4.6. Lemma. Let D be a relatively compact domain on a Riemann surface
M and P, € D. Let f be a meromorphic function on Cl D whose only singularity
is a simple pole at P. Then there is a neighborhood N of P, such that for any
QO € N’

Q) # f(Qo), all Qe D\{Qy}.

Proor. There is a neighborhood N, of P, such that f|N, is injective. Let
Mo = MaXp e sp\c1 noy{ | S(P)|} and let m; > m, be so large so that {|z| = m,}
is contained in f(No). Let N = f~'({ze C,|z| > m,}) = N,. Then

|f(@)) <m, onD\CIN
|/(Q)|=m; onCIN. 0

Corollary. Let M be a parabolic or compact Riemann surface. Let Pye M.
Assume that f € A" (M) with ordp, f = — 1, f is holomorphic on M\{P,} and
[ is bounded outside some relatively compact (therefore, outside every) neigh-
borhood of P,. Then there exists a neighborhood N of P, such that for any
QO € N3
fQ) # f(Qo), all Qe M\{Q,}.

Proor. This is actually a corollary of the proof of the lemma, using the fact
that under the hypothesis, a bounded analytic function assumes its bound
on the boundary (Theorem IV.3.3). O
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IV.4.7. Leama. Let M be a parabolic or compact Riemann surfuce with
H (M) ={0}. Let Poe M. There exists a function f € X (M)withord, f = -1
that is bounded outside every neighborhood of P,,. ’

Pl;OOF.‘ Let zhbe a conformal disc at P,. By Theorem IV.3.11, there exists
a function u that is harmonic and bounded outside ev igh
ot ery neighborhood of

u(z) — Re 1
z

is harmonic in a neighborhood of z = 0, and vanishes at z = 0. By the corol-

laf')]'1 to Theorem 1V.4.2, there exists a function f holomorphic on M\{P,}

wit \
S=u+in,

J(2) — 1/z holomorphic near z = 0 and (f(z) — 1/z) vanishes at 0 (for some

haIIlIOrllC fUIlCUOIl v on M\{] o})- Slmllally, the[e €Xists a hOlOH]Olpth
lu“:tlon f C 1‘\’/ \\{ O}

f=a+is
|71} bounded outs?de every neighborhood of Py, and f{z) — i/z is holomorphic
near z = 0 and 1.t vanishes at zero. We want to prove that ]v[ is bounded
outside every neighborhood of P,. We shall show that f = if (thus v = )

which will conclude the proof.
Choose m > 0 so that

juz) <m,  |a#@)|<m on{f =1}

Thus, also on {|z| > 1}. It involves no loss of generality to assume that f
and f are one-to-one on {|z] < 1}. Choose Q, with 0 # 2(Qy) = 24 and

|zo| < 1 such that [u(Qo)| > 2m and [#(Q,)| > 2m.
Define

9(0) =

v L 1
o-rey "9 re 70y

The functions g and § are holomorphic on M\{Q,}. Furthermore ord,, g =
— 1 = ordg, §. We claim that these two functions are bounded outsideggvery
neighborhood of Q,. It suffices to show that they are bounded outside
{lz| < 1}.Now for |2(Q)| > 1,

QeM.

1 1
W(0) — u(Qo)® + (@) — 9 @) ~ m®’

9@ = (
and similarly

7@ < %
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The Laurent series expansions of g and 7 in terms of z — z are

4

g(z) = )+a0+al(:_:o)+“'

(z— 2o

+&0+&1(Z—ZO)+"'.

giz) = =70

Thus &g — ¢ is a bounded holomorphic function on M and thus constant.
In particular f is a Mébius transformation of f. Thus

~. af(@Q)+ B
_f(Q.::a_'f_____—"__, '(xa'__ -.~¢0'
Q) + 5 &
Setting Q = Py, we see that y = 0 (we may thus take d = 1) and thus (because
we know the singularity of f and f at Po) f = if. [

[V.4.8. Proof of Theorem IV.4.5. Let Pe M. A function g € A (M) will be
called admissible at P provided

g € #(M\{P}), (4.8.1)
ordpg= —1,and (4.8.2)
g is bounded outside every neighborhood of P. (4.8.3)

We have seen that there exist functions admissible at every point P and
that any two such functions are related by a Mébius transformation.

Assertion: Given f admissible at P and g admissible at Q € M, then there
exists a Mobius transformation L such that g = Lo f.

PROOF OF ASSERTION. Fix P € M, and a function f admissible at P. Let Z<
M be defined by

T ={Qe M, g admissible at Q=g = Lo f, for some
Moébius transformation L}.

The set I is non-empty because Pe Z. Let Qo€ 2. Let g, be admissible
at Qo. Thus go = Lo © f, for some Mobius transformation Ly. Choose a
a neighborhood N of Qg such that every value go taken on in N is not as-
sumed in M\N. Let @, € N, 0, # Q,. Then

9:.(Q) = (Liogd@, Q€M

1
90(Q) — 90(01)

is admissible at Q. If g is admissible at 0, theng = Ly o g, = Ly Ly 2 go =
L,o L, o Ly o f. Thus X is open. Similarly (by exactly the same argument),
S is closed in M, and thus ~ = M.

Assertion: Every admissible function is univalent.
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PROOF OF ASSERTION. Iet f be admissible at Po. Thus f(Py) = 0. Assume
JIPy) = f(P,). Choose g admissible at Py and a Mdbius transformation L
such that f = L-g. Thus L(g(P,)) = L(g(P,)). Since L is univalent, o¢c =
gtPy) = g(P,). Thus P, = P, since g is by hypothesis admissible at P,.

CoONCLUSION OF PROOF. Choose an admissible
SM-Cu{x.

If M is compact, then f is also surjective (and conversely). Thus if M is para-
bolic, /(M) omits at least one point. Following f by a Mabius transformation
L, we may assume Lo f(M) < C.If L - JiM) g C, then L = f(M) (and hence
M) would be hyperbolic. [

Remark. We have now established Theorem TV 4.1. This is a major result
in this subject.

IV.5. Uniformization of Arbitrary
Riemann Surfaces

In this section we introduce the concept of a Kleinian group and show how
cach Riemann surface can be represented by a special Kleinian group—
known as a Fuchsian group. These “uniformizations” will involve only fixed
point free groups. More general uniformizations will be treated inIv.e.

IV.5.1. Let G be a subgroup of PL(2,C) (that is, G is a group of Mébius
transformations). Thus G acts as a group of biholomorphic automorphisms
of the extended plane C U {o0}. Let zpe C U {o0}. We shall say that G acts
(properly) discontinuously at z, provided

the isotropy subgroup of G at z,,

5.1.1
G, = {g € G;g(z0) = zo}, is finite, ( )
and
there exists a neighborhood U of zp such that
gU)=U forgegG,,
and
gU)nU=g forge G\G,,. (5.1.2)

Denote by Q(G) (=) the region of discontinuity of G; that is, the set of
points zo e C U {0} such that G acts discontinuously at z,. Set

A= AG)=C u {0 }\Q(G),
and call A(G) the limit set of G.
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It i1s immediately clear from the definitions that £ is an open G-invariant
(G2 = Q) subset of . If Q2 # &, we call G a Kleinian group. .
From now on we assume that G is a Kleinian group. Since Q is open in
€ v {o0}, it can be written as a union of at most countably many components.
We say that two components D and D are equivalent if there is a g € G such
that gD = D. If Q is connected, G is called a function group. In general, let
Q,Q,,...

be a maximal set of non-equivalent components of . It is clear that (as point
sets) the orbit spaces

Q/G and ® Q,/G,
i
are isomorphic, where (the stabilizer of Q)

It follows from our work in 111.7.7 that each Q;/G; is a Riemann surface and
that the canonical projection ;- £2;,/G; is holomorphxc. T.hus. Gis a
(perhaps countable) union of Riemann surfaces with the projection

n:Q > QG
holomorphic.
1V.5.2. Proposition. If G is a Kleinian group, then it is finite or countable.
Proor. Choose z € Q(G) such that G, is trivial. Then
{9(); 9 € G}
is a discrete set in . Hence finite or countable. But this set has the same

cardinality as the group G. (]

Iv.5.3. Since SL(2,C) inherits a topology from its imbedding into C.‘,
PLQ2,C) =2 SL(22,C)/+1I is a topological group. A group G < PLQ2,C) is
called discrete if it is a discrete subset of the topological space PL(2,C).
It is obvious that

Proposition. Every Kleinian group is discrete.

The Picard group

G= {ZHaz t b; ad —bc =1and abcde Z[i]}
cz+d

shows that the converse is not true.

1V.5.4. A Kleinian group G is called Fuchsian if there is a disc (or half
plane) that is invariant under G.
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Theorem. Let G < Aut 4, A = unit disc. The following conditions are
equivalent:

a. 4 c G),
b. 4~ QG) # &,
c. Gisdiscrete.

PROOF. (a) => (b): This implication is trivial.
(b)=>(c): Assume that G is not discrete. There then exists a distinct
sequence {g,} < G such that
_ gn—>g
with g € Aut A. Thus also
1

gn' =g~
(as is easily verified using the matrix representation of elements of PL(2,C))
Consider o
h,,=g_+11°gm ”=1,2,....
The sequence {h,} contains an infinite distinct subsequence and h,—1.
Thush(z) >z all z ¢ d,and 4 n QG) = .

()=>(a): If the group G is not discontinuous at some point z5 € 4, then

there is an infinite sequence of points {z,}, n=1,2,...,in 4 equivalent
undcr' G t0 z4 and which converges to zo. Choose g, € G with gu(z,) = 2.
Consider the element A, € Aut 4 defined by

Z—z

A,,(.’.’):l -, zed,n=0,1,...,
~3Z,2

and set for n = 1,23,...
Cn = An+l ° gn—+1l °Gnv° An_l
Since C,(0) = 0, we conclude from Schwarz's lemma that
Cl) =z, Ji|=1.

Thus there is a subsequence—which may be taken as the entire sequence—of
{C.} tl_le:l converge_slto Co (where Cy(z) = Ao2). Since A, — Ag, we see that
hy=g;l og, > A5 5 Co o Ag. Since the {z.} are distinct, so are the {gn},
and hence also the {k,). ]

Corollary. If G is a Fuchsian group with invariant disc D, then A(G) = éD.

PRroor. The exterior of D is also a disc invariant under G. Since G is a Kleinian
group, it must be discrete. Hence, both D and the exterior of D are subsets

of Q(G). 0

Before proceeding to our main result, we need a

Deﬁnition. A Kleinian group G with A(G) consisting of two or less points
is called an elementary group.
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IV.5.5. Let M be an arbitrary Riemann surface. We let M be its universal

covering spuce. Let
M- M

be the canonical projection, and G the covering group; that is, the group
of topological automorphisms g of M for which the following diagram
commutes:

M—2 M

LML
Of course, since 7 is a normal covering, G = w,(M). ~Furthermore, G acts
properly discontinuously and fixed point freely on 3. Since 7 is a local
homeomorphism, it introduces via the analytic structure on M, an analytic

structure on M. With this analytic structure, G becomes a group of conformal
automorphisms of M that is, a subgroup of Aut M.

~ Lol

IV.5.6. Theorem IV .4.1 gave us all the candidates for A ; that is, all the simply
connected Riemann surfaces: Cu {0}, Cor 4= U= {zeC;Imz > 0}.
Each of these domains has the property that its group of conformal auto-
morphisms is a group of Mobius transformations z + (az + b)/(cz+d). In
fact:

Aut(C u {oc}) = PL2,O),
Aut € = PAQ2,C),
Aut U = PLQ2,R).

(By P4(2,C) we mean the projective group of 2 x 2 upper triangular complex
matrices of non-zero determinant.) We have hence established the following

general uniformization

Theorem. Every Riemann surface M is conformally equivalent to D/G with
D=Cu {x},C or Uand G a freely acting discontinuous group of Mébius
transformations that preserve D. Furthermore, G 2 n,(M).

Remarks

1. We will see in I'V.6 that for most Riemann surfaces M,M=U.
2. At this point, it is quite easy to give alternate proofs of Corollaries 2 -4
in IV.3.18. A stronger form of Corollary 1 will be established in IV.8.

IVS7. IfM = U, then the group G is, of course, a Fuchsian group. If M=C
or C U {0}, then G can have at most one limit point (G acts discontinuously
on C). Thus we have established the following

Theorem. Every Riemann surface can be represented as a domain in the plane
Jactored by a fixed point free Fuchsian or elementary group.
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IV.S.& A Rlcrfumn surface M will be called prolongable if there exists
4 Riemann surface M’ and a one-to-one holomorphic‘mapping M- M
such that M"\ f(M) has a non-empty interior. .

.Com pact surfa.ces and those obtained from compact surfaces by omitting
ﬁn:tely many points are clearly not prolongable. We shall see (triviall:;
1n’the next section that those Riemann surfaces that can be represented jls
C/G with G a fixed point free elementary group are not prolongable. F
the Fuchsian case, we need the following e

Definition. Let G be a Fuchsian group leaving invariant the interior of the

circle C. The group G is called of the second kind i
G is called of the first kind. MG £ C 1A = C.

Theorem. Let G be a fixed point free Fuchsi )
. xe J “hsian group actin .
U/G is prolongable if G is ofthe second kind. ? g on U. Then

Proor. If G is of the second kind, then £{G) is connected and the complement

of U,G in QG certainly contains L/G, where L is the lower half plane. [

Remark. The theorem thus shows that
compact surfaces s i i
by groups of the first kind. P Fes are niformized

1V.6. The Exceplional Riemann Surfaces

The title of this section is explained by Th
will sy i v p y Theorem IV.6.1. The same surfaces

IV.6.1.. The fundame.ntal groups of most Riemann surfaces are not com-
mutative. The exceptions are listed in the following

Theorem

a. The only simply connected Riemann surfa
. ces are the
equivalent 10 C L {0}, Cor 4 = {z e C, |z| < 1}, ones conformally
b. The onl}i surfaces with n,(M) >~ Z are (conformally equivalent to) C* =
C\{0}, 4* = M\{0}, 0r 4, = {ze C;r < |z} < 1},0 < r < 1.
c. tahe only surf(;ces w;lth (M) = Z @ Z (the commutative free group on
0 generators) are the tori C/G, where G is
o generaters are generated by z+-»z + 1 and

d. For all other surfaces M, n,(M) is not abelian.

The remainder of this section is devoted to the proof of this theorem

IV.6.2. Let A be a Mobius transformation, 4 # 1. Then 4 has one or
two fixed points. If 4 has one fixed point, it is called parabolic. We write
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A(z) = (az + h)fez + d), ad — be = 1. Then
trace* A = (a + d)?

is well defined. It is easy to check that A4 is parabolic if and only iftrace? A = 4.
The element A is called elliptic if trace’ Ae R and 0 < trace> 4 < 4. It is
called loxodromic if trace? A ¢ [0,4] = R. A loxodromic element 4 with
trace? A > 4 (we are assuming here that trace? A € R) is called hyperbolic.
Let A4 be parabolic with fixed point zoe T U {0}. Choose C Mébius such
that C(z) = 0. Thus C = A = C”(oc) = oc and hence D = C > 4> C™ ' has
the form D(z) = az + b.with a # 0. Since 4 is parabolic, so is D. Hence .
= 1. We conclude A is parabolicif and only if 4 is conjugate to a translation
z++ 2 + b (and thus also conjugate to the translation z+z + 1). Similarly,
it is casy to cstablish that an element A with two fixed points is conjugate
to zr> Az, A # 0, 1 and that

Ais loxodromice> |4 # 1, A #0,
A is hyperbolic<>/ e R, 2>0.4#1,

and
A is elliptice> 4| = 1, AL

[V.6.3. Theorem. The only Riemann surface M which has as universal covering
the sphere, is the sphere itself.

PROOF. The covering group of M would necessarily have fixed points if
n (M) # {1}. O

IV.6.4. The fixed point free elements in Aut C are of the form z—z +a,
ae C. Since a covering group of a Riemann surface must be discrete, we
see that (consult Ahlfors’ book Complex Analysis) we have the following

Theorem. If the (holomorphic) universal covering space of M is C, then M
is conformally equivalent to C, C*, or a torus.

These correspond to 7,(M) being trivial, =Z, and >7 @ Z. Note that
if (M) = Z, then we can take as generator for the covering group of M,

the translation z+»z + 1. The covering map

n:C - C*
is given by n(z) = exp(2nwiz).
1V.6.5. All surfaces except those listed in Theorems IV.6.3 and Iv.6.4
have the unit disc or equivalently the upper half plane U as their holomorphic
universal covering space. We have shown in I11.6.4, that every torus has
C as its holomorphic universal covering space (we will reprove this below).
Since no surface can have both U and C as its holomorphic universal covering
space, a torus cannot be written as U modulo a fixed point free subgroup
of Aut U. More, however, is true (see Theorem 1V.6.7).
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Since Aut U = PL(2,R), we see that each elliptic element 4 € Aut U fixes
a point ze U (and Z as well). Conversely, every A€ Aut U that fixes an
clement of U is elliptic. Thus a covering group of a Riemann surface cannot
contain elliptic elements. (As an exercise, prove that a discrete subgroup
of Aut U cannot contain elliptic elements of infinite order.) Since every
element of Aut U of finite order is elliptic, we have established the following
topological result.

Proposition. The fiundamental group of a Riemann surface is torsion Jree.

Remark. Using Fuchsian groups, one can determine generators and relations
for fundamental groups of surfaces.

1V.6.6. If 4 € Aut U is loxodromic, we can choose an element B e Aut U
such that
CO=B-A4-B~10)=0,
and
C(x0)=Bo° A° B~ () = w.

Thus C{z) = iz with A R, A > 0, 1 # 1. Thus Aut U does not contain any
non-hyperbolic loxodromic elements, and hence the covering group of a
Riemann surface (whose universal covering space is U) consists only of
parabolic and hyperbolic elements.

Lemma. Let A and B be Mibius transformations which commute, with neither
A nor B the identity. Then we have:

a. If A is parabolic, so is B and both have the same fixed point.

b. If one of A and B is not parabolic (then neither is the other by (a)), then
either A and B have the same fixed points, or both of them are elliptic
of order 2 and one permutes the fixed points of the other.

PROOF. Say A » B = B« A. If A is parabolic, it involves no loss of generality
to assume A(z) = z + 1 (by conjugating 4 and B by the same element Q).
Write B=[? 5] SL(2,0), 4 =[} !]. Thus the statement 4 commutes

with B gives
a+c b+d a a+b| .
= P .
[ c d ] [c e+ d:l m PL(2,C)

From which we conclude that ¢ =0, thus ad = 1 and d = a; showing that
B(z) =z + 8.

If neither 4 nor B have precisely one fixed point, then by conjugation
We may assume A(z) = iz with 4 5 0, 1. The commutativity relation now reads

la ib la b} |
,:c d:l_[/lc ‘J in PL(2,C).

£

-
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There are now two possibilities: ¢ # 0 or ¢ = 0. If ¢ 5 0, then we must have

the equality
ia Wb [ia b
i ad | e df

Thus a = 0 and if we assume that A # —1, also b= 0 (hence ad — bc # 1).
Thus this case is impossible and 2 = — 1. The matrix identity now reads

I

from which we conclud® a = 0 = and be = —1; from which we conclude
B(z) = k/z. The remaining case is ¢ = 0. Thus d # 0 and the matrix equality

becomes
‘a b | 4a b
0 d| |0 4}

Thus b = 0 and B(z) = kz. O

Corollary. Two commuting loxodromic transformations have the sume fixed
point set.

IV.6.7. Theorem. Let M be a Riemann surface with n\M) = Z @ Z, then the
holomorphic universal covering space of M is C.

PROOF. Assume the covering space is U. The covering group of M is an
abelian group on two generators. Let A be one of the generators. If 4 is
parabolic, then we may assume 4(z) = z + 1. Let B be another free generator.
Since B commutes with 4, B must also be parabolic. Thus B(z) =z + f,
f € R\Q. The group generated by 4 and B is not discrete.

So assume A is hyperbolic (it cannot be anything else if it is not parabolic).
We may assumc A(z) = Az, 4 > 1. The other generator B must be of the
form B(z) = pz with > 1 and A" # u™ for all (nym)e Z @ Z\{0}. Again,
such a group cannot be discrete (take logarithms to transform to a problem
in discrete modules). ]

IV.6.8. To finish the proof of Theorem I'V.6.1, we must establish the following

Theorem. Let M be a Riemann surface with holomorphic universal covering
space U. Then M = A, A4*, or 4,, provided (M) is commutative.

PrRoOF. We have seen in the proof of the previous theorem that if M is
covered by U and =,(M) is commutative, then the covering group G of M
must be cyclic. The two possibilities {other than the trivial one) are the
generator A of G is parabolic (without loss of generality z+z + 1) or
hyperbolic (z+ Az, A > 1). In the first case the map

U— 4*
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is given by
Irsexp(2ain),
Forz = re®, 0 < § < 2r, we define
log z=1logr+if

( l
the pllllClpdl bldl]Ch 0)1 the Ogdrlthm). Ihe COVeIlng ”]dp “0[ the case

. O’
is then given by o
Th exp(27ci log :> .
log 2
From this we ulso see that
r = exp(—2n?/log A). 6.8.1) 3

IV.6.9. As an application we prove the following

Theorem. Let D b in i
X e a domain in Cu {x) s C ]
of two components x, . Then D = C* Al* o}r AuCh et €0 D consists
Proor. 1 i
e thu'ls’he cc;mplcment of.x (inC U {«})is simply connected (#C U { ]
and th con orma'IIy .equlvalent to C or 4. Thus it suffices to assurtné ,oz
Thusfant or thedunnc1 circle. Now (C U {=0}\p) is also equivalent to C or 4
e are reduced to the case where 6D i i '
' . ed consists of point F i
b points or analyt
by Z uI;lcellthe.;1 case, itis now easy to see that n,(D) = Z, and the result follgwl'z
assification of Riemann surfaces with commutative 7, (M) 0

IV.7. Two Problems on Moduli

};}1]160 v%efngr.al problem of xpoduli of Riemann surfaces may be stated as

o susﬁ.~1 o :[/;ncth .ttgpolofglcally equivalent Riemann surfaces, find necessary
onditions for them to be conformall ivale i

and s !  for | ! y equivalent. What d

t?ee 1s(;;(:;llierkofr,conformdll.y imequivalent surfaces of the same topologi(:ii

ofpthis booL el.] The solution to this general problem is beyond the scope

; however, two simple cases (the case of the
case of the torus) will be solved completely in this section nnults and the

IV.7.1. Let M; be a Rieman i V
n .
Lyl Let e}ring 2 Rieman surfa;e with n;:M; - M;, the holomorphic
oEap i covert P(ji= 1.,2). lf‘lrst, recall that the covering group G,
i rmined up to conjugation in Aut M ;- Furthermore, if !

fZM1—>M2
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is a topological, holomorphic, conformal, etc., map, then there exists a map

f:M, - M,
of the same type so that .
nyof = [y
{Of course G; is the set of lifts of the identity map M; » M) The map fis
not uniquely determined. It may be replaced by A4, of o A, with 4;€ G;.

1V.7.2. How many conformally distinct annuli are there? We have seen
that every annulus can be written as U/G where G is the group generated
by 24z, AeR, 2> 1, If A, and A, are two such annuli with the cor-
responding A; and 4,, wﬁen do they determire the same conformal annulus?
They determine the same annulus if and only if there is an element T € Aut U
sucl: that
T(4,2) = 4,T(2), ze U.
From this it follows rather easily that 4, = 4, (by direct examination or
using the fact that the trace of 2 Mobius transformation is invariant under
conjugation).
We conclude

Theorem. The set of conformal equivalence classes of annuli is in one-to-one
canonical correspondence with the open real intercal (1,).

Of course, we could substitute for the word “annuli” the words “domains
in C U {0} with two non-degenerate boundary components.”

IV.7.3. Let T, and T, be two conformally equivalent tori. As we have
seen, the covering group G; of T; may be chosen to be generated by the
translations zrz + 1, z+>z + 7; with Im ;> 0. Thus we are required to

find when two distinct points in U determine the same torus. Let f be the
conformal equivalence between Ty and T, and let f be its lift to the universal

covering space:

c— ¢
T,— T,

The mapping { is conformal (thus affine: that is, z+>az + b), and it induces

an isomorphism
G1Eg'i’f°g°f-l €G,.

We abbreviate the Mébius transformation z+—z + ¢ by c. Thus

a=0(1)=al + f1, witha, feZ (731)
at, = 0(z;) =yl + 1, Wwith 5,0l -
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Further, since 6§ is an isomorphisra the matrix [5 4] is invertible. Thus
%0 — By = +1. Considering the symbols in (7.3.1) once again as numbers,
we see that

v+ 61,
Ty = —,
! o 4 ﬂl’z
and since both 7, and 1, € U we see that fy—ad=—1. Converscly, two

Ts related as above correspond to conformally equivalent tori. Let I” denote
the unimodular group of Méobius transformations; that is, PL(2,Z). It is
casy to see that I is a discrete group (hence discontinuous), and with some
work that U/I" = C. Thus we have

Theorem. The set of equiralence classes of tori is in one-to-one canonical
correspondence with the poins in C.

IV.8. Riemannian Metrics

In this section we show that on every Riemann surface we can introduce
a complete Riemannian metric of constant (usually negative) curvature. We
also develop some of the basic facts of non-Euclidean geometry that will
be needed in IV.9.

IV.8.1. We introduce Riemannian metrics on the three simply connected
Riemann surfaces. The metric on M will be of the form

i(z)ldz', zeM. 7 (8.1.1)
We set

2
A(z) = W’ fOrM = C U {CD},
}(Z) = 1, fOI' M= C’

2
A(Z)=m, forM=4= {ZEC; ,ZI < 1}
The definition of A for M =C u {00} is, of course, only valid for z % ~o.
At infinity, invariance leads to the form of A in terms of the local coordinate
{=1/z
We will now explain each of the above metrics.

IV.8.2. The compact surface of genus 0, C U {c0}, has been referred to
(many times) as the Riemann sphere; but up to now no “sphere” has appeared.
Consider hence the unit sphere $?,

EHnt+ =1
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; raphi jection)
in R, We map S2\{(0,0,1)} onto C by (stereographic proj

. E+in
Eml) = T ==

a
It is a trivial exercise to find an inverie and t)(i shgv;: tlﬁa: ;;1:: sé)::tee ;r;eg
i i i SA{{0,0,1)} an a
tablishes a diffeomorphism between ' ;
f(s> : diffcomorphism between §% and C U {oo}. The inverse 1s

2Rez 2Imz |7* - 1>. 82.10)
- PP L U RP
(Write x = Re z, y = Im z) The Euclidean metric on R?
ds? = dE* + dn? + di?

d ces metric o S Wh C n turn imnauces a metric on C U105, Eq Uatlon
{ J
mau a T n s 1 h 1 mi d

(8.2.1) shows that
2(1 — x? + y?) dx —4xy dy

dt = (1L + |

2(1 + x* — y*) dy — 4xy dx
dn = d+ lzlz)z

4x dx + 4y dy
¢ =

Q+H

A lengthy, but routine, calculation now shows that
4(dx* + dy?)

P= (1+1H*

S

The curvature K of a metric (8.1.1) is given by
A4 log 4

- 4

A

- . at
(here 4 is the Laplacian, not the unit disc). A calculation shows th
K= +1,

and that the area of C U {00} in the metric is
2z ("o 4 _
j = ————rdrdf = 4.
Area(C u{o})= HCA(z)Z dxdy = J‘O j‘o a7

i ] in the metric
Proposition. An element T € Aut(C v {0}) is an isometry in

/(1 + |2|*))|dz| if and only if as a matrix
_le - 2yl =1. (82.2)
r[t T} e

Q ol
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PROOF. Write

a b
T=[C d]’ ad — bc=1.

Of course, T is an isometry if and only if
MT2\T' @) = Az, zeCu {o0),
or equivalently if and only if

1 1
lez +d? +az + B2 " T |77 (823

If (8.2.2) holds, then so does {8.2.3), as can be shown by the calculation
I TT™ e
laz — ¢ lcz+aqZ+a)+(@az-a@@-c 1 + |*
Conversely, if (8.2.3) holds, we have

L[ = ez + df* + jaz + b2
Expanding the right-hand side gives
A2 =
L |2 = ([a]? + le®)|z]* + (cd + ab)z + (dz + ba)z + [bf* + |d]?

agd th; only way this identity can hold is if |a|? + |¢|? = 1 [b? + |d]* = 1
ca + ab = 0. We now add to this the determinant condition’ —cb + ad —1
The last four equations yield ¢ = —5, g = 4 “sh

0

Remark. Note that for T not the identity
Trace T=a+a=2Reaq,
and (since Re a = +1 implies that T is the identity)
~2 < Trace T < 2.

Hence T is elliptic. As a i
. : . matter of fact, T is an i ipti
fixing an arbitrary gt oy ok arbitrary elliptic element

Exercise
Determi i i
ermine the geodesics of the metric of constant positive curvature on the sphere

1v.8.3. ic |dz i
8.3. The metric [d.] on C needs little explanation. It is, of course, the

EuClldean metric. It h constant curvature €ro. deSJCS are ‘]le St]algln
as nsta urvature zer GCO
llnes’ and autcnlcrphlsms Of C Of the fOrm

i0
zrs ez + b, feR,beC,
are isometries in the metric.

201

IV.8. Riemannian Metrics

IV.8.4. We turn now to the most interesting case: the unit disk 4. Let us
try to define a metric invariant under the full automorphism group Aut 4.
The metric should be conformally equivalent to the Euclidean metric; hence
of the form A(z)|dz|. Set A(0) = 2 and note that A(A0)|A(0)| = 4(0) for all
Ae Aut 4 that fix 0 (since A(z) = €”°z). Let zo € 4 be arbitrary and choose
A e Aut 4 such that A(0) = z,. Define (to have an invariant metric)

Azo) = 2140

Note that A(z) = (z + zo)/(1 + Z,2) (it suffices to consider only motions of
this form). From which we conclude that
~ -

. 2
Mzo) = 1= lzolz'

A simple calculation shows that this metric is indeed invariant under Aut A.
(In particular, the elements of Aut 4 are isometries in this metric.)

Before proceeding let us compute the formula for the metric on the upper
half plane U. Since we want the metric 7(2)ld=| to be invariant under Aut U,

we must require .
A(zo) = 24°0)| 7Y,
where A is a conformal map of 4 onto U taking 0 onto z,. A calculation
similar to our previous one shows that
1
Imz’

Computations now show that the metric we have defined has constant

curvature — L.
Let ¢:I — 4 be a smooth path. Then the length of this path I(c) is defined

by
1
i) = jo Me@)le'@)| de. (8.4.1)
We can now introduce a distance function on 4 by defining
d(a,b) = inf{l(c); c is a piecewise smooth path
joining a to b in 4}. (8.4.2)

Take a = 0 and b = x, real, 0 < x < 1, and compute the length I(c) of an
arbitrary piecewise smooth path ¢ joining 0 to X,

1 2
I(c) = _[o ———T lc'(t)ldt

1 —|c(®)
1 2 , x_2
14+x 1+x
= |log > log .
1-x 1-x




202 IV Uniformization

We conclude that

14
d{O,X) = l()g ».,:*...E’
1—-x

and that c(f) = tx, 0 < t < 1, is the unique geodesic joining 0 to x. We now
let 0 # b = z € 4 be arbitrary (and keep a = 0). Since

S ey

(6 = arg z) is an isometry in the non-Euclidean metric A(2)|dz], we see that
1+

d(0,2) = log l—:H, (8.4.3)

and c(t) = 12,0 < 1 < 1, is the unique geodesic joining 0 to .

Proposition

a. The distance induced by the metric 2,(1 -- =)= is comiplete,

b. The topology induced by this metric is equivalent to the usuul topology on J.

¢. The geodesics in the metric are the arcs of circles orthogonal to the unit
circle {ze C; |z| = 1}.

d. Givenany twopointsa,be 4,a # b, there isa unique geodesic between them.

Proor. Note first that (8.4.3) shows that every Euclidean circle with center
at the origin is also a non-Euclidean circle and vice-versa. Also note that

d0s) _, _ 0)

I '

showing that at the origin the topologies agree. Since there is an isometry
taking an arbitrary point z € 4 to the origin, the topologies agree everywhere.
This establishes (b).

We have already shown that the unique geodesic between 0 and b is the
segement of the straight line joining these two points. Now let z, and -, be
arbitrary. Choose 4 € Aut 4 such that 4(z,) = 0. Let b = A(z,). The geodesic
between z, and z, is 4™*(c), where c is the portion of the diameter joining
0to b. Since A~ preserves circles and angles, (c) and (d) are verified.

Now let {z,} be a Cauchy sequence in the d-metric. Then {d(0,z,)} is
bounded. Hence {z,} is also Cauchy in the Euclidean metric and {|z,]} is
bounded away from 1. This completes the proof of the proposition.

lim
z—=0

IV.8.5. If D is any Lebesgue-measurable subset of 4, then
1 \ -
AreaD = 3 ffD A(2)*|dz A dz|

defines the non-Euclidean area of D.
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The following technical proposition will be needed in the next section.

Proposition. The area of a non-Euclidean rriangle (that is, a triangle whose
sides are geodesics) with angles o, B.yis
n—{a+ B+

the upper half plane U instead of the
»__that is, triangles one or more of
with a vertexon oU = R U {oo})
ke a zero degree angle (bgcg.use
g straight lines = semi-circle

ProoE. It is convenient to work wjth
unit disk. We will allow “infinite triangles
whose sides are geodesics of infinite length (
If a triangle has a vertex on 5U , it must I]ndi‘n
the geodesics in U are semi-circles (inclu

through ) perpendicular to R). We call such a vertex a cusp.

Cuse 1. The triangle has one cusp at (see Figure [V.1), and Otn:xré;gildliizg:}fé
, 1 : 2, a. {Note we are no
neles of the triangle are hence: 0, /2, : .
Eg:s?bi%ity that « = 0: that is, a cusp at B.) The area of the triangle is then

dy *a dx . E_E_“
a el ____=J e = arc sin -2
fo Xl T e T P
0+=+a
= 7T — '+'2 N
C
A
(B
0 P
Figure IV.1

Case 11. The triangle has a cusp at . (See Figure v2)It hasﬂ a_r_lgéez ?, g(,) tﬂh
We are not excluding the possibility that gither a =0 or ’ = e ot
o = f§ = 0. Choose any point D on the arc AB and draw a geodesl

-P a b r
Figure IV.2
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D and «0.” The area of the triangle is the sum of the areas of two triangles:

S CE % P 97

The case in which 4 and B lie on the same side of D is treated similarly.

Case I11. If the triangle has a cusp, then it is equivalent under Aut U to the
one treated in Case I].

Case IV. The triangle has no cusps. (See Figure IV.3.) Extend the geodesic
AB until it intersects R at D, Join C to D by a non-Euclidean straight line.

The area in question is the difference between the areas of two triangles and
thus equals

[n—(a+y+s)]—[n—(s+n)]=n—(a+7)=7c—(oz+ﬁ+y). [

Figure IV.3

IV.8.6. Theorem. Let M be an arbitrary Riemann surface. We can introduce
on M a complete Riemannian metric of constant curvature: the curvature is
positive for M =C y {0}, zero if C is the holomorphic universal covering
space of M, and negative otherwise.

