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Preface

This second volume incorporates a number of results which were discovered
and/or systematized since the first volume was being written. Again, I limit
myself to the cyclotomic fields proper without introducing modular func-
tions.

As in the first volume, the main concern is with class number formulas,
Gauss sums, and the like. We begin with the Ferrero-Washington theorems,
proving Iwasawa’s conjecture that the p-primary part of the ideal class
group in the cyclotomic Z,-extension of a cyclotomic field grows linearly
rather than exponentially. This is first done for the minus part (the minus
referring, as usual, to the eigenspace for complex conjugation), and then it
follows for the plus part because of results bounding the plus part in terms
of the minus part. Kummer had already proved such results (e.g. if p } A,
then p } h;). These are now formulated in ways applicable to the Iwasawa
invariants, following Iwasawa himself.

After that we do what amounts to ““ Dwork theory,” to derive the Gross-
Koblitz formula expressing Gauss sums in terms of the p-adic gamma
function. This lifts Stickelberger’s theorem p-adically. Half of the proof
relies on a course of Katz, who had first obtained Gauss sums as limits of
certain factorials, and thought of using Washnitzer-Monsky cohomology
to prove the Gross-Koblitz formula.

Finally, we apply these latter results to the Ferrero-Greenberg theorem,
showing that L}(0, ) # 0 under the appropriate conditions. We take this
opportunity to introduce a technique of Washington, who defined the p-adic
analogues of the Hurwitz partial zeta functions, in a way making it possible
to parallel the treatment from the complex case to the p-adic case, but in a
much more efficient way.

All of these topics form a natural continuation of those of Volume I. Thus

v



Preface

chapters are numbered consecutively, and the bibliography (suitably ex-
panded) is similarly updated.

I am much indebted to Larry Washington and Neal Koblitz for a number
of suggestions and corrections; and to Avner Asch for helping with the
proofreading.

Larry Washington also read the first volume carefully, and made the
following corrections with no other changes in the proofs:

Chapter 5, Theorem 1.2(ii), p. 127: read e, = dn + ¢, for some constant
Co-

Chapter 7, Theorem 1.4, p. 174: the term 1/k> should be (—1)*/k - k!
instead.

Chapter 8, Formulas LS 6, p. 207 : one needs to assume that [r](X) is a
polynomial. This is satisfied if the formal group is the basic Lubin-Tate
group, and the theorems proved are invariant under an isomorphism of such
groups, so the proofs are valid without further change.

Washington also pointed out the reference to Vandiver [Va 2], where in-
deed Vandiver makes the conjecture:

.. . However, about twenty-five years ago I conjectured that this number was never
divisible by / [referring to 4 *]. Later on, when I discovered how closely the question
was related to Fermat’s Last Theorem, I began to have my doubts, recalling how
often conjectures concerning the theorem turned out to be incorrect. When I visited
Furtwingler in Vienna in 1928, he mentioned that he had conjectured the same thing
before I had brought up any such topic with him. As he had probably more experi-
ence with algebraic numbers than any mathematician of his generation, I felt a little
more confident . . .

On the other hand, many years ago, Feit was unable to understand a step
in Vandiver’s “proof” that p Y h* implies the first case of Fermat’s Last
Theorem, and stimulated by this, Iwasawa found a precise gap which is such
that the proof is still incomplete.

New Haven, Connecticut SERGE LANG
1980
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Notation

As in the first volume, if 4 is an abelian group and N a positive integer, we
let Ay be the kernel of multiplication by N, and

A(N) = A/NA.

If p is a prime, we let AP be the subgroup of p-primary elements, that is,
those elements annihilated by a power of p.

Xi



Measures and
Iwasawa Power Series

This chapter gives a number of complements to Chapter 4. In §1 we extend the
formalism of the associated power series to the change of variables

x ey

for x € Z, and y equal to a topological generator of 1+pZ,. A measure on
1+ pZ, then corresponds to a measure on Z,, and we give relations between
their associated power series. This is then applied to express Bernoulli
numbers B, , as values of power series. We write

X = ow-k\l’ = okdla

where first 8 is an even character on Z(dp)* (d prime to p), w is the Teichmuller
character, and ¥ is a character on 1 + pZ,. Let { = (). Then

1
x By, = fou{-1),

where fj, , depends only on 6 and k. This allows a partial asymptotic deter-
mination of ord, B,, , when @ is fixed, and the conductor of y tends to infinity,
due to Iwasawa [Iw 14], §7. This gives rise to the corresponding asymptotic
estimate for the minus part of class numbers of cyclotomic extensions.

The Iwasawa expressions for the Bernoulli numbers gives an asymptotic
value for their orders:

ord, By gy = mp" + An + ¢



10. Measures and Iwasawa Power Series

for n sufficiently large, cond ¥ = p"* . In order that m # 0, Iwasawa showed
that a system of congruences had to be satisfied (essentially that the coeffi-
cients of the appropriate power series are =0(mod p)). We derive these
congruences here in each case successively. The next chapter is devoted to
the proofs by Ferrero-Washington that these congruences cannot all be
satisfied, whence the Iwasawa invariant m is equal to 0.

At the end of their paper, Ferrero—-Washington conjecture that the in-
variant 4, for the cyclatomic Z,-extension of Q(n,) satisfies a bound

log p
loglogp’

P <4

1 am much indebted to Washington for communicating to me the exposition
of the steps which lead to this copjecture, and which were omitted from their

paper.

§1. Iwasawa Invariants for Measures

We let p be an odd prime for simplicity. The multiplicative group 1 + pZ,
is then topologically cyclic, and we let y denote a fixed topological generator.
Then ymod p* generates the finite cyclic group 1+ pZ,mod p" for each
positive integer n. For instance, we may take

y=1+p.

[Note: If p = 2, then one has to consider 1+4Z, instead of 1+2Z,.]
There is an isomorphism

Z,-1+pZ,
given by
X9
Its inverse is denoted by a, so that by definition
oy’ = x.

Let d > 1 be a positive integer prime to p. We shall consider measures on
the projective system of groups

Z, = Ldp") = Z/dp"L = Z(d) x Z(p").



§1. Iwasawa Invariants for Measures

The projective limit is simply denoted by
Z=12d) x Z,.

A measure is then determined by a family of functions u, on Z,, a5 in
Chapter 2, §2. We let

Z* =Z(d) x Zy and Z** =Z(d)* x Z;.
An element z € Z* can be written uniquely in the form
z = (2o, M) = (20, 2p) with zo e Z(d),nep,-, X € Z,.
We define the homomorphism
aZ*—->Z, by oz, my") = x.
We define as usual
(2D, =LK =<(z,) =7,

so that a(z) = a({z)). As above, we usually omit the index p on {z),.

A continuous function on Z,, gives rise to a continuous functionon 1+ pZ,
by composition with o, and conversely.

As in Chapter 2, §1 we let v be the ring of p-integers in C,, and we let u
be an v-valued distribution, i.e. a measure.

By the basic correspondence between functionals and measures, we obtain
the following theorem.

Theorem 1.1. Let u be a measure on Z with support in Z*. Then there exists
a unique measure o, j on Z, such that for any continuous function ¢ on
14 pZ, we have

f o(<ad) dy(a) = f (%) d(ey 1)(x).
z* z,

We now describe the power series associated with o, u modulo the poly-
nomial

h(X)=(1+ Xy — 1.



10. Measures and Iwasawa Power Series

Thus we fix a value of n > 0, and for each a € Z* we let r(a) be the unique
integer such that

0<ra)<p" and r(a) = a(a) mod p".

Theorem 1.2. Let f be the power series associated with o, y. Let

Zyey = 2(d) x Lp"*1)*

Then

A= Y tra(@(1+XY® mod h(X).

aeZh+1

Proof. By the definition of the associated power series, we have
pn—1
f(X)= Zo (@ (N1 + XY
But letting char denote the characteristic function, we have:
(o #)(r mod p") = | (char of r mod p") d(a, 1)
z,

= f (char of Z(d) x p,—, x ¥ ?"%*) du
z

(by Theorem 1.1)

=Y Mp+1(ny mod p"*1)
n

where this last sum is taken over n € Z(d) x #,_;. This proves the theorem.

Corollary 1. Let ¥ be a nontrivial character of 1+pZ,, with conductor
p"* 1. Define Y(a) = ¥({a)). Let

Y(y) = { = primitive p"-th root of unity.

Let f be the power series associated with o, j1. Then

Yydu = f((-1).
z;



§1. Iwasawa Invariants for Measures

Proof. We have
[wau= f W) dxa)(x)  (by Theorem 1.1)
z z,

- |, e deam
= f({-1). (by Theorem 1.2 of Chapter 4).
This proves the corollary.

We continue with the same notation as in the theorem. We shall use the
notation

B, 1) = Lw dy = £(C, — 1).

Suppose that there exists a rational number m such that the power series f
can be written in the form

fX)=pYco+ ;X + -+ X+ X0 +--0)

where c; is a unit in o0, and ¢, ..., ¢;_; € m, the maximal ideal of 0. We call
m, A the Iwasawa invariants of y, or f. If the measure x4 has values in the
maximal ideal of the integers in a field where the valuation is discrete (which
is the case in applications), then f has coefficients in that ring, and such m,
Aexistif f # 0. If m = 0, then A is the Weierstrass degree of f. In any case,
A is the Weierstrass degree of p~™f.

As usual, we shall write

X~y
to mean that x, y have the same order at p.

Corollary 2. There exists a positive integer ny (depending only on f) such
that if n > ny and cond Y = p”, then

By, w) ~ p"((-1)*
where { is a primitive p"-th root of unity.

Proof. As n — oo, the values |{— 1] approach 1, and so the term c,({ — 1)*
dominates in the power series f({ —1) above.
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Corollary 3. For some constant ¢ = ¢(f), we have

ord, [[ BW,w)=mp"+in+ c(f)

cond ¥ =pt
np<t<n

Proof. Since

IT ¢-n=p",
=1
{#1

the formula is immediate, since the product taken for n, < t < n differs by
only a finite number of factors (depending on n,) from the product taken over
all ¢, and we can apply Corollary 2 to get the desired order.

In the light of Corollary 3, we shall call m the exponential invariant, and
/A the linear invariant.
Let f be as above, the power series associated with o, u, and put

¢ =3 ppsy(ny" mod p"*Y).
n

Then
1
fX)= Y c™1+X) mod h,
r=0
-1
= anxr mod h,,
r=0

where the coefficients a™ are obtained from the change of basis from
LX,.. A xr!
to

L1+X,...,0+X)y" "1

We can rewrite ¢ in terms of the variable u = y", namely

() = Y ptp+1(u mod p** ).
n

These coefficients ¢™() will be called the Iwasawa coefficients.

6



§1. Iwasawa Invariants for Measures

Theorem 1.3. Let nbe an integer > O such that ¢ is a p-unit for some integer
r with

O<r<p'-1

Then the exponential Iwasawa invariant m of p is equal to 0, and we have
A<p.

Proof. Some coefficient a{™ must also be a p-unit with r in the same range,
and we can write

-1
fX) =} a"X"+ g:(X)X”" + pgy(X),

r=0

where g,(X), g,(X) € o[[X]]. Hence the coefficient a, of f(X) is itself a
p-unit, whence the theorem follows.

We shall sometimes deal with certain measures derived by the following
operation from u. Let s € Z,. We define the s-th twist of u to be the measure
defined on Z* by

1a) = {a)*u(a),

and equal to 0 outside Z*. In that case, the coefficients ¢ should be indexed
by s, ie.

it = ey
Since y™ is a p-adic unit, it follows that the same power of p divides all ¢}
as divides c!™. Thus Theorem 1.3 also applies to the twisted measure and the

power series f; associated with a,(u') instead of f in the theorem, and we
find:

Theorem 1.4. Let m,, A, be the Iwasawa invariants of u*. If m, = 0 for some
s, then my = 0 for all s. Suppose this is the case, and let n be the positive
integer such that

p"—l < }»o <p.
Then we also have
pn—l < )‘s < pn

Jor all s.



10. Measures and Iwasawa Power Series

§2. Application to the Bernoulli Distributions

Let B, be the k-th Bernoulli polynomial (cf. Chapter 2). We had defined the
distribution E, at level N by

EM(x) = N*! %B,‘<<%>)

N =dp",

We shall now use

where d is a positive integer prime to the prime number p.
We continue using the notation of the preceding section. An element
of Z = Z(d) x Z, is described by its two components

x = (Xq, Xp).

Let ce Z(d)* x Z} = lim Z(dp")*. We define

EQXx) = E{™(x) — c, Ef™(c™'x)

for x € Z(N). The multiplication ¢~ !x is defined in Z(N)*.

Note. In Chapter 2, we took c to be a rational number. This is not neces-
sary, and restricts possible applications too much. When ¢ occurs as a coef-
ficient in Chapter 2, we must use c, instead of c, i.e. we must use its projection
on Z¥. When ¢ occurs inside a diamond bracket, then no change is to be made
for the present case. For instance, we have

EL EM(x) = <1%> - c,,<ch> + 5=

Similarly, formula E 2 and Theorem 2.2 of Chapter 2 yield the relation

E2. E, {x) = x;7E; ()

symbolically for x € Z. We then obtain the integral representations of the
Bernoulli numbers as follows.

1 1 -1
=g 4 e,




§2. Application to the Bernoulli Distributions

provided only that c # 1. Furthermore, if y is a character of conductor
m = m, dividing dp” for some n, then x defines in the usual way a function on
Z(N) for m|N by composition

Z(N) - Z(m) % o*,

and y is defined to be 0 on elements of Z(m) not prime to m. Then we define

1
_Bk,1= _[XdEk.
k z

Note. This definition made by taking into account the conductor of x
is more appropriate than that of Chapter 2, §2. There we dealt only with
characters of Z}, so it made little difference, only for the trivial character.

More generally, if ¢ is a locally constant function (step function) on Z,
then we can define

1
E Bk,tp = I(p dEk-
z

Then

1 1
(1) [ o0, )28 Ay 8) = £ Buo = & B

In particular, if ¢ is a character y, then

1
[ 1002871 a1 = (1 = 2O By

We define the p-adic L-function by the integral

L(-s57yx= x(@)<adya, ' dE, (a).

-1
1 = x(c)<c)} L-

If the conductor of  is dp” for some n > 0, then the support of the integral is
really on the set

Z** = Z(d)* x Z*.

Letw = o, be the Teichmuller character, and put

X = X0~k
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Theorem 2.1. For every integer k > 1 and character x of conductor dp"
withn > 0, we have

il
L1-k 0 = =(1=x@P* ™) 7 Biy,-
Proof. We have:

~(1= 1@~k 0 = [ @) dE, Lo

Write

L-I-L

Let N = dp"*'. Then

(N/p—1
f =lim Y x,,(p)p"“xk(y)Y"'1E"°(<€V>)
pZ

n—=o y=0

1 (N/p)—-1 y
=x@p* 'lim Y uOW'E, c(<N/ >)

n+o y=0

= KO 11O T Bu

The theorem follows at once.

We now let

0 = even character on Z(dp)*, 6 # 1, cond 6 = d or dp.
X = 0y where ¥ is a character on 1+pZ,.

Then

1
1—x(c)<c>,’: z%

f ¥(a,») du(a)

(1~ 1PP) 3 B = o™~ dE, La)

T 1- x(c)<C>,
where u is the measure given by

ua) = 0(@)o™Xa)at ™ 'E,, [(a).
10



§2. Application to the Bernoulli Distributions

Therefore by Corollary 1 of Theorem 1.2 we find that

(=1 B = 5 oy = D)

1
1—x(c)Xc)p

where f; (X) is a power series given mod h, by Theorem 1.2.
We may use formula E 1 of Chapter 2, §2 to give the value of u at inter-
mediate levels, namely

-1
ot 1(a) = "“’)“""‘“)"5"[<2,%> - ‘<;T£1> + 3, — 1)].

Starting with the general formula of Theorem 1.2, we shall derive a slightly
simpler expression for the coefficients of f; ;, which can be written in the form

?) o (X) = Y cPw)(1 + XY™ mod h,,

where

) = T 00~ 1 [<d:“> c <fl nT:>+%(c - 1)]

The sums are taken for ue€ 1 + pZ, mod p"**! and n € Z(d)* x p,-,. The
component 1, is just (n). The character 8w ™' is odd, and in particular is
not trivial. Hence the sum over n times the factor (c,—1)/2 is equal to 0,
and that term can be omitted.

We now select ¢ € Z(d)* x m,_,, so that {c), = 1. Furthermore x(c) =
6(c). We can select c such that x(c) # 1. We change variables in the sum over
1, with respect to the second term involving ¢~ !, letting 7 cn. Then we
may combine the sums over both terms, with a factor

1 — xo

which cancels 1 —y(c){c)} = 1—x(c) in front. In other words, we find:

3) ¢M(u) = ZOw“(n)u" ‘<dp,,+1>

We are interested in applying Theorem 1.3. In other words, we are in-
terested in proving the Iwasawa conjecture that some coefficient of f , is a

11



10. Measures and Iwasawa Power Series

p-unit. Clearly the power u*~! can be disregarded for this purpose. Thus the
expressions (3) for the coefficients of the Iwasawa power series give rise to
the following criterion.

Theorem 2.2 (Iwasawa congruences). Let d be an integer > 1 and prime to p.
Let 0 be an even character # 1 of conductor d or dp. If no coefficient of
Jo.x is a p-unit, then we have the congruences (independent of k):

o
Y 9w“(n)<di+;> = 0 mod p
n
for alla € Z3, and all integers n > 0.

Proof. We have proved the assertion when « lies in 14 pZ,. However,
for any fixed #o € p,-; we can make the change of variables

n— ’1"0 ’
leading to the congruences as stated above.

Theorem 2.3 (Ferrero-Washington). For 0 # 1, not all these congruences
are satisfied, and therefore some coefficient of fy, , is a p-unit.

The proof that not all these congruences are satisfied will be given in the
next chapter. Here, we first give formulations for these congruences which are
more easily dealt with. Then in the next section, we indicate how this result
applies to the divisibility of class numbers in the cyclotomic Z -extension.

The case d = 1. We shall give an alternative version of Iwasawa’s con-
gruences adapted for the Ferrero-Washington proof. Write any element
z e Zj as a series

z=1zo+zp+ 20> + -+
with integers z; satisfying 0 < z; < p — 1. Let
S2) =20+ z,p+ -+ z,p"

be the n-th partial sum. In the above congruences, we may replace na by
s,(n%), and then omit the brackets giving the representative as a rational
number. Furthermore, let us write

o~ = 0,

12



§2. Application to the Bernoulli Distributions

where v is a positive integer, necessarily odd since we assumed that 6 is an
even power of the Teichmuller character. Furthermore,v# —1modp — 1
because 6 # 1. Multiplying the congruence by p"*! yields

Y s,(no)n® = 0 mod p**?

NERp—,

where v is a positive odd integer,v # —1 mod p — 1.
Now in the p-adic expansion of z we let

z, = t(2).
We shall express the above congruence in terms of ¢,.

Theorem 2.4. Let 0 # 1 be an even character of conductor p. Then
the Iwasawa congruences imply that there exists an odd integer

v# —1modp-—1
such that, for all « € Z} and all integers n > 1 we have

2) tamn® = (p— 1)), n° mod p,
ne neR

where & is a system of representatives for p,_, mod *1. In particular
the congruence class on the left-hand side is independent of o and n.

Proof. We have

S,,(aﬂ) = Sp+ l(arl) - tn+ 1(“'1)1’" l'
Furthermore
Sn+1(an) = an mod p**?2
and
2: ”v+l =:0
nE€RPp -1

because v # —1 mod p—1. Hence the congruence of the theorem is equiv-
alent to

Y. tass(an)n” = 0 mod p.
n

Since to(an) = an mod p, we always have
; to(an)n® = 0 mod p.

13



10. Measures and Iwasawa Power Series

Finally, since ¢, . ;(px) = t,(x), we are led to the congruence
Y. t,(on)n® = 0 mod p
n

for all n and all a. But since0 = p + (p—1)p + (p—1)p*> + ...
t(—on)=p—1—t(an) forn>1.
Therefore
2 tlomn® =2 3 t,em” — (@—=1) ",
n nea nea
thus proving the theorem.

The cased > 1.

Theorem 2.5. Let 0 # 1 be an even character of conductor d or dp withd > 1
prime to p. Let 0, = 6w ™. Then the Iwasawa congruences imply that for
alla € Z3 and all n > 0 we have

-1

Y Y i8y(s,(m) + ip"*?) = 0 mod p.

neR i=0

Proof. In Theorem 2.2 we may rewrite the congruence in the form

1
E’m Z a01(a) = 0 mod p

where the sum is taken over a prime to dp, such that
0<a<dp'*!' and <a),=(a), modp"*!.
We can also replace these elements a by elements of the form
ne+ ip"t! withi=0,...,d — 1,

and 7 is some (p — 1)th root of unity. The sum is then taken over n and i.
The sum over i with the factor na is then equal to 0, and we are left only with
a sum having ip"*! as a factor. Combining terms with # and —#, and using
the fact that 0, is odd yields the desired formula.

14



§3. Class Numbers as Products of Bernoulli Numbers

§3. Class Numbers as Products of Bernoulli Numbers

We continue to let p be an odd prime. We write x ~ y to mean that x = yu
where u is a p-unit. We let:

0 = even character on Z(dp)*.
¥ = character on 1 + pZ, of conductor dividing p"**.

The characters on Z(d)* x Zj of the same parity as k of conductor dividing
dp"*! can be written uniquely in the form

Yo~k = y6,.
For any integer k with 1 < k < p — 1, we define

1

W= p** TT T17 Brvan
Oeven Y
In particular,
h 1
¥=pll % By o,
0 even

We can simplify these expressions in so far as p-divisibility is concerned. We
need a lemma of von Staudt type.

Lemma 1. Let k be an integer with 1 < k < p—1. Then

1 1
E Bk,w"‘ = - 5 mod Z,,.

Proof. The proof is entirely similar to that of the Von Staudt congruence,
Corollary 2 of Theorem 2.3, Chapter 2, combined with the expression for the
Bernoulli number as an integral in Theorem 2.4 of Chapter 2. We leave it to
the reader.

Lemma 2. Let 1 <k < p—1. Then

1
hg) ~ l—[ EBkvow—k.

0+#1

Proof. The case when § = 1 combined with Lemma 1 shows that the
factor p in the definition of h{? cancels the pole of-order 1 at p of the single
term with 6 = 1 in the product. What remains is the desired expression.

15



10. Measures and Iwasawa Power Series

Lemma 3. Let 1 <k <p —1. Then

1
hf,") ~ hg‘)n n EBk,WOw""

0+1 y#1

Proof. Write y = 6. Then

1
(1—x@)p*™ ") % Brya-x = xa)<adya,* dE, (a).

1
1—x(c)Xe)k fr

We distinguish three cases, for the terms in the product defining h®.

If @ = 1 and = 1, then we apply Lemma 1. We use one factor of p from

p"*! multiplied with

1
—Bk,m"‘

k

to find a p-unit.
If0 # 1and ¢ = 1, then we use Lemma 2 to get the A%’ on the right-hand
side of the formula to be proved.

The proof of Lemma 3 is concluded by the next lemma.

Lemmad4.If0 =1and y # 1 then

1 1

PR ¥

where y = 1+ p and { = Y(y). Furthermore

1
pnl—[ EB,"ww-k ~ 1.

vl

Proof. We also take ¢ = 1+ p. Then

1= (XX ~1-( and c];11(1—() =p.
T*1

We note that x(c) = ¥(c), and we obtain

P H _l__; ~ 1.
ve1 1 _'I’(CKC),,
16



§3. Class Numbers as Products of Bernoulli Numbers

Finally we wish to show that

z.'lf(a)<a>’:.a; 'dE, (a) ~ 1,

i.e. the above integral is a p-unit. Since
Y@ =1mod1-{ and <{a) =1mod p,

it suffices to prove that

j a,' dE, (a)
z;

is a p-unit. This is immediate by writing down the first approximation at level
p, and concludes the proof.

For each 6 # 1 we let A(0, k) be the linear Iwasawa invariant of the power
series f , in §2, and we let

M) = ¥ A6, k).

0#1

From the Ferrero-Washington theorem and Lemma 3, we then obtain:

Theorem 3.1. There is a constant c, such that for all n sufficiently large,
we have

ord, h® = A(k)n + ¢,.

This is merely a special case of Corollary 3 of Theorem 1.2, applied to the
Bernoulli distributions, as discussed in §2.
We can then apply the theorem to the class number.

Theorem 3.2. Let h,, be the class number of Q(p»+1). Then there is a constant
¢ such that for all n sufficiently large, we have

ord, h, = A(1)n + c.
Proof. The classical class number formula asserts that

hn. = 2p”+l I] - ll"Bl,z’

x odd
so that we can apply Theorem 3.1 with k = 1 to conclude the proof.

17



10. Measures and Iwasawa Power Series

Theorem 3.3. Let K be a cyclotomic extension of the rationals (i.e. a sub-
field of a cyclotomic field). Let K , be the cyclotomic Z ,-extension of K, and
let h, be the class number of K,. Then there exists a constant ¢’ such that
Jor all n sufficiently large, we have

ord, h, = A()n + ¢

Proof. It is an easy exercise from the class number formula of Chapter 3
to show that the minus part of the class number differs from the product
giving h{ only by a finite number of factors. Hence the same estimate holds
as in Theorem 3.2.

In Theorem 2.3 of Chapter 12 we shall prove Iwasawa’s inequality bound-
ing the order of h, in terms of the order of h, . We then obtain:

Theorem 3.4. Notation being as in Theorem 3.3, there exist constants
¢4, C3 (depending on K) such that for all n sufficiently large, we have

ord, h, = c;n + c,.

Remark. Iwasawa developed his theory with the point of view that
Z ,-extensions are analogous to constant field extensions for curves over
finite fields. The formula

he =ho l;lf(é—l)

is analogous for the function field case of the class number formula. The fact
that ord, h, is linear in n follows at once from the existence of the Jacobian
in the function field case. Kubert-Lang theory suggests the possibility of
using the analogous theory in the modular case to analyze the Bernoulli
numbers B, , and obtain a bound for the invariant 4 in terms of the di-
mensions of abelian subvarieties of the modular curves.

