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Preface to the Second Edition

The present edition differs from the first in several places. In particular
our treatment of polycyclic and locally polycyclic groups—the most natural
generalizations of the classical concept of a finite soluble group—has been
expanded.

We thank Ju. M. Goréakov, V. A. Curkin and V. P. Sunkov for many
useful remarks.

The Authors
Novosibirsk,
Akademgorodok,
January 14, 1976.






Preface to the First Edition

This book consists of notes from lectures given by the authors at Novosi-
birsk University from 1968 to 1970. Our intention was to set forth just the
fundamentals of group theory, avoiding excessive detail and skirting the
quagmire of generalizations (however a few generalizations are nonetheless
considered—see the last sections of Chapters 6 and 7). We hope that the
student desiring to work in the theory of groups, having become acquainted
with its fundamentals from these notes, will quickly be able to proceed to the
specialist literature on his chosen topic.

We have striven not to cross the boundary between abstract and scholastic
group theory, elucidating difficult concepts by means of simple examples
wherever possible. Four types of examples accompany the theory: numbers
under addition, numbers under multiplication, permutations, and matrices.
For understanding the basic text, knowledge gained from a general course in
algebra will suffice; more special facts are used at times in the examples. The
examples and exercises are in part used in the basic text, so that a reading of
their statements should not be omitted, nor their solution postponed for too
long. Solutions are included with some of these exercises. We were guided in
our nomenclature by the principle of a reasonable minimum of basic terms,
which required small departures from the prevailing terminology—these are
noted at the appropriate places in the text.

The bibliography contains mostly group-theoretical surveys and mono-
graphs. A few references to journal articles are given immediately in the text
and in general are rather random (a complete bibliography of group theory
would have several thousand entries).

In a few places unsolved problems are mentioned. A rather complete
collection of such problems, reflecting the interests of a wide circle of
specialists in group theory, can be found in the latest edition of the
“Kourovka Notebook”’.



viii Preface to the First Edition

The first version of this book was published in Issues 3 and 4 of the
duplicated series “Library of the Department of Algebra and Mathematical
Logic of NGU”. We offer heartfelt thanks to all who communicated their
observations to us, in particular to Ju. E. Vapne, V. D. Marzurov, V. N.
Remeslennikov, N. S. Romanovskii, A. I. Starostin, S. N. Cernikov, and V.
A. Curkin.

The Authors
Novosibirsk,
Akademgorodok,
February 3, 1971

Translator’s Remarks

1. In his paper [Infinite groups with cyclic subgroups. Doklady Akad.
Nauk SSSR 245, No. 4 (1979)] A. Ju. Ol’'S§anskii has announced a con-
struction of an infinite 2-generator group all of whose proper subgroups are
cyclic of prime order (where the set of primes occurring as orders is infinite).
This solves at one blow Smidt’s problem (p. 14), the maximal problem
(p. 137), and the minimal problem (p. 139). (Ol’Sanskii has also constructed
a nonabelian 2-generator group, all of whose proper subgroups are infinite
cyclic.) The details will appear soon in Izestija Akad. Nauk SSSR.

2. It may be useful to explain the various notations for functions (or maps)
used in the text. Let S denote a set, s an element of it, and ¢ a map with
domain S. The “exponential’”’ notation S® s? for the images of S, s, is used
only when S is being considered as a multiplicatively written group, and ¢ is
a homomorphism. If S is an additive group, the notation S¢, s¢ is used
instead. If ¢ is not primarily a group homomorphism, then the notations S¢,
s¢; &(S), ¢(s), are used variously.

In the Russian editions the authors had introduced improvements to the

conventional terminology. Unfortunately, this went almost unnoticed by the
translator, so that the English terminology used is more standard. There may
however be some point in mentioning a few of the authors’ original terms:
thus, for example, they used “period” for ‘“‘exponent’, ‘“‘automorphically
invariant” for ‘characteristic’’, and a single word (meaning ‘step”) for
“class” (of nilpotency) and “length’’ (of solubility).
3. Itake the opportunity of thanking Janis Leach for her excellent typing,
and Maxine Burns and Abe Shenitzer for their kind advice and encourage-
ment. Support from the National Research Council of Canada is also
gratefully acknowledged.

R. G. Burns,
York University,
Toronto,
August 10, 1979
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Introduction

Why does a square seem to us a symmetrical figure, a circle even more
symmetrical, but the numeral “‘4’’ completely asymmetrical? To answer this
question, let us consider the motions leaving each of these figures in the same
place as before. It is easy to see that for the square there are eight such
motions, for the circle infinitely many, but for the numeral “‘4”’ only one, the
identity, which leaves each point of the numeral fixed. The set G of different
motions leaving a given figure occupying the same space as before serves as a
measure of its degree of symmetry: the more numerous the elements of G,
i.e. the motions, the more symmetrical the figure. We define on the set G a
rule of composition of its elements (or “‘operation”’) as follows: if x, y are two
motions from G, then the result of composing them (called their ‘“‘product”
and written xy) is defined to be the motion equivalent to the successive
application first of the motion x and then of the motion y. For example if x, y
are the reflections of a square in its diagonals, then xy is the rotation about its
centre through 180°. This composition of the elements of G clearly has the
following properties: (1) (xy)z = x(yz) for all elements x, y, z from G; (2)
there exists in G an element e such that xe = ex = x for all x from G; (3) for
each x from G there exists an element x ' in G suchthatxx '=x"'x =e.In
fact it is obvious that for e we may take the identical (or “trivial”’) motion,
and for x ' the motion opposite to x, i.e. returning each point of the figure
from its new position to its old one.

Let us now leave aside our examples and consider an arbitrary set G on
which an operation is given; i.e. for each two elements x, y in G there is
defined an element xy again in G. If this operation satisfies conditions (1),
(2), (3), then the set G with the given operation is called a group. Groups are
basic among algebraic systems, and the theory of groups is basic among the
various subdisciplines of modern algebra.

xiii



Xiv Introduction

It required the work of several generations of mathematicians, spanning
in all about a hundred years, before the concept of a group had crystallized
out with its present clarity. In the context of the theory of algebraic
equations the course of development of the group concept can be traced
from Lagrange, who, in essence, applied groups of permutations to the
solution of algebraic equations by /radicals (1771), through the work of
Ruffini (1799) and Abel (1824), to Evariste Galois, in whose work (1830)
the group concept is used quite explicitly (it was he who first used the name).
Independently, and for other reasons, the group concept made its
appearance in geometry when in the mid-19th century the single geometry
of antiquity gave way to a multitude of geometries, and the question arose of
establishing the relationships between these new geometries and of classify-
ing them. The answer was provided by the Erlanger Programm of Klein
(1872), which proposed the idea of a group of transformations as the basis
for a classification of geometries. A third source of the group concept was
number theory; here among the instigators we mention only Euler, with his
remainders (or “‘residues’’) after division of powers (1761), and Gauss with
his composition of binary quadratic forms (1801).

The realization at the end of the 19th century that the group-theoretical
ideas existing up till then independently in various areas of mathematics
were essentially the same, led to the formation of the modern abstract
concept of a group (by Lie, von Dyck, and others), and so to one of the
earliest instances of an abstract algebraic system. This abstract group
concept served in many ways as a model for the reworking, at the turn of the
century, of other areas of algebra, and of mathematics generally: for these
areas the process was then not so tortuous or difficult. The study of groups
without the assumption of finiteness, and entirely without assumptions as to
the nature of their elements, was formally inaugurated as an independent
branch of mathematics with the appearance in 1916 of O. Ju. Smidt’s book
“The Abstract Theory of Groups”.

At the present time, group theory is one of the most highly developed
branches of algebra, with numerous applications both within mathematics
and beyond its boundaries: for instance to topology, function theory,
crystallography, quantum mechanics, among other areas of mathematics
and the natural sciences. In addition the theory has an independent life of its
own, whose ultimate goal is the description of all possible group operations.

We shall now give some examples of applications of groups in algebra, in
mathematics generally, and in the natural sciences.

1. Galois groups. Classical Galois theory consists in the application of
group theory to the study of fields in the following way. Let K be a finite,
separable and normal extension of a field k. The automorphisms of the field
K leaving fixed the elements of the subfield k, form a group under composi-
tion of functions. This group is called the Galois group (G say) of the
extension K/ k. The fundamental theorem of Galois theory asserts that if we
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associate with each subgroup H = G its fixed subfield
K" ={x|xeK,xh=x forall he H},

we obtain an anti-isomorphism of the lattice of subgroups of G onto the
lattice of subfields intermediate between k and K. The field extension K ¥/k
will be normal if and only if the subgroup H is normal in G, and then the
restriction to K of the automorphisms in G will yield a homomorphism,
with kernel H, of the group G onto the Galois group of the extension K 7/k.

The application to the question of the solubility of equations by radicals
can then be described as follows. Let f be a polynomial in x over the field k,
and K the splitting field of f. Let G be the Galois group of the extension K/ k.
This group is also called the Galois group of the polynomial f over the field k.
(Its elements are represented in the natural way as permutations of the roots
of the equation f(x) = 0.) It turns out that the equation f(x) =0 is soluble by
radicals if and only if the Galois group of the polynomial f is soluble.

Analogous to Galois theory is the Picard-Vessiot theory in which groups
are used to study extensions of differential rings and where, in particular, the
question of the solubility by quadratures of differential equations is
resolved. The role which in Galois theory is played by permutation groups, is
in the Picard-Vessiot theory assumed by algebraic groups of matrices.

In these examples groups arise as groups of automorphisms of mathema-
tical structures. Not only is this one of the most important ways in which they
occur, but also, generally speaking, this guise is peculiar to groups and
secures for them a special position in algebra. The reason for this is that one
may always, in the words of Galois, ‘‘group” the automorphisms of any
structure, while it is only in special cases that a ring structure or some other
useful structure can be defined conveniently on the set of automorphisms.

2. Homology groups. The central idea of homology theory involves the
application of the theory of (abelian) groups to the study of the category of
topological spaces. With each space X is associated a sequence of abelian
groups Hy(X), Hi(X), ..., and with each continuous map f: X~>Y, a
sequence of homomorphisms f,: H,(X)-»> H,(Y),n=0,1,2,.... The
study of the homology groups H,(X) and their homomorphisms by the
methods of group theory often allows the solution of problems originally
topological in nature. A typical example is the extension problem: Can a
map g: A - Y, defined on a subspace A of the space X be extended to all of
X; i.e. can g be expressed as the composite of the inclusion map h: A > X,
and some continuous map g: X - Y? If the answer is yes, then by homology
theory we must have g, = g.h,, i.e. each homorphism g,: H,(A)-> H,(Y),
can be factored through H,(X), with the factor A, given. If this algebraic
problem has a negative solution then, according to the theory, so does the
original topological problem.

With this method important positive results can be obtained. By way of
illustration we sketch a proof of Brouwer’s fixed-point theorem: Every
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continuous map f of the n-dimensional ball E" to itself has a fixed point.
Suppose, on the contrary, that f(x) # x for all x € E". Suppose the half-line
beginning at f(x) and passing through the point x meets the sphere S "1 (the
boundary of E") at the point g(x). Obviously g is continuous, and restricts to
the identity map on S"~'. Therefore the identity map on $"* can be
extended to a continuous map E" > S$""'. For n =1 this gives a contradic-
tion at once. If for n =2 we compute the homology groups with coefficients
from the group Z of integers, we find that H, ,(E")=0, H,_,($" ") =
Z,h,-1=0, g,-1=1, whence it is clear that the answer to the corresponding
algebraic problem is in the negative, yielding a second, and final, contradic-
tion.

This example from homology theory illustrates a typical mode of appli-
cation of algebra (in particular group theory) to the study of non-algebraic
objects: properties of the latter are elicited with the aid of algebraic systems
(in particular groups) which mirror some of their structure. Such is the basic
technique of algebraic topology. In the last few decades analogous tech-
niques have been evolved, and used successfully, for studying algebraic
systems themselves (for example in the theory of group extensions).

3. Symmetry groups. As mentioned above, the group concept allows us
to give a precise meaning to the formerly slightly vague idea of the symmetry
of a geometrical figure. Using this sort of approach E. S. Fedorov (1890)
solved the problem, fundamental for crystallography, of classifying the
regular arrangements, or lattices, of points in the Euclidean plane and in
space. There turned out to be altogether just 17 planar Fedorov groups,
which he discovered immediately, and 230 spatial Fedorov groups, the
exhaustive classification of which relied in an essential way on group theory.
This represented the first direct application of group theory to the natural
sciences.

Group theory plays an analogous role in physics. Thus in quantum
mechanics the state of a physical system is represented by a point of an
infinite-dimensional vector space. If the system undergoes a change of state
then its representing point is subjected to a certain linear transformation.
Here, in addition to considerations of symmetry, the theory of represen-
tations of groups by linear transformations is important.

These examples illustrate the classifying role played by groups wherever
symmetry is involved. In questions of symmetry one is dealing essentially
with automorphisms of structures (not necessarily mathematical), so that in
such questions group theory is irreplaceable. In mathematics itself this
classifying function is of great utility: of this Klein’s Erlanger Programm is
sufficient testimony.

To summarize: the group concept, fundamental in modern mathematics,
is a highly versatile tool for mathematics itself: it is used as an important
constituent of many algebraic systems (e.g. rings, fields), as a sensitive
register of the properties of various topological objects, as a proving-ground
for the theory of algorithmic decidability, and in many other ways. It
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provides, in addition, a sensitive instrument for investigating symmetry, one
of the most pervasive and elemental phenomena of the real world.

We conclude by listing some of the more important classes of groups.

The oldest branch of group theory, which is nonetheless developing as
intensively now as it ever did in the past, is the theory of finite groups. In this
theory the predominant activity at present is the search for finite simple
groups: these embrace many of the classical groups of matrices over fields,
several series of groups of automorphisms of Lie algebras, and certain
isolated, ‘‘sporadic’ groups. At the opposite end of the spectrum we have
the finite soluble groups, where interest is usually concentrated on specific
systems of subgroups (Hall, Carter subgroups, etc.), determining in large
measure the structure of the group itself. Finite groups often arise as groups
of permutations, or as matrices over finite fields; a large, and to some extent
independent, segment of finite group theory occupies itself with the study of
representations of groups by permutations and matrices.

In the theory of infinite groups the technique of broadest application
consists in the imposition of one or another ‘‘finiteness condition”. Among
the classes resulting from the myriad such conditions the following come in
for most attention: periodic groups, locally finite groups, groups with the
maximal condition on subgroups, groups with the minimal condition on
subgroups, finitely generated groups, groups of finite rank, and residually
finite groups.

In abelian group theory the leading roles are played by the classes of:
divisible abelian groups, torsion-free abelian groups, and by periodic abel-
ian groups and their pure and primary subgroups. The study of general
abelian groups reduces in large measure to applications of the theories of
these particular classes and the theory of extensions of abelian groups, the
methodology of which is largely homological in nature.

The classes of nilpotent and soluble groups, larger than that of abelian
groups, can also boast of highly developed theories. Of the teeming general-
izations of nilpotence and solubility we mention only: local nilpotence, the
normalizer condition, the Engel condition, and the multitude of classes of
groups defined by the possession of a subnormal system of one kind or
another.

Several important classes of groups are obtained by imposing additional
structures linked in some way to the group operation. Under this head fall,
for instance, topological groups, Lie groups, linear groups and orderable
groups.

Of the remaining classes we make mention of only: groups free in some
variety, divisible (non-abelian) groups, groups having some property
residually, automorphism groups of various mathematical structures, groups
determined by conditions on their generators and defining relations, and
groups with prescribed subgroup-lattices.
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Definition and Most Important
Subsets of a Group

§1. Definition of a Group
1.1. Axioms. Isomorphism

Every mathematical theory reduces ultimately to the study of two kinds of
objects: sets and functions on sets. If the arguments of a function f run
through a set M, in which the function also takes its values, then f is called an
algebraic operation on M. That study which concerns itself with algebraic
operations is called algebra. Viewed this way, algebra is concerned only with
how one or another algebraic operation acts, and not at all with the set on
which it is defined. The concept of isomorphism allows us to shift attention
from the second of these concerns and concentrate on the first. Suppose two
sets are given, together with one or more operations on each, and that there
is a one-to-one correspondence between the sets themselves, and also
between the sets of operations on them, such that corresponding operations
are functions of the same number of variables and take corresponding values
when the variables are assigned corresponding values. The sets with their
operations are then said to be isomorphic. Isomorphic objects have identical
structures as far as their operations are concerned, so that in algebra they are
either not distinguished or else are regarded as exact copies of each
other—much as we regard copies of a novel as being the same, even though
printed with different types and on different paper, if we are interested only
in the content. It makes sense to regard each class of isomorphic objects as
exactly determining a certain type of algebraic operation. This reduces the
problem of algebra—the study of algebraic operations—to the more
concrete problem of the study of sets with operations with accuracy only up
to isomorphism.
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Certain kinds of algebraic operation are met with so frequently in
mathematics that they have become the objects of study of independent
theories. One such is the operation defining the group concept—the object
of study of the theory of groups. A group is a set with one binary (i.e.
two-variable) operation, satisfying certain axioms. The value of a binary
operation f on a pair of elements x, y is more conveniently written, not as
f(x, y) as for other functions, but as xfy—this notation economises on
symbols and accords well with the usual notation for numerical operations:
after all we write 2+3 =35, and not +(2,3)=5. In a group the binary
operation is generally called multiplication and denoted by a dot (which is
almost always omitted); more rarely, +, o, *, and other symbols are used. The
dot notation is sometimes also referred to as the multiplicative notation,
while that employing the plus sign is called the additive notation.

1.1.1. Definition. A set G with a binary operation - is called a group, if:

1. the operation is associative; i.e. (ab)c = a(bc) for all a, b, ¢ in G;

2. the operation guarantees an identity element; i.e. in G there is an
element e—called the identity element—such that ae = ea = a for all a in G;

3. the operation guarantees inverse elements; i.e. for each a in G there is
in G an element x—called the inverse of a—such that ax = xa =e.

1.1.2. Definition. A set G with binary operation - is called a group, if

1. the operation is associative;

2. the operation guarantees left and right quotients; i.e. for each pair of
elements a, b in G there are G elements x, y—called respectively left and
right quotients of b by a—such that ax = b, ya = b.

1.1.3. Exercise. Definitions 1.1.1 and 1.1.2 are equivalent. The identity
element of any group G is unique. Each element a in G has a unique inverse
(denoted by a~"). For each pair of elements a, b in G both quotients of b by
a are unique. (We write a\b for the left quotient, and b/a for the right
quotient.)

In accordance with the usual group-theoretic terminology we call a
one-to-one product preserving mapping ¢ from one group onto another an
isomorphism. In other words a map from a group G to a group G* (in
symbols ¢:G - G*) is an isomorphism, if, firstly, distinct elements have
distinct images; i.e. writing a® for the image of a under the map &,

a® # b® whenever a # b, a,beG,

secondly, every element of G* has the form g® for some g € G, and, finally,
the image of a product is the product of the images;

(ab)® = a®*b®.

The two groups are then said to be isomorphic (in symbols G = G*).
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For example, the set G of positive real numbers is a group under the usual
multiplication of numbers; the set G* of all real numbers is a group under
the usual addition of numbers; and the map ¢: G > G*, defined by the
formula a® =log a, is an isomorphism between G and G*. When we use a
logarithmic slide-rule we are simply reaping the benefits of this iso-
morphism. The concern of group theory is to study group operations, or,
what amounts to the same thing, groups up to isomorphism. The theory of
groups would be complete once a catalogue of all possible groups up to
isomorphism were compiled. Happily for group theory, but unhappily for its
applications, the compilation of such a catalogue is in practice impossible.

1.2. Examples

Thanks to the associative law for groups the element (ab)c = a(bc) may be
written simply as abc; for the same reason the product aia,- - a, of n
elements—without bracketing but in the given order—is uniquely defined.
The product of n elements all equal to a is called the nth power of the element
a, and is denoted by a". For zero and negative integers n we define a’=e,
a"=(a"") 'ora"=(a"")"", which as it is easy to see, are equivalent.

1.2.1. Exercise. If a is any element of a group and m, n are integers, then
aman =am+n, (am)n =a-mn.

It may happen that a" = e for some n >0, in which case, if a #e, the
smallest n with this property is called the order or period of the element a
and is denoted by |a|. If a" # e for every n >0, the element a is ascribed
infinite order and we write |a| = co.

1.2.2. Exercise. If a" = e then |a| divides n.

1.2.3. Exercise. If the elements a, b commute, i.e. ab = ba, and their orders
are relatively prime, then |ab|=a| - |b|.

1.2.4. Exercise. Suppose elements a, b commute and have orders m, n.
Then the group contains an element—not always the product ab—whose
order is the lowest common multiple of m and n.

We say that a group G is torsion-free if every nonidentity element of G has
infinite order. If on the other hand every element of G has finite order then
we say that G is periodic. If the orders of all the elements of a periodic group
are bounded, then the lowest common multiple of their orders is called the
exponent of the group. Let p be a prime. If the orders of all the elements of a
periodic group are powers of p, then we call the group a p-group. The
cardinal |G| of the group G is called the order of G. If this cardinal is finite
then we say that the group is finite; and in the contrary case infinite. If the
operation in the group G is commutative, i.e. ab = ba for all a, b in G, then it
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is said to be commutative or abelian, in honor of N. H. Abel. Often
commutative operations are written additively in which case the
terminology and notation are changed in accordance with the following
glossary:

+
multiplication addition
product sum
identity element zero
inverse negative
power multiple
quotient difference
eorl 0
a’! -a
a" na
a\b=a"'b, b/a=ba™! b—a

Groups are ubiquitous: Galois theory and the theory of differential
equations, algebraic topology and the classification of the elementary parti-
cles of nuclear physics, crystallography and the theory of relativity, knot
theory and various other branches of topology and the theory of functions—
these form an incomplete list of those areas of science where the group
concept makes its appearance, and moreover not just to pose decoratively
but to do business. There are hefty tomes devoted to the applications of
group theory in various branches of science and to these we refer the
interested reader. Here we give only a few examples taken from the material
of a course in general algebra—the kind of material to which we limit
ourselves in this book. (The symbols in heavy type will throughout the book
be used consistently for the appropriate “classical” objects. They are all
standard notation—even down to their nuances of meaning—and are widely
used in the literature; there is an index of these symbols at the end of the
book.)

1.2.5. ExaMpLES. (I). The set of all elements of an arbitrary ring K, under
* the additive operation of the ring, is an abelian group. It is called the additive
group of the ring K. We shall use the same letter K to denote it, adhering to
the general convention that capital letters denote sets and that it should be
clear from the context which operations on the sets are under consideration.
In particular the additive groups of the field C of complex numbers, the field
R of real numbers, the field Q of rational numbers and the ring Z of integers,
are all torsion-free abelian groups. More generally, the additive group of a
field of characteristic zero is torsion-free, while the additive group of a field
of characteristic p has exponent p. The additive groups of the finite field
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GF(q) of q elements and the ring Z,, of residues modulo n are finite abelian
groups; moreover,

IGF(q)|=q, |Z.|=n.

Let p be a prime. Denote by Q,, the set of all rational numbers of the form
m/p" where m, n are integers. Under the usual addition of numbers Q,, is a
torsion-free abelian group.

(IT). The set of all invertible elements of an arbitrary ring K with a
multiplicative identity element is a group under the multiplicative operation
of K. Itis called the multiplicative group of the ring K, and is denoted by K *.
(The set K* clearly does not contain the zero and is thus different from K.) If
the ring K is commutative then so is the group K*. In particular the
multiplicative groups C*, R*, Q*, Z*, GF(q)*, Z} are all abelian. The set C,,
of complex numbers satisfying the equation x” =1, with the usual multi-
plication of numbers, is an abelian group. Let p be a prime. The set C,= of all
roots of the equation x?" =1,n =1, 2, ..., in the field of complex numbers,
is, under the usual multiplication, an infinite abelian p-group. It is called the
quasicyclic group of type p™. The groups Z*, GF(q)*, Z}, C,, are finite;
moreover,

1z*=2, |GF(@)*|=q-1, [Zi|=¢(n), |C=n,

where ¢ is Euler’s function, i.e. ¢ (mn) = ¢ (m)¢(n) for relatively prime m,
n, and ¢ (p*)=p* —p*~" for p prime.

(III). Let M be a set, and S(M) the set of one-to-one maps of M onto
itself. If we define multiplication in S(M) to be composition of maps, then
S(M) becomes a group. In particular, if M ={1, . . ., n}, this group is just the
group of all permutations of degree n, and is called the symmetric group of
degree n, denoted by S,. The group S, is finite of order n!. For n>2 the
group S, is nonabelian.

(IV). The set GL,(K) of all invertible matrices of degree n over a
commutative ring K with an identity is a group under the usual multi-
plication of matrices. It is called the general linear or general matrix group of
degree n over the ring K. It is clear that GL,(K) is just M,(K)*, where
M., (K) is the ring of all matrices of degree n over the ring K. For n =2 the
group GL,(K) is nonabelian. Consider the following subsets of GL,(K):
SL, (K), the subset consisting of all matrices with determinant 1; D, (K), the
subset of diagonal matrices; T,(K), the subset of matrices with all entries
below the main diagonal zero; and UT, (K), the subset of matrices with all
entries below the main diagonal zero, and with the entries on the main
diagonal all the identity. All of these sets are also groups under matrix
multiplication. They are called, respectively: the special linear group, the
diagonal group, the (upper) triangular group, and the unitriangular group. In
the case that K is the finite field GF(q), in place of GL,(K) we usually write
GL,(q), and similarly for the other matrix groups.
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1.2.6. Exercise. Z,=C.,.

1.2.7. Exercise. The group C* is isomorphic to the group of all nonsingular
matrices of the form
a B
(—B a)

with real entries, under matrix multiplication.
1.2.8. Exercise. Q,#Q, if p # 4.

1.2.9. Exercise. If a permutation a in S, is a product of disjoint cycles of
lengths n4, . . ., n, then its order |a| is the lowest common multiple of the
numbers ny, . .., ni. (A subset of S, consists of disjoint permutations if the
subsets of {1, .. ., n} consisting of the elements moved (i.e. not fixed) by the
permutations, are pairwise disjoint.)

Our reserve of examples of groups will be greatly enlarged if we can find
ways of constructing new groups from given ones. Group theory has in its
arsenal a variety of such constructions. One of the simplest, but at the same
time most important, constructions consists in the following.

Let Gy,...,G, be groups. It is easy to verify that the set G =
G X -xG, of sequences (gi,...,8m), & € G;, with componentwise
multiplication

(gla' . -’gm) * (gll’ . ~,g:n)=(g1gi,- .o ,gmg;n)>

is a group. Itis called the direct or Cartesian product of the groups G;, and the
G; are called (direct) factors of G. It is easy to extend this concept to the
situation of an arbitrary collection of factors G., a € I. Thus we denote by

G=1]] G.
ael
the set of functions
f:1-U G,
ael

satisfying the condition that f(a) € G, for all a € I. It is readily checked that
the set G with multiplication defined by the rule (fg)(a)=f(a)g(a), is a
group; it is also called the Cartesian product of the groups G,. The value of a
function f at the element « is called the projection of f on the factor G,, or
the component of f in G,. The set

supp f={a|a €1, f(a)# e}

is called the support of the function f. Clearly the set of functions with finite
support in the Cartesian product of the groups G, is itself a group under the
same multiplication. We shall call this group the direct product of the groups
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G.., and denote it by [[;_; G.. Obviously, as has already been indicated, for a
finite number of factors the direct and Cartesian products coincide.

In additive terminology instead of products we speak of sums, instead of
factors, summands, and we write

G=G,® - DG,
G=Y G, G=@G.

ael aecl

1.2.10. Exercise. C,, XxC, = C,,, for relatively prime m, n.

1.2.11. Exercise. D,(K)=K*X---xK* (n times).

§2. Subgroups. Normal Subgroups

2.1. Subgroups

If a subset H of a group G is closed under the group operation, i.e. together
with any two of its elements a, b, contains also their product ab, then the
restriction of the operation to H will be an algebraic operation on H ; we say
that this operation is induced by the operation on G. If H turns out to be a
group under the induced operation, it is called a subgroup of the group G,
and we write H = G. If H =< G and H # G, we write H < G. (Do not confuse
these symbols with the symbols =, < for set inclusion!)

2.1.1. Exercise. For asubset H of a group G to be a subgroup, it is necessary
and sufficient that H be closed under multiplication and taking of inverses,
i.e. that, together with every two of its elements a, b, it contain also ab and
a”'. These closure conditions may also be written as:

HHc<H, H'cH,
where here we are using the usual definitions
AB={ablacA,beB}, A '={a'lacA},
for subsets A, B of the given group.

2.1.2. Exercise. The product AB of subgroups A, B of a group G, is a group
if and only if AB = BA.

2.1.3. Exercise. If A, B are finite subgroups of G, then
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In every group the set containing only the identity element, and the group
itself, are obvious subgroups. Subgroups other than these are called proper

subgroups.

Continuing our investigation of the groups of Examples (I) to (IV) of §1.2,
we now indicate certain of their subgroups.
2.1.4. ExampLESs. (I). Obviously,
Z2<Q,<Q<R<C,
Z=Q,
GF(p™)=GF(p") if m|n.

(Here we understand GF(p*) to be the appropriate subset of the algebraic
closure of GF(p).)
(IT). Obviously,

Z* < Q*<R*<C*,
C,<Cp2<:--<Cp,
Co>=UGC,pn,
GF(p™)*=GF(p™)* if m|n.

III. In the symmetric group S, the subset A, of all even permutations
forms a subgroup called the alternating group of degree n. Clearly |A,|=

n!/2.
IV.For n=2,
SL,(K)=GL,(K),
D, (K)<T.(K),
UT,.(K)=T,(K)<GL,(K).

We mention also the orthogonal group, i.e. the subgroup of GL,,(K) defined
by

0.(K)={alaa’'=¢},

where the prime indicates the transpose; and when K = C the unitary group,
i.e. the subgroup of GL,(C) defined by

U,={alaa =e},

where the bar indicates that the matrix entries have been replaced by their
complex conjugates. Finally,

UT,.(K)=UTAXK)=UT%K)=""",

where UT(K) is the set of matrices in UT,(K) with all entries zero in the
(m —1) diagonals immediately above the main diagonal.
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2.2. Generating Sets

Itis easily seen that the intersection of any collection of subgroups of a group
is again a subgroup. If M is any subset of a group G, the intersection (M) of
all subgroups containing M is called the subgroup generated by the set M,
and M is termed a generating set for the subgroup (M). Allowing more rein
to the terminology, we sometimes speak of the elements of M as generators
of the subgroup (M). A group generated by some finite subset is said to be
finitely generated.

2.2.1. Theorem. If M is a subset of a group G, then
(M)={a§‘ cee afn"‘la,‘EM gi=x1,m=1,2,.. .}.

PrOOF. Denote the right-hand side by H. Since the subgroup (M) contains
all a; in M, we have (M) 2 H. On the other hand HH < H, H ' < H, so that
H is a subgroup containing M. Hence H 2(M), and finally H = (M).

By way of illustration we give generating sets for the groups of Examples
(I) to (IV) of §1.2. For ease of notation we shall write

(My=(---|++),
if M is given in the form
M={--| -},

i.e. we shall omit the braces.

2.2.2. ExaMPLES. (I). Obviously,

Z=(1),
Z, =(1(mod n)),
1
Q=<; n=1,2,...>.

(IT). Obviously,
Zr=(-1),
Q*=(-1,2,3,5,7,11,...),
GF(q@)* =({o),
C. =(an),
Cpo=(apm|m=1,2,...),

where ¢, is a primitive root of the equation x*~* = 1 over the field GF(q), and

27 ., . 2w
a, =cos —+i sin —,
n n
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(III). From a course in general algebra it should be known that the
symmetric group S, is generated by its transpositions (ij). Since (if)=
(1§)(1/)(14), it follows that S, is even generated by the particular trans-
positions (12), (13), ..., (1n). The alternating group A, is generated by the
set of all 3-cycles (ijk) since an even permutation is a product of an even
number of transpositions and

(i)Gk) = (jk), — ()(kD) = @)(jkD).

(IV). Let K be a field. Consider in GL,(K) the matrix #;(a) defined for
each1=<i j=n,and a €K, by

I,','(Cl) =e +aej,

where e is the identity matrix and e; is the matrix with its (i, j)th entry 1, and
all other entries 0. The matrices £;(a) with i #j, a #0, are called trans-
vections. Define also for each 0 # 8 € K the diagonal matrix d(8) by

d(B)=e+(B—1enn

We shall now prove that each matrix in GL,(K) can be expressed as a
product
- trd(B)tr+l R 7

where the ¢; are transvections. This will imply, in particular, that
GL,(K)=(t;(a),d(B)|0#a, BEK, i #]), (1)
SL,.(K)=(t;(a)|0# a €K, i#j). 2)

The promised proof is as follows. Observe that multiplication of a matrix
on the right by a transvection has the same effect as changing one of its
columns by adding to it a scalar multiple of some other column, while
multiplication on the left by a transvection has the analogous effect on one of
its rows; such changes in a matrix are called elementary transformations. Let
a € GL,(K). By means of elementary transformations of the columns of a it
can be arranged that in the resulting matrix the (1, 2)th entry, a,, say, is not
zero. After a further elementary transformation, namely changing the first
column by adding to it the second multiplied by (1 —a;;)/a;,, we obtain a
matrix with the identity element as its (1, 1)th entry, and then with the help
of this entry, after further elementary transformations we obtain a matrix
with zeros everywhere in its first row and column except for the (1, 1)th
entry, where we have 1. Continuing this process, applied next (in essence) to
the (n — 1) X (n — 1) submatrix obtained by deleting the first row and column,
and so on, we arrive finally at a matrix of the form d(8). Hence a =
ti - t:d(B)tsy - - - 1, as required.

It can be proved in a similar manner that

Tn(K)= (tii(a)’ diag(ﬁb ey Bn)lo# a, ﬁk € K9 l<]), (3)
UT,'I’(K)=(&,~(a)|O¢aeK,j-iZm). (4)
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The result just proved allows us to define SL,(K) when K is a noncom-
mutative ring, in which case the usual definition of determinant is inapplic-
able. Thus for such K simply take (2) as the definition. Further, let K be a
division ring. In a way similar to the above it can be shown that every
invertible matrix a over K can be written in the form a=
tio d(B)ts1 - - L, B #0. For the reader familiar with the concepts of
commutator subgroup and quotient group, we mention that the image of the
element B in the quotient of the group K* by its commutator subgroup, is
called the determinant of the matrix a in the sense of Dieudonné.

2.2.3. Exercise. Let n=2, p;,...,p, be distinct primes, and p;=
P1° " Di-1Di+1" " " Dn. Then

Z=<I;1’---’ﬁn>9

and no member of this generating set can be omitted.
2.2.4. Exercise. S, =((12), (12 - - - n)).

2.2.5. Exercise. SL,(Z)={(e +e;|1=<i,j=<n,i#j);

SL.(Z)=(e+e12, enntex+ - +en1,+(—1)"""en).

The concept antipodal to that of a generating set is that of the Frattini
subgroup. To give the definition of this concept we first define a subgroup H
of a group G to be maximal with respect to a property o, if H has the property,
and there is no larger subgroup with the property. If the property o is such
that all groups possess it then we simply use without qualification the term
maximal for subgroups maximal with respect to the property o. Of course a
group may have no maximal subgroups—see the examples below. We now
define the Frattini subgroup ®(G) of a group G to be the intersection of all its
maximal subgroups if there are any, and G itself if there are none.

An element of a group G is called a nongenerator if it can be omitted
from every generating set for G which contains it.

2.2.6. Theorem. The Frattini subgroup ®(G) of a group G coincides with the
set S of all nongenerators of G.

PROOF. (i) § = ®(G). If G has no maximal subgroups then the inclusion is
obvious. Suppose H is a maximal subgroup of G and let x € S. If x¢ H then
(x, H)= G while (H) # G. This contradicts the fact that x € S. Hence x e H
and so x € P(G).

(ii) ®(G)< S. Suppose on the contrary that there is an element x € &(G)
which together with some set M generates G, while (M) # G. By Zorn’s
Lemma there exist subgroups maximal with respect to containing M and not
containing x. It is clear that these subgroups are (absolutely) maximal. They



12 1. Definition and Most Important Subsets of a Group

thus all contain ®(G), and therefore x, contrary to their definition. This
completes the proof of the theorem.

2.2.7. ExampLES. (I). In the group Z the subgroup (p) is maximal for
each prime p, so that ®(Z) =0. It is easily seen that in the group Q every
element is a nongenerator, whence ®(Q) = Q.

(II). Since the group C, is the union of its subgroups C,~,n =1, 2, ..., all
of its elements are nongenerators. Therefore ®(C,=) = C,~.

(ITII). It can be verified that the subgroup H; of the group S,, consisting of
all permutations stabilizing the symbol i, is maximal in S,. Since the
intersection Hy N+ - - " H, is 1, we have that ®(S,)) = 1. Similarly it can be
shown that ®(A,)=1.

(IV). Consider in the group UT,(Z) the subgroup H;, consisting of all
matrices x with x;;.,€{p), where 1=i=n—1, and p is prime. It may be
checked that H;, is maximal in UT,(Z). Since the intersection of all H;, is
contained in UTZ(Z), we have that ®(UT.(Z)) < UT(Z). It may be
shown that in fact the reverse inclusion holds, i.e.

®(UT,(Z)) = UTXZ).

2.3. Cyclic Subgroups

A subgroup (a) generated by a single element q, is called cyclic. By Theorem
2.2.1 it consists of all possible powers of the generator:

(ay={a"|n=0,%1,£2,...}.

Example 2.2.2 (I) shows that Z and Z, are cyclic groups. It turns out
that up to isomorphism these exhaust the supply of cyclic groups.

2.3.1. Theorem. Every infinite cyclic group is isomorphic to the group Z, and
every cyclic group of finite order is isomorphic to some group Z,.

PROOF. Let {(a) be an infinite cyclic group. Define a mapping ¢: Z - (a) by
ne¢ =a". It is one-to-one: if for m >n we had m¢ = ne, i.e. a™ " =e, then
the group (a) would turn out to be finite. Further (m + n)¢ = méndo, i.e. ¢ is
an isomorphism (since it is clearly onto). If (b}, (c) are cyclic groups both of
finite order n, then the map defined by b*>c* 0=k=n-—1, is an iso-
morphism between (b) and {c).

2.3.2. Theorem. Every subgroup of a cyclic group is cyclic.

?ROOF. Let (a) be a cyclic group of order n, and H a nontrivial subgroup. (It
is obvious that the identity subgroup is cyclic.) Let m be the smallest positive
integer such that

a™eH, 0O<m<n.
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Obviously (a™) < H. We shall show that (a™)= H. Let a*, 0=k <n be any
element of H. Dividing m into k we get: k =mq +r, 0=r<m. Then

a"=a“(@™) 9 eH.

By the choice of m it follows that r = 0, whence a* € (a™). The cyclicity of
the subgroups of the infinite cyclic group is proved similarly.

2.3.3. Exercise. A group is called locally cyclic if every finite subset of the
group generates a cyclic subgroup. Prove that Q and C,= are locally cyclic. It
follows that they themselves are not finitely generated.

2.4. Cosets

Given a subgroup H of a group G we can form the sets
gH={gh|heH}, g€G,

which are called left cosets of the subgroup H in the group G. Right cosets Hg
are defined similarly. Each element of a coset is called a representative of the
coset. It is easily seen that

aH=bH & a 'beH, (5)
Ha=Hb&ab 'eH. (6)

These allow us to arrive at the concept of a coset by another route: Define for
a given subgroup H the relation ~ on G of left congruence by

a~boa'beH,

and define right congruence analogously. It is easily verified that these
relations are equivalences on G, i.e. they are reflexive (a ~ a), symmetric
(a~b=>b~a), and transitive (a ~b, b ~c => a ~c¢), and therefore they
yteld two partitions of G. In view of (5), (6) these partitions coincide
respectively with the partition into left cosets and the partition into right
cosets. Hence in particular the left cosets of H are pairwise disjoint, and the
same is true of the right cosets of H.

Since the correspondence gH <> Hg ' is one-to-one, the cardinal of the
collection of left cosets of H is the same as that of the collection of right
cosets. This cardinal is called the index of the subgroup H in the group G,
and is denoted by |G: H|.

Z:(n)|=n.

2.4.1. Exercise.
2.4.2. Exercise. The group Q contains no proper subgroups of finite index.

Sn:AL=2.

2.4.3. Exercise.
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2.4.4. Exercise. If A, B are subgroups of a group G, then
|A:ANB|=<|G:B|. (7

(Hint: The left congruence on A relative to A N B is the restriction to A of
the left congruence on G relative to B.)

Each coset gH, Hg has the same cardinal as H as is shown by the
bijections h <> gh, h <> hg, h € H. Thus in particular if the group G is finite
then |G| may be calculated by multiplying the cardinal |H| of each coset by
the number |G: H| of cosets. In this way we obtain

2.4.5. Lagrange’s Theorem. If H is a subgroup of a finite group G, then
|G|=|H|-|G:H|. ®)
This has one very important consequence: The order of a subgroup

always divides the order of the group. Since |a|=|(a)|, we deduce that the
order of an element always divides the order of the group.

2.4.6. Exercise. Every group of prime order is cyclic.

2.4.7. Exercise. Let A, B be subgroups of a group G with A <B. The
indices |G: B|, |B: A| are both finite if and only if |G: Al is finite. If the index
|G: A| is finite then

|G:A|=|G:B|-|B:A|. )

This generalizes Lagrange’s Theorem (which corresponds to the case A = 1).

2.4.8. Exercise. The intersection of a finite number of subgroups of finite
index is again of finite index. (Hint. From (7), (9) derive the inequality

|G:ANB|=|G:A|-|G:B|. (10)
Alternatively, use the fact that Ag n Bg =(A N B)g.)

2.4.9. Exercise. The intersection of all finite index subgroups of Q, is the
zero subgroup. In fact the same is true for every proper subgroup of the
group Q.

2.4.10. Exercise. The groups C,», n=1,2,..., comprise all proper sub-
groups of the quasicyclic group C,«.

We see from the last exercise that all the proper subgroups of the
quasicyclic groups are finite although they themselves are infinite. It is
unknown whether or not there are groups other than the quasicyclic groups
with this property.t (This is the famous problem of O. Ju. Smidt.) It is
known, however, that there are no such groups (apart from the quasicyclic

t There do exist such groups: see Translator’s Remarks, p. ix.
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groups) among the locally finite groups, which we shall meet with later [M. 1.
Kargapolov, Sib. matem. z. 4, No. 1 (1963), 232-235].

2.5. Classes of Conjugate Elements

In group theory a particularly important role is played by those subgroups
whose left and right cosets coincide. Such subgroups are said to be normal.
More precisely we say that a subgroup H of a group G is normal in G, and
write H G, if Hx = xH for every x in G. The notation H <1G means that
H<Gbut H#G.

It is clear that the condition Hx = xH 1is equivalent to the condition
x 'Hx = H. We say that an element a is conjugate to an element b by an
element x if a =x""bx. Often the latter is written with the conjugating
element as a superscript: x 'bx = b*. It is easily verified that we always have

(ab)* =a*b”, (@a*)=a™. (11)
If A, B are subsets of a group we write also
AP ={a’|lac A, beB}.

Thus, rephrasing our definition, we may say that a subgroup H of a group G
is normal in G if and only if it contains all conjugates by elements of G of all
of its elements, or, more briefly, if

HCcG.

The first equation of (11) shows that, for a fixed x € G, the map of the
group G onto itself given by the rule a > a”, is an isomorphism. A subset M
is said to be conjugate in G to the subset M*. We can now rephrase the
definition of normality again: a subgroup is normal if and only if it is the same
as each of its conjugates. For this reason normal subgroups are also called
“self-conjugate.”” The term “‘invariant subgroup” is also in use. A group is
called simple if it has no proper normal subgroups.

2.5.1. ExampLEs. (I), (II). Since the additive and multiplicative groups of a
field are abelian, all of their subgroups are normal.

(III). Since a conjugate of an even permutation is again even, we have that
A, <S,.

(IV). Let n =2. Since det(ab) = det a - det b, a matrix with determinant 1
goes after conjugation to a matrix with the same property; thus
SL,.(K)<aGL,(K). Since each diagonal entry in the product of two tri-
angular matrices is the product of the corresponding entries in the factors,
we have also that UT,.(K)=aT,(K). In fact one may verify that
UT(K)<T.(K)forallm=1,2,....

2.5.2. Exercise. If p is prime then Z, is simple.
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2.5.3. Exercise. If |G: H|=2 then H <G.
2.5.4. Exercise. If A<G, B<2G then AB<2G.
2.5.5. Exercise. It may happen that A<iB, B<1C but AgC.

Let G be any group. We can define a relation ~ on G by setting a ~ b
whenever a and b are conjugate in G. It is easily verified that this relation is
an equivalence (see the preceding subsection), so that G is partitioned into
pairwise nonintersecting classes of conjugate elements, or conjugacy classes
a©. In particular normal subgroups are thus just those subgroups which are
unions of one or more complete classes of conjugate elements.

In contrast to cosets, conjugacy classes may be of various cardinals. A
decisive role in computing their sizes is played by the concept of the
normalizer. Let M be a subset and H a subgroup of a group G. The
normalizer of the subset M in the subgroup H is the set

Nu(M)={h|heH,M" =M},

which, as is readily checked, is a subgroup of H. If it is not indicated in which
subgroup H the normalizer is taken, then it is to be understood that it is
taken in the whole group G. Obviously a subgroup is normal in a group if and
only if its normalizer is the whole group.

2.5.6. Theorem. If M is a subset and H a subgroup of a group G then the
cardinal of the class of subsets conjugate with M by elements of H is equal to
the index |H: Ny (M)|. In particular

la®|=|G:Ns(a)|.

ProOF. Map the collection of sets M*, x € H, into the collection of right
cosets of the subgroup N = Ny (M) in H, according to the following rule:

M”* > Nx, xeH.

This map is single-valued since from M =M" follows Nx = Ny. It takes
distinct elements to distinct elements since from Nx = Ny follows M* = M.
Finally, the map is onto since each Nx has preimage M”.

2.5.7. ExampLEs. (I), (II). Since the additive and multiplicative groups of
a field are abelian, every one of their conjugacy classes consists of a single
element.

(ITI). Let M be a set. Two elements of S(M) are conjugate in S(M)
precisely if their decompositions into disjoint cycles contain the same
number of cycles of each length, including those of length 1. (Here number
and length of cycles are to be understood in the sense of cardinals.) To be
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more explicit, if
a=(arar BBz )(--*) -,
a'=(alay - )BiBs - )--) e,

where cycles of the same length are written one directly under the other,
then it is immediately verifiable that a’ = a* where

x=(a1a2'“3132“.),

In particular two permutations in S, are conjugate in S, if and only if
they have the same disjoint cycle structure: for example the permutation
(12)(3456) is conjugate in S with the permutation (15)(2436), but not with
the permutation (12)(345)(6). In A, the elements with the same cycle
structure fall into either a single conjugacy class or two conjugacy classes of
the same cardinal—this is easily perceived using Theorem 2.5.6 and the
equation [S, : A,|=2.

(IV). As the reader will recall, the question of conjugacy of matrices
occupies an important place in a course in general algebra. For algebraically
closed fields K the question of when elements of GL, (K) are conjugate is
completely answered by the theorem of Jordan: two matrices in GL, (K) are
conjugate in that group if and only if they have the same Jordan form.

2.5.8. Exercise. The orders of conjugate elements (or, more generally, of
conjugate subsets) are the same.

2.5.9. Exercise. Suppose a permutation a of S, decomposes into disjoint
cycles with lengths n1, . . ., ny, Y. n; = n. Evaluate |Ng, (a)|.

2.5.10. Exercise. Verify the formula
ti,.(aﬂ) if ] =n,
_1 a . .
47 (@)ty()d(B) = zn,(E) it i=n,
ti(a) in all other cases.

Using this convince yourself that in Example 2.2.2(IV) the conclusion is
valid with r =0.

2.5.11. Exercise. The normalizers of the elements of a conjugacy class,
themselves form a class of conjugate subgroups.

2.5.12. Exercise. In the group of matrices over the field Q of the form (§ %),
a # 0, find a subgroup that is conjugate to a proper subgroup of itself.
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2.5.13. Exercise. If A is a subgroup of finite index in a group G, then the
intersection
N=) A"
xeG
is a normal subgroup of finite index in G. (Hint. Use Theorem 2.5.6 and
Exercise 2.4.8.)

§3. The Center. The Commutator Subgroup

We have seen that groups in general have properties strikingly different
from those of the various groups of numbers. In large part the differences are
due to noncommutativity. The center and the commutator subgroup give a
measure of the departure from commutativity: the bigger the center and the
smaller the commutator subgroup of a group, the nearer the group is to
being abelian.

3.1. The Center

Let M be asubset and H a subgroup of a group G. Recall that we defined the
normalizer of M in H to be the set of all elements 4 of H commuting with M
as a whole, i.e. such that hM = Mh. If instead we take the set of all elements
of H which commute with each element of M, i.e. the set

Cu(M)={x|x € H,m*=m for all me M},

then we have what is called the centralizer of the set M in the subgroup H. It
is not difficult to verify that Cy (M) is a normal subgroup of Ny (M). If M
contains just one element then of course its normalizer and centralizer in H
are the same. If there is no indication of the subgroup in which the
centralizer is taken, then it is to be understood to be in the whole group G.

The centralizer of the whole group G is called its center and is denoted by
C(G). Obviously a group is abelian precisely when it is its own center. It is
clear that the identity is always in the center. If a group contains no other
central elements it is said to have trivial center or sometimes even to be
centerless. Note further that every subgroup of the center is normal in the
whole group.

To illustrate we calculate the centers of some of the groups of Examples
(D-IV) of §1.

3.1.1. ExampLEs. (I), (II). Since the additive and multiplicative group of
a field are abelian, they coincide with their centers.

(IIT). Obviously the groups S; and Aj; are abelian and so coincide
with their centers. The situation for other n is as follows. Any non-
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identity permutation in S, in its disjoint cycle decomposition has the form
@ -+ ) ++)---. It can be verified immediately that it does not commute
with the transposition (jk) (here n =3), nor with the 3-cycle (jkl) (here
n =4), where distinct letters denote distinct permuted objects. Hence the
groups S, for n =3, and the groups A, for n =4, have trivial center.

(IV). Let K be a field. The centers of the groups GL, (K), SL, (K) consist
of the scalar matrices contained in them. For obviously a scalar matrix
commutes with any other matrix. Conversely if a is a central element of
either of these groups then it commutes in particular with all the trans-
vections #;(1) = t;, i.e. at; = t;a. It follows easily from this that

a; =0, a;=a;; fori#j,

i.e. a is a scalar matrix. For this and similar calculations we recommend that
the reader write each matrix x in the form ¥ x..e,; and use the following
easily reconstructed multiplication table for the matrices e;;:

e forj=r,

1
0 forj#r (1)

eilers = {

Similar reasoning shows that the center of the group T, (K), | K| # 2, consists
of all nonzero scalar matrices, while in UT,(K) the central matrices other
than e are just those that differ from e only in entries in the m X m submatrix
in their upper right-hand corner. In particular

C(UT,(K)) = UT,;'(K) ={t1n(a)|a € K}. (2)
The diagonal group D, (K) is abelian and so is its own center.
3.1.2. Exercise. Find the centralizer of a diagonal matrix in GL,(K).

3.1.3. Exercise. The centralizer of a normal subgroup is itself normal.

3.1.4. Exercise. If H is a finite normal subgroup of a group G, then the index
of its centralizer is finite. (Solution:

|GCG(H)|= G: m CG(x)

xeH

< HHIG: Cs(x)|<|H|™HV)

3.1.5. Exercise. The group of matrices (§ £), a # 0, over a field other than
GF(2), has trivial center.

3.1.6. Exercise. |C(GL,(q))|=q—1;|C(SL.(g))|=h.cf.(n,q—1).

3.1.7. Exercise. The center of a direct (Cartesian) product is the direct
(Cartesian) product of the centers of the factors.
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3.2. The Commutator Subgroup

Obviously two elements a, b of a group G commute if and only if
a~'b"'ab = e. The left-hand side of this equation is called the commutator of
a, b in that order, and is written [a, b]. The subgroup of G generated by all
commutators of pairs of elements of G, is called the commutator subgroup or
derived subgroup of G. Clearly a group is abelian if and only if its com-
mutator subgroup is trivial; generally speaking the commutator subgroup
provides in some sense a measure of departure from commutativity.