PROOF. Let M be the holomorphic unijversal covering space of M and G the
corresponding group of cover transformations. We have seen that G is a
group of isometries in the metric of constant curvature we have introduced.
Since the metric is invariant under G, it projects to a metric on M. Since
curvature is locally defined, it js again constant on M. {The reader should
verify that the curvature s well-defined on M; that is, that it transforms
correctly under change of local coordinates.) The (projected) Riemannian
metric on M (denoted in terms of the local coordinate z by i(z)|dz|) allows us
to define length of curves on M by formula (8.4.1) and hence a distance
function (again denoted by d) by (8.4.2). Let

MM
be the canonical holomorphic projection. Let X, y€ M. We claim that
d(x.y) = inf{d(&,n); n(¢) = x, n(y) = ) 8.6.1)

Note that we have shown that in M the infimum in (8.4.2) is always assumed
for some smooth curve c. Let d be the infimum in (8.6.1); that is, the right-hand
side. Let ¢ be any curve Joining ¢ to y in M with n(¢) = X, n(y) = y. Then
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4 o ¢) = l(c). Thus
n o cis acurve in M joining x to y. Clearly, [(z ¢) = l(c)

d(x,y) < U< ¢) = Ic),

and since c is arbitrary,
d(x,y) < d(En)-

Finally, since &, n are arbitrary in the preimage of X, ¥,

dix,y) £ d. o
it can be lifted to a curve ¢ joining

s . e toy, .
Next, if ¢ is any curve in M joining x t0 y e v 2 is a loca AR

¢ to 1 (14&) = X, n(n) = ykof the same lengt
e I(c) = (&) = d(&n) = d.

Since c is arbitrary, we conclude
d(x,y) 2 d.

i i e leave it as
It is now easy to show that the metric d on M is complete. W

a

an exercise to the reader.

Remarks ‘ .
i i metric can
1. If a Riemann surface M carries a2 Riemannian metrlc,ttl::n [éh'erh e can
' be used to define an element of area d4 and a curvatu .
Bonnet formula gives

f_[w K dA = 2r(2 — 29),

i i tric of
if M is compact of genus g. Thus, in particular, the s1;.i,n of (:;lfh[enseul-face_
o tlant curvature is uniquely determined by the .top;)l Pgt);OOk csurtacs
‘\:;)’nswill not prove the Gauss—Bonnet theorem in this .

e . . .
section will, however, contain similar results. "
2. Let M be an arbitrary Riemann surface wi
covering space M. On M

h holomorphic universal

Az dzadz

IS a ]l(iwhe]e Va]l]shl]lg 2-'()] m “la‘ 1S 1nvar Ia]lt u]l(‘e] t‘le C()Ve]]ng gIOUp
0‘ lu b M. IhUS the fOI m pIO]eCtS to ano Whe[e Vaﬂlshlng SIHOOth 2"01“1

on M. (Recall that in 13.7, we promised to produce such a form.)

IV.9. Discontinuous Groupsand
Branched Coverings
ini tablish a
In this section we discuss the elementary Kleinian groups and esta
n thi

. f .

general unlformlzatlon theorem. We ShOW that a Rlemann suriace Wlth
. . . .f . . . .

ramlﬁcat]on pOlntS can be uni OIIIllZed by a unlque (up to COIlIUgatIOH’
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thtﬁ(é)i;Sldnf(;f elerpentary group. This establishes an equivalence hetween the
Su:fa g'esow.t }fchs:%xfy land clementary) groups aud the thcory of Riemann
tth ramification points. We have not always i :
| ! ‘ . B vays included the complet
arguments in this section. The reade i Sy
r . r should fill ails w
the outline has been supplied. i the detadls where only

[IY.:.ilf.t}I,?t M .be a Riemann §urface. We shall say that M is of finite
oprﬁnitelme exists a compact Riemann surface M such that MM consists
y many points. The genus of M is defined as th of M (it i
well defined). By a puncture on ien PV
. a Riemann surface M, we mean a d i
. . ’ ome
3]2,;: M .wnh D, conformal.Iy equivalent to {ze C; 0 < |z < 1} and 51:2
t every sequence {z.} with z, -0 is discrete on M. We shall identif
£ = 0 with the puncture D,,. w
Kleli.;;ag be a connfued, open, G-invariant subset of Q(G), where G is a
Sl group. Let {x l’,xz, - .} be the set of points that are either punctures
ont Z f S)r plfn?ts xe D/ Gﬁw1th the canonical projection n: D — D/G ramified
x). Let v; = ramification index of n~!(x,) for
' | ' ; such an x;, and let
vj : 30 ff)r punctures. The set {x;} is at most countable, since the 1j:~unctures
and ramified points each form discrete sets. ' |
oveI;e;nl;; ?1?: ellssume that D/G is of finite type. If in addition, = is ramified
itely many points, then we shall say that G is o h’ i
) I3 4 e 1ype ore
D. In this latter case, we let p be the genus of D/G. We nfa; a;r)pt ihe
sequence X; so that " artange the

2<v g Ly, S
(here n = cardinality of {x,,x,, ...} < o0), and we call

(PQVl,Vz, e avn)
the signature of G (with respect to D).

~~ € dlSO 1 on n
ntr OduCe the rati al umbe] Ca]]ed the Cha’ acteristic o G
’ f

1=2p—2+ Y (1_.1_),

i=1 v

where, as usual, 1/00 = 0 is i
nhere, a5 / , whenever G is of finite type over D and y = oo,

1V.9.2. Definition. Let G be a Kleinian group. Let D = € G) be a G-invariant

open set. By a fundamental domai i
in for G with r .
subset w of D such that I h respect to D we mean an open

1 no two points of w are equivalent under G,
1:11 f;::rry 1p(:.mt gf D 1§ G-equivalent to at least one point of Cl w
. elative boundary of w i i i i alyti
he ry in D, dw, consists of piecewise analytic arcs,

i . for € ely arc ¢ 5(1) th i !
€re 1S an arc ¢
V. Vi & I‘ C y arc (o 5(}) dnd an element g € G SuCh
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By a fundamental domain for G we mean a fundamental domain for G

with respect to 2(G).
The next proposition will
hence only outline its proof.

only be needed to discuss examples. We will

Proposition. Every Kleinian group G has a fundamental domain.

PROOE. Let 1:Q - /G = | J; S; be the canonical projection. Let Q; be a

component of 7~ 1(S), and let G, be the stabilizer of 2;. If ) is a fundamental
domain for G; with respect 10 Q;, then Jjw;isa fundamental domain for
here § is connected.

G. Thus it suffices to conader only the case w
~ . . .
We can, therefore, assume that-we are given a discontinuous group G

of automorphisms of a domain D= Cu {o0}. We now introduce a con-
struction that is very useful in studying function groups. (These are groups
that have an invariant component.) Let
p:D->D
be the holomorphic universal covering map of D and define
I= {yeAutﬁ;poy=gopf0rsomegeG}.
/G (thus G is discontinuous if and only

It is now casy to check that D/l = DJ
if I is). Furthermore, define a homomorphism

p*: -G
by
poy=p*Pep, veL
and let H = Kernel p*. Then

(}-HoT5G-{1}

is an exact sequence of groups and group ho~momorphisms. Now let & be
is quite easy to show that

a fundamental domain for I' with respect to D. 1t}
o = p(i) is a fundamental domain for G in D. Thus we need only establish
fundamental domains for groups acting discontinuously on Cu {0}, C, or

U. The first case (C U {o0}) is trivial (because the group is finite). The second
= U, then we choose

case (C) will be exhausted by listing all the examples. If D
a point zo € U with trivial stabilizer and set

o= {ze U;d(z,29) < d(gz,z0) allge G, g # 1}
It must now be shown that o is indeed a fundamental domain. We omit
(the non-trivial) details. 0
Definition. The group I' constructed above will be called the Fuchsian
equivalent of G (with respect to D).
We now take a slight detour and on the way encounter some interesting

special cases.
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1V.9.3, : .
Cu9{3~o I;e[S,i:ze ngw {cla;sx.fy the discontinuous groups G with Q(G)
0. Sin U4y} is compact, G j . Vi =
(C U {0})/G is compact, Let pact, G is finite (let N = |G) and M =
TCuU {0} > M

be the canoni jecti
nonical projection. Let (7:¥1, . ..,v,) be the signature of G, Clearly

ZS VJ-<Nand CaCh v-dlv de Ihe 1I€ma. - I'Witz re IhCOle
= j 1
) S N. R mann Hu it latlon ( m

-2=N(27—2)+NZ<1—1. 9
I | P v 9.3.1)
n particular, the characteristic of G,

] 2

1=-=<0,

N
is i i
negative. Since (1 — 1/v;) > 0 all j, we conclude that y = 0. Thus (9.3 1)

becomes
2 " 1
2-Z= Y 1] —-=
N 1;1 ( vj)'

Assume N > 1 (discarding the trivial case). If N

=7 then v. = .
and n = 2. Assume now N > 2, Then % then ;= 2, all

l<2-—=<2
and (n > 0) since ‘
1
5 <1~ —1“ <],
we conclude that "
n>1, n<4
Thusn=20rn=3.Ifn=2,then
2_ 1.1
N v, + vy
Now since 1/v; 2 1/N it must be that vi=vy;=N.Ifn=3 then
2 1 1 1
R i e
N . 9.3.
Observe (again) that not o
2 5
l<l1+Z <=
| + N < 3
Thus v, = 2 (recall that V1 < V2 Sv3). We replace (9.3.2) by
1 2 1 1
-t —_= _
2N v, 'y,

209

IV.9. Discontinuous Groups and Branched Coverings

Now, N is even since v, = 2 and v, divides N (thus N = 4),

l<1+3<1
2 2 N7

Ifv, = 2, thenv, is (apparently)arbitrary > 2.1fv, > 2,thenv, = 3and hence

1 2 1

6N vy
Thus
1 1
~ - -<— or 6>v;.
6 vy
Thus v3 = 3,4 or 5.
We summarize below the signatures and cardinalities of the groups G

that could possibly act on Cu {x }.

Signature of G |G|
0;—) 1
0;v,v) v 2<v< )
10;2.2,v) 2 v< o)
0;2,3,3) 12
(0;2,3,9) 24
(0:2,3,5) 60

Remark. Existence and uniqueness of groups with y < 0 will be established
in 1V.9.12. We have also determined all possible negative characteristics of

Kleinian groups.

IV.9.4. Before proceeding to the next special case, we must establish the
following

Lemma. Let A and B be two non-parabolic transformations with exactly one
fixed point in common, then C = A™" < Bo A o B™! is parabolic.

ProoF. Without loss of generality (by conjugation) we may assume that A
fixes 0 and oo and B fixes 1 and co. Thus A(z) = K zand B(z) = Ky(z = ) + 1,

K, # 1 # K,. A computation shows that

(K, - (K, = 1)

C2)=z+ X,

’

a

which is parabolic.

Corollary. Let G be a group of Mobius transformations and z € Cu {0} If
G,, the stabilizer of z in G, is finite, it must be cyclic.
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EXERCISE

Let M be a Riemann surface whose universal covering spuce is the unit disk and let
P € M. Then the stabilizer of P in any subgroup of Aut M is finite. Is the assertion true
for other Riemaun surfaces?

IV.9.5. Next we determine the groups G that can possibly act discon-
tinuously on C. Since G leaves C invariant, G = Aut C, and the elements g
of G are of the form

g:z—az + b, 9.5.1)
Observe that g, if = 1, must be a root of unity, since a is the multiplier of

g and g must in this case be elliptic of finite order. Map the element ge G
of (9.5.1) onto a € S*. This map is a homomorphism since

a bifx Bl [ax af+b
0 tjlo “lo 1
Let G, be the kernel of this homomorphism. Clearly Gy is the unique maximal
fixed point free normal) subgroup of G.
If G, is trivial, then by the preceding lemma, all clements of G must

fix a common point 7o € C. We conclude that G is a finjte cyclic group -

acting discontinuously on C U {oo}. We will not consider such groups to
be acting on C.

We consider now the case with Gy non-trivial. It is then easily seen that
G, is a free group on | or 2 generators.

Assume that G, is cyclic. Then (without loss of generality G, is generated
by zsz + 1) C,G, is equivalent to the punctured plane C* (via the map
ze*™), and G'G, acts as a group of conformal automorphisms of C/G,.

The automorphisms of C* are of the form z— kz and 2+ k/z (see V.4.3).
The former lift to automorphisms of C of the form (z+»z + (log k)/2ni) and
must therefore be in G,; the latter, to automorphisms of the form zi— — z+
(log k)/2mi whose square must be in Go. Thus G/G, is trivial or isomorphic

to Z,. In the second case, G consists of mappings of the form z+» +z+n,
nelZ.

We “draw” fundamental domains for the groups encountered above,

G generated by z+»z + 1 (Figure IV.4)
/

¥,
I

Rez=0 Rez=l
Figure IV.4. Signature (0;50,00).

Im z=0
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G generated by z v —z, z v+ z + 1 (Figure 1V.5)

VI

oy
LI
Ligtyy LY

///////\//r lm z:O

=7

Rez=O0 Rez=l o .
Figure 1\7 5. Signature (0%2:2,30) where the first two twos correspond to the points
z=0andz=1%

We now consider the case where G9 has rank 2. T}qxen \‘\.f:— n;a{ mais;mz)c
that G, is generated by th_e two translations z T z+ IL, ;n '—a—; hassu;ne > 1,'
and C/G, is a torus. Without loss of genera xtg',{:\j\(

Again G'Gyacts as a group'of auton'xqrphxsms ?_ ,:3; | and hisesaz 4+ b

Assume now that G/G, is non-trivial. Let g:z+>z

be parabolic and elliptic elements of G. We conclude that
hogsh™lizrz+a

is an element of G, or that the multipliers .of elemenhts of Ct; ;r:cger:‘(,)edi :If
G,. Since there are only finitely many pepods og the ulmand ;naximal_
ﬁgd a “primitive” multiplicr K = ¢*™* with p e Z,- U >) and :0 o
By conjugating G once again (by an elemept zz +c ) yassume gation
that does not destroy the previous normalization, we mﬁ;:] e sroun
contains the element z+ Kz. Hence,fwe steiz :sla(:fct;k/, S% (;i;l
i o
=7Z,. The group G hence consists of m

2z Kz + n + mn, v=0,...,u—l,neZmel

Now we let y be the genus of C/G(=(C/Go)/(G/Gy))- LT; x1h=(());(-)1cezr,s.(.)f ,t;cé
be the fixed points of G/G, on C/G, anq let vy, .., v e(tse: A
respective stability subgroups. We use Riemann-Hurwitz 3.

RV
0—2_24 ¥ <1_ _>, 9.5.2)
j=1 YVj

and conclude that if r > 0(G/G, non-trivial) then y = 0. Thus (9.5.2) becomes

2= 5(1-3)

Let N be the order of G/G,. Then
2 < V; < N.

= = = =2’
Since 1 >(1 —1/v) =4 r=3or 4 If r=4, then v, =v, =v3 =V,

—2Z,
and the ramification is completely accounted for by the element z+—
and G/Go = Zz.
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Fundamental domain for G consisting of {zv»z + n + mt} {Figure 1V.6)

Imz=0

Re z=0
Figure 1V.6. Signature (1;—).

Fundamental domain for G consisting of {z+ % z + n+mt} (Figure IV.7)

1 L7 4
= 2 ”

AN
i ok
2

Re z2=0

Figure IV.7. Signature (0;2,2,2,2) where the twos correspond to the pointsz =0,z =4,
z=1/2,z=(1+ 1)/2.

Ifr = 3, then the only possibilities are as follows (because 1 = 1/v, + 1 fva +
1/v3):

The computation of the v; appearing in the above table is routine. The
description of G/G, requires some explanation (that is, the determination
of p). Let z +— Kz be the generator of G/G,, which is also the generator of the
stability subgroup of 0. Since K is a period, there are integers n, m such that

K=n+m.

Now |K| =1, |z| > 1, implies either n = Qorm = 0. Ifm = 0, thenn = —1 =
K. Thus G is the group of signature (0;2,2,2,2) which we previously discussed.
Ifn = 0,thenm = +1.Since Im 7 > 0 and Im K > 0, we conclude that m = 1
and K = 7 (also p > 2). Since z+» Kz generates the stabilizer of 0, y = V3.
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; _ ,2nil6 (&
Fundamental domain for {z+> K’z + n + mK}.K=e (Figure I1V.8)

NS im z=0

~ - . . 1
Figure IV.8. Signature (0;2,3.6) where ihe two corresponds to the point z = 3, the

three corresponds to the point z = (K + 1)/3 and the six corresponds to the point z = 0.
. e Sy o 27l i (Y
Fundamental domain for {z+> K’z + n + mK} K = 24 = i (Figure ['V.9)

Im z=0

Re 2=0
Figure IV9. Signature (0:2,4,4) where the two corresponds to z = §, one four corre-
sponds to z = (1 -+ i)/2 and the last four corresponds to z = 0.

Fundamental domain for {z— K"z + n+ mK}, K= £2™3 (Figure 1V.10)

2mi/6
z=Ks1=e”
/ _2024K) /
N

im z=0

2=

Re z=0 .

i i ; d to the points z=0,
Figure IV.10. Signature (0;3,3,3) where the threes cor;cspgn ) g
EI(IK +2)/3, z=(2K + 1)/3. (Each of these three points is equivalent to a corre

sponding point in the figure.)

Remark. We have established above the existence and uniquenf:ss of all the
elementary groups with one limit point. We have also determined all pos-
sible signatures that yield zero charactenstic.



214 IV Uniformization

1V.9.6. To classify the remaining elementary groups, we must study the
groups with two limit points; without loss of generality the limit points are
0 and . The elements of such a group G are of the form

ziokz and  zes k/z-

By passing to the Fuchsian equivalent of the group G, it is easy to classify
these groups. The details are left to the reader.

IV.9.7. Let G be a Kleinian group. We have seen that y < 0 (respectively,
% = 0)whenever Q(G) = C U {} (respectively, (G) = C). We want to show
now that for Fuchsian groups y > 0. In addition, we want to interpret the
characteristic in geometric terms. We need some preliminaries.

Lemina. Let G be a Fuchsian grop operating on the upper holf plane U. Assume
that P is a puncture on U/G, and that the natural projection w is unramified
over a deleted neighborhood of P. Then there exists a deleted neighborhood
D of P in U/G, a disc D in U, and a parabolic element T € G such that D =
DGy, where G is the cyclic group generuted by T, und two points in D are
equivalent under G if and only if they are equivalent under G,,.

Proor. Let D w [P} be a simplv connected neighborhaod of the puncture
P such that = is unramified over D. Let D be a connected component of
n~'(D) and let G, be the stubilizer of D in G;

Go=1lycG;gD=D).

We must, of course, have that D/G, = D. Let D be the holomorphic universal
covering space of D and let G, be the Fuchsian model of G, with respect to
D. Then G, is infinite cyclic and hence G, (being a homomorphic image of
G,) is also cyclic. It cannot be generated by an elliptic element. If G, were
generated by an elliptic element, the fixed point of its generator would have
to be on the real axis. But an elliptic element with a fixed point on R U {e0}
cannot fix U. Thus Gy is generated by a parabolic or hyperbolic element T.
We clearly have an inclusion

D~/Go (<% U/GO

If T were hyperbolic, then U/G, would be an annulus that contains the
punctured disc D/G,. Thus the puncture P on /G, would be a pointin U/G,
and hence would be the image of a point z € U under the map n,: U — U /Go.
We conclude that D must contain many punctured discs. But G, contains
7,(D) as a subgroup. This is an obvious contradiction. Thus T is parabolic.
By conjugating G in the group of real Mébius transformations, we may
assume that T(z) =z + 1. By shrinking D, we may assume that D =
{z€ C;Im z > b} for some b > 0. a

Definition. We shall call D, a disc (half plane) corresponding to the puncture P.
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1V.9.8. To establish the converse of the above lemma, and) to show that
D can always be chosen to be the half plane {z € C; Im z > 1} we prove the
following

Lemma. Let A(z) = (az + b)(cz +d)™* with a, b, c,deC qnd ad - be = 1
Let T(z) = z + 1. Then the group generated by A and T is not discrete if

0<|d<t.
PRrOOF. Let A = A and forne Z,n > 0, set
An+1 =An °? ToAn_l'

~ -
We show that if 0 < |¢| < 1, then
lim 4,=T.

We write as matrices in SL(2,C),

and compute
a, b, l11 1.] d, - b,,:l
Aner = ¢, d, 10 1_| —C, a,
1 - a,c, a? _ | Fnt1 by 1].
- _C’Zl 1 + Q,Cn Cat1 dn+1

c,=—c" and limc,=0 9.8.1)

n=x
(in particular, the sequence {4,} is distinct). Now we choose y so that 0f<
(1—]ep)~* <y and |a| <y. By choice, lao| = |a| < 7. Suppose |a,| <y for
some n, then also
] = 11 = aucal <1+ fanlled = 1+ lad |c
<Ly <1+l <y

We conclude that

I

Hence, by induction
la,) <y foralln.

From the relation
Ap+y = 1 - anCy

and (9.8.1), we conclude that

lim a,=1.
Thus also )
lim b, = lim a?_, =1,
and
lim d, = lim (1 + @y-1Ca-1) = 1. O

n—=aw n— oK
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:]V‘;9 Lem‘ma.‘Lm G bc a Fuchsian group operating on the upper half plane
. Assume that G contains a parabolic element T with fixed point x e R U 1+
Then G, the stabilizer «f x in G is infinite cyclic. o

PR()()F,.WC claim that every element A e G, is parabolic. Without loss of
ge'neralle X = 0. Assume that G, contains an element A with another
ﬁ)\.ed point which may be taken to be the point | (since it must be on the rea]
axis because A cannot be elliptic). Thus we have T(z) =z + a, ae @, and
g(;v) = a(lz (— li + 1, abe R, a§> 0. Without loss of generality we may take
x <1 (replace 4 by A%, if necessary). Now A(z) = «*(z — :
oz y). Now Az) = «"(z ~ 1} + 1, and
AyeToA7Y2) =z + a”

'\l;'hu‘s we have constiucied a distinet sequence in G approaching the identity.

‘e have shown that every element of G, is of the form z+- z + a. Takine

- . . : : >

the minimum of all such positive a's, we obtain a generator for G [S_'l
-

1V.9.10. Theorem. Lot G be a Fuchsian group operating on the upper half

plane U. Let T(Z) = z + 1 be an element of G. Assume th 1
: . hat T is th
of the stabilizer of %, G,. If Ae G\G,,, then ¢ generater

AU N Uy = 3,
where Uy = {zeC;Imz > 1},
PROOF. Let 4(:) = (az -+ b)/(cz + d) with a, b. c. d = R such that ad — be=1.
Lemma 1V.9.9 shows that ¢ # 0 and we may assume c > (. Lemma 1V.9.8

yields that ¢ > 1. Now AU, is a disc whose boundary is a circle tangent

t. t (f\/) = a/( . It 1
(o] ﬂ& a A # o0 S Cleal that [he dlall]etel 01 thlS C“Cle 18 the

ax+i+b a R
. cx+i+d o W
which equals
~1 1 1
clex+d+e) ¢ flex+dP + 2
'{/t;zs:f;e Ir{naximgrzl] occurs at x = —dfc, and the diameter of the circle is
< 1. Hence 1 1s contained in a disc bounded b i
R of diameter < 1. Y @ cirele tangent tDO

bCoxrollary 1. Let G be a Fuchsian group operating on U. If G contains a para-
olic element, then U/G contains a puncture. Furthermore, the punctures on

U/G are in one-to-one corres i j
pondence with the conjugacy class o 1
elements in G. e J parabolic

IC{(.)rollary 2. Let G be a Fuchsian group. If G is the covering group of a compact
lemann surface of genus p > 2, then G contains only hyperbolic elements.
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Remark. In the sccond part of Corollary 1, we must be a bit more careful in
defining punctures. The punctures on U/G, viewed as a “Riemann surface
with ramification points”, are in one-to-one correspondence with the con-
jugacy classes of parabolic elements of G. By a puncture on such a surface,
we mean a puncture D on the abstract surface U/G such that n:U - U/G
is unramified over D (that is, there are no elliptic fixed points in n” Y(D)).
We shall see (Theorem 1V.9.12) that without this assumption we can have
punctures on the abstract surface U/G that are limits of points over which
7 is ramified.

1V.9.1k We consider new a Fuchsian group G operating on the upper half
plane U (or the unit disc 4). In IV.8, we introduced the Poincaré metric
N 2,
Aple)dz] = IZ—————_ 7 id-|
for U which is clearly invariant under G (since G = Aut U). Thus we may
project A¢(2)]dz| to U/G and obtain a metric with singularities at the images
of the elliptic fixed points. We want to show that these singularities are not
too bad in the sense that the Poincare metric on U/G is locally square inte-
arable at these points and that the same is true even in a deleted neighborhood

of a puncture. Let
. U-U/G

be the canonical projection. Denote the Poincaré metric on UG by HZ)dz|
in terms of the local coordinate Z. If Z can be expressed as a function of
z € U, then of course, the relation

H2)|dz| = Ay(2)|dz]
allows us to solve for A(Z).

Let us assume that z, € U is an elliptic fixed point. By conjugation we
may replace U by 4 and assume that z, = 0. The stabilizer G, is then gen-
erated by an element of the form z+— ez for some ve Z, v= 2. Thus
Z = z' is a local coordinate at n(0). Since

. _ 2
A’J(“) - (1 - |ZI2)’
we see that
. 2'Z|(1/v)—1
/.(Z) = V(l _ ‘Z|2/v)'

Since (1/v) — 1> —1, A(Z)*|dZ AdZ] is integrable in a sufficiently small
neighborhood of Z = 0.

It remains to investigate a neighborhood of a puncture. Here it is more
convenient to assume that G acts on U, and that the puncture corresponds
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to the cyclic subgroup of G generated by zrsz + 1. Thus Z = e?™* j5 4
local coordinate on U/G vanishing at the puncture, and

. 1

i2)=——,

which is readily seen to be square integrable.
We are thus able to define

Area(U/G) = fo‘G 12(2)‘4_71312_"],

Theorem. Let G be a Fuchsian group operating on U. Assume that G is of
Jinite 1ype over U with characteristic 0 then

Area(U/G) = 27[%

ProoF. Consider the natural projection n: U — U/G. Triangulate the compact
surface UG so that

i. each ramified point is a vertex of the triangulation (however, there may
(and as a result of (ii) there must) be other vertices),
ii. every triangle of the triangulation contains at most one ramified point,

iii. if a triangle 4 contains no ramified points, then there exists a connected
neighborhood 4 in U so that 7(4) > 4 and 7t|21~ is one-to-one,

iv. if a triangle 4 contains a finite ramified point with ramification number
v, then there exists a connected neighborhood 4 in U so that n(d)> 4
and n]Z is v-to-one, and

v. if a triangle 4 contains an infinite ramification point, then each com-

ponent of n7'(4) is contained in a half plane corresponding to the
puncture.

Having constructed a triangulation as above, it is easy to replace it by
another triangulation in which each triangle is the image under z of a
non-Euclidean triangle in U, Let

(P;Vl, ca ,v,,)

be the signature of G with respect to U. Let us assume that in the above
triangulation we have ¢; j-simplices (j = 0,1,2). Let o Br, 7« be the three
angles of the kth triangle, k = 1, . . ., ¢,. Then

Area(U/G) = k‘i (= ot = B — 1)

o
=qc, — Z 5,
k=1

where &, = sum of the angles at the kth vertex.
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Now &, = 2, if the kth vertex is an unramified point,

= 27/v, if the kth vertex is a point of finite ramification number v, and

= 0, if the kth vertex is an infinite ramification point.

Hence )

<0

Y 6= 2n(co—n) + Y, 27/
1 k=1

k=

Thus we see that
1 d 1
~ Area(U/G)¢= 2“(5 €3 — Co) +2n kgl 1 - )

Since each edge in the triangulation appears in exactly two triangles, we have
3¢, = 2cy,

and hence (using the fact that for a compact surface of genus p,c; — ¢y + ¢o =

2 —2p) " 1 ]
Area(U/G) = 2n(2p -2+ ; (1 —;-)),

k= k

Corollary. Let G be a group of conformal automorphisnis of a Rien'un.m smf.ac;e
D. If D is simply connecred and G operates discontinuously on D, it is pussible
to define the characteristic y of G with respect to D. F. urthermore:

i x <0ifandonly if D =C U {0},
ii. y=0if and only if D = C, and
jii. ¥ >0ifandonlyif D= 4.

1V.9.12. Theorem. Let M be a Riemann surface and {xl.,xzZ .. } a discret;
sequence on M. To each point x, we assign the symbol v, which is an integer >
or . If M = C U {0} we exclude two cases:

i. {xy,x3,...} consists of one point and v, # o0, and

ii. {x,,X, ...} consists of two points and v, # v,.

Let M'=M — |, =0 {X}, M" = M\ {x.}. Then there exists. a simply
connected Riemannksmface M, a Kleinian group G of self mappings of M
such that .

a. M/G = M, My/G = M", where Mg is M with the fixed points of the

elliptic elements of G deleted, and . .
b thepnatural projection m:M — M’ is unramified except over the points x,

with v, < o0 where b(%) = v, — 1 for all 2 e 17 '({x})-

Further, G is uniquely determined up to conjugag_ior? in fhe fulij grou;znzg
automorphisms of M. The conformality type of M is unxquelyh eterr:;nce
by the characteristic of the data: that is, by the genus p of M and the seq
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of integers {vy.va... .} (If weset y =2p — 2+ Y (1 — 1 v). then
2<0 ifandonlyif M=Cuix)
#=0 ifandonlyif M=C,and
>0 ifandonlyif M=U)

Proor. Let 7,(M") = n;(M",b) be the fundamental group of M" with base
point b e M”. Let [«] denote the hbomotopy equivalence class of the closed
loop 2 on M” beginning at b. Let ] denote a closed curve beginning at b
extending to a point x near x,, (by x being near to x, we mean that a closed
disc D, around x, that contains x and does not contain any x; with [ 5 k)
winding around x, exactly v times in D,, and then returning from x to b
along the original path.

Let I'y be the smallest subgroup of n;(M") containing ] v < )
and let I' be the smallest normal subgroup of rr,(M") containing I'y. Observe
that for any k, [a] ¢ I' for & Z with 0 <! < v,. The normal subgroup I
of m,(M") defines, of course, an unbounded, unramificd. regular (Galois)
covering (M",m) of M”. We rccall the (familiar) topological construction
of (M".x). Consider the set € of curves on M" beginning at b. Two such
corves %, ff are called equivalent {~) provided both have the <arme end point
and {187 '] e I. The surface M” is defined as %/~, and the mapping n
sends a curve a into its end point. Choose b e M” such that a(5) = b. Then
I = n,(M".b). A closed curve x on M” beginning at b lifts to a closed curve
3 on M” beginning at & if and only if ¢ I". The topology and complex
structure of 4/~ are defined so that the natural projection n:%/~ — M”
1s holomorphic

Choose a point x, with v, < . Let D, be a small deleted disc around Xy
Consider a connected component D, of n~ (D). Choose a point X e D,. We
may assume that % corresponds to a curve c from b to x € D,. Let d be a closed
loop around x, beginning and ending at x. Then n(cd") = x, and [cd],
v=0,...,v.— 1, represent v, distinct points in the same component of
n~YD,). Thus |D, is at least v,-to-one. Since any closed path in D, is homo-
topic to d” for some v, it is not too hard to see that by choosing D, sufficiently
small nlﬁk Is precisely v,-to-one. In particular, the lift %, of %, consists of a
path from b to a point X with n(%) near x, and then a homotopically non-
trivial loop beginning and ending at %, and finally a path from X back to 5
(the original path in_reverse direction). We want to show next that we can
fill in a puncture in D, over x,.

Let G be the covering group of x; that is, G is the group of conformal
automorphisms g of M” such that = > g = . Since I' is a normal subgroup
of my(M"), G = my(M")/T', and M"/G = M” (and G is transitive and acts
fixed point freely on M"), Let G be the Fuchsian equivalent of G with respect
to M”. We assume that G acts on the upper half plane U (the cases where G
acts on the plane or the sphere are left to the reader). Let

p:U - M” and p*:G > G
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be the holomorphic covering map and the associated homomorp!:sixm of
IV.9.3. Then U/(Kernel p*) = M” and UiG = M". Every “puncture” x, on
M with v, < o is determined by a parabolic element of G by Lemma 1V .9.0.

Recall the exact sequence
{1} & (Kernel p*) & G 5 G — {1}.

We may assume that the half plane U, = {z¢ C;Im z > 1} gets mapped by
7 o p onto the deleted neighborhood Dy qf the puncture x,, and that the
corresponding parabolic subgroup of G is gcnergted by.:r—->z + 1. The
intersection of the subgroup with the kernel.of p* is a cyclic subgrm.lp. We
claim that it must be the cyclic subgroup generated by Zr> 2+ Ve Itis CIe'ar
that p(U,) is a component D, of n~ YD,). Sinse ()(ql) is conformally equiv-
alent to U, modulo a parabolic subgroup, D, is indeed a punclurc'd disc.

Let M be M" together with all the punctures on .the punctured discs D,
corresponding to the punctured discs D, corresponding to the ~punctures X
with v, < 2c. We show now that M is simply connectgd. Let 3 be a closed
path on M. We must show that ¥ is homotopic to @ point. It c}f:z} rly involves
no loss of generality to assume that ¥ begins at b and th,z,lt % is ac;tually a
closed path in M”. Now « = (%) is a closed path on M beginning at lzz
and [«] € I. Thus it suffices to show that for every closed path z on .\ ;
that begins at b with [2] e I, the lift & of a beginning at b can be contrac—t?
to a point on M. Now I is the subgroup of 7;(M") generated by {770y . }
with y € 7;(M"). Thus it suffices to show that every 'gc.ncrat.or % of F o lifts
to a curve &, in M” that is contractible n M. But this is entirely obvxo'us.

The elements of G trivially extend to be conformal self maps of the sm_l'ply
connected Riemann surface M. From now on we may assume 'that Mis
either the sphere, plane, or upper half plane and that G is a Klglnlan group.
Thus the stabilizer of each puncture is a cyclic subgroup of finite order.

It remains to verify uniqueness. Let G and G, be two groups f’f confonpal
mappings of the same simply connected Riemann surface U with canomca;
projections z and 7, onto the same Riemgnn surfage M such th.at for‘ eac
x & M, |Gp- i) = |(Gix; 1|, then there exists a conformal mapping 4:U -

U such that
U—=*—U

W

M ={xeM;|Gp1n| = 1}
= {xe M;|(G ;1] = 1}
M y (M beU’, b, e U} such that
Let U ="M’ and Uy = nj '(M"). Choose be U’, b, € o su '
2() = ny(b)) = b €M’ Let I' = n*(n(U’b)) and I'y = w¥(my(U',by)). It is
quite easy to see that 'y > I' (and hence I'y = I'). From this it follows thaEt]
= and 7, are equivalent coverings.

commutes. Let
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Remark. The above theorems also establish the existence of finite Kleinian
groups.

EXERCISE

Prove that the theorem is not true for the two excluded cases.

IV.10. Riemann—Roch: An Alternate Approach

The existence theorems of Chapters IT and TII were established under the
assumption that every Riemann surface is triangulable. Also, we used
differentials as a basis for constructing functions. The development in this
chapter did not require a priori knowledge that Riemann surfaces are
triangulable. In this section we show that the Riemann-Roch theorem can
be obtained in a different manner, using only results of this chapter. This
shows, among other things, that Chapter II can be completely dispensed
with and the proof of the Riemann-Roch theorem needs a lot less machinery
than was used to establish it in Chapter 11I. However, the proof in this
section is much more ad-hoc than the one in I11.4.

IV.10.1. Let M be a compact Riemann surface of genus g. We have seen
(Remark IL.5.5) that the existence of meromorphic functicns on M implies
the triangulability of M and thus Proposition 11.5.4. Clearly the Riemann—
Hurwitz relation (Theorem 1.2.7) required only the triangulability of compact
surfaces. (The knowledge how to compute the Euler characteristic was, of
course, also required. Note that the fact that the zeroth and second Betti
numbers for a compact surface agree follows, at once, from any of the
usual duality theorems in algebraic topology.) Furthermore, the second
proof of Riemann-Hurwitz (I111.4.12) can be turned around to establish
the following

Proposition. Let D be a g-canonical divisor on M, then

deg D = g(2g — 2).

ProoF. For g =0, the result follows by Proposition 1.1.6. If w; # 0 and
w, # 0 are two g-differentials, then w,/w, is a meromorphic function and
thus

0 = deg(w,/w;) = deg(w,) — deg(wy).

