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Preface

This book has grown out of notes on lecture courses which we have given
on projective planes and related topics. It has two main aims: to provide
an elementary treatment of the subject, suitable for advanced under-
graduates, and yet to give enough insight into the research areas that it
may also be used for postgraduate courses. The subject matter is such that
there are virtually no mathematical prerequisites for studying many of the
earlier chapters, although a maturity in the basic concepts of modern
algebra is often an advantage.

‘We would like to thank Michi; State University for providi
with a home during the summer of 1970, when we ﬁmshed most of the
manuscript. We are also indebted to the Consiglio Nazionale delle
Ricerche and the universities of Rome and Perugia for the assistance they
gave the first author in the academic year 1970-71.

Many people have helped us with the material and with the preparation
of the manuscript. Our original version was read, criticized and improved
by Dr. Marion Kimberley, and the finished manuscript was studied in
similar fashion by Professor Heinz Luneburg, Both of them corrccted so
many errors and SO many imp: that it is i
for us to thank them adequately. Similarly we are indebted to Dr. C. W.
Norman for reading various sections and providing us with many clarifica-
tions, examples and problems. Finally we must thank Dr. P. D. Chawathe
and Professor C. W. Garner for the care and precision with which they
read the proofs.

London D. R. Hughes
November 8, 1972 F.C
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Introduction

The modern study of projective planes, which has largely but not entirely
meant non-desarguesian and finite projective planes, has grown enor-
mously in the past twenty years. In 1951 it was mostly a collection of ad hoc
and h lated results; the fund: 1 work of Reinhold Baer
and of Marshall Hall had taken place, the Bruck-Ryser Theorem had been
proved, and the Bruck-Kleinfeld Theorem was to appear that year. But
one could not speak of a coherent theory in any sense. Today the situation
is completely different, the subject has acquired the shape and outline of
a developed area and it is possible to think of the theory of projective
planes. This book is meant to be a text-book in the field, an introduction
for both under and p to a inating branch of
mathematics which has many fruitful connections with other fields and
many interesting unsolved problems; a book which can also prepare the
student with a little knowledge of algebra for reading the literature in the
field and for research.

Chapter I reviews the main ideas required from algebra; here we must
assume a certain basic knowledge of group theory and of linear algebra,
but much of the theory of skewfields and fields which will be needed can
be at least referred to. However it is important to note that many parts
of the book can be studied without any understanding of Chapter I; in
particular, it is easy to construct an elementary course in projective planes
which avoids the necessity for Chapter L. Chapter II is the longest in the
book, and deals with classical projective planes (to a small extent, also
with classical projective geometry); many students today may not have
had any course whatsoever in classical geometry and this chapter is meant
to provide a basic understanding of the subject, especially of classical
projective planes. Despite its length this chapter can be skipped if the
student knows classical projective geometry (though reference to particular
results might have to be made later), or also if the student is willing to
forego di ly the t or the ivation of
certain results in the later chapters. In fact Chapter II contains much of
the material which might be found in a one term undergraduate geometry
course; very little needs to be added (and that mostly about higher dimen-
sions) to make this chapter alone into a suitable course.
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The rest of the book is concerned with projective planes from the
more general and modern point of view mentioned above. Chapters 111
to VI are basic. They should be studied in that order and may even
be taken on their own for an elementary course. (Perhaps omitting
the last four sections of Chapter VI in the case of very elementary
courses.) Chapters I1I and IV are introductory, with the basic combi-
natorial results in Chapter 111 and the elementary development of auto-
morphisms or collineations in Chapter IV. In Chapter V coordinates are
introduced and some of the simplest properties of planar ternary rings are
worked out; latin squares are introduced briefly at the end of this chapter.
Chapter VI develops many of the most important equivalences between
algebraic properties of planar ternary rings and geometric properties of
projective planes; the latter parts of this chapter become more difficult
and include the fundamental results on inverse property division rings
(Moufang planes) which are necessary for the rest of the book. Chapter VII
contains a detailed study of quasifields and is followed, in Chapter VIII,
by a similar discussion of division rings. The results of these two chapters
are then exploited in Chapter IX to give examples of non-desarguesian
projective planes. These three chapters, which should be studied in the
order given, are fairly important and should be included in any complete
course on the subject. Chapter XI studies the generation of projective
planes, especially “free” generation, and gives further examples of planes.
This chapter is completely coordinate free and could be read immediately
after Chapter V1 if desired. (In fact it could even be studied after Chap-
ter IV.) Chapter X gives yet another method of constructing planes, but
cannot be read before Chapter IX. Polarities are studied in Chapter XII
and the problems concerned with the sets of absolute points are discussed
in detail. This chapter contains the very important work of Baer together
with Segre’s Theorem on ovals in finite desarguesian planes. Examples of
polarities of non-desarguesian planes are given and so this chapter cannot
be read before Chapter IX. Chapter XIII is possibly the most advanced
chapter in the book. It collects together a number of more advanced

about collineations or groups: the im-
portant orbit theorem s in this chapter, and also some results about groups
containing perspectivities (leading to more characterizations of de-
sarguesian projective planes). In addition, Singer groups and Hall’s multi-
plier theorem are in this chapter (in fact Singer groups are also studied in
Chapter II). Finally Chapter XIV proves Wagner’s theorem and includes
its important corollary, the Ostrom-Wagner Theorem.

As we have already indicated there are now many possibilities for con-
structing a course from this book. A fairly elementary course can be made
up of Chapters II1, IV, V, and part of VI; a slightly more advanced course
might include Chapters VI, VIII, and IX, and perhaps X or XI or both.
Probably some attention should be paid to Chapter II in any advanced
course. Finally, the last three chapters offer the kind of advanced material
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that would round off a one-year postgraduate course. Chapter I1 requires
familiarity with linear algebra, and the last three chapters will be hard
going for astudent without a decent background in group theory. For those
whose interests are purely combinatorial, these three chapters, with their
emphasis on groups, might seem redundant but in fact both Chapters X1
and X111 contain much material of ial interst (e.g., di

sets. unitals).

We have included a minimum of references, always grouped together
at the end of the chapters. One reference is indispensable, but will hardly
ever be mentioned: “Finite Geometries™, by Peter Dembowski. It is prob-
ably too difficult a book to be used as a text, and it is concerned with all
sorts of finite combinatorial structures, not just projective planes (and also
it is not concerned at all with infinite structures, hence not with infinite
projective planes); but no serious student of the area can be without it.
It has a bibliography so complete that we have felt no guilt at having
one so sparse.

Notationally, we have adopted some conventions, but we have felt free
to adapt or modify these wh it is ient or fortable. Such
systems as skewfields, fields, planar ternary rings and so on are in upper
case Latin letters, and their elements are lower case Latin; also vector
spaces are upper case Latin, but vectors are (at least in Chapter II) lower
case bold face (hence scalars and vectors are easier to tell apart). Mappings
are usually lower case Greek, written as superscripts, but linear and semi-
linear transformations are bold face lower case Greek, to distinguish them
from the collineations they induce; some mappings (e.g., the ternary
mapping) are upper case Latin, and not superscripts (and usually mappings
appear on the right, but again this is violated by the ternary mapping).
Groups are upper case Greek and their elements are lower case Greek
(since most groups encountered here are groups of mappings), but again
at least once we use Latin letters for groups and their elements (in a context
where we want Greek for the elements of a group algebra). Sets in general
are upper case script. The points and lines of a projective plane are upper
case and lower case Latin, respectively (at least after Chapter II), the plane
itself is upper case script.

In Chapter II we refer to both points and lines by capital letters, since
we are thinking of them as subspaces. But this need cause no confusion,
as the point of view changes so drastically anyway after Chapter I1. For
instancein Chapter I we speak of “projective plane” as if the only examples
there were those constructed pver skewfields; in fact they are the des-
arguesian planes of the rest of the book. But if a student does only
Chapter 11 he hardly need concern himself with this, and if he starts with
Chapter III then “desarguesian planes” are simply those whose coordi-
natizing planar ternary ring is a skewfield; the proof that the two attitudes
come to the same thing is in Chapter VI. When dealing with projective
planes over skewfields it is possible to construct them using either a right
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or left vector space; the difference will be only notational over a field of
course. We have used left spaces more than right in Chapter I, since this
is ient when studying i i and so forth. But for the rest
of the book, whenever we refer to the desarguesian projective plane 2| (K)
over the skewfield K, we mean the one constructed by means of the right
vector space.

We deal with higher dimensional projective geometries only casually,
but the reader may be curious about the possibility of similar “non-
desarguesian” higher dimensional geometries: using the usual synthetic
definitions of a projective geometry, it can be shown that in the case of
g-dimension > 2 any projective geometry is isomorphic to one constructed
over a skewfield. This has the concise corollary: a projective plane is
desarguesian if and only if it can be embedded in a projective geometry
of g-dimension three.

Most chapters contain a large number of exercises and they should
form an integral part of any course. Those marked with an asterisk are
considered to be difficult. The standard of the others varies considerably
and the reader should not assume that he is wrong if 2 few appear to be
trivial; occasionally we include a trivial exercise merely to bring the con-
clusion to the reader’s notice or, alternatively, so that we may refer
back to it.




1. Review of Basic Algebra

1. Introduction

In this chapter we give a brief review of the algebraic definitions and results
which will be needed later in the book. For the most part these results
are ones which the student will have met in his introductory courses, but
we state them so that we can easily refer to them in the later chapters.
Occasionally, particularly in the section on permutation groups,we include
proofs of results. This is not an indication that the result is difficult, but
merely that the result, in the form that we want it, is possibly not taught
in the elementary courses. Any reader with a strong algebraic background
can skip this chapter and refer back to it if, in the later chapters, we make
references to results unknown to him. However, since all the results given
here will be used in the book, it will be helpful to look through the chapter.

The results on fields, skewfields, vector spaces and linear algebra are
very important for Chapter II but, apart from some of the simplest prop-
erties of finite fields, are not really necessary for the other chapters. The
section on group theory, on the other hand, is of maximal importance in
a number of the later chapters. However the fundamental introductory
chapters on projective planes, (i.e. Chapters 111, IV, V) may be understood
by a reader with virtually no knowledge of this chapter.

At the end of the chapter we list a few books which, between them,
contain proofs of all the results listed in this chapter. The linear algebra
is contained in [1, 3] the abstract group theory in the early chapters of [2]
and the permutation group theory is in the beginning of [5]. The results
on skewfields, including a proof of Wedderburn’s theorem (Result 1.3),
are in [3, 4]. The fundamental concepts of all three sections can be
found in [4].

2. Skewfields and Fields

A skewfield is a non-empty set K with two binary operations called
addition and multiplication, so that if a and b are in K, then a+b and ab
(or a- b) are elements in K all satisfying:

(1) Both operations are associative; ie., a+(b+c)=(a+b)+c, and
a(bc)=(ab)c for all a, b, c in K.
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(2) Addition is commutative; ie,a+b=b+aforalla, bin K.

(3) Each operation has an identity; so there is an element 0 in K such
that 0+b=b+0=> for all b in K and there is an element 1 in K such
that 1b=>b1=b for all b in K. In addition 0 1.

(4) Foreachbin K there is an element — bin K such that b+ (—b)=0,
and for each b # 0 in K there is an element b™' in K such that bb~!
=b"'b=1. The element —b is called the additive inverse of b while b~*
is its multiplicative inverse.

(5) a(b+c)=ab +ac, and (@a+b)c=ac+bc forall a. b, ¢ in K.

From these axioms we can prove most of the expected rules for addition
and multiplication. For instance Ox = x0 =0 for all x in K (thus 0 cannot
have a multiplicative inverse), and x(— y)=(—x) y= —(xy) for all x, y
in K; so we can write for instance x — y=x-+(—y). Given an equation
of the sort a+x=b, or y+a=bh, we can solve uniquely for x and y:
similarly ax=b or ya=b will have unique solutions for x and y if a40.
Thus the inverses and the identities are unique. We refer to the system K
with its addition as the additive group of K and to the system of non-zero
elements of K (for which we often write K*) with its multiplication as the
multiplicative group of K, or of K*.

The intersection of any family of of K is also a subsk
field, and so we can speak of the mlmmal skewf eld of K, called the prime
field of K. If a skewfield has ication it is called a field,
and a field with no non-trivial subfields is called a prime field. It is easy to
see that, for any skewfield K, the prime field of K is a prime field. For any
prime p the set Z, of integers modulo p (with operations modulo p) is
a prime field. The set of rationals, under the ordinary addition and multi-
plication, is also a prime field. These, in fact, are the only prime fields.

Result 1.1. Any prime field is either Z,, for some prime p, or is the field
of rationals.

The centre of a sk Kistheset ofall el in K which
under multiplication with every other element of K. For any skewfield the
centre is a subfield which contains the prime field.

If the prime field of the skewfield K is Z,, then we say that K has
charactensnc p; if the prime field is the ﬁeld of rationals, then K has

ic0. In a field of ct istic n, if x is any element, x 0, then

the sum of m x’s, which we write as mx, is zero if and only if m is a multiple
of n. We shall be much more interested in fields than in general skewfields,
but we mention the classical example of a skewfield which is not a field:

Let F be any subfield of the real numbers (e.g, the rationals, or the reals
themselves), and let i, j, k be three new symbols; suppose K is the set of
all elements of the form a+ bi +¢j + dk, with addition prescribed by:

(a+bi+cj+dk)+(e+ fi+gj+hk)
=(a+e)+(b+[)i+(c+g)j+d+hk.
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and with multiplication given by the rule:

(@+bi+cj+dk)(a, +byi+c,j+d k)
=(aa, — bby — cc, — dd,) + (ab, + bay +cd, —dey) i
+(ac; — bd, +ca, +dby) j+(ad; +be, — b, +da) k.

Then K is a skewfield which we call the F-quaternions or, if F is the reals,
merely the quaternions. The quaternions are often useful as counter ex-
amples to theorems which are true for fields but false for skewfields.

If K is a field, we may speak of polynomials over K : that is, expressions
of the form f(x)=a,x"+a,_,x"""+--- +a,x+a, where the a; are
elements of K and x is some new symbol, called an indeterminate. These
polynomials add and multiply in the familiar manner. For any b in K we
may speak of the value of f(x) atb; thatis f(b) = a,b" +a,_,; b" "' + -+ +aq,
which is an element of K. We may consider the possible factors of f(x),
and we say that f(x) is irreducible if there are no polynomials g(x) and
h(x), both of lower degree, such that f(x)=g(x) h(x). If K is a field and
f(x) is any polynomial over K, than a splitting field for f(x) over K is
a field F which contains K and in which f(x) can be factored completely
into linear factors of the form bx + ¢, and such that no subfield has the
same property.

Result 1.2. Givena field K and an irreducible polynomial f(x), a splitting
field for f(x)over K always exists, and any two splitting fields are isomorphic.

The special case that interests us the most is that of an irreducible
quadratic f(x)=ax?+bx+c. If d=b*>—4ac, and if the characteristic
of K is not two, then the splitting field of f(x) over K consists of all elements
of the form r + 51/3, where r and s are arbitrary elements of K, and where
addition and multiplication are given by:

O 48V D e 45V D= +1) + (5, +52) /d
[} +s.]/c_i)(rz+szlfd}=r,r2 +8,5d+ (15,45 rz)l/l
We shall be particularly interested in finite fields. However before dis-
cussing finite fields we note a very difficult but very important theorem.
Result 1.3 (Wedderburn’s theorem). A finite skewfield is a field.
Finite fields have all been classified and their structure is well known.

Result 1.4. Let p be a prime and q = p". Then there is (up to isomorphism)
a unique field, called the Galois Field of order q and written GF(q), with q
elements, and any finite field is isomorphic to some GF(q). In addition:
(i) GF(q) has characteristic p.
(ii) The multiplicative group of GF(q) is cyclic.
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(iii) If p=2 then every element of GF(q) is a square, while if p+2.
then exactly half of the non-zero elements of GF(q) are squares.
(iv) Every element of GF(q) is a sum of two squares.

We give a proof of (iv), since all of the other results are well known. Let
K = GF(g). From (iii) there is nothing to prove if p=2, so suppose p+2.
Then the squares make up aset S which includes half the non-zero elements
plus zero. If there is some element which is not a sum of two squares, then
it must be an element z which is also not a square. Now the non-zero
squares N are a subgroup of index two of the multiplicative group and
hence, since N has just two cosets in K*, every non-square is equal to z
multiplied by a square. If one of these, zx” say, were a sum a?+ b2, then
z=(a/x)? +(b/x)* would be a sum of q as well. Sono q
is a sum of two squares. Thus every sum of two squares is again a square,
and the set S is closed under addition, as well as multiplication. It is now
an easy exercise to show that this means that § is a subfield. But S must
have (q— 1)/2+1=(q+ 1)/2 elements, and clearly has the same charac-
teristic as GF(g). Thus, by the earlier parts of the result, S must also be
isomorphic to GF(p™) for some m. But this is impossible since, if g=p",
then (p" + 1)/2 is never a power of p. []

Result 1.5. If p is a prime, then the field GF(p") has a subfield isomorphic
to GF(p™) if and only if m divides n; in that case the subfield is unique.

For any field K, an aus phism of K is a t mapping o
of K onto K such that (x +y)*=x*+y* and (xy)*=x")", for all x and y
in K. The set of all such automorphisms is a group, written Aut(K). An

i- phism of K is a -t mapping B of K onto K such that
(x+yf=x"+)* and (xy)=)"x* for all x and y in K. Clearly if K is
a field, then any anti-automorphism is an automorphism. But the student
should verify that the mapping (x + iy +jz +kw)? = x— iy—jz— kw of the
skewfield of quaternions is an anti-automorphism (and therefore not an
automorphism).

Result 1.6. (a) If pis a prime, then Aut(GF(p") isacyclicgroup of ordern,
generated by 0.z X — X" =Xx".

(b) If K is the rational or real field, Aut(K)=1.

() If K is the field of complex numbers then Aut(K) contains the
element o: x+iy—>x—iy.

(d) If K is a field and I is an automorphism group of order n, then the
set F =Ky of all elements fixed by I' is a subfield, and K is an n-dimensional
vector space over F.

(©) If d is a non-square in a field F and K =F(}/d) is the field of all
elements of the form x+y1/3,x,yEF, then x+y d—:x—y[/ﬁ is an
automorphism of K whose fixed elements are exactly the elements of F.

If o is an automorphism of order n of the field K, then writing x"*”
for xPx7, the elements of the form x'***#*+=«""* are called the norms of
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o in K. Clearly any norm of o is fixed by o. We shall be interested in a
particular instance of a norm.

Result 1.7. Let K =GF(q?) and let F=GF(q) be contained in K. Then
the automorphism o x— x4 has order 2 and the norms of « are exactly the
elements of F.

To prove this result we note that the norms of o are merely the (g + 1)-st
powers of the elements of K* plus, of course, 0. But since K* is a cyclic
group of order g — 1 and F* is a cyclic subgroup of order g—1 (see
Result 1.4 part ii) the result now follows from elementary group theory. ]

Obviously the concept of norm is extendable to other fields, and the
reader will find it an easy exercise to show that in the field of complex
numbers over the reals, the set of noris of the automorphism mapping
every element to its conjugate is exactly the set of positive real numbers,
while in the case of the complex numbers over the rationals, it is an even
more restricted set of rationals.

3. Group Theory

‘We shall assume that the basic results and definitions of abstract group
theory are already familiar to the reader. In particular we shall make
repeated use of the isomorphism theorems and, to a lesser extent, the
Sylow theorems. In this book we shall be mainly concerned with permuta-
tion groups andsoin this section we give a briefreview of those permutation
group theorems which will be useful to us.

If & is a set then a permutation of & is a one-to-one mapping of &
onto itself. The set of all these mappings forms a group under the usual
composition of mappings: if « and § are permutations of & then apfis the
permutation defined by x*# = (x*)”. This group is the symmetric group on &
and clearly depends only on the cardinality of &. If & is a finite set with
n elements, then the symmetric group on & is often denoted by X, and
has order n!. If I' is a group, then a perrmutation representation of I is
ahomomorphism of I' into the symmetric group of some set 7. The kernel
of the given homomorphism is called the kernel of the representation. If
this kernel is trivial, ie. if the homomorphism is an isomorphism, then the
representation is faithful.

A permutation group is 2 subgroup of some symmetric group, and so
a permutation representation of a group is simply a homomorphism of
that group onto a permutation group. Not surprisingly we are most
i d in faithful rep ions which amounts to saying that we are
interested in finding a permutation group which is abstractly the same as
our given group. But there may be many such permutation groups and
so, in order to distinguish between them, we must define permutation iso-
morphism. If I is a permutation group on a set & and if ¥ is a permutation
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groupon aset.J then a permutation isomorphism between the permutation
groups is an isomorphism « from I' onto X together with a one-to-one
mapping B from & onto J such that, for any s€ & and any yeT, (s)"
= (s

If I' is a permutation group on a set & then, for any x € &, the orbit
of x under I' is the set {x”|y e I'}. We denote this set by xI" (To be com-
pletely consistent we should write x” as, for example, Wielandt does [5].
But the notation is somewhat easier this way since we often use groups
which are the ) ionally rather icated.) Clearly ye xI' if
and only if xe yI" so that the orbits of I' partition &. As an immediate
consequence of the definitions we have:

Result 1.8. Let I be a permutation group on & and let X be a subgroup
of I. Then, for any xe &, xX < xI" so that any orbit of I is a union of
orbits of Z.

If & is the only orbit of I' then we say that I" is transitive on &. More
generally we say that I is t-transitive on & if for every pair of ordered
t-tuples of distinct elements in & there is an element in I' sending the first
t-tuple onto the second. Thus itive is the same as itive. We
shall often refer to a two-transitive group as being doubly transitive.

If I' is a permutation group on a set & then, for any x € &, we denote
by I, the set of all elements in I' which fix x. Then I, is called the stabilizer
of x and it is easy to see that I', is a subgroup of I'. Furthermore, if for any
subgroup 4 of I and any o in I' we write 4* to mean the conjugate o™ A«
of 4 by o, we have

Result 1.9. If T is a permutation group on a set &, then for any x in &
and any o in I, Io= ()%

B

As a corollary to Result 1.9 we see that if x and y are in the same orbit
under I then I, =T,. The next result gives a test, which we shall some-
times use, to see whether a given group is t-transitive.

Result 1.10. If t > 1 and |%| > 2, the group I is t-transitive on the set &
if and only if for any element x in & the stabilizer T, is (t— 1)-transitive
on ¥ \{x}.

If I' is any group and 4 is a subgroup of I, then we can represent [
as a permutation group on the right cosets of 4 as follows: if yisinT,
then the mapping 7 sends the right coset 4a onto Axy. The set of all these
mappings 7 forms a group T and, since 78=yp, the mapping y—7 is a
homomorphism of I onto I. So we have a permutation representation of I".

Result 1.11. The permutation representation of I' onto I" as given above
is transitive on the set & of right cosets of A. Every transitive Ppermutation

P ionof I'is p ion i ‘phic to arep ion of this sort.

This classifies, in a sense, all itive per i i

But we still want to know when such a representation is faithful. We make
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a definition: If 4 is a subgroup of the group I, then the core of 4 is the
intersection of all the conjugates of 4.

Result 1.12. The core of A is the largest subgroup of 4 which is normal
in I'. Furthermore, the core of A is the kernel of the representation of I on
the right cosets of 4, as above.

Result 1.13.(a) Let T be represented as a permutation group on a set &,
and let x be in & Then |I'| =|xTI|-|[y|.

(b) If F,,7, are orbits of T with (|7,,173])=1 then, for any x in
1. T, is transitive on 7.

(Here we are using |7| to mean the number of elements in the set 7.)

An il result on ion groups is the following, where we

write f(«) to mean the number of elements in the set %" which are fixed
by the permutation o.

Result 1.14. If T is a permutation group on a set ' then
(=% e
acr
where t is the number of orbits of I' on .

This is the first result we have used which 1s not found in every ele-
mentary group theory text-book, so we sketch a proof. If x is an element
of ¥ and « an element of T, then we call the ordered pair (x,«) a flag if
Xx*= x; we wish to count the flags. On the one hand, for each x in &, there
are |I| elements o such that (x, o) is a flag, and so the number of flags is

> Ind-
xc¥
But the number of elements fixed by o is f(), and so we must have
Y=Y (.
x @

Each |I| can be changed (by Result 1.13) to |I'/|xT|. In each orbit xI}
the term |I'|/pxI'} will occur |xT'| times (that is, once for each element in
the orbit), and so the term |I'l/|xT'|, occurring |xI'| times, contributes |I'|
to the sum on the left. Thus the sum on the left will contribute |I'] once
for eachorbit, and hence the left is equal to ¢ I']. This proves the result. []

A special sort of permutation group is one in which I is always the
identity; such a group is called semi-regular. If a semi-regular group is also
transitive, it is called regular.

‘We now list three results which follow from the earlier results in this
section.

Result 1.15. If T is a regular permutation group on a set &, then I' is
permutation isomorphic to the representation of I' on the right cosets of
the identity subgroup, and conversely.
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Result 1.16. If T is a permutation representation of I on therright cosets
of the subgroup A, then I is regular if and onlyif Aisa normal subgroup of T.

Result 1.17. Any transitive abelian permutation group is regular.

An even more interesting class of permutation groups is given by the
transitive groups such that a stabilizer (any stabilizer will do, from the
observations following Result 1.9) is semi-regular. These are called
Frobenius groups, and have been the subject of much deep group-theoretic
research for many years.

Result 1.18. Let I' be a finite Frobenius group on a set . Then T has
a normal subgroup A which is regular on <, such that T'=AT,, for any
stabilizer I, (and hence T is the semi-direct product of A by r,).

The normal subgroup 4 of Result 1.18 is called the Frobenius kernel
of I

A characteristic sort of Frobenius group can be given as follows. Let
K be a skewfield and let G be a multiplicative subgroup of the multi-
plicative group K*;for eachainG and each b in K, define the mapping
¢=d(a,b) of K onto K by

xt=xa+b.

Then it is not difficult to show that the set I' of all these mappings form
a group, where ¢(a, b) ¢(c, d)= dlac, be +d). This group is Frobenius and
in the finite case its Frobenius kernel is the subgroup 4 of all elements
¢(1,b). (Note that from Result 1.18 we only know that finite Frobenius
groups possess Frobenius kernels; but 4 has the properties of the Frobenius
Kkernel even in the infinite case.) The student should verify these remarks
and should find the stabilizer of a point, say 0.

If I' is a permutation group on a set &, then it may be possible to
partition & into subsets %, %, - such that I induces a permutation
group on the &; (that is, if x in & is sent by a to x* in &}, then « sends
every element of &; to an element of ). Of course it is always possible
to do this in two trivial ways: either let & itsell be the only such subset,
or let each subset consist of a single element of . These two ways of
constructing the % will be called trivial. If a non-trivial partition exists
we will call the & systems of imprimitivity, and we say that I is imprimitive.
If only trivial such decompositions exist, then we say that I' is primitive.
If I" is not transitive, then the orbits themselves give systems of imprimi-
tivity, and so a primitive group must be transitive. In addition we have:

Result 1.19. If T is t-transitive, t> 1, then I' is prumitive.

Thus the interesting primitive groups are those which are transitive
but not two-transitive. It is not hard to prove:

Result 1.20. Let I' be a transitive permutation group on a set &. Then
I is primitive if and only if any stabilizer I in I' is a maximal subgroup
of T (that is, there are no subgroups of I properly between I and I,).
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4. Vector Spaces

The subject of vector spaces is so large and is so fundamental to all of
modern mathematics that we shall assume that the student is familiar with
the basic ideas of vector space, linear dependence and independence, bases,
dimension, subspaces, and so on; but since sometimes we want to consider
vector spaces over skewfields instead of the more usual fields, we must
make a distinction between left and right vector spaces. So “V is a left
vector space over the skewfield K™ will mean thatif visa vectorin V and k
is an element of K, then the product kv is defined (as a vector of V), and
that all the usual associativity and distributivity properties hold, but with
the“scalars” always on the left of the vectors. A right vector space is defined
analogously. The student will be familiar with the theorem which asserts
that all vector spaces of dimension n over the field K are isomorphic; over
skewfields, we can only say that all left vector spaces of dimension n over
the skewfield K are isomorphic.

When we come to linear jons and semi-li -
tions, again a little care is required in the definitions (and sometimes in the
theorems). So let V' and W be left vector spaces over the skewfield K, and
let @ be an automorphism of K. If ¢ is a mapping of V into W with the
property that (i) for all v, v,, in ¥ (v, +10,)®=0f +0¢, and (i) for all v
in ¥ k in K, (ko)® =k%(t), then ¢ is a semi-linear transformation from V
to W, with associated automorphism . We say that ¢ is a linear transforma-
tion if its associated automorphism is the identity. Tt is clear what should
be the correct definitions when ¥ and W are right vector spaces, but there
is a third possibility for which the definitions are less obvious. If ¥ is a left
vector space and W is a right vector space, then everything is as expected,
except that we change the one rule to (ko) =v?k*, where a is an anti-
automorphism of K. (Otherwise we would get into trouble with things of
the sort a(bv), where a and b are elements of K)

Now if we consider the set of semi-linear transformations of the left
vector space V into itself we have a closed set: that is, there is a natural
multiplication, where if ¢, and ¢, are semi-lincar transformations with

i Ao

a, and a, respectively, then ¢, ¢, is defined by
192 =(#)?2, and will have the associated automorphism a, e, This
iplication is iative. A semi-li transformation of V to V is

said to be non-singular if it is one-to-one and ontoj the set of non-singular
semi-linear transformations forms a group, written I'L(V). From the
remarks above, we can map each element of I'L(V) onto its associated
automorphism, and this mapping will be a ‘homomorphisminto (even onto,
in fact) AutK, whose kernel is the set of non-singular linear transforma-
tions; this last group is called the general linear group of ¥, written GL(V).

Now in fact it is easy to show that if ¥ is finite dimensional then AutK
is, as stated above, a subgroup of I'L(V) with the following properties:
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Result 1.21. If V is a finite dimensional left or right vector space over
the skewfield K, then I' L(V) = A - GL(V), where GL(V) is normal in I' L(V),
AnGL(V)=1, and A is isomorphic to AutK.

Ifa basis of a (left or right) vector space is chosen, then we can represent
the vectors of the space in terms of their coefficients in that basis, in a well-
known way. So if V is a finite dimensional left vector space over K, with
a basis e,e,,....¢,, then for each v in V there is a unique n-tuple
(%15 X2, --.» X,) such that v=x, ¢, +x,€; + --- +x,¢,. We may choose to
represent v simply by the n-tuple (x,, X5, ..., X,), and then all the familiar
laws for operating with these “row vectors” are valid, remembering that
since we have a left vector space we only multlply the n- luple on the left
by elements of K. A linear of Vis
by its effect on a basis, and hence we can represent it by a square matrix,
in the usual fashion, where the effect of the square matrix (4;;) on the
n-tuple (the vector, in other words) (x,, X5, -..,X,) is to send it to the
ordinary matrix product; that is, the row vector whose j-th termis ) x;a;.

7

Something a little awkward comes up here. Suppose (to illustrate) we
have a three-dimensional left vector space V over K and we represent the
elements of V by row vectors, that is, by their coordinates in some fixed
basis. Consider the mapping 1: (x, y, z)—>(xa, ya, za), for some fixed a in
K, a+0; similarly, consider the mapping p: (x, y, 2)—(ax, ay, az), for lhe
same a. Then the student should verify the following statements:
a non-singular linear transformation; (ii) p is a non-singular semi-linear
transformation; (iii) y is linear if and only if a is in the centre of K, in which
case it equals 7. Finally he should determine the automorphism associated
with g

Result 1.22. The group GL(V) is transitive on the bases of V, and the
subgroup of GL(V) fixing every vector in some chosen basis is the identity.

Now when K is a field we can compute the determinant of a matrix
and it is well-known that this determinant is in fact an invariant of the
linear transformation that goes with the matrix: that is, if A and B are
matrices representing the same linear transformation in different bases,
then they have equal determinants. (In fact the characteristic equation is
an invariant of the linear transformation and hence its coefficients are
invariants; one of these is the determinant, another is the trace.)

Furthermore, if det(A) means the determinant of 4, then det(4B)
= det(A)- det(B), so the mapping A4 — det(4) is a homomorphism. Since
a linear transformation is in GL(V) if and only if its determinant is not
zero, this assures us that the mapping A— det(A) is 2 homomorphism of
GL(V) into the multiplicative group of the field K. In fact it is onto (the
student should be able to construct a linear transformation whose deter-
minant has any prescribed value), and the kernel, the set of linear trans-
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formations (or perhaps matrices) of determinant one, is called the special
linear group, written SL(V).

Result 1.23. Let V be a finite dimensional left (or right) vector space
over the skewfield K. If N is the group of all semi-linear transformations
of V which fix every one dimensional subspace of V,i.e. N = {y e ' L(V)|{v")
=(v) forallvin V}, then N = K* and if the dimension of V is greater than
one, NnGL(V) = Z(K*).

Result 1.24. Let V be a finite dimensional left (or right) vector space
over the field K. If a semi-linear transformation a has the property that it
fixes every one dimensional subspace of V then o is linear and is in the
centre of GL(V). In matrix terms o is represented by a scalar multiple of the
identity matrix.

If V is a left vector space over the skewfield K then a linear finctional
on V is a mapping f* of V into K such that (i) for any v, w in ¥ (v +w) f
=uf' +wf" and (i) for any v in ¥ and k in K, (kv) f'=k(vf). (We are
wmmg lmear functionals as (lmnsposed) ‘vectors, rather than mappings,
of the foll di ion.) If f and g’ are two linear
funcuonals,then we define f* +g by: o(f'+g')=uvf +vg’, while if f"is a
linear functional and b is an element of K, we define f'b by: v(f'b) = (vf) b.
Under these operations the set ¥’ of linear functionals is a right vector
space over K. If e, ¢,, ..., e, is a basis for ¥/ and if we define mappings f;,
for i=1,2,...,n by (x,€ +x,€, + - +X,e,) fi=x; then it is not difficult
to show that the f; are elements of V' that they are linearly independent
and that they span V". We say that f; are the basis vectors corresponding
to the ¢; and that V' is the dual space of V. Hence:

Result 1.25. The dimension of V' is the same as the dimension of ¥,
when V is finite dimensional. Furthermore, V" is naturally isomorphic to V.
(The reader may interpret “naturally” in an intuitive way; however the
expert will see it has an exact meaning.)

Now if g’'=fa, + f,a, + -~ +f,a, is an element of V', then the effect
of g’ on V can be expressed as follows:
(e + X385+ o +%,6) g =% @ + X205 + - +%,G,.

Hence if we use row vectors (xy, x,, ..., x,) for the elements of ¥V and
column vectors

a

a;

a,
for the elements of V', then we can express the effect of the column vector

w’ on the row vector v by ow'; that is, by the matrix product of the row
vector v and the column vector w'. (We shall consistently use a symbol
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like v to represent a row vector, and a symbol like w’ therefore will represent
the transpose of a row Vector, i.e., a column vector.)

Now suppose a is a ingul: i-1i ion of ¥ onto
¥, and in some fixed basis e;, €2, ..., €, of V, ais represented by the matrix 4
and the automorphism a7 so if 9= (x;, X2, ey X,), then

= A= (X5 XD A

Ifwedefine amapping o’ of V" into V' by: (yy, vz 3 =A™ OF: 150
then we can say:

Result 1.26. If aisa ingule i-lis sf ion of V onto
Vthend'isa ingul i-li jon of V" onto V', and with

the same associated automorphism o. Furthermore, F(W) = (w)’, for all
vin V and w in V". The mapping a—d is an isomorphism of I'L(V) onto
T L(V"), with the property that o =a. ‘The mapping also sends GL(V) onto
GL(V"). -

Note that if V is a right vector space then V' is a left vector space.
Hence it will be convenient to represent the vectors of V by column vectors
and those of V’ by row vectors. A linear transformation of a right vector
space ¥in matrix form, will bea mapping w'—Aw’ andsoon. In Chapter 11
we shall slightly prefer left vector spaces, since mappings then appear on
the right and the product of linear transformations with matrices 4 and B
will have matrix 4B (otherwise it would have matrix BA).

The correspondence a—¢a’ above not only maps GL(V) onto GL(V")
but does it in a way which preserves the effect of the linear functionals,
a most powerful and useful property.

There is another interesting relationship between V and V. For each
subspace W of ¥, we define the annihilator W of W to be the set of all
elements in ¥’ which map every vector of W onto 0 in K.

Result 1.27. If V is n-dimensional, and W is any subspace of V, then
Wever'— W, and the dimension of W plus the dimension of W* equals n.
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11. Classical Projective Planes

1. Introduction

In this chapter we give a fairly concise introduction to those parts of
classical geometry that are relevant to the study of projective planes in
general. We include it because we feel that much of the point of the study
of projective planes is in knowing what is true for the classical case and
is not (or might not be) true in the general case. Most of the theorems in
the later chapters take on a new aspect from this point of view and are
much more ingful wh d to the classical th Similarly,
the strange and pathological behaviour of free closures, even though they
are in some sense the most “natural” projective planes, is only really
appreciated when contrasted with the classical situation.

Although in the later chapters we occasionally make references to
classical situations, the reader may always ignore these references and the
material that begins in Chapter III is then completely self-contained.
Consequently the student may skip this chapter without affecting his com-
prehension of the later chapters. Throughout this chapter we act as if there
are no geometries other than those we are discussing: so we do not use
words like “classical” or “desarguesian”.

Another reason for including this chapter is the historical one. At first
people studied projective planes over the reals, then over the complexes,
then over arbitrary fields and skewfields; later the notion of geometric
dimension higher than three crept in. Finally an attempt was made to
make up a list of axioms, that is a set of synthetic incidence properties
between the various kinds of objects in a projective geometry, which should
characterize projective geometries. These axioms worked quite nicely for
geometric dimension greater than two, in the sense that they defined
exactly the class of things that everybody wanted to call projective
geometries. But for geometric dimension two every attempt to show that
the axioms (which become particularly simple in this case; see Theorem 2.2
and Chapter IIT) ized the projective pl: d fields
or skewfields led to failure. At last, in the latter part of the nineteenth
century, it was discovered that there were projective planes that could not
arise from skewfields in the standard way. These were the first “non-
desarguesian” projective planes. In the early years of the twentieth century
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the first ples of finite ian proj planes were
discovered.

We shall study geometries in this chapter almost completely from an
algebraic point of view; this has the disadvantage that the real “geometric
meaning” of much of what we do is obscure sometimes. But it has the
advantage of being neat and often rather easier than if we had taken a more
conventional point of view. We assume that the reader is fairly comfortable
with linear algebra; it seems to us that studying projective geometry with
linear algebra is much the easiest and most natural way to grasp the
subject. Affine geometries will not make their appearance until late in the
chapter, at which point some of the “geometric meaning” will become
clearer. In fact we will often phrase definitions and so on in terms of
arbitrary dimension, but we only do this to illustrate that the special case
of the plane is not really much different from the general case. However for
any interesting results, we usually restrict ourselves to the plane.

‘We have included a fair amount of material on polarities, on conics,
and on unitals, including some material on the transitivity properties of
the orthogonal and unitary groups. A reader with more skill in group
theory will not find it difficult to show that these groups are non-soluble
(though the simple pieces are not so easy to identify). This material is
included since in Chapter XII, where we study similar material for arbi-
trary projective planes, it will be useful to have considerable detailed
knowledge of the classical case. Section 2.9 contains material on affine
conics (so we can speak of ellipses, hyperbolas and parabolas), and, among
other things, classifies them according to the affine group of the plane. In
fact, this project can only be carried out completely in certain cases, since
ellipses cause a lot of trouble and would carry us into deep problems of
algebraic number theory etc. Empty conics (which can lead to metrics and
angles) are not studied, but we show that they cannot arise in the finite
case. Unitals are not studied in the same detail, mostly because the
problems are either too difficult, or are even unsolved.

Since the projective planes over skewfields do not have the same
geometric properties as those over ficlds (see, for example, Theorem 2.6),
we often discuss vector spaces over skewfields. However there are many
situations where we restrict ourselves to Lhe field case; either because the
prouf inthe case is i d or because th
is of no interest to us. Thus the reader should exercise a certain amount
of caution and, when he sees (V) written without any immediate reference
to a field or skewfield K, should refer back to see which case is under con-
sideration. It is safest to assume that K is a field unless told otherwise; of
course, there is no distinction in the finite case.

Finally we emphasnze that lhls chapr.er is only intended as an intro-
duction 'y. Many text books
already exist which treat the topic in much more detail than we have room
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for here. We refer the interested reader to Artin [1], Baer [2] or Gruenberg
and Weir [4].

