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Preface

This book provides an introduction to abstract algebraic geometry using
the methods of schemes and cohomology. The main objects of study are
algebraic varieties in an affine or projective space over an algebraically
closed field; these are introduced in Chapter I, to establish a number of
basic concepts and examples. Then the methods of schemes and
cohomology are developed in Chapters II and 111, with emphasis on appli-
cations rather than excessive generality. The last two chapters of the book
(IV and V) use these methods to study topics in the classical theory of
algebraic curves and surfaces.

The prerequisites for this approach to algebraic geometry are results
from commutative algebra, which are stated as needed, and some elemen-
tary topology. No complex analysis or differential geometry is necessary.
There are more than four hundred exercises throughout the book, offering
specific examples as well as more specialized topics not treated in the
main text. Three appendices present brief accounts of some areas of
current research.

This book can be used as a textbook for an introductory course in
algebraic geometry, following a basic graduate course in algebra. I re-
cently taught this material in a five-quarter sequence at Berkeley, with
roughly one chapter per quarter. Or one can use Chapter I alone for a
short course. A third possibility worth considering is to study Chapter I,
and then proceed directly to Chapter IV, picking up only a few definitions
from Chapters I1 and IlI, and assuming the statement of the Riemann-
Roch theorem for curves. This leads to interesting material quickly, and
may provide better motivation for tackling Chapters 11 and III later.

The material covered in this book should provide adequate preparation
for reading more advanced works such as Grothendieck [EGA], [SGA],
Hartshorne [5], Mumford [2], [5], or Shafarevich [1].
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Introduction

The author of an introductory book on algebraic geometry has the difficult
task of providing geometrical insight and examples, while at the same
time developing the modern technical language of the subject. For in
algebraic geometry, a great gap appears to separate the intuitive ideas
which form the point of departure from the technical methods used in
current research.

The first question is that of language. Algebraic geometry has
developed in waves, each with its own language and point of view. The
late nineteenth century saw the function-theoretic approach of Riemann,
the more geometric approach of Brill and Noether, and the purely alge-
braic approach of Kronecker, Dedekind, and Weber. The Italian school
followed with Castelnuovo, Enriques, and Severi, culminating in the clas-
sification of algebraic surfaces. Then came the twentieth-century **Ameri-
can’’ school of Chow, Weil, and Zariski, which gave firm algebraic foun-
dations to the Italian intuition. Most recently, Serre and Grothendieck
initiated the French school, which has rewritten the foundations of alge-
braic geometry in terms of schemes and cohomology, and which has an
impressive record of solving old problems with new techniques. Each of
these schools has introduced new concepts and methods. In writing an
introductory book, is it better to use the older language which is closer to
the geometric intuition, or to start at once with the technical language of
current research?

The second question is a conceptual one. Modern mathematics tends to
obliterate history: each new school rewrites the foundations of its subject
in its own language, which makes for fine logic but poor pedagogy. Of
what use is it to know the definition of a scheme if one does not realize
that a ring of integers in an algebraic number field, an algebraic curve, and
a compact Riemann surface are all examples of a ‘‘regular scheme of

Xiii



Introduction

dimension one"’? How then can the author of an introductory book indi-
cate the inputs to algebraic geometry coming from number theory, com-
mutative algebra, and complex analysis, and also introduce the reader to
the main objects of study, which are algebraic varieties in affine or pro-
jective space, while at the same time developing the modern language of
schemes and cohomology? What choice of topics will convey the meaning
of algebraic geometry, and still serve as a firm foundation for further study
and research?

My own bias is somewhat on the side of classical geometry. I believe
that the most important problems in algebraic geometry are those arising
from old-fashioned varieties in affine or projective spaces. They provide
the geometric intuition which motivates all further developments. In this
book, I begin with a chapter on varieties, to establish many examples and
basic ideas in their simplest form, uncluttered with technical details. Only
after that do I develop systematically the language of schemes, coherent
sheaves, and cohomology, in Chapters I and I11. These chapters form the
technical heart of the book. In them I attempt to set forth the most
important results, but without striving for the utmost generality. Thus, for
example, the cohomology theory is developed only for quasi-coherent
sheaves on noetherian schemes, since this is simpler and sufficient for
most applications; the theorem of ‘‘coherence of direct image sheaves™ is
proved only for projective morphisms, and not for arbitrary proper
morphisms. For the same reasons I do not include the more abstract
notions of representable functors, algebraic spaces, étale cohomology,
sites, and topoi.

The fourth and fifth chapters treat classical material, namely nonsingu-
lar projective curves and surfaces, but they use techniques of schemes
and cohomology. | hope these applications will justify the effort needed to
absorb all the technical apparatus in the two previous chapters.

As the basic language and logical foundation of algebraic geometry, I
have chosen to use commutative algebra. It has the advantage of being
precise. Also, by working over a base field of arbitrary characteristic,
which is necessary in any case for applications to number theory, one
gains new insight into the classical case of base field C. Some years ago.
when Zariski began to prepare a volume on algebraic geometry, he had to
develop the necessary algebra as he went. The task grew to such pro-
portions that he produced a book on commutative algebra only. Now we
are fortunate in having a number of excellent books on commutative
algebra: Atiyah—Macdonald [1], Bourbaki [1], Matsumura [2], Nagata [7],
and Zariski-Samuel [1]. My policy is to quote purely algebraic results as
needed, with references to the literature for proof. A list of the results
used appears at the end of the book.

Originally I had planned a whole series of appendices—short expos-
itory accounts of some current research topics, to form a bridge between
the main text of this book and the research literature. Because of limited
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Introduction

time and space only three survive. | can only express my regret at not
including the others, and refer the reader instead to the Arcata volume
(Hartshome, ed. [1]) for a series of articles by experts in their fields,
intended for the nonspecialist. Also, for the historical development of
algebraic geometry let me refer to Dieudonné [1]. Since there was not
space to explore the relation of algebraic geometry to neighboring fields as
much as I would have liked, let me refer to the survey article of Cassels [1]
for connections with number theory, and to Shafarevich [2, Part III] for
connections with complex manifolds and topology.

Because I believe strongly in active learning, there are a great many
exercises in this book. Some contain important results not treated in the
main text. Others contain specific examples to illustrate general
phenomena. I believe that the study of particular examples is inseparable
from the development of general theories. The serious student should
attempt as many as possible of these exercises, but should not expect to
solve them immediately. Many will require a real creative effort to under-
stand. An asterisk denotes a more difficult exercise. Two asterisks denote
an unsolved problem.

See (I, §8) for a further introduction to algebraic geometry and this
book.

Terminology

For the most part, the terminology of this book agrees with generally
accepted usage, but there are a few exceptions worth noting. A variety is
always irreducible and is always over an algebraically closed field. In
Chapter I all varieties are quasi-projective. In (Ch. II, §4) the definition is
expanded to include abstract varieties, which are integral separated
schemes of finite type over an algebraically closed field. The words curve,
surface, and 3-fold are used to mean varieties of dimension 1, 2, and 3
respectively. But in Chapter IV, the word curve is used only for a nonsin-
gular projective curve; whereas in Chapter V a curve is any effective
divisor on a nonsingular projective surface. A surface in Chapter V is
always a nonsingular projective surface.

A scheme is what used to be called a prescheme in the first edition of
[EGA], but is called scheme in the new edition of [EGA, Ch. I].

The definitions of a projective morphism and a very ample invertible sheaf
in this book are not equivalent to those in [EGA]—see (11, §4, 5). They are
technically simpler, but have the disadvantage of not being local on the
base.

The word nonsingular applies only to varieties: for more general
schemes, the words regular and smooth are used.

Results from algebra

I assume the reader is familiar with basic results about rings, ideals,
modules, noetherian rings, and integral dependence, and is willing to ac-
cept or look up other results, belonging properly to commutative algebra



Introduction

or homological algebra, which will be stated as needed, with references to
the literature. These results will be marked with an A: e.g., Theorem
3.9A, to distinguish them from results proved in the text.

The basic conventions are these: All rings are commutative with iden-
tity element 1. All homomorphisms of rings take I to 1. In an integral
domain or a field, 0 # 1. A prime ideal (respectively, maximal ideal) is an
ideal p in a ring A such that the quotient ring A/p is an integral domain
(respectively, a field). Thus the ring itself is not considered to be a prime
ideal or a maximal ideal.

A multiplicative system in aring A is a subset S, containing 1, and closed
under multiplication. The localization S 7'A is defined to be the ring formed
by equivalence classes of fractions a/s,a €A, s €S, wherea/s anda'/s’ are
said to be equivalent if there is an s” € § such that s"(s'a —sa’) = 0 (see
e.g. Atiyah—Macdonald [1, Ch. 3]). Two special cases which are used
constantly are the following. If p is a prime ideal in 4, then S =4 —pisa
multiplicative system, and the corresponding localization is denoted by
A, . Iffis an element of A, then § = {1} U {f" |n = 1} is a multiplicative
system, and the corresponding localization is denoted by A,. (Note for
example that if f is nilpotent, then A, is the zero ring.)

References

Bibliographical references are given by author, with a number in square
brackets to indicate which work, e.g. Serre, [3, p. 75]. Cross references to
theorems, propositions, lemmas within the same chapter are given by
number in parentheses, e.g. (3.5). Reference to an exercise is given by
(Ex. 3.5). References to results in another chapter are preceded by the
chapter number, e.g. (11, 3.5), or (I, Ex. 3.5).
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CHAPTER 1

Varieties

Our purpose in this chapter is to give an introduction to algebraic geometry
with as little machinery as possible. We work over a fixed algebraically
closed field k. We define the main objects of study, which are algebraic
varieties in affine or projective space. We introduce some of the most
important concepts, such as dimension, regular functions, rational maps,
nonsingular varieties, and the degree of a projective variety. And most im-
portant, we give lots of specific examples, in the form of exercises at the end
of each section. The examples have been selected to illustrate many inter-
esting and important phenomena, beyond those mentioned in the text. The
person who studies these examples carefully will not only have a good under-
standing of the basic concepts of algebraic geometry, but he will also have
the background to appreciate some of the more abstract developments of
modern algebraic geometry, and he will have a resource against which to
check his intuition. We will continually refer back to this library of examples
in the rest of the book.

The last section of this chapter is a kind of second introduction to the book.
It contains a discussion of the “classification problem,” which has motivated
much of the development of algebraic geometry. It also contains a discussion
of the degree of generality in which one should develop the foundations of
algebraic geometry, and as such provides motivation for the theory of
schemes.

1 Affine Varieties

Let k be a fixed algebraically closed field. We define affine n-spuace over k,
denoted A} or simply A", to be the set of all n-tuples of elements of k. An
element P € A" will be called a point, and if P = («,, . . . ,a,) with «, € k, then
the a; will be called the coordinates of P.



I Varieties

Let A = k[xy,...,x,| be the polynomial ring in n variables over k.
We will interpret the elements of 4 as functions from the affine n-space
to k, by defining f(P) = f(ay,....q,), where fe A and Pe A". Thus if
f e A is a polynomial, we can talk about the set of zeros of f, namely
Z(f) = |PeA"|f(P) = 0}. More generally, if T is any subset of 4, we
define the zero set of T to be the common zeros of all the elements of T,
namely

Z(T) = {PeA"|f(P) = 0forall feT].

Clearly if a is the ideal of A generated by T, then Z(T) = Z(a). Further-
more, since A4 is a noetherian ring, any ideal a has a finite set of generators
fi.....f,. Thus Z(T) can be expressed as the common zeros of the finite
set of polynomials f,, ... .f.

Definition. A subset Y of A" is an ulyebruic set if there exists a subset T < A4
such that Y = Z(T).

Proposition 1.1. The union of two algebraic sets is an algebraic set. The
intersection of any family of algebraic sets is an algebraic set. The empty
set and the whole space are algebraic sets.

Proor. If Y, = Z(T,) and Y, = Z(T,), then Y, v Y, = Z(T,T,), where
T, T, denotes the set of all products of an element of T, by an element of
T,. Indeed, if Pe Y, U Y,, then either Pe Y, or Pe Y,, so P is a zero of
every polynomial in T,T,. Conversely, if Pe Z(T,T,), and P ¢ Y] say,
then there is an f € T, such that f(P) # 0. Now foranyge T,,(fg)(P) =0
implies that g(P) = 0, so that P € Y,.

If Y, = Z(T,) is any family of algebraic sets, then ()Y, = Z({ JT,), so
(Y, is also an algebraic set. Finally, the empty set & = Z(1), and the whole
space A" = Z(0).

Definition. We define the Zariski topology on A" by taking the open subsets
to be the complements of the algebraic sets. This is a topology, because
according to the proposition, the intersection of two open sets is open,
and the union of any family of open sets is open. Furthermore, the empty
set and the whole space are both open.

Example 1.1.1. Let us consider the Zariski topology on the affine line A'.
Every ideal in A = k[ x] is principal, so every algebraic set is the set of zeros
of a single polynomial. Since k is algebraically closed, every nonzero poly-
nomial f(x) can be written f(x) = ¢(x — ay)---(x — a,) With c,ay, ... q, €
k. Then Z(f) = la,.....u,). Thus the algebraic sets in A" are just the finite
subsets (including the empty set) and the whole space (corresponding to
f = 0). Thus the open sets are the empty set and the complements of finite
subsets. Notice in particular that this topology is not Hausdorff.
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I Afline Varietics

Definition. A nonempty subset Y of a topological space X is irreducible if
it cannot be expressed as the union Y = Y; u Y, of two proper subsets,
each one of which is closed in Y. The empty set is not considered to be
irreducible.

Example 1.1.2. A’ is irreducible, because its only proper closed subsets are
finite, yet it is infinite (because k is algebraically closed, hence infinite).

Example 1.1.3. Any nonempty open subset of an irreducible space is irre-
ducible and dense.

Example 1.1.4. If Y is an irreducible subset of X, then its closure Y in X is
also irreducible.

Definition. An affine algebraic variety (or simply affine variety) is an irre-
ducible closed subset of A” (with the induced topology). An open subset
of an affine variety is a quasi-affine variety.

These affine and quasi-affine varieties are our first objects of study. But
before we can go further, in fact before we can even give any interesting
examples, we need to explore the relationship between subsets of A" and
ideals in A more deeply. So for any subset Y < A", let us define the ideal of
Y in A by

I(Y)={feA|f(P) =0forall Pe Y]

Now we have a function Z which maps subsets of 4 to algebraic sets, and a
function I which maps subsets of A" to ideals. Their properties are sum-
marized in the following proposition.

Proposition 1.2.
(a) If T, < T, are subsets of A, then Z(T) 2 Z(T,).
(b) If Y, € Y, are subsets of A", then I(Y;) 2 I(Y,).
(¢) For any two subsets Y;, Y, of A", we have I(Y, U Y,) = I(Y}) n I(Ys).
(d) For any ideal a <= A, I(Z(a)) = \/H, the radical of a.
(e) For any subset Y < A", Z(I(Y)) = Y, the closure of Y.

PROOF. (a), (b) and (c) are obvious. (d) is a direct consequence of Hilbert’s
Nullstellensatz, stated below, since the radical of a is defined as

va = {feA|f e€aforsomer > 0].

To prove (e), we note that Y = Z(I(Y)), which is a closed set, so clearly
Y = Z(I(Y)). On the other hand, let W be any closed set containing Y.
Then W = Z(a) for some ideal a. So Z(a) 2 Y, and by (b), IZ(a) < I(Y).
But certainly a € IZ(a), so by (a) we have W = Z(a) 2 ZI(Y). Thus
ZI(Y) = ¥



I Varieties

Theoren: 1.3A (Hilbert's Nullstellensatz). Let k be an algebraically closed
field, let a be an ideal in A = k[x.. ... X, ] and let fe A be a polynomial
which vanishes at all points of Z(a). Then {7 € a for some integer r > 0.

PrROOE. Liug [ 2. p. 256] or Atiyah-Macdonald [ 1. p. 85] or Zariski- Samuel
[1.vol 2. p. 164].

Corollary 1.4. There is a one-to-one inclusion-reversing — correspondence
between algebraic sets in A" and radical ideals (.e., ideals which are equal
to their ovwn radical) in A, given by Y I(Y) and a +— Z(a). Furthermore,
an algebraic set is irreducible if and only if its ideal is a prime ideal.

Proor. Only the last part is new. If Y is irreducible, we show that I(Y) is
prime. Indeed. if fye [(Y). then Y < Z(fy) = Z(f) v Z(y). Thus Y =
(YN Z(f))u (Y n Zy)), both being closed subscts of Y. Since Y is irre-
ducible, we have either Y = Y n Z(f). in which case Y < Z(f). or Y <
Z(y). Hence either f e [(Y)orge I(Y).

Conversely, let p be a prime ideal, and suppose that Z(p) = Y, u Y,.
Then p = I(Y,) n I(Y;). so either p = I(Y;)or p = I(Y;). Thus Z(p) = Y]
or Y, hence it is irreducible.

Example 1.4.1. A" is irreducible, since it corresponds to the zero ideal in A,
which is prime.

Example 1.4.2. Let f be an irreducible polynomial in 4 = k[x.y]. Then f
generates a prime ideal in 4. since 4 is a unique factorization domain. so
the zero set Y = Z(f) is irreducible. We call it the affine curve defined by
the equation f(x.yv) = 0. If f has degree d. we say that Y is a curve of degree d.

Example 1.4.3. More generally, if f is an irreducible polynomial in 4 =
INETT. \, ]. we obtain an afline variety Y = Z(f), which is called a surface
if n = 3. ora hypersurface if n > 3.

Example 1.4.4. A maximal ideal m of 4 = k[x,,....,x,] corresponds to
a minimal irrcducible closed subset of A", which must be a point, say
P={(uy,..., a,). This shows that every maximal ideal of A4 is of the form
M= (Xy — dy.. ..o X, — d,), for some ay, ..., a, € k.

Example 1.4.5. If k is not algebraically closed, these results do not hold. For
example. if A = R, the curve x> + 12 + 1 = 0in Ag has no points. So(1.2d)
i1s false. See also (Ex. 1.12).

Definition. If Y < A”is an afline algebraic set, we define the affine coordinate
ring A(Y)of Y.tobe A/ I(Y).

Remark 1.4.6. If Y is an afline variety, then A(Y) is an integral domain.
FFurthermore, A(Y) is a finitely generated k-algebra. Conversely, any
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I Affine Varieties

finitely generated k-algebra B which is a domain is the affine coordinate
ring of some affine variety. Indeed, write B as the quotient of a polynomial
ring A = k[x,,....x,] by anideal a, and let Y = Z(a).

Next we will study the topology of our varieties. To do so we introduce
an important class of topological spaces which includes all varieties.

Definition. A topological space X is called noetherian if it satisfies the de-
scending chain condition for closed subsets: for any sequence Y; 2 ¥, 2 ...
of closed subsets, there is an integer rsuch that ¥, = Y,, | = ...

Example 1.4.7. A" is a noetherian topological space. Indeed,if Y, 2 ¥, 2 ...
is a descending chain of closed subsets, then I(Y;) < I(Y,) < ... is an as-
cending chain of ideals in 4 = k[x,,...,x,]. Since 4 is a noetherian ring,
this chain of ideals is eventually stationary. But for each i, Y, = Z(I(Y))),
so the chain Y; is also stationary.

Proposition 1.5. In a noetherian topological space X, every nonempty closed
subset Y can be expressed as a finite union Y = Y; U ... U Y, of irreducible
closed subsets Y. If we require that Y, 2 Y; for i # j, then the Y; are

uniquely determined. They are called the irreducible components of Y.

ProoF. First we show the existence of such a representation of Y. Let S
be the set of nonempty closed subsets of X which cannot be written as a
finite union of irreducible closed subsets. If & is nonempty, then since X
is noetherian, it must contain a minimal element, say Y. Then Y is not
irreducible, by construction of €. Thus we can write Y = Y’ U Y", where
Y" and Y"” are proper closed subsets of Y. By minimality of Y, each of Y’
and Y" can be expressed as a finite union of closed irreducible subsets, hence
Y also, which is a contradiction. We conclude that every closed set Y can
be writtenas a union ¥ = Y; u ... v Y, of irreducible subsets. By throwing
away a few if necessary, we may assume Y; 2 VY, fori # j.

Now suppose Y = Y| U ... u Y, is another such representation. Then
YicY=Y u...uY, so Y] =[J(Y] nY). But Y] is irreducible, so
Y] € Y forsomei,sayi = 1. Similarly, Y, < Y} forsome,. Then Y{ < Y/,
soj = 1, and we find that Y, = Y;. Nowlet Z = (Y — Y;)”. Then Z =
Y,u...uYandalsoZ = Y; u...u Y Soproceeding by induction on
r, we obtain the uniqueness of the Y.

Corollary 1.6. Every algebraic set in A" can be expressed uniquely as a union
of tarieties, no one containing another.

Definition. If X is a topological space, we define the dimension of X (denoted
dim X)) to be the supremum of all integers n such that there exists a chain
Zoc Z, < ...c Z, of distinct irreducible closed subsets of X. We
define the dimension of an affine or quasi-affine variety to be its dimen-
sion as a topological space.



[ Varieties

Example 1.6.1. The dimension of A' is 1. Indeed. the only irreducible closed
subsets of A! are the whole space and single points.

Definition. In a ring 4. the hicight of a prime ideal p 1s the supremum of all
integers i osuch that there exists a chain p, < p, < ... < p, =p of
distinct prime ideals. We define the dimension (or Krull dimension) of A
to be the supremum of the heights of all prime ideals.

Proposition 1.7. If Y is an affine algebraic set, then the dimension of Y is
equal to the dimension of its affine coordinate ring A(Y).

Proo¥r. If Y is an affine algebraic set in A", then the closed irreducible subsets
of Y correspond to prime ideals of 4 = k[x,,....x,] containing I(Y).
These in turn correspond to prime ideals of A(Y). Hence dim Y is the length
of the longest chain of prime ideals in A(Y), which is its dimension.