Appendix by L. Washington: Probabilities

We shall give a heuristic argument which estimates the size of 4, = 4,(Q(n,)).
The contribution from A, will be ignored, since Vandiver’s conjecture says
it should be zero. In any case, 2.;' < 4,, so we could alternatively double our
final estimate.

Let i(p) =index of irregularity = number of Bernoulli numbers
B,, By, ..., B,_3 which are divisible by p. The idea will be to show that
usually

A’p = i(p),
18



Appendix by L. Washington: Probabilities

and that one should expect
A, <i(p)+1

for all but a finite number of p.

There are (p — 3)/2 relevant power series. We assume that each coefficient
is random mod p, and that these coefficients behave independently of each
other. The first coefficients of these power series correspond to the Bernoulli
numbers in such a way that a first coefficient is divisible by p exactly when
the corresponding Bernoulli number is divisible by p. The numerical evidence
bears out the assumption that the Bernoulli numbers are random mod p.
However, we are also assuming that the higher coefficients are random and
independent of each other. This is a more dangerous assumption, and I know
of no supporting numerical evidence.

Suppose 4, > i(p) + 2. Then we have two cases.

Case 1. Some power series has its first three coefficients divisible by p. The
probability that at least one of the first three coefficients for a given power
series is not divisible by p is 1—1/p3. The probability that for all (p—3)/2
power series we have one of the first three coefficients not divisible by p is

1\@-3r2
1—— .
( Pa)

Therefore the probability that at least one power series has its first three
coefficients divisible by p is

1\-3)y2 ( 1 )
1-({1-—= = 0[]
( Pa) p*
The expected number of times this should happen is therefore finite, since

Y 1/p? < 0.

Case 2. At least two different series have their first two coefficients divisible
by p.Reasoning as in Case 1, we see that the probability that none of the power
series has both of the first two coefficients divisible by p is

1\-3y2
1-= .
( P’)

The probability that exactly one has its first two coefficients divisible by p is

(p—3)/2 ) 1 \Ww-3y2)-1/4
C0-3"6)

19



10. Measures and Iwasawa Power Series

Therefore, the probability that at least two power series have their first two
coefficients divisible by p is

1 \-3y2) -3)2 1 \U—-3y2)-1/4 1
(e A G - M | R

So again one expects only finitely many occurrences.
We therefore expect

i(p) <A, <i(p) +1

for all but finitely many p. Therefore estimating 4, is equivalent to estimating
i{p), which we shall do.

However, first we shall show that usually one should expect 4, = i(p),
as was the case in Wagstaff’s calculations for p < 125,000.

If 4, = i(p) + 1, then at least one power series has its first two coefficients
divisible by p. The probability is

1 \@-3y2) 1 ( 1 )
1-(1-= =—+0(=)
( pz) 2p p

Therefore the number of expected occurrences of 4, > i(p)+1 for p < x
should be

1 1
— ~ =log log x.
st:xzp 2 g g

Since % log log (125,000) ~ 1.2, it is not very surprising that 4, = i(p) for
p < 125,000. In fact, one might expect to search rather far before finding a
counterexample. A reasonable bound might be 10?4 since 4 log log 10?4 ~ 2.
Also note that the fact that

1 < 4 log log 125,000
is really caused by the first few primes. If one considers, for example,

1

30<p<x 2P

20



Appendix by L. Washington: Probabilities

then the expected number is much less than 1. Starting the sum at p = 31 is
perhaps justified by the fact that the early Bernoulli numbers, etc., are too
small to be random mod p. In fact, even though 39 9% of primes are irregular,
37 is the first one.

We now estimate i(p). The probability that i(p) = i is

((p - 3)/2) (1 _ 1)«:»- 3)/2)—-'(1):' 12 @
i 4 P as p—» i! :

The right-hand side is the Poisson distribution. The probability is as stated
because i of the Bernoulli numbers are divisible by p, each with probability
1/p. There are (p — 3)/2 — i of them not divisible by p, each with probability

1 — 1/p. Finally, there are
((p - 3)/2>
i

ways of choosing the i Bernoulli numbers which are divisible by p.

For i = 0, we obtain the “result” that the fraction of regular primes is
e Y2~ 61%.

The number of occurrences of i(p) = i for p < x should be approximately

X e—l/z@i
log x il

We should therefore expect the first occurrence to be when

X -2 @y ~ 1.
log x i!

Taking logarithms and ignoring lower order terms, we find, with the help
of Stirling’s formula:

log x
~ il i ~ ] —~
logx ~ilogi so loglogx ~logi and fog log x i

Since x was the first occurrence of i, we obtain approximately

log p

. log p
i(p) £ ———— therefore 1,, < m

log log p
21



10. Measures and Iwasawa Power Series

For p ~ 125,000, this yields 4, < 4.8 which is close to the truth, namely
A, < 5. Of course, most of the time 4, will be much less than this bound:
619, of the time we should have 4, = 0. The “average value” of 4, is

- Yoexdy . [(2i(p) | O(loglog x)
:}Lnolo Ypsxl = lim Y1 + x/log x
- 1im 21(P)
Y1

(i) (probability that i(p) = i)
ie™ 112 @
i!

Il
ins Inas

]
Nj=

Bibliography. D. H. Lehmer seems to have been the first to use probability
arguments such as the above, since he mentioned that 1 — e~ /2 = 399,
of primes are irregular in [Leh]. Later, Siegel published a probability argu-
ment giving this result in [Si 2]. Numerical evidence appears in Johnson [Jo]
and Wagstaff [Wag]. Kummer (last page of vol. I of his collected works)
claimed that a simple probability argument yields the ratio of irregular to
regular primes is 4, but it appears he was mistaken.

§4. Divisibility by / Prime to p: Washington’s Theorem

Theorem 4.1. Let I, p be distinct primes. If p # 2, let ¢ = p and if p = 2,
let q=4. Let x be an odd Dirichlet character of conductor dividing dq
with (d, p) = 1. If Y is a character on 1+4qZ, with conductor p"*' suffi-
ciently large (depending on | and y), then the Bernoulli number 3B, ,, is
an l-unit.

Before proving the theorem, we give its application to the class numbers
of cyclotomic fields.

Theorem 4.2. Let K be a cyclotomic extension of Q. Let K, be the cyclo-
tomic Z,-extension of K. Let | be a prime # p. Then

Ol'dl l C(Kn) l
is bounded.

Proof. By lemma 2, §1 of Chapter 13 it suffices to prove the theorem when
K = Q(n,,) for some positive integer d not divisible by p. Furthermore, we

22



§4. Divisibility by / Prime to p: Washington’s Theorem

may also adjoin an [-th root of unity to the ground field, and thus assume
without loss of generality that d is divisible by I. Theorem 3.2 of Chapter 13
then shows that it suffices to prove that

ord, h,

is bounded. But we have the formula
h, = Q,w, n I;I - i'Bl.xll”
X

where x ranges over all odd characters of Z(dq)* and ¥ ranges over all char-
acters of 1+4Z, of conductor dividing p"**. The factor Q, is Hasse’s index,
equal to 1 or 2, and w, is I-bounded. Hence we may apply Theorem 4.1 to
conclude the proof.

In the rest of this section, we reduce Theorem 4.1 to congruences similar
to those which we have already met. To avoid using notation involving 4 in
case p = 2, we assume that p is odd. Actually, the case p = 2 is easier and was
solved by Washington before the general case.

Let ¥ = ¢, have conductor p"*!. Let

F,= Q(Xa Y) = Q(Xv "p")

be the field obtained by adjoining the values of x and ¥, to Q. Then B, ,,
belongs to F,. Let T, ,, be the trace from F, to F,,. Let my, > 1 be a positive
integer such that if

n>m2m°

then F, # F,,. Finally, let # be a set of representatives of the group of
(p—1)-th roots of unity in Z,, modulo +1.

Given the prime | # p, there exist only a finite number of prime ideals in
Q(u) lying above [, as is seen immediately from the structure of the de-
composition group. It follows at once that if

Fo,=|F,

then there is only a finite number of prime ideals in F,, lying above . Let
be one of these primes. We shall now indicate how to prove that given g,
for all y with sufficiently large conductor p"*!, we have

4B, ,, # 0 mod £.

We can choose an integer m such that all primes of F,, above | remain
prime in F, and we take m > m,. Let n > m.
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10. Measures and Iwasawa Power Series

Suppose that 4B, ,, = 0 mod £. Since € is the only prime of F,, lying
above its restriction to F,,,, we conclude that

T,‘,_,,,('i'\ll(a)- lBl,w) =0mod £

for all a € Z3.
We shall now transform this congruence into more explicit terms.

Lemma 4.3. If 4B, ,, = 0mod & for infinitely many ¥ (so of arbitrarily
large conductor p"*?), then there exist infinitely many n such that for such
Y and all o € Z} we have

Y@ Y dp'glrx\ll(s,,_,,,(an) +rp" ™) =0 mod £.

d ne® r=0

Proof. Abbreviate T = T, ,,. From the irreducible equation of a p-power
root of unity, we see at once that T(¢) = O for any p-power root of unity &
which does not lie in F,,. Thus if f € Z} and we write

B = (B)<BD,

where  is the Teichmuller character and {f), = 1 mod p, we get:

TWPB) # 0= y(B)y" =1
< {p>,”" =1 mod p"*!
< (f),=1mod p"™*1.

Consequently we find

TGH() By, ) = 1" T x(aW(ax™) gt
where the sum is taken for
0<a<dp"*! and <a),=<a), mod p" "*!.
This can be rewritten

-1
TUE) " Brn) = yorrr 3,50,
where

S(n, o) = Y x@W(aa

a=tna(pn-m*1)
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§4. Divisibility by / Prime to p: Washington’s Theorem

Note that given 7, elements a satisfying
0O<a<dp"*! and a=namodp" ™!,
can be paired with elements a’ such that
0<d <dp"*' and 4 = —namodp* ™!
of the form
a=dp"*! —a.

Since g is odd and V¥ is even, we therefore find

So)= Y [2ua(a)a — ya)(a) dp™ '].

asna(p"~m*1)

But the integers a satisfying the above conditions are precisely those of the
form

Sp—m(n) +rp" ™! withO<r<dp™— 1.
This concludes the proof of the lemma.

To prove Theorem 4.1, we still have to deal with the possibility that 1B, ,,
has a pole at £. However, we note that £ has finite ramification index over [.
Consequently for each y there is only a finite number of ¥ such that

%Bl.zw

has a pole at £, because such terms contribute negative /-order to the class
number h, , which can be cancelled only by a finite number of other factors
in light of the congruence

4B, 4 # 0mod £
proved for all but a finite number of Y. This concludes the proof of the

assertion in Theorem 4.1 that in fact, all but a finite number of 3B, ,, are
l-units.

25



The Ferrero-Washington Theorems

In this chapter we prove that the Iwasawa congruences cannot be satisfied,
thus giving a bound for the divisibility of Bernoulli numbers with characters,
and hence a bound for the divisibility of the corresponding class numbers
with respect to certain primes.

The proofs closely follow Ferrero-Washington [Fe-W] and Washington
[Wa 2], except that Gillard [Gi 2] gave a simplification which we take into
account.

§1. Basic Lemma and Applications

The impossibility of the congruences derived in the preceding chapter will
follow from the next lemma, valid for some choice of representatives & for
B,—; (mod +1).

Lemma 1.1. Let d,mbe positive integers withd prime to p. For alln sufficiently
large, thereexistsa,, o, € Z,, withay,a, = 1 mod p™,and an element n, € &,
having the following properties.

(i) sy(a1n) = Sy—m(1n) = 0mod d for alln e R;
(ii) s,(227) = sp-m(®27) = 0 mod d for all n # no;
(iii) sy(@270) = Sp-m(®270) + " ™! = O mod d.

The proof of this lemma will be given in the next sections.

Although Ferrero-Washington used similar lemmas for their theorems,
Gillard [Gi 2] observed that the above single statement suffices in all cases.
We now show its applications in each of the three cases under consideration.
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§1. Basic Lemma and Applications

The congruences of Theorem 2.4 of Chapter 10. We recall that these con-
gruences are:

) Y. t.(oen)n” mod p is independent of « and n.
neR

In this case, we can take m = d = 1, and the congruences mod d become
irrelevant, so that

ti(an) = t(an) =0 for all n # n,;
t(110) =0 and t,(ayno) = 1.

Subtracting the corresponding expressions in the congruences yields the
contradiction.

The congruences of Theorem 2.5 of Chapter 10. We recall that these con-
gruences are:

d-1
()] Y. Y ix(s{on) + ip"**) = 0 mod p.

neR i=0

The character y is odd, of conductor d or dp, and (d, p) = 1, while d # 1.
We take m = 2 in Lemma 1.1. Then we obtain for n # n,:

sa(yn) = n = s,(a,17) mod p
si(a;n) = 0 = s,(a;n) mod d,

and hence s,(a;n) = s,(a,n) mod dp. Since y has conductor d or dp, we get
fori=0,...,d-1:

x(sa(egn) + ip"*Y) = x(suazn) + ip"* ).

Similarly,

su(@210) = su(2;10) — p"** mod dp,

Let a = s,(a;1,). Then the congruence (2) yields

d-1 d-1
Y ixa+ip"*) = Y ix(a+(@i—1)p"**) mod p.
i=0 i=0
But
d-1

Y x(a+ip"* ) =0
i=0
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11. The Ferrero-Washington Theorems

because the conductor of x does not divide p"**. Hence

d-1 d—1
Y.+ Dx(a+ip"t") = Y ix(a+(@i—1)p"**) mod p.
i=0

i=

Subtracting yields
dy(a+(@d—1)p"*') = Omod p.

This is a contradiction because a+(d—1)p"*! is prime to dp. Indeed, it is
obviously prime to p because it is =7, mod p, and on the other hand, since
a = 0 mod d, we get

a+d—1p"*' = —p"* ! mod d.
This concludes the proof.

The congruences of Lemma 4.3 of Chapter 10. We recall that these con-
gruences are:

l dp™-1
©) yi Za Y rY(sp—mom)+rp" ™ 1) = Omod &

r=0
Fora = a, ora = a,, we getforalln e #:
a” (s (a)+rp" ™) = n+rp" ™" mod p"t .
Leta= s,(alqo). Arguing as in the preceding case, we get

ldp"‘—l
yi -;o ixf(@+ip"="* Wino +ip" ™"+ 1)

dpm—1

F z‘::’o ix(a+G—1Dp""™ Wino+(i—1)p" ™" ') mod L.

Again changing i to i+ 1 as in the preceding case, we get

1
Zdpmx(a + (dp"— D"~ " Yo +(dp"— Dp""*') = Omod £

But a+(dp™—1)p"~™*! is prime to dp and n,+(dp™—1)p" ™*! is prime
to p, so we get the desired contradiction.
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§2. Equidistribution and Normal Families

§2. Equidistribution and Normal Families

We recall some facts about equidistribution of sequences on R/Z. Let &#
be a family of Riemann integrable functions of R/Z. Let C{% ) be the vector
space generated by #. We say that C{# ) is Riemann dense (in the space of
all Riemann integrable functions) if given ¢ and given a real Riemann in-
tegrable function g, there exist real functions f;, f, € C{#) such that

<9</,

and
j (fi-f)<e.
R/Z

(In other words, we can approximate g above and below by functions from
C(F>)
Let {y,} be a sequence of elements in R/Z. Consider the condition:

EQU. Let # be a family of (complex valued) Riemann-integrable functions
on R/Z such that the vector space generated by & is Riemann dense. Then
for every function fin &, we have

o1
f(x)dx = lim 'ﬁ(f(}ﬁ) + -+ fOn)-

R/Z N->w

By a three epsilon argument, one sees that if the sequence satisfies EQU
for one family &, then it satisfies EQU for every such family. If that is the
case, we say that the sequence is equidistributed, or uniformly distributed.
Examples of such families which we shall use are as follows.

The most classical family is the family of characteristic functions of
ingervals [a, b) contained in [0, 1). Then equidistribution means that the
density of n such that y, lies in [a, b) exists and is equal to the measure of
[a, b). In other words,

lim %(number of n < N such that y, € [a, b)) = b—a.
N-w

In the application we deal with an even more restricted family, when the
end points a, b of the intervals satisfy additional restrictions (rational
numbers whose denominators are powers of a prime p), but the sequence still
satisfies EQU with respect to this family.

We shall also deal with the family of characters on R/Z, i.e., functions of
type e2™™, which satisfies EQU. Then EQU is known as Weyl’s criterion.
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11. The Ferrero-Washington Theorems

The above criteria apply mutatis mutandis to r-space R"/Z’, using cubic
boxes instead of intervals.

Let {B,,..., 8.} be a family of p-adic integers. The following two con-
ditions are equivalent, and define what it means for this family to be normal.

NOR 1. For every positive integer k and every r x k matrix (c;;) of integers
with 0 < ¢;; < p—1, there exists n > —1 such that

tn+j(ﬁi) = Cjj

fori=1,...,randj=1,...,k, and in fact the asymptotic density of such
: -rk
nisp

The condition means that every possible block of coefficients appears in
the p-adic expansions of §,,. .., B, with the expected frequency.

NOR 2. The sequence

{(pn+1 sn(ﬁl)a . ,,+1 S,.(ﬁ,))} n=12,...

is uniformly distributed mod Z'.

We shall now prove that these two conditions are equivalent.
Let feZ, and let C =(c;,...,c,) be a k-tuple of integers with

0<¢< p— 1.
Denote the principal part

Prk(C)=c_:+...+ﬁ_
p p

Let I,(C) be the interval of real numbers [a, a + 1/p*¥) where a = Pr,(C).
Write

sn(ﬂ) - sn—k(ﬂ) = zn—k+1p"_k+l + -+ znpn'

Define the principal part

Pr, (B) = n+1 (5u(B) — sn-i(B)) = Z,.;# +---+ %’-
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§2. Equidistribution and Normal Families

Then one verifies at once that

Pr, «(B) = Pr(C) if and only if pTl+T s\(B) € I(C).

Applying this criterion to an r-tuple 8, . . ., §,, we see that if the sequence
in NOR 2 is equidistributed, then {§,, . . ., B,} satisfies NOR 1. Conversely,
we also see from the above criterion that if {8,, ..., B,} satisfies NOR 1, then
that sequence is equidistributed over intervals of type [a,a + 1/p*), with
a = Pr,(C) as above. We can then apply EQU, with the family of character-
istic functions of such intervals.

Remark. As a special case, we also see that z,(8) depends only on the
interval [a/p, (a+ 1)/p) in which p~*"* Vs (B) lies. This remark will be used

in the applications. For instance if p~"* !s,(B) lies in the interval [0, 1/p),
then ¢,(8) = 0. If it lies in the interval [1/p, 2/p) then t,(B) = 1, and so forth.

We use Haar measure on Z, (normalized to have total measure 1), and
the expression “almost all” refers to all elements except on a set of measure 0
for that measure.

Lemma 2.1. Let {B,, . . ., B,} be elements of Z, which are linearly inde-
pendent over the rationals. Then for almost all ae Z , the family {af,,..., o, }
is normal.

Proof. By Weyl’s criterion, we must show that for every r-tuple of integers
(a,...,a)not all 0, and almost all &, we have

lim l )Ev: e(zr: pTl+—‘ s,,(azﬂi)ai) =0,

N-wo n=1 \i=1

where e(x) = e>"*. (For each r-tuple we exclude a set of measure 0, but there
are only countably many r-tuples.) Let

B= -;ai B:.
Since

s(of) = o = T s,(aay mod '+
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11. The Ferrero-Washington Theorems

it suffices to show that

im L $ oL o) =0
im ﬁu=1e puﬂs,,(aﬁ))—

for almost all a. Let

1 X 1
S(N, o) = X Y e(lﬁ s..(aﬁ))-

=1
Then writing | S(N, @)|*> = S(N, «)S(N, «) we find:

1
+—5 Y | (crossterms) do
N m#n JZp

1
2 = —

21~

because the integral of the cross terms is equal to 0, since the integral of a
non-trivial character over the group Z, is equal to 0. (In this case, the integral
is a sum of roots of unity.) Thus we obtain

Y |IS(m?* a)Pdoe= Y $<oo.

m=1 m=1

By Fubini’s theorem, we can put the summation sign on the left inside the
integral, and thus conclude that

lim S(m?, a) = 0

m-— o

for almost all a.
For arbitrary N, choose m such that m?> < N < (m+ 1) Trivial estimates
show that

ISV, )] < IS(m, @)] + 0 0 as N - .

This concludes the proof.
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§3. An Approximation Lemma

Lemma 3.1. Let {f,,..., B,} be p-adic integers, linearly independent over
the rationals. Suppose we are given ¢ > 0; an integer m > 0; an integer d
with (p, d) = 1; real numbers x,,. .., x, € (0, 1). Then for all n sufficiently
large, there exists o € Z,, satisfying:

(i) « =1 mod p™;
Gi) |p~"* Vs, (aB) — x;| <efori=1,...,r;
(iii) s (@f;) =O0modd fori=1,...,r.

Proof. We use vector notation and put x = (xy,...,x,), B = (B1,.-.,B,)-
We let || | be the sup norm on the torus R"/Z". For each n we define the
residue

res,(B) = p~ " Nsu(By), - - - su(B)))-

We may assume that ¢ is so small that the intervals [x; — ¢, x; + €] are
contained in the open interval (0, 1) for all i. Select N sufficiently large so that
1/N < &/2d. By Lemma 2.1, for each r-tuple

k= (ky,...,k,)

of integers k; with 0 < k; < N—1 we can find a p-adic integer a, and an
integer n, such that

res,, (04 f) — % " < &/2d.

Let n, = m + max, n, and let n > n,.
There exists some k such that

x B k
2 - I'CS,,(E) - N " < &/2d.

Leto’ = (1/d) + p" ™. Then &' = 1/d mod p™, and

res,,(g) + res,, (0 f) — res,(o'p)

\ —o.
Hence the above inequalities yield
”3 - res,,(a’ﬂ)“ <2¢/2d = ¢/d.
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11. The Ferrero-Washington Theorems

It follows that

it 1)e (ot x;—& x;+¢&
p sn(aﬁi)e [ d ’ d

foralli=1,...,r.
Finally we let « = do'. Then s,(af;) = ds,(o'B;), and a satisfies the required
conditions.

The above proof, considerably simpler than the original proof, is taken
from the Bourbaki report by Oesterle (Bourbaki Seminar, February 1979).

§4. Proof of the Basic Lemma

This section contains the proof of Lemma 1.1.
Let ! be a primitive (p— 1)th root of unity, and let its powers be

) -1
n forj=1,...,R where R=22—.

Then these powers 7’ represent the elements of p,_,/ 1.
We shall write ,,...,7, for +71!,..., +7", with any choice of sign, and
r = ¢(p—1). We can express

n'=n;= Yaun forj=r+1,...,R,
i=1

with integral coefficients a;. Thus we obtain an (R —r) x r matrix
A=(@;), (@+1<j<R; 1<i<0n).

Welet x,, . .., x, be real numbers, and we then let

™M~

X =

j agx; forj=r+1,...,R.

i=1

Observe that changing the signs of #,,...,7, amounts to changing the
signs of the columns in the matrix 4. Changing the signs of #,,,,...,7z
amounts to changing the signs of the rows. Such changes of signs will be
called admissible.

Since n,/n; is not rational for i # j, it follows that in each row, there are at
least two non-zero elements. Furthermore, it is clear that no two rows of the
matrix 4 are equal. We now prove:
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§4. Proof of the Basic Lemma

Lemma 4.1. Let A = (aj;) be a real matrix such that no row equals + or —
another, and in every row there are at least two non-zero elements. After an
admissible change of sign, we can find a vector (x,,...,x,) ='X"eR"
such that, if we put

XR™D = AX® gnd X® " =Yx,,,,..., %),
then:

(i) Wehavex; >0 forj=1,...,R;
(i) We have x; # x;,forallj # j.

Proof. In R-space, we consider the conditions:

x;=0forsomej=1,...,R;
x; — xj = 0 or x; + x; = 0 for some pair (j, j') with j # j'.

Each such condition defines a hyperplane. We want some X € R" such that
( X('), A X(r))

does not lie in the union of these hyperplanes. Let V be the vector space of
all vectors (X, AX®™), i.e. the graph of the linear map represented by A.
Then V is not contained in any one of the above hyperplanes because of the
two assumptions on the matrix 4. Hence V is not contained in the finite
union of these hyperplanes. Let V'’ be the complement of these hyperplanes in
V,and let V', be the projection of V"’ on the first r coordinates. Take (x,,. .., X,)
in the positive 2"-quadrant intersected with V', and let (x,, ..., xg) be a point
in V"’ above it. Since V is symmetric with respect to sign changes on the last
R —r coordinates, we can then make such sign changes on x, . ,..., Xz to
achieve the desired positivity condition. (I am indebted to Roger Howe for
the above proof.)

We let j, be the index such that x; < x;, for all j # j,. After replacing
Xyy--.»Xg DY €X4, ..., cxg for some real number ¢ > 0, we may assume that

O<x;<p™ forallj=1,...,R.