Thus it suffices to establish the proposition for a single non-zero g-differential.
Let f be a non-constant meromorphic function on M. Then (df)? is a mero-
morphic g-differential, and

deg((df)?) = q deg(df).
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Hence, we must only show that
deg(df) =2g — 2.
Recall that for f(P) # @
ordpdf = by(P), (10.1.1)
and if f(P) = oo, then
ordpdf = ordpf — L. (10.1.2)

By following f by 2 M&bius transformation, we may assume is_ Lllnramiﬁed
over con (Assume deg fg= n. Choose wy € C such that card{f ™ '(w,)} = n.
Replace S by

For such an f we have from (10.1.1) and (10.1.2)
deg(df) = B — 2n.
Using Riemann-Hurwitz with y = 0 (Theorem 1.2.7), the result follows.

1V.10.2. We now prove one-half of the Riemann-Roch theorem in the
following

Lemma. Let D € Div(M), then
(D YH>degD—-g+1
ProoF. Write
P“llP{EZ PR P:r
The dimension (over R) of the space H of harmonic functions on M with
“poles” of order < a; at P; is precisely

Z(jgl 2+ 1)

by Theorem1V.3.11. Not all the functions u € H have single valued harmonic
conjugates. Let c; be a small circle around P;. Notice that

D with o; > 0, B > 0.

f*du=o, j=1,... rallueH
<y

(To see this last equality, recall that the singularity of u at P; ?s of' the for.m
Rez ™ or Imz™™ with 1<m<a; Thus the meromorphic differential
du + i*du has no residues.) A necessary and sufficient condition for u to
have a harmonic conjugate is that

L*du=0



224 IV Uniformization

for all closed curves « on M. Since H (M) is genecrated by 2g clements, the
dimension over # of the space of harmonic functions on M with “poles™
of orders < a; at P; which have harmonic conjugates is

j=1

Thus the dimension over € of the space of meromorphic functions on M
with poles of order <x;at Pjis

=)y a+1—g

i=1
For such a function to helong to L(D™1). it must vanish at Q; of order > B,.
This imposes at most ) }-, f; lincar conditions. Hence

e Zl Bi+1—g
=

j=1

=degD+1-g. O

IV.10.3. We now cstablish the Riemman-Roch theorem in the form of
the following

Theorem. For D e Div(M),
r(D”Yy=deg D —g+1+r(DZ™Y),
where Z is any canonical divisor on M.,

PrOOF. We break up the argument into a series of steps.

(1) If deg D < O, then r(D~*) = 0. This is Proposition 111.4.5.
{2) For all divisors D, (D" ') > deg D + 1 — g. This is the content of
Lemma IV.10.2.

(3)For Poe M, r(D™'P5 Yy < r(D™Y) + 1. Write

D= H PGD(P).

PeM
Say f; and f, € L(D™'P5 *)\L(D™Y), then
ordp, fj= —ap(Po) —1=p  (j=12)
Let z be a local coordinate vanishing at P,, then

fj(z) = Z bj,nzn’ bj,u # 0 (.’ = 1$2)~
n=y

Thus f, — (b, /b, ,)f> € L(D™1), and (3) has been established.
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(4) Let Poe M, and assume r(D™'Pg')=r(D"") +¢ and r(DZ~ Y =
HDZ P+ ThenO0<se+e <1
Assume for contradiction ¢ = 1 = ¢ (by (3) no other possibilities exi§t). Let
Z = (a), with x an abelian differential on M. We have assumed the existence
of functions
fie LIDT'PGNL(DTY,
foe LIDZ™W\LDZ1Py).

Thus
(f)DPo =1 and (f)D#1,
and * - . o
(f)ZD"*=1 and (f)ZD™'P5" %L
Now
(fuD = B/P, withB2>1 and x5(Py) = 0,
and

(f;x)D"' =C with C > 1and 7:(Po) =0.
Coimbining the last two equalities, we get

(fifa2) = BC/Py,

or f, f-2 is an abelian diferential holomorphic except at Py {BC z 1) witha
simple- pole at Py (5. c(Po) = 0). This contradiction (of Proposition 11.5.4)
establishes (4).

Definition. (D) = r(D™!) — deg D — r(DZ™1).
(5) For all P, e M, ¢(DPo) < o(D).
We expand
@(DPo) = r(D™*Pg?) — deg(DPo) — r(DPoZ™")
=rD" ') +e—-degD—1-r(DZ" ) +¢
=@D)+e+¢&—1< D)

6)pDy21-g.
Choose k € Z large so that

deg(ZD™'P3*) <0
where P, € M is arbitrary. By (5) and (1)
(D) = p(DP%) = r(D™*P*) — deg(DPy).
Hence, from (2) we get (6).

NeD)<s1-g s
Choose k large so that deg(D/P§) < 0. Then by the argument which is

established in (5) and (1),
(D) < ¢(D/P%) = —deg(D/P}) — r(D/P6Z).
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We shall now use (2) and Proposition 1V.10.1 to obtain
r(D:P5Z) = deg(PXZ.Dy+1 — g
=deg(P{/D)+ (29~ 2)+1—¢g
= deg(PX'D) ~ 1 + ¢,
establishing (7). ’ ?
The Riemann-Roch theorem follows from (6) and (7). 0

Rfemark. The above is certainly a shorter and more elegant proof of the
I(xf;n}ann—Roch theorem than the one in 111.4. The earlier proof was, in our
opimon, more transparent than this one.

The reader should now re-establish (using the Riemann-Roch theorem)
the following:

(}’) The dimcnsi}:n of the space of holomorphic abelian differentials is g.

(2) The dimension of the space of harmonic differentials is 2g.

(3) Let x4, ..., x, be n distinct points of M and (c,, . .. ey € C A nec-
essary and sufficient condition that there exist an abelian differential @, with
o regular on M\{x,,...,x,}, ’

ord, w = —1, Res,, w=¢

is that
n
Z c;=0.
i=1

4) LeF Xseees Xy be n > 1 distinct points on M. Let z; be a local coordi-
nate vanishing at x;, and let

TP P
be complex numbers with k; < —1, k;e Z,j=1,...,nIf Yi-ya;,_, =0

then there exists a meromorphic differential w regular on M VX5, oo e X}
such that ' o

w(z;) = ( Y a,,\.z}>dzj, i=1L...,n

v=k;

Furthermore,  is unique modulo differentials of the first kind.

IV.11. Algebraic Function Fields in One Variable

In this section, we explore the algebraic nature of compact Riemann surfaces.
We show that there is a one-to-one correspondence between the set of
cgnfqrmal equivalence classes of compact Riemann surfaces and the set of
birational e.quivalenoe classes of algebraic function fields in one variable.
We determine the structure of the field of meromorphic functions on com-
pact surfaces and describe all valuations on these fields.
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IV.11.1. In 1119 and IV.4, we briefly considered the space of germs of
holomorphic functions. We gave a topology and complex structure to the
set . (M) of werms of meromorphic functions over a Riemann surface M.
Let us change our point of view slightly. The elements of - #{} ) will now
mercly represent convergent Laurent series with finitely muany “negative
terms”. Let us assume M = C U {o0}. Thus we are dealing only with con-
vergent series f of two forms

kA

Z a,,(z - ZO)na

n=N

ZOGC, aN?éO, (1111)

or -

n=N

3 a(l) 4y £0, (11.1.2)

Recall the projection and evaluation functions introduced eartier. For [
given by (11.1.1), proj /' = zo; while for [ defined by (11.1.2), proj f = oo.
Also, eval f = « if N <0, eval f = ao if N =0, and eval f =0if N > 0.

¢

IV.11.2. Let us take a component F of .Z(C u {x}) which is “spread”

over a simply connected domain D = € U {x}; that is,
proj:F -+ D

is surjective and every curve ¢ in D can be lifted to #. Thus every germ in
# can be continued analytically over D and the Monodromy theorem
shows that # is deterinined by a meromorphic function on D; that is,
proj is conformal and there exists an F e £(D) such that for all z€ D,
proj~! z is the germ of the function F at z.

Let us now assume that D = 4* is the punctured disc {0 < |z| < 1}. We
keep all the other assumptions on . (surjectivity of proj and path lifting
property). Let us take an element f e #. It is represented by a convergent
series of the form (11.1.1) with 0 < |zo| < 1. (Without loss of generality we
assume |zo| = z,—this can be achieved by a rotation.) Since analytic conti-
nuation is possible over all paths, we may continue / along a generator ¢ of
n,(4*) which we take to be the curve ¢, 0< 8 < 2n. There are now
two possibilities: continuation of f along ¢* (k € Z) never returns to the
original f (in which case the singularity of # at 0 is algebraically essential)
or there is a smallest positive k such that continuation of f around c* leads
back to the original function element f.

In this latter case, we consider a k-sheeted unramified covering of A4* by
A* given by the map p:{+> {*. We define a function F on A* as follows:
If ¢, € 4%, we join z5™* to {, by a smooth curve y in 4* and set F({o) to be the
evaluation of the germ obtained by continuing f along p(). It is clear that
F is a locally well defined meromorphic function. We must show it is globally
well defined. Let y, be another path joining z5'* to {o. Then p(yyy 1} is homo-
topic to a power of c* and hence continuation of f along this path leads back
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to f. The function F is now represented by a convergent Laurent series

»
FO= Y ag 0 < [{| <& & small
n=-n
If there are infinitely many negative intcgers n with a, # 0, then .# has an

essential analytic singularity at 0. Let us assume that the resulting F is
meromorphic.

sl
FQy =3 al, 0<|]<eay#0. (11.2.1)
n=N
We can now represent # by a single series (known as a Puiseaux series)
of the forin

=3 (11.2.2)

n=N
Without loss of generality we assume that the ¢ appearing in (11.2.1) is 1.
How does f of (11.2.2) determine #? In a neighborhood of each point
4%, =% yields k distinct analytic functions. Substituting these into f

o€

gives k different function elements lying over z,. These function elements

determine all the germs in proj~!{z,}. These germs also define a neighbor-
hood of the Puiscaux series {11.2.2) in the ¢xpanded space . 4* {consisting
of Laurent and Puiseaux series).

Clearly we can extend the domains of the functions proj and eval to
include such Puiseaux series. We must be a little bit more careful than in
dealing with Laurent series only. We must introduce an equivalence relation

among Puiseaux series. The same germs in a neighborhood of f would be
produced by the series

e o]
Y agzmk
n=N

with ¢ € C and &¢* = 1. Two such series will henceforth be identified.

Note that proj and eval are still meromorphic functions on .#* and that
a deleted neighborhood of a Puiseaux series consists only of Laurent series.
We will now formally review all that we have done.

IV.11.3. Let .#* be the collection of convergent Puiseaux series o of the
form

Y afz—zo)"*,  ay#0,z,eC, (11.3.1)
n=N
© 1 nik
) a,,(;) . ay#0. (11.3.2)
n=N

We exclude the constant series (0 = ag) from .#*. In the above, ke Z, k> 1.
If k > 1 we assume that there exists an n > 0 with a, # 0 and n/k ¢ Z (this
can always be achieved), and that k has been chosen as small as possible
with this property. We call such a k the ramification index of w, ram .
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The space ./#* comes equipped with two functions (into C U {o0}):

AR »Cu{a}
.eval
C v {c}
. 7, if w is given by (11.3.1),
~ proje = oo _if o is given by (11.3.2),
o HN<O,
evalm ={lay N =0,
0 ifN>O

M att X
Before proceeding, we must introduce an equlvallence relation on ,/{1i ;V:;
shall say that @ ¢ . //* is equiralent to & € JM* (given by (11.3.1) or (11.3.2
with coefficients d,, Zo, k) provided

proj w = proj @, ram @ = ram @ = k,
and there exists an £ € C with ¢ = 1 such that
i, = &'ay,, n=N,N+1,....

From now on .#* will stand for the previously defined object wth thi:1 sa‘rl'gi
symbol modulo this equivalence relat;)*n'.) Note that ram, proj, and e
11 defined on .#* (the new .Z™1).
eva\i/ireto‘;i)loc;ize Ji* as follows. Let w, be given by (11.3.1). Assimreht::(;
the series coverges for |z — zo| <& Let0 <r <e. We‘fieﬁm? a lnen(giil flcl)nction
Ul(wo,r) of @,. Let z; € C with 0 < |z, — zo| < r..The mpltlva ue fonction
(z = zo)'/* determines k single valued analyt}c f}lnctxons cogl\ibsit ugting
{|z — z)| <& — r}—thus k distinct Taylor series in (z - z,). Substituting
these Taylor series into (11.3.1) we obtain k convergent Laurent se ). he
collection of all such Laurent series (for all z, with 0 <|z; — zol < re fhat’
the original w, forms the neighbo.rhood Ulwg,r) of og. lNeth: ;jcs)tslzna ha
o is given by (11.3.2) where the series converges forjzl > _/lts/.k detem;inis p
0 <r <e For |z;| > 1/r, the “multl\(alued. function z mines |
convergent Taylor series in (z — z,) \2Nlth ;adlus oii c:snl\;zg?:ce >1/ .
i unctions into (11.3.2) and procee .
SU%?/?:;: tt:aef ewfith this “topology” (we will show next th.at the sets (\irve ;;:r\‘/e
introduced do form a basis for a topology), a deleted nilgh})orhoq o;é OOy
point wg € .4* can be chosen to consist only of ® € .#/* with proj ® ,
20, and ram o = 1. ‘ . B

eVa{:: : € U(w,,ry) N Ulwa,r,). Assume th‘at proj ® = Zo, plro_l v(sj)l r—; uzslt, 22?1
proj w, = 2, all belong to C, and that o is given by (11.3.ﬁ).t e muse e
an r > 0 such that U(w,r) < U(@,,ry) N U(wz,ry). Let us nrst ass
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@ # o). Thusramw = 1. Letg, &;bethe radii of convergence of . w;(j=12).
Then 0< |z~ zol < 7; and &> £ —rj (j=12). Choose r > 0 such that
{lz =z <1} = {Jz~ af<riiad{lz -zl <) Then Ulwr) < Ulwy,ry) N
Ule,.r,).

We are then left with the case that o = w; = w,. Here we merely choose
r=min(ry,r,). If proj w or proj w; = oo (j =1,2), analogous arguments
apply. Hence, the sets U(ew,r) are a basis for the topology.

The topology is actually Hausdorff, Let wje A* with ©, # w,. If
proj w, # proj m,, it is trivial to produce neighborhoods Ul{w,.r,) and
U(w,,r,) such that Ulwy,ry) 0 Ulw,rs) is empty. So we assume Ip =
Proj w, = proj w, € C. If ram @y =1 =ram ,, then the w; determine
meromorphic functions f; in some disk of radius r > 0 about z,. Since
J1 # [ (otherwise w, = w,), Ulwy,r) n Ulw,,r) = . (Otherwise, choose o
in the intersection and obtain that in some open subset of |z — zo| < r both
/1 and f; agree with the function defined by @.) We are left to consider the
caseramwm,; > 1. Letw, be given by (11.3.1), and w, similarly with coefficients
@y, Zy = 20, k. We have seen that ; determines a single valued function
F; on a punctured disc which covers the given punctured disk k(k) times.
If Fy # F,, then clearly we can choose non-intersecting neighborhoods of
®; and ©; by the above method. So let us assume that F, = F,. Since
@, # w; We must have ram w, 3 ram @,. 1t i3 now easy once again to
choose non-intersecting ncighborhoods of w; and w,. (The case with
proj @, € C U {oo} is treated similarly.)

We have shown that .#* is a Hausdorff space. Now we introduce local
coordinates in .#*. Let ¢ be given by (11.3.1) we introduce a local coordinate
t vanishing at w by

(z — z¢) = tm©,
If w is given by (11.3.2), ¢ is defined by

z~ 1 gramo.

It is clear that we have introduced a conformal structure on .#*. Proj and
eval are meromorphic functions in #* (note that proj is no longer locally
univalent.) Each component of .#* is a Riemann surface known as an
analytic configuration.

An analytic configuration S is determined by a single w, € S. Look at
allwe Swithramw = 1, Two points in .#* belong to the same component §
if and only if they can be joined by a curve in .#*, If the initial and terminal
points of the curve are unramified, we may assume that the entire curve

consists of unramified points. We thus see that an analytic configuration §
can be described as follows::

1. Take a fixed germ w, of a meromorphic function (= Laurent series).

2. Continue this germ w, in all possible ways to obtain a Riemann surface
So c H*

3. Take the closure S of S, in .#*,
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EXERCISE | o
Let [ be a “multivalued meromorphic f\fnction“. Then f~! (the ,;Ltr.sfe*t:“;::;iiil;
again a “multivalued meromorphic function™. Show that the nllat;? ] | definess
conformal involution on . #*. Use this fuct to prove that the analytic g

function and its inverse are conformally equivalent.

IV.11.4. Theorem. Let S be an analytic configuration. The Riemqnn surfacs
S i:s C(;rr;pact if and only if there exists an irreducible polynomial P in two vari

ables such that P(proj o, w) =0, allw € S.
PROOF. Assume S is a €dmpact analytic configuration. Let coll,(.s.';lz:g),fbe
: . . T — —~ . . l —
the collection of points with either p;o; D; = oot cI){ri errz:\l:nc;)‘, ;rface e
j i hic function on the compac S,
Pine sheeted cover i i > 1 correspond to
i i ts we S with ram w
nite sheeted covering. The poin 4 ' S
ﬁoints o with b (@) > 0.) Let n be the degree of th.e function proj. Let ;,t
pro' @;, and ca{I z,,...,2, (o0 is one of these pomts) the exc{uded poin ts
gf 7J € E is a non-excluded point, then there exist n distinct functu?n elem.en s
" w, € § with proj w; = zo. Form the elemeniary symmetric functions
ey Oy

o a,of w o,. Note that w; is a Laurent series in (z = Zo). Thus
ags - .« n 1y Wne

agz)=1

az)= —oy2) = —,2)

a5(2) = 0,(D0(2) + 0, (Dw3(2) + *** + G- 1(2)0(2)
= i (Di(z)wi(z)

hj=1
=

av(z) = ('— l)v Z (,0,,1(2)(,0,,2(2) e wnv(z)

,,,,,,

az) = (= 1Vo,(2) - 02

The functions a,, . . . , @, are meromorphic functions ;n C ;;, {x}c\li;,e,dpé)zl,gt
1 i ndent of the point zo. Near the ex .

Theif fun:ct)lvovnlsikaerealgg:vier of |z — z}. Thus the functions a, are ;athnz::

gjx’nZtiegnsg of z (e C(z) = H(C L {c})). Clearly at the non-excluded poin

the functions elements o satisfy the equation
Pzw)=w"+ a,(z2w" "'+ +az) =0

Equation (11.4.1) may be viewed as an equation over 'C(z) for. the elime:lotjs
w € S, or as an equation satisfied by two meromorphic functions z = proj,

i laim that
holds at the excluded points. We ¢
o hal sasie 11.4.1) is a point of S. Over every non-

lutions of (11.4.1). These are all the
(11.4.1) has only n formal

(11.4.1)

every Puiseaux series o that satisfies (
excluded point, we have exhibited n so .
solutions over such points, since the equation
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(not necessarily convergent) power or Puiseaux series solutions at every
point. Let z; be an excluded point. Over z,, we have certain series, say
@y, - .., @y Let ny=ram @&;. Then Y., n; = n and recall that such equi-
valence classcs of Puiseaux series represent n; distinct formal series,

We postpone the proof of the irreducibility of P until after we have
established the converse. To establish the converse, let P(z,w) be an irreducible
polynomial in two variables. Assume that

P(zw) = ag(zw" + a;(z)w" ' + - -+ + a(2)

with g; € C[z]. Let R be the discriminant of P, Then R is a polynomial in
z of lowest degree with (here p and g are polynomials) such that

oP
R= pP + g —.
CwW
Furthermore, for -5 € C,

R(zo) = 0 <> P(z,,w) = 0 has multiple roots.

We again exclude the point > and the zeros of R and the zeros of a,. By the
implicit function theorem, for any non-excluded z,, there are n distinct
function elements (Taylor series)

1 TR
such that

P(zwi2)) = 0. (11.4.2)

If we continue one of these function elements w; to another non-excluded
point z,, we get another function element (over z,) that satisfies (11.4.2).

Let us start with a fixed function element, say w, (that satisfies (11.4.2))
over a non-excluded point z, € C. It is clear that o, can be continued along
any path that avoids excluded points. Let z; be an excluded point. Without
loss of generality we may assume that z, = 0 and that the unit disc 4 contains
no other excluded points, It is also obvious that continuing any function
elements o (with proj w e 4*) around the origin will eventually lead back to
. Thus we are in the situation discussed iri IV.11.2. The Laurent series o
about zero obtained in this way clearly satisfies (11.4.2). By including all
the functions elements over the excluded points obtained in the above man-
ner, we get a compact Riemann surface S (since it is a finite sheeted covering
of C U {»}). The elements of S satisfy a polynomial equation P,(z,w) = 0
by the first part of the theorem. Since they also satisfy the irreducible equation
P(z,w) = 0, P must divide P, and we have shown that all solutions of (11.4.2)
are in S. The above also shows that the equation (11.4.1) is irreducible. Write
(114.1) as

P=pa...pn (11.4.3)

with P; irreducible and P, # P; for k # j. Note that P is not a power of an
irreducible polynomial, since the n function elements lying over most points
are distinct. Furthermore, each P; in (11.4.3) clearly determines a compact
Riemann surface S; <= S. Thus, S;=S8and j=1. 0
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Definition. We shall say that S is the analytic configuration corresponding
to the irreducible polynomial P. .
Corollary (of Proof). For every irreducible polynomial P, there is an analytic
configuration corresponding o P.
IV.11.5. Theorem. Let M be any Riemann surface. Let w, z € X' (M)\C. There
exists a canonical holomorphic mapping

o:M - H*

h t for [ZHPE-\‘I)
such that ft w(P) = eval(p(P)),

2(P) = proj((P))-

PROOF. Let ¢ be a local coordinate vanishing at P. Without loss of generality
we may assume that for some n € Z,n>1,

(t)=1t"" or z(t)=z(P)+ 1", near P. (11.5.1)

~

I wit)= 3. apd,

jzJjo
then we set @(P) to be either |
SoazTim oor Y afz—PY

jzjo jzJo

o 0
depending on which case applied in (1 1.5.1).

IV.11.6. Proposition. If M is compact and w, z € A (MNC, then there exists
a polynomial P such that P(z,w) = 0. |
Prook. Let ¢ be the map of the previous theorepl. Since tk}x)e l'magia(:fo(f,
is a compact component of #*(C v {=0}), z, w satisfy an algebraic eq or
by Theorem IV.11.4. '

Remark. The mapping ¢ of Theorem IV.11.5 is 'one-to-one if, fgr §xav1;rilt1)}11:
the pair z, w separate points on M. The converse is not true. We egl'n
Definition. We say that z, we X (M)\C form a primitive pair provided the
map ¢ of Theorem IV.11.5 is one-to-one.

IV.11.7. Proposition. If M is a compact Riemann su'rfa.c.e and'z e X'(MNC,
then there exists w e 2 (M)\C such that z, w form a primitive pair.

~1{a) consists of n distinct

Plc:?:tl; ; “ n=xd,,e%3; tcl‘:xkelolci)iseerr?afn? irsll;:?latlkiltayt, iheg)exists a non-constant

gleromo;;)ilic ,function w; on M such that

w; has a pole of order v; > 1 at x;, and

w; is holomorphic on M \{x;}
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Choose positive integcers k X, S
p ntegers ky, ... . k, such that
kv, < kyv cee
1V 2V < < I\' v
and set n
vk
W == “rll + -+ W:n.

Then we A (M) and the polar divisor i

. of wis x§1 ... xk= Let ¢ be th

m?ppn}g of Theorem IV.11.5 determined by z and w. We obtain (fhis wa;

:i znc:;lon Lclzlf:ments W1 .- Oy witb proj w; = a. These elements are distinct
nce the Laurent series for the different w; have different order poles at

the point z = a. Let § = Image ¢. Then P )

ML sELE Y fx?
%
Since deg proj = ¢ = n = deg - = deg proj. and

deg proj ¢ = (deg proj) (deg @),
we conclude that deg ¢ = 1. O

IV.11.8. : i i ¢

v 11 8.'Coroll.:xry. If M is a compact Riemann surface and z € A (MN\C, then
4 re e}lsts an lrre".luclble polynomial P in two rariables = and w such that M
is confur{nally equivalent 1o the aralytic configuration corresponding to P
with z being the proj function. ' ‘

I:Z’jlllf. Proposition. Let M be a compact Riemann surface and z, w a primitive
pair. Assume n = deg z, m = deg w. Let P be an irreducible polynomial satis-
fied by the pair z, w. Then n = deg,, P, and m = deg, P.
PRrOOF.We have

P(z,w) = 0.

t €/ be SuCh that Z WX C SiSts Of p y p
0 on L. ICClSCl n points. IhuS the

z:;,.l'o. Al?roposit(iion. Let M be a compact Riemann surface and z, w a primi-
air. Assume deg z =n. Let f € A (M). Then there exi i

] g 1 . lst -

tionsa;,j=0,...,n—1,such that rationat fune

n—-1

f fi:o a(z)w. (11.10.1)

PR((i)OF. kLl.et { € C be such that ™ ({) consists of n distinct points x,, ... ,x

int suci that w(x,): ...,w(x,) consists of n distinct complex values (;'&o’o)’l

et ag(s) - - - » a,—1({) be the unique solutions of the linear system '

n—1
S =Y aOwx), k=1,...,n
i=o
Note that
det W,
aj(C)zdetVI;’ J'=0,...,n—l,
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where
1owixy) oo wlx)!
W= 1 W(:\'z) Tt W(-\.’z)"_l
i owx) ... w)"!

is the Vandermonde determinant (and thus det W = TTi<s W)= w(x)) #0)
and W, is the matrix obtained by substituting the column

~ ':[f(xl)!f(xl)) e aff."cn)]

for the (j + 1)-st column of W. The functions a;({) are independent of the
ordering of the x;. They are defined except for finitely many ¢ € C. It is clear
that they extend to meromorphic functions of (-—thus rational functions.
Equation (11.10.1) holds now for all but a finite number of points. Hence,
everywhere by continuity. U

Corollary. If M is a compact surface und =, w is a primitive pair as above,
satisfying the irreducible equation P, then

A (M) = Clo)[w]/Plzw).
ProoF. The last equality means that 2" (M) is isomorphic (as a field) to an

algebraic extension of the field of rational functions. The isomorphism is
the obvious one given by the previous proposition. If f € C(z)[w), then clearly

N
f= Z aj(:)“'j.
j=0

Thus / defines an element of X' (M). Since P(z,w) goes to the zero element,
of (M), this mapping factors to a mapping from C(z)[w] into X (M). This
mapping is surjective by the proposition, and injective because the domain
is a field and the mapping is non-trivial. ]
IV.11.11. Example. Consider a hyperelliptic surface M of genus g > 0. Let
ze A (M) with degz =2 We have seen (I1L.7) that z has 2g + 2 branch
points. Now Proposition IV.11.7 shows that there exists a w such that the
pair z and w are primitive. By Proposition IV.11.6, z and w satisfy a poly-
nomial equation
w? —2aw + ¢ =0,
where a, ¢ € C(z). Completing the square in the usual manner, we rewrite
the above as
w—a?+c—a =0

We make now a birational transformation
(w—a)=wy, z=Z

and obtain
wi=a*—c
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Now a® — ¢ & £(z) and thus can be written as
r
2 2 -
a—c=b n(-—ej),
i=1

with distinct e;e C and beC(z). We now define one more birational
transformation

Wy
Wy = B 22 =1y,

and obtain the equation (dropping the subscript 2)

r
w? =T (z - e
i=1

Since all our birational transformations kept = fixed, the complex numbers
e; can, of course, be identified. They are the finite branch values of =. Thus
r=2g 4+ 1if o is a branch value, and r = 2¢ + 21f « is not a branch value.

We have now reproven Proposition I11.7.4 without the use of “paste
and scissors”,

1V.11.12. Definition. Let K be a ficld. By a (discrete) valuation (of rank 1))
v on K, we mean a surjective homomorphism
v:K* > Z

(here K* is the multiplicative group of non-zero elements of K, and Z is the
additive group of integers), such that

v(f + g) = min{v(f)v(g)), f,geK* (112

Remark. By setting v(0) = + oo, we see that forall f,ge K
t(fg) = v(f) + v(g),

and that (11.12.1) holds provided we use the usual conventions regarding
+ 0.

IV.11.13. Lemma. If v is a valuation on the field K, then for { and g € K

o(f + g) = min{v(f),v(9)}
provided v(f) +# v(g).
ProOF. We may, without loss of generality, assume f # 0 # g and v(f) < v(g).
Note that v(1) = 0 = v(—1). Since for every odd integer n, we have
v(1) = v(1") = nv(1),
and
v(—=1) =o((—=1)") = no(-1).
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Also, v(f) = v(—f) for all f e K since
p(=f) = v(=1) + otf)
Now we compute }
=v — g) = min{v(f + g)v(—9)
h z ;(lij;‘-{'_ﬂin{z)f),v(g)}i(g)} = min {t(f),0(g)} = v(f)-
Hence all the inequalities must be equalities, and in particular
o(f) = min{e(f + 9)e(g)} = o(/ + 9) 0

~ 'K ; - )
IVv.11.14. To classify all valuations on ' (M) we need the following

’ - isti i compact Riemann
snma. Lot {Po, . ..., be n+ 1 distinct points on a 2
];x:r":?e M. Y“iz;ri ?here exists an f € A (M) that separates these points (f(P)) #
f(Py), ] # k) with (df)(Pj) #0,0,j=0,....m

Proov. It suilices to show that for k=0,...,n, there exists an fee A(M),
such that
fPY=1,  di(P)#0, 0,

and

f(P)y=0=d(P), i#k

FHaving cstablished the existence of the fi, we may set =1Z"}§?t( j+ DI
suffices to show existence of fo. Let P e M with P # Pj,all j. S¢

Pm

with m € Z so large that deg D > max{g,2g — 1}. Then

1
— | =de D+l—g>l7
()=

and p
2y=degD—g>0.
r<D> g

We choose hq € L(D~"WL(PoD™1); that is,

2
PZP: P%"'PnPO
(ho)Z“l pm s (hO)Z pm :

Thus ordp, hg =2, j=1,....1, and ordp, ho = 0. If ordp, dhy = 0, we are
done (f, iy ho/ho(Py))- Otherwise, construct h, such that

2...p2 PP} .- P}
(hl)ziofpl_m__"_’ (hl)z_ﬁ’_}}r;ﬁ——’
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and set

fom o h,. o

1V.11.15. Theorem. Let M be a compact Riemann surface. Then v is a valuation
on X" (M) if and only if there exists (a unique) x € M such that

o(f) =ord, f, all f e X (M) (11.15.1)

ProoF. It is clear that (11.15.1) defines a valuation on J(A), so we need only
prove the converse. Let v be given. Choose f € (M) such that ()= 1.
Clearly f ¢ C. (If 2 € C, then v(2) = nc(2'™), all ne Z. Thus ¢(;) = 0.) Let r
be a rational function. then

v(r(f)) = ordg r. (11.15.2)

To establish (11.15.2), recall (that up to a non-zero constant multiple)

s —B;:O:{‘;ﬁ B.el
R 1y A

and thus,

v(re=f) = Z. o(f —2) — Z v(f = B).
j=0 i=o
By Lemma IV.11.13, o(f — A) = 0 unless / = 0, in which case v(f — i) =
v(f}) = 1. This establishes (11.15.2). Let P,, ..., P, be the zeros of f listed
according to their multiplicities. Let F € (M) be arbitrary. By Propositions
1V.11.6 and IV.11.9, F satisfies an equation

1

F"+ 3 ri(f)F =0, withr;rational functions.
j=0

Thus, by (11.15.2)
nv(F) = min{ordy r; + jo(F),j=0,...,n— 1},

If v(F) < 0, then ordy r; < 0 for some j =0, ..., n — 1. Since r;(0) is a sym-
metric function of the values of F at the points Py, ..., P,, we see that F
must have a pole at one of these points. Similarly, if v(F) > 0, then v(F~!) < 0
and F must vanish at one of these points. We conclude that ¢(F) = 0 when-
ever 0 # F(P)) # co,j = 1,..., n. From now on we assume (without loss of
generality) that {P,, . ..,P,} are the distinct zeros of f. (We are changing the
meaning of the symbo! n.) Let h be a function holomorphic and non-zero
at P,,..., P, Further, choose an h that separates these points with dh not
zero at these points. We have v(h) = 0. Consider the function

f
H’1!=1 (h — h(Pj))OI’def
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that is holomorphic and non-zero at Py, ..., Pa Thus
| =¢(f)=Y (ordp, futh— h(P)).
=1

Since v(h — h(P})) = 0, there is a unique k such that
v(h—h(PY))=1= ordp, f.
(and v(h — h(P)) =0,) # k). Now take an arbitrary F € A (M), and consider
J 2

function
the functio F
T—t———_——lr"= . (h — 4"(Pj))ordpj F

whosze value under ¢ is zero. Hence

~

v(F)= Y (ordp, F)eth — h(Pp) = ordp, F. O
j=1

[V.11.16. Theorem. Let M and N be compact Riemann surfaces. Let
F: A (N) > X (M) (11.16.1)
be a {-algebra homomorphism (thus injective). Then there exists a unique
holomorphic map oMo N (11162)

hat

sl the (FN)(x) = f(F*(x)), all fe A(N),all xe M. (11.16.3)

ProoF. Let x € M. Define a valuation v, 01 J(N) by
v(f)=ord Ef, [ H(N).
By Theorem IV.11.15, there exists a unique point F*x € N such that
ord, Ff = v (f) = ordps f, fe X(N). (11.16.4)
This defines our mapping F* of (11.16.2). We claim that F* has t:e pg;;;errg
(11.16.3). This is clear for those x with f(F*(x))=0or eo,l Tg 4)15
general from the following argument. Let 4 e C. Then by (11.16.
f(F*(x)) = },@Ordps(x)(f - ;.) > 0 ‘
«ord, F(f - 4= ord (Ff —4) >0
< (Ff)(x) = A

We claim that F* is a continuous mapping. Let {x:} beha Seg’:‘ir;c?\] oir;
M. with lim, x, = x. If F*x, does not converge to F*x, t e;*(xl e
co,mpact) there must be a subsequence that converges to y ;Ié t};ere may
assume that the entire sequence {F*x,} converges to y. NOW

fe A(N) with f(») = 0 and f(F*x) = 1. Thus
[(F*x,) = (F)(x0) = (ENX) = J(F*x) =1,
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and
JIEEX) - f(y) = 0.
This contradiction establishes the continuity of F*,
We show next that F* is holomorphic. Let x € M be arbitrary. Choose

an f € &(N) such that f is univalent in a disc U about F*(x). Clearly F
There is thus a disc V about x such that (x). Clearly £/ ¢ C.

FXV)c U and (Ff)(V)< f(U).

Thus F*= f~'c Ffin V.
Uniqueness of F* follows from the fact that #'(N) separates points.  [J

IV.11.17. The map F+» F* is a functor, since we have

Corollary 1
a. Let F:J{‘(}&_I) - %/(Mr) be the identity, then F*:M — M is also the identity.
b. If (M) = A (My) = A (M) are C-algebra homomorphisms, then

(I'go F)*=Ft-F3%

Cor ; . . e .
ollary 2. If F is an isomorphism (surjective), then F* is a komeomorphism.

Smce.the holomorphic mapping (11.16.2) between compact Riemann
surfa(?es induces the homomorphism (11.16.1) between their function ficlds
thag is defined by (11.16.3), the functor under discussion establishes an
equivalence between two categories.

CHAPTER VY

Automorphisms of Compact Surfaces—
Elementary Theory

In this chapter we develop the basic results on the automorphism group of a
compact Riemann surface. continuing the study began in I1L.7. Some of the
deeper results will have to await the creation of more powerful machinery.

