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PREFACE TO THE FOURTH EDITION

This fourth edition contains several additions. The main ones con-
cern three closely related topics: Brownian motion, functional limit
distributions, and random walks. Besides the power and ingenuity of
their methods and the depth and beauty of their results, their importance
is fast growing in Analysis as well as in theoretical and applied Proba-
bility.

These additions increased the book to an unwieldy size and it had to
be split into two volumes.

About half of the first volume is devoted to an elementary introduc-
tion, then to mathematical foundations and basic probability concepts
and tools. The second half is devoted to a detailed study of Independ-
ence which played and continues to play a central role both by itself and
as a catalyst.

The main additions consist of a section on convergence of probabilities
on metric spaces and a chapter whose first section on domains of attrac-
tion completes the study of the Central limit problem, while the second
one is devoted to random walks.

About a third of the second volume is devoted to conditioning and
properties of sequences of various types of dependence. The other two
thirds are devoted to random functions; the last Part on Elements of
random analysis is more sophisticated.

The main addition consists of a chapter on Brownian motion and limit
distributions.

It is strongly recommended that the reader begin with less involved
portions. In particular, the starred ones ought to be left out until they
are needed or unless the reader is especially interested in them.

I take this opportunity to thank Mrs. Rubalcava for her beautiful
typing of all the editions since the inception of the book. I also wish to
thank the editors of Springer-Verlag, New York, for their patience and
care.

Fanuary, 1977
Berkeley, California




PREFACE TO THE THIRD EDITION

This book is intended as a text for graduate students and as a reference
for workers in Probability and Statistics. The prerequisite is honest
calculus. The material covered in Parts Two to Five inclusive requires
about three to four semesters of graduate study. The introductory part
may serve as a text for an undergraduate course in elementary prob-
ability theory.

The Foundations are presented in:

the Introductory Part on the background of the concepts and prob-
lems, treated without advanced mathematical tools;

Part One on the Notions of Measure Theory that every probabilist
and statistician requires; |

Part Two on General Concepts and Tools of Probability Theory.

Random sequences whose general properties are given in the Founda-
tions are studied in:

Part Three on Independence devoted essentially to sums of inde-
pendent random variables and their limit properties;

Part Four on Dependence devoted to the operation of conditioning
and limit properties of sums of dependent random variables. The
last section introduces random functions of second order.

Random functions and processes are discussed in:

Part Five on Elements of random analysis devoted to the basic con-
cepts of random analysis and to the martingale, decomposable,
and Markov types of random functions.

Since the primary purpose of the book is didactic, methods are
emphasized and the book is subdivided into:

unstarred portions, independent of the remainder; starred portions,
which are more involved or more abstract;

complements and details, including illustrations and applications of
the material in the text, which consist of propositions with fre-




PREFACE TO THE THIRD EDITION

quent hints; most of these propositions can be found in the
articles and books referred to in the Bibliography.

Also, for teaching and reference purposes, it has proved useful to name
most of the results. A

Numerous historical remarks about results, methods, and the evolu-
tion of various fields are an intrinsic part of the text. The purpose is
purely didactic: to attract attention to the basic contributions while
introducing the ideas explored. 'Books and memoirs of authors whose
contributions are referred to and discussed are cited in the Bibliography,
which parallels the text in that it is organized by parts and, within parts,
by chapters. Thus the interested student can pursue his study in the
original literature.

This work owes much to the reactions of the students on whom it has
been tried year after year. However, the book is definitely more concise
than the lectures, and the reader will have to be armed permanently
with patience, pen, and calculus. Besides, in mathematics, as in any
form of poetry, the reader has to be a poet in posse.

This third edition differs from the second (1960) in a number of
places. Modifications vary all the way from a prefix (“sub” martingale
in lieu of “semi’-martingale) to an entire subsection (§36.2). To pre-
serve pagination, some additions to the text proper (especially 9, p. 656)
had to be put in the Complements and Details. It is hoped that more-
over most of the errors have been eliminatéd and that readers will be
kind enough to inform the author of those which remain.

I take this opportunity to thank those whose comments and criticisms
led to corrections and improvements: for the first edition, E. Barankin, S.
Bochner, E. Parzen, and H. Robbins; for the second edition, Y. S. Chow,
R. Cogburn, J. L. Doob, J. Feldman, B. Jamison, J. Karush, P. A. Meyer,
J. W. Pratt, B. A. Sevastianov, J. W. Woll; for the third edition, S.
Dharmadhikari, J. Fabius, D. Freedman, A. Maitra, U. V. Prokhorov.
My warm thanks go to Cogburn, whose constant help throughout the
preparation of the second edition has been invaluable. This edition has
been prepared with the partial support of the Office of Naval Research
and of the National Science Foundation.

M. L.
April, 1962
Berkeley, California
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Introductory Part

ELEMENTARY PROBABILITY THEORY

Probability theory is concerned with the mathematical analysis of
the intuitive notion of “chance” or “randomness,” which, like all no-
tions, is born of experience. The quantitative idea of randomness first
took form at the gaming tables, and probability theory began, with
Pascal and Fermat (1654), as a theory of games of chance. Since then,
the notion of chance has found its way into almost all branches of knowl-
edge. In particular, the discovery that physical “observables,” even
those which describe the behavior of elementary particles, were to be
considered as subject to laws of chance made an investigation of the
notion of chance basic to the whole problem of rational interpretation
of nature.

A theory becomes mathematical when it sets up a mathematical
model of the phenomena with which it is concerned, that is, when, to
describe the phenomena, it uses a collection of well-defined symbols
and operations on the symbols. As the number of phenomena, to-
gether with their known properties, increases, the mathematical model
evolves from the early crude notions upon which our intuition was
built in the direction of higher generality and abstractness.

In this manner, the inner consistency of the model of random phe-
nomena became doubtful, and this forced a rebuilding of the whole
structure in the second quarter of this century, starting with a formula-
tion in terms of axioms and definitions. Thus, there appeared a branch
of pure mathematics—probability theory—concerned with the construc-
tion and investigation per se of the mathematical model of randomness.

The purpose of the Introductory Part (of which the other parts of
this book are independent) is to give “intuitive meaning” to the con-
cepts and problems of probability theory. First, by analyzing briefly

1




2 ELEMENTARY PROBABILITY THEORY

some ideas derived from everyday experience—especially from games of
chance—we shall arrive at an elementary axiomatic setup; we leave the
illustrations with coins, dice, cards, darts, etc., to the reader. Then,
we shall apply this axiomatic setup to describe in a precise manner
and to investigate in a rigorous fashion a few of the “intuitive notions”
relative to randomness. No special tools will be needed, whereas in
the nonelementary setup measure-theoretic concepts and Fourier-
Stieltjes transforms play a prominent role.



I. INTUITIVE BACKGROUND

1. Events. The primary notion in the understanding of nature is that
of event—the occurrence or nonoccurrence of a phenomenon. The ab-
stract concept of event pertains only to its occurrence or nonoccurrence
and not to its nature. This is the concept we intend to analyze. We
shall denote events by 4, B, C, - - - with or without affixes.

To every event A there corresponds a contrary event “not A,” to
be denoted by 4°; 4° occurs if, and only if, 4 does not occur. An event
may imply another event: A implies B if, when A occurs, then B neces-
sarily occurs; we write 4 € B. If 4 implies B and also B implies 4,
then we say that A4 and B are equivalent; we write 4 = B. The nature
of two equivalent events may be different, but as long as we are con-
cerned only with occurrence or nonoccurrence, they can and will be
identified. Events are combined into new events by means of opera-
tions expressed by the terms “and,” “or” and “not.”

A “and” B is an event which occurs if, and only if, both the event A4
and the event B occur; we denote it by 4 N B or, simply, by 4B. If
AB cannot occur (that is, if 4 occurs, then B does not occur, and if B
occurs, then A4 does not occur), we say that the event A4 and the event
B are disjoint (exclude one another, are mutually exclusive, are in-
compatible).

A “or” B is an event which occurs if, and only if, at least one of the
events A, B occurs; we denote it by 4 U B. If, and only if, 4 and B
are disjoint, we replace “or”” by +. Similarly, more than two events
can be combined by means of “and,” “or’”’; we write

A O Ay N0 Ay or Aydy -+ Ay or () A,
k==1

AU AU Uy or Ude Ai+ Ads+ - da or X A
k=1

k==l

There are two combinations of events which can be considered as

“boundary events”; they are the first and the last events—in terms of
3



4 INTUITIVE BACKGROUND

implication. Events of the form A4 + A° can be said to represent an
“always occurrence,” for they can only occur. Since, whatever be the
event A, the events 4 4+ A° and the events they imply are equivalent,
all such events are to be identified and will be called the sure event, to
be denoted by €. Similarly, events of the form 4A4° and the events
which imply them, which can be said to represent a “never occurrence”
for they cannot occur, are to be identified, and will be called the impos-
sible event, to be denoted by @; thus, the definition of disjoint events 4
and B can be written /B = . The impossible and the sure events are
“first” and “last” events, for, whatever be the event 4, we have § C
4 Q.

The interpretation of symbols <, =, N, U, in terms of occurrence
and nonoccurrence, shows at once that

if 4C B, then B°C A4° and conversely;
AB = BA, AU B=BU 4;
(AB)C = A(BC), (AUB)UC=4U(BUDCO);
ABUC)=4B U AC, AU.BC=(4U B)(AU C);
(AB)° = A°U B, (AU B’ = A°B°, AU B =4+ A°B;
more generally
(N4 =U4 (U4 =N 4
k=1 k=1 k=1 k==1
and so on.

We recognize here the rules of operations on sets. In terms of sets,
Q is the space in which lie the sets 4, B, C, ---, @ is the empty set, A°
is the set complementary to the set A; AB is the intersection, A U B
is the union of the sets 4 and B, and 4 C B means that A4 is contained
in B. .

In science, or, more precisely, in the investigation of “laws of nature,”
events are classified into conditions and outcomes of an experiment.
Conditions of an experiment are events which are known or are made to
occur. OQutcomes of an experiment are events which may occur when
the experiment is performed, that is, when its conditions occur. All
(finite) combinations of outcomes by means of “not,” “and,” “or,” are

outcomes; in the terminology of sets, the outcomes of an experiment
form a field (or an “algebra” of sets). The conditions of an experiment,
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together with its field of outcomes, constitute a #rial. - Any (finite)
number of trials can be combined by “conditioning,” as follows:

The collective outcomes are combinations by means of “not,”
“and,” “or,” of the outcomes of the constituent trials. The condi-
tions are conditions of the first constituent trial together with condi-
tions of the second to which are added the observed outcomes of the
first, and so on. Thus, given the observed outcomes of the preceding
trials, every constituent trial is performed under supplementary condi-
tions: it is conditioned by the observed outcomes. When, for every
constituent trial, any outcome occurs if, and only if, it occurs without
such conditioning, we say that the trials are completely independent.
If, moreover, the trials are identical, that is, have the same conditions
and the same field of outcomes, we speak of repeated trials or, equiva-
lently, identical and completely independent trials. The possibility of re-
peated trials is a basic assumption in science, and in games of chance:
every trial can be performed again and again, the knowledge of past and
present outcomes having no influence upon future ones.

2. Random events and trials. Science is essentially concerned with
permanencies in repeated trials. For a long time Homo sapiens investi-
gated deterministic trials only, where the conditions (causes) determine
completely the outcomes (effects). Although another type of perma-
nency has been observed in games of chance, it is only recently that
Homo sapiens was led to think of a rational interpretation of nature in
terms of these permanencies: nature plays the greatest of all games of
chance with the observer. This type of permanency can be described
as follows:

Let the frequency of an outcome A in »n repeated trials be the ratio
na/n of the number n4 of occurrences of 4 to the total number # of
trials. If, in repeating a trial a large number of times, the observed
frequencies of any one of its outcomes A4 cluster about some number,
the trial is then said to be random. For example, in a game of dice (two
homogeneous ones) “double-six” occurs about once in 36 times, that
is, its observed frequencies cluster about 1/36. The number 1/36 is a
permanent numerical property of “double-six” under the conditions of
the game, and the observed frequencies are to be thought of as measure-
ments of the property. This is analogous to stating that, say, a bar
at a fixed temperature has a permanent numerical property called its
“length” about which the measurements cluster.

The outcomes of a random trial are called random .(chance) events.

The number measured by the observed frequencies of a random event
A is called the probability of 4 and is denoted by PA4. Clearly, P§ = 0,
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PQ =1 and, for every 4,0 < PA < 1. Since the frequency of a sum
Ay + Az +- - -+ A, of disjoint random events is the sum of their fre-
quencies, we are led to assume that

P(Ay + Ay +- -+ A4n) = P4y + PAdy +-- -+ PA.,.

Furthermore, let 74, np, n4p be the respective numbers of occurrences
of outcomes A, B, AB in n repeated random trials. The frequency of
outcome B in the n4 trials in which A occurs is

MAB NAB N4

ny n n

and measures the ratio PAB/PA, to be called probability of B given A
(given that A occurs); we denote it by P4B and have

PAB = PA-P4B.

Thus, when to the original conditions of the trial is added the fact that
A occurs, then the probability PB of B is transformed into the proba-
bility P4B of B given 4. This leads to defining B as being stochasts-
cally independent of A if P4B = PB or

PAB = PA-PB.
Then it follows that A is stochastically independent of B, for

PAB
Pgd = —— = P4,
PB

and it suffices to say that 4 and B are stochastically independent. (We
assumed in the foregoing ratios that the denominators were not null.)

Similarly, if a collective trial is such that the probability of any out-
come of any constituent random trial is independent of the observed
outcomes of preceding constituents, we say that the constituent ran-
dom trials are stochastically independent. Clearly, complete independ-
ence defined in terms of occurrences implies stochastic independence
defined in terms of probability alone. Thus, as long as we are concerned
with stochastic independence only, the concept of repeated trials re-
duces to that of identical and stochastically independent trials.

3. Random variables. For a physicist, the outcomes are, in general,
values of an observable. From the gambler’s point of view, what
counts is not the observed outcome of a random trial but the corre-
sponding gain or loss. In either case, when there is only a finite num-
ber of possible outcomes, the sure outcome € is partitioned into a num-
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ber of disjoint outcomes Ay, A3, -+, Am. The random variable X, say,
the chance gain of the gambler, is stated by assigning to these outcomes
numbers x4, X4, °°°, ¥4,, Which may be positive, null, or negative.
The “average gain” in n repeated random trials is

74,

n
X4, ’+xA3.—+"'+xAm_—'
n n

Since the trial is random, this average clusters about x4, P4 + x4,PA,
+ -+ x4, P4, which is defined as the expectation EX of the random
variable X. It is easily seen that the averages of a sum of two random
variables X and Y cluster about the sum of their averages, that is,

E(X+Y)=EX+ EY.

The concept of random variable is more general than that of a random
event. In fact, we can assign to every random event 4 a random vari-
able—its indicator /4 = 1 or 0 according as A4 occurs or does not occur.
Then, the observed value of 1, tells us whether or not A occurred, and
conversely. Furthermore, we have EI4, = 1. PA + 0-PA° = PA.

A physical observable may have an infinite number of possible values,
and then the foregoing simple definitions do not apply. The evolution
of probability theory is due precisely to the consideration of more and
more complicated observables.




II. AXIOMS; INDEPENDENCE AND THE
BERNOULLI CASE |

We give now a consistent model for the intuitive concepts which ap-
peared in the foregoing brief analysis; we shall later see that this model
has to be extended. :

1. Axioms of the finite case. Let Q or the sure event be a space of
points w; the empty set (set containing no points w) or the impossible
event will be denoted by . Let @ be a nonempty class of sets in @, to
be called random events or, simply, events, since no other type of events
will be considered. Events will be denoted by capitals A4, B, --- with
or without affixes. Let P or probability be a numerical function de-
fined on @; the value of P for an event A will be called the probability
of A and will be denoted by PA. The pair (@, P) is called a probability
field and the triplet (2, @, P) is called a probability space.

n
Axiom 1. @ is a field: complements A finite intersections kﬂ Ay,
-]

n
and finite unions {J A4 of events are events.
k=1

Axiom II. P on Q is normed, nonnegative, and finitely additive:

Pe=1, PA420, P Ar =3 PA.

It suffices to assume additivity for two arbitrary disjoint events, since
the general case follows by induction.
Since @ is disjoint from any event A and 4 + @ = A, we have

PA = P(4 + §) = P4 + Pp,

so that Pg = 0. Furthermore, it is immediate that, if 4/ C B, then
PA < PB, and also that

Py Ax = PAy + PA\* Ay + -+ PA\ Ay + o« An°An £ 3 PAL.

The axioms are consistent.
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To see this, it suffices to construct an example in which the axioms
are both verified: take as the field @ of events @ and @ only, and set PQ
=1, P§ = 0. A less trivial example is that of a simple probability field:
1° The events, except §, are formed by all sums of disjoint events 4,
Az, + -+, An which form a finite partition of the sure event: 4, + 4,
+---+ 4= Q; 2° to every event A of the partition is assigned a

probability px = PA} such that every pr =2 0 and I pr = 1—this is
k=1

always possible. Then P is defined on @, consistently with axiom II,
by assigning to every event A as its probability the sum of probabilities
of those A} whose sum is A.

2. Simple random variables. Let the probability field (@, P) be
fixed. In order to introduce the concept of random variables, it will be
convenient to begin with very special ones, which permit operations on
events to be transformed into ordinary algebraic operations.

To every event 4 we assign a function [, on @ with values J4(w),
such that 74(w) = 1 or 0 according as w belongs or does not belong to
A; I4 will be called the indicator of A (in terms of occurrences, I4 = 1
or 0, according as A occurs or does not occur). Thus, 742 = I, and
the boundary cases are those of I, = 0 and I, = 1 (if, in a relation
containing functions of an argument, the argument does not figure,
then the relation holds for all values of the argument unless otherwise
stated).

The following properties are immediate:

if 4c B, then I, =< Ip, and conversely;

if 4 =B, then I, =1p and conversely;

Tye =1 =14, Isp=1I4lp, Iayp =14+ Is,
Tayp =1ITa4a3 =14+ I — Iup

and, more generally,

1, =HIA1¢, I"A =ZIA1¢
kDIAk k=1 it k=l
I =I40F+0A—-I )0, +F+A—=1,) - A—=14 )4,

U 4«
k=1

m
Linear combinations X = }_ x,/,, of indicators of events 4; of a finite
i=1
partition of @, where the x; are (finite) numbers, are called simple
random variables, to be denoted by capitals X, Y, - - -, with or without
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affixes. By convention, every written linear combination of indicators
will be that of indicators of disjoint events whose sum is the sure event;
however, when x; = 0, we may drop the corresponding null term x;7 A,
= 0 from the linear combination. The set of values PA; which corre-
spond to the values x; of X, assumed all distinct, is called the proba-
bility distribution and the A4 form the partition of X. The expectation EX

of a simple random variable X = i xil 4; is defined by

Jm=1

EX = 2 x,-PA,'.
Faml
Clearly, any constant ¢ is a simple random variable, and the sum or the
product of two simple random variables is a simple random variable;
E(c) = ¢, EcX = ¢EX; if X 2 0, that is, all its values x; = 0, then
EX 2 0;if X <Y, then EX £ EY. Furthermore, expectations pos-
sess the following basic property.

ADpDITION PROPERTY. The expectation of a sum of (a finite number of )
simple random variables is the sum of their expectations.

It suffices to prove the assertion for a sum of two simple random vari-
ables
m n
X = inIAp Y = ZykIBk)
=l ka1

since the general case follows by induction. Because of the properties
of probabilities and indicators given above,

EX+ EY = ijPAj + ZykPBk = 2 2 (x,- +yk)PA,Bk
Jaml k=1 J==1 k==l
while

EX+Y)=EX X %+ y0l43

=l k==l

=3 2 (*i + yx)PA4;By.
juml kol
and the conclusion is reached.
Application to probabilities of combinations of events. To begin with,
we observe that
El4, =1-PA4+4+ 0-PA° = PA.
Therefore, from
Iyjwp=1Is+1Ip— Isp
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it follows, upon taking expectations of both sides, that
P4 U B) = PA+ PB — PAB.

Similarly, from
Tavpue=Ia+ (1 — Il + (1 — 14)(1 — Ip)l¢

it follows, upon expanding the right-hand side and taking expectations,
that

P(4AUBUC) =PA+ PB+ PC— PAB — PBC — PCA + PABC,
and so on.
The foregoing properties of expectations lead to the celebrated

TcHEBICHEV INEQUALITY. If X is a simple random variable, then, for
every ¢ > 0,

1
Pl X|z d=s-EX2
€

[| X| = ¢ is to be read: the union of all those events for which the
values of | X| are 2 .
The inequality follows from

EX? = E(X?Iyxjz ) + E(X?yxi <) Z E(X*Lx)29) Z €Elix12 4
= &P X| = 4.

3. Independence. Two events A;, A, are said to be stockastically
independent or, simply, independent (no other type of independence of
events will be considered) if

PA1A2 = PAIPA2.

More generally, events Ay, k = 1, 2, « - -, n are independent, if, for every
m < n and for arbitrary distinct integers ky, k2, * -, km = 7

PAkIAkz v Akm = PAkIPAkz e PAkm'

If this property holds for all events Ay selected arbitrarily each within
a different class @i, we say that these classes are independent. Simple
random variables Xk, £ = 1, 2, - -+, n, are said to be independent if the
partitions on which they are defined are independent. A basic prop-
erty of independent simple random variables is the following

MULTIPLICATION PROPERTY. The expectation of a product (of a finite
number) of independent simple random variables is the product of their
expectations.
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It suffices to give the proof for two independent simple random variables,

X =2 xila;, Y = 2 yils,, all x;(y;) distinct,

je=1 k=1 '

since the general case follows by induction. Because of independence,

EXY =EY Y xiylap, = X T %yxPA;PB)
J=1 k==l J=1 kml

= ( X %PA;)( 32 yPBx) = EXEY,

and the conclusion is reached.
The expectation E(X — EX)?, called the variance of X, is denoted
by ¢*X. By the additive property,

o?X = E(X? — 2XEX + E?X) = EX? — E2X.

The celebrated Bienaymé equality follows from the additive and mul-
tiplicative properties.

Bienaymg EQuarity. If Xy, k= 1,2, -+, n, are independent, then
n n
23 X =Y *Xs.
k=1 k==l

E(X: — EXy) = EXy — EX, =0

Since

and independence of the X implies independence of the X; — EXj, it
follows that

AY X = E(S X — ¥ EX)? = E{ 5 (Xe — EX0)}?

k==l k==l k=1 k=1

=Y E(Xy — EXy)* + ¥ E(X; — EX)) (X — EX3)

k==l Fke=l

n

=YX+ X E(X; — EX))E(Xx — EXp) = T o2 X,
k=1 k=1 k=1
Observe that we used independence of the X} considered two by two
only. '
4. Bernoulli case. A simple case of independence has played a cen-
tral role in the evolution of probability theory. This is the Bernoulli
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case of events Ay, k =1, 2, ---, which are independent whatever be
their ‘total number » under consideration and such that their probabili-
ties PAy have the same value p.

We observe that-independence of the Ak, ¥ =1, 2, ---, #n implies
independence of the 4y = A or A°, and, more generally, of the »
fields @ = {0, Ax, 4°, @}. For example,

PAkchkz M Akm = PA]”A),, e Akm - PAInAkz cc Ak,,.
=PAkQPAk;"'PAkm_PAkIPAkg"'PAk,,.
= (1 - PAkl)PAkg e PAkm = PAklcPAkz .. PAkm)

where the subscripts are all distinct and = n. These fields correspond
to repeated random trials where an outcome A at the kth trial is repre-
sented by A.
The number of occurrences of outcome A in # repeated trials is rep-
n

resented by a simple random variable S, = 3 I4,. To write S, in the
k=1

usual form, that is, with values assigned to events of a partition of the

sure event, we observe that
n

IAk = IAkH (IA,- + IA,")-
=1
J=k

It follows, upon substituting in §, and expanding, that
n
= EjIB,',
=0

131= ZIAI:I.”IAijAk“_lc"'IAk"

L

where

The summation is over all permutations of subscripts k =1, 2, -+, n,
classified into two groups, one having j terms and the other having
n — j terms.

On account of the independence, the expectations of the terms under
the summation sign are

Pdklpdkz PP PA":'PA’G“_IO e Pdlc,.c = piqﬂ"‘.", qg= 1 —_ p,

and, therefore, the probability of j occurrences in # trials is given by

n . .
P[Sn =]] = PBJ ='.———'qu”—’, ] =0, 1, R (N
7.
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With this result we can compute directly the expectation and variance
of Sa, but we prefer to use the additive property which gives

ES, = EZIA,‘ = ZPA), = np,
k=1 k=1
and the Bienaymé equality for independent random variables 7,, which
gives
0'2Sn =2 °'2IAk = npq,
k=1
since

o214, = E(I4, — EI,,)? = EI,2 — E?],,
= El,, — E*l,, = p — p° = pg.

In order to justify the model investigated so far, we ought to give a
precise and acceptable “meaning” to the notion of “clustering of fre-
quencies” which, as we have seen, is at the very root of the interpreta-
tion of randomness. The most celebrated interpretation, and rightly so,
is the following

BERNOULLI LAW OF LARGE NUMBERS (1713). In the Bernoulli case,
for every e > 0,a5 n — oo,

d

In other words, the probability distribution of values of the frequency
Sn/n of an outcome in 7 repeated trials concentrates at the value p of
the probability of the outcome, as the number of trials increases in-

definitely.
The proof is immediate for, upon applying the Tchebichev inequality,

we have, as n — oo,
Sn
P [

i 4
Observe that only independence two by two has been required.

Sn
———p’ge]—-)O.
n

1
= e] = P|| S, — ES,| = en] £ — %S, -2 .
en? én

n

A vparticular sequence of Bernoulli cases, introduced by Poisson,
shows that the finite setup considered so far is not satisfactory, at least
from the sophisticated mathematician’s point of view.

Consider a sequence of Bernoulli cases of independent events Ans,
k=1,2,.--,n3n=1,2, ---, of the same probability p, which varies
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with the number 7 of trials in such a manner that the expectation of
the number of occurrences §, = kf:ll Anx Temains constant: ES, = np,
= N\. Then, as # — o« while 5 ren:ains fixed,
P[Sn = /]
n!
Y = 7)1

_n(n—l)---(n—j+1)(§"( R
B 5! n) : n)

Plga" ™

and_we have the following

PoissoN THEOREM (1832). If S, = 2 I4,, is the sum of indicators of
k=1

independent equiprobable events, such that the expectation ES, =\ > 0
remains constant as n varies, then, as n — o,
5
= —A ; —
P[Sﬂ_j] '_)'17""' ’ ]_0,1)2,

-

Since ) _
= N = N
Z".—e—)‘ =e—)‘2'7'= 1,
j=0J" j=0J!

we can say that, in the foregoing passage to the limit, no positive proba-
bility escapes to infinity. The total probability is now distributed
among a denumerable number of values j =0, 1, 2, - .-, provided we
assume that the probability of the sum of a denumerable number of
disjoint events [S, = j] is the sum of their probabilities. However, in
the setup of § 1 neither a denumerable sum of events nor the property
just stated has content. Thus, if we want to give an interpretation to
Poisson’s result, we have to expand the model so as to include the pre-
ceding possibilities.

5. Axioms for the countable case. As soon as the concept of infinity
appears, intuition fails and the vague everyday idea of randomness
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yields nothing. A first and obvious way to pass from the finite to the
infinite is to extrapolate, that is, to postulate that properties of the
finite case continue to hold in the infinite case. Yet these extrapolations

have to be meaningful and consistent.
> 4] > 4]

In set theory, intersections () 45 and unions |J A4, of sets A,, where

n=1 n==]
n runs over the denumerable set of integers, continue to be defined as
the sets of points which belong to every A, and to at least one A,, re-
spectively. We still have that

( ﬂ A,)° = U A, ( U Ay)° = ﬂ A,°,

n=1 n=1 . n=1 Nl

U An = Al + Alcdz + Ach2cA3 4. ad infinitum

n=1

and, correspondingly,

Ieo =HIAn) Ieo =ZIAn
n=1 n=1

N A 2 An
n=1 n=1
IG = IA1+IA1°IA2+IA1°IA2° As+'“'
An

n=1

If we want all countable (finite or denumerable) combinations of events
by means of “not,” “and,” “or,” to be events and their probabilities
to be defined, then axioms I and II become

Axiom 1.  Events form a o-field @: Complements A4°, countable in-

tersections () 4j, and countable unions |J 4; of events are events.
j J
Axiom I1'.  Probability P on Q is normed, nonnegative, and o-additive:

Pe=1, PA4=20, PY 4; =72 P4,
J j
It follows that
CoOVERING RULE: P U Aj = PAI + PA]CA2 + P410420/{3 +---
J
J
These axioms are consistent, since the examples constructed for the

finite case continue to apply trivially. A nontrivial example in the in-
finite case is that of nonsimple elementary probability fields: 1° The
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events, except @, are formed by all countable sums of events A, which

-]

form a denumerable partition of the sure event: 3 4, = Q; 2° to

n=1]1

every event A, of the partition is assigned probability p, = PA, such

that every p, 2 0 and 3} p, = 1—this is always possible. Then P is

n=1
defined on @, consistently with axiom I{’, by assigning to every event
A as its probability the sum (finite sum or convergent series) of proba-
bilities of those A4, whose sum is 4.
6. Elementary random variables. A linear combination X =
2 x;l 4; of a countable number of indicators of disjoint events 4, is an

;lementary random variable X; if j varies over a finite set, then X re-
duces to a simple random variable. Clearly a sum or a product of two
elementary random variables is an elementary random variable. We
may still try to define the expectation EX by

EX = ijPA,-.
j

But, if the sum is a divergent series, it has no content or is infinite.
Furthermore, even if it is a convergent series, it may not be absolutely
convergent, so that by changing the order of terms we can change its
value, and the expectation is no longer well defined if no ordering is
specified; this is undesirable according to the very meaning of an ex-
pectation. We are therefore led to define EX by the foregoing expres-
sion only when the right-hand side is absolutely convergent, so that

if EX exists and is finite, then E| X | exists and is finite; and conversely.

(We recognize here an integrable elementary function in the sense of
Lebesgue with respect to the measure P.)

The argument used to prove the addition property of simple random
variables continues to apply to finite sums of elementary random vari-

ables whose expectations exist and are finite, provided os-additivity of
P is used. We obtain:

If the expectations of a finite number of elementary random variables
exist and are finite, then the expectation of their sum exists and is finite
and is the sum of their expectations.

Also, Tchebichev’s inequality remains valid, provided its right-hand
side exists and is finite.

Independence of a countable number of events A, or o-fields @; con-
tained in @, is defined to be independence of every finite number of

O
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thesg events, or o-fields. Independence of a countable number of ele-
mentary random variables Xz = 3 x;, 1,,, is defined to be independence

1
of every finite number of events A, ; as k varies. The argument used
to prove the multiplication property yields:

If the expectations of a finite number of independent elementary random
variables exist and are finite, then the expectation of their product exists
and is the finite product of their expectations.

Also, Bienaymé’s equality remains valid, provided its right-hand side
exists and is finite.

In the Bernoulli law of large numbers only simple random variables
figure #nd only finite additivity of the probability P is used, so that
nothing is to be changed. However, now we can introduce probabilities
of denumerable combinations of events and use the supplementary re-
quirement that the additive property of P remains valid for denumera-
ble sums. Therefore, in the present setup we can expect a more pre-
cise interpretation of the “clustering of frequencies.” This is the cele-
brated Borel strong law of large numbers derived below.

Let X;, X2, - -+ be a sequence of elementary random variables. We
investigate the convergence to O of the sequence; the limits are taken
as n — o, It will be more convenient to consider the contrary case—
X, does not converge to 0 or, equivalently, there exists at least one in-
teger m such that to every integer # there corresponds at least one in-

: 1 e
teger » for which | X4, | = o Since ‘““at least one” corresponds to

“U” while “every” corresponds to “(),” we can write

-} -} -} 1
X, »0=U NU [IXn+,|z——];
M==]l Nam] y=sl m

the right-hand side is an event. Thus, the condition X, + O deter-
mines the event [X, + 0], the contrary condition X, — 0 determines
the complementary event [X, — 0], and the probabilities of these two
events add up to 1.

We are interested in X, — 0 with probability 1 or, equivalently,
X, + 0 with probability 0, and require the following proposition.

® 1
If, for every integer m, 3, P [I X.| 2 ——] < o, then P[X, & 0] = 0.
m

© nm=]

- <} 1 - <}
Weset Am = U [I X,.+,,| = ——] and 4,, = () A»m and observe that,

y=l m Nl
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by the covering rule and the hypothesis, for every m,

Pam=P U [I%l27]

Ic=-n+1 m

1
——]—-»0 as 7 — o,
m

§21ﬁxug
k=n4-1

Since whatever be #’,

PAdn = P\ dum S PApim.

N=s]

it follows upon letting n’ — that PA,, = 0. Therefore, by the cov-
ering rule

P[XnHO]=PUAm§ZPAm=O

Ml me=s?
and the proposition is proved.

We can now pass to

BOREL’S STRONG LAW OF LARGE NUMBERS (1909). In the Bernoulli

case
Sn
P[]t

n

We recall that in the Bernoulli case

Sa 1
X, == =—3X1I,

n |

where the A; are independent events of common probability p whatever
be n, and EX, = p, ¢°X, = pq/n (observe that only independence two
by two is used). Since for every m

* 1 ® 1
ZP[IX,‘2—p|g—]§m2qu _2'<°°:
m k,lk

k=l

it follows by the foregoing proposition that Xz — p with probability 1
as k — . But to every » there corresponds an integer k = k(n) with
k2 < n < (k4 1)%;, hence 0 < » — k® < 2k and 7 — » implies £ — o,
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Since
1 1 K 1
IX"_XI:2I= Y] ZIA,'_I_— Z IA,'
n k jual n j=k?+1
< (n— kY n—Fk 4
T nk? + n = k
so that

IXn—pléIXn—X,,zI+Isz—pIé%+lx,,=—pl,

it follows that X, — p with probability 1 as # — o, and Borel’s re-
sult is proved.

*Application. Let X be an elementary random variable. We set
F(x —0) = F(x) = PIX < %], F(x +0) = P[X £ x] so that P[X =
x] = F(x + 0) — F(x). The function F so defined determines the prob-
ability distribution of X, that is, the probabilities of all values of X;
it is called the distribution function of X. We organize repeated inde-
pendent trials where we observe the values of Xj; in other words, we
consider independent random variables X, X, - - - with the same prob-
ability distribution as X. :

If £ is the number of values observed in 7 of those trials and which '

are less than x or, equivalently, if k is the number of independent events
(X1 < %], (X2 < %], -+ [Xa < %] (with common probability p = F(x))
which occur, we set F,(x — 0) = Fp(x) = k/n. Thus, F,(x) is a ran-
dom variable with

n! Fle)1k .

= — 1 — F(x)}"".
T O = F)

The function F, is called empirical distribution function of X in n trials.
According to Borel’s strong law of large numbers, this frequency F,(x)
of occurrences of the outcome [X < x] converges to F(x) with proba-
bility 1. In other words, the observations permit us to find with prob-
ability 1 every value F(x) of the distribution function of X. In fact,
Borel’s result yields more (Glivenko-Cantelli):

rlran=

CENTRAL STATISTICAL THEOREM. If F is the distribution function of
a random variable X and F, is the empirical distribution function of X in
n independent and identical trials, then

Pl sup |Fu(x) — F(x)| —» 0] = 1.

—w<lz<+x

In other words, with probability 1, Fa(x) — F(x) uniformly in x.
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Let x;; be the smallest value x such that
F(x) g’; < F(x + 0).

Since the frequency of the event [X < x;] is Fn(x;x) and its probability
1s F(x;k), it follows by Borel’s result that PAj; = 1 where Aj; = [(Fon(xk)
— F(x;)]. Similarly, PAj; = 1 where 4, = [Fn(xjx + 0) — F (%56 +
0]. Let Ay = ApAj and let § = 30

k
Ak=ﬂfffk=.fsupan(xik‘F”)“F("fk"‘a)I — 0].
1575k

Ja=l

By the covering rule and by what precedes

k k
PA =PU Ap* < S PAps =0
F=al j=1

and, hence, PA; = 1. Upon setting 4 = () A, it follows similarly

k=1
that P4 = 1.
On the other hand, for every x between xj; and x;,1.1

F(xjk + 0) S F(x) < F(%j41,6), Fa(xx + 0) < Fa(x) < Fa(xj41.1)

while for every x;i

1
0 = F(%j41.6) — Flxp + 0) < i
Therefore,
1
Fa(x) — F(x) £ Fa(%j41.6) — F(x + 0) S Fa(xj41.6) — F(xj41.6) + p
and

Fa(x) = F(x) Z Fa(tpt + 0) — F(xi41.6) 1
' 2 Faltie +0) = Flxin + 0) — -
It follows that, whatever be x and %,

1
| Fa(x) — F(x) | < sup | Fa(xsi + 6) — F(xj + 0) | + -
1575k k

or

1/
An = sup |Fau(x) — F(x)| < sup | Fa(¥pk+6) — Fxs 4 6) | 4+ —
1555k k

—wolz<tw
Hence P[A, — 0] 2 P4 = 1, and the theorem is proved.

*Remark. The foregoing proof and hence the theorem remain valid
when the random variable X is not elementary.
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7. Need for nonelementary random variables. The sophisticated
mathematician prefers to work with ‘“closed” models—such that the
operations defined for the entities within the model yield only entities
within the model. While elementary random variables can be obtained
as limits of sequences of simple random variables, @/ limits of se-
quences of simple and, more generally, of elementary random variables
are not necessarily elementary—families of elementary random varia-
bles are not necessarily closed under passages to the limit. If this clo-
sure is required, then the concept of a random variable has to be ex-
tended so as to include “measurable functions.” This will be done in
the following parts. In fact, the need for further expansion of the model
in order to include random variables with a noncountable set of values
appeared quite early in the development of probability theory, once
more in connection with the Bernoulli case. This is the celebrated (as
the reader observes, all results obtained in or used for the Bernoulli
case are ‘‘celebrated’)

De MoivRe-LAPLACE THEOREM. In the Bernoulli case with p > 0,
g=1—-9p>0,a5n — o,

de Moivre (1732):

Po(x) = P|Sa ~s%2, VA 4

1
= ~ —————ee———f
j] v 21rnpq
uniformly on every finite interval [a, b] of values of x;

Laplace (1801):

Sp — 1P 1 b,
P[a_é-——————-—-éb]—-) .._fe—’/"’dx.
V npq '\/27" a

The relation @, ~ b, means that a,/b, — 1. The integer j varies
with 7, so that x = x(n) remains within a fixed finite interval [4, ] and

j=np+xVnpg —> o, k=n—j=ng— xVnpg — .
We apply Stirling’s formula

1
m. =V 21rm-m"‘e"”‘e0m, 06, < E—
: m

‘ - n!t
to the binomial probabilities Pn(x) = T p’4*. Thus
ilk!
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V 2an-nte ™ S e ti=
n—;
N 2xf eI/ 2nk - kre —& P

__L <@)"' <?_9)keo
V2 Nk \ j k

where, uniformly on [a, 4],

f<alried

oo 3
. n\p+=x ” qg—x . ~ npq-

Therefore, uniformly on [a, ],

" Pl ~ \/2jrnpq <r:_{>)" <y;q>"
o) () - o4 [« -2 0 ()
~or= e 2o ()

=—§+0<%).

The first assertion follows.

—0

Pu(x) =

and

Let x,; be those numbers of the form / ? which belong to the in-

V npgq

terval [a, b]; consecutive x,,, s differ by 1/V npg. On account of the
first assertion, uniformly in 7,

1 2
Pn(xn ) ~ e ™ /2
and ’ V 2mnpq
n np 1 1 2
P [a é — é b] = Z Pn(xn .) ~ —— . Z P ni/2.
npq i A2 Anpg

Since the last expression is a Riemann sum approximating the integral

1 >
—_— f ¢~*/2 dx, the second assertion follows.
a




III. DEPENDENCE AND CHAINS

1. Conditional probabilities. Let 4 be an event with P4 > 0. The
ratio PAB/PA is called the conditional probability of B given A or,
simply, probability of B given A and is denoted by P4B, so that

PAB = PAP4B.
By induction we obtain the multiplication rule:
P(AB --- KLYy = PAP4B --- Pup...xL.
Furthermore, if 3° 4; = Q, then, from
’ PB = PQB = Z PA;B,
follows the fotal probability rule: ’
PB = 3 PA;Py,B.
J

Bayes’ theorem,

follows upon replacing PB by the foregoing expression in the relation
PAB = PAyP4 B = PBPgAy.

All events which figure as subscripts are supposed to be of positive
probability. However, if, say, P4 B is given, then every given PA, whether
zero or not, determines correctly PAB by PAB = PAPyB, since P4 =0
implies PAB = 0.

The set of all probabilities of events given a fixed 4 with P4 > 0
defines a function P4 on @, to be called the conditional probability given
A or, simply, the probability given A. 1t follows at once from the defi-
nition that P4 obeys axiom II’: it is normed, nonnegative, and ¢-addi-
tive on @. Therefore, the pair (@, P4) is a probability field given A
for which all definitions and general properties of probability fields re-

24
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main valid. In particular, if X = 3 x;I,, is an elementary random
£

variable, the expectation of X with respect to P4 or the conditional ex-
pectation of X given A or, simply, the expectation of X given A is defined
by

1
E X = ? ijAAj = —};;? ijAAj;

clearly, if EX exists and is finite, then E4X exists and is finite. In
terms of trials, the probability field given A represents the original
trial with the occurrence of outcome A added to the original conditions.

It is easily verified that the events A; of a countable set are inde-
pendent if, and only if] for every finite subset s, fa, - - -, j& of indices

Py A, A k_l(Ajk) = PA,-,,,

i is i

provided the “given” events have positive probability.
2. Asymptotically Bernoullian case. Let 4,, » =1, 2, ---, be an

. 1 2
arbitrary sequence of events, and let X,, = p > I4, be the random fre-
k=1
quency of occurrence of the » first ones. We set
12 2
p1(n) = = X Pdy, po(n) =——— 3 Pdidx
N k=1 n(n — 1) 15i<ksn

so that p;(7) and pa(7) are bounded by 0 and 1. It follows, by elemen-
tary computations, that

EX, = pi(n), ? X = pa2(n) — P12(”) +
In the Bernoulli case
dn = po(n) — P12(”) = P2 - P2 =0,

and we can consider the quantity d, as some sort of measure of ‘“‘devia-
tion” from the Bernoulli case. To make this precise, let us first prove a

p1(n) — pa(n) )
n

KoLmoGorov INEQUALITY. ‘If X is an elementary random variable
bounded by 1 (in absolute value), then, for every ¢ > 0,

P|X|zdz EX?-é

We proceed as for the proof of Tchebichev’s inequality: the inequality
follows from

EX? = E(X?Ixz9) + E(X%[x<q) S Elyxizq + €
=Pl X| =+ é&
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ExXTENDED BERNOULLI LAW OF LARGE NUMBERs. BRBernoulli's result,
that for every € > 0
Pl Xa— EX.| Z d >0,

remains valid for the sequence of events A, independent or not, if, and
only if,
dn = pa(n) — p12(n) — 0.

Since | X, | =1, we can apply Kolmogorov’s inequality as well as Tche-
bichev’s, so that

*Xp — € S P|| Xo — EX0n| 2 €] £ 62X,/
Therefore, the asserted prof;_erty holds if, and only if, ¢2X, — 0. But
P1(n) — pa(n) I

n

IazX,.—d,.|=|

A

1

- =0,
n

and the extension follows.

If d, — 0 at least as fast as 1/, then (asymptotically) we are even
“closer” to the Bernoulli case. In fact,

ExXTENDED BOREL STRONG LAW OF LARGE NUMBERs. If d, = O(1/n),
then Borel's result remains valid:

PX, — EX, — 0] = 1.

The hypothesis means that there exists a fixed finite number ¢ such that
| ndn| < c. Upon referring to the proof of Borel’s result, we observe

(-]
that it suffices to show that Y ¢2X}2 < «. Since
k=1

70°Xa < | ndy | + | p1(n) — pa(n) | < ¢ + 1,

it follows by setting » = k? that

- <} - <} 1
T Xp 2 (c+ )T 5 <
k=1 k=1 k

and the extension follows.

It is easily shown that both extensions apply to the events A4, which
are independent but otherwise arbitrary.

3. Recurrence. The decomposition

p1(n) — pa(n)

n

X = p2(n) — P12(”) +

yields at once a proposition which leads very simply to the celebrated
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Poincaré’s recurrence theorem and its known refinements. Since
o®X, = 0 and p,(n), p2(n) are bounded by 0 and 1, it follows that, for
any fixed e > 0, if # = 1/¢, then ‘
P2(n) — p1(n)

n

1
p2(n) = pi’(n) + + * X Z p°(n) — - 2 p1%(n) — e
n
But p(n) is the arithmetic mean of P44 for 1 <5 < k < n. There-
fore,

W hatever be the events Ay, if n = 1/¢, then there exist at least two events
Aj, Avy 1 S j < k = n, such that PA;A, 2 p,%(n) — e.

In particular, if P4, 2 p > 0 whatever be n, then every subsequence
of these events contains at least two events 4}, 4 such that PA;A, =
p® — & if this inequality holds, we say that A4; “e-intersects” A;. In
fact, there exists then a subsequence whose first term e-intersects every
other term. For, if there is no such subsequence, then there exist inte-
gers m, such that no event 4, e-intersects events A, with n’ = n + m,,
no two events of the subsequence A4,,, An,, Ap,, -+ withny = 1, n, =
ny + mp, n3g = nz + m,, - - -, eintersect, and this contradicts the par-
ticular case of the foregoing proposition. Thus, let Aqy, A91, A3y, -+,
be a subsequence such that the first term e-intersects every other term.
Let A2, A29, A33, - - -, be a subsequence of A9y, A3y, -+ -, with same
property, and so on indefinitely. The sequence A, 4ya, - -, is such
that every one of its terms e-intersects every other term. Hence

RECURRENCE THEOREM. If PA, 2 p > O whatever be n, then for every
€ > 0 there exists a subsequence of events A, such that PA;Ay = p* — e
whatever be the terms Aj, Ay of this subsequence.

We observe that, if P4, = p, then PA;4, = p? — ¢ while, if the 4,
are two by two independent, then PA;A4) = p%. Thus, however small
be € > 0, for every sequence A, of events, independent or not, there
exists a subsequence which behaves as if its terms were two by two
semi-independent up fo ¢ (“semi” only since we do not have necessarily
P/fj/{k é p2 + E).

A phenomenological interpretation of the foregoing theorem is as
follows. Consider integer values of time and an incompressible fluid
in motion filling a container of unit volume. Any portion of the fluid
which at time 0 occupies a position A of volume P4 = p > 0 occupies
at time m a position A,, of same volume PA,, = p. The theorem says
that, for every ¢ > 0, the portion occupies in its motion an infinity of
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positions such that the volume of the intersection of any two of these
positions is = p2 — e. In particular, if the motion is “‘second order sta-
tionary,” that is, PAjA; x = PAA, then it intersects infinitely often
its initial position—this is Poincaré’s recurrence theorem (he assumes
“stationarity’’)—and the intersections may be selected to be of volume
= p? — e—this is Khintchine’s refinement.

4. Chain dependence. There is a type of dependence, studied by
Markov and frequently called Markov dependence, which is of con-
siderable phenomenological interest. It represents the chance (random,
stochastic) analogue of nonhereditary systems, mechanical, optical, - - -,
whose known properties constitute the bulk of the present knowledge
of laws of nature.

A system is subject to laws which govern its evolution. For example,
a particle in a given field of forces is subject to Newton’s laws of mo-
tion, and its positions and velocities at times 1, 2, ---, describe the
“states’’ (events) that we observe; crudely described, a very small par-
ticle in a given liquid is subject to Brownian laws of motion, and its
positions (or positions and velocities) at times # =1, 2, ---, are the
“states’’ (events) that we observe. While Newton’s laws of motion are
deterministic in the sense that, given the present state of the particle,
the future states are uniquely determined (are sure outcomes), Brownian
laws of motion are stochastic in the sense that only the probabilities of
future states are determined. Yet botH systems are “‘nonhereditary” in
the sense that the future (described by the sure outcomes or probabili-
ties of outcomes, respectively) is determined by the last observed state
only—the “present.” It is sometimes said that nonhereditary systems
obey the “Huygens principle.” The mathematical concept of non-
heredity in a stochastic context is that of Markov or chain dependence,
and appears as a “‘natural” generalization of that of independence.

Events A;, where j runs over an ordered countable set, are said to be
chained if the probability of every A; given any finite set of the preced-
ing ones depends only upon the last given one; in symbols, for every
finite subset of indices f; < j2 <-- - fx, we have

PAilA,-z-nA,-k_l(/{jk) = PAik_l(/f,-k).

Classes @; = {4y, Ajz, ---} of events are said to be chained if events
A selected arbitrarily—one in each €;—are chained.

An elementary chain is a sequence of chained elementary partitions
> A =9, n=1, 2, ---; in particular, if X, = Zk_‘,x,,kl,,nk with
%
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distinct X1, Xng, -+ are elementary random variables, then the X,
are said to be chained, or to form a chain, when the corresponding par-
titions are chained.

It will be convenient to use a phenomenological terminology. Events
of the nth partition will be called states at time n, or at the nth step, of
the system described by the chain. The totality of all states of the
system is countable; we shall denote them by the letters j, &, 4, - - -,
and summations over, say, states ¥ will be over the set of all states,
unless otherwise stated.

The evolution of the system is described by the probabilities of its
states given the last known one. The probabilities Pj" of passage
from a state j at time m to a state k at time m + # (in 7 steps) form a
matrix P™". Since ‘‘probability given ;” is a probability, and the
probability given ;j at time 7 to pass to some state in 7 steps is one,
we have

Pp*=20, > Pp"=1
k

Furthermore, by the definition of chain dependence, the probability
given j at time 7 to pass to state k in # -+ #’ steps equals the probability
given j at time m to pass to some state in 7 steps and then to pass to
k in n’ steps, we have

PR = 5 PP

h
or, In matrix notation,

prntn’ — pmn pmtn,n’

An elementary chain is said to be constant if Pj™ is independent of m
whatever be 7, k, and n. Then we denote this probability by P}, and
call 1t transition probability from j to k in n steps. The corresponding
matrix P" is called transition matrix in n steps; if n = 1 we drop it.
The foregoing relations become the dasic constant chain relations:

= 0, Z no=1, PR Z P

The last one can also be written as a matrix product P*** = pPrp~,
Hence P™ is the nth power of the transition matrix P = P!, so that P
determines all transition probabilities. In fact, for an elementary chain
to be constant it suffices that the matrix P™! be independent of m:

P™! = P, since then
Pm,2 = Pm.lpm+l.l = P2, Pp™3 = Pm2pm+21 = Ps, -
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We observe that in Pj; and in every symbol to be introduced below,
superscripts are not power indices, unless so stated.

We investigate the evolution of a system subject to constant chain laws
described by a transition matrix P. In particular, we want to find its
asymptotic behavior according to the state from which it starts. In
phenomenological terms the system is a nonhereditary one subject to
constant laws (independent of the time) and we ask what happens to
the system in the long run. The ‘“direct” method we use—requiring
no special tools and which has a definite appeal to the intuition—has
been developed by Kolmogorov (1936) and by Déblin (1936, 1937)
after Hadamard (1928) introduced it. But the:concept of chain and
the basic pioneering work are due to Markov (1907).

*S. Types of states and asymptotic behavior. According to the total
probability rule and the definition of chain dependence, the probability
Qji of passage from j to k in exactly n steps, that is, without passing
through & before the nth step, is given by

Q?k = Z PJ'hlPhlhz ttT Phn—l"’

hi1##kha 5k, - - hn_1 7k

The central relation in our investigation is

(1) ?k=ZQ}’I:P;:I:m, n=1,2,"',

m=1

the expressions P}, = 1 (obtained for m = #) are the diagonal elements
of the unit matrix P°.

The proof is immediate upon applying the total probability rule.
The system passes from 5 to k in n steps if, and only if, it passes from s
to k for the first time in exactly m steps, m = 1, 2, -+, n, and then
passes from k to k in the remaining # — m steps. These “paths” are
disjoint events, and their probabilities are given by QiPr: ™.

Summing over n = 1, 2, - -+, N, the central relation yields

N N n N N
XPh=2 YOhPu"=2X©Qr ZPu"
n=] n=1 m=1 m=] n=m
and, therefore,
N N N N-N'’ N’
I+2XPR) Xz Prz(+4+ X Pu) X0k N <N
n=l ma=]1 n=l na=]1 m=]

N
It follows. upon dividing by 1 + >~ Pj; and letting first N — o« and

n=1
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then N’ — o, that

N
® 2 P
m . n=l]
2) 2 0% = lim ——F—;
143 Pi
in particular, "=
- ] n ) 1
® L= 205 = Jim ——
14> P;
The sum =l
gk = 2_ Ot

m=]

is the probability, starting at j, of passing through k at least once; for
k = j it is the probability of returning to j at least once. More generally,
the probability gj, starting at 7, of passing through k at least n times is
given by
o0
G = (Z Ogec ' = gingla -

‘m=]

In particular, the probability ¢ of returning to j at least n times is given

by
- ah = il | = (@)’gt == (g™
Its limit,

(4) rjj=1im(g))* =0 or 1, according as ¢;; <1 or gji=1,
n —»

is the probability of returning to j infinitely often. It follows that the

probability, starting at f, of passing through k infinitely often is

. n . n—1
rie = lim ¢ji = gje im gix ~ = gjaTkx,

n— o n - o

so that
©)) rie =0 or gi, accordingas g <1 or gw =l

Upon singling out the states j such that g;; = 0 (noreturn) and g;; = 1
(return with probability 1), we are led to two dichotomies of states:

f is a return state or a noreturn state according as ¢;; > 0 or 4ij = 037 is
a recurrent state or a nonrecurrent state according as g¢;; = 1 orgj; <1
or, on account of (4), according as rj;; = 1 or r;; = 0.
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Clearly, noreturn states are boundary cases of nonrecurrent states and
recurrent states are boundary cases of return states. In terms of tran-
sition probabilities, we have the following criteria.

RETURN CRITERION. A stale j is a return or a noreturn state according
as Pj; > 0 for af least one n or P}; = 0 for all n.

This follows at once from the fact that
[- -}
sup Pjy < gie £ X2 Pji.
”gl n==1

RECURRENCE CRITERION. A state j is a recurrent or a nonrecurrent
o0
state according as the series ), P} is divergent or convergent.

n=1
This follows from (3).

Less obvious fypes of states are described in terms of “mean fre-
quency of returns,” as follows:

Let v;; be the passage time, from j to k, taking values m =1, 2, - -,
with probabilities Q%. If ¢jx = 1, then vj; are elementary random vari-
ables. If ¢gjx < 1, then, to avoid exceptions, we say that vj; = « with
probability 1 — gjx. The symbol = is subject to the rules

1

—=0,0+4 ¢ =oo,and ® X ¢ = © or 0 accordingasc¢ > 0orc¢ = 0.
o

We define the expected passage time rj; from 5 to k by
ik = 2 mQi + (1 — gja);
m=1

we call rj; the expected return time to j and the mean frequency of returns

|
tofis —.
Tjj . - - .
We can now define the following dichotomy of states. A state j is

.. : 1 1
null or positive according as = 0 or - > 0. Clearly, a noreturn
1 17
and, more generally, a nonrecurrent state is null while a positive state
1s recurrent.
We shall now establish a criterion for this new dichotomy of states
in terms of transition probabilities. To make it precise, we have to
introduce the concept of period of a state.
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Let s be a return state; then let d; be the period of the QF, that is,
the greatest integer such that a return to j can occur with positive
probabulity only after multiples of J; steps: Q; = O for all # 3 0 (modulo
d;), and Q%% > 0 for somé n. Let d; be the period of the P} defined
similarly. We prove that J; = 4; and qall it the period (of return) of 5.

The proof is immediate. If Q7% > 0, then P} 2 Q%% > 0 so that
d; £ d;. Thus,ifd; = 1,thend; =1. Ifd;>1landr=1,---,d; — 1,
then the central relation yields

Py =0, P = Q4P =0,

2d;i+r _ pdipdi+r 2d; pr __
Py = QP + Qi Py = 0, etc. - -+,

H)

so that d; < d4; and, hence, d; = dj.
If 7 is a noreturn state, then we say that its period is infinite.

PosiTiviTY CRITERION. A state j is null or positive according as
lim sup Pj; = 0 or > 0.

n-—» o

More precisely, if j is a null state, then P]; — 0, and if j is a positive
A
state, then P — —’ > 0, while P; = 0 for all n # 0 (modulo d;).

7jj
Since the proof is involved, we give it in several steps.

1° If j is nonrecurrent, then it is null and, by the recurrence cri-

terion, the series > PJ; converges so that P;; — 0.

n=1
If 7 is recurrent, then, by definition of its period 4;, P} = 0 for all
n # 0 (modulo 4;). Therefore, it suffices to prove that, if 5 1s recur-
, d; . 1 .. d;
rent, then P — —L; for, if j is null, then — = 0 implies == = 0,
" 7jj Tjj
and if j is positive, then s o.
Tij
Assume, for the moment, that, if the period J; of the positive recur-
. 1
rent state j is 1, then P; — —. In the general case, take J; for the
ros

13
unit step and set P’ = P%, so that P} = P%%; hence Q;t = Q™. Then,

. o Tjj .
since 7j; = ZanZ’ = f , the assertion follows by
n= ]
1 g;

nd; __ n —_ = 7.
Pji=Pj = 7 =
i T
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Thus, it suffices to prove that, if ; is recurrent with period 4; = 1, then
n 1
P — —.
Ts '
2° Letj be recurrent with 4; = 1. To simplify the writing, we drop
the subscripts s and, to avoid confusion with matrices, we write super-
scripts as subscripts. We follow now Erdés, Feller, and Pollard.

Let « = lim sup P, sb that there is a subsequetice #’ of integers such

that P,y — aasn’ — «,. Since ¢ = 3 O = 1, it follows that, given
m=1

e > 0, there exists n, such that, for » = n, 3. Qm < e. Therefore,
m=n+1

for n’ = n 2 n. and every p < n’ with Qp, > 0, the central relation
yields
Pn’ é Qan’—p + Z QmPn’—m + €.
msnmpp
Since for- n’ sufficiently large, Pp» > a — € and Pni—m < a + € for
m < n, it follows that

d"'féQan’—p'l"(l—'Qp)(a+€)+f

3e
at+e——<Pp_,<a+te
D

hence

Therefore, letting #’ — « and then ¢ — 0, we obtain Pn,_, — a,
and, repeating the argument, we have, for every fixed integer m,

Popmp = a as n' — o,

3° Let us assume, for the moment, that Q1 > 0 so that Pnr_m — «
for every fixed m. We introduce the expected return time r and use
the fact that ; is recurrent, so that, setting ¢. = 1Qm, we have
m=n-
g0 = 1. The expected return time 7 can be written

r = Z”: mQy = Zl Mm(gm_t — qn) = ";O Ims

m=1 m ==

and the central relation can be written

Pn = E QmPn—m = Zl (qm—l - qm)Pu—nn
m m ==

=]
so that
n n—1
Z qun—m = Z QmPu—l—m == (/OP(D = 1.
m=0 m=0
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Therefore, for n < n’, n
Z qun,—-—m é 1

n=0
and, letting 7’ —  and then # — =, we obtain a £ 1/7. If r = o,
then a« = 0; hence P,—1/r=0. Thus let 1 < ». The same

argument for B = lim inf P, shows that, for a subsequence 7’ such

n-— o

that P,» — B as n”” — o, we have P,»_, — B for every fixed m
and, from

n
J
Z, qun”—m +e=1 for nes=n< 71",
m=0

1
it follows as above that 8 2 —. Therefore, P, — —, and the assertion
T T

is proved under the assumption that Q; > 0.

4° To get rid of the last assumption, we appeal to elementary
number theory. Consider the set of all those p for which @, > 0. It
contains a finite subset {p;} whose greatest common divisor is the
period J(=1). As above, if Pp» — a, then Py_ .. — « for every fixed
m; and p;, and it follows that P,,_,, — « for every fixed linear combi-
nation m = 3 mp;. But every multiple of the period md = m = I] p;

can be written in this form, so that, starting with »’ sufficiently large,
P, _m — a for every fixed m, and the assertion follows as above.
This concludes the proof.

Since, for a state j with period J; there exists a finite number of inte-
gers p; such that P¥ > 0 and, for m sufficiently large md; = 3 m;p;,
it follows, by P3% = II P57 > 0, that

L]

If d; is the period of §, then PR > 0 for all sufficiently large values of m.

In other words, after some time elapses the system returns to ;5 with
positive probability after every interval of time ;.

We can now describe the asymptotic behavior of the system. If &
is a return state of period g, set

%
‘ij(r) = Z Q;'I:dk+r, r=1,2---, dk,
ma==(

so that ¢;;(r) is the probability of passage from j to k in # = r (modulo
di) steps and

dx
21 gik(r) = gjx.
r=
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ASYMPTOTIC PASSAGE THEOREM. For every state j

if k is a null state, then P, — 0;
d

if k is a positive state, then Pi*t™ — g(r) — ;
Tkk
and, whatever be the state k,
91'k
- Z P ik = -
7 m=l Tkk

The theorem results from the positivity criterion and the central re-
lation, as follows:

If k is a null state, then P}, — 0. Therefore,

PR=s2XOaPu™+ X O

m=l m=n’+41

and it follows, upon letting # — « and then #’ — o, that P} — 0.
If k is a positive state, then Pi**" = 0 for r < 4, and P A/ Tkk.
Therefore, from

0 < P}l’:ik'i‘r Zdek+T (n—m)dk < Z dek+r
m=n’+41

it follows, upon letting # — « and then #»' — o, that P}*t" —
9ik(r) e/ Trk.

The last assertion follows from the first two assertions.

*6. Motion of the system. To investigate the motion of the system
we have to consider the probabilities of passage from one state to an-
other. But, first, let us introduce a convenient terminology.

A state j is an everreturn state if, for every state k such that ¢;; > 0,
we have g;; > 0. Two states 5 and k are equivalent and we write j ~ k
if gjr > 0 and ¢i; > O; they are similar if they have the same period
and are of the same type. A class of similar states will be qualified ac-
cording to the common type of its states.

A class of states is indecomposable if any two of its states are equiva-
lent, and it is closed if the probability of staying within the class is one.
For example, the class of all states is closed but not necessarily inde-
composable.

"The motion of the system is described by the foregoing asymptotic be-
havior of the probabilities of passage from a given state to another
given state, and also by the following theorem.
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DecomposiTioN THEOREM. The class of all return states splits into
equivalence classes which are indecomposable classes of similar states.

A not everreturn equivalence class is not closed. An everreturn equiva-
lence class is closed; if its period d > 1, then it splits into d cyclic sub-
classes C(1), C(2), -+, C(d) suck that the system passes from a state in
C(r) to a state in C(r + 1) (C(d + 1) = C(1)) with probability 1.

The proof is simple but somewhat long. To begin with, we observe
that, if j and k are two equivalent states, distinct or not, then there
exist two integers, say m and p, such that P} > 0, P§; > 0.

1° The set of all states which are equivalent to some state coincides
with the set of all return states. For, on the one hand, every return
state is equivalent to itself and, on the other hand, if j ~ k, then ¢;; =
P;tP 2 PRPE; > 0. Thus, the relation § ~ k, symmetric by definition,
is reflexive: j~j. It is also transitive, for j ~ % implies P} > 0,
k ~ & implies Pj, > 0 for some integer # and, hence, ¢;» = PRt" =
PiiPr > 0; similarly for gu;. Therefore, the relation j ~ k has the
usual properties of an equivalence relation and the set of all return
states splits into indecomposable equivalence classes.

We prove now that, if j ~ k, then they are similar. We know al-
ready that they are both return states; let 4; and 4}, be their respective
periods. There exists an integer #n such that Py > 0; hence P2} >
PuPy >0 and PLT"t? = PRPLPE > 0; similarly, PRtIntr >,
Therefore, dj, being a divisor of m +n + p and of m + 2n + p, is a
divisor of every such 7 and hence of dy. By interchanging s and %, it
follows that s and % have the same period.

Ifj is an everreturn state and P§; > 0, then, from P;T? = PRP§, > 0,
it follows that there exists an integer r such that P;; > 0; hence Pi? =
P;;P% > 0, and k is an everreturn state. By interchanging 5 and %, it
follows that they are both either everreturn or not everreturn states.

If k is recurrent, then, by the recurrence criterion,

> o] > o] > o]
+nt _
S Pz X PRY 2 PR(S PL) Ph = =
n=] n=1 n=1
and j is recurrent. By interchanging j and %, it follows that they are
both either recurrent or nonrecurrent.
If 4 is the common period of the two equivalent states 5 and £, then,

from +nd+ nd
m P m
Pj; = PLPePkis

it follows that 4 is a divisor of m + p and lim P > 0 implies lim P}¢

n-—» n—» o
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> 0. Hence, upon applying the positivity criterion and then inter-
changing s and k, both are either positive or null. This completes the
proof of the first assertion.

2° If j is a return but not an everreturn state, then there exists a
state % such that ¢;5 > 0 while g»; = 0, so that 4 is not equivalent to 5
and there is a positive probability of leaving the equivalence class of ;.

If j is an everreturn state, then g¢;x > 0 entails gz; > 0 so that k%
belongs to the equivalence class of j. Therefore, the probability of
passage from j to a state which does not belong to the equivalence class
of j is zero and, the class of all states being countable, the probability
of leaving this class is zero.

Finally, we split an everreturn equivalence class C of period 4 > 1
as follows: Let j and & belong to C. Since P57 2 PP} > 0,4 is a
divisor of m + p and, if m; and m, are two values of m, then m; = m,
(modulo 4). Thus, fixing j, to every k belonging to C there corresponds
a unique integer 7 = lor 2, -+, or 4 such that, if Pj; > 0, then m = r
(modulo d). The states belonging to C with the same value of  form
a subclass C(r) and C splits into subclasses C(1), C(2), --- C(d). It
follows that, if # and &’ belong respectively to C(r) and C(+), then
P} can be positive only for n = | 7 — #'| (modulo 4). Moreover, ac-
cording to the proposition which follows the positivity criterion, P
> 0 for all such #n sufficiently large. Thus no subclass C(r) is empty and
the system moves cyclically from C(r) to C(r + 1) --- with C(d + 1)
= C(1). This proves the second assertion.

‘CoroLLARY 1. The states of an everreturn equivalence class C are linked
in a constant chain whose transition matrix is obtained from the initial
transition matrix P by deleting all those Py for which § or k or both do
not belong to C.

CoroLLarY 2. The states of a cyclic subclass C(r) of an everreturn
equivalence class with period d are linked in a constant chain whose tran-
sition matrix P’ is obtained from P® by deleting all those P% for whick §
or k or both do not belong to C(r).

CoroLLARY 3. An everreturn null equivalence class C is either empty
or infinite. In particular, a finite chain has no everreturn null states.

Let C be finite nonempty. By the asymptotic passage theorem,
% — 0 for k€ C. But C is closed, so that 1 = %:CP}',c — 0 for
k

J € C, and we reach a contradiction.
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CoroLLARY 4. If j and k are nonequivalent everreturn states, then
;'lk = O.
If j and k are equivalent positive states, with period d, then

Pt — dfrw for some r = r(j, k)
PiYT =0 for v # r(modulo d).

This follows by the asymptotic passage theorem.

*7. Stationary chains. The evolution of a system is determined by
the laws which govern the system. In the case of constant elementary
chains these laws are represented by the transition matrix P with ele-
ments Pj;. While P determines probabilities of passage from one state
to another, it does not determine the probability that at a given time
the system Je in a given state. To obtain such probabilities we have
to know the initial conditions. In the deterministic case this is the
state at time 0. In our case it is the probability distribution at time 0,
that is, the set of probabilities P; for the system to be in the state ; at
time 0. Then, according to the total probability rule, the probability

% that the system be in the state k at timen = 1,2, -- -, is

P; = X P;P}.
)

The notion of statistical equilibrium corresponds to the concept of
stationarity in time. In our case of a constant elementary chain with
transition matrix P, it is stationary if Py = Py for every state k and
everyn =1,2, ---.

Given the laws of evolution represented by a transition matrix, the
problem arises whether or not there exist initial conditions represented
by the initial probability distribution such that the chain is stationary;
in other words, whether or not there exists a probability distribution
{P;} which remains snvariant under transitions. In general, one ex-
pects that if, under given laws of evolution, an equilibrium is possible,
then it is attained in the long run. To this somewhat vague idea corre-
sponds the following

INVARIANCE THEOREM. For states j belonging to a cyclic subclass of a

positive equivalence class with period d, the set of values B; = — is an

Tjj
invariant and the only invariant distribution under the transition matrix
of the subclass.

According to Corollary 2 of the decomposition theorem, it suffices to
consider the chain formed by the subclass, that is, by one cyclic posi-

E——
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tive class with some transition matrix P of period one. According to
the asymptotic passage theorem,

1

P,'-'k—-»——=Pk>0.
Tkk

> P=1 and P}i™ =3 PjPh,
k h

Since

it follows, upon taking arbitrary but finite sets of states and letting
n — oo, that

P, <1, B,z Y B,Pj.
ko 3

But if, for some #, the second inequality is strict, then summing over

all states &, we obtain
12X P> P,
k h
so that, ab contrario,

B, = X PP
A

Since Y Py is finite, we can pass to the limit under the summation sign,
h

so that, by letting m — o, we obtain

B, = (X Pyb;
h

and, P being positive, it follows that Y P, = 1. Thus, the set of
h

values P, is a probability distribution invariant under P.
It remains for us to prove that, if a set of values P; has the same
properties, then Py = P;. But from

Pk——'ZPh.thk
h

it follows, as before, that Py = (I Py)P:y = Py, and the conclusion is
h
reached.

Cororrary. If C is a positive equivalence class, then

This follows from
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STATIONARITY THEOREM. A constant elementary chain with transition
matrix P is stationary with initial probability distribution {P.} if, and

only if, Py, = O for all null states k, and B, = 2 Sfor all states belonging
Tkk

to positive equivalence classes Cy, with 3 p, = 1.
¢

Let the probability distribution {P;} be invariant under the transi-
tion matrix P so that '

Pk:Z.:Pj }lk'

If & is a null state, then, by the asymptotic passage theorem, Pj; — O.
3 B; being finite, we can pass to the limit under the summation sign.

J
It follows, upon letting # — o, that By = 0. Hence, by summing
over positive states only, 3’ P, =1

If k belongs to a positive equivalence class C;, then, by the asymptotic
passage theorem, we have that Pj; = O for every j which does not

1 & _ _
belong to C; and - > PR — 1 for every j belonging to C,. It fol-
m=1 Tkk
lows that
n 1 : m Pt
Po= Y PPji= Y Pi\- L Pii) > —
JEC JEC: N =1 Tkk
where

pe=2X P and Yp.=3% B =1.
JE€C ¢
This proves the “only if” assertion.
Conversely, let the conditions on the P, hold and use

¥ =Y B;Pj
i

where the summation is over positive states j only, since B; = 0 for 5
null.

Therefore, if k is null, then P} = 0 and Py = O for every m. If k
belongs to a positive equivalence class C;, then, since C, is closed, Pj;
= 0 for all states j which do not belong to C;, and, C’; being a finite
subclass of C; such that ) P; < e with sum over j € C, — C’,, we have

Py =Y PP <p 3 Pi/mi + e
i€e i E¢

Upon replacing 1_—1j by the limit of the mean in the asymptotic pas-
17
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sage theorem with subscripts %, j € C’;, we obtain, by summing first
over the j,

P/:"§Ptliml 2 Pt + e

n—s oM s =l

Hence
Dt
Py =—+ €
Tkk
. - om . Dt
so that, letting ¢ — 0, we have Py £ —-
Tkk

If, for some &, the inequality is a strict one, then, since for null states
Pi =0, it follows, by summing over positive states ¥ only, that

’ 1
1=2 PZ‘<;P:Z"'=;P:=1

k€Ct Tkk

Dt . ..
Therefore, Py’ = — for every m, and the “if”’ assertion is proved.
Tkk

COMPLEMENTS AND DETAILS

I. Physical statistics. The problem is to determine the state of equilibrium
of a physical system, of energy E, composed of a very large number N
of “particles” of the same nature: electrons, protons, photons, mesons, neu-
trons, etc.

Hypotheses. There are g1 microscopic states of energy ¢, g2 of energy ez, -+
and each particle is in one of these states. The macroscopic state, i.e., the
state of the system, is specified by the number of particles at each energy level:
v1 particles of energy ey, v; particles of energy ¢z, ---. Theset {vy, vp, ---} isa
set of random integers and the probability of a macroscopic state »; = n,
v2 = m, -+ is equal, up to a constant factor, to the number # of ways in which
n;. particles can be distributed amongst g, microscopic states of energy e, £ = 1,
2, - -+, provided

E'nk =N, Z mer = E.
k k

The Maxwell-Boltzmann statistics (classical theory of gases) is that of distin-
guishable particles without exclusion, i.e., without any bound upon the pos-
sible number of particles in any of the microscopic states. The Bose-Einstein
statistics (photons, mesons, deuterons, ---—particles with an integer “spin”’)
is that of nondistinguishable particles without exclusion. The Fermi-Dirac
statistics (electrons, protons, neutrons—particles with a semi-integer “spin’’)
is that of nondistinguishable particles which obey the Pauli exclusion principle,
that is, there cannot be more than one particle in any of the microscopic
states.
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Weights. Let w denote the weight of the macroscopic state {n,, ng, ---} i.e.,
W/N! in the distinguishable case and /# in the nondistinguishable case. Prove
that the combinatorial formulae give the following expressions for w, where it
is assumed that ; nm. = N, Zk: nwer = E (in the case of photons N is not fixed

and only the second condition remains):

Distinguishable Nondistinguishable
Particles Particles

Without exclusion | w = J]g%/II n! |w = I (g;igl("g:?i_ —1)1!)!
(Maxwell-Boltzmann) |  (Bose-Einstein)

1 K|
With exclusion =77 —2& = 77— &
w=1II nil(gi — n3)! w=1I nil (g — m)!
(corresponds to no (Fermi-Dirac)

physical reality)

When gi > m, then the expressions of the weights in B.-E. and F.-D. statistics
are equivalent to w in M.-B. statistics. Assume distinguishability and let ¢ be
the “capacity” coefficient of the microscopic states, that is, if there are already
n particles in the g; states of energy ex(k = 1, 2, ---), the number of these g
states which remains available for the (7 4+ 1)th particle is g — nc—this is
Brillouin statistics. The weights w of the macroscopic states, previously defined
as w = W/N), are given by

w= IkI;Ik—!gk(gk —¢) e g — (me — 1)]

and reduce to those of M.-B., B.-E.; and F.-D. by giving to the parameter ¢
the values 0, —1, -1 respectively.

Statistical equilibrium. For a very large N the equilibrium state of the macro-
scopic system is postulated to be the most probable one, that is, the one with
the highest weight. Assume that Stirling’s formula can be used for the fac-
torials which figure in the table of weights above. Take the variation 6§ log w
which corresponds to the variation {6m, dn,, ---}. Using the Lagrange multi-
pliers method, the state which corresponds to the maximum of w is determined
by solving the system (prove)

5log w +\-6N +pu-8E =0
Y.m =N, Y me=E.
k k

(In the case of photons take X = 0 and suppress the second relation.) The
equilibrium states for the various statistics are also obtained by replacing ¢ by
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0, —1, and 1 in the equilibrium state for Brillouin statistics, given by

m = ge/(TH%* + o)

where A and u are determined by the subsidiary conditions
N = ;gk/(e““"‘ +¢, E= Zk:gkek/(e““"‘ + o).

The Planck-Bose-Allard method. The macroscopic states can be described in
a more precise manner. Instead of asking for the number 7, of particles in the
states of energy ¢x, we ask for the number gim of states of energy ¢ occupied by
m particles. The particles are assumed to be nondistinguishable as required by
modern physics. The combinatorial formulae give

w =I;I(gk!/ I1gim") with g = - gim, N = Zk:Z: mgrm, E = Zk:Z M Giem.

To obtain the statistical equilibrium state use the procedure described above.

B.-E. statistics is obtained if no bounds are imposed upon the values of .
F.-D. statjstics is obtained if m can take only the values O or 1; “intermediate”
statistics is obtained if 7 can take only the values belonging to a fixed set of in-
tegers.

In the equilibrium state (with ¢ = —1 or 41 when the statistics are B.-E.’s
or F.-D.’s respectively), we have

Zem = o(1 + cak)‘%ak"', where a; = ¢~ +red

and g:(«), determined by the usual subsidiary conditions, the generating function
of the number of particles in a microscopic state of energy e, is

o(w) =1 —I—- car) "% (1 + capu)?™°,

II. The method of indicators.

Z. Rule: In order to compute PB, B = f(A,, 4:° -+, Am, An°), take the
following steps:

(a) Reduce the operations on events to complementations, intersections, and
sums;

(b) Replace each event by its indicator, expand, and take the expectation.

In this way find

P(U/I,) andP(ﬂA U A;°) in terms ofP(ﬂA,)s

jm=1 jml  Fmk 41 j=1

Notations. Let I 4;=1Ijand let R = ZI be the “repetition’ of A;’s, that

is, the number of events 4; which occur Let Jo=1, ], = Y I---I; where
the summation is over all combinations 1 < f; < j2 < < jr = m. Let Iy
and I, be indicators of the events exactly » A’s occur and at least r A’s occur,

respectively; set
S =EJ,, Py =Ely, Prn= El).
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2. Prove
(a) Eo ulyy = 20 (u — 1)*], = u®,
¥ - s =0
and deduce
(b) Py = kE (=1 'Ck'Sk
() Sk = t}:;CtP[t] = Z Cz IP(t)a
(d) RR—-1)---(R—=k+1) =kl

3. Let k = r = m. Using 2(c) and the relations

Iy 2SIy STy S+ = Ty,
prove that
(Sx — CF-1)/(CE — Ck.)) = Py = Si/CE.

Examine the special case 7 = m; the left-hand side becomes Gumbel’s inequality;
the right-hand side becomes Fréchet s inequality.

Let
Jky =1 = Ji/Ch, Af(R) = fk + 1) — f(k).
4. Prove
" Coke
(a) AJ(k) = Z “'CT—IM,
=k m
c' '
(b) Iy S o= 5 AJk), kSr=m-—1,
m— '-—1
(c) AJ(k) = 0;
deduce a scale of inequalities for the S’s.
5.
J (k) m=lCnt
(@) -8 (7)) = T A 0 - L),
e G (W
(b) - To s 25 (-maf),
(c) —mA l(kéz = 0;

deduce another scale of inequalities for Si’s.
6. The general symbolic met/zod The events By, - -+, Bn are called exchange-

able if P(By.--+ By, B;,,,° -+ B%,,,) depends only on the number r of events
B; and on the number s of events B°.
Let

Jos = 22 1(4s) - I(4:) (4, %) - 1(4;
Sr/‘s = E(jr/s) = L P(Ai, A A
pen=P(B:, -+ B B;

iy +.!

Ai, ,_,c)

'r+l ’

. . c
’r+x B'r+a )
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If we choose the B;’s such that

Y P(dy - dydyy o Ay,) = T P(By -+ ByBy,c - B9,
then
< Dris = Sr/s/CInC;,_,.

If we further introduce symbolic independent events having the same prob-
ability p, the complementary events having probability ¢ = 1 — p, then, sym-
bolically,

Pris = P'¢’.

The symbolic method consists of the following steps:
(a) In any given identity (or identical inequality) for p, ¢ (0 S p =1
= 1 — p) replace p'¢* by p,/s.
(b) Replace p;/s by §;/s/CriCh~, and obtain an equality (or inequality resp.)
for the S,/,’s.

Examples:
(a) Starting from p"¢* = p’(1 — p)* obtain

Sr/s v?-\ i Cg
i, 2, (=1 G Sevires
in the special case r 4+ s = m, find
Sr/m—r = P{r]-
(b) Starting from p’¢* = p'¢*(p + ¢)™ "¢, obtain

m-—s
Ses = iZ CiCr - Si/m .
In the special case s = 0, find
Sr/O =Sr= Tt

(c) Starting from p”'¢*’ = p'¢*, ¥’ S r, 5’ < 5, find

Sr’/s’ Sr/
> =~ r¥<r, 5$Ss
s ~r = r 9 =" ="
Cm+ Cr’+s’ Crrn r+s

and as a special case the scale of inequalities (4c).

(d) Starting from 1 = 3’ C'p"~'¢* where 2’ denotes a sum in which a certain
i=0
number of terms is omitted, find

Crz 2 Sy

and, taking only the terms i = 0 and / = 1, find the second scale of inequalities
(5¢). ‘

7. The classical problem of matching. This problem (probléme des rencontres)
was studied first by Montmort (1708) and further treated by Lambert, Euler,
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and others in different forms, all of which can-be described by the following
setup: given m distinct numbers X3, X3, - -+, X, choose at random a first Xj,,
then a second Xi, from the remaining ones, etc. A match (coincidence, ren-
contre) is an event A; which consists in choosing exactly X; at the ith draw.

In the following, assume that each permutation (Xj,---Xy,) has the same
probability of being chosen at random. Show that

— !
(2) Pldy, -+, 4v) = (‘72"“"1 and 8, = l|
m: r!
1 m—r (_l)a
®) P = r fgo s

(¢) Find lim Py,; interpretation? Show that Ppn—_1y = 0; interpretation?
”m ~> 0
m
(d) Show that E(r) = % rPyy =8 =1 and E[r — E(N]) =1. (Use the

m
generating function % u"Pyry.)
=

III. Random walk. A particle starting at some point of an m-dimensional
space moves in such a way that its consecutive displacements can be repre-
sented by independent m-dimensional random vectors. Problems of the fol-
lowing type arise: find the probability that in time T or before time T the par-
ticle reaches a certain domain D, or that it reaches D without having reached
previously a domain D’, or find the expected time for the particle to reach D,
etc.: -

We give a few examples which show the great variety of forms under which
this problem occurs, questions which can be asked, and methods of solution.
We restrict ourselves to the discontinuous case with every move taking one
unit of time.

1. Game of “heads or tails” and combinatorial method. To n tosses of a coin
with equal probabilities for heads and for tails we associate the score point whose
coordinates are respectively the number of heads and the number of tails which
occur. Thus, at every toss, the score point M moves by one unit either upwards
or to the right, and the game is represented by a two-dimensional one-sided
random walk on the lattice of points with integer coordinates.

The score points corresponding to the same number # of tosses lie on the line
(@ + 9)!

2l

(a) If 4 and B ran for office, 4 got a votes and B got 4 < a votes, find the
pr. P that in counting the votes A4 be always ahead of B.

(Equivalent to the pr. that the score point stays below the bisectrix until it
reaches the point M = (4, 4). Compute the pr. of the complementary event by
applying the symmetry principle of Désiré André as follows: the paths from 0
to M which intersect the bisectrix either go through (1, 0) or through (0, 1).
By reason of symmetry both classes contain the same number of paths. The
number of those which go from (0, 1) to M is (@ + & — 1)!/a!(4 — 1)}, and

a—4b
P=a+b.

x + y = n. The total number of paths between 0 and M = (g, &) is
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(b) The probability that there be neither gain nor loss in exactly 27 tosses is
1.3..-(2n — 3) 1 .
W P (Start with the numbgr of paths from 0 to

(n, n — 1) which do not intersect the bisectrix.)

(c) The probability that the gambler who bets on heads and whose fortune is
m times the stake loses his fortune in m + 2 tosses is m(m +n + 1) ---
(m + 2n — 1)/2m+2np), (Reduce to (a) by taking for origin the point (m + n, n).)

2. Gambler's ruin.

(a) Method of difference equations. Consider a one-dimensional random walk
on the latticex = 0, &1, &2, - - -. At each step the particle at y has probability
Pr to move from y to y + k, k =0, =1, 2, --.. Let P, be the probability
of ruin, that is, starting at x with 0 < x < 2 to arrive at y < 0 before reaching
y2Za. Then P, =} P,p, , with boundary conditions P, = 1 if y £ 0 and

y

P,=0ify 2 a.

The gambler has x dollars and wins or loses one dollar with respective proba-
bilities p and ¢ = 1 — p. Find the probability P, of his ruin. Find the proba-
bility Pza of his ruin at the nth game.

In the first case, P, = pPsys + ¢Psy with P, =1, P, = 0. The solution
s p. = @/P)* — 4/p)*
i (¢/p)* — 1

In the second case Piant1 = pPri1n + gPr—1,n With Poy = Pay = 0 and
Py =1, Py, = 0. The solution is

forp#qandP,=l—§forp=q.

a—1
Pen = a~12mp(r=2)i25(n+2)/2 3" cogn-1 Tk sin Tk sin whx
k=1 a a a

(b) Method of matrices. Same random walk but with py = p_; = 1/2. The
particle starts from 0 and dies when it attains g — 1 S Ooré=a+¢c = —1.
Find the probability P, that after » displacements the particle is still alive, as
follows.

Set g(k) = 1/2 for k = +1 and g(k) = O otherwise. Thcr}‘ Po=Y glky) ---

g(kn) where the sum is taken over all k’s such that s £ X k; <4, £ =1, 2,
j=1

«ee,n. Setd;j =k +---+ k; —a. Then P, is the sum of the elements of

the (1 — 4)-th column or row of the matrix 4™ where

0 3 00
1 1
_ . _ 1z 0 3 O
A=GG-M=3 3 ¢ 1
The proper values \; of A are given by \; = cos -;—:—rf——z , the proper values of A*
are A\;*, and .
2 oH m . w(l —a) )

P, =

e ¢
C+2i§ cosc+2sm ppnal ey

where 2’ denotes summation over the odd j's only.
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IV. Geometric probabilities.

Elementary probabilities.  Consider an n-dimensional space of points
U = (uy, - -+, un) and let G be a group of transformations of points into points.
If there exists a differential element du = g(u;, - -, Up)duy - -+ du, determined
up to a constant factor by the property that its integral over domains is in-
variant with respect to the group G, du defines up to a constant factor an ele-
mentary probability. The constant factor is determined by fixing a domain Dy
within which all considered domains lie and by assigning to this domain the

pr. one; that is, by setting ¢| du = 1. Then the points are said to be taken
Do

or thrown at random in Dy. To say that several points are taken or thrown at
random means that the throws are stochastically independent; in other words,
we make repeated trials.

Let M with or without affixes be points in an m-dimensional euclidean space
and let xj, -+ -, ¥n with same affixes, if any, be its cartesian coordinates with
respect to a fixed orthogonal frame of reference. The group G which transforms
points M into points M is the group of euclidean displacements (preserves euclid-
ean lengths). This means that the probability is required to be independent
of the choice of the frame of reference. Prove that du = ¢ dxydxs - -+ dxm.

Let us now investigate straight lines in a euclidean plane determined by their
equations #1x1 + #2x = 1 in rectangular coordinates, and let G, be the group
of euclidean displacements in the plane. Prove that du = c(u12 + 2%~ du, du,
or, using the normal equations: x1 cos @ + x2sin@ — p = 0, du = cdp .

(The transformations of the group G, are of the form 'y = a1 + ¥1cosa
— x2sina, x’s = a; + x;sina + xpcosa and induce transformations of a
group G on the plane (u1, u3) defined by

uy = (4’1 cosa + w's sin @)/(a1u’y + asu’s + 1),
up = (—u'ysina + u's cos ) /(aru’y + agu’s + 1).
The invariance condition yields

D(u,, us) with D(uy, ug) - (ur? + ug?) )
D(u'y, u's) D@y, u's)  (u'y% + u'sD)%

With the same group G. there is no elementary probability for circles in the
plane. But there is one for circles of fixed radius.)

Points on a line. The elementary probability for a point M on a segment
[0, /] is dx/l. Throw n points at random on the segment. The probability,

n

say, that there be no thrown points on [0, x] is { 1 — ;—) . What is the ex-

pected distance of the nearest to O of the thrown points? What is the proba-
bility that k& out of the » thrown points lie on a fixed subinterval of length a?
Find what happens as / — o with n// — X > 0. Denote then by M;, M,, - - -
the points in the nondecreasing order of their distance to 0. What is the ele-
mentary probability for the length M;M; ., to be between x and x + dx and
what is the expectation of this length?

Lines in a plane. The elementary probability of a straight line x cos 8 +

ys8in@ — p = 0 thrown on a plane is du = cdp d8. The integral fdp df over a

g(u', u'9) = g, uy)
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domain induced by a family of straight lines is said to be the measure of the
family. The measure of the secants of a segment of length /is 2/. (8 varies

from — g to + g while p varies from O to / cos 8 for every fixed .) The measure

of the secants of a polygonal line of length /is 2/, provided every secant is counted
as many times as there are points of intersections of the secant with the polyg-
onal line; in particular, the measure of the secants of a closed convex polygon
is its perimeter. The same is true for the secants of a curve formed by a finite
number of analytic arcs. Prove it directly for the secants of a circle.

Let C and Cy be two closed convex curves of respective lengths / and /, with
C being interior to Cy. The probability that a secant of Cp be secant of C is
I/h. :
Application to the needle problem. If C, is a circumference of radius /2 and C
is a segment of length /, then p = 2//7r. Throw the figure formed by the cir-
cumference and the segment on a plane with parallel equidistant straight lines
with common distance r. The probability that one of these lines intersects the
segment is 2//wr. Prove it directly by throwing a needle of length / on this
plane.

(The position of the needle 4B is determined by the coordinates x, y of 4
and the angle a that /B makes with Ox, one of the equidistant lines. The
elementary probability is dx dy da. It is not a restriction to assume 8 between

x/2
0 and 7/2, x = 0, and y between 0 and . Then p = ;—if sin a da..)
0

A differential method. Let Dy be a domain of the plane on which are thrown
at random » points. Intrinsic properties of the figure formed by the points are
defined independently of Dy; for example, M1M, < I, triangle M M,Mj; has
acute angles, - - -

The probability of an intrinsic property is given by P = a/s" where s is the
area of Dy and & represents the measure of the set of favorable cases. Let D’y
be a new domain containing Dy and let P + AP = (a + Aa)/(s + As)™ be the
new probability of the same property. If Pi is the probability of the property
when n — k points are in Dy and & points are in D’q — Dy, then

n! Posm—k(As)k
Y kS (As)

a+Aa=a+a +- -+ an, ak=m

and

(s + A)" AP = n(P; — P)s*1Ag 4 -

n!
+Ie!

B = 81 (P = PI"HAYE oot (P = P)(AI™

Keeping infinitesimals of first order, we have
5P = n(P, — P) ii

where 7 is the number of points thrown at random on Dy, P is the proba.bilit-y
of the property, P; is the probability of the same property when 1 point is
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thrown at random on an increment of Dy of area s, and » — 1 points are thrown

. at’ ‘random on Dy. More generally,
o ’...). ’ ) 65

om = n(m; — m)

where m is the expectation of a function of the thrown points, and the other
quantities are defined similarly to what precedes. The method and the for-
mulae apply whatever be the number of dimensions of the space.

Application. Two points M, and M, are thrown at random on a segment
2
of length /. The probability that MM, < x is —2—; - 77 . What happens when

the segment is replaced by a circle of radius r? Find EM;M? in both cases.

V. Bernoulli case and Weierstrass theorem. Consider the Bernoulli case
(with P4 = xinlieuof p): 0 S x = 1,

!
P(Sn = k) = pur(x) = ;!(—nr—l;-;)—!"x"(l —x) "k k=01,
@) S pu®) = 1, ESa= 3 kpus(x) =
k=0 k=0

oS, = i (k — nx)? par(x) = nx(1 — x).

k=0

(b) Let f be a real or complex-valued continuous function on [0, 1]. It is
bounded: | f| £ ¢ <= and uniformly continuous: Given e > O there isa § > 0
such that [ x — x'| < 8 = | f(x) — f(x") | < & Form Bernstein polynomials

E(f(S./n)) = Z:‘,of(k/n)pnk(x),

that is,

Pu(x) = Zf(k/n)

xk(1 — x)nk,

k'( !

(c) Weierstrass theorem says that on [0, 1] there are polynomials which con-
verge uniformly to f.
Bernstein polynomials are such that

|E(f(x) = f(Sa/m)| = |f(%) = Pu()]
= I3 () ko] S| S T+ T

fk—nz} Sns {k—nz| > ns

The first partial sum is bounded by € 3~ p.:(x) = €. The second partial sum is
k=0
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bounded by

2 n
2 Y pul®) é,;zng (k — nx)?pur(x) = 2ex(l — x)/n8? < ¢/2ns%;
k=0

|k—nz| >ns

note that the first inequality while algebraically immediate is due to Tchebi-
chev’s inequality:

E(| S./n — E(S./n) | > 8) £ o2S./n%"
Thus, for all x € [0, 1}, as # — « then e — 0,

| f(x) — Pu(x) | S € + ¢/2n8*— 0.

Leaving out all references to the Bernoulli case, the most elementary proof
known of Weierstrass theorem obtains: It introduces explicit uniformly ap-
proximating polynomials and is primarily algebraic.




Part One

NOTIONS OF MEASURE THEORY

No rigorous presentation of probability theory is possible without
using the notions of sets, measures, measurable functions, and inte-
grals. Their first lineaments are already apparent in elementary prob-
ability theory. These notions are introduced and investigated syste-
matically in this part.

The presentation is self-contained, and the material will suffice for
later parts. It is organized—at the cost of a few repetitions—so as to
make the unstarred portions independent of the starred ones and, at
the same time, to make the sections on measurable functions, conver-
gence, and integration independent of the remainder except for 1.1 to 1.5.
This permits a reorganization of the course so as to proceed from the less
abstract notjons toward more abstract and more involved ones. The
following order is possible: 1.1 to 1.5 with 5.1 to 7.2, then 3.1, 3.2 with
8.1, suffice for practically all of the unstarred portions of Parts II, III,
then IV,
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Chapter |

SETS, SPACES, AND MEASURES

§ 1. SETS, CLASSES, AND FUNCTIONS

1.1 Definitions and notations. A sef is a collection of arbitrary ele-
ments. By an abuse of language, an empty set is a “‘set with no ele-
ments.”