This proposition allows us to apply results from the dimension theory of
noetherian rings to algebraic geometry.

Theorem 1.8A. Let k be a field, and let B be an integral domain which is a
Sinitely generated h-alyebra. Then:
(a) the dimension of B is equal to the transcendence degree of the
quotient field K(B) of B over k:
(b) For any prime ideal p in B, we have

height p + dim B p = dim B.

Proor. Matsumura [2. Ch. 5. §14] or. in the case A is algebraically closed.
Atiyah- Macdonald [ 1, Ch. 11]

Proposition 1.9. The dimension of A" is n.

PrROOF. According to (1.7) this says that the dimension of the polynomial
ring k[xy, ....x,] is n. which follows from part (a) of the theorem.

Proposition 1.10. If Y is « quasi-affine variety, then dim Y = dim Y.

Proor. Il Z, = Z, = ... = Z, is a sequence of distinct closed irreducible
subsets of Y, then Z, = Z, = ... < Z, is a sequence of distinct closed
irreducible subsets of Y (1.1.4), so we have dim Y < dim Y. In particular,
dim Y is finite, so we can choose a maximal such chain Z, < ... ¢ Z,,
with n = dim Y. In that case Z, must be a point P, and the chain P =
Zy, < ...c Z, will also be maximal (1.1.3). Now P corresponds to a
maximal ideal m of the affine coordinate ring A(Y) of Y. The Z; correspond
to prime ideals contained in m, so height m = n. On the other hand, since
P is a point in affine space, A(Y)/m = k (1.4.4). Hence by (1.8Ab) we find

that 1 = dim A(Y) = dim Y. Thusdim Y = dim Y.

6



I Afhne Varictics

Theorem 1.11A (Krull's Hauptidealsatz). Let A be a noetherian ring, and let
f e A be an element which is neither a zero divisor nor a unit. Then every
minimal prime ideal p containing f has height 1.

PROOF. Atiyah-Macdonald [1, p. 122].

Proposition 1.12A. A noetherian integral domain A is a unigue factorization
domain if and only if every prime ideal of height 1 is principal.

PrROOF. Matsumura [2, p. 141], or Bourbaki [ 1, Ch. 7, §3].

Proposition 1.13. 4 variety Y in A" has dimension n — 1 if and only if it is
the zero set Z(f) of a single nonconstant irreducible polynomial in A =

k[xy..oox, ]

ProOOF. If f is an irreducible polynomial, we have already seen that Z(f) is
a variety. Its ideal is the prime ideal p = (f). By (1.11A), p has height 1,
so by (1.8A), Z(f) has dimension n — 1. Conversely, a variety of dimension
n — 1 corresponds to a prime ideal of height 1. Now the polynomial ring A4
is a unique factorization domain, so by (1.12A), p is principal, necessarily
generated by an irreducible polynomial f. Hence Y = Z(f).

Remark 1.13.1. A prime ideal of height 2 in a polynomial ring cannot
necessarily be generated by two elements (Ex. 1.11).

EXERCISES

1.1. (a) Let Y be the plane curve y = x? (i.e., Y is the zero set of the polynomial f =
v — x?). Show that A(Y) is isomorphic to a polynomial ring in one variable
over k.
(b) Let Z be the plane curve x3 = 1. Show that 4(Z) is not isomorphic to a poly-
nomial ring in one variable over A.
*(c) Let f be any irreducible quadratic polynomial in k[x.y], and let W be the
conic defined by f. Show that 4(W)is isomorphicto A(Y)or A(Z). Which one
is it when?

1.2. The Twisted Cubic Curve. Let Y < Abetheset Y = !(r.1%1%)|r € h}. Showthat ¥
is an affine variety of dimension 1. Find generators for the ideal I(Y). Show that
A(Y) is isomorphic to a polynomial ring in one variable over k. We say that Y
is given by the parametric representation x = r.v = 1*, 2 = .

1.3. Let Y be the algebraic set in A* defined by the two polynomials x> — yz and
Xz — x. Show that Y is a union of three irreducible components. Describe them
and find their prime ideals.

1.4. Ifwe identify A2 with A' x A'in the natural way, show that the Zariski topology
on A? is not the product topology of the Zariski topologies on the two copies of A'.

7
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1.5.

1.6.

1.7.

1.8.

1.9.

1.10.

*1.11.

1.12.

Show that a k-algebra B is isomorphic to the affine coordinate ring of some alge-
braic set in A", for some n. if and only if B is a finitely generated k-algebra with no
nilpotent elements.

Any nonempty open subset of an irreducible topological space is dense and
irreducible. If Y is a subset of a topological space X, which is irreducible in its
induced topology, then the closure Y is also irreducible.

(a) Show that the following conditions are equivalent for a topological space X :
(1) X is noetherian: (ii) every nonempty family of closed subsets has a minimal
element: (iii) X satisfies the ascending chain condition for open subsets;
(iv) every nonempty family of open subsets has a maximal element.

(b) A noetherian topological space is guasi-compact, i.e., every open cover has a
finite subcover.

(c) Any subset of a noetherian topological space is noetherian in its induced
topology.

(d) A noetherian space which is also Hausdorff must be a finite set with the discrete
topology.

Let Y be an affine variety of dimension r in A". Let H be a hypersurface in A",
and assume that Y ¢ H. Then every irreducible component of Y n H has
dimension r — 1. (See (7.1) for a generalization.)

Let a =€ 4 = k[x,,....,x,] be an ideal which can be generated by r elements.
Then every irreducible component of Z(a) has dimension > n — r.

(a) If Yisany subset ofa topological space X, thendim ¥ < dim X.

(b) If X is a topological space which is covered by a family of open subsets {U,],
then dim X = sup dim U,.

(c) Give an example of a topological space X and a dense open subset U with
dim U < dim X.

(d) If Yis a closed subset of an irreducible finite-dimensional topological space X,
and ifdim ¥ = dim X, then ¥ = X.

(e} Give an example of a noetherian topological space of infinite dimension.

Let Y < A? be the curve given parametrically by x = 3, v = * z = >, Show

that I(Y) is a prime ideal of height 2 in k[ x,1,z] which cannot be generated by
2 elements. We say Y is not a local complete intersection— cf. (Ex. 2.17).

Give an example of an irreducible polynomial f e R[x,y]. whose zero set
Z(f)in Ag is not irreducible (cf. 1.4.2).

2 Projective Varieties

To define projective varieties, we proceed in a manner analogous to the
definition of affine varieties, except that we work in projective space.

Let k be our fixed algebraically closed field. We defined projective n-space
over k, denoted P}, or simply P", to be the set of equivalence classes of
(n + 1)-tuples (a, . . . .a,) of elements of k, not all zero, under the equiva-
lence relation given by (uq,....q,) ~ (Zdq, ... ,Aq,) for all zek, 2 # 0.
Another way of saying this is that P" as a set is the quotient of the set

8



2 Projective Varieties

A" — [(0,....,0)] under the equivalence relation which identifies points

lying on the same line through the origin.
An element of P" is called a point. If P is a point, then any (n + 1)-

tuple (ay, . .. ,a,) in the equivalence class P is called a set of homogeneous
coordinates for P.
Let S be the polynomial ring k[ x,,...,x,]. We want to regard S as a

graded ring, so we recall briefly the notion of a graded ring.

A graded ring is a ring S, together with a decomposition S = 1);., S,
of S into a direct sum of abelian groups S,, such that for any d,e > 0,
S;'S, = S,... Anelement of S, is called a homogeneous element of degree
d. Thus any element of S can be written uniquely as a (finite) sum of
homogeneous elements. An ideal a < S is a homogeneous ideal if a =
FPaz0 lan'S,). We will need a few basic facts about homogeneous ideals
(see, for example, Matsumura [ 2, §10] or Zariski-Samuel [1, vol. 2, Ch. VII,
§2]). An ideal is homogeneous if and only if it can be generated by homo-
geneous elements. The sum, product, intersection, and radical of homo-
geneous ideals are homogeneous. To test whether a homogeneous ideal is
prime, it is sufficient to show for any two homogeneous elements f,g, that
fg e aimplies f e aoryea.

We make the polynomial ring S = k[x,....,x,] into a graded ring by
taking S, to be the set of all linear combinations of monomials of total
weight d in x,,....x,. If f €S is a polynomial, we cannot use it to define
a function on P", because of the nonuniqueness of the homogeneous co-
ordinates. However, if f 1s a homogeneous polynomial of degree d, then
f(rdg, ... a,) = 2f(ay, ... a,), so that the property of f being zero or
not depends only on the equivalence class of (aq, .. .,q,). Thus f gives a
function from P” to {0,1] by f(P) = 0 if f(uag,....a,) =0, and f(P) = 1
if flag, ... .a,) # 0.

Thus we can talk about the zeros of a homogeneous polynomial, namely
Z(f) = (PeP"|f(P) = 0. If T is any set of homogeneous elements of S,
we define the zero set of T to be

Z(T) = (PeP"|f(P) = Oforall feT].

If a i1s a homogeneous ideal of S, we define Z(a) = Z(T), where T is the set
of all homogeneous elements in a. Since S is a noetherian ring, any set of
homogeneous elements T has a finite subset fj, ..., f. such that Z(T) =

Definition. A subset Y of P" is an ulgebraic set if there exists a set T of ho-
mogeneous elements of S such that ¥ = Z(T).

Proposition 2.1. The union of two dalgebraic sets is an algebraic set. The
intersection of any family of algebraic sets is an algebraic set. The empty
set and the whole space are alyebraic sets.

PROOF. Left to reader (it is similar to the proof of (1.1) above).



I Varietics

Definition. We define the Zariski topology on P" by taking the open sets
to be the complements of algebraic sets.

Once we have a topological space, the notions of irreducible subset and
the dimension of a subset. which were defined in §1, will apply.

Definition. A projective alyebraic variety (or simply projective variety) is an
irreducible algebraic set in P". with the induced topology. An open
subset of a projective variety is a quasi-projective variety. The dimension
of a projective or quasi-projective variety is its dimension as a topo-
logical space.

If Y is any subset of P", we define the homogeneous ideal of Y in S,
denoted I(Y), to be the ideal generated by | f € S|f is homogeneous and
J(P)=0forall Pe Y| If Y is an algebraic set, we define the homo-
geneous coordinate ring of Y to be S(Y) = S 1(Y). We refer to (Ex. 2.1-
2.7) below for various properties of algebraic sets in projective space
and their homogeneous ideals.

Our next objective is to show that projective nn-space has an open covering
by affine n-spaces, and hence that every projective (respectively, quasi-
projective) variety has an open covering by affine (respectively, quasi-affine)
varieties. First we introduce some notation.

If /€S is a linear homogeneous polynomial, then the zero set of f is
called a hyperplane. In particular we denote the zero set of x; by H,, for
i=0,....n Let U; be the open set P" — H,. Then P" is covered by the
open sets U, because if P = (. . . . .a,) is a point, then at least one «; # 0,
hence Pe U;. We define a mapping ¢,: U; > A" as follows: if P=(uq.....a,) €
U,. then ¢,(P) = Q, where Q is the point with affine coordinates

o a,
a;’ " a )

with «;;«; omitted. Note that ¢, is well-defined since the ratios «;/¢; are
independent of the choice of homogeneous coordinates.

Proposition 2.2. The map ¢; is a homeomorphism of U, with its induced
topology 1o A" with its Zariski topology.

PRrROOF. @, is clearly bijective, so it will be sufficient to show that the closed
sets of U, are identified with the closed sets of A" by ¢,. We may assume
i = 0, and we write simply U for U, and ¢:U — A" for ¢,.

Let A = k[v,,....r,]. We define a map « from the set S" of homo-
geneous clements of S to 4, and a map f§ from A to $". Given [ e S", we
seta(f) = f(Lyy, ..., v,). On the other hand, given ¢y € A of degree ¢, then
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2 Projective Varieties

X0g(xX, /X0, ... ,X,/Xo) 1s @ homogeneous polynomial of degree ¢ in the x,,
which we call fi(y).

Now let Y < U be a closed subset. Let Y be its closure in P". This is
an algebraic set, so Y = Z(T) for some subset T < St Let T = a(T).
Then straightforward checking shows that ¢(Y) = Z(T’). Conversely, let
W be a closed subset of A". Then W = Z(T’) for some subset T' of A, and
one checks easily that @ = (W) = Z(B(T')) n U. Thus ¢ and ¢ ' are both
closed maps, so ¢ is a homeomorphism.

Corollary 2.3. If Y is a projective (respectively, quasi-projective) variety, then
Y is covered by the opensets Y n Ui = 0, ... nowhich aire homeomorphic
1o dffine (respectively, quasi-affine) varieties via the mapping @; defined
abore.

EXERCISES

2.1. Prove the "homogeneous Nullstellensatz,” which says if a = S is a homogeneous
ideal, and if f € S is a homogeneous polynomial with deg f > 0, such that f(P) =0
forall P e Z(a) in P", then f“ € a for some ¢ > 0. [Hint: Interpret the problem in
terms of the affine (n + 1)-space whose affine coordinate ring is S, and use the
usual Nullstellensatz, (1.3A).]

2.2. For a homogeneous ideal a = S, show that the following conditions are equi-
valent:
(i) Z(a) = J (the empty set):
(i) yya = either S or theideal S, = (Dy,.( S,:
(i) a 2 S, for some d > 0.

2.3. (a) If T, = T, are subsets of $". then Z(T,) =2 Z(T,).

(b) If Y|, = Y, are subsets of P", then I(Y,) 2 I(Y,).
(c) For any two subsets Y.,Y, of P I(Y; U Y,) = I(Y,) n I(Y,). B
(d) If a = Sis a homogeneous ideal with Z(a) # . then I(Z(a)) = |, a.

(e) For any subset Y < P" Z(I(Y)) = Y.

2.4. (a) There is a 1-1 inclusion-reversing correspondence between algebraic sets in
P", and homogeneous radical ideals of S not equal to S, given by Y — I(Y)
and a— Z(a). Note: Since S, does not occur in this correspondence, it is
sometimes called the irrelerant maximal ideal of S.

(b) An algebraicset Y = P"is irreducible if and only if I{Y) is a prime ideal.

(c) Show that P" itself is irreducible.

2.5. (a) P"is a noetherian topological space.
(b) Every algebraicset in P" can be written uniquely as a finite union of irreducible
algebraic sets, no one containing another. These are called its irreducible
('()HI[)()”()HL\.

2.6. If Y is a projective variety with homogeneous coordinate ring S(Y), show that
dim S(Y) = dim Y + 1. [Hint: Let ¢;:U; — A" be the homeomorphism of (2.2),
let Y, be the affine variety ¢ (Y n U;), and let A(Y)) be its affine coordinate ring.

11
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2.7.

2.8.

2.9.

2.10.

Show that A(Y,) can be identified with the subring of elements of degree 0 of the
localized ring S(Y), . Then show that S(Y), = A(Y)[x,.x;']. Now use (1.7),
(1.8A), and (Ex 1.10), and look at transcendence degrees. Conclude also that
dim Y = dim Y; whenever Y, is nonempty.]

(a) dim P" = n.
(b) If Y < P"is a quasi-projective variety, then dim ¥ = dim Y.
[Hint: Use (Ex. 2.6) to reduce to (1.10).]

A projective variety Y = P" has dimension n — 1 if and only if it is the zero set of
a single irreducible homogeneous polynomial f of positive degree. Y is called a
hypersurface in P,

Projective Closure of an Affine Variety. If Y < A" is an affine variety, we identify
A" with an open set U, = P" by the homeomorphism ¢,. Then we can speak of
Y, the closure of Y in P", which is called the projective closure of Y.

(a) Show that I(Y) is the ideal generated by B(I(Y)), using the notation of the
proof of (2.2).

(b) Let Y = A® be the twisted cubic of (Ex. 1.2). Its projective closure Y < P?
is called the rwisted cubic curve in P3. Find generators for I(Y) and I(Y), and
use this example to show that if f, ... .f, generate I(Y), then S(f)),..., B(f)
do not necessarily generate I(Y).

The Cone Over a Projective Variety (Fig. 1). Let Y = P" be a nonempty algebraic
set, and let :A""' — [(0,...,0)] — P" be the map which sends the point with
affine coordinates (daq,...,a,) to the point with homogeneous coordinates
(dg, - - - »a,). We define the affine cone over Y to be

C(Y) = 07(Y)u {(0,... 0)).

(a) Show that C(Y) is an algebraic set in A""! whose ideal is equal to I(Y),
considered as an ordinary ideal in k[ x,, ... ,x,]

(b) C(Y)is irreducible if and only if Y is.

(¢ dmC(Y)=dimY + 1.

Sometimes we consider the projective closure C(Y)of C(Y)in P"*!. This is called

the projective cone over Y.

Figure 1. The cone over a curve in P2.



2.11.

2.12.

2.14.

2 Projective Varieties

Linear Varieties in P". A hypersurface defined by a linear polynomial is called a

hyperplane.

(a) Show that the following two conditions are equivalent for a variety Y in P":
(i) I(Y)can be generated by linear polynomials.

(if) Y can be written as an intersection of hyperplanes.
In this case we say that Y is a linear variety in P".

(b) If Y is a linear variety of dimension r in P", show that I(Y) is minimally gen-
erated by n — s linear polynomials.

(c) LetY.Zbelinear varieties in P", withdimY = . dimZ = s. lf r + s — n = 0,
then Y nZ # . Furthermore, if Y nZ # ¢, then Y n 2 is a linear
variety of dimension > » + s — n. (Think of A"*! as a vector space over Kk,
and work with its subspaces.)

The d-Uple Embedding. For given nd > 0, let MM, ..., M, be all the mono-
mials of degree d in the n + 1 variables x,,...,x,, where N = ("}4) — 1. We
define a mapping p,:P" — P" by sending the point P = («q, . . . ,a,) to the point
pd(P) = (Mola), . .. ;My(a)) obtained by substituting the ¢, in the monomials M.
This is called the d-uple embedding of P"in P¥. For example, ifn = 1,d = 2, then
N = 2 and the image Y of the 2-uple embedding of P' in P? is a conic.

(@) Let O:k[yo.....vv] = k[x0.....x,] be the homomorphism defined by
sending y; to M, and let a be the kernel of . Then a is a homogeneous prime
ideal, and so Z(a) is a projective variety in P*.

(b) Show that the image of p, is exactly Z(a). (One inclusion is easy. The other will
require some calculation.)

(c) Now show that p, is a homeomorphism of P" onto the projective variety Z(a).

(d) Show that the twisted cubic curve in P3 (Ex. 2.9) is equal to the 3-uple embed-
ding of P! in P, for suitable choice of coordinates.

3. Let Y be the image of the 2-uple embedding of P? in P°. This is the Veronese

surfuce. 1f Z < Y is a closed curve (a curcve 1s a variety of dimension 1), show that
there exists a hypersurface V < P such that }'n Y = Z.

The Segre Embedding. Let :P" x P* — P* be the map defined by sending the
ordered pair (dg, . ...a) X (bg,....b) to (....q;h,, ...) in lexicographic order.
where N = rs + r + s. Note that y is well-defined and injective. It is called the
Segre embedding. Show that the image of  is a subrariety of P¥. [Hint: Let the
homogeneous coordinates of P¥ be {z,li=0,...,.j=0,.... s!.and let a be
the kernel of the homomorphism k[ |z, }] = k[xg. ... .00, . v, ] which sends
z,, to x,v,. Then show that Im y = Z(a).]

5. The Quadric Surfuce in P? (Fig. 2). Consider the surface Q (a surfuce is a variety of

dimension 2) in P? defined by the equation xy — zw = 0.

(a) Show that Q is equal to the Segre embedding of P' x P! in P*. for suitable
choice of coordinates.

(b) Show that Q contains two families of lines (a lin¢ is a linear variety of dimen-
sion 1) [L,;.{M,!. each parametrized by 1 € P'. with the properties that if
L #L, then LnL,=g:if M, #M,, M, n M, = @. and for all r.u.
L, n M, = one point.

(c) Show that Q contains other curves besides these lines, and deduce that the
Zariski topology on Q is not homeomorphic via i to the product topology on
P! x P! (where each P! has its Zariski topology).
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Figure 2. The quadric surface in P°.

2.16. (a) The intersection of two varieties need not be a variety. For example, let Q,
and Q, be the quadric surfaces in P? given by the equations x? — yw = 0
and xy — zw = 0, respectively. Show that O, n Q, is the union of a twisted
cubic curve and a line.

Even if the intersection of two varieties is a variety, the ideal of the inter-
section may not be the sum of the ideals. For example, let C be the conic in
P? given by the equation x> — y= = 0. Let L be the line given by y = 0.
Show that C n L consists of one point P, but that I(C) + I(L) # I(P).

Ex

2.17. Complete intersections. A variety Y of dimension r in P" is a (strict) complete
intersection if I(Y') can be generated by n — r elements. Y is a set-theoretic com-
plete intersection if 'Y can be written as the intersection of n — r hypersurfaces.
(a) Let Y be a variety in P, let Y = Z(a): and suppose that a can be generated

by ¢ elements. Then show that dim Y > n — .
(b) Show that a strict complete intersection is a set-theoretic complete inter-
section.

*(c) The converse of (b) is false. For example let Y be the twisted cubic curve in
P? (Ex. 2.9). Show that I(Y) cannot be generated by two elements. On the
other hand. find hypersurfaces H,H, of degrees 2,3 respectively, such that
Y = H, nH,.

**(d) Tt is an unsolved problem whether every closed irreducible curve in P? is
a sct-theoretic intersection of two surfaces. See Hartshorne [1] and Hart-
shorne [5. 111, §5] for commentary.

3 Morphisms

So far we have defined affine and projective varieties, but we have not dis-
cussed what mappings are allowed between them. We have not even said
when two are isomorphic. In this section we will discuss the regular func-
tions on a variety, and then define a morphism of varieties. Thus we will
have a good category in which to work.