2. Basic Definitions and Results

Let Kbea 1d and V a finite di ional (left or right) vector space
over K; we want to study the lattice of subspaces of V, instead of V itself
The collection of subspaces of ¥ together with the natural containment
relation, will be called the projective geometry 2(V), and we shall say that
the subspace W is incident with the subspace U if either W contains U,
or U contains W Whenever it is approprlate we shall adopt the standard
)! either or such as U lies on W (or in W),
W contains U, W passes through U, etc. While it is not obvious that this
definition of a projective geometry has any relation to our “natural”
notions of geometry, we shall soon see that this is in fact the case.
If V is (n + 1)-dimensional over K, we shall say that 2(V) has g-dimen-

sion n. The sub of V of (al, i+1 will be said to
have gdlmensxon i, and |I'd( W)=i+1,wecan wme gd(W)—- i=dW)—-1.
The of g zero (i.e., alget ion one) will be

called points, those of g-dimension one will be called lines, those of
g-dimension two will be called planes, and those of g-dimension n— 1 will
be called hyperplanes. If we were to think of the points of 2(V) as its most
fundamental objects, then their ii ion (or indeed, the i ion of
any two of them) would be the “natural” empty set: so the zero-subspace
of ¥ whose dimension is zero and whose g-dimension is — 1, is the empty
space in 2(V). If W is a subspace of ¥ then 2(W) is contained in a natural
way in 2(V), and all the objects of 2(W) are also objects of Z(V), with
the same g-dimension. If K is a field then ¥ is defined uniquely by its
dimension (i.e. it does not matter whether we take V to be a left vector
space or a right one). In this case, if ¥ has dimension n+ 1 then 2(V) has
g-dimension n and we may sometimes write 2,(K) for 2(V). If K is a finite
field GF(q) we may even write £,(q) for Z,(K).

As an of the di ion theorem for vector
spaces we have the following g-di ion theorem for proj geo-
metries.

Lemma 2.1 (Grassman’s identity). Let U and W be subspaces of a given
vector space V. Then gd(U + W)+ gd(U o W) = gd(U) +gd(W).

The following three exercises give our first indication that a projective
geometry has any similarity to our “natural” geometric ideas.

Exercise 2.1. Let P and Q be distinct points in 2(V). Show that there
is a unique line of (V') which contains both P and Q.

Exercise 2.2. Let E be a line and Wa hyperplane in 2(V). Show that
cither E lies in W or E and W meet in a unique point.
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Exercise 2.3. Let Eand F be distinct lines in 2(V). Show that either E
and F meet in a unique point, in which case E and F lie in a unique plane
of 2(V), or E and F have no point in common, in which case E and F
are contained in a unique space of g-dimension three in 2(V).

The reader will find it very important to work through, as well as
understand, the three exercises above. They all depend on Lemma 2.1
whose importance is basic. In a similar vein we have an exercise which
is fundamental:

Exercise 2.4. If 2(V) has g-dimension two show that every pair of
distinct lines meet in a unique point. (This is a corollary of Exercise 2.3.)

We have already observed that if W i1sa subspace of a vector space v
then (W) is contained in 2(V). There is another possible sense in which
we could speak of one projective geometry being contained in another.
Suppose that V is an n-dimensional left vector space over a skewfield K.
If K has a sub-skewfield F then V is also a left vector space over F and,
hence, contains a set of vectors U which form an m-dimensional vector
space over F, where m may be larger than n. Clearly, since U is contained
in V, 2(U) is contained in 2(V) but U need not be a sub-vector space
of V. (Note, of course, that there is no need to insist that ¥, U are left vector
spaces. They could equally well both be right vector spaces but we could
not allow one to be left and the other right. This will often be the case
and we shall in future not bother to point out this fact) To distinguish
these two types of containment we shall say that 2(U) is a complete sub-
geometry of (V) if U isa sub-vector space of V over K. Inany other case
we shall call 2(U) an incomplete sub-geometry of (V)

Exercise 2.5. Let V be a (left) vector space over a skewfield K. If Z(W)
is a sub-projective geometry of P(V), show that P(W) is complete ifand
only if some line E of 2(W) has the property that all the points on Ein
(V) are on E in Z2(W).

Very soon we shall be i d only in projective g ies of
g-dimension one or two, which we will call, respectively, projective lines
and projective planes. However, some of the basic ideas are almost more
easily d for arbitrary g-di jon than for these special cases,
and so we do not completely discard the general case yet. Thinking about
the case of g-dimension two, we see that all “interesting” subspaces have
dimension one or two, that is, are points or lines, and that the containment
relation between cl f obj i i try
(for everything contains the zero-space, or the empty object,and everything
is contained in the entire space). But the projective line is very peculiar,
in that there are no interesting containment relations: ‘besides the zero-
space and the entire space, we have only a collection of one-dimensional
subspaces. That is, the projective line might be said to look like a line with
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a lot of points on it, and to have no other structure. This fact will pose us
ertain dif ies, and until we t decided how to the problem
of the lack of incidence structure, we shall often have to make exceptions
for g-dimension one.
We first look at the incidence structure of a projective geometry of
g-dimension two.

Theorem 2.2. Let 2(V) have g-dimension two. Then the points and lines
of P(V) satisfy:
(i) every pair of distinct points are incident with a unique common line;
(ii) every pair of distinct lines are incident with a unique common point ;
(iiiy P(V) contains a set of four points with the property that no three
of them lie on a common lire.

Proof. Parts (i) and (ii) were proved in Exercises 2.1 and 2.4. The proof
of (iii) depends on showing that the gel d by the ing
four vectors have (as points) the required property: (1, 0,0),(0, 1, 0), (0,0, 1),
(1,1, 1). (Here we are using some fixed basis of V, as we are entitled to do.)
Suppose, for instance, that the first three vectors generate subspaces which,
as points, lie ona common line; that means that there is a two-dimensional
subspace containing the three vectors. But the three vectors are linearly
independent, which is a iction. The reader should finish the proof
by considering all other subsets of three vectors taken from the given
four. [J
(The object of Theorem 2.2 is rather obscure at this time, so we give
a brief explanation. At one time it was thought, or hoped, that the three
properties of Theorem 2.2 characterized projective geometries of g-dimen-
sion 2, in the sense that a collection of abstract points and lines satisfying
them must be in some sense the same as a 2(V). ‘This was shown not to
be so by Hilbert and Moulton and later in this book we shall use the three
properties given as the definition of a projective plane. One of our chief
concerns will then be to study what else must be assumed, besides (i), (ii),
(i) of Theorem 2.2, in order to give us a projective geometry of g-dimension
two.)

Obviously we shall need itions of i hism, I phism,
automorphism, etc.; all of these will be completely natural. Thus an
isomorphism from (V) onto (W) is a one-to-one mapping « of the sub-
spaces of 2(V) onto the subspaces of #(W) which preserves the con-
tainment relation, so E<F in 2(V) if and only if E*<F* in 2(W). I
P(V)=2P(W) then the isomorphism « is called an automorphism, or a
collineation, of 2(V). It is clear what a homomorphism would be, but we
shall not be much concerned with these excepting in Chapter XL An anti-
isomorphism is a one-to-one mapping f from (V) to (W) which reverses
incidence: that is, E<F in 2(V) if and only if FF<Ef in 2(W). If
P (V)= (W) then an anti-isomorphism  is called a correlation and is a
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polarity when it has order two (that is, f>=BB=1, the identity auto-
morphism).

But all these definitions are not much good for the projective line.
For instance, any one-to-one mapping of the points onto themselves would
satisfy any of them, and while the set of all one-to-one mappings of a set
to another set, or to itself, is a very interesting thing, we shall need more
precise definitions. The trouble of course is that the projective line appears
to have no structure, and so we shall have to provide some: after having
done so(in a natural way) we will be able to gi itions for g-di i
one. Until then we must und, d that all th it fi his
etc., given above are only for g-dimension greater than one.

3. Dual Spaces and Homogeneous Coordinates

If V is a left vector space of di ion n+1 over the K, then
(see Chapter I) the dual space V"’ of V is a right vector space of the same
dimension over K; and if V is a right vector space then V"’ is a left one.
So we may discuss the two projective geometries 2(V) and 2(V’), and the
relationship that may exist between them. They are not necessarily
isomorphic (though they certainly would be so in the important special
case that K is a field), but we saw in Chapter I that there was a
connection between them, which can be expressed in terms of the mapping
ay from subspaces of V to subspaces of V' given by: if WCV, then
W ={v' in V’|wd' =0 for all w in W}. Since the subspaces of V are
the elements of (V) we see that, while a,, was not a mapping from V to
V', it is a mapping from 2 (V) to 2(V"). Writing ay- for the dual mapping
from V' to V"=V (see Result 1.25) the following theorem is a slight
extension of Result 1.27.

Theorem 2.3. The mappings ay and ay. are anti-isomorphisms (respec-
tively from P(V) to P(V') and from P(V')to P(V)),and a, ay. = 1 = ay.ay,.
(Here we are abusing notation to the extent of using “1” to mean the
identity mapping of both 2(V) and 2(V"))

Corollary. If V is a vector space over a field K, then 2 (V) always
possesses polarities.

Proof. Certainly 2(V) possesses correlations, since if ¢ is any iso-
morphism from V' to V then a, ¢ induces an anti-isomorphism of 2(V)
onto itself. But if ¢ is chosen as the isomorphism from V' to ¥ which
maps the basis f7, ..., f; of V' onto the basis e, ..., e, of ¥ (where the ¢;
and f; are related by e fj = 1 or 0 according as i=j or not; see Chapter I)
then it is an easy exercise to see that the mapping induced by a, ¢ is even
apolarity. [J

Exercise 2.6. If V and W are vector spaces over a skewfield K and g is
any semi-linear transformation from V into W, show that B induces a




3. Dual Spaces and Homogeneous Coordinates 23

homomorphism from 2(V) into 2(W). Show that the induced homo-
morphism is an isomorphism if and only if B is an isomorphism.

We introduce here an important convention. If § is a semi-linear
transformation from V into W then B will indicate the homomorphism of
2(V) into (W) induced by B if B is one-to-om and onto then Bisan
isomorphism. If g is a of V.
then f is a collineation, or automorphlsm, of PV).

Note also that the anti-isomorphism a, of Theorem 2.3 is between a
projective geometry over a left vector space and one over a right vector
space. For the moment we leave aside the interesting question of the
existence (or not) of isomorphisms between 2(V) and 2(V"), and move
onto another useful application of the dual space. Suppose V is a left
vector space of dimension n+ 1 over K. Then a, maps subspaces of V of

ion i onto of ¥’ of di ion 1+ 1—i,and in particular
sends the points of 2(V) (i.e. the one-dimensional subspaces of V) onto the
hyperplanes of (V') (ie. the subspaces of dimension n); similarly ay.
sends points of 2 (V') onto hyperplanes of 2(V) and, by Theorem 2.3,
ay. sends the hyperplanes of (V') back onto the points which are their
pre-images under a, .

If U is any hyperplane of 2 (V) then the point U* in 2(V’) uniquely
defines, and is uniquely defined by, U. Recalling the definition of a, we
see that the point E of 2(V) is on the hyperplane U of 2(V) if and
only if e’ =0 for every e in E and every ' in U Since E and U* both
have algebraic dimension one, E consists of the multiples ke, as k ranges
over K, of some non-zero vector e in E, and similarly U consists of the
multiples 'k, as k ranges over K, of some non-zero vector u' in U,
So we can represent E by any one of its non-zero vectors, and represent
the hyperplane U by any one of the non-zero vectors «’ in U®. Then the
incidence will be given by the simple rule: if E is identified by e, U by «',
then E is on U if and only if ex’ =0. This very lmportant rule enables
us to completely identify, for instance, every element in a projective
2 y of g-di ion two, and every inci For suppose V is a
threed]menslonal left vector space over K, and V" its dual space. Then
2(V) can be thought of as the object whose points are the one-
dimensional subspaces of ¥ and whose lines are the one-dimensional
subspaces of V', and where the incidence rule is given by “annihilation”,
ie. E=(e)ison L =(w) if and only if ew’ = 0. If we have chosen a co-
ordinate system, then E={(x,),2)) is on L ={(a,b,cy) if and only
if xa+yb+zc=0. That is, the ordinary “inner product” of the row
vector (x, y, z) and the column vector (a, b, )’ is zero. (The reader should
convince himself that in this simple rule it does not really matter which
vector e is chosen in E, so long as e 0, nor does it matter which w’ %0
is chosen in L)

Infact, this rule is as effecti least in pri i
tries of higher dimension, since it can be shown that any projective
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geometry is completely defined by its points and hyperplanes and the
incidence rules between them.

This use of the dual space to give «“coordinates” for hyperplanes leads
to what are called homogeneous coordinates: once a basis has been
chosen any point may be represented by a row vector v, o the subspace
(v, and any hyperplane by a column vector W', or the subspace {w').
In the case of the plane, where lines and hyperplanes are the same, every
element is then represented either by a row or column vector (or the
subspaces they generate). ‘We shall often use homogeneous coordinates
without further comment but, in order not to confuse points of the plane
with vectors of the space, will represent points by {(x,y,2)> and not
(x, ¥, 2). Similarly we shall represent lines by {(a, b, ¢)>.

Now of course if V is a right vector space then everything will be
reversed: the points of 2(V) will be represented by column vectors and the
lines of 2(V), that is the points of (V") are then row vectors. The point
{(x, y,2)> is on the line {(a, b, ¢)) if and only ifax+by+cz=0.

In the study of vector spaces the concept of a basis plays a very central
role. The equivalent role in the study of projective geometries is taken by
a “frame”. If 2(V) has g-dimension n, then a frame is an ordered set of
n+2 points in 2(V) such that no n+1 are contained in a hyperplane.
Such things exist:

Lemma 2.4. Let V be an (n+ 1)-dimensional left vector space over @
skewfield K and let ey, €5, ..., €nsy be @ basis for V. Then Ey = <&, E2
= Cexdsoonr Eupr = CCri s Enta=Cerheat o+ eppy) s a frame Sfor
P2(V).

Proof. It is easy to see that the n -2 vectors which are given as the
generators of the E; have the property that any n + 1 of them are linearly
independent, and so they could not possibly be contained in a subspace
of dimensionn. [}

In fact as the following lemma shows, Lemma 2.4 gives the most general
possible example of a frame.

Lemma 2.5. Let (V) have g-dimension n, and let Ey, E;, weesEpys be
a frame in P (V). Then there exists a basis ey, €3, --, €nsy of V such that
E;={ep fori=1,2...,n+1and E,sr= ey +ey+ -t

Proof. Without any loss of generality we may take V'to be a left vector
space over a skewfield K. Let E,={f, for i=1,2,...,n+1. I the f;
did not form a basis for V, then one of them would be a linear
combination of the others. But if f;, say, were a linear combination of the
other f;, then E; would be contained in the space generated by all the
others, which could not have dimension greater than n (since it has n
generators), and so there would bea hyperplane containing n+1 of the E;.

il
Thus the f; are a basis. Now if E,,, = < Y x > and one of the x; were
i=1
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zero, then E, , , would b ined in the subs gl d by nof the f;,
and there would be a set of n+1 E; contained in a hyperplane. As this
is not so each x; is non-zero and so if we let €; = x; J;, it is clear that the ¢;

form a basis which is of the kind called for in the lemma.

Exercise 2.7. 1f Ey, Ey. ..., E,, is a frame in 2(V), then no set of
r+1 points of the frame, r<n+1, lies in a space of g-dimension r— 1.

1t is probably worthwhile to pause and emphasize the relevance of the
preceeding discussion on frames. Given a basis of ¥ we will have
determined n+ 1 points in 2(V) but these n+ 1 points do not determine
the given basis. Any multiples of the given basis vectors could be used
instead to give the same n -+ 1 points. But once the (n + 2)-nd point of the
frame is given, then the particular basis (up to a common nultiple) is fixed.
In the next section we shall see more clearly how the role played by
the frame is analogous to that of the basis. Meanwhile we give two
exercises which determine all frames for a 2(V) of g-dimension one or
two.

Exercise 2.8. Let 2(V) have g-dimension one. Then show that the
three points E,, E,, E, are a frame if and only if they are distinct.

Exercise 2.9. Let (V) have g-dimension two. Then show that a
set of four points is a frame if and only if no three of the points are
collinear.

We now prove an interesting classical theorem which gives us a chance
to use the ideas introduced so far.

Theorem 2.6. Let Ay, By, C,, be three distinct points on a line L, and
Ay, B, C,, threedistinct points onaline L, + Ly, allin?(V) of g-dimension
two. Define three points As, B3, Cs as follows: Ay = (B +C)N(B,+C),
By = (4, + C)\(A, + Cy), Cy =(4; +B;)\(A;+By). If no three of Ay,
B,, A3, B, are collinear and C,, C, are arbitrary then the points As, B,
C, are collinear if and only if the skewfield K is commutative.

Proof. We first point out that, as a consequence of Exercise 2.9, the
condition on Ay, By, Az, B, merely says that they are a frame. The special
cases, by the way, when one of C; or C, coincides with a point of the
given frame are trivial and are left for the reader to verify.

Suppose that V is a left vector space over K and that a basis has
been chosen so that A; =<(1,0,0), By=<0,1,00, 4,=<0,0,1)
B, =<(1,1,1)). An arbitrary point C; + 4, on the line L, will have the
form {(x,1,0)), while the arbitrary point C,+4, on L, will be
(1, 1, y). Since (V) has g-dimension 2 a line of 2(V)isalso a hyperplane
of 2(V). Thus, using the rule for incidence between a point and a
hyperplane we see that A;+B,, (the line joining 4, to By), is
(0,1, — 1)), A, +By is {(1,0,0)>, and hence C; is €(0,1,1)>. The line
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Fig.1

A +C, will be {0, -y, 1)), and A,+C, is {(1,—x, 0>, so By
must be {(x,1,y)>. Finally, B,+C, is {(-»0,1)> and B,+C, is
(1, —x, —1+x)’>, and so A; must be {(1,x'+y(1—x""),y)). Note
that in each case the proof that the appropriate elements are incident is
simply a matter of taking the inner products; we already know that two
lines meet exactly once and two points have just one line in common, so it
is never necessary to verify uniqueness.

Now the line joining B; and C; will be {(x~*(1 —y), —1, 1)), and so
Ay is on that line if and only if x (1~ y)—x™! — p(1 —x~!) +y =0. This
last equation is valid if and only if x™'y=yx~'. Since x and y are
arbitrary, we have shown that the appropriate collinearity occurs if and
only if K is commutative. []

The theorem above is very famous and is known as Pappus’ Theorem;
the configuration of nine points and nine lines that it involves is Pappus’
Configuration (see Fig. 1).

Another application of the ideas developed here can be made by

ing to “coordinatize” a projective planc. Let V be a three-
dimensional left vector space over K, and let E,, E,, E,, E, be a frame for
2(V); choose a basis for ¥, as in Lemma 2.5, so E, =<e;), E, =<e,),
Ey={es), E,={e;+e,+e3). The line E, +E, in 2(V) is the two
dimensional subspace of V spanned by e, and e,. Thus every point of
E; +E,, other than E,, has the form {(y e, +y,e,)> where y,, y, are
in K such that y, % 0. Furthermore the point {(z, &, + 2, €,)) is the point
(€ +y;¢,)) if and only if there is an element k in K with y, = kz,,
y,=kz,. Hence every point of E, + E, other than E, has the form
{(xe; +ej)) for a unique x in K. The line E;+ E, meets the line
E, +E, in the point {e; +e,); for certainly the vector e +e;, is in the
subspace E;+E,, and since e;+e,=(¢,+e€,+e;)—e;, it lies in
E,+E,. (Again we note that we never need verify uniqueness. In order
to find the point common to two lines it is always sufficient to find a
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single non-zero vector which lies in both subspaces.) Every other point
on E3+E, (that is, not on E, + E,) can be uniquely represented in the
form {xe, +xe, +e3).

Now the line from E; to {xe, + €;) meets E; + E,in (xe; +xe, +€3);
similarly the line from E, to {ye, + e3) meets E; + E, in {ye, + ye, +€3).
An arbitrary point P not on the line E, + E, has a unique representation
in the form {xe, + ye, +¢,, and using the arguments as above, we can
see that the line E; + P meets E, + E; in {xe, +e,), while the line E, + P
meets E,+E; in {ye,+e;). We have now set up a kind of co-
ordinatization of the points of 2(V) not on E, + E,. By this we mean
there is a one-to-one correspondence between such points and the
ordered pairs (x, y) from K If we could imagine E, + E; as an x-axis
and E,+E; as a y-axis (somehow ignoring the points E, and E,
themselves), then the point (xe, +ye,+e;), that is the point corre-
sponding to the ordered pair (x, y) “projects” from E, onto the x-axis in
the point (x,0), and from E, onto the y-axis in the point (0, y). These
ideas are only suggestive and inexact at this stage but will be clarified later.
However we proceed with our “coordinatization™.

The points on the line E, + E,, again excepting one of them which
will be E, this time, all have the form {me, +e,). If we fix such a point
(ie. fix the element m in K), and choose a point {be,+e,) on the line
E, +E; (that is, our unofficial y-axis above), then the line which joins
them will contain, besides {me, + ¢, >, points of the form {xe, +ye,+e).

Fig.2
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Lemma 2.7. A point {xe; +yex +e3) is on the line joining (mey+e)
to (be, + e3> if and only if y=xm+b.

Proof. The point {xe, +ye, +e3) is on the line joining {me, + €,
to (be,+e;) if and only if the vector xe +yes +e; is a linear
combination of me;, +e, and be, + e3. But if xe, +yes+e3 =c(me, +€)
+d(be, + e3) then, by first equating the coefficients of e and then those
of e,, we have d =1 and ¢ =x. Equating the coefficients of e, now gives
y=xm+b as required. Conversely it is easily seen that if y=xm+b
then xe, + ye,+e3=x(me;+ e)+be,+es. [

Lemma 2.7 gives us a geometrical interpretation of the skewficld
operations. For example, if b=0 then the line joining {me; + € to E,
meets the line joining {xe, + e3> to E; in the point {xe; + xme, +€3).
Thus we have a geometric construction which, given x and m, determines
xm for us (see Fig.2).

Exercise 2.10. By using Lemma 2.7 with m=1 give a construction
(similar to that for finding xm) to find x+b. (Draw 2 diagram!)

Lemma 27 may be regarded as giving an equation for the line
joining {me,+e,) to (be, +e;) in the sense that it gives an equation

which must be satisfied by the “coordinates” of any point on the given
line provided that the point is not on E; +E;

We shall return to this subject, and that of relating geometrical
constructions to the operations of K, in later sections.

Exercise 2.11. If K = GF(q) show that every line of 2,(K) has g+1
points on it and that every point is on g+1 lines Show also that
2,(K) has ¢ +g-+1 points and g% +q-+1 lines.

Exercise 2.12. Show that if the frame E;= ey, Ey=Ke), s
Eyry = Ceusr Enrz=Certeat - +en) is replaced by Ef =<a e,

¥ = (35D, -ver Edys =<n 1€, Eir2 =K@y +az62 +p1 81>
then the point {(Xy, X,---»Xn+ 1) becomes {xa7 Y, X207 L X1 Gaa )

(Note that the two frames differ only by a single point.)

4. Isomorphisms, the Fundamental Theorem and Related Topics

In this section we discuss the problem of determining all iso-
morphisms, anti-i phisms, hi and correlations of
jective pl In fact, our resul qually valid interpreted

proj p

for higher g-dimension, and the proofs are not basically different; but
they are sufficiently more complicated to make it worth our while to
restrict ourselves to the plane.
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Suppose ¥V and W are left vector spaces over K, and Bis a semi-linear
transformation from V onto W. Then, since B preserves the relation of
incidence among subspaces, it is clear that p induces a homomorphism
of 2(V) onto 2(W), as pointed out in the previous section.

If V and W have the same dimension then § induces an isomorphism
from (V) onto 2(W). The remarkable fact is that all isomorphisms
from 2 (V) onto 2(W) are of this form, a theorem which we prove for the
projective plane

Theorem 2.8. Let V be a left vector space over the skewfield K and
W a left vector space over the skewfield F, and suppose each has dimension
three. If there is an isomorphism from 2 (V') onto (W), then F and K are
isomorphic and the isomorphism from P(V) onto P (W) is induced by a semi-
linear transformation from V onto W.

Proof. Let B be the isomorphism from 2(V) onto #(W) and choose
a frame E,, E,, E;, E,, for P(W), given by a basis e, €;, €5
(so E;=<e for i=1,2,3 and E, = (e, + e, +e3)). The pre-images of
the E; are four points G; in 2(V), and clearly they are a frame for 2(V);
so choose a basis g,, g2, g3 for (V) such that G, = {g;) fori=1,2,3 and
G, =g, +92+ g3 (Such a choice is possible by Exercise 29.)

Clearly all lines of the sort G;+G; must be sent by B onto lines
E;+E;, and intersections of such lines must similarly be sent onto the
appropriate intersection in 2(W). So a point {xg, +¢) on Gy + G goes
to a point (x’e, +e5) in 2(W), where ¢ is some one-to-one mapping
of F onto K. The point {xg, +Xg,+4g3> is the intersection of the line
G, + G, with the line joining G, to the point {xg; +g3)> on G +Gs.
Thus, since f sends G, + G, onto Es + E,, G, onto E, and {xg, +g3>
onto {(x*e, +e;), the image of {xg,+xg,+g;> must be the point
(x*e, +x%e,+e,). Similarly by “projecting” from G, onto the line
G, +G; (the unofficial y-axis), we see that (yg,+9s)’ = (Peytes).
From this it is easy to see that any point of the form {xg, +yg,+93>
has for its image under B the point {x*e, +)*e, + 3. Thus we have
found the image of every point not on the line G, + G, in terms of the
mapping ¢ which, since Gf = E,, maps the “1” of K onto the “1” of F.
In order to completely determine the action of § we must find the image
of an arbitrary point {mg, +g;> on G, +G,. The point {mg, +4,> is
the intersection of G, + G, with the line joining G; to {g; +mg,+g3>
and hence {mg, +g,)” is the intersection of E, + E, with the join of E;
and (g, +mg,+g5)" = ey +mPe, +e3). Thus (mg, +9,)7 = (mPe,+ €.

In order to establish that ¢ is a multiplicative isomorphism we utilize
the geometric structure given in Lemma 2.7 to determine first the product
xm. The point {xg, + xmg, +gs) is the intersection of the line joining
G, to {mg,+g,> with the line joining G, to {xgy+g3)- Thus
(xgy+xmg, +g3), which we already know is {x*e; +(xm)®e, + e3>,
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is the intersection of the line joining E; to {m®e,+e,) with the join
of E, with (x*e, +e;). Thus, since this point is (x*e, +x?m®e, +¢5),
we have (xm)* = x®m? for all x, m in K. Diagrams are obviously helpful
in arguments of this type and the reader is urged to draw them for each
proof.

In order to establish the isomorphism between K and F we have to
prove (x +b)® =x¢+ b? for all x, b in K. But the proof of this follows
similar reasoning to that used for the multiplicative property of ¢ and is
left as an important exercise. To conclude the proof of Theorem 2.8 we
simply observe that B is induced by the semi-linear transformation §
of V onto W which is the linear transformation sending the g; onto the e;
followed by the field isomorphism ¢. (1

Corollary. (The Fundamental Theorem of Projective Geometry — for
the case of g-dimension twe.) The group of all automorphisms of a projective
plane 2(V) onto itself is induced by the group of all non-singular semi-
linear transformations of V onto V.

Now 1n fact the method of proof of Theorem 2.8 can be used with the
obvious and simple modifications to give us:

Theorem 2.9. Let V be a left vector space over the skewfield K and W a
right vector space over the skewfield F, and suppose each has dimension
three. If there is an isomorphism from P(V) onto (W), then K and F
are anti-i: phic and the i: -phism from P(V) onto P (W) is induced
by a semi-linear transformation from V onto W.

(N.B. Recall that a semi-linear transformation from a left to a right
vector space involves an anti-isomorphism, not an isomorphism: see
Chapter 1)

Corollary. Let V and W be left vector spaces of dimension three over the
skewfields K and F respectively and suppose there is an anti-isomorphism
from P(V) onto P(W). Then K and F are anti-isomorphic. In addition, p
has form B=0,ay.=a,0,, where ay is the annihilator map from P(V)
onto P(V'), ay. is the annihilator map from P(W’) onto P(W), 0, is an
isomorphism induced by a semi-linear transformation 0, from V onto W'
and 6, is an isomorphism induced by a semi-linear transformation 0, from
V' onto W.

Proof of Corollary. Since the mapping Bay, is the product of two anti-
isomorphisms it is an isomorphism, and goes from 2(V) to 2(W'); call
it 6. Then it has the required form by Theorem 2.9, and so f = fayay-
=0, ay.. The other half is similar (and of course the anti-isomorphism
between K and F is a consequence of Theorem 2.9 as well). []

Exercise 2.13. Analyze the situation of an anti-isomorphism from a
P(V) to a P(W), where V is a left and W is a right vector space over
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skewfields K and F. In particular, are K and F isomorphic or anti-
isomorphic?

All the above theorems and corollaries are equally true for arbitrary
2(V), so long as the g-dimension is greater than one (and when we have
made the correct definitions, they will be true for g-dimension one as well);
the interested student will not find it difficult to extend the proofs to higher
dimension. Hence we have a motive for analyzing the group of all

ingul. i-Li f ions of a vector space V onto itself,
and the group induced by this first group on £ (V). With this in mind we
make some definitions and introduce some notation. Let V be a left
vector space over the skewfield K (arbitrary finite dimension). Let
T'L(V) be the group of all non-singular semi-linear transformations of
V onto ¥ and let GL(V) be the subgroup consisting of all ingul.
linear transformations (see Chapter I). In case the underlying skewfield
is a field, we define SL(V) to be the subgroup of GL(V) consisting of
elements of determinant one. Each of these groups induces a group of
automorphisms of 2(V) onto itself, which will be indicated by writing
the letter “P” in front of the group: so PI'L(V), PGL(V) and PSL(V)
(when this last can be defined) are the groups induced by I'L(V), GL(V)
and SL(V) on 2(V).

Naturally we wish to determine these new groups.

Theorem 2.10. Let V be a left vector space over a skewfield K and
let N={yeI'L(V)|<v") =(v) forall vin V}. Then PrL(V)=TL(V)/N,
PGLV)=GLV)NNGLV) and, if K is a field, PSL(V)=SL(V)/NASL(V).

Proof. Since N is the set of semi-linear transformations which fix
every one-dimensional subspace of V it is the set of all these semi-linear
transformations which induce the identity automorphism on 2(V).
Thus N is the kernel of the “natural” homorphism which sends an element
of "L(V) onto the element it induces in PI'L(V). Similarly NnGL(V)
and NNSL(V) are the kernels of the other natural homorphisms.

Theorem 2.11. Let V be a left vector space over a skewfield K, let
AutK be the automorphism group of K, let K* be the multiplicative group
of non-zero elements of K and let InK be the group of automorphisms
of K given by the inner automorphisms of K*. Then GL(V) is normal in
T'L(V) and, when K is a field, SL(V) is normal in GL(V); hence
PGL(V) is normal in PIL(V) and PSL(V) is normal in PGL(V).
Furthermore

(@) FL(V)/GL(V) = AutK,

(b) PTL(V)/PGL(V)= AutK/InK ,

(© GL(V)/SL(V)=K*.

Proof. Consider th ing ¢ thatsendsa i
« onto its associated automorphism ¢ (), ie. if k is in K and v in V then
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(ko) = k#© v, Then, since k#ePpf = (ko) =(#70 ) = k102D et, § is
a homomorphism. Clearly the kernel of ¢ is GL(V) and, in order to see
that the image is AutK, the student should convince himself that every
automorphism of K can occur in some semi-linear transformation. This
proves ().

From Theorem 2.10 and the isomorphism theorems, PrL(v)/PGL(V)
—(FL(V)/NY(N-GL(VYN)=TL(VYN-GL(V). If we write A=AutK,
then I'L{(V)=A-GL(V), and since N is contained in I'L(V), we have
rL(V)=A-N-GL(V). So TLV)/N-GL(V) =A-N-GL(V)/N-GL(V)
= A/(AnN-GL(V)). But suppose an element « in A is also in N-GL(V);
then if f is the map f: e—ke, for an appropriate k in K*, it follows that
af is a linear transformation. So if a is in K, then (avP? =a(v*#), and this
forces a* =k~ ' ak. So ANN-GL(V) =InK, the inner automorphism group
of K, proving (b).

The last part follows from considering the mapping A—detA,
where 4 is a linear transformation over a field. This is well known to be
a homomorphism, and its kernel is exactly SL(V). Its image is all of K¥,
since the mapping whose matrix (in some basis) has x in the upper left
corner and I's on the rest of the main diagonal, O's elsewhere, has
determinant x. [1

Exercise 2.14. Determine PGL(V)/PSL(V).

Now we can ask for the group-theoretic properties of the various
groups above. In particul: ions of itivity are of i
The first result is easy:

Theorem 2.12. The group PGL(V) (and hence P 'L(V)) is transitive
on the frames of P(V). The subgroup of PGL(V) fixing a frame pointwise
is isomorphic to InK and the subgroup of PT L(V) fixing a frame pointwise
is isomorphic to AutK.

Proof. From Result 1.22 the group GL(V) is transitive on the bases

of V and hence, since by Lemma 2.5 each frame is completely determined
by a basis, PGL(V) is transitive on frames.

If an element of PI"L(V) fixes a frame pointwise then it is induced by
an element of I'L(V) leaving invariant the one-dimensional subspace
spanned by each basis vector associated with the frame. Let E, = <&, --s
Eps1 =4€ns1) Eqra =<K€y + +e,,,) be a frame. Any element of
PTL(V) fixing E;, ..., E,+; must be of the form Xx;e;—Zx¢k;e; where
each k; is in K* and € AutK, and this element fixes E, 4 if and only if

;= k; for all i, j. Let 0(x, k) be the element of PI'L(V) which maps
Zx;e; onto Zx¢ke;. Then O, k) =1 if and only if there is an element h
in K* such that Z xZke; = Zhx;e; for all x; in K. Clearly the only possible
value for h is k and thus 6(o, k) =1 if and only if &= @, where @ is
conjugation by k, i.e. o : x>k~ xk.
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Let G denote the subgroup of PI'L(V) fixing the given frame pointwise,
let H = {0(, k) |a€ AutK, ke K*} and let N = {0, ) |ja =1},

Since N is the subgroup of H which induces the identity on 2(V),
G=H/N. Let ¢ be the mapping from H onto AutK given
by ¢:0( k)—>xw,. Straightforward computation gives 6(a, k) 0(8, h)
= 0(cp, Kh) and thus, since af Wy =aw oy, ¢ is a homomorphism
of H onto AutK. The kernel of ¢ is {0(o,k)|aw,=1}=N and so
AutK ~H/N=G.

Clearly (x, k) is linear if and only if a=1. Repeating the above
argument the mapping 6(1, k)—w, gives a homomorphism from
GL(V)nH onto InK with kernel GL(V)nN, and completes the proof. []

We are now in a position to give a definition of the automorphism group
of a projective geometry of g-dimension one, or more generally, of
isomorphism, anti-isomorphism, correlation etc. We want the theorems
above to be true for g-dimension one, and so we simply define an iso-
morphism from a projective line to another to be a mapping induced by a
semi-linear transformation of the given vector space, and so on. This will
guarantee that the group AutZ(V) is always PrL(V), for all g-
dimensions. For the moment we shall be content with this approach,
but later when we consider the structures induced on a projective line by
its embedding in a projective geometry of higher g-dimension, we will
offer another justification for it.

This justification will be given in the next section. Meanwhile we
study the projective line over a field in more detail. Let V be a two-
dimensional vector space over the field K, so 2 = 2(V) is the line.

A frame (see Exercise 2.9) is any set of three distinct points i 2; let
them be E,, E,, E;, and let V have a basis ¢, and e, such that
E, =<e,), E;=<e;, Ey={e,+e,). A point in 2 is a subspace
(xe, +ye,, where x and y are arbitrary elements of K, not both zero.
If y+0, then we may write {xe; +ye,) =<y ' xe; +e,), and so the
points of 2 can be put in one-to-one correspondence with the elements
of K, excepting for the “extra” point E,, for which we will use the
symbol oo. This is the repi ion of # in pe i i
the points of 2 are coordinatized by the marks of K, plus the one new
symbol co. Notice that if we had used another basis for the same frame,
then it would have been f;=be, for some b in K, and so the point
{xe, + ye,» would have been {xb~" f, + yb* £,), whence the parametric
coordinate for the point would be (yb~*)"*xb™*; this last is equal to
y~1x, sirice we are only considering the case where K is a field. This is
the chief reason that we have restricted ourselves to fields in this part:
we want parametric coordinates to be well-defined, and while it is quite
proper that they should depend on the frame, it is not so useful if they
also depend upon the basis that gives the frame.

Using our definition of Aut? above, we naturally ask: what is the
effect of an element of Aut2 on the elements of 2 written in parametric
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form? An element of Aut2 is induced by a semi-linear transformation,
that is by a mapping that sends a vector xe, + ye, onto (x*a+)*b)e,
+(x*c+ y*d)e,, where the determinant ad—bc+0 and « is in AutK.
The mapping of 2 induced by this semi-linear transformation will be
given as follows: the point k in K corresponds to {ke, + e,), which is sent
to {(k"a+b)e; +(k’c+d)e,), and the parametric coordinate of this
last point is (K*c+d)™'(k*a+b), if k*c+d +0; if k*c+d =0, then its
parametric coordinate is 00. The point co is mapped to ¢! aif ¢ 4 0, and is
fixed if ¢=0. If we make the simple assumption that the inverse of co
is 0, and the inverse of 0 is 0, then we can mtroduce certain other

i abuses of notation really, to give us a useful
form for the group Aut2: for instance, if « is an automorphism, then
0" =00, c- 00 +d=c-00, -0 =00 but (a- ®)(c-00) *=ac”?, and so
on. So we have:

Lemma 2.13. If K is a field and P = 2,(K) is the projective line
over K, then the group Aut? can be represented on the points of 2 in
parametric form by the set of mappings 6(a,b, c,d,a) below: for each o
in AutK and for each choice of @, b, c, d in K such that ad—bc+0,
0(a, b, ¢, d, o) is defined by

k*a+b
kc+d”
The reader should verify that this formula works in all the various
“degenerate” cases.

Lemma 2.14. Using the terminology of Lemma 2.13, the group
PGL(V) of the projective line is given by the mappings of that lemma in
which «=1, and the group PSL(V) of the projective line is given by the
mappings of that lemma in which « =1 and ad —bc is an arbitrary non-
zero square.

Proof. The first part is obvious, since o = 1 for a linear transformation.
For the second, we must ask what “parametric” form is induced by a linear
transformation of determinant one. The matrix

a ¢

b df
of the mapping x—»(ax + b)/(cx +d) has determinant one if and only if
ad—bc =1. But replacing each of 4, b, c, d by a non-zero (but constant)
multnple ta, th, tc, td will not change the mapping, in its parametric form

(hence in its geometric form), but will change the determinant by %
Since ¢ is arbitrary, any (non-zero) square can result. o

Theorem 2.15. Let V be a two dimensional vector space over a field K.
Then the group PSL(V) is two-transitive on the points of P(V) but not in
general three-transitive, while PGL(V) is sharply three-transitive, in every
case.
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Proof. Since K is a field, InK =1 and thus, by Theorem 2.12,
PGL(V) is sharply transitive on frames which is exactly equivalent to
saying that it is sharply three-transitive on points (see Exercise 2.8). To
show PSL(V) is two-transitive we show first that it is transitive: the
mapping x—(ax +b)/(c x +d) sends o onto a/c, and clearly we can choose
ajc to be an arbitrary element of K while keeping ad —bc a square
(If afe=1+0 put b=0 and d=ct so that ad—bc = (ct)?, if a=0 put
d=0,c=1,b=—1)

The subgroup of PSL(V) fixing the point s will be exactly the
subgroup with ¢ = 0;i.e., the group x—(a/d) x + bjd, where the determinant
ad—bc=ad=square. But ad =(a/d)d* whichis a square if and only if
ajd is a square. So the subgroup we are after is the group x—»ax+b,
where a is a non-zero square. In this group 0 is sent onto elements
0-+b=b, where b is arbitrary: that is, this group is transitive on K, i.e.
on the elements of 2(V)\co. Thus PSL(V) is two-transitive.

The stabilizer of the two points co and 0 is now the subgroup of
all mappings x—ax, where a is a non-zero square. The point 1 is sent
onto a, and so, since in general not every element of K* is a square,
PSL(V) is not generally three-transitive. In fact:

Lemma 2.16. Let V be a two dimensional vector space over a JSield K.
Then PSL(V) is three-transitive if and only if PSL(V) = PGL(V), which
is equivalent to demanding that every non-zero element of the field K is a
square.