We then apply Lemma 3.1, (i) and (ii) with §; = n;fori = 1,...,r. Let nand
o be as in that lemma. If ¢ is small enough, we obtain

0< Y aup " Vs an) <p™ forj=r+1,...,R
i=1
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11. The Ferrero-Washington Theorems

Hence

0< Zaﬁsn(“ﬂi) <ptiTm<pmti
Therefore

Sn—m(@;) = s,(an;) = z aﬂsn(“’lt)-

We take a, = a to satisfy the first part of Lemma 1.1.
For Lemma 1.1 (ii) and (iii), we select the scaling factor ¢ > 0 such that

O<x;<p™ forj#j, but p™™ < x;, <2p™™

We select « = a, in Lemma 3.1. Then the desired conditions are satisfied
forj # j, as before, but for j,, Lemma 3.1 now shows

n—-m+1

Su-m(@Mjo) = 5,(anj,) — P

This concludes the proof.
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Measures in the Composite Case

In Chapter 4 we developed the formalism of associated power series for
measures on Z,. It is necessary to develop it in general. We do this in the
present chapter, which could (and should) have been done immediately
following Chapter 4. In all this work, a prime p is given a special role. Values
of functions lie in C,. In dealing with this composite case, it is also useful to
follow Katz, and associate to a measure not only a power series, but an
analytic function on the “formal multiplicative group.” This is explained in
§2. The introduction of additional notation to handle this composite case,
however, made it worthwhile to separate the two cases. Measures on Z,
itself, without the extra d, occur both in their own right, and as auxiliaries
to the composite case, so it is useful to have their properties tabulated
separately.

The present chapter is independent of everything else in the book, and
can be omitted by those who wish to read at once the results of Chapter 13,
needed to bound the plus part of the class number in terms of the minus part,
for the Ferrero-Washington theorems.

§1. Measures and Power Series in the Composite Case

In Chapter 4, we dealt only with the formalism of measures and power
series on Z,. To handle characters with conductor dp” where d is a positive
integer prime to p, one has to deal with the composite case. Thus we now give
an exposition of the formalism in this more general context.

Let Z be a profinite group, equal to the projective limit of its quotients

Z =1lim Z/H,
H
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12. Measures in the Composite Case

where H ranges over the open subgroups of finite index. Let o be a complete
valuation subring of the p-integers in C,. We let the Iwasawa algebra be

A,(2) = lim o [Z/H],
H

where o[ Z/H] is the group ring of Z/H over o. We recall that an o-valued
measure on the projective system {Z/H} is a family of o-valued functions
{ug}, which is a distribution. This means: given H' < H, we have

#H(x) = Z #H’(y)v

where x € Z/H and the sum is taken over y € Z/H' lying above x under the
canonical map Z/H' — Z/H. The association

T ;Huﬂ(x)x e o[Z/H]
xelZ|

lifts to an isomorphism between the additive group of o-valued measures and
the Iwasawa algebra.

Observe that the product in A,(Z) corresponds to the convolition of
measures.

If @ is an o-valued function on Z, factoring through some factor group Z/H,
in other words, if ¢ is a step function, then we define its integral

f edu= 3 @(x)ug(x).

x€Z/H

This value is independent of the choice of H, by the distribution relation. The
integral extends to the space of o-valued continuous functions on Z by
uniform approximation with step functions.

Let C(Z, o) be the o-space of continuous functions of Z into o, with sup
norm. There is a bijection between o-valued measures on Z and o-valued
o-linear functionals

A:C(Z,0)—> 0.

Indeed, the measure u gives rise to the functional

Q> J(p du.

Conversely, given 4, if x € Z/H and ¢, is the characteristic function of the set
of all y € Z such that y = x mod H, then we define

be(x) = H).
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§1. Measures and Power Series in the Composite Case

It is easily verified that these associations are inverse to each other, and
establish a norm-preserving bijection, where

lull = sup |up(x)|
x,H

is the sup norm.
Now suppose that there is a finite subgroup Z, such that

Z=ZOXZ,,.

Let I' be a multiplicative group isomorphic to Z,,, with topological generator
7, so the isomorphism is given by

z—y*, withzeZ,.
Let H, = {1} x p"Z,, and let y, = y mod I'*". Then
Z,=2Z/H, =~ Zo x T,

where I, = I'/T?" is cyclic, with generator y,.
Let X be a variable, T = 1+ X, and

h(X)=(1+X)" — 1.

Then the element of o[Z,] corresponding to up, is a linear combination

p—1
) PX)= Y Y tor)ov,

ceZo r=0
=1 r

> T Zm ,(r)(,:)an mod hy(X).

ge€Zo r=0 k=0

where y, = T mod h,. For each o, the map
T Uy, o(r)
determines a measure u, on Z, as discussed in Chapter 4. This makes it

possible to extend results concerning measures on Z, to measures on the more
general groups now being considered. If we let

14

PO =Y coaX",

-1
k=0
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12. Measures in the Composite Case

then the coefficients

@ ar=2X u,.,,(r)(,:)a =Y clo)

lie in the group ring o[ Z,].

We let P(X) be the projective limit of the polynomials P,(X). Then P(X)
is an element of o[ Z,] [[ X]], and we shall write the correspondence between
u and the power series P by

f=Pu, p=uy,.

Let us write

PX)= YaX =Y Y ¢.0X~
k=0

k=0 ceZp

Then the coefficients ¢, , are given by the integrals

® cne = [, (3 anao

because we can apply Theorem 1.1 of Chapter 4.
Let ¢ be a continuous function on Z. Then for each o, we get a function

@,(r) = p(o,r) withreZ,.

If ¢ factors through Z,, then

@) L pdu=Y Y oo, Nulo,r)

o reZ(pn)

= Z j(padua-
z

oeZy P

Any continuous function ¢ on Z can be viewed as a family of continuous
functions {¢,} on Z,. Hence

©) f odu= Y fz:p, du,.

ceZo

Using Mahler’s Theorem 1.3 of Chapter 4, if we write

X
(pa(x) = Zan,a(n)
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§1. Measures and Power Series in the Composite Case

and the power series associated with u, is

(6) .’;(X) = Z cn,aXn’

then

™ f 0di=YY crotno

The sum formula (5) in principle allows us to reduce the study of any
measure 4, to the individual measures associated with the power series f,
on thefiber {¢} x Z,. Theformulas of Chapter 4 apply to eachf,. In addition,
we have trivial ones relating to the extra factor Z,. For instance:

® If ¢ is a function on Z,, then
Puy = p, where g, = ¢(0)f,.

This applies in particular to the characteristic function ¢, of a single element
x€Zy. Then

Pally = Uy,

where f, is identified with the element f,-a in Z,[Z,][[X]]. In this last
example, we have of course the Fourier expansion of ¢, given by

1
Oy = TZal %: Y@,

where the sum is taken over all characters ¥ of Z,,.
At any finite level, that is on any one of the groups

Zy, x Z(p"),
the space of functions is generated by the product functions
®o R ¢p,
where ¢, is a function on Z, and ¢, is a function on Z(p"). By definition,

(Po ® 9,)(5, x,) = Po()P (X))
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12. Measures in the Composite Case

Thus to test whether two measures are equal, it suffices to test whether
their integrals on such functions are equal. These integrals decompose as
simple sums according to (4) and (5), namely

© fz 0o(0)0,0x,) dia, x,) = ¥, ¢o(0) L 0,0x,) duo(x,).

This applies for instance if ¢ is a character of Z which factors through a
finite level.

Let fbe the power series associated with u. Given the function ¢, on Z,,
the expression of (9) defines a measure pu,, on Z, whose associated power
series is

f¢o = z ‘Po(d)fa, while ﬂoo = Z (Po(o')ﬂa-

In other words, we have the formula

(10) fz(po ® ¢, dp, = J; @, dp, whereg = f,.

If Z, = Z(d) = Z/dZ, then we may take for ¢, an additive character,
which is of the form

ll’O: xO - Cgoa Xo € Z(d)’

for some d-th root of unity {,. In that case, the measure u, above will also be
denoted by

By OT Uy,

if Y4 is the above character.
Let N = dp". An N-th root of unity { has a unique product decomposition

C = COCp

where {, is a d-th root of unity, and {,, is a p™th root of unity. Then we have,
by definition and (10):

a1 L (o0 (x,) dilx) = L (2 0,(x,) dite(x,).
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§2. The Associated Analytic Function on the Formal Multiplicative Group
In particular, for ¢, = 1,

(12) fz {90 dp(x) = L {37 dpCx,)

where y;, is the measure whose associated power series is

(13) fo= L (%

xoeZ(d)

For this formalism it is therefore useful to define x € Z by its two components,
x = (xo, X,), where x, = x mod d, and x, = x mod p". Then

& = e,

so that the above integral can be written more simply with {*.
By the orthogonality of characters, it is then immediate that we can
recover f,, from f, by means of the formula

1
(14) fxo =Eczco_x?f(o'

§2. The Associated Analytic Function on the
Formal Multiplicative Group

Katz [Ka 3] has shown that in addition to the power series associated with a
measure, it is also useful to associate an analytic function on the “formal
multiplicative group.” The formalism is similar to the one of power series
developed in Chapter 4, but it is more convenient in some situations,
especially when dealing with the extra factor Z(d) in the composite case.
Again, Katz’s formalism makes certain constructions due to Iwasawa and
Leopoldt appear completely natural, and we reproduce this formalism
below.

We fix a positive integer d prime to p. In the sequel we let N denote any
positive integer of the form dp”, and again we let Z = Z(d) x Z,, so that
Zo = Z(d). Let

T=1+X

as usual. Let m be the maximal ideal in oc,,. A function R on 1 + m is called
analytic if there exists a power series f with coefficients in C,, converging
on m, such that

R(1+2)= f(z) forallzem.
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12. Measures in the Composite Case

Let n be a d-th root of unity. We say that R is analytic on (1 + m) if there
exists a power series fas above such that

R(n(1 + 2)) = f(z) forallzem.
Then fis uniquely determined by R, and is said to be associated with R.
Example. The function log T = log(1 + X) is analytic in the above sense.
In the applications, we shall deal principally with this log, or with rational

functions.

We let G(d) be the (disjoint) union

G,d) = [Jn(l +m).

nd=1
A function R is called analytic on G,(d) if it is analytic on each “component”

n(1+m). Then R consists of a family {R,} where each R, is analytic on the
corresponding component. If { € n(1 +m), we use the notation

C = nu, n= CO = (D(C)i u= Cp = <C>p
Then
R(©®) = Rw(c)(C) = fw(C)(Cp— 1).

We shall call G,(d) the formal multiplicative group (at p, of level d).

Remark. The group G,(d) may be viewed as the group of (continuous)
C;-valued characterson Z = Z(d) x Z,, by the mapping

Yo x> 0 = {505,
for each { € G,(d).
Let u be a measure on Z, with values in 0. An analytic function R on G (d)

will be said to be associated with u if the power series associated with R have
coefficients in o, and if we have the formula

fz {* du(x) = R(Q)

for all N-th roots of unity {, N = dp" (all n). The Weierstrass preparation
theorem shows that an associated analytic function R, if it exists, is uniquely
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§2. The Associated Analytic Function on the Formal Multiplicative Group

determined by p. Of course, we want the above formula to be true also for all
{ € G,(d), but we can prove it later, when { is not a root of unity.

We shall say that u is rational if R is a rational function of T (and hence
of X). Thus the right-hand side R({) is just the value of this rational function
at T = {. We then call R the associated rational function. We also observe
that the rational function is the same (if it exists) as that associated with the
restriction of u to

{0} x Z,.

Indeed, we have from the definition of a distribution:

R(,) = fzc:» dpx) = L £z du(o, x,)

R 1. A measure always has an associated analytic function R. If d = 1 and
W is a measure on Z,,, then

R(T) = f(X)
is the associated power series of Chapter 4.

Proof. For a measure on Z, with d = 1, this follows from Meas 0 and
Maeas 2 of Chapter 4, §2. The general case then follows at once. Note that in
Meas 0, we have

f@©) = R(1).

Furthermore, if u is a measure on Z = Z(d) x Z,, then the measure pu,
at the end of the last section is a measure on Z, to which we can apply R 1,
withd = 1.

R 2. If a measure p on Z has an associated rational function R(T), then the
measure i, has an associated rational function, given by

Ry (T) = R T) = fii(X).

Proof. This is immediate from the definition of the associated rational
function, and the integral formula (12) of §1.

Lemma 2.1. Assume that p is a measure on Z such that each i, is rational,
for every d-th root of unity {,. Assume also that the functions

Re((o'T) = R(T)
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12. Measures in the Composite Case
are independent of {o. Then p is rational, and its associated rational function
is R(T).
Proof. This is again immediate from the integral formula (12) of §1.

R 3. Let p be a measure having associated analytic function R. Then the
formula

fz {* dp(x) = R

holds for any { € G,(d).

Proof. This is a direct consequence of R 1, formula (12) of §1, and the
analogous result for measures on Z, stated in Theorem 1.2 of Chapter 4.

R 4. Let { € G,(d). Let R be the associated analytic function of p. Then
{*u(x) has associated analytic function R({T).
Proof. Immediately from R 3, since {i(3 = ({1{2)*
Just as with associated power series, R4 allows us to use the Fourier
expansion of any step function to obtain its associated analytic function.

Thus let ¢ be a step function of level M which is a divisor of dp” (possibly
a pure power of p). Then

o(x)= Y O

gM=1

and

WO =1 T oX™

xeZ(M)

We shall now give a first example of the use of such expansions in connection
with the unitization operator U defined by the formula

UR(T) = R(T) - 1 Y. R(T).
D=1

Let

Z* = Z(d) x Z*.



§2. The Associated Analytic Function on the Formal Multiplicative Group

R 5. Let ¢ be the characteristic function of Z* If R is associated with p,
then

UR is associated with opu.

Proof. The Fourier expansion of the characteristic function of Z¥ was
already computed in Chapter 4, §2 and is trivially determined to be given by

—-1/p f{#1.

o) =1, _
P=l o,
P

and { ranges over p-th roots of unity. Property R 5 then follows from R 4 and
the Fourier expansion.

R6.Let N = dp”wheren > 0. Let x be a Dirichlet character of conductor N,
and let { be a primitive N-th root of unity. If R is the analytic function
associated with u, then the analytic function associated with yu is

5.9 Y Z(@RE°T).

N acZ(N)*

where
S §) = Y x(a)e.

Proof. The computation of the Fourier transform of y is routine and is
left to the reader. (One has of course to use Theorem 1.1 of Chapter 3, §1.)

R 7. Let R be the analytic function associated with u. Let D = TDy and
let k be an integer >0. Then

xku(x) has associated analytic function D*R(T).

The same statement holds if u is rational, and “ analytic” is replaced by
“rational” in the above statement.

Proof. We may use ¢,(x,) = x; in (11) of §1, and then apply Meas 6 of
Chapter 4, §2 to each one of the measures y;,, after using R 1. Thus the general
case is reduced to the special case of measures on Z,.
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12. Measures in the Composite Case

R 8. Let R = UR be the associated analytic function of a measure p with
support in Z*. Then the measure

x, ' u(x) has associated analytic function UH,
where H is any analytic function on G,(d) such that
DH = R.

Proof. Since x,, ! u(x) is a measure on Z*, there exists an analytic function F
associated with it. Then R 7 yields

DF = R.

We can let H = F. Since the kernel of D consists of the functions which are
constant on each component of G,(d), if we select any H such that DH = R,
then UH will have the same value, independent of the choice of H, thus
proving the desired property.

The “integration” of the analytic function R(T') can be performed formally
in terms of the variable X. Indeed, say on the coset 1+ m, if R is defined by a
power series f(X) then an analytic function H such that DH = R is given in
terms of X by

H(T)=fF(X) 1dX _ [F(X)

=% = | axdX = IR(T)

Remark. The formalism of this section is set up to extend at once to its
adelization over d prime to p.

§3. Computation of L, (1, x) in the Composite Case

Let E, . be the measure defined in Chapter 10, §2, giving rise to the p-adic L-
function and the Bernoulli distribution, regularized with ¢ so as to be integral
valued. We shall apply the previous considerations to this measure.

By definition, we have for s = 0 the value

-1
Ll y)= 1—:@ Lx(a)a;l dE,, (a).

The conductor of x being dp" = N, the integral might as well be taken over

** = Z(d)* x Z}.



§3. Computation of L, (1, %) in the Composite Case

In any case, if we find (as we shall do below) that E, . has an associated
rational function, then the general formalism also yields successively the
corresponding analytic function for the measure

x(a)a, 'E, (a).

We may then evaluate this analytic function at T = 1 to get the value L (1, x).
We shall now carry out on Z(d) x Z, the same analysis that we did for
Z, in Chapter 4, concerning the associated power series, and the Leopoldt
formula for the value of the L-function at s = 1.
We recall that if ¢ is a positive integer prime to dp, then the measure
E, .on Z, has an associated rational function (equal to its associated power
series by R 1), which is

1 c
RodD =521~

according to Proposition 3.4 of Chapter 4.

Proposition 3.1. Let ¢ be a positive integer prime to dp. Then E, . on
Z(d) x Z, has an associated rational function, equal to R, (T) above.

Proof. To extend the above result from Z, to Z(d) x Z,, it suffices to
prove that for every root of unity { € py, and N = dp”", we have

L {* dEy (%) = Ry.0).

By definition, essentially (cf. formula B 6 of Chapter 2, §2) we know that for
any function ¢ on Z(N) we have

© Zk N-1 zeaZ
kgoBk.o - =0‘P(a) MM_1

We apply this to ¢(x) = {*and @(x) = {**. Summing a geometric series from
0to N—1 then yields

@ (1 1 Zk-1 1 c
,,;, (E Byo - ‘kEB""'”) *k=1)! (T—1 [T-1°

where T = eZ. The right-hand side at T = 1 is the same as R, ({), and is also
the same as the left-hand side at Z = 0. But that is precisely the value of the
desired integral for k = 1. This proves Proposition 3.1.
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12. Measures in the Composite Case

Proposition 3.2. Let x have conductor N = dp" with n > 0. Then xE, .
has an associated rational function R . given by the formula

R,.{T) = G,(T) — cx(c)G,(T),

where for any primitive N-th root of unity {,

_ S0 - 1
G(T) ==~ “;v)‘x(a) ek

Proof. Special case of R 6.

We can write R, (T) in full in the form:

R = 280 gy £ - 2K

This puts us in the position of applying R 8, and of finding an analytic function
H, .such that H, (1) = 0,and

DH, .=R

X.C*

We let A range over ¢-th roots of unity, and we let

_ - (19 C) = T“‘-Ca
Hy.dT) = N ).gl aslz(N)‘X(a) log 1-a0%"

Exactly the same verification as in Chapter 4, §3 (or a direct integration using
partial fractions) shows that this value for H, (T) satisfies our requirements.

By R 6, the analytic function associated with the measure x(a)a, 'E;, (a)is
UH, (T).

Theorem 3.3. Let x have conductor N = dp", n > 0. Let { be a primitive
N-th root of unity. Then

%(a) log,(1 — £°).

L, )= —(1_?@)3(%0 5

14 N aeZ(N)*

Proof. Let £ range over the p-th roots of unity. By R 6,

= (1=x(e)L,(1, x) = UH,, (1).
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§3. Computation of L, (1, 7) in the Composite Case

Hence, following exactly the proof of Chapter 4, Theorem 3.6:

~(1 =~ KO, ) = 5 3 OZZ 3. ¥a) '°g"(1 zc")

a A#1

1.8(x, O)
=-— 1
p N za"X(a) o8» (l#l —él )
But
E-A o 1-Ag
i¥1 1:1 1-A* 11;11 ((EYIQLa

If p| N, then as in Theorem 3.6 of Chapter 4 we find that

Y. (@) log,(1-A{™) =

and the rest of the proof is identical with the previous one. If pY N, then we
change variables, letting a — p~'a mod N. We then find

2. 1(a) log,(1-AL*) = x(p) ¥ #(a) log,(1—AL%).

Thus we get an extra term besides that of Chapter 4, which gives rise to the
factor (1 — x(p)/p) as stated in the theorem. Except for that, the proof is again
identical with the previous one.
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Divisibility of Ideal Class Numbers

Classical results of Kummer give bounds for certain class numbers and
estimate, for instance, the plus part in terms of the minus part for cyclotomic
fields.

Such estimates have been carried out more systematically and generally
by Iwasawa, to include estimates for his invariants, and will be given in the
first two sections of this chapter.

Next we deal with the l-part of the class number in a cyclic extension of
degree p" when p is a prime # I. We also give examples of Iwasawa of non-
cyclotomic Z,-extensions when the order of the class number grows expo-
nentially. These examples are based on a classical formula (Takagi-
Chevalley) expressing the fact that in a highly ramified extension, the ramified
primes have a strong tendency to generate independent ideal classes.

We conclude with a lemma of Kummer which is still somewhat isolated.
In this connection, cf. [Wa 5].

§1. Iwasawa Invariants in Z -extensions

Let K be a number field and K, a Z-extension. We let K, denote the sub-
field of degree p" over K, so K, = K.

Let C, be the p-primary part of the ideal class group of K,. We also write
C(K) for the p-primary part of the ideal class group of K. Then by Iwasawa
theory of Chapter 5, we have

|C,| = p* where e, = mp" + An + 0(1).

We call m, A the Iwasawa invariants of the Z -extension. We call m the
exponential invariant, and A the linear invariant. We indicate the dependence
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§1. Iwasawa Invariants in Z -extensions

of m and 4 on the Z -extension by the notation.
m=m(K,/K) and A= AK_/K).

If K, is the cyclotomic Z,-extension, then these invariants depend only on
K. We may then write more briefly

m=mK) and A= AK).
Put
Vk = C(Ko/K) = lim C(K,).

From the structure theorem of Chapter 5, we have a quasi-isomorphism

Ve ~ [TA/r™ @ T] A/f;.

For any abelian group V we let V' be its p-primary part, i.e. the subgroup of
elements annihilated by a power of p. Then we have quasi-isomorphisms

Ve ~ H A/p™ and Vg/VP ~ n A/f;-

From the structure Theorems 1.2 and 1.3 of Chapter 5, we know that

MK o/K) = Y deg f;.

Furthermore, we have the characterization:
A is the rank of V/V® as a finitely generated Z ,-module.

For the exponential invariant, we have

m=2m,-.

We shall now compare these invariants in a Z -extension and its lifting over a
finite extension.

First note that if F < K and F, is a Z,-extension of F, then K, = KF,
is a Z,-extension of K, and there is some integer r such that

Kn = KFn+r'
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13. Divisibility of Ideal Class Numbers
Lemma 1. Let F = K be number fields. Let F ,, be a Z,-extension of F.
Then
m(F,/F) < m(KF,/K) and A(F,/F) < AKF,/K).

Proof. The degree [K,: KF,] is bounded by a fixed power p". By class
field theory, we have

(C(F,): N, C(K,) < [K:F]p".
Hence
|C(K)| > |C(F)I,
and therefore
ord, C(K,) = ord, C(F,) — O(1).

This proves the first inequality in light of the formula for the orders.
For the second, let us use the functorial notation

C(F o/F) = lim C(F,).
The norm maps
Ng,r,: C(K,) = C(F,)

are compatible with the norm maps in the projective limits in the tower
over F, and K, respectively, and thus induce a homomorphism

N:C(Ko/K)— C(F ,/F).

Since the index of the image of Ny, is bounded for all n (as in the first
part of the proof), it follows that the image of N in C(F/F) is of finite
index, in other words that N is quasi-surjective.

Now put V; = C(F,/F) and similarly for V. Let V® as usual denote the
subgroup of elements annihilated by a power of p. Then we have a quasi-
surjective homomorphism

Ve/VE - Ve/VP.

The inequality for the A-invariants then follows at once since 4 is the rank
of the above modules as finitely generated Z,-modules.
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§1. Iwasawa Invariants in Z-extensions

We have been concerned with the p-divisibility of the order of the ideal
class group in Z-extensions. An analogue of Lemma 1 can be given for any
prime number.

Lemma 2. Let F, be a Z,-extension of a number field F. Let K be a finite
extension of F and let K, = KF,. Let | be any prime number. If
ord;| C(K,)| is bounded, then ord,| C(F,)| is bounded.

Proof. The argument using the norm index in the first part of the proof
of Lemma 1.1 applies equally well to prove the result stated in Lemma 1.2

Next we study another Iwasawa invariant, the rank.
If A is an abelian group, we define the p-rank,

rank,(4) = dimension of 4/pA over the prime field F,.
We have a criterion for the vanishing of the exponential Iwasawa invariant
in terms of this p-rank of the groups C,. We phrase the criterion to apply in
general to torsion modules over the Iwasawa algebra.

We use the notation of Chapter 5, Theorem 1.3, where we dealt with a
module of Iwasawa type, and say

r t
vV~ HlA/P"“ ® [[4/1
i= j=1
where the f; are distinguished polynomials. We let

nV)y=r

be the number of factors of type A/p™ for some m. As in Chapter 5, we let
vy, ..., U be elements of V such that if we put

U, = Z,-submodule of V generated by (y — 1)V and v, ..., v,,
Un = gnUOWithgn =14+ Y +---+ Vp"-l’

then
V., =V/U,

is finite for all n. We put e, = e(V,) = ord,, V,. The proofs of Theorem 1.2 and
Theorem 1.3 of Chapter 5 distinguish the two cases of modules of type

A/p™ and A/f

where f is distinguished. They immediately show the following result.
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13. Divisibility of Ideal Class Numbers

Lemma 3. We have rank, V, = r{(V)p" + O(1), where r{(V) is the number
of factors of type A/p™ above. Furthermore, the following conditions are
equivalent.

(i) All the factors A/p™ are equal to 0, so r,(V) = 0 and

V ~ 14/

(ii) The p-rank of V, is bounded independently of n.
(iii) In the order formula e, = mp" + An + O(1), the exponential in-
variant m is equal to 0.

§2. CM Fields, Real Subfields, and Rank Inequalities

We now wish to make a comparison of the behavior of the ideal class group
in a field and a real subfield. We prove Kummer’s theorem (Theorem 2.2)
and Kummer type theorems in the following context.

A number field K is said to be a CM field (complex multiplication field)
if it is a totally imaginary quadratic extension of a totally real field. We
leave it as an exercise to prove:

K is a CM field if and only if the following condition is satisfied. Let p
be complex conjugation. Then pa = ap for all embeddings o of K into the
complex numbers, and K is not real.

The totally real subfield of K is then uniquely determined, and denoted by
K*. It also follows that a composite of CM fields is a CM field.

Although we are primarily interested in the cases when the CM field is
abelian over the rationals, it is just as easy to deal with the more general
case. However, we have to restate some results of Chapter 3 in this context.