14
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Let Y be a quasi-affine variety in A". We will consider functions f from
Y to k.

Definition. A function f:Y - kis regular at a point P € Y if there is an open
neighborhood U with Pe U < Y,and polynomials g.ie A = k[x,, ... .x,],
such that /1 is nowhere zero on U, and f = g/l on U. (Here of course we
interpret the polynomials as functions on A", hence on Y.) We say that
fis regular on Y if it is regular at every point of Y.

Lemma 3.1. A regular function is continuous, when k is identified with A}
inits Zariski topoloyy.

PROOF. It is enough to show that /™! of a closed set is closed. A closed set
of Al is a finite set of points, so it is sufficient to show that f~(a) =
(Pe Y|f(P) = a} is closed for any a e k. This can be checked locally: a
subset Z of a topological space Y is closed if and only if Y can be covered
by open subsets U such that Z n U is closed in U for each U. So let U be
an open set on which f can be represented as g/h, with g,h € A, and h no-
where 0 on U. Then [~ '(a) n U = {P € U|g(P)/h(P) = a}. But g(P)/h(P) =
a if and only if (g — ah)(P) = 0. So [ Ya) n U = Z(g — ah) n U which
is closed. Hence f ™ '(u) is closed in Y.

n

Now let us consider a quasi-projective variety Y < P".

Definition. A function f:Y — k is regular at a point P € Y if there is an open
neighborhood U with Pe U < Y, and homogeneous polynomials
g.heS = k[xq.....x,], of the same degree, such that /1 is nowhere zero
on U, and f = g/h on U. (Note that in this case, even though ¢ and h
are not functions on P”, their quotient is a well-defined function whenever
h # 0, since they are homogeneous of the same degree.) We say that
fis regular on Y if it 1s regular at every point.

Remark 3.1.1. As in the quasi-affine case, a regular function is necessarily
continuous (proof left to reader). An important consequence of this is the
fact that if f and ¢ are regular functions on a variety X, and if /' = ¢ on
some nonempty open subset " = X, then f = ¢ everywhere. Indeed, the
set of points where /' — ¢ = 0 is closed and dense, hence equal to X.

Now we can define the category of varieties.

Definition. Let k be a fixed algebraically closed field. A cariety over k (or
simply rvariety) is any affine, quasi-affine, projective, or quasi-projective
variety as defined above. If XY are two varieties, a morphism ¢: X — Y

15
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is a continuous map such that for every open set V' < Y, and for every
regular function f: 1" — k, the function /' ¢:¢~ (V) — k is regular.

Clearly the composition of two morphisms is a morphism, so we have a
category. In particular, we have the notion of isomorphism: an isomorphism
¢@:X — Y of two varieties is a morphism which admits an inverse morphism
WY - X withy ¢ = idyand ¢ ¢ = id,. Note that an isomorphism is
necessarily bijective and bicontinuous, but a bijective bicontinuous mor-
phism need not be an isomorphism (Ex. 3.2).

Now we introduce some rings of functions associated with any variety.

Definition. Let Y be a variety. We denote by ((Y) the ring of all regular
functions on Y. If P is a point of ¥, we define the local ring of P on Y,
Cpy (or simply () to be the ring of germs of regular functions on Y
near P. In other words, an element of ¢ is a pair <U,f> where U is an
open subset of Y containing P, and f is a regular function on U, and
where we identify two such pairs <U,f> and (Vg> if f = gon U n V.
(Use (3.1.1) to verify that this is an equivalence relation!)

Note that (' is indeed a local ring: its maximal ideal m is the set of germs
of regular functions which vanish at P. For if f(P) # 0, then 1/f is regular
in some neighborhood of P. The residue field ¢ p/m is isomorphic to k.

Definition. If Y is a variety, we define the function field K(Y)of Y as follows:
an element of K(Y) is an equivalence class of pairs <U,f) where U is a
nonempty open subset of Y, [ is a regular function on U, and where
we identify two pairs (U, f> and (Vig> if f = g on U n V. The elements
of K(Y) are called rational functions on Y.

Note that K(Y) is in fact a field. Since Y is irreducible, any two non-
empty open sets have a nonempty intersection. Hence we can define addition
and multiplication in K(Y), making it a ring. Then if (U.f) € K(Y) with
f # 0, we can restrict f to the open set V= U — U n Z(f) where it never
vanishes, so that 1/ is regular on ¥V, hence {V.1f) is an inverse for (U, f).

Now we have defined, for any variety Y, the ring of global functions ((Y),
the local ring ¢ , at a point of Y, and the function field K(Y). By restricting
functions we obtain natural maps ((Y) — ¢, — K(Y) which in fact are
injective by (3.1.1). Hence we will usually treat ¢ (Y) and ¢ as subrings of
K(Y).

If we replace Y by an isomorphic variety, then the corresponding rings are
isomorphic. Thus we can say that ( (Y), Cp, and K(Y) are invariants of the
variety Y (and the point P) up to isomorphism.

Our next task is to relate ¢(Y), ¢p, and K(Y) to the affine coordinate
ring A(Y) of an afline variety, and the homogeneous coordinate ring S(Y)

16
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of a projective variety, which were introduced earlier. We will find that for
an affine variety Y. A(Y) = ((Y), so it is an invariant up to isomorphism.
However, for a projective variety Y, S(Y) is not an invariant: it depends on
the embedding of Y in projective space (Ex. 3.9).

Theorem 3.2. Let Y < A" be an affine variety with affine coordinate ring
AY). Then:

(@) ((Y) = A(Y);

(b) for each point Pe Y, let mp < A(Y) be the ideal of functions
vanishing at P. Then P m, gives a 1-1 correspondence between the
points of Y and the maximal ideals of A(Y):

(c) foreach P, p = A(Y),,,, and dim ¢, = dim Y

(d) K(Y) is isomorphic to the quotient field of A(Y), and hence K(Y)
is a finitely generated extension field of k, of transcendence degree = dim Y.

Proor. We will proceed in several steps. First we define a map a: A(Y) —
((Y). Every polynomial f e A = k[xy,...,x,] defines a regular function
on A" and hence on Y. Thus we have a homomorphism 4 — ((Y). Its
kernel is just I(Y), so we obtain an injective homomorphism a: A(Y) — ¢ (Y).

From (1.4) we know there is a 1-1 correspondence between points of Y
(which are the minimal algebraic subsets of Y) and maximal ideals of A
containing I(Y). Passing to the quotient by I(Y), these correspond to the
maximal ideals of A(Y). Furthermore, using x to identify elements of A(Y)
with regular functions on Y, the maximal ideal corresponding to P is just
mp = [ f e A(Y)|f(P) = 0]. This proves (b).

For each P there is a natural map A(Y),, — Cp. Itis injective because «
is injective, and it is surjective by definition of a regular function! This
shows that ¢ p = A(Y),,,. Now dim (', = height m,. Since A(Y),mp = k,
we conclude from (1.7) and (1.8A) that dim ¢ p = dim Y.

From (¢) it follows that the quotient field of A(Y) is isomorphic to the
quotient field of ¢, for every P, and this is equal to K(Y), because every
rational function is actually in some ('p. Now A(Y) is a finitely generated
k-algebra, so K(Y) is a finitely generated field extension of k. Furthermore,
the transcendence degree of K(Y) k is equal to dim Y by (1.7) and (1.8A).
This proves (d).

To prove (a) we note that ((Y) < ()., (p, where all our rings are re-
garded as subrings of K(Y).

Using (b) and (c) we have

AY) S ((Y) S [)AY),,

"

where nt runs over all the maximal ideals of A(Y). The equality now follows
from the simple algebraic fact that if B is an integral domain, then B is
equal to the intersection (inside its quotient field) of its localizations at all
maximal ideals.

17
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Proposition 3.3. Let U, = P" be the open set defined by the equation x, # 0.
Then the mapping @,: U, — A" of (2.2) above is an isomorphism of varieties.

PrOOF. We have already shown that it is a homeomorphism, so we need
only check that the regular functions are the same on any open set. On U,
the regular functions are locally quotients of homogeneous polynomials in
Xg, .- .,X, of the same degree. On A" the regular functions are locally
quotients of polynomials in yy, . ...y, One can check easily that these two
concepts are identified by the maps « and f§ of the proof of (2.2).

Before stating the next result, we introduce some notation. If S is a
graded ring, and p a homogeneous prime ideal in S, then we denote by S,
the subring of elements of degree 0 in the localization of S with respect to
the multiplicative subset T consisting of the homogeneous elements of S
notin p. Note that T~ 'S has a natural grading given by deg( f/g) = deg ' —
deg g for f homogeneous in S and ge T. S, is a local ring, with maximal
ideal (p - T7'S) N S,,- In particular, if S is a-domain, then for p = (0) we
obtain a field S;,. Similarly, if / € S is a homogeneous element, we denote
by S, the subring of elements of degree 0 in the localized ring S .

Theorem 3.4. Let Y < P" be a projective variety with homogeneous co-
ordinate ring S(Y). Then:
(@) €(Y) = k;
(b) for any point P e Y, let mp < S(Y) be the ideal generated by the
set of homogeneous f € S(Y) such that f(P) = 0. Then Cp = S(Y ),
(©) K(Y) = S(Y)o.

PrROOF. To begin with, let U; < P" be the open set x, # 0, and let Y, =
Y n U;. Then U, is isomorphic to A" by the isomorphism ¢; of (3.3), so we
can consider Y; as an affine variety. There is a natural isomorphism ¢¥
of the affine coordinate ring A(Y;) with the localization S(Y),,,, of the homo-
geneous coordinate ring of Y. We first make an isomorphism of k[ yy, . . ., ,]
with k[xo, ... .X,], by sending f(y,...,»,) to f(xo/x;, ... X,/X;), leaving
out x;/x;, as in the proof of (2.2). This isomorphism sends I(Y;) to I(Y)S,,
(cf. Ex. 2.6), so passing to the quotient, we obtain the desired isomorphism
GFIAY) = S(Y),.

Now to prove (b), let P e Y be any point, and choose i so that P e Y;.
Then by (3.2), €p = A(Y)),,,, where m} is the maximal ideal of A(Y;) corre-
sponding to P. One checks easily that ¢¥(mp) = mp - S(Y),,). Now x; ¢ mp,
and localization is transitive, so we find that A(Y,),, = S(Y).,,, which
proves (b).

To prove (c), we use (3.2) again to see that K(Y), which is equal to K(Y)),
is the quotient field of A(Y;). But by ¢}, this is isomorphic to S(Y ).

To prove (a), let f € O(Y) be a global regular function. Then for each i,
f is regular on Y, so by (3.2), f € A(Y,). But we have just seen that A(Y;) =~
S(Y)y,, so we conclude that f can be written as g;/xY* where g, € S(Y) is

18
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homogeneous of degree N;. Thinking of ¢(Y), K(Y) and S(Y) all as sub-
rings of the quotient field L of S(Y), this means that x}'f € S(Y )y, for each i.
Now choose N > Y N,. Then S(Y)y is spanned as a k-vector space by
monomials of degree N in xq,...,X,, and in any such monomial, at least
one x; occurs to a power = N;. Thus we have S(Y), - f < S(Y)y. Iterating,
we have S(Y)y - f? < S(Y)y for all ¢ > 0. In particular, x§ f4 e S(Y) for
allg > 0. Th1s shows that the subring S(Y)[ f] of Lis contained in x; ¥S(Y),
which is a finitely generated S(Y)-module. Since S(Y) is a noetherian ring,

Y)[f] is a finitely generated S(Y)-module, and therefore [ is integral
over S(Y) (see, e.g., Atiyah-Macdonald [1, p. 59]). This means that there
are elements a,, . .. 4, € S(Y) such that

M+ a "+ + 4, = 0.

Since f has degree 0, we can replace the ¢; by their homogeneous components
of degree 0, and still have a valid equation. But S(Y), = k, so the g; € k,
and f is algebraic over k. But k is algebraically closed, so f € k, which
completes the proof.

Our next result shows that if X and Y are affine varieties, then X is iso-
morphic to Y if and only if A(X) is isomorphic to A(Y) as a k-algebra.
Actually the proof gives more, so we state the stronger result.

Proposition 3.5. Let X be any variety and let 'Y be an affine variety. Then
there is a natural bijective mapping of sets

2:Hom(X,Y) = Hom(A(Y).((X))

where the left Hom means morphisms of varieties, und the right Hom
means homomorphisms of k-algebras.

ProoOF. Given a morphism ¢:X — Y, ¢ carries regular functions on Y to
regular functions on X. Hence ¢ induces a map ((Y) to ¢/(X), which is
clearly a homomorphism of k-algebras. But we have seen (3.2) that ((Y) =
A(Y'), so we get a homomorphism A(Y) — ¢ (X). This defines «.

Conversely, suppose given a homomorphism /i: A(Y ) — ¢ (X ) of k-algebras.
Suppose that Y is a closed subset of A", so that A(Y) = k[x,,....x,]/I(Y).
Let X; be the image of x; in A(Y), and consider the elements & = h(X;) € € (X).
These are global functions on X, so we can use them to define a mapping
VX > A"by y(P) = (E(P),... .5 (P))forPe X.

We show next that the image of y is contained in Y. Since Y = Z(I(Y)),
it is sufficient to show that for any P € X and any f € I(Y), f(#(P)) = 0. But

SW(P)) = f(&i(P), ... .Cu(P)).
Now f is a polynomial, and /1 is a homomorphism of k-algebras, so we have

SEU(P), . &uP)) = h(f(Xy, ... X)NP) =0
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since f € I(Y). So ¢ defines a map from X to Y, which induces the given
homomorphism h.

To complete the proof, we must show that i is a morphism. This is a
consequence of the following lemma.

Lemma 3.6. Let X be any variety, and let Y < A" be an affine variety. A
map of sets y:X — Y is a morphism if and only if x; - is a regular
function on X for each i, where x,,....x, are the coordinate functions
on A".

PROOF. If { is a morphism, the x; - y must be regular functions, by definition
of a morphism. Conversely, suppose the x; = i are regular. Then for any
polynomial f = f(xy,...,x,), f < is also regular on X. Since the closed
sets of Y are defined by the vanishing of polynomial functions, and since
regular functions are continuous, we see that iy ~! takes closed sets to closed
sets, so Y 1s continuous. Finally, since regular functions on open subsets of
Y are locally quotients of polynomials, g - is regular for any regular
function g on any open subset of Y. Hence y is a morphism.

Corollary 3.7. If XY are two affine varieties, then X and Y are isomorphic
if and only if A(X)and A(Y) are isomorphic as k-algebras.

PrOOF. Immediate from the proposition.
In the language of categories, we can express the above result as follows:

Corollary 3.8. The functor X — A(X) induces an arrow-retersing equivalence
of categories between the category of affine varieties over k and the category
of finitely generated integral domains over k.

We include here an algebraic result which will be used in the exercises.

Theorem 3.9A (Finiteness of Integral Closure). Let A be an integral domain
which is a finitely generated algebra over u field k. Let K be the quotient
field of A, and let L be a finite algebraic extension of K. Then the integral
closure A" of A in L is u finitely generated A-module, and is also a finitely
generated k-ualgebra.

PROOF. Zariski-Samuel [1, vol. 1, Ch. V., Thm. 9, p. 267.]

EXERCISES

3.1. (a) Show that any conic in A? is isomorphic either to A' or A’ — (0! (cf. Ex. 1.1).
(b) Show that A! is nor isomorphic to any proper open subset of itself. (This result
is generalized by (Ex. 6.7) below.)
(c) Any conic in P? is isomorphic to P'.
(d) We will see later (Ex. 4.8) that any two curves are homeomorphic. But show
now that A2 is not even homeomorphic to P2,
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3.2.

3.3.

w
in

3.7.

3.9.

3 Morphisms

(e} Ifan affine variety is isomorphic to a projective variety, then it consists of only
one point.

A morphism whose underlying map on the topological spaces is a homeomor-

phism need not be an isomorphism.

(a) Forexample, let :A' — A? be defined by 1+ (1%.r%). Show that ¢ defines a
bijective bicontinuous morphism of A! onto the curve 2 = x>, but that ¢ is
not an isomorphism.

(b) For another example. let the characteristic of the base field A be p > 0, and
define amap @:A' - A' by 1+ ", Show that ¢ is bijective and bicontinuous
but not an isomorphism. This is called the F obenius mosphism.

(a) Let ¢:X — Y be a morphism. Then for each P € X. ¢ induces a homomor-
phism of local rings ¢F:( ,p)y = Cp .

(b) Show that a morphism ¢ 1s an isomorphism if and only if ¢ 1s a homeomor-
phism. and the induced map ¢} on local rings is an isomorphism, for all P € X.

(¢) Show that if (X)) is dense in Y, then the map ¢ is injective for all P e X.

. Show that the d-uple embedding of P" (Ex. 2.12) is an isomorphism onto its

image.

. By abuse of language. we will say that a variety “is afline™ if it is isomorphic to

an affine variety. If H < P" is any hypersurface. show that P" — H is affine.
[Hint: Let H have degree d. Then consider the d-uple embedding of P in P®
and use the fact that P* minus a hyperplane is afline.

. There are quasi-affine varieties which are not affine. For example, show that

X = A2 — {(0.0)] is not aftine. [Hini: Show that ¢ (X) = A[x.y] and use (3.5).
See (111, Ex. 4.3) for another proof.]

{a) Show that any two curves in P? have a nonempty intersection.

(b) More generally, show that if Y = P"is a projective variety of dimension > 1.
and if H is a hypersurface. then Y n H # (. [Hiul: Use (Ex. 3.5) and (Ex.
3.1e). See (7.2) for a generalization. ]

. Let H, and H, be the hyperplanes in P" defined by v, = 0O and x, = O, with i # .

Show that any regular function on P" — (H, n H)) is constant. (This gives an
alternate proof of (3.4a) in the case ¥ = P")

The homogeneous coordinate ring of a projective variety is not invariant under
isomorphism. For example, let X = P'. and let Y be the 2-uple embedding of
P'in P2 Then X = Y (Ex. 3.4). But show that S(X) # S(}).

. Subraricties. A subset of a topological space is locally closed if it is an open

subset of its closure. or. equivalently. if it is the intersection of an open set with
a closed set.

If X" is a quasi-afline or quasi-projective variety and Y is an irreducible locally
closed subset. then Y is also a quasi-affine (respectively. quasi-projective) variety.
by virtue of being a locally closed subset of the same affine or projective space.
We call this the induced structure on Y. and we call Y a subreriety of X.

Now let ¢:X — } be a morphism. let X' = X and Y' < Y be irreducible
locally closed subsets such that ¢(X') = Y. Show that ¢[, : X' — Y is a mor-
phism.
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3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

22

Let X be any variety and let P € X. Show thereis a 1-1 correspondence between
the prime ideals of the local ring ¢ p and the closed subvarieties of X containing P.

If Pis a point on a variety X. then dim ¢, = dim X. [Hinr: Reduce to the
affine case and use (3.2¢).]

The Local Ring of « Subtaricty Let Y = X be a subvariety. Let ¢, | be the set
of equivalence classes (U.f> where U < X 1s open, L n Y # J. and f 15 a
regular function on U. Wesay (U.f) isequivalent to (Vy). if f = gyon U n 1.
Show that (' , is a local ring, with residue field K(Y') and dimension = dim X —
dim Y. It is the local ring of Y on X. Note if ¥ = P is a point we get ( ,. and if
Y = X we get K(X). Note also that if Y is not a point, then K{Y') is not alge-
braically closed, so in this way we get local rings whose residue fields are not
algebraically closed.

Projection from a Point. Let P" be a hyperplane in P""! and let Pe P"*' — P".
Define a mapping ¢:P""' — P} — P" by ¢(Q) = the intersection of the unique
line containing P and Q with P"

(a) Show that ¢ i1s a morphism.

(b) Let Y = P? be the twisted cubic curve which is the image of the 3-uple em-
bedding of P' (Ex. 2.12). If r.u are the homogeneous coordinates on P'. we
say that Y is the curve given parametrically by (x,v.zv) = (£, 12wt i), Let
P = (0,0,1,0), and let P? be the hyperplane - = 0. Show that the projection of
Y from P is a cuspidal cubic curve in the plane, and find its equation.

Products of Affine Varieties. Let X < A"and Y < A™ be affine varieties.

(a) Show that X x Y < A"™™ with its induced topology is irreducible. [Hint:
Suppose that X x Y is a union of two closed subsets Z, U Z,. Let X, =
xeX|xx Y<2Z], i=12 Show that X = X, U X, and XX, are
closed. Then X = X, or X, s0 X x Y =Z, or Z,.] The affine variety
X x Yis called the product of X and Y. Note that its topology is in general
not equal to the product topology (Ex. 1.4).

Show that 4(X x Y) = A(X) ®, A(Y).

Show that X x Y is a product in the category of varieties, iL.e., show (i) the
projections X x Y — X and X x Y — Y are morphisms, and (ii) given a
variety Z, and the morphisms Z - X, Z — Y, there is a unique morphism
Z — X x Y making a commutative diagram

s

(d) Show thatdim X x ¥ = dim X + dim Y.

Products of Quasi-Projective Varieties. Use the Segre embedding (Ex. 2.14) to
identify P" x P™ with its image and hence give it a structure of projective variety.
Now for any two quasi-projective varieties X < P" and Y < P", consider
X x Y<ePx P
(a) Show that X x Y is a quasi-projective variety.
(b) If X.Y arc both projective, show that X x Y is projective.

*(c) Show that X x Y is a product in the category of varictics.



3.17.

3.19.

*

3.20.

3.21.

3 Morphisms

Normal Varieties. A variety Y is normal ar « point P e Y if ¢, is an integrally

closed ring. Y is normal if it is normal at every point.

{a) Show that every conic in P? is normal.