Unless otherwise stated, all sets will be sets of elements of a fixed
non empty set @, to be called a space. Elements of @ will be called
points and denoted by w, with or without affixes (such as subscripts,
superscripts, primes, etc.). Capitals 4, B, C, ---, with or without
affixes, will denote sets of points, {w} will denote a set consisting of
the one point w, and @ will denote the empty set, that is, the set “con-
taining no points.” If w is a point of 4, we write w € A and, if w is
not a point of 4 we write w & 4.

A set of sets is called a c/ass and classes will be denoted by @, ®, @,
-+ -, with or without affixes. The class of all the sets in @ is called the
space of sets in @ and will be denoted by S(Q). Thus a class of sets in
Q is a set in S(Q) and all set notions and operations apply to classes
considered as sets in the corresponding space of sets.

A is said to be a subset of B, or included in B, or contained in B, if all
points of 4 are points of B; we then write 4 C B or, equivalently,
B D 4. In symbols, if w € A4 implies w € B, then 4 C B, and con-
versely. Clearly, for every set 4,

gcdcCqQ,
and the relation of inclusion is reflexive and transitive:
Ac 4, Ac B and Bc C imply 4 cCC.

A and B are said to be equal if 4 C B and B C A; we then write 4 = B.
55
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Clearly, the relation of equality is reflexive, transitive, and symmetric:
A=4; A=B and B=C imply 4 = C;
A =B implies B = A.

1.2 Differences, unions, and intersections. The difference A — B is
the set of all points of 4 which do not belong to B; in symbols, if w € 4
and w &€ B, then w € 4 — B, and conversely. The particular differ-
ence @ — A, that is, the set of all points which do not belong to 4, is
called the complement of 4 and is denoted by 4.

The intersection 4 N B, or simply 4B, is the set of all points common
to 4 and B; in symbols, if w € 4 and w € B, then w € 4B and con-
versely. The union 4 U B is the set of all points which belong to at
least one of the sets 4 or B; in symbols, if w € A4 or w € B, then v €
A4 U B and conversely. If 4B = @, then A4 and B are said to be dis-
Joint, and their union is then denoted by 4 + B and called a sum.

It follows from the definitions that the operations of intersection and
union are associative, commutative, and distributive:

(AUBUC=4U@BUC), (4B)C = A(BC);
AUB=BU 4, A4B= Bd; |
(4UB)C=4CUBC, (41UB)A4UC)=4U BC.

Moreover, the operation of complementation has the following prop-
erties:
A cC B implies A4°D B¢

X =@ F=Q AL=0, A+ A =9, (L) = 4;
A—B=AB°, (4U B)* = A4°B°, (AB)° = A4° U B".

The notions of intersection and union extend at once to arbitrary
classes. Let T be a set, not necessarily in @, and to every ¢+ € T as-
sign a set 4, C Q. The class {4, + € T} of all these sets, or simply
{4} if there 1s no confusion possible, is a class assigned to the index
set T.

The intersection, or infimum, of all sets of {A4,} is defined to be the
set of all those points which belong to every A and is denoted by

( A4: or by inf A4,;; we drop # € T if there is no confusion possible.
tET tET
In symbols, if w € A, for every ¢+ € T, then w € [} 4: and conversely.

The union, or supremum, of all sets of the class {A4,} is defined to be
the set of all those points which belong to at least one 4, and is denoted
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by UT/{t or by sgg' Ai; we drop ¢ € T if there is no confusion possible.
t € t

In symbols, if w € A4, for at least one ¢+ € T, then w € | 4, and
conversely.

If all sets of {A4,} are pairwise disjoint, {A4,} is said to be a disjoint
class and the union of its sets, denoted then by X A4, is called a sum.
Conversely, the term “sum” and the symbols Y. and 4 when used
for sets of a class will imply that the class is disjoint.

If w does not belong to at least one A,, then it belongs to every 4.°,
and conversely; consequently (de Morgan rule),

(Udd®=N4° (N4) =U 4e°.

When {4,} is empty, that is, T is empty, it is natural to make the con-
vention that {J 4, = @. Then, in order to preserve the foregoing rela-
tE o
tions, we have to make the convention that (} 4, = ©. Thus, by con-
teo

U/{t=0, n/{t=9

te g ted

vention,

It is easily seen, collecting all the relations so far obtained, that the
following duality rule holds:

Every valid relation between sets, obtained by taking complements, unions,
and intersections, is transformed into a valid relation if, the symbols
«__

=" and ‘" remaining unchanged, the symbols (\, C, and @, are in-
terchanged with the symbols \J, D, and Q, respectively.

Operations performed on elements of “countable” classes will play
a prominent role later in connection with the notion of measure. A
set, or a class, is said to be finite, or denumerable, according as its ele-
ments can be put in a one-to-one correspondence with the set {1, 2,
..+, n} of the first »n positive integers, for some value of 7, or with the
set of all positive integers {1, 2, --- ad infinitum}. It is said to be
countable if it is either finite or denumerable. Similarly, operations
performed on elements of finite, denumerable, or countable classes will
be said to be finite, denumerable, or countable operations, respectively.

The following immediate transformation of countable unions into
countable sums will prove useful in connection with the notion of
measure:

Ud; =41+ 41°Ay + A\° A" A3 +- - -.

1.3 Sequences and limits. To every value of » = 1, 2, -+, assign
a set A,; these sets A,, whether distinct or not, are distinguished by
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their indices. The ordered denumerable class A4;, A2, ---, is called
sequence A,. The set of all those points which belong to almost all
An (all but any finite number) is called the inferior limit of A,, and is
denoted by lim inf A4,. Clearly

liminfA4, = U N 4.
n=1 k=n
The set of all those points which belong to infinitely many A, is called
the superior limit of A, and is denoted by lim sup 4,. Since every
point which belongs to almost all A4,° belongs to a finite number of A,
only, and conversely, it follows, by duality, that

<] <] <]

limsupA, = (U N4H°= N U 4.

Every point which belongs to almost all 4, belongs to infinitely many
Ar, so that
lim inf A4, C lim sup A,.

Thus, if the reverse inclusion is true, liminf A4, and lim sup A, are
equal to the same set /. Then A is called the /imit of A, and is denoted
by lim A»; the sequence A, is said to converge to A4 and we write A4, — A.
Clearly, limits (inferior or superior) of sequences of sets are formed by
denumerable set operations.

Monotone sequences form a basic class of convergent sequences. A
sequence A, is said to be monotone if it is either nondecreasing: A4y C A,
C ---,and we then write A4, T ;or if it is nonincreasing: Ay D As D - - -,
and we then write 4, |. From the expressions above of inferior and
superior limits, it follows at once that

every monotone sequence is convergent, and lim A, = \J An or () An
according as A, T or An | .

Moreover, if we consider this proposition as a definition of limits of
monotone sequences then, since for an arbitrary sequence B,,

N B, =infB,T and | Br=supBil,
k=n kzn k=n kzn

it follows that its inferior and superior limits can be defined by

lim inf B, = lim (inf Bx) and lim sup B, = lim (zgp By).
n kan n n
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1.4 Indicators of sets. Set operations can be replaced by equivalent
but more familiar ones, in the following manner. To every set 4 as-
sign a function I4 of w, to be called the indicator of A, defined by

Tqw)y =1 or 0O accordingas w€ A4 or wd A.

Conversely, every function of w which can take only the values 0 and 1
is the indicator of the set for the points of which it takes the value 1.
The one-to-one correspondences (denoted by <) and relations listed
below are immediate.

IA§IB@ACB, IA=IB<=>A=B, IAB=O<=$AB=Q,
Ig=0, Ig=1, IA+IAC=I,
Iinf A = ianAp Isup 4, = sup IA;)

In,, = I 14, Iy, = 2 14,
T s, =da+ A =Ta)la, + (1 = T4)(A = Tyl + -+
Ilim inf An = lim ianA,.a Ilim sup 4, = lim sup IAn, Ilim An = lim IAn'

1.5 Fields and o-fields. Classes of sets in @ are sets in the space
S(Q) of all sets in @ and thus what precedes applies to classes. How-
ever, there is a notion specific to classes—that of closure under one or
more set operations. A class @ is said to be c/osed under a set opera-
tion if the sets obtained by performing this operation on sets of € are
sets of €. In particular, the class (@) of all sets in Q is closed under
every set operation.

In connection with the notions of measurability and of measure, two
species of classes play a prominent role—fields and o-fields. A field is
a (nonempty) class closed under all finite set operations; clearly, every
field contains @ and Q. A o¢-fie/d is a (nonempty) class closed under all
countable set operations; clearly every o-field is a field. We observe
that, because of the duality rule, closure under complementations and
finite (countable) intersections implies closure under finite (countable)
unions. Also we can interchange in this property “intersections’” and
“unions.”

Let S-classes be species of classes closed under set operations 8; for
example, the species of fields or the species of o-fields. We observe that
S(Q) is an S-class, whatever be the set operations 8.

a. Arbitrary intersections of S-classes are $-classes. In particular, arbi-
trary intersections of fields or of o-fields are fields or o-fields, respectively.
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For the intersection of a collection of $-classes belongs to every one of
these classes. Therefore, performing operations $ on sets of the inter-
section, we obtain sets belonging to every one of these classes, that is,
to the intersection.

This property gives rise to the notion of a “minimal” $-class over a
given class. An $8-class @’ containing @ is a minimal class over @ or
the S-class generated by € if every 8-class containing € contains €.

b. There is one, and only one, minimal $-class over a class . In par-

ticular, there is one, and only one, minimal field and one, and only one,
minimal o-field over C.

For the intersection of all $-classes containing @ contains € and is con-
tained in every $-class containing €@.
A space Q@ in which is selected a fixed o-field @ is called a measurable

space (Q, @). If there is no confusion possible, the sets of @ are said to
be measurable.

1.6 Monotone classes. We shall need the notion of monotone
classes in connection with the problem of extending measures on a
field to its minimal o-field. A monotone class is a class closed under
formation of limits of monotone sequences.

a. A o-field is a monotone field and conversely.

The first assertion is obvious and the second follows from the fact that
every countable intersection () A4, and union |J 4. is a monotone

n n
limit of sequences [} 4x and | 4k of finite intersections and unions.
k=1 k=1

The property we shall require is as follows:

A. The minimal monotone class M and the minimal o-field @ over the
same field @ coincide.

Proof. On account of a and minimality of 9N and @, it suffices to
prove that 9 is a field; for, a monotone field I is a o-field so that
M D @, and the o-field @ is monotone so that M C @. Since M D €
3 Q and unions are reducible to intersections (by means of complemen-
tations), it suffices to prove that, if 4 and B belong to 91, so do 4B,
A°B, and AB°.

For every fixed 4 € M, let M, be the class of all B € 9N with the
asserted property. Every 9, is monotone for, if the sequence B, € My
is monotone, then B = lim B, belongs to M and so do the limits of
monotone sequences

AB = lim AB,, A°B = lim A°B,, AB° = lim AB,°.
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It follows that, for every 4 € @, the class 9N, coincides with 9. For
C being a field, every B € @ is € My, so that € C M,y C I and,
hence, 9N being minimal over @, My = M. In fact, Nz = M for every
B € 9. For, the conditions imposed upon pairs 4, B being symmetric,
B € m(=my for 4 € @) is equivalent to 4 € Mg for every 4 € €
so that @ C 9Nz and hence as above, Mz = M. But this last property
means that 9N is a field, and the proof is complete.

*1.7 Product sets. We introduce now a different ty,.e of set opera-
tion and corresponding notions, for which we shall have need later.
Let A; and A, be two arbitrary sets with elements w; and wg, respec-
tively. By the product set Ay X Aj we shall mean the set of all ordered
pairs w = (w;, wp) where w; € A4; and wg € A,. If Ay, By, --- are
sets in a space Q; and Ay, Bg, - - - are sets in a space Qg, then 4y X As,
By X By, --- are sets in the product space @y X Qg, called intervals or
rectangles in Q1 X Qp and the properties below follow readily from the
definition:

(A1 X A2) N (By X By) = (A1 N By) X (A2 N Bg)
(A1 X A3) — (B1 X By) = (41 — By) X (42 — Bg) + (A1 — By)
X (A2 N Bg) + (41 N By) X (A2 — B2)
In turn, it follows at once from these relations that

a. If Cy and @y are fields of sets in Qy and Qy respectively, then the class
of all finite sums of intervals Ay X Ao, where Ay € Cq and Ay € @y,
is a field of sets in Q1 X Qo.

This field will be called the product field of @1 and €.

Yet, if @; and @2 are o-fields of sets in Q; and Q,, respectively, then
the product field of @; and @; is not necessarily a o-field. The minimal
o-field over it will be called the product o-field @y X Q. If (@, Q)
and (Qg, @) are measurable spaces, then their product measurable space
iS, by deﬁnition, (Ql X 2, @1 X 62).

Let 2 =Q; XQ and @ = @; X @2. If 4/ C Q is measurable and
wy € @ is a fixed point, then the set 4(wy) of all points ws € Qg such
that w = (wy, wo) € A is called the section of A at wy; similarly for the
section A(wp) at wg € Qo3 by the definition, A(w;) € Q2 and A(ws)
C Q.

b. Every section of a measurable set is measurable.

For let @ be the class of all measurable sets in € whose sections are
measurable. It is easily seen that @ is a o-field. On the other hand,
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if A = Ay X Az 1s a measurable interval, that is, 4y and A, are meas-
urable, then every section of A is either empty or is Ay or A3, so that
Ay X Az € @. Therefore, @ = @; X Qg, being the minimal o-field over
all measurable intervals, is contained in @, and the assertion is proved.

The foregoing definitions and properties extend at once to any finite
number of sets and of measurable spaces. However, in the nonfinite
case, some of these definitions have to be modified in order to preserve
these properties.

Let {4, t € T} be an arbitrary collection of arbitrary sets A4, in

arbitrary spaces Q; of points w;. The product set Ar = ] A.: is the set
ter
of all the new elements wr = (w;, # € T) such that w, € A, for every

t € T. The product set Ar is in the product space Qp = IIT.Q,; we drop
t e

“t € T” if there is no confusion possible. It follows from the foregoing
definition that, for any set B, when the @, are identical

(ﬂ.dt) XB=N(4XB), (UAd)XB=U (A4 X B).

Let Ty = (41, -+, ¢n) be a finite index subset and let A7, be a set in
the product space Qr,. The set A1y X Qr_ry is a cylinder in Qr with

base Ar,. If the base is a product set J] A, the cylinder becomes a
te T
product cylinder or an interval in Qp with sides Ay, t € Ty. Let @, be

fields in @,. It is easily seen that, as in the finite case,

A. Theclass of all finite sums of all the intervals in Qp with sides Ay € €y,
is a field of sets in Qp.

This field is the product field of the fields €,.

Let (Q, @;) be measurable spaces. The minimal o-field over the
product field of the @, is the product o-field Gr = I] @ of measurable
sets in Qp, and the measurable space (Qr, Qr) is the product measurable
space (JI @, I1 @) of the measurable spaces (@, @;). It is easily seen,
as in the finite case, that b remains valid:

B. Sections at wr,, of measurable sets in Qp are measurable sets in Qr_ry.

*1.8 Functions and inverse functions. Perhaps the most important
notion of mathematics is that of function (or transformation, or map-
ping, or correspondence). We have already encountered functions de-
fined on an index set T whose “values” are sets in Q. In general, a
function X on a space Q—the domain of X—to a space Q'—the range
space of X—is defined by assigning to every point w € Q a point " € @’
called the value of X at w and denoted by X(w). Sets and classes of
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sets in Q' will be denoted by A4', B, ---, and @', ®', - - -, respectively.
It will be assumed, once and for all, that functions are single-valued,
that is, to every given w € @ corresponds one, and only one, value
X(w).

The set of values of X for all w € A is called the image X(A) of
A (by X) and the class of images X(A) for all 4 € @ is called the image
X(e) of € (by X); in particular X(Q) is the range (of all values) of X.
Thus, a function X on Q to @ determines a function on S(Q) to S(Q').
While this new function is of no great interest, such is not the case for
the inverse function that we shall introduce now.

By [w; « -] where - -- stands for expressions and/or relations involv-
ing functions on Q, we denote the set of points w € Q for which these
expressions are defined and/or these relations are valid; if there is no
confusion possible we drop “w;”. Thus, [X = '], or inverse image of
w’, is the set of all points w for which X(w) = o’; [X € A'], or inverse
image of A', is the set of all points w for which X(w) € A’; and [4;
X(A) € @'}, or inverse image of €', is the class of inverse images of all
sets 4" € @. We observe that the inverse image of an w’ which does
not belong to the range of X is the empty set §§ in Q.

The inverse function X~ of X is defined by assigning to every A’
its inverse image [X € A’]. In other words, X' is a function on
S(Q) to S(Q) with values X 1(A) = [ X € A; if A = {o'}, then we
write X} (w’) for X 1({w’}) = [X = ). Since X is single-valued, X!
generates a partition of Q into disjoint inverse images of points o’ € Q.
It follows readily that

X4 - B) = XYL - XUB),
X UL =UX4), XA =NXTAY, -
Therefore,

A. BAsic PROPERTY OF INVERSE FUNCTIONS: [nverse functions preserve
all set and class inclusions and operations.

It follows at once that

If @ is closed under a set operation so is X~ '(C'). In particular, the
inverse image of a o-field is a o-field, and the inverse image of the mini-
mal o-field over @' is the minimal o-field over X1 (€').

Moreover,

If @ is a o-field so is the class of all sets whose inverse images belong to Q.
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The notion of function can be “iterated” as follows. Let X be a
function on Q to @ and let X’ be a function on @’ to Q. Then, the
Sunction of function X' X defined by (X' X)(w) = X'(X(w)) is a function
on € to @”. Clearly, its inverse function (X’X)™! is a function on
S(Q") to S(Q) such that, for every set A" < Q"

(X’X) —1 (A") — X—l (Xr—l (d"))
o, in a condensed form,
(XrX)—l = X_IX’_I.

*1.9 Measurable spaces and functions. So far, we did not consider
particular species of functions. There are two species which play a
basic role in abstract analysis. We shall introduce them now. But
first we examine, in more detail, the class of inverse images of points
of the range space.

Let X be a function on @ to @'. The partition of @ formed by the
inverse images X 1(w’) of all points o' € @ is said to be induced (or
determined) by X and X is said to be constant (=w’) on X7 }(w’). Since
the class of values X~ 1(4#") of X~ is the inverse image of the o-field
of all sets A in @', it is a o-field. If the partition induced by X is finite,
or denumerable, or countable, then X is said to be finitely, or denumerably,
or countably valued, respectively; in other words, X is, say, countably
valued if the set of its values is countable. Setting 4; = [X = «’}],
we can write every countably valued function X as a countable combi-
nation of indicators:

X = Z w',-IA,..
j

Conversely, we make the convention that every time such a “sum” is
written, the sets A4; form a partition of the domain of the function X.
If the «’; are distinct, then this partition is the one induced by the func-
tion represented by the “sum.”

Now, let @ be a fixed o-field in Q. @, together with @, is called a
measurable space (Q, @), and the sets of @ are then said to be measurable
(although this terminology derives from the notion of measure, we em-
phasize that, nowadays, the notion of measurability is independent of
that of measure). A countably valued function X = 3 w’;l,;, where
the sets A4; are measurable, is called a countably valued measurable
function—for short, an elementary function; if X is finitely valued, then
this elementary function is also called a simple function. Clearly

the sets of the o-field induced by an elementary function are measurable.
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We are now in a position to introduce the general notion of measurable
functions. However, there are several ways for doing so, and the
classes of measurable functions so defined are, in general, not the same.

One way of defining measurable functions is to extend a basic property
of inverse functions of elementary functions, as follows: Let (Q, @) and
(2, @") be two measurable spaces. The inverse images by elementary
functions on Q to Q' of measurable sets are measurable. Extending this
property, we say that a function X on Q to Q' is measurable if the in-
verse images by X of measurable sets (€ @) are measurable (€ @). If,
moreover, (27, @) is a measurable space and X’ on @’ to Q" is a meas-
urable function, then X’X is measurable, for

X'X) (e = (X' X(@") c X(@) C a.

Thus, with this definition, a measurable function of a measurable function
is measurable.

Another way of defining measurable functions is as follows: Let
(2, @) be a measurable space on which are defined simple (elementary)
functions to a space €' (there are no measurable sets in Q). A notion
of limit is introduced on @', and measurable functions in the sense of this
limit are then defined to be limits of convergent sequences of simple
(elementary) functions. This approach is particularly suited for the
introduction of integrals of measurable functions. Later we shall see
cases in which measurable sets and the notion of limit are selected in
such a manner that the two definitions are equivalent.

*§2. TOPOLOGICAL SPACES

The selections of measurable sets and of concepts of limit in range-
spaces are rooted in the properties of the euclidean line: real line R =
(—o0, +) with euclidean distance | ¥ — y | of points (numbers, reals)
x, y. Species of spaces vary according to the preserved amount of
these properties, an amount which increases as we pass from separated
spaces to metric spaces, then to Banach spaces and to Hilbert spaces.
We examine here the basic properties of these spaces and shall encounter
them in various guises throughout the book. At the same time, the
few notions of topology which follow are a recapitulation of the prop-
erties of the euclidean line and, more generally, of euclidean spaces.
We urge the reader to keep this fact constantly in mind by illustrating
the ‘concepts and their relationships in terms of euclidean spaces; for
this reason, we denote here the points by x, v, z, with or without affixes.
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Points, sets, and classes will be those of the space & under considera-
tion, unless otherwise stated.

We use without comment the axiom of choice: given a nonempty class
of nonempty sets, there exists a function which assigns to every set of
the class a point belonging to this set; in other words, we can always
“‘choose” a point from every one of the sets of the class.

2.1 Topologies and limits. A class O is a fopology or the class of
open sets if it is closed under formation of arbitrary unions and finite
intersections and contains @ and @ (the last property follows from the
closure property by the conventions relative to intersections and unions
of sets of an empty class). The dual class of complements of open
sets is the class of closed sets; hence it is closed under formation of arbi-
trary intersections and finite unions and contains Q and .

A topological space (X, O) is a space X in which is selected a topology
9; from now on, all spaces under consideration will be topological and
we shall frequently drop “0.” A topological subspace thereof (A, 94)
is a set A4 in which is selected its induced topology ©4 which consists of
all the intersections of open sets with A4 and is, clearly, a topology in
A. It is important to distinguish the properties of A4 considered as a
set in (X, ©) from those of A considered as a topological subspace of
(e, 0).

To every set A there are assigned an open set 4° and a closed set 4,
as follows. The interior A° of A is the maximal open set contained in
A, that is, the union of all open sets in A£; in particular, if A4 is open,
then #4° = A. The adherence 4 of. A is the minimal closed set contain-
ing A, that is, the intersection of all closed sets containing A; in par-
ticular, if 4 is closed, then 4 = 4. The definitions of interiors and
adherences of 4 and A4° are clearly dual, so that

(4 = (45, (49 = (D"

In topological spaces relations between sets and points are described
in terms of neighborhoods. Every set containing a nonempty open
set is a neighborhood of any point x of this open set; the symbol 7,
will denote a neighborhood of x. The points of the interior 4° of A
are “interior” to A; in other words, x is interior to A if A isa V,. The
-points of the adherence A4 of A are adherent to ; in other words, ¥ is
adherent to A if no ¥, is disjoint from A, that is, x € (A£°)° = (4)°.

Classical analysis is concerned primarily with continuous -functions
on euclidean lines to euclidean lines. In general, a function X on a
topological domain @ to a topological range space X is continuous at
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w € Q if the inverse images of neighborhoods of ¥ = X(w) are neigh-
borhoods of w; X is continuous (on Q) if it is continuous at every w € Q.
Since taking inverse images preserves all set operations, it follows
readily that we can limit ourselves to open (closed) sets. Thus X is
continuous if, and only if, the inverse images of open (closed) sets are
open (closed) and, hence, a continuous function induces on its domain
a topology contained in (no “finer” than) that of the domain. There-
fore, if in topological spaces the a-fields of measurable sets are selected to
be the minimal a-fields over the topologies, then continuous functions are
measurable. The importance of the concept of continuity is empha-
sized by the fact that two spaces X and X’ are considered to be “topo-
logically equivalent” if, and only if, there exists a one-to-one corre-
spondence X on X to X’ such that X and X! are continuous.

The basic concept which distinguishes classical analysis from classical
algebra and which gave rise to the various concepts examined in this
section is that of limit of sequences of numbers. In a topological space
it becomes: x is /imit of a sequence x, or the sequence x, converges to x
if, for every 7, there exists an integer #n(?) such that x, € 7, for
all » =2 n(V,;). However, the need for a more general concept of limit
is already apparent in the classical theory of integration where the par-
titions of the interval of integration form a “‘direction” and the Riemann
sums form a “directed set” of numbers of which the Riemann integral,
if it exists, is the “limit.”” It so happens that this type of limit is pre-
cisely the one required for general topological spaces, and we now de-
fine the foregoing terms; the role of sequences in some species of spaces
(including the euclidean ones) will be better understood when consid-
ered within the general setup.

Let T be a set of points ¢, with or without indices. T is partially
ordered if a partial ordering is defined on it. A partial ordering “<,”
to be read “precedes,” is a binary relation which is transitive (# < ¢’
and ¢ < ¢ imply ¢ < "), reflexive (¢ < ¢#); and such that, if # < # and
t' < t, then ¢t = #/; upon writing ¢ > ¢ when ¢t < ¢, the relation “>,”
to be read “follows,” is also a partial ordering. T is a direction if it is
partially ordered and if every pair ¢, #' is followed by some #’ (¢ < ¢,
¢ < t"). Tis linearly ordered, and a fortiori is a direction, if every pair
t, t' is ordered (either # < ¢ or ' < ). For example, the sets in a space
are partially ordered by the relation of inclusion and the neighborhoods
of a point x¥ form a direction (this is the root of the definition of limit
as given below); the finite partitions of an interval of integration form
a direction when ordered by the relation of refinement; integers and,
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in general, sets of numbers are linearly ordered by the relation “<,”
etc.

A function X on T to & can be represented by the indexed set {x,} of
its values which may or may not be distinct but which are always dis-
tinguished by their indices . The indexed set {x,} is directed if T is a
direction; sequences {x,} are special directed sets representing func-
tions on the (linearly ordered) set of positive integers. We are now
ready to define the general concept of limit.

The point x is the /imit of a directed set {#;} and we write x = lim x,,
or, equivalently, x; converges to x and we write x, — x, if, for every
V., there exists an index #(¥,) such that x, € 7, for all those indices
which follow #(7;). However, the concept of limit is of use only if,
when the limit exists, it is unique; this requirement leads to the intro-
duction of “separated” or “Hausdorff” space as follows:

A. SEPARATION THEOREM. The following three definitions are equiva-
lent. A topological space is separated if

(S1) every directed set has at most one limit,

(S2) cevery pair of distinct points has disfoint neighborhoods,

(S3) the intersection of all closed neighborhoods of a point reduces to this
point.

The term “separated” expresses property (S,).
- We observe that, according to (S3), in a separated space every set
reduced to a point is closed.

Proof. (Sy) and (S2) are equivalent. Let x % y. If x, — x and
x; — y, then x, € 7V, N V), for all those ¢ which follow both #(¥.) and
t(V,); since T is a direction such ¢ exist so that no pair 7, ¥, is dis-
joint.

Conversely, if no pair 7,, 7, is disjoint, then there exist points
2(Vz Vy) € Ve NV, and, since these pairs form a direction when
ordered by the relation (7, V7)) < (V' V') if VD V'yand ¥V, D V7,
these points form a directed set converging to both x and y.

(Sg) and (S3) are equivalent. If for every y # x there exists a 7,
such that y € V., then the intersection of all ¥, reduces to ¥. Con-
versely, if the intersection of all V, reduces to the set formed by,
then, for every y # x, there exists a ¥, such that y & V., and the open
set (V)¢ is a neighborhood of y disjoint from #,. The proof is termi-
nated.

From now on, all spaces will be separated spaces.
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2.2 Limit points and compact spaces. Analysis of concepts or prop-
erties leads to the introduction of “weaker” ones. A property @ is
weaker than a property @ if @ implies ®; @ is a necessary condition for
@’ and @' is a sufficient condition for @.

Perhaps even more basic than the concept of limit is the weaker one
of limit point. A point x is a /imit point of the directed set {x,} if,
for every pair ¢, ¥V, there exists some t' > ¢t such that x,» € V,. The
definitions of limit and of limit point yield at once (i) and (ii) of the
proposition below, and then (iii) follows.

a. Let the sets A, be formed by all those points xy for which t' follows t:
Ay = {xe, ' > t}'

(1) x: — x if, and only if, for every V, there exists an A, C V.
(11) x is a limit point of {x,} if, and only if, no pair A,, V, is disjoint.
(i) the set of all limit points of {x,} coincides with the intersection of all
Ay, and if x, — x then this set reduces to the single point x.

The reason for the somewhat confusing terminology above is that
every limit point of {x;} is the limit of some subset of {x:}, in the fol-
lowing sense. A direction S of elements s, s’ -+ is a subdirection of
the direction T when there exists a function f on § to T with the prop-
erty that, for every ¢, there is an s such that, if s’ follows s, then ¢ =
f(s") follows ¢. The set {xy¢)} directed by the subdirection § of T is a
subdirected set. Clearly, if x;, — x, then every subdirected set xy) — x.

b. A point x is a limit point of a directed set {x;} if, and only if, the
set contains a subdirected set which converges to x.

Proof. The “if” assertion follows at once from the definitions. As
for the “only if” assertion, it suffices for every pair s’ = (¢, V) to
take f(s') = # > ¢ such that x,y € 7, and direct the pairs by (¢, 7!)
> (ta, V:2) when t; > t5 and P, c V2.

Compact spaces are separated spaces in which every directed set has
at least one limit point; a set is compact if it is compact in its induced
topology. Compactness plays a prominent role in analysis and it is
important to have equivalent characterizations of compact spaces. We
shall use repeatedly the following terminology: a subclass of open sets
is an open covering of a set if every point of the set belongs to at least
one of the sets of the subclass.
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A. CoMPACTNESs THEOREM. The following three properties of separated
spaces are equivalent:

(C1) BoLzaNo-WEIERSTRASS PROPERTY: every directed set has at least
one limit point.

(C;) HEINE-BOREL PROPERTY: every open covering of the space contains
a finite covering of the space.

(C3) INTERSECTION PROPERTY: every class of closed sets such that all its
finite subclasses have nonempty intersections has itself a nonempty
intersection.

If some class has the property described in (C3), we say that it has the
Jfinite intersection property.

Proof. The intersection property means by contradiction that every
class of closed sets whose intersection is empty contains a finite sub-
class whose intersection is empty. Thus, it is the dual of the Heine-
Borel property, and it suffices to show that it is equivalent to the Bol-
zano-Weierstrass one. |

Let {x;} be a directed set and, for every ¢ € T, consider the adher-
ence of the set of all the », with ¢ following #y. Since T is a direction,
these adherences form a class of closed sets with finite intersection
property. Thus, if the intersection property is true, then there exists
an x common to all these adherences and it follows that x is a limit
point of {x.}.

Conversely, consider a class of closed sets with the finite intersection
property and adjoin all finite intersections to the class. The class so
obtained is directed by inclusion so that, by selecting a point from every
set of this class, we obtain a directed set. If the Bolzano-Weierstrass
property is true, then this set has a limit point and this point belongs
to every set of the class; hence the intersection of the class is not empty.
This completes the proof.

COMPACTNESS PROPERTIES. 1° In a compact space, a directed set
x, — x if, and only if, x is its unique limit point.

Proof. We use a and its notations. The “only if” assertion holds
by a(iii). As for the “if” assertion, if ¥, + x then, by a(i), there ex-
ists a 7, such that no A4, is disjoint from 7,°; thus, for every ¢ we can
select a # > ¢ such that x, € A4, N V,°. Since the space is compact,
the subdirected set {x,}, hence, by b, the directed set {x}, has a limit
point ¥’ € V,°. Therefore, x # x’ and % cannot be the unique limit
point of {x,}.
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2° Every compact set is closed, and in a compact space the converse is
true.

Proof. Let A be compact and let 7, 7V,(x) be a disjoint pair of
open neighborhoods of ¥ € A4 and y € 4°. By the Heine-Borel prop-
erty, the open covering {#,} of 4 where x ranges over A contains a
finite subcovering {#,,}, and the disjoint open sets V" = ij V,, V'=

Zky

N 7,(xx) are such that 4 € 7 and y € 7. Thus, the open neigh-
k

borhood #” of y contains no points of A; hence y & 4. Since y € A°
is arbitrary, it follows that 4° and A are disjoint, and the first asser-
tion is proved. The second assertion follows readily from the inter-
section property.

3° The intersection of a nonincreasing sequence of nonempty compact
sets 15 not empty.

Apply the intersection property.

4° The range of a continuous function on a compact domain is com-
pact.

Proof. Because of continuity of the function, the inverse image of
every open covering of the range is an open covering of the compact
domain; hence it contains a finite open subcovering which is the inverse
image of a finite open subcovering of the range. Thus, the range has
the Heine-Borel property, and the assertion is proved.

The euclidean line R = (—, +) is not compact but, according to
the Bolzano-Weierstrass or Heine-Borel theorems, every closed inter-
val [a, 4] is compact. These theorems become valid for the whole line
if it is “extended”—that is, if points —e and -+ are added. Thus,
the extended euclidean line R = [—c, 4] is compact. In fact, R is
locally compact and every locally compact space can be compactified
by adding one point only, as below.

A separated space is Jlocally compact if every point has a compact
neighborhood; it is easily shown that every neighborhood then contains
a compact one. The one-point compactification of a separated space
(5, 0) is as follows. Adjoin to the points of & an arbitrary point « & X
and adjoin to the open sets all sets obtained by adjoining to the point
o those open sets whose complements are compact. Denote the topo-
logical space so obtained by (Xu, Ou)-
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5° The one-point compactification of a locally compact but not com-
pact space is a compact space, and the induced topology of the original
space is its original topology.

Proof. The last assertion follows at once from the definition of O,
As for the first assertion, observe that the new space is separated, since
two distinct points belonging to the separated original space are sepa-
rated and the point « is separated from any x € & by taking a com-
pact and hence closed 7, C &, so that @ & 7,°. Also, the new space
has the Heine-Borel property, since an open covering of it has a member
O + {=} with O° compact and hence contains a finite subcovering of O°
which, together with O + {w}, is a finite subcovering of the new space.

2.3 Countability and metric spaces. The euclidean line possesses
many countability properties, among them separability (the countable
set of rationals is dense in it) and a countable base (the countable class
of all intervals with rational extremities); this permits us to define limits
in terms of sequences only. In general topological spaces, a set A is
dense in B if 4 D Bj; in other words, taking for simplicity B = X, A is
dense in X if no neighborhood is disjoint from A4; and B is separable if
there exists a countable set 4 dense in B. A countable base at x is a
countable class {7,;(7)} of neighborhoods of x such that every neigh-
borhood of x contains a /(s); and the space has a countable base {V(5)}
if, for every point x, a subclass of 7(5)’s is a base at x.

a. A space has a countable base only if it is separable and has a countable
base at every point. Then every open covering of the space contains a
countable covering of the space.

Note that if a countable set {x;} is dense in a metric space, then at
every x; there is a countable base of spheres of rational radii, and the
countable union of all these countable bases is a base for the space.

Proof. 1f the space has a countable base {¥(j)}, then it has a count-
able base at every point. Moreover, if A is a set formed by selecting a
point x; from every 7(j), then, since any neighborhood of any point
contains a »(j), it contains the corresponding point x;, so that no
neighborhood is disjoint from A.

Finally, given an open covering of the space, every one of its sets
contains a #(j) so that, for every 7(), we can select one set O; of the
covering containing it. The countable class {O;} is an open covering
of the space, and the proof is terminated.

A basic type of space with a countable base at every point is that of
metric spaces. In fact, topologies in euclidean spaces are determined




[SEc. 2} SETS, SPACES, AND MEASURES 73

by means of distances; this approach characterizes metric spaces. A
metric space is a space with a distance (or metric) d on € X & to R such
that, whatever be the points «, y, z, this function has

the triangle property: d(x, y) + d(x, z) = d(y, z),
the identification property: d(x,y) = 0 & x = y.

Upon replacing z by » and interchanging x and y, it follows that
d(x) _)’) = d(y) x)) d(x) _)’) = 0.

It happens frequently, and we shall encounter repeatedly such cases,
that, for some space, a function 4 with the two foregoing properties
can be defined—except for the property d(x,y) = 0 = x = y. Then the
usual procedure is to identify all points x, y such that d(x, y) = 0; the
space is replaced by the space of “classes of equivalence’ so obtained,
and this new space is metrized by 4.

The topology of a metric space (X, 4) is defined as follows: Let the
sphere V,(r) with “center” x and “radius” r(>0) be the set of all points y
such that d(x, y) < r. A set A4 is open if, for every x € A, there exists
a sphere 7,(r) C 4; it follows, by the triangle property, that every
sphere is open. Clearly, the class of open sets so defined is a topology.
Since, by the identification property, d(x, y) > O when x # y and the
spheres 7,(r) and V,(s) are disjoint for 0 < r, s < 3d(x, y), it follows
that with the metric topology so defined, the space is separated; we ob-
serve that ¥, — x means that d(x,, ¥) — O.

A basic property of the metric topology is that at every point x there

1
is a countable base, say, the sequence of spheres 7, (;) =12 -

and it is to be expected that properties of metric spaces can be charac-
terized in countable terms. To begin with:

1. Sequences can converge to at most one point.

2. A point x € A if, and only if, A contains a sequence x, — %, S0
that a set is closed if, and only if, limits of all convergent sequences of its
points belong to it.

3. Every closed (open) set is a countable intersection (union) of open
(closed) sets.

4. A metric space has a countable base if, and only if, it is separable.

5. If X is a function on a metric domain (Q, p) to a metric space (X, d),
then X(o') — X(w) as o — w if, and only if, X(w,) — X(w) whatever
be the sequence w, — w.
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Proof. The first assertion follows from the separation theorem.
The “if”” part of the second assertion is immediate, and for the “only

. . 1
if” part it suffices to take x, € 4 N 7, (;) .

. . 1
For the third assertion, form the open sets O, = {J 7, (—) ; those
z€C A n

sets contain A, so that 4/ € [} O,. On the other hand, for every
x € () O, there exist points x, € O, such that x € 7, (-’1;) , and

hence ¥, — x; since A is closed, it follows by the second assertion that
x € A, and hence 4 D [} On. Thus, closed 4 = [} O, and the dual
assertion for open sets follows by complementations.

The fourth assertion follows from a.

Finally, if X(0’) —» X(w) as o’ — w, then, clearly, X(w,) —» X(w)
as wp, — w. Since X(0') + X(w) as @’ — w implies that there exist

points w, € 7, (’—12) such that X(w,) ¥ X(w). while w, — w, the last

assertion follows.

Metric completeness and compactness. The basic criterion for con-
vergence of numerical sequences is the (Cauchy) mutual convergence
criterion: a sequence X, is mutually convergent, that is, d(xp, ¥,) — O
as m, n — « if, and only if, the sequence x, converges. In a metric
space, if x, — x, then, by the triangle inequality, d(xm, ¥») = d(x, *¥m)
+ d(x, x,) — 0 as m, n — oo, but the converse is not necessarily true
(take the space of all rationals with euclidean distance); if it is true,
that is, if d(¥n, ¥») — O implies that x, — some x, then the mutual
convergence criterion is valid, and we say that the space is complete.
Complete metric spaces have many important properties, which follow.

Call A(A) = supAd(x, y) the diameter of A; A is bounded if A(A) is

. Y €
finite.

A. CANTOR’s THEOREM. 17 a complete metric space, every nonincreas-
ing sequence of closed nonempty sets A, such that the sequence of their
diameters A(A,) converges to O has a nonempty intersection consisting of
one point only.

Proof. Take x, € A, and m 2 n. Since d(xm, %n) S A(A,) — O,
it follows that ¥, — some x. Since %, € A C A, for all m = n and
the set A4, is closed, x belongs to every A,; hence ¥ € ()} 4n. If now
d(x, ') > 0, then, from some k on, d(x, ¥') > A(Ax) so that ¥’ € A
D N 4n. The assertion is proved.
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A set A is nowhere dense if the complement of A is dense in the space,
or, equivalently, if 4 contains no spheres, that is, if the interior of 4
is empty. A set is of the first category if it is a countable union of no-
where dense sets, and it is of the second category if it is not of the first
category.

B. BAIRE’s CATEGORY THEOREM. Every complete metric space is of the
second category.

Proof. Let A = \J A, where the A4, are nowhere dense sets. There
exist a point x; € A, and a positive #; < 1 such that the adherence of
V,(r1) is disjoint from A,. Proceeding by recurrence, we form a de-

creasing sequence of spheres 7, (r,) such that 7, (r,) is disjoint from

1 X
A, and r, < — — 0. Therefore, by Cantor’s theorem, there exists a
n

point ¥ € () ¥, (rn) and, because of the foregoing disjunction, ¥ & {J A,.
Thus 4 # &, and the theorem follows.

We investigate now compact metric spaces and require the two fol-
lowing propositions.

b. If every mutually convergent sequence contains a convergent subse-
quence, then the space is complete.

This follows from the fact that if a sequence ¥, is mutually convergent
and contains a convergent subsequence x,» — x, then, by the triangle
inequality, d(x,, x) < d(xns, %) + d(xp, ¥) > 0 as n, n’ — =, so
that x, — x. '

A set is totally bounded if, for every ¢ > 0, it can be covered by a
finite number of spheres of radii < e. Clearly, a totally bounded set
is bounded, and a subset of a totally bounded set is totally bounded.

c. A metric space is totally bounded if, and only if, every sequence of
points contatns a mutually convergent subsequence. A totally bounded
metric space has a countable base.

Proof. Let the space be not totally bounded; there exists an ¢ > 0
such that the space cannot be covered by finitely many spheres of radii
< e. We can select by recurrence a sequence of points x, whose mu-
tual distances are = ¢; for, if there is only a finite number of points
X1, **-, ¥n with this property, then the spheres of radius e centered
at these points cover the space. Clearly, this sequence cannot contain
a mutually convergent subsequence.
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Conversely, let the space be totally bounded, so that every set is
totally bounded. Then any sequence of points belonging to a set con-
tains a subsequence contained in a sphere of radius < e—member of a
finite covering of the set by spheres of radii < e. Thus, given a se-
quence {x,}, setting ¢ = %, 4, --., and proceeding by recurrence, we
obtain subsequences such that each is contained in the preceding one
and the kth one is formed by points ¥, x9x, - - - belonging to a sphere

. 1 . .
of radius = e The ‘‘diagonal’” subsequence {x,.} is such that, from
. 1 .
the kth term on, the mutual distances are < 2 hence this subsequence
is mutually convergent.
The last assertion follows from the fact that given a totally bounded

space, the class formed by all finite coverings by spheres of radii < 1 ,
, n

n =12, ---is a countable base.

C. METRIC COMPACTNESS THEOREM. The three following properties of
a metric space are equivalent: ’

(MC,) every sequence of points contains a convergent subsequence;

(MCs;) every open covering of the space contains a finite covering of the
space (Heine-Borel property);

(MGC3) the space is totally bounded and complete.

Proof. It suffices to show that (MC;) = (MC;) = (MC;) =
(MGCy).

(MC;) = (MC,). Apply the compactness theorem.

(MC,;) = (MCj3). Letevery sequence of points contain a convergent
(hence mutually convergent) subsequence. Then, by b, the space is
complete and by ¢, it is also totally bounded.

(MCj3) = (MC,). According to a, an open covering of a totally
bounded space contains a countable covering {O;} of the space. If no
finite union of the O; covers the space, then, for every », there exists a

point x, & {J 0;, and, according to ¢, the sequence of these points con-
i=1

tains a mutually convergent subsequence. Therefore, when the totally

bounded space is also complete, this sequence has a limit point ¥ which

necessarily belongs to some set O;, of the open countable covering of

the space. Since x is a limit point of the sequence {¥,}, there exists
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n
some 7 > j, such that x, € 0;, € |J O;, and we reach a contradiction.
i=1

Thus, there exists a finite subcovering of the space.
CoroLLARY 1. A compact metric space is bounded and separable.

CoroLLARY 2. A continuous function X on a compact metric space
(Q, p) to a metric space (X, d) is uniformly continuous.

By definition, X is uniformly continuous if for every ¢ > O there exists
a 8 = 8(¢) > 0, which depends only upon ¢, such that 4(X(w), X(")) < e
for p(w, w’) < 8.

Proof. Let ¢ > 0. Since X is continuous, for every w € Q there ex-
ists a &, such that d(X(w), X(v’)) < ¢/2 for p(w, w’) < 28,. Since the
domain is compact, it is covered by a finite number of spheres 7,,(5.,),
k=12, ---, n; let 5§ be the smallest of their radii. Any w belongs to
one of these spheres, say, 7,,(3.,), and if p(w, @’) < §, then p(wi, ') <
25,,. It follows, by the triangle inequality, that

d(X(w), X)) S d(X(wp), X)) + d(X(wi), X)) < ;j_ + ;_ =

whenever p(w, «’) < §, and the corollary is proved.

Let us indicate how a noncomplete metric space (X, 4) can be com-
pleted, that is, can be put in a one-to-one isometric correspondence with
a set in a complete metric space—in fact, with a set dense in the latter
space. The elementary computations will be left to the reader.

Consider all mutually convergent sequences s = (x1, X2, ***), §' =
(%'y, ¥'2, +++), --+. The function p defined by o(s, s’) = lim d(x,, x'5)
exists and is finite and satisfies the triangular inequality. Let s, s’ be
equivalent if p(s, ') = O0; this notion is symmetric, transitive, and re-
flexive. It follows that the space (S, p) of all such equivalence classes
is a metric space, and it is easily seen that it is complete. The one-to-
one correspondence between X and the set §” of classes of equivalence
of all “constant sequences,” defined by x < (x, » ---), preserves the
distances. Moreover, §’ is dense in §. Thus § may be considered as
a “minimal completion” of .

Distance of sets. In what follows the sets under consideration are non-
empty subsets of a metric space (X, d). The distance of two sets A and B
is defined by

d(A4,B) = inf{d(x, y):x € 4, y € B}
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and
d(x, B) = d({x}, B) = inf{d(x, y): y € B}

is called the distance of x to B. Clearly there are sequences of points
x, € A and y, € B such that d(x,, y.) — d(4, B) and in particular
d(x, y») — d(x, B).

d. d(x, A) is uniformly continuous in x and, in fact,
Id(x) /{) - d(j: /{) l < d(x).y)'

For, upon taking infima in z in the triangle inequality d(x, 2) < d(x, y) +
d(y, z), we obtain d(x, A) < d(x,y) + d(y, A) and interchanging x and y
the asserted inequality follows.

D. () 4 = {x:d(x, A) = 0}.
(1) If disjoint sets A and B are closed then there are disjoint open sets
UD Adand VD B (X is “normal”) and there is a continuous function g
with0<gs1l,g=00nd,g=10nB (“Urysohn lemma’).
(1) If a compact A and a closed B are disjoint then d(A, B) > 0. If
moreover B is also compact then d(A, B) = d(x,y) for some x € A and
y € B.

Proof. We use continuity in x of d(x, 4) without further comment.
The set 4’ = {x:d(x, A) = 0} contains A and is closed as inverse image
of the closed singleton {0} under a continuous mapping. Let a sequence
of points x, of A be such that d(x, x,) — d(x, 4). Then d(x, x,) — O for
every x € A'sothatx € A4 hence A’ is contained in 4. Thus (i) is proved.

In (ii), the “normality” assertion follows by (i) and continuity in x of
d(x, A) — d(x, B) upon taking U = {x: d(x, 4) — d(x, B) < 0} D A4
and V = {x:d(x, A) — d(x, B) > 0} D B. ‘“Urysohn lemma”’ obtains

. d(x, A)
with ¢%) = oo ) + 4z, B)

For (iii), let sequences of points x, of 4 and y. of B be such that
d(%ny o) — d(A, B). Since A is compact the sequence (x,) contains a
subsequence ¥, — x € A hence d(x, y.) — d(4, B). If d(4, B) =0
then y,» — x so that, B being closed, ¥ € B and A and B are not disjoint.
Since they are disjoint, d(A4, B) > 0. If, moreover, also B is compact
then the sequence of points y,.» of B contains a subsequence y,»—y € B
hence d(x, y) = d(A4, B). The proof is terminated.

2.4 Linearity and normed spaces. Euclidean spaces are not only
metric and complete but are also normed and linear as defined below.
Unless specified, the “scalars” a, &, ¢, with or without subscripts, are
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either arbitrary real numbers or arbitrary complex numbers, and x, y, z,
with or without subscripts, are arbitrary points in a space X.

A space X is /inear if a “linear operation” consisting of operations of
“addition” and “multiplication by scalars” is defined on X to X with
the properties:

(1) xty=y+x% x+0+2=E+y +z
X+z=y4+2z2=x =y,
(ii) l.x =%, alx+y) =ax+ay, (a+x=ax+ bx,
a(bx) = (ab)x.

By setting —y = —1-y, “subtraction” isdefined by x — y = x + (—y).
Elementary computations show that (i) and (ii) imply uniqueness of
the “zero point” or “null point” or “origin” 6, defined by § = 0-x, and
with the property ¥ + 8 = x. A set in a linear space generates a /inear
subspace—the linear closure of the set—by adding to its points x, y,
.- - ¢ all points of the form ax + by + -« /.

A metric linear space is a linear space with a metric 4 which is in-
variant under translations and makes the linear operations continuous:

(111) d(x, y) = d(x —50), X, — 0 = ax, — 0,
a, > 0 = a,x — 0.
If
(IV) d(x, y) = d(x — ¥ 0, d(ax, §) = l a ld(x: 8),

then (iii) holds, d(x, ) is called norm of x and is denoted by H x ||, and
the metric linear space is then a “normed linear space.”

Equivalently, a normed linear space is a linear space on which is de-
fined a norm with values || # || = 0 such that

(v) e+l =l +1lxll, ll«ll=0ex=8
| axlf =|al|| |, .
and the metric 4 is determined by the norm by setting

dx,y) = || x — x|l

A Banach space is a normed linear space complete in the metric de-
termined by the norm. For example, the space of all bounded continu-
ous functions f on a topological space & to the euclidean line is a Banach
space with a norm defined by || f|| = sup|/f(x)|. Real spaces with

z
points x = (%1, -+, #x) and norms || x|| = (| % |"+- -+ | *#w [N,
r = 1, are Banach spaces, and we shall encounter similar but more gen-
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eral spaces L,. If r =2, then these (euclidean) spaces are Hilbert
spaces.

A Hilbert space is a Banach space whose norm has the parallelogram
property: ||x +y |2+ || x = »||> = 2|| #||* + 2|| » ||>; such a norm
determines a scalar product. It is simpler to determine the Hilbert
norm by means of a scalar product (corresponding to the scalar prod-

N
uct defined by (x, ) = 3 xyx in a euclidean space R¥) as follows:
k=1

A scalar product is a function on the product of a linear space by it-
self to its space of scalars, with values (x, y) such that

(Vl) (ax + by, 2) = a(x, z) + 60y, 2), (% y) = (3, %),
x# 0= (x,x) >0.

Clearly (x, x) i1s real and nonnegative. The function with values
Il || = (x, x)* = 0 is the Hilbert norm determined by the scalar prod-
uct. For, obviously, it has the two last properties (v) of a norm. And
it also has the first property (v). This follows by using in the expansion
of (x + y, x 4+ y) the Schwarz inequality

[l = =1yl

when (%, y) = O this inequality is trivially true, and when (x, y) # 0
it is obtained by expanding (x — ay, x — ay) = 0 and setting @ =
(%, x)/(y, x). Finally, the parallelogram property is immediate.

Linear functionals. 'The basic concept in the investigation of Banach
spaces is the analogue of f(x) = cx—the simplest of nontrivial functions
of classical analysis. A functional f on a normed linear space has for
range space the space of the scalars (the scalars and the points below
are arbitrary, unless specified). fis

linear if f(ax + by) = af(x) + &f(y);

continuous if f(x,) — f(x) as x, — x; if this property holds only
for a particular x, then f is continuous at this x;

normed or bounded if | f(x) | < ¢|| x || where ¢ < = is independent of

x; the norm of f is then the finite number Hf” = sup|f(x) |

cwo | %1

For example, a scalar product («, y) is a linear continuous and normed
functional in x for every fixed y. Clearly, if f is linear, then f(8) = 0,
and a linear functional continuous at 8 is continuous.
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a. Let f be a linear functional on a normed linear space. If f is normed,
then it is continuous; and conversely.

Proof. 1f f is normed, then it is continuous, since
|f(x,.) —f(x)l = |f(x,.—x)| gcllxn—xll — 0 as lenfxll — 0.

If f is not normed, then it is not continuous, since whatever be » there
exists a point x, such that |f(x,.)| > n“ Xn H, and, setting y, = ¥,/

#|| % ||, we have | f(yn) | > 1 while || 3. || = i — 0.

b. The space of all normed linear functionals f on a normed linear space
is a Banach space with norm || f ||

Progf. Clearly the space is normed and linear and it remains to
prove that it is complete.

Let || fm —fall = 0 as m, n — . For every ¢ > 0 there exists
an n, such that || f — fa || < € for m, n = n.; hence | fu(x) — fu(®) | <
e|| x || whatever be x. Since the space of scalars is complete, it follows
that there exists a function f of x such that fa(x) — f(x) and, clearly,
fislinear and normed. By letting — o, we have, for n = n,, | f(x) —
fu®)| = ¢l x || whatever be x, that is, || fa — f|| < e Hence fn — f
and the proposition is proved.

What precedes applies word for word to more general functions (map-
pings, transformations) on a normed linear space to a normed linear
space with the same scalars, and the foregoing proposition remains valid,
provided the range space is complete; it suffices to replace every | f(x) |

by || f(x) |-

The Banach space of normed linear functionals on a Banach space is
said to be its adjoint; a Hilbert space is adjoint to itself. However,
a priori, the adjoint space may consist only of the trivial null functional
f with || f|]] = 0. That it is not so will follow (see Corollary 1) from
the basic Hahn-Banach

A. EXTENSION THEOREM. Iff is a normed linear functional on a linear
subspace A of a normed linear space, then f can be extended to a normed
linear functional on the whole space without changing its norm.

Proof. 1° We begin by showing that we can extend the domain of
£ point by point. Let xo & A and let || f|| = 1—this does not restrict
the generality. First assume that the scalars, hence f, are real.

The linearity condition determines f(x + axo), ¥ € A, by setting it
equal to f(x) + af(xo), so that it suffices to show that there exists a
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number f(xo) such that | f(x) + af(xo) | < || ¥ + ax, || for every x € 4
and every number 4. Since A is a linear subspace, we can replace x
by ax and, by letting x vary, the condition becomes

sup (=% + x0|| = f)} = fv) < inf ]l % + %0 || - £G4}

Therefore, acceptable values of f(x) exist if the above supremum
is no greater than the above infimum, that is, if whatever be %/, x"" € 4

== x| =f) || " + %0 || — £")

S —f&) s |27 + %ol + 1| # 4 %o |
Since by linearity of f and the triangle inequality
J&) =S =S =) s |2 =S S [ x|+ 2+ ol

acceptable values of f(x) exist.

We can pass from real scalars to complex scalars, as follows: From
f(ix) = if(x) it follows that f(x) = g(x) — ig(ix), x € 4, where g = Rf
is a real-valued linear functional with || g|| < 1; g extends first for all
points ¥ + axq then for all points (x + axo) + 4-ixg = x + (a + ib)xo,
a, b real, and f extends by the foregoing relation. Now observe that f
is linear on the so extended domain and that, for any given point x,
upon setting f(x) = re*®, r 2 0, « real, we obtain |f(o) | = gle™x) =

x|l

2° We can extend the domain of f point by point. The family of
all possible extensions of f to linear functionals without change of norm
is partially ordered by inclusion of their domains. Any linearly ordered
subfamily of extensions has a supremum in the family—the extension
on the union of the domains. According to a consequence of the axiom
of choice (Zorn’s theorem), it follows that the whole family has a su-
premum which is a member of the family. It must have for domain
the whole space, for otherwise, by 1°, it could be extended further.
The theorem is proved.

or

CoroLLarRY 1. Let xy be a nonzero point of a normed linear space,
and let A be a closed linear subspace. There exist linear functionals f,
f' on the space such that

”fH =1 and f(x) = ” xo”,
ff=00nAd and f(x) = d(xo, A) = ingd(xo, x).

Set f(axg) = al] X0 ll,f’(axo + x) = ad(xg, A), x € A, and extend.
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CoroLLARY 2. A functional f on a set A in a normed linear space ex-
tends to a normed linear functional on the whole space with norm bounded
by ¢(< ) tf, and only if,

| Zakf(xk) | = ¢ Zakxk |

whatever be the finite number of arbitrary points xy € A and of arbitrary
scalars ay,.

Proof. The “only if” assertion is immediate. As for the “if” asser-
tion, assume that the inequality is true, and observe that the linear
closure of A consists of all points of the form x = X a3x;. Linearity

%

of f on this closure implies that we must set f(x) = Z a, f(x). Then,

on the closure, | f(x)| < cH x ||, and f is uniquely determmed since,
forx = X awxy, = > a'yx’y, we have
k ¥

!Zakf(xk) _Zakf(xk')| fl!Zakxk—Zak'xk'H —0

The assertion follows by the extension theorem.

This corollary permits us to solve various moment problems as well
as to find conditions for existence of solutions of systems of linear equa-
tions with an infinity of unknowns.

§ 3. ADDITIVE SET FUNCTIONS

3.1 Additivity and continuity. A set function ¢ i1s defined on a non-
empty class € of sets in a space @ by assigning to every set 4/ € € a
single number ¢(A4), finite or infinite, the value of ¢ at A. If all values
of ¢ are finite, ¢ is said to be finite, and we write | <p| < . If every
set in @ is a countable union of sets in @ at which ¢ is finite, ¢ is said to
be o-finite. To avoid trivialities, we assume that every set function
has at least one finite value. Unless otherwise stated, ¢ denotes a set
Sfunction and all sets considered are sets of the class on which this function
is defined, so that the properties below are valid as long as ¢ is defined for
the sets which appear there.

¢ is said to be additive if

o( 4j) = 2 o(4))

either for every countable or only for every finite class of disjoint
sets. In the first case ¢ is said to be countably additive or o-additive,




84 SETS, SPACES, AND MEASURES [Skc. 3]

and in the second case ¢ is said to be finitely additive. In order that
sums 2 ¢(A4;) be always meaningful we have to exclude the possibility
of expressions of the form 4@ — «. In fact, if the sums always exist,
¢ is defined on a field, and ¢(4) = + and ¢(B) = —w, then ¢(Q) =
o(A) + o(A°) = + and ¢(Q) = ¢(B) + ¢(B°) = — o, while the func-
tion ¢ is single-valued. Thus, by definition,

an additive set function has the additivity property above, and one of the
values 4o or — is not allowed.

To fix ideas we assume that the value — is excluded, unless otherwise
stated.

A nonnegative additive set function is called a content or a measure
according as it is finitely additive or o-additive. Let ¢ be additive.
If 4 D B, then, by additivity,

o(A4) = ¢(B) + o(4 — B).
It follows, upon taking 4 = B + @ = B with ¢(B) finite, that ¢(8) = 0.

A convergent series of terms, which are not necessarily of constant
sign, may depend upon the order of the terms. This possibility is ex-
cluded in our case by '

a. If ¢ is o-additive and | (3 4n) | < », then the series 3 o(Ay) is
absolutely convergent.

Proof. Set A, = A, or § according as ¢(A,) = 0 or o(A4,) <O,
and set 4,~ = A, or 0 according as ¢(An) < 0 or ¢(A4,) > 0. Then

o(X Axt) = X o(4nh), (X A7) = X o(An7),

and the terms of each series are of constant sign. Since the value —
is excluded, the last series converges. Since the sum of both series
converges, so does the first series. The assertion follows.

b. If o(A) is finite and A D B, then ¢(B) is finite; in particular, if
o(Q) is finite, then ¢ is finite. If ¢ 2 0, then ¢ is nondecreasing: o(A4) 2
¢(B) for 4 D B, and subadditive: o(\J A;) £ 3 o(A4;).

Only the very last assertion needs verification and follows from
o(U 4;) = o(dy + A1°Ay + A:\°A° 43 +-- )
= o(d1) + o(4,°42) + o(41°d2°A3) +- -
S o(4) + o(A42) + o(A43) +-- -
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We intend to show that the difference between finite additivity and

s-additivity lies in continuity properties. ¢ is said to be comtinuous
from below or from above according as

e(lim 4,) = lim ¢o(A4,)

for every sequence 4, T, or for every sequence A, | such that ¢(A4,) is
finite for some value 79 of # (hence, by b, for all #» = n,). If ¢ is con-
tinuous from above and from below, it is said to be continuous. Con-
tinuity might hold at a fixed set 4 only, that is, for all monotone se-
quences which converge to 4; continuity at @ reduces to continuity

from above at @.

A. CONTINUITY THEOREM FOR ADDITIVE SET FUNCTIONS. A g-additive
set function is finitely additive and continuous. Conversely, if a set Sfunc-
tion is finitely additive and, either continuous from below, or finite and
continuous at B, then the set function is o-additive.

Proof. Let ¢ be g-additive and, a fortiori, additive. ¢ is continuous
from below, for, if 4, T, then

imdn = U dn =41+ (dy — A1) + (43 — 42) +- -
so that
o(lim An) = lim {p(41) + (42 — A1) +- -+ o(An — An_y))
= lim ¢(A,).

¢ is continuous from above, for, if 4, | and ¢(A,,) is finite, then
An, — Aa T for n Z ng, the foregéing result for continuity from below
applies and, hence,

‘P(/{no) - ‘P(llm /{n) = ‘P(llm (/{no - /{n)) = lim ‘P(/{no - /{n)
= @(An) — lim o(An)

or

e(lim A4,) = lim o(A,).

Conversely, let ¢ be finitely additive. If ¢ is continuous from below,
then

(X 4n) = o(lim 22 A,) = lim o( 2 4x) = lim T o(Ar) = 2 o(4n),
k=1

k=1 k=1

so that ¢ is g-additive. If ¢ is finite and continuous at ¢}, then o-addi-
tivity follows from
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e dn) =o(X )+ o( X A) =3 o) +o( S A

k=1 k=n-41 k=1 k=n41
and

o( 2 4r) > @) =0.

k=n+41

The proof is complete.

The continuity properties of a g-additive set function ¢ acquire their
full significance when ¢ is defined on a o-field. Then, not only is ¢ de-
fined for all countable sums and monotone limits of sets of the o-field

but, moreover, ¢ attains its extrema at some sets of this o-field. More
precisely

C. If ¢ on a o-field @ is o-additive, then there exist sets C and D of @
such that o(C) = sup ¢ and ¢(D) = inf ¢.

Proof. We prove the existence of C; the proof of the existence of D
is similar. If o(A4) = +o for some 4 € @, then we can set C = A4
and the theorem is trivially true. Thus, let ¢ < o, so that, since the
value — is excluded, ¢ is finite.

There exists a sequence {4,} C @ such that ¢(A4,) — sup . Let
A = U 4. and, for every n, consider the partition of 4 into 2" sets

Anm of the form () A’y where A’y = Ay or A — Ay; for n < n', every
k=1

Anm 1s a finite sum of sets Ap'm/. Let B, be the sum of all those A,
for which ¢ is nonnegative; if there are none, set B, = 0. Since, on the
one hand, A4, is the sum of some of the 4, and, on the other hand, for
n' > n, every Ap. is either in B, or disjoint from B,, we have

‘P(/{n) = ‘P(Bn) = ‘P(Bn U Bn+l u...u Bn’)~
Letting n' — oo, it follows, by continuity from below, that

o(An) = o(Bn) = o( U Bw).

k=n

Letting now # — « and setting C = lim {J B;, it follows, by con-
km=n

tinuity from above (¢ is finite), that sup ¢ < ¢(C). But ¢(C) < sup ¢
and, thus, ¢(C) = sup ¢. The proof is complete.

CoroLLarY. If ¢ on a o-field @ is c-additive (and the value —o is
excluded), then ¢ is bounded below.




[SEc. 3] SETS, SPACES, AND MEASURES 87

3.2 Decomposition of additive set functions. We shall find later that
the “natural” domains of s-additive set functions are os-fields. We in-
tend to show that on such domains ¢-additive set functions coincide
with signed measures, that is, differences of two measures of which one
at least is finite. Clearly, a signed measure is o-additive so that we
need only to prove the converse.

Let ¢ be an additive function on a field @ and define ¢ and ¢~ on
€ by

‘P+(A) = sup ‘P(B)) ¢ (A) = — il’lf(p(B), 4, B € e.
BcA BcA

The set functions ¢™, ¢~ and @ = ¢ + ¢~ are called the upper, lower,
and total variation of ¢ on @, respectively. Since (@) = 0, these varia-
tions are nonnegative.

A. JorpAN-HAHN DECOMPOSITION THEOREM. If ¢ on a o-field @ is
c-additive, then there exists a set D such that, for every A € @,
—¢ (A) = o(AD), ¢T(A) = o(AD").
<p+ and ¢~ are measures and ¢ = ¢+ — ¢ is a signed measure.

Proof. According to 3.1c, there exists a set D € @ such that ¢(D)
= inf ¢; since the value — is excluded, we have

—o < (D) = infe < 0.

For every set 4 € @, ¢(AD) =0 and o(AD°) = 0, since ¢ = (D)
while, if ¢(A4D) > 0, then

¢(D — 4D) = ¢(D) — ¢(4D) < ¢(D),
and if ¢(4D°) < O, then
o(D + 4D°) = ¢(D) + ¢(AD°) < (D).
It follows that, for every B C 4, (4, B € @),
o(B) = ¢(BD") = ¢(BD") + ¢((4 — B)D) = o(AD"),

and, hence, ¢™(A4) < o(AD°). Since AD° is one of the B’s, the reverse
inequality is also true. Therefore, for every 4 € @, ¢(A) = o(AD°)
and, similarly, —¢~(A4) = ¢(AD), so that

o(A4) = o(AD°) + o(AD) = o™ (A) — ¢~ (4).
Moreover, ¢+ on @ is a measure since ¢ = 0 and

et (Z 4)) = o(T 4;D°) = ¥ o(4;D°) = 3 oH(A;).
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Similarly ¢~ on @ is a measure and, furthermore, it is bounded by
—¢(D) which is finite. Thus, ¢ = ¢T — ¢~ is a signed measure, and
the proof is complete.

JorDAN DEcomposiTION. If @ is only a field but ¢ is also bounded,
then it is still a signed measure. Prove, proceeding directly from the
definitions, showing first that ¢* are bounded measures.

*§ 4. CONSTRUCTION OF MEASURES ON ¢-FIELDS

4.1 Extension of measures. If two set functions ¢ on @ and ¢’ on
@’ take the same values at sets of a common subclass @/, we say that
¢ and ¢’ agree or coincide on @". If @ C @’ and ¢ and ¢’ agree on @,
we say that ¢ is a restriction of ¢’ on @, and ¢’ is an extension of ¢ on
@’. The general extension problem can be stated as follows: find ex-
tensions of ¢ which preserve some specified properties. If, given €’ D @,
there is one, and only one, such extension on @', we say that this ex-
tension is determined.

Here, we are concerned with the extension of measures to measures
and shall denote extensions and restrictions of a measure u by the same
letter; as long as their domains are specified, there is no confusion pos-
sible. While any restriction of a measure is determined and is a meas-
ure, an extension of a measure to a measure on a given class may not ex-
ist, and if one exists it may not be unique. Our aim is to produce classes
on which such extensions exist, and cases where they are determined.
The results of the investigation are summarized by the Carathéodory

A. EXTENsSION THEOREM. A measure u on a field C can be extended
to a measure on the minimal o-field over C. If, moreover, u is o-finite,
then the extension is determined and is o-finite.

We prove the extension theorem by means of an intermediate weaker
extension which preserves a part only of the properties characterizing
a measure. We shall need various notions that we collect here.

A set function u° on the class §(2) of all sets in the space 2 is called
an outer measure if it is sub e-additive, nondecreasing, and takes the
value O at 0:

(U 4;) = X u°(4;) for every countable class {4},
p(A4) S p°(B) for 4 B, p°(0) = 0.
A set A is called u®-measurable if, for every set D C Q,
w’(D) 2 uw(AD) + p°(A4°D).
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Since the relation is always true when u°(D) = oo, it suffices to consider
sets D with p°(D) < «. Since p°is sub o-additive, the reverse inequality
is always true and, hence, A4 is p’-measurable if, and only if,

w(D) = w(4D) + p*(4°D).

The class of all p’-measurable sets will be denoted by @° and, clearly,
contains @ and Q. The outer extension of a measure u given on a field
@ is defined for all sets 4 C Q by

p(4) = inf 3 u(4;),

where the infimum is taken over all countable classes {4;} C @ such
that 4 C |J 4j—coverings in € of A, for short. Since @ € €, there is
at least one covering (consisting of @) in € of every A4 so that the defi-
nition of an outer extension is justified. The use of the same symbol
u® both for an outer measure and an outer extension is due to the prop-
erty, to be proved first, that the outer extension of the measure u on €
is an extension of u to an outer measure. Next we shall prove that the
restriction to @° of u® is a measure and that @° is a o-field, and the
extension theorem will follow.

a. The outer extension u° of a measure u on a field @ is an extension of
u to an outer measure.

Proof. We prove first that u° is an extension of p.

If 4 € e, then u°(4) < u(A). On the other hand, since p is a meas-
ure, u(A4) £ > u(A4;) for every covering {A;} in @ of A4, so that u(A)
=< u°(A4) and, hence, u°(A4) = u(A) for A € @. It remains to prove
that u° is an outer measure.

To begin with, u°(#) = 0 since @ € €. Furthermore, p°(4) =< p°(B)
for 4 C B, since every covering in € of B is also a covering of 4. Finally,
we prove that u’ is sub s-additive.

Let ¢ > 0 and let {A4;} be an arbitrary countable class. For every
A; there is a covering {4} in @ such that

€
> ul(din) S w4 +
k 2
Since J 4; € U 4k, it follows that
i ik
(U 45) = X uldi) £ X p(d4)) + 6
j ik j

and, ¢ > 0 being arbitrarily close to zero, sub g-additivity is proved.
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b. If u° is an outer measure, then the class @° of u’-measurable sets is a
o-field and u° on Q@° is a measure.

Proof. We prove first that @° is a field and p° on @° is a content.
If 4 € @° then 4° € @°, since the definition of u’-measurability is
symmetric in 4 and 4°. If A, B € @°, then AB € @°, since

p’(D) = u’(AD) + p°(A°D)

p’(ABD) + p°(AB°D) + p’(A°BD) + u(A°B°D)
uw’(ABD) + u’(AB°D U A4°BD U A°B°D)
u’(ABD) 4 p°(AB)°D.

v

Thus @° is closed under complementations and finite intersections and,
hence, under finite unions, so that @° is a field.
p° is finitely additive on @° since, if 4, B € @° and are disjoint,

w(d + B) = p’((4 + B)A) + 1°((4 + B)A°) = p°(4) + p°(B).

Since u’(A4) = u°(@) = 0, u’ on @° is a content.
To complete the proof, it suffices to show that, if the 4, € @° are
disjoint, then 4 = > A4, € @° and u°(A) = > u°(A4,).

Since B, = X, A; € @°, we have
k=1

w(D) = p*(BnD) + w*(Ba°D) 2 3 w*(4kD) + u*(4°D)
k=1
and, letting » — o,

w(D) 2 2 u°(4aD) + p°(4°D) 2 u*(4D) 4 p°(A4°D).

The inequality between the extreme sides shows that 4 € @°. The
first inequality with D replaced by A4 becomes

p(d) 2 2 u’(4n)

while the reverse inequality is always true.

Thus
p(4) = Z l“o(/{n)a
and the proof is complete.

Remark. Most frequently, a measure u is given on a class ® whose
closure under finite summations or under countable summations is a
field €. Then the requirement of s-additivity determines the unique
extension of u on €.
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We are now in a position to prove the extension theorem.
1° For every 4 € C and every D there s, for every ¢ > 0, a covering
{4} in € of D such that

D)+ ez 2 p( i) =2 u(dd)) + X u(A°A4;) Z p°(AD) + p°(A4°D).

Thus, 4 € @° and, hence, since the field @ is contained in the o-field
@°, the minimal o-field @ over @ is contained in @°. It follows, according
to a and b, that the contraction on @ of the measure p° on @° is an ex-
tension of u to a measure on @. This proves the first part of the theorem.

2° Let uon @ be finite, let x; and pe be two extensions of u to meas-
ures on @, and let 9N C @ be the class on which u; and ug agree. Since
Q belongs to €, u; (2) = ua() = u(Q) < « ; hence w1 and uy are finite.
Since 9N contains € and, for every monotone sequence 4» € M,

p(lim 4n) = lim pi(4n) = lim pe(An) = pe(lim 4,),

9N is a monotone class. It follows, by 1.6A, that 9 contains the mini-
mal o-field @ over the field € and, therefore, u; and u, agree on Q.

Let now u on € be o-finite so that there is a countable class {A4,;} C @
with pA; finite which covers Q. Thus, the foregoing result applies to
every subspace A}, and the second part of the theorem follows.

Generalization. The extension theorem is valid for o-finite signed meas-
ures ¢ = p’ — u’’. Extend p’ and p”’ and observe that 2° applies with
¢ instead of u.

Completion. Given a measure u on a o-field @, it is always possible
to extend p to a larger o-field obtained as follows: For every 4 € @
and an arbitrary subset NV of a null set of @, that is, a set of measure
zero, set u(4 U N) = u(A). Clearly, the class of all sets 4 U N is a
o-field @, D @ and u on @, is an extension of u to a measure on Q,.
@, is called the completion of @ for p and u on @, is called a complete
measure. It is easily seen that @, C @° so that the extension theorem
provides us automatically with extensions to complete measures.

4.2 Product probabilities. A measure on a class containing the space
is called a normed measure or a probability when its value for the whole
space is one; we reserve the symbol P, with or without affixes, for such
measures.

Let (Q, @, P.), t € T, be probability spaces, that is, triplets consist-
ing of a space Q; of points w,, a o-field @, of measurable sets A4, (with or
without superscripts) in @, and a probability P, on @, Let Cr be the

class of all measurable cylinders of the form [T 4, X II £ in the
te Tn te T—-TnN

product measurable space (II @, II @). The class ®r of all finite
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sums of these cylinders is a field, and the minimal o-field @7 over By
is, by definition, the product o-field I] @. The product probability
Pr = I P, on the class €r is defined by assigning to every interval
cylinder the product of the probabilities of its sides: in symbols,

Pr(JI 40X II Q)= Il PAd:- TI P&= II PA..

te IT'y Lt T—-TnN tE Ty te T-Tn t Tn

Clearly, PrQr = 1 and Pr on @r is finitely additive and determines
its extension to a finitely additive set function Py on ®r. The defining
term ‘‘product-probability” is justified by the following theorem (An-
dersen and Jessen).

A. ProbucT PROBABILITY THEOREM. The product probability Pr on
®r 15 o-additive and determines its extension to a probability Pr on the
product o-freld Qr.

Thus, the triplet (27, @7, Pr) is a probability space, to be called the
product probability space.

Proof. 1° On account of the extension theorem, it suffices to prove
that Pr on ®r is o-additive. Since it is obviously finitely additive on
®r, on account of the continuity theorem for additive set functions it
suffices to prove that Pr on ®r is continuous at §. A& contrario, given
e > 0 arbitrarily close to 0, it suffices to prove that, for every nonin-
creasing sequence of measurable cylinders 4™ | A4 with PrA™ > ¢ for
every #, the limit set 4 is not empty. Since every cylinder 4™ depends
only upon a finite subset of indices, the set of all indices involved in
defining the sequence 4™ is countable. By interchanging, if necessary,
the indices, we can restrict ourselves to the product space @ = [] Q,
and sets A = D» X Q,'l with D*Co X - - XQ,, Q, = Qa1 X Qg2 X+ v v.

If the set of all indices is finite, then there is an integer N such that,
for every n, all the factors which follow the Nth one reduce to Qy, and
the argument below applies with corresponding modifications.

2° Let Py, Py, --- be the set functions defined on the fields ®,’,
®'y, - -+ of all measurable cylinders in @'y, @5, -- -, as Pp is defined on
®r. Let A™(w;), A™(w1, w2), + + - be the sections of 4™ at w; € Q;, (wy,
wo) € X o, etc. Clearly, 4™(w;) € ®'y. It is easily seen that, if
B," 1s the set of all w; such that

PIIAn(wl) > ‘;"
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then
€
PB™* + —2- (1 — PlBln) = PrA™ > ¢
and, hence,

€
P\B" > —-
151 2

Since 4™ | implies that B," |, it follows that, for B; = lim B,*, P,B,

€ . . .
2 — . Thus, B; is not empty; hence, there is a point @; € ; common

2
to all B," and, for every n, P’y (A™(@,)) > ; . The same argument ap-

€
'2_2 ’
and so on. Therefore, the point @ = (&;, @9, -++) Is common to all
A", so that the limit set 4 is not empty, and the proof is complete.

We pass now to Borel spaces.

4.3 Consistent probabilities on Borel fields. We introduce the fol-
lowing terminology. The set R = (—, +») of all finite numbers x
is a real line, the minimal o-field over the class of all intervals is the
Borel field ® in R, the elements of ® are Bore/ sets in R, and the measur-
able space (R, ®) is a Borel line. Similarly, the product space Ry =
IT R:, where every R, is a real line with points x;, is a rea/ space with
points xr = (x), the product o-field ®r = J] ®;, where every ®, is
the Borel field in R;, is the Borel field in Rr whose elements are Borel
sets in Rr, and the measurable space (Rr, ®7) is a Borel space. 1f T
is a finite set, we say that Rr is a finite product space. Cylinders with
Borel bases are Borel cylinders and, clearly, the Borel field ®r is the
minimal o-field over the class of all Borel cylinders or, equivalently,
over the class of all cylinders whose bases are product Borel sets.

Given a finite measure on ®r we can assume, by dividing it by its
value for Ry, that it is a probability Pr. Let Ty = {#, -+ ¢tx} be a
finite subset of indices and let (Rry,, ®ry) be the corresponding Borel
space. We define on ®g, the marginal probability Pr,, or projection
of P on Rr,, by assigning to every Borel set By, in Rr, the measure
of the cylinder with basis Br,; in symbols

Pry(Bry) = Pr(Bry X R'ry), Rry= Il R.
tgd T

plied to A™(@;) | yields a point @y € Qg such that P’/y(A™(&y, @2)) >

Marginal probabilities are consistent in the following sense. If R’ and
R are two finite product subspaces of Ry, with marginal measures P’
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and P", respectively, then the projections of P’ and P’ on their com-
mon subspace, if any, coincide (with the projection of Pr on this sub-
space). We want to prove that the converse is true (Daniell, Kol-
mogorov).

A. ConsiSTENCY THEOREM. Consistent probabilities Pr, on Borel
Jields of all finite product subspaces Ry of Rr determine a probability Py
on the Borel field in Ry such that every Py, is the projection of Pr on Rrp,.

Proof. To every Borel cylinder with Borel base By, in Ry, we as-
sign the probability value

PT(BTN X RITN) = PTN(BTN)-

It is easily seen that Pr on the class €r of all Borel cylinders is finitely
additive, and the theorem will follow from the extension theorem if we
prove that Pr on @r is continuous at @.

As in the proof of the product probability theorem, it suffices to
prove that, given ¢ > O arbitrarily close to zero, if a sequence A4, | A
of Borel cylinders with bases B, formed by finite sums of intervals in
Ry X-++X R, is such that, for every n,

PT(An) = Pl2---n(Bn) > ¢

then A4 is not empty. To simplify the writing, set P = Pp and P, =
Py3...n. Since P, is bounded and continuous from below, in every in-
terval in Ry X---X R, we can find a bounded closed interval whose
P,-measure is as close as we wish to that of the original interval. There-
fore, in every B,, we can find a bounded closed Borel set B’,—formed
by a finite sum of boufided closed intervals—such that P,(B, — B’,)

< i;_—ﬁ and, hence, if A4', is the Borel cylinder with basis B’,, then

€

P(/{n - A,n) = Pn(Bn - Bln) < 2n+1.

It follows, setting C, = A’y N---N A',, that P(A4, — C,) < —zfor, since
Co C A'n C Ay,

€ €
PC,) > P(A,) — = > —-
(Cn) (An) 5> 5

Thus every C, is nonempty and we can select in it a point ¥ = (%,
x™ ...). It follows from C, D C, D--- that for every p =0, 1,

, x("+p)€CnC1{’n and hence (xl\(n+p), N xn(n+p)) € B,.
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Since every B’, is bounded, we can select a subsequence 7y of inte-
gers such that x;™* — x; as & — w, then within it a subsequence
nor such that x2( m® _, wo and so on. The diagonal subsequence of

points x™#% = (x| 6, @8 Y converges to the point x = (¥, X,

.») and (%™, ..., « (""")) — (%1, -+, xm) € B’y for every m.
L)

Therefore, ¥ € A',, C 4,, whatever be m so that x € ( 4,. Thus
mas]

this intersection is not empty, and the assertion is proved.

Extensions. The foregoing theorem can be extended, as follows:
Let @, be the o-field of Borel cylinders with bases in R, X-+-X Ry,
and let Q. be the Borel field in [ R,.

1° If uniformly bounded measures p, on Q. form a nondecreasing
sequence, in the sense that pndn < pnp1 Ay -« and hence ppA, T ud,
as p — o whatever be n and A, € Qn, then u extends to a bounded meas-
ure on Q.

The proof reduces to the previous one as follows. The set function u
so defined on the field U @, of all Borel cylinders in [] R, is, clearly,
finitely additive and bounded. Therefore, it suffices to prove that on
this field u is continuous at . Given ¢ > 0 and 4, € @,, we can find

p sufficiently large so that u,4n + =5 > pA.. Then we can select

2"+
a Borel cylinder 4’, € A, whose basis is a closed and bounded Borel

set in Ry X-++X R, such that p,(4, — 4'») < It follows that

i +2

/J'A + 1 = Mp

so that u(A4, — 4’

From here on, the end of the preceding
proof applies word for word.

If oo on @y, 7 = 1, 2, -+, are such that ¢,(4,) = en41(A4p) =+,
A, € @,, we say that the ¢, are consistent.

2° If the uniformly bounded o-additive set functions ¢, on Qn are con-
sistent, hence op(An) — o(A,) as p — o whatever be n and A, € Qn,
then ¢ extends to a o-additive bounded set function on Q.

The assertion follows from what precedes. For, clearly, the total varia-
tions @, on @, form a nondecreasing bounded sequence on |J @,, in
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the sense of 1°. Hence lim &, is continuous at @ on |J @, and, & fortiori,
so is ¢. Now use Jordan decomposition and generalization in 4.1.

4.4 Lebesgue-Stieltjes measures and distribution functions. Com-
plete measures on the Borel field in a real line R = (—, +») did, and
still do, play a prominent role. However, being set functions, they are
not easy to handle with the tools of classical analysis, for methods of
analysis were developed to deal primarily with finite point functions on
R. It is, therefore, of the greatest methodological importance to es-
tablish a link between the modern notion of measure and the classical
notions. This will be done by showing that there is a class of point
functions on R which can be placed in a one-to-one correspondence with
a very wide class of measures. In this manner, investigations of meas-
ures (and, thereafter, of integrals) will be reduced to investigations of
the corresponding point functions and, thus, the familiar methods of
analysis will apply. Whatever be these point functions they will be
said fo represent the corresponding measure.

Among possible representations of measures there are two which are
fundamental: “distribution functions” which represent measures as-
signing finite values to finite intervals, to be called Lebesgue-Stieltjes
(L.S.) measures, that we shall introduce now, and “‘characteristic func-
tions”” which represent the subclass of finite Lebesgue-Stieltjes measures
required in connection with probability problems—that we shall in-
troduce in Part II. Let ® be the Borel field in R and let u be a Lebesgue-
Stieltjes measure. The completion of ® for p will be denoted by ®,,
and called a Lebesgue-Stieltjes field in R, and its elements will be called
Lebesgue-Stieltjes sets in R.

A function on R which is finite, nondecreasing, and continuous from
the left is called a distribution function (d.f.). Two d.f.’s will be said
to be equivalent if they differ by some fixed but arbitrary constant.
This notion of equivalence has the usual properties of equivalence—it
is reflexive, transitive, and symmetric. Thus, the class of all d.f’s
splits into equivalence classes. As the correspondence theorem below
(Lebesgue, Radon) shows, the one-to-one correspondence between L.S.-
measures and d.f.’s is not a correspondence between L.S.-measures and
individual d.f.’s but a correspondence between L.S.-measures and classes
of equivalent d.f.’s, each class to be represented by one of its elements,
arbitrarily chosen.

Let F, with or without affixes, denote a d.f. and define its increment
Sfunction by

Fla, b) = F(6) — F(a), —» <a b < oo,
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Since two equivalent d.f.’s have the same increment function and con-
versely, it follows that every class of equivalent d.f.’s is characterized
by its increment function. Moreover, the defining properties of d.f.’s
are equivalent to the following:

(1) 0= Fla, b) < oo, (i) Fla,6) > 0asa T 5,

and . )
(i) 3 Flag, &) + 2 Flb, ax41) = Flay, b,)
k=1 k=1

where a < b,a, £ 6 S as £---=< a, S b, are arbitrary.

A. CORRESPONDENCE THEOREM. The relation
ula, 8) = Fla, ), —wo <aSb< +ow

establishes a one-to-one correspondence between L.S.-measures uand d.f.s F
defined up to an equivalence.

Proof. Let ®; be the class of all intervals [a, ), —0 <4 < 6 < + .
®r is closed under formation of finite intersections. The minimal field
®o over ®y 1s the class of all finite sums of elements of &; and of intervals
of the form (—o,4), [6 + =), and the minimal o-field over ®¢ is the
Borel field ®.

The proof of the correspondence theorem is summarized by the dia-

gram below, where ¢ represents an arbitrary constant:
F+conRe pon® © pon B & uon ® & uon &,.

1° pon B, = F+ ¢ on R. For, u on ®, determines its restric-
tion to ®; and, from properties of L.S.-measures it follows that the
relation

F[a) b) = “[a) b)
determines an increment function with properties (i), (i), and (iii)
given above.
2° pon ® = uon ®, For, R being a denumerable sum of finite

intervals, the measure u on ®g is o-finite and the extension theorem
applies followed by completion.

3° uon By =pu on ®. It suffices to prove that if 4 = }’;Ik

€ ®o, I € ®p, then u(A) is determined by the o-additivity requirement
p(A) = ¥ u(lx), that is, if 4 can also be written as 3_ I';, where I';
% J
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€ ®y, then 3° p(I’;) = X u(l;). Since p on ®; is additive and
j k

I’]' = AI’j = Zlkllj) Iy = Al = ZI’J'I"’
& j

it follow;s that
Zul) = Sl = 5 T ullsl) = > u(ly),
J 7k ) k

and the assertion is proved.

4° F+ c=pon ®;. We have to prove that the relation ula, 8) =
Fla, b) determines a measure u on ®j, that is, if I = 3 I,, where I =
(@, 8) and I, = [a,, b.), then pI = ¥ ul,. By interchanging, if neces-
sary, the subscripts, we can assume that, for every n,

aéalébl é"'éanébnéb-
It follows that

n n n n—1
‘.>: #(Ik) = Z F[ak) bk) é Z F[ﬂk, bk) + Z F[bk) ak—{-l)

= Flay, bn) < Fla, b) = p(l),

and, letting » — oo, we get >_ u(l,) = p(l).

It remains for us to prove the reverse inequality. We exclude the
trivial case @ = 4, select ¢ > 0 such that e < 4 — 4 and set I* = [a,
b — ¢]. Because of the continuity from the left, for every # there is an
en > 0 such that Fla, = €, a,) < 5 . If I, = (an — €, &,), then,
from I | I.* it follows, by the Heine-Borel lemma, that there is an

no finite such that I¢ C UI;c Let k; = ny be such that a € I *

and, if &, < 4, then let k2 é no be such that 4, € I;,. Continue in
this manner until some 4;, = 4 — e—the process necessarily stops for

some m X ny. Omitting intervals that were not selected and, if neces-
m

sary, changing the subscripts, it follows that I* € |J ;¢ and
) k=1

a; — € <a <b1, Aiy1 — €k41 <bk <bk+1
for
k=1,2--m—1, an— €en <b— €= bp.
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Therefore,
m—1
Fla, b — 5) < Flay — €1, Om) = Fla, — €1, b1) + ZF[bk) bk-}-l)
m 00 k=1
S 2 Flar — e, b)) = X Flar, bx) + ¢

k=1 k=1
and, letting ¢ — O,

Fla, b) = 3 Flay, b,), that is, u(I) = X u(l,),

which completes the proof of the final assertion and, hence, of the cor-
respondence theorem.

Particular case. If F is defined, up to an additive constant, by
F(x) = x, x € R, then the corresponding measure of an interval is its
“length.” The extension of “length” to a measure u on ® and the
completed measure p on ®, are called Lebesgue measure on ® or ®,,
respectively, and ®, will be called Ledesgue feld. The Lebesgue meas-
ure is at the root of the general notion of measure.

Remark. We can define a L.S.-measure on the Borel field ®-mini-
mal o-field over the class of all intervals in R = [— o, 4] and, hence,
on ®,, by adjoining to a L.S.-measure on ®, arbitrary measures for the
sets { —o} and {+4w}.

Extension. The preceding definitions, proofs, and results, remain
valid, word for word, if Borel lines are replaced by finite-dimensional
Borel spaces RY = R; X---X Ry, provided the following interpreta-

tion of symbols is used: @, 4, x, - - - are points in RY, say, a = (a3, - - -,
ay); a < b(a = b) means that ar < br(ay < &) fork=1, --., N. F
on R is a function with values F(2) = F(ay, -, ay) and increments

Fla, b) are defined by
F[a’ b) = Ab__aF(ﬂ) = Abl"al “ e AbN“GN F(ﬂl’ ﬂ2’ oo aN)

where, for every k, Ay, _,, denotes the difference operator of step & — a
acting on 4. For instance, if N = 2,

Ap—oF (@) = Ap—g,Dps—a,F (a1, a2) = Ap—g,{F(ay, b2) — F(ay, a3)}
= F(by, b3) — F(ay, b2) — F(by, a3) + F(ay, a2)

and, in particular, if F(a;, as) = aya, is the area of the rectangle with
sides 0 to @, and O to ag, then Ay_oF(a) = (by — a1)(b2 — ag) is the
area of the rectangle with sides @; to 4, and a; to 4,.

The defining properties of a d.f. F on RY become:

—wo < F < 4w, Fla,b) = Ap_oF(a) 20, Fla,b) = 0

asa T b,thatis,ay T &y, -+, an T bn.
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Product-d.f.s and product-measures. A very important particular case
is that of product-d.f.’s:

N
F(ey, o+, xn) = H Fe(xi), xi € Ry

k=1

where the F; on Ry are d.f.’s. Then F on RY is a d.f., for,
N
Av—oF(a) =[] Ap—a,Fr(ar) 2 0
k=1

and the other defining properties are clearly satisfied.

Every d.f. F; determines a measure u; on the Borel field in Ry, by
means of the relation ux[ax, 6x) = Fi[ax, i), and the measure u on the
product Borel field determined by means of the relation u[a, 4) = Fla, 4),

N

is clearly the product-measure JJ u.
k=1
Let now F, be d.f.’s with F,(4+®) — F,(—®) = 1, so that the meas-
ures u, are probabilities. Then, by the product-probability theorem

or by the consistency theorem,

B. A sequence F, of d.f’s corresponding to probabilities on R, deter-
mines a product-probability on the Borel field in the product space [] R,.

This result extends at once to any set {Fy, t € T}, of such d.f’s.

COMPLEMENTS AND DETAILS

In one guise or another, and especially when they are indefinite integrals,
signed measures on a fixed o-field are in constant use in measure theory and
probability theory. Many of the properties established in this book are but
properties of such set functions.

Notation. The measurable sets belong to a fixed o-field on which the set
functions and limits of their sequences are defined. Unless otherwise stated
and with or without affixes, 4, B, --- denote sets, u denotes a measure, ¢ de-
notes a signed measure.

1. If ¢ is o-finite, then there are only countably many disjoint sets for which
¢ # 0 1n every class.

2. For every A there exists a B C A such that (A4) < 2| ¢(B) |.

3. If o1 S @3, then o1t S 2™, 017 2 2=, If ¢ = 1 £ @3, then p* <
ot + oo

4. Minimality of the Jordan-Hahn decomposition. If ¢ = ut — u~, then
ot S ut

We say that A is a @-null set, if o =0o0n {AA', 4’ Q}. We say that 4
and B are g-equivalent, if they coincide up to a ¢-null set. We say that a non-
empty set is a g-atom, if every measurable subset of A is g-equivalent either
to @ or to A.
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5. The @-null sets form a o-ring; the ¢-null sets of ¢ and of ¢ are the same.

The ¢-equivalence is an equivalence relation (reflexive, transitive, and sym-
metric), and @ splits into ¢-equivalence classes.

6. Every ¢-null set and every measurable set consisting of one point is a
p-atom; @(A) = | ¢(A) | for every p-atom 4. Atoms of ¢ and @ are the same;
atoms of ¢ are atoms of ¢+ and ¢, but the converse is not necessarily true.

If A4is a p-atom, then ¢ = O or ¢(A4) on 4 N @;if ¢ is finite, then the converse
is true. What if ¢ is o-finite? What about ¢ = o except for §?

