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PREFACE

This book is addressed to those who know the meaning of each word
in the title: none is defined in the text. The reader can estimate the
knowledge required by looking at Chapter 0; he should not be dis-
couraged, however, if he finds some of its material unfamiliar or the
presentation rather hurried.

Our objective is a systematic study of the ring C(X) of all real-valued
continuous functions on an arbitrary topological space X. We are con-
cerned with algebraic properties of C(X) and its subring C*(X) of
bounded functions and with the interplay between these properties and
the topology of the space X on which the functions are defined. Major
emphasis is placed on the study of ideals, especially maximal ideals, and
on their associated residue class rings. Problems of extending continuous
functions from a subspace to the entire space arise as a necessary adjunct
to this study and are dealt with in considerable detail.

The contents of the book fall naturally into three parts. The first,
comprising Chapters 1 through 5 and the beginning of Chapter 10,
presents the fundamental aspects of the subéect insofar as they can be
discussed without introducing the Stone-Cech compactification. In
Chapter 3, the study is reduced to the case of completely regular spaces.

In the second part, Chapters 6 through 11, the Stone-Cech compacti-
fication BX is constructed, investigated in great detail, and applied to
the study of C(X). The fundamental theorem of Gelfand and Kol-
mogoroff characterizing the maximal ideals is presented in Chapter 7;
it falls out as a natural consequence of the particular way in which 8X
was constructed in Chapter 6. Cech’s more familiar construction of 8.X is
presented in Chapter 11. Chapter 8 deals with the “real” maximal ideals
in C(X) and the associated realcompact spaces (Q-spaces), introduced
by Hewitt.

The third part is devoted to various additional topics. The different
chapters in this section of the book are almost entirely independent of
one another, the main exception being Chapter 14 (Prime ideals), the
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vi PREFACE

middle third of which leans heavily on portions of Chapter 13. Moreover,
results depending upon 8X are invoked at only a few places. Chapters
12, 15, and 16 include self-contained treatments of special subjects.
Chapter 12 deals with Ulam’s measure problem and the equivalent
question of whether a discrete space can fail to be realcompact. Chapter
15 presents the elements of the theory of uniform spaces (exclusively in
terms of pseudometrics); this chapter culminates in Shirota’s theorem
that the spaces that can admit a complete uniform structure are, barring
Ulam measures, precisely the realcompact spaces. Finally, Chapter 16
contains a small but significant portion of dimension theory — as much
as is needed in order to derive Katétov’s algebraic characterization of
dimension.

At the end of each chapter, there is a collection of problems, which
provide much additional detail about the material covered in the text.
The reader who wishes to master the subject should solve a good many
of them. The problems vary widely in purpose and importance, ranging
from mere exercises to detailed descriptions of pathological spaces that
serve as warning posts and clarify the boundaries of the theory. The
problems also vary widely in difficulty. The simpler ones can be solved
directly by applying the results developed in the text in the same chapter
(or principal theorems from earlier chapters). Those that depend upon
secondary results from earlier chapters or upon other problems are sup-
plied with references to those results. Problems whose solutions are not
straightforward are accompanied by hints; these are often given in the
form of assertions that themselves require proof. In cases of more than
ordinary complexity, the earlier parts of a problem have been designed
as preparation for the later parts.

The family C(X) can be regarded as an ordered space or as a topo-
logical space, and there is a substantial literature dealing with these
topics. Our own treatment of them is only incidental. The order structure
of C(X) is determined by the algebraic structure, and we study the
former as a tool for deriving information about the latter. Topologies
on C(X) are considered only in scattered problems and, in a rather
elementary way, in the last chapter. Algebras of complex-valued func-
tions, about which there is a very extensive literature, are not dealt with
here at all.

We have planned our book to serve both as a text for a graduate course
and as a treatise for the active mathematician. A number of results that
are presented as soon as they are provable can be given interesting alter-
native proofs by means of machinery developed later onj the student can
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profit from seeking such possibilities, which are not always pointed out.
At the end of the book, there are comments on the historical develop-
ment of the subject and references to original sources, listed in the
bibliography. The index has been prepared in an attempt to render the
book useful as a reference work.

Sections are numbered and problems are lettered consecutively within
each chapter, with the chapter number included. In Chapter 1, for
example, the sections are 1.1, 1.2, - - -, and the problems are 1A, 1B, ---.

L.G.
M. J.



ACKNOWLEDGMENTS

Our book had its origin in a seminar held at Purdue University during
the year 1954-1955. The seminar was organized by our colleague Melvin
Henriksen and was conducted by him jointly with us. The task of pre-
senting and writing up the material was shared with four students:
J. E. Kist, C. W. Kohls, M. J. Mansfield, and R. H. McDowell. Event-
ually, it was suggested — again by Henriksen — that the seminar notes
be used as the starting point for a book, and this enterprise was begun in
June, 1956. At the end of the summer, Henriksen left to accept a research
fellowship, and shortly thereafter withdrew from the formal collabora-
tion; however, he has continued to aid us with valuable, stimulating
advice.

We are grateful to P. Civin for experimenting with an early draft in a
seminar at the University of Oregon. A number of helpful comments
were supplied by H. Banilower, D. G. Johnson, J. E. Mack, and E. C.
Weinberg, as students of ours or Henriksen’s at Purdue. Several valuable
contributions were received from P. Dwinger, J. R. Isbell, W. Rudin,
S. Warner, and R. E. Zink. We are deeply indebted to Edwin Hewitt
and Robert H. McDowell, both of whom read the entire manuscript and
contributed a large number of important criticisms and suggestions.

What polish our book may possess could never have been achieved
without the inspiring help of Carl W. Kohls, who, after each new draft,
harassed us with biting criticism, humored us with patient advice, and
bombarded us with detailed suggestions for text and problems. The
vastness of our debt to Kohls and Henriksen can perhaps be appreciated
in full only by those who have enjoyed the pleasure of working with
these men.

Most of our work was made possible by the generous support of the
National Science Foundation. During the final stages, one of us was
supported by a fellowship grant from the John Simon Guggenheim
Memorial Foundation, and both of us were afforded the privilege of
membership at the Institute for Advanced Study while on sabbatical
leave from Purdue University. We wish to express here our gratitude to
all these institutions.

viii



CHAPTER

0

O 0 I N Ut B L DD

e e e e =
AN L B LN = O

CONTENTS

ForEWORD

Functions oN A TopoLoGICAL SPACE

IpEaLs AND 2z-FILTERS

CoMPLETELY REGULAR SPACES

Fixep IpeaLs. CompacT SpacEs

OrDpERED RESIDUE Crass Rings

THE StoNe-Cec COMPACTIFICATION
CHARACTERIZATION OoF MaxiMaL IDEALS
REeaLcompacT Spackes

CarbpiNaLs oF CLOSED SETS IN BX
HomomorpraisMs AND CoNTINUOUS MAPPINGS
EmBeEDDING IN PrODUCTS OF REAL LINES
DiscreTE SpaceEs. NoNMEASURABLE CARDINALS
Hyper-ReaL Resipue Crass FIELDS

PriME IDEALS

UnNirorM SpacEs

DiMmENSsION

NoTEs

BiBLIOGRAPHY

List or SymBoLs

INDEX

ix

PAGE

10

24

36

54

66

82
101
114
130
140
154
161
171
194
216
240
266
278
285
287






FOREWORD

0.1. The reader is presumed to have some background in general
topology and abstract algebra, to the extent, at least, of feeling at home
with the basic concepts. Here we set forth some conventions in
notation and terminology, and record some preliminary results.

The set (space, field) of real numbers is denoted by R.  The reader is
expected to be familiar with the elementary set-theoretic and topological
properties of R.

The subset of rational numbers is denoted by Q, and the subset of
positive integers, {1, 2,- - -}, by N.

The constant function, on any set, whose constant value is the real
number 7, is denoted by r. The symbols i and j, however, are reserved
for special meanings: i is used for the identity function on R or its
subsets, and j denotes the sequence (1/n), . n.

When dealing with rings of functions, one encounters each of the
concepts identity and inverse in two different senses. The use of
distinguishing terms is desirable in the interest of clarity. The choice
of the word identity to denote the mapping x — x on any set (e.g., i
above) seems indicated overwhelmingly. For the multiplicative identity
in a ring, we shall use the term unity. The symbol a—! is the obvious
choice for the multiplicative inverse of @ in a ring. For the inverse of a
mapping ¢, we introduce the symbol ¢*.

THEORY OF SETS

0.2. Mappings. Square brackets are used to indicate the image of a
set under a mapping:

o[4] = {q;x x € A}.
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For the inverse, we write

P (y) = {x: px = 3},
and

g~{B] = {x: px € B),
i.e, 9 [B] = Uyep 9 (¥). When @ is known to be one-one, we write
x = @*(y) instead of {x} = ¢ (y).

When ¢ is known to be real-valued, it is referred to as a function, and
we write @(x) in place of @x. This is for emphasis, not logical dis-
tinction.

The restriction of a mapping ¢ to a set S is denoted, as usual, by ¢|S.

Let ¢ be a mapping from 4 into B and ¢ a2 mapping from B into E.
The composite mapping from A into E is denoted by 4 o ¢:

(o @)(*) = (%) (x € 4).

The following abbreviations are useful for indicating unions or
intersections of families of sets:

U'Sp=USeYS’ ﬂ5”=ﬂsGyS-

The cardinal of S is denoted by |S|. Countable means finite or
denumerably infinite. The cardinal 2% is denoted by c¢. Some use
will be made of the elementary properties of cardinals and ordinals.

0.3. Finite intersection property. Let & be a nonempty family of
sets. & is said to have the finite [resp. countable] intersection property
provided that the intersection of any finite [resp. countable] number of
members of & is nonempty.

In order that % have the finite intersection property, it is not enough
that any fwo members of & have nonempty intersection. (E.g., let &
consist of the three sets {0, 1}, {0, 2}, and {1, 2}.)

As usual, a class is said to be closed under an operation when the
performance of the operation upon members of the class always yields
a member of the class. For example, & is closed under finite inter-
section provided that the intersection of any finite number (>0) of
members of & is a member of . Here it is enough that the inter-
section of any two members of & be in &, for the stated property then
follows by induction.

Thus, if @ ¢ &, and if the intersection of any two members of &
belongs to &, then, certainly, % has the finite intersection property.

In the text, obvious inductions that lead, as above, from fwo to finite,
will be taken for granted.
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0.4. Partially ordered sets. For a partial order, we include the
axiom that @ £ b and b £ a implies a = b.

A mapping ¢ from a partially ordered set A4 into a partially ordered
set E is said to preserve order if a < b in A implies pa < @b in E.

A maximal element of A is an element a such that x = a implies
x = a. In contrast, the largest element of A—necessarily unique, if it
exists—is the element ¢ such that ¢ = x for all x € A. Minimal and
smallest are defined similarly.

In easily recognizable situations, this terminology is applied to a
class of sets, with the understanding that the partial order is that of set
inclusion. Examples are maximal chain (0.7), and maximal ideal (0.15).

0.5. Lattices. In a partially ordered set, the symbol a v b denotes
sup {a, b}, i.e., the smallest element c—if one exists—such that ¢ = a and
¢ 2 b. Likewise, a A b stands for inf {a, b}.

When both @ v b and a A b exist, for all a, b € 4, then A is called a
lattice. A subset S is a sublattice of A provided that, for all x, y € S,
theelementsx v yand x A yof AbelongtoS. (Thus, itisnotenough
that x and y have a supremum and infimum iz S.)

A mapping ¢ from a lattice 4 into a lattice E is a lattice homomorphism
into E provided that

pla vbd)=paVvoeb and ¢(a A b) = pa A ¢b.

It follows that ¢[A4] is a sublattice of E.
A partially ordered set in which every nonempty subset has both a
supremum and an infimum is said to be lattice-complete.

0.6. Totally ordered sets. A subset S of a totally ordered set 4 is
said to be cofinal [resp. coinitial] if, for every x € A, there exists s € S
such that s 2 x [resp. s £ x].

A totally ordered set is said to be Dedekind-complete provided that
every nonempty subset with an upper bound has a supremum-—or,
equivalently, every nonempty subset with a lower bound has an infimum.
(For example, R is Dedekind-complete, but not lattice-complete.)

Every totally ordered set A has an essentially unique Dedekind
completion B, characterized by the following properties: B is totally
ordered and Dedekind-complete; A is a subset of B; and no proper
subset of B that contains 4 is Dedekind-complete. Every element ¢ A
is determined by a Dedekind cut of 4. (For example, R is the Dedekind
completion of Q.)

0.7. A totally ordered set is often referred to as a chain.

HAUSDORFF’S MAXIMAL PRINCIPLE. FEwver artially ordered set
Yy Ly
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contains a maximal chain (i.e., maximal in the class of all chains as
partially ordered by set inclusion). This proposition is equivalent to
the axiom of choice and to the well-ordering theorem. All three forms
will be used.

References. [B,, Chapters 1-3], [Bs, Chapters 2-3], [H,, pp. 45-83,
97-141], [K,, pp. 31-36], and [S;].

TOPOLOGY

0.8. Convergence will be described in terms of certain filter bases;
the details are all in the text, and no prior knowledge about filters is
required. The theory of nets is not used.

The closure of a set S in X is denoted by cl S or cly S, the interior by
int S or inty S.

The main classes of spaces to be considered are the completely
regular spaces and their subclass, the compact spaces. The terms
completely regular and compact, and also normal, will be applied to
Hausdorff spaces only. All three are defined in Chapter 3.

From Chapter 4 on, all given spaces are assumed to be completely regular.

We state here for emphasis that a Hausdorff space is said to be
compact provided that every family of closed sets with the finite inter-
section property has nonempty intersection—i.e., every open cover has
a finite subcover.

A mapping ¢ from X into Y is said to be closed if for every closed
subset A of X, ¢[A4] is a closed setin Y. (It is not enough that p[4] be
closed in ¢[X].) Open mapping is defined similarly.

0.9. A neighborhood of E is any set whose interior contains E.

LemMA. If E and p have disjoint neighborhoods, for each p € F, and if
F is compact, then E and F have disjoint neighborhoods.

PROOF. Let U, and V, be disjoint neighborhoods of E and p,
respectively. A finite collection

Voo V)
covers F. Then [, U, and U, V,, are disjoint neighborhoods of E
and F.

0.10. CoroLLARY. In a Hausdorff space, a compact set and a point in
1ts complement have disjoint neighborhoods. Hence every compact set in a
Hausdorff space is closed.

PROOF. The first assertion is immediate from the lemma (with E
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the one-point set), and implies that the complement of a compact set
is open.

More generally, we have:

0.11. CoroLLARY. Any two disjoint compact sets in a Hausdorff space
have disjoint neighborhoods.

PROOF. By the corollary, one set and each point of the other have
disjoint neighborhoods, and the lemma now yields the result.

0.12. Constant use will be made of the following elementary results.
If X is dense in 7, and V is open in T, then

ClT (V n X) = CIT V.

A continuous mapping from a space X into a Hausdorff space is
determined by its values on any dense subset of X.

(2) Let X be dense in each of the Hausdorff spaces S and T. If the
identity mapping on X has continuous extensions o from S into T, and
7 from T into S, then o is a homeomorphism onto, and o~ = .

By way of proof, observe that the mapping 7 o o must be the identity
on S, because its restriction to X is the identity on X. Similarly,
oo 7is theidentity on T. If os, = os,, thens, = 7(os,) = 7(05y) = $§y;
therefore o is one-one. For ¢t € T we have o(rt) = t; hence o is onto
and o = 7 (whence ¢* is continuous).

A continuous image of a compact space in a Hausdorff space is
compact. A closed set in a compact space is compact. A continuous
mapping of a compact space into a Hausdorff space is a closed mapping.
A one-one, continuous mapping of a compact space onto a Hausdorff
space is a homeomorphism,

0.13. A discrete subspace means a subspace that is discrete in its
relative topology—but not necessarily closed in the space. (For
example, {1/n},.n is a discrete subspace of R.) The following result
will be needed in a number of proofs.

THEOREM. Every infinite Hausdorff space contains a copy of N (i.e., a
countably infinite, discrete subset).

PROOF. Given two distinct points, there is a neighborhood U of one
whose closure does not contain the other. Either U or X—cl U is
infinite. Hence there exists a point x,, and an infinite, open set V;, such
that x, ¢ cl V,. Similarly, there exists x, € V/;, and an infinite, open
set ¥V, in V), such that x,¢clV, The set {x,},.n constructed
inductively in this way, is discrete.

References. [Bg, Chapter 1] and [K,, Chapters 1 and 3].
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ALGEBRA

0.14. Ideals and homomorphisms. In what follows, 4 will denote
a commutative ring having a unity element, i.e., an element 1, necessarily
unique, such that 1.4 = aforalla. (However, much of the discussion
is applicable to more general rings.)

A unit of A is an element a that has a multiplicative inverse a1, i.e.,
an element such that aa—! = 1.

Ideal, unmodified, will always mean proper ideal, i.e., a subring I # A
such that a € I implies xa € I for all x € A. Thus, an ideal cannot
contain a unit.

Homomorphism, unmodified, will always mean 7ing homomorphism.
The kernel of any nonzero homomorphism (i.e., the set of all elements
that map to 0) is anideal. Conversely, every ideal I is the kernel of some
homomorphism. In particular, I is the kernel of the canonical homo-
morphism of A onto the residue class ring 4/I, i.e., the homomorphism
under which the image of a is the residue class I + a. If I is the kernel
of a homomorphism of 4 onto B, then A/I is isomorphic with B.

The intersection of any nonempty family of ideals is an ideal. The
smallest ideal—perhaps improper—containing an ideal I and an
element a is denoted by (/, a); it consists of all elements of the form
t + xa, wherei e I and x € A.

0.15. Prime ideals and maximal ideals. An ideal P in A is prime if
ab € P implies a € Por b € P, i.e., if A/P is an integral domain.

If M is a maximal ideal (with respect to set inclusion), then a ¢ M
implies 1 € (M, a), sothat 1 = xa (mod M) for some x € A ; conversely,
1 = xa (mod M) implies 1 € (M, a). Thus, an ideal M is maximal if
and only if A/M is a field. In particular, every maximal ideal is prime.

The union of any nonempty chain of ideals is an ideal. (That the
union is a proper subset of 4 follows from the presence of a unity element
in A.) The maximal principle (0.7) now implies that every ideal is
contained in a maximal ideal, and hence that every non-unit of 4 belongs
to some maximal ideal.

0.16 The following results about prime ideals will not be needed,
except incidentally, until Chapter 14.

THEOREM. Let I be an ideal in A, and S a set that is closed under
multiplication and disjoint from 1. There exists an ideal P containing I,
disjoint from S, and maximal with respect to this property. Such an ideal
is necessarily prime.
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PROOF. By the maximal principle, there exists a maximal chain & of
ideals containing I and disjoint from S. Define P = |J €; then Pis an
ideal containing I, disjoint from S, and maximal with respect to this
property. Leta ¢ Pandb ¢ P. Because of the maximality of P, there
exist 5, ¢ € S such that s € (P,a)and ¢t € (P, ). Thens = xa (mod P)
and ¢ = yb (mod P), for suitable x, y € A. Since S is closed under
multiplication, we have xyab = st # 0 (mod P). Therefore ab ¢ P.
This shows that P is prime.