(b) Show that the quadric surfaces Q,,Q, in P? given by equations Q,:x) = ow:
Q,:xy = =2 are normal (cf. (II. Ex. 6.4) for the latter.)

(c) Show that the cuspidal cubic y> = x? in A? is not normal.

(d) If Y is affine, then Y is normal <> A(Y) is integrally closed.

(e) Let Y be an affine variety. Show that there is a normal affine variety ¥, and a
morphism 7: Y — Y, with the property that whenever Z is a normal variety,
and ¢:Z — Y is a dominant morphism (i.e., @(Z) is dense in Y), then there is
a unique morphism 0:Z — ¥ such that ¢ = n 0. Y is called the normaliza-
tion of Y. You will need (3.9A) above.

. Projectively Normal Varieties. A projective variety Y < P" is projectively normal

(with respect to the given embedding) if its homogeneous coordinate ring S(})

1s integrally closed.

(a) If Y is projectively normal. then Y is normal.

(b) There are normal varieties in projective space which are not projectively
normal. For example. let Y be the twisted quartic curve in P? given para-
metrically by (x.y.zov) = (103w u*). Then Y is normal but not projectively
normal. See (111, Ex. 5.6) for more examples.

(¢) Show that the twisted quartic curve Y above is isomorphic to P'. which is
projectively normal. Thus projective normality depends on the embedding.

Automorphisms of A". Let ¢:A" > A" be a morphism of A" to A" given by n

polynomials f,.... f, of n variables x,,.... X, Let J = det|Cf,/Cx;| be the

Jacobian polynomial of ¢.

(a) If ¢ is an isomorphism (in which case we call ¢ an automorphism of A") show
that J is a nonzero constant polynomial.

*(b) The converse of (a) is an unsolved problem, even for n = 2. See, for example.

Vitushkin [1].

Let Y be a variety of dimension =2, and let P € Y be a normal point. Let f be
a regular function on Y — P.
(a) Show that f extends to a regular function on Y.
(b) Show this would be false for dim Y = 1.
See (I11. Ex. 3.5) for generalization.

Group Varieties. A group variety consists of a variety Y together with a morphism

1Y x Y — Y. such that the set of points of Y with the operation given by g is a

group. and such that the inverse map » — v~ ! is also a morphism of ¥ - Y.

(a) The additire group G, is given by the variety A' and the morphism j: A? — A’
defined by p(a.h) = « + h. Show it is a group variety.

(b) The multiplicative group G,, is given by the variety A' — (0)! and the mor-
phism gta.hy = ab. Show 1t is a group varicty.

(c) IfGisagroupvariety. and X is any variety. show that the set Hom(X.G) has a
natural group structure.

(d) For any variety X, show that Hom(X.G,) is isomorphic to ¢ (X) as a group
under addition.

(e) For any variety X, show that Hom(X.G
in ¢ (X), under multiplication.

) is isomorphic to the group of units

m
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4 Rational Maps

In this section we introduce the notions of rational map and birational
equivalence. which are important for the classification of varieties. A rational
map is a morphism which is only defined on some open subset. Since an
open subset of a variety is dense. this already carries a lot of information.
In this respect algebraic geometry is more “rigid” than differential geometry
or topology. In particular. the concept of birational equivalence is unique
to algebraic geometry.

Lemma 4.1. Let X and Y be varieties, let ¢ and  be two morphisms from
X to Y. and suppose there is a nonempty open subset U <= X such that

ol =Yl Theng = .

ProOF. We may assume that ¥ < P" for some n. Then by composing with
the inclusion morphism Y — P”, we reduce to the case ¥ = P". We consider
the product P" x P” which has a structure of projective variety given by its
Segre embedding (Ex. 3.16). The morphisms ¢ and  determine a map
@ X Yy: X — P" x P", which in fact is a morphism (Ex. 3.16¢). Let 4 =
P x P|PeP"| be the diugonal subset of P" x P". It is defined by the
equations [x; v, = x,v|i.j = 0.1..... i and so is a closed subset of P" x P".
By hypothesis ¢ x y(U) = 4. But U is dense in X, and 4 is closed, so
@ x Y(X) < 4. This says that ¢ = .

Definition. Let X.Y be varieties. A rational map ¢: X — Y is an equivalence
class of pairs (U.p > where U is a nonempty open subset of X. ¢, is a
morphism of U to Y. and where (U.p, > and (V.o, ) are equivalent if
¢ and ¢, agree on U n V. The rational map ¢ is dominant if for some
(and hence every) pair (U.¢ >, the image of ¢, is dense in Y.

Note that the lemma implies that the relation on pairs {(U.p;> just
described is an equivalence relation. Note also that a rational mapp: X — Y
is not in general a map of the set X to Y. Clearly one can compose dominant
rational maps, so we can consider the category of varieties and dominant
rational maps. An “isomorphism™ in this category is called a birational map:

Definition. A hirational map ¢:X — Y is a rational map which admits an
inverse. namely a rational map :Y — X such that ¢ = idy and
¢ = idy as rational maps. If there is a birational map from X to Y.
we say that X and Y are hirationally equivalent, or simply hirational.

The main result of this section is that the category of varieties and domi-
nant rational maps is equivalent to the category of finitely generated field
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extensions of k, with the arrows reversed. Before giving this result, we need
a couple of lemmas which show that on any variety, the open affine subsets
form a base for the topology. We say loosely that a variety is affine if it is
isomorphic to an affine variety.

Lemma 4.2, Let Y be a hypersurface in A" given by the equation f(x, ... .x,) =
0. Then A" — Y is isomorphic to the hypersurfuce H in A™*' given by
X,oof = 1. In particular, A" — Y is affine, and its affine ring is
K[xpoo oo, ],

PrROOF. For P = (a,,....u,,,) € H, let @(P) = (a,.....q,). Then clearly ¢
is a morphism from H to A", corresponding to the homomorphism of rings
A — A, where 4 = k[x,.....x,]. Itisalso clear that ¢ gives a bijective
mapping of H onto its image, which is A" — Y. To show that ¢ is an isomor-
phism, it is sufficient to show that ¢ ~ ' is a morphism. But ¢ ™ '(ay, ... .,q,) =
(dye .o flag. oo da,)). so the fact that ¢ ! is a morphism on A" — Y
follows from (3.6).

Proposition 4.3. On any variety Y, there is a buse for the topology consisting
of open affine subsets.

PrROOF. We must show for any point P € Y and any open set U containing P,
that there exists an open affine set V' with Pe V < U. First, since U is also
a variety, we may assume L' = Y. Secondly, since any variety is covered by
quasi-affine varieties (2.3), we may assume that Y is quasi-affine in A"
Let Z = Y — Y, which is a closed set in A", and let a = 4 = k[x,,....x,]
be the ideal of Z. Then, since Z is closed, and P ¢ Z, we can find a polynomial
f € a such that f(P) # 0. Let H be the hypersurface f/ = 0 in A". Then
Z < H but P¢ H Thus PeY — Y n H, which is an open subset of
Y. Furthermore, ¥ — Y n H is a closed subset of A" — H, which is affine
by (4.2), hence Y — Y ~ H is affine. This is the required affine neighbor-
hood of P.

Now we come to the main result of this section. Let ¢:X — Y be a
dominant rational map, represented by (U.p;>. Let f € K(Y) be a rational
function, represented by (1 f > where V is an open set in Y. and f is a regular
function on V. Since ¢(U) is dense in Y, ¢ '(V) is a nonempty open subset
of X, so f ¢ is a regular function on ¢ '(V). This gives us a rational
function on X, and in this manner we have defined a homomorphism of
k-algebras from K(Y) to K(X).

Theorem 4.4. For any two varieties X and Y, the above construction gives a
bijection between

(1) the set of dominant rational maps from X to Y, und
(i) the set of k-ulgebra homomorphisms from K(Y) to K(X).
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Furthermore, this correspondence gives an arrow-reversing equivalence of
categories of the category of varieties and dominant rational maps with the
category of finitely generated field extensions of k.

ProoOF. We will construct an inverse to the mapping given by the construction
«bove. Let 0:K(Y) - K(X) be a homomorphism of k-algebras. We wish
to define a rational map from X to ¥, By (4.3), Y is covered by affine varieties.
so we may assume Y is affine. Let A(Y) be its affine coordinate ring. and let
Vi, . ...V, be generators for A(Y) as a k-algebra. Then 0(y,).. ... O(y,) are
rational functions on X. We can find an open set U < X such that the func-
tions 0( ;) are all regular on U. Then 0 defines an injective homomorphism
of k-algebras A(Y)— ((U). By (3.5) this corresponds to a morphism
¢:U — Y, which gives us a dominant rational map from X to Y. It is easy
to see that this gives a map of sets (i) — (i) which is inverse to the one defined
above.

To see that we have an equivalence of categories as stated. we need only
check that for any variety Y, K(Y) is finitely generated over k, and conversely,
if K/k is a finitely generated field extension, then K = K(Y) for some Y.
If Y is a variety, then K(Y) = K(U) for any open affine subset, so we may
assume Y affine. Then by (3.2d), K(Y) is a finitely generated field extension
of k. On the other hand, let K be a finitely generated field extension of k.
Let v,....1, € K be a set of generators, and let B be the sub-k-algebra of K
generated by yv...., v,. Then B is a quotient of the polynomial ring
A = Kk[x......x,].s0 B = A(Y) for some variety ¥ in A". Then K = K(Y)
so we are done.

Corollary 4.5. For any two varieties X.Y the following conditions are equit-
alent:

(1) X and Y are birationally equivalent:
(i) there are open subsets U < X and V< Y with U isomorphic to V.
(it1) K(X) = K(Y) as h-algebras.

PRrROOF.

(1) = (i) Letp:X — Yandy:Y — X be rational maps which are inverse
to each other. Let ¢ be represented by (U.¢) and let  be represented by
(Vap>. Then ¢ isrepresented by <o (V) @), andsince y ¢ = id,
as a rational map. ¥ ¢ is the identity on ¢~ (V). Similarly ¢  is the
identity on i ~'(U). We now take ¢ '(y " '(L')) as our open set in X, and
W Y@~ (V))as our openset in Y. It follows from the construction that these
two open sets are isomorphic via ¢ and .

(i1) = (ii1) follows from the definition of function field.

(iii) = (i) follows from the theorem.

As an illustration of the notion of birational correspondence, we will use
some algebraic results on field extensions to show that cvery variety is bi-
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rational to a hypersurface. We assume familiarity with the notion of sepa-
rable algebraic field extensions, and the notions of transcendence base and
transcendence degree for infinite field extensions (see, e.g., Zariski-Samuel
[1, Ch. I1)).

Theorem 4.6A (Theorem of the Primitive Element). Let L be afinite separable
extension field of u field K. Then there is an element o € L which generates
L as an extension field of K. Furthermore, if f,,....B, is any set of
generators of L over K, and if K is infinite, then o can be taken to be u
linear combination o = ¢, + ... + ¢,f, of the B, with coefficients
¢, € K.

PrOOF. Zariski-Samuel [ 1, Ch. 11, Theorem 19, p. 84]. The second statement
follows from the proof given there.

Definition. A field extension K k is separably generated if there is a tran-
scendence base {x;] for K/k such that K is a separable algebraic extension
of k({x;}). Such a transcendence base is called a separating transcendence
base.

Theorem 4.7A. If u field extension K/k is finitely generated and sepurably
generated, then any set of generators contains a subset which is a separating
transcendence base.

ProoF. Zariski-Samuel [ 1, Ch. II, Theorem 30, p. 104].
Theorem 4.8A. If k is u perfect field (hence in particular if 'k is algebraically
closed), any finitely generated field extension Kk is separably generated.

ProoF. Zariski-Samuel [1, Ch. 1I, Theorem 31, p. 105], or Matsumura
[2. Ch. 10, Corollary, p. 194].

Proposition 4.9. Any variety X of dimension r is birational to a hypersurfuce
YinP L

Proor. The function field K of X is a finitely generated extension field of k.
By (4.8A). K is separably generated over k. Hence we can find a transcendence

base x,. ... . X, € K such that K is a finite separable extension of k(x,, .. . ,x,).
Then by (4.6A) we can find one further element ye K such that
K = k(x;.....x.0). Now v is algebraic over k(x,,....,x,). so it satisfies a
polynomial equation with coefficients which are rational functions in
AT X,. Clearing denominators, we get an irreducible polynomial
f(x1.. .. x,1) = 0. This defines a hypersurface in A’*' with function

field K, which, according to (4.5), is birational to X. Its projective closure
(Ex. 2.9) is the required hypersurface Y < P!,
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Blowing Up
As another example of a birational map, we will now construct the blowing-
up of a variety at a point. This important construction is the main tool in
the resolution of singularities of an algebraic variety.

First we will construct the blowing-up of A" at the point O = (0, .. .. 0).
Consider the product A" x P"~! which is a quasi-projective variety
(Ex. 3.16). If x,,...,x, are the affine coordinates of A", and if yv,,...,y,
are the homogeneous coordinates of P"~! (observe the unusual notation!),
then the closed subsets of A" x P""! are defined by polynomials in the
X;, ¥, which are homogeneous with respect to the y;.

We now define the hlowing-up of A" at the point O to be the closed subset
X of A" x P" ! defined by the equations {x;); = .‘<jy,~]i,j =1,...n}.

X An X Pn*l
%

AU

We have a natural morphism ¢:X — A" obtained by restricting the pro-
jection map of A" x P""! onto the first factor. We will now study the
properties of X.

(1) If Pe A", P # O, then ¢~ (P) consists of a single point. In fact,
¢ gives an isomorphism of X — ¢~ '(0) onto A" — 0. Indeed, let P =
(ay, ... a,), with some ¢; # 0. Now if P x (yy,...,Vv,) € ¢ (P), then for
each j, yv; = (a;/a;) ¥, so (¥, ...,»,) is uniquely determined as a point in
P"~!. In fact, setting y; = a;, we can take (v,,...,v,) = (ay,....q,). Thus
¢~ '(P) consists of a single point. Furthermore, for P e A" — O, setting
W(P) = (ay,....a,) x (ay,....a,) defines an inverse morphism to ¢,
showing X — ¢ ~!(0) is isomorphic to A" — O.

(2) ¢ (0) = P"'. Indeed, ¢~ '(0) consists of all points O x Q, with
Q0 = (). ...,1,) € P"" ! subject to no restriction.

(3) The points of ¢~ '(0) are in 1-1 correspondence with the set of lines
through O in A". Indeed, a line L through O in A" can be given by para-
metric equations x; = ¢;t, i = 1,....n, where ¢, € k are not all zero, and
t € A'. Now consider theline L' = ¢ L — 0)in X — ¢~ (0). Itis given
parametrically by x; = «;t, 1; = «;t, with t € A — 0. But the y, are homo-
geneous coordinates in P"7', so we can equally well describe L’ be the
equations x; = «;f,); = a;, for te A' — O. These equations make sense
also for ¢ = 0, and give the closure L' of L' in X. Now L’ meets ¢ ~(0) in
the point Q = (ay,...,u,) € P"" ' so we see that sending L to Q gives a
1-1 correspondence between lines through O in A" and points of ¢~ '(0).

(4) X is irreducible. Indeed, X is the union of X — ¢~ (0) and ¢~ }(0).
The first piece is isomorphic to A" — O, hence irreducible. On the other
hand, we have just seen that every point of ¢~ '(0) is in the closure of some
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<

t£0
Figure 3. Blowing up.

subset (the line L') of X — ¢~ '(0). Hence X — ¢~ '(0) is dense in X, and
X is irreducible.

Definition. If Y is a closed subvariety of A" passing through O. we define
the blowing-up of Y at the point O to be Y = (¢ (Y — 0))". where
@:X — A" is the blowing-up of A" at the point O described above. We
denote also by ¢: Y — Y the morphism obtained by restricting ¢: X — A"
to Y. To blow up at any other point P of A", make a linear change of
coordinates sending P to O.

Note that ¢ induces an isomorphism of Y — @ Y0)to Y — O, so that
¢ is a birational morphism of Y to ¥, Notealso that this definition apparently
depends on the embedding of Y in A" but in fact, we will see later that
blowing-up is intrinsic (I1, 7.15.1).

The effect of blowing up a point of Y is to “pull apart™ Y near O according
to the different directions of lines through O. We will illustrate this with
an example.

Example 4.9.1. Let Y be the plane cubic curve given by the equation 1? =
N3 (x + 1). We will blow up Y at O (Fig. 3). Let t,u be homogeneous co-
ordinates for P'. Then X. the blowing-up of A? at O, is defined by the
equation xu = (1 inside A% x P'. It looks like A, except that the point O
has been replaced by a P! corresponding to the slopes of lines through O.
We will call this P! the exceptional curve, and denote it by E.

We obtain the total inverse image of Y in X by considering the equations
2 = x3x + I)and xu = 1v in A2 x P'. Now P! is covered by the open
sets t # 0 and u # 0, which we consider separately. If r # 0, we can set
t = 1. and use i as an affine parameter. Then we have the equations

2

=X+ 1)
Y= Xxu
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in A® with coordinates x,y.u. Substituting, we get x*u? — x*(x + 1) = 0,
which factors. Thus we obtain two irreducible components, one defined by
x = 0, v = 0, u arbitrary, which is E, and the other defined by u*> = x + 1,
v = xu. Thisis ¥, Note that ¥ meets E at the points 1 = +1. These points
correspond to the slopes of the two branches of ¥ at O.

Similarly one can check that the total inverse image of the x-axis consists
of E and one other irreducible curve, which we call the strict transform of the
x-axis (it is the curve L’ described earlier corresponding to the line L = x-axis).
This strict transform meets E at the point u = 0. By considering the other
open set u # 0 in A% x P!, one sees that the strict transform of the y-axis
meets E at the pointt = 0, u = 1.

These conclusions are summarized in Figure 3. The effect of blowing up
is thus to separate out branches of curves passing through O according to
their slopes. If the slopes are different, their strict transforms no longer meet
in X. Instead, they meet E at points corresponding to the different slopes.

EXERCISES

4.1. If f and ¢ are regular functions on open subsets U and V of a variety X, and if
f = gon U n V.show that the function which is f on U and g on V is a regular
function on U u V. Conclude that if f is a rational function on X, then there is
a largest open subset U of X on which f is represented by a regular function.
We say that f is defined at the points of U.

4.2. Same problem for rational maps. If ¢ is a rational map of X to Y, show there
is a largest open set on which ¢ is represented by a morphism. We say the ra-
tional map is defined at the points of that open set.

4.3. (a) Let f be the rational function on P? given by ' = x,/x,. Find the set of points
where f is defined and describe the corresponding regular function.
(b) Now think of this function as a rational map from P? to A!. Embed A! in P',
and let :P? — P! be the resulting rational map. Find the set of points where
¢ is defined, and describe the corresponding morphism.

4.4. A variety Y is rational if it is birationally equivalent to P" for some n (or, equiva-
lently by (4.5), if K(Y') is a pure transcendental extension of k).
(a) Any conic in P? is a rational curve.
(b) The cuspidal cubic v? = x¥is a rational curve.
(c) Let Y be the nodal cubic curve y2z = x*(x + z) in P2, Show that the pro-
jection ¢ from the point P = (0,0,1) to the line - = 0 (Ex. 3.14) induces a
birational map from Y to P'. Thus Y is a rational curve.

4.5. Show that the quadric surface Q:xy = -w in P? is birational to P?, but not
isomorphic to P2 (cf. Ex. 2.15).

4.6. Plane Cremona Transformations. A birational map of P? into itself is called a
plane Cremona transformation. We give an example, called a quadratic transfor-
mation. It is the rational map ¢:P? — P? given by (dq.,.t5) = (d,dz.dotis.tot,)
when no two of aq,uy,u, are 0.
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(a) Show that ¢ is birational. and is its own inverse.

(b) Find open sets [ 1" = P? such that ¢:U — }'is an isomorphism.

(¢) Find the open sets where ¢ and ¢ ' are defined. and describe the correspond-
ing morphisms. Sce also (V. 4.2.3).

4.7. Let X and Y} be two varieties. Suppose there are points P € X and Q € Y such
that the local rings ¢\ and ¢, are isomorphic as h-algebras. Then show
that there are open sets Pe L < X and Qe 1" < Y and an isomorphism of
L to V which sends P to Q.

4.8. (a) Show that any variety of positive dimension over A has the same cardinality as
h. [Hints: Do A"and P" first. Then for any X, use induction on the dimension
n. Use (4.9) to make X birational to a hypersurface H = P""'. Use (Ex. 3.7)
to show that the projection of H to P" from a point not on H is finite-to-one
and surjective. ]
(b) Deduce that any two cusves over h are homeomorphic (cf. Ex. 3.7).

4.9. Let X be a projective variety of dimension #in P". with n = » + 2. Show that
for suitable choice of P ¢ X. and a linear P* ' < P". the projection from P to
P"~ ' (Ex. 214 induces a birational morphism of .\ onto its image X' < P"7 '
You will need to use (4.6A). (4.7A). and (4.8A). This shows in particular that the
birational map of (+.9) can be obtained by a finite number of such projections.

4.10. Let Y be the cuspidal cubic curve v2 = ¥ in A% Blow up the point O = (0.0).
let £ be the exceptional curve. and let Y be the strict transform of ). Show that
E meets Y in one point. and that Y = A'. In this case the morphism ¢: Y oY
is bijective and bicontinuous. but it is not an isomorphism.

5 Nonsingular Varieties

The notion of nonsingular variety in algebraic geometry corresponds to the
notion of manifold in topology. Over the complex numbers, for example,
the nonsingular varieties are those which in the “usual” topology are complex
manifolds. Accordingly. the most natural (and historically first) definition
of nonsingularity uses the derivatives of the functions defining the variety:

Definition. Let Y = A" be an affine variety, and let f...., fieAd =
ANpen o v, ] be a set of generators for the ideal of Y. Y is nonsingular at a

point P e Y if the rank of the matrix 1 — r. where 7 is
the dimension of Y. Y is nonsingular if it is nonsingular at every point.

