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Preface to the Second Edition

1. The first edition of this book was published in 1977. The text has been well
received and is still used, although it has been out of print for some time.

In the intervening three decades, a lot of interesting things have happened
to mathematical logic:

(i) Model theory has shown that insights acquired in the study of formal
languages could be used fruitfully in solving old problems of conventional
mathematics.

(ii) Mathematics has been and is moving with growing acceleration from
the set-theoretic language of structures to the language and intuition of
(higher) categories, leaving behind old concerns about infinities: a new
view of foundations is now emerging.

(iii) Computer science, a no-nonsense child of the abstract computability
theory, has been creatively dealing with old challenges and providing new
ones, such as the P/NP problem.

Planning additional chapters for this second edition, I have decided to focus
on model theory, the conspicuous absence of which in the first edition was noted
in several reviews, and the theory of computation, including its categorical and
quantum aspects.

The whole Part IV: Model Theory, is new. I am very grateful to
Boris I. Zilber, who kindly agreed to write it. It may be read directly after
Chapter II.

The contents of the first edition are basically reproduced here as
Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is
completed by Section IV.7.3, discussing H. Woodin’s discovery.

The new Chapter IX: Constructive Universe and Computation, was written
especially for this edition, and I tried to demonstrate in it some basics of cate-
gorical thinking in the context of mathematical logic. More detailed comments
follow.

I am grateful to Ronald Brown and Noson Yanofsky, who read prelimi-
nary versions of new material and contributed much appreciated criticism and
suggestions.

2. Model theory grew from the same roots as other branches of logic: proof
theory, set theory, and recursion theory. From the start, it focused on language
and formalism. But the attention to the foundations of mathematics in model
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theory crystallized in an attempt to understand, classify, and study models of
theories of real-life mathematics.

One of the first achievements of model theory was a sequence of local
theorems of algebra proved by A. Maltsev in the late 1930s. They were based on
the compactness theorem established by him for this purpose. The compactness
theorem in many of its disguises remained a key model-theoretic instrument
until the end of the 1950s. We follow these developments in the first two sec-
tions of Chapter X, which culminate with a general discussion of nonstandard
analysis discovered by A. Robinson. The third section introduces basic tools
and concepts of the model theory of the 1960s: types, saturated models, and
modern techniques based on these.

We try to illustrate every new model-theoretic result with an application in
“real” mathematics. In Section 4 we discuss an algebro-geometric theorem first
proved by J. Ax model-theoretically and re-proved by G. Shimura and A. Borel.
Moreover, we explain an application of the Tarski–Seidenberg quantifier elim-
ination for R due to L. Hörmander. A real gem of model-theoretic techniques
of the 1980s is the calculation by J. Denef of the Poincaré series counting
p-adic points on a variety based on A. Macintyre’s quantifier elimination
theorem for Qp.

In the last two sections we present a survey of classification theory, which
started with M. Morley’s analysis of theories categorical in uncountable powers
in 1964, and was later expanded by S. Shelah and others to a scale that no one
could have envisaged.

The striking feature of these developments is the depth of the very abstract
“pure” model theory underlying the classification, in combination with the
diversity of mathematical theories affected by it, from algebraic and
Diophantine geometry to real analysis and transcendental number theory.

3. The formal languages with which we work in the first, and in most of
the second, edition of this book are exclusively linear in the following sense.
Having chosen an alphabet consisting of letters, we proceed to define classes
of well-formed expressions in this alphabet that are some finite sequences of
letters. At the next level, there appear well-formed sequences of words, such as
deductions and descriptions. Church’s λ-calculus furnishes a good example of
strictures imposed by linearity.

Nonlinear languages have existed for centuries. Geometers and
composers could not perform without using the languages of drawings, resp.
musical scores; when alchemy became chemistry, it also evolved its own
two-dimensional language. For a logician, the basic problem about nonlinear
languages is the difficulty of their formalization.

This problem is addressed nowadays by relegating nonlinear languages of
contemporary mathematics to the realm of more conventional mathematical
objects, and then formally describing such languages as one would describe any
other structure, that is, linearly.
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Such a strategy probably cannot be avoided. But one must be keenly aware
that some basic mathematical structures are “linguistic” at their core. Recog-
nition or otherwise of this fact influences the problems that are chosen, the
questions that are asked, and the answers that are appreciated.

It would be difficult to dispute nowadays that category theory as a language
is replacing set theory in its traditional role as the language of mathematics.
Basic expressions of this language, commutative diagrams, are one-dimensional,
but nonlinear: they are certain decorated graphs, whose topology is that of
1-dimensional triangulated spaces.

When one iterates the philosophy of category theory, replacing sets of
morphisms by objects of a category of the next level, commutative diagrams
become two-dimensional simplicial sets (or cell complexes), and so on. Arguably,
in this way the whole of homotopy topology now develops into the language of
contemporary mathematics, transcending its former role as an important and
active, but reasonably narrow research domain. Much remains to be recognized
and said about this emerging trend in foundations of mathematics.

The first part of Chapter IX in this edition is a very brief and tentative
introduction to this way of thinking, oriented primarily to some reshuffling of
classical computability theory, as was explained in the Part II of the first edition.

4. The second part of the new Chapter IX is dedicated to some theoretical
problems of classical and quantum computing. It introduces the P/NP problem,
classical and quantum Boolean circuits, and presents several celebrated results
of this early stage of theoretical quantum computing, such as Shor’s factoring
and Grover’s search algorithms.

The main reason to include these topics is my conviction that at least some
theoretical achievements of modern computer science must constitute an organic
part of contemporary mathematical logic.

Already in the first edition, the manuscript for which was completed in
September 1974, “quantum logic” was discussed at some length; cf.
Section II.12.

A Russian version of the Part II of first edition was published as a sepa-
rate book, Computable and Uncomputable, by “Soviet Radio” in 1980. For this
Russian publication, I had written a new introduction, in which, in particular,
I suggested that quantum computers could be potentially much more powerful
than classical ones, if one could use the exponential growth of a quantum phase
space as a function of the number of degrees of freedom of the classical system.

When a mathematical implementation of this idea, massive quantum
parallelism, made possible by quantum entanglement, gradually matured, I
gave a talk at a Bourbaki seminar in June 1999, explaining the basic ideas and
results.

Chapter IX is a revised and expanded version of this talk.
5. Finally, a few words about the last digression in Chapter II, “Truth as

Value and Duty: Lessons of Mathematics.”
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“Mathematical truth” was the central concept of the first part of the book,
“Provability.” Writing this part, I felt that if I did not compensate somehow the
aridity and sheer technicality of the analysis of formal languages, I would not be
able to convince people–the readers that I imagined, working mathematicians
like me—that it is worth studying at all. The literary device I used to struggle
with this feeling of helplessness was this: from time to time I allowed myself free
associations, and wrote the outcome in a series of six digressions, with which
the first two Chapters were interspersed.

By the end of the second chapter, I realized that I was finally on the fertile
soil of “real mathematics,” and the need for digressions faded away.

Nevertheless, the whole of Part I was left without proper summary.
Its role is now played by the “Last Digression,” published here for the first

time. It is a slightly revised text of the talk prepared for a Balzan Foundation
International Symposium on “Truth in the Humanities, Science and Religion”
(Lugano, 2008), where I was the only mathematician speaker among philoso-
phers, historians, lawyers, theologians, and physicists. I was confronted with the
task to explain to a distinguished “general audience” what is so different about
mathematical truth, and what light the usage of this word in mathematics can
throw on its meaning in totally foreign environments.

The main challenge was this: avoid sounding ponderous.

Yu. Manin, Bonn December 31, 2008
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1. This book is above all addressed to mathematicians. It is intended to be a
textbook of mathematical logic on a sophisticated level, presenting the reader
with several of the most significant discoveries of the last ten or fifteen years.
These include the independence of the continuum hypothesis, the Diophantine
nature of enumerable sets, and the impossibility of finding an algorithmic solu-
tion for one or two old problems.

All the necessary preliminary material, including predicate logic and the
fundamentals of recursive function theory, is presented systematically and with
complete proofs. We assume only that the reader is familiar with “naive” set-
theoretic arguments.

In this book mathematical logic is presented both as a part of mathematics
and as the result of its self-perception. Thus, the substance of the book consists
of difficult proofs of subtle theorems, and the spirit of the book consists of
attempts to explain what these theorems say about the mathematical way of
thought.

Foundational problems are for the most part passed over in silence. Most
likely, logic is capable of justifying mathematics to no greater extent than
biology is capable of justifying life.

2. The first two chapters are devoted to predicate logic. The presentation
here is fairly standard, except that semantics occupies a very dominant position,
truth is introduced before deducibility, and models of speech in formal languages
precede the systematic study of syntax.

The material in the last four sections of Chapter II is not completely
traditional. In the first place, we use Smullyan’s method to prove Tarski’s the-
orem on the undefinability of truth in arithmetic, long before the introduction
of recursive functions. Later, in the seventh chapter, one of the proofs of the
incompleteness theorem is based on Tarski’s theorem. In the second place, a
large section is devoted to the logic of quantum mechanics and to a proof of
von Neumann’s theorem on the absence of “hidden variables” in the quantum-
mechanical picture of the world.

The first two chapters together may be considered as a short course in logic
apart from the rest of the book. Since the predicate logic has received the widest
dissemination outside the realm of professional mathematics, the author has not
resisted the temptation to pursue certain aspects of its relation to linguistics,
psychology, and common sense. This is all discussed in a series of digressions,
which, unfortunately, too often end up trying to explain “the exact meaning
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of a proverb” (E. Baratynsky).1 This series of digressions ends with the second
chapter.

The third and fourth chapters are optional. They are devoted to complete
proofs of the theorems of Gödel and Cohen on the independence of the contin-
uum hypothesis. Cohen forcing is presented in terms of Boolean-valued models;
Gödel’s constructible sets are introduced as a subclass of von Neumann’s
universe. The number of omitted formal deductions does not exceed the
accepted norm; due respects are paid to syntactic difficulties. This ends the
first part of the book: “Provability.”

The reader may skip the third and fourth chapters, and proceed immedi-
ately to the fifth. Here we present elements of the theory of recursive functions
and enumerable sets, formulate Church’s thesis, and discuss the notion of algo-
rithmic undecidability.

The basic content of the sixth chapter is a recent result on the Diophantine
nature of enumerable sets. We then use this result to prove the existence
of versal families, the existence of undecidable enumerable sets, and, in the
seventh chapter, Gödel’s incompleteness theorem (as based on the definability of
provability via an arithmetic formula). Although it is possible to
disagree with this method of development, it has several advantages over earlier
treatments. In this version the main technical effort is concentrated on proving
the basic fact that all enumerable sets are Diophantine, and not on the more
specialized and weaker results concerning the set of recursive descriptions or
the Gödel numbers of proofs.

The last section of the sixth chapter stands somewhat apart from the rest.
It contains an introduction to the Kolmogorov theory of complexity, which is
of considerable general mathematical interest.

The fifth and sixth chapters are independent of the earlier chapters, and
together make up a short course in recursive function theory. They form the
second part of the book: “Computability.”

The third part of the book, “Provability and Computability,” relies heavily
on the first and second parts. It also consists of two chapters. All of the seventh
chapter is devoted to Gödel’s incompleteness theorem. The theorem appears
later in the text than is customary because of the belief that this central result
can only be understood in its true light after a solid grounding both in formal
mathematics and in the theory of computability. Hurried expositions, where
1 Nineteenth century Russian poet (translator’s note). The full poem is:

We diligently observe the world,
We diligently observe people,
And we hope to understand their deepest meaning.
But what is the fruit of long years of study?
What do the sharp eyes finally detect?
What does the haughty mind finally learn
At the height of all experience and thought,
What?—the exact meaning of an old proverb.
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the proof that provability is definable is entirely omitted and the mathematical
content of the theorem is reduced to some version of the “liar paradox,” can
only create a distorted impression of this remarkable discovery. The proof is
considered from several points of view. We pay special attention to properties
which do not depend on the choice of Gödel numbering. Separate sections are
devoted to Feferman’s recent theorem on Gödel formulas as axioms, and to the
old but very beautiful result of Gödel on the length of proofs.

The eighth and final chapter is, in a way, removed from the theme of the
book. In it we prove Higman’s theorem on groups defined by enumerable sets
of generators and relations. The study of recursive structures, especially in
group theory, has attracted continual attention in recent years, and it seems
worthwhile to give an example of a result which is remarkable for its beauty
and completeness.

3. This book was written for very personal reasons. After several years or
decades of working in mathematics, there almost inevitably arises the need to
stand back and look at this research from the side. The study of logic is, to a
certain extent, capable of fulfilling this need.

Formal mathematics has more than a slight touch of self-caricature. Its
structure parodies the most characteristic, if not the most important, features of
our science. The professional topologist or analyst experiences a strange feeling
when he recognizes the familiar pattern glaring out at him in stark relief.

This book uses material arrived at through the efforts of many mathemati-
cians. Several of the results and methods have not appeared in monograph
form; their sources are given in the text. The author’s point of view has formed
under the influence the ideas of Hilbert, Gödel, Cohen, and especially John von
Neumann, with his deep interest in the external world, his open-mindedness
and spontaneity of thought.

Various parts of the manuscript have been discussed with
Yu. V. Matiyasevič, G. V. Čudnovskǐı, and S. G. Gindikin. I am deeply grateful
to all of these colleagues for their criticism.

W. D. Goldfarb of Harvard University very kindly agreed to proofread the
entire manuscript. For his detailed corrections and laborious rewriting of part
of Chapter IV, I owe a special debt of gratitude.

I wish to thank Neal Koblitz for his meticulous translation.

Yu. I. Manin Moscow, September 1974

1
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I

Introduction to Formal Languages

Gelegentlich ergreifen wir die Feder
Und schreiben Zeichen auf ein weisses Blatt,
Die sagen dies und das, es kennt sie jeder,
Es ist ein Spiel, das seine Regeln hat.

H. Hesse, “Buchstaben”
We now and then take pen in hand
And make some marks on empty paper.
Just what they say, all understand.
It is a game with rules that matter.

H. Hesse, “Alphabet”
(translated by Prof. Richard S. Ellis)

1 General Information

1.1. Let A be any abstract set. We call A an alphabet. Finite sequences of
elements of A are called expressions in A. Finite sequences of expressions are
called texts.

We shall speak of a language with alphabet A if certain expressions and texts
are distinguished (as being “correctly composed,” “meaningful,” etc.). Thus, in
the Latin alphabet A we may distinguish English word forms and grammatically
correct English sentences. The resulting set of expressions and texts is a working
approximation to the intuitive notion of the “English language.”

The language Algol 60 consists of distinguished expressions and texts in the
alphabet {Latin letters} ∪ {digits} ∪ {logical signs} ∪ {separators}. Programs
are among the most important distinguished texts.

In natural languages the set of distinguished expressions and texts usually
has unsteady boundaries. The more formal the language, the more rigid these
boundaries are.

The rules for forming distinguished expressions and texts make up the syntax
of the language. The rules that tell how they correspond with reality make

3
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4 I Introduction to Formal Languages

up the semantics of the language. Syntax and semantics are described in a
metalanguage.

1.2. “Reality” for the languages of mathematics consists of certain classes of
(mathematical) arguments or certain computational processes using (abstract)
automata. Corresponding to these designations, the languages are divided into
formal and algorithmic languages. (Compare: in natural languages, the declar-
ative versus imperative moods, or—on the level of texts—statement versus
command.)

Different formal languages differ from one another, in the first place, by
the scope of the formalizable types of arguments—their expressiveness; in the
second place, by their orientation toward concrete mathematical theories; and
in the third place, by their choice of elementary modes of expression (from
which all others are then synthesized) and written forms for them.

In the first part of this book a certain class of formal languages is examined
systematically. Algorithmic languages are brought in episodically.

The “language–parole” dichotomy, which goes back to Humboldt and
Saussure, is as relevant to formal languages as to natural languages. In §3 of
this chapter we give models of “speech” in two concrete languages, based on set
theory and arithmetic, respectively, because, as many believe, habits of speech
must precede the study of grammar.

The language of set theory is among the richest in expressive means, despite
its extreme economy. In principle, a formal text can be written in this language
corresponding to almost any segment of modern mathematics—topology, func-
tional analysis, algebra, or logic.

The language of arithmetic is one of the poorest, but its expressive possi-
bilities are sufficient for describing all of elementary arithmetic, and also for
demonstrating the effects of self-reference à la Gödel and Tarski.

1.3. As a means of communication, discovery, and codification, no formal
language can compete with the mixture of mathematical argot and formulas
that is common to every working mathematician.

However, because they are so rigidly normalized, formal texts can
themselves serve as an object for mathematical investigation. The results of
this investigation are themselves theorems of mathematics. They arouse great
interest (and strong emotions) because they can be interpreted as theorems
about mathematics. But it is precisely the possibility of these and still broader
interpretations that determines the general philosophical and human value of
mathematical logic.

1.4. We have agreed that the expressions and texts of a language are elements
of certain abstract sets. In order to work with these elements, we must some-
how fix them materially. In the modern European tradition (as opposed to the
ancient Babylonian tradition, or the latest American tradition, using computer
memory), the following notation is customary. The elements of the alphabet are
indicated by certain symbols on paper (letters of different kinds of type, digits,
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additional signs, and also combinations of these). An expression in an alphabet
A is written in the form of a sequence of symbols, read from left to right, with
hyphens when necessary. A text is written as a sequence of written expressions,
with spaces or punctuation marks between them.

1.5. If written down, most of the interesting expressions and texts in a formal
language either would be physically extremely long, or else would be psycho-
logically difficult to decipher and learn in an acceptable amount of time, or
both.

They are therefore replaced by “abbreviated notation” (which can some-
times turn out to be physically longer). The expression “xxxxxx” can be briefly
written “x . . . x (six times)” or “x6.” The expression “∀z(z ∈ x ⇔ z ∈ y)” can
be briefly written “x = y.” Abbreviated notation can also be a way of denoting
any expression of a definite type, not only a single such expression (any expres-
sion 101010 . . .10 can be briefly written “the sequence of length 2n with ones
in odd places and zeros in even places” or “the binary expansion of 2

3 (4n−1)”).
Ever since our tradition started, with Viète, Descartes, and Leibniz, abbre-

viated notation has served as an inexhaustible source of inspiration and errors.
There is no sense in, or possibility of, trying to systematize its devices; they
bear the indelible imprint of the fashion and spirit of the times, the artistry and
pedantry of the authors. The symbols Σ,

∫
, ∈ are classical models worthy of

imitation. Frege’s notation, now forgotten, for “P and Q” (actually “not [if P ,
then not Q]” whence the asymmetry):

Q

P

shows what should be avoided. In any case, abbreviated notation permeates
mathematics.

The reader should become used to the trinity

formal text

written text interpretation of text,

which replaces the unconscious identification of a statement with its form and
its sense, as one of the first priorities in his study of logic.

2 First-Order Languages

In this section we describe the most important class of formal languages
L1—the first-order languages—and give two concrete representatives of this
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class: the Zermelo–Fraenkel language of set theory L1Set, and the Peano
language of arithmetic L1Ar. Another name for L1 is predicate languages.

2.1. The alphabet of any language in the class L1 is divided into six disjoint
subsets. The following table lists the generic name for the elements in each
subset, the standard notation for these elements in the general case, the special
notation used in this book for the languages L1Set and L1Ar. We then describe
the rules for forming distinguished expressions and briefly discuss semantics.

The distinguished expressions of any language L in the class L1 are divided
into two types: terms and formulas. Both types are defined recursively.

2.2. Definition. Terms are the elements of the least subset of the expressions
of the language that satisfies the following two conditions:

(a) Variables and constants are (atomic) terms.
(b) If f is an operation of degree r and t1, . . . , tr are terms, then f(t1, . . . , tr)

is a term.

In (a) we identify an element with a sequence of length one. The alpha-
bet does not include commas, which are part of our abbreviated notation:
f(t1, t2, t3) means the same as f(t1t2t3). In §1 of Chapter II we explain how a
sequence of terms can be uniquely deciphered despite the absence of commas.

If two sets of expressions in the language satisfy conditions (a) and (b),
then the intersection of the two sets also satisfies these conditions. Therefore
the definition of the set of terms is correct.

Language Alphabets

Subsets of the Names and Notation
Alphabet General in L1Set in L1Ar
connectives and ⇔(equivalent); ⇒(implies); ∨(inclusive or); ∧ (and);
quantifiers ¬(not); ∀ (universal quantifier); ∃ (existential quantifier)

variables x, y, z, u, v, . . .with indices

constants c · · · with indices ∅ (empty set) 0̄ (zero); 1̄ (one)

operations of + (addition, degree 2);
degree f, g, . . . with none ·(multiplication,
1, 2, 3, . . . indices degree 2)

relations (predicates) ∈ (is an element = (equality, degree 2)
of degree p, q, . . . with of, degree 2);
1, 2, 3, . . . indices = (equals, degree 2)

parentheses ((left parenthesis);)(right parenthesis)

2.3. Definition. Formulas are the elements of the least subset of the expressions
of the language that satisfies the following two conditions:

(a) If p is a relation of degree r and t1, . . . , tr are terms, then p(t1, . . . , tr) is an
(atomic) formula.
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(b) If P and Q are formulas (abbreviated notation!), and x is a variable, then
the expressions

(P ) ⇔ (Q), (P ) ⇒ (Q), (P ) ∨ (Q), (P ) ∧ (Q),
¬(P ), ∀x(P ), ∃x(P )

are formulas.

It is clear from the definitions that any term is obtained from atomic terms
in a finite number of steps, each of which consists in “applying an operation
symbol” to the earlier terms. The same is true for formulas. In Chapter II, §1
we make this remark more precise.

The following initial interpretations of terms and formulas are given for
the purpose of orientation and belong to the so-called “standard models” (see
Chapter II, §2 for the precise definitions).

2.4. Examples and interpretations

(a) The terms stand for (are notation for) the objects of the theory. Atomic
terms stand for indeterminate objects (variables) or concrete objects (con-
stants). The term f(t1, . . . , tr) is the notation for the object obtained by apply-
ing the operation denoted by f to the objects denoted by t1, . . . , tr. Here are
some examples from L1Ar:

0̄ denotes zero;
1̄ denotes one;

+(1̄, 1̄) denotes two (1 + 1 = 2 in the usual notation);

+
(

1̄ + (1̄, 1̄)
)

denotes three;

·
(

+ (1̄, 1̄) + (1̄, 1̄)
)

denotes four (2× 2 = 4).

Since this normalized notation is different from what we are used to in arith-
metic, in L1Ar we shall usually write simply t1 + t2 instead of +(t1, t2) and
t1 · t2 instead of ·(t1, t2). This convention may be considered as another use of
abbreviated notation:

x stands for an indeterminate integer;
x+ 1̄ (or + (x, 1̄)) stands for the next integer.

In the language L1Set all terms are atomic:

x stands for an indeterminate set;
∅ stands for the empty set.
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(b) The formulas stand for statements (arguments, propositions, . . . ) of the
theory. When translated into formal language, a statement may be
either true, false, or indeterminate (if it concerns indeterminate objects); see
Chapter II for the precise definitions. In the general case the atomic formula
p (t1, . . . , tr) has roughly the following meaning: “The ordered r-tuple of objects
denoted by t1, . . . , tr has the property denoted by p.” Here are some examples
of atomic formulas in L1Ar. Their general structure is = (t1, t2), or, in nonnor-
malized notation, t1 = t2:

0̄ = 1̄, x+ 1̄ = y.

Here are some examples of formulas which are not atomic:

¬(0̄ = 1̄),
(x = 0̄) ⇔ (x+ 1̄ = 1̄),

∀ x
(

(x = 0̄) ∨
(
¬(x · x = 0̄)

))
.

Some atomic formulas in L1 Set

y ∈ x (y is an element of x),

and also ∅ ∈ y, x ∈ ∅, etc. Of course, normalized notation must have the form
∈ (xy), and so on.

Some nonatomic formulas:

∃ x
(
∀y(¬(y ∈ x))

)
: there exists an x of which no y is an element.

Informally this means: “The empty set exists.” We once again recall that an
informal interpretation presupposes some standard interpretive system, which
will be introduced explicitly in Chapter II.

∀ y(y ∈ z ⇒ y ∈ x) : z is a subset of x.

This is an example of a very useful type of abbreviated notation: four paren-
theses are omitted in the formula on the left. We shall not specify precisely
when parentheses may be omitted; in any case, it must be possible to reinsert
them in a way that is unique or is clear from the context without any special
effort.

We again emphasize: the abbreviated notation for formulas are only material
designations. Abbreviated notation is chosen for the most part with psycholog-
ical goals in mind: speed of reading (possibly with a loss in formal uniqueness),
tendency to encourage useful associations and discourage harmful ones, suit-
ability to the habits of the author and reader, and so on. The mathematical
objects in the theory of formal languages are the formulas themselves, and not
any particular designations.
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Digression: Names

On several occasions we have said that a certain object (a sign on paper, an
element of an alphabet as an abstract set, etc.) is a notation for, or denotes,
another element. A convenient general term for this relationship is naming.

The letter x is the name of an element of the alphabet; when it appears in
a formula, it becomes the name of a set or a number; the notation x ∈ y is the
name of an expression in the alphabet A, and this expression, in turn, is the
name of an assertion about indeterminate sets; and so on.

When we form words, we often identify the names of objects with the objects
themselves: we say “the variable x,” “the formula P ,” “the set z.” This can
sometimes be dangerous. The following passage from Rosser’s book Logic for
Mathematicians points up certain hidden pitfalls:

The gist of the matter is that, if we have a statement such as “3 is greater
than 9

12” about the rational number 9
12 and containing a name “ 9

12” of
this rational number, one can replace this name by any other name of
the same rational number, for instance, “ 3

4 .” If we have a statement
such as “3 divides the denominator of ‘ 9

12 ’ ” about a name of a rational
number and containing a name of this name, one can replace this name
of the name by some other name of the same name, but not in general
by the name of some other name, if it is a name of some other name of
the same rational number.

Rosser adds that “failure to observe such distinctions carefully can seldom
lead to confusion in logic and still more seldom in mathematics.” However,
these distinctions play a significant role in philosophy and in mathematical
practice.

“A rose by any other name would smell as sweet”—this is true because
roses exist outside of us and smell in and of themselves. But, for example, it
seems that Hilbert spaces “exist” only insofar as we talk about them, and the
choice of terminology here makes a difference. The word “space” for the set
of equivalence classes of square integrable functions was at the same time a
codeword for an entire circle of intuitive ideas concerning “real” spaces. This
word helped organize the concept and led it in the right direction.

A successfully chosen name is a bridge between scientific knowledge and
common sense, between new experience and old habits. The conceptual foun-
dation of any science consists of a complicated network of names of things,
names of ideas, and names of names. It evolves itself, and its projection on
reality changes.

3 Beginners’ Course in Translation

3.1. We recall that the formulas in L1Set stand for statements about sets; the
formulas in L1Ar stand for statements about natural numbers; these formulas
contain names of sets and numbers, which may be indeterminate.
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In this section we give the first basic examples of two-way translation
“argot ⇔ formal language.” One of our purposes will be to indicate the great
expressive possibilities in L1Set and L1Ar, despite the extremely limited modes
of expression.

As in the case of natural languages, this translation cannot be given by rigid
rules, is not uniquely determined, and is a creative process. Compare Hesse’s
quatrain with its translation in the epigraph to this book: the most important
aim of translation is to “understand . . . just what they say.”

Before reading further, the reader should look through the appendix to
Chapter II: “The von Neumann Universe.” The semantics implicit in L1Set
relates to this universe, and not to arbitrary “Cantor” sets.

A more complete picture of the meaning of the formulas can be obtained
from §2 of Chapter II.

Translation from L1Set to argot.

3.2. ∀ x(¬(x ∈ ∅)): “for all (sets) x it is false that x is an element of (the set)
∅” (or “∅ is the empty set”).

The second assertion is equivalent to the first only in the von Neumann
universe, where the elements of sets can only be sets, and not real numbers,
chairs, or atoms.

3.3. ∀ z(z ∈ x⇔ z ∈ y) ⇔ x = y: “if for all z it is true that z is an element of
x if and only if z is an element of y, then it is true that x coincides with y; and
conversely,” or “a set is uniquely determined by its elements.”

In the expression 3.3 at least six parentheses have been omitted; and the
subformulas z ∈ x, z ∈ y, x = y have not been normalized according to the
rules of L1.

3.4. ∀u ∀v ∃x ∀z(z ∈ x⇔ (z = u ∨ z = v)): “for any two sets u, v there exists
a third set x such that u and v are its only elements.”

This is one of the axioms of Zermelo–Fraenkel. The set x is called the
“unordered pair of sets u, v” and is denoted {u, v} in the appendix.

3.5. ∀y ∀z
(
((z ∈ y ∧ y ∈ x) ⇒ z ∈ x) ∧ (y ∈ x ⇒ ¬(y ∈ y))

)
: “the set x is

partially ordered by the relation ∈ between its elements.”
We mechanically copied the condition y ∈ x⇒ ¬(y ∈ y) from the definition

of partial ordering. This condition is automatically fulfilled in the von Neumann
universe, where no set is an element of itself.

A useful exercise would be to write the following formulas:

“x is totally ordered by the relation ∈”;
“x is linearly ordered by the relation ∈”;
“x is an ordinal.”
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3.6. ∀x(y ∈ z): The literal translation “for all x it is true that y is an element
of z” sounds a little strange. The formula ∀x ∃x(y ∈ z), which agrees with the
rules for constructing formulas, looks even worse. It would be possible to make
the rules somewhat more complicated, in order to rule out such formulas, but
in general they cause no harm. In Chapter II we shall see that from the point
of view of “truth” or “deducibility,” such a formula is equivalent to the formula
y ∈ z. It is in this way that they must be understood.

Translation from argot to L1Set.

We choose several basic constructions having general mathematical signifi-
cance and show how they are realized in the von Neumann universe, which
contains only sets obtained from ∅ by the process of “collecting into a set,”
and in which all relations must be constructed from ∈.

3.7. “x is the direct product y × z.”
This means that the elements of x are the ordered pairs of elements of y

and z, respectively. The definition of an unordered pair is obvious: the formula

∀u (u ∈ x⇔ (u = y1 ∨ u = z1))

“means,” or may be briefly written in the form, x = {y1, z1} (compare 3.4). The
ordered pair y1 and z1 is introduced using a device of Kuratowski and Wiener:
this is the set x1 whose elements are the unordered pairs {y1, y1} and {y1, z1}.

We thus arrive at the formula

∃y2 ∃z2(“x1 = {y2, z2}” ∧ “y2 = {y1, y1}” ∧ “z2 = {y1, z1}”),

which will be abbreviated
x1 = 〈y1, z1〉

and will be read “x1 is the ordered pair with first element y1 and second element
z1.” The abbreviated notation for the subformulas is in quotes; we shall later
omit the quotation marks.

Finally, the statement “x = y × z” may be written in the form

∀x1(x1 ∈ x⇔ ∃y1 ∃z1(y1 ∈ y ∧ z1 ∈ z ∧ “x1 = 〈y1, z1〉”)).

In order to remind the reader for the last time of the liberties taken in
abbreviated notation, we write this same formula adhering to all the canons
of L1:

∀x1

[
(∈ (x1x))

⇔
[
∃y1

(
∃z1

((
(∈ (y1y)) ∧ (∈ (z1z))

)
∧
(
∃y2

(
∃z2

(((
∀u

(
(∈ (ux1))

⇔ ((= (uy2) ∨ (= (uz2))
)))

∧ (∀u((∈ (uy2))

⇔ (= (uy1))))) ∧ (∀u((∈ (uz2) ⇔ ((= (uy1)) ∨ (= (uz1))))))
))))]]
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Exercise: Find the open parenthesis corresponding to the fifth closed paren-
thesis from the end. In §1 of Chapter II we give an algorithm for solving such
problems.

3.8. “f is a mapping from the set u to the set v.”
First of all, mappings, or functions, are identified with their graphs; other-

wise, we would not be able to consider them as elements of the universe. The
following formula successively imposes three conditions on f: f is a subset of
u× v; the projection of f onto u coincides with all of u; and each element of u
corresponds to exactly one element of v:

∀z
(
z ∈ f ⇒ (∃u1 ∃v1(u1 ∈ u ∧ v1 ∈ v ∧ “z = 〈u1, v1〉”))

)
∧ ∀u1(u1 ∈ u⇒ ∃v1 ∃z(v1 ∈ v ∧ “z = 〈u1, v1〉” ∧ z ∈ f))
∧ ∀u1 ∀v1 ∀v2(∃z1 ∃z1(z1 ∈ f ∧ z2 ∈ f ∧ “z1 = 〈u1, v1〉” ∧ “z2 = 〈u1, v2〉”))

⇒ v1 = v2).

Exercise: Write the formula “f is the projection of y × z onto z.”

3.9. “x is a finite set.”
Finiteness is far from being a primitive concept. Here is Dedekind’s defini-

tion: “there does not exist a one-to-one mapping f of the set x onto a proper
subset.” The formula:

¬∃f
(
“f is a mapping from x to x” ∧ ∀u1 ∀u2 ∀v1 ∀v2((“〈u1, v1〉 ∈ f”

∧ “〈u2, v2〉 ∈ f” ∧ ¬(u1 = u2)) ⇒ ¬(v1 = v2) ∧ ∃v1(v1 ∈ x ∧ ¬∃u1

(“〈u1, v1〉 ∈ f”))
)
.

The abbreviation “〈u1, v1〉 ∈ f” means, of course, ∃y(“y = 〈u1, v1〉)” ∧ y ∈ f).

3.10. “x is a nonnegative integer.”
The natural numbers are represented in the von Neumann universe by the

finite ordinals, so that the required formula has the form

“x is totally ordered by the relation ∈” ∧ “x is finite.”

Exercise: Figure out how to write the formulas “x + y = z” and “x · y = z”
where x, y, z are integers � 0.

After this it is possible in the usual way to write the formulas “x is an
integer,” “x is a rational number,” “x is a real number” (following Cantor or
Dedekind), etc., and then construct a formal version of analysis. The written
statements will have acceptable length only if we periodically extend the lan-
guage L1Set (see §8 of Chapter II). For example, in L1Set we are not allowed
to write term-names for the numbers 1, 2, 3, . . . (∅ is the name for 0), although
we may construct the formulas “x is the finite ordinal containing 1 element,”
“x is the finite ordinal containing 2 elements,” etc. If we use such roundabout
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methods of expression, the simplest numerical identities become incredibly long;
but of course, in logic we are mainly concerned with the theoretical possibility
of writing them.

3.11. “x is a topological space.”
In the formula we must give the topology of x explicitly. We define the

topology, for example, in terms of the set y of all open subsets of x. We first
write that y consists of subsets of x and contains x and the empty set:

P1 : ∀z(z ∈ y ⇒ ∀u(u ∈ z ⇒ u ∈ x)) ∧ x ∈ y ∧∅ ∈ y.

The intersection w of any two elements u, v in y is open, i.e., belongs to y:

P2 : ∀u ∀v ∀w((u ∈ y ∧ v ∈ y ∧ ∀z((z ∈ u ∧ z ∈ v) ⇔ z ∈ w)) ⇒ w ∈ y).

It is harder to write “the union of any set of open subsets is open.” We first
write

P3 : ∀u(u ∈ z ⇔ ∀v(v ∈ u⇒ v ∈ y)),

that is, “z is the set of all subsets of y.” Then

P4 : ∀u ∀w((u ∈ z ∧ ∀v1(v1 ∈ w⇔ ∃v(v ∈ u ∧ v1 ∈ v))) ⇒ w ∈ y).

This means (taking into account P3, which defines z); “If u is any subset of y,
i.e., a set of open subsets of x, then the union w of all these subsets belongs
to y, i.e., is open.” Now the final formula may be written as follows:

P1 ∧ P2 ∧ ∀z(P3 ⇒ P4).

The following comments on this formula will be reflected in precise defini-
tions in Chapter II, §§1 and 2. The letters x, y have the same meaning in all the
Pi, while z plays different roles: in P1 it is a subset of x, and in P3 and P4 it is
the set of subsets of x. We are allowed to do this because as soon as we “bind”
z by the quantifier ∀, say in P1, z no longer stands for an (indeterminate)
individual set, and becomes a temporary designation for “any set.” Where the
“scope of action” of ∀ ended, z can be given a new meaning. In order to “free”
z for later use, ∀z was also put before P3 ⇒ P4.

Translation from argot to L1Ar.

3.12. “x < y”: ∃z(y = (x + z) + 1̄). Recall that the variables are names for
nonnegative integers.

3.13. “x is a divisor of y”: ∃z(y = x · z).

3.14. “x is a prime number”: “1̄ < x”∧ (“y is a divisor of x”⇒ (y = 1̄ ∨ y = x)).

3.15. “Fermat’s last theorem”: ∀x1 ∀x2 ∀x3 ∀u(“2̄ < u” ∧ “xu1 + xu2 = xu3” ⇒
“x1x2x3 = 0̄”). It is not clear how to write the formula xu1 + xu2 = xu3
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in L1Ar. Of course, for any concrete u = 1, 2, 3 there is a correspond-
ing atomic formula in L1Ar, but how do we make u into a variable? This
is not a trivial problem. In the second part of the book we show how to
find an atomic formula p(x, u, y, z1, . . . , zn) such that the assertion that
∃z1 · · · ∃znp (x, u, y, z1, . . . , zn) in the domain of natural numbers is equiva-
lent y = xu. Then xu1 + xu2 = xu3 can be translated as follows:

∃y1 ∃y2 ∃y3 (“xu1 = y1” ∧ “xu2 = y2” ∧ “xu3 = y3” ∧ y1 + y2 = y3).

The existence of such a p is a nontrivial number-theoretic fact, so that here the
very possibility of performing a translation becomes a mathematical
problem.

3.16. “The Riemann hypothesis.” The Riemann zeta function ζ (s) is defined
by the series Σ∞

n=1 n
−s in the half-plane Re s ≥ 1. It can be continued mero-

morphically onto the entire complex s-plane. The Riemann hypothesis is the
assertion that the nontrivial zeros of ζ(s) lie on the line Re s = 1

2 . Of course,
in this form the Riemann hypothesis cannot be translated into L1Ar. However,
there are several purely arithmetic assertions that are demonstrably equivalent
to the Riemann hypothesis. Perhaps the simplest of them is the following.

Let µ(n) be the Möbius function on the set of integers � 1: it equals 0 if
n is divisible by a square, and equals (−1)r, where r is the number of prime
divisors of n, if n is square-free. We then have

Riemann hypothesis ⇔ ∀ε > 0 ∃x ∀y
[
y > x⇒

[∣∣∣ y∑
n=1

µ(n)
∣∣∣ < y1/2+ε

]]
.

Only the exponent is not an integer on the right; but ε need only run through
numbers of the form 1/z, z an integer � 1, and then we can raise the inequality
to the (2z)th power. The formula(

y∑
n=1

µ(n)

)2z

< yz+2

can then be translated into L1Ar, although not completely trivially. The neces-
sary techniques will be developed in the second part of the book.

The last two examples were given in order to show the complexity that is
possible in problems that can be stated in L1Ar, despite the apparent simplicity
of the modes of expression and the semantics of the language.

We conclude this section with some remarks concerning higher-order
languages.

3.17. Higher-order languages. Let L be any first-order language. Its modes
of expression are limited in principle by one important consideration: we are
not allowed to speak of arbitrary properties of objects of the theory, that is,
arbitrary subsets of the set of all objects. Syntactically, this is reflected in the
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prohibition against forming expressions such as ∀p(p(x)), where p is a relation
of degree 1; relations must stand for fixed rather than variable properties.

Of course, certain properties can be defined using nonatomic formulas. For
example, in L1Ar instead of “x is even” we may write ∃y(x = (1̄ + 1̄) · y).
However, there is a continuum of subsets of the integers but only a countable
set of definable properties (see §2 of Chapter II), so there are automati-
cally properties that cannot be defined by formulas. Thus, it is impossible
to replace the forbidden expression ∀p(p(x)) by a sequence of expressions
P1(x), P2(x), P3(x), . . . .

Languages in which quantifiers may be applied to properties and/or func-
tions (and also, possibly, to properties of properties, and so on) are called higher-
order languages. One such language—L2Real—will be considered in Chapter III
for the purpose of illustrating a simplified version of Cohen forcing.

On the other hand, the same extension of expressive possibilities can be
obtained without leaving L1. In fact, in the first-order language L1Set we may
quantify over all subsets of any set, over all subsets of the set of subsets, and
so on. Informally this means that we are speaking of all properties, all proper-
ties of properties, . . . (with transfinite extension). In addition, any higher-order
language with a “standard interpretation” in some type of structured sets can
be translated into L1Set so as to preserve the meanings and truth values in
this standard interpretation. (An apparent exception is the languages for
describing Gödel–Bernays classes and “large” categories; but it seems, based
on our present understanding of paradoxes, that no higher-order languages can
be constructed from such a language.)

The attentive reader will notice the contrast between the possibility of writ-
ing a formula in L1Set in which ∀ is applied to all subsets (informally, to all
properties) of finite ordinals (informally, of integers) and the impossibility of
writing a formula in L1Set that would define any concrete subset in the con-
tinuum of undefinable subsets. (There are fewer such subsets in L1Set than in
L1Ar, but still a continuum.) We shall examine these problems more closely in
Chapter II when we discuss “Skolem’s paradox.”

Let us summarize. Almost all the basic logical and set-theoretic principles
used in the day-to-day work of the mathematician are contained in the first-
order languages and, in particular, in L1Set. Hence, those languages will be the
subject of study in the first and third parts of the book. But concrete oriented
languages can be formed in other ways, with various degrees of deviation from
the rules of L1. In addition to L2Real, examples of such languages examined
in Chapter II include SELF (Smullyan’s language for self-description) and SAr,
which is a language of arithmetic convenient for proving Tarski’s theorem on
the undefinability of truth.

Digression: Syntax

1. The most important feature that most artificial languages have in common
is the ability to encompass a rich spectrum of modes of expression starting
with a small finite number of generating principles.
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In each concrete case the choice of these principles (including the alphabet
and syntax) is based on a compromise between two extremes. Economical use of
modes of expression leads to unified notation and simplified mechanical analy-
sis of the text. But then the texts become much longer and farther removed
from natural language texts. Enriching the modes of expression brings the
artificial texts closer to the natural language texts, but complicates the syntax
and the formal analysis. (Compare machine languages with such programming
languages as Algol, Fortran, Cobol, etc.)

We now give several examples based on our material.

2. Dialects of L1

(a) Without changing the logic in L1, it is possible to discard parentheses and
either of the two quantifiers from the alphabet, and to replace all the con-
nectives by one, namely ↓ (conjunction of negations). (In addition, con-
stants could be declared to be functions of degree 0, and functions could
be interpreted as relations.)

This is accomplished by the following change in the definitions. If t1, . . . , tr
are terms, f is an operation of degree r, and p is a relation of degree r, then
ft1 . . . tr is a term, and pt1 . . . tr is an atomic formula. If P and Q are formulas,
then ↓ PQ and ∀xP are formulas. The content of ↓ PQ is “not P and not Q”
so that we have the following expressions in this dialect:

¬(P ) : ↓ PP,
(P ) ∧ (Q) : � PP ↓ QQ,
(P ) ∨ (Q) : � PQ ↓ PQ.

Clearly, economizing on parentheses and connectives leads to much repetition
of the same formula. Nevertheless, it may become simpler to prove theorems
about such a language because of the shorter list of syntactic norms.

(b) Bourbaki’s language of set theory has an alphabet consisting of the signs
�, τ, ∨, ¬, =, ∈ and the letters. Expressions in this language are not
simply sequences of signs in the alphabet, but sequences in which certain
elements are paired together by superlinear connectives. For example:

The main difference between Bourbaki’s language and L1Set is the use of the
“Hilbert choice symbol.” If, for example, ∈ xy is the formula “x is an element
of y,” then

is a term meaning “some element of the set y.”
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Bourbaki’s language is not very convenient and is not widely used. It became
known in the popular literature thanks to an example of a very long abbreviated
notation for the term “one,” which the authors imprudently introduced:

τz

((
∃u)(∃U)(u = (U, {∅}, Z)∧ U ⊂ {∅} × Z ∧ (∀k)((x ∈ {∅})

⇒ (∃y)((x, y) ∈ U)) ∧ (∀x)(∀y)(∀y
′
)(((x, y ∈ U ∧ (x, y

′
) ∈ U)

⇒ (y = y
′
)) ∧ (∀y)((y ∈ Z) ⇒ (∃x)x((x, y) ∈ U)))

))
.

It would take several tens of thousands of symbols to write out this term
completely; this seems a little too much for “one.”

(c) A way to greatly extend the expressive possibilities of almost any language
in L1 is to allow “class terms” of the type {x|P (x)}, meaning “the class of
all objects x having the property P .” This idea was used by Morse in his
language of set theory and by Smullyan in his language of arithmetic; see
§10 of Chapter II.

3. General remarks. Most natural and artificial languages are characteristically
discrete and linear (one-dimensional). On the one hand, our perception of
the external world is not felt by us to be either discrete or linear, although
these characteristics are observed on the level of physiological mechanisms
(coding by impulses in the nervous system). On the other hand, the lan-
guages in which we communicate tend to transmit information in a sequence
of distinguishable elementary signs. The main reason for this is probably
the much greater (theoretically unlimited) uniqueness and reproducibility
of information than is possible with other methods of conveyance. Compare
with the well-known advantages of digital over analog computers.

The human brain clearly uses both principles. The perception of images as
a whole, along with emotions, are more closely connected with nonlinear and
nondiscrete processes—perhaps of a wave nature. It is interesting to examine
from this point of view the nonlinear fragments in various languages.

In mathematics this includes, first of all, the use of drawings. But this use
does not lend itself to formal description, with the exception of the separate
and formalized theory of graphs. Graphs are especially popular objects, because
they are as close as possible both to their visual image as a whole and to their
description using all the rules of set theory. Every time we are able to connect a
problem with a graph, it becomes much simpler to discuss it, and large sections
of verbal description are replaced by manipulation with pictures.

A less well-known class of examples is the commutative diagrams and spec-
tral sequences of homological algebra. A typical example is the “snake lemma.”
Here is its precise formulation.

Suppose we are given a commutative diagram of abelian groups and
homomorphisms between them (in the box below), in which the rows are exact
sequences:
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A
f g h

0

Ker f Ker g Ker h

Coker f Coker g Coker h

0

0

0

0

0

A'

B

B'

C

C'

Then the kernels and cokernels of the “vertical” homomorphisms f, g, h form
a six-term exact sequence, as shown in the drawing, and the entire diagram of
solid arrows is commutative. The “snake” morphism Ker h → Coker f , which
is denoted by the dotted arrow, is the basic object constructed in the lemma.

Of course, it is easy to describe the snake diagram sequentially in a suitable,
more or less formal, linear language. However, such a procedure requires an
artificial and not uniquely determined breaking up of a clearly two-dimensional
picture (as in scanning a television image). Moreover, without having the overall
image in mind, it becomes harder to recognize the analogous situation in other
contexts and to bring the information together into a single block.

The beginnings of homological algebra saw the enthusiastic recognition of
useful classes of diagrams. At first this interest was even exaggerated; see the
editor’s appendix to the Russian translation of Homological Algebra by Cartan
and Eilenberg.

There is one striking example of an entire book with an intentional two-
dimensional (block) structure: C. H. Lindsey and S. G. van der Meulen, Informal
Introduction to Algol 68 (North-Holland, Amsterdam, 1971). It consists of eight
chapters, each of which is divided into seven sections (eight of the 56 sections
are empty, to make the system work!). Let (i, j) be the name of the jth section
of the i th chapter; then the book can be studied either “row by row” or “column
by column” in the (i, j) matrix, depending on the reader’s intentions.

As with all great undertakings, this is the fruit of an attempt to solve what
is in all likelihood an insoluble problem, since, as the authors remark, Algol 68
“is quite impossible to describe . . . until it has been described.”



II

Truth and Deducibility

1 Unique Reading Lemma

The basic content of this section is Lemma 1.4 and Definitions 1.5 and 1.6. The
lemma guarantees that the terms and formulas of any language in L1 can be
deciphered in a unique way, and it serves as a basis for most inductive argu-
ments. (The reader may take the lemma on faith for the time being, provided
that he was able independently to verify the last formula in 3.7 of Chapter I.
However, the proof of the lemma will be needed in (§4 of Chapter VII.) It is
important to remember that the theory of any formal language begins by check-
ing that the syntactic rules are free of ambiguity.

We begin with the standard combinatoric definitions, in order to fix the
terminology.

1.1. Let A be a set. By a sequence of length n of elements of A we mean a
mapping from the set {1, . . . , n} to A. The image of i is called the ith term of
the sequence. Corresponding to n = 0 we have the empty sequence. Sequences
of length 1 will sometimes be identified with elements of A.

A sequence of length n can also be written in the form a1, . . . , ai, . . . , an,
where ai is its ith term. The number i is called the index of the term ai. If
P = (a1, . . . , an) and Q = (b1, . . . , bm) are two sequences, their concatenation
PQ is the sequence (a1, . . . , an, b1, . . . , bm) of length m + n whose ith term is ai
for i � n and bi−n for n+ 1 � i � n+m. We similarly define the concatenation
of a finite sequence of sequences.

An occurrence of the sequence Q in P is any representation of P as a
concatenation P1QP2. Substituting a sequence R in place of a given occurrence
of Q in P amounts to constructing the sequence P1RP2.

Let Π+,Π− be two disjoint subsets of (1, . . . , n). A map c : Π+ → Π−

is called a parentheses bijection if it is bijective and satisfies the following
conditions:

(a) c(i) > i for all i ∈ Π+;
(b) for every i and j, j ∈ [i, c(i)] if and only if c(j) ∈ [i, c(i)].

19Yu. I. Manin, A Course in Mathematical Logic for Mathematicians, Second Edition,
 Graduate Texts in Mathematics 53, DOI 10.1007/978-1-4419-0615-1_2,
© Yu. I. Manin 2010
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1.2. Lemma. Given Π+ and Π−, if a parentheses bijection exists, then it is
unique.

This lemma will be applied to expressions in languages in L1: Π+ will
consist of the indices of the places in the expression at which “(” occurs, Π−

will consist of the indices of the places at which “)” occurs, and the map c
correlates to each left parenthesis the corresponding right parenthesis.

Proof of the lemma. Let the function ε : {1, . . . , n} → {0,±1} take the value
1 on Π+ , –1 on Π−, and 0 everywhere else. We claim that for every i ∈ Π+,
for any parentheses bijection c : Π+ → Π−, and for any k, 1 � k � c(i) − i, we
have the relations

c(i)∑
j=1

εεε(j) = 0,
c(i)−k∑
j=1

εεε(j) > 0.

The lemma follows immediately from these relations, since we obtain the
following recipe for determining c from Π+ and Π−; c(i) is the least l > i for
which

∑l
j=i ε(j) = 0.

The first relation holds because the elements of Π+ and Π− that appear in
the interval [i, c(i)] do so in pairs (j, c(j)), and ε(j) + ε(c(j))= 0.

To prove the second relation, suppose that for some i and k we have∑c(i)−k
j=i ε(j) � 0. Since ε(i) = 1, it follows that

∑c(i)−k
j=i+1 ε(j) < 0. Hence, the

number of elements of Π− in the interval [i + 1, c(i)−k] is strictly greater than
the number from Π+. Let c(j0) ∈ Π− be an element in the interval such that
j0 �∈ [i + 1, c(i)− k]. Then j0 � i, and in fact, j0 < i, since c(i) is outside the
interval. But then only one element of the pair j0, c(j0) lies in [i, c(i)], which
contradicts the definition of c. ��

1.3. Now let A be the alphabet of a language L in L1 (see §2 of Chapter I).
Finite sequences of elements of A are the expressions in this language. Certain
expressions have been distinguished as formulas or terms. We recall that the
definitions in §2 of Chapter I imply that:

(a) Any term in L either is a constant, is a variable, or is represented in the
form f(t1, . . . , tr), where f is an operation of degree r, and t1, . . . , tr are terms
shorter in length.
(b) Any formula in L is represented either in the form p(t1, . . . , tr), where p is
a relation of degree r and t1, . . . , tr are terms shorter in length, or in one of the
seven forms

(P ) ⇔ Q, (P ) ⇒ (Q), (P ) ∨ (Q), (P ) ∧ (Q),
¬(P ), ∀x(P ), ∃x(P ),

where P and Q are formulas shorter in length, and x is a variable.
The following result is then obtained by induction on the length of the

expression: if E is a term or a formula, then there exists a parentheses bijec-
tion between the set Π+ of indices of left parentheses in E and the set Π−

of indices of right parentheses. In fact, the new parentheses in 1.3(a) and (b)
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have a natural bijection, while the old ones (which might be contained in the
terms t1, . . . , tr or the formulas P,Q) have such a bijection by the induction
assumption. In addition, the new parentheses never come between two paired
old parentheses.

We can now state the basic result of this section:

1.4. Unique Reading Lemma. Every expression in L is either a term, or
a formula, or neither. These alternatives, as well as all of the alternatives
listed in 1.3(a) and (b), are mutually exclusive. Every term (resp. formula)
can be represented in exactly one of the forms in 1.3(a) (resp.1.3(b)), and in a
unique way.

In addition, in the course of the proof we show that if an expression is the
concatenation of a finite sequence of terms, then it is uniquely representable as
such a concatenation.

Proof. Using induction on the length of the expression E, we describe
an informal algorithm for syntactic analysis, which uniquely determines which
alternative holds.

(a) If there are no parentheses in E, then E is either a constant term, a variable
term, or neither a term nor a formula.

(b) If E contains parentheses, but there is no parentheses bijection between the
left and right parentheses, then E is neither a term nor a formula.

(c) Suppose E contains parentheses with a parentheses bijection. Then either
E is uniquely represented in one of the nine forms

f(E0) (where f is an operation),
p(E0) (where p is a relation),

(E1) ⇔ (E2), (E1) ⇒ (E2), (E1) ∨ (E2), (E1) ∧ (E2),
¬(E3), ∀x(E3), ∃x(E3),

or else E is neither a term nor a formula. Here the pairs of parentheses we have
written out are connected by the unique parentheses bijection that is assumed
to exist in E; this is what ensures uniqueness. In fact, we obtain the form f(E0)
if and only if the first element of the expression is a function, the second element
is “(”, and the last element is the “)” that corresponds under the bijection: and
similarly for the other forms.

We have thereby reduced the problem to the syntactic analysis of the
expressions E0, E1, E2, E3, which are shorter in length. This almost completes
our description of the algorithm, since what remains to be determined about
E1, E2, E3 is whether they are formulas. However, for E0 we must determine
whether this expression is a concatenation of the right number of terms, and
we must ask whether such a representation must be unique.

The answer to the latter question is positive. We have the following recipe
for breaking off terms from left to right in a union of terms.

(d) Let E0 be an expression having a parentheses bijection between its left
and right parentheses. If E0 can be represented in the form tE′

0, where t is
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a term, then this representation is unique. In fact, either E0 can be uniquely
represented in one of the forms

xE′
0, cE′

0, f(E′′
0 )E′

0

(where x is a variable, c is a constant, and f is an operation whose parentheses
correspond under the unique parentheses bijection in E0), or else E0 cannot
be represented in the form tE′

0, where t is a term. In the cases E0 = xE′
0 or

E0 = cE′
0, this is obviously the only way to break off a term from the left. In

the case E0 = f(E′′
0 )E′

0, the question reduces to whether E′′
0 is a concatenation

of degree–(f) terms. By induction on the length of E0, we may assume that
either E′′

0 is not such a concatenation, or else it is uniquely representable as a
concatenation of terms. The lemma is proved. ��

Exercise: State and prove a unique reading lemma for the “parentheses-less” dialect

of L1 described in 2(a) of “Digression: Syntax” in Chapter I.

Here is the first inductive description of the difference between free and
bound occurrences of a variable in terms and formulas. The correctness of the
following definitions is ensured by Lemma 1.4.

1.5. Definition.

(a) Every occurrence of a variable in an atomic formula or term is free.
(b) Every occurrence of a variable in ¬(P ) or in (P1) ∗ (P2) (where ∗ is any of

the connectives “∨”, “∧”, “⇒”, “⇔”) is free (respectively bound) if and
only if the corresponding occurrence in P, P1, or P2 is free (respectively
bound).

(c) Every occurrence of the variable x in ∀x(P ) and ∃x(P ) is bound. The
occurrences of other variables in ∀x(P ) and ∃x(P ) are the same as the
corresponding occurrences in P.

Suppose the quantifier ∀ (or ∃) occurs in the formula P. It follows from the
definitions that it must be followed in P by a variable and a left parenthesis.
The expression that begins with this variable and ends with the corresponding
right parenthesis is called the scope of the given (occurrence of the) quanti-
fier.

1.6. Definition. Suppose we are given a formula P, a free occurrence of the
variable x in P, and a term t. We say that t is free for the given occurrence of
x in P if the occurrence does not lie in the scope of any quantifier of the form
∃y or ∀y, where y is a variable occurring in t.

In other words, if t is substituted in place of the given occurrence of x, all
free occurrences of variables in t remain free in P.

We usually have to substitute a term for each free occurrence of a given
variable. It is important to note that this operation takes terms into terms and
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formulas into formulas (induction on the length). If t is free for each free occur-
rence of x in P we simply say that t is free for x in P.

1.7. We shall start working with Definitions 1.5 and 1.6 in the next section.
Here we shall only give some intuitive explanations.

Definition 1.5 allows us to introduce the important class of closed formulas.
By definition, this consists of formulas without free variables. (They are also
called sentences.) The intuitive meaning of the concept of a closed formula is as
follows. A closed formula corresponds to an assertion that is completely deter-
mined (in particular, regarding truth or falsity); indeterminate objects of the
theory are mentioned only in the context “all objects x satisfy the condition . . .”
or “there exists an object y with the property . . . .” Conversely, a formula that
is not closed, such as x ∈ y or ∃x(x ∈ y), may be true or false depending on
what sets are being designated by the names x and y (for the first) or by the
name y (for the second). Here truth or falsity is understood to mean for a fixed
interpretation of the language, as will be explained in §2.

In particular, Definition 1.6 gives the rules of hygiene for changing notation.
If we want to call an indeterminate object x by another name y in a given
formula, we must be sure that x does not appear in the parts of the formula
where this name y is already being used to denote an arbitrary indeterminate
object (after a quantifier). In other words, y must be free for x. Moreover, if we
want to say that x is obtained from certain operations on other indeterminate
objects (x = a term containing y1, . . . , yn), then the variables y1, . . . , yn must
not be bound.

There is a close parallel to these rules in the language of analysis: in-
stead of

∫ x
1
f(y) dy we may confidently write

∫ x
1
f(z) dz but we must not write∫ x

1 f(x) dx; the variable y is bound, in the scope of
∫
f(y) dy.

2 Interpretation: Truth, Definability

2.1. Suppose we are given a language L in L1 and a set (or class) M. To give
an interpretation of L in M means to tell how a formula in L can be given a
meaning as a statement about the elements of M.

More precisely, an interpretation φ of the language L in M consists of a
collection of mappings that correlate terms and formulas of the language to
elements of M and structures over M (in the sense of Bourbaki). These
mappings are divided into primary mappings, which actually determine the
interpretation, and secondary mappings, which are constructed in a natural
and unique way from the primary mappings. We shall use the term interpreta-
tion to refer to the mappings themselves, and sometimes also to the values they
take.

Let us proceed to the systematic definitions. We shall sometimes call the
elements of the alphabet of L symbols. The notation φ for the interpretation
will either be included when the mappings are written or omitted, depending
on the context.
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2.2. Primary mappings

(a) An interpretation of the constants is a map from the set of symbols for
constants (in the alphabet of L) to M that takes a symbol c to φ(c) ∈M.

(b) An interpretation of the operations is a map from the set of symbols for
operations (in the alphabet of L) that takes a symbol f of degree r to a
function φ(f) on M × · · · ×M = M r with values in M.

(c) An interpretation of the relations is a map from the set of symbols for
relations (in the alphabet of L) that takes a symbol p of degree r to a
subset φ(p) ⊂M r.

Secondary mappings. Intuitively, we would like to interpret variables as names
for the “generic element” of the set M , which can be given specific values
in M . We would like to interpret the term f(x1, . . . , xr) as a function φ(f) of r
arguments that run through values in M, and so on.

In order to give a precise definition, we introduce the interpretation
class M :

M = the set of all maps to M from the set of symbols for variables in
the alphabet of L.

Thus, every point ξ ∈ M correlates to any variable x a value φ(x)(ξ) ∈ M ,
which we shall usually denote simply by xξ. This allows us to consider variables
as functions on M with values in M. More generally:

2.3. The interpretation of terms correlates to each term t a function φ(t) on M
with values in M. This correspondence is defined inductively by the following
compatibilities:

(a) If c is a constant, then φ(c) is the constant function whose value is defined
by the primary mapping.

(b) If x is a variable, then φ(x) is φ(x)(ξ) as a function of ξ.
(c) If t = f(t1, . . . , tr), then for all ξ ∈M ,

φ(t)(ξ) = φ(f)(φ(t1)(ξ), . . . , φ(tr)(ξ)),

where the φ(ti)(ξ) are defined by the induction assumption, and φ(f) :
M r → M is given by the primary mapping. Instead of φ(t)(ξ) we shall
sometimes write simply tξ.

2.4. Interpretation of atomic formulas. An interpretation φ assigns to every
formula P in L a truth function |P |φ. This is a function on the interpretation
class M that takes only the values 0 (“false”) and 1 (“true”). It is defined for
atomic formulas as follows:

|p(t1, . . . , tr)|φ(ξ) =

{
1, if 〈tξ1, . . . , tξr〉 ∈ φ(p),
0, otherwise.

Intuitively, a statement p about the names t1, . . . , tr for objects in M becomes
true if the objects named by t1, . . . , tr satisfy the relation named by p.
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2.5. Interpretation of formulas. The truth function for nonatomic formulas is
defined inductively by means of the following relations (for brevity, we have
omitted parentheses and explicit mention of φ and ξ):

|P ⇔ Q| = |P‖Q|+ (1− |P |)(1 − |Q|) :

P ⇔ Q is true when either P and Q are both true or P and Q are both false.

|P ⇒ Q| = 1− |P |+ |P‖Q| :

P ⇔ Q is false only when P is true and Q is false.

|P ∨Q| = max(|P |, |Q|) :

P ∨Q is false only when P and Q are both false.

|P ∧Q| = min(|P |, |Q|) :

P ∧Q is true only when P and Q are both true.

|¬P | = 1− |P | :

¬P is false only when P is true.
Finally, we must describe what happens when quantifiers are introduced.

Suppose that ξ ∈ M and x is a variable. By a variation of ξ along x we mean
any point ξ′ ∈ M for which yξ = yξ

′
whenever y is a variable different from x.

Then

|∀xP |(ξ) = min
ξ′
|P |(ξ′),

|∃xP |(ξ) = max
ξ′
|P |(ξ′),

where ξ′ runs through all variations of ξ along x.
A formula P is called φ-true if |P |φ(ξ) = 1 for all ξ ∈M . The interpretation

φ (or M) is called a model for a set of formulas E if all the elements of E are
φ-true.

2.6. Example: Standard Interpretation of L1Ar. This is the interpretation
in the set N of nonnegative integers, in which 0̄, 1̄ are interpreted as 0, 1,
respectively, and +, ·, = are interpreted as addition, multiplication, and equal-
ity, respectively.

2.7. Example: Standard Interpretation of L1Set. This is the interpreta-
tion in the von Neumann universe V , in which ∅ is interpreted as the empty
set, ∈ is interpreted as the relation “is an element in,” and = is interpreted as
equality.

All of the examples of translations in Chapter I were based on these stan-
dard interpretations. The relationship between those examples and the above
definitions is as follows. Let Π(x, y, z) be a statement in argot about the
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indeterminate sets x, y, z in V ; and let P (x, y, z) be a translation of Π into
the language L1Set. Then for any point ξ interpreting x, y, z as the names of
sets xξ, yξ, zξ in the von Neumann universe, we have:

Π(xξ, yξ, zξ) is true ⇔ |P (x, y, z)|(ξ) = 1.

Thus, every formula expresses, or defines, a property of objects in the interpre-
tation set:

2.8. Definition. A set S ⊂ M r, r � 1, is called φ-definable (by the formula P
in L with the interpretation φ) if there exist variables x1, . . . , xr such that

|P |φ(ξ) = 1 ⇔
〈
xξ1, . . . , x

ξ
r

〉
∈ S

for all ξ in M .
One of the most important problems concerning formal languages is to

understand the structure of the sets of

φ-true formulas inL;

φ-definable sets in
⋃
r�1

M r.

2.9. Example. The sets definable by means of L1Ar with the standard inter-
pretation constitute the smallest class of sets in

⋃
r�1N

r that

(a) contains all sets of the form

{〈k1, . . . , kr〉|F (k1, . . . , kr) = 0} ⊂ N r,

where F runs through all polynomials with integral coefficients;
(b) is closed relative to finite intersections, unions, and complements (in the

appropriate N r);
(c) is closed relative to the projections pri : N r → N r−1:

pri〈k1, . . . , kr〉 = 〈k1, . . . , ki−1, ki+1, . . . , kr〉.
In fact, sets of type (a) are defined by atomic formulas of the form tF1 = tF2 ,

where tF1 is a term corresponding to the sum of the monomials in F with posi-
tive coefficients, and tF2 corresponds to the sum of the monomials with negative
coefficients. Further, if S1, S2 ⊂ N r are definable by formulas P1, P2 (with the
same variables), then S1 ∩ S2 is definable by P1 ∧ P2, S1 ∪ S2 is definable by
P1 ∨ P2, and N r \ S1 is definable by ¬P1. Finally, the set pri(S1) is defin-
able by the formula ∃xi(P1). The connectives ⇒ and ⇔ and the quantifier ∀
give nothing new, since without changing the set being defined, we may replace
them by combinations of the logical operations already discussed: ∀x may
be replaced by ¬∃x¬, and so on.

This first description of arithmetical sets, i.e., L1Ar-definable sets, will be
greatly amplified in the second and third parts of the book. At this point it
is not immediately clear how to develop the subtler properties of definability,
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such as the definability of the set of prime numbers in N (see Example 3.14
in Chapter I), the definability of the set of partial fractions in the continued
fraction expansion of 3

√
2, or the definability of the set of pairs

{〈i, ith digit in the decimal expansion of π〉} ⊂ N2.

However, as we shall see in §11 and in Chapter VII, the “Gödel numbers of the
true formulas of arithmetic” form a much more complicated set, and this set is
not definable.

We now give several simple technical results.

2.10. Proposition. Let P be a formula in L, φ an interpretation in M , and
ξ, ξ′ ∈M . Suppose that xξ coincides with xξ

′
for all variables x occurring freely

in P . Then |P |φ(ξ) = |P |φ(ξ′).

2.11. Corollary. In any interpretation the closed formulas P have well-defined
truth values: |P |φ(ξ′) does not depend on (ξ).

Proof.
(a) Let t be a term, and suppose that for any variable x in t we have xξ = xξ

′
.

Then Lemma 1.4 and induction on the length of t give tξ = tξ
′
.

(b) Assertion 2.10 holds for atomic formulas P of the form p(t1, . . . , tr).
In fact,

|P |(ξ) =

{
1, if〈tξ1, . . . , tξr〉 ∈ φ(P ),
0, otherwise,

and similarly for |P |(ξ′). But if ξ and ξ′ coincide on all the variables in P (all
of which occur freely), then a fortiori they coincide on all the variables in ti,
and by part (a), we have tξi = tξ

′
i , i = 1, . . . , r. Therefore |P |(ξ) = |P |(ξ′).

(c) We now use induction on the total number of connectives and quantifiers
in P . If P has the form ¬Q or Q1∗Q2, then 2.10 for P follows trivially from 2.10
for Q,Q1, Q2. Now suppose that P has the form ∀x(Q), and that 2.10 holds for
Q. (The case ∃x(Q) can be treated analogously or can be reduced to the case
∀x by replacing ∃x by ¬∀x ¬.) By definition, we have

|∀xQ|(ξ) =

{
1, if |Q|(η) = 1 for variationsη of ξ alongx,
0, otherwise;

|∀xQ|(ξ′) =

{
1, if |Q|(η′) = 1 for variations η′ of ξ′ alongx,
0, otherwise.

On the right we may let η and η′ vary in addition on all variables that do not
occur freely in Q. The assertions after the word “if” remain true or false in
this wider range of values if they were true or false before, by the induction
hypothesis on Q. But then η and η′ run through the same values, because ξ
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and ξ′ differ only on variables that do not occur freely in Q, and on x. The
proposition is proved. ��

The following almost obvious fact is the basis for many phenomena that
attest to the inadequacy of formal languages for completely describing intuitive
concepts (see “Skolem’s paradox” below):

2.12. Proposition. The cardinality of the class of φ-definable sets does not
exceed

card(alphabet ofL) + ℵ0.

Here and below, by “card(alphabet of L)” we mean the cardinality of the al-
phabet of L without the set of variables.

Proof. If the language has � ℵ0 variables, then there are at most

card(alphabet ofL) + ℵ0 formulas.

If, on the other hand, it has an uncountable set of variables, then we note that
every definable set can be defined by a formula whose variables belong to a
fixed countable subset of the variables that is chosen once and for all. ��

2.13. Corollary. If M is infinite and card(alphabet of L) < 2cardM , then
“almost all” sets are undefinable.

Thus, the only way to define all subsets of M is to include a tremendous
number of names in the language. For languages that are to describe actual
mathematical reasoning this is an unrealistic program. Essentially, any finitely
describable collection of modes of expression allows us to define only a countable
number of sets. However, it is often technically useful to include in the alphabet,
for example, names for all the elements of M .

In the following sections we proceed to study systematically sets of true
formulas.

3 Syntactic Properties of Truth

Let L be a language in L1, let φ be an interpretation of L, and let TφL be the
set of φ-true formulas. In this section we list some properties of TφL that reflect
the logic inherent in languages of L1, regardless of the specific nature of the
interpretation φ.

3.1. The set TφL is complete. By definition, this means that for any closed for-
mula P , either P or ¬P lies in TφL. This property follows from Corollary 2.11
above.

3.2. The set TφL does not contain a contradiction, that is, there is no formula
P for which P and ¬P both lie in TφL. In fact, TφL = {P | |P |φ = 1}, while
|¬P |φ = 1− |P |φ.



3 Syntactic Properties of Truth 29

3.3 The set TφL is closed under the rules of deduction MP (modus ponens) and
Gen (generalization). By definition, this means that if P and P ⇒ Q lie in TφL,
then Q also lies in TφL, and that if P lies in Tφ L, then ∀xP lies in TφL for any
variable x. The verification is immediate: if |P |φ = 1 and |P ⇒ Q|φ = 1, then
we must have |Q|φ = 1; if |P |φ(ξ) = 1 for all ξ, then also |∀xP |φ(ξ) = 1. The
formula Q is called a direct consequence of the formulas P and P ⇒ Q using
the rule of deduction MP. The formula ∀xP is called a direct consequence of the
formula P using the rule of deduction Gen.

The intuitive meaning of these rules of deduction is as follows. The rule
MP corresponds to the following type of argument: “If P is true, and if the
truth of P implies the truth of Q, then Q is true.” Thus, one might say that
the semantics of the expression “if . . . then” in natural languages is divided
between the semantics of the connective ⇒ and the semantics of the rule of
deduction MP in languages of L1. Neglecting this point of view often leads to
confusion when one attempts to explain the rules for assigning truth values to
the formula P ⇒ Q.

The rule Gen corresponds to the practice in mathematics of writing “identi-
ties” or universally true assertions. When we write (a+b)2 = a2+2ab+b2 or “in
a right triangle the square of the hypotenuse is equal to the sum of the squares
of the other two sides,” the quantifiers ∀ a ∀ b and ∀ triangles are omitted.
Putting the quantifiers back in does not change the truth values, and has the
advantage of freeing the notation for later use.

3.4. The set TφL contains all tautologies. To define what a tautology is, we first
introduce the notion of a logical polynomial over a set of formulas E . This is an
element in the minimal set of formulas that contains E and is closed with respect
to constructing formulas from shorter formulas using logical connectives.

A sequence of formulas P1, . . . , Pn and representations of each Pi, either in
the form Q, where Q ∈ E , or in the form ¬Q or Q1 ∗ Q2, where Q,Q1, Q2

lie in {Pi, . . . , Pi−1}, is called a representation of Pn as a logical polynomial
over E . The representation of Pn is not necessarily unique: for example, if
E = {P,Q, P ⇒ Q}, then P ⇒ Q has two representations.

Let ‖ : E → {0, 1} be any map. If we are given a representation r of the
formula Pn as a logical polynomial over E , then we can use the formulas in 2.5
to determine |Pn|r recursively.

A formula P is called a tautology if there exist a set of formulas E and a
representation r of P as a logical polynomial over E such that |P |r = 1 for all
maps ‖ : E → {0, 1}. The property of being a tautology is effectively decidable,
since; by syntactically analyzing P we can enumerate all representations of P
as a logical polynomial. All tautologies obviously belong to TφL.

Here are our first examples of tautologies:

A0. P ⇒ P ;
A1. P ⇒ (Q⇒ P );
A2. (P ⇒ (Q⇒ R)) ⇒ ((P ⇒ Q) ⇒ (P ⇒ R));
A3. (¬Q⇒ ¬P ) ⇒ ((¬Q⇒ P ) ⇒ Q);
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B1. ¬¬P ⇒ P, P ⇒ ¬¬P ;
B2. ¬P ⇒ (P ⇒ Q).

Here P,Q, andR are arbitrary formulas in L; the form in which these tautologies
are written makes it clear what representation as a logical polynomial over
{P,Q,R} is intended.

Thus, tautologies are formulas that are true regardless of the truth or falsity
of the component parts (if the notion of component is suitably chosen). Bl is
the law of the excluded middle: a double negation is equivalent to the original
assertion. B2 is the mechanism by which a contradiction in a set of formulas E
in L leads to the deducibility of any formula, and thereby destroys the entire
system. (See Proposition 4.2 below.)

Example of how a tautology is verified. We give three versions of how
to verify that the simple formula Al is a tautology.

Version (a). By the formulas in 2.5, we have

|P ⇒ (Q⇒ P )| = 1− |P |+ |P | |Q⇒ P |
= 1− |P |+ |P |(1− |Q|+ |P | |Q|) = 1,

since |P |2 = |P |.

Version (b). We tabulate |P ⇒ (Q⇒ P )| as a function of |P | and |Q|:

|P | |Q| |Q ⇒ P | |P ⇒ (Q ⇒ P )|
0 0 1 1
0 1 0 1
1 0 1 1
1 1 1 1

This is an example of a “truth table.”
Version (c). The basic property of the connective ⇒ is that P ⇒ Q is false

only if P is true and Q is false. If P ⇒ (Q ⇒ P ) were false, then P would be
true and Q ⇒ P would be false; then, in turn, Q would be true and P would
be false, a contradiction.

The reader would do well to verify that the more complicated axioms, for
example A2, are tautologies, and to decide which of the three versions he prefers.

3.5. The set TφL contains the “logical quantifier axioms,” that is, the
formulas

(a) ∀x(P ⇒ Q) ⇒ (P ⇒ ∀xQ), if all the occurrences of x in P are bound.
(b) ∀x¬P ⇔ ¬∃xP .
(c) ∀xP (x) ⇒ P (t), if t is free for x in P (axiom of specialization). Here we use

the notation P (t) for the result of substituting t for each free occurrence of
x in P . In all other respects P and Q are arbitrary formulas.
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In 3.7 we verify that the formulas in 3.5 are φ-true. The intuitive meaning
of these formulas is more or less clear. For example, the axiom of specialization
means that if P (x) is true for all x, then P (t) is also true, where t is the name
of any object. The condition that t must be free for x is the rule of hygiene for
changing notation.

The set

Ax L = {tautologies ofL} ∪ {quantifier axioms}

is called the set of logical axioms in the language L.
A set of formulas E in L will be called Gödelian if it is complete, does not

contain a contradiction, is closed with respect to the rules of deduction MP
and Gen, and contains all the logical axioms of L. The basic conclusion of our
discussion is then the following:

3.6. Proposition. The set of true formulas of L (in any interpretation) is
Gödelian.

In §6 we prove that conversely, any Gödelian set is a set of true formulas
in a suitable interpretation. Thus, the concept of a Gödelian set is the closest
approximation to the concept of truth that can be attained “without regard to
meaning.”

3.7. Verification that axioms 3.5 are true.

(a) Let R be the formula 3.5(a). We suppose that |R|(ξ) = 0 for some ξ ∈ M
and show that this leads to a contradiction.

In fact, then |∀x(P ⇒ Q)|(ξ) = 1 and |P ⇒ ∀xQ|(ξ) = 0. The second
equation implies that |P |(ξ) = 1 and |∀xQ|(ξ) = 0. Let ξ′ be a variation of ξ
along x for which |Q|(ξ′) = 0. Then |P |(ξ′) = |P |(ξ) = 1 by Proposition 2.10,
since x does not occur freely in P . Hence, |P → Q|(ξ′) = 0, which contradicts
the relation |∀x(P ⇒ Q|(ξ) = 1.
(b) For all ξ ∈M and for all variations ξ′ of ξ along x, we have

|∀x¬P |(ξ) = max
ξ′
|¬P |(ξ′) = 1−min

ξ′
|P |(ξ′);

|¬ ∃xP |(ξ) = 1−min
ξ′
|P |(ξ′).

Hence, the truth values of ∀x¬P and ¬∃xP coincide, so that ∀x¬P ⇔ ¬∃xP
is identically true.

(c) Suppose that |∀xP (x) ⇒ P (t)|(ξ) = 0 for some point ξ ∈M . We show that
this leads to a contradiction. In fact, then

|∀xP (x)|(ξ) = 1, |P (t)|(ξ) = 0.

The first equation implies that |P (x)|(ξ′) = 1 for all variations ξ′ or ξ along x.
For ξ′ we take the variation such that xξ

′
= tξ. If we prove that |P (t)|(ξ) =

|P (x)|(ξ′), then we obtain the desired contradiction.
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We prove this by induction on the total number of connectives and
quantifiers in P .

(c1) Let P be an atomic formula p(t1, . . . , tn). Letting t̄i denote the result
of substituting t for each occurrence of x in ti, we successively obtain

tξ = xξ
′

(by the definition of ξ′),

t̄ ξi = tξ
′
i (by induction on the length of ti),

|P (x)|(ξ′) = |P (t1, . . . , tn)|(ξ′) = |P (t̄1, . . . , t̄n)|(ξ) = |P (t)|(ξ).

(c2) Let P have the form ¬Q or Q1 �→ Q2, where �→ is a connective. Since
x does not bind t in P by assumption, the same is true for Q,Q1, and Q2, and
the necessary induction step is automatic.

(c3) Finally, let P have the form ∃y Q or ∀y Q. We shall examine the first
case; the proof for the second case is analogous.

Subcase 1. y = x. Then x is bound in P ; therefore, P (x) = P (t), and
|P |(ξ) = |P |(ξ′) by Proposition 2.10.

Subcase 2. y �= x. The induction assumption has the form |Q(t)|(η) =
|Q(x)|(η′) if η is any point in M and η′ is a variation of η along x for which
xη

′
= tη. We must show that the following two truth values coincide (where ξ

and ξ′ are defined as above):

|∃y Q(x)|(ξ′) =

{
1, if |Q(x)|(η′) = 1 for some variation η′ of ξ′ along y,
0, otherwise.

|∃y Q(t)|(ξ) =

{
1, if |Q(t)|(η) = 1 for some variation η of ξ along y,
0, otherwise.

We recall that ξ′ is the variation of ξ along x for which xξ
′

= tξ.
We first suppose that the second truth value is 1. We choose η ∈M such that

|Q(t)|(η) = 1, and then construct the variation η′ of η along x for which xη
′

= tη.
Then, by the induction assumption, 1 = |Q(t)|(η) = |Q(x)|(η′). We show that
η′ is a variation of ξ′ along y; this will imply that the first truth value is also 1.
In fact, η′ was obtained by varying η along x, η was obtained by varying ξ along
y, and ξ was obtained by varying ξ′ along x. Hence, η′ is a variation of ξ′ along
x and y; we must show the variation along x did not actually take place:

xη
′

= xξ.

But the left-hand side is tη by the definition of η′; the right-hand side is tξ by
the definition of ξ′; and η was obtained by varying ξ along y. Since t is free for
x in P = ∃y Q, it follows that y does not occur in t.

It remains to verify that if the second truth value is 0, then the first is
also 0. The argument is almost the same. If the second truth value is 0, then
|Q(t)|(η) = 0 for all variations η of ξ along y. For each such η we construct η′

as in the first part of the proof. As before, we verify that η′ is a variation of ξ′

along y and, moreover, η′ runs through all such variations when η runs through
all variations of ξ along y. Hence, the first truth value is also 0.

The proposition is proved. ��
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Digression: Natural Logic

1. Logic does not concern itself with the external world, but only with systems
for trying to understand it. The logic of one such system—mathematics—is
normalized to such an extent that it resembles a rigid stencil, which we can
attempt to impose on any other system. But whether this stencil fits the system
should not be seen as the criterion of suitability or the measure of worth of
the system. The physicist’s descriptions do not have to form a consistent or
coherent whole; his job is to describe nature effectively on certain levels. Natural
languages and the spontaneous workings of the mind are even less logical. In
general, adherence to logical principles is only a condition for effectiveness in
certain narrowly specialized spheres of human endeavor.

Although comparisons between the logic of predicates and the logic of nat-
ural languages or their subsystems have no normative force, such comparisons
may be interesting and enlightening. Here we give some selected material from
linguistics and psychology.
2. B. Russell, K. D̈ohmann, H. Reichenbach, U. Weinreich, and many
others have studied the problem of finding parallels in natural languages for
categories that can be formalized in languages of L1 and of cataloguing the
methods of transmitting these categories. This leads to the grouping of words
into so-called logico-semantic classes, instead of the traditional division into
verbs, nouns, articles, etc. (A. V. Gladkii and I. A. Mel’čuk, Éléments de lin-
guistique mathématique, Paris, Dunod, 1972, §6).

For example, the words sleeps, smart, crybaby are parallel to relation symbols
(predicates) of rank 1; the words loves, friendly, sister correspond to relations
of rank 2. For each of them we have atomic formulas, such as “N sleeps,” “X
is friendly to Y ,” and so on.

“All, sometimes, something” are quantifier words; while “and, or, but, if . . .
then” are, of course, connectives. “The nose, le cadeau” are constants. Nouns
are made into constants by using the definite article or its semantic equiva-
lent. In Russian, which does not have definite articles, one must either use the
demonstrative articles etot (this), tot (that), or make it clear from the context
that the noun is meant as a constant. The words nos (nose), podarok (gift) are
more like variables that stand for any object satisfying the simple predicate “is
a nose,” “is a gift.” Incidentally, there are other possible interpretations.

The pronoun “he” is, without doubt, a variable. The pronouns “I” and
“you” have much more complicated semantics, involving a correlation with who
is speaking that does not exist in the speakerless languages of L1. Certain
aspects of the first person pronoun are included in the semantics of algorithmic
languages. The right type of “memory key” in a program for the IBM 360 will
allow the program to change what is contained in any byte in the basic memory
region. The memory guard asks “Who is there?”, and the program answers, “It
is I.” Finally, it is even possible in languages of L1 to find models for certain
types of self-description; see 9–11 and the digression on self-reference.

In Russian, “ ili” (or) can be used not only to express the logical ∨, but
also to express the exclusive “or” and even to express conjunction ∧, as in the
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sentence “x2 > 0 for x > 0 or for x < 0” (E. V. Padučeva). In Latin, the func-
tions of exclusive and inclusive “or” are expressed by two different words, aut
and vel. “And” can sometimes express a time sequence: compare the sentences
“Jane got married and had a baby” with “Jane had a baby and got married”
(S. Kleene). The conjunction ∧ can be expressed in different languages by

juxtaposition: Chinese: ma mo—horse and donkey
Swahili: shika kitabu usome—take a book and read

a preposition: Russian: Petya s Mas̆ěı—Peter and Masha
a conjunction: and, i, et
a postpositional particle: Latin: senatus populusque—the senate and the

people
two conjunctions: Russian: kak . . . tak.

Döhmann has catalogued the ways of expressing 16 logical polynomials in
two variables in several languages of the world.

3. Curious as all this material may be, it should be regarded critically; in such
comparisons with logic, the subtleties of usage often elude us. As an example,
let us analyze the natural semantics of “if . . . then.” We have already mentioned
that in languages of L1 this connective corresponds not only to “⇒” but also to
the rule of deduction modus ponens. Moreover, MP more adequately represents
the meaning of “if . . . then.”

Actually, the rule that any conditional is true if its antecedent is known to
be false has almost no parallel in natural logic. Examples of the type “if snow
is black, then 2 × 2 = 5,” which keep cropping up in textbooks, are capable
only of confusing the student, since no natural subsystem in our language has
expressions with this semantics. A possible exception is certain poetic and ex-
pressive formulas with extremely limited usage (“If she be false, O, then heaven
mocks itself!”). Formal mathematics, in which a single contradiction destroys
the entire system, clearly has the features of poetic hyperbole.

Finally, in the logic of predicates there is no place at all for the modal
aspect of the use of “if. . . then” in instructions of the type “if this hap-
pens, do that.” On the other hand, this aspect can easily be expressed by the
semantics of the connective “if . . . then . . . else” in algorithmic languages such
as Algol. Unless one uses techniques suggested by algorithmic languages, any
attempt to find a model for modality in languages based on L1 is doomed to
failure (compare: A. A. Ivin, The Logic of Norms, MGU Press, 1973).
4. We have mentioned several times that the choice of the primitive modes
of expression in the logic of predicates does not reflect psychological reality.
Elementary logical operations, even one-step deductions, may require a highly
trained intellect; yet, logically complicated operations can often be performed
as a single elementary act of thought even by a damaged brain.

Sublieutenant Zasetsky, aged twenty-three, suffered a head injury 2 March

1943 that penetrated the left parieto-occipital area of the cranium. The
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injury. . . was further complicated, by inflammation that resulted in adhesions

of the brain to the meninges and marked changes in the adjacent tissues.

Professor A. R. Luria met Zasetsky at the end of May 1943, and observed
his condition for the next 26 years. In this time Zasetsky wrote nearly 3000
pages, describing with agonizing effort his life and illness as he struggled to
regain his reason. His notebooks, which provided the material for Luria’s book
The Man with a Shattered World (Basic Books, Inc., New York, 1972, translated
by L. Solotaroff), not only show his perseverance and determination, but are
also revealing from a psychological point of view.

At first, the destruction of Zasetsky’s psyche was overwhelming. The pre-
dominant disorder was asemia, the inability to connect symbols with their
meaning. Luria describes his first meeting with Zasetsky:

“ ‘Try reading this page,” I suggested to him.

“What’s this?. . . No, I don’t know. . . don’t understand. . . what is this?. . . .”

I suggested he try to do something simple with numbers, like add six and
seven.

“Seven . . . six . . . what’s it? No, I can’t . . . just don’t know.”

The ability to understand the simplest predicates was lost: “What
season is there before winter? Before winter? After winter?. . . Summer?. . .
Or something ! No, I can’t get it. Before spring? It’s spring now . . . and . . .
and before . . . I’ve already forgotten, just can’t remember.”

Zasetsky lost the ability to interpret the syntactic devices for organizing mean-

ing: “In the school where Dunya studied a woman worker from the factory

came to give a report.” What did this mean to him? Who gave the report—

Dunya or the factory worker? And where was Dunya studying? Who came

from the factory? Where did she speak?

This is a fairly difficult example composed by Professor Luria, but here is what
Zasetsky himself writes:

I also had trouble with expressions like: “Is an elephant bigger than a fly?”

and “Is a fly bigger than an elephant?” All I could figure out was that a

fly is small and an elephant is big, but I didn’t understand the words bigger

and smaller. The main problem was I couldn’t understand which word they

referred to.

What attracts our attention is the complexity of Zasetsky’s metalinguistic
text describing his linguistic difficulties. The subtlety of the analysis seems
incompatible with the crude errors being analyzed. This could be explained by
the retrospective nature of the analysis, but the following even more complicated
description was written concurrently with the experience of the mental defect
being described:
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Sometimes I’ll try to make sense out of those simple questions about the

elephant and the fly, decide which is right or wrong. I know that when you

rearrange the words, the meaning changes. At first I didn’t think it did, it

didn’t seem to make any difference whether or not you rearranged the words.

But after I thought about it a while I noticed that the sense of the four words

(elephant, fly, smaller, larger) did change when the words were in a different

order. But my brain, my memory, can’t figure out right away what the word

smaller (or larger) refers to. So I always have to think about them for a while

. . . So sometimes ridiculous expressions like “a fly is bigger than an elephant”

seem right to me, and I have to think about it a while longer.

We can also see how complicated mental abilities were preserved while
“simple” ones were lost from examples of Zasetsky’s creative imagination, which
resemble literary-psychological studies:

Say I’m a doctor examining a patient who is seriously ill. I’m terribly worried

about him, grieve for him with all my heart. (After all, he’s human too, and

helpless. I might become ill and also need help. But right now it’s him I’m

worried about—I’m the sort of person who can’t help caring.) But say I’m

another kind of doctor—someone who is bored to death with patients and

their complaints. I don’t know why I took up medicine in the first place,

because I don’t really want to work and help anyone. I’ll do it if there’s

something in it for me, but what do I care if a patient dies? It’s not the first

time people have died, and it won’t be the last.

All of this shows that there is no basis whatsoever for Rosser’s opinion that
“once the proof is discovered, and stated in symbolic logic, it can be checked by
a moron.” The human mind is not at all well suited for analyzing formal texts.

4 Deducibility

4.1. Definition. A deduction of a formula P from a set of formulas E (in a
language L in L1) is a finite sequence of formulas P1, . . . , Pn = P with the
property that for each i = 1, . . . , n at least one of the following alternatives
holds:

(a) Pi ∈ E ;
(b) ∃j < i such that Pi is a direct consequence of Pj using Gen;
(c) ∃j, k < i such that Pi is a direct consequence of Pj and Pk using MP.

We shall write E � P to abbreviate “there exists a deduction of P from E .”
A deduction of P , together with a precise indication for each i � n of which of
the alternatives (a), (b), (c) and which indices j in case (b) or j, k in case (c)
are used to obtain Pi, is called a description of a deduction. A single deduction
may have several descriptions.

We usually consider deductions from sets E that contain Ax L, the logical
axioms of L. The other elements of E may be formulas of L that are “guessed”
to be true in the standard interpretation; these are called special axioms of L.
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(Examples will be given later in 4.6–4.9.) Such deductions may be considered
the formal equivalents of mathematical proofs (of a formula P = Pn from the
hypotheses E). This identification is justified for the following reasons:

(a) As shown in 3.3, if E ⊂ TφL for some interpretation φ, and if E � P , then
P ∈ TφL; only true formulas can be deduced from true formulas.

(b) A large amount of experimental work has been done on formalizing mathe-
matical proofs, that is, replacing them by deductions in suitable languages
of L1, especially L1Set. This work has shown that for large segments
of mathematics, including the foundations of the theory of integers and
real numbers, set theory, and so on, proofs can successfully be formal-
ized as deductions within the framework of L1. There is much material
on this theme in the literature on mathematical logic; see, in particular,
Mendelson’s book.

(c) Gödel’s completeness theorem for the logical modes of expression in L1

(see §6) shows that any formula that is not deducible from E must be false
in some model (interpretation) of E .

For further discussion, see “Digression: Proof.”
We occasionally consider deductions from another type of sets E .

For example, we might remove from E certain logical axioms, such as the “law
of the excluded middle” (B1 in Section 3.4), in order to investigate formally
intuitionistic principles. Or we might add to E a formula that we think is false
in order to deduce a contradiction from E ; this is the so-called “proof by con-
tradiction.”

We now prove some formal aspects of contradiction.

4.2. Proposition. Suppose that E contains all tautologies of type B.2 in Sub-
section 3.4. Then the following two properties of E are equivalent:

(a) There exists a formula P such that E � P and E � ¬P .
(b) E � Q for any formula Q.

A set E with these properties is called inconsistent.

Proof. (b) ⇒(a) is obvious. Conversely, suppose E � P and E � ¬P . We first
add the formula ¬P → (P → Q), which is assumed to lie in E , to the descrip-
tions of the two deductions. Then, applying MP twice (to this formula and ¬P ;
then to P ⇒ Q and P ), we obtain a description of a deduction E � Q.

4.3. A large part of the theorems of logic consists in proving assertions of the
type “E � P” or “t is not true that E � P” for various languages L, sets E , and
(classes of) formulas P .

A result of the form E � P may be proved by presenting a description of a
deduction of P from E. However, even in slightly complicated cases, this proce-
dure becomes so long that it is replaced by more or less complete instructions
on how to compose such a description. Finally, “E � P” may be proved without
presenting even an incomplete description of a deduction of P from E . In this
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case we “are not proving P , but are proving that a proof of P exists”; see the
example in §8 concerning language extensions.

In rare cases a result of the form “it is not true that E � P” can be proved
by a purely syntactic argument. But usually such a result is obtained by con-
structing a model, i.e., an interpretation, in which E is true and P is false; see
the discussion of the continuum problem in Chapters III–IV. If it is true neither
that E � P nor that E � ¬P , we say that P is independent of E .

We now give two useful elementary results concerning deductions. It is
clear that compared with usual proofs, deductions are made up of very minor
details. The mathematician, as if wearing seven-league boots, covers entire fields
of formal deductions in one step.

4.4. Lemma. Suppose that E contains all tautologies. If E � P and E � Q, then
E � P ∧Q.

Proof. If P1, . . . , Pm and Q1, . . . , Qn are deductions of P and Q, respectively,
then

P1, . . . , Pm, Q1, . . . , Qn, P ⇒ (Q⇒ (P ∧Q)), Q⇒ (P ∧Q), P ∧Q

is a deduction of P ∧ Q. The third formula from the end is a tautology; the
second formula from the end is a direct consequence of this tautology and
Pm = P using MP; and the last formula is a direct consequence of the second
to last and Qn = Q using MP. ��

4.5. Deduction Lemma. Suppose that E ⊃ Ax L and P is a closed formula.
If E ∪ {P} � Q, then E � P ⇒ Q.

Proof. Let Q1, . . . , Qn = Q be a deduction of Q from E ∪ {P}. We show by
induction on n that there exists a deduction of P ⇒ Q from E .

(a) n = 1. Then either Q ∈ E , or else Q = P . In the first case P ⇒ Q is
deduced from Q and the tautology Q⇒ (P ⇒ Q) using MP. In the second
case P ⇒ P is a tautology.

(b) n � 2. We assume that the lemma holds for deductions of length � n− 1.
Then E � P ⇒ Qi for all i � n − 1. Further, we have the following possi-
bilities for Qn = Q : (b1)Q ∈ E ; (b2)Q = P ; (b3)Q is deduced from Qi and
Qj = (Qi ⇒ Q) using MP; and (b4)Q has the form ∀x Q; for j � n − 1.
The first two cases are handled in exactly the same way as for n = 1.

In case (b3), P ⇒ Q can be deduced from E in the following way:

(1) deduction of P ⇒ Q (induction assumption);
(2) deduction of P ⇒ (Qi ⇒ Q) (induction assumption);
(3) (P ⇒ (Qi ⇒ Q)) ⇒ ((P ⇒ Qi) ⇒ (P ⇒ Q)) (tautology);
(4) (P ⇒ Qi) ⇒ (P ⇒ Q) (from (2) and (3) using MP);
(5) P ⇒ Q (from (1) and (4) using MP).
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From now on, arguments of this sort will be presented more briefly, with explicit
mention of only the last steps of the induction (here (3), (4), and (5)).

Finally, in case (b4), we obtain a deduction of P ⇒ ∀x Qj from E if we add
the following formulas to the deduction of P ⇒ Qj from E (which exists by the
induction assumption):

∀x(P ⇒ Qj) (Gen)
∀x(P ⇒ Qj) ⇒ (P ⇒ ∀xQj) (logical quantifier axiom, since P is closed)

P ⇒ ∀x Qj (MP applied to the two preceding formulas).

The lemma is proved. ��
We record for future reference that in the parts of deductions constructed

in Lemmas 4.4 and 4.5, only tautologies of the types A0, A1, and A2 in
Section 3.4 were used.

We now give some basic examples of special axioms.

Axioms of equality

Let L be a language in L1 whose alphabet includes a relation = of rank two.
We shall write t1, t2 instead of = (t1, t2). If P is a formula, x is a variable, and
t is a term, we let P (x, t) denote the result of substituting t in P in place of
any or all of the free occurrences of x in P for which t is free.

4.6. Proposition.

(a) The formulas

t = t; t1 = t2 ⇒ t2 = t1; t1 = t2 ∧ t2 = t3 ⇒ t1 = t3;
x = t⇒ (P (x, x) ⇒ P (x, t))

are φ-true for any interpretation of L in which φ(=) is equality.
(b) All the formulas in (a) are deducible from the set

Ax L ∪ {x = x|x is a variable}
∪ {x = y ⇒ (P (x, x) ⇒ P (x, y))|P is an atomic formula}.

The formulas in this list, except for Ax L, are called the axioms of equality.

(c) Let φ be any interpretation of L in a set M for which the axioms of equality
are true. Then φ(=) is an equivalence relation in M that is compatible
with the interpretations of all the relations and operations of L in M. If φ′

denotes the obvious interpretation of L in the quotient set M ′ = M/φ(=),
then φ′(=) is equality, and TφL = Tφ′L.

Proof (Sketch)

(a) The φ-truth is easily established. We illustrate this by showing that
the last formula is φ-true. Suppose it were false at a point ξ ∈ M . Then
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|x = t|(ξ) = 1, |P |(ξ) = 1 and |P (x, t)|(ξ) = 0. The first assertion means
that xξ = tξ. But then |P |(ξ) = |P (x, t)|(ξ) by Proposition 2.10, contradicting
the second and third assertions.

(b) Deduction of t = t : x = x (axiom of equality); ∀x(x = x) (Gen);
∀x(x = x) ⇒ t = t (logical axiom of specialization); t = t (MP).
Deduction of t1 = t2 ⇔ t2 = t1:

(1) x = y ⇒ (x = x⇒ y = x) (axiom of equality with = for P );
(2) Q ⇒ ((P ⇒ (Q ⇒ R)) ⇒ (P ⇒ R)), where P is x = y,Q is x = x,R is

y = x (tautology);
(3) x = x (axiom of equality);
(4) (P ⇒ (Q⇒ R)) ⇒ (P ⇒ R) (MP is applied to (2) and (3));
(5) x = y ⇒ y = x (MP applied to (1) and (4)).

We then twice apply Gen, the axiom of specialization, and MP, in order to
deduce the formula t1 = t2 ⇒ t2 = t1 from (5); we replace t1 by t2 and t2 by t1
to deduce t2 = t1 ⇒ t1 = t2; we use Lemma 4.4 to deduce the conjunction
of these two formulas; and, finally, the tautology (t1 = t2 ⇒ t2 = t1) ∧ (t2 =
t1 ⇒ t1 = t2) ⇒ (t1 = t2 ⇔ t2 = t1), together with MP, gives the required
formula.

The deduction of the third and fourth formulas in (a) will be left to the
reader. The existence of a deduction of the fourth formula can be proved by
induction on the number of connectives and quantifiers in P . P is represented
in the form ¬Q,Q1∗Q2, ∀x Q, or ∃xQ; we assume that the formula with Q,Q1,
and Q2 in place of P has already been deduced, and we complete the deduction
for P (see Mendelson, Chapter 2, Proposition 2.25).

(c) If the axioms of equality are φ-true, then so are the formulas in (a), since
they are deducible. The first three formulas in (a), applied to three different
variables x, y, and z, then show that the relation φ(=) on M is reflexive, sym-
metric, and transitive. In fact, let X,Y , and Z be any three elements of M , let
ξ ∈ M be a point such that xξ = X, yξ = Y ; and zξ = Z and let ∼ be the
relation φ(=) on M . The φ-truth of the formulas in (a) means that

X ∼ X ; X ∼ Y ⇔ Y ∼ X ; X ∼ Y ; and Y ∼ Z ⇒ X ∼ Z.

By definition, to say that ∼ is compatible with the φ-interpretation of all
relations and operations on M means the following. Let p be a relation, and
let φ(p) ⊂ M ′ be its interpretation. If 〈X1, . . . , Xr〉 ∈ φ(p) and X ′

i ∼ Xi,
then 〈X1, . . . , X

′
i , . . . , Xr〉 ∈ φ(p). Now let f be an operation, and let φ(f) :

M r ⇒ M be its interpretation. If φ(f)(X1, . . . , Xr) = Y and X ′
i ∼ Xi, then

φ(f)(X1, . . . , X
′
i, . . . , Xr) = Y ′ ∼ Y .

We verify this compatibility by using the φ-truth of the last formula in
4.6(a) at a suitable point ξ ∈ M . Here we take the formulas p(x1, . . . , xr) and
f(x1, . . . , xr) = y, respectively, for P ; we take the variable x′i for t and the
variable xi for x; and we set xξi = Xi, x

′ξ
i = X ′

i, and yξ = Y .
It follows from the compatibility that we can construct an interpretation φ′

of L in M ′ = M/ ∼ such that φ′(p) = φ(p) mod ∼, φ′(f) = φ(f) mod ∼, and
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φ′(=) is equality. The last formula in 4.6(a) will then imply that all the φ-true
formulas remain φ′-true, and conversely. ��

From now on, when we speak of the special axioms for any language in L1

having the symbol =, we shall without explicit mention always include among
them the axioms of equality for =. Models in which = is interpreted as equality
are called normal models.

Special axioms of arithmetic

4.7. Proposition. The following formulas are true in the standard interpreta-
tion of L1Ar, and are called the special axioms of L1Ar:

(a) The axioms of equality.
(b) The axioms of addition:

x+ 0̄ = x; x+ y = y + x; (x+ y) + z = x+ (y + z);
x+ z = y + z ⇒ x = y.

(c) The axioms of multiplication:

x · 0̄ = 0̄; x · 1 = x; x · y = y · x; (x · y) · z = x · (y · z).

(d) The distributive axiom:

x · (y + z) = x · y + x · z.

(e) The axioms of induction:

P ¯(0) ∧ ∀x(P (x) ⇒ P (x+ 1̄)) ⇒ ∀x P (x),

where P is any formula in L1Ar having one free variable.

The proof is trivial and will be left to the reader. We note only that the
“proof” that the induction axioms are true itself uses induction.

Remarks

(a) In (b), (c), and (d) above, we have written the usual axioms for a
commutative (semi) ring in order to shorten the formal deductions; any in-
formal computation that uses only these axioms can easily be transformed into
a formal deduction of the result of the computation in L1Ar. In Chapter 3
of Mendelson’s textbook, he gives an apparently weaker set of axioms, and
then shows how to deduce our formulas from them. This takes up 5–6 pages of
text, and is basically a tribute to a historical tradition going back to Peano.

(b) The induction axioms are a countable set of formulas in L1Ar; it is
customary to say that 4.7(e) is an axiom schema. The corresponding fact in
intuitive mathematics is stated as follows; “For any property P of nonnegative
integers, if 0 has the property P , and, whenever x has the property P, x + 1
also has the property P , then all nonnegative integers have the property P .”
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Here “property of nonnegative integers” means the same as “any subset of the
nonnegative integers.”

However, in the means of expression of L1Ar there is no way to say “any
subset.” Neither is there any way to say “all properties”; we can only list
one by one the properties that are definable by formulas in the language. We
recall that there are only countably many such properties, while the intuitive
interpretation refers to a continuum of properties. Thus, the formal axiom of
induction is weaker than the informal one, and is also weaker than the version
of this axiom that is obtained by embedding L1Ar in L1Set.

Special axioms of Zermelo–Fraenkel set theory
(see the description of V in the appendix to Chapter II)

4.8. Proposition. The following formulas are true in the standard interpreta-
tion of L1Set in the von Neumann universe V:

(a) Axiom of the empty set : ∀x ¬(x ∈ ∅).
(b) Axiom of extensionality : | ∀z(z ∈ x⇔ z ∈ y) ⇔ x = y.
(c) Axiom of pairing : ∀u ∀w ∃x∀z(z ∈ x⇔ z = u ∨ z = w).
(d) Axiom of the union : ∀x∃y ∀u(∃z(u ∈ z ∧ z ∈ x) ⇔ u ∈ y).
(e) Axiom of the power set : ∀x∃y ∀z(z ⊂ x ⇔ x ∈ y), where z ⊂ x is abbrevi-

ated notation for the formula ∀u(u ∈ z ⇒ u ∈ x).
(f) Axiom of regularity : ∀x(¬x = ∅ ⇒ ∃y(y ∈ x∧y ∩ x = ∅)), where y ∩ x = ∅

is abbreviated notation for ¬∃z(z ∈ y ∧ z ∈ x).

Proof and explanations. This is not a complete list of the axioms of
Zermelo–Fraenkel; the axiom of infinity, axiom of replacement, and also the
axiom of choice, which are more subtle, will be discussed in the next subsection.

(a) The truth of these formulas must, of course, be proved by computing
the function | | using the rules in 2.4 and 2.5. We do this, for example, for the
axiom of extensionality. Let ξ be any point in the interpretation class, and let
X = xξ, Y = yξ. We must show that

|∀z(z ∈ x⇔ z ∈ y)|(ξ) = |x = y|(ξ),

i.e., that

min
Z∈V

(|Z ∈ X | |Z ∈ Y |+ (1 − |Z ∈ X |)(1− |Z ∈ Y |)) = |X = Y |,

where we have written |Z ∈ X | instead of |z ∈ x|(ξ′) with zξ
′

= Z, xξ
′

= X ,
and so on. But the left-hand side equals 1 if and only if for every Z ∈ V either
both Z ∈ X and Z ∈ Y , or else both Z �∈ Y and Z �∈ Y , that is, if and only if
X = Y .
More generally, if we replace V by any subclass M ⊂ V and restrict the standard
interpretation of L1Set to M , then the same reasoning shows that The axiom of
extensionality is true in M if and only if for any elements X,Y ∈M we have

X = Y ⇔ X ∩M = Y ∩M,
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i.e., if and only if every element of M is uniquely determined by its elements
which lie in M. This result will be used later.

The analogous computations for all the other axioms will be given sys-
tematically in a much more difficult context in Chapter III. Hence, at this
point we shall only explain how to translate them into argot, as in Chapter I,
and why they are fulfilled in V .

(b) The axiom of the empty set does not need special comment. We only
remark that if we interpret L1Set in a subclass M ⊂ V , then the constant ∅
may be interpreted as any element X ∈M with the property that X ∩M = ∅,
and this axiom will still hold.

(c) The axiom of pairing is true, because if U,W ∈ Vα, then {U,W} ∈ P(Vα),
so that all pairs lie in V .

(d) The axiom of the union is true, because if X ∈ V , then the set
Y = ∪Z∈XZ also lies in V . In fact, if X ∈ Vα+1 = P(Vα), then the elements
of X are subsets of Vα, and their union therefore lies in Vα+1.

(e) The axiom of the power set is true, because if X ∈ V , then P(X) ∈ V .
In fact, if X ∈ Vα, then X ⊂ Vα, and hence P(X) ⊂ P(Vα) = Vα+1, so that
P(X) ∈ Vα+2.

(f) The axiom of regularity is true, because any nonempty set X ∈ V has
an empty intersection with at least one of its elements; in this form the axiom
is proved in the appendix to this chapter.

4.9. The axioms of L1Set in Section 4.8 have one property in common: their
simplest model in the standard interpretation is precisely the union Vω0 =
∪∞
n=0Vn of the first ω0 levels of the von Neumann universe. In other words, this

is the set of hereditarily finite sets X ∈ V , i.e., those such that if Xn ∈ Xn−1 ∈
· · · ∈ X0 = X then all the Xi are finite.

Vω0 is the reliable, familiar world of combinatorics and number theory.
Additional principles are needed to force us out of this world. There are two
such principles: the axiom of infinity and the axiom schema of replacement.

(a) Axiom of infinity:

∃x(∅ ∈ x ∧ ∀y(y ∈ x⇒ {y} ∈ x)).

Here {y} ∈ x is abbreviated notation for ∃z(z = {y, y} ∧ z ∈ x), where the
meaning of z = {y, y} was explained in 3.7 of Chapter I. This axiom re-
quires that we add to Vω0 some set containing the elements ∅, {Ø}, {{∅}}, . . .
(a countable sequence). Then, in order to preserve the intuitive version of
the axiom of the power set, we must add P(X),P2(X), . . . , thereby hopelessly
leaving the realm of finite sets, countable sets, continua, and so on.

It is a striking fact that none of this is necessary in the formal, as opposed
to intuitive, version of set theory, where we can always limit ourselves to
hereditarily countable submodels of V . This important fact will be discussed in
detail in §7.

(b) Axiom schema of replacement. We introduce the following convenient
abbreviated notation (in any language of L1 having the notion of equality):
∃!y P (y) means ∃y P (y) ∧ ∀x∀y(P (x) ∧ P (y) ⇒ x = y). Thus, this formula is
read; “There exists a unique object y with the property P ,” where we assume



44 II Truth and Deducibility

that = is interpreted as equality. When other variables besides y occur freely in
P , the formula ∃!yP (y) is true precisely when P determines y as an “implicit
function” of the other variables.

We can now write the replacement axioms. In the formula P below we list
all the variables that occur freely in P :

∀z1 · · · ∀zn∀u(∀x(x ∈ u⇒ ∃!y P (x, y, z1, . . . , zn))
⇒ ∃w ∀y(y ∈ w⇔ ∃x(x ∈ u ∧ P (x, y, z1, . . . , zn)))).

The hypothesis says that “P gives y as a function of x ∈ u (for given values
of the parameters z1, . . . , zn)”; the conclusion says that “the image of the set u
under this function is some set w.”

From the standpoint of the formal theory it is worthwhile to note that from
this axiom and the axioms of equality are deducible the so-called separation
axioms, namely

∀z1 · · · ∀zn ∀x∃ y ∀u(u ∈ y ⇔ u ∈ x ∧ P (u, z1, . . . , zn)).

This says that if we take the class of sets having a property P and intersect it
with a set x, we obtain a set.

The replacement axioms should be looked at very carefully. They go beyond
the usual, “intuitively obvious” working tools of the topologist and analyst. The
axioms assert that, for example, it is impossible to “stretch” an ordinal α too
far by means of a function f ; for any f we choose, there is always an ordinal β
such that all the values f(γ), γ � α, lie in Vβ . In other words, the universe V is
incomparably more infinite than any of its levels Vα.

Even if we adopt this axiom, questions remain that are very similar in style,
that are beyond the reach of our intuition, and that are not solvable using
this and the other axioms. For example, do there exist so-called inaccessible
cardinals γ? One of the properties of an inaccessible cardinal γ is the following:
if f is a function from Vα to Vγ (with α < γ), then the set of values of f is an
element of Vγ . In particular, there is an “upper bound” beyond which ordinals
not exceeding γ cannot be “stretched.” Do such infinities exist or not?

After thinking about this and related problems, many specialists on the
foundations of mathematics have come to the conclusion that such languages
of set theory as L1Set with a suitable axiom system are the only reality one
should work with, and any attempt to make intrinsic sense out of the universe
V or similar models is in principle doomed to failure. In particular, the set of
formulas in L1Set that are true in the standard interpretation is not defined,
and we can only talk about formulas that are deducible from the axioms.