Let K be a CM field. Let Wy be the group of roots of unity in K. The Hasse
index Qx can be defined as for abelian fields over the rationals, namely

Qx = (Ex: WxEx),
where Ey is the group of units in K, while E{ = E(K*) is the group of units
in the real subfield.
We have:

Lemma 1. Qg = 10r 2.

The proof given for Theorem 4.1 of Chapter 3 applies here. In fact one verifies
immediately that the map u — ii/u gives an injection

EK/WKEE - WK/Wi‘
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§2. CM Fields, Real Subfields, and Rank Inequalities

Lemma 2. Let K be a CM field and p a prime. Let C”(K) be the p-primary
part of the ideal class group of K.

(i) The natural map C"K*) — CWXK) is injective if p is odd, and its
kernel has order 1 or 2 if p = 2.
(ii) The norm map

NK/K’ . C(K) - C(K+)
is surjective.

Proof. For p odd this is a special case of the similar (trivial) lemma con-
cerning ideal classes in extensions whose degree is prime to p. The proof
will be given in full in the next section when we deal with this case for its own
sake.

Suppose p = 2. Let a be an ideal of K* and suppose a = («) with « in K.
Then &/ is a unit, and in fact a root of unity (the absolute value of all its
conjugates is 1). We had defined above the map ¢ : Ex - Wy by us iiju.
The association a+— &/a then gives a well defined map

Ker[C(K™) = C(K)] = Wy/op(E),

which is immediately verified to be injective. Hence the kernel has order
1 or 2. This proves (i).

The proof of (ii) is identical with that given for Theorem 4.3 of Chapter 3.
It is a routine lemma of class field theory.

The eigenspace C(K)~ is the kernel of the norm map Ngi+ in C(K),
and for an odd prime p, we can identify the p-primary parts

C“’)(K +) = C(P)(K)+ .
Unless otherwise specified, we continue to assume that p is an odd prime.

Let K = K, be a CM field, and let K, be a Z -extension such that each
K, is a CM field.

Remark. As Washington observes [Wa 2], if Leopoldt’s conjecture is
true, then K, is necessarily the cyclotomic Z,-extension, as follows from
Theorem 6.2 of Chapter 5.

The real subfield K is a Z,-extension of Kg . It is then clear that

K., = KK},
so K, is the lifting over K of the Z -extension K, of Kg.
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13. Divisibility of Ideal Class Numbers
Let C, = C{P be the p-primary part of the ideal class group of K,. We
have the orders
od,C,=e,, ord,C; =e,, ord,C, =e,,

and e, = e; + e,. Similarly, we have the Iwasawa invariants associated
with the A-modules

C=lmC, C =lmC;, C*=1lmC},

and we denote these invariants by m, A with a plus or minus sign as superscript
corresponding to the two cases. Then

m=m +m* and A=A1" + 4%,
Indeed, we have for an odd prime p,
C=C ®C".
Remark. For p = 2 one has to be more careful, and for instance, one has to

distinguish C(K*) from its natural image in C(K), which we might denote
by C*. Cf. Lemma 2, and also Lemma 4.1 below.

Theorem 2.1. Let p be an odd prime. LetK be a CM field, and assume that
the p-th roots of unity are in K. Let C be the p-primary part of the ideal class
group of K. Then

@) rank, C* <rank,C™ + L.

Let Wy be the group of roots of unity in K. If K(W¥P) is ramified over K,
then

(ii) rank, C(p)* < rank, C(p).

Proof. Let L be the maximal abelian extension of K of exponent p. Let
G = Gal(L/K). By class field theory,

G~ C(p) and G* =~ C(p)*.

Since the p-th roots of unity are assumed to be in K, the extension L is a
Kummer extension. Let B be its Kummer group containing K*?, so that

K* > B> K* and L= K(B').
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§2. CM Fields, Real Subfields, and Rank Inequalities

We have the exact Kummer duality
G x B/K*” - p,.

Since p is assumed to be odd, we have a direct product decomposition
G=G*"xG".
For simplicity of notation, let

V =B/K*=V*x V.

Since p, is a (—1)-eigenspace for complex conjugation, it follows that we
have an exact pairing

G" xV —>p,
and therefore

rank, G* = rank, C(p)* = rank, V.

On the other hand, if b € B we know that K(b'/?) is unramified, and hence
there exists an ideal b of K such that (b) = b?. The map b+ CI(b) gives
rise to a homomorphism

¢:V = B/K* > C,,
which induces a homomorphism
o V- =>C,

of ¥~ into C, because ¢ commutes with complex conjugation. One then
verifies immediately that we obtain an injective map

Ker ¢~ = Ex(p)~,

by writing be B as b= q’u with ue Ex and mapping b+ u. Since
(Ex: WxEg) = 1 or 2, we obtain

Ex(p)~ = Wx(p)™ = Wx(p)
because Wy = Wx. Therefore
rank, Wi(p) = 1 = rank, Ex(p)~,

and
rank, C(p)* =rank, V™ <1 + rank, C,.
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13. Divisibility of Ideal Class Numbers
This proves the first assertion. Furthermore, if K(WY?) is ramified over K,
then B does not contain Wy, and consequently

Kerop™ = 1.

Hence the last inequality on the right can be replaced by the stronger in-
equality

rank, V™~ <rank, C~,
thus proving the theorem.
The next two results are really corollaries of the theorem, but we label
them theorems in their own right in view of their importance. The first is a

classical result of Kummer.

Theorem 2.2. Let K = Q(p,), and let h, be the class number of K. If
h, is prime to p, then h, is prime to p, and so h,, is prime to p.

Proof. Obvious, since the p-rank is 0, and the stronger of the two in-
equalities applies.

Let K, be a Z,-extension of K, such that each K, is a CM field. Then
C, C*, C~ are modules over the Iwasawa algebra, and thus we have the
invariants

@) =ri(CH+r(C)=r] +r1.
as defined in §1.

Theorem 2.3. Let K, be a Z ,-extension of K, (p odd), such that each K,
is a CM field. Then

In particular, if m~ = 0 thenm™ = 0.
Proof. Immediate from Theorem 2.1 and Lemma 3 of §1.

For the prime p = 2 the estimates are not as good, but one has a result
of Greenberg (cf. Washington [Wa 2]).

Proposition 2.4. Let K be a CM field, and C = C(K). Then

rankz CK" < 0rd2|CE| + 1



§3. The /-primary Part in an Extension of Degree Prime to /

If K, is a Z,-extension of K, such that each K, is a CM field, and if
m~ = 0thenm* = 0 also.

Proof. Let r = rank, Cg+. Then by Lemma 2,
2" = (Cg+:C%+) = (NCx:NCH),

where C* denotes the image of C(K*) in C(K). This last index divides

.+ _ |Ckl
(CK'C )_|C+|’
which by Lemma 2 divides
2| Cl _
———— = 2hg.
[CRY ~ 2

This proves the inequality. The statement about m~ = 0 then follows from
the structure theorem, cf. Lemma 3 of §1, as for p odd.

§3. The /-primary Part in an Extension of Degree Prime to /

In this section we prove a lemma of Iwasawa used by Washington [Wa 2].
We begin by a trivial remark.

Lemma 1. Let F be a number field and K a Galois extension of degree d.
Let | be a prime number not dividing d. Let Cg denote the I-primary part of
the ideal class group. Then the natural homomorphism Cg — Cg is injective,
the norm Ngp:Cx = Cy is surjective, and the following conditions are
equivalent:

(i) Cp= Ck.

(ii) rank, Cr = rank,; Cy.
(iii) The norm Ng;p: Cx(l) = Cg(l) is an isomorphism.

Proof. For the first assertion, suppose an ideal a of F becomes principal
in K, say a = (). Taking the norm yields

al = (N K/F%),

and since d is prime to J, it follows that a is also principal. Abbreviate the norm
by N. Since

NCg = Ct = Cy,
it follows that the norm is surjective.
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13. Divisibility of Ideal Class Numbers

It is clear that (i) implies (ii). Assume (ii). Then the norm in (iii) is an iso-
morphism because it is surjective. It is also a G-isomorphism, where G =
Gal(K/F). Hence G acts trivially on C(l), and therefore

N = d-identity on Cg(]).

It follows that Cg(l) = Cx(l). Nakayama’s lemma or the structure theorem
for abelian groups concludes the proof that Cp = Ckg.

Lemma 2. Let p be a prime number # 1. Let K, be a cyclic extension of
a number field K, of degree p". Let f be the order of | mod p". Let C, be
the l-primary part of the ideal class group in the subfield of degree p’. Let
D, be the kernel in the exact sequence

Norm

0- Dn - Cn(l) —_— Cn—l(l) - 0.
Then D, # 0 if and only if C, # C, -, and in that case,
dim D, > f.

Proof. Let G = Gal(K,/K,). We have a representation of G on the
Z(l)-vector space D = D,, and we first show that if D # 0, then the rep-
resentation is faithful. If not, it is not injective on the unique cyclic subgroup
of order p, namely Gal(K,/K,_,). Hence it is trivial on that subgroup, and
therefore

N,.n-iD = pD =0,

whence D = 0.
Now assume D # 0. Then the tensor product of D with the algebraic
closure of F, splits as a G-direct sum

D®F‘ll =®Di9

where the D; are irreducible components, of dimension 1. If the operation
of G on every D; is not faithful, then it is not faithful on the unique subgroup
of order p, so not faithful on D itself. By what we have shown, it follows that
G operates faithfully on some D;,. Hence G operates on this D;, by a rep-
resentation into the p"-th roots of unity, and a generator of G goes to a
primitive p"-th root of unity {. But D is defined over F,, so the conjugate
representations by means of the conjugates {’, ¢”, ... occur. So exactly f
distinct conjugates occur among the D;,sodim D > f. This proves the lemma.
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This last part of the argument proves the general statement:

Let D be a finite dimensional representation of a cyclic group G of order
p", over the prime field ¥,. If D is faithful, then

dim D > f,
where f is the order of | mod p".
Washington’s application of the lemma then runs as follows.

Theorem 3.1. Let K, be a Z ,-extension of K, and let C, be the I-primary
part of the ideal class group in K,, where | is a prime # p. If the l-ranks
of C, are bounded, then the orders of C, are also bounded for all n.

Proof. Otherwise, we must have D, # 0 for arbitrarily large n, and the
order f, of I mod p" satisfies

>

The preceding lemma would then imply that the ranks tend to infinity, a
contradiction, which proves the theorem.

Remark. The lemma need not only be applied to a Z,-extension. For
instance, given a number field F, and a prime number /, if K is cyclic of degree
p over F, then either the l-rank of Cg tends to infinity, or Cr = Cy as p— 0.
It would be interesting to investigate for what sequence of cyclic extensions
of degree p does the l-rank remain bounded, or tends to infinity.

Theorem 3.2. Let K, be a Z,-extension of K,. Assume that each K,
isaCM field. Let | be a prime number # p, and assume that the I-th roots of
unity are in K. If ord,|C, | is bounded, then ord,|C, | is also bounded.

Proof. By Theorem 2.1 the l-rank of C, is bounded, so the l-rank of C,
is bounded. Then Theorem 3.1 concludes the proof.

§4. A Relation between Certain Invariants
in a Cyclic Extension

The result of this section will be used later to give examples due to Iwasawa,
of Z -extensions in which orders of ideal class groups tend rapidly to infinity.
Results like the first lemma are classical. The prime power case was known
in the last century, and the general cyclic case is in Takagi and Chevalley’s
thesis on class field theory.
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13. Divisibility of 1deal Class Numbers

Let K be a cyclic extension of a number field F. Let G = Gal(K/F). For
each (normalized) absolute value v of F we let e(v) be the ramification index
of vin K. If v = v, for some prime ideal p of F, then e(v) = e(p) is the usual
ramification index of p in K. If v is Archimedean, then e(v) = 1 or 2 accord-
ing as the local extension is trivial or of degree 2 (complex numbers over the
real numbers). We put

e(K/F) = [] e(v).
Then e(K/F) = eo(K/F)e(K/F), where

eo(K/F) =[] e(p) and e (K/F)=]]e(vs).
P

We let E denote the group of units and C the group of ideal classes. If G
acts on a module A4, we let A be the submodule of elements fixed under G.
The next lemma implies that highly ramified primes have a tendency to
generate independent ideal classes, and that the obstruction to this is con-
tained in some cohomology.

Lemma 4.1. Let K/F be a cyclic extension with Galois group G. Then

h(F)e(K/F)
[K:F1(Ep: NgeK* N Eg)’

ICRI =

Proof. We assume that the reader is acquainted with a minimum of Galois
cohomology for cyclic groups. What is needed is covered for instance in
Chapter IX, §1 of my Algebraic Number Theory, referred to as ANT.

Let I denote the ideal group and P the principal ideal group. The group
C§ occurs naturally at the beginning of the cohomology sequence associated
with the exact sequence

O*PKQIK—’CK-’O.

Note that I is the direct sum of its semilocal components over primes of F,
and by semilocal theory, we have

HY(G, Iy) = D H'(G,, Z),

4
where G, is the decomposition group. But H!(G,, Z) = 0, so
HY(G,Ig) = 0.
The exact cohomology sequence then yields

0 P§— If - CX - H'(G, Py) > 0,



§4. A Relation between Certain Invariants in a Cyclic Extension

whence an exact sequence

0 IZ/P§ — Cg» H'(G, Pp) - 0
which yields the index relation
0] |CRl = (Z: POIH(Pg)|.

We analyze the two indices on the right-hand side.
From the inclusions

we obtain the index
(Ig:Pr)
(Pg:P,.-)
- (%: Ir)Us: Pp)
(PAGKZPF)
hg
(P§: Pp)

Ug:P§) =

2 = eo(K/F)

We now use the second exact sequence
0> Ex—- K*—> Py - 0.
We get the beginning of the cohomology sequence
0— Ep—» F* > P§ - H'(Ex) » 0
because H!(K*) = 0 by Hilbert’s Theorem 90. Hence

(PX: Pg) = |H'(EQ)|

[K:F]

= |H°(Ex)lm

(by Corollary 2 of Theorem 1, ANT Chapter IX), so by definition,

3 (P : Pg) = (Ep: NyrEg)[K : Fl/eo(K/F).

Once more, from the second exact sequence, we have another portion of
the cohomology sequence

0 = H'(K*) » H'(Px) » H%(Ex) > HY(K*).
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13. Divisibility of Ideal Class Numbers

The map from H°(Eg) to H°(K*) is the natural homomorphism
EF/NK/FEK - F*/NK/FK*'
By exactness, we find

|H'(Pg)| = |Ker(Eg/NgrEx = F*/Ng;p K*)|
O] = (NgpK* N Ep: NgjpEp).

Using the inclusions
Ep > (NgjrK* 0 Eg) > N Ey,

and putting (1), (2), (3), (4) together proves the lemma.

We shall apply the lemma as does Iwasawa [Iw 15] to get an example of a
field with a highly divisible class number.

Lemma 4.2. Let | be an integer > 2. Let K, be an extension of a number
field K of degreed. Let q,,.. . ., q, be prime ideals of K which split completely
in K. Let K’ be a cyclic extension of K, of degree |, in which q,, ..., q, are
totally ramified. Let K; = K'K,;. Then

|CKD)

is divisible by [¢~1K: Q=1
IC(K,)| Y

Proof. We have the diagram

The extensions K, and K’ are linearly disjoint because of the way any one
of the primes g; splits in them. Thus K has degree | over K,;. We apply
Lemma 4.1 to the cyclic extension K over K. This yields:

|CKD
|C(Ka)

e(Ki/KJ)
[Ki: KJ(E;: EY)’

is divisible by
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§5. Examples of Iwasawa

where E, = E(K,) is the group of units of K,. Indeed, E} is contained in the
norm group from K. All we have to do is now estimate the divisibility of
the expression on the right.

Each ideal g; splits into d primes in K ;, and each factor in K, is then totally
ramified in K. Consequently

e(K/K,) isdivisible by I,

On the other hand,
[K): K] =1

Thirdly, E; mod roots of unity has rank bounded by
[Ke: Q] —1=d[K:Q] -1,
and consequently
(E,;: Eb) divides [9X: Q!

Putting these three estimates together proves the lemma.

§5. Examples of Iwasawa

Let K be a number field and let K, be a Z-extension. Let q be a prime ideal
of K. The decomposition group of q in I' = Gal(K /K) is either trivial or
closed of finite index. In the first case, we say that q splits completely, and in
the second case, we say that q is finitely decomposed in K .

Let | be a prime number, which may be equal to p. We are interested in
giving examples of Iwasawa [Iw 15] for which the I-primary part of the ideal
class group C, grows exponentially. We shall use the formula of the last
section, applied to extensions where the ramification indices grow faster
than the unit index in the denominator, times the degree. This implies that
the class number on the left-hand side of the relation grows equally rapidly.

Let K’ be a finite extension of K. Then K, K' = K, is a Z,-extension of
K'. If g splits completely in K, then any divisor g’ of q in K’ splits completely
in K', . This is an elementary fact of algebraic number theory. In particular, if
G, ...,q; in K’ lie above ¢ such primes g, ..., g,, they will be distinct primes
of K’ splitting completely in K/, .

Theorem 5.1. Let K /K be a Z,-extension. Let qy, ..., g, be prime ideals
of K which split completely in K. Let K’ be a cyclic extension of K of
degree I, in which qy, . . ., g, are totally ramified. Then

ord,|C(K})| 2 (¢ — [K:Q])p" — 1.
Proof. This is merely a special case of Lemma 4.2.
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13. Divisibility of Ideal Class Numbers

A concrete example of the situation as in the theorem can be given once
we have shown below how to construct a Z -extension in which infinitely
many primes of K split completely. Then we can take ¢ arbitrarily large.
We can then first lift the extension over the field K(,), and thus assume with-
out loss of generality that K contains the I-th roots of unity. We then select
an element « of K divisible exactly by the first power of q,, . .., q, (and pos-
sibly other primes). We let

K' = K(a').

Then the hypotheses of the theorem are satisfied.

Theorem 5.2. Let K be a CM field. Then:

(i) There exists a Z,-extension K, of K, Galois over K*, such that if
I' = Gal(K /K), then

r=r-.

(ii) For any such extension, let q* be a prime ideal of K* which does not
divide p and remains prime in K, so q is its unique extension in K. Then
q splits completely in K. (Tchebotarev guarantees that there exist
infinitely many such primes.)

Proof. Let M,(K) be the maximal p-abelian p-ramified extension of K.
By class field theory, e.g. Chapter 5, §5, there is a quasi-isomorphism

Gal(M(K)/K) ~ U,/E,

where U, is the product of the local unit groups U, at the primes p above p,
and E is the closure of the global units in U,. Each real prime p* either
remains prime in K or splits into two primes p,, p, in K. In either case, the
semilocal component

[10,

plp*

of U, contains a subgroup of finite index isomorphic under the exponential
map with

[1 7,

plp*

for m sufficiently large. Here o, denotes the local ring of integers at p. From
this it is clear that U, has Z,-rank > 1. Furthermore, E contains a subgroup



§6. A Lemma of Kummer

of finite index which is real, so E contains a subgroup of finite index which
is fixed under complex conjugation. Put

% = Gal(M(K)/K),
and for simplicity of language, assume that p is odd. Then
$=9"x9",

and the Z-rank of 4~ is > 1. Hence there exists a factor group I" of 4 such
thatI" = I'", and I is isomorphic to Z, as compact group. By Galois theory,
I" is the Galois group of a Z -extension K ,, of K, which is normal over K*.

Let q* be a prime ideal of K* which remains prime in K. Let D be the
decomposition group of q* in the group

% = Gal(K/K*).

Then D is (topologically) cyclic because q is unramified in K. But ¥ is
“dihedral,” in other words, ¥ is generated by complex conjugation and I
satisfying the relations

pyp =71,
for yeT. Since q* remains prime in K, we cannot have D = I'. Then D
contains an element py, and any such element has order 2. It is then im-

mediately verified that D is cyclic of order 2 and that its intersection with I”
is 1. This proves that q splits completely in K ,,, and concludes the proof.

Remark. If p = 2, then one has to take a factor group of ¥ by ¥'**
to obtain the minus part, and the argument is essentially the same.

§6. A Lemma of Kummer

Theorem 6.1. Let p be an odd prime. Let u be a unit in Q(,). Suppose there
exists an integer a € Z such that u = a(mod p). If p does not divide the class
number h,, then u is a p-th power in Q(u,).

Proof. Let K = Q(p,). By class field theory, it suffices to show that the
extension K(u'/?) is unramified, because the hypothesis then implies that
K@u'®) = K, so u is a p-th power in K. Raising u to the (p — 1)-th power
allows us to assume without loss of generality that u = 1 (mod p).

We contend that

u = 1 (mod =np),
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13. Divisibility of Ideal Class Numbers

where 7 = { — 1 and { is a primitive p-th root of unity. Otherwise, we have
u =1+ px mod np
with x equal to a p-unit in Z}. But u is a global unit, so
Ngiou) = £1=(1 + px)P~! =1 — px (mod np).

In both cases where the norm is 1 or —1 we get a contradiction.
Let a = u'/? be any p-th root of u. Then

- X — 1)?
1« is a root of (_n__n_i)_j_u,

and this polynomial has p-integral coefficients. Its other roots are

1 -
7[ ’

and the different is a product of terms

(9

’
n

each of which is a p-unit. Hence K(«) = K(u'/?) is unramified at p, and is
trivially unramified at all other primes. This concludes the proof.
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p-adic Preliminaries

The first section introduces the p-adic gamma function of Morita. After
that, we deal with a topic which can be viewed temporarily as independent,
the Artin-Hasse power series, and the Dwork power series closely related
to it. The latter allows us to obtain an analytic representation of p-th roots
of unity, which reappear later in the context of gauss sums, occurring as
eigenvalues of p-adic completely continuous operators. Cf. Dwork’s papers
in the bibliography.

§1. The p-adic Gamma Function

In this section, we give Morita’s definition of the p-adic gamma function.
To start, we let f be the function defined for positive integers n by the formula
fy =" [] j
=1
(p{1)= 1

We wish to show that there exists a continuous function on Z, which restricts
to f on the positive integers Z*. For this purpose, it suffices to prove the
following lemma.

Lemma 1.1. For any positive integers N, n, k we have
f(n+ p'k) = f(n) (mod p").
Proof. Let G = Z(p™)*. Pairing an element and its inverse in G we find:

[lj= —1 mod p" if p is odd
AY T modpiifp=2.
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14. p-adic Preliminaries

If p is odd, then
f(n + pk) Nk ,
O TE M (—1
f(n) ( )p n+ls,!;ln+p"k]
=1

k
=(- 1)"011) = 1 mod p,
jeG
as desired. The proof is similar for p = 2 and is left to the reader.

By the lemma, we can extend f by continuity to all of Z,, and since f(n)isa
p-adic unit for n equal to a positive integer, it follows that

fZ,-72;

is amap of Z, into Z}.
We define the p-adic gamma function

L) = —f(x - 1).

Thus on integers n > 2 we have

n—1
rm=1 1
(p{;)il

We shall write I instead of I', when p is fixed, and in particular, for the rest
of this section.

Let us now calculate a few values, especially of negative integers. If u(x),
v(x) are continuous functions of a p-adic variable x, we define:

{u(x)
u(x)

With this notation, we have

ux) ifxeZy

is the function such that x+— { ux) ifxepZ,.

—nI'(n)

T(n+1) = {—F(n)

if n is an integer > 2, and consequently by continuity,

—xI'(x)

~I'x) forallxeZ,.

r(x+1)={

We call this the functional equation.
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§1. The p-adic Gamma Function

FromI'(2) =T (1 + 1) = —T'(1), we get
rq)y=-1.
FromI'(1) =T'(1 + 0) = —T'(0), we get
Iro) =1
Theorem 1.2. For any integer n > 1, we have
IFmIra —n) = (-1yr*ie-ve,
where the bracket, as usual, is the greatest integer function.

Proof. The theorem is true for n = 1 by the above. We can then proceed
inductively, using I'(1 — n) = {~, I'(—n), to get:

I'0) = ( ”]:[l j)(—l)"""”l'(l —n),
j=1

U.p=1
where 6(n — 1) = number of elementsamong 1,...,n — 1 which are divisible
by p. This is immediate from the functional equation. Since é(n — 1) =
[(n — 1)/p], the right-hand side is equal to
(= 1)'T(n)(— 1)~ PL(1 — p).
The formula of the theorem then follows at once.
Let x € Z,. We denote for p odd:
R(x) = representative of x mod p in the set {1, ..., p}.
If p must be in the notation, we would write R(x).
Theorem 1.3. If p # 2 then
T)r — x) = (—1HR™,
If p =2, then
I'(x)I'aa — x) = &(x),
where

_§=1 ifx=0,1mod 4
e(x)—{l if x = 2,3 mod 4.
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14. p-adic Preliminaries
Proof. By continuity, it suffices to prove the theorem when x is an integer
n > 1. Write
n=ay+ap+ap*+--+arp,

withag€e{l,...,p}and q;€{0,...,p — 1} fori > 1. Then

[n_l]—a +---+ap?!
P 1 r .

-1
n+[np ]=ao+a1(l+p)+a2(p+p2)+”'+a’(p’_1+p’)-
Hence for p odd,
n—1
”*[—p ]an=R(n) mod 2.

This proves the theorem in the present case.

If p =2, then the parity of n + [(n — 1)/2] does not change for the
elements in the residue class of n mod 4. We then determine explicitly
the values of this number for n = 1, 2, 3, 4 to get the desired answer.

If p = 2, then it is convenient to define

R,(x) = R(x) = representative of x mod 2 in {0, 1}.
In both cases, p odd or even, we define

R(x) = w
If p # 2 note that for a positive integer n,

v _ B —=1
R(")_[ p ]

This follows from the p-adic expansion in the proof of Theorem 1.3.