7. If p is finite, then @ = 3~ A; + A where the 4; or 4 may be absent but,
if present, then the A4; are u-atoms of positive measure and, for every B C A
of positive measure, u takes every value ¢ between 0 and uB for measurable sub-
sets of B. This decomposition of 2 is determined up to u-null sets. Can u be
replaced by ¢?

(There is only a countable number of w-equivalence classes of such A;’s.
Select representatives A; of these classes and let BC 4 = @ — > A;. Select

inductively sets Cn, € C, such that uC, > sup uC — -71; for all C € @,, where

C, is the class of all CC B - (C; U Cg--- U Ca_y) for which uC < ¢ —
w(CrUCaU---UCu_y). ThenpuC = cfor C = UC,.)

8. If ¢ is finitely additive, u is finite, and u4, — O implies ¢A» — O, then
¢ 1s g-additive.

We say that ¢ is go-continuous if poA = 0 implies ¢4 = 0.

9. If uAd, — O implies oA, — O(pA. — 0), then ¢ is u-continuous. If ¢
is finite, then the converse is true.

(Assume the contrary of the converse; there exist ¢ > 0 and A, such that
pdan < -2-1; and @A, = €. Then uB = 0 and @B 2 ¢ for B = lim sup A,.)

What if ¢ is o-finite? What about @ consisting of all subsets of a denumer-

! , e{wa} = n. What about p replaced by

able space of pointswy, and p {w,} = 7

>

70. If the p; are finite measures, then there exists a p such that all the u;

are u-continuous. (Take u = X p;/2/u;Q.) What about u;’s replaced by ¢;’s?
Let ® C @ be a o-field such that the measurable subsets of elements of &

belong to B. Let B(¢) be the class of sets such that their subsets which belong

to ® are o-null. Call the sets of @ “‘singular,” and the sets of B(¢) “‘regular.”

Call ¢ regular (singular) if every singular (regular) set is @-null.

Let ¢, = o,F — ¢0.7, ¢s = @7 — @,7, defined by

- E(A) = sup ¢%(B) for all regular B C 4,
©s2(A4) = sup %(B) for all singular B C 4.

(]

11. Decomposition theorem. ¢, is regular, ¢, is singular, and ¢ = ¢, + ¢,.
If ¢ is finite, then the decomposition of ¢ into a regular and a singular part is
unique. What if ¢ is o-finite? What if @ consists of all subsets of a noncount-
able space, and ¢(4) equals the number of points of #? (Proceed as follows:

() B(p) = ®R(p) = Blet) N B(p™) is a o-field. '

(1)) @,(¢@s) 1s a regular (singular) signed measure.
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(iii) Every A contains disjoint A, regular and A, singular such that ¢,*(4)
= o¥(d,), ps(A4) = o*(A)).

G(v) If 4 = A", + A’ with A’, regular and A, singular, then we can take
A, =A'yand 4, = A',.

(v) If ¢ is finite, every A can be so decomposed.)

72. We can take for singular sets:

(i) the p-null sets—regular (singular) becomes p-continuous (u-discon-
tinuous);

(ii) the countable measurable sets—regular (singular) becomes continuous
(purely discontinuous);

(i) the countable sums of atoms—regular (singular) becomes nonatomic
(atomic).

In each case investigate the regular and singular parts.

13. Intermediate-value theorem (compare with continuous function on a con-
nected set). If A4 is nonatomic and A4, T A with oA, finite, then ¢ takes
every value between —¢p~A and + ¢t A for measurable subsets in 4. (See 7.)
What if @ consists of all sets in a noncountable space, ¢(A4) = 0 or e according
as A is countable or not?

In what follows, the ¢, are g-additive but, unless otherwise stated, lim ¢,
is not assumed to be s-additive.

14. If oo — ¢ g-additive, then ¢ * < lim inf @,%. If, moreover, ¢n T or
¢n ], then % = lim @,*.

15. If ¢n T (]) and @1 > —o(< +), then pn — ¢ c-additive.

16. If ¢ — @ uniformly on @ and ¢ > —wor ¢ < -+, then ¢ isc-additive,

17. To a measure space (2, @, u) associate a complete metric space (X, 4)
as follows: & is the space of all sets 4, B of finite measure, 4 is a metric defined
by 4(A4, B) = u(AB° + A°B). Prove that the metric space is complete.

(If A, is a mutually convergent sequence in &, then the sequence 7,4, mutually
converges in measure and hence converges in measure—see 6.3.)

If v on @ is a finite u-continuous measure, then v is defined and continuous
on (X, d).

We say that the ¢, are uniformly p-continuous if uAdm — 0implies @adm — O
uniformly in n, as m — co.

78. Let u beo-finite. If the finite ¢, are u-continuous and lim ¢, exists and is
finite, then the ¢, are uniformly p-continuous and lim ¢. = ¢ is p-continuous

L] L]
and o-additive. (For every € > 0, set A = mnk nk [A € X; | omd — @ad |
P T

< _e] . By (Z7), every Ay is closed. By Baire’s category theorem, there exists

-3
ko, do and Ay € X such that [A€ X; d(A4, Ao) < do) C Ay, Let 0 < dp < dp
such that | pad | < € whenever pd <8 and 7 S ko. If pAd < o, then
ddy— A, A)) <do, dAVU A, Ao)<do, and |ead| S| ord|+
| on(do U A) — ore Ao U A) | + | oa(do — A) — pre( Ao — 4) |.

79.-1f finite ¢, — ¢ finite, then ¢ is c-additive. (If | ¢on| S cn, set

1
pd =Y e | ¢nd | and apply 78.)




Chapter 11

MEASURABLE FUNCTIONS AND INTEGRATION

§ 5. MEASURABLE FUNCTIONS

5.1 Numbers. Spaces built with numbers are prototypes of all
spaces, and functions whose values are numbers are prototypes of all
functions.

By a number x we mean either a usual real number—/finite number—

or one of the symbols +o and —co—infinite numbers. These symbols
are defined by the following properties:

_w§x§+°°)
+o0o = (+®) + x = x + (£x), £—=O if —o <x< 4o,
(e o]

+wo if 0<x =+
x(£w) = (£o)x = {0 if x=0
Fo if —0o=x<O.

The expression +® — ® is meaningless, so that, when speaking of a
“sum” of two numbers, we assume that, if one of them is F, the other
one is not *; then the sum exists.

The reason for the introduction of infinite numbers lies in the fact
that, then, sup x; and inf x, = — sup (—x;), where # varies over an arbi-
trary set T, always exist (but may be infinite). Moreover, if inclusion,
union, and intersection of numbers are defined by x < y, sup x; and
inf x, respectively, then these operations have properties of the corre-
sponding set operations; in particular, limits of monotone sequences of
numbers always exist, but may be infinite.

103
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If, as # — o, the limit x of a sequence x, of numbers exists, we write
x = lim x, or ¥, — x and say that x, converges to x; if x is infinite, say,
+ o, one also says that x, diverges to +. The Cauchy mutual conver-
gence criterion is valid only for finite limits: x, converges to some finite x
if, and only if, xm — xn — 0 (as my n — ®) or, equivalently, if xp,, —
xn — O uniformly in v. On the other hand, the Bolzano-Weierstrass
lemma remains valid without the usual restriction of boundedness:
every sequence of numbers is compact, that is, contains a convergent sub-
sequence, but if the sequence is not bounded then the limits may be
infinite.

The set of all finite numbers is a rea/ line R = (—w, +») and the
set of all numbers is an extended real line R = [—o, +»]. The basic
class of sets in R is the class of intervals; there are four types of finite
intervals of respective form:

[a, b): set of all points x such that 2 < x < §;
(a, b]: set of all points x such that 2 < x < 4;
x < b;

x Z b

TAN

(a, b): set of all points x such that 4

A

[a, 8]: set of all points x such that 4

The minimal o-field over the class of all intervals in R is the Bore! field
in R and its elements are Borel/ sets in R. The Borel field in R coincides
with the minimal ¢-field over the subclass of all intervals of one of the
foregoing four types, since countable operations performed upon ele-
ments of one of these subclasses yield any element of the other sub-

1
classes; for example, (a2, ) = U [a +%, b) , [a, 8] = N [a, b+ ;) ;

etc. Similarly, the Borel field in R is the minimal ¢-field over the sub-
class of all infinite intervals of the form (—o, x), —0 < x < +o, since
any finite interval [4, 4) is obtainable as a difference Ay_o(—, @) =
(—w, ) — (—, a). The Borel field in R can be defined similarly by
means of any of the foregoing types where —» < 2 < 4 < +, or by
means of the intervals [—w, x), — < ¥ < +o; but, frequently, the
most convenient way is to take the minimal o-field over the class formed
by the Borel field in R and the two sets { —w}, {4 ]}.

Extension. The preceding notions extend at once to finite-dimensional
real spaces. The set of all ordered N-uples x = (xy, -+, ¥n) of finite
numbers is the N-dimensional real space RN or, equivalently, the prod-

N
uct space JI R, of N real lines R, = (—© < &, < +x). If every R, is
y=1
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replaced by R, = [—® =< x, £ +=)], then we have the extended N-di-
mensional real space RN. 1f a, b € R¥| then 2 £ 4 means that a, < b,
forv=1,2, ---, N, and, similarly, for 2 < 4, 2 = 4.

An interval, say [a, 4), will also be written more explicitly as [a;, a3,
*° "y 8N, bl) b2) Tty bN)) and

[ﬂ’ b) = Ab—a(_w) ﬂ) = Abl—alAbz—az *
AbN—GN(_Oo) TXy s T®5 4y, dgy -t aN)

where A,,_,, is the difference operator of step 4, — 4, acting on a,.
For example, if N = 2, then

[a1, a2; b1, b2) = Ap,—a,Aby—a,(— 0, —®; a1, a3)
= Ap—q,{ (=, =05 a1, by) — (—, —; ay, a5)}
= (—», —0; 4y, b)) — (=, —®; ay, by) — (—o, —x;
b1, a2) + (—o, —; ay, ay).

With this interpretation, the foregoing definitions of types of intervals
and, thereafter, of Borel fields, remain the same.

5.2 Numerical functions. A numerical function X on a space Q is a
function on @ to R, defined by assigning to every point w €  a single
number ¥ = X(w), the value of X at w. If infinite values are excluded,
X 1s a finite function or, equivalently, a function on £ to R. Q is called
the domain of X and R (or R) is called the range space of X. The func-
tions Xt = XI[X_Z.O] and X~ = _XI[X<0] will be called the positive
part and the negative part of X, respectively, and we have

X=X"-X-, | X|=Xt+X".

Unless otherwise stated, all functions will be numerical functions and,
in general, will be denoted by X, Y, - - -, with or without affixes.

If definitions or relations between values of given functions hold for
every w belonging to a set 4 C Q, we say that these definitions or rela-
tions hold o7 A4 and drop “on A4 if 4 = Q. For example,

| X | < o means that X is finite;

X Z 0 on A means that X(w) = O for every w € A,

X = inf X, means that X(w) = inf X,(w) for every w € Q;

X2 — X on A means that X,(w) — X(w) for every w € A, etc.

Conversely, the set of a// w € Q on which definitions or relations
hold is denoted by [w; - - -] or, if there is no confusion possible, by [---]
where - -- stand for the definitions or relations. For example,
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[X] is the set on which X is defined;

[X = Y] is the set of all w € Q for which X(w) = Y(w);

[X € S], where § C R, is the set of all w € @ for which the values
X(w) belong to the set S.

The set [X = «] is called the inverse image of the set {x¥} which con-
sists of x only or, simply, of x. Since X is single-valued, the inverse
images of distinct numbers x are disjoint, and the partition of @ into
inverse images of all x € R is called the partition of the domain in-

duced by X; we sometimes write X = 3 x/(x =, where Jjx_, is the in-
zE€FR

dicator of [X = x]. In particular, if X is countably valued, that is, takes

only a countable number of values x;, then, and only then,

X = Z xfI[X=-‘ci]'
7

More generally, the set [X € §] is called inverse image of S and is
also denoted by X71(S). The symbol X!, which can be considered
as representing a mapping of sets in R onto sets in @, is called the in-
verse function of X. Since inverse images of disjoint sets of R are dis-
joint, it follows easily that

X and set cperations commaute:
XS =8 =X — X8, XTH(US) =UX(S),
X“(ﬂ S) = ﬂ X—I(Sz)-

Similarly, X™!(@) or the inverse image of @, where @ is a class of sets
in R, is the class of all inverse images of elements of €. Since set opera-
tions commute with inverse functions, it follows that

a. The inverse image of a o-field is a o-field, the inverse image of the
minimal o-field over a class is the minimal o-freld over the inverse image
of the class, the class of all sets whose inverse images belong to a o-field is a
o-field.

The foregoing definitions and properties extend at once to functions
X = (X, +-+, Xy) on Q to an N-dimensional real space R¥ (or RY)
or, equivalently, to N-uples of numerical functions Xj, - -+, Xy. Classi-
cal analysis is concerned with functions from a real line to a real line
or, more generally, from a finite-dimensional real space RY to a finite-
dimensional real space RY. Still more generally, let X be a function
on © to R¥ and let g be a function on RY to RN'. The function of func-
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tion gX defined by (¢X)(w) = g(X(w)) is a functionon 2 to RY'. Clearly,
its inverse function (gX)™! is a mapping of sets §’ in ¥ onto sets in
€ such that

EX)7HS) = X7 (e7H(SY)
or, in a condensed form,

X)) = X~ 1g1,

5.3 Measurable functions. Classical analysis is concerned primarily
with continuous functions on R to R’ or, more generally, on RY to
R¥'. However, passages to the limit, which play such a basic role in
analysis, do not, in general, preserve continuity (and also they cause
the appearance of F). The essential achievement of modern analy-
sis, due to Borel, Baire, and Lebesgue, is the introduction of a wider
class of functions which is closed under the “usual” operations of analy-
sis: arithmetic operations and formation of infima, suprema, and limits
of sequences. Those are the functions we intend to define now.

In the domain @ of our functions we select a o-field @ of sets, to be
called @-sets or, if there is no confusion possible, measurable sets; the
doublet (@, @) is called a measurable space. In the range space R of
our functions we select the o-field & of Borel sets—the Borel field in R;
the doublet (R, ®) is an (extended) Borel line. Thus, our functions are
defined on a measurable space (2, @) to the Borel line (R, &). More
generally, if the range space is RV, then we select the Borel field &V,
and the doublet (R¥, &Y) is an extended Borel space; then the functions
are defined on a measurable space (2, @) to the Borel space (RY, &").

A countably valued function X = 3" %74, where the sets A, are
measurable is called an elementary measvrable function or, simply, an
elementary function; if the number of distitict values of X is finite, then
X is also called a simple function.

(C) Limits of convergent sequences of simple functions are called meas-
urable functions.

This is a constructive definition and, because of that, will play an es-
sential role in the constructive definition of integrals. However, gen-
eral properties of measurable functions are easier to discover and to
prove when using the descriptive definition which follows.

(D) Functions such that inverse images of all Borel sets are measurable
sets are called measurable functions.

Yet this definition is not the most economical one, since
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(D’) In (D), it suffices to require measurability of inverse images of
elements of any fixed class @ such that the minimal o-field over @ is the
Borel field.

For example, we can take € to be the class of all intervals, or the class
of all intervals [—oo, x], etc.

The proof is immediate. Since a mapping X! preserves all sets
operations and the measurable sets form a o-field, it follows that the
class of all sets whose inverse images are measurable is a o-field. There-
fore, if, according to (D’), it contains @, then it contains the minimal
o-field over € which, by assumption, is the Borel field.

Similarly, the constructive definition (C) is not the most economical
one as we shall find in proving the basic theorem below.

A. MEASURABILITY THEOREM. The constructive and descriptive defi-
nitions are equivalent, and the class of measurable functions is closed under
the usual operations of analysis.

Proof. 1° Let X, be functions measurable (D), that is, measur-
able according to (D) or, equivalently, (D’). Then all sets

inf X, <x]=U[X. <x], [-Xn <x]=[Xn> —x]
are measurable and, hence, the functions
sup Xn = — inf (—X,), liminf X, = sup, (igf X)),
lim sup X, = — lim inf (— X,) =

are measurable (D). Thus, the class of functions measurable (D) is
closed under formation of infima, suprema, and limits. But every simple
function X = 3" x;[4. is measurable (D), since all sets [X < «] =

2. Aj are measurable. Therefore, limits of convergent sequences of
z; Sz .
simple functions are measurable (D); in particular, functions measur-
able (C) are measurable (D).

2° Conversely, let X be measurable (D) so that the functions

" k-1
= — . ~———ITk=1_y k) + nlixz,
X nlix < ]+_n§+1 o [ = gx<2n] + nlxzap
n=12 ---

are simple. Since .
an(w) — X(w) l< 51-; for l X(w) l <n

and
Xa(w) = £n for X(w) = =,




[SEc. 5] MEASURABLE FUNCTIONS AND INTEGRATION 109

it follows that X, — X and this, together with what precedes, com-
pletes the proof of the equivalence of the two definitions of measura-
bility.

We observe that if X is nonnegative, then the foregoing functions

X, become
n2"

-1
X, =% I ex k] + nlixzn

k=1 2" 2"

and we have 0 = X, 7 X. Also, if

“+

) -1
X'n =,,,,z;w on I[l%lgx<2ﬁ,,],+ (=) (xm—wp + (+0)(x =

1
thean’n—Xl<—2—non[|X|<oo]andX’n=X on [| X| = =], so

that X', — Xuniformly

3° It remains to prove closure under the arithmetic operations.
Using definition (C) and the fact that arithmetic operatlons commute
with passages to the limit by convergent sequences, it suffices to show
that the class of simple functions is closed under the arithmetic opera-
tions. But much more is true, for if g on R¥ is an arbitrary function
and X = 3 %x;l4,, K =1, -+, N, are simple (elementary) functions,

J
then the function of functions
g(Xy, ooy Xn) = Zg(xul, ) -"'N;’,\,)IA,,-l e IAN,-N

is simple (elementary). This completes the proof.
According to this proof we have new equivalent constructive definitions
of measurable functions that we state now.

(C") A nonnegative function is measurable if it is the limit of a nonde-
creasing sequence of nonnegative simple functions. A function X is meas-
urable if its positive and negative parts X+ and X~ are measurable.

(C") A function is measurable if it is the limit of a uniformly conver-
gent sequence of elementary functions. In particular, every bounded measur-
able function is limit of a uniformly convergent sequence of simple functions.

Definition (C’) will play a central role in the theory of integration.
Closure under the arithmetic operations is a very particular case of

a. A Baire function of measurable functions is measurable.

Proof. Let us recall a (constructive) definition of Baire functions
(we consider only finite-dimensional Borel spaces). Baire functions are
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elements of the smallest class closed under passages to the limit con-
taining all continuous functions. Therefore, since the class of measur-
able functions is closed under passages to the limit, it suffices to prove
that

A continuous function of measurable functions is measurable.

Thus, let g on R¥ be continuous; that is, for every point (xy, - - -, #x)

BN
€ RY,
g(x/h e x'N) — g(xh ceeyxy) as Xy Xy, o, &N o xn.

Let Xi, £ =1,2, .-+, N, be measurable and let X,; be sequences of
simple functions such that X, — X for every k. We found (in 3°)
that the functions g(X,, « -+, Xan)(that we assumed tacitly to have
meaning) are measurable and hence, by continuity and closure under
passages to the limit, the function

g(Xl) Tty XN) = lim g(an) T XnN)
is measurable. This completes the proof.

All the foregoing definitions and properties extend at once, and word
for word, to functions on a measurable space to any finite-dimensional
Borel space, provided we replace R by R¥ and leave out the operations
of multiplication and division that we do not define (at least here) for
such functions. For example,

Sfunctions such that inverse images of Borel sets in their range space are
measurable sets in their domain are called measurable functions.

This extension is useful but, in fact, brings nothing new, for

b. A4 function X = (X1, -+, XN) 5 measurable if, and only if, its
components Xy, +++y, Xy are measurable.

In other words such a function is merely an N-uple of numerical meas-
urable functions.

Proof. 1f X = (X, ---, Xn) is measurable, then, for every £ < N,
the sets

[ Xk = %] = X [—oo, x4
= X_l[_w) ety —05 400y - -y 400, Xy 0, -, + ]

are measurable, so that X} is measurable.




[SEc. 6] MEASURABLE FUNCTIONS AND INTEGRATION 111

Conversely, if all X}, are measurable, then the sets

N
[X=x=[Xi %, -, Xn S 28] = N [ Xk £ 5]
k=1
are measurable, so that X = (X3, ---, Xy) is measurable.

We give another (descriptive) definition of Baire functions. With
this definition, it is customary to call these functions Borel functions.
A measurable function on a finite-dimensional Borel space to a finite-
dimensional Borel space is called a Borel function. In other words, g on
RY to R¥ is a Borel function if, and only if, the inverse images of Borel
sets 8’ in RY' are Borel sets § in RY. The proof of a in this more gen-
eral case is then immediate and we have

a'. A Borel function of a measurable function is measurable.

For, if X is a measurable function (not necessarily numerical) and g is
a Borel function on the range space of X, then, for every Borel set §’
in the range space of g, the set (gX)71(8") = X 1(g71(S")) is measura-
ble and, hence, gX is a measurable function.

§ 6. MEASURE AND CONVERGENCES

6.1 Definitions and general properties. The notions of “measur-
able” sets and “measurable” functions are two out of a triplet of notions,
due essentially to Lebesgue, the third being the notion of ‘“measure”
which gave its name to the two others, and which we shall introduce
now.

A function ¢ on a o-field @ is said to be g-additive if, for every counta-
ble disjoint class {4;} C @,

o(2° 4;) = X o(A4)).

To avoid trivialities, it is assumed that at least one value of ¢, say,
o(Ay), Ay € @, 1s finite. Since

o(Ao + 9) = o(Ao) = (Ao) + (D),

this assumption is equivalent to ¢(f) = 0. To avoid meaningless ex-
pressions of the form 4w —oo, it is assumed that at least one of the
possible values —® or 4+« is excluded.

¢ is said to be finite if its values are finite, and it is said to be o-finite
if the space in which @ is defined can be partitioned into a countable
number of sets in @ for which the values of ¢ are finite.
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A measure p on a o-field @ is a nonnegative and o-additive function.
In other words, u is defined by the three following properties:

(1) w(X 4;) = 2 u(d4;) for every countable disjoint class {4;} C @;
(i) wu(A) = O for every 4 € @;
(iii) w(®) = 0.

The value p(A) of p at A is called the measure of A and, if there is no
confusion possible, we drop the bracket following the symbol p.

A measure space (@, @, u) is formed by the space Q, the o-field @ of
measurable sets in this space, and the measure p defined on this o-field.
Unless otherwise stated all sets under consideration will be measurable
sets in our measure space. A set of measure O is said to be a p-null set
or, if there is no confusion possible, a #ull set, and definitions or relations
valid outside a u-null set are said to be valid almost everywhere (a.c.).
The following properties of the measure p are immediate:

a. u is nondecreasing, and p is bounded if the space Q is of finite measure.
This follows from
uB = ud + u(B — A4) =2 ud for B D A.
b. u is sub o-additive: uJ 4; £ 3 pd;.
This follows from
U 4j = w41 + 442 +- )
= pdy + pA1°Ads +- - S pdy + pds 4.
A. SEQUENCES THEOREM. [f An, 1 A, then ud, T ud and, in general,
lim inf pA4, Z p(lim inf 4,).
If p is finite, then, moreover,
A, L A implies udy, | pA, limsup pd, < p(lim sup 4,),
An — A implies pd, — pA.
Proof. 1If A, 7 A4, then, by ¢-additivity,
pAd = pdy + u(ds — A1) +---
= lim {pdy + w(d2 — A1) + -+ -+ p(dn — An1)}

= lim uA,.
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If A, is an arbitrary sequence, then, since B, = (\ 4 T lim inf 4, and
kzn
pdn = uBn, it follows that

lim inf p4, = lim uB, = p(lim inf A4,),

and the first assertion is proved.

Let now u be finite and use the proved assertion. If 4, A4, then
Ay — A, 1 4y — A and, hence,

pdy — pdn = p(dy — 4,) Tu(dy — 4) = pdy — pd,

so that uA, | ud. 1f A, is an arbitrary sequence, then uQ — lim sup pA4,
= lim inf uA4,° = p(lim inf 4,°) = pQ — p(lim sup A,) and, hence,
lim sup pA4, < p(lim sup 4,). Finally, if 4, — 4, then the two in-
equalities proved above yield p4, — pd, and the proof is complete.

The introduction of measures yields new types of convergence founded
upon the notion of measure and unknown in classical analysis. Before
we introduce them, we recall the classical types of convergence; unless
otherwise stated, we consider sequences X, of measurable functions on
a fixed measure space (2, @, p) and limits taken as # — oo,

If X, converges to X on A according to a definition “c” of conver-

gence, we say that X, converges “c” on A and write X, = X on 4.
The Cauchy convergence criterion leads to the corresponding notion of
mutual convergence: if X,,, — X, converges “c” to 0 on A uniformly
in v (or X, — X, converges “c”’ to 0 on A4 as m, n — «), we say that
X, mutually converges “‘c” on A4 and write Xn, — X» 50 (or X —
X, - 0). In defining mutual convergence, we naturally must assume
that the differences exist, that is, meaningless expressions +® — do
not occur. We drop “on 4” if 4 = Q and drop “c” if the convergence
is ordinary pointwise convergence. '

We recall that X,, — X on 4 means that, for every w € A and every
e > 0, there is an integer 7, such that, for » 2 7,

if X(w) is finite, then | X(&) — Xa(w) | < ¢

1
ifX(w) = —oo, then Xn(w) < — =

€

1
if X(w) = +, then Xp(w) > + -
€
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If n.o = n. is independent of w € A, then the convergence is uni-

form and, according to the preceding conventions, we write X, — X
on 4. According to the closure property of measurable functions, if a
sequence of measurable functions X, — X, then X is measurable.
According to the Cauchy criterion, if X, are finite, then

X, — X finite if, and only if, X,, — X, — 0 or, equivalently
Xn+v - Xn — 0

X, = X finite if, and only if, Xn — X, — O or, equivalently,
Xppw — X, = 0.

6.2 Convergence almost everywhere. A sequence X, is said to
. ae. . .

converge a.e. to X, and we write X, — X, if X,, = X outside a
. . a.c.

null set; it mutually converges a.e., and we write X, — X, — O or

a.e. . .

Xnty — X» — 0, if it mutually converges outside a null set. It
follows, by the Cauchy criterion and the fact that a countable union
of null sets is a null set, that

a. A sequence of a.e. finite functions converges a.e. to an a.e. finite func-
tion if, and only if, the sequence mutually converges a.e.

a.e. A .
Let X, — X. Since X, are taken to be measurable, X is a.e.
measurable, that is, X is the a.e. limit of a sequence of simple functions.

Also, if X’ is such that X, — X'y then X = X’ a.e., for X can differ
from X’ only on the null set on which X, converges neither to X nor
to X’. Thus, the limit of the sequence X, is a.e. determined and
a.e. measurable. Moreover, if every X, is modified arbitrarily on a
null set NV,, then the whole sequence is modified at most on the null
set |J N, and, therefore, the so modified sequence still converges a.e.
to X.

These considerations lead to the introduction of the notion of “equiv-
alent” functions: X and X’ are equivalent if X = X’ a.e. Since the no-
tion has the usual properties of an equivalence—it is reflexive, transi-
tive, and symmetric—it follows that the class of all functions on our
measure space splits into equivalence classes, and the discussion which
precedes can be summarized as follows.

b. Convergence a.e. is a type of convergence of equivalence classes to an
#quivalence class.

In other words, as long as we are concerned with convergence a.e. of
sequences of functions, these functions as well as the limit functions are
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to be considered as defined up to an equivalence. In particular, we
can replace an a.e. finite and a.e. measurable function by a finite and
measurable function, and conversely, without destroying convergence
a.e.

Let us investigate in more detail the set on which a given sequence
converges. To simplify, we restrict ourselves to the most important
case of finite measurable functions, the study of the general case being
similar. By definition of ordinary convergence, the set of convergence
[X» — X]of finite X, to a finite measurable X is the set of all points
w € @ at which, for every ¢ > 0, | X(w) — Xy (w) | < e for #n = n.,
sufficiently large. Since, moreover, the requirement “for every ¢ > 0
is equivalent to “for every term of a sequence ¢ {0 as £ — «,” say,
the sequence 1 , we have

k
X, > XI=NUN[ Xep» — X| < ¢

=Q?OU&“_M<3’

so that the set [X, — X]is measurable. Similarly for the set of mutual
convergence, since the set

[Xn+v_Xn_’O]=nun”Xn+v—an<5]

¢>0n v

=Q?O[‘X"+”"X"‘<ﬂ

is measurable. Thus

c. The sets of convergence (to a finite measurable function) and of mu-
tual convergence of a sequence of finite measurable functions are measurable.

In other words, to every sequence we can assign a ‘‘measure of con-
vergence’’ and, the sets of divergence [X, & X]and [X,y, — X, b 0]
being complements of those of convergence and, hence, measurable, to
every sequence we can assign a ‘‘measure of divergence.” In particu-
lar, the definitions of a.e. convergence of a sequence X, mean that

plXn ¥ X]1=0 or plXay — X, b 0] =0.

Upon applying repeatedly the sequences theorem to the above-defined
sets, we obtain the following
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A. COoNVERGENCE A.E. CRITERION. Let X, X, be finite measurable
functions.

X, —> X if, and only if, for every ¢ > 0,
MU X — X Z2¢d=0

cidy if pois finite, this criterion becomes

pUl Xopo — X| 2 ¢ — 0.

Xy — Xn =0 if, and only if, for every ¢ > 0,
#nU[an+v_an Ze=0

and, if u is finite, this criterion becomes

pUl Xy — Xa| 2 g — 0.

6.3 Convergence in measure. A sequence X, of finite measurable
functions is said to comverge in measure to a measurable function X

and we write X, > X if, for every ¢ > 0,
ull Xa — X| 2 d — 0.
The limit function X is then necessarily a.e. finite, since
Wl X| = o] = | Xo — X| = o] S ul| X — X| 2 d > 0.
Similarly, Xn4, — Xn — 0 if, for every ¢ > 0,
pll Xopw — Xo| = ¢ — O (uniformly in »).

All considerations about equivalence classes in the case of convergence
. . . . . [

a.e. remain valid for convergence in measure. In particular, if X, —» X
[ . .

and X, — X', then X and X’ are equivalent, for

#[lX—X’léelé#[lX—an§§]+#[|Xn—X’|§§]—>O

and, hence,

/ 1
n[X¢X’]=pU[lX—X’l;;]=O.
k
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We compare now convergence in measure and convergence a.e.

A. COMPARISON OF CONVERGENCES THEOREM. Let X, be a sequence of
JSinite measurable functions.

If X, converges or mutually converges in measure, then there is a sub-
sequence X,, which converges in measure and a.e. to the same limit func-
tion. If u is finite, then convergence a.e. to an a.e. finite function implies
convergence tn measure to the same limit function.

Proof. The second assertion is an immediate consequence of the

a.e. convergence criterion, since u finite and X, 250X imply that
for every ¢ > 0,

pl Xopr — X[ 2d2pUl Xapw — X| 2 — 0.

As for the first assertion, let X, , — X, = 0. Then, for every inte-
ger k there is an integer #(k) such that, for » = n(k) and all »,

1 1
M [l Xn+v X l < EE
Let #n; = n(1), ny = max (n; + 1, n(2)), n3 = max (n, + 1,7 (3)), etc.,
sothat n; < 1y < nz3 <-+- — . Let X'y = X,, and
1
= [l X'y — X'i| 2 y]' Ba =kL>J A,
so that

1
pdr < é—",

k>n AR

1
Thus, for a given ¢ > 0, n large enough so that = < ¢ and all v, we

have on B,°

l X/n+,, - X/nl ék; l X/k+1 - X/kl < 2n—1 < e
Therefore, -
P'n U{l Xln+v_ Xln‘ = €] é#UH X/n+y - Xlnl = e]
n v v 1
< uB, < i 0

. . a.e.
and, hence, by the convergence a.e. criterion, X'ny, — X'n — 0.
. . ae. .
Thus, by 6.2a, there is a finite X’ such that X', — X’. Since on
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Bn°we have | X'nsy — X'n| < €for all v it follows, upon letting v — oo,
that on B,® we also have | X’ — X", | < e outside perhaps a null subset.
Therefore, upon taking complements,

#[|Xl_Xln|g€]§l~‘Bn<

on—1 - O’

so that X', = X'. A similar argument shows that X, — X implies
X'n —> X. This completes the proof.

CoroLLARrY. Convergence and mutual convergence in measure imply one
another.

Proof. 1If X, Rt X, then, for every € >.0 and all »,

P'[IXn-l-v_Xn‘ g.e]é#[|Xn+v_X| gg]

tullx-xlzi] -0

so that X,,, — X, = 0. Conversely, if Xnpw — Xa =5.0, then, upon
taking the subsequence X, of the foregoing theorem, we obtain, for
every ¢ > 0, by letting ng, n — o,

#[lX_angelélJ'[lX_Xnklgg]‘*‘#[l){nk_angg] _)O)

so that X, = X, and the corollary is proved.

§ 7. INTEGRATION

The concepts of o-field, measure, and measurable function are born
from the efforts, made in the nineteenth and the beginning of the twen-
tieth centuries, to extend the concept of integration to wider and wider
classes of functions. The decisive extension was accomplished by Le-
besgue, after Borel opened the way. Lebesgue worked with the special
“Lebesgue” measure. - Radon applied the same approach working with
Lebesgue-Stieltjes measures. Finally, Fréchet, still using Lebesgue’s
approach, got rid of the restrictions on the measure space on which
the numerical functions to be integrated were defined.

Lebesgue had two equivalent definitions of the integral, a descrip-
tive one and a constructive one. We shall use a constructive defini-
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tion of the integral of which there are many variants, but the basic’

ideas are always the same and, in general, the integral is first defined
for simple functions. Although infinite values are not excluded, never-
theless, the expression +w —, being meaningless, must be avoided.
Therefore, it behooves us to start with integrals of functions of constant
sign, say, nonnegative ones. Furthermore, the central property of the
integral, called “the monotone convergence theorem,” says that for a
nondecreasing sequence of nonnegative functions integration and pas-
sage to the limit can be interchanged. Therefore, we give here the ap-
proach aimed directly at this theorem, an approach which requires a
minimum of notions and of effort. The reader will recognize in the
central definition 2° below, a particular form of the monotone conver-
gence theorem.

7.1 Integrals. We consider a fixed measure space (@, @, u); 4, B,

-+, and X, Y, ---, with or without affixes, will denote measurable
sets and (numerical) measurable functions, respectively.

DeriniTioNs 1° The integral on Q of a nonnegative simple function
X = 3 xil4; i1s defined by
i=1

Xdp = 3 xjud;.

Q F=1

2° The integral on Q of a nonnegative measurable function X is de-

fined by
fXd,; - lime,,a’p,
Q Q

where X, is a nondecreasing sequence of nonnegative simple functions
which converges to X.
3° The integral on Q of a measurable function X is defined by

fXa'/J, =fX+a'p, —fX"a'p,
Q2 Q Q

where X+ = XIix>q and X~ = —XI;x<q are the positive and nega-
tive parts of X respectively, provided the defining difference exists,
that is, provided at least one of the terms of this difference 1s finite.

If fXa’p is finite, that is, if both of the terms of the difference are
43

finite, X is said to be integrable on Q.
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Finally, if X is a.e. determined and measurable, that is, there exists
a measurable function X’ such that X = X’ outside a u-null set,

we set f X = f X', provided the right-hand side exists.

Upon replacing, in the preceding definitions, @ by a measurable set
A (hence replacing, in 1°) every 4; = QA4; by AA4;), they become defi-

nitions of the integral of X on A, to be denoted by f X du. Since, for
A

X =3 z;14, 2 0, we have

=1

fXIAa'p = Ex]ydd <fXdp,

it follows immediately that

iffXa’p exists 5o a’oe.ffXa’p, and fXa'p =fXIA du.
Q A A Q

To simplify the writing, we drop dp and @ in the foregoing symbols,
unless confusion is possible; thus, the symbols fXa’p and fX du
2 4

will be replaced by f X and f X, respectively.
4

Justification and additivity. We have to justify the three definitions
1°, 2°, 3°, that is, we have to show that the concepts as defined exist
and are uniquely determined. In the course of the justification we
shall have use for the elementary properties below; the first one is
called the additivity property of the operation of integration.

A. ELEMENTARY PROPERTIES. Lef X,fY,fX +fY exist.

I Linearity:

f(X+Y)=fX+fY, L+BX=LX+LX, ch=cfX.

I1 Order-preservation:

Xgo:fXgO, XgY=>fX;fY,

X=Ya.e.=>fX=fY-
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II1  Integrability:
X integrable < l X l integrable = X a.e. finite;
| X| < Yintegrable = X integrable;
X and Y integrable = X + Y integrable.

Assume that the additivity property is proved. Then the second of
properties I follows by replacing in the first one X by XI4 and Y by
XIp. The third one follows directly by successive use of the definitions.

The successive use of the definitions also proves directly the first
and third of properties I1I, and the second one follows by the additivity
property upon setting X = Y + Z, where Z = 0.

Similarly for properties III, except for | X| integrable = X a.e.
finite. But, if u4 > 0 where 4 = [| X | = o], then, on account of II,

fl X| gfl X |I4 = cud whatever be ¢ > 0. It follows, by letting

¢ — o, that f | X| = w, and the property is proved ab contrario.
Thus

For each of the successive definitions, the elementary properties hold as
soon as the additivity property is proved.

We use this fact repeatedly in proceeding to the successive justifica-
tions of the definitions and to the proof of the additivity property.

m
1°  Nonnegative simple functions. Since X = ijIAi 1s nonnega-
. . . 1=1
tive, the defining sum in
m
X =2 xud; =0
i=1
exists; it may be infinite. Its value is independent of the way in which
n

X is written. For, if X is written in some other form 3 y,J By then
k=1

%j = yiif A;Bi @ and, from Y 4; = ) By = @, it follows that
j=1 k=1
> xiud; = 3 xjud;By =f2 %il 4 g, = | 2 yil 4,5
j——'l ].k ick jrk

= 3 yiudiBr = 2 yipBs.
<.k

k=1
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Thus, f X is unambiguously defined.

n

m
Let now X = > x,-IA,_ and Y = 3 yilp be two nonnegative simple
]=1 k=1

functions, so that X + Y = E (%; + _yk)I Proceeding as above,

we have

X+7Y)= E (*; + ye)udiBr = E x;udiBr + E Yind;iBy

—ExJ#A+Eyk#Bk—fX+fY

J=1
and the additivity property is proved.

2° Nonnegative measurable functions. In definition 2°, the sequence
of simple functions X, = 0 is nondecreasing, so that, by AII for sim-

ple functions, the sequence f X, 1s nondecreasing and, hence, has a

limit, finite or not. Moreover, for every nonnegative measurable func-
tion X there exists such a sequence X, T X. Therefore, to justify the
definition, it suffices to show that the defining limit is independent of
the particular choice of the sequence X,. In other words

a. If two nondecreasing sequences X, and Yy of nonnegative simple
functions have the same limit, then

lim f X, = lim f Y,

Proof. It suffices to prove that 0 < X, T X and lim X, = Y, where
Y is a nonnegative simple function, imply lime,. ng. For, then,

it follows from the assumptions that, for every integer p,

1ime,.ng,,, 1ime,.ngp,

and the asserted equality is obtained by letting p — oo.
First, we prove the asserted inequality under the supplementary re-
strictions
<o, m=minY >0, M=maxY < o,

Let € > 0 be less than m. Since lim X, = Y, it follows that A4, =
[Xa>Y — ¢ 1Q But, on account of the validity of A for simple
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functions and the finiteness of x and Y, we have

[%z %102 for-or,, - [Y=[*10s = wua,

ng — Mpdp® — epd,

and, hence, by letting #» — o and then ¢ — 0, the asserted inequality
follows. Now, we get rid of the supplementary reszrictions.
If u@ = oo, then

[xz Xtz [ - oLz - cut, - o

and the asserted inequality is trivially true.
If M = o, then, the inequality being valid with X, and Yliy<o +
¢l|y = + - Where ¢ is an arbitrary finite number, we have

limen ngI[y<ao] + cplY = - x]

and, letting ¢ — oo, the right-hand side becomes f)'.

Finally, if m = 0, then, since the functions X, and Y are nonnegative
and, by what precedes, the inequality is true for integrals on [Y > 0],

we have
limenglim Xngf Y=fY.
[Y >0] [Y >0]

This completes the proof and the definition of the integral of a non-
negative measurable function is justified.

Since the additivity property was proved for nonnegative simple
functions X,, Y,, and 0 £ X, 1 X,0 = Yo7 Y imply 0 < X, +Y.1
X + Y, it follows, by letting # — o in

[+ v = [%a+ [ Y,
f(X+Y)=fX+fY.

Thus, the additivity property remains valid for nonnegative measurable
functions.

that
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3° Measurable functions. The decomposition X = Xt — X~ of a
measurable function into its positive and negative parts is unique, so

that fX =fX+ —f_X" 1s unambiguously defined, provided fX"‘

or fX" 1s finite.

Finally, if X is determined and measurable outside a p-null set N,
then let X’ be any measurable function such that X = X’ on N°. The

integral of X is defined by setting fX =fX’, provided fX' exists.

By AII for nonnegative measurable functions, the integrals of such
functions which coincide on N° are equal. It follows, by definition
3° that the same is true when the functions are not of constant sign.

Therefore, f X 1s unambiguously defined.
It remains to prove the additivity property.
Since we assume that not only fX and fY exist but also that

fX +fY exists, that is, is not of the form 4o —x, it follows that

(excluding the trivial case of the three integrals infinite of the same sign)
at least one of the functions, say Y, is integrable and, hence, by AIII,
is a.e. finite. Therefore, X + Y is a.e. determined, and we do not re-
strict the generality by taking determined X and Y, and changing Y
to 0 on the u-null event on which it is infinite and X 4+ Y may be not
determined.

We decompose Q into the six sets on each of which X, Y,and X + Y
are of constant sign (20 or <0). Because of definition 3° and prop-
erty Al for nonnegative functions, it suffices to prove the additivity
property on each of these sets, say 4 = [X =20, Y <0, X4+ Y = 0].
But, on account of definition 3° and the additivity property for non-
negative functions (X + Y)JI4 and — Y7, we have

fAX=fA(X+Y)+fA<—Y)=fA<X+Y)—fAY

and, fY being finite,
4

fAX+fAY=fA(X+Y).

Similarly for the other sets, and the additivity property follows.
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This completes the justification of the definitions and the proof of
the elementary properties.

7.2 Convergence theorems. The central convergence property is as
follows:

A. MONOTONE CONVERGENCE THEOREM. [fQ = X, T X, then | Xn 1

[x.

Proof. Choose nonnegative simple functions Xyn, T Xi as m — oo,

The sequence Y, = max X, of nonnegative simple functions is non-
ksn

decreasing, and

an § Yn §Xn) kan éfYn §an

It follows, by letting » — o, that

X, <lmY, < X, kagflimYnglimen

and, by letting £ — o, we obtain

X <limY, < X, limen < f lim Y, < lim f X,.

Thus lim Y, = X and fX = limen. The assertion is proved.

CoroLLarY 1. The integral is o-additive on the family of nonnegative
measurable functions.

This means that, if the X, are nonnegative, then fz: Xn=Ean.

and follows by 0 = > X T > Xn.

k=1

CoroLLARY 2. If X is integrable, then fl X| - 0aspd - 0.
A

For, if X, = X or n according as | X | < 7 or | X| =z n,thenf\ X. |1
f| X |, so that, given e > 0, there exists an no such that f| x| <

f | X, | + . Tt follows that, for £ with ud < ¢/2no,

L|X|=L|xno|+ﬁ<|x|—|X,..,|><§+f|x|—f1x,..,1<e.
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The monotone convergence theorem extends as follows:

B. FATOU-LEBESGUE THEOREM. Let Y and Z be integrable functions.
If Y £ Xpor Xn S Z, then

flim inf Xp £ lim inffX,,, resp. lim supr,, §flim sup Xn.

IYS X1 X,0rY S Xo < Z and X~ X,t/zean,. = fX.
Proof. If the X, are nonnegative, then

Xn 2 Yy = inf X T lim inf X,
kzn

so that, by the monotone convergence theorem,

lim inf f X, = lim f Y, = f lim inf X,.

The asserted inequalities follow, by the additivity property, upon ap-
plying this result to the sequences X, — Y and Z — X, of nonnega-
tive measurable functions, and the asserted equalities are immediate
consequences.

Clearly, if the assumptions of this theorem hold only a.e., the con-
clusions continue to hold. In fact, the last assertion, frequently called
the dominated convergence theorem, extends as follows:

C. DOMINATED CONVERGENCE THEOREM. If | Xn| S Y ae. with Y

integrable and if Xn 25 X or Xn > X, then fX,. —>fX. In fact,

f Xn — f X — 0 uniformly in A or, equivalently, fl Xa— X|—0.
4 4

Progf. Since

IL(X,,—XHgfIXn—XI=f<Xn—X>++f<Xn—X>—,

it follows that the last two assertions are equivalent and imply the

first one. Thus, it suffices to prove that f| Xa— X| = 0. Set

Y, = | Xn X| and observe that Y, < 2Y a.e. and that the fY,,

remain the same when the Y, are modified on null events. Therefore,
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it suffices to prove that, if 0 < Y, < Z integrable and Y, — 0 or
Ya 5 0, then [Y, — 0.

The case Y, 2% 0 follows from the last assertion in B. It implies

the case Yp — 0, since, by selecting a subsequence Y, (= 0) such

that f Ya — lim sup f Y, and, within this subsequence, a sequence
Yo =5 0, 1t follows that fY,,u — 0 and lim supr,. = 0. Hence

f Y. — 0, and the proof is complete.

Extension. In all the preceding convergence theorems the parameter
n — o can be replaced by a parameter # — #, along an arbitrary set
T < R of values, the reason for this being that 2, — aas¢ — ¢ along T
is equivalent to 4,, — a for every sequence #, in T converging to 4.

Applications . We assume all functions X; to be integrable.

The dominated convergence theorem yields at once

1° If | Xi| S Y integrable and X, — X, as t — to(t € T), then

th —)fXgo.

This proposition yields, by applying the deﬁnition of derivative,

dX, X, — X, )
2° Ifyon T, » exists at ty and —t——-——t——- =< Y integrable, then
— 4

G- 1),

In turn, this proposition yields

Y integrable,

a’X,l

. ¢
3° If, on a finite interval (a, &), n exists and

Sfx-15
, =
dt

Xi— Xp=(@—1) (dX‘)
t .t' = @ )

where ¢’ lies between ¢ and #. And in its turn, this proposition yields

then, on [a, b],

This follows from
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4° If, on a finite interval (a, B), X, is continuous and | X;| £ Y in-
tegrable then, for every t € [a, &),

[ (o) = ([ ear).

Moreover, if the foregoing assumptions hold for every finite interval and

o0
f | X, | dt < Z integrable, then

[ (x)a-f ([ xa)

The integrals with respect to ¢ are Riemann integrals.
The first assertion follows from the fact that the derivative of a

t
Riemann integral f g(?) dt where g is continuous is g(¢#) which is bounded

on [a, 4], so that, upon applying 3° to the asserted equality, it follows
that derivatives of both sides are equal and, since both sides vanish
for t = a, the equality is proved. The second assertion follows by 1°
from the first one, by letting 2 — —w and + — .

11. Integrals over the Borel line. Let ® be the Borel field in R =
(—o, +x) and let u be a measure on ® which assigns finite values to
Jfinite intervals. Let ®, be the class of all sets which are unions of a
Borel set and a subset of a p-null Borel set. ®, is closed under forma-
tion of complements and countable unions and, hence, is a o-field. By
assigning to every set of B, the measure of the Borel set from which it
differs by a subset of a u-null set, u is extended to a o-finite measure
on ®,, that we continue to denote by u. ®, will be called a Lebesgue-
Stieltjes field in R and p on ®, will be called a Lebesgue-Stieltjes measure.
The relation

F(é) - F(a) = F[a) b) = u(a, 5)

determines, up to an additive constant, a function F on R which is
clearly finite, nondecreasing, and continuous from the left, called a 4is-
tribution function corresponding to u. (It was proved that, conversely,
such a function determines a Lebesgue-Stieltjes measure u.)

Let ¢ be a ®,-measurable function. If g is integrable, the integral

fg du is called a Lebesgue-Stieltjes integral. 1f F is a distribution func-

tion corresponding to p, this integral is also denoted by fg dF, and the
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b
integral gdu is also denoted by f gdF. If F(x) = x, x € R,

a, b)
the corresponding measure is called the Lebesgue measure; it assigns to
every interval its “length” and, thus, is a direct extension of the notion
of length. The corresponding o-field, or Lebesgue field, is formed by
b

Lebesgue sets and the corresponding integrals, say f g dx, f gdx, are

called Lebesgue integrals. Lebesgue field, measure, and integral are
prototypes of general o-fields, measures, and integrals. One may say
that the basic ideas and methods relative to measure spaces and inte-
grals belong to Lebesgue.

b
Let g be continuous on [a, b). The Lebesgue-Stieltjes integral f gdF

becomes then a Riemann-Stieltjes integral and the Lebesgue integral f gdx

becomes then a Riemann integral.
The proof is easy. We have to show that, g being continuous on
(a, 8], f g dF 1s limit of Riemann-Stieltjes sums. This is possible be-
a

cause a continuous function on a closed interval is bounded and is
the (uniformn) limit of any sequence of step-functions

= Eg(x’nlc)llz"k.z,,.k“), a=x, < < Xnk,41 = é)
’
Xnk é X nk < Xn, k41

such that max (xn,k4; — ¥.x) — 0. Therefore, by the dominated con-
k < kn

vergence theorem or, more specifically, by the last assertion of the
Fatou-Lebesgue theorem,

kn
f gdu = llmf gndu = lim 2 g(x"ne) #l%nks Xn.kt1)s

Ic=l
that 1s,

f gdF = lim Eg(x nk) F(Xnty ¥n,k4+1))

where the right-hand side sums are precisely the usual Riemann-
Stieltjes sums. Thus, in the case of g continuous on [, 4], the integral

b
f g dF can be defined directly in terms of F, or of measures assigned

to intervals only.
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However, when g is continuous on R, its Lebesgue-Stieltjes integral
over R and its improper Riemann-Stieltjes integral do not necessarily
coincide. In fact, the last integral is defined by

b
fng= lim | gdF,

b— 4o

provided the limit exists and is finite. It may happen that at the same

time )
f|g|dF= lim flgldF

b— 4w

is infinite so that lgl not being Lebesgue-Stieltjes integrable, g is not
Lebesgue-Stieltjes integrable. Such examples are familiar; one of the
most classical ones is that of the improper Riemann-integral of g(x) =
sin x/x. However, if g is Lebesgue-Stieltjes integrable then, clearly,
both integrals coincide. Thus, the class of continuous functions whose
improper Riemann-Stieltjes integrals with respect to a distribution
function F exist (and are finite) contains the class of continuous func-
tions which are Lebesgue-Stieltjes integrable with respect to F.

§8 INDEFINITE INTEGRALS; ITERATED INTEGRALS

8.1 Indefinite integrals and Lebesgue decomposition. We charac-
terize now the indefinite integrals by using repeatedly the monotone
convergence theorem. Let X be a measurable function whose integral

exists—say, fX_ is finite. Then the indefinite integral ¢ on @ de-

fined by |
o(A) = f X= f XI.
A

exists, for fX_IA 1s finite and fX’*'IA exists. Since the integral of a

function which vanishes a.e. is O, the indefinite integral is u-continuous,
that is, vanishes for p-null sets. Since for a countable measurable par-
tition {A;}, X¥[4 = 3 X*I 44, it follows that, by the monotone con-

vergence theorem,
X = f X,
j;_:Aj Z Aj

and the indefinite integral is o-additive.
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If X is integrable, then it is a.e. finite, and the indefinite integral is
finite. If X is not integrable but, still, X is a.e. finite and p is o-finite,
then the indefinite integral is o-finite. For, by decomposing Q into sets
Ay of finite measure, we have

+-00 0
x-% % X
Me=—o0 n==] ¥ Anfm X <m+1]
and every term of the double sum is finite.

The problem which arises is whether the foregoing properties charac-
terize indefinite integrals and the answer lies in the celebrated Lebesgue
(-Radon-Nikodym) decomposition theorem that we shall establish
now. But first we introduce a notion in opposition to that of u-conti-
nuity. A set function ¢, on @ is said to be u-singular if it vanishes out-
side a p-null set; in symbols, there is a u-null set V such that

es(AN°) =0, 4€a.

A. LEBESGUE DECOMPOSITION THEOREM. If, on @, the measure u and
the o-additive function ¢ are g-finite, then there exists one, and only one,
decomposition of ¢ into a p-continuous and o-additive set function ¢, and
a p-singular and o-additive set function o,,

© = @c+ @5

and ¢ 15 the indefinite integral of a finite measurable function X deter-
mined up to a u-equivalence.

¢c and ¢, are called p-continuous and u-singular parts of ¢, and X is
called the derivative de/du with respect to u; we emphasize that do/du
is determined up to p-equivalence.

Proof. 1° Since @ is a countable sum of sets for which u and ¢
are finite and since, by the Hahn decomposition theorem, ¢ is a differ-
ence of two measures, it suffices to prove the theorem for finite measures
p and ¢. Furthermore, if there are two decompositions of ¢ into a
p-continuous and a up-singular part:

¢=¢c+¢a=¢,c+¢’u
then

ec—¢@c=¢s— ¢s =0,
for the u-continuous function ¢, — ¢’, vanishes for all g-null sets while

the u-singular function ¢’, — ¢, vanishes outside a u-null set. Finally,
an indefinite integral determines the integrand up to an equivalence:
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0o(A) =LX=LX’

then X = X' a.e.; for, if, say, pud = pu[X — X' > €] > 0, then

L (X —-X)>0.

if, for every 4 € Q,

Thus the uniqueness assertions hold if we prove the existence asser-
tions under the assumption that u and ¢ are finite measures.

2° Let ® be the class of all nonnegative integrable functions X whose
indefinite integrals are majorized by ¢:

fxgam,dea
A

® is not empty, since X = 0 belongs to it; and there is a sequence
{X.} © ® such that

an—>sup X=a= Q) < co.
Xce
Let X', = sup Xi, so that 0 < X', T X = sup X,.. Let
kgn
Ay = [Xp = X',), Ay = A°4s° - A °Ary, Ay = 4,
SO that n n
SAv=U 4, =9

k=1 k==l
and, for every A4,

.ﬂm=2 Xo=% [ X235 oddy) = o).
A k=1 YAA'L k=1 v 44’ k=1

Upon letting # — « and applying the monotone convergence theorem,

we get
fxgam,jkea.
A

Therefore X is a “maximal” element of ®. This property will allow us
to show that

¢a=¢_¢cgox

where ¢, is the indefinite integral of X, i1s p-singular, and the proof will
be complete.
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3° Let D, + D,° be a Hahn decomposition for the finite and s-addi-
tive set function ¢, = @, — — p, thatis, ¢,(4D,) = 0and ¢,(4AD,°) = 0
n

for every A. Let D = () D, (whence D¢ = |J D,°), so that, for every
A and all »,

1
0 = ¢s(AD) = - u(4D).
n

Upon letting # — o, 1t follows that ¢,(4D) = 0 and, hence, ¢,(4) =
0s(AD°). Since

ec(A) = o(A) — 0s(AD°) £ o(A) — ¢s(AD,°),
it follows that

1 1 .
L(X-l- ;IDnc> = @A) + = u(4D,°) = o(A) — ¢a(ADy°) = ¢(A),

n

' 1
so that X 4+ — I, . € ®. But this conclusion is contradicted by
n n

1 1
f<X+—IDc>=a+—pDn°>a
n i n

unless uD,® = 0. Therefore, all sets D,° are u-null sets and so i1s
their countable union D°¢. Since ¢,(4) = @¢s(AD°), it follows that ¢,
is u-singular, and the proof is complete.

In the particular case of a u-continuous ¢, the foregoing theorem
reduces to

B. Rapon-Ni1kopYM THEOREM. If, on @, the measure u and the o-addi-
tive set function ¢ are o-finite and ¢ is p-continuous, then ¢ is the indefinite
integral of a finite function determined up to an equivalence.

We are now in a position to characterize indefinite integrals of finite
functions on a o-finite measure space.

C. A set function ¢ on Q is the indefinite integral on a o-finite measure
space of a finite function X determined up to an equivalence, if, and only
if, ¢ is o-finite, g-additive, and p-continuous; and X is integrable if, and
only if, this ¢ is finite.

The “if” assertion is the Radon-Nikodym theorem and the “only if”
assertion is contained in the discussion at the beginning of this sub-
section.
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CoroLLARY. Let \ and u be o-finite measures on Q. If u is N-continuous

and X is a measurable function whose integral f Xduexists,then, for every

4d€aQ@, '
du
fXdp=fX—*d)\.
A 4 dx

Proof. 1f X = Ip, B € @, then the equality is valid, since

fzd AB % fz P
m=u = — = — .
AB 4B d\ ABd)\

It follows that the equality is valid for nonnegative simple functions
and hence, by the monotone convergence theorem, for nonnegative
measurable functions and, consequently, for measurable functions
whose integral exists.

Extension. The indefinite integral of a measurable function X which
is not necessarily finite is still s-additive and p-continuous, but it is not
necessarily o-finite. The question arises whether the Radon-Nikodym
theorem can be extended to this case. The answer is in the affirmative.

D. The Radon-Nikodym theorem remains valid if finiteness of X and
o-finiteness of ¢ are simultaneously suppressed therein.

Proof. As usual, it suffices to consider a finite measure u and a
p-continuous measure ¢ on Q.

Let ® be the class of all measurable sets such that ¢ on ® is o-finite,
and let s be the supremum of p on ®. '

There exists a sequence B, € ® such that s = lim pB, and, hence,
B = B, €® with uB = 5. If there exists a C € {B°4, 4 € @}
such that 0 < ¢(C) < «, then B+ C € ®, pC > 0, and

sZ2u(B+C)=uB+ pC>s.
Therefore, while ¢ on {BA, 4 € @} is o-finite, ¢ on {B°A, 4 € @}

can take values 0 and « only.

Furthermore, whatever be C € {B°4, 4 € @}, it is impossible to have
uC > 0 and ¢(C) = 0 since then B+ C € & and, as above, 5 > s.
Since ¢ is p-continuous, it is also impossible to have pC = 0 and ¢(C)
> 0. Thus, for every C € {B°4, A4 € @}, either pC > 0 and ¢(C) =
w-uC = or puC =0 and ¢(C) = 0. In other words, ¢ on {B°4,
A € @} is the indefinite integral of a function X = « on B¢, deter-
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mined up to an equivalence. On the other hand, by B, ¢ on {B4,
A € @} is the indefinite integral of a function X on B, determined up
to an equivalence. These values of X on B and on B° determine it on
Q, up to an equivalence and, for every 4 € @,

fA X-= f4 X+ fA X = odB) + o(dBY) = o().

The extension follows.

8.2 Product measures and iterated integrals. Let (Q;, Q;, ), 7 =
1, 2, be two measure spaces. A space (2, @, u) is their product-measure
space if

Q = Q; X Q2 is the space of all points w = (wy, ws), w; € Qy;

@ = @; X @z is the minimal o-field over the class of all measurable
“rectangles” A; X A3, A; € @;, where 4; X A3 is the set of all
points w with w; € A;;

p = py X ug 1s the “product-measure’” on @, provided it exists, that
1s, is a measure on @ uniquely determined by the relations u(A4; X
As) = wAy X ugAs for all measurable rectangles 4; X As.

We intend to find conditions under which the product-measure ex-
ists and conditions under which integrals with respect to this measure
can be expressed in terms of integrals with respect to the factor meas-
ures u;. In what follows the subscripts 1 and 2 can be interchanged.
We shall also frequently proceed to the usual abuse of notation which
consists in the use of the same symbol for a function and for its values.

For every set 4 C Q, the section 4, of A at w; is the set of all points
ws such that (w;, wp) € 4. For every function X on @, the section X,
of X at w, is the function defined on Q3 by X, (w2) = X(wy, ws).

a. Every section of a measurable set or function is measurable.

If @ is the class of all the sets in @ whose every section 1s measurable,
then it is readily seen that @ is a o-field. But every section of a meas-
urable rectangle 4; X A5 is measurable, since it is either empty or is
one of the sides. Therefore, @ D @ and the first assertion is proved.
If X on Q is measurable and § © R is an arbitrary Borel set, the sec-
ond assertion follows by

X, 7HS) = [wg; Xoy(w2) € 8] = [w2; X(w1, w2) € §]
= [wg; (@1, wg) € X1 = (X7
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A. PRODUCT-MEASURE THEOREM. If u; on Q) and uy on Qg are o-finite,
then, for every A € Gy X Qq, the functions with values p\A,, and pod,
are measurable, and the set function p with values

ud = f (ur ) dup = f (wado,) dus,

is a a-finite measure p on @y X Qg uniquely determined by the relation

u(Ady X A3) = pdy X peda, A; € Q.

In other words, u is the product-measure u; X us.

Proof. The proof is based upon the fact that, by the monotone
convergence theorem, the class 91 of all those sets A4 for which the in-
tegrals are equal is closed under formation of countable sums.

Since the measures g; and us are o-finite, the product space is de-
composable into a countable sum of rectangles with sides of finite meas-
ure. It follows that, without restricting the generality, we can suppose
that these measures are finite. If 4 = A4; X A3 is a measurable rec-
tangle, then py A4, = p1A41 X I4,(w2) and similarly by interchanging the
subscripts 1 and 2. Thus, the functions with these values are measur-
able and both integrals reduce to u;4; X pa4s. The last asserted equal-
ity is proved and 9N contains all measurable rectangles. It follows that
9N contains the field of finite sums of these rectangles. But, M is closed
under nondecreasing passages to the limit, on account of the monotone
convergence theorem, and, under nonincreasing ones, on account of the
dominated convergence theorem and the finiteness of measures. There-
fore, by 1.6, it contains the product o-field @; X @, and the equality
of the integrals is proved. The finite set function u on @ so defined is a
measure, on account of the monotone convergence theorem, and it is
uniquely determined by the stated relation, on account of the exten-
sion theorem. This terminates the proof.

CoroLLarY. A € @) X Qg 15 a (uy X uo)-null set if, and only if, al-
most every section A, is a pe-null set.

For the integral of a nonnegative function vanishes if, and only if, the
integrand vanishes a.e.

We are now in a position to answer the second stated question. The
result is due to Lebesgue and Fubini and is generally called the Fusini
THEOREM.
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B. ITERATED INTEGRALS THEOREM. Let (Q, @y, u) and (s, Qa, us)
be a-finite measure spaces.

If the Q1 X Qo-measurable function X on Q; X Qo is nonnegative or
py X p2-integrable, then

Xd(u X pg) = dmf KXoy dug = d#zf X, du1,
Q Q Q2 Q

21X 22
and in the integrability case almost every section of X is integrable.

The iterated integrals are to be read from right to left.

Proof. For X = I4, the asserted equality reduces to that of the
product-measure theorem. It follows that it holds for simple functions
and hence holds for nonnegative measurable functions because of the
monotone convergence theorem, since, if 0 £ X, T X, then 0 < (X,)., ]

(X)o- If X 2 0 is integrable, then the function\fX‘,,x dug of wy is in-

tegrable and hence a.e. finite, so that the functions X,,, of w, are almost all
integrable. Therefore, if X = X* — X~ is integrable, that is, X+
and X~ are integrable, then (X),, = (X™*),, — (X7),, are almost all
integrable and a.e. finite. This terminates the proof.

Finite-dimensional case. What precedes extends in an obvious man-
ner to the product of an arbitrary but finite number of measure spaces.
The interesting case is the infinitely dimensional one, and we shall now
investigate it from a somewhat more general point of view.

*8.3 Iterated integrals and infinite product spaces. In what follows
we push the abuse of notation to its extreme.

We consider a sequence of measurable spaces (2., @,) and denote
by w. points of @, and by 4, measurable sets in Q, (sets of @,). The
product measurable space (3 XX @, @; XX @,) is the space
of points (wq, -, w,) together with the minimal o-field over the inter-
vals Ay X+++X A,. The product measurable space (] 2., I @) is
the space of points (w1, wg, * - -) and the minimal o-field over all cylinders

of the form 4y X---X A4, X JI % or, equivalently, over all cylinders
k=n+1

of the form C(B,) = B, X II @ where the base B, is a measurable

k=n+1
setin @ X--+X Q,.

In the infinitely dimensional case, we must, for reasons of ‘“consist-
ency”’ (to be made clear later), limit ourselves to probabilities, that is,
to measures which assign value one to the space, to be denoted by P, Q,

-+, with or without affixes. Furthermore, in probability theory, the
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following more general concept plays a basic role (at least when “inde-
pendence”—see Part III—is not assumed). Every function—to be de-
noted by Pn(wy, «**, wa—1; 4n)—which is a probability in A4, for every
fixed point (wj, *--, wa—1) and a measurable function in this point for
every fixed A4, will be called a regular conditional probability. For
n = 1 it reduces to a probability P; on @; but for » > 1 it reduces to a
probability on @, only when it is constant in (wy, * -, ws—;) for every
fixed 4., provided the ordered T has a first element. We observe that
the functions ped., = pe(wi; A4,) are regular conditional probabilities
when pa(wi; Q) = 1. On account of the monotone convergence theorem,
iterated integrals of the form

0.B, = f P1(dwy) f Py(wy; dws) « - -

an("-’b Tty Wn—1;, dwn)IBn("-’b * Ty "-’n)

define probabilities @, on @; X---X @,. It follows by the same theo-
rem that if a measurable function X on §; X -+ X @, i1s nonnegative
or Qn-integrable, then

[ xdgw = [Puden) [ Pates; da) -+
ﬂlx-o.xﬁ"
an(wI, tery, Wnl, dwn)X(“"l, B! “"n)°

A. ITERATED REGULAR CONDITIONAL PROBABILITIES THEOREM. The
iterated integrals

QC(Bn) =fP1(dw1)fP2(wl; dwz) ce
fP"(wl, tecy Wn—1; dw”)IBn("'{l, <y wn),

determine a probability Q on ] Gn.

This extension of the product-probability theorem is due to Tulcea and,
proceeding as therein (in 1°), permits one to determine Q on an arbitrary

I @: under obvious consistency conditions on the regular conditional
€T

pl‘.’S P¢n+l(wlu Tty Winy Aln-q-l)' :

Proof. To begin with, the definition of @, on the class € of all cyl-
inders of the form C(B,) is consistent. For, if C(B,) = C(Bn), m < n,
then integrations with respect to the w; which do not belong to the
product subspace where By, lies yield factors one.

Since Q on @ is finitely additive, the assertion will follow by the ex-
tension theorem if we prove that Q on @ is continuous at §. We have
to consider nonincreasing sequences of cylinders which converge to @.
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Upon renumbering the indices, we can suppose that the sequences are
of the form C(B,) | # with nonempty bases B, € @; X---X @,. We

can write
M) QC(B,) = f P(du)QVC(Bn).,

where (Bn)., Is the section of B, at w; and

Q(I)C(Bﬂ)wl sz2(“"1;d""2) T 'an(""b Tty Wn1, d“"n)IBn("-’l, Tty "-’n)-

In (1) the left-hand side is nonincreasing in 7, and the integrand con-
verges nonincreasingly to a certain limit X;(w;) = 0. By the dominated

convergence theorem, the limit of the left-hand side is fP(dwl)Xl(wl).

Assume that this integral is positive. Then there exists a point &,
such that X;(@;) > 0. It follows that we find ourselves in the same
situation but with the sequence QW C(B,)s, instead of QC(B,). Re-
peating the argument over and over again, we obtain a sequence @ =
(&1, @, ---) such that &, € @, and Q™ C(B,)a,...5, L Xul@n) > 0.

Therefore, every C(B,) contains at least one point of the form (@, - - -,

@ny Wng1s - ). Since C(Bn) = B, X II @, it contains the point &
k=n41

and, hence, @ € ) C(B,). Thus, when QC(B,) + 0 the intersection
is not empty, and the theorem follows ab contrario.

Particular cases. 1° If Po(wy, ++ -y wp—1; An) = PnA, are constant
for every fixed A,, then we write Q@ = [[ P, and call it a product-
probability. Then the theorem reduces to the product-probability theo-
rem in the denumerable case (4.2A).

2° If the factor spaces are finite-dimensional Borel spaces, then, it
follows from 27.2, Application 1, that the theorem yields the consistency
theorem.

COMPLEMENTS AND DETAILS

Notation. Unless otherwise stated, the measure space (§}, @, u) 18 fixed, the
(measurable) sets A4, B, - - -, with or without affixes, belong to &, and the func-
tions X, Y, - -+, with or without affixes, are finite measurable func.tions.

1. The set C of convergence of a sequence X, (to a finite or infinite limit
function) is measurable.

(C = [lim inf X» = lim sup X.].)
2. If u is finite, then given X, for every € > O there exists A such that

uAd < eand X is bounded on #°. If X is bounded, then the.rc exists a sequence of
simple functions which converges uniformly to X. Combine both propositions.
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We say that a sequence X, converges almost uniformly (a.u.) to X, and write

Xn —> X, if, for every € > 0, there exists a set 4 with u4 < e such that
u
X, — Xon 4°.

3. If Xn —> X, then X, 225 X and X» 5 X. (For the first assertion,

form A, where A, is the A of the foregoing definition with e = ;11-.)

4 If Xy > X, then there exists a subsequence X =% x
5. Egoroff’s theorem. If u is finite, then X, 2 X.implies that X, Bl X.
Compare with 3. (Neglect the null set of divergence, and form 4 = U A4,
1

ms=

1
with dm = U [ | X — X| 2= ] and n(m) such that ud, < f—.)
kznim) m 2m
6. Lusin’s theorem. If uiso-finite, then X, 2o X implies that X, N Xon
every element A; of some countable partition of Q-N where V is some null set.
(Neglect the null set of divergence, and start with u finite. Use Egoroff’s

. . n 1
theorem to select inductively sets 4k such that u kﬂ A < - and X, e X on
=1
Ax® for every k.)

- a'e. 3 3 - o
7. If uis finite, then X, ——> X implies existence of a set of positive measure
on which the X, are uniformly bounded. What if u is o-finite?

8. If uis finite, then Xmn BN Xmasn — o and X, 2% Xasm — o imply

- a.e.
that there exists subsequences my, n, such that Xppp, —> X ask — «w, What
if u is o-finite?

(Neglect the null sets of divergence. Select A and m; such that ud; < ~2l—k

and | Xm, — X | < il; on A% Select Brx C Ar and m such that uB; <§12,
1

and I kank - kal < "2—,‘ on /{k - Bk.)

9. Let X, 5 X, Y, 5 Y. DoaXa+ Y2 aX+5Y,| X, | 2| X|, X2 >

X2 XY, XY? What about 1/X.? Let u be finite and let g on R or on
R X R be continuous. What about the sequences g(X.) and g(X, Y.)?

10. Let the functions X,, X on the measure space be complex-valued or
vector-valued or, more generally, let them take their values in some fixed
Banach space. Denote the norm of X by | X |, and denote | X, — X | — O by
X. - X.

Transpose the constructive definitions of measurability and the definitions of
various types of convergence. Investigate the validity of the transposed of the
corresponding properties established in the text, as well as of those stated above.

11. Examples and counterexamples of mutual implications of types of con-
vergence. Investigate convergences of the sequences defined below:

(i) The measure space is the Borel line with Lebesgue measure, X, = 1 on
[#,n + 1] and X, = O elsewhere.
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(i) The measure space is the Borel interval (0, 1) with Lebesgue measure,
1
Xn=1on (O, ;) and X, = 0 elsewhere.
(111) The measure space is the Borel interval [0, 1] with Lebesgue measure,

the sequence is X1, Xz, Xas, X31, X3z, X33, -+ with Xax = 1 on [k - f:I
and X = O elsewhere.

’
n n

(iv) @ consists of all subsets of the set of positive integers, uA is the number
of points of 4, X, is indicator of the set of the # first integers.
12. If X is integrable, then the set [X ¢ 0] is of o-finite measure. What if

. 1
[ exists? @l X| 2 4= [lx))

13. Let (T, 3, 7).be a measure space, to every point ¢ of which is assigned a
measure u; on @. Let the function on T defined by u.A4 for any fixed A be
3-measurable.

The relation uA =fu¢/1 dr(t) defines a measure u on @. If LX(w) du(w)
T
exists, then the function defined on T by U(¥) = j;z X(w) dui(w) exists and is
3-measurable, and [ X(w) du(e) = [ UG) dr(s).
@ T
14. Let ¢ be the indefinite integral of X. Express ¢, ¢~, @ in terms of X.
15, If fX,, — 0 uniformly in 7 as p4 — 0 or as A4 | @, then the same is
A

true of f | X |; and conversely. Interpret in terms of signed measures.
A

(LI X =thng01X" _L[X,.<01X"')

16. If finite LX,; — fX finite, uniformly in 4 (€ @), thenj;z| Xa— X| —>
A :

0; and conversely.
17.1f0 £ X, — X, then finite f X, — f X finite implies that f X, —
. = n ] ) n Q 4 n

fX uniformly in 4 (also if —> is replaced by —-f—e—>)
A
(0 S (X — X)* < X integrable, and [(X — X0+ — [(X = X.) - 0)

18. Rewrite in terms of integrals as many as possible of the complements and
details of Chapter 1.

19. If the X, are integrable and lim fX,. exists and is finite for every A,
A
then the fl Xa| are uniformly bounded, fl Xa| — O uniformly in 7 as
A

pud — 0 and as A4 | @, and there exists an integrable X, determined up to an
equivalence, such that fX,, — fX for every 4. (Use 78.)
A A
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20. 1fintegrable X, — X integrable, then existence and finiteness of lim f Xn
. ) A
for every A are equivalent to the following properties:

@) LX,, — LX uniformly in A;
(1) fX,, — 0 uniformly in 7 asuA4 — 0 and as 4 | @.
A .

If u is finite, then “as 4 | @ can be suppressed. (Use the preceding proposi-
tions and the relations

Jlxisf| % -x+[| x|,

LI Xo—X|Se +Lm_mgd(l Xol +1X1]2)

21. The differential formalism applies to Radon-Nikodym derivatives:
Let u, v be finite measures on @ and ¢, ¢’ be o-finite signed measures on Q.
Let ¢ be v-continuous and », ¢, ¢’ be u-continuous. Then

de+ ) do  do

du = 2‘; -+ 7;‘ m-a.c.
do_dodv
du  dvda V-
(For the second assertion, it suffices to consider ¢ = 0, X =§§g 0

Y = g—z; 0. Take simple X, with 0 £ X,, T X so that
u

Lde <—-LX,, dv=LX,,Ydy —»fAXYdu.)

Let {u,, ¢ € T} and {u'y,# € T’} be two families of measures on @; we
drop £+ € T and # € T’ unless confusion is possible. We say that {u: is
{u'v:}-continuous if every set null for all u’y is null for all u,. If the converse
is also true, we say that the two families are mutually continuous.

22. If {u;} is a countable family of finite measures, then there exists a
finite measure u such that {u;} and p are mutually continuous. (Take u =
2 1i/ 2

23. Let the p; and u be finite measures. If {u} is u-continuous, then there
exists a finite measure u’ such that {u,} and u’ are mutually continuous. (Select

sets 4, = [% > O]. Denote by B, with or without affixes, sets such that, for
some ¢, B C A; and u:B > 0. Denote countable sums of sets B up to p-null
sets by C, with or without affixes. Every subset ¢’ C C with u,C’ > 0 is a set
C; every countable union of sets C is a set C. Let uCn — s where s is the
supremum of values of u over all the sets C. Then s = u{J Ca = p {J Bm and
to every m there corresponds a ¢, say um, such that Bn C 4 and pmBm > 0.
The families {u:} and {um} are mutually continuous.)




[Sec. 8] MEASURABLE FUNCTIONS AND INTEGRATION 143

n n
24. Let i, = kzl e — & and Pn = 2 v — 7, all the p and » with various
o k=1

affixes being finite measures on @ and every ¥, being fi,-continuous.

o Ay dy
() 7. — 7 -a.e.
(i1) if {una} is v-continuous, then B _, 2P v-a.e.
dv dy
e . dv, ay
(i11) 7 is g-continuous and — — — ji-a.e.
diin di
(For the last assertion, if fn4» = O for all », then & (lim sup 4,) = 0. It fol-
lows that it suffices to consider a particular choice of the d@_—" = i X/ i Y.
Mon k=1 k=l
where X} = fi—':_'f , Yi = -—d#_k . But)Y X, = f’z and ). Y, = lg-a.e.)
& dp dp

The propositions which follow correspond to various definitions of the concept
of integration. We shall assume that the measures and the functions are finite.
Besides proving the statements, the reader should also examine removal of the
restriction of finiteness as well as of other restrictions which may be introduced.

25. Set
fquo =fXd<p+ —fXd<p-, f(X+ iY) du =fXdu + ideu,

JXdw+ i = [Xdu+i[X dr

and investigate existence and properties of integrals so defined.

26. Descriptive approach. The Radon-Nikodym theorem characterizes an in-
definite integral but not that of a given function. The following proposition
answers this requirement.

¢ on @ is indefinite integral of X on Q if, and only if, ¢ is o-additive and, for
everyset 4 =[a S X S4B, BE€ @,

apd S o(A4) S bud.

27. In the definition of the integral given in the text, start with (nonnega-
tive) elementary functions instead of simple ones. The integral so defined coin-
cides with the initial one.

28. Lebesgue’s approach. The Cauchy-Riemann approach starts with arbi-
trary finite partitions of the interval of integration into intervals. The Lebesgue
approach consists in partitioning the set of integration according to the function
to be integrated so that the integral is tailored to order as opposed to the ready-
to-wear Cauchy-Riemann one. Let u < «.

Set
£ = 8 e[ s x <5

If X is bounded, these sums correspond to finite partitions and f X =
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lim 2-,(X). If Xis not bounded, set Xpp = Xif —m £ X £ nand Xup = 0
otherwise. If X is integrable, then fX,,.,. — fX asm, n — oo,

If X is not bounded, the series > a(X) correspond to countable partitions
and f X = lim X ,(X), in the sense that if X is integrable, then these series

are absolutely convergent and the equality holds and, conversely, if one of these
series is absolutely convergent, so are all of them and the equality holds.

(For the last assertion, it suffices to consider nonnegative elementary func-

. 2 k-1
tions X, = Z-——i—;‘——l k=1 ¢ - For the converse, use the relation
1 ——

X S 2X, + Q) o
29. Darboux-Young approach. Let X be measurable or not and set

. X(w)udk

u
kml WEC AL k=l wE

fX = sup i inf X(w)ud, fX = inf i s

where the extrema of sums are taken over all finite measurable partitions
n

2. Ar = Q. If X is measurable and bounded, then

k=1

fX=!X=fx

If f X and f X exist and are equal, we say that f X exists and equals their com-

mon value.

We can also set _
f’X=supr, f,X=inffZ

where the extrema are taken over all integrable (and measurable) Y and Z such
that Y £ X £ Z and define f X as above. Compare the two definitions.

30. Completion approach. The Meray-Cantor method for completion of
metric spaces adjoins to the given metric space elements which represent
mutually convergent (in distance) sequences of its points. This method permits
(Dunford) to define and study the integral of functions with values in an arbi-
trary Banach space (Bochner), as follows:

() Define the indefinite integral of a simple function as in the text. Since
nonnegativity and infinite values may be meaningless, all simple functions
under consideration are integrable.

(i) Adjoin to the space of these integrable functions Xm, Xa, - -+ all functions

X such that f| Xmn — Xo| — 0 and X, — X, by defining the indefinite inte-
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gral of X as the limit of the indefinite integrals of the X,. To justify this defini-
tion, prove for simple functions those elementary properties of integrals which

continue to have content for an arbitrary Banach space: f| Xn — Xa| — 0if,

and only if, X» ©> X where X is some measurable function, and fl Xan| — 0

. . ) A
uniformly in 7 as u4 — 0; fl Xn — Xa| — 0implies that ¢, — ¢ where ¢
is o-additive.

(iii) Extend the foregoing properties to all integrable functions and obtain
the dominated convergence theorem.

31. Kolmogorov’s approach. Let @ be a class closed under intersections. Let
D, with or without affixes, be finite disjoint subclasses of €. Order them by the
relation D; < D if every set of Dq is contained in some set of V1. Fix 4 € C
and consider all the D which are partitions of 4. They form a “direction” A
in the sense that, if D; and D, are such partitions, then there exists such a
partition which “follows” both, namely, ©; N D..

Let ¢ on @ be a function, additive or not, single-valued or not. By definition,

HA) = fAd«» = lim ¥ o(4)

where the 4; are elements of partitions D of 4 and the limit @(A), if it exists, is
“along the direction A,” that is, to every € > 0 there corresponds a D, such that
| §(4) — - o(d4;)| < e for all D > D, and all values of the o(A4;)—if ¢ is
multivalued. If @(A4) exists, it is unique. If @ on © exists, then it is finitely
additive.

Compare this integral to the Riemann-Stieltjes integral by selecting con-
veniently o.

Compare L pdqo with the length (if it exists) of the arc af8 of a plane curve, by

taking o(ax—1, o) = ar—1ax, the length of the cord ax_; to ax, the a = ay,
e -1, Qk, ***,0n = B being consecutive points on the arc af.

We say that ¢ and ¢’ on @ are “differentially equivalent” on A if, for every
€ > 0, there exists a partition D, of A such that Y | o(4) — ¢'(4;) | < € for

all D > D.. If ¢ is finitely additive, then fA de = o(4). If not, then @ on

A N @ (if it exists) is the unique additive function differentially equivalent on
A to ¢. Proceed as follows:

() ¢ and ¢ are differentially equivalent on 4 if, and only if, @ = ¢&'.

(i) ¢ and @ are differentially equivalent on 4.

(ii) If finitely additive functions ¢ and ¢’ are differentially equivalent on 4,
then they coincide on 4.

In all which precedes replace “finite” by “‘countable” and investigate the
validity of the propositions so obtained. Compare the various definitions of
the integral, by selecting conveniently .

Finally, take ¢ with values in a fixed but arbitrary Banach space, and go over
what precedes. o

32. A structure of the concept of integration. The concept of integration is con-
structed by means of the concepts of summations and of passage to the limit
along a direction or, more generally; a cut-direction. A bipartiton A = A + 4
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of a set A with an order relation < is a “cut-direction” if A and A are directions
and every element of A follows every element of A.

Let ¢ be a function, single-valued or not, on a direction A to a real line or
a plane or, more generally, a Banach space. The element ¢a of the range space
is “limit of ¢ along A” if, for every ¢ > 0, there exists an a,€_ A such that
| ea — @(@) | < € for all @ > - and for all values of ¢(a). If the direction A

is replaced by a cut-direction A, then ¢z is “limit of ¢ along A if, for every

€ > 0 there exist @ € A and @& € A such that | o5 — ¢(a) | < ¢ for all & such
that gc < a < & and for all values of p(a). If pa or @3 exist, they are unique.

To every a € A assign some finite collection of points a; of a Banach space,
not necessarily distinct and not necessarily uniquely determined. Form ¢(a) =

> o(aj). By definition, quo is the limit, if it exists, of ¢ along A. If A is re-

- A
placed by 4, the definition continues to apply.
Investigate all definitions of the integral you know of from this structural
point of view, that is, the selections of A or 4, and of the functions ¢.

33. Daniell approach. Let S be a family of bounded real-valued functions on £,
closed under finite linear combinations and lattice operations f |J g = max (f, g),

fNg=min(f,g. ThenfE L= |f|=fUO0—-F(10ES. Suppose that

on § is defined an im‘egralf: a nonnegative linear functional continuous under

monotone limits: f = O=>ff_2_ O,f(af+bg) = aff+bfg,fnl O=>ff,.l0.

a) Let U be the family of limits (not necessarily finite) of nondecreasing sequences
in 8. U contains § and is closed under addition, multiplication by nonnegative

constants, and lattice operations. Extend the integral on U, settingff = limff,.

when § D fa T f (infinite values being permitted).
The definition is justified, for if the nondecreasing sequences f, and g, in § are

such that lim f, < lim ga, then limff,. b limfg,..

If U 3/u1/ thenf € Uand [£al |7
b) Let —U be the family of functions f such that — f &€ U, and set

[r=-fcn.

Ifg€ —U,h€C Uandg < h thenh — g € Uandf/z —fg ==f(/z — 920
By definition, f is integrable if, for every ¢ > 0, there exist g¢ € —U and

he € Usuchthatg. S f = /zg,fge andf/ze are finite, andf/ze —fg, < €. Then

inff/ze = supfg, andff is defined to be this common value.

Let L be the family of integrable functions. L and the integral on L have all
the properties of § and of the integral on S.

IfL D fa1/f and lamff,. <, thenfCLandff,.Tff.

Let & be the smallest monotone family over § (closed under monotone passages
to the limit by sequences). & is closed under algebraic and lattice operations.
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Let Ly = L(\F. f€ Lyif and only if f € F and there exists g € L; such that

FAEY:
e) Let F+ be the smallest monotone family over §* (consisting of all nonnegative

functions of §). Setff = o if f € F*t is not integrable. By definition, for
fE if,ff -‘=ff+ -—ff" exists if f* or f~ is integrable.

Ifff andfg exist and they are not infinite with opposite sign, thenf(f + g
exists and equalsff +fg.

Ifffnexist, ffx > —oo, and f» T f, thenff exists andff,.T ff.
f) If I4 € F, then, by definition, the measure of A is uA ==f1A.

If 14, Ig€_ &, then Taup, Ianp, Ia—g € F and if the IAnCiF’ then IEIA,,
€ F and p)_An = ) pdn.

g) Suppose thatf€ 8§ = f[N 1€ §. ThenfE F = f(Y 1 E€ Fandifa >0,
then I[/)a) € g.

Iff 2 0, Iyy>q € F for every @ > 0, then f € &.

h) Suppose that 1 € §. Then f € §+= ff ==ffdu where the right side is

taken in the customary sense. What if f € F?

i) The family § is a real linear normed space with the uniform norm || f|| =
supf. Every bounded linear functional ¢(f) on this space is difference of two
bounded nonnegative linear functionals ¢(f) = ¢1(f) — ¢~ (f): Take ¢T(f)
= sup {¢(f), 0 = f' £ f} on ST, then extend to § by linearity.

34. Riesz representation. Let X be a locally compact space with points x,
compacts K, and the o-field § of topological Borel sets §, with or without sub-
scripts. Let C be the space of bounded continuous functions g, with or without
affixes, with the uniform norm || g|| = supg. Co C C consists of those g which
vanish or infinity: Given € > 0 there exists a K, such that |g| < ¢ on K.
Coo C C consists of those g which vanish off compacts and Cx  Coo of those g
which vanish off K. If & is compact, then Cx = Coo = Cop = C.

a) Dini. If g, € Coo and g )0, then g,]0 uniformly, that is, || g || |O.

b) Nonnegative linear functionals u(g) on Co are bounded on every Cx and are
integrals on Cgo: Bounded, since there exists go € Coo* with go = 1 on Ck,
hence g € Cx implies | g| S go || g|| and | u(g) | S ulgo) || g]|- Integrals, since
£1 € Cxk and gnlo 'mpl}’ En € Ck, | g ”lO) hence l F‘(gn) I = F‘(gO) ” &n ”lo

c) There is a one-to-one correspondence between nonnegative linear functionals
u(g) on Co and measures u(S) bounded on compacts, given by u(g) =

fu(dx)g(x): By b) and 33, u(g) determines the measure u(S).
d) There is a. one-to-one correspondence between bounded linear functionals
¢(g) on Cp and bounded signed measures ¢(S) on 8§ given by ¢(g) ==f<p(dx)g(x)

with || g || = Var ¢: Apply c) and 351).
e) There is a one-to-one correspondence between bounded linear functionals on
Co and bounded signed measures on 8. Compactify and apply d.




Part Two

GENERAL CONCEPTS AND TOOLS OF
PROBABILITY THEORY

Probability concepts can be defined in terms of measure-theoretic
concepts. Since probability is a normed measure and random variables
are finite measurable functions, the properties of sequences of random
variables are more precise than those of measurable functions on a
general measure space. Since in probability theory probability spaces
are but frames of reference for families of random variables, probability
properties are to be expressed in terms of the laws of the families only.
These laws are expressed in terms of distributions which are set func-
tions on the Borel fields in the range spaces. The distributions are ex-
pressed in terms of distribution functions which are point functions
on the range spaces. In turn, to distribution functions correspond their
Fourier-Stieltjes transforms (called characteristic functions) which are
easier to deal with.

The following Parts utilize the tools so developed to investigate
probability problems. These problems are centered about the con-
cepts of independence and of conditioning introduced in Parts III and
IV, respectively. The corresponding sections 15 and 24 may be read
immediately after section 9.
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Chapter 111

PROBABILITY CONCEPTS

§9. PROBABILITY SPACES AND RANDOM VARIABLES

9.1 Probability terminology. Probability theory has its own termi-
nology, born from and directly related and adapted to its intuitive
background; for the concepts and problems of probability theory are
born from and evolve with the analysis of random phenomena. As a
branch of mathematics, however, probability theory partakes of and
contributes to the whole domain of mathematics and, at present, its
general set-up is expressible in terms of measure spaces and measurable
functions. We give below a first table of correspondences between the
probability and measure theoretic terms. Within parentheses appear
the abbreviations to be used throughout this book.

probability space (pr. space) normed measure space

elementary event point belonging to the space

event measurable set

sure event whole space

impossible event empty set

probability (pr.) normed measure

almost sure, almost surely (a.s.) almost everywhere

random variable (r.v.) finite numerical measurable
function

expectation E integral f

We shall use the pr. theory terms or the measure theory terms accord-
ing to our convenience. We summarize below in pr. terms the proper-
ties which are specializations of those established in Part I.
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I. A pr. space (2, @, P) consists of the sure event Q, the (nonempty)
o-field @ of events and the pr. P on @. Unless otherwise stated, the pr.
space (?, @, P) is fixed and A4, B, - - -, with or without affixes, represent
events. If so required, the pr. space can always be completed, so that
every subset of a null event becomes an event—necessarily null.

1° @ is a o-field: for all A’s, A°, \J A;, [ A are events.
i=1 =1

It follows that, for every sequence A, lim inf A,, lim sup A, and

lim A, (if it exists) are events.
2° P is defined on @ and, for all A’s,

P4=20, PO 4;) =3 PA;, PQ=1.
It follows that
Pd=0, P4=<PB when AcC B, P(UA4;) =3 P4,
P(lim inf 4,) < lim inf P4, < lim sup P4, < P(lim sup 4,),
and, if lim A, exists, then P(lim A,) = lim PA,.

II. A r.v. X is a function on Q@ to R = (—, 4+=) such that the in-
verse images under X of all Borel sets in R are events; it suffices to re-
quire the same of all intervals, or of all intervals [, &), or of all inter-
vals (—, 4), etc.

An elementary r.v. is a function on @ to R of the form X = 3" x;1,;
where x;’s are finite numbers, A4;’s are disjoint events, and > A4; = Q;
if there is only a finite number of distinct x;’s, then X is a simple r.v.

1°  Every r.v. is the finite limit of a sequence of simple r.v.’s and the
finite uniform limit of a sequence of elementary r.v.s; and conversely.

Every nonnegative r.v. is the finite limit of a nondecreasing sequence of
nonnegative simple r.v.)s; and conversely.

2° The class of all r.v.s is closed under the usual operations of analy-
sis, provided these operations yield finite functions.

3° Every finite Borel function of a finite number of r.v.s is a r.v.

A random function is a family of r.v.’s; if the family is finite, it is a
random vector, and, if the family is denumerable, it is a random sequence,
that is, a sequence of r.v.’s.

ITI. Unless otherwise stated, X, Y, ---, with or without affixes, will
represent r.v.’s and, as usual, limits will be taken for # — .
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X converges in pr. to X, and we write X, 5 X, if, for every ¢ > 0,
P| X, — X| 2= ¢ — 0.

. a.s. .
X, converges a.s. to X, and we write X, — X, if X, — X, except

perhaps on a null event (event of pr. 0) or, equivalently, if for every
e >0,

PUIXi—X|2¢—0.
kzn

Mutual convergence in pr. (X, — Xn 5 0) and a.s. (X, — X —> 0)
are defined by replacing above X, — X by X, — X, and X; — X by
X, — Xy with &, / 2 », and taking limits as m, n — .

1° X,,LX('/, and only if, X,,—Xm-iO. X,,L.%Xif, and
only if, X, — Xm — 0.

2° If Xo —3 X then Xn — X. If Xo — X, then there is a sub-
sequence X, 5 Xask — 0, with

® 1
ZP[|XM—X|;§;]<°°.

k=1

The terms “integral” and “expectation” and the notations f and E

will be considered as equivalent. In the case of r.v.’s, we have

IV. The expectation of a simple rv. X = 3 xxl 4, is defined by

k=1

EX = ZkaAk.

k=1

The expectation of a nonnegative rv. X 2 0 is the limit of expecta-
tions of nonnegative simple r.v.’s X, which converge nondecreasingly

to X:
EX=IlmEX, 0= X,TX.
The expectation of a rv. X = Xt — X~ is given by
EX = EXT — EX-,

provided the right-hand side is not of the form 4o —w, and if EX
exists and is finite, X is integrable.
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1° X is integrable if, and only if, | X | is integrable.

If X, and X, are integrable and a, and a, are finite numbers, then
a1 X, + a2 X is integrable and E(a1 X, + a:X,) = a1EXy + a:EXy; if,
moreover, X1 < X, then EX; £ EX,.

If | X1 | S X, and X, is integrable, then X, is integrable; in particu-
lar, every bounded r.v. is integrable, and if X degenerates at a (X = a
a.s.), then EX = a.