More generally if L, M are subsets of a group G then their mutual
commutator subgroup is the subgroup

[L,M])=(a,bllacL,beM).
Since
[a, b] =[a”, b”],

we have that the mutual commutator subgroup of a pair of normal subgroups
is again normal. In particular the commutator subgroup [G, G] of G is
normal in G. Taking the commutator subgroup of the commutator sub-
group, and so on, we obtain a descending chain of normal subgroups

GZG'ZG"Z"',

which is called the derived series of the group G.
We note the following useful and easily verified commutator identities:

[a,b]'=[b,al; [ab,c]l=[a,c)[b,c]l; [a”',bl=[b,al*". (3)

Next, as usual, we use the groups of Examples (I)-(IV), §1, to illustrate
our new concept.

3.2.1. ExampLESs. (I), (II). Since the additive and multiplicative groups of
a field are abelian, their commutator subgroups are trivial.
(III). Obviously [S,, S;]=1, [A3, A3]= 1. Further

[As4, Asl={1, (12)(34), (13)(24), (14)(23)}. 4)

To see this observe first that the right-hand side is a subgroup (called Klein’s
4-group). This subgroup is normal in A4 since it contains all permutations
with disjoint cycle decomposition of the form (**)(**), and we know that this
form is preserved by conjugation. Since A, is generated by all 3-cycles, the
inclusion < will follow from the identities (3) and the normality of the
right-hand side of (4) once we have shown that all commutators of 3-cycles
lie in the right-hand side of (4). But this is immediate from the inequalities

[GGk), (D] = Gp(kD; [k, )] = Dk,

which can be checked routinely. (Here distinct letters denote distinct
permuted objects.) These same equalities yield the reverse inclusion.
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Finally,
[S.,S.]=A, foralln, (5)
[A., A.]=A, forn=5. (6)

For the commutator of two permutations from S,, is even and therefore lies
in A,.. On the other hand

(ijk) = [(ik), (i) = [(ikD), (ijm)],

where again different letters denote different objects. Since A, is generated
by 3-cycles the desired conclusions follow.
(IV). Let K be a field. Then

[GL.(K),GL,(K)]=SL.(K), (7)
[SL.(K), SL.(K)]=SL.(K), ®

always, except for GL2(2) in (7) and SL(2), SL»(3) in (8). (Note that of
course GL,(2) = SL,(2), so that there are in fact only two exceptions in all.)
To see (7) and (8) observe first that the determinant of the commutator of
two matrices is always 1, whence follows the inclusion of the left-hand side of
(7) in the right-hand side. In the other direction we know that SL,(K) is
generated by the transvections. It is easily verified that

[tu(a), &;i(B)]=ti(aB) for distinct i, j, k, 9)
: - Bi_
[#i(a), diag(B1, . . ., Ba)]= tij( (B 1)) (10)

In view of (9) the reverse inclusions (of the right-hand sides of (7), (8) in the
left-hand sides) follow for n = 3. Since for |K|> 2 we can choose 81 # B2 in
(10), we deduce the equation (7) for all the groups except GL2(2). Since for
|K|>3 we can find B; # B2, 81 B2 = 1, we infer (8) from (10) for all the groups
except SL,(2) and SL»(3). That these remaining groups are indeed excep-
tions can be shown without too much difficulty.

In a similar manner, using (3), (4) of §2 together with (9), (10), we obtain
that

[T.(K), T.(K)]=UT,(K) for|K|>2, (11)

[UT(K), UT;(K)]=UT,"*(K). (12)

When |K | = 2 the first equation is false, but then T, (K) = UT,(K) so that the
second equation applies.

3.2.2. Exercise. Find the derived series of the groups Ss, S,.

3.2.3. Exercise. Find the commutator subgroups of the groups SL(2),
SL>(3).
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3.2.4. Exercise. The commutator subgroup of a direct product of groups is
the direct product of the commutator subgroups of the factors. Does this
statement remain true with ‘‘direct” replaced by ‘‘Cartesian’’?

3.2.5. Exercise. Find the commutator subgroup of the group of matrices
a 8) a #0, over a field, and show that every element of that commutator

subgroup is a commutator.

We draw the reader’s attention to the fact that, in general, the com-
mutator subgroup does not consist solely of commutators. There are even
finite groups in which certain products of pairs of commutators are not
commutators; we shall now give an example of such a group, including a
sketch of the proof.

3.2.6. ExaMPLE. Consider the set S of 10 symbols with the following
multiplication table:

1 a B y é K A " v 0
1 1 a B y é K A I v 0
a a 0 K A In 0 0 0 0 0
B B 0 0 v 0 0 0 0 0 0
y y 0 0 0 0 0 0 0 0 0
é é 0 0 0 0 0 0 0 0 0
K K 0 0 0 0 0 0 0 0 0
A A 0 0 0 0 0 0 0 0 0
o m 0 0 0 0 0 0 0 0 0
v v 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Itis easy to check that multiplication in S is associative, i.e. S is, as they say, a
semigroup. Let K be the semigroup-ring of S over the field GF(2), i.e. the
ring of all formal expressions

nil+nza +n3B+nyy+nsd +nek +nsA +ngu +ngv + n190,

with coefficients from GF(2) and with the natural addition and multiplica-
tion. Finally let G be the set of all matrices over K of the form

1 x vy
a=|0 1 x]|.
0 0 1
It is easy to see that G is a group of order 2%°, and that if
1 u v 1 0 xu—ux
b=(0 1 ul, then [a, b]=|0 1 0 . (13)
0 0 1 0 0 1

We call xu — ux the ring commutator of the elements x, u.
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3.2.7. Exercise. The element u + v is the sum of two ring commutators, but
is itself not a ring commutator.

3.2.8. Exercise. Using (13) and the preceding exercise, find in G a product
of two commutators which is not a commutator.

We end this section, and the chapter, with two lemmas which will be
useful to us somewhat later on (in Chapter 6).

3.2.9. Lemma. Let G be an arbitrary group and let A, B be subgroups. Write
H=(A, B). Then:

[A, B), A[A, B], B[A, B] are normal in H; (14)
A[A, B]- B[A,B]=H; (15)
[A, B]=(C"?), (16)

where C ={[a;, b;]|ie I, je J}, and the a, i € I, and b;, j € J, are generators for
A, B respectively.
PrOOF. The second of the identities (3) shows that the subgroup A normal-
izes [A, B], whence (14) and (15). For (16), observe that C <[A, B] < H,
giving that [A, B]=(C*?). To get the reverse inclusion, we need to show
that

[aft - aim bl - - br]e(CA®), where here &, =+1, 5, =+1.

Now we have
(afy -+ - aim) =(ayfai, b - - - (ai,[ai,, b;D
=ail---ainf,  fe(C?;
that is
[a, b;le{C?), where a =ail---aim
Hence
(b7 -+ - bim)® = (by[by, aD)® - - - (b;,[b;,, aD)*
=b%1 -+ bid, de(C*P),

giving the desired conclusion. (Note that ((C4)Z) = (C*B).)
Let ay, as, ..., be elements, and A,, A,, ..., be subgroups, of some
group. For n =2, we define inductively left-normed commutators by

[als e Gnat] =[la,..., an], an+1]’
[Ala L] An+1]=[[A1, ceey An], An+1]-

3.2.10. Lemma (“Three Commutator Lemma”). Let A, B, C be subgroups
of some group, and let H be a normal subgroup. If two of the mutual
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commutator subgroups
[A,B,C], [B,C A} [C A, B]
lie in H, then the third also lies in H.

Proor. This is immediate from the following pretty identity (‘‘Witt’s
identity”’):
la, 67", c)[b, ¢!, al[c,a™, b]" =1. (17)

To verify this simply expand the left-hand side.

3.2.11. Exercise. If A, B, C are normal subgroups of a group, then
[AB, C]=[A, CI[B, C].



Homomorphisms

§4. Homomorphisms and Factors
4.1. Definitions

As defined at the beginning of Chapter 1, a map from one group to another is
an isomorphism if it is one-to-one and onto, and preserves the operation. If
the first two requirements are dropped we arrive at the concept of
homomorphism: a map ¢ from a group G to a group G* is said to be
homomorphic or a homomorphism if (ab)® = a®b® for all a, b in G. The
subgroup G? of G* is the homomorphic image of G under ¢.

4.1.1. ExampLES. (I). The map Z - Z,, sending each integer to its residue
class modulo 7, is a homomorphism. Let p be prime, and &, be a primitive
p"-th root of unity in the field of complex numbers such that £}+; = ¢,,
n=1,2,....The map Q, »> C,~, sending the rational number m/p" to the
complex number &, is well-defined and homomorphic.

(IT). The map R* - Z* which assigns to each real number its sign 1, is a
homomorphism.

(III). The map S, - Z* assigning to each permutation its sign (+1 accord-
ing as it is even or odd), is a homomorphism.

(IV). The following are homomorphisms: the map GL,(K)-> K* asso-
ciating matrices with their determinants; the map T,(K) - D,(K) sending
each triangular matrix to the diagonal matrix with the same diagonal; the
map UT}(K)->K®:---®K (n—m times), sending a matrix x to the
(n —m)-tuple (X1,m+1> X2,m+25 + + « » Xn—m,n)-

We see that after application of a homomorphism a group operation may
lose certain of its properties: thus a nonabelian group may become abelian, a

25
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torsion-free group may become periodic, and so on, although the most
“striking’’ properties—finiteness, commutativity, etc.—are preserved under
epimorphisms (i.e. homomorphisms onto). The homomorphic image of a
group G may be likened to the impression of the more essential features of
G gained by an observer (whose point of view corresponds to the
homomorphism). Being less detailed, this impression fails to characterize
the original reality; however, in the first place this is precisely why it is easier
to study, and secondly the impressions of several observers at various
observation-posts may when taken together yield the desired information
about G. For instance the knowledge that the groups Z,, Z,, ... are all
homomorphic images of a group G, allows us to assert that G is infinite,
though knowing that any one of them is a homomorphic image does not by
itself suffice for the assertion.

4.1.2. Exercise. The epimorphic image of a (normal) subgroup is a (normal)
subgroup. The restriction of a homomorphism to a subgroup is a homomor-
phism of the subgroup.

Let ¢ be a homomorphism from a group G to a group G*. The set of all
elements of G mapped by ¢ to the identity, is called the kernel of ¢, denoted
by Ker ¢. The kernel of a homomorphism is a normal subgroup. To see this
write Ker ¢ = H. Then since

(HH)*=H*H®=1, (H)’=H*"=1, (H)’*=H""=1,
it follows that
HHcH, H'cH, H°cH,

so that H <0 G. Itis easy to see that the kernel of a homomorphism ¢ is trivial
(Ker¢ =1) if and only if ¢ is a monomorphism (i.e. a one-to-one
homomorphism). Reverting to our simile we may say that the kernel of a
homomorphism measures the clarity with which our observer viéws the
group: the larger the kernel the less detail there is in his impression. The
vaguest impression, namely that where only the fact that the group has an
identity can be discerned, is afforded by the homomorphism with kernel the
whole group.

It turns out that the set of kernels of homomorphisms and the set of
normal subgroups of a group are one and the same; that is, every normal
subgroup is the kernel of some homomorphism. The standard way of
constructing a homomorphism with a given normal subgroup as kernel is as
follows. Let G be a group, H the normal subgroup and G/H the set of cosets
of H in G (there is no need to specify whether the cosets are left or
right—since H is normal they coincide). It is easily verified that aH - bH =
abH, i.e. that the set G/H is closed under elementwise multiplication of its
cosets. It is also easy to see that G/H is in fact a group with respect to coset
multiplication; it is called the quotient group or factor group of the group G
by the normal subgroup H. The identity element of the group G/H is the
coset H, and the inverse of the coset aH is the coset a~'H. We stress the
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distinction that, in the group G the residue class aH is a subset of elements,
while in the group G/H it is a single element, not a subset. It will be
immediately clear that the map ¢: G » G/ H defined by the rule g® = gH is
a homomorphism. Such homomorphisms are termed ratural. They solve our
problem: the kernel of the natural homomorphism G -» G/H is just H.

4.1.3. Exercise. A factor group of a cyclic group is cyclic.

4.1.4. Exercise. The factor group G/H is abelian if and only if H contains
the derived group [G, G].
A different approach to the concept of factor group is given by

4.1.5. Exercise. An equivalence relation ~ on a group G is called a
congruence if we always have

a~b,a'~b'>aa'~bb'.

The product of two congruence classes of elements is again a congruence
class. The set G/~ of all congruence classes is a group under multiplication
of classes, called the factor group with respect to the congruence ~. This
approach has the virtue that, as is easily seen, it works for any algebraic
system (i.e. set with operations).

4.1.6. Exercise. The congruences on a group G are in one-to-one cor-
respondence with the normal subgroups of G. To be more explicit, if H <G
and if ~ is defined by

a~b&oa'beH,

then the relation ~ is a congruence and the cosets of H in G are just the
congruence classes. Conversely, given a congruence ~ on G, the set H of
elements congruent to the identity turns out to be a normal subgroup of G,
and the congruence classes are just the cosets of H in G. Thus the factor
group with respect to the congruence is the same as the factor group of G by
H. Although, as mentioned above, the concept of quotient with respect to a
congruence makes sense for other algebraic systems, there is often no
reasonable analogue of the concept of normal subgroup. Hence while for
groups the two approaches lead to the same concept, the approach via
congruence has the wider scope outside groups.

4.2. Homomorphism Theorems

For G a group and H a subgroup we denote by L(G, H) the set of all
subgroups of G containing H. In particular L(G, 1) is the set of all subgroups
of G. The following theorem is about correspondences of subgroups under
homomorphisms.
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4.2.1. Theorem. The natural homomorphism ¢: G - G/ H induces a one-to-
one correspondence ¢: L(G, H) > L(G/H, 1). Subgroups A, B belonging to
L(G, H) are conjugate in G if and only if their images Ay, By are conjugate in
G/H. In particular A is normal in G if and only if Ay is normal in G/H. If
A=<Bthen |B:A|=|By: Ay|.

PrROOF. We first prove that ¢ is one-to-one. For this it suffices to show that if
acA, a¢ B, then a®c A?, a®¢ B®. Thus suppose a® € B?, say a® =b°,
be B.Then b 'a € H < B whence a € B, contrary to assumption. The map ¢
is onto since the preimage under ¢ of a given subgroup A of G/H is just the
complete inverse image of A under ¢. A similarly direct check shows that

B=A"©B*=(A%".
Finally, if A <RB then from
x'yeAe (xH) '(yH)e A/H,

it follows that the cosets of A in B are in one-to-one correspondence with
the cosets of A/H in B/H. This completes the proof.

It turns out that every homomorphism is in essence a natural homomor-
phism, or, more precisely, every homomorphism is the composite of a
natural homomorphism and a monomorphism. We shall now also discover
that: “Observers at observation-posts corresponding to homomorphisms
with the same kernel, receive similar (i.e. isomorphic) impressions.”

4.2.2. Theorem. If ¢:G - K is a homomorphism with kernel H, then G® =
G/ H. Further, ¢ is the composite of the natural homomorphism e: G > G/ H,
and a certain monomorphism v: G/H - K, defined by (xH)" = x*.

ProOOF. The map 7 is well-defined since xH = yH implies x® = y°. It is also
one-to-one since if x®=y?® then x 'y H. Finally, 7 preserves multi-
plication since

(xH - yH)" = (xyH)" = (xy)* =x®y® = (xH)"(yH)".

Hence 7 is a monomorphism. Since it is clear that ¢ = ¢7 the theorem is
proved.

To illustrate we apply this theorem to Examples 4.1.1. If we compute the
kernels of the homomorphisms in those examples we obtain the following
isomorphisms:

Z/(n)=27,; (1)
Qp/z =Cp=; (2)
S./A,=Z,; 3)
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GL,(K)/SL.(K)=K*; )
T.(K)/UT.(K) =D, (K)=K*x: - - XK* (n times); (5)
UTH(K)/UT  (K)=K®- - @K (n—m times). (6)

Using Theorem 4.2.2 we can elicit a further fact about the cor-
respondence between L(G, H) and L(G/H, 1) of Theorem 4.2.1, namely
that corresponding normal subgroups yield isomorphic factor groups of G:

4.2.3. Theorem. If H<G, A<G and H <A, then
(G/H)/(A/H)=G/A.

PrROOF. Define ¢: G/H -» G/ A, by
(xH)® =xA, xeG.
The map ¢ is well-defined since from xH = yH follows x 'ye H=< A, so
that xA = yA. That ¢ is onto is clear. Finally ¢ preserves multiplication
since
(xH - yH)? = (xyH)® = xyA =xA - yA.

Hence ¢ is an epimorphism. It is obvious that Ker ¢ = A/H, so that
A/H <1 G/H, and the theorem then follows from Theorem 4.2.2.

4.2.4. Theorem. If A< B =G, H=<G, then
BH/AH =B/A(B N H).
In particular,

BH/H =B/B N H.

PROOF. Let 0 be the restriction to B of the natural homomorphism
é: G > G/H. Then Ker 6 = B n H. Since A’ =A%, B’ = B?, the complete
inverse images under 6 of A° and B® will be A(B n H) and B. Since A < B,
we have A% < B It follows from Theorem 4.2.1 that A(B nH) < B, and
from Theorem 4.2.3 that

B/A(BNH)=B°/A°=(BH/H)/(AH/H)=BH/AH.
4.2.5. Exercise. If G= A x B, then G/A =B.

4.2.6. Exercise. Let H be the subgroup of C* consisting of all complex
numbers of modulus 1, and let R** denote the multiplication group of
positive reals. Then C*/H =R**,

Without doubt the concepts of group, subgroup, normal subgroup,
homomorphism and factor group were familiar to the reader from his course
in general algebra. However in a book entitled ‘“‘Fundamentals of the theory
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of groups,” it was surely not out of place to mention them again. It would
however be superfluous to mention the analogous concepts of subring, ideal,
ring homomorphism, and factor ring. There is an interesting connexion
between these and other concepts on the one hand, and group theory on the
other, arising from the study of groups of matrices over rings.

4.2.7. Exercise. Let K be an associative ring with a multiplicative identity,
and G the group of matrices of degree n over K. If I is an ideal in K, then

G ={e+ale+tacG,a;cl}

is a normal subgroup of G. It is called the principal congruence subgroup
modulo I, and its supergroups are the congruence subgroups of the group G.
Every ring homomorphism ¢: K -» K, induces a group homomorphism
&c: G- Gy, defined by

(gii)¢G = (gi,-d’), geG.

The kernel Ker ¢g = Gkers. For example the homomorphism Z-Z,,
induces a homomorphism SL, (Z) > SL,(Z,.), whose kernel (the mth prin-
cipal congruence subgroup) is denoted by I',,(m). Each I',(m) has finite
index in SL, (Z).

In connexion with this last exercise we mention the important congruence
problem for matrix groups G: Does every subgroup of finite index in G
contain Gy for some ideal I of finite index? We shall give on p. 163 one of the
earliest known examples for which the answer is in the affirmative.

J. L. Mennicke [Finite factor groups of the unimodular group, Ann.
Math. 81 (1965), 31-37] and independently H. Bass, M. Lazard and J.-P.
Serre [Sous-groupes d’indice fini dans SL,(Z), Bull. Amer. Math. Soc. 70
(1964), 385-392] solved the congruence problem affirmatively for the group
SL.(Z), n =3 (in the case n =2 it has long been known to have a negative
solution). Mennicke’s paper is accessible to second-year students.

4.3. Subcartesian Products

Recall that the direct product
G=I1"G; (7

iel
consists of the functions f: I »|_J;c; G, satisfying the two conditions:
fh)e G, iel;
|supp f| <co.
It is easily verified that the subset
Gi={f|fe G, f(j)=eforj#i}
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is a normal subgroup of G, isomorphic to the factor G; under the map
f-f(i). On the strength of this isomorphism éi is often identified with G..
With this identification, we have that G; < G, that the group G is generated
by its subgroups G;, and that each element g € G can be written uniquely as

g = gl'l CECE gima (8)

where the subscripts iy, ..., i, are distinct and e #g, € G;, j=1,...,m.

This remark leads us to the definition of the internal direct product, as
distinct from the external direct product defined in Chapter 1 and again
above. Suppose that in a group G there is a set of normal subgroups G;, such
that each nontrivial element of G has a unique expression (8). We then say
that the group G decomposes as the direct product of its subgroups G;.
Obviously a group G decomposes as a direct product of its subgroups G; if
and only if it is isomorphic to the external direct product of the (abstract)
groups G:. Hence the notation (7) will be used also to indicate that G is the
internal direct product of its subgroups G.. In additive terminology we speak
of the decomposition of a group as a direct sum and write as before

G=G1® - DG, G=PG.
iel
4.3.1. ExamrpLES. (I). The additive group of the field C decomposes as
the direct sum of the group of additive reals and the group of purely
imaginary numbers: C=R®R.

(II). Obviously,
Q* =(-1)x[T*(p).

(III). Klein’s four-group decomposes as the direct product of two sub-
groups of order 2:

{1, (12)(34), (13)(24), (14)(23)} =((12)(34)) x{(13)(24)).
(IV). Obviously,
D,.(K)=G1 X"+ XGy,

where G; is the subgroup of D, (K) consisting of those diagonal matrices
whose diagonal entries, except possibly for the ith, are 1.

4.3.2. Exercise. A group decomposes as a direct product of normal sub-
groups G; if and only if it is generated by them, and relations of the form
&, &, =e, where g € G;, and the subscripts j; are distinct, imply g;, =
=g =e.

4.3.3. Exercise. A group decomposes as a direct product of normal sub-
groups G; if and only if it is generated by them, and

Gin{(Gj|j=i)y=1 foralli.
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4.3.4. Exercise. A cyclic group of order mn where m,n are coprime,
decomposes into the direct product of its subgroups of orders m, n.

4.3.5. Exercise. Let p be a prime. The cyclic group of order p" is indecom-
posable (as a direct product of proper subgroups).

4.3.6. Exercise. The additive group of the field Q is directly indecompos-
able.

A subgroup A of the direct product (7) is said to be a subdirect product of
the groups G if the projection of A on each factor G; is the whole of G;. It
should be emphasized that a subdirect product is not uniquely determined
by the factors. Obviously every subgroup of a direct product is a subdirect
product of its projections. A subdirect product need not of course be directly
decomposable: the diagonal subgroup D of the direct square G X G, defined
by D ={(g, g)| g € G}, will serve as counterexample if we take G to be cyclic
of prime order, for instance.

4.3.7. Exercise. Let G=G;XG,, A be a subgroup of G, and A; the
projection of A on G, i=1,2. Prove that A=A;X A, if and only if
A;=GiﬂA,i=1,2.

4.3.8. Exercise. Let G = G, X G, where G, G, are finite groups of coprime
orders. Every subgroup A < G is the direct product of its projections on the
factors G1, G».

If G is a subdirect product of finite groups then clearly any finite set of
elements of G is contained in a finite normal subgroup. Groups with the
latter property are usually called locally normal. As the group C,=shows, the
class of locally normal groups is larger than that of subdirect products of
finite groups. There are however close links between these classes [P. Hall,
Periodic FC-groups, J. London Math. Soc. 34 (1959), 289-304; Ju. M.
Gorcakov, On locally normal groups, Matem. sb. 67 (1965), 244-254].

Analogously to subdirect products one defines subcartesian products: A
subgroup A of the Cartesian product

G= H G,‘
iel
is called a subcartesian product of the groups G; if the projection of A on
each factor G; is the whole of G.. Clearly a subdirect product of groups G;
will also be a subcartesian product of those groups.

4.3.9. Theorem (Remak). Suppose that in a group G we are given a family of
r.zormal subgroups H,, i € I, with intersection H. Then the factor group G/H is
Isomorphic to some subcartesian product of the factor groups G/ H;.
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Proor. Consider the map
¢: G- ] (G/H)),

iel
which sends each ge G to the function f given by f(i) = gH,. It is easily
verified that ¢ is a homomorphism with kernel H. The result then follows by
one of the homomorphism theorems (Theorem 4.2.2).

4.3.10. ExampLES. (I). The group Q/Z is isomorphic to a subcartesian
product of the groups Q/Q, where p ranges over the set of primes.

(IT). The group C* is isomorphic to a subdirect product of the groups
C*/C,= for any two distinct primes p.

(III). Let M be a set partitioned into (pairwise nonintersecting) subsets
M, i€l Let G =S(M) be such that every element of G maps M; onto itself
for all i. Then G is isomorphic to a subcartesian product of subgroups G; of
the S(M,;), ie L

(IV). The group GL,(Z) is isomorphic to a subgroup of the Cartesian
product of the finite groups GL,.(Z,,), m=1,2,....

4.3.11. Exercise. If N, i € I, are normal subgroups of a group G such that
G/ N, is abelian for all i, then so also is G/[ )ic; N; abelian.

4.4. Subnormal Series

Each normal subgroup H of a group G determines a chain 1 = H = G. This
is a particular instance of the more general situation of a finite chain

1=Go=G1=---=G,=G 9)

of normal subgroups of G, known as a normal series for G. For example any
finite chain of subgroups of an abelian group is a normal series. The chain (9)
is called a subnormal series for G if it satisfies the weaker requirement that
each member be normal in its successor, i.e. G;<1G;+1 for i=
0,1,2,...,n—1. Asubgroup H which occurs in some subnormal series for
G is said to be subnormal in G, and we write H <t<a1G. The factor groups
Gi+1/G; are called factors of the series (9), and the number n its length.
(More generally a factor of a group G is any factor group B/A, where A, B
are subgroups of G with A <0 B.y Sometimes series are written in descending
order from G to 1 instead of ascending order from 1 to G. Knowledge of the
factors of some subnormal series of a group furthers our knowledge of the
group itself.

We say that a group G is an extension of a group A by a group B if there is
a normal subgroup H of G such that H =A, G/H = B. In this sense the
factors of a subnormal series are building blocks from which by a succession
of extensions one can construct the original group. We must emphasize
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however that the resulting group is not determined solely by its blocks, but
depends also on the way they are placed on top of one another—for example
there are two extensions of Z, by Z,, namely Z,®Z, and Z4. A group built
of cyclic blocks is called polycyclic. More precisely, a subnormal series with
cyclic factors is said to be polycyclic, and a group with such a series a

polycyclic group.

4.4.1. ExampLES. (I). The factors of the series 1<(2)<Z <Q, are iso-
morphic to (2), Z,, C,~ respectively.

(IT). The factors of the series 1<C, <C,2<---<C,» are all cyclic of
order p.

(III). The group A, possesses a polycyclic series

1<{1, (12)34)} <11, (12)(34), (13)(24), (14)(23)} < A4, (10

with factors of orders 2, 2, 3. This series is not normal (since the subgroup
{(12)(34)) is not normal in A,) although it is subnormal.
(IV). The group T,(K) has a normal series

T.(K)=UTH(K)=UT#K)=---=UTHK)=1, (11)
with factors Fy, Fy, ..., F,_1, where
Fo=K*x-.--xK* (ntimes),
F,=K®---®K (n—mtimes) form=1.

A (sub)normal series of a group induces a (sub)normal series of its
subgroups and factor groups:

4.4.2. Theorem. Let G be a group with a (sub)normal series (9). If H=G
then by intersecting the series (9) with H we obtain a (sub)normal series for H :
l=Ho=H,=<---<H,=H, H;=G,nH,

where each factor H;../H; is isomorphic to a subgroup of Gi+1/G.. IF H< G
then by taking the images of the terms of (9) under the natural homomorphisn
G - G/H, we obtain a (sub)normal series for G/H :

1=éosé15"'Sén=G/H Gi=G,‘H/}I,

where each factor G,-H / G,- is a homomorphic image of the factor Gi.1/G:.

PROOF. It is almost immediate that H; < H;,1, G; < Gi.1, and in the normal
series case that H,<<H, G,<G,. Further, using the homomorphism
theorems we get:

Hiv1/H; = Hiv1/H; 11 N Gi = H;,1Gi/ G < Gi+1/ G,
Gin/Gi= Gi+1H/GiH = Gi+1/ Gi(Gis1 0 H) =(Gix1/ G/ (- - *).
The theorem is proved.
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4.4.3. Exercise. The subgroups and factor groups of a polycyclic group are
polycyclic. The class of polycyclic groups is also closed under extensions.

Two subnormal series of a group are said to be isomorphic if they have the
same length and there is a one-to-one correspondence between their factors
such that corresponding factors are isomorphic. For example the two series

1<Cy<Cs<Cyy,

1<C3<Cs<Cya,

of the group C;,, are isomorphic. A series of a group is called a refinement of
another series of the group if the terms of the second series all occur as terms
of the first.

4.4.4. Theorem (Schreier). Any two (sub)normal series of a group possess
isomorphic (sub)normal refinements.

PROOF. Suppose given two (sub)normal series of a group G:

1=A05A15"'$AM=G, (12)
1=By=B;=:--=B,=0G. (13)
Between each pair A; < A, of consecutive terms of the first series we shall
insert a chain of subgroups determined partly by the second series, and vice
versa. The chain to be inserted between A; and A,.; is constructed as
follows: Intersect the series (13) with A;;; and multiply each member of the

resulting series by A;; the end result is a chain of subgroups beginning with
A; and ending with A;.;—this is the chain to be inserted. We write it as

Ai=Co=Ch=- - =Cn=Ain, Ci=(Ais1nB)A.
We construct analogous chains to be inserted in the second series:
Bj=Djo=Dj;<':+=<Dj,=Bj.1, D;=(Bj«1nA)B;

Obviously if the series (12), (13) are normal then the terms C;;, Dj; of the
inserted chains will also be normal in G. It only remains to prove that
Ci.j+1/cij = Dj,i+1/Dji-
Now by Theorem 4.2.4:
Cij+1/Cii =(Ais1n Bj+1)Ai/(Ais1 0 B)A;
=(Ai+1N Bj+1)/(Air10 Bj)(Ai N Bj11);
Dj,i+l/Dil' =(Bj+1n Ai+1)Bi/(Bis1nA)B;
=(Bj+1NAi+1)/(Bis1n A)(Bi N Ajr).

This completes the proof.
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From this theorem it follows in particular that two (sub)normal series of a
group are isomorphic if they have no repeated terms and cannot be refined
except by repeating terms (Jordan-Holder theorem). Such a subnormal series
is called a composition series.

4.4.5. Exercise. Let G be a polycyclic group. The number of infinite factors
is the same for all polycyclic series of G. It is called the polycyclic rank of the
group G. In the study of polycyclic groups it is often convenient to use
induction on this number.

Observe that Theorem 4.4.2 and Schreier’s theorem carry over without
change to infinite series of the form

s o)
1=G()Q61@"'@Gn@"', G=UG,.,
n=1
and also to certain more complicated kinds of “infinite subnormal series.”
To avoid misunderstanding we note that in some textbooks subnormal and
normal series are called instead normal and invariant series respectively.
This is less apt since the terms of an invariant series must then be called
normal subgroups, and the terms of a normal series subnormal subgroups, or
else quite different words used—‘‘accessible”” and so on. In this book—as
also, incidentally, in most of the group-theoretical literature—the words
“invariant” and ‘“‘accessible” remain unrequisitioned and will be used
henceforth only in their nontechnical senses.

To conclude this section we mention the concept of residuality, a concept
closely connected with that of homomorphism. In its most general sense this
concept is defined as follows ([21], p. 75; we shall define it only in the context
of groups, although it makes sense for arbitrary algebraic systems—see
§24.1 of the appendix).

Let G be a group and p arelation between (or equivalently a predicate on
families of) elements and sets of elements, defined on G and all its
homomorphic images (for example: the binary relation of equality of
elements; the binary relation ‘‘the element x belongs to the subgroup y’’; the
binary relation of conjugacy of elements; and so on). Let & be a class of
groups. We shall say that the group G is residually in { relative to p, if for
each family of elements and sets of elements of G not in the relation p, there
is an epimorphism of G onto a group from the class {, such that the image of
the family under this epimorphism is still not in the relation p. In the
literature one meets up most often with residuality relative to equality of
glements; in this case reference to the relation is usually omitted, so that one
speaks of residuality fout court. By Remak’s theorem (4.3.9) a group is
residually in a class & if and only if it is isomorphic to a subcartesian product
of groups from .

The property of being residually in the class of finite groups is called more
briefly residual finiteness. Residual finiteness relative to a predicate p is
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conveniently denoted by RFp; in particular letting p be in turn the predi-
cates of: equality, conjugacy, belonging to a subgroup, belonging to a finitely
generated subgroup, belonging to a fixed subgroup H, and so on, we obtain
the properties (and classes) R, RFC, R¥e, R¥e,, RFeH, and so on.
The importance of these properties has been pointed out by A. I. Mal’cev
[On homomorphisms onto finite groups, U¢. zap. Ivanovskogo ped. in-ta 18
(1958), 49-60]: the presence of any of them in a group implies the
algorithmic decidability of the corresponding problem.

§5. Endomorphisms. Automorphisms

5.1. Definitions

A homomorphism of a group to itself is called an endomorphism of the
group; a one-to-one, onto endomorphism is an automorphism. An
endomorphic image is like the testimony to a person’s character afforded by
the contents of his pockets. The sets of all endomorphisms and of all
automorphisms of a group G are denoted respectively by End G and Aut G.
These sets are equipped with a multiplication, namely composition of
endomorphisms. It is easily verified that then End G is a semigroup, while
Aut G is even a group; in fact

Aut G =S(G).
If G is abelian we can define addition on End G by setting
x(@+y¢)=x¢d+x¢ for @,y €EndG, xeG.

It is almost immediate that End G then becomes a ring. For nonabelian G
we do not get a ring in this way, so that in general in group theory End plays a
smaller role than Aut.

As has been remarked before (in Chapter 1), conjugation of a group G by
an element a of G is an automorphism since it is one-to-one, onto and

(xy)*=x%* forx,yeG.
This automorphism, ¢, say, is called the inner automorphism of G, induced
by the element a. It is immediate that for a, b, x € G, ¢ € Aut G,
(x%) = x*, (x4 =x, x7Mat = et
whence
-1

-1 _
tals = Labs ta =ta ¢ = ta® (1)

It follows from this that the set Inn G of all inner automorphisms of a group
G is a normal subgroup of Aut G:

Inn G=AutG. 2)
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An automorphism which is not inner is called outer, and we shall call the
group
Out G = Aut G/Inn G, 3)

the group of outer automorphisms. Obviously for an abelian group Out
coincides with Aut.

The first of the equations (1) shows that the map G - Inn G sending each
g in G to the inner automorphism ¢, induced by it, is an epimorphism
(homomorphism onto). The kernel of this epimorphism consists of those
elements g satisfying

x&=1x, xeG;

that is, the kernel is just the center C(G) of the group G. Applying the
appropriate homomorphism theorem we get that

Inn G =G/C(G). 4)

By way of illustration we shall describe the rings End G and the groups
Aut G for some of the groups G of Examples (I)-(IV) of Chapter 1. We shall
need the obvious equality

(End G)* = Aut G.

5.1.1. ExaMpLES. (I). We have

EndZ=1Z, AutZ=72*=17,, (5)
EndZ,, =2,, AutZ,, =7}, 6)
End Q=Q, Aut Q=Q*. ™

In fact the three left-hand isomorphisms are defined as follows:
¢->1¢, ¢->1(modm)p, ¢->1¢.

We consider in detail only the last case. It is immediate that the map ¢ > 1¢
defines a homomorphism. We show that the kernel is trivial, i.e. that if
1¢ =0, then ¢ =0. Let r, s be integers, s # 0. Since

o=16-(s Do (L)

we have

(=0 (Jomo o=

Finally, for every a € Q there is a preimage ¢ <End Q, namely the
endomorphism x - ax of the group Q.

(IT). We describe the ring End C,~. Let ¢,, n=1,2,..., be primitive
complex p"-th roots of 1 such that £4+1 = &,. Obviously any endomorphism
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of the group C,~ is completely determined by its action on &1, €2, ... . Let
¢ € End C,~, then
e',‘,’=sﬁ", kn€Zyn, n=1,2,---.

Since (e2,1)” = &2, it follows that k., goes to k, under the natural homo-
morphism Z,~+1->Z,~ (defined by x(mod p"*')~»>x(mod p"), for x € Z).
Thus to each ¢ in End C,~ there corresponds a sequence (k, k2, .. .),
k, € Z,~, satisfying the condition that k, is the image of k,.; under the
natural homomorphism Z,+1 > Z,». It is inmediate that the set Z,~ of all
such sequences is a ring under termwise addition and multiplication (the
“inverse limit” of the Z,~), and then our map End C,~ > Z,= can easily be
seen to be aring epimorphism. This gives the description of the ring End C,=
that we are looking for. The ring Z - is called the ring of p-adic integers ; its
elements can be written in a natural way in the convenient form

“@p - a1a0= Y, a.p" 0=<a,<p,
n=0
and in this form they can be added and multiplied in a familiar way: ‘““Write
down the remainder and carry the quotient”. By way of illustration we give
some examples of how one does arithmetic with the 5-adic integers:

...20134 ...20134 ...20134
+...12203 x...12203 -...12203

..32342 ... 11012 ... 02431
... 0000
...323
...23
..4

. 11312

We mention in passing that the set Q,~ of p-adic *“fractions,”” which have the
form

*Ap A0 A—1° " Qs = Z anp"’ 05a,,<p,
turns out to be a field under the analogous operations; this field is called the
field of p-adic numbers. The reader will be able to work out for himself the
long division procedure for p-adic numbers (it is only for division that p
needs to be prime). Thus we have

EndCpo=Z,~,  AutCpo=2Z}. (8)

As may easily be seen, Zj~ consists of those p-adic integers with “residue
modulo p”’ a, different from zero.
(IIT). It is true that

AutS, =S, forn#2,6. 9
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We shall prove this at the end of this section, where we shall also show that 2,

6 are indeed exceptional.
(IV). There is a large body of mathematical literature devoted to describ-

ing the automorphisms of the classical matrix groups—see for example [13].
We quote without proof a typical result. Let n = 3, K a field of characteristic
#2. Then for each automorphism ¢ in Aut GL, (K), either

x=x" (x5 x e GL,(K), (10)
or
x*=xY.(£7)%, xeGL,(K), (11)

for some homomorphism ¢: GL,(K)~» K*, some o€ Aut K, and some
element g € GL,(K). Here the hat denotes the taking of the inverse trans-
pose matrix. For many of the matrix groups, especially over rings, the
automorphism groups have been investigated either only a little or not at all.

5.1.2. Exercise. If |G|>2, then Aut G # 1. (Hint. Consider the cases: 1)
G nonabelian; 2) G abelian with an element of order >2; 3) G satisfying the
law x*=e.)
5.1.3. Exercise. End(Z®: - -®Z)=M,(Z);
Aut(Z®- - -@Z)=GL,(Z);
End(Z,® - @Z,)=M,(Zn);
Au(Z,,®- - -®Z,,)=GL.(Z);
End(Q®- - -®Q)=M.,(Q);
Aut(Q®- - -®Q)=GL,(Q).

(Here n is the number of summands in the left-hand sides.)

5.1.4. Exercise. End(C,= X+ - X Cp=) =M,,(Z,);
Aut(C,o X+ - X Cp=) = GL,(Z,~);
(where n denotes the number of factors in the left-hand sides).
5.1.5. Exercise. From the fact that the orders of an element and its image

under an automorphism are the same, list the automorphisms of S3, and
verify that they are all inner.

5.2. Invariant Subgroups

The language of automorphisms allows us to give yet another definition of
normal subgroup: A subgroup H of a group G is normal if and only if it
admits all the inner automorphisms of the group G; i.e.

H?=<H forall$elnnG.
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If in this condition we replace Inn G by an arbitrary subset ® of End G, we
arrive at a more general concept: A subgroup H of a group G is said to be
invariant (or sometimes ‘‘admissible”’) with respect to ® (more briefly
®-invariant), and we write H <4 G, if

H®<H forall¢ed.

It is obvious that the identity subgroup and the whole group are invariant
with respect to arbitrary ®. If a group contains no other ®-invariant
subgroups than these obvious ones, it is said to be ®-simple. For ¢ € ®,
subsets M, M¢ are termed ®-conjugate. The relation of ®-conjugacy is
utilized only when ® = Aut G, in which case it is an equivalence relation—
the general case is of little use. In the most common situations & is either
End G, Aut G or Inn G, and then if H is a ®-invariant subgroup of G, one
writes respectively
H=.G, H=,G, H=,G.

Of course more usual than the notation =<; is the stylized form <3, which we
have used from the beginning. It is also more usual that, instead of the term
“@-invariant” for these ®, the special terms given in the following table are
used. (A better name than ‘“characteristic’” might be ‘‘automorphically
invariant”’.)

o ®-conjugate ®-invariant ®-simple
Inn G conjugate normal simple
Aut G — characteristic characteristically simple
End G — fully invariant —

5.2.1. Exercise. The intersection of a family of ®-invariant subgroups is
again ®-invariant. The same is true of the subgroup generated by a family of
®-invariant subgroups. '

§.2.2. Exercise. The relations <., <, are transitive (in contrast with the
relation <); i.e.
A=,BB=,C > A=,C;
A=,BB=,C > A=,C
5.2.3. Exercise. A characteristic subgroup of a normal subgroup is normal
in the whole group; i.e.
A=,BBxC > AxC
As obvious examples of fully invariant subgroups of a group G, we

mention: the successive commutator subgroups; the nth power G" =
(x"|x € G); the subgroup G» ={x|x € G, x" = 1). The center of a group G is
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always characteristic since if ab=ba, a,be G, and if ¢ € Aut G, then
a®b® =b%a®, and as a runs through the group G, its image a® also runs
through the whole group. Note that even in a finite group the center need not
be fully invariant—see Example (III) below.
We now give examples of invariant subgroups in various concrete groups.

5.2.4. ExampLES. (I). In the groups Z,Z, all subgroups are fully in-
variant. The group Q is characteristically simple, since for any pair of
nonzero rationals there is an automorphism of Q mapping one onto the
other—see the description of Aut Q above.

(ID). It is clear that
C,=.Cp2=,-+-,Cpn=,Cp.

(III). Since the commutator subgroup of a group is fully invariant, we
have A, =<.S,. Let n=3. Since S, has trivial center, it follows that in the
finite group C, xS, C, is the centre. It is not fully invariant as it does not
admit the endomorphism defined by (—1)"x > (12)", m =0, 1, x € S,..

(IV). Let K be a field. Since the mutual commutator of a pair of
®-invariant subgroups is clearly ®-invariant, we have:

SL,.(K)=.GL,(K);
UTY(K)=.T.(K), i=1,2,....

5.2.5. Exercise. The maximal p-subgroup of an abelian group is fully
invariant.

5.2.6. Exercise. The Frattini subgroup of an arbitrary group is charac-
teristic.

§5.2.7. Exercise. The group Q@ - -® Q is characteristically simple.

Sometimes the following more general situation arises: we are given a
group G, and an arbitrary set V with a map V -» End G. Then V is called a
set of operators acting on G, and for ® < V we extend in the obvious way the
above definition of ®-invariance. For ® = V we speak simply of “invariant”
subgroups.

5.3. Complete Groups

A group is called complete if it has trivial center and all its automorphisms
are inner. If a group G is complete then C(G) =1, Out G =1, and by (3), (4)

AutG=G,
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so that the study of the automorphism group reduces to the study of the
group itself. This property of complete groups is the source of their perhaps
imposing namet, given to them at the dawn of group theory. The fact is that
complete groups do not play any major role in group theory. (It is analogous
to that played by perfect numbers in number theory.) Our reason for
introducing the concept is a wish to prove the classical result that most of the
symmetric groups are complete.

5.3.1. Theorem (Holder). Provided n #2, 6, the symmetric group S, is
complete.

PROOF. (i) From §3 we know that for n = 3 the group S,, has trivial center. It
remains to show that for n # 6 every automorphism vy of S,, is inner. Let B,
be the set of all products of k disjoint transpositions from S,,, 1 <k <n/2. By
2.5.7(1II) two permutations from S,, are conjugate in S,,, if and only if in their
disjoint cycle decompositions the number of cycles of each length is the
same. Thus in particular the B, comprise all conjugacy classes of elements of
order 2 in S,, and of course each B, is mapped onto itself by every inner
automorphism of S,. This suggests the following approach: Prove firstly that
vy maps B; to itself, and then show that v is inner.

(ii) To see that y maps B; to itself, note first that since automorphisms
preserve the orders of elements, and map conjugacy classes onto conjugacy
classes, we have that B = B, for some k. We then get the desired equality
BY = B, by brute force: we shall prove that |B,|#|B,|if k #1, n #6.

Now S, contains (3) transpositions and therefore there are H,’:& ("3%)
ordered k-tuples of disjoint transpositions. Since the order of the factors in a
product of disjoint transpositions is immaterial, we have that

1
IBkI——H(" 2') pF =1 (n =2k +1).

Hence the equation |B;| = |Bx| becomes:

(n=2)(n—-3) - (n—-2k+1)=k!12. 12)

We prove that for n # 6, k # 1 this is impossible. Since the right-hand side of
(12) is positive we must have n =2k. (This was in any case the situation
pertaining to the theorem.) This implies the following inequality involving
the left-hand side of (12):

(n-2)(n—-3):---(n—2k+1)=(2k-2)\.
It is easily proved by induction that
2k —=2)!> k127!, fork=4.

t The Russian name would be more appropriately translated as “‘perfect.” This is reserved in
English however for groups equal to their derived group.
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It remains to consider the cases k =2, 3. For k =2 itis easy to verify that the
equation (12) does not hold for any n. Let k = 3. Since n =2k and n # 6, we

have n > 6, and
Lh.s. (12)=5.4.3.2>312?=r.h.s. (12).

Thus (12) does not hold for n # 6, k # 1.

(iii) To prove that vy is inner we shall define, by induction on r, inner
automorphisms v, . . . , v, with the property that yy;' - - - y; ! fixes each of
the transpositions (12), ..., (1r). Then when r = n we get an automorphism
yyz' oo v.' fixing every transposition (ij)=(1/)(1)(1i). Since S, is
generated by its transpositions we shall then have that yy5' - - -y, =1, so
that vy is inner.

First take r =2. By Part (i) above, (12)y = (ij) for some i, j. Define vy,
to be any inner automorphism with the property that (12)*2 = (ij). Then yy2 !
fixes the transposition (12).

For the inductive step, suppose y' = yya' -+ -y, fixes each of the
transpositions (12),...,(1r), and that (1,r+ )Y = (if). The intersection
{1, 2} n{i, j} is not empty, since if it were, then from the equation

(12)(1, r+1)" = (12)(f)

we should get that an element of order 3 is mapped by v’ to an element of
order 2. We may therefore assume that ; = 1 or i = 2, whence it follows that
j>rsince y' fixes (12),...,(1r) and

()_{(1]) fori=1;
P=1a2)a)(2) fori=2.

Consider first the case r=3. The intersection {1,3}n{i,j} is also
nonempty, whence i = 1. Define v,.; to be conjugation by the permutation
(r+1,j); note that y,.; =1if j=r+1. Then y,+1 actson (12),...,(1,r+1)
in the same way as y', so that y'y, 41 = yy2 - - - vr41 fixes the transpositions
(12),...,(1, r+1). It remains to look at the case r =2. If the intersection
{1,2}n{i, j} contains 1 then the preceding argument still applies. In the
contrary situation we may assume that (ij) = (23) or (24), whence we have
that (12)" = (12), (13)” = (23) or (24). Denote by y; conjugation by (12) or
(12)(34) respectively. Obviously y; acts on (12) and (13) in the same way as
¥', so that ¥'y3' =yy3'v3' fixes the transpositions (12), (13). This
completes the proof of the theorem.

The groups Sz, S¢ are not complete since the first is abelian and the second
has an outer automorphism of order 2. The definition of this automorphism
may be found in for example a note by D. W. Miller [On a theorem of
Holder, Amer. Math. Monthly 65, 4 (1958), 252-254].

5.3.2. Exercise. A complete normal subgroup is always a direct factor of its
supergroup. (A leading question is: What must the other factor be?)
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§6. Extensions by Means of Automorphisms

We describe two group-theoretically important constructions which use
automorphisms.

6.1. The Holomorph

This construction arises in connexion with the following question: Is it
possible to embed an arbitrary group G in some group G* with the property
that every automorphism of G is the restriction of some inner automorphism
of G*? Write briefly ®= Aut G. Then for G* one may take the set of
ordered pairs ¢g, ¢ € @, g € G, with multiplication defined by the rule:

b8 $'s' =dd'g’g. (1)
(We are writing pairs without their customary comma and brackets.) The
group axioms are straightforward to verify. It is also straightforward that the

maps
o-> G*, G - G*, 2)

defined by ¢ >¢1, g 1g, are embeddings (i.e. monomorphisms). We
identify ® and G with their images in G* under these monomorphisms.
From the rule for multiplication (1) it is immediate that

¢ 'gp=g° forged, geG. 3)
It is then clear that
G*=dG, G < G*, dNnG=1, 4)

and by (3) every automorphism ¢ € ® is the restriction of some inner
automorphism of the group G*. Hence our problem is solved. The group
®G is called the holomorph of the group G, and is denoted by Hol G.

If instead of taking & = Aut G we take ® < Aut G, then the group ®G
will as before have properties (3), (4). In this more general situation ®G is
called the extension of the group G by means of the automorphisms in ®. By
(4) this accords with the general definition of extension given in §4.4.

The situation may be generalized yet further by taking & to be any group
which comes equipped with a homomorphism ®- Aut G. By defining
conjugation of G by an element of ® to have the same effect as the
corresponding automorphism, and using the same multiplication (1), we
turn ®G into a group having properties (3), (4). In this case G is called the
extension of the group G by means of the group of operators ®.

We now look at the holomorphs of some concrete groups.

6.1.1. ExampLEs. (I). Let K be any of the rings Z, Z,, Q. By 5.1.1(I) the
automorphisms of the additive group K are just the multiplications by
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elements of K*, so that
H01K={(1 B) | o eK*,BeK}.
0 «a

(II). The elements of Hol C,~ can be written in a similar form. Call a
partial sequence (s1, S2, . . .) a p-thread if the first few places are empty while
in the remainder there are elements s, € Z,~, satisfying ps, = s,+1 (suitably
interpreted), and if also the empty places cannot be filled so as to satisfy
these conditions. The sum of two p-threads is defined as follows: Add them
componentwise where they both have components and then fill in the blanks
wherever possible in conformance with the conditions of the definition of
p-thread. It is easily verified that with this operation the set of all p-threads is
a group (the “direct limit”’ of the Z,~). It is in fact isomorphic to C,~. To see
this, foreachn =1, 2, .. ., choose a primitive complex p"th root of unity ¢,
suchthat e7 .1 = &,. Each complex number x in C,~ lies in some smallest C,,~,
and then in all succeeding C,~, m = n. Write x = ,7, S € Z,~, for all m =n.
Since &7y} =eip =%, it follows that the partial sequence of the
exponents s,, is a p-thread. It is easy to see that the map x - (s;, 52, ...)isan
isomorphism from the group C,~ onto the group of p-threads, and moreover
that the automorphisms in Aut C,~ when represented as in 5.1.1(II) as
p-adic integers, act on the p-threads by componentwise multiplication. Thus

Hol C,~= {((1) B) I acZll~,Ba p-thread}.
a

This differs from the preceding example in that the matrix entries a, 8 come
from two different sets with no ring evident containing them both.

(III). We know that for n # 2, 6, the group S, is complete so that certainly
Aut S, =8,. Since S, is normal in its holomorph it is, by Exercise 5.3.2, a
direct factor of its holomorph. Hence

Hol S, =S, xS, forn#2,6.

It is clear that in fact for any complete group G this is true: Hol G =G X G.

(IV). For the holomorphs of the groups GL, SL, T etc. one cannot hope
perhaps for a description simpler than the definition, since the automor-
phism groups in these cases have rather complex structures.

6.1.2. Exercise. Let K be any of the rings Z, Z,,, Q. Establish the iso-
morphism (n summands in both sums):

Hol(K ®- - -@K)={((1) f)laeGLn(K),BEK@' - @K}.