0.17. CoroLLARY. Let I be an ideal. If no power of a belongs to I,
then there exists a prime ideal containing I but not a.

0.18. CoROLLARY. The intersection of all the prime ideals containing
a given ideal I is precisely the set of all elements of which some power
belongs to 1.

PROOF. If there exists a prime ideal P containing I but not g, then
no power of a can belong to I, since no power of a belongs to P. Con-
versely, if no power of a belongs to , then, by the preceding corollary,
some prime ideal contains / but not a.

0.19. Partially ordered rings. Let a partial ordering relation be
defined on the ring A. Then A is called a partially ordered ring
provided that

a 2 bimpliesa + x Z b + x for all x, and
a 2 0and b = 0 implies ab = 0.

The following facts are evident: ¢ 2 b if and only if a — b 2 0;
az0ifandonlyif —a £0;ifa<randb < s,thena + b =7 +s.

To define such a partial ordering relation, it is enough to specify the
elements = 0, subject to:

a 2 0and—a = 0 if and only if 2 = 0, and
a2 0and b 2 0 impliesa + b 2 Oand ab = 0,

and then to definea = btomeana — b 2 0.
To establish that a homomorphism ¢ from A4 into a partially ordered
ring is order-preserving, it suffices to show that a = 0 implies pa = 0.
If a v b exists, for all a and b, then a A b exists, and

aANb=—(—av —b)

Therefore, to establish that A is a lattice—in which case it is called a
lattice-ordered ring—it suffices to show that @ v b exists for each a and b.

In a lattice-ordered ring, |a| denotes the element a v —a; it satisfies
|a] = O (see 5A).
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To establish that A is totally ordered, it is enough to show that every
element is comparable with 0.

0.20. Totally ordered integral domains. Let A be a totally ordered
integral domain. Squares of nonzero elements are positive. In
particular, 1 > 0, so that —1 < 0; therefore —1 has no square
root.

If 0 <a<bd, then a" < b” (where neN). Hence a positive
element has at most one positive #th root.

A contains a natural copy of the set of integers, in the form of the
elements m-1. When A4 is a totally ordered field, the elements m/n (i.e.,
(m-1)/(n-1)), where m is an integer and 7z € N, constitute a copy of the
rational field Q.

0.21. Ordered fields. (In referring to totally ordered fields, one
customarily drops the adverb.) An ordered field is said to be archi-
medean if the subset of integers is cofinal.

THEOREM. An ordered field is archimedean if and only if it is isomorphic
to a subfield of the ordered field R.

PROOF. Obviously, every subfield of R is archimedean. Con-
versely, let F be any archimedean field. Given x < y in F, choose
n € N such that # > 1/(y — x), and let m be the smallest integer > nx.
Then x < mfn < y. This shows that Q is dense in F, so that every
element of F is uniquely determined by a Dedekind cut of Q. Con-
sequently, F is embeddable in R in a unique way as an ordered set.
Now, if » and s belong to the ordered field F, and if a, b, ¢, and d are
rationals satisfying a £ 7» <bandc s <d,thena+c=r+s<
b + d. It follows that sums in F—like sums in R—are uniquely
determined by Dedekind cuts of Q. Products, likewise, are so de-
termined. This shows that the embedding of F is an isomorphism.

0.22. Any nonzero homomorphism of a field is an isomorpHism.
For R, we can say more.

THEOREM. The only nonzero homomorphism of R into itself is the
identity.

PROOF. A real number is nonnegative if and only if it is a square.
Since any homomorphism takes squares to squares, it takes non-
negative numbers to nonnegative numbers, and therefore is order-
preserving. Now, if 3 is a nonzero homomorphism, then, because 37 =
(37)(81) for every 7, we must have 81 = 1. It follows that 3 is the iden-
tityon Q. As Q isdensein R, and 8 preserves order, 8 is the identity on
R as well.
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0.23. CoroLLARY. There is at most one isomorphism from a ring onto
R. Any homomorphism onto R is uniquely determined by its kernel.

PROOF. If u and b are isomorphisms from the same ring onto R,
then u o < is an automorphism of R, and hence is the identity. There-
fore u = v.

Given homomorphisms 8 and t from a ring 4 onto R, with common
kernel I, we consider the associated isomorphisms 3 and t from 4/ ontoR
(i.e., such that 3 = 309 and t = to ), where ¥ is the canonical homo-
morphism of 4 onto 4/I). Since 3 = i, we have 3 = t.

References. [B,, Chapters 2 and 14], [B,, Chapter 1, and Chapter 6 pp.
1-34], [M,, Chapters 1 and 3], and [W,, § 14, 15, 19, and 20].



Chapter 1
FUNCTIONS ON A TOPOLOGICAL SPACE

1.1. The set C(X) of all continuous, real-valued functions on a
topological space X will be provided with an algebraic structure and an
order structure.

Since their definitions do not involve continuity, we begin by im-
posing these structures on the collection RX of all functions from X into
the set R of real numbers. Addition and multiplication are defined by
the formulas

(f + &) = f(*) + g(*), and (fg)(*) = f(x)2()-

It is obvious that both of the operations thus defined are associative
and commutative, and that the distributive law holds: these conclusions
are immediate consequences of the corresponding statements about the
field R.

In fact, it is clear that RX is a commutative ring with unity element
(provided that X is not empty). The zero element is the constant
function 0, and the unity element is the constant function 1. The
additive inverse —f of f is characterized by the formula

(=N)x) = =f(*).

The multiplicative inverse f~1—in case it exists—is characterized by
the formula

1
—1 X) = ——-
=) 7@
1.2. 'The partial ordering on RX is defined by:
f = g if and only if f(x) = g(x) for all x € X.

That this is a partial ordering relation follows from the fact that R is
ordered. It is clear that for every &, f + h = g + h if and only if

f = g. Hence the ordering relation is invariant under translation. In
10
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addition, f = 0 and g = 0 implies fg = 0. Therefore RX is a partially
ordered ring (0.19).
Next, for any f and g, the function % defined by the formula

k(x) = f(x) v &%)
satisfies: £ = f and k = g; furthermore, for all % such that 2 > f and
h 2 g, we have h 2 k. Therefore f v g exists: it is k& Dually,
(f A g)x) = f(x) A g(x). Thus, RX is a lattice-ordered ring (0.19).
The function [f|, defined as f v —f, satisfies

If1(=x) = 1f)]-
Of course, R is also totally ordered (so that 7 v s is simply max {r, s}),
but RX is not if X contains at least two points.
The ambiguous use of the various symbols, which refer sometimes
to R and sometimes to RX, should cause no difficulty.

1.3. The set of all continuous functions from the topological space X
into the topological space R is denoted by C(X)—or, for short, by C.

The sum of two continuous functions is, of course, continuous; so is
the product. And if f belongs to C, then so does —f. 'Therefore C(X)
is a commutative ring, a subring of RX. The constant function 1
belongs to C and is its unity element.

It is easy to see that if f is continuous, then the function |f| is also
continuous. Since

fve=2%f+g+|f-gl
f, g€ C implies f v g e C. Therefore C is a sublattice of RX (0.5
and 0.19).
The symbol f* (n € N) is used as in any ring. (Recall that N denotes
the set of positive integers.) If f = 0, then, more generally, f has a
unique, nonnegative 7t power (r € R, 7 > 0), denoted by /7 and defined by

Jr(®) = fl=y (x € X);
and if f is continuous, then f7, as a composition of two continuous
functions, is also continuous. In like manner, if # is odd (z € N), then
fY» may be defined as a function in C, for any f € C.

If the space X is discrete, then every function on X is continuous, so
that RX is the same as C(X). Conversely, if RX = C(X), then the
characteristic function of every set in X is continuous, which shows that
the space is discrete.

1.4. The subset C* = C*(X) of C(X), consisting of all bounded
functions in C(X), is also closed under the algebraic and order opera-
tions discussed in 1.3. Therefore C* is a subring and sublattice of C.
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It can happen that the subring C*(X) is all of C(X)—i.e., every
function in C(X) is bounded. When this is the case, X is said to be
pseudocompact. Every compact space is pseudocompact, as is well
known.

More generally, as we shall now prove, every countably compact space
1s pseudocompact. By definition, X is countably compact provided that
every family of closed sets with the finite intersection property has the
countable intersection property—i.e., every countable open cover has a
finite subcover. Suppose, now, that X is countably compact, and
consider any function f in C(X). The sets

{x: /()] < n},
for n € N, constitute a countable open cover of X. Hence a finite

subfamily covers X, i.e., f is bounded.
A pseudocompact space need not be countably compact; see 51.

PROSPECTUS

1.5. A major objective of this book is to study relations between
topological properties of a space X and algebraic properties of C(X) and
C*(X). It is obvious that each of these function rings is completely
determined by the space X. One of the main problems will be to specify
conditions under which, conversely, X is determined as a topological
space by the algebraic structure of C(X) or of C*(X). In other words,
what restrictions on X and Y, if any are needed at all, will allow us to
conclude that X is homeomorphic with Y, when we are given that C(Y)
is isomorphic with C(X), or, perhaps, that C*(Y') is isomorphic with
C*X)? /

Another type of problem is that of determining the class of topological
spaces whose function rings satisfy some natural algebraic conditions,
or, conversely, of determining the effects on the function ring of imposing
some natural topological condition on the space. An example that
might fit into either classification is given in 1B: X is connected if and
only if C(X) is not a direct sum of proper subrings. Other classes of
problems are to discover algebraic properties common to all function
rings and to find relations between C(X) and C*(X) for a given X.

INVARIANTS OF HOMOMORPHISMS

1.6. Even before embarking upon a detailed study of function rings,
we can observe quickly that several important properties of the family
of functions that may not seem to be determined by the ring structure are,
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in fact, so determined (see Notes). The most significant of these
properties is the order structure. To describe the order, it is enough to
specify the nonnegative functions; but the condition f = 0 is simply the
algebraic requirement that f be a square, i.e., f = k2 for some k. It
follows, moreover, that |f| is determined algebraically: it is the unique
nonnegative square root of f2.

We have just proved that every isomorphism from C(Y) into C(X)
preserves order. Moreover, if f is bounded and f = k2, then % is
bounded ; hence an isomorphism from C*(Y) into C(X) also preserves
order. Here is a more conclusive result:

THEOREM. Every (ring) homomorphism t from C(Y) or C*(Y) into
C(X) is a lattice homomorphism.

PROOF. Since g = /2 implies tg = (1/)2, t sends nonnegative func-
tions into nonnegative functions, i.e., t is order-preserving. Next,

(tlg))? = gl = Hg?) = (1)

and since t|g| 2 0, we have t|g| = |[tg|. Combining this with the
formula

(gvh+(gvh=g+h+|g—h
we get
g vh) +1tgvVvh)=1tg+th+|tg—th = (g v th) + (tg v th).
But t(g v k) and tg v th are real-valued functions (defined on X), and
therefore t(g v k) = tg v th.

1.7. Boundedness of functions is another property determined by
the algebraic structure of C. More generally, we have the following
result.

THEOREM. Ewvery (ring) homomorphism t from C(Y) or C*(Y) into
C(X) takes bounded functions to bounded functions.

PROOF. As with any homomorphism, t1 = t(1-1) = (t1)(t1), so that
the function t1 in C(X) is an idempotent. Therefore it can assume no
values on X other than 0 or 1. Hence for each » € N, the function

th =tl +-..+ 11
assumes no values other than 0 or #n. Consider, now, any function g
in C¥Y). Since |g| £ n, for suitable n € N, we have |tg| < tn < n.
1.8. CoroLrLarY. If X is not pseudocompact, then C(X) is not a
homomorphic image of C*(Y), for any Y.
In particular, C(X) and C*(X) are isomorphic only if they are
identical.
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1.9. Another consequence of Theorem 1.7 is that an isomorphism
from C(Y) onto C(X) carries C*(Y) onto C*(X). This is also a
corollary of the next theorem.

THEOREM. Let t be a homomorphism from C(Y) into C(X) whose
image contains C*(X). Then t carries C*(Y) onto C*(X).

PROOF. We prove first that t1 = 1. Let k € C(Y) satisfy tk = 1;
then t1 = (tk)(t1) = t(k-1) = tk = 1. It follows that tn = n for each
neN.

Now, given f e C*(X), we are to find g € C*(Y) such that tg = f.
Choose ke C(Y) for which th = f, and choose n e N satisfying
|f| £ n. Nowdefineg = (—nvh) A n. Thenge C*Y), and, by
Theorem 1.6, tg = (—n Vf) A n = f.

ZERO-SETS

1.10. In studying relations between topological properties of a space
X and algebraic properties of C(X), it is natural to look at the subsets
of X of the form

(@) fo) = re X:f(x) = 1) (feC reR).
Clearly, these sets are closed.
We notice that if s is any real number, then

o f(®) =1} = {x: (f — 8)(&) = 7 — s}
Consequently, the family of sets of the form (a) obtained by allowing f
to run through all of C, and 7 through all of R, can also be obtained by
holding r fixed. The algebraic aspect of the situation points to the
choice of the number 0 as the fixed value of 7 to be considered.
The set f<(0) will be called the zero-set of f. We shall find it con-
venient to denote this set by Z(f), or, for clarity, by Z4(f):

Z(f) = Zx(f) = (xre X: fx) = 0} (fe C(X)).
Any set that is a zero-set of some function in C(X) is called a zero-set

in X. Thus, Z is a mapping from the ring C onto the set of all zero-
sets in X.

Evidently, Z(f) = Z(|f|) = Z(f) (for all n e N), Z(0) = X, and
Z(1) = 0. Furthermore,

Z(fg) = Z(f) v Z(g),

Z(f* + &) = Z(f| + lgh = Z(f) n Z(g).

and
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If feCand g = |f| A 1,then g e C*and Z(g) = Z(f). Hence C
and C* yield the same zero-sets.
The formula

Z(f) = Nuen {x € X: [f(®)] < 1/n}

shows that every zero-set is a G,, i.e., a countable intersection of open
sets. Conversely, in a normal space, every closed G, is a zero-set
(3D.3). This need not be so if the space is not normal, however
(3K.6). On the other hand, in a metric space, every closed set is a
zero-set, as it consists precisely of all points whose distance from it is
zero.

1.11. Cozero-sets. Every set of the form {x: f(x) = 0} is a zero-set:

{x:f(x) 2 0} = Z(f A 0) = Z(f - |f]).
{x:f(x) = 0} = Z(f v 0) = Z(f + | f]).

Thus, the open sets

pos f = {x: f(x) > 0}
neg f = {x: f(x) < 0} = pos (=)

are cozero-sets, i.e., complements of zero-sets. Conversely, every
cozero-set is of this form:

X — Z(f) = pos|f].

1.12. Units. For a function f in C(X), f~! exists if and only if f
vanishes nowhere on X; in other words,

fis a umt of C if and only if Z(f) = 0.

Likewise, if f is a unit of C*, then Z(f) = . The converse need not
hold, however, as the multiplicative inverse f~! of f in C may not be a
bounded function. In fact, the condition for C* is clearly the follow-
ing: a function f in C* is a unit of C* if and only if it is bounded away
from zero, i.e., |f| = r for somer > 0.

Likewise,

and

1.13. ExampLEs. Itis convenient to have examples of some specific
topological spaces to illustrate the notions that are being discussed. A
familiar, important example of a compact topological space is the closed
interval [0, 1] of R. As we know, C([0, 1]) = C*([0, 1]). Familiar
examples of noncompact spaces are R itself, the subspace Q of rational
numbers, and the subspace N of positive integers. Since N is discrete,
every real-valued function on N is continuous, so that C(N) [resp.
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C*(N)] is actually the ring of all [resp. all bounded] sequences of real
numbers.

The identity function i on N, defined by i(n) = #n, belongs to C(N),
and it is unbounded, so that C(N) # C*(N). The zero-set Z(i) is
empty, of course, so that i~ exists; indeed,

i~! = j, thesequence (1/7),cn-

Evidently, j € C*(N), that is to say, j is a bounded function. Finally,
Z(j) = 0, but i = j~1 ¢ C*(N), and we have here perhaps the simplest
example of a function in C* whose zero-set is empty, but that is not a
unit of C*.

1.14. For C' = C(X), we write Z[C'] to designate the family of
zero-sets {Z(f):fe C'}. This is consistent with our notational
convention for the image of a set under a mapping. On the other hand,
the family Z[C(X)] of all zero-sets in X will also be denoted, for
simplicity, by Z(X).

We have observed that Z[C*(X)] is the same as Z(X), and that Z(X)
is closed under the formation of finite unions and finite intersections.

(a) Z(X) is closed under countable intersection.

For, given f, € C, define g, = |f,| A 27 and let
g(‘x) = Z,,ENgn(x) (x € X)

Since |g,| < 277, the series converges uniformly, and therefore g is a
continuous function. Clearly,

Z(g) = nneN Z(gn) = nneN Z(fn)

However, Z(X) need not be closed under infinite union. For
example, every one-element set in R is a zero-set in R, so that an infinite
union of zero-sets need not even be closed. Moreover, in a general
space, even a closed, countable union of zero-sets need not be a zero-set;
see 6P.5. Nor need Z(X) be closed under arbitrary intersection; see
4N.

1.15. Completely separated sets. 'Two subsets A and B of X are said
to be completely separated (from one another) in X if there exists a
function f in C*(X) such that

flA] = {0}, f[B]={1}, and 0=f=1

Clearly, it is enough to find a function g in C(X) satisfying g(x) < 0 for
allx € Aand g(x) = 1for x € B: for then (0 v g) A 1 has the required
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properties. And, of course, the numbers 0 and 1 may be replaced in
the definition by any real numbers » and s (with » < s).

It is plain that two sets contained (respectively) in completely
separated sets are completely separated, and that two sets are completely
separated if and only if their closures are.

When a zero-set Z is a neighborhood of a set 4, we refer to Z as a
zero-set-neighborhood of 4.

THEOREM. Two sets are completely separated if and only if they are
contained in disjoint zero-sets. Moreover, completely separated sets have
disjoint zero-set-neighborhoods.