The indefinite expectation ox of a r.v. X whose expectation exists is
defined on the o-field @ of events A4 by ¢ox(A4) = EXI,.

2° ox on Q is o-finite, o-additive, and P-continuous; if X is integrable,
then ox is bounded by EI X|, and ox(A) — 0as P4 — 0.

3° MONOTONE CONVERGENCE THEOREM. If 0 = X, T X finite or
not, then EX, 1 EX; if EX is finite, then the measurable function X is a.s.

ar.uv.

DOMINATED CONVERGENCE THEOREM. If X, > X and | X.| =Y
integrable, then X is integrable, and EX, — EX.

Fatou-LEBESGUE THEOREM. If Y and Z are integrable r.v.)s and
Y= X,or X, £2Z, then

E(lim inf X,,) £ liminf EX, or limsup EX, < E(lim sup X,,).

If, moreover, lim inf EX, or lim sup EX, is finite, then, respectively,
lim inf X, or lim sup X, is a.5s. a r.0.

EquivaLence. Two functions on Q are eguivalent if they agree out-
side a null event. Convergences in pr. and a.s., integrals and integra-
bility are, in fact, defined for equivalence classes and not for individual
functions. Therefore, as long as we are concerned with a sequence of
r.v.’s we can consider every r.v. of the sequence as defined up to an
equivalence. In particular, we can then extend the notion of a r.v.
as follows: a r.v. is an a.s. defined, a.s. finite and a.s. measurable func-
tion.

Let us observe, once and for all, that when the measurable functions
under consideration are by definition ®-measurable whete ® is a sub
o-field of events, then almost sure relations are Pg-equivalences, that
is, valid up to null B-measurable sets.

THE COMPLEX-VALUED CASE. A complex r.v. X is of the form X =
X' + iX” where X’ and X" are “ordinary” or “real-valued” r.v.s as
defined at the beginning of this section and where 2 = —1; X takes
its values in the complex plane of points &’ 4 #%”’, that is, in the plane
R X R, and its expectation is the point EX = EX’ + iEX"”. In other
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words, a complex r.v. X is a representation of the random vector
{X’, X”}. Similarly, a complex Borel function g = g’ 4+ 7g” is a rep-
resentation of the Borel vector {g’, g¢’}. The definitions and properties
given below of random vectors, random sequences and, in general, ran-
dom functions extend at once to the complex case where the compo-
nents instead of being ordinary r.v.’s are complex-valued r.v.’s or,
equivalently, two-dimensional random vectors. The relation | EX| =<
E| X| is still true; it suffices to use polar coordinates, setting X = pe®,
EX = re*, and observe that

r=e¢""Epe’® = Epcos (a — &) < Ep

*9.2 Random vectors, sequences, and functions. A random vector
X =(X,, --+, Xa) is a finite family of r.v.’s called components of the
random vector. Every component X} induces a sub o-field ®(Xj) of
events—inverse image of the Borel field in the range-space Ry of X.
The random vector has for range space the n-dimensional real space

R™ =TI Ry with points x = (xy, - - -, ) and it induces a o-field B(X)
k=1
= ®(X;, Xs, -, X,)—inverse image of the Borel field in R*. The

inverse images of intervals (—, x) C R" are events
. n
[X < x] = [Xl < X1y ey Xn < xn] =knl [Xk < xk]

and, hence, are intersections of events belonging to the ®(Xj). Since
the Borel field &" in R" is the minimal o-field over the class of these
intervals, the o-field ®(X) is the minimal o-field over these intersections
or, equivalently, over the union of the ®(Xi)—a compound or union
o-field ®(X,, - -+ X,) with component o-fields 8(Xy). Thus, the elements
of B(X) are events and the random vector X can be defined as a meas-
urable function on the pr. space to the n-dimensional Borel space (R", ®").
We define EX to be (EX), EX,, - -+, EX,)—a point in the space R".

A random sequence X = (Xy, Xa, +-) is a sequence of r.v.’s called

its components; it takes its values in the space R” = [] R, of points
na=}

x = (%1, x2, - --), that is, the space of numerical sequences. To every
point x with an arbitrary but finite number of finite coordinates xy,, - - -
xy, there corresponds the interval (—e, %) of all points y such that
Vi, < Xk *** Yka < X1 and the minimal o-field over the class of these
intervals is the Borel field 8® in R”. Exactly as for random vectors,
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it follows that the inverse image under X of ®” is the minimal o-field
over the class of all finite intersections of events A, € ®B(X,)—the
compound or union o-field ®(X) with component o-fields ®(X,)—then we
write B(X) = ®(Xy, Xy, ---) and the random sequence can be defined
as a measurable function on the pr. space to the Bore! space (R*, ®™).
Similarly, the definition of the expectation of the random sequence is
EX = {EXy, EX,, - - - }—when EX,, EX,, --- exist.

A random function Xr = (X, t € T) is a family of r.v.’s X, where
¢ varies over an arbitrary but fixed index set T. Exactly as above, the
range space of Xr is the rea/ space Ry = gTRt of points xp = (xy,

¢

¢t € T)—the space of numerical functions; intervals (—w, xr) are de-
fined for points xr with an arbitrary but finite number of finite coordi-
nates to be sets of all points yr < xr, that is, y, < x,, # € T the Borel
Jfield ®p is the minimal o-field over the class of these intervals. The ran-
dom function X7 induces the compound or union o-field ®(Xr) with com-
ponent o-fields ®(X;)—the minimal o-field over the class of all finite in-
tersections of events 4, € ®(X,) as ¢ varies on T or, equivalently, the
inverse image under X7 of the Borel field ®7; and the random function
Xr can be defined as a measurable function on the pr. space to the
Borel space (Rr, ®r). By definition, EXr = {EX,, + € T} is a numer-
ical function—when the EX, exist.

A Borel function gr is a function on a Borel space (Rr, ®r) to a Borel
space (Rr+, ®7/) such that the inverse image under gy of the Borel
field in the range space is contained in the Borel field ®7 in the domain
Rr. Therefore, if Xr is a random function to Ry, then the function of
function gr(X7) on the pr. space to the Borel space (Rz+, ®r) induces
a sub o-field of events—inverse image under X7 of the inverse image
under grs of the Borel field 7. Thus, (B(ng(XT)) C ®(X7); in other
words, gr:(Xr) is ®(Xr)-measurable and; hence, is a random function.
We state this conclusion as a theorem.

A. BoRrEL FUNCTIONS THEOREM. A Borel function of a random func-
tion is a random function which induces a sub o-field of events contained
in the one induced by the original random function.

Loosely speaking, a Borel function of a random function induces a
“coarser’”’ sub o-field of events and has “fewer” values.

9.3 Moments, inequalities, and convergences. Expectations of pow-
ers of r.v.’s are called moments and play an essential role in the investi-
gations of pr. theory. They appear in the simple but powerful Markov
inequality and in the definition of the very useful notion of convergence




[SEc. 9] PROBABILITY CONCEPTS 157

”»

“in the rth mean,” that we shall introduce in this subsection. They
appear in the expansions of “characteristic functions” that we shall
examine in the next chapter. They play a basic role in the study of
sums of “independent” r.v.’s to which the next part is devoted. Fur-
thermore, the powerful “truncation” method—to be used extensively
in the following parts—expands tremendously the domain of applica-
bility of the methods of investigation based upon the use of moments.

EX*(k=1,2,---) and E| X|’ (r > 0) are called, respectively, the
kth moment and the rth absolute moment of the r.v. X. We may also
consider Oth moments but, for all r.v.’s, the Oth moments are 1, and
we shall limit ourselves to #th moments where & is a positive integer,
and to rth absolute moments where r is a positive number, unless other-
wise stated.

We establish now a few simple properties of moments. While a kth
moment may not exist, absolute moments always exist but may be in-
finite. Since integrability is equivalent to absolute integrability, if the
kth absolute moment of X is finite, then its #th moment exists and is
finite; and conversely. More generally, since | X|” =14 | X|" for
0 < 7 < r, we have

a. If E| X|" < w, then E| X | is finite for v < r and EX* exists and
is finite for k < r.

In other words, finiteness of a moment of X implies existence and finite-
ness of all moments of X of lower order.
Upon applying the elementary inequality

|a+b|’§c,|a|’+c,|b|’, r>0,

where ¢, = 1 or 27! according as » S 1 or » = 1, replacing a by X, 4
by Y and, taking expectations of both sides, we obtain the

¢-INEQUALITY. E| X+ Y| S E| X|" + ¢.E| Y|, where ¢, = 1 or
2" according asr < lorr 2 1.

This inequality shows that if the rth absolute moments of X and Y
exist and are finite, so is the rth absolute moment of X + Y.

Similarly, excluding the trivial case of vanishing E| X|” or E| Y| (in
which case the Hélder inequality below is trivially true), and replacing

a by X/E17|X|’, b by Y/E%|Y|’ in the elementary inequality
[al” 8] 1 1

+ ror> 1, -+-=1,
S r S

| ab| <
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we obtain the

1 1
HoLper INEQuaLITY. E| XY | S EY| X | E*| Y |*, where r > 1 and
1+ 1 = 1.
ros

From this inequality follows the

MINKOWSKI INEQUALITY. Ifr = 1, then

1 1 1
ElX+X|"sE|X|+ E|X|.
In fact, upon excluding the trivial case » = 1, and applying the Holder
inequality with ¥ = | X 4+ X"|"™! to the right-hand side terms in the
obvious inequality

EX+X | sE(X|| X+ X[+ E(X [ X+ X |,
we find
1 1 1
ElX+X| s (E|X|"+ E| X |NE| X+ X |7V,

1 1
where -+ — = 1. Upon excluding the trivial case of vanishing
r s

E| X + X'|", noticing that (» — 1)s = r, and dividing both sides by

1
E*| X + X', the asserted inequality follows.
Hoélder’s inequality with » = s = 2, is called the

Scuwarz INeQuaLITY: E?| XY | < E| X |2-E| Y |2

r—r’ rir
Replacing X by | X| 2 and Y by | X[ 2, with 7 < 7, and, taking
logarithms of both sides, we obtain the inequality

log E| X|" < 1 log E| X|"" +Llog E| X |t
b. log E| X |’ 15 @ convex function of r.
Holder’s inequality with X, Y, r, s replaced respectively by | X |?, 17,
p/r, q/r (hence-l-r = 1; + ~1q-> becomes EV'| X |" < EV?| X |? forr < p.

Hence,

c. EV'| X |" is nondecreasing in r.

In fact, EV'| X|" 1 EV?| X |Pasr | p. For, if E| X|? < « then
| X | < max(1, | X|?) and the dominated convergence theorem applies.
If E| X|? = o apply what precedes to Y, = | X |I(jx|<n) then let
nl o,
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We introduce now convergence in the rth mean. Let X, and X be
r.v.’s with finite rth absolute moments, so that, by the ¢,-inequality,
the same is true of X, — X. We say that the sequence X, converges

to X in the rth mean, and write X, — X, if E| X, — X|"—-o.
Let X, — X. Ifr < 1 then it follows, by the ¢,-inequality, that

|E| Xa|" - E| X|"| s E| Xo - X|" — 0,
and, if 7 > 1, then it follows, by the Minkowski inequality, that

1 1 1
| B X | — E| X|"| < B X, — X|" — 0.
This proves that
d. If X — X, then E| X, |" — E| X|".

We conclude this subsection with a simple but basic inequality and
a few of its applications.

A. Basic iNeQuaLiTY. Let X be an arbitrary r.v. and let g on R be a
nonnegative Borel function.

If g is even and is nondecreasing on [0, 4 ) then, for every a = 0
Eg(X) — g(a E
g(X) g()éan'ga]é g(X)
a.s. sup g(X) g(a)

If g is nondecreasing on R, then the middle term is replaced byP [X = a],
where a is an arbitrary number.

The proof is immediate. Since g is a Borel function on R, it follows
that g(X) is a measurable function on @ and, since g is nonnegative on
R, its integral exists. If g is even and is nondecreasing on [0, +),
then, setting 4 = [| X | 2 a), from the obvious relations

£200 = [ 60 + [ £

and
2@PA S [ 5(X) 5 as-sup (0P, 05 [ 50 S ¢00),
A
it follows that
g(@)PA < Eg(X) S as. sup g(X)-PA + g(a).

This proves the first assertion and the second is similarly proved.
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Applications. (1) Upon taking g(x) = e™(r > 0), we obtain

EerX — et

—~ = P[X = a] £ e"TEe™X

a.s.sup e

(2) Upon taking g(x) = | # |"(» > 0) we obtain

E| X|" -4 E| X|
SPlX|zas=s ;

a.s.sup| X|" a

the right-hand side inequality is called the Markov inequality, and for
r = 2 it reduces to the celebrated Tchebichev inequality.

Upon applying Markov’s inequality with X replaced by X, — X, it
follows that

If X, > X, then X'i’ EN X, and if the X, are a.s. uniformly bounded,
then, conversely, X, — X implies that X, 5 X,

(3) Upon taking g(x) = =l (+ > 0), we obtain
1+ | X |'
| x| . & 144 _ | X
— SPlX|24d= E ;
14| X" 1447 x|z a’ 14| X
replacing X by X,, — X and by X,, — X,, it follows that, as m, n — o,
X5 x famdontyy, B X
_) L)
n zf,an anylf, 1+|Xn—X|r ’
Xo— X, 20 if donty it EAZn =Xl g
m — n Y y - .
if, and only if, 1+]Xm—X,.]'
Remark. Observe that the function defined by d4(X, Y) =
X-Y .
| | .has the triangular and identification properties of a
1+ | X -Y]|

distance, except that 4(X, Y) = O implies only that X =Y as. It
follows from the foregoing proposition that

The space of the equivalence classes of the r.v.’s defined in a pr. space is
a complete metric space with distance d defined by

| X -Y]|
1+ | Xx-v|

and convergence in distance is equivalent to convergence in pr.

dX,Y)=E
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*Convex FuNcTioNs. The relations between moments established at
the beginning of this subsection are essentially convexity properties.
Let us recall a few classical properties of convex functions.

Let g be a (numerical) Borel function defined on a finite or an in-
finite open interval I C R. g is said to be convex if, for every pair of
points x, x’ of I,

(x + x’) < 1 1
tN—) = 2g(x) + 2g(x),
if g is twice differentiable on I, then the convexity property is equiva-
lent to g” 2 0 on I. The same definition applies to g on an N-dimen-
sional interval I¥ and is equivalent to the convexity of the function
g(x + ux’) of the numerical argument « for all values of « for which
x + ux’ € I, so that it suffices to consider convex functions on I — R.
A convex function on I is either continuous on 7 or is not a Borel func-
tion. Thus, from now on, a convex function will be assumed to be con-
tinuous on its domain. In that case, g is convex on I if, and only if,
to every xo € I there corresponds a number A(xg) such that, for all

I,
*& Nxo) (¥ — %0) < (%) — g(¥).

Let X be a r.v. whose values lie a.s. in I and whose expectation EX
exists and is finite. Replacing xo by EX and x by X, and taking the
expectation of both sides of the foregoing inequality, it follows that

e. If g is convex and EX is finite, then
g(EX) = Eg(X).

If g is strictly monotone, then this relation can be written

EX = g7\ (Eg(X)).
For example, for » = 1, g(x) = x"(x € (0, +=)) being convex, we have
1
E| X| = EV'| X"
More generally, let G, and G. be two continuous and strictly increas-
ing functions such that g = G,G,™! is convex; we say then that G, is

convex in Gy. Since Y =-Gy(X) implies that X = G,71(Y), it follows
by e, upon assuming that EX and EY are finite, that

G2G, "N EY) = EG,G,~(Y)
and, hence,

e’. If Gq is convex in Gy, then

G H(EG(X)) = G H(EGy(X)).
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For example, since on (0, 4), x™ is convex in x™ for r, = r,, that is,
the function ™" is convex, we have

1 1
En| X|" s B X|™? for ry = 1.

*9.4 Spaces L,. The r.v.’s whose rth absolute moments are finite
are said to form the space L, over the pr. space (2, @, P); in symbols,
XEL, if E|l X|" < »; we drop  if r = 1. We shall find later that
the space L, is a very important tool in the investigation of pr. prob-
lems, especially those relative to sums of “independent” r.v.’s. It will
be convenient to introduce two boundary cases. The first is the trivial
space Loof all r.v.’s X since E| X |° = 11is finite. The second is the space
L,ofallas. bounded r.v.’s. Sincelim E| X|" < «if,and onlyif,| X| <1

r—» 0

a.s., it seems that only the subspace L', © L, of r.v.’s a.s. bounded

1
by 1 ought to be introduced. However, for r — o it is lim E7| X |"
which counts, and this limit is finite if, and only if, X is a.s. bounded.
In fact, let 5 be the a.s. supremum of | X |, defined by P[| X| > s] = 0
and P[| X| = ¢] > 0 for every ¢ < 5; we have s < . The foregoing
assertion is implied by
1 1
a. E=| X|° =lim E7| X|" = as.sup| X| = ».
For
1 1 1
sZE|X|"ZE( X| Tyxiz2q 2P| X|2¢c] > s

asr — oo, then ¢ T s.
The foregoing definitions permit us to state 9.3a as follows:

b. Ly, DL, DL DL, DL ,,0Sr=s= .

Let us observe that the space of all simple r.v.’s is a subspace of L,
and, hence, of all the spaces L,.
Since, by the ¢,- and Minkowski inequalities and by a,

ElX+Y|"sEX|"+EY|, 0<r<],

1 1 1
E|X+Y|"SE|X|"+E|Y|], 1s7=w,

and E| X — Y |" = 0 if, and only if, X and Y are equivalent, we have,
according to the definitions relative to metric and normed spaces, the
following theorem.
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A. The spaces L, are linear metric spaces with metric defined by
AX, Y)=EX-Y| for 0<r<1
and norm .
| X|| = B X|" for 1572w,
provided equivalent r.v.’s are identified.

The problem arises whether the spaces L, are complete and what are
the convergence theorems in these spaces. Unless otherwise stated,
from now on 0 < r < = (the reader is invited to examine in each case
the boundary spaces Ly and L,).

First we observe that on account of A and 9.3d we have

c. Convergence in distance d(Xn, X) — O in L, is equivalent to con-

. r . . 3
vergence in the rth mean X, — X and implies convergence of distances

d( X, Xo) — d( X, Xy) to any fixed Xo € L,.

Also, if X, € L,, then, for a r.v. X, E| X, — X|", which always exists,
can converge to O only if, from some value of 7 on, E| X, — X|"is
finite and, hence, only if X € L,, so that

d. If X, is a sequence in L, and E| X, — X|" — O, then X € L,.
We are now in a position to prove the
B. L,-COMPLETENESS THEOREM. ZLet the X, € L,. Then X, R
some X if, and only if, X, — X, = 0, as myn — oo.
Proof. 1f X, — X, then X,, — Xn — O, since, by the ¢,-inequality,
E| Xp — Xo|" S ,E| X — X|"+ ¢,E| X — Xa|" — O.

Conversely, if X, — X, = 0, then, by the Markov inequality, for
every ¢ > 0,

1
Pl Xpn— Xa| 2=~

€

E|Xm—X,.|'—>O as my,n — ©,

P . a.s.
so that X,, — X. — 0. Therefore, there is a subsequence X»' —>
a.s.
some X as #” — = and, for every fixed m, X,, — X/ — Xm — X as
n' — ., Since E| Xn — X |” — 0 as m, n’ — oo, it follows, by the
Fatou-Lebesgue theorem and the hypothesis, that

E| Xn — X|" = liminf/E| X — X/ |" > O as m — .

Thus, X, — X, and the proof is complete.
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If a r.v. X is integrable, then the (indefinite) integral of X is P-ab-
solutely continuous: L| X| > 0a P4 —0. Let B=[ X|z2al.

Since PB — 0 as a4 — =, it follows that L]X]—»O as @ — o,

Conversely, this implies that

flx|=f|X|+f |X|§f|X|+aPA—>O
A AB AB° B

as P4 — 0 then 4 — «, and thus implies that X is integrable, since,
given ¢ > 0,

f]X]gf]X|+a<e+a¢<oo
B

for a = a, sufficiently large.
The integrals of r.v.’s X, are uniformly P-absolutely continuous or

simply uniformly continuous iff| X.| — Ouniformly in 7 as P4 — 0;
A
in other words, for every ¢ > 0 there exists a . independent of 7 such

that L| Xn | < ¢ for any set 4 with P4 < 5. Let B, = [| Xn | = al.
The r.v.’s | X, | are uniformly integrable, iff | X»| — O uniformly in
Bn

n,as @ — «. Observe that if the f | X, | are uniformly bounded, say,

by ¢(< ), then, by Markov’s inequality, PB, £ ¢/a — 0 as a — oo.
Upon replacing X by X, and B by B, in the foregoing discussion, it
follows that

e. The r.v’s X, are uniformly integrable if, and only if, their integrals
are uniformly bounded and uniformly continuous.

Let X, — X hence X,I4 — XI4. It follows, by 9.3d and the above
lemma (take 4 = Q, and take A such that P4 — 0)

f. If X, — X, then the | Xo|" are uniformly integrable.

For use on the forthcoming theorem, note that (Young)
The Fatou-Lebesgue theorem and the dominated convergence theorem re-

main valid if therein Y and 7, are replaced by U, and V, with U, =5 U,
vV, 25 Vande,. —>fUﬁnite, fV,, —>fVﬁm'te.
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For then, the argument pp. 125-6 remains valid. Furthermore, by se-
lecting {n"’} p. 126 so that also U, — U, we have

If| Xa| < U, with U, > Uande,. —>fUﬁnite,then X, > X

implies t/zath,. ﬁinnfactf| X.— X| - 0.

C. L,-.CONVERGENCE THEOREM. Let the X, € L,. Then
Q) Xo > X if and only if (i) X, 5 X
and one of the following conditions holds:

(iii) f| X.|" — f| X|" < oo; (iv) the | X, |” are uniformly integrable;
(v) the| X |, or (vi) the| X, — X |, have uniformly continuous integrals.
Proof. Let ¢ > 0 be arbitrary, set A4, = [| X, — X|Z €, A =

[| Xn — Xa| = ¢, and let m, n — . We use the ¢,-inequality without
further comment. Note that (iv) implies X, ¢ L,.

Condition (i) implies (ii) by Markov inequality (P4, < E| X, —
X|"/¢ — 0) and implies (iii) by 9.3d. Conversely, (ii) and (iii) imply
(i), since then | X, — X|" S ¢, | Xo|" + ¢+ | X|" = U, with U, 5
2c,|X|'ande,. - 2c,f|X|' < oo,

As for the remaining assertions, (i) implies (iv) by f, and (iv) implies

(v) by e applied to the | X, |" in lieu of the X,. Also, clearly (i) implies
(vi), and (vi) implies (v), since it implies integrability of | X, — X |

hence of | X |" (because X, € L,) so that f| X.| = c,f| X, — X|
4 4
+ ¢ f | X|" < € for PA sufficiently small.
4

Thus, to complete the proof, it suffices to show that (ii) and (v) imply
(1). Since convergence in pr. (in the rth mean) is equivalent to mutual
convergence in pr. (in the rth mean) and X,.LX, X, > Y imply
that Y = X a.s., we can replace (i) and (ii) by (/) E| X — Xn|"— 0
and (1) PApun — 0. The assertion follows since, upon integrating
| Xm — Xn | on Apn and on A4,,,°, (ii’) and (v) imply that as m, » — 0

thene—»O,Ele—anrécrfA lel"""ffA | Xa|"+ ¢ — 0.

mn mn
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CoroLLARY 1. X, — X implies X, 5 X for v <r.
Set An = [| Xa — X| = 1] and observe that

[1x-x1"=[ % -x|"
A AAn

+1 | X.-Xx]|" gle,.—Xl'+PA.
A

AAy°

CO'ROLLARY 2. If supE|X,|"=¢c<w, then X, 5 x implies
X, — X forr' <r.

Let 4, = [| X.| = 4] and observe that

Jixr-{ 1%l + Xl s a4 aPa < ¢
4 Ad, A
by taking a sufficiently large to haveca™ ~" < %and, then, PA sufficiently

small to have a"PA4 < % .
Cororrary 3. If | X, | S Y € L, for large n, then X, 5 X im-
plies X, > XCEL,
Observe that for large 7, f| X, | éfY’.
A A

We proved in 9.3 a particular case of this corollary, with ¥ = ¢ < .

We summarize below the relations between various types of con-
vergence: -

a.s. a.s. ’ l
X5 X Xo o X = X, -5 XwichPl| X — X| g?] <
k
i

r r
X, 5 X=X > X, ' <r

The operation of integration on the complete normed linear space L,
with » = 1 can be characterized as a functional of the integrand, as
follows:

1
D. INTEGRAL REPRESENTATION THEOREM. Let—+—-=1withl £ r

r s
< o,
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A functional f on L, is linear and continuous if, and only if, there ex-
ists a rv. Y € L, such that f(X) = EXY for every X € L,; then S de-

1
termines Y up to an equivalence and Hf|| = E| Y.

1 1
Proof. Since —4+-=1and 1 <7 < w, it follows that 1 < s < o,
r s

and we apply repeiltedly Hélder’s inequality E| XY | < || X ||| Y ||,
1 1
wlhere | X||. = E| X|” and || Y|, = E | Y|* with || Y||w = lim

1o w
E|Y|* = as.sup| Y|.

If || X ||| V||, is finite, then AX) = EXY exists, is finite, and de-
fines a normed functional f on L, with || f|| < || Y||,. Since EXY is
linear in X € L,, so is f(X). Being normed and linear, f is continuous.

Conversely, let a functional f on L, be continuous and linear; linearity
implies additivity and additivity implies f(§) = 0, where 8 is the zero-
point of L,, that is, the class of r.v.’s degenerate at 0. Therefore, the
set function ¢ on @ defined by ¢(A4) = f(I4) is continuous and addi-
tive, hence o-additive, and vanishes for null events, hence is P-con-
tinuous. Thus, the Radon-Nikodym theorem applies and ¢ on @ de-
termines up to an equivalence a r.v. Y such that

SU4) = o(4) = EL,Y.

Since f(X) and EXY are both linear in X, it follows that f(X) = EXY
for all simple finite X(€ L,). If YE L, and L, 3 X, — X hence

XY 5 XY, then, by continuity of f and of E on L,, this equality
extends to all X € L,. Since f has finite norm || || = || Y|, to com-
plete the proof it suffices to show that the reverse inequality || £ || =
| Y||s is true.

Let » > 1. If the X, are simple finite and 0 < X, 7| Y|, then

1
E| X, |* £ E(X.* sign Y)Y < || £||E7| Xa |0
yields
| lls = | Xalle = [ £]l.

Let r = 1. If there exists an € > O such that || Y||o = ||£]| + 2e
and weset 4 = [| Y| = || f|| + €], then P4 > 0 while

[/l + 9P4 < E| .Y | = EU4 sign V)Y < || ]| P4,

and we reach a contradiction. This completes the proof.
Remark. The definitions and results of this subsection extend at
once to complex-valued r.v.’s.
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§ 10. PROBABILITY DISTRIBUTIONS

10.1 Distributions and distribution functions. Let X be a r.v. on

our pr. space (2, @, P). The nonnegative set function Px defined on
the Borel field ® in R by

Px§=PXE€S], §E€EB®

is called the pr. distribution or, simply, distribution of X. Since X is
finite, the inverse image under X of R is € and, since the inverse image
of a sum of Borel sets is the sum of their inverse images, we have

PxR =1, Px(X2S;) =2 PxS;, §;€@®.

Therefore, Px on ® is a probability. Thus, the r.v. X induces on its
range space a new pr. space (R, ®, Px), to be called a pr. space induced
by X on its range space or the sample pr. space of X. Moreover,

a. The distribution Px of X determines the distributions of all r.v.s
2(X) where g is a finite Borel function on R; and Eg(X) = jz; gdPx in

the sense that, if either side of this expression exists, so does the other, and
then they are equal.

Proof. Every finite Borel function g(X) of a r.v. X is a r.v. and,
by definition,
[g(X) €8] = [X € g7(8)]

where § and g~1(S) are Borel sets. Therefore
Pyx)(S) = Pxg7'(S), SE G,

and the first assertion is proved.

The second assertion will follow if we prove it for nonnegative func-
tions g. Because of the monotone convergence theorem, it suffices to
prove it for nonnegative simple functions g and, because of the addi-
tivity property of integrals, it suffices to prove the assertion for indi-
cators. Thus, let g = I, so that g(X) = I\x c 5. But, then, the left-
hand side of the asserted equality becomes

Lflxc.s']dp = P[X € §],
while the right-hand side becomes f IsdPx = PxS. Therefore, by
R

definition of Px, the asserted equality holds, and the proof is complete.
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Distributions are set functions and are not easy to handle by means
of classical analysis developed primarily to deal with point functions.
Thus, in order to be able to use analytical methods and tools, it is of
the greatest importance to find, and learn to use, point functions which
“represent” distributions, that is, which are in a one-to-one correspond-
ence with distributions. Such functions are obtained by the correspond-
ence theorem according to which, to the finite measure Px corresponds
one, and only one, interval function defined by

Fxla,8) = Pxla,5) = Pla< X < b), [a,8) CR.

In turn, to this interval function corresponds one, and only one, class
of point functions on R defined up to an additive constant, by

Fx() — Fx(a) = Fxla, b), a < b € R.

Recalling that Py is the distribution of a r.v. X, we select among all
those functions the function Fx defined on R by

FX(x)=PX(—°°)x)=P[X<x]) x€R)

and call it the distribution function (df.) of X. Then, according to the
usual notational convention, the equality in a can be written Eg(X) =

f gdFx and, if g is integrable and continuous on R, then the right-hand
E
side L.-S.-integral becomes an improper R.-S.-integral.

b. The d.f. Fx of a r.v. X is nondecreasing and continuous from the
left on R, with Fx(—x) = 0 and Fx(+x) = 1. Conversely, every func-
tion F with the foregoing properties is the d.f. of a r.v. on some pr. space.

Proof. The first assertion follows from the fact that P[X < x] does
not decrease as x increases, approaches P[X < '] as x T «’, and ap-
proaches P[X = —»] =0 or P[X< 4] =1 according as x — —
or x — +x. The converse follows by taking, say, for pr. space (R,
®, P) where P is the pr. determined, according to the correspondence
theorem, by F. Then F is the d.f. of the r.v. X defined on this pr.
space by X(x) = x, x € R.

REMARK. There are pr. spaces on which there can be defined r.v.’s for
every function F with the stated properties.

For example, take for the space @ the interval (0, 1), for the o-field of
events the o-field of all Borel sets in this interval, and for pr. the Le-
besgue measure on this o-field. Then any function F with the stated
properties is the d.f. of an inverse function X of F.
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The weakest type of convergence of sequences of r.v.’s considered

so far is convergence in pr. In turn, it implies a type of convergence
of d.f.’s, as follows:

c. If X, 5 X, then Fx, — Fx on the continuity set C(Fx) of Fy.
Proof. Since
X<a]=[Xn <% X<+ [Xy2x X<
C[Xn <x]+[Xn 2 ¥, X <],

we have

PIX <x'] £ Fx,(x) + P[X, = x, X < x'].

If X, — x5 0, then, for » < x,
PX,z2xX<#]sSP|X,—X|2x—x1->0

and, hence,
Fx(¥') = liminf Fy (), %' < x.

Similarly, interchanging X and X,, ¥ and ¥/, we obtain
lim sup Fx,(x) = Fx(*"), x <x".
Therefore, for ' < x < %'/,
Fx(¥") = liminf Fx (%) < lim sup Fx, (%) < Fx(x"")
and, if x € C(Fy), it follows, letting x’ T x and x| %, that
Fx(x) = lim Fx_(x).

The same argument with X’ in lieu of X and ', " € C(Fx) yields

d. If X, — X’» = 0 and Fx’, — Fx on C(Fy), then Fx, — Fx on
C(Fx).

Particular case. There is an important case in which convergence in
pr. and convergence of d.f.’s are equivalent:

Xn 2o if, and only if, Fx, — 0 or 1 according as x < ¢ or x > c.
Follows by ¢ and d.

First ExTENsION. Let X = (X, -+, Xn) be a random vector or,
equivalently, a finite class of r.v.’s Xy, - -+, Xn. The distribution of X
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is defined on the Borel field " in the N-dimensional space RY =

N
H Rk’ by
k=1 Px(§) = PIXE S], S€E aY.

As for a r.v., Px is a pr. and the induced pr. space is (RY, ®%, Px).
Proposition a, with its proof, continues to be valid: the first part holds
for every finite Borel function g on RY to some RY and the second part
holds for every component of g.

The distribution function (d.f.) Fx on RY of X is still defined by

Fx(x) = Px(—»,x) = P[X <x], x€RY,
or, more explicitly, by
Fxl,...,x,,,(xl, Y xN) = P[Xl < X1y *c -, XN < xN].

Px determines the increment function of Fx and, conversely, by

Pxla, b) = Fxla, b)) = Qp—oFx(a), a<bE RY
or, more explicitly, by

Pla; = X1 <41y -++yay £ Xn < by]

= Ap—g, AbN—aNFfo.---.XN(al, Tty aN),

where Ap,—q,, £ = 1, -+, N, is the difference operator of step &y — a;
operating on a.

Proposition b and its proof, as well as the remark, remain valid,
provided Fx ‘“nondecreasing” means that AyFx = 0 for £ > 0, that
is, /y >0, -+, Ay > 0,and ¥ —» —® or ¥ — -+ means that one at
least of the x; — — or that all the xx — -+, respectively.

Proposition ¢ and its proof remain valid, provided X, — X means

P
that every one of the components X, — X, k=1, -+, N.

*Let X = {X;, ¢t € T} be an arbitrary random function or, equiva-
lently, an arbitrary class of r.v.’s X, ¢+ € T. Then X induces the pr.

space (RT, ®T, Px)—its sample pr. space—where RT =[] R, is the
tET
range space of X, ®T is the Borel field in R, and Px is the distribution

of X defined by
Px(S) = PIX€S], S€a@.

According to the consistency theorem, Px determines the consistent
family of the distributions Px,l,...,x,N of all finite subfamilies (X, ---,

X,,) of the family X and, conversely, a consistent family of distribu-
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tions on Borel fields of all finite subspaces R, ...,, of RT determines a
distribution on ®7. Similarly, the d.f. Fx on RT is defined by the con-
sistent family of the d.f.’s Fy,,...x,, of all finite subfamilies of the
family X and, conversely, a consistent family of d.f.’s on all finite sub-
spaces of RT defines a d.f. on RT. _

RemaRrk. So far, the numerical functions under consideration were
r.v.’s, that is, finite (or a.s. finite) measurable functions. However,
the preceding definitions remain valid for nonfinite measurable func-
tions, provided the range-spaces are extended, that is, R, Ry, R; =
(—o, ) are replac%i by R, Ri, R, = [—, +x]. Thus, say, RY

is replaced by R¥ =kH Ry and, at the same time, ®% is replaced by
=1

&"—the Borel field in R", and Px on ®” is replaced by Px on &Y.

To fix the ideas, let X be a numerical measurable function, not neces-
sarily finite. Since & is determined by ® and the sets { —e} and {+w},
Px on ® is determined by Px on ® and the values

Px(~w) = PIX = —w], Px(+®) = P[X = +a].
In fact, Px on & is determined by the d.f. Fx of X, defined by
Fx(x) = PIX < x] = Px[—«, x), x € R,

since

Fx(—») = lim Fx(x) = P[X = —] 2 0

x— — o

and

Fx(+®) = lim Fx(x) = P[X < +o] = 1 — P[X = +o] < 1.
x — oo

10.2 The essential feature of pr. theory. We are now in a position
to describe the essential feature of pr. theory as distinct from measure
theory.

While pr. concepts are born from experience and, in their rough form,
are perhaps older than the measure-theoretic ones, yet their rigorous
formulation was given in this chapter in terms of and by specializing
the measure-theoretic concepts. Thus, it looks as if, nowadays, pr.
theory were a part of measure theory or, conversely, as if measure
theory were a generalized and rigorous pr. theory. Therefore, it is im-
portant to point out the basic distinction between these two interlock-
ing branches of mathematics. The fact is that the distinction does not
lie in the greater or lesser generality of the concepts, but in the proper-
ties investigated in these branches of mathematics.
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Let us start with an analogy. Geometry, say, euclidean plane geom-
etry, appears to be a part of algebra and analysis, since we can consider
a point in a plane as an ordered pair (x,y) of reals or as a complex
number, a straight line as a linear equation in x and y, etc. Yet, geom-
etry remains a science per se, not because it has its own terminology or
is older than algebra and analysis, but because geometry studies those
properties of sets of points that remain invariant under all the trans-
formations which, say, preserve the distances; for example, euclidean
displacements in the case of the euclidean geometry. And geometric
terminology developed, frequently unconsciously, for this specific pur-
pose is, on the whole, well adapted to the geometrical intuition, prob-
lems, and methods.

Now, measure theory investigates families of functions on a measure
space to other spaces, distinct or not from the first. On the other hand,
pr. theory has developed and continues to develop the intuition, prob-
lems, and methods of its own in exploring those properties of families
of functions which remain invariant under all the transformations which
preserve their joint distributions—the reason being that the primary
datum in random phenomena is not the pr. space but the joint distri-
butions of the families of r.v.’s which describe the characteristics of
the phenomena. Since the measurable characteristics are finite, pr.
theory limited itself to r.v.’s (which, by definition, are finite). This
explains the historical reason for the restrictions imposed on the meas-
ure-theoretic setup of pr. theory. However, today pr. theory is suffi-
ciently mature mathematically to show signs of .getting rid of those
restrictions, by considering more general families of functions on meas-
ure spaces (normed or not) to more and more abstract spaces. We can
summarize the essential feature of pr. theory as follows:

A PROPERTY IS PR.-THEORETICAL IF, AND ONLY IF, IT IS DESCRIBABLE
IN TERMS OF A DISTRIBUTION.

In other words,

A property of a family of functions on a measure space is pr.-theoretical
if, and only if, the property remains the same when the family is replaced
by any other family with the same distribution.

In particular, since in the numerical case a distribution is represented
by the corresponding d.f.’s, we can say that

—the pr.-theoretic properties of a r.v. X are those which can be expressed
in terms of its d.f. Fx,
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—the pr.-theoretic properties of a finite family (X1, X, -+, Xn) of
r.v.s are those which can be expressed in terms of the joint df.
Fx, x, . Xw

—the pr.-theoretic properties of any family (Xi, t € T) of r.v’s are
those which can be expressed in terms of the joint d.f.’s of its finite
subfamilies.

More generally, consider a function X on a pr. space (2, @, P) to
some abstract space Q. The class of all sets in @’ whose inverse images
under X are events is a o-field @' in Q'; assign to 4’ € @' the number
P'4' = P(X~'4"). This defines the induced pr. space (@, @/, P’).
The pr.-theoretic properties of X are those which can be expressed in terms
of P’ on @'. If we limit ourselves to these properties only, we can speak
of a “stochastic variable” X described by a “pr. law” represented by P’.
Those are the mathematical beings we are concerned with, and the
function X, the measure P’ (or the d.f.’s in the preceding cases) are
only various ways of talking about those beings in various languages.
It is important to realize fully that measurements of a stochastic varia-
ble are relative to the induced pr. space; the original pr. space is but a
mathematical fiction. Yet it is basic, for it permits the use of a “com-
mon frame of reference’” for the families of stochastic variables we in-
vestigate—the families of sub o-fields of events they induce on the
original pr. space. However, precisely because of the existence of a
common frame of reference in the present setup, modern physics forces
us to introduce a different setup that we shall see in the next volume.

COMPLEMENTS AND DETAILS

Notation. Unless otherwise stated, the pr. space (R, @, P) is fixed, the
spaces L,, Ly(r, s > 0) are defined over the pr. space, and, with or without
affixes, 4, B, - -+ denote events, while X, Y, --- denoter.v.’s.

/. Rewrite in pr. terms as many as possible of the complements and details
of Part I.

2. The convex function log E| X |” of  is linear if, and only if, X is a degen-
erate r.v.

3. Liapounov’s inequality. Let u, = E|X|. If r2s2¢20, then
pt "t " ul "%z 1. When does this inequality become an equality? Prove
Holder’s inequality by means of properties of convex functions. When does
this inequality become an equality?

4. Investigate the possible behaviors of E7| X | as r varies from — to 0.
a+b
2

to obtain a bound for

5. Apply Markov’s inequality to X —

Pla £ X S 4]. Also use the method of proof of the basic inequalities to obtain
various bounds for this pr.
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6. If go on [0, +) is a nonnegative Borel function such that ge(x) = go(e)
for xZ ¢, then P[| X |2 ¢] < Ego(| X |)/go(¢). Construct a function £ on
[0, +) with g(0) = 0, g(¢) = go(e), which is nondecreasing, continuous where
go is continuous, and such that Eg(| X |) < Ego(| X |). Then the above bound
is at least as sharp with g instead of g.

(Form gix) = infg(x") for x"Z x and g(x) = min (g{x), % £o(x)).)

7. Let g with g(0) = 0 be a continuous and nondecreasing function on [0, +).
If there exists an & = A(Eg(| X |), €) such that P[| X | 2 €] < 4 < Eg(| X |)/g(¢)
for all r.v.’s X, then 2 = Eg(| X |)/g(é) for those € > 0 for which the bound is
of interest, that is, for which Eg(| X |) < g(¢). Loosely speaking, the bound
Eg(| X |)/g(e) is the sharpest of all bounds which depend upon Eg(| X |) and e.

(Take | X | = e or O with pr. p and ¢ = 1 — p (pg # 0), respectively.)

8. For € > 0 sufficiently small, the bound E| X |*/€ is at least as sharp as
the bound E| X |*/€* with 5 > 7.

9. Let

d(X,Y) =inf{P| X — Y| = ¢ + ¢ foralle > 0;

d(X,Y) =infesuchthat P[[ X — Y| 2 ] < ¢;

d(X,Y) = Eg(| X — Y |),g0on [0, + ) is bounded continuous and increasing

with g(0) = 0 and g(x + x’) = g(x) + g(«); for ihstance, take g(x) = ad

1 4+ cx
with ¢ > 0, g(x) = 1 — ¢7%, or g(x) = tanh x.

Each of the three functions dy, 4y, 4z is a metric on the space of all r.v.’s,
provided equivalent r.v.’s are identified. Convergence in pr. is equivalent to
convergence in any of the corresponding metric spaces.

10. (a) X° | Xn| < o as. if, and only if, the sequence of d.f.’s of consecutive
sums converges to the d.f. of a r.v.

(b) If E3. | Xa|" < , then X | Xa|" < as.
(c) Let s =1 or % according as r < lorr= 1. If 3 E*| X.|* < oo, then
> X <@ as.

/1. X, — X if, and only if, given ¢ > 0 and & > 0, there exists n(e, 8) such
that P[| X» — X | = ¢ < & for n = n(e, 8).

(a) Xn 2B ox if, and only if, given € > 0 and 6 > 0, there exists (e, d)
such that P[| X, — X | = € for some n 2 n(e, 8)] < 8.

(b) Xn 5 X except on a null event if, and only if, given € > O there
exists #(€) such that P{| X, — X|= €] =0 for n = n(e) or, equivalently,
P[| Xn — X | 2 € for some n = n(e)] = 0.

2. P[X, P X]= lim lim Pkng | X — X| = €.

e—0n— oo

(a) If 3" Pl| Xa — X| = €] < = for every € > 0, then X —> X.
.8,
() If 3= E| Xo — X |7 < = for some 7 > 0, then X, —> X.
13. Xo -5 X if, and only if, there exists a sequence e, — 0 such that
PU [ Xi—X|2= &l — 0. (For the “only if” assertion select 7, T by
kzn

1
PU [|Xk—X|;—l]<—l-andtakeen=—fornm§n<nm+1.) Let
kZTm m PAs m

D be the set where the sequence X, does not converge to a finite function.
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PD = lim lim lim P U [|Xk X|Z ¢

e—>0Q0m—0 n— o0

n

PD=lim lim’ lim P U [| Xe — Xn |2 ¢

e—=0m—on—w0 k=m

where lim’ denotes lim inf or lim sup indifferently. Can lim’ be replaced by
lim?
4. (@) If 3" P[Xny1 — Xo| 2 €] <o and 3 € < o, then the sequence
X, converges a.s. to a r.v.
(b) If 3 sup P{| Xn4p — Xn| = €] <  for every € > 0, or
?

sup Pl Xnyp — Xn|Z ¢ =0 and X liminfP[| Xnjp — Xn| = €] < o
» ?

for every € > 0, then the sequence X, converges a.s. to a r.v. (In the last two

P
cases, X» — some r.v. X and P[| X» — X | = 2¢] is bounded by the corre-
sponding term of each of the two series.)

X 1 1 X . .
15. Take X, = n® or 0 with pr. - and 1 — ) respectively, and investigate

convergences of the sequences X, and E| X, |" according to the choice of ¢ and
of r.

16. If Fx, — Fx on C(Fy) and Y, 5 ¢, then Fx 4y, — Fx4con
CFx+ed)  (Slutsky).
What about X,Y,, X./Y, and in general g(X,, Y,) where g is continuous?
(Use 10.1d.)

1 : .
17. Take Xopn1 = —, Xop = — - and investigate the sequences X,. and Fy,.
Take Xa =0or 1, each with pr. 3, and X = 1 or 0, each with pr. 3. Then
| Xn — X| =1 but FX = F. To what converse is it a counterexample

18. If the sequence X, converges a.s. to a nonfinite function, what can be
said about the sequence Fy,?

79. Let {F.} be a denumerable family of d.f.’s with Fn(—o) =0 and
Fn(+») = 1. The family of all functions Fy,,..,s, = Fa; X+ X Fa,is a con-
sistent family of d.f.’s. Construct as many pr. spaces as you can, on which are
defined r.v.’s X, such that Fy, . . = F,, ...n, for all finite index sets.

Extend what precedes to a family {F;} where ¢ ranges over an arbitrarily
given set T.

20. There is no universal pr. space for all possible r.v.’s on all possible pr.
spaces.

21. Extend as much as possible of thns chapter and of the foregoing comple-
ments and details to complex-valued r.v.’s and to complex vectors, by suitably
interpreting the symbols used.




Chapter 1V

DISTRIBUTION FUNCTIONS AND
CHARACTERISTIC FUNCTIONS

§11. DISTRIBUTION FUNCTIONS

11.1 Decomposition. In pr. theory, a distribution function (d.f.), to
be denoted by F, with or without affixes, is a nondecreasing function,
continuous from the left and bounded by 0 and 1 on R. This defini-
tion entails at once that the quantities,

F(—®) = lim F(x) = inf F, F(+») = lim F(x¥) = sup F,

x— — z— 4o

F(x) = F(x — 0) = lim F(x,) = sup F(x'),
znl 2 ¥<z

F(x +0) = lirln F(x,) = inf F(x'),
Znl® ’

x>z

exist and are bounded by 0 and 1, and « is a continuity or a discontinu-
ity point of F according as F(x +0) — F(x —0) =0 or > 0. Aswe
have seen, a d.f. is always the d.f. of a measurable function on a pr.
space, and if F(—w) = 0, F(4) = 1, then it is the d.f. of a r.v.

The requirement of continuity from the left is of no importance,
since every nondecreasing function Fy on R bounded by O and 1 de-
termines a d.f. F by setting F(x) = Fy(x) or F(x) = F;(x — 0) accord-
ing as x is a continuity or a discontinuity point of Fy. In fact, even less
is necessary to determine a d.f.

Let D denote a set dense in R (for example, the set of all rationals)
and let Fp denote a nondecreasing function on D bounded by O and 1.
We can assume, without loss of generality, that it is continuous from .
the left on D. Since, for every x € R, there exists a sequence {x,} < D

177
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such that x, T x, ¥, < x, it follows easily that, according to the defini-
tion of d.f.’s,

a. The function F defined on R by

F(x) = lim Fp(x,), %, €D, x, <x
zm 1z
is a d.f.

It follows that, if two d.f.’s coincide on a set dense in R, they coincide
everywhere. Furthermore, monotoneity of d.f.’s leads to the

A. DecomposITION THEQREM. Every d.f. F has a countable set of dis-
continuity points and determines two d.f’s F, and Fy such that F. is con-
tinuous, Fy is a step-function, and F = F, + F,.

Proof. If F has at least # discontinuity points xy
a éxl <x2,"', <xn <b

in a finite interval [a, 4), then, from
F(a) §F(xl) <F(x1 +O) §§F(xn) <F(xn+0) §F(b)’
it follows, setting p(xx) = F(xx + 0) — F(xy), that

n

o) = X AF(x +0) — Flxe)} = F(0) — F(a).

k=1 k=1

Therefore, the number of discontinuity points x in (2, &) with jumps

1
p(*¥) > ¢ > 0 is bounded by — {F(¢) — F(a)}. Thus, for every integer
€
1

m, the number of discontinuity points with jumps greater than — is
m

finite and, hence, there is no more than a countable set of discontinuity
points in every finite interval [4, #). Since R is a denumerable sum of
such intervals, the same is true of the set of all discontinuity points,
and the first assertion is proved. Furthermore, denoting the discon-
tinuity set by {x,}, we have, for every interval [4, &), finite or not,
> p(xn) S F(0) — F(a).

a§17;<b
Upon defining Fg by

Fy(x) = Zp(xn), x € R,

Zn<z

and setting F, = F — Fy, it follows at once that Fy and F, are d.f.s.
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But, for x < ¥/,

Fo(¥') — Fo(%) = F(x') — F(x) — X p(xn)

rSzp< 2’

= F() —Fs+0) =% pls),
so that, letting ¥’ | x, we obtain

Fo(x + 0) — Fe(x) = 0;

thus F, is also continuous from the right and hence continuous.
Finally, if there are two such decompositions of F;

F=F4+F;=F,+ Fly

then F, — F', = F'q — F;, and both sides must vanish since the left-
hand side is continuous while the right-hand side is discontinuous, ex-
cept when it vanishes identically. This completes the proof.

ReMark. Since the discontinuity set of a d.f. is countable, its con-
tinuity set is #/ways dense in R. However, the discontinuity set can
also be dense in R. For example, let {r,} be the set of all rationals in

R (it is dense in R); if p(rn) = —% . ;15, then the function F defined by
T
F(x) = ;P(rn), x € R,

is a d.f. and, in fact, is the d.f. of a r.v., since F(—) = 0 and F(4x) =
— Y =1
x? ‘5:—' n?

FurTHER DEcoMposITION. F, determines, by p.(—®,x) = F,(x) —
F,(— ), a finite measure u, on the Borel field ® in R. Upon applying
to u. the Lebesgue decomposition theorem with respect to the Lebesgue
measure on ® we obtain

Be = Mac + Moy P’-ac(S) =fg(x) dx, NS ®,
S

where g = 0 is a Borel function and g, = 0 on the complement of some
Lebesgue-null set &,. It follows that there are d.f.’s F,, and F, which
correspond to the measures u,. and u,, respectively, such that

Fe=F,.+ F,, Fu(x) =f gx) dx, g0,

—o0

and F, is a continuous d.f. whose points of increase all lie in N,. Thus
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A’. Every d.f. F determines three d.f.s of which F is the sum:
—the step part Fy which is a step function,
—the absolutely continuous part F,. such that

Ful) = [ gt dv, 520, €R,

—c0

—the singular part F, which is a continuous function with points of
increase all belonging to a Lebesgue-null set.

11.2 Convergence of d.f.’s. As 10.1c and 11.1a suggest, convergence
of d.f’s to a d.f. F ought to be defined without taking into account
what happens on the discontinuity set of F.

We say that a sequence F), of d.f.’s converges weakly to a d.f. F and
write F, = F, if F, — F on the continuity set C(F) of F. This defi-
nition is justified—that is, the weak limit, if it exists, is unique, since
F, 5 Fand F, S F imply F = F’ on the set C(F) N C(F") and, on
the remaining set, which, by 11.1A; is countable, F = F’ by continuity
from the left.

We say that a sequence F, of d.f.’s converges completely and write
F, 5 F,if F, = Fand Fo(F®) — F(¥®). Weak convergence does
not imply complete convergence. For exaniple, given a d.f. Fy with at
least one point of increase so that Fo(—) = Fo(+x), let F,(x) =
Fo(x + n). Then F, — Fy(+=) and the weak convergence holds but

not the complete convergence. However, in the case of weak conver-
gence we have

a. Let F, — F. Then
lim sup Fr(—) £ F(—®) £ F(+») < lim inf F,(+»),
Var F < lim inf Var F,
and F, — F if, and only if, Var F,, — VarForVarF — F,[—a, +a)

— O uniformly in n as a — .

For, from

e

Fn(—w) § Fn(x) § Fn(+°°))
it follows that, for x € C(F),
lim sup Fo(—») £ F(x) < lim inf Fr(4 )

and, letting x — “F o along C(F), the first inequalities are proved.
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Thus
Var F = F(4) — F(—») < lim inf (F,(+0) — Fp(—))

= lim inf Var F,,

and the second assertion follows from the same inequalities.

We still have to find a way to recognize whether a given sequence
F, of d.f.’s converges, weakly or completely.

b. A sequence F, of d.f.s converges weakly if, and only if, it converges
on a set D dense in R.

Proof. The “only if” assertion follows from the fact that the con-
tinuity set of a d.f. is dense in R. As for the “if”’ assertion, let Fp =
lim F, on D. The relation of 11.1a determines a d.f. F on R. Since,
for x' < x < x",

Fo(x') = Fu(x) £ Fa(+"),
it follows that, for x’, "’ € D
© Fp(#') < liminf Fo(x) £ lim sup Fn(x) < Fp(x").
Taking x € C(F) and letting ' T x and x”’ | x along D, we obtain
F(x) = lim Fa(x), x &€ C(F),
and the “if” assertion is proved.
We are now in a position to prove the basic Helly

A. WEAK COMPACTNESS THEOREM. FEuvery sequence of d.f.s is weakly
compact.

We recall that (at least here) a set is compact in the sense of a type of
convergence if every infinite sequence in the set contains a subsequence
which converges in the same sense.

Proof. It suffices to show that, if F, is a sequence of d.f.’s, then there
is a subsequence which converges weakly. According to b, it suffices
to prove that there is a subsequence which converges on a set D dense
in R.

Let D = {x,} be an arbitrary countable set dense in R, say, the set
of all rationals. All terms of the numerical sequence F,(x1) lie between
0 and 1 and, therefore, by the Bolzano-Weierstrass compactness lemma,
this sequence contains a convergent subsequence Fi(x1). Similarly,
the numerical sequence F, (xs) contains a convergent subsequence
Foo(%2) and the sequence Fiy(x;) converges, and so on. It follows
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that the “diagonal” sequence F,, of d.f.’s, contained in all the subse-
quences {Fn1}, {Faz), -+, converges on D, and the proof is complete.

B. COMPLETE COMPACTNESS CRITERION. A sequence F, of d.f.s is
completely compact if, and only if, it is equicontinuous at infinity: Var F, —
F,[—a, +a) — O uniformly in n as a — +».

Proof. The “if” assertion is immediate. As for the “only if” asser-
tion, if the F, are not equicontinuous at infinity, then, by a and A, there
exists a subsequence F,: which converges weakly but not completely.
Note that our “‘complete” convergence is frequently called “weak” and
our ‘“weak” is sometimes replaced by “vague.”

11.3 Convergence of sequences of integrals. Let g denote a func-
tion continuous on R and let F, with or without affixes, denote a d.f.
We intend to investigate conditions under which weak or complete con-
vergence of a sequence F, implies convergence of the corresponding

sequence of integrals fg dF,, when these integrals exist. Let us ob-

serve that these integrals do not change if arbitrary constants are added
to the d.f.’s. The investigation is centered upon the basic

a. HELLYy-Bray Lemma. If F, 5 F up to additive constants, then,
for every pair a < b such that F,(a) — F(a) and F,(6) — F(4),

b b
fngn ——>fng.

km
Proof. Setting g, = kzl EXmi) 2k, zmos 4> Where

a=Xm < Xm2 <"'<xm.km+l =5

and Ap = sup (¥m.k41 — ¥mk) — O as m — o, we have, according to
k

the definition of R.-S. integrals,

b b b b
fgman'_’fngn, fgmdF"—’fng, m — oo,

Upon selecting all subdivision points #mi to be continuity points of F,

it follows from F, — F that, for every m and every &, as n —

Fn[xmk, x,,,,k.H) - F[xmk) xm.k+l))
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and, hence,

b km km
f &m an = Z g(xmk)Fn[xmk) xm.k-{-l) - Z g(xmk)F[xmk, xm.k-{-l)

k=1 k=1

b
=f gZm dF.
Since

b b
f gdF, —f gdF

b b b b
=f(g—gm)an+fgman—fgmdF+f (&gm — g) dF

and the first and last integrals on the right-hand side are bounded by
sup | g(x) — gm(®) | > 0as m — o, the assertion follows by letting
szsbh

TS

n — o and then m — .

The extensions of this lemma will be based upon the obvious inequality

b
M ||gdF, - ng|§|fngn—fngn|

b b b
+1f gar — [ gar,| +|[ gar — [gar|

with 2 and 4 continuity points of F, provided the integrals exist and
are finite.

A. ExTenpep HeLLy-Bray LEmMMA. If g(F ) = 0, then F, 5 F up
to additive constants, implies f gdF, — | gdF.

Proof. Since g is continuous and its limits as x — Foo exist and
are finite, g is bounded on R and the integrals fg dF, and | g dF ex-

ist and are finite. Letting # — o and then ¢ > —o, 4 — +o, it

follows that, out of the three right-hand side terms in (I), the second

converges to O by the Helly-Bray lemma, whereas the first and the

third ones are bounded by su(pb)l g(*)| — 0. The assertion is proved.
z a,
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B. HELLY-BrAY THEOREM. If g is bounded on R, then F, SF up
to additive constants implies f gdF, — | gdF.

Proof. Since|g| < ¢ < o, the integrals exist and are finite. Letting
n — o and then 2 > —x, 4 — +x, it follows that, out of the three
terms on the right-hand side of (I), the second converges to O by the
Helly-Bray lemma, whereas the first and the third ones are bounded,
respectively, by

c{Var F, — Fypla, 6)} - 0 and ¢{VarF — Fla, b))} — 0;

and the assertion follows.

Remark. All the results of these subsections extend, without further
ado, to d.f.’s F on R¥ and continuous functions g on R¥, with the usual
conventions for the symbols used above.

*11.4 Further extension and convergence of moments. Letgon R be
continuous and F on R, with or without affixes, be a d.f. The integrals
we are interested in, are finite Lebesgue-Stieltjes integrals of the form

f g dF, that is, such that f | g| dF < o; they are, therefore, absolutely

convergent improper Riemann-Stieltjes integrals.
We say that | g| is uniformly integrable in F, if, as a — —, b —

b
+o0, f lglan - f|g| dF, < « uniformly in #; in other words,

given ¢ > 0,
b
[1glar, — [Iglar. <

b
for a £ a,and 4 = 4, independent of n. Since f | g| 4F, does not de-

crease as 4 | —o and/or 47 4+, it suffices to require the foregoing
conditions for some set of values of | | and & going to infinity; for ex-
ample, that f | g| 4F, — O uniformly in # as ¢, — ® with

|z|=cm
m — 0O,

We consider now properties of the foregoing integrals which follow
from the weak convergence of d.f.’s F,; they contain the extensions of
the Helly-Bray lemma of the preceding subsection (we leave the verifi-
cation to the reader).
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w L)
A. CoNVERGENCE THEOREM. If F, — F up to additive constants,
then

0 lim'infflgldF,, gflgldF

(i1) | g| is uniformly integrable in F, = |gdF, — | gdF
(111) fl g| dF, — fl gldF < o = | g| is uniformly integrable in F,.

Progf. Let ¢ be continuity points of F, and use repeatedly the
Helly-Bray lemma.

(i) follows, by letting » — « and then ¢ — 4, from

+e +c
Jiglaraz [ Nglar, — ["1glar - [1¢]ar

(i) is proved as follows:

Given ¢ > 0, let f R | g| dF, < € for ¢ = ¢, whatever be . By
|z|2ze

the Helly-Bray lemma, if ¢ > ¢ and ¢’ (like ==¢) are continuity points of

F, thenf Igl dF < eand, letting ¢’ — o, we havef Igl dF
cslz|<c |z |=Ze

< € and hence flgldF < . Furthermore, by taking ¢ = ¢, and

letting # — o and then ¢ — 0,

+c
lfngn—fng|§fl o lglan+|f g dF,

+c
—f gafl+[  |glaF o

(i11) = follows from

J. . lelarus|flglar ~ [1g] aF|

+e +e
+f _Nelar+1f Iglar = lelar.|

[zl2c

by taking ¢ = ¢o such that the second right-hand s.ide term is.less than
¢/3, then n = ng such that the first and the third right-hand side terms
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are less than /3, and finally ¢, = max (co, ¢1, -**, ¢ny—1) Where ¢

(k=1, --- ng — 1) are such thatf lgl dF) < e; thus,

[z |2 ek
f | g| dFy < ¢
[z|ze
for ¢ = ¢, whatever be 7.

(iii) < follows by (ii) where g is replaced by | g|.
This proves the last assertion and terminates the proof.
Application. Let

m(") =kadF(x)) k=0,1)2)"') #(r) =f|x|rdF(x)) r;O

define, respectively, the kth moment (if it exists) and the rth absolute
moment of the d.f. F or, equivalently, of the finite part of a measurable
function X with d.f. F; if X is a r.v., then this definition coincides with
that given in 9.3. If F possesses subscripts, we affix the same subscripts
to its moments.

B. MOMENT CONVERGENCE THEOREM. If, for a given ro > 0, | x|™
is uniformly integrable in F, then the sequence Fy is completely compact
c
and, for every subsequence Fn» — F and all k, r < 7o,

k)

My ® — m® fnite, p ™ — w1 finite.

Proof. According to the weak compactness theorem, there is a sub-

o w
sequence s and a d.f. F such that F,,» — F. On the other hand, the
uniformity condition for | ¥ | implies that, for every r £ 7,

jl‘ Iz I‘xlran'(x) = cr"'°jl. | |x|'°an:(x) — 0 as ¢ > +w

uniformly in 7, so that the uniformity condition holds for | x |". There-
fore, the preceding convergence theorem applies to every sequence
mp® and p, ™ with k, 7 £ 7o. In particular, taking » = 0, we obtain

Var F,» — Var F, so that F,, =, F. The theorem is proved.

CoROLLARY. If the sequence p,"°*? is bounded for some § > 0, then
the conclusion of the foregoing theorem holds.

For u,"*? £ 4 < » implies that, as ¢ — +,
f | X |'° dF,(x) = c"sf | X |'°+‘s dF,(x) £ ¢ %a > 0,
[zlzec [z(2ec

so that the uniformity condition holds for | x |™.
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This corollary yields at once the following solution of the celebrated
“moment convergence problem” (Fréchet and Shohat).

C. If, for k = ko arbitrary but fixed, the sequences my® — m® finjte,
then these sequences converge for every value of k, and their limits m™® are
Sinite and are the moments of a d.f. F such that there exists a subsequence
F, = F.

If, moreover, these limits determine F up to an additive constant, then

c
F, — F up to an additive constant.

It suffices to apply the foregoing corollary and to observe that, if the
m*) determine F up to an additive constant, then all completely con-
vergent subsequences F,. have the same limit d.f. F up to additive
constants.

*11.5. Discussion. A d.f. F determined up to additive constants
corresponds biunivoquely to an interval function F determined by
Fla, b) = F(4) — F(a) which in turn corresponds biunivoquely to a
measure F on the Borel field in R (4.4a)—a subprobability (subpr.)
since F(R) = 1.

Weak convergence of d.f.’s F, to F—all determined up to additive con-
stants, is equivalent to convergence of interval functions defined by
F.la,b) — Fla,b) forevery F-continuity interval [a, b), that is with F{a} +

F{2} =0, and we can still write F.> F. The above appearance of
subpr.’s permits to extend propositions in 11.3 and 11.4 to noncontinuous
functions g. Since these propositions derive from Helly-Bray lemma
11.3a, it will suffice to generalize it and the others will follow as before.
Denote by D, the set of discontinuities of a function g on R to R; itis a
Borel set (see §12). If F(D,) = O we say that g is F—a.e. continuous.

b
a. GENeraLIZED HELLY-Bray LEmma. If F, = F then f gdF, —

b
f g dF, for every F-continuity interval (a, &) and every F-a.e. continuous
unction g bounded on every bounded interval.
4 Y

Proof. The method of proof of the Helly—Bray lemma in 11.3 applies
but for one necessary change due to the fact that our integrals are now
Lebesgue-Stieltjes ones so that instead of Riemann sums we use Darboux
sums: Instead of gm we need gm and ga defined by

k km

Im = Z gmklmk, fm = Z fmklmk,

- k=1 k=1
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where I, are indicators of F-continuity intervals Jmi: = [Xmk, X¥m.k41)

of length | Jme| with Z Jmr = la, 8), supl Jmi ]| — 0 as m — o, and

k=1
where

gmi = inf{g(x):x € Jmi}, Zmp = sup{gle)ix € Jme}.
Since as # — o, by hypothesis, F.(Jmt) = F(Jmr) so that

b b b b
fg,,.,dF,,——)fgmdF, fg‘,,,dF,,—»fg,,,dF,

while F(D,) = 0 implies that F-a.e., as m; — o,
gn 1 84 Zms

letting 7 — o then m — o in

(] (] (]

fgmanéfngnéfzman,
(] ]
fng"_)fng'

So far we considered only numerical functions g. But all proposi-
tions in 11.3 and 11.4 as well as the one above remain valid for complex

valued g = ®g + 3¢ .by, say, fg dF = f((Rg) dF + if(sg) dF. In

fact, then, the inverses of the Helly-Bray lemma and of the Helly—Bray
theorem are valid because of the weak and complete convergence criteria
in 13.2. We shall leave these immediate extensions to the reader.

it follows that

The lemma is proved.

Several questions arise at once: Since Borel fields are generated by the
class of open (of closed) sets, are subpr.’s determined by their values on
such a class? Is weak convergence determined by the behaviour of
subpr.’s on open (on closed) sets? Since weak and complete convergence
are determined by convergence of integrals of some families of functlons
are there other such families?

It will be convenient to discuss these questions for subpr.’s on Borel
fields of metric spaces. First, because this generality is needed for
“functional limit theorems’ (see Chapter XII) and second, because the
proofs are not more involved than for the real line. However, this
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generality creates two difficulties: First, we do not have intervals in
general metric spaces hence no interval functions and are reduced to
work directly with subpr.’s. Second, nontrivial continuous functions g
vanishing at infinity (that is, such that given ¢ > 0 there is 4 compact K
with [g| < € on K°) may not exist. In fact, on the separable Banach
space Cla, 4] of continuous functions on {4, 4] to R with the supremum
norm, the only continuous function vanishing at infinity is the zero func-
tion. Or this space is central to Ch. XII. Thus the extended Helly-Bray
lemma is useless. However, the Helly-Bray theorem, with integrals of
bounded continuous functions, with respect to subpr.’s u,, u, remains
meaningful. But, in the case of the real line, it corresponds to complete

convergence ., Su or, equivalently, weak convergence of pr.’s u,/un(R)
to a pr. u/u(R) (excluding the trivial case of u(R) = 0). Thus, in the
general case we are led to consider only weak convergence of pr.’s to a pr.
and the corresponding “relative compactness’’: As is easily seen, 11.2b
implies that a sequence of pr.’s F, on R contains a subsequence which
converges weakly fo 2 pr. if and only if for every ¢ > 0 there is a compact
K.in R with F,,(K?) < efor all n. Is there a similar criterion for metric
spaces? Answers to the foregoing questions are to be found in the next
section.

*§ 12. CONVERGENCE OF PROBABILITIES ON METRIC SPACES

Throughout this section and unless otherwise stated, with or without
affixes

1. & is a space with metric 4 and Borel field § generated by the class
of its open (of its closed) sets, U, C, K are its open, closed, compact sets,
respectively,and 4 = 4 — A°is the boundary of a set 4 in X. Proper-
ties of metric spaces in 5.3 are to be used without further comment.

2. Pisapr.on8 and A4 in X is a P-continuity set when P(3A4) = 0,
g, & are Borel functions on the Borel space (X, §) to the Borel line or
Borel space (X', 8'), respectively. D, is the discontinuity set of g and g
is P-a.e. continuous when P(D,) = 0; similarly for 4. If g = I, then
clearly D, = 84. Note that for any function % on (X, d) to (X', 4’), D»
is a Borel set, since D» = \J M\ D,, where r and s vary over the rationals

and D,, are the open sets
Dye = {x:d(x,y) <35, dx,2) <s, d'GB0), ) = ).

For later use, we observe that except for a change of notation the same
proof as for 10.1a yields
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CHANGE OF VARIABLE FORMULA. Let Pon S beapr. Let b be a Borel
function on X to X’ and g be a Borel function on X’ to R. The distribution
Pr=Y of k defined by Ph~(A’) = P(h~(A4’)), A’ € 8'-Borel field in X'
determines the distribution of random variables g(h), and

| emar - [ gamr,

’

in the sense that if either integral exists so does the other one and then both
are equal.

The main concepts and results of this section originated with Alex-
androv and their final form is primarily due to Prohorov.

*12.1 Convergence. The basic theorem below is essentially due to
Alexandrov. Any of its six equivalent properties defines weak convergence

on 8 of pr’s P, to a pr. P, and we write P, =5 P. The usual definition is

(i1): } g dP.— | g dP for all bounded continuous functions g. Since

1 = Po(X) = P(X) = 1, this “weak” convergence is in fact complete con-
vergence.

A. CoONVERGENCE CRITERIA. Let P,, P be pr.’s on the Borel field $

of a metric space (X, d). Let g be functions on X to R and the integrals be
over X.

The following six properties are equivalent and define P, = P
I:

fgdP,,-—* gdP

() for all bounded P-a.e. continuous g

(11) for all bounded continuous g
(ii1) for all bounded uniformly continuous g
II:
(iv) limsup P. C = PC for all closed sets C
(v) liminf P, U = PU for all open sets U
(vi) P,Ad — PA for all P-continuity sets A

Proof. Clearly (i) = (ii) = (iii).
(iii) = (iv): The function g, defined by gm(x) = ¢ ™4=©) is bounded
by 1 and uniformly continuous with /¢ < gm | I¢c as m — «. Thus

P,.C = f gm dP, and, by Fatou-Lebesgue theorem, as # — « thenm — =,

limsup P,C < f gndP — PC.
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(iv) = (v): The two properties are dual: each implies the other one
by complementation.

(v) = (vi): Since (iv) and (v) are equivalent, by using both and the
fact that #° C 4 C A, we obtain

PA° £ liminf P,A4° £ liminf P,4 < limsup P.4 < limsup P, 4 <
PA. Since P(4 — A°) = P(3A4) = 0 by hypothesis in* (vi), we have
PA° = PA so that in the above inequalities the extreme terms hence all
the terms coincide and P4 = lim PA,.

(vi) = (1): The method of proof of Helly-Bray lemma in 11.5 still
applies but with another necessary change due to the fact that it is the
range space, and not the domain, of g which is R. The sets ¢ '(¢) =
{x: g(x) = ¢} are disjoint for distinct ¢ € R. Since P(X) is finite, it fol-
lows that P(g7*(c)) > O only for a countable set of values of ¢. Since
g 1s bounded there is a bounded interval [a, 4) with g() C [a, 4). We
can take 4 = xm < ... < Xmp,41 =06 & D with no x.. € D for
k= lkmym=12,...,and m:tx(xm,kﬂ — Xmp) 2 0 asm— o,

Let I be indicators of the Jmi = g7 [%mi, Xm £41), omit the empty Jme,
set gmi = Inf{g(x): x € Jmr}, gmr = sup{g(x): ¥ € Jmi}, and

gm = %gmk-[mk, fm = IcZ fmklmk-
Since, by (vi), Pu(Jmr) = P(Jms), it follows that, as # — o,
f_m dP — | gn dP, = ffm AP, — | gn dP,

while P(D,) = 0, by hypothesis in (i), implies that, as m — =, P-a.e.

gn 12! Zm

Therefore, letting # — o then m — o in

[enap. s [eaP. s [z ap.,

fgdpn“—) gdP.

we obtain (i):

The proof i1s terminated.

CororLrary 1. If P, 5 P then Poh—' = Pp! for every P-a.e. continu-

ous h on X to X', equivalently f g(h) dP, — | g d(P.h™) for all bounded
continuous g on X' to R.
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For, PHy = 0 and (A7'C) C (A'C) U D, for every closed C, imply
P(h~'C) = P(A'C) hence

limsup Pa(A71C) < limsup P.(37IC) = P(AIC) = P(h4~'C) and, by
A(v), P! 2 P, The equivalence assertion results at once from the
change of variable formula by A(ii).

CoroLLARY 2. If P,—P on @ C 8 where C is closed under Sinite
intersections and each open set is a countable union of members of C, then

P, — P.

Proof. Let U = U A., 4. € €. By hypothesis,

k=]

Pn(/{l U /12)
= Pn(/fl) + Pn(/fz) - P,,(/ﬁ/fz) - P(/fl) + P(/fz) - P(/ﬁ/fz)
= P(A4\J A»)

and, by induction, for every integer m,

Pu(di\J - U A,) > P4\ ---\U A,).

m
Since Un = U A4, 1 U as m — o, there is an m = m. such that
k=1

PU — ¢ £ PU,.. Therefore,
PU - ¢ = PU, = lim P, U, £ liminf P, U

and, letting e | O,
liminf P,U 2 PU

so that 4(v) holds, and P, = P.

CoroLrarY 3. Let X be separable and let P, — P on € C 8. Then
P, > Pif

(1) € is closed under finite intersections and, given ¢ > 0 and open U,
Sfor every x € Uthereisan A € Cwithx € A°C A C U.
or

(1) @ consists of those finite intersections of open spheres which are P-
continuity sets.

Proof. (1): Since X is separable, given open U, there is a sequence
(A4n) in€with U = U 43 and A, C Uso that U = U A, andCorollary
2 applies. "
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Note that the second condition on € in (i) is implied by: for every x
and every r > 0 there is an 4 € € with

x € A° C A4 C S, (r)-open r- sphere about x.

(ii): Since 9(AB) C 84 \J 9B while 3§, (r) C {x: d(x, y) = r} has
P-measure 0 except for countably many values of 7, (i) applies, and the
proof is terminated.

*12.2 Regularity and tightness. Since the Borel field of the metric
space X is generated by the class of open (of closed) sets, it is to be ex-
pected that a pr. P on § would be determined by its restriction to such
a class.

a. REGULARITY LEMMA. Every pr. P on § is regular: given A € 8
and € > 0, there are open U, and closed C, such that

C.CAC Uiand P(U, — Co) < ¢,
equivalently,

PA = sup PC = inf PU.
cca U4

Proof. The equivalence assertion is immediate. To prove the e-asser-
tion, let € C 8 be the subclass of those Borel sets for which the assertion
holds.

€ contains the class of closed sets Csince open U, = {x:d(x,C) <r} |
Casr | 0. Itis clearly closed under complementations. Also it is
closed under countable unions: Given A4, € € and ¢ > 0, there are
C. C A4 C U, with P(U, — C,) < ¢/2"*1; take U, = YU, and C. =
U C. with m such that P(YC, — C.) < ¢/2, so that C.C 4 C U,

nsm
and P(U. — C) < e. Thus € C 8 is a o-field containing the class of
closed sets hence @ = 8.

CorovLLaRrY. The set { | g dP: g bounded uniformly continuous} deter-

mines P.

For, the functions g, defined by gn(x) = ¢~™9=© are bounded and
uniformly continuous with g, = lon Candgs | Oon Ccasm — o, so

that fg,,, dP — PC.
The concept of “tightness” below was named by Le Cam in a memoir

which followed within a year that of Prohorov and extended the whole
theory to much more general topological spaces than the metric ones.
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A family @ of pr.’s on 8 is said to be tight if for every € > O there is a
compact K such that PKe < e for all P € ®. We say that ® /ives on a
Borel set %, if P(%) = 1 for all P € ®, equivalently, if P4 = PAX, for
every 4 € 8 and for all P € ®. If ® = {P} is a singleton we replace
above the family @ by the pr. P. Given a Borel set %, the o-field §,=
{A: A C Xy, AE 8} is the Borel field of the metric space %, with its
relative topology. Thus the above definitions apply to families of pr.’s
on § C 8.

b. TiGHTNESs LEMMA. (i) If a pr. P on § is tight then it lives on a
o-compact Xy and PA = sup PK for every A € 8.

KecA
(i) Conversely, if P on 8 lives on a o-comvact X, or if PA = sup PK
for every A4 € 8 then P is tight. Ked

(1i1) Every pr. P on 8 is tight when X is separable and complete.

Proof. 1°. If P is tight then for every 7 there is a compact K, with
PK,° < 1/n, so that P(NK,?) = 0 and P lives on the o-compact %, =
UK.. Note that %, is separable since compacts in metric spaces are
separable.

By a, P is regular so that, given 4 € 8 and ¢ > 0, there is a closed
C C A4 with P(4 — C) < ¢/2. But for n sufficiently large, PK,* < ¢/2
and K, = CK, is compact with K. C C C 4. Since

PA—-—K)sPA—-C+PC—-—K)<e2+PxX—K)<e

and e > 0 is arbitrarily small, it follows that P4 = sup PK, and (i) is
proved. Ked
Conversely, if P lives on %y = YK, that is, P(UK,) = 1 then, given

¢ > 0, thereis an m such that PK < ¢ for compact K. = |J K,, and P

nsSm
is tight. This proves the first assertion in (ii) and the second is immedi-
ate.

2°. When & is separable then, for every #, open 1/n-spheres U,,,
Unsz, - - - cover X. Therefore, given a pr. P on 8 and ¢ > 0, for &, suffi-
ciently large PU,°* < ¢/2**' with U, = |J Un,. When moreover X is com-

kSkn
plete then the closure K. of the totally bounded set f} U, is compact.
Since
PKe = P(UU) < Te/2vH = ¢
P is tight and (iii) 1s proved.

A. TIGHTNESS THEOREM. Let the family ® of pr.’s on 8 be tight. Then

(1)- @ lives on a a-compact set Xo and PA = sup PK for every A € 8.
Kca
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(i) The family ®h™ = {Ph™': P € ®} is tight for every comtinuous
tunction h on X to a metric space X'.

Proof. 'The proof of (i) is exactly the same as that of b(j); it suffices
to observe that the compacts K, therein are the same for all P € @.
Note that, in general, b(ii) does not hold for families @.

For (i), given ¢ > O there is a compact K, with PK < e forall P € @.
Since £ on X to X’ is continuous, K: = A(K.) is compact in €’ and

K C 27Y(K?) implies that for all P € @

PRHK)® = P(A(K)?) = P(h'K)* S PK¢ < ¢,
and ®4~! is tight. The proof is terminated.

Let 8 be the o-field of Borel sets on a Borel set %, C %. Given a
family ®° of pr.’s on 8, its extension to § is defined by

® = {P:PA = P(AX,), P° € &, 4 € 8};
note that PX, = 1 for all P € @,

CoroLrary. (i) If ®°on 8 is tight so is its extension ® to S.

(11) If P,°— P°on 8 then their extensions P, — P on 8.

For, upon taking % to be the (continucus) identity mapping of %, into
%, A(i1) yields (i) and 12.1A Corollary 1 yields (ii).

*12.3 Tightness andrelative compactness. We say that a family @ of
pr.’s on § is relatively compact if every sequence of members of @ con-
tains a subsequence which converges weakly to a pr. on 8. Thus “rela-
tive compactness” is, in fact, relative sequential complete compactness.

Prohorov theorem below is the second basic theorem of this section.

A. RELATIVE COMPACTNESS CRITERION. Let X be a separable complete
metric space. Then a family ® of pr.’s on its Borel field $ is relatively com-

pact if and only if @ is tight. In fact, the “if” part holds for general metric
spaces X.

Proof. 1°. Let @ be relatively compact. Since X is separable for
every r > 0, there are open r-spheres U,, Uy, - - - which cover X so that
Ve=U,--- U, T X. Given e > 0, there is an n such that PV,¢ < ¢
for all P € ®: Otherwise, for every n there is some P, € ® with PV, <
1 — e and, by relative compactness, the sequence (P,) contains a sub-
sequence P,, — some pr. P on §; thus, by 12.1 A(v), for every n
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PV,, é limian,,’V,, é limian,,fV,.' é 1 — €,

while PV, T l—contradiction.

2°. For the “if” part we follow Billingsley who bypasses Prohorov’s
use of integral representation of linear functionals by hewing closely to
Halmos’ generation of Borel measures from ‘“content” to “inner con-
tent’’ to “outer extension.” The difference is that “content” is defined
by Halmos on the class of all compacts while here the corresponding set
function has the same properties but only on a subclass of compacts.

For the time being, assume that X is separable so thatit has a countable
base of open spheres Uy, U, - - - ;include & in this base.

Let @ be tight so that for every n there is a compact K(n) with
P(K(n))c < 1/nfor all P € ®. Let X consist of all finite unions of sets
of the form U,K(n). Thus the class & is countable, closed under finite
unions, and its members—to be denoted by K with or without affixes,
are compact.

Given a sequence (P,) of members of ®, Cantor’s diagonal procedure

w
yields a subsequence P,  — some A on X. We have to prove that P, —
some pr. P on 8.

Let
MU = sup MK, NA = inf \U,

KCU UDA

so that M is defined on &, Ao on the classU of open sets U, and A\° on the
class of all subsets. We shall show that the restriction of \° to § is pre-
cisely the pr. P.

Clearly, X on X is nondecreasing, additive, and subadditive: K; C
K2=> )\Kl § )\Kz, )\(Kl + Kz) = )\Kl + )\Kz, )\(Kl U Kz) § )\Kl + )\Kz,
No and A\ are nondecreasing, and A° = Ao onU. We shall use these prop-
erties without further comment.

3°. Noon4 is o-subadditive:
Let K C U; U U, and set

Cl = {x C K: d(x, Ulc) = d(x, Uzc)},
C: = {x € K:d(x, Uy®) = d(x, Uy%)}.

These closed sets, being contained in compact K, are compact and so are
C U, ¢ and CUpe. If x € C U, ¢ % @ belongs to Us, then d(x, U)°) =
0 < d(x, Uy*) hence ¥ € C—contradiction. Thus C; C U, and, by defi-
nition of X, C: C K; C U; for some K;; similarly C. C K, C U,.
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Therefore, upon taking the supremum in K in
AK = MK1U K,) = MKy + AKe £ MU + MU,

we obtain Ny (U, U Usy) £ MU, + MU, so that A\, on U is subadditive
and, by induction, is finitely subadditive. Now, if K C |J U, then, by

compactness, K C V,, = L§J U, for some m. Therefore, upon taking

the supremum in K in

)\K é )\OVm § Z )\OUn é Z )\OUm

msn

we obtain A(UU,) = 3" XU, so that \ponU is g-subadditive.
n

For closed C and open U, \yU = NUC + \UCe: Given e > 0, there
is a Ky C UCe with AK; > NUC® — ¢/2, and then there is a K, C UK,*
with AK; > NUK,® — ¢/2. Since K, and K are disjoint and contained
in U,

NU 2 )\(Kl + Kz) = \K; + AK; > )\o(UCC)
+ )\o(Uch) - € g )\o(UCc) + )\o(UC) - €

hence, letting e — 0, the assertion is proved.

4°. \o is an outer measure and Borel sets are \o-measurable:
Given ¢ > 0 and A4, C X there are U, D A, with MU, < \4, +
¢/2"*1. Since Ao is o-subadditive,

NWUA) =M UU) £ 3 MU <3 N4, + ¢

so that, letting e — 0, \%is g-subadditive. Since A\is also nondecreasing,
A° is an outer measure. Furthermore, for closed C and open U D 4,
upon taking the infimum in U in

MU 2 MNUC + MUCE 2 MN(AC) + N(ACY),

we obtain

NA 2 N(AC) + N(AC?),

so that closed sets are A>-measurable. Therefore, the Borel field $ (that
the class of closed sets generates) is contained in the o-field of A-measur-
able sets.

5°. Let P be the restriction of \° to §, so that P on $ is a measure;
in fact, P is a pr. since

12 PX = MX = sup MK(n)) = sup (1 - ;> = 1.
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Since for all open U

PU = \U = sup A\K,

KCUu

upon taking the supremum in K C Uin

AK = lim P, K £ liminf P,. U,

we obtain
PU £ liminf P, U.

Thus, by 12.1 A(v), P, Z, P and the “if” partis proved but under the re-
striction of separability of .

Now, let & be a general metric space. By 12.2 A, ® on 8, being tight,
lives on a e-compact o—a separable metric space in its relative topology.
Thus what precedes applies to the restriction ®° of @ to the Borel field

So of X5, But, by 12.2A Corollary (ii), Par®— PP on 8o implies P — P
on 8. The proof is terminated.

CoroLLARY. Let X be separable and complete. Then ® on § is rela-

tively compact if and only if, for every € > 0 and r > 0, there is a finite
union V, of r-open spheres with PV,° < e.

§ 13. CHARACTERISTIC FUNCTIONS AND DISTRIBUTION FUNCTIONS

Pr. properties are properties describable in terms of distributions—
and those are set functions. The introduction of d.f.’s makes it pos-
sible to describe pr. properties in terms of point functions, easier to
handle with the tools of classical analysis. Yet, to a distribution corre-
sponds not a single d.f. F but the family of all functions F + ¢ where ¢
is an arbitrary constant. The selection of one of them is somewhat
arbitrary, and we have constantly to bear this fact in mind. The in-
troduction of characteristic functions (ch.f.) assigned to the family
F + ¢ by the relation

f() =fe"“" dF(x), u€ R

obviates this. difficulty and, moreover, is of the greatest practical im-
portance for the following reasons.

1° To the family F + ¢ corresponds a unique ch.f., and conversely.
Therefore, there is a one-to-one correspondence between distributions

and ch.f.’s.
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2° The methods and results of classical analysis are particularly
well suited to the handling of ch.f’s. In fact, ch.f’s are continuous
and uniformly bounded (by 1) functions. Moreover, to complete and
weak convergence of d.f’s (defined up to additive constants) corre-
spond, respectively, ordinary convergence of ch.f.’s and ordinary con-
vergence of their indefinite integrals.

3° The oldest and, until recent years, almost the only general
problem of pr. theory is the “Central Limit Problem,” concerned with
the asymptotic behavior of d.f.’s of sequences of sums of independent
r.v.’s. Much of Part IIT will be devoted to this problem. The d.f.’s
of such sums are obtained by “composition” of the d.f’s of their sum-
mands, and this “composition” involves repeated integrations and re-
sults in unwieldly expressions, whereas the ch.f.’s of these sums are
simply the products of the ch.f.’s of the summands. The Central Limit
Problem was satisfactorily solved in the 15 years (1925-1940) which
followed the establishment by P. Lévy of the properties of ch.f.’s.

13.1 Uniqueness. The characteristic function (ch.f.) f of a d.f. F is
defined on R by

f(u) =fe““‘ dF(x) =fcos ux dF (x) + ifsin ux dF(x), u € R.
Since, for every u € R, the function of x with values ¢* is continuous
and bounded by 1, f exists and is continuous and bounded by 1 on R.
Moreover, to all functions F + ¢, where ¢ is an arbitrary constant, cor-
responds the same function f. The converse (and, thus, the one-to-
one correspondence between distributions and ch.f.’s) follows from the
formula below.

A. INVERSION FORMULA.
1 +U e—iua — piub
Fla, ) = lim — - f(u) du,

U— w21 U u

provided a < b are continuity points of F.
The inversion formula holds for all a < & € R, provided ¥ is normalized.

We say that F is normalized if the values of F at its discontinuity points
Flx —0)+ F(x+0)

5 .
continuity from the left of F at its discontinuity points. However,
according to 11.1, the normalized d.f. determines the original one, so
that nothing is lost by normalization.

x are taken to be Normalization destroys the
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We observe that, in the integral which figures on the right-hand side
of the inversion formula, the integrand is defined at # = 0 by continuity,
so that it is continuous on R; also it is bounded on R by its value (6 — a)
f@©) at « = 0. Thus, for every finite U, this integral is an ordinary
Riemann integral and, in proving the inversion formula, we shall find
that the limit of this integral, as U — o, exists.

Proof. The proof uses repeatedly the dominated convergence theo-
rem applied to an interchange of integrations and is based on the classi-
cal Dirichlet formula

1 (bsino
—f dv > 1 as a— —x, b — +x,

™ v

so that the left-hand side is bounded uniformly in 2 and 4. Let
1 +U —iua _ e—iub
Iy = — - f(u)du, a <b€ER,
2w tu
and replace f(«) by its deﬁning integral f ¢ dJF(x). We can inter-

change the integrations, so that, by elementary computations,

Iy = [ Jo) dF ),

1 U2 giny
1mw=;f 0 .
U

(z—=b) v

where

Since Jy is bounded uniformly in U, integration and passage to the
limit as U — o can be interchanged in

lim Iy = llm Ju(x) dF(x).

U-— w

Therefore
11m IU —f](x) dF(x)

h
where 1 for a<x<béb

Jx) = lim Jy(x) = {3 for x=a, x=14¢
U-— o
0

for x <a, x> 5,
and, hence,

Jim Ty = 3{F(a+0) — F(a — 0)} + {F(6 — 0) — F(a + 0)}
+3{F(¢+0) — F(6 — 0)!

_Fb—-0)+F((6+0) F@—-0)+Fa+0)
B 2 - 2
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Thus, if F is normalized or if @ < 4 € C(F), then
lim I'y = Fla, ),
U— x

and the inversion formula is proved.

Remark. If an improper Riemann integral

0 b
f gdx = lim gdx

0 a— —wdJ,

b— 4w
exists and is finite, then

+U o0
lim f gdx = g dx.
U—wd_py —

However, the left-hand side limit may exist and be finite (as in the in-
version formula), whereas the right-hand side improper integral does
not exist. Yet the inversion formula can be written in terms of an im-
proper Riemann integral as follows:

] —iua __ ,—iub
Fla, ) = lf gl(e e™")f (u)) I
0

™ u

where d stands for “imaginary part of,” so that
g{(e™™ — TN f(u)} =
(cos ua — cos ub)9f(u) — (sin ua — sin ub)®Rf(u).

+U 0 U
It suffices to write f =f -l—f , change # into —u« in the first
—-u Yo

=U

right-hand side integral, and take into account the fact that then the
integrand changes into its complex-conjugate.

CoroLLARY. F is differentiable at a and its derivative F'(a) at a is

ven b
gaoen &y 1 p+U 1 — —iub

F'(a) = lim lim — —— T (4) du
(1) (a) = lim lim 2wy i S (u)
if, and only if, the right-hand side exists.
In particular, if f is absolutely integrable on R, then F' exists and is
bounded and continuous on R and, for every x € R,

1 A —iuz
(2) F'(x) = E;f.w e " f(u) du.
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Progf. The first assertion follows directly from the inversion formula
by the definition of the derivative. The second assertion follows from

the first and from the assumption that f | f| du < = since, the integrand
in (1) being bounded by | f| , we have, in (1),

+U  at +o At
lim _ f and lim [ = f lim .
U-wd_y —0 h—0J_, —o h—0

Remark. Thus, if the ch.f.’s f, of d.f.’s F,, are uniformly Lebesgue-
integrable on R, and if f, — f ch.f. of F, then f is Lebesgue-integrable
on R, and F', — F'.

B. For every x € R,
+U

Flx4+0) — F(x — 0) = lim Y3, e~%f (u) du.

U-— w U

For we can interchange below the integrations and the passage to the
limit, so that

1 +U ) 1 +U )
gm g, = gim g [ [ aren|
in Uly —
—tim (VY79 e
o) TUG -

= F(x 4+ 0) — F(x — 0).

13.2 Convergences. Since there is a one-to-one correspondence be-
tween d.f.’s defined up to additive constants and ch.f.’s, it has to be
expected that a one-to-one correspondence also exists between the weak
and complete convergence, up to additive constants, of sequences of
d.f.’s and certain types of convergence—to be found—of ch.f’s. For
this purpose we introduce the integral ch.f. f of F defined on R by

u tuzr __ 1
Ju) = fo s do = [ o i)

The last integral is obtained upon replacing f(v) by its defining integral
and noting that the interchange of integrations is permissible. Since
there is a one-to-one correspondence between f and its continuous deriva-
tive f, it follows, by 12.1, that there is a one-to-one correspondence
between f and F defined up to an additive constant.
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We are now in a position to show that the weak and the complete
convergence up to additive constants of sequences of d.f.’s correspond
to the ordinary convergence of the corresponding sequences of integral
ch.f’s and of ch.f’s, respectively. Unless otherwise stated, a d.f., its
ch.f., and its integral ch.f. will be denoted by F, f, f respectively, with
the same affixes if any.

A. WEAK CONVERGENCE CRITERION. If F, S F up to additive con-
stants, then fo — f. Conversely, if f, converges to some function §, then

there exists a d f. F with F, S F up to additive constants and f = $.

iur __

Proof. Since —

— 0 asx — TFoo, the first assertion follows at

.

ix
once, by the extended Helly-Bray lemma, from the definition of the
integral ch.f.’s.

Conversely, let f, — #. According to the weak compactness the-

orem, there is a d.f. F and a subsequence Fj: 5 Fasn' — . There-
fore, by the extended Helly-Bray lemma, for every « € R,

tuzx

tuz __ 1
£(u) = li’rglf,,/(u) = li:pff————’;—-—anf(x) =f—-——;;———-—dF(x) = f(a).

Since f determines F up to an additive constant, it follows that weakly
convergent subsequences of the sequence F, have the same limit F up to
additive constants, with f = g. This proves the second assertion.

CoroLLaRY 1. Every sequence f, of integral ch.f’s is compact in the
sense o} ordinary convergence on R.

For, in view of the above criterion, this statement is equivalent to
the weak compactness theorem for d.f.’s.

w . .
CoRoLLARY 2. If fn — g a.e., then F, — F up to additive constants,
withf = g a.e.

Here “a.e.”” is taken with respect to the Lebesgue measure on R.