Exercise 2.15. If K = GF(q) is a finite field and V is a two-dimensional
vector space over K, then show that PSL(V) is three-transitive if and
only if g is even. (Here g is an arbitrary prime-power.)

Exercise 2.16. If p is a prime, K = GF(p') and V is two-dimensional
over K, then show that the orders of PI'L(V), PGL(V) and PSL(V) are
respectively tp!(p™ —1), p'(p* 1), and p'(p? —1)jj, where j=1 or 2
according as p is even or odd.

Exercise 2.17. Suppose K is a field and V is two-dimensional over K.
Show that if X is the subgroup of PSL(V) fixing two points of 2(V), then
there is a one-to-one correspondence between the number of orbits of £
on the remaining points of 2(V) and the index of the subgroup of squares
in the iplicative group of K. Furth Z is semi-regular on each
of these orbits (that is, the orbits other than the two fixed points).

Exercise 2.18. Let ¥ be a vector space of any dimension greater
than one over a field K. Show that if a collineation in PGL(V) fixes three
collinear points iri 2(V) then it fixes all the points of that line.

Exercise 2.19. If V has dimension three over a field K show that any
element of PGL(V) fixing three concurrent lines must fix all the lines
through the common point.
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Exercise 2.20. Show that Exercises 2.18 and 2.19 are both false if we
write P’ L(V) instead of PGL(V)-

For completeness, we ask what of all this treatment of the line is
preserved if K is only a skewfield? In the first place, Aut2 will still be
three-transitive, since the group of semi-linear| (even linear) transformations
is always transitive on bases, hence the group induced by it is transitive
on frames. What of the stabilizer of three points. that is, the subgroup of
Aut 2 fixing some three points?

Exercise 2.21. If K is a skewfield and 2 is a projective line over K
(right or left does not matter) then find the stabilizer of any three points
of 2 in Aut?.

5. The Line in the Plane

We now return for a while to the case where K is an arbitrary
skewfield. Since any 2(V) of g-dimension one can also be thought of a
sub-geometry of a geometry of higher dimension, we may examine the
effect of this “embedding”. For instance, a projective line in a projective
plane will have some structure induced upon it by the surrounding plane.
Also the full group of collineations of the plane has a subgroup
consisting of all those elements which fix the given line, and we can
compare this subgroup with the group PI'L(V) defined above. From now
on whenever we wish to stress the g-dimension n of 2(V) we shall
write 2,(V).

First we speak about a notational difficulty, one which could cause
delicate problems in some situations, but which we can ignore once we
have recognized it. If 2,(V) is a projective plane a given line W in
2,(V) can be thought of as the collection of its points, or as an object in
2, (V) which happens to be incident with certain other objects (the points,
or one-dimensional subspaces). From the first point of view we are perhaps
thinking of 2, (W), which strictly speaking is not the same as the line W
in 2,(V). But it is clear that they both “contain” or are “incident” with
the same set of points: that is, the one-dimensional subspaces of ¥ which
happen to liec in W. We shall not concern ourselves about this difference,
at least not notationally.

If V is a three-dimensional (left or right) vector space over K then
(V) is a projective plane and each two-dimensional subspace of ¥ gives
tise to a line in 2(V). Since all two-dimensional left (say) vector spaces
over K are isomorphic, all these lines are isomorphic. Furthermore there
is an isomorphism induced by a non-singular semi-linear transformation
from any one of them to any other. But we would like more: is there an
automorphism of 2(V) which maps one line onto another, and which
has the same effect as the mapping induced by a semi-linear transforma-
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tion? More precisely: given a semi-linear transformation « from one

two-dimensional subspace to another, is there an element of PI'L(V)

which has the same effect as the mapping induced by a? And conversely,

given an element f of PIL(V) which sends one given line to another,

is there a semi-linear transformation which induces the given element ?
Both questions are easy to answer:

Lemma 2.17. Let W, and W, be two-dimensional subspaces of a three-
dimensional vector space V over K, and let @ be an arbitrary non-singular
semi-linear transformation from Wy to W,. Then there exists a non-singular
semi-linear transformation o* of V which sends Wy to W, such that if w
is a vector in W,, then w*=w"". Hence in particular there is an element of
PI'L(V) which agrees with the mapping o induced by a from the projective
line W, (or 2(W,)) 1o the projective line W, (or 2(W,)).

Proof. We shall show that « can be extended to a non-singular semi-
linear transformation of ¥ in a number of ways. In fact for any e not
in W, and any f not in W,, « can be extended to a non-singular semi-
linear transformation o* sending e onto f. Since V has dimension three
and W,, W, both have dimension two, any vector of V has unique
representations of the form w, +xe and w, +yf where w, € W, w, € W,.
It is now easy to see that the mapping a* defined by (w; + xe)* =wi+x*f,
where ¢ is the automorphism of K iated with @, is a ingular
semi-linear transformation of ¥ which maps W, onto W, and that
wi® = wi for all w, € W;. (Why must we insist that ¢ be the automorphism
associated with &?) 1

A little later we shall give a more precise answer to the first question by
showing that « can always be extended in a certain special way.

Lemma 2.18. Let W, and W, be two-dimensional subspaces of V and
let B be an element of PTL(V) which sends the line W, to the line W,.
Then B is induced by a semi-linear transformation B of V which sends Wy
onto W,.

Proof. Obvious. {]

Corollary. Let W be a line in the projectwe plane P(V). Then the
subgroup A of PI'L(V) which fixes W induces PI'L(W) on W.

Proof. By the two lemmas above every semi-linear transformation
of W (or of 2(W), depending on the point of view) is induced by an element
of PP L(V) fixing W, and conversely. []

The kernel of the representation of 4 on W is the set of elements of
PI'L(V) which fix every point on the line W.In Chapter IV we shall study
such collineations in great detail, and we want to use (without proof) one
of the simplest of their properties. If a collineation fixes all the points of
a line in a projective plane #(¥), then the collineation is called a
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perspectivity, and the line of fixed points is the axis. It is shown
(Theorem 4.9) that for a non-identity perspectivity there must always be a
special point, called the centre, such that all lines passing through this
point are fixed. In addition, there are no fixed objects in 2(V) other than
those already listed; for convenience the identity automorphism is con-
sidered to be a perspectivity with any line as axis and any point as centre.
So the kernel @ of the representation of A4 on W is the group of
perspectivities of (V) which have W as axis and, by the corollary above,
the factor group A/& is isomorphic to PI'L(W). In fact in many ways
it might have been better to have defined Aut?(W) as the factor group
Aj®; certainly it would have been more natural geometrically. The kernel
@ of the representation of A4 on W is never the identity and we shall now
show that perspectivities are abundant in Z,(V).

Lemma 2.19. Let W, and W, be two lines in a projective plane (V)
and X a point not on either line. Then there is a perspectivity with centre X
sending W, to W,..

Proof. Choose a frame for 2(V) as follows: E, =X =<e,), E,
=W,nW,=(e;), E;={e;)=any point on W, (not equal to E,
naturally), and E, = e, +e, +e;) = any point on W, (not equal to E,
orto W,n(E, + Ej)).

Let B be the linear transformation of V defined as follows:
B:xie +x,6;, 4+ x3€3 (X, +x3) € + X3, + X385

[tiseasy to verify that B is non-singular. The line W, is the two-dimensional
subspace of V spanned by e, and ej, so that any arbitrary point of W, is
{x,€;+x3€;). Thus any point of W, other than E, is of the form
{xye, +¢,) Similarly any point of W, other than E, is <e, + Y€ +e3).
If B is the element of PGL(V) induced by B then E4=E, and
(xze,+e3)P = (e, +x,0, +€3), ie. W=W,.

Similar considerations show that B fixes every point on the line
E, +E,; but we want to show that it fixes every line on thé point
X =E,. Since any line is uniquely determined by two of its points,
any line U on X has the form E, + Y, where Y is a point on E, + E;,
and hence has the form Y= (xe,+ ye;). But (xe, +yes)’ =ye, +xe,
+ye; and consequently, since it is a linear combination of e, and
Xe, + yes, (xe, + ye;) lies in the subspace E, + Y= U. Thus, since it
sends Y'to a point on the line U, and sends E, to E,, f fixes the line U. []

The perspectivity exhibited in Lemma 2.19 has the property that its
centre is incident with its axis. This does not follow from the definition
and, in fact, need not have been the case.

Exercise 2.22. With the notation of Lemma 2.19, if K + GF(2) find a
perspectivity & with centre X sending W, onto W, such that X is not
incident with the axis of 5.
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*Exercise 2.23. With the notation of Lemma 2.19 show that there is
unique involutory perspectivity with centre X which interchanges W,
and W,. (Hint: the istic of the dyi kewfield K will
determine whether the centre is incident with the axis.)

The duals of the preceeding lemma and exercises are also true.

*Exercise 2.24. Given two points X, and X, and a line W passing
through neither, show that there is a perspectivity with axis W sending X,
to X, and show that there is a unique involutory perspectivity with
this property.

So far we have been concerned with projective planes 2 (V), where V
is a vector space over a skewfield K. In this case we have had to worry
about whether V was left or right and so could not write #,(K) for
#(V). We shall now look at the situation when K is a field and establish
a stronger property of PSL(V).

Theorem 2.20. If K is a field, then the group PSL(V) is two-transitive
on the points of #(V)= 2,(K)
Proof. The linear transformation B of the proof of Lemma 2.19 has the
following matrix with respect to the basis e,, €, €3 of V:

Since this has determinant one, B is in PSL(V). Given any two lines
of P(V), there is always a point on neither (why?) and so, by Lemma 2.19,
there is an element of PSL(V) which sends the first to the second.
Hence PSL(V) is transitive on lines.

Now let W be a line of 2(V), and consider the group PSL(W), which
by Theorem 2.15 is two-transitive on the points of W. We now show
that every element of PSL(W) can be thought of as an element of
PSL(V) which fixes the line W. If we choose a frame where e, > and (e,>
are points of W, then a matrix

£
c d

which has determinant one acting on the line W, can be thought of as
the restriction of the transformation & which has matrix

ab 0

cd o0

0 0 L]

But this matrix has determinant one and, hence, the transformation «
(which clearly fixes W) belongs to PSL(V).
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Let X and Y be distinct points, and U and Z be another pair of
distinct points. Then we must show that PSL(V) contains an element
sending X onto U and Y onto Z. Since we know that PSL(V)
is transitive on the lines of 2(V) there is a mapping in PSL(V) which
sends the line X + Y onto the line U + Z. Under this mapping, X and Y
go to points X; and Y, , respectively, both of which are on U + Z. But now
there is an element of PSL(U + Z)< PSL(V) which sends X; to U and
Y, to Z, and so the product of the two automorphisms sends X and Y
onto U and Z, respectively. Thus PSL(V) is two-transitive on points. [1

Exercise 2.25. Let V be a three dimensional vector space over field K.
If an element o of PGL (V) induces a perspectivity of 2, (K) whose centre is
on its axis show that a is in PSL(V).

There is an alternate approach to the set of problems, lemmas,
exercises and so on given above. Suppose 2 is a projective plane over a
skewfield, and we consider all the elements of AutZ? which are
perspectivities with incident centre and axis; the subgroup of Aut?
generated by all such elements will be called either the little projective
group or the unimodular group. In view of Exercise 2.25, the little
projective group is a subgroup of PSL(V) in the case that K is a field:
in fact, they are equal, but we do not prove this somewhat tricky result.
However, it is easy to see that the little projective group is always
two-transitive on points, and we sketch a proof here. If A,, B, are
distinct points, and 4,, B, are another pair of distinct points, then let W;
be the line A;+ B;; suppose that W, # W,. Then if we let X be the point
(A, + A)N(B, + B,) (when all the points are distinct), we can use
Lemma 2.19 with the same terminology to show that there is an element
of the little projective group which sends W, to W, in such a way as to
send 4, to A, and B, to B,. The various special cascs are easy to handle,
and in this way we can show that the little projective group is
two-transitive on points.

Exercise 2.26. Let K be a field. Show that PSL(V) is two-transitive
on the lines of 2(V)=2,(K)

We now state, without proof (although the reader might wish to regard
the proof as a difficult exercise) the improvement referred to after the
proof of Lemma 2.17. The mapping « from W, to W,, where W, and W,
are distinct lines of 2 (V), induced by an element of PGL(V) is in fact also
induced by a product of just two perspectivities of 2, (K) (which however
might not Lie in PSL(V) — cf. Exercise 2.20).

In this chapter we have been discussing the projective line over a
field K embedded in the projective plane. We now return for a moment to
the line “in itself”, studying intrinsic definitions of additional structure.
Let 2(V) be a projective line (always over a field), and suppose that
P,, P,, Ps, P, are four points on the line, such that at least the first
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three are distinct. We define the cross-ratio (P, Py; P, P,) to be the
parametric coordinate of Py in the frame given by P,, P,, P5. Later we
give a more general ition of tio but ‘hile we answer the

following obvious question: if we are given an arbitrary four points on a
projective line how do we find their cross ratio?

Theorem 2.21. Suppose Py, Py, P; are three distinct points in P(V)
(where V is a two dimensional vector space over a field K), with parametric
coordinates t,, t,, t in some fixed frame. Then if P, # P, has the parametric
coordinate t,, (ts— 1) (ta—1)

(L= 1) (ts=12)

Proof. We must choose a basis e, e, for V such that P, =<{e;>,
P, ={e,), P;=<¢, +¢,),and thenfind x and ysuchthat P, = (xe; +ye;).
Since (xe, +ye;y =<y 'xe;+e;) it follows that the cross-ratio
r=(P, P; Py, P)=y "' x.

1f no P, coincides with the first point of the given frame then the points
P; can be written P, = {(t;, 1)> in terms of the given basis. We shall assume
this to be the situation and leave the other cases as an exercise.

Let a and b have the property a(t;, 1)+b(tz, 1)=(t3, 1); this is
equivalent to demanding that

(P, Py; Py, Py) =

at,+bt,=t; and a+b=1. )

Multiply the second equation of (1) by and subtract to get
a=(ty—1t,) (t,—1;)""; similarly, we find b=(s —1,) (t,— ;). Now,
if we choose €, =alt,, 1), €, = b(t,, 1) as our basis, we have P; = (e;>,
P, =<e,) and Py = (e +e,). We must now determine x and y so that
P, = {xe; +ye,). It will suffice to solve (te> 1) = xe; +ye,. But this
imoli
rmplies xat, +ybt, =1, and xa+yb=1 @
or

y~'xat, +bt, =y 't, and yixat,+bty=y ', 3
Subtracting the second equation of (3) from the first, we have y™'x
=b(ty—1t)) (&, —t,)""a™ . Substituting the values of a and b above, we
have the result of the theorem. []

Exercise 2.27. Investigate all the cases of Theorem 2.21 when the
given expression is mot well-defined (ie. one of the t; is o0, or Z,
equals t;).

Exercise 2.28. Suppose we are given the coordinates of the P; in some
basis as P, = (x;, ), and we define D;; to be the determinant of the matrix

[x‘ yj
x; v

Then show that (P, P; Ps, Pa)=Dy3D24/DyaDss.
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We can use Theorem 2.21 above to define the cross-ratio r in the
“degenerate” cases that arise if only two of the first three P; are
distinct but P, is not equal to any of P,, P,, P;: thus if P, =P, + P,
then we define r = 1;if P, = P, % P,, then we define r =0;if P, = P; + P,
then we define r =co. We avoid making a definition if as many as three
of the P, are equal.

Exercise 2.29. Let (P,, P,; P, P,) =r be a cross-ratio in a projective
line 2, (K) over a field K. Show that the 24 possible permutations of the
four points P; give only six different cross-ratios and that the values of
these are r, 1 —r, 1/r, 1 —(1/r), 1/(1~7), r/(r— 1). Find the subgroup of
the symmetric group on four symbols which, acting on the four points P;,
fixes the cross-ratio r. (Note that for some values of r the six possible
cross-ratios are not all distinct. Special consideration is needed for those
values of r.)

‘The cross ratio has another simple and valuable property:

Theorem 2.22. Let V and W be vector spaces of dimension two over
the f eld K let B be the mapping from 2(V) onto P (W) induced by a
B from V to W and let ¢ be the
autﬂmorphxsm of K associated with p. Then for any choice of four points
Py, P,, Ps, Py in P(V), no three of them equal, we have:

(Pf, Pf; P§, Pf) = (P,, Py; Py, Py)* .

Proof. We omit the various degenerate cases, since they are all trivial,
and assume in particular that the first three P, are distinct; then their
images are distinct as well. So in each projective line we have a ready-
made frame; let the standard basis for the frame P,, P,, Py in 2(V) be e,,
e,, and define a frame f;, f, of the Pf in P(W) by fi=¢f, i=1,2.
Then if (P, Py; P, P))=r, we know that P, = (re, +e,), and so P‘
=r*fi+f,. Thus (P}, P§; P, P{)=r® by the definition of cross-
ratio.

Coml]ary. Let B be an element of P[‘L(V), where p is induced by a

whose is ¢. For any
choice of By, Py, Py, Py in P(V), (Bf, Pl; Pl, PA)= (B, Ps; Py, Py

Theorem 2.23. Let V and W be vector spaces of dimension two over the
field K, and let B be a one-to-one mapping of the points of P(V) onto the
points of P(W), with the property that there is an automorphism ¢ of K
for which (P{, P§; P§, Pf)=(P,, Py; P, P,)? for all choices of the P, in #(V)
(at least three of them distinct). Then B is induced by a semi-linear
transformation a of V onto W.

Proof. If P, P, Py is a frame for 2 (V) then they are all distinct. Thus,

since B is a one-to-one mapping Pf, P§, P{ are all distinct and hence,
by Exercise 2.8, Pf, P{, P§, is a frame for 2(W). Let  be a semi-linear
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transformation of V onto W which sends the frame Py, P,. P, onto the
frame P, P4, P£, and whose associated automorphism is ¢.

(Clearly such an o exists: there are many linear transformations from

V onto W and the group of Imear transformations of W is three-

itive on its di (see Theorem 2.15). Hence
P,. P,, P; can be mapped onto Pf, pg f by a linear transformation. But
the mapping (x, y)—(x?, y%) is a seml lmear transformation with at least
three fixed vectors and thus any three one dimensional subspaces of W
are fixed by a semi-linear transformation with companion auto-
morphism ¢.)

If X is an arbitrary point of 2(V) with parametric coordinate r in
the P, frame, then by the definition of cross ratio, X? must have
parametric coordinate r in the Pf frame. But by the previous theorem,
X* also has parametric coordinate r* in the P/ frame, and hence
X" =X*; ie. fisinduced by a. []

Corollary. A one-to-one mapping B of the projective line (V) over a
field K onto itself is an element of PTL(V) if and only if there is an
¢ of the underlying field K such that (P{, P§; P{, P§)

=(P, Pz, Py, P,y for all (appropriate) choices of the points P,.

The student may feel that there is nothing very surprising about the
corollary to Theorem 2.23, since it was really built into the definition
of cross-ratio. However it allows us to see clearly the basic role played
by cross-ratio, since it shows that it is something intrinsic to the line
(at least over a field), whose preservation is almost the criterion for a
mapping to be an automorphism. Certainly the elements of PGL(V) are
exactly the mappings of 2, (K)= 2 (V) which preserve cross-ratio, and
this could have served as yet another definition of automorphism, in the
case v.hat K is a field. In many ways this might even have been a more

definition. The tio also plays a special role in the
following (note that part of this result is valid for arbitrary skewfields).

Theorem 2.24 (The theorem of the complete quadrilateral). Ler V be
a three-dimensional left vector space over the skewfield K, let W be a line
in 2(V), and Ay, A,, A, three distinct points on W. Choose any point P
not on W and any point Q on the line A+ P, but Q distinct from both A,
and P. Construct the quadrilateral P, Q, S, T as follows: S=(A,+ P)
(A, +Q), T=(A,+P)n(4; +Q), and let the line S+ T meet W in the
point A,. Then A, is independent of the choice of P and Q; when K is a field,
A, has the property (A, A; A3, Ag)=—1 (see Fig. 3).

Proof. We can choose a frame for 2(V) consisting of 4, A,, P, and Q,
so Ay =<e), A;=<e), P=<es), Q=Cey+e,+es). Then it is easy
to see that A, ={e, +e,), s0 Ay, A,, A, are a frame for W, using the
basis ¢;, e, in the standard manner. Since S is on both A4, +P and
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A] A3 A2 Al.
Fig.3

A, +0, we must have S=<e, +¢3), and similarly we find T= (e, +e3)-
Since (e, —e,) is on both {e;>+ {e,> and on {e; +e3)+{ez+ es),
it follows that A, = e, —e,). This point A, depends only on 4,, 45, 43,
that is, on the frame for the line W. Finally, if K is a field, then the
cross-ratio is —1, as claimed. ]

From the theorem above, the particular cross-ratio —1 has some
special geometric significance; we say that A, is the harmonic conjugate
of A, with respect to Ay and A, when (Ay, Ay; As, Ag)=—1. This
definition is only valid for a field, but in light of Theorem 2.24 we could
even define a harmonic conjugate in the case of a skewfield, and in fact
most of the properties that are interesting about harmonic conjugates
are also valid in that case: but often their proofs are slightly different.
So in what follows, in all references to harmonic conjugate we shall be
assuming that we are working over a field.

Exercise 2.30. If A, is the harmonic conjugate of A5 with respect to
A, and A,, then show that A; is the harmonic conjugate of 4, with
respect to 4, and A, (so we may speak of Ay and A, as being harmonic
conjugates with respect to A; and 4,). Are there any other pairs among
the A; which are harmonic conjugates with respect to the complementary
pair?

Now we note that if K has characteristic two a peculiar thing will
happen. The harmonic conjugate of 45 with respect to A, and A, will be
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the point A, in the frame A;, A,, A3 whose parametric coordinate is
+1=—1. But this is Aj itself, so every point is its own harmonic
conjugate with respect to any other pair — and nothing else can happen.
(The reader should draw another diagram for Theorem 2.24 in this case.)
Conversely, if the characteristic is not two, then —1+ +1. and s0 A, is
never equal to A;.

Theorem 2.25. Let A and B be distinct points in the projective line 2(V)
over a field K of characteristic not two. Then the points X and Y are
harmonic conjugates with respect to A and B if and only if there is an
element of order two in PGL(V) which fixes A and B and interchanges X
and Y.

Proowhoose a frame A, B, X for (V). Then Y is the harmonic
conjugate of X if and only if Y has parametric coordinate — 1in this frame.
But any element of PGL(V) fixing A=oco and B=0 has the form
x— % so that the unique involution fixing 4 and B is «:x——x.
Since this interchanges the points with parameters +1 and —1, Y is the
harmonic conjugate of X if and only if « interchanges Xand Y. 0

Exercise 2.31. Let K be a skewfield of characteristic two, V a two-
dimensional left vector space over K. Show that no element of PGL(V)
which fixes two points can also have order two.

Hence we could have phrased Theorem 2.25 without restriction on
characteristic.

6. Polarities

In this section we shall study correlations and polarities and certain
distinguished subsets of points and lines associated with them. We
begin by proving a result which is very similar to the fundamental
theorem for collineations (Corollary to Theorem 2.8).

“Theorem 2.26. Let V be a left vector space of dimension three over a
skewfield K, and let a, and ay. be the annihilator mappings from P(V)
to P(V') and from P(V') to P(V), respectively. If B is any correlation of
P(V) then there is a semi-linear transformation 8 from V to V' such that
B=0ay.

Proof. Since § is an anti-isomorphism from 2(V) onto itself, the
product Ba, is an isomorphism from 2(V) to P(V'). If we put 6= Bay
then Oay. = Bayay. = p. The corollary to Theorem 2.9 now completes the
proof.
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For the remainder of this section we shall simplify matters by
considering vector spaces V over a field K. In this case V is uniquely
determined by its dimension and the field K.

There is an alternative way of considering Theorem 2.26. Once we
have chosen a basis for V then 6 maps the points and lines of 2(V)
onto the points and lines, respectively, of 2(V") in the “standard”
manner. Using the homogeneous coordinates of Section 1V, we may
“dispense” with the mapping ay- in the following way. 1f a point of 2(V")
has given homogeneous coordinates then we identify that point with the
line of 2(V) which has the same homogeneous coordinates. We then
simply say that B is the mapping which sends the points and lines of (V)
onto the lines and points of 2(V), by the rule given by 0. From the
discussion in Section 4 of Chapter 1 we can choose a canonical basis
for V' in terms of the one already chosen for V. Having done this, 0 has
the form

=A@y forallvinV )

where A is some matrix, and ¢ is an automorphism of K, and hence of
(V) in the given basis.

The expression (1) gives the effect of § on the points of (V) and it is
now natural to try to determine its action on the lines. Since the lines of
(V) are merely the points of Z(V’) we do this by considering B as a
mapping from the points of 2(V) to the points of 2(V). Repeating the
above argument B is induced by the mapping ¥ where

()*=v*B forallv'in V’ )

and B is some matrix and ¢ is the same automorphism of K (why?).
Since the correlation B preserves incidence, its action on the points of
2 (V) must determine its action on the lines. The point v} is on the line
(w'y if and only if ow’ = 0. But v being on w’ implies (W)’ is on v”. Thus
we have

if ow=0 then w?BA@?) =0. 3)

Transposing the second half of (3) and putting C =(4'BY™" (recall
that we denote the transpose of a matrix S by '), we have

if ow'=0 then oCw =0. %)

From (4) it follows that any vector which annihilates v also annihilates
»C. Thus (o) = (vC) for all v and so, by Result 1.24, C=kI where k
is a field clement and I is the identity. Thus A'B' =k*I. But (k*Iy = k*I
so that A'B’ =k*I = (4'BY = BA which gives (k!)*B=A4"". But since
hI induces the identity on (V) for any h in K, the matrices B and
(k™%)*B induce the same mapping of (V) and so either one may be
used in (2).
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Thus we have proved:

‘Theorem 2.27. Let V be a vector space of dimension three over a field K.
Using homogeneous coordinates and any fixed basis for V a correlation f
can be represented as follows,

[ ROSREICYH
WP AT
where ¢ is some automorphism of K and A is a non-singular matrix. []

Now when is f3 a polarity? We apply B twice, using the formula
of Theorem 2.27, and find that (v)P = (v (A')* A™*). If this last is to
equal (v) for all subspaces <v) of ¥, then clearly the semi-linear
transformation v—v?" (A% 4™ " must induce the identity automorphism
of #(V). By Result 1.24 the required conditions are ¢ =1 and (4)* A"
=kI, where k is some element in K. Thus we have established the first
claim of the following theorem.

‘Theorem 2.28. Let § be a polarity of 2(V). Then in the notation of
Theorem 2.27, ¢* =1 and (A)* =kA for some k in K. If ¢=1 then
k=1, whileif ¢+ 1 then kk® =1.

Proof. We need only prove the last sentence. But if (4')* =k A then,
since M'¢=(M?Y for any matrix M, ([(4" )"] )* = (4?")" = A on the one
hand while ([(4)°])? is also equal to ((kAY)® = (kA')* = k*(A)* = kKA.
Hence k®k=1.1f ¢ =1 then k?=1and so k=+1. Butif k=—1 then A
is a skew symmetric matrix and so, since any three by three skew
symmetric matrix is singular (see for example [1]), this case does not arise
from a polarity. If ¢ =1 and k=1 then A is symmetric and this can
certainly occur. [}

Clearly replacing 4 by m4, for any m in K*, does not affect the
geometrical mapping  of Theorem 2.27. In fact although replacing A
by mA has the effect of changing the image of any given basis of V it
does not alter the image of any frame in 2(V). This simple obervation
gives an immediate improvement of Theorem 2.28.

Theorem 2.29. Let V be a vector space of dimension three over a field
K. If B is a polarity of P(V) then, in any frame of ?(V), p can be
represented in the form of Theorem 2.27 where A satisfies (A')* = A.

Proof. Suppose A is a matrix with the property A'*=kA where
kk®=1. If we let B=mA, then B'® =m®A'"®=m*kA =m*m ' kB. So
the problem is to choose m so that m®k=m. If k+—1, let m=1+k,
so mPk=(1+Kk?k=k+k-k?=k+1=m. If k=—1, then we can choose
first an element t such that B=tA has the property.B'#=kB, where
k+—1:for B¢=1*(—A)=—1%t"'B, and if —t¥t'=—1foralltin K,
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then t® =t for all , and s0 ¢ is the identity. But if ¢ =1 then, by ‘Theorem
228, k= 1. This proves the theorem. [

We now note that the last three theorems are essentially true
for any (V) of arbitrary dimension; the only difference being that,
if V has even dimension, the situation ¢=1, k=—1 can occur. The
proofs given here work for arbitrary dimension, although the word line
must be replaced by hyperplane.

In the projective plane (V) we have two types of polanty to study:
(1) the orthogonal polarity j which can be represented by a symmetric
matrix A and for which ¢ =1, and (2) the unitary or hermitian polarity p
which can be represented by a matrix 4 with the property At=A4,
where ¢ is an involutory automorphism of K. We shall show that the
matrix A for either kind of polarity can, after 2 suitable choice of basis,
be made diagonal, and we will see that other simplifications can be made.
For any polarity § of any projective geometry, we define an absolute
element to be one which is incident with its image under p. For the
projective plane P(V), the point {v) is absolute with respect to the
orthogonal polarity B, with matrix A, if and only if vAY'=0; while if
it is unitary, with matrix A and automorphism ¢, then () is absolute if and
only if pA(v?) =0. Suppose we.write A=(ay), e=(x,,2); then

Lemma 2.30. If A=(a;;) is the matrix for the polarity B then the
point {(x,,2) is absolute if and only if :

6] a";c’+auy’+a,,z2 +2a,xy + 2ay3x2+ 2a,3y2=01n the case
B is orthogonal;

@ aux““+auy‘*"+a,,z‘*"+a,zxy‘+a,,x‘y+a.,xz”
+a3‘ﬂz+az,yz’+a,zy"z=0, in the case B is unitary with auto-
morphism ¢.

Proof. A simple matter of computation which we leave as an
exercise. [l

The Egs. (1) and (2 of Lemma 230 remind us of quadratic and
hermitian forms, which indeed they are. Conversely, given a quadratic
or hermitian form with non-singular matrix (ie. a non-degenerate form)
it is clear how we could construct an orthogonal or unitary polarity from
it, in such a way that the absolute points of the polarity would be
exactly the “solutions” of the given form. We do not phrase this
important fact as a theorem, since we have not given a precise
definition of quadratic and hermitian forms.

Lemma 230 appears to attach special significance to the absolute
points as opposed to the absolute lines. However the following lemmas
shows that each absolute point determines a unique absolute line and
vice versa.

Lemma 2.31. Let i be a polarity of the projective plane P(V)- Then an
absolute line contains exactly one absolute point.



6. Polarities . 9
Proof. Let P and Q be distinct absolute points and suppose that the
line P+ is absolute. Then the lines P* and QF are also absolute. Since
P+Q is absolute, (P+0) = PP Q" is on P+Q. Now P’ contains P
and PPAQP, so either P# = P +(PPQ?) or P=PPnQP, and similarly
cither 0f = Q+(PPNQ’) or Q= PPnQ% 1T PPAQ? is not P or Q, then
PP = P+ (PPQ?) which, since PPnQF is on P+, is the line P+Q.
Similarly Q = P+Q, which implies PP = Q' a contradiction. Thus either
PPAQP =P or PPAQ? =0, but not both. Suppose PPAQP = P; then
Q*=P+Qand 0= (0 = (P + Q) = PP nQ* = P. This is another con-
tradiction and proves the lemma. [J
The same proof gives us:

Corollary 1. Let B be a polarity of the projective plane P(V). Then an
absolute point is on exactly one absolute line.

Corollary 2. If f is a polarity of a projective plane P(V) then p must
have non-absolute elements.

If ABC is a triangle of points in (V) such that, for a given polarity
B, 4% =BC, B*=CA and C* = AB then the triangle ABC is said to be
self-polar with respect to .

Lemma 2.32. If B is a polarity of the projective plane P(V) then there
exists a triangle which is self-polar with respect to B.

Proof. Let X be any non-absolute point of . If ¥ is any non-absolute
point incident with X” then X, Y, XPAYP form a self-polar triangle.
Suppose every point of X* is absolute then, by Lemma 2.31, every point
not on X* is non-absolute. It is now a simple exercise to complete the
proof of Lemma 2.32. a

As a result of Lemma 2.32 we can now se¢ how to choosea basis of V'so
that the matrix representing f in the expression of Theorem 227 is
diagonal.

“Theorem 2.33. Let V be a vector space of dimension three over a field K,
and let P be a polarity of the projective plane P(V). Then there is a basis
of V such that B can be represented in the form of Theorem 2.27 where A
is diagonal and satisfies A'® = A.

Proof. As a result of Theorem 2.29 we need only prove the claim that
we can choose a basis to make A diagonal. Let E,, E;, Es be the vertices
of a self-polar triangle of § and choose a basis of V so that, relative to this
basis, E; =<(1,0,0), E»=<(0,1,0), E3=<0,0,1). Then, clearly,
Ey+ E3={(1,0,0), Es+E;=<(0,1,0)> and E, + E,=<(0,0,1)). The
theorem now follows by substituting <(1,0, 0))*=<(1,0,0)), {0, 1,0)°

=¢(0,1,0) and ((0,0,1)># =(0,0,1)> in the expression of Theorem 2.27. [1
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7. Conics

For various reasons, some of which will become evident as we go along,
geometries over fields with istic two cause id extra
trouble when dealing with orthogonal polarities, and so we shall often
exclude them from our treatment. (But see the appendix to this chapter.)
First, if € is the set of absolute points of an orthogonal polarity and if
the characteristic # 2, then € is called a conic. Our first aim is to study
these m some little detail, and whenever we refer to a conic in the
g, it will be d that the is not two.

Lemma 2.34. Let € be a conic with matrix A. Then any line of 2(V)
meets € in at most two points

Proof. An arbitrary point on the line joining (v} and {(w) is of the
form {xv+ yw) and such a point is on € if and only if

(xv+yw) Alxv+yw) =0. 1)

The left hand side of (1) multiplies out to x*(vAv)+xy(vAw)
+yx(wAv)+y*(wAw). But since it is a field element (or one-by-one
matrix), wAv' =(w Av') =vA'w which, by the symmetry of A. is vAw'
Thus (1) becomes

x2(vAV)+2xy(0AW)+ )y (wAw)=0. @

Now y=0 is a solution of (2) if and only if vAv' =0, which is
equivalent to saying that {v) is on €. If there is a solution y 0, then we
may re-write (2) as

(/Y (0 AV) +2(x/5) (0 AW) +wAw =0. 3)

If vAv' 0, then (3) has at most two solutions, and since y=0 is
not a solution, the line meets ¢ at most twice. (Note that it is only the
ratio of x to y that concerns us, since {xv+yw) ={kxv+kyw)) If
v Av' =0, then besides y =0, (3) has only one other solution, so long as it is
really then a linear equation. But could we have vAv' =vAw' =wAw' =0,
so that the entire line (v + {w) is in ¥? Consider the points (v and {w);
since they are distinct, so are their images under p, that is, {(4¢) and
{Aw'>. But from v Aw =0, we have as above that wAv' =0, and so the
points {v)> and {(w) are on {Av’) and on {Aw’). This contradicts
Theorem 2.2, and proves the lemma. (Alternatively we could appeal to
Lemma231) [

Eq. (2) in the proof of the last lemma is often called Joachimsthal's
ratio equation or the J-ratio equation.

Lemma 2.35. A line meets € in exactly one point if and only if the line
is absolute.

Proof. Suppose <v) is absolute, so that vAv'=0. Then certainly
{v) is on the line (A v, so the absolute line {Av") meets ¥ at least once.
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But, by Lemma 2.32, any absolute line contains exactly one absolute point.
Thus for any v in V such that (v is absolute, i.e. is a point of &, the line
{AV') is absolute and meets % just once.

Suppose a line (v} +<{w) meets € just once, in the point {v). Then
vAv' =0, and the J-ratio equation has only one solution; but the J-ratio
equation, in the case v A" =0, becomes:

2xy(@AW)+y (wAw) =0,

which simplifies to: y=0 or 2(x/)) (tAw)+(wAw)=0. But the
latter of these possibilities must not lead to a new solution, and the
only way this can be avoided is that the coefficient of (x/y) is zero.
So vAw =0 which means that w Av' =0, and so both {v) and {w) are
on the line {Av’). Hence {Av') =<v) + (w), and the line is absolute. []

Corollary 1. If a conic is not empty then its points are in one-to-one
correspondence with the points on a line.

Corollary 2. In a finite projective plane #,(q) a conic is either empty
or has g+ 1 points.

Proof. Corollary 2 will be an immediate consequence of Corollary 1
and Exercise 2.11. If P is on a conic % which is associated with a
polarity § then P is an absolute point whose image contains no other
point of €. Since the other lines through P cannot be absolute they must
contain another point of €. Hence by Lemma 2.34 any other line through P
contains exactly one other point on %. But this means that the points of ¥
are in one-to-one correspondence with the lines through P and, as P was
an arbitrary point of €, proves the first corollary. []

Exercise 2.32. Show that an absolute line of an orthogonal polarity
must have the form {4v") for some absolute point {v).

*Exercise 2.33. Let § be an orthogonal polarity in a projective plane
2P (V) over a field of characteristic two. Show that if § has at least two
absolute points then they form the points of a line.

Given a conic %, the absolute lines (of the polarity) are sometimes
called tangent lines to &, since they have the property of containing only
one point of the conic.

It is possible for a conic ¢ to be empty. For example, if the polarity §
has for its matrix the identity I, and if the underlying field is the field
of reals, or rationals, then the Eq. (1) of Lemma 230 becomes
x*+y? 4 2% =0, and the only solution is x = y = z = 0. This gives no point
in 2(V), and so the conic associated with § is empty.

But suppose € is not empty, and let X and Z be two of its points (see
Corollary 1 to Lemma 2.35). Choose a frame for 22( ¥) as follows: its first
point is X, its second is ¥ =(X +2)F, its third is Z, -and its fourth is
some point J on the conic. Using homogeneous coordinates we have:
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X=(1,0,0), Z=<(0,01> and so X+Z=<(0,1,00); hence
y = (0, 1,0)) is the image of (0, 1,0)> under B, while finally J = (1, 1, 1)
is a point on €. Let A be the matrix for €, and write A =(a;), not
forgetting that 4 is symmetric. Then since X is on €, we have

a;,; =0.
While the fact that Z is on ¢ forces:
a33=0.
The image of ((0,1.0) under f is <AQ,1,0)>= {(ay2, 220 832>
=¢(0,1,0)), and so:
ap=03,=0.
Finally, {(1,1,1)) is on &, and so
2ay3+a;,=0.

Hence we can choose A to be the matrix:

0 0 -1
A=| 0 2 0O}

-1 0 0
Theorem 2.36. Let € be a non-empty conic in a projective plane 2(V).
Then a basis for V can be chosen so that the matrix A for € has the form
above, and the points of € are the points {(x, y, 2)) satisfying y* =xz. [I
Corollary. If ¢, and %, are two non-empty conics in a projective plane

P(V), then there is an element of PGL(V) which maps 6, onto €;.

Proof. We have seen that the frame determined the special form for 4
above, and thus, since PGL(V) is transitive on the frames of 2(V), we can

map the “right” frame for ¢, onto that for %, by an element of PGL(V).
This must map %, onto ¢,. [

Thus we have proved

Two conics, or indeed any two subsets of points, ©, and €, are said to
be equivalent if there is a collineation a of 2(V) with %; =%,. Thus
the corollary to Theorem 2.36 says that any two non-empty conics in a
projective plane are equivalent.

Now we simplify some more. Using the canonical form for € given
above, we see that ¢ consists of the following points: the point
X =<{(1,0,0)) and points of the form (%, 1)) for any y in K. We may
then identify the points of the conic with the symbols of the underlying
field K, plus a new symbol co as follows: y is identified with <% 3, 1,
and o is identified with (1,0,0). These are the parametric coordinates
of the non-empty conic €.
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The natural next question might be: what are the elements of PGL(V)
(or of Aut2(V)) which fix a given conic? With this in mind we set the
following exercise.

Exercise 2.34. Let f be an arbitrary orthogonal polarity of 2(V),
whose set @ of absolute points is not empty. If o is a element of Aut2(V)
show that «ff = Ba if and only if ¢*=%.

The subgroup of PGL(V) fixing a non-empty conic % will be called the
orthogonal group; since all such non-empty conics are equivalent, any
two orthogonal groups are conjugate in PGL(V) and so we need not refer
to any particular conic in the definition. (In the Light of Exercise 2.34, we
could have defined the orthogonal group as the set of elements in
PGL(V) commuting with B; this would also serve as a definition for the
orthogonal group of an empty conic.)