PROOF. We begin with the sufficiency. If Z(f) n Z(g) = 0, then
|f] + |g| has no zeros, and we may define

_ @
M) = 7@+ 1e@) (x € %),

—in brief, & = |f|-(|f] + |g])". Thenk e C(X), H[Z(f)] = {0}, and

hZ(g)] = {1}.
Conversely, if A and A’ are completely separated, there exists f € C(X)
such that f[4] = {0} and f[4"] = {1}. 'The disjoint sets
F={x:fx) 2%} F ={x:f(x)2 %}
are zero-set-neighborhoods of 4 and A4’, respectively.
The following result will also be useful.
(a) If A and A’ are completely separated, then there exist zero-sets
F and Z such that
AcX-ZcFcX-4.
For, with 4, A’, f, and F as above, we simply take

Z = {x:f(%) 2 %}

C-EMBEDDING AND C*-EMBEDDING

1.16. A major portion of our work will deal with the problem of
extending continuous functions. We shall say that a subspace S of X
is C-embedded in X if every function in C(S) can be extended to a
function in C(X). Likewise, we say that S is C*-embedded in X if
every function in C*(.S) can be extended to a function in C*(X).

If a function f in C*(S) has an extension g in C(X), then f also has a
bounded extension: if 7 is a bound for | f|, then(—n v g) A n belongs
to C*(X), and agrees with f on S. Thus, S is C*-embedded in X if
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and only if every function in C*(S) can be extended to a function in
C(X).

It is obvious that if S € X < Y, and X is C-embedded in Y, then S
is C-embedded in Y if and only if it is C-embedded in X. The cor-
responding transitivity is valid, of course, for C*.

It is unusual for a subspace to be C*-embedded. For instance,
R — {0} is not C*-embedded in R: the function with value 1 for all
positive 7, and — 1 for negative 7, has no continuous extension. (Every
uniformly continuous function on R — {0}, however, does have a
continuous extension to R, as can be verified without difficulty. The
result also follows from the general theory of uniform spaces (Chapter
15).) On the other hand, it is manifest that N, for example, is not only
C*-embedded in R, but even C-embedded.

1.17. 'The basic result about C*-embedding is Urysohn’s theorem,
which we state in the following general form.

URYSOHN’S EXTENSION THEOREM. A subspace S of X is C*-embedded
in X if and only if any two completely separated sets in S are completely
separated in X.

PROOF. Necessity. If A and B are completely separated sets in S,
there exists a function f in C*(S) that is equal to 0 an 4 and 1 on B.
By hypothesis, f has an extension to a function g in C*(X). Since g is
0 on A4 and 1 on B, these sets are completely separated in X.

Sufficiency. Let f, be a given function in C*(S). Then |f,| = m
for some m € N. For convenience of notation, define

rn=%(§)n / (n e N).

Then |f,] £ m = 3r;. Inductively, given f, € C*(S), with |f,| < 3r
define
A,={seS:f(s) £ —r,}, and B, = {seS:f,(s) = r,}

Then A, and B, are completely separated in S, and so, by hypothes1s,
they are completely separated in X. Accordingly, there exists a func-
tion g, in C*(X), equal to —7,0n 4,, and to 7, on B,, and with |g| £ r,.
The values of f, and g, on A,, lie between — 37, and —7,;0n B, they
lie between 7, and 37,; and, elsewhere on S, they are between —7, and
7,. We now define
Jorr =fa — g,,|S,

-
and we have |f,,,| < 2r,, i.e

lfn+1l 31,1
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This completes the induction step. Now put

g(x) = Z,,eNgn(x) (x € X).

Because the series converges uniformly, this defines g as a continuous
function on X. Next, we observe that

@+ +&S=(i—f)+ -+ (fa = furd)

= f1 = farr:
Since the sequence (f,,1(s)) approaches 0 at every point s of S, this
shows that g(s) = fy(s). Thus, gis an extension of f;. This completes
the proof.

In case X is a metric space, every closed set is a zero-set, so that any
two disjoint closed sets are completely separated. Now, if S is closed,
then closed sets in S are also closed in X ; therefore completely separated
sets in S have disjoint closures in X. It follows from the theorem
that every closed set in a metric space is C*-embedded. This result is
Tietze’s extension theorem. Urysohn’s generalization to normal spaces
will be discussed in Chapter 3.

In particular, every closed set in R is C*-embedded in R.

1.18. A C*-embedded subspace need not be C-embedded. Later
we shall see innumerable examples of this phenomenon. The simplest
is given by the space X of 4M, which contains N asa dense, C*-embedded
subset that is not C-embedded. A more striking example is the pseudo-
compact space A of 6P, which contains N as a closed, C*-embedded
subset; since /1 is pseudocompact, 7o unbounded function on N can be
extended continuously to /.

The relation between C*-embedding and C-embedding is clarified
by the next theorem.

THEOREM. A C*-embedded subset is C-embedded if and only if it is
completely separated from every zero-set disjoint from it.

PROOF. Let S be C*-embedded in X.

Necessity. Given a zero-set Z(h) in X, disjoint from S, put f(s) =
1/h(s) for s € S. 'This defines f as a continuous function on S. Let g
be a continuous extension of f to all of X. Then gk belongs to C(X),
and is equal to 1 on .S and to 0 on Z(A).

Sufficiency. Consider any function f in C(S). Then arctano f
belongs to C*(S), and so has an extension to a function g in C(X).
The set

Z={xeXifg()] = m2)

belongs to Z(X), and is disjoint from S. By hypothesis, there is a
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function & in C(X) satisfying A[S] = {1}, h[Z] = {0}, and |A| = 1.
The function gh then agrees with arctan o fon S, and satisfies |(gh)(x)| <
w2 for every x. Hence tan o (gh) is a real-valued, continuous extension
of f to all of X.

1.19. In particular, every closed set in R is C-embedded. This
leads to the following special sufficient condition for a set S in X to be
C-embedded.

THEOREM. If there exists a function in C(X) that carries S homeo-
morphically onto a closed set in R, then S is C-embedded in X.

PROOF. Let % denote the postulated function in C(X). Then
0 = (h|S)* is a continuous mapping from H = A[S] onto S, with
0(h(s)) = s (fors € S). Consider, now, an arbitrary function f in C(S).
The composition fo 8 belongs to C(H). Since H is closed in R, by
hypothesis, it is C-embedded, and so there is a function g in C(R) that
agrees with fo 6 on H. Then go his in C(X), and for all s € S, we
have

(g ° B)(s) = f(B(A(s)) = f(s),
i.e., g o h is an extension of f.

1.20. CoroLrLARY. Let E < X, and suppose that some function h in
C(X) is unbounded on E.  Then E contains a copy of N, C-embedded in X,
on which h approaches infinity.

1.21. CoroLLARY. X is pseudocompact if and only if it contains no
C-embedded copy of N.

~
<

PROBLEMS

1A. CONTINUITY ON SUBSETS.
Let f € RX,

1. If the restriction of f to each of a finite number of closed sets, whose
union is X, is continuous, then f is continuous.

2. If the restriction of f to each of an arbitrary number of open sets, whose
union is X, is continuous, then f is continuous.

3. Let & be a family of closed sets whose union is X and such that every
point of X has a neighborhood that meets only finitely many members of &.
(& is then said to be locally finite.) If the restriction of f to each member of
& is continuous, then f is continuous.

1B. comMPONENTS OF X.

1. In C(X) (or C*¥(X)), all positive units have the same number of square
roots.
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2. X is connected if and only if 1 has exactly two square roots.

3. For finite m, X has m components if and only if 1 has 2™ square roots.
For infinite m, the statement is false. [Consider the subspace {1,%, -- -,
1/n, - --, 0} of R.]

4. X is connected if and only if 0 and 1 are the only idempotents in C(X).

5. If X is connected, then C(X) is not a direct sum of any two rings
(except trivially).

6. If X is the union of disjoint nonempty open sets 4 and B, then C(X) is
isomorphic to the direct sum of C(4) and C(B).

1C. C AND C* FOR VARIOUS SUBSPACES OF R.

Consider the subspaces R, Q, N, and N* = {1, 1, ---,1/n, -- -, 0} of
R, and the rings C and C* for each of these spaces. Each of these rings is
of cardinal c.

1. For each m < R, each ring on R, N, or N* contains a function having
exactly 2™ square roots. If a member of C(Q) has more than one square
root, it has ¢ of them.

2. C(R) has just two idempotents, C(N*) has exactly X,, and C(Q) and
C(N) have c.

3. Every nonzero idempotent in C(Q) is a sum of two nonzero idem-
potents. In C(N), and in C(N*), some, but not all idempotents have this
property.

4. Except for the obvious identity C(N¥*) = C*(N*), no two of the rings in
question are isomorphic.

5. Each of C(Q) and C(N) is isomorphic with a direct sum of two copies of
itself. C(N*) is isomorphic with a direct sum of two subrings, just one of
which is isomorphic with C(N*).

6. The ring C(R) is isomorphic with a proper subring. [Consider the
functions that are constant on [0,1].] But C(R) has no proper summand.

1D. DIVISORS OF FUNCTIONS.

1. If Z(f) is a neighborhood of Z(g), then f is a multiple of g—that is,
f = hg for some ke C. Furthermore, if X — int Z(f) is compact, then %
can be chosen to be bounded. [Define A(x) = f(x)/g(x) for x ¢ int Z(f), and
h(x) = 0 for x € Z(f), and apply 1A.1.]

2. Construct an example in which Z(f) > Z(g), but f is not a multiple
of g.

3. If |f| < |g|” for some real » > 1, then f is a multiple of g. [Define
h(x) = f(x)/g(x) for x ¢ Z(g), and h(x) = O otherwise.] Hence if |f| < |g|,
then f7 is a multiple of g for every r > 1 for which f is defined.

1E. uniITs.
1. Let fe C. There exists a positive unit # of C such that

(“1Vvf)Anl=uf
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2. The following are equivalent.
(1) For every f € C, there exists a unit # of C such that f = u|f|.
(2) For every g € C*, there exists a unit v of C* such that g = |g|.
[(1) émplies (2). g = u|g| for some unit u of C; consider pos u and neg u.]
3. Describe the functions fin C(N) for which there exists a unit % of C(N)
satisfying f = u|f|. Do the same for C(Q) and C(R).
4. Do the same for the equation f = k|f|, where k belongs to C but is not
necessarily a unit.

1F. C-EMBEDDING.

1. Every C*-embedded zero-set is C-embedded.

2. Let S=X; if every zero-set in S is a zero-set in X, then S is C*-em-
bedded in X.

3. A discrete zero-set is C*—embedded if and only if all of its subsets
are zero-sets.

4. A subset S of R is C-embedded [resp. C*-embedded] if and only if it is
closed. [A point of cI S — S is the limit of a sequence in S.]

5. If a (nonempty) subset S of X is C-embedded in X, then C(S) is a
homomorphic image of C(X). The corresponding result holds for C*.

1G. PSEUDOCOMPACT SPACES.

1. Any continuous image of a pseudocompact space is pseudocompact.

2. X is pseudocompact if and only if f[X] is compact for every fin C*(X).

3. Let X be a Hausdorff space. If, of any two disjoint closed sets, at least
one is compact, or even countably compact, then X is countably compact.
[A Hausdorff space is countably compact if and only if every infinite set has a
limit point.] .

4. If, of any two disjoint zero-sets in X, at least one is compact, or even
pseudocompact, then X is pseudocompact. [If C # C*, then some function
fin C assumes the values 0 and 1 infinitely often on a C-embedded copy of
N.] (But X need not be countably compact; see 8.20.)

1H. BASICALLY AND EXTREMALLY DISCONNECTED SPACES.

A space X is said to be extremally disconnected if every open set has an
open closure; X is basically disconnected if every cozero-set has an open
closure. Hence any extremally disconnected space is basically disconnected.
(The converse fails; see 4N.)

1. X is extremally disconnected if and only if every pair of disjoint open
sets have disjoint closures. What is the analogous condition for basically
disconnected spaces?

2. In an extremally disconnected space, any two disjoint open sets are
completely separated. In a basically disconnected space, any two disjoint
cozero-sets are completely separated; equivalently, for every f € C, pos f and
neg f are completely separated.
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3. If X is basically disconnected, then for every f € C, there exists a unit »
of C such that f = u|f].

4. Every dense subspace X of an extremally disconnected space T is
extremally disconnected. In fact, disjoint open sets in X have disjoint
open closures in T.

5. Every open subspace of an extremally disconnected space is extremally
disconnected. (A closed subspace, however, need not even be basically
disconnected ; see 6W.)

6. X is extremally disconnected if and only if every open subspace is
C*-embedded. [Necessity. Apply Urysohn’s extension theorem, invoking

2. Sufficiency. Apply 1.]

1I. ALGEBRA HOMOMORPHISMS.

Let t be a (ring) homomorphism from C(Y) or C*(Y) into C(X).

1. tr = r-f1foreachr e R. [Foreach x € X, the mapping r — (tr)(x)is a
homomorphism from R into R, and hence is either the zero homomorphism
or the identity (0.22). Also, (11)(x) = 0 or 1.]

2. t is an algebra homomorphism, i.e., t(rg) = r-tg for all e R and
geC(Y).

1J. PRESERVATION OR REDUCTION OF NORM.

For f € CH(X), define || = supsex ||

1 |f| = inf{reR:|f| < 1}.

2. If t is a nonzero homomorphism of C*(Y') into C*(X), then ||tr|| = |7|.
[11.1.]

3. tr < rforr20inR.

4. |tg] = |lg| for every g € C*(Y). [Theorem 1.6.]

5. Iftg < r,thentg < tr. [11.1]

6. If t is an dsomorphism into C*(X), then |tg| = | g|| for all g e C¥(Y).
(Ifg] > , then |g| # |g] A r.]



Chapter 2

IDEALS AND =z-FILTERS

2.1. Continuing our study of the relations between algebraic
properties of C(X) and topological properties of X, we now examine
the special features of the family of zero-sets of an ideal of functions.
Such a family turns out to possess properties analogous to those of a
filter ; this fact will play a central role in the development.

We recall that a proper subset I of C is an ideal in C provided that 1
is a subring such that gf € I whenever f € I, for arbitrary ge C. A
subset having these algebraic properties is a proper subset if and only if
it contains no unit. We shall occasionally refer to the ring C itself as an
improper ideal. Thus, the word ideal, unmodified, will always mean
proper ideal.

The intersection of any nonempty family of ideals is an ideal. Every
ideal is embeddable in a maximal ideal. Every maximal ideal M is prime,
that is, if fg € M, then fe M or g e M.

The smallest ideal (perhaps improper) containing a given collection of
ideals I,- - -, and elements f,- - -, is denoted by

A, f ).
It consists of all elements of C expressible as (finite) sums ¢ + - - - +
sf +---,whereiel,---, and where s,- - - are arbitrary functions in C.

Corresponding remarks apply to C* (in fact, to any commutative
ring with unity element). Evidently, if Iisanidealin C,thenI n C*is
an ideal in C*.

2.2. A nonempty subfamily &# of Z(X) is called a z-filter on X
provided that
(i) 0¢F;
(i) if Z, Zye F,then Z, n Z,€ F;and
(i) f Ze F,Z' € Z(X),and Z' > Z, then Z' € F.
24
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By (iii), X belongs to every z-filter. Because of (iii), (ii) may be replaced
in the above list by

W) if Z,, Zye &, then Z, n Z, contains a member of #.

Every family & of zero-sets that has the finite intersection property is
contained in a z-filter: the smallest such is the family & of all zero-sets
containing finite intersections of members of #. We say that %
generates the z-filter #. When Z itself is closed under finite inter-
section, it is called a base for &.

The above definition is, of course, an analogue of the familiar defini-
tion of filter: a nonempty family of subsets of X, closed under the forma-
tion of finite intersections and of supersets, and that does not contain the
empty set. A z-filter is a topological object, while a filter is a purely
set-theoretic one. In a discrete space, every set is a zero-set, so that
filters and z-filters are the same in discrete spaces.

In any space X, the intersection with Z(X) of any filter is a z-filter.
Conversely, if #" is the smallest filter containing a given z-filter & (i.e.,
& is a base for #'), then ' n Z(X) = #.

2.3. THEOREM.
(a) If I is an ideal in C(X), then the family
. 21 = {2(f): fe Iy
is a 2-filter on X.
(b) If F is a z-filter on X, then the family
ZAZ] ={f- Zf) e 7}
1s an ideal in C.

PROOF. (a). (i). Since I contains no unit, @ ¢ Z[I].
(i). Let Z,, Z,e Z[I]. Let fy,fo €1 satisfy Z, = Z(f,), Z, =
Z(f,). Since Iis an ideal, f,2 + fy2 e 1. Hence

Zy N Zy = Z(f* + 1»?) € Z[1].

(iii). Let ZeZ[I], and Z' € Z(X). Let fel, f'eC satisfy
Z = Z(f), Z’ = Z(f"). Since I is an ideal, we have ff’ € I. Hence if
Z' o Z, then

Z'=72 v Z' = Z(ff") e Z[1].

(b). Let J = Z<[#]. By 2.2(i), J contains no unit. Let f, g € J,
and let e C. Then
Z(f-8)> Z(f).n Zg)e Z,
by 2.2(ii),and Z(hf) = Z(f)e &#. Hence Z(f — g)e ¥ and Z(hf)e Z,
by 2,2(iii). 'Therefore f — g e Jand Af € J. Thus, Jis an ideal in C.
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REMARK. In particular, (f, g) # C if and only if Z(f) meets Z(g),
hence if and only if f2 + g2—or |f| + |g|—is not a unit of C.

2.4. Like any mapping, Z satisfies (for # < Z(X))
Z[Z<[#]] =% and Z<[Z[I]] > I

The first relation implies that every z-filter is of the form Z[J] for some
ideal Jin C. In the second relation, the inclusion may be proper, as the
following example shows.

exAMPLES. Consider the principal ideal I = (i) in C(R) (i denoting
the identity function on R). This consists of all functions f in C(R)
such that f(x) = xg(x) for some g € C(R). In particular, every func-
tion in I vanishes at 0. Hence every zero-set in Z[I] contains the point
0. As a matter of fact, since Z[I] is a z-filter that includes the set {0},
it must be the family of all zero-sets containing 0. Additional prop-
erties of the ideal (i) are given in 2H.

The ideal M, = Z<[Z[I]] evidently consists of all functions in C(R)
that vanish at 0. Hence M, certainly contains I. However, M, # I.
For instance, i € M, — I. 'That i’ € M is obvious. Andif i% € [,
then i% = gi for some g € C(R); but then g(x) = x~% for x # 0, so that
g cannot be continuous at 0.

Note that Z[M,] = Z[I], in spite of the fact that M, # I.

Finally, we observe that M, is a maximal ideal. For, if f ¢ M, then
Z(f) is disjoint from Z(i), whence we have (M, f) > (i, f) = C (see
2.3, REMARK).

The analogue of Theorem 2.3(a), with C* in place of C, is false, in
general. If Jis an ideal in C*, then Z[J] does satisfy the properties
(i) and (iii) of a z-filter (as the proof of (a) shows); hawever, (i) need not
hold. For example, the set J of all sequences that converge to zero is
obviously an ideal in C*(N); but since j € J, and Z(j) = 0, it follows
that @ € Z[J], and hence that Z[J] is the family Z(N) of all subsets of
N. Observe that J is not an ideal in C; in fact, j is a unit of C.