Proof. Since fn — g a.e. and the f, are continuous and uniformly
bounded by 1, it follows that g is measurable and bounded a.e. so that,
by the dominated convergence theorem, f, — ¢ where ¢ is defined on
R by the Lebesgue integral

£(u) =j; gv)dv, u € R.
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Therefore, by the foregoing criterion, F, 5 F up to additive constants,
and f = g. Since the derivative of / is f, whereas that of the indefinite
Lebesgue integral § exists and equals g a.e., it follows that f = g a.e.

B. COMPLETE CONVERGENCE CRITERION. If F, S F up to additive
constants, then f, — f. Conversely, if fn — g continuous at u = 0, then
c
Fn — F up to additive constants, and f = g.

When the F, and f, are d.f.’s and ch.f.’s of r.v.’s, the converse becomes
the celebrated P. Lévy’s continuity theorem for ch.f.’s.

Proof. Let F, S F up to additive constants. Then, by the Helly-
Bray theorem, for every u € R,

Sau) = f e dF,(x) — f e dF(x) = f(u).

Conversely, let f, — g continuous at # = 0. Then, for every u € R,

Jals) = f Jale) do — f ¢(0) do = §(u),

and, hence, by the weak convergence criterion, for some d.f. F with ch.f. f,
F, > F up to additive constants, and / = g. Therefore,

% fo o) do = % fo 50) do

and, letting # — 0, we obtain f(0) = g(0) on account of continuity of
f and of g at the origin. Thus,

Var F, = f,(0) — g(0) = f(0) = Var F,

and the proof is completed by taking into account the direct assertion.

C. UNIFORM CONVERGENCE THEOREM. If a sequence fn of ch.f.’s con-
verges to a ch.f. f, then the convergence is uniform on every finite interval

[_U) +U].

Proof. On account of B, F, S F up to additive constants.
Let € > 0 and U > 0 be arbitrarily fixed. We have

b b
1a0) = f)|S | [ e dPute) - [ e aP ) |

+ Var F, — Fyla,4) + Var F — Fla, )
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where we take 4, 4 to be continuity points of F. Let | 2|, 4 and then

n be so large that Var F — Fla, 4) | < 2,
Var Fn — Fala,8) < Var F — Fla, b) + 2 < ;
It suffices to show that, for 7 sufficiently large and all « € [—- U, + U],

b b
A, = l f Pt an(x) _f eiuz dF(x) l <§.
Let ’

a=x <Xz < xyyp1=0

where the subdivision points are continuity points of F and
a = max (xx41 — %) < ¢/8U. Since, by the mean value theorem,
kSN

lei"’—ei“"lélx—x’lU for lulgU,

it follows that, upon replacing x by xx in every interval [, ¥r4+1), An
is modified by at most

b b
an dF.(x) + an dF(x) = 2aU < ‘—;
Thus, it remains to show that, for » sufficiently large,

N
IZ e‘uzk{Fn[xk, xk+1) — F[xk, xk+l)} I
k=1
y €
=2 I Falxk, xlc+1) — Flxg, xk_H) I < 4—:
k=1

Since Fn[xi, ¥x41) — Flxk, xx41) for every k < N, the last assertion
follows and the proof is complete.

Remark. In fact, we proved, with a supplementary detail, the first
assertion of the complete convergence criterion without using the Helly-
Bray theorem.

CoROLLARY 1. If fo — f and un — u finite, then fo(uy) — f(4).
This follows, by C and continuity of £, from
| faltn) = f@) | S | faltn) = ftn) | + | Fltn) = ) .
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CoroLLARY 2. A set {Fy} of d.f.s is completely compact (up to addi-
tive constants) if, and only if, the corresponding set { fi} of ch.f.’s is equi-
continuous at u = 0.

Proof. By 13.4B equicontinuity of {f;} at # = 0 is equivalent to
equicontinuity on R.

On the other hand, Ascoli’s theorem and its converse say that a set
of continuous functions is compact in the sense of uniform convergence
on a finite closed interval if, and only if] it is uniformly bounded and
equicontinuous on this interval. Since the f, are uniformly bounded,
the assertion follows by B and C.

Remark. If the d.f’s F,, Fof r.v.’s, are differentiable and F,,’ — F’
on R, then f,, — f uniformly on R. It suffices to use 17 in Complements

and Details of Ch. II.

13.3 Composition of d.f.’s and multiplication of ch.f.’s. A function
Fon R = (—w, +) is said to be composed of d.f.’s F, and F,, and
written F x F5, if

F(s) = [Fix = 3) dFa(y), * € R

where we assume, for simplicity, that Fy(—«) = Fy(—®) = 0; other-
wise, to avoid trivial complications, we would have to replace F; by
F, — Fi(—»).

Since, for every fixed y, Fi(x — y) are values of a d.f., nondecreasing,
continuous from the left and bounded by F;(—) = 0 and Fy(+») = 1,
it follows, upon applying the dominated convergence theorem, that F
has the same properties and that Var F = Var F,-Var F,.

A. ComposiTION THEOREM. If F = Fy x F,, then f = fifs, and con-
versely.

Proof. Let F=Fy%xF; and let @ = xp) < -+ < %pp,41 = & with
sup (¥n,k+1 — Xnx) — 0 as » — . Since, for every « € R,
k

b
f e dF(x) = lim Y ™™ Fxns, Xnok41)
a k

= limfz EE IR (e — 3, Xnkr1 — ¥)e™ dFy(y),
k




[Sec. 13]  DISTRIBUTION AND CHARACTERISTIC FUNCTIONS 207

it follows that

fa e R () = f [ f " e dFl(x)} £ 4F,(y)

a—y

and, letting g — —w and 4 — 4o,

f"m AF(x) =feiuz dFl(x)feiuy AF,(y),

so that f = f1f2 and the first assertion is proved.

Conversely, according to the first assertion, f; f5 is the ch.f. of F} x F,
and, hence, on account of the one-to-one correspondence between f and
F 4+ ¢, F = Fy x Fy up to an additive constant. The converse is proved.

CoroLrarY 1. A4 product of ch.f’s is a ch.f. and, in particular, if f is
a chf. s0is | f|%

For f = f1f2 is the ch.f. of the d.f. F = F, % F, and the particular case
follows from the fact that, if f is a ch.f., so is its complex-conjugate f

which corresponds to the d.f. F(4«) — F(—x + 0).

CoroLLARY 2. Composition of d.f.’s is commutative and associative.

For the corresponding multiplication of ch.f.’s has these properties.

13.4 Elementary properties of ch.f.’s and first applications. In the
sequel, the elementary properties we establish now will play an impor-
tant ancillary role, and the first applications will be used, improved,
and generalized.

We denote by F and f, with same subscripts if any, corresponding
d.f.’s and ch.f.’s; in general, the corresponding d.f.’s F are defined up to
additive constants, but if f is ch.f. of a r.v,, then, as usual, we take
F(—») =0, F(+o) = 1. We say that a r.v. X is symmetric if X and
— X have the same d.f.,, that is, for every x € R, P[X < x] = P[X >
—x].

A. GENERAL PROPERTIES. Every ch.f. f is uniformly continuous and
[f| S£0) = VarF 21, f(—u) =Fw).

If f is the chf. of a rv. X, then the function with values ¢%f(bu) is the
ch.f. of the rv. a + bX. In particular, f is the ch.f. of —X and f is real
if, and only if, X is symmetric.

Elementary inequality: f(0) — Rf(2u) = 4(f(0) — Rf(u)).
Proof. The first assertion follows from f(x) = f ¢ dF(x). The sec-

ond assertion follows from Eg#(@+bX) — giuap,ibuX — Rinally, if X is
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symmetric, then f(u) = Ee™X = Ee~™X = f(—4) = F(u) so that fis
real; conversely, if f is real, then changing the signs of 2 and 4 in the
inversion formula is equivalent to taking the complex-conjugate of the
integrand and changing its sign, so that Fla, 4) = F[—54, —a) and,
hence, by letting 2 — —w and 41 x, we have P[X < x] = Fx) =1
— F(—=x+0) = P[X > —x].

The elementary inequality obtains upon integrating 1 — cos 2ux <
4(1 — cos ux) with respect to F.

B. INCREMENTS INEQUALITY: for any u, h € R

| f() = flu + &) |? 2 2£0){£0) — Rf(A)}.

INTEGRAL INEQUALITY: for u > O there exist Sunctions 0 < m(u) <
M(u) < ® such that

x2

m) [ 1O - af(o)) do s [ -
0

dF(x)

X2
< M) [ 1/0) = 0/} dog
0
if fQO) = 1, then, for u sufficiently close t0 0,

x2 u
fl + x2 dF(x) é —M(u)j; (log (Rf(v)) dv.

Proof. The increments inequality follows, by Schwarz’s inequality,
from

2
| fw) = fu + B |* = ‘fe"“"(l — %) dF ()

gde(x)f[ 1 — ¢ |2 4F (%)

= 2f(0)f(1 — cos hx) dF(x)
= 2f(0){f(0) — ®f(A)}.

The integral inequality follows, by the elementary inequality with
u#0

0 <M Yu) <|ul (1 -

from

u : 1 2 2
f dv | (1 — cos ox) dF(x) = uf(l _ o ux) +x o dF(x).
0

S m~Yu) <o, xE R,

sin ux) 1 4 &2

ux x2

ux X2 1 + x2
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The case f(0) = 1 follows then from the elementary inequality 1 — a
< — logafora = 0.

The integral inequality permits us in turn to find bounds for
f x2 dF (x) andf dF(x), (c > 0), by
1z | <c lz|zec

2

A
I f 2 JF f dF
M 14 ¢2 IzI<cx (x)+1+c2 lz|zc )
x2
< dF
_f1+x2 )

§ﬁz|<cx2 dF(x) + dF(x).

[zlzec

However, it is sometimes more convenient to use the direct

B’. TRUNCATION INEQUALITY: for u > O:

3
J . 4P 5 5 10 - e,
[ i s’ [ 1© - ase)
|z|21/u T udy
If f0) = 1 and u is sufficiently close to O, then we can replace 1 — Rf in

the foregoing by — log ®Rf.

These inequalities follow, respectively, from

2.2 2x2
f (1 — cos ux) dF(x) 2 f -’f—x—<1 _ f‘-—) dF (%)
lz|<l/u 2 12

1142
> — x2 dF (x)
24 Jiz|<1/u
and from
1 o in ux
—f dvf(l — cos vx) dF(x) =f<1 _2 )dF(x)
uJg ux
= (1 —sinl) dF(x).
|z|&1/u

The case f(0) = 1 follows as in B.
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Applications. 1° If f, — g continuous at u = 0, then g is continuous
on R.

This follows from the fact that the increments inequality with f, be-
comes, as # — oo, the same inequality with g.

2° If the sequence fn is equicontinuous at u = O, then it is equicon-
tinuous at every u € R.

For, then, as 2 — 0,
| fal®) — fulu + £) |2 S 2{£2(0) — Bfal(h)}) — O
uniformly in n.
3° Iffa = lon (=U, +U), then f, — 1 0onR.
This follows by induction as f,(24) — 1 for | 4| < U follows from
| falt) — £2(2u) | S 2(£2(0) — ®fa(w)} = 0 for |u| < U.

If we take into account the fact that the set of all differences of num-
bers belonging to a set of positive Lebesgue measure contains a non-

degenerate interval (— U, + U), this proposition can be improved as
follows:

If fo = 1 on a set A of positive Lebesgue measure, then f, — 1 on R.

For, we can assume that the set 4 is symmetric with respect to the
origin and contains it, since, for ¥ € A,

fal=w) =Fu(@) > 1, 12/:0) 2 |faw)| =1,
and, then, fo(# — ') — 1 for u, ' € A on account of
| fa() = falu = &) |* S 2{£a(0) — Gfu(—u)} — O.

4° We shall now prove an elegant proposition (slightly completed)
due to Kawata and Ugakawa. We use repeatedly Corollary 2 of the
weak convergence criterion which says that, if a sequence of ch.f.’s

gn — g a.e., then the corresponding sequence of d.f.’s G, 56 up to
additive constants and the ch.f. of G coincides a.e. with g.

Let gn =11 fx — g ae. Either g =0 ae., and then G, 50 up to
k=1

additive constants. Or g # 0 on a set A of positive Lebesgue measure,
c . .
and then G, — G up to addstive constanis.
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Proof. In both cases G, 56 up to additive constants. The first
case follows from the recalled proposition. In the second case, we have
to prove that Var G, — Var G. Since Var F* = Var (F* F) = (VarF)?

and f* = | f|% it suffices to consider real-valued nonnegative ch.f.’s.

m
But then lim J] fi exists on R and coincides a.e. with a ch.f., while,
m—ontl
for m, n sufficiently large, gmgn # O a.e. on A4, and, as m — o and then
n — oo,

H fk =gm/gn - g/gn = H fk — 1 a.e.on A.

k=n+1 k=n+l

It follows, by 3° that J] fx — 1 a.e. on R. Therefore, if H, is the

k=n+l 0

d.f. whose ch.f. coincides a.e. with [I f&, then Var H, — 1. But, by
k==n+l
11.2a and the composition theorem 13.3A,

lim inf Var G, 2 Var G = Var G,-Var H,,.

It follows, by letting » — oo, that VarG, — VarG. The proof is
completed.

5° LetFubedf'sofrv's, k=1, - ky — 0,7, =2, (1 = far).
k

z 2
Set ¥p(x) = 3 f Y AF.i(y) and a(c).= sup & dF, (%),
k —» 1+ )’2 n k llec
B(c) = sup 2 N x2 dF (%), ¢ > O finite.
n k z| <¢

If fo = Y1 fuk With fur real-valued, then the following properties are equiv-
k
alent:

(C1) the sequence F, is completely compact.

(C2) the sequence v, is equicontinuous at u = 0.

(C3) alc) = 0 as ¢ > x and a(c) + B(c) < = for every (some) c.
(Cy) the sequence ¥, is bounded and completely compact.

Proof. (C1) & (C3) by 13.2C Cor. 2 and the inequality 1 — X a; <
(1 — a;) S exp {—Xa},0< a2, < 1. (Cy) = (C3) by B and (C3)
= (C2) by va(#) < 2a(c) + B(c)u2/2. Finally, (C3) & (C4) and “some

¢’ & “every ¢ by (1), a(c)e?/(1 4+ ¢2) < f d¥,(x) < alc) and
lzl2e
11.2B.
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Let
mm=fﬂﬂwxmﬁ=ﬂxkﬁ®,k=QLL~3rgQ

be, respectively, the kth moments and the rth absolute moments of F.
Let f*) be the kth derivative of f(f® = f) and, as usual, let 8, ¢’ be
quantities with modulus bounded by 1.

C. DIFFERENTIABILITY PROPERTIES. If f®™(0) exists and is finite,
then u™ < o for r £ 2n.
If s < w for a § = 0, then for every k S n

f®(u) = i"fei“’*'x" dF(x), u € R,

and f® is continuous and bounded by u®); moreover

n—1 ‘u k
fu) = Zm® () + on(4), uE€ R
k=0 k!
where
1 1 —1¢ n—1 Y n
pn(u) = uﬂf _(___._)____.f(n) (tu) dt = m™ _(_I_L_‘_)_ + o(u") = 9#(") ‘i|__,
o (m—=1 n! n!
and if 0 < 6 S 1, then
(iu)" | u |n+8
(1) = m(n) -4 21—801 (n+9%) .
pn() 7! L0+t

Proof. To begin with, we observe that, since | x| < 1+ | x| for
r < r, finiteness of u™ implies that of u"". .

The first assertion follows from the existence and finiteness of the
2nth symmetric derivative by using the Fatou-Lebesgue theorem in

sin Ax

|77 (0) | = lim (
h—0 hx

>2nx2" dF(x) = f x2" dF (x).

The second assertion follows from the fact that, by differentiating
f ¢* dF(x) k times under the integral sign, the integral so obtained is

absolutely convergent and, hence, this differentiation and the integration
can be interchanged.

The limited expansions follow by integrating the limited expansions
of ¢™* with corresponding forms of its remainder term. The last and
less usual corresponding form of its remainder is obtained upon observ-
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ing that | e — 1| = 2] a/2|° (since, for 0 < 8 < 1, if | 2/2| < 1, then
e — 1| = |a| =2|a/2"and, if|a/2| 2 1, then |é* — 1[5 2 =
2 I a/?2 Ib), and using successive integrations by parts in

1 n—1 1 —

(1 _t) it (1 _t)n 1

ituz _ | < 1—5 5f ]

j;—_—_(n—l)! (e )ydt| S 2178 ux | At 28 dt
_ 21—5qulb

1+8)QR2+38): - (n+ )

Cororrary. If all moments of F exist and are finite, then f*(0) =
*m® for every k, and

f(u) = i m™ _(2‘_2
n=0 n!

in the interval of convergence of the series.

Applications. We consider d.f.’s F and ch.f’s f of r.v.’s X, with the
same subscripts if any. If m® = EX = 0, we write ¢° instead of
m® = EX?.

1° NorwmaL DISTRIBUTION. A “reduced normal” d.f. is defined by
F'(x) = e"z/z/\/2—1r. It is the d.f. of a r.v., since m® = 1 by

: s >< ; f—2 ) 1 e
_ I _ 20\ = - ﬂ @+D/2 4 g
<x/21.-fe NG5 R A | 7

1 27 L] R
=Zr-f a'0f e_”/2pa'p=l
0 0

Since F'(—x) = F'(x), it follows at once that the odd moments vanish,
while, by integration by parts, we obtain

m@n = (2n — l)m(2n—2) =...= 2n)!/2"n!.

Therefore, by the foregoing corollary, the “reduced normal” ch.f. is

o ¢ 2 n
fy = 2 D e
n!

n=0

u € R.

2° Bounxpep Liarounov THEOREM. Let |X,,| L ¢ < o and
EX,=0.

n

If s.2 = 3 032 — oo, then [ fru(u/sn) — e‘“z/zfor every u € R.
k=1 k=1
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Since E| X, > < cEX,? and 0,2 = EX,? £ ¢, it follows, upon fixing
u arbitrarily, that

2 2
U _ Ok 2 (o 3
fk<;>—1_25,,2u +0nk61n3|u| -1

uniformly in k¥ £ n. Therefore, for n sufficiently large,

n : 2 3 2
X log fi (i) - - ”7 (1 + o(1)) + 0s ‘|6”| (1 + o(1)) — — ”7

k=1 Sn Sn

and the assertion is proved.

§ 14. PROBABILITY LAWS AND TYPES OF LAWS

14.1 Laws and types; the degenerate type. Since there is a one-to-
one correspondence between distributions, d.f.’s defined up to an additive
constant, and ch.f.’s, they are different but equivalent “representations”
of the same mathematical concept which we shall call pr. Jaw or, simply,
law. Moreover, to a given distribution on the Borel field 8 we can
always make correspond the finite part of a measurable function X on
some pr. space (2, @, P), and the restriction of P to X 1(®) with
values P[X € §], § € ®, is still another representation of the law defined
by the given distribution; there are many such measurable functions
and many such spaces. Nevertheless, the various representations of a

.given law have their own intuitive value. Thus, for every law we have
a multiplicity of representations and we shall use them according to
convenience.

A law will be denoted by the symbol £, with the same affixes if any
as the d.f. or the ch.f. which represents this law, and the terminology
and notations for operations on laws will be those introduced for d.f.’s;

. . . w . w : . < .
in particular, if F, — F we write £, — &£, and if F,, = F we write

£, — £. The case of laws of r.v.’s (with d.f.’s of variation 1) is by far
the most important. The law of a r.v. X will be denoted by £(X), and
if a sequence £(X,) of laws of r.v.’s converges completely—necessarily
to the law £(X) of a r.v. X—we shall drop “complete” and write
L(Xn) — £(X). From now on a law will be law of a r.v., unless otherwise
Stated.

The origin and the scale of values of measured quantities, say a r.v.
X, are more or less arbitrarily chosen. By modifying them we modify
linearly the results of measurements, that is, we replace X by @ + 64X
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where @ and & > 0 are finite numbers. If, moreover, the orientation of
values can be modified, then the only restriction on the finite numbers 2
and & is that 4 > 0. This leads us to assign to a law £(X) the family
3(X) = {£(a + 6X)} of all laws obtainable by changes of origin, scale,
and orientation, to be called a ¢ype of laws. If 4 is restricted either to
positive or to negative values, the corresponding families of laws will
be called positive, resp. negative types of laws.

Letting 4 — 0 we encounter a boundary case—the simplest and at
the same time the everywhere pervading degenerate type {£(a)} of laws
of r.v.’s which degenerate at some arbitrary but finite value 4, that is,
such that X = 4 a.s. The corresponding family of “degenerate” d.f.’s
is that of d.f.’s with one, and only one, point of increase @ € R with
F(a +0) — F(a — 0) = 1. The corresponding family of “degenerate”
ch.f’s is that of all ch.f.’s of the form f(x) = ¢™% u € R, so that their
moduli reduce to 1. The converse is also true and, more precisely,

a. 4 chf. is degenerate if, and only if, its modulus equals 1 for two
values h # 0 and ah # O of the argument whose ratio « is irrational. In
particular, a ch.f. f is degenerate if | f(u) | = 1 in a nondegenerate interval.

Proof. Since | f(h) | = 1, there is a finite number & such that f(4) =
¢ and, hence,

e~ hef(p) = f ehE=0) JF(x) = 1.
Thus

f[l —cos h(x — a)]dF(x) =0

and, since the integrand is nonnegative, it follows that, for points ¥ of

. . 27
increase of F, cos A(X* — a) = 1| so that ¥ — ¥ is a multiple of n when

/

the points of increase ¥, ¥’ are distinct. Replacing 2 by a4, we find

144

. . 2 Cy . . C
that ¥ — X’/ is also a multiple of-—ﬁ, which is impossible when « is ir-
[

rational unless there is only one point of increase. The particular case
follows.

Remark. The foregoing argument proves that, if | /(&) | =1 for an
h # 0, then f(u) = Zpkeiuk, u € R, where pp 2 0, kE ?2r =1 and
k=0 -0

r . 3 -
Xr=a+ k- -]—l- ; the converse 1s immediate.
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14.2 Convergence of types. If £(X,) — £(X), then, for every a4,
b#0,8(a+ 6Xa) — L£(a + 6X),since frn — fimplies that e™%f,(bu) —
¢™3f(bu), u € R. Thus, we may say that convergence of sequences of
laws to a law 1s, in fact, convergence of sequences of types to a type.
It may even happen that, given a sequence £(X,) convergent or not, we
can proceed to changes of origin and of scale varying with » and giving
rise to a convergent sequence £(a, + #,X»). In the particular case
of consecutive sums X, of “independent” r.v.’s, a special form of the
problem of finding the sequences of laws which converge for given
changes of origin and of scale is the oldest and, until recently, was the
only limit problem of pr. theory; we shall investigate it in Part III.
Meanwhile there is an immediate question to answer: given a sequence
£(X,) of laws, do all the limit laws of convergent sequences of the form
£(an + 6, X,) belong to a same type? The answer, due to Khintchine
for positive types, is as follows:

A. CONVERGENCE OF TYPES THEOREM. If £(X,) — £(X) nondegen-
erate and £(a, + baXyn) — L£(X') nondegenerate, then the laws £(X) and
£(X') belong to the same type. More precisely, £(X') = £(a + 6X) with
| 6a| — | &\, and if by > O then b, — b, a, — a.

However, for every finite a and for every sequence £(X,) of laws, there
exist numbers an and by #~ 0 such that £(a, + 6, X,) — £(a).

In other words, given a sequence of laws, the changes of origin, scale,
and orientation can yield in the limit no more than one nondegenerate
type and can always yield in the limit the degenerate type. This shows
once more that the degenerate type is to be considered as the “degen-
erate part’ of every type.

Proof. The second assertion is immediate. For, by taking the num-

1 :
bers ¢, sufficiently large so as to have P[| X»| = ¢a] < — — 0, we obtain
n

. Xn Xn

and, it follows at once, that £{— ] — £(0), so that £{a + —
nCn ncn

— L£(a). '
The first assertion means that f, — f nondegenerate and ¢"“*"f,(bnu)

— f'(4) nondegenerate, # € R, imply existence of two finite numbers 4
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and 4 # 0 such that f'(x) = ¢™f(bu), u € R. We can always select
from the sequence 4, a convergent subsequence 4,, but its limit 4 may
be 0 or . If 5 = 0, then, since the convergence of ch.f.’s to a ch.f.
is uniform in every finite interval, we have, for every fixed # € R,

[f@ | =lim| fuuw) | = 10| = 1,

so that, by 14.1a, /' is degenerate and this contradicts the assumption.

Similarly, if 4, — Z=co, then, replacing « by b_u_ , it follows that

)| = tim | £ (Z‘f-

’

Ji=lrol =1,

so that f is degenerate and this contradicts the assumption. Thus
bnr — b finite and different from 0. On the other hand, for all # suffi-
ciently close to 0, the continuous functions f(éu) and f'(«) (with values
1 for u = 0) differ from 0; and we have, for n’ sufficiently large,

tuan’

i _ € fellw)  fW)

0, n' — oo,
S (bnrtt) Sf(bu)

so that lim e®™a exists and is finite for | # | < some %o > 0. But then
limsup | 4. | < . Therefore, for any convergent subsequences of
(an), a.— a' and a'! — a”, we have e(am—a) — pina'=a’) = 1 for
| # | < uo. 1t follows, by 13.4 Application 3°, that 2’ — a’’ = 0 hence
anr — some a € R and f'(u) = e™of(bu), u € R.

Clearly, it remains only to prove that | 4,| — | 4|. Let 4, — &
and 4, — & hence @, — a and a4, — a’; it suffices to prove that
if, for every u, é“°f(bu) = ¢“*f(#'u), then|b| = |4 |. Upon replac-

b . .
ing #'u by u and 5 by ¢, it suffices to prove that, if | ¢| =1 and, for

every #, | f(u) |2 = | f(cu) |2, then | ¢| = 1. But|c| <1 entails, upon
replacing repeatedly # by cu,

| f() |2 = | flew) |2 =+ = lim | f(c"u) |2 = 1.
Thus, the nondegeneracy assumption excludes the possibility | cl <1,
so that | ¢| = 1 and the proof is complete.

Remark. It is immediately seen that if we limit ourselves to, say,
positive types only, then, under the foregoing assumptions, a, — 4
and 5, — 4. We leave to the reader to find conditions under which
this property remains valid for types.
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CorovrrLary. If, for every u,
Ut (bott) — fu) and (8 au) — f(u)
where f is a nondegenerate ch.f. and b,b'y, > O for every n, then

-0 and — — 1.
bl

n

Replace in the theorem X, by 4’, + ', X,.

14.3 Extensions. The results and terminology of this chapter ex-

tend at once to families of r.v.’s, and we shall content ourselves with a
few generalities.

The law of a random vector X = {X,, -+, Xn} with d.f. Fx on R¥
is represented by the ch.f. fx on R¥ defined by the N-uple integral

Fxu) = f 5 AFx(x), ux = uyxy -+ nxy

or, explicitly, by e
-uple

P

fX(uh ceey UN) = f . 'fe'(ulzl+m+u1"z”) didg-+ -dnFx(xy, -, XN).

The integral which appears in the inversion formula becomes an N-uple

. o ) +U, +UN 5 . e—iua _ e—iub
Riemann-Stieltjes integral .. and the “kernel -
-U - UN u
N e—iukak — tukbi
becomes J] -
k=11 Uy

We observe that there is a one-to-one correspondence between the
law of the random vector X = {Xj, ---, X} and the laws of the r.v.’s
uX = u1 X1 + -+ uxnXn, where u varies over RY, since

Sfx@u) = fux(®), tE€ R

and, in particular, fx(«) = fux(1).
Finally, the law of a random function X = {X,, t € T} is the set of
joint laws of all its finite subfamilies.

§ 15. NONNEGATIVE-DEFINITENESS; REGULARITY

15.1 Chdf.’s and nonnegative-definiteness. The class of ch.f.’s has
been defined to be the class of Fourier-Stieltjes transforms of d.f.s.
Conversely, given a continuous function g on R, we can recognize
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whether or not it is a ch.f. by applying the inversion formula: if the
right-hand side of the inversion formula exists and is nonnegative for
all pairs @ < & of finite numbers, then g is a ch.f. up to a multiplicative
constant. If g is absolutely integrable on R, then it suffices to apply
Corollary 1 of the inversion formula and verify that the function F’ is
nonnegative. A very important criterion of a different type is that of
nonnegative-definiteness that we investigate now.

Let g be a real or complex-valued function on a set Dg C R obtained
by forming all differences of the elements of a set § # 6; for example,
§ =[0, U) and Ds = (—U, +U), § = set of all positive integers and
Ds = set of all integers. Sets Dgs are necessarily symmetric with respect
to the origin # = 0 and contain it. We say that g on Dy is nonnegative-

definite if for every finite set S, C § and every real or complex-valued
function £ on §,

2 g(u — 0)h(u)h(v) Z O;
u € Sy
we shall omit mention of Dg when Dg = R.
a. If g on Dg is nonnegative-definite, then, for every u € Dsg,
50 20, g(—u) =F(w), |gw)| = g0).

If, moreover, Dg D (—~U, +U) and g is continuous at the origin, then g
15 uniformly continuous on the set of limit points of Ds.

Proof. We apply the defining relation with
§1 = {0}) §2 = {0) u}) §3 = {0) U, u,}'

With §; we obtain g(0) = 0. It follows with 83 that g(u)h(x) +
g(—u)A(u) is real and hence g(—u) = F(u) (take A(x) = 1 and A(x)
= {). We use these two properties below.

The discriminant of a nonnegative quadratic form being nonnegative,
elementary computations with §; yield Ig(u) | < £(0). For the last
assertion we exclude the trivial case g(0) = 0 which implies g = 0, and,
to simplify the writing, assume that g(0) = 1 (it suffices to replace g
by g/£(0)). The same discriminant property but with §; yields, by
elementary computations,

|g(u) — g() |2 =1 — | gu — o) | — 2R{F()g(x')(1 — glu — «))}

Therefore, if g is continuous at the origin, that is, if g(u — «') — g(0)
= 1as« — u, then g(u') — g(u). The proof is complete.
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The foregoing proposition shows that a nonnegative-definite func-
tion g on R continuous at the origin has properties similar to those of
ch.f’s. In fact, g coincides on R with a ch.f.—up to a multiplicative
constant; and this is what we intend to prove now. According to a,
if g(0) = 0, then g = 0 so that, by excluding this trivial case and di-
viding by g(0) we can and will assume from now on that g(0) = 1.

b. HerGLoTZ LEMMA. A function g on the set Dg = {--+ —2, —c,
0, +¢, +2¢, - -} is nonnegative-definite if, and only if, it coincides on this
+r/c
set with a ch.f. f(u) = f e dF(x).
—rlc

Proof. We can assume that ¢ > 0. If g on Dg is nonnegative-defi-
nite, then, for every integer # and every finite number x,

1 n—1 b .
Ga(x) = = 3 <1 - L__I) (kc)e™ ke

T k=—n41 n

1 n n

=-— 2 X g((j — Be)e ™= =z 0.

2xn j=1 h=1l

Upon multiplying by ¢** with some fixed value of % and integrating
over [—m, +m), we obtain

+x +rlc
<1 - !——S—l) glke) = f_ ] e**G' (%) dx =f e JF, (%)

—x/c

where F, is a d.f. with F,(—n/c) =0, F.(+=/c) = g0) = 1. The
“only if” assertion follows, on account of the weak compactness and
Helly-Bray lemma, by letting » — o along a suitable subsequence
of integers. The “if”’ assertion is immediate (as below).

A. BocHNER's THEOREM. A function g on R is nonnegative-definite
and continuous if, and only if, it is a ch.f.

Proof. The “if” assertion (Mathias) is immediate, since, if g is a
ch.f. with d.f. G, then, letting « and v range over an arbitrary but finite
set in R,

% g(u = hwhe) = [{ £k} 669

u,v u,v

= f | 3 e*2h(u) |2 dG(x) 2 0.
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Conversely, let g on R be nonnegative-definite and continuous. It co-
incides on R with a ch.f. if it does so on the set §, (dense in R) of all
rationals of the form £/2", £ =0, 1, 2, -+, n=1,2, ---. For
every integer n, let S, be the corresponding subset of all rationals of
the form /2" so that §, T §,. Since g is nonnegative-definite on R, it
is nonnegative-definite on every §,. Therefore, by b, there exist ch.f.’s
fn such that g(k/2") = fa(k/2") whatever be k£ and »n. Since S, T Sy,
it follows that f, — gon §,. Let0 = 6,6, < 1, so that, by b,

+r
1 — ®fa(8/27") =f (1 — cos Ox) dF,(2"x)

+
éf (1 — cos x) dFn(2™x) = 1 — Rg(1/2%).
Therefore, by the elementary inequality | 2 + 4|2 < 2| 2|*> + 2| 4|2 and
the increments inequality, for every fixed 2 = (kn + 6,)/2%,

1= falB) [P S 21 = falka/2") 2 + 41 — Rf2(6a/2%)
< 2|1 — glka/2™ | + 4(1 — ®Rg(1/2M).

Since g is continuous at the origin, it follows by 13.4, 2°, that the se-
quence f» of ch.f.’s is equicontinuous. Hence, by Ascoli’s theorem, it
contains a subsequence converging to a continuous function f, so that
g = fon S, and hence on R. Since by the continuity theorem f is a
ch.f., the proof is complete.

The “only if” assertion can be proved directly, and this direct proof
will extend to a more general case: For every T > 0 and x € R

1 T pT .
prix) = —f f glu — v)e” V% du dy = 0,
TJy Jo

since, g on R being nonnegative-definite and continuous, the integral
can be written as a limit of nonnegative Riemann sums. Let # = v + ¢4,

!
integrate first with respect to v and set gr(9) = (1 — l—%) g(®) or 0 ac-

cording as Ifl S Tor | ¢ | > T. The above relation becomes
pr(x) = f e ogp(s) dt 2 0.

1 , ) .
Now multiply both sides by 7 <1 - l—%'—) ¢* and integrate with re-
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spect to x on (—X, +X). The relation becomes

1 +X<1 | % |> ()6 4 1 (sin® 3X(¢ — u) 0
— - x)e X = — .
2rJ_x X Pr I %X(t _ u)z 8T

The left-hand side is a ch.f. (since its integrand is a product of €% by
a nonnegative function) and the right-hand side converges to gr(«) as
X — . Therefore, gr is the limit of a sequence of ch.f.’s. Since it is
continuous at the origin, the continuity theorem applies and gr 1s a
ch.f. Since gr — gas T — o, the same theorem applies, and the as-
sertion 1s proved.

*Extension 1. The question arises whether in A continuity at the
origin is necessary. Let g on R be nonnegative-definite and Lebesgue-
measurable.

By integrating

Y gy — up)e® T 20, x € R
ujuk € Sp

with respect to every u € §, over (0, T), we obtain
T T .
nT" 4+ n(n — l)T"_zf f glu — )% du dv = 0.
o Yo

Dividing by #(n — 1)T™2 and letting n — o, it follows that

T aT .
f f glu — )% dudv 2 0.
o Yo

Therefore, the direct proof of the “only if” assertion in A continues to
apply, but instead of the continuity theorem use 12.2A Corollary 2, and
we obtain g = f ch.f. almost everywhere (in Lebesgue measure). The
“if”” assertion is modified accordingly. Thus (F. Riesz)

A’. A function g on R is nonnegative-definite and Lebesgue-measurable
if, and only if, it coincides a.e. with a chf.

*Extension 2. It can be shown that Herglotz lemma remains valid
with Dg = {—N¢, —=(N — 1)¢, +++, 0, -+ (N — 1)¢, Ne} whatever be
the fixed integer N. Then, replacing S, and Sa by their intersections
with (= U, 4+ U) whatever be the fixed U, the proof of A remains valid.
Thus (Krein)

A”. A function g on (—U, +U) is nonnegative-definite and continu-
ous if, and only if, it coincides on (— U, + U) with a ch.f.
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Remark 1. The proofs of A and A”” use only the fact that g is con-
tinuous at the origin, so that these theorems imply the last assertion
in a.

ReMark 2. The foregoing proofs show that in the definition of a
nonnegative-definite g it suffices to take A(x) = ¢*™* where x runs over
R. Alsoifgis Lebesgue-measurable, then the definition can be taken to

be .
f nf glu — )% dydo 2 0

for every x € R and a sequence T, — .

According to the second extension, a function which coincides with a
ch.f. on (— U, +U) can be extended to a ch.f. on R. The problem which
arises is under what conditions this extension is unique. This is part
of the problem we investigate in the following subsection.

*15.2 Regularity and extension of ch.f.’s. According to 14.la, if
f =1 on an interval (— U, 4+ U), thenf = 1 on R. Also according to
13.4, 3% if fu— 1 on (= U, +U) then f, — 1 on R. Thus, in these
cases a ch.f. is determined by its values on an interval, and convergence
of a sequence of ch.f.’s on R follows from its convergence on an interval.
We intend to investigate more general conditions under which these
properties hold. To simplify the writing, we assume that the ch.f.’s
are those of r.v.’s, that is, take the value 1 at ¥ = 0.

a. If f is the integral ch.f. corre.rponding to the ch.f. f, then

flu+ 1) —
- {1+ &®f(A
% { f(A)}.
For, from
.o sin22f sin2f
sin® x 2 2S 2:e__1+cos:e
Y <x>2_cos2— 2
in - (-
a2

it follows, upon applying the Schwarz inequality, that
ok =B | fotnb

2%
1 + cos Ax 1
e = — ®Rf(A)}.
éf s dF() = 5 (1+ &)
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We extend now the uniform convergence theorem 13.2C. Let f, be
ch.f.’s.

b. If fn = gon (=U, +U) and g is continuous at u = 0, then the
fn are equicontinuous and the convergence is uniform.

Proof. Because of 13.4(1°,2°) and Ascoli’s theorem, it suffices to prove
that the f, are equicontinuous at # = 0. If this conclusion is not true,
then there exist an ¢ > 0, a sequence n’ — =, and a sequence #,» — 0,
such that |f,. (unr) I < 1 — efor all n’; given a positive 2 € (— U, +U),
we take m, = [——-

Up

= kk and summing over £k = —m + 1, —m+3 --,m—l we
obtam by the elementary inequality | a +---+ am| < m| ay |2

+ | am [?

], so that muu, — k. Upon applying a with

-~

)f (k) — ~ L+ @)

It follows that

[ pute) do 2

— Myt lin’

1 €
S-l (Rn' n’ <1_—
_2{ + ®fur(un)} 5

l 2mn' un'

and, letting n’ — o, we have

1 +h
— d
Y f_h g(v) dv

Since 1 = £,(0) — g(O) and g is continuous at # = 0, it follows, letting

2

€
2

h—0,that 1 £ 1 — 5 Therefore, ab contrario, the f, are equicon-

tinuous at # = 0, and the assertion is proved.

A. CONTINUITY THEOREM ON AN INTERVAL. If fn — fy on (—=U,
+U) and fu is continuous at u = O, then fuy extends to a ch.f. f on R; if
the extension f &s unique, then fn — fon R.

Proof. According to b, the f, are equicontinuous. Therefore, by
Ascoli’s theorem, the sequence f, is compact in the sense of uniform
convergence and, since f, — fur on (— U, +U), all its limit ch.f.’s co-
incide with fiy on (— U, +U). It follows that, if there is only one ch.f.
f which coincides with fiy on (= U, + U), then f, — f on R.
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The second part of the problem raised above is reduced to its first part:
find ch.f.’s determined by their values on an interval (=U, +U). A
partial answer is given by the following theorem (Marcinkiewicz).

B. EXTENSION THEOREM FOR CH.F.'s. If the restriction fuy of a chf.

S to an interval (—U, +U) is regular or is the boundary function of a
regular function, then fy determines f.

This theorem follows, by the unicity of analytic continuation, from
the three propositions below of independent interest. Let f(z) =

fei” dF(x), where 2 = u + iv is a point of the complex plane R, X R,.
a. f(z) is regular in a circle | 3| < R if, and only if, for every positive
r < R,fe'l"l dF(x) is finite.
Proof. The “if” assertion is immediate and 1t suffices to prove the

“only i1f”” assertion.
Let

m™ =fx" dF(x) and p™ =f| x |* dF (%).
If f(z) 1s regular for | 2| < R, then, for every positive » < R,

1
Z—-—l m™ |r" < o,
n!
and, in particular,

“(2n) r2n < o,

2

(2n)!
Since

1 1
(“(21;—1))5;:—1 < (“(21;))%’

1t follows that

1
(2n—-1),2n—1
——— p @2l ¢
b2 2n — D!
and, hence,

1
fe"’” dF(x) = 3 —'u(")r" < .
n!
This proves the assertion.

b. If f(z) is regular in the circle | z| < R or in the rectangle | ®z| < U,
| 52| < R, then f(2) is regular in the strip | 32| < R.

Proof. The first assertion follows at once from a. As for the second
assertion, let 7 be the largest number such that f(z) is regular in the
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circle |z| < ¥V and assume that 7 < R. According to a, f(z) is regu-
lar in the strip | 3z | < 7. But it is also regular in the rectangle | ®z| <
U, | 32| < R and, hence, in the circle whose radius equals min (R,

V U2+ V?). Therefore ¥ cannot be less than R and the proof is
concluded.

For every ch.f. f, we have f(z) = f*(z) + f~(z) where

0 0
fT() = f ¢ dF(x) and f~(2) = f e 4dF (x)
0 —a0

are regular for 3z > 0 and 3z < 0, respectively. Therefore, if, say,
f1(z) is regular for 0 > 32 > —R, then f(2) is regular for0 > 32 > —R, so
that the ch.f. with values f(x) is the boundary function of a regular func-
tiqn. Thus, the following proposition completes the proof of the fore-
going extension theorem.

c. f1(z) is regular for 0 > 32 > —R if, and only if, for every positive

r <R, f e dF(x) is finite.
0

Proof. The “if” assertion is immediate. As for the “only if” asser-
tion, we observe that, since f*(z) is regular for 3z > 0 and continuous for

3z = 0, regularity for 0 > 3z > —R implies, by a well-known sym-
metry property, regularity for | 32| < R and, hence, according to a,

e dF(x) is finite for 0 < r < R.

ParTicuLAR caseEs. Upon applying what precedes, we have
1° Iffu(u) — e'»e on (= U, 4+ U), then fo(u) — ™ for every u € R.

2° If falu) — ¢ 2 on (=U, +U), then fo(u) — e 2 for every
u € R.

3° If fo — fon (—U, +U) and f is ch.f. of a rv. bounded either
above or below, then f, — f on R.

d. Untcity Lemma. Let g(z) be regular for 3z > 0 and continuous for
Jz = 0.
If g(z) = f+(z) for z = O then g(z) = f*(z) for z = 0.

For, #(2) = g(z) — f*(2) being regular for 3z > 0 and continuous for
3z = 0 with A(z) = O for z = 0 extends, by analytic continuation to an
entire function vanishing for z = 0 hence vanishing everywhere.

*15.3 Composition and decomposition of regular ch.f.’s. Let F de-
note the composed F; % Fy of d.f.’s F; and Fp. In the case of f or fi, f2

regular, the composition theorem 13.4A can be completed as follows:
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A. CoMPOSITION THEOREM FOR REGULAR CH.F.’s. f(z) is regular in the
strip | 52| < R if, and only if, f1(2) and f2(2) are regular in | 32| < R.
This theorem follows at once, by 15.2a and b, from the

ComrosiTioN LEMMA. If F = Fy x F, then, for every v,

fe”‘ dF(x) =fe”‘ dFl(x)fe”‘ dFsy(x),

and there exist finite numbers a;j > 0, B; = 0 such that

fe"‘ dF(x) = a,-e—ﬂ"l"'fe”‘ dF;(x), j=1,2.

Proof. We exclude the trivial case of degenerate Fy or Fo. The first
assertion follows, using Fatou’s lemma, in a way similar to that of the

proof of the composition theorem 13.3A, whether the integrals are finite
or not.

As for the second assertion, for every &, either

f ¢ dFy (%) = f ¢ dFy(x) = e**Fy[b, +)
b

or
b
[emar 2 | o= ari 2 R0,
accordingasv = Oor v < 0. Let 8; be the larger of two finite numbers
| 8, | and | ;| such that
a; = Fl[bl, +°°) >0 and ag = Fl(bz) >0

and let ap be the smaller of 2; and 4;. Then the inequalities above and
the first assertion yield

f " dF(x) = age "] f €% dFy(x)

and the proof is complete.

COMPLEMENTS AND DETAILS

Unless otherwise stated, functions F, with or without affixes, are d.f.’s of
r.v.’s: F(—w) = 0, F(4+») = 1, and functions f, with same affixes if any, are
corresponding ch.f.’s.

1. If Fis purely discontinuous and the discontinuity set is dense in R, then
the nondecreasing inverse function is singular.

2.If F x,,-f-) Fx and p is any limit point of the sequence u(X,) of medians
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of the X, then u is a median of X. In particular, if u(X) is the unique median
of X, then u(X,) — u(X). (Take x’ < u < x” to be continuity points of F,
then F(x’) £13)

3. P. Lévy’s space. Let F be the space of all d.f.’s F of r.v.’s. Set d(F, F’)
to be the infimum of all those 4 for which F(x — ) — A S F'(x) S F(x + %) + 4
whatever be x € R.

(a) Draw a graph and interpret d(F, F’) geometrically by considering lengths
of segments intercepted by the graphs of F and F’ on parallels to the second
bisector.

(b) The function 4 so defined is a distance, and (¥, 4) is a complete metric
space.

(c) The following three assertions are equivalent:

Fa> F, dFwF) >0, [gdF.— [gdF

for every function g continuous and bounded on R.
(d) A set § in §F is compact if, and only if, F(x) — 0 as x — —o and
F(x) — 1 as x — 4o, uniformly on §.
4. Establish the following correspondences for laws.
Binomial: p, = Clkp*q*~*, k S n, f(u) = (pe™ + @™
k

Poissonian: p, = Z‘—e Nk=0,1, -, flu) = PCLENY

k!
. , _ ety — plau
Uniform: F'(x) = m (a, 8), and O outside, f(u) = b=
4 -5 = p—alul+1du,
Cauchy: F'(x) = i (x PER a>0, flu) =c¢

Laplace: F'(x) = 2—!4- e-1z-%a 4> 0, flu) = (1 4 a?u?) ~letos,

o2yt
Normal: F’(x) = -—\-/———"-r» e— (- m)2/242 T > 0 f(u) = imu— "5,
Squared Nyrmal: (m = 0,0 = 1): F'(x) = —5=¢-*2forx > 0 and = O for

\/___.
xS0, flu =01 - 2iu)‘%

T-type: F'(x) =

=-.(1__

5. The composed F of F with the uniform distribution on (—4, +4) is given
by

F()x*‘le‘“ for x>0, ¢>0, y>0,0 for x£0, f(u)

sin Im

R =5 [ FO) dy, Fd = S22 f,

An absolutely convergent inversion integral follows:

21—IILI+2hF(y) dy _% z F(y) y =_f"' (sm u) "“‘/"f( )du

Deduce the continuity theorem.




[Sec. 15]  DISTRIBUTION AND CHARACTERISTIC FUNCTIONS 229

sin? Au

2 00
6. LetMif = — fo | f(w) |2 du, k> 0, and let

1 ptu |
Mf = ulﬁn.oz_,;f_u | (o) |2 db.

(a) M,fis nondecreasing in Iz and converges to 1 or Mf according as A —
orh — 0. lim lim M;.( H rfk) is either 0 or 1 (identically in A).

”m—>o0 7n—>00

(b) Mf =Y pi? where the Px are jumps of F; Mfifa = Mfi-Mfs; My f =
2 fo (1 - 271) dF«(x) where F* is d.f. with ch.f. /* = | f|. (The sum is the

jump at 0 of £(X) &« £(—X) where X is a r.v. with d.f. F.)
(c) Iff,. — f with Mf = 0, then Mf, — 0; the converse is not necessarily

true. If ka — f, then M(ka) — Mf.

fem1 .

7. Alaw is a “lattice” law lf the only possible values are of form a + ns only,
$>05n=0, %1, -3 if s is the largest possible, then s is the “step” of the
law. The step is well determined.

(a) A law is a lattice law if, and only if, |f(uo) | = 1 for an 4o 0. The step
s is given by the property that |f()| <1in0 < |u| < 2n/s and f(2x/s) =

(b) Let pn = P[X = a + ns] where X has a lattice law with step s. Then

Pn = .i_f+’/’e—lau—tnsuf(u) du,

27 J~x/s
Ky +x/s p~tuz) — p—~iuzs
Fle)) = Fe) = 5= [ —— f(u) du
2{ sin -i"

wherex; =a+ms —3s,xa=a+ns+ 35, n 2 m.
8. If the moment m exists and is finite, then

log () = 3= B (i)* + o(u)

The ai are called semi-invariants; formally

0

an
2 ;Tz" = log Z -—z"

nm=l n=0

Deduce the expression of a few first semi-invariants in terms of moments, and
conversely. Prove that

|4k|§kkﬂ-k-

ks

(log Z — z" is majorized by Z (e“" — 1))

9. If the derivative F’ on R ex1sts and is finite, then f(¥) — O as | u| — .
(Use Riemann-Lebesgue lemma.)
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If the nth derivative F™ on R exists, is finite, and is absolutely integrable,
then f(«) = o(| «|'~™) for | u| — «. (Integrate by parts.)

70. Let X be a r.v. with d.f. F.

(a) If Pl X |2 x] — 0 as x — o faster than any power of x~1, then all

moments exist and are finite. (Integrate by parts f | x [ dF(x).)

A pr. law is determined by the sequence of moments assumed finite if the

o0
. mn . . .
series ) 4" has a nonnull radius of convergence p. (Use Schwarz’s inequality
n =0 .

to show that the series with the m, replaced by u, majorizes the expansion of
f about any value of %, and then use analytic continuation.)
(b) Formally, by integration by parts,

flz) = 1 — iz f * () dy + iz f “eirs(l — F(x)) dx.
—o0 0

If P[| X|Z x] — 0 as x — oo faster than ¢~"* for every positive r < p, then
f(2) is analytic in the strip | 3z| < p. If p = =, then f(2) is an entire function.

(c) If *'F’(x) 2 ¢ > O on R for an r < 1, then the pr. law is not determined
by its moments.

11. If f' exists and is finite on R, f[xldF(x) may be infinite: take

2. COos nu

flu) = ¢ —7——. (The differentiated series converges uniformly but
a2 ntlogn

+a
Y. 1/nlogn =) Let m’ = alirgmf x dF(x) be the “‘symmetric” first

moment. If m’ exists and is finite, f/(0) may not exist: take a Weierstrass non-
differentiable function ¢ Y_ 4™ cos 4.
If the derivative at # = 0 of Rf exists, then

SfA) — 1 _ L+
~— = o) +if xdF), 0<h 0.
(Set G(x) = F(x) — G(x), H(x) = F(x) + F(—x), so that | AH| < AG. Show
s o
that f sin® (4/2) 46(x) — 0 as 5 — 0, f sin (%) JH () = o(1))
/) 1/h x
Under the foregoing condition, f’ exists and is finite if, and only if,

+a
m' = lim f x dF(x) exists and is finite, and then f'(0) = im’. Extend to
a=-oJ_,

any derivative of odd order. What about those of even order?

12. If g on R is not constant and g(«) = 1 + o(«) + o(«? near « = 0 with
o(u) an odd function, then g is not a ch.f. (pbserve that g(#)g(—u) = 1 + o(u?).)

Examples: e, e for r > 2, e=*'=** 1/(1 + 9.

13. Let g on R be real, even and continuous, with g(0) = 1, g(u) — 0 as
u — oo,

If g is convex from below, on [0, +), then g is a ch.f. (To prove

fu g(u) cos xu du Z 0 for x > 0; observe that on [0, =), say, the left-hand side
0
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derivative g’ exists and is nondecreasing, with g’(«) < 0 and g’(¥) — 0 as
u — o, Set h = —g’ so that, by integration by parts,

xj; g(u) cos xu du =L A(u) sin xu du.

For x > 0, the last integral is
iz T 2r 3r .
j; {Iz(u)—lz(u+—)+h(u+-— —Iz(u+——)+--~}smxudug0.)

Examples: e, 1/(1 + | «|),1.— |u|for |u| < 1and O for |« | > 1.
4. (a) Two ch. f s may coincide on intervals without being identical.
— cos x

Take F'y(x) = -——T hence fi(u) =1 — |u| for |u| =1 and O for

2 . .
m ;fz(u) 18 peri-

odic of period two and coincides with f; on [—1, +1]. Or, take f to be a ch.f. of
the type described in 73 with f/ continuous and strictly increasing on [0, ). Re-
place two arbitrarily small arcs of the graph of f which are symmetric with
respect to the y-axis by their chords, and compare the function so defined with /.

(b) The compositions of a law with either one of two distinct laws may coin-
cide (fif1 = fif2).

(¢) If fa = fon [—U, 4+ U], the same may not be true on R.

15. f on R is a ch.f. if, and only if, there exists a sequence g, such that

fl gn(v) |2dv—1 and fgn(u + t)Za(v) dv — f(u) uniformly in every finite

interval.

(For the “if” assertion, observe that every integral is positive-definite. For
the “only if” assertion, divide [—n, +#] into #® equal subintervals, set Fn(—n)
= 0, Fna(n) = 1, F, = F at the subdivision points, and linear inside every sub-

o .
interval; set cagn(n) =f V F'u(%) e dx with g2(0) = 1. Compute f, and

observe that fn — f)

76. Let g and %4 be bounded and continuous on R, with g(«) = g(—u), and
let A(x) be an arbitrary finite function on R.

If for every finite set A of values of «

|u§€; é g(u — OAEN(Q) | §.,§A 'éh(u — DA (2)A@),

' u | > 1, and take F2 defined by Do = %, Dixr(2k+1) =

then

h(u) = f vz JH(x)

where H is a d.f. up to a multiplicative constant.
The foregoing inequalities represent a necessary and sufficient condition for
g to be of the form

g(u) = f %% 4G(x)

with | AG| S AH. Find the relation between discontinuity and continuity
points of G and H.
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17. The uniqueness and composition properties determine ‘“essentially” the
form of ch.f.’s. Let K on R X R be bounded and continuous. If the functions
g on R are defined by g(x) = f K(u, x) dF(x) for every d.f. F, and the unique-
ness and composition properties hold, then K(u, x) = ¢**™ and f(h(x)) = g(u).

18. Normal vectors. A normal vector X = (X, £ £ n) is so defined that all

r.v.’s of the form ) u. X} are normal. Let the X} be centered at expectations.
k
A ch.f. f on R™ is that of a normal vector (centered at its expectation) if, and
only if],
lng(ul, Y Up) = Q(ul, T Up) = —% Zk Ml jUg =0
]
where mie = EX,'X];.
If the inequality is strict, then the normal d.f. is defined by
a" . 1

I"(xl’ RN xn) = (_._________e_}a(zl'“"rn)

Bz, -+ Oz 2r)"2D%

1 . .
where D = || mj || > 0 and g(xy, - -+, x5) = b > Djixjxx is the reciprocal form
i
of Quy, - - -, u,) with the variables x,. What if Q = 0?

79. If (X, Y) is a normal pair centered at expectations, then EXY/oXoY =
cos pr where p = P[XY < 0]. (Compute P[XY < 0] using the d.f.)




Part Three

INDEPENDENCE

Until very recently, probability theory could have been defined to
be the investigation of the concept of independence. This concept con-
tinues to provide new problems. Also it has originated and continues
to originate most of the problems where independence is not assumed.

The main model is that of sequences of sums of independent random
variables.+ The main problems are the Strong Central Limit Problem
and the (Laws) Central Limit Problem. The first is concerned with al-
most sure convergence and stability properties. The second one is
concerned with convergence of laws. All general results were obtained

since 1900.
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Chapter V

SUMS OF INDEPENDENT RANDOM VARIABLES

Two properties play a basic role in the study of independent r.v.’s:
the Borel zero-one law and the multiplication theorem for expectations.
Two general a.s. limit problems for sums of independent r.v.’s have been
investigated: the a.s. convergence problem and the a.s. stability prob-
lem. Both of them took their present form in the second quarter of
this century.,

§ 16. CONCEPT OF INDEPENDENCE

ConvenTION. To avoid endless repetitions, we make the convention
that, unless otherwise stated,

—r.v.’s, random vectors and, in general, random functions are de-
fined on a fixed but otherwise arbitrary pr. space (@, @, P).

—indices ¢ vary on a fixed but otherwise arbitrary index set T, and
events of a class have the index of the class.

16.1 Independent classes and independent functions. Events 4, are
said to be independent if, for every finite subset (¢, - - -, .),

(I) P n Atk = H PA(,‘.
k=1 k=1
In fact, the concept of independence is relative to families of classes
(see Application 1° below).

Classes @, of events are said to be independent if their events are inde-
pendent; in other words, if events selected arbitrarily one from each
class are independent. Clearly, if the ©; are independent so are the
C'y C Cut' €T c T. Because of its constant use, we state this fact

as a theorem.
235
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A. Subclasses of independent classes are independent.

Let X, be r.v.’s or random vectors or, in general, random functions.
Let ®(X,) be the sub o-field of events induced by X,, that is, the in-
verse image under X, of the Borel field in the range space of X,.

The X, are said to be independent if they induce independent o-fields
®(X,;). Then classes ®, € ®(X,) are independent. Since a Borel

function of X, induces a sub ¢-field ®, of events contained in B(X}), it
follows that

A’. BOREL FUNCTIONS THEOREM. Borel functions of independent ran-
dom functions are independent.

Independent classes can be enlarged, to some extent, without de-
stroying independence. More precisely

Let @, be independent classes. Independence is preserved if to every
C; we adjoin

1°  the null and the a.s. events, for (I) is trivially true—both sides
reducing to O—when at least one of the events which figure in it is
null, while (I) with » indices reduces to (I) with fewer indices when at
least one of the events which figure in it is a.s.;

2° the proper differences of its elements and, in particular, thesr com-
plements (because of 1°), for if 4, D A’,,, then

P(‘/{tl - /{’tl)/{tz A ‘/{tn = P/{tl/{tz ° ‘/{tn - P/{,tl/{tz b ‘/{tn
= (P/{tl —P/{,ll)P/{tz"' P/{tn
= P(/{tl - /{,tl)P/{tz e P/{tn;
3°  the countable sums of its elements, for

P(C Af)Ay -+ Ay = X PAjAy - 4,
J J
= (Z P/{tlj)P/{tz A P/{tn
J
= P(Z /{tlj)P/{tz LR P/{tn;
J

4°  the limits of sequences of its elements, for if A,™ — A, asm — @,
then
PA;II{Q M At,. « PAtlmAtz M At,.
= PI{tlmP/{tz s Plftn - PA(IPI{tz e PA(H.

It follows easily that
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B. EXTENSION THEOREM. Minimal o-fields over independent classes
C¢ closed under finite intersections are independent.

Applications. 1° If the events A, are independent, so are the o-
fields (A4,, 4.°, 9, Q).

2° If the inverse images @, of the classes of all intervals (—w, x,)
in Borel spaces R, are independent, so are the inverse images ®, of the
Borel fields in the R,. For, every @, is closed under finite intersections
and ®, is the minimal ¢-field over €,.

*3° Let ®, be o-fields (or fields) of events and let T, be a subset of
the index set T. The compound o-field ®7, with components ®,, + € T,
is the minimal o-field over the class @7, of all finite intersections of
events A, t € T,, and contains all its components; since the ®, are
closed under finite intersections so is €r,. ®r, is a compound sub o-field
of ®r and, if T, is finite, then ®7, is a “finitely compound” sub o-field.

If compound o-fields are independent, then, by A, their finitely com-
pound sub o-fields are independent. Conversely, if the finitely com-
pound sub o-fields are independent, then, by the extension theorem, the
compound o-fields are independent. We state these facts as a theorem.

C. ComrouNDs THEOREM. Compound o-fields are independent if, and
only if, their finitely compound sub o-fields are independent.

In particular, if the ®, are independent, so are the ®r, for every
partition of T into set T.

Families X7, = { X}, ¢t € T,} of r.v.’s induce sub o-fields ®(X7r,) of
events. Every ®(Xr,) is the minimal o-field over the class €(X7,) of
inverse images of all intervals in the range space Ry, of Xr,. But the
intervals in the Borel space Ry, are products of intervals in the factor
spaces R;, with only a finite number of factor intervals different from
the whole factor spaces, and the inverse image of any factor space is €.
Therefore the elements of @(X7,) are all the finite intersections of ele-
ments of the ®(X;). It follows that the o-field ®(Xr,) is a compound
of the o-fields ®(X;), and theorem C becomes

C’. FaMILIES THEOREM. Families of random variables are indepen-
dent if, and only if, their finite subfamilies are mutually independent.

Thus, in the last analysis, independence of random functions reduces
to independence of random vectors.

To conclude this investigation of the definition of independence, let
us observe that all which precedes applies to complex r.v.’s, to com-
plex random vectors, and, in general, to complex random functions
X, = X', + iX", considered as vector random functions (X’;, X"';),
te T.




238 SUMS OF INDEPENDENT RANDOM VARIABLES [SEc. 16]

16.2 Multiplication properties. The direct definition of independent
r.v.’s is as follows:

Random variables X, t € T, are independent if, for every finite class
(S, =+, S,) of Borel sets in R,

Pn [)(tkEStg] = HP[‘th CStk]'

k=1 k=1
The basic expectation property of independent r.v.’s is expressed by
a. MUL’I‘IPLICATION LEMMA. If Xy, -+, X, are independent non-

negative r.v.’s, then E H X = H EXk.

Proof. It suffices to prove the assertion for two independent r.v.’s
X and Y, for then the general case follows by induction. First, let X =
Y xil4; and Y = ¥ yilp, be nonnegative simple (or elementary)
J k

r.v.’s; we can always take the x;, and, similarly, the y, to be all dis-
tinct, so that 4; = [X = ], By = [Y = yi]. Since X and Y are inde-
pendent, PA;By = PA;PB; and, hence,

EXY = 3 x;yxPA;PBy = }: %Pd; - T nPBy = EXEY.
ik

Now, let X and Y be nonnegative r.v.’s and set

j—1 j k-1 k
Anj = <X<=| Bu-= <Y<2n]

2" 2", 2"

Since X and Y are independent so are these events and, hence, so are
the simple r.v.’s

n2"j — 1 n2" b . |
Xn = Z IA,.,-, Y, = Z n IBnk
J=1 211« k=1 2

But 0 £ X,.TX,0=Y,17, so that 0 £ X,,Y,. T XY and, by what
precedes, EX,Y, = EX,EY,. Therefore, by the monotone conver-
gence theorem, EXY = EXEY, and the lemma is proved.

A. MuLTIPLICATION THEOREM. Let Xy, -+, X, be mdependent r.v.s.
If these r.v.s are integrable so is their product, and E H Xy = H EX;.

Conversely, if their product is integrable and none is degenerate at 0 then
they are integrable.




[Skc. 16] SUMS OF INDEPENDENT RANDOM VARIABLES 239

Proof. It suffices to prove the assertion for two independent r.v.’s
X and Y. We observe that independence of X and Y implies that the
nonnegative r.v.’s X’ = Xt or X" or | X| and Y" = Y+ or Y~ or
| Y| are independent, so that, by a, EX'Y’ = EX'EY". Now, if X
and Y are integrable so are X’ and Y’ and, by the foregoing equality,
so is X'Y’. Therefore | XY | and hence XY are integrable and, by the
same equality,

EXY = E(X* — X)/(Y+ - Y)
= EXYEY* — EXYEY— — EX"EY+ 4 EX-EY-
= EXEY.

Conversely, if XY is integrable so that E| X |E| Y| = E| XY | < =,
and neither X nor Y degenerates at 0 so that E| X | and E| Y| do not
vanish, then E| X | and E| Y| are finite, and the proof is concluded.
Extension. The multiplication theorem remains valid for independ-
ent complex r.v.’s Xy = X' + iX"y, since it applies to every term of

the expansion of I (X'i + ¢X"%). In particular, according to the
fem1

Borel functions theorem, if the Xj are independent so are the ¢™**

and, hence, n

u Y Xk n n
Ee ¥ = ETJJ ¥ = [] E&™**
k=1 k==1
In other words,
CoroLLARY. Chf.s of sums of independent r.v.’s are products of ch.f.'s
of the summands.

This proposition, to be used extensively in the following chapter, is but
a special case of a property which can serve as an equivalent definition
of independent r.v.’s, as follows:

Let F, and fi, F,...., and fi,...., be the d.f.’s and ch.f’s of the r.v.
X, and of the random vector (X, ... X, ), respectively.

B. EQuivaLENCE THEOREM. The three following definitions of inde-
pendence of the r.v.’s X, are equivalent.
For every finite class of Borel sets Sy and of points x4, uy € R

(Il) P n [‘X'tk C Stk] = H P[th C Stk])
k=1 k==1
(I) th---:,.(xz,, A -"",.) = Ft,(xtl) tr F!,,(xl,,),

(13) ftx' . -tn(ulp Ty uln) = fh(utl) ot ftu(ut»)'
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Proof. (I1) implies (I5) by taking §; = (—=, x,). Conversely, (1)
implies (I;) with §; = (—, x;) and, on account of 16.1, Application 2°,
this implies (I,) for all §,.

(Iz) implies (I3), for (I2) implies (I;) which implies (I3) exactly as
the multiplication theorem implies its corollary. Conversely, (I3) im-
plies (Ig), for the inversion formula for one- and multi-dimensional
ch.f.’s shows at once that if (I3) is true, then, for all continuity intervals,

Fo..lan o5 an; by -0y b)) = Filay, by) - Fila, bt,),
and (Ip) follows by letting the @, — — and 4; T x;. This completes

the proof.

Extension. The equivalence theorem is valid when the X, are ran-

dom vectors, for the proof applies word by word, provided R is replaced
by the range space R; of X;.

16.3 Sequences of independent r.v.’s. At the root of known a.s.
limit properties of sequences of independent r.v.’s lies the celebrated

A. BOREL ZERO-ONE CRITERION. If the events A, are independent,
then P(lim sup 4,) = 0 or 1 according as 3, PA, < © or = =,
Proof. Since
P(lim sup 4,) = lim, lim, P |J 4% = limy lim, (1 — P [} 4°)
k=m k=m

and the events A4, and hence A4,° are independent, the assertion fol-
lows by passing to the limit in the elementary inequality

l—exp[—En:PA,,]gl—InI(l—PA,,) é)n:PA’k-

Since, whatever be the events A4,, Y. PA, < « implies that

limy, lim, P J 4x < limy, lim, 3 PAx = 0,

k=m k=m

the “zero” part of this criterion is valid with no assumption of inde-
pendence:

a. BoreL-CanTELLI LEMMA. If Y PA, < o, then P(lim sup 4,) = 0.

CoRroLLARY 1. If the events A, are independent and A, — A4, then
PA =0o0rl.

CoroLLarY 2. If the rv's X, are independent and X, i 0, then
3 Pl X ] = ¢] < o whatever be the finite number ¢ > 0.
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For X, —> 0 implies that, if 4, = | X, | = ¢, then P(lim sup A,)
= 0, and independence of the X, implies that of the A,,.

Because of its intuitive appeal, instead of “lim sup 4,” we shall
sometimes write ‘A, 1.0.”’; to be read “A,’s occur infinitely often” or
“infinitely many A, occur.” This terminology corresponds to the fact
that lim sup 4, is the set of all those elementary events which belong
to infinitely many A, or, equivalently, to some of “the 4n, £nyy, -
however large be n”’—the “tail” of the sequence 4,. To the “tail” of
the sequence A4, of events corresponds the “tail” of the sequence I,4,
of their indicators. More generally, the “tail” of a sequence X, of
r.v.’s is “the sequence X,, Xn41, - -+ however large be ».”

To be precise, let X, X5, - -+ be a sequence of r.v.’s and let B(X,),
(B(Xm Xn+1)) T (B(Xm Xn+1) )) (B(Xn-}-l) Xn+2) )) -+ be
sub o-fields of events induced by the random functions within the brack-
ets. We give a precise meaning to lim sup ®(X,), as follows: The se-
quence ®(X,), ®(X,, Xnt+1), -+ is a nondecreasing sequence of o-
fields, its supremum or union is a field, and the minimal o-field over
this field is ®(X,, Xn41, ) or, writing loosely, “su>p ®(X,,).” In

mn

turn, the sequence ®(X,, Xniy1, ), B(Xny1, Xntoy ~+¢), -+ Is a
nonincreasing sequence of o-fields and its limit or intersection is a o-
field € contained in ®(X,, Xny1, + ) however large be # or, writing
loosely, “lim sup ®(X,).” The o-field @ will be called the tai/ o-field
of the sequence X, or “the sub o-field of events induced by the tail of
the sequence X,.” Let us observe that all the foregoing o-fields and,
in particular, the tail o-field, are contained in the o-field ®(X;, X3, - - )
induced by the whole sequence X,. The elements of the tail o-field @
are tail events and the numerical (finite or not) @-measurable functions,
that is, those functions which induce sub o-fields of events contained in @
are tail functions—they are defined on the “tail” of the sequence. For
example, the limits inferior and superior of the sequence X, and of the
sequence (X; + X, + -+ X,)/b,, where b, — o, are tail functions
(not necessarily finite), while the sets of convergence of these sequences,
as well as the set of convergence of the series > X, are tail events.
To Borel’s result corresponds the basic Kolmogorov’s

B. ZERO-UNE LAW. Un a sequence of independent r.v.’s, the tail events
have for pr. either O or 1 and the tail functions are degenerate.

In other words, the tail o-field of a sequence of independent r.v.’s is
equivalent to {9, 2}.
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Proof. We observe that an event A is independent of itself if, and
only if, P44 = PA-PA, that is, if P4 = 0 or 1—and such events are
mutually independent. Thus, the first assertion means that the tail
o-field € of the sequence X, of independent r.v.’s is independent of it-
self. Since € C ®(Xny1, Xnys, --+) whatever be # and, because of
the independence assumption, (X}, - - -, X,) is independent of B(Xn4y1,
Xni2, +-), it follows that @ is independent of ®(Xj, Xa, -« -, X,)
whatever be #n. Therefore, @ is independent of ®(X;, X,, ---) and,
being contained in ®(X,, X, ---), it is independent of itself. This
proves the first assertion and the second follows, since, if X is a tail
function, then it is a.s. {#, Q}-measurable hence degenerates.

CoroLLarY. If X, are independent r.v.’s, then the sequence X, either
converges a.s. or diverges a.s.; and similarly for the series > X,. More-
over, the limits of the sequences Xn and (X; + - - -+ X,)/bn where b, T ,
are degenerate.

*16.4 Independent r.v.’s and product spaces. Let X, where ¢ runs
over an index set T, be independent r.v.’s with d.f.’s Fy, on R,. Be-
cause of the correspondence theorem, every Fy, determines a pr. Py,
on the Borel field ®; in R;. On account of the product-measure theo-
rem, the Py, determine a product-measure ] Py, on the product Borel
field I ®: in the product space J[] R;. On the other hand, the law of
the family X = {X,, ¢+ € T}, represented by the family of d.f.’s
{Fx,,...x,,} of all finite subfamilies of X determines, by the corre-

spondence theorem, a family {Pyx, ... x, } of consistent measures on
M y ‘l' s ‘N

N
the product Borel fields [T ®,,. Owing to the consistent measures theo-
k=1

rem, this family of pr.’s determines a pr. Px on [] ®,.
Since the X; are independent,

FX‘:"'X‘N=FX‘1X ct XFX‘N
so that
PX‘:"'X‘N=PX‘1X £ XPX‘N

and, therefore, Py coincides with [] Px,. In other words,

A. The pr. space induced on its range space by a family of independent
r.v.’s is the product of pr. spaces induced on their respective range spaces
by the r.v.’s of the family.

Let us observe that this reduces the multiplication theorem to the
Fubini theorem.
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The question arises whether the converse is true: Given a product
pr. space (I R, II ®;, II Py), is there a family {X;, ¢+ € T} of inde-
pendent r.v.’s on some pr. space (2, @ P) which induces this product
pr. space? [Equivalently, given a family {Fy, ¢t € T} of d.f.’s with
variation 1, is there a family {X,, + € T} of independent r.v.’s with
FX‘ = Ft?

If the pr. space on which the r.v.’s have to be defined is fixed, then,
in general, the answer is in the negative, since on a fixed pr. space even
one r.v. with a given d.f. might not exist. However, if we are at lib-
erty to select the pr. space on which to define r.v.’s, and we sha/l always
do so, then the answer is in the affirmative, as follows:

Let the pr. space be the product pr. space (IT R;, [T ®;, IT P:) where,
if the F; are given, the P, are determined upon applying the correspond-
ence theorem. The r.v.’s X,, defined on this pr. space by Xi(x) = x,
x = {xy, ¢t € T}, are then independent, since their pr.d.’s are P; and

their d.f.’s are F;. Thus

B. The relation Xy(x) = x4y x = {x4yt € T} establishes a one-to-one cor-
respondence between families | X} of independent r.v.’s and product pr.
spaces on [I R;.

Remark. There exist pr. spaces on which can be defined all possible
families of independent r.v.’s with a given index set T. For example,
take the pr. space (@, @, P) where @ = [[Q, with @, = (0, 1) and
P = I] P, on the Borel field @ in 2, with P, being the Lebesgue measure
on the Borel field in Q; (class of Borel sets in ©;). Then the r.v.’s X;—
inverse functions of arbitrarily given d.f.’s F,—are independent and
Fx‘ = Ft.

Extension. The preceding considerations apply, word for word, to
random vectors. They also apply to arbitrary random functions, pro-
vided we consider that the d.f. of a random function is defined in terms
of its “finite sections,” that is, the family of d.f.’s of projections of the
random function on finite subspaces.

§ 17. CONVERGENCE AND STABILITY OF SUMS; CENTERING AT
EXPECTATIONS AND TRUNCATION

This section and the following one are devoted to the investigation
n

of sums S, = Y X of independent r.v.’s X;, X3, --- and, especially,
k=1

of their limit properties—convergence to r.v.’s and stability.
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Given two numerical sequences @, and &, T «, we say that the se-

. . . Sn P Sn a.s.
quence S, is stable in pr. or a.s. lf’b— —a, > Qor— —a, — 0. In
n n

fact, a stability property is at the root of the whole development of pr.
theory. If X, X, - are independent and identically distributed in-
dicators with P[X, = 1] =p and P[X, =0]=¢ =1 — p, we have
the Bernoulli case. The first stability property is the

, \)
BERNOULLI LAW OF LARGE NUMBERS: In the Bernoulli case — — p
n
P

— 0.

The Central Limit Problem, to which the following chapter is devoted,
is the direct descendant of its sharpening by de Moivre and by Laplace.
On the other hand, the following strengthening

BOREL STRONG LAW OF LARGE NUMBERS: I#n the Bernoulli case

n a.s.
2 —p 250,

is at the origin of the results given in this chapter. Perhaps the im-
portance of the methods overwhelms that of the results and emphasis
will be laid upon the methods. These methods are (1) centering at ex-
pectations and truncation and (2) centering at medians and symmetri-
zation.

17.1 Centering at expectations and truncation. We say that we cen-
ter X at ¢ if we replace X by X — ¢. If X is integrable, then we can
center it at its expectation EX and, thus, X is replaced by X — EX.
In other words, a r.v. is centered at its expectation if, and only if, its ex-
pectation exists and equals 0.

Let X be integrable. The second moment of X — EX is called

variance of X it exists but may be infinite and will be denoted by ¢2X.
Thos @2X = E(X — EX)? = EX® — (EX)%.
Since, for every finite ¢, we have

(X —¢)=EX—c— EX-0)*=EX - EX)?,

centerings do not modify variances.

The importance of variances is due to the fact that we have at our
disposal bounds, in terms of variances of summands, of pr.’s of events
defined in terms of sums §, of independent r.v.’s; we shall find and use
such bounds in this section. However, variances can be introduced
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only when the summands are integrable. Moreover, the bounds men-
tioned above are nontrivial only when the variances are finite. This
seems to limit the use of such bounds to square-integrable summands.
Yet this obstacle can be overcome by means of the truncation method.

We rruncate X at ¢ > 0 (finite) when we replace X by X° = X or 0
according as | X| < cor | X| 2 ¢, and X° is X truncated at ¢. It fol-
lows that, if F'is the d.f. of X, then all moments of X°

EXe® =f x dF, E(X°)? =f x% dF, etc.,
jz|<c |z | <e

exist and are finite. We can always select ¢ sufficiently large so as to
make P[X = X = P[| X | = ¢] arbitrarily small. Furthermore, we

can always select the ¢; sufficiently large so as to make P U [X; = X;*]
arbitrarily small, since, given ¢ > 0, we have

PUX; X 1T Pl X2zl <e
if, say, the ¢; are selected so as to make P[| X;| = ¢] < —2§ Thus, to

every countable family of r.v.’s we can make correspond a family of
bounded r.v.’s which differs from the first on an event of arbitrarily
small pr. Moreover, if we are interested primarily in limit properties
there is no need for arbitrarily small pr., for the following reasons.

Let two sequences X, and X', of r.v.’s be called tail-equivalent if
they differ a.s. only by a finite number of terms; in other words, if for a.e.
w € © there exists a finite number 7(w) such that for #» = n(w) the two
sequences Xn(w) and X',(w) are the same; in symbols P[X, = X, i.0.]
= 0. If the sequences X, and X", only converge on the same event
up to some null subset, then we say that they are convergence equivalent.

Let S, = > Xt and §', = 3 X"%. Since
k=1 k=1

PX, # X'nio0] =lim, P [ Xk # X' S lim, > P[X # X's]

k=n k=n

it follows that

a. EQuivaLENCE LEMMA. If the series Y P[X, # X'.] converges,
then the sequences X, and X', are tail-equivalent and, hence, the series
. N $'n
2 Xn and 3 X', are convergence-equivalent and the seqiences —b-'l and 5o
n n
where by, T ©, converge on the same event and to the same limit, excluding a
null event.




246 SUMS OF INDEPENDENT RANDOM VARIABLES [Sec. 17]

17.2 Bounds in terms of variances. To avoid repetitions, we make
n

the convention that, unless otherwise stated, So =0, S, = X Xz,
k=

n=12, .-+, and the summands X, X5, - -- are independent r.v.’s.

Let X;, X2, -+ -, be integrable. Since centerings do not modify the
variances, we can assume, when computing variances, that these r.v.’s
are centered at expectations. Then

28, = ES2 =Y EXE+ ¥ EX;Xp = X 2 X,

k=1 k=1 k=1
since independence of X; and X}, entails, by 15.2,
| EX;X, = EX;-EX, = 0.
Thus, we obtain the classical

BieNaYME EQUALITY. If the r.v’s X, are independent and integrable,
then

2Sn = 3 2 X

k=1

The basic inequalities 9.3A become

S X — é { =
k==l
a. S P S, —ES,| 2 ¢ = 2 X¢.
a.s. sup (S, — ES,)? [I | ‘ é ,Ef g

The right-hand side inequality is the celebrated BieNaymME-TCHEBICHEV
INEQuaLITY. Applied to (Spykx — ESnyk) — (Sn — ESp) and to S, — ES,
with e replaced by e,, it yields, by passage to the limit,

b. If the series 3 02X, converges, then the series Y (X, — EX,) con-
. i Sn - ESn P
verges in pr. If — 3 o*X}, — 0, then ———— — 0.
bn k=1 n

This last property is due to Tchebichev (when 4, = #). In the Ber-
noulli case, where &, = n, EX, = p, 0*X, = pgq, it reduces to the Ber-
noulli law of large numbers. It is of some interest to observe that
Borel’s strengthening can also be obtained by means of the Bienaymé-
Tchebichev inequality (see Introductory part).

So far, the assumption of independence was used only to establish
that the summands were orthogonal, that is, EX;X; = 0(j # k) when
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X; and X are centered at expectations. In fact, the foregoing results
remain valid under the even less restrictive assumption of orthogonality
of Sy—yand X,, n =1, 2, ---, since, then,

28y = 2Su_1 + * X,

and the Bienaymé equality follows by induction.

But, in the case of independence, the r.v.s S,_1l4, , and X, are
orthogonal, not only for 4,_; = Q but also for every event A,_; de-
fined in terms of X, X5, ++-, Xn_1. Therefore, it is to be expected
that the foregoing results can be strengthened by using more completely

the properties of independence, in particular the orthogonality prop-
erty just mentioned.

A. KoLMOGOROV INEQUALITIES. If the independent r.v.s Xy are inte-
grable and the | X | < ¢ finite or not, then, for every € > 0,

20)? | 1 »
1 —E;i——fz—é P[maxISk— ES],I g e] §‘E Zasz.
ksn € k=1
> Xy

k=1

If one of the variances is infinite, then the right-hand side inequality

is trivial and the left-hand side inequality has no content (for, then,

¢ = =), so that we assume that all variances are finite. In that case,
the left-hand side inequality is trivial when ¢ is infinite and therefore
we assume, in proving this inequality, that, moreover, ¢ is finite.

Proof. We can assume, without restricting the generality, that the
X, and hence the §, are centered at expectations, provided we note that
| X| < ¢ implies | EX| < ¢ and, hence, | X — EX| < 2¢.

Let

Ay = [maxl S;| < d,
isk

Bi=Ar1— A=0S1| <e | S| <&|Si] 24

so that

Ao=9Q, 4= By, Bi Tl Sima| <e|Sk| 2 el
k=1

1° Since Silp, and S, — Sj are orthogonal, it follows that

L5
Bkn

E(SqI5)?
= E(Silz)? + E((Sn — Si)I5)? = E(Sils)? = éPB,.
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Summing over £ = 1, «--, n, we obtain
n n n
> X, = ES.? 2 f s2=% [ 8,22 @3 PB. = #P4,,
k=1 An® k=1 vV Bk k=1

and the right-hand side inequality is proved.
2° Since

Sk—1lay + Xelay, = Sela, = Selay + Sels,
and Sy_1J,,_, and X} are orthogonal while 14, /5, = 0, it follows that
E(Sk_1la,_)% + 2 Xu Py = E(Sila)? + E(Sil)
Since PAy_; = PA, and | X3 | < 2, and hence
| Sls,| = | Se—rlsi| + | Xalp,| S (e 4 2018,
it follows that
ESi_1l4, ) + *Xi-PAy < E(Sid4)? + (e + 20)°PBy.
Summing over k = 1, - - -, n, we obtain

(X X)) PAy < E(Sala)® + (e + 2)* X PBy

k==1 k=1
< EPA, + (e + 20)%PA,° S (e + 203,

and the left-hand side inequality follows.

17.3 Convergence and stability. We apply now Kolmogorov in-
equalities and the truncation method to convergence and stability prob-
lems for consecutive sums S, of independent r.v.’s X1, Xa, - --

I. ConverGeNnce. In this Chapter, convergence means convergence
to a finite number or to a finite function (r.v.).

a. If S o® X, converges, then 3, (X, — EX,) converges a.s. Ify o*X,
diverges and the X, are uniformly bounded, then 3. (Xn — EX.) diverges
a.s. Thus, if the X, are uniformly bounded, then 2. (Xn — EX,) con-
verges a.s. if, and only if, 3 a* X, converges.

This follows, by letting m, n — o in Kolmogorov’s inequalities with
Sy replaced by Smyx — Sm-

b. If the X, are uniformly bounded and 3. Xn converges a.s., then
3" 6? X, and 3 EX, converge.
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Proof. To the r.v.’s X, we associate r.v.’s X’, such that X, and X",
are identically distributed for every # and X;, X1, X5, X's, -+ is a
sequence of independent r.v.’s. We form the “symmetrized” sequence
X.*' = X, — X', of independent r.v.’s, and have

| X | 2| X | + | Xn| 22, EX," = EX, — EX'» =0,
X, = * X, + * X', = 262 X,.

Since ) X, converges a.s., so does 2 X', and hence Y X,.* (= 3 X,
— ¥ X'»). It follows, by a, that 3 ¢2X,°* and hence ¥ ¢®X, converge
and, again by a, Y (X, — EX,) converges a.s., so that > EX, =
> Xn — 2 (Xn — EX,) converges. The assertion is proved.

Let X° be X truncated at (a finite) ¢ > 0. We have Kolmogorov’s

A. THREE-SERIES CRITERION. The series 3 X, of independent sum-
mands converges a.s. to a r.v. if, and only if, for a fixed ¢ > 0, the three
series

O ZPlXalzd () ZoXae, (i) T EXa%

converge.

Proof. Convergence of (i) entails, by the equivalence lemma, con-
vergence-equivalence of Y X, and Y X,° and convergence of (ii) and
(i) entails, by a, a.s. convergence of 3 X,°. This proves the “if”
assertion. -

Conversely, let 3~ X, converge a.s. so that X, — 0. By16.3A,Cor. 2,
(i) converges, so that, by the equivalence lemma, } X,° converges
a.s. and, by b, (ii) and (iii) converge. This proves the “only if” asser-
tion.

CoroLLARY. If at least one of the three series in A does not converge,
then 3 X, diverges a.s.

For, by 16.3B (Corollary), >~ X, either converges a.s. or diverges a.s.

Remark. In the proof of b we introduced a “symmetrized”” sequence.
This is an application of the ‘“symmetrization method,” to be expounded
in the next section.

. s as.
II. A.s. staBiLity. We seek conditions under which f —a, — 0
n

when &, T =, and require the following elementary proposition.
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ToEepLITZ LEMMA. Let appy k=1, 2, ---, k,, be numbers such that,
for every fixed k, an, — O and, for all n, 3| an| S ¢ < 0 let &, =
%

Then, x, — O entails ', — 0 and, if 3 an — 1, then x, — x
%
n
finite entails %', — x. In particular, if b, = 3 ar T o, then x, — x
k=1

n
finite entails — 3 apxy, — X.
bn k=1

The proof is immediate. If x, — O then, for a given ¢ > 0 and

. €
n 2 n sufficiently large, | #, | < - so that
¢

|x,n| = Z|ankxk| + e
k<n,

Letting » — o« and then ¢ — 0, it follows that x’, — 0. The second
assertion follows, since then

x,n = ; (ank)x + % ank(xk - x) - X.

. ax . .
And setting @, = —» k < n, the particular case is proved.
n

The particular case yields the powerful
KRONECKER LEMMA. I[f 3 %, converges to s finite and by | =, then

1 *
— Zbkxk — 0.

n kaml
n

For, setting o = 0, @ = by — br—1, Sn41 = 2 X%, we have

k=1
n n n

— Dbxe = — 2 b(Sky1 — Sk) = Snp1 —— a5y > 5 — s =0.

bn k=1 bn k=1 n k=1

We are now in a position to prove Kolmogorov’s proposition below.

X,
A. If the integrable r.v's X, are independent, then 3 X < oo,
. Sn - ESn as.
bn 1 », entails 7 > 0.

n
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"-. For, by la, convergence of 3 entails a.s. convergence of
- ‘Xn - EXn " .
> — and the Kronecker lemma applies.

We can now prove an extension of Borel’s strong law of large numbers.

B. KOLMOGOROV STRONG LAW OF LARGE NUMBERS. If the independ-
ent rv.’s X are identically distributed with a common law £(X), then

X ¢ Xn a.s.
1k ~> ¢ finite if, and only if, E| X | < ;and then ¢ = EX.

n

Proof. We set 4, = [l X | =nl,dy = Q, and observe that, for every
n, P4, = P[l an = n], while

ZPAn = Z(” - 1)(Pdn—l - Pdn) = ZElelAn—l"An
ézn(PAn—l_Pdn) §1+ZP4n

or

> P4, S EX|<1+Y PdA,.

Sn 8. Xn Sn n — 1 Sn— s
If—= 5 ¢ finite, then — = — — 12
n n n n n-—1

by 16.3a,Cor. 2,3 P4, < «. This proves the “only if”’ assertion and it

Sn as.
remains to prove that, if E| X | < «, then Pl EX.

> 0 and, hence,

Let E| X l <  and set S, = é:lfk, where X, represents X} trun-
cated at k. Since
TP Xa| 25l =L Pdn < E| X| <o,
it follows that the sequences S,/7# and §,/# have same limit, and it
suffices to prove that % = EX. Since, by the dominated convergence

theorem, EX, = EXI,. — EX

and, hence, by the Toeplitz lemma, — — EX, it suffices to prove

Sﬂ - Eﬁn a.s. ”
that ————— —> 0. But
n

2 X EX,? X? |
Zdnz =X o2 =EZ;5IA,.=§2+E|X|<OO,
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since, setting B,, =[ m —1 =|X| < m ], we have 4,°B,, = § or
B, according as # < m or n Z m and, hence,

X* of 1 1
zn:;flAncBm é m <;"1‘5+m+...>13m

o/
é(l +m2f ?x)lgm < Q2+ | XDIs,,

so that, by summing over m, we obtain the bound 2 + E| X|. Thus,
theorem A applies, and the proof is complete.

*17.4 Generalization. Let ¢, with or without affixes, be finite posi-
tive numbers and let g, be continuous and nondecreasing functions on
[0, +] such that g,(0) = 0 and ga(x) = cx® or = ¢’ according as 0 <
X < Cp Or X = Cn.

a. If the series () 3 Pl| Xo| = ¢a] and (i) X Ega(| Xo*|) converge,
then Y. (X, — EX,™) converges a.s.

For convergence of (i) entails, by the equivalence lemma, convergence-
equivalence of Y (X, — EX,™) and X (X»™ — EX,™) and, by Ia,

this last series converges a.s., since convergence of (i1) entails

S X S T E X P S 1 Bgal] X ) < .

b, If the series () X Ega(| X |) or (i) & j: "Pll X | 2 #]dgn()
converges, then 3 (X, — EX,*) converges a.s.

For convergence of (i) entails

ZP[anlgcn]éézEgn(anl)<°°

and

2 Egn(l X" l) =X Egn(l Xn l) < o,

so that a applies.
Similarly, convergence of (ii) entails, by integration by parts,

©> 3 fo Pl Xa | 2 %l dga() = X gu(en) Pl| Xa| 2 ¢4l

+ j: ga(x) dPl| Xo| < 1]

2 ¢ TPl Xa| 2 cal + X Egal| Xa™ ),
so that a applies.
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A. If the series (1) ) Eg, <|—‘;£’Ll> or (1) Y f Pl| Xo| = &nx] dga(x)
n 0

converges, then

— bncn 1 2 a.s.
> Xn bEX" converges a.s. and — Y. (Xp — EXi") — 0.
n n k=<1

Moreover, if (i) converges and g.(x) = ¢''x for 0 < x S ¢p or for x = cp,
then EX,*" can be replaced by O or by EX,, respectively.

Proof. The first assertion follows from b and the Kronecker lemma.
As for the second assertion, if >’ and )" denote summations over
those values of n for which the first, respectively, the second, assump-
tion about g, holds, then

1

’ bacn | — §V/ b”cn_',_c_
o E x| = o [T X <

n

1 buen (X
< ;;;}:fo &.(;—)dl’[l X | < ]

n

and

1 1
ZN Z_EX" _ Z” Z_EX"bncn

1
< Z” Z_EI X, — anncn

® x
- 5[ ~ap| x| <4

cn On

s53f wg (—f—) dP(| X, | < ]

é;l;;ZEgn<l‘Z‘l> < oo,

This completes the proof.
Particular cases. 1° Let go(x) = | |™ with 0 < 7, £ 2. Theorem
A yields
El Xn lr,. 1 2 a.s.
If b1 o and ZT < oo, then Z;kg'l (X — ax) — O where
ar = 0 or EX, accordingas 0 <r, <lorl £r, £ 2

For r, = 2, we find 17.311A.
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2° Let go(x) = x* for 0 < x < 1 and, to simplify the writing, set
g(*) = P[| X| 2 x], gu(*) = P[| Xo| = x]. Theorem A yields

1
1
Iff %{D gn(bnx)} dx < o, then Y T (Xn — EX2™) converges a.s.
0 n
12 as.
and;— 3 (X — EXi™) 25 0.
n k—1

We require the following

MoMENTs LEMMA. For every r > 0 and x > 0

Y gnx) S E| X|" =14 5" Y q(n'x).

This follows from

Hxl=—[raw = -s[" 1 ra
0

and
1 1
(n — Dx"{g((n — 1)7x) — q(n"x)}

1

'z 1 1
s - L1 dg(t) = nx"{g((n — 1)7x) — q(n"x)},
n—-1)"z
by summing the inequalities over #» = 1, 2, --- and rearranging the

terms.
1
3° If b, = n™ and the laws of the r.v.’s X,, are uniformly bounded

by the law of a r.v. X] that is, ¢, < g, then El Xl’ < o entails

1 1 1 1 1 4.
[+ a5 [[ oS g e 5 Bl x [

so that the right-hand side is finite for » < 2. Therefore, on account of
2°,
1 2 8.
Ifq,.§qandE|X|’<oo with r < 2, then =3 3 (X — ax) =50
~ k=1
nf
where ay = 0 or EX}, according asr < 1, or = 1.

4° If F, = F, then the converse is also true. More precisely (Kol-
mogorov: = 1; Marcinkiewicz: » # 1),
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Let the independent rv.s X, be identically distributed with common
law £(X), and let 0 < r < 2.

| S as.
If E|X|’<00, then 7 D (Xe —ar) — O with a, =0 or EX
n" k=l

accordingasr < lorr =z 1.
n

Conversely, if——l-/-; (Xx — ax) =5 0, then El Xl’ < oo,
n k=1

Proof. The first assertion is a particular case of the preceding propo-
sition. As for the converse proposition, we use the symmetrization
method expounded in the following section.

Let X', be a sequence independent of the sequence X, and with
same distribution, and let X’ be independent of X and with same dis-
tribution; set X,* = X, — X', and X* = X — X’. Then, on account
of the assumption,

n n

2 (X% — ar) 0

k=1

Y, = X, = (Xe — @) — =
1 1 n

nl/r o nl/r P

and, hence,

X' n — N\ a.s.
= Yn - < ) Yn—l - O

ntir n
Since the X’ are independent r.v.’s, it follows that, for every ¥ > 0,
> ¢t x) =X P X | 2 n'/7x] < w.