But we shall not entirely adopt this point of view for several reasons. The
simplest reason is the feeling that a language without an interpretation not only
loses its intrinsic justification, but also cannot be used for anything. We cannot
even play the “formal game” well unless we master the intuitive concepts that
give meaning to the symbols. A language (along with the external world) helps
bring order and precision to these intuitive concepts, which, in turn, make us
change the language or at least revise our earlier linguistic constructions. But
we can never assume that we have achieved complete clarity.
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We should understand the need for certain types of self-restraint. However,
intellectual asceticism (like all other forms of asceticism) cannot be the lot of
many.

(a) Axiom of choice:

∀x(¬x = ∅ ⇒ ∃y(“y is a function with domain of definitionx”
∧ ∀u(u ∈ x ∧ ¬u = ∅ ⇒ ∃w(w ∈ u ∧ “〈u,w〉 ∈ y”)))).

That is, y chooses one element from each nonempty element u ∈ x.
The belief that this axiom is true in V is at least as justified as the belief

in the existence of V itself. Over the past fifty years it has become customary
for every working mathematician to accept this axiom, and the heated con-
troversies about it at the beginning of the century are now all but forgotten.
The interested reader is referred to Chapter II of Foundations of Set Theory by
Fraenkel and Bar-Hillel (North-Holland, Amsterdam, 1958).

4.10. General properties of axioms. Despite the wide variety of concepts reflected
in these axioms, each of our sets of axioms for languages in L1 (tautologies;
Ax L; special axioms of L1Ar and L1Set) have the following informal syntactic
characteristics:

(a) An algorithm can be given that tells whether any given expression is an
axiom (compare the syntactic analysis in §1 and the verification of the
tautologies in Section 3.4).

(b) A finite number of rules can be given for generating the axioms.

It is clear that a priori, property (b) is less restrictive than (a). In fact, an
algorithm as in (a) can be transformed into a rule for generating the axioms:
“Write out all possible expressions one by one in some order, and take those for
which the algorithm gives a positive answer.”

It is actually natural to suppose that property (a) should characterize
axioms, and property (b) should characterize deducible formulas, no matter
how we explicitly describe the axioms and the deducible formulas in a given
language. In Part III we make these intuitive ideas into precise definitions and
show that (b) is strictly weaker than (a). See also the discussion in Section
11.6(c) of this chapter.

Digression: Proof

1. A proof becomes a proof only after the social act of “accepting it as a proof.”
This is as true for mathematics as it is for physics, linguistics, or biology. The
evolution of commonly accepted criteria for an argument’s being a proof is
an almost untouched theme in the history of science. In any case, the ideal for
what constitutes a mathematical demonstration of a “nonobvious truth” has re-
mained unchanged since the time of Euclid: we must arrive at such a truth from
“obvious” hypotheses, or assertions that have already been proved, by means
of a series of explicitly described, “obviously valid” elementary deductions.
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Thus, the method of deduction is a method of mathematics par
excellence. (“Mathematical induction” clearly comes out of the same tradition.
Peano’s induction principle allows us to write only the first step and the general
step of a proof, and is thereby in some sense the first metamathematical princi-
ple. This point is observed by the tradition of listing Peano’s axiom among the
special axioms (see 4.7(e)), but one way or another, it is one of the archetypes
of mathematical thought.)

The longer the deductive argument, the more important it is for all its
elementary components to be written in an explicit and normalized fashion. In
the last analysis, the amount of initial data in formal mathematics is so small
that failure to observe the rules of hygiene in long deductions would lead to
the collapse of the system if we did not have external checks on the system.
In induction, on the other hand, relatively short deductions are based on a
vast amount of initial information. Darwin’s theory of evolution is explained to
school children, but life is not long enough to judge how persuasive the proofs
are. We see a similar situation in comparative linguistics when the features of
the so-called protolanguages are reconstructed. In such uses of induction, the
“rules of deduction” cannot be so very rigid, despite the critical viewpoint of
the neo-grammarians.

2. The above observations concerning the method of deduction are supported
by the fact that the notion of a formal deduction in languages of L1 is a close
approximation to the concept of an ideal mathematical proof. It is therefore
enlightening to examine the differences between deductions and the arguments
we use in day-to-day practice.

(a) Reliability of the principles. Not only the mathematics implicit in the special
axioms of L1Set and L1Ar, but even the logic of the languages of L1 is not ac-
cepted by everyone. In particular, Brouwer and others have called into question
the law of the excluded middle. From their extremely critical perspective, our
“proofs” are at best harmless deductions of nonsense out of falsehood.

The mathematician cannot permit himself to be completely deaf to these
criticisms. After thinking about them for a while, he should at least be willing
to admit that proofs can have objectively different “degrees of proofness.”

(b) Levels of “proofness.” Every proof that is written must be approved
and accepted by other mathematicians, sometimes by several generations of
mathematicians. In the meantime, both the result and the proof itself are
liable to be refined and improved. Usually the proof is more or less an
outline of a formal deduction in a suitable language. But, as mentioned
before, an assertion P is sometimes established by proving that a proof of P
exists. This hierarchy of proofs of the existence of proofs can, in principle,
be continued indefinitely. We can take down the hierarchy using
sophisticated logical and set-theoretic principles; however, not everyone might
agree with these principles. Papers on constructive mathematics abound with
assertions of the type, “there cannot not exist an algorithm that computes x,”
whereas a classical mathematician would simply say “x exists,” or even “x exists
and is effectively computable.”
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(c) Errors. The peculiarities of the human mind make it impossible in practice to
verify formal deductions, even if we agree that in principle, such a verification
is the ideal form for a proof. Two circumstances act together with perilous
effect: formal deductions are much longer than texts in argot, and humans are
much slower at reading and comprehending such formal arguments than texts
in natural languages.

A proof of a single theorem may take up five, fifteen, or even fifty pages. In
the theory of finite groups, the proofs of the two Burnside conjectures occupy
nearly five hundred pages apiece. Deligne has estimated that a complete proof
of Ramanujan’s conjecture assuming only set theory and elementary analysis
would take about two thousand pages. The length of the corresponding formal
deductions staggers the imagination.

Hence, the absence of errors in a mathematical paper (assuming that none
are discovered), as in other natural sciences, is often established indirectly: how
well the results correspond to what was generally expected, the use of similar
arguments in other papers, examination of small sections of the proof “under
the microscope,” even the reputation of the author—in short, its reproducibility
in the broadest sense of the word. “Incomprehensible” proofs can play a very
useful role, since they stimulate the search for more accessible arguments.

The last two decades have seen the appearance of a very powerful method
for performing long formal deductions, namely the use of computers. At first
glance, it would seem that the status of formal deductions might greatly
improve, so that the Leibnizian ideal of being able to verify truth mechani-
cally would become attainable. But the state of affairs is actually much less
trivial.

We first give two authoritative opinions on this question by C. L. Siegel and
H. P. F. Swinnerton-Dyer. Both opinions relate to the solution by computer of
concrete number-theoretic problems.

3. The present level of knowledge concerning Fermat’s last theorem is as
follows. Let p be a prime. It is called regular if it does not divide the numerator
of any of the Bernoulli numbers B2 = 1

6 , B4 = 1
30 , . . . , Bp−3. Fermat’s theorem

was proved for regular prime exponents by Kummer. For irregular p there is a
series of criteria for Fermat’s theorem to hold. These criteria reduce to checking
that certain divisibility properties do not hold; if they hold, we must try cer-
tain other divisibility properties, and so on. The verification for each p requires
extensive computer computations. As of 1955, this was successfully done for all
p < 4002 (J. L. Selfridge, C. A. Nicol, H. S. Vandiver, Proc. Nat. Acad. Sci.
USA, 41, 970-973 (1955)).

Let v(x) denote the ratio of the number of irregular primes � x to the
number of regular primes � x. Kummer conjectured that v(x) → 1

2 as x →
∞. Siegel (Nachrichten Ak. Wiss. Göttingen, Math. Phys. Klasse, 1964, No.
6, 51–57) suggests that

√
e − 1 is a more likely value for the limit, supports

this opinion with probabilistic arguments, compares with the data of Selfridge–
Nicol–Vandiver, and concludes this discussion with the following unexpected
sentence: “In addition, it must be taken into account that the above numerical
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values for v(x) were obtained using computers, and therefore, strictly speaking,
cannot be considered proved”!

4. Siegel’s point of view can be explained as a natural reaction to informa-
tion received at second hand. But the excerpts below are from an article by a
professional mathematician and experienced computer programmer (Acta
Arithmetica, XVIII, 1971, 371–385). The article is devoted to the following
problem:

Let L1, L2, L3 be three homogeneous linear forms in u, v, w with real coefficients and
determinant ∆; and suppose that the lower bound of |L1L2L3| for integer values of
u, v, w not all zero is 1. What can be said about the possible value for ∆?

The corresponding problem for the product of two linear forms is much easier, and was

essentially completely solved by Markov. There are countably many possible values of

∆ less than 3, each of which has the form

∆ = (9− 4n−2)1/2

for some integer n; the first few values of n are 1, 2, 5, 13, 29, and there is an algorithm

for constructing all the permissible values of n.

For three forms Davenport (1943) proved that ∆ = 7 or ∆ = 9 or
∆ > 9.1. In Swinnerton–Dyer’s paper, all values of ∆ � 17 are computed under
the assumption that there are only finitely many such values and he gives a
list of them: the third value is 148, and the last (the eighteenth) is

√
2597/9.

Discussing this result, he makes a very interesting comment:

When a theorem has been proved with the help of a computer, it is impossi-

ble to give an exposition of the proof which meets the traditional test—that

a sufficiently patient reader should be able to work through the proof and

verify that it is correct. Even if one were to print all the programs and all

the sets of data used (which in this case would occupy some forty very dull

pages) there can be no assurance that a data tape has not been mispunched

or misread. Moreover, every modern computer has obscure faults in its

software and hardware—which so seldom cause errors that they go unde-

tected for years—and every computer is liable to transient faults. Such errors

are rare, but a few of them have probably occurred in the course of the cal-

culations reported here.

The arguments on the positive side are also very curious:

However, the calculation consists in effect of looking for a rather small num-

ber of needles in a six-dimensional haystack; almost all the calculation is

concerned with parts of the haystack which in fact contain no needles, and an

error in those parts of the calculation will have no effect on the final results.

Despite the possibilities of error, I therefore think it almost certain that the

list of permissible ∆ � 17 is complete; and it is inconceivable that an infinity

of permissible ∆ � 17 have been overlooked.
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His conclusion:

Nevertheless, the only way to verify these results (if this were thought worth

while) is for the problem to be attacked quite independently, by a differ-

ent machine. This corresponds exactly to the situation in most experimental

sciences.

We note that it is becoming more and more apparent that the processing,
and also the storage, of large quantities of information outside the human brain
leads to social problems that go far beyond questions of the reliability of math-
ematical deductions.

5. In conclusion, we quote an impression concerning mechanical proofs, even
ones done by hand, which is experienced by many.

After stating a proposition to the effect that “the function TW,η0 θ̃ is correctly
defined,” a gifted and active young mathematician writes (Inventiones Math.,
vol. 3, f.3 (1967), 230):

The proof of this Proposition is a ghastly but wholly straightforward set of

computations. It took me several hours to do every bit and as I was no wiser

at the end—except that I knew the definition was correct—I shall omit details

here.

The moral: a good proof is one that makes us wiser.

5 Tautologies and Boolean Algebras

5.1 Proposition. A finite list, or “basis,” of tautologies—logical polynomials in
three variables P,Q,R—can be given with the following property.

Let L be any language in L1, and let F be the set of all formulas in L that
can be obtained from the basis tautologies by substituting all possible formulas
in place of P,Q,R. Then any tautology in L is deducible from F using only the
rule of deduction MP.

The choice of the basis tautologies is by no means unique. Our list will
consist of the tautologies A0, Al, A2, A3, Bl, B2 in Section 3.4 and the following
tautologies:

C1 ¬(P ⇒ ¬Q) ⇒ (P ∧Q), (P ∧Q) ⇒ ¬(P ⇒ ¬Q).
C2 (¬P ⇒ Q) ⇒ (P ∨Q), (P ∨Q) ⇒ (¬P ⇒ Q).
C3 P ⇒ (¬Q⇒ ¬(P ⇒ Q)).
C4 (P ⇒ Q) ⇒ ((¬P ⇒ Q) ⇒ Q).
C5 (P ⇒ Q) ⇒ (¬Q⇒ ¬P ).
C6 (P ⇒ Q) ⇒ ((Q⇒ P ) ⇒ (P ⇔ Q)).
C7 (P ⇔ Q) ⇒ (P ⇒ Q), (P ⇔ Q) ⇒ (Q⇒ P ).

We are not trying to economize on the size of the basis, but rather on the length
of the proof of Proposition 5.1; hence, A0–C7 is not the shortest possible list.
This does not make any difference for studying the logic of L1; but the study
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of modified logical systems, for example those of the intuitionist type, requires
more careful analysis of this list.

Proof of Proposition 5.1. Let E be a finite set of formulas in L, and let
P be a logical polynomial (with a fixed representation) over E . For any map
v : E → {0, 1}, we extend v to P using the same rules that defined the truth
function | | in Section 2.5. We set

P v =

{
P, if v(P ) = 1,
¬P, if v(P ) = 0.

5.2. Fundamental Lemma. Let Ev = {Qv|Q ∈ E}. Then for any v we have
F ∪ E � P v (using MP).

This lemma expresses the following idea. It is natural to prove Proposition
5.1 by induction on the length of the tautology. However, the component parts
of a tautology themselves might not be tautologies. The operation of taking P
to P v forces any formula to be “v-true” and makes it possible for us to use
induction.

5.3. Proof of 5.1 assuming the Fundamental Lemma. Let P be a tau-
tology, so that P v = P for all v, Set E = {P1, . . . , Pr}. By the fundamen-
tal lemma, F ∪ {P v1 , . . . , P vr } � P using MP for any v: We show that then
F ∪ {P v1 , . . . , P vr−1} � P using MP. Descending induction on r then gives the
required assertion (the assumption that P is a logical polynomial in P1, . . . , Pr
is not used in the induction step).

The Deduction Lemma 4.5 shows that F∪{P v1 , . . . , P vr−1} � (P vr ⇒ P ) using
MP; to see this we only need examine the proof and notice that the deduction
used only MP and the tautologies in F , since the rule of deduction Gen was
not needed.

Since for any v there exists a v′ that coincides with v on P1, . . . , Pr−1 but
takes a different value on Pr, it follows that Pr ⇒ P and ¬Pr ⇒ P are
deducible from F ∪ {P v1 , . . . , P vr−1} using MP. On the other hand, the tau-
tology C4: (Pr⇒ P ) ⇒ ((¬Pr ⇒ P ) ⇒ P ) lies in F . Applying MP twice, we
deduce P . ��

5.4. Proof of the Fundamental Lemma. We use induction on the number
of connectives in the representation of P as a logical polynomial over E . If there
are no connectives, that is, P ∈ E , then the assertion is obvious. Otherwise, P
has the form ¬Q or Q1 ∗Q2, where ∗ is one of the binary connectives.

(a) The case P = ¬Q. If v(Q) = 0, then Qv = ¬Q = P = P v. That Qv = P v is
deducible from F ∪ Ev is precisely the induction assumption.

On the other hand, if v(Q) = 1, then Qv = Q,P v = ¬¬Q. Here Q is
deducible from F ∪ Ev by the induction assumption, and then the tautology
Q⇒ ¬¬Q in F along with MP gives a deduction of P v.

(b) The case P = Q1 ∗Q2. For the different connectives and possible values of
v(Q1) and v(Q2) we first tabulate the formulas for which deductions exist by
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the induction assumption and the formulas for which we must find deductions.
In the columns under ∧ and ∨ we give formulas from which (Q1 ∧ Q2)v and
(Q1 ∨ Q2)v, respectively, are deducible using MP and the tautologies in F
(tautologies Cl, C2, and C5). Hence it suffices to find deductions of each of
formulas 1–16 from F and the pair of formulas in the appropriate row in the
second column using MP.

Deduction of formulas 1–16.

Given:
deductions of Must Find: Deduction of (Q1 ∗ Q2)

v

v(Q1)v(Q2) Qv
1 and Qv

2 ⇒ ∧
0 0 ¬Q1,¬Q2 1. Q1 ⇒ Q2 5. ¬¬(Q1 ⇒ ¬Q2)
0 1 ¬Q1, Q2 2. Q1 ⇒ Q2 6. ¬¬(Q1 ⇒ ¬Q2)
1 0 Q1,¬Q2 3. ¬(Q1 ⇒ Q2) 7. ¬¬(Q1 ⇒ ¬Q2)
1 1 Q1, Q2 4. Q1 ⇒ Q2 8. ¬(Q1 ⇒ ¬Q2)

v(Q1) v(Q2) Qv
1 and Qv

2 ∨ ⇔
0 0 ¬Q1,¬Q2 9. ¬(¬Q1 ⇒ Q2) 13. Q1 ⇔ Q2

0 1 ¬Q1, Q2 10. ¬Q1 ⇒ Q2 14. ¬(Q1 ⇔ Q2)
1 0 Q1,¬Q2 11. ¬Q1 ⇒ Q2 15. ¬(Q1 ⇔ Q2)
1 1 Q1, Q2 12. ¬Q1 ⇒ Q2 16. Q1 ⇔ Q2

Note that if P is deducible then for any Q the formula Q ⇒ P is also
deducible (tautology A1 and MP) and if ¬P is deducible then for any Q the
formula P ⇒ Q is deducible (tautology B2 and MP). This immediately yields
deductions of 1, 2, 4, 10, and 12. If we remove the double negations in the ∧ col-
umn using tautology B1 and MP, we obtain deductions of 5, 6, and 7. And 11 is
deducible since by B1 the second column yields a deduction of ¬¬Q1. In the
first and last rows the deductions of 1 and 4 yield deductions of Q2 ⇒ Q1 by
symmetry; tautology C6 and MP twice give a deduction of 13 and 16 from
Q1 ⇒ Q2 and Q2 ⇒ Q1.

3 is deduced from C3: Q1 ⇒ (¬Q2 ⇒ ¬(Q1 ⇒ Q2)) and the second column
using MP twice.

8 is deduced from C3: Q1 ⇒ (¬¬Q2 ⇒ ¬(Q1 ⇒ ¬Q2)) and the second column
using MP, applying B1 to Q2, and again using MP.

9 is deduced from C3: ¬Q1 ⇒ (¬Q2 ⇒ ¬(¬Q1 ⇒ Q2)) using MP twice.
15 is deduced from 3 by C7 and C5 and MP twice.

Finally, the deduction of 3 from Q1 and ¬Q2 yields by symmetry a deduction
of ¬(Q2 ⇒ Q1)from ¬Q2 and Q2. Hence on the second row the deduction of 14
is analogous to that of 15.

Proposition 5.1 is proved. ��
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5.5. Tautologies and probability. Tautologies are statements that are true
independently of the truth or falsity of their “component parts.” This
assertion still holds even if the components of a tautology are assigned proba-
bilistic truth values ‖P‖ in the algebra of measurable sets in some probability
space.

An example: the tautology R ∨ S ∨ ¬R ∨ ¬S—“either it will rain, or it will
snow, or it won’t rain, or it won’t snow”1—is a reliable weather forecast despite
the great complexity of the meteorological probability space.

For a precise result, it is convenient to use the terminology of Boolean
algebras.

5.6. Boolean algebras. A Boolean algebra B is a set with an operation of rank
one, with two operations ∨ and ∧ of rank two, and with two distinguished
elements 0 and 1, such that the following axioms hold:

(a) (A
′
)
′

= A for all A ∈ B;
(b) ∧ and ∨ are each associative and commutative;
(c) ∧ and ∨ are distributive with respect to one another;
(d) (a ∨ b)′

= a
′ ∧ b′ , (a ∧ b)′

= a
′ ∨ b′ ;

(e) a ∨ a = a ∧ a = a;
(f) 1 ∧ a = a; 0 ∨ a = a.

Examples.

(a) B is the set of all subsets of a set M,
′

is complement, ∧ is intersection, ∨
is union, 0 is the empty subset, and 1 is all of M .

(b) B is the set of open-and-closed subsets of a topological space M with the
same operations.

(c) B is the algebra of measurable subsets (modulo measure-zero subsets) of a
probability space M with the same operations.

In all of these cases B can be identified with the space of characteristic
functions of the corresponding subsets of M (taking the value 1 on the subset
and 0 on the complement).

5.7. Boolean truth functions. Let B be a Boolean algebra, and let E be a set of
formulas in a language L. Let ‖ ‖ : E → B be any map. We extend this map
to the logical polynomials over E (more precisely, to their representations) by
means of the recursive formulas

‖P ⇔ Q‖ = (‖P‖ ∧ ‖Q‖) ∨ (‖P‖
′
∧ ‖Q‖

′
),

‖P ⇒ Q‖ = ‖P‖′ ∨ ‖Q‖,
‖P ∨Q‖ = ‖P‖ ∨ ‖Q‖,
‖P ∧Q‖ = ‖P‖ ∧ ‖Q‖,
‖¬P‖ = ‖P‖

′
.

1 A Russian proverb (translator’s note).
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In the case B = {0, 1}, these formulas coincide with the definitions in 2.5.
We note that ∨ and ∧ have different meanings in the left- and right-hand sides.

5.8. Proposition. Let the logical polynomial P be a tautology over E. Then for
any map ‖ ‖ : E → B to any Boolean algebra B we have ‖P‖ = 1.

Proof. An example of a natural map ‖ ‖ can be obtained as follows: if we are
given an interpretation of L in a set M , then the truth functions |P |(ξ) can be
considered as the characteristic functions of the definable subsets of the inter-
pretation class M (compare §2). Hence, our usual truth functions are essentially
Boolean-valued. They are embedded in the Boolean algebra of all subsets of M ,
which decomposes as a direct product of two-point Boolean algebras {0, 1}.
Hence the proposition follows trivially in this case.

In the general case one could use Stone’s structure theorem for Boolean
algebras. However, instead of this we shall indicate how to reduce the problem
to some simple computations using Proposition 5.1. Because of Proposition 5.1,
it suffices to verify that the basis tautologies are ‖ ‖-true and that ‖ ‖-truth
is preserved when we use MP. For example, if ‖P‖ = 1 and ‖P ⇒ Q‖ = 1, then
‖P‖′ = 0 while ‖P‖′ ∨ ‖Q‖ = 1, so that ‖Q‖ = 1 by 5.6(f); this answers the
question about MP. The truth values of the basis tautologies are computed in
a similar manner using the axioms in 5.6. ��

Boolean truth functions will be the basic tool in the presentation of Cohen
forcing in Chapter III.

Digression: Kennings

1. The process in §5 generates all possible tautologies starting with a finite
number of tautologies and using a finite number of rules. It has become very
popular in modern linguistics to attempt to find a suitable description of natural
languages by means of such generating rules (N. Chomsky and others; see, for
example, the book Éléments de linguistique mathématique by A. V. Gladkǐı and
I. A. Mel’čuk, Paris, Dunod, 1972).

However, many psychologists consider that this conception has little to do
with the actual process of speech. According to one such opinion, real speech
has more in common with a game of chance, chasing a fugitive, or a river
current near a jagged shoreline. The choice of the next word in a sentence is
determined statistically both by a formulating principle (an idea, situation, or
psychological state) and by the peculiarities of semantics, grammar, phonetics,
and the associative cloud formed by the earlier words.

There is reason to hope that formal grammars are more closely suited to
describing special fragments of natural languages that are in some sense more
rigidly defined, such as certain language fragments in poetry or law. In these
1 A metaphorical compound word or phase used specially in Old English and Old

Norse poetry, e.g. ‘swan-road’ for ‘ocean’—Webstar’s New Collegiate Dictionary
(translator’s note).
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fragments an essential role is played by “prohibitions,” which weed out, say, all
texts not having a certain rhythmic pattern. Even the most casual attempt at
writing poetry reveals the psychological reality of prohibitions in versification.
But it is much less obvious that there is a set of generating rules that also has
a psychological reality.

2. Yet there has been at least one poetic system in which generating rules
occupied an important place. One of the basic elements of skaldic (ancient
Icelandic) poetry consisted of special formulas called kennings. A kenning is an
expression that can replace a single word. For example,

“storm of spears” is a kenning for “battle”

“tree of battle”
“bush of the helmet”
“thrower of swords”
“giver of gold”

⎫⎪⎪⎬⎪⎪⎭ are kennings for warrior or man

“sea of the wagon” is a kenning for “earth”
“fire of war” is a “kenning for “gold”

“sky of sand”
“field of seals”

}
are kennings for “sea,” and so on.

A simple kenning is a kenning no part of which is a kenning. The examples
above are all simple kennings. They play the role of axioms; obviously, only very
great poets have the right to create new simple kennings. It falls to the lot of
the lesser poets to create new kennings using the rules of deduction. The rule
of deduction of a new kenning from earlier kennings is as follows: any word in
a kenning may be replaced by a (not necessarily simple) kenning for that word.
Here is a complicated example of a kenning together with its decomposition
into simple kennings (an actual example):

“thrower of the fire of the storm of the witch of the moon of the steed of the ship

stables”

warrior or man

sword

battle

spear

shield

ship

The Soviet poet Leonid Martynov thought of kennings as metaphors (a
fundamental error, although an understandable one—kennings and metaphors
play completely different structural roles in different poetic systems), and he
wrote a poem “Songs of the Skalds” which ends as follows:
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. . . But perhaps the translators have gotten a bit carried away?

No!
In our times, too,

might there not live
some throwers

of the fire
of the storm
of the witch
of the moon
of the steed

of the ship stables,
squanderers
of the amber

of the cold earth
of the great boar?

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

or

Anything is possible !!
And who can be so very sure
That there are no longer songs

which could be called

Surf
of yeast

of the people
of the bones
of the fjord?

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Perhaps there really are such songs now,

Who can tell??

After all this, the professional opinion of M. I. Steblin-Kamenskii, whose
book Icelandic Culture (Leningrad, Nauka, 1967) provided us with the above
examples, sounds a little anticlimactic: “As a rule, any kenning for a man or
warrior was no richer in content than the pronoun ‘he.’ ”

Exercises:

(a) Find the simple kennings from which the last two kennings in Martynov’s poem
are deduced.

(b) Construct the kennings of maximum length that are deducible from all the
simple kennings in the above text. Prove that it is impossible to deduce longer
kennings.

6 Godel’s Completeness Theorem

6.1. Let L be a language in L1, let φ be an interpretation of L, and let TφL be
the set of φ-true formulas. In §3 it was shown that the set TφL is Gödelian: it is
complete, does not contain a contradiction, is closed with respect to deduction,
and contains all the logical axioms Ax L. We say that a set of formulas E
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in L is consistent if the set of formulas deducible from E does not contain a
contradiction, i.e., if there is no P such that E � P and E � ¬P ; otherwise,
we say that E is inconsistent. The basic purpose of this section is to prove the
following converse of the result in §3:

6.2. Theorem (Gödel)

(a) Any Gödelian set T is the set of φ-true formulas TφL for a suitable inter-
pretation of L in some set M having cardinality � card (alphabet of L) +
ℵ0. (Here and below we always mean the cardinality of the alphabet without
the variables.)

(b) Any set of formulas E which contains Ax L and is consistent can be imbed-
ded in a Godelian set.

The model M which is constructed in the proof consists of expressions in
some extension of the alphabet of L, and thus has a somewhat artificial charac-
ter. In the next section we show that, if we are given some natural interpretation
(M,φ) of L, then we can find a submodel having cardinality � card (alphabet
of L) + ℵ0.

6.3 Corollary. (Deducibility criterion). Let E ⊃ Ax L.

(a) A formula P is deducible from E if and only if either E is inconsistent, or
P is φ-true for all models φ of the set E having cardinality � card (alphabet
of L) + ℵ0.

(b) A formula P is independent of E if and only if both E ∪ {P} and E ∪ {¬P}
are consistent; by Theorem 6.2, this is true if and only if E ∪ {P} and
E ∪ {¬P}have models.

In what follows we shall often omit the verification that various formal
deductions exist. If the reader wants to fill in such a verification, this can almost
always be done more easily using deducibility criterion 6.3 than directly.

Proof of the corollary

(a) If E is inconsistent, then any formula can be deduced from E
(Proposition 4.2). Suppose E is consistent and P is φ-true for all models of
E . Let P̄ = ∀x1 · · · ∀xnP be the “closure” of P . To prove that E � P . we
consider two cases.
(a1) E ∪ {¬P̄} is inconsistent. Then E ∪ {¬P̄} � P̄ , so that, by the
Deduction lemma, E � ¬P̄ ⇒ P̄ . The tautology (¬P̄ ⇒ P̄ ) ⇒ P̄ and MP
give E � P̄ , and then the axiom of specialization and MP give E � P .
(a2) E ∪ {¬P̄} is consistent. Then, by Theorem 6.2, the set E ∪ {¬P̄} has a
model. In this model E is true and P is false, so that this case is impossible.

(b) Suppose that P is independent of E , i.e., neither P nor ¬P is deducible.
Then, by part (a), there exists a model of E in which P is true and a model of
E in which P is false. The converse is obvious. ��

We now proceed to the proof of Gödel’s completeness theorem.
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6.4. Definition. Let E be a set of formulas in a language L. The alphabet of
L is said to be sufficient for E if, for each closed formula ¬∀xP (x) in E there
exists a constant cP (depending on P ) such that the formula

RP : ¬∀x P (x) ⇒ ¬P (cP )

belongs to E .
The intuitive meaning of RP is; “If not all x have the property P , then some

concrete object cP can be found that does not have this property.” We say that
the alphabet (rather than E) is “sufficient” or “insufficient” because if E does
not contain enough formulas of the type RP , we can simply add all the Rp to
E , while if there are not enough constants cP , we then have to add them to the
alphabet of the language.

The plan for proving Theorem 6.2 is as follows. We first prove the funda-
mental lemma:

6.5. Fundamental Lemma. If a set of formulas E in a language L is consistent
and complete and contains Ax L, and if the alphabet of L is sufficient for E,
then E has a model with cardinality � card(alphabet of L) + ℵ0.

The next two lemmas allow us to embed any consistent E in a complete set,
or in one for which the alphabet is sufficient.

6.6. Lemma. If E is consistent and contains Ax L, then there exists a consis-
tent and complete set of formulas E ′ ⊃ E .

6.7. Lemma. If E is consistent and contains Ax L, then there exist:

(a) a language L
′
whose alphabet is obtained from the alphabet of L by adding

a set of new constants having cardinality � card(alphabet of L) + ℵ0.
(b) a set of formulas E ′

in L
′

that is consistent, contains E and Ax L
′
, and

has the property that the alphabet of L
′
is sufficient for E ′

.

However, these constructions get in each other’s way. If we complete a set E
for which the alphabet is sufficient, we might obtain a set with an insufficient
alphabet; if we add new constants, we increase the overall supply of formulas
in the language, and thereby lose the completeness of E . Hence, we have to
alternate the constructions in 6.6 and 6.7 a countable number of times in order
to prove our last lemma:

6.8. Lemma. If E ⊃ Ax L is consistent, then there exist:

(a) a language L(∞) whose alphabet is obtained from the alphabet of L by adding
a set of new constants having cardinality � card(alphabet of L) + ℵ0.

(b) a set of formulas E(∞) in L(∞) that is complete and consistent, contains E
and Ax L(∞), and has the property that the alphabet of L(∞) is sufficient
for E(∞).

After Lemma 6.8 is proved, Theorem 6.2 is obtained from the fundamental
lemma applied to E(∞) if we restrict the resulting model to L and E .



58 II Truth and Deducibility

We now prove the lemmas. The fundamental lemma is proved in 6.9, and
Lemmas 6.5, 6.6, and 6.7 are proved in Sections 6.10, 6.11, and 6.12, respectively.

6.9. Proof of the Fundamental Lemma. We begin by explicitly construct-
ing the interpretation φ of L that will be our model for E .
(a) By a constant term we mean a term in L that does not contain any symbols
for variables. We let M = {t̄ | t is a constant term } be a “second copy” of the
set of constant terms, and we define the primary mappings of the interpretation
φ of L in M as follows:

φ(c) = c̄ (for any constant c);

φ(f)(t̄1, . . . , t̄r) = f(t1, . . . , tr) (for each operation symbol f of
degree r and all constant terms t1, . . . , tr);

〈t̄1, . . . t̄r〉 ∈ φ(p) if and only if p(t1, . . . , tr) ∈ E
(for each relation p of degree r
and all constant terms t1, . . . , tr).

We now prove the following claim:

(b) Claim. Let P be a closed formula. Then |P |φ = 1 if and only if P ∈ E .
(This claim implies that φ is a model for E . In fact, if P ∈ E is not closed, then
its closure ∀x1 · · · ∀xnP is deducible from E using Gen, and hence, since E is
complete and consistent, ∀x1 · · · ∀xnP ∈ E . By the claim, |∀x1 · · · ∀xnP |φ = 1,
so that |P |φ = 1.)

Proof of the claim. We use induction on the total number of quantifiers
and connectives in P . We shall write |P | instead of |P |φ.

(b1) P is an atomic formula p(t1, . . . , tn). The claim follows from the defi-
nition of |P | and the list of primary mappings, since the ti are constant terms
(or else P would not be closed).

(b2) P = ¬Q. If |P | = 1, then |Q| = 0 and Q �∈ E by the induction
assumption applied to Q; since E is complete, we have ¬Q ∈ E , i.e., P ∈ E . On
the other hand, if |P | = 0, then |Q| = 1 and Q ∈ E , so that ¬Q �∈ E since E is
consistent.

(b3) P = (Q1 ⇒ Q2). We first show that if |P | = 0 then P �∈ E . In fact, in
this case |Q1| = 1 and |Q2| = 0; by the induction assumption, Q1 ∈ E , Q2 �∈ E ;
since E is complete, ¬Q2 ∈ E ; using the tautology Q1 ⇒ (¬Q2 ⇒ ¬(Q1 ⇒ Q2))
and using MP twice yields E � (Q1 ⇒ Q2). Since E is complete and consistent,
all closed formulas that are deducible from E belong to E ; hence, ¬(Q1 ⇒
Q2) = ¬P ∈ E , so that P �∈ E .

We now show that if P �∈ E , then |P | = 0. In fact, since E is complete,
we then have ¬P = ¬(Q1 ⇒ Q2) ∈ E . The tautologies ¬(Q1 ⇒ Q2) ⇒ Q1

and ¬(Q1 ⇒ Q2) ⇒ ¬Q2 and MP give E � Q1 and E¬Q2, so that since E is
complete and consistent, Q1 ∈ E and ¬Q2 ∈ E . By the induction assumption,
|Q1| = 1 and |Q2| = 0, so that |P | = |Q1 ⇒ Q2| = 0.

(b4) P = Q1 ∨Q2 or Q1 ∧Q2. Using the tautologies that express ∧ and ∨
in terms of ⇒ and ¬, we can reduce to the previous cases; we omit the details.
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(b5) P = ∀xQ. If x does not occur freely in Q, then |P | = 1 is equivalent to
|Q| = 1, i.e., by the induction assumption, to Q ∈ E . But Q ∈ E is equivalent
to ∀x Q ∈ E , in one direction using Gen and in the other direction using the
axiom of specialization with t = x and then MP.

We now assume that x occurs freely in Q. We first suppose that |P | = 1
but P �∈ E , and obtain a contradiction. If P �∈ E , then ¬P ∈ E , i.e., ¬∀xQ(x) ∈
E . Since the alphabet of L is sufficient for E , it follows that E contains the
formula ¬∀xQ(x) ⇒ ¬Q(cQ). Applying MP, we obtain E � ¬Q(cQ); since E
is consistent, we have Q(cQ) �∈ E . By the induction assumption, |Q(cQ)| =
0 (Q(cQ) is closed!). This means that |Q(x)|(ξ) = 0 for ξ ∈ M if xξ = cQ,
contradicting the assumption that |P | = 1.

We now suppose that |P | = 0 but P ∈ E , and obtain a contradiction. Since
|P | = 0, for some ξ ∈M we have |Q(x)|(ξ) = 0. Let t be the constant term for
which xξ = t. Clearly t is free for x in Q, so that 0 = |Q(x)|(ξ) = |Q(t)|. Hence
Q(t) �∈ E by the induction assumption, and ¬Q(t) ∈ E since E is complete.
On the other hand, if P ∈ E , i.e., ∀xQx ∈ E , then the axiom of specialization
∀x Q(x) ⇒ Q(t) gives us E � Q(t). But since ¬Q(t) ∈ E , this contradicts the
consistency of E .

(b6) P = ∃xQ. This reduces to the previous case using the axiom that
expresses ∃ in terms of ∀ and negation; we omit the details. ��
6.10. Proof Of Lemma 6.6. In order to embed E in a complete and consistent
set E ′

, we shall have to use Zorn’s lemma and the deduction lemma for L (see
Section 4.5 of Chapter II). Zorn’s lemma will be applied to the set CE = the
set of sets of formulas E ′

in L that contain E and are consistent. The set CE is
ordered by inclusion.

Verification of the hypothesis of Zorn’s lemma. Let{E ′
α}α∈I be a lin-

early ordered subset of CE , i.e., for any α and β we have either E ′
α � E ′

β or
E ′
β � E ′

α. Then the union ∪E ′
α a belongs to CE . In fact, otherwise ∪E ′

α would be
inconsistent, and there would exist a deduction of a contradiction from a finite
number of formulas. Suppose these formulas are contained in E ′

α1
, . . . , E ′

αn
. But

one of these sets contains the remaining n − 1; this set would be inconsistent,
contrary to the definition of CE .

Proof of lemma 6.6 from Zorn’s lemma. The set CE has a maximal
element, i.e., a consistent set E ′ ⊃ E such that if Q �∈ E ′

then E ′ ∪ {Q} is
inconsistent. We claim that E ′

is complete. In fact, suppose that there were
a closed formula P such that P �∈ E ′

and ¬P �∈ E ′
. Since E ′

is maximal,
it follows that E ′ ∪ {P} � R and E ′ ∪ {¬P} � R for any formula R. By
the deduction lemma, E ′ � P ⇒ R and E ′ � ¬P ⇒ R. Using the tautology
(P ⇒ R) ⇒ ((¬P ⇒ R) ⇒ R)) and MP, we have E ′ � R, contradicting the
consistency of E ′

. ��
6.11. Proof of Lemma 6.7. In constructing a language with a sufficient alpha-
bet for a consistent set of formulas E ′

that contains E and Ax L
′
, we proceed

in the most natural way.
(a) We add to the alphabet of L a set of new constants whose cardinality is

that of the alphabet of L+ ℵ0. We obtain a language L
′
.
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(b) We consider the set of formulas E ∪ Ax L
′

in the language L
′
, where

Ax L
′

consists of all the logical axioms of L
′
. We claim that this set of formulas

is consistent. In fact, if there were a deduction of a contradiction from E∪ Ax L
′

in L
′
, then the following procedure would transform it into a deduction of a

contradiction from E in L: take the finite set consisting of all the new constants
that occur in the formulas in the deduction and replace these constants by
old variables (in L) that do not occur in the formulas in the deduction. It is
easily verified that the deduction of a contradiction remains a deduction of a
contradiction, and now lies entirely in L.

(c) We consider the set S of formulas P (x) containing one free variable x
and such that ¬∀x P (x) ∈ E ∪ Ax L

′
. For each P (x) in S we choose a new

constant cP subject to the following restriction: each cP can be assigned a
natural number, its rank, in such a way that if a constant of rank n occurs in
P (x) then cP has rank > n. This can be done since card(S)� card(alphabet of
L

′
) = card(alphabet of L) + ℵ0. For each P (x) in S define the formula

Rp : ¬∀xP (x) ⇒ ¬P (cP )

and finally let
E ′

= E ∪Ax L
′ ∪ {RP |P (x) ∈ S}.

Call any RP an R-formula. Note that no R-formula has the form ¬∀x P (x), so
that L

′
is sufficient for E ′

. It remains only to verify that E ′
is consistent. If a

contradiction were deducible from E ′
then it would be deducible using finitely

many R-formulas. At least one RP among these must be such that cP does not
occur in any of the others: namely, pick cP of maximal rank. Hence it suffices
to verify that if E ∪ Ax L

′ ∪ R is consistent, where R is a set of formulas not
containing cP , then the addition of RP does not lead to a contradiction.

Suppose E ∪ Ax L
′ ∪ R ∪ {Rp} were inconsistent. Then, in particular, we

would have a deduction of ¬RP and, by the deduction lemma, E ∪AxL
′ ∪R �

RP ⇒ ¬RP . The tautology (RP ⇒ ¬RP ) ⇒ ¬RP and MP would yield a
deduction of ¬RP ; that is,

E ∪AxL′ ∪R � (¬∀xP (x) ⇒ ¬P (cP )).

Then the tautology ¬(P ⇒ ¬Q) ⇒ Q and MP would yield a deduction of
P (cp). Transform this deduction by replacing the constant cP with a variable
y that does not occur in the formulas in the deduction. Since cP does not
occur in R it is easily verified that the transformation yields a deduction of
P (y) from E ∪ AxL

′ ∪ R. Using Gen, E ∪ AxL
′ ∪ R � ∀ y P (y). But since

¬∀xP (x) ∈ E ∪ AxL
′
, we have E ∪ AxL

′ � ¬∀y P (y). Hence E ∪ AxL
′ ∪ R is

inconsistent, contrary to hypothesis. ��
6.12. Proof Of Lemma 6.8. Let L be a language in the class L1, and let E
be a set of formulas in L. We embed E in a complete and consistent set E ′

,
and then apply Lemma 6.7 to (L, E ′

). We let L∗ and E∗ denote the resulting
language and set of formulas. We further define inductively

(L(0), E(0)) = (L, E), (L(i+1), E(i+1)) = (L(i)∗ , E(i)∗),
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and finally

L(∞) =
∞⋃
i=0

L(i), E(∞) =
∞⋃
i=0

E(i).

The set E(∞) is consistent, since any deduction of a contradiction would be
obtained “at some finite level,” and all the E(i) are consistent. It is complete,
since every closed formula in L(∞) is written in the alphabet of L(i) for some i,
and E(i+1) contains the completion of E(i) in L(i). Finally, the alphabet of L(∞)

is sufficient for E(∞) by the same argument.

This completes the proof of the lemmas. ��
6.13. Deduction of theorem 6.2 from the lemmas. Let T be a Gödelian
set of formulas in L. Applying Lemma 6.8 to T , we embed (L, T ) in (L(∞), T (∞)),
where the pair (L∞), T (∞)) satisfies Lemma 6.5. Let φ(∞) be an interpretation
of L(∞) such as must exist by Lemma 6.5. The cardinality of M (∞) does not
exceed card(alphabet of L)+ℵ0. The restriction φ of φ(∞) to L satisfies the con-
dition T ⊂ TφL. We prove that T = TφL. In fact, let P ∈ TφL. If P is closed,
then P ∈ T , since either P or ¬P lies in T by completeness, and ¬P �∈ T
because P is φ-true. If P is not closed, and x1, . . . , xn are the variables that
occur freely in P , then ∀xn P is closed and belongs to T . By the axiom of spe-
cialization, P is deducible from T ∪ {∀x1 · · · ∀xnP}, so that P ∈ T , since T is
closed under deduction. This proves the first assertion of the theorem.

The second assertion follows from the analogous argument applied to
E instead of T . We find a model φ for E ; then E ⊂ TφL and TφL is
Gödelian. ��
6.14. In conclusion, we note that if the alphabet of L contains a symbol =
for which the axioms of equality are included in E (or T ), then there exists
a normal interpretation that satisfies Theorem 6.2 and takes = into equality.
To prove this, we take the above model M and divide out by the equivalence
relation φ(=), as in Section 4.6.

7 Countable Models and Skolem’s Paradox

“I know what you’re thinking about,” said
Tweedledum: “but it isn’t so, nohow.”

“Contrariwise,” continued Tweedledee, “if it
was so, it might be; and if it were so, it would
be: but as it isn’t, it ain’t. That’s logic.”

Lewis Carroll, Through the Looking Glass

7.1. In this section we discuss the technique of “cutting down” models, in par-
ticular, models for L1Set. Let L be a language in L1, let M ⊂ N be two sets (or
classes in V ), and let φ and ψ be interpretations of L in M and N , respectively,
that are compatible in the obvious sense, so that ψ is an extension of φ. We
have a natural embedding of interpretation classes M ⊂ N .
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7.2. Definition. A formula P in L is called (M,N)-absolute if for all ξ ∈ M
we have

|P |M (ξ) = |P |N (ξ).

(We write | |M instead of | |φ, and so on.)

The property of being absolute is usually used as follows: if P is absolute,
and is also N -true, then it is automatically M -true. A formula P often fails to
be absolute for the following reason: a formula P = ∃x Q(x) can be N -true, so
that N has an object with the property Q, but not M -true, because no such
object lies in M . The proof of the following assertion shows how to handle this
situation.

7.3. Proposition. Let E be a set of formulas in L, let ψ be an interpretation of
L in N , and let M0 ⊂ N be a subset. Then there exists a set M,M0 ⊂M ⊂ N ,
having cardinality � card M0 + card E + ℵ0, such that all the formulas in E
are (M,N)-absolute.

7.4. Corollary (Löwenheim–Skolem). If the alphabet of L is countable and N
is a model for E, then N has a countable submodel for E .

The corollary follows from Proposition 7.3 if we construct a countable
submodel with respect to which all the formulas of L are absolute, and in
particular, in which all formulas that were true before remain true.

Proof of 7.3. Suppose the set Mi ⊂ N, i � 0, has already been defined. Set

Mi+1 = Mi ∪ {xξ
′
|ξ′

= ξ
′
(x, P, ξ)},

where x runs through the variables in L,P runs through the subformulas of the
formulas in E , and ξ runs through the points of M i, and where for each fixed
triple (x, P, ξ), ξ

′
(x, P, ξ) is any one variation of ξ along x for which |P |N (ξ

′
) = 1

if such a variation exists; otherwise, the triple does not make any contribution
to Mi+1.

Further, set M = ∪∞
i=0Mi. M clearly has the desired cardinality. We now

show that all subformulas of the formulas in E are (M,N)-absolute. We use
induction on the number of quantifiers and connectives in the formula. The
result is obvious for atomic formulas; the inductive step when a new formula
is constructed using a connective is also clear. The quantifier ∀ reduces to ∃ in
the usual way.

Thus, suppose P is absolute. We show that ∃xP is also absolute. It suffices
to consider the case that x occurs freely in P . For ξ ∈M we have

|∃x P |N (ξ) =

⎧⎪⎨⎪⎩
1, if there exists a variation ξ

′ ∈ N̄ of ξ along x
with |P |N (ξ

′
) = 1,

0, otherwise;

|∃x P |M (ξ) =

⎧⎪⎨⎪⎩
1, if if there exists a variation ξ′′ ∈M of ξ along x

with |P |M (ξ′′) = 1,
0, otherwise.
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But the conditions on the right are equivalent. In fact, there exists a variation
η of the point ξ along variables that do not occur freely in P , such that η ∈M i

for some i. Then in the case |∃x P |N (ξ) = |∃x P |N (η) = 1 there is a ξ
′ ∈ N

with |P |N (ξ′) = 1 ⇒ there is an η′ ∈ M i+1 with |P |N (η′) = 1, where η′

is a variation of η along x, by the construction of Mi+1. This completes the
proof. ��
7.5. We now apply Corollary 7.4 to the standard interpretation of L1Set in
the von Neumann universe V and the set E of Zermelo–Fraenkel axioms.
We obtain a countable model N for this axiom system, but this model has
one defect: if X ∈ N , some elements in X might not themselves belong to N ,
i.e., ∈ is not necessarily transitive. The following result of Mostowski shows how
to replace N by a transitive countable model.

Let N ⊂ V be a subclass, and let ε ⊂ N ×N be a binary relation. We shall
write XεY instead of 〈X,Y 〉 ∈ ε. For any X ∈ N we set

[X ] = {Y |Y εX}.
Suppose that [X ]εV for all X ∈ N , i.e., each [X ] is a set rather than a class.
We consider the interpretation φ of L1Set in the class N for which φ(∈) is ε
and φ(=) is equality.

7.6. Proposition (Mostowski). Suppose that the axiom of extensionality and
the axiom of the empty set are φ-true, and that N does not contain any infi-
nite chain · · ·XnεXn−1ε · · · εX1εX0. Then there exist a unique transitive class
M ⊂ V and a unique isomorphism f : (N, ε) ∼→ (M,∈).

If we apply this proposition to the countable model (N,∈) for the Zermelo–
Fraenkel axioms in Section 7.5, we obtain a transitive countable model
(M,∈), that is, a “small-universe.” (The condition that all ε-chains are finite
holds even in V , as well as in N ; [X ] is the subset X ∩N ⊂ X , and hence is an
element of V .)

7.7. Proof of Proposition 7.6. Using transfinite induction, for every
ordinal α we construct sets Nα ⊂ N,Mα ⊂ V and compatible isomorphisms
fα : (Nα, ε|Nα) ∼→ (Mα,∈ |Mα), and we show that ∪Nα = N .

(a) Since the axiom of extensionality is φ-true and φ(=) is equality, we easily
obtain X1 = X2 ⇔ [X1] = [X2] for all X1, X2 ∈ N . Let ∅N ∈ N be the
interpretation of the constant ∅ of the language L1Set. Since the axiom of the
empty set is φ-true, we may conclude that ∅N is the unique element of N for
which [∅N ] = ∅ ∈ V . We set

N0 = {∅N}, M0 = {∅}, f0(∅N ) = ∅.

(b) Recursive construction. Let α be an ordinal. Suppose that Nα,Mα, and fα
have already been constructed. We set

Nα+1 = {X ∈ N |[X ] ⊂ Nα ∧X �∈ Nα} ∪Nα;
fα+1(X) = {fα(Y )|Y ∈ [X ]}, for X ∈ Nα+1\Nα; fα+1|Nα = fα;
Mα+1 = image of fα+1 = range of fα+1.
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If β is a limiting ordinal, we set Nβ = ∪α<βNα,Mβ = ∪α<βMα, and fβ =
∪α<βfα. Finally, we set M = ∪Mα and f = ∪fα, where the union is taken over
all the ordinals.

(c) Inductive proof. We verify that for each α,

(c1) Nα is a set, i.e., Nα ∈ V .
(c2) Mα is a transitive subset of V.
(c3) fα is an isomorphism of Nα with Mα taking ε to ∈.
(c4) N = ∪αNα.

Assertions (c1)−(c3) are obvious for α = 0. If they hold for all α < β and if β is
a limiting ordinal, then they also hold for β. It remains to check the step from
α to α+ 1.

(c1) [ ] is obviously a function from Nα+1 \Nα to P(Nα); since the axiom
of extensionality is true, there exists an inverse function. Its image Nα+1 \Nα
is a set, since Nα, and therefore P(Nα), are sets by the induction assumption.

(c2) Any element in Mα+l \ Mα has the form {fα(Y )|Y ∈ [X ]}, where
X ∈ Nα+1 \Nα. But then [X ] ⊂ Nα. Hence, an element fα(Y ) of this element
of Mα+1 \Mα belongs to the image of fα, i.e., to the set Mα ⊂ Mα+1. This
proves the transitivity of Mα+1.

(c3) We first verify that fα+1 is a bijection. The surjectivity is obvious;
using the induction assumption, we see that it suffices to verify injectivity on
Nα+1 \Nα. But if X1, X2 ∈ Nα+1\Nα and fα+1(X1) = fα+1(X2), then

{fα(Y )|Y ∈ [X1]} = {fα(Y )|Y ∈ [X2]}.

Since fα is injective, we obtain [X1] = [X2], so that X1 = X2.
We then obtain

Y εX ⇔ Y ∈ [X ] ⇔ fα(Y ) ∈ fα+1(X),

so that for X ∈ Nα+1\Nα the relation Y εX goes to fα+1(Y ) ∈ fα+1(X). This
is clearly sufficient to complete the induction.

(c4) Finally, we verify that N = ∪ Nα. Let N
′

= N\∪Nα; we suppose that
N ′ is nonempty and show that this leads to a contradiction. If there existed an
X ∈ N ′ such that [X ] ∩ N ′ = ∅, then we would have [X ] ∩ N ⊂ ∪Nα; then
[X ] ⊂ Nα0 for some α0, so that X ∈ Nα0+1, contradicting the assumption that
X ∈ N\ ∪ Nα. On the other hand, if we had [X0] ∩ N ′ �= ∅ for all X0 ∈ N ′,
then, successively choosing Xn+1 ∈ [Xn]∩N ′, we would obtain an infinite chain
Xn+1εXnεXn−1ε · · · εX0, contradicting the hypothesis of the theorem.

(d) Suppose we have two transitive subclasses M and M
′
, and an isomorphism

g : (M,∈) ∼→ (M
′
,∈). We set Mα = Vα ∩M and M

′
α = Vα ∩M

′
. An obvious

induction on α then shows that g is the identity map. The proposition is
proved. ��
7.8. Skolem’s paradox. Let M be a transitive countable model for the Zermelo–
Fraenkel axioms. Then the following formulas are M -true:

the axiom of infinity;
the power set axiom;
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Cantor’s theorem that there is no mapping of x onto P(x) for any set x (this
theorem is deducible from the Zermelo–Fraenkel axioms).

Since P(X) is uncountable when X is countably infinite, the content of the
assertion that the power set axiom is true in the countable model M must be
very different from the content of the assertion that this axiom is V -true. In fact,
in L1Set let “y = P(x)” be abbreviated notation for the formula ∀z(“z ⊂ x”
⇔ z ∈ y). Let ξ ∈ M,xξ = X ∈ M , and yξ = Y ∈ M . Then we easily
see that

|“y = P(x)”|M (ξ) = 1 ⇔ Y = {Z|Z ⊂ X ∧ Z ∈M},

i.e., P(X)M = P(X) ∩ M plays the role of P(X) in M . Here P(X)M is at
most countably infinite, since M is countable; so, from the usual point of
view, there exists a mapping of a countably infinite set X onto P(X)M . This
does not contradict Cantor’s theorem, because the M -truth of Cantor’s theo-
rem merely means that there are no (graphs of) such mappings in the model
M . Such graphs may exist outside of M , but if we add such a graph to M
(along with everything that must be added for the axioms to remain true), we
thereby increaseM , and at the same time P(X)M , and the mapping stops being
onto.

All such ways in which statements of set theory change their meaning in
countable models are customarily referred to as Skolem’s paradox.

Cohen was the first who was able to use the properties of countable models
to prove the nondeducibility of the continuum hypothesis. In his models sets
of “M -intermediate” cardinality lie between ω0 and P(ω0)M , although from an
external point of view both ω0 and P(ω0)M , along with all the other sets, are
simply countable. Cohen introduced fundamentally new ideas of relativizing the
very notion of truth, and it is only with the benefit of hindsight that we can so
easily understand the situation in his models. For details, see Chapter III.

Skolem himself, and other specialists on the foundations of mathematics,
were willing to work with countably infinite sets, but not with larger infinities.
They considered Skolem’s paradox to be a manifestation of the relative char-
acter of set-theoretic concepts. In particular, they considered that there exist
“different continua” P(ω0)M , none of which coincides with the “real” P(ω0).

From the point of view of the topologist or analyst, for whom the contin-
uum is a working reality, the existence of countable models means that for-
mal language has limitations as a means of imitating intuitive reasoning. We
encountered similar limitations when discussing the formal axioms of induction
in §4.

For the psychologist or philosopher, perhaps the most interesting aspect of
the situation is that any mathematician can understand the viewpoint of ano-
ther mathematician (without having to agree with it). This means that what
mathematician A says, though demonstrably incapable of conveying unambigu-
ous information about the continuum, nevertheless is capable of bringing the
brain of mathematician B to the point where it forms an idea of the continuum
that adequately represents the idea in A’s brain. Then B is still free to reject
this idea.
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“I know what you’re thinking about,” said Tweedledum: “but it isn’t so,
nohow.”

8 Language Extensions

8.1. In this section we study the formal version of “introducing new notation.”
Here we consider only names of new functions and constants that are “demon-
strably definable” in the language. Adding such names to the alphabet short-
ens formulas and formal deductions, but does not increase the set of deducible
formulas—this will be the fundamental theorem of this section.

Of course, in practice, abbreviated notation and well-chosen new names can
immediately make accessible to our intuition entire areas of mathematical facts
that were previously inaccessible. One of the best-known examples is the groups
introduced by Galois to study equations. In 1924, commenting on the attempt
to curb the inflation in Germany by introducing a new unit of currency, the
Rentenmark, Hilbert remarked skeptically, “A problem cannot be solved by
renaming the independent variable.” But as his biographer Constance Reid
noted, Hilbert was wrong: the economic situation gradually stabilized.

We start with the following data.

8.2. Let L
′

be a language in L1 with equality and with an infinite set of variables,
and let P

′
(x) be a formula in L

′
in which x occurs freely. We recall that the

abbreviated notation ∃!xP
′
(x) (read: “there exists a unique x with the property

P ′”) stands for the formula

∃x P ′
(x) ∧ ∀x∀y(P

′
(x) ∧ P ′

(y) ⇒ x = y).

Let E ′
be a set of formulas in L′ that contains Ax L′, the axioms of equality,

and perhaps some special axioms. Suppose that the formula ∃!xP ′(x, y1, . . . , yn)
is deducible from E ′, where P ′ has no free variables other than x, y1, . . . , yn.
Intuitively, this means that P ′ defines x as an implicit function of y1, . . . , yn,
and in the informal text we can introduce a new notation for this notation for
this function, say, x = f(y1, . . . , yn), and then always use that notation. Now
we give the formal version of this procedure.

8.3. Proposition. Under the conditions in 8.2, let L denote the language in L1

whose alphabet is obtained from the alphabet of L
′

by adding a new operation
symbol f of degree n if n � 1, or a constant f if n = 0. Let E be the smallest set
of formulas in L containing Ax L, the axioms of equality, E ′

, and the formula
P

′
(f(y1, . . . , yn), y1, . . . , yn).
Then there exists an explicitly describable map from the set of formulas of

the (richer) language L to the set of formulas of the (poorer) language L
′
that

correlates with each Q a translation Q′ and that has the following properties:

(a) If f does not occur in Q, then the translation of Q coincides with Q.
(b) If Q is deducible from E in L, then Q

′
is deducible from E ′ in L

′
. In par-

ticular, the set of formulas in L
′
that are deducible from E ′

in L′ coincides
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with the set of formulas in L that do not contain fand are deducible from
E in L.

Proof.
Translation of formulas. Suppose n � 1. (The case n = 0 is analogous, and

is simpler, so we shall omit it.) The first effect of adding f is to increase the
set of terms: L includes terms of the form f(t1, . . . , tn), where f can occur in
t1, . . . , tn, and so on. In order to decrease the number of references to f , we must
say “f(t1, . . . , tn)” in a roundabout way: “that x for which P (x, t1, . . . , tn).”
This is the basic idea behind the translation of formulas. We now give a precise
inductive definition.

(a) A term f(t1, . . . , tn) is called a simple f -term if f does not occur in t1, . . . , tn.
(b) Let Q be an atomic formula in L. If f does not occur in Q, we let Q be its
own translation. If f occurs in Q, then there exists a simple f -term f(t1, . . . , tn)
that occurs in Q. We take the very first occurrence of a simple f -term in Q,
then take a variable symbol x that does not occur in Q, substitute it in place
of this occurrence, thereby obtaining a formula Q∗, and finally construct the
formula

Q
′
(1):∃x(P (x, t1, . . . , tn) ∧Q∗(x)).

We apply this procedure to Q
′
(1) to obtain Q

′
(2), and so on. After a finite number

of steps we obtain a formula Q′
(i) = Q′ in which f does not occur. This Q

′
is

the translation of Q.
(c) If Q is not an atomic formula, it has the form ¬Q1 or Q1 ∗ Q2 (where ∗
is a connective), or else ∀y Q1 or ∃y Q1. In all cases Q is translated automati-
cally using the translations of Q,Q1, Q2, i.e., by “from Q produce Q

′
” to the

component parts.
Translation of deductions. The problem is the following: Let Q1, . . . , Qn = Q

be a deduction of Q from E , and let Q
′

be the translation of Q. We must con-
struct a deduction of Q

′
from E ′

. The most obvious idea is to write the sequence
of translations Q

′
1, . . . , Q

′
n. Why isn’t this a deduction of Q

′
from E ′

, since MP
and Gen are translated in a trivial way, and tautologies are translated as tau-
tologies? Because, for example, the logical axiom ∀xR(x) ⇒ R(f) might appear
in this sequence, and this formula stops being an axiom after it is translated,
if f occurs in R. Hence, we must fill in the sequence Q

′
1, . . . , Q

′
n by adding

deductions from E ′ of certain of its terms. This is a rather cumbersome com-
binatoric procedure, which one can read in §74 of Kleene’s book Introduction
to Metamathematics (Van Nostrand, New York–Toronto, 1952). (The moral of
the story is that new notation really does economize on time and space.)

Instead of using this procedure, we shall give an ineffective proof that E ′ � Q′

using the deducibility criterion in 6.3. We state this criterion once more:

(a) If Q
′
is true in any model of E ′, then E ′ � Q′. Since E ′ contains the axioms

of equality, we can slightly strengthen this as follows:
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(b) If Q
′
is true in any normal model of E ′

then Q
′
is true in any model of E ′

.

Recall that = is interpreted as equality in a normal model. On the other hand,
in §4 we showed that in any model = is interpreted as an equivalence relation
that is compatible with the interpretation of all the constants, functions, and
relations. Factoring out by this equivalence relation leads to a normal model,
in which the truth values of all the formulas remain as before.

(c) The normal models of E ′
(in the language L

′
) coincide with the normal

models of E (in the language L).

More precisely, we can give the following natural one-to-one correspondence
between them that preserves the truth function. We shall limit ourselves to the
case n � 1. Let φ be a normal interpretation of L

′
in M for which |Q′ |φ = 1 for

all Q
′ ∈ E ′. In particular, since E ′ � ∃!xP ′, we have

|∃!xP
′
(x, y1, . . . , yn)|φ = 1.

Computing the truth value on the left at a point ξ ∈M and using the normal-
ity of the model, we then find that to every n-tuple 〈yξ1, . . . , yξn〉 ∈ Mn there
corresponds a unique xξ

′
∈ M such that |P ′

(xξ
′
, yξ1, . . . , y

ξ
n)|φ = 1 (this is not

the standard notation, but the meaning is clear). We now interpret the symbol
f (which is the new symbol in the language L) as the function Mn →M that
takes 〈yξ1 , . . . , yξn〉 to xξ

′
. We obviously obtain a normal model for E in L.

Conversely, any normal model for E can be restricted to L
′

to obtain a
normal model for E ′

.

(d) If Q is deducible from E in L, then Q
′
is true in any normal model for E ′

.

Proof. Q is true in any model φ for E . To prove that Q
′

is true, we begin with
atomic formulas Q that contain f . In the notation in the first part of the proof
(translation of formulas), we construct Q∗ and then Q′

(1) = ∃x(P (x, t1, . . . , tn)∧
Q∗(x)). To verify that |Q′

(1)|φ = 1, for each point ξ ∈M we must find a variation
ξ′ of ξ along x for which

|P |φ(ξ
′
) = 1 and |Q∗(x)|φ(ξ

′
) = 1.

We determine xξ
′

from the condition |P (xξ
′
, tξ1, . . . , t

ξ
n)|φ = 1. The description

in (c) of the interpretation of f shows that we now have |Q∗|φ(ξ′) = |Q|φ(ξ) = 1.
Thus, truth is preserved in going from Q to Q

′
(1). Repeating this procedure,

we find that Q
′

is true for atomic formulas Q. Finally, the truth of Q′ in the
general case is proved by induction on the number of connectives and quan-
tifiers. Combining the results (a)–(d), we then obtain E ′ �→ Q′, which which
completes the proof of Proposition 8.3. ��

8.4. Examples

(a) In L1Set the following formula is deducible from the axioms of extensionality
and pairing (and also the axioms of equality and the logical axioms):

∃!x∀z(z ∈ x⇔ z = u ∨ z = v).
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Using Proposition 8.3, we see that we may add to L1Set a new degree 2
function symbol {}, “unordered pair,” without changing the set of formulas in
L1Set that are deducible from the Zermelo–Fraenkel axioms. Therefore, without
hesitation we may use not only the abbreviated notation “x = {u,w}” as before,
but also terms that are put together using the symbol {}. In particular (here
the use of {} is not normalized, but is in agreement with tradition): (b) We can
introduce notation for the finite ordinals

∅, {∅}, {∅, {∅}}, . . .

as terms in their own right in our language extension, and then embed formal
arithmetic in formal set theory.

(c) After deducing the formula

∃!x(“x is an ordinal”∧ “x is not finite” ∧ “∀ ordinaly < x, y is finite”)

from the Zermelo–Fraenkel axioms, we can introduce a new constant ω0, and
then continue to introduce names of more and more ordinals that are demon-
strably uniquely characterized by formulas in L1Set (or in language extensions
that are formed in the same way).

We shall make use of this new freedom of action in Chapter III.

9 Undefinability of Truth: The Language SELF

9.1. When modeled in formal languages, arguments of the “liar paradox” type
lead to important theorems on the limitations of the modes of expression and
proof in these languages. The best known of these theorems are Tarski’s theorem
on the undefinability of the set of true formulas and Gödel’s theorem on the
impossibility of effectively axiomatizing arithmetic.

The next three sections are devoted to Tarski’s theorem. Our presentation
is based on an excellent article by Smullyan (Languages in which self-reference
is possible, J. Symb. Logic. vol. 22, no. 1 (1957), 55–67).

In this section we describe the extremely elementary language SELF (which
does not belong to L1), which was designed to illustrate self-reference and which
graphically demonstrates the idea of such a construction. In §10 we introduce
the language SAr, which is just as expressive as L1Ar, but does not belong to
L1. Its syntax is close to that of SELF, which greatly simplifies proofs. Finally,
in §11 we use a method of Smullyan to prove Tarski’s theorem for SAr.

9.2. The language SELF (Smullyan’s Easy Language For self-reference)
The alphabet of SELF E, ∗ (symmetric quotes), r (relation of degree 1 ), ¬

(negation).
The syntax of SELF. The distinguished expressions are labels, displays, for-

mulas, and names. The label of any expression P is ∗P∗ (“P in quotes”). The
display of any expression P is P ∗P∗ (“something with a label”). Formulas are
expressions of the form rE . . . E ∗P∗ or ¬rE . . . E ∗P∗, where E appears k � 0
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times after r. We use the abbreviated notation rEk ∗ P∗ and ¬rEk ∗ P∗ for
formulas. Finally, we introduce the binary relation “is the name of” on the set
of all distinguished expressions. This relation is defined recursively:

(a) The label of P is a name of P .
(b) If P is a name of Q, then EP is a name of the display of Q, i.e., a name of

the expression Q ∗Q∗.

9.3. Remarks

(a) If P is a name of Q, then the display of Q has at least two different names:
EP and ∗Q∗Q∗∗. Thus, an expression can have several names. But con-
versely, an expression is uniquely determined if we know its name; names
all have the form Ek ∗ P∗, k � 0. We shall write N(Q) in place of “one of
the names of Q.”

(b) Every formula has the form rN(Q) or ¬rNQ. In 9.4 we interpret such a
formula as the statement, “The expression Q has (or does not have) the
property R,” and it is natural that the formula, in saying something about
Q, “calls Q by name.”

(c) The expression E ∗E∗ is one of two possible names for itself. In exactly the
same way, the formula rE ∗ rE∗ “says something about itself” (see 9.5).
The language SELF was constructed precisely in order to produce these
effects of self-reference with the fewest possible modes of expression.

9.4. The standard interpretations. In order to give one of the standard interpre-
tations of the language SELF, we choose any set (property) R of expressions of
the language and introduce the truth function | |R on the formulas by stipulating

1− |¬rN(Q)|R = |rN(Q)|R =

{
1, if Q ∈ R,
0, otherwise.

We say that a formula is R-true (R-false) if the value of | |R in the formula
equals 1 (resp. 0).

9.5. Undefinability Theorem. For any property R,

R ∩ {formulas} �=
{
R-trueformulas,
R-falseformulas.

Proof.
(a) The formula Q = ¬rE ∗ ¬rE∗ is R-true⇔ rE ∗ ¬rE∗ is R-false ⇔ Q �∈ R,
since E ∗ ¬rE∗ is a name of the display of ¬rE, i.e., a name of Q. Thus, Q
cannot both lie in R and be true, which proves the first part of the theorem. The
connection with the liar paradox becomes clear if we note that Q says about
itself, “I do not have the property R.”
(b) Analogously, the formula rE ∗ rE ∗ says about itself, “I have the property
R,” and so cannot both lie in R and be R-false. ��



10 Smullyan’s Language of Arithmetic 71

10 Smullyan’s Language of Arithmetic

10.1. In this section we describe the language of arithmetic SAr and its
standard interpretation. The main difference between SAr and L1Ar is that
in SAr we are allowed to form “class terms”—names of certain sets of natural
numbers. More precisely, if P (x) is a formula in SAr with one free variable x,
then the expression x(P (x)) in SAr names the set {x ∈ N |P (x) is true}, and
the expression x(P (x))k̄, where the term k̄ is a name for an integer k � 1, is
a name for the statement “k satisfies P .” The greater richness of the modes of
expression in SAr, as opposed to L1Ar, does not increase the class of subsets
in ∪r�1N

r that are definable by formulas. But it brings the syntax of SAr so
close to that of SELF that we can imitate the proof of Theorem 9.5.

In addition, the alphabet of SAr is somewhat altered and shortened in
comparison with the alphabet of L1Ar, but this is done only in order to simplify
the description of the syntax. These changes do not make the logic of SAr any
poorer.

10.2. The alphabet of SAr: x (a variable);
′

(used to form a countable set of
variables x, x

′
, x′′, . . .); · (multiplication, a degree-2 operation); ↑ (raising to a

power, a degree-2 operation, as in Algol); = (equality); ↓ (a connective, the
conjunction of negations); (, ) (parentheses); and 1̄ (the constant one).

10.3. The syntax and interpretation of SAr. Because we are allowed to form the
class terms x(P (x)) and the formulas x(P (x))k̄, the syntax is more complicated
than in languages of L1. We use induction on the integer i � 0 to define two
sequences of sets of expressions: Tm2i (terms of rank � 2i) and Fl2i+1 (formulas
of rank � 2i+1). (Using double induction—on the rank of the term or formula,
and, within the set Tm2i or Fl2i+1, on the length of the term or formula—one
can prove a unique reading lemma; this lemma is the basis for defining free
and bound occurrences of variables and truth functions. However, since there
is nothing new here beyond what was done in §1, we leave the details to the
reader.)

Along with our description of the syntax, we give a parallel description of
the standard interpretation of SAr in N . In order to interpret expressions with
free variables, we must fix a point ξ ∈ NN = N ×N ×N × · · · , which we shall
identify with the corresponding infinite vector with natural number coordinates.
Here the value of the kth variable (x′···′)ξ(k − 1 primes) is in the kth place in
the vector.

(a0) Tm0 is the set of numerical terms i.e., the least set of expressions
that contains the variables x, x

′
, x′′, . . . and the names of the natural numbers

1̄, 1̄1̄, 1̄1̄1̄, . . . and is closed with respect to forming the expressions (t1) · (t2) and
(t1) ↑ (t2), where ti ∈ Tm0.

Instead of x′...′(k− 1 primes) we shall write xk, and instead of 1̄ · · · 1̄ (k � 1
ones) we shall write k̄. The term k̄ is interpreted as k (not depending on ξ); xξk
is interpreted as the kth coordinate of ξ; and if tξ1, t

ξ
2 ∈ N have already been

determined, then [(t1) · (t2)]ξ = tξ1t
ξ
2 and [(t1) ↑ (t2)]ξ = (tξ1)t

ξ
2 . The occurrences
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of the expressions xk = x′···′ in any term in Tm0 are obviously independent of
one another. All such occurrences are considered free.

(b0) Fl1 is the least set of expressions that contains all expressions of the
form t1 = t2 (where ti ∈ Tm0) and is closed with respect to forming the expres-
sions (P1) ↓ (P2), where Pi ∈ Fl1. In other words, Fl1 is the logical closure of
the set of atomic formulas {t1 = t2|ti ∈ Tm0}.

Choosing a point ξ determines a truth value for any formula P ∈ Fl1 by
induction on the number of times ↓ occurs:

|t1 = t2|(ξ) =

{
1, if tξ1 = tξ2;
0, otherwise;

|(P1) ↓ (P2)|(ξ) =

{
1, if |P |1(ξ) = |P2|(ξ) = 0,
0, otherwise.

All occurrences of variables in elements of Fl1 are independent of one another,
and are considered free.

Now let i � 1, and suppose that the sets Tm2k−2, F l2k−1 are already
defined for k � i along with the interpretations and the division into free and
bound occurrences of variables. We define the next sets Tm2i and Fl2i+1 as
follows.

(ai)Tm2i consists of the class terms of rank � 2i:

Tm2i−2 ∪ {xk(P )|k � 1, P ∈ Fl2i−1}

(Tm0 need not be included when i = 1). These elements have the following
interpretation:

(xk(P ))ξ =

{
xξ

′

k |ξ
′
runs through the variations of ξ alongxk

for which |P |(ξ′
) = 1

}
.

All occurrences of the variable xk in xk(P ) are considered bound, and the
occurrences of other variables remain the same (free or bound) as in P .

(bi)Fl2i+1 is the logical closure of the set of expressions

Fl2i−1 ∪ {xk(P ) = xk(Q)|k � 1;P,Q ∈ Fl2i−1} ∪ {T k̄|k � 1, T ∈ Tm2i}

The truth function is defined as follows: if we set xk(P ) = T1 and xk(Q) = T2,
then

|xk(P ) = xk(Q)|(ξ) =

{
1, if T ξ1 = T ξ2 as subsets ofN,
0, otherwise;

|T |k̄(ξ) =

{
1, if k ∈ T ξ,
0, otherwise.

The function || is extended to the logical closure in the same way as in (b0).
All occurrences of variables in xk(P ) = xkQ and in T k̄ are the same (free or



10 Smullyan’s Language of Arithmetic 73

bound) as in the corresponding class term. Composition using the connective
↓ does not change the nature of the occurrence. As in Section 2.10, one can
prove that |P |(ξ) depends only on the ξ-values of the variables that have free
occurrences in the formula P ∈ ∪∞

i=0Fl2i+1.
This finishes the description of the syntax and semantics of SAr.
In conclusion, we show that the classes of sets in ∪r�1N

r that are definable
by formulas in L1Ar and in SAr coincide. This result is not used in the proof of
Tarski’s theorem in the next section. However, the result itself and the method
of proof are instructive, and we shall return to these ideas in Part III of the
book.

Let L1Ar have a countable set of variables. If we denote them by x1, x2, . . . ,
xn, . . . and identify xi with x′...′(i − 1 primes), we can also identify the interpre-
tation classes for L1Ar and SAr in the obvious way. Our claim that the classes
of definable sets coincide is then an immediate consequence of the following
stronger fact:

10.4. Proposition. Two translation mappings

{formulas of L1Ar} � {formulas of SAr}

can be explicitly defined with the following properties:

(a) At every point ξ the truth values of any formula and its translation coincide.
(b) The sets of free variables of any formula and its translation coincide.

We note that the mappings we define will not be inverse to each other!

Proof.

(a) The translation from L1Ar to SAr. The translation of a formula P will
be denoted by “P”. We first translate atomic formulas, and then use induction
on the length. The alphabet of SAr does not have addition, but it has both
multiplication and raising to a power, so that in place of z = x+y we can write
2z = 2x · 2y.

(a1) Atomic formulas. They have the form t1 = t2. By “carrying out the
operations,” we replace every nonzero term in L1Ar by a “normalized term,”
i.e., a polynomial of the form Σxi1i · · ·xinn , where the monomials are written
in the form (· · · (x1 · x1) · · ·x1) · x2) . . .), then arranged in lexicographic order,
and finally separated by parentheses: (· · · ((m1 + m2) + m3) + · · · ). It is clear
how to correlate such a term t to the term “2̄ ↑ t” in SAr. For example, “2̄ ↑
((x1) · (x1) + x2)” is (2̄ ↑ (x1) · (x1)) · (2̄ ↑ (x2)). By definition, the translation
“2̄ ↑ 0̄” is 1̄. Then we define the translation of the formula t1 = t2 to be
“2 ↑ t1”= “2 ↑ t2”. It is clear that such a formula and its translation have the
same variables and are true at the same points ξ.

(a2) If “Q”, “Q1”, and “Q2”, have already been defined, then “¬Q” is
defined as “Q”↓ “Q”. We similarly construct “Q1∗Q2” for the other connectives
(see “Digression: Syntax” in Chapter I).

(a3) If “Q” has already been defined, then “∀xk Q” is defined as

xk(“Q”) = xk(xk = xk).
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Both the formula and its translation are true at a point ξ if and only if Q (and
“Q”) are true at all variations ξ

′
of ξ along xk. They also have the same free

variables, since by induction, we may assume that this is the case for Q and
“Q”.

(a4) By definition, “∃xkQ” coincides with “¬∀xk¬Q”.
(b) The translation from SAr to L1Ar. As before, we let “P” denote the

translation of a formula P , although this time P will be a formula in SAr and
“P” will be a formula in L1Ar.

There is a subtle point here, namely, how to translate x1 = x2 ↑ x3. It will
be shown in Part II of the book that such a translation exists, and can even
be taken in the form ∃x4 · · · ∃xnp(x1, x2, x3, x4, . . . , xn), where p is an atomic
formula in L1Ar. Here we shall take this fact on faith, and choose a translation
“x1 = x2 ↑ x3” once and for all.

(b1) Translation of formulas in Fl0. The following rules give an inductive
definition:

“t1 = t2” has exactly the same form if t1, t2 ∈ {variables} ∪ {1̄, 1̄1̄, . . .}
(of course, in the sense that x′...′ is replaced by xk and 1̄ · · · 1̄ is replaced by
(· · · (1̄ + 1̄) + 1̄) + · · · )).“xk = t1 · t2” has the form ∃xi∃xj(“xi = t1” ∧ “xj =
t2”∧ xk = xi · xj) and “xk = t1 ↑ t2” has the form ∃xi∃xj(“xi = t1”∧“xj = t2”
∧xk = xi ↑ xj), where xi and xj are the first two variables not occurring in t1 or
t2. We similarly translate formulas with the left- and right-hand sides permuted,
and also with 1̄ · · · 1̄ instead of xk. We further stipulate that “t1 = t2” has the
form ∃xi(“xi = t1” ∧ “xi = t2”), where xi is the first variable not occurring in
t1 or t2, and where we assume only that neither t1 nor t2 is a variable or 1̄ · · · 1̄.
It is clear that the truth function and the set of free variables are preserved
under these translations.

(b2) Suppose that the formulas in Fl2i−1 have already been translated. Let

“xk(P1) = xk(P2)” be ∀xk(“P1” ⇔ “P2”), and
“xk(P )n̄” be “P”(n̄),

where on the right n̄ = (· · · (1̄ + 1̄) + 1̄) + · · · ) is substituted in place of all free
occurrences of xk in “P”. This completes the proof. ��

11 Undefinability of Truth: Tarski’s Theorem

11.1. The language SAr is interpreted inN , and not in the set of its own formulas
the way SELF is. In order to be able to determine the set of definable formulas,
we number formulas by (certain) integers as follows.

We number the symbols of the alphabet (of which there are nine) from 1 to
9 in any order, as long as 1̄ corresponds to 9. We then set (here ai ∈ {alphabet
of SAr} and v(ai) is the number of ai)

number (a1 · · · ak) = n(a1 · · · ak) =
k∑
i=1

v(ai)10k−i + 1.
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In other words, we obtain the number of an expression by replacing all of its
symbols by the corresponding decimal digits (1̄ is replaced by 9), then reading
the resulting number in the decimal system and adding 1. It is clear that an
expression can be reconstructed in a unique way if we know its number.

The name in SAr of the number of an expression P , i.e., 1̄ · · · 1̄ (n(P ) times),
is called the label of P . As in SELF, we shall denote the label of P by ∗P∗ (but
now this is abbreviated notation). We call the expression P ∗P∗ the display of P .

11.2. Definition. Let P (x) be a formula in SAr with one free variable x.

(a) An expression Q satisfies P if the number of Q lies in the set {k|P (k̄) is
true}.

(b) An expression Q is displayed in P if the display of Q satisfies P .

11.3. Lemma. Let P (x) be as in 11.2. Let PE(x) denote the formula P ((x) ·
((1̄0) ↑ (x))) (i.e., the term “x10x” is substituted in place of all free occur-
rences of x). Then the set of expressions satisfying PE coincides with the set of
expressions displayed in P .

Proof. If Q has number k, then the display of Q has number k · 10k (which is
why 1̄ has number nine!):

n(Q ∗Q∗) = n(Q 1 · · · 1︸ ︷︷ ︸
n(Q)times

)

= (n(Q)− 1)10n(Q) + 9 · · · 9︸ ︷︷ ︸
n(Q)times

+n(Q)10n(Q).

Hence, n(Q) satisfies PE if and only if n(Q ∗Q∗) satisfies P . ��

11.4. Theorem. For any formula P (x) as in 11.2, we have

the set of formulas satisfying P �=
{

the set of true formulas
the set of false formulas.

Proof. We consider the Tarski–Smullyan formula S : xPE ∗ xPE∗. According
to the definitions, we have (recall that xPE is a class term and ∗xPE∗ is the
name of a number) S is true ⇔ xPE satisfies PE ⇔ xPE is displayed in P
(by Lemma 11.3)⇔ the display of xPE satisfies P ⇔ S satisfies P . Hence, S is
either not false and satisfies P , or else is false and does not satisfy P . Therefore,
the set of formulas satisfying P cannot coincide with the set of false formulas.
As in §9, the formula S says, “I satisfy P .”

Similarly, the formula

x((P ) ↓ (P ))E∗x((P ) ↓ (P ))E∗

says, “I do not satisfy P ,” and thus either satisfies P or is true, but not both.
The theorem is proved. ��
11.5. Of course, Lemma 11.3 is pure magic. The decimal system really has
nothing to do with all this, and 1̄ did not really have to be number nine, but
this way everything is much prettier.
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More generally, let ?Ar be any language of arithmetic with a finite alpha-
bet containing the alphabet of SAr. Let the rules for forming distinguished
expressions and the standard interpretation of formulas in ?Ar be an arbitrary
extension of the rules in SAr. We require only that the terms and formulas
in SAr keep their earlier meaning, and that for any formula P (x) in ?Ar with
a free variable x, the expression x(P (x))k̄ must be a formula in ?Ar and be
interpreted by the same recipe as in SAr. (For example, we might add to SAr
the + sign, the connectives, and the quantifiers, and then allow formulas to be
constructed by the rules of L1 as well, thereby embedding L1Ar in ?Ar.)

Then the undefinability theorem 11.4 holds for ?Ar.
We must choose the numbering as follows: if m is the number of elements in

the alphabet of ?Ar and v is a numbering of the symbols for which v(1̄) = m,
then

n(a1 · · · ak) =
k∑
i=1

v(ai)(m+ 1)k−i + 1.

Then, using the same conventions as before, we have

n(Q ∗Q∗) = n(Q 1̄ · · · 1̄︸ ︷︷ ︸
n(Q) times

)

= (n(Q)− 1)(m+ 1)n(Q) +m

n(Q)−1∑
j=0

(m+ 1)j+1

= n(Q)(m+ 1)n(Q).

Defining PE(x) as P ((x) · ((m+ 1) ↑ (x))), without any further alterations we
obtain Lemma 11.3 and Tarski’s theorem for ?Ar.

11.6. Remarks

(a) If Tarski’s theorem were not true, and there were a formula P (x) such
that {Q|Q is a formula and P (n(Q)) is true} coincided with the set of all
true formulas of arithmetic, then this would mean that all number-theoretic
questions would reduce to a series of problems all of the same type. In-
stead of asking, “Is assertion number n true?” we could ask, “Is P (n̄) true?”
Although such an all-encompassing problem could still be rather complicated
(in a certain sense even “infinitely complicated,” see Part III), Tarski’s theorem
says that arithmetic has much more diversity than could be contained in any
such single problem.

(b) We still have reason to suspect that perhaps everything worked out this
way because we could “cleverly” number the formulas. This is not the case;
the results in Part III will imply that Tarski’s theorem remains true for any
numbering in which a formula and its number can be effectively reconstructed
from one another.

(c) It is natural to ask whether the set of numbers of provable, or deducible,
formulas is definable (for some set of axioms and rules of deduction, for example
in SAr). The answer is yes, this set is definable. We shall give some intuitive
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considerations in this direction, which anticipate the systematic theory in
Part III.

However we define the notion of provability, it is natural to expect it to
have the following property: there exists an algorithm (for example, a computer
program) that for any text of the given language determines whether this text is
a proof and, if so, of what formula.

We now write a program that constructs the texts in the language in lexico-
graphic order, verifies whether each one is a proof, and, when it is, computes the
number of the formula it proves. Roughly speaking, the graph of the function
(number of a proof) �→ (number of the formula proved) is definable in L1Ar
because machine logic and arithmetic are embedded in L1Ar. Hence, the set of
numbers of provable formulas is definable in L1Ar, in SAr, or in any language
?Ar as in 11.5.

Combining this discussion with Tarski’s theorem, we obtain the following
form of Gödel’s theorem:

11.7. Gödel’s Incompleteness Theorem for Arithmetic. In any language
of arithmetic of type ?Ar, and for any definition of deducibility in which the set
of (numbers of) deducible formulas is definable,

{true formulas} �= {deducible formulas}.

In Part III we discuss more general formulations of this theorem and other
versions of the proof, and we give a detailed verification of the principle in
11.6(c) for deductions in L1Ar.

Digression: Self-Reference

In natural languages it is only recently that linguists have taken note of the
so-called “performative” statements. The characteristic feature of such a state-
ment is self-reference, which can be defined as the ability to “refer to a reality
that it creates itself, because it is stated under circumstances which make it
into an act” (E. Benveniste, La Philosophi analytique et le langage, Les Et.
Philos., No. 1 (1963) 9). Examples of performative statements include, “I
solemnly swear,” the saying of which constitutes the act of swearing; “I proclaim
a general mobilization,” and “I appoint you director,” when these two state-
ments come from an authority that has the power to carry out the respective
acts. If we look carefully at the semantics of performative statements, we find
an imperative nuance, even though it is expressed by the declarative mood of
the verb.

In this connection, it is interesting to compare the role of self-reference in
formal and algorithmic languages (see also Section 1.2 of Chapter I). In for-
mal languages (and, in general, in descriptive languages), self-reference leads to
logical circles, to paradoxes, or, if we try to avoid logical circles, to demonstra-
tions of certain inadequacies of the language. On the other hand, in algorithmic
languages (and in general, in control languages and systems), self-reference is
the most important device for turning a finite program into a process that is
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potentially arbitrarily long (“loops”); it takes part in the control instructions
(feedback), and is among the fundamental possibilities of the system.

A similar dichotomy can also be found in psychological behavior—compare
with the distinction between introspection and self-improvement.

Finally, self-reference can play a role in the genetic causality of aging
processes (of biological and social systems). A self-regenerating cycle, when
repeated many times, leads to erosion at the place of generation.

12 Quantum Logic

12.1. The last section of this chapter is devoted to certain physical facts and
to the mathematical constructions that have been developed to describe them.
In particular, we discuss von Neumann’s theorem that it is impossible to intro-
duce hidden variables into the quantum-mechanical picture of the world. This
material, while not completely traditional for a course in logic, is relevant here
for two reasons.

In the first place, von Neumann’s theorem is a vivid example of a meta-
physical assertion. It is concerned with properties of the language, rather than
with the subatomic world described by the language, and thus is analogous to,
for example, Tarski’s theorem in metamathematics. This is why it occupies an
isolated position in physics, and why we are interested in it here.

In the second place, analyzing quantum-mechanical phenomena reveals
a profound divergence between the internal logical structures of the macroworld
and the microworld. Although explanations of these differences by means of nat-
ural language and natural logic are agonizingly difficult and, in the last analysis,
always leave one feeling unsatisfied, these attempts to explain continue. The
development of the foundations of physics in the twentieth century has taught
us a serious lesson. Creating and understanding these foundations turned out
to have very little to do with the epistemological abstractions that were of such
importance to the twentieth-century critics of the foundations of mathematics:
finiteness, consistency, constructibility, and in general, the Cartesian notion of
intuitive clarity. Instead, completely unforeseen principles moved into the spot-
light: complementarity, and a nonclassical, probabilistic truth function. The
electron is infinite, capricious, and free, and does not at all share our love for
algorithms.

The following exposition is based on the article by S. Kochen and
E. P. Specker in J. Math. Mech., vol. 17, no. 1 (1967), 59–87. Sections 12.9–12.16
contain pure algebra and formally do not depend on the preceding semiphysical
considerations.

12.2. The atom of orthohelium. We now describe certain characteristics of the
behavior of the physical system “an atom of orthohelium in the state n = 2,
l = 0, s = 1.” Such a helium atom is in an excited state: its two electrons are
on the second energy level, and their spin is pointed in the same direction.
Nevertheless, the state is metastable, because in order to fall to the first energy
level, the electrons must turn their spins in opposite directions (parahelium);
this creates a certain stability.
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Spin is a physical quantity that is expressed in the same units as the
“angular momentum.” The total spin of our system (in atomic units: h = 2π)
is represented by a unit vector in physical three-dimensional space. As a first
approximation we may think of it as changing with time but having instanta-
neous values that can be measured. (The inadequacy of this picture will soon
be demonstrated.)

An experiment for the purpose of measuring the instantaneous value of
the spin of our system could consist in turning on a magnetic field having a
specified geometry and registering the shift in energy levels (spectral lines) of
the atom. Each outcome of such an experiment can be precisely interpreted as
a measurement of the projection of the spin on some axis, which is uniquely
determined by the geometry of the field. We shall identify these directions with
points of the unit sphere S2.

Quantum mechanics makes the following positive assertions concerning mea-
surements of the spin of orthohelium. The following quantities are measur-
able:

(a) the projection s(α, t) of the spin in the direction α ∈ S2 at the moment of
time t;

(b) the lengths |s|(αi, t), i = 1, 2, 3, of three projections of the spin in three
pairwise orthogonal directions {α1, α1, α3} ⊂ S2 (a “frame”) at the time t.
The predictions concerning the results of these measurements are as follows:

(c) s(α, t) is a random variable that can take only the values −1, 0, 1. (The
probabilities of these values can be predicted from the results of the previous
measurements, but this is not essential for us here.)

(d)
∑3
i=1 |s|(αi, t) = 2 for any frame {α1, α2, α3} and any t.

12.3. Attempt at a classical interpretation. This could consist in adopting the
following hypotheses A and B:

A. There is a certain space Ω of “hidden variables” or “internal states” of the
system and a function s(α, t;ω), ω ∈ Ω, such that if the system is in
the state ω at time t, then s(α, t;ω) is the “true value of the projection of
the spin on the α-axis” at this moment.

B. The probabilistic aspect of the predictions in 12.2(c) results from our not
knowing the exact values of ω = ω(t), so that for some measure dµ(ω) we
have

mathematical expectation of s(α, t) =
∫

Ω

s(α, t;ω)dµ(ω),

and similarly for |s|.
Generalizing, we might suppose that Ω does not depend only on the system

itself but also on the arrangement for measuring the spin; µ may depend on
the time, and so on. However, all of these possibilities actually contradict the
predictions in 12.2(c) for the following startling reason.

12.4. Proposition (Kochen, Specker). There does not exist a mapping S2 →
{0, 1} such that for every frame {α1, α2, α3} this mapping takes the value zero
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on precisely one of the directions αi. Moreover, it is possible to construct a
finite system Γ ⊂ S2 of 117 points with the following property. For any map-
ping k : Γ → {0, 1} either there is a frame {α1, α2, α3} ⊂ Γ in which k does
take the value 0 exactly once, or else there is a pair of perpendicular directions
{α1, α2} ⊂ Γ on which k equals 0.

Here we note that adopting both the assertions in 12.2 and the hypotheses
in 12.3 would allow us to construct such a mapping of the sphere. In fact, it
would be sufficient to consider

S2 → {0, 1} : α �→ |s|(α, t;ω)

for fixed t and ω. By 12(c), |s| takes only the values 0 and 1, and by 12(d), it
takes the value 1 twice and 0 once on any frame {α1, α2, α3}.

We prove Proposition 12.4 in Sections 12.12–12.15, and now proceed to a
more systematic study of “quantum logic.” We shall adhere to our customary
and useful dualism between “language and interpretation,”although these cat-
egories are much less formalized and are harder to distinguish from each other
in physics.

12.5. The language of nonrelativistic quantum mechanics. We have a some-
what unusual situation in that quantum mechanics does not really have its
own language. More precisely, to describe a physical system S such as a “free
electron” or “atom of helium in a magnetic field,” quantum mechanics uses a
certain fragment of the language of functional analysis, “oriented on describing
S.” Assuming that the reader is familiar with functional analysis, we shall
limit ourselves to a glossary of the most frequently used terms. We also give
some synonyms used by physicists to indicate the “physical sense,” i.e., the
interpretation, which will be considered separately in our text.

(a) A separable complex Hilbert space HS . Here we are also interested in its
one-dimensional subspaces and its vectors of length one. A synonym for
the former is the (pure) states, and for the latter is the (normalized) ψ-
functions, or, more precisely, the instantaneous values of the ψ-functions.

(b) Unitary representations of R in HS : t �→ Ut = e−iHst. For synonyms we
have t �→ Ut is the dynamic group; t is the time; and the infinitesimal
generator HS (which is a self-adjoint operator) is the dynamic operator, or
Hamiltonian, of S.

(c) Schrödinger equation: ∂ψt/∂t = −iHSψt. It is satisfied by the ψ-functions
ψt = e−HSt, which evolve with time.

(d) Self-adjoint operators in HS . Synonym: the observables of the system. The
operator HS is an energy observable. The discrete spectrum of HS gives us
the energy levels of S. We shall be especially interested in the orthogonal
projection observables. Here the pure states Cψ ⊂ HS are in one-to-one
correspondence with the projections Pψ onto the corresponding subspace.

Another important class of projections is constructed using the spectral
decomposition theorem. Let A =

∫ ∞
−∞ λdPA(λ). Then the projection PA(U)

is defined for any Borel subset U ⊂ R. In the simplest cases its image is
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spanned by the vectors in HS that are eigenvectors for A with eigenvalues
in U .

Projection observables are also called “questions” (Mackey) or “Eigen-
schaften” (von Neumann).

(e) Commuting operators. Synonym: compatible (or simultaneously measur-
able) observables. For unbounded operators A and B, whose formal com-
mutator may have an empty domain of definition, we define commutativity
to mean that PA(U1) and PB(U2) commute for all Borel sets U1, U2 ⊂ R.

(f) Unitary representations in HS of various groups, such as SO(3), SU(2), Sn,
Synonym: symmetries of the system S (if the representations commute with
the Hamiltonian HS), or approximate symmetries (if HS = H0 +Hi, where
the representations commute with H0 and H1, is a “small perturbation”).

12.7. Example. Let S be “an electron in the electric field of a proton”(where
we disregard the motion of the proton, the spin, and the relativistic effects).
Here HS = L2(E3) consists of the square integrable complex functions in the
Euclidean “physical coordinate space of the electron.”

HS is the self-adjoint extension of the operator

− h

4πm
∆− 1

h

e2

r
,

where h is Planck’s constant, m is the mass of the electron, e is its charge, and
r is its distance from the origin (where the proton is).

The energy levels (the discrete spectrum of HS) are En =
−(2π2me4/h2)/(1/n2), n = 1, 2, 3, . . . . The eigenfunctions ψ corresponding to
the points of this spectrum are the states of an electron in a hydrogen atom. The
energy level n = 1 corresponds to the unexcited state, and the other values of n
correspond to excited states. The positive semiaxis is the continuous spectrum
of HS ; in states with positive electron energy, “the hydrogen atom is ionized.”

The most important observables of the electron are the operators of multi-
plication by the three coordinate functions xj (the coordinate observables),
and the self-adjoint extension of the operators pj = (h/2πi)(∂/∂xj) (the
momentum projection observables). The operators xj and pj do not commute,
so that the xj-coordinate and the projection of the momentum on the xj-axis
are not simultaneously measurable.

The system S is spherically symmetric. The natural representation of SO(3)
in L2(E3) commutes with HS . The restriction of this representation to the sub-
space of HS corresponding to the discrete spectrum of HS in a natural way
splits into a direct sum of representations corresponding to a given energy level
En. This En-subspace, in turn, splits into a direct sum of representations of
SO(3) on spherical polynomials of degree j = 0, 1, 2, . . . , n− 1 with multiplicity
one. If the ψ-function of the electron belongs to the level En and the sub-
space corresponding to the representation of SO(3) on spherical polynomials of
degree j, we say that n and j are the principal and orbital quantum numbers,
respectively, of the electron’s state in the hydrogen atom.

The above text is typical of what might be found in a physics textbook.
The “language” is mixed with the “metalanguage” that gives the standard
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interpretation of the language. We now describe them separately and more
systematically.

12.8. The interpretation. A very important aspect of the interpretation that
we shall not discuss here is the list of informal recipes for choosing HS , HS , and
the observables corresponding to a given system S. These “units of expression”
are often chosen in two stages: a classical description is chosen, and then the
“rules of quantization” are applied to it. This procedure might be “approxi-
mate” in the sense that certain circumstances are not taken into account (such
as the spin in 12.7).

Suppose that HS and HS have already been chosen. The most character-
istic peculiarity of the interpretation of quantum language is that it is “two-
layered.” Part of the mathematical statements are interpreted as assertions
about a “freely evolving system,” and part are interpreted as assertions about
the results of observations on this system.

(a) Freely evolving system. It is generally believed that the system’s ψ-
function ψt ∈ HS gives (within the framework of a given approximation) maxi-
mally complete information about the state of the system at time t. As long as
no one looks in on the system, ψt evolves as e−iHStψ0, starting from the initial
state ψ0. (How do we know ψ0? See Section 12.8(c) below.)

(b) Observation. Suppose we want to measure the instantaneous value of
some physical quantity for our system S at the moment t. This quantity
corresponds to an observable A. (How do we know the form of A? See the
beginning of 12.8.) For simplicity we suppose that A has a discrete spectrum
with all multiplicities one. The predictions of what will be observed are as
follows.

If Aψt = aψt, then a will be the value of the observable A at the time t for
the system S in the state with ψ-function ψt.

In the general case, let ψ
(i)
A , i = 1, 2, . . . , be an orthonormal basis for

Hs consisting of eigenvectors for A. We expand ψt with respect to this ba-
sis: ψt =

∑∞
i=1 α

(i)(t)ψ(i)
A . Let Aψ(i)

A = aiψ
(i)
A . Then the result of measuring

A will be a random variable taking the value ai with probability |α(i)(t)|2.
(It is easy to see that the mathematical expectation of this random variable
is (Aψt, ψt). This formula holds for all A. More generally, the probability of A
falling in a Borel subset U ⊂ R is equal to (PA(U )ψt, ψt), where PA(U ) was
defined in 12.5(d).)

(c) System evolving after observation. With the same assumptions as be-
fore, the ψ-function of the system after the observation is determined by the
result of the observation. If we registered the value ai for A at the time t0,
then, starting from ψ

(i)
A at t0, S evolves until the next observation completely

independently of how it evolved before.
Thus, the result of the observation lets us know the form of the ψ-function

after the observation, but it tells us nothing about the ψ-function before the
observation. Hence, physicists often say that registering the value ψ(i)

A prepares
the system in the state ψ(i)

A at the time t0. Another synonym: at the moment
of observation the ψ-function of the system reduces to ψ(i)

A .
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If we were able simultaneously to register the values of two observables, then
we would prepare the system with a ψ-function that is an eigenfunction for both
observables. Since noncommuting observables always have different eigenvec-
tors, in general the values of such variables are not simultaneously measurable.

12.9 Quantum logic. We now investigate the algebraic framework of quantum
logic. We start with the following analogous situation.

Suppose we are given a formal language in L1 having one variable and an
interpretation of this language in a set M where this variable takes values.
Then we can distinguish the Boolean algebra B of definable sets in M (see
§3). The conjunction of formulas corresponds to the Boolean intersection of
the sets that define them, and so on. By definition, N ∈ B if we can ask in the
language, “Does the value of the variable belong to N?” The algebra B is the
most important invariant of the pair {language, interpretation}.

We now consider the language of quantum mechanics, oriented on describ-
ing a system S. We shall exclude the time aspect by fixing a moment of time
to which all statements about the state of the system refer. Then the “state
of the system” will be the only variable in the language. It takes values in
the set of lines in the Hilbert space HS . The only questions to which we can
give a yes or no answer are those of the form; “Does the state of the system
belong to a given closed subspace of HS?” It is the closed subspaces of HS
that form the analogy of the Boolean algebra B. The conjunction of questions
corresponds to the intersection of subspaces, and the disjunction corresponds to
their sum, but both operations can be performed only when the corresponding
projection observables commute. Only in this case are the Boolean identities
fulfilled.

We axiomatize the situation as follows:

12.10. Definition. A partial Boolean algebra is a set B together with the fol-
lowing structures on B:

(a) A reflexive and symmetric binary relation ∗ called “compatible measura-
bility.” Instead of (a, b) ∈ ∗ we write a ∗ b.

(b) Partial binary operations ∨ and ∧ and a unary operation ′.
(c) Two elements 0 and 1 ∈ B.

These structures must satisfy the following axioms:

(d) The relation ∗ is closed with respect ∧,∨, and
′
: if a1, a2, and a3 are pairwise

compatibly measurable, then (a1 ∧ a2) ∗ a3, (a1 ∨ a2) ∗ a3, and a
′
1 ∗ a3; in

addition, a ∗ 0 and a ∗ 1 for all a ∈ B.
(e) If a1, a2, and a3 are pairwise compatibly measurable, then together with

0 and 1 they generate a Boolean algebra relative to the operations ∨,∧,
and

′
.

12.11. Example. LetH be a Hilbert space (possibly real and finite-dimensional).
The partial Boolean algebra B(H) is defined as the set of closed subspaces of
H with the following structures:
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(a) a ∗ b if and only if there exist three pairwise orthogonal closed subspaces
c, d, e ∈ H such that a = c⊕d and b = e⊕d. The motivation for this defini-
tion is that this condition is equivalent to commutativity of the projections
onto a and b.

(b) a ∧ b = the intersection of a and b.
(c) a ∨ b = the sum of a and b.
(d) a

′
= the orthogonal complement of a.

(e) 0 = {0} and 1 = H.

One form for the theorem that there are no hidden variables is as follows.
12.12. Theorem: If dimH � 3, then B(H) cannot be embedded in a Boolean
algebra in such a way that the operations are preserved.

This result can be strengthened formally in various ways: see §5 of Kochen
and Specker, and also N. Fierier, M. Schlessinger, Duke Math. J., vol. 32, no. 2
(1965), 251–262. We shall not dwell on this here.

Proof. We choose a real Euclidean space E3 ⊂ H and show that even B(E3)
cannot be embedded in a Boolean algebra. Otherwise there would exist a homo-
morphism of the partial Boolean algebra B(E3) onto the two-element Boolean
algebra {0, 1}, since for any pair of elements in any Boolean algebra, there exists
a homomorphism onto {0, 1} that separates them.

Let h be such a homomorphism. If a1, a2, a3 ∈ E3 are pairwise orthogonal
lines, then h(ai ∧ aj) = h(ai) ∧ (aj) = 0 for i �= j. Hence, in any pair of
orthogonal lines, at least one of the pair must go to 0 under h. Furthermore,
h(a1∨a2∨a3) = h(a1)∨h(a2)∨h(a3) = h(E3) = 1. Hence, in any frame exactly
one of the lines goes to 1.

If we map the points of the unit sphere S2 onto the lines joining them to
the origin and then apply h, we obtain a mapping of S2 with the property in
Proposition 12.4 (where we have only to switch the roles of 0 and 1). We prove
that no such map exists even on a certain subset consisting of 117 points on S2.
The latter stronger result is combinatorially elegant and physically meaningful:
a physicist might raise objections to asking to be able to measure the projection
of the spin of orthohelium simultaneously in all directions, independently of the
question whether hidden variables are possible. In fact, we need only finitely
many directions to show the futility of such an attempted measurement.

Consider a finite graph. By a realization of the graph on S2 we mean any
embedding of the set of its vertices in S2 for which the distance between the
endpoints of any edge equals 90◦.

12.13. Lemma. Let a and β be points on S2 such that the sine of the angle
between them ∈ [0, 1

3 ]. Then there exists a realization of the following graph Γ1

in which a0 goes to α and a9 goes to β.
Proof. Let x̄, ȳ, z̄ be a triple of pairwise orthogonal vectors on S2. We take a5

to x̄ and a6 to z̄. For certain ξ, η ∈ R (to be chosen later), we set

a1 �→
ȳ + ξz̄√
1 + ξ2

, a2 �→
x̄+ ηȳ√

1 + η2
.
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a0a1 a2

a3
a4

a5 a6
a8

a9

a7

Then the images of a3 and a4 are determined up to a sign by the property of
being orthogonal to (a1, a5) and (a2, a6), and we choose

a3 �→
ξȳ − z̄√
1 + ξ2

, a4 �→
ηx̄− ȳ√

1 + η2
.

We similarly set

a0 �→
ξηx̄− ξȳ + z̄√
1 + ξ2 + ξ2η2

, a7 �→
x̄+ ηȳ + ξηz̄√
1 + η2 + ξ2η2

,

and finally, a8 and a9 are determined up to sign. The sine of the angle between
a0 and a9 is easy to compute: it equals

ξη/
√

(1 + ξ2 + ξ2η2)(1 + η2 + ξ2η2).

As ξ and η vary, this expression takes on all values in [0, 1
3 ]. ��

12.14. Lemma. Consider the graph Γ2 that is obtained from Figure 1 by iden-
tifying the vertices a = p0, b = q0, and c = r0 (the apparent intersections of the
edges inside the circle are not vertices). This graph is realized on S2.

Proof. For 0 � k � 4 set

pk �→ cos
πk

10
· x̄+ sin

πk

10
· ȳ,

qk �→ cos
πk

10
· ȳ + sin

πk

10
· z̄,

rk �→ sin
πk

10
· x̄+ cos

πk

10
· z̄.

Since sin(π/10) < 1
3 , we can first extend this map to a realization of the sub-

graph between the points p0, p1, and r0 using the preceding lemma. Rotating
the resulting realization around r0 so as to take (p0, p1) to (p1, p2), (p2, p3), . . . ,
we obtain a realization of the “lower arc” and r0. By similarly rotating around
the images of p0 and q0, we obtain a realization of the other two arcs as well. ��

12.15. End of the proof of Proposition 12.4 and Theorem 12.12.
Consider an arbitrary map k of the vertices of the graph Γ2 to {0, 1}. Sup-
pose that exactly one vertex in each triangle goes to 1 and at least one of the
two vertices on each edge goes to 0. In the triangle {p0, r0, q0} suppose that p0

goes to 1. We consider the copy of the graph Γ1 between the vertices p0, r0,
and p1, which we identify with a0, a8, and a9, respectively.
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p1

q0

q1

q2

q3

q4

r0
r1

r2

r3

r4

p0

c

b

p2 p3

p4

a

Figure 1.

We must have k(p1) = k(a9) = 1. In fact, if we had k(a9) = 0, then we
would also have k(a7) = 1, and then k(a1) = k(a2) = k(a3) = k(a4) = 0, and
k(a5) = k(a6) = 1, which is a contradiction.

We now return to Γ2. Since k(p0) = k(p1) = 1, we similarly find that
k(p2) = 1, and then k(p3) = k(p4) = k(q0) = 1. But k(q0) = 1 contradicts the
fact that k(p0) = 1. This completes the proof. ��
12.6. Quantum tautologies. This theme has been largely neglected. We give a
counterexample due to Kochen and Specker and formulate some recent results
of Gelfand and Ponomarev.

(a) Counterexample. This consists of the following: it is possible to give
a logical polynomial in 117 variables that represents a classical tautology
but that is defined and takes the value 0 in the partial Boolean algebra
B(E3) for some values of the variables. This is simply another aspect of the
impossibility of embedding B(E3) in a Boolean algebra.

In fact, let P (p, q, r) be a logical polynomial in three variables that takes
the truth value 1 when exactly one of |p|, |q|, and |r| is 1. We may assume that
only the connectives ∨,∧ and ¬ occur in P . Similarly, let Q(p, q) = ¬p ∨ ¬q.
Then Q takes the value 1 when at least one of |p|, |q| is 0. We index the vertices
of Γ2 from 1 to 117 and set

R(p1, . . . , p117) = ¬
( ∧

{i,j,k}
P (pi, pj , pk)

∧
{r,s}

Q(pr, ps)
)
.

The first
∧

is taken over all triples {i, j, k} corresponding to triangles in Γ2,
and the second

∧
is taken over all pairs {r, s} corresponding to edges. The

argument in 12.15 shows that for any mapping {p1, . . . , p117} → {0, 1} at
least one of the Boolean factors takes the value 0. Hence R is a classical
tautology.
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But if we substitute for pi the line from the origin to the image of the ith
vertex in a fixed realization of Γ2, then we obtain for the value of R the element
0 ∈ B(E3). In fact, if pr and ps are orthogonal, then p

′
r ∨ p

′
s = E3. Similarly,

if pi, pj , and pk are orthogonal, then P (pi, pj , pk) = 1 ∈ B(E3). The latter
assertion is verified as follows: if we set

a+ b = (a ∧ b′) ∨ (a
′ ∧ b),

then we may take
P (p, q, r) = p+ q + r + p ∧ q ∧ r

(for any arrangement of parentheses on the right), so that

P (pi, pj, pk) = pi ⊕ pj ⊕ pk = E3.

(b) Results of Gelfand and Ponomarev. We start with the following obser-
vation. The operations ∧,∨, and

′
are actually defined everywhere on the set

B(H) of closed subspaces of the Hilbert space H, although they do not satisfy
the Boolean axioms, and if we ignore the compatible measurability relation ∗,
it seems as if they no longer have physical meaning.

Nevertheless, it is also natural to investigate these structures, which were
first introduced into the logic of quantum mechanics by G. Birkhoff and J.
von Neumann (Annals of Math . vol. 37 (1936), 823–843). Here is how these
structures are axiomatized:

Definition. A modular structure L is a set with binary operations ∧ and ∨ that
satisfy the following conditions:
(a) ∧ and ∨ are associative and commutative;
(b) a ∧ a = a ∨ a = a for all a ∈ L;
(c) If a ∧ b = b, then (a ∨ c) ∧ b = b ∨ (c ∧ b) (the “modular identity”).

Birkhoff and von Neumann also require an “orthogonal complement” operation
to exist with the usual axioms, but we shall omit this here.

We note that the modular identity is fulfilled universally in B(H) only if
H is finite-dimensional. It is also fulfilled for triples a, b, c whose elements have
finite-dimension or codimension in H.

I. M. Gelfand and V. A. Ponomarev (Uspehi mat. nauk, vol. XXIX (1974),
No. 6 (180), 3–58) have studied the linear representations of free modular struc-
tures with r generators in B(H) for finite-dimensional spaces over arbitrary
fields. Such a representation is called indecomposable if it does not split into a
direct sum of representations in B(H1)⊕ B(H2).

Definition. A modular question is an element of a free modular structure
that takes the value 0 or 1 for any indecomposable finite-dimensional
representation.

One of the main results of Gelfand and Ponomarev is the construction of a
very nontrivial countable series of modular questions. We shall only formulate
these results here.