Theorem 1.4 (Distribution relation). Let N be an integer >2 and prime to

p- Then
Nt x4+
.'Dor( N

; N=1 _
) = o T (i Jawtor,

74



§1. The p-adic Gamma Function

where gx(x) is given by the formulas:

gn(x) = NR®-1pN((-1DR'x) lfp #2
gn(x) = N®® ifp=2

Remark. Both R(x) and R'(x) are continuous functions of x € Z,. Since
R(x) is a positive integer, the exponentiation NR™® is well defined. Since
NP~! = 1 (mod p), its exponentiation with R'(x) is also well defined. When
x = nis a positive integer, then we can simplify the formula for gy(n), using

R(n) + pR'(n) = n.

For instance, for p odd, gy(n) = N*~1~R'®,

Proof. Define gy(x) by using the relation to be proved, so

N-1 s\ N-1 N\ -1
gn(x) =[] l“(—l%) I1 r(" ; ’) I'(x).

i=1 i=0

By continuity, it suffices to prove the theorem when x is a positive integer.
We have

gn(0) =1

|

X
gv(x +1)  T(x+1) (Fv')

a(x) Tk 1.(% +3'

From the functional equation, we get

L

—x/N gn(x) = {zlv gn(x).
-1

gv(x + 1) =

Hence for every positive integer n we find
gn(n) = N"~ 1-6(n-1) — Nn—1-1(m—1)/p]

If p is odd, then [(n — 1)/p] = R'(n) and the assertion follows. The same
argument also works for p = 2 and is left to the reader.

The next result shows that the fudge product occurring in the distribution
relation is a fourth root of unity.
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14. p-adic Preliminaries

Proposition 1.5.

"l:I‘l_(i) _ {il, if N is odd
i=1 \N +1, +./—1 if Nis even.

Proof. Suppose N is odd. We write

()= "5~ )

and each factor on the right is +1 by Theorem 1.3. If N is even, then
1r() =) 1.7 )r( - )
I'N—=)=TI|= r'=Jr{t — =)
il;ll (N 2 is(ll——ll)/z N N

rAre) = +1,

Furthermore,

and the proposition follows.

§2. The Artin—-Hasse Power Series
Let p be a prime number. Define the Artin—-Hasse power series by

AH(X) = exp( i X;‘)

=0

As usual, exp is the standard power series for the exponential function.
Then AH(X) has rational coefficients.

Theorem 2.1. We have AH(X) € Z,[[X]].

Lemma (Dieudonné-Dwork). Let f(X) € 1 + XQ,[[XT]]. Then

X)?
fX)el+ XZ[[X]] < %e 1 + pXZ,[[X]].

Proof. The left-hand side obviously implies the right-hand side in the
equivalence to be proved. So assume the right-hand side. If R is any ring,
and

f(X)e1+ XR[[X]],
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§2. The Artin-Hasse Power Series

then a simple recursion shows that f(X) has an infinite product expression
Q0
fX =[] -a,X") witha,eR.
n=1
Furthermore, the elements a, are uniquely determined.

Assume that f(X)?/f(X?)e 1 + pXZ,[[X]]. Suppose that some coeffi-
cient a, is not p-integral. Without loss of generality, we may assume that

f(X)= ﬁ (1 -a,X")=1- a,X" + higher terms

n=r

and a, ¢ Z,. Then

SXP _1—paX +--
fXP) 1—a X7+

=1 — pa, X" + higher terms.

By assumption, we must have pa, € pZ,, so a, € Z,, which proves the lemma.

We apply the test of the lemma to the Artin—Hasse series. We thus find

AH(X) _ exp(p ¥ X/p")
AH(X") ~ exp(L X™/p")

= exp(pX) = Z%X".

To apply the lemma it suffices that ord p"/n! > 1 for all n, which is the case.
This concludes the proof of the theorem.

Let us write
xP &
exp(x +=)= Y ax~
p k=0
We wish to give estimates for the coefficients c,. Let

ord = ord,.

We shall prove:

k 1
(1) ord k= — ? (2 + ;’—_—1>
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14. p-adic Preliminaries

Proof. We can write

exp(x + 3;;) = AH(x) [] exp(— %)

n22
Write
ol 7)- 3
k=0
We prove:
k 1
2 ord ”)2——(n+——).
@ R (e

Indeed, for any positive integer m, we recall that

ord m! =

m — s(m)
p—-1"

where s(m) = s,(m) is the sum of the coefficients in the standard p-adic
expansion of m. Hence

" m — s(m) m
ordd},,,’,..= —nm—Tl—Z —nm—;_—l.
Factoring out k = mp" immediately implies (2).
Since
mm_—l(n+—l-) -1 (2+ L )
nz2 P’ p—1) P p-1)
it follows that
-k 1
m > _ —_—
3) ord dj > 7 (2 + - 1).

Hence the coefficients in the power series expansion of the product

AH(x) ﬁ exp(— %‘) = exp(x + fp-p)

n=2
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§2. The Artin-Hasse Power Series

satisfy an estimate like (3), and therefore the coefficients c, satisfy
k 1
ord ¢, = _?(24-;_——1)
This proves the desired estimate (1).

For each element n such that n°~! = —p, we define Dwork’s power
series
E.(X) = exp(nX — nXP).
This can also be written
(nX)
p

E/(X) = exp(nX +

) =Y e X"
The coefficients e, lie in Q,(n). In particular

1
ord e, GP———T Z

As usual, ord = ord,. If we want ord,, then we shall specify 7 in the notation.
Of course,

ord, = (p — 1)ord,.

Lemma 2.2.

(i) We have ord e, > n(p — 1)/p?, and e, is p-integral.
(ii) If n > 2 then ord, e, = 2.

Proof. By (1), letting X — nX, we find at once that
-1
orde, > n(p 5 )
p

To prove (ii), i.e. to prove that

orde,,zi forn > 2,
p—1

it suffices to show that
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14. p-adic Preliminaries

because ord e, is a fraction whose denominator is p — 1. The inequality for
ord e, follows if

p—l) 1 ) ( )/ )z
n[—s—) > ——, orequivalently, n>|——] .
(p’ p—1 9 y p—1

For p = 5 or n = 5 there is no problem. For p = 3 and n > 3, there is also
no problem. For p = 3 and n = 2, we get directly

exp(nX — nX?) =1 + nX + 4n2X? + higher terms,

so we get the right lower bound for ord e,. For p = 2, we just compute
explicitly the coefficients of X2, X3, X* and find that they are divisible by 4,
thus settling the final cases, and proving the lemma.

Remark. From the first part of the lemma, we know that the coefficients
of E(X) tend to 0. In particular, we can evaluate E,(X) by substituting any
p-adic number for X in the power series if this p-adic number has absolute
value < 1. However this value cannot usually be found by substituting the
number directly in the expression exp(nX — nX?). We shall see an example
of this in the next section.

§3. Analytic Representation of Roots of Unity

Let p be a prime number. Throughout this section, we let 7 € C, be an element
such that

1= —p

Lemma 3.1. For each element m € C, such that n°~! = —p, there exists
a unique p-th root of unity {, such that

(=1 + n(mod n3).

The correspondence m+ (. establishes a bijection between p-th roots
of unity # 1, and elements © as above.

Proof. If { is a non-trivial p-th root of unity, then ({ — 1)?~! ~ p (where
x ~ y means that x/y is a p-unit). If {,, {, are two primitive p-th roots of
unity which are both =1 + n (mod n2), then {, — {, = 0 (mod n?), whence
{, = {,. Since there are exactly p — 1 non-trivial p-th roots of unity, and
p — 1 possible elements 7 in Q,(n) = Q,({), and since any element ¢ =
1 (mod =) but ¢ # 1 (mod 72) can be written in the form

¢ =1 + yn(mod n?)
for some (p — 1)th root of unity y, both existence and the bijection follow.
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§3. Analytic Representation of Roots of Unity

Remark. Each root of unity { gives rise to a character
V:Z,-n,

such that Y(1) = {. The unique character whose value at 1 is {, will be de-
noted by ¥,, so by definition we have the formula

V(1) = (g,
and ¥,(1) is the unique root of unity =1 + n mod n?.

Theorem 3.2 (Dwork). We have E,(1) = {,, so E,(1) is the unique p-th
root of unity =1 + nmod n?. For any c € Z,, such that c? = c, we have

E,(c) = Ex(1)".
Proof. First we observe that E,(1) is defined by substituting 1 for X in

the power series for E.(X), which converges in light of the lower bound for
the orders of the coefficients. Then note that

E(X)? = exp(pnX — pnXP) = exp(pnX) exp(—pnXP)
because the factor p inside the exponent makes the two series on the right-
hand side converge. Substituting 1 for X can now be done to see at once that
E.(1)? = 1. To conclude the proof of the first assertion, it suffices to show that
E.(1) = 1 + n(mod 7?).
This is clear from Lemma 2.2(ii). Similarly,
Ex(c)’ = exp(pn(c — c”)) = exp(0) = 1,
and
E.(c) = 1 + cn(mod n?),

s0 E.(c) = E,(1)", thus proving the theorem.

Similarly, let { € p,_, where g = p" is a power of p. Let T denote the
absolute trace to F,, and let

Ung=V¥r°T.
Then
Vuo:Foomy
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is a character on the additive group F,, and we let
E, [(x) = exp(nx — nx?) = E(x)E(x?)- - E,(x""").
Theorem 3.3 (Dwork). We have

E, [(0) = ¥, ({ mod p),

and this is the unique p-th root of unity = 1 + T({)n mod =2

Proof. From Lemma 2.2(ii), we know that E () =1 + {n mod =2
Hence

E. D) = ELDELD - EL77)
=1+ T({)n mod =n2.

The same argument as in Theorem 3.2 shows that E, ,({) is the unique
p-th root of unity satisfying the above congruence, thus proving the theorem.

Appendix : Barsky’s Existence Proof for the p-adic
Gamma Function

We include this appendix to illustrate techniques which might be useful in
similar contexts, say for p-adic differential equations, where an ad hoc
argument as in §1 cannot be given. No use will be made of this appendix
elsewhere in the book.

We wish to show the existence of a continuous function of Z,, into itself
which takes on values related to the factorials at the positive integers. This
is an interpolation problem, and thus we begin with a criterion for the
existence of a continuous function taking given values. As in Chapter 4, we
consider the space of power series

x’l
gx)=Y b, i b,eC,,

with lim b, = O (the limit is of course the p-adic limit). This space is called
the Leopoldt space. It is in fact a Banach algebra, under the sup norm of the
coefficients, |lgll o = max|b,|. If g, h are in the space, so is the product gh and

lghlle < lgllelhle.
These properties are trivially verified. Note that a power series
Y b,x"
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with coefficients b, which are p-integral is in the Leopoldt space, as one sees
by writing b, = b,n!.

Theorem. Let {a,} be a sequence in C,. There exists a continuous function
f:Z,-C,

such that f(n) = a, for all integers n > 0 if and only if the following
condition is satisfied. Let

x’l
b T

3 lx
]

[

ng

Then lim b, = 0 (p-adically, of course).

Proof. We use Mahler’s theorem (Chapter 4, Theorem 1.3). Any con-
tinuous function f has an expansion

fx) = Zb( ) with b, - 0,
and
b, = (A"1)(0).
Conversely, if f:Z* - C, is a function such that A"f(0) —» 0 as n — co,

then f can be extended to a continuous function on Z,. (We denote by Z*
the set of integers > 0.) Note that

f0) = __Zo(—l)”"'(':)f(i)-

The theorem is then obvious in view of the identity
-x x" n x"
e Zf(");—! = ZAf(O)m-

We apply the theorem to the function f defined by

f@=1 feo=1 Il
1<j<n
U, p=1

83
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Except for the power of —1, f(n) is equal to n! from which all the factors
divisible by p have been deleted. Thus

VAN A A4
takes its values in p-adic units.

This function has a continuous extension to Z,,.

Proof. We have
x" p— @© ‘m+i
Zf(")—,= ; "g f(pn +i )m
) 2 © nti (pn + l)' xpn+i
,; ,,; by p'm!  (pn +i)!

P p-1
-l o
Multiplying by e ™*, we obtain
—x x" —x)°
e S = exp(—x =2 ) Z( x)
x’l
=Y b, 7
with some coefficients b,, which we must show tend to 0. The set of power

series

, X . ’
Zc,,;i with ¢, = 0

is closed under multiplication. Hence after replacing x by —x, it suffices to
prove that the coefficients c;, of the series

exp(x + ) Zc,,k|
tend to 0. But by (1) of §2, we know that

p—1

_k=sl) k 1
T op-—1 p’<2+p-l)'

ordcﬂZordk!—§(2+—l—)
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Since
sk) < (p — 1)(1 + log, k),

(where log, = high-school-log-to-the-base-p), we obtain

, 1 1 1
ordc,‘zk(;’—_—T—?<2+;’—_—l-)> — 1 —log, k,

from which it is clear that ¢; — 0. This concludes the proof.
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The Gamma Function
and Gauss Sums

The history of Gauss sums as eigenvalues of Frobenius on Fermat or Artin-
Schreier curves goes back to Davenport-Hasse [Da-H] and Hasse [Ha 3].
However, Ron Evans has pointed out to me that Howard Mitchell [Mi] in
1916 considered Jacobi sums in connection with the number of points of the
Fermat curve in arbitrary finite fields, and proved the first Davenport-Hasse
relation between Jacobi sums in a finite field and in a finite extension.

Dwork introduced for the first time spaces of power series with p-adic
coefficients tending to zero like a geometric series (he denotes such spaces
by L(b)). He represents Frobenius on factor spaces L(b)/DL(b), where D is an
appropriate differential operator, and gets the Gauss sums as eigenvalues in
this context, using a simple p-adic trace formula.

Washnitzer-Monsky saw the advantage of taking the union

U L),

b>0

to obtain a more functorial theory. They also introduced in addition certain
affine rings over the p-adic numbers, lifting affine rings of hypersurfaces in
characteristic p.

Several years ago, Honda looked at Gauss sums again in connection with
the Jacobian of the Fermat curve [Ho], and conjectured an expression as limit
of certain factorials. This was proved by Katz by taking the action of
Frobenius on rather fancy cohomology (unpublished letter to Honda). More
recently, Gross—Koblitz recognized this limit as being precisely the value of
the p-adic gamma function [Gr-Ko]. In a course (1978), Katz showed that
by using the Washnitzer—-Monsky spaces and other techniques of Dwork
(e.g. his special power series, and estimates of growths of certain coefficients),
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he could give an elementary proof that the eigenvalue of Frobenius acting
on the space associated with the curve

y—y=x"

was equal to the appropriate expression involving the p-adic gamma function.
To establish the equality of this eigenvalue with the Gauss sum, he still
referred to the rather extensive theory of Washnitzer-Monsky and their
“trace formula,” without going through the rather elaborate proofs.

On the other hand, Dwork in [Bo] showed that he could recover the
Gross—Koblitz formula by working entirely with his spaces, and by using the
completely elementary trace formula which he had proved already in his
first paper on the zeta function of a hypersurface [Dw 1]. This paper, and a
subsequent one, contained a concrete instance of what Serre [Se 3] recognized
as p-adic Fredholm theory, giving a self-contained treatment which systema-
tized Dwork’s proofs in those respects which could be viewed as abstract
nonsense.

Thus finally it was possible to give a completely elementary proof of the
Gross-Koblitz formula. The exposition given here follows Katz in first
obtaining the eigenvalue of Frobenius in terms of the gamma function. The
second part, getting the Gauss sums, was worked out in collaboration with
Dwork, mixing in what seemed the simplest way his spaces and those of
Washnitzer-Monsky.

It also turned out that the use of the Artin—Schreier curve was unnecessary
for the derivation of the formula, so the connection with that curve is post-
poned to the next chapter. I am much indebted to Katz for a number of
illuminating comments. For instance, although for the special Artin-
Schreier curve y? — y = x" we can work ad hoc, Katz in his thesis [Ka 2]
worked out completely in the general case the relations between Dwork
cohomology and Washnitzer-Monsky cohomology. My purpose here was
to derive the Gross—Koblitz formula essentially as simply as possible, and to
avoid such general theories.

§1. The Basic Spaces

Let p be an odd prime, N a positive integer prime to p, and g = p” such that
g = 1 mod N. We let

.q—1

OS]gN—l and a=]—N—

We let
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15. The Gamma Function and Gauss Sums

be the Teichmuller character, and we let
d’n,q = 'pn o Tr

be the additive character formed with the absolute trace Tr and the character
, defined at the end of the last chapter. We let

T(w:’ 'pz. q) = —S((D:, 'pn,q)

be the negative of the Gauss sum, where

SO ¥) = X xCW(x).

xeFq

We let R be a discrete valuation ring of characteristic 0, complete, such
that the maximal ideal contains the prime p and also contains 7. We let K
be the quotient field of R.

We shall work with the ring of power series R[[x]]x whose coefficients
have bounded denominators. This is also given by

R[[x]]x = RI[x]1[1/p].

We want a vector space

dj,x < R[[x]]K

such that, if we put
Hj,,' = dj,g d?x/ddj,n,

thendim H; , = 1 and H; , is a representation space for the Frobenius map
®7 having t(w, Y., ,) as eigenvalue. We shall construct such a space.
We shall use an embedding

emb;: R[[x]] = R[[x]]
given by
@(x) - x’ exp(—nx")p(x").
We have a corresponding embedding into differential forms

emb] : R[[x]] — R[[x]] dx
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given by
. NNy A%
@(x) — x’ exp(—nx")p(x") <

(We use here the assumption that j > 1 so that no negative powers of x
occur in the right-hand side.)
We have a commutative diagram

RI[x]] =25 R[[x]]
DW 1. NDJI l”’

RI[x]] 5 RI[x1] dx

emb}
where D; is the differential operator given by
J

d
Dj—xd—x—nx+ﬁ.

This is immediate from the rule giving the derivative of a product.

Remark. For any a not equal to an integer <0, one verifies at once that the
differential operator

D=x¢;ix——7tx+a

is injective on power series, by looking at its effect on the term of lowest
degree.

For each positive number 6 we define

L(8) = K-vector space of power series . a,x" in R[[x]]x such that

ord a, — én - co.
This condition could also be written ord a, = én + oo(n).

Remark. This is a variation of Dwork’s definition, and one may think of
elements of L(6) as functions holomorphic on the closed disc of “radius”
p’. As usual, we take

ord = ord,.
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15. The Gamma Function and Gauss Sums

We define
L(0+) = L‘,) L(9).

We let

A ; . = Image of L(0+) under emb;
= space of power series of the form x/ exp(—nx")ep(x") with
o(x)e L(O+).

This is the space used to define H;, . by the formula above. Thus we have an
isomorphism

L(OO+)/D;L(0+)~ H; , = .szlj,,,ix{/ddj,,,

coming from commutative diagram DW 1, and induced by emb;.

Lemma 1.1. Let o € Z, and suppose that « is not an integer <0. Let

D=x‘;ix—nx+a.

(i) We have a direct sum decomposition
LO+) =K @ DL(00+).
(ii) If6 = 1/(p — 1), then we have a direct sum decomposition
L(5) = K & DL(5).

Proof. We wish first to write an arbitrary series (x) as some constant plus
Dg for some g. Wefirst solve this problem for powers of x. We have for integers
m=0:

Dx™ = (m + a)x™ — nx™*1,

so that
+1 1 m 1
x"l==(m+ o)x™ — D{=x"]).
n n
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Recursively, we obtain
+1 1
= —gm e+ )(m — 1+ ) ()
D1m+1(+a)m—l+
2 "™ x
l . —
+W(m+a)---(m—z+1+a)xm '+...].

Hence we have proved what we wanted for powers of x, of degree > 1.
Next, we see what happens for a series in L(0+):

1
(*) z bm+1xm = Z bm+l nm+1 (m + a) ( )

m=0 m=

-D Z:ox[zb,,,+l ——(m+a)-- (n+1+a)].

This gives a formal solution, and we want to see that the right-hand side
lies in

K + DL(0+).

For this we need a lemma giving estimates for binomial coefficients.

Lemma 1.2. Let o € Z,,, and let n be a positive integer. Then

s(n)

ordoz(a—l)---(az-—n+1)2— l

> —1—log,n

Proof. Obvious, from

a(a—l)---(a—n+l)=n_!(a)

" n" \n

from the fact that the binomial coefficient is p-integral, and from

n — s(n) s(n)

| =
ord n! =1’ _1_

<1+ log,n

Since the coefficients b,,. tend to 0 like a geometric progression, it is
clear that the first series giving the constant term in the formal solution is
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15. The Gamma Function and Gauss Sums

actually an element of K. As for the second, there is some positive é such
that

ord b, .y = 6(m + 1) + co(m).

Hence by Lemma 1.2, for m > n we get

(**) ordb,,1——mMm+a)---n+ 1+ a)

+1 _“m-n nm—n

1 s(m n)
p—l p—1

>6m+1)— + oo(m).

This proves that the coefficients of x" tend to O like a geometric series, and
hence proves that

L(0+) = K + DL(0+).

There remains to prove that this sum is direct, in other words that 1 ¢ Dg
for g € L(0+). This is a special case of the following lemma.

Lemma 1.3. The equation Dg = 1 has a unique solution

g(x) = 3 b,x" € K[[x]],

and the coefficients satisfy

1
ordb, <1 —p—_—-l-+logp(n+ 1).

Proof. Write
1 (x o +a— nx)(lgob,,x”)
Then
1+ Y nb,x"*! =Y (nb, + ab,)x",
so that

1=ab, and =nb,.; = (n + a)b,.
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§2. The Frobenius Endomorphism

Hence

" "

b, = = .
" (nt+a)--(0) n+a
n+ 1)!<n+ 1)

The same estimate as before, using Lemma 1.2 shows that
1
ordb, <1+ m + log,(n + 1),

which proves the lemma.
From the lemma we see that the formal solution of Dg = 1 cannot lie in
L(0+). This concludes the proof of Lemma 1.1(i).

For the second part we disregard the factorials completely (they are p-
integral), and use the more trivial estimate

ord b,y = 6(m + 1) + co(m).
Then (*#*) is now estimated by

1 —_
0rd by y mry (m+ 0001+ 1+) > 60m + 1) —1:-71'1 + oo(m)

> on + oo(n)

because 6 = 1/(p — 1). This proves the lemma, because the rest of the proof is
identical with what we did before.

Theorem 1.4. We have isomorphisms for 6 > 1/(p — 1):
L(6)/D;L(6) ~ L(0+)/D;L(0+) =~ H; ,,
and these spaces are 1-dimensional.

Proof. Immediate from Lemma 1.1.

§2. The Frobenius Endomorphism

On the power series ring K[[x]], we have the Frobenius endomorphism

®,: K[[x]] - K[[x]]
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15. The Gamma Function and Gauss Sums

such that x + x?, and similarly ®, = ®@,. Then for h(x) € K[[x]] we have
. dx
@F(h(x) dx) = h(x?) dx?® = h(x9)gx* ol

First we determine the mapping corresponding to the Frobenius under the
embedding emb}. Thus we define

B, , = x®I"/VNE (x)D,,
where j' is the integer satisfying
1<j/<N-1 and j =pjmodN.
Then we have commutative diagrams
RI[x]1-2% RI[]]
FR 1 B;..l lop
RI[x]] <55, RI[x]1]

and

emb!

R[[x]]—"> R[[x]] dx

PB;, rl 10:

RI[x]] 5 RI[x]] dx.
The commutativity is done by direct verification, and is immediate, starting
with a power series ¢(x) in the upper left-hand corner, and using the defini-

tions of the various mappings going around one way, and then the other way.
A direct verification also shows that

O, A, > A,
maps & ; , into & ., and furthermore
Oyod=d-,.
Consequently we obtain a homomorphism
®:H, .- H; ,,
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§2. The Frobenius Endomorphism

while the diagram FR 1 yields the corresponding diagram

LO+)/D; LO+) =0 H, ,
FR2. PBJ..l l“’:
L(O0+)/D; L(0+) i H; ..

For our purposes, we also want to look at a composite Frobenius endo-
morphism, so we let

B;, o = X°E,, ((x)®,.
Then we have the commutative diagram
L(O0+)/D;L(0+) =L H, ,
FR3. 4B, .l l"a‘
L(0+)/D;L(0+) <55 Hj, x-

Thus ¢B, , is an endomorphism of L(0+)/D;L(0+), corresponding to the
endomorphism ®7 under the embedding emb¥.

Inverse of the Frobenius Endomorphism

We also want to tabulate formulas about the inverse of the Frobenius
endomorphism, actually one-sided. We define it on power series by

¥,: Y a,x"— Y a,x"s,

and on differential forms by

1
dx —x"/"E ifq|n
wrxn =) =19 x
e X

0 otherwise.
Then

¥, o, =id.
Again we have the commutation rule (trivially verified)
DW2. Yiod=do¥,
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15. The Gamma Function and Gauss Sums

Let
Aj=A;, =Y, o (x E, (x)71).
This means that A4; is the composite of multiplication by x™°E, ,(x)~!
followed by ¥,. Since 0 < a < g, it follows that 4; maps x-integral power
series into x-integral power series, and we have
Aj,°B;,=id.

We shall need the commutation rule

FR4. AjoD;=qDjo A;.
This can be proved either directly, or by the same pattern as for the cor-

responding fact for B;, using DW 2 and FR 3, together with the fact that
emb; is injective. This gives rise to the commutative diagrams:

RIDI-L RIS RODCT) -2 R{(]]
FRS. A“l qu and A“l 1"’.
ROl RIS RO RITE)

We now consider the effect of the inverse of the Frobenius endomorphism
on the Dwork spaces. We see directly from the definitions that

¥, L(5) - L(¢0)

maps L(d) into L(g6).
Furthermore, let g € L(6). Then multiplication by g,

fdf

maps L(d) into itself.
Let ¢’ satisfy 6’ < 8 < q6'. Let g € L(6'). Then

W, og:L(6) - L(J)
maps L(9) into itself. Indeed, this map is obtained as a composite map:

L(8) 2 [(5') —2 L(8)—2— L(g8) —2> L),
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We shall apply this to the case when g(x) = E(x). Since p > 3 we can
select

L st
p-1 p

and thenselect &' < (p — 1)/p"* ! butcloseto (p — 1)/p"* ! such that
0 <d<gqgd.
Then
E, [(x) € L(5).
Lemma 2.1. Under the above conditions on é and &',
A; o L(6) - L(9)
maps L(9) into itself, and induces a homomorphism
4; . L(8)/D;L(8) - L(8)/D; L(5).
Proof. This is a special case of the preceding discussion, except that the
negative power x ~* occurs inside the operator 4;. However, sincea < g — 1,
we have already seen that ¥, annihilates such negative powers, so 4; , maps

L(d) into itself. The commutation rule FR 4 shows that 4;, induces a
homomorphism on the factor space mod D;L(9), as desired.