A few comments are in order. In the first place. the notion of partial
derivative of a polynomial with respect to one of its variables makes sense
over any field. One just applies the usual rules for differentiation. Thus no
limiting process is needed. But funny things can happen in characteristic
p > 0. Forexample, if f(x) = xP, then df/dx = pxP ™! = 0, since p = Oin k.
In any case, if f € 4 is a polynomial, then for each i, {f/Cx; is a polynomial.
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The matrix ||((f, Cx,)(P)|| is called the Jucohian matrix at P. One can show
easily that this definition of nonsingularity is independent of the set of
generators of the ideal of Y chosen.

One drawback of our definition 1s that it apparently depends on the
embedding of Y in affine space. However, it was shown in a fundamental
paper. Zariski [1]. that nonsingularity could be described intrinsically in
terms of the local rings. In our case the result is this.

Definition. Let A be a noetherian local ring with maximal ideal ni and residue
field k = A m. Aisaregular local ring if dim, m nm? = dim A.

Theorem 5.1. Let Y < A" be an affine variety. Let P € Y be a point. Then'Y
is nonsingular at P if and only if the local ring € p y is a regular local ring.

ProOOF. Let P be the point (a,,....q,) in A", and let ap = (x| — ay..... X, — dy)
be the corresponding maximal ideal in A4 = k[x,.....x,]. We define a
linear map (0: 4 — A" by
. Cf 3
0(f) = <§ . (P)>
Y ‘x,

forany f e 4. Now itis clear that 0(x, — «,)fori = 1.... .nform a basis of
k", and that O(ap) = 0. Thus 0 induces an isomorphism 0":a, ap — k".

Now let b be the ideal of Yin A, and let f|, . . . ./, be a set of generators of b.
Then the rank of the Jacobian matrix J = ||((f; Cx;)(P)]| is just the dimension
of 0(b) as a subspace of k". Using the isomorphism (', this is the same as the
dimension of the subspace (b + aj) a3 of ap ap. On the other hand. the
local ring ¢, of P on Y is obtained from A by dividing by b and localizing at
the maximal ideal ap. Thus if ntis the maximal ideal of ¢ ,.we have

moa? = ap (b + ap).

Counting dimensions of vector spaces, we have dim m'm? + rank J = n.
Now let dim Y = . Then (', is a local ring of dimension r (3.2). so ( , is
regular if and only if dim, nt m? = . But this is cquivalent to rank J = n — r.
which says that P is a nonsingular point of Y.
Note. Later we will give another characterization of nonsingular points in
terms of the sheaf of differential forms on Y (11, 8.15).

Now that we know the concept of nonsingularity is intrinsic. we can extend
the definition to arbitrary varieties.

Definition. Let Y be any variety. Y is nonsingular at a point P e Y if the local
ring ¢, is a regular local ring. Y is nonsingular if it is nonsingular at
every point. Y is singular if it 1s not nonsingular.

Our next objective is to show that most points of a variety are nonsingular.

We need an algebraic preliminary.
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Proposition S.2A. If A is a noctherian local ring with maximal ideal w and
residue field k, then dim, nym? > dim A.

PrOOF. Atiyah-Macdonald [1, Cor. 1115, p. 121] or Matsumura [2,
p. 78].

Theorem 5.3. Let Y be a variety. Then the set Sing Y of singular points of 'Y
is a proper closed subset of Y.

PRrROOE. (See also 11, 8.16.) First we show Sing Y is a closed subset. It is
suflicient to show for some open covering Y = [ J¥; of Y, that Sing Y is
closed for each i. Hence by (4.3) we may assume that Y is attine. By (5.2) and
the proof of (5.1) we know that the rank of the Jacobian matrix is always
<n — r. Hence the set of singular points is the set of points where the rank is
<n — r. Thus Sing Y is the algebraic set defined by the ideal generated by
I(Y) together with all determinants of (1 — 1) x (1 — r) submatrices of the
matrix ||Cf;: (x|l Hence Sing Y is closed.

To show that Sing Y is a proper subset of Y, we first apply (4.9) to get Y
birational to a hypersurface in P". Since birational varieties have isomorphic
open subsets, we reduce to the case of a hypersurface. Itisenough to consider
any open affine subset of Y. so we may assume that Y is a hypersurface in A",
defined by a single irreducible polynomial f(x,, ... . x,) = 0.

Now Sing Y is the set of points P € Y such that ((f,.¢x;)(P) = 0 for i =
I....,n. If Sing Y = Y, then the functions (f/Cx; are zero on Y, and hence
(f/Cx;e I(Y) for each i. But I(Y) is the principal ideal generated by f, and
deg(cfCx;) < deg f — 1 for each i, so we must have (f/Cx, = 0 for each i.

In characteristic O this is already impossible, because if x, occurs in f.
then ¢f/Cx; # 0. So we must have char k = p > 0, and then the fact that
cf/cx; = 0 implies that f is actually a polynomial in x?. This is true for each
I, so by taking pth roots of the coefficients (possible since k is algebraically
closed), we get a polynomial g(x,,....: x,) such that f = ¢g”. But this
contradicts the hypothesis that f was irreducible, so we conclude that
Sing Y < Y.

Completion

For the local analysis of singularities we will now describe the technique of
completion. Let 4 be a local ring with maximal ideal m. The powers of m
define a topology on A, called the w-adic ropology. By completing with
respect to this topology. one defines the completion of 4, denoted A. Alter-
natively, one can define 4 as the inverse limit lim 4 m". See Atiyah-
Macdonald [1. Ch. 10], Matsumura [2, Ch. 9], or Zariski-Samuel [1, vol. 2,
Ch. VIII] for general information on completions.

The significance of completion in algebraic geometry is that by passing
to the completion ¢, of the local ring of a point P on a variety X, one can
study the very local behavior of X near P. We have seen (Ex. 4.7) that if
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points P e X and Q € Y have isomorphic local rings. then already P and Q
have isomorphic neighborhoods, so in particular X and Y are birational.
Thus the ordinary local ring ("), carries information about almost all of X.
However. the completion ( .. as we will see. carries much more local in-
formation, closer to our intuition of what “local™ means in topology or
differential geometry.

We will recall some of the algebraic properties of completion and then
give some examples.

Theorem 5.4A. Let A be a noetherian local ring with maximal ideal w, and

let A be its completion.

(a) A is a local ring, with maximal ideal iv = WA, and there is a natural
injective homomorphism A — A.

(b) If M is « finitely generated A-module, its completion M with respect
to its w-adic topology is isomorphic to M & , A.

(c) dim 4 = dim A.

(d) A is regular if and only if A is regular.

Proor. See Atiyah-Macdonald [1, Ch. 10, 11] or Zariski-Samuel [ 1. vol. 2,
Ch. VIII].

Theorem 5.5A (Cohen Structure Theorem). If 4 is a complete regular local
ring of dimension n containing some field, then 4 = k[[x;.. ... ] the
ring of formal power series over the residue field k of A.

Proor. Matsumura [2. Cor. 2. p. 206] or Zariski-Samuel [1. vol. 2. Cor..
p. 307].

Definition. We sayv two points P e X and Q € Y are analytically isomorphic
if there is an isomorphism ¢ , = (, as k-algebras.

Example 5.6.1. If Pe X and Q€ Y are analytically isomorphic, then
dim A = dim Y. This follows from (5.4A) and the fact that any local ring
of a point on a variety has the same dimension as the variety (Ex. 3.12).

Example 5.6.2. If P € X and Q € Y are nonsingular points on varieties of the
same dimension, then P and Q are analytically isomorphic. This follows
from (5.4A) and (5.5A). This example is the algebraic analogue of the fact
that any two manifolds (topological. differentiable. or complex) of the same
dimension are locally isomorphic.

Example 5.6.3. Let X be the plane nodal cubic curve given by the equation
= \3x + 1). Let Y be the algebraic set in A% defined by the equation
vy = 0. We will show that the point O = (0,0) on X s analytically iso-
morphic to the point O on Y. (Since we haven't yet developed the general
theory of local rings of points on reducible algebraic sets, we use an ad hoc

5
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definition Cpy = (kK[x,1]/Ax0) ). Thus Cpy = k[[x,y]]/Axy).) This ex-
ample corresponds to the geometric fact that near 0, X looks like two lines
crossing.

To prove this result, we consider the completion ( , x which is isomorphic
to k[[x,y])/(y* = x* — x?). The key point is that the leading form of the
equation, namely 1> — x?, factors into two distinct factors y + xand y — x
(we assume char k # 2). I claim there are formal power series

g=ry+x+y¢g, +ygs+ ...
h=y—x+h, +hy +...

in k[[x,1]]. where g;.h; are homogeneous of degree i, such that y* — x* —
x3 = gh. We construct g and i step by step. To determine ¢, and h,, we
need to have

(y — N)g> + (v + X)hy, = —x72.
This is possible, because y — x and y + x generate the maximal ideal of
k[[x,»]]- To determine g3 and h;, we need

(v = X)gs + (y + )y = —g,h,

which is again possible, and so on.

Thus €, v = k[[x,3]]/(gh). Since g and h begin with linearly independent
linear terms, there is an automorphism of k[[x,)]] sending ¢ and /i to x
and v, respectively. This shows that (, y = k[[x,1]]/(x)) as required.

Note in this example that ¢, y is an integral domain, but its completion
is not.

We state here an algebraic result which will be used in (Ex. 5.15) below.

Theorem 5.7A (Elimination Theory). Let f, .. ..f, be homogeneous polyno-
mials in Xo, ... .x,, having indeterminate coefficients a;,. Then there is a
set (. ..., of polynomials in the ay;, with integer coefficients, which are
homogeneous in the coefficients of each f; separately, with the following
property: for any field k, and for any set of special values of the u,; €k,
a necessary and sufficient condition for the f; to have a common zero different
Sfrom (0,0,....0) is that the a;; are a common zero of the polynomials ;.

ProOOF. Van der Waerden [ 1, vol. 11, §80, p. 8].

EXERCISES

5.1. Locate the singular points and sketch the following curves in A (assume char
k # 2). Which is which in Figure 4?
(a) x2 = x* 4+
(b) xy = x° + y¢:
() x¥ =2 4+ x4+
(d) X2y + 12 = x4t
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5.2.

y y y y
3 X X
X
Node Triple point Cusp Tacnode

Figure 4. Singularities of plane curves.

Locate the singular points and describe the singularities of the following sur-
faces in A® (assume char k # 2). Which is which in Figure 5?

(a) x3? = z%;

(b) x* + 2 = 22

(c) xv + x3 43 =0.

Conical double point Double line Pinch point

5.3.

5.4.

36

Figure 5. Surface singularities.

Multiplicities. Let Y < A? be a curve defined by the equation f(x,1) = 0. Let
P = (a,b) be a point of A%. Make a linear change of coordinates so that P be-
comes the point (0,0). Then write f as a sum f = f, + f; + ... + f;, where
fi 1s a homogeneous polynomial of degree i in x and y. Then we define the multi-
plicity of P on Y, denoted pup(Y), to be the least r such that f, # 0. (Note that
PeY < up(Y) > 0. The linear factors of f, are called the rangent directions
at P.

(a) Show that yp(Y) = 1 < P is a nonsingular point of Y.

(b) Find the multiplicity of each of the singular points in (Ex. 5.1) above.

Intersection Multiplicity. 1f Y.Z < A? are two distinct curves, given by equations

f=0,9g=0,and if Pe Y n Z, we define the intersection multiplicity (Y - Z)p

of Y and Z at P to be the length of the ¢ p-moduie ¢ ,/( f.g).

(a) Show that (Y - Z), is finite, and (Y - Z)p = pp(Y) - ptp(2).

(b) If P € Y, show that for almost all lines L through P (i.e., all but a finite number),
(L-Y)p = pplY)

(c) If Yis a curve of degree d in P2, and if L is a line in P2, L # Y, show that
(L-Y)=d. Here we define (L-Y) = Z(L~ Y), taken over all points Pe
L ~ Y, where (L - Y), is defined using a suitable affine cover of P2.
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5 Nonsingular Varietics

For every degree d > 0, and every p = 0 or a prime number, give the equation
of a nonsingular curve of degree d in P? over a field k of characteristic p.

Blowing Up Curve Singularities.

(a) Let Y be the cusp or node of (Ex. 5.1). Show that the curve Y. obtained by
blowing up Y at O = (0,0) is nonsingular (cf. (4.9.1) and (Ex. 4.10)).

(b) We define a node (also called ordinary double point) to be a double point
(i.e., a point of multiplicity 2) of a plane curve with distinct tangent directions
(Ex. 5.3). If P is a node on a plane curve Y, show that ¢ ~!(P) consists of two
distinct nonsingular points on the blown-up curve Y. We say that “blowing
up P resolves the singularity at P

(¢) Let P e Y bethe tucnode of (Ex. 5.1). If ¢: ¥ — Y is the blowing-up at P. show
that ¢~ '(P) is a node. Using (b) we see that the tacnode can be resolved by
two successive blowings-up.

(d) Let Y be the plane curve 1* = x°, which has a “higher order cusp™ at 0. Show
that O is a triple point: that blowing up O gives rise to a double point (what
kind?) and that one further blowing up resolves the singularity.

Note: We will see later (V, 3.8) that any singular point of a plane curve can be

resolved by a finite sequence of successive blowings-up.

Let Y < P? be a nonsingular plane curve of degree > 1, defined by the equation
Jix,1,2) = 0. Let X < A be the affine variety defined by f (this is the cone
over Y;see (Ex. 2.10)). Let P be the point (0,0,0), which is the rertex of the cone.
Let o: X — X be the blowing-up of X at P.

(a) Show that X has just one singular point, namely P.

(b) Show that .X is nonsingular (cover it with open affines).

(c) Show that ¢~ '(P) is isomorphic to Y.

Let Y < P" be a projective variety of dimension r. Let fi,....f,eS =
k[xo, . .. ,x,] be homogeneous polynomials which generate the ideal of Y. Let
P e Y be a point, with homogeneous coordinates P = (dy, . ..,q,). Show that
P is nonsingular on Y if and only if the rank of the matrix ||((f,/Cx)Mag, . . . )|
is n — r. [Hint: (a) Show that this rank is independent of the homogeneous
coordinates chosen for P: (b) pass to an open affine U, < P” containing P and
use the affine Jacobian matrix: (c) you will need Euler’s lemma, which says that
if f is a homogeneous polynomial of degree d, then Y x,((f/Cx,) = d - /]

. Let fek[x,1.2] be a homogeneous polynomial, let Y = Z(f) < P? be the

algebraic set defined by f, and suppose that for every P e Y, at least one of
(CLCXNPYACS CYIP), (CfIC2)P) is nonzero. Show that f is irreducible (and hence
that Y is a nonsingular variety). [Hint: Use (Ex. 3.7).]

. For a point P on a variety X. let m be the maximal ideal of the local ring ¢ ,.

We define the Zariski tangent space Tp(X)of X at P to be the dual k-vector space

of m m?.

(a) For any point P e X. dim Tp(X) > dim X. with equality if and only if P is
nonsingular.

(b) For any morphism ¢:X — Y there is a natural induced A-linear map Tp(¢):
THX) = Top(Y).

(c) If ¢ is the vertical projection of the parabola x = 12 onto the v-axis, show that
the induced map T ,(¢) of tangent spaces at the origin is the zero map.
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5.11.

5.13.

5.14.
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The Elliptic Quartic Curve in P2, Let Y be the algebraic set in P? defined by the
equations x* — xz — v = 0 and yz — xw — 2w = 0. Let P be the point
(x,v.z) = (0,0.0.1). and let ¢ denote the projection from P to the plane w = 0.
Show that ¢ induces an isomorphism of ¥ — P with the plane cubic curve
v2z — x% 4 xz? = 0 minus the point (1,0,—1). Then show that Y is an irre-
ducible nonsingular curve. It is called the elliptic quartic curve in P?. Since it
is defined by two equations it is another example of a complete intersection
(Ex. 2.17).

. Quudric Hypersurfuces. Assume char A # 2. and let f be a homogeneous poly-

nomial of degree 2 in x,,.... . A

(a) Show that after a suitable linear change of variables, f can be brought into the
formf =x§ + ... 4+ x} forsome 0 < r < .

(b) Show that f is irreducible if and only if r > 2.

(c) Assume r = 2, and let Q be the quadric hypersurface in P" defined by f. Show
that the singular locus Z = Sing Q of Q is a lineur variety (Ex. 2.11) of dimen-
sion n — r — 1. In particular, Q is nonsingular if and only if r = n.

(d) In case r < n, show that Q is a cone with axis Z over a nonsingular quadric
hypersurface Q" = P". (This notion of cone generalizes the one defined in
(Ex. 2.10). If Y is a closed subset of P”, and if Z is a linear subspace of dimen-
sion n — r — 1 in P", we embed P" in P" so that P" n Z = ¢, and define
the cone over Y with axis Z to be the union of all lines joining a point of Y
to a point of Z.)

It is a fact that any regular local ring is an integrally closed domain (Matsumura
[2, Th. 36, p. 121]). Thus we see from (5.3) that any variety has a nonempty
open subset of normal points (Ex. 3.17). In this exercise, show directly (without
using (5.3)) that the set of nonnormal points of a variety is a proper closed sub-
set (you will need the finiteness of integral closure: see (3.9A)).

Analytically Isomorphic Singularities.

(a) If P e Y and Q € Z are analytically isomorphic plane curve singularities, show
that the multiplicities yp(Y') and piy(Z) are the same (Ex. 5.3).

Generalize the example in the text (5.6.3) to show thatif f = f, + f,., + ... €
K[[x.3]], and if the leading form f, of f factors as f, = ¢.h,. where ¢,.)i, are
homogeneous of degrees s and t respectively, and have no common linear
factor, then there are formal power series

(b

g =g+ Yosr T
h=h 4+ h.,+ ...

in A[[x,y]] such that f = gh.

(¢) Let Y be defined by the equation f(x,y) = 0 in A%, and let P = (0,0) be a point
of multiplicity  on Y, so that when f is expanded as a polynomial in x and y,
we have /= f, + higher terms. We say that P is an ordinary r-fold point if
1, is a product of r distinct linear factors. Show that any two ordinary double
points are analytically isomorphic. Ditto for ordinary triple points. But show
that there is a one-parameter family of mutually nonisomorphic ordinary
4-fold points.

*(d) Assume char k # 2. Show that any double point of a plane curve is analy-
tically isomorphic to the singularity at (0,0) of the curve y? = X", for a uniquely
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determined r = 2. If r = 2 it is a node (Ex. 5.6). If r = 3 we call it a cusp:
if r = datacnode. See(V, 3.9.5) for further discussion.

5.15. Families of Plane Curces. A homogeneous polynomial f of degree d in three
variables x,y,- has (“}?) coefficients. Let these coeflicients represent a point in

P where N = (“3%) — 1 = Ld(d + 3).

(a) Show that this gives a correspondence between points of P and algebraic
sets in P? which can be defined by an equation of degree . The correspondence
is 1-1 except in some cases where f has a multiple factor.

(b) Show under this correspondence that the (irreducible) nonsingular curves of
degree d correspond 1-1 to the points of a nonempty Zariski-open subset of
PY. [Hints: (1) Use elimination theory (5.7A) applied to the homogeneous
polynomials f ‘xq. ..., Cf /Cx,: (2) use the previous (Ex. 5.5, 5.8, 5.9) above.]

6 Nonsingular Curves

In considering the problem of classification of algebraic varieties, we can
formulate several subproblems, based on the idea that a nonsingular pro-
jective variety is the best kind: (a) classify varieties up to birational equiva-
lence; (b) within each birational equivalence class, find a nonsingular
projective variety; (c¢) classify the nonsingular projective varieties in a given
birational equivalence class.

In general, all three problems are very difficult. However, in the case of
curves, the situation is much simpler. In this section we will answer problems
(b) and (c) by showing that in each birational equivalence class, there is a
unique nonsingular projective curve. We will also give an example to show
that not all curves are birationally equivalent to each other (Ex. 6.2). Thus
for a given finitely generated extension field K of k of transcendence degree 1
(which we will call a functrion field of dimension 1) we can talk about the
nonsingular projective curve C, with function field equal to K. We will see
also that if K|.K, are two function fields of dimension I, then any k-homo-
morphism K, — K is represented by a morphism of Cy to Cy,.

We will begin our study in an oblique manner by defining the notion of an
“abstract nonsingular curve™ associated with a given function field. It will
not be clear a priori that this is a variety. However, we will see in retrospect
that we have defined nothing new.

First we have to recall some basic facts about valuation rings and Dede-
kind domains.

Definition. Let K be a field and let G be a totally ordered abelian group. A
valuation of K with values in G is a map r: K — {0) — G such that for all
N,y e Kox.y # 0. we have:

(1) v(xy) = v(x) + v(y);
(2) t(x + v) = min(e(x),c(y)).
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If v is a valuation. then the set R = [xe K|r(x) > 0] U [0} isa subring of K,
which we call the valuation ring of . The subset m = {xe K[r(x) > 0] U
10} is an ideal in R, and Ranis a local ring. A valuation ring is an integral
domain which is the valuation ring of some valuation of its quotient field.
If R is a valuation ring with quotient field K, we say that R is a valuation
ring of K. If k is a subfield of K such that r(x) = 0 for all xe k — {0].
then we say v is a valuation of K-k, and R is a valuation ring of K k. (Note
that valuation rings are not in general noetherian!)

Definition. If A.B are local rings contained in a field K, we say that B dominates
Aif4A < Bandnyn A = my,.

Theorem 6.1A. Let K be a field. A local ring R contained in K is a valuation
ring of K if and only if it is a maximal element of the set of local rings con-
tained in K, with respect to the relation of domination. Every local ring
contained in K is dominated by some valuation ring of K.