Let Ln be a free modular structure with n generators {a1, . . . , an}. We
set I = {1, . . . , n}. A sequence α = (i1, . . . , il) of length l � 1 of elements
of I is called admissible if it does not have any identical neighboring entries.
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A sequence β = (k1, . . . , kl−1) of length l−1 of elements of I is called subordinate
to α if it is admissible and if ∀j � l − 1, kj �∈ {ij, ij+1}. For admissible α we
inductively define

aα = ai1 . . . αil = ai1 ∧ (∨βαβ),

where β runs through all sequences subordinate to α. Further, for t ∈ {1, . . . , n}
we define

At(l) =
∨

αaα,

where α runs through all admissible sequences of length l with last entry t.
Finally, we set

Ht(l) =
∨

j �= tAj(l).

The substructure in Ln generated by the elements H1(l), . . . , Hn(l) consists
entirely of modular questions for all l � 1.

This is a difficult result. It is relatively easy to prove that this substructure
is a Boolean algebra consisting of 2n elements. If we substitute the elements
in this Boolean algebra for the variables in the usual Boolean tautologies, we
obtain “quantum tautologies,” but to see this we must consider structures with
complements.

It is not yet clear whether this algebra leads to nontrivial physics. Perhaps
one should combine it with the techniques in the representation theory of sym-
metry groups.

12.17. The orthohelium atom revisited. In conclusion, we return to the
orthohelium atom S and show how the material in 12.2 looks from a more
general vantage point.

(a) Choice of HS . As explained in 12.7, an electron without spin corresponds
to the space L2(E3). If we want to take the spin into account, we must introduce
a “two-component” ψ-function, i.e., use the space L2(E3)⊗C2. The system of
two electrons in helium is described by ψ-functions in the tensor square of this
space. However, by Pauli’s principle, the ψ-function of this system must behave
antisymmetrically when the electrons corresponding to the two parts of the
tensor square are permuted. Hence, we finally obtain HS = Λ2(L2(E3)⊗C2).

(b) Choice of HS . This is a difficult problem, because each electron moves in
the variable electromagnetic field created by the nucleus and the other electron.
The principal term in the Hamiltonian corresponds to the spherically symmetric
constant potential obtained by averaging over time. The remainder is treated
as a small perturbation. We give the approximate form of the ψ-function of
orthohelium, more precisely, of the element in Λ2(L2(E3)) corresponding to the
projection of HS onto the subspace of the unit projection of the spin:

ψ ≈ e−k(r1+r2) + [(C1+ C2(r1+ r2)+ C4r12+ C5r12(r1+ r2) sinhC0(r1 − r2)
+ (r1 − r2)(C3 + C0r12) coshC0(r1 − r2))],

where ri = (
∑3

j=1 x
2
ij)

1/2, i = 1, 2; r12 = (
∑3

j=1(x1j − x2j)2)1/2, and the con-
stants k, C1, . . . , C6 are found experimentally. (E. U. Condon and
G. H. Shortley, The Theory of Atomic Spectra, Cambridge University Press,
London, 1935.)
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(c) Approximate symmetries. The group SU(2) acts on the space HS : on
L2(E3) through the quotient group SO(3), and on C2 by the standard rep-
resentation. This is the group of approximate symmetries of the system. The
ψ-function of orthohelium is “not too far” from the subspace corresponding to
a suitable representation of SU(2), so we may speak of the principal (n), orbital
(j), and other quantum numbers of the state, as in the case of a hydrogen atom.

(d) Spin. The total angular momentum operator J commutes with the
Hamiltonian HS . In the state n = 2 and j = 1, its eigenvalue is 2 (in atomic
units). The eigensubspace N ⊂ HS corresponding to this eigenvalue is three-
dimensional. Further, the squared spin projection operators J 2

x ,J 2
y ,J 2

z com-
mute in pairs (this is a peculiarity of spin 1). Letting P denote the projection
of HS onto N , we are then able to embed the partial Boolean algebra B(E3) in
B(HS) by letting a line α ⊂ E3 correspond to the image in HS of the operator
PJ 2

α . This takes the place of the somewhat naive picture in 12.2.

Appendix: The Von Neumann Universe

1. The premises of “naive” Cantorian set theory reduce to the following: a
set may consist of any distinguishable elements (of the physical or intellectual
world); a set is uniquely determined by its elements, and any property deter-
mines a set, namely, the set of objects that have this property.

However, the formal language of set theory L1Set was introduced in order
to describe a more restricted class of sets (a universe). Part of these restrictions
come from considerations of convenience, and part come from the desire to avoid
the so-called paradoxes. This gives an “upper bound” for our classes. We give
a “lower bound” by asking that the class of sets be closed with respect to all
mathematical constructions needed for certain (ideally, “all”) parts of intuitive
mathematics.

2. Following Zermelo, von Neumann, and others, we consider two basic restric-
tions on sets.

(a) All elements of sets must themselves be sets. In particular, since any
chain X0 ∈ X1 ∈ X2 ∈ · · · in the von Neumann universe V must terminate (see
below), it follows that the last element in such a chain must be the empty set.
Thus, all the sets in V are constructed “from nothing.”

(b) The assumption that every collection of sets, even sets as in (a), is
again a set in V , immediately leads to contradictions (Burali–Forti, Russell,
and others). In particular, the collection of all sets in the universe is not itself
an element of V . Hence, we must give a sufficiently complete description of
which operations do not take us outside of V . The two basic formal languages
of set theory—that of Gödel–Bernays and that of Zermelo–Fraenkel—differ in
the choice of objects over which the variable symbols are to range under the
standard interpretation of the language in V . In the Zermelo–Fraenkel language
(our L1Set), they range over the sets in V . In the Gödel–Bernays language, they
name classes (collections of sets in V ) that “are not necessarily sets,” and the
property of “being a set” is specifically defined as the property of “being an
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element of another class.” The Gödel–Bernays language is studied in Chapter
4 of Mendelson’s book.

In this section we describe the von Neumann universe using the customary
terminology of intuitive mathematics. The relationship of this construction to
formalism will be discussed in Section 18.

3. The first levels. The von Neumann universe is constructed inductively, start-
ing from the empty set, by successively applying the “set of all subsets” or
“power set” operation P . In this way,

V0 = ∅,

V1 = P{∅} = {∅},
V2 = P(V1) = {∅, {∅}},

...
Vn+1 = P(Vn),

...

It is easy to see that Vn ⊂ Vn+1 (later this will be proved in complete generality).
The level Vn consists of

22···
2

(n− 1 twos)

finite sets, whose elements are also finite sets, and so on.
We cannot go beyond finite sets unless we regard all the Vn as “already

constructed” and apply P to the union of the Vn. We set

Vω0 =
∞⋃
n=0

Vn,

Vω0 + 1 = P(Vω0)
...

The indices that we now use for the levels are the names of the first infinite
ordinals. This remarkable idea of transfinite iteration of such constructions is
due to Cantor, who first applied it to study trigonometric series, and then
investigated it systematically, finding in it the key to the infinite.

In the next two subsections our sets will temporarily be Cantorian sets.
We shall return to V after developing some properties of ordinals.

4. Ordinals. Let X be any set on which we are given a binary relation <.
We consider the following properties of this relation:

(a) Y ≮ Y for all Y ∈ X ; if Y1 < Y2 and Y2 < Y3, then Y1 < Y3.
(b) For any Y, Z ∈ X , either Y < Z or Z < Y , or else Y = Z.
(c) Every nonempty subset of X has a least element (in the sense of <).
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The relation < is a partial ordering of X if it satisfies (a), a linear ordering
of X if it satisfies (a) and (b), and a well-ordering of X if it satisfies all three
conditions (a), (b), and (c).

Let (X,<) be a well-ordering. The initial segment Ŷ determined by an
element Y ∈ X is the well-ordered set (Z,<), where Z = {Y ′ |Y ′

< Y }. As is
customary when speaking about a well-ordered set, we shall omit the explicit
indication of the ordering if it is clear from the context.

5. Lemma. Let X and Y be two well-ordered sets. Then exactly one of the
following alternatives holds:

(a) X and Y are isomorphic.
(b) X is isomorphic to an initial segment in Y.
(c) Y is isomorphic to an initial segment in X.

In each case the isomorphism is uniquely determined.

Proof. We divide the argument into several steps.

(a) Let X be well-ordered, and let f : X → X be a monotonic map, i.e.,
Z1 < Z2 ⇒ f(Z1) < f(Z2). Then for all Z ∈ X we have f(Z) � Z. In
fact, among the elements not having this property there would have to be
a least element Z0. But f(Z0) < Z0 and the monotonicity of f imply that
f(f(Z0)) < f(Z0), so that we would have an even smaller element in the set of
elements not having the desired property.

(b) Therefore X is not isomorphic to any of its initial segments X̂1 : if
f : X ∼⇒ X̂1, then f(X1) < X1.

(c) Now let X and Y be well-ordered. We set f = {〈X1, Y1〉|X1 ∈ X,Y1 ∈ Y ,
and there exists an isomorphism of X̂1 with Ŷ1}. First of all, f is the graph of a
one-to-one mapping of pr1f onto pr2f . In fact, if X1 �= X2, say X1 < X2, then
by (b), X̂1 is not isomorphic to X̂2; by symmetry, the same holds for f−1. It is
also clear from this that f and f−1 are monotonic. Further, if X1 ∈ pr1f and
X2 < X1, then X2 ∈ pr1f and similarly for pr2f . Finally, we show that either
pr1f = X , or else pr2f = Y . Otherwise, there would exist a minimal element
X1 in X\ pr1f and a minimal element Y1 in Y \ pr2f . But by the preceding
paragraph, f induces an isomorphism of X̂1 with Ŷ1. By the definition of f , we
then have 〈X1, Y1〉 ∈ f , a contradiction.

(d) All of this means that either f is an isomorphism (more precisely, the
graph of an isomorphism) of the set X onto Y or an initial segment in Y ,
or else f−1 is an isomorphism of Y onto X or an initial segment of X . It
is clear from the definition of f that the graph of any other isomorphism
must be contained in the graph of f , so we have uniqueness. The lemma is
proved. ��

As a preliminary definition, we can now consider the class of all well-ordered
sets isomorphic to some fixed totally ordered set X , and call that class an ordi-
nal. Two ordinals α and β satisfy the relation α = β, α < β, or α > β depending
on which of the alternatives in Lemma 5 holds for representatives X ∈ α and
Y ∈ β (this obviously does not depend on the choice of representatives).
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The next step is, naturally, to consider “all” ordinals as a class and show that
< induces a well-ordering on this class, thereby giving a universal well-ordering.
However, an unnecessary difficulty arises here: the class of well-ordered sets iso-
morphic to a fixed X is extremely large, and so the class of ordinals must be
a “class of classes,” which needlessly complicates matters. An elegant techni-
cal discovery, due to von Neumann, removes this difficulty: instead of a vast
number of possible orderings imposed on X from outside, we consider a single
relation given by internal properties. Recall that a set X is transitive if Z ∈ X
whenever Z ∈ Y ∈ X for some Y .

6. Definition. An ordinal is a transitive set X of sets that is well-ordered by
the relation ∈ between its elements.

7. Theorem.

(a) The class of ordinals On is well-ordered by the relation α ∈ β (which we
shall also write α < β).

(b) Any well-ordered set is isomorphic to a unique ordinal α, and also to a
unique initial segment of ordinals (those less than α ∪ {α}).

Proof.

(a) We must verify conditions (a), (b), and (c) of Section 4. The first of
them follows immediately from the definition.

To prove the second condition, we consider two ordinals α and β. By Lemma
5, there exists an isomorphism f of one of them, say α, onto either β or an initial
segment of β. We show that then α = β or α ∈ β. To do this, we prove that
f(γ) = γ for all γ ∈ α. In fact, if γ1 is the minimal element with f(γ1) �= γ1,
then f(γ2) = (γ2) for all γ2 ∈ γ1. Since f is an isomorphic embedding of
α with respect to the ordering ∈, and since γ1 and f(γ1) are sets, we have
f(γ1) = {f(γ2)|γ2 ∈ γ1} = {γ2|γ2 ∈ γ1} = γ1, which contradicts the choice of
γ1. The same argument shows that f(α) = α, from which the condition follows.

Finally, let C be a nonempty class of ordinals, and let α ∈ C. If α is not the
least element in C, then the least element in the intersection α ∩C will be the
least element in C.

(b) Let X be a well-ordered set. Let S denote the set of ordinals that are
isomorphic to some initial segment in X. S is nonempty, since, for example,
the ordinal {∅} is isomorphic to the segment consisting of the least element of
X . It is easy to see that the set β = ∪α∈Sα is an ordinal. We claim that β is
isomorphic to X . In fact, if this were not the case, then β would be isomorphic
to an initial segment in X , say X̂1. But then the ordinals β∪{β}, which is larger
than β, would be isomorphic to the initial segment X̂1 ∪ {X1}, contradicting
the definition of β. ��

We now give the elementary properties of ordinals.
8. (a) The finite ordinals are the “natural numbers” (and zero) in the first levels
of the universe V . Thus, we shall write

0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, 3 = {∅, {∅}, {∅, {∅}}}, . . . .
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(b) The ordinal that immediately follows a given α is α ∪ {α}. It is also
denoted by α+ 1, which agrees with the notation in (a) in the case of finite α.

(c) An ordinal β is called a limit ordinal if β �= Ø and β �= α+ 1 for any α.
The first limit ordinal ω0 is isomorphic as a totally ordered set to {0, 1, 2, 3, . .
. , n, . . . }. If α is a limit ordinal, then α =

⋃
β<α β. The converse is also true.

Ordinals are mainly used for three purposes: proofs using (transfinite) in-
duction, constructions using (transfinite) recursion, and measuring cardinalities.
Here are the basic principles.

9. Transfinite induction. Let C be a class of ordinals for which

(a) ∅ ∈ C.
(b) If α ∈ C, then α+ 1 ∈ C.
(c) If a set of ordinals {αi} is contained as a subset in C, then ∪αi ∈ C.

Then C contains all ordinals.

In fact, otherwise there would exist a least ordinal not in C, but this could
not be the empty set by (a), a limit ordinal by (c), or any other ordinal by (b).
In concrete applications, the verifications of (a) and (c) are often trivial and are
omitted.

10. Transfinite recursion. Let G be a function of sets (it will actually be sufficient
to assume that G is defined on all sets in the universe) whose values are sets.
Then there exists a unique function F on the ordinals such that

F (a) = G(the set of values of F on the elements of α).

In fact, this equality uniquely determines F (0) = G(∅), and then F (1) =
G({F (0)}), F (2) = G({F (0), F (1)}), and so on. Thus, if we consider the class C
of ordinals α for which we can define F with the required property on the initial
segment of ordinals < α, then C satisfies the conditions 9(a)–(c), and therefore
contains all the ordinals. Uniqueness follows similarly (if F �= F ′, consider the
least α with F (α) �= F

′
(α)).

11. Measuring cardinalities. Different ordinals can have the same cardinality.
For example, all the ordinals ω0, ω0 +1, ω0 +2, . . . (and many more after them!)
are countable. However, jumps in cardinality occur arbitrarily far out.

An ordinal that does not have the same cardinality as any lower ordinal is
called a cardinal. All finite ordinals and ω0 are cardinals. Clearly, any infinite
cardinal is a limit ordinal. Further, any set has the same cardinality as some
cardinal, and in fact, a unique one (see §1 of Chapter III). The infinite cardinals
form a totally ordered class, which is naturally indexed by ordinals. Thus

ω0 = the first countable ordinal,
ω1 = the first ordinal of cardinality > ω0

= the set of all finite and countable ordinals,
ω2 = the first ordinal of cardinality > ω1

= the set of all ordinals of cardinality � ω1,

and so on.
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We can now give our fundamental definition.

12. Definition. The (von Neumann) universe V is the class of sets
⋃
α∈OnVα,

where the set Va is defined by the following transfinite recursion:

V0 = ∅,

Vα+1 = P(Vα),

Vα =
⋃

β<αVβ , if α is a limit ordinal.

We give some elementary properties of the universe V .

13. Each of the sets Vα is transitive: if Y ∈ X ∈ Vα then Y ∈ Vα. (In other
words, Vα ⊂ Vα+1.)

Suppose that this were not true. Then there would exist a least ordinal α
with Vα �⊂ Vα+1, where α � 2. If α is not a limiting ordinal, α = β + 1, Y ∈
X ∈ Vα, and Y �∈ Vα, then we obtain a contradiction as follows: X ∈ Vβ+1 =
P(Vβ) ⇒ X ⊂ Vβ ⇒ Y ∈ Vβ ⇒ Y ∈ Vβ+1 = Vα, since for β it is still true that
Vβ ⊂ Vβ+1 by our choice of α. If α is a limit ordinal, the argument is analogous
(find γ < α with Y ∈ X ∈ Vγ and Y �∈ Vα). ��

We define the rank of any set X ∈ K as follows: rank X = α if α is the least
ordinal such that X ∈ Vα+1. If Y ∈ X , then rank X � rank Y + 1.

14. All ordinals belong to V, and rank α = α.
We first show that α ∈ Vα+1 for all ordinals α. This is true for α = 0. Suppose

that α is the least ordinal with α �∈ Vα+1. If α = β + 1, then β ∈ Vβ+1, so that
β and {β} ∈ Vβ+2 = P(Vβ+1), and hence α = β + 1 = β ∪ {β} ∈ Vβ+2 = Vα+1,
a contradiction. On the other hand, if α is a limit ordinal, then α = ∪β<αβ and
β ∈ Vβ+1 ⊂ Vα by the choice of α, so that α = ∪β<α β ⊂ ∪β<αVβ = Vα, and
α ∈ P(Vα) = Vα+1, a contradiction. Therefore, rank α � α. We similarly prove
strict equality. ��
15. The universe V is closed with respect to the standard set operations: dif-
ference, union, intersection, forming P(X) and ∪Y ∈XY , and “collecting” sets
indexed by any set: {XY |Y ∈ Z}. In particular, if X,Y ∈ Vα, then the pair
{X,Y } is in Vα+1. We write {X} in place of {X,X}.
16. Direct products, relations, and functions can also be defined as elements
of V using a device of Kuratowski. The intuitive notion of an ordered pair of
sets X,Y ∈ V is realized by means of the set

〈X,Y 〉 = {{X}, {X,Y }} ∈ V.

As elements of V , ordered pairs are characterized by the following properties:
an ordered pair is a set of two elements X ′ and Y ′, one of which is a subset of
the other (say X ′ ⊂ Y ′); if X ′ ⊂ Y ′, then X ′ = {X} is a one-element set, and
X is called the first term of the pair; Y ′ is a set of at most two elements, and its
element Y that is different from X (if it exists) or X itself (otherwise) is called
the second term of the pair. Thus, 〈X,Y 〉 = 〈X ′′, Y ′′〉 if and only if X = X”
and Y = Y ”, which justifies the name “ordered pair.”
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We emphasize that this definition is introduced so that the direct product
construction does not leave the universe V , and so that a set corresponding to a
direct product can be described in terms of the relation ∈, i.e., in the language
L1Set.

An ordered n-tuple of sets is defined as

〈X1, . . . , Xn〉 = 〈· · · 〈〈X1, X2〉, X3〉 · · · 〉.

We define the direct product of two sets as

X × Y = {〈U,W 〉|U ∈ X,W ∈ Y }.

Similarly,
X1 × · · · ×Xn = (· · · ((X1 ×X2)×X3)× · · · ).

We note that in general, (X×Y )×Z �= X× (Y ×Z); we have only a canonical
one-to-one correspondence between these two sets. But it is usually harmless to
take the liberty of identifying the two sets and writing X × Y × Z.

A binary relation (or correspondence) r is a set (or class) all of whose
elements are ordered pairs. If r ∈ V is a relation, then its domain of defini-
tion dom(r) is the class of all first terms in the elements of r, and the range of
values rng(r) is the class of all second terms.

A function is a binary relation in which each element is uniquely determined
by its first term. Thus, functions that are maps of sets in V are identified with
their graphs. If f is a function, we often write W = f(U) instead of 〈U,W 〉 ∈ f .
In addition, we set

f−1(X) = {Y |f(Y ) ∈ X},
f |X = {〈U,W 〉 ∈ f |U ∈ X}.

A family {XY |Y ∈ Z} as an element of V is defined to be a function con-
sisting of pairs {〈Y,XY 〉|Y ∈ Z}, and so on.

We again emphasize that the most important feature of these definitions is
that we do not introduce any new objects besides elements of V , or any new
relations other than those expressible in terms of ∈. It should also be noted that
in accordance with the usual (“extensional”) notion, a property of the elements
of a set X ∈ V is a subset Y ⊂ X (consisting of all elements with this property).
Thus, Y ∈ V , so that properties, properties of properties, properties of sets of
properties, . . . (with transfinite iteration) are elements of V .

The “universe” V has earned its name.

17. Finally, we show that a chain X1 ∈ X2 ∈ · · · of elements of V must
terminate (of course, with the empty set).

We prove that if X is nonempty, then there exists a Y ∈ X with Y ∩X = ∅
(the desired result is obtained if we apply this to the set X of terms in the
chain). In fact, let Y be the element of least rank in X (which exists because
the ranks, since they are ordinals, are well-ordered). If we had X ∩Y = ∅, then
any element Z ∈ X ∩ Y would have lower rank than Y , a contradiction.
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18. Connection with the axioms of L1Set. The point of view adopted in this
book is as follows.

The intuitive notion of a set, to which we appealed when constructing the
universe V , is the primary material. The language L1Set was devised in order
to write formal texts based on this material that are equivalent to our intuitive
arguments concerning V . The axioms of L1Set (including the logical axioms)
are obtained as a result of analyzing intuitive proofs. Our criterion for the
completeness of this list is that we can write a formal deduction that translates
any intuitive proof. The fact that we are able to do this must be proved by a
rather large compendium of formal texts, which can be found in other books on
logic. In particular, in L1Set we can write the formula “∀x ∃ordinal α(x ∈ Vα)”
and deduce it from the axioms. This formula is the formal expression of our
restriction to sets in V .

The question of the formal consistency of the Zermelo–Fraenkel axioms must
remain a matter of faith, unless and until a formal inconsistency is demon-
strated. So far all the proofs that have been based on these axioms have never
led to a contradiction; rather, they have opened up before us the rich world of
classical and modern mathematics. This world has a certain reality and life of
its own, which depends little on the formalisms called upon to describe it.

The discovery of a contradiction in any of various formalisms, even if it
should occur, would merely serve to clarify, refine, and perhaps reconstruct
certain of our ideas, as has happened several times in the past, but would not
lead to their downfall.

The Last Digression. Truth as Value and Duty: Lessons of
Mathematics.

1. Introduction. Imagine that you open your morning newspaper and read
the following report:

Brownsville, AR. A local object partially immersed in a liquid was buoyed
upward Tuesday by a force equal to the weight of the liquid displaced by that
object, witnesses at the scene reported. As of press time, the object is still main-
taining positive buoyancy.

In fact, I did read this report in the Onion 1; I have abridged it only to add
a Fénéonian touch.

If this book had been dedicated to the nature of the comical, one could have
produced an interesting analysis of the clever silliness of this parody. But since
we are preoccupied with mathematical truth, I will use it in order to illustrate
the differences between the attitudes to truth among practitioners of social
sciences and law on the one hand, and that of physicists, on the other.

1 The Onion is a satirical newspaper, owned by an American “fake news” organization
Onion, Inc., based in New York.
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To put it crudely, in social sciences information comes from witnesses; but in
what sense was Archimedes’ role in his discovery that of a witness, and are the
experimental observations generating/supporting a physical theory on an equal
footing with the observations of witnesses to a crime scene, or respondents to
a poll?

Now imagine another report, which could have been posted on the website
of the Department of Physics of Cambridge University:

The Cavendish Laboratory News & Features bulletin announced yesterday
that a Cavendish student has the won The Science, Engineering and Technology
award. He managed to measure the constant π with unprecedented precision:
π = 31415925 . . . with an error ±2 at the last digit.

I must confess right away that I did not read but simply fabricated this
spoof in order to stress the further differences between the attitudes toward
truth now held by physicists and by mathematicians respectively.

Literally speaking, such an announcement would make perfect sense: the
mathematical constant π can be measured with some precision, in the same
way that any physical constant such as the speed of light c or the mass of the
electron can be measured. The maximum achievable precision, at least of a
“naive” direct measurement of π, is determined by the degree to which we can
approximate ideal Euclidean rigid bodies by real physical ones. The limits to
this approximation are set by the atomic structure of matter, and in the final
analysis, by quantum effects.

On the other hand, in order to get in principle as many digits of π as one
wishes, measurements are not required at all. Instead, one can use one of the
many existing formulas/algorithms/software codes and do it on a sheet of paper,
a pocket calculator, or a supercomputer. This time the limits of precision are
determined by the physical limitations of our calculator: the size of the sheet
of paper, memory of computer, construction of the output device, available
time . . . .

What I want to stress now is that π imagined as an infinite sequence of its
digits is not amenable to a “finite” calculation: even the number of digits of π
equal to the number of atoms in the observable universe would not exhaust π.
As Wis
lawa Szymborska beautifully put it:

heaven and earth shall pass away,
but not pi, that won’t happen,
it still has an okay five,
and quite a fine eight,
and all but final seven,
prodding and prodding a plodding eternity
to last.
Nevertheless, mathematicians speak about π and work with π as if it were a

completely well defined entity, graspable in its entirety not only by one excep-
tional supermind, but by the minds of all trained researchers, never doubting
that when they speak of π, they speak about one and the same ideal object, as
rigid as if it really existed in some Platonic world.
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One facet of this rigidity can be expressed by a few theorems implying
that whatever power series, integral, limit, and software code we might use
to calculate π and whatever precision we choose, we will always get the same
result. If we do not, either our formula was wrong, or the calculator made a
mistake/there was a bug in the code/output device could not cope with the
quantity of information . . . .

Contemplating this example, we may grasp the meaning of the succinct
description of mathematics by Davis and Hersh: “the study of mental objects
with reproducible properties.”

However, I want to use this example in order to stress that most of the
deep mathematical truths are about infinity and infinitary mental constructs
rather than experimentally verifiable finitary—and finite—operations that can
be modeled using actual objects of the physical world.

2. Infinity, Georg Cantor, and truth. Before Georg Cantor, infinity
appeared in mathematical theorems mostly implicitly, through the quantifier
“all” (which also could be only implicit as in most of Euclid’s theorems).

Cantor proved the first theorem ever in which infinities themselves were
objects of consideration and of a highly nontrivial discovery.

When Cantor first presented his diagonal argument in a letter to Dedekind
in 1873, it was worded differently and used only to prove that the cardinality of
the natural numbers is strictly less than that of the real numbers. The discovery
of the proof itself was in a sense hardly less important than the discovery of the
definition of what it means for one infinity to be larger than another one.

As soon as this was achieved, Cantor started thinking about the cardinal-
ity of the reals compared with that of the pairs of reals, or, geometrically,
sets of points of a curve and of a surface respectively. They turned out to be
equal! If we have a pair of numbers (α, β) in (0, 1), Cantor suggested to pro-
duce from them the third number γ ∈ (0, 1) by putting the decimal digits of
α in the odd places and those of β in the even places. One sees that con-
versely, (α, β) can be reconstructed from γ. Dedekind, who was informed by
Cantor’s letter about this discovery as well, remarked that this does not quite
work because some rational numbers have two decimal representations, such
as 0499999 . . . = 05000000 . . . . Cantor had to spend some time to amend the
proof, but this was a minor embarrassment, in comparison with the fascinating
novelty of the fact itself: “Ce que je vous ai communiqué tout récemment est
pour moisi inattendue, si nouveau, que je ne pourrai pour ainsi dire pas arriver
à une certaine tranquillité d’esprit avant que je n’aie reçu, très honoré ami,
votre jugement sur son exactitude. Tant que vous ne m’aurez pas approuvé,
je ne puis que dire: je le vois, mais je ne le crois pas.”

“I see it but I do not believe it,” Cantor famously wrote to Dedekind.
This returns us to the basic question on the nature of truth.
We are reminded that the notion of “truth” is a reification of a certain rela-

tionship between humans and texts/utterances/statements, the relationship that
is called “belief,” “conviction,” or “faith,” and which itself should be analyzed,
together with other primary notions invoked in this definition.
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S. Blackburn in his keynote talk “Truth and Ourselves: The Elusive Last
Word” at The Balzan Symposium on Truth, 2008, extensively discussed other
relationships of humans to texts, such as scepticism, conservatism, relativism,
deflationism. However, in the long run all of them are secondary in the practice
of a researcher in mathematics.

So I will return to truth.
I will skip analysis of the notion of “humans” :=) and will only sketch what

must be said about texts, sources of conviction, and methods of conviction
peculiar to mathematics.

(i) Texts. Alfred North Whitehead allegedly said that all of Western philos-
ophy was but a footnote to Plato.

The underlying metaphor of such a statement is, “Philosophy is a text,” the
sum total of all philosophic utterances.

Mathematics decidedly is not a text, at least not in the same sense as
philosophy. There are no authoritative books or articles to which subsequent
generations turn again and again for wisdom. Except for historians, nobody
reads Euclid, Newton, Leibniz, or Hilbert in order to study geometry, calculus,
or mathematical logic. The life span of any mathematical paper or book can
be years; in the best (and exceptional) case, decades. Mathematical wisdom, if
not forgotten, lives as an invariant of all its (re)presentations in a permanently
self-renewing discourse.

(ii) Sources and methods of conviction. Mathematical truth is not revealed,
and its acceptance is not imposed by any authority.

Moreover, mathematical truth decidedly is not something that can be
ascertained, as Justice Oliver Wendell Holmes put it, by “the majority vote
of the nation that could lick all the others.” Equally laughable is his idea that
“the best test of truth is the power of the thought to get itself accepted in the
competition of the market.”

If this means that truth is not a democratic value, then something is wrong
with our conception of democracy.

Ideally, the truth of a mathematical statement is ensured by a proof, and
the ideal picture of a proof is a sequence of elementary arguments whose rules
of formation are explicitly laid down before the proof even begins, and ideally
are common for all proofs that have been devised and can be devised in the
future.

This ideal picture is so rigid that it can itself become the subject of math-
ematical study, and the first two chapters of this book were dedicated to the
presentation of the results of this soul-searching activity of our transgenera-
tional community.

Of course, real-life proofs are rendered in a peculiar mixture of a natural
language, formulas, motivations, and examples. They are much more condensed
than imaginary formal proofs. The ways of condensing them are not systematic
in any way. We are prone to mistakes, to taking on trust others’ results that
can be mistaken as well, and to relying upon authority and revelations from
our teachers. (All of this should have been discussed together with the notion
of “humans,” which I have wisely avoided.)
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Moreover, the discovery of truth may, and usually does, involve experimen-
tation, nowadays vast and computer-assisted, false steps, sudden insights, and
all that which makes mathematical creativity so fascinating to its adepts.

One metaphor of proof is a route, which might be a desert track, boring and
unimpressive until one finally reaches the oasis of one’s destination, or a foot-
path in green hills, exciting and energizing, opening great vistas of unexplored
lands and seductive offshoots, leading far away even after the initial destination
point has been reached.

3. Mathematics and Cognition
[...] “mismanagement and grief”: here you have that

enormous distance between cause and effect covered in one line.
Just as math preaches how to do it.

J. Brodsky. On “September 1, 1939” by W. H. Auden.

Mathematics is most visible to the general public when it posits itself as an
applied science, and in this role the notion of mathematical truth acquires
distinctly new features. For example, our initial discussion of π as an essentialy
nonfinitary (“irrational”) real number becomes pointless; whenever π enters any
practical calculation, the first few digits are all that matters.

In a wider context than just applied science, mathematics can be fruit-
fully conceived as a toolkit containing powerful cognitive devices. I have
argued elsewhere that these devices can be roughly divided into three over-
lapping domains: models, theories, and metaphors. Quoting from my book
Mathematics as Metaphor:

A mathematical model describes a certain range of phenomena quali-
tatively or quantitatively but feels uneasy pretending to be something
more.
From Ptolemy’s epicycles (describing planetary motions, ca 150) to the
Standard Model (describing interactions of elementary particles, ca
1960), quantitative models cling to the observable reality by adjust-
ing numerical values of sometimes dozens of free parameters (≥ 20 for
the Standard Model). Such models can be remarkably precise.
Qualitative models offer insights into stability/instability, attractors
which are limiting states tending to occur independently of initial con-
ditions, critical phenomena in complex systems which happen when the
system crosses a boundary between two phase states, or two basins of
different attractors. [. . . ]
What distinguishes a (mathematically formulated physical) theory from
a model is primarily its higher aspirations. A modern physical theory
generally purports that it would describe the world with absolute pre-
cision if only it (the world) consisted of some restricted variety of stuff:
massive point particles obeying only the law of gravity; electromagnetic
field in a vacuum; and the like. [...]
A recurrent driving force generating theories is a concept of a reality
beyond and above the material world, reality which may be grasped
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only by mathematical tools. From Plato’s solids to Galileo’s “language
of nature” to quantum superstrings, this psychological attitude can
be traced sometimes even if it conflicts with the explicit philosophical
positions of the researchers.
A (mathematical) metaphor, when it aspires to be a cognitive tool,
postulates that some complex range of phenomena might be com-
pared to a mathematical construction. The most recent mathematical
metaphor I have in mind is Artificial Intelligence (AI). On the one hand,
AI is a body of knowledge related to computers and a new, technologi-
cally created reality, consisting of hardware, software, Internet etc. On
the other hand, it is a potential model of functioning of biological brains
and minds. In its entirety, it has not reached the status of a model:
we have no systematic, coherent and extensive list of correspondences
between chips and neurons, computer algorithms and brain algorithms.
But we can and do use our extensive knowledge of algorithms and com-
puters (because they were created by us) to generate educated guesses
about structure and function of the central neural system [...].
A mathematical theory is an invitation to build applicable models.
A mathematical metaphor is an invitation to ponder upon what we
know.

As an aside, let us note that George Lakoff’s definition of poetic metaphors
such as “love is a journey” (in G. Lakoff. “The Contemporary Theory of
Metaphor.” In: A. Ortony (ed.), Metaphor and Thought (2nd ed.). Cambridge
Univ. Press, 1993) is itself expressed as a mathematical metaphor using the
characteristic Cantor–Bourbaki mental images and vocabulary: “More techni-
cally, the metaphor can be understood as a mapping (in the mathematical sense)
from a source domain (in this case, journeys) to a target domain (in this case,
love). The mapping is tightly structured. There are ontological correspondences,
according to which entities in the domain of love (e.g. the lovers, their common
goals, their difficulties, the love relationship, etc.) correspond systematically to
entities in the domain of a journey (the travellers, the vehicle, destinations,
etc.).”

When a mathematical construction is used as a cognitive tool, the discussion
of truth becomes loaded with new meanings: a model, a theory, or a metaphor
must be true to a certain reality, more tangible and real than the Platonic
“reality” of pure mathematics. In fact, philosophers of science routinely dis-
cussed truth precisely in this context. Karl Popper’s vision of scientific theories
in terms of falsifiability (versus verifiability) is quite appropriate in the context
of highly mathematicised theories as well.

What I want to stress here, however, is one aspect of contemporary math-
ematical models that is historically very recent. Namely, models are more and
more widely used as “black boxes” with hidden computerized input procedures,
and oracular outputs prescribing behavior of human users.

Mary Poovey, discussing financial markets from this viewpoint, remarks in
her insightful essay “Can Numbers Ensure Honesty? Unrealistic Expectations
and the US Accounting Scandal” (Notices of the AMS, vol. 50:1, Jan. 2003,
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pp. 27–35), that what she calls “representations” (computerized bookkeeping or
the numbers a trader enters in a computer) tend to replace the actual exchange
of cash or commodities. “This conflation of representation and exchange has
all kinds of material effects [. . . ] for when representation can influence or take
the place of exchanges, the values at stake become notional too: they can grow
exponentially or collapse at the stroke of key.”

In fact, actions of traders, banks, hedge funds, and the like are to a consider-
able degree determined by the statistical models of financial markets encoded in
the software of their computers. These models, now essentially defining financial
markets, thus become a hidden and highly influential part of the actions, our
computerized “collective unconscious.” As such, they cannot even be judged
according to the usual criteria of choosing models that better reflect the
behavior of a process being modeled. They are part of any such process.

What becomes more essential than their empirical adequacy is, for example,
their stabilizing or destabilizing potential. Risk management assuming mild
variability and small risks can collapse when a disaster occurs, ruining many
participants of the game; risk management based on models that use pessimistic
“Lévy distributions” rather than omnipresent Gaussians paradoxically tends to
flatten the shock waves and thus avoid major disasters (B. Mandelbrot).

4. Truth as value. When in the twentieth century mathematicians got
involved in heated discussions about the so-called crisis in the foundations of
mathematics, several issues were intermingled.

Philosophically minded logicians and professional philosophers were
engaged with the nature and accessibility of mathematical truth (and relia-
bility of our mental tools used in the process of acquiring it).

Logicists (finitists, formalists, intuitionists) were elaborating severe norma-
tive prescriptions trying to outlaw dangerous mental experiments with infinity,
nonconstructivity, and reductio ad absurdum.

For a working mathematician, when he/she is concerned at all, “founda-
tions” is simply a general term for the historically variable set of rules and
principles of organization of the body of mathematical knowledge, both existing
and being created. From this viewpoint, the most influential foundational
achievement in the twentieth century was an ambitious project of the Bourbaki
group, building all mathematics, including logic, around set-theoretic “struc-
tures” and making Cantor’s language of sets a common vernacular of alge-
braists, geometers, probabilists, and all other practitioners of our trade. These
days, this vernacular, with all its vocabulary and ingrained mental habits, is
being slowly replaced by the languages of category theory and homotopy the-
ory and their higher extensions. Respectively, the basic “left-brain” intuition of
sets, composed of distinguishable elements, is giving way to a new, more “right-
brain” basic intuition dealing with spacelike and continuous primary images,
both deformable and deforming.

In Western ethnomathematics, truth is best understood as a central value,
ever to be pursued, rather than anything achieved. Practical efficiency, authority,
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success in competition, faith, all other clashing values must recede in the mind
of a mathematician when he or she gets down to work.

The most interesting intracultural interactions of mathematics are as well
those that are not direct but rather proceed with the mediation of value systems.

Coda. Every four years, mathematicians from all over the world meet at
the International Congress of Mathematicians (ICM), to discuss whatever in-
teresting developments happened recently in their domains of expertise. One of
the traditions of these congresses is a series of lectures for the general public.

In 1998, our congress met in Berlin, and Hans Magnus Enzensberger, the
renowned poet and essayist, deeply interested in mathematics, spoke about
“Zugbrücke außer Betrieb: Die Mathematik im Jenseits der Kultur”: the draw-
bridge to the castle of mathematics is out of service. The main concern of
his talk was a deplorable lack of mathematical culture and communication
between the general public and mathematicians, leading to alienation and
mutual mistrust.

At the end of his talk Enzensberger quotes an imaginary dialogue, where
a mathematician is chatting with a fictitional layman “Seamus Android” (see
I. Stewart. The Problems of Mathematics. Oxford Univ. Press, 1987).

“Mathematician: It’s one of the most important discoveries of the last
decade!

Android: Can you explain it in words ordinary mortals can understand?
Mathematician: Look, buster, if ordinary mortals could understand it, you

wouldn’t need mathematicians to do the job for you, right? You can’t get a
feeling for what’s going on without understanding the technical details. How can
I talk about manifolds without mentioning that the theorems only work if the
manifolds are finite-dimensional paracompact Hausdorff with empty boundary?

Android: Lie a bit.
Mathematician: Oh, but I couldn’t do that!
Android: Why not? Everybody else does.”

And here I must play God and say to both Android and Mathematician:
“Oh, no! Don’t lie—because everybody else does.”



III

The Continuum Problem and Forcing

1 The Problem: Results, Ideas

1.1. Cantor introduced two fundamental ideas in the theory of infinite sets: he
discovered (or invented?) the scale of cardinalities of infinite sets, and gave a
proof that this scale is unbounded. We recall that two sets M and N are said
to have the same cardinality (card M = card N) if there exists a one-to-one
correspondence between them. We write card M � card N if M has the same
cardinality as a subset of N . We say that M and N are comparable if either
card M � card N or card N � card M . We write card M > card N if card
M � card N but M and N do not have the same cardinality.

1.2. Theorem (Cantor, Schröder, Bernstein, Zermelo)

(a) Any two sets are comparable. If both card M � card N and card N �
card M , then card M = card N . In other words, the cardinalities are
linearly ordered.

(b) Let P(M) be the set of all subsets of M . Then card P(M) > card M .
In particular, there does not exist a largest cardinality.

(c) In any class of cardinalities there is a least cardinality. In other words, the
cardinalities are well-ordered.

Proof.

(a) Suppose M has the same cardinality as the subset M ′ ⊂ N and N
has the same cardinality as the subset N1 ⊂ M ∼= M ′. We identify M with
M ′. We then have three sets N1 ⊂ M ⊂ N and a one-to-one correspondence
f : N → N1. We must construct a one-to-one correspondence g : N →M . Here
is an explicit definition of such a map:

g(x) =

{
f(x), if x ∈ fn(N)\fn(M) for some n � 0,
x, otherwise.

Here fn(y) = f(f(· · · f(y) · · · )) (n times); fn(N) = {fn(y)|y ∈ N}, and
f0(y) = y. We leave the verification that g has the required properties to the
reader.
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To prove that any two sets are comparable, it is sufficient to show that any
set can be well-ordered, since Lemma 5 of the appendix to Chapter II implies
that well-ordered sets are comparable to each other. Let M be any set. For every
nonempty subset N ⊂M choose an element c (N) ∈ N . We call a well-ordering
< of a subset M ′ ⊂ M admissible (with respect to c) if c(M \ X̂) = X for all
X ∈M ′, where X̂ = {Y |Y ∈M ′, Y < X}.

We claim that if M ′ �= M ′′ are two subsets of M having admissible
well-orderings, then one set is an initial segment of the other, and the orderings
are compatible. In fact, as in Section 7(a) of the appendix to Chapter II, we
prove that the canonical isomorphism f of, say, M ′ with an initial segment of
M ′′ is the identity embedding: if f(X) �= X and X is the least element with
this property, then

f(X̂) = X̂, X = c (M \ X̂) ⇒ X = c (M \ f(X̂)) = f(X),

which is a contradiction.
It is now easy to see that the union M ′ of all subsets of M that have

a well-ordering admissible with respect to c itself has an admissible
ordering; moreover, M ′ coincides with M, since otherwise we could embed M ′

in M ′ ∪ {c (M \M ′)}.
In particular, it follows that any set has the same cardinality as some ordinal,

and hence the same cardinality as a unique cardinal. This justifies the use of the
term “cardinality” and the use of cardinals as our standard scale of cardinalities
(see Section 11 of the appendix to Chapter II).

(b) Since P(M) contains all the one-element subsets of M , we have
card P(M) � card M . In addition, any map f : M → P(M) cannot be
one-to-one (or even onto). In fact, we set

N = {z|z �∈ f(z)} ∈ P(M),

and show that N is not contained in the image of f . If there existed an
n ∈ M such that N = f(n), we would immediately obtain a contradiction by
considering the relationship of n to N :

n ∈ N ⇒ n ∈ f(n) ⇒ n �∈ N by the definition of N ;
n �∈ N ⇒ n �∈ f(n) ⇒ n ∈ N by the definition of N.

This is Cantor’s famous “diagonal process.”

(c) The well-ordering of the cardinals is established at the same time as
their comparability in the first stage of the theory of ordinals (see the
Appendix to Chapter II). ��

1.3. Remark. This proof of the lemma that any set can be well-ordered is
essentially due to Zermelo. It was probably what prompted the most severe
objections to the axiom of choice. The intuitive idea behind the proof reduces
to a recipe for choosing one element after another from the set M until all of
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M is exhausted. In this form it is immediately apparent that the prescription is
“physically” unthinkable, and to many of Zermelo’s contemporaries the whole
proof seemed to be nothing but a trick. For example, the idea of “first” choosing
an element c (N) in each subset N ⊂ M met with the following objection of
Lebesgue. If the elements we choose are not characterized by any special prop-
erties, how do we know that we are always thinking about the same elements
throughout the proof? But today, except for specialists in the foundations of
mathematics, hardly any working mathematicians share these doubts.

We now formulate the basic problem that will concern us during the next
two chapters. We shall write card P(M) = 2cardM , in analogy to the finite case.
The continuum is 2ω0 .

1.4. The continuum problem. What place does the continuum occupy on the
scale of cardinalities?

By Theorem 1.2(b), we have 2ω0 > ω0. Hence, in any case, 2ω0 � ω1. On the
other hand, if 2ω0 > ω1, 2ω0 > ω2, . . . , 2ω0 > ωn, . . . for any n, then we would
have 2ω0 > ωω0 , since the continuum cannot be a union of countably many
subsets of lower cardinality (König).

1.5. The continuum hypothesis (CH). 2ω0 = ω1.
The generalized continuum hypothesis asserts that 2cardM comes immedi-

ately after cardM for any infinite M . Here is what we know about this question:

1.6. Theorem

(a) The negation of the continuum hypothesis cannot be deduced from the other
axioms of set theory if those axioms are consistent (Gödel ).

(b) The continuum hypothesis cannot be deduced from the other axioms of set
theory if those axioms are consistent (Cohen ).

The same holds true for the generalized continuum hypothesis.
If we grant that the axioms of set theory and the logical means of expression

and deduction in L1Set, which are implicit in the statement of Theorem 1.6,
actually exhaust the apparatus for constructing proofs in modern mathematics,
then we can say that the continuum problem is the first known example of
an absolutely undecidable problem. Although Gödel’s incompleteness theorem
provides concrete examples of undecidable propositions in any formal system
having reasonable properties, these examples can be decided in an “obvious”
way in some higher system. The situation with the continuum problem seems
much more difficult. If we agree that it is a meaningful question, then it can
be decided only by introducing a new principle of proof. Various possibilities
for doing this have been discussed, but none of the suggested new axioms for
set theory seem sufficiently convincing or, more important, sufficiently useful in
“real” mathematics. In the hundred years since the introduction of transfinite
induction, not a single new method of constructing sets has come into common
use (see, however, the end of IV.7 (added in the second edition)). Incidentally,
the basic idea in Gödel’s proof of Theorem 1.6(a) actually consists in verifying
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that all the old methods allow us to construct at most ω1 subsets of ω0

(or, equivalently, at most ω1 real numbers).

1.7. Gödel’s idea. Gödel considers the basic set-theoretic operations—forming
pairs, products, complements, sums, and so on—and constructs the class of
all sets that are obtained by transfinite iteration of these operations, start-
ing from ∅. Such sets are called constructible sets. It is a priori completely
unclear whether all subsets of {0, 1, 2, . . .} are constructible, or, more gener-
ally, whether all sets in the universe V are constructible. (It turns out that
this problem is formally undecidable to the same extent as the continuum
problem.) But we find that within the class of constructible sets, the number
of subsets of {0, 1, 2, . . .} is equal to ω1—most likely because we have omit-
ted a vast number of nonconstructible sets. Meanwhile, all the axioms of set
theory, restricted to this class, are true (in a reasonable meaning of “true”),
as are all deductions from these axioms. Hence the negation of the CH is not
deducible, since it is false in this model. The next chapter will be devoted to
Gödel’s theorem.

1.8. Cohen’s idea. We shall present this idea in the version due to Scott and
Solovay. First we give its application to a certain simplified problem, concerned
with a language weaker than L1Set; then in §§4–8 we present the application
to L1Set. For another version of Cohen’s idea, see §9.

We shall discuss the CH in the following form: there does not exist a subset
of the real numbers R whose cardinality is strictly between that of {0, 1, 2, . . .}
and that of R. In fact, if we had 2ω0 > ω1, then any subset of R of cardinality
ω1 would have such an intermediate cardinality.

In order to show that this assertion is not deducible, which is equivalent to
Cohen’s theorem, it suffices to construct a model of the real numbers in which
all the axioms and all propositions deducible from them are fulfilled and in
which a set of intermediate cardinality exists. This model will be the set R of
random variables on a very big probability space Ω. For a suitable choice of
Ω, R will be so big that within the model there exists a set of intermediate
cardinality, containing N (the integers of the model) and contained in R (the
continuum of the model).

Of course, it cannot be quite this simple; there must be some obstacle to
carrying out this program. The obstacle is that almost all the properties of
R, including most of the axioms, turn out to be false for R, so that R cannot
be a model for R in the usual sense of the word. Cohen’s basic idea was to
develop a method for overcoming this difficulty. He replaced the property of an
assertion being true by another property, which we shall temporarily call
“truth” in quotes, and which has the necessary formal properties. Namely, all
the axioms of R are “true” in R, all deductions from “true” assertions using
the rules of logic again lead to “true” assertions, and the CH is not “true,” and
hence is not deducible from the axioms. We now show in greater detail how this
is done.
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1.9. Let I be a set of cardinality > ω1. We set

Ω = [0, 1]I , with Lebesgue measure,

R = the set of random variables on Ω
= the set of measurable real-valued functions on Ω.

1.10. Theorem

(a) All the axioms of the real numbers and all deductions from them are “true”
for R.

(b) The CH is not “true” for R.

Here we say that an assertion P about random variables x̄, ȳ, . . . ∈ R is “true”
if the following condition is fulfilled:

for each point ω ∈ Ω we consider the values x̄(ω), ȳ(ω), . . . of the random
variables x̄, ȳ, . . . and form the assertion Pω about these ordinary real
numbers; then for almost all ω ∈ Ω (i.e., all but a set of measure 0) Pω
is true in the usual sense of the word.

Briefly, “truth” means experimental truth with probability one.

Example. Let P be the assertion that “R has no zero divisors,” i.e., “if x, y ∈ R
are such that xy = 0, then either x = 0 or y = 0.” Then the assertion “R has no
zero divisors” is, of course, not true. However, it is “true” because: if x̄, ȳ ∈ R
are such that x̄ȳ = 0, then for almost all ω ∈ Ω either x̄(ω) = 0 or ȳ(ω) = 0.

1.11. In order to give a precise meaning to the definition of “truth” and learn
how to verify effectively the “truth” of rather complicated assertions, we must
introduce a formal language, in this case the language of real numbers. This
formal language is a mathematical object, and the precise formulation of
Theorem 1.10 will concern this object, and not R or R at all.

The connection between this language and R is given by a system of
informal recipes that tell how to translate the usual intuitive texts about R
into this language, and by a system of theorems that tell us that the transla-
tion is always possible and that the recipes are faithful to the informal texts.
The role of R is reduced to that of auxiliary construction that is used to define
and compute a special “truth” function on the formulas of the language. Thus
we see the role of logic in the program.

1.12. A detailed proof of Theorem 1.10 would be rather lengthy and nontrivial
for several reasons. In the first place, a certain amount of space must be devoted
to describing the formal language and the axioms of R in this language. We must
then verify that all the axioms are “true” and that the CH is not “true”—this
amounts to one or two dozen verifications, each of which involves an inductive
argument with infinite sums and products in the Boolean algebra of measurable
sets in Ω. However, the most serious difficulties arise because the meaning of
every assertion changes considerably in going from R to R, and not always in
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a convenient direction. We shall illustrate this qualitative aspect by attempting
to explain why the CH is not “true,” and why this is nontrivial.

As we have said, we want to construct a subset M of R having cardinality
intermediate between the cardinality of N and the cardinality of R. We do this
as follows: For any i ∈ I, let the random variable x̄i : [0, 1]I → [0, I] be the
i th projection. Choose a subset J ⊂ I such that ω0 < card J <card I (this is
possible if I is large), and set

M = {xj |j ∈ J } ⊂ R.

Then card N < card M < card R is true in the usual meaning of the
word. However, we must show that the corresponding assertion is “true” in our
Pickwickian sense. But then the role of the integers is assumed by the “locally
integral” random variables (whose values are integral with probability one), and
these random variables can have cardinality much greater than ω0. Thus, the
required lower estimate for card M becomes much more serious. Similarly, if we
formalize our naive description of M and then interpret it in R, then M takes
on a new meaning, and leads to a much larger set than the “real” M . Thus, it
is also unclear that the upper inequality for card M still holds. It seems almost
miraculous that everything eventually falls into place.

The plan for the rest of the chapter is as follows. In §2 and §3 we give a
(shortened) exposition for the second-order language of real numbers of this
abbreviated version of the theorem that the CH is not deducible. If the reader
is interested only in the complete proof for L1Set, he may skip to §4, where we
introduce the Boolean-valued “universe of random sets,” which takes the place
of V . In §§5−7 we verify that the Zermelo–Fraenkel axioms are “true,” and in
§8 we verify that the CH is “false.” Finally, in §9 we discuss Cohen’s original
method, which is more syntactic and involves somewhat different intuitive ideas.

2 A Language of Real Analysis

2.1. In this section we describe a formal language based on the theory of real
numbers. In particular, this means that the variables x, y, z will be considered
as names of real numbers. However, if we try to use a first-order language to
formulate the assertions we are interested in, such as the continuum hypothesis
CH, or even the completeness axiom (which differentiates the real numbers from
the rational numbers), we find that we are not able to do this. In fact, in these
assertions we need to refer to arbitrary subsets (or relations of degree one) of
the real numbers, whereas first-order languages do not have symbols for variable
relations (compare with Section 3.17 of Chapter I).

This leads us to consider the second-order language L2Real, which is the
most economical language in which the axioms and the CH can be expressed.
We shall give a brief description of this language, for the most part noting only
those features that show the connections with the real numbers and those that
are peculiar to second-order languages.
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2.2. The language L2Real. The alphabet consists of the variable symbols
x, y, z, . . . ; the symbols for degree-1 functions f, g, h, . . . ; the constants 0 and 1;
the degree-2 operations + and · ; the degree-2 relations = and � ; and the same
connectives, quantifiers, and parentheses as in languages of L1. The terms are
x, y, z, . . . and 0 and 1; and also f(t), t1 · t2, and t1 + t2 if f is a function symbol
and t, t1, and t2 are terms. The terms are names of real numbers.

The atomic formulas are t1 = t2 and t1 � t2, where t1 and t2 are terms. The
set of formulas is defined inductively exactly as in languages of L1, with one
addition: ∀f(Q) and ∃f(Q) are formulas if Q is a formula and f is the symbol
for a variable function. The notions of a free occurrence of a variable (x or f),
of a closed formula, and so on carry over to L2Real in the obvious way. We shall
use the same type of abbreviated notation here as in Chapter I. The standard
interpretation of formulas that is implicit in the language should be obvious
from the definitions and from the following examples.

2.3. The formula Z(y): “y is an integer.” It is perhaps not completely obvious
how to write this formula. We can write, “y can be obtained from 0 by repeatedly
adding or subtracting 1,” or else “any function f that has period 1 and vanishes
at 0 must also vanish at y,” i.e.,

Z(y) : ∀f
((
f(0) = 0 ∧ ∀x(f(x) = f(x+ 1))

)
⇒ f(y) = 0

)
.

2.4. The formula CH: “Any subset of R either has the same cardinality as R,
or else is countable or finite.”

We first restate the formula in different words: “Given a set of zeros of any
function h, either there exists a function g mapping it onto all R, or else there
exists a function f mapping the integers onto all of this set.” We then have

CH: ∀h
(
∃g ∀y ∃x(h(x) = 0 ∧ y = g(x)) ∨ ∃f ∀y(h(y)

= 0 ⇒ ∃x(Z(x) ∧ y = f(x)))
)
.

Notice that the formula Z(x) occurs as part of the CH.
We further write the completeness axiom C:

2.5. The formula C: “Any subset of R (the set of values of a function f ) that is
bounded from above has a least upper bound z.” We write

C : ∀f
(
∃y ∀x(f(x) � y) ⇒ ∃z ∀y (∀x(f(x) � y) ⇔ z � y)

)
.

All the other formulas we are interested in are simpler and do not require any
special comment.

We now give a precise definition of the property of “truth” for closed
formulas in L2Real; this property was described informally in §1. We empha-
size that it is not an absolute property, but rather depends on the choice
of the probability space Ω that is used to construct the “model” of the
real numbers.
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2.6. The algebra of truth values. As in §1, we set

I = a set;

Ω = [0, 1]I with Lebesgue measure;
B = the algebra of measurable sets in Ω modulo sets of measure zero;
0 = the class of the empty set in B;
1 = the class of Ω in B.

We have the following operations in B:

a′, the “complement” of the element a ∈ B;
a ∧ b, the “intersection” of two elements a, b ∈ B;
a ∨ b, the “union” of two elements a, b ∈ B.

These operations satisfy the usual identities and give a Boolean algebra
structure on B. We write a � b if a ∧ b = a.

Moreover, the operations of intersection and union extend uniquely to
infinite families of elements, and continue to satisfy the usual identities that
hold in the algebra of all subsets of any given set. We shall omit the verification
of all this. We note only that sets here are identified “modulo sets of measure
zero,” and that identities of the type (A mod 0) ∧ (B mod 0) = (A ∩B) mod
0 do not carry over to infinite families.

Finally, B satisfies the following countable chain condition: if aα ∧ aβ = 0
for all distinct indices α and β then aα �= 0 for at most countably many
indices α. This follows because Lebesgue measure is positive and additive. Tech-
nically speaking, B is a complete Boolean algebra with the countable chain con-
dition. The precise origin of B and the fact that it has a measure play a less
important role.

2.7. The interpretation set. We now introduce a large set M , each point ξ of
which corresponds to the assignment of certain values to all the symbols in the
alphabet of L2Real. If ξ is fixed, each formula becomes a concrete statement
about measurable functions (random variables) on Ω and about functionals on
them (compare with §2 of Chapter II).

More precisely, we set

R = the set of measurable real-valued functions on Ω;
R

(1)
= the set of all possible maps f̄ : R⇒ R that satisfy the condition

∀ x̄, ȳ ∈ R(
the set

{
ω ∈ Ω|x̄(ω) = ȳ(ω)

}
�

{
ω ∈ Ω|f̄(x̄)(ω) = f̄(ȳ)(ω)

}
mod 0

)
.

The definition of R
(1)

has the following intuitive meaning. If we ignore the
“mod 0,” the condition simply means that the value of the random variable
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f̄(x̄) at each trial (each point in Ω) must be determined by the value of x̄ at
this trial. Of course, this is a very natural requirement if we want functions f̄
to be adequate reflections of properties of ordinary real-valued functions in the
sense of §1. The addition of “mod 0” weakens this requirement by saying “with
conditional probability one.”

We now return to the set M . A point ξ ∈M consists of a choice of

xξ ∈ R, for each variable symbol x;

f ξ ∈ R(1)
, for each symbol f for a variable function.

Here is the interpretation of the expressions in the language that corresponds
to a given choice of ξ:

(a) Terms. Let t be a term, and let ξ ∈ M . Then tξ ∈ R is the random
variable that is defined inductively in the obvious way.

(b) The truth function ‖ ‖ on atomic formulas. Let P be the atomic formula
t1 � t2 or t1 = t2. Its truth value at a point ξ ∈M is the element of the algebra
B that is defined as follows:

‖t1 � t2‖(ξ) =
{
ω ∈ Ω|tξ1(ω) � tξ2(ω)

}
mod 0,

and similarly for t1 = t2.
(c) The truth function ‖P‖(ξ) in the general case. The general definition

proceeds by induction. The rules when formulas are joined by connectives are
the same as in Section 5.7 of Chapter II:

‖¬P‖ = ‖P‖′,
‖P ∨Q‖ = ‖P‖ ∨ ‖Q‖,
‖P ∧Q‖ = ‖P‖ ∧ ‖Q‖,
‖P ⇒ Q‖ = ‖P‖′ ∨ ‖Q‖,
‖P ⇔ Q‖ = (‖P‖ ∧ ‖Q‖) ∨ (‖P‖′ ∧ ‖Q‖′).

Here, for brevity, we have omitted the ξ. Finally,

‖∀xP‖(ξ) =
∧
ξ′
‖P‖(ξ′) (over all ξ′ that differ from

ξ only by a variation of x);

‖∃xP‖(ξ) =
∨
ξ′
‖P‖(ξ′) (over the same ξ′);

and similarly when we quantify over variable functions. Intuitively, the value of
the truth function of an assertion about random variables is the set of trials
mod 0 for which this assertion becomes true as a fact about real numbers.

2.8. Lemma. If P is a closed formula, then ‖P‖(ξ) does not depend on the
choice of ξ ∈M and takes only the value 0 or 1.

This is proved by a simple induction on the length of P . It is just as easy
to prove a more general fact: if P is any formula and ξ and ξ′ do not differ
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on variables that occur freely in P , then ‖P‖(ξ) = ‖P‖(ξ′). Compare with
Proposition 2.10 in Chapter II.

This value of ‖P‖(ξ) that is common for all ξ if P is closed can be denoted
simply by ‖P‖. We are now ready to formulate the basic definition of this
section:

2.9. Definition. A formula P in L2Real is said to be “true” if ‖P‖(ξ) = 1 for
all ξ ∈M .

3 The Continuum Hypothesis Is Not Deducible in L2 Real

3.1. Fundamental Lemma

(a) “Truth ” is preserved under the rules of deduction.
(b) The first-order logical axioms and the versions of them in L2Real are “true.”
(c) The special axioms of L2Real are “true.”
(d) The CH is not “true ” if card I > ω1.

This lemma implies the following theorem

3.2. Theorem. The CH is not deducible from the axioms in L2Real.
In this section we give those parts of the proof of the fundamental lemma

that are also essential for the “real” Cohen theorem, as well as for our
simplified problem. We note that Theorem 3.2 is weaker than Cohen’s
theorem because the language L2Real contains fewer means of expression than
the language of set theory. Although the continuum hypothesis can be stated
in L2Real, because of Gödel’s general results we have no basis for expecting,
even if the CH were deducible, that the proof could also be given in this lan-
guage. For example, the deduction could require us to introduce functionals of
functions, functionals of functionals, and so on. The language of set theory, To
which we shall return in §4, contains the means for considering all of these finite
and even transfinite levels at once.

3.3. Proof of 3.1(a). If ‖P‖ = 1 and ‖P ⇒ Q‖ = 1, then ‖P‖′ = 0 and
‖P‖′ ∨ ‖Q‖ = 1, so that ‖Q‖ = 1. Secondly, if ‖P‖ = 1, then ‖P‖(ξ) = 1 for all
ξ ∈M ; but then (here ξ′ runs through all variations of ξ along x)

‖∀xP‖(ξ) =
∧
ξ′
‖P‖(ξ′) =

∧
ξ′

1 = 1. ��

We similarly prove this for Gen over functions.

3.4. Proof of 3.1(b) (sketch).
Tautologies. Their “truth” is proved in §5 of Chapter II.
Quantifier axioms. The proof proceeds by induction on the length of the

formulas in the axiom schemes. Since it is completely straightforward, we shall
omit it.
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3.5. Proof of 3.1(c) (sketch). We shall list the axioms and make some brief
comments.

The special axioms of set theory: The axioms of equality and the axiom
(schema) of choice

AC : ∀x ∃yP (x, y) ⇒ ∃f ∀xP (x, f(x)),

where P is any formula which does not have any free variables except x and y,
and where f is free for y in P .

The special axioms of field theory: The axioms of the additive group, the
axioms of the multiplicative group, and the distributivity of addition with
respect to multiplication.

The special order axioms:

x � y ∨ y � x,

(x � y ∧ y � x) ⇔ x = y,

x � y ⇒ (x+ z � y + z),
(x � y ∧ 0 � z) ⇒ xz � yz.

The completeness axiom (see 2.5).
Among these axioms, the greatest effort is needed to verify that the axiom of

choice and the completeness axiom are “true.” But these computations resemble
those in the proof that the CH is false, which will be given in detail below. Hence,
the verification of these two axioms will be omitted.

The first axiom of equality is trivial. The second axiom is first verified for
atomic formulas P , and then we use induction on the length of P . The argument
is rather tedious, but simple.

The axioms of an ordered field are verified without difficulty. We shall limit
ourselves to one example: “every nonzero number has an inverse,” i.e.

‖∀x(¬(x = 0) ⇒ ∃y(xy = 1))‖ =
∧
x̄∈R

(
‖x̄ = 0‖ ∨

∨
ȳ∈R

‖x̄ȳ = 1‖
)
.

To verify that this truth value equals 1, it suffices to prove this for each term
on the right, i.e., for each fixed x̄ ∈ R. Then, in turn, for that x̄ it suffices
to construct a random variable ȳ ∈ R such that ‖x̄ = 0‖

∨
‖x̄ȳ = 1‖ = 1.

We set

ȳ(ω) =

{
x̄(ω)−1, if x̄(ω) �= 0,
0, if x̄(ω) �= 0.

��

3.6. Proof of 3.1(d). We first recall the formula for the CH:

∀h
(
∃g ∀y ∃x

(
h(x)= 0 ∧ y = g(x))∨

∃f ∀y
(
h(y)= 0 ⇒ ∃x(Z(x) ∧ y = f(x)

))
.

We let P1 and P2 denote the first and the second alternatives in this formula.
Thus, the CH has the form ∀h(P1∨P2). We must prove that ‖∀h(P1∨P2)‖(ξ) = 0
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for any point ξ ∈M . By the definition in 2.7,

‖∀h (P1 ∨ P2)‖(ξ) =
∧
ξ′

(
‖P1‖(ξ′) ∨ ‖P2‖(ξ′)

)
,

where ξ′ runs through all variations of ξ along h. To show that this value is 0,
it suffices to find a point ξ′ such that ‖P1‖(ξ′) = ‖P2‖(ξ′) = 0. Since all the
variables except h are bound in P1 and P2, choosing ξ′ is equivalent to choosing
hξ

′
= h̄ ∈ R(1)

. We shall give h̄ explicitly; this will be a function “whose set of
zeros has intermediate cardinality.”

To do this, as in §1 we fix a subset J ⊂ I having cardinality strictly between
ω0 and card I. Recall that for each i ∈ I, x̄i ∈ R is the “ith coordinate”
function. Further, for each random variable x̄ ∈ R, we choose a subset Ω(x̄) ⊂ Ω
such that ∨

j∈J
‖x̄ = x̄j‖ = Ω(x̄) mod 0

(here we use the completeness of B). Finally, we define h̄ ∈ R(1)
as follows for

every x̄ ∈ R and ω ∈ Ω:

h̄(x̄)(ω) =

{
0, if ω ∈ Ω(x̄),
1, otherwise.

3.7. Correctness Lemma

(a) For fixed x̄, h̄(x̄) is measurable as a function of ω, so that h̄ maps R to R.
(b) For every x̄ ∈ R we have

‖h̄(x̄) = 0‖ =
∨
j∈J

‖x̄ = x̄j‖.

(c) h̄ ∈ R(1)
(see 2.7), so that there exists a point ξ′ ∈M for which hξ

′
= h̄.

Proof.

(a) h̄(x̄) takes only the values 0 and 1 on Ω, and the set where it takes each
of these two values is measurable by the definition and by the completeness
of B.

(b) is obvious from the definition.
(c) We must verify that for all x̄, ȳ ∈ R we have{

ω ∈ Ω|x̄(ω) = ȳ(ω)
}

�
{
ω ∈ Ω|h̄(x̄)(ω) = h̄(ȳ(ω))

}
mod 0.

We shall show that the set of points ω ∈ Ω for which both x̄(ω) = ȳ(ω) and
h̄(x̄)(ω) �= h̄(ȳ)(ω) has measure zero.

It suffices to consider the case h̄(x̄)(ω) = 0, h̄(ȳ)(ω) = 1, i.e., to show that

‖x̄ = ȳ‖ ∧ ‖h̄(x̄) = 0‖ ∧ ‖h̄(ȳ) = 1‖ = 0.
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We write the second term in the form
∨
j∈J ‖x̄ = x̄j‖ (by 3.7(b)) and apply the

distributive axiom to the first and second terms (where we use the completeness
of B). We further use the fact that ‖x̄ = ȳ‖ ∧ ‖x̄ = x̄j‖ � ‖ȳ = x̄j‖. We then
obtain

‖x̄ = ȳ‖ ∧ ‖h̄(x̄) = 0‖ �
∨
j∈J

‖ȳ = x̄j‖ = ‖h̄(ȳ) = 0‖,

which immediately gives us the required result. ��

Explanation. Since the choice of h̄ is the essential step in the proof, we would
like to give some motivation for this choice. Recall that h is the name of the
function the cardinality of whose set of zeros interests us. We choose a concrete
h̄ to “disprove” the CH in such a way that the “almost everywhere zeros” of h̄
include the elements of the set {xj |j ∈ J }, which has intermediate cardinality
in the naive sense of the word (compare with §1). However, h̄ cannot be an
arbitrary map from R to R; it must satisfy the strong condition h̄ ∈ R

(1)
.

Hence, along with all the x̄j , the almost everywhere zeros of h̄ might also have
to include various other ȳ ∈ R, and might have to “partly include” still other
z̄ ∈ R. We say “partly include” to convey the possibility that ‖h̄(z̄) = 0‖ is
neither 0 nor 1, so that z̄ has a “certain probability” of being a zero of h̄.

Thus, the “set of zeros” of h̄ might be bigger than we want, and we might
expect to encounter difficulties in proving that this set cannot be mapped onto
all ofR (the alternative P1). On the other hand, it would seem that this situation
would make it trivial to disprove the alternative P2 (mapping Z onto the entire
set of zeros). But even this is wrong! As we noted before, we can have ‖Z(x̄)‖ = 1
for many x̄ that are not constant integer functions on Ω. Moreover, for still other
x̄ we have ‖Z(x̄)‖ �= 0, 1, so that the “set of integers” in our model has grown
considerably.

A final remark: In this discussion we have been essentially dealing with
the concept of a “B-random set,” which will be a central idea in what follows
(see §4). That is, the “set of zeros of h̄” is random in the sense that for each
z̄ ∈ R, the assertion “z̄ ∈ (zeros of h̄)” is naturally assigned the Boolean truth
value ‖h̄(z̄) = 0‖.

We now return to the proof that ‖CH‖ = 0.

3.8. Proof that ‖P1‖(ξ′) = 0. By the rules for computing truth functions,
we obtain

‖P1‖(ξ′) =
∨
ḡ

∧
ȳ

∨
x̄

{
‖h̄(x̄) = 0‖ ∧ ‖ȳ = ḡ(x̄)‖

}
,

where h̄ was defined above, ḡ runs through all elements of R
(1)

, and x̄ and ȳ run
through all elements of R. We suppose that ‖P1‖(ξ′) �= 0, and show that this
leads to a contradiction. We write the above formula for ‖P1‖(ξ′) as

∨
ḡ a(ḡ).

If ‖P1‖(ξ′) �= 0, then a(ḡ) �= 0 for some concrete function ḡ ∈ R(1)
. We take

this function ḡ and set

a =
∧
ȳ

∨
x̄

( ∨
j∈J

‖x̄ = x̄j‖ ∧ ‖ȳ = ḡ(x̄)‖
)
.
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Here we have substituted
∨
j∈J ‖x̄ = x̄j‖ for ‖h̄(x̄) = 0‖ using 3.7(b).

Furthermore, we obtain ‖x̄ = x̄j‖ ∧ ‖ȳ = ḡ(x̄)‖ � ‖ȳ = ḡ(x̄j)‖. Using this
and distributivity, we obtain

a �
∧
ȳ

∨
j∈J

‖ȳ = ḡ(x̄j)‖.

In particular, for each x̄i in place of ȳ, we have

a �
∨
j∈J

‖x̄i = ḡ (x̄j) ‖.

If, as we have supposed, a �= 0, then for each i there exists a j(i) ∈ J such that

‖x̄i = ḡ
(
x̄j(i)

)
‖ �= 0.

Since I is uncountable and card J < card I, it follows that there exists a
j0 ∈ J such that j0 = j(i) for all i in an uncountable subset I0 ⊂ I. But this
contradicts the countable chain condition on B, because the terms in the family
‖x̄i = ḡ(x̄j0)‖(i ∈ I0) are pairwise disjoint. In fact,

‖x̄i1 = ḡ (x̄j0) ‖ ∧ ‖x̄i2 = ḡ (x̄j0 ) ‖ � ‖x̄i1 = x̄i2‖ = 0

if i1 �= i2. ��
Notice to what extent this proof parallels the “naive” argument in §1. By

assumption, the function ȳ maps the zeros of h̄ onto R “with nonzero proba-
bility.” But the exact meaning of the computations cannot readily be stated in
words.

Computation of ‖Z(y)‖. The formula for Z(y), “y is an integer,” was given
in 2.3. Since this formula occurs in P2, we must compute ‖Z(y)‖ in order to
compute ‖P2‖.

3.9. Lemma. Let η ∈M and yη = y ∈ R. Then

‖Z(y)‖(η) =
∨
n∈Z

‖ȳ = n‖ = {ω ∈ Ω|ȳ(ω) ∈ Z} mod 0.

Proof. We must show that∧
f̄

(
‖f̄(0) = 0‖′ ∨

(∨
x̄

‖f̄(x̄) = f̄(x̄ + 1)‖′
)∨

‖f̄(ȳ) = 0‖
)

=
∨
n∈Z

‖ȳ = n‖.

We prove this equality by proving inequality in both directions.
The inequality �. It suffices to find a concrete function f̄ ∈ R(1)

for which
the corresponding term on the left is contained in the right-hand side. We
define f̄ by setting f̄(x̄)(ω) = sin2 πx̄(ω) (here, instead of sin2 πz, we could
take any measurable function with period 1 and zeros only at the integers).
It is easy to see that f̄(x̄) ∈ R and f̄ ∈ R

(1)
. Then ‖f̄(0) = 0‖′ = 0 and

‖f̄(x̄) = f̄(x̄+ 1)‖′ = 0. Hence we need only verify that

‖ sin2 πȳ = 0‖ �
∨
n∈Z

‖ȳ = n‖,

and this is obvious.
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The inequality �. It suffices to show that for any fixed values of n ∈ Z,
f̄ ∈ R(1)

and ȳ ∈ R, we have

‖ȳ = n‖ � b ∨ c,
where

b = ‖f̄(0) = 0‖′ ∨
(∨

x̄

‖f̄(x̄) = f̄(x̄+ 1)‖′
)

; c = ‖f̄(ȳ) = 0‖.

But the inclusion a � b ∨ c is equivalent to a ∧ c′ � b. Furthermore, in our
situation we have

a ∧ c′ = ‖ȳ = n‖ ∧ ‖f̄(ȳ) = 0‖′ � ‖f̄(n) = 0‖′.
(Here n in f̄(n) is the constant random variable that is everywhere equal
to n.)

It is thus sufficient to see that

‖f̄(n) = 0‖′ � ‖f̄(0) = 0‖′ ∨
(∨

x̄

‖f̄(x̄) = f̄(x̄+ 1)‖′
)
,

or, taking complements, that

‖f̄(n) = 0‖ � ‖f̄(0) = 0‖ ∧
(∧

x̄

‖f̄(x̄) = f̄(x̄ + 1)‖
)
.

The right side can become larger only if we only take the intersection over the
terms with x̄ = 0, 1, 2, . . . , n− 1. But this obviously gives

‖f̄(0) = 0‖∧‖f̄(0) = f̄(1) = · · · = f̄(n)‖ � ‖f̄(n) = 0‖. ��

3.10. Proof that ‖P2‖(ξ′) = 0. Using Lemma 3.9 and the rules for computing
truth functions, we find that

‖P2‖(ξ′) =
∨
f̄

∧
ȳ

(
‖h̄(ȳ) = 0‖′ ∨

∨
x̄

(∨
n

‖x̄ = n‖ ∧ ‖ȳ = f̄(x̄)‖
))

.

Since f̄ ∈ R(1)
we have ‖x̄ = n‖ � ‖f̄(x̄) = f̄(n)‖, so that ‖x̄ = n‖∧‖ȳ = f̄(x̄)‖

� ‖ȳ = f̄(n)‖.
Now it suffices to prove that the term corresponding to any concrete choice of

f̄ is equal to 0. We suppose that this is not the case, and show that we obtain
a contradiction. Let a �= 0 be the term corresponding to f̄ . By the previous
paragraph, we have

a �
∧
ȳ

(
‖h̄(ȳ) = 0‖′ ∨

∨
n

‖ȳ = f̄(n)‖
)
.

In particular, for every j ∈ J we must have (with x̄j in place of ȳ)

a �
∨
n

‖x̄j = f̄(n)‖
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(where we have ‖h̄(x̄j) = 0‖′ = 0 by 3.7(b)). Hence, for every j there exists an
integer n(j) such that 0 �= ‖x̄j = f̄(n(j))‖. Since J is uncountable, there exist
an n0 and an uncountable subset J0 ⊂ J such that n(j0) = n0 for all j0 ∈ J0.
Then the ‖x̄j = f̄(n0)‖ for j ∈ J0 form an uncountable set of pairwise disjoint
nonzero elements of B. This contradicts the countable chain condition on B.

4 Boolean-Valued Universes

4.1. In this section we fix a complete Boolean algebra B (see 2.6) and construct
the universe V B of “B-random sets.” It will be a model for the Zermelo–Fraenkel
axioms in the same generalized sense in which the random variables R were a
model for the real numbers R in §3. In §§5−7 we verify that all the axioms of
L1Set are “true,” and then in §8 we verify that the continuum hypothesis is
“false” for a suitable choice of B.

The objects of V B will be denoted by capital letters X,Y, Z, . . . . Any two
objects determine elements ‖X ∈ Y ‖ ∈ B and ‖X = Y ‖ ∈ B. The intuitive
meaning, say, of the first of these is as follows: if B is the algebra of measurable
sets in a probability space, then ‖X ∈ Y ‖ is the maximal set on which “X is an
element of Y with probability one.” Since we do not deal with probability mea-
sures in the general case, we shall simply call the elements of B “probabilities,”
and then ‖X ∈ Y ‖ is simply the probability that X belongs to Y .

It is not trivial to construct precise definitions, because we want the axiom
of extensionality to be “true.” If a random set must be uniquely determined
by its elements (which are also random), even in a generalized sense, then this
random set cannot be “too” random (see 4.3).

We shall assume that as a set B is an element of the von Neumann
universe V . Then all the objects of V B will also be elements of V , and all our
constructions can be expressed in L1Set. In principle, this allows us to take a
more formalistic point of view than we shall in fact take. The proof given below
of the independence of the CH could then be used as a guide for constructing
a much more syntactic version, based on an “internal interpretation” of the
language L1Set in itself. In this context the assumption that the Zermelo–
Fraenkel axioms are consistent in the statement of Theorem 1.6 becomes a
necessary precaution, since (by Gödel’s result) this consistency cannot be
established using only the language L1Set itself. However, in our treatment
this condition is pure hypocrisy, since by assuming the “existence” of the uni-
verse V , which is a model for the axioms, we automatically “prove” that those
axioms are consistent (see Section 18 of the appendix to Chapter II).

4.2. Construction of V B. For every ordinal α we construct the set V Bα by trans-
finite recursion, and then set V B = ∪αV Bα . The first step is V B0 = ∅.

Inductive assumption. The set V Bα is defined for the ordinal α � 0; for every
element X ∈ V Bα the set D(X) ⊂ V Bα is defined (its intuitive meaning will be
explained below); for every pair of elements X,Y ∈ V Bα the “Boolean truth
functions”

‖X ∈ Y ‖ ∈ B, ‖X = Y ‖ ∈ B
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are defined (intuitively, they should be thought of as the “probability that
X is an element of Y ” and the “probability that X coincides with Y ,”
respectively).

By assumption, this data satisfies the following conditions:

(a) If β1 � β2 � α1, then V Bβ1
� V Bβ2

.

(b) If β < α and X ∈ V Bβ+1\V Bβ , then D(X) = V Bβ . (1)α

(c1) ‖X ∈ Y ‖ =
∨

Z∈D(Y )
(‖X = Z‖ ∧ ‖Z ∈ Y ‖)

(the condition (1)α expresses the requirement that the formula x ∈ y ⇔
∃z(x = z ∧ z ∈ y), which is easily deduced from the Zermelo–Fraenkel axioms,
must be “true”).

(c2) ‖X = Y ‖ =

( ∧
Z∈D(X)

‖Z ∈X‖′ ∨ ‖Z ∈ Y ‖
)

∧
( ∧
Z∈D(Y )

‖Z ∈ Y ‖′ ∨ ‖Z ∈ X‖
)

(2)α

(this condition expresses the “truth” of the formula x = y ⇔ (∀z (z ∈ x →
z ∈ y) ∧ ∀z (z ∈ y ⇒ z ∈ x)). We note that it is not completely clear at this
point why, for example, in (1)α we took the union only over Z in D(Y ); it would
seem natural to take all Z. Later we shall see that the formula remains true if
we take the Boolean union over all Z.

This completes the description of the data for V Bα . We now give explicitly
the recursive construction of V Bα+1 and the corresponding data.

Definition of V Bα+1 and D. We set V Bα+1 = V Bα ∪ V B∗
α+1, where V B

∗
α+1 consists

of all possible functions Z with domain of definition V Bα and range of
values ⊂ B that satisfy the following “extensionality condition”:

‖X = Y ‖ ∧ Z(X) = ‖X = Y ‖ ∧ Z(Y ), for all X,Y ∈ V Bα . (3)

A little later we shall define ‖X ∈ Z‖ = Z(X) for X ∈ V Bα and Z ∈ V Bα+1\V Bα .
Thus, as before, (3) can be thought of as reflecting the formula

(x = y ∧ x ∈ z) ⇔ (x = y ∧ y ∈ z).

Compare also with the comment in 2.7 concerning the definition of R
(1)

.
We shall call the elements of V Bα+1\V Bα new elements (of rank α + 1), and

we shall call the elements of V Bα old elements. We set D(Z) = V Bα if Z is a new
element.

Definition of the Boolean truth functions. These functions have already
been defined for pairs of old elements. We further set

‖X ∈ Y ‖ = Y (X), if X is old and Y is new; (4)
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‖X = Y ‖ =

( ∧
Z∈D(X)

‖Z ∈ X‖′ ∨ ‖Z ∈ Y ‖
)

∧
( ∧
Z∈D(Y )

‖Z ∈ Y ‖′ ∨ ‖Z ∈ X‖
)
. (5)

Because of (2)α, (5) automatically holds if X and Y are both old elements; in
the other cases, (5) uniquely determines ‖X = Y ‖ if we use (4) and the fact
that Z runs only through old elements in (5). Finally, we set

‖X ∈ Y ‖ =
∨

Z∈D(Y )

‖X = Z‖ ∧ ‖Z ∈ Y ‖ (6)

if X is a new element and Y is either new or old. The right side is uniquely
determined using (4) and (5), since D(Y ) ⊂ V Bα .

Formulas (4) and (6) show the following. As a first approximation we might
say that a random set Y of rank α “consists” of sets Z of lower rank that occur
in Y with probability Y (Z); these probabilities can be chosen rather arbitrarily,
subject only to the extensionality condition (3).

However, we then find (in formula (6) for new X and old Y ) that we must
automatically “include” more and more elements X in Y with probabilities
already assigned by formula (6). It is conditions (3) and (6) that prevent our
sets from being completely random.

Definition of V Bα and other data for limiting ordinals α. We simply set
V Bα = ∪β<αV Bβ , and then all the other data has already been determined.

4.3. Verification that the definitions are correct. Properties 4.2 (a) and (b) are
obviously preserved in going from α to α+1; we must verify (1)a+1 and (2)a+1.
Now the only identity here that is not completely obvious is obtained by taking
X old and Y new in (1)a+1:

Y (X) =
∨

Z∈V β
α

‖X = Z‖ ∧ Y (Z).

This is verified as follows. We obtain � by writing the right-hand side in the
form

∨
Z ‖X = Z‖ ∧ Y (X) using (3). We obtain � by considering the term

with Z = X and taking into account that ‖X = X‖ = 1 for all X (as follows
immediately from (5)).

This completes the construction of the Boolean-valued universe.

4.4. Examples and remarks. We examine some special cases of these
constructions in order to clarify their structure.

(a) Obviously V B1 = {∅}, since there exists a unique “empty” function
whose domain of definition is the subset V B0 = ∅. We compute V B2 = V B1 ∪V B

∗
2 .
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We let {∅}b ∈ V B
∗

2 denote the function of the one-element set V B1 that takes
the value b ∈ B. All these functions are extensional, so that

V B2 = {∅, {∅}b, for all b ∈ B}.

It follows from (4) that
‖∅ ∈ {∅}b‖ = b.

It is clear from (5) that
‖∅ = {∅}b‖ = b′.

Intuitively, these formulas mean that {∅}b consists of one element ∅ “over b”
and is empty away from b. Again applying (5), we obtain

‖{∅}a = {∅}b‖ = (a′ ∨ b) ∧ (a ∨ b′) = (a ∧ b) ∨ (a′ ∧ b′).

Thus, {∅}a and {∅}b coincide when either they are both empty or they both
consist of one element ∅: this agrees with intuition. Now applying (6), we obtain

‖{∅}a ∈ {∅}b‖ = ‖{∅}a = ∅ ‖ ∧ ‖∅ ∈ {∅}b‖ = a′ ∧ b

(i.e., the only possible inclusion, which has the form ∅ ∈ {∅}, holds when {∅}a
is empty and {∅}b is nonempty).

Finally, let X ∈ V B
∗

3 be an extensional function on the subset V B2 with
values in B. Then, by (6),

‖X ∈ {∅}b‖ = ‖X = ∅‖ ∧ ‖∅ ∈ {∅}b‖ = ‖X = ∅‖ ∧ b,

and by (5),

‖X = ∅‖ =

( ∧
a∈B

‖{∅}a ∈ X‖′
)
∧ ‖∅ ∈ X‖′

=

( ∨
a∈B

‖{∅}a ∈ X‖ ∨ ‖∅ ∈ X‖
)′
.

Thus, intuitively, ‖X = ∅‖ means the complement of the support of X in B,
and ‖X ∈ {∅}b‖ is the set where both X is empty and {∅}b is nonempty, which
again agrees with the usual formula ∅ ∈ {∅}. This shows how new objects X
can be random elements of old objects with nonzero probabilities.

(b) We consider the case B = {0, 1}. The corresponding probability space
consists of one point, so our random sets become completely determined. What
happens is this: the universe V B maps naturally onto the von Neumann uni-
verse V in such a way that if X̃ denotes the image of X ∈ V B, then all X and
Y satisfy the conditions

‖X ∈ Y ‖ = 1 ⇔ X̃ ∈ Ỹ ,
‖X = Y ‖ = 1 ⇔ X̃ = Ỹ .
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To construct this map we first set ∅̃ = ∅. We now suppose that the map
V

{0,1}
α → Vα has already been constructed with the required properties, and

we extend the map to α + 1. To do this, for any new element X ∈ V
{0,1}
α+1 we

first find the subset of V {0,1}
α on which X takes the value 1, and we then take

the image of this subset in Vα, which is an element X̃ of P(Vα) = Vα+1; by
definition, our map takesX to this X̃. We leave the verification of the properties
of this map to the reader.

(c) Boolean truth functions for the formulas in L1Set.
We define these truth functions in an analogous manner to §2. We introduce

the interpretation class M : each point ξ ∈ M assigns to every variable symbol
x in L1Set some object xξ = X of the universe V B. We further assume that
every point ξ maps the symbol ∅ in L1Set to the empty set.

If P is the atomic formula x ∈ y or x = y in L1Set, then ‖P‖(ξ) is defined
to be ‖xξ ∈ yξ‖ ∈ B or ‖xξ = yξ‖ ∈ B, respectively. The value of ‖P‖(ξ)
for all other P is defined inductively using exactly the same formulas as in
Section 2.7. We need only note that although the expressions

∨
ξ aξ and

∧
ξ aξ

must be taken over families indexed by the class M when we compute with
quantifiers, all the different elements of such a family form a subset of B, so
that such an expression makes sense. We shall call a formula P “true” (in the
model V B) if ‖P‖(ξ) = 1 for all ξ, and we shall call P “false” if ‖P‖(ξ) = 0 for
all ξ.

As in §3 of Chapter II, it can be verified that all the tautologies and logical
quantifier axioms are “true” and that the rules of deduction preserve “truth.”
Hence, it remains for us to show that the Zermelo–Fraenkel axioms are “true”
(for any B) and that the continuum hypothesis is “false” (for suitable B).

5 The Axiom of Extensionality Is “True”

We begin by proving some relations between the truth functions. First of all, it
is clear from formula (5) in §4 that ‖X = Y ‖ = ‖Y = X‖ and ‖X = X‖ = 1.
The following lemma is a less immediate consequence of the formulas.

5.1. Lemma. For any X,Y, Z ∈ V B we have

‖X = Y ‖ ∧ ‖Y = Z‖ � ‖X = Z‖, (I)
‖X = Y ‖ ∧ ‖Y ∈ Z‖ � ‖X ∈ Z‖, (II)
‖X ∈ Y ‖ ∧ ‖Y = Z‖ � ‖X = Z‖. (III)

Proof.

(a) (III) holds if X ∈ D(Y ). In fact, then by formula (5) in §4,

‖Y = Z‖ � ‖X ∈ Y ‖′ ∨ ‖X ∈ Z‖,

so that if we intersect both sides with ‖X ∈ Y ‖, we obtain (III).
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(b) (III) holds if X,Y ∈ V Bα and Z is a new element of V Bα+1. In fact, we
choose U ∈ D(Y ) and apply the special case of (III) proved in (a):

‖U ∈ Y ‖ ∧ ‖Y = Z‖ � ‖U ∈ Z‖.

We take the Boolean intersection of both sides with ‖X = U‖ and then the
Boolean sum over all U ∈ D(Y ). Now applying formula (6) in §4 to the left-
hand side and using distributivity, we obtain

‖X ∈ Y ‖ ∧ ‖Y = Z‖ �
∨

U∈D(Y )

‖X = U‖ ∧ ‖U ∈ Z‖

�
∨

U∈D(Z) = V B
α

‖X = U‖ ∧ ‖U ∈ Z‖ = ‖X ∈ Z‖.

(c) (I) holds in V Bα+1 if (III) holds in V Bα . We consider an element
U ∈ D(X) ∈ V Bα . By (a), we have

‖U ∈ X‖ ∧ ‖X = Y ‖ � ‖U ∈ Y ‖.

We take the Boolean intersection with ‖Y = Z‖:

‖U ∈ X‖ ∧ ‖X = Y ‖ ∧ ‖Y = Z‖ � ‖U ∈ Y ‖ ∧ ‖Y = Z‖.

Here the right side is always � ‖U ∈ Z‖. In fact, if Y ∈ V Bα this follows by part
(b) or by the induction assumption, and if Y is a new element of V Bα+1 then it
follows by part (a).

We have thus shown that for all X,Y, Z ∈ V Bα+1 and all U ∈ D(X),

‖U ∈ X‖ ∧ ‖X = Y ‖ ∧ ‖Y = Z‖ � ‖U ∈ Z‖

Because a ∧ b � c implies b � ‖a′ ∨ c‖ in any Boolean algebra, we then obtain

‖X = Y ‖ ∧ ‖Y = Z‖ � ‖U ∈ X‖′ ∨ ‖U ∈ Z‖,

and hence

‖X = Y ‖ ∧ ‖Y = Z‖ �
∧

U∈D(X)

‖U ∈ X‖′ ∨ ‖U ∈ Z‖.

Interchanging X and Z, we find that for all U ∈ D(Z),

‖Z = Y ‖ ∧ ‖Y = X‖ �
∧

U∈D(Z)

‖U ∈ Z‖′ ∨ ‖U ∈ X‖.

These last two formulas, together with (5), clearly imply (I).

(d) (II) holds in V Bα+1 if (I) holds in V Bα+1. In fact, let U ∈ D(Z). By (I),
we have

‖X = Y ‖ ∧ ‖Y = U‖ � ‖X = U‖.
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We take the Boolean intersection with ‖U ∈ Z‖ and then the Boolean sum over
all U ∈ D(Z):

‖X = Y ‖ ∧
( ∨
U∈D(Z)

‖U ∈ Z‖ ∧ ‖Y = U‖
)

�
∨

U∈D(Z)

‖Z = U‖ ∧ ‖U ∈ Z‖.

Applying (1)α+1 in §4, we obtain (II).

(e) (III) holds in V Bα+1 if (II) holds in V Bα+1. In fact, let U ∈ D(Y ). By part
(a), we have

‖U ∈ Y ‖ ∧ ‖Y = Z‖ � ‖U ∈ Z‖.

Intersecting with ‖X = U‖ and applying (II) to the right-hand side, we obtain

‖X = U‖ ∧ ‖U ∈ Y ‖ ∧ ‖Y = Z‖ � ‖X ∈ Z‖.

Finally, if we take the Boolean sum over all U ∈ D(Y ) and use formula (1) in
§4, we obtain (III). ��

Obviously, parts (a)–(e) prove the inductive step for α to α+ 1. We are now
in a position to establish the basic result of this section.

5.2. Proposition. The axiom of extensionality

x = y ⇔ ∀z(z ∈ x⇔ z ∈ y)

is “true.”

Proof. The formula ‖P ⇔ Q‖(ξ) = 1 is equivalent to ‖P‖(ξ) = ‖Q‖(ξ). It is
therefore sufficient to prove that for all X,Y ∈ V B ,

‖X = Y ‖ =
∧

Z∈V B

(‖Z ∈ X‖ ∨ ‖Z ∈ Y ‖′) ∧ (‖Z ∈ X‖′ ∨ ‖Z ∈ Y ‖).

The inequality � follows immediately from formula (2) in §4. To obtain
the opposite inequality, we write two obvious corollaries of formula (III) in
Lemma 5.1:

‖X = Y ‖ � ‖Z ∈ X‖ ∨ ‖Z ∈ Y ‖′,
‖X = Y ‖ � ‖Z ∈ X‖′ ∨ ‖Z ∈ Y ‖,

and we take the intersection over all Z. The proposition is proved. ��

We note that formula (2) implies the following general extensionality prop-
erty: for all X,Y, Z ∈ V B,

‖X = Y ‖ ∧ ‖Y ∈ Z‖ = ‖X = Y ‖ ∧ ‖X ∈ Z‖.
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5.3. Corollary. The axioms of equality in L1Set are “true.”
In fact (see Proposition 4.6 in Chapter II), the axioms of equality in our

case consist of the “true” formula x = x, the axiom of extensionality (in the
form x = y ⇒ (P (x) ⇒ P (y)) with P (x) = z ∈ x), and the “true” formula
x = y ⇒ (x ∈ z ⇒ y ∈ z) (in which P (x) = x ∈ z), since the only atomic
formulas P (x) in L1Set are z ∈ x and x ∈ z. ��

5.4. Remark. In most computations, we shall need to know only the values of
‖X ∈ Y ‖ and ‖X = Y ‖, and not the precise definition of the objects X and Y .
In this connection, we note that the following two binary relations on V B

coincide (as easily follows from (III) and the axiom of extensionality):

(a) ‖X = Y ‖ = 1,

(b) ∀Z ∈ V B, ‖Z ∈ X‖ = ‖Z ∈ Y ‖.

We shall call such X and Y equivalent and write X ∼ Y .

6 The Axioms of Pairing, Union, Power Set, and
Regularity Are “True”

6.1. The computations in the previous section show that the basic work in
ensuring that the axiom of extensionality is “true” was already incorporated
into the definition of the universe V B . The explicit formulas for recursively
computing ‖X ∈ Y ‖ and ‖X = Y ‖ reflected so many special properties of
inclusion and equality that together they guaranteed that the general axiom
must hold.

In order to verify several of the other axioms, we must essentially define in
V B analogues of certain operations in V , such as forming the unordered pair
and the set of subsets. These operations can be defined by means of formulas in
L1Set. However, recall that if P (x) is a formula with one free variable x, then
the xξ ∈ V for which P (x)(ξ) is true generally form a class and not a set.

It will be convenient to introduce the auxiliary notion of a “random class”
in V B . Using this concept, we shall often construct the operations in V B in two
stages: the value of the operation will at first be a random class, which we then
“identify” with a random set using a separate argument.

6.2. Definition.

(a) A random class is any function W on V B with values in B that satisfies the
following extensionality condition:

W (X) ∧ ‖X = Y ‖ = W (Y ) ∧ ‖X = Y ‖, for all X,Y ∈ V B.

(b) A random class W is said to be equivalent to a random set Z ∈ V B (written
W ∼ Z) if

W (X) = ‖X ∈ Z‖, for all X ∈ V B.
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6.3. Examples and remarks

(a) For any random set Z the function X �→ ‖X ∈ Z‖ is extensional by (II),
§5, and so is a random class. By analogy, we often write ‖X ∈ W‖ instead of
W (X) if W is any random class.

(b) There exist random classes that are not equivalent to random sets. One
such example is the “universal” random class W (X) = 1 for all X . (If W were
a set, we would have ‖W ∈ W‖ = 1, contradicting the regularity axiom, which
will be shown to be “true” below.)

(c) Let W be a random class, and let α be any ordinal. We define the element
Wα ∈ V Bα+1 as follows: D(Wα) = V Bα ,Wα = the restriction of W to V Bα (as a
function; see 4.2). It is easy to see that for all X ∈ V B we have

‖X ∈ Wα‖ � ‖X ∈ W‖. (1)

In fact, let U ∈ V Bα and X ∈ V B. We then have

‖X = U‖ ∧Wα(U) = ‖X = U‖ ∧W (U) = ‖X = U‖ ∧W (X) � W (X),

so that by (6), §4,

‖X ∈Wα‖ =
∨

U∈V B
α

‖X = U‖ ∧Wα(U) � W (X) = ‖X ∈W‖.

We shall often show that some class W in which we are interested is equiv-
alent to a set by finding an ordinal α such that W ∼ Wα. It is clear from (1)
that this follows if ‖X ∈ W‖ � ‖X ∈Wα‖ for all X .

(d) Let W,W1, and W2 be random classes. Then W ′,W1∧W2, and W1∨W2

are also random classes, since the extensionality condition is trivially verified
for these functions. We shall write W1 ∩W2 and W1 ∪W2 instead of W1 ∧W2

and W1 ∨W2, respectively.

(e) Let W be a random class, and let X be a random set. We show that
W ∩ X is equivalent to a random set. More precisely, if D(X) = V Bα , then
W ∩X ∼ (W ∩X)α. In fact, for any Y ∈ V B it follows by (6), §4, that

‖Y ∈ (W ∩X)α‖ =
∨

U∈V B
α

‖U = Y ‖ ∧ ‖U ∈ (W ∩X)α‖

=
∨

U∈V B
α

(‖U = Y ‖ ∧ ‖U ∈ W‖) ∧ ‖U ∈ X‖

=
∨

U∈V B
α

‖U = Y ‖ ∧ ‖Y ∈W‖ ∧ ‖U ∈ X‖

= ‖Y ∈W‖ ∧ ‖Y ∈ X‖ = ‖Y ∈ W ∩X‖.

This result implies that the separation axioms are “true” (see Section 4.9(b) of
Chapter II).
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The following proposition gives a general method for constructing random
classes.

6.4. Proposition. Let P (x, y1, . . . , yn) be a formula that does not contain any
free variables besides x, y1, . . . , yn. Let Y1, . . . , Yn ∈ V B be fixed. Then the
function

X �→W (X) = ‖P (X,Y1, . . . , Yn)‖
is a random class.

Intuitively, W contains every set X with probability equal to the probability
that P (X, . . . , Yn) is true. Y1, . . . , Yn play the role of “constants.”

Proof. We use the “truth” of the following axiom of equality:

‖∀x ∀y1 · · · ∀yn
(
x = y ⇒

(
P (x, y1, . . . , yn) ⇒ P (y, y1, . . . , yn)

))
‖ = 1.

If we take a point ξ in the interpretation class that assigns to x, y, y1, . . . , yn
the values X,Y, Y1, . . . , Yn, respectively, then we find that

‖X = Y ‖ � ‖P (X,Y1, . . . , Yn)‖′ ∨ ‖P (Y, Y1, . . . , Yn)‖,

or
‖X = Y ‖ ∧W (X) � W (Y ),

so that W is extensional. ��
We are now ready to verify the axioms.

6.5. Proposition. The axiom of pairing

∀u ∀w ∃x ∀z(z ∈ x⇔ z = u ∨ z = w)

is “true.”

Proof. By definition we have

‖∀u ∀w ∃x ∀z(z ∈ x⇔ z = u ∨ z = w)‖

=
∧
U

∧
W

∨
X

∧
Z

‖Z ∈ X ⇔ Z = U ∨ Z = W‖.

Hence to prove the theorem if suffices if for any U,W ∈ V B, we find an X ∈ V B
such that for all Z ∈ V B,

‖Z ∈ X‖ = ‖Z = U‖ ∨ ‖Z = W‖. (2)

For fixed U and W we consider the right side of (2) as a function of Z. This
function is a random class X by Proposition 6.4, since it corresponds to the
formula z = U ∨ z = W . We show that it is equivalent to a random set; more
precisely, if U,W ∈ V Bα , then X ∼ Xα. By the remark at the end of 6.3(c), it
suffices to verify that for all Z

‖Z ∈ X‖ � ‖Z ∈ Xα‖.
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But since ‖U ∈ Xα‖ = 1, it follows by formula (II) in §5 that

‖Z = U‖ � ‖Z ∈ Xα‖,

and similarly
‖Z = W‖ � ‖Z ∈ Xα‖,

which gives the required inequality. ��

6.6. Proposition. The axiom of union

∀x ∃y ∀u
(
∃z(u ∈ z ∧ z ∈ x) ⇔ u ∈ y

)
is “true.”

Proof. We fix X ∈ V B and construct a random set Y such that for all U ∈ V B,

‖U ∈ Y ‖ = ‖∃z(U ∈ z ∧ z ∈ X)‖ =
∨

Z∈V B

‖U ∈ Z‖ ∧ ‖Z ∈ X‖.

By Proposition 6.4, there exists a random class Y with this property. We show
that if D(X) = V Bα , then Y ∼ Yα. Since D(Yα) = D(X), we have

‖U ∈ Yα‖ =
∨

Z∈D(X)

‖U = Z‖ ∧ ‖Z ∈ Yα‖

=
∨

Z∈D(X)

‖U = Z‖ ∧
( ∨
Z1∈V B

‖Z ∈ Z1‖ ∧ ‖Z1 ∈ X‖
)
. (3)

We show that the inner sum in (3) may be taken only over Z1 ∈ D(X). In fact,
for any Z1,

‖Z1 ∈ X‖ =
∨

Z2∈D(X)

‖Z1 = Z2‖ ∧ ‖Z2 ∈ X‖,

so that

‖Z ∈ Z1‖ ∧ ‖Z1 ∈ X‖ =
∨

Z2∈D(X)

‖Z ∈ Z1‖ ∧ ‖Z1 = Z2‖ ∧ ‖Z2 ∈ X‖

�
∨

Z2∈D(X)

‖Z ∈ Z2‖ ∧ ‖Z2 ∈ X‖. (4)

Taking this into account, in (3) we first sum over Z for fixed Z1 ∈ D(X).
Since D(Z1) � D(X), the sum over Z ∈ D(X) coincides with the sum over
Z ∈ D(Z1), and is equal to ‖U ∈ Z1‖. Thus,

‖U ∈ Yα‖ =
∨

Z1∈D(X)

‖U ∈ Z1‖ ∧ ‖Z1 ∈ X‖

�
∨

Z1∈V B

‖U ∈ Z1‖ ∧ ‖Z1 ∈ X‖ = ‖U ∈ Y ‖,

by (4). ��
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6.7. Proposition. The power set axiom

∀x ∃y ∀z(z ⊂ x⇔ z ∈ y)

is “ true.” (Recall that z ⊂ x is abbreviated notation for ∀u(u ∈ z ⇒ u ∈ x).)

Proof. We fix X ∈ V B and construct a Y ∈ V B such that for all Z ∈ V B,

‖Z ∈ Y ‖ = ‖Z ⊂ X‖ =
∧

U∈V B

‖U ∈ Z‖′ ∨ ‖U ∈ X‖.

By Proposition 6.4, the right side defines Y as a random class. We show that if
D(X) = V Bα , then Y ∼ Yα+1.

We first construct the element Zα ∈ V Bα+1 by considering Z as a random
class. By (1) we have ‖U ∈ Zα‖′ � ‖U ∈ Z‖, so that

‖Z ∈ Y ‖ � ‖Zα ∈ Y ‖ = ‖Zα ∈ Yα+1‖. (5)

If we prove the inequality

‖Z ∈ Y ‖ � ‖Zα = Z‖, (6)

it will immediately follow from (5) and (6) that Y ∼ Yα+1, since by (II), §5,

‖Z ∈ Y ‖ � ‖Zα ∈ Yα+1‖ ∧ ‖Zα = Z‖ � ‖Z ∈ Yα+1‖.

It remains to verify (6).
First let U ∈ D(X) = V Bα . Then ‖U ∈ Zα‖ = ‖U ∈ Z‖, so that ‖U ∈ Zα ⇔

U ∈ Z‖′ = 0, and a fortiori

‖U ∈ X‖ ∧ ‖U ∈ Zα ⇔ U ∈ Z‖′ = 0. (7)

As U varies, the left side of (7) determines a random class of the form X ∩W ,
where W corresponds to the formula ¬(u ∈ Zα ⇔ u ∈ Z). Since D(X) = V Bα ,
it follows by 6.3(c) that X ∩W ∼ (X ∩W )α. But according to (7), (X ∩W )α
is the zero function on V Bα . Thus, ‖U ∈ X ∩W‖ = 0 for all U ∈ V B. Conse-
quently,

‖U ∈ X‖ � ‖U ∈ Zα ⇔ U ∈ Z‖ for all U. (8)

To prove (6), we now write the left-and right-hand sides separately (using the
“truth” of the formula Zα = Z ⇔ ∀u(u ∈ Zα ⇔ u ∈ Z)):

‖Z ∈ Y ‖ =
∧

U∈V B

‖U ∈ Z‖′ ∨ ‖U ∈ X‖,

‖Zα = Z‖ =
∧

U∈V B

‖U ∈ Zα ⇔ U ∈ Z‖.



132 III The Continuum Problem and Forcing

It is now clear that the inequality in (6) holds term by term. In fact, for ‖U ∈ X‖
this follows from (8), and for ‖U ∈ Z‖′ it follows because

|U ∈ Zα ⇔ U ∈ Z‖ = (‖U ∈ Zα‖′ ∨ ‖U ∈ Z‖) ∧ (‖U ∈ Zα‖ ∨ ‖U ∈ Z‖′)

and ‖U ∈ Z‖′ � ‖U ∈ Zα‖′ for all U . ��

6.8. Proposition. The regularity axiom

∀x
(
∃y (y ∈ x) ⇒ ∃y (y ∈ x ∧ y ∩ x = ∅)

)
is “true.”

Proof. We fix X ∈ V B. The axiom with the “constant” X in place of x has
the form R ⇒ S. We must show that ‖R ⇒ S‖ = 1. It suffices to prove that
‖R‖ ∧ ‖S‖′ = 0, where

‖R‖ =
∨

Y ∈V B

‖Y ∈ X‖, (9)

‖S‖′ =
∧

Y ∈V B

‖Y ∈ X‖′ ∨
( ∨
Z∈V B

‖Z ∈ Y ‖ ∧ ‖Z ∈ X‖
)
. (10)

We suppose that ‖R‖∧‖S‖′ = a �= 0, and show that this leads to a contradiction.
It follows from (9) and (10) that there exists a Y ∈ V B such that ‖Y ∈ X‖ ∧
a �= 0. We choose Y to have the least rank of any element with this property.

It is again clear from (9) and (10) that

‖Y ∈ X‖ ∧ a �
∨

Z∈V B

‖Z ∈ Y ‖ ∧ ‖Z ∈ X‖.

On the right we may sum only over Z ∈ D(Y ), without changing the value of
the sum. Hence, there must exist a Z ∈ D(Y ) such that

‖Z ∈ X‖ ∧ ‖Y ∈ X‖ ∧ a �= 0,

so that ‖Z ∈ X‖ ∧ a �= 0. But the rank of Z is less than the rank of Y ,
contradicting the choice of Y . ��

7 The Axioms of Infinity, Replacement, and
Choice Are “True”

7.1. We begin this section by describing two more methods for constructing
random sets. The first of them, which is very widely used, solves the following
problem. Suppose we are given a set of objects Xi ∈ V B, i ∈ I, and a set of
elements ai ∈ B. We would like to construct a random set X that contains each



7 The Axioms of Infinity, Replacement, and Choice Are “True” 133

Xi with probability ai, but such an X might not exist. However, it turns out
that there always exists an X with ‖Xi ∈ X‖ � ai for all i ∈ I; moreover, there
exists a least X with this property.

7.2. Lemma.

(a) Under the conditions in 7.1, the function Xof Y

‖Y ∈ X‖ =
∨
i∈I

ai ∧ ‖Y ∈ Xi‖ (1)

is a random class X that is equivalent to a random set. In addition,
‖Xi ∈ X‖ � ai, and if X ′ is any random class such that ‖Xi ∈ X ′‖ � ai for
each i, then ‖Y ∈ X ′‖ � ‖Y ∈ X‖ for all Y .

We shall say that X (or the equivalent random set) collects the Xi with
probabilities ai.

(b) Under the same conditions, the function Z of Y

‖Y ∈ Z‖ =
∨
i

ai ∧ ‖Y ∈ Xi‖ (2)

is a random class Z that is equivalent to a random set. If we also have
ai ∧ aj = 0 for all i �= j, then ‖Z = Xi‖ � ai, and for any random class
Z ′ such that ‖Z ′ = Xi‖ � ai for each i, we have ‖Y ∈ Z ′‖ � ‖Y ∈ Z‖
for all Y .

We shall say that Z glues together the Xi with probabilities ai.

Proof. It is easily verified that the functions Z and X defined by formulas (1)
and (2) are extensional.

There exists an ordinal α such that Xi ∈ V Bα for all i. We show that X ∼ Xα

and Z ∼ Zα. For any Y ∈ V B we have

‖Y ∈ Xα‖ =
∨

U∈V B
α

‖Y = U‖ ∧ ‖U ∈ Xα‖

=
∨

U∈V B
α

∨
i

‖Y = U‖ ∧ ai ∧ ‖U = Xi‖

=
∨

U∈V B
α

∨
i

ai ∧ ‖Y = Xi‖ ∧ ‖U = Xi‖.

If we consider the term with U = Xi on the right, we obtain ai ∧ ‖Y = Xi‖ �
‖Y ∈ Xα‖, so that ‖Y ∈ X‖ � ‖Y ∈ Xα‖ by (1), and the assertion follows
by 6.3(c).

Similarly, for any Y ∈ V B we have

‖Y ∈ Zα‖ =
∨

U∈V B
α

∨
i

‖Y = U‖ ∧ ai ∧ ‖U ∈ Xi‖

=
∨

U∈V B
α

∨
i

ai ∧ ‖Y ∈ Xi‖ ∧ ‖Y = U‖.
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Since ‖Y ∈ Xi‖ =
∨
U∈V B

α
‖Y = U‖ ∧ ‖Y ∈ Xi‖, it follows that

ai ∧ ‖Y ∈ Xi‖ � ‖Y ∈ Zα‖, and ‖Y ∈ Z‖ � ‖Y ∈ Zα‖ by (2).
Now let X ′ and Z ′ be any random sets with the properties in (a) and (b).