By Lemma 1.1 we know that this factor space is one-dimensional. Con-
sequently, the operator A4; , has an eigenvalue on this space, which we
denote by A; , = A;. By definition, we have the relation

where h; is a uniquely determined power series, which lies in L(5). Our
object is to determine A;. We shall show that 4; is a Gauss sum.
We have a commutative diagram

L(0+)/D;L(0 +) — L(8)/D; (%)
FR6. H,l I"J
L(0+)/D;L(0+) — L(8)/D;L(9).
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15. The Gamma Function and Gauss Sums

The horizontal maps are the inverses of those obtained from the natural
inclusion L(6) = L(0+), see Theorem 1.4. We know that

Aj°Bj= ld,

so we conclude that the eigenvalue of B; is the inverse of the eigenvalue of
A;.

§3. The Dwork Trace Formula and Gauss Sums

Consider first the complete space R{x),, consisting of the power series
whose coefficients tend to 0. Each such power series converges on the (closed)
unit disc. We may view the powers of x, namely
1, x,x3...

as forming a “basis” for this space. If

u: R{x», = R¢xH,
is an endomorphism, let us work formally, and represent u by an infinite
matrix with respect to this basis. We define the trace to be the sum of the
diagonal elements. For this to make sense, we must have appropriate
conditions of convergence, and in §5 we justify the formal computations
which we shall make here in light of the p-adic Banach Fredholm theory of
completely continuous operators.

Theorem 3.1. Let g(x) € R{x),. Let 1 <a < q — 1. Then
(g — Dtr(¥go x™%(x)) = ; =%,
where the sum is taken over { € p,_ ;.
Proof. Write
h(x) = x"%g(x) = Y. a,x".
Then a, — 0 (p-adically). Let
Y (x'h(x)) = Y a;;x’.

Then a;; is the coefficient of x¥ in x'h(x), and so

Gij = Qgj-i-
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§3. The Dwork Trace Formula and Gauss Sums

Hence ai;i = Qg-1)i» and so

-1 zaii =(q - I)Z Ag-1)i-
But
; hQ) = §Z a,(",

and in this sum, the n-th term is equal to 0 unless n is divisible by g — 1. The
remaining terms give precisely the desired value stated in the theorem.
Let

wq : F(q)* - uq- 1
be the Teichmuller character, such that
w,(c) = ¢ mod p.

The Gauss sum is defined by

sq(Xo d’) = Z X(C)W(C)-

ceF(g)*

We apply the preceding discussion with g(x) = E, ((x)~!. Then Theorem 3.3
of Chapter 14 yields:

Theorem 3.2. Let a = j(g — 1)/Nand Y, , = ¥, o T, where T is the absolute
trace to the prime field. Then

(g — Ditrd; g = Sz ¥z o).

Note that the additive character is determined in the usual canonical way
(composing with the trace) from the character ¥, on the prime field. Hence
we shall usually omit the additive character from the notation.

Remark. In the next theorem, we assume that the formalism of determin-
ants works in the present situation. This is justified in the last section of the
chapter. Specifically, the operator 4; , is viewed as an endomorphism of
L(d). A Banach basis consists of appropriate scalar multiples of the powers
x", and the argument used in Theorem 3.1 applies to this case to yield
Theorem 3.2. Cf. §5, Example from Dwork Theory.

In the next theorem, we follow usual notation, and let

be the negative of the Gauss sum.
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15. The Gamma Function and Gauss Sums

Theorem3.3. Let 1 <j< N — 1, and a = j(q — 1)/N, where N divides
q — 1. Let 6 be a rational number such that

Let W = L(8)/D;L(). Let A; be the eigenvalue of A;on W. Then
Aj = 14(@g ", ¥zq)-
Proof. By FR 4 of §2, we have a commutative diagram with exact rows:

0 —— L(§) 2 L) —— W——0

qA,l P,. P’

0—— L(§) —5— L) — W—0.

By the additivity of the trace (cf. Proposition 5.6 below), we have
tr A; =tr q4; + tr 4;.

Since W is 1-dimensional, tr 4; is the eigenvalue of A j- The theorem is now a
direct consequence of Theorem 3.2.

§4. Eigenvalues of the Frobenius Endomorphism
and the p-adic Gamma Function

By Lemma 1.1(i) we know that
w; = x/ exp(—nx") %:f

represents a basis of H; ,. Consequently there is some element A(j, @, N)
such that

(1) d):(wj) = l(jo n, N)“’j', in Hj',n'

We shall relate this element 4 to the p-adic gamma function.
Note that ® is an endomorphism of H; ., so its eigenvalue 4, is given by

(2) A’q = A’(jo T, N)A(j" , N) e j’(j('- 1)’ n, N)-
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Theorem 4.1. We have

_ prp(l _ i)
G, 7, N) = N

- TN °

Praof. (Following Katz.) We have
L (xj exp(—nx") dx—x) = Ax¥ exp(—nx") % +dg

with someg € R[[x]]k, that is g is a power series with bounded denominators.
Expanding out, we find

pZ(_n?) "”"*"’ =G, aN)Z( T s & =+ dg.

Equating coefficients, using npN + pj = mN + j, we obtain

(= )

© pCF -

Ll O

Note that O(npN + pj) = O(n + j/N), and

PJ—J

m=np+——— N

This yields
. mn ! j\n!
p = G, % N)(=ay=" 20 + O(n + ﬁ) 3
On the other hand, we have

m!

n'p*’

This is immediate from the definition of the p-adic gamma function, and the
fact that a positive integer i < m divisible by p can be written in the form

@) TA+m)=(=1)t*"

. . . pi—Jj
= pi, with -
i = piy ip<n+ PN

and therefore i, < n. Hence the denominator n!p" is exactly the product of
such i divisible by p.
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15. The Gamma Function and Gauss Sums

Substituting (4) in (3), using the fact that nP~! = —p, and therefore
7?~1 = (—p)", we find

A !
® =KAo o+ 1) 2

The following lemma then concludes the proof.

Lemma. There exists a sequence of positive integers n such that

(i) n - —j/N p-adically, and hence m »» —j'/N;
(ii) ord(n + j/N) + ord(n!/m") — co.

Proof. First we simplify slightly the exponent in (ii). We have:

J n! i\ n—sn) n
ord(n+N)+ord —ord(n+N)+p_1 p—1
—ord(n+ ) - 5
—ord<n+N) o1

Let g = p” be such that N divides g — 1. Write the expansion

j_Jdq-1 _jg-1
“N=NI=9- N I+q+q*+-).

There is also a finite expansion

jlg=1)
N

=ay+ap+---+a._p!

with standard integral representatives 0 < a; < p — 1. Let

_ie-1 ey M1
==5 A+qg+---+g4"Y).

For M tending to infinity, we see that n approaches —j/N to satisfy (i).
Furthermore

ord(n + N) =>M-ordqg = Mr.

On the other hand, since j(g — 1)/N < g — 1, we have

s(n) < M((p — )r —1).
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The second condition of the lemma is then obviously satisfied also. This
concludes the proof of the lemma, and of Theorem 4.1.
Theorem 4.2. Let A, be the eigenvalue of Frobenius ®F on H; .. Then

Aq = Tq(w:’ 'l’x, q)-

Proof. This follows from Theorem 3.3, the remark at the end of §2, FR 3,
and the fact that

0L Y)Y ) =q
Let a be a positive integer, with 1 < a < g — 1 and q = p". Write
a=ay+ap+---a,_,p?!
with integers q; such that 0 < a; < p — 1. As usual, define
sa@) =Y a;.

Theorem 4.3 (Gross-Koblitz formula).

(@G, YV g) = (—1)qn™@ 'l—_[lr"<1 B < & >)
i=0 q-1

Proof. We merely put together Theorem 4.2, and the expression for the

eigenvalue obtained in Theorem 4.1. The only quantity remaining to be

worked out is the power of 7 appearing on the right-hand side, and this
follows from the following lemma.

Lemma 44. Let a = j(@ — 1)/N. Then

p‘(i) _ j(i+1) q - 1
Y %—=s;qN = s(a).

imodr
Proof. This is essentially the easy Lemma 1 of Chapter 1, §2. Indeed,

a(i)

qg-—1

z[3

where a? is defined by

() i
1sa0<q-1 wd o (P
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With this change of variables from j to the corresponding a, the present lemma
is identical with Lemma 1, loc. cit.

Let B be the prime in the algebraic closure of Q,. In the next theorem we
show how Stickelberger’s result on the Gauss sum mod ‘B follows from the
Gross—-Koblitz formula.

Theorem 4.5 (Stickelberger). Let y(a) =[]a,!. Then

1
n”(“’t(w;“, "’u,q) = 5

2@ mod P.

Proof. From the formula t7 = ¢, and Theorem 4.3 we obtain

*) (g %, 'ﬁ;,!,) _ (=1y
' @ G()’

where

=151 (25) - - ()

Replacing = by — = in the left hand side of (*) yields

- s(a)l-( wq— a’ lll,,. q)( — l)s(a)_

The theorem then follows from the next lemma.

Lemma 4.6.

,,(1 -~ <::‘;>) = (—1)'*%g,! mod p.

Proof. Note that
L (1+a)=(-1)"*"q!

This is true by definition if a; > 2 because g; < p — 1. It is also true when
a; = 1 and q; = 0 by the direct computations of Chapter 14, §1. On the other
hand, by Lemma 1.1 of Chapter 14, we know that

rA+x)=r,(1+y if x=ymodp.
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Thus it suffices to prove that

- <p a> = g; mod p.
qg-1

As usual, we write cyclically

a=a,+ap+---+a_p"
pa=a,_,+ap+---+a_,p 'modqg—1

The desired congruence follows at once, thus proving the lemma and the
theorem.

§5. p-adic Banach Spaces

The purpose of this section is to do as rapidly as possible the linear algebra
in p-adic Banach spaces justifying the use of determinants and traces in this
chapter. Thus we cover only part of Serre’s paper [Se 3], whose exposition
leaves nothing to be desired.

Let R be a complete discrete valuation ring, with quotient field K, maximal
ideal m, residue class field k, and prime element 7.

By a Banach space E over K, we mean a normed space which is complete,
and such that the norm x — | x| satisfies

lex| = |cllx] and |x + y| < max{|x|, |y[}

for ce K and x, y € E. We also assume that the value group | x| (for x € E,
x # 0) is the same group of positive real numbers as the value group of K*.
So for each x € E, there exists c € K such that |x| = |c|.

Let E, F be Banach spaces over K. Let L(E, F) be the vector space of
continuous linear maps

u:E-F.

As usual, we can define a norm on L(E, F) by

ux
|u| = sup l——-l
x#0 |X|

Also as usual, we have

|u| = sup|ux|.
Ixl<1
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By an isomorphism, we mean a norm-preserving continuous linear map
having an inverse.

Example. Let 7 be a set of indices, and let C(Z, K) be the set of families
x = (X;)ie1> X; € K, such that x; tends to 0 as i — oo. By this we mean that
given ¢ there exists a finite set of indices S such that for i ¢ S, we have |x;| <e&.
The reader may as well think of the positive integers where i = 1, 2, 3, ....
We define

|x| = sup|x;|.

Then C(I, K) is a Banach space.

More generally, if F is a Banach space, we may form families (x;) with
x; € F such that x; — 0. Such families with the sup norm form a Banach
space C(I, F).

A family {¢;} in a Banach space E will be called a Banach basis if every
element x € E can be written uniquely as a series

x =Y xe; withx; >0
iel

and |x| = sup|x;|. It is clear that the space C(I, K) has such a basis, with
efi)=land e(i") = 0if i # i.

Let E be a Banach space and let E, denote the subset of elements x € E
such that |x| < 1. If {¢;} is a Banach basis, then E, consists of the set of all
elements

Z X;€;
such that |x;| < 1 for all i.

Lemma 5.1. Let m be the maximal ideal of R. Let E = Eo/mE,. A family
{e;} in E is a Banach basis if and only if all e; € E,, and their images &; in E
form an algebraic basis of E as vector space over k.

Proof. Suppose that {e;} is a Banach basis for E. Then first it is clear that
every element of E can be written as a linear combination of the g with
coefficients in k, and such a combination is unique, as one sees by lifting
back to E,.

Conversely, suppose {¢;} is an algebraic basis for E. Any element x € E,
can be written

x =Y x{Ve + nx'V with x" € E,.

106



§5. p-adic Banach Spaces

Iterating, and expressing x(!? in a similar way, we get an expression
x =) x;e; withx,€Rand x; - 0.
Such an expression is unique, for if we have a relation
Z X;e; = 0, not all X; = 0,
then first we may divide by the highest power of x dividing all x;, so that not
all x; are divisible by #, and then we may reduce mod m to get a contradiction.
Finally if | x| = 1, we have

|x| = sup|x;l,

and the same relation holds for any x by multiplying with an appropriate
power of 7. This proves the lemma.

Proposition 5.2. Every Banach space over K is isomorphic with a space
C(I, K). Equivalently, every Banach space has a Banach basis.

Proof. Immediate from the lemma, by lifting an algebraic basis from E
back to E,.

Corollary. Every closed subspace F of a Banach space E has a comple-
mentary closed subspace F' such that E ~ F x F'.

Proof. Let F be a closed subspace of E. By the theorem, there exists a
Banach basis {e} of the factor space E/F. Let ¢; be a representative of e} in E
such that |¢;| < 1. The map

u.ei e
extends to a continuous linear map E/F — E, of norm < 1. Then the map
E/F x F-E
given by
(X, y)—ux +y
is an isomorphism, as is immediately verified. This proves the corollary.

Let F be a Banach space. Let I be a set of indices, and let B(I, F) be the set

of bounded maps of I into F, i.., the set of bounded families (f;);¢; with the

sup norm. Then B(I, F) is a Banach space.

107



15. The Gamma Function and Gauss Sums

Proposition 5.3. Let E = C(I, K)and let {e;} bea Banach basis. Then we have
an isomorphism

L(E, F)— B(I, F)
given by
U (ue)ies-

Proof. Let ¢ be the map from L(E, F) to B(I, F) as given in the statement
of the proposition. Conversely, if (f;) is a bounded family in F, define a map

¥:B(I, F) —» L(E, F)

by associating to (f;) the map u such that

u(z xie) = Z x; fi

It is then immediate that ¢, ¥ are continuous linear, inverse to each other, and
have norms <1, so that they are isomorphisms. This proves the proposition.

The proposition will be used especially when F has a Banach basis, so
that F = C(J, K) for some set of indices J. Each element ue; can then be
written uniquely

ue; = . c;€;
j

where (¢)) is the natural Banach basis for C(J, K). Thus u has an associated
matrix (c;;), relative to the bases (e;) and (¢)). By the definitions, and Proposi-
tion 5.3, we have

|u| = sup |cyl.
ij

Example. Let F = K so that L(E, K) is the dual space, denoted by E*.
If we let ue; = c;, then

|ul = suplc;].
i

Let u € L(E, F). We say that u is completely continuous if u is a limit of
elements of L(E, F) with finite dimensional image. (The limit of course taken
with respect to the norm on L(E, F).) We denote by CC(E, F) the space of
such completely continuous linear maps. It is obviously a Banach subspace
of L(E, F).
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§5. p-adic Banach Spaces

Let E, E', E" be Banach spaces, and let
ESESE
be continuous linear maps. If u or v is completely continuous, then so is v o u.
This is immediate from the definition. In particular, CC(E, E) is a two-sided
ideal in L(E, E).

Suppose now that F = C(J, K) with Banach basis (f)). Let u € L(E, F).
For each x € E we can write

ux =Y ufx)f;
where u; € E* is an element of the dual of E, i.e. a functional. We define
riu) = |uyl.

Then
lul = sgp ru) = Sl}p lu;l,

directly from the definitions.
Let E = C(I, K), and let (c;;) be the matrix associated with u, relative to
the bases (e;) and (f}). Then

lu;| = sgplcul.

This is clear from the example following Proposition 5.3.

Proposition 5.4. Let F = C(J, K), with Banach basis (f}). The map
u (uy)
gives an isomorphism

CC(E, F) ~ C(J, E¥)

between CC(E, F) and the space of families (u;) of elements in E* such that
u; — 0. In particular, an element u € L(E, F) is completely continuous if
and only ifu; — 0.

Proof. First suppose u has finite dimensional image, so without loss of
generality, we may assume the image is one-dimensional. Then u(x) = v(x) f
for some f €F, and v is a functional. Then u; = f;v, where f; is the j-th
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15. The Gamma Function and Gauss Sums

coordinate of f, so clearly u; — 0. Next let u™ € L(E, F) approach u, and have
finite dimensional images. Then

uf® - u;

uniformly, so u; — 0 also in this general case.
Finally, let (v)) be a family of elements in the dual E* such that v; = 0.
Define u by

ux =Y vfx)f;.

Then u is certainly continuous linear. The partial sums ug defined for every
finite set S of indices by

us(x) = Y v(x)f;

jeS

approach u in the norm of L(E, F), and have finite rank. Hence the cor-
respondence between CC(E, F) and C(J, E*) is bijective. It is immediately
verified to be norm preserving. This concludes the proof.

Example from Dwork theory. Let £ = L(0), with the norm defined as
follows. If

fx) =Y a,x"
is in L(5), we define
| /1y = sup f-,, :

Then E is a Banach space. We assume that § is rational, and that the constant
field K has been extended by a finite extension if necessary so that p® lies in K.
The powers

@*x)y, n=0,1,2,...

form a Banach basis for E. If ' < 9§, then the inclusion

L(6) — L(5)

is completely continuous. This is obvious by looking at the associated matrix,
and using Proposition 5.4.

On the other hand, if g € L(§’), then the map f+ fg is a continuous
linear map of L(¢') into itself. Furthermore, the Dwork map ¥, is a con-
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§5. p-adic Banach Spaces

tinuous linear map of L(&’) into L(gd"). It follows that the Dwork operator
Aj;,, is completely continuous on the space L(9).

We now come to the results on Fredholm determinants which were used
in the context of Dwork theory. First we make some remarks about de-
terminants in finite dimensional spaces.

Let L be a free module over a commutative ring, and let u be an endo-
morphism of L such that u(L) is contained in a finitely generated submodule.
Let M be a submodule of L which is finitely generated, free, and contains
u(L). Let

uy:M - M
be the restriction of u to M. The polynomial
det(I — tuy)

is well defined, and it is easy to verify that it does not depend on the choice of
M. We may therefore denote it by

detd —tw)=1+cit+---+cpt"+---.
The coefficients c,, can be expressed in terms of u as follows.
Let (e;) be a basis of L. Let S be a finite subset of the set of indices I, with

card S = m. Let A = (a;;) be the matrix of u with respect to this basis, and let

dets(A4) = determinant of the submatrix of a;; with i, j € S.

Then

e =(=1)" ¥ dets(4),

|S|=m

where the sum is taken over subsets S having m elements.

This formula actually relates to a finite square matrix. It suffices to prove
it when the matrix consists of algebraically independent elements in character-
istic 0 (by specializing afterward). In that case, the matrix has distinct
eigenvalues, and the formula is obvious if the matrix is diagonal. To get the
formula in general, all we need is an invariant characterization of the terms
inthesumover S. Thisis provided by the second expression for the coefficients:

Cm = (=1)" tr \™u,
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15. The Gamma Function and Gauss Sums

where /\"u is the m-th exterior power of u, acting on /\"M, and M may be
assumed to be a finite dimensional vector space. But in that case, one finds
at once that

tr \"u= Y detg(A),

|Sl=m
by looking at the trace with respect to the basis
{e,-l A A eim}.

This proves that the coefficients c,, have the value as stated. In particular,
¢; = —tr u (sum of the diagonal elements), so

detl —tu)=1—(tru)t +---.
Now suppose E is a Banach space with Banach basis (g;), i € I. We wish
to define det(I — tu) for any u € CC(E, E). Suppose first that |u| < 1. Let
E, be as before, the subspace of elements x in E such that |x| < 1. Then

u(E,) = E,. For each positive integer n, the endomorphism u defines an
endomorphism

u(n"): Eo/n"Eq — Eo/n"E,.

Wedenote Eo/n"E, = E(n").If (a;;) is the matrix of u with respect to the basis
(e;), then we know that

lu;| = 5“_P|aij| - 0.
13

Hence there exists a finite subset S of indices j such that for all i and all
j ¢ S, the components a;; lie in the ideal (n"). Hence the polynomial

det(I — tu(n™))

is defined, as a polynomial in R/%"R. As n tends to infinity, these polynomials
form a projective system, and we define

det(I — tu)

to be their limit. It is a formal power series, in R[[¢]].

If u is arbitrary in CC(E, E), we can find an element ¢ € R, ¢ # 0, such that
|cu| < 1. Then det(I — tcu) is defined, as a power series D(t), and we define
det(I — tu) = D(tc™!). This is independent of the choice of c.
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§5. p-adic Banach Spaces

Proposition 5.5. Let u be a completely continuous endomorphism of the
Banach space E. Let (e;); ; be a Banach basis, and let A = (a;;) be the matrix
of u with respect to this basis. Let

det(I — tu) = Y cat™

m=0

Then:

@ Cw = (=1)" % detg(4).

where S ranges over subsets of I with m elemenits.

(ii) Given a positive number r, we have |c,| < r™ for all m sufficiently
large.

(iii) If {u,} is a sequence in CC(E, E) and u,, — u, then

det(I — tu,) - det(I — tu),

where the convergence is the simple convergence of coefficients.
(iv) If u has finite rank, then det(I — tu) is the polynomial defined from
elementary linear algebra.

Proof. Suppose first that |u| < 1. Then the formula for c,, is valid for each
u(n"), and so remains valid in the limit. The general case follows by using
¢ # O such that |cu| < 1.

For (ii), let S be a finite subset of m elements. Each product in the expansion
for the determinant detg(4) contains m elements, indexed by m distinct
indices jy, ..., j.- Let

ry=lujl so r;—0.

Then any product of m elements as above is bounded in absolute value by the
product r, - - - r,,. Hence

|detg(4)| < ry---r, foreachs,
s0
leml S 7y Tme

Since r; = 0 it follows that r; < r for all j sufficiently large, and (ii) follows.
The third assertion follows trivially from (i).
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15. The Gamma Function and Gauss Sums

Finally, suppose u has finite dimensional image. After replacing u by a
scalar multiple, we may assume that |u| < 1. Let F be a finite dimensional
subspace of E containing u(E). Let

Fo=FnE, and F(n") = Fo/n"F,.

Then F, is a direct summand of E,, and hence F(n") is a direct summand of
Eq(n"), and is a free submodule. Hence the determinant

det(I — tu(n"))
can be computed in Fy(n"). Since
det(I — tu) = lim det(I — tu(zn")),
it follows that

det(I — tu) = det(I — tup),

where up is the restriction of u to F. Then (iv) follows, and the proposition
is proved.

By the estimate of (ii) in the proposition, we conclude that the power series
det(I — tu) represents an entire function of the variable ¢ for values in K, or
in any complete extension of K. In particular, det(I + u) is defined for all
ue CC(E, E).

Corollary 1. Let u, v e CC(E, E). Then
det((I — tw)(I — tv)) = det(I — tu) det(I — tv).
Proof. After multiplying u, v by appropriate scalars, we may assume without
loss of generality that |u| < 1 and |v| < 1. In that case, we view u, v as acting

on E,, and reduce mod #", in which case the formula is true when u, v are
replaced by u(n") and v(n") respectively. Taking the limit yields the corollary.

Corollary 2. Let ue CC(E, F) and v € L(F, E). Then
det( — tuov) = det(I — tvo u).
Proof. By (iii) and (iv) we may assume that u, v have finite rank, in which

case the assertion is standard by the linear algebra of finite dimensional
spaces.
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We define the trace tr(u) of an element u € CC(E, E) as the coefficient of
—t in det(I — tu). If (a;;) is the matrix associated with u with respect to a
Banach basis, then as usual,

tl‘(u) = Z Qi -
This formula shows that |tr(u)| < |u].

Corollary 3. Assume that K has characteristic 0. Then

det(I — tu) = exp(— i tr(u™) :%)
m=1 ¢

Proof. The assertion is true if u has finite rank by ordinary linear algebra.
Let {u,} be a sequence of such endomorphisms converging to u. Then both
the right-hand side and left-hand side with u replaced by u, converge to the
corresponding expressions of the corollary, thus establishing their equality.

Note. The above three corollaries are included to show how to apply
Proposition 5.5. They were not needed in the applications of the preceding
sections. Only the following proposition was needed.

Proposition 5.6. Let
O—-E—->E—-E -0

be an exact sequence of Banach spaces, and let u', u, u” be continuous linear
maps making the diagram commutative:

0——E E——E' ——0
0—— E——E——E ——0

If u is completely continuous, so are u’ and u", and we have
det(I — tu) = det(I — tu')det(I — tu"),
tru=tru + tru".

Proof. We may view E’ as a subspace of E, and u’ as the restriction of u
to E'. Thus u” is the map induced on E" as factor space E/E'. By the Corollary
of Proposition 5.2 there exists a Banach basis {ej} for E’ and a Banach basis
{ej} for a complementary subspace such that the images of {¢]} in E/E’ form
a Banach basis. Then {e;, ]} forms a Banach basis for E. From this it is clear
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15. The Gamma Function and Gauss Sums

that if u is completely continuous, so are ¥’ and u”. Reducing mod =" yields the
desired identity for u(n"), u'(n"), and u"(n"), whence the identity as in the
proposition for u, u', u”. The identity for the trace follows from that of the
determinant since

det(l —tw)=1—-(tru)t +---.