Using quite clementary methods, we study the action of the group of
automorphisms on various spaces of differentials.

V.1. Hurwitz’s Theorem

Throughout this section, M is a compact Riemann surface of genus g usually
(but not always) > 2, and Aut M denotes the group (under composition) of
conformal automorphisms of M.

The most important result of this section is the theorem referred to in
the title (Theorem V.1.3). We also obtain various bounds on the order of
an automorphism of a compact Riemann surface of genus > 2 in terms of
the number of fixed points of the automorphism. We also generalize the
concept of hyperellipticity. The methods of proof in this section are mostly
combinatorial and involve the examining of many special cases.

V.1.1. The next result will be strengthened considerably in V.1.5.

Proposition. If 1 # T € Aut M, then T has at most 2g + 2 fixed points.

PROOF. Since M is compact and the fixed point set of T is discrete, the fixed
point set is finite. Choose a P € M that is not a fixed point of T. There is a
meromorphic function f on M whose polar divisor isPrwithi<r<g+1
(r = g + lifg = 2and Pisnota Weierstrass pointorg < 1,r < g, otherwise).
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and
JIF*x )= f(y)=0.
This contradiction establishes the continuity of F*.
We show next that F* is holomorphic. Let x € M be arbitrary. Choose

an f € X' (N)such that f is univalent in a disc U about F*(x). Clearl
There is thus a disc V about x such that ) Clearly £/ ¢ ©

F¥V)c U and (Ff)(V)< f(U).
Thus F*= f"' s Ff in V.
Uniqueness of F* follows from the fact that 5 (N) separates points. [

1V.11.17. The map F+» F* is a functor, since we have

Corollayy 1
a. Let F:.)Y'(AF'I) - SA”(MF) be the identity, then F*:M — M is also the identity.
b. If A (M) = A (M,) = K (M ;) are C-algebra homomorphisms, then

(Fpe Fy)*=FtoF3

Coroll Lo . i s .
Nary 2. If F is an isomorphism (surjective), then F* is a homenmorphism.

Since.the holomorphic mapping (11.16.2) between compact Ricmann
surfages induces the homomorphism (11.16.1) between their function ficlds
that. is defined by (11.16.3), the functor under discussion establishes an
equivalence between two categories.

CHAPTER VY

Automorphisms of Compact Surfaces—
Elementary Theory

In this chapter we develop the basic results on the automorphism group of a
compact Riemann surface. continuing the study began in I1L7. Some of the
deeper results will have to await the creation of more powerful machinery.

Using quite clementary methods, we study the action of the group of
automorphisms on various spaces of differentials.

V.1. Hurwitz’s Theorem

Throughout this section, M is a compact Riemann surface of genus g usually
(but not always) > 2, and Aut M denotes the group (under composition) of
conformal automorphisms of M.

The most important result of this section is the theorem referred to in
the title (Theorem V.1.3). We also obtain various bounds on the order of
an automorphism of a compact Riemann surface of genus >2 in terms of
the number of fixed points of the automorphism. We also generalize the
concept of hyperellipticity. The methods of proof in this section are mostly
combinatorial and involve the examining of many special cases.

V.1.1. The next result will be strengthened considerably in V.1.5.

Proposition. If 1 # T € Aut M, then T has at most 2g + 2 fixed points.

PROOF. Since M is compact and the fixed point set of T is discrete, the fixed
point set is finite. Choose a P € M that is not a fixed point of T. There is a
meromorphic function f on M whose polar divisor isPrwithi<r<g+1
(r = g + 1ifg > 2and Pisnota Weierstrass pointor g < 1,r < g, otherwise).
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Consider the function h = f — fo T. Its polar divisor is P(T"'P). The
function h thus has 2r < 2g + 2 zeros. Each fixed point of T is a zero of L,
Thus T has at most 2g + 2 fixed points. O

V.1.2. We assume now that g > 2. Let W(M) be the (finite) set of Weier-
strass points on M. Recall that W(M) consists of at least 2g + 2 points and
precisely 2g + 2 points if and only if M is hyperelliptic.

Proposition. If T e Aut M, then T(W(M)) = W(M).

Proor. As a matter of fact the gap sequences (with respect to g-differentials,
q = lyat Pe M and at TP are the same. O

We define Perm(1(M)) as the permutation group of the Weiersirass
points on M.

Corollary 1. There is a homomorphism
A:Aut M — Perm(W(M)).

Furthermore, 1 is injective unless M is hyperelliptic, in which case Kernel 3 =
{J), where J is the hyperelliptic involution.

ProoF. The existence of 4 follows from the proposition, If M is not hyper-
elliptic, then there are more than 2g + 2 Weierstrass points. By Proposition
V.1.1, only the identity fixes all the Weierstrass points and thus 4 is injective.

If M is hyperelliptic, then by Proposition II1.7.11, an element T ¢ {J)
has at most 4( <2g + 2) fixed points. Of course, J lixes all the Weierstrass
points. O

Corollary 2 (Schwarz). If M is a surface of genus g > 2, then Aut M is a
finite group.

PrOOF. We have produced a homomorphism of Aut M into a finite group (the
permutation group of a finite set), and the homomorphism has a finite
kernel. .|

V.1.3. Having seen that Aut M is a finite group, we naturally want to get
a bound on its order.

Theorem (Hurwitz). Let N be the order of Aut M, where M is compact
Riemann surface of genus g > 2, then

N < 84(g — 1).

Proor. Consider (recall the discussion in II1.7.8) the holomorphic projection
(abbreviate Aut M by G)
M - M/G.

o
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We know that « is of degree N, and M/G is a compact Riemann surface of
genus 7. The mapping = is branched only at the fixed points of G and

b(P)=ord Gp— 1, all Pe M.

Let P,,..., P, be a maximal set of inequivalent (that is, P; # h(Py), all
h e G, all j # k) fixed points of elements of G\{1}. .

Let v;=ord Gp,. Then (using cither group theory or covering space
theory) there are N/v; distinct points on M equivalent under G to P j-—e§(1:h
with a stability subgroup of order v, (if h takes P to Q, then Gy = hGph™ ).
Thus the htotal branch numbcr of & is given b)i

r

N ’ 1
B=Y —(v;-1)=N}Y (I“T)'
=1 v j=1 i

The Riemann-Hurwtiz relation now reads

r 1
2g-2=N2y-2+N ¥ (1 —~). (1.3.1)
j=1

v;

Note that v; > 2 and thus § < 1 — 1/v; < 1. The rest of the proof consists of
an analysis of (1.3.1). It is clear (since we may assume that N > 1) that g > 7.
We consider possibilitics:

Casel:y=2.

In this case we obtain from (1.3.1) that

29—-222N or N<g-1L
Casell:y=1.
In this case (1.3.1) becomes

r 1
29-2=N Z, (1 — ;_> (1.3.2)

J

If r = 0, then also g = 1 (we assumed g > 1). This is the basic fact‘ (.the 1§ft
hand side of (1.3.1) is >2) that will be used repeatedly. Thus (1.3.2) implies

2g—2=24N or N<4g-1).
Case Il1:y=0.

We rewrite (1.3.1) as
r 1
20— 1) = N( ;l (1 - V—;) - 2), (1.3.3)

r=3

and conclude that

(since 2(g — 1) >0, N> 1, and (1 - 1/v) < 1 for each j).
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If r > 5, then (1.3.3) gives
2(g—-1D=4N or N<dlg- 1)

If r = 4, then it cannot be that all the v; are equ ’
. X 7 : al to 2. Thus, at lez
is >3, and (1.3.3) gives ’ ! U at least one

29-1)=2N3+%-2) or N<12(g—- 1)
It remains to consider the case r = 3. Without loss of generality we assume
2 < Vi < %) < Vi. (134)

Clearly v3 > 3 (otherwise the right hand side of (1.3.3) is negative). Further-
more, v, 2 3. If vy = 7, then (1.3.3) yiclds

29 -N=NE+3+%-2 or N<R4g-1).
Ifvy=6and v, =2, then v, > 4 and

N<24g-1).
fvy=>6andv, > 3(recall (1.3.4)), then

N<1izZig-1).
fvy=>5and v, == 2 then v, > 4 and

N <40(g — 1).
Ifvy=5and v, > 3, then

N<15(g - 1)
If vy = 4, then v; > 3 and

N<24g - 1)

This exhaustion (of cases) completes the proof.

EXERCISE
We outline below an alternate proof of Hurwitz’s theorem.

{1) Represent M as U/I" where U is the upper half plane and I is a fixed point free
Fuchsian group.

{2) Show that N(I') = normalizer of I" in Aut U is Fuchsian and that Aut M = N(I')/I".

3 Us.e the fact that n: U/I" - U/N(I'} is holomorphic to conclude that N(I') is of
finite type over U.
(4) Observe that
deg n = [N(I):I],
where deg n = degree of n, and [N(I"): "] = the index of I" in N(I').
(5) Show that
Area(UT)

Area(U/N(T)) [N@):T]

V.I. Hurwitz's Theorem 245

{6} Prove that for any Fuchsian group F of finite type over U, we have
Arca(U/F) 2 —.
21
(7) Since Area(U/I') = 4n(g — 1), conclude Hurwitz’s theorem.

V.1.4. To simplify the statement of results, we introduce the following
notation. For f a non-constant meromorphic function on a compact
Riemann surface M(f € X (M)\C), let deg f be the degree of f, then (of
course)
N - deg(:degp,*

where D = f71(c0). For T € Aut M, ord T will denote the order of T and
v(T) the number of fixed points of T. Our next result is similar to Proposi-
tion V.1.1.

Propositioh. Let f € X (MN\Cand1# T € Aut M. Assume that v(T) > 2 deg f.
Then f = f » T and deg f is a multiple of ord T. If in addition, deg f is prime,
then ord T is prime and M;{T)» = C U {c0}.

Proor. Consider h=f — fo T. If h ¢ C, then degh <2 deg [ — r, where
0 < r < deg f and r is the number of poles of f fixed by T. Euch fixed point
of T that is not a pole of f is a zero of h. Thus, h has wWT)—r>2degf—r
zeros. This contradiction shows that h e C, and since T fixes points which
are not poles of f, h =0. Thus, f projects to a well-defined function fon
M/{T)>. In particular,

deg [ = (deg f)(ord T).
If deg f is prime, then deg f =1and thus MKT) =Cu {oo}. O

Remark. The fact that f is invariant under T shows that T has finite order.

V.1.5. In this section, M is a compact surface of genus g = 2.
Proposition. For 1 # T € Aut M,

29
< —_— 1.5.1
IS4 oaT o (5D
PrOOF. Apply the Riemann-Hurwitz relation to the natural projection
M — M/{T).If the range has genus then

ordT—1

29-2)=(ord T2y =2+ 2, v(T9). (1.5.2)
j=1

We must explain the evaluation of the total branch number B of the pro-
jection appearing in the above formula. Clearly B is the weighted sum of
the fixed points of {T); each fixed point appearing one less time than the
order of its stability subgroup. This is exactly the contribution for B in
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{1.5.2). We use now the obvious incquality v J
{1.22) W us equalty (T) < w(T?),j=1,...,0rd T — 1,

(29 —2) = (ord T)27 = 2) + w(T)ord T — 1),

or
WT)<2+ 29 {2)ord T)
odT—1 ordT-1
from which (1.5.1) follows, 0]
Corollary 1. If ord T is prime, then
WT) =2 + ¢ 2ilord T)
ordT -1 ~

where 3 is the yonms of MT )
RN Uy S, In this case, equulity h s .
()nly ’j v 0. , Cyldinly holds in (151) {f‘ and

Proor. If ord T is prime, then v(T) = w(T’),j=1,...,0rd T — 1 0

Remark. In general, (even if ord T i ey :
then 7 = 0. general, (even if ord T is not prime) if equality holds in (1.5.1),

Corollary 2. In yeneral, v(T) < 2g — 1 if M is not hyperelliptic.

Remark. For hyperellipti i
k. ptic surfaces we have, in ge
(provided g > 3). See Proposition 111.7.11. Beneral, better bounds

EROOF OF CoroLrary. From Corollary 1, an automorphism of order 2
Has pre}cxsely 2g + 2 — 4y fixed points. Since M is not hyperelliptic, y .1
ence for such an automorphism w(T) < 2g — 2. If ord T > 3, then ,v(T.).<

24+g Now2g—1>2 = i
hyperelliptic. 22+ g unless g = 2. But in genus 2, every surface [1__§'

V.1.6. We now give two examples to show that our results are sharp.

ExampLE 1. Consider the hyperelliptic Riemann surface of genus g > 2
wh=(z - €1) (2 — ezg42),

here ey, ..., ey, , are 2 isti
X 2o g -+ 2 distinct ¢ -
involution is des cribed by omplex numbers. The hyperelliptic

(25“7) [and (Z, - W)

It clegrly has 2g + 2 fixed points: z7 '), j=1,..., 2g + 2; and the points
over infinity (that is, the two points in =~ *(cc)) cannot be fixed. We introduce
some symmetry now by setting e,,,.; = —e;,j=1,...,g + 1. (Hence we

are assuming also e; . T
represented Ey e;#0, for every j) Thus the hyperelliptic surface is

2
wo = (22 _e%). ..(22 _ e:+1)-
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Here we have the additional automorphism T of period 2 given by
(z,w) = (— Z,w).

How many fixed points does this automorphism T have? Clearly the
quotient surface is
wh=(z—e) (2= e,

which is of genus (g — 1)/2 if g is odd, and of genus g;2 if g is even. In the
former case, v(T) = 4 and in the latter v(T) = 2. What are these fixed points?
They clearly must be the two points over 0 in the later case, and the four
points lying over 0 and o0 jn the former case.

We now introduce hyperelliptic surfaces With another symmetry: Let
& = exp(2nif(2g + 2)) and let ¢; = ¢ j=1,...,2¢g+2and define an auto-
morphism T of order 2g + 2 by

(z.w) = (ez,w).

The only possible fixed points are over 0 and 2. We will now examine
the Taylor series of w at the origin and at o to show that T has 2 fixed
points (lying over zero). Note that the Riemann suiface is represented by

the equation
4 w?=2z2%2 -1,

The two function elements lying over zero are then

w(z) = ii(lz ajz‘29+2’j> with ap = L.

=0

Clearly these two are fixed under T. At infinity { = 1/z is a good local
coordinate, and the function elements over oo are

w(o) = is’"'”(E b,z<29+2>f) with by = 1.
=0

J

Thus T interchanges these two function elements. Similarly, T* fixes the
two points lying over 0, and T* sends a function element lying over o
onto the element times £46* V. Thus T* has 4 fixed points if and only if
k = 0 mod 2, and T* has only 2 fixed points otherwise.

ExampLE 2. Consider the Riemann surface defined by the equation
w? = (Z - el)z(z - eZ) T (Z - er)9

with r=> 2 and ey, ..., & distinct complex numbers. We first compute its
genus. The surface is a 3.sheeted covering of the sphere. It is branched
(with each branch point of order 2) over the points ey, . . ., €. It is branched
over o if and only if r + 1 # 0 mod 3. Thus, the genus of the surface is

r—2, ifr=2mod3,

and
r—1, ifr#2mod3.
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An automorphism T of this surface given by
. 2ni
(zw) > (zew), with e = exp 5 )

For r =5 (thus g = 3) it has 5(=2g — 1) fixed points. More generally, for
r =2 mod 3, the surface has genus r — 2 and the automorphism has r fixed
points (=g + 2). Similarly, if r # 2 mod 3 the surface has genus r — 1 and
the automorphism has r -+ 1 fixed points (=g +2)

V.1.7. Theorem. Let M be a compact surface of genusg>2.Letl #TeAut M.
If ¥(T) > 4, then every fixed point of T is a Weierstrass point.

Proor, We may assume that n = ord T is prime (if not, there is 4 j such that
T/ is of prime order, and clearly every fixed point of T is a fixed point of
T7). Let

M- MKTY = M

be the canonical prejection, and let 7 be the genus of M. The Ricmann—

Hurwitz formula yields

29—-2=a(2y-2)+(n- I(T). (1.7.1)

Let P € M be a fixed point of T and P = #(P) € M. There is a non-constant
function f € (M) such that fis holomorphic on ;\7[\{15} and f has a pole
at P of order <y + L. Let f = fo 7 (f is the lift of [ to M). Then f e #()M),
J is holomorphic on M\{P}, and ord, J < n(y + 1). We now use (1.7.1) and
the hypothesis v(T) > 4 to conclude

29 =2=n(2y = 2) + (n = DW(T) > n(2y — 2) + 4(n — 1),
or
g+1>n(y+ 1)
It follows that P is a Weierstrass point on M. [

V.1.8. Theorenl. Let M be a compact surface of genus g=>2.Letl #TeAutM
with n = ord T, a prime, Let § be the genus of M = MKTY (thus, W(T) =
2+ 2(g — ng)/(n — 1)). Suppose that g > n*g+(n— 1) and that there is a
1 # Te Aut M with w(T) > 2n(J + 1). Then:

Each fixed point of T is a fixed pointof Tandord T < ord T = n. (1.8.1)

If ord T =n, then Te {T>. (1.8.2)
(T is a normal subgroup of Aut M, {1.8.3)
If n=2, Tisin the center of Aut M. (1.8.4)

PROOF. Let Py, ..., P, be the fixed points of T. As in the proof of the last
theorem, for each j, there is a non-constant Jj holomorphic on M\{P;}
with a pole at P; of order <n(7 + 1). It therefore follows from Proposition
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V.1.4 that f;= fjo T for each j and thus T(P)) = P;. We have thus verified
the first part of (1.8.1). In particular, w(T) > v(T). We rewrite

g>n*g+(n—1)y7»
in the form (add (n — 1)g to both sides and simplify)

g-ng_gt+n-—-1 (1.8.5)
n—1 n

We continue with

- 2(g — ng) - gtn—1
WDz v(l) =24= 7> 2427

2 -1 2
LS S LA N i
n n H

(The first strict inequality being a consequence of (1.8.5)) By Proposition
V.15,
29

LR e

hence ord T < n, finishing the proof gf(l.S:l). 3
ami\s::me ord T=ord T. Both T and T are in the stal?lhty sngroup {of
Aut M) of P,. Since this stability subgroup is a)cycél% >rotatxon group
“oroilar it is clear that (T ) = .

{(Coroilary to Proposition 111.7.7), it 1s_c 8 ~ -

Next, let Be Aut M and set C = B 15 T B.Then ord C = ord 7;, anld,
by the inequality on g, v(C) = w(T)=2 + 2Ag — ndH/in—1)> 2n(é;l'+h 21
Thus by (1.8.2) Ce(T) or (T) is normal in Aut M. We have establis eD
{1.8.3) and hence also (1.8.4).

Remark. The above generalizes the fact that on a hyperelliptic surface Ag
(of genus >2) any automorphism with more than 4(=2-200+1)) ﬁx.eh
points must (be the hyperelliptic involution and hence must) commute wit
every element of Aut M.

V.1.9. We wish to generalize slightly the concept of by;.)erellipticity. OA
compact Riemann surface M will be called y-hyperelliptic (y e,y Zh')
provided there is a compact Riemann surface M of genus y and a holomorphic
mapping of degree 2 _

PRIne M- M.
Thus, a y-hyperelliptic surface is a two sheeted covering of a cqmpact S}xrface;
of genus 7, with “O-hyperelliptic” corresponding to our previous notion o
“hyperelliptic”. o

yIIt)eis immediately obvious that on every y—hyperell}ptlc surface M, there
is a y-hyperelliptic involution; that is, a J, € Aut M with

OrdJy:-_'z’ v(Jy)=Zg+2—4V~
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Theorem. Let M be a y-hyperelliptic surface of genus g > 4y + 1. We have:

If 1 Te Aut M withv(T) > 4(y + 1), then T = J,. (1.9.1)
J, is in the center of Aut M. (1.9.2)
If feX(M)\C, and deg f < g + 1 — 2y, then deg f is even. (1.9.3)

ProOF. Statements (1.9.1) and (1.9.2) are immediate consequences of the
preceding theorem. Note that 2 deg f < 29 + 2 — 4y = v(J ) thus by Propo-
sition V.14, f = f » J, and deg f is a multiple of ord J, =2 O

Corollary 1. The y-hyperelliptic involution on a surface of genus g is unique
(if it exists) provided g > 4y + 1.

ProoF. The y-hyperelliptic invelution has 2g + 2 — 47 fixed points, and
29+ 2 —4y >4y +4ifand only if g > 47 + 1. The uniqueness now follows
from (1.9.1). d

Corollary 2. If v, r are non-negative integers withr > O and g > 4v + 1 + 2r,
then a surface of genus g cannot be both y-hyperelliptic and (y + r)-hyperelli ptic.
In particular for g > 3, a surface of genus g cannot be both hyperelliptic and
I-hyperelliptic.

Remark. In V.1.6 we have seen examples of surfaces of genus 2 and 3 that
are both hyperelliptic and 1-hyperelliptic

Proor oF CororLARY 2. Suppose M is both (y + 7)- and y-hyperelliptic, then
J,+, has
20+2—-4(y+ >4+ 1)

fixed points. Thus J, ., = J,, which is only possible if r = 0. O

V.1.10. Proposition (Accola). Let M be a compact surface of genus g > 2.
Let G, Gy be subgroups of Aut M such that G = { i~ G; and G; n G; = {1}
Jori #j. Assume ord G; = n;, ord G = n, and let y = genus of M[G,y; = genus
of M/G;. Then

k
(k=1yg+ny= 73 npy; (1.10.1)
i=1
PROOF. Let us denote by B and B; the total branch number of the canonical
projections
M- M/G, M- MG,
Obviously
B= 3% (ord Gp—1)
PeM

(with Gp, the stability subgroup of G at P € M), with a similar formula for
B;. Now if Gp is nontrivial, it is cyclic and generated by some Te G. Clearly
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T € (G))p for some j. It follows easily from these observations that
B= Y B,
j=1
We now use Riemann-Hurwitz
2g—2=n(2y -2)+ B,
29 - 2=n;2y;—2)+ B;.

Summing the last expressions over j, subtracting the first, and using the fact
thatn =Y %, n; — (k — 1), we get (1.10.1). 0
- - 5 -

Corollary. Let M be a surface of genus 3. Assume there is a subgroup G of
Aut M with G = Z,® Z,. and M/G of genus zero. If one element of G\{l}
operates fixed point freely, then M is hyperelliptic.

ProokE. The group G can be decomposed as in the theorem with k = 3 and
ny = n, = ny = 2. Hence

3=y1+72+ 73

Since one of the elements of G operates fixed point freely, one of the y;
must be equal to 2. The other two cannot both be positive. O

V.1.11. We record for future use the following simple

Proposition. Let M be compact Riemann surface of genus g < 2. If T e Aut M
is of prime order n,thenn <2g + 1.

PrOCF. Let v = v(T) and use Riemann-Hurwitz with respect to the projec-
tion n:M — M = M/{T) onto a surface of genus §.

29— 2=n2 —2)+v(n—1). (1.11.1
Assume n > 2g. .
If § = 2, then n(2§7 — 2) = 2n = 4g; a contradiction. o
If 7= 1, then v # 0 and v(n — 1) = 2g — 1: again a contradiction.
If §=0, then v > 3. Assume first that v >4, then —2n+v(n—1) >
2n — 4 > 4g — 4; a contradiction.
Ifv=3,then (1.11.1)reads 2¢g —2=n—-3orn=2g+ L.

Remark. Proposition V.1.11 has shown that the maximal prime order of
an automorphism is 2g + 1 and that in this case the automorphism T has
3 fixed points and M/{ T is the Riemann sphere. Examples of such Riemann
surfaces are those defined by the equations

wHtl = (2 — e,z — €2z — €3)",

where ey, e,, e, are distinct complex numbers and a,, a5, 23 are posi?ive
integers such that a, + o + o3 = 0 mod(2g + 1), and 2g + 1 is a prime
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number. The automorphism T sends w into exp(2ri/(2g + 1))w and fixes =,
A natural question to ask is what are some other possible prirae orders. We
shall see in the next section that the only prime order >g other than 2¢ - 1
is g + 1. In this case T will turn out to have 4 fixed points and once aguin
M/{T ) will be the Ricmann sphere.

V.2. Representations of the Automorphism Group
on Spaces of Differentials

Let M be a compact Ricmann surface of genus g > 2 and Aut M the group

of conformal automorphisms of M. In this section we study the representa-

tion of Aut M on the space of holomorphic y-differentials on M, s (0),

¢ = 0. With the aid of the representations, we will improve many resulis of
the previous section.

V.21 Let us begin by observing that a product of a holomorphic -
differential with a holomorphic g,-differential is a holomorphic (g, + ¢,)-
differential. Thus the direct sum

(M) = HYM)
7=0
is a commutative graded algebra.
Let Te Aut M and ¢ € s#9(M), then T acts on ¢ to produce
To=¢-T L

(Say that ¢ in terms of the local coordinate z vanishing at P € M is given by
u{z)d:% Choose a local coordinate { vanishing at TP. Assume that in terms
of these local coordinates T~ ! is given by z = f({). Then Ty in terms of the
local coordinate { is given by u(f({))f({)*d{%.) We note several properties
of this action of T on differentials:

a. For Ty, T e Aut M, ¢ € #YM),
(T o Ty)p=TyT,p)
b. Foreach Te Aut M,
T:H#Y(M) - H#YM)

is a C-linear isomorphism.
c. For Te Aut M, p;e #9(M),j=1,2,

T(@,92) = (T, )(Tey).
d. ForOs ge #YM), Te Aut M, Pe M,

ordrp T = ordp ¢.

¥
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Proposition. We have defined a representation of Aut M on #'9M) (that is,
a homomorphism of Aut M into Aut{#%M))) as well as a graded representa-
tion of Aut M on #(M). For q > 1, the representation on ¥*(M) is faithjul,
except for g = 2 = q in which case the kernel of the representution is precisely
{J>, J = hyperelliptic involution.

Proor. Assume T # 1, T € Aut M. Exclude for a moment the case where
T = J (in particular M is hyperelliptic in the excluded cases). There is thus
a Weierstrass point P € M with TP # P. Therefore, thereisa 0 # ¢ € #'(M)
such that ordp ¢ = g. If Te? = ¢ then ¢7 has at lcast gq zeros at P and gq
zeros at TP. Hence ¢?¥%as 2gq > g(2g —2)zeros and we have that ¢ = 0.
Hence T # 1 cannot induce the identity in Aut{#%(M)), and the representa-
tion is faithful.

We cxamine now the action of J on .#9%M). In this case M is hyper-
eiliptic and we may assume that M is represented by

wi=(z—e) (2~ ey,
with {ey,....€1,,,} a set of 2g + 2 distinct complex numbers. Recall the
basis for #'(M) introduced in IIL.7.5:

77 ldz

i w

j=1,...,9

The automorphism J can be represented by
(z,w) > (z,—w).

It is thus clear that J does not act as the identity on s#%.M) for odd g. (Note
that Jdz = dz, and thus Jg; = —¢; and J¢4 = (—1)%p%.) For g = 2, a basis
for #%(M) is given by

dz? zd? 7 dz?

from which it follows clearly that Jo = ¢ for all ¢ € #*M). For g > 2 and
g > 2 even, we consider
d: a
()

We must only verify that dz?/w? ! is holomorphic. Use the notation of
I11.7.4 and I1L.7.5,

-4
<_"_ =P, P, +2Q({1+1)(‘1-1)—2qQ(29+1)(q-1)‘2‘1_
Wq—l 9

Thus the differential is not holomorphic if and only if (g + 1)(g — 1) < 2q
if and only if ¢ = 2 and g = 2 (as was to be expected from the exclusion we
already made). 0
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V.2.2. Let G be a subgroup of Aut M. Let ¢ € #YM), we shall say that
¢ is G-invariant provided Ty = ¢ for all Te G. The vector space of G-
invariant holomorphic ¢-dilferentials on M will be denoted by #4(M). For
the moment let us ignore the fact that g = 1 (assume g is arbitrary) and the
fact that ¢ is holomorphic (merely assume that ¢ is meromorphic). Let x
denote the natural projection

M —~ M = M/G.
Recall that we have shown in 111.4.12 how to lift an arbmary g-differential
@ on M to a g-differential @ on M. It is clear that ¢ is, in this case, G-
invariant. Conversely, every G-invariant g-differential ¢ on M projects to a
g-differential on M.
We let for P & M, v(P) = ord G, then as we saw (1T1(4.12.2))
ordp © = w(P)ord,p, @ + g(v() — 1).
Thus, we see that
1
ord, p = 0 dym @ —ql 1 ———).
PP VU< 0rlyp @ 2 ‘l( v(P))

Stuce ordp, @ € Z, we see that

1
ordp ¢ 2 0 <> ord p) § > —[q(l - T(ﬂ):]’

where [x] is the greatest integer < x.

Since the projection 7 is defined by a group, v(P) depends only on the
orbit of P under G. Thus, for P € M we can define v(P) = v(n~ 1(15)), and 1t
is thus convenient to introduce a g-canonical ramification divisor of n by

A I*I

If, for an arbitrary divisor D on M, we define

—lg(1 ~ 1v(PpE (22.1)

HYM ;D) = {¢@; ¢ is a meromorphic g-differential and (¢)/D is integral},

then we have established the following

Proposition. For ¢ > 1

HLM) = HY(M,Z9). (2.2.2)

Corollary. Let § be the genus of M = M/G, then

dim #4{M) =g, (2.2.3)
and forq = 2

, _ 1
dim #4M) = (2q — DG — 1) + P;_{ [q(l - Tﬁ))] (2.2.4)
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Proo¥. The proof is analogous to the one given in IIL5.2. We use the iso-
morphism of the proposition and the Ricmann-Roch theorem. Let Z be a
canonical divisor on M. It is easy to see that

AL
L<A ) HYM,Z9).

The isomorphism is given by

Al

where ¢ is a g-differentfal and (p) = Z% Now for ¢ = 1, Z" = 1 and thus
HNM.Z'V) = #1(M) = the j-dimensional space of abelian differentials of
the first kind on M. For ¢ = 2, we compute using Riemann-Roch

Z(G) Z’l 7‘7
r<AZ—q) = deg(zm) g+1+ l(A“”)
1 AL
=q@g-2+ ngw [q( - ﬂﬂ)] - 1(‘“”)

Thus to complete the proof of the corollary, it suffices to show that
i(29/2'9) = 0 which follows from the inequality deg(Z%Z'") > 2§ — 2. We
have already used the fact that

q 1
deg(%) =q(2 - 2) + P;a [q(l - ;(7))]

Thus the desired inequality clearly holds for §= 2. For § <1, we must

examine
1
1-——=1]}I (2.2.5)
i [q( v(P))]

If§ = 1, then we saw in the proof of Hurwitz’s theorem that for some PeM,
v(P) = 2, thus the sum in (2.2.5) is greater than or equal to {g/2] = 1. For
J = 0, we must show that the sum in (2.2.5) exceeds 2(g — 1). Now

1 _a v(P) — 1}
P;w [q(l B Wﬁ)ﬂ = P};M {q v(P) v(P)

1
=@-1 Z:M< (P))

But we saw in the proof of Hurwitz’s theorem (equation (1.3.3)) that

Shes (L — (1MP))) > 2.

Remark. Let g =2 and let n = the number of points P e M with v(P)> 1,
then

Z(q)
L ( ) 5 [ fo € HUFZD),

dim #XM)=37—-3+n  (20).
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V.2.3. We start now a more dctailed investigation of the action of T € Aut M
on #I(M), q > 1.

Proposition. There exists a busis for A4 M) such that the action of T on
HUM) is represented by a diagonal matrix.

PrOOF. Since Aut M is a finite group, there is an integer n such that 7" = 1.
Thus (because Aut M is represented on #9(M)) T" =1 as a matrix with
respect to any basis for s#(M). In particular, 4” — 1 is an annihilating
polynomial for T and the minimal polynomial (a factor of A* — 1) has distinct
roots. Thus, by a well known result of linear algebra, T can be diagonalized.

We can say something more, Each entry on the diagonal must be an n-th
root of unity. We will continue with this analysis in the next section. [

Remark. We shall actually be able (in most cases) to exhibit a basis for
HHM) with respect to which T is diagonal.

V.2.4. We continue with the problem introduced in the last section. We
wish to determine the eigenvalues (and their multiplicities) of T.

Assume that Te Aut M, ord T =.n> 1, and (T ) operates fixed point
freely on M. (If n is prime, then (T) operates fixed point freely if and only if
T is fixed point {ree. If n is not prime, the backwards implication need not
hold.) Let us recall that the eigenvalues must be of the form ¢/ where & =
exp(2ni/n) with = 0,...,n — 1. The eigenspace of 1 is precisely 44, (M)
and thus has dimension equal to (2¢ — 1)(F — 1) for ¢ > 1 and equal to §
for ¢ = 1, where as usual § = genus of M = M/{T). Next assume that 1 is
any eigenvalue. Then for ¢ € #%M) with To = i, we have that (¢) is
invariant under T (and hence also under {T)). Let us denote by E; the
eigenspace of 4. If we now choose any non-trivial ¢, € E; we see that for
¢ € E;, ¢/po 1s a (T )-invariant meromorphic function on M whose divisor
is a multiple of (¢o) ~*. The divisor (¢,) projects (because it is { T )-invariant)
10 an integral divisor D on M. It is thus easy to see that E, = L(1/D). Now
deg D =2g(g — 1)/n and Riemann-Hurwitz (or elementary arithmetic) shows:
that (29 — 2) = n{2§ — 2), and thus deg D = 2q(§ — 1). Hence by Riemann~
Roch (recall that § > 2)

1\ jdegD-@-1)+iD)=Q2q—1)F-1), forg>1,
"D/ T lg-1+iD), for g = 1.
For g = 1,i{(D) = 1 if D is canonical and i(D) = 0 otherwise. Now the divisor
D is canonical if and only if @4 projects to a holomorphic differential on M;
that is, if and only if ¢, is G-invariant (if and only if 4 = 1). We conclude
(2¢ - Yg— 1), g>1,1"=1,
dimE; ={§, g=1,4i=1,
g—1, g=1,1#1,i1"=1
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Since }.;cc dim E; = dim #%(M) and (g — 1) = n(§ — 1), we sce that all the
n-th roots of unity must be eigenvalues and that their multiplicities are
given by the above formulae.

V.2.5. We extend next the considerations of the previous section to the
general case (G = (T ) is assumed to have fixed points). The development

given below is due to L. Guerrero. . _
To fix notation (in addition to what was introduced in V.2.4), we let

n; = dim E,;, j=0,...,n—1,
Formulae (2.2.3) and (2.2.4) compute n,. To compute n;for I <j<n-—1,

we partition the branch #et X of m; M — M/G into a disjoint union
¥ = nUI X’,
where =1
X, ={PeM;T'P=Pand T"P # P for0<k<I-1}
We claim that if X, # @, then I{n (I divides n). Suppose P € X, and 2 < I<
n—1 Write n=ul+k 0<k<!—1 Then T*P =P, and thus k=0.

Hence we see | [n. Furthermore, the orbit of each point P e X consis_ts of
the I points P, TP...., T'"'P and are also in X . It is thus clear that if for

non-empty X, we set
t(X)={Quil<msx), 1<I<n-1,

then (X)) consists of v, distinct points and X, consists of Ix, points. We
define x, to be zero for empty X,. We can choose a local coordinate z for
each point in 7~ *(Q,,) such that T~} is given by

Tz 2,

where 1, is a primitive n/l-root of unity (note that n,, depends only on O

and not on the choice of P € 171 (Q,n)). o
Suppose now that 0 # @¢ € E,;, 1 <j < n— 1. As before, in this case we

also have
1
N r<5;>’

where D; is a certain integral divisor on M/G.
To find what D; is, let us consider the equation for 0 # ¢ € E,,

To = geo.
Thus we also have .
T'o = &'e. (2.5.1)

Let us look at the Taylor series expansion of ¢, at a point in n~ YQ:

k=0
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Thus equation {2.5.1) reads
Y A g = z;j"( 2: J:/k:").
k=0 k=0
In particular, foreach k=0,1,2,...,
At~ &) =0.
Choose the unique integer 4,,; such that
1<y <n/l and nlpy =g,

Note that 4, = i (
imiey = 1/1 (this defines /,,;,) and we sct (for furth o=
We conclude that t thet 156} Ao = 0.