It is clear from (1) that ‖Xi ∈ X‖ � ai. If ‖Xi ∈ X ′‖ � ai, for each i, then
‖Y ∈ X ′‖ =

∨
U‖Y = U‖ ∧ ‖U ∈ X ′‖ �

∨
i‖Y = Xi‖ ∧ ‖Xi ∈ X ′‖ � ‖Y ∈ X‖

by (1).
Similarly, if ai ∧ aj = 0 for i �= j then it is clear from (2) that

ai ∧ ‖Y ∈ Z‖ = ai ∧ ‖Y ∈ Xi‖, so that

ai ∧ ‖Xi = Z‖ =
∨
Y

ai ∧ ‖Y ∈ Xi ⇔ Y ∈ Z‖ = ai

and ‖Xi = Z‖ � ai. Now if ‖Xi = Z ′‖ � ai for each i, then

‖Y ∈ Z ′‖ � ‖Y ∈ Z ′‖ ∧ ‖Z ′ = Xi‖
= ‖Y ∈ Xi‖ ∧ ‖Z ′ = Xi‖ � ai ∧ ‖Y ∈ Xi‖,

so that ‖Y ∈ Z ′‖ � ‖Y ∈ Z‖. ��

Here is our first application of Lemma 7.2(a):

7.3. Proposition. The axiom of infinity

∃x
(
∅ ∈ x ∧ ∀u(u ∈ x⇒ {u} ∈ x)

)
is “ true.”

Proof. When we proved that the axiom of pairing is “true,” we constructed
for any U,W ∈ V B an element Z ∈ V B (unique up to equivalence) with the
property that ‖Y ∈ Z‖ = ‖Y = U ∨ Y = W‖ for all Y . It is natural to let
{U,W}B denote this element Z, and let {U}B = {U,U}B.

We now verify the axiom of infinity. We set X0 = ∅, X1 = {∅}B, . . . , Xn =
{Xn−1}B, . . . . Further, we let X ∈ V B be the element that collects all the Xi

with probabilities 1. We show that

‖∅ ∈ X ∧ ∀u(u ∈ X ⇒ {u} ∈ X)‖ = 1.

It is obviously sufficient to prove that for all U ∈ V B we have ‖U ∈ X‖ �
‖{U}B ∈ X‖, that is, by (1);∨∞

i=0
‖U = Xi‖ �

∨∞
i=0
‖{u}B = Xi‖.

In fact, since the formula u = x ⇔ {u} = {x} is “true,” and since Xi+1 =
{Xi}B, it immediately follows that

‖U = Xi‖ = ‖{U}B = Xi+1‖. ��

7.4. Lemma. Let W be a random class. Then there exists an element X ∈ V B
such that ∨

U∈V B

W (U) = W (X).
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The left-hand side may be represented in the form ‖∃x(x ∈ W )‖ =
‖W �= ∅‖. Hence, intuitively, the lemma says that the probability that a given
class is nonempty coincides with the probability that a suitable element occurs
in it.

Proof. We first show that there exists an ordinal β such that
∨
U∈V B W (U) =∨

U∈V B
β
W (U). In fact, let aγ =

∨
U∈V B

γ
W (U), and for any a ∈ B set

γ(a) = min(γ|aγ > a) (or γ(a) = 0 if aγ �> a for all γ). Finally, set
β = supa∈B γ(a). This is an ordinal, because B is a set. If γ > β, then aγ � aβ
by monotonicity, but we cannot have aγ > aβ because of the choice of β.

Thus, let
∨
U W (U) =

∨
U∈V B

β
W (U). We index all the elements in V Bβ by

an initial segment of ordinals (by the axiom of choice!): V Bβ = {Uα}α∈I . We set

aα = W (Uα) ∧
( ∨
γ<α

W
(
Uγ)

)′
, α ∈ I.

Obviously aα∧aγ = 0 for α �= γ. Using Lemma 7.2(b), we glue together the sets
Uα with probabilities aα(α ∈ I). We obtain a set X satisfying the conditions
‖X = Uα‖ � aα � W (Uα). Using the extensionality of W , we obtain

W (X) �
∨
α∈I

‖X = Uα‖ ∧W (Uα) =
∨
α∈I

W (Uα) =
∨

U∈V B

W (U). ��

7.5. Proposition. The replacement axiom

∀z̄ ∀u
(
∀x

(
x ∈ u⇒ ∃!y P (x, y, z̄))

⇒ ∃w ∀y(y ∈ w⇔ ∃x(x ∈ u ∧ P (z, y, z̄))
))

is “ true” (here z̄ = 〈z1, . . . , zn〉).

Proof. We fix a “vector” Z = 〈Z1, . . . , Zn〉 with Zi ∈ V B and an element
U ∈ V B. We shall write P (x, y) instead of P (x, y, Z). If we write the axiom
with the “constants” Zi and U in the form R ⇒ S, then we must prove that
‖R⇒ S‖ = 1.

7.6. The special case: If ‖R‖ = 1, then ‖S‖ = 1.
We first show how the general case follows from this special case. Let a ∈ B,

and let Ba denote the set {b ∈ B|b � a}. The operations on B induce a
Boolean algebra structure onBa with unit element 1a = a. The natural mapping
B → Ba : b �→ b ∧ a is a homomorphism. An easy induction on a allows us to
construct a surjective map of universes V B → V Ba : X �→ Xa such that for all
X,Y ∈ V B we have

‖Xa ∈ Ya‖ = ‖X ∈ Y ‖ ∧ a,
‖Xa = Ya‖ = ‖X = Y ‖ ∧ a.
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Now, to prove Proposition 7.5 from the special case 7.6, we choose a = ‖R‖.
Then ‖R‖a = 1a, so that 7.6 implies that ‖S‖a = 1a. This means that ‖S‖ � a,
and hence ‖R⇒ S‖ = 1. (Here we have used 7.6 in V Ba ; clearly ‖R‖a = ‖Ra‖,
where Ra is the obvious image of R in V Ba .)

7.7. Proof of 7.6. The condition ‖R‖ = 1 means that for any X ∈ V B,

‖X ∈ U‖ � ‖∃!y P (X, y)‖. (3)

To show that ‖S‖ = 1, it is sufficient if given U ∈ V B, we find a W ∈ V B such
that for all Y ∈ V B,

‖Y ∈ W‖ =
∨

X∈V B

‖X ∈ U‖ ∧ ‖P (X,Y )‖. (4)

It follows from 6.5 that the formula (4) defines W as a random class. We find
an ordinal α such that W ∼ Wα.

To do this, we first note that in (4) we may take the sum only over

‖Y ∈ W‖ =
∨

X∈D(U)

‖X ∈ U‖ ∧ ‖P (X,Y )‖ (5)

(the argument here is the same as after formula (3) in §6). We now apply
Lemma 7.4 to the class WX(Y ) = ‖P (X,Y )‖. It follows that for every X ∈
D(U) there exists an element YX ∈ V B such that

‖∃y P (X, y)‖ = ‖P (X,YX)‖. (6)

(Because ‖∃!y P (X, y)‖ � ‖∃yP (X, y)‖, we can use these YX to estimate
‖X ∈ U‖ with the help of (9) below.)

We set αX = min(α|YX ∈ V Bα ), and

α = sup(αX |X ∈ D(U)),

and then show that W ∼ Wα for this α. We must verify that ‖Y ∈ W‖ �
‖Y ∈Wα‖ for every Y. By (5) and by formula (II) in §5, this follows if for any
X ∈ D(U) we have

‖X ∈ U‖ ∧ ‖P (X,Y )‖ � ‖Y = YX‖ ∧ ‖YX ∈Wα‖. (7)

In the first place, by (3), (6), (5), and the definition of α, we have

‖X ∈ U‖ � ‖P (X,YX)‖, (8)
‖X ∈ U‖ � ‖YX ∈ W‖ = ‖YX ∈Wα‖.

Further, we consider the following formula, which is “true” because it is
deducible from the logical axioms and the axioms of equality:

∀x(∃ !y P (x, y) ∧ P (x, y1) ∧ P (x, y2) ⇒ y1 = y2).

We thereby obtain

‖∃ !y P (X, y)‖ ∧ ‖P (X,Y )‖ ∧ ‖P (X,YX)‖ � ‖Y = YX‖. (9)
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Finally, it follows from (3), (8), and (9) that

‖X ∈ U‖ ∧ ‖P (X,Y )‖ � ‖Y = YX‖ ∧ ‖YX ∈Wα‖,

i.e., we have (7).

7.8. Proposition. The axiom of choice is “ true.”

Proof. Recall that the axiom of choice has the form ∀x ∃y(Q ∧ R ∧ S ∧ T ),
where

Q denotes ∀z(z ∈ y ⇒ ∃u ∃w(z = 〈u,w〉))(“y is a binary relation”);
R denotes ∀u ∀w1∀w2(〈u,w1〉 ∈ y ∧ 〈u,w2〉 ∈ y ⇒ w1 = w2)(“y is a

function”);
S denotes ∀u(∃w(〈u,w〉 ∈ y) ⇒ u ∈ x)(“the domain of definition of y

is contained in x”);
T denotes ∀u(u �= ∅ ∧ u ∈ x⇒ ∃w(w ∈ u ∧ 〈u,w〉 ∈ y))(“the domain

of definition of y coincides withx, and y chooses one element
from each nonempty element of x”).

We fix X ∈ V B and construct the corresponding “choosing function” Y . To
do this:

(a) We index D(X) by an initial segment of ordinals:

D(X) = {U0, U1, . . . , Uα, . . .}, α ∈ I.

(b) For each Uα ∈ D(X) we use Lemma 7.4 to find an element Wα ∈ V B

such that
‖Wα ∈ Uα‖ =

∨
W∈V B

‖W ∈ Uα‖.

(c) For each α ∈ I we set

aα = ‖Uα ∈ X‖ ∧

⎛⎝ ∨
β<α

‖Uβ ∈ X‖′ ∨ ‖Uβ = Uα‖′
⎞⎠ .

(d) Finally, we let Y denote the set that collects the “ordered pairs”
〈Uα,Wα〉B with probabilities aα, α ∈ I. Here, of course,
〈U,W 〉B =

{
{U}B, {U,W}B

}
.

The idea of this construction is as follows. In each Uα we choose the element
Wα that belongs to Uα “with the largest possible probability.” We then put
together the graph of the choice function Y from the “pairs” 〈Uα,Wα〉B ,
where we take the pairs in the order they are indexed, but include a given
〈Uα,Wα〉B only to the extent that Uα “was not already considered earlier as
belonging to X .”

We now substitute X and Y in place of x and y in the axiom of choice,
and, letting Q,R, S, and T now denote the corresponding formulas with these
constants, we show that ‖Q‖ = ‖R‖ = ‖S‖ = ‖T ‖ = 1. We shall constantly be
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using the following formula, which follows from (1) and the definition of Y ;

‖Z ∈ Y ‖ =
∨
a

‖Z = 〈Uα, Wα〉B‖ ∧ aα. (10)

7.9. ‖Q‖ = 1. By the definition of Q, this means that for all Z ∈ V B we must
have

‖Z ∈ Y ‖ =
∨
U,W

‖Z = 〈U, W 〉B‖,

but this is obvious from (10).

7.10. ‖R‖ = 1. By the definition of R, for any U,W 1,W 2 ∈ V B we must prove
the inequality

‖〈U, W 1〉B ∈ Y ‖ ∧ ‖〈U, W 2〉B ∈ Y ‖ � ‖W 1 = W 2‖.

Using (10), we rewrite the left-hand side in the form∨
α,β

‖U = Uα‖ ∧ ‖W 1 = Wα‖ ∧ aα ∧ ‖U = Uβ‖ ∧ ‖W 2 = Wβ‖ ∧ aβ .

Since ‖U = Uα‖ ∧ ‖U = Uβ‖ � ‖Uα = Uβ‖ and ‖Uα = Uβ‖ ∧ aα ∧ aβ = 0
for α �= β (see the definition of aα), it follows that in this sum we need
only consider the terms with α = β. But such a term is � ‖W 1 = Wα‖ ∧
‖W 2 = Wα‖ � ‖W 1 = W 2‖, as required.

7.11. ‖S‖ = 1. This is equivalent to the inequality

‖〈U, W 〉B ∈ Y ‖ � ‖U ∈ X‖.

But by (10), the left-hand side equals∨
α

‖U = Uα‖ ∧ ‖W = Wα‖ ∧ aα �
∨
α

‖U = Uα‖ ∧ ‖W = Wα‖ ∧ ‖Uα ∈ X‖

�
∨
α

‖U = Uα‖ ∧ ‖Uα ∈ X‖ = ‖U ∈ X‖.

7.12. ‖T ‖ = 1. We must prove that for any U ∈ V B,

‖U ∈ X‖ ∧ ‖U �= ∅‖ �
∨

W∈ V B

‖W ∈ U‖ ∧ ‖〈U, W 〉B ∈ Y ‖. (11)

We first show that it suffices to prove (11) for U ∈ D(X), i.e., for all Uα, α ∈ I.
In fact, suppose (11) holds for all Uα. Then for U ∈ V B we have

‖U ∈ X‖ =
∨
α

‖U = Uα‖ ∧ ‖Uα ∈ X‖,

‖U �= ∅‖ =
∨

U1∈V B

‖U1 ∈ U‖,
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and hence

‖U ∈ X‖ ∧ ‖U �= ∅‖ =
∨
α,U1

‖U1 ∈ U‖ ∧ ‖U = Uα‖ ∧ ‖Uα ∈ X‖

�
∨
α,U1

‖U1 ∈ Uα‖ ∧ ‖U = Uα‖ ∧ ‖Uα ∈ X‖

(by (III) in §5)

=
∨
α

‖Uα �= ∅‖ ∧ ‖U = Uα‖ ∧ ‖Uα ∈ X‖

�
∨

α,W∈V B

‖W ∈ Uα‖ ∧ ‖〈Uα, W 〉B ∈ Y ‖ ∧ ‖U = Uα‖

(by (11) forUα)

�
∨
W

‖W ∈ U‖ ∧ ‖〈U, W 〉B ∈ Y ‖.

(Here we used the fact that

‖〈Uα, W 〉B ∈ Y ‖ ∧ ‖U = Uα‖

=
∨
β

‖Uα = Uβ‖ ∧ ‖W = Wβ‖ ∧ αβ ∧ ‖U = Uα‖

�
∨
β

‖U = Uβ‖ ∧ ‖W = Wβ‖ ∧ αβ

= ‖〈U, W 〉B ∈ Y ‖.)
Thus, it remains to prove (11) for Uα, α ∈ I. Now

‖Uα �= ∅‖ = ‖∃w(w ∈ Uα)‖ =
∨
W

‖W ∈ Uα‖ = ‖Wα ∈ Uα‖.

Hence (11) can be rewritten

‖Uα ∈ X‖ ∧ ‖Wα ∈ Uα‖ �
∨
W

‖W ∈ Uα‖ ∧ ‖〈Uα, W 〉B ∈ Y ‖. (12)

We prove this by induction on α. (12) is obvious for α = 0, since the term on
the right with W = W0 coincides with the left-hand side. Suppose (12) holds
for β < α.

By the definition of aα, we have

‖Uα ∈ X‖ = aα ∨

⎛⎝ ∨
β<α

‖Uβ ∈ X‖ ∧ ‖Uβ = Uα‖

⎞⎠ .

If we substitute this formula in the left-hand side of (12), we find that we must
prove two inequalities:

aα ∧ ‖Wα ∈ Uα‖ �
∨
W

‖W ∈ Uα‖ ∧ ‖〈Uα, W 〉B ∈ Y ‖, (13)

‖Uβ ∈ X‖ ∧ ‖Uβ = Uα‖ ∧ ‖Wα ∈ Uα‖

�
∨
W

‖〈Uα, W 〉B ∈ Y ‖ ∧ ‖W ∈ Uα‖, for all β < α. (14)
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The inequality (13) is obvious if we look at the term on the right with
W = Wα. The inequality (14) reduces to the induction assumption as follows.
The left-hand side of (14) is

� ‖Uβ ∈ X‖ ∧ ‖Uβ = Uα‖ ∧ ‖Wα ∈ Uβ‖
� ‖Uβ ∈ X‖ ∧ ‖Uβ = Uα‖ ∧ ‖Wβ ∈ Uβ‖

by the definition of Wβ . Further, using the induction assumption and exten-
sionality, we have

‖Uβ = Uα‖ ∧ ‖Uβ ∈ X‖ ∧ ‖Wβ ∈ Uβ‖

�
∨
W

‖W ∈ Uβ‖ ∧ ‖〈Uβ , W 〉B ∈ Y ‖ ∧ ‖Uβ = Uα‖

�
∨
W

‖W ∈ Uα‖ ∧ ‖〈Uα, W 〉B ∈ Y ‖,

which completes the verification of the axiom of choice. ��

8 The Continuum Hypothesis Is “False” for Suitable B

8.1. We recall (Lemma 7.2(a)) that the set X ∈ V B collects the sets {Xi} with
probabilities ai ∈ B(i ∈ I) if ‖Y ∈ X‖ =

∨
i ‖Y = Xi‖ ∧ ai for all Y . Using

this definition, we can introduce a useful canonical mapping t �→ t̂ from the von
Neumann universe V to the universe V B. Let ∅̂ = ∅ (recall that ‖Y ∈ ∅‖ = 0
for all Y ), and if ŝ has already been defined for all s ∈ Vα, then for t ∈ Vα+1,
we let t̂ collect all the ŝ for s ∈ t with probability 1. In other words, for any
Y ∈ V B,

‖Y ∈ t̂‖ =
∨
s∈t
‖Y = ŝ‖. (1)

(Here the collecting set t̂ is not uniquely defined, i.e., it is defined only modulo
equivalence, so that, strictly speaking, we should also specify the rank of t̂, for
example by saying that it equals the rank of t. This is not essential for us,
however, since we shall be interested only in the truth functions, which do not
change if we replace an object by an equivalent object.)

We now formulate some additional conditions (besides completeness) that
must be imposed on the Boolean algebra B for the purposes of this section.
Recall that ω0 is the first infinite ordinal, ω1 is the first ordinal having
cardinality > ω0, and ω2 is the first ordinal having cardinality > ω1.

8.2. Conditions on B.

(a) The countable chain condition, which, we recall, says that if we have a
family of elements {ai}, i ∈ I, such that at ai �= 0 and ai ∧ aj = 0 for i �= j,
then I is at most a countable set.

(b) There exists a family of elements b(n, α) ∈ B, indexed by the set ω0 × ω2,
with the following property: if Z(α) collects the elements n̂, n ∈ ω0, with
probabilities b(n, α), then ‖Z(α) = Z(β)‖ = 0 for α �= β, α, β ∈ ω2.
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The second condition has the following intuitive meaning. It is easy to see
that ‖Z(α) ⊂ ω̂0‖ = 1. In fact, this equality is equivalent to ‖∀x(x ∈ Z(α) ⇒
x ∈ ω̂0)‖ = 1, i.e., to

∀X ∈ V B, ‖X ∈ Z(α)‖ � ‖X ∈ ω̂0‖,

and this is obvious from (1), since ω̂0 collects the n̂ with probability 1, and
Z(α) collects the n̂ with probabilities b(n, α) � 1.

Thus, condition (b) means that we can find ω2 distinct subsets Z(α) ⊂ ω̂0,
so that, in the naive sense, we have card P(ω̂0) > ω1. This is precisely the
negation of the continuum hypothesis. Of course, it is still necessary to show
that this intuitive idea can be made into a proof.

8.3. The existence of B with the required properties. We could use measurable
sets, as in §3. However, in order to vary our approach, and to prepare for §9,
we give another construction. Let {0, 1} be the discrete two-point space, let
I = ω0 × ω2, and let S = {0, 1}I be the space of vectors whose coordinates
are indexed by I and take the values 0 or 1. We introduce the direct product
topology on S. It has a standard basis of open sets consisting of all vectors
whose coordinates indexed by a finite subset J ⊂ I are fixed.

If a ⊂ S, we set

a
′

= the complement of the closure of a in S,

and we set a′′ = (a
′
)
′
. Sets a ⊂ S with a′′ = a are called regular open sets in S.

8.4.Theorem. Let

B = {a ⊂ S|a′′ = a},
a ∧ b = a ∩ b,
a ∨ b = (a ∪ b)′′.

Then B with the operations ∧,∨, and
′
is a complete Boolean algebra with the

countable chain condition, and
∨
i ai = (∪iai)′′ for any family of ai ∈ B.

We omit the proof (see J. B. Rosser, Simplified Independence Proofs,
Academic Press, New York, 1969, Chapter 2).

8.5. Lemma. Under the conditions in 8.4, let

b(n, α) = the set of vectors with 1 in the (n, α) place,

and let Z(α) be defined as in 8.2(b). Then

‖Z(α) = Z(β)‖ = 0, for α �= β.

Proof. By formula (5) in §4, we have

‖Z(α) = Z(β)‖ =
∧
n∈ω0

(b(n, α) ∨ b(n, β)) ∧ (b(n, α)
′ ∧ b(n, β)

′
).
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The right side can become larger only if we replace ∧ by ∩ and ∨ by ∪;
here the primes

′
coincide with the ordinary complements. If we had

‖Z(α) = Z(β)‖ �= 0, then there would exist an element X in the standard
basis of the the topology (see the beginning of 8.3) that is contained in⋂

n∈ω0

(b(n, α) ∩ b(n, β)) ∪ (b(n, α)
′
∩ b(n, β)

′
).

But this intersection consists of all vectors having the same (n, α)-coordinate
and (n, β)-coordinate for all n, while all coordinates except for a finite number
range freely in any element X of the standard basis of the topology. ��

8.6. Formulation of the negation of the continuum hypothesis. We shall prove
that the following is “true”:

∀x((“x is an ordinal” ∧ “x is not finite” ∧ ∀y(y ∈ x⇒ “y
¬CH : is finite”)) ⇒ ∃w(“there is no function from x onto all of

w” ∧ “there is no function from w ontoP(x)”)).

Here:

x is finite: ∀y(y ⊂ x ∧ y �= x⇒ “there is no function from y onto all of x”).

We leave the translation of the other abbreviated notation to the reader.
The premise in ¬ CH says that “x is the first infinite ordinal,” and the

conclusion says that “w is a set having cardinality intermediate between that
of x and that of P(x).” We shall abbreviate ¬ CH as follows:

∀x(P (x) ⇒ ∃w(Q1(x,w) ∧Q2(x,w))). (2)

8.7. Reduction Lemma. Let P (x) and Q(x) be two formulas in the
Zermelo–Fraenkel language having one free variable x and satisfying the
properties

The formula ∃!x P (x) is deducible from the axioms , and

X0 ∈ V B is an element such that ‖P (X0)‖ = 1.

Then ‖P (X)‖ = ‖X = X0‖ for all X, and if ‖Q(X0)‖ = 1, it follows that
‖∀xP (X) ⇒ Q(X))‖ = 1.

Proof. We first note that |∃x P (x)‖ � ‖∃!x P (X)‖ = 1, since all the axioms
are “true” in V B, and the rules of deduction preserve “truth.” It hence follows
from Lemma 7.4 that there exists an object X0 ∈ V B with ‖P (X0)‖ = 1.

Further, P (x) ∧ P (y) ⇒ x = y is also deducible, so that if we apply this
with X in place of x and X0 in place of y, we find that

‖P (X)‖ � ‖X = X0‖. (3)

But ‖P (X)‖ ∧ ‖X = X0‖ = P (X0) ∧ ‖X = X0‖ = ‖X = X0‖. Hence the
inequality in (3) may be replaced by equality.
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Finally, we suppose that ‖Q(X0)‖ = 1. Then, by what was just proved,

‖P (X)‖ = ‖Q(X0)‖ ∧ ‖X = X0‖ = ‖Q(X)‖ ∧ ‖X = X0‖
= ‖Q(X)‖ ∧ ‖P (X)‖,

so that ‖P (X)‖ � ‖Q(X)‖, and ∀x(P (x) ⇒ ‖Q(X))‖ = 1. ��

This lemma can be applied to ¬CH in the form (2), since the formula
∃!xP (X), where P (x) is the premise “x is the first infinite ordinal,” is
deducible from the axioms. We shall not give this formal deduction, and shall
consider the uniqueness of ω0 to be common knowledge. Now, by Lemma 8.7,
to verify ¬CH it suffices to prove the following facts:

8.8. ‖P (ω̂0)‖ = 1. (In other words, ω̂0 plays the role of X0 in our situation.)

8.9. ‖Q1(ω̂0, ω̂1‖ = 1.

8.10. ‖Q2(ω̂0, ω̂1‖ = 1. (This then implies that ‖∃ω(Q1(ω̂0, ω)∧Q2(ω̂0, ω))‖= 1,
and completes the verification of the conditions of the lemma.) 8.8. is verified
almost mechanically, and we leave it as an exercise.

8.11. Verification Of 8.9. We must show that if B satisfies the countable
chain condition, then

‖∃ a function from ω̂0 onto all of ω̂1‖ = 0.

The proof that follows carries over word for word to the more general case,
when instead of ω0 and ω1, we take any pair s, t ∈ V such that card s < card t
and card s is infinite.

We suppose that

0 �= a = ‖∃f(f is a function ∧ ∀y(y ∈ ω̂1 ⇒ ∃x(x ∈ ω̂0 ∧ 〈x, y〉 ∈ f)))‖,

and we show that this leads to a contradiction. There must exist an F ∈ V B

such that

a � ‖F is a function ‖ ∧
(∧
Y

· · ·
)
.

For every α ∈ ω1, we consider the term in
∧
Y · · · corresponding to Y = α̂ and

use the fact that ‖α̂ ∈ ω̂1‖ = 1. We obtain

a � ‖F is a function‖ ∧
(∨
X

‖X ∈ ω̂0‖ ∧ ‖〈X, α̂〉B ∈ F‖
)
. (4)

By (1), we have

‖X ∈ ω̂0‖ ∧ ‖〈X, α̂〉B ∈ F‖ =
∨
n<ω0

‖X = n̂‖ ∧ ‖〈X, α̂〉B ∈ F‖

=
∨
n<ω0

‖X = n̂‖ ∧ ‖〈n̂, α̂〉B ∈ F‖,
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so that if we sum first over X and then over n, we may write (4) in the form

a � ‖F is a function‖ ∧
( ∨
n<ω0

‖〈n̂, α̂〉B ∈ F‖
)
.

Hence, for every α < w1 there is an n(α) < ω0 such that

‖F is a function‖ ∧ ‖〈n(α̂), α̂〉B ∈ F‖ �= 0.

Then there exist an n0 and a subset J ⊆ ω1 of cardinality ω1 such that

0 �= aα = ‖F is a function‖ ∧ ‖〈n̂0, α̂〉B ∈ F‖, for all α ∈ J.

It remains to show that aα ∧aβ = 0 for α �= β, which contradicts the countable
chain condition on B. Now by the definition of a function

aα ∧ aβ = ‖F is a function‖ ∧ ‖〈n̂0, α̂〉B ∈ F‖ ∧ ‖〈n̂0, β̂〉B ∈ F‖ � ‖α̂ = β̂‖,

so that it suffices to show that α �= β implies ‖α̂ = β̂‖ = 0.
In fact, if, say, γ ∈ α but γ �∈ β, then the formula (5) in §4 for ‖α̂ = β̂‖ has

a zero term, namely ‖γ̂ ∈ α̂‖′ ∨ ‖γ̂ = β̂‖. (To check that ‖γ̂ = β̂‖ = 0 if γ �∈ β
we have to know that ‖γ̂ = δ̂‖ = 0 if γ �= δ, but we have to know this only for
γ and δ of lower rank than α and β, so that the detailed proof uses induction
on the rank.) ��

8.12. Verification of 8.10. We must show that

‖∃ a function from ω̂1, onto P(ω̂0)‖ = 0,

that is, that

‖∃g (g is function ∧ ∀z(z ⊂ ω̂0 ⇒ ∃y(y ∈ ω̂1 ∧ 〈y, z〉 ∈ g))
)
‖ = 0.

Suppose that for some G ∈ V B we have

0 �= a = ‖G is a function ‖ ∧
(∧

Z

· · ·
)
.

For every α < ω2 we consider the term corresponding to Z = Z(α) (see the
definition in 8.2 and 8.5), and we use the fact that

0 �= a � ‖G is a function‖ ∧
(∨

Y

‖Y ∈ ω̂1‖ ∧ ‖〈Y, Z(α)〉B ∈ G‖
)
. (5)

By (1), we have

‖Y ∈ ω̂1‖ ∧ ‖〈Y, Z(α)〉B ∈ G‖ =
∨
β<ω1

‖Y = β̂‖ ∧ ‖〈Y, Z(α)〉B ∈ G‖

=
∨
β<ω1

‖Y = β̂‖ ∧ ‖〈β̂, Z(α)〉B ∈ G‖.
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Summing first over Y , we rewrite (5) in the form

0 �= a � ‖G is a function‖ ∧
∨
β<ω1

‖〈β̂, Z(α)〉B ∈ G‖.

Hence, for every α < ω2 there is a β(α) < ω1 such that

0 �= aα = ‖G is a function‖ ∧ ‖〈β(α), Z(α)〉B ∈ G‖.

Then there exist a β0 < ω1 and a subset J ⊂ ω2 of cardinality ω2 such that

0 �= aα = ‖G is a function‖ ∧ ‖〈β̂0, Z(α)〉B ∈ G‖, for all α ∈ J .

As in 8.11, we obtain a contradiction to the countable chain condition if we
show that aα ∧ aβ = 0 for α �= β. But this follows from

aα ∧ aβ � ‖Z(α) = Z(β)‖ = 0

by Lemma 8.5. ��

9 Forcing

9.1. By choosing the Boolean algebra B in various ways, one can use the cor-
responding models V B to show that many different assertions P are consistent
with the Zermelo–Fraenkel axioms. But each choice of B for a given P such
that‖P‖ = 1 in V B presents a separate problem.

There is another interpretation of this method that is closer to Cohen’s
original idea. From this point of view we start not with a universe V and a
Boolean algebra B, but with an (often countable) transitive model M and an
ordered set C of “forcing conditions.” It is usually more obvious how to choose a
suitable C than how to choose a suitable B for proving that a given proposition
P is consistent. One might say that B embodies the “physical meaning” of the
problem, while C expresses its “logical meaning.” Anyway, it is not difficult to
go from one version to the other, and in either case it takes about the same
amount of work to verify the “truth” of the axioms.

In this section we discuss the second version, using forcing, with most of the
proofs omitted. The details can be found in Cohen’s original article, and also
in Jech’s book Lectures in Set Theory with Particular Emphasis on the Method
of Forcing, Springer–Verlag Lecture Notes in Mathematics 217, 1971, and in
J. R. Shoenfield’s article “Unramified forcing,” Proc. Symp. in Pure Math., vol.
13, 1, 357–381 (American Math. Soc, Providence, 1972).

9.2. Before introducing the general concept of forcing, we consider a special case
that arises in a typical problem.

Let X and Y be two sets, for example P(ω0) and ω2. We consider the
proposition P : “card X � card Y ,” which in this special case is the negation
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of the CH. One possible approach to constructing a model (in the usual rather
than Boolean sense) of L1Set in which P is true is as follows.

We take our original countable transitive model M of set theory (i.e., of the
special axioms of L1Set), which was shown to exist in §7 of Chapter II. Let XM

and YM be the “representatives” of X and Y in M . (This means that if, say,
X is defined by the formula ∃! x P (x), then XM = xξ, where ξ is a point of
the interpretation class for which |P (x)|M (ξ) = 1; see §7 of Chapter II.) We
assume that XM is infinite and YM is nonempty. Then “from an external point
of view” XM is countable and YM is at most countable, so there automatically
exists a function F that maps XM onto all of YM . A natural idea would be to
add (the graph of) F to M , i.e., to consider the least countable model N of the
axioms that contains M and F . Then N has a map from XM onto YM , but it
is very likely that XN �= XM and YN �= YM . What we need in N is a map from
XN onto YN .

As we have shown when discussing Skolem’s paradox in Chapter II, at least
for certain pairs (such as X = ω0, Y = P(ω0)), we cannot obtain a map from
X onto Y in this way. In those cases in which we can construct such a map, we
must choose F very carefully. Cohen’s idea was that F , rather than being chosen
so as to satisfy some conditions, should be chosen so as to avoid reflecting any
specific properties of M , i.e., F should be “generic.” We shall formulate this
more precisely.

It turns out to be important to start not by choosing F directly, but by
choosing the set

G = {restrictions of F to finite subsets of XM}.

Clearly, F is uniquely determined from G : F = ∪g∈Gg (recall that a function
is the same as its graph). Hence F is contained in any model that contains G.
But now we must give an axiomatic characterization of the suitable G without
using F explicitly. Here are the properties that G must satisfy:

9.3.

(a) G ⊆ C, where C is the set of maps from finite subsets of XM to YM . It is
important that C ∈M , because the formula in L1Set that defines C is (M,V )-
absolute. We need this remark in order to motivate the general definitions later.

(b) ∅ ∈ G; if p ∈ G and q ∈ C, where q ⊆ p, then q ∈ G; for any p1, p2 ∈ G
there is p ∈ G such that p ⊇ p1 ∪ p2.

Suppose we have chosen such a set G of maps from finite subsets of XM to
YM . Then ∪g∈Gg is also a map from some subset of XM to YM . In order for
this map to be defined on all of XM and to be surjective, it is necessary and
sufficient for the following additional conditions to hold:

∀Z ∈ XM , G ∩ {p ∈ C|p is defined at Z} �= ∅,

∀Z ∈ YM , G ∩ {q ∈ C|q takes the value Z} �= ∅.

We call a subset D ⊆ C dense in C if for all p ∈ C there is a q ∈ D with
p ⊆ q. The set of maps p defined at Z and the set of maps q taking the value
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Z are dense, and, moreover, are elements of M by the same consideration
of (M,V )-absoluteness. Hence the two requirements at the end of the last
paragraph are included in the last condition, that G be generic:

(c) G ∩W �= ∅ for all dense subsets D ⊆ C that are elements of M .
Although it is not yet evident, it is precisely the condition that G be generic

that ensures that the properties of the sets XM and YM will be preserved as
much as possible after we add G to the model.

We now define the general concept of “forcing conditions.”

9.4. Forcing conditions. These are the elements in any partially ordered set
(C,<) that has a maximal element 1. Usually C and < lie in the original model
M .

A set G is called generic over M (relative to C) if the following conditions
hold:

(a) G ⊆ C;
(b) 1 ∈ G; if p ∈ G and q ∈ C, where q � p, then q ∈ G; for any p1, p2 ∈ G

there is a p ∈ G such that p � p1 and p � p2;
(c) G ∩D �= ∅ for all dense subsets D ⊆ C with D ∈ M (D is dense if for all

p ∈ C, there is a q ∈ D with q � p).

If the reader compares this definition with the special case in 9.3, he or she
will notice that we have replaced ⊆ by � and ∅ by 1. This is in keeping with
Cohen’s original point of view, according to which p � q if, when p is considered
as a “condition” imposed, say, on F , more F ’s satisfy p than q. (Each p fixes
the restriction of F to some finite subset of XM .)

9.5.The existence of generic sets. Let M and C be fixed. If M ∩ P(C) is count-
able, then for every p ∈ C there exists a generic set G containing p.

In fact, we index the elements of M ∩ P(X) as X1, X2, X3, . . . and then set

p1 = p, pn+1 =

{
pn, if pn � q for all q ∈ Xn;
any q ∈ Xn such that q < pn, otherwise.

Finally, we set G = {q ∈ C|∃n(pn � q)}.
Conditions (a) and (b) for G to be generic are trivial to verify. Condition

(c) follows because if D ∈M and D is dense, then there exist n and q for which
D = Xn, q ∈ Xn, and q � pn, so that pn+1 ∈ D ∩G.

9.6. The connection with Boolean models. As mentioned before, we have consid-
erable freedom in our choice of the set C of forcing conditions and the generic
subset G ⊆ C. Exactly how one “forces” a given proposition P was explained
briefly in 9.2. We now show how to construct an axiom model M [G] that
contains M and G, once C and G have already been chosen.

The article by Shoenfield gives a direct construction, but we shall make use
of an analogy with V B, as in Jech’s presentation. In this approach M [G] is
constructed in three basic steps:
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(a) Corresponding to the set C we construct a canonical complete Boolean
algebra B.

(b) We construct a Boolean universe MB over B that is “relativized” by means
of M .

(c) We construct a canonical maximal ideal IG ⊆ B determined by G and the
“fiber” of the universe MB over the quotient algebra B/IG ∼= {0, 1}. It is
this fiber that will be the model M [G].

We now discuss these steps separately and in more detail.

9.7. Ordered sets and Boolean algebras. Every Boolean algebraB has a canonical
partial ordering: a � b if a ∧ b = a. All elements of the structure of B are
uniquely determined by this partial ordering. The induced ordering on B−{0}
is separable. By definition, this means that if a, b �= 0 and a � b, then there
exists c � a, c �= 0, such that there is no d �= 0 for which d � b and d � c. (It
suffices to take c = a ∧ b′ .) Such b and c are called disjoint.

Now let C be a fixed partially ordered set. We consider the class of (non-
strictly) order-preserving maps of C into different complete Boolean algebras B
such that 0 is not contained in the image.

9.8. Proposition. In this class of maps there exists a unique universal map
e : C → B with the following properties:

(a) e(c) is the maximal separable ordered quotient set of C such that c1, c2 ∈ C
are disjoint ⇔ e(c1), e(c2) ∈ B are disjoint;

(b) e(c) is dense in B − {0}.
B can be realized as the algebra of regular open sets in the space C with

the topology defined by the basis UC = {x ∈ C|x � c}, c ∈ C.
Now we can indicate how IG is constructed from the generic subset G ⊆ C:

G1 = {b ∈ B|∃p ∈ G, e(p) � b},
IG = B \G1.

It is not hard to prove that IG is a maximal ideal in B, i.e., the kernel of a
Boolean homomorphism B → {0, 1}. The set G1 is precisely the preimage of
1 under this homomorphism. Since G is generic in C, we have the following
property of G1: for any subset A ⊆ B such that

∨
a∈A a = 1 and a1 ∧ a2 = 0

whenever a1 �= a2 ∈ A, there exists a unique element a ∈ A ∩G1.

9.9. The universe MB. This universe is constructed fromM andB in exactly the
same way as V B was constructed from V and B, with one essential difference:
all constructions are relativized with respect to M . This means that instead of
B, we take the algebra BM that “represents” B in M (see 9.2); only ordinals
α ∈M are used in the construction of MB

α , and so on. A rigorous presentation of
these constructions would require much more formalization using the expressive
means in L1Set than seems desirable in this section. In such a presentation both
the general plan and the details of the work would remain essentially the same
as before.
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The basic result of these constructions is that to every closed formula P in
L1Set with constants in M corresponds a Boolean truth value ‖P‖ ∈ BM . Here
the value 1 corresponds to the axioms, and deductions preserve “truth.”

The next step cuts down the size of MB, again giving a transitive standard
submodel.

9.10. Construction of M [G]. For brevity, we shall write B instead of BM , and
so on. The construction essentially consists in going from “random” sets
X,Y ∈ MB to “determined” sets X,Y , where we say that X ∈ Y if the truth
value ‖X ∈ Y ‖ goes to 1 under the homomorphism B → B/IG = {0, 1}, i.e., if
‖X ∈ Y ‖ ∈ G1 (see 9.8). More precisely, we inductively define

i(∅) = ∅,

and let M [G] denote the image of the map i : MB → V . This notation is jus-
tified by the following result. Suppose that C and < belong to M and that the
subset G ⊆ C is generic.

9.11. Proposition. M [G] is a model for the Zermelo–Fraenkel axioms that con-
tains M and G. If M is countable, then M [G] is the least such model.

M [G] contains M for the following reason. If we let X �→ X̂ denote the map
M →MB that is constructed as in 8.1, then it is easy to show that X̂ = X .

M [G] contains G because G = G′ , where G
′

is the object in MB that
collects all the b̂, b ∈ B, with probability 1.

M [G] is an axiom model basically because MB is a Boolean axiom model.
However, here we use in an essential way the assumption that G is generic.
(Shoenfield verifies this result directly, without using MB.)

9.12. Example. We return to the assertion “card P(ω0) � (ω)2” in 9.2. By the
above discussion, to prove that it is consistent with the axioms we choose a
countable model M and then set

C = {maps of finite subsets of P(ω0) to ω2},
G ⊆ C = a generic subset of C.

If we consider a map from a subset of P(ω0) to ω2 as a function from ω0×ω2 to
{0, 1}, and if, instead of “relative” constructions in M , we consider “absolute”
constructions in V , then the Boolean algebra B that we obtain from C turns
out to be the same algebra that was constructed in 8.3 and 8.4. This explains
the appearance of B. The ideal IG did not play any role in §8 because we were
not trying to construct a standard model.

9.13. We conclude with a very general theorem of Easton, which shows how
little we understand the behavior of the function 2k (k a cardinal).

Let α be a limit ordinal. Its cofinality cf (α) is the least ordinal β such that
α is the union of β ordinals less than α. An infinite cardinal k is called regular if
cf(k) = k and is called singular if cf (k) < k. König (1905) proved that
cf(2k) > k.
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9.14. Theorem (Easton, 1965). Let F be any (nonstrictly) monotonic function
on a subclass of the regular cardinals that takes values in the class of cardi-
nals and that satisfies: cf (ℵF (k)) > ℵk. Then the assertion “ ∀ regular k ∈
dom F, 2ℵk = ℵF (k)” does not contradict the Zermelo–Fraenkel axioms.

If the domain of F is a set, Easton’s theorem can be obtained using a model
of the form M [G], where M is a model in which the generalized continuum
hypothesis holds (Gödel proved that such an M exists; see the next(chapter).
If the domain of F is a class (for example, the class of all regular cardinals),
the concept of forcing must be generalized to the case that C is a class.

For singular cardinals κ, the following result is known (Silver’s theorem).
Let κ be singular, cf(κ) uncountable. Denote by κ+ the successor cardinal

to κ. If 2cf(λ) = λ+ for all infinite cardinals λ < κ, then 2cf(κ) = κ+.



IV

The Continuum Problem and Constructible Sets

1 Gödel’s Constructible Universe
1.1. In this section we introduce the subclass L ⊂ V—“Gödel’s constructible
universe”—and establish its fundamental properties. Perhaps the shortest
description of L is that it is the smallest transitive model of the axioms of L1Set
that contains all the ordinals. But the working definition of L, from which the
name “constructible universe” is derived, is rather different.

We consider the following operations F1, . . . , F8 on sets:

F1(X,Y ) = {X,Y },
F2(X,Y ) = X\Y,
F3(X,Y ) = X × Y,
F4(X) = {U |∃W (〈U,W 〉 ∈ X)} = dom X,

F5(X) = {〈U,W 〉|U,W ∈ X ; U ∈W},
F6(X) = {〈U1, U2, U3〉|〈U2, U3, U1〉 ∈ X},
F7(X) = {〈U1, U2, U3〉|〈U3, U2, U1〉 ∈ X},
F8(X) = {〈U1, U2, U3〉|〈U1, U3, U2〉 ∈ X}.

We say that a set (or class) Y is closed with respect to an operation F
of degree r if we have F (Z1, . . . , Zr) ∈ Y for all Z1, . . . , Zr ∈ Y such that
F (Z1, . . . , Zr) is defined. For every X ∈ V we let J (X) denote the smallest set
Y ⊃ X that is closed with respect to the operations F1, . . . , F8. It will later be
shown (Section 1.4) that J (X) actually is a set. The following construction is
analogous to the definition of V .
1.2. Definition.

L0 = ∅;
Lα+1 = P(Lα) ∩ J (Lα ∪ {Lα});

Lα =
⋃
β<α

Lβ, if α is a limit ordinal ;

L = ∪ Lα.

The elements of L are called constructible sets.

151Yu. I. Manin, A Course in Mathematical Logic for Mathematicians, Second Edition,
 Graduate Texts in Mathematics 53, DOI 10.1007/978-1-4419-0615-1_4,
© Yu. I. Manin 2010
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The operations F1, . . . , F8 and simple combinations of them, together with
the transfinite recursion in the definition of L, exhaust the arsenal of primitive
set-theoretic constructions used in mathematics. This can be seen by looking
at Bourbaki’s “compendium of the results of set theory,” upon which all subse-
quent material in their voluminous treatise on the foundations of mathematics
is based. The only way we could possibly (but not necessarily) leave L would be
to apply the axiom of choice. This could happen provided that L is strictly less
than V ; but, as mentioned before, this question is undecidable in the Zermelo–
Fraenkel axiom system (see also 5.16 below). Gödel was of the opinion that L
does not exhaust V , as are most specialists who accept the semantics of L1Set.

Of course, the constructibility of the elements of L should not be understood
in a finitistic sense. The sets we construct at the (α + 1)th stage are only
the subsets of Lα that are obtained from the elements of the sets Lα and
{Lα} using the explicit constructions Fi. But when we consider all the ordinals
indexing the stages, we see that L is hopelessly infinite. Nevertheless, in many
respects the construction of L is simpler than that of V , and L seems to provide
a convenient framework for mathematics.

We now list some properties of L that follow easily from the definitions.
The specific nature of the operations Fi plays a very secondary role in these
properties.

1.3. Ln = Vn for all n � ω0. This is true for L0. Suppose it is true for
Ln. It is clear from the definition that Ln ∈ Ln+1 and {X} ∈ Ln+1 for all
X ∈ Ln. Moreover, any subset of Ln can be represented as a finite difference
(· · · (Ln\{X1})\{X2})\ · · · \{Xk}, where the Xi ∈ Ln are the elements not in
the given subset.

1.4. card Lα = card α for all infinite ordinals α. In fact, for X ∈ V let

Φ(X) = X ∪
3⋃
i=1

F
′′
i (X ×X) ∪

8⋃
j=4

F
′′
i (X),

where F
′′
(X) = {F (Y )|Y ∈ X} is the image of F restricted to the elements

of X . Then J (X) =
⋃∞
n=0Φn(X). It is hence clear that card J (X) = card X

if X is infinite. We now prove the assertion 1.4 by induction on α.
Obviously card Lα � card α. Suppose that α is the least infinite ordinal for

which card Lα > card α. By 1.3, we have α > ω0. α cannot be a limit ordinal,
or we would have card Lα = Σβ<α card β = card α. But the case α = β + 1
is also impossible, since in that case card Lα � card J (Lβ ∪ {Lβ}) = card
(Lβ ∪ {Lβ}) = card β = card α. ��

In particular, the result 1.4 shows that beginning with w0 + 1, the inclusion
Lα ⊂ Vα becomes a strict inequality, since card Vω0+1 = 2ω0 . Of course, this
does not in principle exclude the possibility that ∀α ∃β > α, Lβ ⊃ Vα, but it
seems that there is no such β even for α = ω0 + 1.
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1.5. L is transitive: Y ∈ X ∈ Lα ⇒ Y ∈ Lα, i.e., Lα ⊂ Lα+1. See Section 13
of the appendix to Chapter II; the proof is no different for L.

1.6. L is a big class: by definition, this means that for any X ∈ V with X ⊂ L
there exists a Y ∈ L such that X ⊂ Y .

On L we consider the function φ(x) that is equal to the least α for
which x ∈ Lα. Let X ∈ V, X ⊂ L. We consider the map φ restricted to
X . By the replacement axiom, the values of φ form some set Y . The elements
of Y are ordinals. Let β = ∪ Y . Then for each x ∈ X we have β � φ(x), so that
X ⊂ Lβ.

Effective numbering of L by ordinals.
We order pairs of ordinals 〈α, β〉 by the relation

〈α1, β1〉 < 〈α2, β2〉 ⇔ either max(α1, β1) < max(α2, β2),
or else these maxima are equal and α1 < α2,

or else these maxima are equal and α1 = α2

and β1 < β2.

Further, we order triples 〈i, α, β 〉, where i = 0, . . . , 8, by the relation

〈i1, α1, β1〉 < 〈i2, α2, β2〉 ⇔ either 〈α1, β1〉 < 〈α2, β2〉,
or else 〈α1, β1〉=〈α2, β2〉 and i1 < i2.

We call these triples important.

1.7. Lemma. The class of important triples is well-ordered by the relation <.
In addition, the following assertions hold:

(a) The next triple after 〈i, α, β〉 has the form

〈i+ 1, α, β〉, if i � 7;
〈0, α+ 1, β〉, if i = 8 and α+ 1 < β;
〈0, α+ 1, 0〉, if i = 8 and α+ 1 = β;
〈0, α, β + 1〉, if i = 8 and α > β;
〈0, 0, β + 1〉, if i = 8 and α = β.

(b) Limit triples have the form

〈0, α, β〉, if α+ 1 � β and α is a limit ordinal:
this is the limit of 〈i, γ, β〉, γ < α;

〈0, α, 0〉, if a is a limit ordinal: this is the limit of 〈i, γ, α〉, γ < α;
〈0, α, β〉, if α � β and β is a limit ordinal:

this is the limit of 〈i, α, γ〉, γ < β;
〈0, 0, β〉, if β is a limit ordinal: this is the limit of 〈i, α, γ〉, α<β,

γ<β.
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Proof. The proof follows immediately from the definitions. We shall illustrate
this by showing explicitly how to find the least triple in any nonempty class C
of triples. We set

γ = min{max(α, β)|〈i, α, β〉 ∈ C};
Cγ = {〈i, α, β〉 ∈ C|max(α, β) = γ}.

If Cγ does not contain any triples of the form 〈i, α, γ〉, then let β0 be the
minimum of the third coordinates of triples in Cγ , and let i0 be the least i such
that 〈i, γ, β0〉 ∈ Cγ . Then 〈i0, γ, β0〉 is the least triple in C. Otherwise, let
C

′
γ consist of triples of the form 〈i, α, γ〉 ∈ Cγ , let α0 be the minimum of the

second coordinates in C
′
γ , and let i0 be the least i such that 〈i, α0, γ〉 ∈ Cγ .

Then 〈i0, α0, γ〉 is the least triple in C.

The exact form of assertions (a) and (b) will be needed only in §5. The
lemma implies that there exists a unique order-preserving isomorphism

K : {ordinals} ⇒ {important triples}.

Using this isomorphism, we recursively define a numbering mapping

N : {ordinals} ⇒ L.

Since we have α < γ and β < γ if γ > 0, i > 0, and K(γ) = 〈i, α, β〉, we
may set

N(γ) =

⎧⎪⎨⎪⎩
Lα, for i = 0;
Fi(N(α), N(β)), for i = 1, 2, 3;
Fi(N(α)), for i = 4, 5, 6, 7, 8.

1.8. Lemma.

(a) The mapping N is correctly defined.
(b) The image of N coincides with all of L.

Proof.

(a) To verify correctness, it suffices to show that {Lα} ∈ L and that the
class L is closed with respect to the operations Fi. In fact, then induction on γ
shows that N(γ) ∈ L if N(α) ∈ L for all α < γ.

Let X,Y ∈ Lα. Since L is transitive (see 1.5), we easily find that F1(X,Y ),
F2(X,Y ), and F4(X) belong to P(Lα), and hence to Lα+1. For example,

U ∈ F4(X) ⇒ ∃W 〈U,W 〉 ∈ Lα ⇒ {U} ∈ Lα ⇒ U ∈ Lα.

Further, X × Y is a subset of the ordered pairs of elements in Lα. We showed
that the unordered pairs lie in Lα+1, so that the ordered pairs lie in Lα+2, and
finally X × Y ∈ Lα+3 and F5(X) ∈ Lα+4. Analogously, the elements of Fi(X)
for i = 6, 7, 8 are ordered triples of elements in Lα, so that Fi(X) ∈ Lα+6.

(b) Let Z be the image of N . We show by induction on α that Lα ⊂ Z. If
α is a limit ordinal and Lγ ⊂ Z for each γ < α then also Lα =

⋃
γ<αLγ ⊂ Z.

Suppose α = β+ 1 and Lβ ⊂ Z, and let X ∈ Lα. Then X ∈ Φn(Lβ∪{Lβ}) and
we show that X ∈ Z by induction on n.
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(b1) n = 0. Then either X ∈ Lβ so X ∈ Z by the induction hypothesis, or
else X = Lβ, in which case X = N(γ) for γ such that K(γ) = 〈0, β, 0〉.

(b2) n > 0. Let X = Fi(Y, Z), i = 1, 2, 3; Y, Z ∈ Φn−1(Lβ ∪ {Lβ}). By
the induction hypothesis, Y = N(γ1) and Z = N(γ2) for some ordinals γ1, γ2.
Therefore X = N(γ), where K(γ) = 〈i, γ1, γ2〉.

Let X = Fi(Y ), i = 4, . . . , 8; Y ∈ Φn−1(Lβ ∪ {Lβ}). The verification is
analogous.

The lemma is proved. ��
In §3 the numbering N will allow us to prove that a strong form of the

axiom of choice is L-true. The fundamental step in the proof is to choose the
element with the least N -number in each constructible set.

2 Definability and Absoluteness

2.1. Let M ⊂ V be a nonempty class, and let P be a formula in L1Set. As in
§7 of Chapter II, we shall consider the truth values |P |M (ξ) for ξ ∈ M , where
we take the standard interpetation of L1Set in V restricted to M . We then say
that the formula P is M -true if |P |M = 1 for all ξ.

We shall also consider formulas “with constants in M ,” where we assume
that the language L1Set has been extended so that its alphabet includes names
for all the elements of M . We shall designate these elements by the same letters
as in the metalanguage (X,Y, . . . for sets; α, β, . . . for ordinals, etc.), which we
hope will not lead to confusion. We extend the definition of |P |M (ξ) to formulas
with constants in M in the obvious way: we take Xξ = X for any constant X
and any point ξ.

2.2. Definition. Let Xi ∈M, i = 1, . . . , n. Sets of the form

{〈yξ1, . . . , yξn〉|ξ ∈M, yξi ∈ Xi for i = 1, . . . , n; |P |M (ξ) = 1}
⊂ X1 × · · · ×Xn

are called M -definable sets. Here P runs through all formulas with constants
in M and free variables in the set {y1, . . . , yn}.

If P (y1, . . . , yn, Z1, . . . , Zm) is such a formula (where the notation shows the
constants and free variables) and if yξi = Yi, we shall often write “P (Y1, . . . , Yn,
Z1, . . . , Zm) is M -true” instead of |P |M (ξ) = 1.

The next proposition, which, in particular, is applicable to L, is a basic
instrument for proving many assertions about L.

2.3. Proposition. Let M ⊂ V be a transitive big class (see 1.6 ) that is closed
with respect to the operations F1, . . . , F8. Then all M-definable sets are elements
of M .

Proof. The proof is by induction on the number of connectives and quantifiers
in the defining formula P .
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(a) P (y1, . . . , yn; Z1, . . . , Zm) is an atomic formula. It can have one of eight
possible forms: the predicate can be either ∈ or =, and on each side of ∈ or
= we can have either a constant or a variable. But all of these cases reduce to
two: yi ∈ yj and yi ∈ Zj , if we are willing to make the formula a little more
complicated. For example, since M is transitive, we have

“y = Z” defines the same set as ∀z(z ∈ Z ⇔ z ∈ y),
“Z ∈ y” defines the same set as ∃z(z = Z ∧ z ∈ y),

and so on. We therefore analyze these two basic cases.
(a1) yi ∈ Z. We have Z ∩Xi = Z\(Z\Xi) ∈ M , since Z and Xi ∈ M , and

M is F2-closed; and we have X1 × · · · ×Xi−1 × Z ∩Xi × · · · ×Xn ∈ M , since
M is F3-closed. This last set is M -definable by the formula yi ∈ Z, because M
is transitive.

(a2) yi ∈ yj . We use induction on n � 3. Let

Y = {〈Y1, . . . , Yn〉|Yk ∈ Xk for k = 1, . . . , n; Yi ∈ Yj}.

The case 〈i, j〉 = 〈n− 1, n〉. Let Xn−1 ∪Xn ⊂ X ∈M . Then

Y =
× F6(F5(X)× (X1 × · · · ×Xn−2) ∩ (Xn−1 ×Xn)× (X1 × · · · ×Xn−2)).

The case 〈i, j〉 = 〈n, n− 1〉. Again let Xn−1 ∪Xn ⊂ X ∈M . Then

Y =
× F7(F5(X)× (X1 × · · · ×Xn−2) ∩ (Xn−1 ×Xn)× (X1 × · · · ×Xn−2)).

The case n �∈ {i, j}. By the induction assumption, the set Y
′
, which is

M -defined by the formula yi ∈ yj in X1×· · ·×Xn−1, lies in M . But Y = Y
′×Xn.

The case n − 1 �∈ {i, j}. Let Y
′

be M -defined by the formula yi ∈ yj in
X1 × · · · ×Xn−2 ×Xn. Then Y = F8(Y

′ ×Xn−1).
The case n = 2 reduces to the case n = 3 by taking the direct product with

{∅} and projecting. The projection of X1 × · · · ×Xn onto X1 is F4 ◦ · · · ◦ F4

(n− 1 times).

(b) Connectives. ∧ corresponds to intersection, and ¬ corresponds to taking
the complement (relative to X1 × · · · ×Xn). M is closed with respect to these
operations, and the other connectives can be expressed in terms of these two.

(c) Quantifiers. It suffices to verify ∃. This corresponds to projecting,
because M is a big class. More precisely, let Y be M -defined by the formula
∃yn+1P (y1, . . . , yn, yn+1) in X1 × · · · ×Xn. We have

〈Y1, . . . , Yn〉 ∈ Y ⇔
there exists a Yn+1 ∈M such that P (Y1, . . . , Yn+1) is M -true.
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To each 〈Y1, . . . , Yn〉 ∈ X1 × · · · × Xn we associate the least ordinal a for
which there exists Yn+1 ∈M ∩Vα such that P (Y1, . . . , Yn+1) is M -true, if there
is such a Yn+1. This gives rise to a function on Y ⊂ X1×· · ·×Xn. Let A be the
set of its values, and let β = ∪ A. Then X = M ∩Vβ is a set, and X ⊂M . Since
M is a big class, there exists Xn+1 ∈M such that X ⊂ Xn+1. By the induction
assumption, the M -definable subset Y

′ ⊂ X1 × · · · ×Xn ×Xn+1 consisting of
those points 〈Y1, . . . , Yn+1〉 for which P (Y1, . . . , Yn+1) is M -true belongs to M .
But Y = F4(Y

′
), and M is closed under F4.

The proposition is proved. ��

In order to be able to use Proposition 2.3, we need criteria for verifying
M -truth. As remarked in §7 of Chapter II, the basic technical tool for this is
the notion of absoluteness. A formula P is called M -absolute ((M,V )-absolute
in the terminology of Chapter II) if |P |M (ξ) = |P |V (ξ) for all ξ ∈ M ⊂ V .
The standard method of proving that a formula is M -true is to prove that it is
V -true and M -absolute.

The following lemma provides us with a large class of M -absolute formulas.

2.4. Lemma.

(a) Atomic formulas are M-absolute for all M.
(b) If the formulas P, P1, and P2 are M-absolute, then so are the formulas ¬P

and P1 ∗ P2 (where ∗ is any connective).
(c) Suppose that the class M is transitive, and is closed with respect to an

operation f of degree r. If the formula P is M-absolute, then the “restricted
quantifier” formulas

∀x(x ∈ f(y1, . . . , yr) ⇒ P ),
∃x(x ∈ f(y1, . . . , yr) ∧ P )

are also M-absolute.

Proof. Part (c) is the only assertion that might not be completely obvious.
Before proving it, we make one remark. The formula x ∈ f(y1, . . . , yr) is writ-
ten in a suitable extension of L1Set, and may be assumed to be V -equivalent
to some formula P (x, y1, . . . , yr) in L1Set (with constants in M) for which
∀y1, . . . ,∀yr ∃!x P or a restricted version of this formula is deducible from the
Zermelo–Fraenkel axioms. This P determines the operation f . We also allow
the case r = 0; then f is simply a constant in M . We shall identify f with its
standard interpretation, i.e., we shall denote terms by f(Y1, . . . , Yr) ∈ M for
Y1, . . . , Yr ∈M .

Now let ξ ∈ M, yξi = Yi ∈ M, Q = ∃x(x ∈ f(y1, . . . , yr) ∧ P ),
Y = f(Y1, . . . , Yr) ∈M . Then

|Q|M (ξ) = sup
X∈M

(|X ∈ Y |M · |P |M (ξ
′
)),

where the ξ
′ ∈ M are variations of ξ along x such that xξ

′
= X . Since P

is absolute, it follows that |P |M (ξ
′
) = |P |V (ξ

′
), and since M is transitive, it
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follows that if X �∈M , then |X ∈ Y |M = |X ∈ Y |V = 0. Hence, on the right we
can write V everywhere in place of M and can let ξ

′
run through all variations

of ξ along x in V with xξ
′

= X . The resulting expression equals |Q|V (ξ).
The quantifier ∀ can be handled analogously, or else can be reduced to ∃.

The lemma is proved. ��

We shall abbreviate the restricted quantifier formulas in 2.4(c) as

(∀x ∈ f(y1, . . . , yr))P, (∃x ∈ f(y1, . . . , yr))P,

respectively.
If all the quantifiers in a formula Q are restricted in this way, we say that

Q is a Σ0-formula.
As a first application of the results in 2.3 and 2.4, we prove the following fact.

2.5. Proposition. All ordinals are constructible.

Proof. Suppose that this is not the case, and that β is the least noncon-
structible ordinal. All of the elements in β are contained in Lα. Since L is
transitive, it follows that all γ � β are nonconstructible. Hence,

β = {x|(x is an ordinal ∧ x ∈ Lα) is V -true}.

If we show that “V -true” may be replaced by “L-true” here, we immediately
have a contradiction, since then β ∈ L by Proposition 2.3.

To do this, it suffices to verify that the formula “x is an ordinal” is
L-absolute. Using the regularity axiom, from which ¬(y ∈ y) is deducible, we
can write this formula in the following Σ0-form:

(∀y ∈ x)(∀z ∈ y)(z ∈ x) ∧ (∀y1 ∈ x)(∀y2 ∈ x)(y1 ∈ y2 ∨ y2 ∈ y1 ∨ y1 = y2)

and then apply Lemma 2.4. ��

3 The Constructible Universe as a Model for Set Theory

3.1. Theorem. The Zermelo–Fraenkel axioms are L-true.

Proof. The general principle for verifying the axioms is to note that every
set whose existence is stipulated in a given axiom can be represented as a set
defined by a Σ0-formula with constants in L. We only occasionally have to
perform a direct verification that a subformula is L-absolute.

(a) Empty set. This axiom is equivalent to the Σ0-formula ¬∃x(x ∈ ∅),
which is V -true.

(b) Extensionality. This axiom can be represented in Σ0-form. In addition,
in Section 4.8 of Chapter II we verified this axiom for any transitive class.
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(c) Pairing. A direct computation of the L-truth function gives 1, since L
is closed with respect to forming pairs.

(d) Regularity. This follows by a direct computation using the transitivity
of L.

(e) Union. Here it is somewhat more complicated to reduce the axiom to a
Σ0-formula. The axiom is written in the form

∀x ∃y ∀u(∃z(u ∈ z ∧ z ∈ x) ⇔ u ∈ y).

Let ξ ∈ L, let ξ
′

be any variation of ξ along x, and let X = xξ
′
∈ L. We must

show that
|∃y ∀u(∃z(u ∈ z ∧ z ∈ X) ⇔ u ∈ y)|L(ξ

′
) = 1.

It suffices to find a Y ∈ L such that

|∀u(∃z(u ∈ z ∧ z ∈ X) ⇔ u ∈ Y )|L = 1,

i.e., such that for all U ∈ L,

|(∃z ∈ X)(U ∈ z)|L = |U ∈ Y |L.

We can clearly take Y =
⋃
z∈XZ if we show that Y is constructible. Since L is

transitive, we know that all the elements of Y are constructible. Hence, there
exists a constructible set Y

′
such that Y

′ ⊃ Y . Then Y can be represented as
follows (where we replace V -truth by L-truth using Lemma 2.4):

Y = {U |U ∈ Y ′
; (∃z ∈ X)(U ∈ z) is L-true}.

Now the required assertion follows by Proposition 2.3.
In what follows we shall usually omit explicit mention of the points ξ ∈ L.
(f) Power set axiom ∀x ∃y ∀z(z ⊂ x⇔ z ∈ y). We fix X ∈ L, form the set

Y = P(X)∩L of constructible subsets of X , and show that Y is constructible.
In fact, let Y

′ ⊃ Y , where Y
′

is constructible. Then by
Lemma 2.4,

Y = {Z|Z ∈ Y ′
; (Z ⊂ X) is L-true},

because Z ⊂ X has the Σ0-form (∀z ∈ Z)(z ∈ X). Now a direct computation
gives

|∀z(z ⊂ X ⇔ z ∈ Y )|L = 1.

(g) Infinity. This axiom is L-true because of the constructibility of the set{
∅, {∅}, {{∅}}, . . .

}
, which can be represented in the form{

Y |Y ∈ Lω0 ;
[
Y = ∅ ∨ (∃y ∈ Lω0)(Y = {y})

]
is L-true

}
.

(h) Replacement. Let z = 〈z1, . . . , zn〉. This axiom is written in the form

∀ z ∀u
(
∀x

(
x ∈ u⇒ ∃!yP (x, y, z))

⇒ ∃w ∀y(y ∈ w ⇔ ∃x(x ∈ u ∧ P (x, y, z))
))
.
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We fix Z1, . . . , Zn ∈ L,Z = 〈Z1, . . . , Zn〉, and U ∈ L. It is sufficient to consider
the case that the premise is L-true, i.e., for all X ∈ L,

|X ∈ U ⇒ ∃!yP (X, y, Z)|L = 1.

We must find a value W ∈ L of w for which the conclusion is L-true. We set
W

′
= a constructive set containing as elements all constructive Y for which

(∃x ∈ U)P (x, Y, Z) is L-true.

This set exists because since the premise of the axiom is L-true, it follows that
each X ∈ U corresponds to at most one constructible Y . We then set

W =
{
Y |Y ∈W ′

; (∃x ∈ U)
(
P (x, Y, Z)

)
is L-true

}
.

This set is constructible by Proposition 2.3, and it follows from the way it is
defined that ∣∣∣∀y(y ∈W ⇔ ∃x

(
x ∈ U ∧ P (x, y, Z)

))∣∣∣
L

= 1.

(i) Axiom of choice. The main intuitive point in the verification is the numbering
N of the universe L that was constructed in 1.8. But the formal verification
is much more complicated here than in the previous cases. A fair amount of
work is needed to give a formalization of the construction in 1.7–1.8 that is
sufficiently detailed to prove the following fact:

3.2. Proposition. There exists a formula N(x, y) in L with two free variables
such that

(a) For any X,Y ∈ V , the formula N(X,Y ) is V-true if and only if X is an
ordinal and Y = N(X).

(b) N(x, y) is L-absolute.

We shall postpone the proof until §5, and shall make use of this proposition
to verify the axiom of choice. We divide this verification into two steps.

3.3. Universal choice function. LetX ∈ L be a nonempty set. We construct
the function Y that for every nonempty Z ∈ X chooses the element U in Z
with the least N -number (see 1.8):

Y =
{
〈Z,U〉|Z ∈ X, U ∈

⋃
X′∈X

X
′
; U ∈ Z ∧ ∃w

(
N(w,U) ∧ ∀z

(
z ∈ Z

⇒ (z = U ∨ ∀w′
(N(w

′
, z) ⇒ w ∈ w′

))
))

is V -true
}
.

We want to prove that Y ∈ L. By Proposition 2.3, this holds if we can
define Y by means of the L-truth of a formula. We are not allowed mechani-
cally to replace V by L, since it is not immediately obvious from its external
form that this formula is L-absolute. We proceed as follows: taking into account
the constructibility of the ordinals, we take all ordinals that occur as the least
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N -numbers of the elements of the constructible set ∪X′∈XX
′

= ∪(X), and we
find a constructible set W that contains these ordinals. Then we replace ∃w by
∃w ∈W and ∀w′

by ∀w′ ∈ W in the formula. The set Y does not change, and
now V -truth may be replaced by L-truth, as can be seen using Proposition 3.2
and Lemma 2.4.
3.4. We now compute the L-truth value of the axiom of choice:

∀x
(
x �= ∅ ⇒ ∃y(y is a function ∧ dom y = x

∧ (∀z ∈ x)(z �= ∅ ⇒ y(z) ∈ z))
)
.

It suffices to show that if we take a nonempty X ∈ L and the constructible
choice function Y ∈ L in 3.3, then

|Y is a function|L = |dom Y = X |L = |(∀z ∈ X)(z �= ∅ ⇒ Y (z) ∈ z)|L = 1.

The third formula here is V -true, and is written in Σ0-form except for the sub-
formula Y (z) ∈ z, which can be replaced by (∀u ∈ U(Y ))(〈z, u〉 ∈ Y ⇒ u ∈ z).
Thus, the third formula is L-absolute and hence L-true.

We verify that the first two formulas are absolute in §5. They are V -true by
construction. This completes the proof of Proposition 3.1. ��

We note that the same argument shows the following: all the axioms, with
the possible exception of the axiom of choice, are M-true for any transitive big
class M that is closed with respect to the operations F1, . . . , F8.

4 The Generalized Continuum Hypothesis Is L-True

4.1. We wish to show that the assertion “card P(ωα) = ωα+1” is L-true.
A certain amount of caution is essential here, because cardinality is not an
L-absolute notion. If Y is a constructible set, let cardL(Y ) be the least ordinal
β for which there exists in L a one-to-one onto function f : Y → β. Hence
“card (Y ) = card (Z)” is L-true iff cardL(Y ) = cardL(Z). Note that although
cardL(Y ) � card (Y ), equality fails if there are one-to-one onto functions Y → β
in V , but no such function lies in L. The cardinal ωα in L is the αth ordinal
β > ω0 such that cardL(β) = β. Thus ωα in L may not coincide with the “real”
ωα, that is, with ωα in V .

We shall show that for each ordinal β and each constructible X ⊂ β there
is an ordinal γ with X ∈ Lγ and cardL(γ) = cardL(β). Hence P(β)∩L ⊂ Lβ+ ,
where β+ is the least ordinal greater than β such that cardL(β+) �= cardL(β).
The L-truth of the generalized continuum hypothesis will then follow if we show
the L-truth of “card (β+) = β+.”

Our proof exploits throughout a proposition that requires a good deal of
work formalizing the construction of L within L1Set.

4.2. Proposition. There exists a formula L(x, y) of L1Set with two independent
variables
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such that

(a) for any X and Y in V, L(X,Y ) is V-true ⇔ Y is an ordinal and
X ∈ Lγ;

(b) for any transitive model M ⊂ V of the axioms (without the axiom of choice),
the formula L(x, y) is M-absolute. In particular, it is L-absolute.

We again postpone the proof until §5.

4.3. Lemma. Let X ⊆ β be constructible. Then X ∈ Lγ for some ordinal γ
such that card L(γ) = cardL(β).

Proof. In this deduction, in addition to Proposition 4.2 we use versions of
Propositions 7.3 and 7.6 of Chapter II that apply to the constructible universe.
They are formulated precisely and proved below, in Sections 4.5 and 4.6.

Suppose that X ⊂ β is constructible. Let δ be an ordinal such that X ∈ Lδ.
We enlarge the alphabet of L1Set by adding names δ̄ and X for δ and X . Let
E be the set of formulas

{axioms of L1Set} ∪
{
L(X, δ̄)

}
.

Let N0 ⊂ L be the set β ∪ {X} ∩ {δ}. By Proposition 4.5 there is a
constructible set N such that N0 ⊂ N , all formulas in E are (N,L)-absolute,
and cardL(N) = cardL(β). Thus (N,∈) is a model for the axioms and, by
Proposition 4.2 (a), for L(X, δ̄). Now N might not be transitive, but then by
Proposition 4.6 there are a transitive axiom model (M, ε) and a constructible
isomorphism f : (N,∈) ∼→ (M, ε). Hence L(X, δ̄) is M -true and cardL(M) =
cardL(N). What are the interpretations of the constants X and δ̄ in M?

Since the set β ⊂ N is transitive, it goes to itself under the isomorphism
f ; hence so does the set X ⊂ β. Let δM be the image of δ under f . Since by
Proposition 4.2(b) the formula L(x, y) is M -absolute, and L(X, δ̄) is M -true, it
follows that L(X, δM ) is V -true, so that δM is an actual ordinal and X ∈ LδM .
Moreover, since δM ∈ M and M is transitive, δM ⊂ M ; hence cardL(δM ) �
cardL(M). Letting γ be the larger of δM and β, we have cardL(γ) = cardL(β)
and X ∈ Lγ . The lemma is proved. ��

4.4. Deduction that the GCH is L-true from the lemma. Let β+ be the
smallest ordinal greater than β such that cardL(β+) �= cardL(β). Then Lemma
4.3 implies the V -truth of the formula

∀z(z ∈ L⇒ (z ⊂ β ⇒ z ∈ Lβ+)).

Since “z ∈ Lβ+” (i.e., the formula L(z, β+)) is L-absolute, it follows that

∀z(z ⊂ β ⇒ z ∈ Lβ+)

is L-true. Now if β is the cardinal ωα in L then β+ is the cardinal ωα+1 in L.
Hence for each α we have shown the L-truth of

P(ωα) ⊂ Lωα+1.
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We claim that the following formula is also L-true:

card(Lωα+1) = ωα+1.

Since “card(Pωα)) � ωα+1” is formally deducible in L1Set from the preceding
two formulas, and since all the axioms are L-true, this will show that the GCH
is L-true.

Our claim is verified thus: In Section 1.4 we proved that card(Lγ) = card(γ)
for each ordinal γ. Indeed, that proof can be formalized in L1Set, using the
formula L(x, y) of Proposition 4.2. That is, the assertion “∀γ(card(Lγ) =
card(γ))” is deducible from the axioms (see 5.17). Since the axioms are L-
true, this assertion is then L-true. But since “card(wα+1) = wα+1” is trivially
L-true, the claim follows. This completes the proof. ��

4.5. Proposition. Let E be a constructible countable set of L-true formulas
in the language L1Set, and let M0 be a constructible set. Then there exists a
constructible set M ⊃ M0, cardL(M) � cardL(M0) + ω0, such that all of the
formulas in E are (M,L)-absolute.

Proof. The general scheme is the same as in Section 7.3 of Chapter II, but
some additional precautions are required. The main point is to prove that if
P (x, y), y = (y1, . . . , yn), is a formula in E , then there exists a constructible
set M ⊃ M0 with cardL(M) � cardL(M0) + ω0 that can be constructed con-
structibly from P and has the property that ∃x(P (x, y)) is (M,L)-absolute.
After this we must verify constructible closure over all P ∈ E .

We reproduce the construction in Section 7.3 of Chapter II. We construct
the set Mi by induction. Let Y = 〈Y1, . . . , Yn〉 ∈ Mi × · · · ×Mi. We let M̂i(Y )
denote the class {X |P (X,Y1, . . . , Yn) is L-true}. We let M̃i(Y ) denote ∅ if
M̂i(Y ) is empty, and M̂i(Y ) ∩ Lα for the least α for which this intersection is
nonempty otherwise. Since L(x, y) is absolute (see §5), it is not hard to see that
the function M̃i, dom M̃i = Mi × · · · ×Mi, is constructible. Because the con-
structible axiom of choice holds in L, we can obtain a constructible function Fi
by choosing one element from each nonempty M̃i(Y ). Let Ni be the set of values
of M̃i. This set is constructible, since all of our constructions are absolute; and
if Mi is infinite, then cardL(Ni) = cardL(Mi). We set Mi+1 = Mi ∪ Ni and
M = ∪Mi. The set M has the required properties; obviously, cardL(M)+ω0 =
cardL(M0) + ω0 in L. The formal transition from {Mi} to M is realized by
considering a function that “closes” M0, as in Section 5.11 below. ��

4.6. Proposition. For every constructible set N such that the extensionality
axiom is N-true there exist a unique constructible transitive set M and isomor-
phism f : (N,∈) ∼→ (M, ε).

Proof. The plan of proof is the same as in Section 7.6 of Chapter II. First
let “f is a continuous (α + 1)-sequence” be the formula “α is an ordinal”∧“f
is a function”∧ domf = α + 1 ∧ (∀β ∈ α + 1)(β a limit ordinal ⇒ f(β) =⋃
γ∈βf(γ)). This formula is shown to be L-absolute as in Section 5.14 below.
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Now consider the L-absolute operation φ(Z) = {X |X ∈ N ∧X ∩N ⊂ Z}, and
let ∅N be the unique member of N such that ∅N ∩N = ∅. Finally, let ψ(x, y)
be the formula

(∃f)(“f is a continuous (x + 1)-sequence” ∧ f(0) = ∅N∧
× (∀β ∈ x)(f(β + 1) = φ(f(β))) ∧ y = f(x)).

Then ψ is L-absolute, as can be shown as in Sections 5.14 and 5.15 below, and
ψ(x, y) is L-true if and only if y = Nx in the sense of Chapter II, Section 7.6.

We now set N̂ = ∪αNα = {z|(∃α)(∃y ⊂ N)(ψ(α, y)∧z ∈ y)}. We show that
N̂ = N . Clearly N̂ ⊂ N , and if N\N̂ = Y were nonempty, it would follow by
the regularity axiom, which holds in L, that ∃Z(Z ∈ Y ∧ Z ∩ Y = ∅). For this
Z we would have Z ⊂ N̂ , hence Z ⊂ Nα for a suitable α, so that Z ∈ Nα+1,
which is a contradiction.

The implication Z ⊂ N̂ ⇒ ∃α(Z ⊂ Nα), which we have used here, follows
because there exists an absolute function on N̂ that associates to each X the
least α for which X ∈ Nα. The replacement axiom shows that there exists
an ordinal α0, namely, the least upper bound of the values of this function,
for which N̂ = N = Nα0 . This ordinal, which is fixed for N , occurs in our
subsequent construction, which is verified to be absolute as in §5.

Let “h is a constructing (α + 1)-sequence for N,M” be the formula “h is
a continuous (α + 1)-sequence” ∧ h(0) = {〈∅N ,∅〉} ∧ “(∀β ∈ α)(h(β + 1) is a
function ∧ dom h(β + 1) = Nβ+1∧ the value of h(β + 1)) on any X ∈ Nβ+1

is the set of h(β)-images of elements of X ∩ N).” Then for each α there is a
unique such h; let Mα be the image of h(α). For α = α0 we obtain a function
h : N → M = Mα0 , where M is our desired constructible set and h is a
constructible ∈-isomorphism.

The proposition is proved. ��

5 Constructibility Formula

5.1. The purpose of this section is to prove Propositions 4.2 and 3.2. Both proofs
are extremely straightforward, and simply consist in writing out explicitly the
formulas L(x, y) and N(x, y) and verifying that the conditions in Lemma 2.4
apply. But since these formulas are very long, we perform the verifications in
a series of “blocks,” in order to improve their appearance and to make the
interpretation and verification of the conditions in 2.4 easier. As soon as a
block (subformula) is constructed and its absoluteness is verified, we replace it
by an abbreviated notation in the next formula.

The material within each subsection is arranged in the following order:
first the abbreviated notation for the formula that is being constructed and
shown to be absolute in the subsection; then the complete form of the for-
mula; and finally any remarks that may be needed regarding absoluteness.
The “complete form” of the formula may contain abbreviated notation for
subformulas. If such a subformula has not yet been interpreted in detail and
shown to be absolute, this is done right after the complete form.
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By absoluteness we mean “M -absoluteness for any transitive model M for
the axioms without the axiom of choice.”

Sections 5.2–5.15 are devoted to the formula L(x, y), and Sections 5.18–
5.20 are devoted to the formula N(x, y). As the material we are dealing with
accumulates, we shall allow ourselves to omit more and more details and to rely
on the reader’s experience.

The formulas

z =

{
Fi(x, y), i = 1, 2, 3;
Fj(y), j = 4, 5, 6, 7, 8.

5.2. z = {x, y} : (∀u ∈ z)(u = x ∨ u = y) ∧ x ∈ z ∧ y ∈ z. This whole formula
is clearly absolute by Lemma 2.4. From now on we shall not even comment on
such simple cases.

5.3. z = x\y : (∀u ∈ z)(u ∈ x ∧ u �∈ y) ∧ (∀u ∈ x)(u �∈ y ⇒ u ∈ z).

5.4. z = x× y : (∀u1 ∈ x)(∀u2 ∈ y)(〈u1, u2〉 ∈ z)

∧ (∀u ∈ z)(∃u1 ∈ x)(∃u2 ∈ y)(u = 〈u1, u2〉);
〈u1, u2〉 ∈ z : (∃v ∈ z)(v = 〈u1, u2〉);
u = 〈u1, u2〉 : (∀v ∈ u)(v = {u1} ∨ v = {u1, u2})

∧ {u1} ∈ u ∧ {u1, u2} ∈ u;
{u1, u2} ∈ u : (∃v ∈ u)(v = {u1, u2}).

5.5. Z = F4(y) = dom y: (∀u ∈ z)(∃v ∈ ∪ ∪ (y))(〈u, v〉 ∈ y)

∧(∀u ∈ ∪∪ (y))(∀v ∈ ∪∪ (y))(〈u, v〉 ∈ y ⇒ u ∈ z).

Here ∪ ∪ appears because 〈u, v〉 = {{u}, {u, v}} ∈ y ⇒ u, v ∈ ∪ ∪ (y).
This formula is absolute, since a transitive model is closed with respect to the
operation ∪ (see 3.1(e)). We shall write ∪2 = ∪∪, and so on.

5.6. z = F5(y): (∀u ∈ z)(∃v ∈ y)(∃w ∈ y)(v ∈ w ∧ u = 〈v, w〉) ∧ (∀v ∈ y)
(∀w ∈ y)(v ∈ w ⇒ 〈v, w〉 ∈ z).

5.7. z = F6(y) : (∀u ∈ z)(∃u1 ∈ ∪4(y))(∃u2 ∈ ∪4(y))(∃u3 ∈ ∪2(y))(〈u1, u2, u3〉 ∈
y ∧ u = 〈u3, u1, u2〉) ∧ (∀u1 ∈ ∪4(y))(∀u2 ∈ ∪4(y))(∀u3 ∈ ∪2(y))(〈u1, u2, u3〉 ∈
y ⇒ 〈u3, u1, u2〉 ∈ z). Here ∪4 appears for the same reason as ∪2 in 5.5.
The formulas 〈u1, u2, u3〉 ∈ y, etc., are shown to be absolute in the same way
as in 5.4.

The operations F7 and F8 are treated analogously to F6.
The formulas

y =

{
F

′′
i (x × x), for i = 1, 2, 3;
F

′′
j (x), for j = 4, 5, 6, 7, 8.
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5.8. y = F
′′
i (x× x), i = 1, 2, 3:

(∀u ∈ y)(∃u1 ∈ x)(∃u2 ∈ x)(u = Fi(u1, u2))
∧(∀u1 ∈ x)(∀u2 ∈ x)(Fi(u1, u2) ∈ y),

where Fi(u1, u2) ∈ y : (∃v ∈ y)(v = Fi(u1, u2)).

5.9. y = F
′′
j (x), j = 4, . . . , 8: (∀u ∈ y)(∃v ∈ x)(u = F

′′
j (v)) ∧ (∀v ∈ x)

(F
′′
j (v) ∈ y).

5.10. y = Φ(x) (see 1.4):

(∀z ∈ y)(z ∈ x ∨ z ∈ F
′′
1 (x× x) ∨ · · · ∨ z ∈ F

′′
8 (x)) ∧ (∀z ∈ x)(z ∈ y)

∧ (∀z ∈ F ′′
1 (x× x))(z ∈ y) ∧ · · · ∧ (∀z ∈ F ′′

8 y(x))(z ∈ y).

The class L is closed with respect to the operations F
′′
i . In fact, suppose,

for example, that i � 4, and let X ∈ L. Let U ∈ L be a set containing all Fi(Y )
for Y ∈ X . Then

F
′′
1 (X) = {Z|Z ∈ U, (∃y ∈ X)(Z = Fi(y)) is V -true}.

Since the formula Z = Fi(y) has been shown to be absolute, we may replace
“V -true” by “L-true” here, and then apply Proposition 2.3. Thus, the formula
y = Φ(x) is L-absolute by Lemma 2.4.

If M is an arbitrary transitive model, then the verification that M is closed
with respect to F

′′
i is somewhat different. Namely, the formula ∀x ∃!y(y =

F
′′
i (x)) is obviously V -true. The formal deduction of this formula does not use

the axiom of choice. Hence, the formula is M -true for any transitive model M .
We therefore have Y ∈ M if X ∈ M , where Y = F

′′
i (X). We shall use this

device many times in what follows.

5.11. “g closes x,” which is short for “g is a function on ω0, and g(n) = Φn(x)
for all n ∈ ω0.” We write the formula with the constant ω0 and the free variables
g and x:

“g is a function” ∧ F4(g) = ω0 ∧ g(0) = x

∧ (∀n ∈ ω0)(g(n+ 1) = Φ(g(n))).
Here:

(a) “g is a function”:

(∀u ∈ g)(∃u1 ∈ ∪2(g))(∃u2 ∈ ∪2(g))(u = 〈u1, u2〉)
∧ (∀u1 ∈ ∪2(g))(∀u2 ∈ ∪2(g))(∀u3 ∈ ∪2(g))

(〈u1, u2〉 ∈ g ∧ 〈u1, u3〉 ∈ g ⇒ u2 = u3).

(b) g(0) = x : 〈∅, x〉 ∈ g.
(c) g(n+ 1) = Φ(g(n)) :

(∃y ∈ ∪2(g))(〈n, y〉 ∈ g ∧ 〈n ∪ {n}, Φ(y)〉 ∈ g),



5 Constructibility Formula 167

where

〈n ∪ {n}, Φ(y)〉 ∈ g : (∃u ∈ ∪2(g))(∃v ∈ ∪2(g))
(u = n ∪ {n} ∧ v = Φ(y) ∧ 〈u, v〉 ∈ g).

Since ω0 ∈M , the formula 5.11 is now easily seen to be absolute by the previous
results.

In 5.11 we took the liberty of using g and n for variables of L1Set in order to
make the formulas intuitively clearer. In what follows we shall also use α, β,K,
and N as variables, thereby temporarily ignoring our convention of using only
lowercase letters at the end of the Latin alphabet.

5.12. y ∈ J x : ∃g(“g closes x”∧(∃n ∈ ω0)(〈n, y〉 ∈ g)). Here the quantifier over
g is not restricted. Since the formula under the ∃g sign is absolute, we may
conclude directly from the definition ‖L(ξ) = ‖V (ξ), ξ ∈ M , that y ∈ J x is
also absolute, provided we show that for any X ∈M , the function G ∈ V that
closes X lies in M . The formula ∀x ∃! g (“g closes x”) is obviously V -true. If
we formalize the verification of this fact, we see that this formula is deducible
from the axioms without the axiom of choice. Hence it is M -true. This implies
that for any X ∈M we have G ∈M .

5.13. y ∈ P(x) ∩ J (x ∪ {x}) : (∀z ∈ y)(∀v ∈ z)(v ∈ x) ∧ y ∈ J (x ∪ {x}).

5.14. “f is the constructing (α + 1)-sequence,” which is short for “α is an
ordinal”∧ “f is a function”∧ dom f = α+ 1 ∧ (∀β ∈ α+ 1)(f(β) = Lβ).

Here:

(a) (∀β ∈ α+ 1)(f(β) = Lβ):

(∀β ∈ α+ 1)((β is a limit ordinal ⇒ f(β) = ∪γ∈βf(γ))
∧(f(β + 1) = P(f(β)) ∩ J (f(β) ∪ {f(β)}))).

(b) “β is a limit ordinal”: “β is an ordinal”∧(∀α ∈ β)(β �= α ∪ {α}).

(c) f(β) = ∪γ∈βf(γ) : (∃v ∈ ∪2(f))(v = ∪γ∈βf(γ) ∧ 〈β, v〉 ∈ f);

v = ∪ γ∈βf(γ) : (∀u ∈ v)(∃γ ∈ β)(u ∈ f(γ))

∧ (∀u ∈ ∪3(f))(u ∈ f(γ)⇒ u ∈ v);

u ∈f(γ) : (∃w ∈ ∪2(f))(〈γ, w〉 ∈ f ∧ u ∈ w).

(d) f(β + 1) = P(f(β)) ∩ J (f(β) ∪ {f(β)}) :

(∃u ∈ ∪2(f))(〈β + 1, u〉 ∈ f ∧ (∀v ∈ u)
(v ∈ P(f(β)) ∩ J (f(β) ∪ {f(β)}))
∧ ∀v(v ∈ P(f(β)) ∩ J (f(β) ∪ {f(β)}) ⇒ v ∈ u));
v ∈ P(f(β)) ∩ J (f(β) ∪ {f(β)}) :

(∃u ∈ ∪2(f))(〈β, u〉 ∈ f ∧ v ∈ P(u) ∩ J (u ∪ {u})).



168 IV The Continuum Problem and Constructible Sets

Finally, in order to verify directly that the subformula

∀v(v ∈ P(f(β)) ∩ J (f(β) ∪ {f(β)}) ⇒ v ∈ u)

is M -absolute, it suffices to show that M is closed with respect to the opera-
tion X �→ P(X) ∩ J (X ∪ {X}). But M is closed with respect to both J and
X �→ P(X) ∩M , so the verification is complete.

5.15. L(x, y): “y is an ordinal and x ∈ Ly”: “y is an ordinal”∧∃f(“f is the
constructing (y + 1)-sequence”∧(∃z ∈ ∪2(f))(〈y, z〉 ∈ f ∧ x ∈ z)). Since the
quantifier ∃f is not bounded, in order to verify this last absoluteness statement
we must show that the constructing (Y + 1)-sequence F is an element of M for
any ordinal Y in M . We use the same argument as in 5.12: the formula ∀y(y is
an ordinal ⇒ ∃!f(f is the constructing (y + 1)-sequence)) not only is V -true,
but also is deducible from the axioms without the axiom of choice; therefore it
is M -true.

This completes the proof of Proposition 4.2. ��

5.16. Remark. The formula ∀x ∃y L(x, y) is often written in the form V = L,
and is called the axiom of constructibility. The absoluteness of L(x, y) implies
that the following formula is L-true:

|∀x ∃y L(x, y)|L = inf
X∈L

sup
Y ∈L

|L(X,Y )|L = inf
X∈L

sup
Y ∈L

|L(X,Y )|V = 1.

Hence, this formula is consistent with the Zermelo–Fraenkel axioms. On the
other hand, V = L implies the generalized continuum hypothesis (GCH), and
since the negation of the GCH is also consistent with the Zermelo–Fraenkel
axioms, it follows that ¬(V = L) is consistent with the axioms.

We now proceed to the proof of Proposition 3.2. This proof follows the
same plan as the proof of Proposition 4.2. We return to the conventions and
constructions in 1.7–1.8.

5.17. Remark. In Section 4.4 we exploited the fact that the assertion “α �
ω0 ⇒card(Lα) = card(α)” is formally deducible from the axioms of L1Set (with-
out the axiom of choice). We may now see that such a formal
deduction can be obtained by exactly mimicking the proof in Section 1.4.
Indeed, from the definition of L(x, y) we have the formal deducibility of “Lα+1 =
P(Lα) ∩ J (Lα ∪ {Lα})” and “β a limit ordinal ⇒ Lβ = ∪γ∈βLγ”. Moreover,
the following are deducible: “card(X) < ω0 ⇒ card(X) < card(P(X)) < ω0”
and “card(X) � ω0 ⇒ card(J (X)) = card(X).” As a result, the assertions
“card(Lω0) = ω0,” “card(La) � ω0 ⇒ card(Lα+1) = card(Lα),” and “β a limit
ordinal ⇒ card(Lβ) = card(∪γ∈βLγ)” are all deducible. And from these and
the axioms of L1Set the desired assertion may be deduced (using, in particu-
lar, the deducibility of “card(ω0) = ω0,” “α � ω0 ⇒card(α + 1) = card(α),”
“β is a limit ordinal ⇒ β = ∪γ∈βγ,” and in addition an instance of transfinite
induction on the ordinals, which is of course also formally deducible in L1Set).
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5.18. The formula H(K,x) : K is a function ∧ x is an ordinal ∧ dom K =
x+1∧K(0) = 〈0, 0, 0〉∧(∀y ∈ x+1)(K(y) is an important triple ∧K(y+1) is the
next important triple after K(y))∧(y is a limit ordinal⇒ K(y) = limz∈yK(z))
is absolute.

We shall not analyze the subformulas that have been considered before. The
following subformulas remain:

(a) “K(y) is an important triple ∧K(y + 1) is the next important triple after
K(y)”;

(b) K(y) = limz∈yK(z).

We shall have to use the absoluteness of the auxiliary formula “y = x(i),”
which is short for “x is an important triple (i.t.) and y is the ith coordinate of
x,” where i = 1, 2, or 3. That is;

(∃u1 ∈ ∪3(x))(∃u2 ∈ ∪3(x))(∃u3 ∈ ∪(x))
× (x = 〈u1, u2, u3〉 ∧ u1 is an ordinal ∧ u1 � 8
∧ u2 is an ordinal ∧ u3 is an ordinal ∧ y = ui).

The complete form of (a) is

(∃u ∈ ∪(K))(∃v ∈ ∪(K))(〈y, u〉 ∈ K ∧ 〈y + 1, v〉 ∈ K
∧ u is an i.t. ∧ v is the i.t. after u).

According to Lemma 1.7(a), “u is an i.t. ∧v is the i.t. after u” can be written in
the form

∨5
i=1 Ci(u, v), where Ci(u, v) is the formalization of the ith alternative

in 1.7(a). For example,

C1 : u is an i.t. ∧ v is an i.t. ∧ u(1) � 7 ∧ v(1) = u(1) + 1
∧ v(2) = u(2) ∧ v(3) = u(3);

C2 : u is an i.t. ∧ v is an i.t. ∧ u(1) = 8 ∧ u(2) + 1 < u(3)

∧ v(1) = 0 ∧ v(2) = u(2) + 1 ∧ v(3) = 0.

The other Ci are analogous, and are absolute for the same reasons.
The complete form of (b). Here we need to know that the following auxiliary

formulas are absolute:

u =
⋃
z∈y

K(z)(i), i = 2 or 3: (∀v ∈ u)(∃z ∈ y)(v = K(z)(i))

∧ (∀z ∈ y)(∃v ∈ u)(v = K(z)(i));
v =K(z)(i) : (∃w ∈ ∪(K))(〈z, w〉 ∈ K ∧ w is an i.t. ∧ v = w(i)).

Then, using Lemma 1.7(b), we explain the formula K(y) = limz∈yK(z) as
follows:

K(y)(1) =

0 ∧ ∃u2 ∃u3

(
u2 =

⋃
z∈y

K(z)(2) ∧ u3 =
⋃
z∈y

K(z)(3) ∧
4∨
i=1

Di(u2, u3, y)

)
,
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where the alternativesDi have the following structure, depending on “howK(z)
approaches K(y)”:

D1 : u2 ∈ u3 ∧ u2 is a limit ordinal ∧ ((∃z ∈ y)(K(z)(3) = u3)
→ k(y)(2) = u2 ∧K(y)(3) = u3);

D2 : u2 = u3 ∧ u2 is a limit ordinal ∧ ((∃z ∈ y)(K(z)(3) = u3)
∧ (∀z ∈ y)(K(z)(2) ∈ u2) → k(y)(2) = u2 ∧K(y)(3) = 0);

D3 : u2 � u3 ∧ u3 is a limit ordinal ∧ ((∀z ∈ y)(K(z)(3) ∈ u3)
→ K(y)(2) = u2 ∈ K(y)(3) = u3);

D4 : u2 = u3 ∧ u2 is a limit ordinal ∧ ((∀z ∈ y)(K(z)(2) ∈ u2

∧K(z)(3) ∈ u3) → K(y)(2) = 0 ∧K(y)(3) = u3).

It is therefore obvious that the Di are absolute. Even though the quantifiers
∃u2 and ∃u3 are not restricted, there is no problem, since when Kξ, yξ ∈ L, this

formula can be V -true only if uξ
′

2 and uξ
′

3 are uniquely determined ordinals and
lie in L, which gives us L-truth.

5.19. The formula S(N, x): “x is an ordinal ∧ N is a function ∧ dom N =
x+ 1∧ (∀y � x+ 1)(N(y) is a constructible set with N -number y)” is absolute.

We shall need to know that the following auxiliary formula is absolute:

y = (x)i, i = 1, 2, 3, where K(x) = 〈(x)1, (x2), (x)3〉

(not to be confused with the formula y = x(i) in 5.16, which occurs here as a
subformula): x is an ordinal ∧∃K(H(K,x)∧(∃u ∈ ∪(K))(〈x, u〉 ∈ K∧y = u(i))).
Even though ∃K is not restricted, this does not cause any problem, because for
every ordinal xξ ∈ L, the value of Kξ making H(Kξ, xξ) V -true lies in L. In
fact, the V -true formula

∀x(x is an ordinal⇒ ∃!K(H(K,x)))

is deducible from the axioms without the axiom of choice, and hence is L-true.
We now return to S(N, x). We need only show that the subformula “N(y) is

a constructible set with N -number y” is absolute. By definition, this subformula
can be written as

∨8
i=0Qi(y,N), where the alternatives have the form

Q0: (y)1 = 0 ∧ 〈y, L(y)2〉 ∈ N ;
Qi, 1 � i � 3: (y)1 = i ∧ 〈y, Fi(N((y)2), N((y)3))〉 ∈ N ;
Qi, 4 � i � 8: (y)1 = i ∧ 〈y, Fi(N((y)2))〉 ∈ N.

The absoluteness of the subformulas that have not been analyzed is clear
from the following complete forms of these formulas:

(a) 〈y, L(y)2〉 ∈ N : (∃z ∈ ∪(N))(〈y, z〉 ∈ N ∧ z ∈ L(y)2);
z = L(y)2 : (∃u ∈ y + 1)(u = (y)2 ∧ z = Lu);
z = Lu : (∀v ∈ z)(v ∈ Lu) ∧ ∀v(v ∈ Lu ⇒ v ∈ z).
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We can verify directly that the last subformula, with the unrestricted quantifier
∀v, is absolute, since LU ∈ L for any ordinal U , and L is transitive.

(b) 〈y, Fi(N((y)2))〉 ∈ N, i = 4, . . . , 8:
(∃u, v, w ∈ ∪(N))(u = (y)2 ∧ 〈u, v〉 ∈ N ∧ w = Fi(v) ∧ 〈y, w〉 ∈ N).

(c) 〈y, Fi(N((y)2), N((y)3))〉 ∈ N, i = 1, 2, 3:
(∃u2, u3, v2, v3, w ∈ ∪ (N))(u2 = (y)2 ∧ u3 = (y)3 ∧ 〈u2, v2〉 ∈ N
∧〈u3, v3〉 ∈ N ∧ w = Fi(u2, v3) ∧ 〈y, w〉 ∈ N).

5.20. The formula N(x, y): “x is an ordinal ∧y = N(x)” is absolute.
In fact, this formula is written in the form

∃N(S(N, x+ 1) ∧ 〈x, y〉 ∈ N).

There is no problem with ∃N being unrestricted, since we can apply the same
type of argument as we have used many times before: for any ordinal xξ there is
a unique N ξ

′
making this formula V -true, and then N ξ

′
∈ L, since the formula

∀x (x is an ordinal ⇒ ∃!N(S(N, x+ 1))) is deducible from the axioms without
the axiom of choice, and hence is L-true.

This completes the proof of Proposition 3.2. ��

6 Remarks on Formalization

Gödel’s theory, to which this chapter is devoted, is usually presented in a more
syntactic version. We shall now briefly describe the system of basic ideas and
the most important changes in the proofs in this version, in which the least
possible appeal is made to the semantics.

6.1. Let Q(x) be a formula in L1Set with one free variable x. Let ZF be the set
of all the (logical, special, and equality) axioms of L1Set except for the axiom
of choice. Q(x) is said to be transitive if

ZF � (Q(x) ∧ y ∈ x) ⇒ Q(y).

6.2. The relativization PQ of a formula P in L1Set relative to Q is defined by
induction on the number of connectives and quantifiers in P :

(x ∈ y)Q is Q(x) ∧Q(y) ⇒ x ∈ y;
(x = y)Q is Q(x) ∧Q(y) ⇒ x = y;

(¬P )Q is ¬(PQ);
(P1 ∗ P2)Q is (P1)Q ∗ (P2)Q, for any connective *;

(∀xP )Q is ∀x(Q(x) ⇒ P );
(∃xP )Q is ∃x(Q(x) ∧ P ).

6.3. Q(x) is called an (internal) model of L1Set if for any axiom P ∈ ZF we
have

ZF � PQ.
This model is transitive if Q is transitive.
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A formula P (y1, . . . , yn) is called Q-absolute if

ZF � (Q(y1) ∧ · · · ∧Q(yn)) ⇒ (P ⇔ PQ).

6.4. The connection between these concepts and our earlier ones is as follows.
Every formula Q(x) determines a class M = {X ∈ V |Q(X) is V -true}. This
class M has the property that

|P |M (ξ) = |PQ|V (ξ), ∀ξ ∈M,

for any formula P (as can easily be proved by induction on the number of
connectives and quantifiers in P ). Thus, to give a syntactic reformulation of
our proofs we must make the following changes throughout;

(a) We consider only classes M that are defined by formulas Q, and all
references to M are replaced by references to Q.

(b) We everywhere replace “P is V -true” by “P is deducible from ZF.”
(c) We everywhere replace “P is M -true” by “PQ is deducible from ZF.”
(d) We everywhere replace “P is M -absolute” by “P is Q-absolute.”

In order for the new assertions on deducibility from ZF to become sufficiently
obvious, we must either do some additional work formalizing the proofs or else
give more careful intuitive proofs. In particular, we must find finite subsets of
ZF from which the various facts are deducible. The basic results are stated as
follows in the new syntactic language:

6.5. ∃y L(x, y) “is” a transitive internal model of L1Set.

6.6. ZF�(axiom of choice)∃y L(x,y).

6.7. ZF�(generalized continuum hypothesis)∃y L(x,y).

6.8. Thus, a completely syntactic version of Gödel’s theory would consist of all
the deductions implicit in 6.5–6.7, without any commentary. Of course, such a
treatment has never been written. The formula ∃yL(x, y) alone takes up several
pages; without appealing to semantics, it would be impossible either to think
up, or to explain, or even to copy down all this without making mistakes.
The deductions of all the required relativized formulas P∃y L(x,y) would also
be extremely long. This situation gives us an instructive example of what was
discussed in “Digression: Proof” in Chapter II.

7 What Is the Cardinality of the Continuum?

After all we have learned about the Zermelo–Fraenkel language and axiom
system, it might seem naive to return to this question. But we must do so
if we consider mathematical meaning to be our primary concern.
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Some specialists in the foundations of mathematics espouse a different
point of view. Namely, they answer that the question itself is meaningless. It
seems that Paul Cohen himself tends toward this viewpoint, at the same time
admitting that “this is a hard decision” (P. Cohen, Comments on the founda-
tions of set theory, Proc. Symp. Pure Math., vol. XIII, part I, American Math.
Soc., Providence 1971, p. 12).

From this point of view it is natural to reject almost the entire semantics
of L1Set, including all the Vα starting with α = ω0 + 1 in the von Neumann
universe. No halfway solutions can help matters, especially since questions con-
cerning higher axioms of infinity or the so-called measurable cardinals are in an
even worse position than the CH.

It thus becomes necessary to try to find alternative languages and semantics.
Here the differences of opinion are wide and irreconcilable. The most clear-cut
position is that of the constructivists, although even among them there are
different shades of opinion. The constructivists do not recognize infinity as a
usable concept, and reject ineffective existence proofs. (It turns out that in prac-
tice they often replace these ineffective proofs by a more carefully differentiated
word usage—“there cannot not exist,” or “there quasi-exists”—which is nearly
synonymous with certain linguistic precautions adopted in classical texts.) In
our opinion, the shortcoming in their point of view is that constructivism is
in no sense “another mathematics.” It is, rather, a sophisticated subsystem of
classical mathematics, which rejects the extremes in classical mathematics and
carefully nourishes its effective computational apparatus.

Unfortunately, it seems that it is these “extremes”—bold extrapolations,
abstractions that are infinite and do not lend themselves to a constructivist
interpretation—that make classical mathematics effective. One should try to
imagine how much help mathematics could have provided twentieth-century
quantum physics if for the past hundred years it had developed using only
abstractions from “constructive objects.” Most likely, the standard calcula-
tions with infinite-dimensional representations of Lie groups that today play an
important role in understanding the microworld would simply never have
occurred to anyone.

It is not impossible that a new (or a completely forgotten old) conception
of the continuum, in which the continuum has no “cardinality,” could be found
in the course of a deep investigation of the external world. The notion of a set
consisting of elements may actually be adequate only for finite or countable
sets, and “higher infinities” may turn out to be abstractions from objects of a
completely different type.

Physics seems to point up a difference in principle between “counting”
and the Eudoxus–Dedekind idealization of measurement. The counting proce-
dure applies to regions of attraction—“attractors” (R. Thom)—that are units
not having sharp boundaries. The parts of a unit, even if they have physical
meaning, are nevertheless attractors of a different sort. But even these ideas
apparently stop making sense in the microworld.

If nature has a fundamentally statistical aspect, it might be fruitful to
consider mathematical models in which the statistical aspect appears as an
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undefined concept. The unexpected richness of the nonstandard interpretations
of classical mathematics in Boolean-valued models agrees with the suggestion
that all the words we say should be understood in a new way.

7.2. We now discuss a less radical point of view on the continuum problem,
according to which this question of its cardinality is meaningful. Then the main
problem once again becomes how to determine the place of the continuum on
the scale of alephs.

Cohen concludes his book with the following opinion: “A point of view which
the author feels may eventually come to be accepted is that CH is obviously
false. . . . C is greater than ℵn,ℵw,ℵα where α = ℵw etc. This point of view
regards C as an incredibly rich set given to us by one bold new axiom, which
can never be approached by any piecemeal process of construction.”

We thus have a conjectural estimate from below for C, and nothing more—
not even a conjecture as to whether the cardinal C is regular or singular.

Of course, the real problem consists not only in guessing a plausible conjec-
ture, but in supporting it with sufficiently convincing indirect evidence for it to
become widely accepted, even if not proved. What sort of evidence could this
be? In discussing new axioms for set theory, Gödel writes:

there may exist . . . other (hitherto unknown) axioms of set theory which a
more profound understanding of the concepts underlying logic and mathe-
matics would enable us to recognize as implied by these concepts.

Furthermore, however, even disregarding the intrinsic necessity of some

new axiom, and even in case it had no intrinsic necessity at all, a decision

about its truth is possible also in another way, namely, inductively by study-

ing its “success,” that is, its fruitfulness in consequences and in particular in

“verifiable” consequences, i.e., consequences demonstrable without the new

axiom, whose proofs by means of the new axiom, however, are considerably

simpler and easier to discover, and make it possible to condense into one

proof many different proofs. The axioms for the system of real numbers,

rejected by the intuitionists, have in this sense been verified to some extent

owing to the fact that analytic number theory frequently allows us to prove

number theoretic theorems which can subsequently be verified by elementary

methods. A much higher degree of verification than that, however, is conceiv-

able. There might exist axioms so abundant in their verifiable consequences,

shedding so much light upon a whole discipline, and furnishing such powerful

methods for solving given problems (and even solving them, as far as that

is possible, in a constructivistic way) that quite irrespective of their intrinsic

necessity they would have to be assumed at least in the same sense as any well

established physical theory (K. Gödel, What is Cantor’s continuum problem?

Amer. Math. Monthly, vol. 54, no. 9, 1947).

There is little to add here to this ardently expressed hope. But see §8 of
Chapter VII, where it is shown using an idea of Gödel’s own that any new
independent axiom can shorten to an arbitrary extent the proofs of suitable
assertions that are provable without the axiom. This result somewhat
weakens our confidence in pragmatic criteria for truth.
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7.3. More than two decades after the publication of the first edition of this
book, Hugh W. Woodin introduced interesting new ideas about the continuum
hypothesis.

His constructions enrich both our set-theoretic intuition and its formal
language, in an intuitively consistent way.

We will very briefly explain Woodin’s approach, following his notes “The
continuum hypothesis. I, II,” Notices AMS, 48 (2001), no. 6, 567–576, and no.
3, 681–690. We will work in the constructible universe of Section IV.1.

Call a set X transitive if each element of an element of X belongs to X .
The transitive closure of X is the minimal transitive set containing X .

Let k be an infinite cardinal, and H(k) the set of all sets X whose transitive
closure is of cardinality ≤ k. Accepting the axiom of choice, one sees that
any constructible set belongs to some H(k). Let k0, k1, k2, . . . be the increasing
sequence of the first infinite cardinals. Woodin easily reinterprets H(k0) as
the semiring of natural numbers N with addition and multiplication, and, with
some effort, H(k1) as a particular structure on the set of subsets of this semiring.
These efforts are justified by providing a list of axioms for these structures that
are intuitive and provide a basis for generalization to H(k2).

Having thus set the stage, Woodin takes up H(k2) and introduces an exten-
sion of first-order logic and a new axiom modestly called (∗).

Here the grand finale arrives: in this context Woodin can prove that 2ℵ0 =
ℵ2.

The following quotation from his second paper nicely concludes the discus-
sion of this whole section:

“So, is the continuum hypothesis solvable? Perhaps, I am not completely
confident the ‘solution’ I have sketched is the solution, but it is for me a
convincing evidence that there is a solution. Thus, I now believe the continuum
hypothesis is solvable, which is a fundamental change in my view of set theory.”



V

Recursive Functions and Church’s Thesis

1 Introduction. Intuitive Computability

1.1. The first part of this book was primarily concerned with mathematical
proof ; we showed that the analogous concept in formal languages is that of
formal deduction, after which the most interesting results were that certain
intuitive mathematical assertions (such as the continuum hypothesis and its
negation) are not deducible.

Our primary concern in the second part of the book is the notion of a
determinate computational process, that is, the processing of information, or,
briefly, the notion of an algorithm. In §2 we give a precise and presumably
complete characterization of everything that can be obtained using computa-
tional algorithms. Then the most interesting results turn out to be assertions
that certain intuitively defined functions cannot be computed by an algorithm
(Chapter VI).

Both the theory of proof and the theory of computation can be presented in
large part independently of one another. This is the approach we have adopted,
even though it does not correspond to the historical development. But when the
machinery of both theories has been developed to a certain point, it becomes
possible to apply each theory to investigate the other. The third part of the
book is devoted to such applications.

In this section we describe informally the main focal points of the theory of
computability. We appeal to the reader’s intuitive notion of algorithms, which
can be conveniently used to illuminate the structure and interrelations of the
basic concepts.

When we make these concepts precise in the next section, we shall not
give a description of the algorithms themselves, but rather of their results, i.e.,
computable functions. The concept of an algorithm seems to lose too much in
any formalization, while the notion of algorithmic computability seems not to
lose anything essential.

1.2. We now introduce several simple basic concepts. Let X and Y be two sets.
A partial function (or mapping) from X to Y is any pair 〈D(f), f〉 consisting
of a subset D(f) ⊂ X and a mapping f : D(f) → Y . Here D(f) (instead of

179Yu. I. Manin, A Course in Mathematical Logic for Mathematicians, Second Edition,
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the earlier dom f) is called the domain of definition of f ; f is defined at a point
x ∈ X if x ∈ D(f); f is nowhere defined if D(f) is empty; and there exists a
unique nowhere defined partial function.

We let Z+ = {1, 2, 3, . . .} denote the set of natural numbers, excluding zero.
(It is not necessary, only convenient, to exclude zero.) If n � 1, we let (Z+)n

denote the n-fold direct product of Z+ with itself, i.e., the set of ordered n-tuples
〈x1, . . . , xn〉, xi ∈ Z+. It is convenient to let (Z+)0 denote the set consisting
of an arbitrary element, denoted by “·”. The basic objects of our concern will
be partial functions from (Z+)m to (Z+)n for various m and n. When we clas-
sify these functions according to their computability, the reader can think of
the word “program” as referring to a program for a universal computer that is
written without regard to time or memory limitations. Here every program for
computing a function has a special “blank space” in which to insert the value
of the argument.