2.5. By a z-ultrafilter on X is meant a maximal z-filter, i.e., one not
contained in any other z-filter. Thus, a z-ultrafilter is a maximal
subfamily of Z(X) with the finite intersection property. It follows
from the maximal principle (0.7) that every subfamily of Z(X) with the
finite intersection property is contained in some z-ultrafilter.

In a discrete space, z-ultrafilters are the same as ultrafilters, i.e.,
maximal filters.

THEOREM.
(2) If M is a maximal ideal in C(X), then Z[M] is a z-ultrafilter on X.
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(b) If o is a z-ultrafilter on X, then Z<[ /] is a maximal ideal in C.
The mapping Z is one-one from the set of all maximal ideals in C onto
the set of all z-ultrafilters.

PROOF. Since Z and Z*+ preserve inclusion, the result follows at
once from Theorem 2.3.

As we saw in 2.4, we cannot conclude that an ideal is maximal from
the fact that its 2-filter is maximal.

2.6. THEOREM.

(a) Let M be a maximal ideal in C(X); if Z(f) meets every member of
Z[M], then f € M.

(b) Let s be a z-ultrafilter on X ; if a zero-set Z meets every member
of L, then Z € .

PROOF. By Theorem 2.5, the two statements are equivalent. In
(b), & U {Z} generates a z-filter. As this contains the maximal z-filter
&7, it must be /.

The properties stated in the theorem are, in fact, characteristic of
maximal ideals and z-filters: if a z-filter &/ contains every zero-set that
meets all members of &7, then, clearly, & is a z-ultrafilter.

2-IDEALS AND PRIME IDEALS

2.7. An ideal I in C(X) is called a z-ideal if Z(f) € Z[I] implies
f € I—that is to say, if I = Z<[Z[I]].

If # is a z-filter, then Z<[#] is a z-ideal (since F = Z[Z<[F])).
Hence if Jis any ideal in C, then I = Z<{Z[J]] is a 2-ideal; clearly, I is
the smallest 2-ideal containing J.

It is evident that every maximal ideal is a z-ideal.

The intersection of an arbitrary (nonempty) family of z-ideals is a
z-ideal.

The mapping Z is one-one from the set of all z-ideals onto the set of
all z-filters. The discussion in 2.4 shows that the principal ideal (i) in
C(R) is not a z-ideal. If .S is a nonempty set, in any space X, then the
family of all functions in C(X) that vanish everywhere on S is a z-ideal.

In C(N), every ideal I is a z-ideal. For, suppose that Z(f) = Z(g),
where g € I. Define 4 as follows: A(n) = 0 for n € Z(g), and h(n) =
f(n)/g(n) for n ¢ Z(g). Since N is discrete, & is continuous. Evi-
dently, f = hg. Therefore fe I. (Compare 1D.1.)

2.8. THeOREM. Ewvery z-ideal in C(X) is an intersection of prime
ideals.
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PROOF. Z(f") = Z(f) for every n € N. Hence if I is any z-ideal,
then f# € I implies f € I. But this property characterizes I as the inter-
section of all the prime ideals containing it (0.18).

It is not obvious from the definition whether z-ideals can be described
as algebraic objects in the ring C(X). It will turn out later that they
can be (see 4A.5). Some algebraic information has already been
obtained: every intersection of maximal ideals is a z-ideal, and every
z-ideal is an intersection of prime ideals.

The converses are not true, however. As an example of a z-ideal
that is not an intersection of maximal ideals, consider the set O, of all
functions f in C(R) for which Z(f) is a neighborhood of 0. Evidently,
O, is a z-ideal, and it is contained properly in the maximal ideal M, of
all functions that vanish at O (see 2.4). Note that every neighborhood
of 0 contains a zero-set-neighborhood of 0, i.e., a member of Z[O].
Now, if I is any ideal containing O,, then Z[O,] < Z[I]; hence every
member of Z[I] meets every neighborhood of 0, and therefore contains
0. It follows that I = M,. This shows that M|, is the only maximal
ideal containing O,. Therefore O, is not an intersection of maximal
ideals.

Incidentally, since O, is an intersection of prime ideals—all of which
must be contained in M,—we have established the existence of non-
maximal, prime ideals in C(R). o

In order to show that the converse of the theorem is not valid, it is
enough to find a single prime ideal that is not a z-ideal. A construction
is outlined in 2G.1.

The next theorem clarifies to some extent the relation between prime
ideals and z-ideals.

2.9. THEOREM. For any z-ideal I in C, the following are equivalent.

(1) I is prime.

(2) I contains a prime ideal.

(3) Forallg,he C,if gh =0, thengelorhel.

(4) For every fe C, there is a zero-set in Z[I] on which f does not
change sign.

PROOF. (1) implies (2). Trivial.

(2) implies (3). If I contains a prime ideal P, and gh = 0, then gh € P,
whence either g or 4 is in P and hence in 1.

(3) implies (4). It suffices to observe that (f v 0)(f A 0) = 0 for
every f € C.

(4) implies (1). Given ghe I, consider the function |g| — |A|.
By hypothesis, there is a zero-set Z of I on which |g| — |A| is
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nonnegative, say. Then every zero of ¢ on Z is a zero of A.
Hence

Zhy > Z n Z(h) = Z n Z(gh) € Z[I],
so that Z(h) € Z[I]. Since I is a z-ideal, A € I. Thus, I is prime.

2.10.
If J and J' are ideals, neither containing the other, then J n J' is
not prime.
In fact, this holds in any commutative ring. For, whena e J — J" and
a’ € J' — J, then neither a nor a’ belongs to J n J', butaa’ e J n J'.

EXAMPLE. We saw in 2.4 that the set of all functions in C(R) that
vanish at 0 is a maximal ideal. A similar proof shows that the set of all
functions vanishing at 1 is a maximal ideal. Let I denote the inter-
section of these ideals, i.e., I is the 2-ideal of all functions that vanish at
both 0 and 1. By the above, I is not prime. (In the proof, we may
take, for example,a = i,anda’ = i — 1.) By Theorem 2.9, the z-ideal
I contains no prime ideal.

The next theorem generalizes this result to arbitrary maximal ideals
in C(X), for any X.

2.11. THEeoReM. Every prime ideal in C(X) is contained in a unique
maximal ideal.

PROOF. We know that every ideal is contained in at least one maximal
ideal. If M and M’ are distinct maximal ideals, their intersection is a
z-ideal (since M and M’ are z-ideals), but it is not prime (2.10); by
Theorem 2.9, M n M’ contains no prime ideal.

The corresponding theorem is valid for C*, but we shall not prove it
here. The conclusion will follow from the general result stated in
6.6(c).

2.12. By a prime z-filter, we shall mean a z-filter # with the follow-
ing property: whenever the union of two zero-sets belongs to %, then
at least one of them belongs to #.

THEOREM.

(a) If Pis a prime ideal in C(X), then Z[P) is a prime z-filter.

(b) If F is a prime z-filter, then Z<[F] is a prime z-ideal.

PROOF. (a). Let Q = Z<[Z[P]]. Then Z[Q] = Z[P],and Qisa
z-ideal containing the prime ideal P. By Theorem 2.9, Q is prime.
Suppose, now, that Z(f) U Z(g) € Z[P]. This implies that Z(fg) €
Z[Q]; therefore fg belongs to the z-ideal Q. Since Q is prime, it
contains f, say. Then Z(f) € Z[Q] = Z[P].
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(b). We know that the ideal P = Z<[%]is a z-ideal. Suppose that
fge P. Then

Z(fg) = Z(f) v Z(g) e 2[P] = Z.

By hypothesis, Z(f), say, belongs to Z[P]. Then f belongs to the
z-ideal P.

2.13. It follows that a prime z-filter is contained in a unique
z-ultrafilter.

Since every maximal ideal in C is prime, every z-ultrafilter is a prime
z-filter. This can be seen more directly. If zero-sets Z and Z’ do not
belong to a z-ultrafilter &, then, by Theorem 2.6(b), there exist 4, A" €
& such that ZnA=2"nA =0. Then Z U Z' does not meet
the member 4 n A’ of &/, and hence does not belong to 7.

In a discrete space X, there is no difference between prime and
maximal, i.e., every prime filter % is an ultrafilter. For, if 4 ¢ %, then
X — A € %; hence A cannot be adjoined to %.

2.14. The correspondences between z-filters on X and ideals in
C(X) that have been established in this chapter are p&verful tools in the
study of C(X). These correspondences, which also occur in a rudi-
mentary form in C* (e.g., in Theorem 2.3(b), Z<[#] n C* is an ideal
in C*), are inconsequential there, as many of the theorems of the chapter
become false if C is replaced by C*.

However, there is another correspondence, between a certain class of
z-filters on X and ideals in C*(X), that leads to theorems quite analo-
gous to those for C. 'The requisite information is outlined in 2L. It
is worth noting that the theory is far more complicated for C* than for C.

The development in 2L discloses a natural one-one correspondence
between the maximal ideals in C and those in C* (2L.16). In the text
itself, we will not arrive at this correspondence until Chapter 7, at which
time its significance will be clearer.

PROBLEMS

2A. BOUNDED FUNCTIONS IN IDEALS.

The functions f and (—1 Vv f) A 1 belong to exactly the same ideals in
C. [1E.1.] Hence every ideal in C has a set of bounded generators.

2B. PRIME IDEALS.
1. An ideal P in C is prime if and only if P 1 C* is a prime ideal in C*.
[1E.1]
2. If P and Q are prime ideals in C, or in C*, then PQ = P n Q (by
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definition, the product IJ of two ideals is the smallest ideal containing all
products fg, where fe Iand g € J). [If fe P, thenf% € P.] In particular,
P = P. Hence M2 = M for every maximal ideal M in C or C*.

3. Anideal I in a commutative ring is an intersection of prime ideals if and
only if @ € I implies a € I.

2C. FUNCTIONS CONGRUENT TO CONSTANTS.

1. Let I be an ideal in C; if f = r (mod I), then r € f[X].
2. Let I be an ideal in C*; if f = r (mod I), then 7 € clg f[X].

2D. z-IDEALS.

1. Let I be a z-ideal in C, and suppose that f = r (mod I). If g(x) = 7
wherever f(x) = r, then g = r (mod I).

2. If f2 + g2 belongs to a z-ideal I, then fe I and g € L.

3. If I and J are z-ideals, then IJ = I n J. Compare 2B.2.

4. Z[(1, J)] is the set of all Z; n Z,, where Z, € Z[I] and Z, € Z[J].

2E. PRIME 2-FILTERS.

The following are equivalent for a z-filter &.

(1) & is prime.

(2) Whenever the union of two zero-sets is all of X, at least one of them
belongs to £

(3) Given Z,, Z, € Z(X), there exists Z € # such that one of Z n Z,,
Z N Z, contains the other.

2F. FINITE SPACES.

Let X be a finite discrete space. In C(X):
1. fis a multiple of g if and only if Z(f) > Z(g).
2. Every ideal is a z-ideal.
3. Every ideal is principal, and, in fact, is generated by an idempotent.
4. Every ideal is an intersection of maximal ideals. The intersection of all
the maximal ideals is (0).
5. Every prime ideal is maximal.

2G. PRIME Vs. 2-IDEALS IN C(R).

1. Select a function /in C(R) such that /(0) = 0, while lim,_, 4 I*(x)/x = oo
forallm e N. Apply 0.17 to construct a prime ideal in C(R) that contains i
but not /. This prime ideal is not a z-ideal (and hence is not maximal).

2. Let O, denote the ideal of all functions f in C(R) for which Z(f) is a
neighborhood of 0. Define s in C(R) as follows: s(x) = «x sin (=/x) for x # 0,
and s(0) = 0. Then (O, s) is not a z-ideal; and the smallest z-ideal con-
taining (O, ) is not prime.
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2H. THE IDENTITY FUNCTION i IN C(R).

1. The principal ideal (i) in C(R) consists precisely of all functions in C'(R)
that vanish at 0 and have a derivative at 0. Hence every nonnegative func-
tion in (i) has a zero derivative at 0.

2. (i) is not a prime-ideal; in fact, (i) # (i). (See 2B.2.)

3. The ideal (i, |i|) is not principal. [If (i, |i|]) = (d), there existg, h e C
such thati = gdand |i| = hd. It follows that g(0) = A(0) = 0. Moreover,
there exist s, € C such that si + #|i| = d. Thisimpliesthatsg + th =1, a
contradiction.]

4. Exhibit a principal ideal containing (i, [i|).

2I. C(Q) aND C*(Q).

The set of all fin C(Q) for which lim,_,, f(x) = 0 is not an ideal in C(Q).
But the bounded functions in this set do constitute an ideal in C*(Q).

2J. 1pEAL cHAINS IN C(R), C(Q), anp C(N).

1. Find a chain of z-ideals in C(R) (under set 1nclus1on) that is in one-one,
order-preserving eorrespondence with R itself.

2. Find a chain of z-ideals in C(Q) in one-one, order-preserving cor-
respondence with R.

3. Do the same for C(N).

2K. =2-FILTERS AND C*,

If M is a maximal ideal in C*, and Z[M] is a z-filter, then Z[M] is a
z-ultrafilter.

2L. e-FILTERS AND e-IDEALS.

This problem contains an outline for a theory of z-filters applicable to
C*. For fe C* and € > 0, we define

E(f) = fll—e €l = {a: | f(®)] = ¢

Every such set is a zero-set; conversely, every zero-set is of this form:
Z(g) = E(e + |g|). For I <= C*, we write

E(I) = {E(f):fe I, e > O},
i.e., E(I) = . E[I]. Finally, for any family # of zero-sets, we define
E-(F)={fe C*: E(f)e % for all ¢ > 0},

that is, E<(#) = [ E~ [Z].

1. F 5 EE~«(F)) = U AEL(f): Eg f) €Z for all § > 0}. Note that the
inclusion may be proper, even when % is a z-filter. [Let % be the z-filter of
all zero-sets in R that contain 0.]
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2. A z-filter & is called an e-filter if E(E~(¥)) = %. Hence & is an
e-filter if and only if, whenever Z € &, there exist f and e such that Ey(f) e #
for every 8 > 0, and Z = E(f).

3. I < E~«(E(I)) = {f: E(f) e E(I)forall e > 0}. Note that the inclusion
may be proper, even when 7 is anideal. [Let I be the ideal of all functions in
C*(R) that vanish on a neighborhood of 0, and consider any function that
vanishes precisely at 0. Alternatively, take I = (j2) in C*(N), and consider
the function j.]

4. An ideal I in C* is called an e-ideal if E-(E(I)) = I. Hence I is an
e-ideal if and only if, whenever E(f) € E(I) for all € > 0, then fe I. Inter-
sections of e-ideals are e-ideals.

5. If I'is an ideal in C*, then E(I) is an e-filter. [Verify (i), (ii’) and (iii) of
2.2. For (iii), let Z(f') © E(f), where f' € C* and f € I, with f' 2 0 and
f = 0. Define g(x) = 1 for x € E(f), and

8(x) = f'(x) + €/f(x)

for x¢ E(f). Then ge C*, and Z(f') = E(fg).] The corresponding
result holds in C.

6. If # is any z-filter, then E~() is an ideal in C*. Note, however, that
the corresponding result may fail in C, even if & is an e-filter. [Let &#
consist of the complements of the finite sets in N, and consider the function j.]

7. I < Jimplies E(I) < E(J), and # < ¥ implies E-(#) < E~(%).

8. If J is an e-ideal, then I < J if and only if E(I) < E(J). If # is an
e-filter, then # < ¥ if and only if E-(#) < E~(9).

9. If & is any e-filter, then E-(¥) is an e-ideal. If I is any ideal in C*,
then E-(E(I)) is the smallest e-ideal containing I. In particular, every
maximal ideal in C* is an e-ideal.

10. For any z-filter 4, E(E~(¥)) is the largest e-filter contained in .

11. If o/ is a z-ultrafilter, and a zero-set Z meets every member of
E(E-(«)), then Z € /. [Theorems 2.6(b) and 1.15.]

12. A maximal e-filter is called an e-ultrafilter. Every e-filter is contained
in an e-ultrafilter.

13. If M* is a maximal ideal in C*, then E(M*) is an e-ultrafilter; and if &
is an e-ultrafilter, then E~(&) is a maximal ideal in C*. [9.] Hence the
correspondence M* — E(M*) is one-one from the set of all maximal ideals
in C'* onto the set of all e-ultrafilters.

14. The following property characterizes an ideal M* in C* as a maximal
ideal: given f € C*, if every E(f) meets every member of E(M*), then f € M*,
[(M*,f) = C* if and only if some E(f) fails to meet some member of
E(M™).]

15. If &7 is a z-ultrafilter, then it is the unique z-ultrafilter containing
E(E~(&Z)). [11.] Moreover, E(E~(27))is an e-ultrafilter, and it is the unique
one contained in /. [10.] Hence the correspondence &/ — E(E~(&7)) is
one-one from the set of all z-ultrafilters onto the set of all e-ultrafilters.
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16. If o/ is a z-ultrafilter, then E—~(7) is the maximal ideal
E~(E(E~(/)))
in C*. Hence the correspondence
M — E~(Z[M))

is one-one from the set of all maximal ideals in C onto the set of all maximal
tdeals in C*. Tts inverse is the correspondence M* —> Z<[2/], where & is
the unique z-ultrafilter containing the e-ultrafilter E(M*).

2M. THE UNIFORM NORM TOPOLOGY ON C*,

Let C’ be a subring of C(X) on which a topology has been defined.
Then C’ is called a topological ring if both addition and ring multiplication
are continuous (from C’ x C' into C’). If C’ contains the constant func-
tions, then it is a topological vector space if both addition and scalar multipli-
cation (the latter being the mapping (7, g)——> rg from R x C’ into C’) are
continuous. If C' is both a topological ring and a topologlcal vector space,
it is called a topologlcal algebra.

By a norm is meant a mapping f— | f| into R, satlsfymg. Ifl =0,
I = 01t andonly if £ = 0, |7 + g % I/1 + gl and [#f] = -1/l A
metric d is defined from the norm, as usual, by: d(f,g) =|f—¢gl. A
Banach algebra is a complete normed algebra whose norm satisfies: | fg| =
R{E

1. In any topological ring, the closure of an ideal is either an ideal or the
whole ring.

2. A norm on C*is given by: || f| = sup,cx |f(*)|. The resulting metric
topology is called the uniform norm topology on C*. Convergence in this
topology is uniform convergence of the functions. A base for the neighbor-
hood system at g consists of all sets of the form

{f:lg—fl=¢ (¢ > 0).
Equivalently, a base at g is given by all sets
{f: lg_fl éu}’

where u is a positive unit of C*.

3. C* is a Banach algebra.

4. The closure of every ideal is a (proper) ideal. [If 1 € cl I, then I con-
tains a unit.] Hence every maximal ideal is closed.

5. Every e-ideal (2L) is closed. (Hence every maximal ideal is closed.)
[Given g e cl I, and € > 0, there exists f € I such that |g — f] < e. Then
E,(g) @ E(f).] (It will be seen subsequently (6A.2) that every closed ideal
is an intersection of maximal ideals. It follows that the closed ideals are
precisely the e-ideals [2L.4].)