=0 ' ! n
v =0 unlessk + g = /.,,,Uknmd [)

Ci,et %, be the grder of @, at n”Y(Q,,) (this integer only depends on Q,,
and not on‘the point P we choose in its preimage). By our previous remarks
there Is an integer f,,; such that

n R
xml == ﬁmlj T + "'mlj —q = 0
(note that f,,,; = 0).

) Let %1, o, 0, bsvthe projections to M/G of the zeros of ¢ not in X. Let
x = 0rd, -1,y 0. We note that a function f & %7(M/G) is such that
H(M), where f = f o, if and only if 9 S0

i. f is holomorphic except at the points Qy, Qs

ii. ordg, f > —a,, and
it orde,fZ ~ Bty +(q — Ar)/(n]1).

Now we know how to define the divisor D; (which depends on @,):

X1

s
D;= H Qi H H Qg:lnlj+[(lmu“q)/(n/l)].
k=1

lin m=1

Remark. Wi i P = . .
i _ltil, our convention for j = 0, the formula for D; is valid for all j,

Note that deg(¢,) = 2q(g — 1), and hence

h % + lt,, = -
kgl - llzn mgl i zq(g 1) (252)
Now from the definition of D;,
deg D; = ; o + 3 + M
j k; x ; ,.;, Bt | (253)
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Next we use Riemann-Hurwitz in the form

2g~2=n20-D+L Y 1(%—1)

Iin m=1

=n2§—2)+ 2 x(n—1).

Ijn

We return to (2.5.3) and continue our calculation (using (2.5.2) and Riemann-
Hurwitz)

2 & Yy + 9 — ;'ml' }‘ml' -4
8% 1;1 ¥ ”Z"';ZI ( n/l * [ n/l ])
2 - ( Z Ak + }: Z lzml) - E - ;,;/l_—

n k=1 in m=1

[y

We have also shown that for g > 1
deg D; > 2§ — 2.

We claim that even if ¢ = 1 and even if deg D; = 2§ — 2,i(D;)=0forj>0.
Otherwise D; is canonical. In this case, there exists an abelian differential
@ on M/G such that (§) = D;. Note that the only way for deg D; = 2§ — 2
is to have equality all along the way in our previous calculation. In particular,
{(/1) = 1}|(Amy — 1), and since 1 < Jom; < (nf1), we conclude that Ao = /L.
Thus

s X1

p,= [T 011 I ot

k=1 lfn m=1

The lift ¢ of § will have a zero of order z, at each preimage of 0,,and a

zero of order
n n
Bmlj'l_ + (7 - 1) = Uy

at each point of 7™ *(Q). Thus ¢ will have the same divisor as g,. But this
means that ¢ is a constant multiple of . Since ¢ is G-invariant, ¢ € E,.
This contradicts the fact that o€ E,;, 1 <j<n— 1
We have concluded that if E, is non-trivial, then it has dimension
r(1/D;) = deg D; + 1 — g, except for the case g = 1, j = 0, and no fixed points.
Let us turn to the case g = 1. Note that for j >0, [Romtj — /] = 0.
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Thus fOI‘j > 0,
il -+ 1
deg D = 2 % + E 2 ml m’",

Hn m=1

and from (2.5.2)

29

deg D, =

“"Z Z l(}‘mu

llnm 1

Hence we conclude that (using Riemann—Hurwitz)

1

I|n m-=1
~ - &,
=g — 1 + Z Xy — - Z L 1/""’)" (2.5.4)
lin Nilnm=1

We compute next
n—1
Y A
j=1

Recall that 5, is a primitive (n/l)}-root of unity and that 9 = ¢ For

J=12...,(ml), {¢"} is the set of all (n/l)-roots of unity. We thus conclude
that

JH/mIJ

is a permutation of {1, ... (n/I)} with a(n/l) = (n/l). Further for j = k(n/l) +
Ty Amyj = Apy,- Therefore

Y A,",,.=1(1+2+~~+f>=
i=1 !

Thus

n—1 n—1 1
=4+ .
v 2()

Un IIn m=1

_n(g—1)+1+(n—-1)2x,——zZ(an-i-l n>

=n{f—1)+1+z Z(n—l)x,

Iln
We finally conclude that once again for each j, ¢ is an eigenvalue (and we
have computed its multiplicity). Note that some of the multiplicities may be

zero (for example, if § = 0). It involves no loss of generality to consider these
as eigenvalues with zero multiplicity.
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V.2.6. Let us now consider the case ¢ > 1. We calculate for 0<j<n-1,
1 ~
r(—l-)—j>=degD,-+l——g |
:q(zg— 2 +%E‘x,(n - l)) +3 Zl (q—:—l/'l'"—”+ [}"""’1'/7 q]) +1-7.

Iin tjn m=

Next we compute

n— 1
zl r(é.) =Qg-mlg—1)+4qg z xin—1)— 52 xi(n —1).

j=0 lin
To explain the last term, we write
n
M « —
q4=k7 T peZWeZu201<v0< Tt

(We will write v for v!.) Thus we have

O — oty | Amts __Ka_):D
T KT

s o )
a Iin m};l n/l n/l

Recall now that {A,; j=1,...,n/l}isa permutation of {1,...
the above summed from j = 1 to j = n/l yields

1
Z(V“’—%(l+%>—(v“’—1)>x,=%(1—5<1+¥)>x,

lin

,n/l}. Thus

Thus the sum from j = 0 to n — 1 yields

1 n 1 1& = - l"
(=304 g ) o=

In conclusion (using Riemann-Hurwitz once again)

n-1 1
,;o r(%;) =(2q-n@ -1+ (q - 5) ; x(n—1)

=(Q2¢—n@G—-1)+ (q - %) [(2g — 2) — n(2§ - 2]

=@2q-g—1)
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We have just proved that in al] cases

e
Dj —nj.

V.2.7.We now want to compute the trace of T(=tc T). Note that for g = 1

n-1
trT =3+ 3 ng

i=1
First observe that

n—1

2 e=-1
j=1

and thus using (2.5.4)

T = g+1—g_T\,__Z Y Zl/

in nl|nm 1j=1 m”
=1=Vyx -2 -
5 n?%mZJ; i @7.1)

As before, we fix m and ! and compute 72} Amts€’. Caleulate for [ > 1

Z A& = 4 s .
15 £+ 4 -l
“ ‘m “mi1 ,,,pE B R Lt
SOl R NP 2
mi1€ + + lm,(,‘me (L2

+ 4, g4 DEib+1 L
mit + + lml(u}z)ﬁn
n/l 1-1

= z ;‘mlj z ghtvb+J

nil

= z A8 z ek o

(since )=} &) = 0). Hence for | > 1

H _ n
jgl A'mUaj - —'lml(n/l) = '_'l‘.
Finally, for | = 1,
n—1
j=1 /m' = 121 Amij Nt

(and because {An,;; j=1,...,n — 1} is a permutation of {1, ...,n—1})

nil . -n
= 2 Mm =
F T L=
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We now return to (2.7.1) and continue with our computation after changing
notation: x, = t = number of fixed points of T and #,,y = €™,

trT—l—-Ex’——Z Z (—')—_,,,Zl 1=

tn nlinml
1#1

-——1—2x,+2x1+ z 1—8

lin lin
1#1
1
=11
+ z 1—¢&"m
- rom ,

=1

+mzll—8vm

V.2.8. As usual, we proceed to the case g > |. Here we compute

n-1
trT= ), ng
j=o

n—1

=((2q— 1)(5-1)+§Zx,(n—1)) L @
In j=0

K /'-mlj mlj (1. j
+ g
Lz =)

The first sum, as before, is equal to zero. Thus we conclude (simplying further
as in V.2.6)

wT=-231 3T 14T T z[‘]e’

Nin m=1j=0 ln m=1 j=
) ) [ : w]y‘
=—-Y1 —_— Lmii .
IEp:' ( ) "mzx 1=y ifpm= 1_;20
1#1

As we remarked before,

. . n
_ Pomij — v ] 0 if v < Ay < T
ymli - n/l -
. ) .
—1 0 <Ay <.

We proceed essentially as before for [ > 1
z Vmif = Tmnt + Ymizfs + 0 F Pt

mh+1 P 2(n/t
+ ymllb("/) + + }’rnl(n/l)s @b

+ Pg 8T ey
— ’)’(1 + PULNE g2 4. el 1)("11)) =0
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wh — - 2 .. N n
ere Y = 1€ + mae” + - + Y™ Therefore for | > 1,
n—1

Z Ymtj€ = Ymio = Vmn = — 1.
Jj=0

Forl=1
n-1 . n—1
Z “/rnl]‘f‘\l= )’mljn;lnTu
i=1 ji=1
n—11
= Z Amij =Y fimis
= n ml
_ nil l:} —_ rlj
= n ml
v-1 v
==Y gy = Tnt T
j=1 1- Hm1
We can finally complete the calculation:
trT:le-}-Z 1 _le+ xl;l_-l__’l;.",l
l’;Iknl m=1 1 - Nm1 ln m=1 1- Ny
1#£1
_ i 8v,,.v
m=1 1l — P

V.2.9. We summarize our results in the following

Theorem (Eichl.er Trace Formula). Let T be an automorphism of order n > 1
{)f a compact Riemann surface M of genus g > 1. Represent T by a matrix?)ia
l[t; action on #%(M). Let t be the number of fixed points of T. Let ¢ = exp(2mni/n)

t Py, ..., P, bethe fixed points of T. Foreachm =1, . .., t choose a locai

Coor d”late zat 1 m a"d an "ltege’ V, SuCh Zhat 1 V n— 1 "d h hat
S
y m m S a sucn t

Ttz g'mz
(note that v,, must be relatively prime to n). Then

Vm

t
trT=1+Z fOrq:l,
. m=1

1~-gm
and

t VmV

rT = z

m=1 1—¢™m

forg>1,

whe; 0 <v<nis chosen as the unique integer such that q = un + v with
n€ Z. In each case the sum is taken to be zero whenever t = 0

Note that only the fixed points of T i
contribute to tr T i
are fixed by a power of T but not T itself). (not the points that
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Corollary (Lefschetz Fixed Point Formula). For g =1,
uT+trT=2-1t

PrOOF. We merely note that for € C, 0 # 1, 6] = 1, 2 Re(0/(1 ~ o)) = —1
O

Remark. For g =1, tr T+ 1r T is the trace of the matrix representing T on
the space of harmonic differentials—which is, of course, by duality related to
the representation of T on H (M)

V.2.10. We now turn to the case where T  has prime order n and at least
one fixed point. Say P € 8 is the fixed point of T. Choose a basis {@, - - - 0a}
of s#%(M) adapted to P(d = dim H#YM)); that is, in terms of some local
coordinate z vanishing at P, we have

@; =@+ O(l)dA, j= 1,...,4,

where 1 =9, <7, <" <ya<2q(g ~ 1) 42 is the “g-gap” sequence at P
(I115.8). Furthermore, we may assume without loss of generality that the
automorphism 7' is given by

zrrgz,  e=e""

It is of course clear that T~} is given in the above form for some I,
1 < | < n— L If we are interested only in fixed points (because n is prime),

T can be replaced by T%. Note also that ¢ is an eigenvector for the eigenvalue
¢ of T if and only if ¢ is an eigenvector of the cigenvalue ¢/ for T'. Thus 7" and
T have the same eigenvalues and the same traces.

It follows that

Ta, = (27" + 0(z) sz,
and in fact
T(p_,-=£”_1+q(p,~, j=1,...,4d.

On the basis of the above development, we can strengthen (slightly) a
previous result (Theorem V.1.7).

Theorem. Let T € Aut M be of prime order n, and assume that T fixes a non-
Weierstrass point P. Then 2<v(T) < 4. Further, the genus § of MKKT)
is given by § = [g/n], and writing g =gn +r (0 <r<n—1),there are only
three possibilities:

ar=0¢g=gnvT)=2

b. r=%(n— l)ag=(g+12)n_%’v(’r)= 3,01’

c.r=n—-1,g=@G+1n- LvT) =4

Proor. Since T fixes a non Weierstrass point, we have y, = j, j = 1,...,9
and the action of T on (M) is given by the diagonal matrix

diag(e, €%, . . - &)



266

V Automorphisms of Compact Surfaces—Elementary Theory
with & = exp(2ni/n). The genus § of M/(T) is the multiplicity of the eigen-
value 1, and thus § = [g/n]. Now we write

g=gn+r, reZO0<r<n-l.

We use the Riemann-Hurwitz formula (Corollary 1 to Proposition V.L.5)

g=n@—1)+3n-WT)+1, (2.10.1)
and conclude that

,
Ty=2—"_42
v(T) 2n_1+2

We conclude that v(T') > 2. Further, since 0 < v(T) € Z we see that there
are only three possible cases: r=0,r =4(n ~1),orr=n— 1. O

V.2.11. We have seen that if an automorphism of prime order fixes a
non-Weierstrass point, it must fix at least two points (and at most 4 points).
What happens if all the fixed points are Weierstrass points?

Theorem. Let T € Aut M be of prime order n. If T has a fixed point, it must
have at least two.

Proor. Assume T has precisely one fixed point P. The Rismuann-Hurwitz
relation yields

—1
2Y—2=2f-Dn+(n~1) or n=29_1
2§—1

If o € #'(M) and T = o, then ord, ¢ > 0. Since it is not the case that for
all ¢ € A (M) ordp ¢ > 0, we can find a ¢ € #Y(M) with Tp = ¢o, ¢ # 1,
€" = 1, 0rdp ¢ = 0. Since ¢ does not vanish at P (the unique fixed point of T)
and (o) is invariant under T, 2g — 2 = kn for some positive integer k. Thus
we see that

1=Q29~1)~Q29-2)=n2§—1)— nk=n(2§ -1 — k).
In particular, n cannot be > 1, and this contradiction establishes the theorem. _

Remark. The Riemann-Hurwitz formula that we applied used the fact that
n is prime. This is essential; for the theorem is not true if n is not a prime.

V.2.12. We consider now the representation of an automorphism 7' of
prime order n on #YM), g > 1. We assume that P is a fixed point of T and
that Pisnota g-Weierstrass point. Then the representation of T on #%M) is

djag(g‘l, . ,8(2‘1_ 1)(g—l)+q—1).

Let us take g=1 mod n, g=kn+ 1, k> 1, then the multiplicity of the
eigenvalue 1 is

[l(2kn + 1)(g — 1)] = [(21( + l) (g- 1)] =2kig—1)+ [1 (g — l)].
n n n
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Abbreviate v(T) by v and use the Corollary to Proposition V. 2.2,

1
dim #%y(M) = 2kn + )G = 1) + v[(kn + 1)(1 - ;ﬂ
= Qkn + 1) — 1) + vk(n — 1),

where § is the genus of M/KT ). Combining these results with the Riemann—
Hurwitz formula (2.10.1) we see that

~ m
Qkn+ (g - D+ v — 1) = {(2kn + 1)(F — 1) + vk(n — Dyn + 1,

with 0 <% < n— L. Thus* . -

and there is just one possibility (recall v(T') # 1)r=n—landv =2,and we
have established the following

Theorem. Let T € Aut M be of prime order n with v(T) > 2. Then every fixed
point of T is a g-Weierstrass point for every ¢ > 1.4 = 1 mod n.

Corollary. Let 1 # T e Aut M. If w(T} > 2, then every fixed point of T is a
g-Weierstrass point Jfor some q.

i i ting 2k(g — 1) +
lternate proof of the theorem is obtame‘d by equa
?(T/r?)(g - 1] fo dim 5#%r,(M). This leads to the inequality v < 24 2/(n—1)
En>3 wefindv=21In=2we find v < 4. Since an involution has an even
num_bﬁr of fixed points v = 2, also in this case.

v.2.13. We can now reprove and generalize slightly_some of the results on
zu;u;morphisms of hyperelliptic surfaces (compare with IIL7.11).

Theorem. Let M be a hyperelliptic surface of genus g >2. A c‘ionfqrmal ":;
volution on M has either no fixed points, only non- Weierstrass fixed points, or

the hyperelliptic involution J. .
eLévtpT bepan automorphism of prime order n with 2 < n < 2g that fixes a

Weierstrass point. Let M/{T ) have genus g. Then there are two possibilities:

] ] ints, or
= gn, W(T) = 2, and both fixed points are Weierstrass points,
: iIz = ?2(1\-): 1))/(2Zi+ 1)@= 1), W(T) =3, and the other fixed points are P
and J(P) with P not a Weierstrass point.

ProoF. Let T be of order 2. Assume T fixes a Weierstrass point. Represent
T on #*(M). The action is given by (see V.2.10)
diag(—-1,...,— 1)
e e

g-times
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This is, however, the representation of J on AY(M). Since the representation
of Aut M on #(M) is faithful T = J.

Next we consider an automorphism T of prime order n, 2 < n < 2g, that
fixes a Weierstrass point. Its action on .# Y(M) is given by (¢ = exp(2ni/n))

diag(e, &2, ... ,g27 ).

Write2g — 1 = In+r,0 < r < n — 1. Then (since g is the multiplicity of the
eigenvalue 1) | even implies § = /2 and / odd implies that § = 4(/ + 1).
Using Riemann-Hurwitz (in a by now familiar way) we see that

r+1 2g9+1
no1 r=n=d=n=>7

leven=>v(T) =2+

r

lodd = v(T)=1+

1=2 r=n~1)=n=
Assume T fixes three points. We view the action of T on the g+2
Weierstrass points. Clearly Tis a permutation of prime order n, and can be

written as a product of 7, cycles of length n and r, singletons (cycles of length
one). Thus

rin+ry, =29+ 2,
From the above and 2g + 2 = (27 + 1)n + 1, we see that

Ri+1l—rn=r,—1.

Since n > 2, the last equation implies r, = 1 or r, > 3. Since r, < v(T), we
see that 7, = 1. Thus T has a fixed point P that is not a Weierstrass point.
Since, J is central in Aut M,

T(J(P)) = J(T(P)) = J(P),

and J(P) (# P) is also a fixed point.
If T fixes two points, both must be Weierstrass points by an argument
similar to the one given above.

Corollary. If 1 # T € Aut M fixes a Weierstrass point on the hyperellip/tic
surface M of genus g > 2 and ord T is prime and < 2g,thenord T < g.

Remark. 1t is possible for ord T = 2g + 1 (recall Proposition V.1.11 and its
corollary).

V.2.14. Proposition. If T € Aut M is of prime order n > g, thenn=g + 1 or

n=2g + 1. In each of these cases M/{T is of genus 0. In the first case,
W(T) =4 and in the second case, W(T) = 3.

PROOF. We start with (1.11.1), and assume that g=2 Then n(2§ —2) >
2n > 2g. Thus the only possibilities are § = 1 or g=0 U =1, then
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29 —2=v{n- 1),andv>0.Thus2$vand
29— 2

Vv

+ 1.

n=

Now (withv=2,922)2¢—-2v+1<g, and is thus impossible.
It remains to consider § = 0. Here

2g—2=-2n+vp-=(-2n—v,

or

- N
We must have v = 3. If v > 6, then

n<ig+1<yg
= 5, then
frr=> n=%g+1<g forg=3
— . ifv=3,
and is impossible for g=2 (n=3. lfv=4, then n=g+ 1;and if v 2
thenn=2g9+ 1.

V.3. Representation of Aut M on H (M)

the action of Aut M on H (M) = H,(M,Z), the

In this section we study re M, as usual, is a

first homology group (with integral coefficients), w}le s -

compact Riemann surface of genus g2 1. Let {K}b— { ;c,)r .M, 20

{ay, ... 4pby ... b, ="'{a,b} bea canonical homology za.§1sf ! Th.. -
1"I'.he r;xzzin result is that the action of Aut M on H (M) s faith ul. 1zlasses

is generalized in two directions. HTe Al}t M fixes enough t}llortf}lo ft)gyrou O%

then T = 1. Also, in most cases, the action of Aut M on the finite group

homology classes mod # is already faithful.

! i i ical homology basis
1. If TeAut M, then k' = Tk is again a canonic :
X)? 1\1/1 111{ we denote this basis by ‘{a’,b'}, we immediately see that there ex1s(t;
alg >< 2g matrix X with integer entries Xy, whose inverse is also an integ
matrix (thus det X = *1) such that
' = XK; (3.1.1)
that is
5* j=1,...,2g. (3.1.1y

K= Y Xk,
=1

We now write X = [# 5] in g x g blocks, and hence

AR I
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Recall (T11.1.2) that the statement x is a canonical homology basis means
that the intersection matrix for x is Jo = [ .9 §] = (x; x,). We can now ask:
what are the conditions on X so that x’ also be a canonical basis? The
condition is simply that (x/; - k) = XJ'X = J,. Hence we see that in addition
to det X = +1, it is also necessary that X satisfy the equation XJ,'X = J o
Matrices X with integer entries satisfying det X = 41 are called unimodular
matrices. The set of n x n unimodular matrices forms the group SL(n,Z).
The remarks we have made lead us to make the following

Definition. The set of 29 x 2g unimodular matrices X which satisfy
XJ'X =J, (3.1.3)
is called the symplectic group of genus g and is denoted by Sp(g,2).

Remark. The definition is meaningful and the set is indeed a group. All
that we need verify is that if X & Sp(g,Z) so is X ™. It is easy to check that
if X =[¢ 3] and X € Sp(9.Z) then X! = [_2 ~i8]. This last statement
is equivalent to (3.1.3). Hence Sp{g,Z) is a subgroup of SL(2g,7).

Theorem. There is a natural homomorphism h:Aut M — Sp(g,Z). For g > 2,
h is a monomorphism.

Proor. The homomorphism h has already been described in the remarks
preceding the statement of the theorem. We shall therefore assume that
g = 2and T € Aut M. Suppose now that i(T) = I. Let {{}, ...} be a basis
of #'(M) dual to “{a,b}; that is |, {;= 6. Since Ta; is assumed to be
homologousto a;, wehave |, T{, = |, , Tk Now for any smooth differential

w it is clear that
Jr.To= [ o (3.1.4)

Hence, in particular, we have {r, T,={,, {,=4,;. It follows that Ja; To=
dy;- We therefore conclude that {T¢,, ..., T{,} is also a basis of # !(M) dual
to ‘{a,b}. Recall however (Proposition I11.2.8) that the dual basis is unique;
so that it necessarily is the case that T{; = {;,j=1,...,g.

We have already seen that the representation of Aut M on #'(M) is
faithful. Hence we conclude that 7 = 1. O

Corollary. If T(a) = a;jin H(M) forj=1,...,g,then T = 1.

V.3.2. There is a very simple relation between the action of an automor-
phism on H (M) and the representation of the automorphism on the space
of harmonic differentials on M. (Recall I11.3.6.)

Let ‘{x} be a canonical homology basis for M and let "{a} = {ay, . . . ,25,}
be the basis of the complex valued harmonic differentials on M which is
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i j = i is basis
dual to Hx}; that is, [, % =8 kK, j=1,...,2g. It is ;leali tthz:;leth;s xa2
is unique and we have, as before, fr., T = fu, 2=0y Le g x 2g
matrix X = (x,,) represent the action of T on {x}. We then have

29
I = (5”) = ( Tx; Tal) = (J’E}(g:l . Tal) = (kgl xj,‘ ka Ta,).

Let us denote by T the matrix whose (Lk) entry is j',‘k Tao,. Thus the above

equation reads
I1=TYX,
~ -~ R

T=1x"1,

Since Tz, is determined by its periods we have established the following

or

Theorem. Let X be an element of Sp(g,Z) which represents‘th‘e;' a)utomo:-{pl?s-riz
T on H,(M,Z) with respect to the canonical hom.ology basis *{k}. I;et o ,d;
{ay, ... %z, be a basis of the harmonic differentials on M .dual to {k}, lrfF

sense that j'x M= Oxp ks j = 1,...,2g. Then the matrix which represents T on

. .t sty =1
the vector space of harmonic differentials with respect to the basis*{x} is (X~ 1).

Remark. 1f T is represented in g x g blocks by [2 5], then (X1 is
represented by [-3 4]

v.3.3. In this section we wish to strengthen Theorem V.3.1 and its corollary.
We prove the following

Theorem. Let M be of genus g > 2 and assume T € Aut M satisfies T(ay) = ay,
T(a,) = a,, T(b,) = b, and T(b,) = by in Hy(M). Then T = 1.

In order to prove this theorem it is convenient to first derive some pre-
liminary results concerning SL(n.Z) and Sp(g.Z).

. - .
Lemma. Let a be a vector in Z". A necessary and sufficient condition for ba
to be the first row of an element of SL(n,Z) is that the components of a be

relatively prime.

PROOF. Let, as usual, ¥ be the jth column of t};le n x n identity matfli(.
It suffices to prove that the orbit of the vector eV under SL(n,Z) ctclms? s
of all vectors a with relatively prime components or equivalently t }?tthox;
any a with relatively prime components there is an X € SL{(n,Z) such tha
Xa=e".

We consider the following problem: Find

Min |Xa,
XeSL(n.2)
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where a is a fixed vector in Z” with relatively prime components, and [—]is
the usual (Euclidean) norm. We wish to show that the minimum is precisely 1,
and therefore that there is an X € SL(n,Z) such that Xa = e? for some j.
Without loss of generality we can then assume j = 1.

Note first that the lemma is obviously true for n = 2, since the condition

det[al bl] = il
a, b,

is equivalent to the condition that a, and a, be relatively prime. Furthermore
if (in general) the components of a e Z" have a common divisor v > 1, then
Min |Xd|>v.
XeSLin2)

Thus in particular for n = 2, the above minimum is 1 if and only if a has
relatively prime components. We have also established necessity in general.

Now assume that n > 2, and that g has relatively prime components.
Suppose X is a solution to the minimum problem. Let b = Xa. Clearly b
has relatively prime components. (Otherwise a = X~ 'b would not have
relatively prime components.) Assume that b has two non-zero components.
We may assume that these are the first two components by, b,. Let v > 1
be the greatest common divisor of by, b,. Choose x € SL(2,Z) such that

x'(by,by) = v(1,0).
Let X' =[5 § _.]. Then X’ € SL(n,Z) and |X"Xa

I:x 0 ]'(bth; L 7bn) = UZ + Z b_,z < Ibl =
0 I, NAH )

Thus we see that b must be an integral multiple of some eY. Since the
components of b are relatively prime, b = +eY, for some . O

it-
%

Lemma. Let a and b be elements of Z". A necessary and sufficient condition

Jor (a'b) to be the first row of an element of Sp(n,Z) is that its components
be relatively prime.

PROOF. Just as in the case of the previous lemma, it suffices to show that
there is an element X in Sp(n,Z) such that X[2] = [5"].

We fix [§] with relatively prime components and for X € Sp(n,Z), let
X[#]=1[4] Let u> 0 be the greatest common divisor of the components
of 6 and v > 0 the greatest common divisor of the components of §' (u = 0
ifand only if 6 = 0; v = Oifand only if & = 0). We now consider the problem
of finding

Min u+4 v
XeSp(n2)

We can assume without loss of generality that u > v. (Let X’ = J,X. Then
X' € Sp(n,Z) and X'[§] = [_4'].) We shall now show that v = 0.
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Assume v # 0. Then &'/v has relatively prime components and thus by
the previous lemma, is the first row of an clement T of SL(nZ). ’I%hoo?e
now an integral vector x such that each component of the: vector — T + vx
has absolute value less than v and thus less than u. Consider now

0 IT— 1
x= [—T ——r‘T"]’
where 7 is any n X n symmetric matrix, with first column —x, and observe
that X’ is an element of Sp(n,Z). . -
Let X be a solution to the minimization problem, aqd suppose X[ =11
Then X’TX[;‘;] = [_"f;‘l,xfand this’ contradicfs the minimality of X. Hepce
v = 0. It thus follows that u = 1. We can therefore conclu.de that any solution
X to the minimization problem satisfies X[5] = [§] with the cqmponenzts
of J relatively prime. By the previous’lemma we can (z})lways finda U € SL(n,Z)
such that U3 = eV, thus we have [§ %-:1[3]1 =&}
i . Let {ay, ... 2z,} be the
We now proceed with the proof of the theprem ;
basis of the harmonic differentials dual to the given homo}ogy basis. It follows
from Theorem V.3.2 (and the remark immediately following) that T(«,) = «;,
T(a,) = oz, Tty 1) = %gu 1, aDA T(%ge2) = %2
(Fzzlrtheimoreg, fclJr anygharmonic differential @ on M (see HI1(2.3.1)),

, j= L...,9
(w*a) = J:fM GAW = —:”:bf o jmgth.20 (3.3.1)
dj-g

Let us for the moment assume that T has a fixed point say P. Let Qe M
be arbitrary, then we conclude from (3.1.4) that

0 TQ . _ 1Lg+2
J; aj=fp %;(modZ), j=129+19

1t therefore follows that

fqm’ o = f; 2 + f:‘q’ aez, forj=12g+1g+2 (3.3.~2)

We consider the surface M = M/{T ) and the natural projectlfm M —)'Mi
Letj=1,2,g + 1,0rg + 2. Because of T(a) = a;, ‘the Qﬂerentlzx_ls o; grgjec
to harmonic differentials ma; on M. (This assertion is not quite ohwous.
Its verification is left to the reader.) If Zis a closed curve on M, ’tr ken vge
lift it to a curve ¢ on M beginning at some Q € M and ending at T°Q. By

(3.3.2) we see that
fnajez, j=1,2g+1,g+2

(Note that since we are only interested in the homology classes of the curves,

we may assume that ¢ does not pass through any fixed points of T) Let us

is {a a-b bs v and a
construct a canonical homology basis {@y, .. . ,8zb1, .- bz} on M a
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basis {&,, . . . ,3,;} of harmonic differentials on A dual to the given homology

basis. Since a; has integral periods over every cycle on M, there are integers
nj such that

2§
may =) npd,  j=L2g+1,g+2
k=1

It follows from (3.3.1) (viewed on M) that
(o *mo,, )eZ, j=1,2.
It is also quite obvious that (for j = 1,2)
(ord T)(ma;*nxy, ;) = (2, *x,, ) = — 1.

Note that the second equality follows from (3.3.1). Thus we conclude that
for the hypothesis of the theorem to hold, T must be fixed point free (if it
is not the identity).

To finish the proof, we must study fixed point free automorphisms. By
our previous considerations no power of T( 1) can have fixed points. Hence
by Riemann-Hurwitz

29— 2=n(g - 2),

withg > 2and g > 2. Thus we are studying smooth n-sheeted cyclic coverings
of a surface M of genus § > 2. A smooth n-sheeted covering is described by
the selection of a normal subgroup G of n,(M) such that n,(M)/G = Z,

(= integers mod n). Thus G appears in a short exact sequence of groups and
group homomorphisms

{1} -G ——»1:1(1\71)-4_’; Z,— {0}

Without loss of generality we assume that the canonical homology basis
on M comes from a set of generators for x,(M) denoted by the same symbols.
The homomorphism ¢ is described by its action on the generators. Setting
@(@) = ¢;, and p(b ;) = &}, we see that ¢ is described by the 2 x g matrix

1= el lep.. .8
¢ [
of integers mod n.

Since ¢ is surjective the vector (g,¢) has relatively prime components.

We review the above situation in the language of multiplicative functions.
Construct on M a multiplicative function f belonging to the n-characteristic
x- This function lifts to a single valued function on the cover corresponding
to the homomorphism ¢.

By a change of homology basis (since Z, is commutative we may work
with H,(#) instead of z,(M)) we may assume that y is of the form [} & 2 9.
This follows immediately from our second lemma. More precisely, if i is
[¢] then we can consider the change of homology basis effected by a matrix
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R P
o))

. . e 0
Such an X exists by the lemma and the y for this new basis is [o 8ol
The last assertion follows from the fact that X has integral entries. Ifce H (M)

is written as Y 9_; nd; + Y-, mpb;, then

n
x{c) = (&£) [m]

(As usual n ="(ny, - - . ,njb‘m =Ym,,... ,m;?.)l[’hus

1(X0) = () X0),

'X e Sp(§,Z) such that

and in particular for K = 'X&;
#(&) = (e€)jth column of 'X)

‘e
= jth entry of X [‘e’]
ey
= jth entry of[0 ]
It is now a simple matter to complete the proof: We examine the cov%r
corresponding to X =[§ § 01. It is clear that if &y, ..., by...,b;

i omology basis for M such that X =[§ § = 3], then &y, 2a,,. . .,
;i tilel)hﬁ1 Lift tgoyopen curves on M and nd, lifts to a closed curveEonhMi'
Further b, has n disjoint lifts all of whigh are homologous on M. Eac oll
the other cycles also have n disjoint lifts on M; however, .these a~re ad
homologously independent. The action of T on M fixes the lift of nd, an
permutes the lifts of 5,; however, since the lifts are all homologousfvyge cI:n
say that (as far as the induced action on homology) T fixes the lift o ¥ 1 .to
other cycles are fixed. Hence we finally conclude that T must be the identity
and this concludes the proof of the theorem.

Vv.3.4. In this paragraph we strengthen (in another direction) Th;:;r;m
V.3.1. The group Aut M acts not only on H (M) .but als_o on H,{ ’d s
the first homology group on M with coefficients in the integers mo ni
Choose T € Aut M. We have seen that T acts on H 1(M) by a square integra
matrix A € Sp(g,Z) and A has finite order m. We first prove the following

Lemma (Serre). Let A € SL(k.Z) have finite order m> 1. If A=1 mod n,
thenm=n=2.

i f n. Then A = I mod p',
ProOE. (Due to C. J. Earle). Let p be a prime factor o [
where ! (2 1. If we show that p = m = 2 and | = 1, then the lemma will follow
easily. We break the argument down into a series of steps.

a. IfA=1Imodp, thenl=1
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Proor. Let g be ';1 prime factor of m. So m = qr. Then B = A" has order g
and B = I'mod p'. So B = (I + p*X), where X is integral, with each element
of X prime to p,and s > [ > 1. Now

I'=(I+pX)=1+qp’X + p*Y.
Thus

gX = —-p'Y,
and so

g=p and X = —p'1y,
Again, since p does not divide X, s = 1 and since s > I > 1, also I = 1.

b. A has order p.

PRrOOF. Since p is prime, we need only show A? = 1. Clearly A® has finite
order, and by (a)

AP = (14 pX)P =1+ p*X + p?Y = I 4+ p?Y’,
so A? = ] mod p?. This contradicts (a) unless 47 = I.
c. p=2
PROOF. Otherwise p is an odd prime, and p > 3, and

plp—

I'=(I+pX)"=1I+ppX + 3 1)szz-}-p3Y.

Thus
—1
—X= p(g——2—>X2 +pY.

But p is odd, and so p divides the right hand side. This is the final
contradiction. a

The above has as an immediate consequence the following

Theorem. There is a natural homomorphism
h:Aut M — Sp(g,Z,).

For g2 2, n>3, his injective. For g >2 and n =2 only automorphisms
of order 2 are in the kernel of h.

V.4. The Exceptional Riemann Surfaces

We have seen in IV.6, that there are a few Riemann surfaces with commuta-
tive fundamental groups—the so called “exceptional surfaces”. We shall
now encounter the same surfaces in a slightly different context.

V.4.1: We want to describe all Riemann surfaces M for which Aut M is
not discrete. We shall not bother defining what we mean by Aut M not being
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discrete. We will establish a result which will hold with any reasonable
concept of discreteness for Aut M. We stateitasa

Theorem. Aut M is not a discrete group if and only if M is conformally equira-
lent 1o one of the following Riemann surfaces:

. Cu {oc},

C,

.A4={zeC |7 <1},

c* = C\{0},

. 4* =M\{0}, - 3 L -

L 4,={zeCr<lz<1},0<r<1|,

. a torus, C/G, where G is the free group generated by the two translations
crz4+l.zz+ 1, ImT>0.