1.3. The basic informal definitions. (a) A partial function f from (Z+)m to
(Z+)n is called computable if there exists a “program” that, whenever a vector
x ∈ (Z+)m is entered in the input, gives as output

f(x), if x ∈ D(f);
0, if x �∈ D(f).

Here 0 merely indicates that f is not defined at x; we could allow the output
in this case to be anything not in (Z+)n.

(b) A partial function f from (Z+)m to (Z+)n is called semicomputable if
there exists a “program” that, whenever a vector x ∈ (Z+)m is entered in the
input, gives f(x) as output if x ∈ D(f), and either gives 0 as output or else
works infinitely long without stopping if x �∈ D(f).

In particular, computable functions are semicomputable, and everywhere
defined semicomputable functions are computable.

(c) A partial function f is called noncomputable if it does not satisfy
condition (b) (and a fortiori (a)).

1.4. Comments

(a) The most basic of these three concepts is semicomputability, since
computability reduces to this property. In fact, to determine whether a
semi-computable function is computable, we proceed as follows.

Let X ⊂ Y be two sets. By the characteristic function of X in Y we mean
the function χX : Y → Z+ such that

χX(x) =

{
1, if x ∈ X ;
2, if x �∈ X.

Note that χX is everywhere defined on Y .
Now let f be a semicomputable function from (Z+)m to (Z+)n. If f were

computable as well, then the characteristic function of D(f) would also be
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computable: simply add to the program that computes f the instructions
“send 0 to 2, and anything not 0 to 1, and print as output.” Conversely, if
χD(f) is computable, then so is f : in front of the program that semicomputes
f , put the program that computes χD(f) and then the instruction to give 0 as
output immediately if χD(f)(x) = 2 and to continue with the program for f
with x as the argument if χD(f)(x) = 1. Thus, since the everywhere defined
function χD(f) is computable if and only if it is semicomputable, we have f is
computable ⇔ f is semicomputable and χD(f) semicomputable. Later, we shall
first formalize the concept of semicomputability, and then take the right side of
this equivalence as the formalization of computability.

(b) There exist noncomputable functions. In fact, any program is a finite
text in a finite alphabet, so that the set of programs is countable, while the
set of all functions Z+ → Z+ is uncountable. (For a critical discussion of this
argument, see 1.5 below.)

An example of a noncomputable function. We consider the language
of arithmetic SAr, which was described in §10 of Chapter II, and number the
formulas of this language as explained in §11 of Chapter II. We define a function
f by stipulating that

f(x)

⎧⎪⎪⎨⎪⎪⎩
= 1, if the xth formula is true in the standard

interpretation;

is not defined, if the xth formula is false.

The function f is noncomputable. In Chapter VII we shall see that this follows
because the set D(f) is not definable in arithmetic, by Tarski’s theorem.

In other words, it is impossible (even in principle) to distinguish the set
of all number-theoretic truths by writing a single program (even a very long
and complicated one) that could tell from a statement’s formulation whether it
is true. Of course, to prove this result requires a much deeper analysis of the
concept of computability.

(c) There exist functions that are semicomputable but not computable.
We first give a typical example of a program that semicomputes a function.
We consider the following function f from Z+ to Z+, which is defined in terms
of Fermat’s problem:

f(n)

⎧⎪⎨⎪⎩
= 1, if there exist x, y, z ∈ Z+ for which

xn+2 + yn+2 = zn+2;
is not defined, otherwise.

Here is a program that semicomputes f : after entering n in the input, run
through all vectors 〈x, y, z〉 in a suitable order. (For example, according to
increasing x+ y + z, and for given x+ y + z, in lexicographic order.) For each
such vector verify whether xn+2 + yn+2 = zn+2. If this equation holds, give 1
as output; otherwise, go on to the next 〈x, y, z〉.

Hence, f is semicomputable. But it is not known whether f is
computable. According to Fermat’s conjecture, f is nowhere defined (and
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hence computable!). The strongest theoretical results known concerning f—the
so-called criteria of Kummer, Wieferich, Vandiver, and others—may be regarded
as a sort of approximation to proving that f is computable, not that f is nowhere
defined. That is, in order to verify the Fermat conjecture successively for vari-
ous values of n, we must perform a (machine) computation (whose size grows
rapidly with n) to determine χD(f) at the point n, when this determination is
possible.1

There is an analogous example of a semicomputable function that we
actually know is not computable. In Chapter VI we prove that there exists
a polynomial P (t, x1, . . . , xn) with integer coefficients such that the function

g(t)

⎧⎨⎩
= 1, if the equation P (t, x1, . . . , xn) = 0 is solvable

with x1, . . . , xn ∈ Zq;
is not defined, otherwise,

is not computable. This function is semicomputable by the same argument as
in the case of the function connected with Fermat’s equation.

1.5. Critical discussion of the above proofs. Before proceeding further, we
consider from a more critical point of view, for example, the argument in 1.4(b).
The first weak point that catches our attention is that we did not say precisely
what a program is. But this is not essential; for any fixed definition we choose,
a program must in any case be a text in a finite alphabet if it at all corresponds
to our intuitive notions, and there are countably many such texts. A much
stronger objection to the argument goes roughly as follows: what justification
do we have for working with just one definition of what a program is? Could
there perhaps exist an increasing hierarchy of precisely describable “methods
of computation,” so that for every function from Z+ to Z+ we could choose a
corresponding program that could compute this function?

A fundamental discovery in the theory of computability was that this last
question has a negative answer. We now have a unique and final formal notion
that corresponds to the intuitive idea of semicomputability. It can be stated as
follows:

1.6. Church’s Thesis (weakest form). It is possible to give explicitly:

(a) a family of basic semicomputable functions;
(b) a family of elementary operations that, starting from any semicomputable

functions, allow new semicomputable functions to be constructed;

with the property that any semicomputable function can be obtained in a finite
number of steps, where each step consists in applying one of the
elementary operations to the functions constructed before and those in the
family (a).
1 Since the publication of the first Edition, Fermat’s conjecture was proved by Wiles,

so now we know that f is computable and empty. The reader may wish to replace
in our discussion f by another function, say characteristic function of the set of
numbers n of such primes pn that pn+1 = pn+2. This is another old number-
theoretic problem. It remains unsolved.
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1.7. Comment. Church’s thesis will be given a precise formulation in the next
section: the basic functions and the elementary operations will be given exp-
licitly. The exact mathematical theory of computability begins at that point.
But it seemed important to indicate first the general significance of the discovery
that such families of functions and operations exist at all and can even be given
explicitly, a result that is far from obvious.

This is an experimental fact, one of the most important discovered by logic.
In the next section we discuss evidence of its value and usefulness. Now we
merely note that this fact is related to the finiteness of the basic logical and set-
theoretic principles of mathematics (implicit, for example, in L1Set), but is not
identical to this finiteness.

2 Partial Recursive Functions

2.1. In this section we give the precise definition and the basic properties of a
class of partial functions from (Z+)m to (Z+)n, which we take as an adequate
formalization of the class of semicomputable functions. We give the definition
in a way parallel to the statement of Church’s thesis in 1.6.

2.2. The basic functions

suc : Z+ → Z+, suc(x) = x+ 1;

1(n) : (Z+)n → Z+, 1(n)(x1, . . . , xn) = 1, n � 0;

prni : (Z+)n → Z+, prni (x1, . . . , xn) = xi, n � 1.

2.3. The elementary operations on partial functions

(a) Composition (or substitution). This operation associates to every pair
of partial functions f from (Z+)m to (Z+)n and g from (Z+)n to (Z+)p the
function h = g ◦ f from (Z+)m to (Z+)p that is defined as follows:

D(g ◦ f) = f−1(D(g)) =
{
x ∈ (Z+)m|x ∈ D(f), f(x) ∈ D(g)

}
;

(g ◦ f)(x) = g(f(x)).

(b) Juxtaposition. This operation associates to partial functions fi from
(Z+)m to (Z+)ni , i = 1, . . . , k, the function (f1, . . . , fk) from (Z+)m to (Z+)n1×
· · · × (Z+)nk that is defined as follows:

D
(
(f1, . . . , fk)

)
= D(f1) ∩ · · · ∩D(fk);

(f1, . . . , fk)(x1, . . . , xm) = 〈f1(x1, . . . , xm), . . . , fk(x1, . . . , xm)〉.

(c) Recursion. This operation associates to a pair of partial functions f from
(Z+)n to Z+ and g from (Z+)n+2 to Z+ the partial function h from (Z+)n+1

to Z+ that is defined by recursion on the last argument:{
h(x1, . . . , xn, 1) = f(x1, . . . , xn) (initial condition);
h(x1, . . . , xn, k + 1) = g(x1, . . . , xn, k, h(x1, . . . , xn, k)), for k � 1

(recursive step).
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The domain of definition D(h) is also defined by recursion:

〈x1, . . . , xn, 1〉 ∈ D(h) ⇔ 〈x1, . . . , xn〉 ∈ D(f),
〈x1, . . . , xn, k + 1〉 ∈ D(h) ⇔ 〈x1, . . . , xn, k〉 ∈ D(h), and
〈x1, . . . , xn, k, h(x1, . . . , xn, k)〉 ∈ D(g) for k � 1.

(d) The µ-operator. This operation associates to a partial function f from
(Z+)n+1 to Z+ the partial function h from (Z+)n to Z+ that is defined as
follows:

D(h) =
{
〈x1, . . . , xn〉|∃xn+1 � 1, f(x1, . . . , xn, xn+1) = 1 and

〈x1, . . . , xn, k〉 ∈ D(f) for all k � xn+1

}
;

h(x1, . . . , xn) = min
{
xn+1|f(x1, . . . , xn, xn+1) = 1

}
.

The general role of µ is to introduce “implicitly defined” functions, as is
often done in many areas of mathematics. Three remarks about the definition
of µ should be made at this point. First, we obviously chose the minimal y
with f(x1, . . . , xn, y) = 1 in order to ensure that the function h is single-valued.
The second observation is that at first glance, it might seem that the domain of
definition of h is artificially narrow. If, for example, we have f(x1, . . . , xn, 2) = 1
and f(x1, . . . , xn, 1) is not defined, then we have taken h(x1, . . . , xn) to be unde-
fined, rather than equal to 2. This is done because we want to preserve intuitive
semicomputability in going from f to h, as will be discussed in somewhat greater
detail below (see 2.7(a)).

Finally, we note that all the operations before µ, if applied to everywhere
defined functions, give an everywhere defined function. This is obviously not
the case for µ. Thus, µ is the only one of the operations that causes partial
functions to arise unavoidably.

2.4. Definition.

(a) A sequence of partial functions f1, . . . , fN is called a partial recursive
(respectively primitive recursive) description of the function fN = f if

f1 belongs to the family of basic functions;
fi, i � 2, either belongs to the family of basic functions, or else is

obtained by applying one of the elementary operations (respecti-
vely one of the elementary operations other than µ) to certain of
the functions f1, . . . , fi−1.

(b) A function f is called partial recursive (respectively primitive recursive)
if it admits a partial recursive (respectively primitive recursive) description.

(The analogy with the definition of a deduction in a formal language immedi-
ately catches our attention, and can sometimes be of use.)
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2.5. Church’s Thesis (usual form)

(a) A function f is semicomputable if and only if it is partial recursive.
(b) A function f is computable if and only if both f and χD(f) are partial

recursive.

Remark on terminology. Everywhere defined partial recursive functions are
also called general recursive functions. If the domain of definition is either clear
or not essential in a given context, we simply use the term “recursive.” (Note
that every primitive recursive function is general recursive.)

2.6. Use of Church’s thesis. Before discussing in detail the arguments supporting
Church’s thesis, we indicate how it is used in practice in mathematics. Two basic
applications are especially evident in the literature.

(a) Church’s thesis used for a definition of algorithmic undecidability.
Suppose we have a countable sequence of mathematical “problems”
P1, P2, . . . . Further, suppose that each problem has a “yes” or “no” an-
swer, and that the conditions in Pn are written out “effectively” as a function
of n. Such a sequence P = (Pn) is called a “mass problem.” We associate to
such a problem a function f from Z+ to Z+

D(f) = {i ∈ Z+|Pi has “yes” for an answer};
f(i) = 1, if i ∈ D(f).

A mass problem P is called algorithmically decidable if the functions f and
χD(f) are partial recursive. Otherwise, P is called algorithmically undecidable.
We also distinguish the case in which only χD(f) is not partial recursive from the
case in which even f is not partial recursive. The second type of undecidability
is worse than the first; we saw examples of this in §1. Finally, a whole hierarchy
of “degrees of undecidability” can be rigorously defined and investigated.

A well-known example of a mass problem is the problem of word identities
in groups. Let G be a finitely defined group, and let a1, . . . , ar ∈ G be elements.
A “reduced word” in a1, . . . , ar is an expression of the form aεi

i1
· · · aεk

ik
, where

k � 1, εj = ±1, and εj = εj+1 whenever ij = ij+1. We number all
the reduced words and ask the question Pn: “Does the nth word represent the
unit element of the group G?” The “mass problem” (Pn) turns out to be
algorithmically decidable for certain groups G and elements a1, . . . , an and
algorithmically undecidable for others (Novikov, Boone, Higman). The func-
tion f in this case is always partial recursive, but χD(f) is not always (see
Chapter VIII).

For another example of an undecidable problem, this one connected with
Diophantine equations, see Chapter VI.

(b) Church’s thesis as a heuristic principle. The intuitive notion of
“semicomputability” at first seems broader than the notion of “partial recur-
siveness,” and many problems concerning partial recursive functions become
much easier if we replace the conditions in the problems by informal ideas and
allow such ideas to be used to solve the problems. For example, the formula
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e = lim(1 + 1/n)n and the Euclidean algorithm make it intuitively clear that
the functions f, g : Z+ → Z+ given by

f(n) = the nth digit in the decimal expansion of e,
g(n) = the nth prime number

are computable, but the verification that they are recursive requires rather
painstaking constructions.

Church’s thesis allows us to solve such problems in two stages: (1) finding an
informal solution using any intuitive algorithms we need, and (2) formalizing
the solution. The second stage presupposes a certain proficiency in finding a
partial recursive description for a wide variety of semicomputable functions,
and Church’s thesis assures us that such a description exists.

As proofs of recursiveness become more and more numerous in the literature,
it becomes increasingly common to go through only the first stage of the solu-
tion; a striking example of this is Hartley Rogers’ book Theory of Recursive
Functions and Effective Computability (McGraw-Hill, New York, 1967). We
shall also take such liberties toward the end of this book. All the same, there
is a certain danger in this practice. It is possible that the habit of increasingly
using informal arguments delayed the discovery of such a fundamental fact as
the result that recursively enumerable sets and Diophantine sets coincide.

2.7. Arguments in support of Church’s thesis

(a) First of all, the basic functions clearly must be computable, no mat-
ter how we precisely define the notion of computability. Furthermore, when the
elementary operations are applied to semicomputable functions, they again give
a semicomputable function. A program to semicompute the latter function can
easily be put together from the programs that semicompute the original func-
tions. We shall consider only the case of the µ-operator in detail, leaving the
simple construction of the other three programs to the reader.

In the notation of 2.3(d), let f be a semicomputable function from
(Z+)n+1 to Z+. In order to compute h(x1, . . . , xn), we go through the vectors
〈x1, x2, . . . , xn, 1〉, 〈x1, . . . , xn, 2〉, . . . in the order of increasing last coordinate,
and compute the values of f at these vectors. If 〈x1, . . . , xn〉 ∈ D(h), where h is
obtained from f by applying the µ-operator, then the program for f successively
computes

f(x1, . . . , xn, 1), . . . , f(x1, . . . , xn, y − 1),

and finally f(x1, . . . , xn, y) = 1. The least such y, if it exists, must be given as
output; it will be the value of h at the point 〈x1, . . . , xn〉. On the other hand,
if it turns out that one of the values f(x1, . . . , xn, k) (before we reach f = 1) is
not defined, then either the program that semicomputes f will work infinitely
long, or else it will give an answer not in Z+, which must then be given as
output. But then, by definition, h is not defined at the point 〈x1, . . . , xn〉, and
the behavior of the program for h still agrees with the definition of h being
semicomputable.
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From all this we conclude that partial recursivefunctionsare semicomputable.
However, the stronger part of Church’s thesis is the converse: semicomputable
functions are partial recursive. (The definition of computability in terms of
semicomputability is simply taken from §1 without any changes.) As has been
said, this result is an experimental fact. The experimental evidence for it is
divided into several classes, which we consider in (b)–(d) below.

(b) In the literature we find a huge collection of recursive descriptions of
various computable and semicomputable functions. See, for example, Rózsa
Péter, Recursive Functions (Academic Press, New York, 1967). We shall give
part of this list in the next section. We also find certain techniques for composing
recursive descriptions that are applicable to entire classes of (semi)computable
functions. Every time an author has tried to find a partial recursive description
of a (semi)computable function, he has met with success.

(c) Turing proposed a mathematical characterization of an abstract com-
puter, and gave strong arguments to the effect that this computer is universal,
i.e., it can (semi)compute any (semi)computable function. His arguments came
from a detailed analysis of the characteristic features of determinate computa-
tional processes. (We again recall that we have not at all concerned ourselves
with formalizing computational processes, but only with the results of such pro-
cesses.) It turned out that the class of functions that are semicomputable by
Turing machines exactly coincides with the class of partial recursive functions.

(d) Church, Post, Markov, Kolmogorov, Uspenskǐı, and others have pro-
posed other deterministic schemes for processing information of a general (not
necessarily number-theoretic) character. In all cases it has turned out that if the
sets of input and output are numbered in a suitable “effective” way, these meth-
ods lead to a class of maps from Z+ to Z+ that coincides with some subclass
of the partial recursive functions.

For further discussion of Church’s thesis, we refer the reader to the literature;
see, in particular, S. Kleene, Introduction to Metamathematics (Van Nostrand,
New York–Toronto, 1952).

3 Basic Examples of Recursiveness

3.1. In this section we give a short list of recursive functions and a selection of
basic techniques for proving recursiveness. Both these lists will subsequently be
enlarged when needed (in particular, see Chapter VII).

3.2. (a) sum2 : (Z+)2 → Z+, 〈x1, x2〉 �→ x1 + x2.

Use recursion on x2, starting from the initial condition

x1 + 1 = sum2(x1, 1) = suc(x1)

and applying the recursive step

x1 + k + 1 = sum2(x1, k + 1) = suc(sum2(x1, k)).
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(b) sumn : (Z+)n → Z+, 〈x1, . . . , xn〉 �→
∑n

i=1 xi, n � 3.

Suppose that we already know that sumn−1 is recursive. We can obtain
sumn by juxtaposition and composition as follows:

sumn = sum2 ◦ (sumn−1 ◦ (prn1 , . . . ,prnn−1), prnn).

Another version is to use recursion on xn, starting from the initial condition
suc ◦ sumn−1 and applying the recursive step

n−1∑
i=1

xi + k + 1 = suc(sumn(x1, . . . , xn−1, k)).

This choice of recursive descriptions, even of “natural” ones, will become even
more numerous as the functions become more complicated.

3.3. (a) prod2 : (Z+)2 → Z+, 〈x1, x2〉 �→ x1x2.

Use recursion on x2, starting from the initial condition x1 and applying the
recursive step

x1(k + 1) = x1k + x1 = sum2(x1k, x1).

(b) prodn : (Z+)n → Z+, 〈x1, . . . , xn〉 �→ x1, . . . , xn, n � 3.
prodn = prod2 ◦ (prodn−1 ◦ (prn1 , . . . ,prnn−1), prnn).

3.4. (a) Z+ → Z+, x �→ x −̇ 1 =

{
x− 1, if x � 2;
1, if x = 1.

Use recursion with the functions

f : (Z+)0 → Z+, · �→ 1;

g = pr21 : (Z+)2 → Z+, 〈x1, x2〉 �→ x1.

(b) (Z+)2 → Z+:

〈x1, x2〉 �→ x1−̇ x2 =

{
x1 − x2, if x1 > x2;
1, if x1 � x2.

This “truncated difference” is obtained by applying recursion to the functions

f(x1) = x1−̇1;
g(x1, x2, x3) = x3 −̇1.

3.5. F : (Z+)n → Z+, where F is any polynomial in x1, . . . , xn with integer
coefficients that takes values only in Z+.

If all the coefficients in F are nonnegative, then F is a sum of products
of the functions prni : 〈x1, . . . , xn〉 �→ xi. Otherwise, we write F = F+ − F−,
where F+ and F− have nonnegative coefficients, and at all points of (Z+)n

the nontruncated difference coincides with the truncated difference F+−̇F−

because of the assumption concerning F .
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We shall often use the recursiveness of the function (x1 − x2)2 + 1, or
h = (f − g)2 + 1, where f and g are recursive. This technique allows us to
identify the set on which f = g with the “level set of h at 1,” i.e., the set on
which h = 1.

3.6. “Step functions”: for each a, b, x0 ∈ Z+, the function defined by

sa,bx0
(x) =

{
a, for x � x0,

b, for x > x0.

If x0 = 1, we obtain this function by recursion with initial value a and all the
succeeding values b. In the general case we set

sa,bx0
(x) = sa,b1 (x + 1−̇x0).

3.7. rem(x, y) = the remainder in [1, x] (since we cannot use zero!) when y is
divided by x.

We have

rem(x, 1) = 1,

rem(x, y + 1) =

{
1, if rem(x, y) = x;
suc ◦ rem(x, y), if rem(x, y) �= x.

We now apply a somewhat artificial technique. We consider the step function
s = s2,11 , i.e., s(1) = 2 and s(x) = 1 if x � 2, and we set

φ(x, y) = s
(
(rem(x, y) − x)2 + 1

)
.

Obviously,

rem(x, y) �= x⇔ φ(x, y) = 1,
rem(x, y) = x⇔ φ(x, y) = 2,

so that

rem(x, y + 1) = 2 suc(rem(x, y)) −̇ φ(x, y) suc(rem(x, y)).

This gives a recursive definition of rem.
We next describe this technique in a more general form.

3.8. Suppose h is defined by “recursion with conditions,” i.e.,

h(x1, . . . , xn, 1) = f(x1, . . . , xn);h(x1, . . . , xn, k + 1)
= gi(x1, . . . , xn, k, h(x1, . . . , xn, k)),

if the condition Ci(x1, . . . , xn, k, h) holds, i = 1, . . . ,m, where the exhaustive
and mutually exclusive conditions Ci are given in the form

Ci is fulfilled ⇔ φi
(
x1, . . . , xn, k, h(x1, . . . , xn, k)

)
= 1,
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with φi an everywhere defined recursive function that takes only the values
1 and 2. Then we can write the recursive step as follows:

h(x1, . . . , xn, k + 1) = 2
m∑
i=1

gi
(
x1, . . . , xn, k, h(x1, . . . , xnk)

)
−̇

m∑
i=1

(giφi)
(
x1, . . . , xn, k, h(x1, . . . , xn, k)

)
.

This device allows us to show that the following functions, which will be
needed later, are primitive recursive:

3.9. qt(x, y) =

{
the integral part of y/x, if y/x � 1;
1, if y/x < 1.

We have

qt(x, 1) = 1;

qt(x, y + 1) =

⎧⎪⎨⎪⎩
qt(x, y), if rem(x, y + 1) �= x;
qt(x, y) + 1, if rem(x, y + 1) = x and y + 1 �= x;
1, if y + 1 = x.

We reduce the conditions to the standard form 3.8 using the functions

s̃
(
(rem(x, y + 1)− x)2 + 1

)
,

s
(
(rem(x, y + 1)− x)2 + 1

)
· s̃

(
(x− y − 1)2 + 1

)
,

s
(
(x− y − 1)2 + 1

)
,

where s = s1, 21 and s̃ = s2, 11 .

3.10. rad(x) = the integral part of
√
x.

We have

rad(1) = 1,

rad(x+ 1) =

{
rad(x), if qt(rad(x) + 1, x+ 1) < rad(x) + 1;
rad(x) + 1, if qt(rad(x) + 1, x+ 1) = rad(x) + 1.

The reduction of these conditions to the standard form 3.8 will be left to the
reader.

3.11. (a) min(x, y):

min(x, 1) = 1,

min(x, y + 1) =

{
min(x, y), if x � y;
min(x, y) + 1, if x > y.

(b) max(x, y) : analogous.
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3.12. If f(x1, . . . , xn) is recursive, then

Sf =
xn∑
k=1

f(x1, . . . , xn−1, k) and Pf =
xn∏
k=1

f(x1, . . . , xn−1, k)

are recursive
In fact,

Sf(x1, . . . , xn−1, xn + 1) = Sf(x1, . . . , xn) + f(x1, . . . , xn + 1),
Pf(x1, . . . , xn−1, xn + 1) = Pf(x1, . . . , xn) · f(x1, . . . , xn + 1).

3.13. If f(x1, . . . , xn) is recursive, then so are the functions obtained from
f by:

(a) any permutation of the arguments;
(b) adding any number of “dummy” arguments;
(c) identifying the elements of any subset of the arguments (f(x, x) instead of

f(x, y), and so on).

In fact, all of these functions can be obtained from f and the various prmi
using composition and juxtaposition.

3.14. A map f : (Z+)m → (Z+)n is recursive if and only if all of its components
prni ◦ f are recursive.

This is obvious.
In conclusion, we note that all the specific functions described above are

primitive recursive, and that all the above general operations, when applied to
primitive recursive functions, yield primitive recursive functions. Starting in the
next section, we shall make essential use of the µ-operator, which was defined
in 2.3(d).

4 Enumerable and Decidable Sets

4.1. Definition. A set E ⊂ (Z+)n is called recursively enumerable if there exists
a partial recursive function f such that E = D(f) (the domain of definition
of f).

The discussion in §1 and §2 showed that recursive enumerability has the
following intuitive meaning: there exists a program that identifies the elements
x in E but that might not identify the elements not in E. Later, in 4.12 and 4.18,
we shall give another intuitive description of recursively enumerable sets that
is more closely related to the etymology of the name: these are sets all of whose
elements can be obtained using a suitable “generating” program (perhaps with
repetitions and with no indication of the order in which the elements occur).

The concept of a recursively enumerable set occupies a central place in the
theory of computability, alongside the concept of a partial recursive function.
It will later be clear, in particular from Proposition 4.15, that either of these
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concepts can be reduced to the other one. However, only by using both ideas
together do we obtain the flexibility necessary for efficient proofs.

We begin with the following simple fact.
Recall that the level set at m (or simply the m-level) of a function f from

(Z+)n to Z+ is the set E ⊂ D(f) such that

x ∈ E ⇔ f(x) = m.

4.2. Proposition. The following three classes of sets coincide:

(a) Recursively enumerable sets.
(b) Level sets of partial recursive functions.
(c) Level sets at 1 of partial recursive functions.
(a) ⊂ (c). Suppose that E is recursively enumerable, so that E = D(f), where

f is partial recursive. Then E = the 1-level of the function 1(1) ◦ f .
(b) = (c). The m-level of f coincides with the 1-level of (f − m)2 + 1. The

function (f−m)2 +1 is partial recursive whenever f is, by Proposition 3.5.
(c) ⊂ (a). Suppose that E is the 1-level of a partial recursive function

f(x1, . . . , xn). Set

g(x1, . . . , xn) = min
{
y|(f(x1, . . . , xn)− 1)2 + y = 1

}
.

Obviously, g is partial recursive and E = D(g). ��

The following much more difficult assertion, along with its corollaries,
constitutes the central result of this section.

4.3. Theorem. The following two classes of sets coincide:

(a) Recursively enumerable sets.
(b) Projections of level sets of primitive recursive functions with values in Z+.

4.4. First part of the proof. We first recall that if we are given a set
E ⊂ (Z+)n+m, then its projection (“onto the space of the first n coordinates”)
is the set F ⊂ (Z+)n that is defined as follows:

〈x1, . . . , xn〉 ∈ F
⇔ ∃〈y1, . . . , ym〉 ∈ (Z+)m, 〈x1, . . . , xn, y1, . . . , ym〉 ∈ E.

(From this point on, we shall not adhere to the practice in Part I of using
different notation for “variable coordinates” and for particular values of the
coordinates.) We similarly define the projection “onto the coordinates with
indices (i1, . . . , in) ⊂ (1, . . . , n+m).” The number m is called the codimension
of the projection. The canonical map E → F (as well as its image) is also
customarily called a projection, but this is not likely to cause any confusion.

For the time being we shall call projections of level sets of primitive recur-
sive functions primitive enumerable sets. The first part of the proof consists in
showing that primitive enumerable sets are recursively enumerable; the second
part consists in verifying the converse implication.

Thus, let f(x1, . . . , xn, xn+1, . . . , xn+m) be a primitive recursive function,
and let E be the projection of its 1-level onto the first n coordinates. (We need
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only consider 1-levels because of the consideration used once before: the k-level
of f coincides with the 1-level of f ′ = (f − k)2 + 1.) We explicitly construct a
partial recursive function g such that E = D(g).

We distinguish three cases, depending on the codimension of the projection:
m = 0,m = 1, and m � 2.

Case (a): m = 0. Then E = the 1-level of f ⇔ E is recursively enumerable,
by Proposition 4.2 (where g is constructed explicitly).

Case (b): m = 1. Let

g(x1, . . . , xn) = min
{
xn+1|f(x1, . . . , xn, xn+1) = 1

}
.

Obviously, g is partial recursive, and D(g) = E. (Notice that we have used here
the fact that D(f) = (Z+)n+1.)

Case (c): m � 2. We reduce this case to the previous one using the following
lemma, which is also important in many other situations and is of interest in
its own right (as a statement that there is no notion of dimension in “recursive
geometry”).

4.5. Lemma. For each m � 1 there exists a one-to-one mapping t(m):
Z+ → (Z+)m such that

(a) The function t
(m)
i = prmi ◦ t(m) is primitive recursive for all 1 � i � m.

(b) The inverse function τ (m) : (Z+)m → Z+ is primitive recursive.

4.6. How the lemma is used. Suppose that the lemma is true. We apply it to
the situation in case (c) in 4.4 as follows. For m � 2 we set

g(x1, . . . , xn, y) = f(x1, . . . , xn, t
(m)
1 (y), . . . , t(m)

m (y)).

Obviously, g is primitive recursive if f is. It is easy to see that E coincides with
the projection of the 1-level of g onto the first n coordinates. Since this is a
projection of codimension 1, we have reduced this case to the previous one.

4.7. Proof of the lemma. The case m = 1 is trivial. We use induction on m,
starting with m = 2.

Construction of t(2). We first construct τ (2) : (Z+)2 → Z+ explicitly by
setting

τ (2)(x1, x2) =
1
2
(
(x1 + x2)2 − x1 − 3x2 + 2

)
.

It is easy to see that if we list the pairs 〈x1, x2〉 ∈ (Z+)2 in “Cantor order,” i.e.,
according to increasing x1 +x2 and, among those with given x1 +x2, according
to increasing x1 then τ (2)(x1, x2) will be precisely the index of the pair 〈x1, x2〉
in this list. Thus, τ (2) is a one-to-one correspondence and, moreover, is primitive
recursive (where we use Proposition 3.5 and then the recursiveness of qt in 3.9
to take care of the 1/2).

The calculation of the pair 〈x1, x2〉 as a function of its index y is an
elementary problem, and results in the following formulas for the inverse
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function t(2):

t
(2)
1 (y) = y − 1

2

[√
2y − 7

4
− 1

2

]([√
2y − 7

4
− 1

2

]
+ 1

)
,

t
(2)
2 (y) =

[√
2y − 7

4
− 1

2

]
− t(2)1 (y) + 2.

Here [z] denotes the integral part of z. The verification that these functions are
primitive recursive using the results (and techniques) of §3 is left to the reader
as an exercise.

Construction of t(m),m � 3. Suppose that t(m−1) and τ (m−1) have already
been constructed with the required properties. We first set

τ (m)(x1, . . . , xm) = τ (2)
(
τ (m−1)(x1, . . . , xm−1), xm

)
.

It is clear that τ (m) is one-to-one and primitive recursive. Solving the equa-
tion τ (2)

(
τ (m−1)(x1, . . . , xm−1), xm

)
= y in two steps, we obtain the following

formulas for the inverse function t(m):

t(m)
m (y) = t

(2)
2 (y),

t
(m)
i (y) = t

(m−1)
i

(
t
(2)
1 (y)

)
, 1 � i � m− 1.

The t(m)
i are primitive recursive by the induction assumption. This completes

the proof of the lemma, and by the same token the first part of the proof of
Theorem 4.3. ��

Second part of the proof. We must now show that every recursively
enumerable set is primitive enumerable. We begin with the following property
of the class of primitive enumerable sets.

4.8. Lemma. The class of primitive enumerable sets is closed with respect to
the following operations: finite direct product, finite intersection, finite union,
and projection.

Proof. Let E,E
′ ⊂ (Z+)n and E1 ⊂ (Z+)m be three primitive enumerable

sets that are projections of the 1-levels of the primitive recursive functions
f, f

′
, and f1, respectively:

x = 〈x1, . . . , xn〉 ∈ E ⇔ ∃y = 〈y1, . . . , yr〉, f(x, y) = 1,

x = 〈x1, . . . , xn〉 ∈ E1 ⇔ ∃z = 〈z1, . . . , zq〉, f
′
(x, z) = 1,

u = 〈u1, . . . , um〉 ∈ E1 ⇔ ∃v = 〈v1, . . . , vs〉, f1(u, v) = 1.

We then have

E × E1 = a projection of the 1-level of the function
g(x, u; y, v) = f(x, y) · f1(u, v);
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E ∪E′
= a projection of the 1-level of the function

g(x; y, z) = (f(x, y)− 1)(f
′
(x, z)− 1) + 1;

E ∩E′
= a projection of the 1-level of the function

g(x; y, z) = f(x, y) · f
′
(x, z).

Closure with respect to the projection operation is clear from the definition.
Lemma 4.8 is proved. ��

Now let E be a recursively enumerable set. We realize E as the 1-level of
a partial recursive function f from (Z+)n to Z+ using Proposition 4.2, and we
note that to prove that E is primitive enumerable, it suffices to show that the
graph Γf ⊂ (Z+)n × Z+ of f is primitive enumerable. In fact, it is clear that
E = the 1-level of f = the projection of the set Γf ∩ [(Z+)n×{1}] onto the first
n coordinates. Here the set {1} ⊂ Z+ is primitive enumerable (for example,
by 3.6), so that if we prove that Γf is primitive enumerable, it will follow from
Lemma 4.8 that the same is true for E. Thus, our problem is finally reduced to
the following form: we must prove that the graph of a partial recursive function
f is primitive enumerable. To do this we verify that first, the graphs of the
simplest functions are primitive enumerable, and second, if we apply any of the
elementary operations to functions having primitive enumerable graphs, then
the resulting function also has a primitive enumerable graph.

Graphs of the basic functions

Γsuc ⊂ (Z+)2 = the 1-level of (x1 + 1− x2)2 + 1,

Γ1(n) ⊂ (Z+)n+1 = the 1-level of xn+1,

Γprn
i
⊂ (Z+)n+1 = the 1-level of (xi − xn+1)2 + 1.

Stability under juxtaposition. Let f and g be partial functions from (Z+)m

to (Z+)p and (Z+)q, respectively. Suppose that Γf and Γg are primitive enu-
merable. Then Γ(f,g) ⊂ (Z+)m × (Z+)p × (Z+)q coincides with the intersection(

Γf × (Z+)q
)
∩ perm

(
Γg × (Z+)p

)
,

where perm : (Z+)m×(Z+)q×(Z+)p → (Z+)m×(Z+)p×(Z+)q is the operation
of permuting the last two factors:〈

x(m), y(q), z(p)
〉
�→

〈
x(m), z(p), y(q)

〉
.

It is clear from Lemma 4.8 that Γ(f,g) is primitive enumerable.
Stability under composition. Let g be a partial function from (Z+)n to

(Z+)m, let f be a partial function from (Z+)m to (Z+)1, and let h = f ◦g. Then
Γh = the projection of the set

(
Γg×(Z+)p

)
∩
(
(Z+)n×Γf

)
onto (Z+)n×(Z+)p.

As before, if Γf and Γg are primitive enumerable, then so is Γh by Lemma 4.8.
The stability relative to recursion and the µ-operator is much subtler. We

shall need the following elegant and useful lemma.

4.9. Lemma. There exists a primitive recursive function Gd(k, t) (Gödel’s
function) with the following property: for any N ∈ Z+ and any finite sequence
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a1, . . . , aN ∈ Z+ of length N , there exists t ∈ Z+ such that Gd(k, t) = ak for
all 1 � k � N . (In other words, the function Gd allows us to consider integers
as encoding arbitrarily long sequences of integers: Gd(k, t) is the kth member
of the sequence encoded by t, and the existence assertion ensures that each
sequence has an encoding.)

Proof. We first set
gd(u, k, t) = rem(1 + kt, u)

and show that gd has the same property as Gd if we are allowed to choose
〈u, t〉 ∈ (Z+)2. Once we show this, we can set Gd(k, y) = gd

(
t
(2)
1 (y), k, t(2)2 (y)

)
,

where t(2) : Z+ → (Z+)2 is the isomorphism in Lemma 4.5. (It is not really
essential to remove the extra parameter in gd(u, k, t), but working with Gd(k, t)
will make some of the formulas shorter.)

Thus, suppose we are given a1, . . . , aN ∈ Z+. We first choose X ∈ Z+ so as
to satisfy X � N and 1 + kX ! > ak for all 1 � k � N . We then set t = X !.
It is easy to see that if k1 �= k2 and k1, k2 � N , then 1 + k1X ! and 1 + k2X ! are
relatively prime, since any common divisor would have to divide (k1 − k2)X !,
i.e., would have to consist of primes � X , but no such prime divides 1 + k1X !.

By the Chinese remainder theorem, there exists a solution u ∈ Z+ of the
system of equations

u ≡ ak mod(1 + kX !), 1 � k � N.

It is then obvious that

gd(u, k, t) = rem(1 + kt, u) = ak, 1 � k � N. ��

We now continue with the proof of Theorem 4.3.

4.10. Stability relative to the µ-operator. Let f be a partial function from
(Z+)n+1 to Z+ and let

g(x1, . . . , xn) = min
{
y|f(x1, . . . , xn, y) = 1

}
.

Recall that the domain of definition of g consists of those 〈x1, . . . , xn〉 for which
such a y exists and 〈x1, . . . , xn, k〉 ∈ D(f) for all k less than the least such y.
We want to prove that if Γf is primitive enumerable, then so is Γg.

Suppose that Γf is the projection onto the first n + 1 coordinates of the
1-level of a primitive recursive function F :

φ =f(x1, . . . , xn+1)
⇔ ∃〈y1, . . . , ym〉, F (x1, . . . , xn+1, φ, y1, . . . , ym) = 1

(where φ has been used to denote the argument of F that becomes the value
of f). As in 4.4, it suffices to consider the case m = 1, since if m � 2, then
we can use Lemma 4.5 to replace the vector 〈y1, . . . , ym〉 by a single y, and if
m = 0, then we can introduce a “dummy argument” y on which F does not
actually depend.
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Thus, letm = 1. We introduce a functionG of the arguments x1, . . . , xn, γ, y,
t, t1 by setting s(1) = 2, s(x) = 1 for x � 2, and

Fk = F
(
x1, . . . , xn, k,Gd(k, t),Gd(k, t1)

)
, k � 1,

G = F (x1, . . . , xn, γ, 1, y)
γ−1∏
k=1

s(Gd(k, t)) · Fk.

Here
∏0
k=1 = 1 by definition. It is easy to see that G is primitive recursive, since

it is obtained by recursion on γ from two other functions that are obviously
primitive recursive. We shall show that Γg is the projection of the 1-level of G
onto the coordinates (x1, . . . , xn, γ).

The inclusion pr(G = 1) ⊂ Γg. Let 〈x1, . . . , xn, γ, y, t, t1〉 be a point in the
1-level ofG. We must verify that 〈x1, . . . , xn〉 ∈ D(g) and that γ = g(x1, . . . , xn).
In other words, we must show that

f(x1, . . . , xn, γ) = 1;
f(x1, . . . , xn, k) is defined and > 1 for all k � γ − 1.

Since G = 1 at the given point, it follows that all the factors in G equal 1 there.
In particular, F (x1, . . . , xn, γ, 1, y) = 1, which implies that f(x1, . . . , xn, γ) = 1,
because Γf is the projection of the 1-level of F . If γ = 1, there is nothing more
to be proved.

Suppose γ > 1. Since the kth factor in the product
∏γ−1
k=1 equals 1, we obtain

s(Gd(k, t)) = 1 ⇒ Gd(k, t) � 2,
Fk = 1 ⇒ Gd(k, t) = f(x1, . . . , xn, k) � 2,

as required.
The inclusion Γg ⊂ pr(G = 1). Let 〈x1, . . . , xn, γ〉 ∈ Γg. We must choose

values for the remaining coordinates y, t, and t1 in such a way as to make all
the factors in G equal to 1.

First of all, 〈x1, . . . , xn, γ, 1〉 ∈ Γf by the definition of g. We find the
necessary value of y by lifting this point from Γf to the 1-level of F . If γ = 1,
we may choose arbitrary values of t and t1.

Suppose γ > 1. We then find t from the system of equations

Gd(k, t) = f(x1, . . . , xn, k), for all 1 < k � γ − 1.

(Here the right side exists by the definition of D(g).)
Finally, for each k � y − 1 we lift the point

〈x1, . . . , xn, k,Gd(k, t)〉 ∈ Γf

to a point on F = 1 having additional coordinate y(k), and then we find t1 from
the system of equations

Gd(k, t1) = y(k), 1 � k � γ − 1.
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This makes all the factors in
∏γ−1
k=1 equal to 1. In fact, s(Gd(k, t)) = 1, since

Gd(k, t) = f(x1, . . . , xn, k) � 2 for k � γ−1, and, finally, Fk = F (x1, . . . , xn, k,
Gd(k, t),Gd(k, t1)) = 1 by the definition of t and t1. ��

4.11. Stability relative to recursion. We now carry out the last step in the proof
of Theorem 4.3.

Let f and g be partial functions of n and n+ 2 variables, respectively, and
let h be the function of n + 1 variables that is obtained from f and g using
recursion:

h(x1, . . . , xn, 1) = f(x1, . . . , xn),

h(x1, . . . , xn, k + 1) = g
(
x1, . . . , xn, k, h(x1, . . . , xn, k)

)
.

We must show that if Γf and Γg are primitive enumerable, then so is Γh.
Let F and G be primitive recursive functions whose 1-levels project onto Γf

and Γg, respectively:

φ = f(x1, . . . , xn) ⇔ ∃y, F (x1, . . . , xn, φ, y) = 1,
γ = g(x1, . . . , xn+2) ⇔ ∃z,G(x1, . . . , xn+2, γ, z) = 1,

where, as in 4.10, it suffices to consider the case in which the projection
codimension is 1.

We shall explicitly construct a function H whose 1-level projects onto Γh.
H will be a function of the arguments x1, . . . , xn+1, η, y, t, t1 (where η is the
argument that becomes the value of h). We set

s̃(1) = 1, s̃(x) = 2, for x � 2;

Gk = G
(
x1, . . . , xn, k − 1,Gd(k − 1, t),Gd(k, t),Gd(k, t1)

)
;

H = F
(
x1, . . . , xn,Gd(1, t), y

)
· s̃

[(
η −Gd(xn+1, t)

)2
+ 1

] xn+1∏
k=2

Gk.

(We take
∏xn+1
k=2 = 1 if xn+1 = 1.) As in 4.10, we easily verify that H is primitive

recursive.
The inclusion pr(H = 1) ⊂ Γh. Let 〈x1, . . . , xn+1, η, y, t, t1〉 be a point on

H = 1. We must show that h(x1, . . . , xn+1) = η. Since the second factor in H
equals 1, we first obtain η = Gd(xn+1, t). If we also have xn+1 = 1, then setting
the first factor in H equal to 1 gives

η = Gd(1, t) = f(x1, . . . , xn) = h(x1, . . . , xn, 1).

Now suppose xn+1 > 1. In this case, using the equation Gk = 1 we find that
for all 2 � k � xn+1,

Gd(k, t) = g
(
x1, . . . , xn, k − 1,Gd(k − 1, t)

)
,

and using the equation F = 1 and the definition of h we find that

Gd(1, t) = f(x1, . . . , xn) = h(x1, . . . , xn, 1).
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If we increase k from k = 1 to k = xn+1 and use the recursive definition of h,
we see by induction on k that Gd(k, t) = h(x1, . . . , xn, k) and, in particular,

η = Gd(xn+1, t) = h(x1, . . . , xn, xn+1).

The inclusion Γh ⊂ pr(H = 1). We are given a point〈
x1, . . . , xn+1, h(x1, . . . , xn+1)

〉
∈ Γh.

We let η = h(x1, . . . , xn+1). We must also choose values of y, t, and t1 so as to
make H equal to 1.

If xn+1 = 1, we choose t such that Gd(1, t) = h(x1, . . . , xn, 1) = f(x1, . . . , xn).
We then lift the point 〈x1, . . . , xn,Gd(1, t)〉 ∈ Γf to a point on F = 1. This
gives us the value of y; t1 may be chosen arbitrarily.

Now let xn+1 > 1. We first find t from the system of equations

Gd(1, t) = f(x1, . . . , xn) = h(x1, . . . , xn, 1);

Gd(k, t) = h(x1, . . . , xn, k) = g
(
x1, . . . , xn, k − 1,Gd(k − 1)

)
,

× 2 � k � xn+1.

We then find y by lifting the point 〈x1, . . . , xn,Gd(1, t)〉 ∈ Γf to the 1-level
of F . This makes the first two factors in H equal to 1.

We next lift the points

〈x1, . . . , xn, k − 1,Gd(k − 1, t),Gd(k, t)〉 ∈ Γg, 2 � k � xn+1,

to the 1-level of G by adding coordinates z(k), and then solve the following
system of equations for t1:

Gd(k, t1) = z(k), 2 � k � xn+1.

This makes the Gk factors in H equal to 1.
The proof of Theorem 4.3 is complete. ��

4.12. Explanation of the term “recursively enumerable set.” Theorem 4.3 shows
that if E is recursively enumerable, then there exists a program that “generates”
E (see 4.1). In fact, suppose E is the projection onto the first n coordinates of
the 1-level of the primitive recursive function f(x1, . . . , xn, y). The program that
generates E must run through the vectors 〈x1, . . . , xn, y〉, say in Cantor order,
compute f at each vector, and give 〈x1, . . . , xn〉 as output if and only if f equals
1 (compare with Corollary 4.18 below). Unlike programs of the type described
in §1, which can become stuck forever on an element not in E, a generating
program sooner or later gives us any given element of E, and nothing other
than such elements. However, if E is empty, we might never find this out.

We conclude this section by discussing the properties of the so-called decid-
able sets. Intuitively, E ⊂ (Z+)n is decidable if there exists a program that for
every element of (Z+)n tells whether it belongs to E.
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4.13. Definition. A set E ⊂ (Z+)n is called decidable if both it and its
complement are recursively enumerable.

In §5 and in the next chapter we show that there exist sets that are
recursively enumerable but not decidable. This result is closely connected with
Gödel’s incompleteness theorem, which is the subject of Chapter VII.

4.14. Theorem. The following three classes of sets coincide:

(a) sets whose characteristic function is recursive;
(b) level sets of general recursive (i.e., everywhere defined partial recursive)

functions;
(c) decidable sets.

Proof. The relations (a) = (b) and (b) ⊂ (c) are obvious from what has
already been proved. It thus remains to show that (c) ⊂ (a).

Let E ⊂ (Z+)n be a decidable set, and let E′ be its complement. By defini-
tion, E = D(f) and E

′
= D(f

′
) for certain partial recursive functions f and f

′
.

We may even assume that f ≡ 1 and f
′ ≡ 2 (where they are defined). We con-

sider Γf ∪ Γf ′ ⊂ (Z+)n × Z+. This union is obviously the graph Γg of the
characteristic function g of the set E. It is clear from the proof of Lemma 4.8
that Γg is recursively enumerable whenever Γf and Γf ′ are. Hence, the partial
recursiveness of g is implied by the following result, which is also of independent
interest.

4.15. Proposition. In order for a partial function g from (Z+)n to Z+ to be
partial recursive, it is necessary and sufficient that its graph Γg be recursively
enumerable.

Proof. Necessity has already been proved.
We verify sufficiency. Since Γg is recursively enumerable, there exists a

primitive recursive function G(x1, . . . , xn, γ, z) (see 4.10) such that Γg = the
projection of the 1-level of G onto (x1, . . . , xn, γ). We set

H(x1, . . . , xn, u) = G
(
x1, . . . , xn, t

(2)
1 (u), t(2)2 (u)

)
,

where u �→ 〈t(2)1 (u), t(2)2 (u)〉 is the primitive recursive isomorphism Z+ → (Z+)2

described in 4.5 and 4.7. H is obviously primitive recursive. Finally, we set

h(x1, . . . , xn) = min
{
u|H(x1, . . . , xn, u) = 1

}
.

This is a partial recursive function whose domain of definition coincides with
D(g) and that easily allows us to compute g:

g(x1, . . . , xn) = t
(2)
1

(
h(x1, . . . , xn)

)
.

Thus, g is partial recursive, and the proof of Proposition 4.15 and Theorem 4.14
is complete. ��
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4.16. Corollary. Every partial recursive function g has a description in which
the µ-operator is applied only once.

4.17. Corollary. Every partial recursive function g that is everywhere defined
has a description g1, . . . , gN = g in which all the functions gi are everywhere
defined.

In fact, the description whose last part (starting with G) was constructed
in 4.15 has this property.

4.18. Corollary. The class of nonempty recursively enumerable sets coincides
with the class of sets of values of primitive recursive functions.

In fact, the set of values of a function f is a projection of the graph of f .
Conversely, let E ⊂ (Z+)n be a nonempty enumerable set that is the projec-
tion onto the (x1, . . . , xn)-space of the 1-level of a primitive recursive function
f(x1, . . . , xn, y). Let 〈e1, . . . , en〉 be an arbitrary member of E. Then E coincides
with the set of values of the primitive recursive function

g(z) =

{
〈t(n+1)

1 (z), . . . , t(n+1)
n (z)〉, if f

(
t
(n+1)
1 (z), . . . , t(n+1)

n (z), t(n+1)
n+1 (z)

)
=1;

〈e1, . . . , en〉, if not.

��
4.19. Corollary.
(a) Finite sets and their complements in (Z+)n are decidable.
(b) Every partial function from (Z+)m to (Z+)n with a finite domain of

definition is recursive and computable.

In fact, the one-point set {a} ⊂ Z+ is a level for a suitable sum of two step
functions, and its complement is a level for another such sum. Decidability is
preserved under finite union and intersection, so we have (a) for n = 1. Then
the isomorphism τ (n) allows us to infer this result for all n.

This also implies (b), since the graphs of the mappings in (b) are finite, and
therefore enumerable.

5 Elements of Recursive Geometry

5.1. Let E ⊂ (Z+)m be an enumerable set. We consider the structure on E
given by the following data:

(a) E = {E′ |E′ ⊂ E,E
′

is enumerable}.
(b) For every E

′ ∈ E ,R(E
′
) = {f |D(f) = E

′
, f : E

′ → Z+ is recursive}.

We let R = the set of pairs 〈E′
,R(E

′
)〉, E′ ∈ E .

We shall show that the structure {E ,R} has much in common with the
structure “a topological space together with a sheaf.” This allows us to find
natural interpretations for certain well-known results about enumerable sets,
and to ask new questions suggested by analogies with other geometrical theories.

We begin with some simple observations.
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5.2. E is a lattice, i.e., it is closed with respect to finite unions and intersections.
Since E is not closed with respect to arbitrary infinite unions, we cannot

consider E as the system of open subsets of E in some topology. Nevertheless,
in Section 5.9 below we show that E is stable with respect to an important class
of infinite unions. We shall say that E determines a quasitopology on E (which
has properties similar to those of Grothendieck topologies, but does not satisfy
all the axioms of the latter).

5.3. Let E
′
, E′′ ∈ E and E

′ ⊂ E′′. Then the restriction of functions to E
′
gives

a mapping R(E′′) → R(E
′
) : f �→ f |E′ .

In fact, let cE′ ∈ R(E
′
) and cE′ = 1 on E

′
. Then f |E′ = fcE′ is recursive

whenever f and cE′ are.

5.4. Let E
′

=
⋃n
k=1 Ek, where E

′
, Ek ∈ E. Suppose that the fk are in R(Ek)

and are compatible on intersections:

∀i, j � n, fi|Ei∩Ej = fj |Ei∩Ej .

Then there exists an (obviously unique) function f ∈ R(E
′
) such that ∀k �

n, f |Ek
= fk.

We need only verify that f ∈ R(E
′
), since there obviously exists a function

f : E
′ → Z+ that is “glued together” from the fk. But the graph of f is the

union of the finitely many enumerable graphs Γfi ⊂ E
′ × Z+, and so is itself

enumerable. We then use Proposition 4.15.
The results 5.3 and 5.4 allow us to consider R as a sheaf on the

quasitopology E .

5.5. Let E1 and E2 be enumerable sets, and let f : E1 → E2 be a recursive
function. Then f induces a morphism of the corresponding quasitopologies with
sheaves in the following sense:

(a) If E
′ ⊂ E2 is enumerable, then f−1(E

′
) ⊂ E1 is enumerable.

(b) For every E
′ ⊂ E2, composition with f determines a mapping

f∗
E′ : R(E

′
) → R

(
f−1(E

′
)
)
.

The first part follows because cf−1(E′) = cE′ ◦ f is recursive whenever cE′ .
and f are; the second part is obvious.

One might get the impression that the pair 〈E ,R〉 completely characterizes
E independently of the embedding E ⊂ (Z+)m. However, this is not the case.

5.6. Proposition. Let E1 and E2 be enumerable infinite sets. Then there exists
a bijection f : E1→̃E2 such that f and f−1 are (partial) recursive. f induces
an isomorphism 〈E1,R1〉→̃〈E2,R2〉.

Proof. We establish the following more precise facts:

(a) If E ⊂ Z+ is infinite and decidable, then there exists a general recursive
bijection f : Z+→̃E for which f−1 is (partial) recursive and is an increasing
function. The converse is also true.
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(b) If E ⊂ Z+ is infinite and enumerable, then there exists a general recursive
bijection f : Z+→̃E with f−1 (partial) recursive.

First suppose E is decidable, and let g(x) = 2 for x ∈ E, g(x) = 1 for
x �∈ E, and h = cE′ . We set

f(z) = min

⎧⎨⎩y
∣∣∣∣∣
(

y∑
x=1

g(x)− y − z
)2

+ 1 = 1

⎫⎬⎭ = the z th element of E.

It is easy to see that

f−1(x) =

(
x∑
y=1

g(y)− x
)
h(x)

⎧⎪⎨⎪⎩
is equal to the index of x
as an element of E, if x ∈ E;
is not defined, otherwise.

Now suppose E is enumerable. By Corollary 4.18, there exists a primitive
recursive function g : Z+ → E whose image coincides with E. We shall adjust
g so that it becomes bijective. We set

F = {k ∈ Z+|∀∀∀i < k, g(i) �= g(k)}.

This set is decidable, since it is the 1-level of the following primitive recursive
function h:

h(1) = 1; h(k) =
k−1∏
i=1

s((g(i)− g(k))2 + 1), for k � 2;

s(x) =

{
1, for x � 2,
2, for x = 1.

By the previous result, there exists a recursive bijection g
′
: Z+ ∼→ F . Let

f = g ◦ g′
. Since g|F : F ∼→ E is a bijection, it follows that f : Z+ ∼→ E is also

a bijection. The inverse function is partial recursive because

f−1(x) = min{y|(f(y)− x)2 + 1 = 1}.

The proposition is proved. ��

Because of this result we usually consider the embedding E ⊂ (Z+)m to
be an essential element of the structure on E. In particular, we call E1 and
E2 isomorphic if there exists a bijection between them that is induced by a
recursive bijection of the ambient spaces.

The complete classification of enumerable sets up to isomorphism is not
known, but many subtle results have been obtained in the theory of “reducibil-
ities.” We shall only go so far as to show, using a theorem that will be proved
in the next chapter, that not all enumerable sets are decidable.
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5.7. Families. Suppose that m � 0 and B is a set. By a family of m-sets (or an
m-family) over the base B we mean any mapping B → P((Z+)m). If Ek ⊂
(Z+)m is the image of k ∈ B under this mapping, we also denote this family
by {Ek}. We call the set E = {〈x, k〉|x ∈ Ek} ⊂ (Z+)m × B the total space of
the family.

Similarly, we call a mapping B → {partial functions from (Z+)m to Z+} a
family of m-functions over the base B. We call the function f : 〈x, k〉 �→ fk(x)
for x ∈ D(fk) the total function of the family.

A family of m-sets (resp. m-functions) is said to be enumerable if B ⊂ (Z+)n

for some n and if the total space is enumerable in (Z+)m × (Z+)n (resp. the
total function is partial recursive on (Z+)m × (Z+)n).

If {Ek} is enumerable, then the set {k ∈ B|Ek is nonempty} is enumerable,
since it is a projection of the total space E. Each of the Ek is enumerable, since
it is the intersection E ∩ (Z+)m × {k}.

Similarly, if {fk} is enumerable, then the set {k ∈ B|fk is not the nowhere
defined function} is enumerable, since it is a projection of the domain of
definition of the total function f . Each of the fk is partial recursive, since
it is the restriction of f to the enumerable set D(f) ∩ (Z+)m × {k}.

If {fk} is an enumerable family of m-functions, then {D(fk)} is an
enumerable family of m-sets (with total space D(f)), and {Γfk} is an enu-
merable family of (m+ 1)-sets (with total space Γf , or more precisely, Γf after
a permutation of its factors).

An enumerable family {Ek} (respectively {fk}) is said to be versal if
every enumerable m-set (resp. any partial recursive m-function) is among the
elements of the family. (The word “versal” is borrowed from algebraic geom-
etry, after removing the prefix “uni” which would indicate that each term in
the family could occur only once.) In §8 of the next chapter we show that
versal families exist for each m. This is one of the central results of the
theory, since total spaces and total functions of versal families are the starting
point

for practically all investigations of undecidability. Here we limit ourselves to the
simplest and most fundamental application:

5.8. Theorem. Let {Ek} be a versal family of 1-sets over the base B ⊂ Z+.
Then the set

F = {k|k ∈ Ek}

is enumerable, but is not decidable.

Proof. Let E ⊂ Z+ × Z+ be the total space of the family. Then F = the
projection of E ∩ (diagonal in Z+ × Z+) onto the first factor, and therefore is
enumerable.

On the other hand, for every k ∈ B we have F = Z+\F �= Ek, since k
belongs to either F or Ek, but not to both. Since {Ek} is a versal family, F
cannot be enumerable. The theorem is proved. ��
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We now show how to use enumerable families to strengthen the results in
5.2 and 5.4. We return to the notation at the beginning of the section.

5.9. E is closed with respect to taking the union of the elements of any enumer-
able family of subsets of E.

In fact, suppose that {E′
k} is such a family and E

′
is its total space, where

E
′ ⊂ (Z+)m × (Z+)n. Then⋃

k∈B
E

′
k = the projection of E

′
on (Z+)m.

5.10. Suppose that {fk} is an enumerable family of partial functions on E,
E

′
k = D(fk), E

′
=

⋃
k∈B E

′
k, and

∀∀∀i, j ∈ B, fi|E′
i∩E

′
j

= fj |E′
i∩E

′
j
.

Then there exists a unique function f ∈ R(E
′
) that is glued together from

the fk.
In fact, the graph Γf is enumerable, since it is the union of the enumerable

family of enumerable sets Γfk
.

5.11. After these remarks it is natural to consider the following system of ideas
by way of analogy with the theory of spaces with sheaves.

(a) Let E =
⋃
k∈B Ek be a covering of an enumerable set by an enumerable

family. Then for any n � 1 the family {Ek1 ∩ · · · ∩Ekn |〈k1, . . . , kn〉 ∈ Bn〉}
is also an enumerable covering of E. In fact, let E

′
= the total space of

{Ek} ⊂ E ×B, and let

E
′n = {〈x1, . . . , xn, k1, . . . , kn〉|xi ∈ Eki, i = 1, . . . , n}
≈ E

′
× · · · ×E

′
(n times).

Then the total space of the family {Ek1 ∩ · · · ∩ Ekn} is isomorphic to
(diagonal in En) × Bn ∩ E′n.

(b) Using the same notation, we define the “recursive product” RΠn ⊂
Π〈k1,..., kn〉∈Bn(Ek1 ∩ · · · ∩ Ekn ) as follows: RΠ0 = R(E),RΠn = the set
of enumerable families {f〈k1,..., kn〉} over Bn such that

f〈k1, ... , kn〉 ∈ R(Ek1 ∩ · · · ∩ Ekn ), for n � 1.

(c) For every n � 0 we have the following boundary mappings:

∂ni : R
∏

n
→ R

∏
n+1

i = 1, . . . , n+ 1 :

(∂ni (· · · f〈k1, ... , kn〉 · · · ))〈l1, ... , ln+1〉
= f〈l1, ... , li−1, li+1, ... , ln+1〉|El1∩ ··· ∩Eln+1

.

(Note that we really do not have ∂ni (RΠn) ⊂ RΠn+1.)



206 V Recursive Functions and Church’s Thesis

It is possible to associate various types of “recursive Čech cohomology
groups” of the covering

⋃
k∈B Ek to the object

R
∏
0

= R(E)
∂0
0→ R

∏
1

∂1
1

→
→
∂1
2

R
∏

2

→
→
→
· · · .

It would be interesting to study such cohomology groups. The result 5.10 shows
that this complex is “exact at the first term.”

The reader should not find it hard to imagine what other geometrical con-
cepts would look like in this context. In particular, it would be worthwhile to
study the quotients of enumerable sets by enumerable equivalence relations.
Higman’s theorem (see Chapter VIII) gives a characterization of groups in the
category of such objects.

We conclude by giving several results on the structure of E . Because
of Proposition 5.6, we need only consider subsets of Z+; that is, we take
E = {E′ |E′ ⊂ Z+, E

′
enumerable}.

5.12. Proposition. There exist enumerable subsets F ⊂ Z+ having an infinite
complement such that for any infinite E ∈ E we have F ∩E �= Ø, so that F ∩E
is infinite.

Such F are called simple. From a topological point of view they resemble
dense open sets.

Proof. Let {Ek} be a versal family of 1-sets over Z+ with total space
E ⊂ Z+ ×Z+. We set E

′
= E ∩ {〈x, k〉|x > 2k}. Since E

′
is enumerable, there

exists a primitive recursive function with image E
′
:

g = (g1, g2) : Z+ → E
′
.

Let h(k) = min{z|g2(z) = k}, let f(k) = g1(h(k)), and let F denote the set of
values of f . F has an infinite complement, since f(k) > 2k. The intersection of
F with an infinite Ek is nonempty, since any value of g1(z) when g2(z) = k lies
in Ek ∩ E

′
= Ø. The proposition is proved. ��

5.13. Proposition.

(a) The quotient lattice E/(finite sets) has nontrivial maximal elements.
(b) Every nonsimple enumerable set with an infinite complement is contained

in such a maximal element.
(c) There exist simple enumerable sets with an infinite complement that are not

contained in any nontrivial maximal set.

We refer the reader to Rogers’ book for the proof of these and many other
results.



VI

Diophantine Sets and Algorithmic
Undecidability

1 The Basic Result

1.1. In §4 of Chapter V we showed that enumerable sets are the same thing as
projections of level sets of primitive recursive functions. The projections of the
level sets of a special kind of primitive recursive function—polynomials with
coefficients in Z+—are called Diophantine sets. We note that this class does
not become any larger if we allow the coefficients in the polynomial to lie in Z.
The basic purpose of this chapter is to prove the following deep result:

1.2. Theorem (M. Davis, H. Putnam, J. Robinson, Yu. Matiyasevič). All enu-
merable sets are Diophantine.

The plan of proof is described in §2. §§3–7 contain the intricate yet com-
pletely elementary constructions that make up the proof itself; these sections are
not essential for understanding the subsequent material, and may be omitted if
the reader so desires.

In §8 we use Theorem 1.2 to prove the existence of versal families of enumer-
able sets and functions. Recall that in §5 of Chapter V this result was shown
to imply that enumerable sets exist that are undecidable, a fact we shall use in
Section 1.3 below.

In §7, which stands somewhat apart from the rest of the chapter, we define
the Kolmogorov complexity of recursive functions, establish the basic properties
of this concept, and prove that the problem of computing the complexity is
algorithmically undecidable.

In Chapter VII the following corollary of Theorem 1.2 will be used in an
essential way: enumerable sets are definable in L1Ar. In fact, by their very
definition, Diophantine sets are defined by formulas of the form ∃x1 · · · ∃xn(p),
where p is an atomic formula.

In the remainder of this section we describe the principal applications of
Theorem 1.2: settling Hilbert’s tenth problem, constructing polynomials that
take only and all prime number values in Z+, and so on.

207Yu. I. Manin, A Course in Mathematical Logic for Mathematicians, Second Edition,
 Graduate Texts in Mathematics 53, DOI 10.1007/978-1-4419-0615-1_6,
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1.3. Hilbert’s tenth problem. Hilbert stated it as follows:

Suppose we are given a Diophantine equation with an arbitrary number
of unknowns and with rational integer coefficients. Give a way in which
it is possible to determine after a finite number of operations whether
this equation is solvable in rational integers.

We show that the combination of Theorem 1.2, Theorem 5.8 of Chapter V
(which follows from Theorem 1.2), and Church’s thesis implies that this problem
is undecidable.

First of all, any natural number is the sum of four integer squares (Lagrange).
Hence f(x1, . . . , xn) = 0 is solvable in (Z+)n if and only if the equation
f(1 + Σ4

i=1 y
2
i1, . . . , 1 + Σ4

i=1y
2
in) = 0 is solvable in (Z)4n. Consequently, it is

sufficient to show that the mass problem “determining whether there are
solutions in (Z+)” (see Section 2.6 of Chapter V) is algorithmically undecidable.

Let E ⊂ Z+ be an enumerable set that is not decidable. We represent E
as the projection onto the t-coordinate of the 0-level of the polynomial ft =
f(t;x1, . . . , xn), where f ∈ Z[t, x1, . . . , xn]. The equation ft0 = 0, t0 ∈ Z+, has
a solution if and only if t0 ∈ E. By the discussion in §2 of Chapter V, the
corresponding mass problem for the family {ft} is algorithmically decidable if
and only if the characteristic function of E is computable. But by our choice of
E, this characteristic function is only semicomputable.

Thus, solvability in integers cannot be determined algorithmically even for
a suitable one-parameter family of equations. The number of unknowns in the
equation, and, in general, the codimension of the projection in Theorem 1.2, can
be reduced to 13 (Matiyasevič, Robinson). The precise minimum is not known,
although it is an interesting problem.

Finally, it should be noted that the construction of a Diophantine represen-
tation for any enumerable set E is completely effective in the sense that given
a recursive description of f with D(f) = E or of g with g(Z+) = E, we can
write out the corresponding polynomial explicitly. The same holds for the con-
struction of versal families, of an enumerable undecidable set, and so on. These
are all constructive assertions, and not simple existence theorems.

1.4. Polynomials that represent the prime numbers. The search for “explicit
formulas” for prime numbers was a traditional occupation of dedicated number
theory enthusiasts for many centuries. Euler found the polynomial x2 + x+ 41,
which takes a long series of only prime values. But it has long been known that
the set of values at integer points of a polynomial f in Z[x1, . . . , xn] cannot
consist entirely of prime numbers: for example, if p and q are two sufficiently
large primes, then the congruence f ≡ 0 mod pq can be solved (in infinitely
many ways). On the other hand, the problem becomes solvable in the class of
primitive recursive functions: the function {i �→ the ith prime} is itself primitive
recursive (see §1 of Chapter VII), but for trivial reasons.

The nontrivial statement of the problem and the problem’s solution involve
Theorem 1.2: the set of prime numbers is the set of all positive values at points
in (Z+)n of a certain polynomial in Z[x1, . . . , xn] (or, if we prefer, n may be
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replaced by 4n; see the reduction step in 1.3). Matiyasevič showed that there is
a suitable polynomial of degree 37 in 24 variables.

This is actually a general result that has nothing to do with the specific
properties of prime numbers:

1.5. Proposition. Let E ⊂ Z+ be a Diophantine set. Then there exists a poly-
nomial g ∈ Z[x0, . . . , xn] such that E coincides with the set of positive values of
g at points in (Z+)n+1.

Proof. Let E be the projection of the 0-level of the polynomial f(x0, x1, . . . , xn)
onto the x0-coordinate. We set

g = x0[1− f2(x0, x1, . . . , xn)].

Clearly, the positive values of g are precisely the elements of E. ��
It remains only to use the fact that the set of prime numbers is decidable,

and hence Diophantine by Theorem 1.2.
The following sets are also sets of positive integer values of polynomials:

1.6.The sequences {1, 10, 100, . . . , 10k, . . . } and {1, 22, 333
, . . . , nn

n···
n

(n times), . . . }.
It is amazing that the values of the corresponding polynomials can drop to

zero and below in neighborhoods of points where these values are so large.

1.7. The Fermat set {n|n > 2 and xn + yn+ zn = 0 is solvable in Z}. Thus, the
variable n can be moved from the exponent to the coefficients of a Diophantine
equation.

1.8. The set {10ε1, 102ε2, . . . , 10nεn, . . .}, where εi is the ith digit after the deci-
mal point in the decimal expansion of e (or π or 3

√
2 , or any other “computable”

irrational number).

1.9. The set of all partial fractions in the continued fraction expansion of e, or
π, or 3

√
2.

We recall that in the case of 3
√

2 it is not known whether this set is finite or
infinite.

These examples show that many number-theoretic questions reduce to prob-
lems of the solvability of Diophantine equations. In Chapter VII we shall
see that in a certain sense, “almost all of mathematics” reduces to such
problems.

2 Plan of Proof

2.1. In this section we introduce some auxiliary notions and give the plan of
proof for Theorem 1.2.

We shall temporarily introduce a class of sets that are intermediate
between enumerable and Diophantine sets. In order to define this class, we
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consider the map that to every subset E ⊂ (Z+)n associates the set F ⊂ (Z+)n

that is given by the following rule:

〈x1, . . . , xn〉 ∈ F ⇔ ∀k ∈ [1, xn], 〈x1, . . . , xn−1, k〉 ∈ E.

We shall say that F is obtained from E by applying the bounded universal
quantifier to the nth coordinate. We define similarly the operation of applying
the bounded universal quantifier to any coordinate.

2.2. Definition-Lemma. Consider the following three classes of subsets of
(Z+)n for each n.

(I) Projections of level sets of primitive recursive functions.
(II) The least class of sets that contains the level sets of polynomials with

integer coefficients and that is closed with respect to taking finite direct
products, finite unions, finite intersections, projections, and applying the
bounded universal quantifier.

(III) Projections of level sets of polynomials with integer coefficients.

The following assertions hold for these classes:

(a) The class (I) coincides with the class of enumerable sets, and the class (III)
coincides with the class of Diophantine sets. We shall call sets in the class
(II) D-sets.

(b) (I) ⊃ (II) ⊃ (III).

Proof.

(a) In Theorem 4.3 of Chapter V we showed that the class of primitive
enumerable sets coincides with the class of enumerable sets. The rest of (a)
merely consists of definitions.

(b) Only the inclusion (II) ⊂ (I) is not completely obvious. First of all, the
m-level set of a polynomial f is the same as the 1-level set of the primitive
recursive function (f−m)2+1. Hence, to verify (II) ⊂ (I) it suffices to show that
the class (I) is closed with respect to (finite) direct product, union, intersection,
and the bounded universal quantifier. All except for the last of these were
established in Lemma 4.8 of Chapter V.

Finally, suppose F is the image of a primitive enumerable set E under the
bounded universal quantifier:

〈x1, . . . , xn−1, xn〉 ∈ F ⇔ ∀k � xn, 〈x1, . . . , xn−1, k〉 ∈ E.

Starting with the function f(x1, . . . , xn−1, xn; y1, . . . , ym) whose 1-level projects
onto E, we want to construct a function g whose 1-level projects onto F .
A natural idea is to consider as an approximation to g the product

xn∏
k=1

f(x1, . . . , xn−1, k; y1k, . . . , ymk),

where the yik are “independent variables.” The only problem is that the number
of arguments of this “function” increases with xn. To deal with this, we apply
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the Gödel function Gd(k, t), which was defined in Section 4.9 of Chapter V.
The function g will now depend on x1, . . . , xn and on m additional arguments
t1, . . . , tm:

g(x1, . . . ,xn; t1, . . . , tm)

=
xn∏
k=1

f(x1, . . . , xn−1, k; Gd(k, t1), . . . ,Gd(k, tm)).

This function is primitive recursive, because the kth factor is obtained from f
and Gd by substitution and identifying arguments, and then g is constructed
from such factors by recursion.

We now verify that the set F is the projection of the 1-level of g onto the
〈x1, . . . , xn〉-coordinates. In fact, if g(x1, . . . , tm) = 1, then for all 1 � k � xn
we have f(x1, . . . , xn−1, k,Gd(k, t1), . . . ,Gd(k, tm)) = 1, i.e., for all 1 � k � xn
the point 〈x1, . . . , xn−1, k〉 belongs to E. This means that 〈x1, . . . , xn〉 ∈ F .

Conversely, if 〈x1, . . . , xn〉 ∈ F , then for 1 � k � xn we can lift the point
〈x1, . . . , xn−1, k〉 to the 1-level of f . Let the y-coordinates of the resulting point
be y1,k, . . . , ym,k. We solve the following system of equations for the ti:

Gd(k, ti) = yi,k, for all 1 � k � xn.

This is possible by the fundamental property of Gd. The resulting values for
the ti, along with x1, . . . , xn, make g equal to one. This completes the proof of
Lemma 2.2. ��

2.3. The plan for the rest of the proof of Theorem 1.2 is as follows. In §3 we
show that the classes (I) and (II) coincide, and in §§4–7 we show that (II) and
(III) coincide.

2.4. Remark. In the course of proving Lemma 2.2, we obtained the following
facts, which should always be kept in mind in what follows:

(a) In the definitions of the classes (I)–(III) we may always replace “level sets”
by “1-level sets” (by going from f to (f −m)2 + 1).

(b) All of the classes (I)–(III) are closed with respect to (finite) products, in-
tersections, unions, and also projections. (The proof of this for the class (I)
in Lemma 4.8 of Chapter V is also applicable to the class (III).)

We encounter much greater difficulty in treating the bounded universal
quantifier. Indeed, the most technical part of the proof in §§4–7 is concerned
with showing that the class of Diophantine sets is closed with respect to the
bounded universal quantifier.

3 Enumerable Sets Are D-Sets

Let f : (Z+)n → Z+ be a primitive recursive function. Its 1-level can be repre-
sented as the projection onto the first n coordinates of the set Γf∩[(Z+)n×{1}],
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where Γf is the graph of f . Thus, an enumerable set can be obtained as a
projection of the intersection of the graphs of two primitive recursive functions.
Since, by definition, the class of D-sets is closed with respect to projections and
intersections, the assertion in the title of this section follows from the following
fact:

3.1. Proposition. The graphs of primitive recursive functions are D-sets.
Proof. The graphs of the basic functions are Diophantine. The stability
of the property of graphs “being D-sets” relative to the composition and jux-
taposition of functions is verified by the same arguments as in the proof of
Lemma 4.8 of Chapter V. It remains to prove the stability under recursion.
We shall first of all need information about the graph of Gödel’s function. Here
it is more convenient to use gd instead of Gd.

3.2. Lemma. The graph of the Gödel function gd(u, k, t) = rem(l + kt, u) is
Diophantine, and a fortiori, a D-set.

Proof. The set

Γgd = {〈u, k, t, γ〉|γ is the remainder when u is divided by 1 + kt}
is the intersection of the following two sets in (Z+)4:

E1 : γ � 1 + kt;
E2 : u− γ � 0 and is divisible by 1 + kt.

Both E1 and E2 are Diophantine. In fact, E1 is a projection of the 0-level of
the polynomial 2 + kt − γ − y1, and E2 is a projection of the 0-level of the
polynomial u− γ − (1 + kt)(y2 − 1). The lemma is proved. ��

3.3. Corollary. Let f and g be functions of n and n+2 arguments, respectively,
whose graphs are D-sets. Then the following equations determine D-sets in the
(x1, . . . , xn+1, u, t, . . .)-coordinate space (where any additional coordinates may
follow the t):

E : gd(u, 1, t) = f(x1, . . . , xn);
F : gd(u, xn+1 + 1, t) = g(x1, . . . , xn+1, gd(u, xn+1, t)).

Proof. Introducing extra coordinates after the t amounts to taking the direct
product with (Z+)p, and this, of course, takes D-sets to D-sets.

E can be represented as a projection of the intersection of the sets
gd(u, k, t) = w, f(x1, . . . , xn) = w, and k = 1 (where k and w are auxiliary
coordinates). Since Γgd and Γf are D-sets, the same is true for E.

Similarly, F can be represented as a projection of the intersection of the sets

gd(u, xn+1 + 1, t) = w1,

gd(u, xn+1, t) = w2,

g(x1, . . . , xn+1, w2) = w1.

These are D-sets, because Γg and Γgd are D-sets. ��
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3.4. Proof of Proposition 3.1. Recall that it remains to verify the following
assertion: Let h be the function defined recursively from functions f and g by
the equations

h(x1, . . . , xn, 1) = f(x1, . . . , xn),
h(x1, . . . , xn, k + 1) = g(x1, . . . , xn, k, h(x1, . . . , xn, k));

then the graph Γh,

〈x1, . . . , xn+1, η〉 ∈ Γh ⇔ η = h(x1, . . . , xn+1),

is a D-set whenever the graphs Γf and Γg are D-sets.
First step. We set Γh = Γ1∪Γ2, where xn+1 = 1 on Γ1 and xn+1 � 2 on Γ2.

Since

〈x1, . . . , xn+1, η〉 ∈ Γ1 ⇔ xn+1 = 1 and η = f(x1, . . . , xn),

it follows that Γ1 is the intersection of Γf ×Z+ and a D-set, and therefore is a
D-set. It remains to verify that Γ2 is also a D-set.

Second step. In the (x1, . . . , xn+1, η, u, t)-coordinate space we consider the
sets

E1 : η = gd(u, xn+1, t),
E2 : gd(u, 1, t) = f(x1, . . . , xn),
E3 : xn+1 > 1, gd(u, k, t) = g(x1, . . . , xn, k − 1, gd(u, k − 1, t))

for all 2 � k � xn+1.

It is easy to see that Γ2 = pr ∩3
i=1 Ei. In fact, as in §4 of Chapter V, we obtain

inclusion in one direction by comparing E2 and E3 with the inductive definition
of h, and in the other direction by suitably choosing the parameters u and t in
Gödel’s function. Thus, it remains to show that the Ei are D-sets.

Third step. E1 is the graph of gd with some additional coordinates. E2 was
shown to be a D-set in the proof of Corollary 3.3.

Finally, E3 is “almost” obtained from the set F in Corollary 3.3 by applying
the bounded universal quantifier to the xn+1-coordinate. More precisely (for
brevity, we ignore the η-coordinate);

〈x1, . . . , xn+1, u, t〉 ∈ E3 ⇔ ∀k ∈ [2, xn+1], 〈x1, . . . , xn, k − 1, u, t, 〉 ∈ F
⇔ ∀k ∈ [1, xn+1 − 1], 〈x1, . . . , xn, k, u, t, 〉 ∈ F.

Consequently, if we apply to F the bounded universal quantifier in the xn+1-
coordinate, we obtain a D-set that is the same as E3 with the xn+1-coordinates
of all its points decreased by 1. So it remains to see that the operation of shifting
back by 1 preserves the property of “being a D-set,” and this follows easily from
the definitions. The proof is complete. ��
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4 The Reduction

4.1. The next three sections are devoted to proving that the class of D-sets
coincides with the class of Diophantine sets. As noted at the end of §2, it
suffices to show that the class of Diophantine sets is closed with respect to the
bounded universal quantifier.

Let f(x1, . . . , xn, k, y1, . . . , ym) be any nonconstant polynomial with integer
coefficients. f will be fixed for the duration of this section. Let d be the degree
of f , and let c be the sum of the absolute values of its coefficients.

We define the set E by the condition

〈x1, . . . , xn, y〉 ∈ E ⇔ ∀k � y ∃〈y1, . . . , ym〉,
f(x1, . . . , xn, k, y1, . . . , ym) = 0.

We want to show that E is Diophantine. In this section we prove the following
reduction step, which is due to Davis, Putnam, and Robinson.

4.2. Proposition. E is Diophantine if the following three sets are Diophantine:

x1 = xx3
2 ;

x1 = x2!;

x1

x2
=

(
x3/x4

x5

)
, x3 � x4x5,

where
(
n
k

)
= n(n− 1) · · · (n− k + 1)/k! is the “binomial coefficient.”

The proof of this and all subsequent propositions of this type follows a
standard pattern. To show that E is Diophantine, we introduce auxiliary sets
Ei with the following properties:

(a) E =
N⋂
i=1

Ei;

(b) the Ei are Diophantine.

But usually we are not able to establish directly that all the Ei are Diophantine,
so we apply the same procedure to certain of the Ei. Thus, the proof that E is
Diophantine has a treelike pattern.

The exposition of each step will consist of the following stages: the
introduction of auxiliary variables, which disappear when we project; explicit
construction of the sets Ei; the proof of the inclusion E ⊂ pr ∩Ni=1 Ei; and the
proof of the inclusion E ⊃ pr ∩Ni=1 Ei.

4.3. Proof of Proposition 4.2. We denote the auxiliary variables by the
symbols Y , N , K, Y1 , . . . , Ym. We introduce the sets Ei in the
〈x1, . . . , xn, y, Y,N,K, Y1, . . . , Ym〉-space by the following relations:

E1 : N � c · (x1 · · ·xnyY )d, Y < Y1, . . . , Y < Ym
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(intuitively speaking, the right side of the first inequality gives a rough estimate
for the value of the polynomial f at the point 〈x1, . . . , xn, y, y1, . . . , ym〉 if all
yi � Y ).

E2 : 1 +KN ! =
y∏
k=1

(1 + kN !)

(this is a “large modulus”; f = 0 will be replaced by divisibility by this
modulus).

E3 : f(x1, . . ., xn,K, Y1, . . . , Ym) ≡ 0 mod(1 +KN !);

E3+i :
∏
j<Y

(Yj − j) ≡ 0 mod(1 +KN !), i = 1, . . . ,m.

We define the set E
′

as ∩m+3
i=1 Ei.

Proof of the inclusion E ⊂ pr E
′
. Given a point 〈x1, . . . , xn, y〉 ∈ E, we

must choose values for the other coordinates so that the relations E1, . . . , Em+3

are fulfilled.
By the definition of E, each point 〈x1, . . . , xn, k〉, k � y, can be lifted to the

0-level of f :
f(x1, . . . , xn, k, y1k, . . . , ymk) = 0.

For Y we take the maximum of y and the yik. Then, as before, we find the Yi
and N by solving the system of Gödel equations

gd(Yi, k,N !) = yik, for all 1 � k � y.

The proof of Gödel’s lemma shows that the Yi and N may be taken arbitrarily
large, in particular, so as to satisfy E1. The number K is uniquely determined
by E2.

All the choices have now been made. The relation E3+i holds because by
the definition of Yi and gd, we can find a number Yi − j with j � Y , namely
j = yik, such that Yi− j ≡ 0 mod(1+kN !), for every k � y. Hence, the product
on the left in E3+i is divisible by all the 1 + kN !, 1 � k � y, which are pairwise
relatively prime, since N � y by E1. Therefore, this product is divisible by
1 +KN !.

Finally, to verify E3 we note that E2 implies the congruence K ≡ k mod
(1 + kN !), 1 � k � y, because (1 + KN !)− (1 + kN !) ≡ 0 mod(1 + kN !). But
then, since yik ≡ Yi mod(1 + kN !) by our choice of Yi, we find that

f(x1, . . . , xn,K, Y1, . . . , Ym) ≡ f(x1, . . . , xn, k, yik, . . . , ymk)
≡ 0 mod(1 + kN !).

Since the moduli 1 + kN ! are pairwise relatively prime, this congruence
implies E3.

Proof of the inclusion pr E
′ ⊂ E. Given a point

〈x1, . . . , xn, y, Y,N,K, Y1, . . . , Ym〉
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whose coordinates satisfy the relations E1, . . . , Em+3, we must find a vector
〈y1k, . . . , ymk〉 for each k � y such that

f(x1, . . . , xn, k, y1k, . . . , ymk) = 0.

To do this we let pk denote any prime divisor of 1 + kN !, and we set

yik = the remainder when Yi is divided by pk.

We claim that these yik give us the required equality. In fact, E3 implies that
f(x1, . . . , xn, k, y1k, . . . , ymk) ≡ 0 mod pk. It suffices to show that the number
on the left is less than pk. We have

pk divides
∏
j�Y

(Yi − j) byE3+i

⇒ pk divides Yi − j for some j � Y

⇒ yik = the remainder when Yi is divided by pk � Y

⇒ f(x1, . . . , xn, k, y1k, . . . , ymk) � c(x1 · · ·xnyY )d � N < pk,

where the second inequality in the last line follows from E1, and the third
inequality follows because pk divides 1 + kN !.

Conclusion of the proof. It remains to show that the sets E1, . . . , Em+3

are Diophantine if the sets in Proposition 6.1 are Diophantine. In fact, if we
trivially introduce new variables and make substitutions, we can first reduce
the verification that all the Ei are Diophantine to showing that the following
sets are Diophantine:

x1 = x2!;

x1 =
∏
k�x2

(1 + kx3);

x1 =
∏
j�x3

(x2 − j), x2 > x3.

It then remains to notice that the second of these relations can be written in
the form

x1 = xx2
3

[
1
x3

+ x2

x2

]
,

and the third relation can be written as

x1 = x3!
(
x2 − 1
x3

)
, x2 > x3.

This completes the proof of Proposition 4.2. ��
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5 Construction of a Special Diophantine Set

5.1. In this section we begin the proof that the three sets in Proposition 4.2
are Diophantine. In order that the reader may better appreciate this stage in
the proof, we mention that the most troublesome obstacle here is the rapid
growth of one of the coordinates in comparison to the others (for example,
x1 = x2!). J. Robinson had the following key idea. She proved that if we
know that any specific set in (Z+)2 is Diophantine and has one coordinate that
grows faster than any power of the other but slower than, say, xx (for example,
exponentially), we may then conclude that all enumerable sets are Diophantine.
After this, Matiyasevič and Čudnovskǐı were able to show that a certain set of
that type (connected with Fibonacci numbers) is Diophantine. For a history of
the question, see Matijasevič’s article “Diophantine Sets” in Uspehi Mat. Nauk,
vol. XXVII, No. 5 (1972) (translated in Russian Math. Surveys).

In this section we give a construction that is an improved version of
the original construction. Its idea is based on the following observation. Let
x2 − dy2 = 1 be Pell’s equation (where d ∈ Z+ is not a perfect square). Its
solutions 〈x, y〉 ∈ (Z+)2 form a semigroup with composition law

(x1 + y1
√
d)(x2 + y2

√
d) = x3 + y3

√
d.

This is a cyclic semigroup. That is, let 〈x1, y1〉 be the solution with the least first
coordinate. Then any other solution has the form 〈xn, yn〉, where n ∈ Z+, and

xn + yn
√
d = (x1 + y1

√
d)n.

We call n the number of the solution 〈xn, yn〉.
The coordinates xn and yn grow exponentially with n, so that the set of

solutions of Pell’s equation, and also the projections of this set on the x- and
y-axes, are Diophantine sets having logarithmic density. This is not yet enough:
we still have the problem of including the solution number n among the
coordinates of a Diophantine set. Only then can we apply Robinson’s tech-
nique. This is what will be done below.

5.2. Notation. We consider Pell’s equation with variable d. Its first solution
generally varies as a function of d in an uncontrollable fashion, so that it is
convenient to choose only those d whose first solutions have the simple special
form 〈a, 1〉, a ∈ Z+. Obviously, then d = a2 − 1.

We shall call the equation x2− (a2− 1)y2 = 1 the a-equation. We define the
two sequences xn(a) and yn(a) as the coordinates of its nth solution:

xn(a) + yn(a)
√
a2 − 1 =

(
a+

√
a2 − 1

)n
.

For each n, a formal definition of xn(a) and yn(a) as polynomials in a can easily
be given by induction on n. Then the expressions xn(a) and yn(a) will make
sense for all n ∈ Z and a ∈ C. In particular,

xn(1) = 1, yn(1) = n;

and all the formulas given below remain true.
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The basic result of this section is the following:

5.3. Proposition. The set

E : y = yn(a), a > 1;

in the 〈y, n, a〉-space is Diophantine.

The proof uses the elementary number-theoretic properties of the sequences
xn(a) and yn(a), most of which will be verified at the end of the section (see
5.8). The idea for determining n in a Diophantine way from 〈y, a〉 is to observe
that yn(a) ≡ n mod(a − 1) (Lemma 5.4). This uniquely determines n as long
as n < a− 1. To pass to the general case, we introduce an auxiliary A-equation
with A large, and find formulas for its nth solution (using y) in which n appears
in only a Diophantine context.

Formally, the proof that E is Diophantine follows the pattern described in
4.2. In addition to the basic variables y, n, a, we introduce six auxiliary variables:
x, x1, y1, A, x2, y2. We set

E1 : y � n, a > 1;

E2 : x2 − (a2 − 1)y2 = 1;

E3 : y1 ≡ 0 mod 2x2y2;

E4 : x2
1 − (a2 − 1)y2

1 = 1;

E5 : A = a+ x2
1(x2

1 − a);

E6 : x2
2 − (A2 − 1)y2

2 = 1;

E7 : y2 − y ≡ 0 mod x2
1;

E8 : y2 ≡ nmod 2y.

Let E
′

= ∩8
i=1Ei. We show that pr E

′
= E.

The inclusion E ⊂ prE
′
. Given 〈y, n, a〉 ∈ E, we must find values for the

other variables such that E1, . . . , E8 hold. As before, we shall not introduce any
new symbols for these values; after we choose, say, a value for x, the letter x
will become the name for this value.

E1 is automatically satisfied: yn(a) � n for all a � 1, n � 1 (induction on
n). We find x uniquely from E2 : x = xn(a). We take 〈x1, y1/2x2y2〉 to be
any solution of the Pell equation X2 − (a2 − 1)(2x2y2)2Y 2 = 1; this gives E4.
A is found uniquely from E5. We take 〈x2, y2〉 to be the nth solution of the
A-equation. Now all choices have been made. To verify E7 and E8 we need two
lemmas.

5.4. Lemma. yk(a) ≡ k mod(a− 1).

5.5. Lemma. If a ≡ b mod c, then yn(a) ≡ yn(b) mod c.

These lemmas will be proved in 5.8.
We use these lemmas as follows. From E5 we obtain

A = a+ (1 + (a2 − 1)y2
1)(1 + (a2 − 1)y2

1 − a) ≡ 1 mod 2y,
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because of E3. Lemma 5.4 then gives y2 = yn(A) ≡ n mod 2y; this is E8.
Lemma 5.5 gives yn(A) ≡ yn(a) mod x2

1 (because of E5); this is E7.
The inclusion pr E

′ ⊂ E. From the relations E1, . . . , E8 we have only to
prove that n is the number of the solution 〈x, y〉. Note that n occurs only
in E8.

For the time being we let N,N1, and N2 denote the numbers of the solutions
〈x, y〉, 〈x1, y1〉, and 〈x2, y2〉, respectively. We shall prove that

n ≡ N or n ≡ −N mod 2y.

Since we also have y � n (by E1) and y � N (by the definition of N), it follows
that n = N , as required. The number N2 will be the “stepping stone” to get
from n to N .

First of all, as before, it follows from E5 that A ≡ 1 mod 2y, and then it
follows from the definition of N2 and Lemma 5.4 that y2 ≡ N2 mod 2y. But by
E8 we have y2 ≡ n mod 2y; hence

N2 ≡ n mod 2y.

Next, A ≡ a mod x2
1 by E5, and then y2 = yN2(A) ≡ yN2(a) mod x2

1 by
Lemma 5.5. Using E7, we have y = yN(a) ≡ y2 mod x2

1. Hence

yN (a) ≡ yN2(a) mod x2
1.

We now need two more lemmas, which will be proved in 5.8.

5.6. Lemma. If yi(a) ≡ yj(a) mod xn(a), where a > 1, then either i ≡ j or
i ≡ −j mod 2n.

5.7. Lemma. If yi(a)2 divides yj(a), then yi(a) divides j.

If we apply Lemma 5.6 with N , N2, and N1 in place of i, j, and n, and use the
last congruence proved, we obtain

N ≡ ±N2 mod 2N1.

If we apply Lemma 5.7 with N and N1 in place of i and j, and use E3, we
obtain y|N1. Hence

N ≡ ±N2 mod 2y,

and since we have already shown that N2 ≡ n mod 2y, this completes the proof.
��

5.8. Proof of the Lemmas. We shall write xn and yn instead of xn(a) and
yn(a). Using the formula

xnk + ynk
√
a2 − 1 =

(
xn + yn

√
a2 − 1

)k
,
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we find that

ynk =
∑
j�k

j≡1(mod 2)

(
k
j

)
xk−jn yjn(a2 − 1)

(j−1)/2
.

In particular,

ynk ≡ kxk−1
n yn mod (a2 − 1),

which gives Lemma 5.4 if we set n = 1. In addition, we have

ynk ≡ kxk−1
n yn mod y3

n.

If we replace nk, k, and n by n, n/k, and k, respectively, we obtain

yn ≡
n

k
x
n/k−1
k yk mod y3

k.

Since xk and yk are relatively prime, we have

yn ≡ 0 mod y2
k ⇒

n

k
≡ 0 mod yk ⇒ n ≡ 0 mod yk,

which gives Lemma 5.7.

If we write yn(a) as a polynomial in a with integer coefficients whose degree
and coefficients depend only on n, we immediately obtain Lemma 5.5. It remains
to prove Lemma 5.6.

First of all, the equation

xn±m +
√
a2 − 1 yn±m =

(
xn +

√
a2 − 1 yn

)(
xm ±

√
a2 − 1 ym

)
gives us

xn±m = xnxm ± (a2 − 1)ynym,
yn±m = ±xnym + xmyn.

Hence,

y2n±m = yn+(n±m) ≡ xn±myn mod xn ≡ ±(a2 − 1)y2
nym mod xn

≡ ∓ym mod xn,

and, similarly,

y4n±m = y2n+(2n±m) ≡ −y2n±m mod xn ≡ y±m mod xn.

This means that the class yk mod xn has period 4n as a function of k, and within
[1, 4n] its behavior is determined by its values on the first quarter-period [1, n]:

y2n±m ≡ ∓ym, y±m ≡ ±ym, for 1 � m � n.

If a � 3, it is clear that Lemma 5.6 follows from these facts and from the
inequality ym < 1

2xn for 1 � m � n, which, in turn, follows because

4y2
m < (a2 − 1)y2

n + 1 = x2
n.

If a = 2, then we only have ym < 1
2xn for m � n− 1, but this is still enough

to complete the proof of the lemma in this case. ��
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6 The Graph of the Exponential Is Diophantine

6.1. Proposition. The set
E : m = an

in the 〈m, a, n〉-space is Diophantine.

Proof. It suffices to show that E0 = E ∩ {a|a > 1} is Diophantine. If a > 1,
we easily obtain by induction on n that

(2a− 1)n � yn+1(a) � (2a)n,

in the notation of §5. Hence, for any N � 1 we have

an
(

1− 1
2Na

)n
=

(2Na− 1)n

(2N)n
� yn+1(Na)

yn+1(N)
� (2Na)n

(2N − 1)n

= an
(

1− 1
2N

)−n
.

Thus, if we choose N large enough so that both(
1− 1

2N

)−n
− 1 <

1
an

and 1−
(

1− 1
2Na

)n
<

1
an
,

then we obtain an = [yn+1(Na)/yn+1(N)] (where the brackets here and below
denote the integral part of a number). E0 is therefore a projection of the set E1:

a > 1,
0 � yn+1(Na)− yn+1(N)m < yn+1(N),

N > ?,

where a suitable lower bound for N must be inserted in place of ?, in such a
way as to keep the last relation Diophantine. An elementary calculation shows
that it suffices to set N > 4n(y + 1). The results in §5 then imply that E1 is
Diophantine if we trivially introduce the auxiliary relations

y
′

= yn+1(N) and y
′′

= yn+1(Na). ��

7 The Factorial and Binomial Coefficient Graphs
Are Diophantine

In this section we carry out the last series of arguments.

7.1. Proposition. The set

E : r =
(
n
k

)
, n � k,

in the 〈r, k, n〉-space is Diophantine.
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Here, by definition, ( nk ) = n(n − 1) · · · (n − k + 1)/k!. We shall need the
following lemma.

7.2. Lemma. If u > nk, then ( nk )= the remainder when [(u+1)n/uk] is divided
by u.

Proof. We have

(u + 1)n/uk =
n∑

i=k+1

(
n
i

)
ui−k +

(
n
k

)
+
k−1∑
i=0

(
n
i

)
ui−k.

The first sum is divisible by u, and the last sum is less than 1 if u > nk. ��

7.3. Proof of Proposition 7.1. We introduce the auxiliary variables u and
v, and take the relations

E1 : u > nk;

E2 : v = [(u+ 1)n/uk];
E3 : r ≡ v mod u;
E4 : r < u;
E5 : n � k.

Lemma 7.2 immediately implies that E = pr∩5
i=1Ei. E1 is Diophantine because

of Proposition 6.1; E3, E4, and E5 are obviously Diophantine. It also becomes
obvious that E2 is Diophantine if we write E2 in the form

(u+ 1)n � ukv < (u + 1)n + uk

and again use Proposition 6.1. This completes the proof. ��

7.4. Proposition. The set E : m = k! is Diophantine.

7.5. Lemma. If k > 0 and n > (2k)k+1, then k! =
[
nk

/
( nk )

]
. (This is proved

by some simple estimates.)

Proof of Proposition 7.4. We take the auxiliary variable n and the relations

E1 : n > (2k)k+1;

E2 : m =
[
nk/

(
n
k

)]
.

The rest is obvious (using Propositions 6.1 and 7.1). ��
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7.6. Proposition. The set

E :
x

k
=

(
p/q
k

)
, p > qk,

in the 〈x, y, p, q, k〉-space is Diophantine.

The proof that follows is a slightly more complicated version of the argument
in 7.2 and 7.3.

7.7. Lemma. Let a > 0 be an integer such that a ≡ 0 mod qkk! and a >
2p−1pk+1. Then(

p/q
k

)
= a−1

[
a2k+1(1 + a−2)p/q

]
− a

[
a2k−1(1 + a−2)p/q

]
.

This is proved using the binomial Taylor series for (1 + a−2)p/q . The
inequality a > 2p−1pk+1 allows us to throw away all the terms in the first
sum starting with the (k + 1)th and all the terms in the second sum starting
with the kth when we take the integral part. The congruence a ≡ mod qkk!
ensures that the partial sums are integers. ��

7.8. Proof of Proposition 7.6. We use the auxiliary variables a, u1, u2,
and v, and the following relations:

E1 : a ≡ 0 mod qkk!;

E2 : a > 2p−1pk+1;

E3 : u1/u2 = a−1
[
a2k+1(1 + a−2)p/q

]
;

E4 : v = a
[
a2k−1(1 + a−2)p/q

]
;

E5 : xu2 = y(u1 − vu2).

It follows from Lemma 7.7 that E = pr ∩5
i=1 Ei. E1 and E2 are immediately

seen to be Diophantine from Propositions 6.1 and 7.1. E3 and E4 are shown to
be Diophantine just as at the end of 7.3, except that this time we must raise
the inequalities to the qth power after clearing denominators. E5 is obviously
Diophantine.

This concludes the proof of Theorem 1.2, that enumerable sets coincide with
Diophantine sets. ��

8 Versal Families

Versal families were defined and first used in Section 5.7 of Chapter V. The pur-
pose of this section is to prove their existence, using the result that enumerable
sets are Diophantine (Theorem 1.2).

8.1. Theorem. For any m � 0, versal enumerable families of m-sets and
m-functions over the base Z+ exist and can be effectively constructed.
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Proof. We divide the proof into several steps. Recall that τ (2) : (Z+)2 ∼⇒ Z+

is the primitive recursive isomorphism constructed in §4 of Chapter V, and
〈t(2)1 , t

(2)
2 〉 is its inverse. We shall write t1 and t2 for brevity.

(a) A versal family of polynomials in Z+[x1, x2, x3, . . . ]. We define polyno-
mials f [l] ∈ Z+[x1, x2, x3, . . . ] by recursion on l ∈ Z+, l � 4:

f [1] = f [2] = f [3] = 1;
f [4k] = k;

f [4k + 1] = xk;
f [4k + 2] = f [t1(k)] + f [t2(k)];
f [4k + 3] = f [t1(k)]f [t2(k)].

The definition is correct, since t1(k), t2(k) < 4k + 2. The image of the map
k �→ f [k] coincides with all of Z+[x1, x2, x3, . . . ], since it contains Z+ (in the
4k-places) and all the xk (in the 4k + 1-places), and, whenever it contains two
polynomials f [k1] and f [k2], it contains their sum (in the 4τ (2)(k1, k2)+2-place)
and their product (in the 4τ (2)(k1, k2)+3-place). (Compare with the numbering
of constructible sets by ordinals in Chapter V.)

(b) Construction of a versal 1-family over Z+. Let Ek be the projection onto
the x1-coordinate of the 0-level of the polynomial f [t1(k)] − f [t2(k)]. Since all
the elements of Z[x1, x2, x3, . . . ] can be represented as such a difference, it is
clear that the family {Ek} contains all enumerable sets.

(c) {Ek} is enumerable. We must show that the total space E = {〈i, j〉|i ∈
Ej} ⊂ Z+ × Z+ is enumerable. We write the condition i ∈ Ej in the form of
an L1-type formula, in which all the quantified variables take values in Z+. We
use the fact that f [t1(j)]− f [t2(j)] ∈ Z[x1, . . . , xj ]. We have

〈i, j〉 ∈ E ⇔i ∈ Ej ⇔ ∃x1 · · · ∃xj(x1 = i ∧ f [t1(j)] = f [t2(j)])
⇔∃t((∃x1 · · · ∃xj ∀k � j(f [k] = Gd(k, t)))
∧Gd(5, t) = i ∧Gd(t1(j), t) = Gd(t2(j), t)),

where Gd(k, t) is Gödel’s function (see §4 of Chapter V). Furthermore, by
the definition of f [k],

∃x1 · · · ∃xj∀k � j(f [k] = Gd(k, t))
⇔ ∀k � j((k � 3 ∧Gd(k, t) = 1) ∨ ∃l((k = 4l ∧Gd(k, t) = l)

∨ (k = 4l+ 2 ∧Gd(k, t) = Gd(t1(l), t) + Gd(t2(l), t))
∨ (k = 4l + 3 ∧Gd(k, t) = Gd(t1(l), t)Gd(t2(l), t)))).

Here the part of the formula after ∃l defines a decidable set in 〈k, t, l〉-space. The
quantifier ∃l projects this set onto the 〈k, t〉-coordinates, thereby taking it to
an enumerable set, and the bounded quantifier ∀k � j preserves enumerability
(see §2). Returning to the formula that defines E, we find that the set we have
constructed so far must be intersected with two other decidable sets and then
projected along the t-axis, so that the result is again enumerable.
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(d) Construction of a versal m-family over Z+. The case m = 0 is trivial,
and the case m = 1 has already been discussed. The case m � 2 reduces to the
case m = 1 using the isomorphism τ (m) : (Z+)m ∼⇒Z+. In fact, let Ek = E

(1)
k

be a versal 1-family, and set E(m)
k = (τ (m))−1(E(1)

k ). The family {E(m)
k } is

enumerable because

E(m) = {〈x, k〉|x ∈ E(m)
k } =

{
〈(τ (m))−1(x), k〉|x ∈ E(1)

k

}
= (τ (m), pr11)−1E(1).

(e) Construction of a versal family of 1-functions. We take a versal 2-family
{E(2)

k } with total space

E(2) = {〈x, y, k〉|〈x, y〉 ∈ E(2)
k } ⊂ (Z+)3.

Let g(x, y, k, z) be a primitive recursive function such that the projection of its
1-level onto the 〈x, y, k〉-coordinates coincides with E(2). We set

f(x, k) = t
(2)
1

(
min

{
u|g(x, t(2)1 (u), t(2)2 (u)) = 1

})
.

We claim that {fk|fk(x) = f(x, k)} is a versal family of 1-functions. The total
function is obviously partial recursive. We need only verify that every partial
recursive 1-function f occurs in the family.

Let Γf be the graph of f , and let Γf = E
(2)
k0

, where k0 ∈ Z+. We show that
f = fk0 . In fact,

〈x, f(x)〉 ∈ Γf = E
(2)
k0
⇔ 〈x, f(x), k0〉 ∈ E(2) ⇔ ∃z ∈ Z+,

g(x, f(x), k0, z) = 1.

Among the z ∈ Z+ that make g(x, f(x), k0, z) = 1, we choose the z for which
the number u given by 〈f(x), z〉 = 〈t(2)1 (u), t(2)2 (u)〉 is minimal. For this u we
have fk0(x) = t

(2)
1 (u) = f(x), which proves the claim.

(f) Construction of a versal family of m-functions. The case m = 0 is trivial.
If {f (1)

k } is a versal family of 1-functions, then for m � 2 we set

f
(m)
k (x1, . . . , xm) = f

(1)
k (τ (m)(x1, . . . , xm)),

thereby obtaining a versal family of m-functions.
The theorem is proved. ��

8.2. The choice of versal families is far from unique. If m > 1, there does not
exist a versal family that contains each function or each set exactly once (i.e.,
a universal family). Nevertheless, there are important methods of extracting
invariant information from data about the position of a function or set in a
versal family. The next section is devoted to this question.
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9 Kolmogorov Complexity

9.1. Let u = {uk} be an enumerable family of m-functions over Z+, and let f
be a partial recursive m-function. We define the complexity of f relative to the
family u as

Cu(f) =

{
min{k|uk = f}, if such a k exists;
∞, otherwise.

We call the enumerable family u (asymptotically) optimal if for any other
enumerable family v, there exists a constant cu,v > 0 such that for every partial
recursive m-function f we have

Cu(f) � cu,vCv(f).

If we take v to be any versal family, we see that an optimal family must be
versal, i.e., Cu(f) never takes the value ∞.

9.2. Theorem (Kolmogorov)

(a) For any m ≥ 0, optimal families exist and can be effectively constructed.
(b) If u and v are optimal families of m-functions, then for any m-function f,

c−1
v,u � Cu(f)/Cv(f) � cu,v.

9.3. Remarks

(a) The measure of complexity Cu(f) involves the following intuitive ideas.
In order to define any enumerable family u, it is necessary to give only a finite
amount of information, for example, a program that semicomputes the total
function of u. Therefore, in order to define a specific function f that occurs in
the family u, it suffices to give no more than

log2 Cu(f) + const

bits of information, namely, the program for u and the number of f in u.

(b) A family being optimal means that it can be used to compute any
m-function, and that the loss in using it rather than any other family to compute
a function is bounded by a constant that does not depend on the function.

(c) Finally, the inequality 9.2(b), which follows trivially from the definition
of an optimal family, shows that to within an additive term that is bounded in
absolute value, the logarithmic measure of complexity

Ku(f) = [log2 Cu(f)] + 1 (where“[ ]” = “integral part”)

does not depend on the choice of the optimal family u, and so is an asymptotic
invariant of f .
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9.4. Proof of Theorem 9.2. We first choose a recursive embedding θ :
Z+ × Z+ → Z+ that has a recursive inverse function and that satisfies the
following linear growth condition in one of its arguments:

θ(k, j) � k · φ(j), for all k, j ∈ Z+ and some suitable φ : Z+ → Z+.

For example, we could let θ1(k, j) = (2k− 1)2j with φ1(j) = 2j+1, or, following
Kolmogorov, we could let

θ2(k1k2 · · ·kr, j1j2 · · · js) = j1j1 · · · jsjs01k1 · · · kr,

where kα, jβ ∈ {0, 1} and the bar denotes the binary expansion of a number.
Here φ2(j) < const · j2, so that this function grows more slowly. (See also
Section 9.8 below.)

Now let U be any versal family of (m + 1)-functions. We define a family u
of m-functions by setting

u(x1, . . . , xm, k) = U(x1, . . . , xm, θ
−1(k)).

We show that the family u is optimal, with the following bound for the con-
stants:

cu,v � φ(CU (v)).

In fact, let f be a recursive m-function. It suffices to consider the case in which
f occurs in the family v. Then

f(x1, . . . , xm) = v(x1, . . . , xm;Cv(f))
= U(x1, . . . , xm, Cv(f);CU (v))
= u(x1, . . . , xm, θ(Cv(f), CU (v))),

so that

Cu(f) � θ(Cv(f), CU (v)) � Cv(f)φ(CU (v)).

The theorem is proved. ��

9.5. Example. A 0-function f can be identified with the single value it takes,
i.e., with a positive integer n. In this case, Theorem 9.2 gives us an almost
invariant complexity Cu(n) for the integers. We have:

(a) Cu(n) � const·n for all n, since the function “n” appears in the nth place
in the simplest versal family un(·) = n.

(b) C(n) ∼ min{2j−1(2k−1)|n is the kth value of the jth function in some versal
family of 1-functions}. (We write f ∼ g if f and g have the same domain
of definition, and f � const·g and g � const·f for suitable constants. In
relations of the type Cu(fk) ∼ g(k), we often omit the designation of the
optimal family u, which we take to be arbitrary, but fixed.)
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It is clear from (b) that the complexity of the numbers pn (the nth prime),
n2, or

nn
n···

n

(n times)

as n → ∞ is asymptotically no greater than const · n, since each of these is
the nth value of a fixed recursive function. In 9.7(b) below, we shall lower this
estimate to const · C(n).

Instead of integers, Kolmogorov and his collaborators considered finite
binary sequences and constructed a theory that showed that the most com-
plex binary sequences are those that approach random behavior. See the survey
article by A. K. Zvonkin and L. A. Levin in Uspehi Matem. Nauk, vol. XXV,
No. 6 (1970) (translated in Russian Mathematical Surveys), which contains a
large bibliography.

9.6. Proposition.

(a) Let

F = f0(f1(x1, . . . , xm), . . . , fn(x1, . . . , xm), xm+1, . . . , xp),

where the fi are recursive functions. Then

C(F ) � const ·
n∏
i=1

C(fi)

(
log

n∏
i=1

C(fi)

)n−1

if f0 is fixed and fi runs through all possible m-functions. Here const
depends on f0 and on the families used to compute the complexity, but does
not depend on f1, . . . , fn.

(b) If f0 is also allowed to vary, then
∏n
i=1 must be replaced by

∏n
i=0 and logn−1

must be replaced by logn on the right.

9.7. Special cases

(a) If, for example, we set f0 = sum2 or prod2, then we have

C(f1 + f2), C(f1f2) � const C(f1)C(f2) log(C(f1)C(f2)).

(b) If we set n = 1 and m = 0, we find that for any enumerable family {fk},

C(f(k, x1, . . . , xp)) � const C(k).

9.8. Proof of Proposition 9.6. First of all, for every n � 1 we define the
following recursive bijection with a recursive inverse:

θ(n)(k1, . . . , kn) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
the index of the n-tuple 〈k1, . . . , kn〉 if we order n-tuples

according to increasing
n∏
i=1

ki, and in alphabetical order

for fixed
n∏
i=1

ki.
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It is easy to see (by induction on n) that

θ(n)(k1, . . . , kn) � const
n∏
i=1

ki

(
log

n∏
i=1

ki

)n−1

.