Theorem 2.37. Let € be a non-empty conic in the projective plane
P(V), with a frame chosen to represent % in parametric form. Then the
orthogonal group (for €) is triply transitive on the points of ¢, is
Jaithfully represented on € and, in the parametric coordinates, induces the
group of permutations:
ay+b
cy+d’

y- where ad —bc+0.

Thus the orthogonal group of a non-empty conic is isomorphic to the group
PGL(W), where W is a two-dimensional vector space over the same field
asV.

Proof. We first show that the mappings given are actually induced by
collineations of 2(V). Consider the matrix:

a* ac c?
B=|2ab ad+bc 2cd|.
b bd a
After a certain amount of straightforward but tedious calculation
the reader will find that
det(B) = (ad —bc)*,
and so B is non-singular as long as ad —bc+0. Let § be the element of
PGL(V) induced by B.
The effect of § on a point y of ¢, that is, on {2y, 1)), can be
computed easily:
(42, 1Y = (a®y* + 2aby +b* acy’ + (ad + be) y + bd, c?y? +2cdy+d?)
= ((ay+b), (ay+b) ey + ), (cy +d)),
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and so:

<023 1> - {((ay + bY@y +b) ey + ), ey +dP)
= ((ay +b)fcy +d), (ay +bflcy +d), 1)y if cy+d+0
={{ay+b)%,0,0)> =((1,0,0)> if cy+d=0.

This proves that  has the desired effect, since the image of any point

(O y.1)y on % is also a point of ¥, and in fact is the point whose
parametric coordinate is (ay + b)/(cy + d) (recall 1/0= o).

and

Thus we have shown that § is a collineation of 2(V) which maps any
point, other that {(1,0,0), of ¢ onto €. The reader should examine the
effect on {(1,0,0)>-

Exercise 2.35. Examine the effect of the mapping f on the point oo,
ie. the point {(1,0,0)>.

Since the group of collineations inducing the given mappings is
triply transitive on the points of € (being the same on % as PGL(W) is
on the line W), it only remains to show that every element in the
orthogonal group induces one of the given mappings on ¢ and that the
group acts faithfully on @. Suppose « is any collineation in the
orthogonal group and that X, Y, Z are any three distinct points of €.
Then, by the triple transitivity, there is a collineation B which induces
one of the given mappings on % such that X*=X?, Y*=Y’, z°=Z".
Thus B! is an element in the orthogonal group fixing X, Y, Z. The

llowing i exercise now letes the proof of the theorem.

Exercise 2.36. Show that the identity is the only collineation in the
orthogonal group which fixes three distinct points of a non-empty conicin
a projective plane (V). (Hint: use Theorem 2.12) []

The theorem above justifies the attitude that the conic (at least a
non-empty one) is somehow “like” the line; the subgroups of PGL(V)
induced on each are not only abstractly isomorphic, they even act
isomorphically as permutation groups. In fact, the line and the (non-
empty) conic share other interesting properties, some of which we can
give here. We can define the cross-ratio of four points on a conic, as before:
suppose Py, P,, Py are distinct, then (P, P; Ps, Py) is the parametric
coordinate of P, in the system for which P, P,, P; are respectively 0,0,
and 1. The harmonic conjugate of P, with respect to P, and P, is that
point X for which (P,, P,; P, X)=—1, and naturally all the theorems
and results about other pairs among Py, P,, P;, X being harmoni¢
conjugates, as proved for the line, carry over immediately. Also we have,
in precisely the same way as we had for the line:

Lemma 2.38. Let P,, P,, P; be three distinct points on a conic 6.
Then Py and X are harmonic conjugates with respect to P, and P, if and
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only if there is an involutory collineation in the orthogonal group of
€ which fixes Py and P,, and interchanges Py and X.

We can prove something interesting about the element of order two
that occurs in Lemma 2.38. Since it fixes the points P, and P,, it
must fix the tangent lines at those points, and hence must fix the
intersection of these two tangent lines; in fact, it is a perspectivity.

Lemma 2.39. Suppose P, and P, are two distinct points on the conic .
Then there is a unique perspectivity o in PGL(V) which fixes ¢ and
fixes the two points P, and P,. The centre of o is the point V which
is the intersection of the tangent lines at P, and P,, and the axis of «
is the line P, + P,. Finally o has order two.

Proof. We may choose a frame so that P, and P, are oo and 0
respectively; that is, are the points <(1,0,0)> and (0,0, 1)} respectively.
Since any point 4 on the conic € is on a unique tangent line, L say,
any collineation which leaves the conic invariant and fixes 4 must also
fix L. Thus any perspectivity which fixes ¢ and the points P, and P, must
fix the point V.

Looking back to Section 4, or alternatively looking forward to Chap-
ter IV, we see that a non-identity perspectivity can fix at most one point not
on its axis and that, if such a point exists, it must be the centre. Thus any
perspectivity o which fixes € and the points P,, P, must either have centre V'
with axis P, +P, or have centre one of the P, P, say, and have the
tangent line V + P, for its axis. If L is any line through P, other than
V+ P; then L meets the conic in a second point Q of 4. But this means
that any collineation fixing P,, L and ¢ must also fix Q so that the
identity is the only perspectivity which can have centre P; and leave ¢
invariant. Hence the perspectivity o, if it exists, must have centre V and
axis P, + P,. If M is any line through V such that M meets ¢ but is not a
tangent line then M contains exactly two points, R, and R, say, of €.
Since o leaves % and M fixed, « must interchange R, and R, so that o?
is a perspectivity fixing R, and R,. Clearly a® must be a perspectivity with
axis P, + P, and hence, since R, and R, are not on its axis, o is the
identity i.e. « has order two.

We must now show that such a perspectivity exists. To do this we
merely show that the collineation in the orthogonal group which induces
y—>—y on ¢ is the desired perspectivity «. If we construct the matrix B
that induces y— — y, we find:
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A direct computation will show that B induces a collineation o that fixes
every line that passes through ¥ =<(0,1,0)>, and every point on the line
(0, 1,0y). Finally B?=1so that a is of order 2. [I

Exercise 2.37. Decide what the conic analogue should be of the theo-
rem of the complete quadrilateral (Theorem 2.24), and see if it is true.

A final analogue with the line isa theorem similar to Pappus’ theorem:

Theorem 2.40 (Pascal’s theorem). Let Py, P2, Py, Q1 02 Qs be six
distinct points on a conic %, and construct the points Ry =(Ps+ Q,)
AP, 405 Ry=(Pi+0)n(Pa+01), Ry=(R +0) (P + Q). Then
Ry, Ry, Ry are collinear.

Exercise 2.38. Prove Theorem 2.40. (See Fig.4) 0

In fact, had we considered conics over skewfields, instead of fields,
we could have proved a theorem just Tike Theorem 2.6: K is commutative
if and only if the three points R; in Theorem 2.40 are collinear, where ¢
is some fixed conic. This is really the better form of Pascal’s theorem.
Finally we note.

Theorem 2.41. If K is a finite fleld then all conics in 2,(K) are
non-empty.

Proof. We know that by coordinatizing with three points Ey, Ez, E3
ofaself-polar triangle, the conic’s A has diagonal form, say A = diag(4, b, o),
and so {(xe, +ye, +ze3)) is in € if and only if ax?+by*+cz*=0
(see Theorem 2.33). Clearly we may assume a = 1 and then either both of b
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and ¢ are non-squares, or at least one of them, b say, is a square. In the
latter case, let b=d? and so we may write the equation of the conic as

X2 4+(dyP +c2?=0.

By Result 1.4 every element of a finite field is a sum of two squares, and
hence for every z, the equation x2 +(dy)? = —cz* has solutions for x
and y.

Suppose instead that both b and c are non-squares. If p+0is a fixed
non-square then, since the squares form a subgroup of index 2 in K*,
there are elements d and e in K such that b=d*p, c=€*p. so our
equation becomes

X4 (@) +e2) =0.

But the same argument tells us that for every x in K, there exist solutions
y and z for (dy)* +lezP=—xYp. 0

8. Unitals

Now we pass on to unitary polarities, about which we shall have
somewhat less to say, since not so much is known about them, and many of
the known results lie rather deeper than the results about conics. We
do not make any restrictions on the characteristic of K, and the structure
that we want to consider is that made up of the absolute points and the
non-absolute lines, which we shall call a unital.

To investigate unitals, we need some lemmas about the different sort
of equations that arise there. First let us suppose that K is a field with an
involutory automorphism ¢, and let F be the set of elements in K fixed by ¢.
Then the degree of K over F is necessarily two (see Result 1.6). We will
write x! ¢ for x- x*. Let N be the subset of K of all elements n such that
nl*% =1, For example if F is a subfield of the reals and d is an element
of F which has no square-root in F, then K can be the subfield of the
complex numbers consisting of all elements of the form x+ y[ﬁi,
where x and y range over F. The automorphism ¢ has the form
x+ y[/-d)”=x— y}/d, and N consists of all elements x+ y]/;i such that
x2—d, . (The reader should verify all these remarks, and should
also convince himself that, if K +GF(), N is not the whole of K*)

The set N is important in establishing the properties of unitals,
and we now prove that N is always non-trivial.

Lemma 2.42. (a) Let ¢ be an involutory automorphism of a field K
and let N = {ne K|n'*¢=1}. Then |N|> 1.

(b) Let F=GF(q) and K=GF(g®) so that K has a (unique)
involutory automorphism ¢ given by x* =x% Then N consists of the g+1
elements of K which are (q— 1)-st powers.
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Proof. (a) Since ¢ =+ 1 there is an element k of K with k®=k. But
(k1P = (kO kel =k Ok = 1

(b) Since K is a cyclic group of order g*—1, this part is a trivial
application of the theory of cyclic groups. [

Lemma 2.43. Let K be a field with an involutory automorphism ¢ and let
F be the set of elements fixed by ¢. For any a+0 in K the equation
x'*®=a can only have solutions if a is in F, in which case if it has
solutions then the set of solutions is a coset of N in the multiplicative
group of K*.

Proof. If x' *¢ = a, then clearly a®=x**% =x'*¢=gq, s0 a must be
in F. Suppose the equation has solutions, let x be one of them and let n
be any element of N. Then (xn)! *¢=x'*¢n'*¢ =g, 50 xn is a solution.
Conversely, if x and y are solutions, then (y/x)! *¢=)'*¢/x'*¢=afa=1,
s0 y/x=misin N, hence y=xm.

Lemma 2.44. Let a, b, ¢ be elements of K, where a, ¢ are in F and
a#+0. The equation

X *Pa+x?b+xb?+c=0 )

has solutions only if b**® —ac=d 1s in F. The number of solutions of (x)
is zero if w**=d has no solutions, it is one if d=0, and the set of
solutions is of the form rN +s for some r, s€ F, r+0, if w'**=d has
solutions.

Proof. We divide (+) through by a and use the “factorization”
(x+bfa)' *# = (x + bja) (x + bja)’ = (x + bja) (x* + b¥/a®) = x'**+x*bja
+xb®/a® +b**¢/a'**, plus the fact that a=a? to give:

(x+bja)' +* —(bfa)! "¢+ cfa=0. )
Finally since a = a'*¢, we can rewrite (1) as
(x+bja) ¢ =" **—ag)fa*?,

which proves the lemma. []

Lemma 2.45. An equation of the form (¥) of Lemma 244 is satisfied
Jor all x in K if and only if a=b=c=0, or if K=GF(4).

Proof. Certainly (x) is satisfied for all x if all the coefficients are zero.
Conversely, if all x satisfy (x), then we must have =0 from Lemma 2.44,
since N cannot include all the elements of K* if K+ GF(4). Putting
x=0 in (), we find that c=0 as well. Now if we let x=1, we have:
b+b*=0, or b* = — b, and so for all x+0, (+) tells us that x*b—xb =0.
Thus if b0, then x®=x for all x, which implies ¢ =1, a contradiction.
We leave the case K = GF(4) as a simple exercise. []
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Now suppose we return to our unitary situation. Let % be the unital
associated with a unitary polarity which has matrix A and associated
involutory automorphism ¢. By Theorem 2.29 we assume A'¢ = A. If (v}
and {(w) are two dislin{poin(s in the plane, then the line v} +<w)
meets the unital % in those points {xv+ yw) which satisfy:

XAV +xPy(w AV )+ x P AW) + Y W AW =0.  (JU)

If we write a=vAv'?%, b=wAv? c=wAw?® then we note that
b =(wAv 4 =w? A% = (W A®v) (since the matrix in question is
one-by-one), and so b*=vAw'%. By a similar calculation, we see that a
and c are fixed by ¢. Hence they are in F, and so (JU) can be written
x'*®a+ x?yb+ xy*b?® + y *¢¢ = 0. From this we can establish:

Lemma 2.46. There is no line all of whose points lie in %.

Proof. If such a line exists, then in (JU) all values of x and y are
solutions, and so, putting y = 1, we see that an equation of the form (%)
of Lemma 244 is satisfied for all x, which implies o=b=c=0 by
Lemma 245, if K +GF(4). But then (o) is on (Aw'*), the image of
<w) under the polarity, and {w} is on the same line, so the line [OEXC
is the line (A w’#. But similarly we show that it is the line {Av'#}, which is
a contradiction (compare the proof of Lemma 2.34). (The student should
analyze the case K=GF(4)) []

We now study lines which contain points of the unital. If a line is
absolute, then it meets % just once (Lemma 2.31), so let us assume that
the line (v + (w) is not absolute. The point {v) is in % if and only if
y=0is a solution of (JU), which is to say that a=0; are there any other
solutions in this case? Since it is not possible for the entire linc in question
to lie in %, we may choose our points {v) and {w) in such a way that
{w) is not a point of %, which means that ¢+ 0 in (JU). So (JU) can be
writtenas y' *¢c + y*xb? + y x*b = 0. But this is an equation of the type (x)
if we use the variable z= y/x, and has d=b'*%. So by Lemma 2.44 it has

lutions which are in t cor d with the elements of N
(why is d 4 07). Note that the solution y =0, which we already knew about,
is included in this set of solutions for y/x.

Now if we suppose that y=0 is not a solution, we may divide (JU)
through immediately by y***, obtaining again an equation of type (%)
in the variable x/y. This may have no solutions, one solution, or its

lutions may be in oY cor d with the elements of N.
‘We now show that there cannot be exactly one solution.

Lemma 2.47. If a line meets % just once then it is absolute (and is the
image of the point where it meets U).

Proof. Supposing that a line {v) +(w) meets % in one point only,
Wwe may assume it is the point {w) and hence ¢ =0 in (JU). Thus (JU) has
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only the solution x=0. But the form of (JU) now is
(o)t Hea+ (x/*b+ (<) =0,

and it is an equation of the type (») of Lemma 2.44, satisfying the
conditions of that lemma (for a=0 would imply that {v) was also a
point of %, a contradiction). The element d of Lemma 244 is b *¢, and
since () can only have one solution in this case, we must have d=0,
or in other words b=0. But then vAw'®=0; and so both (v) and (w)
are on the line (Aw'®). Hence (Aw'®> must be the line (o) +<{w);
i.. the given line is absolute. [

Theorem 2.48. Let % be a unital. Then:

(i) a line meets U exactly once if and only if the line is absolute;

(ii) a non-absolute line either meets @ not at all, or meets it in a set
of points which is in one-to-one correspondence with the elements of N.
Using the notation that precedes the theorem, a non-absolute line
(o) +{w) meets the unital if and only if there is a solution to

2= (wAv'?Y) @AW —(vAV'?) (wAW .

The theorem has all been proved; the last part is simply an expression
of the element d of (x) and an application of Lemma 2.44 with the values
of a, b, ¢ from (JU) substituted in the expression ford 1

Exercise 2.39. Show that Theorem 2.48 could be sharpened to read:
the line (¥) + (W) is absolute if and only if

(wAv'?) (AW ?)—(Av?) (wAW %) =0.

Hence if we call the left hand side of this expression the discriminant of
the line, and say that an element x of K is a norm if z' +¢ = x for some z
in K, then the theorem can read:
(i) a line is absolute if and only if its discrimmnant is zero
(ii) a line fails to meet  if and only if its discriminant is not a norm
(iii) a line meets @ in a set of points in one-to-one correspondence
with N if and only if its discriminant is a non-zero norm.

Corollary. If K=GF(g?) is a finite field then every non-absolute line
meets the non-empty unital % in g +1 points.

Proof. In a finite field K=GF(g?), F=GF(@) and thus, since every
element of F is a norm, all non-absolute lines meet % (see the exercise
above, or Theorem 2.48) in |V points. But the number of elements in N
is the number of solutions of x#** =1, and since ¢ + 1 divides g* —1, the
order of the cyclic multiplicative group of K, this equation has exactly
g +1 solutions. []

*Exercise 2.40. If K is finite, show that all unitals are non-empty.
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Exercise 2.41. Let K = GF(g?). Then show that the number of points
in a unital % is g° +1, the number of lines is g*(¢” — g+ 1), and every
point of % is on ¢* lines of %.

Exercise 2.42. Using the terminology of Exercise 2.39 show that the
discriminant of a line {v)+(w) can only vary by a non-zero norm
factor for different choices of the points (v} and {w).

Let % be a non-empty unital in the projective plane P =2 (K),
and let X, Z, J be any three non-collinear points of %. If B is the
polarity defining %, then let Y be the intersection of X and ZF.
Since the lines X? and Z* are both absolute, neither of them contains J
so we may choose X, Y, Z, J as a frame for 2. Thus we may write
X ={(1,0,00), Y=((0.1,00), Z=X(0,0,1)), J= {(1,1,1)). Imitating
the proof of Theorem 2.36 we find that § can be represented by the

matrix
00 ¢
/ A=\:0 b 0}
¢ 00

where ¢ is the associated automorphism of B, bis an element of its fixed
field F, and b-+c+c?=0. A point P={(x,y,2)) is on % if and only if

by'*P+cx®z+cxz?=0. o

Now if z=0, then y=0, and so x can be taken to be 1; this is the
point X. If z+0. we can assume that z=1, so x and y must satisfy:

byt c?x®4cx=0. @

Suppose x; and x, are solutions of (2) for the same value of y; then
P ex, =—by e =ctxt+exy, 50 (eX—exg)® +(ex —ex) =0.

Let M be the subset of K consisting of all elements k satisfying
k*4+k=0; M is closed under addition. We have shown that cx,
=k +cx;, for an element k in M. Conversely, if x, is a solution of 2)
for a certain value of y, then x, =c 'k+x, is also a solution. for
every kin M.

Theorem 2.49. Let ¢ be any element of K such that c is not in the
set M defined above. Then any non-empty unital in 2,(K) can be chosen
(after the appropriate choice of frame) to consist of the following set
of points: {(1,0,0)) plus all points {(y* ¢+ c~'k, y, 1)) as y ranges over K
and k ranges over M.

Proof. Using the fact that b+c+c?=0, it is easy to see that the
point {31 *¢, y, 1)) satisfies (2). Thus since the discussion before the theo-
rem shows that all points of % have the required form, the theorem is
proved. [
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Corollary. Any two non-empty unitals in 2 are equivalent. o

The subgroup of PGL(V) which fixes %, called the unitary group,
is not represented quite so simply as the orthogonal group. But we can
deduce rather easily some of its properties. Suppose that % is non-empty;
then, by the above corollary, the unitary group is independent of the
unital %. Let I be the unitary group fixing %, where % is non-empty.
We shall show that the subgroup of I" fixing a point Q in % is transitive
on the remaining points of , and hence, since Q was an arbitrary point
of @, the full group I is 2-transitive. Choose % to have the canonical
form of Theorem 249 and choose Q to be the point X =<(1,0,0).
Consider the matrix:

00
S=|s 10
a 1

where a is an arbitrary element of K and s=a*(1+c?c™"). The effect
of this matrix is to fix X and to send the point (y* *¢ +¢” 'k, y, 1) to e
4 e Vk+sy+a'*?, y+a,1). To show that this last point is in @, it is
necessary to show that y' *¢ +c 'k +sy+a'*¢ —(y +a)’ +¢isinc'M.
But this is a matter of straigh ion; upon simplificati
the given expression becomes ¢ 'k +a?c?c ™ y— y*a, and multiplying
by ¢, we have k +a? ¢y —acy®, which, since k is in M, is clearly in M.

So far we have shown that we can map % onto itself by an element
of Iy in such a way that the middle coordinate y can be mapped to any
value y+a. In order to prove that Iy is transitive on the points of #
other than X we must try to “adjust” the first coordinate. But this is
easy. Consider the matrix

ward

1 00
T=|1 0 10
'm0 1

where m is an arbitrary element of M. Clearly T is in Ix. Further-
more T sends the point <('*¢+c 'k y, 1)) onto the point
(A +¢+ ¢ (k+m), y,1)). Thus we can fix the second coordinate and
map the first coordinate onto all other possible values and so we have
proved that I'y is transitive on the points of % other than X; since X is
arbitrary, this that I'is t itive. We can even prove
slightly more:

Theorem 2.50. The group I is two-transitive on the points of U, and
the subgroup I'y,y fixing two points in 4 is isomorphic to the multiplicative
group of K*.
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Proof. If we fix the points ((1,0,0)) and (0,0, 1)), then we must fix
the f-image lines of these two points (since they are the only lines
through the points which contain just one point of %). Hence, we must
fix the intersection of the two lines, which is the point (0, 1,0)>. Now
the only elements of PGL(V) which fix the three points given are
diagonal matrices, and we may assume that the third diagonal entry
is 1 in any such diagonal matrix. So let

a 00
R=|0 d 0
001

be such a matrix. It will send the point (y'*¢+c¢~'k.).1) onto the
point {(ay'*®+ac™'k,dy, 1)) which will be in % if and only if
ay'**tack—d'*¢y1*¢ s in ¢"'M, for all y in K and all k in M
If y=0, this says that ak is in M for all k in M, and hence it is easy to
prove that a must be fixed by ¢. If k=0, then we must have
(a—d'*®)cy'™® in M for all y in K; this condition is equivalent to
insisting that (a—d'*%)c is in M, and hence
(a—d"* P c® 4 (a—d' *)c=0,
(a—d'*9) (*+0=0,
since a—d'*¢ is fixed by ¢. But ¢®+c cannot be zero, otherwise b =0
and the matrix A of the polarity § would be singular, and so a = d'*+¢
Since d is an arbitrary non-zero element of K, it is easy to see that the
set of all such matrices is a group isomorphic to the multiplicative group
of K*
Corollary. If K=GF(q®), then the order of the group I' is
@ +1) @) (g~ 1).
The corollary follows from the fact that I' is two-transitive on
4*+1 points and the stabilizer of two points has order g*—1. []

or

9. Affine Planes

Let 2 =2 (V) be a projective geometry and. W a hyperplane in 2. We
define the affine geometry o/ = ¥ to be the set of objects of 2 which are
not contained in W. In other words, we discard W and all its subspaces.
‘We have already seen (Theorem 2.12) that the collineation group of 2
is transitive on frames from which it is easy to see that it is transitive on
hyperplanes, so there is an obvious isomorphism between 2% and 2,
for any two different hyperplanes W and U. So sometimes we will refer to
of as o (V);if K is a field and V has dimension n+1, then we can also write
,(K)= o/ (V). In any case the g-dii ion of < is the g-di ion of 2.
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The automorphism or collineation group of &, Autd, is the subgroup
of Aut2 which fixes W (where o/ = "), We shall confine our attention to
the affine line of g-dimension one. and the affine plane of g-dimension two.

Let 2 = 2(V) have g-dimension one. Then a hyperplane is justa point,
and so (V) is 2(V) with a point discarded. If we choose parametric
coordinates for Z(V) so that the discarded point is o0, then when K is 2
field we may say that the affine line consists of a set of points in
one-to-one correspondence with the elements of the underlying field K. The
group Auts (V) will be the subgroup of PrL(V) which fixes the
point co.

Theorem 2.51. The group Aut.oZ of the affine line s/ over the field K
is (in parametric form) the group of all mappings

x—kx*+b

of the elements of K, where k and b are arbitrary elements of K, k#0.
and o is an arbitrary automorphism of K. This group has anormal subgroup Ay
consisting of all mappings for which =1, and A, has a normal subgroup
A, consisting of all elements for which o=1 and k= 1. The factor groups
are:
Aut/A, = AutK
and finally: AJAy=(K*. ) the mult-iplicative group of K
A= (K. +) the additive group of K.

Proof. Most of the theorem is obvious, considering the formula for
elements of PI'L(V) given in Section 4, and the subgroup of that group
which fixes co. If (k,b,a) is the element of Autsf/ which sends x to
kx®+b, then it is easy to see that (k,b,a) (m, ¢, )= (mk?, mb® +c, o).
The mapping (k, b, @)~ is thus a homomorphism whose kernel is the
set of mappings (k, b, 1); that is, 4. Now if we map the elements
(k, b, 1) of A, onto k, this is also a homomorphism whose kernel is the set
A of elements (1, b, 1). The images of these two homomorphisms are AutK
?Ixéd (Ig‘, -), as claimed. Finally it is easy to see that A, is isomorphic to

L +)

Corollary. If K is a finite field and o =t (K), then Aut is soluble.

Proof. !-’or any field K, 4, is abelian, so that Aut.s/ is only non-
soluble if either AutK or (K*, -) is non-soluble. But if K is finite both of
these groups are even cyclic. 0

Exercise 2.43. Show that the subgroup 4, in Theorem 2.51 is always
a normal subgroup of Aut.s/.

Exercise 2.44. Show that Aut./ in Theorem 2.51 splits over both Ay
and over 4,.
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Exercise 2.45. Find all the elements of order two in Aut.s/, and for
each one determine its fixed elements.

‘When we want to study the affine plane, we shall find it necessary
to spend more time on the coordinatization. This will have the advantage
of giving us our first really concrete connection between the geometries
studied in this chapter, and the geometries that we feel ourselves familiar
with. Suppose V is a three-dimensional left vector space over the
skewfield K, ?=2(V) and of = o (V)=2". We may choose a frame
for 2 such that its first two points are on W let the frame be
Ey=<e), Ey=<e), Ex=(es), Es=(e+ezten Then since E,
and E, are on W, a frame for W is E,, E, and {e +e3). An
arbitrary point on W has the form <¢; +mey), or is E, itself. A point not
on W has the form {x; e, +X€; +X3€3), where x;:0; hence we may
represent it as {xe; +ye,+e3). A line of 2 is {fia +fra, +f3a3)
where the f; form the basis of V* associated with the ¢;. The line W, in this
form, is {f3), so a line not equal to W “contains™ a vector of the given
form in V where not both a, and a, are zero. If a,+0, then we may
assume it is the identity, and so we have a line ‘which we may represent
as (fim+f;+[ib); its points will be all the points {xe, +ye;+e3)>
such that xm +y+ b=0 together with the point (¢, —me,> on theline W.
On the other hand, if a, =0, then we may assume that a, = 1, so we have
a line {f} + f3b), whose points are E; plus the points { —be, +ye; + €3),
for any y in K. Thus:

Theorem 2.52. Let K be a skewfield and let s be the set of points and
lines constructed as follows: the points of </ are the ordered pairs (x, y)
and the lines are the ordered pairs [m,b] and the symbols [b], with an
incidence relation given by

(x,y) is on [m,b] if and only if y=xm+b

(x,) is on [b] if and only if x=b,

Sor all x, y, m, bin K.
Then o is isomorphic to the affine plane (V) where V is a three-
dimensional left vector space over K.

Proof. It is only necessary to set up correspondences as follows: (x, y)
is the point (xe, +ye, +e3); [m, bl is the line Si(=m+ i+ (=)
[b] is the line {fj + f3(—b)). Then our remarks just before the theorem
provide the rest of the proof. [J

If K is a familiar field, such as the reals, then this representation
of sZ,(K) gives us exactly the object that we have always thought of as
being a familiar plane; in the case of the reals, this is the “blackboard plane”
in which school geometry is done. Thus we can see that our familiar
blackboard plane actually has some sort of natural embedding in a
projective plane, and by continuing the analysis preceding Theorem 2.52,
we can see what this projective plane “is”. The difference between o/ and 2
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is that 2 has an additional line, and a certain set of additional points,
all of which are on the new line. What are these new points? A point
(e, +mey) is on every line (fi (=m)+f3 +f3(—bD. and on no others;
that is, it is on every line of the sort [m, b], for all b. So it is the point
where all the “parallel” lines with slope m (that is, the lines with
equation y = xm -+ b) meet; similarly, E, is on each line [b], and no others,
so it is the point where all the lines of slope co meet. This intuitive
approach explains a very common notation: these new points are so
“far away” that parallel lines meet there. and the line that contains them
all is therefore equally far away. So it is often called the “line at
infinity”, and its points are “points at infinity™; also it has been called the
“ideal line”, and its points “ideal points”. From an affine point of view
these terminologies make sense; but from the point of view of the
projective plane 2 they do not mean much, and anyway, any line
whatsoever could have been chosen as the “line at infinity™" W. So,
from the projective point of view, the line at infinity is nothing special.
Affine geometry has among its several virtues the fact that it resembles the
geometries that we think we know about already, and it is often useful
as an intuitive guide to theorems. But projective geometry is more
homogeneous, there are no special elements, and it has many unifying
features, some of which we explore here. But first note that whereas not
every pair of lines meet in an affine plane, each pair of lines always meet
in a projective plane; we can speak of anti-isomorphisms between
projective geometries, and should not expect to be able to in affine
geometries.

Now we want to investigate the group Auts/ of an affine plane .
Clearly it is the subgroup of Aut# fixing the line W, where &/ =", and
we have already encountered this group before, since it helped us give
one of our alternate definitions of the automorphism group of a
projective line. But when we met the group earlier, we were only
concerned with its action on the line W, so we were not interested in those
elements fixing every element of W. In other words we were able to
ignore the kernel of the representation of (Aut?),, = Aut/ on W. But
from the point of view of &/ we must preserve this kernel. If we call it X,
then we know that Aut.eZ/Z is isomorphic to PI" 'L(W), and that Auts/
splits over 2. Furthermore we know that X consists of the perspectivities
of 2 with axis W. In order to study the structure of Z we really need
some elementary results which will be proved in Chapter IV. But we
can do without these, simply using two facts which we noted, but did
not prove, in an earlier section: namely that if an element fixes all the
points on 2 line (or all the lines on a point) then it is a perspectivity,
and that if it fixes any elements other than its centre or axis or the
lines and points incident with these, then it is the identity.

For each a, b in K. let ¢, , be the mapping of 2 given below:

n

A iv e AvoeSadllxbvaale +(Xa+Xab) e, +xa€2)
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This mapping is induced by a non-singular linear transformation (note
that if we were to write ax; instead of x;a then the mapping would not
be linear, in general). Any point on W, that is either E, or (e, +me;),
is clearly fixed by ¢, ;. and no point off W (that is, with x3+0) is
fixed provided a, b are not both zero. So ¢, , is a perspectivity with axis W
whose centre lies on W.

Lemma 2.53. The set of all the ¢, is a group which is regular on the
points of /.

Proof. Itisimmediate that @, ;¢ ;= Pusc psa-and that §;i =¢_, ;.
So the set of all the ¢, , is certainly a subgroup of AutsZ. To show
transitivity, we note that the point E;={e,) is sent to {ue, +be,+e;>
by @, and so E; can be sent to any point of /. Since ¢ o (ie. the
identity) is the only element in the group fixing E; it follows that the group
isregular. [J

Lemma 2.54. Let o be a perspectivity of 2 whose axis is W and whose
centre lies on W. and let of =P". Then a=¢, , for some a and b

Proof. If =1 then o= ¢, . Suppose o+ 1 and that the effect of o
on Ej is to send it to E§>* which, of course, is (ae, +be, +e;), and
let X be the point on W which is collinear with E; and E{=*. Then if U
is the line X + E5, U%= X*+ E3 = X* + E{=*. But since X is on the axis
of o, X*= X so that U* = U. As we have just noted, the only lines fixed
by « are its axis and the lines through its centre. Thus the centre of «
is X. By the same reasoning, the centre of @, , is X, and so ¢, "
is a perspectivity with axis W which fixes all lines passing through X
and also fixes the point E,. Since X is the centre of ¢, ,0"! and E;
is a fixed point which is not on W we must have ¢, 07" =1, or

o= 0

If we let @ be the subgroup of X consisting of all the @,;, then
we have:

Lemma 2.55. @ is normal in Aut.s/.

Proof. As always we regard Aut#/ as the subgroup of Aut £ fixing the
line W where of = #¥.

Since @ is the set of all perspectivities in Auts/ whose centres
lie on W we merely have to show that conjugating ¢, ; by an element of
Aut o/ gives another perspectivity whose centre is on W. Let 4 be the
centre of ¢, , and let f be any element of Aut.«/; then since A is on W and
W*=W, A% is on W. If L is any line through A? then, using the incidence
preserving property of f, I/~ passes through A. The perspectivity ¢,
fixes every line through its centre A4 and so If '¢es=IF"" which
immediately implies [/ '¢=*f=[#"'#= L Thus f~'¢,,B fixes every
line through A”. But, clearly, B! ¢, , B fixes every point of W so that
B '¢,,Bis in & and @ is normal in AutsZ.



68 I Classical Projective Planes

Corollary. @ is normal in 2. ]

The determination of the factor group Z/@ is slightly more complicated
than one might expect. Since @ is transitive on the points of «, it
follows that Z is also transitive, and so, since the identity is the only
element of Z fixing two points of &, 2 acts as a Frobenius permutation
group on the points of <. Thus, by Result 1.18 Z=&- Zp, where P is
any point of 7. Also since ¢ is regular we have #nZp=1 so that
Z/@ = Zp. Now Zp is just the set of perspectivities in X with centre P, and,
by the transitivity of Z, we may suppose P=Ej.

Lemma 2.56. If P = E;, then Z, is the group of all mappings defined as

follows: for each element a in K, a+0, define a mapping 2, by
Doi Xy €1 +Xp8; +x33) = (X, € + X265+ X38€3) -

Proof. Itis easy enough to see that 4, is a perspectivity with axis Wand
centre E;, and we leave that as an exercise. If there were any more
perspectivities with this property, then the same argument used in
Lemma 2.54 would show that we had a contradiction, since the group of
mappings {2,} is transitive on the points of a line passing through Es,
excepting the point Ej itself and the intersection of the line with
E,+E,. [

Since 4,4, = A,,, the mapping which sends k onto J is an isomorphism
from the multiplicative group of K to Zp. Equally the group & is
isomorphic to the direct product of the additive group of K with
itself.

The preceeding lemmas and discussion are summarized by:

Theorem 2.57. Let V be a three dimensional vector space over a
skewfield K and let s/ =" where ?=2(V) and W is a line of 2.
Then Autsf has a normal subgroup %, and X has a normal subgroup
@ with the following properties:

Autof/E = PIL(W), where W is a two-dimensional subspace of V,

3/ == X, = the multiplicative group of K,

®=the direct product of the additive group of K with itself. [

Exercise 2.46. Determine the subgroup of PGL(V) which fixes W;
ie., find the “linear” part of Aut.s/.

We conclude our investigation into affine planes by seeing what
happens to conics. So from now on we assume that the characteristic
of K is not two, and that K is a field. If ¢ is a (non-empty) conic of
2=2,(K) and if o = 2", then € meets the line W in at most two points.
Thus in &/ we may speak of three sorts of affine conics: the ellipses
which do not meet W, the parabolas which meet it once, and the
hyperbolas which meet it twice. Generally we shall use the same symbol ¢
for the affine as for the projective conic. We already know that all non-
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empty conics are equivalent in 2, in the sense that by proper choice of
basis any conic can be made to have the pm)ecuve form y?=xz, or
alternatively, that given any two non-empty conics, there is an element
of Aut? mapping one to the other. If we define eguivalence between
affine conics in the same way as for the projective case, ie. €, is
equivalent to €, if there is a collineation « in Auts/ with ¢;=%,,
then there must be at least three classes of affine conics, (since if ¢ is 2
conic of 2 and « is in Aut.#/ then the number of points of €N W is equal
to the number of points of $*n W). But the group Aut.s/ is 3-transitive
on W, and so if we have two inequivalent conics of the same sort (that is,
both with the same number of points on W) we may assume that the
two conics meet W in the same set of points. In our construction of
parametric coordinates for a projective conic we saw that if a conic meets
a line twice, we may choose the two points to be {(1,0,0)> and
<(0,01)), and find that the conic can always have the given form
y*=xz. In other words any two conics through the given two points
are equivalent. Similarly, if a conic meets a line once we may take the
line as ¢(0,0, 1)') and then again we find that we can put the conic in the
required form. This proves:

Lemma 2.58. All dffine hyperbolas are equivalent, and all affine
parabolas are equivalent. []

The situation for the ellipse is not so straightforward. If we choose
a self-polar triangle as part of our frame then we have a simple form
for a conic which involves picking out a definite line not meeting it.
However we do not know if this form depends on the chosen frame. To
determine this we first need to know if Auts is transitive on the conics
not meeting W. Before discussing this we set an exercise.

Exercise 2.47. Prove that Aut/ is transitive on the ellipses of <7 if
and only if the orthogonal group of any conic ¢ in 2 is transitive on the
lines not meeting 4.

In fact the situation for ellipses is somewhat different to that for the
other two families of affine conics and the number of equivalence classes
depends on the underlying field K in a rather comphcated way that we
are not prepared to go into. In Ids (e.g. ible to
construct two ellipses that are not equivalent in Aut.eZ, while in others
this cannot happen. In particular the finite fields are of the latter sort.
But first we give an exercise to illustrate the difference the ground field
makes.

Exercise 2.48. Consider the equation x?+2y?>=1 and the equation
—2y*=1. Decide what sort of affine conics they represent over (a)
the field of reals, (b) the field of rationals, *(c) a finite field GF(g).
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To study the question of equivalence of ellipses in finite planes, we
coordinatize the plane 2 in a special way. Suppose Wis a given line and ¢
is a given conic, not meeting W: and let g be the polarity associated with €.
We shall choose a frame Ey, E;. E, E, for 2 such that E,, E,, E; forma
self-polar triangle of € (with W =E, + E,). This gives, for orthogonal
polarities, a stronger form of Theorem 2.33.

Since  is the polarity associated with €, g interchanges the points of ¢
with its tangent lines. Thus, since W contains no point of ¢, there is no
tangent line through W and we choose E, = W¢sothatevery line through
E, meets ¢ either twice or not at all. Now we choose a line through Es
which meets %, hence meets it twice, at X and X, say. The tangent lines
at X and X, are X° and XF, and since the line X + X, passes through Es,
its image under ¢ is on W. Similarly, since X and X; are on the line
X + X, , their image lines pass through (X + X;)% Hence X*° and X{ meet
on W, and their point of intersection is the image of X +X,.

If we put By =(X+X)%, E;=(X+X)nW, then Ef =E +E;,
E§=E, +E;, and E§=E, +E;. So the triangle formed by Ey, E;, s
is self-polar. Finally we choose E, on the line E,+ X, and this can be
done so that X = (e, +e3), in terms of the usual basis that goes with
the frame. This choice of our frame will give us 2 simple equation for 4.

Writing as usual {(x,),2) for {xe, +ye; +zey) etc. we now see
what our choice of frame has done for us. Since (0,0, 1))¢=<(0,0,1)),
we have

a3 =033 =0.

Since (0, 1, 1)) is on the conic, we have
gz = —033-

Since the point X =<(0,1,1)) is sent by ¢ to E +X=X0,1,-1)
we have

a;,=0.
So finally A has the form
a 0 0
A=|0 +b O}
0 0 -b

The equation of the conic is now ax?+by? —bz* =0; clearly we can
assume b= 1, and so we have

Lemma 2.59. If K is a field and % is an ellipse in o =P¥, where
2 =2,(K), then there is a frame for 2 in which E, and E, are on W such
that € has the equation

ax®+y*=1.

(The equation is in affine form.) In addition a must have the property that
- a is not a square.
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Proof. A point {(x, y, 1)) not on Wison ¢ if and only if ax?>+y* =1,
as claimed. Since no point on W is on &, there must be no x and y in K
such that {(x.).0)) is on ¢. But this implies ax?+y? =0 has only the
trivial solution, or @ = —(y/x)? has no solution. so —a is not a square,
as claimed. [

Now consider the situations in which K = GF(g) and —a 1s not a
square. If —1 is a square in K (i.e. g =1 (mod 4)) then « must be a non-
square. while if — 1 is a non-square in K (i.e. ¢=3 (mod 4)), then a must
bea square. We examine the two cases separately. Suppose a is a square,
then (see Exeruse 2.12) we change the frame of P by letting Ef
‘e, >=E,, E§=(e,)=E,, Ef=(es)=Ea, Ef=C(r""e; + e, +¢e3).
The point whose coordinales were (x, y, z) now has coordinates (xr, y, z);
if it satisfied ax?+y? —z% =0 before, now it satisfies x> + y* =0

Suppose a is a non-square; then in terms of a fixed non-square 4,
we can write a=4r? and if we change the frame again, as above, we
find that our conic has (projective) equation £x2 +y* —z2 =0. So:

Theorem 2.60. If K =GF(qg), then in .o/ ,(q) every ellipse is equivalent
1o every other. []

Corollary. In 2,(q) the orthogonal group of the conic € has three
orbits of lines: the tangent lines, the lines meeting € twice, and the lines not
meeting 6.