6. The topology of uniform convergence can also be defined on C, the
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neighborhood system at g being as described in 2. However, C will not be
either a topological ring or a topological vector space unless X is pseudo-
compact.

2N. THE m-TOPOLOGY ON C.

The m-topology is defined on C(X) by taking as a base for the neighbor-
hood system at g all sets of the form

{feC:lg—fl =4

where u is a positive unit of C. The same topology results if it is required
further that » be a bounded function.

1. Cis a topological ring.

2. The relative m-topology on C* contains the uniform norm topology
(2M), and the two coincide if and only if X is pseudocompact. In fact, when
X is not pseudocompact, the set of constant functions in C* is discrete (in
the m-topology), so that C* is not even a topological vector space.

3. The set of all units of C is open, and the mapping f— f~! is a homeo-
morphism of this set onto itself.

4. The subring C* is closed.

5. The closure of every ideal is a (proper) ideal. Hence every maximal
ideal is closed. Every maximal ideal in C* is closed.

6. Every closed ideal in C is a z-ideal. [Given Z(f) = Z(g), with g € I,
and given u, define h(x) = 0 for |f(x)| < u(x), and

ey — 1) £ ()
) &%)
otherwise.]
7. In the ring C(R), the 2-ideal O, of all functions that vanish on a neigh-
borhood of 0 is not closed. [i € cl 0,.]



Chapter 3

COMPLETELY REGULAR SPACES

3.1. Up to this point in the text, we have not assumed any separation
axioms for the topological space on which our ring of continuous
functions is defined. Indeed, separation axioms were irrelevant to
most of the subjects discussed. We have now reached the stage where
separation properties of the space do enter in an essential way, so that
we are forced to make a decision about what class or classes of spaces
to consider. We have no desire to become involved in finding the
weakest axiom under which each theorem can be proved, but prefer, if
possible, to stick to a single class of topological spaces that is wide enough
to include all of the interesting spaces, and, at the same time, restrictive
enough to admit a significant theory of rings of continuous functions.

The class of completely regular spaces exactly fulfills this requirement.
A space X is said to be completely regular provided that it is a Hausdorff
space such that, whenever F'is a closed set and x is a point in its comple-
ment, there exists a function fe C(X) such that f(x) = 1 and f[F]
= {0}—in short, F and {x} are completely separated. A simple but
important consequence is that every subspace of a completely regular
space is completely regular. Another is this: in a completely regular
space, if f(x) = f(y) forall f e C, then x = y.

It is obvious that every metric space is completely regular. In
particular, R and all its subspaces are completely regular.

Since complete regularity is defined in terms of the existence of
continuous functions, it is not surprising that it should be a useful
concept in our study. What is remarkable is that completely regular
spaces have so many other desirable properties. For example, they are
precisely the subspaces of compact spaces (Theorems 3.14 and 6.5);
and they are precisely the spaces that admit Hausdorff uniform
structures (Theorem 15.6).

Normal spaces have additional properties that are useful in the study
36
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of rings of continuous functions. In view of this, it is remarkable how
little is gained by imposing upon a completely regular space X the
stronger condition of normality. The contents of this book will attest
to this fact—though it must be admitted that a good many of the results
to be presented were first proved for normal spaces.

We can disclose here the system for bypassing the additional hypo-
thesis that X be normal. The fundamental theorem about normal
spaces is Urysohn’s lemma (3.13), which states that any two disjoint
closed sets in a normal space are completely separated. In our work,
this result is applied essentially once—to yield the vital theorem that
every compact space is completely regular.

In dealing with arbitrary completely regular spaces, the key device
is Theorem 1.15, which states that in any space, disjoint zero-sets are
completely separated. What makes this theorem so serviceable is that
every closed set in a completely regular space is an intersection of
zero-sets (Theorem 3.2).

It is well to point out two basic differences between Urysohn’s
lemma and Theorem 1.15. One concerns their content. Urysohn’s
lemma stands alone as a theorem whose conclusion asserts the existence
of a continuous function, but whose hypothesis provides no functions
to work from: in the proof, a function is constructed from * nothing.”

The second point concerns our application of these theorems. As
we have indicated, Urysohn’s lemma is indispensable—but will rarely
be referred to. For work with completely regular spaces, it is replaced
by Theorem 1.15, which will be invoked over and over again (often
without explicit mention). Notice that Urysohn’s lemma is not
replaced by Theorem 1.15 alone, but by the theorem as applied to
completely regular spaces. Complete separation, in terms of existing
functions, is provided by the theorem; existence of the functions in the
first place is built into the definition of complete regularity.

Combination of Urysohn’s lemma with Urysohn’s extension
theorem (1.17) yields the conclusion that in a normal space, every
closed set is C*-embedded. In the absence of normality, the last
result can often be replaced by the fact that every compact set in a
completely regular space is C*-embedded (3.11(c)). The effectiveness
of this device is enhanced by the existence of a compactification of an
arbitrary completely regular space X, in which X is C*-embedded
(Theorem 6.5). Incidentally, section 3.11 provides a good illustration
of how Theorem 1.15 is used.

That nothing can be achieved by considering a wider class than the
completely regular spaces is the content of Theorem 3.9.
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3.2. It turns out that most of our topological considerations will be
expressed more conveniently in terms of closed sets than, as is more
commonly the case, in terms of open sets. The next theorem shows
why.

A collection & of closed sets is a base for the closed sets if every closed
set in X is an intersection of members of #. Equivalently, Z is a
base if whenever F is closed and x € X — F, there is a member of #
that contains F but not x.

THEOREM. A Hausdorff space X is completely regular if and only
if the family Z(X) of all zero-sets is a base for the closed sets.

PROOF. Necessity. Suppose that X is completely regular. Then
whenever F is a closed set and x € X — F, there exists f € C(X) such
f(x) =1 and f[F] ={0}. Then Z(f) > F, and x¢ Z(f). Con-
sequently, Z(X) is a base.

Sufficiency. Suppose that Z(X) is a base. Then, whenever F is
a closed set and x € X — F, there is a zero-set, say Z(g), such that
Z(g)> F and x¢ Z(g). Write r = g(x). Then r # 0, and the
function f = gr~! belongs to C(X). Evidently, f(x) = 1 and f[F]
= {0}. Therefore the Hausdorff space X is completely regular.

As a matter of fact, we have, as in Theorem 1.15:

(a)  Every closed set F in a completely regular space is an intersection
of zero-set-neighborhoods of F.

(b)  Every neighborhood of a point in a completely regular space contains
a zero-set-neighborhood of the point.

3.3. Weak topology. 1t is a triviality that the continuous functions
on X to R are determined by the topology of X. The foregoing theorem
says, in effect, that if X is completely regular, then the converse is also
true: its topology is determined by the continuous real-valued functions.

This last statement can be made precise by introducing the notion of
weak topology. Let X now be an abstract set, and consider an arbitrary
subfamily C’ of RX. 'The weak topology induced by C' on X is defined
to be the smallest topology on X such that all functions in C’ are
continuous.

Let us see what this means. In order that a function f on X to R be
continuous, it is necessary and sufficient that the preimage under f of
each open set in R be open. Hence in order that every function in C’
be continuous, it is necessary and sufficient that all such preimages, for
all fe C’, beopen. Let & denote the collection of all these preimages:
a subset U of X belongs to & if and only if there exist f € C’, and an
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openset V in R, suchthat U = f<[V]. In particular, we always have
X e & (if C’ is not empty), since X = f~[R] for any fe C'.

But & need not be a topology for X—or even a base for a topology.
For example, if X is a three-element set {a, b, ¢}, and C’ = {f, g}, where
f(a) = g(d) = 0 and f(b) = f(c) = g(a) = g(c) = 1, then {c} is the
intersection of two members of & but contains no nonempty member
of &£.

The weak topology generated by C” is the smallest topology containing
the family &. Therefore, it is the topology for which & is a subbase.

3.4. To obtain the weak topology, it is not necessary to consider the
preimages of all the open sets in R: the preimages of basic open sets—in
fact, of subbasic open sets—already constitute a subbase for the weak
topology.

If we consider the base for R consisting of all the e-neighborhoods,
then we see that a subbasic system of neighborhoods for a point x in X
is given by all sets of the form

(a) eX:|fx) - fO)l < ¢ (feC', e > 0).

Dually, we may work with closed sets. A family is a subbase for the
closed sets if the finite unions of its members constitute a base. Since
the closed rays form a subbase for the closed sets in R, their preimages,

(b) {reX:f(x) 27}
and
) fre X:f(9) < 7} (feC',reR),

form a subbase for the closed sets in X. In case —f belongs to C’
whenever f does—for example, if C’ is an additive group—then the
sets in (b) are the same as those in (b).

3.5. Suppose, now, that X is given as a topological space. A
natural undertaking is to compare its topology with the weak topology
induced by some family C’ of functions. When the weak topology
turns out to coincide with the given one, we shall say that C’ determines
the topology of the space.

If C’" = C, then every function in C’ is continuous in the given
topology (by definition of C). 'Therefore the weak topology is contained
in the given one.

In case C' = Cor C' = C*, the sets (b) coincide with the zero-sets
of functions in C’. In fact,

rf) 2zt =2((f-1) A 0),
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so that every such set is a zero-set. Conversely, every zero-set has

this form:
Z(f) = {x: = |f|(x) 2 O}

Since the union of two zero-sets is again a zero-set, the subbase
Z[C] = Z[C*] is a base. We summarize all this in the following
theorem, which includes a reformulation of Theorem 3.2.

3.6. THEOREM. Let X be a topological space.

The families C(X) and C*(X) induce the same weak topology on X.
A base for its closed sets is the faniily Z(X) of all zero-sets. A basic
neighborhood system for a point x is given by the collection of all sets

eX:|fx) -f <¢  (feC*<>0)

Finally, if X is a Hausdorff space, then X is completely regular if and
only if its topology coincides with the weak topology induced by C and C*
(z.e., its topology is determined by C and C*).

3.7. 'This last result can be sharpened still further.

THEOREM. If X is a Hausdorff space whose topology is determined by
some subfamily C' of RX, then X is completely regular.

PROOF. Clearly, every function in C’ is continuous, i.e., C’ < C(X).
Hence the weak topology induced by C’ is contained in the weak
topology induced by C. But the latter topology is always contained in
the given topology on the space X. The hypothesis now implies that
the two coincide, and so, by Theorem 3.6, X is completely regular.

3.8. Since the continuous functions determine the topology of a
completely regular space, they determine the continuous mappings
into the space. Precisely:

THEOREM. Let C' be a subfamily of C(Y') that determines the topology
of Y. A mapping o from a space S into Y is continuous if and only if the
composite function g o o is in C(S) for every g € C'.

PROOF. Necessity is obvious. To prove the sufficiency—that o is
continuous—we look at what happens to subbasic closed sets in Y
under o-. These are given, by hypothesis, as the sets of the form
g[F), where g € C’, and F is a closed set in R. Now,

o g F]] = (g° ) F];
and this set is closed in S, since, by hypothesis, g o o is continuous.
Therefore ¢ is continuous.

3.9. The next theorem eliminates any reason for considering rings
of continuous functions on other than completely regular spaces.
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THEOREM. For every topological space X, there exist a completely
regular space Y and a continuous mapping v of X onto Y, such that the
mapping g— g o 7 is an isomorphism of C(Y) onto C(X).

PROOF. Define x = &’ in X to mean that f(x) = f(x') for every
feC(X). Evidently, this is an equivalence relation. Let Y be the
set of all equivalence classes. We define a mapping 7 of X onto Y as
follows: Tx is the equivalence class that contains x.

With each f e C(X), associate a function g € RY as follows: g(y) is
the common value of f(x) at every point x € y. Thus, f = go7. Let
C’ denote the family of all such functions g, i.e., g € C’ if and only if
gore C(X). Now endow Y with the weak topology induced by C’.
By definition, every function in C’ is continuous on Y, i.e.,, C’ < C(Y).
The continuity of = now follows from Theorem 3.8.

It is evident that if y and y’ are distinct points of Y, then there exists
g€ C’ such that g(y) # g(»'). This proves that Y is a Hausdorff
space. Hence Y is completely regular, by Theorem 3.7.

Finally, consider any function 2 € C(Y). Since 7 is continuous,
hor is continuous on X. But this says that 2 e C’. Therefore,
C’' > C(Y). Thus, C' = C(Y); and it is clear that the mapping
g— g o 7isan isomorphism. This completes the proof of the theorem.

It is equally clear that the mapping g — g o 7 is a lattice isomorphism
as well, and that it carries C*(Y) onto C*(X). These conclusions also
follow from Theorems 1.6 and 1.9.

We remark that = is not necessarily a quotient mapping, i.e., the
topology on Y need not be the largest such that = is continuous; see
31.2 or 3].3.

As a consequence of the foregoing theorem, algebraic or lattice
properties that hold for all C(X) [resp. C*(X)], with X completely
regular, hold just as well for all C(X) [resp. C*(X)], with X arbitrary.
An example is the result that every residue class ring modulo a prime
ideal is totally ordered (Theorem 5.5). We shall make no systematic
attempt to distinguish between those results that are valid only for
completely regular spaces and those of more general validity.

Beginning with Chapter 4, we shall impose the blanket assumption
of complete regularity on all given spaces.

3.10. Products of completely regular spaces. We have defined the
weak topology induced by a family of real-valued functions. More
generally, let X be any set, and let @ be an arbitrary family of mappings
¢, of X into topological spacesY,; then the weak topology induced by
® on X is, by definition, the smallest topology in which each ¢, is
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continuous. Again, when the weak topology coincides with a given
topology on X, we say that the latter is determined by @. Here, the
spaces Y, need not be all the same. In case each Y, is completely
regular, the family of all sets ¢,<[Z,], where Z, is a zero-set in Y, and
@, € D, is a subbase for the closed sets in X.

A particular application is to product spaces. 'The product topology

on X = Xa X, may now be defined as the weak topology induced by

the family of all projections 7,: X — X,. When each X, is completely
regular, the collection of all finite unions

Tral(_[Zl] u---u 77m,.(—[Zn ’

where Z, is a zero-set in X, , is a base for the closed sets in X. We
notice that each such union is a zero-set, because

1, Zx ()] = Zx(f o 7).
We conclude that

(@)  An arbitrary product of completely regular spaces is completely
regular

(taking note of the simple fact that a product of Hausdorff spaces is a

Hausdorff space).

If we examine the proof of Theorem 3.8, we find that it does not
depend upon any special properties of R. Thus we have, more
generally:

(b)  Let D be a family of mappings that determines the topology of a
space X. A mapping o from a space S into X is continuous if and
only if ¢ o o is continuous for every ¢ € P.

When X is given as a product space, this assumes the following
familiar form:

(c) A mapping o from a space into a product X = Xa X, is continuous
if and only if =, o o is continuous for each projection =,

3.11. Complete separation of compact sets. We recall that a Haus-
dorff space is said to be compact provided that every family of closed
sets with the finite intersection property has nonempty intersection.

The separation properties in a completely regular space yield the
following fundamental results.

(@)  In a completely regular space, any two disjoint closed sets, one of
which is compact, are completely separated.
Suppose that 4 and A’ are disjoint closed sets, with 4 compact. For
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each x € 4, choose disjoint zero-sets Z, and Z’,, with Z, a neighbor-
hood of x, and Z’, > A’. The cover {Z,}, 4 of the compact set 4
has a finite subcover, say

{Z

.
xp?

) Zx,,} .

Then A4 and A’ are contained in the disjoint zero-sets
Z,u--UZ, ad Z'yn---nZ2',,

respectively.

(b)  In a completely regular space, every G, containing a compact set S
contains a zero-set containing S.

A Gy-set A has the form [,.n U,, where each U, is open. If 4 > S,
then S is completely separated from X — U,, and so there is a zero-set
F, satisfying S < F, < U,. Then

S<N.F,<4;

and (), F,, as a countable intersection of zero-sets, is a zero-set.

In particular, every compact Gy in a completely regular space is a
zero-set. Special case: every Gs-point is a zero-set.

Compact is an absolute topological concept, not relative (like closed):
a compact space is compact in any embedding. Let S be a compact
subspace of a completely regular space X. Completely separated sets
in S have disjoint closures in S. As these closures are compact, they
are, by (a), completely separated iz X. Urysohn’s extension theorem
(1.17) now yields:

(c)  Every compact set in a completely regular space is C-embedded.

3.12. Normal spaces. A Hausdorff space X is said to be normal
provided that any two disjoint closed sets have disjoint neighborhoods.
Thus, X is normal if and only if every neighborhood of a closed set
contains a closed neighborhood of the set. The crucial result about
normal spaces is Urysohn’s lemma, which states that disjoint closed
sets are completely separated. We begin with the following preliminary
result.

LEMMA. Let X be an arbitrary space, and let R, be any dense subset
of the real line R. Suppose that open sets U, of X are defined, for all
r € Ry, such that

UrUr=X’ anr":Q’
and
U, = U, whenever r < s.
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Then the formula
f(x) = inf{re Ry: xe U,} (x € X)

defines f as a continuous function on X.

PROOF. The hypotheses regarding union and intersection imply
that f(x) i1s well defined as a real number. Evidently, x € U, implies
f(x) £ 7, and f(x) < 7 impliesx € U,. Also, x € cl U, implies x € U,
for all s > 7, so that f(x) < . Now, fix a in X. Since R, is dense
in R, the intervals [7, s], where 7, s € Ry and r < f(a) < s, form a base
for the neighborhoods of f(a). The preceding remarks show that for
any such 7 and s, U; — cl U, is a neighborhood of 4, and that f(x) €
[7, 5] for every x in that neighborhood. Therefore f is continuous at a.

3.13. URYSOHN’s LEMMA. Any two disjoint closed sets in a normal
space are completely separated. Hence every normal space is completely
regular.

PROOF. Let 4 and B be disjoint closed sets in a normal space X.
We define open sets U,, for all rational 7, as follows.

First, take U, = @ for all » < 0, and U, = X for » > 1.

Next, put U; = X — Bj then U, is a neighborhood of 4. Since X
is normal, U, contains a closed neighborhood of 4; we choose U, (open)
sothat A =« Ujand cl U, < U,.

Now enumerate the rationals in [0, 1] in a sequence (7,),.n, With
r; = land 7, = 0. Inductively, for each n > 2, we choose U, (open)
so that clU, = U, and clU, < U, whenever 7, <7, <7, and
k1l < n

The sets U, (» € Q) satisfy the hypotheses of Lemma 3.12. Clearly,
the continuous function f provided by the lemma is equal to 0 on 4,
and to 1 on B.

In a nonnormal space, two closed sets with disjoint neighborhoods
can fail to be completely separated ; see 8].4 or 8L.5.