Therefore, by the moments lemma, E| X*|" < = so that, by 17.1A,
Corollary 2,

El X —uX|"<2E| X" <=
and, hence, by the ¢,-inequality,
E| X|" S .E| X — uX|" + ¢ pX|" < co.

The proof is complete.

*§ 18. CONVERGENCE AND STABILITY OF SUMS; CENTERING AT
MEDIANS AND SYMMETRIZATION

While centering at expectations goes back to Bernoulli and use of
bounds in terms of variances goes back to Tchebichev, centering at
medians and symmetrization are relatively recent. Yet, not only do
they complete the first ones, but they also tend to replace them alto-
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gether. Moreover, medians always exist and the ch.f.’s of symmetrized
r.v.’s, being real-valued, are much easier to handle than complex-valued
ones.

*18.1 Centering at medians and symmetrization. Let F be the d.f.
of a r.v. X. There exists at least one finite number uX called a median
of X, such that

PX z uX] 2 3 £ P[X < uX]
or, equivalently,

F(uX) < 3, FuX+0) 2 3.

For, F being nondecreasing on R with F(—0) = 0, F(+») = 1, the
graph of y = F(x) completed at its discontinuity points by the seg-
ments (x, F(x)) to (x, F(x + 0)) has either a point or a segment parallel
to the x-axis, in common with the line y = 3. According to the fore-
going definition, the abscissae of the common point or of the common
segment are medians of X so that either X has a unique median or it
has for medians all points of a closed interval on R—the median seg-
ment of X. '

It follows from the definition of medians that, for every finite number

¢, we can set u(cX) = cuX. Furthermore, there is a relation between
pX, EX, and 62X, namely,

a. If X is integrable, then | uX — EX| = V22X,
For, by Tchebichev’s inequality,

Pl X - EX|z V2?X] = 3,
so that

EX - V2°X £ uX £ EX + V272X,

A r.v. X and its law as well as its d.f. F and ch.f. f are said to be sym-
metric if, for every x,

(1) PIX =x]=PX =z —x];
equivalently,

(2) F(—x+0) =1 — F(x),
or, for every pair a < & of continuity points of F,
(3 Fla, ) = F[—?, —a),
or

4) f =fis real.
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The symmetrization procedure consists in assigning to a r.v. X the sym-
metrized r.v. X* = X — X', where X' is independent of X and has the
same distribution. More generally, if X = {X,, ¢+ € T} is a family of
r.v.’s, then the symmetrized family is X* = {X;, — X'y, t € T} where
the family X’ is independent of X and has same distribution. If X has
affixes we affix them to X? as well as to its d.f. and ch.f. Clearly

b. To a rv. X with chf. f, there corresponds a symmetric ro. X° =
X — X' where X and X' are independent and identically distributed, and
£ = | f|? is the ch.f. of X°.

We arrive now at inequalities which are the basic reason for centering
at medians.

A. WEAK SYMMETRIZATION INEQUALITIES. For every e and every a,
(1) 1P[X — uX = ] £ P[X* = ¢

and

i) 3PIX-uX|2d=PlX]|2d §2P[|X—a|g§].

Proof. Since X* = X — X’ where X and X’ are independent and
identically distributed, it follows that to a median u = uX corresponds
an equal median p = uX’ and

PXze=P(X—w—-—(X-—-wZzdzPX—n2e6X —p=s0]
=PX—p2ePX —p=s0]23PX—pnzZe

This proves inequality (i) which, together with the inequality obtained
by changing in (1) X into — X, entails the left-hand side inequality in
(ii). The right-hand side inequality in (ii) follows from the identical
distribution of X and X’ only, by

Plx|zd=Pl(X-0a)— (X -a)| 24

gP[IX—algg]—{—P[lX’—al;;]

=2P[|X—a‘;§e]-

CoroLrarY 1. If X, — an R 0, then X,.* LR 0and a, — uX, — 0,
and conversely.

This follows by letting # — <o in (ii) where X is replaced by X..
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CoRrOLLARY 2. For r > 0 and every a,
IE| X —uX|"S E|X|" < 2,E| X — a
where ¢, = 1 or 2771 accordingasr < 1 orr = 1.

Proof. The right-hand side inequality follows, by the ¢,-inequality,
from

EX|"=E|(X-a)—(X —a)|"Sc,E| X —a|" 4+, E| X' — a]|"
=2,E| X —al.
As for the left-hand side inequality, it is trivial when E| X*|" = o and

then, according to the inequality just proved (with ¢ = uX), E| X —
pX |" = oo; thus, we can assume that E| X*| is finite. Let

¢@®=P|X—pX|24 and () =Pl X2/

so that, by A(ii),
q(?) = 2¢4°(9).

It follows, upon integrating by parts, that

E| X —uX| = — fo ¢ dglt) = fo o) AT S 2 fo 70 di)

= -2 f dg(t) = 2E| X",
0

and the proof is concluded. .
This corollary was used at the end of the preceding section.

We pass now to symmetrized families and recall that, if two families
{X, t € T} and {X's, t € T} are independent, then events defined in
terms of the X, and in terms of the X'y, respectively, are independent.
We require the following

c. LEMma FOR EVENTS. Let events with subscript O be empty. If, for
every integer j 2 1, A;A;_,°- -+ Ao° and Bj are independent, then

P U ijj P aP U Aj, a = lanBJ

More generally, if (d;j + A7) (Adj— + Aj—1") (Ao + Ad)° are in-
dependent of B; and of B, then :

P U (4;B; + 4'iB’) Z aP  (4j + 4'}), « = inf (PBj, PB')).
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Proof. The same method applies to both cases. For instance

P U 4;B; = PA\B, + P(A4,B\)°43By; + P(A\B,)°(A3B3)°A3B3 + - - -
= PA\By, + PA,\°A;B; + PA\* A" A3B3 +- - -
= PA4,-PB, + PA\°Ay-PBy + PA\°Ay°A43-PB; + - - -
2 a(Pd, + PA\°Ady + PA\° Ay’ Az +---) = aP U 4;.

B. SYMMETRIZATION INEQUALITIES. For every e and every aj,j < n,
(1) 3P(sup (X; — uX;) Z €] £ Plsup X;* 2 ¢
and ’ ’

(i) 3Plsup | X; — uX;| 2 < Plsup | X7*| = ¢

é2P[sup|X,~—a,-| g_f]
j 2

Proof. Since X;® = X; — X'; and the families {Xj;} and {X’;} are
independent and identically distributed, it follows that to medians
u; = pX; correspond equal medians u; = pX’;; setting

di=[X;—upj2¢], Bi=[X;—p;=0], C;i=I[X;=z¢]
so that 4;B; C Cj, the lemma for events applies, with « = 3, and
3PUA4; = PU4;B; =P C;

This proves (i) by letting € T ¢, and (ii) follows by arguments similar
to those used in the proof of A and by the lemma for events.

Cororrary. If X, — a, i 0, then X,* 2% 0and an — uXn, — 0;
and conversely.

By centering sums of independent r.v.’s at suitable medians, we ob-
tain inequalities which can play the role of Kolmogorov’s inequalities.

C. P. Lévy iNeQuaLiTiEs. If Xy, -+, X, are independent r.v.’s and

k
Sk = X2 Xj, then, for every e,
janl
) Plmax (Sx — u(Sx — Sa)) 2 ] < 2P(S, 2 ¢]
ksn
and

(ii) Plmax| S, — u(Si — S| 2 d 2P Sa| 2 4
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Proof. Let §¢ =0, §%, = malzc (S; — u(S; — S»)) and set
is

A = [S*k—l <e¢ Sp— #(Sk - Sn) = G],
B = [Sn — Sk — w(Sn — Sk) 2 0]
where u(Sn — Si) = —u(Sr — S»). Since
[S*n = e] = Zd}c, [Sn = e] o deBk, PBk = %,
k=1 k=1
(i) follows upon applying the lemma for events or, directly, by
P[S, 2 2 Z PAPB, 2 5 X Pdy = 3P[S*, 2 .
k=1 k=1

By changing the signs of all r.v.’s which figure in (i) and combining with
(i), inequality (ii) follows, and the proof is complete.

Remark. Let Xi, ---, X. be independent, square-integrable, and
centered at expectations. Since, by a,

| w(Sk — Sn) | £ V262(Sn — Si) < V2625,

inequality (i) remains valid if u(S; — S.) is replaced by —V 242§, and,
hence, changing ¢ into ¢ — V 26285,

Plmax S = ¢ < 2P[Sp = € — V 26°S,).

*18.2 Convergence and stability. We are now in possession of the
basic tools and shall apply them to the investigation of convergence and
n
stability of sums §, = Y Xj of independent r.v.s. We recall that
k=1
here we say that a sequence of r.v.’s converges a.s. if it converges
a.s. to a r.v., and their sequence of laws converges if it converges to the
law of a r.v., that is, converges completely.
I. ConveErRGENCE. Whatever be the sequence of r.v.’s, we have the
comparison table of convergences below:

convergence a.s. => convergence in pr. = convergence of laws

m

convergence in g.m.

(“in q.m.” means “in the 2nd mean” and reads “in quadratic mean”).
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For series of independent r.v.’s, reverse implications are also true
either with no restriction or under a uniform boundedness restriction
More precisely

a. IMPROVED CONVERGENCE LEMMA. For series of independent r.v.’s.
(i) Convergence a.s. and convergence in pr. are equivalent.

(it) If the summands are uniformly bounded and centered at expectations,
then convergence a.s., convergence in pr., convergence in q.m., and con-
vergence of laws, are equivalent.

P
Proof. 1° Let §, — §, so that, by 6.3A, there exists a subsequence

as. ) 1
Sp, — § with X P[IS,,,¢+l L E;] <o, Let ny <n = niy,y
k

and set Ty = max | S, — S, — w(Sn — Y |, so that, by P. Lévy’s
inequality (i1),

1 1
%P[Tkg'ﬁ] §2ZP|:ISM¢+1_SM:I gEE] <

k

and, hence, T} 2% 0ask — w, Therefore,
I Sn - 8§ - “(Sn - Snk+x) I é ISn _Sn,,_ #(Sn - Snk+1) I + I Snk_ Sl
S Te+ |8, — S| = 0,

that is, Sn — u(Sn — Sms,) —> S and, a fortiori, Sp — u(Sn — Sny,r)
SR S. Since S§» — §, it follows that u(S, — §.,,) — O and, hence,

a.s. . . . .
S, — S. Thus, convergence in pr. of the series Y X, entails its con-
vergence a.s. and, the converse being always true, the first assertion is
proved.

2° Let|X,| S ¢ < and EX, =0. The series 3 X, converges
in g.m. if, and only if, as m, n — o

E(Sm - n)2 = Z °'2Xk — 0
m--1

or, equivalently, ¥ 62X, < o; then it converges in pr. and, hence, by

the first assertion, it converges a.s. But if £(S,) — £(S), so that for
all  in some neighborhood of the origin

—ZIOglnt = = loglfsl < o,
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then, by 12.4B’, for u belonging to the intersection of this neighborhood
with (—1/¢, +1/¢),

3
20X Xy =L X' = — = T log| faw) |? < o,
U

and the second assertion follows.
The three-series criterion follows from this improved convergence
lemma exactly as it followed from the convergence lemma in section 16.

ReEMARK. A better insight into the behavior of the series is provided
by the Liapounov theorem for the bounded case, according to which,

if 5,2 =k21 Xy — o and ES, = 0, then, for any fixed 2 > 0 and

€ > 0 and # large enough to have es, > 4, we have

1 2

> 4]l > > —_ —— —z'/2
(1) Pl S.| = a]l = Pl Sal| = esal) r fm;f dx.
Thus, as ¢ — 0, P[I S,,l = a] — 1 for any fixed but arbitrarily large
a, and the sequence £(S,) of laws diverges to a law degenerate at
infinity. The second assertion follows @b contrario, and we see that when
the sequence of laws does not converge, then, as # — o, the distribu-
tion of 8, escapes to infinity in the fashion described by (1).

So far we have been concerned with convergence of a given series.
Yet various auxiliary centering constants appeared during the investiga-
tion, and the problem arises whether, given the series >° X, of inde-
pendent r.v.’s, there exist centering constants a, such that the series
S (Xa — an) converges. If 3 (X, — a.) converges a.s. for some nu-
merical constants a,, we say that the series 3 X, is essentially conver-
gent; otherwise, we say that it is essentially divergent, since, then, by
the corollary of the zero-one law, X (X, — 4,) diverges a.s. whatever
be the a,. As above, our problem is to find criteria for this dichotomy
and to find the suitable centering constants when the series is essentially
convergent; at the same time, we shall be able to improve the preceding
results (see also 37.1).

b. ESSENTIAL CONVERGENCE LEMMA. The series 3 Xn is essentially
convergent if, and only if, the symmetrized series 3 Xn® converges a.s.

Proof. If T X,° converges a.s., then, for every finite ¢ > 0, using
17.1A, by the three series criterion,

TSP Xe—pXa| ZdS T2 X' 2] <0
and, upon integrating by parts,

% 2 Uz(Xn — X)) =2 Uz(an)c + 2 2 P[I X' I 2] < .
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Therefore, the series 3 {X, — uX, — E(X, — 1Xn)°} converges a.s.
and the “if” assertion is proved while the “only if” assertion is im-
mediate.

From this proof follows the

A. Two-sERIES CRITERION. The series 3. X, is essentially convergent
if, and only if, for some arbitrarily fixed ¢ > 0, the two series 3 P[l Xn —
uX, I 2] and T XX, — uXn)° converge; then the centered series

2 X0 — uXn — E(X, — pX,)} converges a.s.

The essential convergence lemma permits us to improve further the
convergence lemma.

B. EQUIVALENCE THEOREM. For series of independent r.v.s, conver-
gence of laws, convergence in pr. and a.s. convergence are equivalent.

Proof. 1t suffices to prove that convergence of laws implies a.s. con-

vergence. Let f, be the ch.f. of X, so that | f,|? is ch.f. of X,*. If
kHIfk — f ch.f., thenknllfk |2 - | £]? and, by 13.4 B’, the two series
> Pl| Xa*| 2 ] and T 6*(Xa*)® converge. Since E(X,*)° = 0, it fol-

lows, by the three series criterion, that the symmetrized series 3° X,*
converges a.s. Therefore, by the essential convergence lemma, there
exist constants 4, such that the series 3 (X, — 4,) converges a.s. to
a r.v. and & fortiori its law converges completely, so that, for every x,

II e *fi(u) — f'(u), where f' is a ch.f. By taking « close enough to
k=1

0 so that f(u)f'(u) # 0O, it follows that the series X 4, converges and,
hence, the series 3° X, converges a.s. This completes the proof.

CoroLLary 1. A series 3 X, of independent r.v.’s converges a.s. if,
and only if, fI S — fand f is continuous at the origin or f %~ 0 on a set
of positive LI;Z::gue measure.

This follows by the continuity théorem or 12.4, 4°.

CoroLLary 2. A series 3. X, of independent r.v.s is essentially con-
vergent or divergent according as
n

Lim IT | fe| % O on a set of positive Lebesgue measure or
ka1

limHIka =0 a.e.

kwml
This follows by 13.4, 4° and b.
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II. StapiLity. Given sequences 4, and &, T «, we seek conditions
for a.s. stability of sequences S, of sums of independent r.v.’s. On ac-

count of the corollary to the symmetrization lemma, a first condition is

S

that a, = “(b ) + 0(1). Thus, it suffices to take a, = u(in) and

. . .. . S S a3.8.
investigate conditions under which b—" — b—" — 0.
n n
We have 4, T © and, moreover, assume that there exists a subsequence
b,, and finite numbers ¢, ¢’ such that, for all k sufficiently large, 1 < ¢’ =

kil < - < o, Roughly speaking, this assumption means that the se-
nk
quence &, does not increase too fast, and it is always satisfied (with an
by, S S,
ntl _, 1. LetS,, =0 and T = —2——7k=t
bn bnk

arbitrary ¢ > 1) when

A. A.s. STABILITY CRITERION. (1) S— —u (i ) 20 if, and only if,

() Ty — ka—-> 0 as kB > « or, equzvalently, (it") for every ¢ > 0,
S P Ti— uTk| Z € < .

Proof. Since the T are nonoverlapping sums of independent r.v.’s,
it follows, by 16.3A, that conditions (ii) and (ii’) are equivalent. And,on
account of the symmetrization lemma, it suffices to prove equivalence
of (1) and (ii) for symmetric summands; then the medians which figure
in these conditions vanish.

If % 2 0, then

Sy =5 0ask — o, Tk_ig__:_ﬁﬁiﬂ=§ﬂ_éﬂl‘§ﬂﬂﬁ;o’

bnk bﬂk bﬂk bﬂk bﬂk 1

and the “only if” assertion is proved.

Conversely, if Ty 25 0, then, by the Toeplitz lemma,
Sy 1 & a.s.
G, haa T T 0

. S - Sn o
Furthermore, upon setting Uy = max [ S 1ot | and applying

k.1 <n Snk bnk
P. Lévy’s inequality we obtain, for every ¢ > 0,

SPU.Z2ds2T P Til 2 d <o,
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a.s.
so that Uy — 0. Therefore, for 7,y < # < ny,

Sn Sn - Snk_x Snk 1 bnk
bn s | T3, U 4 5= b,,

S

N1

b

U+ ;k = o,
nk

and the “if”” assertion is proved.
Sn — ESn as.
B —> 0 if, and only if,

T, — ET}, 2 0ask o o or, equivalently, for every ¢ > 0,

CoroLLarY 1. If | X, | < b, then

Zk:P[I T — ET| = ¢ < .

Proof. The “only if” assertion is proved as that of the foregoing
criterion. As for the “if” assertion, set Xprx = (Xn — EXy)/bn, #i—1 <
n < n, so that > Xok=Tr — ET: ii) 0. Note that| Xnk| < 2and

apply 13.5,3° and 18.1a. It follows that

| uTe — ETi| = V242 > 0,

a.8. n Sn
so that Ty — uTy — 0 and, by the foregoing criterion, % —u (’;’)

2% 0. But

(-G

since, for 74,y < n < ny,

2

Sn
22;-5 — 0, (5.2 = o2Sn),

1 5a? ’ 1 & 2
=Rl
S ESn a.s.
Therefore, —3. 0, and the proof is concluded.

X,
b’

CoroLLARY 2. If the X, are centered at expectations and 3

then i— 250,

< o,
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Let X, be X, truncated at 4,,and set S, = 3. X}, Ty = &i:ﬁ‘—‘—‘ .
k=1

bn
Since, by Tchebichev’s inequality, ’
2
- Xn
TP Xo 5t X=X P Xa| 2 6] = z"“ < w,
- . Sn Fﬂ-
it follows, by the equivalence lemma, that the sequences 5 and . are

tail-equivalent. But ES,/b, — O since | EX; — EX)| < 02Xi/b: while

nk 2 nk 2 i 2
¢2P[Iigklge]é Z 0X"§ Z U‘Y"S Z “Xa

2 = 2
n>nk-1 bnkz n>nk-i bn n>nk—i bn

so that

O'ZXn
2 < et

fzzP[ITkléf]éz 5

. 3 a.s. S a.s.
Corollary 1 applies, b_n — 0 and, therefore, b_n — 0.
n n
*§ 19. EXPONENTIAL BOUNDS AND NORMED SUMS

In this section, the r.v.’s X,,, » = 1, 2, ---, are independent and cen-
tered at expectations with variance 0,2 = ¢2X, = EX,2; and S, =
n

> Xi are their consecutive sums, so that ES, =0, 5,2 = ¢2§, =
k=1

n
> ai2. We exclude the trivial case of degenerate summands.
k=1

19.1 Exponential bounds. Kolmogorov’s inequalities led, in Section
17, to asymptotic properties of sums §,. His inequalities below, where
to simplify the writing we drop the subscript #, will lead to deeper re-
sults but under more restrictive assumptions.

Xk

k)

. S € € .
(W) Ifec = 1, then Pl — > ¢ <exp[—— 1———) and, if ec = 1,
s

2 2
S €
t}zenP[—-> e] <exp|:———]-
s 4c

(1) Given v > 0, if ¢ = c(v) is sufficiently small and ¢ = €(v) is suf-
S 2
Siciently large, then P [—- > e] > exp [ - -6-2- 1+ ‘Y)] .
s

A. EXPONENTIAL BOUNDS. Lef ¢ = max and let ¢ > 0.

ksn
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Proof. 1° Lett>0,| X| ¢ <o, EX=0and ¢ = ¢2X. Since
2 3

¢ ¢
| EX*| < ¢, EeX =1 + 5 EX+ S EXO oo,

) < 141 < ¢
it follows that, for ¢ < 1,

Etx<l+f20'2(1+t¢‘+t2¢‘2+ )<1+t202(1+tc)
e ———— — —— v s it —
2 3 34 2 2
1242 tc
<ew 7 (1+3)]
and .22 2.2 2 2
¢ 2 ¢ ¢ 2
Ee‘X>1.|.._;_’_(1 __c__i_...)>1+__i_(1 __c)
t20'2
> |0 - |

X A}
Replacing X by il , setting 8 = — | and taking into account that
s s

, =2 tX
Ee'S =TI E exp [—;—If]
k=1
we obtain
2 , 2 74
(1) exp [E a1 - tc)] < Ee*S < exp [E (1 + —2)]» te £ 1.

Inequalities (i) follow then from
, 12 tc
P[S’ > E] s e"“Ee‘S < exp [—-te + E (1 + —2)]

. 1 .
where ¢ is replaced by € or P according as e¢ S 1 or 1.

2° The proof of inequality (ii) is much more involved. Let a and
B be two positive numbers less than 1; they will be selected later in
terms of the given number y. According to (1), we can take ¢ suffi-
ciently small (<a/¢) so as to have

2
) EetS" > exp [5 a- a)]-
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On the other hand, setting ¢(¥) = P[§’ > x] and integrating by parts,
we have

EetS = — f e dg(x) = ¢ f e'*q(x) dx.

We decompose the interval (—o, 4) of integration into the five inter-
vals Iy = (=, 0], I;=(0, ¢(1 —B)), I3 = ((1—8), «(1+48)),
Iy = (¢(1 4+ B), 8/ and Is = (8¢, +) and search for upper bounds of
the integral over I, and I and over I and I,. We have

0 0
]1=tf e“q(x)dx<tf rdx = 1.

On account of (i), we have on I, for 82 < 1,

1
g(x) < exp [— f—] < exp [—2x] for x = -
4c ¢

x? xc X 1
gx) <exp|——1{1 ————)]§exp[———— < exp[—2ux] for x < —-
2 2 4 ¢
Therefore, for ¢ sufficiently small (<1/8¢)
Js = t/ et*q(x)dx < t/ et dy < 1
8

t .14
and

3) i+ Js <2
1

On the intervals I, and I, we have ¥ < — for ¢ sufficiently small and,

. ¢
by (1),

2. 2
e'*q(x) < exp [t — f—(1 - ff)] < exp [tx ——(1 - 4tc)] = 8@,
2 2 2

4

The quadratic expression g(x) attains its maximum for x = Y
— 4

which, for ¢ < 8/4¢(1 + B), lies in I;. Therefore, for ¢ sufficiently small
and x € I,

f2 f2 62
glx) = g(k(1 — B)) = 2 (1 =81+ B+ 4c — &) < 5(1 - —2-)

and, then,

t1—f) ' t1—B) 2 1
Jo = f e®q(x) dx < tf ef@ dx < 12 exp [— (1 - —32>];
0 0 2 2
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similarly,

8¢ 8¢ t2 l
Je = tf eq(x) dx < tf et dx < 8% exp [—— (l - —62)]'
H1+8) H1+8) 2 2

2

€
We set now a = —4: and ¢ =

so that, by (2),

2
4 J2+Ji <92exp [% (1 _ %62)]

< 9¢ [ 282 ] B [ € S’]

: exp| — ———— | Eexp| —— 8" |-

(1 - By 81— a7l P LT

Since the last expectation and the inverse of its coefficient increase in-

definitely as ¢ — oo, it follows, by (3) and (4), that for € sufficiently large
N+Js<2< %E&"S,, Je+ Js < %E&’tsl.

Then

t(14-8)
Ja=1t f og(%) dx > LES,
o t(1—B)

a fortiori,

1 2
22”1 () > Eexp [E a - a)]

: 1 £ : : :
and, since as ¢ — w,;—;exp [5 a] — oo, replacing ¢ by its value, it
/1

follows that, for e sufficiently large,

1 12 2
g(e) > th—ﬁ-exp [-2— a] exp [— E (1 4+ 2a + 243)]

[ €1+ 2a+ 23]
>exp| — — 3
2 (1-g)
But, given ¥ > 0, we can select 8 > 0 so as to have

62
1+2ﬁ+-2-

EETIR

Therefore, for ¢ = ¢(y) sufficiently small and ¢ = ¢(y) sufficiently large,

€2
g(e) > exp[——z‘(l + ‘Y)]'

and (i1) is proved.
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*19.2 Stability. The a.s. stability criterion (which i1s due to Prok-
horov for 4, = n) is a criterion in the sense that it is both necessary
and sufficient. Yet, it is not satisfactory, since, because of the independ-
ence of the summands, it has to be expected that a satisfactory criterion
ought to be expressed in terms of individual summands and not in terms
of nonoverlapping sums. The nearest to this requirement is a criterion
in terms of variances (due also to Prokhorov for 4, = 7), valid when
the summands are suitably bounded, and whose proof is based upon the
exponential bounds.

bn. Sn~ - Sn -
Let 6,7 0,0 < 8 < —* < ¢ < » and set Tk=‘L"—L‘I' hE =
b, by,
ATy = > o2X;. We write log; for loglog.
bnl me1<n<ne
I an Sn a.S§. . .
A. If - 5 = o(logz™! 4,) then W —> 0 if, and only if, for every

2

€ > 0, the series (1) 2 exp [— ;——2-] converges.

k

nl

Proof. For n sufficiently large < 1, so that corollary 1 of the

n
a.s. stability criterion applies: for every ¢ > 0

(i) TP Ti| > ¢ <.

We have to prove that convergence of series (i) for some e implies that
of series (ii) for the same or distinct ¢; and conversely. On the other

: . | Xa |
hand, elementary computations show that, setting ¢x = max
nk1<nsnk On

the assumption made implies that ¢; = with gy — 0 as & — .

log &
We use now the upper exponential bounds and observe that for
Cr 7:_‘* = 1 and & sufficiently large

€ ] \fax 2
P[ITkl>e]<2exp|:—?4——a—klog/eJ=2 Z <.;§

¢ & [ € 1
exp _Z;;é éexp _Ze'?,; =exp_—z;-;logk <‘k"‘2

y .
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so that the corresponding sums in (i) and (ii) converge and we can
€

neglect all those terms for which ¢, 3
k

= 1.

) €
Since for ¢ 3 <1
K

2 2
P[|Tk|>e]<2exp[ ;k (1 §f€>]<2e"?[ 4;,,2]’

it follows that convergence of series (i) for every ¢ > 0 entails that of
series (i1) for every € > 0. Conversely, if series (ii) converges, then

T =5 0 and #,2 — 0, so that, for £ sufficiently large, 1s as large as we

Lk . .
please and < ;— <~ isas small as we please. Therefore, the exponential
k

bound 1s valid with, say, vy = 1, and

2
P| T, | > €]>2exp[—;€—2],
k

so that convergence of series (ii) for every ¢ > O entails that of series
(1) for every € > 0, and the proof is concluded.
lX l2r

S as.
<oo,t/zen—752> 0.
n

E
CoroLLARY. If, foranr 21,3

ntl

For r = 1, this proposition coincides with Corollary 2 of the a.s. stabil-
ity criterion, so that it suffices to consider the case » > 1 (due to Brunk).

r41 r+1
Proof. Let X, = X, or O according as I an <n? orzn?¥,so
that

| X..| . E| X, | EIX I”’
= Ologs™' 1), T s T2l <
71

n
and, by Tchebichev’s inequality,

_ r+1 El X, 2r
S PX, %=X = TP Xo| 207 z—l———'—- < .

nr+1
Therefore, on account of the equivalence lemma, it suffices to prove

that the assertion holds for r.v.’s X, which satisfy the assumption made
in A.
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But, upon applying for > 1 the inequality E7| X| < E| X|", setting
n, = 2%, and applying the ¢,-inequality with nx — 7, summands, we
have, summing over n = ny_; + 1, - - -, my,

1

nk2r

tk2r =

ET X2 s ;1-2- ES X2
k

EXn 2r
S E X, |’ = Z—l;;;‘l‘l—'

A

nkr+1

Therefore, | |

o © E )(n 2r
a2 X —
k=1 n=1 nr+1

. e . . .
and, since we have exp [—' 75] < 42" for k sufficiently large, criterion
k

A is satisfied, and the proof is concluded.

*19.3 Law of the iterated logarithm. We say that a numerical se-
quence &, belongs to the upper class or to the lower class of a sequence
Sa of r.v.’s, according as P[S, > b, i.0.] = 0 or 1. A priori, there may
be sequences &, which belong to neither of these two classes. However,
if S» is an essentially divergent sequence of consecutive sums of inde-
pendent r.v.’s, then every sequence 4, belongs to one of the foregoing
two classes. The problem which arises is that of corresponding criteria.
Relatively little is known about its general solution (in the case of un-
bounded summands), and the proofs of what is known are quite in-
volved; the best results are due to Feller. The basic known result was
first obtained by Khintchine (also P. Lévy) in the Bernoulli case as a
strengthening of consecutive improvements of Borel’s strong law of
large numbers and, then, was extended by Kolmogoroff (also Cantelli)
to more general cases, as follows: -

A. LAW OF THE ITERATED LOGARITHM. If

X,
:nz — © and I——'EJ' = o(logz_% an), n = (2 10g2 an)%)

n

then
. Sn
P[llm sup — = 1] = 1.

Snin
In other words, for every § > 0, the sequence (1 4 8)sat» belongs to
the upper class of the sequence S, while the sequence (1 — 8)sata be-
longs to the lower class; clearly, it suffices to prove these assertions for
§ arbitrarily small.
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We observe that, since the assumptions remain valid if every X, is
replaced by — X, the conclusion yields

. . .Sn
P[llm inf — = —1]
Snfn

and, therefore, it holds for both sequences Sa and | S, | if it holds for
the first one.

2
:H: = 14 o(logs™! 5,2) — 1, it fol-
Sn

lows that, for every ¢ > 1, there exists a sequence n, = m(c) T as
k — oo, such that s,, ~ ¢*. Let 8, &, 8"’ be positive numbers.
1° We prove that the sequences (1 + 8)sa#n belong to the upper

class of the sequence §, by proving the same for the sequence Sy, =

max S,. For
nSnk

Proof. Since 5,2 — o and

P(Sa> (1 + 8)sutaico] S PIS%, > (1 + 8)smy_, tmy_, 1-0.]

where

145

(1 + 6):nh_1tnh..1 ~ Jn}nh)

hence, taking 8’ < 3, we can select ¢ > 1 so that L j_ 5 > 144" and

PIS%, > (1 + 8)smy_, tp_y 10 S P[S%, > (1 + 8)suptui-0.
Thus, the assertion will follow from the Cantelli lemma if we prove that

T PS% > (14 §)snptn] < .

But, by the remark at the end of 18.1, the general term of this series

2
)-’nk’nk]’ where 1 4+ &' —

nk

is bounded by 2P [S,,k > (1 + & —

— 1 4 &’ Therefore, for 8"’ < & and % sufficiently large,

In,

V72
):nm] < P(Sn, > (L + 8")sntnl;

N

P[S,.k><1+6’—

and it suffices to prove that the right-hand side is general term of a
convergent series. This follows by applying the first upper exponential
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bound with ¢ = (1 + §")¢,, and ¢ = max | X;|/sn,, valid Yor & suf-
ficiently large since c#n, — 0, so that

PlSa, > (1 4+ 8")satn) S exp [—3(1 — ecr/2)(1 + 8)20.7%)
1
(2k log )%

and the assertion is proved. Furthermore, according to the considera-
tions which follow the statement of the theorem, this assertion entails
that Pf| S,| > (1 + 8) 5nta 1.0 = 0.

2° It remains to prove that the sequences (1 — &")sa?» belong to the
lower class of the sequence S, where we will take 1 > & > §. This as-
sertion will be @ fortiori true if we prove that it holds for a sequence S,,.

Let

< exp [— (1 + &) logz 5,%]

1
el = 5p2 — Snp_ 2~ Sny’ (1 - :5)’
o = (2 logs ui2)" ~ (2logs 5n,%) = ta,

and set
A, = [Snk - S’lk-l > (1 — 8)ukvk).

We prove first that P[A41.0.] = 1, as follows: The sums Sn, — Sn,_,s

being nonoverlapping sums of independent r.v.’s, are independent and,

by the Borel criterion, it suffices to prove that ) PA; = <. But,

& = (1 — 8)v,— « whileg, = max (| Xa|/ux) = 0as k— o« ;hence
ng—1<nSng

1
the lower exponential bound for PAj applies with 1 4+ v = =3
Therefore,

PA, > exp[—3(1 4+ v)(1 — 8)%0,%] = exp[—(1 — 9) logz %]
1
(2k log ¢)' 2
the series Y PAj diverges, and P[A41.0.] = 1.
On the other hand, if B, = [l S"k-ll < 25n,_n,_), then, according,
to the end of 1°, P[B;f i.0.] = 0; thus, from some value » = n(w) on

ISnp_, (@) S 25n,_ta,_, except for w belonging to the null event [Bi’ 1.0.].
Therefore, P[A4;Bi.0.] = 1, and this entails the assertion. For,
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AxBir © [Sny, > (1 — Sugvr — 25n,_tni_,)s

1V 2)
(1 - 6)ukvk - 25nk_1tnk_1 ~ (1 - 6) 1 — = - - 5nktnk
2 ¢l

and, if we take ¢ sufficiently large so that for &' > §
3
1 2
(1—6)(1—-—5) -—=->1-9,
¢ ¢

1 = P[AB,i0] SP[Sn, > (I = 8)sptuyi0l).

then

The proof is terminated.

COMPLEMENTS AND DETAILS

n
As throughout this chapter, §, = 3 X; and a.s. convergence is to a r.v.
K=l

1. If the ch.f. of a sum of two r.v.’s is the product of the ch.f.’s of the sum-
mands, the summands may not be independent. Construct examples. Here
is one: X is a Cauchy r.v.—with ch.f. ¢e~; consider X + Y where ¥ = ¢X|
c>0.

2. Let X, Y be independent r.v.’s and let r = 1.

If X and Y are centered at expectations, then E| X + Y |" majorizes E| X |"
and E| Y| More generally, if, say, 4 is an event defined on X, then
ElX+Y[I.2E X,

IfE| X + Y| is finite,soare E| X |and E| Y'|". (Since|x|"=|Ex+Y)[
S E| x + Y|, it follows that

E X+ Y|l =Lde(x) {f| x+y |'dFy(y)} ng| % |7 dFx(x) = E| X |14

For r > 1 the first assertion implies the second one. For r =1, set 4 =

[| X| < 4] and observe that E| X+ Y |2 E(| Y| — @)]4 = (E| Y| — a)P4.)

3. Generalized Kolmogorov inequality. Let Xi, Xs, +-- be independent r.v.’s

centered at expectations, and let r = 1. Set C = [ ks;p | Sx | = ¢] and prove
n

that

¢'PC S E|Sal"lc S E| Sal"
Apply to the same problems to which Kolmogorov’s inequality was applied.
For example, if S, S S, then S, 2508, (Set C,, = [fgg 18] <, | S| = e,

n n
So=0. By 2 E|Sa|lc = "21E| Salle, = "21E| Sk | Ie, Z ¢"PC) -
4. Let Xj, X,, - -+ be independent r.v.’s, and let T" = sup | Se|m r= 1.
n

If the X are symmetric, then ET," < 2E| Sa |".
If the X are centered at expectations, then ET," < 22 H1E| S, |".
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Extend to # = « when §, 2% Sw. (If symmetric, then
ET,r =fQP[T,.' =4d s ZrPH Sa|r =t de = 2E| Sa|"
0 0

If centered at expectations symmetrize; then

[ Skl < 27 Ysup | 8 — % |" + 277Y % |".
kEn

Integrate over X'y, -+, X', take sup, integrate over Xi, -+, X, and apply
the first assertion.)
5. Let X, X,, -+ be independent r.v.’s centered at expectations, and let

rz 1. If 3 E| X, |*/n"t! < o, then -'S-;;—' =% 0. (Apply £ and the elementary

n n 7n

inequality (Z1 )" S nm1 Y | ak|? to obtain E| S, | S enmt 3 E| X |*.
k= =) =1

By Tchebichev’s inequality,

gk+l

P[| Sgr+1 — Sar | = 2%e] = 27t Y, E| X;|¥/m
I=2k4

Apply the a.s. stability criterion with 7, = 2%.)

6. The series 3 cne'®™ where the 6, are independent r.v.’s with Ee% = 0,
converges or diverges a.s., according as the series D ca® converges or diverges.

7. If a series Y X, of independent r.v.’s converges a.s., then by centering
the summands at the terms of some convergent series, the a.s. convergence and
the limit are preserved under all changes of the order of the summands. (Start
with a series which converges in q.m. Use the centering in the two series
criterion.y .

8. A series ) X, of independent r.v.’s with ch.f.’s f, converges a.s. whatever
be the order of summands if, and only if, 3 | fa — 1| < .

9. If a series D X, of independent r.v.’s is essentially divergent, then it
degenerates at infinity: P[| §,| < ¢] — O however large be ¢ > 0. State the
dual form for essential convergence. (This is true for the symmetrized series.
Prove and apply: if X and X’ are independent and identically distributed, then
PlX|<dsPlX—X|<2l)

10. Let 3 X, be a series of independent r.v.’s with ch.f.’s f..

If for a subsequence of integers m —  there exist r.v.’s Y, with ch.f. gn
such that S,, and Y,, — Sy, are independent and | gm |2 — | £ |? continuous at
the origin, then Y X, is essentially convergent. (This follows from

m
tHl |fel Z |gn| — | 2| > € > 0 in a neighborhood of the origin.)

11. Smoothing by addition. Loosely speaking, a sum of independent r.v.’s
is at least as “smooth” as any of its summands. More precisely, continuity or
analyticity properties of the law of one of the summands continue to hold for
the law of the sum. Examples:

(a) If one of the summands has a continuous law so does the sum. (Intro-
duce the “concentration” Cx defined by Cx()) = Té;; Px=sX=x+1,

1= 0. Observe that Cx(0) = 0 if, and only if, Fx is continuous. By the com-
position theorem for independent r.v.s X and Y, Cx+y £ Cx, Cx+y < Cyr.)
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(b) If one of the summands has an absolutely continuous law, so does the
sum. (In defining the concentration replace translates of segments of length /
by translates of Lebesgue sets of measure /.)

(c) If one of the summands has a strictly increasing d.f., so does the sum.
What about unicity of medians?

12. The symmetrization method reduces medians to zero and transforms
essentially convergent series into a.s. convergent ones. However, only cen-

[ )

tering at medians does not yield a.s. convergence. In fact, let X X, be an
n=0
a.s. convergent series of independent summands. The sequence u(S,) of me-
[

dians may not converge. However, if Y X, is essentially convergent and the
nmQ '

r.v. Y is independent of all the X, and has a strictly increasing d.f., then, after
centering the §, + Y at medians, the series converges a.s.

(For the counterexample, take Xo = —1 or +1 with same pr. 1/2; let
0 < pn <1 with X p, < © and, for n 2 1, take X3, and X,, with values
2(—1)" of pr. p, and 0 of pr. 1 — p,. The sequence §, converges a.s., yet the

S, are odd integers with u(Ssn—1) = 1 and u(Sin+1) = 1. For the last assertion
use 11(c).)

2 -
13. The X, are not assumed to be independent. If % R 5 and the X,

are uniformly bounded, then é;;" 22 U. What if % is replaced by n* where

k is a fixed integer? What if n? is replaced by [¢"] with ¢ > 1 arbitrarily close
to 1?

More generally, let Y Pl U, —U|> €l/n* < o for every >0,
S P Xn|>enf] <o for some ¢ >0, 0<as1, >0 If y2Za+5,
then U, 2%, U, where U, = §,/n"

(For the first assertion, the second part of the proof of Borel’s strong law of
large numbers (see Introductory Part) applies. For the second assertion, use
the following property of series: if Y| pn|/n* < © with 0 <a <1, then
; an,,l < o for my — m = o(me)).

In what follows, the r.v.’s Xy, Xa, - -+, are independent and identically dis-
tributed with common d.f. F, and ch.f. f of a r.v. X the trivial case of X = 0 a.s.
is excluded. In other words, repeated trials are performed on X.

14. Random selection. Let vy < vy <--- be integer-valued r.v.’s such.that
every [v; = n] is defined on X1y, -+ -, Xn—1. The rv.’s X,,, X., -+, are inde-
pendent and identically distributed—as X. (Proceed as in

PX, <x, X, <xq = S Py = m, Xay, < x15v2 = g, Xay < X9
15m<n2<wo
= 2 Pn=m, Xy < xi;v = nlP[Xn, <]
13 <np<w

= P[X; < x]P[X: < x2].)
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15. Deviations from the median. 1If X is centered at a median, then

EY Xz >g(”’ T E X, gn41) = gn+2) = 2nt L2,
= @)

This inequality is not necessarily true when X is centered at its expectation.
Extend to nonidentically distributed Xj’s. (Divide R” into its 2" “‘Octants”
and consider the corresponding parts of the left-hand side. For a counter-
example, take n = 3, X = 1 with pr. 2/3 and —2 with pr. 1/3.)

16. Equidistribution of sums. If X is a lattice r.v. with step A—only possible

+n
values kA, k = 0, £1, -+ -—set M(g) = lim —2——1_*_——1 > g(kk) and otherwise

set M(g) = hm ﬂ.f £(x) dx for those functions g on R for which either of the
h -
foregoing limits exists and is finite.

(a) In the first case M(¢*®) = 1 or 0, according as # = 0 (mod %:—r) oru#0

2
(mod _}:_r) . In the second case M{(¢**®) = 1 or 0 according as # = C or « 5 0.
(b) For every u € R,

= _ z £14Sk ____) M( eiu::)
N ka1

(This is immediate in the lattice case and if ¥« = 0. Otherwise f(#) % 1 and

¢

E| Y. | ——+ mZﬁ—k(u) = -
where ¢ is finite. Use /3.)
(c) The family G of functions g on R such that % > 2(Sw) =5 M(g) con-
Py

X

tains all almost periodic functions and functions with period ? Riemann-
integrable on [0, p]. (G contains all functions g(x) = ¢t*®. It is closed under
additions, mult:pl:cat:ons by complex numbers, con_]ugatxons, and uniform pas-

sages to the limit. M is a linear monotone operation on G.)

If g € G and ga = g, then M(g,) — M(g). If g'n, g"'n € G and M(g's) —
M(g""s) — 0, then for every g such that g’, £ ¢ S g”» whatever ben, g € G
and M(g) = lim M(g's) = lim M(g",).

(d) For X degenerate at an irrational 4, the classical equidistribution (modulo
1) of the fractional parts of na follows: for g bounded with g(x) — ¢ finite as
x — oo,

—kZl £(Sk) = .
For every finite segment I, (no.of 8y, «--,Sain I)/n =3 0.

17. Normal r.v.’s. Let X be normal w:th EX =0, EX?=1,let gon R" be
a finite Borel function, and set X = /2.

(a) If glxr + ¢, -+, %0+ ¢) = glx1, + -, xa) for all xz, ¢ € R, then the ch.f.
of the pair X, g(X1, ---, X») is f(u, v) = fi(u)fe(u, v) where fl(u) = ¢~ Wi2ig
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ch.f. of X and fu(x, ) = (27)~™? f B(xy, -+, %) dry, -+, den with

1 fu\? .
log A(xy, ++-, xp) = — -Z-Zk: (xk - —’-1—) + sug(x1, « -+ *, Xn).

(b) If /2 is analytic in «, then X and g(X), -- -, X,) are independent. In par-
ticular, X is independent of n}ax | X;—Xi| and of 3= | Xe — X, r>0.
K k=1

(f2 is independent of «: set # = inc and use the translation property of g.)
(c) Let p with or without affixes denote a pr. density with respect to the

Lebesgue measure. Let p(x) = &\}E; exp [—(x — a)?/24%] be the pr. density
of X, and set
12 -y, S-svm v=YiX-0, z=YEG oy,
k-l

T —4 &
. R 2 .

Then the pr. density of Y is ¢e~/2, the pr. density of Z converges to

vV 27 P

1
c—z’/z

e 2+1%2
\ 2w

, the pr. density of (Y, Z) converges to

es-s(1v0(). 5-Z(1+0())

, and




Chapter VI

CENTRAL LIMIT PROBLEM

The Central Limit Problem of probability theory is the problem of
convergence of laws of sequences of sums of r.v.’s.

For more than two centuries a particular case—the Classical Limit
Problem—has been the limit problem of probability theory. The pre-
cise formulation of this case and its solution were obtained in the second
quarter of this century. At the very time that this particular problem
was recelving its definite answer, the much more general Central Limit
Problem appeared, and was solved almost at once, thanks to the power-
ful ch.f.’s tool and to the truncation and symmetrization methods.

§ 20. DEGENERATE, NORMAL, AND POISSON TYPES

20.1 First limit theorems and limit laws. Three limit theorems and
corresponding limit laws are at the origin of the classical limit problem.
Let S, be the number of occurrences of an event of pr. p in 7 independ-
ent and identical trials; to avoid trivialities we assume that pg < 0,
where ¢ = 1 — p. If X denotes the indicator of the event in the kth

n

trial, then S, = X Xk, n =1, 2, ---, where the summands are inde-
k=1

pendent and identically distributed indicators—this is the Bernoulli
case. Since EX; = p, EX2 = p and, hence, o’X; = p — p® = pq, it
follows that

n

ES, = Z EX, = np, 0'28,. = Z 0’2Xk = npq.

kol k=1

The first limit theorem of pr. theory, published in 1713, says that

Sa P . . . .
— — p. Bernoulli found it by a direct but cumbersome analysis of
” ;

280
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the asymptotic behavior of the “binomial pr.’s” P[S, = k] = C,Fp*q"—*
k=0,1,2 -+, n.

Sharpening this analysis, de Moivre obtained the second limit theo-
rem which, in its integral form due to Laplace, says that

>

P - = < -3 ——-———1 fz [— —1 2|4 —0 S x S
X [« o} Q0,
I \/_.___ l P exp y l [y, X

The third limit theorem was obtained by Poisson, who modified the
Bernoulli case by assuming that the pr. p = p, depends upon the total
number 7 of trials in such a manner that #p, — X\ > 0. Thus, writing
now Xur and S, instead of X} and §,, the Poisson case corresponds

n
to sequences of sums Spyn = Y, Xuk, 7 = 1, 2, ---, where, for every
k=1

fixed », the summands X, are independent and identically distributed

. A . .
indicators with P[ X, = 1] = - +o0 (%) . By adirect analysis of the

asymptotic behavior of the binomial pr.’s, much easier to carry than
the preceding ones, Poisson proved that

xk
PlSun =M = o™ k=012,

Thus are born the three basic laws of pr. theory.

1°  The degenerate law £(0) of a r.v. degenerate at 0 with d.f. having
one point of increase only at ¥ = 0 and ch.f. reduced to 1.

2° The normal law N(0, 1) of a normal r.v. with d.f. defined by

1 z 1
Fo) = 7 [ oo | =57 @
and ch.f. given by

flu) = \/li;fexp [iux - _x;_] dx

u2 1 400 —tu 2:2 [ u2]
= - —- ——|dz=exp| ——|"
exp [ 2] v/ 2n f_«,_,-.‘ exP [ 2] R

The well-known value of the last integral is obtained by using Cauchy
contour integration theorem.
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3° The Poisson law ®(\) of a Poisson r.v. with d.f. defined by

=] \k
F(x) = e_)‘ z —_
and ch.f. given by
® , xk ®© ()\eiu)k )
u) = —A iuk __ _ ,—A — X(c‘“—l).
St ¢ k§0e k! ¢ k=0 k! ¢

While the first two limit laws played a central role in the development
of pr. theory, Poisson’s law long stood isolated and ignored. We shall
see later that there was a deep reason for this isolation and also that,
unexpectedly enough, Poisson’s law is, in a sense to be made precise,
more fundamental for the central limit problem than the two others.
With the notation introduced above, the three first limit theorems
can be summarized as follows:

A. FIRST LIMIT THEOREMS. In the Bernoulli case £ (S——” — ES”) —

n
2(0) and £ (Sn_—ﬂn
oSn

e(\).

) — (0, 1), while in the Poisson case £(Spn) —

The proof by means of ch.f.’s reduces to elementary computations.
We have, taking limited expansions of exponentials,

Sp — i Xi —
E exp [iu np] = J] E exp [iu k p]

n k=1 n

~(pen[]) - con[-22])
SO

Sn — np] i . Xk —p
] =J] Eex [zu -|
k=1 P Vv npg .

-] Zl e [ED

u2 u2 n u2
N
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E exp [iuSnn] = I] E exp [uXnr] = (pn exp [iu] + ¢a)"

k=1

_ (1 + % (exp [iu] = 1) + 0 (%»

— exp A\ — D].
The three first limit laws give rise to the three first limit types:
the degenerate type of degenerate laws £(a) with f(u) = ™2,
the normal type of normal laws 9(, 4%) with f(4) = exp [iua - é;uz] ;

the Poisson type of Poisson laws ®(\; @, ) with
f(u) = exp [iua + N2 — 1)].

The three first limit theorems extend at once by means of the con-
vergence of types theorem; we leave the corresponding statements to
the reader.

*20.2 Composition and decomposition. The three first limit types
possess an important closure property. Its deep parts are the normal
and the Poisson “decompositions” discovered between 1935 and 1937.
P. Lévy surmised and Cramer proved the first one and, then, Raikov
proved the second one.

Let £(X), £(X)), £(X2) be laws of r.v.’s with corresponding ch.f.’s
£, f15 f2. We say that £(X) is composed of £(X;) and £(X2) or that
£(X1) and £(X,) are components of £(X) if, X; and X, being inde-
pendent, £(X) = £(X; + X3) or, equivalently, if f = f; fs.

A. CoMPOSITION AND DECOMPOSITION THEOREM. The degenerate and
the normal types are closed under compositions and under decompositions.
The same is true of every family of Poisson laws ®(\; a, b) with the same b.

To avoid exceptions we consider degenerate laws as degenerate normal
and as degenerate Poisson ones.
Proof. 1° Closure under compositions

£(a1) * £(a2) = £(a1 + a2)
N(a1, £12) * N(ag, b2%) = T(ay + a2, b1° + 65?)

®(\1; a1, &) % ®(N2; a2, ) = C(\y + N2;5 41 + a2, b)
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follows at once by means of ch.f.’s, for

eiual.eiuaz — eiu(ari-az)
(.4 tuay — — U - €X tUdy — — U
p 1 2 p 2 2
: b 2 + b 2
= exp [iu(al + a3) — 4 77 5 2 uz]

exp [iua; + M(€™® — 1)]-exp [iuay + No(6? — 1)]
= exp liu(a; + a2) + (A1 + M) (€™ — 1],

The decomposition property of the degenerate type is immediate.
For, if for every u € R, f1(u)f2(u) = ¢*°, then | A1 I | 2| = 1 and, since
| /] = 1,]f2| S1,it follows that | fi | = | fo| = 1, so that by 14.1a

fi(w) = €, fo(u) = &t u € R.

The proof in the normal and Poisson cases is much more involved.
To begin with, we can, by a linear change of variable, make ¢ = 0 and
5 =1 in the laws to be decomposed. Thus, we have to seek ch.f.’s
/1 and f; such that, for every u € R,

u?

S1(w)fo(u) = e ?
fr()fa(u) = &Y.

2° We ccz)nsider first the normal decomposition and apply 15.3A.

z
Since ¢ 2 is an entire nonvanishing function in the complex plane,

the same is true of f1(z) and f2(z), and there exists a constant ¢ > 0
such that | A(2) | < ¢“#*. Therefore, upon taking the principal branch
of log f1(2) (vanishing at # =-0), it follows from the Hadamard factoriza-
tion theorem that log f1(2) is a polynomial in 2 of, at most, second de-
gree. Since fy(#) being a ch.f., reduces to 1 at « = 0, equals f;(—x),
and is bounded on R, it follows that

or

2

. b
log f1(u) = iuay — - u?, u € R,

where @ and & are real numbers. Similarly for fo(x), and the normal
decomposition is proved.
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3° It remains for us to consider the Poisson decomposition. Let
X; and X, be two independent r.v.’s with d.f.’s F; and F,, and let F
be the d.f. of their sum. Since

@ = Xi <hllae = Xo < &) Clay+ a2 = Xh + Xp < 6y + 4]

and X,, X; are independent, we have

(1) F\lay, b1)F2las, b3) < Flay + ag, by + b3)
and, letting 4;, 5 — o, it follows that
(2) F(ay 4+ a2) £ Fi(a1) + Fa(a2).

Let now o) and ag be points of increase of Fy and Fj, respectively. If
oy € (a1, &1) and ag € (a2, b3) whence ay + ap € (a1 + a2, b1 + &2),
then the left-hand side in (1) is positive and, hence, @; + a2 is point of
increase of F. Moreover, if a; and a3 are first points of increase, then,
taking @) < o; and 43 < as in (2), we have F(a; + a2) = 0, and,
hence, a1 + aj is the first point of increase of F.

Now let F be the Poisson d.f. corresponding to ®(\); its only points
of increase are k =0, 1, 2, ---. Therefore, on account of what pre-
cedes, all points of increase a; and az of its components F; and F,
are such that a; + a2 = some % and the first points of increase are
a and —a where o is some finite number. It follows, replacing F(x)
by Fi(x — a) and Fa(x) by Fa(¥ + a) (this does not change F), that
the new d.f.’s have # = 0, 1, 2, --- as the only possible points of in-
crease. Thus, we can set for the corresponding ch.f.’s

fi(w) = 3 ape™, fo(u) = T bpe™*
k=0 k=0
with

agy bg > 0, a1, 8, =20 for >0, X ar =2 br = 1.
' k=0 k=0

Upon setting z = ¢, ¢,(2) = f1(4), ¢2(z) = f2(u), we have to find
nonvanishing functions ¢; and ¢z such that

0 ) xk e-—X
e1(De2(z) = X apht = 3 , 2",
k.l=0 k=0 k'
Therefore,
xke—x

agby + arby_y +- - -+ axbo = v k=0,1,2,---,

k!
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and it follows that
1 Ak 1
ar < — , < — X(l’l—l).
k_bo 3 |¢1(Z)|_b06’

Thus, ¢1(2) and similarly ¢,(z) are nonvanishing entire functions at
most of first order. It follows from the Hadamard factorization theorem
that they are of the form ¢***¢'. Since f;(«) reduces to 1 at # = 0 and
is bounded by 1, we have

log fi(#) = (™ — 1), A 20.

Similarly for f»(x), and the Poisson decomposition is proved. This
terminates the proof of the theorem.

§ 21. EVOLUTION OF THE PROBLEM

21.1 The problem and preliminary solutions. From the time of
Laplace and until 1935, the limit problem aims at weakenings of the
assumptions under which the Jaw of large numbers (convergence to £(0))
and the normal convergence (convergence to 9U(0, 1)) hold. This clas-
sical problem can be stated as follows:

n

Let 8, = X5 Xy be consecutive sums of independent r.v.’s. Find condi-
k=1

tions under which

Sn - ESn Sn - ESn
s(——-—) - 20), £ (————) - 20, 1).
n oS,

It is implicitly assumed, in the first case, that the summands are
integrable, and in the second case that their squares also are integrable.
To simplify the writing, we shall center the summands at expectations,
so that, in this section, EX; = 0, ES, = 0. We also set fx(¥) = Ee™Xk,
or = 6Xx and s, = o5,, and exclude the trivial case of all summands
degenerate.

Although not the first historically, the solution of the extension of
the Bernoulli case to independent and identically distributed sum-
mands (not necessarily indicators) is immediate—when ch.f.’s are used.

A. If the summands are independent, identically distributed, and cen-
Sa S
tered at expectations, then £ (—;) — £(0) and £ (—;) — (0, 1).

n
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For, if f is the common ch.f. of the summands, then, by using its limited
expansions, we have

senl ] - (- (4

and, since 5,2 = ne® > 0,

. Sn u n 0,2 0_2 n
E exp [zu }:] = (f(;;)) = (1 - 2 u? + o (}:2- u2>>
u2 u2 n u2
-(1-g 4o (5) = o[- )

However, the first reasonably general conditions are the following.
n
B. Let S, = 3 Xy and s, = 68y, where the summands are independent
k=1
r.0.’s centered at expectations.

1 n
W If 45 S E| X | — 0 for a positive § < 1, then
7 k=1

£ (%) — £(0).
1

(i) If —=5 X E| Xi |*** — 0 for a positive §, then
Sn k=1

n

£ (—) — N0, 1).

Sn
The assumptions imply finiteness of moments E| Xj|'*? and
E| X; |21, respectively.
The first assertion is slightly more general than the classical ones.
For & = 1, it becomes the celebrated Tchebichev's theorem. It also con-

Sn
tains Markov's theorem: if EI X II'H < ¢ < o, then £ (-;;) — £(0)

. .. ¢ .
(since, then, the asserted condition becomes — — 0); since, for § > 1,
n

EX:? < (E] Xi |1 +%2/1+8 Markov’s theorem is valid with any § > 0.

The second assertion is the celebrated Liapounot’s theorem which has
been the turning point for the entire Central Limit theorem. More-
over, while the ch.f.’s were known to and used by Laplace, the first
continuity theorem for ch.f.’s:

if fuw) — ¢ 7, then £(X,) — 90, 1),
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is to be found, proved but not stated, in Liapounov’s proof of his theo-
rem. We observe that (ii) has content only when at least one of the
r.v.’s 1s not degenerate at zero and, then, the hypothesis implies that
Sp — O,

Proof. 1° To begin with, let us reduce in (ii) the case § > 1 to
5 = 1, so that it will suffice to assume that 0 < § < 1.

1 n
Let Y be a r.v. whose d.f. is — 3. Fj} and, hence,

7kl

HYl =~ SHX]
B kual
According to 9.3b. log E|Y|" is a convex from below function of » > 0.
Therefore, for 2 + & > 3, we have

5log E| YI* < (5 — 1) log E| Y |? + log E| Y |2

|2_M>1/6

It follows that, if the condition in (ii) holds for a § > 1, then it holds
for 8 = 1. Thus, in what follows we can limit ourselves to 0 < § < 1.

2° We use limited expansions of ch.f.’s, the continuity theorem, and
the expansion log (1 + 2) = z 4+ o(l zl) valid for Izl < 1. As usual,
8 with or without affixes denotes quantities bounded by 1.

Condition (i) implies that

1+
E| X | § 1 ZEIXIH"—-»o

k—l

or, equivalently,

——ZEIXk|3<(

5n k=1

max
ksn n1+6

so that, for u arbitrary but fixed,

uniformly in k¥ £ n. Therefore, for # sufficiently large,

T logfs () = B ul s BE X[ -0,

k=1

and the first assertion is proved.
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Condition (ii) implies that

ok EI X |2+‘S 1

248 n
max (—-—) < max < SE X 2P -0
ksn \S, ksn 5,2+ 52 | %] ’

so that, for u arbitrary but fixed,

u u? a2 214 E| X, 2t
f,‘(._)=1__..1’i§+ olnk'u|2+6_l.L|___,1
$n 2 5 (1482+9 s 21

uniformly in ¥ < #. Therefore, for # sufficiently large,

n 2
3" log f (—u—) - - 5‘2-(1 + o(1))

k=1 Sn
u2

+ 26'n| u >+ > E| X |2 - — =
k=1

2+
Sn
and Liapounov’s theorem is proved

BouNDED CASE. If the summands are uniformly bounded, then
£(Sa/n) — £(0). If, moreover, s, — o, then £(Sn/5,) — N(O, 1).

For, if | Xi| S ¢ < , then E| X |'+? < 1+ and E| X, |2 < das2,

and, hence, s

" ¢
— Y E X' — — 0,
REEY ,El | X ['+ = I R

n &
SE X PP — >0 as 5 > .
k=1 Sn

5n2 +3

Tools for solution. The preceding theorem is not satisfactory since
moments of higher order than those which figure in the formulation of
the problem are used. Yet a restatement of this theorem with § = 1,
together with the truncation method, will provide the stepping stone
towards the solution.

n
a. Basic LemMma. If Sp, = 3 X, where the summands are inde-
k=1

pendent r.0.’s (centered at expectations), then

§)) if - ZEI Xk |2 — 0, then £ (——) — £(0)
N ka1 n
. . 1 i Sﬂn
(i) i —5 T EXul>—0, then .e(——) — (0, 1).
Snn k=l Snn
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It suffices to replace in the proof of 21.2B subscripts k£ and 7 by double
subscripts #nk and nn, respectively.

In order to use the truncation method we shall require a weak form
of the equivalence lemma. We say that two sequences £(X,) and
£(X",) of laws are equivalent if, for every subsequence £(X,/) — £(X),
we have £(X'./) — £(X), and conversely.

b. LAW-EQUIVALENCE LEMMA. If X, — X'n 5 0o0r P(X, # X',]
— 0, then the sequences £(X,) and £(X',) of laws are equivalent.

For the second condition implies the first one which, by 10.1d, implies
the asserted equivalence.

21.2 Solution of the Classical Limit Problem. We are now in a
position to give a complete solution of the problem.

X,, X, --- are independent r.v.s centered at expectations, with
df’s Fy, Fa, ---, chf’s f1, fo, --+, and variances oi%, o3%, -:+;
n n

S, = 3 X, are their consecutive sums with variances 5,2 = X o’
k=1 k=1

To simplify the writing, we make the convention that all summations
areoverk =1, ---,n.

S
A. CLASSICAL DEGENERATE CONVERGENCE CRITERION. .J.Z(-—ﬁ —

n
£(0) ¥, and only if,

0 £f . R0,
1
(ii) ;zfm<nx dF, — 0,
. 2
(ii1) ;;2—2 l |z|<nx2 dFy — (ﬁxqu dFk> } — 0.

Proof. 1° Let (i), (ii), and (iii) hold. We wish to prove that

n

£ (—-n—> — £(0). In what follows we apply the law equivalence lemma

and the first part of the basic lemma. .
Let Spn = 3 Xk, where X, = Xi or 0 according as l Xkl < n or
| Xi| = 7. On account of (i)

Snn Sn
P[——#——]éZP[X,.k;éXk]=Z dF, — 0,

n n lzlzn
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. S
so that it suffices to prove that £ (—ﬂ> — £(0). But, on account of
n

(ii),

1 1
- ESnn = - Z X dFk - 0,
n n |z|<n
. Snn - ESnn .
so that it suffices to prove that £| —————— ] — £(0). But this

n
follows, by Tchebichev inequality, from (iii) and

1
— 2 E| Xor — EXui|?
n

x| [, (], )] o

Sn i Sn
2° Conversely, let £ (——> — £(0); equivalently, — 5 Oorg,(u) =
n n

n

I1 fx(u/n) — 1 uniformly on every finite interval. Let »n be suffi-
k=1

ciently large so that log l gn(u) l is bounded on [—¢, +¢]. By the weak
symmetrization lemma and the second truncation inequality

12 X — uXi _ " Xl o
o2 a2
22, z z LU

=< 7f log | ga(v) |2 dv — 0.
0

Since

so that uX,/7 — 0, it follows that the foregoing relation with ¢ > 1 yields
(i) and, hence, £(Sna/7) — £(0). But, by the first truncation in-
equality,

(1) 2 *(Xu/n) = X *(Xui'/n) < =3 log| ga(1) |2 — O,
k=1

k=1
. . . Snn - ESnn P
so that (ii1) holds, and, by Tchebichev inequality, ———  — O.

n
Therefore,
ESnn Snn Snn - ESnn

n n n
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and (ii) holds. The proof is completed.
Observe that centering at, and in fact existence of, expectations were
not required. Also, according to the proof,

Sn - ESnn . e
£ (-———————> — £(0) « (1) and (i11) hold.
n

S
B. CLASSICAL NORMAL CONVERGENCE CRITERION. £ (—1‘- — (0, 1)
Sn

and max ? — 0 if, and only if, for every ¢ > 0,
ksn dn

|z |Zesn

1
@ == #dF —o.
Sn

The “if” part is due to Lindeberg and the “only if” part is due to Feller.

Proof. 1° Let gn(e) — O for every ¢ > 0. We apply the law
equivalence lemma and the basic lemma.

Since g.(¢) — O for every e > 0, there is a sufficiently slowly de-

. 1 ..
creasing sequence €, |0 such that —5 ga(e,) — O and, @ fortiori,
1 i
— gn(en) = 0, gn(en) — O (it suffices to select a sequence 7 T as
€n
1 1 1
k — o such that g, (Z) < ) for n = n; and, then, take e, = z for
ng = n < ngyp). We have
o3>

1
2 2 2
max — = max —; x*dFy + €n° = gn(en) + € — 0,
ksn 5, ksn 5, | 2 |2 en2n

S\ -
and the “if”’ assertion will be proved if we show that £ (5_> — 93(0, 1).

n

Let Xuw = Xi or O according as | Xi | < €nsn or | Xi| 2 €usn. Since

2
&n Sn | 2 |Z ensn €n

San  Sn 1
P [—-— » —] STPXu=Xd =3[  dFes —gae) = 0,

nn

it suffices to prove that £ (————> — (0, 1).

In

Since the X} are centered at expectations, we have

1
f xdFk f xdFk =< f x2 dFk.
[ 2| <ensn [ 2 |Z ensn €EnSn V| 2|Z ensn

IEXnkl =
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Therefore,

1 n n
LS X | < 5

Sn €,

and, setting §,,2 = ¢28,,, we obtain

-0

Snn2 1

Sn2 B Z

gn2(en)
—*

€n2

Snn - ESnn
Thus, it suffices to prove that £ (—————-————> — (0, 1). But, this
Jnn

follows from

1 —

| | nk |)2 é gn(en) +
z| 2¢€ndn

3 2 E‘ Xk — EXng ‘3 = en-;n > E(Xpx — EXai)® S 26,,-{2— — 0,

Jnn nn Jnn

and the “if”” assertion is proved.
2° It remains to prove the “only if”’ assertion.

. Ok .
Since max — — 0, it follows from

ksn 5y,
u u? )2
Sel—)=1-— Ok—--——
Sn 2 5.2

that

max (%) =11 = 0, £lA(2)-1p -0

ks

u
Therefore, for n sufficiently large, log f (—> exists, so that

In

o] - MU (7) ~ e[ - 5

becomes

and, sincelogz =z — 1 + 6|z — 1|2,

-z =A@l -
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Upon taking the real parts, we obtain

u? ux
—-—Zf (1—cos—>a’F;c
2 | 2| <esn Sn

ux
= Zjl;lg“n(l — cos 5—n> dFy + o(1).

2
Zﬁ« (l—cosu—x>dFk§ . # dF,

Sn 2-‘1; | 2| <esn

Since

2

=¥ 24F) = = (1 = gae)
Sn= — = - — &n
25,2 IIIme * 2 £n(€))

and

X
zﬁl (l—cosu—>dFk§2Z dF,
Z |2 esp

Sn | 2|2 esn

=< 2 Zf 2 dF, < 2
< X —
- 625,,2 | 2|2 e k= e
it follows that

u2

2
Egn(e) = 5+ o).

Therefore, letting # — © and then ¥ — « in

05 gu(9) S u%-(% +oln)),

we obtain g,(¢) — 0. This concludes the proof.

*21.3 Normal approximation. In his celebrated investigation of nor-
mal convergence, Liapounov examined not only conditions for, but
also the speed of, this convergence. His results were greatly improved
by Berry (and, independently, by Esseen) and to present the basic one
we shall proceed in steps.

Let F and G be d.f.s of r.v.’s with corresponding ch.f.’s f and
g and let H=F — G, h = f—g. We exclude the trivial case of
a=sup|H|=0,thatis, H =4 = 0.

a. If G is continuous on R, then there exists a finite number s such that

either H(s) = Faor H(s + 0) = a.
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Proof. Let x, be a sequence such that | H(x,) | — «. It contains a
subsequence x,» — s finite or infinite. Since H(x) — 0 as x — Foo
and a > 0, s must be finite.

The sequence x,- contains a subsequence x,~ such that either
H(xp) = —aor H(xp») — +a. It suffices to consider one case only,
say the first, for the same argument is valid for the other. Thus, let
Xprr — 5, H(xnr) — —a; we know that H is continuous from the left.

If the sequence X,/ contains a subsequence converging to s from the
left, then —a = lim H(x,») = H(s), and the assertion is proved.
Otherwise, this sequence contains a subsequence converging to s from
the right, —a = H(s + 0) and, G being continuous on R,

—aSHE) SFE+0—-GE)=Fc+0) -G +0) = —a

so that —a = H(s). The assertion is proved.

Let » be the derivative of a symmetric d.f. (of a r.v.) differentiable
on R, so that p(x) = p(—x), x € R.

b. If G has a derivative G' on R, then there exists a finite number “‘a”’
such that

lfH(x + a)p(x) dx

z2a-6f swad, g=swlc|.
28

Proof. If B = o, then 22‘}3 = 0, and the inequality is trivially true
whatever be a. Thus, it suffices to prove it when 8 < «. Let
— _a__ > 0
Y= 28 .

We have, for an arbitrary a,

O | [H6+ ap00 as

=

H(x + a)p(x) dx | — l j; |g-,H(x + a)p(x) dx

lz] < z

and

2

H(x + a)p(x)dx | = ajl;lzvp(x) dx.

l lzl|z

On the other hand, according to a, there exists a finite number s such
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that, say, —a = H(s). For le < v, we have, setting @ = s — ¥ so
that
s—2y<x+a<s, x—v<0,

the relation
G(x + a) = G(s) + 6(x — v)G'(*"), |6] =1, s—2v<¥ <.
Thus, for | x| < 7,
H(x + a) = F(x + a) — G(s) — 6(x — v)G'(x")
< F(s) — G(s) — B(x — )
= —a—Bx—7) = —Bx+1)

and it follows that

®) Hix + a)p(x) dx S —B fl G e

|z | <vy

—B'vf p(x) dx
[z]<¥

- -5 _j; (%) dx).

z|Zy

Upon substituting in (1) the bounds given by (2) and (3), we obtain

z2a- 3f|=.;3"") ds)

fH(x + a)p(x) dx

and the assertion follows. In the case « = H(s + 0), the argument is
similar.,

Let @ be a real ch.f. with f | w(u) | du < o, so that the correspond-

ing d.f. has a symmetric derivative continuous on R, given by

1 ) 1
plx) = —-fe"'""d»(u) du = —fcos ux-a(u) du.
2r 27

c. For every a€_ R
1

2

R(u)a(u)

U

du = lfH(x + a)p(x) dx
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h(u)a(u) : :
Proof. We can assume —— to be integrable, for otherwise the
. u

inequality is trivially true. According to the composition theorem,
k& is the Fourier-Stieltjes transform of H defined by

B = [He = 9p0) .

. h(w)e(u)
Since is integrable, the inversion formula yields
u
Ae) — By = — f —— h)a(w) du.

But, as ¥’ — —oo, H(x") — 0 and, by the Riemann-Lebesgue theorem,

i
f e’ Ma’u — 0. Therefore,

—iu
- ]1 w
fH. (¢ = p(y)dy = __f —iug ()0 () (u)

—iu

and, hence, replacing x by a, y by —x, and taking into account that p
is symmetric, we obtain
ll(u)w(u)

iu

f H(x + a)p(x) dx = — f —iua

The asserted inequality follows.
We are now in a position to establish the basic inequality below, of
independent interest. We shall require a real integrable function &

7

defined by ao(x) =1 — Lll—}—l- or 0 according as l ul < Uor | ul = U.

Its Fourier-Stieltjes transform pg is given by

1 Y | | 1 — cos Ux
po(x) = ——f (1 - -——-> cos uxdu = ——————
2rd_y U

wx2U
and we have po = 0, fpo(x) dx = 1, so that &g is a ch.f.

A. Basic iNequaLity. If G has a derivative G’ on R, then, for every

U >0,
sup| H| < f (u)
mJo

du+——-sup|G’|
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Proof. Upon replacing @ and p by @ and pq, the propositions b and
c yield the inequality

1 U | k() 1
LR Ly
2r v—vU 2r

u
where

® 1 1 - U. 2 r*d 2 4
fPo(x)dx=—f—-Eo—E——fdx§—f -;=____=__?_.
¥

A1) a o
.Sf‘>_u°_(f12 dug§(1—6£ Po(x) d¥)

TJy x2U TJyU X U waU
Therefore,
1 f Ul h(u) a 128
— ——— u — . om—
xJg u - nU

and the asserted inequality follows.

In order to apply the basic inequality to the normal approximation
problem, we have to bound the corresponding 4. Let F*, and G* be

the d.f.’s of £ (-%) and 91(0, 1) and let A*, = f*, — ¢ 2 denote the

difference of the corresponding ch.f.’s. The summands X, are inde-

pendent r.v.’s centered at expectations, and we set v,3 = E| X, |3,

23 n ) )

gnd = 3 3 vi3. We exclude the case of one of the v, infinite, for
n k=l

then the normal approximation theorem below is trivially true.

2 u®
& Il u] <2, then | () | S 2.7 u|3exp[-?].
&n

Proof. 1° First, we prove the assertion under the supplementary

1 )
condition | u| =2 —. Then g-3| #[® = 1 and it suffices to prove that

n
2

| A*a(u) | < 2-exp [—- %-] . But, since
2 2
1@ | 5 | |+ e | = 2] s Lm@] + o[ - 5]

2u?®
it will suffice to prove that | f*,(x) |2 < exp [— T] .

Consider the symmetrized r.v. X; — X’; where X and X'y are inde-
pendent and identically distributed, so that its ch.f. is | fi | and

EXi — X'0)? =202, E| Xi — X2 S B2 < .
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Therefore,

22 22
|fk(u) |2 <1 - g2+ ~3—'yk3| u |3 S exp [ — o 2u® + —:—5— 'yksl u |3]

. u . .
and, replacing # by — and summing over k =1, ---, n, we obtain,
Sn

using the fact that, by assumption, g,% «| < 2,

[ 3 3 2
| /*a() > < exp — 4 £ ] ] = exP[—u2+fl3—]

. 3.2
F 2
2
=exp| — —u®|-
7[-57]
: : 1
2° It remains to prove the assertion when | # | < — and, hence,
&n
Ok Tk
Zlul s a5 2wl <
n n 2

Then, we have

3
“\ 0k Tk 3 _
fk(;;>—1—252u 4+ 0 |u|—l—rk,
where | 7| < 3, so that

u 2
logfk (;—) = —r, + 0'xr”.
On the other hand, |

2,2\ 2 3 3\ 2
a2 e 2
Sn Sn n
2

ok [ ?
logfk(5n>——2 2u2+0” 533 | a3

n n

so that

and, summing over &, we obtain

2 3

log f*n(u) = — -—~+0-54—| u|3
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Since, for every number a, ¢® = 1 + 04¢"%, it follows, taking & =

£n° 1
E{| ul® = -2-4-50 that ¢* < 2, that

Sf*a(u) — exp [— %2]

} 3 2
&n u
=2 24|u|3exp[— 2]

2
< 2g.%| u 1 exp [— ?].
and the proof is complete.

B. NORMAL APPROXIMATION THEOREM. There exists a numerical con-
stant ¢ < o such that, for all x and all n, if F*, is d f. of £(Sp/ss) and
G* isdf. of (0, 1), then

| Fra() — G*() | S — T E X

Sn k==l

For, upon replacing 4*, by its bound obtained above in the basic

2
inequality with U = —, F = F*,, and G = G* hence sup| G’ | =
&n
1
——, we obtain

[+ 4 n u X | I u .

§ 22. CENTRAL LIMIT PROBLEM; THE CASE OF BOUNDED
VARIANCES

22.1 Evolution of the problem. The classical limit problem deals
with independent summands X, with finite first moments and, in the
normal convergence case, with finite second moments as well. Those
moments are used for changing origins and scales of values of the con-

n
secutive sums 8, = Y. X so as to avoid shifts of the pr. spreads
k=1

towards infinite values. There is no reason for these choices of ‘“‘norm-
ing” quantities except an historical one; they are a straightforward
extension to more general cases of the norming quantities which ap-
peared in the Bernoulli case. A4 priori, there is no reason to expect
that these quantities will continue to play the same role in the general
case. Furthermore, whether they are available (that is, exist and are
finite) or not, other choices might achieve the same purpose. Thus,
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the problem becomes a search for conditions under which the law of
large numbers and the normal convergence hold for normed sums
% — an. The methods remain those of the classical problem, but the

n
computations become more involved. However, remnants of the two
first limit theorems in the Bernoulli case are still visible. For there is
no other reason to expect or to look for limit laws which are either de-
generate or normal.

The real liberation which gave birth to the Central Limit Problem
came with a new approach due to P. Lévy. He stated and solved the
following problem: Find the family of all possible limit laws of normed
sums of independent and identically distributed r.v.’s. We saw that
when these r.v.’s have a finite second moment, the limit law (with
classical norming quantities) is normal. Thus, P. Lévy was concerned
primarily with the novel case of infinite second moments and finite or
infinite first moments.

Naturally, the question of all possible limit laws of normed sums
with independent, but not necessarily identically distributed, r.v.’s
arises at once. Yet, the Poisson limit theorem is still out, for it is rela-
tive to sequences of sums and not to sequences of normed consecutive
sums. Moreover, as we shall find it later (end 24.4), under “natural”
restrictions Poisson laws cannot be limit laws of sequences of normed

. . .. . S
sums—which explains their isolation. But sequences f — a, are a
n
. e Xk an .
particular form of sequences ) Xyi| set Xpx = 3. ") and this
k=1 n

provides the final modification of the problem.

The general outline of the Central Limit Problem is now visible:
Find tke limit laws of sequences of sums of independent summands and
find conditions for convergence to a specified one. Yet, so general a
problem is without content. In fact, let Y, be arbitrary r.v.’s, set
Xn = Y,and X, = O as. for £ > 1 and every #n. Then the sequence
of laws becomes the sequence £(Y7,), so that the family of possible limit
laws contains any law £—take £(Y,) = £. Thus, some restriction is
needed.

To find a “natural” one, let us consider the problems which led to
this one. Their common feature is that the number of summands in-
creases indefinitely and that the limit law remains the same if an arbi-
trary but finite number of summands is dropped. To emphasize this
feature, we are led to the following “natural” restriction: the summands
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Xax are uniformly asymptotically negligible (uan), that is, X, 30

uniformly in k or, equivalently, for every ¢ > 0,

max P[| X, | 2 ¢ — O.
k
Finally, the precise formulation of the problem is as follows:

kn
CENTRAL LIMIT PROBLEM. Let Sp, = Y, Xk be sums of uan inde-
k=1

pendent summands Xy, with k, — .
1°  Find the family of all possible limit laws of these sums.
2° Find conditions for convergence to any specified law of this family.

To simplify the writing, we make the following conventions valid for
the whole chapter.

(1) k=1, -+, kn, k, — o, the summations >, the products ][],
% e
the maxima max, are over these values of k, and the limits are taken as
k

usually for # — oo, unless otherwise stated.
(it) F,x and fn; denote the d.f. and the ch.f. of r.v.s Xk, Fr and f, de-
note the d.f. and the ch.f. of 3_ X,x. Thus, the uan condition becomes:
K
max dF,.; — O for every € > 0, and the assumption of independ-
kE WJz|Ze
ence becomes f, = JI fux- The problem becomes
k

Given sequences f, = [ fur of products of ch.f.’s of uan r.v.’s: 1° Find all
K

chf.'s f such that f, — f; 2° Find conditions under which f, — f given.
If these ch.f’s have log’s on I = [—U, + U], we always select their
principal branches—continuous and vanishing at # = 0, and then on I:

log fn = X 108 fuk, fu — f (uniformly) & logf, — log/f (uniformly).
k

The solution of the problem is due to the introduction, by de Finetti,
of the “infinitely decomposable” family of laws and to the discovery
of their explicit representation by Kolmogorov in the case of finite
second moments and by P. Lévy in the general case.

It has been obtained, with the help of the preceding family of laws, by
the efforts of Kolmogorov, P. Lévy, Feller, Bawly, Khintchine, Marcin-
kiewicz, Gnedenko, and Doblin (1931-1938). The final form is essen-
tially due to Gnedenko.

22.2 The case of bounded variances. As a preliminary to the in-
vestigation of the general problem, and independently of it, we examine
here the particular ““‘case of bounded variances”—a “natural’” extension
of the classical normal convergence problem. It is much less involved
computationally than the general one, while the method of attack is
essentially the same.
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We consider sums Y X,i of independent r.v.’s, centered at expecta-
%

tions, with d.f.’s Fyy, ch.f.’s for and finite variances oni’> = 62X such
that

(C): max o2 > 0and 3 oni? S ¢ < o, where ¢ is a constant
k k

independent of n.

Since, for every € > 0,

1

K max o, — O,

max Pl| Xox| 2 €] <
k k

the uan condition is satisfied and the model is a particular case of that
of the Central Limit Problem. The boundedness of the sequence of
variances of the sums entails finiteness of the variance of the limit law.

a. ComparisoN LEMMA. Under (C), log far(u) exists and is finite for
n = ny sufficiently large and, for any fixed u,

2 {log far(u) — (far(x) — 1)} — O.

k

2
Proof. Since far(#) = 1 — s i’-';i 12, it follows from (C) that

2

u
max | fu(e) — 1] £ —maxo? — 0, T |fur(w) — 1| = =42
k 2 & k

s

Therefore, for # = n, sufficiently large, | fax(#) — 1] < %, so that the
log fnk(u) exist and are finite,

log frc(#) = fur(u) — 1+ 6 ni| frr(e) — 1[%,
and it follows that
| & {log far(#) — (far() — D} |
) <l ful) — 1P

= m:»xlfnk(u) - 1] | far() — 1| — 0.
k

The comparison lemma is proved.
Let . ‘
0l = 5 () =) = £ [ (64 = 1) dF .
k k
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Since
fx dF,; = 0, fo2 dF . S,
we have *
) 1
Yalu) = Zf(e"“‘ — 1 — fux) — - x* dFp;
k x?
or
) 1
W) = | (€™ = 1 — iux) = dK,,
ont) = [ (¢ i) —

where K, on R is a continuous from the left nondecreasing function

with K,(—®) = 0, Var K, £ ¢ < =, defined by

Ka(x) = Zf )’2 dFu,
k Y —on

and the integrand, defined by continuity at x = 0, takes there the
value —#%/2. The comparison lemma becomes

a’. Under (C), log 1 far — ¥a — O.
k

Functions of the foregoing type will be denoted in this subsection by
¢ and K, with or without affixes. Thus, unless otherwise stated, ¥ is a
function defined on R by

. 1
¥(u) =f(e"“’ — 1 — fux) -;édK(x),

and K is a d.f—up to a multiplicative constant—with K(—) = 0,
Var K = ¢; ¢ and K will have same affixes if any.

b. Every ¥ is a ch.f. with null first moment and finite variance o® =
Var K, and is a limit law under (C).

Proof. The integrand is bounded in x and continuous in « (or x) for
every fixed ¥ (or #). It follows that ¢ is continuous on R and is limit
of Riemann-Stieltjes sums of the form 3 {fuan. + Ai(e™ — 1))

%

where
1
A = 2 K[xnk, xn.k-i-l): Qnk = — Mk¥nk, bnk = *nks
Xnk

we can and do take all subdivision points x,; # 0. Since every sum-
mand is log of a (Poisson type) ch.f., the sums are log of ch.f.’s, and so
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is their limit ¢ according to the continuity theorem. The second asser-
tion follows, since, by elementary computations,

() umo = @)'umo =0, (¥)"umo = ¥"umo = — Var K.

Finally, let Xy, £ =1, -+, n be independent r.v.’s with common log
of ch.f. being ¥/n. Since ¥/n corresponds to K/n, we have ¢®X,;

= Var K/n while EX,; = 0. Since Y. Xa.: has for ch.f. ¢/ whatever
k=1
be 7 and condition (C) is fulfilled, the last assertion is proved.
c. UNIQUENESS LEMMA. ¢ determines K, and conversely.

Proof. Since
() = f £ dK(x), Var K < o, K(—cw) =0,

the inversion formula applies and K is determined by ¥ by means of
¢’’. The converse is obvious.

d. CoNvERGENCE LEMMA. Let (C) hold. If K, 5 K, then ¢, — ¥.

Conversely, if ¥n — logf, then K, 5 K and log f = ¢ determined
by K.

Proof. The first assertion follows at once from the extended Helly-
Bray lemma. As for the converse, since the variations are uniformly
bounded, the weak compactness theorem applies and there exists a

K (with Var K = ¢) such that K, 5 Kasn' — along some subse-
quence of integers. Therefore, by the same lemma, ¥,» — ¢ = log f
since ¥, — logf. But, by the uniqueness lemma, ¢ = logf deter-

mines K, and it follows that K, 5 K. The proposition is proved.

Upon applying the foregoing lemmas, the answer to our problem
follows:

A. BOUNDED VARIANCES LIMIT THEOREM. [f independent summands

Xoi are centered at expectations and maXone — 0, Lol S¢ < ©
k k

Jor all n, then
1°  the family of limit laws of sequences £(3 Xar) coincides with the
k

family of laws of r.v.’s centered at expectations with finite variances and
ch.fs of the form f = &%, where Y is of the form

. 1
V(u) = f (e™® — 1 — fux) ;2-dK(x),
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with K continuous from the left and nondecreasing on R and
Var K £ ¢ < o; Y determines K and conversely.
2° &(T Xux) — £(X) with ch.f. necessarily of the form ¢¥ if, and
k

only if, K, % K where K, are defined by
z
K.(x) = Zf y2 dFny.
k % —c0

If Sonl S ¢ < o is replaced by ¥ o2 — 0?X < o, then K, — K
k k

is to be replaced by K, 5 K.

Proof. 1° follows from b, the comparison lemma and the convergence

lemma.
2° follows from 1° and the convergence lemma; and the particular
case follows from the fact that the assumption made becomes

Var K, = X o2 — ¢?X = Var K.
k

ExTENsION. So far the r.v.’s under consideration were all centered
at expectations. If we suppress this condition and set

Ank = EXnk, Fnk(x) = Fnk(x + ank)> 7nk(u) = e—iua"ffnk(u%

then the foregoing results continue to apply, provided F,i and fn; are
replaced everywhere by Fyi and fux; and then we write ¥ instead of y.
Going back to the noncentered r.v.’s, we have to introduce limit laws
£(X) with finite variances but not necessarily null expectations ¢ = EX,
whose log's of ch.f’s are of the form ¥(u) = iua + §(u), so that

(Mu)) -
= {a
du Jo

The uniqueness lemma becomes: ¥ determines ¢ and K, and con-
versely.

In the convergence lemma, K, 5 Kis replaced by K, 5 K and

a, — a.
The same is to be done in the limit theorem with @, = Y 4,; and
%

F,; replaced by F,;.
Thus, the convergence criterion A2° becomes

EXTENDED CONVERGENCE CRITERION. If independent summands X,y
are such that max ol — 0 and 3 ol S ¢ < o, then £(X X)) —
k k P
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£(X) with ch.f. necessarily of the form ¢* if, and only if, K, 5 K and
> an, — a where
k

Ka(¥) = 5 f V2 dFui(y + anp)y  ank = EXose
kY —n

If S o2 S ¢ < o is replaced by Y onil — o*X < o, then K, 5K
% %

is to be replaced by K, 5 K.

Particular cases:

1° NorMmAL cONVERGENCE. The normal law 91(0, 1) corresponds to
2

Y(u) = — % and, hence, to K defined by K(x) = 0 or 1 according as

x < 0 or x > 0 (because of the uniqueness lemma, it suffices to verify
that this K gives the above ¢).

NORMAL CONVERGENCE CRITERION. Let the independent summands
Xk, centered at expectations, be such that Yy, ani® = 1 for all n:
%

then £ Xar) — N0, 1) and max au® — O if, and only if, for
% k
every € > 0,

gn(e) = Zf x2dF,, — 0.
PRYEArL
Proof. Since

max o2 = max | x2 dFui(x) £ € + male‘ x2dF, S € + ga(e),
k k k T|Ze

it follows that g,(¢) — O for every ¢ > O implies (letting » — o and
then ¢ — O in the foregoing relation) max e,;2 — 0. Then, immediate
k

computations show that the convergence criterion A2° is equivalent to
gn(€) — O for every ¢ > 0.

Upon setting Xnx = —?’—k, k=1 -+, n, EX; =0, 5,2 = Y ¢’X;,
%

n
we obtain the classical normal convergence criterion. Liapounov’s
theorem follows from

1
f xzdFk é 3.8 fl x|2+6 dFk
| 2 | ean €5

2° PoissoN CONVERGENCE. The Poisson law ®(\) corresponds to
Y(@) = fuh + N(e*™ — 1 — 1u) = ju\ + ¢(u) and, hence, the function
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K which corresponds to ¢ is defined by K(x) = 0 or A according as
¥ <1 or x> 1. The extended convergence criterion yields, by im-
mediate transformations, the following

PoISSON CONVERGENCE CRITERION. If the independent summands X,
are such that max on? — 0 and ¥ a2 — N, then L Xux) — @)
k k

if, and only if, 3 EXyi — N\ and, for every ¢ > 0,
3

) x® dF (% + EXn) — 0.

kviz—lize

*§23. SOLUTION OF THE CENTRAL LIMIT PROBLEM

We consider now the general problem. As was pointed out, the
method of attack will be essentially the same as in the case of bounded
variances. The computational difficulties will arise from two facts.
(1) Even existence of first moments is not assumed, and the center-
ings, instead of being at expectations, will have to be at truncated
expectations. (2) The functions K defined previously are not necessar-
ily of bounded variation and, even when they are, they are not assumed
to be of uniformly bounded variation. They will have to be replaced

z 2
by functions of the form ¥,(x) = 3 f 1 -)I’-yz dF,; where F,; will be
kJ—o

d.f’s of the summands centered at truncated expectations. This will
lead to limit laws with log ch.f.’s of a more complicated form, which
we investigate first.

23.1 A family of limit laws; the infinitely decomposable laws. A
law £ and its ch.f. f are said to be infinitely decomposable (i.d.) if, for
every integer 7, there exist (on some pr. space) # independent and identi-

cally distributed r.v.’s Xy, such that £ = ,G(kZlX,.k); in other words,

for every n there exists a ch.f. f, such that f = f,". If f# 0, then
log f exists and is finite and f, = ¢/ '°8/; unless otherwise stated, we
select for log of a ch.f. its principal branch(vanishing at « = 0) and for
the nth root of f we take the function defined by the preceding equality.

Clearly, if a law is i.d., so is its type. The degenerate, normal, and
2

u .
2— or fua +

Poisson type are i.d., since if logf(«) = iua or jua — o 2

A(™® — 1), then }zlog f(u) has the same form whatever be n. More
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generally, the limit laws ¢¥ obtained in the case of bounded variances
are i.d., since the corresponding functions ¢ are such that ¥/# is log of
a ch.f. of the same form (with ¢/# € R and K/n d.f. up to a multipli-
cative constant). In fact

a. The id. family belongs to that of limit laws of the Central Limit
Problem.

For, on the one hand, the uan condition for independent and identically
distributed r.v.’s X,; which figure in the definition of i.d. laws becomes
convergence of their common law to the degenerate at 0, that is, f, — 1;
on the other hand,

b. If, for every n, f = fo" where f, is a ch.f., then fo — 1; and, more-
over, f # 0.

Proof. Since | f| < 1, we have | £, |2 = | f|** — g with g(x) =0
or 1 according as f(#) =0 or f(u) # 0. Since f is continuous and
() = 1, there exists a neighborhood of the origin where | f(x) | > 0
and, hence, g(#) = 1, so that g is continuous in this neighborhood.
Thus, the sequence | f» |? of ch.f.’s converges to a function g continuous
at the origin, the continuity theorem applies, and g is a ch.f. Therefore,
g is continuous on R with g(0) = 1 and, since it takes at most two values
0 and 1, it reduces to 1. Consequently, f = 0, logf exists and

1
. . —log f .. .
is finite, and f, = e» °~ — 1. The proposition is proved.

We shall see later that the family of limit laws of the problem coin-
cides with the i.d. one. This explains the property below.

A. CLoSURE THEOREM. The id. family is closed under compositions
and passages to the limit.

Proof. If fand f’ are i.d. ch.f.’s, then, for every n, there exist ch.f.’s
fn and f'n such that f = f," f' = f',", so that ff' = (faf'n)" where

fnf'n are ch.fs, and the first assertion is proved.
On the other hand, if a sequence f, of i.d. ch.f.’s converges to a ch.f.

2 2 ‘ - -
f, then, for every integer m, |f.|® — | f|™ and, by the continuity
2

theorem, | £|™ is a ch.f. Therefore, | £|? is an i.d. ch.f. and, hence, by
b, f # 0. Since log f exists and is finite, and

3=

1 1 1
= log fn ~logf =~
= em — em — f m’

Jn

it follows that f1/™ is a ch.f., so that fis i.d. This concludes the proof.
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The basic feature of i.d. laws (hence, as we shall see, of all the limit
laws of the Central Limit Problem) is that they are constructed by
means of Poisson type laws. This is made precise in the theorem below
and explicited by the representation theorem which will follow.

B. STRUCTURE THEOREM. A ch.f. is i.d. if, and only if, it is the limit
of sequences of products of Poisson type ch.f.’s.

In other words, the class of i.d. laws coincides with the limit laws of
sequences of sums of independent Poisson type r.v.’s.