6.1.3. Exercise. Find all the conjugacy classes of Hol Z.

6.1.4. Exercise. Find in Hol Z a chain
HolZ=Ho=H,=- - -
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of normal subgroups H; such that [ JH;=1 and each factor H,/H;,, is
contained in the center of the factor group Ho/H;+1,i=1,2,....

6.1.5. Exercise. Is Hol Z a complete group?

6.2. Wreath Products

Let A, B be groups. We denote by AB) A® the Cartesian and direct
products respectively of isomorphic copies of A indexed by the elements of
B. Thus A™®) s the group of all functions B > A with the usual multi-
plication, while A® is the subgroup consisting of all such functions with
finite support. For each f€ A™®, b € B we define a function f° by

f*x)=f(bx), x€B. )
It can be verified immediately that the map
b: AP A8 6)

defined by f - f°, is an automorphism mapping A®? onto itself, and that the
maps
B-Aut(A"®), B Aut(A®), (7)

sending each b € B to the automorphism 5 and to the restriction of 5 to A®
respectively, are monomorphisms. The extensions of the groups AlBl A®
by means of the groups of operators (7) are called respectively the
(unrestricted) wreath product and restricted wreath product of the group A by
the group B, and are denoted by A Wr B, A wr B. Thus the unrestricted
wreath product A Wr B is the set product B x A"® with multiplication given

b
y bf - b'f'=bb'f*f, where f*(x)=f(b'x), 8)

while the restricted wreath product is its subgroup B - A®. Notice that in
the construction of the wreath products of A by B, the groups A and B play
different roles: A is passive and B is active. In English the names ‘‘bottom”
and “top” groups (for A, B respectively) are more usual: however the names
we adopt here are more descriptive and so more suitable.

The subgroups A®), A® are called the base groups of the corresponding
wreath products. It is obvious that A Wr B and A wr B coincide if and only
if either A is trivial or B finite. The subgroup

Diag(A"®) = {f|fe A'®), f(x) = const. for x € B};
i.e. the diagonal of the base group A'®) is called also the diagonal subgroup
of the wreath product A Wr B. Finally, for each a € A we define a function
aeA®) by
a forx=e,
e forx#e.

d(x)={
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It is immediate that the map A > A"l defined by a > g is a monomorphism.
The image A of A under this map 1s called the first coordinate subgroup, and
for b € B the conjugate subgroup A® is called the bth coordinate subgroup of
either wreath product. Thus the passive group A participates in the wreath
product through its copies A®, while the active group B is contained in the
wreath product, and by acting by conjugation on the copies of A—the
coordinate subgroups—permutes or ‘“‘wreathes’” them. Obviously
AP =TT A"

beB

6.2.1. Exercise. If A, <A, B; =B, then the wreath product A; wr B; is
isomorphic to the subgroup of A wr B generated by the image of A, in the
first coordinate subgroup A under the canonical isomorphism A > A, and
the subgroup B;.

6.2.2. Exercise. A nontrivial normal subgroup of a restricted wreath
product with nontrivial passive group has nontrivial intersection with the
base group.
6.2.3. Exercise. Let A be a nontrivial group. Then

C(A Wr B) = Diag(C(A)'®Y);

C(A wr B)=1, if B isinfinite.

6.2.4. Exercise. The commutator subgroup of the wreath product A wr B is
the product B’ - H, where

- {f|Fe A® ] f(b)=e mod A’}.
beB
(As usual A’, B' denote [A, A], [B, B].)

6.2.5. Exercise. Every element of the commutator subgroup of Z wr Z is a
commutator.

6.2.6. Exercise. The wreath product Z wr Z is isomorphic to the subgroup
of GL,(R) generated by the matrices

o0 G
0 1/ 0 1/
where { is any fixed transcendental real.

6.2.7. Exercise. The operations Wr, wr are not associative on the class of all
groups (in fact not even on the class of finite groups).

An important link between wreath products and arbitrary extensions is
given by the following result, dating back to Frobenius.
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6.2.8. Theorem (Kaluznin-Krasner). Every extension of a group A by a
group B can be embedded in the unrestricted wreath product A Wr B.

PROOF. Let A< G, G/A =B, 7: B~ G, afunction (a “coset representative
function”) choosing for each coset b € B, an element in that coset (= for
“transversal”’). Write briefly W = A Wr B. Define a map ¢,: G-> W, by
g% =8f, g€ G, where § is the coset Ag, and f, is the element of the base
group of W defined by

fe(b)=((gb)r) "'g(br), beB.

A direct computation verifies that ¢, is a monomorphism. This proves the
theorem.

6.2.9. Exercise. With the same notation,

(;4’T . A[B]= w, Gd”ﬁA[B]:Ad".

6.2.10. Exercise. If 7, is another coset representative function then the
subgroups G?%, G*: are conjugate in W.

We remark that A Wr B is sometimes referred to as the complete or
Cartesian wreath product, while A wr B is also called the discrete or direct
wreath product. We shall generalize slightly the concept of wreath product
as defined here, when we consider (in §13) monomial representations—it
was in this guise that the wreath product first made its appearance on the
historical scene. There we shall describe an embedding of an arbitrary group
G with a given subgroup H of prescribed index m, into a monomial group of
matrices of degree m over H—an early version of the theorem proved
above.

Finally note that the holomorph and the wreath product (and the direct
product of two groups) are rather special extensions of one group by another
in the following sense: An extension G of a group A by a group B is said to
split, or be a splitting extension, if G contains subgroups A ;, B; isomorphicto
A, B respectively such that A; <G, G = A, By, and A; n B; = 1. Clearly we
then have that G/A;=B. Alternatively one sometimes says that A, is
complemented in G (by B,), or that G is a semidirect product of A by B.

6.2.11. Exercise. Every extension of Z, by Z,, where p, q are distinct
primes, is splitting. The group Z - is an extension of Z,, by itself which is not
splitting.



Abelian Groups

For abelian groups it is both more convenient and more usual to use additive
notation. We shall follow this convention in the present chapter.

§7. Free Abelian Groups. Rank
7.1. Free Abelian Groups

Let 2 be a class of groups. A group F =(x;|i € I') belonging to  is said to be
free in the class R, freely generated by the set {x:|ic I}, if for every group
G € 2 with generating set {a;|i € I} the map x; - a; extends to a homomor-
phism F - G. The cardinal of the index set I is called the rank of the free
group F. The set {x;|i € I'}is often called a basis for F. It may be shown easily
that not every class of groups contains free groups. However free groups do
exist in the class of all abelian groups, and can be described very simply.
Before giving this description we need the following preparatory lemma.

7.1.1. Lemma. Suppose a factor group G/N of an abelian group G decom-
poses as a direct sum of infinite cyclic groups:

G/N =@ (A/N), A;=(a; N).

iel

Then G is the direct sum of the subgroups N and A ={a;|ie€I).

PROOF. First observe that G = (N, A). Next suppose that A " N #0, and let
. a be a nonzero element in A N N. Then a can be written in the form

a =Y ngai, neZ.
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Hence we get an equation in G/N:
N =Y (mai, +N),

whence by the definition of direct sum it follows that nia; + N = N. Since
A, /N is infinite cyclic we must therefore have that n, = 0; but this means
that a =0, a contradiction.

7.1.2. Theorem. The free groups in the class of abelian groups are precisely
the direct sums of infinite cyclic groups.

PROOF. Let G = @i (x;) be a direct sum of infinite cyclic groups (x;), and
let A be any group with generators a;, i € I. It is easy to see that the map
Y nexi, > Y, nea;,, which extends the map x; - a; of the set {x;|i € I'} onto the
set{a;|i € I}, is a homomorphism G - A. This means that G is a free abelian
group, i.e. a free group in the class of abelian groups. Its rank is the number
of infinite cyclic direct factors.

Now let F be a free abelian group and {x; | i € I'} a set of free generators for
it. By the definition of free group there exists a homomorphism 7 from F
onto the direct sum A = @P;s (a;) say, of infinite cyclic groups (a;), which
extends the map x; - a;. By one of the homomorphism theorems A =F/N
where N = Ker 7, so that the factor group F/ N decomposes as the direct sum
of the infinite cyclic groups (x; + N), i€ I. Thenby 7.1.1 we have F=N®B
where B =(x;|i € I). However the subgroup B is generated by the same set
{x:|i € I'} as F; thus the kernel N of the homomorphism 7 is zero, i.e. 7 is an
isomorphism (being obviously onto). Hence our free abelian group F is
isomorphic to A, the direct sum of infinite cyclic groups, and the theorem is
proved.

From the proof of Theorem 7.1.2 we see that the rank of a free abelian
group G is independent of the choice of basis, and coincides with the number
of summands in the decomposition of G as a direct sum of cyclic subgroups.
(Prove that this number is an invariant of G.)

It turns out that the subgroups of a free abelian group are again free
abelian. For the proof of this fact we shall make use of the concept of
ascending series

0=Noy<N;<---<N,<---<N,=G 1)
of an abelian group G, i.e. a chain of subgroups well-ordered by inclusion
and indexed by the corresponding ordinal numbers, with the additional
stipulation that for each limit ordinal o the subgroup N, is the union of all

subgroups Ng, 8 < a. The factors of the series (1) are the quotients N, 1/ Na.
If A <G then in the series

O=A0$A1$...$Aas..._<_Ay=A’ (2)

where A, = A N N,, there may be repetitions. After omitting duplications
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and renumbering the remaining (distinct) members of (2), we obtain an
ascending series
0=A,<A,<---<A,<---<A,=A (3)

of subgroups of A, which we shall say has been obtained by intersecting the
series (1) with the subgroup A.

To prove the subgroup theorem we require the following condition
equivalent to freeness of an abelian group.

7.1.3. Theorem. An abelian group G is free if and only if it possesses an
ascending series all of whose factors are infinite cyclic.

PrOOF. Suppose G has an ascending series (1) with infinite cyclic factors.
For each a <y choose in the set difference N,.:\N, an element a,.; such
that N, .1 =(a.+1+ N,); we shall show that G is the direct sum Po <, (de+1)
of its infinite cyclic subgroups (a.+1). The proof will be by induction on v, the
length of the series (1). For y = 1 the assertion is obvious; assume inductively
that it holds for all a <4.

Let g be any nonzero element of G, and suppose g € Ng, g€\ Uy<g N, =
Njz_1 (in other words B is the smallest ordinal such that g € N, and so cannot
be a limit ordinal). Since N = (ag, Ng_1) and Ng/N;_; is infinite cyclic, g can
be written uniquely in the form g = g+ nag, g1€ Ng_1. By the inductive
hypothesis, since 8 — 1 < v, the element g has a unique expression as a linear
combination of the ag,:

g1=n1a31+.'.+nsaﬁs’ Bi<B’
which implies the uniqueness of the expression
g= n1a31+ e +nsags +na,3.

This shows that G is a direct sum of infinite cyclic groups, which by Theorem
7.1.2 is equivalent to freeness.

For the converse let G be a free abelian group and let G = P, <, {(g.) be a
decomposition of G as a direct sum of infinite cyclic groups. Setting No =0,
Noi1=(gs No) and N, =g, Ng for limit ordinals a, we obtain an
ascending series with infinite cyclic factors. This shows the necessity of the
condition and completes the proof of the theorem.

In §4.4 we showed that the factors of a subnormal series of a subgroup
A = G, obtained by intersecting A with the terms of a subnormal series of G,
are isomorphic to subgroups of the factors of the series for G. The cor-
responding assertion for the ascending series (1) and (3) is established in
exactly the same way. From this remark and Theorem 7.1.3 the subgroup
theorem for free abelian groups follows immediately:

7.1.4. Theorem. Every subgroup (including the zero subgroup) of a free
abelian group is again free abelian.
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7.1.5. Exercise. Let n be a positive integer and let ,, be the class of all
abelian groups satisfying the law nx = 0. Prove that the free groups of the
class A, are just the direct sums of isomorphic copies of Z,,. For which of the
classes 2, is it true that subgroups of free groups are always free?

7.2. Rank of an Abelian Group

In the preceding section we defined the rank of a free abelian group to be the
cardinal of a set of free generators. As it stands this definition makes sense
only for free abelian groups; however we shall now give another definition of
rank applicable to arbitrary abelian groups. As will be apparent this new
rank coincides with the old rank in the case of free abelian groups, and is
analogous to the dimension of a vector space.

A finite family of elements g, . . ., g« of an abelian group C is said to be
linearly dependent (over Z) if there exist integers ny, ..., n, not all zero,
such that Y n;g;=0. An arbitrary family of elements of the group G is
linearly dependent if some finite subfamily is linearly dependent. It is easy to
show that in an abelian group G containing at least one element of infinite
order there is always a maximal linearly independent subset, and that all
such subsets have the same cardinal. This cardinal, the size of any maximal
linearly independent subset of G, is what we shall call the rank of the
group G.

Periodic abelian groups obviously do not contain linearly independent
subsets (except for the empty set), so that it is natural to define their ranks to
be zero.

7.2.1. Theorem. A nonzero torsion-free abelian group has rank 1 if and only
if it is isomorphic to a subgroup of the additive group Q of rationals.

PROOF. Let G = Q, G #0, and let g,, g» be any nonzero elements of G. Then
there exist integers n1, n, # 0 such that n,g, = n,g. Thus any two elements
of G form a linearly dependent family, so that G has rank 1.

Now suppose that we are given a torsion-free group G of rank 1. Fix
arbitrarily on some nonzero element go€ G. Then for each element g€ G
there are integers m, n (where n # 0 and if g # 0 then also m # 0), such that
ng = mgo. Choosing such integers m, n for each g, we getamap ¢:g->m/n,
from the group G to the group Q.

We show first that in fact m/n is uniquely determined by g. Suppose
ni1g = mygo. Multiplying the equations ng = mgo and n1g = mgo by m, and
m respectively, and subtracting we get (nm;—n;m)g=0. If g#0, then
nmy;—nim =0, or m/n = mi/n,, as desired. If g = 0 then we must have that
m, m, are zero, whence m/n=m1/n,=0.
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To show that ¢ is one-to-one, suppose that kg, = Igo where I/k = m/n.
Then from the equations ng = mgo and kg, = Igo we get mk(g —g,)=0, and
then the torsion-freeness gives g = g.

Finally, ¢ is homomorphic: From the equations ng =mgo, sg’ =1go,
8 g'€G, it follows that ns(g+g')=(sm+nt)go, whence (g+g')¢=
g® + g'¢. This completes the proof.

Prompted by the well-known theorem about the decomposition of a
vector space as a direct sum of one-dimensional subspaces, we might ask: Is
every torsion-free abelian group a direct sum of rank 1 abelian groups? The
answer is in general negative. An example of an indecomposable torsion-
free abelian group of rank 2 was first constructed by L. S. Pontrjagin (see
[34], Example 15). There now exists a whole series of papers on the problem
of decomposability of torsion-free abelian groups, in which in particular
other such examples are given.

7.2.2. Exercise. Let G be an abelian group and let A < G. Then the rank of
G is the sum of the ranks of A and G/ A.

§8. Finitely Generated Abelian Groups

In this section we first prove a sharpened version of the subgroup theorem
for free abelian groups of finite rank, and then from this sharpened result
deduce the fundamental theorem about finitely generated abelian groups.

8.1.1. Theorem. Let F,, be a free abelian group of finite rank n and let A be a
nonzero subgroup. Then A is free, and the groups A and F, possess bases
{a,...,a}and {f1,..., f.} respectively, satisfying the following conditions:
k=<n;a =mf,1<i<k; and m; divides mi;,, 1=i<k—-1.

Proor. We shall use induction on the rank n of the free abelian group F,.
For n =1 the group F, is cyclic and in this case the statement of the theorem
is obviously true. Suppose that n > 1, and as inductive hypothesis that the
statement is true for free abelian groups of rank n —1.

Given an (ordered) basis {x4, . . ., x,} of F, and a nonzero element a € A,
there is an n-tuple (#1,...,1,) of integers uniquely determined by the
equation

a=txi+- - +txn

From all such n-tuples choose one with smallest positive t;, say
(m, s2,...,5s,), (t1=m,), and let

{fll, b21--~9bn} (1)
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be a corresponding (ordered) basis, and 0 # a, be the element of A such that
ar=mf1 +82b2+- - - +5,b,.

It turns out that under these conditions m; divides all the coefficients s:.
For, writing s; = q:m, +r, 0=r; <m,, and writing a, in terms of the basis

{f1=fi +q2b2+”'+qnbmb2,~--,bn}, (2)

we have a;=m;fi+rby+- - - +r,b,, so that by the choice of m, all the r;
must be zero. Thus a; = m, f;.

Write B=A nF,_;, where F,_1 = (b, . . ., b,). We shall prove that A is
the direct sum of its subgroups (a;) and B. Since {(a,)n B =0 it suffices to
show that A ={(a,, B).

If a=mfi+be A, where beF,_;, and m =qm, +r, 0=r <m,, then the
element a — qa; belongs to A and in its expression in terms of the basis (2),
the coefficient of f; is r <mj, so that again r = 0. It follows that b = a — mf; =
a—qa; € A, whence b € B. Since a was an arbitrary element of A we get that

A= <a1>@B.

By the inductive hypothesis the subgroup B (=< F,,_;) and the group F,_;
possess bases {as, ..., ar} and {f2, ..., f.} respectively, satisfying: k <n;
ai=mif, 2<i<k; m;|mi+1, 2<i<k. Obviously the sets {ay, as, ..., ar}
and {fi1, f, . . . , fo} are bases for A and F, respectively. To show that these
bases satisfy the conditions of the theorem it only remains to prove that m,
divides m,.

Let m, ={dm; +7, 0=F<m,. Expressing the element a; —a; € A in terms
of the new basis {4f>—f1, f2, . . . , fn}, We have

a—a; = ml(éfZ_fl)"'ffL

Since the coefficient of f, is f < m;, we conclude as before that 7 =0, so that
m divides m as required. This completes the proof of the theorem.

8.1.2. Theorem. Every finitely generated abelian group is a direct sum of
cyclic subgroups.

PrROOF. Let G be a finitely generated abelian group generated by n
elements; then G is isomorphic to a quotient F,/A of the free group F, of
rank n. By Theorem 8.1.1 the groups F,, and A possess bases f1, . . . , f, and
ai,...,a, with the property that a;=mf, 1=i=<k. Since G=F,/A it
suffices for the proof of the theorem to show that F,/ A is the direct sum of its
cyclic subgroups (f; + A).

In the first place it is clear that F,/A is generated by the subgroups
(f: + A). Next suppose that the zero of the factor group F,/A can be written

A=lLfi+ -+ .f, +A.

From this we get that /1f1+* * * + L.f, = a € A. Writing the element a in terms
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of the above basis for A and utilizing the equations a; = m;f;, we arrive at the
following equalities:

[1f1+° . '+l,,fn =511+ -+ Siag =s1m1f1+~ . '+skmkfk.

By the uniqueness of the expression of an element in terms of the free
generators f;, we therefore have: i=sm;, 1=<i<k; [;=0, k<j=n.
However this means that all of the elements /;f; belongto A, i.e. lif; + A = A.
This gives us the uniqueness of the representation of 0 as a sum of elements
of the subgroups (f; + A).

8.1.3. Exercise. Let F be a free abelian group of finite rank »n with a basis

{fi,.. o fa} 3)

We define an elementary (Nielsen) transformation of the basis (3) to be a
map (or “change of basis”) of one of the following kind:

(i) Forapairi, jwithi#j, i>f, fi=>fo fi > fuo K #i, J;
(ii) For apair i,j with i #j, fi> fi+fi; fi = fu, kK #i;
(iii) For some i, f; > —f;; fu > fu, k #1.

Show that every ordered basis for F can be obtained from the basis (3) by
a succession of elementary transformations.

8.1.4. Exercise. The collection of all finite index subgroups of a finitely
generated abelian group has zero intersection.

8.1.5. Exercise. The set of all elements of finite order of a finitely generated
abelian group constitutes a finite subgroup.

8.1.6. Exercise. Show by means of an example that Theorem 8.1.1 does not
generalize to free abelian groups of infinite rank.

8.1.7. Exercise. Every subgroup of a finitely generated abelian group is
finitely generated.

§9. Divisible Abelian Groups

A group G is said to be divisible (or sometimes ‘‘radicable”) if for every
positive integer n and every element g € G, the equation nx =g (x" =g in
multiplicative notation) has at least one solution in G.

9.1.1. ExampLEs. (I). It is obvious that the additive group Q of rationals is
divisible.
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(II). We shall prove the divisibility of the quasicyclic group C,~. As we
have seen C,~ is isomorphic to the union of an ascending series of finite
cyclic groups

(a<{a)<---<(@.,)<---,

where (in additive notation) pa; =0, pa,,1=a., n=1,2, ... . Consider the
equation sx = g where s is a positive integer and g € C,~. The element g lies
in some member of the series, say (a,), i.e. g=1Ia,. Writing s= p"m,
(m, p) =1, let d,, d, be integers such that 1 = p"d, + md,. From this and the
equations g =la,, p"a,=0, we get: g=(p"d,+md,)g = md,la, This
together with the relation p*a,,+, = a,, yieldsinturn g = mp*(dala, +i). Thus
we have found a solution, namely d»la,.«, for the equation sx = g.

The importance of these two examples derives from the fact that every
divisible abelian group is a direct sum of isomorphic copies of Q and
C,~>—see Theorem 9.1.6 below.

9.1.2. Exercise. Prove the divisibility of homomorphic images and direct
and Cartesian products of divisible abelian groups.

9.1.3. Theorem. Every abelian group can be embedded in some divisible
abelian group.

PROOF. Let G be an arbitrary abelian group and let F be a free abelian
group with free generators x;, i € I, such that G =F/N. Denote by F* the
direct sum @;c; Q; of groups Q,, isomorphic copies of the group Q of
additive rationals, and choose from each summand Q; an arbitrary nonzero
element b,. It is obvious that the map x; - b; extends to a monomorphism 7
say, of the group F into the group F*. On the strength of this monomor-
phism we may regard F as a subgroup of F*. By the assertion contained in
9.1.2 above, the factor group F*/N is divisible, and it also contains F/N
(= G) as a subgroup.

9.1.4. Theorem. A divisible subgroup of an abelian group G is a direct
summand of G.

PROOF. Let A be a divisible subgroup of G, and denote by B asubgroup of G
maximal with respect to having zero intersection with A (the existence of
such a subgroup B follows from Zorn’s lemma). We shall show that
G = A®@B. (Obviously (A, B)=A®B.)

Suppose that G strictly contains A @ B, and let g € G\(A @ B). The cyclic
subgroup (g) has nonzero intersection with A@B since the contrary
circumstance would imply that the sum A + B +(g) was direct, and then the
subgroup B @(g) would intersect A trivially, contradicting the choice of B.
Let n be the smallest positive integer such that ng € A @ B. We may suppose
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that n is prime, for if it is not we may consider (r/p)g in place of g, where p is
any prime divisor of n.

Let ng = a +b where a € A, b € B. Being divisible, A contains an element
a, such that na; = a. Replacing a by na, in the preceding equation we get
ng, = b, where g1 =g —a,; of course g; is also outside A® B.

By definition of B the intersection A N(gi, B) is nonzero. This implies
the existence of a nonzero element a’ of A which can be written as a sum
a'=kg,+b', b'e B, 0<k <n. Since (k, n) =1, there exist integers /, s such
that lk +sn = 1, so that g; = lkg, + sng,. Since ng; and kg, = a’ — b’ belong to
A®B, it follows that g, € A® B, which contradiction completes the proof.

9.1.5. Exercise. The sum (i.e. subgroup generated by) any set of divisible
subgroups of an abelian group is again a divisible subgroup.

9.1.6. Theorem. Every divisible group G decomposes as a direct sum of
subgroups each isomorphic to either the additive group Q of rationals or a
quasicyclic group C,= (where p may vary for different summands).

PrROOF. We obtain the desired decomposition by using transfinite induction.
We may suppose G nonzero since the theorem is vacuously true otherwise.
Choose in G any element g # 0. We consider two possibilities for g.
(i) If the element g has infinite order, then in view of the divisibility of G
there is a sequence
8=81,82---358ns+ >

of elements of G, satisfying (n +1)g,+1=gn, =1, 2, ....Itis easy to verify
that the subgroup generated by all g; is isomorphic to the group Q of additive
rationals.

(ii) If g has finite order n say, then the element a, = (n/p)g, where p is
any prime divisor of n, has order p. Again by the divisibility of G thereisin G
asequence ai, d, . . . , of elements satisfying pa,.1 = a,, and these generate
a subgroup isomorphic to C,.

We have thus shown that our group G contains a subgroup A ; isomorphic
to either Q or C,~.

Suppose we have defined an ascending series A; <A, <+ -<Ag<---
of divisible subgroups of G, indexed in order by the ordinals 3 less than a.
(Recall that by the definition of ascending series for each limit ordinal 8 we
have Ag =|_Js<g As.) Suppose further that the above series has the property
that for each B which is not a limit ordinal, the subgroup A is the direct sum
of Ag_; and a subgroup Cg_, isomorphic to Q or some C,=. If « is a limit
ordinal we put A, =g<a Ag. If a is not a limit ordinal and A.—; # G, then
since A,_; is divisible, by Theorem 9.1.4 we have that G = A,—1 ® C, where
C is nonzero and divisible. Just as we constructed the subgroup A; of the
divisible group G, we construct in C a subgroup C,—; isomorphic to Q or
C,=, and define A, = A,—1® C,—1. In this way we define A, inductively for
all ordinals & < v, where 1 is the first ordinal such that A, =G.
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Having defined the A,, a =<4, it only remains to observe that G is the
direct sum of the subgroups A;=Cy, Cy,..., C,,..., for the proof to be
complete.

9.1.7. Exercise. In a torsion-free abelian group the intersection of an
arbitrary set of divisible subgroups is again divisible.

9.1.8. Exercise. A minimal divisible group G* containing a given group G,
is called a divisible closure of G. In other words a divisible closure G* of the
group is a divisible group containing G as a subgroup, such that if A is a
divisible subgroup of G* containing G then A = G*. Prove that every
torsion-free abelian group G has a torsion-free abelian divisible closure.
Given any automorphism of G there is between any two such divisible
closures of G an isomorphism extending the given automorphism.

9.1.9. Exercise. Show by means of an example that the intersection of
divisible subgroups of a periodic group is not necessarily divisible.

9.1.10. Exercise. A group without nonzero divisible subgroups is said to be
reduced. Every abelian group is the direct sum of a divisible subgroup and a
reduced subgroup.

9.1.11. Exercise. In the theory of modules the concepts of projective and
injective modules play important dual roles. In the case of abelian groups
(regarded as modules over the ring of integers) these concepts may be
defined as follows. An abelian group F is said to be projective (a projective
Z-module), if for each epimorphism 7: A > B, and each homomorphism
¢: F-> B, (A, B abelian groups) there exists a homomorphism ¢:F > A,
such that the diagram

F
/
/
/
/
v, ®
/
¥
A—> B
T

commutes, i.e. ¢ =¢7. An abelian group G is called injective if for each
monomorphism 7 from B to A and each homomorphism ¢ from B to G,
there is a homomorphism ¢ from A to G such that the diagram
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commutes, i.e. ¢ = 7. Prove that an abelian group is (i) projective if and
only if it is free, and (ii) injective if and only if it is divisible.

§10. Periodic Abelian Groups

In any abelian group G the set T of all elements of finite order is a subgroup;
it is called the torsion subgroup of G. The factor group G/ T is torsion-free.
This fact to a certain extent reduces the study of arbitrary abelian groups to
the study of periodic groups and torsion-free groups separately. It is
however worth noting that in general the torsion subgroup is not a direct
factor.

10.1.1. EXAMPLE. Let
= Z Zp’ G= @ Zpr
14

14

(where p ranges over all primes). It is obvious that G is the torsion subgroup
of G. We shall show that G/ G is divisible, and that G is not a direct
summand of G.

We first prove the divisibility of the quotient G/G. Let fe G,andlet n be
a positive integer. Since for p >n the group Z, contains an element g,
satisfying ng, = f(p), we have that ng =f', where g and f' are defined as
follows:

|0 forp=n,
f(p)—{f(p) forp>n.

Then since clearly Gf =Gf, it follows that the equation nx = Gf has a
solution in G/G (Gg will do).

Now suppose that G is a direct summand of G, say G = G®H. It follows
from the above that since H = G/ G, H is divisible. Thus for every positive
integer n and any h € H, the equation nx = h has a solution in H. However if
h is such that h(p)# 0 then this equation has no solution if n = p. This
contradiction proves our assertion about G.

In a periodic abelian group G the set G, of all p-elements, i.e. elements
whose orders are powers of the fixed prime p, forms a subgroup. It is obvious
that G, is the unique maximal p-subgroup of G; it is also called the
p-primary component of the group G.

0 forp=n,
g(p) ={ b

g forp>n;

10.1.2. Exercise. A periodic abelian group is the direct sum of its primary
components.

In view of this statement, in studying periodic abelian groups we may—at
least insofar as we are considering questions of decomposability—restrict
attention to p-groups. We shall therefore limit ourselves in this section to
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stating and proving results about p-groups only; the appropriate general-
izations to arbitrary periodic abelian groups may be deduced easily.

The theorem about the decomposability of a finitely generated abelian
group as a direct sum of cyclic subgroups naturally prompts the question of
the existence of such a decomposition for an arbitrary abelian p-group
without divisible subgroups. In general the answer is in the negative;
however there are useful conditions under which an abelian p-group is a
direct sum of cyclic subgroups.

10.1.3. ExamprLE.Let G = éBn {(a,) be the direct sum of its cyclic subgroups
(a,) of orders |a,|=p", n=1,2,..., and write b,=p" 'a,. Put N=
(ClyervsCnyevo)s where c,. = b b,,+1 We shall prove that the group G=
G/N has no nontrnvxal divisible subgroups, and does not decompose as a
direct sum of cyclic subgroups.

To see that G has no nontrivial divisible subgroups write Ny = (b1, N);
then N; = Ny /N is ﬁmte and the quotlent G/ Ny is the direct sum of its cyclic
subgroups (d., N1)/N,, where 4, =a,+N. It is easy to show that such
groups have no nonzero divisible subgroups, and thence that G also has no
nonzero divisible subgroups.

We now prove the indecomposability of G as a dlrect sum of cyclic
subgroups. Since b; + N = b;.1+ N, we have that p" =d;, so that for
every n >0 (and the fixed element d,) the equation p"x = al has a solution in
*G. However it is obvious that a direct sum of cyclic p-groups can never have
this property, giving us the desired conclusion.

Recall that the exponent of a p-group G is that integer p" (if it exists) for
which p"G =0, while p"~'G #0.

10.1.4. Exercise. An abelian group of prime exponent p is a direct sum of
cyclic subgroups. (Hint. Use transfinite induction, or regard the abelian
group of exponent p as a vector space over the field GF(p) and apply the
theorem from linear algebra about the decomposition of a vector space as a
direct sum of one-dimensional subspaces.)

10.1.5. Theorem (Priifer’s First Theorem). An abelian p-group of finite
exponent is a direct sum of cyclic subgroups.

PrOOF. We shall use induction on n (starting from n = 1), where the
exponent of the group is p". On the strength of Exercise 10.1.4 above we
may proceed immediately to the inductive step: assume that the theorem is
true for groups of exponent p*, k <n, and consider an abelian group G of
exponent p".

Since the subgroup pG has exponent p"~', it is by the inductive hypo-
thesis a direct sum of cyclic subgroups: pG =@ (a:). Denote by x; some
solution (in G) of the equation px = g, (a solution exists in G since a; € pG),
and put H =(x;|i e I). Then H =;; (x:) (prove it!). Let B be a subgroup
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of G maximal with respect to intersecting H trivially, and suppose G #
H + B. Let g € G\(H + B). By construction of the subgroup H it is clear that
the equation px = pg has at least one solution in H, say h. Then the element
g1 = g — h, which does not lie in H + B, satisfies pg; = 0. By the definition of
B, the intersection H N (g;, B)is nonzero. This means that there is a nonzero
element &, € H which can be written in the form h; = kg, +b,be B,0<k <
p.Hence if sk = 1(mod p), then g, = skg, = sh, — sb € H + B, a contradiction.
Thus G=H®B.

Since the subgroup H (by construction), and the subgroup B (by 10.1.4),
decompose as direct sums of cyclic subgroups, so also does G. This
completes the proof.

We shall say that an element g # 0 of an abelian p-group G has finite
height h in G, if the equation p"x = g has a solution only for n < h. If the
equation p"x = g has a solution in G for every #n, the height of g will be
defined to be infinite.

In terms of the concept of height we can give a further sufficient condition
for the decomposability of an abelian p-group as a direct sum of cyclic
subgroups. However before stating this condition we introduce the useful
idea of a pure subgroup.

A subgroup A of a group G is said to be pure if for every integer n and
every element a € A, whenever the equation nx = a is soluble in G, then it is
soluble in the subgroup A.

10.1.6. Exercise. In a direct sum of abelian groups each summand is pure.
10.1.7. Exercise. The torsion subgroup of an abelian group G is pure in G.

10.1.8. Exercise. A subgroup A of an abelian p-group G is pure if and only
if whenever an equation of the form p"x = a, a € A, has a solution in G then
it has a solution in A.

10.1.9. Exercise. In an abelian group G satisfying nG =0, a subgroup A is
pure if and only if for every divisor m of n and every a € A, the solubility of
the equation mx = a in G, implies its solubility in the subgroup A.

10.1.10. Exercise. Suppose A is a pure subgroup of an abelian group G
such that the quotient of G by A is cyclic, say G/A =(g+ A). Then in the
coset g + A there is an element g, such that |g,|=|G/A|.

10.1.11. Exercise. If the quotient of an abelian group G by a pure subgroup
A decomposes as a direct sum of cyclic subgroups, then A is a direct
summand of G. (Hint. Use Exercise 10.1.10.)

10.1.12. Theorem (L. Ja. Kulikov-Priifer). If A is a pure subgroup of finite
exponent of an abelian group G, then A is a direct summand of G.
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PrROOF. By hypothesis there is a positive integer n such that nA = 0. This and
the purity of A imply that A ~nG =0.

We shall establish the purity of the subgroup B/nG (where B = A + nG)
in its containing group G/nG. Thus suppose that the equation mx = a + nG,
a € A, has the solution g + nG say, in G/nG. By 10.1.9 we may assume that
m divides n, say n = mm,.

From the relation m(g + nG) = a + nG we infer that mg = a + ng,, g: € G,
and thence that a = m(g — mg,). From this and the purity of A we get the
existence in A of an element a; such that a = ma;; but then a,+nG is a
solution in B/nG of our original equation mx = a + nG.

Since B/nG is pure in G/nG, and by Priifer’s First Theorem the quotient
group G/nG is a direct sum of cyclic subgroups, we have by 10.1.11 that its
subgroup B/nG is a direct summand: G/nG = B/nG® C/nG say. From
this and A N nG =0, we deduce that G = A® C, completing the proof.

10.1.13. Corollary. If the torsion subgroup T of an abelian group G has finite
exponent then T is a direct summand of G.

10.1.14. Theorem (Priifer’s Second Theorem). A countable abelian p-group
without elements of infinite height is a direct sum of cyclic subgroups.

PrOOF. Let G be a group satisfying the hypothesis. Since G is countable so
is the subgroup A ={g|ge G, pg =0} (the “bottom layer” of G). Hence
there exists a chain

0=Ag<A;< <A, <+

of subgroups such that | JA, =A and |[A,+1:A,|=p.

Let A, =(a,) and let b; be a solution of the equation p"x = a;, where h;
is the height of the element a;. It is easy to see that the subgroup {b,) is pure
in G, whence (b,) is a direct summand of G, say G =(b;)® B;. It is then
obvious that A, =A,;+(A>NB;), and that every nonzero element g, ¢
A, N B, has the same height, h; say, in G as in B;.

Denote by b, € B, any solution of the equation p”2x = a,. As before there
is a direct decomposition B, = (b,)® B say, and then G = (b1)®(b2)® B,.

Continuing this process we obtain for all positive integers n subgroups
(b,) and B, with properties that the (b,) generate their direct sum C say:
C =(b))®D(b)®- -+, the B, form a chain B;>B,>:-+, G=(b))®- - ®
(b,)®B,, and finally B, " A, =0.

We prove now that G =C. Let 0 # g € G, |g| = p™. Choose an n such that
p"'geA,, and write g =c+b where c€(b))®- - -®(b,), b€ B,. Since
p™ 'be A,nB,=0, we have |b|<|g| so that, using induction, we may
assume that b € C. But then g € C, and the theorem is proved.

The following example shows that the countability assumption cannot be
removed.
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10.1.15. EXAMPLE. Let p be a prime, G =Y, Z,~, and let T be the torsion
subgroup of G. Clearly T is a p-group without elements of infinite height
and has the cardinal of the continuum. We show that T does not decompose
as the direct sum of cyclic subgroups. Suppose on the contrary that T =
@ier {ai), a; #0. Since T is uncountable we can find an infinite subset I; = I
such that the subgroup A = @y, {a:) has finite exponent, say p*A = 0. Since
A is a direct summand of T, the heights in T of the non-zero elements of A
cannot exceed k. Thus if b, generates Z,~, then for every f€ A we have

f(n)e{p"*b,) forn=k.

Since the nth components of functions f€ G can take only finitely many
values (p" to be precise), and the subgroup A is infinite, it follows that in A
there are distinct elements f;, f» with the same first 2k components; i.e.
fi(n)=f2(n), 1=n=2k. (There are only finitely many projections of the
elements of A on the first r components for any fixed finite r.) Their
difference f; — f» is nonzero, lies in A, and has height exceeding k in T (since
the first 2k components are zero and for n > 2k the nth component is a
multiple of p"~*b,), contradicting the definition of A.
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§11. Sylow p-Subgroups

In the preceding chapter we saw that the structure of an abelian group is
largely determined by the structure of its maximal p-subgroups. In the
theory of finite groups maximal p-subgroups play a similarly crucial role. In
this section we shall prove the following theorem of Sylow about finite
groups: For every prime power p* dividing the order of a finite group, there
is a subgroup of order p*; if p**' divides the order of the group then each
subgroup of order p® is contained in some subgroup of order p***; all
maximal p-subgroups are conjugate in the group, and the number of such
subgroups is congruent to 1 modulo p. This theorem, first proved by the
Norwegian mathematician L. Sylow just over a century ago (in 1872), has
turned out to be the cornerstone of finite group theory. It has since been
generalized in several different directions both in the Soviet Union (by S. A.
Cunihin and others), and elsewhere (by P. Hall and others). Because of the
theorem’s importance, in honor of its discoverer the maximal p-subgroups of
a finite group (and for that matter of an infinite group) are more often called
Sylow p-subgroups.

From Sylow’s theorem it follows in particular that the Sylow p-subgroups
of a finite group are just the subgroups of order p’, where p” is the largest
power of p dividing the group order. We note that if the positive integer m
divides the order of a finite group G but is not a prime power, then G need
not in general have a subgroup of order m—for instance the alternating
group A,, which has order 12, has no subgroup of order 6; see Exercise
11.2.2 below.
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11.1. Sylow’s Theorem

For the proof of Sylow’s theorem we shall find very useful the idea of the
action of a group on a set. We say that a group G acts on a set M, if for each
m e M, g € G, and element mg € M is defined such that (mgi)g, = m(g:182)
and me =m for all me M, g1, g2€ G (where e is of course the identity
element). In other words G acts on # if G comes equipped with a
homomorphism ¢: G - S(/#) (starting from this point of view mg is then
defined as m(g®)). The set mG ={mg | g G} is called the orbit of the
element m (or the orbit of G (under the given action) containing m ). Clearly
the orbits of two elements of / either coincide or have empty intersection,
so that the orbits form a partition of /.

11.1.1. Theorem (Sylow). Let G be a finite group and let p be a prime.
EXISTENCE: For each power p° dividing the order of G there is a subgroup of
G of order p*. INCLUSION: If p**" divides the order of G then for each
subgroup of G of order p™ there is one of order p**' containing it. In particular
the Sylow p-subgroups of G are just the subgroups of order p” where p” is the
largest power of p dividing the order of G. CONJUGACY: The Sylow
p-subgroups of G form a single conjugacy class of subgroups of G. NUMBER:
The number of Sylow p-subgroups of G is congruent to 1 modulo p, and divides
the order of G.

Proor (H. Wielandt). Existence. Let |G|=p'l, (p,1)=1, and let # be the
set of all subsets of G of cardinal p°. Obviously

| A= oy
= (Pt T B,
D )
so that the largest power of p dividing |#| is p"~*. If M € M, g € G, then
clearly Mg = {mg|m € M}e M, so that G acts on . by multiplication on the
r—a+1

right. Let {M1, . . ., M;} be an orbit whose size s is not divisible by p ,
and further write

Gi={glge G, Mg =M},

It is readily verified that G, is a subgroup of G and that the G; are the right
cosets of G, in G. We shall show that G, has the required order p“. For the
time being write |G;| = ¢; then by Lagrange’s theorem (2:4.5) st = |G| =p'L
Since s 4 p"™**', we must have that p*|t, so that certainly ¢t =p®. On the
other hand for x € M; we obviously have that xG; < M;, whence |G| <|M,],
or t<p“; therefore t = p*.

Inclusion. Suppose p*** divides |G/|. Let P be a subgroup of G of order
p®, and let 2 be the class of subgroups of G conjugate to P. We know that

|?|=1G : No(P)|.

j=1

—
IA
I\

=S.

If p does not divide || then this equality tells us that p**' must divide
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Ng(P), so that by the first part of the theorem the group Ng(P)/P contains a
subgroup P*/P say, of order p. Then P* will serve as the required super-
group of P. Suppose now that p does divide |?|. If we let the group P acton
by conjugation, then the orbits of P under this action have orders dividing
|P|, and so of the form p®, a; = 0. Since there is at least one one-element
orbit—we have {P} in mind here—and p divides ||, there must be at least
one other one-element orbit, {Q} say. But this means that P normalizes Q,
whence PQ is a p-subgroup (since PQ/Q = P/P n Q, and the extension of a
p-group by a p-group is again a p-group). Applying to PQ that inner
automorphism of G which maps Q onto P, we obtain a p-subgroup PP
containing P as a normal subgroup. Again by the first part of the theorem
there is in PP/P a subgroup P*/P or order p, and then P* is the desired
containing group.

As remarked previously, it now follows that the Sylow p-subgroups of
a finite group are precisely the subgroups of order p” where p” is the largest
power of p dividing the order of the group.

Conjugacy. Now let P be a Sylow p-subgroup of G, so that then |P|=p’,
and let 2 be defined as above in terms of this P. We wish to show that every
Sylow p-subgroup of G lies in 2. Thus let Q be any Sylow p-subgroup of G;
then if we think of Q as acting on 2 by conjugation, the orbit-sizes of Q
under this action must all divide |Q|, and must therefore be powers of p.
Since p does not divide || (using || = |G: N (P)| and that P is a maximal
p-subgroup), we have as before that at least one of these orbits must be a
singleton, say {P}, and then Q normalizes P. But then PQ is a p-subgroup,
and the maximality of P, Q gives that Q = PQ = Pe 2.

Number. In the notation of the preceding paragraph, it suffices to prove
that {Q} is the only singleton orbit. This is easy, since if {OQ) were another
such orbit, then QQ would be a p-subgroup properly containing Q,
contradicting the maximality of Q. This completes the proof of the theorem.

It is perhaps more traditional to speak of the three Sylow theorems
rather than just one: the assertions about existence and inclusion are some-
times grouped together as the first Sylow theorem, the assertions about
conjugacy and number form respectively the second and third Sylow
theorems.

11.1.2. Exercise. A group of order 196 contains a normal Sylow p-sub-
group.

11.1.3. Exercise. The Sylow p-subgroups of an infinite group are not always
conjugate. (Hence the assumption of finiteness in Sylow’s theorem is
essential.) (Hint. Consider an infinite direct power of Ss.)

11.1.4. Exercise. Let P be a Sylow p-subgroup of a finite group G, and let H
be a subgroup containing the normalizer Ng(P) of P. Then Ng(H)=H.
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11.2. An Application to Groups of Order pq

Sylow’s theorem often allows us to obtain a lot of information about a given
group, and even to describe completely the structure of groups which, in
some sense or other, have small orders. By way of illustration we shall now
analyse the structure of the groups of order pq.

Let p, q be primes with p <g. What must a group G of order pq look like?
The Sylow p- and g-subgroups are of prime orders and so cyclic. Let (a), (b)
be respectively Sylow p- and g-subgroups. By Sylow’s theorem the number
of Sylow g-subgroups of G has the form 1 + kq, and divides pgq, so that there
can only be one of them; i.e. (b) is the unique Sylow g-subgroup of G. In
particular it follows that (b) is normal in G. The number of Sylow p-
subgroups of G has the form 1+kp and divides q; this gives us two
possibilities:

(i) The Sylow p-subgroup (a) is unique. Then it is normal, and since
(a)n{b) =1 we have that G =(a) X (b). Since ab has order pq it follows that
G=(ab)=1Z,,

(ii) There are exactly g Sylow p-subgroups. Of course this can happen
only if g =1(mod p). Suppse a 'ba = b". We cannot have r = 1 for then we
would be in Case (i). By successive conjugation we get that a "ba™ =b"",
whence

a—mbnam — br'"n

for all positive integral m, n. For m = p, n =1 this gives r* = 1(mod q), and it
also gives a formula for multiplication:
ambn 'asb'=am+sb"rs+t. (1)

Conversely, it is easy to verify that if g=1(modp), r=1(modq),
r# 1(mod q), then this multiplication formula for expressions of the form
a'b’, defines a nonabelian group of order pq. Finally, the solutions of the
congruence x” = 1(mod q) constitute a cyclic group of order p, so that those
solutions # 1(mod q) have the form r, 7%, ..., r" ', where r is any one of
them. If we take any of these solutions in place of the particular one r
appearing in (1), we get the same group, since replacing r by r' amounts to
the same thing as taking a' in place of a.

With the help of Sylow’s theorem we have thus described all possible
groups of order pq; it turns out that there are (up to isomorphism) at most
two, one abelian and one nonabelian; the nonabelian one exists precisely if
q=1(mod p).

11.2.1. Exercise. There are exactly two nonisomorphic groups of order 6:
the cyclic group Zg and the symmetric group S;.

11.2.2. Exercise. The alternating group A, does not contain a subgroup of
order 6, although 6 divides its order (12). Hence the converse of Lagrange’s
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theorem is false in general. (This fact was noted also at the beginning of this
section.)

(Solution. By Exercise 11.2.1 if A4 contained a subgroup of order 6, then
this subgroup would have to be isomorphic to Zs or S;. Since it is obvious
that no permutation of 4 letters can have order 6, the first possibility is ruled
out. The second is ruled out by the fact that in S3 there are 3 elements of
order 2, and the same is true of A,—the elements of order 2 in A4 are
(12)(34), (13)(24), (14)(23). Thus these elements would all have to lie in the
subgroup; however they generate a group of order 4, and of course S3 can
have no such subgroup.)

11.3. Examples of Sylow p-Subgroups
We turn our attention again to the groups of Examples (I)-(IV) of Chapter 1.

11.3.1. ExampLEs. (I) The group Z, decomposes as the direct sum of its
Sylow p-subgroups, which are cyclic of orders p1", . . ., p¢™, where n has the
prime decomposition n =p7'* - - - pi.

(I1). The Sylow p-subgroup of the multiplicative group C* is the quasi-
cyclic group C,.

(III). We next describe (following Kaluznin) the Sylow p-subgroups of
the symmetric groups. Since |S,|=n!, it is appropriate to ask for those
exponents e(n) such that p°* divides n!. The multiples of p among the
numbers 1,2, ..., n are the numbers p, 2p, ..., kp, where k =[n/p] (and
[n/p] denotes the largest integer <n/p), so that e(n) = [n/p]+e(k). Since
[k/p]= [n/p?], we have that

e(n)=[%]+[;n—2]+-~-.

If we represent n as a sum of powers of p, say
n=ap+a,p+---+asp’ 0<a;<p, (2)
then
e(n)=ai+ax(1+p)+as(1+p+p*>)+---+a,(L+p+-- +p° ). (3)

We consider the group S, first in the case that n is a power of p. Suppose
that in S,~ we have already formed a Sylow p-subgroup; i.e. a subgroup H,,
of order p®***"". Using this subgroup we shall construct a subgroup
H,.., of S,m+ of order p**P™ To this end we split the sequence
1,2,..., p"“'1 of permuted symbols into p subsequences, or segments, of
consecutive symbols, each segment of length p™. If we set

pm
Cc= H (f’Pm+f,2Pm+]',- . -,(P_l)Pm+j),

i=1
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then if x is a permutation moving only the symbols of the ith segment, it is
easy tosee that ¢ ~!xc moves only the symbols of the (i + 1)st segment (where
i +1 is reduced modulo p if necessary). It follows that the subgroup of S,=+:
generated by the subgroups ¢ "H,,.c’, 0=r <p, is the direct product of these
subgroups, so that the subgroup generated by the subgroup H,, and the
element ¢ is isomorphic to the wreath product H,, wr(c). This is the desired
H,..,, since

|Hm Wr((,‘)l = |HMID|C| = P(1+. e,

It now becomes clear that each Sylow p-subgroup of S~ is isomorphic to the
group
(- (ZpwrZy)wr---)wrZ,

obtained by wreathing with the cyclic group Z, m times.

Now let n be arbitrary. We partition the sequence 1,2, ..., n, into ao
one-element segments, a; p-element segments, and so on (see (2)). The
symmetric group on each of these segments will be of degree p™ for some m.
In each of these symmetric groups choose a Sylow p-subgroup (constructed
above). Since these subgroups act on pairwise disjoint sets of symbols, the
group they generate, call it P,,, will be their direct product, and will therefore
have order

s
_ (1+p+--+pm-Na_ _ _e(n)
Pn - l_l 14 =p
m=1

(see (3)). Hence P, is a Sylow p-subgroup of S,.. We have thus shown that P,
is isomorphic to the direct product of several iterated wreath products of the
form (- -+ (Z, wr Z,) wr - - ) wr Z,,.

(IV). Finally we consider the general linear group over finite fields. Let p
be a prime, m, n integers =1, and q = p™. We shall show that UT,(q) is a
Sylow p-subgroup of the group GL, (q)—simply by calculating their orders.

Which n-vectors over GF(gq) can be the first row of a nonsingular matrix?
The answer is clear: any but the zero vector; thus there are q" —1 possi-
bilities for the first row. Once the first row is chosen then for the second any
n-vector not a multiple of the first will do; there are q" —q such vectors.
Given the first two rows, then as the third we may take any n-vector linearly
independent of the first two; there are thus ¢" —42 possibilities. Continuing
in this way, we arrive at the formula

n—1
IGL.(@)|= I (" ~q". (4)

Since the entries above the main diagonal in matrices from UT,(q) range
ll:dependently of one another over the whole field, and since each matrix has
(2) entries above its main diagonal, we have that

|UT..(9)|=q®.
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By a comparison of orders we see that UT,(q) is a Sylow p-subgroup of
GL.(q).

11.3.2. Exercise. Write down permutations in S, forming a Sylow 2-
subgroup of S,.

11.3.3. Exercise. Let p be a prime, m and n positive integers, and let
P.(Z,~) denote the set of all those matrices of GL,(Z,~) with entries under
the main diagonal all multiples of p and with diagonal entries all congruent
to 1 modulo p. Verify that P,(Z,~) is a Sylow p-subgroup of GL,(Z,~).
(Hint. With the aid of the homomorphism GL,(Z,~)-> GL,(Z,) derive the
formula

IGLn(me)| — nlilo (p'"" _p(mn-n+i)).) (5)

To conclude this section we state in the form of exercises the following
few observations.

11.3.4. Exercise. Let ¢ be a homomorphism of a finite group G. If P is a
Sylow p-subgroup of G, then P* will be a Sylow p-subgroup of G?. Con-
versely every Sylow p-subgroup of G? is the image of some Sylow p-
subgroup of G. This remark is sometimes useful in proofs by induction.

11.3.5. Exercise. It can happen that the product of two elements of order p
has finite order coprime to p of even infinite order. Thus the elements of
order p“, p fixed, by no means always form a group.

11.3.6. Exercise. Let G be a finite group and let A < G. If the index |G: A|is
less than some prime divisor p of the order of the group G, then the
intersection [ );ec A® contains a Sylow p-subgroup of G (and so, in parti-
cular, is nontrivial).