- NV N T

V.4.2. In any standard book on complex analysis, the reader will find a
description of the automorphism groups of the three simply connected
Riemann surfaces. We have used this information already in IV.5.2. We

repeat it here:
Aut(C v {o0}) = PL(2,0)

Aut C = P4(2,C)

Aut 4 = Aut U = PL(2,R).
The above are clearly not discrete subgroups of PL(2,C). As a matter of fact
they are Lie groups. The first two are complex Lie groups (of complex

dimensions 3 and 2, respectively). The last is a real Lie group (of real di-
mension 3).

Vv.4.3. 1t is clear that every automorphism A of C* extends to one of
€ u {=}. Furthermore, A must either fix 0 and oo or interchange these
points. Thus the automorphism group of C* consists of Mbius transforma-
tions of the form

z—kz or zr -,
z

Hence Aut C* is isomorphic to a Z,-extension of C*.

V.4.4. Every automorphism of 4* extends to an automorphism of 4 that
fixes 0. Thus Aut 4* is the rotation group

Zrr e“’z
which is isomorphic to the circle group S*.

V.4.5. Let M be a Riemann surface with holomorphic universal covering
map n:M — M. Let G be the covering group of n. We claim that

Aut M = N(G)/G,
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whe.re N(G) is the normalizer of G in Aut M. The verification is easy and
stralgh'tforwardwand left to the reader. We shall show that in the non-
exceptional cases N(G) is already a discrete subgroup of Aut M.

V.4.6. .Let us copsider the surface 4,. Its holomorphic universal covering
space is U and. its covering group G is generated by C:z+» iz for some
i > 1 (the relation between 4 and r was given by IV(6.8.1)). Let A € N(G)

hus ‘

A=Co A" = CE!,

§incg conjugation by A is an automorphism of G. Notethat Ao Co A~ ! = C
unph.es (by Lerpma IV.6.6) that A is hyperbolic with 0 and 2 as fixed points;
that is, a mapping of the form

z k2, k>0 (4.6.1)

We are left with thecase Ao Co A" ' =C 1. Since A-C 1> A" = C, we
cqnclude that A2 commutes with C and is of the form (4.6.1). Thus N(G’) is
trivial or a Z,-extension of the hyperbolic subgroup of Aut U fixing 0 and
=« (this group is isomorphic to the multiplicative positive numbers). To show
we pave a Z,-extension, we must find just one M6bius transformation that
conjugates C into C™ 1, Clearly, z — —(1/z) will do this. We wish to see what
N(G)/G looks like as a group of motions of A,. First let us consider the
mapping (4.6.1). Recall the holomorphic universal covering
) p:U— 4,
1s given by

log z

p(z) = exp(?.ni——.— .
log 4

Thus a (multivalued) inverse of p is given by

N~

Zrex —1~_lo Alogz).
sz g g

From this it follows that z+ kz induces the automorphism (a rotation)
z > e*z of A,, where ko = (27 log k)/log 1. Note that these automorphisms
are extendszle to 84, and fix each boundary component (as a set). The
automprphlsm corresponding to z— —(1/z) is z ~ r/z. This map also has
a continuous extension to 64, and switches the boundary components. We
see that Aut 4, is isomorphic to a Z,-extension of the circle group.

V.4.7. We examine next the torus. Let the covering group G of the torus
T be generated by z+— z + 1 and z — z + 7, Im 7 > 0. It is quite easy to see
that A(z) = az + b(A4 € Aut C)is in N(G) ifand only if a and ar are generators
for the lattice G. In particular, all the translations (a = 1) are in N(G). Thus,

Aut T contz.xins T(=C/G) as a commutative subgroup. (We have thus shown
that Aut T is never discrete.)
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When is Aut T a proper extension of T? First, since a and ar are two
linearly independent (over Z) periods that generate the group G we have

a=a+fr, ar=uat+pt=y+91, 4.7.1)

with X = [2 4] e SL (2,Z). In particular, we see that for (Aut T)/T to be
non-trivial, T must satisfy the quadratic algebraic equation with integral
coefficients

pii+@—8r—7=0. (4.7.2)

Iff=0,then y=0and a == +1 and the equation (4.7.2) reduces to
the trivial equation. Since a = 1 corresponds to a translation, the only new
automogphism (a = — 1y-in this case is the one corresponding to z+> —z.
Thus Aut T always contains a Z,-extension of T. If  # 0, the question
becomes more complicated. We have of course shown that for most t (in
particular for all transcendental ), Aut Tisa Z ,-extension of T.

Assume that § # 0. Equation (4.7.2) asserts that the M&bius transforma-
tion corresponding to X € SL(2,Z) has a fixed point < in the upper half plane.
Thus X must be an elliptic element.

If Ae Aut T, then we can write A uniquely as

A= Al ° AZ,

where 4, fixes 0 and 4, € T. To show that (Aut T)/T is finite we have to
show that the stability subgroup of the origin is finite. We may assume that
Ae(Aut T), is given by z — az. The number a € C* is, of course, subject
to the restriction (4.7.1). Simple calculations show that

1y N

T2 2 ’
with ¥ the trace of the elliptic clement X € SL(2,Z)/+1.

Since SL(2,Z) has only finitely many conjugacy classes of elliptic elements,
the number of d’s is finite. (Since 0 < y? < 4, we must have |a| = 1. As an
exercise prove this another way.)

a

v.4.8. It remains to show that we have exhausted all M with Aut M not
discrete. We may restrict our attention to those surfaces whose universal
covering space is the unit disc (or the upper half plane U )-

Let G be the covering group of M. Suppose there exists a distinct sequence
f.€ N(G) such that lim,f,=1 Choose 1# A€ G and observe that
lim, f,o Ao fy'o A1 = 1. Since f, Ao f; ' > A" € G, there exists an N
such that f,» A= f;1o At =1 for n> N. Thus f, commutes with 4 for
large n. If A is parabolic, then by Lemma IV.6.6 so is f, for large n; and A
and f, have a common fixed point. Since 1 # A € G was arbitrary, G is a
commutative parabolic group and by Theorem IV.6.1, M is the punctured
disc.

Similarly, if A is hyperbolic, every element of G is hyperbolic and com-
mutes with 4. Appealing to the same earlier theorem, we see that M is an

annulus.



CHAPTER VI
Theta Functions

We have seen in Chapters III and IV how to construct meromorphic func-
tions on Riemann surfaces. In this chapter, we construct holomorphic
functions on the Jacobian variety of a compact surface, and via the embedding
of the Riemann surface into its Jacobian variety, multivalued holomorphic
functions on the surface. The high point of our present development is the
Riemann vanishing theorem (Theorem VL.3.5). Along the way, we will re-
prove the Jacobi inversion theorem.

VI.1. The Riemann Theta Function

In this section we develop the basic properties of Riemann’s theta function.

VL1.1. We fix an integer g > 1. Let &, denote the space of complex
symmetric g x g matrices with positive definite imaginary part. Clearly,
$, is a subset of the 1/2¢g(g + 1)-dimensional manifold X of symmetric
g x g matrices. To show that S, is a manifold, it suffies to show that it is
an open subset of X. But a real symmetric matrix is positive if and only if all
its eigenvalues are positive. Thus if 1, € €,, Im 7, has positive eigenvalues.
Since this also holds for all € X sufficiently close to 1, &, is an open
subset of X. The space S, is known as the Siegel upper half space of genus g.

(Note that &, is the upper half plane, U.) We define Riemann’s theta func-
tion by

0(zr)= ) exp 21zi<%'N‘cN + 'Nz), (1.1.1)

Nez9
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where z € C? (viewed as a column vector) and T € S,, and the sum extends
over all integer vectors in C% To show that 8 converges absolutel.y and
uniformly on compact subsets of C? x 3,, we review some algebraic and
analytic concepts. ‘ ‘

First of all, as we already observed, every (rea-l)‘ symmetric matrix has
real eigenvalues. Next, every real symmetric positive de_ﬁmte rqatrlx has
positive eigenvalues. Furthermore, for a real symmetric matrix 7, the
smallest eigenvalue is given as the minimum of the quadratic form (here ( , )
is the usual inner product in R?)

- Q(xp=(Txx), xeR’, Ix|| =1

we use ||-|| to denote the Euclidean norm). i
( For ll eH g,, we let A(t) = minimum eigenvalue of Im 1. Then i(z) > 0,

and if K is a compact subset of &, we also have
min {4(1)} = 40 >0,
ek
because
S, x R (tx) — ((Im 1)x,x) e R

is a continuous function. .
To show convergence of 6 on compact subsets of €7 x Sg, 1t suffices to

show convergence in a region
K ={z1eC x S; ||| < M and 2(r) 2 lo > O}
We note that
lexp 2ri(}'NTN + ‘Nz)| = exp Im(—n'N<N — 2=‘Nz).

Now by the characterization of minimum eigenvalues:

N N
Im(—n'NtN) = —n((Im 7)N,N) = ——1z||N||2<(Im r)m,ﬂ>

< —7||N|?A) < —=||N|[P4o,
and by the Cauchy-Schwarz inequality
Im(—27'Nz) < 27'Nz| = 2|(zN)| < 2z|2|| [|IN]| < 2=M{|N||.

Thus an upper estimate for the absolute value of the general term of (1.1.1} is

exp(— ||| o + 22M|N])) = exp(—nnNHzlo(l - sz\r-];]l?—o))

Now only finitely many terms N € Z¢ satisfy the equation

om 1
W =2
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{because N is an integer vector). Thus for all but finitely many terms, the

general term of (1.1.1) is bounded in absolute value by ’
exp(—miol|N|f*),

and our series is majorized by

1 1 g

N;g CXP<—§7I10”N||2> = ‘VZZ" exp(—in}.o Z nf)

Ne i=1
g b l
= j]:[l "j;n exp(—in/’.onf)
which converges since each factor converges (b

th
NS ges (by the Cauchy root test, for
. We hlav§ shown that 8 is a holomorphic function on C? x <, We shall
€ mostly Intercsied in this function with fixed 1 e & is ¢ i

abbrevine (s by O &,. In this case, we will

Remark. The one variable theta function

0

J1
B(z)= Y exp 2m|:inzr + nz], zeC,1e U, (1.1.2)

n=-x

already has a non-trivial theory.

VI.1.2. We now proceed to study the periodicity of the theta function.
Let I, = I denote the g x g identity matrix.

Proposition. Let p, y’ € 7°. Then

0z + Iy + 1) = exp 2mi[ —"uz — ¥urp]O(z,1), (1.2.1)
forall ze C% allt e g,

PROOF. We start with the definition (1.1.1)
0z + Iy +1p,7)
=3 exp’m’rl’N N +°N ’

Nezs

Bl /
= Y exp2ni 5‘(N +ut(N+ )+ (N + p)z — %',ury + Ny — 'yz]

(to obtain the above identity use the fact that 't = 7)

Nezs

= ) ex 2m’r—‘ L | L
p Kz —5'pp | exp 2ni 3 (N 4+ 1)t(N + @) + (N + y)z]
(because ‘Ny' € Z)
=exp 2ni[ —'uz — ¥utu]6(z,7)

(because (N + y) is just as good a summation index as N). O
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Corollary 1. Let & be the j-th column of I. Then
Bz + e ) =0z, ullze T all1e 2, (1.2.2)

PrROOF. Take ' = ¢, u = 0. ]
Corollary 2. Let t™ be the k-th column of 1, and 1 the (k.k)-entry of t. Then
0(z + t™,1) = exp 21:1'[-—2,‘ - —t—zkf] 0(zr), allzeC%all1eS,, (1.23)

where z; is the k-th compgnent of =
PrOOF. Take ' =0, p = ®. ’ . O

Remark. Tt is also easy to verify that § is an even function of z. Thus in addi-
tion to our basic formula (1.2.1), we also have

B(—z1)=0(z1), allzeClallte 3, (1.2.4)

VI.1.3. Formula (1.2.1) suggests that we should regard the 2g vectors
D j=1,...,9 ™ j=1,...,g, as periods of 8(z,7). Of course, only the
first g vectors are actually periods; however, if we consider the g x 2g
matrix, Q = (I,1), we can rewrite (1.2.1) as

9(2 + Q[Z],r) = exp 21:1'[‘(&[5]) z— %'uty] (=), (1.3.1)

where A is the g x 2g matrix (0, — I,). If we now denote by e k=1,...,2g,
the 2g columns of the 2g x 2g identity matrix we can rewrite (1.2.2) and
(L.2.3) as

0(z + Qe™, 1) = exp 2xi['(Ae™)z + 7, ]0(z,7), (1.3.2)
where p, is the kth component of the vector y in C?¢ defined by
1t
—30,....0,711, - -5Tg)-

A holomorphic function, f, on C? which satisfies the conditions
1z + Q™) = exp 2mi['(4e®)z + 7] flz), k=1,...,2g

all ze €, with Q and 4 g x 2g matrices and y € C*, is called a multiplica-
tive function of type (Q,.7). What we have seen here is that B(z1) is a
multiplicative function of type (2A.y) on €7 with @ =(I,7), 4 =(0,—-1),
y=—30,...,0;y....7,). Given @, 4, and y, we can ask whether there
exist multiplicative functions of this type. We shall, however, not pursue
this question any further. There is, of course, an intimate connection between
these questions and function theory on complex tori (recall ITL.11).

VL.1.4. More generally, we shall consider in place of 6(z) the function
obtained by taking a translate of z namely 8(z + e) for some e € Co Itis

clear that
0(z + e + e®)y=0(z + e), (1.4.1)
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and that
0(z+ e+ ™) =exp 2ni[—z,‘ — e — %—{IB(Z + e). (1.4.2)

The connection between theta functions and the theory of multiply periodic

functions on €? is seen rather clearly when one considers two distinct points
d and e € C?, and sets '

Bz + e)0(z — ¢)
i+ o= (1.43)

Itis glear from (1.4.1) and (1.4.2) that f(z) in ( 1.4.3) is a periodic meromorphic
function on C¢ with periods e, 10, j =1, ..., 4.

Recall that the columns of the g x 2g matrix (I .t} are linearly independent
ov}er R Hc.nce, every e € Cf can be uniquely expressed as e = I’ + ¢ with
e,s,pomts in R. Hence 8(z + ¢) = 0(z + I¢’ + t¢). This suggests that for any
¢, &£ € R? we define a function on C? x g, by

2¢ i1
0 [28'](”) = Y exp 27:![5’(1\’ + 8N + &)+ (N +e)(z + s’)]. (1.4.9)

Neis

We observe at once that

0
) [ O] (z,7) = B(z,1),

2¢ I1
9[28,:,(2,‘5) = ) exp 21:1[5'N1N +'N(z +¢ +16) + %’sra +lz + 'as’]

and in general

Nezs
= exp 2ri lt t [P - ’
p 2mi 5616 + ‘ez + fee 0z + Ie' + 1¢,7). (14.5)

From the last equality it follows that for integral pu, it € 7%, we have (because
of (1.2.1))

2e , 1
9[26,](2 + Iy + tu, 1) = exp 2ni[§‘srs + ‘ez + ee’ + ey + ry)]
X0z+1Ie +te+ Iy + 1u,1)
|1
= exp 27::1[5’8& + ez + ‘se’] exp Znil:’s( W+ tp)
t g 1!
=z + I¢' + 1¢) — 5 Hp B(z + Ie' + 1¢,7)

| 1
= exp 21:1[—5‘;11;1 —'uz +'p'e — 'ys’:lﬂ[;s,] (z,7).
€

(1.4.6)
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In particular, we have
8] % |z + e®,7) = exp 2ni[6:10] 2 | 2 147
2 = SR STLAL 5 |50 -

and

2e T 2e
S S 1 . S z
9[28,](. + t™,1) = exp 27:1[ z, 3 sk]ﬂ[ze,]( ;7). (1.4.8)

VI.1.5. For us the most important case is when 2¢, and 2¢, € Z. Let ¢, ¢’ € Z°.
Then 8% ](z,1) is called the first order theta function with integer characteristic

1

Proposition. The first order theta function with integer characteristic [§] has
the following properties:

9[8,] (z + €%, 1) = exp 2zi &]BI:E,] (1), (1.5.1)
I3 L2 £
9[8,](2 + ™, 1) = exp 27| ~z — L &]9[8,](3,1), (1.5.2)
£ L 2 2 £
€ IEZARER
0", {(—z7)=exp2ni| — |0 (z,7), (1.5.3)
£ 2 | Le ]
and
e+ 2v [ev' ] [e]
= il — X 1.5.4
GI:&, + 2V,](z,r) exp 2ni 7] 9_8,_ (z,0) (1.5.4)

(Here v and V' are integer vectors in Z°.)

Proor. Equations (1.5.1) and (1.5.2) are simply the restatements of (1.4.7)
and (1.4.8). Equations (1.5.3) and (1.5.4) are derived in the same way as (1.4.5),
(1.2.4), and (1.2.1). O

The importance of the statements (1.5.3) and (1.5.4) is that we immediately
have the following

Corollary. Up to sign there are exactly 2%¢ different first order theta functions
with integer characteristics. Of these 297 1(29 + 1) are even functions, while
297129 — 1) are odd. These 229 functions can be thought to correspond to the
22 points of order 2 in C*/{1,t), where {I,v) means the group of translations
of €? generated by the columns of (I,7).

Proor. The only part needing some comment is the number of even and
odd functions. This is established by an easy induction argument. ]



286 VI Theta Functions

EXAMPLE. When g = 1 the three even functions arc: 6[5](z,7), 8[?](=.7), and
81 6)(z,1). The odd function is 0[] }(z,1). When y = 2 the six odd functions are:

10 ~ 1 0 .. 11

0[1 0](-’1)) 0[1 1](%"); 0[1 0](:,1’),
01 01 11

0[0 1](z,r), 0[1 1](:,r), 0[0 1](z,r).

1. For the first order theta functions with integer characteristic, 8[%](z,),
the even ones are preciscly those for which ‘e¢’ = 0 (mod 2) and the odd
ones those for which *s¢’ = 1 (mod 2).

2. Formula (1.4.5) applied to the case of integer characteristic yields

€ J1% ¢ ‘e te g e £
9 7)) = 2 _——T = — —_—— > —_ —
[s,]( ) =exp nz[2212+2z+22]9(-+12+12,r>.

In particular, if 8[}](z,7) is an odd function, we have 0 = 4[%](0,7) =
exp 2mi[$(e/2)t(e/2) + (e/2)(e'/2)]0(I(e'/2) + t(¢/2), 7). The points I(¢'/2) +
1(¢/2) are points of order 2 in £%{I,r> and will be called eren or odd
fiepending on whether 6[%](z,7) is an even or odd function. Hence we
immediately see that the Riemann theta function 6(z,7) = 0[3](z,r) always
vanishes at the odd points of order two or at what we shall call odd
half-periods.

Remarks

V1.2. The Theta Functions Associated with
a Riemann Surface

In the preceding section we have defined and derived some of the basic
properties of first order theta functions with characteristics. In this section
we show how to associate with a compact Riemann surface a collection
of first order theta functions and study the behavior of these functions as
“functions” on the Riemann surface. The basic result of this section is the
following: A first order theta function either vanishes identically on the
Riemann surface or else has precisely g zeros (g = genus of the surface).
In the latter case, we can evaluate the zero divisor of the theta function
{more precisely, we can determine the image of the divisor in the Jacobian
variety of the surface).

VL.2.1. Let M be a compact Riemann surface of genus g > 1. Let *{a,b} =
{ay, ... Wgby, ... ,b} be a canonical homology basis on M, and let

'{C,', o8,y ={ be a basis for #'(M) dual to the canonical homology
basis (recall 111.6.1).
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We thus obtain a g x 2g matrix (I,1T) with e = |, {, =¥ = [, {, where
as usual e and Y are the jth columns of the matrices I and IT respectively.

We have already seen that the matrix [T is a complex symmetric matrix
with positive definite imaginary part. It follows therefore, from VL1.1, that
we can define first order theta functions with characteristics using the matrix
I1. We therefore obtain, as in VI.1.5, 29 theta functions 8[%](z,17).

V1.2.2. There are, of course, many ways to choose a canonical homology
basis on M. If {a, ... ,apb}, ... by} ="{a.b} is another canonical homol-
ogy basjs, and *{{}, . . . .y = (' is the basis for J#Y(M) dual to this new basis,
we obtain a new g x 2¢g matrix (I,IT’), and can define first order theta func-
tions with characteristics using the matrix /I". We have seen in Chapter V

a _ A Blla
b| |C Di[b}
with [¢ 5] € Sp(g,Z). Thus using obvious vector notation

a@ = Aa + Bb,
L' - = .[-la+Bb {=A+ B,
and hence

U'=(A+ B,
and

=, 0=, ,A+BM7{=(4+B07C+ D)

Thus IT and [T are related by an element of the symplectic modular group
of degree g. The relation among the corresponding theta functions involves
then the study of modular forms for the symplectic modular group (which
will not be pursued here).

V1.2.3. We shall for the remainder of this chapter assume that the
Riemann surface M has on it a fixed canonical homology basis ‘{ab} =
{ay, ... @b, - - - by}, and we will study the theta functions associated with
M and ‘{a,b} as functions on M. We do this by recalling that we have intro-
duced in I11.6 a map ¢:M — J(M) = C9/L(M), where L(M) is the lattice
(over Z) generated by the 2g columns of the matrix (I,IT). Recall that ¢ was
defined by choosing a point Poe M and setting o(P) = [}, {, where { =
‘{4, . . - »Cg) is the basis of # (M) dual to ‘{a,b}. We now consider 8 » ¢ and
in this way view § or 8[%], where [%] is an integer characteristic, as a func-
tion on M. The reader is, of course, aware that 8 o ¢ is not single valued on
M, since ¢ is not single valued (as a function into C*) on M, but depends on
the path of integration. We have seen (Proposition 1I1.6.1) that the map ¢
is well defined into J(M), and therefore the function 8 - @ has a very simple
multiplicative behavior. The behavior of this function is not quite as simple
as the behavior of the functions considered in 1119, since here the multiplier
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x acquired by continuation over a cycle depends on the variable z as well as
the cycle. At any rate, it is immediate from Proposition VI1.1.5, that con-
tinuation of 8[%] - ¢ along the closed curve g, (respectively, b)) beginning at
a point P € M, multiplies it by

x(a) = exp 2wi[g,/2], (2.3.1)
2(b) = exp 2ni[ — /2 — m,/2 — ,(P)], (232

or we may say more simply that analytic continuation of 0[] > @ over the
curve g, (respectively, b) beginning at P carries 8[%] - ¢ into

exp 2ni[5,/210¢] - ¢

(respectively, exp 2ni[ —¢}/2 — m,/2 — @(P)]O[%] - @), where @, is the Ith
component of the map ¢. It therefore follows that 6[%] > ¢ is a holomorphic
multiplicative function on M with multipliers given by (2.3.1) and (2.3.2).

VI.2.4. We now wish to study the zeros of 6[5] > ¢ on M. We observe
that even though 0[%](z/1) is not a single valued function on J(M) =
C?/L(M), the set of zeros of O[%](z, ) is a well defined set on J(M) (Prop-
osition VI.1.5). The set of zeros of 0[; }(z,7), for any symmetric t with
Imz>0,isan analytic set in C? of codimension one and in particular for
t = I1, the zeros of 8¢ ](z./T) form an analytic set of codimension one in
J(M). The map ¢, by Proposition 111.6.1, is a holomorphic mapping of
maximal rank of M into J(M). The study of the zeros of [%] - ¢ on M is
thus the study of the intersection of the image of M in J(M) under ¢ and
the analytic set consisting of the zeros of 6[:](z,01). Since M is compact
there are only two possibilities. Either 0[%] - ¢ vanishes identically on M
or else 8[;.] o ¢ has only a finite number of zeros on M. Neglecting for the
moment the former possibility, can we determine how many zeros does
6[:] - @ have on M?

It involves no loss of generality to assume that no zero of 0[%] - o lies
on any curve chosen as a representative for the canonical homology basis.
In order to count the number of zeros, we need to evaluate

1 &
5= Ju 10200512 o,

where .# is the polygon associated with M whose boundary consists of
representatives for the canonical homology basis o4 = ng, ab;a; b h).
In order to further simplify notation we shall denote 6[2] - @ by f.

We now compute
1 j a 1 g J- df

2ni Jow f 7 2 2 s

ax+be+ag !l + b1 f
1 if  df- af  df-
‘f&ki,[ﬁ~<7‘f—->+ﬁ~(7‘f—->]’
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where f~ denotes the value of f on the cycle a; ' or b, !. It follows imme-
diately from (2.3.1) and {2.3.2) that if P is a point on a,

fT(P)=exp zm[—_z—eli ~ %"5 - cpk(P)] fp),

while if P is a point on b,,
f(P) = exp 2ni[;—"] (P

r P a point of b, (df/f — df ~/f ~)(P) = 0, while for P a point of q,,
E};}S fgdf =/ fp “YP) = 2;@{(1};). It therefore‘follow§ Fhat (1/27) [ 5.4 (df’/f );
(1/2mi) Y 4= [a 2migi(2) dz = g. We are here exploiting the fact that ¢}(z)dz
is the kth element of the basis of #'(M) dual to the. hon:ology_bams
{ay, ..., a,b;, ... b,}. At any rate, we have showq that if .0[?1 °@ is not
identically zero it has precisely g zeros on M (counting mult1phc1t_1es).

The next natural question which arises in regard to the zeros is: can we
find the divisor of zeros? What we shall do is find the image Z of the divisor
of zeros of 8[%] - ¢ under the induced map on integral divisors of deg}'ee hg,
@:M, > J(M). To this end we consider (1/2mi) j,,,{( (df/f), where ¢ is the
column vector (@, . ..,¢,) and f = 0[%] - . We immediately find that

1 af 1 ¢ af
f=§?i£u«¢‘f Zﬂikglj;k+bk+ﬂfl+bi‘(pf

1 ¢ af  _df” af _c_if_‘>]
=Eak=1[f«=k("’7“” 77)+Lk(¢f il

where ¢~ plays the same role for ¢ as f~ served for f. We_ once again_use
the relation between f ~ and f and the fact that for P a point on a,, ¢~ =

@ + n™®, while for P a point on by, ¢ = ¢~ + . Thus

1 g df N d)
Z=2i L, [Lk“’T"“””( )<f i &

ar~ _df']
- L07) A, =
+f,,k(<p e T e 4o
Ly wd in®@\(2)dz + 2ripp,(z)dz
=3 ) f -7 7 + 2rin® e (z)dz + 2nipe,
T =g v

1 5 (k) df__

T & NG =

We now need to evaluate integrals of the form fa (df/f) and j'bk(dfl/)f ).
Since df/f = d log f, the integral in quest'ion is sx.mply log f(P,) — log f( bz}
where P, = P, are the initial and terminal pc?lnts of“the cycle”ak (or “,; .

(The difference is not zero, since we must use d}ﬂ'erent branches ' c?f' 1) g
now once again use (2.3.1) and (2.3.2) to obtain for P, and P, initial an
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terminal points of a,, f(P,) = exp[2ni(e,/2)] f(P,), and for P, and P, initial
and terminal points of by, f(P,) = exp 2mi[ —(g4/2) — (my/2) — o P)]S(P)).

This shows that

1 & Py
— R { 3 . Sk . . .
z 5t [ 3 ’(Zm >+ 27ttnk) + 7 2ni + 2mi Lk 09i(2) dz]

1

g . 8/ 7
+ 2_7” k;l e(k)[zn’(__zl - —zk—k - ¢k> + 27'[[}7!,;':

where m, and n, are integers. It therefore follows that

- i ot B elk)f’5+ (1 — n,)
, 2 2 k

, T
+ [ potds - e‘“(—z"f + cpkun)) + e‘*’mk],

or finally

£ 4
)=— —— —
E 112 12+Hn+1m—K,

where
— 3 ’ n
K = —kgl [Lk 0@, dz — e(k)(—z"—'f + ¢k(P‘)>:|. (2.4.1)

Remar'k and Definition. The vector K depends, of course, on the choice of the
canonical homology basis and the choice of the base point P, of the map @.
(Ther'e is an illusory dependence on the base point P, of n,(M) which can
be dispensed with by choosing P, = P, in the above.) The vector K is
known as the vector of Riemann constants. We have proved the following

Theorem. Let M be a compact Riemann surface of genus g = 1 with canonical
hqmolog y basis {a,b}. Let 8[%](z,1T) be the first order theta function associated
with (M{a,b}) and let ¢ be the map M — J(M). Then 02] @ is either
identically zero as a function on M or else has precisely g zeros on M. In
this case let P, - P, be the divisor of zeros. We then have (P, --P)=
—IIe/2 — I¢//2 + IIn + Im — K, where n and m are integer vectors and ;( is
a vector which depends on the canonical homology basis “{a,b} and the base
point of the map ¢:M — J(M). In particular, since ITn + Im is the zero point
of J(M), we have o(P, - P)) + K = —ITe/2 — I¢/2.

Remark. Consider the “function” on M
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with e e C% If this “function” does not vanish identically on M, it has g
zeros Py, ..., P, The theorem asserts (sec (1.4.5)), that

QP - P)+K=e

(where in the last equation we understand by e not the point in C¥, but its
projection in C?/L(M)). Our remark is valid because in the proof of the
theorem ¢ and ¢ were arbitrary points in R? (we never used the fact that the
characteristics were integral).

V1.2.5. We wish next to characterize the zero set of 6[%](z,/T) as a subset
of J(M);In view of (1.4.5'1_and (1.4.6) it suffices to consider only the functions
of the form - T

z 0(z — e),

with fixed e e C?. It is now convenient to review some concepts that we
studied in IT1.11. Recall that for every integer » > 1, M, denotes the integral
divisors of degree n on M (or equivalently the n-fold symmetric product of
M). Using the mapping ¢:M, — J(M), we can view 6 as a locally defined
holomorphic function on M,. Also, W, denotes the image in J(M) of M,
under the mapping ¢. Recall that for D e M, (Proposition 1IL.11.11(a)),
the Jacobian of the mapping ¢ has rank n + 1 — r(D™?'), which by Riemann-
Roch equals g — i(D). Taking n =g and a non-special divisor D e M,, we
conclude that
@:M, — J(M)

is a local homeomorphism at D. Thus since 8 5 0, § does not vanish iden-
tically on any open subset of M.

V1.3. The Theta Divisor

In this section we begin a study of the divisor of zeros of the theta function,
culminating in the Riemann vanishing theorem (Theorem VL3.5), which
prescribes in a rather detailed manner the zero set of the 6-function on Ce.
We also obtain necessary and sufficient conditions for the 6-function to
vanish identically on the Riemann surface (Theorem VL3.3) and as a by-
product, an alternate proof of the Jacobi inversion theorem.

V1.3.1. Theorem. Let ec C?. Then 0(e)=0 if and only if ee W,_, + K,
where K is the vector of constants of Theorem V1.2.4.

PROOF. We first show that ife € W,_, + K, then 6(e) = 0. To this end, choose
apoint{ = P, -+ P, in M, with P, # P; for k # j such that i({) = 0. I s
any other point in M, sufficiently close to {, then since i) =iP,---P)=
g — rank({(P)), i({’) =0 as well. Set e = ¢({) + K and consider y(P) =
8(@(P) — e) as a function of Pe M.
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There are now two possibilities to consider. Either ¥ is identically zero
or not. In the former case, we have for each k = L,....9

Op(Py) ~ (0P, -~ P) + K)) = 0(=p(Py - Py~ Py — K)
=0p(Py -+ Py P+ K)=0

(where we have used symbol P, --- P, - - - P, to mean P, does not appear in
the divisor) because (by (1.2.4)) @ is an even function. In the latter case,
we have from Theorem VI.2.4 that Y has precisely g zeros on M, say,
Q15 ..., Q, and that ¢(Q, - - Q)+ K=eSince =P, - - P, was chosen
so that i(P, - -- Pg) =0, it follows from the Riemann-Roch theorem and
Abel’s theorem that Q, - - - Q,= P, - P,. Therefore, even in this case we
have 6(p(Py--- P, --- P+ K)=0 for each k=1,...,g. The remark at
the beginning of this proof showed that the divisors { of the form under
consideration, { =P, - - P, with P;# P, for j# kﬂand i($)=0, form a
dense subset of M, Thus divisors of the form P, - - - Py P, form a dense
subset of M, _,. Hence 6 vanishes identically on W,_, + K.

Conversely, suppose 6(e) =0. Let s be the least integer such that
O(W,., — W,_y —e)=0 but AW, - W, —e)#0. Here W, — W, has the
obvious meaning (ee W, ~ W, < ¢ = S —h with f, he W). Our remarks
at the end of VL.2.5 immediately give 1 < s < g- The hypothesis we have
thus far made assures us of the existence of two pointsin M say{ =P, --- P,,
@ =0y Q, such that (@(P,---P)— @(Q, - 0,)— ) #0. We can
assume without loss of generality that P, # Pifork#j,Q,#0 ; for k #j,
and P, # Q, for all k, .

Consider now the function P — (¢ (P) + OPy  P)—o(Q, - 0)—oe).
This function does not vanish identically as a function on M, since P =P,
is not a zero. On the other hand, it is immediately clear that P = Qi
J=1,...,5, is a zero of this function. It therefore follows from Theorem
VI.2.4 that for some T, - - - T, seM,_,

¢(Ql"'Qs)—qD(PZ”'Ps)"_e:qD(Ql'”QSTI ”'Tg~s)+K (31'1)
or that
e=@(Ty---T,_ P, - P} + K, (3.1.2)

which is obviously a point of W,-1 + K. (Note that the above arguments
work also for s = 1.) |

V1.3.2. We now observe that we can really prove a bit more than we have
claimed in VI1.3.1. The points { = P, - - - P, and w = Q, -+ - Q, utilized in
the above proof, were fairly arbitrary in the sense that any other points
{', o' € M, which are sufficiently close to { and w would have worked as
well. We also found that e = QT -Ty_ Py P)e M,_, has at least
s — 1 “arbitrary” points P,, ..., P,init. Let D' = P} -+ P be arbitrary but
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close to P, - - - P,. The argument of VL3.1 shows
e=@(Ty Ty Py P+ K
— (T - TPy PY+K.

Thus Ty TyosPy P~ Ty Ty Py Py by Abels theor;m.
g-s H / .

Lemma IIL8.15 now implies that r(1/T, ~-}-)§',_st P) = s and thus

1 i . PPN > s.

by Riemann-Roch) that i(T, - - TP, )= .

( yOn the other hand, suppose that e =_¢(A)’+ K' with 4 eMg_, Xanc}

i(4) = s. Then A has precisely s — 1 “arbitrary” points. Any point .?h

W,_,— W,_,—eisof the form ¢(Py - Py_y) = @@, "~ Q-1) — e, Wi

e =op(4)+ K=<p(P,--';P,_16)+ K and d€M,_,. Therefore, we have
‘P(Pl"'Ps—x)—¢(Q1"'Qs-l)“‘P(Pl"'Ps—xé)‘K
= —@(Qy Qs-10) — K;

dXe —-(W,. +K):and9(X)=0.' .
e Wecan t(hegre;ore now strengthen slightly Theorem VI.3.1 to the following

X

Ii

Theorem. For e € C%, 0(e) =0 if andonlyif ee W,_, + K. If e eWW‘,_l_—:)Ii,
ande= () + Kwith{ e M,_, andi({) = s(=1), then 9(WSV.V, - —,e_)lz . b;t
0. Conversely, if s is the least integer such‘thaf ow,_, — ds'— ;) _° =

oW, — W,—e)#£0, thene=9()+ K with { € M,_, and i(J) =s.

PrOOF. All but the last remark is contained in the dlscuss1f>n precficg?vge :ilre
statement of the theorem. In the discussion we only showed i) = séceding it,
the statement i({) = s is an immediate consequence of th; o}?e prt coech D
Ifi({) > s, we would have O(W; — W, — ) = 0 contrary to the hypo .