3.14. Compact spaces; compactification.
THEOREM. Every subspace of a compact space is completely regular.

PROOF. Corollary 0.11 shows that a compact space is normal. By
Urysohn’s lemma, it is completely regular, and therefore all its sub-
spaces are completely regular.

By a compactification of a space X, we shall mean a compact space in
which X is dense. Thus, if X is already compact, it is its only com-
pactification.

We have referred to the fact that the completely regular spaces are
precisely the subsets of compact spaces. What amounts to the same
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thing: they are just those spaces that have compactifications—for, if T'
is a compact space containing X, then cl; X is a compactification of X.
We have just proved that every subspace of a compact space is com-
pletely regular. The converse result—that every completely regular
space does have a compactification—will be proved in detail later
(Chapter 6 or Chapter 11).

3.15. Locally compact spaces. A Hausdorff space is said to be
locally compact provided that every point has a compact neighborhood ;
it follows that every neighborhood of a point contains a compact
neighborhood of the point. Every locally compact, noncompact space
X has a so-called one-point compactification X*, defined as follows: one
new point is adjoined to X, X is an open subspace of X*, and the
complements of compact subsets of X form a base of neighborhoods
for the adjoined point. One verifies without difficulty that X* is
indeed a compactification of X. Thus, every locally compact space is
completely regular.

Let X be a subspace of a Hausdorff space T.

(@)  If T is locally compact, and X is open in T, then X is locally
compact.

Indeed, for each x € X, the neighborhood X of x contains a compact

neighborhood of x.

(b)  If X is dense in T, then every compact neighborhood in X of a
point p € X is a neighborhood in T of p.

Let U be the interior of a compact neighborhood of p in X. Then

cly U is compact, hence closed in 7', so that cl;, U = clx U. Let V be

an open set in 7 such that ¥ n X = U. Since X is dense, we have

cly V=clp U< X,s0that V = U.

This has the following corollaries.

()  If Xisdensein T, and p is an isolated point of X, then p is isolated
inT.
(d)  If X is locally compact and dense in T, then X is open in T.

CONVERGENCE OF z-FILTERS

3.16. The remainder of this chapter contains an outline of a theory
of convergence of z-filters on a completely regular space. It is
analogous to the standard theory of convergence of filters or filter bases
on an arbitrary Hausdorff space.

Let X be a completely regular space. A point p € X is said to be a
cluster point of a z-filter F if every neighborhood of p meets every
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member of #. Thus, since the members of & are closed sets, p is a
cluster point of Z if and only if p € () Z.

If S is a nonempty subset of X, then cl .S is the set of all cluster points
of the z-filter & of all zero-sets containing S, because the zero-sets in
the completely regular space X form a base for the closed sets.

The z-filter & is said to converge to the limit p if every neighborhood
of p contains a member of . Obviously, if # converges to p, then p
is a cluster point of #. We recall that in the completely regular space
X, every neighborhood of p contains a zero-set-neighborhood of p
(3.2(b)). Thus:

(8)  F converges to p if and only if F contains the z-}ilter of all zero-
set-neighborhoods of p.

Examples of z-filters on R that converge to 0 are provided by the
families of all zero-sets Z in R satisfying the respective conditions:
(i): Z is a neighborhood of 0; (ii): there exists ¢ > 0 such that Z contains
the interval [0, €]; (iii): there exists ¢ > 0 such that Z contains [— ¢, 0];
(iv): 1/n € Z for all but finitely many n € N; (v): 0 € Z. By 2.4 (or
3.18(b)), the last of these is a z-ultrafilter, and it is the only z-ultrafilter
that converges to 0.

(b)  If pis a cluster point of &, then at least one z-ultrafilter containing
F converges to p.

Let & denote the z-filter of all zero-set-neighborhoods of p. Then
& U & has the finite intersection property, and so it is embeddable in a
z-ultrafilter &/. Since &/ contains &, it converges to p.

In particular, a z-ultrafilter converges to any cluster point.

3.17. If &# converges to p in a completely regular space, then
NZ = {p}. (Thus, a z-filter has at most one limit.) The converse
is not true. For example, let & consist of all subsets of N that contain
the point 1, and whose complements are finite; then [ & = {1},
although % does not converge to 1.

The converse is valid, however, in the case of a z-ultrafilter, as we
have seen. More generally, it holds for any prime z-filter:

THEOREM. Let X be a completely regular space, let p € X, and let F
be a prime z-filter on X. The following are equivalent.

(1) p is a cluster point of F.

(2) & converges to p.

() NF = {¢}

PROOF. It suffices to show that (1) implies (2). Let ¥V be any
zero-set-neighborhood of p.  Since X is completely regular, V' contains
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a neighborhood of p of the form X — Z, where Z is a zero-set. Since
V u Z = X, either V or Z belongs to the prime z-filter #. But Z
cannot belong to &, because p ¢ Z. So V € #. Thus, # converges

to p (3.16(a)).

3.18. It follows that in a completely regular space, a prime z-filter,
and, in particular, a z-ultrafilter, can have at most one cluster point.
It need not have any. For instance, the family of all zero-sets in R
whose complements are bounded is a z-filter without a cluster point.
Obviously, any z-ultrafilter containing it (and there are such, by the
maximal principle) also has no cluster point.

The family of all zero-sets containing a given point p is denoted by
A,. Obviously, A, is a z-filter. Because any zero-set not containing p
is completely separated from {p}, A, is actually a z-ultrafilter. It
follows from Theorem 3.17 that the z-ultrafilters A, (p € X) are
precisely the convergent ones on X. We shall now prove this directly.

(a)  p is a cluster point of a x-filter F if and only if F < A,.

For, pis a cluster point of # if and only if p belongs to every member of
& . Immediate consequences of this proposition are:

(b) A, is the unique z-ultrafilter converging to p.
It is to be noted that {p} need not be a zero-set and hence need not
belong to A,; see 4N.1.

(c)  Distinct z-ultrafilters cannot have a common cluster point.

Any z-ultrafilter containing a z-filter converging to p also converges
to p. Hence

(d)  If F is a x-filter converging to p, then A, is the unique z-ultrafilter
containing F .

By definition, a point p is a cluster point of a filter & if every neighbor-
hood of p meets every member of & ; and & converges to the limit p if it
contains the filter of all neighborhoods of p. In contrast to (c), distinct
ultrafilters can have a common cluster point. On the one-point
compactification

N* =N U {w}

of N, let & be the filter of all sets that contain all but a finite number of
the even integers, and &' those containing all but finitely many odd
integers. Any ultrafilters % and %’ containing &% and &, respectively,
are distinct, but both converge to w. Note that & and &' are not
z-filters on N*: their only members that are zero-sets are those con-
taining w.



48 COMPLETELY REGULAR SPACES 3A

PROBLEMS

3A. ZERO-DIVISORS, UNITS, SQUARE ROOTS.

Let X be a completely regular space containing more than one point.
1. C*(X), and hence C(X), contains zero-divisors (i.e., it is not an integral
domain).
2. C*, and hence C, contains nonconstant units. _
3. Letm be an infinite cardinal, and let X be the one-point compactification
of the discrete space of power m. In C(X), 1 has just m square roots.

3B. COUNTABLE SETS.

Let X be a completely regular space.

1. A countable set disjoint from a closed set F is disjoint from some zero-
set containing F.

2. A C-embedded countable set S is completely separated from every
disjoint closed set. [Theorem 1.18.] (This is false if S is uncountable
(5.13) or if S is only C*-embedded (4M), even if S is closed (8.20 and 6P).)

3. Any C-embedded countable set is closed. [Apply 2 to each point not
in the set.] (An uncountable C-embedded set need not be closed (5.13); the
appropriate generalization is in 8A.1.)

4. Any two countable sets, neither of which meets the closure of the other,
are contained in disjoint cozero-sets. [ Inductively, choose a suitable closed
neighborhood of each point, alternating between the two sets.] (But the
given sets need not be completely separated, even if they are closed; see 8].4.)

5. A countable, completely regular space is normal. (More generally,
see 3D.4.)

3C. G,-POINTS OF A COMPLETELY REGULAR SPACE.

Let p be a Gg-point of a completely regular space X, and let S =
X —{#}
1. If g€ C¥(S), h e C(X), and A(p) = 0, then g-(4|S) has a continuous
extension to all of X.
2. If Z is a zero-set in S, then cly Z is a zero-set in X. [Let Z = Z(f),
with 0 < f < 1. -Let {p} = Z(h), with 0 < 2 < 1 and A[Z] = {1} in case
pé¢clZ Considerg=forg=1-—f]

3D. NORMAL SPACES.

1. The following are equivalent for any Hausdorff space X.
(1) X is normal.
(2) Any two disjoint closed sets are completely separated.
(3) Every closed set is C*-embedded.
(4) Every closed set is C-embedded.
[Urysohn’s extension theorem and Theorem 1.18.]
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2. Every normal pseudocompact space is countably compact. (But a
nonnormal, pseudocompact space need not be countably compact; see 51
or 8.20. And even a normal, pseudocompact space need not be compact;
see 5.12.)

3. Every closed G, in a normal space is a zero-set.

4. Every completely regular space with the Lindeléf property (i.e., such
that every open cover has a countable subcover) is normal. [Modify the
proof of 3.11(a).] (It is well known, more generally, that every regular
Lindel6f space is normal.)

5. Let X be a completely regular space. If X = .8 U K, where S is
open and normal, and K is compact, then X is normal. [3.11(a).]

3E. NONNORMAL SPACES.

Let X be a nonnormal, Hausdorff space.
1. X contains a closed set that is not a zero-set.
2. X has a subspace S with the following property: any two completely
separated sets in S have disjoint closures in X, yet S is not C*-embedded in
X. Compare Urysohn’s extension theorem.

3F. T,-spaces.
In a topological space X, define x = x’ to mean that cl {x} = cl {x'}.

Let Y be the set of all equivalence classes thus defined, let + map each point
of X into its equivalence class, and provide Y with the quotient topology
relative to 7.

1. For E closed in X, if x € E and x = &', then &’ € E; hence 7[X — E]
=Y - 7[E].

2. The weak topology induced by = agrees with the given topology on X.

3. = is both an open mapping and a closed mapping.

4. 7[cl{x}] = cl{rx}, whence Y is a T-space.

5. In Theorem 3.2 (and hence in Theorems 3.6 and 3.7), it is enough to
require that X be a Ty-space, rather than a Hausdorff space.

3G. WEAK TOPOLOGY.

If a family C’ of real-valued functions on X is an additive group, contains
the constant functions, and contains the absolute value of each of its members,
then the collection of sets of the form 3.4(a) is a base of neighborhoods of x,
for each x € X, in the weak topology induced by C".

3JH. COMPLETELY REGULAR FAMILY.
Let X be a completely regular space. A subfamily C’ of C(X) is called
a completely regular family if whenever F is closed and x ¢ F, there exists
fe C’ such that f(x) ¢ cl f[F]. For example, {i} is a completely regular
family in C(R). Every completely regular family determines the topology
of X; in fact, C’ is a completely regular family if and only if the collection
of all sets of the form 3.4(a) (x € X) is a base for the topology.
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31. THEOREM 3.9.

1. Let A be a nonempty subfamily of C(X). Define Y and  as in 3.9,
except that now f ranges only over A4, instead of over all of C(X). Then Y
is completely regular, = is continuous, and the mapping g-—>go is an
isomorphism from C(Y) into C(X).

2. Let X be the set of real numbers, under the discrete topology, and take
A = {o}, where o is the identity map of XontoR. Then+ = o,and ¥ = R.
Hence r is not a quotient mapping.

3]. A HAUSDORFF QUOTIENT SPACE THAT IS NOT COMPLETELY REGULAR.

Let S denote the subspace of R x R obtained by deleting (0, 0) and all
points (1/n, y) with y # 0 and n € N. Define n(x, y) = « for all (x, y) € S;
then = is a continuous mapping of S onto R. Let E denote the quotient
space of S associated with the mapping =; thus, E may be identified as the
set of real numbers endowed with the largest topology for which the mapping
mis continuous. (A set 4 < Eisopenin E if and only if 7~[A4] is openin S.)

1. E is a Hausdorff space. In fact, distinct points of E are completely
separated. [C(E) > C(R).]

2. E is not completely regular (in fact, it is not regular). [The set
{1/n}, <N is closed.] Hence a Hausdorff quotient space of a completely regular
space need not be completely regular.

3. C(E) = C(R). Hence the completely regular space Y of Theorem
3.9 (with X = E) is R; and the associated mapping = is not a quotient
mapping.

4. E n [0, 1] is pseudocompact, but not countably compact (or completely
regular).

3K. THE COMPLETELY REGULAR, NONNORMAL SPACE I

Let I' denote the subset {(x,y): ¥y = 0} of R x R, provided with the
following enlargement of the product topology: for r > 0, the sets
Vi(x,0) = {(x,0)} U {(m,v)eT: (u — %) + (v — )2 < 7%}

are also neighborhoods of the point (x,0). Clearly, I' satisfies the first
countability axiom.

1. The subspace D = {(x, 0): x € R} of I is discrete, and is a zero-set in I.

2. I' is a completely regular space. [For p € D, and any neighborhood
V,(p) of p, define fe C(I') as follows: f(p) = 0; for every point ¢ on the
boundary of V,(p), f(g) = 1; and f is linear on the segment from p to ¢.]

3. The subspace I' N (Q x Q) — Disdensein I Hence |C(I')| = ¢.

4. The zero-set D is not C*-embedded in I [|C*(D)| > ¢.] Hence I'
is not normal. [3D.1.]

5. Every closed set in I' is a G,.

6. I contains a closed G, that is not a zero-set. [I" has at most |C(I")]
zero-sets. The result also follows from 3E.1.]
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3L. EXTENSION OF FUNCTIONS FROM A DISCRETE SET.

Let X be a completely regular space.

1. Let (V,) be a family of disjoint sets in X with nonempty interiors, and
such that for each index «, the set |J,., V, is closed. Any set D formed
by selecting one element from the interior of each V, is C-embedded in X.
(Any attempt to weaken the hypothesis in a serious way runs into the path-
ology of the Tychonoff plank, T, described in detail in 8.20. T contains a
countable, closed, discrete set that is not even C*-embedded.)

2. Let {x,},.n be a discrete set (not necessarily closed) in X, and let
(.)nen be any convergent sequence of real numbers. Then there exists
f e C*X) such that f(x,) = 7, for all n € N. [There exists a family (U,)
of disjoint open sets with x, € U,.]

3. If X is infinite, then C*(X) contains a function with infinite range.
[0.13.]

4. Let D be a countable discrete set in X. The following conditions are
equivalent and imply that D is closed. (Cf. 3B.)

(1) D and any disjoint closed set are completely separated.

(2) D and any disjoint closed set have disjoint neighborhoods.

(3) D is C-embedded in X. [Enclose the points of D in disjoint
neighborhoods, and apply 1.]

5. If X is pseudocompact, then X is countably compact if and only if
every countable, closed discrete subset D satisfies the conditions of 4. (The
interesting condition here is (2), which does not mention continuous func-
tions. We remark that a countably compact space need not be normal;
see 8L.)

3M. supreMa IN C(R).

1. Construct a sequence of functions f, in C(R), with f, < 1, for which
sup,, f, does not exist in C(R)—that is, whenever g € C(R) satisfies g = f,
for all n, then there exists # € C(R) such that h < g, h# g, and h = f,
for all n.

2. Construct a sequence of functions f,, in C(R) for which sup, f,, exists
in C(R), but is not the pointwise supremum—that is (sup,, f,)(x) # sup,, f.(x)
for at least one x.

3N. T1HE LATTICE C(X).

Let X be a completely regular space.
1. Let f =2 0in C(X) be given. If

g = sup,en (1 A 1f)

exists in C(X), then g is 1 on posf and 0 on X — clposf. [For each
x€ X — cl pos f, there exists & 2 g such that A(x) = 0.]
2. Let V be an open set, and let B denote the family of all functions < 1
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in C that vanishon X — V. If f = sup Bexists in C, then fis 1 on ¥ and 0
onX —clV.
Let (f,) be a family of functions in C, and for r € R, define

U =cdl,{x: fx) > 1}

3. If g e C,and g = f, for every «, then, for each x, g(x) = sup {r: x € U"}.
[If g(x) < s, then g(y) < s on a neighborhood of x, whence x ¢ U*, so that
sup {r: x € U} < s.]

4. If X is basically disconnected (1H), and if (f,) is a countable family,
then each U7 is open.

5. X is basically disconnected if and only if every countable family with an
upper bound in C has a supremum in C (i.e., the lattice C(X) is conditionally
a-complete). [Lemma 3.12.]

6. X is extremally disconnected if and only if every family with an upper
bound in C has a supremum in C (i.e., the lattice C(X) is conditionally
complete).

30. TOTALLY ORDERED SPACES.

Let X be a totally ordered set (of more than one element). We make X
into a topological space by taking as a subbase for the open sets the family
of all rays {x: ¥ > a} and {x: x < b}.

A nonempty subset S of X is called an interval of X if whenever an
element x of X lies between two elements of S, then x € S. When an
interval is an open set, it is called an open interval. For example, the set of
all positive rationals less than 4/2 is an open interval in the totally ordered
space Q.

The topology on X is called the interval topology, because the open
intervals form a base.

1. Every open set is expressible in a unique way as a union of disjoint
maximal open intervals.

2. X is a Hausdorff space.

3. For any nonempty subset A, if sup 4 exists, then sup 4 € cl 4.

4. For A < X, the relative topology on A4 contains the interval topology,
but the two need not be the same. [Let

A=R—{x:0< |x| £ 1};
in the relative topology induced by R, 0 is an isolated point of 4, while in its
interval topology, 4 is homeomorphic with R.  See also the example in 5.]

5. If A is an interval of X, then the relative topology on 4 does coincide
with the interval topology. The condition is not necessary: witness N in R.
Here N is a closed, discrete subspace; on the other hand, any nonvertical line
is a closed, discrete subspace of the lexicographically ordered plane, yet, in
its interval topology, is homeomorphic with R.

6. X is connected if and only if X is Dedekind-complete (0.6) and has no
consecutive elements.
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7. X is compact if and only if it is lattice-complete (0.5). Thus, X is
compact if and only if it is Dedekind-complete and has both a first element
and a last element. [Sufficiency. (This is the Heine-Borel-Lebesgue
theorem when X < R.) Let &% be a family of closed sets with the finite
intersection property. Let A denote the set of all a € X such that {x € X:
x 2 a} meets the intersection of every finite subfamily of %, and define
b = sup A;thend e ] &.]

8. X has a totally ordered compactification. Hence X is completely
regular.

9. X is normal. [Given disjoint closed sets H and K, define f € C(X) as
follows. Let f(x) = 0 for all x € H, and f(y) = 1 for all y e K. Express
the complement of H U K as in 1, and, using complete regularity, extend
f to all of X by considering separately its definition on each maximal open
interval.]

3P. CONVERGENCE OF Z-FILTERS.