We define the function Θ : (Z+)n+1 → Z+ as follows:

Θ(l1, . . . , ln+1) = θ(θ(n)(l1, . . . , ln), ln+1),

where θ is as described in 9.4.
We now consider two optimal families v(x1, . . . , xp, l) and u(x1, . . . , xm, k) of

p-functions andm-functions, respectively. We use these two families to construct
the families

W (x1, . . . , xp; k1, . . . , kn, l)
= v(u(x1, . . . , xm, k1), . . . , u(x1, . . . , xm, kn), xm+1, . . . , xp, l),

w(x1, . . . , xp, k) = W (x1, . . . , xp,Θ−1(k)).

The function F occurs in the

θ
(
θ(n)(Cu(f1), . . . , Cu(fn)), Cv(f0)

)
place in the family w. Then the estimate θ(k, j) � k · φ(j), along with the
estimate for θ(n), gives assertion (a).

We similarly obtain (b) if we replace Θ by θ(n+1) in the definition of w. ��

Remark. The function θ(n) gives us the most economical estimate for C(F )
that is symmetrical in the C(f1), . . . , C(fn). In specific situations it might make
sense to improve the estimate in certain of the C(fi) at the expense of worsening
the estimate with respect to the others; this is done by suitably changing θ. For
example, Kolmogorov’s θ gives

C(f1 + f2) � const C(f1)C(f2)2,

which is better than

const C(f1)C(f2) log(C(f1)C(f2))

if C(f2) grows much more slowly than C(f1).

9.9. Theorem. The function C(f) is not computable. More precisely, let g(k)
be any unbounded partial recursive function, and let {fk} be any enumerable
family. Then it is false that C(fk)|D(g) ∼ g(k).

Thus, C(fk) can be computable (even up to ∼) only on a set of indices k such
that there are only finitely many different functions among the functions fk;
otherwise, C(fk) is not bounded on this set.
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Proof. Suppose that C(fk)|D(g) ∼ g(k). We show that there exists a general
recursive function h : Z+ → Z+ whose image is contained in D(g) and such that
g ◦ h is monotonically increasing. We then obtain a contradiction as follows.
By 9.7(b), for all k we have

C(fh(k)) � const C(k),

and, by our assumption and by the fact that g ◦ h is increasing,

C(fh(k)) � const g(h(k)) � const · k.

But these two inequalities are incompatible, because lim inf C(k)/k = 0 (for
example, C(k2)/k2 � const/k).

It remains to construct h. We choose a general recursive bijection h1 : Z+ ∼⇒
D(g), using Proposition 5.6 of Chapter V, and we set

E = {k|∀i < k, g(h1(i)) < g(h1(k))}.

This set is decidable and infinite, and g ◦ h1 is an increasing function on E.
Let h2 : Z+ → E be an increasing general recursive bijection (again using

Proposition 5.6 of Chapter V). Then h = h1 ◦ h2 has the necessary properties.
The theorem is proved. ��

9.10. Remarks

(a) Theorem 9.9 shows that computing complexity is a problem demanding
creativity: even if we find the number of a place where f occurs in an optimal
family {uk}, there is no algorithm that could tell us whether this function occurs
even sooner.

(b) Since C(k) �= C(l) ⇒ k �= l, it follows that for all x and B,

card {y|y � x,C(y) � x/B} � x/B,

i.e., most numbers have a large complexity.
Nevertheless, it is not possible to give effectively a sequence of numbers

that asymptotically have maximal complexity. More precisely, let {ki} be any
increasing sequence with C(ki) � ki/B for some constant B. Then the set {ki}
does not contain a single infinite enumerable set E. Otherwise, we would be
able to find an increasing general recursive function h : Z+ → E, and would
obtain a contradiction, as in Theorem 9.9.

(c) Let u = {uk} be any optimal family of m-functions. The “moments of
first appearance” {k|∀i < k, ui �= uk} actually form a sequence of asymptotically
maximal complexity, since, by the definition and by 9.7(b), they satisfy

k = Cu(uk) � const · C(k).

Thus, we might say that in an optimal family the functions first appear “at
random moments.”

The problem of computing C(uk) is complicated by the fact that, at least in
the specific families in the proof of Theorem 9.2, any function appears infinitely
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often, so that if we are not lucky we might first notice the function arbitrarily
far out from the place where it first appeared.

(d) Finally, we mention that at least one essential aspect of the complexity
of computations has not been touched upon in our discussion of Cu. Namely,
log2 C(k) measures the length of a program that could compute k, but says noth-
ing about the time it takes for such a program to work, let alone the possibilities
for shortening the time by performing parallel computations, lengthening the
program, and so on.

The concept of complexity is rather far removed from practical uses. But it
seems to be such a fundamental idea that its role in theoretical mathematics is
likely to grow.



VII

Gödel’s Incompleteness Theorem

1 Arithmetic of Syntax

1.1. In this section we show how the syntax of formal languages reduces in
principle to arithmetic. We do this by identifying the symbols, expressions, and
texts in a finite or countable alphabet A with certain natural numbers (i.e., by
numbering them) in such a way that the syntactic operations (juxtaposition,
substitution, etc.) are represented by recursive functions, and the syntactic
relations (occurrence in an expression, “being a formula,” etc.) are represented
by decidable or enumerable sets.

In Chapter II we described how this technique works for Smullyan’s language
of arithmetic, but now we shall investigate it more systematically. Our first task
is to show that the computability of syntactic operations and the decidability
(enumerability) of syntactic relations on the sets of expressions and texts do not
depend on how we number them, as long as we adhere to certain weak natural
restrictions.

This independence of the method of numbering allows us to consider this
numbering not only as a technical device, but also as a reflection of a deep equiv-
alence between arithmetic and the combinatorial properties of formal texts. In
modern computers, where a single store-location may serve consecutively as a
number, a name (code), and a command, this equivalence between syntax and
arithmetic is realized “in the flesh” and is accepted as a basic principle. This
was not the case, however, in 1931, when Gödel first introduced the concept of
numbering.

1.2. Numbering. Let S be a finite or countable set. By a numbering of S we
mean any injective map N : S → Z+ whose image is decidable. We call N(s)
the N-number of an element s ∈ S. We call two numberings N and M of a set
S equivalent if the partial functions N ◦M−1 and M ◦ N−1 from Z+ to Z+

are partial recursive. These functions are automatically computable (not only
semicomputable), since their domains of definition are decidable (see §1–2 of
Chapter V).

235Yu. I. Manin, A Course in Mathematical Logic for Mathematicians, Second Edition,
 Graduate Texts in Mathematics 53, DOI 10.1007/978-1-4419-0615-1_7,
© Yu. I. Manin 2010
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The intuitive meaning of these definitions is clear: requiring the set of N(s)
to be decidable ensures that it is possible to determine whether a natural
number has the property of “being the number of an element of S,” and two
numberings are equivalent when each of them can be effectively recovered from
the other for any s ∈ S.

1.3. Lemma.

(a) The relation of equivalence between numberings is reflexive, symmetric, and
transitive.

(b) Any injective map from a finite set S to Z+ is a numbering, and any two
numberings of a finite S are equivalent.

(c) Any numbering of an infinite set is equivalent to a numbering whose image
is all of Z+.

All this either is obvious or has already been proved. In particular, (c)
follows from Proposition 5.2 in Chapter V.

1.4. Let S1 and S2 be two sets, and let Ni : Si → Z+, i = 1, 2, be numberings
of them. We call a partial function f : S1 → S2 partial recursive relative to
〈N1, N2〉 if the map N2 ◦ f ◦N−1

1 is partial recursive. A tautological example:
any numbering function N : S → Z+ is partial recursive relative to
〈N , identity〉.

A subset T ⊂ S is said to be decidable, enumerable, arithmetical (i.e.,
definable in L1Ar, see Chapter II, §2) relative to the numbering N1 if the set
N1(T ) has the corresponding property.

1.5. Lemma. If 〈N1, N2〉 is replaced by a pair of equivalent numberings 〈N ′
1, N

′
2〉

in 1.4, then the classes of recursive functions f : S1 → S2 and of decidable,
enumerable, and arithmetical subsets of S1 do not change.

Proof. The composition of computable recursive functions is recursive and
computable. The inverse image of a decidable (respectively enumerable) set
with respect to a computable function is decidable (respectively enumerable).
Finally, suppose that f : Z+ → Z+ is a partial recursive function, and that
E ⊂ Z+ is an arithmetical set. Then f−1(E) = pr1((Z+×E)∩Γf )(in Z+×Z+).
Since Z+×E is arithmetical and Γf is also arithmetical (even Diophantine), it
follows that f−1(E) is arithmetical. ��

1.6. Let Si be sets with numberings Ni, i = 1, . . . , r. A numbering
N : S1×· · ·×Sr → Z+ is said to be compatible with 〈N1, . . . , Nr〉 if the projec-
tion pri : S1 × · · · × Sr → Si is recursive relative to 〈N,Ni〉 for all i = 1, . . . , r,
and if the partial function

(Z+)r
(N−1

1 ,..., N−1
r )⇒ S1 × · · · × Sr N⇒ Z+

is recursive. In other words, the Ni-numbers of the coordinates are computed
from the N -number of the vector, and conversely.
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1.7. Lemma.

(a) In the notation of 1.5, for any 〈N1, . . . , Nr〉 there exists a numbering N that
is compatible with them. For example, for si ∈ Si, i = 1, . . . , r, we may set

N(s1, . . . , sr) = τ (r)(N1(s1), . . . , Nr(Sr))

(for the definition of τ (r), see Section 4.5 in Chapter V).
(b) If N is compatible with 〈N1, . . . , Nr〉, N is equivalent to M, and Ni is equiv-

alent to Mi, for i = 1, . . . , r, then M is compatible with 〈M1, . . . ,Mr〉.
(c) If N is compatible with 〈N1, . . . , Nr〉 and M is compatible with 〈N1, . . . , Nr〉,

then N and M are equivalent. If N is compatible with 〈N1, . . . , Nr〉 and also
with 〈M1, . . .Mr〉, then Ni and Mi are equivalent for all i = 1, . . . , r.

What all this says is that the relationship of compatibility gives a
one-to-one correspondence between families consisting of r equivalence classes
of numberings of the sets S1, . . . , Sr and certain equivalence classes of num-
berings of S1 × · · · × Sr. This lemma is proved by mechanically checking the
definitions.

1.8. Let Al = A× · · · ×A (l times), and let S(A) = A1 ∪ A2 ∪ · · · ∪ A1 ∪ · · · .
If A is an alphabet, then S(A) is the set of expressions in the alphabet. Here
A0 = {∧} consists of the empty expression. The function S(A) → Z+ that takes
the value p on each element of Ap is called the length of the expression. The “ith
coordinate” partial function from Z+×S(A) to A1 given by 〈i, 〈a1, . . . , ap〉〉 �→ ai
is defined on the subset

⋃∞
i=1{i}×(Ai∪Ai+1∪ · · · ). The “juxtaposition” function

from S(A)× S(A) to S(A) takes

〈〈a1, . . . , ap〉, 〈b1, . . . , bq〉〉 to 〈a1, . . . , ap, b1, . . . , bq〉.

A numbering N of S(A) is called admissible if the length function, the ith
coordinate function, and the juxtaposition function are partial recursive relative
to 〈N, id〉, 〈〈id, N〉, N〉, and 〈〈N,N〉, N〉, respectively. A numbering N of S(A)
is said to be compatible with a numbering N0 of A if it is admissible and if the
restriction of N to A1 is equivalent to N0 on A (where we identify A1 with A).

Here is the basic result of this section:

1.9. Proposition.

(a) If N is admissible, then any numbering equivalent to N is also admissible.
(b) If N if compatible with N0, N

′ is equivalent to N , and N
′
0 is equivalent to

N0, then N
′
is compatible with N

′
0.

(c) If N and N
′
are both compatible with N0 then they are equivalent.

(d) For any numbering N0 of A, there exists a compatible numbering N of S(A),
whose equivalence class is uniquely determined by the class of N0 because
of (c).

Proof. We obtain (a) and (b) formally from Lemma 1.6. To prove (c), we find
the N -number of an expression from its N

′
-number as follows. Let m ∗ n =

N(N−1(m)N−1(n)) (where the argument of N is the juxtaposition of the two
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expressions N−1(m) and N−1(n)). The partial function from Z+ × Z+ to Z+

defined by 〈m,n〉 �→ m ∗ n is recursive and associative, since N is admissible.
Further, let (k)i = N (the ith coordinate of N−1(k)). The partial function
Z+ × Z+ → Z+ : 〈k, i〉 �→ (k)i is recursive for the same reason. We similarly
define (k)′i in terms of N

′
. Finally, let l

′
: Z+ → Z+ be the partial function

“the length of N
′−1(k).” It is also recursive.

Then we have

N ◦N
′−1(k) = N ◦N

′−1((k)
′
1) ∗ · · · ∗N ◦N

′−1
(

(k)
′

l′ (k)

)
.

But the N
′
-numbers of the one-letter expressions {(k)

′
i} form a decidable subset

of Z+ (namely, the l-level of the computable function l′). The restriction of
N ◦N ′−1 to this subset is a recursive function, since the restrictions of N and
N

′
to A1 are equivalent. We obtain (c) from this and from the recursiveness

of ∗, (k)
′
i, and l

′
(by applying induction on x to ∗ xi=1N ◦ N ′−1((k)

′
i) and then

substituting x = l
′
(k)).

We prove (d) using an explicit construction of Gödel (the idea of which,
incidentally, goes back to Leibniz).

(d1) Construction of N compatible with N0:

N(a1, . . . , am) = p
N0(a1)
1 · · · pN0(am)

m ,

where p1 = 2, p2 = 3, . . . are the prime numbers. Here N(∧) = 1. We verify that
N has the required properties.

(d2) N is a numbering. First of all, N : S(A) → Z+ is an embedding because
N0 : A→ Z+ is injective, and we have unique factorization in Z+.

We show that the image of N is decidable. In the first place, the set of
prime numbers in Z+ is decidable, since it is the 2-level of the everywhere
defined recursive function

n �→ the number of divisors of n =
n∑
k=1

d(k, n)−̇n,

where (see §3 of Chapter V)

d(k, n) = s
(
(rem(k, n)− k)2 + 1

)
=

{
2, if k|n,
1, otherwise,

s(1) = 2, s(� 2) = 1.

Thus, the function i �→ pi is recursive (see the proof of Proposition 5.2 in
Chapter V).

We now set
f(n, i, y) = s

(
(rem(pyi , n)− pyi )2 + 1

)
.

This function is recursive, and hence so is the function of (n, i)

vi(n) = min{y|f(n, i, y) = 1} = (the power of pi which divides n) + 1.
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This implies that the “length” function is recursive:

l(n) = the number of prime divisors of n =
n∑
i=1

s(vi(n))−̇n

(automatically pm � n when m > n, since pm > m).
Now let E be the image of N0 in Z+. Then

image of N = {n|∀i � l(n), vi(n) ∈ E + 1}.

But the set F = {〈i, n〉|vi(n) ∈ E + 1} is decidable, since it is the preimage
of E + 1 under v, and applying the bounded universal quantifier preserves
the decidability. In fact, let χF (i, n) = 1 if 〈i, n〉 ∈ F and χF (i, n) = 2 if
〈i, n〉 �∈ F . Then the image of N is the 2-level of the following function of
n : s(Π l(n)

i=1 χF (i, n)).
(d3) N is admissible. We have already shown that the length function is

recursive. The ith coordinate function is represented by [pvi(n)
i

/
pi] (the integral

part). Finally, juxtaposition is represented by the function

m ∗ n = m

l(n)∏
j=1

p
vj(n)−1

l(m)+j ,

which is recursive by what has already been proved.
We note that our number-theoretic functions are defined on all of Z+, not

only on the Gödel numbers of any specific numbering. In what follows we shall
point out when such an extension of the domains of definition is possible only
if there is a special reason for mentioning this possibility.

(d4) N is compatible with N0. The functions x �→ 2x and y �→ log2(y)
(y ∈ 2Z+

) tell us how to go from one numbering to the other on one-letter
expressions. These functions are obviously recursive.

This completes the proof of Proposition 1.9. ��

1.10. Concluding remarks. Proposition 1.9 shows that if we are given an equiv-
alence class of numberings of an alphabet A of a formal language, then this
uniquely determines an equivalence class of numberings of the set of expres-
sions S(A), of the set of texts S(S(A)), and so on, all of which are compatible
with the numberings of A in the given class. Hence, the set of recursive opera-
tions and the set of decidable or enumerable relations are invariantly defined on
the expressions and texts. The only nonuniqueness that remains is the choice
of the equivalence class of the numbering of A.

In all cases of which the author is aware, this choice is also determined
canonically in the following way. Namely, A is realized as a decidable subset
of the expressions in some finite “protoalphabet” A0, where decidability is
understood in the sense of any numbering of S(A0) that is compatible with
any numbering of A0. It follows from Lemmas 1.3 and 1.5 and Proposition 1.9
applied to A0 that the resulting class of numberings of A will not depend on
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either the embedding of A in S(A0), the numbering of A0, or even the choice
of A0 (where we recall that if A0 ⊂ A1 are finite, then S(A0) ⊂ S(A1) is
decidable).

From this point of view, it is natural to consider the nine-letter alpha-
bet of SAr, which was described in §10 of Chapter II, to be a protoalphabet.
Then x, x

′
, x

′′
, x

′′′
, . . . are elements of the “real alphabet.” Smullyan’s particular

numbering system is very convenient for proving Tarski’s theorem, but the
“undefinability of truth” in SAr does not depend on the special form of this
numbering, as should by now be completely clear.

More generally, any complete printed description of any alphabet A realizes
A in the protoalphabet of available typographical symbols, which is of
course finite, and thereby determines a canonical equivalence class of num-
berings of A.

2 Incompleteness Principles

2.1. Gödel’s theorem on the incompleteness of formal theories can be given
many precise formulations, none of which entirely exhausts its content. In this
section, using the results obtained in §1, we shall try to separate the conceptual
aspects of the theorem from the technical details needed to prove it for various
languages.

2.2. Let A be a finite or countable alphabet with its canonical equivalence class
of numberings, and let S(A) be the set of expressions in A. We suppose that
the following two subsets of S(A) have somehow been defined:

(a) T ⊂ S(A), the set of “true” expressions. For example, we might have been
given a language with A as its alphabet, some sort of semantics for the
language, and a truth function.

(b) D ⊂ S(A), the set of “provable” or “deducible” expressions. This set might
be described by giving “axioms” and “rules of deduction,” or in some other
way. We shall always assume that D ⊂ T , as the terminology suggests
(it is possible to prove only what is true).

There is every reason to expect that if D and T have been constructed
“in a natural way” in the process of formalizing some fragment of modern
mathematics, then the following principles hold true.

2.3. The set D is enumerable. The intuitive arguments to support this assertion
are as follows. Suppose that the “provable” expressions are those for which
“proofs” exist. Here “proofs” are certain texts that, perhaps, are written
in another alphabet B, i.e., they are elements of S(S(B)). (For example,
theorems in L1Ar may be proved in L1Set.) One minimal requirement for formal
mathematical proofs is that it must be possible mechanically to determine that
they are proofs, i.e., they must form a decidable subset of S(S(B)). (Here it
would actually be sufficient to require that the set of “proofs” be enumerable.)
Another unavoidable requirement is that from every proof we must be able
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to obtain mechanically the “expression proved” in S(A). In other words, the
partial function from S(S(B)) to S(A) given by “proof” �→ “expression proved”
must be (semi)computable. But then the image of this function is enumerable.
In §5 we show that the set of deducible formulas in L1 is enumerable, in accor-
dance with these informal considerations.

We note that a time aspect has implicitly entered into the discussion. A
“proof” is understood to mean a “proof using the means accepted at the present
time and (semi)identifiable as being accepted.” If, for example, we introduce a
new axiom of set theory and it becomes widely accepted, then the concept of a
proof becomes broader, as happened with the axiom of choice (or, rather, the
principle of transfinite induction, Zorn’s lemma, . . . ). See the discussion in §7.

2.4. The set T is not enumerable if the semantics of truth is rich enough to
include elementary arithmetic. We clearly have in mind some version of Tarski’s
theorem, which, in fact, even tells us that T is not an arithmetical set. In the
next section we give several precise formulations of this principle. (See also
Sections 7.3–7.4 below.)

2.5. Gödel’s incompleteness theorem (General form). All formal theories
of mathematics satisfy the principles 2.3 and 2.4. Therefore, if a theory is
sufficiently rich, it always contains true expressions that are not provable.

3 Nonenumerability of True Formulas

The following criteria are all variations on a single theme, even if this is not
obvious at first, namely, “self-reference, or the diagonal process.”

3.1. The language SAr. We refer the reader to §10 of Chapter II for the descrip-
tion of this language and its standard interpretation. In §11 of Chapter II we
showed that the set of numbers of true formulas in Smullyan’s numbering sys-
tem is nonarithmetical. This set is a fortiori nonenumerable, since enumerable
sets are even Diophantine.

3.2. The language L1Ar. Here we give two versions of the argument, one of
which gives the stronger result and the other of which gives the more con-
crete result. A third version, which is closer to Godel’s original proof, will be
described in §7.

(a) Tarski’s theorem for L1Ar. The proof that the set of true formulas in
L1Ar is nonarithmetical can be reduced to Tarski’s theorem for SAr in the
following way. In the first place, the sets of formulas in L1Ar and SAr are
decidable in the set of all expressions (this will be shown for L1Ar in §4).

In the second place, the translation map {formulas in SAr} tr⇒ {formulas in
L1Ar}, which was described in §10 of Chapter II, is recursive (as is easily shown
using the arguments in the next section). Since, the map tr preserves the truth
function, we have Ts = tr−1(TL1) in the obvious notation. But then, if TL1

were arithmetical, it would follow that Ts is also arithmetical (see the proof of
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Lemma 1.5), which contradicts Tarski’s theorem for SAr. It would be a useful
exercise for the reader, after first reading §4, to carry out this proof in complete
detail.

The following argument is simpler and more precise, but it only shows that
TL1 is nonenumerable, and not that it is nonarithmetical.

(b) Let E ⊂ Z+ be an enumerable but undecidable set (which exists by §5 of
Chapter V). Let E be defined by the formula P (x) in L1Ar, which has one free
variable x. For n � 2 we set n̄ = +

(
+

(
1̄ + (1̄, 1̄)

)
· · ·

)
, which is the term-name

for the integer n in the obvious canonical L1-type notation. We consider the
family of closed formulas {¬(P (n̄))|n ∈ Z+} in L1Ar.

3.3. Proposition.

(a) The function Z+ → {formulas in L1Ar} given by n �→ ¬P (n̄) is recursive.
(b) The set {n|¬(P (n̄)) is true} is nonenumerable.

Corollary. TL1 is nonenumerable; more precisely, the set of true formulas in
the family {¬(P (n̄))} is nonenumerable.

(If TL1 were enumerable, its preimage in Z+ would also be enumerable.)

Proof.

(a) Let the formula ¬(P (x)) have the form R1 × R2 × · · · × RS+1, where
x does not occur in the expressions Ri. Using the same notation as in the
proof of Proposition 1.9, for a fixed numbering N of the set of expressions with
juxtaposition function ∗ we have

N(¬(P (n̄))) = N(R1) ∗N(n̄) ∗N(R2) ∗ · · · ∗N(RS+1).

Hence, it suffices to show that the function n �→ N(n̄) is recursive. But since
n+ 1 = +(1̄, n̄), it follows that for n � 1,

N(n+ 1) = N(+) ∗N(′′(′′) ∗N ¯(1) ∗N ¯(n) ∗N(′′)′′),

which expresses N(n+ 1) recursively in terms of N(n̄).

(b) {n|¬(P (n̄)) ∈ TL1} = Z+\E by the definition of the formula P (x)
defining E. But the complement of E is nonenumerable, since E is
undecidable.

The proposition and the corollary are proved. ��

3.4. Languages at least as rich as L1Ar. Let L be an arbitrary language with
a (finite or countable) alphabet A, in which we are given a set T of “true”
expressions. We suppose that L is no poorer than a language of arithmetic in
the following sense: There exists a translation map

tr : {formulas in L1Ar} ⇒ {expressions in A}
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that takes TL1 to T, takes the complement of TL1 to the complement of T, and
is recursive.

Then T is nonenumerable.
Such a translation map can be constructed for L1Set, for example.

Proposition 3.3 shows that, actually, we need only know how to translate into L
the formulas in the family ¬(P (n̄)); this allows us to use a very modest language
of arithmetic.

3.5. Remarks

(a) The series of Diophantine problems “Is P (n̄) true?” i.e., “Does the
Diophantine equation F (n;x1, . . . , xr) = 0 have a solution in Z+?” (where F is
a suitable polynomial with integer coefficients; see Chapter VI) has the property
that no finitely describable collection of means of proof is
adequate to answer this series of questions completely. One might say that
even the theory of Diophantine equations is infinitely complicated.

(b) In some sense any problem in mathematics reduces to a Diophantine
problem. In fact, after translating the problem into a suitable formal language,
we may just ask, “Is the formula P or the formula ¬P provable?” But this is pre-
cisely the same as asking whether the number of P (the number of ¬P ) belongs
to the enumerable set D of provable formulas, i.e., whether the Diophantine
equation corresponding to D in the given series is decidable.

This gives somewhat unexpected support for Gauss’s opinion regarding the
queenly status of arithmetic. There even exists a “queen of the Diophantine
equations” whose graph projects onto the set of numbers of formulas in L1Set
that are deducible from the Zermelo–Fraenkel axioms.

But of course, we normally ask “Is P true?” and not “Is P provable?” from
this point of view, the most creative activity in mathematics is the discovery of
new principles of proof that do not reduce to the “legacy of the past” and that
again must be taken on faith. Set theory as a whole was the most recent such
principle in the modern development of mathematics. The dramatic history
of its creation and of the disputes surrounding its acceptance is worthy of a
discovery of this magnitude.

It is amazing that within formal mathematics it is possible to say something
about such informal things. See also §7 below.

4 Syntactic Analysis

4.1. This section contains the preliminary technical material that will be needed
in §5, when we prove that the set of deducible formulas in a language of L1 is
enumerable.

Let L be a fixed language in L1 having a finite or countable alphabet A. In
order to shorten the technical work somewhat, we assume that we are working
with a dialect that contains only the connectives ¬ and → and the quantifier ∀.
This is not in any sense essential. As in §1, we have a canonical equivalence class
of numberings of A, which determines numberings of S(A), S(S(A)), and so on.
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The terms “recursive,” “decidable,” etc. will be understood to refer to this class.
Thus, we may omit explicit mention of the numbering in the statements of the
basic results. But in the proofs it will be more convenient to work directly with
a numbering. We therefore fix one of the numberings N : S(A) → Z+ with
juxtaposition function ∗, length function l, and ith coordinate function (k)i, as
in the proof of Proposition 1.9. We shall assume that m ∗ n > max(m,n), i.e.,
the number of any part of an expression is strictly less than the number of the
whole expression. Such an N is called a Gödel numbering.

In addition to the conditions given in §1, we require that N satisfy the
following conditions regarding recognition of the syntactic characteristics of the
symbols of the alphabet:

(a) The sets of variables, of constants, of operations, and of relations in A are
decidable.

(b) The “degree” function on the set of operations and relations is recursive.

We are now ready to begin. But before reading further the reader is advised
to review §1 of Chapter II.

4.2. The partial function from S(A)× Z+ to Z+ given by

〈an expression P, i〉 �→

⎧⎪⎨⎪⎩
the place in P containing the right parenthesis
that corresponds to the left parenthesis in the ith
place in P

is computable, i.e., it is recursive and has a decidable domain of definition.

Proof. It will be convenient to use the following notation: if Q is a statement
about integers in Z+, then

‖Q‖ =

{
1, if Q is true,
2, if Q is false.

This is a truth function that has been adjusted so as to take values in Z+, which
does not contain zero.

We construct a function Par(k, i) : Z+ × Z+ → Z+ as follows: if (k)i is not
defined, or if (k)i �= N(“(”), or if (k)i = N(“(”) but ∀j ∈ [i, l(k)],

∑j
m=i ‖(k)m =

N(“(”)‖ �=
∑j
m=i ‖(k)m = N(“(”)‖, let Par(k, i) = 1; otherwise, let Par(k, i) =

min{j|j � l(k) and
∑j

m=i ‖(k)m = N(“(”)‖ =
∑j
m=i ‖(k)m = N(“(”)‖}.

Obviously, when restricted to N−1(S(A)) × Z+, the function Par(k, i) gives
the place in the expression N−1(k) containing the “)” that corresponds to the
“(” in the ith place if this is possible, and gives 1 when this is not possible.
(Compare with Lemma 1.2 in §1 of Chapter II.) Hence, it suffices to show that
Par(k, i) is recursive. But Par(k, i) has been defined by gluing together a finite
number (four) of recursive functions having decidable domains of definition (by
the properties of N). Thus, Par(k, i) is recursive. ��
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4.3. The partial function S(A) → Z+ given by (an expression P) �→ (the number
of terms in L that are juxtaposed to get P) is computable.

We recall that this number is uniquely defined (§1 of Chapter II).
Proof. We first construct a formula that defines the function

LT (k) =

⎧⎪⎨⎪⎩
l(k) + 1, if N−1(k) is not a juxtaposition of terms;
the number of terms whose otherwise

juxtaposition is N−1(k),

from Z+ to Z+ recursively in terms of its values on smaller values of the argu-
ment. The way to carry out this syntactic analysis of N−1(k) can be described
verbally as follows: first see whether N−1((k)1) is a variable or constant and, if
it is, whether N−1((k)2 ∗ · · · ∗ (k)l(k)) is a juxtaposition of terms; if N−1((k)1)
is not a variable or constant, check whether it is an operation, and if it is,
whether it is followed by “(”, whether there is a corresponding “)”, whether a
juxtaposition of the required number of terms lies between the “(” and the “)”,
and whether “ )” is followed by a juxtaposition of terms.

To describe this procedure systematically, we set

f1(k) =

{
(k)2 ∗ · · · ∗ (k)l(k), if l(k) � 2;
1, otherwise;

f2(k) =

{
(k)3 ∗ · · · ∗ (k)Par(k,2)−1, if 4 � Par(k, 2);
1, otherwise;

f3(k) =

{
(k)Par(k,2)+1 ∗ · · · ∗ (k)l(k), if 1 < Par(k, 2) < l(k);
1, otherwise.

All of these functions are recursive.
We now write the following recipe for computing LT (k) recursively:

l(k) = 1 and

⎧⎪⎨⎪⎩
N−1(k) is a variable ⇒ LT (k) = 1,
N−1(k) is a constant⇒ LT (k) = 1,
N−1(k) is neither a variable nor a constant ⇒ LT (k) = 2;

l(k) > 1 and N−1((k)1) is a variable ⇒ LT (k) = 1 + LT (f1(k));

l(k) > 1 and N−1((k)1) is a constant⇒ LT (k) = 1 + LT (f1(k));

l(k) > 1, N−1((k)1) is an operation, (k)2 = N(“(”),
4 � Par(k, 2) = l(k),

degree N−1((k)1) = LT (f2(k)) � l(f2(k)) ⇒ LT (k) = 1;

l(k) > 1, N−1((k)1) is an operation, (k)2 = N(“(”),
4 � Par(k, 2) < l(k),

degree N−1((k)1) = LT (f2(k)) � l(f2(k)),
LT (f3(k)) � l(f3(k)) ⇒ LT (k) = 1 + LT (f3(k));

l(k) > 1, and none of the previous additional conditions hold
⇒ LT (K) = 1 + l(k).
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To show that LT is recursive, we first note that for each of the above eight
alternatives, we can easily construct a recursive function hi(k, x, y, z) with the
following property:

‖k satisfies the ith alternative‖ = hi(k, LT (f1(k)), LT (f2(k)), LT (f3(k))),

and we can also construct a recursive function vi(k, x, y, z) with the property
that k satisfies the i th alternative ⇒

LT (k) = vi(k, LT (f1(k)), LT (f2(k)), LT (f3(k))).
We therefore have the equation

LT (k) = 2
8∑
i=1

vi(k, LT (f1(k)), LT (f2(k)), LT (f3(k)))

.
−

8∑
i=1

(hivi)(k, LT (f1(k)), LT (f2(k)), LT (f3(k))).

Since fi(k) < k for k > 1, this formula allows us successively to compute the
values of LT (k), starting with LT (1). But the recursion here computes the value
at k not in terms of the value at k− 1, but in terms of several earlier values. It
is this that presents the basic difficulty in showing that the syntactic functions
are recursive. We now describe the device for overcoming this difficulty here
and in all future cases.

In general, let φ1(k), . . . , φs(k) be recursive functions having the property
that φi(k) < k for all i � s and k � 2. Further, let h(x1, . . . , xm, k, y1, . . . , ys)
be a recursive function, and let g(x1, . . . , xn, k) be defined by the relations

g(x1, . . . , xn, 1) = some known recursive function,
g(x1, . . . , xn, k + 1) = h(x1, . . . , xn, k, g(x1, . . . , xn, φ1(k)),

. . . , g(x1, . . . , xn, φS(k))).

Using the juxtaposition function ∗, we let

G(x1, . . . , xn, k) =
k
∗

i = 1
g(x1, . . . , xn, i).

Since
g(x1, . . . , xn, i) = G(x1, . . . , xn, k))i

for all i � l(G(x1, . . . , xn, k)) = k, and in particular for the greatest such i, it
follows that to verify that g is recursive, it suffices to show that G is recursive.
But for k � 2 we have

G(x1, . . . , xn, k + 1)
= G(x1, . . . , xn, k) ∗ g(x1, . . . , xn, k + 1)
= G(x1, . . . , xn, k)
∗ h(x1, . . . , xn, k, (G(x1, . . . , xn, k))φ1(k) , . . . , (G(x1, . . . , xn, k))φs(k)),

which is in the standard form for a recursive equation.
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If we apply this device to LT , setting n = 0, s = 3, and φi(k) = fi(k + 1),
we obtain the recursiveness of LT . ��

Corollary. The set of terms is decidable.
In fact, this set is the 1-level of the computable function LT .

4.4. The set of atomic formulas is decidable.
In fact,

N−1(k) is an atomic formula ⇔ (k)1 is a relation, (k)2 = N(“(”),

Par(k, 2) = l(k) � 4,

and degree N−1((k)1) = LT (f2(k)) � l(f2(k)),

where f2(k) was defined in 4.3.

4.5. The set of formulas is decidable.
In fact, in our dialect, which has been simplified to include only ¬,→, and

∀, we have

N−1(k) is a formula

⇔ N−1(k) is an atomic formula, or is of the form ¬(P ),
(P ) ⇒ (Q), or∀x(P ), where P and Q are formulas and x is a variable.

Using the procedure in 4.3, we define the recursive functions

f4(k) =

{
(k)3 ∗ · · · ∗ (k)l(k)−1, if l(k) � 4;
1, otherwise;

f5(k) =

{
(k)2 ∗ · · · ∗ (k)Par(k,1)−1, if Par(k, 1) � 3;
1, otherwise;

f6(k) =

{
(k)Par(k,1)−3 ∗ · · · ∗ (k)l(k)−1, if 3 � Par(k, 1) � l(1)− 1;
1, otherwise;

f7(k) =

{
(k)4 ∗ · · · ∗ (k)l(k)−1, if l(k) � 5;
1, otherwise;

At(k) =

{
1, if N−1(k) is an atomic formula;
2, otherwise.

The function

Fm(k) =

{
1, if N−1(k) is a formula,
2, otherwise
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is computed using the following recursive relation (where s(1) = 1 and s(k) = 2
for k � 2):

Fm(k) = s ◦min{At(k); ‖(k)1 = N(“¬”)‖ · ‖(k)2 = N(“(”)‖ · ‖l(k) � 4‖
· Fm(f4(k));
‖(k)1 = N(“(”)‖ · ‖Par(k, 1) � 3‖ · Fm(f5(k))
· ‖(k)Par(k,1)+1 = N(“ → ”)‖ · ‖(k)Par(k,1)+2 = N(“(”)‖
· ‖Par(k,Par(k, 1) + 2) = l(k)‖ · Fm(f6(k));
‖(k)1 = N(“∀”)‖ · ‖(k)2 = N(a variable)‖ · ‖(k)3 = N(“(”)‖
· ‖Par(k, 3) = l(k) � 5‖ · Fm(f7(k))}.

Fm(k) is now shown to be recursive using the device described in 4.3.

Corollary. The sets of formulas of the form ¬(P ), (P ) → (Q), and ∀x(P ) are
decidable.

4.6. The following function from S(A) × Z+ × S(A) to S(A) is computable:
〈P, i,Q〉 �→ the result of substituting P for the ith symbol in Q.

We set

Sub(k, i,m) =

{
(m)1 ∗ · · · ∗ (m)i−1 ∗ k ∗ (m)i ∗ · · · ∗ (m)l(m), if i � l(m);
1, otherwise.

This function is clearly recursive, and coincides with the required map on the
set of 〈k, i,m〉 with k,m ∈ N−1(S(A)). ��

4.7. The following relation in Z+ × S(A) × S(A) is decidable: “the one-letter
expression x is a free variable in the ith place in the formula P.”

If fact, we set

Fr(i, k, l) =

⎧⎪⎨⎪⎩
1, if the condition in 4.7 holds for p = N−1(k)

and〈x〉 = N−1(l);
2, otherwise.

Then we have

N−1(k) is not a formula, or N−1(l) is not a variable,
or i > l(k) ⇔ Fr(i, k, l) = 2.

Now suppose that N−1(k) is a formula, N−1(l) is a variable, and i � l(k). Then
the following alternatives remain:

l �= (k)i ⇒ Fr(i, k, l) = 2;
l = (k)i, At(k) = 1 ⇒ Fr(i, k, l) = 1;

l = (k)i, N−1(k) has the form ¬(P )
⇒ Fr(i, k, l) = Fr(i, f5(k), l);
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l = (k)i, N−1(k) has the form (P ) → (Q), i < Par(k, 1)
⇒ Fr(i, k, l) = Fr(i, f5(k), l)

l = (k)i, N−1(k) has the form (P ) → (Q), i > Par(k, 1) + 2
⇒ Fr(i, k, l) = Fr(i, f6(k), l);

l = (k)i, N−1(k) has the form ∀x(P ), (k)2 = l ⇒ Fr(i, k, l) = 2;

l = (k)i, N−1(k) has the form ∀x(P ), (k)2 �= l

⇒ Fr(i, k, l) = Fr(i, f7(k), l).

Here the functions f5, f6, and f7 were defined in 4.5. The rest of the proof that
Fr is recursive follows the same procedure as in 4.4 and 4.5. ��

4.8. The set {〈x, P, t〉|x is a variable, P is a formula, t is a term, and x does
not bind t in P} is decidable.

In terms of the numbers 〈i, k,m〉, this condition means that

∀j � l(k){either (k)j �= i, or else (k)j = i ∧ Fr(j, k, i) = 2,
or else (k)j = i ∧ Fr(j, k, i) = 1

∧ ∀n ∈ [1, l(m)](Fr(j + n
.
− 1, Sub(m, j, k), Sub(m, j, k)

j+n
.−1

)

= ‖(m)n is a variable‖)}.

That is, if t is substituted in place of any free occurrence of x in P , all the
variables in t remain free. ��

4.9. The following partial function is computable: 〈x, P, t〉 �→ the result of sub-
stituting t in place of all free occurrences of x in P.

Let 〈i, k,m〉 be the numbers of x, P , and t. We set

f(j, k, i,m) =

{
(k)j , if Fr(j, k, i) = 2;
m, if Fr(j, k, i) = 1.

This is a recursive function. We further set

Sub t(i, k,m) =
l(k)
∗

j = 1
f(j, k, i,m).

This is the number of the expression obtained by substituting t in place of all
free occurrences of x in P . ��

5 Enumerability of Deducible Formulas

5.1. General setup. Let L be any language with a numbered countable
alphabet A. We suppose that the following data is fixed:

(a) An enumerable set of “axioms” Ax ⊂ S(A).



250 VII Gödel’s Incompleteness Theorem

(b) A partial recursive function Inf : Z+×S(S(A)) → S(A), i.e., an enumerable
family of “rules of deduction.”

We shall say that an expression P ∈ S(A) is a direct consequence of the
expressions P1, . . . , Pr by the ith rule of deduction if 〈i, 〈P1, . . . , Pr〉〉 ∈ D(Inf)
and Inf(i, 〈P1, . . . , Pr〉) = P . We shall call an expression P deducible (from the
“axioms”) if there exists a finite sequence of expressions P1, . . . , Pn = P such
that for each j � n either Pj ∈ Ax or there exist i ∈ Z+ and {Pk1 , . . . , Pkr} ⊂
{P1, . . . , Pj−1} such that Pj is a direct consequence of Pk1 , . . . , Pkr by the ith
rule of deduction. We let D denote the set of all deducible expressions.

5.2. Proposition. D is enumerable.

Proof. Let a : Z+ → S(A) be a recursive function whose image coincides
with Ax, and let inf : Z+ → S(A) be the partial recursive function given by
inf(n) = Inf(t(2)1 (n), N−1

1 )(t(2)1 (n))), where N1 : S(S(A)) → Z+ is any number-
ing of the texts that is compatible with the given numbering of the expressions.

We construct a recursive function d : Z+ → S(A) as follows:

d(2n− 1) = a(n),
d(2n) = inf(n), n � 1.

We claim that its image is D. In fact, it suffices to verify that (a) Ax ⊂ image
of d; and (b) if P1, . . . , Pr ∈ image of d and P is a direct consequence of
P1, . . . , Pr by the ith rule of deduction, then P ∈ image of d.

But (a) is obvious, since all the axioms are written out in the odd-numbered
places. To verify (b), we choose n such that

t
(2)
1 (n) = i, t

(2)
2 (n) = N1 (〈P1, . . . , Pr〉).

Then d(2n) = P . The proposition is proved. ��

We now verify that the general setup in 5.1 can always be realized in lan-
guages of L1.

5.3. The rules of deduction Gen and MP. We define the map Inf : Z+ ×
S(S(A)) → S(A) as follows:

D(Inf) = {〈1, 〈P, (P ) → (Q)〉〉|P and Q are formulas}
∪ {〈i, 〈P 〉〉|P is a formula, i � 2},

Inf〈1, 〈P, (P ) → (Q)〉〉 = Q,

Inf〈i, 〈P 〉〉 = ∀xi−1(Q),

where xj is the jth variable in L in any fixed numbering of the variables that
has image Z+ and is compatible with the numbering of A. It is clear that Inf
is recursive and exhausts the rules of deduction Gen and MP.

5.4. The axioms. We verify that the following sets are enumerable in any
language in L1:

(a) The tautologies.
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(b) The logical quantifier axioms.
(c) The axioms of equality.

Two other sets we show to be enumerable are:

(d) The special axioms of L1Ar.
(e) The special axioms of L1Set.

Actually, using the methods of §4 it is not hard to prove that all of these sets
are even decidable. But the proof of enumerability is somewhat shorter, and
will suffice for our purposes.

5.5. The tautologies. In §5 of Chapter II we constructed a finite list of basis
tautologies and showed that all the other tautologies can be deduced from
them using MP. Thus, by Proposition 5.2, it is sufficient to verify that the basis
tautologies are enumerable.

Each of the basis tautologies determines a set of formulas of the form

Q1Pi1Q2Pi2 · · ·PirQr+1,

where the Qi are fixed expressions that are nonempty (with the possible
exception of Q1 and Qr+1), i1, . . . , ir ∈ {1, . . . ,m}, and 〈P1, . . . , Pm〉 varies
over all ordered m-tuples of formulas in L. Since the set of such m-tuples is
decidable by 4.5 above, and since the operation of juxtaposition is recursive, it
is clear that we obtain an enumerable set of formulas.

5.6. The logical quantifier axioms. In case our dialect of L1 does not have ∃,
these axioms can be expressed as the following two axiom schemes:

(a) (∀x(P (x))) → (P (t)), if x does not bind the term t in the formula P .
(b) (∀x((P ) → (Q))) → ((P ) → (∀x(Q))), if x does not occur freely in P .

By 4.8, the set of triples {〈x, P, t〉|x does not bind t in P} is decidable,
and by 4.9, the map 〈x, P, t〉 �→ P (t) is recursive. Since juxtaposition is also
recursive, the set of axioms (a) is the image of a decidable set under a recursive
function, and so is enumerable.

We may similarly conclude that (b) is enumerable if we verify that the
condition “x does not occur freely in P ” is decidable. But this is equivalent to
the following condition: “the formula obtained from P by substituting either
of the variables x1 and x2 in place of all free occurrences of x in P coincides
with P ,” where 〈x1, x2〉 is any fixed pair of distinct variables. This condition is
decidable by 4.9.

5.7. The axioms of equality. By the definition in 4.6 of Chapter II, it suffices
to show that the set of formulas of the form

(x = y) ⇒ (P (x, x) ⇒ P (x, y))

is enumerable, where P runs through the atomic formulas in the language,
x and y are variables, and P (x, y) is obtained from P by replacing x by y in
any subset of the occurrences of x in P . This set of formulas can be obtained,
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for example, as the image of the following function, which is partial recursive
by the results in 4.4 and 4.6:

S(A)×A1 ×A1 × S(Z+) → S(A);

〈P, 〈x〉, 〈y〉, 〈i1, . . . , ir〉〉 �→

the expression obtained by sub-
stituting y in the i1, . . . , ir places
in the atomic formula P if x
occurs in those places.

5.8. The special axioms of L1Ar and L1Set. Most of these axioms contain only
variables of the language, and not “metalanguage” variables for formulas. This
is true of all the axioms of arithmetic except for induction and all the axioms of
set theory except for replacement. Each set of axioms not containing variable
formulas is decidable because it can be described by a condition such as “the
set of formulas of length 40 in which “(” is in the first place, “∀” is in the second
place, a variable is in the third place, “(” is in the fourth place, . . . , “)” is in
the 39th place, and “)” is in the 40th place; in which the variables in the 3rd,
8th, and 16th places are the same, in the 9th and 36th places are the same, and
in the 17th and 37th places are the same; and in which these three variables
are distinct.” (This is the axiom of regularity in L1Set in normalized notation.)
Here we could also write down just one copy of each such axiom and generate
the rest using Gen, the axiom of specialization, and MP.

The axioms of induction and replacement are shown to be enumerable using
the same procedure as in the case of the basis tautologies and the quantifier
axioms. We leave the details to the reader.

6 The Arithmetical Hierarchy

6.1. Using recursion on n, we define the classes Σn and Πn of subsets of
(Z+)m,m = 0, 1, 2, . . . , as follows:

(a) Σ0 = Π0 = {decidable sets}.
(b) Σn+1 ={projections of elements of Πn having codimension � 1.}
(c) Πn+1 ={complements of elements of Σn+1 in their ambient spaces (Z+)m}.

Obviously, Σ1 consists of all enumerable sets (see Theorem 1.2 of Chapter VI),
and Π1 consists of their complements. The following result justifies calling
{Σn,Πn} “the arithmetical hierarchy.”

6.2. Proposition.

(a) ∀n � 0,Σn ∪Πn ⊂ Σn+1 ∩Πn+1.
(b)

⋃∞
n=0Σn=

⋃∞
n=0Πn= {arithmetical sets}, i.e., all sets definable by formulas

in L1Ar.
(c) For n � 1 the sets in Σn are precisely those that can be defined by formulas

of the following L1 type (where the quantifiers are taken over variables in
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Z+, and E is a decidable set):

∃x1 ∀x2 ∃x3 · · · ∀xn¬(〈x1, . . . , xn, xn+1, . . . , xm〉 ∈ E), n even;
∃x1 ∀x2 ∃x3 · · · ∃xn(〈x1, . . . , xn, xn+1, . . . , xm〉 ∈ E), n odd.

Similarly, for Πn:

∀x1 ∃x2 ∀x3 · · · ∃xn(〈x1, . . . , xn, xn+1, . . . , xm〉 ∈ E), n even;
∀x1 ∃x2 ∀x3 · · · ∀xn¬(〈x1, . . . , xn, xn+1, . . . , xm〉 ∈ E), n odd.

(d) The sets in Σn and Πn are definable by the analogous formulas in L1Ar
with the following changes: instead of 〈x1, . . . , xm〉 ∈ E we have any atomic
formula, and the number of quantifiers is � n, with exactly n−1 alternations
from ∃ to ∀ or ∀ to ∃.

Proof.

(a) We use induction on n. For n = 0 we have Σ0 ∪ Π0 = Σ1 ∩ Π1, by
the definition of decidable sets. If Σn−1 ⊂ Σn, then Σn ⊂ Σn+1 (since Σn+1

consists of projections of the complements of elements of Σn, and Σn consists
of projections of the complements of elements of Σn−1), and also Πn ⊂ Πn+1,
by the definition of Π. Finally, we have Πn ⊂ Σn+1, from which it trivially
follows that Σn ⊂ Πn+1. In fact, if E ∈ Πn, then E × Z+ ∈ Πn (since taking
the product with Z+ commutes with complements and projections, and takes
Σ0 = Π0 to itself), and hence E = a projection of E × Z+ ∈ Σn+1.

(b) It follows from (a) that
⋃∞
n=0 Σn =

⋃∞
n=0 Πn. This class of sets is

contained in the arithmetical sets, since all enumerable sets are arithmetical,
and arithmeticality is preserved on taking projections and complements, which
correspond to inserting ∃ and ¬, respectively.

In order to prove the converse {arithmetical sets} ⊂
⋃∞
n=0 Σn = Σ∞, we first

note that all sets definable by atomic formulas are decidable, and the rest of the
arithmetical sets are obtained from them by taking projections, complements,
unions, and intersections (see §2 of Chapter II). Thus, it suffices to show that
Σ∞ is closed with respect to (finite) unions and intersections. We claim that
this is actually true for each Σn separately.

We prove this by induction on n. The result has already been proved for Σ0.
If Σn is closed with respect to ∩, then Πn is closed with respect to ∪. Suppose
E1, E2 ∈ Σn+1, Ei = a projection of Fi, and Fi ∈ Πn. We can then introduce
dummy variables so as to identify the ambient spaces of the Fi, and the projec-
tion of these spaces onto an ambient space for both the Ei. Then E1 ∪ E2 = a
projection of F1∪F2, so that E1∪E2 ∈ Σn+1. Thus, Σn+1 is closed with respect
to ∪.

Similarly, if Σn is closed with respect to ∪, it follows that Πn is closed with
respect to ∩, and an analogous argument shows that Σn+1 is closed with respect
to ∩. However, here we must embed the products F1×(Z+)m2 and (Z+)m1×F2

for certain m1 and m2 in a single space in such a way that when we identify
the two projections, we have pr(F1 × (Z+)m2 ∩ (Z+)m1 × F2) = pr F1 ∩ pr F2.
In terms of formulas this means that the variables bound by the ∃ quantifiers
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in the formulas corresponding to F1 and F2 must be renamed so that they form
two disjoint sets.

(c) This assertion is proved by induction on n and a simple examina-
tion of the definitions. Here, whenever we take the complement, we must
move the corresponding ¬ to the right of all the quantifiers by means of
the usual commutation rule ¬∀ = ∃¬,¬∃ = ∀¬. If we have a projection of
codimension m � 2, which is defined by a series of quantifiers ∃xi1 · · · ∃xim ,
we must reduce it to a projection of codimension 1 by replacing the set of vari-
ables 〈xi1 , . . . , xim〉 by 〈t(m)

1 (y), . . . , t(m)
m (y)〉 in E and replacing the series of

quantifiers by ∃y.
(d) The proof is analogous to that of (c). Here we use the fact that the

sets in Σ0 are Diophantine, and we observe that in general, ∃ · · · ∃ cannot be
replaced by ∃ in this case.
The proposition is proved. ��
6.3. Theorem. For all n � 1,

Σn\Πn �= ∅, Πn\Σn �= ∅.

Proof. The assertion that Σ1\Π1 �= ∅ is precisely Theorem 5.8 of Chapter V
on the existence of undecidable enumerable sets. We prove the general case by
an analogous diagonal process applied to a versal family.

Let {Ek} be a versal family of enumerable (n + 1)-sets over Z+, and let E
be its total space:

〈k, x0, . . . , xn〉 ∈ E ⇔ 〈x0, . . . , xn〉 ∈ Ek.

To fix ideas, suppose n is even. We set

F = {k|∃x1 ∀x2 · · · ∀xn¬(〈k, k, x1, . . . , xn〉 ∈ E )} ⊂ Z+.

By 6.2(c), we have F ∈ Σn. Since {Ek} is versal, it follows by 6.2(c) that any
subset of Z+ in Πn can be represented in the form

Fk0 = {x0 |¬ ∃x1 ∀x2 · · · ∀xn¬(〈k0, x0, x1, . . . , xn〉 ∈ E))}

for some k0 ∈ Z+. It is clear that k0 lies either in F\Fk0 or in Fk0\F . Hence
F �= Fk0 , and F ∈ Σn\Πn.

The other cases are handled analogously. ��

6.4. Remarks

(a) From the point of view of the theorems of Tarski and Gödel, the results in
6.2 and 6.3 show us the tremendous distance from provability to truth: D ∈ Σ1,
while T falls not only outside Σ1, but even outside Σ∞. In the next section we
indicate some mileposts along the way from D to T .

(b) Although not really formally justified by the above considerations,
nevertheless it makes sense to classify arithmetic problems, i.e., questions “Is
it true that P ∈ T ?” according to the number of alternations between ∃ and ∀
when the closed formula P is written as in 6.2(c).
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As we showed in §1 of Chapter I, the Fermat conjecture is expressed by a
Π1-formula, and the Riemann hypothesis is expressed by a Π3-formula,
although there is an assertion of type Π1 that is equivalent to the RH.

H. Rogers writes that

Almost all statements which (i) have been extensively studied by
mathematicians and (ii) are known to be arithmetically expressible can
be seen, from a relatively superficial examination, to have quite low
level in the Σn classification. As has been occasionally remarked, the
human mind seems limited in its ability to understand and visualize
beyond four or five alternations of quantifier. Indeed, it can be argued
that the inventions, subtheories, and central lemmas of various parts of
mathematics are devices for assisting the mind in dealing with one or
two additional alternations of quantifier.

7 Productivity of Arithmetical Truth

7.1. In this section we discuss a final feature of Gödel’s theorem: the possibility,
starting from any enumerable set of truths of arithmetic that we already know,
effectively to enlarge this set by adding new truths. To see this more clearly,
we examine the original version of the proof, in which the diagonal method is
explicit, rather than hidden in the construction of an undecidable enumerable
set. It is convenient to describe this version by comparing it with the proof of
Tarski’s theorem.

7.2. Suppose we are given a language of arithmetic (L1Ar, SAr, or an extension
of one of them). Further suppose that we have chosen a fixed numbering of
its alphabet, which determines a fixed numbering N of the formulas. (It is
essential to note that the construction that follows is not invariant if we replace
our numbering by an equivalent one.)

Both the Tarski and the Gödel arguments are based on the following “self-
reference lemma”:

7.3. Lemma. Given any formula P (x) in the language that has one free variable,
we can effectively construct a closed formula QP that says, “my number does
not belong to the set defined by P.” In other words, QP is true if and only if
P (N(QP )) is false, where N(QP ) is the term-name for N(QP ).

Proof. This lemma was proved for SAr in §11 of Chapter II. In L1Ar we
construct the formula QP as follows.

If R(x) is a formula with one free variable, we call the formula R(N(R(x)))
its diagonalization. Let diag : Z+ → Z+ be the partial function

the N − number of a formula with one free variable
�→ the N -number of its diagonalization.

It is easy to show, using the results and methods in §4, that diag is
computable. Thus, its graph is definable by a formula in L1Ar that can be
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explicitly constructed. We denote this formula by “y = diag x,” construct the
formula R(x) : ∃y(“y = diag x”∧P (y)), and finally set

Qp : ¬R(N(¬R(x))) = the diagonalization of ¬R(x).

By the definitions, we then have

Qp is true ⇔ the number of ¬R(x) does not satisfy R(x)
⇔ the number of diagonalization of ¬R(x)

does not satisfy P (x)
⇔ the number of Qp does not satisfy P (x).

The lemma is proved. ��

We note that it requires a large amount of technical work to verify
that “y =diag x” is definable in L1Ar, which is why we used SAr instead in
Chapter II.

7.4. The arguments of Tarski and Gödel now take the following parallel form:
Tarski:

(a) Suppose that truth is definable by a formula P .
(b) Then there is a formula QP that says “I am not true.”
(c) The formula QP cannot be false (because of its semantics).
(d) The formula QP cannot be true (because of its semantics).
(e) Therefore, truth is not definable.

Gödel:

(a) Provability is definable by a formula P .
(b) There is a formula QP that says “I am not provable.”
(c) The formula QP cannot be false (because of its semantics, since otherwise

it would be provable, and hence true).
(d) Therefore, QP is true.
(e) Therefore, QP is not provable (because of its semantics).

We note that in the above paraphrasing of Gödel’s argument, part (c)
explicitly uses the stipulation that only true formulas are provable. When
Gödel’s paper appeared in 1931, specialists were very busy looking for finitistic
proofs that the axioms of arithmetic are consistent, so that stipulating that
D ⊂ T would have run counter to the spirit of the times. Therefore, in Gödel’s
own original wording the argument looks somewhat different. This distinction
is traditionally explained in great detail in all textbooks on logic. However,
we shall be satisfied with remarking that if D �⊂ T , then D �= T , and the
incompleteness theorem is trivially true. But in that case we would be in such
bad shape that we would no longer care about completeness or incompleteness.

The main point we are interested in is the following: given any fixed con-
ception of provability that leads to an enumerable (or even to an arithmetical)
set D of provable true formulas, we can effectively construct a new formula
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that is true but not provable. We now define more precisely what we mean by
“effectively.”

7.5. Definition. A set F ⊂ Z+ is said to be productive relative to a versal
family {Ek} of 1-sets if there exists a partial recursive function f such that for
all k ∈ Z+ with Ek ⊂ F , we have k ∈ D(f) and f(k) ∈ F\Ek.

7.6. Proposition. Under the conditions in 7.2, the set of numbers of true
formulas is productive relative to the versal family {Ek} constructed in §8 of
Chapter VI.

Proof. To fix ideas, we shall work with the language L1Ar. We first con-
struct an enumerable family {Pk(x1)} of formulas with one free variable x1 such
that Pk defines Ek. To do this, we define a sequence of terms f̄ [k] in L1Ar as
in 8.1(a) of §8, Chapter VI, by setting

f̄ [4k] = k̄ = +(· · ·+ (1̄, 1̄) · · · ), k times;
f̄ [4k + 1] = xk+1 = the (k + 1)st variable in L1Ar;
f̄ [4k + 2] = +(f̄ [t1(k)], f̄ [t2(k)]);
f̄ [4k + 3] = ·(f̄ [t1(k)], f̄ [t2(k)]).

We then write

Pk = ∃x2(∃x3 · · · (∃xk(f̄ [t1(k)] = f̄ [t2(k)])) · · · ).

It is easy to see, using the methods in §4, that the function k �→ N(Pk) is
recursive. We next fix a translation of “y = diag x” and set

Rk = ∃xk+1(“xk+1 = diag x1”) ∧ (Pk(x1))),

QPk
= ¬(Rk(N(¬(Rk)))),

and finally
f(k) = N(QPk

).

This function is computable because N(Pk) is computable. By Lemma 7.3, it
satisfies the condition 7.5 with T in place of F . ��

7.7. The concept of productivity gives us the following approach to the problem
of exhausting T : we begin with the set D0 of formulas that are provable in
the Peano axiom system Ax0, we define D0 by a formula P0; we set Ax1 =
Ax0 ∪ {QP0}; and we similarly construct D1, P1, and Ax2 = Ax1 ∪{QP1}, and
so on. It follows from Gödel’s theorem that as long as we do all this “uni-
formly effectively,” we cannot obtain all of T even after transfinitely many steps.
However, S. Feferman has shown that if we are willing to dispense with ef-
fectiveness, we can obtain all of TAr in this way. We conclude this section
by formulating Feferman’s result, which gives unexpected and philosophically
interesting information about TAr. We omit the proof and the technical details
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(see Feferman’s original article “Transfinite recursive progressions of axiomatic
theories,” J. Symb. Logic 27, no. 3 (1962), 259–316).

7.8. Principles of extension. In the first place, in order to exhaust TAr it is not
enough to add Gödel’s formula to Axi at every step. There are many other ways
of constructing intuitively true formulas that in various ways formalize “having
faith in the axioms Axi.”

Feferman, in particular, uses the following construction. Suppose that
we have already constructed the axiom system Axα (where α is an ordinal),
and that the set of numbers of formulas deducible from Axα is defined by
the formula Dα. For any formula P (x) with one free variable, we construct a
formula BPα that has the intuitive meaning “if P (n̄) is provable (from Axα) for
all term-names n̄ of natural numbers, then ∀xP (x) is true.” These formulas BPα
must lie in T , and we can set

Axα+1 = Axα ∪ {BPα |all P};

Axβ =
⋃
α<β

Axα, if β is a limit ordinal.

Here is a method for giving BPα explicitly. The function n �→ N(P (n̄)) is
computable as a function of n and N(P ). We define its graph by a formula
M(x, y, z), so that for l,m, n ∈ Z+,

M(l̄, m̄, n̄) is true ⇔
{
l is the number of a formula P with one free
variable x, and m is the number of P (n̄).

We then set

BPα = ∀y ∀z(M(N(P ), y, z)⇒ Dα(y)) ⇒ ∀x P (x).

7.9. The problem of choosing Dα. This is the subtlest part of the proof. Here it
is crucial to show that Dβ exists when β is a limit ordinal.

Feferman shows how the Dα a can be constructed for a suitable countable
sequence of ordinals with limit γ not exceeding ω0

ω0
ω0 so that the following

result will be true.

7.10. Theorem. All true formulas in L1Ar are deducible from ∪α<γAxα .

Thus, suppose we have accepted the Peano axioms. Then, in order to attain
the total truth in arithmetic, we must perform a transfinite sequence of acts of
faith in our not having been led astray by the previous acts of faith.

8 On the Length of Proofs

8.1. The title of this section is taken from a short paper written by Gödel
in 1936. His article consists of a precise formulation and proof of the following
qualitative assertions.
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Suppose we are given a formal language L together with some conception
of deducibility of a formula P from a (variable) set of formulas a . Suppose, in
addition, that we are actually given a function that estimates the “complexity of
deduction” of a formula P from the set a. (In languages of L1, this “complexity”
could be the minimal size of a deduction of P from a, i.e., the number of signs
of a fixed finite protoalphabet needed for such a deduction; note that the use of
the word “complexity” here has nothing to do with the Kolmogorov complexity
in §9 of Chapter VI.) We further assume that L contains a certain fragment of
the logic of L1, that L and a are rich enough for the incompleteness principles
to take effect, and that the “complexity of deduction” satisfies certain natural
axioms. We then have the following facts:

(a) There exist formulas deducible from a whose deduction is arbitrarily more
complex than the formula itself.

Observation shows that this somewhat vaguely defined class includes, if
not the most important, at least the most “prized” mathematical facts.

(b) If we add any independent formula A to the axioms a, then we can find
formulas deducible from a whose deduction from a ∪ {A} is arbitrarily less
complex than from a (the principle of cutting down proofs).

Compare with the great strength of “analytic” methods in comparison with
“elementary“”methods in number theory.

The following more precise presentation of these ideas is based on a short
article by Ehrenfeucht and Mycielski in Bull. Amer. Math. Soc. 17, No. 3 (1971),
366–367.

8.2. We consider the following set of data.

(a) A countable alphabet A with a fixed numbering N : A→ Z+.
(b) A subset F ⊂ S(A) whose elements are called formulas.
(c) A partial function D : P(F ) → P(F ) that to certain subsets a ⊂ F asso-

ciates sets D(a) of formulas “deducible from a.” We shall often write a � P
instead of P ∈ D(a).

(d) The complexity of deduction: this is a function Cda(P ) that is defined for
pairs D ⊂ F, P ∈ D(a), and takes values in Z+. It is convenient to take
Cda(P ) = ∞ if P �∈ D(a).

We impose the following conditions on this data:

8.3. (a) A contains ¬, →, (, and ).
(b) If P and Q ∈ F , then ¬(P ) and (P ) → (Q) ∈ F . As usual, we shall write

P → Q instead of (P ) → (Q), and so on.
(c1) a ⊂ D(a); if a ⊂ a

′
and D is defined at a, then D is defined

at a
′
and D(a) ⊂ D(a

′
).

(c2) If a ∪ {P} � Q, then a � P → Q.
(c3) a � P → (¬P → Q) for any P,Q ∈ F .
(d0) If a ⊂ a

′
, then Cda′ , (P ) � Cda, (P ).

(d1) The set {〈P, n〉|Cda(P ) � n} ⊂ S(A)× Z+ is decidable.
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Condition (d1) does not actually have to hold for all a ⊂ F , but we shall
consider only those a for which it is true. In the case that Cda(P ) is the size
of the shortest L1-deduction of P from a in a finite protoalphabet, and a is a
decidable set of axioms, (d1) holds for the following reason. We can write down
all the texts in A having size � n—there are a finite number of them—and then
verify for each one in turn whether it is a deduction of P from a.

(d2) There exists a general recursive junction f(x, y, z) that is
nondecreasing in x such that

Cda∪{P}(Q) � f(Cda(P → Q), N(P ), N(Q))

for all Q ∈ D(a).
Both sides of this inequality are finite because of the previous conditions:

since a � Q, it follows by (c1) that a∪{P} � Q, and then by (c2) that a � P → Q.
We have an estimate of the type in (d2) in languages of L1, because, starting
with any deduction of P → Q from a, we can obtain a deduction of Q from
a∪ {P} by simply adding P and Q (by modus ponens). This increases the size
of the deduction of P → Q by the sizes of P and Q.

(d3) There exists a general recursive function g(x, y) such that

Cda(P → (¬P → Q)) � g(N(P ), N(Q)).

In languages of L1, the formula P → (¬P → Q) is a logical axiom, and if a
contains this axiom, then the deduction has length 1 and size equal to the size
of the formula itself. Of course, the size of this formula can be represented in
the form g(N(P ), N(Q)).

We now formulate Gödel’s theorem on “cutting down proofs.” We suppose
that the conditions and conventions in 8.2–8.3 are fulfilled.

8.4. Theorem.

(a) Suppose that a ⊂ F and D(a) is undecidable. Then for any general
recursive function I there exist infinitely many formulas P ∈ D(a)) such
that

Cda(P ) > l(N(P )).

(b) Suppose that a′ = a ∪ {A} and the formula A has the property that D(a ∪
{¬A}) is undecidable. Then for any general recursive function r there exist
infinitely many formulas P ∈ D(a) such that

Cda(P ) > r(Cda′(P )).

Proof.

(a) If the first assertion were false, then for a suitable l and for all P ∈ D(a)
we would have Cda(P ) � l(N(P )). But then the set

D(a) = {P |CdR(P ) � l(N(P ))} ⊂ S(A)

would be decidable by (d1), since it is obtained by applying a bounded universal
quantifier (in n) to the decidable set in (d1). This contradicts the assumption.
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(b) Let P ∈ D(a ∪ {¬A}). By (d2) we have

Cda∪{¬A}(P ) � f(Cda(¬A→ P ), N(¬A), N(P )).

If we now suppose that the second assertion of the theorem were false, then for
a suitable nondecreasing general recursive function r we would obtain:

(Cda(¬A→ P ) � r(Cda′ (¬A→ P )),

or, by (d2) and (d3),

(Cda(¬A→ P ) � r ◦f(Cda(A→ (¬A→ P )), N(A), N(P ))
� r ◦f(g(N(A), N(P )), N(A), N(P )).

Substituting this in the above inequality for Cda∪{¬A}(P ), for fixed A we obtain
an estimate of the form

Cda∪{¬A}(P ) � l(N(P )),

where l is general recursive and P ∈ D(a ∪ {¬A}). But this contradicts the
assumption that D(a ∪ {¬A}) is undecidable by the first assertion of the
theorem. ��



VIII

Recursive Groups

1 Basic Result and Its Corollaries

1.1. We consider a countable “group alphabet”

A =
{
a1, a2, . . . ; a−1

1 , a−1
2 , . . .

}
.

The expressions in the alphabet A, including the empty expression ∅, are
traditionally called words. The word ai · · · ai (m � 1 times) will be written
ami ; the word a−1

i · · · a−1
i (m � 1 times) will be written a−mi ; and we agree to

take a0
i = ∅. We call a word am1

i1
· · ·amr

ir
reduced if either it is empty or there are

no subwords of the form a−1
i ai or aia−1

i when it is written in expanded form.
The operation of “joining and reducing” (by “reducing” we mean crossing

out all subwords of the form aia
−1
i or a−1

i ai) defines a group structure with
unit ∅ (which we sometimes denote by 1) on the set of reduced words. This is
a free group F with a countable set of generators {a1, . . . , an, . . .}. We can also
consider nonreduced words as elements in F : we identify such a word with the
word obtained by reducing it.

We have a canonical numbering on A : N(ai) = 2i, N(a−1
i ) = 2i − 1. All

properties related to the computability of operations and the enumerability of
subsets in A and S(A) will be considered relative to any numbering of A equiv-
alent to N and any numbering of S(A) compatible with N (see the definitions
in §1 of Chapter VII). We shall continually be making use of the following facts.

1.2. Lemma.

(a) The set F of reduced words is decidable.
(b) The group operations in F are computable.
(c) A subgroup G ⊂ F in enumerable in S(A) if and only if it has an enumerable

set of generators.
(d) A normal subgroup H ⊂ G in an enumerable subgroup G ⊂ F is enumerable

if and only if it is generated as a normal subgroup by an enumerable set.
(e) A homomorphism F→F is recursive if and only if the induced map {a1, . . . ,

an, . . .} → F is recursive.

263Yu. I. Manin, A Course in Mathematical Logic for Mathematicians, Second Edition,
 Graduate Texts in Mathematics 53, DOI 10.1007/978-1-4419-0615-1_8,
© Yu. I. Manin 2010
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The proof is a good exercise in using the techniques of Chapter VII, and we
leave it to the reader. It is convenient to begin by showing that the operation
of reducing is computable; the rest goes through more or less automatically.

1.3. Definition. A group is called recursive if it is isomorphic to a quotient
group of the form G/H , where G ⊂ F is an enumerable subgroup and H ⊂ G
is an enumerable normal subgroup.

Here we could limit ourselves to subgroups G ⊂ F that are generated by an
enumerable subset of the standard generators {a1, . . . , an, . . .}.

1.4. Remarks and examples.

(a) Recursive groups have at most countably many elements.
(b) Finitely presented (f.p.) groups, i.e., those that have a finite number of

generators and relations, are recursive. In particular, finite groups and
finitely generated (f.g.) abelian groups are recursive.

(c) A subgroup H of an f.p. group G is not necessarily f.p. (or even f.g.). But
if it is finitely generated, then it is recursive.

In fact, let {h1, . . . , hm} be generators of H . We add generators
{hm+1, . . . , hn} of the group G that are connected by a finite number of
relations, and we define a homomorphism φ : F → G by setting φ(ai) = hi
if i � n and φ(ai) = 1 if i > n. The kernel E of φ is generated by a finite num-
ber of relations between a1, . . . , an and by the set {an+1, an+2, . . .}. Hence E is
enumerable by Lemma 1.2(d). The subgroup H ⊂ F generated by a1, . . . , am
is also enumerable, by Lemma 1.2(c). Therefore the set H ∩ E is enumerable.
But φ induces an isomorphism H/H ∩E⇒̃H . Consequently, H is recursive. ��

The basic aim of this chapter is to prove the following remarkable theorem
of Higman, which gives the converse of the simple assertion 1.4(c). (G. Higman,
Subgroups of finitely presented groups, Proc. Royal Soc., Ser. A, vol. 262 (1961),
455–475.)

1.5. Theorem.

(a) Any recursive group G/H (in the notation of 1.3) can be embedded in a
suitable f.p. group F/N .

(b) This embedding can be made effective, i.e., it can be induced by a suitable
recursive map G→ F .

Here are some applications of this theorem.

1.6. Corollary (Universal finitely presented groups). There exists an f.p. group
U such that any f.p. group G can be embedded in U (and hence, any recursive
group can be embedded in U).

In fact, any f.p. group is isomorphic to the quotient of F by a normal
subgroup that is generated by a finite set of reduced words in F and by all ai
with i � n for some n. We let I ⊂ S

(
S(A)

)
× Z+ be the decidable set of pairs

〈a finite sequence of reduced words, n〉, and we let Ni (for i ∈ I) denote the cor-
responding normal subgroup. We construct the “doubly infinite” group alphabet
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{ajk, a−1
jk |j, k � 1}, we identify I with Z+ by choosing a recursive numbering

of I, and we define the group U0 that has generators {ajk} and relations “Nj ,
written in the alphabet {aj1, aj2, . . .}.” It is clear that U0 is recursive. It will
also be clear from the results in the next section that U0 is the free product of
all the groups F/Nj , so that any f.p. group can be embedded in U0. Thus, any
f.p. group U in which we can embed U0, using Higman’s theorem, is universal.

��

In M.K. Valiyev’s article Examples of universal finitely presented groups,
Dok. AN SSSR, 1973, vol. 211, no. 2, a universal group U is constructed that
has 14 generators and 42 relations, and it is mentioned that such a group can
be constructed with only 2 generators and 27 relations.

1.7. F.p. groups with algorithmically undecidable word problem.
Let G be the group with four generators a, b, c, d, and with the relations

b−mabm = d−mcdm, for all m ∈ E,

where E ⊂ Z+ is an undecidable enumerable set. It easily follows from the
results in §2 that the equation

b−xabx = d−xcdx

holds in G only if x ∈ E. (In fact, the elements b−mabm for m � 1 generate
a free subgroup of G, so that G contains the free product of the subgroups
generated by {b−xabx|x � 1} and by {d−xcdx|x � 1} with amalgamation
{b−xabx = d−xcdx|x ∈ E}.) Hence, the question whether the equation b−xabx =
d−xcdx holds is undecidable (as a mass problem indexed by x), and if we
embed G effectively in an f.p. group, we may conclude that the word prob-
lem is unsolvable in this f.p. group.

The existence of such groups was first established by P.S. Novikov and
W. Boone.

1.8. “Natural ” recursive groups. In algebraic geometry over algebraic number
fields, we find many examples of recursive groups that are not a priori finitely
presented. We shall limit ourselves to one typical example.

Let On(Q) be the orthogonal group of automorphisms of an n-dimensional
linear space L (over the rational numbers Q) together with a quadratic form f .
Let b be the corresponding bilinear form. The symmetry τx ∈ On(Q) is defined
for any vector x ∈ L with f(x) �= 0:

τx(y) = y − b(x, y)
f(x)

x

for all y ∈ L. The involutions τx ∈ On(Q) give us an enumerable system of
generators of On(Q), and all the relations are generated by the enumerable
(indeed, decidable) system of relations

τ2
x = 1, (τxτyτz)2 = 1, for all coplanar {x, y, z}

(S. Becken).
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The numbering of L ∼= Qn implicit here is taken to be compatible with any
numbering of Q that is compatible with the standard numbering of Z+ and in
which the field operations are computable.

1.9. Higman’s theorem is related to the theorem that enumerable sets are
Diophantine (Chapter VI), although it was first proved earlier than the lat-
ter result. Perhaps both facts are special cases of some general assertion about
recursive algebraic structures.

In any case, the theorem on the Diophantine nature of enumerable sets
can be used to simplify considerably the recursion-theoretic part of Higman’s
proof. This was shown by Valiyev, whose construction will be given in §§5–6
(cf. Algebra i Logika, vol. 7, No. 3 (1968)). §§2–4 will be devoted to the group-
theoretic preliminaries; here we shall follow Higman.

2 Free Products and HNN-Extensions

2.1. Suppose we are given a family of groups (Gi), i ∈ I, and a family of
group homomorphisms αi : A→Gi. We consider the class of families (H,βi) of
homomorphisms βi : Gi → H such that βi ◦ αi : A→H does not depend on
i ∈ I. This class contains a universal family φi : Gi → ∗AGk that is unique up
to isomorphism: any other family (H,βi) uniquely determines and is uniquely
determined by the homomorphism γ : ∗AGk → H for which βi = γ ◦ φi.

In what follows we shall need only the case in which all the αi are em-
beddings. In this case ∗AGk is called the free product of the groups Gi with
amalgamated subgroups αi(A) ⊂ Gi. We shall generally denote the structure
maps Gi → ∗AGk by φi, perhaps with additional indices. We let φ denote the
structure homomorphism φi ◦ αi : A → ∗AGk, which does not depend on i. If
A = {1}, we write simply ∗Gi instead of ∗AGi; if the set of indices is {1, . . . , n},
we write G1 ∗ · · · ∗ Gn, and so on. We shall continually be making use of the
following structure lemma.

Let αi : A→ Gi be embeddings, and let Si ⊂ Gi, be subsets such that

Gi\αi(A) =
⋃
s∈Si

αi(A)s, and

αi(A)s1 �= αi(A)s2, for s1 �= s2 ∈ Si.

2.2. Proposition. Any element in the group ∗AGi can be uniquely represented
in the form

φ(a)φi1 (s1) · · ·φin (sn),

where a ∈ A, sk ∈ Sik , ij �= ij+1 for all j, and n � 0 depends on the element.

We shall call this the canonical expansion of an element.
For the proof of this fact and for further details, see, for example, Serre’s

lecture notes Arbres, amalgames et SL2.
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2.3. Corollaries

(a) Under the conditions in 2.2, the structure homomorphisms φ and φi are
embeddings.

This allows us to identify A and Gi with subgroups of ∗AGi using φ and φi.
We shall do this in the statements that follow. However, in the several-
step constructions in the later subsections, one and the same group will be
embedded in another group in many different ways using various compositions
of the structure maps, and it will be necessary to keep careful track of these
embeddings.

(b) Gi ∩Gj = A(in ∗AGi) for i �= j.

In other words, φi(Gi) ∩ φj(Gj) = φ(A). We can use Proposition 2.2 to
prove ⊂: otherwise we would have φi(si) = φj(sj), which would contradict the
uniqueness.

(c) Suppose we are given a family of embeddings βi : Hi → Gi and a subgroup
B ⊂ A such that βi(Hi) ∩ αi(A) = αi(B) for all i. Then the composition

B
β−1

i ◦αi
=⇒ Hi

φi◦βi=⇒ ∗AGi

does not depend on i, and therefore gives a canonical map ∗BHi → ∗AGi.
This map is an embedding. In particular, the subgroup of ∗AGi generated
by φi ◦ βi(Hi) is isomorphic to ∗BHi.

In fact, the canonical expansion in 2.2 of an element in ∗BHi goes to the
canonical expansion of the image of this element in ∗AGi.

(d) With the same notation, we have(
∗BHi

)
∩A = B in ∗AGi;(

∗BHi

)
∩Gj = Hj in ∗AGi.

2.4. Generators and relations. Let M be a set, and let R be a subset of the free
group FM that is freely generated by M . We let |M : R| denote the quotient
group FM/R, where R is the smallest normal subgroup of FM containing R.
This is what we mean by defining a group by generators (M) and relations (R).

We shall take the following liberties with notation:
(a) If M has a nonempty intersection with a group that has already been

defined, then all relations coming from the relations in the earlier group
are assumed to be included in R, even if they are not explicitly written out.
We might completely omit any reference to R if there are no other relations
besides those coming from the earlier group. For example, if E and F ⊂ G
are two subgroups, then |E ∪ F | is the subgroup they generate in G, and
so on.

(b) Instead of writing, say, a1a
−1
2 is in R, we may write a1 = a2.
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Example. If the αi : A → Gi are embeddings, then ∗AGi is defined by the
following generators and relations:∣∣∣∣∣ ⋃

i∈I
Gi : αi(a) = αj(a) for all a ∈ A, i, j ∈ I

∣∣∣∣∣.
We now introduce a construction that will be fundamental for everything

that follows (G. Higman, B. Neumann, H. Neumann).
Suppose we are given two embeddings of groups α, β : A→ G.

2.5. Definition. The HNN-extension of the group G (relative to A,α, β) is the
group

K = |G ∪ {t} : t−1α(a)t = β(a) for all a ∈ A|.

2.6. Proposition. The following homomorphisms are embeddings:

(a) G→ K : g �→ the class of g modulo the relations in K.
(b) G ∗A t−1Gt→ K, where the free product is taken relative to the embeddings

a �→ β(a) and a �→ t−1α(a)t.

Proof. In the group G ∗ {un}, the subgroup U generated by G and u−1α(A)u
is isomorphic to G ∗ u−1α(A)u. In fact, the canonical expansion of an element
in G ∗ u−1α(A)u has the form g1u

−1α(a1)ug2 · · · gnu−1α(an)u, where g1 ∈G,
g2, . . . , gn ∈ G \{1}, a1, . . . , an−1 ∈ A\{1}, an ∈ A, and so this expansion also
has the canonical form in G ∗ {un}.

We construct the subgroup V = G ∗ vβ(A)v−1 ⊂ G ∗ {vn} similarly.
We identify the group W = G ∗ w−1Aw with U and V by means of the

isomorphisms that are the identity on G and take w−1aw to u−1α(a)u and
vβ(a)v−1, respectively.

We now consider the group (G ∗ {un}) ∗W (G ∗ {vn}). The group G ⊂W is
canonically embedded in it, and for all a ∈ A the element t = uv satisfies the
relation

t−1α(a)t = β(a),

because we have made the identification u−1α(a)u = vβ(a)v−1. In addition,
it is clear from Proposition 2.2 that in (G ∗ {un}) ∗w (G ∗ {vn}) the groups
u−1 Gu and vGv−1 generate a free product with amalgamation A embedded
by means of the maps a �→ u−1α(a)u and a �→ vβ(a)v−1, respectively. Hence,
if we conjugate by v, we see that G and t−1Gt also generate a free product, as
described in the statement of 2.6.

Therefore, the subgroup

K
′

= |G ∪ {t = uv}| ⊂ (G ∗ {un}) ∗W(G ∗ {vn})

is a homomorphic image of K, and assertions (a) and (b) hold for K
′
. Moreover,

the canonical map K → K
′

is an isomorphism. To see this it suffices to note
that there exists an isomorphism

K ∗ {vn} ∼⇒
(
G ∗ {un}

)
∗W

(
G ∗ {vn}

)
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that takes t ∈ K to uv. In particular, t has infinite order in K. The proposition
is proved. ��

We shall need to refine and generalize this result in two directions. In the
first place, we want to consider iterated HNN-extensions; in the second place,
we are interested in the connection between HNN-extensions of a group and a
subgroup. We now bring together all the facts we need into a single statement.

Suppose that we are given an entire family of pairs of embeddings
αi, βi : Ai → G (i ∈ I) and a subgroup H ⊂ G with the property that
α−1
i

(
αi(Ai) ∩ H

)
= β−1

i

(
βi(Ai) ∩ H

)
= Bi ⊂ Ai are subgroups. Under these

conditions we have the following result.

2.7 Proposition. Let

KG =
∣∣G ∪ {ti|i ∈ I} : t−1

i αi(a)ti = βi(a) for all i ∈ I, a ∈ Ai
∣∣;

KH =
∣∣H ∪ {t′i|i ∈ I} : t

′−1
i αi(b)t

′
i = βi(b) for all i ∈ I, b ∈ Bi

∣∣.
Then

(a) the {ti} freely generate a free subgroup in KG;
(b) the natural maps G → KG and KH → KG (the latter given by t

′
i �→ ti)

are embeddings. In addition, KH ∩G = H in KG.

Proof.

(a) If the relations in KG implied a nontrivial relation between the ti, this
relation would be preserved in the quotient of KG by the smallest normal divisor
containing G. But in this quotient the relations t−1

i αi(a)ti = βi(a) become
trivial (1 = 1), and no restrictions are imposed on the images of the ti. This
proves (a).

(b) We first consider the case that I consists of one element. In the notation
used in the proof of Proposition 2.6, we consider KG as a subgroup of

(
G ∗

{un}
)
∗W

(
G ∗ {vn}

)
. By Proposition 2.2, in G ∗ {un} we have

H ∗ {un} ∩G ∗ u−1α(A)u = H ∗ u−1α(B)u,

and similarly, in G ∗ {vn} we have

H ∗ {vn} ∩G ∗ vβ(A)v−1 = H ∗ vβ(B)v−1.

The above identifications of U and V with W identify these intersections with
the subgroup

W0 = H ∗ w−1Bw ⊂ G ∗ w−1Aw = W.

By Corollary 2.3(c), we have a canonical embedding(
H ∗ {un}

)
∗W0

(
H ∗ {vn}

)
→

(
G ∗ {un}

)
∗W

(
G ∗ {vn}

)
.

But as at the end of the proof of 2.6, the group on the left is KH ∗ {vn} and
the group on the right is KG ∗ {vn}, so we obtain an embedding KH → KG.
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Furthermore (the intersection is taken in
(
G ∗ {un}

)
∗W

(
G ∗ {vn}

)
):(

H ∗ {un}
)
∗W0

(
H ∗ {vn}

)
∩G ∗ u−1α(A)u = H ∗ u−1α(B)u,

so that if we now intersect with G, we obtain H . It follows a fortiori that
KH ∩G = H .

We prove (b) for finite I by an easy induction on n, and then for infinite I
by passing to the inductive limit (which here is a union). We leave the details
to the reader. ��

3 Embeddings in Groups with Two Generators

In this section we prove a result that will be used later and that shows vividly
in a simple situation how the number of generators can be decreased using em-
beddings.

3.1. Proposition.

(a) Any countable or finite group G can be embedded in a group with two
generators.

(b) If G is recursive, then there is such an embedding that is recursive.

Proof.

(a) The group Z ∗ Z = {bn} ∗ {vn} has a free subgroup of countable rank, for
example,

S =
∣∣{b−1vbi|i � 0}

∣∣.
It immediately follows from Proposition 2.2 that there are no relations between
the generators b−ivbi.

Thus, if G is a free countable group, it embeds in Z∗Z. If G is not, we could
try to represent G in the form F/N , where F is countable and free, then embed
F in Z ∗ Z and consider the induced homomorphism F/N → Z ∗ Z/N

′
, where

N
′

is the normal subgroup in Z∗Z generated by N . Unfortunately, N
′ ∩F may

be strictly larger than N , so that this homomorphism does not have to be an
embedding. The following construction shows how to deal with this problem.

Let {g1, g2, g3, . . .} be a countable system of generators of G, where gi �= 1.
We successively construct the following extensions of G:

(1) G ∗ {un};
(2) the HNN-extension of G ∗ {un},∣∣G ∗ {un} ∪ {

ti|t−1
i uti = ugi, i = 1, 2, . . .

}∣∣
(note that u and the ugi generate infinite cyclic subgroups in G ∗ {un});

(3) the free product P of this HNN-extension and the group {bn} ∗ {vn} with
subgroups |{t1, t2, . . .}| and |{b−ivbi|i � 1}| amalgamated by means of the
isomorphism

ti = b−ivbi, i � 1.
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(4) P has the two rank-2 free subgroups |{b, v}| and |{u, b}|. There are no
relations between u and b because there can be no relations in the quotient
by the smallest normal subgroup containing G, ti, and v.

Finally, we construct the following HNN-extension of P :

Q = |P ∪ {a} : a−1ba = u, a−1va = b|.

To complete the proof, it remains to verify that Q is generated by the elements
a and b.

In fact, Q has the obvious system of generators {gi, ti(i � 1);u, v, a, b}. The
relations gi = u−1t−1

i uti allow us to eliminate the gi; the relations ti = b−ivbi

allow us to eliminate the ti; and the relations u = a−1ba and v = aba−1 allow us
to eliminate u and v. This proves the first part of the proposition. The following
analysis of the construction establishes part (b).

If we express gi in terms of a and b in Q using the above relations, we find
that gi = ei, modulo the relations in Q, where

ei = a−1b−1ab−iab−1a−1bia−1bab−iaba−1bi.

Hence, the subgroup E = |{ei|i � 1}| in the group {an}∗{bn} has the following
remarkable property: any normal subgroupN ⊂ E generates a normal subgroup
N

′
in {an} ∗ {bn} such that E ∩ N ′

= N (compare with the remark at the
beginning of the proof).

In particular, if {gi} is an enumerable system of generators of G that is
connected by an enumerable set of relations, it follows that the map gi �→ ei
(mod the relations) induces a recursive embedding of G in the recursive group
E/N

′
, since N

′
is enumerable whenever N is. ��

4 Benign Subgroups

4.1. Definition-Lemma. Let G be a finitely presented group, and let
H ⊂ G be a subgroup. H is called benign if the following equivalent conditions
are fulfilled:

(a) There exist a finitely presented group K, a finitely generated subgroup
L ⊂ K, and an embedding G ⊂ K such that G ∩ L = H.

(b) The HNN-extension

KG = |G ∪ {t} : t−1ht = h, for all h ∈ H |

can be embedded in a finitely presented group.
(c) G ∗H G can be embedded in a finitely presented group.

Proof of the equivalence

(a) ⇒ (b). Suppose that G ⊂ K and L satisfy (a). Then it follows by 2.6 that
KG is embedded in the HNN-extension

|K ∪ {t} : t−1lt = l, for all l ∈ L|.
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This group is finitely presented: we add t to the generators of K, and add the
relations t−1lit = li, for a finite system of generators {li} of L, to the relations
between the generators of K.

(b) ⇒ (c). The group G ∗H G is embedded in KG by 2.6(b), and KG can be
embedded in an f.p. group because we have assumed condition (b).

(c)⇒ (a). Suppose that G ∗H G ⊂M , where M is finitely presented. We set
K = M , we set L = the image of G under the composite embedding φ2 : G→
G ∗H G → M , and we embed G in K by means of φ1 : G → G ∗H G → M .
Since φ1(G) ∩ φ2(G) = H , we have G ∩ L = H in K, as required. ��

The basic goal of this section is to reduce Higman’s theorem 1.5 to proving
that all enumerable subgroups in Z ∗ Z are benign. For this purpose and for
later uses we shall need the following lemma.

4.2. Lemma. Let R be a benign subgroup of an f.g. free group F , and let R be
the normal subgroup it generates. Then F/R can be embedded in an f.p. group.

Proof. Let i be an embedding of F ∗R F in an f.p. group K (see 4.1(c)), and
let φ1, φ2 : F → F ∗R F be the structure maps. We consider two embeddings of
F in K × F/R:

α : f �→ 〈i ◦ φ1(f), fR〉;
β : f �→ 〈i ◦ φ2(f), 1〉.

They obviously coincide on the subgroup R ⊂ F . Hence they are induced by a
homomorphism

γ : F ∗R F → K × F/R,

which has a trivial kernel, since the composition of γ with the projection onto
K coincides with i.

We construct an HNN-extension that takes i × {1} : F ∗R F → K × F/R
to γ:

L =
∣∣∣K × F/R ∪ {t} : t−1

〈
i ◦ φ1(f), 1

〉
t =

〈
i ◦ φ1(f), fR

〉
,

t−1
〈
i ◦ φ2(f), 1

〉
t =

〈
i ◦ φ2(f), 1

〉
for all f ∈ F

∣∣∣.
L obviously contains F/R. We show that L is finitely presented.

Generators of L : {t}∪ finite system of generators of K ∪ finite system of
generators of F . This system is finite.

Relations in L :

(a) {the relations between the generators of K}.
(b) {the commutation relations between the generators of K and the generators

of F}.

After imposing these relations, we may consider that we are working in
K × F .
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(c) t−1
〈
i ◦ φ1(f), 1

〉
t =

〈
i ◦ φ1(f), f

〉
,

t−1
〈
i◦ φ2(f), 1

〉
t =

〈
i ◦ φ2(f), 1

〉
,

where f runs through the system of generators of F .

(d) The relations in R between the generators of F .

We can take the system of relations R0 = (a) ∪ (b) ∪ (c) to be finite. We
need only verify that the relations in (d) follow from R0.

Let R
′ ⊂ F be the normal subgroup generated by R0, i.e., the kernel of the

natural homomorphism F → |K ∪F ∪{t} : R0|. We want to show that R
′

= R.
The inclusion R

′ ⊂ R is obvious. We verify the converse.
If f ∈ F , we set f

′
= f mod R

′
and f1,2 = i ◦ φ1,2(f) ∈ K. It then follows

from the relations (b) and (c) that in K × F/R′
we have

t−1〈f1, 1〉t = 〈f1, 1〉〈1, f
′
〉 and t−1〈f2, 1〉t = 〈f2, 1〉.

On the other hand, if f ∈ R, then, since F ∗R F is embedded in K, it follows
from the relations (a) that f1 = f2. Hence f

′
= 1, so that R ⊂ R

′
. ��

This lemma gives us the following reduction step.

4.3. Proposition. If all enumerable subgroups in Z ∗ Z are benign, then
Higman’s theorem is true.

Proof. Let G be the free group generated by an enumerable set of free gener-
ators {gi}, i = 1, 2, 3, . . . , and let N ⊂ G be an enumerable normal subgroup.
We shall show how to embed G/N into an f.p. group.

We first consider the embedding G → {an} ∗ {bn} given by gi �→ ei, where
the ei are as defined at the end of §3. Let the image of N under this embedding
generate the normal subgroup N

′ ⊂ {an} ∗ {bn}. By the remark at the end
of §3, G/N embeds in {an} ∗ {bn}/N ′

. But N
′

is enumerable by Lemma 1.2(d),
since it is generated by the image of an enumerable set under a recursive
map. Therefore, N

′
is a benign normal subgroup. Lemma 4.2 then shows that

{an} ∗ {bn}/N ′
can be embedded in an f.p. group. ��

We conclude this section by establishing several basic properties of benign
subgroups.

4.4. Lemma. Let E,F ⊂ G be benign subgroups of G. Then:

(a) E ∩ F is a benign subgroup;
(b) |E ∪ F | (“the sum of E and F in G

′′
) is a benign subgroup.

Proof. Let φ1, φ2 : G → G ∗E G and φ
′
1, φ

′
2 : G → G ∗F G be the structure

homomorphisms. Let M1 and M2 be f.p. groups such that G ∗E G ⊂ M1, and
G∗F G ⊂M2. We identify φ1(G) ⊂M1 and φ

′
1(G) ⊂M2 with G, and construct

the group M1 ∗GM2. This group is finitely presented (since it suffices to add to
the relations in M1, and M2 the relations φ1(gi) = φ

′
1(gi) for a finite system of

generators ofG). Let φ
′′
1 , φ

′′
2 : M1,M2 →M1∗GM2 be the structure embeddings.
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We set K = M1 ∗G M2 and L = φ
′′ ◦ φ2(G), and we embed G in K by means

of φ
′′
2 ◦ φ

′
2.

We claim that G∩L = E ∩F (as a subgroup of G in K). In fact, φ
′′
1 (M1)∩

φ
′′
2 (M2) = G with its canonical embedding in M1 ∗GM2. If we take only φ2(G)

in M1 and φ
′
2(G) in M2, then intersecting with the amalgamation G gives E

and F , respectively, and intersecting φ2(G) with φ
′
2(G) gives E ∩ F .

(b) The subgroups φ1(|E ∪ F |) and φ2(G) have the same intersection with
the amalgamation in G ∗E G, since they actually contain it. Hence, by 2.3(d),
we have |φ1(|E ∪ F |) ∪ φ2(G)| ∩ φ1(G) = |E ∪ F | in G ∗E G, i.e., since E is the
amalgamation,

|φ1(F ) ∪ φ2(G)| ∩ φ1(G) = |E ∪ F |.
Similarly, we have

|φ′
1(E) ∪ φ′

2(G)| ∩ φ′
1(G) = |E ∪ F |

in G ∗F G. The notation is compatible with the fact that these two intersec-
tions are identified in the amalgamation of the product M1 ∗G M2, which is
constructed as in part (a).

Applying 2.3(d) to this product, we find that∣∣φ′′
1

(
|φ1(F ) ∪ φ2(G)|

)
∪ φ′′

2

(
|φ′

1(E) ∪ φ′
2(G)|

)∣∣ ∩G = |E ∪ F |.

But the group |φ′′
1 ◦φ2(G) ∪ φ′′

2 ◦φ
′
2(G)| ∩ G obviously contains the right-hand

side and is contained in the left-hand side of this equality, so that it also coin-
cides with |E ∪ F |.

Finally, |φ′′
1 ◦ φ2(G) ∪ φ′′

2 ◦ φ
′
2(G)| is a finitely generated subgroup of the

finitely presented group M1 ∗GM2. The proof is complete. ��

4.5. Lemma. Let G and H be f.g. subgroups of f.p. groups. Then any homo-
morphism from G to H takes benign subgroups of G to benign subgroups of H.

Proof.

(a) If A ⊂ G is benign, then A × {1} ⊂ G ×H is also benign, since, given
an embedding of (G,A) in (K,L) as in 4.1(a), we can construct the obvious
embedding of (G×H) in (K×M,L×{1}), where M is the f.p. group containing
H , which also satisfies the conditions in 4.1(a). Conversely, if A×{1} ⊂ G×H
is benign, then from an embedding of (G ×H,A × {1}) in (K,L) as in 4.1(a)
we construct the corresponding embedding of (G,A) in (K,L ∩G× {1}).

(b) Now let φ : G→ H be any homomorphism, let F be its graph, and let
A ⊂ G be a benign subgroup. Then in G×H we have

{1} × φ(A) =
∣∣(|A× {1} ∪ {1} ×H | ∩ F )

∪G× {1}
∣∣ ∩ {1} ×H.

It is clear from the assumptions regarding G and H that F is a benign subgroup
in G×H . By part (a), the other subgroups on the right in the formula are also
benign. By Lemma 4.4, {1} × φ(A) is a benign subgroup. Hence, φ(A) is also
benign. ��
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5 Bounded Systems of Generators

5.1. Let G
′

= |{a1, . . . , an}|, n � 1, be the group freely generated by the ai.
We call a subset R

′ ⊂ G
′
bounded if there exists an r > 1 such that any element

in R
′

can be represented in the form ax1
i1
· · · axr

ir
, xi ∈ Z. In this section we prove

the following special case of the hypothesis of Proposition 4.3:

5.2. Proposition. If the subgroup H
′ ⊂ G

′
is generated by a bounded enumer-

able subset R
′ ⊂ G

′
, then it is benign.

Corollary. The same is true if G
′

is an f.g. subgroup of an f.p. group (using
Lemma 4.5).

In the next section we show how the general case follows from this special
case.

The proof of 5.2 consists of a series of reduction steps.

5.3. First reduction. In the free group G = |{a1, b1, c1; . . . ; arn, brn, crn}| we
shall consider a set of “layered” words of the form

R = {ax1
1 b1c

x1
1 · · ·axrn

rn brnc
xrn
rn }

and the subgroup H ⊂ G it generates. We shall later show that if R is enumer-
able, then H is benign. This is a special case of 5.2 to which the general case
reduces using the following technique.

Suppose we are givenG′ andR′ as in 5.1. For each element g′ = ax1
i1
· · ·axr

ir
∈R′

we construct an element g ∈ G as follows. We represent g′ in the form

n∏
i=1

a
x1,i

i

n∏
i=1

a
x2,i

i · · ·
n∏
i=1

a
xr,i

i ,

where

xk,i =

{
xk, for i = ik,

0, for i �= ik.

We then set

g =

(
n∏
i=1

a
x1,i

i bic
x1,i

i

)(
n∏
i=1

a
x2,i

n+ ibn+ ic
x2,i

n+ i

)

· · ·
(

n∏
i=1

a
xr,i

(r−1)n+ ib(r−1)n+ ic
xr,i

(r−1)n+ i

)
.

If R
′

is enumerable, then the set R of all elements g obtained from all the
g

′ ∈ R′
is enumerable.

We consider the surjective homomorphism φ : G→ G
′

given by φ(anj + i) =
ai (1 � i � n, 0 � j � r − 1), φ(bi) = φ(ci) = 1 for all i = 1, . . . , rn. Clearly
φ(R) = R

′
, and hence φ(H) = H

′
. It then follows from Lemma 4.5 that if R is

benign in G, then R
′

is benign in G
′
. ��
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5.4. Using the theorem that all enumerable sets are Diophantine.
From this point on, we fix a pair (G, enumerable R), as in 5.3. We shall

write l � 1 in place of rn. We define the set E ⊂ Zl+1 by the condition

R =
{
ax0
0 b0c

x0
0 · · ·axl

l blc
xl

l |〈x0, . . . , xl〉 ∈ E
}
.

It is not hard to see that R is enumerable if and only if E is enumerable.
We now show that E can be represented as the projection onto the first l+ 1

coordinates of a set

N⋂
s=1

Es ⊂ Zl+1 × Zm−1, m � l + 2,

where each of the Es is defined by an equation of one of the following forms :

xi = c, c ∈ Z;
xi = xj , 0 � i, j � m;
xk = xj + xi, l + 1 � k < j < i � m;
xk = xj · xi, l + 1 � k < j < i � m.

In fact, let ε0, . . . , εl ∈ {1,−1}, and let ε̄ = 〈ε0, . . . , εl〉. We consider the
enumerable sets

E ε̄ =
{
〈x0, . . . , xl〉 ∈ (Z+ ∪ {0})l+1|〈ε0x0, . . . , εlxl〉 ∈ E

}
.

By the fundamental theorem in Chapter VI, there exist polynomials P ε̄ with
integral coefficients such that

E ε̄ = the projection of the 0-level of P ε̄ in (Z+ ∪ {0})l+1

× (Z+)n−l onto the first l + 1 coordinates 〈x0, . . . , x1〉.

Here we can take n large enough that the sets of variables that actually occur
in P ε̄

′
and in P ε̄

′′
and that “drop out” in the projection do not intersect if

ε̄
′ �= ε̄

′′
. If we add the (n+ 1)2l+3 new variables yijε̄ (0 � i � n, j = 1, 2, 3, 4) to

the variables that drop out in the projection, we find that E can be represented
as the projection onto the first l + 1 coordinates of the 0-level of the following
polynomial, where the 0-level is now in Zl+1 × Zn+(n+1)2l+3−l:

Q =
∏
ε̄

[(
P ε̄(ε0x0, . . . , εlxl, xl+1, . . . , xn)

)2

+
l∑
i=0

(
εixi −

4∑
j=1

y2
ijε̄

)2

+
n∑

i=l+1

(
xi − 1−

4∑
j=1

y2
ijε̄

)2
]
.

Finally, in order to represent the set Q = 0 as a projection of an intersection⋂N
s=1Es of the required type, we introduce additional variables as follows. Let

x0, . . . , xt be the variables that occur in Q. Instead of Q = 0 we write Q1 = Q2,
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where Q1 is the sum of the monomials in Q with positive coefficients, and Q2

is the sum of the monomials with negative coefficients. Then

0-level of Q = a projection of (xt+ 1 = Q1) ∩ (xt+2 = Q2) ∩ (xt+1 = xt+2).

If Q1 and Q2 are constants or variables, this gives us the desired representa-
tion. Otherwise, we write, say, Q1 in the form Q

′
1 + Q

′′
1 or Q

′
1 · Q

′′
1 , and after

introducing two more variables, we have, for example,

(xt+1 = Q
′
1 +Q

′′
1 ) = a projection of (xt+3 = Q

′
1)

∩ (xt+4 = Q
′′
1 ) ∩ (xt+1 = xt+3 + xt+4).

We complete the proof by induction on the sum of the absolute values of the
coefficients and on the degree of Q. ��

5.5. Second reduction. We now assume that along with the pair (G,R) described
in 5.3, we have fixed a representation of E in the form

⋂N
s =1Es as in 5.4. In

this subsection we show that the subgroup H ⊂ G generated by R is benign if
all of the following subgroups Hs ⊂ G, s = 1, . . . , N , are benign:

G =
∣∣∣{a0, b0, c0; . . . ; am, bm, cm; ā1, b̄1, c̄1, . . . , āl, b̄l, c̄l,

}∣∣∣;
Hs =

∣∣∣∣∣∣
⎧⎨⎩
(

m∏
i=l+1

axi

i bic
xi

i

)−1 ( l∏
i=1

āxi

i b̄ic̄
xi

i

)−1 m∏
i=0

axi

i bic
xi

i ; 〈x0, . . . , xm〉 ∈ Es

⎫⎬⎭
∣∣∣∣∣∣ .

To show this, we first set

a(x0, . . . , xm) =

(
m∏

i=l+1

axi

i bic
xi

i

)−1( l∏
i=1

āxi

i b̄ic̄
xi

i

)−1 m∏
i=0

axi

i bic
xi

i . (1)

The set of words {a(x0, . . . , xm); 〈x0, . . . , xm〉 ∈ Zm+1} is free, since when we
join two such words (or when we join such a word with the inverse of another
such word), any cancellation cannot involve the “middle part” of each word,
which consists of the symbols āi, b̄i, c̄i.

It hence follows that
N⋂

s = 1

Hs =

∣∣∣∣∣
{
a(x0, . . . , xm), 〈x0, . . . , xm〉 ∈

N⋂
i = 1

Es

}∣∣∣∣∣,
and the subgroup H =

⋂N
s=1Hs ⊂ G is benign if all of the Hs are benign.

Finally, we have∣∣H ∪
{
al+1, bl+1, cl+1, . . . , am, bm, cm; ā1, b̄1, c̄1, . . . , āl, b̄l, c̄l

}∣∣
=

∣∣∣∣∣
{

l∏
i=0

axi

i bic
xi

i , 〈x0, . . . , xl〉 ∈ E = projection of
N⋂
s=1

Es

}

∪
{
al+1, bl+1, cl+1, . . . , āl, b̄l, c̄l

}∣∣∣∣∣,
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so that
H =

∣∣∣H ∪ {
al+1, bl+1, . . . , b̄l, c̄l

}∣∣∣ ∩ |{a0, . . . , bl, cl}|.

Therefore, H is benign whenever H is benign. ��

5.6. Construction of the group K. We use the criterion 4.1(a) to verify that
the Hs ⊂ G are benign subgroups. That is, we explicitly construct a finitely
presented group K ⊃ G and finitely generated subgroups Ls ⊂ K such that
Ls ∩ G for all s = 1, . . . , N . We construct K as a multiple HNN-extension
of G.

(a) The first HNN-extension. We set

K0 =
∣∣G ∪ {t0, . . . , tm} : R0

∣∣,
where R0 is the set of relations{

t−1
i biti = aibici and t−1

i b̄iti = āib̄ic̄i, for i = 0, . . . ,m;

the ti commute with all the other generators of G
}
. (2)

(b) The second HNN-extension. We set

K =
∣∣K0 ∪ {tijk; l + 1 � k < i, k < j, i �= j; i, j, k � m} : R

∣∣,
where R is the set of relations{
t−1
ijkbitijk = aibici, t

−1
ijkcjtijk = tkcj ;

the tijk commute with the tk and with the other generators of G
}
.

(3)

Unlike what we saw in 5.6(a), here it is not completely obvious that K
is an HNN-extension of K0. To check this it suffices to show that the map
φijk (i, j, k fixed i �= k, j �= k) from the set {generators of G} ∪ {tk} to itself
that takes

bi �→ aibici, cj �→ tkcj , tk �→ tk,

and leaves the other generators of G fixed, extends to an automorphism of the
subgroup |G ∪ {tk}| ⊂ K0. We have∣∣G ∪ {tk}∣∣ =

∣∣G ∗ {tnk} : t−1
k bitk = bi, t

−1
k cjtk = cj , . . .

∣∣,
where the · · · stands for relations that do not involve bi and cj , and so are
taken to themselves under φijk . On the other hand, the two relations that are
written out are taken to relations that follow from the defining relations in K0:
the first goes to

t−1
k aibicitk = aibici,

and the second goes to
t−1
k tkcjtk = tkcj .

It remains to use the stipulation that i �= k and j �= k.
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It is clear from the definition of K that K is finitely presented. It follows
from the properties of HNN-extensions that G ⊂ K.

5.7. Construction of the subgroups Ls ⊂ K. The form of Ls will depend on
the equation defining the set Es (see 5.4). We define a large number of groups,
which will include all the Ls:

Lci =
∣∣{a(0 · · · 0︸ ︷︷ ︸

i

c0 · · · 0), tr(r �= i)
}∣∣,

L=
ij =

∣∣{a(0 · · · 0), titj , tr(r �= i, j)
}∣∣,

L+
ijk =

∣∣{a(0 · · · 0), titk, tjtk, tr(r �= i, j, k)
}∣∣,

L×
ijk =

∣∣{a(0 · · · 0), tijk, tjik, tr(r �= i, j, k)
}∣∣,

and analogously, in the notation of 5.5,

H
c

i =
∣∣{a(x0, . . . , xm), xi = c

}∣∣,
H

=

ij =
∣∣{a(x0, . . . , xm), xi = xj

}∣∣,
H

+

ijk =
∣∣{a(x0, . . . , xm), xk = xj + xi

}∣∣,
H

×
ijk =

∣∣{a(x0, . . . , xm), xk = xj · xi
}∣∣.

The Ls are clearly finitely generated. It remains to perform one final series of
verifications:

5.8. H
c

i = G ∩ Lci , H
=

ij = G ∩ L=
ij , and so on.

First of all, it follows from (1), (2), and (3) that

t−1
i a(x0, . . . , xm)ti = a(x0, . . . , xi−1, xi + 1, xi+1, . . . , xm), (4)

t−1
ijka(x0, . . . , xm)tijk = a(y0, . . . , ym), (5)

where yi = xi + 1, yk = xk + xj , and ys = xs for s �= i, k. (To verify (5) recall
that since k � l + 1, it follows that tk commutes with the middle part of the
word a(x0, . . . , xm), which consists of āi, b̄i, c̄i, i � l.)

It hence follows that

Lci =
∣∣H c

i ∪
{
tr|r �= i

}∣∣,
L=
ij =

∣∣H =

ij ∪
{
titj , tr|r �= i, j

}∣∣,
L+
ijk =

∣∣H +

ijk ∪
{
titk, tjtk, tr|r �= i, j, k

}∣∣,
L×
ijk =

∣∣H×
ijk ∪

{
tijk, tjik, tr|r �= i, j, k

}∣∣.
In fact, the inclusions ⊂ are obvious. Next, if we begin with a(x0, . . . , xm) and
conjugate by tr, it follows by (4) that we can vary the rth coordinate arbitrarily.
This immediately gives the inclusion Lci ⊃ Hc

i , and hence the first required
equality. The second equality is obtained analogously.
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The third equality: conjugating by titk increases the ith and kth coordinates
by 1, and conjugating by tjtk increases the jth and kth coordinates by 1, so
that we can obtain any vector with xk = xj + xi starting from a vector with
zeros in these places.

The fourth equality: conjugating by tijk increases xi by 1 and increases xk
by xj , and conjugating by tjik increases xj by 1 and xk by xi. Hence, we can
obtain any vector with xk = xj · xi starting from the zero vector.

This new characterization of the groups Ls shows that Ls ∩ G ⊃ Hs for
all s. It remains to prove the converse.

To do this, we note that using (4) and (5), we can represent any element in
Ls in the form Th, where T ∈ |{ti, tijk}| (here the set of admissible indices i and
ijk depends on s) and h ∈ Hs. This follows by the same argument as above.
But by Proposition 2.7(a), all the {ti, tijk} generate a free subgroup that has a
trivial intersection with G (see the proof of 2.7(a)). Consequently, if Th ∈ G, it
follows that T = 1 and h ∈ Hs, which completes the proof. ��

6 End of the Proof

6.1. In this section we finish the verification of Proposition 4.3, and hence the
proof of Higman’s theorem.

Let G = |{a, b}|, and let H ⊂ G be an enumerable subgroup. We shall show
that H is benign. The first step is to reduce the problem to proving that a
certain special subgroup

H
′ ⊂ G

′ ∼=
7
∗
1

Z,

which does not depend on H , is benign. To define H
′
, we first introduce the

following recursive enumeration γ : Z+ → G (which covers each g ∈ G infinitely
many times):

γ(2m03m1 · · · pmr
r · · · ) =

∞∏
i=0

am4i−m4i+1bm4i+2−m4i+3 .