§12. Finite Simple Groups

Just as the natural numbers are built up from the prime numbers by means of
multiplication, so finite groups are built up from the finite simple groups by
means of extensions. For, consider a composition series

1=Go<G<- - <G,=G

for a finite group G (i.e., as defined in Section 4.4, Chapter 2, a finite
sequence of subgroups beginning with 1 and ending with G in which every
member is maximal normal in its successor—clearly every finite group has
such a series). If some factor G;,,/G; were not simple then by taking a
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proper normal subgroup H/G; of it, we could refine the series by inserting
H between G; and G:.1; hence the factors of a composition series are always
simple. It is in this sense that we talk of the finite simple groups as being the
building blocks of finite groups, although, as opposed to the situation for
numbers, the end result is not determined solely by the blocks entering into
its construction, but depends also on the way they are piled on top of one
another.

The most obvious examples of simple groups are the cyclic groups of
prime orders; it is obvious that these are the only abelian simple groups. The
classification of all finite simple groups is an extremely important, indeed at
the present time perhaps the main, problem in the theory of finite groups
(although results pertaining to it do not exhaust the whole theory). This
problem is being attacked on several fronts: one school develops general
“industrial”’ methods, aiming at discovering how to obtain by a single
procedure all finite simple groups—to this school belong also deep results
concerning the identification of groups obtained in various ways; a second
school, on the other hand, pinning its hopes on intuition and assiduity,
searches for sporadic examples—at the present time the value of each new
finite simple group is unusually high; a third school attempts to classify all
finite simple groups with one or another property—for example with a given
Sylow p-subgroup, etc. Not long ago a famous fifty-year old problem of
Burnside was solved—W. Feit and J. G. Thompson [Solvability of groups of
odd order, Pacific J. Math. 13 (1963), 775-1029] proved that every
nonabelian finite simple group has even order.

The aim of the present section is a comparatively modest one: to give two
of the classical series of finite simple groups, namely the alternating groups
and the projective special linear groups. The proofs which follow are
tailored to our needs and do not give any idea of the above-mentioned
industrial methods. A good summary of the present state of the subject and
tables of the known simple groups can be found in [6, 24, 28].

12.1. The Alternating Groups

In this section the following facts from Chapter 1 will be used repeatedly: the
formula

x| =|G: Ng(x)|,

and the result that the permutations with the same disjoint cycle decom-
positions (i.e. the same number of cycles of each order) form a single
conjugacy class in S,, while in A, they may comprise either a single
conjugacy class, or else two conjugacy classes of the same size.

12.1.1. Theorem (Galois). For n # 4 the alternating group A is simple. The
group A, is not simple.
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PROOF. We shall examine the groups A, on an individual basis for n <7,
while for n =7 we shall give a general proof of simplicity. Thus although our
proof will not be the shortest possible, it will enable us to become more
familiar with the alternating groups of small degree.

The groups A, A2, As have orders 1, 2, 3 respectively and are therefore
simple.

The group A, is not simple: it has a *“polycyclic’’ composition series with
factors of orders 2, 2, 3—see 4.4.1 (III).

To show that As is simple we shall calculate its conjugacy classes, and
then verify that no union of conjugacy classes yields a proper subgroup. As
the first step we shall consider the types of possible disjoint cycle decom-
positions of elements of As.

(i) Elements of type x = (123): In the group Ss, and therefore also in As,
the number of such elements is 3-5-4-3=20. They are of course all
conjugate in Ss, so that |Ss: Ns.(x)| =20. Since |Ss|=120, we have that
|Ns,(x)|=6. It is clear that the powers of x and the transposition (45)
normalize x, so that

Ns (x) ={1, (123), (132), (45), (123)(45), (132)(45)}.

Since three of these six permutations are odd, we get that N, (x)=3,
whence |As: N (x)| =20, which in turn implies that the cycles of type (123)
form a single conjugacy class of As.

(ii) Elements of type y=(12)(34): Altogether there are
(1/2)-(5-4/2)-(3-2/2) =15 such items. Since they cannot be partitioned
into two sets of equal size, they must form a single conjugacy class of As.

(iii) Elements of type z =(12345): there are altogether $-51=24 of
them, so that |[Ng,(z)| =120/24 =5, i.e. the normalizer of z consists of just
the powers of z. Since these are all even permutations, we get that |[Na,(z)| =
5, and thence that in A there are just 60/5 =12 elements conjugate to z.
Thus the set of cycles of length S splits into two conjugacy classes.

From these calculations we deduce that if H is a normal subgroup of As,

then
|H|=1+20r+15s+12¢, where0<r=<1,0=<s5=<1,0=¢=<2.

By considering the twelve possibilities for the triple 7, s, ¢, and taking into
account that |H| must divide |A4| = 60, we conclude that |H|= 1 or 60. This
proves that As is simple.

For the remainder of the proof we shall make use of the following remark:

(iv) If n =5 and H is a normal subgroup of A, containing a 3-cycle, then
H = A, To see this first observe that since the group A, is generated by the
3-cycles, it suffices to show that an arbitrary 3-cycle (ijk) is conjugate in A,
to (123). If these two cycles have at least one symbol in common, then
together they move at most 5 symbols, so that they lie in the subgroup A say,
of A,, fixing a certain (n—S5) symbols. Obviously A =As; therefore the
cycles (ijk) and (123) are already conjugate in A (see (i) above). If the cycles



74 4. Finite Groups

(ijk), (123) have no symbols in common, then by two applications of the
preceding argument we deduce that they are both conjugate to (12k) (for
instance) and so also to each other.

We next consider Ag. Let H be a nontrivial normal subgroup of A¢. We
consider two cases.

(v) Suppose that no permutation in H other than 1 fixes any symbols (i.e.
that the stabilizer in H of each symbol is trivial). Obviously there are then
just two types of cycle decompositions possible: (12)(3456) and (123)(456).
Permutations of the first type cannot exist in H since their squares are
nontrivial and fix two symbols. It is easy to calculate that there are 40
permutations of the second type. Since in Ag they form either a single
conjugacy class or else two conjugacy classes of the same size, we have that
|H|=1+20r, where r=1 or 2. Hence |H| does not divide |A¢|, which is
contrary to Lagrange’s theorem; thus Case (v) is impossible.

(vi) Suppose that some nontrivial element x of H fixes a symbol i. Let A
be the stabilizer of i in A, i.e. the group of all elements of A fixing i. Clearly
A = A;, sothat A issimple. Since A N H is normal in A and nontrivial (since
x€ AnH), we getthat AnH = A. Hence H = A, so H contains a 3-cycle
and therefore (by (iv)) coincides with Ag.

Finally we consider A, for n =7. Again let H be a nontrivial normal
subgroup of A,. We shall prove that H = A,. Let 1 #x € H, and let y be a
3-cycle which does not commute with x. Then z = y '(x'yx) is a nontrivial
element of H expressible as a product of two 3-cycles, and therefore moving
at most 6 symbols. Let A be the subgroup consisting of all permutations
in A, fixing all but a certain 6 symbols, where these 6 symbols include those
moved by z. Then A = Ag, and the proof may be completed as in Case (vi),
using the simplicity of Ag.

12.1.2. Exercise. Let n be any cardinal number. The alternating group of
degree n, written A,, consists of those permutations of a set of cardinal n
which move only finitely many symbols and can be written as a product of an
even number of transpositions. By imitating the proof of the theorem of
Galois, prove that A, is simple provided that n # 4.

In connexion with this exercise note the following. Let M be a set
of cardinal X,, and let S,(M) be the set of all permutations in S(M)
moving strictly fewer than X, symbols. It is clear that the members of the
chain

1<AMR,)<SM)<S;(M)<-.-<8,(M)<S(M), (1)
are all normal subgroups of S(M). It turns out that the members of the chain

(1) are the only normal subgroups of S(M) (see [33]). In particular the
quotient S(M)/S, (M) is simple.
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12.2. The Projective Special Linear Groups

Let K be afield. The quotient group of SL,, (K) by its center (i.e. by the scalar
matrices) is called the projective special linear group (of degree n over K),
and is denoted by PSL, (K). These groups—over finite fields—were added
to the known series of groups by Jordan (1870), who established their
simplicity. A certain lack of rigor in Jordan’s original proof was later
removed by Dickson.

12.2.1. Exercise. The linear fractional transformations

ax+b
f(x)—cx+d

with coefficients from the field K and determinant ad — bc = 1, form a group
under composition of maps. This group is isomorphic to PSL,(K).

12.2.2. Exercise. Verify the formula:
1 n—1 n ;
ISL.(@)|=—=1I (¢"—q"); )
q—1 =0
1 n—1 .
"—q' = —1).
A1 LIO (@"—q"), whered=(n,q—1) 3)
(Hint. Consider SL as the kernel of the homomorphism det and use the
formula (4) of the preceding section, and Exercise 3.1.6.)

[PSL,(q)| =

We assume the reader is familiar with the basic facts about finite
fields usually taught in general courses in algebra. We shall need in addition
the following fact.

12.2.3. Lemma. In any finite field K the equation x> — y* = a is soluble for
every a in K.

Proor. If the field K has characteristic 2, then its elements are just the
roots of the equation z>™ —z =0, for some m >0 (i.e. K is the splitting
field of this polynomial over Z,). Hence every a in K is a square. If the
characteristic is not 2, then the equations x +y = a, x —y = 1 have a simul-
taneous solution in K. That solution will then also be a solution of the
equation x%- y2 = a. (Note that for characteristic #2 the argument works
also for infinite fields K.)

12.2.4. Theorem (Jordan—-Dickson). For every finite field K the group
PSL, (K) is simple, with the exception of PSL»(2) and PSL,(3).

PROOF. (i) Consider first the case n = 2. By (3) the groups PSL,(2), PSL,(3)
have orders 6, 12, and are therefore not simple—see Exercise 11.2.1, and
Exercise 13.2.4 (following this section).
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Suppose that |[K|=4. Let H be a normal subgroup of SL,(K') containing
all the scalar matrices (that is, +e) and at least one non-scalar matrix a. We
wish to prove that H = SL(K).

(ii) We show first that H contains a transvection of the form #;,(A)
(A #0). Thus suppose first that a;; =0, so that

1

— %

o

0 «

If a®>=1 then for the desired transvection we may take one of a or —a. If

a®# 1 then the commutator [a, 112(1)] = t12(1 — ) will serve. Suppose next
that a,; # 0. For each nonzero B € K there is a unique field element * such

that the matrix
b= (0113 * )
a»,pB —anP

lies in SL,(K). Therefore H contains the matrix
1
_ -2 *
c=—b"aba=|B , for some *e K.

0 B2

If |[K|#5 there exists 8 in K satisfying 8*#1, so that for the desired
transvection we may again take the commutator [c, t15(1)] = t;2(1 - 8%). It
remains to analyse the case |K|=5. Set B=1; then c¢=
t12((2/az21)(a11 + a22)). If the trace of a = a;1+ a2, # 0, then ¢ will serve. If
tr a =0, then take in place of a the matrix a* =[a, #,2(1)], for which we have

tra*=2+a3; #0.

(iii) The next step is to show that H contains all transvections and so
coincides with SL(K). In the first place H contains all transvections of the
form #,,(*) since

Lt
P t2(A) [P =t1,(AP%),
0 »p 0 p )

t12Ap))t12(A0?) 7t = t12(A (p* — 0?)),

and p* - o” takes all possible values as p, o vary over K (see 12.2.3). Finally

R

This completes the proof for the case n =2.
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(iv) We now consider the case n =3 for any field K. Again let H be a
normal subgroup of SL, (K) containing all scalar matrices and at least one
nonscalar matrix a; we have to prove that H =SL,(K). (The reader may
find it useful for understanding the following argument to write each matrix
w in the form w =Y w,e,; and use the multiplication rule (1) of 3.1.1.(IV).)
Since a is nonscalar there is at least one transvection #;(1) with which it does
not commute. By re-indexing the rows and columns if necessary, we may
assume that x =[a, 12;(1)]# e. If we write y =a~', then by matrix multi-
plication we get

¥ Y12012 °°* Y12Q1a
3 a “ e a
22412 22
x=e— y y 1n
¥  Yn2@12 ' Yn2Q1n

(v) We shall deduce from this that H contains a nonidentity matrix z of
the form

* *
0
zZ =% %k
* e
Thus if a;3=" ' =a;, =0, we may take z = x. If on the other hand some

ax #0, k #1, 2, then take z =f§,fu_1xuf2k, where

n
u=e—— ) aew; fak =€ — e~ exx + €2 — exa.
A1k i=2
i#k
(vi) From the existence in H of such a matrix z we can deduce in turn that
there is in H a nonidentity matrix

1 00
010 0

V=l % 1
0 e

To see this note first that
[z, t31(1)]= e — (211 — 1)e31 — z12€32,

[z, t32(1)]=e — z31€31 — (222 — 1)e32.

If either of these commutators is different from e, it will serve as v. Suppose
they are both e. Then
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If n =3 or z;; = z;2=0 for all i =4, then we may take v = z. If for instance
both z41, z42 # 0, then for v we may take the commutator

[z, t34(1)] = € — z41€31 — Z42€32.

(vii) The next step is to show that H contains a transvection. If v3,=0
then v is a transvection. If vs;; # 0 then we may take

-1
121(A) " vt1(A) = e + (v31 + Av3z)est + vszes2,

with the obvious A.
(viii) Finally we show that H contains all transvections and therefore
coincides with SL,,(K). This is immediate from the equation

fﬁcltij(A)fik =t;j(A), fl—iltki(/\ )i = tia(=A),
dic () "ty N )i () = t; (M),

where i, j, k, | are pairwise distinct symbols, fi = e —e;; — exx + € — exi, and
di(u) is the diagonal matrix with (1/u) as the ith diagonal entry, u as the
kth diagonal entry, and the remaining diagonal entries all 1. This completes
the proof of the theorem.

The theorem is in fact true without the restriction that the field be finite:
we have actually proved this stronger result for n =3, since in Parts (iv) to
(viii) of the proof the finiteness of the field was not used. For n = 2 our proof
depended on a lemma (12.2.3) where the finiteness of the field is essential—
however there are ways of avoiding the use of this lemma (see [13], [32]).

In connexion with the methodology of proof we make a further remark.
In §12.1 we managed to establish the simplicity of As in a rather
heavy-handed way: we enumerated each of its conjugacy classes and
discovered that the only subsets of A5 which are unions of conjugacy classes,
and have orders dividing the order of As, are the whole group and the
identity subgroup. The chain of argument from (i) to (iv) above is more
typical, and in principle more universally applicable, as a method for proving
simplicity: In our normal subgroup H we chose an element a about which
we knew only that it was not the identity, and then, using the closure
properties of H under multiplication, forming inverses, conjugation by any
element, and the derivative operation of forming commutators with any
element, by degrees we brought to light more and more elements of H until
finally we discovered in H generators for the whole group. If a philosopher
were to stoop to the contemplation of the Jordan-Dickson theorem, he
might summarize the idea of the proof as follows: Getting hold of one link,
we pull out the whole chain. Unfortunately this guiding principle leaves
obscure exactly how the chain can be pulled out.

12.2.5. Exercise. In view of the Jordan-Dickson theorem it is natural to ask
whether we obtain new simple finite groups if in the definition of PSL,, (K)
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we take K to be the ring Z,, rather than a field. This turns out to be a vain
hope: of course if m is prime then Z,, is a field, but if m is composite then the
group PSL,(Z,,) is not simple.

12.2.6. Exercise. Find a group whose central quotient is simple, but whose
center is not a direct factor. (Solution. If in the group G = SL,(5), the center
C, consisting of the matrices +e¢, had a direct complement H, then the square
of every element of G would lie in H. In particular the square of the matrix

1
-0
¢

0 ¢

where { is a generator of the multiplicative group of the field of 5 elements,
would lie in H. However this square is just —e, so that we would have that
—e € C n H, which is impossible.)

J. G. Thompson [2-signalizers of finite groups, Pacific J. Math. 14 (1964),
363-364] coined the term 2-signalizer of a finite group G for a subgroup A
of G with the property that both |A| and |G: Ng(A)| are odd. In the same
paper he conjectured that the 2-signalizers of simple groups are always
abelian. We conclude this section with a counterexample to this conjecture
due to V. D. Mazurov [On 2-signalizers of finite groups, Algebra i Logika 7
(1968), 60-62]. It uses only the simplicity of PSL.

12.2.7. ExampLE. The simple group PSL,(q), ¢ odd, contains nonabelian
2-signalizers. To see this consider the subgroups A, B of G =SL,(q)
consisting respectively of all matrices of the forms

1 % % alx,y) 0 0

0 e =], 0 x 0f, alx,y)=7——"—7—,
det x - det

0 0 e4 0 0 vy ctx-aety

where e is the identity of degree k, and the two matrices are decomposed
into blocks in the same way. In view of the formula (2) of this section and (4)
of the preceding, we have

Ll 9 a7 6
IGl—q_l(q D@ -q)- (@' -9°),

|A|=a power of g,

IB|= (- D@ -9)q* - D@*-9@*-a)a* -

It is immediate that |A| and |G: B| are odd. It is also clear that B normalizes
A, so that |G: Ng(A)| is odd. If ¢ is the natural homomorphism from G to
G/C where C is the center of G,.then of course the order of A*® and the
index of its normalizer in G* will still be odd, i.e. A®is a 2-signalizer in
PSL;(q). Finally, since ANC =1, we have that A®*=A, so that A® is
nonabelian.
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§13. Permutation Groups

To conclude the chapter we shall look at groups of permutations. These were
the historical prototypes for group theory, and they are still important. They
were first introduced by Evariste Galois in connexion with his investigation
of the conditions under which algebraic equations are soluble by radicals:
With each algebraic equation he associated a certain group of permutations
of the roots, from certain of whose properties the question of the solubility in
radicals of the original equation can be answered. In 1870 there appeared
Jordan’s fundamental tract on permutation groups which contained a clear
and detailed exposition of Galois’ ideas, and also many results on permu-
tations. Only towards the beginning of this century did the modern abstract
group concept shed these swaddling clothes, and from then on the theory of
permutation groups gradually assumed its more modest position in the
general theory. Generally speaking permutation groups arise naturally
whenever the symmetries of objects of ‘“finite type” are studied—for
example with each crystal we may associate its group of symmetries,
described by permutations of the crystal’s vertices. The reader wishing to
study permutation groups more deeply may consult the book [43].

13.1. The Regular Representation
It turns out that permutation groups exhaust the stock of finite groups.

13.1.1. Theorem (Cayley). Every finite group is isomorphic to some group of
permutations.

ProoOF. Let G be a finite group that we wish to represent faithfully by
permutations. Permutations of what?—This is the first question that comes
to mind. Since there is nothing else on hand let us try G itself as the set whose
elements are to be permuted. Let g be an element of G. What permutation
7, shall we associate with g? If we write a permutation in the normal way as
two rows of elements with each element of the bottom row the image of the
element above it, then we have the top row of ,—it consists of the elements
of G in some order. Multiply then on the right by g one at a time and write
the results in the second row. It follows from the group axioms that the
elements of the bottom row are pairwise distinct, so that 7, is indeed a
permutation. It remains to check that the map defined by g—> =, is a
monomorphism. In the first place it is a homomorphism, i.e. 7ay = wams,
since on each x € G both sides of the equality act in the same way:

XTap = x(ab) = (xa)b = (xa)mp = (xmwa)mp = X (Was).

Secondly, the kernel is trivial: if mr, is the identity map then on the one hand
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it fixes 1, and on the other maps it to g. Hence g =1, and the theorem is
proved.

13.1.2. Exercise. Every finite group can be embedded in a finite simple
group.

The reader may have noticed that in the proof of Cayley’s Theorem the
finiteness of G is not used. Thus every group G is faithfully represented by
its right translations—this is called the regular representation of the group G.

13.1.3. Generalization of Cayley’s Theorem. Every group is isomorphic to a
group of one-to-one maps (“infinite permutations”) of some set onto itself.

The representation of abstract groups by permutations is also useful in a
wide variety of questions outside of finite group theory.

13.1.4. EXAMPLE. Embedding theorems. It is often necessary to embed a
given group G into a bigger group G* with one or another interesting
property—for example one of the following properties:

(i) that G* is simple;

(ii) that in G* extraction of roots of any degree is possible; i.e. that the
equation x" =g is soluble in G for all ge G and every integer n >0 (cf.
divisibility in abelian groups, §9).

(iii) that every pair of elements of G* with the same order (finite or
infinite) are conjugate in G*.

The reader, guided by his own idea of which properties are interesting,
will easily be able to add to this list.

In two papers by the authors and V. N. Remeslennikov [On construct-
ing closures of groups, Dokl. Akad. Nauk SSSR 134, No. 3 (1960), 518-
520; On a method of constructing closures of groups, U¢. zap. Permskogo
un-ta 17, No. 2 (1960), 9-11] a method for proving embedding theorems
was set forth. The method consists in embedding a group supposed given as a
group of permutations in a larger permutation group possessing fo a greater
degree the desired property (simplicity, roots, conjugating elements etc.),
after which the construction is completed in the well-known manner by
inductively iterating the embedding, if necessary infinitely often. The virtue
of this method lies in the fact that the concrete representation of a group by
means of permutations makes computations more concrete and therefore
easier. To illustrate this we shall show how to embed an arbitrary group G in
a group G* with property (iii). We define a chain of groups

G=Go=G,=G='"'-,

inductively by taking G.+1 to be the group of all permutations of G, i.e. the
symmetric group on the set G, and identifying G, with its regular represen-
tation. The desired group G* is then just the union (or direct limit) of the G..
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To see this let a, b be two elements of the same order r (which may be
infinite) in G*; they lie in some G, and thus as elements of G, ., they are
each products of the same number of disjoint cycles of length r. By 2.5.7 they
are therefore conjugate in G, and hence in G*.

Similarly if we wish to embed an arbitrary group G in a group G* with
property (ii), then it suffices to embed G in a group in which the equation
x" = g is soluble for any single g e G and any single n. One way to achieve
this is given, in the language of permutations, in the aforementioned
papers.

Finally we sketch the solution to (i). The case that the group G is finite is
just Exercise 13.1.2 above. Suppose G is infinite, say |G| =¥,, and let S, (G)
be the group of permutations of G moving fewer than |G| elements (as in (1)
of the preceding section). The group G identified with its regular represen-
tation is contained in S(G) and intersects S, (G) trivially, and therefore can
be embedded in the simple group S(G)/S.(G).

It is natural to ask if an arbitrary group G can be embedded in a group G*
having at once properties (i), (i), etc. The answer is an easy affirmative
provided that for each property separately there is a group with that
property in which G can be embedded, and if each property is preserved in
unions of increasing chains of groups with the property: for then all one
needs to do is to iterate the embeddings of types (i), (ii), (iii), . . . a countable
infinity of times, and take the union.

Other methods of obtaining results about embeddings—in particular
embeddings into groups with properties (i), (ii) and (iii)—have been given
by: P. Hall [Some constructions for locally finite groups, J. London Math.
Soc. 34 (1959), 305-319], G. Higman, B. H. Neumann and Hanna
Neumann [Embeddirig theorems for groups, Ibid. 24 (1949), 247-254] and
B. H. Neumann [Adjunction of elements to groups, Ibid. 18 (1943), 4-11];
Hall’s paper uses wreath products, the second paper introduces a celebrated
construction now called an ‘“HNN extension,” and B. H. Neumann’s paper
involves the related “free product with an amalgamated subgroup.”

13.2. Representations by Permutations of Cosets

We shall now generalize Cayley’s Theorem in a different direction. Let H be
asubgroup of finite index in a group G, itself not necessarily finite. With each
element g of G we associate the permutation 7, of the set of right cosets of
H in G, defined, analogously to §13.1, by

(Hxl me)
Hx,g --- Hxng’’

v&here {x1, ..., x.} is a complete set of right coset representatives for H in
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13.2.1. Theorem. The mapping m: g - m, defined above is a homomorphism
from G to S(G/H). The kernel is the largest normal subgroup of G contained
in H.

PRrOOF. It is easily verified directly, as before, that 7 is a homomorphism.
Let K denote the kernel of this homomorphism, and N the largest normal
subgroup of G contained in H (sometimes called the “core’ of H in G). We
show first that K <N. Let g € K, so that 7, = 1. This means that Hxg = Hx
for all x € G. From this we get that H*g = H*, whence
g=() H"
xeG
It is clear that this intersection is a normal subgroup of G contained in H. Itis
equally clear that a normal subgroup of G contained in H must be contained
in every H*. Hence
N=()H"
xeG

Thus ge N and K < N. For the reverse inclusion, let g€ N; then Hxg =
Hxgx 'x = Hx, so that 7, = 1 and N =< K, completing the proof.

From this and Lagrange’s theorem (2.4.5) we obtain immediately

13.2.2. Theorem (Poincaré). Every subgroup of finite index m of a group G
contains a normal subgroup of G of finite index divisible by m and dividing
m!.

A weaker result than this was obtained in Chapter 1 (see 2.5.13).
Theorem 13.2.1, and its consequence Poincaré’s theorem, are useful for
proving that in a given group there are certain divisors of the group order
which none the less are excluded from being the orders of subgroups.

13.2.3. Exercise. The alternating group A of order 60 has no subgroups of
order 15, 20 or 30.

(Solution. If A4 had a subgroup of order 15, that is of index 4, then by
Poincaré’s theorem it would have to contain also a normal subgroup of index
dividing 24 and divisible by 4. This however is not possible since by the
theorem of Galois As is simple. The other cases are treated similarly.)

13.2.4. Exercise. No group of order 12 can be simple. In particular there-
fore the group PSL,(3) is not simple—this was mentioned in the preceding
section.

Let R be aring and H a group. The group ring of the group H over the
ring R is the ring R[H] of all formal expressions

rihi+-cc+rahy, rieR, h;eH,
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(where rh =0 if r = 0), with addition and multiplication given by:

Y rihi+Y sihi =Y (ri +s)h;
Y rihi - L sifi =X (risp)(hify).

(We met with a special case of this concept in Example 3.2.6. We shall need
this concept in the following discussion.)

To return to our original theme (with H as a finite index subgroup of G),
notice that the representation of G given by g - ,, associates with each g of
G a permutation 7 (g) of the indices 1,2,..., m, of the coset represen-
tatives, and a set of ““factors’ or “multipliers” h;(g) € H, given by

Hxig = HxXin(g), xig = hi(8)Xin(g).-

If we write 7(g) for the m X m ‘‘permutation matrix’’ corresponding to the
permutation 7r(g), with entries 0 or 1, then it is straightforward to check that

g_)Dlag(hl(g)a Y hm(g)) ° 'ﬁ'(g)

defines a monomorphism G - GL,,,(Z[ H]), where Z[ H] is the group ring of
H over the integers. This embedding is called the monomial representation of
the group G over the subgroup H. We see from this that every group having H
(or a group isomorphic to H) as a subgroup of index m is embeddable in a
group of all those matrices of degree m over Z[H] having in each row and
column exactly one nonzero entry, and that from H (the monomial subgroup
of GL,,(Z[H]). This embedding, due to the German mathematician G.
Frobenius (active around 1900), is much used in the (linear) representation
theory of finite groups, where it yields the representation of a group
“induced” by a representation of a subgroup.

All this can be translated into the language of wreath products as follows.

Let A, B be groups with B <= §(X) for some set X. It is easy to verify
that the set B x A under the multiplication

bf - byfi=bby ff;, where fP(x)=f(xb"), xe X,

is a group. It is called the wreath product of the group A with the permutation
group B. The most important case of this is the (unrestricted) wreath product
which we met with in Chapter 2; in the present context this is called the
standard wreath product, and is obtained by taking X to be B itself and
letting B act on itself according to the rule x - 4 'x. Using for the more
general “permutational” wreath product the same notation A Wr B as
previously, with the understanding that here B acts on a set X, we see that
the monomial subgroup of GL,,(Z[H) is isomorphic to H Wr S, and that,
atleast when the active group is finite, Theorem 6.2.8 is just the special case
of the above embedding when this wreath product is standard.
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13.3. Transitivity. Primitivity

Here we shall consider some concepts having to do with the very essence of
the action of a permutation group on the set of symbols it permutes. In fact
these concepts make sense for the more general situation of a group acting
on a set (see §11.1 for the definition), so we shall give the definitions in that
more general context.

If a group G acting on a set M has just one orbit—M itself—then we say
that G acts transitively on M. It is clear that this is the same as requiring that
for any two elements, m, m' of M there is an element g of G such that
mg = m'. Generalizing this, we say that the group G is r-fold transitive if for
any two ordered r-tuples (my, ..., m,) and (my, ..., m;) of elements of M,
where m; # m; and m; # m] for i # j, there exists an element g in G such that
mg=mij,1<i<r.

A partition {M, } of the set M into (pairwise disjoint) subsets M,, is called
a partition into blocks relative to G, if for each M, and each g € G there is an
M in the partition such that M, g = Mg, i.e. M, g is again in the partition, or
in other words the blocks M, are permuted as wholes by the elements of G.
Of course there are always trivial partitions of M into blocks: the partition of
M into one-element subsets, and the partition into just the single block M. If
there are no nontrivial partitions of M into blocks then we say that the group
G is primitive.

Of course these concepts apply in particular to ordinary permutation
groups permuting a finite set M.

13.3.1. Exercise. In the definition of blocks the condition that M,g =Mg
may be weakened to M,g < M.

13.3.2. Exercise. The groups S, and A, are respectively n-fold and (n —2)-
fold transitive.

13.3.3. Exercise. Every twofold transitive permutation group is primitive.

13.3.4. Exercise. Every nontrivial normal subgroup N of a primitive
permutation group G, is transitive. (Hint. The orbits of N constitute a
partition into blocks for G.)

Suppose that groups G, G act on sets M, M respectively. It is natural to
call these groups (with their actions implicit) isomorphic—as groups acting
on sets—if there is a one-to-one map from M onto M (say ¢), and an
isomorphism between G and G (say ¢), such that corresponding elements of
the groups send corresponding elements of the sets acted on, again to
corresponding elements, i.e.

m¢pg’ =(mg)p forallmeM,geG.
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Permutation groups isomorphic in this sense are sometimes also called
similar.

In the preceding section (§13.2) we showed how each subgroup of finite
index gives rise to a representation of the group by permutations of the set of
right cosets. It is easy to see that this representation is transitive. As it turns
out the converse of this is true: Every transitive permutation representation
of a given group is similar to the representation of the group by permutations
of the right cosets of some subgroup of finite index, as described in §13.2.
This is the gist of the following theorem.

13.3.5. Theorem. Let , be an epimorphism of a group G onto a transitive
group of permutations of a finite set M. Define an action of G on M in the
natural way by the rule mg=mg™. Let m;e M and denote by H the
stabilizer of my in G, i.e.

H={g|ge G, mig=m}.
Then H is a subgroup of finite index in G, and the permutation group G™ is

similar to the group of permutations of the right cosets of H in G, described in
§13.2.

ProoF. Write M ={m,, . .., m,}, and
}'{i={g|g€G’m1g=mi}’ l=si=<s.

Since G™ is transitive the H; are all nonempty. It can be verified immedi-
ately that H, is a subgroup of G and that the H; are just the right cosets of H;
in G. Since H = H; we obtain that H is a subgroup of finite index in G.

Let 7w be, asin §13.2, the representation of G by permutations of the right
cosets of its subgroup H. It remains to show that the permutations G™ and
G7 are similar. Let ¢ be the map from M onto the set of right cosets of H in
G which sends m; to H;, and let ¢ be the map of G™ onto G” sending g™ to
g". It is easily seen that if x™=y™, then x™ =y", so that the map ¢ is
well-defined. It is then immediate that ¢, ¢ are one-to-one and onto, and
that

(m#)g" =(mig™)¢ forl=i=s,geg,

completing the proof.

13.3.6. Exercise. State a form of Theorem 13.3.5 without the condition that
M be finite.

We shall now show that the study of arbitrary permutation groups
reduces in some sense to the study of transitive groups, and that this in turn
reduces to the study of primitive groups. Recall that a subdirect product of
groups G; is a subgroup of the direct product of the G;, whose projection on
each factor G; is the whole of G..

13.3.7. Theorem. (i) Every group of permutations of n symbols is a subdirect
product of transitive groups of permutations of n; symbols, where ¥ n; = n.
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(ii) Let G be a transitive group of permutations of a set M, and let M' =< M
be a block from a partition of M into minimal blocks with at least 2 elements.
Then the stabilizer of M', i.e. the set

H={glgeG,M'g=M,
is a subgroup of G which acts primitively on M'.

PROOF. (i) Let G be a group of permutations of a set M, with orbits M;, and
for each i let G; be the group of permutations of M; obtained by restricting G
to M.. It is easy to see that G is a subdirect product of the G..

(ii) Clearly H is a subgroup of G. Let {x1, ..., x,;} be a complete set of
right coset representatives for H in G. Then the blocks of the given partition
are just M'xy, M'x,, ..., M'x; (here the transitivity is being used). If the
restriction of H to M' were not primitive then we could partition M’ into
smaller blocks M1, M3, ..., M}, relative to H ; but then our original parti-
tion of M into G-blocks could be refined to the partition Mix;, 1<i<r,
1=j =35, contradicting the minimality of the original partition.

13.3.8. Theorem. Let G be a transitive group of permutations of a set M, let
M, be a block in a partition of M into blocks, and let m, € M. Denote by H the
stabilizer of my and by K the stabilizer of My, i.e.

H={glge G, mg=mi},
K ={glge G, Mg = M;}.

Then H and K are subgroups of G with H = K < G, the number of blocks in the
given partition is |G: K|, and each block contains |K : H| elements.

ProOOF. That H = K = G is immediate from the definitions. For the rest let
Hx,, ..., Hx, be the right cosets of H in G, with x;, = e, the identity. By
Theorem 13.3.5 we may take M to be {Hx;, ..., Hx,} with G acting by
multiplication on the right. Suppose that M, = {Hx,, ..., Hx,}, and m;=
Hx, = H (by choosing M, to be the block containing H and reindexing the
x;’s if necessary). Since G is transitive each G-block is obtained from M; by
right multiplication by an element of G thus all blocks have the same size,
and it remains to show only that r =|K: H|, or that

K =Hx, UHx, U+ - U Hx,.
Now on the one hand any element of the form hx;, h € H, 1 <i <r, sends the
coset H to some coset in M, and therefore sends the whole block M into
itself. Hence
Hx,u:--UHx, cK.
On the other hand if x € K then Hx = Hx; for some 1=<i=r, whence the
reverse inclusion.

13.3.9. Exercise. A transitive permutation group G is primitive if and only
if the stabilizer of some letter (or, equivalently, each letter) is a maximal
subgroup of G.



Free Groups and Varieties

§14. Free Groups

At the beginning of Chapter 3 we introduced the concept of a group free in a
given class of groups, and showed that in the class of all abelian groups free
groups exist and can be explicitly described. We shall in this section prove
the existence of free groups in the class of all groups (also called ‘“‘absolutely
free” or simply “free” groups), and also give an internal description of them
and investigate their simplest properties.

14.1. Definition

Given a set of generators S of a group G, there are always relations between
these generators; i.e. various products of the generators and their inverses
will be equal to the identity element of G. Among such relations there will
inevitably occur the following: xx '=e x 'x = e, where x ranges over S. Of
course the reason why these always occur is that they are a consequence of
the group axioms; we call these relations, and their like, trivial. Now it turns
out that there are groups possessing sets of generatots on which there are no
relations other than the trivial ones—in other words these generators are
“free of relations” (which, incidentally, explains the origin of the name
“free”’). Our immediate aim is to show how to construct such groups, and to
prove that they are indeed free in the class of all groups, in the sense of the
general definition given in Chapter 3.

For any group G with generators g, i eI (some index set), we think
loosely of the elements of G as being “words” g's * * * gim & = %=1, and of
multiplication as juxtaposition of words. This hints at the idea behind the



§14. Free Groups 89

construction: we shall declare the elements of the free group to be words in
the letters (or symbols) x;, x;', i€ I, which do not have segments (i.e.
subwords) of the form x{x;*, ¢ ==+1, and their juxtaposition followed by
deletion of the prohibited subwords, will define the operation.

We now give the precise definition. Write

X={x;liel} and X '={x;']iel}.

A word in the alphabet X is a finite sequence of symbols from X u X . (In
particular the empty word (or sequence) will be denoted by e.) The length of
the sequence is called the length of the word. We say that a word is reduced if
it does not contain adjacent symbols of the form x;, x;°, ¢ =+1. For
example the first of the words

-1 -1
X2X1X1X2 X3, X1X2X2 X3

is reduced, while the second is not reduced. Two words «, v will be called
equivalent (in symbols: u ~ v), if v can be obtained from u by a finite number
of insertions and deletions of words of the form x{x; *. It is clear that the
relation ~ is an equivalence on the set of all words; we shall denote by [u] the
equivalence class of all words equivalent to the word u.

14.1.1. Theorem. Let X ={x;|ieI}. If on the set F(X) of classes of
equivalent words in the alphabet X we define multiplication by [u][v]=[uv],
then this multiplication is well-defined (i.e. is independent of the choice of
representatives of the classes). The set F(X) with this multiplication is a group.

PrOOF. (i) Each class of equivalent words contains a unique reduced word.
To see this let p(«) denote the reduced word obtained from u by successive
deletions, moving from right to left, of subwords of the form x;x;°, The
function p has the following properties (here = means ‘‘equal as written,”
“identical as words”’; we wish to reserve the symbol = for later use as
meaning ‘“‘equal as elements in the free group”):

p(u)~u, (1)
p(u)=u, if uisreduced, (2
p(uv)=p(up(v)), (3)
p(xix;*u)=p(u) fore==1, 4)
p(uxixi*v)=p(uv) fore==1, 5)
p(uv)=p(p(u)p(v)). (6)

Properties (1), (2), (3) are immediate from the definition of p; (4) follows
from (3); (5) follows from (3) and (4); and finally (6) follows from (3), (4), (5)
by induction on the length of u. Suppose now that u ~ v, where u, v are
reduced words. By definition there is a sequence

USUL, U ., U =D
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of words, such that neighboring words differ by a single subword of the form
xix;c. Therefore by (5) we have that p(u;) =p(u;+1), whence p(u)=p(v).
Since u and v are reduced this implies that u =v.

(i) The fact that the product [u][v] is independent of the choice of
representatives u, v, is immediate from (i) and (6). The associativity of the
operation is clear from the definition. The identity element is the
equivalence class containing the empty word, and the inverse of the class
[x§r -« - xim]is the class [x; ™ - - - x;,°*]. This completes the proof.

The group F(X) is called the free group freely generated by the set X, and
the cardinal number | X | the rank of the free group. We shall sometimes refer
to X as a free basis for F(X). In the cases X ={x1, ..., x.}, X ={x1, x2,.. .},
one often writes F,(X), Fo(X) respectively, instead of F(X). If explicit
indication of the free generators is unnecessary, one may write simply F,,
Fo. From now on we shall indulge in the usual abuse of language and use
representatives to denote classes; thus we shall write for instance u = v,
uv = w, instead of [u]=[v], [u][v]=[w]. In view of (i), we may use the
reduced words as representatives of the equivalence classes, and may thus
talk of the “reduced form” of a word u, or the class containing u, meaning by
this of course p(u).

14.1.2. Exercise. Free groups of rank =2 are noncommutative.

14.1.3. Exercise. If u is not the empty word, then for n = 2 the length of the
word p(u") exceeds the lengths of the words p (1), p(u~"). Hence free groups
are torsion-free.

14.1.4. Exercise. A reduced word is said to be cyclically reduced if the
symbols it begins and ends with are not inverses of one another; i.e. if it
begins with x; then it should not end in x; °. If we delete successively from
the beginning and end of an arbitrary word u, the symbols violating this
condition, then after a finite number of steps we shall arrive at the cyclically
reduced form o () of the word u. Prove that elements u, v of a free group are
conjugate if and only if there exist words w;, w, such that o(1) = wyw,, and
o(v)=wyw;.

It turns out that any group generated by a set of cardinal n, is an
epimorphic image of the free group of rank n. More than that, the groups
F(X) are precisely the groups free in the class of all groups, as the next
theorem shows.

14.1.5. Theorem. Suppose a group G is generated by a set M ={g;|i € I}, and
let X be an alphabet {x;|i € I}. The map X - M defined by x; > g;, extends to a
unique epimorphism F(X)- G.
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PROOF. It is clear that as the image of the class [x} - - - x{] we shall have to
take the element g;' - - - gi~. That this does define a map from F(X) onto G,
and that this map is a homomorphism, follows directly from the definitions.
This completes the proof.

The elements of the kernel R of the epimorphism F(X) - G, are called the
relators (or sometimes relations) of the group G, in terms of the alphabet X.
If a subset R; of these relators is such that the smallest normal subgroup
containing R, (called the normal closure of R, in F(X)) is R itself, then we
call R, a set of defining relators in the alphabet X. Since G =F(X)/R, the
alphabet X and the set R; of words completely determines G (up to
isomorphism of course). We shall call the pair (X | R;) (written that way), a
presentation of the group G in terms of generators and relations, or, more
briefly, a presentation of G, and we shall write G =(X|R,;). This con-
struction is due to von Dyck (1856-1934). Of course a single group can be
given many different presentations; the merit of one or the other presen-
tation will depend on the particular problem at issue. Of special interest are
those groups which have a finite presentation, i.e. for which finite X and R,
can be found; such groups are called finitely presented.

14.1.6. Exercise. C; X Cy=(x, y| x2, y2, x_ly_lxy).

14.1.7. Exercise. The free abelian group of rank n has the presentation

X1y ooy Xn X7 % XX 1= i <j=<n).
14.1.8. Exercise. S;=(x, y |x% y>, (xy)?).

14.1.9. Exercise. Find presentations for the groups of order pq, where p, q
are primes and p <gq.

14.1.10. Exercise. The group of all matrices of the form (5 1), € = +1, over
the ring Z,, has the presentation (x, y |x2, y", (xy)*) (the so-called “dihedral
group of order 2n”"; it is isomorphic to the group of symmetries of a regular
n-gon).

14.1.11. Exercise. The subgroup of F(x,y) generated by the elements
x"yx", n=0,1,2,...,is freely generated by them (i.e. can be presented in
terms of these generators with the empty set of relators).

The groups that arise in topology (and in some other areas) occur
naturally in terms of presentations (for instance in knot theory). Details of
the theory of group presentations may be found in [9, 27].
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14.2. A Matrix Representation

In this section we shall show that any countable free group can be embedded
in SL,(Z). Since the groups Fy, F,, . . . can be embedded in Fw, and F in F,
(by Exercise 14.1.11 above), it suffices to display in SL»(Z) a subgroup free
of rank 2.

14.2.1. Theorem. Let n be an integer =2. The subgroup of SL,(Z) generated
by the transvections

= ) = 0.

is freely generated by them i.e. there are no nontrivial relations on these two
elements.

PrOOF. For the sake of brevity we write a = t;,(n), b = t21(n). Let w be an
alternating product of nonzero powers of a and 5. We wish to show that
w # e. If w begins with a power of b then conjugate w by this power of b, and
consider instead the resulting product, which now, of course, begins with a
power of a (unless w itself was just a nonzero power of b: but in this case w is
easily seen to be nontrivial). Thus we may suppose that

w=a*b*2.--c*, wherec=aorb,andall a; #0.

Let z; denote the first row of the matrix a® 62 - - -¢*. If zox—1 = (X2k-1, X2k),
then

.
Zok = Z2k—1b°% = (X2k41, X2k),
— . -+ —
Zok+1= Z2k@7%% 1 = (X2k 41, X2k+2)s

where xzx+1 = Xak—-1+ Ra2i X2k, and X2x42 = X2k + Haak+1X2k+1. The last two
equations can be combined in the single equation

Xi+2 =X F Q11 Xi+1, fori=1,2,...,r—1.

The theorem will follow if we can show that the integer |x;| increases as i goes
from 1to r+1. Fori =1, 2 this can be verified directly. The inductive step is
then as follows:

[Xiv2l = nlaisa] 11| = [x:] = 2% 01] = |xi| = [xi0a] + 1.

This completes the proof.
The embeddings F, > SL,(Z), afforded by this theorem, are extremely

useful as a tool for investigating the properties of free groups. We illustrate
this with the following application.

14.2.2, Theorem. Let p be any prime. Every free group F(X) is residually a
finite p-group.
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PROOF. Let X be a finite subset of X. Mapping the free generators outside X
to the identity element, we obtain an epimorphism F(X) - F(X ). Since the
kernels of all such homomorphisms (obtained by letting X range over all
finite subsets of X) have trivial intersection, we have by Remak’s theorem
(4.3.9) that F(X) is a subdirect product of countable free groups. Hence we
may assume that F(X) is countable, and so, by Theorem 14.2.1, embeddable
in the congruence subgroup I';(n). Recall that by definition (see Exercise
4.2.7):

I'2(n) ={x|x € SL2(Z), x = e(mod n)}.

Being the kernels of the obvious homomorphisms SL;(Z) - SLy(Z,«), the
subgroups I‘z(p ) are normal and of finite index in SL,(Z); furthermore the
intersection of the subgroups I';(p*), k =1,2, ..., is clearly trivial. Hence,
again by Remak s theorem I'2(p) is a subdirect product of the finite groups
I(p)/T2(p"), k .. Finally, for any z € SL»(Z),

(e+pz) =Y (?)(pZ)"Ee(mod rd),

i=0

so that T,(p)/T2(p*) is a p-group, and the theorem is proved.

It is especially noteworthy that in this proof the residual finiteness of free
groups was deduced from the residual finiteness of GL(Z). This is a
particular instance of a more general phenomenon: we can often infer the
residual finiteness of a group from the knowledge that it can be represented
(faithfully) by matrices, thanks to the following theorem of A. I. Mal’cev
[Matem. sb. 8 (1940), 405-421]: A finitely generated group of matrices over a
field is residually finite. A simple proof of this theorem may be found in [30]
Part 3, p. 99.

It is easy to check that the set

G, ={x|x € SLy(Z), x11=x2.=1(mod n?), x12 = x,, =0(mod n)}
is a subgroup of SL,(Z), and that
(t12(n), 121(n)) = G,.
Though in general we do not have equality here, I. N. Sanov [Doklady Akad.
Nauk SSSR 57 (1947), 657-659] has shown that for n =2 we do:
(t12(2), 121(2)) = Ga.

In other words every matrix from G, can be expressed as a product of
powers of the transvections a = t15(2) and b = 5;(2) (and by Theorem 14.2.1
this expression will be unique). The way in which such a matrix can be
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decomposed explicitly as such a product is suggested by the following
equations:
(xll xu)aa _ (X11 x12+2ax11>

X21 X22 X21 X22+2axy;

(xu le)bB _ (x11+23x12 xlz)

X21 X22 X21+2Bx20 X2

We shall restrict ourselves to illustrating the general procedure by carrying it
out for the particular matrix

_(—23 —86)
*Z\s —1s)

Here |x12|>|x11]. We look for an integer a such that in the matrix x’' = xa“®
we have |x12|<|x1i|. Thus we divide x12+|x11] by 2x11: explicitly, —63 =
—46-2+29, and take o = —2 (the quotient with its sign changed). Then

x'=xa’= <_23 6)
-4 1/

Next we look for an integer 8 such that in the matrix x” = x'b® we have

|x72] >|x11]. We divide x1; +|x12| by 2x], and obtain: —17 = 12-(-2) +7. We
choose B =2 (the quotient with changed sign), and we then have

1
x"=x'b*= (0 ?) =a’.

3;-2 2
Hence x=a’b “a”.

14.2.3. Exercise. Describe and justify the algoritim for decomposing
matrices from G, as products of the generators #15(2), #,1(2). Using this

. . 321 —-86
algorithm, decompose the matrix (355 _185).

14.3. Subgroups

The subgroups of a free group are, as it happens, also free. This was proved
by J. Nielsen in 1921 for finitely generated free groups, and in full generality
by O. Schreier in 1927. In this section we shall describe Schreier’s method,
which has the advantage that it often enables us to write down immediately a
set of free generators for a subgroup of a free group.

Let H be a subgroup of an arbitrary group G, and choose an element from
each right coset of H in G, making the choice e for the coset H. (In other
words choose a right transversal for H in G containing e.) The function
@: G > G, which has a constant value on each right coset, namely the chosen
representative of that coset, is called the choice or right coset representative
function corresponding to the transversal. The following properties of this
function are immediate: (u¢)d = ud and [(u¢)v]p = (uv)d, where u, v € G.
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14.3.1. Theorem. Let M be a generating set for an arbitrary group G, let H be
a subgroup of G, and let ¢ be a right coset representative function cor-
responding to a right transversal T for H in G. Then

H=(tx[(tx)¢] "|te T, x e M).

PROOF. It is clear that the elements tx[(zx)¢] " lie in H. We have to show
that any element of H can be expressed as a product of these elements and
their inverses. A direct verification gives that

(tx[(tx)p]T H ' =ix"[Fx V]!, wheref= (tx)o.

Note that (fx )¢ =t Now let u=x5' ... x%, xi€M, g;==+1, be any

element of H. We shall “rewrite” u in terms of the tx[(tx)¢]™*. If we define
ur=1,uiy=x1" -+ - xi,i=1,..., r—1, then the rewriting proceeds by the
following steps:
u=uxi [(uixi)e] " - usd - x57 - - - xiv,  since urp = (u1x51);
= xP2[(ux$)] ! - uadx 5 [(Uox52)p] ' - usp - x5° -+ - x7,
since uszg = (u2x32)d;

Continuing in this way we get finally

u=ux P [(ux$)p] " - urpx52[(u2x52)d1 7" - - - upx s [(uxir)p] ™.
1)

We have used throughout the fact that
Ui = (uixi’) e, i=1,...,r—1,

and, in the last step, that (u,x;")¢ = u¢ = e. The equation (1) expresses u as a
product of r elements of the required form, completing the proof.

14.3.2. Exercise. A subgroup of finite index in a finitely generated group, is
finitely generated.

14.3.3. Exercise. In the free group F, the words of even length form a
subgroup. Find generators for this subgroup.

14.3.4. Exercise. Using the proof of Theorem 14.3.1 above, and the
generators for S, given in Exercise 2.2.4, write down generators for A,.

A (right) Schreier system in a free group is a set of words which, in reduced
form, have the property that all their initial segments are also in the set; i.e.
the set is closed under taking initial segments. If a Schreier system happens
to be also a right transversal for a subgroup H of the free group, then it is
called a Schreier transversal for H.
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14.3.5. Theorem (Nielsen—Schreier). Let H be an arbitrary subgroup of the
free group F =F(X), where X is any alphabet. Then there exists at least one
Schreier transversal T for H in F. Further, if ¢ is the corresponding coset
representative function, then H is freely generated by those of the elements
tx[(tx)¢]'1 that are nontrivial, where t ranges over T, and x over X.

ProOOF. (i) We first prove the existence of a Schreier transversal. By the
length of a right coset of H in F, we shall mean the length of a shortest word in
the coset. We shall construct a Schreier transversal using induction on the
length of a coset.

Choose the empty word as the representative of the coset H. From each
coset of length 1 choose as representative an element of length 1. More
generally, suppose that for cosets of length <r (where r = 1), representatives
have already been chosen in such a way that the length of each represen-
tative is the same as the length of its coset. Thus ¢ is assumed to be defined
on all cosets of length <r. Let Hg be any coset of length r, where we may
suppose that g has length r, say g=x; - - x,, x;€ X UX". Then as the
representative g¢ of Hg choose (x;...x,—1)¢ - x,. The inductive step is
completed by doing this for all cosets of length . It is clear that the resulting
transversal is a Schreier system.

(ii) Let T be a Schreier transversal for H in F and let ¢ be the
corresponding coset representative function. We wish to show that the
nontrivial elements among those of the form

x[(tx)p] ", teT, xelX, (2)

freely generate H. We already know (from Theorem 14.3.1 above) that
these elements generate H. It remains to prove that there is no nontrivial
relation among them.