Proof. Certainly the orthogonal group of € is transitive on tangent
lines, since it is transitive on the points of the conic. Exercise 2.47 implies
that the lines not meeting ¢ form another orbit. Finally, since the group
is doubly transitive on the points of &, it is transitive on the set of lines
meeting € twice. [J

Exercise 2.49. Find the point orbits of the orthogonal group of €,
where € is a conic in 2, (K) for a finite field K.

Exercise 2.50. If K is the field of complex numbers, then show that
there are no ellipses in 7, (K), while if K is the field of real numbers, then
all ellipses in &, (K) are equivalent.

10. Singer Groups

In this section we want to investigate a particular subgroup of the
automorphism group of certain projective and affine planes (and in fact the
reader should be able to see how this approach generalizes immediately to
arbitrary dimensions). First, let K be a skewfield with the property that
there exists another skewfield F containing K such that F is a three-
dimensional left vector space over K (any skewfield is a vector space in a
natural manner over any sub-sk 1d). Since F is a three-di;
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left vector space over K we may construct the projective plane 2 =2 (F)
in the way described in Section 2. The points of 2 are then the elements
of F*, modulo K*, that is, the element x of F* represents the same point
of 2 as the element kx, where k is any element of K*.

For each element f in F*, define the mapping R, of F onto F by
Rpix—xf.

Lemma 2.61. The mappings R, for f 40, are non-singular linear trans-
Jormations of the left vector space F over K.

Proof. The non-singularity follows from the obvious fact that R, must

t d onto, by its ition. To show that it is linear, we must

verify (x+y) R;=xR,+yR,, and (kx) R =k(xR;) for all xand yin F
and all k in K. But these are trivial, when written out. [J

Now clearly the mappings R, form a group isomorphic to F*. So it
is a subgroup of GL(F), and induces a subgroup Z of PGL(F).

Theorem 2.62. The group X is transitive on the points of 2.

Proof. Certainly for any two elements x and y of F*, there is an element
f=x""y such that xR, =y, and so the group of R is transitive on the
elements of F*, ie. the non-zero vectors. So the group it induces on 2
must be transitive. [

What is the kernel of the representation of the group of all R as 2?7
We can use the theory of Chapter I, or simply compute directly: a
mapping R, induces the identity in 2 if and only if for every x in F¥,
the point (x) is fixed by R,. That is, xf must lie in {x) for all x;
this means that xf = kx, for some k inK*so xfx~'isin K* forall xin F*
Finally, this is equivalent to demanding that shall be in every subfield
x"'Kx. So the kernel of the representation is the set of non-zero
elements in the intersection of K with all its conjugates in F: in the
special case of a field, we have:

Lemma 2.62. If F is a field (so K is a field with a cubic extension
field), then the group Z is isomorphic to F¥/K*. I

In a projective geometry, a Singer group is a subgroup of the
automorphism group which is regular on the points and hyperplanes.
‘We have:

‘Theorem 2.64. If K is a field which possesses a cubic extension
field, then the projective plane 2,(K) possesses a Singer group.

Proof. The group X is certainly transitive on points, and in the
case that F is a field, its kernel is K* itself. But the stabilizer of the
point (1) is exactly the set of collineations induced by those R, for
which (1R,> = (/> =<1). But {f>=<1)> if and only if f is in K,
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which implies that R induces the identity mapping in Z. So Z is regular
on points.

To finish the theorem, we note that X is abelian, and hence the
following three lemmas provide the proof.

Lemma 2.65. If I is a non-trivial collineation group of a projective
plane 2, and if T is abelian and is semi-regular on points, then T has at most
one fixed line and is semi-regular on the non-fixed lines.

Proof. Let m be any line of 2.

If m* =m, where a # 1, then the stabilizer of m is non-trivial; since I"
is abelian, the stabilizer is normal and so fixes all the images of m. But two
distinct images of m intersect in a point which is fixed by the stabilizer,
and this contradicts the semi-regularity of I" on points. So m must be
fixed by I'. Clearly the intersection of two lines fixed by I would be a point
fixed by I, and this is impossible. So there are no other lines fixed. hence
1o other lines are fixed by a non-identity element of I'.

Lemma 2.66. As in Lemma 2.65, if T is also transitive on points (i.e. is
regular) than I is semi-regular on lines.

Proof. If I' fixed a line, then the points on that line would have all
their images under I" on the line, so I" could not be transitive on points

Lemma 2.67. Asin Lemma 2.65, if T is also transitive on points. then I’
is transitive (hence regular) on lines.

Proof. Let P bea pointand ma line of 2,and let 4 = {e I'| P? on m}.
Suppose a is in I, a+ 1, so that m*+m; then the point where m meets
i is a point P’. So B and fo" are in 4, hence f=4,, fu~' =4, and so
o =053y, i.e. we have shown that every non-identity element of I can be
represented as 858, for some pair of elements 8,, 8, in 4. Now let I be
an arbitrary line of 2, and choose two points X, Y on I, X + Y. Then, by
the transitivity of I', X = P*, Y = P*, for some 4, p in I where A+ g, and
s0 Ap~'# 1 Thus there are elements &;, &, in 4 such that Au~*
=878} Hence &; =Ap"'8, and so P* "% = P% js on m, and hence
P*is on m*'#; P% is on m, so P is on m*™* and P* is on m*'%. So the
Tine m?%*# must be I, and thus I" is transitive on lines.

Corollary. If K=GF(q) then the projective plane 2,(q) always
possesses a cyclic Singer group.

Proof. Since GF(g*)=F always exists and is a cubic extension of K,
the Singer group exists. But the factor group F¥/K* is cyclic, since F* is
cyclic.

*Exercise 2.51. Let K be (@) GF(2), and (b) GF(3). Choose irreducible
cubics over K so as to construct the cubic extension field (a) GF(8)
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and (b) GF(27). Find a representation of X, the Singer group, m each
case and in particular find the subset 4 in X, where 4 is the set used in
the proof of Lemma 2.67.

Now in fact we can perform a similar “trick™ with some affine planes.
Instead of wanting a cubic extension, we will want a quadratic extension,
and we will be able to construct a group I' which fixes the origin (0,0)
of the affine plane Z,(K) and is transitive (and regular, if the extension
is a field) on the remaining points. The reader should be able to fill in the
details, giving in particular:

*Exercise 2.52. Let K be a field and F a quadratic extension field of K.
Then the affine plane ,(K) possesses a collineation group I' which
fixes the point (0, 0) and is regular on the remaining points; furthermore,
I'= F*/K*, and I has two orbits of lines in &/,(K), one consisting of
the lines through (0, 0), the other of the remaining lines.

11. Appendix (Characteristic Two)

As fields with characteristic two are so different to other fields it is not
surprising that the planes which they coordinatize also behave rather
specially. At some places in this chapter we avoided fields of even
istic, but the di in the behavi of polarities is so
important that we now give a solution to Exercise 2.33.
We first note that for a field of characteristic two the J-ratio
equation simplifies to

XAY) +y*(wAW)=0. ,)

Lemma 2.68. If 2 is a projective plan over a field of characteristic
two, and if X and Y are distinct absolute points, then every point on the line
X + Y is absolute

Proof. Let X = (), Y = (w), from which we know that v4v' = wAw’
= 0. But then the J-ratio equation (see (J,) above) tells us that every point
{xv+ yw) is absolute as well.

Corollary. If 2 is a projective plane over a field of characteristic two,
then the set of absolute points of an orthogonal polarity is one of (a) the
empty set, (b) a single point, (c) the points of a line.

Proof. If there were more absolute points than all the points on a line,
then the absolute points would include all the points on at least two
distinct lines, and hence all the points of the plane. But the quadratic form
(Lemma 2.30) for an orthogonal polarity, in the case of characteristic two,
becomes a;; X2 + a3,y + as3z2 =0. If this is to be satisfied for all x, y, z,
then it is easy to see that a,, = a,, = a33 =0. But now a trivial computation
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of the determinant of the matrix A =(a;;) (whnch 1s symmetric) shows that
A is singular. which is a contradiction.

Now we give some examples:

Example 1. Let F be a field of characteristic two and K its subfield of
squares. Suppose that the dimension of F over K is greater than two (eg.,
let F=Z,(u.v), the field of all rational forms in two variables over the field
of two elements) : then if b is a_fixed non-square in F, there must be a non-
square a in F such that a=bx*+y* has no solution for x and y in F. Let

then the polarity f8 defined by A has no absolute points.

Example 2. Let K be a field of characteristic two in which not all the
clements are squares, and let a=b be a non-square. Using the same
matrix A as in the example immediately above, the polarity B will have
exactly one absolute point, namely {(1. 1,0).

But in contrast 10 the two examples above, we have:

Theorem 2.69. If K is a field of characteristic two in which every element
is a square. then the absolute points of an orthogonal polarity are always
exactly the points of a line

Proof. Using the quadratic form again, we have a,, x + a,,y +a33 22
= 0. But for each a;; there is an element b; in K such that b? = a;;, and so we
may write the quadratic form as (b,x +b,y +b3z)* =0, which is
satisfied exactly when by x +b,y+bsz=0, and this is the equation of a
line (namely, <(by, b,. b;)). [

Corollary. In the projective plane 2,(2"), the absolute points of an
orthogonal polarity are exactly the points of some line.

Proof. ByResult 14. ]
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1, Introduction

For the rest of the book, we shall be concerned only with projective planes
and affine planes; but not just the planes 2(V) and (V) constructed in
Chapter II, for some three dimensional vector space V over a skewfield.
Instead, we shall make an abstract, incid type ition of projecti
plane, and later of affine plane. This definition will include all the planes
of Chapter I, but will include many other examples as well. If K is a skew-
field and V is a three-dimensional left or right vector space over K, then
the plane 2(V) will be called the desarguesian projective plane over K, or
simply a desarguesian projective plane (the reason for this will become clear
later; see the summary of Chapter VL). If K is a field, we often say that
(V) is a pappian projective plane. In Chapter 11 we treated left vector
spaces as the most “natural” (since then ‘mappings appeared naturally on
the right, the vectors most commonly used were row Vectors, and so on),
but clearly right vector spaces are just as good; in the case of fields (i.c.
pappian planes) the two concepts lead to isomorphic planes anyway. But
for the rest of the book, whenever we refer to “the projective plane over the
skewfield (or field) K, or to the “desarguesian projective plane 2(K),
etc., we shall always mean the one constructed over the right vector space
over K. The real effect of this will be that, once a basis is chosen, points
will be (projectively) {(x, y, 2)'> and lines will be {(a, b, ¢)) with incidence
given by ax + by +cz=0. Affinely we still have points (x, y) but lines will
haveequaﬁonseithetx=kory=mx+k(ormx+y=k0rmx+y+k=0)
In other words, slopes appear on the left. Recall that we write 2,(q) for
the plane 2,(GF(q)), and #,(q) for &(GF| @)

In this chapter we begin the study of these more “arbitrary” or general
projective and affine planes. ‘While no use is made of any results in Chap-
ter 11 we frequently refer back to that chapter for motivation and examples.
However a reader who has not read the earlier chapter will not be at any
serious disadvantage.

The basic i ial properties of projective and affine planes are

blished, including the celebrated Bruck-Ryser Theorem on the non-
existence of projective planes with certain orders. The concept of iso-
morphism between planes is introduced and there is a lengthy discussion
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on the relation between projective and affine planes. Finally incidence
matrices are introduced and some of their elementary properties are
established.

2. Basic Concepts
From now on a projective plane 2 is a set of points and lines, called the
elements of 2, together with an incidence relation between the points and
lines such that
(i) Any two distinct points are incident with a unique line.

(ii) Any two distinct lines are incident with a unique point.

(iii) There exist four points such that no three are incident with one line.

Any set of points which satisfies conditions (i) and (ii) is called a closed
configuration, and any closed configuration which does not satisfy con-
dition (jii) is called a degenerate plane.

Exercise 3.1. Listall degenerate planes.

The following are typical expressions which will be used to express the
fact that a point P is incident with a line I: PII, lIP, P is on I, [ contains P
or [ passes through P. Often it will be convenient to identify a line I with
the set of points incident with it. In this situation we may also write P L.

If lis a line containing two distinct points A and B, we say that I joins
A to B and write | = AB. Similarly if P is a point on two distinct lines I, m
we write P=Im or P=1 mand call P the intersection of ! with m.

Exercise 3.2. If 2 is any set of points and lines with an incidence rela-
tion such that any two distinct points are on a unique common line, show
that two lines intersect in at most one point.

Any set of points incident with a common line are said to be collinear,
and any set of lines passing through a common point are concurrent. An
ordered set of three distinct non-collinear points 4, B, C, together with
the lines BC, CA, AB, is called a triangle. Any ordered set of four points,
no three of which are collinear is called a quadrangle. An ordered set of
four lines such that no three are concurrent is called a quadrilateral. (But
often the ordering will be irrelevant.)

In the definition of a projective plane, axiom (jii) suggests that the
points assume a special role. This is not in fact the case, as is shown by
the following lemma.

Lemma 3.1. Any projective plane contains a quadrilateral.

Proof. From axiom (iii) every projective plane contains a quadrangle.
Let 4, B, C, D be any four distinct points which form a quadrangle. Con-
sider the lines AB, BC, CD, DA and assume that three of them are con-
current. Without any loss of generality we make take these three lines as
AB, AD and CD. Let T be the point common to these lines.
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Since any two lines have a unique common point and since 4 is on
both AB and AD we must have A= T. Similarly, by considering the lines
AD, CD, we have T = D. This contradicts the choice of 4, B, C, D as dis-
tinct. Thus AB, BC, CD, DA form a quadrilateral. []

If 2 is any projective plane, let 2* be a set of points and lines together
with an incidence relation such that the points (lines) of 2* are the lines
(points) of 2 and two elements are incident in 2% if and only if they are
incident in 2. As an immediate consequence of Lemma 3.1, #* is a pro-
jective plane which we call the dual plane of 2. Clearly (#*)* =2 so that
every plane is a dual plane. This observation establishes one of the most
important results in the study of projective planes:

Theorem 3.2 (The Principle of Duality). Let A be any theorem about
projective planes. If A* is the statement obtained by interchanging the words
“points™ and “lines”, then A* is a theorem about dual planes. Hence A* is
also a theorem about projective planes.

Clearly, from the definition, a projective plane must contain at least
four points and, by Lemma 3.1, four lines. In fact, as we shall soon prove,
each projective plane must have at least seven points and lines. Before
proving this, however, we give an example of a projective plane 2 which
has exactly seven points and lines. If we label the points of 2 as Py,...,P;,
then the lines of 2 are:

L={P,Py, P}, L={P,PyPs}, L={PyPsPe,
L={Ps,Ps, P}, Is={Ps,Ps, P}, le={Pe;Pr, P2},
L={P;, Py, P3}.
Incidence in 2 is given by P,I1; if and only if Pel; Straightforward
verification of the axioms shows that & is a projective plane.

Exercise 3.3. Show that 2,(K), for any field K, is a projective plane
according to our new definition.

Before we can prove our claim that we have exhibited the smallest
possible projective plane, we prove a simple lemma.

Lemma 3.3. Let | and m be any two distinct lines of a projective plane 2.
Then there is a point X of 2 such that X is not on either | or m.

Proof. Suppose the lemma is false.

Let 4, B, C, D be any quadrangle of 2. By assumption each of them
is incident with either I or m and thus, since no three of them are collinear,
two of them (4, B say), belong to I and the others belong to m. Let
X=ACnBD.

Suppose X is on [. Since | passes through A4 and B, {=AB. Thus X is
on AB. Since A, B, C are not collinear, AB + AC and thus, since X is on
AC, X must be the unique intersection of the lines AB and AC. But 4
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is also incident with both these lines. Thus 4 = X. However, this is impos-
sible since X is on the line BD and 4, B, D are not collinear. Hence X is
not on I

Similarly X is not on m and the lemma is proved. 1]

Theorem 3.4. Let 2 be a projective plane. If | and m are any two lines
of P there is a one-to-one correspondence between the points of | and m.
Furthermore, if L is any line and P is any point of  then there is a one-to-one
correspondence between the points of | and the lines through P.

Proof. Let!andm beany two lines of 2. By Lemma 3.2 there is a point
O not on either [ or m. For any point X of | define a point X of m by
X®=0Xnm. Since, given a point X, OX is a unique line and any two
lines intersect in a unique point, X* is uniquely determined by X. For any
point Y on m, Y=_Z* where Z=0YnI. Thus « is a one-to-one corre-
spondence between the points of I and the points of m.

Let P be any point and [ any line of 2. There are two possibilities.

Case (a) P is not on |

For any X on [, define X*=PX. Clearly o is a one-to-one corre-
spondence between the points of / and the lines through P

Case(b) Pisonl
Since 2 contains a quadrilateral there 1s a line m such that P is not
on m. Case (a) gives a one-to-one correspondence between the lines
through P and the points of m. By the first part of the theorem there is
a one-to-one correspondence between the points of m and the points of I.
iti d is the desired one. [

The of these two cor

As an immediate corollary to Theorem 3.4 we see that if one line of
a projective plane 2 contains only a finite number of points, then the
number of points on any line is finite. A projective plane 2 with this
property is called finite.

Theorem 3.5. Let 2 be a finite projective plane. There exists a positive
integer n 22, such thar
(i) each line contains exactly n + 1 points,
(ii) each point is on exactly n+ 1 lines,
(iii) 2 contains n* +n+ 1 points and n® +-n + 1 lines.

Proof. (i) and (ii) are immediate corollaries of Theorem 3.4,

Let Q be any point of 2. By (ii) there are n + 1 lines through Q. Since
any two points of 2 are joined by a unique line, every point of 2 except Q
is on exactly one of these n-+ 1 lines. By (i) each of these lines contains n
points distinct from Q. Thus the total number of points is (n+1)n+1
=n’+n+l.
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The dual argument proves the similar statement about lines.

In order to show n22 it is sufficient to observe that if 4, B, C, D is
any quadrangle of 2 then the point ABACD is on AB and is distinct
from Aand B. [I

If 2 is any finite projective plane then the integer n of Theorem 3.5 is
called the order of 2. If no such integer exists then 2 is said to have infinite
order or, alternatively, to be an infinite plane.

Since n = 2, the number of points in a projective plane must be at least
22 42+ 1= 7. Thus we have proved our claim that the plane we exhibited
had the smallest possible order. The following exercise shows that given
any prime power there is a finite projective plane with that order.

Exercise 3.4. Show that the order of 2,(p%) is p*.

A very interesting problem immediately suggests itself: given a com-
posite integer n does there exist a projective plane of order n? So far all
the known examples of finite projective planes have prime power order.
However the only result showing the non-existence of any finite projective
plane with a given order is the following remarkable theorem.

Theorem 3.6 (The Bruck-Ryser Theorem). If n =1 or 2 (mod 4) there
cannot be a projective plane of order n unless n can be expressed as a sum
of two integral squares'.

Proof. The proof of this theorem is not difficult but uses some elemen-
tary results and techniques from number theory which are superfluous to
the rest of this book. For completeness a proof is given in the appendix
at the end of this chapter. But failure to read the proof will not hinder the
reader in understanding the rest of this chapter. {1

The smallest composite integer not covered by the Bruck-Ryser
Theorem is 10, and it is still unknown whether or not a plane of order
10 exists.

So far we appear to have exhibited two planes of order 2. One was
2,(2) and for the other we wrote down the seven points and gave the lines
as subsets of the points. However, it is not clear whether the two planes
are essentially “different™ or whether we have merely found two ways of
representing the “same” plane. But, of course, before we can discuss such
problems we must, as in most other branches of mathematics, introduce
the concept of isomorphism. Two projective planes 2 and & are said to
be isomorphic if there exists a one-to-one mapping 6 from the points of 2
onto the points of & and the lines of 2 onto the lines of 2 such that,
for any point A and line [ of 2, A is on l if and only if A°is on . If 2 is
isomorphic to # we write 2= 2. The mapping 0 is called an isomorphism.

1 Itiswellkncvm(see(otinstxnce[1])thaxnnintcgerneanbeexpressedas
a sum of two integral squares if and onlyifthcsqumfrecparto[nhasnopﬁmc
divisor = 3 (mod 4). This gives an alternative formulation of the theorem.
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Exercise 3.5. If 2 is any projective plane of order 2 show that 2 = 2,(2).

Note that since an isomorphism is a one-to-one correspondence
between the elements of two planes, any pair of isomorphic projective
planes must have the same order.

3. Subplanes

A subplane 2, of 2 is a subset of the elements of 2 which form a projective
plane having the same incidence relation as 2.

With this definition 2 is a subplane of itself. A subplane %, of 2 is
called proper if Z,+ 2.

Note that a proper subplane of 2,(K) is an i pl b-g y.
Furthermore 2,(p°) has a proper subplane of order p® for all integers b
such that b|a (see Result 1.5).

If 2 is any finite projective plane then the possible orders for subplanes
of 2 are restricted by the following theorem.

Theorem 3.7 (Bruck). Let 2 be a finite projective plane of order n with
a proper subplane 2, of order m Then either n=m? or nZm*+m.

Proof. Let I be any line of #,. Then I contains m + 1 points of %, and,
hence, n-+1—(m+1)=n—m points of Z\Z,. Since any two lines of Z,
intersect in a point of %, and since %, has m? +m+1 lines, there are
(m? +m+ 1) (n—m) points of P\, which are incident with a line of Z,.
Thus there are at least m? +m + 1 +(m* + m+ 1) (1— m) points in 2. This
gives:

nan+1Zm>+m+ 1) (n—m)+m>+m+1,
n4n+1zmn—m +mn+n+1,
02m?*n—m*+mn—n?,

(m? —n) (n—m).
But n—m>0. Thus n=m?.

Note that if n=m? then n® + n+ 1=m? + m+ 1 +(m + m+ 1) (n—m);
i.e. every point of 2 is on a line of %,.

Suppose that n+m?. Then there is a point 4 of 2 such that A4 is not
incident with any line of 2,. Hence every line through A contains at most
one point of %,. Thus, since every point of %, is on a line through 4, the
total number of lines through A is at least as great as the total number
of points in Z,. This gives n+ 12m*> +m+1or n2m* +m. []

There is no instance known of a finite projective plane of order n
having a subplane of order m such that n=m? + m. So it is possible that
the conclusion of Theorem 3.7 may not be the best possible.

A subset € of the points and lines of a projective plane 2 is called
a Baer subset (or dense subset) if every element of & is incident with an
element of 4.



82 [11. Elementary Properties of Projective and Affine Planes

If & is a subplane then ¥ is called a Baer subplane. From the proof
of Theorem 3.5 we have;

Theorem 3.8. Let 2 be a finite projective plane of order n with a sub-
plane P, of order m. Then Py is a Baer subplane if and only if n =m% [

Exercise 3.6. Listall Baer subsets which are also closed configurations.
(We call such subsets closed Baer subsets.)

4. Affine Planes

If 2 is a projective plane and [ is any line of ¢ then let 2! be the set of
points and lines of # obtained by deleting the line I and all the points
incident with it. #' has a natural incidence, namely the incidence of 2.
Clearly any two points of #' are incident with a unique line of #'. However
it is no longer true that any two lines of 2" intersect in a point of 2. This
is readily seen as follows; let X be any point of I and let my, m, be any
pair of distinct lines through X such that neither is I. Then m,, m, are lines
of #', and m, and m, do not intersect in 2. But clearly if 4 is any point
of %' not on my, and if m is the line joining A to X in 2, then m is the
only line of #' through A with the property that it does not intersect m;.

We shall now define an affine plane to be a set of points and lines with
an incidence relation having the properties just established for #', and will
then show that any affine plane is of the form ' for some projective plane
2 and some line I of 2.

An affine plane s/ is a set of points and lines together with an incidence
relation between the points and lines such that

(i) any two distinct points lie on a unique line,
(ii) given any line I and any point P not on I there is a unique line m
such that P is on m, and I and m have no common point,

(iiii) there are three non-collinear points.

The preceding discussion shows that for any projective plane 2 and
any line | of #, #' is an affine plane. (The existence of three non-collinear
points follows i diately from the exi of a and
Lemma 3.3.)

In any affine plane < there 1s a natural way to define a “parallelism”
between the lines. We will call two lines I, m parallel, and write I{|m, if
I=m or l and m do not intersect.

Lemma 3.9. In any affine plane parallelism is an equit
Furthermore each point is on exactly one line from each parallel class.

Proof. Clearly the reflexive and symmetric laws hold, so we only have
to show transitivity. Let I, m, h be any three lines such that Iim and m| h.
If1=m,m=hor h=1thenit follows trivially that | h. Thus we may assume
lm+h+l.
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Suppose Ifih. Then there is a point 4 on both I and h. But now we
have two distinct lines through 4 and not intersecting m. Since this con-
tradicts axiom (ii) of the definition of an affine plane we have shown /] h.

The second claim of the lemma follows immediately from axiom (ii)
in the definition of an affine plane. [J

Isomorphism between affine planes is defined in a similar way to iso-
morphism between projective planes: thus two affine planes .o/ and .&/"
are isomorphic if there exists a one-to-one mapping 0 from the points
of ./ onto the points of <’ and from the lines of .o/ onto the lines of 27"
such that a point 4 is on a line [ if and only if A% is on I".

Exercise 3.7. 1f 0 is an isomorphism from an affine plane ./ onto an
affine plane ./’ show that, for any two lines I, m of .<Z [||m if and only
if Il m®.

Exercise 3.8. Let 2 = 2,(K) for any field K and let I be the line z =0,
Show # = s#,(K).

We have already seen that given a projective plane 2 and a line I then
2" is an affine plane. It is worth pointing out that if  and m are distinct
lines of 2 then #”' need not be isomorphic to 2™ (see Lemma 3.11). How-
ever, we have

Theorem 3.10. Let o be any affine plane. Then there is, up to iso-
morphism, a unique projective plane P such that sf = ' Jor some line 1 of 2.

Proof. We first construct a projective plane 2 with a line I, such that
A=Pl.

The points of 2 will be the points of s which we denote by upper
case Latin letters, and the parallel classes of </, which we denote by
asterisked upper case Latin letters. The lines of 2 are the lines of <7, which
we denote by lower case Latin letters, plus a new line l-

Incidence in 2 is defined as follows:

(i) Pison!lin2 ifand only if Pis on l in <
(i) P*ison lin 2 if and only if [€ P* in < (recall that P* is a parallel
class of «7);

(iii) P*is on I, for all “parallel class” points P*, and there 1s no point
of of on .

Clearly, by construction, &/ = %"= but we must still verify that 2 is
a projective plane.

Any two points 4, B of £ are joined by the line AB of & which is also
aline of 2. Any two points 4, B* are joined in 2 by the unique line of <
which belongs to the parallel class B* and contains A. (Such a line exists
by Lemma 3.9.) Any two points A*, B* are joined by [,. Thus any two
points of & are on a unique line of 2. (Why unique?)

Clearly the line I, of 2 intersects every other line of 2 in a unique
point. Let I and m be any two lines of 2 If | and m intersect in < then they
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certainly intersect in 2. (Furthermore this intersection is unique by
Exercise 3.2.) Suppose [ does not intersect m in <. Then [| m in o/ so that |
and m both belong to the same parallel class, A* say, of <. Thus / and m
intersect in the point A* of 2. Hence any two lines of 2 intersect ina
unique point of #.

Since < is an affine plane, & contains three non-collinear points
X,Y,Z.Let X YA, = A* and YZ N, = B*in #. Since X Y is not parallel
to YZ in &, A* + B* and X, Z, A*, B* form a quadrangle in 2. This proves
that 2 is a projective plane.

Suppose now that <7 = 2! = #'". Then the identity mapping is an iso-
morphism from #' to 2. We conclude the proof of Theorem 3.10 by
proving the following lemma.

Lemma 3.11. Two affine planes &', 2" are isomorphic if and only if
there is an isomorphism o from the projective plane & onto the projective
plane ' with F=1I'.

Proof. Suppose 0 is an isomorphism from 2' onto #'". Define o by
X=X for all X not on I, and for any Y on [ pick any line m through Y’
different from ! and define Y*=m’I'. The action of « on the lines of 2
is given by h*=H° for all h=+1and F=F.

In order to show that « is an isomorphism 1t 1s only necessary to show
that, for Y on I, Y is independent of the choice of m. But this is clearly
so, since 6 preserves parallel classes, by Exercise 3.7.

Now suppose that « is an i ism between two projective planes
2, & such that FF=I'. Clearly « induces a one-to-one mapping from the
points (lines) of 2 onto the points (lines) of 2" Since o is an isomorphism
from £ onto &, this induced mapping must preserve incidence. Thus we
have #'= 2",

o ! then we say that < is the affine plane associated with 2 and |
or, sometimes, that 7 is an affine plane associated with 2. Once again we
emphasize that non-isomorphic affine planes may be associated with the
same projective plane. We also say that 2 is associated with </ and, as
the last theorem showed, this association is unique, up to isomorphism.
This fact enables us to define the order of an affine plane as the order of
the projective plane associated with it.

Theorem 3.12. Let <7 be a finite affine plane of order n. Then
(i) # has n* points and n* +n lines,
(ii) every line of =/ contains n points,
(iii) each point of < is on n+1 lines,
(iv) each parallel class of </ has n lines, and there are n+1 parallel
classes. )

Proof. We leave the proof as an exercise. []
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If o = ' then we often refer to the points and lines of </ as its affine
elements. We then call [ the special line of < and the points of / are its
special points.

If o = 2 for some projective plane 2 and if 2 is a subplane of 2 then
there are three possibilities for the intersection of [ with 2; (a) I a line
of 2, (b) I contains exactly one point of 2 or (c) I contains no point of 2.
If case (a) occurs then 2 is an affine plane whose affine elements are
elements of ./ and whose special points are special points of . In this
case we say that 2' is an affine subplane, or subplane, of <. In case (c) the
elements of 2 are all special elements of <7 and we say that 2 is a projective
subplane of sf. Case (b) will be of no interest to us in this book and we do
not give it a name.

5. Incidence Matrices
Let # be a finite plane of order n (projective or affine). Let P,,P,,...,P,
be a labelling of the points and Iy 15....,1, be a labelling of the lines. (By
Theorems 3.5 and 3.12, v=b=n’+n+1 if & is projective and v=n?
b=n’+n,if B is affine.) An incidence matrix A of % is a vx b matrix of
zeros and ones such that a;=1if and only if P; is on I

Example. With the labelling of Section 2 the incidence matrix of the
seven-point plane is

1000101
1100010
0110001
1011000
0101100
0010110
0 001 01 1

(Note that the incidence matrix is definitely not determined uniquely by
the plane. It depends on the labelling of the elements.)
Incidence matrices have some interesting elementary properties.

Theorem 3.13. Let A be an incidence matrix of a finite projective plane
of order n. Then AA' =nl, + J, where I, is the v by v identity matrix and J,
is the v by v matrix with a 1 in every position.

Proof. Let AA'=(b,).

Consider first the diagonal terms by;. This entry is the scalar product
of the i* row of A with itself. Thus it is the sum of the non-zero entries
of the i*" row of A. But the number of non-zero entries in the * row of 4
is equal to the number of lines through P, Thus, by Theorem 3.5,b;=n + 1
fori=1,2,..,n*+n+1.
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Similarly by; (i) is the scalar product of the i row of A with the j*
row of A. This is equal to the number of values of k such that a; = ay.=1
But ;=1 if and only if P; is on I and a;,=1 if and only if P;is on ;.
Thus since P; and P; determine a unique line, b;;= 1 fori#j

This proves the theorem. []

We now compute det(44’).

n+1

det(44)=

n+1

Thus, by adding each column to the first, we get:
[RS8 V I OO |

det(AA)= (n+ 12 0%,

Thus we have shown

Theorem 3.14. If A is an incidence matrix of a finite projective plane
of order n then A is non-singular, over the rational field.

Exercise 3.9. If 2 is a set of n? + n + 1 points and an unknown number
of lines such that any two distinct points are on a unique line and each
line contains n+ 1 points, show that each point is on n+ 1 lines.

Exercise 3.10. Show that a set of points satisfying the conditions of
Exercise 3.9 with n> 2 is a projective plane. (Hint: assume % hastwonon-
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intersecting lines and show that any point on one of these lines must lie
on at least n + 2 lines.)

Exercise 3.11. If n 22 and 4 is a set of n* +n+ 1 points and n> + n+1
lines such that any line is incident with n+ 1 points and any two distinct
lines have a unique common point, show that 4 is a projective plane.

Exercise 3.12. Let A4 be an incidence matrix for a set of points and lines
satisfying the conditions of Exercise 3.9. Show that AA'=nl+J and
AJ=JA=(n+1)J. Hence show that there exist x, y such that A = xA4"
+1J. Now use this to show 44’ = 4’4 (i.e. that A is normal) and deduce
that A is an incidence matrix of a projective plane for n > 2. (Thus we have
an alternative proof of Exercise 3.10)

*Exercise 3.13. Find the eigenvalues of nl,+J, where v=n?+n+1.

Exercise 3.14. If n>2 and & is a set of n? points and an unknown
numbser of lines such that any two points are on a unique line and each line
contains exactly n points, show that 4 is an affine plane.

Exercise 3.15. Let A be the incidence matrix of an affine plane of
order n. Show that AA"=nl,:+J,,.

Exercise 3.16. If ? = 2, (K) and if 2* is the dual of 2, show that 2 = 2%,

*Exercise 3.17. If 2 = 2,(K), where K is the field of complex numbers,
find nine points and twelve lines of 2 which form an affine plane of order 3.

6. Appendix (Proof of the Bruck-Ryser Theorem)

We first state two number theoretic results. For proofs the reader should
consult [1].

Every positive integer is the sum of four integral squares. n

_If an integer is a sum of two rational squares then it is the sum ®

of two integral squares
We shall also use the following elementary identity.
@+ + A+ ) (2 +y* +22 +wd)
=(ax—by—cz—dw)* +(bx+ay—dz + cw)* A3)
+(cx+dy+az—bw) +(dx—cy+bz+aw)?.

Let 2 beaa finite plane of order nand letv=n*+n+ 1. Let P, P,, ..., P,
be a labelling of the points of 2 and I, I, ..., I, be a labelling of the lines.
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Let xy, X5, ..., X, bevindeterminates and for 1=1,2, ..., vwrite L; = Zx;
where, for a given i, the sum is taken over all those j for which P; is on I;.

v v
Then ¥, Lf=2) x;x+(n+1) Y, x7.
=1 i+ i=1
v PRY
SIS HE @
i=1
Note that (4) is an identity satisfied by whatever values we wish to assign
v

the x;. Let T denote ) x;.
=1

Now suppose n 1 or 2 (mod 4) so that v =3 (mod 4). Let x,,, be one
more indeterminate. Then, clearly,

v ve1
Y L2 +nx2 =nY x}+T?. ©®)
= 1

By (1) there exist integers a, b, ¢, d such that n=a? + b? +c2 +d% Let
A, be the linear transformation of the four dimensional vector space over
the reals given by the matrix

Then det 4, =n?=+0 since n=+0.
If t=x2 + y* + z% + w? then we shall say that (x, y, z, w) represents t.
Eq. (3) implies that if (x, y, z, w) represents t then (x, y, z, w) 4, represents tn.
Thus we can write

GG +x3+x3+xP) =y} +yi+y3+); where
01 V25 V35 Ya) = (%15 X2, X3, Xa) Ay -

Note that if the x; are independent indeterminates then, since 4, is -
vertible, so are the y;. Each y; is a linear combination of the x; with integer
coefficients. However, since A4," may have rational entries, each x; is
a linear combination of the y, with rational coefficients.

Since (4) is an identity involving linear expressions in the x; we can
replace xy, x,, X3, x, by the appropriate linear combinations of the y; and
still have an identity. If we do this then, using (6) we get:

©)

v v+t
‘§;L§+nx§,,=y,2+y§+y§+yi+nZx?+T’, )
= 5

where the L; and T are linear expressions in yy, V5, V1, Vas Xs5 - Xps1-
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If we repeat this process with four X/’s at a time then, since v+1=0
(mod 4) we will eventually arrive at

B .
Y Li4nxl, =Y y+T? ®)
= =

where now the L;, x,.,, and T are linear expressions in the indeterminates
VisV2s s Vour-

Suppose we put L, = + y,, where we use the “ +" sign unless the coef-
ficient of y, in L, is 1, in which case we use the “—” sign. Then L, = + y,
can be solved to give y, as a linear expression in the indeterminates
Y 'v+1- This expression can then be substituted everywhere in (8) for
s to give

v vrt
Y L nxt, =Y y T2, ©)
i=2 =2

Since (8) was an identity for the indeterminates Yis <+ Yor1> (9) is an
identity in y,, ..., y, ;.

Repeating this process we eventually arrive at

X3y =yl +T? (10)

where, now, x,,, and T are linear expressions in Vot 1€ Xpuy =ay,4,
and T=by,,, for rationals a, b. This gives

na*=1+p? 11
or
1 b2
n=r+ (;) (12)

where a, b are rationals.
But now, by (2), this implies that n =u?+ v? where u,v are integers.
Thus we have shown that if there is a projective plane of order n=
or 2 (mod 4) then n is the sum of two integral squares.
This is the Bruck-Ryser Theorem. o
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IV. Collineations of Projective and Affine Planes

1. Introduction

In this chapter we introduce the concepts of collineation and correlation
and then proceed wxlh a detailed study of a special family of collineations
called ij ivities. These collineations play a crucial role in the
study of projective planes, and a number of the results proved here will
be vital to the later chapters. Most of the chapter is self-contained but
occasionally we need to use some very elementary permutation group
theory; in particular repeated use is made of Result 1.13.

‘The chapter ends with a discussion of the relation between the

of certain persp and the exist of Desargt
configuration.
2. Basic Concepts and Definitions

A collineation (or automorphism) of a projective, or affine, plane is an iso-
morphism of the plane onto itself. Under the usual definition of products
of mappings it is clear that the set of all collineations of a given plane 2
form a group. This group, which we denote by Aut4, is called the full
collineation group of 9. When we refer to a collineation group of # we
mean a subgroup of Aut%. We use the letter 1 to denote the identity
collineation.

Exercise 4.1. If « is a collineation of an affine plane & = %' show that
there is a unique collineation f in Aut2 such that I’ =1 and B induces «
on /. (We shall say that o extends to B.)

Lemma 3.11 implies:

Lemma 4.1. If 1, k are any two lines of a projective plane 2 then P'= #*
if and only if there is a collineation o in Aut# such that I* =k.

A lation 6 of a projective plane 2 is a t mapping of the
points of & onto the lines of 2 and the lines of £ onto the points of 2
such that a point A is on a line  if and only if I? is on 4°. For any correla-
tion ¢ and any lines I,k of & the line Ik? is the image of the point Ik.
This simple observation shows that an affine plane &/ cannot admit a cor-
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relation since if  and k were chosen parallel, the line joining I to k® would
not have a pre-image in /.

Clearly the product of any two correlations of a projective plane 2 is
a collineation of 2. A correlation 6 such that 0 is the identity collineation
is called a polarity. Polarities play an important role in the study of pro-
jective planes and will be discussed in Chapter XII. For most of this
chapter we shall only be interested in collineations.

Lemma 4.2. Let & be a projective plane with a collineation o If F ()
denotes the set of all points and lines fixed by o, then (o) is a closed
configuration.

Proof. Let 4, B be any two distinct points of % («). Then, since
preserves incidence, (4B)*=A"B* But, since 4,Be #(a), A=A and
B*=B. Thus (ABy=A"B*=AB ie. AB€.#(a). Dually for any two
distinct lines I, m of & (a), Ime F (a).

Hence # (o) is a closed configuration. []

Corollary. If o fixes a quadrangle then F (@) is a subplane of 2.

If € is any subset of the points and lines of 2 which form a closed
configuration then we shall merely say that € is closed. If a is any collinea-
tion of 2 such that & («) is a subplane of 2 we shall call « a planar collinea-
tion or, alternatively, say that o is planar. In the special case where .7 (x)
is a Baer subplane, o is sometimes called a Baer collineation.

It seems reasonable to expect that a knowledge of % (a) might give
some information about the action of o on 2; particularly if F (o) is in
some sense “large” relative to 2. This, in fact, is often true, especially if
& (o) happens to be a Baer subset. Indeed, collineations « for which Fo)
is a Baer subset play a crucial role in the study of projective planes, and
itis basically these collineations, and the groups which they generate, which
we study in this chapter.