PrOOF. Bourbaki [2, Ch. VI, §1, 3] or Atiyah-Macdonald [1. Ch. S, p. 65,
and exercises, p. 72].

Definition. A valuation v is discrete if its value group G is the integers. The
corresponding valuation ring is called a discrete valuation ring.

Theorem 6.2A. Let A be a noetherian local domain of dimension one, with
maximal ideal wi. Then the following conditions are equivalent:
(1) A is a discrete valuation ring;
(11) A is integrally closed,
(iit) A is a regular local ring:
(1v) wuis a principal ideal.

ProOOF. Atiyah-Macdonald [1, Prop. 9.2. p. 94].

Definition. A Dedekind domain is an integrally closed noetherian domain of
dimension one.

Because integral closure is a local property (Atiyah- Macdonald [ 1, Prop.
5.13, p. 63]), every localization of a Dedekind domain at a nonzero prime
ideal s a discrete valuation ring.

Theorem 6.3A. The integral closure of ¢ Dedekind domain in a finite extension
freld of its quotient field is again a Dedekind domain.

ProOF. Zariski-Samuel [ 1, vol. 1, Th. 19, p. 281].

We now turn to the case of a function field K of dimension 1 over k, where
kis our fixed algebraically closed base field. We wish to establish a connection
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between non-singular curves with function field K and the set of discrete
valuation rings of K/k. If P is a point on a nonsingular curve Y, then by (5.1)
the local ring ¢ is a regular local ring of dimension one, and so by (6.2A) it
is a discrete valuation ring. Its quotient field is the function field K of Y,
and since k < (p, it is a valuation ring of K/k. Thus the local rings of Y
define a subset of the set Cy of all discrete valuation rings of K/k. This
motivates the definition of an abstract nonsingular curve below. But first
we need a few more preliminaries.

Lemma 6.4. Ler Y be a quasi-projective variety, let P,Q € Y, and suppose that
Cy = Cp as subrings of K(Y). Then P = Q.

PrOOF. Embed Y in P" for some n. Replacing Y by its closure, we may
assume Y is projective. After a suitable linear change of coordinates in P,
we may assume that neither P nor Q is in the hyperplane H, defined by
Xo = 0. Thus P,Q e Y n (P" — H,) which is affine, so we may assume that
Y is an affine variety.

Let A be the affine ring of Y. Then there are maximal ideals mn < A4
such that Cp = 4, and C, = A,. If €, = Cp, we must have m S n. But
m is a maximal ideal, so m = n, hence P = Q, by (3.2b).

Lemma 6.5. Let K be a function field of dimension one over k, and let x € K.

Then {R e Cglx ¢ R} is u finite set.

Proor. If R is a valuation ring, then x ¢ R if and only if 1/x € mg. So letting
1 = 1/x, we have to show that if ye K, y # 0, then {Re Cg|yemg} is a
finite set. If y € k, there are no such R, so let us assume ) ¢ k.

We consider the subring k[ )] of K generated by y. Since k is algebraically
closed, y is transcendental over k, hence k[ y] is a polynomial ring. Further-
more, since K is finitely generated and of transcendence degree 1 over k,
K is a finite field extension of k(y). Now let B be the integral closure of
k[y] in K. Then by (6.3A), B is a Dedekind domain, and it is also a finitely
generated k-algebra (3.9A).

Now if y is contained in a discrete valuation ring R of K k. then k[ y] = R,
and since R is integrally closed in K, we have B = R. Let n = niz N B.
Then 1 is a maximal ideal of B, and B is dominated by R. But B, is also a
discrete valuation ring of K 'k, hence B, = R by the maximality of valuation
rings (6.1A).

If furthermore 1 € my. then v e n. Now B is the affine coordinate ring
of some affine variety Y (1.4.6). Since B is a Dedekind domain, Y has di-
mension one and is nonsingular. To say that y € w says that y, as a regular
function on Y, vanishes at the point of Y corresponding to 1. But y # 0,
so it vanishes only at a finite set of points: these are in 1-1 correspondence
with the maximal ideals of B by (3.2), and R = B, is determined by the
maximal ideal n. Hence we conclude that ) € my for only finitely many
R € Cg, as required.
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Corollary 6.6. 4ny discrete valuation ring of K 'k is isomorphic to the locul
ring of « point on some nonsingular affine curce.

ProOF. Given R, let v € R — k. Then the construction used in the proof
of (6.5) gives such a curve.

We now come to the definition of an abstract nonsingular curve. Let
K be a function field of dimension | over k (i.e., a finitely generated exten-
sion field of transcendence degree 1). Let Cy be the set of all discrete valua-
tion rings of K k. We will sometimes call the elements of Cy points, and
write P € Cg, where P stands for the valuation ring Rp. Note that the set
Cg 1s infinite, because it contains all the local rings of any nonsingular
curve with function field K: those local rings are all distinct (6.4), and there
are infinitely many of them (Ex. 4.8). We make Cy into a topological space
by taking the closed sets to be the finite subsets and the whole space. If
U < Cg is an open subset of Cg, we define the ring of regular functions
on Utobe ((U) = [)p.r Rp. Anelement f e ( (U) defines a function from
U to k by taking f(P) to be the residue of / modulo the maximal ideal of
Rp. (Note by (6.6) that for any R € Cg, the residue field of R is k.) If two
elements f,g € ((U) define the same function, then f — g e m, for infi-
nitely many P € Cy, so by (6.5) and its proof, f = y. Thus we can identify
the elements of ¢ (U) with functions from U to k. Note also by (6.5) that
any f e K is a regular function on some open set U. Thus the function
field of Cy, defined as in §3, is just K.

Definition. An abstract nonsingular curve is an open subset U = Cy, where
K is a function field of dimension 1 over k, with the induced topology,
and the induced notion of regular functions on its open subsets.

Note that it is not clear a priori that such an abstract curve is a variety.
So we will enlarge the category of varieties by adjoining the abstract curves:

Definition. A morphism ¢:X — Y between abstract nonsingular curves or
varieties is a continuous mapping such that for every open set V < Y,
and every regular function f:V — k, f ¢ is a regular function on

=1
@ (V)

Now that we have apparently enlarged our category, our task will be
to show that every nonsingular quasi-projective curve is isomorphic to an
abstract nonsingular curve, and conversely. In particular, we will show
that Cy itself is isomorphic to a nonsingular projective curve.

Proposition 6.7. Every nonsingular quasi-projective curve Y is isomorphic
to an abstract nonsingular curve.
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Proor. Let K be the function field of Y. Then each local ring ¢, of a point
P e Y is a discrete valuation ring of K 'k, by (5.1) and (6.2A). Furthermore,
by (6.4), distinct points give rise to distinct subrings of K. So let U = Cy
be the set of local rings of ¥, and let ¢: Y — U be the bijective map defined
by @(P) = (p.

First, we need to show that U is an open subset of C. Because open
sets are complements of finite sets, it is sufficient to show that U contains a
nonempty open set. Thus, by (4.3), we may assume } is atline, with aftine
ring A. Then A is a finitely generated k-algebra, and by (3.2), K is the
quotient field of 4. and U is the set of localizations of 4 at its maximal
ideals. Since these local rings are all discrete valuation rings, U consists in
fact of all discrete valuation rings of Kk containing 4. Now let x,,....x,
be a set of generators of 4 over k. Then 4 = R, if and only if x,...,
N, € Rp. Thus U = (U, where U; = [Pe Cglx, € Rp|. But by (6.5),
IP e Cklx, ¢ Rp) is a finite set. Therefore each U; and hence also U is open.

So we have shown that the U defined above is an abstract nonsingular
curve. To show that ¢ is an isomorphism, we need only check that the
regular functions on any open set are the same. But this follows from the
definition of the regular functions on U and the fact that for any open set
Ve Y. (V)= (Vpa Cpy.

Now we need a result about extensions of morphisms from curves to
projective varieties, which is interesting in its own right.

Proposition 6.8. Let X be an abstract nonsingular curve, let P e X, let Y be
a projective variety, and let ¢:X — P — Y be a morphism. Then there
exists a unique morphism ¢: X — Y extending ¢.

PrOOF. Embed Y as a closed subset of P" for some n. Then it will be suffi-
cient to show that ¢ extends to a morphism of X into P". because if it does,
the image is necessarily contained in Y. Thus we reduce to the case ¥ = P".

Let P" have homogeneous coordinates x,. . .. .x,. and let U be the open
set where x,..... x, are all nonzero. By using induction on n, we may
assume that (X — PYn U # . Because if o(X — P)n U = . then
(X — Py P'"— U. But P" — U is the union of the hyperplanes H,
defined by x, = 0. Since ¢(X — P) is irreducible, it must be contained in
H, for some i. Now H, =~ P"~'. so the result would follow by induction.
So we will assume that o(X — P)n U # (.

For each i.j. x, x, is a regular function on U. Pulling it back by ¢. we
obtain a regular function f;, on an open subset of X, which we view as a
rational function on X. ie. f,, € K. where K is the function field of X.

Let ¢ be the valuation of K associated with the valuation ring Rp. Let
o= fig)i =000, ., n.r;e Z. Thensince x; X, = (x, Xo) (X, Xg), we have
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Choose k such that r, is minimal among r. . . ., .. Then v(f,) = 0 forall i,
hence fo,. .. .. f€ Rp. Now define B(P) = (foi(P). .. .. fu(P)), and p(Q) =
@(Q) for Q # P. 1 claim that @ is a morphism of X to P" which extends ¢,
and that @ is unique. The uniqueness is clear by construction (it also follows
from (4.1)). To show that @ is a morphism. it will be sufficient to show that
regular functions in a neighborhood of @(P) pull back to regular functions
on X. Let U, = P" be the open set where x; # 0. Then @(P)e U),. since
fi(P)y = 1. Now U, is afline. with affine coordinate ring equal to

K[ xg Xpo oo X, N -

These functions pull back to fo,. . ... Ju Which are regular at P by con-
struction. It follows immediately that for any smaller neighborhood @(P) €
J' < U,.regular functions on V pull back to regular functions on X. Hence
@ is a morphism, which completes the proof.

Now we come to our main result.

Theorem 6.9. Let K he a function field of dimension 1 over k. Then the
abstract nonsingular curve Cy defined above is isomorphic to a nonsingular
projective curte.

PrOOF. The idea of the proof is this: we first cover C = Cx with open
subsets U, which are isomorphic to nonsingular affine curves. Let Y, be
the projective closure of this affine curve. Then we use (6.8) to define a
morphism ¢,:C — Y. Next. we consider the product mapping ¢:C — [[Y.
and let Y be the closure of the image of C. Then Y is a projective curve,
and we show that ¢ is an isomorphism of C onto Y.

To begin with, let P € C be any point. Then by (6.6) there is a nonsingular
affine curve V' and a point Q € V" with R, = (. It follows that the function
field of 1" is K. and then by (6.7), V' is isomorphic to an open subset of C.
Thus we have shown that every point P e C has an open neighborhood
which is isomorphic to an affine variety.

Since C is quasi-compact, we can cover it with a finite number of open
subsets U,, each of which is isomorphic to an affine variety V;. Embed
V., = A™, think of A™ as an open subset of P™, and let Y, be the closure of
V. in P". Then Y, is a projective variety, and we have a morphism ¢;: U, = Y,
which is an isomorphism of U, onto its image.

By (6.8) applied to the finite set of points C — U,, we can find a morphism
3,:C — Y, extending ¢;. Let [ Y, be the product of the projective varieties
¥, (Ex. 3.16). Then |]Y; is also a projective variety. Let ¢:C — []Y; be the
“diagonal” map ¢(P) = | |@,(P). and let Y be the closure of the image of
¢@. Then Y is a projective variety, and ¢:C — Y is a morphism whose
image is dense in Y. (It follows that Y is a curve.)

Now we must show that ¢ is an isomorphism. For any point P € C, we
have P e U, for some i. There is a commutative diagram
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6 Nonsingular Curves

C ————— Y
‘J [TC
U___.__.L/’t__,yl

of dominant morphisms, where 7 is the projection map onto the ith factor.
Thus we have inclusions of local rings

Coipry, & Coipyy & Cpc

by (Ex. 3.3). The two outside ones are isomorphic, so the middle one is
also. Thus we see that for any Pe C, the map ¢3:C p y = Cpc is an
isomorphism.

Next, let Q be any point of Y. Then ¢, is dominated by some discrete
valuation ring R of K/k (take for example a localization of the integral
closure of ¢, at a maximal ideal). But R = R, for some P e C,and €, =
R, so by (6.4) we must have Q = ¢(P). This shows that ¢ is surjective.
But ¢ is clearly injective, because distinct points of C correspond to distinct
subrings of K.

Thus ¢ is a bijective morphism of C to Y, and for every P e C, ¢} is an
isomorphism, so by (Ex. 3.3b), ¢ is an isomorphism.

Corollary 6.10. Every abstract nonsingular curve is isomorphic to a quasi-
projective curve. Every nonsingular quasi-projective curve is isomorphic
to an open subset of a nonsingular projective curve.

Corollary 6.11. Every curve is birationally equivalent to a nonsingular pro-
Jective curre.

ProOF. Indeed, if Y is any curve, with function field K, then Y is birationally
equivalent to Cy which is nonsingular and projective.

Corollary 6.12. The following three categories are equivalent:

(1) nonsingular projective curves, and dominant morphisms;
(i) quasi-projective curves, and dominant rational maps;
(iti) function fields of dimension 1 over k, and k-homomorphisms.

PrOOF. We have an obvious functor from (i) to (ii). We have the functor
Y — K(Y) from (i) to (iii), which induces an equivalence of categories by
(4.4). To complete the cycle, we need a functor from (iii) to (i).

To a function field K. associate the curve C, which by the theorem is a
projective nonsingular curve. If K, — K, is a homomorphism, then by
(i) ~ (ii1), it induces a rational map of the corresponding curves. This can
be represented by a morphism ¢:U — Cy,, where U < Cg, is an open
subset. By (6.8) ¢ extends to a morphism ¢:Cx, - Cg,. I K3 - K, - K,
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are two homomorphisms, it follows from the uniqueness part of (6.8) that
the corresponding morphisms C; — C, —» Cyand C; — C; are compatible.
Hence K +— Cy is a functor from (iii) — (). It is clearly inverse to the given
functor (i) — (ii) — (iit), so we have an equivalence of categories.

EXERCISES

6.1.

6.2.

6.3.

6.4.

6.6.
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Recall that a curve is rational if it is birationally equivalent to P! (Ex. 4.4). Let Y
be a nonsingular rational curve which is not isomorphic to P'.

(a) Show that Y is isomorphic to an open subset of A,

(b) Show that Y is affine.

(c) Show that A(Y) is a unique factorization domain.

An Elliptic Curve. Let Y be the curve y? = x3 — x in A2, and assume that the
characteristic of the base field k is # 2. In this exercise we will show that Y isnota
rational curve, and hence K(Y) is not a pure transcendental extension of k.

(a) Show that Y is nonsingular, and deduce that 4 = A(Y) =~ k[x,)]/(3* — x> + x)
is an integrally closed domain.

(b) Let k[x] be the subring of K = K(Y) generated by the image of x in 4. Show
that k[x] is a polynomial ring, and that A is the integral closure of k[x] in K.

(c) Show that there is an automorphism o: 4 — 4 which sends y to — v and leaves
x fixed. For any a € A, define the norm of a to be N(a) = a - a(a). Show that
N(a) e k[x], N(1) = 1, and N(ab) = N(a)- N(b) for any a,b € A.

(d) Using the norm, show that the units in A4 are precisely the nonzero elements of
k. Show that x and y are irreducible elements of 4. Show that A is not a
unique factorization domain.

(e) Prove that Y is not a rational curve (Ex. 6.1). See (II, 8.20.3) and (I1I, Ex. 5.3)
for other proofs of this important result.

Show by example that the result of (6.8) is false if either (a) dim X > 2, or (b) Y is
not projective.

Let Y be a nonsingular projective curve. Show that every nonconstant rational
function f on Y defines a surjective morphism ¢: Y — P!, and that for every P € P*,
@~ '(P) is a finite set of points.

. Let X be a nonsingular projective curve. Suppose that X is a (locally closed)

subvariety of a variety Y (Ex. 3.10). Show that X is in fact a closed subset of Y.
See (11, Ex. 4.4) for generalization.

Automorphisms of P'. Think of P’ as A' U {x|. Then we define a fractional
linear transformation of P! by sending x> (ax + b)(cx + d), for abcdek,
ad — be # 0.

(a) Show that a fractional linear transformation induces an automorphism of P!
(ie., an isomorphism of P! with itself). We denote the group of all these
fractional linear transformations by PGL(1).

(b) Let Aut P! denote the group of all automorphisms of P'. Show that Aut P! ~
Aut k(x), the group of k-automorphisms of the field k(x).

(c) Now show that every automorphism of k(x) is a fractional linear transforma-
tion, and deduce that PGL(1) - Aut P! is an isomorphism.



7 Intersections in Projective Space

Note: We will see later (11, 7.1.1) that a similar result holds for P": every automor-
phism is given by a linear transformation of the homogencous coordinates.

6.7. Let P\, ....P,.Q,,....Q, bedistinct points of A'. IfA' — {P,, ... P, isisomor-
phic to A" — {Q,,...,0,], show that r = 5. Is the converse true? Cf. (Ex. 3.1).

7 Intersections in Projective Space

The purpose of this section is to study the intersection of varieties in a
projective space. If Y. Z are varieties in P", what can one say about Y n Z?
We have already seen (Ex. 2.16) that Y n Z need not be a variety. But it
is an algebraic set, and we can ask first about the dimensions of its irreducible
components. We take our cue from the theory of vector spaces: if U,V are
subspaces of dimensions r,s of a vector space W of dimension n, then
U n V is a subspace of dimension >r + s — n. Furthermore, if U and V
are in sufficiently general position, the dimension of U n V' is equal to
r+ s — n(provided r + s — n > 0). This result on vector spaces imme-
diately implies the analogous result for linear subspaces of P" (Ex. 2.11).
Our first result in this section will be to prove that if Y,Z are subvarieties of
dimensions r,s of P", then every irreducible component of Y n Z has dimen-
sion =21 + s — n. Furthermore, ifr + s — n > 0,then Y n Z is nonempty.

Knowing something about the dimension of Y n Z, we can ask for more
precise information. Suppose for example that r + s = n, and that Y n Z
is a finite set of points. Then we can ask, how many points are there? Let
us look at a special case. If Y is a curve of degree d in P2, and if Z is a line
in P2, then Y N Z consists of at most  points, and the number comes to d
exactly if we count them with appropriate multiplicities (Ex. 5.4). This
result generalizes to the well-known theorem of Bézout, which says that if
Y,Z are plane curves of degrees d,e, with Y # Z, then Y n Z consists of
de points, counted with multiplicitics. We will prove Bézout’s theorem
later in this section (7.8).

The ideal generalization of Bézout’s theorem to P" would be this. First,
define the degree of any projective variety. Let Y,Z be varieties of dimen-
sions 1,5, and of degrees d.¢ in P". Assume that Y and Z are in a sufficiently
general position so that all irreducible components of Y n Z have di-
mension = r + s — n, and assume that r + s —n > 0. For each ir-
reducible component W of Y ~ Z, define the intersection multiplicity
i(Y.Z:W)of Y and Z along W. Then we should have

Zi( YZ:W)-deg W = de,

where the sum is taken over all irreducible components of ¥ n Z.

The hardest part of this generalization is the correct definition of the
intersection multiplicity. (And, by the way, historically it took many at-
tempts before a satisfactory treatment was given by Severi [3] geometrically

47



I Varieties

and by Chevalley [1] and Weil [ 1] algebraically). We will define the inter-
section multiplicity only in the case where Z i1s a hypersurface. See Appendin
A for the general case.

Our main task in this section will be the definition of the degree of a
variety } of dimension r in P". Classically. the degree of Y 1s defined as the
number of points of intersection of Y with a sufliciently general linear space
L of dimension n — r. However. this definition is diflicult to use. Cutting
Y successively with r sufficiently general hyperplanes. one can find a
linear space L of dimension n — r which meets Y in a finite number of
points (Ex. 1.8). But the number of intersection points may depend on L.
and it is hard to make precise the notion “sufliciently general.”

Therefore we will give a purely algebraic definition of degree. using the
Hilbert polynomial of a projective variety. This definition is less geo-
metrically motivated. but it has the advantage of being precise. In an
exercise we show that it agrees with the classical definition in a special case
(Ex. 7.4).

Proposition 7.1 (Affine Dimension Theorem). Let Y.Z he varietios of dimen-
sions s in A" Then every irreducible component Woof Y n Z has
dimension Zr + s — n.

PrROOF. We proceed in several steps. First. suppose that Z is a hypersurface,
defined by an equation f/ = 0. If Y < Z. there is nothing to prove. If
Y ¢ Z. we must show that each irreducible component W of Y n Z has
dimension  — 1. Let 4(Y) be the affine coordinate ring of Y. Then the
irreducible components of Y N Z correspond to the minimal prime ideals
p of the principal ideal (/) in A(Y). Now by Krull's Hauptidealsatz (1.11A),
each such p has height one. so by the dimension theorem (1.8A). A(}) p
has dimension  — 1. By (1.7) this shows that each irreducible component
W has dimension rr — 1.

Now for the general case. We consider the product Y x Z < A"
which is a variety of dimension r + s (Ex. 3.15). Let A be the diagonal
{P x P[Pe A", = A*. Then A" is isomorphicto 4 by themap P — P x P.
and under this isomorphism. Y N Z corresponds to (Y x Z)n 4. Since
A has dimension n, and since » + 5 — 11 = (r + ) + 1 — 2n, we reduce
to proving the result for the two varieties ¥ x Z and 1 in A*". Now 4 is
an intersection of exactly n hypersurfaces, namely, x; — v, = 0.... X, —
v, = 0, where x..... Npe Ve v, are the coordinates of A?". Now ap-
plying the special case above i times, we have the result.