As the first step we show that each nontrivial word in (2) is reduced as
written, assuming that the ¢ are in reduced form. To see this note first that
any cancellation in (2) must begin with the symbol x, so that for cancellation
to occur either t =t,x ", in which case x[(tx)¢] ' = t1(t1¢) ' =t,1t1" =e; 01
[(tx)¢] " =x""13", whence t = ¢, and again mx[(tx)¢] ' =

The second step involves the following. Let u, v be nontrivial words of the
form (2) or inverses of such words, such that uv # e. From the proof of
Theorem 14.3.1 above, and the above argument, we know that, in reduced
form,

=u[(x)p]™, v=sy[(sy)b] ",
t,seT, x, yeX, g, 6 ==%1.

Since u and v are reduced as here written, any cancellation in the product uv
must begin at the “interface” between them. The crucxal pomt is that any
such cancellation halts before reachmg the symbol x° in u and y® m v. For if
x° were to cancel earlier than y®, we should have that s =r#;x"°w, where
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t1=(tx°), whence, since T is a Schreier system,

hx ‘=tx" )=t

But this means that u = 1, a contradiction. If y® were to cancel earlier than x
then we should have that ¢, = sy®y, where #; = (1x*)¢, whence

sy® = (sy®)o.

This is impossible since v # 1. Finally the simultaneous cancellation of x°
and y® is impossible since uv # 1.

For the third and final step, suppose given a word in the nontrivial
elements of the form (2), which is reduced as a word in these elements. We
wish to show that as a word in the alphabet X it does not reduce to the empty
word. This is now quite easy since by the first two steps in the argument
any cancellation must begin at the interfaces between adjacent elements (2),
and must halt before reaching the “core’ symbols x.

14.3.6. Exercise. In F(x, y) find a Schreier transversal and thence free
generators, for the commutator subgroup. Do the same thing for the normal
closure of the elements x, y', r an integer.

The next theorem shows how to compute the rank of a subgroup of finite
index in a free group of finite rank.

14.3.7. Theorem.LetH <F, =F(x,, ..., x,), have finite index j in F,. Then
H has rank

m=1+(n-1)j.

PrROOF. We use the notation of the preceding theorem (with X =
{x1, ..., x,}). Let M denote the set of all formal expressions (2): there are nj
such expressions. We have to discover which of these define the identity
element. With this aim in mind write T, for T\{e}, and define a map
7: To~> M, by

- {t'x[(t'x)q&]_1 fort=rt'x,xeX,
x[(x)p]™t  fort=r'x"',xeX

It is straightforward to check that r is one-to-one, and that To7 consists of
just those expressions in M which define the identity element. Since the rank
of H is the number of expressions remaining, namely nj—(j—1), the
theorem is proved.

14.3.8. Exercise. A subgroup of finite index in a free group of infinite rank,
also has infinite rank (i.e. the condition that n be finite may be removed from
Theorem 14.3.7 without affecting the conclusion).
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14.3.9. Exercise. If F,, F, are free normal subgroups of the same finite
index in a group G, then F;=F,.

14.4. The Lower Central Series and the Derived Series

Let G be an arbitrary group. We define a certain descending chain
11G=y,G=- - (3)

of subgroups of G, in the following manner: Put v, G = G, and define y,,.,G
in terms of y,G by setting v,+1G =[v.G, G]. (Recall that [A, B] is the
mutual commutator of A and B (Ch. 1, §3.2).) The resulting chain (3) is
called the lower central series of G, and v, G its nth term.

The left-normed commutator (x4, .. .,, x,] of weight n in x,..., x,, is
defined for n =1 and 2 to be respectively x; and [x;, x2], while for n > 2 it is
defined inductively by

[x1, ..o xa]=[[x15 - - -5 Xn=1], Xal-
14.4.1. Exercise. For every group G
.G ={g1,...,8]|g €G), n=12,....
14.4.2. Exercise. For every group G
[vG, viG]= y:+,G, Li=1,2,....

(Hint. Use induction and the ‘“lemma on the three commutators’’ (3.2.10).)

14.4.3. Exercise. For any group G the nth derived subgroup is contained in
the 2"-th member of the lower central series; the nth member of the lower
central series of a subgroup is contained in the nth member of the lower
central series of G.

14.4.4. Theorem (Magnus). The terms of the lower central series of any free
group F have trivial intersection ; i.e.

m ‘)/,F= 1.
i=1

PROOF. (i) Suppose first that F is countable. Then by Theorem 14.2.1 above

F is embeddable in the congruence subgroup I'x(n), n =2, so that it suffices

to show that the intersection of the lower central series of I'2(n) is trivial.
Consider matrices

g=e+n*aecly(n*), and f=e+n'bel(n’).
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Write g '=e+n*a’, and f ' =e+n'b’. Then the commutator
[g f1=(e +n" a’)(e +n'b")e+n"a)(e+n'b)
=e+(n*a'+n*a+n*a’'a)+(n'b'+n'b+n*b'b)+c,

where ¢ is congruent to the zero matrix modulo n**'. Now from g 'g=e =
f‘lf, we get that (n“a’+ n*a + n**a’a) and (n'b’' + n'b + n*'b'b) are both the
zero matrix. Hence [g, fle Ta(n**).

From this computation we deduce that

[Ta(n k), Ia(n l)] =TIs(n kH),

whence y;I'2(n) <T»(n'). Since () T2(n') = 1, the result follows for count-
able F.

(i) Now let F be any free group, with a free basis X. Suppose that there is
a nontrivial element f which is contained in all y;F. Foreachi=1,2,...,
express f as a product of left-normed commutators of weight i, and denote
by S; the set of entries in these commutators. The set _i2; S, being itself
countable, generates a countable subgroup F, which is of course free by the
Nielsen—Schreier theorem. However, it has the element f in every term of its
lower central series, contradicting Part (i) of the proof.

Note that by Exercise 14.4.3 and Magnus’ theorem, the derived series of
afree group also has trivial intersection. (In other words, the wth term of the
derived series is trivial.)

Let w be a word in the alphabet X. Define the logarithm of w to the base
x € X, or log, w, to be the sum of the exponents on the letter x wherever it
occurs in w. (One meets frequently with the alternative terminology
“exponent sum on x in w.”’) Clearly log, w is an integer and has the same
value for equivalent words. It is also fairly clear that the map sending each
w e F(X) to its family (log, w),cx of logarithms, is an epimorphism from
F(X) onto a free abelian group of the same rank. It is not difficult to see that
a word has its logarithms to all bases zero if and only if it is in the derived
group, so that the kernel of the above epimorphism is just [F(X), F(X)]. By
applying this reasoning to each term of the derived series of a free group we
obtain the following result:

The factors of the derived series of a free group are free abelian.

We note without proof the fact that the factors of the lower central series
of a free group are also free abelian (Witt’s theorem). The means required
for proving this are considerably more subtle.

14.4.5. Exercise. Free groups are isomorphic if and only if they have the
same rank.

14.4.6. Exercise. Using the commutator identities of §3.2, show that the
factors of the lower central series of a free group of finite rank are finitely
generated abelian groups.
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§15. Varieties

A subclass of groups distinguished from the general population of groups by
means of identical relations, or laws, is called a variety. (The name was
appropriated from the lexicon of algebraic geometry.) For example the class
of all abelian groups is a variety, since its members are just those groups
satisfying the law xy = yx. There is a close connexion between varieties and
free groups, since laws are just elements of free groups (rewrite xy = yx in
the form x 'y 'xy = 1). A large number of papers has been written on the
theory of varieties, and also a book ([31]).

Here we shall introduce the reader to the basic ideas and method of this
theory; in particular we shall show that a variety may be defined equivalently
as a class of groups closed under taking subgroups, epimorphic images and
Cartesian products.

15.1. Laws and Varieties

A word v in the alphabet x,, x5, ..., is said to be a law in a class ¥ of
groups if for every group G in £, v becomes trivial whatever values the
arguments x, x,, ... are assigned from G; i.e. if v =v(xy,..., x,) then
v(g1,...,8)=1forall g;e G, and for all Ge L. Let V be a set of words in
the alphabet x4, x>, . . . , and let G be a group. The values taken by the words
in V as the arguments x4, x5, . . . , run through G, are of course in general not
all trivial. We call the subgroup V(G) generated by these values the verbal
subgroup of G relative to V. Thus

V(G)=(v(g1,---» 8w |VEV, 8 €G).

This subgroup measures the deviation, in some sense, of the group G from
the groups of the variety 8 defined by the laws V. As two obvious examples
of verbal subgroups we mention the commutator subgroup and the dth
power of a group: they are defined by the single words [x, y] and x*
respectively, and may be thought of as measuring the deviation of the group
from being abelian and having exponent d.

15.1.1. Exercise. The terms of the lower central series and the derived
series are verbal subgroups.

15.1.2. Exercise. A verbal subgroup of a verbal subgroup of a group G is
itself verbal in G.

15.1.3. Exercise. The verbal subgroups of F = F(X) are just the subsets H
of that group with the following properties:

: (l) uveH>uv 'eH;
() u=u(xy,...,x,)eH vy,...,0n€c F>u(vy,...>n)€H.
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We shall now establish the existence of, and incidentally describe, the
groups free in a variety in the sense of the beginning of Chapter 3.

15.1.4. Theorem. Let B be a variety of groups defined by a set V of laws. For
any alphabet X = {x;|i € I}, define

Fv(X)=F(X)/V(F(X)),

and denote by X the image of x € X under the natural epimorphism F(X)->
Fv(X). If G is a group from B, and g, i € I, are arbitrary elements of G,
then the map %~ g; extends (uniquely) to a homomorphism Fy(X)-> G. In
other words the groups Fv (X)) are free in the variety 8. Moreover every group
free in B is isomorphic to some Fy(X); i.e. they exhaust the groups free in B.

PROOF. (i) The map x; - g; extends to a unique homomorphism ¢: F(X) >
G, by virtue of the “absolute” freeness of F(X). Since G € B, the kernel of ¢
contains V(F(X)). A little computation in the spirit of the homomorphism
theorems (§4.2) completes the proof that £; > g; extends to a homomor-
phism.

(ii) Let F befree in 8 with free generators f;, i € I. Then by the freeness in
B of F, the map f; - X; extends to an epimorphism F - Fy (X). But by the
freeness in B of Fy (X), the map £; - f; also extends to an epimorphism.
Thus F =Fy(X), and the proof is complete.

The set {X;|i € I} is called a free basis or free generating set for the group
Fv(X), and the cardinal of the free basis is the rank of Fy(X). The
synonymous concepts for free and free abelian groups, which we met with
earlier, now fall into place as particular instances of these general concepts.
The free group of B of rank n, for any cardinal n, is also denoted by F,(8).

In §7 we saw that the free abelian groups are simple enough for us to be
able to described them exhaustively. The free groups of other varieties may
be much more complicated. For instance it was completely unknown until
quite recently whether or not the finite rank free groups in the variety
defined by the single law x%=1, d=5, are finite. This famous problem,
known as ‘“‘Burnside’s problem,” was finally settled by P. S. Novikov and S.
I. Adjan [Izv. Akad. Nauk SSSR, ser. matem., 32, Nos. 1, 2, 3 (1968)]. They
showed that for all odd d = 4381, B(n, d), the free group of rank n =2 in the
variety of all groups of exponent d, is infinite. Later the restriction ““for all
odd d =4381” was weakened to “for all odd d =665 ([1]). It turns out that
all the abelian subgroups of B(n, d) are cyclic, and that its center is trivial
([1]). It is appropriate to mention here also the deep result of A. I. Kostrikin
[Izv. Akad. Nauk SSSR, ser. matem., 23 (1959), 3-34] that for each
natural number n and each prime p there are only a finite number of finite
n-generator groups of exponent p.

15.1.5. Exercise. The quaternion group (x, y | x*, x?y?, x "'yxy) is not free
in any variety.
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For any word w = w(xy, . . ., X,) and any homomorphism ¢: G > G*,itis
obvious that

w(gs,....g)"=w(g? ..., g0), geG

hence the homomorphic image of a verbal subgroup V(G) is contained in
V(G*). In particular the verbal subgroups of a group are fully invariant.

15.1.6. Exercise. Find a subgroup of C, X C4 which is fully invariant, but not
verbal.

For groups free in some variety the situation is more pleasant:

15.1.7. Theorem. If a group G is free in some variety B, then every fully
invariant subgroup of G is verbal.

PROOF. Suppose that H is a fully invariant subgroup of G. Write W for the
set of words w(xy, ..., x,) of Fx with the property that w(g,...,g.,)eH
for all gy, ..., g, € G. We shall show that H = W(G). It is clear from the
definition of W that H = W(G). The reverse inclusion is not too difficult:
write h € H asaword w(fi,, .., f,) inaset{f;|i € I' of free generators of G;
then the full invariance of H implies that w(xi,..., x,)€ W, since any
replacement of xi, ..., X, by g1, - . . , 8« € G, can be achieved by applying to
w(fiys - . - fi,) an endomorphism of G sending f, to gi, ..., fi, to g, This
completes the proof.

The correspondence between varieties and sets of words from Fe defining
them is not one-to-one; it is easy to think of different sets of laws which
define the same variety. The set of all laws satisfied simultaneously by all the
groups in a given variety forms a verbal subgroup of F.: this is the
appropriate subset to associate with the variety. It is easy to see that this
correspondence of verbal subgroup of F., with variety, is one-to-one, so that
the study of varieties is equivalent to the study of the verbal subgroups of F«.

15.1.8. Exercise. The subgroup generated by a set of verbal subgroups of
F. is again verbal. What variety does it define?

Two sets V, W of laws are said to be equivalent if they define the same
variety, or, in other words, if V(Fo)= W (Fy).

15.1.9. Exercise. Any finite set of laws is equivalent to a single law.

The question of the existence of varieties not defined by finite sets of laws,
remained unanswered for more than 20 years. It was finally settled in the
affirmative by A. Ju. Ol’§anskii, who in fact showed that there are con-
tinuously many varieties of groups. Specific examples of varieties not
defined by finite sets of laws were first given by S. I. Adjan [Izv. Akad. Nauk
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SSSR, ser. matem., 34, No. 4 (1970), 715-734], and M. R. Vaughan-Lee
[Bull. London Math. Soc. 2 (1970), 280-286].

15.1.10. Theorem (B. H. Neumann). Every set V of words in the symbols
X1, X2, - . . , is equivalent to a set of the form W = {x{, us, us, ...}, whered =0,
and the u; are in the commutator subgroup of F(xy, x3, . ..) =Fw.

PROOF. Write each v € V in the form
—_ nl n
V=X, XU,

where s = 0, the subscripts i, . . ., i are all different, the n; are all non-zero,
and u belongs to the commutator subgroup of F.. Let d be the highest
common factorof ny, ..., ns takenoverall v in V (and take d =0if s = O for
all v in V, i.e. if all v lie in F&). The non-negative integer d and the elements
u are what we were looking for. Let us now prove this. It is not too difficult to
see that V(F.)=< W(Fy). For the reverse inclusion note first that x;* is in
V (F), since it can be obtained from v by replacing all the other x; occurring
in it by the identity element. Hence x{* € V(Fx), so that finally x{ € V(Fx),
and then, of course, the elements u will also lie in V(Fy).

15.2. An Alternative Approach to Varieties

For any class & of groups, we denote by s&, @&, c® the respective closures of
{ under taking subgroups, homomorphic images (Q for ‘“quotient”), and
Cartesian products, of groups in £. If € happens to be a variety then clearly
s =L, e =2 and c = L. The converse of this is also true.

15.2.1. Theorem (Birkhoff). Varieties are precisely those classes of groups
that are closed under taking subgroups, homomorphic images and Cartesian
products.

PrROOF. We wish to show that if s = £, o€ = and c{ = &, then the class &
isa variety. Let V be the set of all laws satisfied by every group in ¥, and let B
be the variety defined by these laws. It is clear that < 8; we wish to
establish that 8 = L. Since Q¥ = R it suffices to show that every group F free
in B, belongs to £. We shall actually construct a Cartesian product of groups
from { which embeds F'; this will imply that F € & since c = .

By Theorem 15.1.4 above

F=F(X)/V({F(X))

for some alphabet X = {x;|i € I'}. For each word w(x, . . ., x,) not belonging
to the set V, and each ordered n-tuple i = (i1, cees i) of distinct elements of
I, choose a group G, and from it elements g, j € I, such that Gw, € 2 and

w(g‘;‘l',l) ceey gi&i)7ée-
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Form the Cartesian product
n Gw,i’

(w,i)
over all (w,i), w€ V, and consider the subgroup of it generated by the
functions f;, j € I, defined by f;(w, i) = gl It is easy to see that the only
relations among the f; are the laws in V, so that the f;, j € I, generate a group
isomorphic to F. This completes the proof.

This proof actually shows that for any class & of groups the smallest
variety containing  is Qsc&.

15.2.2. Exercise. Let G be a finite group and 8 the variety defined by all the
laws of G. Show that the finitely generated groups in 2 are finite. (Hint. Use
the comment preceding this exercise, with  ={G}.)

15.2.3. Exercise. In a finitely generated group G every subgroup of finite
index contains a verbal subgroup of finite index.

(Solution. By Exercise 2.5.13 we may suppose that H is normal in G. Let
V be the set of laws of the finite group G/H, and 8 the variety defined by
these laws. Since G/ V(G) is finitely generated and belongs to %8, it also is
finite (by the preceding Exercise 15.2.2).)

15.2.4. Exercise. Find classes of groups &, IR, N satisfying the following
conditions:

SL#Q, Ql =4, cl=L,
sSM=I, QM=IM, cM=I,
sN=N, QN =N, cN#=N.



Nilpotent Groups

In two earlier chapters we gained some familiarity with abelian and finite
groups. Although, of course, these by no means account for all groups, every
group is connected with them in some way or other. For instance the free
groups of rank =2 are not abelian and not finite, yet, as we have seen, they
possess descending normal chains with abelian factors, and they are residu-
ally finite. There are a great many papers on group theory devoted to
establishing connexions such as these with finiteness and commutativity. As
a result there exists a welter of conditions generalizing the conditions of
finiteness or abelianness, ranging from the sublime to the ridiculous.

The most important generalizations of commutativity are solubility and
nilpotency. Soluble groups are those that can be constructed from abelian
groups by means of a finite number of successive extensions. They are
especially well known for their relevance to the problem of solving algebraic
equations by radicals (see the Introduction), whence their name.

Nilpotent groups form a class smaller than that of soluble groups but
larger than that of abelian groups. Their definition is more complicated, but
they can be more intimately studied than soluble groups.

This chapter is devoted to nilpotent groups and the next to soluble
groups. As to generalizations of finiteness, we have already met with some of
them—for instance periodicity, the property of being finitely generated—
and others will be introduced as the need arises.

Many further interesting facts about nilpotent and soluble groups may be
found in [8, 18, 20, 35, 42].
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§16. General Properties and Examples

16.1. Definition

Let G be a group. A normal series

1=Go=G1=--=G,=G (1)
is said to be central if all of its factors are central; i.e. if
Gi1/ G, =C(G/G;), foralli, 2)
or equivalently, if
[Giz1, G]=G;, foralli. 3)

A group having a central series is called nilpotent (we shall explain the name
below), and the length of the group’s shortest central series is termed its
nilpotency class. (The use of the word ““class” for this number is unfortunate
but firmly established; some adroitness is needed in order to avoid stylistic
masterpieces like “class of nilpotent groups of a given class.”’) Our remark
that the class of nilpotent groups is intermediate between the classes of
abelian and soluble groups is now clear from the definition. Abelian groups
are just the nilpotent groups of class <1.

16.1.1. Exercise. Any series satisfying condition (3) is automatically a
normal series.

Let G be an arbitrary group. Guided by conditions (2) and (3) we attempt
to construct central series for G: Define

(G =1, {i1G/ LG = C(G/LG), i=0,1,2,...;
‘ylG = G, ‘Yj+1G =[‘)'I~G, G], j= l, 2, P

The subgroups {;G are called the higher centers of the group G, while the
groups y;G are the familiar (from §14.4) terms of the lower central series:

G=y9,G=y,G="--;
the ascending series
1=¢(G6G=0HG6G=---,

is the upper central series of G. (We remark in passing that it is easy to define
¢aG and vy,G for any ordinal a; we shall however avoid this particular
quagmire, at least for the time being.)

It is clear that if some higher center coincides with the whole group, or
some term of the lower central series is trivial, then the group is nilpotent.
Conversely, suppose that a group G is nilpotent and that (1) is an arbitrary
central series for the group. For the sake of brevity write Z; = {,;G, T'; = v,G.
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The definitions and an easy induction lead to the following scheme of
inclusions:

1=ZOSZIS...
Vi Vi
1=Gy=G1=---=G,_1=G,=GC 4)
Vi Vi
=T, =T =G.

It is clear from these inclusions that both the upper and lower central series
of a nilpotent group are finite, and that their lengths are equal to the
nilpotency class of the group. (The scheme (4) makes especially clear the
motivation for choosing the adjectives ‘“upper’” and “lower” for the two
series.) Although the upper and lower central series of a nilpotent group
have the same length, they themselves need not be the same (see Exercises
16.2.10 and 16.2.11 below).

16.1.2. ExAMPLE. Let K be a field. Using the formulae (9), (12) of 3.2.1,
it is not difficult to see that, for n = 3, the series

UT,.(K)=UTAK)>UT4K)>-+->UTi(K)=1

is both the upper and lower central series of the group UT,,(K). Incidentally
we get that this group is nilpotent of class n — 1. One of the authors [Ju. I.
Merzljakov, Central series and derived series of matrix groups, Algebra i
Logika 3, No. 4 (1964), 49-58] has computed central series for other matrix
groups, in particular the lower central series of the principal congruence
subgroups over local rings (see Exercise 4.2.7), and of the Sylow p-sub-
groups of GL,(Z,~). In the latter case, for example, the situation can be
described as follows. For brevity, we put K =Z,~. Take the “empty” n Xn
matrix, i.e. a square divided into n* congruent smaller squares by lines
parallel to its sides, and cover it with a “carpet” made up of the ideals K, pK,
sz, ..., as shown in the diagram (where n = 3):

pP’K p’K p’K pK pK |pK| K K| K
p’K p’K p’K pK |pK pK K, K K
p°’K p’K p’K | pK | pK pK| K K K
M n n

Let G be a Sylow p-subgroup of GL,(K). We know from Exercise 11.3.3,
Ch. 4, that G consists of all n X n matrices over K congruent to the identity
matrix modulo the matrix of ideals formed with the carpet in the indicated
position. It turns out that for r =2 the subgroup v,G consists precisely of
those matrices in SL,(K) that are congruent to the identity modulo the
matrix formed when the carpet of ideals is moved r — 1 steps to the right. Let
us now translate this into more formal language. Let K be an associative ring
with a multiplicative identity. A family a={a; | i, j € Z} of ideals of K is
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called a carpet of ideals if
Qi Qg S Qjj for all i, 1A kel.
It is easily verified that if K is commutative then the set
Fn(a) = {x |x € SL,,(K), Xij = 8,’,‘ mod 0,‘,‘}
is a group; we shall call it the (special) congruence subgroup modulo the carpet
a. (Note that if K =7Z, a; =(m), this becomes the principal congruence
subgroup I',(m), of Exercise 4.2.7.) In this notation our result can be

restated (in terms of formulae rather than diagrams) as follows: If G is a
Sylow p-subgroup of GL, (K3 K =Z,~, then

v:G =T, (a™"), r=2,3,...,

where

(n,r) _

a¥ p——[(i—i—r)/n]K;

here “[ ]” means “the integral part of,” and for / =0, we define p'K =K.
From this result it follows in particular that a Sylow p-subgroup of GL,(Z,~)
is nilpotent of class mn —1.

It is clear from the statement following (4), that a group G is nilpotent of
class <s if and only if v,,;G = 1. Hence the nilpotent groups of class <s
form a variety, denoted by ; this variety is defined by the single law

[xly---’xs+l]:e

(see Exercise 14.4.1). Thus subgroups, homomorphic images, and Cartesian
products of nilpotent groups of class <s, are again nilpotent of class <s. By
the general theory set forth in Chapter 5, the variety 9, possesses free
groups; these are the groups

F(X)/vs+1F(X),
for any alphabet X.

16.1.3. Exercise. Let G be the free nilpotent group of class 2 with free
generators a, b. Put ¢ =[a, b]. Each g € G can be uniquely expressed in the
form g = a®b®c”, for integral a, B, v; these expressions multiply as follows:

a®bPc” - a* P ¢ =a T PP YR,

Hence the map defined by

1 8 v
a’bfc’->|0 1 «,
0 0 1

is an isomorphism between G and UT5(Z).
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We end this subsection with a few words about terminology. Nilpotent
groups were not so named right from their inception: for a long time they
went under the nondescript title of “‘special.” In ring theory however the
concept of nilpotency (i.e. “nil potency” or “zero power’’) had long been in
use: a nilpotent ring is one in which, for some positive integer n, the product
of any n elements is zero; i.e.

X1+ x, =0 (5)

is a law in the ring (where we allow all bracketings if the ring is non-
associative). (As an example take the ring of upper triangular matrices of
degree n with zero main diagonal.) In the classical theory of Lie there is an
important correspondence between a special class of rings (Lie rings), and a
special class of groups (Lie groups), which matches multiplication in the
rings with commutation (i.e. formation of commutators) in the groups; in
particular, corresponding to the law (5) we get the law

[x1,..., xu]=e. (6)

For this reason ‘““nilpotent’’ ultimately became the accepted name for groups
satisfying the law (6). We note that group theory did not long remain
indebted to ring theory: soluble Lie rings take their name from soluble
groups.

The following exercise demonstrates another way of relating nilpotency
in groups to nilpotency in rings.

16.1.4. Exercise. Let A be an associative ring with 1, B a subring, and write
B" for the subring generated by all products b, - b,, b;eB. If B is
nilpotent, i.e. B" = 0 for some , then the set G*” ={1+x |x € B'} is a group
under the ring multiplication, and [G”, G"= G“*”. It follows that these
groups are all nilpotent of class =n. This gives another way of establishing
the nilpotency of some of the groups mentioned in Example 16.1.2 above,
without, however, obtaining a description of their upper or lower central
series.

16.1.5. Exercise. In a torsion-free nilpotent group the identity element is
the only element conjugate with its inverse.

16.1.6. Exercise. A periodic, finitely generated, nilpotent group is finite.
(This is still true with ‘“‘soluble” replacing “nilpotent.”’) (Hint. Use Exercise
14.3.2.)

16.2. General Properties

The very definition of nilpotent groups suggests an effective, and usually
indispensible, tool for investigating them: induction on the nilpotency class.
Although inductive proofs of this sort usually involve the upper or lower
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central series, on occasion it is convenient to work with other subgroups. In
this connexion the following lemma is useful.

16.2.1. Lemma. Let G be a nilpotent group of class c =2. Any subgroup of G
generated by the commutator subgroup together with any single element of G,
is nilpotent of class <c.

PrROOF. Let a € G and write H ={(a, [G, G]). Since
[G’ G] = ({c—lG) f\H = {c—1H9

it follows that H/{._,H is cyclic. Since in any group the factor group by the
centre cannot be nontrivial cyclic, we must have {._;H = H, as required.

This subsection is devoted mainly to establishing facts about subgroups of
nilpotent groups.

16.2.2. Theorem. Every subgroup of a nilpotent group is subnormal. More
precisely, if G is nilpotent of class c then for any subgroup H the series of
successive normalizers starting with H reaches G after at most c steps.

PROOF. Write
Z; ={iG, H,=H, I{i+l =NG(I'11')-

The theorem will follow if we can show that Z; < H;. For i = 0 this is obvious.
We shall show that if it is true for i then it is true for i + 1. Since

[G, Z:1]l=Z;=H,
we have that
Hf S H[H, Zin]=<H;

(Recall that for A,B=<G, A% ={a° |la €A, beB}.) Thus Z;,, normalizes
H;;i.e. Z;,1=< H;.1, which completes the inductive step and the proof.

16.2.3. Theorem. In a nilpotent group every nontrivial normal subgroup
intersects the center nontrivially.

ProoFr. We use induction on the nilpotency class. Let G be a nilpotent group
and H a nontrivial normal subgroup. Suppose inductively that the theorem
is true for groups of smaller class than G. As usual write Z; =¢,G. If H < Z;
we have the desired conclusion trivially. Suppose H# Z;. Then by the
inductive hypothesis applied to G/ Z,, the intersection HZ; N Z, contains an
element ag Z,. If we write a = hz forsome he H, z€ Z,, thenhe Hn 2Z,,
hg Z,. Let g € G be any element such that [/, g]# e. Then

[h,gle HN[Z,, G]l=H N Z,,

so that the intersection H N Z, is nontrivial, and the theorem is proved.
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16.2.4. Exercise. In a nilpotent group every normal subgroup of prime
order is contained in the center.

16.2.5. Theorem. Let G be a nilpotent group. If A is a subgroup such that
A[G, G]= G, then A = G. Hence

[G, G]l=®(G). (7

PROOF. Suppose on the contrary that A# G. Write A;=A - (G, i=
0,1,2,...; clearly A;<tA;.;. Suppose n is such that A, <G, A,.1=G.
Since the quotient A, ,,/A, is abelian we have [G, G]= A,, whence

A[G,G]l=A, <G,

a contradiction. The assertion (7) about the Frattini subgroup follows
directly from its description as the set of nongenerators of G (Theorem
2.2.6). This completes the proof.

[At this point we reveal a secret. In our fourth example on the Frattini
subgroup in 2.2.7, we proved that ®(UT,(Z) < UT%Z), and mentioned
(leaving the onus of proof on the reader!) that the reverse inclusion is also
true. What we had in mind was precisely the theorem just proved.]

16.2.6. Theorem. In a nilpotent group G every maximal abelian normal
subgroup A is its own centralizer. It follows that A is a maximal abelian
subgroup and G/ A embeds in Aut A.

PrOOF. Write briefly H = Cs(A), Z; =¢{:,(G). Suppose inductively that
H n Z; < A (this being trivial for i =0), and let xe H n Z;,,. For all g € G,
we have [x, gle H N Z; < A; hence (x, A) is an abelian normal subgroup of
G, containing A. By the maximality of A, we must therefore have that x € A,
whence H N Z;,1<A. Since Z, = G for some n, we get that H = A, as we
wished to prove.

We shall call elements of finite order in a group torsion elements.

16.2.7. Theorem. In a nilpotent group G the set 7G of torsion elements forms a
subgroup (the torsion subgroup of G).

ProoF. We shall use induction on the nilpotency class of G, together with
Lemma 16.2.1. The result is easy if G has class 1; suppose it has class >1
and that the theorem is true for groups of smaller class. Let a, b be arbitrary
torsion elements of the group G. Set

A=(a,[G,G)), B=(b[G G).

By the inductive hypothesis 7A, 7B are subgroups of A, B respectively.
Since 7A is fully invariant in A, and A is normal in G, it follows that rA is
normal in G. Similarly 7B is normal in G. It is easy to see that for each
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element of 7A - 7B there is some power of that element which lies in 7B, and
therefore some higher power which is trivial. Hence 7A - 7B is periodic. In
particular the elements ab, a”' have finite order, as we were required to
prove.

16.2.8. Theorem. In a torsion-free nilpotent group roots of elements, when
they exist, are unique; i.e. ifa" =b", n #0, then a = b.

PrROOF. Yet again we use induction on the nilpotency of our torsion-free
group G, say. For G abelian the result is obvious; suppose G is not abelian
and that the result holds for torsion-free groups of smaller class. The
subgroup (a, [G, G)) is normal in G and has smaller class (Lemma 16.2.1).
Since a, a’ € (a, [G, G)), and, as s easy to see, (a°)" = a", it follows from the
inductive hypothesis that a®=a, that is, a commutes with b. Hence
(ab™")" =e. Since G is torsion-free we deduce that a = b, as desired.

16.2.9. Exercise. In a torsion-free nilpotent group if x™y" =y"x™ (m, n #
0) then xy = yx. (Hint. If (y "xy")" =x", then y "xy" = x, etc.)

16.2.10. Exercise. The factors of the upper central series of a torsion-free
nilpotent group are also torsion-free.

16.2.11. Exercise. The analogous statement for the lower central series is
false: for example, if

nZ

nZ Z 1 0
Z|, then[G,G]=|0 1 0|,
1 0 0 1

1
G=|0 1
0 0
whence G/[G, G]=Z@ZDZL,.

We shall now consider nilpotent normal subgroups of arbitrary groups.

16.2.12. Theorem (Fitting). In any group the product of two nilpotent normal
subgroups of classes s, t is a nilpotent normal subgroup of class <s +1.

PrOOF. Let A< G, B=G, y,.;A=1, y,.1B=1. Then

Y«(AB)=[AB,...,AB]=I1[H,,..., H,], (8)
g—v__/
n
where (H\, . . ., H,) ranges over all sequences of n A’s and B’s (see Exercise

3.2.11). Since A is fully invariant in A, which in turn is normal in G, it
follows that y;A is normal in G, whence

[v:A, Bl=v.A foralli.



§16. General Properties and Examples 113

It follows that if i of the entries Hy, ..., H, are A’s, and the remaining
n—1i are B’s, then

[Hl’ ey Itln]S YIA N Yn—iB- (9)

If we take n =s+t+1, then either i=s+1 or n—i=t¢+1, whence by (8)
and (9) y.(AB)=1. The proof is complete.

16.2.13. Exercise. Define a group G to be residually nilpotent if
YoG =) .G =1.
n=1

The product of two normal residually nilpotent subgroups of a group need
not be residually nilpotent: a counterexample is provided by the equality

SL.(Z)=T.(2) - T'.(3).

16.3. Nilpotent Groups of Automorphisms

As noted in Example 16.1.2, any group of unitriangular matrices is
nilpotent. Now of course matrices of given size over a given field are (or at
least arise from) automorphisms of a vector space with a given basis, and
from this point of view the unitriangular matrices are just those automor-
phisms fixing each member of a descending chain of subspaces spanned by
subsets of the basis, and acting trivially on the factors of the chain. Herein
lies the real reason for the nilpotency of groups of unitriangular matrices.
More generally we have

16.3.1. Theorem (Kaluznin). Suppose that the series
G=002612"'ZG,=1 (10)

is a normal series (of length r) of the group G. Let ® denote the stabilizer of the
series (10), i.e. the group of all automorphisms of G leaving the G; invariant
and acting trivially on the factors G,/ Gi+1. Then ® is nilpotent of class <r,
and if we regard G, ® as subgroups of Hol G, then [G, ®] is also nilpotent of
class <r.

Proor. To see that @ is nilpotent of class <r, note first that by the hypothesis

[G;, )= G,y foralli. (11)

Write @, for the set of elements of & acting trivially on all factors G,/ Gi.;,
i=0,1,...,r—]j Itis obvious that

(1):(1)12(1)22. =P, =1,
and it suffices to show that this is a central series for ®; i.e. that
[(pi’ d)] = q>,'+1 for all j,
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or, equivalently, that
[G, [®), ®]]= Gi+j+1 for all appropriate i, J.
But this is immediate from the three-commutator lemma (3.2.10) and the
following easy inclusions:
[®; [®, GII=[P), Gi+1]=Gisju1;
[@,[G; ]]1=[D, Gi+;]1=Gisju1.
(i) We wish to prove the same thing for [G, ®]. From the inclusions
[G,[®, GilI=[G, Git1]l=Gis1,
[®,[G; GlI=[®, Gil= G,
and, once again, the lemma on the three commutators, we deduce that
[G, [G, P]]=Gisq foralli.

This means that the actions of [G, ®] on the factors of the series G; = G, =

-+= G, =1 by conjugation, are trivial. Hence under conjugation [G, ®]
stabilizes this series (we are also using here the normality of the series (10)).
Thus by Part (i) of the proof [G, ®]/Cic.¢1(G1) is nilpotent of class <r—1.
Since [G, ®]= G,, we have that C(s.4)(G,) lies in the center of [G, ®],
whence the desired conclusion.

It is natural to try to go further: Is it perhaps true that the stabilizer of an
arbitrary series (not necessarily normal) of subgroups is nilpotent? (By
stabilizer of a (not necessarily normal) series (10) we mean here the group of
all elements of Aut G leaving the G; invariant and satisfying (11).) It turns
out that the answer is affirmative, although the proof is more complicated,
and the bound on the nilpotency class is not as good.

16.3.2. Theorem (P. Hall). The stabilizer of series of subgroups of length ris a
nilpotent group of class < (;)

ProOF. We use induction on the length r of the series. The result is trivial for
r = 1. Suppose ® to be the stabilizer of the series (10) where we assume r > 1.

Put ¥ = C¢(G1). Since ® stabilizes the series G1= G, =" - - = G, of length
r—1, by the (tacit) inductive hypothesis the group ®/V¥ is nilpotent of class

<<r—l).,e
=\, ,‘l..

Put

Yi+c3H®="V.

‘I’l = \I’, ‘I’H.l = [q’,', (I)]
Since ¥ < ®, we have
V=V =V=. ..,
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Thus it suffices to show that [G, ¥,]= 1. We do this by proving by induction
on i that [G, ¥;]= G; for all i. This is immediate for i = 1. For the inductive
step, we take g € G, ¢;.1€ V.4, and prove that [¢f;.1, g]€ Gi+1. Now ;41 is
a word in commutators of the form

Wood'l, eV, ¢eb.

The element %,, is the same word in the elements
(o ™1 =[v, ¢ " Nw 67, 2. (12)
From Witt’s identity (see (17) of §3, Ch. 1) and the containments
[¢, 87", ¥ile[®, G, ¥,]<[Gy, ¥]=1,
[g i, ¢1e[G, ¥, ®]=<[G, P]< G\
(where we have invoked the inductive hypothesis), we get

(v, ¢_l, gle Gis.

Hence in the product in (12) the left-hand factor lies in ¥, and the right-hand
factor in Gi;;. But ¥ centralizes G, = G;.1, whence %,; € ¢¥;+1G;+1. Thus
[¥i+1, gl€ Gi+1, completing both inductive steps, and thereby the proof.

Our demure Example 16.1.2 reveals unsuspected depth!

§17. The Most Important Subclasses

17.1. Finite Nilpotent Groups

In the following example we introduce another important source of
nilpotent groups.

17.1.1. EXAMPLE. Every finite p-group G is nilpotent. The bulk of the proof
of this consists in showing that a p-group has nontrivial center. Observe first
that an element is central if and only if it is the only member of its conjugacy
class. Since

la®|=|G:Ng(a)l,

the sizes c; of the conjugacy classes in G are powers of p. Since the identity
element forms a conjugacy class by itself, at least one of the c; is 1. However
Y ¢; =|G], so that p divides ¥ ¢;; this and the fact that p|c; for ¢; >1 imply
that at least one (in fact at least p — 1) other ¢; = 1. Hence G has nontrivial
center Z;. The nilpotency of G now follows easily, since for the same reason
G/Z, has nontrivial center Z>/Z;, and so on, until finally one of the higher
centers coincides with G.
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17.1.2. Exercise. For each prime p there are exactly two non-isomorphic
groups of order p?, namely Z,z and Z,®Z,. There are five of order p>. Of
these three are abelian:

2,:,2,®2,72,9Z,DZ,;
and two are nonabelian: for p =2 these are the dihedral group
(a,bla*=1,b>=1,bab=a""),

and the quaternion group
(a,bla*=1,b*=0a* b 'ab=a"");

while for p >2 they are the groups
(a,bla”=1,b"=1,b""ab=a'""),

(a, b,cla®=1,b"=1,c"=1,[a, b]=c,[a,c]=[b,c]=1).

An infinite p-group may have trivial center. By Exercise 6.2.3 the
restricted wreath product of an arbitrary group with an infinite group has
trivial center: hence the p-group C, wr C,~ will serve as an example.

17.1.3. Exercise. Let K be a field of non-zero characteristic p, and denote
by UT,(K) the group of those infinite matrices with rows and columns
indexed by the natural numbers, entries on the main diagonal all 1, entries
below the main diagonal all 0, and above the main diagonal only finitely
many non-zero entries. The group UT, (K) is a p-group with trivial center.
(Hint. Use (2) of §3, Ch. 1.)

It turns out that a finite nilpotent group is nothing more than a direct
product of finitely many finite p-groups (for various p of course). We include
this pleasant fact as part of

17.1.4. Theorem (Burnside-Wielandt). Let G be a finite group. The follow-
ing conditions are equivalent:

(i) G is nilpotent;

(ii) every subgroup of G is subnormal,;
(iii) G is the direct product of its Sylow p-subgroups;
(iv) [G, G]1=¥(G).

PROOF. We shall prove the theorem according to the following scheme:
()
Z , X
i v
N 7
(iii)
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(i) = (ii) See Theorem 16.2.2.

(if) = (iii)) Let P be a Sylow p-subgroup of G. Since Ng(P) is its own
normalizer in G (Exercise 11.1.4), while by (ii) every proper subgroup has
normalizer strictly larger than itself, we must have that Ng(P) = G. Hence
the Sylow subgroups of G are normal in G. Statement (iii) now follows
easily.

(iii) = (i) Use Example 17.1.1.

(i) = (iv) See Theorem 16.2.5.

(iv) = (iii) As before it suffices to show that the Sylow subgroups of G are
normal in G. Let P be a Sylow p-subgroup of G and suppose on the contrary
that Ng(P) is proper in G. Let H be a maximal subgroup of G containing
Ng(P). Since

[G, G]l=d[G]=H,

it follows that H is normal in G. On the other hand since H contains Ng(P),
it is its own normalizer in G (Exercise 11.1.4). This contradiction completes
the proof of the theorem.

From the Burnside-Wielandt theorem it follows immediately that the
wreath product of a finite nontrivial p-group with a finite nontrivial g-group
is nilpotent if and only if p =gq.

17.1.5. Exercise. What is the nilpotency class of the wreath product
Z,-wrZ,?

The precise conditions for wreath products to be nilpotent are given in the
next exercise.

17.1.6. Exercise. Let A, B be nontrivial nilpotent groups. The wreath
products A wr B, A Wr B are each nilpotent if and only if A and B are
p-groups (for the same p), with A of finite exponent and B finite. (Hint. Use
Exercises 6.2.1, 6.2.3, and the natural homomorphism Z wr Z, > Z, wr Z,,.)

We conclude this subsection with the following striking fact about
arbitrary finite groups.

~ 17.1.7. Theorem (Frattini). The Frattini subgroup of a finite group is
nilpotent.

PROOF. Let G be a finite group and A its Frattini subgroup. In view of the
Burnside-Wielandt theorem it suffices to show that the Sylow subgroups of
A are normal in A, or, equivalently, in G (see Exercise 5.2.6); i.e. that for
any Sylow p-subgroup P of A, Ng(P) = G. But this is equivalent to showing
that

G=A - Ng(P)
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since the set A is finite and consists of the nongenerators of the group G
(Theorem 2.2.6). We shall now establish the latter equality.

Let g be any element of G. Conjugation of G by g sends A to itself,
whence P? is also a Sylow p-subgroup of A. By Sylow’s theorem (11.1.1) P
and P* are conjugate in A, i.e. P* = P* forsome a € A. Hence ga ' € N5 (P),
and finally g€ A - Ng(P).

A part of this proof is often isolated as the ‘‘Frattini argument,” the object
of which is

17.1.8. The Frattini Lemma. Let A be a normal subgroup of a finite group G,
and let P be a Sylow subgroup of A. Then G = A - Ng(P).

17.1.9. Exercise. Let A be a normal subgroup of a group G, and let B be a
subgroup of A with the property that whenever B; < A is conjugate to B in
G then it is conjugate to B in A. Then G=A - Ng(B). (This is the
“Generalized Frattini Lemma.”’)

17.2. Finitely Generated Nilpotent Groups

The groups UT,(Z) are obvious examples. It is not obvious, but it is true,
that the subgroups of the unitriangular groups over Z account (up to
isomorphism of course) for all finitely generated, torsion-free nilpotent
groups. Arbitrary finitely generated nilpotent groups are just finite exten-
sions of the torsion-free ones, and so, in particular, can be embedded in
SL, (Z) for suitable n. The goal of this subsection will be to prove these facts,
fundamental in the theory of finitely generated nilpotent groups.

17.2.1. Lemma. Let G be an arbitrary group, and let M be a set of generators
for G. Then v,G is generated by the elements of v;+1G together with all
left-normed commutators of weight i in the elements of M.

ProOOF. The statement is obvious for i = 1. We go to the inductive step from i
to i + 1. By definition v;,1G is generated by the elements [x, y], x € y:G,
y € G. By the inductive hypothesis x =xi* - - - x,;"z, where each x; is a
left-normed commutator of weight i in the elements of M, ¢, =+1, and
z € ;11 G. Expressing y as a product of elements of M UM ', and using the
commutator identities (3) of §3.2, Ch. 1, we see that [x, y] is a word in
elements of the form

[xj, al®* =[x, allx,a,8l, [z,a]5, aeMgeG.

Since [x;, a, g] and [z, a] belong to v:+2G, and [x;, al is a left-normed
commutator of weight i + 1 in the elements of M, the proof is complete.
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We shall say that a group almost possesses a certain property if it has a
normal subgroup of finite index with the property.

17.2.2. Theorem. Every finitely generated nilpotent group has a central series
with cyclic factors, and is almost torsion-free. A torsion-free, finitely generated
nilpotent group has a central series with infinite cyclic factors.

PROOF. (i) Let G be finitely generated nilpotent. Each factor of its lower
central series is a finitely generated abelian group (by the preceding lemma),
and therefore possesses a (finite) series with cyclic factors. Since any
refinement of a central series is again a central series, it follows that G has a
central series with cyclic factors. We now use induction on the length of this
central series to prove that G is almost torsion-free. This is trivial if the series
has length 1; suppose it has length >1 and that groups with shorter such
central series are almost torsion-free. Let H be the largest member of the
series different from G, and let a be an element generating G modulo H. By
the inductive hypothesis H is almost torsion-free, so that for a suitable # its
subgroup H" =(h"|h e H) is torsion-free. By Exercise 16.1.6 we have
|H:H"|<oo. If |G:H|<, then H" will serve as the desired normal
torsion-free subgroup of finite index in G. If |G: H| = oo, then the desired
subgroup may be taken to be the intersection of the conjugates of the
subgroup (a) - H", since this subgroup is torsion-free and

|G:(a)H"|=|H:H n{a)H"|=|H: H"|<00.

(ii) By Part (i) any finitely generated nilpotent group is polycyclic, whence
the factors of its upper central series are also polycyclic (Exercise 4.4.3), and
therefore finitely generated. If our nilpotent group is torsion-free then they
also will be torsion-free (Exercise 16.2.10). Hence the upper central series
of a finitely generated torsion-free nilpotent group can be refined to a central
series with infinite cyclic factors. This completes the proof.

17.2.3. Exercise. Polycyclic groups are almost torsion-free. (Hint. Imitate
part of the proof of the preceding theorem.)

17.2.4. Exercise. The torsion subgroup of a finitely generated nilpotent
group is finite. More generally, in any group with almost no torsion all
periodic subgroups are finite.

From Theorem 17.2.2 it follows that a finitely generated torsion-free
nilpotent group G can be equipped with a system of integral coordinates of a
certain special kind, which lead to a representation of G by integral
unitriangular matrices. We now give the details of this. For the time being
take G to be simply a set. A (finite) sequence of functions f;: G>Z,
i=1,...,s, is called a coordinate system for G if the map defined by
x - (fi(x), ..., f.(x)) is an injection from G to the set Z* of all ordered
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s-tuples of integers. For the next definition we suppose that G = Z°. A map
¢: G > Z’ isapolynomial map if there exist polynomials fi, . . ., f, over Q, in
s variables, such that

x¢ =(fix),...,fi(x)) forallxeG.

If f1, ..., [ have degree one, then we shall say that ¢ is linear. Now let G be
a finitely generated torsion-free nilpotent group, and let

G=Gl>Gz>"'>Gs+1=1

be a central series for G with infinite cyclic factors. Choose elements
ai, ', as such that G; =(a;, G;+1). Obviously each element x of G can be
uniquely expressed in the form

x=ap® - at®, n(x)eZ,
so that the s-tuple of functions ¢y, . . ., f; is a coordinate system for G. We call
the s-tuple (ay, . . ., a;) a Mal’cev basis (of order s) for the group G, and the
integers t;(x), ..., t;(x) the Mal’cev coordinates of x relative to this basis.

17.2.5. Theorem. Let G be a finitely generated torsion-free nilpotent group
and (t1,...,t) a Mal’cev coordinate system for G. There exists a positive
integer n =n(G) and a monomorphism ¢: G - UT,(Z), such that ¢ is a
polynomial map on G, and its inverse ¢~ is linear on G® (here we are
identifying G with a subset of Z® according to the given coordinate system, and
UT..(Z) with a subset of Z" in the obvious way). It follows in particular that
the operations of multiplication and powering in the group G can be described
in terms of polynomials in the Mal’cev coordinates. More precisely forx, y € G,
meZ,1=<i=<s, we have

t:(xy) =[a polynomial over Q in {t,(x), t.(y)|a <i}]+t:(x)+t:(y), (1)
t;(x™) =[a polynomial over Q in m and {t,(x)|a <i}]+ mt;(x). ?2)

PrROOF. (i) We first prove the last statement: It follows in particular. ...”
For any matrix a € UT,(Z) and any integer m we have by the binomial
theorem

n—1

am"=y (’1,1)(0 —e)', where of course (:n)

i=0 \1!
=m(m—1)- -'-(m—z+1)’(m)=1' 3)
il 0

It follows that the entries of the matrix a™ are polynomials in m and the
entries of a. By the main assertion of the theorem (which we have yet to
prove) the coordinates #(xy), #;(x™) are linear polynomials in the entries of
the matrices (xy)?, (x™)® respectively, which entries are, as we have just
seen, polynomials in the integer m and the entries of the matrices x?, y®.
Again by the main assertion of the theorem the latter entries are poly-
nomials in the coordinates z, (x), 7. (y). Hence the Mal’cev coordinates of the
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product xy and the power x™ are polynomials in the integer m and the
Mal’cev coordinates of x and y, as required. That these polynomials are as
described in (1) and (2) follows easily from the definition of a central series
and Mal’cev coordinates.

(i) We now prove the main assertion. First note that instead of ¢ it
suffices to find a monomorphism ¢: G -» GL, (Z) which is polynomial, and
whose inverse «lz_l is linear on G", such that in addition G" consists of
unipotent matrices. (A matrix a is said to be unipotent if its only charac-
teristic root is 1, or, equivalently, if (a —e)" = 0.) This is immediate from the
fact that such a group G" is conjugate in GL,(Q) to a subgroup of UT,(Z).
We shall now prove this for any nilpotent group H of unipotent matrices
over Z. The first step is to show that H is conjugate to a subgroup of UT,,(Q).
Regarding GL,(Q) as the automorphism group of an n-dimensional vector
space V over the field Q, let

V=Vi>V,> - >V,,= 4)

be an unrefinable chain of subspaces of V invariant under H. Choose a basis
for V such that subsets of it span the V,, i =1, ..., m+1; relative to such a
basis each automorphism in H can be written as a block matrix whose blocks
below the main diagonal are all zero, and whose ith diagonal block arises
from the action of H on V;/ V,,;. We shall show that the action of H on each
Vi/ Vi, istrivial. Let U be any V;/ V... Since [H, H] has smaller nilpotency
class than H, we may suppose (inductively), that (4) refines to a chain of
subspaces invariant under [H, H] whose factors have dimension 1, and are
such that [H, H] acts trivially on them. Thus there is a nonzero vector u € U
fixed by every automorphism from [H, H]. Let U be the subspace of U
consisting of all such vectors. This subspace is invariant under H since for
heH, h'e[H, H] we have

(uh)h' = u(hh'h ™ Yh = uh.