3. Quasiperspectivities
A quasiperspectivity, or i llineation, of a projective plane 2
is a collineation o such that & (a) is a Baer subset. Note that since 2 is
a Baer subset of itself, 1 is a quasiperspectivity.

While it may appear that a quasiperspectivity is a rather special type
of collineation, the following simple theorem shows that they frequently
occur.

‘Theorem 4.3. Let 2 be a projective plane. Any collineation o. of order 2
is a quasiperspectivity.

Proof. We must show that every element of 2 is incident with an
element of F (o).
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Let A be any point of 2 such that 4% A. Then, since (44 = AcA47
= A°A, the line AA4® is fixed by o. Thus any non-fixed point of « is on
a line of # (o) and, dually, any non-fixed line contains a fixed point.

Let B be any fixed point of «. If « fixes a second point, C say, then o
also fixes the line BC. Thus either B is on a line of & («) or B is the only
point fixed by a. But let I be any non-fixed line not containing B. (Since
any two fixed lines intersect in a fixed point, « can fix at most one line
not containing B. Thus we may certainly assume that [ exists.) Then, by
the earlier argument, [ contains a fixed point not equal to B, namely In[*
Hence « must fix at least two points. Dually, « fixes at least two lines and
the theorem is proved. []

‘We will call a collineation of order 2 an invols

In order to study quasiperspectivities it is clearly necessary to deter-
mine all closed Baer subsets. Thus we prove:

Theorem 4.4. A closed Baer subset of a projective plane P is either
a Baer subplane or consists of a line | and all the points on it together with
a point V and all the lines through it.

Proof. If & is a closed Baer subset and is a subplane, then it is a Baer
subplane, by the definition. Suppose 4 is a closed Baer subset which is
not a subplane. Then, clearly, % cannot contain a quadrangle

Case (a). & contains a triangle ABC.

Since # does not contain a quadrangle, every other point of # must
lie on the same side, BC say, of the triangle ABC. Let D be any point of
the line BC other than B or C, and let m be any line through D such that
m is distinct from both BC and AD. (Both D and m exist since, by Theo-
rem 3.5, each element of 2 is incident with at least three elements.) By the
definition of a Baer subset, m must contain a point of 4. Since m does not
pass through 4, this point must lie on BC. Hence D € %, and so, since D
was any point on BC, % consists of all the points of BC together with 4
and all the lines through 4 plus the line BC.

Case (b). & contains no triangle.

Clearly all the points of & are collinear, on a line I say, and the lines
of 4 are concurrent at a point A. Since every poml of 2 is on a line of &,
4 contains more than one line. Hence, since 4 is the intersection of at
least two lines of the closed configuration %, 4 € % and so is a point of I.
Let D beany point of l other than 4, and let m # [ be any line of 2 through D.
Since 4 is a Baer subset, m must contain a point of B. Hence, since all the
points of & lie on 1, this point must be D. But D was any point of I which
means that every point of [ is in %. Dually every line through A belongs
o [

We now wish to show that proper Baer subsets, and so in particular
Baer subplanes, are maximal closed subsets of a projective plang, i.e. that
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if 9 is a closed Baer subset of a projective plane 2 and € is any closed
configuration of 2 with #C, then either Z=% or % =2 This will

- enable us to prove some results about quasiperspectivities. To do this we
first prove a simple lemma.

Lemma 4.5. Let # be a projective plane. If 2, is a subplane containing
all the points of one line I of . then P=2,.

Proof. Let A be any point of 2 and let B. C be any two distinct points
of 2, not on I such that AB+ AC. Let ABnl=X and ACI= Y Since
Be P, and X € #,, we have BX € %,. Similarly CY is also a line of Py
Thus, since A4 is the intersection of two lines of Py, A€ Py, and so every
point of 2 is a point of %,. Since every line of 2 is the join of two points
of Z,, every line of 2 is a line of P, and the lemma is proved. [J

Note that if 2 is finite then the lemma follows immediately from the
fact that 2 and %, have the same order.

Theorem 4.6. A proper closed Baer subset % of a projective plane 2 is
a maximal closed configuration of .

Proof. Let € be the intersection of the closed configurations con-
taining 4 and a single element not in 4. Without loss of generality we may
assume this element is a point X. Clearly, for all possible choices of 4,
€ contains a quadrangle, so that & is a subplane of 2 If & is not a sub-
plane then, by Theorem 4.4, # contains all the points of some line I of 2.
Since #C%, ¥=2 by Lemma 4.5, and so either % is a subplane or &
is maximal.

Suppose 4 is a Baer subplane. Then, by definition, every line of 2
contains a point of 4. So, in particular, every line through X contains
a point of 9. Thus every line through X contains at least two points of 4,
ie.is a line of €. But now & is subplane with the property that it contains
every line through a given point X of 2. By the dual of Lemma 4.5, ¢ = 2
and the theorem is proved. []

The following exercise shows that the converse of Theorem 4.6 is false.

Exercise 4.2.1f 2 is a finite projective plane of order p* witha subplane
Z, of order p, show that 2, is a maximal subplane of 2 (see Theorem 3.7).

This is perhaps a convenient place to point out a very important conse-
quence of the principle of duality. When we proved Lemma 4.5 we were,
in effect, proving two lemmas; namely Lemma 4.5 and its dual; compare
Theorem 3.2. (In fact it was the dual of the lemma which we used in the
proof of Theorem 4.6.) This will be true for many of the results which we
prove and we shall not, in general, state the dual result explicitly.

We now use the properties which we have established for Baer subsets
to prove the following important properties of i iviti

Theorem 4.7. Let a be a quasiperspectivity of aprojective plane 2. Then o
is completely determined by % («) and the image of one element not in F ().
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Proof. Suppose «, f§ are two quasiperspectivities of 2 such that F@
= & (B)and X* = X* for some point X ¢ & (2)- The collineation o« " fixes
all of % () and at least one extra element, namely X. By Lemma 4.2
F(afp") is a closed configuration. But, clearly, F(@f1)D F (o) which is
a closed Baer subset. Thus, by Theorem 4.6, #(f™")=2 ie. apt=1
and a=f. 0

Lemma 4.8. If o is a quasiperspectivity of a projective plane 2 then
oy acts semi-regularly on the elements of 2 not in F(@).

Proof. We must show that if some power of o, o say, fixes an element
not in & (), then o = 1. But this follows immediately since & () C Z (@)
and & (o) is maximal. [J

For any collineation group I" let #(I') = NZo.

yel
We leave as a very easy exercise the following slight generalization
of Lemma 4.8.

Exercise 4.3. If I is any collineation group of a projective plane 2 such
that & (I') is a Baer subset show that I acts semi-regularly on the elements
of Z notin #(I').

The conditions of Theorem 4.7 and Lemma 4.8 may be relaxed slightly.
Again we leave this as an exercise.

Exercise 4.4. If I is any collineation group of a projective plane 2
such that % (I') is a maximal closed configuration, show that T acts semi-
regularly on the elements of 2 not in #(I').

Exercise 4.5. Let 2 be a projective plane. If I" is the set of all collinea-
tions fixing a given subset (elementwise, or merely as a set) show that I'
is a subgroup of AutZ.

4. Perspectivities
Theorem 4.9, Let 2 be a projective plane. If a+1 is a collineation

fixing a line 1 pointwise then there is a point V fixed linewise by a. Further-
more o fixes no other point or line.

. Proof. Since every line of 2 intersects L, each line of 2 contains a point
of F ().

Let B be any point not on . If B*= B then the line. joining B to any point,
A say, of 1 is fixed by a. So, in this case, B is incident with a line of #(a).
1f B*+ B then let P=BB*nl. Now (P By =P*B*=PB" (since « fixes all
points of I). Thus (PBY*=PB, so that B is on a line of F (a).

We have now shown that (o) is a Baer subset. Since, by Lemma 4.2,
Z(«) is closed, the theorem is proved by Theorem 44and Lemma4s. []
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It is important to observe that of course the dual of Theorem 4.9 is
also true. If a collineation « fixes a line I pointwise and a point V linewise
then o is called a (V, I)-perspectivity or a (V,l)-central collineation. The
point V is called the centre of « and [ is its axis. Two possibilities arise; if V
is on I we call o an elation, and if o is not on I, « is a homology. For con-
venience the identity is regarded as both a homology and an elation.

Clearly any ivity is also a ij ivity. In fact any non-
planar ij ivity is a perspectivity.

By Lemma 48, if  is any perspectivity, (o) induces a semi-regular
permutation group on the non fixed points of any line (other than the
axis) through the centre. Thus we have:

Lemma 4.10. Let 2 be a finite projective plane of order n with a per-
spectivity o of order k. Then either

(i) k|n and o is an elation or

(ii) k|n—1 and o is a homology. [)

From Theorem 4.3 we know that an involution is either planar or
a perspectivity.

Exercise 4.6. Let o be an involution of a finite projective plane whose
order n is not a square. Show that « is an elation (homology) if and only
if n is even (odd).

Since the 1dentity is a (¥, I)-perspectivity for any V and I, Exercise 4.5
and Theorem 4.9 show that the set of all (¥, ))-perspectivities is a subgroup
of the full collineation group of the plane. If I" is any collineation group
of a projective plane 2, let Ty 1) be the set of all (V, l)-perspectivities in I.
Then, clearly, Iy, is a subgroup of I" (the proof of Exercise 4.5 will prove
this also). Lemma 4.10 can now be strengthened in an obvious way.

Exercise 4.7. Let I' be any collineation group of a finite projective
plane of order n. Suppose for a given V and I, Iy 1 has order k. Show that
either (i) k|n in which case V is on I or (i) k|n—1 in which case V is
noton L.

If A is a fixed pomt of a collineation «, then for any collineation § we
have APC™'P = g*8 = 48 je. AP is a fixed point of Bt ap. If we write
7=p"" o then there is an obvious mapping between the clements of | (@
and #(y). This fact is utilized in the following lemma.

Lemma 4.11. Let 2 be a projective plane. If a is a (V, I)-perspectivity
of 2 and B is any collineation then B~ ap is a (V?, 1%)-perspectivity

Proof. Let X be any point of . Then X?"* is on L But this implies
that X?™*= X#"". Hence X* '*f— X so that B 'ap fixes I* pointwise.
Similarly B~ af fixes V' linewise and the lemma is proved. 1]

Corollary 1. If « is a (V, Iy-perspectivity +1 and n is any collineation
which commutes with «, then V™=V and I* = |.
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Corollary 2. If T is a collineation group of a projective plane P then,
for anyyeT and any point V and line |, Iy =y Typy=Twrm-

Exercise 4.8. If I' is a collineation group of a projective plane 2 show
that, if I'y.y%1, then for any yeT, I.y=Tw.n if and only if V'=V
and =1 -

Itis clear that the set of all perspectivities with a given axis forma group.
This group has many i i b before di: ing these sub-
groups we introduce a notation which we shall adopt for the rest of the
book.

Let I' be any collineation group of a projective plane 2. Then let:

I = group of all (¥, I)-perspectivities in I'.

Ton= &J"ru.n s

Le0= }R)Zru’.n .
Ta= Xg’rtx.n >
Tw= ‘gru.n 3

(The reader should carefully note the difference between I; and I'n; if
necessary refer back to the definition of I} in Chapter 1)

‘We shall show that each of the sets defined above is in fact a subgroup
of I Before doing this however we draw attention to an elementary
property of a perspectivity, which is really a re-wording of part of
Theorem 4.9.

Lemma 4.12. Let Pbe a projective plane. If a % 1 is a perspectivity with
axisland if k* =k for any line k # I, then k passes through the centre ofa. 1

Exercise 49. Ifaisa (4,1 ivity and f is a (B, I)-perspectivity
both non-trivial and with 4 + B, show that «f is a non-trivial (C, I)-per-
spectivity and C+ A4, C+B.

Theorem 4.13. Let I be a collineation group of a projective plane 2.
Then Ty, Iip,0p Tap Tipy are all subgroups of T, for all points P, Q and all
lines 1, k. Further T jy=a I and Ip, py=2 Ip, for all choices of P and L (Note
that the possibility that some, or even all, of these subgroups are trivial is
not excluded.)

Proof. By duality it is clearly sufficient to prove that Iy 5 and I are
subgroups for all lines 1, k and that I p=s Iy

Since I, is merely the set of perspectivities in I' with axis I, we have
already observed that I'y, is a group. We now show I ;) is a group for all
choices of k and I. We distinguish between the two cases k=1, k1.
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Clearly I'y, ) < I, in both cases so our proof will show that Ty.p is a sub-
group of Iy,

Case (a). k+1.

Let a, B be any two elements of I'y ;). Clearly k*=k” so that k™" =k.
Thus «f~" is an element of Iy, whose centre, by Lemma 4.12, lies on k
In other words «f ™" € I, and the theorem is proved.

Case (b). k=1.

We already know that I'p ,, is a group for any P and I. Thus we must
show that for a€ I, ;y and f € I, with A + B, A1l B, the collineation
2~ € Iy . Since af~" fixes | pointwise it must have a centre and we
need to show that this centre is on L In order to do this it is sufficient to show
X*#"" 4 X for any X not on L If X*#™* = X, then X*= X%, But, clearly,
since A is the centre of @, 4, X, X*are collinear. Similarly B, X, X* are also
collinear. But X“=X? implies that A, B are both on the line X X* Since
I=AB and X is not on , this is impossible. Thus «f~" is an element of
Ty with no fixed point not incident with [. In other words o~ € I}, , so
that I'y ;) is a subgroup of I',,.

It only remains to show Iy y<1 I, But this is virtually an immediate
consequence of Corollary 2 to Lemma 4.11. For any ye I, y! Ty
=T, for all X on L But for any X on I and any ye Iy, X?=X and
I'=1. Thus y™" Iy =T, for all X 11 and so, since Iy = | Ty we

Xt

have y ™' Ly py =Ty for all ye Ly, ie. [yy=ily. [

Exercise 4.10. Let IT = Aut#,(K) and let [ be the line z=0 in 25(K).
Determine the groups I, and I, for K = GF(2), GF(3), GF\ ).

Exercise 4.11. Using the terminology of Exercise 4.10 determine Oy
and I1, for an arbitrary field K. Show that I, is abelian and is elementary
abelian if K is finite; show that I, is soluble.

Remarkably little can be said about the possible structure for a group
Ip,yfor asingle choice of P and 1. In fact, it is known that givenany group I,
there is an infinite projective plane such that I' is contained in a subgroup
of the (P, I)-perspectivities. However, if it is known that the plane admits
non-trivial (P, I)-perspectivities for two distinct choices of P on 1, then we
have the following:

Theorem 4.14. Let 2 be a projective plane and let I' be an y collineation
group of 2. If Tp y is non-trivial for two distinct choices of Ponl then
T,y is abelian and all its non-identity elements have the same order (either
infinite or a prime).

Proof. We first show that any two elations with common axis, but
distinct centres, commute. Let @€ Iy, ,) and Belgy with A+B, a+1,
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p+1.ByLemma4.11, ™ afisan (A®, IP)-elation and so, since f§ has axis I,
B~apisa (4, )-elation. Similarly o™ Vgl e Iy (since B € Tpn)-

Consider o' f~*ap. Writing o« B~ af=0"1 (B~ 1 f) we see that
o« B afeTy- But similarly, writinga ™ ™ e =(a"* f~* @) f we have
« B aff€ gy Thus a™' B~ afe Iy pTpy But, since any non-
identity elation has a unique centre, Tunn =1 Thus af = fo.

In order to show that Iy, is abelian it is now sufficient to show that
two elations with the same centre commute. Let &, «; be any non-trivial
(A, )-lations and let f+1 be a (B, ]) elation for B+ 4, o, 05, B T. Then
by the above, o, f=Po; and a;f= o, By Exercise 4.9 the centre of
a, Bis different from A. But this implies that &, § commutes with a,. Thus
ay(en B) = (@ )ty =y (Bog) =y @ B since foy = . Cancelling f, this
gives o, &, =&, 0, and hence Iy ) is abelian.

Suppose Iy, contains an elation of finite order. Then I'y , contains an
element of prime order. Let y be a (C, ))-¢lation in I" of prime order p and
let 5€ Iy, for any D on LD +C. Since y&=23y, 0y =178 =8"€ Ipy-
But by Exercise 4.9 yd€ I, for some E on I, E+D (or C). Thus (739"
€Lyl ie GO =1= &°. This shows that every elation in I' with
axis | and centre distinct from C has order p. A similar argument with D
in the role of C completes the proof. [J

Corollary. Let 2 be a finite projectwe plane of order n and let T be
a collineation group of . If |Fap|>1 for at least two choices of A on 1
then Iy is an elementary abelian p-group where p is a prime divisor of n

Proof. Since 2 is finite, |['| is finite. The fact that p|n is a direct conse-
quence of Lemma 4.10.

Note that since Theorem 4.14 and its corollary are true for any collinea-
tion group of 2 then, in particular, they are true for Aut2. Thus if, for
any collineation group T, |I‘",',,| > 1 for two distinct choices of P on I then
all elations with axis [ in Aut# have the same order.

We now prove a simple lemma which gives a condition under which
the requirements of Theorem 4.14 are satisfied.

Lemma 4.15. Let 2 be a projective plane and let I' be a collineation
group of P. If |[ | >1 and |Tem|>1 with A, P on land A onm, then
[Fianl> 1.

Proof. The case I=m is trivial and so we may assume I[m.

Choose .+ 1,0 € [ and B+ 1, €Ty, and lety=a"'f " ap.

Cleatly, since A4°= A = A and I* =P =], we have 4’ = A and r=L1fX
is any point of I then X*~* = X, and thus X7 = X?*%# = (X? ™'« However,
since X~ is on the axis [ of o, X*™'*=X?"" so that X*"**#=X. Thus y
is a perspectivity with axis L

Similarly y fixes A linewise. In order to prove the lemma it is now only
necessary to show that y + 1. But PP 4 P which means, by Corollary 1 to
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Lemma 4.11, that «f=+Bo ie. y=o"*f~'of+1. Thus Lemma 4.15 is
proved.

Since, for any group I' of a projective plane 2 and any
line [ of 2, every element of I, is an elation, the non identity elements
of I'y 5 act as fixed point free permutations on the points of 2! Thus I,
induces a semi-regular permutation group on the points of 2. Combining
this with Theorem 3.12 gives:

‘Theorem 4.16. Let 2 be a finite projective plane of order n and let I'
be a collineation group of 2. Then, for any line | of 2, 1Ty y|n?.

Not only does I, induce a permutation group on the points of %,
it also permutes the lines of #' which pass through any point 4 of .
This gives:
Theorem 4.17. Let 2 be a projective plane and T a collineation group
of 2.
@) If Lis any line of P then. for any line m=1, (Tt =Ta1y where
A=Im.

1 2 is finite of order nand |Iy ;| > n then |Iy | > 1 for all B on L
(iii) If 2 is finite of order n then |mIy y)|n for any line m.

Proof. Before proving the theorem we recall the notation being used.
For any permutation group X on a set S, X,, where a€ S, is the subgroup
of X fixing a. Thus (I )., is the subgroup of the elations with axis [ fixing
the line m. But, by Lemma 4.12, this is precisely I, ,, where A= Im.

In order to prove the second part of the theorem, let B be any point
of . Then Iy ,, induces a permutation group on the n lines through B
other than . Applying Result 1.13 to this group, we have

el =lmT.n) - [Tt )l

for any line m through B. By hypothesis |7, ,| > n and, clearly, [mIy | <n.
Thus (), > 1 ie. [[g > 1.

Since (I, )= T4, for all m through A, m 1, |mIy | is the same for
all m through A, m+ 1. Thus, as there are n such lines, ImTlin. 0

5. (¥ D)-Transitivity

If 2 is a finite projective plane of order n with a collineation group I, then,
by Exercise 4.7, |Iy, 5| Snif V is on Land |Iy, 5| Sn—1if V is not on L.
If either of these bounds is attained, then Iy, must be transitive on the
non-fixed points of any line through ¥ A projective plane 2 is said to be
(V; D)-transitive if, for any distinct points A4, B with VA=VB, A+V +B
and AJl, Bl thereisa (V, I)-perspectivity o in Aut 2 with A= B.
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The ab ions about the bounds on the orders of p
groups in finite projective planes give:

Lemma 4.18. Let 2 be a finite projective plane of order n and let
I1=Aut?. Then

(i) 2 is (V, )-transitive for V on | if and only if |y »|=n

(ii) 2 is (V, I)-transitive for V not on l if and ordyifll‘l‘,(,,|=n— L0

If a projective plane 2 is (X, )-transitive for all points X on a line m
then 2 is said to be (m, I)-transitive; (A, B)-transitivity is defined dually.

If 1 is any line of 2 such that & is (I, )-transitive then [ is called a
translation line of # and 2 is said to be a translation plane with respect
to the line 1. Dually a point A is called a translation point if 2 is (4, A)-
transitive and 2 is-said to be a dual translation plane with respect to A.

If# is a translation plane with respect to a line I then we shall often refer
to 2 as a translation plane; i.e. we shall regard a translation plane as being
affine. However, as was seen in Chapter III, 2 together with I uniquely
determine 2" and vi . Thus the are clearly equival
and we shall feel quite free to take whichever of the affine or projective
viewpoints seems most convenient. This should not cause the reader any
confusion as we shall take great care to explain which viewpoint we are
utilizing at any given time. If o/ = 2" is a translation plane and I' = Aut.«/
then we call the group Iy, the translation group of of.

We now prove a theorem which shows that one does not need to be
given all the elations with axis [ bef knows that lisa lation line.

Theorem 4.19. If a projective plane P is (A, l)-transitive and (B, 1)-
transitive for distinct points A, B on | then 1 is a translation line of 2.

Proof. Let C be any point of l and choose X # Y such that CX =CY,
X, YXI,X % C+ Y. We must show there is a (C, I)-¢lation mapping X onto
Y. Let Z=AXNBY. Since 2 is (4, [)-transitive there is an (4, l)-elation
o € Aut 2 such that X*= Z. Similarly Aut2 contains a (B, )-elation g with
ZP =Y. Clearly X*/ = Y and of has axis I Let the centre of aff be V. Then,
since X*=Y, VX=VYie. V=XYnlBut C=XYnl,s0 C=V and the
theorem is proved. []

Exercise 4.12. If a projective plane 2 is (4, ))-transitive and (B, )-
transitive for A + B show that 2 is (4B, I)-transitive. (Theorem 4.19 is a,
special case of this where A. B are both on L)

Exercise 4.13. If | is a translation line of a projective plane 2 and
e Aut2 show that I* is also a translation line of 2.

Exercise 4.14. For any field K show that every line of ,(K) is a trans-
lation line.

Exercise 4.15. For any field K show that 2,(K) is.(m, )-transitive for
all lines m, [ and (4, B)-transitive for all points 4, B.
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The following theorem is almost a direct consequence of Exercise 4.13.

Theorem 4.20. (a) If | and m are translation lines of a projective plane 2
then every line through Im is also a translation line.

(b) If 2 has three non-concurrent translation lines then every line of ?
is a translation line.

Proof. Let IT=Aut?.

To prove (a) we merely show that I , 1s transitive on the lines through
Im distinct from I, and then use Exercise 4.13.

Let Q =Im and let h, k be any pair of distinct lines through Q such that
neither is I. Pick any point 4 on I, 4+ Q and choose H on h, and K on k
such that A, H, K are collinear. Since [ is a translation line, £ is certainly
(A, D-transitive. Thus there is an elation o € IT4 ;, such that H* =K. Since
Qis on I, Q*=0. Thus h*=(QHY'=Q*H*=QK =k, and hence I, is
transitive on the lines through Q and different from I. Exercise 4.13 now
gives that every line through Q is a translation line.

(b) The proof of (b) is very similar. It consists of showing that I7 is
transitive on the lines of # and again applying Exercise 4.13.

‘We leave the proof as an important exercise. []

A projective plane with the property that every line is a translation
line is called a Moufang plane.

6. Collineation Groups Containing P

We have already seen in Exercise 4.6 that mvolulory collineations of finite
planes of Sq! ordcr are p iti Smce any finite

group of even order contains i J have

been studied in considerable detail. We gwe here two slmple lemmas.

Lemma 4.21. Let 2 be a projective plane. If o is an involutory (A, I)-
homology and B is an involutory (B, I)-homology, with A+ B, then of is
an (ABn, l)-elation.

Proof. Clearly of is a perspectivity with axis I. We first show that «f

is an elation by showing that P* 4 P for all points P not on I. Suppose

=P and let P*=Q. Then P=P*"=Q’. Thus, since « and f are in-

volutory P#=Q and Q"= P so that 0* = PP = Q. But since «f + 1, o can

fix at most one point of #'. Therefore P=Q, and P*=Q=P, so P=4;
similarly however P=B and this is a contradiction.

Finally we must determine the centre of a. But clearly « and § both
fix the line 4B, thus «f fixes AB and so, by Lemma 4.12, of is an
(ABnl, D-elation. []

Lemma 4.22. Let 2 be a projective plane. If « is an mvolutory (4, a)-
homology of P and P is an involutory (B, b)-homology of 2 such that B is
onaand Ais onb, then of is an involutory (ab, A B)-homology of .
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Proof. Let y=(af)>

For any point X on a, X*=X. Thus X*# = X* which is again on a, so
that X=#= = XP = X, This gives X*#*/ = X?#= X for all X on a. Hence y
fixes a pointwise. Similarly y fixes b pointwise and so, since a+b, y=1,
and of is an involution.

Since the points 4, B, ab are non-collinear and are all fixed by ap, of
cannot be an elation. Thus, by Theorem 4.3, either a isa homology or « f is
planar. However, for any point P on a, P/ = P’ + P unless P=B or ab.
Thus, since off fixes only two points of a, & («f) cannot be a subplane so
that o is a homology.

Since off does not fix a quadrangle, every fixed pomnt of aff must lie
on either a, b or AB. But, as we have just seen, «f fixes exactly two points
on a and exactly two points on b. Thus 4B must be its axis, ie. off is a
(ab, AB)-homology. [l

*Exercise 4.16. Let Z be a finite group with two distinct elements o, f
each of order 2. Show that «, § are conjugate in <o, 8 if and only if of
has odd order. If «f has even order show that {x, B contains an element y
of order 2 such that y commutes with o and B. (This exercise is really an
elementary result from group theory. A proof is in [3])

Exercise 4.17. Let 2 be a finite projective plane. If o is an involutory
perspectivity of 2 and f is a Baer involution show that aff has even order.
(Use Exercise 4.16.)

If o, B are as n Exercise 4.17 then, by Exercise 4.16,there is an involutory
collineation y which commutes with o and B. But, as the following lemma
shows, this means that y must leave the subplane & (f) invariant and,
hence, induces a collineation on & ().

Lemma 4.23. If o, f are two commuting permutations on a set S and if
T={teS|t*=t} then B leaves T invariant.

Proof. Let t be any element of T. Then, since *=t, t** =1/, and so,
since af = Ba, 9% =1 =1%. But this means that, for any te T, "€ T, ie.
that B leaves T invariant. []

Thus, if o and B are the collineations of Exercise 4.18, the involution y
which commutes with o and  must induce a collineation of & (). Our
next problem then is to determine the action of y on & (f).

Lemma 4.24. Let 2 be a projective plane with a subplane 2. If a# 1
is a (V, I)-perspectivity of P leaving P, invariant, then Ve Py, 1€ Po and o
induces a perspectivity on %,.

Proof. Let X be any point of 2, then, since &, is left invariant by o,
X*e%,. Thus X X*is a line of %,. Let Y be any other point of %, such
that Y is not on X X then a similar argument shows that Y ¥ is also a line
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of #,. By Lemma 4.12, V is on X X* and YY* ie. V=XX“nYY? Hence,
since X X* and Y Y* are lines of %, Ve %,. Similarly € Z,.

Since o fixes I pointwise in 2, it clearly fixes / pointwise in 2. The same
reasoning shows that o fixes V lmewlse in %, and proves the lemma. []

We lude this i d y ion of ivities by proving
two important theorems which show how the existence of a comparatively
small number of perspectivities with a given axis / implies that [ is a trans-
lation line.

The first, due to André, is a much stronger form of Lemma 4.21. It has
many important consequences and in particular shows that the existence
of any two homologies with distinct centres but common axis / implies
the existence of a non-trivial elation with axis I.

Theorem 4.25 (André). Let 2 be a finite projective plane and let I' be
any collineation group of 2. If, for any line I, #" is the set of points Ve "
such that Iy, + 1 then A is a point orbit under Iy ,,.

Proof. Let A, A, ..., A, be the points of #. Note that this means
that Ay, 4, ..., 4, are the points of 2! which are the centres of non-trivial
homologies in I" with axis I.

Put hy=|I,p| for i=1,2,...,k, so that the number of non-trivial
homologies in I" with centre A4, and axis [ is h,— 1. Clearly the group of
all perspectivities with axis I is the union of the group of elations with the
set of non-identity homologies with axis I. Thus

3
Fol =il + 3 (= 1) ®
i
Since 1€ Iy, |Iy.p| 2 1. Thus, since k; 2 2 for all i, we have

[Tz 1+ k> k. v)]

By Lemma 4.11, I, permutes the elements of # amongst themselves
and, since the only element of I'y, fixing two points of 2 is the identity,
the permutation group induced on # is faithful. If we let r be the number
of orbits of I';, on #’ then, using the fact that the identity fixes k elements,
the homologies fixone, and the other collineations are fixed point free, we
apply Result 1.14 to get

ol =k 5 th—1). ®
Subtracting (1) from (3) gives =

(=D)Ll =k=Tual- @
Clearly r 2 1 and |Iy 5| Z 1, s0 that (2) and (4) imply r=1 and |I},, ol =k

Since I"‘, 1 induces a semiregular permutation group on the points of
#', each point orbit of I}, ;) in 2" has length k. But as # is an orbit of
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Ty, Ty must leave 3 invariant and so, since |#] =k =TI}, b Tn 18 tran-
sitive on the points of . []

The reader should prove as exercises the following very important
corollaries of Theorem 4.25.

Corollary 1. Let 2 be a finite projective plane and let o,  be two non-
trivial homologies with distinct centres A, B and the same axis . Then o, B>
contains an elation mapping A onto B.

Corollary 2. Let 2 be a finite projective plane such that, for some line 1,
each point of P is the centre of a non-trivial homology with axis . Then |
is a translation line of 2.

Theorem 4.26. Let & be a finite projective plane of order n and let I’
be a collineation group of ?. Suppose there is a line | and a point Q on |
such that |Ip|=h>1 for all Ainl, A+Q. Then |Fg,|=n, ie. 2 is
(Q, D-transitive.

Proof. Since each point of I, other than Q, is the centre of h— 1 non-
trivial elations there are at least n(h — 1) non-trivial elations in Iy, . Thus
|Fl Zn(h— 1)+ 1> n. So, by Theorem 4.17, |Fg.|=k>1. Since Q is the
centre of k — 1 non-trivial elations in Iy ;,, we have

[Fgpl=nth—1)+ k-1 +1=nh—-1)+k. (0]

Let A be any point of [ other than Q. If m is any line through A other
than I then, by Result 1.13,

[Pl =T dal - [T -

But, by Theorem 4.17, (Typ), = Fi4, and mly gf|n. Thus 1y, ,,[_hs
where s|n. Using (1) we have n(h— 1)+ k=hs|hn, ie. [nh— (n— 1| hn.
But this implies that either nh—(n—k)=nh or nh—(n—k)< § nh.

If nh—(n— k)< 3 nh, then $nh<n—k. But, since h>2, this would
imply n < 4 nh<n—k, i.e. k 0. Since this contradicts k > 1, we must have
nh—(n—K)=nhie.n=k Thus |Fgo|=n 0

Once agmn this theorem has important corollaries whose proofs we
leave as exercises.

Corollary 1 (Gleason). Let 2 be a finite projective plane and let I be
a collineation group of P. If, for some line L, |y y|=h>1 for all X onl
then lis a translation line.

Corollary 2. Let 2 be a finite projective plane and let I' be a collineation
group of 2. If, for some line I, |I, ;| >1 and I is transitive on the points
of 1, then L is a translation line. (Again we remind the reader not to confuse
T, (the subgroup of I' fixing I), with I', (the subgroup of perspectivities
with axis 1).)

*Exercise 4.18. Let 2 be a finite projective planeand let I be a collinea-
tion group of 2. If, for some line L, | Iy | > 1 and I is transitive on the points
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of I, show that ! is a translation line. (Hint: show that I; must be transitive
on the points of / and use Corollary 2.)

*Exercise 4.19. Let 2 bea finite projective plane and let I' be a collinea-
tion group transitive on the points of 2. If I contains a non-trivial elation
show that 2 is a Moufang plane.

Exercise 4.20. Let 2 be a finite projective plane. If ac# 1 is an (4, a)-
elation and B+ 1 is a (B, b)-homology with B on a but A not on b, show
that (o, B> contains a non-identity (B, a)-elation.

Exercise 4.21. Let 2 be a projective plane. If o= 1 is an (4, a)-elation
and B+ 1 is a (B, b)-elation with AI'b, BX a show that if X is any point
of 2 not on AB such that X*/ =X, then X =ab.

Exercise 4.22. Let o bea (V, I)-perspectivity of a projective plane 2 and
let 2, be a subplane of £ such that Ve 2, and I € 2,. I, for some point A
of P, A€ P, and A + A show that 2§ = P, i.e. that « leaves #, invariant.

Exercise 4.23. Let o = 2" be an affine plane and let o/, = 2} for some
subplane Z, containing I of 2. If « is any perspectivity with axis [ show
that either /5=, or there is at most one point of & common to &/,
and /§. (What can be said about « if there is (i) one common point or (ii)
no common point?)

7. Desargues Configuration

We now consider the confi of the exi of
perspectivities in a projective plane 2. If o is a (¥, I)-perspectivity of 2 then,
by Theorem 4.7, the action of « is completely determined by the image
of a single non-fixed element.

Suppose we are given P for some non-fixed point P,. Then the image
of P, for any non-fixed point P, not on P, ¥, may be constructed as follows:
Let P,P,nl=X. Then, since P,=VP,nXP,, Pi=(VP*n(XP,)
= VP, X P}. (Note that (VP,)*= VP, since « fixes V linewise.) For this,
and all the following constructions, the reader is strongly urged to draw
a rough diagram so that he can see exactly what is going on.

Now let P be any point which is not on either of the lines VP, ot VP,.
Then we may construct P§ by the above construction, but we now have
achoice as we may use ither P, or P, as the other point in the construction.
Since Pj is unique, either choice must give the same point so that certain
incidences are forced upon 2. Let P, Pynl=Y and P3P,nl=Z. Then,
from the above, P§=VP;nZP;=VP;nYP;.

Any subset of the points and lines of 2 is called a configuration?, and
the configuration formed by the ten points V, X, Y, Z, P,, P§, P,, P}, Ps, P}

2 See Chapter XI for an abstract definition.
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and thetenlines I, VP, P, VP, P§, VP3 P3, X P P,, X P P3, YP, P3, Y P3 P5,
ZPyP,, ZP3P; is called the Desargues configuration. Clearly any plane
which admits a perspectivity has many Desargues configurations. However
before di ing any of this ion we give a more
formal definition.

Let 4, (i=1,2) be a triangle with vertices 4;, B, C; and opposite edges
a;, b, ¢;. If there is a point V such that VA, =VA,, VB,=VB, and
VC, = VC, then the triangles 4,, 4, are said to be in perspective from V.
Being in perspective from a line [ is defined dually.

The earlier discussion on perspectivities may be summarized by

Theorem 4.27. Let 2 be a projective plane. If o 1s a (V, I)-perspectivity
and if 4 is any triangle having no side or vertex fixed by o, then the triangles
A, 4% are in perspective from both V and . []

Note. Here we are using the “obvious” notation that if 4 is the triangle
determined by 4, B, C then 4° is the triangle ABC.

We are now able to give a formal definition of the Desargues con-
figuration. Let 4, (i = 1,2) be any two triangles with vertices 4;, B;, C;and
opposite edges a;, b;, ¢; such that they are in perspective from a point V/
and a line L. Then the configuration formed by the ten points V, Ay, 4;,
By, B,. Cy, C3, layay, Ib by, lcyc; and the ten lines |, a;, a, by, by, €4, €2
VA, Az, VB, B,, VC,C, is called the Desargues configuration. (See Fig. 5.)
In the special situation where V is on I the configuration is often referred
to as the minor or little Desargues configuration. (Draw a diagram!)

Fig.s by b,
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Thus defimtion does not depend on the existence of any perspectiviies
of the plane. In Chapter XI we exhibit infinitely many infinite planes which
admit no non-identity perspectivities. (Indeed we even exhibit some which
admit no non-identity collineations at all.)

It is not known whether finite projective planes must admit per-
spectivities (or even collineations). However the following theorem, due to
Ostrom, shows that every finite plane must contain a number of Desargues
configurations.

Theorem 4.28. Any finite projective plane % contains a pair of triangles
which are in perspective from a point and a line.

Proof. Let the order of 2 be n. We shall assume n2 5 since we shall
show (see Chapter V) that, up to isomorphism, 2,(m) is the only plane of
order m if m<4 and the theorem is easily seen to be true for all planes
2,(K), where K is any field (see Exercise 4.24).

Let [ be any line of 2 and let V be any point of 2. Let I, I, I, be
any three distinct lines through V and let A, B be any distinct points of /
such that neither is on any of the three lines I;, I, I5. (Those choices are
all possible since n>4.)

‘We now construct a mapping « from the points of I,\{V, II,} into the
points of I\{4, B, I, I1,} as follows:

Pick any point X € [;\{V, II,}. Join A to X and let X, = AX n [,. Now
join B to X, and let X3 =BX,nl,. Finally join X to X; and define « by

=X X301 (Once again the reader is urged to draw a diagram.)

Clearly, for any given X, X* is unique. Also it should be clear that
for any X el,\{V,1l,} the point X*eI\{A, B, ll,,Il}. The number of
choices for X is n— 1 while the number of possible values for X~ is at
most n— 3. Thus there exist two distinct points ¥, Z on I, such that Y* =
For any two points P, Q in I, \{V, lI,}, the triangles PP, P;, 00,05 are in
perspective from V. Also PP,nQQ, =Alland P,P;nQ,0;=B1 1 Thus
the triangles are in perspective from I if and only if PP;nQQ is on L. But
PP;nl=P*and QQ3n1=0Q" so that the triangles PP, P3, 00,05 are in
perspective from [ if and only if P*= Q" Thus the triangles YY, Y; and
ZZ,Z5 are in perspective from both ¥ and L. []

It is worth noting that Theorem 4.28 implies the existence of many
Desargues configurations in a given finite projective plane. There is at
least one such configuration for each choice of ¥, 1, I, I, I3, 4, B.

We have already seen that the existence of a single perspectivity of
a projective plane 2 implies the existence of many Desargues configura-
tions in 2. Since it is not known whether a finite plane must admit a col-
Imeauon, it is not known whether the existence of a Desargues conﬁgura~
tion in a finite p ive plane the existence of a p
However we now show that the existence of suﬂ'lc:ently many Dcsa:gum

is equivalent to the exi: of
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A projective plane 2 is said to be (V, I)-desarguesian if, for each pair
of non-degenerate triangles 4, (i = 1, 2) with vertices 4;, B;, C;and opposite
sides a;, by, ¢; such that (a) 4; and 4, are in perspective from V and (b)
ayay, by b, are on I, it follows that ¢, ¢, is on L.

Exercise 4.24. Show that, for any field K, 2,(K) is (V, [)-desarguesian
for all choices of V and 1.

‘We now prove the very important fact, originally proved by Baer, that
the configurational property of being (V, I)-desarguesian is equivalent to
being (V, I) itive, which is a collineation group property.

‘Theorem 4.29 (Baer). A projective plane 2 is (V, I)-transitive if and only
if @ is (V, )-desarguesian.

Proof. Suppose 2 is (V, l)-transitive. Then Theorem 4.27 implies that
2 is (V, I)-desarguesian.

Suppose 2 is (V,)-desarguesian. If 4, 4, are any two distinct points
such that A+ V# A4, VA=V A, and neither A or A, is on I, then we must
construct a (¥, I)-perspectivity & with 4°=4,.

We define a mapping o= t,4, on the points of (#\AA,)u{V} by:

@ ifXisonl X*=

(ii) Ve=V;

(iii) if B is not on [ or AA,, let Y=InAB, B, =YA,nVB and define
B, =B
(Note that all we are doing here is defining « in such a way that if the
required collineation & exists then & and « act identically on the points
of (P\AA4)U{V})

For any point B of #\A4,, B # V and not incident with [ we can define
a mapping B =dagg,, where By =B, in a similar way. We now show that,
for any point C not on any of the lines I, A4,, BB, C*=C".