Theorem 7.2 (Projective Dimension Theorem). Let Y. 7 be varieties of dimen-
sions ro in P Then every irreducible component of 'Y Z has dimension
>+~ — . Furthermore, if v+ s — n = 0, then Y o Zis nonempty.

Proot. The first statement follows from the previous result, since P" is
covered by affine n-spaces. For the second result, let C(Y) and C(Z) be the
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cones over Y.Z in A"" 1 (Ex. 2.10). Then C(Y), C(Z) have dimensions r + 1,
s + 1, respectively. Furthermore, C(Y) n C(Z) # ¢, because both contain
the origin P = (0. ... .0). By the affine dimension theorem, C(Y) n C(Z) has
dimension =2(r+ 1) +(s+ 1) —(n+1)=r+s—n+1>0. Hence
C(Y) n C(Z) contains some point Q # P, andso Y nZ # (.

Next, we come to the definition of the Hilbert polynomial of a projective
variety. The idea is to associate to each projective variety Y < P} a poly-
nomial Py € Q[=] from which we can obtain various numerical invariants
of Y. We will define Py starting from the homogeneous coordinate ring S(Y).
In fact, more generally, we will define a Hilbert polynomial for any graded
S-module, where S = k[ x,, . .. ,x,]. Although the next few results are almost
pure algebra, we include their proofs, for lack of a suitable reference.

Definition. A numerical polynomial is a polynomial P(z) e Q[=] such that
PmyeZforalln » 0, neZ.

Proposition 7.3.
(@) If PeQ[z] is « numerical polynomial, then there are integers
Coalys - - -G, sUCh that

P(:)=(’0<:>+<'1< - >+...+c,,
r r—1
<:):~IY:(:— ---(zc=—r+1

r r!

is the binomial coefficient function. In particular P(nye Z for all n e Z.

(b) If f:Z — Z is any function, and if there exists a numerical poly-
nomial Q(z) such that the difference function Af = f(n + 1) — f(n) is equal
to Q(n) for all n > 0, then there exists a numerical polynomial P(z) such
that f(n) = P(n) for all n > 0.

where

PROOF.

(a) By induction on the degree of P, the case of degree 0 being obvious.
Since () = Zr! + ..., we can express any polynomial P e Q[z] of degree r
in the above form, with ¢, . . ., ¢, € Q. For any polynomial P we define the
difference polynomial AP by AP(z) = P(z + 1) — P(z). Since 4(}) = (,7,).

AP = ('0<"; 1) + ¢ (IL 7> + ..+

By induction, ¢q. . ... ¢,—1 € Z. But then ¢, € Z since P(n) € Z for n > 0.

(b) Write
Q= c'(,(i) + ...+ ¢
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with ¢q., .. .. ¢, €Z. Let

pzyo(r;])ﬁu...ﬂ(;)

Then AP = Q, so A(f — P)n) =0 for all n> 0. so (f — P)n) =
constant ¢, for all n » 0, so

fin)y = Pn) + ¢ .,
for all n > 0, as required.

Next, we need some preparations about graded modules. Let S be a
graded ring (cf. §2). A graded S-module is an S-module M, together with a
decomposition M = (}),.z M,, such that S,- M, = M, ,. For any graded
S-module M, and for any [ € Z, we define the rwisted module M(!) by shifting
[ places to the left, i.e., M(l); = M,.,. If M is a graded S-module, we define
the annihilator of M, Ann M = [se S|s- M = 0]. This is a homogeneous
ideal in S.

The next result is the analogue for graded modules of a well-known result
for modules of finite type over a noetherian ring (Bourbaki [1, Ch. IV,
§1, no. 4] or Matsumura [2, p. 51]). Again, we include the proof for lack
of an adequate reference.

Proposition 7.4. Let M be « finitely generated graded module over a noetherian
graded ring S. Then there exists a filtration 0 = M < M'c ... c M" =
M by graded submodules, such that for each i, M\ M= ~ (S;p;)(L,),
where p; is a homogeneous prime ideal of S, and l; € Z. The filtration is
not unique, but for any such filtration we do have:

(a) if p is a homogeneous prime ideal of S, then p 2 Ann M < p 2 p;
Sor some i. In particular, the minimal elements of the set (py,....p,| are
Just the minimal primes of M, i.e., the primes which are minimal containing
Ann M ;

(b) for each minimal prime of M, the number of times which p occurs
in the set (py,....p,| is equal to the length of M, over the local ring S,
(and hence is independent of the filtration).

ProOF. For the existence of the filtration, we consider the set of graded
submodules of M which admit such a filtration. Clearly, the zero module
does, so the set is nonempty. M is a noetherian module, so there is a maximal
such submodule M’ < M. Now consider M" = M;M'. If M" = 0, we are
done. 1f not, we consider the set of ideals I = {I,, = Ann(m)jme M" is a
homogeneous element, m # 0. Each I, isa homogeneousideal, and I,, # S.
Since S is a noetherian ring, we can find an element me M", m # 0, such
that I, is a maximal element of the set J. | claim that [, is a prime ideal.
Let a,b € S. Suppose that aube I,,, but h¢ I,. We wish to show ae I,,. By
splitting into homogeneous components, we may assume that «,b are homo-
geneous elements. Now consider the element hme M”. Since h¢ I,
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bm # 0. We have [, < I,,, so by maximality of [,,, I,, = [,,,. Butabel,,
so aubm = 0,s0 ael,, = I, as required. Thus I,, is a homogeneous prime
idealof S. Callitp. Let mhavedegree /. Thenthe module N € M" generated
by mis isomorphic to (S/p)(—1). Let N' = M be the inverse image of N in M.
Then M' = N’, and N'/M' ~ (S/p)(—1). So N’ also has a filtration of the
type required. This contradicts the maximality of M’. We conclude that M’
was equal to M, which proves the existence of the filtration.

Now suppose given such a filtration of M. Then it is clear that p =
Ann M < p 2 Ann(M/M'" ') for some i. But Ann((S/p;)(I)) = p; so this
proves (a).

To prove (b) we localize at a minimal prime p. Since p is minimal in the
set {py,...,p,|, after localization, we will have M} = M~ except in the
cases where p, = p. And in those cases Mi/ M\~ ' ~ (S/p), = k(p), the
quotient field of S/p (we forget the grading). This shows that M, is an
S.-module of finite length equal to the number of times p occurs in the set

f 1
PPy

Definition. If p is a minimal prime of a graded S-module M, we define the
multiplicity of M at p, denoted u, (M), to be the length of M, over S,.

Now we can define the Hilbert polynomial of a graded module M over the
polynomial ring S = k[xq,...,x,]. First, we define the Hilbert function
¢y of M, given by

putl) = dim; M,
for each [ € Z.

Theorem 7.5. (Hilbert-Serre). Let M be a finitely generated graded S =
k[xo, . ...x,]-module. Then there is a unique polynomial Py (z) e Q[ =]
such that @p(l) = Py(l) for all 1> 0. Furthermore, deg Py (z) =
dim Z(Ann M), where Z denotes the zero set in P" of a homogeneous
ideal (cf. §2).

PROOF. If 0 > M' > M — M"” — 0 is a short exact sequence, then ¢, =
¢y + @y, and Z(Ann M) = Z(Ann M) U Z(Ann M"), so if the theorem
1s true for M" and M"”, it is also true for M. By (7.4), M has a filtration with
quotients of the form (S/p)(/) where p is a homogeneous prime ideal, and
leZ. So we reduce to M ~ (S/p)(/). The shift [ corresponds to a change
of variables -+ = + [, so it is sufficient to consider the case M = S'p. If

polynomial, and deg P,, = dim Z(p), where we make the convention that
the zero polynomial has degree — 1, and the empty set has dimension — 1.

If p # (xo,....x,), choose x;¢p, and consider the exact sequence
0>M3 M- M’"—0, where M" = M;x;M. Then ¢y(I) = ¢y() —
Pyl — 1) = (4py)(l — 1). On the other hand, Z(Ann M") = Z(p) n H,
where H is the hyperplane x; = 0, and Z(p) ¢ H by choice of x;, so by (7.2),
dim Z(Ann M") = dim Z(p) — 1. Now using induction on dim Z(Ann M),
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we may assume that ¢,, is a polynomial function, corresponding to a poly-
nomial P,,. of degree = dim Z(Ann M"”). Now, by (7.3), it follows that ¢,
is a polynomial function, corresponding to a polynomial of degree =
dim Z(p). The uniqueness of P, is clear.

Definition. The polynomial P,; of the theorem is the Hilbert polvnomial of M.

Definition. If Y = P"is an algebraic set of dimension r, we define the Hilbert
polynomial of Y to be the Hilbert polynomial Py of its homogeneous
coordinate ring S(Y). (By the theorem, it is a polynomial of degree r.)
We define the degree of Y to be r! times the leading coeflicient of Py.

Proposition 7.6.

(@) If Y < P Y # &, then the degree of 'Y is u positive integer.

(b) Let Y = Y, U Y,, where Y, and Y, have the sume dimension r, and
where dim(Y, N Y,) < r. Thendeg Y = deg Y, + deg Y;.

(c) deg P" = 1.

(d) If H < P" is a hypersurfuce whose ideal is generated by a homo-
geneous polynomial of degree d, then deg H = d. (In other words, this
definition of degree is consistent with the degree of a hypersurfuce as defined
earlier (1.4.2).)

PROOF.

(a) Since Y # (J, Py is a nonzero polynomial of degree r = dim Y. By
(7.3a), deg Y = ¢, which is an integer. It is a positive integer because for
['> 0, Py(l) = @g;(1) = 0.

(b) Let I,, I, be the ideals of ¥, and Y,. Then I = I, n I, is the ideal of
Y. We have an exact sequence

0—-S/I - S/, ®S/I,—>SII, +1,)-0.
Now Z(I, + I,) = Y, n Y,, which has smaller dimension. Hence P+,
has degree <r. So the leading coefficient of P, is the sum of the leading
cocfficients of Pg,;, and Pg;,.

(c) We calculate the Hilbert polynomial of P". It is the polynomial Pg,
where S = k[xy,...,X,]. Forl > 0, o) = ('}"), so P = (*,,"). In partic-
ular, its leading coefficient is 1/n!, so deg P" = 1.

(d) If f e S is homogeneous of degree d, then we have an exact sequence
of graded S-modules

05 S(—d) > S =S(f)-0.
Hence
(Ps/u'»(]) = @sl) = @s(l — d).

Therefore we can find the Hilbert polynomial of H, as

(= +n :_‘I+’7___‘L_n~1+
Put2) = n B n = 1)

Thusdeg H = d.
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7 Intersections in Projective Space

Now we come to our main result about the intersection of a projective
variety with a hypersurface, which is a partial generalization of Bézout's
theorem to higher projective spaces. Let Y < P" be a projective variety
of dimension r. Let H be a hypersurface not containing Y. Then, by (7.2),
YnH =2 u...0uZ, where Z, are varieties of dimension r — 1. Let
p, be the homogeneous prime ideal of Z;. We define the intersection multi-
plicity of Y and H along Z to be i(tYH . Z)) = u, (S/(Iy + Iy)). HereIy,Iy
are the homogeneous ideals of Y and H. The module M = S/(Iy + I,) has
annihilator Iy + Iy, and Z(Iy + Iy) = Y n H, so p; is a minimal prime of
M, and p is the multiplicity introduced above.

Theorem 7.7. Let Y be a variety of dimension = 1 in P" and let H be a hyper-
surface not containing Y. Let Z,, ..., Zs be the irreducible components
of YN H. Then

i I(YH;Z;) deg Z, = (deg Y)(deg H).
)51
PROOF. Let H be defined by the homogeneous polynomial f of degree d.
We consider the exact sequence of graded S-modules
0 (STy)(—d) L Sy » M =0,
where M = S/(Iy + Iy). Taking Hilbert polynomials, we find that
Py(2) = Py(z) — Py(z — d).

Our result comes from comparing the leading coefficients of both sides
of this equation. Let Y have dimension r and degree ¢. Then Py(z) =
(e/r)z" + ... so on the right we have

(e/r="+ ... = [le/r)z —dy +...] = (de/tr — Oz + ...

Now consider the module M. By (7.4), M has a filtration 0 = M° < M!' <
... < M7 = M, whose quotients M'/M'~ 1 are of the form (S/q;)(I,). Hence
Py = Y9, P, where P, is the Hilbert polynomial of (S/q,)(I}). If Z(q;) is
a projective variety of dimension r, and degree f,, then

P, = (forhHz" + ... .

Note that the shift /, does not affect the leading coefficient of P;. Since we
are interested only in the leading coefficient of P,, we can ignore those P,
of degree <r — 1. We are left with those P;, where q; is a minimal prime of
M. namely, one of the primes p,. ..., p, corresponding to the Z;. Each one
of these occurs g, (M) times, so the leading coefficient of Py, is

(Z i(Y.H: Z;) deg Z,)/(r -
J

i=1

Comparing with the above, we have our result.
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Corollary 7.8 (Bézout's Theorem). Let Y.Z be distinet curves in P2 having
degrees de. Let Y nZ = |P,....P,). Then

YiUY.Z: P) = de.

PrROOF. We have only to observe that a point has Hilbert polynomial 1.
hence degree 1. See (V. 1.4.2) for another proof.

Remark 7.8.1. Our definition of intersection multiplicity in terms of the
homogeneous coordinate ring is different from the local definition given
earlier (Ex. 5.4). However, it is easy to show that they coincide in the case of
intersections of plane curves.

Remark 7.8.2. The proof of (7.8) extends easily to the case where Y and Z are
“reducible curves,” i.e., algebraic sets of dimension 1 in P?, provided they
have no irreducible component in common.

EXERCISES

7.1. (a) Find the degree of the d-uple embedding of P" in PV (Ex. 2.12). [Answer: d"]

(b) Find the degree of the Segre embedding of P x P* in P (Ex. 2.14). [Answer:
)]

7.2. Let Y be a variety of dimension r in P", with Hilbert polynomial P,. We define
the arithmetic genus of Y to be p,(Y) = (= 1)(Py(0) — 1). This is an important
invariant which (as we will see later in (I11, Ex. 5.3)) is independent of the projective
embedding of Y.

(a) Show that p(P") = 0.

(b) If Y is a plane curve of degree d, show that p,(Y) = 3(d — 1)(d — 2).

(c) More generally, if H is a hypersurface of degree d in P", then p,(H) = (*}).

(d) If Y is a complete intersection (Ex. 2.17) of surfaces of degrees «.b in P, then
pdY) = gubla + b — 4) + 1.

(e) Let Y < P", 2° < P™ be projective varieties. and embed Y x Z < P" x
P" — P* by the Segre embedding. Show that

PdY X Z) = pYIpZ) + (= 1)pY) + (= 1)pZ).

7.3. The Dual Curve. Let Y = P? bea curve. We regard the set of lines in P2 as another
projective space, (P?)*, by taking (dq.«,.i,) as homogeneous coordinates of the
line L:agxy + ayx; + a,x, = 0. For each nonsingular point P e Y, show that
there is a unique line Tp(Y) whose intersection multiplicity with Y at P is > 1.
This is the tangent line to Y at P. Show that the mapping P+ Tp(Y) defines a
morphism of Reg Y (the set of nonsingular points of Y) into (P?)*. The closure of
the image of this morphism is called the dual curve Y* < (P?)* of Y.

7.4. Given a curve Y of degree d in P2, show that there is a nonempty open subset U of
(P?)* in its Zariski topology such that for each L e U,L meets Y in exactly d points.
[Hint: Show that the set of lines in (P?)* which are either tangent to Y or pass
through a singular point of Y is contained in a proper closed subset.] This result
shows that we could have defined the degree of Y to be the number d such that
almost all lines in P meet Y in d points, where “almost all” refers to a nonempty
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open sct of the set of lines. when this set is identified with the dual projective space
(P?)*.

~
in

. (a) Show that an irreducible curve Y of degree d > 1 in P? cannot have a point of
multiplicity = d (Ex. 5.3).
(b) If Y is an irreducible curve of degree d > 1 having a point of multiplicity
d — 1.then Y is a rational curve (Ex. 6.1).

7.6. Linear Varietics. Show that an algebraic set Y of pure dimension r (i.e., every
irreducible component of Y has dimension r) has degree 1 if and only if Y is a
linear variety (Ex. 2.11). [Hint: First, use (7.7) and treat the case dim Y = 1. Then
do the general case by cutting with a hyperplane and using induction.]

7.7. Let Y bea variety of dimension r and degreed > 1inP". Let P € Y be a nonsingular
point. Define X to be the closure of the union of all lines PQ, where Q € Y. Q # P.
(a) Show that X is a variety of dimension r + 1.

(b) Show that deg X < d. [Hint: Use induction on dim Y]

7.8. Let Y" < P"be a variety of degree 2. Show that Y is contained in a linear subspace
L of dimension r + 1 in P". Thus Y is isomorphic to a quadric hypersurface in
P 1 (Ex. 5.12). )

8 What Is Algebraic Geometry?

Now that we have met some algebraic varieties, and have encountered some
of the main concepts about them. it is appropriate to ask, what is this subject
all about? What are the important problems in the field, and where is it
going?

To define algebraic geometry, we could say that it is the study of the
solutions of systems of polynomial equations in an affine or projective
n-space. In other words, it is the study of algebraic varieties.

In any branch of mathematics, there are usually guiding problems, which
are so difficult that one never expects to solve them completely, yet which
provide stimulus for a great amount of work, and which serve as yardsticks for
measuring progress in the field. In algebraic geometry such a problem is the
classification problem. In its strongest form, the problem is to classify all
algebraic varieties up to isomorphism. We can divide the problem into
parts. The first part is to classify varieties up to birational equivalence. As
we have seen. this is equivalent to the question of classifying function fields
(finitely generated extension fields) over k up to isomorphism. The second
part is to identify a good subset of a birational equivalence class. such as the
nonsingular projective varicties. and classify them up to isomorphism. The
third part is to study how far an arbitrary variety is from one of the good
ones considered above. In particular. we want to know (a) how much do you
have to add to a nonprojective variety to get a projective variety, and (b)
what is the structure of singularities, and how can they be resolved to give a
nonsingular variety?
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Typically. the answer to any classification problem in algebraic geometry
consists of a discrete part and a continuous part. So we can rephrase the
problem as follows: define numerical invariants and continuous invariants
of algebraic varieties, which allow one to distinguish among nonisomorphic
varieties. Another special feature of the classification problem is that often
when there is a continuous family of nonisomorphic objects. the parameter
space can itself be given a structure of algebraic variety. This is a very power-
ful method, because then all the techniques of the subject can be applied to
the study of the parameter space as well as to the original varieties.

Let us illustrate these ideas by describing what is known about the classi-
fication of algebraic curves (over a fixed algebraically closed field k). First,
the birational classification. There i1s an invariant called the genus of a
curve, which is a birational invariant, and which takes on all nonnegative
values ¢ = 0. For g = 0 there is exactly one birational equivalence class,
namely, that of the rational curves (i.e., those curves which are birationally
equivalent to P'). For each ¢ > 0 there is a continuous family of birational
equivalence classes, which can be parametrized by an irreducible algebraic
variety Wi , called the variety of moduli of curves of genus g, which has di-
mension | if g = 1, and dimension 3g — 3 if ¢ > 2. Curves with ¢ = 1 are
called elliptic curves. Thus for curves, the birational classification question
is answered by giving the genus, which is a discrete invariant, and a point on
the variety of moduli, which is a continuous invariant. See Chapter IV for
more details.

The second question for curves, namely, to describe all nonsingular pro-
Jjective curves in a given birational equivalence class, has a simple answer, as
we have seen, since there is exactly one.

For the third question, we know that any curve can be completed to a
projective curve by adding a finite number of points, so there is not much
more to say there. As for the classification of singularities of curves, see
(V,3.9.4).

While we are discussing the classification problem, I would like to describe
another special case where a satisfactory answer is known, namely, the
classification of nonsingular projective surfaces within a given birational
equivalence class. In this case one knows that (1) every birational equivalence
class of surfaces has a nonsingular projective surface in it, (2) the set of
nonsingular projective surfaces with a given function field K 'k is a partially
ordered set under the relation given by the existence of a birational mor-
phism, (3) any birational morphism f:X — Y can be factored into a finite
number of steps, each of which is a blowing-up of a point, and (4) unless K is
rational (i.e., equal to K(P?)) or ruled (i.e., K is the function field of a product
P! x C, where C is a curve), there is a unique minimal element of this
partially ordered set, which is called the minimal model of the function field K.
(In the rational and ruled cases, there are infinitely many minimal elements,
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and their structure is also well-known.) The theory of minimal models is a
very beautiful branch of the theory of surfaces. The results were known to the
ltalians, but were first proved in all characteristics by Zariski [5]. [6]. See
Chapter V for more details.

From these remarks it should be clear that the classification problem is a
very fruitful problem to keep in mind while studying algebraic geometry.
This leads us to the next question: how does one go about defining invariants
of an algebraic variety? So far, we have defined the dimension. and for
projective varieties we have defined the Hilbert polynomial, and hence the
degree and the arithmetic genus p,. Of course the dimension is a birational
invariant. But the degree and the Hilbert polynomial depend on the em-
bedding in projective space, so they are not even invariants under isomor-
phism of varieties. Now it happens that the arithmetic genus is an invariant
under isomorphism (II1. Ex. 5.3). and is even a hirationul invariant in most
cases (curves, surfaces, nonsingular varieties in characteristic 0: see (V, 5.6.1)),
but this is not at all apparent from our definition.