Since U contains no proper subspaces invariant under H, we get that U=,
whence [H, H] acts trivially on U; i.e. H induces an abelian group of linear
transformations of U. Now it is a fact of linear algebra that any set of
pairwise commuting linear transformations over a field K have a common
eigenvector over the extension field obtained by adjoining to the ground
field K the characteristic roots of the linear transformations. It follows that
the linear transformations of U induced by H, being unipotent, have a
common eigenvector in U, which moreover they fix. Hence this vector spans
a one-dimensional subspace of U on which H acts trivially. Since U
contains no proper subspaces invariant under H, we deduce that U itself is a
one-dimensional space on which H acts trivially. This shows that H* <
UT,.(Q) for some a € GL,(Q). Now take a finite set of matrices generating
H?*, and denote by N a common denominator of their entries. If we write b
for the diagonal matrix with entries 1, N, N%,..., N"™! going down the
main diagonal, then it is easy to see that H** < UT,(Z).
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(iii) It remains to find the map . We shall use induction on the order of a
Mal’cev basis. If this is zero, i.e. if the group is trivial, then the theorem is
trivial. Thus suppose s >0 and that for groups with a Mal’cev basis of order
<s the desired representation has been found; it follows from Parts (i) and
(ii) of the proof that this amounts to assuming the theorem true for such
groups. Suppose the group G has a Mal’cev basis (ai, . . . , as) of length s. To
prepare the ground for the construction of  we shall prove the statement (1)
for G. Write briefly t;(x) = &, t:(y) = n:. Obviously

— S &tm -ny .1 _mi\—& -n; 1 _m\—& m g
xy_all 1(a1 ‘as all) 2"'((11 a; all) saz? - ags,

and

ai"a;'al =[a}, ala;’".
Since the theorem is true for groups with a Mal’cev basis of order <s so, in
particular, are (1) and (2) true for such groups; it will therefore suffice to
verify that the coordinates of an element [a 7, a;] relative to the Mal’cev basis
(as, ..., as) are polynomials in . Now

[af, a;l= al—n(ai_lalai)n’
and
ai_lalai =aiaiyi' - - ass forsomec;eZ.
From the inductive hypothesis as applied to {ai, ai+1, . . . , as) we conclude

that

-1 LU Y 4 $is
(ai a1a;)" = afaiii* - - - ass,

where the ¢; are polynomials in n. Hence
[al, al=alyi - - - ale,
and (1) is established for G.

(iv) We now construct ¢. Write Q[t4, . . ., t] for the ring of polynomials
over Q in the functions #4, . . ., t, (Where functions are multiplied and added
“componentwise’’), and define an action of G on this ring by setting, for each
aeq,

fa(x)zf(ax)’ feQ[th--"ts]’ xeG’

(i.e. by “left translation of the argument’’). It is easy to see that this action of
the element a defines an automorphism 4 say, of Q[#4, . . ., ¢, and that the
map defined by a - d defines a monomorphism G > Aut(Q[#4, . . ., &)).

An element of Q[ty,...,1t] of the form M(ty,...,t) =t -+ t5= is
called a monomial in t,, . .., t. In view of (1) we have

ti=t+Yci(@Mty, ..., 1), (5)

where the c;;(a) are polynomials over Q in the Mal’cev coordinates of the
element q, and the monomials M;(t1, . . ., t;) occurring in the equation (5)
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with nonzero coefficients, do not involve ¢, ..., f. It follows that the ring
endomorphism 4 —¢ sends each monomial M(t, ..., ) either to 0 or
to a linear combination of lesser monomials, where we define 7 - - - £;* <
11t - - - t5eifforsome k, 1 < k <s, we have m; = n; for i > k but my < n,. Thus
for a sufficiently large m = m(a, M) the endomorphism (d — &)™ annihilates
M(ty, ..., t).

Let H be the additive subgroup generated by the images of the coor-
dinate functions ¢y, . . ., ¢ under all £, x € G (i.e. by the orbit of {ty, ..., t}
under the action of G). We see from (5) that for some positive integer N, H is
contained in the subgroup generated by the 1, i =1, .. ., s and the functions
(1/N)M;(ty, . .., t;); hence this subgroup, and therefore also H, is finitely
generated. Let 4, . . ., h, be a free basis for the free abelian group H. If we
express hj in terms of this basis:

hk =21: Y (x)hy, (6)

then (Y (x)) is the matrix of the restriction of £ to H, relative to the basis
A1, ..., h. Since H contains the coordinate functions ¢, ..., t, the map
¢: G - GL,(Z) defined by x - (¥1:(x)), is a monomorphism, and moreover
G consists of unipotent matrices (since the characteristic polynomial of £ |
divides (z —1)™ for some m see the preceding paragraph). The map ¢~ is
linear on G since the f; are linear in the A, which are in turn linear in the
Y to see the latter statement evaluate both sides of (6) at e to get

hi(e) = hi(x) =§ hi(e) Y (x).

Finally we show that ¢ is polynomial; i.e. that the functions ¢, are the
restrictions to G (identified with Z*) of certain polynomials over Q. Thus let
x € G. Since each h, is a linear combination over Z of certain ¢}, g€ G, it
follows (using (5)) that hj is the same linear combination of

t,‘gx =1 +Z C,','(gX)M(tl, ey ls).
]

Hence there are polynomials P,; over Q such that

hi =% Pi(x)Mj(ts, . . ., 15); @)

in particular
he =Y. Py(e)Mi(11, . .., 1,). (8)
)

Since Ay, ..., h, are linearly independent over Q, so are the rows of the
matrix (Py;(e)). Replacing Ak and h, in (6) by the right-hand sides of (7) and
(8), and using the linear independence of {M;(t1, . . . , &)}, we obtain a system
of linear equations in the ¢(x):

Pij(x)= ; Y (x)Py(e),
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from which it is evident that the ¢, are polynomial over Q. This completes
the proof of the theorem.

It is appropriate to mention in connexion with this proof that there is a
general “‘method of split coordinates’ [Ju. I. Merzljakov, Algebra i Logika
7, No. 3 (1968), 63-104] for establishing faithful representability of groups
by matrices. An exposition of this method can be found in Part 3 of [30].

17.2.6. Exercise. Let p be any prime number. Every finitely generated
nilpotent torsion-free group is residually a finite p-group. (Hint. See the
proof of Theorem 14.2.2.)

We promised at the beginning of this subsection that we would show that
any finitely generated, nilpotent group G can be embedded in SL, (Z) for
some n (depending on the group); using Theorems 17.2.2 and 17.2.5 we
shall now fulfil our promise. It suffices to find an embedding ¢: G >

¢ 0
GL,.(Z), since then the map defined by x—>(x0 B ,b) will serve as the

desired embedding (into SL;,.(Z). To get ¢ we make use of the following
general observation. Let H be a subgroup of finite index m in an arbitrary
group G,andlet{a,, ..., a,} be acomplete set of right coset representatives
for H in G. If o is a faithful representation of H by matrices of degree n, then
the map defined by

g~ ((aga;")),
where we set x” = 0 for x¢ H, is a faithful representation of G by matrices of

degree mn. Clearly this is nothing more than the representation of G
induced by the representation o (see §13.2).

17.2.7. Exercise. If a group is almost representable by matrices over a ring
with a multiplicative identity, then it is representable by matrices over that
ring.

17.2.8. Exercise. A finitely generated nilpotent group is residually finite.

17.2.9. Exercise. There exist finitely generated, torsion-free nilpotent
groups A, B each of which embeds in the other, but which are not
isomorphic: for example take

1 nZ Z
VAR B=|0 1 Z| wheren#0,1.
1 0O O 1
17.2.10. Exercise. A finitely generated nilpotent group with finite center is
itself finite.
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17.3. Torsion-free Nilpotent Groups

The richest and most interesting part of the theory of these groups is that
concerned with root extraction, which we shall now examine. The starting
point is Theorem 16.2.8, according to which extraction of nth roots in a
torsion-free nilpotent group G is a ‘“partial operation’ on the group; i.e. it is
single-valued but not everywhere defined. It turns out that such a group G
can always be embedded in a divisible nilpotent group (i.e. one in which all
roots of all elements exist), and further that any two nilpotent divisible
closures of G (i.e. “minimal” divisible supergroups of G) are isomorphic
and consist entirely of roots of elements of G.

We recall the precise definition of divisibility: A group G is divisible if for
every element g and every positive integer m the equation x™ = g can be
solved in G. As examples of divisible nilpotent groups we may once again
take the groups UT, (K) where K is any field of characteristic zero. To see
this we extend formula (3) above by defining, for each a € UT, (K), u € K,

a* =ni1 ('L;)(a—e)i, where(t‘):”’(“—l)' (I“_i"”l), (M) -1

i=0 ] i! 0

/m

It is easy to verify that a*** = a*a”, a** = (a*)". Hence in particular a'/™ is
an mth root of a; i.e. the group UT,(K) is divisible.

Let G be a torsion-free, nilpotent group. We call a divisible, torsion-free
nilpotent group a (nilpotent) divisible closure of G if it contains G but has no
proper divisible subgroups containing G.

17.3.1. Theorem. Let H be a subgroup of a divisible, torsion-free nilpotent
group G. The set VH of all elements of G some powers of which lie in H (the
“radical closure” of H in G), is a subgroup of G, and therefore a divisible
closure of H. The higher centers of the subgroups H and VH are related in the
following way:

(NH=V(H), (H=Hn(H).

PROOF. (i) We shall first prove that vVH is a subgroup; for this it suffices to
show that xy € VH for all x, y € VH, since VH is clearly closed under taking
inverses. Set A =(x, y), B=A NH and A; = y,A. The desired conclusion
(xy € VH) will follow if we can show that |A: B| < ; to prove that |A: B| <
oo we shall show that |BA; :BA; .| < oo for all i. The series

A=BA123A22"'

is subnormal with abelian factors, since by the commutator identities (3) of
§3,Ch. 1,

[BA, BA]1=[B, B1*[A, BI*[A, A]J=BA,.,.

Let m be a positive integer such that x™, y™ € B, and suppose as inductive
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hypothesis that BA;_;/BA. is finite of exponent m' ™" (this being easy for
i =2). We shall prove that then BA;/BA,.; is finitely generated and of
exponent m ' That BA;/BA,., is finitely generated follows from the fact that
A is polycyclic (Theorem 17.2.2). For the statement about the exponent,
observe first that since

[Ai-1, A, A]=1(mod A,.,),

the function f(u, v) =[u, v](mod A;+,), u € A;_1, v € A, is homomorphic in
both arguments (once again by the commutator identities!). Hence

AT =[Ai-1, A]" <[AT], A" A
Since
A" =(BAAi_)A, Am™=BA,,
a last application of the commutator identities gives, finally,
A" <BA.1,

from which it follows that BA;/BA, ., has exponent m".

(ii) To establish the equations involving the higher centers we use
induction. Proceeding immediately to the inductive step, assume their truth
for i. Write briefly H; = ¢;H. The inclusion {;.;vH = vH,,, follows from the
fact that for every x € {HI\/H we have x™ € H for some m, so that using the
inductive hypothesis,

[x™, Hl=H¢{VH =H nvH, = H,

whence x™ € Hisq, x € VHs1.

The reverse inclusion, \/Hi,,,s{M\/H, is equivalent to elementwise
commutativity modulo {,«/H = \/I'Ii, of VH and vH,,,. To show this take
X € «/H, yE s/H,-H; then x™ € H, y" € H,,, for some positive integers m, n.
Since

[H, H;.,]<H,<VH,

we have that x™y" =y"x™(mod VH;). Since vH/VH, is torsion-free (by
Exercise 16.2.10) it follows (by Exercise 16.2.9) that xy = yx(mod VvH,), as
required.

Finally we show that H N \/H,H = H;., or rather that H " VH;,1 =< H11,
since the reverse inclusion is trivial. Let x € H nvVH,,1, x™ € H;,,. Thus x™
commutes modulo H; with every element of H, and therefore (by Exercises
16.2.9 and 16.2.10) so does x. Hence x € H;., and the proof is complete.

17.3.2. Theorem (A. 1. Mal’cev). Every torsion-free nilpotent group G has a
nilpotent divisible closure of the same nilpotency class. Any two nilpotent
divisible closures of G are isomorphic ; moreover, given any automorphism ¢ of
G there is an isomorphism between the two divisible closures which extends ¢.
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PrOOF. (i) Uniqueness. Let G;, G, be isomorphic copies of G and let
¢: G1~ G, be an isomorphism between them. Suppose we have nilpotent
divisible closures, denoted by VG1,VG,, of Gy, G2 respectively. Form their
direct product P= VG xVJG, and consider the subgroup D=
{(x, x*) | x € G4}, or more particularly its radical closure VD in P. We shall
show first that

P=WD)-(VG), (D)An(WG)=1 fori=1,2. 9)

If xe (s/D) ) (\/ G;) then x™ € D N G; for some positive integer m ; but then
x = 1, proving the second of the equalities (9). It follows that the restriction
to ¥D of the projection map m: P>+ Gy, is a monomorphism, whence
(VD)™ =v(D™). Since (VG,)"= VG, and D" =G,, it follows that
(\/D)’r = \/Gl. Hence (\/D) . (\/Gz) =P. By symmetry we get
(D) - (VG,) = P, concluding the proof of (9).

The equalities (9) show that each element x; of VG is the first component
of exactly one element x of VD, and similarly for VG,. Hence the map
sending each x, to the projection of x on VG, is an isomorphism between
~/G; and ~/G2, extending ¢.

(ii) Existence. If the group G is finitely generated then, by Theorem
17.2.5, it can be embedded in the divisible nilpotent group UT, (Q) for some
n. The radical closure VG of the subgroup G in the group UT,.(Q) will then
be a nilpotent divisible closure of G. For each g€ G and each positive
integer m, we denote by my g the (unique) solution in VG of the equation
x™ = g. It is obvious that

"Jg="Vg1 & g" =gl. (10)

Also, by Part (i) of the proof, the multiplication table of VG is completely
determined by that of G. We now drop our assumption that G is finitely
generated, and consider the set of formal symbols mJg, geG,m=1,2,....
The double implication (10) gives us an equivalence relation on this set of
symbols: we denote by VG the set of equivalence classes of this relation. We
make VG a group (containing G) by multiplying m\/g and "Vg; (or rather
their classes) just as the corresponding elements of the divisible closure of
(g, g1) are multiplied. If the group G has nilpotency class s then the divisible
closures of its finitely generated subgroups will have class <s (by Theorem
17.3.1). Hence VG satisfies the law [x1, ..., x,+1]=1, and is therefore
nilpotent of the same class as G. This completes the proof of the theorem.

A nilpotent group having nontrivial elements of finite order need not be
embeddable in a divisible nilpotent group, since the torsion subgroup of a
divisible nilpotent group necessarily lies in its centre. This can be seen as
follows. Let g€ G have finite order m >0. Omitting the routine pre-
liminaries of the induction, we may suppose that g lies in the second center
of G. Then [g, x™]=[g, x]" =[g™, x]=1 for all x € G. Since G is divisible
x™ ranges over the whole of G as x does. Hence g is actually central.
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§18. Generalizations of Nilpotency

Of the many generalizations of nilpotency we shall consider only three: local
nilpotence, the normalizer condition, and the Engel condition.

18.1. Local Nilpotence

A group is said to be locally nilpotent if all of its finitely generated subgroups
are nilpotent. A group which is locally nilpotent need not itself be nilpotent:
consider for example the direct product of a sequence of nilpotent groups
with nilpotency classes increasing to infinity, or the group UT,(K) of
Exercise 17.3.1. More generally if o is a group property inherited by
subgroups, we say that a group G has the property o locally if its finitely
generated subgroups all have the property o. (This general notion will play a
larger role in the next chapter.)

18.1.1. Exercise. Subgroups and factor groups of locally nilpotent groups
are again locally nilpotent. A locally nilpotent group is locally polycyclic.

18.1.2. Theorem. (i) In any group the product of two normal, locally poly -
cyclic subgroups is again locally polycyclic.

(ii) (B. L. Plotkin) In any group the product of two normal, locally nilpotent
subgroups is again locally nilpotent.

PRrOOF. (i) Let K, L be normal, locally polycyclic subgroups of an arbitrary
group G. We wish to show that every finitely generated subgroup of KL is
polycyclic. Take any finitely generated subgroup of KL together with a finite
set of generators for it, and express each of the generators in the form ab,
acK, beL.Let A be the subgroup generated by the left factors, and B by
the right. The groups A, B are polycyclic since finitely generated. It clearly
suffices to show that H = (A,B) is polycyclic. For this we shall use Lemma
3.2.9, which describes the structure of H in terms of A, B (note that, in the
terminology of that lemma, the sets I, J, C are finite). In view of that lemma
and Exercise 4.4.3 (from which it easily follows that the product of two
normal polycyclic subgroups of a group is again polycyclic), it suffices to
prove that the group A[A, B]is polycyclic.

Since K, L are normal in G, we have that[K, L]< K n L. Since A, (C) are
finitely generated and are contained in the locally polycyclic group K, it
follows that (A, C) is polycyclic; hence its subgroup (C*) is also polycyclic.
On the other hand this latter group is contained in L, whence (C*, B) is a
finitely generated subgroup of L, and so polycyclic. By the lemma referred to
above [A, B]=(C", B), so that [A, B] is also polycyclic and therefore
finitely generated. Hence A[A, B]is a finitely generated subgroup of K and
therefore polycyclic.

(i) is proved in the same way.
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Having proved this theorem it is appropriate, just as it was after Fitting’s
theorem, to refer the reader to Exercise 16.2.13.

As might perhaps be expected, not all of the properties of nilpotent
groups revealed in §16 are possessed by locally nilpotent groups: for
instance Example 18.2.2 of the next subsection shows that it is not always
the case that every subgroup of a locally nilpotent group is subnormal. How
much of Theorem 16.2.2 (asserting the subnormality of every subgroup of a
nilpotent group) can be salvaged under the weaker assumption of local
nilpotence? There is at least the following theorem.

18.1.3. Theorem (D. H. McLain). Every maximal subgroup of a locally
nilpotent group is normal.

PrOOF. Let H be a maximal subgroup of a locally nilpotent group G, and
suppose H is not normal in G. Then there exists x € [G, G], x¢ H. By the
maximality of H, we have that (x, H)=G. Express x as a product of
commutators:

x=[yi,z1] [ym 2:)y  ys2i€G.

The elements y;, z; can be expressed as words in x and a certain finitely many
elements hy, ..., h,, € H. Set

H*=(h1, ..., hm),  G*=(hy,..., hp, x).

By hypothesis G* is nilpotent. Clearly x € [G*, G*], x& H*, so that H* is a
proper subgroup of G*. By Theorem 16.2.2, H* is subnormal in G*, whence
by Theorem 17.2.2 there is a polycyclic series from H* to G*:

H*<H,<---<H,<G*. (1)

Since the quotient G*/H; is abelian, we must have [G*, G*]=< H,, whence
x € Hy; but then G* = H,, contradicting the strictness of the inclusions in
(1). This completes the proof.

18.2. The Normalizer Condition

It has been shown by H. Heineken and 1. J. Mohamed [A group with trivial
center satisfying the normalizer condition, J. Algebra 10 (1968), 368-376]
that in general the converse of Theorem 16.2.2 is false; i.e. there exist
non-nilpotent groups all of whose subgroups are subnormal. In the positive
direction, note however the following result of J. E. Roseblade [J. Algebra 2
(1965), 402-412]: Corresponding to each positive integer n there are
positive integers r(n) and s(n) such that if every r(n)-generator subgroup of
a group is a member of a subnormal series of length =<n, then the group is
nilpotent of class <s(n).

The normalizer condition is weaker than that of subnormality of all
subgroups: it requires only that every proper subgroup differ from its
normalizer.
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18.2.1. Theorem (B. 1. Plotkin). A group satisfying the normalizer condition
is locally nilpotent.

PROOF. Let G be a group satisfying the normalizer condition. By Zorn’s
lemma every element of G is contained in some maximal locally nilpotent
subgroup H. It suffices to show that H is normal in G, since then we shall
have G covered by locally nilpotent normal subgroups, so that by Theorem
18.1.2 the group G itself will be locally nilpotent. Write N = Ng(H). If
g€ G is such that N® = N, then H*®, as well as H, will be normal in N. By
Theorem 18.1.2 it follows that the subgroup H*H is locally nilpotent.
Hence by the maximality of H we have H = H*H, whence H = H* so that
g € N. Thus N coincides with its normalizer. Since G satisfies the normalizer
condition this implies that N = G, as required.

That the converse is false is shown by the following example (which
incidentally settles some other questions).

18.2.2. ExamMpLE (M. I. Kargapolov). For each ordinal number a we define
a group G, inductively by:

C, wr G,_, if @ is not a limit ordinal;
Go=C,, G, = e e . .
o U Gs if & is a limit ordinal.
B<a
It is clear from this construction that each G, is a p-group which is locally
finite (i.e. all of its finitely generated subgroups are finite) and satisfies
|G| =|a|. Certainly, therefore, the G, are locally nilpotent.

Denote by vy the first uncountable ordinal. Clearly all the G, with a <y
are countable, while G, is uncountable. We shall show that G, does not
satisfy the normalizer condition. Suppose the contrary. Then there isin G, a
chain of subgroups H, indexed by the ordinals w less than or equal to a
certain ordinal v, satisfying the following conditions:

(i) Ho=1;H,<H,.; H,= | H, for limit ordinals u; H,=G,;

A<pu
(ii) all the factors H,, .1/ H,, are cyclic.

(Such a chain may be constructed by defining inductively H,, ,, to be (x, H,,)
for some x belonging to the normalizer of H, in G,, but outside H,,, and by
using the third of the statements in (i) to define H,, for limit ordinals u.) We
shall obtain a contradiction from the putative existence of such a chain of
subgroups of G,.

Clearly all the H, indexed by natural numbers n are countable by (ii), so
that their union H,, is also countable. Enumerate the elements of H,, in any
way: hy, h,, . ... Itis clear that h,, € Gg,, for some B, <7, and then that the
union of these G, is some G with 8 < (since G, is countable, while G, is
not). We shall get our contradiction by showing (by induction on A) that G,



§18. Generalizations of Nilpotency 131

contains all H, with @ <A =v. This is obvious for limit ordinals A (given its
truth for smaller ordinals), so we assume A is not a limit ordinal, and as
inductive hypothesis that H,_; = Gg. Suppose that H, % Gg; let he H,,
h# Gg. There exists an a such that he G,, he€ G,-;. Clearly B=a -1,
whence H, -, = G,-;. By the definition of the restricted wreath product,

h=bf, beGyy, [feCL,
where f # 1 since h& G,_1. For every x € H,_; we have
[x% fl=x"x" e G,_, r\Cﬁ,G"“) =1,

so that f centralizes Ho_,. Thus the element f' = bfb™'#1 has infinite
centralizer in G,-;. Now this centralizer, acting on G,—; by right multi-
plication, must leave supp f' invariant. Since supp f’ is finite, it follows that
the centralizer is isomorphic to a group of permutations of a finite set, and so
cannot be infinite.

18.2.3. Exercise. The group G, has trivial center.

Groups satisfying the normalizer condition are so close to groups with a
(possibly infinite) central series, that for a long time it was unknown if a
group with the normalizer condition can have trivial center. This hoary
question was answered (in the affirmative) by Heineken and Mohamed (see
the paper cited at the beginning of this subsection).

However it is still unknown ([25], Question 2.80) whether or not every
group with the normalizer condition has a nontrivial abelian normal sub-

group.

18.3. The Engel Condition

This generalization of nilpotency originates from the commutator law
[x()’ X1, . '-,xn]:‘l, (2)

which, as we know, defines the variety of nilpotent groups of class =n. An
attempt to restrict the number of variables involved leads naturally to the
law

[xy,...,y]=1. 3)
[ ——
n

(We remind the reader that the commutators in (2) and (3) are left-normed;
i.e. for example the left-hand side of (3)is[- - - [[[x, y], y], y]: - - ].) A group
satisfying the law (3) is called a boundedly Engel group of class <n; this is in
honour of F. Engel, who, together with Sophus Lie, laid the foundations of
the theory of Lie groups and Lie algebras (see §16.1). It is obvious that the
variety of all boundedly Engel groups of class n contains the variety of all
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nilpotent groups of class n. This containment is proper as the following
example shows.

18.3.1. ExaMpLE (K. Weston). Let M be the set of positive integers that are
“square-free”, i.e. are not divisible by the square of any positive integer.
With each m € M we associate a cyclic group of order 2 with generator a,,,
and we denote by A the direct product of all the {a,,). For each prime p we
define an automorphism ¢, of A by specifying its action on the generators of
A as follows:
6 _ { Ammsp  if p|m,
4= am if p ¥ m.

Clearly ¢? is the identity map, and ¢,¢, = ¢.d,, so that the group ®
generated by all ¢, is abelian of exponent 2. Denote by G the extension of A
by the group ® of automorphisms (see §6.1). A direct computation gives
that, for primes ¢ not dividing m,

am = [amq’ ¢q]-

It follows that [G, G]=A and [G, A]= A, so that the group G is not
nilpotent. On the other hand it satisfies the law [x, y, y, y]=1, as we shall
now show. Fora, a’€ A; ¢, ¢' € ®, we get successively that: [a, pa’']l=[a, ¢]
(expand both sides and use the fact that A is abelian and normal; [a, ¢, ¢]=
1 (use the identity [x, y, z]=[y, x ][z, x][x, yz] and the fact that [a, $]* = 1);
and finally [¢a, ¢'a’, ¢'a’, ¢'a'l=[da, ¢'a’, ', ¢']1=1, using the previous
two equalities. Note incidentally the additional easy fact that Weston'’s
group has exponent 4.

A group is said to be an Engel group if for each pair x, y of its elements the
relation (3) is satisfied for some n depending on (x, y). Itis clear that the class
of Engel groups contains that of all locally nilpotent groups. However there
are Engel groups which are not locally nilpotent, as the next example shows.

18.3.2. ExaMmpLE (E. S. Golod). For each d =2 there exists a non-nilpotent
d-generator group all of whose (d — 1)-generator subgroups are nilpotent. Each
of these groups is constructed from an algebra with the analogous property,
i.e. from an (infinite-dimensional) non-nilpotent algebra A on d generators
with all of its (d —1)-generator subalgebras nilpotent. The details of the
construction are set out in §23 of the Appendix, where A is given in the form
F'/I, F' being the subalgebra of elements with zero constant term of the free
associative algebra F over any field k, on the free generators x, . . ., x4, and
I a certain homogeneous ideal contained in F'. For our example we take
k = GF(p), where p is prime. Consider the following subset of F/I:

1+A={l1+alac A}
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Clearly, (1+a)(1+b)=1+a+b+ab, and if a" =0 then
(1+a)—1=1_a+a2_, . .+(_1)n—lan—1’

so that 1+ A is a group. Further, since for each a € A there exists an m such
that a®” =0, it follows that

m R (D ;
1+a)yf" =% ( ,m>a' =1,
i=0 \ !

since all the binomial coefficients save the first and last are divisible by p.
Thus 1+ A is a p-group. Let G be the subgroup generated by the elements
1+4%y,..., 1+, where £; = x; + I. It is clear that the subgroup generated by
any (d—1) elements of 1+ A, say by 1+ay,...,14+a,_,, a;€ A, lies in
1+ A*, where A* is the subalgebra generated by ay, ..., as—,. By con-
struction A* is nilpotent, whence the group 1+ A* is nilpotent (Exercise
16.1.4). Thus all (d — 1)-generator subgroups of G are nilpotent. However
G itself is not nilpotent. For in the contrary case G would be finite by
Exercise 16.1.6. But then the group ring k[ G] and its natural homomorphic
image F/I=k@®A would also be finite, contradicting the fact that the
algebra A is infinite. -

It is still unknown whether or not a group must be locally nilpotent if for
each ordered pair (x, y) of its elements the relation (3) holds for some n
depending only on y. It is also unknown whether it is always the case that the
product of two normal Engel subgroups of a group is again an Engel
subgroup. A discussion of these problems, and some relevant results, may be
found in [33].
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§19. General Properties and Examples

19.1. Definitions

As already mentioned at the beginning of the preceding chapter, soluble
groups are just those groups obtained as the result of finitely many suc-
cessive extensions by abelian groups. The following theorem gives several
useful alternative characterizations.

19.1.1. Theorem. For an arbitrary group G the following four statements are
equivalent: .

(i) The group G possesses a subnormal series with abelian factors
(if) The group G possesses a normal series with abelian factors;
(iii) The derived series G=G'=G"=---=2G"™=--- of the group G
terminates in the identity after a finite number of steps;
(iv) The group G satisfies one of the laws

6n(x1,...,xm)=1, n=0,1,2,...,
where
80(x) =X, 5,.+1(x1, ce ey x2n+1) = [6,,(x1, ceey x2"), Sn(x2"+la ey x2"+1)]'
PROOF. The implications (iii) = (ii) = (i) are clear.
()= (iii). The hypothesis is that G has a subnormal series
1=Hy<H),<:---<H;=0G,

with abelian factors. Since G/H,_, is abelian, we have G'= H,_,. Suppose
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inductively that we already have the inclusion G*’ < H,_, for some k with
1=k <s. Then from the commutativity of H,_,/H,_,_, we deduce that
(G(‘:‘))’ = G"**"is contained in H,_,_;, completing the inductive step. Hence
G*¥=1.

So far we have established the equivalence of (i), (ii) and (iii). We now
show that (iii) and (iv) are equivalent.

(iii) = (iv). Suppose that the sth derived group G'° is trivial. Since the
(s — 1)st derived group of G/ G“ ™" is trivial we may suppose inductively that
851081, ..., 82-1) € G“™V for all g1, - - -, g2s-1€ G. The commutativity of
G"“ then gives us that 8,(g1,..., g2 )=1forall gy,..., g8, €G.

(iv) = (iii). Suppose that the group G satisfies the law 8, = 1. From the
definition of &; it follows that the verbal subgroup H of G determined by the
word 8,_; (i.e. the subgroup generated by the set of all values assumed by
8;-1 on G), is abelian. The quotient G/ H satisfies the law §,_, =1, so by
inductive considerations we may assume G“ "< H. But then G =1, as
required. This completes the proof of the theorem.

We say that a group G is soluble if any of the statements (i), (ii), (iii), (iv)
holds for it. A subnormal series with abelian factors is called a soluble series.
If G is soluble then the least integer n such that G™ =1 is termed the
solubility length of G.

It is clear from the proof of Theorem 19.1.1 that the groups satisfying the
law 8, =1 are just those that are soluble of length <n. Consequently the
class of soluble groups of length <n is a variety. This observation and our
knowledge of variety theory gives us immediately that subgroups and
homomorphic images of soluble groups are soluble, and also that direct
products of finitely many soluble groups or, more generally, Cartesian
products of soluble groups of bounded length, are again soluble. Direct and
Cartesian products of (infinitely many) soluble groups of unbounded soluble
length will not be soluble.

19.1.2. Exercise. The group T, (K) of (upper) triangular matrices is soluble.
The direct product of the T,.(K), n =1, 2, ..., is not soluble.

19.1.3. Exercise. An extension of a soluble group by a soluble group is again
soluble.

19.1.4. Exercise. In any group the product of two soluble normal subgroups
is again soluble.

19.1.5. Exercise. Every finite group G contains a (unique) soluble normal
subgroup N, such that G/N has no nontrivial abelian normal subgroups.

19.1.6. Exercise. A finite soluble group has a subnormal series with factors
cycle of prime order.
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19.1.7. Exercise. A minimal normal subgroup of a finite soluble group is
“elementary abelian,” i.e. is the direct product of cyclic groups of the same
prime order.

We remark without proof that whether or not a group is soluble is
completely determined by the abstract structure of the lattice of its sub-
groups: if the subgroup lattice of a group G is isomorphic to that of some
soluble group, then the group G is itself soluble. This result, the finite case of
which was known previously (see for example Exercise 12, p. 178 of G. D.
Birkhoff’s “Lattice Theory,” A.M.S. Colloquium Publications Vol. XXV,
1967), is due to B. V. Jakovlev [Algebra i Logika 9, No. 3 (1970), 349-369].

19.2. Soluble Groups Satisfying the Maximal Condition

Polycyclic groups are obviously soluble. The subgroups of a polycyclic
group, being themselves polycyclic (Exercise 4.4.3), are all finitely
generated.

19.2.1. Exercise. A group G has all its subgroups finitely generated if and
only if it satisfies the maximal condition (for subgroups): every ascending
chain

H15H25...

of subgroups is eventually constant; i.e. H, = H, ., =+ - for some n.

19.2.2. Exercise. The class of groups satisfying the maximal condition is
closed under taking subgroups, homomorphic images, and extensions.

Soluble groups satisfying the maximal condition are easily described:

19.2.3. Theorem. A soluble group satisfies the maximal condition if and only
if it is polycyclic.

Proor. The sufficiency has already been noted. To prove necessity, suppose
G is a group satisfying the maximal condition, with a soluble series

1=GOSGls"'SG"=G.

Since the factors Gi.;/G; also satisfy the maximal condition (see Exercise
19.2.2 above), they are finitely generated and therefore decompose as direct
products of finitely many cyclic groups (Theorem 8.1.2). Hence the above
series can be refined to a polycyclic series, so that G is polycyclic, as
required.

A second obvious class of groups satisfying the maximal condition is that
of finite groups. R. Baer [Noetherische Gruppen, I, Math. Zeitschr. 66
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(1956), 269-288] stated the following celebrated ‘“maximal problem’: Is
every group satisfying the maximal condition a finite extension of a poly-
cyclic group (in other words, an almost polycyclic group)? The answer is still
unknown.}

An important subclass of the class of polycyclic groups is that of
supersoluble groups: a group is supersoluble if it has a normal (not just
subnormal) series with cyclic factors. As examples of supersoluble groups
familiar to us the finitely generated nilpotent groups will serve.

19.2.4. Exercise. The subgroups and factor groups of a supersoluble group
are supersoluble.

19.2.5. Theorem. The commutator subgroup of a supersoluble group is
nilpotent.

PROOF. Suppose G is a supersoluble group and let
1=GOSGls‘ : SG,.=G

be a normal polycyclic series for G. Let Z;.1/G; be the centralizer of the
factor Gi.1/G: in G/G. The intersection (\Z; = Z say, centralizes all the
factors of the above series, or in other words acts trivially on them by
conjugation, so by Lemma 16.3.1, Z is nilpotent. By Remak’s theorem
(4.3.9) G/ Z embeds in the direct product of the groups G/Z,. Since G/Z; .,
is isomorphic to the group of automorphisms of G;.;/G; induced by the
inner automorphisms of G/ G, and since the automorphism group of a cyclic
group is abelian, it follows that G/ Z is abelian. Hence [G, G] =< Z, giving the
theorem.

We end this subsection by establishing a property of finite supersoluble
groups. Let G be a finite group of order n =p3* - - - pr%, where the p; are
prime, and p; > - - > p,. A normal series

1=H0<H1<‘ . ‘<Hk=G
is called a Sylow series of the group G, if for i =0, 1,..., k—1, the factor

H;,,/H; is a Sylow p;,,-subgroup of the group G/H, (Sometimes the
requirement p; > - - > p; is omitted from the definition.)

19.2.6. Theorem. A finite supersoluble group has a Sylow series.

ProOF. Let p be the largest prime divisor of the order of the finite
supersoluble group G, and let H be any normal subgroup of prime order, say
q. The factor group G/H is supersoluble and |G/H|<|G]|, so that using
induction we may suppose that the Sylow p-subgroup P/H say, of G/H, is
normal in G/ H. If p = q the subgroup P will be a Sylow p-subgroup of G and

+ Now solved negatively: see Translator’s Remarks, p. ix.



138 7. Soluble Groups

will also be normal in G. If p # g, then let H;/H be a normal subgroup of
G/H of order p. Since p > q and |H,| = pq, it follows from Sylow’s theorem
that there is just one Sylow p-subgroup H, of H;, and then since H; <G we
get that H, is also normal in G. By the inductive hypothesis, as applied to
G/ H,, we then obtain the normality of the Sylow p-subgroup of G, which
essentially completes the proof.

19.3. Soluble Groups Satisfying the Minimal Condition

We shall say that a group satisfies the minimal condition (for subgroups), if
every descending chain H;=H,="- - - of subgroups eventually becomes
stationary; i.e. H, = H, ., =- - - for some n. A group satisfying the minimal
condition must be periodic, since the infinite cyclic group does not satisfy the
condition.

19.3.1. Exercise. The class of groups satisfying the minimal condition is
closed under taking subgroups, homomorphic images, and extensions.

In this subsection we shall elucidate the structure of soluble groups
satisfying the minimal condition.

19.3.2. Theorem (S. N. Cernikov). Every soluble group satisfying the mini-
mal condition is a finite extension of a direct product of finitely many
quasicyclic groups.

(This includes the case that the soluble group is finite, since then it is a
finite extension of the direct product of the empty collection of groups,
which is, of course, the trivial group.)

PROOF. Let G be an infinite soluble group satisfying the minimal condition.
The minimal condition implies that G contains a subgroup H of finite index
which itself has no proper subgroups of finite index. Since the intersection of
two subgroups of finite index again has finite index it follows that there is
exactly one such subgroup H, so that H is characteristic and therefore
certainly normal. If H is abelian then it is divisible; to see this note that, for
any prime p, |[H: H”| <o, so that H” = H. By Theorem 9.1.6, H is therefore
a direct product of quasicyclic groups. Since H satisfies the minimal condi-
tion, this direct product has only finitely many factors. This establishes the
theorem in the case that H is abelian.

Suppose now that H is nonabelian. Let A be the last nontrivial term of
the derived series of H. We shall show that A is contained in the center of H.
Since A is abelian and satisfies the minimal condition, by the first part of the
proof (which includes the case that G is abelian), A has only finitely many
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elements of each given order. Hence each ae€ A has only finitely
many conjugates in H, so that |H : Cy(a)| <. Since H has no proper sub-
groups of finite index, it follows that Cy(a)= H, whence A <C(H), as
required.

We deduce from this that H is nilpotent, by showing that if H is soluble of
length k, then H* < ¢;(H). We have shown already that A=H k=<
¢1(H). The same argument applied to the soluble group H/H ™ of length
k-1, yields H*2/H* V< ¢, (H/H* "), whence H* 2 < {2(H), and so
on.

Finally we prove that H must in fact be abelian. Let B be a maximal
abelian normal subgroup of H. It follows as before that B is contained in the
center of H. Yet by Theorem 16.2.6, B is its own centralizer in H. Hence
B =H;i.e. H is abelian. This completes the proof.

We shall call any finite extension of a direct product of finitely many
quasicyclic groups a Cernikov group.

19.3.3. Exercise. The class of Cernikov groups is closed under taking
subgroups, homomorphic images, and extensions.

Since the automorphisms of the group
C,= X+ - X Cp (n factors)

can be represented by matrices from GL,(Z,~) (see Exercise 5.1.4), the next
exercise turns out to be useful for the study of Cernikov groups.

19.3.4. Exercise. The matrix group GL,(Z,=) is almost torsion-free. It
follows that, in particular, its periodic subgroups are finite. (Hint. The
congruence subgroup modulo p’, i =1, 2, ... (i.e. the group of matrices of
the form e + p'a, a € M,,(Z,~)), has finite index in GL,(Z,~), and is torsion-
free with the single exception p =2, i = 1. The assertion about finite index is
easy (cf. Exercise 4.2.7). The torsion-freeness follows without much
difficulty from the binomial expansion

i \m m\ ; m\ ;i 2 i m
(e+p'a) =e+(1)pa+(2>p a“+---+p™a™.
S. N. Cernikov posed the following ‘‘minimal problem”’: Is every group
satisfying the minimal condition a Cernikov group? (He used the term
“extremal group.”) In §22 we shall prove Cernikov’s theorem (19.3.2
above) under weaker assumption than solubility. We remark that the
minimal problem has been shown to have a positive solution for locally finite
groups [V. P. Sunkov, Algebra i Logika 9, No. 2 (1970), 220-248]; however
in its original generality the problem remains unsolved.}
+ Now solved negatively: see Translator’s Remarks, p. ix.
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§20. Finite Soluble Groups

In the first subsection of this section we shall expound the theory of Hall and
Carter subgroups of finite soluble groups, a theory which is strongly
reminiscent of the Sylow theory of arbitrary finite groups. In the third and
last subsection we shall give a criterion for supersolubility of a finite soluble
group. The middle subsection is more auxiliary in nature, although the
theorems of Maschke and Schur on arbitrary finite groups, which are
included there, are very important in their own right.

20.1. Hall and Carter Subgroups

By Sylow’s theorem (11.1.1), in an arbitrary finite group of order n =
pit -+ - pse, where the p; are distinct primes, there always exists, for each i, a
subgroup of order p;“, and any two such subgroups are conjugate. P. Hall
discovered a generalization of this much of Sylow’s theorem for finite soluble
groups; to be precise he proved the existence and conjugacy of subgroups of
order k of a finite soluble group of order n for those k such that k |n,
(k, n/ k)= 1. We shall call such divisors Hall divisors (of n). Any subgroup of
a group whose order is a Hall divisor of the order of the group will be called a
Hall subgroup. We shall prove Hall’s theorem, but shall content ourselves
with merely stating its converse: If a finite group G possesses Hall subgroups
for all Hall divisors of |G|, then G is soluble. This is due to P. Hall [J. London
Math. Soc. 12 (1937), 198-200], and S. A. Cunihin [Izv. NIIMM Tomskogo
un-ta 2 (1938), 220-223].

20.1.1. Theorem (P. Hall). Let G be a finite soluble group of order n and let k
be a Hall divisor of n. Then

(i) the group G contains at least one subgroup of order k ;
(ii) any two subgroups of G of order k are conjugate in G,
(iii) any subgroup of order k' dividing k is contained in some subgroup of
order k.

Proor. We use induction on n. The theorem being trivially true for the
trivial group, suppose that n>1 and, as inductive hypothesis, that the
theorem is true for soluble groups of smaller order. Let A be a minimal
normal subgroup of G. By Exercise 19.1.7, the subgroup A is the direct
product of cyclic groups of prime order p; thus |A|=p™ for some m.

If p divides k then the inductive hypothesis gives us the existence in the
group G/ A of a subgroup B/ A say, of order k/p™. Then B is a subgroup of
the desired order k. Further, every subgroup of order k must contain A;
hence if B, and B; are two subgroups of order k, we can form their quotients
B./A and B,/ A. By the inductive hypothesis these groups are conjugate in
G/ A, so that B, and B, are conjugate in G.
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Suppose now that p does not divide k. Denote by D the largest normal
subgroup of G having order relatively prime to k, and by H/D a minimal
normal subgroup of the group G/D. As before, we have that the order of
H/D is q° for some prime q, where q° | k.

If the normalizer N (Q) of a Sylow g-subgroup Q of H is the whole of G
then of course Q <G, and the statements (i) and (ii) follows as in the case
plk (with Q, g in the roles of A, p). Thus we suppose N (Q) # G. From the
fact that G = N(Q)H = N(Q)D (see the Frattini lemma (17.1.8)) it follows
that k divides the order of N(Q). Hence by the inductive hypothesis, N(Q),
and therefore also G, contains a subgroup of order k. Let B;, B, be two
subgroups of G or order k. The intersections By " H and B, n H are Sylow
gq-subgroups of H, and are therefore conjugate to Q; hence there exist
conjugates ﬁl, éz of B; and B; such that él NH= ﬁ: N H = Q. From the
normality of H it then follows that Q is normal i in (B 1y Bz) By the mductlve
hypothesis B,/Q and B,/ Q are conjugate in (B:, B,)/ Q. Hence B, and B,
are conjugate, and so therefore are B; and B,.

Having established (i) and (ii), we now turn to the statement (iii). Let Bbe
a subgroup of order k'. Let A be, as before, a minimal normal subgroup of
order p™. If p|k then the order of the subgroup AB also divides k. By
inductive hypothesis the group AB/A is contained in some subgroup of
G/A of order k/p™. It follows that AB, and therefore B, is contained in
some subgroup of G of order k.

Suppose now that p does not divide k. As always the inductive hypothesis
gives us that the subgroup AB/A of G/A is contained in some subgroup
C/ A of order k. We shall now work within the subgroup C which has order
p™k. By (i) C contains a subgroup, B say, of order k. Clearly the product
AB has order p™k and so coincides with C. Hence certainly ABB = C. From
the equalities '

|AB|- |B|

—, =pTk, AB|=p"k, B|=
A Cl=e"k  lABI=p"k, Bl

ICl=

we see that D = AB N B has order k'. It follows from statement (ii) of the
theorem that B and D are conjugate in AB, say B = D*. Thus B is contained
in the subgroup B* of order k. This completes the proof.

20.1.2. Exercise. In a finite soluble group G every maximal subgroup has
prime-power index. For each prime divisor p of the order G, there is at least
one maximal subgroup of G whose index is a power of p.

20.1.3. Exercise. If A is a Hall subgroup of a finite soluble group G and H is
a subgroup containing Ng(A), then Ng(H) = H.

In terms of the concept of a ““‘Sylow basis’’, P. Hall was able to generalize
his theorem, providing thereby the impulse for further generalizations in
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various directions. A collection {G,,, G,,, . . .} of Sylow p;-subgroups of a
group G is called a (full) Sylow basis for G if

(i) G=(G,,, Gp,, .- .)s
(i) G,Gp, =G,,G,, foralli,j.

Sometimes in the definition of a Sylow basis the requirement (ii) is
replaced by the following one:

(ii)’ For all iy,..., i the prime divisors of orders of elements of the
subgroup <GP-'1’ ey GP-',> are precisely p;,, ..., Di.

Usually the two definitions turn out to be equivalent.

Two Sylow bases {G,,}, {G,,} of a group G are said to be conjugate if there
exists an element g € G such that for all i, Gpl. =Gy,

P. Hall’s generalization [On the Sylow systems of a soluble group, Proc.
London Math. Soc. 43 (1937), 316-323] consists in the following: Every
finite soluble group G has a Sylow basis, and any two such bases are
conjugate in G. Any Sylow basis of a subgroup can be extended to a Sylow
basis of the whole group G.

The concept of a Sylow basis makes sense for arbitrary periodic groups, so
that it is natural to try to extend the theorem on the existence of Sylow bases
to periodic soluble groups. Such extensions have been obtained for various
classes of infinite groups; however there are periodic soluble groups which
do not have a Sylow basis [M. 1. Kargapolov, Some questions from the
theory of nilpotent and soluble groups, Dokl. Akad. Nauk S.S.S.R. 127, No.
6 (1959), 1164-1166; On generalized soluble groups, Algebra i Logika 2,
No. 5 (1963), 19-28].

A subgroup H of a group G is called a Carter subgroup of G if H is
nilpotent and self-normalizing (i.e. coincides with its normalizer) in G.

20.1.4. Theorem (Carter). A finite soluble group G has at least one Carter
subgroup. Any two Carter subgroups of G are conjugate.

PROOF. Once again we use induction on |G|. Suppose |G|>1 and the
theorem true for soluble groups of smaller order. Let A be a minimal normal
subgroup of G. Then |[A|=p™ for some prime p. By inductive hypothesis
G/A possesses a Carter subgroup, say K, /A.Let Q be a Hall p’-subgroup of
K; ie. p does not divide |Q|, and IK|=|Q|-p". We shall show that
K =N (Q) is a Carter subgroup of G.

By the generalized Frattini lemma (Exercise 17.1.9), we have K=
Nz(Q)- QA = KA. The subgroup K is the direct product of the nilpotent
subgroup Q and K n P, where P is some Sylow p-subgroup of K ; hence K is
nilpotent. Suppose g is such that K £ =K. Since A<G and K = KA, we
deduce that K £ = K, so that g€ K. Since the normalizer of a Hall subgroup is

self-normalizing (see Exercise 20.1.3), it follows that g € K, as we wished to
show.
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Now let K, K, be two Carter subgroups of G. We shall show that they are
~ conjugate in G.

First we prove that K;A/A, i =1, 2, are Carter subgroups of the group
G/A. 1t is obvious that the K;A/A are nilpotent. To see that they are
self-normalizing, note first that if (K;A)®* = K;A with g & K;A, then since
|KiA| <|Gl|, it follows from the inductive hypothesis applied to the Carter
subgroups of KA, that there exists an element a € K;A such that K = K¢,
or K#' =K, But then since K; is self-normalizing we deduce that ga ‘e
K;, contradicting the assumption g £ K;A.

Let Q; be a Hall p’-subgroup of K. Then Q; is also a Hall p’-subgroup of
KiA, so that Nk,4(Q;) is, as before, nilpotent, and furthermore contains K.
Hence K; = Nk,a(Q;).

By inductive hypothesis K1A/A and K;A/A are conjugate; we may
therefore assume, by replacing K, by one of its conjugates, that K; A = K, A.
But then Q;, being a Hall p’-subgroup of K, A, is a Hall p'-subgroup also of
K;A. Hence Q; and Q, are conjugate in KA ;. Therefore their normalizers
in KA, are also conjugate. But in the preceding paragraph it was shown that
these normalizers are just K;, K,. Hence K; and K are conjugate, and the
theorem is proved.

20.2. On the Complete Reducibility of Representations

Here we digress briefly into the theory of linear representations. Our chief
goal in this subsection is the classical theorem of Maschke on complete
reducibility of certain representations of finite groups, which we shall need
in the next section. At the same time other facts about complete reducibility
will emerge.

Let V be a vector space over the field K, and let G be a group of linear
transformations of V. If V contains a proper subspace invariant under G,
then G is said to be reducible. In the contrary case G is said to be irreducible,
or to act irreducibly on the space V. The group G is completely reducible if
every G-invariant subspace U <V is complemented by a G-invariant
subspace; i.e. if there exists a G-invariant subspace W such that V=U®
w.

A linear representation of an (abstract) group G is just a homomorphism ¢
from G to the group of invertible linear transformations of an n-dimen-
sional vector space V over a field K. If the group G* of linear trans-
formations is irreducible then we say that ¢ is irreducible (and similarly for
the terms “reducible,” ‘““‘completely reducible”). A matrix representation is a
homomorphism from G to GL,(K). Needless to say the linear represen-
tations on the one hand, and the matrix representations on the other, enjoy
an intimate relationship. This relationship is as follows: The linear
representation ¢ yields for each fixed basis = of our space V, a matrix
representation ¢s defined by taking g?= to be matrix relative to the basis
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3 of the linear transformation g¢. For a different basis =', we get in general 3
different matrix representation ¢s, which is equivalent to ¢s; i.e. g°= =
™! g*=tfor all g € G, where t is the matrix of the change of basis from = to 3
(and matrices, like maps, act on the right of row-vectors).

20.2.1. ExaMPLE. Let G be a finite group and A a normal subgroup which
is elementary abelian; i.e. the direct product of n cyclic subgroups of order p.
We turn the set A into a vector space over GF(p), the field of p elements, by
defining addition and scalar multiplication in terms of the group operation as
follows: a +b = ab, aa =a®, where « €{0, 1, ..., p—1}=GF(p). It is easy
to check that this does make A a vector space. Furthermore for each ge G
the map £ defined by x > x*, x € A, is a linear transformation of the vector
space A, and the map defined by g - £, is a homomorphism from G to the
group of linear transformations of A. The upshot is that we have at our
disposal a linear representation of G over GF(p). Incidentally, it is clear that
G =G/Cs(A).

20.2.2. Theorem (Maschke). Let ¢ be a representation of the finite group G by
linear transformations of the vector space V over the field K. If the order of G is
not divisible by the characteristic of K, then ¢ is completely reducible.

ProOOF. The representation ¢ gives us an action of G on V'; we shall write as
usual, therefore, vg for v(g?®) (ve V,geG). Let U by a G-invariant
subspace of V. Let W be any subspace of V complementing U, so that
V = U @ W. Denote by 7w the projection map of V onto W, and define a
map ¢: V> V by setting

1 _
vt=— Y (vg Hmwg, veV,
geG
where m is the order of G. It is easy to see that ¢ is a linear transformation of
V. For each fixed & € G, the product gh ranges over the whole of the group G
as g ranges over G. It follows from this that

(vt)h = % Y (vh - h™'g Nmwwgh = (vh)t,

so that the subspace Vi = W, say, is G-invariant.

We shall show that V' = U @ W, First we express an arbitrary element v
of V asasum: v = (v —vt)+ vt. The second term vt lies in Wy The first term
v —uot is equal to

p-t Y (vg Dmrwg = 1 Y (vg ' —(vg Hmw)e.
m ¢ m g

Since vg ™' - (vg 7w € U, and U is G-invariant, it follows that v — vt lies in
l_f. Thus we have so far that V = U + W,. Finally, suppose v € U n W, Then
since v € U, since U is G-invariant, and since for any element u of U, the
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projection umw =0, we have
vt=0. (1)

On the other hand, since v belongs to W it is the image of some element
v'e V under ¢; i.e.

v't=vo. )

But then vt = v't>. Earlier we showed that v’ —v'r € U, which implies that
v't—v't*=0. Hence vt = v't, and then (1) and (2) give us that v =0, proving
the theorem.