Proof. Products f, of Poisson type ch.f.’s are defined by finite sums
of the form

logfn(u) = Z {iuank + Xnk(eiub"k - 1)}3 Ak = 0>
k

so that the functions ;nl-log fa are log of ch.f.’s (of the same kind) what-

ever be the fixed integer m and the f, are i.d.ch.f.’s. Thus, by A, if
fn — fch.f. then fis i.d. This proves the ““if” assertion.
Conversely, if f is i.d., then log f exists and is finite and

1 1 :
n(fr - 1) — logf, fm(u) — 1 =f(e“" — 1) dF,(x)

where F, are d.f.’s. By taking Riemann-Stieltjes sums which approx-
imate f//*(u#) — 1 by less than 1/#%, the “‘only if” assertion follows,
and the proof is terminated.

In what precedes, ¥, (u) = f (e™* — 1)ndF,(x) — log f(u) and ¥ is it-

self log of an i.d.ch.f. Since Var (nF,) = n — o, brutal interchange
of integration and passage to the limit is excluded. However, the in-
tegral inequality in 13.4 yields Var ¥,, £ ¢ < o with d¥,(x) = (¥*/1 +
x2)ndF,(x) so that the weak compactness theorem applies. But the
integrand for d¥,(x) is undetermined at x = 0, and we have to modify
it. This leads to the y-functions below:

Unless otherwise stated, ¥, with or without affixes, will denote a func-

tion defined on R by \\
tux ) 1+ x?
1+ %/

V(u) = tua + f (e"'“’ -1 a¥ (%)

X

where @ € R and ¥ denoting a d.f.—up to a multiplicative constant,
with ¥(—w) = 0; the corresponding ¥, &, ¥ will have same affixes if
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any. The value of the integrand at x = 0, defined by continuity, is
2
—u*/2.

c. Every é® is an id. ch.f.

Proof. We use repeatedly the fact that the class of log’s of ch.f.’s is
closed under additions.

The integrand is bounded in x and continuous in # (or x) for every fixed
x (or u). It follows that the integral is continuous in # and is limit of
Riemann-Stieltjes sums of the form

% tiuan. + Ak (™ — 1)}

where \
1 4 %ak Xnk
Mk = =5 ¥l¥nky Fnk41)y Bak = —Nak 5 bur = Xmk;
Xnk 1 + Xnk

we can and do take all x,; # 0. Since every nonvanishing summand
is log of a (Poisson type) ch.f., the sums are log’s of ch.f.’s, and so is the
integral according to the continuity theorem. Since fua is log of a
ch.f., so is ¥ and, hence, so is every ¢/# corresponding to «/# € R and
¥/n—d.f. up to a multiplicative constant. The assertion is proved.

ReMark. If f x2d¥(x) < o, then

V() = iua +f(ei"’ — 1 — fux) ;lz—dK(x)
where

a=a+ | xd¥(x) € R, dK(x) = (1 4+ x?) d¥(x),

and the i.d. ch.f. ¢ has for first moment @ and for variance Var K < «
(take the first two derivatives at » = 0). Conversely, if an i.d. ch.f.

¢¥ has second (hence first) finite moment, then f 2d¥(x) < o (take

the second symmetric derivative at # = 0). Thus, the family of all
limit laws in the case of bounded variances coincides with the sub-
family of i.d. laws with finite second moments.

We establish now two properties of functions y corresponding to the
unicity and continuity theorems for ch.f.’s. They will be reduced to
these theorems by making correspond to functions ¢ functions ¢ and
&, with same affixes as ¢ if any. We define ¢ on R by

! h —k
o) = ¥() “j; ¥ + )-iz-'l/(u ) i,
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We have, upon replacing ¥ by its defining relation and interchanging
the integrations,

o(u) =j;l{fei“’(l — cos Ax) : -;xzd\ll} dh =fei"’ dd

with \
z sin 1
*() = [ (1 = y) LEA
. —o J J
Since \
i 1
O<c’§(1—smx> +2x S <o
X X

where ¢’ and ¢’ are independent of x € R, it follows that ® is non-
decreasing on R with .

dVarv £ Vard £ ¢”" Var¥ < o

z : 1 2
¥ (x) =f dcb/(l — Smy) +23' .
— J J

C. Unicity THEOREM. There is a one-to-one correspondence between
Sfunctions y and couples (e, ¥).

and

For this reason we shall sometimes write ¢ = (a, ¥).

Proof. By definition, every couple (a, ¥) determines a function y.
Conversely, if ¢ is given, then, by the foregoing considerations, ¥ de-
termines a function ¢ which is a ch.f. (up to a constant factor). By
the inversion formula for ch.f.’s, ¢ determines ® and, in its turn, & de-
termines ¥; furthermore, ¥ and ¥ determine «, which completes the
proof.

[+
D. CONVERGENCE THEOREM. Ifa, — aand ¥, — ¥, then ¢, — .

Conversely, if yn — g continuous at the origin, then an — a and ¥, 5w
such that g = ¢ = (o, V).

Proof. The first assertion follows at once by the Helly-Bray theorem.
As for the converse, since the sequence ¢’ of i.d. ch.f.’s converges to
% continuous at the origin, this convergence is uniform in every finite
interval and, by 23.1b and A, ¢® is an i.d. ch.f. with ¢ > 0. Hence,
g is finite and continuous on R, the sequence ¥, converges to g uni-
formly on every finite interval, and

1 h — A
onlt) — g(2) _j; g(u+ 1) + g(u )dh

2
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continuous on R. In particular,

Var &, = n(0) — f

0

! _
g(h) + g(—4) Jh

< =,

so that variations of the ®, are uniformly bounded. Thus, the con-
tinuity theorem applies to the sequence ¢n, and there exists a nonde-
creasing function ® of bounded variation on R such that, upon applying
the Helly-Bray theorem, at every continuity point x of ® as well as

for x = o, " iny\ 1+ 2
00 = [ dcb,./(l - Smy) 2
—o J J

z N 2
v = ae /(1= T
— y y?

. .
Hence, ¥, — ¥ and, by the same theorem,

) v iux \ 1+ x*
tua,.=ul/,,(u)—fe _1—1+x2 " av,

iue ux 1+ x2.
A R L

= fua.
This terminates the proof.

E. REPRESENTATION THEOREM. The family of id. chf’s coincides
with the family of ch.f.'s of the form &.

Proof. According to 23.1c, every ¢¥ is an i.d. ch.f. Conversely if,
for every n, f = f," where f, is a ch.f. corresponding to a d.f. F,, then,
upon applying the preceding convergence theorem, we obtain

log f(x) = lim n(fin(x) — 1) = limn(fa(x) — 1) = lim f (¢ — 1)n dF,

I (f P 4F
= lim\ 1«4 1+x2 n

) iux \ 1+ x? x> )
tur __ 1 __ . Fn
+f(e : 1+x2) Z Txe?

= |lim ¢,, = some ¢,

with X

A, (x) = n- dF.(x) and ¥, — V.

+ x°
The theorem is proved.
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23.2 The uan condition. The main computational difficulties arise
in connection with the uan condition, and we have to investigate it in
detail. We recall that given a sequence of sums Y Xux of independent

%

r.v.’s, the uan condition is that, for every ¢ > 0,

max P[I X,.kl =€ = maxf dF . — 0.
k k |z|Ze

a. The uan condition implies that

maxluX,,kl—-> o, maxf I X l'dF,.k — 0, >0, >0 finite.
k k

|z | <r

Proof. The medians of a r.v. belong to any interval such that the
pr. for the r.v. to be in the interval is greater than 1/2. Since under
the uan condition min P[I X,.kl < ¢ > 1/2 whatever be ¢ > 0, pro-

k

vided 7 = n, sufficiently large, it follows that max | uXu| < € for
k

n 2 ne and the first assertion is proved.
Under the same condition, by letting # — « and then ¢ — 0, we
have

maxf le'dF,.kée'+maxf | % |" dFnk
k Jlz|<r k Jeslz|<r

S+ maxf dFn, — 0,
k J]|z|2e

and the second assertion is proved.

A. UaN criTERIA. The uan condition is equivalent to

k

2
maxf1+x2dF,.k—>O or m:x‘f,.k—1| — 0

uniformly on every finite interval.

Proof. Under the uan condition, by letting # — « and then ¢ — 0,
we have

x? .
———dF,, S é maxf dFu — 0
m:lel + x? k €+ E Jz|2e *

and,for|u | £ 6 < =,
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m:x If,.k(u) -1 I

< max
k

. ! .
f (e — 1) dFyi | + max lf (e — 1) dF
|z | <e k lz|Ze

< be + 2 max dF,; — 0.
k J|z|Ze

x2

+ «°

1+ é x?
maxf dF,; = 5 maxf dF., — 0,
k J|z|Ze € k |z|§¢1+x2

Conversely, if max f 7 dFn; — 0, then, for every ¢ > 0,
k

and the uan condition holds.
Since, upon replacing f,i(%) by f ¢"* dF,; and interchanging the in-

tegrations, we have

x2 0
m:xfl e dF. = m:lxj; e (1 — Rfni()) du

éj; e " m:lx If,.k(u) -1 l du,

it follows, by the dominated convergence theorem, that max l Sk — 1 I
k
— 0 implies the uan condition, and the proof is complete.

From now on, we fix a finite v > 0 and, for every d.f. F, with or without
affixes, we set

a =j; xdF, F(x) = F(x + a), F(u) =fei'“’ dF

z|<r
with same affixes if any.

We observe that | 2| < 7 and that the “bar” does not mean “complex-
conjugate.”

CoroLLarY 1. Under the uan condition, max I7nk -1 | — 0 uni-
k

Sormly on every finite interval.

Since, by a, max | a,,kl < maxf |x | dFn. — 0, the r.v.’s Xk =
k k lz| <>

Xak — anx obey the uan condition, and the assertion follows by A.
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CoroLLARY 2. Under the uan condition, given b < =, all log far(u)
exist and are finite for | u| £ bandn z ny sufficiently large, and
log fak(#) = far(#) — 1+ Our| fur() = 1% |6me| = 15
similarly for the fur(4).
This follows from A and logz = (z — 1)+ 8|z — 1|% for |z—1]|< %

From now on, if 4 > 0 is given, then we take #» = #;, so that the
foregoing relations hold.

We are now in a position to establish the inequalities which will lead
almost at once to the solution of the Central Limit Problem.

B. CENTRAL INEQUALITIES. Under the uan condition, for n Z ny
sufficiently large, there exist two finite positive constants ¢y = ¢y(b, 1) and
co = co(by 1) Such that
2

7 -1l =
oo 7 — 115 [ 15

b
dFni < czf | log | far(x) | | du.
0

x2

The inequalities follow at once, upon applying a, from two inequalities,
valid for arbitrary r.v.’s, that we establish now. We shall use repeatedly
the two relations

[0 aPs + 0 = [t — o) aF o),

f (x—a)dF=a—af dF=af dF.
|z | <r |zl <r lzlz~

B;. LowEeR BoUND. There exists a finite positive number ¢y = ¢,(a, b, 7)
such that

and

2

| F(w) llsf ~ _JF
clngbfu =J 1442
Proof. Since, for | u| £ 4 < =,
| Fa) — 1]
=|f(gi“(’_“)—1)dF|§2 dF+bf (x—a)dFl
lz|zr |z | <r
2
+ — (x — a)2 dF
2 JizI<r

b2
=(2+|a|b)f dF + — (x — a)® dF
lzlzr 2 Jizl<r
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where
1 2 _ 2
f JF < +(‘r+|a|)f x—a? o
lzlzr (-r—|a|)2 lzlz+ 1 + (x — a)?
and
f (x — a2 dF < {1+ (r + | a|)?) -9 i
|z | <r - |z|<rl-|-(x—a)2 ’

it follows that \

- 1 X
Iﬂw—ﬂg—f dF

aJd 14 %2
where
1 2+ |ale &
o1 2 {_____. ._}.

and the asserted inequality is proved.
Under the uan assertion, for 7 sufficiently large, we have, accord-
T

ing toa,|a|<2

» and we can take for ¢; = ¢;(4, 7) the value of ¢,

obtained upon replacing | 2| by % This proves the left-hand side

central inequality.

B;. UPPER BOUND. For r > | m I, n @ median of F, there exists a finite
positive number cg = ¢(p, b, 7) such that

52 b .
f1+x2dF§czj; (1 — | f(w) |*) du.

If f(u) = OforI u | S bythenl — If(u) |2 can be replaced by 2| log | f(%) I |.
Proof. On account of the elementary inequality

1—|f|? = —log|f|? = 2| log|f] ],

the second assertion follows from the first one. To prove the first as-
sertion, we shall use the symmetrization method and denote by F* the
d.f. of the symmetrized r.v. X — X’ where X and X’ are independent
and identically distributed, so that the corresponding ch.f. f* = | f|2.
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From the elementary inequality

(1 sinbx>1+x2> >0 c R
bx X% =¢ ’

and the relation (obtained upon interchanging the integrations)

b b
f (1 — | f(w) |?) du =f{f (1 — cos ux) du} dr®
0 0
sin &x\ 1 + x? x2
- - : F,
bf<1 bx ) x? 1+ &2 g
it follows that

b v
1) fo (1= |16 [ s 2 beto) [ P

We pass now from_ F*® to F¥, the d.f. of X — pu, and set
¢O=P|X-ulzd ¢O=PlX|24 €0, +=),

so that, upon applying the weak symmetrization lemma (which says
that ¢* < 24°) and integrating by parts, we obtain

x2 0 t2 00 t2
2 fl il _j; i =j; q"(t)d(l +t2)

Swa"(t)d( i )—2f Mg
=), 7 142 “J14+x2

Now, we pass from F* to F. From the elementary inequality

x—a)?=(x—w+2u—ax—a),
it follows that

ﬁl<(x—a)2dpgf & — w2dF + 2(r + |u)

|z| <7

f (x—a)dFl
lz|<r

éf (x — w)?dF + 21(1+|u|)f dF
lz|<r Izlgr

and, hence,

x2 (x — a)?
dF = dF éf — a)? dF dF
f1+x2 1 4+ (x — a)? |z|<f(x %) + lzlzr

éf (x — w?dF + {1 + 2r( + | u|)} dF.
|d <r lzl&r
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Since
(x — p)?
— w2 dF < {1 2 dF
j;o“ ) W etlubn f, St
2
S 1+ G+l [ ap
- 1+ %2
and \ \
1 —
f JF < +(f+|ul)f -
lzlzr (1'—Ip,|)2 |z|§rl+(x—y)2
1 2 2
< +('r+|l£2|)f x P,
, (r—1el) 14+ x
it follows that
@) f * s f <
14+ «% = 1+ x?

where

H=ﬂmﬂ=ﬂ+@+hwwbk

1+27(f+|#|)}‘
(r — | u|)?

Together, the inequalities (1), (2), and (3) yield the inequality

x2 b
_ 2
f1+x2dF§czj;(l | f(#) |?) du

’

c
with ¢o = Z;(—b—) » and the proof is concluded.

’
Under the uan condition, for » 2 7, sufficiently large, | uI < 7 and
we can take for c; = ¢2(4, p, 7) the value of ¢z obtained upon replacing
T
| u| by 5 This proves the right-hand side central inequality.

23.3 Central Limit Theorem. We are ready for the solution of the
Central Limit Problem and can follow the same approach as in the case
of bounded variances, since

a. BouNDEDNESs LEMMA. Under the uan condition, if 1 | fur | — | /|
k

continuous, then there exists a finite constant ¢ > O such that
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Proof. It suffices to prove the assertion for # sufficiently large so
that, by 23.2A, Corollary 2, all log f., exist and are finite. Let 4 > 0
be sufficiently small so that, for | u| < 4, | f(u) | > 0, and log | f(u) |

exists and is finite. Since | f|? is a ch.f, 3 log|fax| — log|f] uni-
%
formly on [—4, 44}, and, by the right-hand side central inequality,

52 b
kf1+x2dF,.k§ —czzk:j; log | far () | du

b
-~ —czf log | f(u) | du < .
0

The assertion follows.

b. CoMpPARISON LEMMA. Under the uan condition, if there exists a con-
stant ¢ such that whatever be n

x2
§f1+x2dpnk§6<°°,

then _ _
2 {log far(#) — (far(u) — 1)} — 0, u € R.

k
Proof. By 23.2A, Corollaries 1 and 2, maxl?,.,c — 1| — 0 and,
k
given & > 0, for l u l < 4 and 7 sufficiently large,

logfux = fur — 1 + Ot | for — 112, | O | = 1.
By the left-hand side central inequality

x2

¢
1 4 &2 * ¢

- 1
| u) 1] = =%
€1 k
It follows that by taking & > | # |, where # € R is arbitrarily fixed,
| 3 tlog Fur(#) — (Fu®) = D} | S | Fr() — 12
k

¢ -
< — max | Ffar() — 11 — 0,
C1 &

and the theorem is proved.

Since (omitting the subscripts)

log f(u) — (F(w) — 1) = logf(u) — {iua +f(ei"’ — 1) dF}
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and

x
“e - 1) dF = iu [ aF
f (e ) Iy e
: 1 1 + &2 x2
_l_f(emz -1 - tux ) + . dF,
1+ &% x? 1 4 %2
the sums which figure in the comparison lemma are

lOg gfnk(u) — Yn(u)

where )
) ] 1
‘I’n(u) = iuan _l_-l~(e"‘z - 1 - 1 ’_:xx2> -:2x d‘I’ﬂ(x)
with
= % {os + [ dFul, () = T ¥ AP
an—k ank 1+x2 nkjs nx—k1+x2 nk\X).

A. CENTRAL LIMIT THEOREM. Let Xy be uan tndependent summands.
1°  The family of limit laws of sequences £(3° Xny) coincides with the
%

family of i.d. laws or, equivalently, with the family of laws with log of ch.f.
¥ = (a, ¥) defined by

i s iux \ 1+ £*
V() = fuc +f(e 1 — T x2> 2 av(x)

where « € R, and V is a d.f. up to a multiplicative constant.
2° L(0° Xuk) — £(X) with log of chf. necessarily of the form
%

¥ = (o, ¥) #f, and only if,

c
‘I’n - ‘I’, an - a,
where

ank =j; X ank, Fnk(x) = Fnk(x + ank),

z|<r

with v > 0 finite and arbitrarily fixed.

Proof. Every id. law is a limit law of the Central Limit Problem.
Conversely, if, under the uan condition, IkIfnk — f ch.f., then, on
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account of the boundedness lemma, the comparison lemma applies and
¢ — f. Thus, on the one hand, by the closure theorem for i.d. laws
f=¢"isid. and 1° is proved. On the other hand, ¥, — ¥ and hence,
by the convergence theorem for i.d. laws, \Il,.—c-> ¥, an — a, and the
“only if” part of 2° is proved. .

Conversely, if @, — a and ¥, — ¥, so that

x2

1 + «?

Var\Iz,.=2f dF.. — Var¥ < «
k

and the comparison lemma applies, then ¢, — ¢ hence I1 fur — ¢¥,
k

and the “if” part of 2° is proved. This terminates the proof.
Extension. It may happen that under the uan condition, the sequence
L3 Xar) does not converge, yet the sequence £(2° Xar — @,) con-
x

verges for suitably chosen constants a,; this is the situation in the

Bernoulli case and, more generally, in the classical limit problem where

Xk = Xi/bn with b, =n or s,. Then JJ fax(#) is replaced by
k

~1udn

e I1 fax(#) and the boundedness lemma can still be used, since it
k

refers only to the moduli of products. On the other hand, the sums in
the comparison lemma can be written log {e™ ™ I far()} —
k

{ —iua, + yo(u)}. Since —iua, + Ya(#) is still a Y-function, the Cen-
tral Limit theorem remains valid, provided a, is replaced by a, — aj,,
and the theorem can be stated as follows:

B. EXTENDED CENTRAL LIMIT THEOREM. Let Xk be uan tndependent
summands.
1°  The family of limit laws of sequences £(3 Xnr — an) coincides
k

with the family of i.d. laws.
2° There exist constants a, such that the sequence £(3_ Xux — an)

- - c
converges if, and only if, ¥, — some ¥, where

}’2 T
‘I’n(x) = ; _n1+y2d nke

Then all admissible a, are of the form an = an — a + o(l) where «
L x
is an arbitrary finite number and an, = kE {ank +f‘l—_|:§ ank}; and
all possible limit laws have for log of ch.f. ¥ = (a, ¥).
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23.4 Central convergence criterion. The convergence criterion 22.3A
2° is expressed in terms of expressions twice removed from the primary
datum—the d.f.’s of the summands, and the probabilistic meaning of
these expressions is somewhat hidden. We transform it by unpleasant
but elementary computations as follows:

A. CENTRAL CONVERGENCE CRITERION. I[f X, are uan indcpendent
summands, then

ank "’f= e‘p, Y = (a, ‘I’)y
k
if, and only if,

(1) at every continuity point x = 0 of ¥

|
> Foar(x) —-»f +2y2 dVv for x <0,
k y

ml 2
51— Fu) = [~ for x>0
k z Yy

(ii) as n — o and then e — 0

£lf, - ([, )] w0 o

(iii) for a fixed v > O such that 1 are continuity points of ¥

1
> xdFp — o+ xd¥ — - dv.

kvYlzl<r lz|<r lz|lZzr X

The iterated limit in (i) is the generalized iterated limit lim lim,.

e— 0 T~
Proof. We have to prove that the three stated conditions are equiva-
lent to

c X%
(C) v, _") ¥ with d\I',.(x) = m%dpnk
and
(CH % {@nk +f1 —:::2 ank} — a, with an =[zl<fx dF .,

Fnk(x) = Fnk(x + ant).
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1° Let x be continuity points of ¥. It is readily seen that condition
(C) can be written as follows:

Vau(x) = ¥(x) for x <0,
Vo(+®) — Tpu(x) — ¥(+o) — ¥(x) for x>0
and, as # — « and then ¢ — 0,
Ya(+€) — ¥n(—€) — ¥(+0) — ¥(-0).

It follows, upon replacing ¥, by its defining expression and applying
the Helly-Bray theorem, that (C) is equivalent to

z 2
(Cy) Y Far(x) —-»f 1+2_y d¥v for x <0,
k — Y
© 2

3 {1 — Fu(x)} —-»f 1+2y dv for x>0

k T Y
and

52

(Ca) > J T P = YD) ~ ¥(=0)

as 7 — o andthen ¢ — O.

Let a, = maxf | x | dFux so that | aax | < 4. — 0. Since
k lz|<r

Z Foulx — a,) = Z Fnk(") = Z Fre(x + a,),
k k k

and the continuity points x of ¥ are continuity points of the integrals
in (C,), it follows at once that the first parts of (i) and (C,) are equiva-
lent; similarly for the second parts. Thus (C,) is equivalent to (i).

2° Since

1 x?
2an < —“‘_‘an = x? an s
1+€2§»/l‘z|<¢x k_§ |z|<¢1+x2 k % |z | <e k

condition (C,) is equivalent to

x2 dFn — ¥(40) — ¥(—0) as # —  andthen e — 0.

kVlzl<e
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But, on ac¢count of (i), as # — « and then ¢ — 0,

l 2 x2 ank - 2 (x - ank)2 ank'

kVIzl<e kVlz|<e
};-( f + f ) (x — an)? dF e < 2};, f (% — aur)? dF—0
|I| >e |z] <e ..
[z=ap)<e  |o—a,|=e s<lzls2e

and, since @, — 0, we have, for ¢ < 7,

2
_ 2 _ 2 _
5f, b ewrama- [ ([ vara) ]
2
= _ 2
l§(£§|z|<f"ank) %ankjl;lgtankl

< (ran + an2) 2 | dFn — 0.
PRYEIPFT

Therefore, under (i) or its equivalent (C,), condition (C;) is equivalent
to (ii). Thus, condition (C) is equivalent to (i) and (ii).

3° It remains to prove that, under (C) or its equivalent (i) and (ii),
condition (C’) is equivalent to (iii). Since

X
%f 1+ «? 4Fue

=Y xdFu — 3

PRYUEIRS PRUETRE I S

3

X X

ank

an
2 k+§|x|gfl+x2

and, 7 being continuity points of ¥, we have, by the Helly-Bray
theorem,

zf * P f 4% 4v
nk = n —
k |z|<rl+x2 k |z|<fx |z|<fx

Zf * _JF f ld\Il ld\Il
nk = - n > - ’
rJlzize 1 + %2 * lz|27Xx lzlz7x

it suffices to prove that ) x dFa — 0. This assertion follows
kJ|z|<r

from the fact that 4, — 0 and =7, being continuity points of ¥, are
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continuity points of integrals in (i), so that, by (i),

2 X ank = (x — ank) ank
kvYlz|<r kVlz|<r H
+ Z{f (x_ank)ank
k |z—ant| <t
- (x - ank) ank}
lzl <7
< ap 2 dFn; + (7' + an) dFn. — 0.

Evlzlzr rlzl<r+an

This terminates the proof.

Remark 1. In the course of the proof, it was found that condition

(i) can be written with F,; instead of Fy; and condition (iiy is equiva-
lent to

(i) > x2 dFp — ¥(+0) — ¥(—0)

EvVilzl<e

as 7 — o and then e — 0.

Remark 2. In conditions (ii) or (ii’), the passages to the limit can
be taken indifferently to be lim lim sup or lim liminf, instead of

e— 0 n «e— 0 n

the generalized iterated limit; we leave the verification to the reader.

Upon using the extended Central Limit theorem, the central con-

vergence criterion extends at once to sums with variable origin, as
follows:

B. EXTENDED CENTRAL CONVERGENCE CRITERION. If X, are uan in-
dependent summands, then there exist constants a, such that e=***" I fur(u)
k

— &Y where y = (a, V) if, and only if, conditions (i) and (i1) of the
central convergence criterion hold. Then the admissible a, are of the form

1
a,.=2f XdFpr — a — x d¥ + —d¥ + o(1)
kvlz|<r |z| <7 lz|Zz7 X
where =1 are fixed continuity points of ¥.
This criterion implies properties of min Xnx and max X In fact,
k k

it takes then a more intuitive form, as follows:
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C. EXTREMA CRITERION. Let X, be uan independent summands, and
let Xni* = Xar or O according as I Xk | <eor| Xn I = e
The sequence ,B(kZ Xak — an) converges for suitable constants a, if,

and only if, the sequences ,B(n’xcin Xak)y £(max Xpi) and Y ®* X1t con-
k )

verge as n — «© and then ¢ — 0.
More precisely, 3(; Xnk — @) — £(X) with £(X) necessarily an

id. law (a, V) if, and only if, as n — « and then ¢ — 0,

Y X' — ¥(40) — ¥(-0)
and
£(n';cln Xax) — £(Y), £(mkax Xnk) — £(2)

with

Fy(x) =1 — 7X@ or 1 and Fz(x) = 0 or @, according as x < 0
or x > 0,
where
z 1 + y2

Ly = =50, 5 <05 L= -

1+
3

2
Y #9(y), x> 0.

Kn
Proof. Let G, be the d.f. of min X, so that 1 — G, = [T (1 — Fo).

k§kn k==
For every fixed x > 0, Fpr(x) — 1 uniformly in & and, hencle, Ga(x) —
1. For every fixed x <0, Fur(x) — O uniformly in % and, hence, for
n sufficiently large,

log (1 — Ga(x)) = %,log (I = Far(x)) = — (1 + o(1)) 2 Far(x).
. k

Therefore, the assertion relative to Fy is equivalent to the first part of
condition (i) of the central convergence criterion; similarly for the
assertion relative to Fz. The theorem follows.

23.5 Normal, Poisson, and degenerate convergence. We apply now
the central convergence criterion to the three first-discovered limit
types. We set

2
ank(‘r) =f X ank, a'nk2(1') =f x2 ank - (f X dFﬂk)
[z]<r |z ] <r |z|<r

1° A normal law 9(a, ¢®) corresponds to ¥(u) = fua — 9-2— 4%, that

is, ¥ = (o, ¥) where ¥(x) = 0 or o® according as x < 0 or x > 0.




328 CENTRAL LIMIT PROBLEM [Skc. 23]

NORMAL CONVERGENCE CRITERION. If X, are independent summands,
then, for every e > O,

.B(; Xar) — e, 0®) and ma’lcx P[| X,.kl =¢g—0

if, and only if, for every ¢ > 0 and a r > 0,
() Pl Xulzd—0
k

(i1) Y ol (®) = %, T an(n) — o
k k

Proof. We have, under (i),
max Pl| X | 2 ] = T P[] Xu| = d — 0.
k

k

Furthermore, always under (i), if ¢ < 7, then

> o (1) — Lon(e) | = Zf P dFu+ 27y
p k Fesizi<r -

esS|z|<r

é 312 2f§|z|< ank - O

and the same is true of ¢ > 7; it suffices to interchange ¢ and r in the
foregoing chain of inequalities. Upon taking into account these conse-
quences of (i), the foregoing criterion follows from the central con-
vergence criterion applied to the limit law 9(«, ¢2).

CoroLLARY. [If Xni are independent summands and the sequence
.B(Z Xak) converges, then the limit law s normal and the uan condition

is satzsﬁed if, and only if, max | Xk | 5 0.

Upon setting ppr = P[I X,.kl = ¢, it suffices to observe that, because
of the independence of the summands,

Plmax| Xu| 2 d = 1 — 1 (1 — puo)-
k k

For, upon applying the elementary inequality
1 —expl— Xpml S 1 =1 (1 = prt) S 2 P
k k k

it follows that the asserted condition is equivalent to condition (i) of
the above criterion.
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2° The Poisson law ®(\) corresponds to ¢(x) = A(e™ — 1) and,

A . A .
consequently, to Y = (-2- , \Il) with ¥(x) = 0 or 5 according as x < 1

or x > 1. Upon applying the central convergence criterion and observ-
ing that the condition relative to the a,:%(¢) reduces exactly as in the
normal case, we obtain the

Po1SSON CONVERGENCE CRITERION. If X, are uan independent sum-
mands, then £(3_ Xar) — @) if, and only if, for every ¢ € (0, 1) and
k

ar e (O> 1),

(1) Zf dFn. — 0 and Y dF.. — \
kvlzl2elz—1(2¢ rVlz—11<,
(11) Y oni2(r) = 0 and Y an(r) — O.
k k

3° The degenerate law £(0) can be considered as a degenerate nor-
mal 9U(0, 0) so that the normal convergence criterion reduces to the

DEGENERATE CONVERGENCE CRITERION. If Xy are independent sum-
mands, then £(3 Xar) — £(0) and the uan condition is satisfied if, and
k

only if, for every ¢ >0 and a v >0

(1) > dF,. — 0
PRYEIE-T
(i1) Y oari(r) — O, % ank(r) — 0.
k

CoroLLARY 1. If X are independent summands and b, T =, then

L (%2) — 0 if, and only if, for every ¢ > 0

(i) | %A[I‘zléebndFk =0

1 2
'—22{f x2dFk'—(f xdFk>} — 0,
bn® % | 2| <bn | 2| <bn

1
-——Zf xdF;, — 0.
bn kv z|<bdn

(ii)
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Because of the above criterion, taking + = 1 and observing that for

X n
Xk = Zic » Far(¥) = Fi(bnx), it remains only to prove that £ (i_) -

£(0) implies the uan condition. This follows from the fact that

Sn . .
P[ 3 <e€|>1-23, for n = n, sufficiently large, implies that, for
n > ngs,
i n [ Sn bn—-l Sn—-l
Pll—| <2|=P||—— — < 2e
= n L bn bn bn—-l
[ Sn Sn—-l
=2 Pll—|<e [ < e] =1— 2.
L bn bn—-l

Remark. For the degenerate convergence criterion, (ii) and (i) with
e = 7 imply that £(3° Xnr) — £(0). For, as in 21.2A, by Tchebichev
x

inequality, (i1) implies that £(3° X)) — £(0) and then, by 21.1b,
%
(1) implies that £(3° X)) — £(0).
k

In particular, in Corollary 1, we may take ¢ = 1. Thus, for &, = 7, we
have

Sn
CoroLLARY 2. If X} are independent summands, then £ <——) — £(0)
n
if, and only if,

Evizlzn
1 2
(i1) —EZ{I x2dFk—(f xdFk) } — 0,
n o lzl<n lzl<n
1
(iii) - x dFy — 0.
nopvlzl<n

This is the classical degenerate convergence criterion.

The reader is invited to specialize 23.4C to the three foregoing cases.

In particular, it implies the corollary to the normal convergence criterion.
As for the Poisson case, dL(x) = 0 or \ according as x # 1 or x = 1 so
that

If,c(; Xank) = £(X),then £(X) = ®(\) if and only if szkin(X,.k) —

£(0) and £(max Xnx) — £(0, 1) with two values O and 1 only of pr. e~
k

and 1 — e, respectively.
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*§ 24. NORMED SUMS

*24.1 Theproblem. Let —i—"— — a» be normed sums with d.f. G, and

ch.f. gn, where S, = - X} are consecutive sums of independent r.v.’s
k=1

X with d.f.’s Fy, and ch.f’s fi, and where a,, &, > 0 are finite numbers;
thus

gn(u) = e7™on ﬁ Ji <i>

k=1 bn

In what follows k runsover 1, -, n;n =1, ---
If the X, = Xi/b, obey the uan condition:

2
X
ax P[| Xz | = e,] — O ax | ——— dF.(x 0
mkx [l kl €] or mkx PR (%) —
u
or maxfk(—~>—ll—->0,
k bn

then, according to the extended Central Limit Theorem, all possible

.. S )
limit laws of sequences f- — a, of normed sums form a family 3 of
n

1.d. laws, and the extended central convergence criterion applies with
Far(x) = Fi(bnx).

However, in the case of normed sums, new problems arise.

1° Given a sequence X, of independent r.v.’s, find whether there
exist sequences @, and &, > 0 such that the uan condition (for the
Xi/bs) is satisfied and g, — f ch.f., necessarily of the form ¢¥ with
¥ = (@, ¥); and if such sequences exist, then characterize them.

2° Characterize the family 9; in other words, characterize those
i.d. ch.f.’s ¢¥ and the corresponding functions ¥ which represent limit
laws of normed sums obeying the uan condition.

But on the one hand, according to the convergence of types theorem,

there always exist sequences @, and 4, > 0 such that the limit laws of

S
-Z'-‘- — a, are degenerate and, on the other hand, all degenerate laws
n

belong to 9t: €@ = (¢'**/*)*. Thus, whenever convenient, we can and do
exclude degenerate limit laws from our considerations.

a. If g — f nondegenerate ch.f., then the uan condition for the Xi/bn
implies that b, — o and bny/bn — 1.
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Proof. We have

gn(@) = e ™ 11 fa <i> — f(#) nondegenerate.
k bn

If 6o oo, then the sequence 4, contains a bounded subsequence
and, by the Bolzano-Weierstrass lemma, this subsequence contains
another sequence 4, — b finite as n’ — . Setting #,, = bp.u, the
uan condition implies that for every %, fi(#) = fi(#n'/bn’) — 1; hence,
Se =1 and f = 1. This contradicts the nondegeneracy assumption so
that, @b contrario, b, — .

. p . .
Since Xny1/bn+1 — 0, it follows by the law-equivalence lemma that

_ Sn Sn § 1
the limit laws of the sequences — — 4, and — Qpyy = nt

n n+41 bn-}-l
Xn+l

n+1
with b, = bn/bn41 and f nondegenerate. It follows, by the corollary
to the convergence of types theorem, that 4,,/4, — 1. The proof is
complete.

*24.2 Norming sequences. We have at our disposal the necessary
tools to solve the problem of existence and determination of norming
sequences 4, and 4, > 0. Given the summands, we know, according
to the convergence of types theorem, that 1° all the limit laws belong—
if they exist—to the positive type of one i.d. law and 2° it suffices to
find one pair of such sequences. Furthermore, on account of the ex-
tended convergence criterion (with Xnr = Xi/b,), 3° if there exists
a limit 1.d. positive type, then the a, are determined by the expression
given there, 4° the uan condition is satisfied and g, — ¢ if, and only if,

are the same. Thus e~ Zn(On'u) — f(u) as n’ — oo,

n41 —

2
X' c
m:xfm dFy(x) - 0 and V¥, — V¥

where ¥, are defined on R by

baz }’2
(D) ¥a(x) = Zkif_w mdFk(V + onk)y  onk =j];] <bn'x dF(x)

with =7 % O fixed continuity points of ¥ (we shall see later that any
7 is admissible, so that we may set, say, r = 1). The theorem below
completes the answer. As usual, the superscript “s” will denote the
operation of symmetrization.
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A. NorMING THEOREM. There exist sequences b, such that
S . . . .
£ (b—" - a,,) — L£(X) for suitable a, if, and only if, there exists a ¥
n
such that, upon setting in (D), bn = &'y > 0 determined by

2k f G P = ¥e)
1

we have

) f R — 0

1 I e— - b
max I e(x

(ii) v, = V.

. . ) A
Proof. The “if” assertion follows by taking normed sums 7. an.
Because of the corollary to the convergence of types theorem and of
the extended central convergence criterion, the “only if” assertion will

follow by proving that if ‘,(’.<ﬁ - a,,) — £(X) with ch.f. ¢%, ¢ =

on
(a, ¥), then &', /6, — 1.
Upon symmetrizing, the hypothesis becomes £(S,*/4,) — £(X®) and
the corresponding ¥° is defined by

¥(x) = ¥(x) + ¥(+o) — ¥(—x + 0).
Thus ¥,° — ¥* where ¥,* are defined by
A b g2
) = kz=:l o On® + %°

Upon using ¥*(+4w) = 2¥(+), and (D) with &, replaced by 4'n, it
follows that

n x2 x2
= = _JF —f-——————dF‘ }-—eo.
Z {f R RO = ) e e

On the other hand, since degenerate limit laws are excluded, ¥° does
not reduce to a constant. Therefore, there exists an @ > 0 such that
26 = ¥ (a) — ¥’ (—a+0) >0 and, hence, for # = n, sufficiently
large,

dF i’ (x).

s (T mew 0
—_— ’(x) > &6 >0.
k§l j'_“b" bnz +‘ x2 ¢ (
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It follows that

O(—-—IA,,|=lb,,2—b'n2lzn:f ¥
k1 oV (Gn® + &%) (802 + &F)

. lbn2 - b’n2| n f+ab" x2

= bn2 +' a2b’n2 k=1 abn (b’n2 +' x2)

2

dFy’(x)

dF;’(x)

' \2 __
S Gt —1]
1 + a%6,2/4' 2

0,

so that 4,/4'n — 1, and the proof is complete.

*24.3 Characterization of 931. We characterize % by a decomposa-
bility property and, then, we characterize the corresponding func-
tions V.

In order to define the decomposability property we prove

a. If to a ch.f. f there corresponds a number ¢ > 0 and a nondegenerate
ch.f. fo such that, for every u, f(u) = flcu)fc(u), then ¢ < 1.

Proof. 1If ¢ = 1, then f, = 1. If ¢ > 1, then, replacing repeatedly

in the assumed relation u byff_ and | f. | by 1, we have

oz )]s 2

and f is degenerate, so that f. is degenerate. The assertion follows
ab contrario.

We say that a law and its ch.f. f are self-decomposable if, for every
¢ € (0, 1), there exists a ch.f. f; such that, for every u, f(x) = f(cu)f.(u).
Clearly, a degenerate ch.f. is self-decomposable and all its components
fc are also degenerate.

b. If f is self-decomposable, then f # 0.

Proof. If f(2a) = 0 and f(u) # O for 0 £ u < 2a, then f,(2a) = 0.
Upon replacing ¢ and 4 by @ in

| fot + &) = fo0) |? = 2{1 — ®f(B)},
we obtain

o) |* = 2{1 - &/(a)}.

This leads to a contradiction since, by letting ¢ — 1, we obtain
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fela) = fj(;(:; — 1 and the inequality becomes 1 £ 0. The assertion

follows @b contrario.

A. SELF-DECOMPOSABILITY CRITERION. A law belongs to 9 if, and
only if, it is self-decomposable.

Proof. A degenerate law certainly belongs to 9, so that it suffices to
consider nondegenerate laws with ch.f. f.

1° If f is self-decomposable, then let Xp(k =1, ---, n) be inde-
pendent r.v.’s, with ch.f. f defined by

N
Jew) —flﬁ_z_l(k”) Sk = 1)u)

Since f (5) — 1 uniformly in & and the ch.f. of% is given by
u
I (%) = A,
k n

the “if”’ assertion follows.

. Sn
2° Conversely, let f belong to 9. There exist normed sums 5. " 4n
with ch.f. g, such that, denoting by f; the ch.f. of summands X,

gnlu) = 7™ IkIfk (—-—) — f(u)

U
2

on
and, by 24.1b, 4, — o, ;l — 1. Then, given ¢ € (0, 1), we can

n

. . m
make correspond to every integer »# an integer m < n such that — — ¢

. n
and m,n — m — o asn — . Since

0 v e B s )

k=1 bn bm k=m+41 bn

where g.(u#) — f(u), and the first bracket converges to f(cu), it fol-
lows that the ch.f. g,..», whose values figure within the second bracket,

converges to the continuous function f, defined by f.(x) = S) There-

few)”

fore, by the continuity theorem, f. is a ch.f., and the proof is concluded.

CoroLLARY. A self-decomposable ch.f. f and its components f, are i.d.
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Proof. Since f belongs to 91, f is i.d. On the other hand, upon taking
for fi the ch.f. of r.v.’s X} defined in 1° and m < # such that - -

we have
f) = kglfk( 2) 1 I lfk()

The first product converges to f(c«); the second one converges to f.(u).
n

Thus, f. is ch.f. of the limit law of sums 3. X,x where the summands
k=m+1

X .. . .
Xk = —n—k obey the uan condition. Therefore, f; is an id. ch.f., and the

proof is concluded.

We express now the self-decomposability criterion in terms of func-
tions ¥ which figure in the representation of the i.d. self-decomposable

ch.f.’s.

B. W-crITERION. Self-decomposable laws coincide with i.d. laws with
Sfunctions ¥ such that on (—c, 0) and on (0, ), their left and right
2

al ¥'(x) do not

. 1
derivatives, denoted indifferently by ¥'(x), exist and _i;

tncrease.

Proof. Because of the preceding corollary, the self-decomposability
property of a ch.f. f, necessarily of the form ¢¥, is as follows: for every

¢ € (0,1) the difference ¥ (x) = ¥(u) — Y(cu) defines a yY-function
(a log of an 1.d. ch.f.).
"lx)}

Upon replacing x by ¢
. fux \ 1+ c72x% _
+f (emz - 1= 1+ x2> ¢ 22 ).

. tux 1 + «2
) = i+ [ =1 = - -:x2> X a)

where «, i1s a finite number and

1 + 7242
T+ )

—1x, we can write

(1) y(cu) = iu {ca + 1 —-c

Thus

(2)  d¥(x) = d¥(x) - d¥(c'x), ¥e(—) =0.
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Since ¥, is a difference of two ¥-functions, its variation on R is bounded.

It follows readily that y. is a y-function if, and only if, ¥, is nondecreas-
ing on R. Since

B) W (4+0) — ¥ (—0) = (1 — A){¥(+0) — ¥(-0)} = 0,
the self-decomposability property becomes 4¥.(x) =0 for every

¢ € (0, 1) and x £ 0 or, equivalently, on account of (2), for every
¢ € (0, 1) and arbitrary ¥’ < ", ¥’x’’ > 0,

z'! 1- 2
4) f | +2y A (y)

J
z!’ 1 +‘}’2 z'’ 1 + 5_2}’2
=f ) -f “TL ) ey 20

, , c—2y?

It remains to show that this last inequality implies and is implied by
the one asserted in the theorem.

If
pr 1 +y2
J(x) = s—d¥(y), x € R,
o0 4
then, by setting in (4) ¥’ = &, %" = ¢%, ¢ = ¢, we obtain

Je+ B+ =B
2

J&) = Jx—hzJe+h) —Jx or Jix =

Therefore, the nondecreasing finite function J/ on R is convex (from
above) and, consequently, J is continuous and its left and right deriva-
tives J'(x) exist and do not increase on R. Since

Jx+h) = J@x) 14 S0 g (@) - 9(”)

o -1 e::+20h e::+h — &~

v 0=26=1,

it follows, letting 2 — O and setting ¢* = y, that the left and right de-
c 2

¥’(y) do not increase on (0, «).

-e* 1 +‘}’2
y2

rivatives ¥'(y) exist and that

Similarly, introducing J~(x) =f

same is true on (—o, 0). Thus (4) implies the asserted property of ¥.

d¥(y), we find that the
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Conversely, if this asserted property is true then, for every ¢ € (0, 1)
and ¥’ < &', ¥’x” > 0

[ [

;f —'——+c 4 ’(“)—
z’ }'

¢

z!’ 1 —2 2
= f —t-—— a¥(c™y),
z ¢ }'

so that the inequality in (4) holds and the conclusion is reached.

REemaRrk. Since Poisson laws correspond to functions ¥ discontinuous
at some x % 0, they do not belong to the family 9. This explains the
isolation in which they remained as long as only limit laws of normed
sums were considered.

*24.4 Identically distributed summands and stable laws. The first
Sfamily 9 of limit laws to be investigated by P. Lévy, was that of limit
Sn . . . .
laws of normed sums 5. " 4n of independent and identically distributed
summands Xj; with an arbitrary common ch.f. fo. In other words,
917 is defined as the family of laws whose ch.f.’s f are such that

galu) = e7™enfy" (f;) — f(u), u € R.

Clearly, the uan condition is satisfied, so that 91y C 9t. The self-
decomposability concept and the criteria for 9t are easily particularized
for 9y, as follows; we exclude degenerate limit laws which, clearly,
belong to 91;. Let a law and its ch.f. f be called stable if, for arbitrary
b > 0,4 > 0, there exist finite numbers @ and &’ > 0 such that

fB"u) = e f(bu)f(b'u), u € R.
5 5

Upon replacing 4"’y by u and setting.c = 7 ¢ = 7 we obtain

F) = EVHef(n) = flenlfo(w)

where

Folw) = V).
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The self-decomposability criterion for 91 becomes

A. STABILITY CRITERION. A law belongs to Iy if, and only if, it is
stable.

Proof. The “if” assertion follows from the fact that stability of
S implies, taking fo = f, that the ch.f. of §, is of the form f*(u) =
¢"“**f(bau) so that, norming §, with these quantities @, and &,, we have
gn =/

Conversely, leaving out—to simplify the writing—factors of the
form ™4, which does not restrict the generality, we have to prove that

u
fo" (—;) — f(u), u € R, implies that to arbitrary & > 0, &' > 0, there

corresponds & > 0 such that f("'u) = f(bu) f(6'u). Since b, — o and
bn-}-l

— 1, we can assign to every integer 7 integers m and m’ such that

m +m/’ . —fm | ™ m [
fo ( b brim )G
and the right-hand side converges to f(bu)f(é'u), while, according to

the convergence of types theorem, there exists 4/ > 0 such that the
left-hand side converges to f(¢”’#). The conclusion is reached.

Thus, a stable law is self-decomposable and, moreover, f. belongs to the
positive type of f; in particular f is an i.d. ch.f.

The W-criterion for N is easily transformed and, furthermore, the
stable ch.f.’s are obtained in terms of elementary functions of analysis,
as follows.

B. A function f is a stable ch.f. if, and only if, either

0 log f(x) = fau — | u|” {1 + icr%tanzz-r'y}
or

(i) log f() =iau—b|u|{1+ici—;i~|.%loglul}
with

aio) bz 0, |C|§1) ye€ (O, 1)U (2]
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We observe that ¥y = 2 gives the normal laws and that real stable
ch.f.’s are of the form ¢~ 4" | 0 < v < 2,

Proof. If the asserted forms of f are ch.f.’s, then they are clearly
stable. Thus, we have to prove that these forms are ch.f.’s and that
stable ones are of this form. The first assertion will follow if we can
determine functions ¥ such that log f = (e, V).

Let f = ¢¥ be a stable ch.f., that is, for arbitrary 4 > 0 and 4’ > 0,
there exist @ and 4" > 0 such that

iua + Y (bu) + Y(6'u) = ¥(&"u).

. . b
1° We follow the pattern of ¥-criterion’s proof <w1th ¢ = ;) . Upon
replacing ¥ by its representation in terms of a and ¥, the foregoing
requirement reduces to

1 b2 2 1 b'2 2 1 b"2 2
+b2 T AU + —i’;,-z,——f—d\p(b'x) - —j'-b-nz—’i-d\p(b"x).

Upon introducing the functions J and /™~ defined on R by

1 2 —e* 1 2
= [ Ta, w= ;y (), ¥ ER,

y* .
and setting & = 4, & = ¥, &* = 4", this requirement becomes
(1) {¥(+0) — ¥(—=0)}(¢* + &> - "% =0
and
(2) JE+ A+ Jx+ ) = J(x+ 2,
Jx+h+ ] x+A)=]"(x+74), x€R,

where 4, 2’ are arbitrary numbers and %’ is a function of 4 and 4'.

Let ¥(+4®) — ¥(+0) > 0 so that J does not vanish. If, in the
foregoing relation in J, we set repeatedly A’ = 4, it follows that, for
arbitrary positive integers # and sn,

nJx+ k) =Jx+ k), snJx+k) = Jx+ 2'wm).

Therefore, to every rational s > 0(s" > 0) there corresponds a number
t(t'), such that, for every x,

) sJ (%) = J(x + 9).

Since J is continuous from the left and nondecreasing, with / <0,
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J(+») =0, it follows that # | # as s’ T 5, so that J is continuous, (3)
holds for irrational s as well, and

t]2. as sTg¢.
Since J does not vanish, we can assume—by changing the origin if
necessary—that J(0) & 0. Then, setting Jo = J/J(0), it follows, by

sJO) = J@, s'JO) =J¢), sJ@) =]+,
Jo@)Jo(t) = Jot + 1), £ ¢ €R.

The only nonvanishing continuous solution of this functional equation,

with Jo(e) = 0, is proportional to ¢~ with ¥ > 0. Therefore, setting
y = ¢ and going back to ¥, the derivative ¥'(y) exists for y > 0 and

l—i—y2

that

¥(y) =8y"" 820,

taking into account the vanishing case. Since ¥ is of bounded variation
0

on (0, +), it follows that f y'~7 dy is finite for € > 0 and, hence,
€

v < 2. Furthermore, replacing J in (2) by its above-found expression,
we have

O+ YT =07, 0<y <2
Similarly, with J7: for y < 0
+y ,
‘I’(}’) —ﬂl}’i_‘y, ﬂgo,
with 8+ &7 = 4", hencey = v’ (set & = &' = 1).

Therefore, on account of (1), either 4% + 42 = 4’2 so that J and J~
vanish and f is a normal ch.f., or ¥(40) — ¥(—0) = 0 and, for y # 0,
¥'(y) is given by the foregoing relations.

2° According to what precedes, a stable ch.f. f is either normal or
of the form

) =0/ tux dx
(1) logf(u)=zua+;3f (e‘“’—1—1+x2)‘x‘1+7

, +oo tu ux dx
+ﬂj; (e —1—1+x2 B

If 0 < vy < 1, then it is possible to take out of the bracket the term
tux

e and, by modifying «, we obtain
x

o dx ° . d.
2) logf(u)=iua’+Bf (e — )l [1+7+ﬁf (e = 1) ?

e,
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Let # > 0. Setting ux = v and integrating along the closed contour
formed by the positive halves of the real and imaginary axes and a
circumference centered at the origin of radius » — o, it follows, by
the Cauchy theorem, that

) tuz dx -5
3) fo (¢ = 1)<y = | ulre ™37 (=),

where
dv

I'(—v) =f €™ = 15 <0.
0

The first integral in (1) follows by taking the complex-conjugate of
(3) and, for # < 0, log f(u) is obtained by taking the complex-conjugate
of logf(| #|). Upon substituting in (2) and setting

L B — 6
b= —-T(-7v)B+B)cos-v, ¢ =—b
2 B+ B
so that 4 = 0, | ¢| < 1, we obtain the asserted form (i) of log f().
If 1 <+ <2, then we can take out of the bracket in (1) the term

iux
+ iux, and (2) is replaced by

1 + %%
s ot ° iu : dx
(4) log f(u) = iua" + ﬁf_w(e T — 1 — iux) W

’ " uz : dx
+ﬂj; (e —l—zux)W:’-

Proceeding as above we obtain the same form (i) of log f(u).
If v = 1, the foregoing modifications of the third term in the bracket

in (1) are no more possible. But, for # > 0,

oo iux \ dx
f <emz_1_ i
+0 1+ x°/ x

f”cosux—ld f”( ux )dx

—3 D — u — —

. 2 x + 1 ‘o sin ux 11 2 2

T +oinli {f+°° sinvd f°° dv }
2" “ el{r(l) o VP ’ . o(l 4+ o®)

T - ““sin v o+ iuli ® (sin v 1 )dv
= ——y — — iu lim - :
2" “ el{r(l) . 0P o eloJ, v o(1 + %)
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The limit of the second integral exists and is finite, and that of the first
one is log u. The asserted form (ii) of log f(#) readily follows, and the
conclusion is reached.

24.5. Lévy representation. This subsection may read immediately
after 24.1 except for reformulations of results in the intervening subsec-
tions.

So far we used systematically Khintchine representation of i.d. ch.f.’s
e¥ with ¢ = (a, ¥) representing

1 2
Y(u) = jau + f (et‘ux -1- 1I:—xx2>1 1’2" A (x)

where & € R and the Khintchine function ¥ is bounded nondecreasing
with¥(— @) = 0,¥(+ =) < = or, in terms of the measure which cor-
responds biunivoquely to it and is also denoted by ¥, the Khintchine
measure ¥ on R (that is, on the Borel field of R), is bounded. ¥ has no
direct probabilistic meaning but presents definite technical advantages:
It permits a simple description of the i.d. family with ¢ = (a,¥),a € R,
¥ bounded measure on R, as well as a simple description of convergence
of i.d. laws: ¥, = (an, ¥n) > ¢ = (a, ¥) if and only if &, = a, ¥, 5 V.

In fact, “Lévy representation’ below was the initial one and is central
to and born from P. Lévy probabilistic analysis of decomposable proc-
esses (§41).

Let barred integral sign mean that the origin is excluded from the
interval of integration and, as usual, we omit its endpoints when they
are —o and 4 «.

P. Lévy representation of i.d. ch.f.’s e¥ with ¢ = (e, 8%, L) is given by

V() = fau — —— u? + f(e‘"’ -1 ﬂ%) dL(x)

where a, 8 € R and the Lévy function L defined on R — {0} is nonde-
creasing on (—®, 0) and on (0, +®) with L(&x) =0 and
f' 32 dL(y) < o for some hence every finite x > 0. The corresponding
L;;y measure L on R — {0} is bounded outside every neighborhood of
the origin but may be infinite on R — {0}.

The somewhat involved characterization of Lévy function explains
why Khintchine representation is frequently favored despite its lack
of direct probabilistic meaning.
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The following correspondence is immediate:

a. CORRESPONDENCE LEMMA. There is a one-to-one correspondence be-
tween Lévy and Khintchine representations.

It is given by B* = \i/(-l-O) — ¥ (—0) and

1) dL(x) = T2 au), x50,

x2

or, more precisely, with x > 0,

W) L= w1 - ) B o

and, conversely,

'z

@) W=x) = | L dL(y), W) = Y IL(y) + 8
— 14y +o 1+ Yy

The continuity sets C(L) and C(¥) are the same on R — {0}.

A. I.D. CONVERGENCE CRITERION.
Yn = (any Bu?y La) 2 ¥ = (o, 82, L)
if and only if
(1) Ln—w>LonR— {0}

(1) f vy dL,(y) + 82— B asn— ® then0 <x—0
(1) _ o — o

Proof. Since ¥n = (atny ¥a) > ¢ = (@, ¥) if and only if &, — « and
¥, % ¥, it suffices to prove that ¥, % ¥ < (i) and (i1) hold.

We use a and Helly-Bray lemma and theorem without further com-
ment. Let x > 0.

Let ¥, -5 W¥. Clearly (i) follows. Since for +x € C(¥)

z 2
JC_,, r:}i,_—}jidLn(x) + 8.2 = Vu(x) — ¥, (—x)

(ii) follows as # — o then0 < x — 0 hence without the above restriction
on =x since ¥(x) — ¥(—x) is monotone in x.

Conversely, let (i) and (i) hold. Clearly ¥,(—x) —¥(—x) for
—x € C(L). For0 < e < x€ C(L), from
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— yz +¢ yz
Fale) = f_«, R 3[_ e

Yy
voo+ [ 2 ao
it follows that, as #» — « then ¢ — 0,

Vo (x) > ¥(=0) + 82 + ¥(x) —¥(0) = ¥(x).

The same is true for x = +® so that ¥,(+ ) >¥(+»). Thus
¥, -5 ¥ and the proof is terminated.

*Reformulations. Lévy representation is visible in the main results and
also in the proofs in the preceding subsections:

1. ExTREMA CRITERION. Itsstatement in 23.4C is already in terms of
Lévy function L and of 82 = ¥(4+0) — ¥(—0) of the i.d. limit law.

2. EXTENDED CENTRAL CONVERGENCE CRITERION. This most impor-
tant result of the section 23.4B is to be reformulated as follows.
Let x > 0 and set

Lo(=x) = 3 Fu(—x), La(x) = ¥ Fulx) — 1).

Then, in terms of L and B2 of the limit i.d. law, the criterion conditions
are

Lnl>Land§&2X‘—>ﬂ2asn—> o then0 < e—0

Furthermore, Lévy functions L. have a direct probabilistic meaning in
terms of the summands X,, & =1, - - -, k,:

L.(—x) = E(number of the X in (— », x))
— L,(x) = E (number of the X, in [x, «)).

3. The proof of the W-criterion 24.3B is, in fact, in terms of L. For,
the functions ¥ and ¥~ therein are given by #(x) = —L(e®) and ¥ (x) =
L(—e¢%).

Lévy functions of stable laws within the proof of 24.4B are:

¥ =2: L = 0—normal law
0<v<2: dL(x) = B/|x|'+ dx for x < 0,
dL(x) = B'/|x|'*” dx for x > 0

CLP for iid summands. In what follows, f, and f, are ch.f.s.
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We intend to solve directly the Central Limit Problem (CLP for short)
for independent identically distributed (i/id for short) summands. We
shall use A and generalize results in 24.1 replacing f,” = f for every n

by fu — f.

b. If f. — 1 in some neighborhood [— U, + U] of the origin then on
(- U, U), from some n = n(U) on, logf, exist and are bounded and

logfu = = 3 2(1 = fu)™ = (fu = D1 + o(1).

m==1

For, on [— U, 4 U], f. — 1 uniformly so that, from some #» = »n(U) on,
|1 — f.| < 1/2hence logf, exists and is continuous and thus is bounded,
and

log fo = log(1 = (1 =£)) = =(L = fu) = 3(1 —fu) = -+~
= (/s = D{ + o(1)).
We generalize 24.1b:

. Iffu — fthen f has no zeros and the same is true when e~ f,"(u) —
f(u) for every u € R.

Proof. It suffices to prove that ch.f.’s (|£,|?)* — |f[* implies |f2 > 0.
Suppose this ‘“‘symmetrization” already took place so that f,» — f with
faand f 2 0.

Since f is continuous with /(0) = 1, there is a finite interval [— U, 4 U]
on which f > 0 hence log f exists and is bounded. On this interval, from
some 7z on, log f. exist and are bounded, so that nlog f. — log f hence
log f» — O, that is, f, — 1, a applies

#(fa — D1+ o(1)) = 7 log fa— logf
and n(f, — 1) remain bounded. Since, by 13.4A
n(l = fo(2u)) = 4n(1 — fa(w)),

it follows that on [ —2U, +2U], from some # on, #(1 — f,) = 0 remain
bounded, so that f, — 1, a applies and ¢*¢»~ — £ > Q.

Upon continuing this doubling of the intervals, any given # € R belongs
to an interval on which f > 0 hence f > 0 on R, and the proposition is
proved.

B. [iD CONVERGENCE CRITERION. Let ¢ be continuous

farofen(fo— 1) >, and then f = ¢¥ is id.
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More generally, if fon—1 or a./n — O then, for every u € R,

e~ fon(u) — f(u) & —iua, + n(fulu) — 1) >y,
and then [ = e¥ is i.d.

Proof. 1°. Let n(f, — 1) — ¢, so that f, — 1, b applies, and f,*» —
eV = f.

Conversely, let f,» — f so that, by ¢, f has no zeroes and log f exists
and is continuous. Given any finite interval, it follows that on it, from
some 7 on, log f, exist and are bounded and, by b, #(f. — 1) — log f = ¢.

2° Let iua, + n(fu(u) — 1) > y(u) for every u € R so that
—iuan./n + fo(u) — 1 >0 hence a,/n—> 0 f,— 1. With either of
these equivalent conditions b applies and, for every # € R, from some
n = n(u) on,

e—iua,fnn(u) = (e—t'uau/?fn(u))" —_ ew(“) =f(u).

Conversely, let for every u € R,

(7 mfu(u))™ = e for(u) — f(u)

so that, by ¢, f(u) # 0 hence e~ /nf (u) —» 1. Thus, once more,
an/n < f, — 1 and, with either of these equivalent conditions, b applies

and —iua, + n(f.(u) — 1) — log f(u) = ¢(u).

It remains to show that the limit ch.f. f is 7.d. This will follow from
the “structure” proposition below. In fact, this proposition provides a
widening of the definition in 23.1 of i.d. laws since f,* = f for every »
implies f,» — f but, in general, the converse is not true. It also provides
a direct probabilistic proof of the structure theorem in 23.1:

Let S =0, S, =X1+---+ Xy n=1,2, ---, where the sum-
mands are iid with common ch.f. f. Let A 2 0. Wesay thatar.v. §is
(\,f)-compound Poisson if its d.f. is

-] An
Fg =¢ 220 ;"" Fs,.
Clearly Fsis a d.f.: Itis nondecreasing with Fg(—®) =0, Fg(+ ) =
e~ i 2—2 = 1. The corresponding ch.f. is immediate:
ne==) " °

fs = MY

A
It is an i.d. ch.f, since en " is the ch.f.of a (\/m, f)-compound Poisson
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form =1,2,---. Also the centered ch.f. e=e=1 i5 i.d. and the i.d.
assertion in B follows at once. And B yields

STRUCTURE COROLLARY. f is i.d. if and only if there are compound
Poisson f, with f.,» — f.

C. D CENTRAL CONVERGENCE CRITERION. Let Xy k = 1, -+ - n, be
1id summands with common d.f. F, and ch.f. f, — 1. Let x > 0.

£(§ Xok — an) — £(X) necessarily i.d. with ¥ = (a, 8, L)
if and only if
(Cr): L. L with L, defined by
Li(—x) = nF,(—x%), Lu(x) =3 n(Fa(x) — 1), x> 0.

k

(CgH: n/faB y2dF.(y) > B8 as n— o then x—0.

(Ca): @ =0, —a+o0(l) with a,= nfT——i-}; dF,(x).

Note that (C,) characterizes all admissible a,.

Proof. According to B, the required convergence is equivalent to

Vu(t) = —iua, + nf(a""’r — 1) dF,(x) — ¥(u), u € R where, setting

a, = nf T\—-:- v dF,(x),
Vn(u) = iu(an — a,) + nf(e‘“’ -1 - il%)dF,.(x)
= (an — an, B% La),
with L, defined by
La(—x) = nFa(—x), La(x) = n(Falx) — 1), x>0,
corresponding ¥, defined by

Y .
‘I’"(Z)—nﬁw 1+y2an(}’), "ER,

and 8,2 determined by

of waro) - | aaane) = | o) e

The asserted criterion follows at once from A.
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COMPLEMENTS AND DETAILS

/. Prove Lindeberg’s theorem without using Liapounov’s bounded case
theorem. Then deduce Liapounov’s theorem.
For Lindeberg’s theorem use the expansion

L) _‘i 2 u? 2 R
fk(:;.) 25,2 U+ Oni 52 (‘”k |u| + " ;u"x dF;(x)
To deduce Liapounov’s theorem observe that

1 , 1 E| X |2+5

n? Jisizesn” dFe = é P

2. Prove directly the sufficiency of Kolmogorov’s conditions for degenerate
convergence. Then deduce the condition in (1 4 9).

3. Deduce the Kolmogorov and Lindeberg-Feller theorems from the degen-
erate and normal convergence criteria—where existence of moments is not
assumed.

4. Deduce the bounded variances limit theorem from the Central Limit
theorem.

5. Let ; X be sums of independent uan summands centered at expecta-

tions with O_ 62X = 1 whatever be #. Then
%

ST Xu) = RO, ) & T X 5
k

(Observe that the last convergence is equivalent to ) J; z|g¢x2 dF,; — 0 what-

ever be ¢ > 0.)
6. Let {(¢ + iu), t > 1, be the Riemann function defined by

Ce+in) =X nt— =L (1 — p—t—ix)
" g

where p varies over all primes. f.(x) = (¢ + iu)/¢(¢) is an i.d. ch.f.
(log fuu) = 20 20 p~™(e~"™!¥? — 1)/n))
p n

7. An id. law may be composed of two non i.d. laws. In fact, there exists a
non i.d. ch.f. f such that | f|? is i.d.: form the ch.f. f of X with P[X = —1] =
20 —p)/1+p), PIX=k=1—-p(1+p)p*/1+p),k=0,1,---,0<

<1l
? (Put f in the form (a, ¥); observe that ¥ so found does not satisfy the neces-
sary requirements. Put |f|? in the form (a, ¥).)

8. An id. law may be composed of an i.d. law and an indecomposable one:
let X = 0 or 1 with pr.’s 2/3 and 1/3, respectively; the ch.f. f is indecomposable

2 tu .
log f(u) = log ___-I;e =Y anleirt — 1), 2. |an| < .
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Set
log f¥(u) = 2 *anle’™ — 1), logf(u) = —2~ aa(ei™ — 1)
where >_+ (3_7) denotes summation over positive (negative) @,. Then St
and f~ are i.d. and f* = ff~.
Also an i.d. law may be the product of an i.d. law and two indecomposable
54 4cosu _ l2+e"“ 2
9 - 3

9. P. Lévy centering function. The family of i.d. laws coincides with laws
defined by

ones: proceed as above but with f defined by

= 4 — @.2_‘1% _r iuz iux
logf(u) = au ) +J- (e e -1—:;‘2') dL(x)

where L is defined on R, except at the origin, is nondecreasing on (—o, —0)

+r
and on (40, +), with L(F %) = 0 and :’C x2 dL(x) < « for some 7 > 0; the

-7
barred integral sign means that the origin is excluded.
Also

. B2 .
log f(u) = ia(r)u — 7 u? +:,- (e*® — 1 — jux) dL(x)
—r — o
e — 1) dL().
+(f_w++f)(’ ) dL(%)

This splitting of the domain of integration replaces the P. Lévy centering
function g(x) = x/(1 4+ x?) by much simpler ones (g(x) = x and g(x) = 0)
within the partial domains of integration.

Why was the centering function needed? Then, what are the conditions to
impose upon it? Show that Feller’s centering function g(x) = sin xis acceptable.
Is the following one acceptable: g(x) = x for | x| < ¢ for some finite positive
constant ¢, g(x) = ¢ for x Z cand g(x) = —c¢ for x < ¢?

10. Let r.v.’s X, with d.f’s Fop, k=1, - ky = 0, n=1,2,.--, be
independent in k and uniformly asymptotically distributed in &, that is, there
exist d.f.’s F, such that F, s — F, — O uniformly in k. The nondecreasingly
ranked numbers X, () into X*,1(w) < --- S X*. 4 (w) determine “ranked”
X*..r of “rank” r; the *X, , = X, +1—s are of “end rank” s. Set

Ln=§Fn,k, Mn=;(Fn,k_l))

Enrn = (rn - Z Fn.k)/'\/kz Fn,k(l - Fn,k))

I, = Zk; Ingy In=(In— El)/oln, Inp®) =1y, , ..
Use throughout the fundamental relation
[(X*nr < x] = [[a(x) 2 7).

a) The X*,,, are r.v.’s.
b) For fixed ranks 7, the class of limit laws of ranked r.v.’s X,,, is that of laws
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L tr—l
* : ’ L
L£(X*,) with d.f.’s F, , =D

nondecreasing, nonnegative, and not necessarily finite.
These limit laws are laws of r.v.’s if and only if L(—w) = 0, L(+) = +o.
And

e~tdt, where the functions L on R are

F*, > Fle LS L

c) For fixed endranks s, the class of limit laws of ranked r.v.’s *X,, is that of

+o0  ya—1
laws £(*X,) with d.f.’s ¥F, =
-M (J - 1)!
are nondecreasing, nonpositive, and not necessarily finite.
These limit laws are laws of r.v.’s if and only if M(—w) = —ow, M(+w) = 0.
And

et dt where the functions M on R

*Frs = MF, & M, > M.
d) For variable ranks r, — o with s, = k, + 1 — r, — oo, the class of limit

, . . 1 o0
laws of ranked r.v.’s X*, ,, is that of laws with d.f.’s F¢ = \/i—f e—112 gy
Ve
where the functions g on R are nonincreasing, and not necessarily finite.
These limit laws are those of r.v.’s if and only if g(—e) = 40, g(+0) = —eo,
And

F*n,r,. "‘;’ Fg & gn,a ? g
¢) What if the X, are uniformly asymptotically negligible? What if, moreover,
£ Xu) — £(X)? |

f) What about joint limit laws of ranked r.v.’s? '
17. Let £(X» — an) — (a, B2, L) where X, = D Xnx are sums of uan inde-
)

pendent r.v.’s.
(a) The sequence £(max | X |) converges. Find the limit law £(X). Why
k

can necessary and sufficient conditions for normality of the limit law of the
sequence £(X» — 4.) be expressed in terms of £(X)? Are there other i.d. laws
for which this is possible? (For n sufficiently large and x > 0

log P[mkaxl Xae] < x]= —(1 + o(1)) ; Pl Xux| = %)

(b) Let am = j; l(xan,,, 7 > 0 finite, Far(x) = Fu(* + am) and let F'u

be the d.f. of X'ne = | Xpx — anx |” for a fixed r > 1.
If £ Xne — an) — (o, 8% L), then there exist constants a’, such that
)

L X' = ') = (,0, L) with L'(x) = 0 or L(x"!") — L(—x"") according
k
asx <0orx>0. (Ifg=0is even, then, for every ¢ > 0,

Srdr=f, o510 P [ g dF s = [ el 1) P
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Take g = 1 and g(x) = x2. Observe that

] e 2
05 [wdru—([dFu)sacvrf  adb,)

(© ,e(; X — an) — N0, B) if, and only if, T X2, 5 82 What about
k

limit Poisson laws?

In what follows and unless otherwise stated, degenerate laws are excluded;
Jf, with or without affixes, is a ch.f.; and, without restricting the generality, the
type of f is the family of all ch.f.’s defined by f(cx) for some ¢ > 0.

12. fisdecomposable by every f*, n = 2,3, - - -, if, and only if, f is degenerate.

13. f is decomposable and every component belongs to its type with f(u) =
2 fleiu), Yoei2 = 1, if and only if £ is normal.

14. 1If for an r > 0 and #1, /" belongs to the type of f, then fis i.d. If there
are two such values ' and " of r and log r’/log " is irrational, then f is stable.

15. If fa = f,f'a = f and fa = f'n f"a for every n, then f’is a component
of f.

16. f is c-decomposable if f(u) = f(cu)f(u) for some fixed ¢ necessarily be-
tween 0 and 1. L. is the family of all c-decomposable laws, Ly is the family of
all laws, and L, is that of self-decomposable ones.

(@) Ly D L. D Ly, and if log ¢/log ¢’ is rational, then L, = L... Every L,
is closed under compositions and passages to the limit.

(b) f€ L. if, and only if, it is limit of a sequence of ch.f.’s of normed sums
Sa/bn of independent r.v.’s with 8,/6p41 — c. -

(c) fE€ L.if, and only if, it is ¢h.f. of X(c) = 2. &xc* where the law of the

k0.
series converges and the £, are independent and identically distributed. Then
the series converges a.s., and f;, = f.. If £ is bounded, then £ is not i.d.

(d) g(x) is said to be y-convex (y > 0 fixed) if every polygonal line inscribed
in its graph with vertices projecting at distance ¥ on the x-axis is convex.

If & is id., so is X(c). fi.d. with Lévy’s function L belongs to L. and f. is
i.d. only if (—1)M; are y-convex for ¥ = | log ¢ | where M; are defined as in 9.
Is the converse true?

() If Et =0, o =1, then, for ¢, ¢/ € (=1, +1), the covariance
EX(e)X(c") = 1/(1 — ¢¢'), and the random function X(¢) on (—1, +1) exists
in q.m. and is continuous and- indefinitely differentiable in q.m.




Chapter VI1I

INDEPENDENT IDENTICALLY
DISTRIBUTED SUMMANDS

This chapter is devoted to study in some depth of consecutive sums
S1, 83, - -+ of sequences of independent identically distributed sum-
mands X, X3, « -+ with common law £(X); we shorten “independent
identically distributed” to #7d. As usual, methods are emphasized.
Methods and results took their definitive form in the third quarter of
this century.

In the preceding chapters some results about iid summands were ob-
tained: Kolmogorov law of large numbers (17.3B) and its generalization
17.4, 4°, convergence of laws of normed sums to normal when the
summands have finite second moments (21.1A) and the far-reaching
characterization of all limit laws of normed sums (24.4), by particular-
izing the solution of the general central limit problem.

In this chapter, using directly 24.5, by means of Karamata theory, we
obtain in §25 the above limit “stable’”” laws and their “domains of at-
traction”’—those families of laws for which the laws of normed sums
Sa/bs — a, converge to any given stable one.

In §26, we study ‘“‘random walks”; sequences of sums 81,82, - - -
themselves (not normed), their global and asymptotic behaviour with
their dichotomy into “recurrent” and “transient’ ones, and their fasci-
nating “finite fluctuations.”

§25. REGULAR VARIATION AND DOMAINS OF ATTRACTION

The domain of attraction of the normal law was found by P. Lévy, by
Feller, and by Khintchine. The domains of attraction of all other stable
353
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laws were discovered by Doeblin and by Gnedenko. Much later, Feller
observed that these results were in terms of Karamata regular variation
theory and showed its usefulness for various limit probability problems.
We follow his presentation of Karamata theory, and then apply it to the
problem of stable laws and their domains of attraction. It deems ad-
visable that at the first reading only A and its Corollary be covered in
25.1 and ¢ in 25.2 be assumed.

25.1 Regular variation. Let U, 7 be positive monotone functions on
[0,) to [0,) and let x, y be positive.

We say that U varies regularly (at + o) with exponent 2 € R if
U(x) = x°V(x) where ¥ varies slowly (at + «), that is, P(tx)/V(£) — 1
as t— o for every x. Thus slow variation is regular variation with
exponent 0. Since our only concern is with behaviour at +«, we may
take x, y > ¢ € R with ¢ > 0 arbitrary but fixed, or substitute (¢, =)
for [0, @), or assume that U, ¥ vanish on [0, ¢]; this will be done without
further comment.

A. REGULAR VARIATION CRITERION. Let D be a set dense in [0, «).
U varies regularly if and only if, for every x € D,

Ux)/UE) = h(x) < © as t— @,
and then h(x) = x° for some a € R.

Proof. The “only if” assertion is trivially true. As for the “if” as-
sertion, letting # — o« in

U@x) _ Ulxy) UWy)
U@  Uly) UG

it follows that
h(xy) = h(x)h(y) for x,y € D.

Since U is monotone, this functional equation extends to [0, ) by taking
limits from the right. But then it has a unique finite solution of the form
h(x) = x° for some @ € R, and the proof is terminated.

CoroLLARY. If for every x € D dense in [0, =),
cnU(bnx) = h(x) finite positive
and
bp— ®, cap1/ca— 1,

then U varies regularly and h(x) = cx® for some finite a and ¢ > 0.
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Proof. If n is the smallest integer such that &, < ¢ < 4, then

U(bnx) < U(x) < U(bp1x)
Ulbny) = U@ = U(a)

where U is nondecreasing, while these inequalities are reversed when U'is
nonincreasing. By a change of scale we may assume that 1 € D. Then,
since cny1/cn — 1 and ¢ U(bs) — A(1) = ¢ > 0, for every x € D the ex-
treme terms converge to A(x)/c hence U(tx)/U(¥) — h(x)/c, the above
criterion applies and 4(x)/c = x* for some 2 € R.

*Let H be a positive monotone function on [0, «) and set

xr

Ui(x) = j;y“H(y) dy, Va(x) = f y°H(y) dy

where x > 0 and 4 are finite.
Upon replacing if necessary O by ¢ > 0, or assuming that H vanishes on
[0, ¢], U.(x) will be finite while »,(x) may be infinite. Since

Us(*) T Us() and Valx) | Va(») as x T o
while
Ui() = Ua(x) + Va(x) hence Ud(w) = Us(w) + Vi(),
it follows that

U(o) < @ & V(o) = 0= V,(x) < o from some x on
Us) = @ & Vi(x) = o for every x & Vi(o) = o,

a. Let H vary slowly. Then Uy(®) and V(=) are finite for a < —1
and infinite for a > —1. Furthermore

(1) If a = —1 then U, varies regularly with exponent a -+ 1.
(i) If @ < —1 then V, varies regularly with exponent a + 1, and this
still holds for a = —1 provided V_, is finite.

Proof. Given x > 0 and € > 0, slow variation of A implies existence
of § > 0 such that, for y > 4,

(1) (1 — 9H(y) = Hlxy) = (1 + 9H().

1°. Let V() = 0hence V,(x) < « for some x on,and Us(®) < .
Since

(-]

Va(tx) = xo¥t f, y*H(xy) dy,




356 INDEPENDENT IDENTICALLY DISTRIBUTED SUMMANDS [Skc.25]

it follows that, for # > 4,
(1 — xttV,(H) < Va(tx) = (1 4+ €xsHV.()

hence, letting t — « then e = 0, V,(tx)/ V() — xt. Thus, V, varies
regularly with exponent @ + 1 < 0 since », is nonincreasing, and
Usy(o) < o with V() =0onlyifa < —1.

2°, Let U,(®) = o hence V/,(») = . Since, for ¢ > 5,

¢

Us(tx) = U,(bx) + x‘”‘lj; yoH(xy) dy

hence, by (1), |
(1 — x*H UL = Ualtx) — Ua(82) = (1 + xtUs(2):

upon dividing by U,(¢) and letting t — « then ¢ — 0, it follows that
Uas(tx)/Us(£) = xoH.,  Thus, U, varies regularly with exponent
a + 1 = Ossince U, is nondecreasing, and Us(®) = » hence Vy(») =
o only if 2 = —1. The assertions follow from 1° and 2°.

*B. MaiNn KARAMATA THEOREM. Let H be positive monotone on [0, )
and set

xr

Ua(x) = ﬁy“HO) dy, Val(x) = j; y*H(y) dy.
(1) If H varies regularly with exponent b £ —a —1 and Vi(x) < o
then, as t — o«
tHHO/ V() > ¢c = —(@a+46+1) 20.

Conversely, if this limit exists and is positive then Vo and H vary regularly
with exponents —c = a + b + 1 and b, respectively, while if this limit is O
then V, varies slowly.

(ii) If H varies regularly with exponent b = —a —1 then, as t > =,
tHHO/Udt) >c =a+46+120.

Conversely, if this limit exists and is positive then U, and H vary regularly

with exponents ¢ = a + b+ 1 and b, respectively, while if this limit is O
then U, varies slowly.

Note that when ¢ = O the converse assertions for ¢ > O continue to
hold for 7, and for U,, but nothing can be asserted regarding H.

Proof. The argument for (i) and (ii) is the same, and we shall prove (i).
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Set
(1) ROy = yH()/Va(y).
Since

. _ _ar.0)
J H(_)’) = d)’ )
upon integrating (3) over [¢, tx) with x > 1, it follows that
tz z
i Valtx) f B . h(tz) 1

(2) log 7. = J, P dy = h(?) TR dz.

Let H vary regularly with exponent & so that, by a, 7, varies with ex-
ponent ¢ + & 4+ 1 = —¢. Thus, both sides of (1) vary regularly with
exponent —1 and 4 varies slowly. Therefore, as 1 — o, the integrand in
the last integral in (2) tends to 1/z while the first term in (2) tends to
¢log x and Fatou-Lebesgue theorem implies that limsup A() = c.
Thus, 4 is bounded so that there is a sequence #, — © with A(z,) —
¢ £ ¢ < ». Since 4 varies slowly, A(t,y) — ¢’ for every y > 0 and, by
the dominated convergence theorem, ¢ log x = ¢’ log x hence ¢’ = ¢ for
every such sequence (¢,). Therefore, A(Y) — ¢ as t — » and the direct
assertion is proved.

Conversely, if the limit ¢ = 0 exists so that A(f) = ¢ as t — o then,
by (2), V. varies regularly with exponent c. Moreover if ¢ > 0 then this
property of 7, together with (1) implies regular variation of A with ex-
ponent —¢ — a — 1 = 4. This completes the proof of (i) and (ii) is
proved similarly.

*C. SLOW VARIATION CRITERION. H varies slowly if and only if

H(x) = A(x) exp{j; g_(;y_) dy}

where g(x) 2 0and h(x) > ¢ < ® as x — «,

Proof. The “if” assertion is easily verified. As for the “only if”
assertion, let H vary slowly. Then, by B(ii) with ¢ = 4 = 0,
H@)/U®) = (1 +g@)/t withg(t) > 0 ast— .
dUy(2)

5 » upon integrating over [1,x) with x > 1, it follows

Since H(¢) =
that

Uo(x) = Us(1)x exp{j; g—(y-—yl dy}'
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But, by B(ii),
H(x) = h(x) Us(x)/x,
and the “only if’’ assertion obtains.

CoroLLARY. If H varies slowly then, as x — o, H(x + y)/H(x) — 1
and, given § > 0, x*H(x) =0, x*H(x) — », and x~* < H(x) < x*
from some x on.

*Let G be a d.f. vanishing on (— =, 0). Let x > 0 be finite and set

Hals) = f yedG(y), va(x) = f ¥8dG(y).

Since we are concerned only with asymptotic behaviour of these inte-
grals, whenever convenient we do take G = 0 in some neighborhood of
the origin. We assume that

pa(®) = lzi_.rgl"a(x) = o, y(w) = Ll_gg ve(x) =0

sothata > 0and —» <8 < a.

The elementary integration by parts which follows will reduce the
question of regular variation of pu. and of vs to the main Karamata
theorem.

b. INTEGRATION BY PARTS LEMMA. Let x be a continuity point of G
hence of pa and of vs. Then

O ) = —xn) (= ) )

(if) va(x) = —xP"%pa(x) + (o — B) j; YA ua(y) dy.

Proof. Relation (i) results at once from integration by parts of
Stieltjes integrals. Relation (ii) requires also a passage to the limit:
Integration by parts on [x, #) with # > 1 continuity point of G yields

(1)  vs(x) — ws(2) ¢
= —xﬂ_aﬂa(x) -+ fﬂ_aﬂa(f) + (a - 6)];),19—«—1““(),) d)"
Thus,

(e — B) j; yPeua(y) dy = vp(x) + xf%ua(x)
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so that, letting s — «, the limit of the integral on the left is finite. Since
e 1s nondecreasing,as t — o,
22

p—a

2
G #wal) S f y8=eluy(y) dy — 0

hence #~u,(f) — 0 and, letting # — « in (i), (ii) obtains.

*D. VARIATION OF TRUNCATED MOMENTS. Letf po(®) = o and
va(@) =050 thata > 0and — o < B < a.
(1) If pa or vg varies regularly, then, as x —

x* By o (x)/pa(¥) = ¢ = ::z =20 B=v=oa
(i) Conversely, if this limit exists then, for B < v < a, pa and vg vary
regularly with exponentsa = a — v > 0andb =8 — v <0, respectively,
while a = 0 when v = a and b = 0 when v — B.

Note in the boundary cases while p. varies slowly when ¥ = « and
vg varies slowly when v = 8, nothing can be asserted regarding »s or
Kay respectively.

Proof. 1°. Let p, vary regularly with exponent ». Finiteness of the
integral in b(ii) yields # < « — 8. Since p. is nondecreasing # = 0.
Thus, setting # = a — v, we have 8 £ v < « with ¥ = 0. Now, b(ii)
yields

(-]

x*By (x) a—pf
- s - B—a—1y, (4
hal) P )T @)

so that, using B(i) with H = p,ande = —a — l,as x —» o,
A, ()/male) = —1 + (= B/ (v — B) = (@ =D/l — B) =«

with ¢ = o when v = 8, and this is the asserted limit. Let »s vary
regularly with exponent v so that v < 8. Since vg is nonincreasing v < 0.
Thus, setting v = 8 — v, we have 8 £ v < « with ¥ = 0. Proceeding
as above but with b(i) in lieu of b(ii) and using B(i) but with H = g
and 4 = a — B — 1, once more the asserted limit obtains and (i) is
proved.

(1)

2°. Conversely, let the limit ¢ = (&« — v)/(v — B) exist. If 0 <
¢ < o then (1) yields, as x — o,

@ e/ | Y e () > (@ = B)/(c +1) =¥ — 8.
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Using B(i), it follows that u, varies regularly with exponenta — v > 0
while, by (1), »; varies regularly with exponent 8 — vy <0. If¢ =0
the same argument shows that u. varies slowly but yields nothing about

ve. Similarly, if ¢ = o then v, varies slowly but nothing can be asserted
about ue.

The proof is terminated.

25.2 Domains of attraction. Throughout this subsection, X;,X5,
<« - are iid r.v.’s with common law £(X), d.f. F,ch.f.fand S, = X, + -+ -

x

+Xn,n =1,2,--+; we take x > 0 and set ps(x) = f y¥dF(y), q(x) =
1 — F(x) + F(—x).

We say that £(X) belongs to the domain of attraction of a law £(Y") or
is attracted by £(Y)—an attracting law, if there are a, and 4, > 0 such
that £(Sa/bn — an) = £(Y). We exclude the trivial case of degenerate
attracting laws £(Y) for, according to 14.2, every £(X) belongs to its
domain of attraction with suitable @, and 4,, and this excludes considera-
tion of degenerate £(X). In fact, always according to 14.2, the above
definition pertains not to individual laws but to types of laws.

In terms of cA.f.’s, £(X) is attracted by £(Y) nondegenerate means
that, for every u € R,

eten fr(u/b,) — fy(u) nondegenerate.

Thus, ch.f.’s | f(u/bn)|? — |fr(#)|?, so that |fy(u/ba)|* — 1 with nonde-
generate | fy|? hence 4, — . It follows that also £(Sa/bny1 — @) —

£(Y), that is, | f(#/bar1) |2 — |fr(#)|? and, by the Corollary to 14.2A,
bn+l/bn - 1:

a. If £(8n/bn — a,) = £(Y) nondegenerate, then bn — © and bai1/
by — 1.

Since f(u/b,) — 1, 24.5C applies with X.. = Xi/é. hence Fo(x) =
Flux),n =1,--+,n,and

b. £(8n/bn — an) = £(Y) nondegenerate—necessarily id. with ¢ =
(a, B2 L), if and only if,

(CL): L. L where L,(—x) = nF(—bax), La(x) = n(Fa(x) — 1).
(Cp?): nus(bnx)/bs: = n f y2dF (bax) — 82 as n — ® then x — 0.

(Co): a@n = an — a + o(l) where a, = nfT—if—x.‘;dF(b,.x).
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With the help of these lemmas, used without further comment, we
begin by investigating condition (Cr) and its implications for Lévy
functions of (nondegenerate) attracting laws £(Y). Clearly, the Lévy
function for normal £(Y) is L; = 0, and conversely. The others are
given by

A. Levy runctioNs AND (Cr). Let x > O.
(1) Lévy functions L, of nonnormal attracting laws (Y) are given by

L,(—=%) = cp/57, Lo(x) = —cq/x"
where
0<vy<2 ¢>0, p,q=O0withp +q = 1.
(ii) Condition (Cyr,) i5: as x —
F(—x)/q(x) > p or (1 — F(x))/q(x) =1 —p
and
g(x) = (c + o(1))h(x) where h(x) varies slowly.
The admissible b, are characterized by nq(bpyx) — c as n — .,
Proof. Condition (Cy) reads: for =x € C(L), as n — =,
(1) nF(—b,x) — L(—x) and (2) n(F(b.x) — 1) — L(x)
hence
3) nq(bux) — L(—x) — L(x).
In fact, any two of these three relations clearly imply the remaining one.

1°. Since L = 0 is excluded, there is an xo > 0 such that L(—x,) —
L(x) > 0 hence L(—x) — L(x), being nonincreasing with increasing x,
is positive for ¥ € (0, xo]. It follows that the Corollary of 25.1A applies
to (3) so that, setting L, = L, as n — =,

(4) 7nq(bnx) = Ly(—%) — Ly(x) = c/%

with ¢ > Oand v > O.

On the other hand, upon changing in (1) and (3) the fixed » into fixed
y and for every x > O selecting # to be the smallest integer such that
bny S ¥ < bny1y, we obtain

n__ (n+ DF(—bu1y) < F(—x) < +1  nF(=bny)
n+ 1 nq(bny) = gqx) T 7 (n+ Dg(bnr1y)
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Upon letting ¥ — o so that 7 — o, the extreme sides converge to

? = Ly(—y)/(Ly(=y) — L,(y)) so that

(5 F(—x)/q(x) > pwith0 < p =1
equivalently
(6) (1 — F(—x))/g(x) > 1 — p.

Thus, replacing in (5) x by &.x with x arbitrary but fixed, as # — o,
nF(—bux) /ng(bnx) — p
hence, by (4) and (1),

(7) nF(—bn%) = Ly(—x) = cp/x"
and, similarly,
(8) n(1 — F(bax)) = Ly(x) = cq/x".

z

Since the requirement for any Lévy function, f y2dL.(y) finite, is
satisfied if and only if ¥ < 2, we must have 0 < v < 2. Thus (i)—the
asserted form of Lévy functions L, of nonnormal attracting laws £(Y)—
is established.

2°. Condition (CL,) became:

©) lim F(—x)/q(x) =p, 0=2p =1,
and
(4) lim ng(b.x) =c¢/x*, ¢>0, 0 <y <2

According to the Corollary of 25.1A (4) implies
9) g(x) = (¢ + o(1))A(x) with A(x) varying slowly.
On the other hand, setting x = 1in (4), the scale factors 4, must satisfy

(10) lim ng(8,) = ¢ > 0.

Thus, if £(Ss/br — @) — £(Y) nonnormal then (5), (9) and (10) hold.

Conversely, let (5), (9) and (10) hold. From (10) it follows that &, =
infix:g(x —0) = ¢/n = q(x + 0)} — o hence

lim ng(éux)/c = lim q(6.x)/q(6s) = 7 lim A(bnx)/A(bn) = x7,
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and lim ng(b.x) = ¢/xv. Thus, (C,) holds and admissible &, satisfy

(10). The proof is terminated.

Remark. Clearly, (Cr,) can also be stated in a more symmetric
form:

F(—x) = cp(1 + o(1))h(x)/x* and 1 — F(x) = ¢cq(1 + o(1))A(x)/x.

In order to complete A we need more of Karamata theory. We write
v.s. for “varies slowly.”

*c. SLOW VARIATION LEMMA. Let x — o,
(1) If po(®) = o then
Jor0 <y <2:

x¥°q(%) /1a(%) = (2 — V) /v & pa(x) /%7 0.5, & x7g(x) v.s.

Sfory =12:
x*q(x) /uz(%) — 0 & pa(x) v.s.

. __5#a(6) /mal) = O
(ii) 0 < pa(x) < =
\#2(.’6‘) v.5.

Proof. If ps() = = then (i) follows from 25.1D with G(x) = F(x) —
F(—x),a = 2,and 8 = 0, so that »y(x) = ¢(x).

If 0 < () < o then x%g(x) < fl y*dF(x) — 0 consequently

lyl 2=
x2(¥) /ua(x) — O while, clearly, us(1x)/ua(x) — 1 as £ — @, that is, ua(x)
varies slowly.

RemARrk. Recall that when 0 < ps(x) < = then, taking X centered
at its expectation and setting ¢% = 02X = uy(®), £(S./c Vn) — 3(0,1)
since

fru/aVa)r = (1 - -’f;(l + o(1))>" Rg— 7Y

Thus, when 0 < p?*(«) < « then £(X) is attracted by normal £(Y),
and other types of attracting laws may happen only when py(®) = .

We say that £(X) is stable if, for every #n, there are 4, and 4, > 0 such
that £(Sa/bs — a.) = £(X); clearly, stable laws are attracted by them-
selves. Note that these are “‘stable” laws introduced in 24.4. We write
L,(¢c,p) for L, characterized by ¢ and p as in A(i).
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B. STABILITY AND ATTRACTION CRITERIA. Let x > O.

(1) The family of all nondegenerate attracting laws consists of all non-
degenerate stable laws. They are id. laws with ¢, = (a, B2, L,), 0 <
v £ 2and

or0 <y <2
7 =0, L(—x) =cp/x", Ly(x) = cq/x%
wherec > 0,p,¢=20,p+¢ = 1;
Jory =2:
B2>0, L,=0.

(i1) £(X) is attracted by some £., with given v € (0,2] if and only if, as

x— ®,
x%q(x)/ua(x) = (2 — ) /7.

£(X) is attracted by £, with given L.(c,p) if and only if, as x —
Jor0 <y < 2:

F(—x)/q(x) = p, gq(x) = c(1 + o(1))A(x)/x"

where h(x) varies slowly, and admissible b, are characterized by nq(b,) — ¢
asn— o;

Sfory = 2:
ua(x) varies slowly and admissible b, are characterized by nps(bn)/b.2 —
B2>0asn— =,

In either case, admissible a, are characterized by

x
apn = 0, — « + 0(1) where qp = N fT‘q_——xi dF(bnx)

Proof. Stability assertion is immediate. For, every stable law is at-
tracted by itself while, conversely, the attracting laws £, are stable for
b, = n/7: use the form of Lévy functions L, in A(i).