To go further, we must study the intrinsic geometry on a variety, which we
have not done at all yet. So, for example, we will study divisors on a variety X.
A divisor is an element of the free abelian group generated by the subvarieties
of codimension one. We will define linear equiralence of divisors, and then
we can form the group of divisors modulo linear equivalence, called the
Picard group of X. Thisis an intrinsic invariant of X. Another very important
notion is that of a differential form on a variety X. Using differential forms,
one can give an intrinsic definition of the tangent bundle and cotangent
bundle on an algebraic variety. Then one can carry over many constructions
from differential geometry to define numerical invariants. For example,
one can define the genus of a curve as the dimension of the vector space of
global differential forms on the nonsingular projective model. From this
definition it is clear that it is a birational invariant. See (11, §6.7.8).

Perhaps the most important modern technique for defining numerical
invariants is by cohomology. There are many cohomology theories. but we
will be principally concerned in this book with the cohomology of coherent
sheaves. which was introduced by Serre [3]. Cohomology is an extremely
powerful and versatile tool. Not only can it be used to define numerical
invariants (for example. the genus of a curve X can be defined as dim
H'(X.()). but it can be used to prove many important results which do not
apparently have any connection with cohomology. such as “Zariski’s main
theorem.” which has to do with the structure of birational transformations.
To set up a cohomology theory requires a lot of work. but I believe it is well
worth the effort. We will devote a whole chapter to cohomology later in the
book (Chapter I11). Cohomology is also a useful vehicle for understanding
and expressing important results such as the Riemann Roch theorem. This
theorem was known classically for curves and surfaces, but it was by using
cohomology that Hirzebruch [1] and Grothendieck (see Borel and Serre
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[1]) were able to clarify and generalize it to varieties of any dimension
(Appendix A).

Now that we have seen a little bit of what algebraic geometry is about. we
should discuss the degree of generality in which to develop the foundations
of the subject. In this chapter we have worked over an algebraically closed
field, because that is the simplest case. But there are good reasons for allowing
fields which are not algebraically closed. One reason is that the local ring
of a subvariety on a variety has a residue field which is not algebraically
closed (Ex. 3.13), and at times it is desirable to give a unified treatment of
properties which hold along a subvariety and properties which hold at a
point. Another strong reason for allowing non-algebraically closed fields
is that many problems in algebraic geometry are motivated by number
theory, and in number theory one is primarily concerned with solutions of
equations over finite fields or number fields. For example, Fermat’s problem
is equivalent to the question, does the curve X" + " = =" in P? for n > 3
have any points rational over Q (i.e., points whose coordinates are in Q),
with x, v,z # 0.

The need to work over arbitrary ground fields was recognized by Zariski
and Weil. In fact, perhaps one of the principal contributions of Weil's
“Foundations™ [1] was to provide a systematic framework for studying
varieties over arbitrary fields, and the various phenomena which occur
with change of ground field. Nagata [2] went further by developing the
foundations of algebraic geometry over Dedekind domains.

Another direction in which we need to expand our foundations is to define
some kind of abstract variety which does not a priori have an embedding in an
affine or projective space. This is especially necessary in problems such as the
construction of a variety of moduli, because there one may be able to make
the construction locally, without knowing anything about a global em-
bedding. In §6 we gave a definition of an abstract curve. In higher dimen-
sions that method does not work. because there is no unique nonsingular
model of a given function field. However, we can define an abstract variety
by starting from the observation that any variety has an open covering by
affine varieties. Thus one can define an abstract variety as a topological
space X, with an open cover U, plus for each U a structure of affine variety.
such that on each intersection U, n U, the induced variety structures are
isomorphic. It turns out that this generalization of the notion of variety is
not illusory, because in dimension >2 there are abstract varieties which
are not isomorphic to any quasi-projective variety (I, 4.10.2).

There is a third direction in which it is useful to expand our notion of
algebraic variety. In this chapter we have defined a variety as an irreducible
algebraic set in affine or projective space. But it is often convenient to allow
reducible algebraic sets, or even algebraic sets with multiple components.
For example, this is suggested by what we have seen of intersection theory
in §7, since the intersection of two varieties may be reducible, and the sum
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of the ideals of the two varieties may not be the ideal of the intersection. So
one might be tempted to define a “generalized projective variety™ in P" to
be an ordered pair (V.I), where V' is an algebraic set in P", and [ € S =
A[xgy ... x, | is any ideal such that V' = Z(/). Thisis not in fact what we will
do. but it gives the general idea.

All three generalizations of the notion of variety suggested above are
contained in Grothendieck's definition of a scheme. He starts from the
observation that an affine variety corresponds to a finitely generated integral
domain over a field (3.8). But why restrict one's attention to such a special
class of rings? So for any commutative ring .4, he defines a topological space
Spec A4, and a sheaf of rings on Spec 4, which generalizes the ring of regular
functions on an affine variety, and he calls this an affine scheme. An arbitrary
scheme is then defined by glueing together affine schemes, thus generalizing
the notion of abstract variety we suggested above.

One caution about working in extreme generality. There are many ad-
vantages to developing a theory in the most general context possible. In
the case of algebraic geometry there is no doubt that the introduction of
schemes has revolutionized the subject and has made possible tremendous
advances. On the other hand, the person who works with schemes has to
carry a considerable load of technical baggage with him: sheaves, abelian
categories, cohomology, spectral sequences, and so forth. Another more
serious difficulty is that some things which are always true for varieties may
no longer be true. For example, an affine scheme need not have finite di-
mension, even if its ring is noetherian. So our intuition must be supported
by a good knowledge of commutative algebra.

In this book we will develop the foundations of algebraic geometry using
the language of schemes, starting with the next chapter.
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CHAPTER II

Schemes

This chapter and the next form the technical heart of this book. In this
chapter we develop the basic theory of schemes, following Grothendieck
[EGA]. Sections 1 to 5 are fundamental. They contain a review of sheaf
theory (necessary even to define a scheme), then the basic definitions of
schemes, morphisms, and coherent sheaves. This is the language that we use
for the rest of the book.

Then in Sections 6, 7, 8, we treat some topics which could have been done
in the language of varieties, but which are already more convenient to discuss
using schemes. For example, the notion of Cartier divisor, and of an in-
vertible sheaf, which belong to the new language, greatly clarify the dis-
cussion of Weil divisors and linear systems, which belong to the old language.
Then in §8, the systematic use of nonclosed scheme points gives much more
flexibility in the discussion of sheaves of differentials and nonsingular
varieties, improving the treatment of (I, §5).

In §9 we give the definition of a formal scheme, which did not have an
analogue in the theory of varieties. It was invented by Grothendieck as a
good way of dealing with Zariski’s theory of “holomorphic functions,” which
Zariski regarded as an analogue in abstract algebraic geometry of the
holomorphic functions in a neighborhood of a subvariety in the classical case.

1 Sheaves

The concept of a sheaf provides a systematic way of keeping track of local
algebraic data on a topological space. For example, the regular functions
on open subsets of a variety, introduced in Chapter I, form a sheaf, as we will
see shortly. Sheaves are essential in the study of schemes. In fact, we cannot
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even define a scheme without using sheaves. So we begin this chapter with
sheaves. For additional information, see the book of Godement [1].

Definition. Let X be a topological space. A presheaf # of abelian groups on
X consists of the data

(a) for every open subset U < X, an abelian group % (U), and
(b) for every inclusion ¥V < U of open subsets of X, a morphism of
abelian groups pyy: Z (U) - F(V),

subject to the conditions

(0) F() = 0, where (F is the empty set,
(1) pyy 1s the identity map #(U) - #(U), and
(2) if W < V < U are three open subsets, then pyw = pyw © pyy.

The reader who likes the language of categories may rephrase this defi-
nition as follows. For any topological space X, we define a category Top(X),
whose objects are the open subsets of X, and where the only morphisms are
the inclusion maps. Thus Hom(V,(\J) is empty if V ¢ U, and Hom(V,U)
has just one element if V= U. Now a presheaf is just a contravariant
functor from the category Top(X) to the category UAb of abelian groups.

We define a presheaf of rings, a presheaf of sets, or a presheaf with values
in any fixed category €, by replacing the words “abelian group” in the
definition by “ring”, “set”, or “object of € respectively. We will stick to
the case of abelian groups in this section, and let the reader make the necessary
modifications for the case of rings, sets, etc.

As a matter of terminology, if # is a presheaf on X, we refer to #(U) as
the sections of the presheaf # over the open set U, and we sometimes use
the notation I'(U,#) to denote the group #(U). We call the maps pyy
restriction maps, and we sometimes write s|,, instead of pyy(s), if s € Z(U).

A sheaf is roughly speaking a presheaf whose sections are determined by
local data. To be precise, we give the following definition.

Definition. A presheaf # on a topological space X is a sheaf if it satisfies
the following supplementary conditions:

(3) if U is an open set, if { ;] is an open covering of U, and if s € #(U) is
an element such that s|,,, = Oforall i, thens = 0;

(4) if U is an open set, if {V;} is an open covering of U, and if we have
elements s; € Z(V;) for each i, with the property that for each i, j, 5|y v, =
51\1’mV,» then there is an element s € #(U) such that s, = s, for each i.
(Note condition (3) implies that s is unique.)

Note. According to our definition, a sheaf is a presheaf satisfying certain
extra conditions. This is equivalent to the definition found in some other
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books, of a sheaf as a topological space over X with certain properties
(Ex. 1.13).

Example 1.0.1. Let X be a variety over the field k. IForeach openset U < X,
let ¢ (U) be the ring of regular functions from U to k, and for each V < U, let
puv:C(U) = (V) be the restriction map (in the usual sense). Then € is a
sheaf of rings on X. It is clear that it is a presheaf of rings. To verify the
conditions (3) and (4), we note that a function which is 0 locally is 0, and a
function which is regular locally is regular, because of the definition of regular
function (I, §3). We call € the sheaf of regular functions on X.

Example 1.0.2. In the same way, one can define the sheaf of continuous real-
valued functions on any topological space, or the sheaf of differentiable
functions on a differentiable manifold, or the sheaf of holomorphic functions
on a complex manifold.

Example 1.0.3. Let X be a topological space, and A4 an abelian group. We
define the constant sheaf o/ on X determined by A as follows. Give A the
discrete topology, and for any open set U < X, let.o/ (U) be the group of all
continuous maps of U into 4. Then with the usual restriction maps, we
obtain a sheaf .o/. Note that for every connected open set U, ./ (U) = A,
whence the name “constant sheaf.” If U is an open set whose connected
components are open (which is always true on a locally connected topological
space), then ./ (U) is a direct product of copies of A4, one for each connected
component of U.

Definition. If .7 is a presheaf on X, and if P is a point of X, we define the
stalk #, of # at P to be the direct limit of the groups .# (U) for all open
sets U containing P, via the restriction maps p.

Thus an element of %, is represented by a pair {U,s)», where U is an open
neighborhood of P, and s is an element of .# (U). Two such pairs (U,s» and
(Vt> define the same element of .%, if and only if there is an open neighbor-
hood W of P with W = U n V,such that s, = t],,. Thus we may speak of
elements of the stalk .#, as germs of sections of .7 at the point P. In the case
of a variety X and its sheaf of regular functions ¢, the stalk ( p at a point P
is just the local ring of P on X, which was defined in (I, §3).

Definition. If # and % are presheaves on X, a morphism ¢:# — % consists
of a morphism of abelian groups @(U): #(U) —» 4(U) for each open set
U, such that whenever VV = U is an inclusion, the diagram

7y —2Y 4w
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is commutative, where p and p’ are the restriction maps in .# and 4. If
# and % are sheaves on X, we use the same definition for a morphism
of sheaves. An isomorphism is a morphism which has a two-sided inverse.

Note that a morphism ¢:.# — % of presheaves on X induces a morphism
¢pp:-Fp — Gp on the stalks, for any point P € X. The following proposition
(which would be false for presheaves) illustrates the local nature of a sheaf.

Proposition 1.1. Letr ¢: F — 4 be a morphism of sheaves on a topological
space X. Then @ is an isomorphism if and only if the induced map on the
stalk @p: Fp — Gp is an isomorphism for every P e X.

Proor. If ¢ is an isomorphism it is clear that each ¢, is an isomorphism.
Conversely, assume ¢p is an isomorphism for all P € X. To show that ¢ is
an isomorphism, it will be sufficient to show that o(U): 7 (U) - %(U) is
an isomorphism for all U, because then we can define an inverse morphism
Y by y(U) = @(U)~! for each U. First we show ¢(U) is injective. Let
s€.F(U), and suppose ¢(s) € 4(U) is 0. Then for every point P e U, the
image ¢(s)p of @(s) in the stalk %, is 0. Since ¢, is injective for each P, we
deduce thatlsp = 0 in #p for each P e U. To say that s, = 0 means that s
and 0 have the same image in .7p, which means that there is an open neigh-
borhood W, of P, with W, = U, such that s|y,, = 0. Now U is covered by
the neighborhoods W, of all its points, so by the sheaf property (3), s is 0
on U. Thus ¢(U) is injective.

Next, we show that ¢(U ) is surjective. Suppose we have a sectiont € 4(U).
For each P e U, let tp € 4, be its germ at P. Since ¢, is surjective, we can
find sp € #p such that @p(sp) = tp. Let sp be represented by a section s(P)
on a neighborhood V, of P. Then ¢(s(P)) and 1], are two elements of
%(Vp), whose germs at P are the same. Hence, replacing V, by a smaller
neighborhood of P if necessary, we may assume that ¢(s(P)) = t|,, in
4(Vp). Now U is covered by the open sets V,, and on each V, we have a
section s(P) € 7 (V,). If P,Q are two points, then s(P)|y .y, and s(Q)|y v,
are two sections of 7 (V5 n V), which are both sent by ¢ to 1y, v, Hence
by the injectivity of ¢ proved above, they are equal. Then by the sheaf
property (4), there is a section s € Z (U) such that s\yp = s(P) for each P.
Finally, we have to check that ¢(s) = 1. Indeed, ¢(s), t are two sections of
%(U), and for each P, ¢(s)|,, = t|;.,, hence by the sheaf property (3) applied
to ¢(s) — t, we conclude that ¢(s) = .

Our next task is to define kernels, cokernels and images of morphisms
of sheaves.

Definition. Let ¢:.# — % be a morphism of presheaves. We define the
presheaf kernel of ¢, presheaf cokernel of ¢, and presheaf image of ¢ to
be the presheaves given by U — ker(p(U)), U — coker(o(U)), and
U — im(¢p(U)) respectively.
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Note that if ¢:.# — ¥ is a morphism of sheaves, then the presheaf kernel
of ¢ 1s a sheaf, but the presheaf cokernel and presheaf image of ¢ are in
general not sheaves. This leads us to the notion of a sheaf associated to a
presheaf.

Proposition-Definition 1.2. Given a presheaf 7, there is a sheaf F = and a
morphism 0:F — F % with the property that for any sheaf 4, and any
morphism @:F — 4, there is a unique morphism Y:F % — % such that
@ = Y - 0. Furthermore the pair (F *,0) is unique up to unique isomorphism.
F " is called the sheaf associated to the presheaf F.

Proor. We construct the sheaf .# * as follows. For any openset U, let .# *(U)
be the set of functions s from U to the union | |, . #p of the stalks of #
over points of U, such that

(1) for each P e U, s(P) € #p, and
(2) for each P € U, there is a neighborhood V of P, contained in U, and an
element t € .7 (V), such that for all Q € ¥, the germ 1, of ¢ at Q is equal

to s(Q).

Now one can verify immediately (!) that .# = with the natural restriction
maps is a sheaf, that there is a natural morphism 0: 7 — # ¥, and that it
has the universal property described. The uniqueness of #* is a formal
consequence of the universal property. Note that for any point P, 7p = 7 ;.
Note also that if & itself was a sheaf, then # ¥ is isomorphic to 7 via
0.

Definition. A subsheaf of a sheaf # is a sheaf .7 such that for every open set
U < X, #'(U) is a subgroup of #(U), and the restriction maps of the
sheaf .#" are induced by those of #. It follows that for any point P, the
stalk .7} is a subgroup of .#,.

If ¢: 7 — % is a morphism of sheaves, we define the kernel of ¢,
denoted ker ¢, to be the presheaf kernel of ¢ (which is a sheaf). Thus
ker ¢ is a subsheaf of 7.

We say that a morphism of sheaves ¢: # — 4 is injective if ker ¢ = 0.
Thus ¢ is injective if and only if the induced map @(U): Z(U) - %(U) is
injective for every open set of X.

If p: 7 — % is a morphism of sheaves, we define the imuge of ¢,
denoted im ¢, to be the sheaf associated to the presheaf image of ¢. By
the universal property of the sheaf associated to a presheaf, there is a
natural map im ¢ — %. In fact this map is injective (see Ex. 1.4), and thus
im ¢ can be identified with a subsheaf of %.

We say that a morphism ¢:.7 — % of sheaves is surjective if im ¢ = 4.

We say that a sequence ... — Z' ' 2 71 % Zi*1 ,  of sheaves

and morphisms is exact if at each stage ker ¢' = im ¢’ ~'. Thus asequence
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0 » 7 5 % is exact if and only if ¢ is injective, and # 5 4 — 0 is exact
if and only if ¢ is surjective.

Now let .7’ be a subsheaf of a sheaf .#. We define the quotient sheaf
F|F' to be the sheaf associated to the presheaf U — #(U)/.#'(U). It
follows that for any point P, the stalk (# 7')p is the quotient .7,/ %p.

If p: 7 — % is a morphism of sheaves, we define the cokernel of ¢,
denoted coker ¢, to be the sheaf associated to the presheaf cokernel of ¢.

Caution 1.2.1. We saw that a morphism ¢:.# — @ of sheaves is injective if
and only if the map on sections @(U):.#(U) —» 4(U) is injective for each
U. The corresponding statement for surjective morphisms is not true: if
¢p:. 7 — ¥ is surjective, the maps @ (U): # (U) — 4(U) on sections need not
be surjective. However, we can say that ¢ is surjective if and only if the maps
¢@p.7p — Gponstalks are surjective for each P. More generally, a sequence
of sheaves and morphisms is exact if and only if it is exact on stalks (Ex. 1.2).
This again illustrates the local nature of sheaves.

So far we have talked only about sheaves on a single topological space.
Now we define some operations on sheaves, associated with a continuous
map from one topological space to another.

Definition. Let f: X — Y be a continuous map of topological spaces. For
any sheaf # on X, we define the direct image sheaf f,.# on Y by
(f7F)WV) = F(f "(V)) for any open set V = Y. For any sheaf 4 on
Y, we define the inverse image sheaf f~'% on X to be the sheaf associated
to the presheafl U — limy-5 ;¢ %(V), where U is any open set in X, and
the limit is taken over all open sets V of Y containing f(U). Do not confuse
f~'% with the sheaf f*% which will be defined later for a morphism of
ringed spaces (§5).

Note that f, is a functor from the category Ub(X) of sheaves on X to
the category 2b(Y) of sheaves on Y. Similarly, /™' is a functor from 2b(Y)
to Ab(X).

Definition. If Z is a subset of X, regarded as a topological subspace with the
induced topology, if i:Z — X is the inclusion map, and if .# is a sheaf
on X, then we call i~ '.# the restriction of 7 to Z, and we often denote
it by #|,. Note that the stalk of .# |, at any point P € Z is just Fp.

EXERCISES

I.1. Let A be an abelian group. and define the constant presheaf associated to 4 on
the topological space X to be the presheaf U — A4 for all U # ¢F, with restriction
maps the identity. Show that the constant sheaf .o/ defined in the text is the sheaf
associated to this presheaf.
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Schemes

(a) Forany morphism of sheaves ¢:# — ¥, show that for each point P, (ker ¢)p =
ker(¢pp) and (im ¢)p = Im(@p).

(b) Show that ¢ is injective (respectively, surjective) if and only if the induced map
on the stalks ¢p Is injective (respectively. surjective) for all P.

(c) Show that a sequence ... #'"! L F% FU 5 of sheaves and mor-
phisms is exact if and only if for each P € X the corresponding sequence of
stalks is exact as a sequence of abelian groups.

(a) Let ¢:# — % be a morphism of sheaves on X. Show that ¢ is surjective if
and only if the following condition holds: for every open set U < X, and for
every s € 4(U), there isa covering [ U} of U, and there are elements 1, € #(U,),
such that ¢(t,) = 5|, for all i,

(b) Give an example of a surjective morphism of sheaves ¢:# — %, and an

open set U such that o(U):.#(U) - %4(U) is not surjective.

(a) Let ¢:.F — % be a morphism of presheaves such that ¢(U): Z(U) - 4(U)
is injective for each U. Show that the induced map ¢*:#* — 4" of asso-
ciated sheaves is injective.

(b) Use part (a) to show that if ¢:.# — % is a morphism of sheaves, then im ¢
can be naturally identified with a subsheaf of 4. as mentioned in the text.

Show that a morphism of sheaves is an isomorphism if and only if it is both
injective and surjective.

(a) Let #' be a subsheaf of a sheaf .#. Show that the natural map of .# to the
quotient sheaf # '#' is surjective, and has kernel #'. Thus there is an exact
sequence

0> F - F > F 1 F -0

(b) Conversely, if 0 > ' — F —» F"” — 0 is an exact sequence, show that .7~
is isomorphic to a subsheaf of #, and that 7" is isomorphic to the quotient of
F by this subsheaf.

Let ¢:# — 4 be a morphism of sheaves.
(a) Show thatim ¢ = .7 /ker ¢.
(b) Show that coker ¢ = %/im ¢.

For any open subset U = X, show that the functor I'(U.-) from sheaves on X to
abelian groups is a left exact functor, ie. if 0 > 7' - F# — F" is an exact
sequence of sheaves, then 0 —» I'(U.¥') -» I'(U,#7) - I'(U,#") is an exact
sequence of groups. The functor I'(L.") need not be exact: see (Ex. 1.21) below.

Direct Sum. Let # and 4 be sheaves on X. Show that the presheaf U — 7 (U) @
4(U) is a sheaf. It is