20.2.3. ExaMpLE. Let G, A be as in Example 20.2.1 above. Obviously a
subgroup B < A will be normal in G if and only if as a subspace of the vector
space A, B is invariant under the group G of linear transformations of A.
Let us assume that the prime p does not divide the order of the group
G/Cs(A), and that B is now a normal subgroup of G contained in A. Since
the order of lél is not divisible by p, we have by Maschke’s theorem that Gis
completely reducible; hence the subspace B of A has a G-invariant
complement C. The set C is then a normal subgroup of the group G, and
A=BXxC.

20.2.4. Exercise (part-generalization of Maschke’s theorem). Let G be a
finite group of linear transformations of a vector space V over a field of
characteristic p >0, and let P be a Sylow p-subgroup of G. If a G-invariant
subspace U has a P-invariant complement, then it has a G-invariant
complement.

(Solution. We have V=U® W where W is a P-invariant subspace.
Denote by 7w the projection map of V onto W and define a map ¢ from V
to itself by

vt=—17 (vg )mwg, veV,
geS

3|~

where m =|G: P|, and S is a set of right coset representatives for P in G. Itis
easy to see that 7w commutes with the action of each element of P, so that
the definition of the linear transformation ¢ is independent of the choice of S.
The proof of the G-invariance of the subspace W= V#, and that V=U®®
Wo, now proceeds almost exactly as in the proof of Maschke’s theorem.)

20.2.5. Exercise. Let A be an abelian normal subgroup of a finite group G,
of order coprime to its index. If B is a direct factor of A, which is also normal
in G, then there exists a normal subgroup D of G such that A = B X D.

Maschke’s theorem is a convenient tool for proving the following
important result.
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20.2.6. Theorem (Schur). Suppose a finite group G has a normal subgroup A
of order coprime to its index. Then A has a complement in G; that is, there
exists a subgroup B of G such that G=AB, AnB=1.

PROOF (i) Suppose first that A is abelian of prime exponent p. By Theorem
6.2.8, we can embed G in the wreath product W = A wr B, where B = G/ A,
in such a way that (regarding G as a subgroup of W)

w=G- AP, GnAPl=47

(see Exercise 6.2.9). Since |G: A| is not divisible by p, and A <« W, it follows
from Maschke’s theorem that there exists a normal subgroup C of W, such
that A®®) = A x C. From the equalities

w/Cc=(A%Yc) - (Bc/c), A¥BI~ABC=cC

and the obvious isomorphism ¢: W/C - G, we get that A is complemented
in G by the image under ¢ of BC/C.

(i) We shall now deal with the general case, using induction on the order
of the group. Thus suppose the theorem false for G but true for groups of
smaller order (i.e. that G is a “minimal counter-example” as they say).
Write k =|A| and | =|G:A|. Note that we have merely to produce a
subgroup of G of order /, since the coprimality of k and / automatically
implies that such a subgroup complements A in G.

Let P be a Sylow p-subgroup of A, and N (P) its normalizer in G. Since
G = A - N(P) (by the Frattini lemma (17.1.8)), the subgroup N (P) contains
as a normal subgroup of itself A N N (P) having order coprime to its index /
in N(P). Hence if |[N(P)|<|G| then we should have by the inductive
hypothesis that N (P), and therefore also G, contains a subgroup of order /,
contradicting our assumption about G. We deduce that the Sylow subgroups
of A are normal in G, whence, certainly, A’ <A. Suppose A’'# 1. Then
G/A'’ satisfies the hypotheses of the theorem, and |G/A'| <|G|. By the
inductive hypothesis, G/A’ contains, therefore, a subgroup C/A’ of order /.
Applying the inductive hypothesis to the group C we get the existence in it,
and therefore in G, of a subgroup of order /. We are finally forced back on
A'=1,i.e.on A being abelian. Let p be a prime divisor of k. If A” # 1 then
by repeating the preceding argument with A” in the role of A’, we again geta
contradiction. Hence A is abelian of exponent p. However Part (i) of the
proof excludes this, we so we have reached our final contradiction, and the
end of the proof.

It behoves us to mention a fact which nicely supplements Schur’s
theorem: The complements of the normal subgroup A are all conjugate. In
the case that A is soluble, this was proved by H. Zassenhaus; and in the case
that G/A is soluble, by S. A. Cunihin. But by the Feit-Thompson theorem
on the solubility of groups of odd order (see beginning of §12), one or the
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other of the groups A, G/A must be soluble, so that the complements in
Schur’s theorem are conjugate.

We end this subsection with some general remarks about irreducibility
and complete reducibility.

20.2.7. Lemma. A group G of linear transformations of a finite-dimensional
vector space V over a field K is completely reducible if and only if V is a direct
sum of irreducible G-invariant subspaces.

PROOF. Suppose G is completely reducible. Let U; denote any non-null,
irreducible (i.e. minimal) G-invariant subspace of V. (Why does such a U,
exist?) Suppose inductively that we have non-null irreducible G-invariant
subspaces Uy, ..., U, which generate their direct sum U1 @ - - - U, = U
say. If U # V, then by the complete reducibility there is a G-invariant
subspace W complementing U. Take U;.; to be a non-null irreducible
G-invariant subspace of W; then Uy, . .., U, clearly generate their direct
sum. Since this procedure must ultimately halt (certainly before we reach
integers s with s >dim V), induction yields the desired conclusion.

Conversely, suppose V=U;@- - -® U, where the U, are irreducible
G-invariant subspaces. Let U be any G-invariant subspace. Let I be any
subset of {1, 2, ..., r} maximal with respect to the property

Un@U=0.
iel

Write W =@;c; U. We shall show that W is the desired complement.
Clearly (U, W)=U®W. If v# U®W, then there exists a j such that
U;n(U® W)=0. But then U n(U;® W) =0, contradicting the maximal-
ity of I

20.2.8. Exercise. A group of linear transformations of a finite-dimensional
vector space V is completely reducible if and only if every irreducible
invariant subspace is complemented (by an invariant subspace).

20.2.9. Lemma. Every finite-dimensional, irreducible representation of an
abelian group over an algebraically closed field is one-dimensional.

PrROOF. Let G be an abelian group acting irreducibly on a finite-dimen-
sional vector space V over an algebraically closed field K. Let A be a
characteristic root of the linear transformation ge G, and let v be a
corresponding eigenvector: vg =Av, 0# v € V. Then

(vf)g =(vg)f=A(vf) forallfeG,

so that the set U of all eigenvectors of g corresponding to the eigenvalue A
constitutes a G-invariant subspace of V. By the irreducibility of G we must
have U =V, so that every nonzero vector in V is an eigenvector of every
g € G. This and the irreducibility of G give the one-dimensionality of V.
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20.3. A Criterion for Supersolubility
We shall prove the following result.

20.3.1. Theorem (Huppert). A finite group is supersoluble if and only if every
maximal subgroup has prime index.

PROOF. Necessity. We shall suppose that G is finite and supersoluble and
prove by induction on |G| that every maximal subgroup has prime index.

Since G is supersoluble it contains for some prime p a normal subgroup of
order p. If now M is a maximal subgroup of G, then either M "N =1 or
N = M. In the first case it is clear that M has index p. In the second case since
M/ N is maximal in G/ N, by the inductive hypothesis |G/N: M/N|is prime;
but then so is |G: M|.

Sufficiency. Suppose the maximal subgroups of the finite group G have
prime indices, and suppose that groups with smaller order than G satisfying
this condition, are supersoluble. We begin by showing that G is soluble.
Denote by p the largest prime divisor of |G|, and by M a maximal subgroup
containing a Sylow p-subgroup of G. Then |G: M| <p, so that by Exercise
11.3.6, the intersection ﬂgeo Mt is nontrivial; it is also of course normal in
G. Hence G has a proper normal subgroup, and therefore a minimal normal
subgroup, different from itself. Let M be any such minimal normal sub-
group, and let Q be a Sylow g-subgroup of M, where q is the largest prime
dividing |M|. Suppose the normalizer N(Q) of Q in G is not the whole of G.
Since N(Q) - M = G by the Frattini lemma (17.1.8), we will certainly have
HM = G for H a maximal subgroup of G containing N(Q). Hence |G: H| =
IM:M n H|, so that M n H has prime index 4 say, in M. This index also
divides |M: N\ (Q)| which is coprime to g, whence 4 <g. Invoking once
again Exercise 11.3.6, we deduce that in M there is a proper normal
subgroup M, containing all g-elements (i.e. elements of g-power order) of
M. Since M is normal, any conjugate of M, will have the same property, so
that the intersection [ ;e M§ will be a proper subgroup of M, which is
normal in G. Since this contradicts the minimality of the normal subgroup
M, our assumption that N(Q)< G must be false. Thus Q <t G, whence
Q =M, so that M is certainly soluble. Since by the inductive hypothesis
G/M is supersoluble, we conclude that g is soluble.

We know that a minimal normal subgroup of a finite soluble group is
elementary abelian (Exercise 19.1.7). Thus since G is soluble this must be
true for M, i.e. M is a direct product of g-cycles. It remains to prove that
|M| =g, or at least that G contains a nontrivial cyclic normal subgroup. The
proof splits into two cases.

(i) Suppose that the largest prime p dividing the order of G exceeds g.
Since G/M is supersoluble (by the inductive hypothesis), it follows from
Theorem 19.2.6 that it contains a normal subgroup A/M of order p. Let P
be a subgroup of A of order p. If P<<G then we have our desired cyclic
normal subgroup, and thence the supersolubility of G. On the other hand if
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N(P)# G, and if H is a maximal subgroup of G containing N(P), then
H # M, since otherwise we would have N(P) - A = HPM < H. Hence G =
HM, so that since M is abelian, we have H N M normal in G. But then since
M is minimal normal this intersection must be trivial, whence, |G : H| being
prime, the order of M must be g, as required.

(ii) Suppose that g is the largest prime dividing the order of G. In our
present situation, the supersolubility of G/ M together with Theorem 19.2.6
give that the Sylow g-subgroup G, say, of G, is normal in G. From the
consequent normality of the centre C of G, in G, and the fact that
C NnM #1 (M being a normal subgroup of the g-group G,), we deduce that
M=C_C.

If now M = G,, then in the factor group G/M there is as before a normal
subgroup A/M of prime order p, p #q. The supersolubility of G then
follows as in Case (i).

Suppose that M # G,, and let B/ M denote a normal subgroup of G/M of
order gq. Since M = C, the group B is abelian. We may suppose that B has
exponent q, i.e. is elementary abelian, since otherwise B¢ would be a cyclic
normal subgroup (of order q), and we would be finished.

Suppose as a first case that B % C. Certainly B lies in the second centre of
the group G,. Since G/M is supersoluble, there exists a series

B=By<B;,<::--<B; =G,

where B; <G, |Bi+1: Bi|=q. Since B # C there is a number k such that
B = C(Bk), BZ C(Bk+1). Let be B, bi+1 € Bi+1, be such that B = (M, b),
By .1 =(By, bi+1). Then the set of all elements of the form [b, x], x € Bx 11,
will be a subgroup of order g, normal in G. This can be seen as follows: Let
X=cC1bks1, y = c2bi+1, Where c1, ¢; € By, be any two elements of By.1, and
let g € G; then

[b7 x][b’ Y] = [b, b‘<+1][b1 b;cn+1]= [b7 bk+1]l+m,
(b, bics1]* =[b", bE1]=[ab", c3bis1]=[b, bia]"™"

where a, ¢3 come from M, B, respectively.

We come finally to the possibility that B is contained in the center of G,,.
If we regard B as a vector space over GF(q), then the group F of automor-
phisms of B induced by conjugation by elements of G, becomes a group of
linear transformations of that vector space (see Example 20.2.1). Since
B =C, the order of F=G/C(B) is relatively prime to q. Hence by
Maschke’s theorem the invariant subspace M has an invariant complement
A, which in addition must have dimension 1 since |B/M|=gq. In group-
theoretical language this means that A is a cyclic normal subgroup of G.
Thus G always has a nontrivial cyclic normal subgroup, which, as noted
before, completes the proof.

20.3.2. Exercise. A finite group is supersoluble if and only if its quotient by
the Frattini subgroup is supersoluble.
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§21. Soluble Matrix Groups

At the beginning of the chapter we noted (in Exercise 19.1.2) that the
triangular matrix groups are soluble. As a source of other examples of
soluble matrix groups we may take the finite soluble groups; for by Cayley’s
theorem (13.1.1) a finite group can be represented by permutations of a
finite set, and thence by ‘‘permutation’’ matrices. Uniting these two kinds of
examples into one, we end up with the class of extensions of triangular
matrix groups by finite soluble groups: by Exercise 17.2.7 such groups are
also representable by matrices. It turns out that, at least if the field is
algebraically closed, the converse is also true: any soluble group of matrices
over an algebraically closed field is conjugate in the full linear group to an
almost-triangular group of matrices. This result, due to Kolchin and
Mal’cev, will be the goal of the first subsection, §21.1. In the second, §21.2,
the soluble subgroups of GL,(Z) will be investigated; we shall see that they
are all polycyclic. Finally, in §21.3, we shall prove that the holomorph of an
arbitrary polycyclic group can be embedded in GL,(Z), for appropriate n.

21.1. Almost-Triangularizability

A matrix group H =GL,(K) will be called triangularizable if for some
g € GL,(K), the group H* is triangular. Before launching into the proof of
the almost-triangularizability of soluble matrix groups we shall prepare the
way by proving some general facts about irreducible and completely
reducible matrix groups (see §20.2 for the definitions of these concepts and
their elementary properties). In what follows we shall for the most part
identify a matrix group G with its action; i.e. with a group of linear
transformations of some vector space, the elements of G being actually the
matrices of these linear transformations relative to some basis.

21.1.1. Theorem (Clifford). A normal subgroup H of a completely reducible
group G of linear transformations of a finite-dimensional vector space V, is
itself completely reducible.

PROOF. Let U, be an irreducible H -invariant subspace of V. There exists a
set {g1,..., g} of elements of G minimal relative to the property that the
smallest G-invariant subspace U, containing U, (in other words the closure
of U; under G) is generated by the subspaces U;=U,g;, i=1,...,s. It
follows from the normality of H that the U; are H-invariant, and thence by
the irreducibility of U, that U, = Ui®: - -0U. If U,#V, there is a
G-invariant complement B say, of U1, containing a nonzero irreducible
H -invariant subspace Us+1. Repeating the above procedure with U, in
place of U, we get U,,; = U,,1®" - - ® U, < B. Clearly

U1+Us+1= Ul@ * ‘@Us+r~
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Continuing in this way we shall after a finite number of steps have de-
composed V into a direct sum of irreducible H-invariant subspaces. The
complete reducibility then follows from Lemma 20.2.7 above.

21.1.2. Lemma. The center of an irreducible group of matrices over an
algebraically closed field consists of just the scalar matrices in the group.

PROOF. Suppose a group G acts irreducibly on an n-dimensional vector
space V over an algebraically closed field. By Clifford’s theorem the center
C of G is completely reducible, so that by Lemma 20.2.9 there is a basis
v1,..., 0, of V consisting of characteristic vectors of every element of C.
Suppose there is an element ¢ € C such that v,c = A, with A, # A, (if n=1
the lemma is trivial). Denote by U the subspace spanned by those v; for
which A; = A;. This subspace is clearly proper; we shall prove that it is also
G-invariant, contradicting the irreducibility of G, and giving us the desired
conclusion.
Thus let g be any element of G, and express v,g in terms of the basis:

vig=a101+ -+ apb,.
From the equations
Ul(gC)=011)\101+‘ ‘ '+an/\nvm

vl(cg) =A1(all)1+ ce +anvn),

and gc = cg, we get that a; =0 whenever A; # A;, whence v;g € U. Here we
could have replaced v, by any v; € U, to conclude that for such v;, v,ge U.
Hence U is G-invariant, as claimed.

The next lemma will enable us to induct on the degrees of matrices.

21.1.3. Lemma. Suppose that the irreducible group G of matrices of degree n
over an algebraically closed field, contains a non-central abelian normal
subgroup H. Then G contains a reducible normal subgroup of finite index
=(n!)!

ProoF. By Clifford’s theorem the subgroup H is completely reducible. Thus
by Lemmas 20.2.7 and 20.2.9 we may suppose that H consists only of
diagonal matrices. Since H is not contained in the center of G, there exists
(by the preceding lemma) a non-scalar matrix » € H. For every g € G the
element b* lies in H and has the same characteristic roots as b. Hence
|bC|<n!. The map G - S(b°) defined by

bx
- nd (bxg)’

is a homomorphism. Its kernel A is clearly contained in Cgs(b), and
|G: Al=(n")! (since (n!)!= S(b°)). The center of A contains the nonscalar
matrix b, so by the preceding lemma A cannot be irreducible.
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21.1.4. Lemma. If a group has an abelian normal subgroup of index n, then it
has an abelian characteristic subgroup of finite index =n".

PROOF. Let G be a group with an abelian normal subgroup A of index n. It is
easy to see that there exist automorphisms 6y, .. ., 6; of G, s <n, such that
the subgroup

S=(A%, ..., A%)

is the same as that generated by all A°, 8 € Aut G. The subgroup S will then,
of course, be characteristic; moreover its center C contains [ A% and
therefore |G: C|<n". The subgroup C satisfies the requirements, and the
proof is complete.

We are now almost ready for the proof of the theorem of Kolchin and
Mal’cev. We lack only Exercise 24.3.2 of the Appendix, which can be
solved by a direct application of one of the ‘“local” theorems of logic. We
recommend to the reader that he take that exercise on trust for the time
being, and postpone studying the local theorems of logic till later: they will
receive specific treatment in the next section (§22) of this chapter. Alter-
natively, solve the exercise directly!

21.1.5. Theorem (Kolchin—-Mal’cev). A soluble matrix group of degree n
over an algebraically closed field contains a triangularizable subgroup of finite
index less than some number depending only on n.

PROOF (i) Suppose first that our soluble matrix group G is irreducible and
nilpotent. By Lemma 20.2.9 it will suffice to prove that G has an abelian
normal subgroup of finite index less than some number 7(n) depending only
on n. We shall prove this by induction on .

If G is nonabelian then it contains a non-central abelian normal subgroup
(for instance any maximal abelian normal subgroup will serve: see Theorem
16.2.6). Thus by Lemma 21.1.3 G contains a reducible normal subgroup H
of finite index <(n!)!. By Clifford’s theorem the subgroup H is completely
reducible and therefore, being also reducible, is a subdirect product of
finitely many irreducible nilpotent groups H; having degrees <n. By the
inductive hypothesis each H; contains an abelian normal subgroup of index
less than 7(n — 1); but then H must contain an abelian normal subgroup A of
index less than 7(n —1)". Hence |G : A| < (n!)!7(n — 1)", and the intersection
of the conjugates of A in G is then abelian normal of index less than
{(n)'7(n—1)}! (see Poincaré’s theorem (13.2.2)), which serves to define
7(n).

(i) We next drop the assumption of nilpotency; i.e. we suppose only that
G is irreducible (and of course soluble). We again show by induction on n
that G possesses an abelian normal subgroup of finite index less than some

number p(n) depending only on #.
If G contains a non-central abelian normal subgroup, then the existence

of an abelian normal subgroup of finite index follows exactly as in Part (i) of
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the proof. We may suppose therefore that the abelian normal subgroups of
G are all central. Denote by R the subgroup generated by all nilpotent
normal subgroups of G. By Part (i) and Exercise 24.3.2 of the Appendix, R
contains an abelian normal subgroup of finite index <7(n). By Lemma
21.1.4, R therefore contains an abelian characteristic subgroup B of finite
index =7(n)"™ =1,(n) say. Since B is normal in G and abelian, it is central
in G, and therefore certainly in R. Hence R is nilpotent. We shall now bound
|G:R|.
Let
B=By<B;<:--<B,=R 1)

be a central series of R whose terms are all characteristic in R (e.g. take the
upper central series of R with the possible extra term By). Let Z be the
centralizer of this series in G; i.e. Z=( )i=1 Z;, where Z;,,/B; is the
centralizer in G/B; of the factor B;.;/B;. It is not difficult to see that
|G: Z| = 1,(n), where 75(n) depends only on n. For, Z;.,/B; is the centralizer
of B;.1/B; which has order <|R: B| < r1(n). Hence by Exercise 3.1.4, Ch. 1,
we have that |G/B;:Z;,1/B;|, which is the same as |G:Z;,,|, is at most
71(n)™""™. Then from Remak’s theorem (4.3.9), it follows that

IG:Z|= IG:O Z,~| = (r(m)" ) = 1),

which we may take as defining 72(n).

Thus Case (ii) will be disposed of once we have shown that R = Z; for
then we may take p(n)=71(n)72(n), with B the desired subgroup. Clearly
R =_Z. If R <Z, then since Z/R is soluble (being a factor of the soluble
group G), it contains a nontrivial, abelian, characteristic subgroup A/R say;
but then A is a nilpotent (throw it on the end of the series (1)), normal
subgroup of G, properly containing R, which is impossible.

(iii) Finally, we consider the general case. Let V be a vector space and
{ey, ..., e,} abasis determining the action of G on V. Let

V=V1>V2>"'>Vs+1=0 (2)

be an unrefinable series of G-invariant subspaces. Thus G acts irreducibly
on each factor V;/V,.1; therefore by Case (ii) G contains normal subgroups
G;, 1 =i=<s, such that |G: Gi|=p(n), and the quotients G,/ A; are abelian,
where here A; is the kernel of the induced action of G on V;/ V1. Write
Go=(\: G.. Clearly Gy is abelian, so that by Lemma 20.2.9, the series (2)
can be refined to a Go-invariant series

V=Vi>V,>...>V,;=0

with one-dimensional factors. If we use a basis {f1,..., f,} where f; e
V,-\ ‘7i+1, to represent the linear transformations in Gy by matrices, then
these matrices will be triangular. Consequently the subgroup G, in its
original form (as a subgroup of the matrix group G) is conjugate (by the
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matrix of the change of basis {f;} to {e;}) to a subgroup of triangular matrices.
Since the index of G in G is bounded by some number depending only on n
(use Remak’s theorem again), the theorem follows.

21.1.6. Exercise. The solubility length of an arbitrary soluble group of
matrices of degree n is less than some number depending only on n. Deduce
that if a matrix group is locally soluble (i.e. if all its finitely generated
subgroups are soluble) then it itself is soluble.

21.1.7. Exercise. A soluble matrix group of degree n possesses a normal
subgroup whose commutator subgroup is nilpotent, and whose index is less
than some number depending only on n. This fact is useful in particular for
proving that abstract groups of one kind or another are not representable
faithfully by matrices (see, for instance, [D. M. Smirnov, On generalized
soluble groups and their group rings, Matem. sb. 67, No. 3 (1965), 366—
383]).

21.2. The Polycyclicity of the Soluble Subgroups of GL, (Z)

Let Q denote the algebraic closure of the field Q of rational numbers. The
elements of O are called algebraic numbers; it follows that an algebraic
number is just a (complex) number satisfying some polynomial in one
variable over the rationals. An algebraic integer is an algebraic number
satisfying some polynomial over the integers with leading coefficient 1 (i.e. a
monic polynomial over Z).

Let K be a field of algebraic numbers (i.e. a subfield of Q) of finite degree
over Q. (Such a field K is an ‘algebraic number field.””) In §25 in the
Appendix we give a proof of the fact that the set k consisting of all algebraic
integers in K is a ring, which moreover has the properties that both it, as an
additive group, and its (multiplicative) group of units (i.e. multiplicative
invertibles) are finitely generated. With the help of these results from
algebraic number theory, we shall now prove

21.2.1. Theorem (Mal’cev). A soluble group of integral matrices is polycyclic.

PROOF. Let G be a soluble group of integer matrices of degree n. By the
Kolchin-Mal’cev theorem (21.1.5), there is a matrix g =(gi), and a sub-
group A <G of finite index, such that B = A® lies in the group T, (K) of
(upper) triangular matrices over the finite extension

K =Q(gll, 8125 ..., gnn)

of Q. It follows from Exercise 25.1.1 of the Appendix that there exists m € Z
such that mg;; is an algebraic integer for all j, j ; hence by replacing g by mg in
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the above and renaming, it is clear that we may assume that the g; are
algebraic integers in K. It then follows that the entries in the matrices of B
can each be expressed as the quotient of an algebraic integer by the
determinant of g (use the fact that g~ is the adjoint matrix of g divided by
det g). Let k denote the ring of all the algebraic integers in K, and, as usual,
let k* be the multiplicative group of k. The entries on the main diagonal of
each matrix from B are roots of the characteristic polynomial of the
corresponding matrix of A ; since this polynomial has coefficients from Z and
leading coefficient +1, it follows that the diagonal entries of matrices from B
are algebraic integers, and, since their product is =1 they in fact lie in k*.
Consider the homomorphism
B-ok*x---xk*

| —
n

which sends each matrix in B to its main diagonal; denote by C its kernel. By
Theorem 25.1.12 of the Appendix, the quotient group B/C is finitely
generated. Obviously the kernel C consists of all the unitriangular matrices
in B. If we denote by C; the subgroup of all matrices in C having their i
diagonals immediately above the main diagonal all zero (i.e. C;=Cn
UT.1(K)), then the series

C=0C=C1=--=C,1=1

is clearly a normal series for C. It is easy to see that each factor C;/Ci,; is
isomorphic to a subgroup of the direct sum of n —i — 1 copies of the additive
group of the ring k, which group is, by Theorem 25.1.6 of the Appendix,
finitely generated. Hence C is finitely generated, whence also B, and
therefore its conjugate A. Since the index of A in G is finite it follows that G
is finitely generated. Thus every soluble subgroup of GL,(Z) is finitely
generated, so that every soluble subgroup is polycyclic, as required.

With the aid of this theorem we can prove the following stronger result.

21.2.2. Theorem. A soluble group of automorphisms of a finitely generated
abelian group is polycyclic.

PrROOF. Let A be a finitely generated abelian group and let ® be a soluble
subgroup of Aut A. Denote by H the torsion subgroup of A, and consider
the homomorphlsm 7: &> Aut(A/H), sendmg each ¢ € ® to the automor-
phism ¢ of A/H induced by ¢; i.e. (Ha)? = H(a®). By the preceding
theorem the factor group ®/¥, where ¥ =Ker 7, is polycyclic. Hence we
shall certainly have our theorem if we can show that ¥ is finite. To this end,
first note that if A =(as, ..., a,), thenforany ¢y € ¥, a{ = hia;, h; € H. Since
H is finite there are therefore only finitely many choices of images for each
a;. Since there are only finitely many a;, it follows that ¥ is finite (and
therefore certainly polycyclic, being soluble). This completes the proof.
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We know (and have used above) that a soluble group is polycyclic if and
only if its subgroups are all finitely generated (Theorem 19.2.3). We are now
able to weaken this criterion as follows.

21.2.3. Theorem. A soluble group is polycyclic if and only if all of its abelian
subgroups are finitely generated.

ProoF. We have the necessity, so we need only prove sufficiency. Thus let G
be a soluble group with all of its abelian subgroups finitely generated. We
shall suppose G has soluble length greater than 1, and, inductively, that the
desired conclusion is valid for groups of shorter length. Let H be the last
nontrivial member of the derived series of G, and suppose that the factor
group G/H contains an abelian subgroup A/H which is not finitely
generated. Since the factor group A/B, where B = C4(H), is abelian and
isomorphic to a subgroup of Aut H, it is, by Theorem 21.2.2, finitely
generated. Hence B/H cannot be finitely generated. Notice that since B/ H
is abelian, and H is contained in the center of B, the group B is nilpotent.

Let H be a maximal abelian normal subgroup of B, containing H. Since B
is nilpotent, the factor group B/H embeds in Aut H (Theorem 16.2.6, Ch.
6). By hypothesis H is finitely generated, whence by Theorem 21.2.2 so is
B/H, and therefore also B, and then B/H, yielding a contradiction. Hence
G/ H does not have non-finitely generated abelian subgroups, and so, by the
inductive hypothesis, is polycyclic. Since H is finitely generated abelian, the
desired polycyclicity of G follows.

21.3. The Embeddability in GL,(Z) of the Holomorph of a
Polycyclic Group

Let G be a group. It is easy to check that the equation
C ag)(dg) =Y aigls, wcZ; SecAutG; g,geG, (3)

defines an action of the holomorph Hol G on the integral group ring Z[G].

21.3.1. Lemma. Let G =GL,(Z), let N be a unitriangular normal subgroup
of G, and suppose that G/ N is finitely generated. If ® is a subgroup of Aut G
leaving N invariant and acting trivially on G/N, then there exists a
monomorphism ®G - GL,,.(Z), which is unitriangular on N.

PROOF. Extend the given embedding G < GL,(Z) to a ring homomorphism
p:Z[G]>M,(Z), and let K be the kernel of p. Let I be the ideal in the ring
Z[G] generated by all elements of the form 1 — x, where x € N. From the fact
that N consists of unitriangular matrices it follows that for any n elements
X15...,X, €N,

(A=x1)1-x2) - (1-x,))" =0,
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whence I" < K, which in turn implies that (I + K)" < K. Note that since N is
finitely generated (being a subgroup of the finitely generated nilpotent group
UT.(Z)—see Example 16.1.2), and G/ N is finitely generated by hypothesis,
we have that G is finitely generated, and therefore that the ring Z[G] is
finitely generated. Also, as additive group Z[G]/K is finitely generated,
since it is isomorphic to a subgroup of the finitely generated additive group
M., (Z). These two observations allow us to apply Theorem 23.1.4 of the
Appendix, to deduce that Z[G]/(I +K)" is finitely generated as additive
group. Write T/(I +K)" for its torsion subgroup. Since the additive group
Z[G]/K is torsion-free, we have that T < K. For any ¢ € ®, g € G, we have
by hypothesis that g® = gx for some x € N, whence g®* —g = g(x — 1) e L Itis
straightforward to check, using this, that I + K is invariant under the action
of ®G on Z[G]defined in (3). It follows that that action induces an action of
the group ®G on the finitely generated additive group Z[G]/T. This action
is faithful since T < K (consider the action of ¢g € ®G on the elements of
G < Z[G], which remain distinct modulo K).

It remains to verify that N acts on Z[G]/T unitriangularly. We are
looking for a series

T<T,< - <T,=2Z[G]

of N-invariant subgroups of the additive group Z[ G, such that its factors are
infinite cyclic, and the induced action of N on each T;,,/T; is trivial. Since
I"< T, thereisans=0suchthat I*Z T, I*"' = T (where we set I° = Z[G)).
Then every element of I°\T is, modulo T, fixed by N, so that there is a free
generator of the free abelian group Z[G]/T fixed by N. Define T,/ T to be
the subgroup generated by that free generator. Then T, is defined by
repeating this argument with T in place of T, and so on, by induction, for the
other T;. This concludes the proof of the lemma.

21.3.2. Theorem (Ju. I. Merzljakov). The holomorph Hol G of any poly-
cyclic group G can be embedded in GL,(Z) for some n (depending on G).

ProOF. (i) We first show that G possesses a characteristic, torsion-free
subgroup M of finite index, such that, in addition, the quotient M/N of M
by its (unique) maximal nilpotent normal subgroup N (prove its existence
and uniqueness!) is torsion-free abelian. To begin with, take a normal series

G:G1>G2>"'>Gl+1=l,

with each factor either torsion-free or of prime exponent. For each i =
1,..., 1 the action of G by conjugation on the factor G;/G;.1 defines a
matrix representation ¢;: G- Aut(G;/Gi.,) (relative to some basis for
G/ Gi+1). By the Kolchin-Mal’cev theorem (21.1.5), for those i such that
Gi/ G;., is torsion-free, G* contains a subgroup S; of finite index, which is
triangularizable in GL,,(C), where n; is the rank of Gi/G;,,. Write T; =
S$?7". For those i for which Gi/G;,, has prime exponent, define T; = Ker ¢:.
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Then ﬂf=1 T; has finite index in G (since each T; does). By Exercise 17.2.3
this intersection contains a torsion-free subgroup 7T of finite index. Since for
each i the subgroup T acts on G;/ G+, ‘‘triangularizably” (in fact trivially on
those Gi/Gi+; of prime exponent), it follows that 7', the commutator
subgroup of T, acts “‘unitriangularizably” on the G;/G;.,. More precisely,
(T")?is a unitriangularizable group of matrices, and so by Example 16.1.2 is
nilpotent. In other words

[T',...,T]% =1, forsome k.

Since G acts on G;/G;.; by conjugation, this is the same as saying that

[T” ceey T’; GI]S Gi+1-

——

ki

It follows that T" itself is nilpotent. We know from Exercise 15.2.3 thatina
finitely generated group every subgroup of finite index contains a verbal
subgroup of finite index; let V be such a verbal subgroup of G contained in
T, and let N be the unique maximal nilpotent normal subgroup of V. Since
V'=T'n V =N, the factor group V/N is abelian. Let m be the exponent of
its torsion subgroup, and set M = V"N. It is then clear that M and N have
the required properties.

(ii) Let ® be the group consisting of all those automorphisms of M which
induce the identity automorphism on M/N. We shall show that there is a
(faithful) matrix representation of the group ®M, which is unitriangular on
N. With this in view, we first prove by induction on the rank r of the free
abelian group M/ N, that M ¢an be so represented. If r=0 then M =N is
nilpotent, and by Theorem 17.2.5 can be embedded in UT, (Z) for some k.
Proceeding to the inductive step, suppose r = 1, and let My = N be such that
M,/ N is free abelian of rank r — 1. Let a € M be such that (a)M,= M ; then
{(a)ynMy=1 and My<<M. Assuming inductively that M, has a matrix
representation of the required sort, we get one for M from Lemma 21.3.1
above. A second application of that lemma then immediately gives us the
desired representation of ®M.

(iii) As the third step we show that Hol M can be faithfully represented
by matrices over Z. In view of Exercise 17.2.7 and Part (ii) above, this will
follow from the fact that [Aut M : ®| < co, which we shall now prove. Firstly,
since M/N is abelian, it follows from the second of the commutator
identities (3) of §3.2, Ch. 1, that in Hol M (or rather Hol(M/N))

[M/N, a]™ <[(M/N)", a]=(M", a]N)/N 4

foralla e Aut M, m =1, 2,....LetB € Aut M. Since the subgroup (3)M of
Hol M is polycyclic, it contams by Part (i) of the proof anormal subgroup T
of finite index m say, whose commutator subgroup 7 is nilpotent. Since N is



§21. Soluble Matrix Groups 159

the largest nilpotent normal subgroup of M, we have that
[M™,B™1=T'AM=N.

From this and (4) we get that [M/N, B™]™ = 1. Since M/N is torsion-free,
this yields in turn [M/N, 8™]=1, that is, 8™ € ®, so that the factor group
(Aut M)/® is periodic. If r is the rank of M/N, we have an obvious
monomorphism (Aut M)/® -» GL,(Z). Since GL,(Z) is almost torsion-free
(see Exercise 19.3.4 of this chapter), we deduce that (Aut M)/® is finite.

(iv) We are now ready to prove the theorem, namely that Hol G has a
faithful matrix representation over Z. We shall use the fact that for any
group X there is an embedding

Hol X - Aut(X wr Z,). 5

This embedding comes from the following (faithful) action of Hol X on
X wr Z,: for all p € Aut X; x, y, g € X, define

G Des=(" 2 € e £ @

It is straightforward to verify that the set of matrices like those in the
left-hand sides of the equations in (6), form under multiplication a group
isomorphic to X wr Z,, and that those equations do define a faithful action
of Hol X. If X happens to be polycyclic, then X wr Z, will also be polycyclic,
so that in view of (5) we need only show that Aut G has a faithful matrix
representation over Z. To reduce the problem further, let I' be the group of
all automorphisms of G inducing the identity map on the (finite) quotient
G/M. Then since |Aut G:T'| <00, we need only show that I" can be represen-
ted (again by Exercise 17.2.7). Let S be a finite subset of G which generates
G modulo M. It can be verified directly that the map

I'>Hol M x- - - XxHol M,
defined by

y=>I1 vlm - [y, 5],
seS
is a monomorphism. Since by (iii) Hol M has a faithful matrix representation
over Z, it follows that I" can be so represented also, as required.

21.3.3. Exercise. If M is a characteristic subgroup of finite index in some
group G, and Hol M has a faithful matrix representation, then so does
Hol G.

21.3.4. Exercise. The holomorph of an arbitrary polycyclic group is almost
torsion-free, and for each prime p is almost a residually finite p-group.
(Hint. Look at the proof of Theorem 14.2.2.)
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The importance of Theorem 21.3.2 lies in the fact that it provides an
avenue through which the methods of algebraic geometry, number theory,
and p-adic analysis—depending on the ground ring of coefficients in which
we choose to embed Z—may be brought to bear on the study of polycyclic
groups. For instance, as Wehrfritz has noted, the theorem can be used to
prove that the automorphism group of an arbitrary polycyclic group G is
finitely presented [L. Auslander, Ann. Math. 89 (1969), 314-322] in the
following way. By Theorem 21.3.2 we may assume Hol G = GL,(Z). If the
group G is closed in the Zariski topology, then its normalizer and centralizer
in GL,,(Z) are also closed, and therefore finitely presented [A. Borel, Proc.
Internat. Congress of Mathns., Stockholm, 1962, 10-22]. Therefore the
group Aut G = N,(G)/C4(G) is also finitely presented. If G is not closed
the argument is somewhat more complicated. The details of this, and other
interesting comments concerning Theorem 21.3.2, may be found in
Wehrfritz’ lectures [42], given on June 22, 1973, at the British Symposium
held in London.

In connexion with the construction which we met in passing at the end of
the proof of Theorem 21.3.2, it is appropriate to mention the following

21.3.5. Question ([25]). Let C be a fixed, nontrivial group (for example
C =1Z,). It is known [Algebra i Logika 9, No. 5 (1970), 539-558], that for
any groups A, B; all splitting extensions of B by A can'be embedded in a
certain uniquely defined way in the direct product A X Aut(B wr C). How
are they situated in there?

§22. Generalizations of Solubility

22.1. Kuro$-Cernikov Classes

As we know, to say that a group is soluble can be taken as meaning that the
group has a subnormal series with abelian factors, or alternatively a normal
series with abelian factors, or again that some term of its derived series is
trivial: all these conditions are equivalent. It is natural to define analogues of
these (and other) conditions for ‘““infinite subnormal series,”” and then to
attempt to clarify the properties of, and relations between, the classes of
groups possessing various such infinite series. (It seems realistic to expect
that equivalent conditions defined in terms of ordinary (finite) series, will
cease to be equivalent once generalized to infinite series.) Such a theory—
the theory of ‘“generalized soluble groups’’—has indeed been created; its
foundations were laid by A. G. Kuro and S. N. Cernikov in their paper [8].
We shall use the term Kuros—Cernikov classes for the classes of generalized
soluble groups occurring within that theory, although some of them had
been considered prior to [8]. In this first subsection we give the definitions
and indicate the significance of these classes.
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The concept basic to the theory of Kuro$-Cernikov classes is the follow-
ing generalization of the idea of a subnormal series. A collection & of
subgroups of a group G is called a subnormal system for G, if it:

(i) contains both 1 and G;
(ii) is fully ordered with respect to inclusion; i.e. for every A, Be S,
either A=BorB=A,;

(iii) is closed under arbitrary unions and intersections; in particular, if for
each A in S, A # G, we denote by A * the intersection of all H € © such that
H > A; and for each B in G, B # 1, we denote by B* the unionof all He &
such that H <B, then A*, B* e 3;

(iv) satisfies the condition that A<<A*forall Ac S, A#G.

The factor groups A /A are called the factors of the subnormal system
©. We shall say that & is well-ordered upwards if A* # A for all A # G, and
well-ordered downwards if B® # B for all B # 1. (Show that these expres-
sions mean simply that & is well-ordered by < and > respectively.) A
subnormal system is normal (rather than just subnormal) if every group in
the system is normal in the whole group G. If one subnormal system contains
another, then the former is called a refinement of the latter. Generalizing the
definition in §16.1, we call a normal system central if its factors are all
central; i.e.

A*/A<C(G/A) forallAe®, A #G,
or, equivalently,
[A*,G]=A foralAcS,A#G.

Finally, we shall say that a subnormal system is soluble if its factors are all
abelian.

We can now define the Kuros—Cernikov classes. (The symbols on the left
stand for the classes (or properties), while the qualification or property a
group must have to be in the class, is stated on the right; we adhere to the
traditional symbolism although we do not think it entirely apt.)

SN: the group has a soluble subnormal system of subgroups;

SN*: the group has a soluble subnormal system which is well-ordered
upwards;

SN: every subnormal system of the group can be refined to a soluble
subnormal system;

SI: the group has a soluble normal system;

SI*: the group has a soluble normal system which is well-ordered
upwards;

SI: every normal system of the group can be refined to a soluble normal
system;

Z: the group has a central system;
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ZA: the group has a central system which is well-ordered upwards;

ZD: the group has a central system which is well-ordered downwards;

Z: every normal system of the group can be refined to a central system;

N: each subgroup of the group is a member of some subnormal system;

N: each subgroup of the group is a member of some subnormal system
which is well-ordered upwards.

22.1.1. Exercise. The condition N is equivalent to the normalizer condition
(see §18.2).

22.1.2. Exercise. For finite groups, conditions SN, SN*, SN, SI, SI~*, SI are
each equivalent to solubility, while conditions Z, ZA, ZD, Z, N, N are
equivalent to nilpotency.

22.1.3. Exercise. A group satisfies SI (resp. Z) if and only if all its
homomorphic images satisfy SI (resp. Z).

22.1.4. Exercise. Each of the properties SN*, SI*, ZA, SN, SI, Z, N, N is
preserved by epimorphisms.

The Kuro§—Cernikov classes turn out to have very wide compass: for
instance, by Magnus’ theorem (14.4.4), the class Z includes all free groups.
Not so immediate is the assertion that some group from the class Z contains
as a subgroup a free group of rank >1 (and therefore every countable free
group): this is shown by one of the examples (Example 22.2.2) to which we
now address ourselves.

22.2. Example

Orderable groups afford important examples of generalized soluble groups.

22.2.1. EXAMPLE. Every orderable group satisfies SN. (Recall that a group is
orderable if it can be given a full order = preserved by left and right
multiplication, i.e. a < b implies ac < bc and ca = cb, for all elements a, b, c;
see also §24.2 in the Appendix.) Here is the proof. Let G be an orderable
group and let = be a full order on it, preserved by left and right multi-
plication. A subset M of G is called convex if together with every pair a, b of
elements of M, all elements intermediate between a and b also belongto M ;
ie.

a,beM, asx=b > xeM.

We shall show that the collection & of all convex subgroups of the ordered
group G is a soluble subnormal system. First we verify in order the
properties (i) to (iv) defining a subnormal system. Property (i) is obviously
possessed by &. To check property (ii) let A, B be convex subgroups and
suppose there is an element b € B, b £ A. We may suppose b > 1, since if
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b>1 then b~ will serve instead. Clearly we must have a <b for all a € A,
since otherwise b would be sandwiched between 1 and an element of A, and
sowould liein A. Hence forall a € A either 1 <a <b or 1 =a~' < b, whence
A = B. Property (iii) is obvious. To verify (iv) we need to show that whenever
A, B are convex subgroups such that A <B and there are no convex
subgroups strictly between them, then A <WB. For each b€ B we have
A’ <B’ and it is clear that again A® and B” are convex subgroups with no
convex subgroups strictly between them. Since B®=B and & is fully
ordered (by property (ii)), we deduce that A = A® as required. Finally to see
that each factor A*/A is abelian, we note that A*/A is an ordered group
(under the order induced from <) with no proper convex subgroups. By the
classical theorem of Holder on ordered groups (see for example [3] or [23],
where the proof, starting from the definitions, occupies only about a page),
such a group is isomorphic to a subgroup of the additive reals, and so in
particular is abelian. This completes the proof.

We now turn to examples of generalized nilpotent groups. One important
type of such example is afforded by the various congruence subgroups; that
is by the classical I',,(m) over Z, as well as their analogues over other rings.
Along these lines we consider the following

22.2.2. EXAMPLE. [Ju. J. Merzljakov, On the theory of generalized soluble
and generalized nilpotent groups, Algebra i logika 2, No. 5 (1963), 29-36.]
Let k be the set of all rational numbers (including zero) which as reduced
fractions have odd denominator. Clearly k is a ring (obtained from Z by
“localizing at the prime 2”’). For n =1, 2, ..., define G, to be the set of all
matrices of the form

1+2"a 278

( 2"y 1 +2"5)’ «Brmock
It is easy to see that each G, is a group. As we know (from Theorem 14.2.1)
the group G, (in fact each of the G, ) contains a subgroup free of rank 2, and
therefore free subgroups of all ranks up to and including countably infinite.
We shall now show that G, satisfies the condition Z; in view of Exercise
22.1.3 this is equivalent to showing that for every normal subgroup H of G,,
the quotient G1/H has a central system. We now embark on the proof of
this.

First of all, if H is contained in the center of G4, then, as it is not difficult to
verify directly (see the proof of Magnus’ theorem 14.4.4), the system of
factor groups

Gi/H=G,H/H=---= fj (G H/H)=1

will be a central system for the factor group G1/H. Thus we may, and shall,
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suppose that the normal subgroup H is not contained in the center of G,. We
shall prove that then

H=TnNG, forsomen, (1)

where T is the set of matrices in G, with determinant 1. This will complete
the proof, since then G,/ H will be a homomorphic image of G,/(T N G,),
which by Remak’s theorem (4.3.9) embeds in the direct product of the
abelian group G,/ T and the nilpotent group G;/G.,.

For the proof of (1) we apply again the fruitful philosophical procedure of
‘“‘drawing out the chain” (see p. 78).

(i) We first show that H contains a matrix 4 such that (hq1)*# (h22)>
Thus let ¢ be any non-scalar matrix in H. It is then easy to verify that if
a =t12(2), b =1,,(2), then one of the following elements will serve as the
element A:

¢, c% c® c%, c’c, ¢’

(ii) From the existence of the element & above, we get that H contains all

transvections £12(A), t21(A) where

A =2u((haa/h11)*—1),

and u can be any rational which as a reduced fraction has both numerator
and denominator odd. This is chiefly a matter of matrix multiplication: first
simply check that

—hyy, O 1 0
ti2(A0) =[t12(2), h*h]°, where =( ), =< )
12(A) =[112(2) ] u 0 iy v 0 u
Then to get #,1(A) take the transpose of both sides of the above equation,
noting that 4 may be left untransposed where it occurs on the right hand
side, since A involves only its diagonal elements. The following formula will
prove useful in this computation:

X11 ;Xlz o« 0
d
x"= R where d = ( )
@ 0
Ele X22

(iii) The next step is to show that for some m =1, the subgroup H
contains all transvections of the form ¢,(2™v), t,1(2™v), v e k. This is
immediate from (i) and (ii).

(iv) Finally, H contains all matrices

. (1 +2%"q  2°"B )
22"y 1+2°"s8)
This is immediate upon checking that

x = 121(27¢)121(278)112(2™)121(2™ ), 2)

a,B,y,6€k, detx=1.
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where

X22 X22

With this we may stop pulling out elements, as the proof is complete.

Incidentally our proof implies a positive solution to the ‘“‘congruence
problem” (see p. 30) for the group SL,(k). For, if H is a normal subgroup of
SL(k) of finite index n, then the nth powers of all transvections in SL,(k) lie
in H, so that the conclusion of Part (iii) holds (in fact #,(2™v), t,;(2"v)e H
for all v € k, where 2™ is the largest power of 2 dividing n). Since Part (iv)
follows from Part (iii), we have that H is a congruence subgroup, as desired.

Note that in the above no special property of the number 2 was used. With
slight changes the argument yields for instance the following fact. Let 7 be a
set consisting of all but finitely many of the primes, and denote by 7' the
(finite) complementary set. Let Q. denote the ring of rational numbers
which as reduced fractions have their denominators divisible only by primes
from 7. The promised fact is that the subgroups of finite index in SL»(Q,,)
are congruence subgroups. To see this let H be normal of index n, and let q
denote the product of all the primes in 7. Choose the integer m =1 large
enough so that at most the mth powers of primes in 7' divide n. Then H
contains all transvections #;(q™v), v € Q.. The following analogue of the
decomposition (2) then yields us our fact if initwe put u =u'=q™

1+ pp’ '
=(Tree BEP ) w2
up'y  1+up's

where

detx=1, ¢=MBZ1 ~,_pr=d
X22 X22
It follows from Example 22.2.2 that the properties SI and Z are not
inherited by subgroups, since otherwise all countable free groups would
have these properties, and thence, by Exercise 22.1.4, all countable groups.
Continuing along the lines of the above, G. A. Noskov [Sib. matem. Z. 14,
No. 3 (1973), 680-683] showed that the group G, also has the property SN,
so that this property also is not inherited by subgroups.
The conditions of finiteness and generalized solubility in topological
groups have been investigated by V. M. Gluskov, V. S. Carin and others (see
the survey [5]).

22.3. The Local Theorem
A family {M, | i € I'} of subsets of aset M is called a local covering of M if M is

the union of the M;, and for every two subsets M;, M; in the family there is a
subset M, containing both M; and M. For example the collection of all finite
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subsets of a given set is a local covering, as is the collection of all finitely
generated subgroups of a given group. We say a group H has a property o
locally if there is a local covering of the group G consisting of subgroups with
the property o. This conforms with our previous use of this term in the case
that o is inherited by subgroups, since, with this proviso, it is clearly
equivalent to the condition that all finitely generated subgroups of G have o-.
As examples of local properties we may take local finiteness and local
nilpotence, which we encountered in the preceding chapter.

We take the opportunity of mentioning that the class of locally finite
groups is properly contained in the class of periodic groups. The containment
is obvious; the difficult part is the strictness. In fact there exist infinite,
finitely generated p-groups for each prime p: one family of such groups was
given by E. S. Golod (see Example 18.3.2), and another by S. V. AljoSin
[Finite automata and Burnside’s problem on periodic groups, Matem.
zametki 11, No. 3 (1972), 319-328]. The stronger result (stronger at least
for almost all primes) of P. S. Novikov and S. I. Adjan was mentioned
without proof on p. 101. Note also the result of Schur that a periodic matrix
group (over a field) is locally finite (see [41]).

Since we are on the subject of locally finite groups it is appropriate to
include here the following

22.3.1. Theorem (O.Ju. Smidt). An extension G of alocally finite group A by
a locally finite group G/ A is itself locally finite.

Proor. We verify that every finite subset M of G generates a finite
subgroup. By hypothesis the quotient (M, A)/A is finite. By enlarging M if
necessary (but still keeping it finite) we may suppose that it contains the
inverses of all its elements, and at least one representative from each coset of
A in (M, A). This assumed, for each pair x, y € M, define a,, € A by

Xy =Xy Qxy

by choosing xy as a representative in M of the coset (M, A)xy. By iterating, it
follows that any product of elements of M can be expressed as the product of
an element of M with a product of various of the a, ,. Since the totality of the
a,,, generates a finite subgroup, the proof is complete.

We shall say that the local theorem is true for a given group-theoretic
property (and for the class of groups having that property), if local posses-
sion implies global possession of the property; i.e. whenever a group has the
property locally, then the group itself has the property. For instance the local
theorem is true for the class of abelian groups, but not for the class of finite
groups.

Why is it that for certain properties the local theorem holds, while for
others it does not? Having asked himself this question, A. I. Mal’cev [On a
geneéral method of obtaining local theorems in group theory, U¢. Zap.
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Ivanovskogo ped. in-ta 1, No. 1 (1941), 3-9] came to the conclusion that,
since local theorems are not specific to group theory, but can be framed just
as naturally for rings, loops, and other algebraic systems, the key to its
answer must be sought not in group theory or in any other particular theory,
but at the foundations of mathematics. And indeed local theorems for
widely differing properties were found to have a common conceptual
source, consisting in the following simple observation from formal logic:
If a theorem is a consequence of the axioms in a certain list, then it is a
consequence of only finitely many of the axioms in the list (assuming axioms
and theorem expressed in the same language). Elaborating on this obser-
vation, Mal’cev arrived at his theorem on the ‘‘compactness of the first-order
predicate calculus,” from which in turn he deduced the truth of the local
theorem for any property expressible in terms of so-called ‘“quasi-universal
formulae.” Thus the problem of whether the local theorem holds for a given
property o, which until the advent of Mal’cev seemed to require a separate
solution for each individual o, was reduced to a general and purely syntac-
tical question: Can o be expressed in terms of quasi-universal formulae?