Let % be a z-filter on a completely regular space X, and let p be a cluster
point of &
1. & converges to p if and only if # is contained in a unique z-ultrafilter.
[Modify the proof of Theorem 3.17.]
2. If X is compact and p is the only cluster point of &, then & converges
to p.



Chapter 4

FIXED IDEALS. COMPACT SPACES

4.1. We have seen that in the study of rings of continuous functions
there is no need to deal with spaces that are not completely regular.
Accordingly,

IN THE SEQUEL, ALL GIVEN SPACES ARE ASSUMED TO BE COMPLETELY
REGULAR.

Of course, when we construct a space, complete regularity must be
checked.

Let I be any ideal in C(X) or C*(X). If () Z [I] is nonempty, we
call I a fixed ideal; if [} Z [I] = 0, then [ is a free ideal. Thus, I is
free if and only if, for every point x € X there is a function in / that does
not vanish at x.

The deeper relations among X, C and C* depend upon an analysis
of the set of all maximal ideals. The fixed maximal ideals are easy to
describe, as we shall see in this chapter. Characterization of the free
maximal ideals—the sine qua non of the entire theory—must await the
development of further machinery.

But there are spaces that admit no free ideals—precisely, the compact
spaces (Theorem 4.11). For these spaces, we can immediately present
a result that represents one of the milestones in the development of the
theory of rings of continuous functions: within the class of compact
spaces, the ring structure of C*(X') determines X up to homeomorphism
(Theorem 4.9).

4.2. Evidently the zero ideal is fixed. More generally, if Z(f) is
not empty, then the principal ideal (f) is fixed, since, clearly,
N Z[(f)] = Z(f). Moreover, every free ideal I in C or C* contains
nonzero fixed ideals. In fact, if I contains a nonzero function A
whose zero-set is nonempty, then I contains the nonzero fixed ideal (k).

To see that I always does contain such an element (even when I < C¥),
54
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note, first of all, that since I is free, it contains a nonzero function f.
In case Z(f) = 0, let  be any value assumed by f;then 2 = f-(f — r)
is as required.

On the other hand, it is manifest that no fixed ideal can contain a free
ideal.

As another example of a fixed ideal, let S be any nonempty subset of
X. As we noticed in 2.7, the set

{fe C:f[S] = {0}

is an ideal in C (in fact, a z-ideal); plainly, this ideal is fixed, and its
intersection with C* is a fixed ideal in C*. Furthermore, these ideals
are nonzero so long as .S is not dense in X.

4.3. ExaMPLES. Any ideal in C*(N) that contains j is an example
of a free ideal. (Since j is not a unit of C*(N), such ideals exist.) In
particular, every maximal ideal containing j is free.

The set Cx(N) of all functions on N that vanish at all but a finite
number of points is evidently a free ideal both in C(N) and in C*(N).
We can say more, namely, that Cy is the intersection of all the free
ideals, again both in C and in C*. Clearly, it suffices to prove that if 1
is any free ideal, then for each n € N, the function f defined as f(n) = 1,
and f(m) = 0 for m # n (in short, the characteristic function of {n}),
belongs to I. Now, since I is free, there exists g € I such that » = g(n)
# 0; and we have f = r~1fg. Hence fe I

For a generalization of this example, see 4D and 7E.

4.4. We turn our attention now to the fixed maximal ideals in the
rings C(X) and C*(X).
If Iis a fixed ideal in C, then the set .S = [ Z[I] is nonempty, and

the set
I' = {feC: f[S] = {0}}

is a fixed ideal containing I. Hence a fixed maximal ideal must be of
this form. Moreover, since I’ can be enlarged by making S smaller,
the only candidates for fixed maximal ideals are the ideals I’ for which
S contains just one point. That these are indeed maximal will be
shown below.

The corresponding statements hold for C*.

The ideal I’ considered above evidently contains the z-ideal
Z<[Z[I]]. In general, the two are not the same: the set S = [ Z[/]
need not be a member of Z[I], even if S is a zero-set (see 41.7). And
since the zero-sets form a base for the closed sets, S itself can be an
arbitrary closed set, not necessarily a zero-set.
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4.5. Residue class. Let I be an ideal in an arbitrary ring 4; the
symbol I(a) will denote the residue class of @. According to this
functional notation, we are identifying the ideal I with the canonical
homomorphism of 4 onto A4/I.

4.6. THEOREM.

(a) The fixed maximal ideals in C(X) are precisely the sets

M, = {feC: f(p) = 0} (p € X).
The ideals M, are distinct for distinct p. For each p, C|M,, is isomorphic
with the real field R; in fact, the mapping M,(f)— f(p) is the unique

isomorphism of C|M,, onto R.
(a*) The fixed maximal ideals in C*(X) are precisely the sets
M*, = {feC*: f(p) = 0} ( € X).

The ideals M*, are distinct for distinct p. For each p, C*/M*, is iso-
morphic with the real field R; in fact, the mapping M*,(f)— f(p) is the
unique isomorphism of C*/M*, onto R.

PROOF. (a). M, is the kernel of the homomorphism f— f(p) of
C(X) into R. Since r(p) = r for each real r, the homomorphism is
onto the field R. Hence its kernel M,, is 2 maximal ideal. Uniqueness
of p is an immediate consequence of the complete regularity of X.

On the other hand, if M is any fixed ideal in C, there exists a point
pin () Z[M]. Evidently, M is contained in M,, which has just been
shown to be a (proper) ideal. Hence if M is maximal, we must have
M=M,

SincepM, is the kernel of a homomorphism onto R, C/M, is iso-
morphic with R; and the isomorphism is unique, because the only
automorphism of R is the identity (0.23).

The proof of (a*) is identical except for notation.

4.7. The foregoing theorem implies the existence of a one-one
correspondence between the fixed maximal ideals in C and those in C*.
In addition, it yields, as an immediate corollary, a simple way of
obtaining the correspondence, namely,

M,—>M*, =M, n C*.

Moreover, M, is the only maximal ideal in C—fixed or free—whose
intersection with C* is M*,. For, consider any maximal ideal M in C,
distinct from M,. There exists fe M such that f(p) # 0. Let
g=|f| Al Then geC* and Z(g) = Z(f). Hence g(p) # 0,
so that g ¢ M*,; also, g belongs to the z-ideal M. (Alternatively, one
could argue asin 2A.) Thus, g belongs to M n C*, but not to M*,.
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If M is an arbitrary maximal ideal in C, then M n C* is always a
prime ideal in C* (2B.1). But, as we shall now show, (i) it need not be
maximal, and (ii) the free maximal ideals in C* need not be of this form.
We obtain both of these conclusions by considering the function j in
C*(N). Since j is a unit of C(N), it belongs to no ideal in C(N). We
shall prove in the next paragraph that j belongs to every free maximal
ideal in C*(N). Assuming this result for the moment, consider any
free maximal ideal M in C(N). (By 4.3, such ideals exist.) As was
pointed out above, M n C*(N) cannot be a fixed maximal ideal in
C*(N); and, since it does not contain j, it cannot be a free maximal ideal
either. This gives us (i). It also takes care of (ii): no free maximal
ideal in C*(N) (again, by 4.3, such ideals exist) can assume the form
M n C*(N), where M is a maximal ideal in C(N).

To see that j does belong to every free maximal ideal in C*(N),
consider any such ideal M*, and suppose that j¢ M*. Then
(M*,j) = C*¥(N); so there exists f € C*(N) such that fj — 1€ M*.
Since f is bounded, the set

A ={neN:f(n) >n/2}

is finite. It follows from 4.3 that there exists a function g in M* that
has no zeros in A4 (specifically, the characteristic function of 4). But
then g2 + (1 — fj)2 is bounded away from zero, yet belongs to M *—
which is a contradiction.

The precise relationship between the maximal ideals M in C(X) (for
any X) and the ideals in C*(X) of the form M n C* is discussed
in 7.9.

4.8. TueoreM. If X is compact, then every ideal I in C(X) is
fixed.

PROOF. Z[I] is a family of closed sets with the finite intersection
property.

4.9. In the light of Theorem 4.6, we now have:
(@)  If X is compact, then the correspondence p — M, is one-one from X

onto the set of all maximal ideals in C(X).

Since maximal ideals are algebraic invariants, this means that the points
of a compact space can be recovered from the algebraic structure of the
ring. Now, the zero-sets in X form a base for the closed sets; and the
relation p € Z(f) is equivalent to the purely algebraic relation f € M,.
Thus, the topology of X can also be recovered from C(X).

THEOREM. Two compact spaces X and Y are homeomorphic if and
only if their rings C(X) and C(Y) are isomorphic.
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PROOF. Necessity is obvious. Since X and Y canboth be recovered
from their respective function rings, in the manner described above,
the condition is also sufficient.

We have indicated how to recapture a compact space X from the
ring C(X). Itis desirable to describe the process in more detail. Let

;m = M(X)

denote the set of all maximal ideals in C(X). (This notation will be
used generally, not only for compact X.) We make 3 into a topological
space by taking, as a base for the closed sets, all sets of the form

(b) {Mem: fe M} (f e C(X)).
For given f, M, belongs to this set if and only if f(p) = 0. Hence the
one-one correspondence p— M, carries the zero-sets in X onto the
family of all sets (b). Thus, 3 is well defined as a topological space
and is homeomorphic with X.

The topology thus defined is called the Stone topology on M. The
set M, endowed with the Stone topology, is called the structure space
of the ring C. For definition and properties of the structure space of
an abstract ring, see 7M.

4.10. We shift our emphasis now from ideals to z-filters. (See
Theorems 2.3 and 2.5.) We call a z-filter free or fixed according as
the intersection of all its members is empty or nonempty. Thus, an
ideal I in C is fixed if and only if Z[I] is fixed. It follows that every
ideal in C(X) will be fixed if and only if every z-filter on X is fixed.

LemMmA. A4 zero-set Z is compact if and only if it belongs to no free
z-filter.

PROOF. Necessity is clear. Conversely, let & be any family of
closed subsets of Z with the finite intersection property. The members
of # are closed in X. 'The collection of all zero-sets in X that contain
finite intersections of members of # is a z-filter & ; and, of course,
Ze%. Since the zero-sets in the completely regular space X form
a base for the closed sets, (1 Z = (). But this latter intersection
is nonempty, by hypothesis; so () # # 0. Thus, Z is compact.

It is not true that if every member of a z-filter #—or even a z-
ultrafilter—is noncompact, then & is free (4N.2).

4.11. According to 3.16, to say that a z-filter is fixed is to say that it
has a cluster point. Also, a z-ultrafilter converges to any cluster point.

THEOREM. The following are equivalent.
(1) X is compact.
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(2) Ewvery ideal in C(X) is fixed, i.e., every z-filter is fixed.

(2*) Every ideal in C*(X) is fixed.

(3) Every maximal ideal in C(X) is fixed, i.e. every z-ultrafilter is
fixed.

(3*%) Every maximal ideal in C*(X) is fixed.

PROOF. The equivalence of (1) with (2) is the special case Z = X
of the lemma. Likewise, (1) implies (2*), because C = C* when X is
compact. Next, if [ is a free ideal in C, then I n C* is a free ideal
in C*; therefore (2*) implies (2). Finally, (2) is equivalent with (3),
and (2*) with (3*), because every free ideal is contained in a free
maximal ideal.

It is possible to base a proof of Tychonoff’s product theorem upon
these criteria. While one can get the result itself more easily, ab ovo,
by working with filters, rather than with z-filters, the proof to follow
contains some instructive features and will be used as a model for a
later proof (8.12).

4.12. The mapping v#. Let 7 be a continuous mapping from X to
Y, and let # be a z-filter on X. The image of &# under 7 is not, in
general, a z-filter; in fact, the image of a zero-set need not even be
closed. The total preimage of a zero-set, however, is a zero-set:

T {Zy(8)] = Zx(g °7).

It turns out that the collection of sets Zy(g) whose preimages belong
to & is rich enough to reflect those properties of & in which we are
interested. We denote it by #%:

#F = {Ze ZY): r[Z] e F).

Clearly, 7#% is a z-filter on Y. However, it need not be a z-ultrafilter,
even when & itself is (4H.2). On the other hand, a straightforward
check shows that when & is a z-ultrafilter, then 7#% will be prime.
More generally:

If a z-filter F is prime, then T#F is prime.

413. Let X = Xa X, (where each X, is completely regular). By
definition, the product topology on X is the weak topology induced by
the family of all projections #,. A base for the closed sets in X is
given as the collection of all zero-sets of the form
(a) Tay [Za] U oo U 7, 2, ),

where n € N, and Z, is a zero-set in X, (see 3.10).
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LEMMA. Let oZ be a z-ultrafilter on X = Xa X,. If every z-filter
m sl is fixed, then S is fixed.

PROOF. For each «, choose x, € [ 7, ¥, and let x denote the
point (x,) of X. We shall show that x € (] &/. By its very definition,
x belongs to every member of & of the form #,<[Z,], where Z, € Z(X).
Since & is prime, x belongs to every member of & of the form (a).
Finally, an arbitrary member of &/ is an intersection of sets of the latter
form; consequently, x belongs to every member of &/.

4.14. 'TYCHONOFF PRODUCT THEOREM. An arbitrary product of
compact spaces is compact.

PROOF. Let X = Xa X,, where each X is compact. As a product
of completely regular spaces, X is completely regular. Now consider
any z-ultrafilter &/ on X. Since each space X, is compact, each
z-filter w #*of is fixed. By the lemma, &7 is fixed. Therefore X is
compact.

PROBLEMS

4A. MAXIMAL IDEALS; 2-IDEALS.

1. Maximal fixed ideal coincides with fixed maximal ideal, and maximal
free ideal with free maximal ideal.

2. C and C* are semi-simple, i.e., the intersection of all the maximal
ideals is (0).

3. Prove directly that M, is a maximal ideal in C by showing that it is an
ideal, and that if f ¢ M,, then (M,, f) = C. Do the same for C*.

4. Either in C or in C*, if f belongs to every maximal ideal that g belongs
to, then Z(f) > Z(g).

5. The following algebraic condition is necessary and sufficient that an
ideal I in C be a z-ideal: given f, if there exists g € I such that f belongs to
every maximal ideal containing g, then fe I.

4B. PRINCIPAL MAXIMAL IDEALS.

1. A point p of X is isolated if and only if the ideal M,, [resp. M*,] is
principal. [Sufficiency. If M, = (f), then every element of M, is divisible
by f; and Z(f) = {p}. Construct a function g € M,, such that g = Af implies
that A is discontinuous at p unless p is isolated.] Hence X is discrete if and
only if every fixed maximal ideal in C [resp. C*] is principal.

2. X is finite if and only if every maximal ideal in C [resp. C*] is principal.
[For C, apply Theorem 4.11. For C*, note that if a free maximal ideal is a
principal ideal (f), then f has no zeros, and consider the function f%.]
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4C. FINITELY GENERATED IDEALS.

1. Every finitely generated ideal in C is fixed.

2. A necessary and sufficient condition that every finitely generated ideal
in C* be fixed is that X be pseudocompact. [Necessity. If C # C*, then
C contains an unbounded unit.]

3. If X is infinite, then both C and C* contain fixed ideals that are not
finitely generated. [Try it first for N; see 4.3. In the general case, apply
0.13.]

4D. FUNCTIONS WITH COMPACT SUPPORT.
The support of f is, by definition, the closure of X — Z(f). Let

Ck(X) denote the family of all functions in C having compact support.

1. If X is compact, then Cx = C; otherwise, Cx is both an ideal in C and
an ideal in C*.

2. Cx(Q) = (0). [No point of Q has a compact neighborhood.]

3. Cg is a free ideal if and only if X is locally compact but not compact.

4. An ideal I in C or C* is free if and only if, for every compact set 4,
there exists f € I having no zeros in 4.

5. Cg is contained in every free ideal in C and in every free ideal in C'*,
[1D.1.] (It will be seen in 7E that Cx is actually the intersection of these
ideals.)

4E. FREE IDEALS.

1. Let fe C*. If f belongs to no free ideal in C*, then Z(f) is compact.
But the converse is false. Compare Lemma 4.10.

2. The intersection of all the free maximal ideals in C coincides with the
set of all fin C for which Z(f) meets every noncompact zero-set.

3. A =z-filter is a base for the closed sets if and only if it is free.

4. Let S be a compact set in X, I a free ideal in C(X), and J the set of all
restrictions f|S, for fe I. Then J = C(S). [Apply 4D.4 to show that J
is an improper ideal in C(S).]

4F. 2-ULTRAFILTERS ON R THAT CONTAIN NO SMALL SETS.

Let & denote the family of all closed subsets of R whose complements
are of finite Lebesgue measure.
1. & is a free z-filter.
2. & is not a z-ultrafilter. [Theorem 2.6(b).]
3. Any z-ultrafilter containing & contains only sets of infinite measure.

4G. BASE FOR A FREE ULTRAFILTER.

1. A free ultrafilter cannot have a countable base. [Let (U,),n be a
countable base for a free filter #. Inductively, pick two points from each
U, 5o as to obtain two disjoint sets, each of which meets every U,.]
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2. More generally, a free ultrafilter, each of whose members is of power
= m, cannot have a base of power < m. [Use transfinite induction.]

4H. THE MAPPING 7,

Let X and Y be spaces with the same underlying point set, such that
the identity mapping = from X onto Y is continuous.
1. If & is a z-filter on X, then #F = F n Z(Y).
2. If % is a z-ultrafilter on X, +#% need not be a z-ultrafilter on Y.
[Take Y = [0, 1], X discrete, and % a free ultrafilter.]

4I. THE IDEALS O,

Forp € X, let O, denote the set of all fin C for which Z(f) is a neighbor-
hood of p.

1. O, is a z-ideal in C, O, = M, and ] Z[0,] = {p}.

2. M, is the only maximal ideal, fixed or free, that contains O,. [3.18(d).]

3. If O, # M, then O, is contained in a prime ideal that is not'maximal.
[Theorem 2.8.]

4. If P is a prime ideal in C, and P < M, then P > O,. [Let f vanish
on a neighborhood U of p; by complete regularity of X, there exists g € C
such that g(p) = 1 and g[X — U] = {0}; then fg € P.] Compare Theorem
3.17.

5. If fe M, — O,, then there exists a prime ideal, containing O, and f,
that is not a z-ideal (and hence not maximal). [Generalize the argument of
2G.1.]

6. If fe M, — O,, then there exists a prime ideal containing O,, but
not f, that is not a z-ideal. [Consider a function m in C(R) such that
lim,,_, o m(x)[x" = 0 for every n € N.]

7. 0O, is a countably generated ideal if and only if p has a countable base of
neighborhoods.

8. There exists a countably generated ideal I containing O, if and only if
pis a Gy-point. Infact, if p is a G4, then O, is contained in a principal ideal.
[Necessity. () Z[I]is a G,; apply 1 and 2. Sufficiency. 1D.1.]

4]. P-SPACEs.

For any X, every maximal ideal in C(X) is prime. When, con-
versely, every prime ideal in C'(X) is maximal, we call X a P-space. (Recall
our blanket assumption that X is completely regular.)