We then set

G
′

= |{a, b, t, v, c, d, e}|;

τ : S({a, b, a−1, b−1}) → G
′

:
∏
i�0

am2ibm2i+1 �→ t
∏
i�0

(v−iavi)m2i(v−1bvi)m2i+1 ;

H
′

= |{τ(g)cnden|g ∈ S({a, b, a−1, b−1}), n ∈ Z+, g = γ(n)}| ⊂ G
′
.

The formula for τ defines τ on words that are not necessarily reduced, and
reducing a word can change its image under τ . Also note that a generator
τ(g)cnden of H

′
is uniquely determined by n.
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6.2. Lemma. If H
′ ⊂ G

′
is a benign subgroup, then any enumerable subgroup

H ⊂ G is benign.

Proof.

(a) We set

H
′′

=
∣∣{τ(h)cnden|image of h ∈ H,n ∈ Z+, h = γ(n)

}∣∣ ⊂ H
′
.

Then
H

′′
= H

′
∩
∣∣{a, b, t, v, cnden|n ∈ γ−1(H)

}∣∣.
In fact, the inclusion⊂ is obvious. The converse follows because the set of images
of the elements cnden, n � 1, in the quotient of G

′
by the kernel generated by

a, b, t, and v, is free. Hence, in any reduced word in the generators τ(g)cnden,
the sequence of n

′
s can be uniquely recovered from the word, and if all the n

′
s

lie in γ−1(H), it follows that the word lies in H
′′

.
Thus,H

′′
is the intersection ofH

′
with the subgroup generated by a bounded

enumerable set of generators (since γ−1(H) is enumerable whenever H is). Con-
sequently, H

′′
is benign if H

′
is benign.

(b) We set
H =

∣∣{τ(h)|h ∈ H
}∣∣ ⊂ G

′
.

It is easy to see that ∣∣H ∪ {
c, d, e

}∣∣ =
∣∣H ′′ ∪

{
c, d, e

}∣∣.
Hence,

H =
∣∣H ′′

∪
∣∣{c, d, e}∣∣∣∣ ∩ ∣∣{a, b, v, t}∣∣.

By Lemma 4.4, H is benign if H
′′

is benign.

(c) Finally, we consider the homomorphism φ : G
′ → G that takes a to a, b

to b, and t, v, c, d, and e to 1. Obviously, φ(H) = H . By Lemma 4.5, H is
benign if H is benign. ��

6.3. We now prove that the subgroupH
′ ⊂ G

′
is benign. To do this, we construct

a commutative diagram of group embeddings

G
′ → K

′ → K
↑ ↑ ↑
H

′ → L
′ → L

with the following properties:

(a) K is defined by a finite set of generators and a bounded enumerable set
of relations; L is generated by a bounded enumerable set of words in the
generators of K.

(b) L
′

∼⇒L is an isomorphism.
(c) H

′
= G

′ ∩ L′
in K

′
.
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It will then follow that H
′

is benign. In fact, let K = F/R, where F is the
free group generated by a finite system of generators of K,R0 is a bounded
enumerable set of relations between these generators, and R is the normal
subgroup generated by these relations. It follows from Proposition 5.2 that
R0 generates a benign subgroup R in F , and then Lemma 4.2 implies that
K = F/R can be embedded in an f.p. group M . When we embed K in M ,
the bounded enumerable set of generators of L remains a bounded enumerable
set in M (relative to the generators of M), and hence L ⊂ M is benign by
the corollary to Proposition 5.2. Therefore, by (b) and (c) we have that the
subgroup H

′
= G

′ ∩ L is benign as a subgroup of M whenever G and L are
benign. Hence, there is an embedding of (M,H

′
) in (M,H) such that M is

finitely presented, H is finitely generated, and H
′

= H ∩M . This embedding
induces an embedding of the pair (G

′
, H

′
) in (M,H) with the same properties.

Consequently, H
′

is also benign in G
′
.

It remains to construct the diagram of embeddings with properties (a), (b),
and (c).

6.4. The group K
′
. This will be a multiple HNN-extension of G

′
, which, as in

Proposition 2.7, we define using four countable sequences of nontrivial isomor-
phisms of the subgroup |{t, c, d, e, v−iavi, v−ibvi|i � 0}| ⊂ G

′
with G

′
. Since

the elements listed here freely generate this subgroup, it is sufficient to indi-
cate where our isomorphisms take these elements. These isomorphisms will be
induced in K

′
by conjugation by four sequences of generators xi, x̄i, yi, and

ȳi, i � 0 (instead of the ti, i ∈ I, in §2). The following table gives the action
of these generators. We use the notation ai = v−iavi, bi = v−ibvi, pj = the jth
prime number. The element in the table, say, in the c-row and the x̄i-column,
is x̄−1

i cxi.

xi x̄i yi ȳi

t tai ta−1
i tbi tb−1

i

c cp4i cp4i+1 cp4i+2 cp4i+3

d d d d d

e ep4i ep4i+1 ep4i+2 ep4i+3

aj

{
a−1

i ajai, j � i

aj , j � i

{
aiaja

−1
i , j < i

aj , j � i

{
b−1
i ajbi, j < i

aj , j � i

{
biajb

−1
i , j < i

aj , j � i

bj

{
a−1

i bjai, j < i

bj , j � i

{
aibja

−1
i , j < i

bj , j � i

{
b−1
i bjbi, j < i

bj , j � i

{
bibjb

−1
i , j < i

bj , j � i

We finally set

K
′

= |G′ ∪ {xi, x̄i, yi, ȳi|i � 0} : the relations in the table|,
and we take G

′ → K
′

to be the natural embedding.
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6.5. The group L
′
. We set

L
′

=
∣∣{tcde, xi, x̄i, yi, ȳi∣∣i � 0

}∣∣ ⊂ K
′
,

and we take L
′ → K

′
to be the natural embedding. In Section 6.7 we shall verify

that H
′

is embedded in L
′

(as a subgroup of K
′
, in view of the commutativity

of the diagram).

6.6. The groups K and L. We set

K =
∣∣G′ ∪ {u1, u2, u3, u4, v1, v2, v3, v4} : R

∣∣,
where the relations R and the embedding K ′→K are both defined by the
conditions

R = the image of the relations in the table after making the substitutions

xi �→ u−i1 v1u
i
1, x̄i �→ u−i2 v2u

i
2, yi �→ u−i3 v3u

i
3, ȳi �→ u−i4 v4u

i
4;

K
′ → K is the homomorphism that is the identity on G

′
and acts by these

substitutions on the other generators.

The homomorphism K
′ → K is an embedding. In fact, the elements u−ij vju

i
j

are free in |{uj, vj}|, so that K can be considered as the free product of K
′

and
|{uj, vj |1 � j � 4}| with the amalgamation given by the above substitutions
(here we take into account Proposition 2.7(a)).

Finally, we set

L = the image of L
′

under the embedding K
′→ K.

6.7. The diagram has now been constructed. It follows immediately from the
definitions that it satisfies 6.4(a) and (b). It remains to show that H

′
= G

′ ∩L′

in K
′
.

(a) We set [n] = τ(g)cnden for n ∈ Z+ and g = γ(n) in the notation of 6.1. We
recall that H

′
is generated by all the [n] in G

′
, and hence in K

′
as well.

The table of relations in K
′

was composed in such a way that the following
relations would be fulfilled:

x−1
i [n]xi = [p4in], x̄−1

i [n]x̄i = [p4i+1n],

y−1
i [n]yi = [pn4i+2], ȳ−1

i [n]ȳi = [p4i+3n].

For example, we verify the first relation. Let n = Πpj
mj . Then, according to the

definitions,

γ(n) =
∏
j

am4j−m4j+1bm4j+2−m4j+3 ,

[n] = t
∏
j

a
m4j−m4j+1
j b

m4j+2−m4j+3
j cnden,
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so that by the first column of the table in 6.4,

x−1
i [n]xi = taia

−1
i

∏
j<i

(· · · ); ai
∏
j�i

(· · ·); cp4indep4in = [p4in].

If we further take into account that [1] = tcde ∈ L′
, we may conclude from these

conjugation formulas that [n] ∈ L
′

for all n, and that H
′ ⊂ L

′
, as promised

in 6.5. Moreover, |H ′ ∪{xi, x̄i, yi, ȳi|i � 0}| = L, since the inclusion ⊂ has been
verified, and the inclusion ⊃ is obvious.

(b) We now show that in K
′

we have

|H ′ ∪ {xi, x̄i, yi, ȳi|i � 0}| ∩G′
= H

′
.

Since K
′

is an HNN-extension of G
′
, it suffices to show that we are in the situa-

tion of Proposition 2.7 (as described in the paragraph preceding the proposition,
at the end of 2.6), and then to apply 2.7(b).

We verify these conditions, for example, for the first series of isomorphisms of
the subgroup of G

′
, as described at the beginning of 6.4. This series corresponds

to conjugating by xi in K
′
. The conditions take the following form in our case:

x−1
i

[
H

′ ∩
∣∣{t, c, d, e; aj, bj|j � 0

}∣∣]xi
= H

′
∩ x−1

i

∣∣{t, c, d, e; aj, bj |j � 0
}∣∣xi;

i.e., if we use the definition of H
′

and the table,

x−1
i H

′
xi = H

′
∩
∣∣{t, cp4i , d, ep4i ; aj , bj |j � 0

}∣∣.
Since x−1

i [n]xi = [p4in], the inclusion ⊂ is obvious. Conversely, suppose
we are given an element in H

′
that is written as a reduced word in the

[n]: Πj�0[nj]εj , εj = ±1. We consider the corresponding reduced word g in
G

′
. We show that if all the powers of c and d that occur in g are divisible by

p4i, then all the nj with nonzero εi in the above product are divisible by p4i,
i.e., [nj] ∈ x−1

i H
′
xi.

In fact, let ḡ = the image of g in {c, d, e}| under the homomorphism that
takes t, aj , and bj to 1. Since [n̄] = cnden, it follows that all the [n̄] are free, and
that ḡ uniquely determines the sequence {εjnj}. It is not hard to see that the
formulas that express εjnj in terms of the powers of c and e that occur in the
reduced word ḡ are linear with integer coefficients (more precisely, they are a
disjunction of linear formulas accompanied by inequality conditions). Therefore,
if all these powers are divisible by p4i, then so is nj .

This completes the proof. ��



IX

Constructive Universe and Computation

1 Introduction: A Categorical View of Computation

1.1. Words and integers: two constructive worlds. (a) In Chapters I and
II we have studied alphabets, words (finite sequences of letters of an alphabet),
expressions (certain syntactically well formed words such as terms and formulas
defined in I.2.3), deductions (finite sequences of formulas defined in II.5.1).

Let us fix an alphabet of a first-order language and denote by W ⊃ F the
sets of words and formulas respectively.

Studying deducibility, we have implicitly introduced the set D ⊂ F of all
formulas deducible from, say, a fixed finite set of formulas (axioms). This whole
set D can be systematically generated and well ordered following a finitely
describable procedure that, say, first totally orders the alphabet, then totally
orders elementary steps of deductions etc., prescribing in what order to apply
them iteratively to the axioms and already deduced formulas.

In this way we get a bijection Z+ → D that is intuitively “computable,”
together with the inverse bijection. Of course, it is a simple particular case of
numbering defined in VII.1.2 and studied later on in VII.1. See also II.11 for a
useful numbering of all formulas in the Smullyan language.

Having achieved in this way the encoding of certain linguistic constructions
by arithmetic ones, we have been able in Part III to reduce many problems of
syntax (and partly semantics) of formal languages to number theory.

(b) We could have considered Z+ as a set of certain words in a finite
alphabet as well, for example, as the set of binary strings whose first bit is 1.
Then the whole theory of computability in Chapter V could have been based on
the notion of Turing machine(s), in place of elementary arithmetic. This view-
point, leading to the “same” notion of computability and the same supply of
computable (partially recursive) functions, nevertheless enriches our intuition
in two essential respects.

(i) Whereas before Alan Turing, the most common mental image of math-
ematical reasoning was related to some form of (written) language, Turing
represented computation as the dynamical evolution of an idealized physical
system.
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This dethroning of the linguistic metaphor and its replacement by a metaphor
grounded in science was a great breakthrough, and a premonition of the age of
computers.

Among other developments, Turing’s metaphor broke the ground for
(at first mental) replacement of the classical computing machine by a quan-
tum one. The burgeoning theory of quantum computers owes Turing this debt
of gratitude.

(ii) Turing’s insight allowed him to undertake a microscopic analysis of the
intuitive idea of algorithmic computation. In a sense, he found its genetic code.
The atom of information is one bit, the atomic operators can be chosen to act
upon one/two bits, and to produce changes in the output of the same restricted
size. Finally, the sequence of operations at each step is strictly determined
by the local environment of bounded size, again several bits. Needless to say,
mathematically “the same” idea can be described in purely linguistic terms. In
fact, Markov’s normal algorithms do just that. But as we argued above, this
would constitute a philosophical regression.

One goal of this chapter is to go in the reverse direction, and to present
a “macrocosm” of the classical theory of computation.

The sets Z+, W , F , D are examples of what we will call below constructive
worlds. Elements of these sets—integers, words, formulas, deducible formulas—
are constructive structures of the respective kind. Other examples include worlds
of finite graphs, finite groups, finite rings (up to isomorphism, or “all” in a fixed
countable universe of sets).

Each of these worlds is countably infinite, but it is natural to allow also
finite constructive worlds, such as all binary strings of restricted length.

In Sections 2 and 3 below we will unite different constructive worlds into a
constructive universe. It will be a category, with constructive worlds as objects,
and semicomputable functions as morphisms. Church’s thesis will get a very
natural reformulation:

Categorical Church’s Thesis: Any two constructive universes are
equivalent.

For more detailed explanations, see Section 2 below, especially
Comments 2.3.

1.2. Languages as categories. In Sections 4 and 5 of this chapter, we explain
that there exist natural constructive worlds that are themselves categories, and
at the same time languages, that are more convenient for describing morphisms
between constructive worlds than conventional languages, discussed in Chapters
1 and 2 of this book.

Roughly speaking, we can base the theory of recursive functions on a con-
structive world of descriptions of these functions, whereas the set of functions
themselves does not form a constructive world.

This raises a challenge: to find a well-structured world of descriptions faith-
fully reflecting properties of recursive functions as morphisms.

Our suggestion elaborated in Section 3 is motivated, on the one hand, by
progress in general algebra, the theory of (generalized) operads, and on the
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other hand, by the recent paper by N. Yanofsky (math.LO/0602053), who has
constructed a specific operad acting on primitive recursive functions.

We may and will treat operads as functors on appropriate categories of deco-
rated graphs. Such graphs themselves form constructive worlds, with effectively
computable finite sets of morphisms. If we admit these categories as new types
of languages, then a functor defined on such a category becomes the categorical
version of a model of this language.

The decorated graphs are idealized versions of flowcharts, which are quite
popular in the description of various computational processes. Already in the
1960s, Dana Scott, among others, used an appropriately formalized version
of them. He united them into a lattice which can be treated as a category
satisfying strong additional restrictions: see his survey paper “The lattice of
flow diagrams” in Springer Lecture Notes in Math, vol. 188 (1971).

This, and the return to the Turing philosophy, complemented by the
progress of quantum physics, motivates the last subject matter of this chapter:
Introduction to the theory of quantum computation.

1.3. Why quantum computation? Information processing (computation) is
the dynamical evolution of a highly organized physical system produced by
technology (computer) or nature (brain). The initial state of this system is
(determined by) its input; its final state is the output.

Physics describes nature in two complementary modes: classical and quan-
tum. Up to the 1990s, the basic mathematical models of computing mimiced
classical automata, although the first suggestions for studying quantum models
date back at least to 1980.

Roughly speaking, the motivation to study quantum computing comes from
several sources: physics and technology, cognitive science, and mathematics. We
will briefly discuss them in turn.

(i) Physically, the quantum mode of description is more fundamental than
the classical one. In the 1970s and 1980s it was remarked that because of the
superposition principle, or quantum entanglement, it is computationally infea-
sible to simulate quantum processes on classical computers. Roughly speaking,
in quantizing a classical system with N states we obtain a quantum system
whose state space is an (N − 1)-dimensional complex projective space whose
volume grows exponentially with N. One can argue that the main preoccupation
of quantum chemistry is the struggle with the resulting difficulties. Reversing
this argument, one might expect that quantum computers, if they can be built
at all, will be considerably more powerful than classical ones.

Serious preoccupation with quantum computing has also been stimulated
by rapid progress in the microfabrication techniques of modern computers. It
has already led us to the level where quantum noise becomes an essential hin-
drance to the error-free functioning of microchips. It is only logical to start
exploiting the essential quantum-mechanical behavior of small objects in
devising computers, instead of neutralizing it.
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(ii) As another motivation, one can invoke highly speculative, but intriguing,
conjectures that the “wetware” of brains in fact somehow relies upon quantum
computations.

Even without subscribing to this idea wholeheartedly until more experimen-
tal data are generated, we must be aware of the great quantitative discrepancy
between the information processing capacity of the brain and our understanding
of how it might do what it does.

For example, the IBM Deep Blue chess computer, which in 1996–1997
played at the level of the world champion Kasparov, could evaluate about
108 positions per second and search the game tree to a depth of about 10
moves/countermoves, and up to 40 in exceptional cases.

Since the characteristic time of neuronal processing is about 10−3 sec, it is
very difficult to explain how the classical brain could possibly do the job and
play chess as successfully. Existing models of neural networks cannot pass this
test by very wide margin.

A less spectacular, but no less a resource-consuming task, is speech
generation and perception, which is routinely done by billions of human brains,
but still presents a formidable challenge for modern computers using classical
algorithms.

Computational complexity of cognitive tasks has several sources: basic vari-
ables can be fields; a restricted number of small blocks can combine into expo-
nentially growing trees of alternatives; databases of incompressible information
have to be stored and searched.

Two paradigms have been developed to cope with these difficulties: logic-
like languages and combinatorial algorithms, on the one hand, and statistical
matching of observed data to an unobserved model, on the other.

In many cases, the second strategy efficiently supports acceptable perfor-
mance, but usually cannot achieve the excellence of the Deep Blue level. Both
paradigms require huge computational resources, and it is not clear how they
can be organized, unless hardware allows fast and massive parallel computing.

The idea of “quantum parallelism” (see Section 7 below) is an appealing
theoretical alternative. However, it is not at all clear that it can be made
compatible with the available experimental evidence, which depicts the central
nervous system as a distinctly classical device.

The following way out might be worth exploring. The implementation of
efficient quantum algorithms that have been studied so far can be provided by
one, or several, quantum chips (registers) controlled by a classical computer.
A very considerable part of the overall computing job, besides controlling quan-
tum chips, is also assigned to the classical computer. Analyzing a physical device
of such architecture, we would have direct access to its classical component (elec-
trical or neuronal network), whereas locating its quantum components might
constitute a considerable challenge. For example, quantum chips in the brain
might be represented by macromolecules of the type that were considered in
some theoretical models for high-temperature superconductivity.

The difficulties are seemingly increased by the fact that quantum measure-
ments produce nondeterministic outcomes. Actually, one could try to use this
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to one’s advantage, because there exist situations in which we can distinguish
the quantum randomness from the classical case by analyzing the probability
distributions and using Bell-type inequalities. With hindsight, one recognizes
in Bell’s setup the first example of the game-like situation in which quantum
players can behave demonstrably more efficiently than classical ones.

(ii) Finally, we turn to mathematics. One can argue that nowadays one
does not even need additional motivation to study quantum automata, given
the predominant mood prescribing the quantization of “everything that moves.”
Quantum groups, quantum cohomology, quantum invariants of knots, etc., come
to mind. This actually seemed to be the primary motivation before 1994 when
P. Shor devised the first significant quantum algorithm showing that prime
factorization can be done on quantum computers in polynomial-time, that is,
considerably faster than by any known classical algorithm.

Shor’s paper gave a new boost to the subject. Another beautiful result, due
to L. Grover, is that a quantum search among N objects can be done in c

√
N

steps. We briefly present these ideas in Sections 8 and 9.
Last, but not least, large-scale quantum computers do not exist as yet. The

quantum algorithms invented and studied up to now will stimulate the search
for a technological implementation that—if successful—will certainly correct
our present understanding of quantum computing and quantum complexity.

2 Expanding Constructive Universe: Generalities

In this chapter, given a category C and two of its objects X,Y , we will denote
by C(X,Y ) the set of morphisms X → Y in C.

All our objects will be sets endowed with an additional structure, and
sets will lie in the initial layers of the Gödel universe L of constructible sets
(cf. IV.1).

Morphisms will be partial maps.
We choose once and for all some concrete sets, representatives of natural

numbers and Z+ in L, such as 0 = ∅, 1 = {∅}, 2 = {∅, 1}, . . . and Z+ =
{1, 2, 3, . . .}.

We will first discuss some peculiarities of categories whose morphisms are
partial maps of sets.

2.1. Category of sets and partial maps: two approaches. (a) In the first
approach, partial maps from a set X to a set Y are pairs (f,D(f)) where D(f)
is a subset of X (possibly, empty), and f : D(f) → Y is an actual map. Denote
by Par (X,Y ) the set of partial maps. The composition is defined exactly as
was done for a particular case in V.2.3:

(g,D(g)) ◦ (f,D(f)) := (g ◦ f, f−1(D(g)) ).

One easily sees that in this way we get a category, say ParSets.
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Notice that each set of morphisms Par (X,Y ) is pointed, in the sense that
it has a canonical element “empty map,” say, ∅X,Y . Its composition with any
other morphism is again the respective empty map.

(b) This last remark motivates the consideration of another category: that
of pointed sets PSets. An object of PSets is a pair (X, ∗X), where ∗X ∈ X
(so that X cannot be empty). A morphism (X, ∗X) → (Y, ∗Y ) is an everywhere
defined map ϕ : X → Y such that ϕ(∗X) = ∗Y . The composition is evident.

Deleting marked points, we get a functor PSets→ ParSets:

X �→ X◦ := X \ {∗X}, ϕ �→ ϕ◦ := (f,D(f)),

where for ϕ : X → Y , D(f) is defined as ϕ−1(Y ◦), and f as the restriction of
ϕ to D(f).

This functor turns out to be an equivalence of categories.
In fact, a quasi-inverse functor can be constructed by formally adding an

extra marked point ∗X to each object X in ParSets, and extending each partial
map (f,D(f)) from X to Y by sending X \D(f) to ∗Y .

This formal completion of sets and partial maps by adding “improper,”
“infinite” elements was reinvented many times, in particular, in topology (one-
point compactification) and in theoretical computer science. I am grateful to
A. Beilinson, who drew my attention to the good categorical properties of this
operation.

The basic category of sets is endowed by the symmetric monoidal structure:
Cartesian product. It is naturally extended to ParSets and to PSets. In PSets
one can put

(X, ∗X)× (Y, ∗Y ) := (X◦ × Y ◦) ∪ {(∗X , ∗Y )},

so that the equivalence above becomes monoidal equivalence.
An equivalent (functorially isomorphic) definition uses “reduced product.”

Namely, (X, ∗X)× (Y, ∗Y ) can be defined as X×Y with the “coordinate cross”
X × {∗Y } ∪ {∗X} × Y contracted to the base point.

There is another symmetric monoidal structure on Sets: disjoint union
∐

.
It is not canonical and requires choices: what is the disjoint union of a set

with itself? For a construction, see, e.g., F. Borceux, Handbook of Categorical
Algebra 2 (Cambridge UP, 1994), Example 6.1.9.

This structure, as soon as it is chosen, can be directly extended to ParSets
and PSets.

Below, we will use both points of view on partial maps interchangeably, as
equivalent ones.

2.2. Definition. A subcategory C of ParSets as above is called a construc-
tive universe if it contains the constructive world Z+ of all integers ≥ 1, and
also finite sets ∅, {1}, . . . , {1, . . . , n}, . . . and satisfies the following conditions
(a)–(d):

(a) C(Z+,Z+) is defined as the set of all partially recursive functions.
(b) Any infinite object of C is isomorphic in C to Z+.
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(c) If U is finite, C(U, V ) consists of all partial maps U → V. If V is finite,
C(U, V ) consists of f such that D(f) and inverse images of all elements of
V are enumerable.

(d) C inherits from ParSets two compatible symmetric monoidal structures:
Cartesian product × and disjoint sum

∐
.

2.3. Comments. (i) The statement (b) is a version of the Church thesis.
In V.2.4 we stated Church’s thesis in the context of functions from (Z+)m to
(Z+)n.

Here we make it simultaneously broader and vaguer. Imagine that we want
to speak about algorithmic processing of variable finite objects of a given type
U into similar objects of possibly different type V . U and V might be words,
graphs, groups, finite and finitely describable Bourbaki structures, . . . . We pos-
tulate that one always can translate such a processing into the calculation of
values of a recursive function. The main step in the reduction is the choice of
two “computable numberings,” those of U and V .

Formally, such an numbering is an isomorphism Z+ → U in C. Two such
different numberings of the same constructive world can differ only by a recur-
sive permutation of numbers, that is, by an automorphism of Z+ in C. We will
call such numberings equivalent ones.

In practice, a numbering of a set-theoretically defined constructive world
U , embedding it into C, is chosen in such a way that some “natural” construc-
tions on constructive objects of the type U given a priori become obviously
computable.

For example, we can renumber U in an eminently theoretically important
and sophisticated way, ordering U by the growing Kolmogorov complexity of
its constructive objects. But then the simplest operations would become non-
computable. Generally, such a Kolmogorov numbering will not be an isomor-
phism in C: cf. further discussion in Section 10.

Returning to (b), we see that each infinite constructive world, that is, an
object of C, is endowed with a well-defined class of enumerable subsets. This
fact is used in the statement (c). The axiom (c) is justified by the fact that
partial recursive functions on Z+ taking only a finite number of values are
characterized by the stated properties.

Similarly, decidable subsets are well defined.

(ii) Notice that because of (c), two finite constructive worlds are isomorphic
iff they have the same cardinality, and the automorphism group of any finite U
consists of all permutations of U.Therefore, the whole category C is equivalent to
its full subcategory, whose objects are Z+ and finite sets, one of each cardinality.

However, this subcategory is too small to accommodate even our standard
definition of partial recursive functions in V.2: we have to extend it by Cartesian
products. For many constructions, it is also convenient to have disjoint sums.
This is the reason we completed the definition by the requirement (d). It implies
that canonical projections of Cartesian products and structure embeddings into
disjoint sums are computable.
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(iii) In view of the previous remark, any two constructive universes are
equivalent (even as monoidal categories). Nevertheless, as a matter of principle,
we always consider C as an open category, and at any moment allow ourselves
to add to it new constructive worlds. If some infinite V is added to C, it must
come together with a class of equivalent numberings.

In this way, we may declare the world of a decidable subset of any object of
C to be an object of C.

Here is another example. The world U∗ of finite sequences of elements of a
constructive world U (“words in the alphabet U”) is endowed with a canonical
class of numberings. Hence we may assume that C is closed with respect to
the construction U �→ U∗. All natural functions, such as length of the word
U∗ → Z+, or the ith letter of the word U∗ → U , are computable. Moreover, if
f : U → V is a morphism in C, then the partial function f∗ sending (u1, . . . , un)
to (f(u1), . . . , f(un)), whenever all f(ui) are defined, is a morphism U∗ → V ∗,
and (g◦f)∗ = g∗◦f∗. Hence U �→ U∗ extends to a covariant endofunctor C → C.

(iv) Some (or even “all”?) infinite constructive worlds U come together
with a natural class of bijective numberings u : Z+ → U such that any two
numberings u, v in this class have one of the following properties:

u−1 ◦ v is a primitive recursive permutation;
or even
u−1 ◦ v is a polynomial-time computable permutation (cf. 6.5 below).
If a version of C includes only objects satisfying the first (resp. the sec-

ond) condition, one can define a subcategory Cprim (resp. Cpol) having the
same objects, but only primitive recursive (resp. polynomial-time computable)
morphisms.

The assumption that “all” constructive worlds do in fact satisfy one of the
two requirements could be called the “primitive recursive,” resp. “polynomial-
time” Church’s thesis.

2.4. A natural numbers object. We could have replaced Z+ in the above
discussions by an abstract natural numbers object in an unspecified category
B. Its definition conforms to a general spirit of categorical reasoning: sets of
morphisms rather than objects should be bearers of additional structures.

More precisely, assume that B admits a terminal object 1. A triple (N , z, s)
in B, consisting of an object N and two morphisms

z : 1→ N , s : N → N ,

is called a natural numbers object if for any other pair of morphisms in B of the
form

f : 1→ X, g : X → X

there exists a unique morphism h : N → X such that

h ◦ z = f, h ◦ s = g ◦ h,

that is, the diagram is commutative. Of course, the leftmost arrow can only
be id1.
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N N

X
f

z s

g

hh

X1

1

This is the simplest form of categorical recursion: values of the morphism h
on the categorical points s◦n◦z ∈ B(1, N ) are given by g◦n◦f ∈ B(1, X). Thus,
f is the initial condition (value at n = 0), and g corresponds to one iterative
step applied to the previous value.

Clearly, Z+ together with

z : 1 �→ 1 ∈ Z+, s : n �→ n+ 1

is a natural numbers object in the category of sets.
We will return to this philosophy, discussing normal models of computation

in 6.1 below.
In Sections 3–5, we however, we stick to the more down-to-earth approach,

sketched at the beginning of this section.

3 Expanding Constructive Universe: Morphisms

3.1. Programming methods. We now turn to the computability properties
of the sets of morphisms C(U, V ). Again, it is a matter of principle that C(U, V )
itself, and even Cprim, is not a constructive world if U is infinite.

Indeed, otherwise we would have an intuitively computable bijective num-
bering of all partial recursive (resp. primitive recursive) functions Z+ → Z+.
Using numbers of such functions as their descriptions, we could algorithmically
distinguish them. But the latter problem is not algorithmically solvable.

In order to compensate this by a sample of positive statements, let us
consider the following situation.

Any diagram in C
evP : P × U → V

(evaluation morphism) defines a partial map P → C(U, V ), p �→ p, where
p(u) := evP (p, u).

3.2. Definition.

(a) We will say that a constructive world P = P (U, V ) together with the evalu-
ation map evP as above is a programming method. Elements of P are called
programs.

(b) A programming method (Q = Q(U, V ), evQ) is called versal (resp. primitive
versal) if two conditions are satisfied.
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First, the map Q → C(U, V ) : q �→ q is surjective (resp. its image consists
of all primitive recursive morphisms).

Second, for any programming method (P = P (U, V ), evP ) with the same
source U and target V (resp. for any (P, evP ) producing only primitive recursive
morphisms) there is at least one compilation morphism in C

comp : P (U, V ) → Q(U, V ),

that is, an everywhere defined, computable map P → Q such that if comp(p) =
q, then p = q.

3.3. Claim. Versal programming methods exist.

Proof. For brevity, we will consider only the case of infinite U , V . Then P is
infinite as well. Since any infinite object is isomorphic to Z+, we will identify
U, V with Z+, but for convenience we will keep the notation P for the world
of programs. Thus we may restrict ourselves to considering only evaluation
morphisms ev : P × Z+ → Z+.

Such a morphism computes all recursive functions Z+ → Z+ iff it is a versal
family in the sense of V.5.7.

Now consider another versal family, that of recursive functions of two vari-
ables P × Z+ → Z+. Let P

′
be its base:

Ev : P
′
× P × Z+ → Z+.

We now affirm that the programming method (Q := P
′ × P, Ev) is versal.

In fact, versality of Ev implies that for any ev : P × U → V , there exists
p

′ ∈ P ′
such that Ev (p

′
, p, u) = ev (p, u) for all (p, u) ∈ P ×Z+. Therefore, the

map
comp : P → Q : p �→ (p

′
, p)

is a compilation morphism for (P, ev).

Remark. We can now make precise the statement made at the beginning of 3.1.
Namely, it means that for any programming method P (U, V ), the canonical
map P (U, V ) → C(U, V ) cannot be bijective if U is infinite. In fact, if it is
surjective, then it is essentially the same as a versal family; but the equivalence
relation on the base of a versal family induced by p �→ p is not decidable
(or even recursively enumerable).

3.4. Composition of morphisms at the level of programming methods.
Let U1, U2, U3 be three objects of C, and (Qij , evij) three versal programming
methods, for C(Ui, Uj), ij = 12, 13, 23 respectively.

Then (Q23 × Q12, ev23 ◦ (idQ23 × ev12)) is a programming method for
C(U1, U3). It calculates the composition of morphisms U1 → U2 → U3.

Since Q13 is versal for morphisms U1 → U3, there exists a compilation
morphism

comp : Q23 ×Q12 → Q13

that reproduces composition of morphisms on the level of programs.
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Notice that even if we restrict ourselves to the full subcategory with one
object U1 = U2 = U3 = Z+ and fix a choice of Q and comp, the composition of
morphisms on the level of programs generally will not be associative. Moreover,
a program calculating identical morphisms generally will not be the identity for
program composition.

This motivates the following definition.

3.5. Definition. A category of algorithms over a constructive universe C is a
pair consisting of a category A and a functor J : A → C with the following
properties:

(a) A is enriched over C.

This means in particular that morphism sets in A are objects of C, and the
composition maps A(U, V ) × A(V,W ) → A(U,W ), as well as identities, are
morphisms in C fitting into standard commutative diagrams.

(b) J identifies ObA with a subset of Ob C. We will make no distinction
between U and J(U).

(c) For any objects U, V of A, A(U, V ) is a programming method. In par-
ticular, it comes together with the evalution morphism in C

evU,V : A(U, V )× U → V.

This morphism must satisfy the following condition: for all f ∈ A(U, V )
and u ∈ U ,

J(f)(u) = evU,V (f, u).

3.6. Comments. (i) The notion of a category of algorithms formalized in
the previous definition was introduced (in a somewhat less explicit form) by
N. Yanofsky in math.LO/0602053. The same paper contains a construction of
such a category in which J defines surjections J : A(U, V ) → Cprim(U, V ).

(ii) Since A is enriched over C, we actually work here in a 2-categorical
context: morphisms in A, being objects of C, are connected by 2-morphisms. In
particular, the associativity of composition is not a literal family of identities
h ◦ (f ◦ g) = (h ◦ f) ◦ g but rather a family of canonical isomorphisms

ah,f,g : h ◦ (f ◦ g) → (h ◦ f) ◦ g

interconnected by the standard coherence conditions.
A similar remark applies to left and right identities.

(iii) Given a category A as above, we will call programs p ∈ A(U, V ) algo-
rithms. In fact, N. Yanofsky reserves this name for a category satisfying stronger
coherence properties, which is in a certain sense canonical. A part of his con-
structions will be described in Section 5.
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4 Operads and PROPs

In this section, we will consider a somewhat reduced version C0 of the construc-
tive universe with two monoidal structures (C,×,

∐
) defined in 3.2. First, we

will exclude all finite objects of cardinality ≥ 2.

4.1. Definition. (C0,×) is a full monoidal subcategory of (C,×) such that each
object of C0 is either infinite or has cardinality 1.

4.2. Reduction. From Definition 3.2 it follows that C0 is equivalent to its
full subcategory consisting of Cartesian powers (Z+)m, m ≥ 0, and partial
recursive functions. Moreover, (Z+)m × (Z+)n can be canonically identified
with (Z+)m+n, so that the category will become strict. The zeroth Cartesian
power is a one-point set {∗}, the unit for the monoidal structure.

The family of morphisms C((Z+)m, (Z+)m), and in fact similar families of
morphisms in any symmetric or enriched symmetric monoidal category, are nat-
urally endowed with structures, known under the names collections and PROPs.

4.3. Definition. (a) A collection P in a category B is a family of objects
P(m,n), m, n ≥ 0 in B, together with group homomorphisms

Sm × Sopn → AutB P(m,n).

We interpret such a homomorphism as a pair consisting of a left action of
the symmetric group Sm and a right action of Sn on P(m,n) that commutes
with it.

(b) A morphism of collections f : P → Q is a family of morphisms fm,n :
P(m,n)→ Q(m,n) commuting with the action of symmetric groups.

4.4. Endomorphism collections. Let (E ,×) be a symmetric monoidal cate-
gory with unit object e. For U ∈ Ob E , put

Coll End (U)(m,n) := E(Un, Um).

The action of Sm (resp. Sopn ) is induced by permutations of factors in the
Cartesian powers Um (resp. Un). The zeroth power is interpreted as e.

Whenever E is an enriched category, one must first make sense of permu-
tation groups acting on objects in the category of morphisms. This does not
present any additional difficulties.

A PROP is a collection, endowed with additional composition laws mutually
compatible with the actions of the symmetric groups.

4.5. Vertical and horizontal products in endomorphism collections.
Endomorphism collections are naturally endowed with two additional struc-
tures:

(a) Vertical products

E(Um, Un)× E(Un, U l) → E(Um, U l) : (f, g) �→ g ◦ f.
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(b) Horizontal products

E(Um1 , Un1)× · · · × E(Ums , Uns) → E(Um1+···+ms , Un1+···+ns) .

The latter are induced by the monoidal structure in E :

(f1, . . . , fs) �→ f1 × · · · × fs .

If E is enriched, the category of morphisms must be strict monoidal, and its
monoidal structure must be compatible with that of E in the standard way, so
that the horizontal products still make sense.

In a constructive universe, a vertical product is the composition/substitution
of partial maps.

These structures in endomorphism collections satisfy a number of cumber-
some but straightforward universal conditions, which we only list here:

(i) Associativity of vertical products; units for them in E(m,m).
(ii) Compatibility of vertical products with actions of symmetry groups.
(iii) Associativity of horizontal products.
(iv) Compatibility of horizontal and vertical products.
(v) Compatibility of horizontal products with actions of symmetric groups.

Assuming that these conditions have been written formally, we can now give a
general definition:

4.6. (Tentative) definition.

(a) A PROP in a category B is a collection in B, endowed with horizontal and
vertical compositions as in 5.3, enjoying the universal properties 4.5 (i)–(v).

(b) An operad in a category B is a collection whose only nontrivial terms are
P(1, n), endowed with a right action of Sn and vertical products that satisfy
4.5 (i),(ii).

The collection Coll End (U) as above is denoted by PropEnd (U) when it
is endowed with its natural structures

Any PROP produces a collection if compositions are forgotten; this functor
under quite general conditions can be proved to have a left adjoint functor: free
PROP generated by a collection. This gives a rise to the notion of subcollection
of generators of a PROP similar to, say, generators of a monoid.

We are most interested in PropEndC(Z+) as an algebraic approximation
to the constructive universe C. We might also try to restrict ourselves to its
primitive recursive version. However, it turns out that the preceding framework,
even we if take the trouble to formalize it by supplying all commutative diagrams
implicit in Definition 4.6, is too narrow for our goals.

4.7. Example: the collection of basic recursive functions. Working now in
C, we can define the collection of basic recursive functionsR ⊂ PropEndC (Z+),
using the notation of V.2.2 . The respective terms of the collection are

R(1, 0) := {1(0)},
R(1, 1) := {suc, 1(1), id(1)},
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R(1, n) := {1(n), prni } for n ≥ 2.

The remaining components of R will be empty.
The action of the symmetric groups is induced by that in PropEndC (Z+).

In fact, it is not identical only on R(1, n): the prni are permuted as the i’s are,
i ∈ {1, . . . , n}.

We would like to have an algebraic structure reflecting our knowledge that
basic functions “generate” all primitive/partial recursive functions. But to do
this, we lack some necessary operators iteratively acting on basic functions. In
fact, composition V.2.3 (a) is accommodated in the general definition of PROP,
and juxtaposition can be dealt with if we add the diagonal ∆ : Z+ → Z+×Z+,
but the recursion and µ-operator are very specific for C, and we lack general
means to deal with them.

In the next section, we will introduce the constructive world of graphs,
and its extensions, worlds of decorated graphs. We will turn these worlds into
categories, and will explain how they provide very convenient linguistic tools for
speaking about PROPs and similar structures, in particular, about the PROP
of recursive functions.

Later we will see that similar constructions naturally arise in the computa-
tion theory as well.

The relevant graphs will be (geometric versions of) Boolean circuits, finite
automata for processing binary input data.

5 The World of Graphs as a Topological Language

5.1. Introduction. Generally, each constructive world comes with its own sup-
ply of “natural operations.” Although any two constructive worlds of the same
cardinality are connected by a computable isomorphism, this does not mean
that, say, a natural numbering of formulas in a language of arithmetic pro-
vides convenient tools for their syntactic analysis or for thinking about their
interpretations in a model.

In particular, when we replace nonconstructive sets of morphisms, say
C(Um, Un), by a constructive world of respective programming methods, we
have to deal with two different sets of natural operations in this constructive
world:

(a) Evaluations (see 3.1), where a programming method being fixed, the main
operation consists in calculating values of, say, a partial recursive function.

(b) Operations, producing new programming methods from old ones, such as
composition, compilation, recursion.

In principle, the latter are not qualitatively different from evaluations, since
we can think about programming methods whose inputs and outputs are pro-
gramming methods as well.

What is needed for efficient constructivization of programming methods is
a good encoding scheme, simultaneously intuitive and accommodating natural
operations.
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We already mentioned two mental worlds in which various encoding schemes
can crystallize:

(i) World of expressions in a language (to which we appealed in previous
chapters).

(ii) World based on scientific/engineering imagery, such as Turing’s
machines, or Boolean circuits (cf. below).

In this section, we will describe the third, topological one:

(iii) World of (decorated) graphs: geometric images of information flows and
hubs where the flows merge, get processed, and diverge again to flow fur-
ther.

Moreover, we will formalize and endow this world by the structure of a
constructive category.

Looking at graphs as a replacement of formulas in a language, we define
models/interpretations as functors on various categories of decorated graphs.

5.2. Graphs. One usually imagines a graph as a picture, or better, a topolog-
ical space, consisting of several points (vertices) pairwise connected by several
(curvi)linear segments (edges).

We will consider each edge as consisting of two “halves” (flags), issuing from
their respective vertices and joined at the edge’s midpoint. Moreover, we will
allow certain flags not to be paired into edges; they will be called tails.

A combinatorial graph is a collection of two abstract sets and two incidence
relations. Here is a formal definition.

5.3. Definition. A combinatorial graph, or simply graph, τ is a quadruple
(Fτ , Vτ , ∂τ , jτ ), where Fτ , Vτ are finite sets (elements of a constructive world),
and (∂τ , jτ ) are maps. Elements of Fτ are called flags of τ , elements of Vτ are
called vertices of τ ; vertices and flags are disjoint. The map ∂τ : Fτ → Vτ
associates to each flag a vertex, its boundary. The map jτ : Fτ → Fτ is an
involution: j2τ = id.

(a) Marginal cases. If Vτ is empty, Fτ must be empty as well. This defines an
empty graph. In contrast, Fτ might be empty whereas Vτ is not.

(b) Corollas, tails, edges. One-vertex graphs with identical jτ are called corol-
las. Let v be a vertex of τ , Fτ (v) := ∂−1

τ (v). Then τv := (Fτ (v), {v},
evident ∂, identical j) is a corolla, which is called by the corolla of v in τ .

Flags fixed by jτ form the set of tails of τ denoted by Tτ .
Two-element orbits of jτ form the set Eτ of edges of τ . Elements of such an

orbit are called halves of the respective edge.

5.4. Geometric realization of a graph. First, let τ be a corolla. If its set of
flags is empty, its geometric realization |τ | is, by definition, a point. Otherwise
construct a disjoint union of segments [0, 1/2] bijectively indexed by flags, and
identify in it all points 0. This is |τ |. The image of all 0’s thus becomes the
geometric realization of the unique vertex of τ .
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∂τ ( f") = ∂τ ( jτ ( f"))

f' = jτ ( f')
jτ ( f )f

Generally, to construct |τ | take a disjoint union of geometric realizations of
corollas of all vertices and identify points 1/2 of any two flags forming an orbit
of jτ , that is, an edge.

A graph τ is called connected (resp. simply connected, resp. tree etc) iff its
geometric realization is such. In the same vein, we can speak about connected
components of a graph, etc. Vertices v with empty Fτ (v) are considered con-
nected components.

5.5. Decorations. We will not try to aximatize a general notion of decoration,
and only list some classes of them most useful for describing flowcharts.

(a) Orientations. Any map Fσ → {in, out} such that halves of any edge are
oriented by different labels is called an orientation of σ. On the geometric
realization, a flag marked by in (resp. out) is oriented toward (resp. away
from) its vertex.

Tails of σ oriented in (resp. out) are called (global ) inputs (resp. (global )
outputs) of σ. Similarly, Fσ(v) is partitioned into inputs and outputs of the
vertex v.

Consider an orientation of σ. Its edge is called an oriented loop if both its
halves belong to the same vertex. Otherwise, an oriented edge starts at a source
vertex and ends at a different target vertex.

More generally, a sequence of distinct edges e1, . . . , en, is called a simple
path of length n if ei and ei+1 have a common vertex and the n − 1 vertices
obtained in this way are distinct. If, moreover, e1 and en also have a common
vertex distinct from the mentioned ones, this path is a wheel of length n. A loop
is a wheel of length one. Edges in a wheel are endowed only with a cyclic order
up to inversion.

Clearly, all edges in a path (resp. a wheel) can be oriented so that the source
of ei+1 is the target of ei.

If the graph is already oriented, the induced orientation on any path (resp.
wheel) either has this property or does not. Respectively, the path is called
oriented or not.

(b) Directed graphs. An oriented graph σ is called directed if it satisfies the
following condition:

On each connected component of the geometric realization, one can define a
continuous real-valued function (“height” ) in such a way that moving in the
direction of orientation along each flag decreases the value of this function.
In particular, a directed graph has no oriented wheels.
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Notice that, somewhat counterintuitively, a directed graph is not necessarily
oriented “from its inputs to its outputs” as is usually shown on illustrating
pictures. In effect, take a corolla with only in flags and another corolla with only
out flags, and graft one input to one output. The resulting graph is directed
(check this) although its only edge is oriented from global outputs to global
inputs.

This is one reason why it is sometimes sensible to consider only those
directed graphs that have at least one input and atleast one output at each
vertex.

(c) Labeling of vertices. A labeling of vertices by a set S is a map Vτ → S. As
above, S may consist, e.g., of names of basic functions.

(d) Coloring of flags. A coloring of flags by a set I is a map Fτ → I. In the
context of flowcharts, we can imagine, for example, that we start with a
family of objects {Ui | i ∈ I}, and want to describe morphisms between
products of such objects. Then the color i of an input/output will specify
that this input/output must be taken from Ui. In this case halves of an edge
must have the same color.

Even if we have only one object in this family, we may want to totally order
the sets of inputs/outputs of each vertex. This is what is needed to present the
vertex as encoding a map Um → Un rather than a map U{inputs} → U{outputs},
and make a direct connection with the world of descriptions, using traditional
notation for functions, such as (f1(u1, . . . , um), . . . , fn(u1, . . . , um)). Such a total
ordering of, say, inputs is equivalent to their coloring by {1, . . . ,m}. This is
the case when an ordering is not intrinsically needed, but used only in the
comparison of flowcharts with descriptions.

We will now explain that after introducing morphisms of graphs, we will
be able to efficiently use them to encode operations and identities between
operations.

5.6. Isomorphisms of graphs. The notion of isomorphism is (almost) straight-
forward: an isomorphism h : τ → σ consists of two bijections

hV : Vτ → Vσ, hF : Fσ → Fτ

commuting with boundary and involution maps. Composition is composition of
maps.

Notice, however, one peculiarity: hV is covariant, whereas hF is contravari-
ant. This choice can be explained using the intuition behind flowcharts: a change
of arguments produces the lift of functions in the reverse direction.

5.7. Groupoid of corollas Cor. Consider first the category (groupoid ) of
oriented corollas with isomorphisms preserving orientation.

It is equivalent to the groupoid whose objects are ordered pairs of sets
{{1, . . . ,m}, {1, . . . , n}} and morphisms are permutations acting on two sets
separately.
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5.8. Claim. A collection P in a category B (cf. Definition 4.3) is “the same as”
a B-valued functor P on the groupoid of oriented corollas.

In fact, P(n,m) can be identified with the value of P on a corolla with
inputs {1, . . . ,m} and outputs {1, . . . , n}. The action of Sm×Sopm is determined
by values of P on the automorphisms of this corolla.

5.9. Disjoint sums of corollas and mergers. A graph τ = (Fτ , Vτ , ∂τ , jτ )
is called a disjoint sum of corollas if its set of edges is empty. Equivalently, all
flags are tails.

Let τ, σ be disjoint sums of corollas. Define a merger morphism τ → σ as a
pair of maps, compatible with boundaries,

hV : Vτ → Vσ, hF : Fσ → Fτ

such that hV is a surjection and hF is a bijection. Composition of mergers is
obviously a merger. If σ is a corolla, h is called a total merger.

We will assume that a monoidal structure disjoint union
∐

on C is chosen
and fixed; it can be naturally extended to graphs and then restricted to the
category of disjoint sums of corollas.

Denote by DCor the category of disjoint sums of corollas with compositions
of mergers and automorphisms as morphisms.

5.10. Claim. A collection P in a symmetric monoidal category (B,×), endowed
with horizontal products 5.3.(b) satisfying the associativity conditions 5.3(iii)
and compatibility with action of symmetric groups 5.3(v), is “the same as” a
symmetric monoidal functor

P : (DCor,
∐

) → (B,×).

In fact, horizontal products as given in 4.5 are simply values of P on obvious
total mergers.

A stylistic remark: the quotation marks around the expression “the same
as” are supposed to alert the reader to the fact that Claim 5.10 must in fact be
understood as the first definition of a collection with horizontal compositions.
Having avoided a precise statement of the compatibility conditions 4.5 (iii) and
4.5 (v), we now simply hide them in the standard definition of a (symmetric
monoidal) functor and implicit combinatorics of mergers and isomorphisms.

We still do not have enough morphisms to give a definition of PROPs as
functors. We will now supply them, by introducing contraction morphisms.

5.11. Definition. (a) A contraction morphism h : τ → σ is a pair of maps

hV : Vτ → Vσ, hF : Fσ → Fτ

such that hF is an injection bijective on tails, hV is a surjection, and any two
vertices in a fiber h−1

V (v) can be connected by a path consisting of edges whose
halves lie in Fσ \ hF (Fτ ).
(b) If σ, τ are oriented, hF must be compatible with orientation.
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5.12. Application to PROPs. In geometric realizations, a contraction
morphism induces a map that boils down to the geometric contraction of a
subgraph of τ consisting of edges in Fσ \ hF (Fτ ).

Let us show how combined grafting and contraction of flowcharts allows us
to interpret functorially the composition of morphisms in PropEnd (U), that
is, vertical products in 4.5 (a).

Namely, first we interpret E(Um, Un) as the value of a functor P : DCor →
Sets on sums of oriented corollas endowed with automorphisms and mergers.
Now extend the category DCor to include morphisms that can be obtained as
graftings followed by contractions (and, of course, products of such morphisms).
Our functor P has a natural extension to this larger category. In particular, if
we take the union of two oriented corollas, graft bijectively outputs of the first
one to inputs of the second one, and then contract all edges obtained in this
way, we will get a morphism in the extended DCor, and the value of P on it
will be the composition map 4.5 (a).

We will now present another category of decorated graphs that can be used
to generate descriptions of (primitive) recursive functions. This is a modified
version of a part of Yanofsky’s preprint math. CT/0609748.

5.13. The constructive world of decorated graphs Prim. Elements of Prim
are disjoint unions of trees τ in which each vertex is the boundary of at least
two flags. Moreover, τ must be endowed with an admissible decoration. The
latter consists of the following data. They can be chosen independently on each
connected component so that in the following discussion we speak about trees
if we have not explicitly mentioned the general case.

(a) A marked tail, which is called the root, or the (global) output of τ . Its
vertex is called the root vertex. The remaining tails are called (global) inputs of τ .
Global inputs form a set F inτ ⊂ Fτ , and we consider the global output as an
one-element subset F outτ ⊂ Fτ .

A choice of root determines (and is equivalent to) the choice of a specific
orientation: a map Fτ → {in, out}. Namely, in each shortest path (sequence
of flags) from a global input to the root, assign out to the flag that leaves its
vertex, and in to the flag that enters it. This defines the partition of all flags
into two subsets: (local) inputs and outputs.

We will say that τ with such a decoration is an oriented tree. We repeat
that by definition, each oriented tree must have exactly one global output and
at least one global input.

(b) All corollas of an oriented tree are also oriented trees. The next part of
a decoration is a choice of total order on the set of inputs of each corolla of τ ,
and, if τ is not connected, a choice of total order on the set of its connected
components.

(c) A map arity/coarity: Fτ → N : f �→ (a(f), c(f)). If two flags are halves
of an edge, they must be assigned the same arity/coarity.
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(d) A map op : Vτ → {c,b, r}. The value op (v) assigned to a vertex is called
the respective operator: c,b, r stand respectively for composition, bracketing,
recursion.

(e) A map in : F inτ → {basic recursive functions} such that for each
i ∈ F inτ , in(i) is a basic function of arity a(i) and coarity c(i).

All these data must be compatible. A part of the compatibility conditions
was already included in the description. We will now formally introduce the
remaining set, and simultaneously explain an interpretation of graphs in Prim
(without decoration 5.11 (e)) as operations acting on families of input functions.

5.14. Objects of Prim as flowcharts. Given an oriented tree τ with a deco-
ration as above, we interpret the whole of τ as a symbol of an operation Op(τ)
that can be performed over families of functions, indexed by global inputs of τ .

More precisely, let f = {fi | i ∈ F inτ } be a family of functions (or even partial
functions) such that fi : (Z+)a(i) → (Z+)c(i). Then

Op (τ)(f) = g : (Z+)a → (Z+)c,

where (a, c) is the arity/coarity of the root.
The prescription for getting g, given f , runs as follows.
One-vertex case. Let τ be a corolla whose vertex is decorated by c,b,

or r. Then g is obtained by applying to the family {fi}, i ∈ F inτ , the respective
elementary operation: composition, bracketing, or recursion. This requires the
following compatibilities, which vary depending on the label of the vertex.

(a) Composition. Let (a1, c1), . . . , (ar, cr) be the family of arities/coarities
of inputs ordered as the respective flags. They must then be constrained by the
condition c1 = a2, . . . , cr−1 = ar, and the arity/coarity of the output must be
(a1, cr).

For a general τ , these compatibility conditions must be satisfied for all
corollas τv of all vertices decorated by c.

In the flowchart interpretation, such a corolla transforms an input family
(f1, . . . , fr), fi : (Z+)ai → (Z+)ci , into the composition fr ◦ fr−1 ◦ · · · f1.

Notice an essential difference in treating compositions in the context of
PROPs, resp. Prim: for PROPs, we graft and contract, whereas for Prim,
we endow a vertex with the task of composing.

This is because the corollas for PROPs are flowcharts accepting arguments
from, say, (Z+)m and producing a vector in (Z+)n, whereas decorated trees in
Prim accept and produce arguments that are themselves vectors of functions,
and we want to compose these functions rather than programs producing them.

(b) Bracket. With the same notation as in (a), the compatibility condition
reads a• := a1 = · · · = ar, and the arity/coarity of the output must be (a•, c1 +
· · ·+ cr).

For a general τ , these compatibility conditions must be satisfied for all
corollas τv of all vertices decorated by b and respective orderings.
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In the flowchart interpretation, such a corolla transforms an input family
(f1, . . . , fr), fi : (Z+)a• → (Z+)ci , into the map

〈f1, . . . , fr〉 : (Z+)a• → (Z+)c1+···+cr .

It was called juxtaposition in V.2.3 (b).

(c) Recursion. If a vertex is decorated by r, it must have exactly two local
inputs. If the arity/coarity of the first one (in their structure order) is (a, c),
for the second one it must be (a + c, c), and for the local output it must be
(a+ 1, c). This is our compatibility condition.

In the flowchart interpretation, such a vertex takes as input two arbitrary
maps f1 : (Z+)a → (Z+)c, f2 : (Z+)a+c → (Z+)c and produces the output

g : (Z+)a+1 → (Z+)c

defined recursively as

g(x, 1) := f1(x),
g(x, k + 1) := f2(x, f1(x, k))

for each x ∈ (Z+)a, k ∈ Z+.
This form of recursion is more restrictive than the one that is often used:

it does not allow f2 to depend explicitly on the recursion parameter k. How-
ever, R. M. Robinson proved in 1947 that it suffices to use it in order to get
all primitive recursive functions if an extension of the list of basic functions is
allowed. Afterward, M. D. Gladstone showed that such an extension is unnec-
essary (Jour. Symb. Logic, 32:4 (1967), 505–508). I am grateful to N. Yanofsky
for these references.

General case. First consider a connected graph τ . Assume that it has ≥ 2
vertices. We define the operation Op (τ) by induction on the number of vertices.

Namely, for a vertex v that is the boundary of a global input, consider the
subfamily fv := {fi | ∂τ (i) = v}. Denoting by τv the corolla of v (an in-corolla),
calculate gv := Op (τv)(fv) as specified above.

One can check that this prescription produces the result independent of
arbitrary choices.

Now consider the maximal decorated subtree τ0 of τ whose flags and
vertices do not belong to this in-corolla. Its global inputs consist of all global
inputs of τ not adjacent to v, and jτ (r), where r is the root of our corolla.
Decoration of τ0 is the restriction of that of τ ; global inputs of τ retain also
their input functions fi. Decorate the input jτ (r) by gv and put

Op (τ)({fi}) := Op (τ0)({fi, gv | ∂(i) �= v}).

The right-hand side is defined due to the inductive assumption.
Finally, if τ is the disjoint union of connected components

∐
a∈A τa, we put

Op (
∐
a∈A

τa) := ×a∈AOp (τa)
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in the sense that Op (τ) acts on the family, naturally indexed by A, of (families
of) global inputs of connected components, and produces the family of outputs,
as well indexed naturally by A.

As we implied in the previous discussion, we can apply Op (τ) to families
consisting not necessarily of basic, or even recursive, functions.

But if we want to define programming methods based upon Prim, then we
must decorate global inputs by some basic functions, and interpret the resulting
decorated tree as as a program producing one concrete recursive function.

Here the choice becomes ambiguous: we may change the list of basic func-
tions, and we may allow the application of c,b, r to some restricted class of
subfamilies, getting the more general cases from trees larger than corollas.

For c and b, we allowed arbitrary natural families, implicitly using associa-
tivity of intended interpretations. Yanofsky allows only two inputs. For r, we
essentially adhered in 5.12 (c) to the choice made by Yanofsky.

5.15. Prim as a world of programming methods. We now define
Prim (m,n) as the subset of Prim consisting of graphs whose outputs (roots
of connected components) have the total arity/coarity (m,n).

The evaluation morphism in C

evP (m,n) : P (m,n)× (Z+)m → (Z+)n

we have already essentially described. Namely,

evP (m,n)(τ, (x1, . . . , xm)) := fτ (x1, . . . , xm),

where fτ is the total output of the flowchart τ , which we formerly denoted by
Op (τ), applied to the input decorations of τ .

A computable multiple composition morphism (cf. 3.4 above)

comp : P (mr−1,mr)× · · · × P (m2,m3)× P (m1,m2) → P (m1,mr)

can be constructed as follows. For simplicity, we will describe only the composite
comp (τr , τr−1, . . . , τ1) for an r-tuple of decorated trees τ1, τ2, . . . , τr.

Consider a corolla with vertex decorated by c, r inputs decorated by the
arities (m1,m2), . . . , (mr−1,mr), and an output decorated by (m1,mr). Graft
inputs of this corolla to the roots of τ1, . . . , τr respectively. The resulting tree
represents the composition.

Of course, on the combinatorial level, we will have to make a stupid choice
of some “concrete” vertex and flags of this corolla, but the result will be unique
up to unique isomorphism identical on the component trees τi.

However, if we iterate partial compositions that on the level of maps corre-
spond, say, to h ◦ g ◦ f , (h ◦ g) ◦ f , and h ◦ (g ◦ f) respectively, we will get three
different decorated trees, say σ123, σ12,3, σ1,23.

On the combinatorial/geometric level these trees are interconnected by two
contraction morphisms (cf. 5.11) σ12,3 → σ123 and σ1,23 → σ123 that contract
the edges entering the root vertices, whose ends are marked by c. One can
simply declare that such contractions generate an equivalence relation on the
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elements of Prim, and that algorithms encoded by Prim are actually such
(or even bigger) equivalence classes rather than isomorphism classes of the dec-
orated trees.

However, since we work in a categorical context, and strive to produce a
category of algorithms in the sense of Definition 3.5, a better way to act is to
organize Prim into a constructive category, and then to localize it with respect
to those morphisms τ → σ that produce a natural identification Op (τ) and
Op (σ).

Recall that the localization of a category B with respect to a set of its mor-
phisms S is a functor L : B → B[S−1] that makes all morphisms in S invertible
and that is the initial object among all functors with this property.

Here is a simple version of this construction.

5.16. Definition–Claim. Consider the category Pr whose set of objects is the
set Prim, and morphisms are compositions of the following maps of decorated
graphs:

(i) Isomorphisms.
(ii) Contractions of subtrees of the following type: all vertices of such a subtree

are decorated by c. After the contraction, the resulting vertex must be
marked by c. The remaining decorations do not change.

(iii) Contractions of subtrees, all of whose all vertices are decorated by b. After
the contraction, the resulting vertex must be marked by b. The remaining
decorations do not change.

Denote by P the localization of Pr with respect to all morphisms. It has the
natural structure of a category of programming methods for which composition
and bracket operations become associative.

One can similarly accommodate more sophisticated equivalence relations
between decorated trees, studied by Yanofsky.

To this end one can extend the category Pr by some extra morphisms, and
then localize with respect to them as well.

6 Models of Computation and Complexity

In this section we are gradually zooming, passing from the macroscopic view
of the constructive universe to “human scale” to microscopic (Boolean and
Turing’s) level.

6.1. Normal models. Let U be an infinite set. In this subsection we will be
considering partial functions U → U that can be constructed by iteration. In
other contexts, they might be called dynamical systems with discrete time, or
cascades.

A normal model of computation M is the structure (P,U, I, F, s) consisting
of four sets and a map

I, F ⊂ P × U, s : P × U → P × U .
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Here s is an everywhere defined function such that s(p, u) = (p, sp(u)) for
any (p, u) ∈ P × U. Intuitively, p is a program, u is a configuration of the
deterministic discrete-time computing device, and sp(u) is the new configuration
obtained from u after one unit of time (clock tick). The subset I is that of initial
data, or inputs. The subset F ⊂ P × U (final configurations, outputs) must be
a part of the set of fixed points of s: if (p, u) ∈ F, then s(p, u) = (p, u).

In this setting, we denote by fp the partial function fp : U → U such that
we have u ∈ D(fp), fp(u) = v, if and only if

(p, u) ∈ I, and for some n ≥ 0, (p, snp (u)) ∈ F and snp (u) = v.

The minimal such n will be called the time (number of clock ticks) needed to
calculate fp(u) using the program p.

Any finite sequence

(p, u, sp(u), . . . , smp (u)), u ∈ I,

will be called a protocol of computation of length m for the model M .
We now add the constructivity conditions.
We require P,U to be constructive worlds, s computable. In addition, we

require I, F to be decidable subsets of P × U . Then fp are computable, and
protocols of given length (resp. of arbitrary length, resp. or those stopping at F )
form constructive worlds. If we denote by QM the world of protocols stopping at
F and by ev : QM × U → U the map (p, u) �→ smax

p (u), we get a programming
method.

Such a model M is called versal if the respective programming method QM
is versal.

The notion of normal model of computation includes both normal algorithms
and Turing machines.

Consider, for example, the standard description of the constructive world
T of Turing machines T slightly adapted to our conventions. It includes the
following data:

(a) The constructive world U = {0, 1}∗ of, say, binary words that can be written
on the tape of any T from our world.

(b) For each T , a finite set of internal states JT , containing initial state,
accepting state rejecting state, and remaining intermediate states J0

T . All
JT must be elements of a constructive world of states J , and the map
T �→ JT must be computable.

(c) The computable partial map τ : J×N×U → J×N×U , where N are natural
numbers (including 0). For each T , it must send the subset JT ×N×U into
itself.

A triple (i, n, u) ∈ JT×N×U is the configuration of T in which T is in state i,
and the head is scanning the nth square of the tape (the initial bit of u is counted
as the first square, the square to the left of it is the zeroth square). The domain
of definition of τT consists only of those triples for which n ≤ |u| + 1, where
|u| is the length of u: the head must scan either one of the bits of u, or one
of the next-door neighbors. The triple τT (i, n, u) = (i1, n1, u1) depicts the next
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internal state of the machine, position of the head, and the new word on the
tape. The usual restrictions on the τT are n1 = n ± 1, and u1 may differ from
u only at the nth bit.

The fixed points of τ are triples for which i = accepting or rejecting state.
We can reduce such a description to our normal form by putting U = {0, 1}∗,

P := J ×N, I := {initial states} × {1} × U.

States F are those triples (accepting state,n,u) that can be reached from some
point of I after a finite iteration of τ . Finally, to get an everywhere defined s
coinciding with τ on its definition domain, we can extend τ to a computable map
in some trivial way. For example, starting with some triple (i, n, u) not in I, we
can prescribe s to move the head to the left until it reaches the first nonempty
tape square, to continue moving until it reaches the next empty square, and
then move one square to the right.

Turing machines have one feature that we did not keep in our definition
of normal models. It is sometimes called locality of the iteration map, which
depends only on the restricted number of bits in of the current position and
changes only a restricted number of bits in moving to the next position.
Discussing complexity later, we will suggest a useful and sufficiently general
weakening of this requirement.

6.2. Boolean circuits. Boolean circuits are classical models of computation
well suited for studying maps between the finite sets whose elements are encoded
by binary words. Discussing them, we will identify the alphabet {0, 1} with the
2-element field F2.

Consider the commutative polynomial algebra generated over F2 by a count-
able sequence of independent variables, say x1, x2, x3, . . . . Define the Boolean
algebra B as the quotient algebra of F2[x1, x2, . . . ] modulo the ideal generated
by polynomials x2

i − xi. Each Boolean polynomial, element of B, determines a
function on ⊕∞

i=1F2 with values in F2 = {0, 1}.
We start with the following simple fact.

6.3. Claim. Any map f : Fm2 → Fn2 can be represented by a unique vector of
Boolean polynomials.

Proof. It suffices to consider the case n = 1. Then this map is surjective,
because f is represented by

F (x1, . . . , xm) :=
∑

y=(yi)∈Fm
2

f(y)
∏
i

(xi + yi + 1) .

In fact, the product at f(y) is the Kronecker delta δx,y.
Moreover, the vector spaces of such maps and of Boolean polynomials over

F2 have the common dimension 2m. In fact, Boolean polynomials are rep-
resented by linear combinations of monomials xi1 · · ·xik , one for each subset
{i1, . . . , ik} ⊂ {1, . . . ,m}. This completes the proof.
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Now we can calculate any vector of Boolean polynomials by iterating
operations from a small finite list, which is chosen and fixed, e.g., B :=
{x, 1, x + y, xy, (x, x)}. Such operators are called classical gates. A sequence
of such operators, together with an indication of their arguments from the pre-
viously computed bits, is called a Boolean circuit. The number of steps in such
a circuit is considered (a measure of) the time of computation.

As the word circuit suggests, one may consider even better representations
by flowcharts, which are oriented graphs, with vertices decorated by the names
of gates.

When the relevant finite sets are not Fm2 , and perhaps have a wrong cardi-
nality (not a power of 2), we encode their elements by finite sequences of bits
and consider the restriction of Boolean polynomials to the relevant subset.

As above, a protocol of computation in this model can be represented as the
finite table consisting of rows (generally of variable length) that accommodate
sequences of 0’s and 1’s. The initial line of the table is the input. Each subse-
quent line must be obtainable from the previous one by the application of one
the basic functions in B to the sequence of neighboring bits (the remaining bits
are copied unchanged). The last line is the output. The exact location of the
bits that are changed in each row and the nature of change must be a part of
the protocol.

Physically, one can implement the rows as the different registers of the mem-
ory, or else as the consecutive states of the same register (then we have to make a
prescription for how to cope with the variable length, e.g., using blank symbols).

6.4. Turing machines vs. Boolean circuits. Any protocol of the Turing
computation of a function can be treated as such a protocol of an appropriate
Boolean circuit, and in this case we have only one register (the initial part of
the tape) whose states are consecutively changed by the head/processor. We
will still use the term “gate” in this context.

A computable function f with infinite domain is the limit of a sequence
of functions fi between finite sets whose graphs extend each other. A Turing
program for f furnishes a computable sequence of Boolean circuits, which com-
pute all fi in turn. Such a sequence is sometimes called uniform.

6.5. Size, complexity, and polynomial-time computability. The quanti-
tative theory of computational models deals simultaneously with the space and
time dimensions of protocols. The preceding subsection focused on time; here
we introduce space. For Boolean (and Turing machine) protocols this is easy:
the length of each row of the protocol plus specifications for the next step is
the space required at that moment. The maximum of these lengths, up to a
multiplicative constant, bounds the total space required from above and from
below.

The case of normal models and infinite constructive worlds U is more
interesting.

Generally we will say that a a size function U → N is any function such that
for every H ∈ N, there are only finitely many objects of size ≤ H. Thus the
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number of bits |n| = [log2n]+1 and the identical function ‖n‖ = n are both size
functions on Z+. Using a numbering, we can transfer them to any constructive
world. In these two examples, the number of constructive objects of size ≤ H
grows as exp cH , resp. cH. Such a count in more general cases allows one to
make a distinction between the bit size, measuring the length of a description
of the object, and the volume of the object.

In most cases we require computability of size functions. However, there
are exceptions: for example, Kolmogorov complexity is a noncomputable size
function with very important properties: see VI.9.

Given a size function (on all relevant worlds) and a versal normal model of
computations M , we can consider the following complexity problems:

(A) For a given morphism (computable map) f : U → V , estimate the smallest
bit size KM (f) of the program p such that f = fp.

According to V.9, there exists an optimal universal model of computation
U such that with P = N and the bit size function, for any other model S there
exists a constant c such that for any f ,

KU(f) ≤ KM (f) + c.

When U is chosen, KU(f) is called the Kolmogorov complexity of f. With a
different choice of U we will get the same complexity function up to O(1)-
summand.

This complexity measure is highly nontrivial (and especially interesting) in
the case of one-point U . It measures, then, the size of the most compressed
description of a variable constructive object in V. This complexity is quite
“objective,” being almost independent of arbitrary choices. Being uncom-
putable, it cannot be directly used in computer science. However, it furnishes
some basic restrictions on computability, strikingly similar to those provided by
conservation laws in physics.

Recall that on N we have KU(n) ≤ |n|+ O(1) = log2‖n‖+ O(1). The first
inequality “generically” can be replaced by equality, but infinitely often KU(n)
becomes much smaller that |n|.

(B) For a given morphism (recursive map) f : U → V , estimate the time needed
to calculate f(u), u ∈ D(f), using the program p and compare the results
for different p and different models of computation.

(C) The same for the function “maximal size of intermediate configurations in
the protocol of the computation of f(u) using the program p” (space, or
memory).

In the last two problems, we have to compare functions rather than numbers:
time and space depend on the size of input. Here a cruder polynomial scale
appears naturally. Let us show how this happens.

Fix a computational model S with the transition function s computing
functions U → U , and choose a bit size function u �→ |u| on U satisfying
the following crucial assumption, a weakening of the locality requirement valid
for Turing machines:
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(i) |u| − c ≤ |sp(u)| ≤ |u| + c, where the constant c may depend on p but not
on u.

In this case we have |smp (u)| ≤ |u|+ cpm: the required space grows no more
than linearly with time.

Let now (S ′
, s

′
) be another model such that sp = s

′
q for some q. For example,

such q always exists if S ′
is versal. Assume that s

′
satisfies (i) as well, and

moreover,

(ii) s can be computed in the model S ′
in time bounded by a polynomial F in

the bit size of input.

This requirement is certainly satisfied for Turing and Markov models, and
is generally reasonable, because an elementary step of an algorithm deserves its
name only if it is computationally tractable.

Then we can replace one application of sp to smp (u) by ≤ F (|u| + cm)
applications of s

′
q. And if we needed T (u) steps in order to calculate fp(u)

using S, we will need no more than ≤
∑T (u)
m=1 F (|u| + cm) steps to calculate

the same function using S ′
and q. In a detailed model, there might be a small

additional cost of merging two protocols. This is an example of the compilation
morphism lifted to the worlds of protocols.

Thus, from the assumptions (i) and (ii) it follows that functions computable
in polynomial-time by S have the same property for all reasonable models.
Notice also that for such functions, |f(u)| ≤ G(|u|) for some polynomial G and
that the domain D(f) of such a function is decidable: if after T (|u|) iterations
of sp we are not in a final state, then u /∈ D(f).

Thus we can define the class PF of functions, say Nk → N, computable in
polynomial-time using a fixed universal Turing machine and arguing as above
that this definition is model-independent.

If we want to extend it to a constructive universe C, however, we will
have to postulate additionally that any constructive world U comes together
with a natural class of numberings that together with their inverses are com-
putable in polynomial-time. The bit size will be defined in terms of one of these
numberings.

This postulate, accepted for “all constructive worlds,” seems to be a part of
the content of the “polynomial Church thesis” invoked by M. Freedman in his
talk at the Berlin ICM, 1998.

If we take this strengthening of Church is thesis for granted, and take two
bit-size functions determined by two polynomial numberings, then the quotient
of two such size functions is bounded from above and away from zero.

Below we will be considering only the universes C and worlds U with these
properties, and |u| will always denote a computable bit size. Gödel’s numbering
for N × N shows that that such C is still closed with respect to finite prod-
ucts. (Notice, however, that the beautiful numbering of N∗ using primes is not
polynomial-time computable; it may be replaced by another one that is in PF).
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6.6. P/NP problem. Let U be a constructive world. By definition, a subset
E ⊂ U belongs to the class P if its characteristic function χE (equal to 1 on E
and 0 outside) belongs to the class PF.

Furthermore, E ⊂ U belongs to the class NP if there exists a subset E
′ ⊂

U × V belonging to P and a polynomial G such that

u ∈ E ⇐⇒ ∃ (u, v) ∈ E
′

with |v| ≤ G(|u|).

Here V is another constructive world (which may coincide with U). We will say
that E is obtained from E

′
by a polynomially truncated projection.

Such a v can be called a witness of the inclusion u ∈ E. The polynomial-time
calculation establishing that χE′ (u, v) = 1 is a short proof that u ∈ E.

The discussion above establishes in what sense this definition is model-
independent.

Clearly, P⊂ NP.
The question whether these two classes coincide is the celebrated P/NP

problem.
A naive algorithm calculating χE from χE′ by searching for v with |v| ≤

G(|u|) and χE′ (u, v) = 1 will generally take exponential time v (because |u| is
a bit-size function). Of course, if one can treat all such v simultaneously, using
massive parallellism, the required time will be polynomial: time will be traded
for space. Or else, if an oracle tells you that u ∈ E and supplies an appropri-
ate v, you can convince yourself that this is indeed so in polynomial-time, by
computing χE′ (u, v) = 1.

Notice that enumerable sets can be alternatively described as projections of
decidable ones, and that in this context projection does create undecidable sets.
Nobody as yet has been able to translate the diagonalization argument used to
establish this to the P/NP domain.

It has long been known that the P/NP problem can be reduced to checking
whether some very particular sets—NP -complete ones—belong to P.

6.7. Definition. The set E ⊂ U is called NP -complete if, for any other set
D ⊂ V,D ∈ NP, there exists a function f : V → U, f ∈ PF, such that
D = f−1(E), that is, χD(v) = χE(f(v)).

We will sketch the classical argument (due to S. Cook, L. Levin, R. Karp)
showing the existence of NP -complete sets. In fact, the reasoning is construc-
tive: it furnishes a polynomially computable map producing f from the descrip-
tions of χE′ and the truncating polynomial G.

In order to describe one NP-complete problem, we will define an infinite
family of Boolean polynomials bu indexed by the following data, constituting
objects u of the constructive world U . One u is a collection

m ∈ N; (S1, T1), . . . , (SN , TN),

where Si, Ti ⊂ {1, . . . ,m}, and bu is defined as

bu(x1, . . . , xm) =
N∏
i=1

⎛⎝1 +
∏
k∈Si

(1 + xk)
∏
j∈Ti

xj

⎞⎠ .
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We choose the bit size of u as |u| = mN.
Put

E = {u ∈ U | ∃v ∈ Fm2 , bu(v) = 1}.
Using the language of Boolean truth values, one says that v satisfies bu if
bu(v) = 1, and E is called the satisfiability problem, or SAT.

6.8. Proposition. SAT ∈ NP.

Proof. In fact, let

E
′

= {(u, v) | bu(v) = 1} ⊂ U × (⊕∞
i=1F2) .

Clearly, E is the full projection of E
′
. A bit of contemplation will convince the

reader that E
′ ∈ P. In fact, we can calculate bu(v) performing O(Nm) Boolean

multiplications and additions. The projection to E can be replaced by a polyno-
mially truncated projection, because we have to check only v of bit size |v| ≤ m.

6.9. Theorem. SAT is NP-complete.

Proof (sketch). In fact, let D ∈ NP, D ⊂ A, where A is some constructive
world. Take a representation of D as a polynomially truncated projection of
some set D

′ ⊂ A × B,D
′ ∈ P. Choose a normal, say Turing, model of com-

putation and consider the Turing protocols of computation of χD′ (a, b) with
fixed a and variable polynomially bounded b. As we have explained above, for
a given a, any such protocol can be imagined as a table of a fixed polynomially
bounded size whose rows are the consecutive states of the computation. In the
“microscopic” description, the positions in this table can be filled only by 0 or 1.
In addition, each row is supplied by the specification of the position and the
inner state of the head/processor. Some of the arrangements are valid protocols,
others are not, but the local nature of the Turing computation allows one to
produce a Boolean polynomial bu in appropriate variables such that the valid
protocols are recognized by the fact that this polynomial takes value 1. This
defines the function f reducing D to E. The construction is so direct that the
polynomial-time computability of f is straightforward.

Many natural problems are known to be NP-complete, in particular
3-SAT. It is defined as the subset of SAT consisting of those u for which
card (Si ∪ Ti) = 3 for all i.

6.10. Remark. Most Boolean functions are not computable in polynomial-time.
Several versions of this statement can be proved by simple counting.

First of all, fix a finite basis B of Boolean operations as in 6.3, each acting
on ≤ a bits. Then sequences of these operations of length t generate O((bna)t)
Boolean functions Fn2 → Fn2 , where b = cardB. On the other hand, the number
of all functions 2n2n

grows as a double exponential of n and for large n cannot
be obtained in time t polynomially bounded in n.

The same conclusion holds if we consider not all functions but only permu-
tations: Stirling’s formula for cardS2n = 2n! involves a double exponential.
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Here is one more variation of this problem: define the time complexity of a
conjugacy class in S2n as the minimal number of steps needed to calculate some
permutation in this class. This notion arises if we are interested in calculating
automorphisms of a finite world of cardinality 2n that is not supplied with a
specific encoding by binary words. Then it can happen that a judicious choice of
encoding will drastically simplify the calculation of a given function. However,
for most functions we still will not be able to achieve polynomial-time com-
putability, because the asymptotic formula for the number of conjugacy classes
(partitions)

p(2n) ∼
exp

(
π
√

2
3 (2n − 1

24

)
4
√

3(2n − 1
24 )

again displays double exponential growth.

7 Basics of Quantum Computation I: Quantum
Entanglement

In this section we will discuss the basics: how to use the superposition principle
in order to accelerate (certain) classical computations.

For a minimal physics background, the reader may wish to reread II.
12.1–12.9.

7.1. Description of the problem. Let N be a large number, F : {0, . . . ,
N−1} → {0, . . . , N−1} a function such that the computation of each particular
value F (x) is tractable, that is, can be done in time polynomial in log x. We want
to compute (to recognize) some property of the graph (x, F (x)), for example:

(i) Find the least period r of F , i.e., the least residue rmodN such that
F (x+rmodN) = F (x) for all x (the key step in the factorization problem.)

(ii) Find some x such that F (x) = 1 or establish that such x does not exist
(search problem.)

As we already mentioned, a direct attack on such a problem consists in com-
piling the complete list of pairs (x, F (x)) and then applying to it an algorithm
recognizing the property in question. Such a strategy requires at least exponen-
tial time (as a function of the bit size of N ), since already the length of the
list is N. Barring a theoretical breakthrough in understanding such problems
(for example a proof that P=NP), a practical response might be in exploiting
the possibility of parallel computing, i.e., calculating simultaneously many—or
even all—values of F (x). This takes less time but uses (dis)proportionally more
hardware.

A remarkable suggestion due to D. Deutsch consists in using a quantum
superposition of the classical states |x〉 as the replacement of the union of N
classical registers, each in one of the initial states |x〉. To be more precise, here
is a mathematical model formulated as a definition.
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7.2. Quantum parallel processing: version I. Keeping the notation above,
assume moreover that N = 2n.
(i) The quantum space of inputs/outputs is the 2n-dimensional complex Hilbert

space Hn with the orthonormal basis |x〉, 0 ≤ x ≤ N − 1. Vectors |x〉 are
called classical states.

(ii) The quantum version of F is the unique unitary operator UF : Hn → Hn

such that UF |x〉 = |F (x)〉.
Quantum parallel computing of F is (a physical realization of) a quantum

system with the state space Hn and the evolution operator UF .
Naively speaking, if we apply UF to the initial state which is a superposition

of all classical states, with, say, equal amplitudes, we will get simultaneously all
classical values of F (i.e., their superposition):

UF

(
1√
N

∑
|x〉

)
=

1√
N

∑
|F (x)〉.

Now, this does not look very promising. In fact, UF exists only if F is a
permutation, and in this case the left hand side is simply identical to the right-
hand side!

To get a more workable version, we will have to take superpositions with
different weights. We will also have to devise tricks for replacing, say, search
functions (1 on desirable elements, 0 elsewhere) by permutations. For this, see
Section 7.3 below.

For the time being, we will start discussing various issues related to our
preliminary picture, before passing to its more realistic modification.

(A) We put N = 2n above because we are imagining the respective classical
system as an n-bit register: cf. the discussion of Boolean circuits. Every
number 0 ≤ x ≤ N − 1 is written in the binary notation x =

∑
i εi2

i and is
identified with the pure (classical) state |εn−1, . . . , ε0〉, where εi = 0 or 1 is
the state of the ith register. The quantum system H1 is called a qubit. We
have Hn = H⊗n

1 , |εn−1, . . . , ε0〉 = |εn−1〉 ⊗ · · · ⊗ |ε0〉.
This conforms to the general principles of quantum mechanics. The Hilbert

space of the union of systems can be identified with the tensor product of the
Hilbert spaces of the subsystems. Accordingly, decomposable vectors correspond
to the states of the compound for which one can say that the individual subsys-
tems are in definite states.

In a general state of the register, the individual bits do not store any definite
values: this is the essence of quantum entanglement.

(B) Pure quantum states, strictly speaking, are points of the projective space
P (Hn), that is, complex lines in Hn. Traditionally, one considers instead
vectors of norm one. This leaves undetermined an overall phase factor
exp iϕ. If we have two state vectors, individual phase factors have no
objective meaning, but the difference of their phases does have one. This
difference can be measured by observing effects of quantum interference.

Quantum interference is highly important and is used for implementing
efficient quantum algorithms.
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(C) If a quantum system S is isolated from its environment, its dynamical evo-
lution with time t is described by the unitary operator acting on its Hilbert
space, U(t) = exp iHt, where H is the Hamiltonian, t is time. Therefore
one option for implementing UF physically is to design a device for which
UF would be a fixed time evolution operator. However, this seemingly con-
tradicts many deeply rooted notions of the algorithm theory. For example,
calculating F (x) for different inputs x takes different times, and it would
be highly artificial to try to equalize them already in the design.

Instead, one can try to implement UF as the result of a sequence of brief
interactions, carefully controlled by a classical computer, of S with the envi-
ronment (say, laser pulses). Mathematically speaking, UF is represented as a
product of some standard unitary operators Um, . . . , U1 each of which acts only
on a small subset (two, three) of classical bits. These operators are called quan-
tum gates.

The complexity of the respective quantum computation is determined by its
length (the number m of the gates) and by the complexity of each of them.

The latter point is a subtle one: continuous parameters, e.g., phase shifts,
on which Ui may depend, makes the information content of each Ui potentially
infinite and leads to a suspicion that a quantum computer will in fact perform
an analog computation, only implemented in a fancy way.

This point has been discussed and refuted on several occasions by displaying
those features of quantum computation that distinguish it from both analog
and digital classical information processing. Philosophically, all arguments are
variations on the theme of von Neumann’s theorem on the impossibility of
hidden parameters (cf. II.12).

One more problem related to the necessity to renounce the image of an
isolated quantum register is that of stability, or fault tolerance. Even very weak,
but uncontrolled, interactions with the environment will quickly lead to the
spreading of quantum noise, destroying the useful information. This is called
quantum decoherence.

One defense strategy is the technique of fault-tolerant computation using
quantum codes for producing continuous variables highly protected from exter-
nal noise.

7.3. Reducing general functions to permutations. As we have already
remarked, the requirement that F must be a permutation is highly restrictive:
for instance, in the search problem F takes only two values.

There is nothing justifying this restriction in the schemes of classical com-
putation, but in our quantum model, only permutations F extend to unitary
operators (“quantum reversibility”).

The standard way out consists in introducing two n-bit registers instead of
one, for keeping the value of the argument as well as that of the function. This
also conforms with our initial idea that we want to learn something about the
graph of F .

More precisely, if F (|x〉) is an arbitrary function of classical bits, we can
replace it by the permutation F̃ (|x, y〉) := |x, F (x)⊕y〉, where ⊕ is the Boolean
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(bitwise) sum. This involves no more than a polynomial increase of the classical
complexity, and the restriction of F̃ to y = 0 produces the graph of F , which
we need anyway for the type of problems we are interested in.

In the quantum Boolean circuit version this trick must be applied to all
gates.

More precisely, in order to process a classical algorithm (sequence of Boolean
gates) for computing F into the quantum one, we replace each classical gate
by the respective reversible quantum gate, i.e., by the unitary operator corre-
sponding to it tensored with the identical operator. Besides two registers for
keeping |x〉 and F (|x〉) we will have to introduce as well extra qubits in which
we are not particularly interested. The corresponding Hilbert space and its con-
tent is sometimes referred to as “scratchpad,” “garbage,” etc. Besides ensuring
reversibility, additional space and garbage can be introduced as well for con-
sidering functions F : {0, . . . , N − 1} → {0, . . . ,M − 1}, where N, M are not
powers of two (then we extend them to the nearest power of two). For more
details, see the next section.

Notice that the choice of gate array (Boolean circuit) as the classical model
of computation is essential in the following sense: a quantum routine cannot
use conditional instructions. Indeed, to implement such an instruction we must
observe the memory in the midst of calculation, but the observation generally
will change its current quantum state.

In the same vein, we must avoid copying instructions, because the classical
copying operator |x〉 → |x〉 ⊗ |x〉 is not linear. In particular, each output qubit
from a quantum gate can be used only in one gate at the next step (if several
gates are used in parallel): cloning is not allowed.

These examples show that the basics of quantum code writing will have a
very distinct flavor.

We now pass to the problems posed by the input/output routines.
Input, or initialization, in principle can be implemented in the same way as

a computation: we produce an input state starting, e.g., from the classical state
|0〉 and applying a sequence of basic unitary operators: see the next section.
Output, however, involves an additional quantum-mechanical notion: that of
observation.

7.4. Quantum observation. The simplest model of observation of a quantum
system with the Hilbert space H is that of interaction with another system,
and their subsequent disentanglement.

Possible results of such an interaction will form an orthonormal basis |χi〉
of H (depending on the physical details of observation). If our system was in
some entangled state |ψ〉 at the moment of observation, it will be observed in
some state |χi〉 with probability |〈χi|ψ〉|2.

This means first of all that every quantum computation is inherently prob-
abilistic. Observing (a part of) the quantum memory is not exactly the same
as “printing the output.” We must plan a series of runs of the same quantum
program and the subsequent classical processing of the observed results, and
we can hope only to get the desired answer with probability close to one.
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Furthermore, this means that by implementing quantum parallelism simple-
mindedly as at the beginning of this section, and then observing the memory
as if it were the classical n-bit register, we will simply get some value F (x) with
probability 1/N . This does not use the potential of the quantum parallelism.
Therefore we formulate a corrected version of this notion, allowing more flexibil-
ity and stressing the additional tasks of the designer, each of which eventually
contributes to the complexity estimate.

7.5. Quantum parallel processing: version II. To solve efficiently a problem
involving properties of the graph of a function F , we must design:

(i) An auxiliary unitary operator U carrying the relevant information about
the graph of F.

(ii) A computationally feasible realization of U with the help of standard quan-
tum gates.

(iii) A computationally feasible realization of the input subroutine.
(iv) A computationally feasible classical algorithm processing the results of

many runs of quantum computation.

All of this must be supplemented by quantum error-correcting encoding,
which we will not address here. In the next section we will discuss some standard
quantum subroutines.

8 Selected Quantum Subroutines

8.1. Initialization. Using the same conventions as in Section 7 and the subse-
quent comments, in particular the identification Hn = H⊗n

1 , we have

1√
N

N−1∑
x=0

|x〉 =
1√
N

∑
εi=0,1

|εn−1 · · · ε0〉 =
(

1√
2

(|0〉+ |1〉)
)⊗n

.

In other words,

1√
N

N−1∑
x=0

|x〉 = U
(n−1)
1 · · ·U (0)

1 |0 · · · 0〉,

where U1 : H1 → H1 is the unitary operator

|0〉 �→ 1√
2

(|0〉+ |1〉), |1〉 �→ 1√
2

(|0〉 − |1〉) ,

and U (i)
1 = id⊗ · · · ⊗ U1 ⊗ · · · ⊗ id acts only on the ith qubit.

Thus making the quantum gate U1 act on each memory bit, one can in
n steps initialize our register in the state that is the superposition of all 2n

classical states with equal weights.

8.2. Quantum computations of classical functions. Let B be a finite basis
of classical gates containing the one-bit identity and generating all Boolean
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circuits, and F : Fm2 → Fn2 a function. We will describe how to turn a Boolean
circuit of length L calculating F into another Boolean circuit of comparable
length consisting only of reversible gates, and calculating a modified function,
which, however, contains all information about the graph of F. Reversibility
means that each step is a bijection (actually, an involution) and hence can be
extended to a unitary operator, that is, a quantum gate. For a gate f, define
f̃(|x, y〉) = |x, f(x) + y〉 as in 7.3 above.

8.3 Claim. A Boolean circuit S of length L in the basis B can be processed
into the reversible Boolean circuit S̃ of length O((L + m + n)2) calculating a
permutation H : Fm+n+L

2 → Fm+n+L
2 with the following property:

H(x, y, 0) = (x, F (x) + y, 0) = (F̃ (x, y), 0).

Here x, y, z have sizes m,n, L respectively.

Proof. We will understand L here as the sum of sizes of the outputs of all
gates involved in the description of S. We first replace in S each gate f by
its reversible counterpart f̃ . This involves inserting extra bits, which we put
side by side into a new register of total length L. The resulting subcircuit will
calculate a permutation K : Fm+L

2 → Fm+L
2 such that K(x, 0) = (F (x), G(x))

for some function G (garbage).
Now add to the memory one more register of size n keeping the variable y.

Extend K to the permutation K : Fm+L+n
2 → Fm+L+n

2 keeping y intact:
K : (x, 0, y) �→ (F (x), G(x), y). Clearly, K is calculated by the same Boolean
circuit as K, but with extended register.

Extend this circuit by the one adding the contents of the first and the
third registers: (F (x), G(x), y) �→ (F (x), G(x), F (x) + y). Finally, build the
last extension that calculates K

−1
and consists of reversed gates calculating

K in reverse order. This clears the middle register (scratchpad) and produces
(x, 0, F (x) + y). The whole circuit requires O(L + m + n) gates if we allow
the application of them to not necessarily neighboring bits. Otherwise we must
insert gates for local permutations, which will replace this estimate by O((L+
m+ n)2).

8.4. Fast Fourier transform. Finding the least period of a function of one
real variable can be done by calculating its Fourier transform and looking at
its maxima. The same strategy is applied by Shor in his solution of the factor-
ization problem. We will show now that the discrete Fourier transform Φn is
computationally easy (quantum polynomial-time). We define Φn : Hn → Hn

by

Φn(|x〉) =
1√
N

N−1∑
c=0

|c〉 exp (2πicx/N).

In fact, it is slightly easier to implement directly the operator

Φtn(|x〉) =
1√
N

N−1∑
c=0

|ct〉 exp (2πicx/N),
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where ct is c read from right to left. The effects of the bit reversal can then be
compensated at a later stage without difficulty.

Let U (kj)
2 : Hn → Hn, k < j, be the quantum gate that acts on the pair of

the kth and jth qubits in the following way: it multiplies |11〉 by exp (iπ/2j−k)
and leaves the remaining classical states |00〉, |01〉, |10〉 intact.

8.5. Lemma. We have

Φtn =
n−1∏
k=0

⎛⎝U (k)
1

n−1∏
j=k+1

U
(kj)
2

⎞⎠ .

By our rules of the game, this presentation has polynomial length in the
sense that it involves only O(n2) gates. However, implementation of U (kj)

2

requires controlling variable phase factors that tend to 1 as k − j grows. More-
over, arbitrary pairs of qubits must allow quantum-mechanical coupling, so that
for large n, the interaction between qubits must be nonlocal. The contribution
of these complications to the notion of complexity cannot be estimated without
going into the details of the physical arrangement. Therefore we will add a few
words on this subject.

One possible implementation of a quantum register consists of a collection of
ions (charged atoms) in a linear harmonic trap (optical cavity). Two of the elec-
tronic states of each ion are denoted by |0〉 and |1〉 and represent a qubit. Laser
pulses transmitted to the cavity through the optical fibers and controlled by
the classical computer are used to implement gates and readout. The Coulomb
repulsion keeps ions apart (spatial selectivity), which allows the preparation of
each ion separately in any superposition of |0〉 and |1〉 by timing the laser pulse
properly and preparing its phase carefully. The same Coulomb repulsion allows
for collective excitations of the whole cluster, whose quanta are called phonons.
Such excitations are produced by laser pulses as well under appropriate reso-
nance conditions. The resulting resonance selectivity combined with the spatial
selectivity implements a controlled entanglement of the ions that can be used
in order to simulate two- and three-bit gates.

Another recent suggestion is to use a single molecule as a quantum register,
representing qubits by nuclear spins of individual atoms, and using interac-
tions through chemical bonds in order to perform multiple-bit logic. The clas-
sical technique of nuclear magnetic resonance developed since the 1940s, which
allows one to work with many molecules simultaneously, provides the startup
technology for this project.

8.6. Quantum search. All the subroutines described up to now have boiled
down to some identities in the unitary groups involving products of not too
many operators acting on subspaces of small dimension. They did not involve
output subroutines and therefore did not “compute” anything in the traditional
sense of the word. We will now describe the beautiful quantum search algorithm
due to L. Grover, which produces a new identity of this type, but also demon-
strates the effect of observation and the way one can use quantum entanglement
in order to exploit the potential of quantum parallelism.
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We will treat only the simplest version. Let F : Fn2 → {0, 1} be a function
taking the value 1 at exactly one point x0. We want to compute x0. We assume
that F is computable in polynomial-time, or else that its values are given by an
oracle. Classical search for x0 requires on the average about N/2 evaluations of
F where N = 2n.

In the quantum version, we will assume that we have a quantum Boolean
circuit (or quantum oracle) calculating the unitary operator Hn → Hn,

IF : |x〉 �→ eπiF (x)|x〉.

In other words, IF is the reflection inverting the sign of |x0〉 and leaving the
remaining classical states intact.

Moreover, we put J = −Iδ, where δ : Fn2 → {0, 1} takes the value 1 only at
0, and V = U

(n−1)
1 · · ·U (0)

1 , as in 8.1.

8.6. Claim. (i) The real plane in Hn spanned by the uniform superposition ξ of
all classical states and by |x0〉 is invariant with respect to T := V JV IF .

(ii) T restricted to this plane is the rotation (from ξ to |x0〉) by the angle ϕN ,
where

cosϕN = 1− 2
N
, sinϕN = 2

√
N − 1
N

.

The check is straightforward.
Now, ϕN is close to 2/

√
N , and for the initial angle ϕ between ξ and |x0〉

we have
cosϕ = − 1√

N
.

Hence in [ϕ/ϕN ] ≈ π
√
N/4 applications of T to ξ we will get the state very

close to |x0〉. Stopping the iteration of T after as many steps and measuring
the outcome in the basis of classical states, we will obtain |x0〉 with probability
very close to one.

One application of T replaces in the quantum search one evaluation of F.
Thus, thanks to quantum parallelism, we achieve a polynomial speedup in com-
parison with the classical search. The case in which F takes the value 1 at several
points and we want to find only one of them can be treated by an extension
of this method. If there are n such points, the algorithm requires about

√
N/n

steps, and n need not be known a priori.
Still, this does not help solving NP-complete problems, because the square

root of an exponential is still an exponential.

9 Shor’s Factoring Algorithm

Efficient factorization of large integers became in the last decades an important
applied problem, because standard public key cryptosystems rely on the per-
ceived difficulty of this problem. At least in 2000, it was practically impossible
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to factorize a product of two 150-decimal-digit primes: estimated running times
of the best existing factorization algorithms were in the billions years.

Producing such public key cryptosystems on an industrial scale requires
mass production of large primes. This last problem recently was shown to be in
the class P (M. Agrawal, N. Kayal, N. Saxena). Existing practical algorithms
can prove primality of a 10000-bit number in several weeks.

For this reason, when P. Shor demonstrated that a quantum algorithm can
efficiently solve the factorization problem, and thus provide means for system-
atically breaking the public key cryptosystems, his discovery attracted much
public attention. We will sketch his algorithm in this section.

9.1. Notation. Let M be a natural number to be factored. We will assume that
it is odd and is not a power of a prime number.

Denote by N the volume of the basic memory register we will be using
(not counting scratchpad). Its bit size n will be about twice that of M . More
precisely, choose M2 < N = 2n < 2M2. Finally, let 1 < t < M be a random
parameter with gcd (t,M) = 1. This condition can be checked classically in time
polynomial in n.

Below we will describe one run of Shor’s algorithm, in which t (and of course,
M , N) is fixed. Generally, polynomially many runs will be required, in which
the value of t can remain the same or be chosen anew. This is needed in order
to gather statistics. Shor’s algorithm is a probabilistic one, with two sources of
randomness that must be clearly distinguished. One is built into the classical
probabilistic reduction of factoring to the finding of the period of a function.
Another stems from the necessity of observing quantum memory, which, too,
produces random results.

More precise estimates than those given here show that a quantum com-
puter that can store about 3n qubits can find a factor of M in time of order
n3 with probability close to 1. On the other hand, it is widely believed that no
recursive function of the type M �→ a proper factor of M belongs to PF.

9.2. A classical algorithm. Put

r := min {ρ | tρ ≡ 1 modM},

which is the least period of F : a �→ ta modM.

Claim. If one can efficiently calculate r as a function of t, one can find a proper
divisor of M in time polynomial in log2M with probability ≥ 1−M−m for any
fixed m.

In fact, choose such t for which the period r satisfies

r ≡ 0 mod 2, tr/2 �= −1 modM.

Then gcd (tr/2 + 1,M) is a proper divisor of M. Notice that gcd is computable
in polynomial-time.

The probability that this condition holds is ≥ 1 − 1/2k−1, where k is the
number of different odd prime divisors of M , hence ≥ 1/2 in our case. Therefore
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we will find a good t with probability ≥ 1−M−m in O(logM) tries. The longest
calculation in one try is that of tr/2. The usual squaring method performs this
in polynomial-time as well.

9.3. Quantum algorithm calculating r. Here we describe one run of the
quantum algorithm that purports to compute r, given M,N, t. We will use the
working register that can keep a pair consisting of a variable 0 ≤ a ≤ N−1 and
the respective value of the function ta modM.One more register will serve as the
scratchpad needed to compute |a, ta modM〉 reversibly. When this calculation
is completed, the content of the scratchpad will be reversibly erased: cf. 8.3
above. In the remaining part of the computation the scratchpad will no longer
be used, so we may decouple it and forget about it.

The quantum computation consists of four steps, three of which were
described in Section 8:

(i) Partial initialization produces from |0, 0〉 the superposition

1√
N

N−1∑
a=0

|a, 0〉.

(ii) Reversible calculation of F processes this state into

1√
N

N−1∑
a=0

|a, ta modM〉.

(iii) Partial Fourier transform then furnishes

1
N

N−1∑
a=0

N−1∑
c=0

exp (2πiac/N) |c, ta modM〉.

(iv) The last step is the observation of this state with respect to the system of
classical states |c,mmodM〉. This step produces some concrete output

|c, tk modM〉

with probability ∣∣∣∣∣ 1
N

∑
a: ta≡tk modM

exp (2πiac/N)

∣∣∣∣∣
2

.

The remaining part of the run is assigned to the classical computer and consists
of the following steps.

(A) Find the best approximation (in lowest terms) to
c

N
with denominator

r
′
< M <

√
N : ∣∣∣∣∣ cN − d

′

r′

∣∣∣∣∣ < 1
2N

.
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As we will see below, we may hope that r
′

will coincide with r in at least
one run among at most polynomially many. For this reason, we will try r

′
in

the role of r right away:

(B) If r
′ ≡ 0 mod 2, calculate gcd (tr

′
/2 ± 1,M).

If r
′

is odd, or if r
′

is even, but we did not get a proper divisor of M , repeat
the run O(log logM) times with the same t. In case of failure, change t and
start a new run.

9.4. Justification. We will now show that given t, from the observed values
of |c, tk modM〉 we can find in O(log logM) runs the correct value of r with
probability close to 1.

Let us call the observed value of c good if

∃ l ∈
[
− r

2
,
r

2

]
, rc ≡ lmodN.

In this case there exists d such that

− r
2
≤ rc− dN = l ≤ r

2
,

so that ∣∣∣∣ cN − d

r

∣∣∣∣ < 1
2N

.

Hence if c is good, then r
′

found in 9.3 (A) in fact divides r.
Now call c very good if r

′
= r.

Estimating the exponential sum in 9.3 (iv), we can easily check that the
probability of observing a good c is ≥ 1/3r2. On the other hand, there are
rϕ(r) states |c, tk modM〉 with very good c. Thus to find a very good c with
high probability, O(r2 log r) runs will suffice.

10 Kolmogorov Complexity and Growth of Recursive
Functions

Consider general functions f : Z+ → Z+. Computability theory uses several
growth scales for such functions, of which two are most useful: f may be maj-
orized by some recursive function (e.g., when it is itself recursive), or by a
polynomial (e.g., when it is computable in polynomial-time). Linear growth
does not seem particularly relevant in this context. However, this impression
is quite misleading, at least if one allows one most important uncomputable
reordering of Z+. In fact, we make the following claim:

10.1. Claim. There exists a permutation K : Z+ → Z+ such that for any
partially recursive function f : N → N there exists a constant c with the
property

K ◦ f ◦K−1(n) ≤ c n for all n ∈ K(D(f)).
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Moreover, K is bounded by a linear function, but K−1 is not bounded by any
recursive function.

Proof. We will use the Kolmogorov complexity measure of integers, as was
explained in VI.9. We first recall its definition.

For a recursive function u : Z+ → Z+, x ∈ Z+, put Cu(x) := min {k | f(k) =
x}, or ∞ if such k does not exist. Call such a function u optimal if for any other
recursive function v, there exists a constant cu,v such that Cu(x) ≤ cu,vCv(x) for
all x. Optimal functions do exist (see Theorem VI.9.2); in particular, they take
all positive integer values (however, they certainly are not everywhere defined).
Fix one such u and call Cu(x) the (exponential) complexity of x. By definition,
K = Ku rearranges Z+ in order of increasing complexity. In other words,

K(x) := 1 + card {y |Cu(y) < Cu(x)}.

We first show that
K(x) = exp (O(1))Cu(x).

Since Cu takes each value at most once, we have K(n) ≤ Cu(n). In order to
show that Cu(x) ≤ cK(x) for some c it suffices to check that

card {k ≤ N | ∃x, Cu(x) = k} ≥ bN

with some b > 0. In fact, at least half of the numbers x ≤ N have complexity
that is no less than x/2.

Now, VI.9.7(b) implies that for any recursive function f and all x ∈ D(f),
we have Cu(f(x)) ≤ constCu(x). Since Cu(x) and K(x) have the same order
of growth up to a bounded factor, our claim follows.

10.2. Corollary. Denote by Srec∞ be the group of recursive permutations of Z+.
Then KSrec

∞ K−1 is a subgroup of permutations of no more than linear growth.
Actually, appealing to Proposition VI.9.6, one can considerably

strengthen this result. For example, let σ be a recursive permutation, σK =
KσK−1. Then σK(x) ≤ cx, so that (σK)n(x) ≤ cnx for n > 0. But actually the
last inequality can be replaced by

(σK)n(x) ≤ c
′
n

for a fixed x and variable n. With both x and n variable one gets the estimate
O(xn log (xn)).

Recall that finite permutations appear in the quantum versions of Boolean
circuits, because we must treat any function with the help of an appropriate
unitary operator: cf. the discussion in 7.3 above.

For the same reason, infinite (computable) permutations might naturally
appear in models of quantum Turing machines and normal computation mod-
els. In fact, if one assumes that the transition function s is a permutation, and
then extends it to the unitary operator Us in the infinite-dimensional Hilbert
space, one might be interested in studying the spectral properties of such
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operators. But the latter depend only on the conjugacy class. Perhaps the
universal conjugation UK will be a useful theoretical tool in this context.

10.3. Final comments. Finally, we would like to comment on the hidden role
of Kolmogorov complexity in the real life of classical computing.

The point is that in a sense (which is difficult to formalize), we are interested
only in the calculation of sufficiently nice functions, because a random Boolean
function will have (super)exponential complexity anyway.

A nice function, at the very least, has a short description and therefore
a small Kolmogorov complexity. Thus, dealing with practical problems, we
actually work not with small numbers, graphs, circuits, . . . , but rather with
an initial segment of the respective constructive world reordered with the help
of K. We systematically replace a large object by its short description.

But then the “natural operations” that can be performed on our objects lose
computability when we have replaced the objects by their short descriptions.

This inherent tension, incompatibility of shortest descriptions with most-
economic algorithmic processing, is the central issue of any computation theory.

The place-value notation of numbers that played such a great role in the
development of human civilizations is the ultimate system of short descriptions
that bridges the abyss. Kolmogorov complexity goes far beyond this point.
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Model Theory

Model theory the part of logic that studies structures (in Bourbaki’s sense) in
relation to their descriptions in formal languages, usually first-order ones. The
study of structures and classes of structures is essentially a subject of algebra
or universal algebra, but model theory is different in its approach in that it
places a special emphasis on the question of language and definability in the
structures. This approach has paid off with applications in various parts of
concrete mathematics.

1 Languages and Structures

Given a language L, an L-structure (or just structure) is essentially the same
thing as an interpretation of L as explained in Section II.2. But the stress now
is rather on algebra than on logic, so instead of the notation φ, which realized
the interpretation of the symbols of L in a set A, we will refer to the structure
A = (A,L), which provides an interpretation for the symbols of L. We write,
e.g., A = (A,+, ·, 0, 1) when L = {+, ·, 0, 1}. We call A the domain of the
structure A.

Unless stated otherwise, we deal in this chapter with first-order languages.
For an L-formula P one writes A � P to say that the value of P under the
interpretation is “true.” Usually, in the above notation we will assume that P
is a sentence, that, is a formula with no free variables.

According to this notation, TφL of II.6.1, for an interpretation φ of L,
becomes

Th(A) := {P : A � P},
the theory of structure A, where A is the structure given by φ.

Often, for a formula P (x1, . . . , xn) with free variables x1, . . . , xn and
elements a1, . . . , an ∈ A we say A � P (a1, . . . , an), meaning that we have
extended the interpretation given by A to the interpretation of variables
xi �→ ai.

We also assume, as is standard in model theory, that every language contains
the symbol = and its interpretation is always equality, that is, structures are
normal models.
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1.1 Embeddings. If A and B are L-structures with domains A and B
correspondingly, an embedding h : A → B is a map A → B that preserves
the symbols of relations, operations, and constants of L, that is,

(i) for any n-ary relation symbol p ∈ L and a1, . . . , an ∈ A,
A � p(a1, . . . , an) iff B � p(h(a1), . . . , h(an));

(ii) for any n-ary operation symbol f ∈ L and a1, . . . , an, a ∈ A, A �
f(a1, . . . , an) = a iff B � f(h(a1), . . . , h(an)) = h(a);

(iii) for any constant symbol c ∈ L and a ∈ A, A � cA = a iff B � cB = h(a),
where cA stands for the interpretation of c in the structure A.

1.2 Exercise. Any embedding is injective.
A surjective embedding is called an isomorphism.

1.3 Definable sets. Recall that for an L-structure A and an L-formula
P (x1, . . . , xn) one defines (definition II.2.8) the set

P (A) = {ā ∈ An : A � P (ā)}.
Sets of this form are called definable.

Since any subset of An can be viewed as an n-ary relation, P (v̄) determines
also an L-definable relation. If a P (A) coincides with a graph of an operation
f : An−1 → A, we say then that f is an L-definable operation.

1.4 Exercise.

(i) An embedding h : A → B of L-structures preserves atomic L-formulas,
i.e., for any atomic P (x1, . . . , xn) for any ā ∈ An,

A � P (ā) iff B � P (h(ā)).

(ii) Given an ∀-formula P (ā), that is, one of the form ∀x1 · · · ∀xmQ(x1, . . . , xm, ā)
with Q quantifier-free, and an embedding h : A→ B, ā in A,

B � P (ā) implies A � P (h(ā)).

(iii) An isomorphism h : A→ B between L-structures preserves any L-formula
P (x1, . . . , xn), i.e., for any ā ∈ An,

A � P (ā) iff B � P (h(ā)).

1.5 Corollary. For definable subsets (relations)

h(P (A)) = P (B);

in particular, definable subsets in a given structure A are invariant under the
action of Aut(A).

The invariance under Aut is often useful in checking nondefinability of some
subsets or relations.
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1.6 Exercise. Multiplication is not definable in R+
group := 〈R,+〉, the

additive group of reals.
The test of invariance works for R+

group because the group Aut(R+
group) is

large; in fact, the structure is homogeneous in the sense that two n-tuples satisfy
the same formulas (have the same type) if and only if there is an automorphism
taking one to another, and also every possible type is realized in the given model
of the theory. This is not the case in general. For example, for the structure
Rfield := 〈R,+, ·, 0, 1〉 the automorphism group is trivial. We get much better
understanding of definability in this structure by looking into a nonstandard
saturated model of the corresponding theory (see 2.13, 3.11, and 4.6).