By using a clever ruse, which we shall describe here, Mal’cev showed, in
the above-mentioned work of 1941, how to express the properties SN, SI, Z
in terms of quasi-universal formulae of a special kind, thereby establishing
the local theorem for these properties. Later he returned to this method,
gave it its present generality, and in the paper ‘“Model correspondences”
[Izv. Akad. Nauk SSSR, ser. matem. 23, No. 3 (1959), 313-336] at one blow
obtained almost all the interesting local theorems of group theory. One
might say that the 1941 paper first put the “and” in the phrase ‘“the local
theorems of algebra and of logic,”” while that of 1959 dotted the i and crossed
the t’s. In addition to this, the first paper became the starting-point of model
theory.

Here we shall use Mal’cev’s method to prove the local theorem for those
of the above Kuro§~Cernikov classes for which it holds. A self-contained
exposition of the logical part of the method is given in §24 in the Appendix;
the reader not familiar with the logical ideas involved will need to read that
section before continuing.

22.3.2. Theorem (A. 1. Mal’cev). The local theorem is true for the properties
SN, SI, Z, SN, SI, Z, N.

Proor. Using the above-mentioned trick of Mal’cev, we shall first show how
to translate statements about subnormal systems into formulae in the
predicate calculus. Thus with each subnormal system & of subgroups of a
group G, we associate a binary predicate P on G as follows: define
P(x,y)=T (T for ‘““true”) if there is a subgroup in © which contains x, but
does not contain y ; otherwise of course define P(x, y) = F (for “false”). It is
clear that P satisfies the following universal axioms (in (1) to (10) below the
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quantifiers (Vx), (Vy) etc., are understood):

1P(x, x), (1)
P(x, y) AP(y, z) > P(x, 2), (2)
P(x, z) A1P(y, ) > P(x, y), 3)
P(x,z) AP(y, z)» P(xy ', z), 4)
x #e->Ple, x), ()
P(x,y)>P(y 'xy, y). (6)

For y # ¢, define A, ={x|x € G, P(x, y)=T}. It is not difficult to verify
that
A= U A A=A, (AeB,A#G);
y£AeS yE£A
that is, A, € S, and each A € S, A # G, is the intersection of certain of the
A,.

Conversely, suppose we are given a predicate P on G with properties (1)
to (6). The sets A, are then subgroups, and the totality of them is fully-
ordered under inclusion. If we adjoin to this collection of A, all unions and
intersections, as well as the whole group G, we end up with a subnormal
system for G.

From the above, especially (1) and (3), it follows easily that these
processes of going from & to P, and from P to &, are mutually inverse, so
that we do indeed have a valid method for translating statements about
subnormal systems into formulae in the language of the predicate calculus
(PC for short).

The concepts basic to the theory of the Kuro§-Cernikov classes translate
into the language PC as follows:

solubility of the system: x #e A P(x, y) A]1P(y, x) > P([x, y], x), 7
normality of the system: P(x,y)>P(z 'xz,y), (8)
centrality of the system: x #e->P([x, y], x). 9)

We shall also characterize ‘“three-member” systems 1=A=G (not
necessarily subnormal) in terms of the language PC. It is clear that such
systems are axiomatized by the formulae (1) to (5) together with the
following one:

three-member property: x#eAP(x,y)>]P(y, z). (10)
It is now easy to see that the properties SN, SI, Z translate as follows:
SN: (3P)(Vx)(Vy)(Vz)((1) A (2) A(B) A (4) A (5) A (7)),

S @P)(Vx)(Vy)(V2) (1) A (2) A B) A @) A (5) A (T) A (8)),

Z: @P)(Yx)(YVy)(Vz)(1) A (2)AB) A @) A (5) A (9)),
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where (1) (2), etc. stand for the formulae so numbered; while the properties
SN, SI, Z, N, all involving refinability, become

SN: (VP)((P subnormal)
- (3Q)((Q soluble subnormal) A (Vu)(Vv)(P(u, v) - Q(u, v)))),

SI: (VP)((P normal)
- (3Q)((Q soluble normal) A (Vu)(Vv)(P(u, v) -~ Q(u, v)))),

Z: (VP)((P normal)
- (3Q)((Q central) A (Vu)(Vv)(P(u, v) > Q(u, v)))),

N: (VP)((P three-member)
- (3Q)((Q subnormal) A (Vu)(Vo)(P(u, v) > Q(u, v)))),

where of course the expressions (P subnormal) and the like, are meant to be
replaced by the appropriate combinations of the formulae (1) to (10). Since,
as we now see, all seven properties translate into quasi-universal formulae,
we have only to appeal to Theorem 24.3.3 of the Appendix, to obtain the
desired conclusion.

For the properties SN*, SI*, ZA, ZD, N, which do not come under the
umbrella of Mal’cev’s theorem, the local theorem is false: see, in particular,
Example 18.2.2.

Note that the formulae for the properties SN, SI, Z are object-universal,
so that by Theorem 24.3.1 of the Appendix, these properties are inherited
by subgroups. (It is also not difficult to prove this directly.)

22.3.3. Exercise. The properties SN*, SI*, ZA, ZD, N, N are also inherited
by subgroups.

As an application of Mal’cev’s theorem we use it to generalize Cernikov’s
theorem (19.3.2) to SN-groups.

22.3.4. Theorem (S. N. Cernikov). Every SN-group satisfying the minimal
condition is a soluble Cernikov group.

Proor. The minimal condition immediately gives that G is a periodic
SN*-group. It then follows by induction and Smidt’s theorem (22.3.1) that G
is locally finite. Since a finite soluble group is an SI-group, and the local
theorem is true for the property SI, we deduce that G is an SI-group, and
therefore, again by virtue of the minimal condition, an SI*-group. Now we
imitate the proof of Theorem 19.3.2, taking into account that the property
SI* is inherited by subgroups and homomorphic images. The first two
paragraphs of that proof carry over without change, except that we take A to
be 1% in an appropriate subnormal system for the SI*-group H. Thus, as in
the second paragraph of the proof, we conclude that A is contained in the
centre of H, which is therefore nontrivial. Taking the quotient of G by the
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center C(H) of H and repeating the argument, we deduce that H/ C(H) also
has nontrivial center. Continuing in this way we discover that the upper
central series of H, continued through infinite ordinals (defining ¢ H =
(Ug<a ¢eH for limit ordinals ), is always increasing, so that eventually it
must reach H; i.e. H is a ZA-group.

Now let B be a maximal abelian normal subgroup of H. It follows (again
as in the second paragraph of the proof of Theorem 19.3.2) that B is
contained in the centre of H; however by Theorem 16.2.6 (whose proof is
still valid for ZA-groups, although the theorem is stated only for the
nilpotent case), B is its own centralizer in H. Hence B = H ;i.e. H is abelian.
This completes the proof.



Appendix: Auxiliary Results
from Algebra, Logic and
Number Theory

§23. On Nilpotent Algebras

The connexion between nilpotency in groups and nilpotency in rings, which
was mentioned in passing in the text proper (§16.1) has indeed an important
role to play, enriching as it does both group theory and ring theory. In this
section we bring together certain facts about nilpotent algebras, needed for
our treatment of Engel groups in §18.3. In the first subsection we give basic
definitions, and study the behavior of nilpotency under the standard process
of going from associative algebra to Lie algebra, and back. The second
subsection is devoted to the construction of non-nilpotent nilalgebras.

23.1. Nilpotency of Associative and Lie Algebras

Let k be a field, and let A be a ring (without any assumption of com-
mutativity or associativity of its multiplicative operation). The ring A is
called a (linear) algebra over k, if for each a € k, a € A there is defined an
element aa € A, called the ‘scalar multiple” of a by a, satisfying the
following conditions:

(¢ +B)a=aa+Ba,
(aB)a = a(Ba),
la=a,
a(a+b)=aa+ab,
a(ab) = (aa)b = a(ab),
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where a, B are arbitrary elements from k, 1 is the multiplicative identity of k,
and q, b are arbitrary elements of A. The algebra A is said to be associative if

(ab)c =a(bc) foralla, b, ceA.
The algebra A is called a Lie algebra if
ab+ba =0,

(ab)c +(bc)a + (ca)b =0,
forall a, b, cc A.

The reader will not need to have the role of associativity explained to him;
on the other hand the concept of a Lie algebra may seem at first glance to be
rather artificial. However the truth is that a Lie algebra is just as natural an
object as an associative algebra, since every associative algebra comes
accompanied by a Lie algebra, obtained from it in the following standard
manner. If A is the associative algebra, and a, b are two of its elements, then
we call the element (a, b) = ab — ba their (ring) commutator. As for groups
one might say that this commutator provides a measure of the departure of
the pair of elements from being commutative (cf. §3.2, Ch. 1). It is easy to
check that the set A together with the operations of addition, commutation,
and scalar multiplication (by scalars from k) is a Lie algebra. This Lie algebra
is said to be the Lie algebra associated with the associative algebra A.
Another source of Lie algebras, namely Lie groups, was mentioned briefly in
the main text.

Suppose now that in our associative algebra A we have a vector subspace
L which is closed under commutation (so that L is a Lie subalgebra of the Lie
algebra associated with A). The associative subalgebra L generated in the
associative algebra A by the set L, is called the enveloping algebra of the Lie
algebra L.

An element a of an algebra A is said to be nilpotent (of “nil potency’’ so to
speak), if a” = 0 for some integer n >0 (in general depending on a), and for
any arrangement of brackets in a”. The whole algebra A is termed nilpotent
if there is an integer n >0 such thata,a, - - - a, =0foralla,, a2,...,a, €A
and for all arrangements of brackets in the left-hand side. The smallest such
n is called the nilpotency class of A. As mentioned in the main text, the
algebra of all (upper) triangular matrices with zero main diagonals is an
example of a nilpotent algebra (in this case associative).

%3.1.1. Exercise. A finitely generated nilpotent algebra has finite dimen-
sion.

23.1.2. Exercise. A Lie algebra L is nilpotent precisely if there exists an
n >0 such that (- - -((a1a2)as) - - - )a, =0forall ay,* -+, an € L.

W!lat happens to nilpotency under the processes of going from an
associative algebra to its associated Lie algebra, and in the other direction,
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that is from the Lie algebra to its enveloping algebra? One half of this
question is easily answered: it is almost obvious that if an associative algebra
A is nilpotent of class n, then its associated Lie algebra is nilpotent of class
=n (the inequality not being replaceable, in general, by equality). However,
going the other way, we cannot expect that the enveloping algebra of a
nilpotent Lie algebra will always be again nilpotent, since there exist
non-nilpotent associative algebras whose associated Lie algebras are
nilpotent: such, for example, is the algebra A of all triangular matrices
with constant main diagonal entries (i.e. constant within each matrix). As
another example we may take the direct sum of infinitely many one-
generator (or ‘“‘monogenic’’) nilpotent algebras, the set of whose classes
is unbounded.

The reason for the non-nilpotency of the algebra matrix A just mentioned
is strikingly clear: it even has elements which are not nilpotent in the
associative sense. It turns out that if we demand that the individual elements
be nilpotent in the associative sense, and also that the Lie algebra which we
are ‘“‘enveloping,” be finitely generated, then nilpotency is preserved under
the enveloping process:

23.1.3. Theorem. Let A be an associative algebra and L a subspace closed
under commutation. If L is finitely generated and nilpotent as a Lie algebra,
and each of its elements is nilpotent in the associative sense, then the
associative enveloping algebra L is also nilpotent.

PROOF. Let ey, .. ., e; be generators of the Lie algebra L. We shall call these
elements generating commutators of weight 1, and, inductively, if ¢, d are
already defined having weights u, v respectively, then (c, d) is defined to be a
generating commutator of weight u + v (so that an element may have several
weights depending on how it is expressed as a commutator). Denote by n the
nilpotency class of the Lie algebra L; thus commutators of weight =n
vanish, so that there are altogether only finitely many nonzero generating
commutators, say r of them. Denote them by ¢4, ¢», . . ., ¢,, where here they
are ordered in any manner except that the weights are non-decreasing. By
hypothesis, for each i there is a positive integer n; such that ¢ = 0. We shall
show that the associative algebra L is nilpotent of class at most N =
n(ny+---+n,). For this it clearly suffices to verify that every product
¢i, * * * Ciy, vanishes.

For the latter verification we need a little more terminology. We define
the length of an expression or product ¢;, * - * ¢;,, to be m, its weight to be the
sum of the weights of the factors, an order inversion in it to be a segment
¢i + + - ¢; with i >, and finally its characteristic to be the pair (m, t) where ¢ is
the total number of order inversions occurring in it. We order the set of
characteristics of such expressions lexicographically; that is we set (m, 1) <
(m', t"),if m <m'orbothm =m'and ¢ <t'. Thisis clearly a well-order of the
set of characteristics.



174 Appendix

Now if there occurs in a product ¢;, - - - ¢;,, of weight w, an order inversion
cic;, then upon replacing that segment by c;c; +(c;, ¢;) we obtain the sum of
two products of the same weight w, but with smaller characteristics. It
follows that after a finite number of such replacements we shall end up with a
sum of products

citeeept, where ji<---<j, allm,=1.

It only remains to observe that if w =N then each such product vanishes,
since then m, = n;_for at least one m,, whence c¢;= = 0. Hence the original
product ¢;, - - - ¢;,, =0 if m =N, and the proof is complete.

We conclude this subsection with a result about finite generation in rings
reminiscent of Exercise 14.3.2 about finite generation in groups. Although
the concept of nilpotency does not enter into it, this result is nonetheless an
important tool in the study of nilpotency, on which ground we may justify
including it here. However, we have a different use for it in mind (see §21.3).

Recall that an additive abelian group A is called a left module over a ring
k,if foreach a € k, a € A, there is defined an element aa € A in such a way as
to satisfy the first four of the axioms listed at the beginning of this subsection
(in the definition of an algebra). A right module over k is defined analo-
gously. If A has defined on it the structures of both a left and right module
over k insuch a way that (aa)B = a(aB) forall a, B € k, a € A, then we speak
of A as a bimodule over k. The annihilator of the bimodule A over the ring k
is the set of all a € k such that

aa=0=aa forallacA.

Let K be an associative ring (but not necessarily commutative). If M is a
subset of K and s is a positive integer, we write M° for the subgroup of the
additive group of K generated by the set of all products of s elements from
M.

23.1.4. Theorem. Let I be an ideal of the finitely generated associative ring K.
If the additive group of the quotient ring K/ I is finitely generated, then the ideal
I is finitely generated (as ideal). The additive groups of the rings K/I°,
s=1,2,..., are also finitely generated.

PROOF. (i) Choose a finitely generated subgroup A of the additive group of
the ring K, satisfying the following two conditions:

K=A+I,; the ring K is generated by A. 1)

Let I be the ideal of K generated by the set I ~ (A +A?). The sum A +I'is
then a subring: for if 4, a, € A, then from the first statement in (1) we get
aiaz=a+i for some ac A, icl; but then clearly i €I', whence ajase
A+TI'.

‘ It t.hen follows from the second statement in (1) that K = A +1I'. Since A
is finitely generated we get that the additive group of K/I' is finitely
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generated, whence its subgroup I/’ is also finitely generated. It can be seen
from its definition that the ideal I' is finitely generated as ideal, since A + A*
is a finitely generated additive group. Hence the ideal I is finitely generated.

(ii) The ring K acts on the additive group of I/I* by left and right
multiplication, turning it into a K -bimodule. It is clear that I is contained in
the annihilator of this bimodule, so that we may consider I/I° rather as a
bimodule over the quotient ring K/ I, in fact, by Part (i), as a finitely generated
K/I-bimodule. This and the fact that the additive group of K/I is finitely
generated, together give us that the additive group of I/I? is finitely
generated. Hence the additive group of K/I? is finitely generated. By an
easy induction, of which this is the first step, we deduce that for all n =0, the
additive group of K/I* is finitely generated. The proof is then completed by
the trivial observation that for any positive integer s there exists an n such
that 2" >s, so that the additive groups of all K/I° are finitely generated.

23.2. Non-Nilpotent Nilalgebras

From now on all algebras will be assumed to be associative. If every element
of an algebra is nilpotent, we call it a nilalgebra. One of the central questions
in the theory of nilpotent algebras consists in the following: Is a finitely
generated, associative nilalgebra necessarily nilpotent? For finite-dimen-
sional algebras the answer has long been known to be in the affirmative;
however, as E. S. Golod has shown, the answer to the question as it stands is
negative. To be more specific, Golod has constructed, for each field k and
each integer d = 2, a non-nilpotent algebra over k on d generators, in which
every (d—1)-generator subalgebra is nilpotent [On nilalgebras and
residually finite p-groups, Izv. Akad. Nauk SSSR, ser. matem. 28, No. 2
(1964), 273-276]. Golod’s construction leads to the resolution of several
important group-theoretical questions. The aim of this subsection is to
describe that construction.

Let F=k{x,,..., x4} be the ring of polynomials over a field k in the
non-commuting variables xi, . . ., x4. As a vector space, F has the obvious
direct sum decomposition

F=F,®F,®- - -,

where Fo=k, and F, is the subspace spanned by the d" monomials
Xi,Xi, * * » X;. The polynomials in F,, will be called homogeneous of degree n.
An ideal I of the ring F is then said to be homogeneous if it is generated by
homogeneous polynomials (possibly of various degrees).

23.2.1. Exercise. An ideal I of F is homogeneous if and only if it contains
the homogeneous components of each of its elements; i.e. if whenever
ael, a=an+- - -+an, a, €F,, n<-.-<n,,

then all a,,, € I
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Let f1, f>, . . . be homogeneous polynomials in F of degrees =2, ordered
so that the degrees are non-decreasing, and suppose also that in this
sequence the number 7, of polynomials of degree » is finite for each n. Let I
be the ideal generated by f1, f>, . . ., and write A = F/I. By Exercise 23.2.1

A=A PA @ -+, where A, =(F,+1)/L

In particular, Ao = Fy = k, A = F}, since the polynomials f; have degree =2.

The factor algebra F/ I, for a certain such ideal I, plays the leading role in the

construction we wish to carry out. By way of preparing for the actual

construction, we establish a criterion for the infinite-dimensionality of F/I.
Consider the formal power series

s o)
o=1-dt+ Y s.t",
n=2

where the s, are integers. It is easy to see that the inverse of this series (in the
ring of formal power series over the integers) is the series

[s e}
ol =3 yu,
n=0
where yo=1, y; =d, and

Vo =dAYpn-1— Y. Siyn-i for n=2.
i=2

23.2.2. Theorem (E.S. Golod-I. R. Safarevi¢). Let F = k{x,, . . ., x4} be the
polynomial ring over k in the non-commuting variables x., ..., xs. Let
f1, f2, . .. be homogeneous polynomials from F of degree =2, arranged in
non-decreasing order of degree, and let I be the ideal they generate. If the
number r, of polynomials of degree n among the f;, does not exceed s,, where
the numbers s, are such that all the coefficients in the series o~ ' are non-
negative, then the algebra F/I is infinite-dimensional.

PRrOOF. (i) Let a, denote the dimension of the factor algebra A, = (F, +1)/I
as a vector space over k. What we want to prove is equivalent to the assertion
that the series

is not a polynomial. Put
p=1—dt+ Y ru",
n=2

and Suppose we already know that the series p~ ! and pa have no negative
coefficients (we shall prove this in Parts (ii) and (iii) below). Since p 'p = 1, it
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follows that

[ee]
p! (1 + Y r,,t") =1+p7'ds,
n=2

and from this and the fact (to be established) that p~' has no negative
coefficients, it is clear that p ' cannot be a polynomial. But then neither can
a=p ' -pabea polynomial.

(i) We shall prove that the series p~' has no negative coefficients.
Working in the ring of formal power series over the integers (where the units
are the power series with constant term +1) we have

p=c—-8=0(1-0c'8), whered= Y (s\—7.)t",
n=2
whence

s}
p l=0"'1-0718)""= 0'—1(1 + ¥ (0'_16)'").
m=1
Since by hypothesis the coefficients in the series o ' and § are all non-
negative, we deduce the same for p ', as required.
(iii) Finally we prove that the series pa has no negative coefficients; i.e.
that

a.=da,_1— Y, ra,_; forn=2. 2)
i=2

Denote by I, the set of all homogeneous polynomials of degree # in I, and by
A¥ adirect complement of the subspace I, in the space F,,;i.e. F, = [, D A¥.
A comparison of dimensions gives

d"=dimI, +a,.

Further, let H,, be the subspace spanned by the polynomials of degree m
among f1, f2, . . . , and (XY) the subspace spanned by all elements xy, x € X,
y € Y (for arbitrary subsets X, Y < F). We shall prove that

Lc{I,_.F)+ ¥ (A¥_,.H,) forn=2. 3)
m=2
The desired inequality (2) will then follow by replacing the two sides of (3) by
their dimensions, and the symbol < by the symbol <.

We thus begin the assault on (3). Let u € I,,. By the definition of 1,,, u is a
sum of products of the form vf;w where v, w are homogeneous pvlynomials.
Thus it suffices to show that u is in the right-hand side of (3) in the case
u = vf;w. In this case, if w has degree =1, then clearly u € I,,_,F;. If on the
other hand w has degree 0, then we may assume that u = of;. Suppose that
the degree of f; is m, so that it belongs to the subspace H,,. Then we must
have v € F,,_,,,, from which we get, using the direct decomposition of F, _.
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above,

v=0v'+0v", where v'el,_., V"€A¥_,.

Hence u € (I,_mHn)+{(A%_.H,). Since, clearly, (I,_.H,.)< {I,_1F), we
get that u is in the right-hand side of (3), as required.

23.2.3. EXAMPLE. If, in the context of Theorem 23.2.2, we have
rm<eXd-2¢)""% wheree>0,

then the algebra F/I is infinite-dimensional. By Theorem 23.2.2, to conclude
this it suffices to verify that the power series o ! has all its coefficients
nonnegative, where

o=1-dt+ Y e*(d-2¢)" "

n=2

For this we shall make use of the following familiar formulae for formal
power series:

1 d n, 1 - - n
l—a_,.goa ; (l~a)2_,.§o(n+l)a .
Thus
o=1-dt+e** ¥ (d—-2¢&)"t"
n=0
2.2 (g 2
1—dr+ et ___(1 (d s)t)’
1-(d—-2¢e)t 1—(d—2¢)t
whence
o1 1—(d—2£)t_ e g g
_—_(1—(d—e)t)2—(1 (d—2¢€)t) néo(n+1)(d )"t

=1+ g‘,l (d—¢&)"" Y (d+(n—1)e)"

Since d —2¢ =0, we have d —¢ =¢ >0, so that the coefficients of o™ " are in
fact all positive.

We are now ready to carry out Golod’s construction. The following
special case should make the idea of the construction clear.

23.2.4. EXAMPLE. Let k be a field with at most countably many elements,
let F = k{x, y} be the algebra of polynomials over k in the non-commuting
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variables x, y, and let F' denote the subalgebra of polynomials with zero
constant term. We shall show that in the algebra F there is an ideal I
contained within F’', such that the algebra A'=F'/I, while not itself
nilpotent, has all its elements nilpotent (in other words, all its one-generator
subalgebras are nilpotent).

Let ui, us, ... be any enumeration of the elements of F'. We begin the
definition of a sequence N1, N, . . . of positive integers by taking N; =9. We
then raise u; to the power N;, and decompose the result u into the
(unique) sum of its homogeneous components fi, fa, ..., fm,, Written in
increasing order of degrees. Define N, to be any integer exceeding the
largest of these degrees, and repeat the process with u, and N,, expressing
u3> as the sum of its homogeneous components fm#1s « o o s fray+myy Where
again the degrees increase with the subscripts. Continuing in this way, we
end up with an infinite sequence fi, f, ... of polynomials of increasing
degrees =9. Let I be the ideal generated by these polynomials. Since F' is
generated by x and y, we have that A'=F'/I is generated by X = x + I and
y=y+1I, and so is 2-generator. It is also immediate from the way we
constructed I that A’ is a nilalgebra. It only remains to show that A’ is not
nilpotent, and for that the infinite-dimensionality of A = F/I suffices (since
thenA'=A;®A,®P- - - will also have infinite dimension, and will therefore
not be nilpotent: see Exercise 23.1.1 above). In the notation of Theorem
23.2.2, we have d =2, r, <1 (and, in particular, r,=r3=---=r3=0). A
direct calculation shows that for ¢ =5 the hypothesis of Example 23.2.3
above is satisfied, so that in this case A is infinite-dimensional as
required.

We now give Golod’s construction in its full generality.

23.2.5. EXAMPLE. For each integer d =2 and each field k, there exists a
non-nilpotent k-algebra on d generators, all of whose (d—1)-generator
subalgebras are nilpotent. To begin the proof of this, let F = k{xy, ..., x4}
denote, as before, the algebra of polynomials over k in the non-commuting
variables xi, ..., x4, and let F' be the subalgebra consisting of all poly-
nomials with zero constant term. We shall construct an ideal I of F,
contained within F’, such that F'/I has the desired properties.

Let € be a fixed number, 0 <g < % In view of Example 23.2.3 we may take
for I the ideal generated by homogeneous polynomials

fl""’fspfsl+19"',f52’-"

of degree =2, satisfying condition (4) and the following further condition:
for each set of d — 1 elements of F’ of degree <n there should exist a positive
integer N such that every product (with repetitions allowed) of N factors
drawn from the given d —1 elements, lies in the ideal I, generated by

fioeeos fon
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We assume that fi, . . ., f;, s = 5,1, are already defined, and show how to
extend the definition to fi,...,f, t=s. Let g1,...,84-1 be any d—1
polynomials of degree =n and with zero constant term; we express these
polynomials as linear combinations over k of the monomials M, (x4, . . ., x4)
of degree <n (with coefficient 1):

g,~=Zc,»aMa(x1,...,xd), 1Si5d—1,c;a€k.

For any positive integer N there are (d —1)" ways of forming products of N
of the g;’s. Regarding now the x; as constants and the c;, as (commuting)
variables, we rewrite each such product as a polynomial in the c;,, obtaining

as coefficients certain linear combinations f .1, . . . , f, of monomials in the x;
of degrees from among N,N+1,...,nN. We shall show that for N
sufficiently large the polynomials f;.1, ..., f, have the desired properties.

Clearly we have only to satisfy condition (4), since the f’s were explicitly
constructed to fulfil the other condition. Now condition (4) will hold if we
can find an N larger than the degrees of f1, . . ., f;, such that the polynomials

fs+1, - - ., fy number fewer than £%(d —2¢)V 2. We shall show that such an N
exists by estimating the size of the set {f;+1, ..., f;} in terms of N.
Thus take a typical product g =g, -  * g\, and suppose that g; occurs as a

factor m; times. Since the c¢,, are regarded as commuting variables
(representing, as they do, elements of the field k), it follows that g, as a
polynomial in the c;,, has

=1 mit+q—1
l'[(m 1 ) q=d+d’+---+d",
i=1 q—1

terms. Hence the product g contributes this number of polynomials to the

segment f;.1, ..., f; of the list of f’s. Since (u) <u" and there are (d — 1)V
v

different g’s, it follows that altogether the polynomials f;., . . ., f; number

at most

(d—l)N(N+q—1)(q_l)(d_l).

Since d —1<d—2e¢, this bound will be less than e*(d —2¢)N 2 for N
sufficiently large, as required.

§24. Local Theorems of Logic

In this section we shall prove Mal’cev’s local theorem for quasi-universal
classes. On the assumption that the reader is familiar with the basic concepts
of formal logic such as might be given in a general introductory course, our
exposition will be fast-paced, though entirely self-contained.
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24.1. Algebraic Systems

Let A be a set. A function of n variables defined on A (i.e. with domain A™)
and taking its values in the set {T, F} = {true, false} (resp. A) is called an n-ary
predicate (resp. n-ary operation) on A. A set A equipped with predicates Py
and operations fz* (where n,, mg are their “arities”) is called an algebraic
system, and the families of integers n,, mg together form its signature. Two
algebraic systems with the same signature are said to be isomorphic if there is
a one-to-one correspondence between them (or rather between their
underlying sets or ‘carriers”) preserving the predicates and operations.
(Thus if A and B are the algebraic systems, with associated Pj=, fg'* and
Q.= gp* respectively, and 8: A > B is the isomorphism, then for instance

Pg= applied to the n-tuple (ay, ..., a.,) of elements of A is to have the
same value as Q¢ applied to (a1, . .., a,_0).) Groups, rings, fields, vector
spaces, partially-ordered sets: these are just a few examples of algebraic
systems.

If a subset of an algebraic system is closed under all the operations (as
opposed to predicates) of the system then, when taken together with the
predicates and operations induced on it (i.e. the restrictions to the subset of
the operations and predicates of the original system), the subset is called a
subsystem.

As mentioned in the main body of the text (§22.3), a family A, i € I, of
subsets of a set A is said to form a local covering of A, if A =|_J;c1 A;, and for
each pair A;, A, there is a third A, containing them both. The idea of a local
covering is closely bound up with that of a filter, which concept we now
introduce.

Let I be a set. A collection &% of nonempty sets of I is said to be closed
under finite intersections if it contains the intersection of each pair of its sets:
Xe% YeF > XnYe% The collection F is called a filter on I if in
addition to being closed under finite intersections it has the property that it
contains all supersets of each of itssets: X € &, Y 2 X = Y € %. A filter not
contained in any larger filter, or in other words a maximal filter, is termed an
ultrafilter. (Note that the collection of all subsets of I is not a filter since it
contains the empty set.) It is easily verified that a filter & is an ultrafilter if
and only if for each subset of I, either the subset itself or its complement lies
in &. It is obvious that every collection of nonempty subsets of I which is
closed under finite intersections is contained in some filter (just throw in all
the supersets of members of the collection), and that, granted Zorn’s lemma,
every filter is contained in an ultrafilter. We mention in passing the fact that
no ultrafilter has yet been constructed without using Zorn’s lemma, except
for the uninteresting ones consisting of all subsets containing a particular
element of I.

Let (A, i € I) be alocal covering of a set A. For each a € I define

I, ={i|iEI, Ai;_’Aa}-
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If A,, Ag S A, then clearly I, I, n Iz. Hence the intersection of any finite
number of the I, is nonempty, and so the family of I, can be completed to a
collection of nonempty subsets of I closed under finite intersections, and
thence to an ultrafilter # containing the I,. If each A; comes equipped with a
predicate P; (all P; being of the same arity), then we denote by P =lim P; the
predicate on A defined by the following rule:

P(x,y,..)=Ton A& {i|x,y,...€A, Pi(x,y,..)=Ton A}e &

It may happen that the restriction of P to some A; does not coincide with P;.
On the other hand if we take a predicate Q defined on A, take its restriction
Q: to each A; and then take the limit of the Q; over the filter %, as above,
then we do get Q back again.

24.2. The Language of the Predicate Calculus

The alphabet of the language of the predicate calculus (PC for short) consists
of: object variables, predicate variables, brackets, and the following logical
symbols (of which the first four are called connectives, and the last two
quantifiers):

and

or

not

implies

equals

for all

there exists

whh ¥V o< >

If in a formula (i.e. statement) in the language of the predicate calculus
there is no quantification over predicates (as opposed to objects), then we
say that it is a formula in the first-order predicate calculus (FOPC). Although
the language of PC seems rather meager, it is nonetheless quite expressive.
For example the usual axioms (or defining properties) for the class of
torsion-free abelian groups can be expressed in the language of PC—even
FOPC—supplemented by the symbols for the binary, unary and nullary
operations -, ~*, e of group theory:

(1) associativity: (Vx)(Vy)(Vz)((xy)z = x(yz)),

(2) property of the identity: (Vx)(xe =x A ex = x),

(3) property of inverse elements: (Vx)(x 'x =erxx '=e),
(4) commutativity: (Vx)(Vy)(xy = yx),

(5) torsion-freeness: Vx)x=ev](x:---x=e)), n=1,2,....

n
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We now give a few more examples. A binary predicate = is called a
partial order if it has the following properties:

(6) reflexivity: (Vx)(x =x),

(7) transitivity: (Vx)(Vy)(Vz)(x=yry=z->x=2z),

(8) anti-symmetry: (Vx)(Vy)(xsyary=x-x=y),

and it is called a full (or linear) order if in addition it satisfies:
(9) fullness: (Vx)(Vy)(x=yvy=x).

A (binary) predicate =< defined on a group is said to be preserved by the group
operation, if

10) (Vx)(Vy)(Vz)xsy->xz=<yzAzx=<zy).

A group is defined to be orderable (or an O-group) if there exists a full order
on it which is preserved by multiplication. A group is an O*-group if every
partial order on it which is preserved by multiplication can be extended to a
full order preserved by multiplication. It is easily seen that the following
statements (or axioms) in the language of PC (but no longer FOPC)
distinguish the classes of orderable and O*-groups respectively, from the
class of all groups:

(11) orderability: (IP)(Vx)(Vy)(Vz)(P(x, x)A
(P(x, y) A P(y, z) > P(x, z)) A
A(P(x, y) AP(y, x)>x =y) A(P(x, y) v P(y, X)) A
A (P(x, y) = P(xz, yz) A P(zx, zy))),
(12) O*-property: (VP)((Pisap.p.o.)
->(3Q)((Q is a p.f.0.) A (Vu)(V0)(P(u, v)~> Q(u, v)))).

In the formula (12) for the sake of brevity we have used the abbreviations
p.p.o. and p.f.o. for “preserved partial order’’ and “‘preserved full order”
respectively; the two statements involving these abbreviations can easily be
written in the language of PC by combining (6), (7), (8), (9) and (10).

Any formula of PC can by a systematic sequence of alterations be put in
an equivalent prenex normal form, in which all quantifiers are grouped at the
beginning, before all the other logical symbols. A formula in prenex normal
form is said to be universal if the existential quantifier 3 does not appear in
it, and object-universal if there are no occurrences of the quantifier 3
referring to (i.e. immediately followed by) an object variable. A formula of
PC is quasi-universal if it is obtained from object-universal statements
without free object-variables, by first combining them using connectives
only, and then using the universal quantifier V to bind every predicate-
variable. (This definition differs somewhat from Mal’cev’s original 1959
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definition: the new version was suggested by J. P. Cleave [Local properties
of systems, J. London Math. Soc. (1), 44 (1969), 121-130; Addendum, J.
London Math. Soc. (2),1(1969), 384] who uses instead the term ‘“Boolean-
universal.”’) The formulae (1) to (10) are all examples of universal state-
ments. The formula (11) is object-universal, while (12) can be changed to a
quasi-universal formula equivalent to it by extracting all the quantifying
symbols (i.e. (Vu), etc.) from the field of reference of the symbol (3Q) and
restoring them to positions immediately following (3Q), to get the prenex
normal form of the formula (3Q)(- - ) in (12).

24.2.1. Exercise. The simple groups can be distinguished within the class of
all groups by means of a quasi-universal axiom.

24.3. The Local Theorems

We first consider object-universal formulae.

24.3.1. Theorem. Let ® be an object-universal formula. If ® is true on an
algebraic system (i.e. when the object-domain is taken to be the system), then it
is true on every subsystem. If ® is true on subsystems A; which form a local
covering of an algebraic system A, then ® is true on A.

ProOOF. In order to avoid tedious and obfuscating notational complexities,
we shall limit our proof to the case where the algebraic system carries a single
binary operation denoted by -, and a single binary predicate S.

(i) Let A be an algebraic system with this signature, satisfying the
object-universal axiom ®, and let A be a subsystem of A (recall that this
means that A is closed under the operation -, and that its (A’s) operation and
predicate are the restrictions to it of the operation and predicate of the
original algebra A. We wish to prove that @ is true on A. Suppose first that @
contains no quantifiers. In this case the desired conclusion is immediate from
the definition of what it means for a formula of PC to be true on an algebraic
system (namely that the formula remain true whatever values the free
object- and predicate-variables are assigned from within the system and
from the set of predicates on the system respectively). Suppose next that @
does contain quantifiers, and use induction on their number. Depending on
what sort of quantifier is the last applied, there are three possibilities:

o= (Vi)¥; ®=(VR)Y; ®=(3R)Y,

where ¢ is an object-variable, R a predicate-variable, and ¥ an ob]ect-
universal formula with one fewer quantifier. By extending predicates on A
arbitrarily to A (for the second case), restricting predicates on A to A (for
the third case), and using the inductive hypothesis in all three cases, we
conclude that ® is true on A , as required.
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(if) Suppose the subsystems A,, i € I, form a local covering of the alge-
braic system A, and that the object-universal formula @ is true on the A;. We
wish to show that then ® is true on A. Let x,y,... be the free object-
variables, and P, Q, ... the free predicate-variables contained in ®; we
express this by writing

P=P(x,y,...,P0,...).

Let & be an ultrafilter on I, constructed from the local covering (A;, i € I) as
indicated at the end of §24.1 above. For each i € I, let P, Q; be predicates on
A;, and write Po =lim P;, Qo = lim Q.. To get the desired conclusion it clearly
suffices to show that, whatever values are givento x, y, . . . from A, we shall
have

{ilx,y,...€ A, ®(x,y,...,P,Q;..)=T on A}e F >
>d(x,y,...,P0,Qo,...)=T on A.

We now prove this, again by induction on the number of quantifiers
occurring in the formula ®. Thus to begin with suppose that & contains no
quantifiers; we shall show that then both (1) and the reverse implication
hold. Denote by (1') the union of these two implications (i.e. (1') is the
double implication). If @ also contains no connectives, then one of the
following three possibilities must occur:

O=(ulx,y,..)=vxy,...); d=Su,v); ®=Pu,v,...),

where u, v, . .. are products (with arrangements of brackets), and S and P
are as above. In the first two cases (1’) is obvious, while in the third case it
follows from the definition of lim (with P; the restriction of P to A;). Suppose
next that ® does contain connectives (but still no quantifiers). Since the
formula ¥ - Q is equivalent to | ¥ v (), we may suppose that ® involves only
the connectives A, v, ]; we shall then establish (1') by induction on the
number of these connectives in ®. Depending on which connective is the last
used in building up ®, there are again three possibilities:

O=TAQ; d=VvvQ; o=V,

(1)

In all three cases (1') follows easily from the inductive hypothesis and the
definition of the filter %.

As promised, we shall prove (1) by induction on the number of quantifiers
appearing in (the prenex normal form of) ®. We have established (1') when
& contains no quantifiers; proceeding to the inductive step, suppose now
that & does contain quantifiers. Once again three possibilities arise,
depending on which quantifier applies last in ®:

d=(V)¥; d=(VR)¥; @=(3R)Y, ()

where ¢ is an object-variable, R a predicate-variable, and ¥ is an object-
universal formula with one fewer quantifier.
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If the first possibility occurs, we argue as follows. For whatever value ¢
takes in A, we have to show that

W(t,x, ¥, ..., Po,Qo,...)=T on A. (3)

Since by inductive hypothesis (1) is true with W (s, x, y, . . .) in place of ®, to
get (3) it suffices to show that the set

{ilt,x,y,...€e A, ¥(t,x,y,...,P,Q,...)=T on A;}

belongs to #. However this set contains the intersection of the set {- - -} of (1)
with the set {i |t € A;}, so does indeed belong to %.

We next consider the second possibility in (2). Let R, be an arbitrary
predicate on A, and R; its restriction to A,. As mentioned at the end of §24.1
above, Rp=1im R;. We have to show that

‘P(x’Y’--',PO,QO,RO,..-):T on A.
By the inductive hypothesis, for this it suffices to verify that the set
{iIX,y,- ..EA, ‘I'(x,y,...,P;, Q,R,..)=T on A,}

belongs to %. However this set contains the set { - -}in (1), so that this case is
also finished.

For the third and last case in (2), suppose again that the left half (i.e. the
hypothesis) of the implication (1) is true. Then for each i€ I, there is a
predicate R; on A; such that the set

{i|x, Vs oo .EA,', \P(X, Vs .,P,‘, Q,',R,', . .)= T on A,}
belongs to #. Writing R, =lim R;, we have by the inductive hypothesis that
\I'(x, Y, . ..,P(), Qo,RQ,. )=T on A.

However this means that the second half (i.e. the conclusion) of the
implication (1) holds. This completes the inductive step and thereby the
proof of the theorem.

To illustrate the use of this theorem we point out how the local theorem
for the class of orderable groups follows from it: one has merely to observe
that the axiom (11) of §24.2 defining that class, is object-universal.

24.3.2. Exercise. If in a group G each finitely generated subgroup contains
an abelian normal subgroup of finite index =<n, then the whole group G
contains an abelian normal subgroup of index <n.

We now turn to quasi-universal formulae.

24.3.3. Theorem (A. 1. Mal’cev). If a quasi-universal formula ® is true on
subsystems A, locally covering an algebraic system A, then ® is true alsoon A.
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PROOF. By the definition of quasi-universality, ® has the form
®=(VPy)- - - (VP)d,

where & is built up by means of the connectives A, v, |, -, from
object-universal formulae without free object-variables, but with free
predicate-variables from among P;, .. ., P,. Suppose that ® is true on each
A;; we wish to prove that then it is true on A. In other words we wish to show
that, given any substitution of predicates on A for Py, . .., P,, and given also
that ® is true on each A; for the predicates on A; induced from those
substituted for P,, ..., P,, then & is true on A. Thus if we regard Py, ..., P,
as predicates on A, and use the same symbols for their restrictions to A;, then
our problem reduces to proving the theorem for &, rather than . It is a fact
usually proved in elementary courses in logic, that & can be rewritten in an
equivalent form as
d=rb, D,=vD,,

where the ®,; are object-universal formulae containing no free object-
variables, or the negations of such formulae. It is clear that the theorem is
true for @ if it is true for all the ®,. This and the argument preceding it
reduce the problem to the consideration of the following three cases:

O=Y,v---vV¥,;
O=1Q;v: - v]Qy;
O=V;v- vV, v]Qiv---v]Q,, 4)

where r, s =1, and the ¥, )z are object-universal formulae containing no
free object-variables.

We shall consider in detail only the third of these cases. Thus with ® as in
(4), suppose @ is true on each A;, but false on A. Then all the ¥, are false on
A, while the Qg are all true on A. It follows from the second part of Theorem
24.3.1 above that therefore each ¥, is false on some A;,). Let A; be a
subsystem containing all A;). By the first part of Theorem 24.3.1 each ¥, is
false on A;, while each Q)4 is true on A;. Hence ® is false on A;, contrary to
hypothesis. The other two cases yield to analogous, though simpler,
arguments. This completes the proof.

By way of illustrating how Theorem 24.3.3 can be used, note that it
implies the local theorem for the class of O*-groups (see formula (12) in
§24.2), and for the class of simple groups (see Exercise 24.2.1).

§25. On Algebraic Integers

We shall assume in what follows that the reader is familiar with the basic
ideas and terminology of field theory, such as might be encountered in a
general algebra course.
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Let Q denote the algebraic closure of the field Q of rational numbers. The
elements of Q are called algebraic numbers; equivalently, an algebraic
number is a number (i.e. an element of C) satisfying a polynomial with
integer coefficients. From among the algebraic numbers we single out for
special attention the algebraic integers: these are the algebraic numbers
satisfying polynomials with integer coefficients and leading coefficient 1. The
term algebraic number field is reserved for those subfields of Q of finite
degree (i.e. of finite dimension as a vector space) over Q; in other words, an
algebraic number field is a “finite extension” of Q.

For the rest of this subsection, k will denote an algebraic number field and
ko the subset of algebraic integers in k.

25.1.1. Exercise. For each a € k, there is an m € Z such that ma € k,.
25.1.2. Exercise. Qo ="7Z.

25.1.3. Lemma. The subset ko is a subring of k.

PROOF. Let a, B € ko, and let y be any of the elements a + 8, aB. We wish to
prove that y € ko. Since k is a finite extension of Q, there exist positive
integers [, m such that:

-1

- . m-—1 X
al= z a,«a', aieZ; Bm= Z b,‘B’, bl‘EZ.
i=0 i=0

It is then easily seen that the totality of elements of the form

-1 m-1 o

Z Z Cija ‘B’, c;€Z,

i=0 j=0
is a subring A of k, whose additive group is finitely generated and (of course)
torsion-free. Let {y1, ..., ¥} be a basis of this additive group. Since y€ A
we have

t
Yy = Zl dyys,  ds€L.

But this implies that the characteristic polynomial of the matrix (d,) has vy as
a root. Since the characteristic polynomial has leading coefficient +1, it
follows that vy is an algebraic integer, and the lemma is proved.

It is clear that for each a € k,the map defined by x > xa for all x € k, is a
linear transformation of the vector space k over the field Q. We shall denote
by x. the characteristic polynomial of this linear transformation, and by
tr(a) its trace. More generally, if K is a subfield of C, and L is a finite
extension of K (i.e. has finite degree over its subfield K ), then foreacha € L
the map defined by x - xa for all x € L islinear over K, and its trace (which of
course lies in K) is denoted by trr/x (a).
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25.1.4. Lemma. If a € ko, then x, is a polynomial over Z.

PRrROOF. Let n be the degree of k over Q. Fix on a basis for k over Q, and then
with each vy € k associate the matrix y relative to this basis, of the linear
transformation x - xv, x € k. This obviously defines a ring monomorphism
k ->M.,(Q). Thus since « satisfies a monic polynomial over Z, so will the
characteristic roots of the matrix &. Now the coefficients of the characteristic
polynomial y, are, up to sign, sums of products of these characteristic roots,
so by Lemma 25.1.3 they are algebraic integers. But then by Exercise 25.1.2
they lie in Z, as desired.

25.1.5. Lemma. If {w1, ..., w,} is a basis for k over Q, then: (i) the matrix
(tr(wiw;)) is nonsingular; and (ii) there exists a basis {w?¥, . .., w}} for k over
Q, dual to the given basis; i.e. satisfying

tr(w,w}k) = 5,‘,‘.

PROOF. (i) Suppose on the contrary that between the columns of the matrix
(tr(wiw;)) there is a nontrivial dependence relation with coefficients a; € Q.
Then

w=1Y aw #0; tr(ww)=0 fori=1,...,n.
i=1

Since {w1w, . . ., w,w} is also a basis for k over Q, we must have
n
1= Y Bwjw for suitable B;€Q.
j=1

Since n = 1, the trace of the right-hand side of this equation is 0, while the
trace of the left-hand side is of course 1. This contradiction completes the
proof of (i).

(ii) We look for the w? in the form

n
wf= IZ &qw, e Q.
=1

On substituting from this, the conditions tr(ww¥)=8;,i =1, ..., n,become
a system of linear equations in the unknowns &4, . . ., &, whose coefficient
matrix is just (tr(ww;)). By (i) this matrix is nonsingular so that the system has
a solution. This completes the proof of the lemma.

25.1.6. Theorem. The additive group of the ring ko is finitely generated.

PROOF. As before let {w1, ..., w,} be a basis for k over Q. In view of
Exercise 25.1.1 we may assume that the w; lie in ko. Let {wF, ..., w¥} bea
dual basis. Then, again by Exercise 25.1.1 there exists a non-zero integer m
such that mw} € ko,j =1, ..., n. Now let v be an arbitrary element of ko and
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express it in terms of the w;:

Y= iZl Yiwi, v €Q.
Multiplying this equation by mw; and then taking the traces of both sides of
the resulting equation, we obtain, for each j=1,..., n, my; =tr(myw}).
Since myw? € ko, we deduce that my; € Z (Lemma 25.1.4). Since y was
arbitrary (in ko) it follows that the additive group of ko is contained in the
additive group generated by w,/m, . .., w,/m, and so (by Exercise 8.1.7) is
itself also finitely generated, as required.

25.1.7. Lemma. Let K be a subfield of C, and let L be a finite extension of K. If
the degree of L over K is d, then there exist exactly d monomorphisms of L into
C which fix K elementwise. Further, if these monomorphisms are denoted by
o1,...,04 then

try k(@) =aoy+- - +aogs foreachaclL. (1)
Finally, if {w1, ..., w4} is a basis for L over K, then
det(try x (ww;)) = det(wo;)’ ()

PrOOF. (i) We begin with the first assertion. Let a € L, let f be the minimal
polynomial of « over K, and let ay, ..., a, be the roots of f in C. Clearly
there is a one-to-one correspondence between the monomorphisms K (a) »
C which induce the identity map on K, and the assignations a - «a; of
possible images to a. We might now appeal to the well-known theorem
which says that finite extensions of fields of characteristic zero are simple
extensions (see, for example, [40], p. 126), to conclude that there exists an
element a such that L = K(a), whence the assertion would be immediate.
Alternatively, in the present situation we can sidestep that theorem
by means of the following device: write L in the form K(yi,...,vs)
and observe that each monomorphism K(yi,...,¥:)~>C which fixes
K elementwise, can, as before, be extended in exactly
|K(y1, ..., vi+1):K(¥1,...,¥%)| ways to a monomorphism from
K(yi, ..., vi+1) to C.

(ii) We next prove (1). Consider first the special case that « is such that
L = K (a). Then the minimal polynomial of a over K has degree |L: K |=d,
and is therefore, up to sign, the characteristic polynomial of the linear
transformation x - xa of the vector space L over the field K. Asin Part (i) we
have that oy, ..., ac, comprise all the roots of the minimal polynomial,
and hence also of this characteristic polynomial, whence the equation (1).

The general case reduces to the above special case with the help of the
equality

tI'L/K(a) = |LK(C¥)I . trK(,,)/K(a),

which we now prove. Let {w;} be a basis for L over K (a), and {5,} a basis for
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K (a) over K. Then {w8;} is a basis for L over K, and in terms of this basis the
matrix of the linear transformation x - xa is a block-diagonal matrix (i.e.
with the off-diagonal blocks all zero) where the diagonal blocks are just
repetitions of the matrix relative to {§;} of the transformation x - xa of the
vector space K(a) over K.

(iii) Finally we prove (2). From (1) we get

d
try x (ww;) = lgl (wio) * (wion).

Since the right-hand side of this equation is just the (i, j)th entry in the
product of the matrix (w,o,) with its transpose, (2) follows. This concludes
the proof of the lemma.

For each monomorphism ¢: L - C there is a conjugate monomorphism
&: x - x¢, where the bar denotes complex conjugation. If ¢ = ¢ then we say
that the monomorphism ¢ is real, and in the contrary case, complex.

Return now to the field k. Let n = |k: Q|, and let s and 2 be respectively
the numbers of real and complex monomorphisms k - C, so that, by Lemma
25.1.7, n=s+2t Write o1,...,0; for the real monomorphisms, and
Os+1, Os+1, - - - » Os+p, Os4y fOr the complex ones.

Consider n-dimensional Euclidean space R", and the map o: k> R",
defined by

xo=(xo4,...,x0, Re(xos+1), Im(xos41), . . .

LI ] Re(xa.s+l)’ Im(xa-s+t))’ X € k’

where Re, Im denote, as usual, the taking of real and imaginary parts.

25.1.8. Exercise. The map o is a monomorphism from the additive group k
to the additive group R".

Next, letting k* denote, as usual, the multiplicative group of the field k,
we define a map 7: k*->R**' by

x7 = (In|xol, . . ., In|xos+), xek*.

25.1.9. Exercise. The map 7 is a homomorphism from k* to the additive
group R*™",

25.1.10. Lemma. The set koo is discrete in R" ; i.e. itintersects each ball in R"
in a finite set. If k& denotes the multiplicative group of the ring ko, hen the set
k&7 is discrete in R*™.

ProOOF. Let{w,, . . . , w,} be a basis for the additive group of the ring k. (The
fact that this group has rank n is implicit in the proof of Theorem 25.1.6.)
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Since det(tr(ww;)) # 0 (Lemma 25.1.5), the n-tuples
(@iT15 .+« « > WO s, WO 541, OT 5415+« + 5 DT s 415 OTs41)5 l=i=n,

are linearly independent over R (Lemma 25.1.7), and therefore the n
n-tupes w;o,...,w,o are also linearly independent over R. Since the
components of the latter are real, it follows that they form a basis for
Euclidean space R". Next we take in R" a bi-orthogonal basis {ey, . .., e,};
i.e. a basis satisfying the condition

(wio, ej) = 5.‘,',

where the round brackets denote the inner product in R".
Let x € ko, and express x in terms of the basis {w;}:

X = Z Xiwi, X; € Z.
Obviously, xo =) x;(w,g), so that by the Cauchy-Bunjakovskii inequality
|x;| = |(xa, ep)] = lxoll - lle;l.

Hence given any ball in R", there are only finitely many possible values for
the integers x;, such that xo lies in that ball, whence the first assertion of the
lemma