V1.3.3. In the above analysis we have several times encountered the
multivalued holomorphic function on M
Y:P s> 0(@(P) — o),

with fixed e € J(M). (Recall that since ¢ depends on the choice of t??;erp:::
P, € M, so does the above function.) We have observed that 61: ef Yar-
is?les identically or else has precisely g zeros. When doe's each o
possibilities occur? The answer is contained in the following

Theorem -
a. If e J(M) and y =0, then e = ¢(D) + K for some D e M, with i(D) =
s> 1, and s is the least integer such that
Wy — W, —e) #0.

b. If e = @(D) + K, D e M, then W%‘Oﬁandonlyifl:(l?)=0c(z)ndD is the
' divisor of zeros of W. In particular, = 0 if and only if (D) > 0.
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ProOOF. Let s be the least inte
ger such that O(W,,, — W, —
0<s<g-1Choose P,,...P,,,0,,..., Q, such ;hat $TO#0 Then

Olp(Py- - Py ) — (0, -+~ Q) ~ €) # 0.
Consider the function

P""o(‘P(P)"'(P(Pz"'Psﬂ)_¢(Q1"'Qs)_e)

which does not vanish identically (it is .
minimality of ) g zeros y (it is non-zero at P,). It then has (by the

Qb-",Q_v Tl:--~, Tg—s'
Thus, again by Theorem VI.2.4, we conclude that

<P(Q1"'Q3T1"'Tg—s)+K=¢(Q1"'Q,)—co(Pz"'Pm)Jre;
or that
e=@(Ty Ty ,P-- P )+ Ke W, + K.

fzj) E)?§o>re; :}_161 (;i:ésc()éyDR': T,-- -RTg_st “++ Py, has s free points. Thus
Nz lemann-Roch) i(D) > s. i

{2 since ¥ = 0t g | ) i(D) > 5. We have established part
To esta.lbhsh part (b), note that by (a) if i(D) = 0, then v $# 0. Conversel

;}}ppose .z(D)‘> 0 and y = 0. Choose Q € M such that Y(Q) 0. Lemm);
.8.15, implies that there exists a D’ e M,_, such that o(D) = ¢(QD'). W

now use Theorem V1.3.1 to conclude that e

Y(Q) = 8(e(Q) — &) = B(p(D) ~ ¢(D’) — ¢)
=0(— (D) - K) = 8(o(D’) + K) = 0.
This contradiction shows that = 0.
To conclude the proof of part (b) we must verify that whenever e =

¢(D) + K, De M, and i(D) = 0, then D is indeed the divisor of zeros of .

Let D’ be the divisor of zeros of y, th _ N o ) /
implies that D = D", ¥, then ¢(D) = (D). Since i(D) = 0, th&ls

VL3.4. As a consequence of Theore
ms VL.3.] i
alternate proof of the Jacobi inversion nd V133, we obtain an

Theorem. Given a € J(M), there existsa De M g Such that (D) = a.

}I:R:O; V}i)ew aasa point iq € Let e =a+ K. Consider the function
(<p(d) - e). If this fupchon does not vanish identically, it has as its
zerosetadivisor D e My withp(D)+ K =e=a + K, by Theorem V1.2.4. If

the function doe ish 1 i ;
Theomerot 49 s vanish identically, then the last equation follows frog

VL.3.5. Lemma. The condition O(W, — W, ]
. . " - r - E 0 ' '
derivatives of 0 of order <r vanish at e. * Piies that all partial
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PROOF. Since the lemma clearly holds for r = 0, we take r > 0. We have
O(@(PyP)—~o0(Q, - Q)—¢e)=0forall D=F, -~ PeM,al D=
Q, - Q.,eM, Thus

Oe(P)+ (P, P)— (@1 Q) —©)

vanishes identically on M as a function of P. If we now expand this function
in a Taylor series about the point Q, and set P = @, we find the coeflicient
of a local coordinate at @, to be

g
_ X (@0fez)@Py- e P — @(Q; - Q) — &)

j=1 . .-
which must vanish. Moreover, since @, on M is arbitrary, we find that
(20/6z)@(Py -+ P) = 0(Q2 - 0,) — ¢) = 0 (by the linear independence of
the {jsforj=1,...,g) and this holds for all points P, P,, Q2" - Q, €
M,_,. We conclude that (¢6/¢=(W,—y — W._,—e=0Tforj=1...,g
We now simply repeat the argument for each of these functions and continue
until we find all partial derivatives of 8 of order <r vanish at —e, and
therefore also at e. O

This lemma together with Theorem VL3.2 gives us a substantial portion
of Riemann’s theorem. We have seen that any zero, e, of 8 is of the form
e = @(0) + K with { e M,_,. Furthermore, we have seen that if i({) = s,
then 8(W,., — W,_; —e) =0, and therefore all partial derivatives of 6 of
order less than s vanish at e. We can thus say that in this case 6 vanishes to
order at least s at e. The Riemann vanishing theorem asserts that s is the
precise order of vanishing at e; that is, at least one partial derivative of order
s does not vanish at e.

We now return to the hypothesis of the last part of Theorem VI.3.2
and observe that this hypothesis allows us to conclude the existence of three
distinct points {, w, T € M, with the additional property that the points in
these divisors are all distinct, and

0(e(0) — o(w) —e) # 0, (3.5.1)
0(e() — o(r) — &) #0, (35.2)
8(¢(w) — p(z) ~— e) # 0. (35.3)

Equation (3.5.1) is a consequence of the hypothesis O(W, — W, — ¢) #0,
while (3.5.2) follows by continuity from (3.5.1) for all v near . Finally, if
for all ' near o, 8(p(w) — @(t) — ¢) = 0, then by varying o we would
conclude once again that O(W, — W, — e) = 0, contrary to hypothesis.
Consider now
8(@(Py -~ P)— o(w) —¢)
0(p(P, -~ P)—o(t) —¢)

as a function on M, in a neighborhood of {. By (3.5.1) and (3.5.2) this function
is not identically zero on M, since neither numerator nor denominator
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vanish at {. We would rather view this for the moment as a function on M,
and in order to do so we consider

fiPe B(@(P) + @(Py - P) — o(w) — e),
B(@(P)+ @(P, - P) — @(t) — o)

and observe that as a function of P on M it is also not identically zero.

The same arguments which were used in VI.3.1 give that the divisor of
zeros of the numerator is wy with y e M,_,, and the divisor of zeros of the
denominator is z5. Furthermore, Theorem VI.2.4 when applied to numerator
and denominator separately gives

=Py P+ o +K=0(P, P)+ ¢(d) + K;

from which we conclude ¢(y) = @(0).

We now claim y = 5. If y s & then Abel's theorem gives us the existence
of a non-constant function in L{(y~"). The Riemann-Roch theorem gives
G =g-s—g+1+ip)=i)+1~s Now r37Y) = 2 yields i(y) >
s -+ 1; which then yields i(wy) > 1 (since i(wy) 2 i(y) — deg w). We will obtain
a contradiction by showing that i(w?) > 0 implies 8(p(P) + @(P, -+ - P,) —
©(w) ~ ) = 0as a function of P on M. We conclude from Theorem V1.2.4 that
e+ @) — @(P, -+ P) = g(wy) + K so that we may rewrite our function as

P = 0(p(P) ~ (p(w)) + K)).

By Theorem VI.3.3(b), this function vanishes identically, showing that
? = 0. Therefore, the function f viewed as a (multiplicative) function on M
vanishes at the points of w and has poles at the points of 7 (and is holomorphic
and non-zero elsewhere).

It is now necessary to analyze the multiplicative behavior of the function f
on M. It follows immediately from (1.4.1) and {1.4.2) that continuation of this
function over 4, leads back to the original function while continuation over
the cycle b, beginning at P leads to exp 2ni [@u(@) — @(t)] f(P), where @ is
the kth component of ¢.

Recall now the normalized differentials of third kind Tpg With simple
polesat P and Q with residue +1 at Pand — 1 at Q. We found (I11(3.6.3)) that

1
5= ;. v = 0u(P) - 04(0)

Let us now consider the function

P s s Pk 3
g(P) = CXP(LO ,;1 Tkm) kI;[_ CXP(_LO j;l TR,-T,>,

where =R, "R, t1=T, - T, It is clear that g(P) and f(P) have the
same zeros and poles and the same multiplicative behavior. Hence it follows
immediately that f(P) = cg(P), with ¢ a constant which may depend on
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P, --- P,, since both f(P) and g(P)depend on P, - - -'P,'. If we writ;}.’ =h?"};
however, we observe that both f and g are symmetric in P,...,P;w xet
implies that ¢ is independent of the points P, and thus is an absolute constant.

We therefore have
0Py~ P) — o(w) —€)

s Py s
=Py P)— o) - [T exxv[ In ,-; fnm]- (3.54)

We now differentiate (3.5.4) with respect to a local coordinate z at P, and
set P, =R, toobtain «. Do

$ % oy P) = 0(Ry -+ R) = o {(Ry)
C:.'j

i=1

=C[E(R1) i i (@R, P, - P) — o(t) — {;(R)) (35.5)
=10z

+ 9(¢(R1P2 e Ps) - ‘P(T) - e)dE(Rl)]i

where E = T}, exp({5 ¥3_, t,r,). Since R, is a simple zero of E we have
E(R,) = 0 but dE(R,) # 0, where we easily compute the derivative

s Pre s

dE(R,) = H exp J;,O Z TR,Ty |
k=2 j=1

by properly choosing the local coordinate z at R, with respect to which we

differentiate. ' o '
We now continue the process by differentiating (3.5.5) with respect to a

local coordinate at P, and set P, = R, to obtain

i o0 ((P3 - Py—oR;3" - Ry — e)Cj(Rl)Ck(RZ)
4L, 0z;0¢
k=1 jl-k
= cB(@(R,R,P3 -+ P) — 9(2) — &)(d*E(Ry,R,)). (3.5.6)
We have used once again that R, is a simple zero of E, and therefore
dE(R))(R;)#0. .
( \gVe‘Z:)cgntzinue this process arriving finally at the sth stage and obtain
aso J1 P R
B Y m(_e)C1(Rl) GF(Ry)
s=j1+ - tig q
= (@) — @(t) — Yd°E(Ry, - - - ;R)). (3.5.7)

It follows from (3.5.3) that the right side of '(3_.5.7) does not vanish.tgetn:ﬁ
the same is true for the left side and therefore it is surely not the casle :t .
sth order partial derivatives of # vanish at —e (and therefore also .
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Theorem (Riemann). Let s be the least integer such that (W, _, — We,—e=
0 but O(W,; — W, —e) #0. Then e = ¢({) + K with { ¢ M, _, and i({) = s.
Furthermore, all partial derivatives of @ of order less than s vanish at e while a1
least one partial of order s does not vanish at e. C ontersely, if e is a point such
that all partials of order less than s vanish at e but one partial of order s does
not vanish at e then we have e = () + K with{ € M, ;andi({)=s.

PROOF. The first claim in the theorem is precisely the last statement of
Theorem V1.3.2. The Lemma then gives that all partial derivatives of order
less than s vanish at e. The statement that at least one partial of order s does
not vanish at ¢ is precisely the remark following (3.5.7). We now turn to the
second (converse) part of the theorem.

We assume that all partials of § of order less than s > 1 vanish at e. Hence
by Theorem VI.3.1 we have e = @({) + K with ‘e M,_,, and the only
question is: What is i({) equal to? First, i({) cannot be less than s. If it were,
then by the first part of the theorem it could not be the case that all partial
derivatives of order less than s vanish at e. Similarly i({) cannot be greater
than s. If it were, then by the first part of the theorem it would not be the case
that there is a non-vanishing partial derivative of order s. Hence we conclude

that i({) = s. 0

VL.3.6. We have been making reference to the vector K of Riemann con-
stants since Theorem VI1.2.4. In this section, we give a new characteriza-
tion of K that partly explains its significance. Up to this point K has been
defined simply by (2.4.1). We show here that the vector — 2K is the image of
the divisor of a meromorphic differential under (the extension to divisors of
the map) ¢.

We have already seen that the divisor of a meromorphic differential on a
compact surface of genus g has degree 29 — 2. Hence we now prove the
following

Theorem. Let A be a divisor of degree 29 — 2 on a compact Riemann surface,
M, of genus g > 1. Then 4 is the divisor of a meromorphic differential on M
if and only if p(4) = —2K.

PROOF. We first show that —2K is indeed the image of the divisor class of
meromorphic differentials. It suffices to show, of course, that —2K is the
image of the divisor of a holomorphic differential. To this end let { be an
arbitrary integral divisor of degree g — 1. It therefore follows from Theorem
VL3.2 that e = @({) + K is a zero of the theta function. Since the theta
function is even, —e is also a zero and (again by Theorem VI32) —e=
¢(@) + K, with » an integral divisor of degree g — 1 on M. It therefore
follows that p({w) = —2K.

We now need show that {e is the divisor of a holomorphic differential on
M. We need only note that the divisor {w has g — 1 “arbitrary” points. It
therefore follows (by Lemma I11.8.15 as in V1.3.2) that r(1/{w) = g; which
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by the Riemann-Roch theorem implics i(;®) > 1. and therefore i({w) = 1.
wce Lo i ivi ic differential.
Hence Jw is the divisor of a holomorphic di
Con;ersely, suppose 4 is a divisor of degree 2g - 2 on \/! such that
@(4) = —2K. It follows by Abel's theorem that thcfe is a function f on M
with divisor 4/(), where « is a holomorphic diff;rent'la'l on M and (a) denotes
the divisor of z. Thus fa is a differential on M with divisor ( fo) = A. O

In the next chapter we will often make use of the following

Corollary. The vector K of Riemann constants is a point of order 2 in J(M)
if and only if P3¥% is “anonical- where P is the base point of the map

o:M = J(M). .
Proor. The point K is of order 2 if and only if —2K =0=@(P§* *). Nog
use the theorem.

VIL.3.7. We have encountered, in this chapter and ?n HI.11, tt}ree ;re;y
important and beautiful subsets of J(M). The first, is the zero set ol the

-function
6 ’ @zero=Wg—l+K;

the second, is the singular set of the f-function (the points where 8 and its
first partials vanish)

Oging = Wi +K
(see also VILL.6); the third is the set of points e € J(M) which lead to the
identically vanishing of the function ¥ of VL.3.3
=W, + K.

@super zero

It is obvious that
(3.7.1)

@zero - @super zero = @sing'

Note that @ e; sero IS always non-empty for g > 2 (take a Weierstrass point,
for example), \;hile Oing is NON-empty forg = 4 b){ the Corollary to Th;or&r;
II1.8.13 and Theorem I11.8.7 (also for hyperelliptic surfaces of genus 3).
conclude from Theorem I11.11.19 that
dim @zero =4 1’
dim @super zero = 9 2’
and
g—4<dim Ogpe<g—3,
and hence the inclusions of (3.7.1) are all proper. The. pc?ints correspo:fdm)g
to vanishing of the §-function, but not identically vanishing (on the surface),

are in
(WAWH + K = (J(M\W,) + K.
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Theh sets sz and 6,;,, depend only on the period matrix f1. The fact that
s;:c asetisnon-empty can, of course, be translated by the Riemann vanishing
theorem and tpe R:erpann-—Roch theorem into a statement about existence
of 1Iner}cl>morphlc functions (of a certain type) on M
t should also be remarked that ©,,,, and ® . i
: zero sing ar¢ independent of the
base point of the map ¢:M — J(M). Thus ©,;,g describes those points

e € J(M) corresponding to the identically vanishi j i
bate poim (o y ing of ¥ for all choices of the

CHAPTER VII
Examples

In this chapter we give applications and examples of the theory developed
in the preceding chapters. The examples will consist mainly of taking con-
crete representations of compact Riemann surfaces given by algebraic
functions, and computing on these surfaces various objects of interest. The
applications will give rise to new characterizations of surfaces with some
given property. The format of this chapter will differ considerably from the
format of the preceding ones. Many details will be omitted. One of the aims
of this chapter is to convince the reader that computations are quite often
possible; and these computations yield beautiful results.

VIIL.1. Hyperelliptic Surfaces (Once Again)

Our first set of examples will continue to deal with the class of surfaces
studied extensively in IIL7: the hyperelliptic surfaces. Recall that a hyper-
elliptic surface M of genus g > 2 has an essentially unique realization as a
two sheeted cover of the sphere branched over 2g + 2 points. It is the Riemann
surface of the algebraic curve

29+ 2

wi=[] z—e) e#e,fork# (1.0.1)
k=1

VIL1.1. We adopt the following point of view in the above situation. We
think of  as a variable point in C U {0}, and then view M as the Riemann
surface on which w is a well defined (single valued) meromorphic function.
On this surface, which must be a two sheeted branched covering of C u {c0},
the projection map (which we shall also denote by z) onto C U {co0} is the



300

VI Theia Functions

The sets Qmo and O, depend only on the period matrix f1. The fact that
such a set is non-empty can, of course, be translated by the Riemann va nishir;i
theorem and the Riemann-Roch theorem into a stétement about é‘(istc .
of meromorphic functions (of a certain type) on M. e

It shc?uld also be remarked that @,,,, and Oging are independent of the
base point of the map ¢:M — J(M). Thus O ;g describes those points

e € J(M) corresponding to the identically vanishi i
base point (oo Al YIE0 1) y vanishing of ¥ for all choices of the

CHAPTER VII
Examples

In this chapter we give applications and examples of the theory developed
in the preceding chapters. The examples will consist mainly of taking con-
crete representations of compact Riemann surfaces given by algebraic
functions, and computing on these surfaces various objects of interest. The
applications will give rise to new characterizations of surfaces with some
given property. The format of this chapter will differ considerably from the
format of the preceding ones. Many details will be omitted. One of the aims
of this chapter is to convince the reader that computations are quite often
possible; and these computations yield beautiful results.

VII.1. Hyperelliptic Surfaces (Once Again)

Our first set of examples will continue to deal with the class of surfaces
studied extensively in I1L7: the hyperelliptic surfaces. Recall that a hyper-
elliptic surface M of genus g > 2 has an essentially unique realization as a
two sheeted cover of the sphere branched over 2g + 2 points. It is the Riemann
surface of the algebraic curve
29+2
wi= [] z—e) e#Fe,fork#j (1.0.1)
k=1
VIL1.1. We adopt the following point of view in the above situation. We
think of z as a variable point in C U {c0}, and then view M as the Riemann
surface on which w is a well defined (single valued) meromorphic function.
On this surface, which must be a two sheeted branched covering of C u {0},
the projection map (which we shall also denote by z) onto C U {oo} is the
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function of degree two, and we can think of w as a function of the point
P € M in the sense thitt w sends P e M into w(z(}). Note that as a function
of z, wis two-valued: it is defined up to sign.

Alternatively. we can think of M as a surface of genus g = 2 with a mero-
morphic function = of degree 2 and another function w satisfying (1.0.1).

Theorem II1.7.3 established the result that the 2g + 2 points 27 (ey),
k=1,...,29+ 2, are the Weierstrass points on M, and that each of these
points has weight g(g — 1)/2. Proposition 111.7.6 showed that if we choose
a Weierstrass point (say =~ !{e,)) as the base point for the map ¢ of M into
the Jacobian variety J(M), then for P € M. ¢(P)is of order 2 if and onlyif Pis
a Weierstrass point.

We can actually suy more. We can compute precisely which half-periods
(points of order 2) are in the image of w:M — J(M). We need for this pur-
pose a model for a canonical homology basis on .M. Recall the model dis-
cussed in IIL74, and set =" Ye)=P;, j=1,2,...,29 + 2. We wish to
amplify (for the convenience of the calculations) that model slightly to the
one given in Figure VILI.

Figure VIL.1. Hyperelliptic surface of genus 2,

The hyperelliptic involution J can be viewed as a rotation by = radians
about an axis passing through the 2g + 2 Weierstrass points. Fork =1, ...,
g + 1, let B, be an oriented curve from P, to P,,. Define b, as B, followed
by —JB, (that is, followed by JB, is the opposite direction). The curve a,,
k=1,...,g,is all in “one sheet” and it joins a point on b, to a point on
b, and then returns to the point on b,. Whereas b, is invariant {as a point
set) under J, g, is not. The curves Ay, ..., a5, by, ..., b, form a canonical
homology basis on M.

In the following calculations, we use standard notation: {& =" 0}
is the normalized basis of #!(M) dual to the canonical homology basis,
7™ is the k-th column of the period matrix /1, etc. . . ., as well as the fact
that J acts as multiplication by —1 on #'(M). Now, fork=1,..., g,

(ky _ v - v __ w
R R = J
J;k i Lk 6 Lﬂk > J;’k ot JBr C

P2
=2 c=21" ¢
jﬂk s Pax -1 °
Next, the intersection numbers satisfyforj=1,..., g,

aj-bg+1=—1’ bj.bg+1=0-
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Thus up to homology
~by.y=by -+ b,

from which we conclude that

j'Pzgvz C - %(n(l) 4+ + Tl’(g)).

Pag+1

To compute some more integrals we introduce the curves 4; Joining Pzt;- tr(;
=& - J& i e compute intersection numoe
Pain and set «;=&; - J&; Again w p

(j=1,...,gandk=1,...,g)
B ozj-a,(-——O,'h ;- by=0 forj#kj#k+1,
xj'bj=+1, C(j'bj+‘=—1.
Thus we conclude that (in H(M))

o= a; = j+, forj=1,...,9—1L2,=4a,

It now follows, as above, that

J‘P:k«l . _
P2 s
j‘P:gn v
‘: =
Piy

We now combine all the above data in:

@(P) =0,

(L"k)——e(k+n)=~1~(e(k)+t"k+”), k=1,...,g‘1,
2

o9,

[T W

2 1
o(P)=o(P)) + [, { =57,

1
o(P3) = ¢(Py) + J‘:; (= E(ﬂ“) + eV + o),

@(Pas1) = %(n“’ b @ g Mgttty k=12...,9-1

ke ) =1,...,9-1,
¢(P2H2)=%(n‘“+-“+7r"‘”’+e“’+e‘+), k=1....9

(7:“) +- 4 n(') o+ e(l))’

e,
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: 2g+2
y tI}\Jvotflce ‘tl.mat 23842 @(P)) = 0, because (P, - - - Pyg+2)/P3?* 1 is the divis
of the function w (here we assume that z has a double pole at P d o
in (1.0.1) the product runs over the indices 2 to 2g + 2 v and hence
We compute next g+

Mo

1
. = — (
©(P2j11) 2(gn LR g—Da®+- 4 79 4 geD 4@ .y ¢,

j=1
(1.1.1)

Consider the map ¢:M, » J(M i
‘ ‘ : M) at th = e
differential at this point is (tyhe trans;))ose of(; point D= FaPs =+ Pagea- s

s1(P3) Ca(P3)
<1(Ps) <o(Ps)

:_ 5 (1.1.2)
CI(P2g+l) gg(PZg*-l)

;\bgszr:ﬁztgi zaysis for a'bclia;n differentials of the first kind, multiplies the

a non-singular matrix. Hence to comput h,
we may choose a convenient basi t o et 2
b Ty oo ient basis for #'(M). We shall use the basis given
Hdz

W’ ]=0,...,g—1.

As before we assume fo i
: r convenience that z has
vanishes at the point P,. Note then that 2 double pole at 7, and

Zdz o 2im 2020
” = P~ Zpgl_

In particular, dz/w does not vanish at P,,,,,j =1
compute the rank of v a

.., g. Thus we want to

1 z(P3) 227 Y(P,)
dz 1 z(Ps) o-1p.
jl;Ix ;‘(sz“) : 3 z ‘(Ps)
IZ(P29+1) 29—1(sz+1)
g dz ;e3 e%‘:
_ e e -
=15 Pan| 7 “)
leyur - e%;i;

Eeill:rsltc matrix is, .of course, the Vandermonde matrix which has alread

i 11C)>\irtll;etrcz(d])()xn 10\1.11610){l and is non-singular. We have hence showg
e =0, and that ¢ establi . By

neighborhood of D in M, and its ir(flageain 1‘]5(1’1;;)‘311 isomorphism between 2
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VIL.1.2. In VI.2.4, we have introduced the vector of Riemann constants

g n
- — ran o TR
K k; U" P dz —e ( 5 )]

where we assumed that the base point for 7,(M) is chosen to agree with the
base point of the map ¢:M — J(M)—which in our case was selected to be
a Weierstrass, point P,. It is rather difficult to evaluate K directly. We know
(Theorem V1.3.6) that —2K is the image in J(M) of the canonical divisor
class. Since P3?72 is the divisor of an abelian differential of the first kind,
the canonjgal class gets mapped into 0 by @. Thus K is a half-period. We
want to know which half-period. We shall shiow that
g
K= Zl @(P24 1) (1.2.1)
i=

Assume for the moment that we knew that 9(0) # 0, for the §-function in-
troduced in Chapter VL. In this case 8 > ¢ does not vanish identically on M
(this is the fact we really need), and hence 6 o @ has g zeros Q,...,Q,0nM

These zeros satisfy

o

Y Q)+ K =0.
1

3\

J

{recall Theorem V1.2.4).

We have seen that @(P) isa half-period. Such a half-period can be written
as 5(I¢' + Me), where [;] is an integer characteristic. Thus the half-periods
can be classified as odd or even, depending on the parity of the characteristic.
Up to a constant non-zero factor,

Ie + Ile £
(32 Jo

We hence conclude that 6 vanishes at odd half-periods. We notice that
e(Pyjs)j=1..-»0 is an odd half-period. (We also, for the future, notice
that @(P,), j=1...,9+ 1, is an even half-period.) Thus @(Pj+,) is a
zero of the function 6§ on M. Hence

g
2 @(Pyjs1) = -K=K.
i=1

Note that conversely, the identity (1.2.1) shows that 6 does not vanish
identically on M. For if 6 vanished identically on M, then @(P3Ps - Pyt
K =0 and i(Ps- " P2g+1) >0 by Theorem V1.3.3. This contradicts the
previously established fact that i(Ps- - Pag+q) = 0. These remarks also
show that 6 vanishes at 0 if and only if 0 vanishes identically on M. The fact
that an even theta function vanishes at 0 if and only if it vanishes identically
on M is also a consequence of the Riemann vanishing theorem.
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Remark. There is an additional property that the 2g + 1 half-periods ¢(P)),
Jj=2,...,29 + 2 bave. We have already mentioned the fact that @(P;, ),
j=1...,¢9 isodd and @(P,), j=1,...,g + 1, is even. The origin ¢(P,),
is, of course, also even. If we use the notation (%) = (I¢' + I1¢) for half-
periods, and label the half period @(P,), k =2,...,2g + 2 by (£}, then
the 2g + 1 half-periods (f},) have the property that for all k # 1, e(k) - &'(l) +
&'(k) - e(l) = 1. Here e(k) = (g;(k), . . . ,g,(K)), &'(k) = (¢1(k), - . - ,£,(k)), and the
operation ( ,-, ) is the usual inner product over Z,.

VI.1.3. We need to establish that 8 does not vanish at the origin. We
postpone 'this proof to VIL.1.9, since it is more convenient to have some
further computations at hand. Note that we never use anything other than
the fact that K is a hal-period. We do not anywhere use the exact form of
K (before V11.4).

VIL1.4. It is, of course, true that 8(K) =0 by Theorem V1.3.1. The order
of vanishing of 6 at X is determined by the Riemann vanishing theorem
(VL3.5). Write

K=¢{)+K, (eM,,

Clearly we can choose { = P§~!. The order of vanishing of 8 at K is precisely
i(<). Since P, is a Weierstrass point, the orders of zeros at P; of abelian
differentials of the first kind on M are (see 111.7.3):

0,2,...,29 -2
Thus
J_ . .
P91y = {j.(g + 1), ng fs odd,
39, if g is even.

{Using the greatest integer notation, we can write that the order of vanishing
is always [4(g + 1)].)
For De M,_,, r(D™') = i(D), and Clifford’s theorem (II.8.4) shows that

i(D) < [9—%“—1-]

We have established that for a hyperelliptic surface there are points at which
the -function vanishes to the maximum order possible. We have shown
that such vanishing occurs at a point of order 2 in J(M).

As a matter of fact, given any non-negative integer n < [4(g + 1)], there
is a point e € J(M) such that e has order 2 and 6 vanishes at e to precisely
order n. To see this, we have to construct for n > 0, divisors { € M,_, with
{ containing only Weierstrass points and i({) = n. Then the point e =
@({) + K will have the desired property (for n = 0, we, of course, need a
divisor { € M, with i({) = 0). The calculation in VIL1.1 established the
following fact: If D € M, and D consists of distinct Weierstrass points, then
i(D) = 0. From this observation it follows that if (for0 < r < g)D e M,_, and
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D consists of distinct Weierstrass points, then i{D)=r. Let
1<jy<jp < <jS29+2

be a choice of g distinct integers as indicated. Then
g
Y oeP)+K
k=1

is a point of order two in J(M) at which .the 9-function does not vanish
(choosing j, = 2k + 1, we obtain the prevnoqsly used factt that 6(0) # 0).
Choosing g — ! distinct integers as above (j, is now permitted to be 1), we
see that  vanishes to order 1 at -

g1
e(P) + K.
k=1

More generally, let r and s be non-negative integers such that
2s+r=g—1

Choose s non-negative integers
1<jy<ja< - <j<29+2
and r more¢ non-negative integers
1<k, <k,<- <k <29+2,
such that
k,, #j, allm,n.

Recall now (I11.7.3) that every w € H# (M) that vanishes at a Weierstrass
point vanishes to even order, and conclude that

Thus we see that for D = P2P2 -+ PLP, - P, the order of vanishing of
g at (D) + K is precisely s + 1. The possible values of s + 1 are, of course,
L,2...,B@+ 1] |
VIL1.5. We now show how some of the results of TIL.8 can _be restated in
terms of vanishing properties of 8-functions. We will obtain this way, among
other things, characterizations of hyperelliptic surfaces.

: g — g = 1.
i(P.?lPJ?z.”PJ?Ph.”Pkr)=](Pj1H'Pistl Pkr) g r—s s+

Theorem. A Riemann surface M of genus 3 is hyperelliptic if and only if 0
vanishes at a point of order 2 in J(M) to order 2,

ProoOF. If M is hyperelliptic, then the vector K of Riemann 'constants wc;tg
respect to a Weierstrass point on M is a point of order .2 in J(M), an2 .
vanishes at K to order 2. Conversely, if 6 vanishes at a point e of order valn
J(M) to order 2, then e = (0.0, + K, i(Q,0Q2) =_21f°f lsom; Q,%z ;I i:
(by the Riemann vanishing theorem). Thus r(Q7'Qz ) =2 an

hyperelliptic. O
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Note that we have proven somewhat more:

Thearem. 4 surface M of geaus 3 is hyperelliptic if and caly if there is a
point e € JIM) with 0 vanishing to order 2 at e.

VIL.1.6. Definition. A singular point of the zero set of the 0-function is a

point where (0 vanishes and) all the first partial derivatives vanish. We shall

denote the singular set (that is, the set of singular points) by @
It is obvious from the Riemann vanishing theorem that

sing*

Oging = W;_, + K, (1.6.1)
and from Theorem 1I1.11.19 that

g_4Sdim85ing$g_'3:

with the upper bound attained if and only if the surface is hyperelliptic.
Let us consider g = 4. In this case O # J (it is 0 or 1 dimensional).
Note that Proposition 1I11.8.6 implies immediately (without Theorem

I1.11.19) that W} # @. Further Theorem I(1.8.7 can be reinterpreted as the
following

Theorem. Let M he a compact surface of genus 4. Then one and onl 'y one of
the following holds:

a. Oy is 1-dimensional,
b. O, consists of precisely one point (a point of order 2 in J(M )), or

C. Oging consists of precisely two points (a # 0, a € J(M), and — a), neither one
of which is of order 2.

Each case corresponds to the case indexed by the same letter in Theorem
I11.8.7.

Proor. If M is hyperelliptic then ©;ng is one-dimensional (and conversely).
In fact, in this case, @, is analytically equivalent to W, = @(M) and hence
to M (EXERCISE). Thus case (a) is disjoint from the other two cases.
Proposition 111.8.6 showed that W} is non-empty. Assume a e Wi+ K.
Assume also be W} + K. The proof of Theorem IIL8.7 showed that
a+b =0 unless M is hyperelliptic (recall that the image of the canonical
class in J(M) is —2K (Theorem VI.3.6)). Hence the only possibilities are

a=b (and hence 24 = 0) or W} contains two points and b= —a 0. In
the latter case a cannot be of order 2. a

Corollary. A necessary and sufficient condition for a surface M of genus 4 to

be hyperelliptic is that 0 vanish at two distinct points of order 2 in JIM) to
order 2.

Proor. If M is hyperelliptic, then the vector K with respect to each of the
10 Weierstrass points is a point of order 2 at which §-vanishes to order
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(precisely) 2. (The reader should develop the dependence of the‘vector of
Riemann constants K(P,) on the base point Py, and become convinced that
we obtain this way ten distinct points of order 2 in J(3/).) On the.other hand,
the theorem implies that whenever 8 vanishes at two distinct Poxpts of order
2 to order 2, then the surface is hyperelliptic (the points of vanishing to order
precisely 2 are the points of W} + K). O

VIL1.7. To gencralize the above corollary, we translate Corollary 2 to
Proposition 111.8.8.

Theorem. A necessary antd sufficient condition for a surface M of even genus
g = 4 to be hyperelliptic is that 0 vanish at two points of order 2 in J(M) to

order 1g.
PrOOF. Necessity is established as before. For sufficiency, note that our _con-
dition assures the existence of two distinct points of order 2 g, be Wj’i L
K. Write

a=@()+K,  AdeMil,

b= ¢(B)+ K, Be M¥h

Thus 4 and B are inequivalent divisors, and a computatipn yields 'tha}t
¢(A) = 1 = ¢(B). Hence, by the result we are translatlpg, ;\f{ is hyperelliptic
unless A and B are complementary divisors. But in this case a + b=
@(AB) + 2K = 0. Thus a = —b (here is the only placg that we use the
fact that g and b are of order 2), and hence a = b (which contradicts the
hypothesis). |

il

il

Remark. By Theorem II1.8.11, the vanishing of the G-fur}ctio.n at a single
point in J(M) to order }g implies hyperellipticity except if g is 4 or 6.

VIL.1.8. The situation for odd genus is even simpler.

Theorem. A necessary and sufficient condition for a surface M of .odd genus
g >3 to be hyperelliptic is for 0 10 vanish at a point of order 2 in J(M) to
order 5(g + 1).

ProoF. As before, necessity has been established and-for sufﬁc1enc_y,.we
need even less. The vanishing property implies the existence of a4dnx;qr
DeM,_, with (D™*) = }(g + 1). Thus by Clifford’s theorem (111.8.4), S
hyperelliptic.

Remark. Again, for sufficiency, we did not need to know that the points at
which the ‘9-function vanished were of order 2. Except for genus 4 or 6,
vanishing of the §-function at any point (to the right order) implies hyper-
ellipticity.

VIL1.9. In this section we complete the proof of (1.2.1). Recall that in VIL.1.2
we showed that it suffices to prove that 6(0,I1) # 0.
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We begin by considering the following set of divisors: P§™!, the 2g + 1
divisors P{™*Py, k= 2,...,2g + 2; and the (%] !) divisors P{™*P, P, such
that iy # i,. iy % 1. and i, # 1. We continue in this fashion ending with the
(371) divisors Py - -+ P, with i, # 1, and all indices distinct. Finally we
add the (*;'!) divisors P, - - P, with the same assumptions on the indices.