1.7 Definability of a structure. The notion of a definable set can be extended
to that of a definable structure.

Let L0 and L1 be languages and for the sake of brevity assume that L1

is a relational language. One says that the language L1 is interpreted in an
L0-structure A if for some n,

there is given an L0-formula Q(x̄) with n free variables,
there is given an L0-formula E(x̄, ȳ) with 2n free variables,
for every m-ary predicate symbol pi in L0 there is given an L0-formula
Pi(x̄1, . . . , x̄m) with mn free variables,
such that E(A) is an equivalence relation on the set Q(A) and the Pi(A)
are relations on Q(A) preserved by the equivalence E(A).

Under these assumptions one considers the domain Q(A)/E(A) and the inter-
pretation of the symbols pi on the domain given by Pi(A).

One says that an L1-structure M is definable (interpretable) in an
L0-structure A if the above L1-structure on the domain Q(A)/E(A) is
isomorphic to M.

It is clear from the definition that assuming that M is defined in A, every
definable set in M can be rewritten as a definable quotient set in A and every
L1-sentence holding in M can be rewritten into an appropriate L0-sentence
holding in A.

1.8 Example. Let F = (F,+, ·, 0, 1) be a field and GLn(F) a group on the
domain GLn(F) of n×n nondegenerate matrices in the language (∗, e) of groups.

The natural interpretation of GLn(F) is on the domain

D := {X = (xij) ∈ Fn
2
: i, j = 1, . . . , n, detX �= 0},

with the interpretation of e as the element of D with xii = 1, xij = 0 for all
i, j ≤ n, i �= j, and the operation X ∗ Y = Z interpreted on D by the known
polynomial equations.

1.9 Definition. Given two L-structures A and B and an embedding
h : A → B, we say that the the embedding is elementary if for any L-formula
P (x1, . . . , xn) and any a1, . . . , an ∈ A,

(∗) A � P (a1, . . . , an) iff B � P (h(a1), . . . , h(an)).
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In this situation A is also said to be an elementary substructure of B and B an
elementary extension of A, written A � B or A �h B.

We say that A is elementarily equivalent to B, written A ≡ B, if for any
L-sentence P ,

A � P iff B � P.
It is also useful to consider partial h : A → B with domh = X ⊂ A and

rangeh = Y ⊂ B. Provided (∗) holds for any a1, . . . , an ∈ X and any L-formula
P, such an h is said to be an elementary monomorphism A→ B.

Before proceeding further we want to make a note on the notion of
deducibility used in model theory. It is semantic, in distinction to the syn-
tactic one elaborated in Chapter II. In the first-order context these notions are
equivalent due to the Gödel completeness theorem, but in general the semantic
approach is more flexible and can be used when no formal system of rules of
deduction is available.

Let E be a set of L-sentences. We write A � E if for any S ∈ E , A � P.

1.10 Definition. An L-sentence S is said to be a logical consequence of a finite
E , written E � S, if A � E implies A � S for every L-structure A. For E infinite,
E � S means that there is a finite E0 ⊂ E such that E0 � S.

S is called logically valid, written � S, if A � S for every L-structure A.

1.11 Definition. E is said to be finitely satisfiable (f.s.) if any finite subset of
E is satisfiable, that is, has a model.
E is said to be deductively closed if for any L-sentence E , E � S implies

S ∈ E .
Clearly, a complete satisfiable E is deductively closed. In model-theoretic

constructions one often moves between variations of a given language.

1.12 Definition. Let A = (A,L) be an L structure and L′ a language whose
nonlogical symbols of that are in L, that is, L′⊆L. The structure A′ = (A,L′)
on the domain A with the symbols of L′ interpreted as in A is called the
L′-reduct of A. Conversely, A is an expansion of A′ to the language L.

Obviously, under the notation above for an L′-formula P (v1, . . . , vn) and
a1, . . . , an ∈ A,

A′ � P (a1, . . . , an) iff A � P (a1, . . . , an).

1.13 A special and broadly used form of expansion of a structure A = (A,L)
is the expansion by constant symbols naming elements in A. For C ⊆ A let
LA = L ∪ {ca : a ∈ C} be the extension of the language by the constant
symbols and AC the natural expansion of A to LC assigning to ca the element a.
LC-formulas are then called formulas with parameters in C.

2 The Compactness Theorem

This section discusses the compactness theorem and its various immediate
applications. This theorem was implicit in Gödel’s completeness theorem and
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was proved independently by A. Mal’tsev in 1936. Its later proofs based on
Henkin’s method produce more specialized models with more refined applica-
tions.

2.1 Compactness theorem. Let E be a finitely satisfiable set of L-sentences.
Then E is satisfiable; moreover, E has a model of cardinality less than or equal
to |L|+ ℵ0.

Below we discuss three proofs of the theorem. Note that each of them uses
the axiom of choice; that is, the construction of the model is in general ineffec-
tive.

The first proof is an application of Gödel’s completeness theorem II.6.2 and
uses the deduction system of II.2.2– II.2.5.

2.2 Lemma. E is consistent.

Proof. Suppose E � P. Then E0 � P for some finite E0⊆E , since only finitely
many formulas are involved in the proof. In particular, if E were inconsistent,
already its finite subset E0 would be. But then E0 could not be satisfiable,
contradicting the assumption.

2.3 Lemma (Lindenbaum’s theorem). E can be completed; that is, there is
a complete f.s. set of L-sentences E# such that E⊆E#.
Proof. (Uses the axiom of choice). Let

S = {E ′ : E ⊆E ′ an f.s. set of L-sentences}.

Clearly S satisfies the hypothesis of Zorn’s lemma, so it contains a maximal
element, E# say. This is complete, for otherwise, say S /∈ E# and ¬S /∈ E#.
By maximality neither {S} ∪ E# nor {¬S} ∪ E# is f.s. Hence there exist finite
E1 ⊆ E# and E2 ⊆ E# such that neither {S} ∪ E1 nor {¬S} ∪ E2 is satisfiable.
However, E1 ∪ E2 ⊆ E#, finite, so has a model, A say. But either A � S, so
A � {S} ∪ E1, or A � ¬S, so A � {¬S} ∪ E2, a contradiction.

Clearly, E# of the lemma is Gödelian so has a model by II.6.2. This model
is also a model of E . This finishes the first proof

2.4 Exercise.Let α, α1, . . . , αn, β, β1, . . . , βn, γ be closed L-terms,p, fL-symbols
for n-ary predicate and n-ary operation, correspondingly, and P (v0, v1, . . . , vn)
an L-formula with free variables v0, v1, . . . , vn. Prove that

(a) α = β � β = α;
(b) α = β, β = γ � α = γ;
(c) � α = α;
(d) α1 = β1, . . . , αn = βn, P (α1, . . . , αn) |= P (β1, . . . , βn);
(e) α = β, α1 = β1, . . . , αn = βn, f(α1, . . . , αn) = α |= f(β1, . . . , βn) = β;
(f) P (β, α1, . . . , αn) |= ∃v0P (v0, α1, . . . , αn).

A set E of L-sentences is said to be with witnesses if for any sentence in E
of the form ∃vP (v) there is a closed L-term λ such that P (λ) ∈ E .

2.5 Exercise. There exists a closed L-term if there exists a set of L-sentences
that is complete, with witnesses, and f.s. (Consider the L-sentence ∃v v = v.)
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2.6 Lemma. For some extension L̃⊇L of the language, with |L̃| = |L| + ℵ0,
there is an extension Ẽ ⊇ E of E to a complete f.s. set of L̃-sentences with
witnesses.

Proof. We are going to obtain L̃ just by adding |L|+ℵ0 new constant symbols.
We introduce new languages Li and a complete set of Li-sentences Ei (i =
0, 1, . . . ). Let L0 = L. By Lindenbaum’s theorem there exists E0⊇E , a complete
set of L0-sentences.

Given an f.s. Ei in language Li, introduce the new language

Li+1 = Li ∪ {cQ : Q a one-variable Li-formula}

and the new set of Li+1 sentences

E∗i = Ei ∪ {(∃vQ(v) → Q(cQ)) : Q a one-variable Li-formula}.

Claim. E∗i is finitely satisfiable. Indeed, given a finite E ′⊆E∗i , let E ′′ = E ′∩Ei
and take a model A of E ′′ with a domain A, which we assume well-ordered.
Assign constants to symbols cQ as follows:

cQ =

{
the first element in Q(A), if Q(A) �= ∅,

the first element in A, otherwise.

Denote the expanded structure by A∗. By definition, for all Q(v), A∗ �
(∃vQ(v) → Q(cQ)). So A∗ � E ′. This proves the claim.

Let Ei+1 be a complete f.s. set of Li+1-sentences containing E∗i .
Take E∗ =

⋃
i∈N Ei. This is finitely satisfiable. By construction one sees im-

mediately that E∗ is with witnesses and is complete in the language
⋃
i∈N Li =

L+ {new constants}.
An L-structure A is called named if for every a ∈ A there is a closed L-term

λ such that λA = a.

2.7 Proposition. For any complete f.s. set E of L-sentences with witnesses
there is a named model.

Proof. Let Λ be the set of closed terms of L. This is nonempty by 2.5. For
α, β ∈ Λ define α � β iff α = β ∈ E .

This is an equivalence relation by 2.4.1–2.4.3.
For α ∈ Λ, let α̃ denote the �-equivalence class containing α. Let

A = {α̃ : α ∈ Λ}.

This will be the domain of our model A. We want to define relations, operations,
and constants of L on A.

Let p be an n-ary relation symbol of L and α1, . . . , αn ∈ Λ. Define

A � p(α̃1, . . . , α̃n) if p(α1, . . . , αn) ∈ E .

By 2.4.4 the definition does not depend on the choice of representatives in the
�-classes.
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For a unary operation symbol f of L of arity m and α1, . . . , αm ∈ Λ, set

A � f(α̃1, . . . , α̃m) = τ̃ , where τ = f(α1, . . . , αm).

By 2.4.5 the operation f in A is well-defined.
Finally, for a constant symbol c, cA is just c̃.
We now prove by induction on the complexity of an L-formula Q(v1, . . . , vn)

that
(∗) A � Q(α̃1, . . . , α̃n) iff Q(α1, . . . , αn) ∈ E .

For atomic formulas we have this by definition.
If Q = (Q1 ∧ Q2) then A � (Q1(α̃1, . . . , α̃n) ∧ Q2(α̃1, . . . , α̃n)) iff A �

Q1(α̃1, . . . , α̃n) and A � Q2(α̃1, . . . , α̃n) iff (by induction hypothesis) Q1

(α1, . . . , αn), Q2(α1, . . . , αn) ∈ E iff (by deductive closedness) (Q1(α1, . . . , αn)∧
Q2(α1, . . . , αn)) ∈ E , which proves (∗) in this case.

The case Q = ¬P is proved similarly.
In case Q = ∃vP, A � ∃vP (v, α̃1, . . . , α̃n) iff there is β ∈ Λ such that

A � P (β̃, α̃1, . . . , α̃n) iff there is β ∈ Λ such that P (β, α1, . . . , αn) ∈ E . The
latter implies, by 2.4.6 and deductive closedness, that ∃vP (v, α1, . . . , αn) ∈ E ,
and the converse holds because E is with witnesses. This proves (∗) for the
formula and finishes the proof of (∗) for all formulas.

2.8 The second proof of the compactness theorem.
By 2.6, E ⊆ Ẽ , for some complete f.s. set Ẽ of L̃-sentences with witnesses,

|L̃| = |L| + ℵ0. By 2.7 this has a named model, say A. By definition, |A| =
|L|+ ℵ0, and clearly the reduct of A to the language L is a model of E .

2.9 The third proof of the compactness theorem uses ultraproducts of
models.

Let B be a Boolean algebra. A filter in B is a subset U⊆B such that

(i) ∅ /∈ U ;
(ii) X ∈ U, X⊆Y ∈ B ⇒ Y ∈ U ;

(iii) X,Y ∈ U ⇒ X ∩ Y ∈ U.
A filter U is called an ultrafilter if also

(iv) for all Y ∈ B, either Y ∈ U or I \ Y ∈ U.

A filter U on B is said to be principal if there is X0 ∈ B such that X0⊆X
for all X ∈ U. Otherwise, we say that U is nonprincipal.

In this section we deal with the case that B is the Boolean algebra of all
subsets of a given set I. Then U is said to be a filter on I.

Now let Ai = (Ai, L), i ∈ I, be a set of L-structures and U a filter on I. We
are going to construct a new structure, denoted by

∏
i∈I Ai/U, using the data.

Let
∏
i∈I Ai stand for the Cartesian product of the sets, that is, the set of

all functions ϕ : I →
⋃
i∈I Ai with ϕ(i) ∈ Ai. Define an equivalence relation

(check it) on the set
∏
i∈I Ai:

ϕ ≈U ψ iff {i ∈ I : ϕ(i) = ψ(i)} ∈ U

(we say “ϕ is equal to ψ almost everywhere modulo U”).
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Now we denote by
∏
i∈I Ai/U the quotient of

∏
i∈I Ai by the

equivalence ≈U . This is going to be the domain of the structure under con-
struction; an element of it represented by ϕ ∈

∏
i∈I Ai will be denoted by ϕ̃.

We interpret a symbol p of an n-ary relation on
∏
i∈I Ai/U by assum-

ing p(ϕ̃1, . . . , ϕ̃n) true if {i : Ai � p(ϕ1(i), . . . , ϕn(i))} ∈ U, that is, Ai �
p(ϕ1(i), . . . , ϕn(i)) for almost all i. It is easy to check that this is well defined.

The same principle is used to interpret the meaning of f(ϕ̃1, . . . , ϕ̃n) = ϕ̃n+1

for a symbol f of an n-ary operation, and similarly interpretation of c = ϕ̃
for a symbol of constant c. This defines the L-structure

∏
i∈I Ai/U, a filtered

product of L-structures along U . When U is an ultrafilter,
∏
i∈I Ai/U is called

an ultraproduct. In case Ai = A for all i ∈ I, the ultraproduct is called an
ultrapower, written AI/U.

2.10 Los’s theorem. Let Ai = (Ai, L), i ∈ I, be a set of L-structures, U an
ultrafilter on I, and

∏
i∈I Ai/U the ultraproduct along U.

For every L-formula P (x1, . . . , xn) with free variables x1, . . . , xn and every
ϕ̃1, . . . , ϕ̃n ∈

∏
i∈I Ai/U,∏

i∈I
Ai/U � P (ϕ̃1, . . . , ϕ̃n) iff {i : Ai � P (ϕ1(i), . . . , ϕn(i))} ∈ U.

Proof. Induction on the complexity of P. For P (x1, . . . , xn) of the form
p(x1, . . . , xn), f(x1, . . . , xn−1) = xn, c = xn, for symbols of predicate, oper-
ation, or constant, the statement holds by definition.

Assuming the statement of the theorem for formulas P1 and P2 of a given
complexity, one gets it for the formula P1 &P2 by the property (iii) of a filter.

For a formula of the form ∃xn P1, if
∏
i∈I Ai/U � ∃xn+1P (ϕ̃1, . . . , ϕ̃n, xn+1),

then by definition, there exists ϕ̃n+1 in the structure such that
∏
i∈I Ai/U �

P1(ϕ̃1, . . . , ϕ̃n, ϕ̃n+1). By induction, Ai � P1(ϕ1(i), . . . , ϕn(i), ϕn+1(i)) for
almost all i ∈ I modulo U. This implies Ai � ∃xn+1P1(ϕ1(i), . . . , ϕn(i), xn+1)
for almost all i ∈ I. In the reverse direction, the latter implies the existence of a
function ϕn+1 such that Ai � P1(ϕ1(i), . . . , ϕn(i), ϕn+1(i)) for the same values
of i ∈ I. This proves the inductive step in the case in question.

Since every formula up to logical equivalence can be written in terms of &,
∃, and ¬, to complete the proof of the theorem it suffices to check the statement
for a formula of the form ¬P1. This case is immediate by property (iv) defining
an ultrafilter.

End of the proof of the compactness theorem. Third version. With-
out loss of generality we assume that E is deductively closed, in particular, if
S1, . . . , Sn ∈ E then (S1 & · · ·&Sn) ∈ E .

By the assumptions, for every sentence S ∈ E there exists a model AS . Now
we introduce an ultrafilter on E . For every S ∈ E set XS = {Q ∈ E : Q � S}.
Clearly XS1&S2 = XS1 ∩XS2 . It follows that the set

U0 = {Y ⊆E : XS⊆Y, for some S ∈ E}
is a filter. By Zorn’s lemma, U0 is contained in a maximal filter U, equivalently,
an ultrafilter.
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Now by Los’s theorem the ultraproduct
∏
S∈E AS/U is a model of any S ∈ E ,

so a model for E .

2.11 Topological interpretation. Consider the set S of all L-structures of
bounded cardinality; cardL+ℵ0 will do. Consider the quotient S = S/ ≡, where
≡ stands for elementary equivalence between L-structures. Every L-sentence P
singles out a subset

[P ] = {A ∈ S : A � P}
of S and a corresponding subset of S. Consider the topology on S with an open
basis given by sets of the form [P ]. The statement of the compactness theorem
can be reformulated as follows:

The topological space S of L-structures is compact.
Now let I ⊆S be a set of points in the space and U an ultrafilter on I. In

a compact Hausdorff space there exists a unique limit point along the given
ultrafilter, limU I. This point is provided by the ultrapoduct construction and
Los’s theorem. Namely, limU I is given by the equivalence class represented by∏
i∈I Ai/U, with Ai ∈ S representing corresponding points i ∈ I.

2.12 Ultrapowers. Once ultraproducts were discovered it was noticed that
ultrapowers AI/U by a nonprincipal ultrafilter provide a special kind of model
of a given complete theory. Note that by Los’s theorem,

A ≺ AI/U.

And this elementary extension of A has a remarkable property: every sequence
{ai : i ∈ I} of elements of A has a “limit” a in AI/U along the ultrafilter. Just
take a to be ϕ̃ for ϕ : i �→ ai.

The limit in question can be defined properly in a topology on A similar
to that of 2.11. Consider the topology τDef on A whose basic closed subsets
that are the definable subsets of A (in later sections we will add to these the
subsets definable with parameters). Our a is a limit point of the sequence in this
topology.

Much more can be said about an ultrapower, but in general, its properties
depend essentially on the choice of the ultrafilter and on set-theoretic assump-
tions. The simplest case is one of a nonprincipal ultrafilter on a countable set I
assuming also CH. We also assume the language L and the structure A to be
countable. Under these assumptions every countable sequence in AI/U has a
τDef -limit point in AI/U. This important property is called saturation and will
be discussed in detail later. Here we only quote one of the remarkable corollaries
of saturation of ultrapowers.

The Kiesler–Shelah theorem. For L-structures A and B,

A ≡ B iff for some I and an ultrafilter U on I, AI/U ∼= BI/U.

H. Keisler proved this theorem in 1961 assuming CH. In fact, under CH,
for countable L, A and B, one can restrict I to be a countable set and U any
nonprincipal ultrafilter on I.
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Later, in the 1970s, S. Shelah produced a clever combinatorial proof
avoiding CH.

Finally, we remark here that ultrapowers and, more generally, ultraproducts
found many applications (e.g., a construction of Gromov’s asymptotic cones by
van den Dries and Wilkie), but nowadays the preference in most cases is given
to an equivalent treatment, via saturated models.

2.13 Nonstandard models of classical theories. A very simple application
of the compactness theorem establishes the existence of nonstandard models of
such theories as arithmetic, real analysis, and others.

Let N = (N,+, ·, 0, 1) be the usual structure on nonnegative integers in the
language of arithmetic, L1Ar (which is also used as a language for fields). The
theory Th(N) is called complete arithmetic (to be distinguished from Peano
arithmetic, given by a system of axioms that is incomplete).

Any model of Th(N) distinct from (not isomorphic to) N is called a
nonstandard arithmetic. The existence of one such is immediate by the com-
pactness theorem once one considers the set of L1Ar(c)-sentences

E = Th(N) ∪ {¬c = n : n = 0, 1, . . .},

where L(c) stands for the extension of the language L by a constant symbol (or
a set of constant symbols).

Clearly, E is finitely satisfiable and any of its models, reduced to the language
L1Ar, is nonstandard. One easily sees (prove it) that necessarily c ≥ n̄ for every
n (for the given theory x1 ≤ x2 replaces ∃y x1 + y = x2); that is, nonstandard
elements of arithmetic are “infinite integers.”

One can be more creative in constructing nonstandard integers in non-
standard models by choosing a more interesting E and ending up with, say, a
nonstandard integer that is divisible by any standard n.

It is useful to see how a nonstandard model can be obtained using ultra-
products. Let U be a nonprincipal ultrafilter on an infinite set I, and

∗N = NI/U,

the ultrapower of N, that is, by Los’s theorem, a model of the complete arith-
metic. Let ϕ : I �→ N be a function that is not constant on any X ∈ U. Clearly,
ϕ̃ is a nonstandard integer. In particular, for I = N and ϕ : n �→ n!, the
nonstandard integer ϕ̃ is divisible by any standard one.

Let us introduce now a first-order formalism for real analysis, which is
weaker than L2Real of III.2 but powerful enough to express many interesting
problems. The language L1Real consists of symbols of operations, one for each
n-ary function f : Rn → R. Observe that this is enough to express the relation
〈x1, . . . , xn〉 ∈ S for any given subset S⊆Rn; just use the characteristic func-
tion of S. In particular, any real number is named by a symbol of operation.
We reserve the standard notation for symbols of operations +, ·,−, / as well as
for standard relations on R.

Let Ranalysis be the obvious L1Real-structure on R. This we assume to be
the standard model of real analysis. Correspondingly, any model of Th(Ranalysis)
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other than the standard one is nonstandard, we say in a short form a nonstan-
dard model of the reals.

We claim that any nonstandard model ∗R of the reals contains an element
α such that

0 < α <
1
n

(1)

for every positive integer n. Indeed, there must be a new, unnamed element,
say γ, in ∗R. Let

[γ]− = {q ∈ Q : q ≤ γ}, [γ]+ = {q ∈ Q : q > γ}

be the corresponding Dedekind cut, where we allow one of the sets to be empty.
If, say [γ]− = ∅, set α := −γ−1, which satisfies (1). Similarly in the other case.
So, we may assume that both parts of the cut are nonempty. Let r be the unique
(standard) real number defined by the cut.

We have either r < γ or r > γ. Assuming the first, set α := γ − r. This
satisfies (1). In the second case set α := r − γ. This proves the claim.

Call α satisfying (1) a positive infinitesimal. An infinitesimal is a nonstan-
dard real that is equal to α or −α for a positive infinitesimal α.

Call a nonstandard γ infinite if [γ]+ or [γ]− is empty. Otherwise γ is said to
be bounded.

It can now easily be checked that the subset B⊆ ∗R of bounded elements
forms a ring, and its subset µ ⊆B of infinitesimals is its maximal ideal. The
rule st : r + α �→ r, for r ∈ R, α ∈ µ, determines a well-defined surjective
homomorphism of rings B → R, called the standard part map. Obviously, when
identified with the (partial) map ∗R → R, this is exactly the residue map
corresponding to the unique valuation on ∗R with the valuation ring B.

Now let f :R → R be a function. By assumption, our language contains a
symbol of operation f̄ interpreted as f. Let ∗f : ∗R → ∗R be the function in
the nonstandard model corresponding to f̄ . Similarly for notations of subsets.

The following is easy to check:
f is continuous in the interval (r1, r2) iff ∗f(x+α)− ∗f(x) is infinitesimal,

for any x ∈ (r1, r2) and any infinitesimal α.
g is a derivative of f on (r1, r2) iff g(x) = st(∗f(x+ α) − ∗f(x)/α) for any

standard real x ∈ (r1, r2) and an infinitesimal α.
and so on.

One can also extend the definitions of nonstandard analysis to analysis in
Hilbert and Banach spaces, to measure theory, and indeed to any part of math-
ematics that deals with limits.

Nonstandard analysis provides a solid foundation to Leibniz’s idea of
infinitesimal calculus. It allows a convenient graphical formalism for operat-
ing with limits and infinities and as such leads to a number of beautiful proofs,
sometimes new. Yet in its general form the method has obvious limits; after
all, it is just a reformulation of analysis in metamathematical terms based on
the compactness theorem. A much deeper mathematics based on understanding
definability has been developed in concrete cases for tame theories, such as the
theory of the field of reals (R,+, ·, 0, 1) or (R,+, ·, 0, 1, exp), the field of reals
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with exponentiation. The way forward is in classifying definable relations in a
given structure and, eventually, understanding the structure of saturated mod-
els of the corresponding theory. This method is called elimination of quantifiers;
see Section 3.18.

3 Basic Methods and Constructions

3.1 Definition. We will call a set T of L-sentences an L-theory, or simply
theory, if T is satisfiable and deductively closed.

A subset E of T such that T is the set of all logical consequences of E is said
to be a set of axioms of T.

3.2 Method of diagrams. For an L-structure A let LA = L ∪ {ca : a ∈ A}
be the expansion of the language, AA the natural expansion of A to LA
assigning to ca the element a. Define the diagram of A to be Diag(A) =
{S : atomic or negation of atomic LA-sentence, s.t. AA � S} and the complete
diagram of A to be

CDiag(A) = {S : LA-sentence such that AA � S}.

Theorem (Method of Diagrams). For an L-structure B,

(i) there is an expansion BA to the language LA such that BA |= Diag(A) iff
A ⊆ B.

(ii) there is an expansion BA to the language LA such that BA |= CDiag(A)
iff A � B.

Proof. By definition, a→ cBA
a is an embedding iff BA |= Diag(A).

The same holds for an elementary embedding and CDiag(A). ��

Corollary. Given an L-structure A and an L-theory T,

(i) the set T ∪ Diag(A) is finitely satisfiable iff there is a model B of T such
that A⊆B.

(ii) the set T ∪CDiag(A) is finitely satisfiable iff there is a model B of T such
that A � B.

3.3 Application. Local theorems of Mal’tsev. In the 1940s A. Mal’tsev
proved a number of theorems dealing with embeddings of some algebraic struc-
tures into others using the compactness theorem, or, more specifically, the
method of diagrams. He called this type of theorem local in the sense that
it used the fact that if a certain property holds for finitely generated subalge-
bras (holds locally) then it holds for the algebra itself. We present an example
of such a theorem.

Recall that a group G is said to be linear of rank n if it is isomorphic to a
subgroup of GLn(F) for some field F.
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Theorem (A. Mal’tsev). G is linear of rank n if every finitely generated
subgroup of G is.

Proof. We use the notion of definability of structures explained in 1.7 and
the example 1.8. Observe that the interpretation of GLn(F) in a field F is
independent of F.

Let G = (G, ∗, e) be a locally linear group of rank n, that is, with the
property that every finitely generated subgroup of it is embeddable into GLn(F)
for some field F.

Consider the theory TF stating the axioms of fields in the language (+, ·, 0, 1).
Consider the diagram Diag(G) of the group.

Let D((xij)) be the formula in n2 variables in the language of fields defining
the set

{(xij) ∈ Fn
2
: i, j = 1, . . . , n, det(xij) �= 0}.

Now we want to rewrite the diagram of G by a diagram DiagF (G) in the
language of fields extended by contant symbols. For each constant symbol cg

naming an element g of G we introduce n2 contant symbols cgij , i, j ∈ {1, . . . , n},
and include in DiagF (G) the formula D((cgij)) for every g ∈ G. For each sub-
formula in the diagram of the form cg ∗ ch = cgh, include in DiagF (G) the
formula ∑

k

cgikc
h
kj = cghij .

Consider the set of sentences

T = TF ∪DiagF (G).

The assumption that every finitely generated subgroup of G is isomorphic to
a subgroup of a GLn(F) guarantees that T is finitely satisfiable. By 3.2 the
theorem follows.

3.4 Löwenheim–Skolem theorem. Suppose T is an L-theory having an
infinite model A. Then for every κ ≥ cardL + ℵ0 there is a model B of T
of cardinality equal to κ.

Proof. In case cardA ≤ κ we will construct B such that A � B. This is called
the upward Löwenheim–Skolem theorem.

Consider the extension of the language LA by the new constant symbols cα,
α < κ, and consider the set of sentences

CDiag(A) ∪ {¬cα = cβ : α < β < κ}.

This is finitely satisfiable because A is infinite. So it has a model B 	 A of
cardinality not bigger than that of the language, that is, ≤ κ. But each cα is
interpreted by a different element of B, so cardB = κ.

In case cardA ≥ κ one proves the downward Löwenheim–Skolem theorem,
which provides a B of cardinality κ as an elementary substructure of A.
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Start with a nonempty subset B0 ⊆ A of cardinality κ. Fix some a0 ∈ B0.
For each L-formula P (v1, . . . , vn) define a function gP : An−1 → A by

gP (a1, . . . , an−1) =

⎧⎪⎨⎪⎩
an element a ∈ A : A � P (a1, . . . , an−1, a)

if such exists,
a0 if not

(gP are called Skolem functions).
Let B be the closure of B0 under all the gP . This is closed under all the

L-operations f , since any such (n−1)-ary f coinsides with the Skolem function
gf(v1...vn−1)=vn

. Let B be the structure on B induced from A. It is easy to prove,
by induction on the complexity of formulas, that for anyL-formulaQ(v1, . . . , vn)
and any b1, . . . , bn ∈ B,

B � Q(b1, . . . , bn) ⇔ A � Q(b1, . . . , bn),

that is, B � A, of cardinality κ, as required.

3.5 Elementary chains of models. Let, for an ordinal κ,

A0⊆A1⊆· · ·⊆Aα⊆· · · (α < κ) (2)

be a κ-sequence of L-structures forming a chain with respect to embeddings,
with Aδ for limit ordinals δ ≤ κ defined as follows:

the domain Aδ =
⋃
α<δ Aα,

predicate pAδ =
⋃
α<δ p

Aα , for each predicate symbol p of L,
operation fAδ : Amδ → Aδ maps ā to b iff ā is in Aα for some α and
fAα(ā) = b, for each operation symbol f of L,
and cAδ = cA0 , for each constant symbol from L.

The chain (2) is said to be elementary if for each α,

Aα � Aα+1.

3.6 Lemma. For an elementary chain (2), Aα � Aδ for any α < δ ≤ κ.

Proof. Clearly, it suffices to prove the statement for all limit ordinals δ ≤ κ.
By induction we may assume that Aα � Aβ , for all α < β < δ.

Now, in order to prove Aα � Aδ, we prove

Aα � Q(ā) ⇔ Aδ � Q(ā) (∗∗)

for all L-formulas Q(x̄) and ā in Aα by induction on the complexity of Q.
We may assume that Q is constructed from atomic formulas using &, ¬, and

∃ only.
For Q atomic, (∗∗) follows from the fact that Aα⊆Aδ, an embedding. The

cases of Q = Q1 ∧ Q2 and Q = ¬Q1 are easy. In the case Q(x̄) = ∃y P (x̄, y)
the ⇒ side of (∗∗) follows immediately from the induction hypothesis and the
meaning of ∃.
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Proof of ⇐: Aδ � ∃y P (ā, y) implies Aδ � P (ā, b), for some b ∈ Aδ, so
b ∈ Aβ for some α < β < δ. By the induction hypothesis Aβ � P (ā, b). The
latter implies Aβ � ∃y P (ā, y) and so Aα � ∃y P (ā, y), since Aα � Aβ . ��

3.7 Types. We fix a complete L-theory T. A set τ of L-formulas P (x̄) with
n free variables x̄ = (x1, . . . , xn) is called an n-type (in T ) if for any
P1(x̄), . . . , Pk(x̄) ∈ τ,

T � ∃x̄
∧
i≤k

Pi(x̄).

Type τ is called complete if also for any P (x̄) either P (x̄) ∈ τ or ¬P (x̄) ∈ τ.
A type τ is called principal if there is P (x̄) such that T |= ∃x̄ P (x̄) and for

any Q(x̄) ∈ τ, T |= ∀x̄(P (x̄) → Q(x̄)).
P is called then a principal formula for type τ.
A type that is not principal is called nonprincipal.

Example. The set of formulas {0 < x < 1
n : 0 < n ∈ N} is a 1-type in

the theory of reals Th(Rfield). (Here, 0 < x < 1
n stands for 0 < x & n̄ · x < 1,

where x < y is written for ∃z (z �= 0 & y = x+ z2).)

Suppose ā ∈ An. Then we define the L-type of ā in A,

tpA(ā) = {P (x̄) : A |= P (ā)}.

Clearly, tpA(ā) is a complete n-type.

Remarks.

(i) When A ⊆ B then tpA(a) and tpB(a) may be different. But it follows
immediately from the definitions that

A � B implies tpA(a) = tpB(a).

(ii) If π : A → B is an isomorphism, ā ∈ An, b̄ ∈ Bn, and π : ā → b̄, then
tpA(ā) = tpB(b̄).

We say that an n-type p is realized in A if there is ā ∈ An such that
p⊆tpA(ā).

If there is no such ā in A we say that p is omitted in A.

3.8 Exercise. A principal type p is realized in any model A of T.

3.9 Lemma. Given a set T = {τα : α < κ} of n-types, an L-structure A, and
a cardinal κ ≥ max{|A|, |L|}, there is a B 	 A of cardinality κ such that all
types from T are realized in B.

Proof. In view of 3.6 it suffices to prove the statement for T consisting of
just one n-type τ. Consider the expansion LAc of LA by new constants c1, . . . , cn
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and the theory

TAc = CDiag(A) ∪ {P (c1, . . . , cn) : P (x1, . . . , xn) ∈ τ}.

It is immediate from the definition of type that TAc is finitely satisfiable.
By the compactness theorem there is a model BAc |= TAc of cardinality

at most cardA + ℵ0. Since BAc |= CDiag(A), the L-reduct B of BAc is an
elementary extension of A.

3.10 Example. Any proper elementary extension of the standard model R of
the reals (in the language containing + and ·) realizes the infinitesimal type, by
the argument in 2.13. This remarkable property is equivalent to the statement
that R is complete in the standard metric.

3.11 Saturation. Given an infinite cardinal κ, a structure A is called
κ-saturated if for any cardinal λ < κ and for any expansion AC of A by constant
symbols C = {ci : i ≤ λ}, every 1-type in Th(AC) is realized in AC .

We say just saturated instead of κ-saturated when κ = cardA.

Remark. A finite structure A is κ-saturated for every κ.

Theorem. Let T be a complete theory.

(i) For every κ ≥ cardT there exists a κ-saturated model of T of cardinality
≤ κ+.

(ii) Any two saturated models of T of the same cardinality are isomorphic.

Proof. (i) We use here a standard construction.
We assume that T has infinite models. Let A be a model of T of cardinality

κ. By 3.9 there is an elementary extension A′ 	 A such that any 1-type in
Th(A) over any C⊆A with cardC < κ is realized in A′.

Denote A by A(0) and then construct, using 3.9 repeatedly, an elementary
chain of models

A(0) � A(1) � · · · � A(α) · · ·

of length µ, for µ ≥ κ a regular cardinal (µ = κ+ will always do) such that
A(α+1) realizes all 1-types over subsets of A(α) of cardinality less than κ. Then
the union A∗ =

⋃
α<κ+ A(α) of the elementary chain, by Lemma 3.6, is an

elementary extension of A, and indeed of each A(α). By construction, for any
subset C of the domain A∗ of cardinality < κ one can find λ < µ such that
C ⊆

⋃
α<λA

(α) ⊆ A(λ). It follows that A∗ is a κ-saturated model of T. This
proves (i).
(ii) We use the above method in combination with the back-and-forth method.

Let
A = {ai : 0 ≤ i ≤ κ}, B = {bi : 0 ≤ i ≤ κ}

be the domains of saturated models A and B of cardinality κ, with ordinal
orderings. We construct by induction on α < κ the subsets Aα ⊂ A and Bα ⊂ B
with orderings

Aα = {aj : j < α}, Bα = {bj : j < α}
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satisfying the conditions

tp(aj1 , · · · , ajm) = tp(bj1 , . . . , bjm) (3)

for any finite sequences 0 ≤ j1 < · · · < jm < α;

if δ + 2n < α, δ limit, n ∈ ω, then aδ+n ∈ Aα (4)
if δ + 2n+ 1 < α, δ limit, n ∈ ω, then bδ+n ∈ Bα (5)

Clearly, (3) implies that aj �→ bj is an elementary monomorphism Aα → Bα.
When we reach α = κ, this together with (4) and (5) will give us an isomorphism
A ∼= B.

For α = 1, take a0 := a0 and choose b0 to be the first element among the bi
satisfying the type tp(a0).

Now assume that Aα and Bα have been constructed. We introduce constant
symbols cj naming the aj in A and bj in B. Set Cα = {cj : j < α}.

If α is of the form δ + 2n and aδ+n /∈ Aα, we choose aα := aδ+n. If already
aδ+n ∈ Aα, we skip the step. Then we choose bα to be the first element among
the bi satisfying the type tp(aα/Cα). Such a bi does exist since cardCα < κ
and B is κ-saturated.

If α is of the form δ+2n+1 and bδ+n /∈ Bα, we choose bα := bδ+n. Then we
choose aα to be the first element among the ai satisfying the type tp(bα/Cα).

In each case, (3)–(5) are satisfied for α+ 1.
On limit steps λ of the construction we take

Aλ =
⋃
α<λ

Aα, Bλ =
⋃
α<λ

Bα.

This has the desired properties.

3.12 In case κ is regular, e.g., κ = 2λ = λ+ for some cardinal λ, the construction
in the proof of 3.11(i) produces a κ-saturated model of cardinality κ. In par-
ticular, assuming GCH, saturated models exist, and assuming CH, there exist
saturated models of countable theories of cardinality the continuum or less.

3.13 The back-and-forth method used in the proof of (ii) above is a universal
tool in model theory, apparently first used by G. Cantor in his construction of
the isomorphism between countable dense orders. In fact, Cantor’s theorem is
a special case of 3.11(ii), since a dense linear order is ℵ0-saturated.

It follows from 3.11 that if T1 and T2 are complete theories in the same
language having saturated models A1 and A2, respectively, of the same car-
dinality, then T1 = T2 iff A1

∼= A2. This is a powerful criterion of elemen-
tary equivalence in case the existence of saturated models can be established
(see also 2.12). In general a saturated model may not exist without assum-
ing some form of generalized continuum hypothesis, but there are ways, using
set-theoretic analysis, around this problem.

In fact, there is a way, less algebraic but more universal, to apply a back-
and-forth procedure to establish completeness of theories.
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3.14 A back-and-forth system between L-structures A and B is a nonempty set
I of isomorphisms of substructures of A and substructures of B such that

a ∈ Dom f0 and a′ ∈ Range f0, for some f0 ∈ I, and
(forth) for every f ∈ I and a ∈ A there is a g ∈ I such that f ⊆ g and

a ∈ Dom g;
(back) For every f ∈ I and b ∈ B there is a g ∈ I such that f ⊆ g and

b ∈ Range g.
It is easy to adjust the proof above to prove the following.

3.15 Theorem (Ehrenfeucht–Fraisse criterion for saturated models).
Given ℵ0-saturated L-structures A and B, A ≡ B if and only if there exists a
back-and-forth system between the two structures.

In view of this theorem and similar facts, in model theory one often operates
under the principle that there is no harm in assuming GCH.

Saturated structures play an important role in model theory. The reader
familiar with algebraic geometry could compare it with the role played by a
universal domain in the sense of A. Weil, that is, a field of infinite transcendence
degree. In fact, it is convenient in a concrete context of a given complete theory
T to fix a κ-saturated model M with a κ “large enough” (to all intents and
purposes). Such a model is often called the universal domain for T. In model-
theoretic slang one more often refers to M as the monster model.

3.16 Homogeneity. One says that a structure A is homogeneous if for any
subset X of A of cardinality strictly less than cardA an elementary monomor-
phism h : A → A with domain X can be extended to an automorphism
of A.

A standard application of the back-and-forth method furnishes the following
fact: A saturated structure is homogeneous.

3.17 Omitting types. Despite the importance of saturated models, the ability
to construct a model in which certain types are omitted is key in the analysis of
the variety of models and technically much more difficult (the model theorists’
folklore of 1960s put it: any fool can realize a type but it takes a model-theorist
to omit one). For example, there is a model of the theory Th(R) of the field of
reals that omits types of all transcendental reals. This follows from results in
4.6 below. Using Henkin’s construction of models, R. Vaught proved that if T is
a theory in a countable language then any countable collection of nonprincipal
types can be omitted in some countable model of T.

We would also like to mention the following important result.

Theorem (Ehrenfeucht–Mostowski). Let T be a complete theory of a count-
able language and assume that T has infinite models. Given an infinite cardinal
λ, there is a model A of cardinality λ that realizes at most ℵ0 complete n-types
for every n ∈ N. Moreover, every two n-tuples satisfying the same complete
type are conjugated by an automorphism of A.

To prove the theorem one uses the known Ramsay theorem of infinite com-
binatorics in combination with more traditional methods. We skip the proof,
which can be found elsewhere.
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3.18 Quantifier elimination. The criterion of elementary equivalence above
can be adopted for classifying elementary equivalent n-tuples in a given struc-
ture and, moreover, classifying definable subsets of a given structure.

Proposition. Given a saturated L-structure A and two n-tuples ā and b̄ in A,

tp(ā) = tp(b̄) iff there is π ∈ Aut(A) s.t. π : ā �→ b̄.

Proof. We need to prove only the left-to-right implication. Extend the lan-
guage by n constant symbols to name ā, in the first case, and to name b̄, in
the second one. We obtain two expansions Aa and Ab of A to the extended
language, both still saturated. The proposition follows by 3.11.

Define the quantifier-free type of a tuple ā in A,

qftpA(ā) := {Q(x̄) : quantifier-free, A � Q(ā)}.

Theorem. Given a saturated model A of a complete theory T , the following
two conditions are equivalent:

(i) for any two n-tuples ā and b̄ in A,

qftp(ā) = qftp(b̄) iff there is π ∈ Aut(A) s.t. π : ā �→ b̄;

(ii) any L-formula with n free variables is equivalent to a quantifier-free L-
formula.

Proof. Assuming (ii), any n-type is equivalent to a quantifier-free one. So,
(ii) ⇒ (i) by the proposition.

We prove the converse. Let Q(x̄) be an L-formula with free variables x̄,

τQ = {P (x̄) : quantifier-free, A � ∀x̄(Q(x̄) → P (x̄))}.

Claim. τQ ∪ {¬Q} is inconsistent.
Indeed, otherwise in the saturated A there is a realization b̄ of the type

τQ together with Q. Then qftp(b̄) will be consistent with Q, for otherwise
¬R(x̄) is in τQ for some R ∈ qftp(b̄). Then there exists c̄ realizing qftp(b̄)&Q,
a contradiction.

It follows from the claim, by the compactness theorem, that for some S(x̄),
a conjunction of finitely many formulas of τQ, A � ∀x̄(S(x̄) → Q(x̄)). But by
definition, also A � ∀x̄(Q(x̄) → S(x̄)), so in A and in T, Q is equivalent to a
quantifier-free formula S.

3.19 Remark. The quantifier elimination criterion above may look somewhat
restricted by the assumption of the existence of a saturated model. In fact,
using 3.15 one can drop the restriction at the cost of having a more complex
condition in (i).
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4 Completeness and Quantifier Elimination in Some
Theories

4.1 The theory of an algebraically closed field. ACFp, the theory of an
algebraically closed field of characteristic p > 0, is given by the following axioms
in the language L1Ar with the binary operations +, · and constant symbols 0
and 1:

I. Axioms of fields.
II. The axioms of algebraic closedness: for each positive n ∈ N,

∀y1, . . . , yn∃xxn + y1x
n−1 + · · ·+ yn = 0.

III. The axiom of characteristic p:

1 + · · ·+ 1︸ ︷︷ ︸
p

= 0.

The theory ACF0 of algebraically closed fields of characteristic zero is given
by axioms I, II and negations of axioms III for all prime p:

¬ 1 + · · ·+ 1︸ ︷︷ ︸
p

= 0.

Remark. It is immediate by the axioms that the ultraproduct
∏
p∈PrimesKp/U

of models Kp of ACFp along a nonprincipal ultrafilter is a model of ACF0.
Moreover, if an L1Ar-sentence P holds in all but finitely many Kp, p ∈

Primes, then P holds on an algebraically closed field of characteristic zero.

4.2 Theorem (Tarski). ACFp is complete and allows quantifier elimination.

Proof. In essence the theorem follows from the well-known Steinitz theorem:
Given two algebraically closed fields A and B of the same characteristic p and
their common subfield k,

A ∼=k B if and only if trd (A/k) = trd (B/k),

were trd is the transcendence degree of the field over the subfield, the cardinality
of a maximal algebraically independent subset of the field over the subfield.

Consider two ℵ0-saturated models A and B of ACFp of the same uncount-
able cardinality κ and let ā be an n-tuple in A, b̄ an n-tuple in B such that for
every polynomial p(x1, . . . , xn) over the prime field k0,

p(ā) = 0 iff p(c̄) = 0.

Note that under the assumptions, the fields k0(ā) and k0(b̄) are isomorphic
by the unique isomorphism π0 sending ā to b̄. So, we may assume that k0(ā) =
k0(b̄) = k is a common subfield of A and B.

Clearly trd (A/k) = κ = trd (B/k), so by Steinitz there is an isomor-
phism π : A → B such that π(ā) = b̄. This proves, by 3.15, that ACFp is
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complete. When we consider A = B, the existence of the automorphism π
affirms elimination of quantifiers, by 3.18.

Corollary (Strong Lefshetz principle). For an L1Ar-sentence P the follow-
ing are equivalent:

(i) C � P ;
(ii) F � P, for any algebraically closed field F of characteristic 0;

(iii) F̃p � P, for all but finitely many primes p.
Here and below F̃p is the algebraic closure of the p-element field Fp.
The original Lefshetz principle is an informally established fact known to

algebraic geometers: an algebrogeometric statement proven in the context of
complex algebraic geometry holds also for any abstract algebraically closed
field of characteristic zero.

4.3 Constructible sets. The quantifier elimination statement in the language
L1Ar can be translated into the following form, also known as Chevalley’s
theorem: given an algebraically closed field F, the family of L1Ar-definable
(using parameters) subsets of Fn, for all n, coincides with the family of con-
structible subsets.

Here constructible means a set representable as a Boolean combination of
zero-sets of polynomials.

Note also that the family of L1Ar-definable sets is the same as the family
of sets obtained from zero-sets of polynomials by applying Boolean operations
(union, intersection, complement) and projections Fn+1 → Fn.

4.4 Definable functions. An easy analysis of constructible sets and
constructible functions (those with constructible graphs) yields the following:

Let F be an algebraically closed field of characteristic 0, V ⊆ Fn a con-
structible subset, and f : V → F a constructible function defined everywhere
on V. Then there is a constructible partition V = V1 ∪ · · · ∪ Vk such that for
each i ∈ {1, . . . , k},

f|Vi
(v̄) =

pi(v̄)
qi(v̄)

for all v̄ ∈ Vi,

pi, qi polynomials over F, qi not vanishing on Vi.
A corollary of the above is this: Let V ⊆ Fn, W ⊆ Fm be constructible

subsets and f : V → W a constructible map, Dom f = V, Range f = W, in
an algebraically closed field F of characteristic 0. Then there are constructible
partitions

V = V1 ∪ · · · ∪ Vk, W = W1 ∪ · · · ∪Wk,

such that for each i ∈ {1, . . . , k}, f(Vi) = Wi and f|Vi
coincides with a rational

map (given by 〈gi1(v̄), . . . , gim(v̄)〉, each gij(v̄) a rational function with a
denominator not vanishing on Vi).

4.5 Application (J. Ax). Let V = V (C) be an abstract algebraic variety and
f : V → V a regular injective map. Then f is surjective.
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Proof. First we note that the abstract algebraic variety V is definably equiva-
lent to a constructible subset W ⊆Cn for some n. By this we mean that V, given
as an atlas of charts V =

⋃
i≤k Vi, with each Vi in a bijective correspondence φi

with an affine variety Ui, glued together by regular maps φij , i, j ∈ {1, . . . , k},
can instead be put in a bijective correspondence ψ : V →W with the definable
set in such a way that the induced maps Ui →W and the corresponding gluing
maps are definable using parameters. (Of course, the Zariski topology in this
representation is ignored.)

As a result, we reformulate the data:
f : W → W is an injective definable map on a definable subset W ⊆Cn,

both using parameters a1, . . . , am ∈ C. So, we write f(w) as F (ā, w) and W as
Wa, which are now written in terms of +, ·, 0, and 1. Importantly, F (ā, w) is a
piecewise rational map, by 4.4.

The condition on ā expressing the fact that F (ā, w) is an injective map
Wa →Wa defined on the whole of Wa can be written as an ∀-formula (check it).
Call this formula InjF (ā).

Now suppose toward a contradiction that f is not surjective. Then the
sentence

P : ∃z̄∃u
(
InjF (z̄) & u ∈ Wz & ∀x ∈WzF (z̄, x) �= u

)
holds in C. Hence by the strong Lefshetz principle, for some prime p, F̃p � P.

So, for some b̄ and c in F̃p,

F̃p � InjF (b̄) & c ∈ Wb & ∀x ∈ Wb F (b̄, x) �= c.

The formula in question is clearly equivalent to an ∀-formula. Hence, by 1.4(ii)
for any subfield k ⊂ F̃p containing b̄ and c,

k � InjF (b) & c ∈Wb & ∀x ∈Wb F (b̄, x) �= c.

We can choose k to be a finite subfield and thus get a statement that F (b̄, x)
defines an injective map Wb(k) into itself that is not surjective. This contradicts
the fact that Wb(k) is finite.

James Ax observed this, by then unknown, fact in his paper “The elementary
theory of finite fields”, Ann. of Math. 88 (1968), 239–271. Later, G. Shimura
gave a proof of Ax’s theorem by means of reduction mod p. A. Borel published
a third proof based on cohomology with compact supports, Injective endomor-
phisms of algebraic varieties, Archiv der Mathematik, 1968.

4.6 The theory of real closed fields. A natural language for this theory is
LRCF = {+, ·,≤, 0, 1}. The axioms of the theory RCF, the theory of real closed
fields are:

I. The axioms of ordered fields.
II. ∀x

(
0 ≤ x→ ∃y y2 = x

)
.

III. For every odd n the axiom

∀y1, . . . , yn∃xxn + y1x
n−1 + · · ·+ yn = 0.
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We note that II and III together are equivalent to the sign change statement:
for every polynomial f(x) over the field, if for some a < b, f(a) · f(b) < 0, then
there is c, a < c < b with f(c) = 0.

Among standard algebraic facts about real closed fields are the following.

Lemma. Let A,B be real closed fields and A0⊆A, B0⊆B subfields such that
A0

∼=ϕ B0. Then

(i) the isomorphism ϕ can be extended to an isomorphism ψ : Ã0 → B̃0

between the relative algebraic closures of the respective subfields in
A and B.

(ii) assuming that A0 and B0 are respectively algebraically closed in A and
B, a0 ∈ A \ A0, b0 ∈ B \ B0 such that for any a ∈ A, a0 ≤ a if and only
if b0 ≤ ϕ(a), then ϕ can be extended to an isomorphism of ordered fields
ψ : A0(a0) → B0(b0).

(iii) assuming that A0 is algebraically closed in A, a finite system of inequalities
f(x) ≤ 0, for f(x) ∈ A0[x], has a solution in A if and only if it has a solution
in A0.

4.7 Theorem (Tarski–Seidenberg). The theory RCF is complete and allows
quantifier elimination.

Proof. We use the same method as in 4.2. Let A and B be two real closed
κ-saturated fields.

Claim. Suppose A0, B0 are respectively subfields of cardinality less than κ of
A and B, and suppose A0

∼=ϕ B0 as ordered rings. Then for every a ∈ A there
are b ∈ B and an extension ψ of the isomorphism ϕ such that A0(a) ∼=ψ B0(b).

For a algebraic over A0 the claim follows by (i) of the lemma in 4.6.
For a transcendental we first consider the quantifier-free LRCF (A0)-type

τA of a, that is, the set of formulas f(x) > 0 for polynomial f(x) over A0,
holding for x = a. We obtain a quantifier-free LRCF (B0)-type τB by replacing
parameters from A0 in every f(x) by corresponding parameters in B0. Note that
τB is a type, that is, it is consistent in the theory of B, by (iii) of the lemma
in 4.6. Now we use the assumption of κ-saturation and find an element b ∈ B
realizing the type τB. Define ψ : A0(a) → B0(b) as the unique isomorphism of
fields with ψ(a) = b. By construction ψ also preserves the order. Claim proved.

The completeness of RCF is now immediate from the claim by 3.15.
To establish quantifier elimination consider in a given κ-saturated A two

n-tuples ā and b̄ satisfying the same quantifier-free LRCF -formulas. It follows
that the subfields Q(ā) and Q(b̄) are isomorphic as ordered fields by the
isomorphism sending ā to b̄. Now the above claim allows a construction of a
back-and-forth system between Aa, that is, A with ā named by constants,
and Ab, with b̄ named by the same constants. By 3.18 quantifier elimination
follows.

4.8 Semialgebraic sets and semialgebraic functions. Semialgebraic
sets are the solution sets of equations p(x1, . . . , xn) = 0 and inequalities
q(x1, . . . , xn) > 0, for p, q polynomials over R, and those obtained from
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such solution sets by means of finite intersections and unions. Clearly, by
definition these are exactly the quantifier-free sets definable in R. So the
Tarski–Seidenberg theorem 4.7 in effect says that sets definable (using param-
eters) in R are precisely the semialgebraic sets. In particular, the projection of
a semialgebraic set is semialgebraic.

Note that a solution set of a one-variable polynomial inequality f(x) > 0 is
a finite union of open intervals (a, b), where −∞ ≤ a < b ≤ +∞. It follows that
any definable subset of R is a finite union of open intervals and points. This
property of an ordered structure is called o-minimality (order-minimality) and
will be discussed in later sections.

A semialgebraic function is a function with a semialgebraic graph. Again
by the Tarski–Seidenberg theorem this is the same as definable in R using
parameters.

Suppose g(x) is a semialgebraic function. By the above, we may assume
Dom g = (a, b). We may also assume that the graph g(x) = y is defined just
by a conjunction of polymomial equations and inequalities over R. Clearly,
at least one of these must be an equation p(x, y) = 0. Write p(x, y) as
a0(x)yn + a1(x)yn−1 + · · ·+ an(x), for some n > 0 and ai(x) ∈ R[x]. It follows
that y is one of the roots of the polynomial a0(x)yn + a1(x)yn−1 + · · ·+ an(x).
On a subinterval y can coincide with the greatest root of p(x, y), second
greatest one, and so on

This proves the following.

Fact. Given a definable (i.e., semialgebraic) function g : R → R, its domain
can be divided into finitely many open intervals and points such that on each
interval or point, g(x) is equal to the kth-greatest root of a polynomial p(x, y),
for some k ≤ degy p.

4.9 Application (L. Hörmander). Let p(x1, . . . , xn) be a polynomial over R
and fp(r) the function of the nonnegative real variable r defined as follows:

fp(r) := min{p(x1, . . . , xn) : |x1|+ · · ·+ |xn| = r}.

Assume that for any given positive real R there is rR such that for r > rR,
fp(r) > R.

Then there are a positive rational number a and a positive real c such that

lim
r→∞ r−afp(r) = c.

Proof. First note that fp is definable in the field of reals. So, by the fact
in 4.8, f is defined piecewise, on finitely many intervals, by the formulas

fp(r) = gk(r) = the kth root of the polynomial q0(r)ym+q1(r)ym−1+· · ·+qm(r)

for q0(r), . . . , qm(r) polynomials in r.

We are interested in the interval (d,∞), some large enough d ∈ R, and may
assume that no qi(r) vanishes in the interval.
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Consider a nonstandard model ∗R of the theory and the following preorder-
ing on ∗R:

α) β if
α

β
is infinitesimal.

Set α ≈ β if neither α) β nor β ) α, equivalently, (αβ−1− c) is infinitesimal,
for some c ∈ R (see 2.13).

Let γ ∈ ∗R be positive infinite, that is, γ > r for any standard real r. Denote
δ = fp(γ).

Then δ is a root of the polynomial q0(γ)ym + q1(γ)ym−1 + · · ·+ qm(γ), and
clearly this can not happen unless

qi(γ)δm−i ≈ qj(γ)δm−j

for some 0 ≤ i < j ≤ m.
Hence

δj−i ≈ qj
qi

(γ) ≈ γN ,

for N = deg qj − deg qi. It follows that δ ≈ γa, for a = N/j − i. By definition,
this means

γ−afp(γ) = c+ α (6)

for some c ∈ R and an infinitesimal α. It remains to show that (6) holds for
the same a and c for every nonstandard infinite γ.

Note that (6) implies that for x = δ the following L1Real-definable property
holds:

|x−afp(x)− c| < 1. (7)

Hence, again by o-minimality, for all x ∈ (d,∞), for some d ∈ R, (7) holds. If
for another choice of γ we had different a or c, then we would have (7) with the
different parameters holding on (d′,∞), for some d′ ∈ R, clearly a contradiction.

It remains to see that c > 0 and a > 0. This is immediate from the assump-
tion on fp.

4.10 Remark. A comment on the cause of efficiency of the method of proof
above and in other similar cases is in order. Quantifier elimination is in fact a
powerful calculus designed to translate complex formal expressions (L-formulas)
into something simple and, in many cases, geometrically meaningful. An exam-
ple of such an expression is the definition of the function fp in 4.9. Its conver-
sion into a semialgebraic function, if carried out “by hand,” is a painful process,
difficult to see through.

Note also that modern methods of elimination of quantifiers demonstrated
in 3.18, 4.1, and 4.7 are more efficient and more “mathematical” than those
of the 1950s. The initial instinct was to analyze the syntax of an arbitrary
L-formula and get rid of quantifiers in the formula one by one in an inductive
process.

4.11 Decidability. The theories ACFp, for each p prime or equal to 0, and the
theory RCF are decidable.
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Proof. These are just special cases of the following general statement: A
complete theory T axiomatizable by a recursively enumerable set of axioms is
decidable. This is easy to see. Indeed, if there is an algorithm listing axioms of T
then it is easy to compile an algorithm that lists all consequences of the axioms,
that is, enumerates, T. Now, given a sentence P one can decide whether P is in
T by the following algorithm: list by the above algorithm formulas Qi of T and
check at each step whether P = Qi or ¬P = Qi. By completeness at some step
one or the other must happen and this obviously decides whether P is in T .

The explicit axiomatizations of ACFp and RCF are clearly recursive; hence
decidability follows.

The easy argument above can be adapted to prove decidability for some
incomplete theories, such as ACF, the theory of all algebraically closed fields.
This is axiomatized by the recursive set of axioms 4.1, I and II. And we also
know that if P is not deducible from ACF, then ¬P is consistent with some
ACFp, p prime or 0. Note that there is an obvious enumeration of the family
ACFp, p ∈ Primes∪{0}: for each p and number n we can effectively produce an
axiom Spn ∈ ACFp, listing eventually all of the axioms. This can be extended
to an algorithm that for each n ∈ N produces formulas Pp,k, p = 0 or prime,
k ∈ N, p, k ≤ n, such that {Pp,k : k ∈ N} = ACFp.

Now, given a sentence P , turn on an algorithm that for a given n ∈ N,
produces

(i) Q1, . . . , Qn, the first n consequences of ACF;
(ii) P0,1, . . . , P0,n, P2,1, . . . , P2,n, . . . , Pp,1, . . . , Pp,n, for p = 0 or prime, p ≤ n.

We check at each step n whether P is in (i) or ¬P is in (ii). One of these
two must happen at some stage n, and this decides correspondingly whether P
is deducible from ACF.

4.12 The theory of p-adic numbers.
The symbols of the language for valued fields Lvalf has the symbols of field

theory, namely 0, 1,+, ·, and a unary relation symbol V.
The theory TQp in this language is axiomatized as follows.

I. A model F of the axioms carries a structure of a field of characteristic zero.
II. Axioms stating that V singles out a maximal subring of the field F (the

valuation ring), so V (F) is a local ring with a unique maximal ideal M(F).
We stipulate that V (F)/M(F) ∼= Fp, the p-element field. The canonical
homomorphism is denoted by res.

III. The value group F×/V ×(F) = Γ(F) is a Z-group, i.e., written additively,
has the same (+, <) theory as the ordered group of integers Z (< is the
order relation definable using the valuation ring). The infinitely many ax-
ioms for a Z-group say that there exists a minimal positive element and
nΓ is a subgroup of Γ of index precisely n.

We denote by v(x) the image of x ∈ F× under the canonical homomorphism.
We add the axiom stating that v(p) is the minimal positive element of Γ.
IV. Axiom stating that Hensel’s lemma holds: for any polynomial f(x) over

V (F), if there is a ∈ V (F) such that resf(a) = 0 and resf ′(a) �= 0, then are
a′ ∈ V (F), f(a′) = 0, and v(a′ − a) > v(f ′(a)).
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Thus one gets an axiomatization of the theory of p-adically closed fields,
namely, all the fields that are elementarily equivalent to Qp in the language of
valued fields.

For quantifier-elimination purposes one needs an extension of the language.
A. Macintyre introduced the extension by countably many unary predicates
pn, n ≥ 2; we call this extension LMac

valf . The axiomatic description of the new
predicates is V :

∀x[pn(x) ↔ ∃y(yn = x)].

That is, each pn singles out the set of nth powers in F.
Obviously, the last set of axioms does not impose any extra conditions on

the valued field.

4.13 Theorem (J. Ax–S. Kochen, Yu. Ershov, A. Macintyre). The the-
ory TQp is complete, decidable and allows elimination of quantifiers in the
language LMac

valf .
We do not give a proof of the theorem here. The model-theoretic meth-

ods of known proofs are essentially the same as above but the algebra is much
more involved. The first proofs of completeness, decidability, and elimination
of quantifiers (in a different language) were given by Ax–Kochen in 1965. Inde-
pendently, Yu. Ershov proved completeness and decidability.

Macintyre proved elimination of quantifiers in the present form in 1976. Note
that in general, the choice of a language for quantifier elimination may be essen-
tial for applications. The introduction of the predicates pn made the quantifier
elimination statement much more useful and powerful. The first consequence
of this quantifier elimination is the manifestation of similarities between the
theory of the reals and the theory of the p-adics. Recall that in the reals
the predicate p2(x), which of course means x ≥ 0 in this context, is used
for the quantifier elimination statement. It is also useful to remark that this
predicate is basic for describing the topology and geometry over the reals.

4.14 p-adic integration. Let Zp denote the ring of p-adic integers.
Let fl(x̄), . . . , fr(x̄) be polynomials in m variables x̄ = 〈x1 , . . . , xm〉 over Zp.
For n ∈ N, let Ñn be the number of elements in the set

{x̄mod pn : x̄ ∈ Zm and fi(x̄) = 0 mod pn, for i = 1, . . . , r},

and let Nn be the number of elements in the set

{x̄mod pn : x̄ ∈ Zm and fi(x̄) = 0, for i = 1, . . . , r}.

To these data one can associate the following Poincaré series:

P̃ (T ) =
∞∑
n=0

ÑnT
n, P (T ) =

∞∑
n=0

NnT
n.

Borevich and Shafarevich conjectured that P̃ (T ) is a rational function of T .
This was proved by Igusa, in the case r = 1, and Meuser for arbitrary r,
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by adapting Igusa’s method. Serre and Oesterlé asked whether also P (T ) is
a rational function. Denef proved the rationality of both series using p-adic
quantifier elimination. This method was extended later for further applications.

For a ∈ Qp, let |a| = p−v(a). Let |dx̄| = |dx1| · |dx2| · · · |dxm| be the Haar
measure on Qm

p such that the measure of Zmp is 1.
Igusa’s original proof starts by establishing a rational relation between the

integral

J(s) =
∫
Zp

|f(x)|s|dx|,

as a function of p−s, for s ∈ R, s > 0, and P̃ (p−1−s). The calculation of the
integral is elementary in the case that f(x) is a monomial, using the fact that
the function |f(x)| is then constant on pnZp\pn+1Zp. In general, though, |f(x)|
is still piecewise constant; it is quite hard to determine the absolute value on
the pieces. Here Igusa uses the embedded resolution of singularities of Hironaka.

Meuser’s proof extends these calculations to a similar integral over the
domain Zmp .

A similar idea in the case of P (T ) leads to a p-adic integral over a more
complex domain. Denef considers the domain

Df ={〈x1, . . . , xm, w〉 ∈ Zm+1
p : ∃ȳ ∈ Zmp x̄ ≡ ȳmodw and

fi(ȳ) = 0 for i = 1, . . . , r}

and the integral

If (s) =
∫
Df

|w|s|dx̄||dw|.

Again, by elementary calculation

If (s) =
p− 1
p

P (p−(m+1)p−s).

So to prove that P (T ) is rational we need to prove that I(s) is a rational
function of ps. The main new difficulty here is the nonelementary shape of Df ,
but this is overcome by the use of Macintyre’s quantifier-elimination theorem.
It is sufficient to prove that an integral∫

S

|g(x̄)|s|dx̄|,

for a polynomial g(x̄) and a semialgebraic subset S of Zmp , is a rational func-
tion of ps. This can be done by essentially Igusa’s method. As was mentioned
above, this uses Hironaka’s resolution of singularities. But later Denef noticed
that a more thorough characterization of p-adic semialgebraic sets based on
earlier work by P. Cohen (the cell decomposition, widely used in the analysis
of real semialgebraic sets) allows one to prove the theorem without referring to
Hironaka.
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5 Classification Theory

The term classification theory usually refers to the body of work around
Shelah’s Classification Theory, the main idea of which being to place every
complete theory into a node of a hierarchical tree of stability theory. In its
broadest meaning the degree of stability is an indicator of a tameness, or in
other words, the degree to which a structural classification of models of a
given complete theory can be developed. The study of o-minimal theories (now
also extended to the study of c-minimal, v-minimal, and others), another very
important part of model theory, is usually treated separately. But we include
o-minimality in this survey, seeing a justification of this both in its importance
and in its interactions with stability theory seen in recent years.

5.1 Categorical Theories. Classification theory has at its center theories cat-
egorical in uncountable powers. Unless stated otherwise we assume throughout
in this section that our languages are countable.

Recall that a theory T is (absolutely) categorical if T has a unique, up to
isomorphism, model. By Löwenheim–Skolem this can be the case only when the
unique model of T is finite, while one really is interested in infinite structures.
So a more flexible notion of categoricity has been considered. We say that a
theory T is categorical in power µ (µ-categorical) if T has a unique, up to
isomorphism, model of cardinality µ. It is easy to see that if for an infinite
cardinal µ, a theory T has no finite models and is µ-categorical, then T is
complete. So, µ-categoricity is a stronger form of completeness.

It is interesting and appropriate to look at the phenomenon of µ-categoricity
from the algebraic point of view. Suppose we are given an L-structure A of
cardinality µ such that the L-theory Th(A) is µ-categorical. This can be trans-
lated into a more suggestive characterization: the sentences of Th(A) together
with the cardinal µ comprise a complete set of invariants for A. An especially
interesting case is that in which L is small (countable) and µ is large. This, in
effect, could be taken as a mathematical form of algorithmic compressibility,
the property of nature that some philosophers of science believe makes the laws
of the universe and science itself possible.

J. Los conjectured in the 1950s that if a theory T of a countable language
is µ-categorical for some uncountable µ, then it is µ-categorical in all uncount-
able powers (uncountably categorical). A decade later, M. Morley published a
seminal paper with a proof of Los’s conjecture.

One of the main new tools in Morley’s paper was the notion of a rank, a
function with certain properties assigning an ordinal number to each definable
set, which Morley proved exists for every uncounably categorical theory.

5.2 Stability. The point of departure in Morley’s analysis of a κ-categorical T
is the fact that the number of complete 1-types in T must be countable, and
moreover, given a set C of new constant symbols naming some elements in a
model of T and the complete theory TC of this model in the extended language,
the number of complete types in the theory TC is at most cardC + ℵ0. This
follows from the Ehrenfeucht–Mostowski theorem (see 3.17), immediately in
the case of types over T, and with a little more work in general. This property
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of a theory T is called ℵ0-stability. The term “stability” should be taken here
as the opposite to “diversity” of types of elements in models of T. The actual
terminology used to express this “diversity” is forking (also dividing, splitting,
and some others), and stability guarantees that forking does not go too far.

More generally, given an infinite cardinal number κ, a theory T is said to be
κ-stable if the expanded theory TC has at most κ complete 1-types for every C
of cardinality κ.

A theory T is said to be stable if it is κ-stable for some infinite κ.
Shelah’s theory distinguishes several cases of stability. ℵ0-stability

is the strongest one and implies κ-stability for all κ. Another possibility for
a stable theory T is that it is κ-stable for all κ ≥ 2cardT . In this case T is said
to be superstable. In remaining cases T is stable in all cardinals except for those
of low cofinality.

Note that the definitions above remain equivalent if one replaces 1-types by
n-types.

5.3 Morley rank. The following definition makes sense for ℵ0-stable theories.
Let M be a universal domain for T and Defn(M) the collection of all

nonempty subsets of Mn definable with parameters in M. Morley rank is
the minimal function rk : Defn(M) → Ord (ordinal numbers) satisfying the
following:

rkS ≥ α+1 if and only if there is a countable family {Si : i ∈ N} of pairwise
disjoint subsets of S with rkSi ≥ α;
for a limit δ, rkS ≥ δ if and only if rkS ≥ α for all α < δ.

In effect, since M is at least ℵ0-saturated, the definition does not depend
on M. The fact that one can assign an ordinal rkS with the above property
to every definable set S is due to the bound on the number of possible types,
that is, ℵ0-stability of T. A simple combinatorial argument proves that a priori
rkS < ℵ1. A much more difficult theorem (J. Baldwin) established later says
that for uncountably categorical T, rkS is always a finite number. Moreover, in
this case the rank enjoys the following addition formula:

Let pr :Mn+m→Mm be the projection 〈x1, . . . , xn, . . . , xn+m〉 �→〈x1, . . . , xn〉
and S ∈ Defn+m(M). Then

rk pr S + min
a∈prS

rk Sa ≤ rk S ≤ rk pr S + max
a∈pr S

rk Sa,

where Sa is a fiber over a.

5.4 Example. The theory ACFp of algebraically closed fields of characterictic
p is µ-categorical for uncountable µ, since the isomorphism type of a model
F of ACFp is, by Steinitz’s theorem, determined by trd F, the transcendence
degree of F, and trd F = card F, for uncountable F. Recall that definable sets in
this structure are just constructible sets. So algebrogeometric dimension, dimS,
is well defined for any definable set S. One can easily check (by induction on
dimS) that

rkS = dimS

in this case.
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Stability is inherited by a structure definable in a stable structure is itself
stable. Following 3.3, the group GLn(F) (in the language of groups) is definable
in the field F. So, the theory of GLn(F) is ℵ0-stable and rk is well defined in
this theory. In fact, as in the previous example, every definable set S in this
theory is constructible and rkS = dimS.

There are many more structures definable in ACFp. A natural class of
examples is that of algebraic varieties as structures in the natural language for
algebraic varieties: let V = V (F) be the set of F-points of an algebraic variety
defined over some C⊆F, F a model of ACFp. For each n and each C-definable
subvariety W ⊆V n introduce the symbol pW of an n-ary predicate on V. The
natural language for the algebraic variety V consists of all the pW for all W as
above. The structure V on the domain V (F) with the obvious interpretation
of the predicates of the natural language is definable in the field F. Its theory
is ℵ0-stable and, for C big enough (e.g., if C contains an algebraically closed
subfield), Morley rank coincides with dimension. In general rkS ≤ dimS for
constructible sets S definable in V.

5.5 On the other hand, RCF, the theory of the field of reals R, is not stable.
In fact, every theory T with an order relation definable on an infinite subset
in its model is not stable. Indeed, first note that by the method of diagrams,
we can embed into a model of T any ordered set (C,<). It is known that for
every infinite κ there is an ordered set (C,<) of cardinality κ with more than
κ Dedekind cuts in it. Distinct cuts give rise to distinct complete types in the
theory TC , which shows that T is not κ-stable.

In the above case one says that the theory T has the strict order property.
It is not difficult to see that the theory TQp of the p-adically valued field has

the strict order property (use the order on the value group). With more analysis
of definability one can see that the theory of the field Qp in the language of
fields alone has also the strict order property, so is unstable.

5.6 Another pattern of nonstability can be seen in the example of a pseudofinite
field. By definition this is any infinite field F that is elementarily equivalent to an
ultraproduct

∏
i∈I Fi/U of finite fields Fi. The study of such fields was started

by Ax and Kochen and it is known that they do not have the strict order
property but do satisfy another property that implies nonstability.

One says that a complete theory T has the independence property if there is
a formula P (x̄, ȳ) in the language of the theory such that for every n in some
model A of the theory one can find n tuples c̄j , j ∈ {1, . . . , n} and 2n tuples
b̄J , J⊆{1, . . . , n} such that

A � P (b̄J , c̄j) iff j ∈ J.

Clearly, the number of complete m-types (m = length x̄) over parameters
c̄1, . . . , c̄n is at least 2n. Using compactness one finds in a universal domain
for T a subset C of cardinality κ with at least 2κ complete types over C.

5.7 Indiscernibles and orthogonality. A subset I in an L-structure A is
said to be indiscernible over a set of parameters C (C-indiscernible) if for any
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LC-formula P (x1, . . . , xn) either A � P (i1, . . . , in) for all distinct i1, . . . , in ∈ I
or A � ¬P (i1, . . . , in) for all distinct i1, . . . , in ∈ I.

An instructive example of an indiscernible set I is an algebraically indepen-
dent subset of an algebraically closed field.

A characteristic feature of a stable theory T is that in saturated models of
T , indiscernibles (over a given small set of parameters) are ubiquitous.

In particular, choosing C = A to be a set of parameters naming all elements
of a small (say, countable) model A and A � B, a saturated enough model,
every 1-type p over A can be defined by an A-indiscernible set I⊆B:

(i) every a ∈ I realizes p ;
(ii) for every C, A⊆C⊆B, the average type of I over C,

AvC(I) = {Q(x) : LC-formula s.t. B � Q(i) for all but finitely many i ∈ I}

is a nonforking extension of p.
Consequently, in general the cardinality of a maximal A-indiscernible subset

I = Ip ⊆ B such that p = AvA(Ip) is an important cardinal invariant of
(p,B) over A. For instance, in the above example with fields, card Ip is exactly
trd (B/A), the transcendence degree of the field B over A. The average type
of an algebraically independent subset of a field is called the generic type of
the field.

Two types p and q over A are said to be nonorthogonal if card Ip = card Iq
in every model B, A � B. Clearly, the nonorthogonality is an equivalence
relation. A theory is called unidimensional if any two 1-types over a model are
nonorthogonal. Otherwise, the types are said to be orthogonal.

Every uncountably categorical theory is unidimensional. On the other hand,
it is easy to construct a stable theory with “many dimensions.” For example,
the theory of the direct product A1 × A2 of two algebraically closed fields is
ω-stable but “two-dimensional.” It has models with any combination of trdA1

and trdA2.
Particularly interesting and essential is the analysis of the orthogonality

relation in the theory of differentially closed fields.

5.8 Differentially closed fields. A structure (K,+, ·, 0, 1, D) in the language
of fields extended by an operation symbol D : K → K is called a differential
field if K is a field of characteristic 0 and D satisfies the Leibniz rule: Dxy =
xDy + yDx. A differential polynomial of order ≤ n in the variable y is an
expression f(Dny,Dn−1y, . . . , y), where f(x0, x1, . . . , xn) is a polynomial over
K. A differential field is said to be differentially closed if for every n > 0
and every differential polynomial g(y) of order n and a nonzero differential
polynomial h(y) of order < n there is an s ∈ K such that g(s) = 0 and
h(s) �= 0. (Note that the field (K,+, ·) is algebraically closed then.) This is easily
axiomatized in the first-order language, and the corresponding theory is called
DCF0. This theory was studied by A. Robinson, who proved that it is complete
and has elimination of quantifiers. Later, C. Wood observed that the theory is
ω-stable of Morley rank ω. The fact that the rank is infinite agrees well with the
intuition that K is an infinite-dimensional space over the one-dimensional field
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of constants CK = {y ∈ K : Dy = 0}. Indeed, rkCK = 1. Moreover, in general
the solution space Sf = {y ∈ K : f(Dny,Dn−1y, . . . , y) = 0} of a differential
equation of order n is of rank n.

Now let us compare the generic type of Sf (appropriately defined) with the
generic type of the field of constants. The nonorthogonality of the two types
can be translated into the statement that the solution space Sf is parametrized
by the field of constants CK . A typical example is given by a linear differen-
tial equation f(Dny,Dn−1y, . . . , y) = 0, where Sf is in a definable bijective
correspondence with the linear space CnK .

On the other hand, for a generically chosen differential equation f, the
definable set Sf is orthogonal to the constants.

5.9 Example. Algebraically closed difference fields. A difference field is
a structure (K,+, ·, 0, 1, σ), with (K,+, ·) a field and σ an automorphism of
the field. A difference field (K,+, ·, σ) is said to be algebraically closed (also
existentially closed) if any finite set of quantifier-free formulas over K that has
a solution in some extension of K has a solution in K. Hrushovski proved that
this definition is axiomatizable and that the theory of a given algebraically
closed difference field of characteristic zero, although unstable, is simple.

It is useful to observe the many similarities between this theory (also called
ACFA, algebraically closed field with an automorphism) and the theory DCF0.
The fixed field F = {x ∈ K : σx = x} is a direct analogue of the field of
constants, and is known to be of rank 1 (so-called SU-rank, in the case of
simple theories). Given a polynomial f over K, the solution set Sf = {y ∈ K :
f(σny, σn−1y, . . . , y) = 0} of a difference equation of order n is of rank n.

For some definable sets more can be said, e.g., the solution set Tm for the
equation σy = ym, for m > 1, is of Morley rank 1 and the set is orthogonal
to the fixed field. This set contains important Diophantine information: in an
algebraically closed difference field K any root of unity of order n, prime to
m, belongs to the set Tm. Indeed, the equations yn = 1 and σy = ym have
a solution in a differentially closed field, since there is a Galois automorphism
taking a root y of order n to ym.

5.10 Shelah’s criterion of stability. A complete theory T is stable if and
only if it does not have the strict order property or the independence property.

We saw already that any of the properties imply nonstability. The converse
is a nontrivial and powerful statement proved by Shelah using beautiful infinite
combinatorics, characteristic of many proofs in this field.

Negation of any of the two properties for a theory T is seen as an indicator
of tameness of T. A theory T is said to be simple if it does not have the strict
order property.

The theory of a pseudofinite field is simple.
A theory T is said to be dependent (or NIP, nonindependence property) if

it does not have the independence property.
The theory TQp of the p-adics is dependent (Shelah–Hrushovski). A large

class of dependent theories is the class of o-minimal ones.

5.11 o-minimal theories. A complete theory T is said to be o-minimal if any
model A of T is linearly ordered by a definable relation < and every subset
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of A definable with parameters is a union of finitely many open intervals and
points (A.Pillay, C.Steinhorn, and L. van den Dries).

The property of o-minimality implies a rich structural theory. One of the
consequences of the theory is the fact that an o-minimal theory is dependent.

We have mentioned above that the theory RCF is o-minimal. A sem-
inal theorem of A. Wilkie establishes o-minimality of the theory Rexp =
(R,+, ·, exp, 0, 1), the field of reals with exponentiation. One of the corollar-
ies of this theorem is the fact proved earlier by A. Khovanski that a zero-set
of a system of exponential-polynomial equations has finitely many connected
components.

Many more expansions of R by classical analytic functions have been proved
to be o-minimal, and o-minimal analysis today has become a broadly used tool
of real analytic geometry.

6 Geometric Stability Theory

6.1 Strongly minimal sets and pregeometries. In analyzing models of
uncountably categorical theories (and more generally) and their definable sub-
structures with regard to the nonorthogonality relation, one realizes the special
role played by the minimal ones.

A structure M is said to be minimal if rkM = 1 and for any partition
M = S1∪̇S2 into subsets definable using parameters, rkS1 = 0 or rkS2 = 0.
M is said to strongly minimal if every M′ ≡ M is minimal. This is also appli-
cable when M is a definable subset in an ambient structure A. One treats the
set M as the domain of a structure M with relations on M induced from A.
In this case one usually calls M a strongly minimal set. In algebraic geometry,
or rather the theory ACFp, the strongly minimal subsets of Fn are (irreducible)
algebraic curves with a finite number of points added or removed.

It is not difficult to prove that the theory of a strongly minimal M is
uncountably categorical.

In an arbitrary L-structure A one defines the notion of an (abstract) alge-
braic closure cl.

Given a subset U ⊆A and a point v ∈ A we say that v ∈ cl(U) (v belongs
to the algebraic closure of U) if there is an LU -formula P (x) such that the
definable set P (A) is finite and contains the point v.

Again, in ACFp and in RCF the abstract algebraic closure is the usual
field-theoretic algebraic closure.

It is easy to check that in any structure the following properties hold:

(i) U⊆V implies U⊆cl(U)⊆cl(V );
(ii) cl(cl(U)) = cl(U).

Less obvious is the following property, the exchange principle, which holds
in any strongly minimal structure M:

(iii) For any U⊆M and elements v, w ∈M,

w ∈ cl(U, v) \ cl(U) → v ∈ cl(U,w).
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(Here and below, cl(U, v) := cl(U ∪ {v}).)
Note also that the operator cl is finitary, in the sense that

cl(U) =
⋃
{cl(U ′) : finite U ′⊆U}.

We say that (M, cl) is a (combinatorial ) pregeometry if cl is a finitary oper-
ator satisfying (i)–(iii).

A (combinatorial ) geometry is a pregeometry (M, cl) such that cl(u) = {u}
for any u ∈ M. This notion, known also under the names matroid and depen-
dence relation, was used in combinatorics and in algebra by van der Waerden
to develop a unified theory of dependence relations such as linear dependence
and algebraic dependence in fields.

Given a pregeometry (M, cl) one associates the geometry (M̄, c̄l) with it by
setting M̄ to be M \ cl(∅) factored by the equivalence relation u ∼ v ⇔ cl(u) =
cl(v).

On the other hand, one can modify a pregeometry (M, cl) by replacing the
closure operator cl with cla, for a fixed element a ∈M, defined as

cla(X) := cl(U, a) for any U⊆X.

The new pregeometry (M, cla) is called then the localization of (M, cl) at a. The
model-theoretic meaning of localization is just the extension of the language by
a symbol for a.

6.2 Dimension in a pregeometry. A set U ⊆M is said to be independent if
cl(U) �= cl(U ′), for any proper subset U ′ ⊂ U.

A maximal independent subset of M is said to be a basis of M.
It is easy to prove that any two bases of a pregeometry M are of the same

cardinality, which is called the dimension of M. More generally, we denote by
d(X), for X⊆M, the dimension of the subspace cl(X) of the pregeometry M.
When working with strongly minimal and more generally stable structures, it is
important to distinguish this notion from other notions of dimension, such as the
Morley rank. For these reasons we sometimes say combinatorial dimension for
the dimension of a pregeometry. Note, however, that there is a deep relationship
between the combinatorial dimension and ranks, in particular the Morley rank.

For a definable set S⊆Mn in a strongly minimal structure M,

rkS = max{d(x1, . . . , xn) : 〈x1, . . . , xn〉 ∈ S}.

Pregeometries (M, cl) induced by strongly minimal structures M have the
following crucial property, called homogeneity:

Every bijection between two bases of (M, cl) can be extended to an automor-
phism of the pregeometry.

6.3 Examples

(1) Let M be a trivial infinite structure, that is, an infinite set considered as
a structure in the trivial language (the only predicate is equality). This is
a strongly minimal structure with the pregeometry given by the the trivial
closure operator, cl(U) = U for every set U.
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(2) Let A = (A,+, 0) be an abelian divisible group satisfying the assumption
that for each positive integer n the equation nx = 0 has finitely many
solutions in A. This structure is strongly minimal and its theory has elim-
ination of quantifiers. The closure operator cl is the same as the linear
closure, that is, {u1, . . . , uk} is dependent in the sense of cl if and only if
m1u1 + · · ·+mkuk = 0 for some nonzero string of integers m1, . . . ,mk. This
example can be generalized by considering K-modules for arbitrary division
rings K instead of Q.

Observe that the geometry associated with the pregeometry (A, cl) is the
projective geometry over K (projective space Pκ(K)), where κ is the cardinal
number equal to the dimension of A.

(3) An algebraically closed field F is a strongly minimal structure that is a
pregeometry with respect to the (field-theoretic) algebraic closure.

The pregeometries (1) and (2) satisfy the property called modularity:

w ∈ cl(U, v) ⇔ ∃u ∈ cl(U) : w ∈ cl(u,w).

Example (3) is not modular. One says that (M, cl) is locally modular if a
localization (M, cla), for some a ∈M, is modular.

An example of a locally modular but not modular pregeometry is an affine
geometry over a field K, that is, a K-vector space V with a set {v0, v1, . . . , vn}⊆
V considered dependent if and only if {v1 − v0, . . . , vn − v0} are K-lineraly
dependent.

All the pregeometries listed above are homogeneous. Note that, for example,
the pregeometry of algebraic dependence on the reals R is not homogeneous.
As a matter of fact, it is very hard to find a homogeneous pregeometry not
reducible to (1)–(3) in an obvious way. The only examples known today come
from a construction by E. Hrushovski, which will be discussed below.

6.4 Weak trichotomy theorem. Let M be a strongly minimal structure and
(M, cl) the pregeometry induced by it. Then one and only one of the following
holds:
(i) the geometry associated with (M, cl) is trivial;

(ii) the geometry associated with (M, cla), a localization of (M, cl), is isomor-
phic to a projective geometry over a (countable) division ring;

(iii) there is a pseudoplane definable in M.

We need to explain (iii). A pseudoplane (first considered by A. Lachlan) is a
structure on two infinite domains P and L with a binary relation I between the
domains. Elements of P are called points, elements of L lines, and I is called an
incidence relation. We may associate with any � ∈ L the set of points incident
to �, and one of our assumptions is that distinct lines correspond to distinct
such sets. Our definition here is more narrow than Lachlan’s original one. The
assumptions are:

- the structure (P,L, I) is ω-stable with rkP = 2 = rkL.
- the set of points incident to a given line is of rank 1;
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- the set of lines incident to a given point is of rank 1;
- every two lines intersect in at most finitely many points;
- through any two points pass finitely many lines.
An example of a pseudoplane is an algebraic surface P (not necessarily

closed) with a 2-dimensional family L of curves on it (F-points of these, for F
algebraically closed). Removing, if necessary, exceptional 1-dimensional subsets
from P and L one can always get the above conditions satisfied.

A special case of a pseudoplane is an abstract affine (or projective) plane,
well known to combinatorial geometers. It is a classical theorem that any such
plane, if it satisfies a combinatorial Desargues theorem, is definably equivalent
to a division ring F. Under the assumptions of ω-stability such a division ring
has to be an algebraically closed field. Thus, the weak trichotomy theorem
suggests that the pregeometries of the three examples in 6.3 are the only ones
possible. This was proposed as the trichotomy conjecture by the present author.
Observe that when one assumes local finiteness of a strongly minimal structure
M, that is, that cl(U) finite for finite U ⊂M, then the type 6.3(3) pregeometry
is excluded: algebraically closed fields are not locally finite. So the following
supports the trichotomy conjecture.

6.5 Theorem. An infinite locally finite homogeneous geometry is isomorphic
to one of the following:

(i) trivial geometry;
(ii) projective geometry over a finite field;

(iii) affine geometry over a finite field.
Note that (ii) and (iii) are special cases of 6.4(ii).
The proof of the theorem is based, as is the proof of 6.4, on a combinatorial-

geometric analysis, using delicate calculations with model-theoretic ranks. The
main target of the proof is to exclude the possibility of a pseudoplane. One
develops an intersection theory on a pseudoplane (akin to Bézout’s theorem)
and arrives at a numerical contradiction.

A refinement of this method lead to a similar classification of all finite
homogeneous geometries starting from dimension 7.

An alternative proof of the theorem has been derived from the classification
of finite simple groups and ensuing classification of finite 2-transitive groups
(Cherlin, Mills).

Nevertheless, the general trichotomy conjecture was refuted in a series of
examples engineered by Hrushovski.

6.6 The trichotomy principle. The weak trichotomy theorem was just one,
technical, motivation for the trichotomy conjecture. There are more serious,
conceptual, reasons to hope for a form of the trichotomy conjecture to be true.
The main one is the undying intuition that the reality around us can be reduced
to basic simple forms. A large structure that has a categorical description in a
countable language may well be considered as one of those “simple forms” (see
also a short discussion in 5.1), and one would expect that all such are known.

So the artificial counterexamples constructed by Hrushovski in 1988 raised
the question whether this intuition is fundamentally wrong, or there is a way
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to amend the conjecture or at least find a less alarming explanation of the
facts. Fortunately, the developments of the last 20 years strongly support the
latter notion. First, a very productive way to correct the initial conjecture has
been found (Zariski geometries, see below), and second, the counterexamples
have been to a great extent explained in terms of mainstream mathematical
structures, much in the spirit of the trichotomy conjecture.

6.7 Diophantine geometry. The model-theoretic geometric concepts intro-
duced above are crucial for many applications.

Consider a field K and a subgroup Γ of a commutative algebraic group
A(K). We say that Γ has the Lang property if for every algebraic variety V ⊆A,
the intersection Γ∩V (K) is a union of finitely many cosets of subgroups of the
form Γ ∩B(K), for B an algebraic subgroup of A.

Now suppose Γ ⊆ ∆n, where ∆ is a strongly minimal group definable in
some expansion of the field K (e.g., a differentially closed field or a difference
field). For ∆ either (ii) or (iii) of 6.4 must hold, and provided that ∆ satis-
fies (ii) (is locally projective), it is easy to deduce that any definable subset
of ∆n is a finite union of cosets of definable subgroups (a more general ver-
sion of this proved by Hrushovski and Pillay). It follows that ∆n, and hence Γ,
has the Lang property. In fact, the converse is also true: the Lang property of
Γ is equivalent to a more general version of (ii), called one-basedness. In par-
ticular, Faltings’ theorem stating that any finitely generated subgroup Γ of a
semiabelian variety A(K), for K of characteristic zero, has the Lang property
is equivalent to the statement that the theory of an algebraically closed field K
expanded with the predicate for Γ is superstable, with the geometry of Γ
one-based (A. Pillay).

6.8 Zariski geometries. The original aim was to reformulate and strengthen
the idea of a “simple form” behind the trichotomy conjecture. This is done by
adding a topological component to what originally was a concept of pure logic.
We now want to distinguish positively definable sets (definable without using
the logical negation) from arbitrary ones. In an L-structure M we call a subset
S⊆Mn closed if it is positively quantifier-free definable (using parameters). We
denote by pr the projection Mn+1 → Mn, for any n,m, and write S for the
closure of a subset S ⊆Mn, the minimal closed set containing S, when such
exists. We denote by S(a) the fiber of S over a ∈ pr S under the projection.

A one-dimensional Zariski structure (also often Zariski geometry) is a
strongly minimal structure M satisfying the following:

(Z0) the closed sets form a Noetherian topology on Mn, for all n ≥ 1.
(Z1) pr S⊇pr (S) \ F, for some proper closed subset F ⊂ pr (S).
(Z2) For S a closed subset of Mn+1, there is m such that for all a ∈ Mn,

S(a) = M or |S(a)| ≤ m.
(Z3) Given a closed irreducible S ⊆ Mn, every irreducible component of the

diagonal S ∩ {xi = xj} (i < j ≤ n) is of Morley rank at least rkS − 1.

In fact, one can equivalently reformulate this definition without assuming
that the dimension in M is the Morley rank, that is, without assuming a priori
that M is strongly minimal.



6 Geometric Stability Theory 369

Similarly, but with a bit more work, one introduces the notion of a
general (multidimensional) Zariski structure as a topological structure with
a nice dimension notion. A key basic theorem then states that the theory of
a Zariski structure M allows elimination of quantifiers, is ω-stable, and the
Morley rank of M is finite.

Obvious examples of Zariski structures are smooth algebraic varieties M(F),
for F an algebraically closed field, in the natural language for algebraic varieties
(see 5.4).

A less obvious class of Zariski structures is the class of compact complex
manifolds M in the language Lan, whose basic m-ary relations correspond to
analytic subsets S ⊆Mm. Note that this class is essentially nonalgebraic and
very diverse. The fact that each of the structures in this class is ω-stable of
finite Morley rank is quite surprising and is a good illustration of the power of
the notion of a Zariski structure.

One more class of examples comes from the theory DCF0, of differentially
closed fields. A solution space for a differential equation f(y) = 0 in one variable
of order n is a Zariski structure of dimension n (Hrushovski for n = 1, Pillay
in general). A similar but more delicate statement is true for appropriate the-
ories in positive characteristic (Hrushovski). The differentiation in this case is
understood as the Hasse differentiation, a sequence of operators corresponding
to orders of differentiation.

The theory ACFA (see 5.9) is a source of another class of Zariski geometries.
The structure induced on any strongly minimal subset of an algebraically closed
difference field is Zariski (Hrushovski–Sokolovich).

We say that a Zariski structure M is nonlinear if there is a strongly minimal
subset in M of type 6.4(iii).

6.9 Classification theorem for Zariski structures. (Hrushovski, Zilber
1993) For any nonlinear Zariski geometry M there are an algebraically closed
field F and a nonconstant continuous function

f : M→ F.

In particular, for a one-dimensional Zariski structure M there are a smooth
algebraic curve CM and a continuous finite covering map

p : M→ CM (F);

the image of any relation on M is just a Zariski closed (algebraic) relation
on CM .

The proof is in fact a reconstruction of algebraic geometry in M. We start
in a universe “without numbers,” but with nicely interacting geometric objects
such as curves, surfaces, and so on. It is possible then to develop in this universe
a good intersection theory and an analysis of singularities, so that the notion
of “a given branch of a curve a at the point p is tangent to a given branch of a
curve b at p” is well defined.

Now we look at a family of curves passing through a given point on the
surface X × X, where X is a fixed curve, so that the curves from the family,
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or rather their branches, give rise to local functions X → X around a point.
Composing the local functions and factorizing by the tangency relation, we get
a one-dimensional group (F, ·) with a Zariski structure on it. A similar con-
struction with F in place of X gets us a one-dimensional Zariski field (F,+, ·),
which has to be algebraically closed by Liouville’s argument.

We then continue with the intersection theory and prove a form of Bézout’s
theorem, which is used to prove the generalization of Chao’s theorem: every
closed subset S of the projective space FPn is a zero-set of a system of homo-
geneous polynomial equations.

The latter translates into the final statement of the classification theorem:
the only relations on F induced from M are the constructible ones.

6.10 Applications. A consequence of the classification theorem is that the
trichotomy principle holds for strongly minimal structures definable in:

(a) differentially closed fields of characteristic zero,
(b) Hasse-differentially closed fields of positive characteristic p,
(c) algebraically closed difference fields,
(d) compact complex manifolds.

Hrushovski used (a) to give a new proof of the Mordell–Lang conjecture
for function fields in characteristic 0, (b) to formulate and prove the analogue
of the Mordell–Lang conjecture for function fields of positive characteristic,
and (c) to produce a new proof, with better than previously known numerical
estimates, of the Lang property for torsion points of semiabelian varieties (the
Manin–Mumford conjecture).

Pillay and Ziegler used (d) to establish a useful connection between the
classification theory of compact complex manifolds and the theory of differential
fields.

6.11 “New” stable structures. As mentioned above, the trichotomy
conjecture is false in general. Hrushovski in 1988 introduced a construction
that produced a series of unexpected strongly minimal, and more general
stable, structures for which the trichotomy principle fails.

Suppose we have a class of strongly minimal L-structures H with the (com-
binatorial) dimension d(X) for finite subsets of the structures. We want to
introduce a new function or relation on M ∈ H so that the new structure gets
a good notion of dimension.

Hrushovski observed that this can be done using the principle of free fusion.
That is, the new function should be related to the old structure in as free a
way as possible. A more precise form of this principle states that the number of
explicit dependencies in X in the new structure must not be greater than d(X).

The explicit L-dependencies on X can be counted as the L-codimension,
|X | − d(X). The explicit dependencies induced by a new relation are those
given by simplest “equations,” that is, basic formulas.
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So, for example, if we want a new unary function f on a field, the condition
should be

trd (X ∪ f(X))− |X | ≥ 0, (8)

since in the set Y = X ∪ f(X) the number of explicit field dependencies is
|Y | − trd (Y ), and the number of explicit dependencies in terms of f (those of
the form f(x1) = x2) is |X |. We call the counting function δ(X) = trd (X ∪
f(X))− |X | a predimension in (M, f).

In general, we think of a fusion between two structures, (M,L1) and
another one that lives on the same domain, say (M,L2). Both structures
carry a combinatorial pregeometry, with notions of dimension d1(X) and d2(X)
respectively. Then the predimension δ(X) in the new structure (M,L1 ∪L2) is
a simple linear combination of d1 and d2, in fact uniquely determined by the
free fusion principle.

6.12 Now we consider the new class of structures Hδ consisting of all the
(M,L1 ∪ L2) satisfying the Hrushovski inequality:

δ(X) ≥ 0 for any finite X⊆M.

The next clever idea is to choose in the class Hδ a structure that is
algebraically closed in the class. A way of defining the notion of algebraic
(existential) closedness in a class is well known in model theory. The prototypes
are algebraically closed fields, differentially closed fields, algebraically closed
difference fields considered above, and many others.

To define algebraically closed objects in Hδ, Hrushovski first introduces the
notion of strong embedding A ≤δ B in the class. This means that A ⊆ B and
for every finite X ⊆ A,

min{d(Y ) : X⊆Y, for finite Y ⊆A} = min{d(Y ) : X⊆Y, for finite Y ⊆B},

that is, all dependencies between elements of A occurring in B can be detected
already in A.

A structure M� is said to be algebraically closed inHδ if any finite quantifier-
free type over M� realized in a strong extension of M� is already realized in
M�.

Provided that Hδ satisfies certain conditions, any two Hδ-algebraically
closed structures are elementarily equivalent, and often their common theory is
stable and even ω-stable. In the latter case, if M� is such an Hδ-algebraically
closed structure, M� becomes a homogeneous pregeometry with the (combina-
torial) dimension ∂ defined as follows:

∂(X) = min{d(Y ) : X⊆Y, for finite Y ⊆M}.

6.13 Although at this step of Hrushovski’s construction we have obtained a
new homogeneous pregeometry, our aim is not yet achieved. The structure M�

is not strongly minimal. Typically M� is quasiminimal in the following sense:
the structure M� is uncountable but every definable subset S ⊆ M is either
countable or a complement of a countable one. So at the last stage of the
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construction one applies to M� a very delicate method called collapse: it chooses,
following one of continuum many procedures µ inside M�, a substructure M�

µ

with a smaller domain, which is strongly minimal. Remarkably, the pregeometry
of M�

µ agrees with the pregeometry of M�, that is, the notion of dependence
in the substructure is the same as in the ambient structure. In particular, the
predimenision and notions of dimension in M�

µ are defined exactly as in 6.12.
Thus we get a continuum many new strongly minimal nonlinear structures

and pregeometries.

6.14 The discovery of the new strongly minimal structures in 1988 was an
obvious challenge to the views and hopes expressed in 5.1 and 6.6. The suc-
cess with the classification of Zariski geometries mitigated the disappointment,
but nevertheless, the question whether the new structures are mathematical
pathologies or a part of a bigger picture remained.

6.15 Schanuel’s conjecture. A crucial breakthrough came with the following
observation.

Let the original class H in 6.11 be the class of algebraically closed fields F of
characteristic 0 and suppose we want to add a new function, called suggestively
ex , to the field. We want the new function to be a homomorphism between the
two group structures on F, that is,

ex (x1 + x2) = exx1 · exx2. (9)

The free fusion principle uniquely determines then that the predimension δ for
this class has to be

δ(X) = trd (X ∪ exX)− ldimX, for any finite X⊆F,

where ldimX is the dimension of the Q-vector space generated by X. Now
observe that the Hrushovski inequality of 6.12 is equivalent to

trd (x1, . . . , xn, exx1, . . . , exxn) ≥ n, for linearly independentx1, . . . , xn,

which is exactly the Schanuel conjecture for the exponentiation ex = exp,
F = C, the central conjecture of transcendental number theory.

Variations of Schanuel’s conjecture, e.g., for elliptic functions, are also well
known and indeed can be written in the form of Hrushovski’s inequality. It
looks credible that the Hrushovski inequality properly applied is just the most
general form of a Schanuel-type conjecture.

6.16 Pseudoexponentiation. In the particular case of the class H(ex ) des-
cribed above this author has carried out the steps 6.11 and 6.12 of Hrushovski’s
construction (with some modifications). The resulting class of structures called
algebraically closed fields with pseudoexponentiation, ACFExp, has the
following properties:

(i) ACFExp is axiomatizable by an explicit list of (not first-order) formulas,
stating
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(a) the validity of Schanuel’s conjecture and
(b) that any system of n independent exponential-polynomial equations in n

variables that does not directly contradict Schanuel’s conjecture has a regular
zero, but not more than countably many;

(ii) ACFExp is categorical in uncountable powers κ, that is, for every such κ
there is a unique, up to isomorphism, algebraically closed field with pseu-
doexponentiation of cardinality κ;

(iii) An algebraically closed field with pseudoexponentiation carries a homo-
geneous pregeometry, in particular, any bijection between two bases of
the pregeometry can be extended to an automorpism of the field with
pseudoexponentiation.

A consequence of the theorem is that Schanuel’s conjecture is consistent
with the field-theoretic algebra. The categoricity statement (ii) and homogene-
ity statement (iii) strengthen this further on: Not only is Schanuel’s conjecture
consistent, but along with other axioms, it also makes the algebra of the struc-
ture uniquely nice.

These simple arguments suggest the following.

6.17 Conjecture. The unique algebraically closed field with pseudoexponenti-
ation of power the continuum is isomorphic to (C,+, ·, exp), the complex field
with exponentiation.

Clearly this conjecture implies Schanuel’s conjecture. But there is also the
part (b) in the axioms of ACFExp, which leads to the formulation of a new
conjecture:

(C,+, ·, exp) is algebraically closed as a field with exponentiation.
The precise meaning of the assumption (b) can be found in the original

paper. We present here a theorem supporting the conjecture, that is the state-
ment of the theorem is a formal corollary of the conjecture.

Theorem (W. Henson and L. Rubin, 1983) Let f(x) be a term in one
variable in the language (+, ·, exp) and constant symbols for complex numbers.
Assume that f(x) is not of the form eg(x), where g(x) is another such term.
Then the equation f(x) = 0 has a solution in C.

6.18 A test for Schanuel’s conjecture. The model-theoretic interpretation
of Schanuel’s conjecture has the advantage of the utmost generality. We can,
for example, look for the simplest version of a Schanuel-like conjecture with
the hope to test its validity. (Note that no natural version of a Schanuel-like
conjecture has been proven so far.)

Apparently the easiest form of a Schanuel-like conjecture is for an ana-
lytic function f(x) on C that satisfies no functional equation. In this case the
Hrushovski inequality must have the form (8), Section 6.12. Does such a function
exist? If yes, is the structure (C,+, ·, f) algebraically closed in the appropriate
sense?
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Both questions have positive answers. A. Wilkie has shown that an entire
analytic function given as

f(x) =
∑
n≥0

xn

an

with an very rapidly increasing integers (e.g., an = 22n!
) satisfies the Hrushovski

inequality. P. Koiran proved that the structure is algebraically closed.

7 Other Languages and Nonelementary Model Theory

The second-order languages such as L2Reals proved unsuitable for a model-
theoretic analysis, so various other, more tamer, extensions of first-order
languages were considered. Among the most natural ones are the languages
Lλ,µ, for cardinal numbers λ and µ, which allow quantification over sequences
of variables of length < µ and Boolean operations over sets of formulas of
cardinality < λ.

These languages can be further enhanced by allowing, say, the quantifier Q,
which in expressions of the form QxP (x) has the meaning “there exists at least
ℵ1-many x such that P (x).”

The main difficulty in studying these languages is the failure of any form of
the compactness theorem.

Some progress in the study of these languages was achieved in the 1960s and
1970s, but further attempts, in particular in the spirit of classification theory
of Sections 5 and 6, led to a complete rethinking of the approach to non-first-
order model theory. Shelah introduced the new concept of abstract elementary
classes, which is not based on any class of logic formulas.

7.1 Definition. Given cardinals λ and µ and an alphabet L, Lλ,µ(L) is the
smallest collection of formulas that contain all atomic L-formulas in the vari-
ables vα, α < µ, and closed under taking ¬, applying universal quantifiers to a
string of variables ∀vi1 · · · ∀viα · · ·P, applying existential quantifiers to a string
of variables ∃vi1 · · · ∃viα · · ·P, and applying disjunction

∨
α Pα or conjunction∧

α Pα to fewer than λ formulas.
The interpretation of Lλ,µ(L)-formulas in L-structures is defined along the

same lines as that for first-order formulas.
A formula of the language L∞,µ(L) is a formula of the language Lλ,µ(L), for

some λ.
The language LQ∞,µ(L) is obtained by allowing the use, along with formulas

of L∞,µ(L), of the quantifier Q, with the interpretation explained above.
An example of the possible use of these languages is the axiomatization

in 6.16. The axioms in (i)(a) require Lω1,ω, and in (b), LQ
ω1,ω.

The following is one of the basic results about infinitary languages; compare
with the Ehrenfeucht–Fraisse criterion.

7.2 Theorem (C. Karp) Two L-structures A and B are L∞,ω(L)-equivalent if
and only if there is a back-and-forth system between A and B (definition 3.14).
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When A and B are countable we have a corollary that Lω1,ω(L)-equivalence
amounts to an isomorphism between the structures. A stronger result is the
following categoricity result.

Theorem (D. Scott). Given a countable L and a countable L-structure A,
there is an Lω1,ω(L)-sentence Σ(A) true in A and such that any countable
model of Σ(A) is isomorphic to A.

Note how this theorem emphasizes the special effect of categoricity in small
cardinals, or cardinals small compared to the cardinality of the whole language,
the set of all formulas. For a first-order language exactly the same statement
holds when we replace “countable” by “finite.” In fact, this very effect explains
why the categoricity in uncountable cardinalities has given an impetus to the
richest part of modern model theory, the first-order stability theory (Section 5).

7.3 Löwenheim–Skolem theorems for Lλ,µ and other languages. The
situation here is much more complex than for the first-order languages. The
downward Löwenheim–Skolem holds but in a restricted form. Say, for a count-
able L, an infinite L-structure A, an infinite cardinal κ ≤ cardA, and each
Lω1,ω-sentence P that holds in A there is an L-substructure B ⊂ A such that
B |= P.

The proof uses the Skolem functions much in the same way as in the first-
order case, see 3.4.

But the analogue of the upward theorem is not true. There are Lω1,ω-
sentences that have models but not higher than a certain cardinality. For
example, in the language of arithmetic extended by a unary predicate N and
a binary predicate ε we can state in the form of an Lω1,ω-sentence Q that the
predicate N defines the subset N of the model such that (N,+, ·, 0, 1) is a
standard arithmetic;

if xεy holds then x ∈ N and y /∈ N ; moreover,
∀y1, y2 /∈ N (y1 = y2 ↔ ∀x ∈ N x ∈ y1 ↔ x ∈ y2).
Clearly this sentence has models at most of cardinality 2ℵ0 .
One can extend this method to obtain sentences with models of cardinalities

bounded by 22ℵ0
, 222ℵ0

,. . . .

For the general Lλ,µ-language the situation is even more complex.

7.4 Categoricity for Lω1,ω in uncountable cardinals. This problem was
first attacked by J. Kiesler in the 1970s, in an attempt to extend the Mor-
ley theory to Lω1,ω. Kiesler proved that the main results go through provided
one can establish the fact that models of an Lω1,ω-sentence categorical in an
uncountable cardinal are homogeneous, which is of course the case for first-
order languages. But shortly after Kiesler’s work appeared, counterexamples to
this assumption were found. More recently, examples of uncountably categorical
Lω1,ω-sentences with nonhomogeneous uncountable models were found in the
context of mainstream mathematics.

7.5 Example. Consider the structure on the complex numbers

Ce = (C,+, p(3)), where p(3)(x, y, z) ≡ ex + ey = ez.
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Notice that the subgroup 2πiZ is definable in Ce as

{v ∈ C : ∀x, y, z ex + ey = ez ↔ ex + ey = ez+v}.

Now, if we introduce a definable set C∗ = C/2πiZ and a definable canoni-
cal homomorphism exp : C → C∗ we get an equivalent representation of the
structure as a two-sorted structure (C, C∗∪{0}) with the additive group struc-
ture (C,+) on the first sort, the field structure (C∗ ∪ {0}, ·,+) on the second
sort, and exp mapping the first sort into the second sort. We can describe this
structure by an Lω1,ω-sentence Σ saying that:

- (C,+) is a divisible torsion-free group;
- C∗ ∪ {0} with respect to + and · is an algebraically closed field of charac-

teristic 0;
- the kernel of exp is an infinite cyclic group.

It takes a nontrivial algebra (theory of fields) in combination with model
theory to prove that Σ has a unique, up to isomorphism, model in every un-
countable cardinality. But any such model is not homogeneous.

7.6 Abstract elementary classes. Shelah, who has been in the forefront of
studies in non-first-order model theory, was the first to realize that the syntactic
specification of non-first-order languages has little relevance to model theory,
and the more important are algebraic characteristics of classes of models, which
eventually depend more on the meaning of specific axioms than the syntax of
the language. This resulted in the following definition.

A class of L-structures K equipped with a notion of “strong submodel” � is
said to be an abstract elementary class (AEC) if the class K and class of pairs
satisfying the binary relation � are each closed under isomorphism and satisfy
the following conditions:

(a) If A � B then A ⊆ B.
(b) � is a partial order on K .
(c) If {Ai : i < δ} is a �-increasing chain in K closed under limits, then:

(i) Aδ =
⋃
i<δ Ai ∈ K ;

(ii) for each j < δ, Aj � Aδ;
(iii) if each Ai � B ∈ K then Aδ � B.

(d) If A,B,C ∈ K , A � B B � C, and A ⊆ C then A � C.
(e) There is a (Löwenheim–Skolem) cardinal number LS(K ) such that if A ⊆

B ∈ K , there is an A′ ∈ K with A ⊆ A′ � B and cardA′ ≤ cardA+LS(K ).

7.7 Examples.

(a) Any first-order axiomatizable class of L-structures with respect to �, the
elementary embedding, is AEC.

(b) The class of models of the Lω1,ω-sentence Σ in 7.5 with respect to the
embedding ⊆ is AEC.

(c) The class Hδ emerging in Hrushovski’s construction with respect to the
strong embedding, see 6.12, is AEC.
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(d) The class of fields with pseudoexponetiation is AEC with respect to the
strong embedding corresponding to the Schanuel predimension δ(X) =
trdX − ldimX ; see 6.16.

The theory of abstract elementary classes brought model theory closer to
the tradition of abstract algebra but enriched with the vast technology of
classification theory. The most powerful results of the theory are the
following.

7.8 Theorem (S. Shelah). There is a Hanf number µ (not computed but
depending only on the Löwenheim–Skolem number LS (K)) such that if an AEC
K has arbitrarily large models and satisfies the amalgamation property and the
joint embedding property for its models, then provided that K is categorical in a
successor cardinal larger than µ, it is categorical in all larger cardinals.

In a more specific situation we have the following.

7.9 Theorem (S. Shelah). Assume the mild set-theoretic assumptions 2ℵn <
2ℵn+1 for all natural n. Let Σ be an Lω1,ω-sentence that is categorical in 2ℵn

for every n. Then Σ has a unique model in every infinite cardinal.
For further reading on the subject of infinitary languages and AEC see

J. Baldwin’s book [14].
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