This concludes the list of properties of the determinant which has been
used in the Dwork theory.
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Gauss Sums and the
Artin-Schreier Curve

In this chapter we establish the connection between the spaces used to
represent the Frobenius endomorphism, and eigenspaces for a Galois group
of automorphisms of the Artin—Schreier curve. This connects Dwork theory,
the Washnitzer-Monsky theory, and the fact realized by Monsky that the
series E,(x) can be used to construct explicitly such eigenspaces. The first
section lays the foundations for the special type of ring under consideration.
After that we study the Artin-Schreier equation and the Frobenius endo-
morphism.

§1. Power Series with Growth Conditions

We let:
R = discrete valuation ring of characteristic 0, complete,
with prime element = dividing the prime number p.
K = quotient field of R.
k = R/n = residue class field, which has characteristic p.

R{x) = set of power series
0)) @(x) = Y a,x" withg,eR
n=0

such that there exists 6 > 0 for which

ord, a, > on for all n sufficiently large.
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16. Gauss Sums and the Artin-Schreier Curve

It is clear that R{x) is a ring, which will be called the Washnitzer-Monsky
ring. Furthermore, the elements of R¢x)) are precisely the power series
which converge (absolutely) on a disc of radius > 1. Of course, the radius
depends on the power series, there is no uniformity required. Later, we shall
deal with the Dwork spaces, taking the uniformity into account. Indeed,
it will also be useful to consider power series such that a finite number of
coefficients may lie in K.

Pick 6 rational > 0, and let 7° denote any rational power of =, well defined
up to a root of unity in the integral closure of R. If ¢(x) as above is an element
of R¢x), then we may write

()] @(x) = Y b(n’x)"

with coefficients b, (possibly algebraic over R) which are n-integral for all
but a finite number of n. Conversely, if a power series ¢(x) in R[[x]] has a
representation as in (2) with coefficients b, whose denominators are bounded,
then it is clear that ¢(x) € R{x).

We let R{x), be the p-adic completion of R{x). Then R{x}, is the ring
of power series

Y ax", a,€R,
such that a, — 0, under the sup norm of coefficients. To prove that this is
the completion, we observe that this ring R{x), is p-adically complete, and

that R{x) is dense in it. Furthermore, the polynomial ring R[x] is dense,
so that

R¢x», = R[x],

is also the p-adic completion of R[x].
The ring R{x, still has the advantage that

R¢x)», mod n = k[x],

in other words, its reduction mod = is the polynomial ring.
The following property is immediately verified.

Let w € R{x) (respectively R{x),) be such that
w = 0 mod nx.

Then the geometric series gives an inverse for 1 — w in R{x)) (respectively

RExD,).
Lemma 1.1. The ring R{x}, is integrally closed.
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Proof. An element ¢(x) of R¢x), not divisible by 7 can be written
O(x) =bo + -+ byx? + -+

such that b, is a unit, and b, = 0 mod = for n > d + 1. Then the Manin
proof of the Weierstrass preparation theorem given for instance in
Chapter 5, §2 applies to show that

o(x) = P(x)u(x),

where P(x) = x* + --- + co € R[x] is a polynomial, and u(x) is a unit in
R{xY,. (In that reference, the crucial step occurs when we assert that z(f)
is invertible, which is true in R{x}),, by the remark made before the lemma.)
This implies that the zeros of P(x) all lie in the unit disc in the algebraic
closure of the quotient field of R.

If the quotient ¢(x)/¥(x) of elements in R{x}, is integral over R{x},,
then we use the Weierstrass preparation theorem to write

o0 _ , PO)
¥(x) o(x)

where P(x), Q(x) are polynomials, and u(x) is a unit in R{x},. Then without
loss of generality, we may assume that u(x) = 1. Since elements of R{x},
converge on the unit disc, if Q(x) does not divide P(x), we may evaluate the
right-hand side at a zero of Q(x) which is not a zero of P(x) to make the right-
hand side infinity. An elementary criterion for integrality then shows that
@(x)/(x) cannot be integral over R{x},, which proves the lemma.

u(x),

Lemma 1.2. The ring R{x) is algebraically closed in R{x)) ,, and therefore
it is integrally closed (in its quotient field).

Proof. As pointed out to me by Dwork, this lemma can be viewed as a
special case of a result in Dwork-Robba [Dw-Ro], Theorem 3.1.6. The proof
given below was derived in collaboration with Dwork.

Let A = R{x) and 4, = R{x}),. Let y € A, be algebraic over 4, satis-
fying a polynomial equation

F(») =0

with coefficients in A. By the x-topology, we mean the topology of formal
power series (high powers of x are close to zero). Given a € 4, if &' is x-close
to a, then o' is also p-close to a.

Let y, be a polynomial, in R[x], which is x-close to y. Let | || be the
Gauss norm on power series (sup norm of the coefficients) extended to the
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16. Gauss Sums and the Artin-Schreier Curve

quotient field K(A). Then F'(y,) € A4, and in particular is holomorphic on a
disc of radius > 1. Then for y, sufficiently close to y, we have

F(yo)
F(y)?
Hence the Newton sequence
_ F(y,)
y n+1 — y n F (yn)

converges in the Gauss norm in the completion of K(4), and in fact to y
itself since 4, is complete, if we pick y, sufficiently close to y (closer than any
other root of F in the completion of K(A4)). Cf. for instance my paper, “On
quasi algebraic closure,” Ann. of Math. (1952) pp. 373-392; or also my
Algebraic Number Theory, Chapter II.

We shall now use another norm to see that the sequence converges to a
holomorphic function on a disc of radius > 1 + ¢ for some &, from which
relatively small sets have been deleted.

To avoid introducing a new letter, let us view K as a subfield of C,.
If ¢ is a real number > 0, we let D(t, 0) be the closed disc of radius ¢ around
the originin C,. Let ,, . .., a,, be elements of this disc, and let ry, ..., 7, > 0.
We let

B = B(t; r, o) = set obtained by deleting from D(t, 0) the union of the
balls D(r;, «;) of radius r;, centered at «;

In the sequel, we assume thatt > landr; < 1,
If H(x) is a rational function with no poles in a set B as above, then from
its factorization into linear factors, we see that the norm

IHGx) I3 = sup |H(x)|

xeB
is defined.
Lemma 1.2.1. For any rational function H holomorphic on B, we have
IHIl < lIH|lp.

Proof. We factor the rational function into a product of a constant factor
and linear factors of type

1 .
x—a and , withaeC,.
x—a
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The Gauss norm of x — a is max(1, |a|). We pick x € B to be a unit which
is not congruent to any @ mod m,. For such x we have

|[H(x)| < [|H|lg,
and the lemma is then obvious.

Lemma 1.2.2. Given a rational function H(x), with |H|| < 1, there exists
a set B(t; o, r) witht > 1 and r; < 1, such that

IH|l5 < 1.

Proof. Factor

Hx)=c]]( - ax)™ ][] (x — b)™

where |g;| < 1 and |b;| < 1. Then |c| < 1 because |H|| < 1. Let N be the
number of linear factors, counting multiplicities. Let s > 1 be such that
s¥c < 1. It will suffice to find B such that each factor of H has B-norm < s.
We consider factors of four types:

1—ax, (1—ax)"!, x—-b (x-0b)"!

with|a| < 1and |b| < 1. For factors of the first three types, it suffices to select
the radius t of B to be <s and sufficiently small > 1. For the factor of last type,
namely (x — b)™!, it suffices to delete from B a disc of radius 1/t', where
t' < tand t' is very close to t. This proves the sublemma.

We now return to the proof of Lemma 1.2. We define:

Hol(B) = completion of the ring of rational functions
having no poles in B, under the B-norm.

Since the Gauss norm is bounded by the B-norm, every Cauchy sequence
for the B-norm is a Cauchy sequence for the Gauss norm. Consequently
there is a natural injection of the completions

HOI(B) g K(x)Gauss°
Observe that 4, = R{x}), is contained in the Gauss completion.

Given our element y € 4, algebraic over A, we first select a polynomial
¥o € R[x] as in the beginning of the proof, so that

H F(yo)
F'(yo)?
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is small, and in particular is < 1. We let H(x) = F(y,)/F'(y,)* be this rational
function. We then select B as in Lemma 1.2.2 so that |H||z < 1. Then the
Newton sequence also converges to an element of Hol(B). This implies
that y is the power series expansion on the closed disc of radius 1 of a
holomorphic function on B. It is row a matter of foundations of p-adic
analytic functions that the power series for y also represents the analytic
function on some disc of radius > 1. This implies that the coefficients of the
power series y = ¢(x) tend to 0 like some geometric series, thereby proving
Lemma 1.2.

For a proof of the foundational fact we have just used, see for instance
Amice [Am]. Note that the power series for y may converge only on a disc
of radius smaller than the radius of the original set B. For instance, the
holomorphic function may have a finite number of poles near but outside
the circle of radius 1. The power series will converge only on a disc which
does not contain these poles. The proof requires the p-adic analogue of the
Mittag-Leffler theorem, in lieu of analytic continuation over the complex
numbers.

Let fo(Y) be an irreducible polynomial of degree d, with coefficients in
k[x], leading coefficient 1. By a lifting of f, we mean a polynomial f(Y) in
R&xY[Y] of the same degree, leading coefficient 1, such that

fo=f modm.

Then f is necessarily irreducible over R{x),. Indeed, the coefficients in a
factor are integral over R{x), so in R¢{x) by Lemmas 1.1 and 1.2. Such a
factor then reduces to a factor of f,.

Let y, be a root of f, and let y be a root of f. Let

o = R{xH[y], and A, = k[x, yol.
Then there is a unique homomorphism
o = k[x, yo] = oo

reducing R¢x) mod =, and sending y to y,. This is a standard fact of ele-
mentary field theory. Thus the ideal () in R{x}) extends uniquely to a prime
ideal of &7, and

Ay = o mod .

We view f as defining an affine curve V and f, as defining its reduction
mod 7. Thus we shall write

o =dV) and o/n = o y(V,).

Then o/ ((V,) is the ordinary affine ring of V, over the field k = R/=n, but
o = (V) is a more complicated ring, arising from the work of Washnitzer
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and Monsky, following Dwork. We shall also say that V is a lifting of ¥,
corresponding to the lifting f of f,.

Lemma 1.3. Let we o and assume w = 0 mod n. Then the geometric
series

1+w+wi+...
converges to an inverse of 1 — win .

Proof. For convenience, assume that the lifted polynomial f(Y) has
coefficients in R[x]. This is all that we need in the applications, and the proof
is slightly easier in this case. We write

d-1
w= n‘_Zogi(x)y'

with g/(x) € R¢x). Then for some 6 > 0 we also have

d-1
w= Y h(m*x)(yy,
i=0
where h; are power series with coefficients in the algebraic closure of R,

and all of these coefficients are divisible by the small power . Furthermore,
for each positive integer n, we can write

d—-1
y" = ‘=Zo(pn.i(x)y‘

where ¢, ; is a polynomial of degree <n (<some constant times n, the
constant depending only on f). It then follows at once that there exists ¢
such that if we write

d-1 o
wi= 3 ¥ cfixly
i=0 j=0

then ord ¢{ > &(j + n). This proves the lemma.

We shall say that ¥ or f, is special if f(y,) ™! € k[x, y,]. It then follows
that

fo)yled.
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Indeed, let z € of be such that z = f(y,)” ! mod n. Then
#G)=1+w,
where we o/ and w = 0 mod 7. Applying Lemma 1.3 proves our assertion.

Lemma 1.4. Assume that f, is special. Then o is integrally closed in
RExY,[y], and also in the quotient field K of o.

R¢xY,[y]
o = R¢xH[y] RExY,

R¢x)

Proof. The powers y/ (j = 0,...,d — 1) form a basis of K over the quotient
field of R¢x). The dual basis with respect to the trace is contained in
f'(»)~ ', and hence in . If an element z € R¢x)),[y] is integral over <,
and we write

d-1
z= iZog;(x)y‘ with g{(x) € R{x),,

then the coefficients g;(x) can be expressed as traces,

gix) = Tr(zy)),

where {y}, ..., y3} is the dual basis. Since each zy; and its conjugates are
integral over R{x), so is the trace, which lies in R¢x}) by Lemma 1.2.
Hence z € R¢{x)»[y]. The same argument shows that < is integrally closed.
(All of this is standard elementary theory of fields and integral closure, as in
algebraic number theory.)

We shall need to lift roots of polynomials, as expressed in the next lemma.
We let Q be the quotient field of R{x)).

Lemma 1.5. Let V be a lifting of V, as above, and assume that V, is special.
Let

# = R{x) [y] = k[x, yo)
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be reduction mod =. To each root Z of f, in k[x, y,] there exists a unique
root z of f in o such that

zmodn = Z.

If in addition k(x, y,) is Galois over k(x) with group G, then Q(y) is Galois
over Q. Say G is its Galois group. Then the map

oc—comodn
gives an isomorphism of G with G,.

Proof. Let z, € o/ reduce to Z mod 7. Such z, exists because reduction
mod = gives a surjective homomorphism of </ onto k[x, y,]. We can find
w € & such that

wf'(z,) = 1 mod =.
We then define the usual sequence

Zn+1 = 2y — Wf(Z,,).

We obtain

[ @as1) = f(2,) — Wf(z,)f'(z,) mod f(z,)*.
It follows by induction that
f(z)=0mod n" and z, = z; modx.

The limit z of the sequence {z,} then a priori lies in the ring
R¢xY,[y],

and is a root of f in that ring. By Lemma 1.4, we conclude that the root
actually lies in R{x)[y] = «, as desired.

Under the additional assumption of Galois extensions as stated, this proves
that & is Galois over R¢x). Since the prime n remains a prime ideal in </,
by standard decomposition group arguments we see that G is the decom-
position group of the prime, and we get the isomorphism of G with G, by
reduction mod #. Cf. Proposition 14, Chapter I, §5 of my Algebraic Number
Theory.

The last lemma is only a special case of a more general situation having
to do with the possibility of lifting morphisms. What we use in connection
with the Frobenius morphism is summarized in the next lemma.
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Lemma 1.6. Let W,, V, be two special affine curves, defined over k by poly-
nomials g, f, respectively. Let W, V be liftings, defined by g, f. Let

@0 : A o(Vo) = A o(Wp)
be a homomorphism of the affine rings, such that
@o(x) € xk[x].
Then there exists a lifting homomorphism
o :AWV)> A(W)

of @, If o(x) € R x) is a lifting of @y(x), then there is a unique choice of
@(y) lifting @o(y) and making @ a p-adically continuous homomorphism.

Proof. Suppose ¢(x) lifts @,(x). Then we can define a unique p-adically
continuous homomorphism R{x) — R{x) by

Y a,x"— Y a,@(x)"

Let ¢f be the polynomial obtained by applying ¢ to the coefficients of f, and
let (¢f ), be its reduction mod 7. Then (¢f), has a root z in & ,(W,), namely
Z = @o(¥o). Let z, € /(W) reduce to Z mod =. As in the proof of Lemma 1.5
we then find w in & such that

w(@f)'(z1) = 1(mod 7),

and the same argument as in Lemma 1.5 then shows that z, can be uniquely
refined to a root of ¢f in &/(W). This concludes the proof.

§2. The Artin—Schreier Equation
The example we shall consider is given by the equation
YP—Y=x"

where N is a positive integer prime to p. If k is a field of characteristic p, then
Y? — Y — x" is irreducible. (For instance, a root is ramified of order p over
x = 00.) Furthermore, putting fo(Y) = Y?» — Y — x" (as a polynomial
over k), we have

fo()=pYP™ ' —1=—1L
Viewing now
f()=YP-Y-x"
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§2. The Artin-Schreier Equation

as a polynomial in characteristic 0, i.e. with coefficients in R, then for the root
y of f(Y) we have

fo)=p -1

We see that f,, (or the affine curve V}) is special as we defined it in the last
section, and that it satisfies all the hypotheses of the lemmas, which are there-
fore applicable. We call V¥, the Artin-Schreier curve.

The equation Y? — Y — x" = 0 has a formal solution both in character-
istic p and characteristic 0. Indeed, it has the approximate solution
Y = 0mod x, and since f'(0) = —1, the Newton sequence of approximate
solutions converges in the formal power series to a unique solution h(x)
such that h(0) = 0. In fact,

h(x) = —xM + ---.

In characteristic p, it has the group of automorphisms G(p) isomorphic
to Z/pZ, sending

Yo yo + o, for a e Z(p).

By Lemma 1.5, there is a unique automorphism g, of o/ leaving R¢x)
fixed such that

o, (y) = y + a(mod 7).
We let G(p) be the lifting of Go(p) as a group of automorphisms of &, as in

Lemma 1.6. The map a — g, is an isomorphism.
On the other hand, we have a lattice of rings:

\G(p)

RExMY [y] R¢xY

G(p)

G(N) R¢xYy]

R << xN >> G(N )
From now on, assume that R contains the N-th roots of unity. Then R¢x))

is Galois over R¢x") with group G(N) isomorphic to a cyclic group of
order N, sending

x—{x for{epy.

The two extensions corresponding to the two bottom sides of the parallelo-
gram are linearly disjoint (being of relatively prime degree), and so opposite
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16. Gauss Sums and the Artin-Schreier Curve

sides of the parallelogram have isomorphic Galois groups. In particular, the
ring

A = R¢xH[y]
admits the group
G = G(p) x G(N)
as a group of automorphisms, whose fixed ring is R¢x"). The fixed rings of
G(p) and G(N) are R{x)) and R{x") [y] respectively.
The character group G consists of character (¥, ), where ¥ is a character

on Z(p) and y is a character which may be identified with a character on roots
of unity. We write

X=X
if x(0) = ¢, with0 <j< N —1.

If (Y, x) is a character of G, and M is a G-module, we let M(Y, x) be the
eigenspace corresponding to this character.

Lemma 2.1. We have (1, 1)) = X’R{x"), for 0<j< N — 1.
Progf. Obvious.

We now let n?~1

= —pand
R = Z,[, px].

In the previous chapter, §3, we had associated with each 7 such that
nP~! = —p a character ¥, of Z(p), and the Dwork power series

E(X) = exp(nX — nXP).
It follows from Lemma 2.2 of the preceding chapter that

E.0)eR{y) = .

Lemma 2.2. The element E () is an eigenvector of G(p) with eigencharacter
Y. In other words, for o € Z(p),

0(E()) = ¥x()E).

Furthermore, E,(y) is a unit in R{y).
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§2. The Artin-Schreier Equation

Proof. For p odd, the inverse of E(y) is E,(—y), which is thus also in
R{y). If p = 2, one has to apply Lemma 1.3. Next we verify that ¢,E,(y)
and E,(y) differ by a p-th root of unity. We have:

(0. Ex(0))F = 0(E:(y)")
= o, exp(pny — pny¥)
= o, exp(—npx")

= exp(—npo,x") = exp(—pnx") = E,(y)".

Hence

0, EL(y)
EQ)

The Galois theory of Lemma 1.5 applied to
REX"Y [y] = REy»

shows that ¢, is an automorphism of R{y). Hence o, E,(y) is a power series
in y, and in fact,

B,

auEu(y) = Ex(aay) =1+ na,y (mod 7[2)
=1 + ny + no (mod 72).

On the other hand,
E.(y) = 1 + ny(mod n3).
Taking the quotient shows that

0, Ex(y)
E.(y)

This proves that the quotient on the left-hand side is equal to ¥/(a), as desired.

= 1 + an(mod 7n3).

The units o, E,(y) will allow us to determine an eigenspace decomposition
for o/, except that we need p in the denominator of the orthogonal idem-
potents of the group ring G(p). Hence we let K be the quotient field of R,
so that

K = R[1/p].
Then we shall abbreviate by &/ the ring
Ay =A[1/p]l~ o« @ K.
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16. Gauss Sums and the Artin—Schreier Curve

For each a € Z(p) we suppose given a unit E, € o such that E, is an eigen-
vector for G(p) with eigenvalue Y ,(x). The family of units ¢,E.(y) forms
one example, but there is another, equally natural, namely the family of units

E(y) withi=0,...,p— 1.

Since E,(y) has eigenvalue Y (1), it follows that E,(y)' has eigenvalue ,(1)".

Theorem 2.3. We have the eigenspace decomposition

A= @ E, R{x)x

aeZ(p)

or also
-1
Ay = REYx @ 'f@lE,,(y)‘R«x»x.

Proof. Note that o/ is free of dimension p over R{x»x. Each eigenvector
provides for a one-dimensional subspace, and hence their sum (necessarily
direct) is the whole space /.

The fact that R{x)) is the fixed subring of G(p) implies that the eigenspace
for the trivial character is precisely

RExDk-
Recall that not only G(p) acts on & but also G(N), and so the group

G = G(p) x G(N).

A character of G(N) can be viewed as y; with0 < j < N — 1, and y; is non-
trivial ifand only if 1 <j < N — 1.

Theorem2.4. Let0 <i<p-—1and0<j< N — 1. Then
oA (Wi, X)) = ¥E) RN Y.

Proof. Obvious from Lemma 2.1 and Lemma 2.2, and the fact that E,(y)
is fixed under G(N).

Remark. The use of the Dwork power series E,(X) to obtain eigenspace
decompositions on spaces associated with the Artin-Schreier curve is due to
Monsky, cf. [Dw 5], last section of the paper.
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§3. Washnitzer-Monsky Cohomology

Cohomology of differential forms with growth conditions on the coefficients
was considered long ago by Dwork [Dw 1], [Dw 2]. The particular co-
homology considered here is due to Washnitzer-Monsky [Wa-M], [M 1],
[M 2], following the work of Dwork.

The K-algebra o/ is finite separable over R{x)x. We have the ordinary
differentiation d/dx on the power series in x. This differentiation extends in a
unique way to &/, because from the relation f(x, y) = 0 with coefficients
in R, we get

D, f(x,y)dx + D; f(x, y)dy = 0,

SO

_le(x’y)d

V=D, i ™

Here, if z € o/ then dz denotes the functional on derivations arising from
the pairing
(z, D)+ Dz.

Since we are dealing with a special curve, we know that D, f(x, y) is invertible
in &/. Consequently the above formula expressing dy in terms of dx is valid
over . (For an elementary discussion of the foundations of the theory of
derivations, cf. my Algebra, Chapter X, §7.)

We let

Q) = A dx and QUsty) = Q) = of g dx

be the spaces of 1-forms. We let the Washnitzer-Monsky cohomology group
be

Hi(of) = H'(g) = Qg/d .

Note that the differential d acts like 0 on K, so

d(cz) =cdz forze s, cek.

We are interested in the eigenspace decomposition of Hj(s#) with respect to
G = G(p) x G(N). We note that the differential

dx

X
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16. Gauss Sums and the Artin-Schreier Curve

is invariant under G. The theorems of the last section give an eigenspace
decomposition into three pieces:

p-1 p—1 N-1
A = R{xDx @ @E,(y)‘R((x" 2@ @ F(-Bl E,(0)x'R¢x" Y.

These three pieces correspond to:

(i) trivial action by G(p);
(ii) trivial action by G(N);
(iii) direct sum of o x(/%, x;) with both ¥ and x ; non-trivial.

In abbreviated notation, this direct sum can be written

Ay = AP @ dﬁ%’ ® @&’K(l[’, b4
vEL

x#1
where 5% is the second piece in the above direct sum. Note that
AZP N AFN = REXV Yy,

whence the need for a subdivision of #™ into two smaller subspaces to
be able to write the direct sum as above.
We now want a similar decomposition for Q.

Lemma 3.1. We have:

(i) Q8P = R¢xYg dx = SEP dx;

@) O™ = #Z Z n 0

(iii) for non-trivial Y, x we have
dx
QK('/I’ X) = MK(W* X) ;_‘
Proof. Write a differential form as
p—1
_Zog;(X)y‘ dx.

Invariance under G(p) implies that g; = 0if i > 1, and conversely, so (i) is
clear. If { is a primitive N-th root of unity, then d({x) = {dx. Hence invariance
under G(N) implies that

{gi({x) = gi(x) fori=0,...,p—1,
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§3. Washnitzer-Monsky Cohomology

or equivalently
g{x) = {7 'gix).

If N = 1 then assertion (ii) is clear. If N > 1, then this last relation implies
that g,(x) has no constant term, and that in the power series expansion, all
terms are zero except those involving x" with n = — 1 (mod N). Then (ii) is
also clear in this case. For (iii), we write an element of Qg(y, x) in the form
dx
g(x, y)—

with g(x, y) € . Since dx/x is invariant under G. it follows that

g(x, y) € (¥, %),
and g(x, y) is divisible by x because j > 1if y = x;, so the lemma is proved.
Lemma 3.2. The differential operator d maps:
d: LGP - QP
d: AN - QSN

& D) > A 0D = QD) ford 2 Ly A1,

Proof. The first inclusion is clear. For the other two, we have

dE.(y)
E.(y)

Since ¢ — d¢/¢ is homomorphic, we get

= d(ny — ny?) = d(—nx") = —aNx "1 dx.

dE(y)' _

. dx
(l) E,,(y)’ = -meN —x'

Using the rule for the derivative of a product, we then also easily find for
any ¢(x) € R¢x»:

o . dx
#)) d(E()x'p(x")) = E(yyx!(D;,; p)(x")N =
where D; ; is the differential operator on a power series ¢(x) given by
d . J
Dj,,' —Xd—x— Imx +N

133



16. Gauss Sums and the Artin—Schreier Curve

We shall work with i = 1, and we thus let

d J
D,-=xz)—c—1zx+ﬁ.

This proves the lemma, and in addition gives explicit formulas for the
differentials, summarized by the following commutative diagram.

R¢xYx — XE(y)RExV Yk

v, l ld

RExpx — PEREN Y 2

The horizontal map on top sends
@(x) = XE(n)e(x"),
and similarly on the bottom, with dx/x on the right-hand side.
Recall from Theorem 2.4 that for 1 <j < N — 1, we have
A x(Wx, 1) = YEL)REx Y.
Theorem 3.3.