If Cis on AB then clearly C*= C”. (This is because YB, = Y4, so that
C*=YA,;nVB=C’. Note that this uses the fact that B, = B)

Suppose C is not on AB. Let C,=C% P =ABnl, Q=BCnl and
R=CAnl Thetriangles ABC, A, B, C, arein perspective from V. Further-
more, by the definition ofa, ABN A4, B, = Pand CANC, 4, = R. Thus since
P and R both lie on [ and & is (¥, l)-desarguesian, BCn B, C, must also
lie on I. But BCnI=Q. Hence @, B,, C, are collinear and C, =C’.

We can now define a mapping & on the points of 2 by means of 4, 4,
and any other pair B, B* where Bis not on either V4 or I In order to extend
8 to a collineation of 2 we must define its action on the lines.

Given any line m distinct from [ and AA4,, pick any point T on m, but
not on [ or AA,, and define m® to be the line joining Im to T°. If we define
P=1and (44,)°=(A4,) then all we need to do to show that § is a col-
lineation is to show that m® is independent of the choice of T. To show
this we merely need to show that S° is on m® for all S on m, ie. if S is any
other point of m we must show that Im, S° T? are collinear. But the two
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triangles AST, A,S°T? are in perspective from V and both AS A4, 5% and
ATNAT? are on I. Thus, since 2 is (V, l)-desarguesian, S* TS Tis on I.
Hence & is a collineation and the theorem is proved. []

A projective plane 2 is called d ian if it is (V, [)-d
for all choices of V and L As a result of Theorem 4.29, a Moufang plane
is (¥, )-desarguesian for all choices of ¥ and [ with V on I.

As a final remark, concerned with research in this area, we mention
that there is a classification called the “Lenz-Barlotti Classification™ which
lists all ibilities for the ion formed by the total set of points V'
and lines  for which a projective plane may be (V, I)-desarguesian. The list
is exhibited in [1]. A great amount of research has been carried out on
this list in an attempt to find examples of planes with a given configuration
or, alternatively, to show that such a plane cannot exist. For a recent
survey article on the work in this direction see [2].

Exercise 4.25. If | is a translation line of a projective plane 2 show
that Iy =T, - Iip, for any A,B on I, A+ B.

Exercise 4.26. If 2 is a Moufang plane and if I" is the subgroup of
Aut2 generated by all the elations of 2 show that I' is transitive on the
triangles of 2.

*Exercise 4.27. Let 2 be a finite projectve plane of order n and let
1= Aut2. If there is a line I such that |IT,, ,| > n show

(2) that |1, ,|>1forall Aon,

(b) that n is a prime power.

(Part (a) is straightforward but (b) is difficult.)

*Exercise 4.28. Let 2 be a projective plane such that Aut# fixes no
point or line of 2. If 2 is (V, )-transitive for some point V and line I with V
on I, show that 2 is a Moufang plane. (Hint: refer back to Lemma 4.15
and Exercise 4.18.)

Exercise 4.29. Let 2 be a projective plane. If « is a Baer involution
with Baer subplane %, and if § is an involutory (¥, I)-elation such that [ is
a line of 2, but ¥ is not in %, show that «f has order 4. Show also that
[<o, BY| =8, that <o, B contains exactly two Baer involutions and that
<@, B> has a normal subgroup of order 4 consisting of elations with axis I.
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V. Coordinatization

1. Introduction

In this chapter we give a method for coordinatizing a projective plane
with a planar ternary ring and establish various algebraic properties of the
coordinatizing systems. (A few diagrams are included; but the reader is
urged to draw additional ones at every opportunity to illustrate the geo-
metric ion behind the braic p ies of the planar ternary
rings.) Latin squares are introduced and their relation with projective
planes is discussed. This discussion ends with a set of exercises using latin
squares to show, up to isomorphism, the uniqueness of the projective
planes of orders 3 and 4.

The method of coordinatiziation given in this chapter is not the only
one in common use. Although we shall always use the method given here
there is an appendix to discuss other methods.

This chapter is very elementary and requires virtually no previous
knowledge. It may, in fact, be read before Chapter IV.

2. Introduction of Coordinates

In order to show that the planes 2, (K) are not the only examples of pro-
jective planes it is necessary to have ways of representing projective planes
and of determining whether two given projective planes are isomorphic.
By far the most powerful concept in this respect is that of coordinatization.

Let 2 be a projective plane of order n and let R be any set of symbols
with cardinal » such that 0, 1€ R, 0% 1, but the symbol “c0” is not in R.
Choose any line of 2 and label this line I, and then pick any other two
lines I, I, with the only restriction that Iy, [, 1,, form the sides of a non-
degenerate triangle. Let X =lyl,, Y=l and O=1;1;. Finally let I be
any point not incident with any side of the chosen triangle.

We now use the elements of R plus the extra symbol oo to coordinatize
2 relative to the quadrangle 0, X, Y, I. However we first label three more
points; A=XInl;, B=YInl, and J=ABnl,.

In order to coordinatize 2 we assign the elements of R to the points
of [,\Y in an arbitrary manner except that 0 is assigned to O and 1 is
assignedto A.Ifce R isassigned to the point C € [, then we write (0, ¢)for C.
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Fig.6

Fig.7
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For any point D on I, D+ X, let D'=JDnl, and then, if D' is (0, d), we
write (d, 0) for D. Since 0 has been assigned to 0, 0 has been given unique
coordinates (0, 0). For any point E not on L, if XEnl, is (0,g)and YENI,
is (f; 0) then E is given the coordinates (f, )- In this manner every point
of 2= has been given unique coordinates (x, y) where x, y€ R

If M is any point of L, other than Y and if the line joining M to (1,0)
meets I, in (0, m) then M is given th dis Finally dinati
Y by (o) and, in this way, every point of 2 has been coordinatized, the
coordinatization depending only on the initial choice of 0, X, Y, I and the
way in which the elements of R are assigned to the points of ,\Y. (Sec
Figs. 6 and 7.)

We now coordinatize the lines in a way that utilizes the coordinatiza-
tion of the points. If  is any line not containing Y then, if I meets [, at the
point (m) and I; at the point (0, k), we give I the coordinates [m, k). If I
contains Y but is distinct from I,, then we call [ the line [k} where k is
determined by Inl, =(k, 0). Finally we call L, the line [c0] and in this
way we have coordinatized every point and line of 2. (See Fig. 8) Having
done this we must now build into our coordinatization system a method
for determining whether two given elements are incident.

(m)

(0Kk) {01

(bl
[mk1 Fig 8
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3. Planar Ternary Rings

If & is any set then a ternary operation T on & is a rule which assigns to
any three ordered elements g, b, ¢ of & a unique element T(a, b, c) of &
A non-empty set & with a ternary operation T is called a ternary ring
which we denote by (¥, T).

If a projective plane 2 has been coordinatized by the elements of a set
R in the manner described in Section 2, then we use the incidences of 2
to define a ternary operation Ton R as follows; if a,b,c€ R, T(a, b, c) =k
ifand only if (b, c) is on [a, k]. Thus (0, k) is the intersection of I, with the
line joining (a) to (b, c) so that, given a,b, c, the value of k is uniquely
determined. (See Fig. 9.)

Theorem 5.1. Let 2 be a projective plane coordinatized by a set R. If T
is defined by T(a, b, )=k if and only if (b, c) is on [a, k] then the following
properties hold.

(A) T(a,0,c)=T(O,b,c)=c for all a,b, ce R.

(B) T(a,1,0)=T(1,a,0)=a for all ae R.

(C) If a,b,c,de R, a%c, then there is a unique x € R such that T(x, a, b)
=T(x,c,d).

(D) If a,b,ceR then there is a unique x€ R such that T(a,b,x)=c.

(E) If a,b,c,deR, a%c, then there is a unique ordered pair x,y€ R
such that T(a,x,y)=>b and T(c,x,y)=d.

Proof. (A) T(a,0, ¢)= k implies that the point (0, ¢) is on the line [a, k],
ie. (0,¢) is on the line joining (a) to (0, k). But any line intersects I, in a
unique point. Thus (0, ¢)=(0, k), ie. c=k and T(a,0,c)=c.
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T(0, b, &)=k implies (b, c) is on the line joining (0) to (0, k). But (b, <)
is the intersection of the line joining (0) to (0.¢) with the line joining ()
to (b, ¢). Thus, since the line joining (b. ¢) to (0) has a unique intersection
with I, c=k and T(0,b,¢)=c. g

(B) Ti(a, 1,0)=k implies that (1,0) is on [a, k], ie. (1,0) 1s on the line
joining (a) to (0, k). But () is the intersection of the line joining (1,0) to
(0, @) with ,,, andso, since the line joining (1, 0)to(a) intersects ; ina unique
point, (0, k)=(0,a) or k=a. Hence T(a,1,0)=a.

T(1, a,0) = k implies (a,0) is on the line joining (1) to (0, k). But (a,0)
is the intersection of I, with the line joining (1) to (0, a). Thus (0,a)=(0, k)
and T(1,4,0)=a.

(C) Leta,b,c,deR,a*c. Then there is a unique line joining (a, b) to
(c, d). Since a # c this line does not pass through (o) and, hence, intersects
1 in a unique point (m) where me R. If this line also intersects I, in (0, k)
then T(m, a, b)=T(m, c,d)=k,and so since (m) is unique, there is a unique
x &R such that T(x,a,b)=T(x,c,d).

(D) T(a,b,x)=c if and only if (b,x) is on the line joining (a) to (0, ¢).
But, for any x, (b, ) is on the line joining (2) to (b, 0). These two lines
intersect in a unique point and so there is a unique x such that T(a, b, x)=c.

(E) T(ax,y)=bifand onlyif (x, y)is on the line [a, b] and T(c,x,y)=d
i and only if (x, y) is on [c,d]. But the lines [a,b] and [c,d] intersect in
a unique point which, since a=c, is not on 1,- Thus there is a unique
ordered pair x, ye R such that T(a, x,y)=b and T(,x, y)=d. o

Properties (A), (B) of Theorem 5.1 reflect the fact that O, the point
(0,0), and I, the point (1, 1), play a special role in the coordinatization of
& and it is not really surprising that 0, 1 have special properties in the
resulting ternary ring. Any ternary ring with two distinct elements 0, 1
satisfying properties (A)—(E) of Theorem 5.1 is called a planar ternary ring,
which we shall usually abbreviate to PTR.

Theorem 5.2. If (R, T) is a PTR then the structure 2 defined as Jfollows
is a projective plane. The points of 2 are ordered pairs (x, y), where x,y€ R
together with elements of the form (x), where x€ R and (o) where o is a
symbol not contained in R. Lines are represented by ordered pairs [m, k],
where m, ke R together with elements of the form [m], where meR and
[oo]. Incidence is defined in the following manner:

(x,y) is on [m, K]<>T(m, x, )=k,

(x,) ison[k] <x=k

(x) is on [m, k]<>x=m,
(x) is on [c0] for all x € R and (c0) is on [K] for all ke R. Finally (c0)
is on [0].

Proof. We first show that any two points are on a umque line. fac
then, by (C) of Theorem 5.1, for any given b,d € R there is a unique m€ R
such that T(m, a, b)=T(m, c,d). Thus,if a%c, the points (g, b), (¢, d) are on
the unique line [m, T(m, a, b)].
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Clearly the two points (a, b), (a, d) are on the line [al. If (a,b), (a, d)
were also on a line [m, k] then we would have T(m,a,b)=k=T(m,a, d)
which contradicts (D) of Theorem 5.1. Thus there is a unique line joining
any two distinct points such that neither is on [c0].

Let (m) be any point not (o) on [c0] and (g, b) any point not on [co].
Any line through (m) is either [c0] or of the form [m, k] for some k, and the
line [, k] passes through (a, b) if and only if T(m, a, b)=k. But, since T
is a ternary operation, T(m, a, b) is uniquely determined by m, a and b so
that [m, T(m, a, b)] is the unique line of % containing (m) and (a, b). Since
any line not [c0] which contains (o) is of the form [k] for some ke R,
the unique line of : joining (c0) to (a, b) is [a]. Finally (m,), (m,) clearly
have [co], and no other line, in common so we have shown that any two
points of 2 are on a unique line of 2.

In order to show that any two distinct lines of 2 intersect in a unique
point of 2 it is sufficient, by Exercise 3.2, to show that they have at least
one point in common. We first consider two lines [m;, k;1, [m,, k,]. If
my m, then, by (E) of Theorem 5.1, there exists a unique ordered pair
(a, b) such that T(m,, a, b) =k, and T(m,, a, b) =k, so that the point (a, b)
is on both [m,, k,] and [m,, k,]. If m, =m, then (m,) is on both lines;
hence any pair of distinct lines of the form [m, k] have a common point.
Clearly the line [m, k] meets [c0] at (m) so, in order to show a line of type
[m, k] intersects any other line, we need only consider the intersection of
[m, k] with [K], h + m. But these two lines intersect in the point (h, k') where
' is given by T(m, h, ') =k, (i’ exists by (D) of Theorem 5.1). Since any
two lines [m, ], [m,] intersect at (o), we have shown that any two lines
of 2 intersect in a unique point of 2.

Finally we must exhibit a quadrangle in 2. Let 4=(0), B =(c0),
C=(0,0), D=(1,1). Then AB=[c0], BC=[0], CA =[0,0] and it is clear
none of these lines contains either of the other points. Thus 4, B, C, D
is a quadrangle and 2 is a projective plane.

Note that if we coordinatize 2 by choosing (o) as Y, (0) as X, 0,0)
asO,(1,1)as ] and then assign be R to (0, ) on O'Y we get a PTR identical
to (R, T).

If (R, T) and (R', T") are two ternary rings we say that (R, T) is iso-
morphic to (R', T') if there is a one to one mapping « from the elements
of R onto R’ such that (T(a, b, A))* = T"(a?, b%, c) for all a,b, c€R.

Exercise 5.1. Let 2 be a projective plane. If a set R is used to coordi-
natize 2 by using a quadrangle 0, X, Y, I and if (R, T), (R, T') are two
distinct PTR’s which arise by assigning the elements of R to the points
of OY in different ways, show that (R, T)= (R, T").

Exercise 5.2. Let 2 be a projective plane. If (R, T) is a coordinatizing
PTR relative to 0, X, Y, I and if (R, T') coordinatizes 2 relative to O, X',
Y, I, show that (R, T)=(R’, T") if and only if there is a collineation
weAut? with 0°=0', X*=X', Y=Y, I°=T.
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Since (x, ) is on [k] if and only if x=k, we might refer to [k] as the
line x=k.

Before we discuss the algebraic properties of PTR’s, it is worth noting
that there are many ways of coordinatizing a projective plane even after
the dinatizing set R and the quad le 0, X, Y, I have been chosen.
‘As well as the one adopted here there are two others in common use, and
a brief discussion of these systems is given in the appendix at the end of
the chapter

4. Algebraic Properties of Planar Ternary Rings

A non empty set G with a binary operation - is called a loop if:
(i) a-x=b has a unique solution in x for any a,b€ G.

(i) y-a=b has a unique solution in y for any a,b€ G.

(iii) G has an element e such that e-x=x-e=x for all xeG (the
element ¢ is called an identity of G).

A system which satisfies (i), (i) is called a quasigroup and we exhibit
a quasigroup which is not a 1oop. G ={a, b, c} and the operation - is given
by the following “operation” table.

a b c
a a b c
b c a b
c b c a

In case any reader has not met such a table before, we also write out the
complete effect of - so that the reader may learn how to interpret the table:
a-a=a, a-b=b, a-c=c, b-a=c¢, b-b=a, b-c=b, cra=b, c-b=¢,
c-c=a.

An “operation” table for a binary system is often called a Cayley table.

Loops have much less structure than groups and very few of the ele-
mentary theorems about groups extend to loops. Certainly there is no
obvious equivalent to Lagrange’s theorem and to illustrate this we exhibit
the Cayley table for a loop with five elements in which each element has
order 2;

l e a b c d

ESENEC Y
ENENEC R
LISV
aAae 6o
RN
LG
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Exercise 5.3. Defining 1somorphism of loops in the obvious way, show
that, up to isomorphism, there is only one loop of order S in which each
element has order 2,

We now introduce binary operations of addition and multiplication
intoa PTR (R, T)in such a way that (R, +)and (R¥, -), where R* is defined
as the set of non-zero elements of R, are loops. For any a,be R we define
a-b=ab=T(a,b,0) and a-+b=T(1, a,b). Since T is a ternary operation,
both ab and a +b are uniquely determined by a and b. (See Fig. 10.)

0 T\
Fig. 10

Theorem 5.3, If (R, T) is a PTR then (R, ++) and (R¥,-) are loops with
0, 1 as respective identities.

Proof. (i) Addition.

For any a€R, 0+a=T(1,0,a)=a and a+0=T(1,a.0)=a (by (A)
and (B) of Theorem 5.1). Thus (R, +) has 0 as an identity.

The equation a+x=>b has a unique solution for x if and only if
T(1,a,x)=b has a unique solution for x. But this is true by (D) of
Theorem 5.1,

The equation x+a=>b has a unique solution for x if and only if
T(1,x,a)=b has a unique solution for x. By (E) of Theorem 5.1 there
exists a unique ordered pair x, y such that T(1, x, y)=b and T(0, x, y) =a.
But, by (A), T(0, x, y) =ahas y = a as a solution and so there exists a unique
x such that T(1, x, @) =b. Hence, (R, +) is a loop.

(i1) Multiplication.

In this case we first have to show that R* is closed under multiplication,
ie. thatif x+0and y+ 0 then xy % 0. Suppose xy =0 and y #0. Consider
the equation T(y, y, 0)= T(y, 0, 0). By (C) there is a unique solution for u,
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and so, since u=0 is certainly a solution, the only solution to T(x, ,0)
=T®0,0) is u=0. But since xy=0, T(x,)0)=0 and, certainly,
T(x,0,0)=0. Thus x =0 and R* is closed under multiplication.
By (B)of Theorem 5.1,1 - x= T(1,x,0)=xandx- 1= T(x, 1.0)=x.s01
is an identity element for (R¥,-).
tion ax = b has a uniq lution for x ifand only if T(a,x,0)=b

Theeqt
has. By (E) of Theorem 5.1 there is a unique ordered pair (x, y) such that

T(a,x,y)=b (U]
and
T(0,x,5)=0. @
Thus, since (2) implies y=0, T(a, x,0)=b has a unique solution for x.
The equation xa=b has a unique solution for x if and only if
T(x, a,0) = b has. By (C) of Theorem 5.1, T(x, a,0) = T(x, 0, b) has a unique
solution for x (since a#0), and so, since, by (A), T(x,0,b)=Db for all x,
T(x, a,0)=b has a unique solution and (R¥,-) is a loop.
A PTR was defined as a ternary ring which satisfied conditions (A)—(E)
of Theorem 5.1. We now show that if the ternary ring is finite then one of
these conditions is a consequence of the other four.

‘Theorem 5.4. A finite ternary ring satisfies conditions (C) and (D) if
and only if it satisfies conditions (D) and (E).

Proof. Suppose (R, T) satisfies conditions (C) and (D).

Let a,ceR, a%c. If for some b,deR the equations T(a,x,y)=b,
T(c, x, y) =d have no solution for x and y then, since R is finite, for some
other pair by, d, € R the equations T(a, x,y)=b, and T(c, x, y)=d; have
at least two solutions. Thus, in order to prove that (E) is satisfied, if suffices
to show that for given a, b, ¢, d € R(a= ¢) the equations T(a, x,y)=b and
T(c, x, y) = d have at most one solution for the ordered pair (x, y). Suppose

() T(a,x,y)=b="T(au,1)
and

@) Tle,xy)=d=T(uv)

If x =u then T(c, X, y)=d = T(c, X, v) and, by (D), y=v. If x+u, then
T(z, x, y)= T(z 4, v) has distinct solutions z=a and z=c. Since this con-
tradicts (C), T(a,x,¥)=b, T(c, X, y)=d have a unique solution for x, y,
ie. (R, T) satisfies condition (E).

Suppose (R, T) satisfies conditions (D) and (E).

Given a, b, ce R (a+ c) we define for each x€ R the element xA given
by T(x,a,b)=T(x, ¢, xA4). Given x, the element xA is unique by (D), and
so, in order to show that (R, T) satisfies condition (C) we have to show
that 4 is a one-to-one mapping from R onto itself. Since R is finite it is
sufficient to show that 4 is one-to-one.

Suppose we have two distinct elements X, y of R such that xA=yA.
Then T(x,a,b)= T(x,c,xA) =g and T(y,a,b)=T(,¢, xA)= h. This means
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the equations T(x,u,v)=g, T(y,u,v)=h with x+y have the solutions
u=a, v=>b and u=c, v=xA. But, by (E), the equations T(x,u,v)=g,
T(y, u,v)=h have a unique solution for (u, v). Since this contradicts the
fact that a % ¢, A must be a one-to-one mapping from R onto itself and the
theorem is proved. []

This theorem now enables us to prove a very strong theorem about
finite substructures of planar ternary rings.

Theorem 5.5. If (R, T) is a PTR and (R,,T) is a finite non-empty
ternary subring of (R, T), then either R, consists of O alone or (R,, T) is
planar.

We first prove a lemma.

Lemma 5.6. If a finite ternary ring (R, T) satisfies (D) and if equations
of the form T(x,a,b)=T(x,c,d), asc, have at most one solution for x,
then they have exactly one solution for x.

Proof of Lemma. Given x,a,b,cgR (a+c) define x4 by T(x,a,b)
=T(x,¢,xA). Then, by (D), x4 is uniquely determined. If x =+ y but
xA=yA, then T(x,a,b)=T(x,c,xA) and T(y,a,b)=T(y,c, xA), which
implies that T(u, a, b)= T(u, ¢, xA) has distinct solutions u=x and u=y
and contradicts our assumption. Thus 4 is one-to-one and, since R is
finite, onto. Hence there is a unique x with x4 =d and T(x, a, b) = T(x,c,d)
has a unique solution.

Proof of Theorem 5.5. For fixed a, b € R, consider the mapping S given
by xS =T(a,b, x). Since (R, T) is a finite ternary ring, R, is closed under
T,and xS € R, for all x € R,. Furthermore, since (R, T) is planar xS =yS
if and only if x=y (by condition (D) of Theorem 5.1). Thus since R, is
finite, S is a one-to-one mapping from R, onto itself and R, satisfies (D).

Since every element of R, is also an element of R any equation T(x,a,b)
=T(x,c,d) (a,b,c,de Ry, a%c) has at most one solution in R,. [It has
exactly one solution in R, by (C), but this may not lie in R,.] Hence, by
Lemma 5.6, such equations have exactly one solution in R,. This implies
that (R,, T) satisfies (C) and (D) and thus, since R, is finite, (R,, T) also
satisfies (E) (by Theorem 5.4).

We must now show that either Ry={0} or 0,1€ R, thus finishing
the proof of the theorem.

Suppose R, = {a}. Then, since R, is closed under T, T(a, a,a)=a. If
a=+0 the equation T(x,a,a)=T(x,0, a) has distinct solutions x=0 and
x=ain R, since T(a,0,a)="T(0,0,a)=T(0, a, ) =a by (A). But this con-
tradicts (C), and s0 if R, has only one element then R, = {0}.

Suppose a, b € Ry(a + b) and consider the equation T(x, @, ¢) = T(x, b, ¢)
for any c e R,. Equations of this type have a unique solution in R which,
by application of Lemma 5.6, must lie in R,. Since, clearly, x =0 is a solu-
tion, we have 0 € R,.
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Finally since T(x,a,0)=T(x,0,a) for a€Ro, a%0, has the unique
solution 1in R, 1€R,. [

Exercise 5.4. Let R be the set of rationals and let T' be given by
T(a, b, c) =ab+c. Show that (R, T) isa PTR. If R, is the subset of integers
show that (R,, T) is a ternary subring which is not planar.

As an example we now find a PTR to coordinatize the plane 2,(K)
for any skewfield K. Changing the notation of Chapter 11 a little we recall
that 2, (K) was defined as follows.

Points of 2, (K) are ordered triples (x,,2)+ (0,0,0) where x, y, ze K
with (x, y, 2) = (xk, yk,zk), k +0; lines of 2,(K) are ordered triples [1, m, n]
+[0,0,0] where I,m,ne K with [I,m,n]= [kl km, kn], k=0; incidence is
given by (x,y,2) is on [l,m,n] if, and only if, Ix+my+nz=0.

Choose as [00] the line [0,0, 1]. Choose (0, 1,0) as (o), (1,0,0) as (0),
(0,0,1) as (0,0)and (1,1, 1) as (1, 1). Take as the elements of the PTR the
elements of K and assign k € K to the point (0, k1)

The point (1, 0) is the intersection of the line joining (0,0) to (0) with
the line joining (c0) to (1, 1) Thus it is the intersection of [0,1,0] with
[—1,0, 1] which is the point (1,0, 1). Thus (1), which is the intersection
of [oo] with the line joining (1,0) to (0, 1), is the intersection of [0,0, 1]
with [—1, —1,1], ie. (1, — 1, 0). Since (¢, 0) is collinear with (0, a) and (1),
similar considerations show that (g,0) is (,0, 1) and it is now straight-
forward to show that (a, b) is (a, b. 1). Similarly the point (m) is the point
(1, —m,0).

The dual arguments yield that [m, k] is the line [m. 1, —k] and that
K] is [1,0, —K].

We now determine the ternary operation T. Let @, © denote the
addition and multiplication of (K, T). For any a,be K, a®b=T(1,4,b).
But T(1,a,b)=k ifand onlyif (a,b) is on [1,k], ie. if and only if (a,b,1)
is on [1, 1, —K]. But this implies a+b—k=0, ie. that a+b=k, and so
the addition of the ternary ring (K, T) is the addition of the original
skewfield K.

For any a,be K, a@b=T(a,b,0). But T(a,b,0)= k if and only if (b, 0)
is on [a,k]; ie. if and only if (6,0, 1) is on [a, 1 —KJ. Since this implies
ab+01— k=0, the multiplication of the ternary ring (K, T) is also the
multiplication of the skewfield K.

Finally we determine T(m, x, ). T(m, x, )= k if and only if (x, ) is on
[m, k], ie. if and only if (x, 1) is on [m1, —K]. Since this implies
mx+y—k=0 we have T(m,x, y)=mx+y, ie- T(m, x, y))=mOxO®y.

If (R, T) is any PTR with T(a,b,c)=ab+c for all ,b,ceR then we
say that (R, T) is linear. We have just shown that £, (K) may be coordi-
natized by a linear PTR (K, T) which is isomorphic to K. Most of the
PTR’s which we meet in this book will be linear. ’
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5. Latin Squares

A latin square of order n is an nxn matrix with entries from a set R of n
distinct elements, which we shall usually take to be 0, 1,2, ...,n—1, such
that each row and column contains every element of R exactly once. Thus
the Cayley table for any quasigroup provides an example of a latin square.

Two latin squares are said to be orthogonal if the n* ordered pairs (i, j),
where i and j are the entries from the same position in the respective
squares, exhaust the n? possibilities.

‘We now show how orthogonal latin squares and PTR’s are closely
related.

If (R, T) is a PTR of order n with R=1{0, 1,...,n-1} then for any
x € R, x 0, we define an nx n matrix {x} as follows; in row i and column j
of {x} the entry is T(x, i, j). Note that the top row of {x} is row 0, etc.

Lemma 5.7. If {x} is defined as above then
(1) {x} is a latin square.
(2) {x} is orthogonal to {y} if x+y.

Proof. (1) For fixed i, T(x, i, j)=T(x, i, k) if and only if j=k (by (D) of
Theorem 5.1).

For fixed j, there is, by (C), a unique x satisfying T(x, i, j) = T(x, k. j),
i+k. But if x=0 then T(0,i,j)=j=T(0,k,j) and so, for x+0, T(x,i,j)
= T(x, k,j) implies i=k. Thus, since the square {x} is only defined for
x %0, there are no two identical entries in any one row or any one column
in {x}, and so, since {x} is an n x n matrix with entries from R, with [R[=n,
{x} is latin.

(2) Suppose {x} is not orthogonal to {y}. Then there exist ¢, b,c,de R
such that (T(x,a,b), T(y,a b)) =(T(x, ¢, d), T(3,c, d)). Since {x} is latin,
T(x, a, b)= T(x, ¢, d)implies a # c and b+ d. But now the equation T(u,a,b)
= T(u, ¢, d) (a +c) has distinct solutions u = x, u= y, which contradicts (C)
and proves that {x} is orthogonal to {y}. [

As an alternative proof of Lemma 5.7, which has the advantage that
it does not depend on the finiteness of R, we suggest the following exercise.

Exercise 5.5. Give an alternative proof of Lemma 5.7 as follows;

(i) Show that, for any given x and a, T(x, i, j) = a has a unique solution
for j (given i), and for i, (given j). [This shows that each row and column
of {x} contains the entry a exactly once for any ae R.]

(i) Show that given x, y, u, v, x+0, y %0, x + y the equations T(x,a,b)
=u, T(y,a,b)=v have a unique solution for a, b. [This shows that when
we take the n? possibilities (i, j) for entries in identical position in {x}, {y},
the ordered pair (1, v) occurs exactly once; namely in the (g, b) position.]

Any set of latin squares such that any two are orthogonal is called
aset of mutually orthogonal latin squares. We shall prove that the maximum
number of mutually orthogonal nx n latin squares is n — 1. Anticipating
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this result, a set of n— 1 mutually orthogonal n x n latin squares is said to
be complete.

If A is any latin square and if o is any permutation of the rows, or
columns, of A then, clearly, 4° is also a latin square. If B is a latin square
which may be obtained from A by a permutation of the rows and columns
of A, we say that B is equivalent to A.

We now list some properties of a set of mutually orthogonal latin
squares.

Property 1. Any set of mutually orthogonal latin squares is equivalent
t0 a set in which each square has (0, 1, ...,n— 1) for its top row. (Such a st
is said to be in normal form.)

First we note that a permutation of the (“names” of) the letters within
a latin square leaves it latin; such an operation also leaves it orthogonal
to any latin square it was already orthogonal to. Hence any sct of mutually
orthogonal latin squares can be put in normal form.

Property 2. Any set of mutually orthogonal nx n latin squares has at
most n— | matrices.

Proof. By Property 1 we may assume that the given set is in normal
form. No two of them may have the same entry, s say, in the (1, 0)-position
(ie. the position in the left column, and second row from the top) since
then the ordered pair (s, 5) occurs in the (1, 0)-position and in the (0, s)-
position. None of the squares may have a zero in the (1, 0)-position since
then the left column would contain two zeros. Thus there are only n—1
possible entries for the (1,0)-position and this gives a bound on the
maximum number of mutually orthogonal latin squares. [}

Property 3. Given any set of mutually orthogonal nx n latin squares in
normal form, the first square may be assumed to have (0, 1,...,n— 1)’ in the
column 0.

Proof. Let Ay, A,, ..., A, be a set of mutually orthogonal latin squares
and let 4, =(a%). Define a mapping B on the rows of each individual 4,
so that if af}=s then B maps the ith row of 4, onto the sth row
(i=1,2,..on—1,s=1,2,..,n—1,k=1,2,...,1). But if 4 and B arc any
pair of orthogonal latin squares and o is a permutation on the rows of
each individual square such that « is the same permutation on the rows
of A as on the rows of B, then A% B* are clearly orthogonal. Thus
Al 45,..., AP are a set of mutually orthogonal squares in normal form
such that 4§ has (0,1, ...,n—1) in the first column. []

We are now in a position to prove a theorem which relates the study
of latin squares with the study of projective planes.

‘Theorem 5.8. There exists a finite projective plane of order n if and

only if there exists a complete set of n—1 mutually orthogonal nx n latin
squares.
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Proof. If 2 is a finite projective plane then 2 may be coordinatized
by a PTR (R, T). By Lemma 5.7 this PTR may be used to construct a com-
plete set of mutually orthogonal latin squares.

Let R={0, 1,...,n— 1} and suppose A4,, A, ..., 4,_, is a complete set
of mutually orthogonal latin squares in normal form, such that 4, has
(0,1,...,n—1) in its left.column. Since no two of the 4; have the same
entry in the (1, 0)-position we can label the squares {x} so that {x} is the
square with x in the (1,0)-position, x=1,2, ...,n— 1. Defining T(x, i,j)
=(i,j)th entry in {x} for x=1,...,n— 1 and T(0, , Jj for all i, j, we now
verify that T satisfies (A), (B), (D), (E) of Theorem 5.1. and by Theorem 5.4,
this shows that (R, T) is a PTR.

(A) T(x,0, c)=c since all squares are in normal form

(B) T(a, 1,0)=a because {a} is the square with a as the (1,0) position.
T(1,a,0)=a since {1} has (0, 1, ...,n— 1)’ as its first column.

(D) Every row of the square {a} contains each element of R exactly
once. Thus given a, b, ¢ (a +0) there is a unique x such that T(a, b, x)=c.
If a=0 then T(0,b,x)=c if and only if x=c. So, in either case, (D) is
satisfied.

(E) For distinct squares {a}, {c} the n? pairs (i, j), where i and j are from
the same position in the respective squares, exhaust all n? possibilities.
Thus given b, d there is a unique ordered pair x, y such that T(a, x, y)=b,
T(c, x, y)=d provided a+ ¢ and a +0, ¢ +0. Suppose a=0, then T(0, X, y)
=bifand only if y=b. But then T(c, x, b) = d has a unique solution for x,
so that (E) is satisfied. []

As a consequence of this theorem one could try to establish the
existence of a finite projective plane of a given order n by finding a set
of n— 1 mutually orthogonal latin squares. Many attempts have been made
for n= 10 but so far, while there are many examples of two orthogonal
latin squares, no-one has found a set of three mutually orthogonal 10 x 10
latin squares.

If a PTR is used to construct a complete set of mutually orthogonal
latin squares, or vice versa, in the above way, we shall say that the PTR
and the set of orthogonal squares correspond to each other.

Theorem 5.9. A finite PTR (R, T) is linear if and only if in the corre-
sponding complete set of mutually orthogonal latin squares the rows of any
square (as vectors) are the same as the rows of any other.

Proof. Suppose (R,T) is linear.

In position (g, b) of {x} we have T(x, a, b)=xa+b=T(l, xa, b) which
is in position (xa, b) of {1}. Thus row a of {x} is row xa of {1} and the
claim of the theorem is proved.

Suppose the rows of {1} are the same as the rows of {x} and let 4,
be the permutation of the rows of {x} such that the (g, b) entry of {x} is
in position (aA,, b) of {1}. Then T(x, a,b) = T(1, aA,, b)=aA, +b. Putting
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b=0 gives T(x,a,0)=xa=aA,, so that T(x,a,b)=xa+b and (R, T) is
linear.

To illustrate this discussion we now give a number of exercises which
use latin squares to show that, up to isomorphism, the only projective
planes of order 3 or 4 are 2,(3) and 2,(4).

Exercise 5.6. Show that the only loops of order 4 are the two groups
of order 4.

Exercise 5.7. Show that there is no latin square orthogonal to

°

- w N

0 1 3
12 0
23 1]
30 2
Hint: try to construct one starting with

0 1 2 3
5 5
Since the matrix in Exercise 5.7 is the addition table for (Z,,+) this

shows that if (R, T) is a PTR of order 4 then (R, +) must be elementary
abelian.

Exercise 5.8. Verify that

01 ab 01 ab 01 ab
10ba ab 01 bato
W=l 01 @ loarof P ltosa
balo 106ba ab 01

is a set of 3 mutually orthogonal latin squares in normal form and that,
given {1}, {a} is uniquely determined once a is entered in the (1, 0) position.

Exercise 5.9. Since multiplication in (R, T) is determined by xy
= T(x, y, 0), use the squares of Exercise 5.8 to show (R¥)= C;. Show that
(R, T) is linear and that if 2 is a projective plane coordinatized by (R, T)
then 2= 2,(4).

Exercise 5.10. Show, by using latin squares, that if 2 is a projective
plane of order 3 then 2= 2,(3).

Appendix

When we i ive plane 2 we that there were
other ways in which thls ‘could be done. In this appendix we discuss in
some detail a method which was first introduced by Hall and mention
briefly a third method due to Pickert.
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‘We shall see, however, that if a given plane when coordinatized by one
method gives a linear PTR then the PTR obtained by either of the other
systems, using the same basic quadrangle, is also linear. We shall always
use the method which we introduced in this chapter.

The Coordinatization Method of Hall

Let O, X, Y, I be a quadrangle of a projective plane of order n and let R
be a set of n symbols with two distinct elements which we label 0, 1,

‘We label the line X Y as [co] and Y as (c0) where oo ¢ R. The elements
of R are assigned to the points of OI not on [cc] in such a way that 0
is assigned to 0,and 1 is assigned to I. Ifa point 4 on O1 has been assigned
ae R we coordinatize A as (4, a). If a point B on OY is such that BX 01
= (b, b), then B is given the coordinates (0, b) and if C is on OX such that
CYNOI=(cc), then C is (c, 0). For any point E not on any side of the
triangle OX Y,if XENOY =(0, y) and YEN OX =(x, 0) then E is given the
coordinates (x, y). In this way we have assigned coordinates to all points
not on [co]. If M is on [c0], M + Y, and if M is on the line joining O to
(1, m) then M is coordinatized by (m).

The lines of 2 are coordinatized as follows; for any me R, [m, k] is
the line joining (m) to (0, k), the line joining (o) to (a,0) is [a] and X Y
is [o0].

The basic difference so far between this method and the one adopted
by us is that Hall's method insures that the set of points of the form (g, a)
(as a varies over R) are collinear.

We now introduce a ternary operation T on R by T(x,m, k)= y if and
only if (x, y) is on [m, k]. This appears to be very different from the opera-
tion introduced in Chapter V; however the following exercise shows that
this is not so.

Exercise 5.11. Let 2 be a projective plane coordinatized by a set R
in the above way. If T(x,m,k)=y if and only if (x, )} is on [m, k] show

(A) T(x,0,b)=T(0,x,b)=bforall x,be R.

(B) T(x,1,0)=T(1,x,0)=xforall xeR.

(C) Given x,y,u,v€ R, x+u, there is a unique ordered pair a,be R
such that T(x,a,b)=y, T(u,a,b)=v.

(D) Given x, y,ae R, there is a unique be R with T(x, a, b)=y.

(E) Given g, b, ¢,d € R(a+¢) there is 2 unique x € R such that T(x. a, b)
=T(x,c,d).
Note that (A)—(E) of Exercise 5.11 are (A)~(E) of Theorem 5.1. In the Hall
method a +b is defined as T(q, 1, b) and ab as T(a, b, 0) which are slightly
different to our definitions. A PTR with addition and multiplication
defined in this way will, in this appendix, be called a Hall PTR.

Exercise 5.12. If (R, T) is a Hall PTR show that (R, +), (R, are
loops with respective identities 0 and 1.
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Linearity in a Hall PTR is defined by T(x, m, k)=xm+ k and once the
quadrangle OX YI is chosen, a given plane 2 is coordinatizable by a
linear Hall PTR if and only if the PTR given by our method is linear.

A slight modification of the Hall method, which is essentially due to
Pickert, is to coordinatize & in the same way but to define a ternary
operation S by S(m, x,k)=y if and only if (x, ) is on [m, k]. Addition is
givenby a+b=5(1,a,b), multiplication by ab = S(a, b, 0) while § is linear
if S(m,x, k)=mx+k. The reader should formulate the properties cor-
responding to (A)—(E) of Theorem 5.1 for these ternary rings.

The results in the remaining chapters of this book will be totally inde-
pendent of the method of coordinatization and we shall keep to our
definition.
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VI. Algebraic Properties of Planar Ternary Rings

1. Introduction

In this chapter we discuss the relation between the geometric structure of
a projective plane and the algebraic properties of a planar ternary ring
coordinatizing it. Usually the geometric property which interests us is that
of being (P, I)-desarguesian which, as we have seen, is equivalent to being
(P, )-transitive. The proofs of the first fifteen theorems are geometric and
are elementary in the sense that they follow simply from the earlier
chapters. But then we give proofs of two very famous, but fairly difficult,
theorems. They are the Skornyakov-San Soucie Theorem (6.16) and the
Artin-Zorn Theorem (6.20). The proofs of both of these theorems are very
long and involve very detailed algebra. Since these two theorems are so
crucial to the whole subject of projective planes, we feel that it is important
to give proofs. However, we strongly advise the student to skip these two
proofs on his first reading of the book. Both of these proofs are taken
from [1] and we wish to thank Professor Heinz Liineburg for giving us
permission to reproduce them here.

‘We have only included one diagram to illustrate Theorem 6.1 but we
strongly urge the reader to draw his own for each proof.