In A, we already found, for 0 < v < 2, (C,) and the L, as well as a
characterization of admissible 4,. It remains to examine

(C): nus(bnx)/bs2— B2 as n— o then x—0,
and to find admissible 2, for v = 2.
1°. Nonnormal case: 0 < v — 2. (Cr,) is given by: as x — o
(1) F(—x)/q(x)—p, 0=p =1,

and
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(2) g(x) = ¢l + o(1))A(x)/x", h(x) slowly varying, ¢ > 0,
or, when not specifying ¢,

(3) x7q(x) varies slowly,

while admissible 4, are characterized by

(4) ng(ba) > ¢ >0 as n— o,

We must have py(*) = @, for 0 < pp(®) < @ implies normality,
that is, ¥y = 2 with L, = 0. But then c(i) applies and (3) is equivalent
to: as ¥ — o,

€ x2q(x) /u2(x) — (2 — ) /v
and to
(6) p2(%)/x2~7 varies slowly.

Upon replacing x by &, in (5) and using (4), as # — «, we obtain
™) np2(ba) /a2 — ¢ = cy/(v — 2) > 0.
But (6) implies that as # — o«

nus(bax) /s
@b T

hence, by (7),
(8) nus(bnx) /6,2 — c'x277.
Therefore, for 0 < v < 2, (Cg) becomes
0 — nus(bnx) /b — B,* as n— o then x—0,
and we have the asserted ¢, = (@, 0, L,), and convergence.

2°. Normal case: v = 2. Nondegenerate normal laws correspond to
Y2 = (a, B:% 0) with 82 > 0. (Cy,) and (Cs) become: as 7 — o,

(1) nq(ba.x) — 0
and
(2) nps(bnx) /ba2 — B2, 0 < B2 <

setting ¥ = 1, admissible &, are characterized by

(3) n#2(bn)/bn2 - 622-
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If 0 < pa(@) < o so that, by c(ii), u2() varies slowly and x%¢(x)/
pa(x%) — 0 = (2 — v/y for v = 2, then it is easily seen that for X cen-
tered at its expectation, (1) and (2) hold with 4, = oVn, ¢ = ¢?X =
p2(®), and we have the required convergence (as we already knew).
Thus, it remains to consider the case us() = «. Then, by c(1), as
x — o, x29(x) /ua(x) — O is equivalent to us(x) varying slowly.

Let ps(x) vary slowly so that us(x)/x2 — 0 as x — «. Then (3) holds
for &, = sup{x: us(x)/x% = B2/n} and b, — o, so that lim p2(&nx) /u2(5)

= 1 becomes, by (3), 7uz(bnx)/b.2 — B2 > 0, that is, (2) holds. Since
liP; x2¢(x)/u2(x) = 0, upon replacing therein x by &.x with x > 0 arbi-

trary but fixed, we have

1ng(bnx)
nua(bnx)/ bt

hence, by (2), lim ng(é.%) = 0, that is, (1) holds. Thus, u(x) varying

lim =0

slowly implies £(Sa/én, — @s) — £2 for admissible a,.

Conversely, let £(S./b, — a,) — L2, so that (1) and (2) hence (3)
hold. We prove that us(x) varies slowly, that is, (u2(xf) — pa(x))/pe(x) —
0 as x— « for, say, ¢ > 1. Let x — = and let #» be such that 4, =
x < &, so that » — ». Then, since &, — <, (3) implies that mu(x)/
bt — B2 > 0, that is, us(x) ~ Bs28,2/n. Since bnp1/bn— 1, by (1),

b
pa(xt) — ue(f) = »[bn+f2 dg(x) £ £bn1?q(6n)
= 2(bn41%/8:2) (6:2/n)nq(bs) = 0(6:%/7),
and the assertion follows.
The proof is terminated.

CONSEQUENCES
1°. For stable laws

Yo () = dou — c|u|(l — bhy(u)), u €R, 0 <y =2, with ¢> 0
(¢ = O for degenerate laws), b = p — q hence | 6| < 1 and

k(1) = tan Zy org log| u | according as v # lory = 1.
2 T

Follows from B(i) by the computations in part 2° of the proof of 24.4B
where 8 is replaced by ¢p, 8’ by ¢g, and & and ¢ are interchanged.

2°.  Nondegenerate stable d.f’s F, are infinitely differentiable and
| F,™ | < | F,™(0) | positive, for every n = 1,2, - - .
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Proof. Since, by 1°,]| fo(u) | = exp(—c|u|r) with 0< v=2,c6>0,f,is
integrable and so are the functions with values #«* | f, (%) | for every #.
Therefore, the inversion formula becomes

—iua —fuzx
— ¢

Fo) = Fola) = 5= | S £ d

and we can differentiate #» times under the integral sign for the integral
so obtained is absolutely convergent so that

—_g)n—1
F,™(x) = ﬁ__zi_);_ fu"‘le“'“’ff,(u)du.
It follows that | F,™(x) | = | F,™(0) | > O.

Letg(x) = 1 — F,(x) + F,(—x) and let £, be nondegenerate.
3°% If &, is a stable law with 0 < v < 2, then xvq(x) > ¢ > 0 as

X —> ©,

Proof. We know that £, attracts itself with scale factors &, = n'/7
(also true for y = 2); this also follows from |f,(x) | = exp(—c|u|7)
since | fy*(n'7u) | = | f,(u) |. Therefore, by B(i1), replacing 4, by #»'/7 in
ng(b,) — ¢ > 0, we have (n'/7)7q(n'/7) — ¢. Since ¢(x) is nonincreasing
with x increasing, taking n'/7 < x < (n + 1)V, we obtain

2L gl + 1)) S wg() S 2 ma(),

where the extreme terms tend to ¢ as ¥ — o hence #» — «, and
x7q(x) — c.

4°, If £(X) is attracted by £, then
(1) E|X|"<ofor0<r<y=s2
(i) E|X|" = forr>vywhen0 <y <2
Ife(X) = &, withQ < v < 2,then E | X |" is finite or infinite according as
O=r<vyorr=n.

Proof. Ifuy(w) = EX? < o then,by9.3a,E | X |" < o forr <y =
2, while E| X |* may be finite or infinite for » > 2. This shows wh‘y
v = 2 is to be excluded from (ii) and also that it suffices to prove (i)
when ps(®) = o—even for vy = 2. Then, by ¢, as x — =,

x1q(x) = ¢(1 + o(1))A(x),
where A(x) is slowly varying hence, by the Corollary of 25.1C, given
& > 0 there is an a such that, for x = &,

x78 < h(x) < a8,
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On the other hand, by integration by parts,
ElX| = f | X |"dF(x) = rf x*g(x) dx
— 0

so that E| X | is finite or infinite according as fm x*1=1h(x)dx is finite

a
or infinite. Since, given § > 0, for ¥ = a,

xT—Y—8—1 < x"l“'}z(x) < xr—-y—&—l’

it follows that E| X |" < © when lim ¥ "% < ® and E| X|" = o

Z 0O

when lim x™ 7% = o,

Zo®

If 0 < r < v =< 2 then there is a positive 8 < ¥ — r, the first limit is
finite, E| X |* < « and (i) is proved.

If » > 4 with ¥ < 2 then there is a positive § < r — v, the second
limit is infinite, E | X |* = ® and (ii) is proved. It remains toshow that
when £(X) = £, with 0 <y < 2 then E|{ X|* = «. Since, by 3°,

x7g(x) — ¢ > 0,x771¢(x) ~ cx~!for x — o sothat f“’ x7g(x) dx = =,

E| X|* = o and the proof is concluded.

§ 26. RANDOM WALK

Random walks—sequences of consecutive sums of iid summands, are
present, in various guises and various degrees of generality, in an in-
credibly huge literature of applications of pr. theory to a very large
number of concrete problems: queuing processes connected with mass
service, dams, waiting times, renewal processes connected with storage
and inventories, risk theory, traffic flow, particle counters, and many
others. The present general random walk theory is relatively recent.

In 1921, Polya discovers “recurrence” and “nonrecurrence’” phe-
nomena in his study of some simple random walks on lattices in R, R?,
and R3. Thirty years later, in a definitive work, Chung and Fuchs
settle this dichotomy problem for general random walks. Fluctuation
r.v.’s defined on the # first terms of the random walk appear in the
concrete problems mentioned above. But it is only in 1949 that Ander-
sen begins his investigations into these r.v.’s for the general random
walk. Since then a large number of results were obtained by many
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authors. They use variants of either the combinatorial or the analytic
methods.

The combinatorial method initiated by Andersen threw the doors
wide open. His approach was very involved. Spitzer simplified and
unified the combinatorial approach and obtained some of the most im-
portant identities and limit theorems of the theory. His book, while
devoted to random walk on lattices only, contains a number of deep
ideas and significant examples. Feller, using ladder indices and ladder
variables, first introduced by Blackwell, reduced the combinatorial ap-
proach to elementary mathematical arguments and using Feller’s ap-

proach, Port, in a semi-expository paper, obtained a large number of
known identities and generalized some of them.

The analytic method, as used by Pollaczec since 1930, was very
involved and his work remained unnoticed until some of his results
were rediscovered. Ray, Kemperman, Baxter, Wendell, . . . , simpli-
fied and unified in various ways the analytic approach and obtained
further identities. Kemperman'’s book presents in detail the approach
based on Liouville’s theorem (already used by Pollaczec) and contains
a large number of examples. Baxter uses a method based on Fourier-
Stieltjes transforms and operators on functional Banach spaces. Wendel
introduces and investigates “order statistics” of (81, - -+, Sa), . . «

No attempt will be made here to apply the general random walk
theory to concrete problems. The interested reader will find in Feller’s
two volumes a large number of such problems.

26.1 Set-up and basic implications. A sequence § = (S, Sz, - + )
of r.v.’s is called a random walk (on R) if the sequence of its random steps
X=(Xi=8,Xo=38 —8,-:)at timesn=1,2,- . . consists of
iidrv.)s X1, Xey - - - . A random walk determines the sequence of its
random steps, and conversely; similarly for the sub o-fields of events:

B = (B(Xl)' * e )Xn) = (B(Sl,. . o ,Sn),
e" = (B(X’l+1) Xn+2) ° ') = (B(Sn.'.l - Sn’ Sn+2 —_ Sn’ - . .).

We denote by ®, = B(X1, Xs, - - -) the smallest o-field generated by

the field G ®» andC = ﬁ @, is the tail o-field of the sequence X ; it is im-

na=] na=]l

[e o]
portant to realize that, in general, € is not the tail o-field N (Sa+1, Sn+2,

n==]

. +) of the sequence §.
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We shall frequently adjoin Sy = 0 to the random walk so that it will
become (So, S1, S2y - + +) with steps Xpn = Sp — Say 2 =1,2, - - - .
Intuitively it means that the random walk starts at time O at the origin.
We could also make it start at some x € Ror choose Sy to be a r.v. If the
random steps obey a law £(X) with only values &+ nd, d > 0, » = 0,
1,- - - , then we have a very simple Markov chain with countable state
space, 0, +d, 24, - - - , and initial position 0, or some 7, or a r.v.
with law £(X). It is strongly recommended that the reader interpret
the corresponding concepts and results in III of the Introductory Part
in the case of random walk theory, as found in this section.

The common law of the random steps will be denoted by £(X), its
d.f. on R and corresponding pr. distribution on the Borel line will be
denoted by the same symbol F, and its cA.f. will be f. D.f.’s and cor-
responding pr. distributions of their sums §,-‘positions” of the random
walk at times #n, will be denoted by F, and their cA.f.’s are f*, n = 1,
2, - - . If £(X) degenerates at O then the random walk stays a.s. at
{0} ; from now on we exclude this trivial case. Note thatif £(X) degenerates
at a # 0 then the random walk moves 4.s. by degenerate steps @ from

nato(n+ a,n=1,2,- - -, and S,‘:i‘-» + o or Sn—a:: — o accord-
ingasa > Qora < 0.

We distinguish two types of common laws £(X). LetL; = {nd:n = 0,
+1,+2,- . -} bealattice of spand > 0. Wesay that X is Ly-distributed

if Eo P(X = nd) = 1 and there is no lattice of larger span 4’ > 4 with

7 me—0

this property; according to the remark following 14.1a such a distribution
occurs if and only if | f(#)| = 1 forsome # # 0. If thereis nod > Osuch
that X is Ls-distributed, we set d = 0, Lo = R, and say that X is Lo-
distributed; thus X is Le-distributed if and only if | f(#)| < 1forallu 0

We now examine basic implications of the above set-up.

PossSIBLE VALUES AND STATES. We say that x ¢ R is a possible value of
arwo. X if P(X € V;) > 0 for every neighborhood 7 of x. Wesay that
x is a possible state of the random walk § = (Sy, 83, + - +) if for every
given neighborhood 7, of x there is an 7 = n(¥7;) such that P(§, € V%)
> 0. In either case, it suffices to consider neighborhoods of the form
Vo= (x —¢ X + €. LetIl, denote the possible states of the random

walk S, let II,, be the set of possible values of S5, and set II, = G II..

nael
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a. I, contains 1, and is closed.

Proof. The first assertion results at once from the definitions. As
for the second one, since ¥» — x as m — = implies that, given e > 0,
for m sufficiently large (xm — 1/m, xn + 1/m) C (x — ¢ x +¢), it
follows that when the x, are possible states there is an »# such that

P8y — x| < & = P(|Ss — xm| < 1/m) > 0.

We say that x is a discontinuity value of X if P(X = x) > 0. Clearly,
the set of discontinuity values of X is the set of jumps of the discon-
tinuous part of F x? of the 4.f. Fx.

b. If x and y are possible values of independent r.v.’s X and Y respec-
tively, then x + y is a possible value of X + Y.

If x and y are discontinuity values of independent r.v.’s X and Y respec-
tively then x + y is a discontinuity value of X + Y, and all such values
of X + Y are of this form.

The first assertion obtains by
PIX+Y -+ <2 P(X—x<e/2) XP(Y —y| <e/2) >0
and the second one results from

(Fx % Fy)? = Fx?x Fy®.

A. PossiBLE VALUES THEOREM. Let X be Lys-distributed with d =
(1) If neither X =2 0 a.s. nor X £ 0 a.s. then when d > 0, II, =
and when d = 0,11, is dense in Ly = R.
(1) If either X =2 0 a.s.or X < 0 a.s. then whend > 0, from some n on,
nd or —nd, respectively, belong to 11, and when d = 0O, for every given ¢ > 0,
from some x > 0, II, intersects (x, x + €) or (—x — €, —x), respectively.

0.
Lq

Proof. We use b without further comment. We can assume that
S; = X has a positive value @ so that § = X; + X: has positive
value 2a; otherwise, we change X into —X. Thus, it suffices to prove
the theorem when there are positive values ¢ < 4. We follow Feller.

1°. SetJ. = [na,nb). Forn = n > a/(6 — a), [na, (n + 1)a) C J.

hence UJ» = [m4, «) and every x = m belongs to some of the J, for
n;nl

n = n. Since the n + 1 points na + k(6 — a), k =0, « + - , n, belong
to II, and subdivide J, into intervals of length & — 4, every ¥ = maisat
a distance at most (6 — 4)/2 from a member of II,.

2°. Suppose that for every given e > O there are possible values
(0 <)a < & with 6 — a < e. Then X is Ly-distributed for otherwise
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every II, hence II, is contained in L; for some fixed 4 > 0 and we reach
a contradiction.

If X = 0a.s., the assertion in (¢7) for 4 = 0 follows from 1°.

If neither X = 0 a.s. nor X £ 0 a.s. then X has a possible value
¢ < 0. Given e > 0, it follows from 1° that for arbitrary x and sufh-
ciently large » there is a y € II, belonging to (—nc + x, —nc + x + ¢).
But y + 7c¢ also belongs to IT,. Thus, every interval of any given length

e > O intersects II, so that I, is dense in Ly = R and the assertion in (7)
for 4 = 0 is proved.

3°. Suppose now that whichever be the possible values (0 <)z < 4,
there is an € > 0 such that 4 — 2 = ¢; we may assume & — a < 2e for
some 2 and 4. Then the set J,II, consists of points na + k(& — a),
k=0,---,n Since (n 4+ 1)ais one of them, they all are multiples
of 4 — a. But for any ¢ € II,, for n sufficiently large J, has a point of
the form ¢ + k(¢ — a) so that ¢ is also a multiple of 4 — @. Thus X is
Ls-distributed with some 4 > 0 and the proof is completed.

CoroLLaRrY. Let X be Ly-distributed with d = 0. If neither X Z 0

nor X £ 0 then the set of all possible states of the random walk coincides
with L.

Follows at once by a.

From now on, we take for Q the set @ = R® of all numerical sequences
% = (x1, X2, + * +) and for the o-field of events the o-field ® of Borel sets
in R®, that is, the o-field generated by the class of all cylinders of the
form C(A; X + ++ X An), n=1,2,«++ , where the 4£’s are linear
Borel sets. This choice does not restrict generality yet permits to avoid
possible ambiguities, say, about ‘‘translations.”

SLLN and 0-1 laws.
According to 17.4.4°

For0<r <2 — 1/r Z‘, (X — a,,)——» 0, with a, = 0 or EX according
asr < lorr=1, zfana’onlyszIXl < .,

For r = 1, we have Kolmogorov strong law of large numbers, SLLN
for short, which can be completed as follows (see also 34.4).

B. SLLN. Let EX exist. Then Sa/n—— EX. Conversely, if

S,./n—-a—'a—'» ¢ necessarily a constant (finite or infinite) then EX = c.
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Proof. 1t suffices to complete SLLN by considering the cases of
infinite EX and c.

Let EX = + o, thatis, EXt = 4+ o, EX~ < « and let X;(a) = X,
or @ € R according as X; < zor X; = a. Set §,(a) = Z” Xi(a). Since
EX@) < =, -

Sa/n Z Su(a)/n — EX(a)

hence, letting @ T « so that, by monotone convergence theorem,
EX(a) 1 EX = +®, we obtain §,/7n—— EX = +; similarly for
EX = — o, or change X into —X.

For the converse, if ¢ = 4 @ then, by what precedes,

Ext—l ¥ x+=! x4l Px-0 4o+ EX-

7 k=1 n ka1 n kel

so that EX* = 4 o, hence EX = + » since EX exists; similarly for
¢ = — o, or change X into — X.

SLNN utilizes fully the 7id property of the summands. Independence
alone yields as we know (16.3B).

KoLMOGOROV ZERO-ONE LAW. On a sequence of independent r.v.’s tail
events have for pr. either O or 1 and tail functions are degenerate.

This zero-one law, while applying to X = (X, X3, + - +), does not
apply to the random walk § = (81, S5, + + +). Yet, the #i4 property of
the summands implies “‘exchangeability”’; and a new zero-one law will
apply to S:

We say that a sequence X = (Xi, Xz, « + *) of r.0.’s is exchangeable
or that the r.0.’s X1, Xs, + « + are exchangeable if the distribution of X
is invariant under all finite exchanges of its terms or, equivalently, of
their subscripts; in symbols, for every 7z and every one of the 7! permuta-
tions @, of (1, « « « ,m) into (ky, * * * , k),

‘e(X) = ‘c‘(a’nf) = ‘S(ka Tty an) X1, D CUPRER )

We say that a measurable function g(X) is exchangeable if it is invari-
ant under all permutations w, of its arguments: g(@.X) = g(X), n = 1,
2, - - ; in particular, an event on X is exchangeable if its indicator is ex-
changeable. Clearly, on X every tail event and every tail function are
exchangeable. In fact, by the iid property of its terms, X is exchange-
able while, for every 7, the sequences (S, Sn+1, - - -) are invariant under
permutations @, of (1,---, 7). Thus, the second assertion below fol-
lows at once, while the first one results directly from the definitions:
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c. (i) On X, exchangeable events form a o-field & and exchangeable func-
tions are &-measurable.

(ii) On the random walk § corresponding to the sequence X of iid steps,
tail events are exchangeable (belong to €) and tail functions are exchange-
able (are &-measurable).

In general, tail events and tail functions on S, say [S, € 4,1.0.] where
Ay are linear Borel sets, liminf §,, limsup S,, while exchangeable, are not
tail events on X and Kolmogorov zero-one law does not apply. Yet

B. HEwITT-SAVAGE ZERO-ONE LAW. On a sequence of iid r.v.’s ex-

changeable events have for pr. either O or 1 and exchangeable functions are
degenerate.

To prove this theorem we require an elementary measure-theoretic

proposition. Let /A B = AB° + A°B.

d. APPROXIMATION LEMMA. Let (R, @, P) be a pr. space. If a field D
generates Q then for every given A € Q and every e > O there isa D € D
such that P(AA D) = e

For, clearly, the class of all sets 4 € @ with the asserted property
contains D and it is easily verified that this class is monotone; thus, by
1.64, it coincides with Q.

The approximation property can be restated as follows. Let 4 € @
ande, | 0. There are D, € D such that P(4 A D,) < e. — 0, that is,
P(AD,?) = 0 and P(A°D,) — 0. Therefore, PD, — PA since P4 =
PAD, + PAD,¢ = PD, — PA°D, + PAD.,".

Proof of B. In our case D = U ®, so that, given an exchangeable
event 4 (in fact, any event) there is a sequence B, € ®,, with

P(4 A B,) — 0 hence PB, — PA; we can and do select k1 < ks < - -
Let C, be the events obtained from B, by the permutation of (1,- - - ,k,,
k., +1,---,2k,) into (k. +1,---,2k,1,- - ks); thus, B, € B, =
(B(Xl, Tty Xk”) 1mplles Cn € ekn = (B(Xk”.*.l, Xk”.*.z, .. ) and, (Bkn
and €;, being independent so are B, and C,. But this permutation leaves

the distribution of X invariant while 4, being exchangeable, remains the
same and 4 A B, is changed into 4 A C, so that

P(AAC,) = P(AAB,)—0
hence PC, — PA; also
P(4AB,C,) £ P(AAB,) + P(AAC,) —0
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hence P(B.C,) — PA. Therefore, B, and C, being independent,
P4« P(B,C,) = PB,- PC,— (PA)?

so that P4 = 0 or 1. The first assertion is proved and the second fol-
lows.

ConseQuENcEs. 1. P[§, € 4, i.0.] = 0 or 1, liminf §, and limsup
S, are degenerate.

2. THREE ALTERNATIVES. For a (nondegenerate at 0) random walk
(81,82, * - *) there are exactly three asymptotic alternatives:

(i) Sn == — o (drifts to — )

(1) §p =5 4+ o (drifts to + )

(i) — e = liminf §, < limsup 8§, = + o a.s. (oscillates between
—® gnd + ).

Proof. Since liminf §, = ¢ a.s. where the constant ¢ may be finite or
infinite, and (2 — §1, 83 — 81, - - -) has the same distribution as (8},
Sa, - - +), we have

liminf (§, — X1) = liminf §, a.s.

hence ¢ = X; + ¢ a.s. The case X1 = 0 a.s. being excluded (that is, is
excluded the trivial alternative the random walk stays at 0 a.s.), we must
havec = +® or¢ = — . Thus a.s.

either liminf S, = — « orlim §, = liminf §, = + =
and, changing X into — X a.s.
either limsup §, = +® or lim §, = limsup §, = — ».
The three alternatives assertion follows.

RANDOM TIMES.
Translations 6" on X = (X3, Xs,- - ) are defined by

on}_( = on(XI) X2) te ) = (Xn+1) Xn+2) °t ')) n = 1) 2) e

so that _

the terms of 0*X are iid with same common law £(X) as _the terms of X.

Thus, "X has same distribution as X and therefore X is said to be
stationary (see also 33.3). The random walks corresponding to X and to
X are, respectively, (81, Ss, - - ) and (Sps1 — Sny Snyz — Sny+ + ) With
same distribution, and the o-fields ®(Sy, - - - , §») = B, and B(Snt1 — S»s
Snsz — Sn- ) = B(Xps1, Xns2, * - -) = €, are independent.
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These properties extend to ‘“random times’—times #(=1, 2, - - .) be-
coming ‘“‘degenerate’” random times, as follows (see also 39.2 and 41.4
taking therein T = (1,2,:-:) and 4 = =),

Given a nondecreasing sequence (®,) of sub o-fields of events, a
measurable function 7 to (1, 2,---, ©) is a (®,)-time if [r = n] € B,,
n =12 ... ;if there is no confusion possible, we say that 7 is a random
time. Clearly, a random time 7 is ®,-measurable with o-field ®, =
{events B: Blr = n]E€ B,y n=1, 2,---}. If 7 < » as., we define
X k(@) by Xrwy+x(w) so that the X,y are rv.’s, £k =0, 1, ---. Then
the o-field ®(X, 41, Xr42, - - -) is denoted by €, and translation by v of X
is defined by

07(X1, Xa, - ) = (KXot Xriy* - 2).
The above properties of translations by 7 remain valid as follows.

C. RANDOM TIMES TRANSLATIONS. If a (B.)-time T <  a.s. then the
o-fields B and @, are independent and the sequences X = (X1, X, -+ )
and 00X = (X, 41, Xryay+ - +) have same distribution.

Proof. The assertions mean that, for any pair of events B, € ®,and

BE€ B = B (X1, Xy - 0),
(1) P(B0"X € B)) = PB.P(X € B).

By definition, 7 = 6 on [r = 7] hence

P(B[0"X € B)) = %, P(Blr = nlle"X € B).

Since B,[r = n] € ®, and 6*X is €,-measurable, independence of B, and
@, implies

P(B.[r = nl[6"X € B)]) = P(B.[r = n]) - P(6"X € B).

Since }:P(r = 1) = 1,and 6»X has same distribution as X, (1) becomes
P(B6'X € B]) = }"_5113(3,[7 — ) -P(X € B) = PB,- P(X € B)

and the proof is terminated.

The above argument is characteristic of extensions of properties of
times 7 to random times r < « a.s.: use the definitions and the asserted
property—valid on [r = n], n = 1, 2,---. For example, upon setting
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7 = 7 < ® a.s. then defining 7, by 72 = 7 but on 67X in lieu of X, and
so on, it easily follows that

1. Sty Sepry = Sy v+ - are itd ru.’s.

By the same procedure but with E in lieu of P, additivity of expecta-
tions, which for rand »m walks becomes ES, = nEX, extends tor < «

a.s. in lieu of », upon using Er = f,l nP(r = n) = }: P(r = n) as fol-
lows. "

2. WALD’s RELATION. ES, = Er: EX in the sense that if the right side
exists so does the left one and then both are equal.

Note that the right side exists when Er < « and EX exists, or when
Er = ©» and EX is finite or EX =2 0 or EX £ 0.

Proof. Let0 £ EX < o and Er £ ». Then

ES, = ;.-51 E@S,[r =n) = i i E(Xilr = n))

ne=] k==l

=¥ Y EXir = n]) = g'_ilE(X,,[r > £]

k=l nw=k
- kfl EX.Plr = ¥ = EX - Er.

The last but one equality is due to the fact that [r < k] belongs to
®:—1 hence so does its complement [r = k], while X 1s Cri(=®B(Xx,
X1, * * *))-measurable, and ®;-; and €x—; are independent.

Changing X into — X the same relation holds. The other cases follow
from EX = EXt — EX~ with EX* or EX— finite.

We shall frequently encounter the Aitting or first visit time 74 of a
linear Borel set 4 by a random walk (81, Sa, - - +):
7a(w) = min{n: §,(w) € A} for w € U[S, € A]and r4(w) = = oth-

erwise. Clearly 74 is random walk time, since for every 7,
[TA = 71] = [Sk € A‘fork < n, Sn € 1{] € (B(Sl, .. ‘,Sn).

Similarly for other random times we shall encounter: In general, the
fact that they are random walk times will be clear from their definitions.

ANDERSEN EQUIVALENCE.

“Finite exchangeability” alone suffices for a basic Andersen result for
“finite fluctuations.” We set X, = (Xj, - - *, X») and say that the ran-
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dom vector X, is exchangeable or that its components X, - - -, X, are
exchangeable if the distribution of X, is invariant under the 7! permuta-
tions of its components. We say that a measurable function g(X,) =

g(Xy, - - -, X,) is exchangeable if it is invariant under the 7! permutations
of its arguments.,

e. ANDERSEN EQUIVALENCE LEMMA. Let Xy, - -+, X, be exchangeable
and let So, - - -, Sn be their partial sums So =0, § = X1, -+, Sa =
X1+ -+ X

If v, is the (random) number of positive terms in (8o, -« -, Sn) and 1, is
the (random) time of occurrence of the first maximum of its terms, then v,
and T, are identically distributed.

This result 1s an immediate consequence of a combinatorial lemma
due to Feller whose elementary proof, modified by Joseph—as reported
in Feller, follows.

f. ComBINATORIAL LEMMA. To eack permutation (i, - -, Xi,) of
(%1, - -+ Xn) @associate the sequence O, Xy, - + -, ¥, + - + - + xu, of its partial
sums, Letm =0,1,--- n.

The number N,, of permutations with exactly m positive sums is the same
as the number T, of permutations in which the first maximum of partial
sums occurs at time m.

Proof. Let Npui and Ty correspond to N, and T, when xy 1s omitted
in (xy, - - -, ¥»). We use induction: The assertion holds for » = 1 since,
clearly, x; < O implies No = Ty = 1 and N, = T, = 0 while x, > 0 im-
plies No = To =0 and N; = Ty = 1. Suppose it holds forn — 1 = 1,
that is, Ny = Tmefork=1,--- nandm =0, -- -, n — 1; since trivi-
ally Nu = Tue = 0, it also holds for m = n.

We use the fact that by fixing x, and permuting the » — 1 remain-
ing x’s then varying £ = 1, - - -, n, we obtain the »#! permutations of
X1y * " % xn)-

If 5, <0 then N, and T, depend only on xi,---, x,—; hence, by
induction hypothests,

Nm = Z Nmk = >: ka = Tm-
fom=1 k=]
If s, > O0then N,, = }n:, Np-1x Asfor Ty, consider all (xx, %k, + © *5 Xknmy)
k=1

starting with xx. Since %, + - -+ + %,_, > 0 the maximal terms of
their partial sums cannot be s,. Since the first maximum occurs for
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m(=1,- - -, n) if and only if the first maximum of partial sums of (%, - - -,

Xx,—1) occurs for m — 1, we have
n n
Nm = E:l Nm—l.k =k}:1 Tm--l,k = Tm-

By using an argument formulated by Spitzer, instead of proving e we
can prove the more general.

D. EQUIVALENCE THEOREM. Let g(X,) e an integrable function of an
exchangeable random vector X, = (Xu, - - -, Xa).
If g(X ) is exchangeable then, fork = 0,1, - - - n,

E@X ] pmn) = EQX ) rmn);
in particular,
E(e*Snltymn) = E(e™SnI (), # € R,
and
Plv, = k] = Plr, = k).
Progf. Let F, be the d.f. of X, and X, = (%1, - - -, ¥n)-

Denote by Z summations over the 7! permutations w, of (1, - -, n).
Since g(X.) is exchangeable

E(g(i-n)l[vn-k]) = zglifg(xn)l[vn-k] (@n¥n)dF(%n)

and, by the combinatorial lemma, |
z‘[["n-k] (a’n_xn) = z‘[[fn-k] (a’nx—n)-

Thus the first sum equals the same sum but with r, in lieu of v, hence the
expectation equals the one with 7, in lieu of »,. The particular case with
g(X,) = eSx follows and then, setting # = 0, the last assertion—which
is that of e, results.

By means of his equivalence, Andersen obtained his first limit theorem
for finite fluctuations, namely

ARCSINE LAW. Let So(=0), 81, - - - be partial sums of iid summands
X1, Xa,y -+ - with common law £(X).
If £(X) is symmetric with P(X = 0) = 0 then

Plu,/n < x) — -7% ArcsinVx, 0 £ x £ 1.
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The Arcsine law was discovered by P. Levy in his study of Brownian
motion, then obtained by Erdos and Kac as a limit theorem for sums of
independent random variables with finite second moments and obeying
Lindeberg condition (see also Chapter XII). Andersen’s result which

does not require second finite moments was unexpected and drew atten-
tion to his approach.

The proof is based upon the following considerations. The event
[v, = k] consists in the occurrence of events [Sy > So, -« *y Sk > Sk
and [Sxp1 — S 2 0,--+, 8 — S = 0]. The first one belongs to ®(X;,
.- -, X&) and the second one belongs to ®(Xiy1, * -+, X,) and these two
o-fields are independent. Furthermore, (Xiy1, - « -, Xa) is distributed as
(Xy, -+ oy Xamx). It follows that

Pn=k) = P(vy = k)P(va—r = 0)

and, by Andersen equivalence,
(1) P(rn = k) = P(ri, = k) P(ra—r = 0).
Let
_1@2H! Q= R)!
2o = 2 E e = BT — BT
so that

k=0,--+m,

2a(8) = paln — B), T palk) = 1.
We prove by induction that

(2) P(Vn = k) = Pn(k)°

For n = 1, we have

Py =0) = Pn: = 1) = 5 = p:(0) = pu(1).

If (2) holds for n — 1 hence, by (1), P(va = k) = pa(k) fork =1,- .-,
n — 1, then

P(v, = 0) + P(v, = n)

n—1

N -

-1

= 1= T Pn =) = 1= Z (k) = a(0) + 2s(9):

-1

Since the hypothesis about £(X) implies easily that P(v, = 0) =
P(v, = n), it follows that
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P(vn = 0) = pa(0) = P(va = n) = pa(n).

Once (2) is proved, the Arcsine law follows by elementary computations
using Stirling’s formula (see Introductory Part, 7).

We shall use the foregoing basic implications without further com-
ment.

26.2. Dichotomy: recurrence and transience. We recall that x ¢ R
is a possible state of a random walk (84, Sq, - - -) if for every neighborhood
V., there is an n = n(V,) such that P(S, € V) > 0. We say that x is
arecurrent state of the random walk, if, for every ¥, P(S, € ¥, i.0.) = 1;
as usual “1.0.” stands for “infinitely often,”” that is, for infinitely many #,
and “f.0.” for “finitely often” will stand for denial of “i.0.”, that is, for
“at most finitely many n.” Thus, to say that x is recurrent is equivalent
to P(S, € V. f.0o.) = 0. Clearly, a recurrent state is possible and it suf-
fices to consider neighborhoods 7 of the form (x — ¢, x + ).

a. If a random walk has a recurrent state x then all possible states are
recurrent.

Proof. If y is a possible state, that is, for every ¢ > O there is a
= k(e) such that P(] Sy —y| <€) > 0 then ¥ — y is recurrent: For
then,

0=P( S — x| <2 fo.)
ZP(Sk—y| <é|Snpx— 8 —(x—y)]| <efo.)
=P(Sxi—y| <P Sa—(x—y)| <e fo.)

hence P(| §» — (¥ — y) | < ef.0.) =0 and ¥ — y is recurrent. It fol-
lows that every possible state y = ¥ — (x -— y) is recurrent and so is
x —x=0.

Thus we are led to a dichotomy: A random walk is recurrent if one
hence all its possible states are recurrent, or it is transient if none of its
possible states is recurrent.

As usual, £(X) denotes the common law of the iid random steps
X1, Xa, - » which generate the random walk.

A. RECURRENCE THEOREM. Let X be Lg-distributed with d = 0.
The random walk is recurrent if and only if one of its possible states is re-
current, and then Ly is the set of its states.

Proof. 1If the set ® of recurrent states is not empty then, by a, the
random walk is recurrent while the converse is trivially true.
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Let the random walk be recurrent. Always by a, ® is closed under dif.
ferences and 0 € ®. It followsthatx € R — x = 0 — xe®, and R is
an additive group. Furthermore, ® is topologically closed since, for any
given ¥, if recurrent x, — x then, from some # on, x, € ¥, hence
P(S, € V:i1.0) = 1,and xisrecurrent. Since the trivial case of random
walks degenerate at 0 is excluded, ® # {0} and the only foregoing sub-
groups in R are of the form ® = Ly withd’ =2 0. Ifd" = Othend = 0.
Ifd" > 0 then Ly C Lahenced < d'. Suppose d < d’ so that thereis a
possible state which is not recurrent. This contradicts the hypothesis
that the random walk is recurrent. Thus 4 = 4’, and the proof is termi-
nated.

CoroLLARrY. Let X be La-distributed with d = 0.
Either P(S, € V:i.0.) = 1 for all bounded open sets V intersecting Lq, or
P(S. € V. 1.0.) = 0 for all such V.

B. DicuHotromy criTErRION. Let X be Ly-distributed with d = 0.

() If 3. P(S. € ]) = @ for some bounded open interval J, necessarily

n==]

intersecting La, then the random walk is recurrent.

(1) If = P(S. €])) < o for some bounded open interval J intersect-

n==]

ing La, then the random walk is transient.

Proof. By Borel-Cantelli lemma, the hypothesis in (i1) implies
P(S, € J i.0.) = 0 for some bounded open interval J intersecting La so
that there is a possible state which is not recurrent hence, by A, no state
is recurrent and the random walk is transient.

Let 3 P(S, € ]J) = = for some bounded open interval J with length

n==]

| J|. Then, for every e <|J|/2 thereis a Jo=(x —¢ x + ¢ CJ
such that 3 P(S, € J.) = «». Consider the time 7 of the last visit

n==1
by the random walk to J, if any, and set r = 0 if none and r = = if in-
finitely many. Thus, for k =1, 2,

Ao =1[r =1 =[S € Jo, Sns € Jaforall k], n = 1,

and

Ay =[r =0] = P(S, & Jforalln),
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hence

P(r < @) = P(S, € J. fo) = 3. PAL.

nw=(
Since, for n = 1,
Pd, Z P(Sx € Jay |Snsk — Sa| = 2¢ forall k)
= P(Sn € J2)P(|Snsk — Sn] = 2¢ forallk),
it follows that

12 P(Sa € Ja f0) = P(|Sk| = 26 for all k) 3= P(Sa € J.).

nas=]1

Thus, 3 P(S. € Jz) = = implies that for every ¢ > 0

n==1
(1) P(|S |2 2¢ for all k) = 0.

This relation implies recurrence of O hence of the random walk, as fol-
lows.

Take Jo = (—¢, +¢),let Js = (=38, 6) with 0 < § < ¢, and define the
corresponding A4, as the A4, were defined but replacing ¥ by 0. Note
that, by (1), P4s® = P(| S| = € for all k) = 0. In fact, all P4, =0
forn = 1: For,as 6 T ¢,

‘4,;0,5 = [Sn e J.;, Sn.*.k Q: Jo for all k] T ‘4,,0
hence P4,°; — PA,° and, by (1), PA,°* = 0 since

P(Sn € Ja, Sn.*.k Q: Jo fOl’ all k)
§ P(Sn € Ja, ISn-Hc —_ Skl % €e— 0 fOI‘ all k)
— P(Sn € J)P(IS| = € — & for all k) = 0.

Thus,
P(S, €Jo fo.) = ¥ PA,° =
na=s=Q

so that O is recurrent, and the proof is completed.
CoroLLARY. If for some bounded open interval ] intersecting Lg

S P(S8x € ])) is either infinite or finite, then the same holds, respecfively, for

n=s]l

all such J.

The elementary proofs of A and B are the original ones and are due to
Feller, while the proof of C is due to Chung and Ornstein and that of D
is due to Chung and Fuchs as modified by Feller.
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‘The next proposition provides us with a dichotomy criterion in terms of
one numerical characteristic of £(X), namely in terms of EX provided it
exists.

C. ExPECTATION CRITERION. Let EX exist. Then the random walk is
recurrent if and only if EX = 0. More precisely

(1) If EX = O then the random walk is recurrent and a.s.
— o = liminf §, < limsup §, = + .
(i) If EX >0 or EX <O then the random walk is transient and
Sp =25 4+ © or §, 225 —o, respectively.

To prove this proposition we need the lemma below; we introduce
So = 0 and write I(A4) in lieu of I, for any event 4.

b. For every ¢ > O and every integer m

3 T PS:| <mo)S 3PS <.

ma=s() n==(0
Proof. Let the right side be finite; otherwise there is nothing to prove.

Let J be an interval of lengthcandletv = 3 I(S. € J) be the number
na==]

of visits to J by the random walk (§;, Sy, - - -) so that their expected

number is Ev = Y, P(S, € ]). Set r =min{n = 1: §, € J} when

na==] o o
this set is not empty and 7 = ® when it is; 7 is the time of the first visit
«©

toJand Ev =Y E@l(r=n)). Onlr=n], [(Si €]) =0fork < n

n==1

while 7(§, € J) = 1 hence

dir=n= T ISED =1+ ¥ IS E]

k==1 k==n+1

14 Y H(Si—S)+ 8. €D

k=sn4-1
<14+ S IS =S <o) =1+ 3 IS <o)
k=n+1 k==1

= § I(|8) < o).

k=0
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Since [t = #] and §% are independent when & > #, it follows that

Ev = g{P(T = n) §P(|Sk| < c‘)} = § P(|8.] < o).

n==0 k==0 k==0

Therefore,

> P €N S 3 PUS < ¢)

n==0 nasQ

since P(So € J) = 0 unless O € J when this inequality holds trivially,
term by term. Upon replacing J by J; = [j¢, (f + 1)¢) and summing
overj = —m, —m + 1, - - -, m — 1, the asserted inequality

@

S P(S.| < me) £ 3 P>SA| < <)

n==(

1
2m
obtains.

Proof of C. By the SLLN, if EX > 0 then S,/7n == EX > 0 hence

»—=3 + o and the random walk cannot be recurrent; similarly for
EX <O0.

Let EX = 0 so that S,/n %250 and, a fortiori, §,/7 —— 0 hence, for
given € > 0 and # = n, sufficiently large, P(|S.| < ne) < 1/2. There-
fore, for m/e = n,,

—21; § PS8 <m) = —;(T- - n.>/2m = 1/4e — n./4m

n==0 €

so that, by b with ¢ = 1,

Y P(|Sa| < 1) = limsup(l/4e — n,/4m) = 1/4e — o

n==Q m-+co

as e — 0, B applies and the random walk is recurrent. But then the
(nondegenerate at 0) random walk cannot drift to +« or to — « and
the only asymptotic alternative is a.s. — o = liminf §, < limsup S, =
+ . The proof is terminated.

If a random walk obeys the infinite oscillations alternative it is not
necessarily recurrent: Symmetric random walks, that is with £(X) sym-
metric, obey this alternative and we produce now such random walks
which are transient.
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Let £(X) be nondegenerate symmetric stable, that is, with f(u) =
exp(—c|ul|?), ¢ > 0,0 < v £ 2. According to end of 25.2, F’ exists and is
continuous and 0 < F'(x) < F’(0) with F/(0) > 0. Furthermore, £(X)

being stable,
L£(8,/nth) = £(X) foreveryn = 1,2, ---. It follows that
P(S8. < 1) = P(|X]| < 1/nt)
- f "M B ) die ~ 2F Q)1

_n—l /7

© ©
so that 3 P(|S. < 1) is finite or infinite, according as 3 #n7Yr is

na==] nasl
finite or infinite hence, accordingas0 < ¥ < lor1l £ ¥ £ 2. Thus, by
B, our symmetric random walk is transient for 0 < ¥ < 1 and recurrent
for 1 £ v £ 2; note that EX does not exist for0 < v = 1.

Finally, we search for conditions for recurrence or transience in terms
of the ch.f. f of £(X). (So far, they seem to provide the only approach
for general random walks in euclidean spaces R*, » > 1.) In what fol-
lows we use the immediate

ParsevaL ReLaTioN: [ f(u) dFy(u) = [ fy(X) dFx(X)
which obtains upon integrating fx(u«) = [ ¢*= dF(x) with respect to Fy(f),
and two laws with

triangular pr. density:

N | | %| 41— cos hu
F(x) = Z(l - 7) V0, f(u) = 2—————-——},2%2 s h >0,
triangular ch.f.:
1 — cos Ax

f(u)=(1—|—zl)VO,F’(u)=;r— S8 B h>o.

D. Cu. r.’s AND DICHOTOMY. Let f be the ch.f. of the common law £(X).

(i) The random walk is recurrent if there is a § > 0 with

s
limsup du

M1 T=ow ~ 7
(i) The random walk is transient if there is a 8§ > 0 with
3 du

sup T 50N < o,
O<t<l J_; =4
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Proof. Let §o = 0.

1°. Parseval relation with triangular ch.f. and Fyg, yields

zw&wowzj:( M) a0 = L [ LS00 iy

Since (1 — cos Au)/hu* Z ch for |u| < 1/A and some ¢ > 0 and

1 1 —¢
‘TG = T= G’

it follows that
1/h 1A

i h 1 clz du
"p(S, < B =L :
ZrP(Sl <zl ) ey =T ) ToRm

Therefore, by hypothesis in (i), for 1/4 < 8,
5

ne=Q i1 - 1 - {f(u) B
and recurrence obtains by B

2°. Parseval relation with triangular pr. density yields

1 — cos Ax 1 ||\ .,
iz m < L[ (1-14) oy
so that for |x| < 2/4 hence (1 — cos lzx)/lﬁx2 > 1/3

\

k du
Z P(|S.) < &) = ——llmsup

|

l

J

oon || du __:_3_ h______fi.t_l____.

n=0

Therefore, by hypothesis in (ii), for 2 < 8,

EOP(|S o < 2/B) = ﬂosutplf = tf(u)

and transience obtains by B

Corovrrary 1. If, for some 6§ > 0,
s
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then the random walk is recurrent.
CoroLLARY 2. If EX = O then the random walk is recurrent.

Follows by elementary computations from the fact that, given ¢ > 0,
EX = 0implies0 < 1 — Ref(#) < eu for |u| < 6 sufficiently small.

26.3. Fluctuations; exponential identities. We consider random
variables defined on (S, - « -, §,), say, the number of its positive terms
or their maximum or times of occurrence of this maximum, etc. We
shall find the explicit form of their laws in terms of “‘exponential identi-
ties.” The method will be Fourier analytic. At its core lies a “Wiener-
Hopf™ factorization technique for the generating characteristic 1/(1 — tf)

of the random walk (8, Sy, - - +).
In what follows, 0 < # < 1, # € R, A denotes a linear Borel set, and

we set

= = i 1uS
fA(u’ t) B exp{z ; f[3n€ A]e ”}’

n==]

hence

[ = = t_” f us }.
S ld) CXP{Z Bdis,can’ "

n=s]

a. FACTORIZATION LEMMA.

1—:1%5 = falty Dfac(ue, ).

Results from

1 1 gy
- exp{log (=t tf(u))} - exp{z iy (u)}

na==]

fn(u) - feiusn = j;eiusn + j;c eiusno

We shall be dealing with Fourier-Stieltjes transforms of functions of
bounded variation on linear Borel sets, of the form

p(u) = L e®= dG(x)
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with same affixes for p and G, if any. Exactly as for characteristic func-
tions, the uniqueness theorem p < G (up to additive constants) is valid,
their products pp’ correspond to compositions G*G’ and, clearly, their
sums and differences p = p’ are transforms of functions of bounded varia-
tion G + G'.

Let
Pa(ty 1) = T Polu)t™, Que(ty ) = 3 gui)s”

where Py(u) = qo(#) = 1 and, forn = 1,

Palu) = L"wz dGa(x), g»(u) = f e®= dGa(x).
Ac
A. UNIQUE FACTORIZATION THEOREM. I[f

O T = Pt 0@t ) or i) 205 — 0.t

then

Pa(u, t) = fau, t) or Pa(u, t) = fa=Yu, ¢)

and

Qa(u, t) = fas(u, 1).

Proof. Because of a, it suffices to show that if the foregoing relations
hold for P4(u, £) and Q 4¢(u, ¢) then, for n = 0, 1,---, p(4) = p.(n)
and ¢,(#) = ga(u), u € R.

Upon identifying the coefficients of the ¢*, (i) and (ii) then become,
respectively,

1) ﬁmw%4w=§ﬁ@¢4w
or
@ ﬁmwﬁﬂw=§mw@4w

We proceed by induction: The assertion is trivially true for n = 0.
If pu(u) = pu(u) and qu(u) = qx(u) for k =1, ---, n — 1 then in (1)
and (2) the first 7 — 1 terms in the left and right sums coincide so that
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Pn(t) + gu(u) = pa(t) + ga(us) or pa(u) + ga(u) = pa(u) + ga(u).
Thus

Pu(u) — pa(u) = ga(u) — gu(u) or pu(u) — palu) = qa(u) — ga(u),
that is, for « € R,

f es dH,(x) = — f e%= dH,(x) or f ¢%2 dH,(x) = f e¥= dH, (%),
4 A° A A°

where the functions H, = G, — G’ are of bounded variation. There-
fore, by the uniqueness property for Fourier-Stieltjes transforms,
I4dH, = F 14,°dH, so that both sides vanish. The assertion follows.

This proof as well as B are due to Baxter.

From now on, to simplify the writing, f euSn = E(eSn](A)) will
4

be denoted by E(e®3»; A) and, when A is of the form [- - -] we shall
omit the square brackets. The first visit time of 4 by (81, S, - - +) will
be called Aitting time of 4. When 7is arandom time, for r = ®,*+r =0,
0<t<1),n=0,1,:--;note that if 7 is a time of (§1, Sz -+ :) then

[r =01 = 4.
B. RanDoM TIMES IDENTITIES. Let 7 be a time of (S1, Say -« +).

(i) The following identities hold:

E(trensSry = 3 E(e™Sn: 1 = n),

n==(
r—1 o
E (z mw») = 3 PE(e%Sn: 1 > 1)
n==0 n==Q
1 — E@re®s) (T s\,
o E<”Z“0t e

(1) When v = 7, is hitting time of A then

1 — E(taexp tuS;,) = fa ' (u,t) = CXP{—Z % E(e®s8n: §, € A)}

na==]

rA—l ® .
E( > t”e"“s"> = fa(u,t) = exp{z % E(et8n: §, € A‘)}-

n==Q nas]
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Proof. The first identity in (i) results at once from the definitions.
The second one results from

7—1 -] n—1 ©
E (Z tneiusn> = Z E<Z tneius,.:,r = k) — Z E(tneiusn:,r > n).
nm=Q nml k=0 n=0

Since 7 is a time of the random walk (8§, 82, - - ),

© ©
E (Z tneiusn> —_ E <tre1'usf Z e:’u(S,-—i-n—Sf)>
Ra=t n=(

— E(treius,)E E tneiusn> = E(treiuSr)/(l —_— éf(u))

n=_
and, replacing in
71 -]
1/( — tf(u)) = E (z t"e"“s"> +E <z t"e"“sﬂ>,
n=0 nm=7

the third identity obtains. By the unique factorization theorem, it im-
plies the two identities in (i1).

Our main concern is with 4 = (0, ©) hence 4¢ = (— =, 0], and we
set f+ = fo,o)f- = f(=w, o 50 that

Folu, ) = exp{Z§E<ef"Sn= §a > 0)},
n=1

n=]

f_(u, t) = exp{i%E(eiusn: S, < 0)}

CoroLLARY. If T = 7, «) then

r—1

1 — E(tenS) = fi(u, d), E(Z t"e"“s"> = f_(u,t).

yum=(
C. MAXIMA TIMES AND POSITIVE SUMS IDENTITIES.

() If 7a is the time of occurrence of the first maximum of (So, S1, - + +5 Sa)
then

E(eSn: 7, = k) = E(c™Sn: 7 = &) E(¢%5,4: 7o = 0)

E E (e%Sn: 7o = n) = fi(u,0),

n—0
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@

Y rE(eSn: 1, = 0) = f_(u,),

um=(

S PE(smeiss) = fo(ust)f (uy), 0< s L.

u=0

(1) If va is the number of positive sums in (Soy Si, - - +y Sa) then the
above identities remain valid when therein v is replaced by v with same
subscripts.

(i) Al above identities, including those in the above Corollary, remain
valid when (0, ) is replaced by [0, ) provided v, is the time of the last
maximum of (S, S1, - * -, Su) and v, is the number of nonnegative sums in
(Soy Sy« -+, Sn) while Sn > 0 and S, < 0 are replaced by S, =2 0 and
Sa <0 infy and in f_, respectively.

Proof. The identities in (i) are based upon a “‘sample space factoriza-
tion”’: If M, = max(S,, - + -, Sa) then the first time this maximum occurs
is 7» = min{0 £ k £ n: 8¢ = M,} and, by the very definition of 7, =
(X, - - -y X0,

[Tn(Xl) ) Xﬂ) = k] = [Tk(le tt Ty Xk) = k][Tn—k(Xk+1) T Xn) = O]

Since the last two events are independent and so are S and S, — S while
S. — S has the same distribution as Sa—, it follows that

E(eSn: 1 = k) = E(e™S4: 74 = k) - E(e™Snk: 7,y = 0).

Thus, upon multiplying by s*" and summing over 0 S k £ 7 < =,

i trE(smeiuSny = P(u, s£)Q(u, £)

u=Q

where
P(u,t) = nio tnE(e#Sn: 7, = n),
O(u, t) = go tnE(eSn: v, = 0).
For s = 1, the preceding relation becomes

1
i———é—f—@ = P(u) t)Q(u) t))
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while 7, = 7 implies §, > 0 and 7, = 0 implies §, < 0. The unique
factorization theorem applies so that

P(u) t) =f+(u) t)) Q(u) t) =f—(u) t)

and the identities in (i) follow.

By Andersen equivalence, the sample space factorization for the times
of first maxima is equivalent to the far from obvious sample space fac-
torization for the numbers of positive sums:

[Vn(XI) Ty Xﬂ) = k] = [Vk(XI) Tty Xk) = k][Vn—k(Xk+1) Y Xﬂ) = O])
and (ii) for positive sums identities follows.

Finally, by using in the unique factorization theorem [0, =) in lieu of
(0, =), (iii) results from the fact that all the foregoing arguments con-
tinue to apply to the corresponding 7, and »,.

The following important identity, known in various guises and with
various degrees of generality, has its origin in the basic Spitzer identity
below (Pollaczec, Spitzer, Kemperman, Port, etc.).

D. MAXIMUM TIME AND VALUE IDENTITY. If M, = max(Sy, - -, Sa)
and v, = min{0 £ k £ n: S, = M,}, then

@

Z tnE( ane‘iuSn+van) f— f+(u + v, Jt)f—(u, t)’ O < S é 1.

#=0
Proof. Since 7, = k& M, = S, by sample space factorization,
E(eiuSntivMn, 1 = }) = E(ei@tvSitiusn—80); 7, = k)
= E(e’t+98k; 7, = k) - E(e™Sn—*; 1,4 = 0).
Upon multiplying by s*#* and summing for 0 < ¥ £ » < «, it follows
that

@

2 mE(sme®Sn) = P(u + v, s¢) Q(u, t),

n=0

where P and Q are the functions introduced in the preceding proof and,
as therein, the unique factorization theorem yields the asserted identity.

Particular cases. 1°. For v = 0 we obtain the last identity in C(i).

2°. For s = 1 and # = 0, changing v into %, we obtain the Pollaczec-
Spitzer identity:

n

- u fuMn) — mtﬂ fuSnt .
'?.:.otE(e M)—exp{ -1§E(e o )}
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It was first discovered by Pollaczec but remained unnoticed until re.
discovered by Spitzer.

3°. For s = 1, interchanging # and v, we obtain

@

2 E(euMntioSn) = £ (u + v, )f (v, £).

n=Q

Upon setting w = # + v then changing w into %, and v into —v, it be-
comes

X, PE (bt = . (u, f (—0, 1).

Finally, upon multiplying by

1 _ ® m o 4n )
1—¢ exP{1§1 n P(S» > 0) } exP{nZ-1 n P(S. é.O)},

we obtain

@

.__];____ Z tﬂE(ei'uMn‘Hv(Mn—sn)) — exp{zl _;;(Eeius,d' + Eeivsn—)}

l—t"_o 7=

or

2 "E(euMntivMn—Sn)) = CXP{ZI ;;_' (Eetwsn™ 4 EetoSn™ — 1}’

U= 7=

and this is the basic Spitzer identity in its initial form.

EXTENSION. The basic exponential factors £, (, £) and f_ (u, £) may
still have meaning when # € R is replaced by complex z. In fact,

@

filz, 0) = exp{z -tn: E(ef8n: S, > O)}

n=]

is bounded and continuous for 3z = 0 and regular for 3z > 0,

fGot) = exp{i 2 Blewsn: S, = 0>}

is bounded and continuous for 3z < 0 and regular for 3z < 0.

Thus the question arises whether the identities so far obtained remain
valid for such z. The answer is in the affirmative for those identities in
which figure only either f* or f—; when both occur then, clearly, we must
have 3z = 0, that is, 2 = # € R. These assertions result at once from
the unicity lemma 15.2d, which yields (i) and (ii) below, while for (ii1)
we also use the fact that all the r.v.’s therein are nonnegative.
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E. ExTENDED IDENTITIES. The following identities are valid:

(i) For3z =0,
1 — E (7657 = f1(3, §),

;o trE(e*Sn: 1, = n) = fi(z, 1),

2 E(eSn: v, = n) = f,(z, £)-

n=0
@i1) For 3z =0,
7—1

2 t"E(e%S%) = f_(z, £)

n=Q

@

2 t"E(e'*Sn: 1, = 0) = f_(z, )

n=(Q
X mE(e#Sn: v, = 0) = f_(z, 1)

G1i) For3z 2 0,32" = 0,
©
Z tnE(e‘l'ZMn'l"‘l'z' (Mn—sn))
n=(

= exp{z1 ;;(E(e"‘s""') + E(e¥'$7) — 1}

-

and, in particular, for 3z = 0,
nz_otﬂE(e’.ZMn) = CXP{Z_I %E efzSn+}.

ReMark. In fact, the argument used for the unicity lemma 15.2d
permits to prove simultaneously identities and a unique factorization
theorem (Pollaczec, Ray, Kemperman). To fix the ideas, replace # by z

in P(u, t) and @(u, ¢) used in the proof of C:

P(z,t) = S t*E(e%Sn: 1, = n), Q(z,8) = 3 t"E(e%*Sn: 7, = 0)

n=( n=0

Note that P(z, ¢) like £ (z, £) (2(z, ¢) like f_(z, #)) is bounded and continu-
ous for 3z = 0 (3z < 0) and regular for 3z > 0 (3z < 0) while for 3z = 0

@A) = T = P0G,
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Therefore, for 3z = 0,

P18 _ f-(&9)
2) = =
0 = 7@ ~ 06
where the first (second) ratio is bounded and continuous for 3z = 0
(3z = 0) and regular for 32 > 0 (30z < 0). Thus, the two ratios are re-
strictions of a same bounded entire function g(z) to 3z 2 0 and to
Jz £ 0, respectively. By Liouville’s theorem, g(z) is a constant. But

P(z,?)
f+(Z, t)

—]1 as z2— 4+

so that
P@,0) = fi(z,0) for3z 2 0,Q(z,8) = f-(z,8) for3z = 0.

This proves the corresponding extended identities together with unique
factorization. '

All preceding identities in fy and f— which are in terms of exponentials,
naturally, are called exponential identities. Their striking and unex-
pected feature is that the distributions of various fluctuation random
variables are in terms of individual terms §, of the random walk. The
sample space factorizations

[Tn(Xb tc ')Xn) = k] = [Tk(XI:' : ',Xk) = k][Tn—k(Xk+1) Tt Xn) = O]

and the equivalent one with r replaced by » are, naturally, called extreme
factorizations. Their striking and unexpected feature is that the dis-
tributions of 7, and of v, are determined by the pr.’s of their extreme
values 0 and ».

26.4 Fluctuations; asymptotic behaviour. We relate now the asymp-
totic behaviour of the random walk to that of fluctuations r.v.’s 74, Tn,
Vny, My; A denotes a linear Borel set.

a. HitTING TIME LEMMA. If 7, is hitting time of A then

) 1—Era= exp{—i %P(S,. € A)},

n==l

(i) PE,= )= exp{—i P(S, € A)/n},

n=1

Gi)y Er, = exp{i P(S. € A")/n} + @ P(r= ®)(w -0 =0).

nm=l
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Proof. We use the elementary proposition: If the g, = 0 and ¥ g

n=0

converges for 0 < ¢ < 1, then Y au* > Y 4, < @ ast T 1.

nm=0 n=0Q

Set r = 7,. Identity (i) results from the first one in 26.3B(ii) with
u = 0. Identity (ii) follows from (i) by letting # 1 1 in

Err = it"P(r = n)—>§P('r =n) = P(r < )

na=] n==l

so that

Plr=o)1-— Et’—»é(p{—i P(S, € A)/n}-

nm=]

Identity (iii) results from the second one in 26.3B(ii) with # = 0, by
letting ¢+ T 1 so that

exp{i P(S. € A‘)/n} — ET—Z1 o= E t"P(r > n) — E P(r>n)

n=0 nm=0 nm=0 nm=0

and

ET=§P(T>7Z)+¢°‘P(T= ©),

n=0Q

b. FINITE INTERVAL LEMMA. Let J be a finite interval and let v be the
hitting time of J¢. Then Ev" < o forr > 0, and ES, = Er - EX exists
(and is finite) if and only if EX exists and is finite.

The first assertion is Stein’s lemma and the second one is Wald’s rela-
tion, both obtained before general fluctuation theory.

Proof. The second relation was proved in 26.1 and it remains to prove
the first one. To fix the ideas, let J = [4, 4]. Since the only asymptotic
alternatives are: a.s. S, — — ®© or to + ® or — o = liminf §, < limsup
S, = + =, there is an integer m such that p(| Sm| < 4 — 4) < 1. But
[r > n + m] implies occurrence of independent events [r > 7] and
[| Sntm — Su| < & — 4], where Saym — S» has the same distribution
as Sm. Therefore,

P(r>n+m) S pP(r > n)
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and, by induction,
Pr>km) S p5k=1,2,---.

Therefore, P(r > n) < (p!/™)" so that the series 3 t*P(r > n) < = for

n=0
lt| <ty = p~Um > 1. The first assertion follows.

A. TRANSLATION INVARIANCE THEOREM.

(1) If J is a finite interval then i P, €))/n < o,

n==l

(i1) E P(Sn = x)/n < =, E P(S, < %)/n + E P(Sn > x)/n = o,

n=1 n=l nm=l

for all x € R.

(1) Either P(Sn < x)/n < = forallx € R
Or P(S, < x)/n = o forallx € R,

where “<”’ stands for any one of the following inequality signs: “<”’,
«« é ”’ €« > ”’ €« ; ”.
(v) If o = 14_is the hitting time of A, where A, stands for any one of
the following intervals: (x, ), [x, ©), (— », x], (— o, x), then
P(r, < ®) = P(1y < @)
for all x € R.

In particular, P(r, < ) =1 if and only if 3 P(S. € Ao)/n = =,

n=]

Proof. Assertion (i) results from a(iii) and b(i). Assertion (ii) results

@

from (i) and the fact that the sum of the three seriesin (ii) is}_ 1/7 = .

ne=]

Assertion (iii) for, say, “<” and x > 0, results from [0, =) = [0, x) +
[%, =) by

S P(Su> 0)/n = 3 P(Sa € 10,8))/n + T P(Sa 2 )/

n==l n=1 n=1

where, by (i), the second series converges; similarly for the.c.)ther choi.c.:'es
of “<” and ¥ € R. Finally, assertion (iv) follows, by a(ii), from (i1i).
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B. THREE ALTERNATIVES CRITERIA.

(a1). The following properties are equivalent:

Sa— —® 4.5, P(roey < ®) < 1, T PS> 0)/n < o, EX <0

na=l

when EX exists.
(az). The following properties are equivalent:

Spn = +® a5, P(Tcan < ®) <1, Y P(§n <0)/n < ©o, EX>0

na=]

when EX exists.

(as). The following properties are equivalent:
— o = liminf §, <limsup S, = +© a5, Plro, o) < ®) = 1 and
Plrcomy < ©) =1, 3 P(§,.> 0)/n = © and > P(§. <0) = =,

n=1 nm=l'
EX = 0 when EX exists.

Proof. Assertions in (a;) follow upon excluding the only two other
alternatives (a;) and (a;). Assertions in (ay) result from those in (a;) by
changing X into — X hence every S, into —8,. Thus, it suffices to prove

_those in (a).

If P(§,— —«) = 1, .we cannot have P(r¢q, < ©) = 1 for then,
by A(v), P(r(z,e) < ©) =1 for x as large as we wish hence
limsup 8§, = ® a.s. Thus P, < @) < 1, bya(i), is equivalent to

Y. P(S. > 0)/n, and the first three properties in (a;) are equivalent.

n=]

Finally, by 26.2C Corollary, when EX exists then §, %5 — o = EX < 0.
The proof is terminated.

CoroLrary. P(limsup S, = +®) =0 or 1 according as (i)
Plroe < ®) <lor =1,(3ii) P(Sa > 0)/n = © or <o, (1i1)) EX <0
or EX = 0 when EX exists.

C. ASYMPTOTIC BEHAVIOUR ,’I‘I-iEOREM.
() If P(Sn > 0)/n = o then Mp*5 o, v, =5 @, 1, = @,
(1) If P(S. < 0)/n < © then a.s. M, %5 M., with i.d. ch.f.
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EenMa = exp{z (Eetusat — 1)/n},
! nm==l

Vn =3 Yooy Tn — T With common generating function

na=]

Ep- = Et’w = exp{i @ — DHP(S, > O)/n}-

Note that the hypotheses in (i) and (ii) being contrary of each other,
are equivalent to their conclusions.

Progf. By the above Corollary 3 P(S, > 0)/n = « is equivalent to

n==]

limsup §» = + ® a.s. hence Mo, = sup Sp* = limsup §, = + © a.s. It
follows that "

Plvpyy =va+110.) = P(r, =n10.) =1

so that v, ©3 © and 7, ©5 ». Assertions (i) are proved.

By the same Corollary, 3~ P(S, > 0)/7n < « is equivalent to limsup

n=]
S, < © a.s.,in fact, tolim §, = — = a.s. But, by definition of limsup,
limsup §, < ® as.implies M, T Mo < ® as.and P(vayr # vpl.0.) =

P(rny1 % ™ 1.0.) = O hence v, 25 v < © and 7, ¥5 70 < .
We use now the classical Abel theorem: If the complex 4, — 4 finite

then (1 — 4 Y ant®" —aast T 1.
nm=]
Sirice M, T Mo < « a.s., Eei*M» — E¢iM= hence, by Pollaczec-Spitzer
identity, as ¢ T 1,

EeiuM,, — (1 — t) Z tnEeiuM,.

n==l

= exp{ — i n/ n}exp{i E(ewsSat)/ n}

n=] n=]

n=l n=l

= exp{i tr(EetusSnt — 1)/n} —>exp{§ (Eetusat — 1)/n}.
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The last limit is an i.d. ch.f., since it is a product of i.d. ch.f.’s ¢¥»® with

¥Un(u) = if(e"“’ — 1) dF s +(x).
The first assertion in (ii) is proved.

Since P(vp = k) = P(rp, = k) fork =0,1,--- ,pandn=1,2,---,
va B vand 1, 5 14, < ® imply that P(ve, = k) = P(re = k) fork = 0,
1, - - -. Thus, to find the generating function of 7, it suffices to find that

of ve: Et’= = 3 t"P(ves = k). Since v, 3 rvo < o, it follows, by ex-
k=0

treme factorization, that

P(ve = k) «P(v, = k) = P(s = ;;)p(,,,_,, =0) — P(v = k)P(ve, = 0).
But, by afii),

P(Vm = O) = P(T(o,m) = °°) = exp{—i P(S,. > O)/n}

nm==l

while, by 26.3C(ii) and the second relation in (i) therein with # = 0,

E *P(y. = k) = exp{i t"P(S, > O)/n}-

k=0 n=]

Therefore,

Epe =3 tP(s = B)P(ve = 0) = exp{§ (" — 1)P(Sy > 0)/71},

na=]

and the proof is terminated.

This basic Spitzer theorem has the same striking and unexpected fea-
ture as the exponential identities: The limit distributions are in terms
of individual sums §,.

COMPLEMENTS AND DETAILS

As throughout this chapter, X, Xj, - - - are iid summands with common non-
degenerate law £(X), d.f. F, ch.f.f,and § = 0, §» = X1+ - - - + X.. Slowly
varying functions will be denoted by 4(x) with or without affixes.

. Let Fi, k = 1,2, bed.f.’s and let'x = .

If 1 — Fi(x) ~ x~ahy(x) then 1 — (F*Fy) (x) ~ x~2(hi(x) + Aa(x)).

If 1 — F(x) ~ x—2k(x) then 1 — Fg,(x) ~ nx~2h(x). Deduce similar propo-
sitions for Fi(—x), F(—x).
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2. Extrema. LetY, = max X;.

15kSn

If P(X < ¢) = 1 for some constant c, then £(Y.) — £(c). _

If P(X < x) <1 for every x € R then there exist scale factors 4, > 0 such
th.at £(Y»/ba) = £(Y) nondegenerate if and only if 1 — F(x) varies regularly
with exponent 2 < 0, and then Fy(x) = 0 or e—=** with ¢ > 0, according as
x <0orx>0. What about Z, = min X,?

. 15 k=n

3. Let § be a (A, f)-compound Poisson: fs = e*¢/-D, Let x > .

If 1 — F(x) ~ x~=h(x) then1 — F (x) ~ Ax~2h(x). Is'there a similar propo-
sition about F(—x) and Fg(—x)?

4. Let F be an i.d. d.f. withf = ¢¥, ¢ = (e, 82, L). Let x > o.

If L(x) = x~=h(x) then 1 — F(x) ~ L(x). Is there a similar proposition
about L(—x) and F(—x)?

5. Norming. Let £(X) be attracted by a nondegenerate stable £,,0 < v < 2,
that is, £(S./4, — a,). — £, for suitable 4, > 0 and a,.

¢
(a) Let uo(2) = f xdF(x)and ¢(t) = 1 — F(x) + F(—x). Let#— o« and
—t
use 25.1.D. ‘

t2—r

2

Ifr < + th f r ik

fr < vthen o Do 1 IF@ =T

If r > v when v < 2 then ﬁl< | x |[rdF(x) ~ " Lt trq(¢). Deduce that
z| <t e 4

E|X|"< o forr < yand E| X|" =  forr > v when v < 2.

(b) Centering constants. 1f 0 < v <1 we can take a, = 0. If 1 <y <2,
we can take @, = EX: Use (a).

(c) Scale factors. All suitable scale factors 4, are of the form &, = #'/7Ah(n):
Use |f*(u/ds)| = e=/*/"(1 + 0(1)), replace # by nk then 1/bm by (8n/bar)/bn,
note that o(1) — 0 uniformly in every given finite interval, show that if the se-
quence (4/4n:) is not bounded then ¢=°* = 1—impossible, and finally &n/6. —
kv,

6. Standard domains of attraction. We say that £(X) belongs to the standard
domain of attraction of a nondegenerate stable £, if 4, = 4717 > 0 are suitable

“scale factors.. (The usual but confusing term is “normal” not “standard.”)

£(X) belongs to the standard domain of attraction of a nondegenerate stable
£, with 0 < v < 2, if and only if, as ¥ = o, x7(1 — F(x ))— 47cp and xF(—x)
— b%cq,c>0,p,9 = 0. L

£(X) belongs to the standard domain of attraction of 91(0,1) if and only if/
EX? < =, and then 4, = onV2 with ¢ = o X.

.. 7. Estimates for E|S.|. Let £(X) with EX = 0 belong to the standard domain

of attraction of £,(Y) with 1 < v < 2.

(a) £(S./nl7y—&,(Y), F(—x) < ¢x~v and 1 — F(x) =< cx~7 for some con-
stant ¢ > 0. : ‘ : -

(b) There is.a positive a independent of 7 such that for x = xoindependent of
n, P(|Sa|/mt* > x) S a/x2 ‘

(c) For 0 < r < « there is a positive 4 = 4(r) independent of # such that
E(|Su/nth]") S 6.
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(d) E(Sa/n'7) — EY and E(|S./nV7|*— E|Y| for 0 = r < +.

8. Partial attraction. £(X) is said to belong to the domain of partial attraction
of a nondegenerate £(Y) if there is a subsequence (k.) of integers such that, for
suitable 4, > 0 and a,, £(S;,,,/b - a,.) — £(Y). It is a property of types of
laws. Discuss the propositions below in whichever order is preferred.

(a) Every £(X) belongs to the domain of partial attraction of either no type
or of one type or of an uncountable family of types.

(b) If £(X) belongs to the domain of partial attraction of only one type, then
this type is stable.

(c) A symmetric distribution with slowly varying two-sided tail belongs to no
domain of partial attraction.

(d) If f belongs to the domain of attraction of an i.d. e¥ so does the i.d. e/-1.
An i.d. law need not belong to its own domain of partial attraction: Use the first
statement and (c).

(e) If £(X) is partially attracted by £(Y) which is partially attracted by £(2)
then £(X) is partially attracted by £(Z). The domain of partial attraction of a
stable law is strictly larger than its domain of attraction.

(f) Leti.d. fo = e¥» have bounded y.. Set ¢(u) = 3 ¥n(batt)/ks. There are
n=1
4n > 0 and integers k» — o such that k.¢(u/0,) — ¢a(u) = 0, u € R.
(®) Iff is partially attracted by i.d. e¥» — ¢¥ then it'is partially attracted by
e¥. Isi.d. property of the e¥», ¢¥ needed?
(h) Every i.d. f = ¥ has a nonempty partial domain of attraction: Note
that there are compound Poisson ¢¥» — f, and use llm ekn?(uian) = |im e¥n() = f,

(1) Lévy example:f = ¢¥ with ¢(u) = 2 Z 2"’=(cos2’=u —1)isid. Find 1ts
. ) k= -
Lévy function. Show that f2*(«) = f(2"u); f is not stable but partially attracts
itself. ‘

(j) Every sequence of l.d. laws has an i.d. law belonging to the domain of par-
tial attraction of each of its terms.

(k) Dobdlin universal laws. There are i.d. laws belonging to the domain of par-
tial attraction of every i.d. law. Consider the countably many i.d. laws—ordered
into a sequence e%, e%, - - -, whose Lévy functions are purely discontinuous
with only rational discontinuities and only rational jumps, every i.d. e¥ is limit
of a subsequence of (¢¥»), and use ().

- 9. Consider random walk on lattices with, to simplify, span 1.

(a) Such a random walk forms a constant Markov cham with a countable
number of states. What is its transition matrix? .

(b) Interpret the concepts and results in the Introductory Part III in terms
of those in §26.

(c) Discuss the Introductory Part CDIII in terms of §26 and complete it.

10. (a) A truly two-dimensional random walk with zero expectations and
finite variances is recurrent. _

(b) A truly three-dimensional random walk is always transient. What about
m-dimensional random walks with m > 3? «

For (a) and (b), use ch.f.’s analogously to the one-dlmensmnal case in 26.2.
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11. ES,. Let EX = 0and ¢ = ¢2X (£ »).

(a) E|S.|/n'2 2 a for some constant 2 and all #n. In fact, E|S.|/n2 =
ESY/nV2— oV2/x.

(b) Let 4 = (— =, 0] or (0, ).

o< » = ES, and ES, . are both finite, and then

o 1
ES., = /== exp {5 — P(S. € A)} .

] 1226 ldrcsine law. (a) Complete the computations in the proof of Arcsine law
in 26.1.

(1
(b) Lete =3 (—2- — P(§. > O)) be finite. Then

n=1

P(vn = 0) ~ ¢/ 2xn, P(v, = n) = e~V 2xn

and the Arcsine law holds.
(c) Andersen and Spitzer generalizations. Let a, = P(S, < 0).

(a1 + cerda))/n—oaS L1 — v, /n) > L(Y)
with £(Y) = £(1) fora = 0, L(Y) = £(0) fora =1 and, for0 < a < 1,

. v
PY <y = SIZWaf x7e(l — x)e~ldx;
0

if (@& + -+ =+ as)/n does not converge then £(1 — »,/n) does not converge.
(Andersen case: a, — a.) Ifa = 1/2, £(Y) is Arcsine law.

Use Kemperman’s recurrence relation: Let 5.(k) = E(n — v,)k; 6,(0) = 1,
ba(l) =n—(a1+ -+ an), b(k) =0fork=12,---. Then

n—1

balk + 1) = 1n6u(k) = 3 Gnmbm(k).

m=0

When (a1 + -+ + an)/n— a then (1 —»./n) = (Y) with EY* = (1 — a)
(1 —a/2)--- (1 — a/k); apply Ch. IV,CD/0 (Spitzer).

13. Identities and limit distributions. Let va, ¥'a, 7a, P'» be respectively the
number of positive nonnegative, negative, nonpositive sums in (8o, * + +, §a).
Let +n, 7'a, 7a, 7' be respectively the time of occurrence of the first maximum M.,
the last maximum M,, the first minimum A, the last minimum M, of
(SO) R Sﬂ)°

(a) The equivalence relation P(v, = k) = P(r. = k) remains valid if same
affixes above are added simultaneously to » and to r; similarly for E(e™": v, =
k) = E(™": 7, = k) and, more generally, for E(fa: vo = k) = E(fa: 7o = k) in
26.1. What about extreme factorizations?

(b) Which exponential identities in 26.3 and results in 26.4 remain valid or
have to be modified accordingly when the same affixes are added?
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14. Ranked sums (order statistics). Order the sums as follows: §(w) precedes
Si(w) if §i(w) < §i(w) or Si(w) = §i(w) buti < j. Foreveryk =0,:--,n, let
Rux(w) be the kth from the bottom of Sy(w), - - -, Sa(w) according 'to this order-
ing. Let rux(w) be the index of corresponding §i(w), that is, Rux(w) = §i(w) <=
rak(w) = Si(w). Note that Ry = -+ = Runy Ruo = M, is the first minimum
occurring at time Fap = 7 and Ra.n = M, is the last maximum occurring at time
Van = ¥/,

Discuss the following Wendel identities:

Es'n = Eg% - E;'n—k,o’
EeivBar = FEetvMy . Eet'vM,.—g’
E(eius,.-f'ivkuk) — E(eiusk-f'ika) . E(eius,‘-g +:'an-5).
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nowhere, 75
Denumerable, 16
class, 57

Denumerable (Cont.)
set, 57
set operations, 57
valued, 64, 106
Diameter of a set, 74
Dichotomy, 380
criterion, 382
Difference
equations, 48
proper, 56
of sets, 56
Direction(ted), 67
set, 68
Dirichlet, 187
Disjoint
class, 57
events, 4
sets, 57
Distance of
points, 73
points and sets, 78
sets, 77
Distribution, 168, 172, 175
empirical distribution function,
20
function, 20, 96, 169, 177
invariant, 39
L+, 370
probability, 168
Doblin, 30, 302, 354, 403, 410, 411
Domain, 62, 108
of attraction, 360
partial, 401
standard, 402
Dominated convergence theorem,
126
Doubrovsky, 408
Duality rule, 57
Dugué, 409
Dunford, 408

Egorov theorem, 141
Einstein, 43, 44
Elementary

chain, 29
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Elementary (Cont.)
function, 64, 107
probability field, 16
random variable, 17, 152

Empirical distribution function,

20

Empty set, 4, 54

Equivalence
Andersen, 377, 393
Andersen, lemma, 378
class, 154
convergence, 245
lemma, laws, 290
lemma, series, 245
tail, 245
theorem(s), 263, 379

Equivalent
distribution functions, 96
functions, 114
random variables, 154
states, 36

Erdos, 34

Esseen, 294, 410

Essential
convergence, 262
divergence, 262

Euler, 47

Events, 3, 8, 151
disjoint, 3
elementary, 151
exchangeable, 45, 21
impossible, 4, 151
independent, 11, 73, 235
null, 152
random, 5, 8
sure, 4, 151
tail, 241

Everreturn state, 36

Exchangeable
events, 45, 373
random variables, 373

Expectation
centering at, 244
criterion, 384
indefinite, 153

Expectation (Cont.)
of a random function, 156
of a random sequence, 154
of a random variable, 10, 17,
153, 154
Exponential
bounds, 266
identities, 388, 396
Extended
Bernoulli law of large numbers,
26
Borel line, 93, 107
Borel space, 93, 107
Borel strong law of large num-
bers, 26
central convergence criterion,
326
central limit theorem, 322
convergence criterion, 306
Helly-Bray lemma, 183
identities, 395
Extension, 88
of characteristic functions, 225
of linear functionals, 81
of measures, 88

Factorization(s)
extreme, 396
sample space, 392, 396
unique, theorem, 389
Feller, 34, 292, 302, 353, 354, 369,
371, 383, 407, 409411
Fermi-Dirac statistics, 42, 43
Field(s), 59
Borel, 93, 104
compound, 156
Lebesgue, 129
of outcomes, 4
probability, 8
product, 61, 62
o-, 59
Finite intersection property, 70
interval lemma, 45
Finetti, de, 302, 411
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Finitely-valued, 64, 106 Gnedenko, 302, 354, 407, 409, 411

First
category, 75
limit theorems, 282
Fortet, 409
Fréchet, 187, 408
Fubini theorem, 136
Function(s)
additive set, 83
Baire, 111
centering, 350
characteristic, 199, 202
continuous, 67
convex, 161,
countably-valued, 64, 106
denumerably-valued, 64, 106
distribution, 20, 96, 169, 177
domain of, 62, 107
elementary, 64, 107
equivalent, 114
F-continuous, 187
finite, 105
finitely-valued, 64, 106 ,
of function, 64, 106
inverse, 63, 106
measurable, 65, 107
non-negative deﬁmte 219
numerical, 105
P-contmuous, 187
positive part of, 105
random, 152, 156
range of, 63
range space, 62, 105
simple, 64, 107
tail, 241
Functional, 80
bounded, 80
continuous, 80
linear, 80
normed, 80

Gambler’s ruin, 48
Geometric probabllltles, 49
Glivenko, 408

—Cantelli, 21

Gumbel, 45

Hadamard, 30
Hahn and Rosenthal, 408

Hahn decomposition theorem, 87

Halmos, 196, 408

| Hausdorff, 408

space, 68
Heine-Borel property, 70
Helly, 409
Helly-Bray lemma, 182
extended, 183 '
generalized, 187
Helly-Bray theorem, 184
Herglotz lemma, 220
Hewitt-Savage, 374, 411
zero-one law, 374
Hilbert space, 80
Hitting time, 377
lemma, 374
Holder inequality, 158
Huygens principle, 28

Identification property, 73
Image, Inverse
of a class, 63, 106
of a set, 63, 106
Impossible event, 4, 110
Improper integral, 130
Increments inequality, 208
Indecomposable class of states,
36
Indefinite
expectation, 154
integral, 130
Independent
classes, 11, 235
events, 11, 235
random functions, 237
random variables, 11, 237
random vectors, 237
o-fields, 236
trials, 7
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Indicator(s), 9, 59
method of, 44
Induced
partition, 64, 106
probability space, 168, 171
o-field, 64
topology, 66
Inequality(ties)
basic, 159
central, 316
¢ 4157
Holder, 158
integral, 208
Kolmogorov, 25, 247, 275
Lévy, 259
Liapounov, 177
Schwarz, 158
symmetrization, 259
Tchebichev, 11, 160
truncation, 209
weak symmetrization, 258
Inferior limit, 58
Infimum, 56, 103
Infinite
decomposability, 308
numbers, 103
Infinitely often, 241
Integrable, 119
uniformly, 164
Integral
characteristic function, 202
inequality, 208
representation theorem, 166
Integral(s)
Daniell, 146
Darboux-Young, 144
definitions, 119
elementary properties, 120
improper, 130
iterated, theorem, 137
Kolmogorov, 145
Lebesgue, 129, 143
Lebesgue-Stieltjes, 128
Riemann, 129
Riemann-Stieltjes, 129

Integration by parts lemma, 358
Interior, 66 '

point, 66
Intermediate value theorem, 102
Intersection(s), 4, 56

finite—property, 70
Interval(s), 61, 62, 104

finite—lemma, 397
Invariance theorem, 39
Invariant distribution, 39
Inverse

function, 63, 106

image, 63, 106

Inversion formula, 199

| Iterated

logarithm, law of, 219
regular conditional probability
theorem, 138

Kac, 407, 410
Katz, 411
Karamata, 354
main theorem, 356
Kawata, 210, 409
Kelley, 408
Kemperman, 369, 393, 395, 410
Khintchine, 28, 302, 410"
measure, 343
representation, 343
Kolmogorov, 30, 94, 302, 407, 408,
410
approach, 145
inequalities, 25, 247, 275
strong law of large numbers, 251
three series criterion, 249
zero-one law, 241
Kronecker lemma, 250

Lambert, 46

Laplace, 22, 281, 286, 287, 407

Law of large numbers
Bernoulli, 14, 26, 244, 282
Borel, strong, 18, 19, 26, 244
classical, 290
Kolmogorov, strong, 251
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Law(s), 174
degenerate, 215, 281
equivalence lemma, 290
infinitely decomposable, 308
normal, 213, 281
of the iterated logarithm, 219
Poisson, 282
probability, 174, 214
self-decomposable, 334
stable, 326, 363
types of, 215
universal, 403
zero-one, 241, 374
Lebesgue, 408
approach, 143
decomposition theorem, 131
field, 129
integral, 129
measure, 128
sets, 129
Lebesgue-Stieltjes
field, 128
integral, 128
measure, 128
Le Cam, 193, 409
Lévy, P., 199, 301, 302, 408, 410
continuity theorem, 204
inequalities, 259
function(s), 361
measure, 343
representation, 343
Liapounov, 411
inequality, 174
theorem, 213, 287, 289
Limit
of a directed set, 68
along a direction, 68
inferior, 58
superior, 58
Limit of a sequence of
functions, 113
laws, 214
numbers, 104
sets, 58

Limit problem
central, 302
classical, 286
Lindeberg, 292, 411
Line
Borel, 93, 107
extended real, 104
real, 93, 103
Linear
closure, 79
functional, 80
space, 70
Linearly ordered, 67
Liouville theorem, 369
Lomnicki, 409
Lower
class, 272
variation, 87
L.-
completeness theorem, 163
convergence theorem, 164
spaces, 162
Lusin theorem, 140

Marcinkiewitz, 225, 254, 302, 409
Markov, 407
chain, 28
dependence, 28
inequality, 160
Lukacz, 408
Matrices, method of, 48
Matrix, transition probability, 29
Mean
rth mean, 159
Measurable
function, 107
sets, 60, 64, 107
space, 60, 64, 107
Measure, 84, 112
convergence in, 116
Khintchine, 343
Lebesgue, 129
Lebesgue-Stieltjes, 128
Lévy, 343
normed, 91, 151
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Measure (Cont.)

outer, 88

outer extension of, 89

product, 136

signed, 87

space, 112
Median, 256

centering at, 256
Metric

compactness theorem, 76

linear space, 79

space, 73

topology, 73
Minimal class over, 60
Minkowski inequality, 158
Moment(s)

convergence problem, 187

convergence theorem, 186

kth, 157, 186

lemma, 254

rth absolute, 157, 186
Monotone

class, 60

convergence theorem, 125

sequences of sets, 58
Montmort, 46
p°-measurable, 88
Multiplication

lemma, 238

property, 11

rule, 24

theorem, 238

Negligibility, uniform asymptotic,
302, 314
Neighborhood, 66
Neyman, 407
Nikodym, 133, 408
Nonhereditary systems, 28
Nonrecurrent state, 31
No-return state, 31
Norm
of a functional, 79
Hilbert, 80
of a mapping, 79

Normal
approximation theorem, 300
convergence criterion, 307
decomposition theorem, 283
law, 213, 281
type, 283
Normalized distribution function,
199
Normed
functional, 80
linear space, 79
measure, 91, 151
sums, 331
Nowhere dense, 75
Null
set, 91, 112
state, 32
Numerical function, 105

Open
covering, 69
set, 66
Ordering, partial, 67
Orthogonal random variables, 246
Outcome(s), 4
of an experiment, 4
field of, 4
Outer
extension, 89

measure, 88
Owen, 411

Parseval relation, 386
Parzen, 407
Petrov, 410
Physical statistics, 42
Planck, 44
Poincaré recurrence theorem, 28
Poisson
compound, 347
convergence criterion, 229, 329
decomposition theorem, 283
law, 282
theorem, 15
type, 283
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Pollaczec, 396, 394, 400, 411
—Spitzer 1dent1ty, 393 400
Pollard, 34
Polya, 368, 409
Port, 369, 393, 412
Positive
part,'105
state, 32
Positivity criterion, 33
Possible
state(s), 370
value(s), 370
values theorem, 371
Probability, 5, 8, 16, 91, 151, 152
conditional, 6,24 . =
convergence in, 153
convergence on metric spaces,
189, 190
distribution, 168
field, 8
law, 214
product—theorem, 92
' rule, total, 24
stability in, 244
sub, 187
transition, 29
Probability space, 91, 151, 152
induced, 168
product, 92
transition, 29
product, 92
sample, 168
Product
cylinder, 62
field, 61, 62
measurable space, 61, 62, 137
measure, 136 .
probability, 92
probability theorem, 242
scalar, 80
set,,61 '
o-field, 61, 62
space, 61, 62
Prohorov, 190, 193, 264, 409

Quadratic mean
convergence in, 260

Radon-Nikodym theorem, 133
extension, 134
Raikov, 283, 411
Random
event, 5, 8
function, 152, 156
sequence, 152, 155
time, 375
time identities, 390
time translations, 376
trial, 6
variable, 6, 9, 17, 152
vector, 152, 155
walk, 47, 378, 379
Range, 63
space, 62, 105
Ranked
random variables, 350
sums, 405
Ray, 369, 395, 412
Real
line, 93
line, extended, 93, 107
number, 93
number extended, 93
space, 93
Recurrence, 380
criterion, 32
theorem(s), 27, 384
Recurrent state(s), 31, 380
walk, 28
Regular variation, 354
criterion, 354
Relative compactness, 190
theorem, 195
Representation theorem, 313
integral, 166
Restriction, 88
Return
criterion, 32
state, 31
Riemann integral, 129
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Riemann-Stieltjes integral, 129
Riesz, F., 222,
rth
absolute moment, 157, 186
mean, 159
Ruin, gambler’s, 48

Saks, 408
Savage, 374
Scalar product, 80
Scheffé, 408
Schwarz inequality, 158 -
Section, 61, 62, 135
Self-decomposable(blllty), 334
criterion, 335
Separable space, 68
Separation theorem, 68
Sequence(s)
convergence equivalent, 245
random, 152, 155
tail of, 241
tail equivalent, 245
Series criterion
three, 249
two, 263
Set function
additive, 83
continuous, 85
countably additive, 83
finite, 82, 111
finitely, 83
o-additive, 83, 111
o-finite, 83, 11
Set(s)
Borel, 93, 104
bounded, 74
closed, 66
compact, 69
dense, 72
directed, 68
empty, 4, 54
Lebesgue, 129 :
measurable, 60, 64, 107
null, 91, 112 -
open, 66

Set(s) (Cont.)
product, 61
subdirected, 69 -
totally bounded, 75
Shohat, 187
o-additive, 83, 111
| o-field(s), 59
compound, 156, 235
independent, 236
induced, 64
product, 61, 62
tail, 241 |
Signed measure, 87
Simple
function, 64, 107
random variable, 6, 152
Snell, 66 .
Space
adjoint, 81
Banach, 79
Borel, 93, 107
compact, 69
complete, 74
Hausdorff, 68
Hilbert, 80 _
induced probability, 168
linear, 79
measurable, 60, 64 107
measure, 112
metric, 73 .
metric linear, 79
normal, 78
normed linear, 79
probability, 91, 151 152
product, 61, 62

product measure, 136
product probability, 91
range, 62, 105
sample probability, 168
separated, 68 .
of sets, 55
| topological, 66

Sphere, 73

product measurable, 61, 62 137
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Spitzer, 369, 393, 394, 404, 410,
412
basic identity, 396
basic theorem, 401
Stability
almost sure, 244
almost sure criterion, 264
and attraction criterion, 364
in probability, 244, 246
Stable
characteristic function, 338
law, 338, 363
State(s)
closed class of, 36
equivalent, 36
everreturn, 36
indecomposable class of, 36
nonrecurrent, 31, 380
no return, 31
null, 32
period of, 33
positive, 32
possible, 370
recurrent, 31, 380
return, 31
transient, 380
Stationary chain, 39
Steinhaus, 409
Stieltjes, 128, 129
Stochastic variable, 174
Stochastically independent, 11
Strong law of large numbers
Borel, 18, 19, 26, 244
Kolmogorov, 241
Structure
corollary, 348
theorem, 310
Subspace
linear, 79
topological, 66
Sum of sets, 4, 51
Superior limit, 58
Supremum, 56, 103
Sure
almost, 151

Sure (Cont.)
event, 4, 151
Symmetrization, 257
inequalities, 259
inequalities, weak, 257

Tail
equivalence, 245
event, 241
function, 241
of a sequence, 241
o-field, 241
Tchebichev, 409
inequality, 11, 160
theorem, 287
Tight(ness), 194
lemma, 194

theorem, 194
Three

alternatives, 375

alternatives criteria, 399

series criterion, 249
Toeplitz lemma, 250
Topological

space, 66

subspace, 66
Topology, 66

metric, 73

reduced, 66
Total(ly)

bounded set, 75

probability rule, 24

variation, 87
Transition probability, 29
Trial(s)

deterministic, 5

identical, 5, 6

‘independent, 5, 6

random, 6

repeated, 5, 6
Triangle property, 73
Triangular

probability density, 386

and relative compactness, 195

characteristic function, 386
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Truncation, 245
inequality, 209
Tulcea, 138, 408
Tucker, 410
Two-series criterion, 251
Type(s), 215
convergence of, 216
degenerate, 215, 282
normal, 282
Poisson, 282

Ugakawa, 102
Uniform
asymptotic negligibility, 302,
314 :
continuity, 77
convergence, 114
convergence theorem, 204
Union, 4, 56
Upper
class, 272
variation, 87
Urysohn, 78
Uspensky, 407

Value(s), possible, 370
theorem, 371

Variable, random, 69, 17, 152

Variance, 12, 244

Variances, bounded, 302
limit theorem, 305
Variation
lower, 87
regular, 354
slow, 354
total, 87
of truncated moments, 359
upper, 87
Vector, random, 152, 155

Wald’s relation, 377, 397
Weak
compactness theorem, 181
convergence, 180
convergence, to a pr., 190
symmetrization inequalities, 257
convergence, to a pr., 190
Weierstrass theorem, 5

Wendel, 412

Zero-one
criterion, Borel, 24
law, Kolmogorov, 241
law, Hewitt-Savage, 374

Zygmund, 409
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