(i) Fory # 1 and y # 1 we have

ot 0 = ot 1 st 0.
(i) For1 <j < N — 1, we have an isomorphism
RCIW/DIRCx > H'(l, 1)
given by
P FE()ot)

Proof. The first assertion is clear from Lemma 3.2. The second comes
from the above diagram and Lemma 3.2.
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§4. The Frobenius Endomorphism

The affine ring Z[x, y] has a natural embedding in the power series ring,

Z[x, y] - Z[[x]],

mapping y on a uniquely determined power series y = h(x), such that
h(0) = 0. We have already mentioned this formal solution, and the fact that

h(x) = —xN 4+ ---.

Since f(Y) is irreducible over R¢x} and its quotient field (for instance
by the Galois theory), the root h(x) of f(Y) in R[[x]] gives rise to the em-
bedding

& = R{x)[y] = RI[x]],
sending y on h(x). This gives rise to a natural homomorphism
H'(s ) — H'(R[[x]]x)

Ay dx/dsdx  R[[x]]k dx/dR[[x]]k-
Theorem 3.4. We have an isomorphism
HY(A )W, x) > Hj,
where H; , is the representation space of the last chapter.

Proof. Clear from Theorem 3.3.

§4. The Frobenius Endomorphism

If ¢ is a lifting of a morphism ¢, of special varieties, then we let o* = H(¢)
be the induced homomorphism on the cohomology groups. It can be shown
that ¢* is independent of the lifting, but we shall not need this here.

We shall deal especially with automorphisms of the Artin—Schreier curve

6 = (0,,0;) withae Z(p)and { € py.

Such 6 € G = G(p) x G(N) is an automorphism of &/ = R{x)[y]. We
have

o* = (o3, of).
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16. Gauss Sums and the Artin-Schreier Curve

We also have the Frobenius endomorphism
Fo: ol o(Vo) = o o(Vo)

such that Fy(x, yo) = (x?, y§) in characteristic p. By Lemma 1.6 we know
that it can be lifted uniquely to an endomorphism

F:o -+ o suchthat F(x) = x?,

extending by K-linearity to an endomorphism of <.
In characteristic p, that is on V,, we obviously have

1 Fo(0,,0;) = (d,,0f)° F.
Indeed, in characteristic p, (¢,, 6)(x, yo) = ({x, yo + @), s0

Fy o (04, 00)(x, yo) = ("%, yo + o)
= ({PxP, ¥§ + )
= (04, F)(x", ¥")
= (0,, 0’5) ° Fo(x9 YO)

The commutation rule in characteristic zero follows by the uniqueness
of liftings of homomorphisms when the x-value is prescribed.
From (1) we get on the cohomology

1* (04, 0)* o F* = F* o (0, of)*.
In particular, on an eigenspace we find that for ¢ # 1, x # 1,
F*: Hx(, x) = Hx(¥, x°)-

Now we wish to see what happens to the Frobenius endomorphism under
the embedding of & in R[[x]]. Mutatis mutandis, we know that h(x?) is
the unique solution in power series with zero constant term of the equation

TP — T = xPN.

Theorem 3.4 now shows that the representation of F* on the distinguished
elements

YE0) 2
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§4. The Frobenius Endomorphism

corresponds to the representation on the elements
dx
x! exp(—nxN) <

arising from the last chapter. Thus we find:

Theorem 4.1. The eigenvalue of Fy on H'(A, )Y, X;) is the same as the
eigenvalue of ®F on H; ..
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Gauss Sums as Distributions

The Stickelberger theorem giving the factorization of Gauss sums, the Gross—
Koblitz formula, and the Davenport-Hasse distribution relations will
be combined to interpret Gauss sums as universal odd distributions
(Yamamoto’s theorem).

On the other hand, Diamond [Di 1] and Morita [Mo] gave a value of
L0, x) in terms of the p-adic gamma function. Ferrero-Greenberg gave a
variation of Diamond’s formula, and used it to show that L0, x) # 0
under the appropriate conditions. The value L}(0, x) is essentially the gener-
ator for the x-eigenspace of the Stickelberger distribution, but the proof of the
non-vanishing requires the analogue of Baker’s theorem (Brumer in the p-adic
case), as in the proof of the non-vanishing of the p-adic regulator of cyclotomic
fields. This is combined with the linear algebra of distribution relations,
especially in the composite case. Cf. Kubert-Lang [KL 5].

The formula for Ly(0, x) will be derived by an elegant method of
Washington [Wa 3], who gives the p-adic analogue of the partial zeta
functions. Over the complex numbers, the coefficients in the expansion at
s = 1 are themselves interesting functions (of gamma type), which appear
thus in a natural way as homomorphic images of the partial zeta distributions.
The same thing happens in the p-adic case.

§1. The Universal Distribution

We assume that the reader is acquainted with Chapter 2, §8, §9, §10. In
particular, suppose that N > 1 is an integer. Let (Q/Z)y = (1/N)Z/Z,
and let

9:(Q/Z)y—~ 4
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§1. The Universal Distribution

be a function into some abelian group A. Such a function is called an ordinary
distribution—distribution for short—if it satisfies the condition

M-1 i
Py g(x + M) = g(MXx)
for every divisor M of N, and all x € (Q/Z)y.
We let F(N) be the free abelian group generated by (Q/Z)y. We let

DR(N) be the subgroup of distribution relations, that is, the subgroup
generated by the elements of the form

M-1 .
Y (x + ﬁ) — (Mx), forall M|N.
i=0

We let U(N) = F(N)/DR(N) be the factor group, which we call the universal
distribution of level N. The natural map

(Q/Z)y — U(N)
is then universal for distributions into abelian groups in the obvious sense.

Given a distribution g on (Q/Z)y, there exists a unique homomorphism g,
making the diagram commutative:

U(N)
-
(Q/Z)x l”'
™~

Kubert’s theorem (Chapter 2, Theorem 9.2) asserts that U(N) is free on
¢(N) generators.

Theorem 1.1. Let g be a distribution as above. Let K be a field of character-
istic 0. Assume that the distribution obtained by following g with the natural
homomorphism

A-A®K

has K-rank ¢(N), in the sense that the dimension of the vector space gener-
ated by the image of (Q/Z)y has dimension ¢(N). Then g is the universal
distribution.

Proof. The rank of the image is at most ¢(N). If the vector space generated
by the image has that rank, then the Kubert generators must remain free
under g and the tensor product, so they must be linearly independent over Z
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17.. Gauss Sums as Distributions

in the abelian group generated by g((Q/Z)y). Hence the canonical homo-
morphism from the universal distribution to g must be an isomorphism,
as was to be shown.

Let
G(N) =~ Z(N)*

be a group isomorphic to Z(N)*, the isomorphism being denoted by
o, C.

We think of G(N) as the Galois group of Q(uy) over Q. Let A be an ordinary
distribution, and let as before the Stickelberger distribution associated with 4
be defined by

Sty(x) = St(x) = Y, h(xc)o; .

ce Z(N)*

If x is a character of G(N) with conductor m, we define

SOt h) = Sp(tms hw) = Y, 2()h(c/m).

ceZ(m)*

In fact, Theorem 1.1 can be made more precise, and again in Chapter 2,
§8 we proved the following facts. Let M| N, and let x be a character of G(N).
Let

1 _
€y = WN_)I Z x(c)o.

be the usual idempotent projecting on the x-eigenspace.

ST 1. If cond x does not divide M, then

1
Sth (ﬁ) €y = 0.

ST 2. If cond g divides M and has the same prime factors as M, then

1y 1G] .
Sth(ﬁ)ex = IG(M)l S(x, h)el.

ST 3. If cond  divides M, and we let m = cond %, then

1), _ leml _
Sth(ﬁ) = IG(M)| H(l IP)S(, h)e,-
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§1. The Universal Distribution

An arbitrary value St,(a/M) for a prime to M comes from the formula

a 1
(i) = (o)

so such values do not contain essentially more information on the image of
the Stickelberger distribution than the normalized values St,(1/M). We
suppose that h takes its values in an algebraically closed field K of character-
istic 0, which in the applications is C or C, for some prime p. It would suffice
to suppose that h takes values in a field containing enough roots of unity, but
we can always extend scalars and still be able to use Theorem 1.1. The
element S(y, h) is then an element of K.

Theorem 1.2. Let h be a distribution with values in K. Let V be the vector
space generated by the image of the Stickelberger distribution. Then
e, Vis generated by the single element S(X, h), and in particular has dimension
0 or 1 according as that element is 0 or # 0.

Proof. The proof of Theorem 8.2 in Chapter 2 in fact proves the statement
as given here, although we stated previously only the corresponding di-
mension property.

Corollary. If S(i, h) # 0 for all x, then St, is universal.

Proof. This follows just like Theorem 1.1, but we don’t even need to tensor
with K since the values of the distribution h are already in K, and the values
of the Stickelberger distribution are already in a vector space over K.

A distribution h is called odd or even according as
h(—x) = —h(x) or h(—x)= h(x).

From now on we restrict ourselves to distributions whose values are in
abelian groups without 2-torsion. This condition will not be repeated. Such
a group may then be embedded in a group where multiplication by 2 is
invertible. When that is the case, any distribution is uniquely expressible as
an even distribution plus an odd distribution, in the usual manner.

Theorem 1.1 then remains valid for odd (respectively even) universal
distributions, except that the rank is then ¢(N)/2for N > 3, which we assume.

Likewise, in Theorem 1.2, if h is, say, an odd distribution, then St, is also
odd, and is universal odd if S(¥, h) # 0 for all odd characters .

Example. Let

h(x) = B,({x)) ifx # 0
h(0) = 0.
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We call 4 the first Bernoulli distribution. As we saw in Chapter 2, Theorem 8.3,
its associated Stickelberger distribution is the universal odd distribution.
This comes back to the fact that

By, =5S(h#0

for odd characters y.

§2. The Gauss Sums as Universal Distributions

In Chapter 2, §10 we already gave the Davenport-Hasse distribution relation.
Another proof of this relation follows from the Gross-Koblitz formula, and
is left as an exercise for the reader. Here we are concerned with showing to
what extent the Gauss sums give the universal odd distribution.

We let h(x) be the first Bernoulli distribution as mentioned at the end of
the last section. We pick N = g — 1 where g = p’ for some odd prime p, and
we have by definition

St(x) = Y h(xc)s; 1.

The sum is taken for c € Z(g — 1)*. Write

Define
g(x) = /(0.

Stickelberger’s theorem gives the ideal factorization of g(x), namely by
Theorem 2.2 of Chapter 1, we know that

(g() = p™*.

It is convenient typographically and otherwise to write this formally
additively, and thus we call

St(x) - p
the associated divisor of g(x). We view at first

9:(Q/Z),-, - C;
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§2. The Gauss Sums as Universal Distributions

as a map into the multiplicative group of p-adic complex numbers. The
distribution relation is then satisfied only with fudge factors. To get rid of
them, we let

P = {u, p'/*} be the group generated by all roots of
unity and fractional powers of p.

We call P the pure group (with respect to the prime p). We may then compose
g with the canonical homomorphism C} — C}/P to obtain a map

gP:(Q/Z)q-l - C:/P

into the factor group, which is a distribution by the Davenport-Hasse
relation. We call gp the Davenport-Hasse or Gauss sum distribution. Note that
C3/P is uniquely divisible by 2. Recall that the p-adic logarithm has kernel
equal precisely to the pure group P. Consequently we have a natural iso-
morphism of distributions

GSD 1. gp =~ log, g.

The map
St(x) +— St(x)- p

is a homomorphism of the Stickelberger distribution (which we know is
universal odd). The decomposition group D, of p consists of the powers of
p mod N. If we let G(N) = Z(N)* under the notation

ar o,

then the values of the homomorphic image above can be viewed as lying
in the group ring

QLG(N)/D,],

and

r—1
Styx)mod D, = Y, ( Y h(p"xc))a: 1

ce Z(N)*/D, \i=0

Lemma 2.1. Let {m(x)} be a family of integers and let
@ = [T gCxy™.

Then a is pure if and only if div o = 0, and in that case o. is a root of unity.
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Proof. The absolute value of g(x) in the complex numbers is 1. Hence
|a] = 1. If a is pure, this implies that « is a root of unity. Conversely, assume
that diva = 0, so a is a unit. The conjugates of g(x) also have absolute value 1
(themselves being of the same form as g(x)), and it is standard that a unit all
of whose conjugates have absolute value 1 must be a root of unity. This proves
the lemma.

From the lemma, it follows that we have an isomorphism

GSD 2. gp = Stymod D,,.

Note. Factoring out by D, corresponds to the obvious classical fact
that the Gauss sums satisfy the relation

() = =(x),
cf. Chapter 1, GS 4. In the present notation, this is written
g9(x) = g(px).

Let y be an odd character of conductor d prime to p. Since the Gauss
sum distribution is also odd, it follows that the function

a+ x(a) log, g(g)

is even, for a € Z(d)*. Hence the function is defined on Z(d)*/+ 1.

Theorem 2.2 (Ferrero—Greenberg). Let x be an odd character of conductor
d. Assume that x(p) = 1. Then

Y x(a)log, g(g) #0.

ae Z(d)*

The proof will be based on the following lemma.

Lemma 2.3. There exists a family of integers {m(d’)}, for divisors d’ of
d,d’ # d, having the following property. Let

&= St,,G) + ;"’(dl) St,,(%).
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§2. The Gauss Sums as Universal Distributions
Let R be a set of representatives for cosets of the group generated by D,
and +1 in Z(d)*. Then the elements
6,¢, aeR
are linearly independent over Q as elements of QLG(N)/D,].
Proof. As in Theorem 1.2 we look at the y-eigenspace for odd characters
¥ such that Y(p) = 1 and cond ¥ divides d. It suffices to prove that we can
choose the family {m(d’)} such that

le, # 0 forall Y.

First we know from ST 2 that if cond ¥ = d then

1
Sth (2) e,‘, # 0

because B, , # 0. Letd, > d, > --- be the other divisors of d, unequal to d.
Pick a sequence of integers m; < m, < - -- which is rapidly increasing. Then
for any ¥ we have

1

1
Sth(z)e,‘, + ;mi Sth(z)e,‘, # 0.

Indeed, suppose d, is the conductor of y. By ST 1 we conclude that the i-th
term in the sum is 0 if i > s. By ST 2 and the fact that B, , # 0 we know that

1
St,,(d—,)ew #0.

If the sequence is selected increasing sufficiently fast, then this s-term
dominates in the sum, which is therefore also not equal to 0, thus proving
the lemma.

We return to Theorem 2.2. Let

1 1 m(d’)
«=43) (@)™

with the family {m(d')} chosen as in the lemma. By GSD 1, GSD 2 we con-
clude that the elements

log, o, withae R
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17. Gauss Sums as Distributions

are linearly independent over the rational numbers. By Baker’s theorem
(in the p-adic case, Brumer) it follows that they are linearly independent over
the algebraic numbers. Therefore

0% Y  xa)loglo.®) =Y xa) 1og,,g(5),

ae Z@(Dp, 11} d

because
Y. x(a) log, g(%) =0

for each d' # d since the conductor of x is d. This concludes the proof of
Theorem 2.2.

§3. The L-function at s = 0

Let d be a positive integer prime to p (where p is an odd prime). Let x be a
primitive even Dirichlet character with conductor d or dp. We take the values
of x to be in C,. We let @ = w,, be the Teichmuller character, and we define

Xn = Y@~ "

We know that

1
L1 = n) = —(1 = x(PIP"™") > By, .-

For n = 1, we obtain
L,0,0) = —(1 = x1(P)By, 4,
Since x, is odd, we know that B, , # 0. Hence:
L,0,x) =0 ifandonlyif x,(p)=1.
The next formula is a slight variation of a formula of Diamond [Di],
but expressed in terms of the p-adic gamma function itself by Ferrero-

Greenberg [Fe-Gr].

Theorem 3.1. Let x be an even character such that x; has conductor d.
Then

d
L,0,0) = =lel(0) log, rp<§) + (1 = 21(P))By, ;, log,(d).
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§3. The L-functionats =0

We shall prove this formula in §4. Here we derive consequences. Indeed,
the next theorem amounts to a p-adic analogue of Stark’s conjectures in a
special case. Considerably more insight in this direction was provided by
Gross [Gr].

As in the preceding section, let x = a/(q — 1) and let

_1\-1
o) = T@;,  g0x) = ¢(x)¢(4_2_‘) .

The formula of Theorem 3.1 involves the log of an analytic expression (the
gamma function). We shall transform it so that it involves the log of an
algebraic expression (a Gauss sum).

Theorem 3.2. Let x be an even character such that y, has conductor d and

such that x,(p) = 1. Let D, be the subgroup of Z(d)* generated by the
powers of p. Then

LON= ¥ 1l g(g) #0.

ce Z(d)*/Dp

Proof. By assumption the formula of Theorem 3.1 simplifies to
d (4
L;(O, x)= z x1(c) Ing rp(ﬁ)
c=1

Let d|(q — 1), g = p" where r is the period of p mod d. Let G = Z(qg — 1)*.
Then y, is defined modulo D, by assumption. Since

T, —z2) = +1,

it follows at once from the Gross-Koblitz formula that

log, o(x) = _Zl log, T,(<p'x).

In particular,

log, ¢(px) = log, ¢(x).

The sum over ¢ = 1, ..., d in the formula for L,(0, x) is then written in the
form

r—1 i
Y xi(@)) log, Fp(<%>) = Y x()log, g(df)
i=0

c € Z(d)*/Dp ce Z(d)*/Dp
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17. Gauss Sums as Distributions

where

—1\-1
g(x) = <p(x)¢(g—2—l)

is the odd distribution of the preceding section. That L,(0, ) # 0 is then the
main result of §2.

§4. The p-adic Partial Zeta Function

In the complex case, the Hankel transform gives an analytic continuation
of the partial zeta function to the whole plane. In the p-adic case, we shall
give an analogue of this partial zeta function due to Washington [Wa 3],
who also pointed out to me that his formula for the p-adic L-function im-
mediately gives the value of the derivative at s = 0 in terms of the gamma-
type functions.

Let x e C} be such that x™' = Omod m,. Let se Z,. We define the
Hurwitz-Washington function

H(s, x) = i (1 ]_ s)x"B,-,

i=0

where B, is the j-th Bernoulli number. Since the Bernoulli numbers have
bounded denominator at p (Kummer and von Staudt congruences), it is
easily shown that H(s, x) is holomorphic for s € Z,. For an integer k > 1,
we find

H1 H(1 — k, x) = x~*By(x),

where B, is the k-th Bernoulli polynomial. This is immediate from the value
of this polynomial,

k
B - 3 (()xs,
j=o \J
which comes directly from the definitions in terms of the generating power

series, product of ¢’ and t/(e' — 1).
Let N be a positive integer divisible by p. For a € o} we therefore obtain

— ) N R (2
H(l k’N) N-a B,,(N).
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§4. The p-adic Partial Zeta Function

H 2. If f is a function on Z(N), then

lN 1
N Zf(a)a"H( N)=Bk,f—pk—lBk.fop

pta

where (f > p)(x) = f(px) and

B, =Ny f(@B (<i>)
v S k N/

This is immediate by taking the sum over alla =0, ..., N — 1 and sub-
tracting the sum over a = py, with 0 < y < (N/p) — 1. It is convenient to
use the following notation. Put

M,f(x) = f(px), fi=fo"

Then H 2 can be written in the form

1Nt a k-1
us. L zf(a)<a> ) = [0 - P My dE.

ph

The formula expresses the Bernoulli distribution in terms of H, giving the
possibility of analytic continuation.

If x is a Dirichlet character whose conductor divides N, then the preceding
formula reads

Z (a)<a>',‘.H(1 —k, %) =1 — (PP "By,

a=
p!

We now define the Hurwitz-Washington function in three variables,

Hsi 0. W) = = 2 <oy (s )

for aeZ}, seZ,, and N equal to a positive integer divisible by p. Then
H(s; a, N) is again holomorphic in s except at s = 1. It is the p-adic partial
zeta function, cf. [Wa 3].

One could take the relation of the next theorem as the definition of the
p-adic L-function, and thus make the present chapter independent of
Chapter 12.
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17. Gauss Sums as Distributions

Theorem 4.1. Let x be a Dirichlet character, and let N be any multiple
of the conductor of y such that N is divisible by p. Then

N-1
Lys,x) = gl 1(@H(s; a, N).

pta

Proof. The left-hand side and the right-hand side have the same values
at the negative integers, which are dense in Z,, and they are both holo-
morphic, hence they coincide.

We are here concerned with finding L,(0, ). That we are dealing with
a character y is basically irrelevant, and so for any function on Z(N) we now
define
N-1
Ly, f) = X f(@H(s;a,N).
a=

1
pta

In finding the expansion at s = 0, we shall meet the Diamond function
defined by the formula

o0
BJ' 1-j

Gp(x) = (x - %) lng(X) -x+ & ](J — 1) X s

cf. [Di 1]. This formula arises from the asymptotic expansion of the classical
complex log gamma function. It converges p-adically for [x| > 1, so G,(x)
is defined in that domain. We shall analyze later the relation between the
Diamond function and the gamma function.

Theorem 4.2. Let p # 2. Let N be a positive integer divisible by p and let f
be a function on Z(N). Then

N-1 N-1
LoN=3 fl(a)G,(%) + L fl(a)&(%) log,(N).
pta pta

If f = x is a Dirichlet character, then

N-1
Loo= % xl(a)c,(ﬁ) + (1 = 12(p)Bs, 5, log, (V).

pta
Proof. The desired result is an immediate consequence of the next lemma.
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§4. The p-adic Partial Zeta Function

Lemma 4.3. Let |a| > 1/pand let N be a positive integer divisible by p. Then
the coefficient of s in H(s; a, N) is equal to

w(a)~'G ( ) + w(a)"Bl( )log,,(N)

Proof. We have the expansions:

1—_1_—s-= 14+s+-
(a)'™* =<a)(l — slog,a) +--°)

l—s) (=y-* 1y-!
J 1(1—1)

Using the fact that B; = 0 for j odd, j > 1, we find that the coefficient of s
in H(s; a, N) is
5]

—_ <I‘:I'> [ — log,(a) + = log,(a) ( )
a
4 \N - 1)

BPWARTANE
+ (ﬁ - E) log,(N)]

= w(a)~'G ( ) + w(a)” (ﬁ - 5) log,(N).

If j>2, (

This proves the lemma.

Remark. In [Di 2], Diamond discusses the regularization of his function,
giving rise to certain measures which are then related to the Bernoulli
measures. See also Koblitz [Ko 1]. In the classical case, gamma-type
functions appear as coefficients of partial zeta functions (Hurwitz functions),
and we meet a similar phenomenon here.

Next, we derive some functional equations. First, for the Washington
function, we get for p odd:

HS. H(s;a, N) = H(s; N — a, N).

Proof. It suffices to prove the formula when s = 1 — k, k > 2 such that
k=0 mod p — 1, because such integers are dense in Z,. But then the
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17. Gauss Sums as Distributions

formula is immediate from the fact that k is even (p is assumed odd), and the
property

B,(1 — X) = (= 1)'By(X),

which follows directly from the generating function for Bernoulli poly-
nomials.

Washington has also pointed out that one can give elegant proofs for
the following properties of the Diamond function by using the formalism
of the H-function. We assume p odd.

G, 1. G,(1 —x)+ Gy(x)=0.

Proof. In Lemma 4.3 we found the coefficient of s in H(s; a, N). Using H S,
and replacing a by N — a in this coefficient, we now see that

of)ofi-5)-s

This is true for any positive integer N divisible by p, and any p-unit a, thus
proving the formula.

G,2. G(—x) + G,(x) = —log,(x).
Proof. Immediate from the power series expansion.
G,3. G(1 + x) — G,(x) = log,(x).
Proof. Immediate from the preceding two properties.

Theorem 4.4. Extend G,(x) to Q, by putting G,(x) =0 if x€Z,. Then
for all x € Z, we have

P [x+b
Y G,,( ) = log, I',(x).
b=0 p
Proof. Both sides are continuous and satisfy the functional equation
f(x + 1) = f(x) + é(x)log, x,
where 6(x) = 0 if x = 0 mod p, and &(x) = 1 otherwise. This is true for
log, I' () directly from the definition of I',,, and is true for the other side by

G, 3. Hence the two functions differ by a constant. Putting x = 0 gives 0
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§4. The p-adic Partial Zeta Function

on the right-hand side. By G, 1 we conclude that the left-hand side is also
equal to 0. This proves the theorem.

Theorem 4.5. Let x be a Dirichlet character such that the conductor d of
X is not divisible by p. Then

d

-1
L0.0 = L1 log, r(g) + (1= 12(P)B, 5, og,(d)

Proof. Let N = pd. In Theorem 4.2, write
a=c+ bd

withl1 <c<d—-1and0 < b < p — 1. Then x,(a) = x,(c). If a is divisible
by pthena/N € Z,, so that G(a/N) = 0in Theorem 4.4. The desired formula
is then a direct consequence of Theorem 4.2 combined with the relation of
Theorem 4.4, and the fact that log,(p) = 0.

The formula of Theorem 4.2 is due to Diamond. The argument used to
derive the variation in Theorem 4.5 is in Ferrero-Greenberg [Fe-Gr].
For the record, we state the distribution relation for the Diamond function.

G, 4. For any positive integer m and | x| > 1, we have

"l [(x+a
ZOG,( ~ ) = G,(x) — (x — §) log,(m).
In particular, if m = p" is a power of p, then:
pr—1
G,5. 5 G,,("p#) = G,(x).
a=0

This is a special case of G, 4 because log,(p) = 0. The proof of G, 4 can easily
be given following a similar argument to that of Theorem 4.4, using the
analyticity of G,(x) for |x| > 1. Our intent was to deal mostly with the
cyclotomic applications, and we don’t go into a systematic treatment of these
p-adic functions.
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