2. The Condition for Linearity

In Chapter V we saw that if (R, T) is a PTR coordinatizing &, (K) then T
is linear and R = K. In this chapter we study in detail the relation between
the algebraic structure of (R, T) and the geometric structure of the pro-
jective plane which it coordinatizes. More precisely we usually study the
relation between the algebraic structure of (R, T) and the groups of per-
spectivities admitted by the corresponding plane. However, by Theo-
rem 4.29, those groups closely reflect the geometric structure of the plane.

Throughout this chapter 2 is assumed to be a given projective plane
and (R, T) a given PTR coordinatizing 2.

We begin by giving necessary and sufficient conditions for (R, T) to
be linear.

‘Theorem 6.1. (R, T) is linear if and only if any two triangles which are
in perspective from (co) in such a way that each has a vertex on [0] and such
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that the two pairs of sides containing points of [0] meet on [oo], have the
property that one of the third sides passes through (0) if and only if the
final side does. (See Fig. 11.)

Proof. Let the two triangles be 4, B, Cy, A, B,C, such that 4,4, is
the line x=0, B, B, is x=u and C,C, is x=0. Let C3=A;B,nA;B, be
(m), let By=C,4,nC,4; be (1) and let B, €[] be (0). Further
4,=(0,a), 4,=(0,d), B, = (4, b), B, =(u, c). Since C, is the intersection of
x = (the line C,C;) with y=b (the line X B,), C, is the point (v, b). If we
let C, be (v, f) then the configurational property of the theorem implies
that f =c, and conversely.

(i) Suppose (R, T) is linear.

Since A,, B, Cs are collinear, mu +b=a and, since 4,, Cy, B; are also
collinear, nv+b=a. However, (R,+) is a loop so that the equation
X+ b=a has a unique solution; hence mu =no.

() (0) B3 Cq
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Similarly the collinearity of A, B;,C; gives mu+c=nv+ f=d.
Putting nv = mu this gives mu +c=mu -+ f =d which, again since (R, +)
is a loop, implies ¢ = f as required.

(ii) Suppose c= f.

Using the same set of collinear points as in (1) we have

T(m, u, b)=T(n,v,b)=a [}
T(m.u,c)=Tln,v,c)=d @

Equations (1) and (2) must hold for arbitrary m, u, b, n, c. (Draw
a picture to see what this means!) If we let ¢=0 and n=1, then m, u, b
are still arbitrary. Putting ¢=0, n=1 in (2) we have m =d and sub-
stituting these equalitiesin (1) we get T(m, u, b)=T(1,v,b)=v+b=mu+b,
ie. (R, T) is linear.

If (R, T) is known to be linear then we shall often refer to R as a planar
ternary ring without specifically mentioning T.

and

3. Additive Properties of (R, T)

In this section we relate the additive structure of (R, T) to the existence
in Aut2 of elations with axis [c0].

Theorem 6.2. (R, T) is linear with associative addition if and only if 2
is ((c0), [c0])-transitive.

Proof. (i) Suppose (R, T) is linear with associative addition. If 4, B
are any distinct points which are collinear with (o) but not incident with
[c0] we must exhibit a ((c0), [o0])-elation mapping 4 onto B. In view of
Exercise 4.1 it is sufficient to exhibit a collineation of 2! fixing all lines
through (o) but no points of #'=) and mapping 4 onto B. (This will
extend to a unique collineation of 2 which fixes (co) linewise and, since
it fixes no point not on [oo], must fix [cc] pointwise by Theorem 4.9.)

If A = (u, v) then, by the collinearity of (o), 4 and B, B = (u, ) for some
we R. However, since (R, +) is a loop, there is a unique a € R such that
w=v+a and B=(u, v+ a). We now define a mapping ¢, of the elements
of 41 by;

Ga:(x, )= (%, y+a), [mKkl—[mk+a], [KI-[K.

Clearly ¢, is a one-to-one mapping of the points (lines) of 2'! onto
the points (lines) of 2!\, Furthermore ¢, fixes every line of the form [K]
and sends A onto B. Thus, if ¢, is a collineation of 2!}, it certainly extends
to the desired collineation of #.To prove the theorem, therefore, we have
only to check that @, is a collineation, ie. that ¢, preserves incidence.

The condition that (x, y) is on [m, k] is mx+y=k. But (x, y)** is on
[m, k1% if and only if mx+ (y+a)=k+a. However, since addition is
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associative mx -+ (y+a)=(mx +y)+a and so mx+(y+a)=k+a if and
only if mx+y=k.

The point (x, y) is on [k] if and only if x =k which is precisely the
condition that (x, y)*= is on [k]%~ Thus ¢, preserves incidence and half of
the theorem is proved.

(ii) Suppose 2 is ((cc), [oo])-transitive.

By Theorem 4.29 # is ((cc), [co])-desarguesian which implies, by
Theorem 6.1, (R, T) is linear. For any point (0, a) on [0] there is a ((c0), [cc])-
elation mapping (0, 0) onto (0, a). If we call this elation ¢, then, for any
point (x, y), (x, y)** = (x, ) where u depends only on y and a. Thus we may
write (x, y)® = (x, y*) where ¢, is a one-to-one mapping from R onto R
such that 0*=a.

The action of ¢, on the points of 2 is now completely determined and
is given by @, :(x, )= (x, ), (m)—(m), (20)~(co). Since (m)**=(m) and
(0, k)% = (0, k), the action of ¢, on the lines of 2 is given by ¢,: [m. k]
—[m, k], [k]—[K], [c0] = [c0]-

Using the facts that (R, T) is linear and that ¢, preserves incidence we
have mx+ y=k if and only if mx + y*e =k, ie.

mx+ yfe=(mx+ yf rorall' mx,yeR. 4]
Putting y=0 and m=1 in (1) gives
X4 0% = x"

Xe=x+a. (]

Substituting x*=x+a in (1) and pumng m=1 we get x+(y+a)
=(x+y)+a for all x,y,aeR. Hence (R, T) is linear with associative
addition. []

If a linear PTR (R, T) has associative addition then (R, T) is called
a Cartesian group.

‘Theorem 6.3. If (R, T) is a Cartesian group then (R, T) satisfies the left
distributive law, a(b+c)=ab+ ac, for all a,b,c€eR, if and only if 2 is
((0), [co])-transitive.

Proof. (i) Suppose (R, T) satisfies the left distributive law.

For any a € R we must exhibit a ((0), [oo])-elauon mapping (0, 0) onto
(a,0). However, as in the proof of Theorem 6.2, it is sufficient to exhibit
the appropriate collineation of 2! For any aeR we define 6, by
0a:(x,y)>(@+x,y), [m, K] [m,ma+K], [(K]->[a+K].

Clearly 6, fixes no point of 21! but fixes every line of 2 through (0)
50, in order to prove the theorem, we only have to show that 6 preserves
incidence.

Since (R, T) is a Cartesian. group, it is linear and (x, y) is on [m, k] if
and only if mx+y=k. The point (x,y)* is on [m k]° if and only if

or
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ma+ x)+y=ma-+ k. But, by the left distributive law m(a + x) = ma +mx.
so that m(a+ x)+ y=(ma+mx)+y. However, in a cartesian group, ad-
dition is associative so that m(a+ x)+ y =(ma +mx) + y =ma+(mx+y)
and this is equal to ma+k if and only if mx + y=k. Hence 0, preserves
incidence.

(i) Suppose 2 is ((0). [o0])-transitive.

If we define 6, to be the ((0), [ co])-elation which maps (0, 0) onto (a, 0)
then, as in the proof of Theorem 6.2, (x, y)’ = (x*", y) where j, is a one-to-
one mapping of R onto R satisfying 0" =a. This completely determines
the action of 0, on the points of 21*\ If we let [m, k]% = [m, h] then, in
order to know the action of 0, on the lines of 2], we must find h in terms
of m, k, a. Since (0, k) is on [m, k1, (0, k)’ is on [m, k1% (i.e. (a, k) is on [m, h])
and so, by the linearity of (R, T), ma +k = h: hence [m, k1% =[m,ma +k].

The point (x. v) is on [m, k] if and only if (x, y)’ is on [m, k]% which,
by the linearity of (R.T). gives mx + y =k if and only if mx® + y=ma + k.
Thus mxPe + y=ma +(mx + y) which, since (R, -+) is associative, is equal
to (ma+mx)+ y. Hence

mxfe+y=(ma+mx)+y forall mxyacR. (1)
Putting m= 1. y=0in (1) gives
xPe=a+x @
which, when substituted i (1), means
m(a+x)+y=(ma+mx)+y. (3)
Finally, since (R, +) is a loop, t+y=s-+y implies 1=s so we get
m(a+x)=ma+mx and (R, T) satisfies the left distributive law. []
If (R, T) is a Cartesian group satisfying the left distributive law then
we call (R, T)a left quasifield or, more often, just a quasifield. As mentioned
earlier, since (R, T) is linear, we shall often omit the “T” and say that R

is a quasifield.
Combining Theorem 6.3 with Theorem 4.19, we have:

Corollary 1. 2 is coordinatized by a quasifield, with the line k as [c0],
if and only if k is a translation line.

And this leads to:

Corollary 2. If Zis dinatized by a ifield for a icular choice
of the points X =(0) and Y =(o0), then 2 is coordinatized by a quasifield
whenever any two points on the line X'Y are chosen as (0) and (o).

Note also that, from Theorem 4.14, since [ o0] is an axis of elations for
two distinct centres the group I, 1« of all elations of 2 with axis [0]
is abelian. In particular, then, we have Il (., is abelian. But any ¢ in
I(cey, 1oy iS Ome of the mappings ¢, in the proof of Theorem 6.2 and so



132 VL Algebraic Properties of Planar Temary Rings

$up= s, for any a, b€ R.However. the associativity of addition gives
Gatbp=Parp and we have shown:

Theorem 6.4. If (R, T) is a quasifield than (R, +) is abelian. [}

4. Multiplicative Properties of (R, T)

The last three theorems have shown a close relation between the additive
structure of (R, T) and the existence in 2 of elations with axis [c0]. We
now prove similar results which relate the multiplicative structure to the
existence of homologies in 2.

Theorem 6.5. (R, T) is linear with associative multiplication if and only
if 2 is ((0), [0])-transitive.

Proof. (i) Suppose (R, T) is linear with associative multiplication.

For any ae R* we must exhibit a ((0), [0])-homology sending (1,0)
onto (a, 0). Since the required homology does not have axis [c0] we will
show its existence by defining its action on all of 2. We define ¢, by
ba:(x,3)—>(ax, y), (m)—(ma” '), (00)=(c0), [m, K]—[ma™", K], [k]-»[ak]
and [o0] —»[c0] where t=a"" is the unique solution of ta=1 in (R*,-).
Clearly if ¢, is a collineation then it is a ((0), [0])-homology mapping (1, 0)
onto (a, 0) and so, in order to prove the theorem, we need only show that ¢,
preserves incidence.

As (R, T) is linear, (x, y) is on [m, k] if and only if mx + y =k, whereas
(x, )% is on [m, k1% if and only if (ma~")(ax)+y=k. However multi-
plication in R is associative so that (ma™")(ax)=mx and (x, y)* is on
[m, k1% if and only if mx + y = k. Straightforward verification shows that

), preserves incidences between other types of points and lines and proves
the first half of the theorem.

(i) Suppose 2 is ((0), [0])-transitive.

Let ¢, be the ((0), [0])-homology sending (1, 0) onto (g, 0). The action
of ¢, on 2 is determined by two permutations a,, B, of the elements of R
as follows; for any point (m) e [c0], (m)** = (m") with 0% =
point (x,0), x € R, (x, 0)% = (xP<, 0) where 0°+=0 and 1*
of ¢, is now given by (x, y)% =(x", y), (m)= = (m"), (o0} =(c0), [m, K]*
=[m* K], [K]¢ =[k*], [c0]*=[co0].

Thus, for all m, x, y€ R, T(m, x, y)= T(m*, x", y) which, putting y=0,
gives

mx=mxPe forall mxeR. )
If x=1, then (1) becomes
m=m“a. @



4. Multiplicative Properties of (R, T) 133

‘We now introduce a new mapping y, of R* onto itself given by x* = xa
for all x € R*; ie. y, is the mapping of multiplication on the right by a.
From (2) o, =y, and so

mx=ma" xba [€))

Putting m=a in (3) and using the obvious fact that a% ' =1 we have

ax=xP so that
mx=m""(ax). @

Since y, is a permutation on R*, for any m+0 there is a unique ue R
with m=ua. Note that since m was arbitrary then so is u. By substituting
m=ua in (4) we get

(ua) x=(ua)'™* (ax) = (W= (ax) = ulax) 5
for all u,a, x € R*, and so R has associative multiplication.

To prove the linearity of (R, T) we note that, for all ma,x,yeR, a%0,
Tlm,x,y) = T(na”",ax,y). Thus, putting m = a we have T(a.x,y) = T(1,ax,y)
=ax+y as required. []

Theorem 6.6. If (R, T)is linear then (R, T) has associative multiplication
and satisfies the left distributive law if and only if P is ((e0), [0, 01)-transitive.

Proof. (i) Suppose (R, T) is linear with associative multiplication and
satisfies the left distributive law.

A repetition of the arguments used in the earlier proofs of this chapter
shows that the mapping ¢,; (x, ) —(x, ay), (m)—(am), (co) (<o), [m, k]
—[am,ak], [k]>[K], [00]~+[c0] is a ((c0), [0, 0])-homology mapping
(0, 1) onto (0, ) and proves that 2 is {(c0), [0, O])-transitive.

(ii) Suppose 2 is (o), [0, 0)-transitive.

If ¢, is the ((co), [0, 0])-homology sending (0, 1) onto (0, a) then, as in
the proof of Theorem 6.5, there are two permutations o, B, of R such that
(o )% = (x,19), (m)P = (1), (c0)** = (c0), [m, k] = [y k], []¢% = [K],
{oo]**=[00] and 0% =0f=0, 1#=gq,

Since (R, T) is linear, mx + y=k if and only if mx + yPe=kP= which
gives

nfex+yPe=(mx+ype forall mx yeR. )
Putting y=0 and x=1 in (1) gives m =mf= for all meR, ie. o=,
us
mex 4 Y= (mx + y)e. @
Now putting y=0, m=1 in (2), and using the fact that 1% = a we have
ax=x" ?3)
so that «, is left multiplication by a. Hence (2) becomes

(am) x+ay=a(mx +y) forall a,mXx,yeR. @
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Putting y=0 in (4) gives associative multiplication and the left dis-
tributive law follows from (4) by putting m= 1.

Any quasifield which ha: iati iplication is called a nearfield.

Exercise 6.1. If (R, T) is a quasifield show that (R, T) is a nearfield if
and only if 2 is ((0), [0])-transitive.

5. Coordinatizing the Dual Plane

We now consider briefly the problem of coordinatizing the dual plane #*
of 2. Since 2 and 2* have the same order we may use the same coordi-
natizing set R. If we denote the coordinates of points and lines in 2* by
(x,y), [m, kY’ etc. then we coordinatize #* by choosing (0,0) = [0, 0],
(0 =[0], (c0) = [0], (1)’ =[1] and assign the elements of R to the points
of [0,0] so that (x,0) =[x,0]. We find one relationship between the
coordinatizing PTR (R, T") of 2* and (R, T):

Theorem 6.7. If (R, T) is linear with associative addition then (R,T)is
also linear with associative addition.

Proof. By Theorem 6.2, 2 is ((c0), [ cc])-transitive. However, if « is any
((c0), [o0])-elation of 2 then  fixes every line through (c0) and every point
on [c0] and so, considered as a collineation of 2%, « fixes every point on
[o0]’ and every line on (c0), ie.  is a ((c0), [00]')-elation on 2*. Hence
2% is ((co), [00] - transitive if and only if 2 is (<o), [oo])-transitive and,
thus, again using Theorem 6.2, (R, T")is linear with associative addition. [

Exercise 6.2. If (R, T) is a quasifield show that (R, T") is linear with
associative addition and satisfies the right distributive law; (a+b)c
—ac+ be for all a, b, c € R (such a system is called a right quasifield).

Note that if (R, T) is a quasifield then 2 is a translation plane with
respect to [c0] and so 2* is the dual of a translation plane with respect
to (o). Thus &* is ((c0), [oo])-transitive and ((c0), [0Y)-transitive and
so we have:

‘Theorem 6.8. If (R, T) is linear with associative addition then (R, T)
satisfies the right distributive law if and only if 2 is ((c0), [0])-transitive.

Corollary. (R, T) is a right quasifield if and only if (c0) is a translation
point.

A ifield satisfying the right distributive law is called a division ring.
As an immediate consequence of Theorems 6.3 and 6.8 we have

Theorem 6.9. (R, T) is a division ring if and only if @ is ((e0), [eo]),
((0), [e0]) and ((c0), [0])-transitive.

Exercise 6.3. Prove Theorem 6.9 directly (i.e. without dualizing).
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Note that Theorem 6.9 can be reworded to say that (R, T) is a division
ring if and only if 2 is a translation plane with respect to [co] and the
dual of a translation plane with respect to (c0).

6. Division Rings with Inverse Properties

A loop G is said to have the right inverse property (RIP) if for each x € G
there is an element x~' € G such that (vx) x~' =y for all ye G. G is said
to have the left inverse property (LIP) if for each x € G there is an element
x~" such that x™! yforall yeG. If G has RIP and LIP then we say
that G has the incerse property (1P).

Lemma 6.10. Let G be a loop with etther RIP or LIP. Then, for any
x€G, x'x=1=xx"" and. consequently, (x"')"" =x.

Proof. Suppose, for mslanoe, G has RIP Slnce (yx)x"'=y for nll
y€ G we have, putting y ! and so, since bx x7
has the unique solution b . However, putting y =1 gives
xx~'=1and thus x 'x=1=xx"1 Clearly, now, (x !) "' =x.

If (R, T) is a division ring then T is linear and so as with any other
linear PTR we shall often refer to R as a division ring without refering
to the ternary operation T. If R is a division ring then R is certainly a quasi-
field so that (R, +) is a group. Now, clearly, any group has both inverse
properties and so any statement of the form “R is a division ring with
RIP” is intended to mean that “(R*,-) has RIP”

Theorem 6.11. If R is a division ring then R has RIP if and only if
is ((0, 0), [0])-transitive.

Proof. (i) Suppose 2 is ((0, 0), [0])-transitive.

For any beR let ¢, be the ((0, 0), [0])-elation sending (0) onto (b, 0),
then [m, 0]% = [m, 0] for all me R. As the point (m) is the intersection of
[co] with [m,0],(m)** is the intersection of [c0]* =[b] with [m,0]¢
=[m, (] so that (m)* = (b, w) for some w. However, (b, w) is on [m, 0] and
50, since R is linear. mb + w =0 giving

(m)**=(b, —mb). )

Since ¢, has centre (0, 0) the line y=0 is left invariant and, since the
axis of ¢, is [0], any point with x =0 s left invariant. Letm, x e R, x+0, — b
and let u,n be defined by (x, 0)* =(u,0) and [m, mx]% =[n,mx]; then,
since (m) and (x,0) are on [m,mx], (m)® and (x, 0)** are on [m mx]%.
Substituting the known values for (m)®", (x, 0)** and [m, mx]* gives

nb—mb=mx @

nu=mx. 3

and
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Equation (2) determines n for given m,b,x and Eq. (3) then deter-
mines u. If, for a given x and b, k is the particular value of n when m=1
then ku=x and kb=b + x. Thus if k,b,x, u, are such that kb=b+Xx,
ku=x, and if nb=m(b+x) foranym, then nu=mx. Thus, in the special
case when b= — 1, the conditions k=1—x, ku=x and n=m(l—x) must
imply that n=mik so that (mk)u=nu=mx=m(ku). Since 2 is (0, 0), [01)-
transitive, as x and b vary k will vary over all possible values in R. Hence,
for any m. k if u satisfies k = 1 — ku we have

(mk) u=m(ku) @

Let v=1+u so that kv=1, then

(mk)v=(mK) (1 + 1) =mk-+mk(u)  (by the left distributive law)
=mk+m(ku)  (by (@)
=mk(1 +1))
=m(kv)=m since kv=1.

But k was defined by [1, x]% =[k, x] and thus, as b varies over R*. k
takes all possible values in R* so that R has RIP.

(i) Suppose R has RIP.

For any be R* define ¢, by:

(6 )7+ X)L ExT) BT + X7 for x40, x+ —b
0,)-(0,5)
(=b,y)—~0b7")
(m)— (b, —mb)
(20)—=(0)
[m, K]~ [m+kb™", K]
[K-[0" +k )] for k40, k+— b
[01-[01
[-b]-[e0]
[o0]—[b]-

Certainly ¢, fixes (0, 0) linewise, [0] pointwise and maps (0) onto (b,0);
so, in order to show that 2 is ((0, 0), [0])-transitive it is sufficient to prove
that ¢, preserves incidence.

Clearly this involves a detailed case analysis considering incidence
between the various “types” of points and lines. We shall consider only
incidences between points of type (x, y), x40, — b and lines of type [m, k].
The point (x, y) is on [m,K] if and only if mx+y=Fk and (x,y)** is on
[m, k]#= if and only if (m + kb™") G Y RO GT + x )=k
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Suppose (m+kb™') (b7 +x71) 7 +(yx7!) (b7" +x7") ! =k then
one k™) 67X OB ) T
k4 x7).

But since R 1s a division ring it satisfies the right distributive law. Using the
fact that R has RIP and that, by Lemma 6.10, (b~ +x~ 1) ' (b7 +x7") =1
we get
(m+kb™ )+ yx =k +x7"). @
Now R satisfies the associative law for addition and the left distributive
law so that (2) simplifies to
m4+kb™ 4 yx =kb ' 4 kx7! 3)
Since R under addition is an abelian group we can cancel kb™* from
each side to give
m4yx'=kx? @
and now multiplying both sides on the right by x and using the right
distributive law, RIP, and Lemma 6.10 we get mx + y= k as required.
We leave the rest of the proof as a long, but not difficult, exercise. Note
that we have already used each of the properties given to R to prove
incidence is preserved between the types of points and lines considered.  []
A ((0,0), [0])-elation of 2 fixes (c0) but moves [00] so that 2 has at
least two translation lines through (c0). But, by Theorem 4.20 (a), this
implies that every line through (c0) is a translation line and Theorem 6.1
may be restated as
Theorem 6.12. R is a division ring with RIP if and only if every line
through (o) is a translation line of 2.
Lemma 6.13. If R is a RIP division ring then R also satisfies x((y2) )
=((xy) 2) y- In particular R satisfies the right alternative law, x(y*) =(x) y.
Proof. For any appropriate y,ze R, put t=[(y2)y+y]l [y*
—(y+z"Y)""]. Then
ty+z7)=[z+ 1= ) ¢+27) 7 =y +27 VT +27N)
=@z+D@+z =) ) -y
=0Ay+yty+z =(py-y
=y+z7l.
Thust=1and [(yz) y+y]1~" —(y+271)"". Hence
x=xt=x([02) y+ Iy = +27) )
=[Gy +y) ' ~(+2z") ' TbyRIPof R
=2 ) +x) (7 =@+
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Let w=(((x))2) y+x)) () "* —=(r+2"")""), then we must show that
w=X.

wy+z ) =[x 24 x— (9 2 Yy +27) = xyly+2) 2T

= z+x)+z") = (x)) 2 y—xy
=((x»)2)y +xy+xy+xz"' —(x))2) y = xy
=xy+xz'=x(y+z7").

Hence w(y +2) ') = x(y + z~ ') and so. since (R*.-)isa loop,w=x. []

Theorem 6.14. If R is a division ring with RIP then R has LIP if and
only if 2 is ((0,0), [0, 0])-transitive.

Proof. (i) Suppose 2 is ((0, 0), [0, 0])-transitive.

Let o be the ((0,0), [0, 0])-elation mapping (o) onto (0. — ). For
any meR, m#+0, (m)* is on [m,O]"—[m,O] and [0]*=[0, — 1], so if
(m)*=(t, — 1) we have mt—1=0. i.e.

(my=(m™", —1). [0}

Since (0, y)* is on [0], (0, y)* is either (0, v) for some ve R or (c0); but
forany y+0, (0, y)* is also on the line joing () =(y~", — 1)to (1,0 =(1,0),
so that, for y# 1,

©yF=0,6""-07"). 2)
For any non-zero ab, (ab)™* —1=(ab)™" (1 — ab), so that
[(ab)™* — 11 [(1 —ab)™* = 1] =[(ab) "' (1 —ab)] (1 —ab) ™" — [(ab) '~ 1]
=(ab)™' ~[(ab)™' — 1]
=1.
Thus we have

[A—ab) ™' =117 =(ab)™' —1. [©)
Hence, putting y=1-—ab in (2) gives
(0,1~ aby=(0, (@)™~ 1)- @
The line [5]° is the join of (b, 0 = (b, 0) to (c0)*=(0, — 1), thus
[br=[-b""—1]. (8]

Similarly (b, 1 —aby is on both [b]*=[—b"", 1] and [a—b~",0]*
=[a—b"",0]. But, byinspection,(a~*,b~"a~" — 1)is on both theselines so

(B 1—abF=(a"' b a" ~1). ©)
However, from (4), (0, 1 — aby*= (0, (ab)™* — 1) so that
(b, 1 —abf*=(c,(ab)"*—1) forsome c. [0
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Thus, from (6) and (7), (ab)™*=b"'a™" or b™'=(ab) 'a. Hence
b=(b"")"'=[(ab)"'a]"' =a"'(ab) and R has LIP.

(i) Suppose R has LIP.

The above mapping a defined by (1), (2), (5), (6) is a ((0, 0), [0, 0])-elation
mapping (o0) onto (0, — 1), and thus sending [oc] onto [0, — 1]. Thus,
by Exercise 4.13,[0,—1] is a translation line and, using Theorem 4.20,
every line through (0) is a translation line. Hence, in particular, [0, 0] is
a translation line and 2 is ((0,0), [0, 0])-transitive. []

Since R has RIP, every line through (o) is a translation line and so,
if R also has LIP, £ has three non-concurrent translation lines which, by
Theorem 4.20, means that every line of 2 is a translation line. Theorem 6.14
may now be restated as:

Theorem 6.15. If R is a division ring with RIP then R has LIP if and
only if # is a Moufang plane.

Exercise 6.4. Show that R is a skewfield if and only if ¥ is (V,)-
transitive for all choices of V and I

If a division ring D satisfies both alternative laws, (i) x(xy)=x2y and
(ii) (xy) y=xy? for all x, ye D, then we call D an alternative division ring
(in the literature, sometimes called an alternative field). We have seen that
any division ring with IP is alternative (Lemma 6.13), so a Moufang plane
can be coordinatized infact by an alternative division ring. Now in fact
it is also true that any alternative division ring has IP, so the two classes
of rings are identical. But historically they have been sometimes separated,
and there has been much algebraic study of various systems satisfying
the alternative laws, or perhaps one of them only (eg, a right or left
alternative division ring), or even weak forms of them. But from a geo-
metric point of view, we are really only interested in RIP division rings
and in IP division rings, and we want to prove that in this context, RIP
implies IP (and for the experts, we mention that right alternative does
not imply alternative, but geometrically this fact has no interest). This
will have the powerful corollary that the presence of two distinct translation
lines implies that all lines are translation lines, and dually, the presence
of two distinct translation points implies that all points are translation
points. Note that if all lines are translation lines, then all points are
translation points, and conversely.

In fact, all alternative division rings have been classified; this result,
the Bruck-Kleinfeld Theorem, is completely algebraic and is not included
in the book. But the special case of finite alternative division rings is in-
cluded: the Artin-Zorn Theorem (really a special case of the Bruck-
Kleinfeld Theorem) asserts that a finite alternative division ring is a field.
This implies that the presence of two translation lines (or points) in a finite
plane forces the plane to be a 2,(g). In Chapter IX, Section 4, we give
examples of division rings which include non-associative but alternative
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examples, and these are in fact the most general possible; but we shall not
¢concern ourselves anymore with the very deep questions connected with
alternative division rings and the Bruck-Kleinfeld Theorem.

The rest of this chapter is devoted to proving the results cited above:
an RIP division ring is alternative (Theorem 6.16), an alternative division
rings is IP (Theorem 6.17), and a finite alternative division ring is a field
(Theorem 6.20). Even though the proofs are not at all geometric, and hence
ought to be skipped by most readers on their first time through, the study
of projective planes cannot go forward without the central corollaries
mentioned above (two translation elements of the same kind implies
Moufang, and finite Moufang implies Desargues). Hence we have included
the proofs for the sake of completeness.

7. The Skornyakov-San Soucie Theorem
In this section we prove the following:

Theorem 6.16 (Skornyakov-San Soucie Theorem). A division ring D
with RIP is alternative.

Proof.%. For any a, b, ¢ in D we define the associator [a, b, ¢]=(ab)c
—a(be) and the commutator [a,b]=ab—ba. It is straightforward to
verify that each of these is additive in all arguments.

Throughout the section we shall let (RA) denote the right alternative
law, ((xy) y=x?), and let (M) denote the identity x((y2) y)= 02y
(The M standing for Moufang who first studied division rings with this
property.) By Lemma 6.13, since D has RIP, D satisfies both (RA) and (M).
We now establish a long series of results which we shall call (1), @),....

() [a,b,cl=—[a.c.b] forall a,b,cinD.

Proof. By (RA) [x,y,y]=0 for all x. ye D and we have

0=[a,b+¢,b+cl=[ab,bl+[ab,cl+[acbl+[accl
=[a,b,c]+[a,cb]. O

@) [a,b,bcl=[a,b,clbforalla,b,cinD.

Proof. By (M) af(bc) b)=((ab) c) b and hence by (1)

[a,b, bcl = — [, be, bl = — (b)) b—a((be) b))
((a(be) b~ ((ab) ) b)
=((ab) c—a(bc)) b
=[a,bclb. O

3 The proofs of this theorem and of Theorem 6.18 are taken from [1]. We wish
to thank Professor H. Lineburg for giving us permission to reproduce them here.
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We define three “functions”, f; g, h, each of four variables, on D by

fd,a,b,q)=[da,b,c]1—[d,ab,c]+[d,a,bc] —d[a,b,c]—[d,a,b]c,
g(a,d,b,c)=[a,d,bc] +[ab,dc]—[a,d,c]b—[a,b,c]d,
h(d,a,b,c)=[da,b,c]+[d,a,[b,c]] —d[a,b,c]—[d,b,cla
3 fd.a,bc)=gla,d b,c)=h(dab,c)=0forallab,c,dinD.
Proof. f(d,a,b,c)=((da) b) c —(da) (bc) — (d(ab)) c +d((ab) c)
+ (da) (be)— d(a(be)) — d((ab) ) + d(atbc))
~((da) b) ¢+ (dab)) c=0.
Now replace b by b+d in (2) to get
0=[a,b+d,(b+d)c]l—[ab+dcl(b+d)
=[a,b,bcl + [a, b, dc] +[a,d, bc] +[a,d, dc]
—[a,b,c1b—[a,b,c]d—[a,d,clb—[a,d,c]d

and by (2) the first and fifth terms cancel and so do the fourth and eighth
leaving g(a, d. b. ¢). Now. we have

0= f(d,a,b,c)—g(d, c,a.b)=([da,b,c] - [d,ab,c]
+[d,a,bc] - dla,b,c] -4, 4,b] ) — (4, ¢, ab]
+[d,a,cb]—[d,c,bla—[d,a,b] ).
The last terms of each bracket cancel with each other and, by (1),

—[d,ab,c]—[d,c,ab]=0 and [d,c,bla=—[d,b,cla. Thus, by the
additivity property of the commutator, we have

0=[da,b,c] +[d,a,bc—cb] —d[a,b,c]—[d,b,c]a
=h(d,a,b,0). 1[I

Note. (M) is not used in proving f(d, a,b,c)=0.

@ [a,b,c*1=[a,bc+cb,c] forall a,b,c,in D.

Proof. 0= f(a,b, ¢, c)=[ab,c,c]—[a, bc,c] +[a,b, c*]

—a[b,c,c]—[a,b,clc.
By (RA) [ab, ¢, c] =a[b, ¢, c] =O0and by (1) and (2) — [, b, c] c =[a,¢, b ¢
=[a,c,cb]=—[a,cb,c] so we have 0={[a,b,c*]—[a, bc.c]—[a,cb.c]
as desired. []
If a, b are any two elements of D we define A(a, b) by
A(a,b)={x in D|[x,a,b] =x[b,al} .

(5) Ala, by=A(b, a) is a subgroup of the additive group of D. Further-
more, x is in A(a,b) if and only if (xa) b=x(ba).
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Proof. Let x bein A(g, b). Then (xa) b— x(ab) = x(ba) — x(ab) by defini-
tion of A(a, b) and hence (xa) b= x(ba). The converse is clearly true also.
We obviously have [0, a, b] =0=0[b,a] so 0€ A(q,b) and A(a, b} is non
empty. Let x,ye A(a, b). Then [x—y,a, b]=[x,a,b]—[y,a,b]=x[b,d]
—y[b,dl=(x~y)[b,al.

Hence x— y € A(a, b) so A(a, b) is a subgroup as claimed.

Finally, x € A(a, b)<>[x,a,b]=x[b,a]

<> —[x,b,a] = —x[ab]
<[x,b,a]=x[a, b]
wxedb,a. [

6) 1f[a,a,b]+0, then A(a, by Ala, ba)={0}.

Proof. Let x be in A(a,b)nA(a, ba). Since x € A(a,b), by (5) (xa)b
= x(ba) and hence by (M)

x((ab) a)=((xa) b) a=(x(ba)) a.
By (5) since x € A(a, ba)= A(ba, a), we have
(x(ba) a=x(a(ba))
and by the two equations above
0= (x(ba)) a— (x(ba)) a = x((ab) a) - x(a(ba)
=x[a,b.a]=—x[a.a,b]
and since [a, a, b] 40 by hypothesis, x=0. [
(M [xa,bl,[xablae Aa,b)for all xe D.

Proof. By (2) [x, a,ab®] =[x, a,b*] a and since D is right alternative
we have 0 = g(x,a,ab, b) = [x,a,(ab)b] + [x,ab,ab] — [x,a,b](ab)
— [x,ab,bla = [x,a,b*] a — [x,a,b] (ab) — [x, ab,b] aand applying (4)
to the first term yields

0=[x,ab+ ba,bl a—[x,a,b](ab)—[x,ab,b]a
=[x, ba,b]a—[x,a,b] (ab)
because of additivity. By (1) and (2) [x, ba, b] = — [x, b, ba] = — [x,b,al b
=[x,a,b]b and we have
0=([x a,blb)a—[x,a,bl(ab)

which means [x, a, b] € A(b, ) = A(a, b) by (5).

Now by (RA) and (2) [x, ba, ba*] =[x, ba, (ba) a]

=[x,ba,a] (ba)-
We also have by (RA) and (M) that

(ba) a? =((ba) a) a=b(a* a)=ba®
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and by (2) [x, b, ba®] =[x, b, a*] b. Using these results we have
0=g(x, ba, b, a®) =[x, ba, ba®] + [x, b, (ba) a*] — [x, ba, a*1 b
—[x,b,a’1(ba)=[x, ba,d] (ba) +[x, b, a*] b—[x, ba,a*] b
—[x,b,a*] (ba) .
By (4) [x.b,a®] = [x, ab + ba, a] s we have
0=[x,ba,a)(ba)+[x, b,a*] b—[x, ba, >} b— [x.ab. a] (ba)
—[x, ba,a] (ba).
The first and last terms cancel and we get
(x. b, a®]— [x, ba, a?]) b= [, ab, a] (ba). )
Now 0 = g(x,b.a%a)b = [x,b,a*1b + [x,a%balb — ([x.b,a]a®)b
— ([x.a% a]b)b = [x,ab,a] (ba) - ([x,b,a] a*)b — ([x,a? al by b by (1)
and (+).
We have by (1) and (2) [x. ¢?, a] = — [x, 4, a*] = — [x, a,a] a=0. Thus

using (RA) we get
[x.ab, d] (ba)=(([x,b,a] a) a) b.

Since [x, ab, a] = — [x, a, ab] = — [x, a, b] a by (2), we have ([x.a.b] a) (ba)
=(([x,a,bla) @) b and [x,a,blae Aa,b). []
) If[a,a b]+0, then [¢,b]+0.

Proof. Assume that [, b] =0. Then ab=ba and A(g,ab)= A(a, ba).
By (6) A(a, b)nA(a, ba) = {0} = A(a, b)n A(a, ab). By (2) and (7) [a,a,b] a
=[a,a,ab] € A(a, b)n A(a, ab) = {0} so that [a,a,b] a=0 which implies
a=0 since [a,a,b]+0 by hypothesis. But then [a,a,b]=[0,0,5]=0
contrary to hypothesis. []

©) [[a,bl,a,b]=0forall a,beD.

Proof. Let [a,b]=g. Then by (7) [g,a,b] € A(a, b) and so by the
definition of A(g, b)

[[g.a.b],a,b] =[g, a b] [b,a] = ~[q,a,b] q.

By (1), [[4.,b], a,b] € A(a, b), so that — [g,a.b] ge Ala. b). Also by (7)
[4% a,b] € A(a, b). Thus since

0=h(g, q,a b)=[q",a,b]+[4,4, 41— ql4, a,b1 - [¢,a, bl g
and since [g, g, g]1=0 by (RA), we have
qlg,a,b1=[q% a,b] —[g,4,b1q

and belongs to A(a, b) because A(a, b) is a group under addition by (5).
Put [g,q, b] =s, then since gs€ A(a, b)

[gs,a,b]1=(g5) [b,a]=—(g5)q-
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Similarly, since by (7) s= [g,a,bl€ Ala,b), [s.a,b]=—sq and gls,a,b]
= —g(sq). Finally, from the above we have
0=h(g, s.a.b)=[gs,,b] + (4,541~ als &bl - (9.4 b] s
= — (@9 q+(g9) a—alsa) +4ls9) ="
Thus, s? =0 and we have 0=s=[[a, bl,a,b]. 0

10) [[abl.ac]=~[lacla b] for all a.b.ceD.

Proof. By 9) 0=[[a,b+cl,ab+c]; expanding this by linearity and
applying (9) gives

0=[la b+cl,ab]+[[ab+clac]
=[[a,b],a,b]+[[a cl.a b]+[[abl.a J+[laclac]
=[la,cl,ab]+[[ablac] as desired. [I
(1) [x[abl.ab]=[xablla b] for all a,b, x€ D.
Proof. Put [a,b]=¢. Then
0=hx,q.a, b)=[xq,a, b1 +[x 4,1~ x[g.4.b] ~ [x. a.b]q
andsince [x, ¢, g] =0by (RA)and (g, a,b]=0by (9) theresult isproved. [

(12) [(xa)b—x(ba),a,b]1=0 for all a,b,x€D.

Proof. Put [a,b]1=g. By (7) and the definition of A(a,b) we get
[[xab),a,b] = [x,a,b] b,a] =—[xa,b]q. Moreover, xq +[x.a, b1
= x(ab)— x(ba) + (xa) b— x(ab) = (xa) b— x(ba).

Hence by the above remarks and (11) we have

0=—[[x ab],ab]+[[xablab]
=[x.a,b]q+[[xablab]
—[xg,a, b1+ [[x & bl. @, b] =[x+ [x.ab}. & b]
=[(xa)b—x(ba)a,b]. 0

13) [[aa,b1%a[abl]=[[aab]aab] = [[aa b)%a,bd] =0
for all a,beD.

Proof. Let p=[a,a,b] and q=[a,b]. By () pae Ala,b) and, by the
definition of A(a, b), this yields [pa, a,b1= —(pd) g- Also by (7) pe A(a, b)
so [p,a bl = —pq and [p,q,b] a= —(pg) a- But

0=Hh(p,a,a,b)=[pa. a,b] +[p.a, Q1 —pla,a bl - [pabla
= —@a)q+[paq-p+@aa
= —(pa) g+(pa) g—plag)— P + (P a-
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This gives p? =(pq) a— plag) and so using (12)
[r’, a,q1=[(pq) a—p(ag). & g1 = — [(pg) a— plag), ¢, a] =0.

Also p?=p[a,a,b] = —p[a, b, a] = —p((ab)a)+ pla(ba)); but by (M)
p((ab) a) = ((pa) b) a so that we have p? = —((pa) b) a+ p(a(ba)).
However pe A(a, b), so by (5) (pa) b= p(ba) which gives

P*=—(pba) a+ plaba)-

Thus by (12)
[p’,a, ba] = ~p’, ba, a] = [(p(ba)) a — pla(ba)), ba,a] =0
Finally, [p% a,abl=[p? a,q]+[p* a,ba] =0+0=0.
A4 [x,y,21w2) + [x w21 (y2) = (%321 Dw + (De w, 7] 7) y for
all x,y,z,weD.
Proof. By (7) [x, y+w,z] € A(y+w. z) and hence by (5)

[xy+w, 2} (yz+w2)=([xy+w, 2] ) (y+w)-
Thus,
[x,