The first observation to be made is that our set consists of 227 linearly
inequivalent divisors. The fact that the divisors are inequivalent follows
immediately from Abel's theorem and the Riemann-Roch theorem. The
point being, that we would be led to an equivalence of the form P;, - -- P; ~
PTP; - -+ P, with r < g, which is impossible since i(P; - P,)=¢g —r.
Counting the number of divisors we have formed, we have Y 1_,(*%!) =
_5_, 22g+l — 229_

If we now consider D to be one of the divisors in our set, then oDy + K
is a zero of the theta function of order i(D). Since we know ¢(D) + K is a
point of order two, and we have here constructed all the points of order two,
we have catalogued the exact order of vanishing at each point of order 2.
(For example, if g is odd, the arguments of VIL.1.4 vield i(P{" !y =Yg + 1),
(PTP) =4g—1),..., PP, - P, )=2 P, --P__)=1, and
i(Py, -+ P) = 0)

The above argument has established that the 8-function does not vanish
at the (*%; ') half-periods

@(P;,Py, - Pi) + K, (19.1)

where 1 <j, <j, <+ <j,=2¢g + 2. Each of these half-periods must be
an even haif-period (because 8 vanishes at all odd half-periods). The rest of
the proof involves showing that if 6{0.I1) = 0, then we can construct an
odd-half period of the form (1.9.1) and contradict the non-vanishing of the
g-function of this point. (Recall § vanishes at 0 if and only if 6 - ¢ vanishes
identically on M)

Since K is a half-period, K can be written as

Kz(P(PilPiz"'Pi,)y

with0<r<g,and1 <i, <i, < - <i, < 2g + 2. Assume first that g = r,
then writing
@(P,P;, - P )+ K =0,
and recalling that
i(Pl';Piz'”Pl'g):Oa

we conclude from Theorem VI.3.3, that 6 < ¢ # 0 on M, and hence also
that 6(0,I1) # 0. We finish by showing that if r < g, then it is impossible for
(1.9.1) to be an even half-period for all choices of the indices. We show how
to construct the set {j, 5, . . . ,j,}. First it should contain the set {i,i, . . . ,i,}
and we must add a set of g — r numbers in {2,3,...,2g + 2} that are not in
{ivsia, . . - i} Assume this set is {ky, ... k,_,}. Then

@(Pj\Pj, - Pi)+ K= PPy, - Py, _)
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Recall that the set {o(P,), . .. ,@(P,, 1)} contains exactly g odd half-periods
and g + 1 even hall periods. Thus in the sct

‘12.3. P .2y "‘!' ...} "{il*iZ' . e ,i,.}
there are at least g — r indices corresponding to odd half-periods, anq at
least g — r + 1 corresponding to even half-periods. We choose s odd points

and t = g — r — s even points. What is the parity of this divisor? Using the
remark at the end of VIL.1.2, we see that this divisor has the same parity as

R s+(S;t)js+(g£r)=s;+_%(g—r)(g—r-—1).

Thus if }(g —r)(g—r— 1) is even, we choose s to be odd, andifi(g—r)(g— r— 1)
is odd we choose s to be even. We have enough room in our set to accomplish
this.

VIL2. Relations among Quadratic Differentials

VII.2.1. We shall be working with a compact Riemann surface M‘of
genus g > 3, and using standard notation involving divisors, the Jacobian
variety, the f-function, etc. _
We have seen, in 111.3.7, that there is a connection between relatans
among quadratic differentials and integral divisors of degree g — 1 with
index of specialty >2. These points in M;._l are related via the map ¢ to
the points in W)_, c J(M). This last set is connected to _@si,,g by (1.6.1.).
Our first result elaborates on this connection by strengthening a remark in

V1.3.7.

Proposition. Let e € J(M). Then
P 6{p(P) t ¢) (2.1.1)

vanishes identically on M for every choice of base point P for the map
@:M - J(M)if and only if e € Ogjpq.

Proor. The fact is that e € Oy, is equivalent by (1.6.1) to the existence of
points Py,. .., P,., € M such that
e=@P, "P,o))+K and (P Py_y)2 2.

Hence by Theorem V1.3.2, it is equivalent to 6(W, — W, + e) = 0. This
is precisely the statement of our proposition. |

VIL.2.2. The above proposition has some interesting consgquences. F(?r
any ee J(M), (2.1.1) defines (locally) a holomorphic function on 'M ; In
particular, it is a function defined in a neighborhood of the base point P.
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Let z be a local coordinate on M vanishing at P,. The power series expan-

sion of:(2.1.1) is then (we are using the function defined by + ¢, and evaluating
6 and its partials at ¢)

oto(P) + =00+ £ Tk,
]

j=1
2

s a0 & &0 . z
+ (,Z 6‘%(3)&1(1’0) + ) ‘__8u—k sj(Po)'sk(Po)> 5

j=1 k=1 0u;

co , 20

+ 12, ()7 (Po) + 3 ——(e);
(Z,: Cuj( 16i (Po) j,zkéujuk (&)U Po),i(Po)
. - 630 -3
T s (Po)ld Po)d i (

[0y Gy G Ci(Po)Cil] 0)-1(p0)> 3 + . (22.2)
(Note that in t.he above expression, we have identified the normalized
differential {; with the holomorphic functions f of z such that ¢, = flz)dz
near Py.) ’

The above expression becomes interesting precisely when e & Oging OF
—ee Bing- In this case, by Proposition VII.2.1, the coefficient of z* must
v?n‘xfh for each n > 0, and each base point. It then follows that 9(+¢) = 0 =
(00;6u,)( .4_- ehj=1, s g This information is not new. It is a consequence
of the Riemann vanishing theorem (V1.3.5). A new result is contained in

Proposition. For e € @,,,, we have
g A2

} 0 .
,,,{v:, Cu; 5u,,(ie)cf"* =0, (2.2.3)
and
g 3
(2Ll =0.
j,kg::l 5uj Ou, 6u1( )CI""C’ (2.24)
PrOOF. Equation (2.2.3) follows from (2.2.2) and the previous observation

that the first partials of  vanish. The vanishing of the coefficient of z* in
(2.2.2) yields

3 Z_a_zg.(e)glc + Z é’o vy
fiowlu, TE T A W(e)"m“ =0 (2.23)
a2 639

0°0
3 7 r v
j,zkaujéuk( e)cfsk +

el W( —e)ili = 0. (2.2.6)

. If we subtract (2.2.6) from (2.2.5) and use the fact that 6 is an even func-
tion, then we obtain (2.2.4). O

Remark. Therq are instances when the above proposition is of little value.
Fozr example, if ee @si,,g,.and all the second partials of 6 at e vanish (e e
W,_1 + K), then (2.2.3) yields no information. It could also happen that all
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the second order partial derivatives do not vanish at e, but all the third
order partial derivatives do vanish. This takes place when ee @, i1s an
even point of order 2. Why? (EXERCISE))

VIL2.3. We return now to case (c) of Theorem VI1.1.6, and consider a surface
M of genus 4 where Oy, consists of precisely two points e and —e (with e
not a point of order 2 in J(M)). We have seen, in II1.10, that the abelian
differentials of the first kind on M provide an embedding, M — P3, of the
surface into projective space. Proposition VI1.2.2 tells us that the image of M
in P? is contained in the intersection of the quadric and cubic defined by
(2.2.3) 4nd (2.2.4). Note"that (2.2.3) is not the trivial relation because the
highest order of vanishing the 8-function for a surface of genus 4 is 2. It
should be observed that the cocflicients of the curve (given in this way) in
P? depend only on @,,,, which in turn depends only on the period matrix
II of M. Hence the curve in projective space or equivalently the Riemann
surface M can be recovered from the period matrix I1, whenever (2.2.3) and
(2.2.4) are independent equations.

Remark. (For those familiar with elementary properties of curves) The
intersection of the quadric (2.2.3) and the cubic {2.2.4) certainly contains a
curve of degree 2 - 3 = 6. The degree of the curve M in Plis2-4-2=46
It is important to observe that while, as stated, the quadric in the above case
is non-trivial, we have not really shown that the cubic is non-trivial or that
the quadric is not contained in the cubic. In these situations the curve is not
recoverable by the above procedure.

EXERCISE

How much of the above carrics over to cases (a) and (b) of Theorem VII.1.6?

VIL2.4. It is not our intention to develop here the theory of moduli of
compact Riemann surfaces of genus g > 2. However, there is one interesting
observation that can be made now. We know that the dimension of #%(M),
the space of holomorphic quadratic differentials on M, is 3g — 3. We also
know that {{,e #*M), j, k=1,...,g. Hence, if the products of the
holomorphic abelian differentials span #*(M) (if and only if M is not
hyperelliptic, by Noether’s theorem (IIL.11.20)), there must be exactly
1(g — 3)(g — 2) relations among the products. When g = 4, this is precisely
the relation (2.2.3). For hyperelliptic surfaces there are more relations. For
hyperelliptic surfaces of genus 4, there are 10 — 7 = 3 linearly independent
relations.

We shall now exhibit two possible ways of obtaining these additional
relations.

One way is quite obvious. Since for hyperelliptic surfaces of genus 4,
Oing Is 1-dimensional, it seems reasonable to expect that one can find three
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points e; € O,;,, such that
i *20
“““““““ (Uj):-k:l =0, J=1,23

are linearly independent. We however, do not know how to effectively prove
such independence.

Another possible way is to use more essentially the fact that @, is
I-dimensional. Let P be the base point of ¢: M — J(M), and let J: M l—f M
be the hyperelliptic involution (there should be no confusion with the same
letter appearing with two meanings). For Pe M, let P’ = J(P). Choose
P e M and set

eg=@(P,P1Py)+ Ke O,

ing*
(Note -that since every we # (M) that vanishes at Pe M also vanishes
at P'; i(PP'Q) = i(PQ) = 2.) The embedding of M into @,,,, = J(M) is now
given by

M 3PP PIP)+ K=ec Oy, (24.1)

Let z be a local coordinate vanishing at P,. Equation (2.4.1) defines -

e(z) as a holomorphic function of z. By Proposition VII.2.2,

5

Jk=1 8”1‘5“,‘

~3

(e(z) )‘:]Ck = 0’ (242)

for all z in a neighborhood of 0. We now expand (3%0/0u;éu)(e(2)) as a
power series in z, and obtain

320 820 2 53
A A \e\Z)) =0 —_
ou; auk( @) Ou;0u, (€0) + (,; Ou; 0wy uy (e°)c‘(P°)> z
ae 30
+ (; EEE LR

I,m 5um 6“1 aui 5uk

22
(e0)i(Po), (P o)) 2

b (2.4.3)
Inserting (2.4.3) into (2.4.2), we obtain

4 520 .
j,kz=:1 m;(eo)c;'su =0,

336
Zk (Z —"—~(eo)c,(Po)) {Le=0,

ix \'T" Ouy 6u;Cuy

and

230 ) %0
2 (Z G 3, CoiPo) + 3 ———.—(eo)c,(Po)cm(Po)> Lh=0.

AN i O, Oty Ot Cuy

. It seems reasonable to expect that one should be able to extract three
linearly independent relations from the huge list obtained above (as one
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varies the base point Pg). The problem of specifying three such relations is
apparently still open.

EXERCISE

Is the map M — 0,;,,, that we have constructed, surjective?

VIL2.5. We shall discuss briefly in this paragraph a question intimately
related to the question of relations among the products of the normalized
abelian differentials of the first kind. Let [T, € 3, be a period matrix of a
compact Riemann surface of genus 4. (Recall that S, is the Siegel upper
half space of genus 4 introduced in VI.1.1.) Theorem VII1.1.6 guarantees
that Oy, is non-empty. Assume we are, again, in case (c). By the remark
following I11.8.7, the rank of the associated relation (2.2.3) among the abelian
differentials must be 4. Choose a (small) neighborhood N of ITo € S,. What
is a necessary condition for IT € N to be a period matrix of a compact
surface of genus 4? Clearly, the 6-function for IT must have the property
that O, # . We proceed to write down an equation in &, that expresscs
this condition. Consider the system of equations on C* x &,

20
;f;(:.r) =0, n=1234 (2.5.1)

The hypothesis that IT, is a period matrix tells us that (z°,1T) solves (2.5.1),
whenever z° € @, for IT,. The condition that (2.2.3) have rank four, tells
us that the Jacobian matrix of the system (2.5.1) with respect to the z-variables
has rank 4, and thus the implicit function theorem asserts that we can solve
for z = Y(z,,25,23,24) as holomorphic functions of z in a neighborhood of
(z°,11,) and that

é0

0z,
A necessary analytic condition for 7 to be a period matrix of a compact
surface is now easily written down:

F(r) = 0(z(1),r) = O, te N.

(zx)1) =0 forn=1,234,1€N.

VIIL.3. Examples of Non-hyperelliptic Surfaces

We shall study in this section three sheeted covers of the sphere. The cal-
culations will be considerably more involved than in the hyperelliptic case.
Other special cases will also be described.

VIL.3.1. In Chapter V, we began the study of automorphisms of (compact)
Riemann surfaces. At the end of V.1.6, we gave some examples to show that
the results of V.1.5 were sharp. We now return to a variation of the second
of those examples.
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Consider the Riemann surface M:

wi=z(z = Dz = i) (2= Aages), k22 (3.1.1)

Here 44, ..., /-3 are 3k — 3 distinct poiuts in 10,1}, We view - as a
meromorphic function on M of degree 3 (w is of degree 3k — 1). It is branched
over0, 1, 00,4, ..., 43,3 with branch number 2. For convenience we label:

0, =z710), Q. =z71(), 3 '—“2_1(90),
Pi=z"Yi), j=1,...,3k~3,
and note that the divisor of the function z is
_%
03
The Riemann-Hurwitz formula yields that the genus gof Mis3k—2(>4)

Our first task is to compute a basis for #'(M)—compare 111.7.5. Observe
that

(2)

o Q0P
g

0,0.P, - Py,
(W) = =y,
3

and

From the above two observations it is easy to conclude that

J,dz =0 k3

“ “}’ j_' LI T &
and

dz

A — :

‘.;v‘z-, 1—0,,2]\”2,

form a basis for #°!'(M); as a matter of fact

dz . o
(:’J—;) - Q?JHQZQg(k » 5P1 “ Pys,

and
dz
! — n3n32k-1-2
(Z )= 01'03 g

We shall consider the special case k = 2 (hence, g = 4). Thus the basis for
HUM) is:

by
()

dz  _dz ,d
;, ;v-i, Z—V;'z—, < F (312)

The above basis is adapted (recall IIL5.8) to the point él. As a matter
of fact, the Weierstrass “gap” sequence at Q, is:

1,2,4,7. (3.1.3)
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Note that the above is also the “gap” sequence at @,, @y and P;. j=1,2, 3.
Thus each of these 6 points is a Weierstrass point of weight 4. We have
thus accounted {or 24 of the 60 Weierstrass points there we are counting
each Weierstrass point according to its multiplicity). The remaining 36
Weierstrass points will occur in groups of three. Each such group of three
will project to the same point in C U {o0} by the map z. This follows from
the fact that M has an automorphism of period three that interchanges the
sheets of the cover.

VIL.3.2. We continue with the case £ = 2 in (3.1.1). Since M is of genus 4,
by Theorem VIL1.6, M is either hyperelliptic (impossible, because M
carries a function of degree 3, by Proposition I11.7.10) or Oy, consists
of one point of order 2 or @, consists of precisely two points (neither
one of order 2). Since Q$ is the divisor of the abelian differential =2 (dz/w"),
the vector K of Riemann constants with respect to the base point ¢, is
a point of order 2 of J(M) by Theorem V1.3.6. Further, since
K =0} + K,
K is a zero of the theta function. Also; looking at the “gap” sequence (3.1.3),
we see that
i(Q3) =2,

which shows that K € @,,,. We have shown that 8, consists of the single
point K. It must be the case that there is a relation of rank 3 among the
products of the abelian differentials of the first kind. The relation is easily

exhibited: £\2 AN /d
Z z Z
() (356 -

Of course, alternatively, (3.2.1) can be used to conclude that 8y;,, consists
of precisely one point. However, the conclusion (we obtained)

@sing = {K)a
required a little more analysis.

VII.3.3. We return to the general case (3.1.1) with k > 2. Using the basis
we constructed for J# (M), we see that the Weierstrass “gap” sequence at
Q. (hencealso at Q,, @5, P;,j=1,...,3k —3)is:

Bl4+11=0,...,2k=2}u{3j+2;j=0,...,k—2}.
In particular, every function f, holomorphic on M\{Q, }, with deg f < 3k — 4
must satisfy
deg f = O(mod 3).

An easy calculation shows that the weight of each of these 3k Weierstrass
points is

2k-2 k—2 3k—2
Y @I+D+ Y G+)— Y m=0Ck-2k-1)
1=0 j=0 m=0
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We have accounted for 3&(3k — 2}k — 1) of the (3% - 313k - 3k — 1)
Weierstrass points on M. The vector of Riemann constants K with respect
to @, is again a point of order 2 in Ji M), since 08% ® is a canonical divisor,
The point K € @,,, because i(Q1* %) = k = §(g + 2).

Finally, we leave it to the reader to explore the question of (linearly inde-
pendent) relations among the abelian differentials of the first kind. For
example, if k = 3, and if we label

_dz z ,dz

@1 WZ’ (5] - Wl’ P3 ==z Wzy
a4z sz z dz
04 =1I" "3, Qs =2I"—73, P = Qr=z—

w we w’ w’

then we can write down the following maximal set of linearly independent
relations

(P?z' = @103, (Pg = PiPs, P23 = P14, PPy = D105,
(Pi = @3Ps Q205 = @3y, ©1907 = Q2Q¢; P07 = P3QPs,
Q307 = QaPs; PaP7 = Ps5Ps.

VIL3.4. The Riemann surface M of (3.1.1) is an cxample of a surface
with an automorphism T {of period 3, in our case) such that M/(T) =
€ u {oc}. We have seen that for these surfaces, Oy, contains a point of
order 2. Tt may seem at first glance that the existence of points of order 2
in Oy, is caused by the presence of the automorphism. This conclusion is,
in general, false. Consider, for example, the surface M defined by

w3 =z(z — D)z — 22 — 29Xz — 43)%

where A;, j =1, 2, 3, are three distinct points in C\{0,1}. The surface M
has again an automorphism T of order 3 such that M/(T) is conformaly
equivalent to C U {o0}. Note that M (again) has genus 4. Using notation
as in VIL.3.1, we conclude that

3
=2
3
oy = QPP
; 05 7’
an
QZQZPZPZPZ
124 1428 3
(dz) = T
A basis for #(M) is thus
dz dz

) \ , . dz ) dz
W’ ZTV" (2 = 4z — Ax)z ~ '13);7, 2(z — A1)z — A5z — 13);"5-
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From the above we sce that the possible orders of zeros of abelian differentials
of the first kind at Q, are:
0,1,34,

and thus the “gap” sequence at Q, 1s:
1,2,4,5

In particular, there is no differential in #'(M) all of whose zeros are at
Q,. Now, the point K belongs to Oy, (because i(Q3) = 2), and if Oy,
contained a point of order 2, K would have to be that point. Hence 2K = 0.
By Theorem VI.3.6, we''would also have ¢(Qf) =0= —2K or that o)1
is canonical. We have seen that this does not occur in our example.

VIL3.5. There is, however, one case where the presence of an auto-
morphism T produces points of order 2 in &, the case when T has period 2.
Suppose now that M is a surface of genus g > 2, and T € Aut M has period 2
and v(T) fixed points. The genus § of M/{T) is computed (recall V.1.9) by

v=y(T)=29+2—4F

(and M is called g-hyperelliptic).
To show that @, contains a point of order two, it suffices to find an
w e # (M) with even order zcros

(@) =P} Py,
such that
(P~ P,_)=2

Forthene = @(P, - Py_;) + K€ Oy, and 2e = o((w)) + 2K =0.

If § = 0, then M is hyperelliptic. Then for g > 3, thereisa point of order 2
in @, and the order of vanishing of the 0-function at this point is 4(g + 1).
Hence we now assume g > 0.

VII.3.6. Let us generalize by considering an automorphism T of prime
order N with M/{ T of positive genus. Consider the action of T on #* YM).
Since M/{T has positive genus g, 1 is an eigenvalue. Since M has bigger
genus than M = M/{T),thereis another eigenvalue e(¢" = 1,¢ # 1). In other
words, there are holomorphic differentials w, w, € # }(M) such that

Tw = w, Tw, = ewy, w # 0.

The differential w projects to M ; while @, projects to a multivalued differ-
ential on M. The function f = ®,/w on M projects to an N-valued function
on M.

To describe the structure of the divisors (@) and (), we let Py, ..., P,
be the fixed points of T (v = v(T) could be zero). Calculations similar to
the ones performed in V.2 show that

ordp, w = Nr;+ N ~ 1, rieZ,r;=0.
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Hence we can wrile
()= Py~ pYTL A4 g (3.6.1)

where 4 is an integral divisor on M and 4% = T¥4). Note that 4 could
contain some of the points P;,j=1,..., .
Similarly,

Ordpjwl=er+tj‘-1, rjEZ,[JEZ,IS[JSN—I,rJZO.
Thus, as before, we can write
(w,) = pp-tl... P"."-’X‘Y(” v XYWL (3.6.2)

From (3.6.1) and (3.6.2) we can compute the divisor of the meromorphic
function f = w,,;® an M, and the projected function fon iI:
~ _ X
(f) = P/m-t... piid ‘—A—. (3.6.3)
In (3.6.3) we have made an obvious identification of points on M with their
images in M. Note that (f) contains fractional powers because locally fis
given by a Puiseaux (not Taylor) series.

The fractional divisors on M can be mapped (locally) into J(1). Since /Y
is single valued on M, the image of the divisor of f in J(M) is a point of
order N.

In order to study the converse, we begin by remarking that

() ) tj
R= -4
P

is an integer (EXER CISE) that satisfies

wT) N-1
—_—<
N <R=7g%
Every multivalued function on M whose divisor has the same fractional
exponent at P; as in (3.6.3) and that has the same image in J(M) as ( N,
lifts to a meromorphic function on M.
Consider the divisor D on M

w(T). (3.6.4)

D= pI:!—n Ce PIVV—rVAN‘

We now pose the following problem: Does there exist an integral divisor

X on M such that
deg X =g— 14|23 (1-4
gX=7 s L\

(where, as usual, [«] denotes the greatest integer in a),

P(X™) = (D), (3.6.5)
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and ' )

P(X?) — @(PY™ ¥ -+ PLTY ) (3.6.6)
equals the point of order N in J(M) determined by the divisor of the
function f?

The theory of the Jacobi inversion problem asserts that we can always
solve the above problem, and in fact do so with BY-i(1—t/N)]~1
free points. The condition that we shall need is

R =

t.
: - ,.._< NJ.

which occurs by (3.6.4) whenever
w(T) = 2N.

e

Furthermore, there are (2N)* different solutions to (3.6.5) corresponding
to the (2N)*? points of order 2N in J(M). Only 224 of these solutions will
satisfy (3.6.6).

There are now two cases to consider:

R is an even integer (= 2), (3.6.7)
and
R is an odd integer (= 3). (3.6.8)
In case (3.6.7),
XZN

pir*n .. pPNTtvgN
is the divisor of a meromorphic function on M whose Nth-root lifts to a
meromorphic function on M with divisor
XZ(XZ)(l) Ce (Xz)(N— 1)
plf-h e vaV-rvAA(l) AW

Thus we conclude that (multiply the above function by w)
Z, =Py PyoIXHXH D (xH™-b (3.6.9)
is a canonical divisor on M.

In case (3.6.8) we choose P, € M as the base point of the map ¢: M - J(M).
We conclude that

PYX?
P’;’_'l e PI:’-IVAN

is the divisor of a meromorphic function on M whose N-th root lifts to a
a meromorphic function on M with divisor
PI;IXZ(XZ)(I) c. .(XZ)(N—I)
PA:"U Cen PI;J""AA“) oo AWED
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In this case we conclude that
Zz — I)A;‘fn - 1sz;— ... P l(‘\'zj(‘\r:)(l) . (Xl)lﬁ'— 1) (3.6.10)
1s @ canonical divisor on M.
The sole purpose of the above series of exercises was to produce a
holomorphic differential on M (with enough free points) all of whose zeros

are of even order. We have succeeded in this whenever N = 2 (because
ty=1forj=1,...,(T)). In this case

5 (-8

j=1

[v%’)] _1

free points. We conclude from (2.6.9) that

(T

with a similar result for (3.6.10).
We have established the following

and thus X has precisely

Theorem. Let M be a g-hyperelliptic surface of genus g = 2§ + 3. Then @,
contains 2% points of order 2 with the order of vanishing of the §-function
at these points greater than or equal to [1(2g + 2 — 43)].

Remark. The above analysis for N =2 and v = 0 does not give points of
order two in @j;,.. A slightly different and in some sense simpler analysis,
however, does.

VI1.3.7. The Riemann surface M of
whtl =2z - 1)

affords another interesting example of a surface of genus g. It is an immediate
consequence of the fact that wis a function of degree 2, that M is hyperelliptic.
There is an obvious involution on M:

(zw)—(1 — z,w).

This 1s the hyperelliptic involution since it fixes the 2g + 1 points lying
over z =  and the point z7 ().

VI1.3.8. The Riemann surface M of

wt=2%—1
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is of genus 3 which obviously has two cyclic groups of order 4 operating
on it; the groups generated by

(zax) s (zaiw), (zw)— (izw)

Using obvious notational conventions, we record the following facts:

o = 210:0:0,

Q5Q6Q7QS
oy = FifPaPs

050629

and - - 1. 1_ 3
() = PiPEPaPs

050,070

From the above we see that
dz dz _dz

form a basis for »#°1(M). Note that

d- -

Iy )= 0,0:030,=: 1(0)~
w

More generally for any ¢ € C U {}, 27 () is a canonical divisor. It fo.llows

from these observations that the “gap’” sequence at any Pi(j = 1,2,3,4) is

1,2,5

(Note that the P; are defined by z(P)* = 1.) Thus each P;is a Weierst-rass
point of weight 2. We have accounted for 8 of the 24 Weierstrass points.
Similarly, the points Q; (j = 1,2,3,4) arc Weierstrass points of weight 2, since

dw dw  dw

—_— — . W —
22’23’ L,3

is also a basis of #!(M). Finally, the points Q; (j = 5,6,7.8) are also
Weierstrass points of weight 2, since

o z 1
EW=

is an automorphism (of period 2) of the surface M that interchanges ‘the
zeros and poles of w. We have thus accounted for all the Weierstrass points
on M. It is a surface of genus 3 with 12 distinct Weierstrass points each

of weight 2.
VIL3.9. The next to last example of this section is the most complicated

one. It will be used to show that the upper bound on the number of (distinc.t)
Weierstrass points g*> — g on a surface of genus g (Theorem IIL5.11) is
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attained. Our example will be for g = 3. Consider the Riemann surface M
of the algebraic curve

wl = (z— 1) (3.9.1)
On the surface, the function = is of degree 7 (and w is of degree 3). The function

zis ramified over 0, 1, oo (with ramification number 7). A calculation using
Riemann-Hurwitz now shows that M has genus 3. In our usual short hand:

P?
(Z) = —l;’
0y
P$PS
(dz) = —é?—
and
Pyp3
(w) = 13-‘—.
01
From the above formulas we see that the diiferentials
dz dz dz

have (respectively) divisors
P?Qb P1P39 PZQ:

It 1s immediate from this calculation that wu have again produced a basis
for- H#'(M) and that P, P,, Q, are all simple (= weight one) Weierstrass
points.

We .clalm that all the Weierstrass points are simple (hence we must have
24 distinct Weierstrass points). We will compute the Wronskian of our basis
oti H#'(M). Since we are no longer interested in points lying over 0, 1,
(via z), the function z is a good local coordinate at such points. Usir’xg ’the
notation of I11.5.8, we are computing

1 z—-12z-1 1
de‘[“vj, ws ,W—:I = :vﬁ del[w’, W(Z - 1),2 - 1]
3! 1

=?ZS(T—1—)—5(23 - 8:2 + SZ + 1).
(The corr_lputation is long and tedious, but routine.) Denoting the cubic
polynomial by p(z) we see that

p(-1)=-13,  pO)=+1, ph)=-1, p@B) =4l

and hence p has three distinct real roots (in the open intervals (—1,0), (0,1)
and (1,8)). Each zero of the Wronskian corresponds to 7 distinct points on

M. 'Thus we have produced a surface of genus 3 with 24 distinct (simple)
Weierstrass points.
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VI1.3.10. The Riemann surface of (3.9.1) actually has 168 =84(3 - 1)
automorphisms, which shows that the maximum nuimber (of Hurwitz's
theorem, V.1.3) is achieved. It is easy to exhibit an automorphism of period 7:

i
(z,w) > (z,6W), £= exp<:’-7—l>,

To exhibit other automorphisms of M we must use some algebraic geometry.
The abelian differentials of the first kind provide an embedding of M nto
P2 (111.10). Thus setting

. -1 1 = 3y -2
w= 2 XY 4, z—1 = +X°Y"4,

~

we see from (3.9.1) or (3.9.2) that ;1 projective equation for our curve is
X3Y + YZ+ 23X =0,

Hence we sce that we have another automorphism of M (of order 3) given

by the permutation
(X.Y.Z)—~ (Y, Z,X).

We will not proceed with the above line of thought. (The interested reader
should consult the work of A. Kuribayashi and K. Komiya for the complete
classification of automorphism groups and Weierstrass points for surfaces
of genus 3.) (The authors have a preprint of their forthcoming article, and
hence cannot supply a reference to the literature.)

If we are willing to use the fact that M has 168 automorphisms, we can
conclude without calculation that each Weierstrass point is simple. We have
seen in the proof of Hurwitz’s theorem, that the maximum number of
automorphisms occur only if M/AutM =Cu {oo} and the canonical
projection

mM - Cu {x}

is branched over three points with ramification numbers 2, 3, 7. Thus these
are the only possible orders of the stability subgroups of points. We conclude
that each orbit under Aut M must contain at least 168 - 24 points. In
particular, the Weierstrass points must be the fixed points of the elements
of order 7, and there must be 24 such points. Hence they must all be simple.

VIL.3.11. For our last example we consider the Riemann surface of

6

w2 =1z5—2,

which is a hyperelliptic surface of genus 2. In addition to the hyperelliptic
involution this surface permits an automorphism of period 5

. N . 2mi
(z,w) — (ez,¢°w) with ¢ = exp < )

Let us denote this automorphism by T and observe that the automorphism
JT with J the hyperelliptic involution is of order 10. The automorphism
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JT is given by
3

(zov) = (e2,—&°w),

so that the only possible fixed points of JT are P, =z~ '(0) or 0, Q, the
two points lying over co. Since T is of prime order 5, the Riemann-Hurwitz
formula gives 2 = 5(2§ — 2) + 4v(T), with v(T) as usual the number of fixed
points of T. The only way this can be satisfied is with § = 0 and w(T) = 3.
Hence T fixes Py, Q,, and Q,. It is therefore obvious that JT fixes Py, but
cannot fix either Q, or @,, because JTQ, = JQ; = Q, and JTQ, =
JO, =0,

The reader should now recall Theorem V.2.11.

VIL.4. Branch Points of Hyperelliptic Surfaces
as Holomorphic Functions of the Periods

In IV.7, we solved two elementary moduli problems. In this section we will
describe one way of obtaining moduli for hyperelliptic surfaces; another
elementary case.

VIL.4.1. We return once again to the concrete representation of a hyper-
elliptic surface M of genus g > 2. We will now assume that our function z
of degree two is branched over 0, 1, and 20, and hence represent M by

2g—1

wr=z(z—~1) [] (2= 4), (4.1.1)
k=1
where 1,, ..., Ay,-, are distinct points in C\{0,1}. We are using a slight
variation of (1.0.1). To fix notation, we set
P1=Z_l(0), P2=Z~1(1),
Pj+2=z_1(;'j)’ j=1’-~-92g_1’ P2g+2=z_l(w)'

We have seen in VIL1.2, that using P, as a base point for ¢: M — J(M), the
vector K of Riemann constants is given by

g g
k=2mlf =l
2 : :

1 1

where IT is the period matrix for the canonical homology basis constructed
in VIL1.1. We shall show that the ; are holomorphic functions of the entries
ny of I1. We will accomplish this by expressing the function z in terms of
O-functions.

The function z e # (M) is characterized (up to a constant multiple) by
the property that it has a double pole at P, ,, a double zero at P;, and is
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holomorphic on M\{P,,..}. We will produce such a function in terms of
p-functions. One main tool will be the Riemann vanishing theorem, and our
explicit knowledge of the images in J(M) of the Weierstrass points on M.

VIL4.2. We shall see that there are many ways to proceed. We begin with
the point of order 2

¢(P1P5P7"'P29“)+K=(p(P1P3)=(p(P3),
by virtue of (1.2.1) and the fact that @(P?) = 0 for every Weierstrass point
P on M. We have comptbt_ed @(P3) in VILL.L:
g(P3) = (" + e + @),
Similarly,
@(Pygs2PsPy P+ K= @(Pgr2P3) = L + ).
We also observe that
i(P1P5P7"'Pzg+1)=0=i(Pzg+2P5P7"'PZg+1)

(compare with VIL1.4). We now consider the multiplicative function

0[1 00 - °](¢(P),H)
P

i (1) g g , 4.2.1)
9[0 >0 0](«:(1’),17)

According to Theorem V1.2.4, the numerator vanishes precisely (it does not
vanish identically by Theorem VI.3.3) at Py, P, Py ..., Py, L and the
denominator at Pygyz, Psy Pyyo vty Pyyiy-In particular, the funct:c_)n‘ 4.2.1)
vanishes to first order at P, and has a simple pole at Py, 4. Examining the
multiplicative behavior of the above function, we see that

92[‘ 00 g]upu’),ﬂ)

P = 110
it oo -0
92[0 {0 - O]W(P),H)

is a meromorphic function on M with divisor P3P}, Hence
f=cz, ceC\{0}

The constant ¢ is evaluated by f(P,) = cz(P3) = ¢. Thus we see that

1 10 0
Il
f(P) 0 110 0](‘0(})2)’ )
C —3 2 == 0 k
0[(1) ° 0](¢(P2),H)
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and
;(P)___Ol[é :1: 5 §: (%nfl’,[7>02[3 z § Eﬂho(m,u)
0’_1 10 0] (—n“’,n)o{o Lo 0}(w(P),H)
_o{g - 8—02[1 RO SJ(W),H) .
02_(1) (1) g 8_92[(1) (1) g g:l(qa(P),H)

(the last equality by VI(1.4.5)).
Seuting P = £, , we get trom (+2.2) formulae for 4. These formulae are
useful only for
j=12,4,6,...,29 -2 (4.2.3)

For other values of j, both the numerator and denominator vanish. While

the limit can be calculated 10 obtain . J» the calculation involves the normal- *

ized abelian differentials of the first kind. For the values of j given in (4.2.3),
nice forimulae for 4; can be obtained in terms of O-constants only. For

example,
0 0 00 0
2 2
] _0 [0 0]9 (0 0 O]
! 92 0 0 02 00 ol
1 0 10 0
By replacing the point of order 2 that started this whole procedure (for
example, use

— O O
O OO O
O SO O

QP P3Py Py )+ K
instead of
¢(P1P5P7"‘P29+1)+K),

we can get similar formulae for 4; for the other values of j. We have hence
established the following

Theorem. The branch points of the two sheeted representation of a hyper-
elliptic Riemann surface are holomorphic functions of the period marrix.
Furthermare, the hyperelliptic surface is completely determined by its period
matrix.

VILA4.3. The fact that there are many ways to express the function z in
terms of O-functions leads to useful and interesting relations among 6-
constants. We will, however, not pursue this fascinating subject.

329

Vil.5. Examples of Prym Differentials

VII.S. Examples of Prym Differentials

On the hyperelliptic surface M

2g-1

wi=z{(z—-1) H (z = A g=2,

the differentials
dz: dz dz

-1
— .., 2T —
ww w

~ Y . .
form a basis for abelian differentials of the ﬁr.st kan.
On M we can construct (locally) the function y given by

2g-3 )
v=z:z-1 |1 =4
k=1

and (locally) the differentials

dz d: 2142
by z Ty e g & T
y y y
Continuation of these differentials along the curves ay, ..., ag by, .., b,y

of Figure VIL1 (interpreted correctly) leaves them invariant. However, con-
tinuation along b, leads to a change of sign. We have hencg %onstructed a
basis for the Prym differentials with characteristic [§ 1. § 1] as defined

in 111.9. ) _
The fascinating relation between the lifts of these differentials to a smooth

two-sheeted cover and the theory of moduli will have to be pursued elsewhere.
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