This definition is stated in terms of an algebraic property of C(X);
therefore, if C(X) is isomorphic with C(Y'), and X is a P-space, then Y is a
P-space.

The following assertions are equivalent. [Successive implications are
suggested in the hints.] It will be obvious from several of them that every
discrete space is a P-space.

(1) X is a P-space.
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(2) For all pe X, M, = O,, i.e., every function in C is constant on a
neighborhood of p. [41.3.]

(3) Every zero-set is open.

(4) Every G, is open. [3.11(b).]

(5) Every ideal in C(X)is a z-ideal. [From (4), if Z(f) > Z(g), then f
is a multiple of g.]

(6) Every ideal is an intersection of prime ideals. [Theorem 2.8.]

(7) For every f, g € C, the ideal (f, g) is the principal ideal (f2 + g2).
[From (5), f € (f* + £%).

(8) For every fe C, there exists f, € C such that f%, = f (i.e,, C is a
regular ring). [Since f and f2 belong to the same prime ideals, (6) implies (8).
To obtain (8) from (7), set g = 0. And (8) implies (1) because every regular
integral domain is a field; alternatively, for any f not belonging to a given
prime ideal, consider the function 1 — ff.]

(9) Every ideal is an intersection of maximal ideals.

(10) Every cozero-set in X is C-embedded. [This follows from (3) and
implies (8).]

(11) Every principal ideal is generated by an idempotent. [(3) or (8).]

4K. FURTHER PROPERTIES OF P-SPACES.

1. Every countable subset of a P-space (4]) is closed and discrete. Hence
every countable P-space is discrete, and every countably compact P-space
is finite.

2. Every countable set in a P-space is C-embedded. [3L.] Hence
every pseudocompact P-space is finite.

3. If X is a P-space, and every function in C'(X) is bounded on a subset S,
then S is finite.

4. Every subspace of a P-space is a P-space.

5. Every (completely regular) quotient space of a P-space is a P-space.

6. Finite products of P-spaces are P-spaces, but infinite products need
not be.

7. Every P-space is basically disconnected (1H). (The converse is false;
see 4M.3,4.)

8. Every P-space—more generally, every basically disconnected space—
has a base of open-and-closed sets.

9. Neither C(R) nor C(Q) is a homomorphic image of C(N). [According
to 4J(8), C(N) is a regular ring.]

4L. P-poINTS.
If M, = O,, then p is called a P-point of X. Thus, X is a P-space if
and only if every point is a P-point (4J(2)).
1. p is a P-point if and only if every G, containing p is a neighborhood of
p. [Cf. 4]J(4).]
2. A P-point of X is a P-point in any subspace containing it. [Cf. 4K.4.]
Hence the set of all P-points of X is a P-space.
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3. Let fe RX. If fis continuous at a P-point p, then f is constant on a
neighborhood of 2.

4. If p is a P-point and M, is countably generated, then p is isolated and
M, is principal. [Cf. 41.7.]

4M. THE SPACE 2.

Let % be a free ultrafilter on N, let £ = N U {0} (where o ¢ N), and
define a topology on Z as follows: all points of N are isolated, and the neigh-
borhoods of o are the sets U U {0} for Ue .

1. N is a dense subspace of Z. Every set containing o is closed; hence
every subset of 2'is open or closed. Z'is a normal space (cf. 3B.5 and 3D.5);
in fact, every closed set is a zero-set.

2. The point ¢ does not have a countable base of neighborhoods. [4G.1.]
Hence 2 is not metrizable.

3. 2 is extremally disconnected (1H), and so is every subspace.

4. The z-ideal O, is prime but not maximal. Hence 2 is not a P-space (4]).

5. The dense subspace N is C*-embedded in Z, but not C-embedded.
[If g € C*(N), then g¥# % is a prime 2-filter on R. Alternatively, use 1H.6.]
Moreover, every subspace of 2 is C'*-embedded.

6. C*(2) is isomorphic with C*(N). But C(2) is not isomorphic with
C(N). [4]

7. 1f0 s h s kin C(Z),thenhe (k). [5]

8. The ideal (f, g) in C(Z) is the principal ideal (|f| + |g|). [3 and 7.]
Hence every finitely generated ideal is principal.

9. The only z-ideals containing O, are O, and M,. [If Z belongs to
Z[M_}, but not to Z[0,], then ' — Z € ¥.]

‘ 4N. A NONDISCRETE P-SPACE.

Let S be an uncountable space in which all points are isolated except
for a distinguished point s, a neighborhood of s being any set containing s
whose complement is countable.

1. The closed set {s} is not a zero-set. S i8 a nondiscrete P-space (4]).
(An example of a P-space with no isolated point is given in 13P.)

2. No member of Z[M,] is countably compact.

3. S is basically disconnected but not extremally disconnected (1H),
(Obviously, every discrete space is an extremally disconnected P-space. The
converse question is considered in 12H.)

4. Let T be the topological sum of X (4M) and S (i.e., 2 and S are disjoint
open sets whose union i8 7). Then T is basically disconnected, but it is
neither extremally disconnected nor a P-space.

40. CLOSED IDEALS IN C(X) FOR COMPACT X.
Let X be a compact space, and let I be an ideal in C(X).

1. If Z(f) is a neighborhood of () Z[I], then fe I. [Use compactness
and 1D.1]
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2. Given g € C(X), and € > 0, there exists f such that |g — f| £ € and
Z(f) is a neighborhood of Z(g). [Define f so that f(x) = 0 wherever
8(x)| = e]

3. Define I = () {M,: M, © I}. Then Iis a closed ideal in the uniform
norm topology on C(X) [2M.4], and consists of all g for which Z(g) > () Z[I].
Furthermore, () Z[I] = (N Z[I].

4. Iis the closure of I in the uniform norm topology. [In 2, if g € I, then
fel, by 1.] Hence an ideal is closed if and only if it is an intersection of
maximal ideals.



Chapter

ORDERED RESIDUE CLASS RINGS

5.1. We saw in the preceding chapter that every residue class field
of C or C* modulo a fixed maximal ideal is isomorphic with the real
field R. The present chapter initiates the study of residue class fields
modulo arbitrary maximal ideals. Each such field has the following
properties, as will be shown: it is a totally ordered field, whose order is
induced by the partial order in C, and the image of the set of constant
functions is an isomorphic copy—necessarily order-preserving—of the
real field.

More generally, for any ideal I, we shall wish to know when the
residue class ring C/I can be ordered in such a way that the canonical
mapping of C onto C/I will be order-preserving, and when, in addition,
it will be a lattice homomorphism. The answers to these questions can
be given for abstract partially ordered rings.

An ideal [ in a partially ordered ring A4 is said to be convex if whenever
0 <x =y, and y el then x € I. This agrees with the usual notion
of convexity in partially ordered systems, because a < b < ¢ is equiva-
lentto 0 £ b —a = c—a In case 4 is a lattice-ordered ring, we
have —|x| £ x = |«|; hence if I is a convex ideal, |x| € I implies x € 1.

Notice that in the ring of integers, the only convex ideal is (0).

An ideal I in a lattice-ordered ring is said to be absolutely convex if,
whenever |x| £ |y| and y € I, then x € I. Evidently, an absolutely
convex ideal is convex. But the converse is not true; see 5B.4 or 5E.2.

We recall that I(a) denotes the residue class of a modulo I.

5.2. THeoreM. Let I be an ideal in a partially ordered ring A. In
order that A|I be a partially ordered ring, according to the definition:

I(a) = O if there exists x € A such that x 2 0 and a = x (mod I),

it is necessary and sufficient that I be convex.
66
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PROOF. Necessity. If 0 < x <y, and yel, then 0 = I(x) —
I(y) = I(x) = 0, whence I(x) = 0, i.e., x € I.

Sufficiency. According to 0.19, we must verify (i): I(a) = 0 and
I(—a) 2 0 implies I(a) = 0, and (ii): I(a) = 0 and I(d) = 0 implies
both I(a) + I(b) = 0and I(a)I(b) = 0. In (i), there exist x, y € A such
that x 20, y 20, a=x, and —a=7y. Hence x + y = 0. Since
0 £ x £ x + y, we have x = 0, by convexity. Therefore I(a) = I(x)
= 0. Condition (i) is an immediate consequence of the corresponding
condition in 4.

Whenever we say that a residue class ring is partially ordered, or
totally ordered, we will always mean that it is an ordered ring whose
order is induced as above. Trivially, the canonical mapping of 4 onto
A/l is order-preserving, i.e., if a 2 b, then I(a) = I(b).

5.3. TueoreMm. The following conditions on a convex ideal I in a
lattice-ordered ring A are equivalent.

(1) Iis absolutely convex.

(2) x € I implies |x| € I.

(3) x,y €I impliesx v y e I.

4) I(a v b) = I(a) v I(b)—uwhence A/l is a lattice.

(5) I(a) 2 0 if and only if a = |a| (mod I).

PROOF. The pattern of proof will be (1) — (2) - (3) > (4) = (5) >
2)—(1).

(1) implies (2). Trivial.

(2) implies (3). If x,y €1, then |x| + |y| € I, and the result now
follows from convexity and the relations

(] + ) =% vy s sl + [y
(3) implies (4). Obviously, I(a v b) = I(a), and I(a v b) = I(b).
To prove that I(a) v I(b) exists and equals I(a v b), consider any
element ¢ of A such that I(c¢) =z I(a) and I(c) = I(b). Thereexistx, yel
such that¢ + x 2 aandc + y = b. Then

c+(@vy)=(c+x)vV(c+y)zavhb
But x v y € I, by hypothesis. Therefore I(c) = I(a v b).
(4) implies (5). Since |a| Z 0 (for the proof, see 5A), we have I(|a|) 2
0; hence if @ = |a|, then I(a) = 0. Conversely, if I(a) 2 0, then
I(a) = I(a) v —I(a) = I(a) v I(—a) = I(a v —a) = I(|a]).
(5) implies (2). 1If I(x) = 0, then 0 = x = |x| (mod I).
(2) implies (1). If |x| < |y|, and y € I, then |y| € I, by hypothesis,
and convexity implies that x € I.
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REMARKS. Condition (3) states that / is a sublattice of 4. Condition
(4) implies that the canonical mapping of 4 onto A/I is a lattice homo-
morphism (0.5). Thus,

Ka v b)=Ia) v I(b), I(a Ab) = Ia) A1), Ia]) = |I(a)
The essential content of the theorem is that these are identities if and

only if I is absolutely convex. The condition that A/I be a lattice is, by
itself, not enough to guarantee that I be absolutely convex. See 5B.4.

5.4. z-ideals. Since every fixed maximal ideal in C(X) or C*(X) is
of the form M, or M*, (Theorem 4.6), it is evident that each such ideal is
absolutely convex. Furthermore, it is manifest that every z-ideal in C
is absolutely convex, whence every maximal ideal in C, free as well as
fixed, is absolutely convex. A similar argument holds for the e-ideals,
and therefore for all maximal ideals, in C* (2L). In 5.5, we shall
present a proof, applicable to C and C* simultaneously, that all maximal
ideals—more generally, all prime ideals—are absolutely convex.

When M is a maximal ideal in C(X), the order in C/M is intimately
connected with the zero-sets in X. Let f € C; we shall prove:

M(f) = O[resp. > 0]if and only if f is nonnegative [resp. positive]
on some zero-set of M.

In fact, most of this statement is valid for any z-ideal.

(@) If Iis a z-ideal, then I(f) 2 O if and only if f is nonnegative on
some zero-set of 1.

Since I is absolutely convex, I(f) 2 0 is equivalent to f — |f| =

0 (mod I), and hence to Z(f — |f|) € Z[I], that is, f agrees with |f|

on some zero-set of I.

(b)  If f is positive on some zero-set of a z-ideal I, then I(f) > 0; and if
I is maximal, the converse holds as well.

If fis positive on Z € Z[I], then Z(f) does not meet Z,andso f ¢ I. By
(a), I(f) > 0. On the other hand, if I(f) > 0, then f is nonnegative on
some Z € Z[I]; and if I is maximal, then by Theorem 2.6(a), Z(f) is
disjoint from some zero-set Z’ of I. 'Thus, f is positive on the zero-set
Zn Z of I

This converse fails whenever I is not maximal. For, choose an ideal
J containing I properly, and pick fe J — I. Then I(f%) > 0. Since
Z(f?) belongs to Z[J], it meets every member of Z[I], so that pos f?
cannot contain any such set.

The results are inapplicable to C*. For example, the non-unit j of
C*(N) belongs to some maximal ideal in C* (in fact, to every free
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maximal ideal), in spite of the fact that j is positive everywhere on N.
See, however, 5Q.2.

We are also interested in knowing when a partially ordered residue
class ring is totally ordered. To establish total order, it is enough to
show that every element is comparable with 0. Hence if I is a 2-ideal,
then, by (a), C/I is totally ordered if and only if, for all f, there is a zero-
set of I on which f does not change sign. By Theorem 2.9, this is the
case precisely when I is prime. Thus:

() If Iis a z~ideal, then C|I is totally ordered if and only if I is prime.

As an example, let I be the ideal of all functions in C(N) that vanish
at both 1 and 2; then I is a 3-ideal, but not prime. Let f be any func-
tion having opposite signs at these points. Neither f nor —f is
nonnegative on any zero-set of I, and I(f) is not comparable with 0
in C/I.

According to (c), C/I is totally ordered whenever I is a prime 2-ideal
in C (in particular, when 7 is a maximal ideal). The next theorem
generalizes this result to arbitrary prime ideals in C or C*.

5.5. THEOREM. Every prime ideal P in C(X) [resp. C*(X)] is
absolutely convex, and the residue class ring C[P [resp. C*|P] is totally
ordered. [Furthermore, the mapping r— P(r) is an order-preserving
isomorphism of the real field R into the residue class ring.

PROOF. 'To show, first, that P is absolutely convex, let 0 < |f| =
|g|, with g € P. Define k as follows: A(x) = f¥x)/g(x) for x ¢ Z(g), and
h(x) = 0 for x € Z(g). Then A is continuous, as one sees easily from
the fact that f(x)/g(x) is bounded on X — Z(g). Moreover, if g is
bounded, then # is too, so that this construction is applicable to C* as
well as to C. Evidently, f¥(x) = h(x)g(x) for every x € X, i.e., f2 = hg.
(Compare 1D.3.) Hence f? € P, and, since P is prime, f€ P.

Next, since (f — |f[)(f + |f]) = 0 and P is prime, we have f = |f|
orf= —|f|. Therefore C/P [resp. C*|P] is totally ordered. Finally,
the mapping of R into the residue class ring by means of the constant
functions is clearly an isomorphism. Asr 2 Oimplies r 2 0, and hence
P(r) 2 0, it also preserves order.

REMARK. As a matter of fact, every isomorphism of R to an ordered
field is order-preserving. More generally, R may be replaced in this
statement by any ordered field in which every positive element has a
square root. For in such a field, the order is completely determined by
the algebraic structure: an element is nonnegative if and only if it is a
square.
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RESIDUE CLASS FIELDS

5.6. Real ideals; hyper-real-ideals. We know that every residue
class field of C or C* (modulo a maximal ideal M) contains a canonical
copy of the real field R: the set of images of the constant functions,
under the canonical homomorphism. We shall identify this subfield
with R.  Thus, in Theorem 4.6, we can write

M(f) = f(p),  for fe C(X),

M*(f) = f(p),  for fe CHX).

When the canonical copy of R is the entire field C/M [resp. C*/M],
we shall refer to M as a real ideal. 'Thus, by Theorem 4.6, every fixed
maximal ideal in C or C* is real.

When the residue class field modulo M is not real, we call it a hyper-
real field and refer to M as a hyper-real ideal.

Recall that a totally ordered field is said to be archimedean if for every
element g, there exists # € N such that » = a (0.21). Thus, a non-
archimedean field is characterized (among all totally ordered fields) by
the presence of infinitely large elements, that is, elements a such that
a > n for every n € N.  An element b is infinitely small if it is positive
but smaller than 1/n for every » € N. Hence b is infinitely small if
and only if 1/b is infinitely large. Therefore, the presence of infinitely
small elements also characterizes the nonarchimedean fields.

Every archimedean field is embeddable in R (0.21). It follows that
every hyper-real field is nonarchimedean, since the only nonzero
isomorphism of R into itself is the identity. Thus, the residue class
field is archimedean if and only if it is real.

and

5.7. The following results relate unbounded functions on X with

infinitely large elements modulo maximal ideals. Let f e C.
(a)  For a given maximal ideal M in C, the following are equivalent.

(1) |M(f)| is infinitely large.

(2) fis unbounded on every zero-set of M.

(3) For each n € N, the zero-set

Z, = (e: |f®)] 2 )
belongs to Z[M].

By 5.4(a), |M(f)| £ n if and only if there exists Z € Z[M] such that
|f(®)] £ n for all x € Z; thus, the negation of (1) is equivalent to the
negation of (2). Again by 5.4(a), M(|f]) = »if and only if Z, contains
a member of Z[M]; hence (1) is equivalent to (3).
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(b)  |M(f)| is infinitely large for some maximal ideal M in C if and only
if f is unbounded on X.

Necessity follows from (a). Conversely, if f is unbounded, then the
family of sets Z, has the finite intersection property, and hence is
embeddable in a z-ultrafilter &/. The ideal M = Z<[&/] in C is
maximal, and by (a), |M(f)| is infinitely large.

(c)  |M(f)|is infinitely large for every free maximal ideal M in C if and
only if f is unbounded on every noncompact zero-set in X.

This follows immediately from (a) and Lemma 4.10: every zero-set
associated with a free ideal is noncompact, and, conversely, every non-
compact zero-set belongs to Z[I] for some free ideal I, and hence to
Z[M] for some free maximal ideal M.

The next theorem contains a complete description of the residue class
fields of C*.

5.8. 'THEOREM.

(a) Every maximal ideal in C* is real.

(b) Every maximal ideal in C is real when and only when X is pseudo-
compact.

PROOF. (a). If |f| £ n, then |M(f)| £ n. Therefore, C*/M
contains no infinitely large elements, and hence is real (see 5.6).
(b). This is immediate from 5.7(b).

REMARK. It is well to notice that if M is a hyper-real ideal in C, the
theorem does not assert that M(f) is real for every bounded f. On the
contrary, there always exists a bounded function f with M(f) infinitely
small: simply take f = (|g| + 1)~!, where M(g) is infinitely large.

5.9. Realcompact spaces. The problem of describing the residue
class fields of C* is now settled : every maximal ideal in C*, fixed or free,
is real. As for C, we know that every fixed maximal ideal is real.
Hence the only candidates for hyper-real ideals in C or C* are the free
maximal ideals in C. According to the preceding theorem, hyper-real
ideals will exist whenever there are unbounded functions in C.

But now another question presents itself: what are the spaces X for
which every free maximal ideal in C(X) is hyper-real? 'The ramifica-
tions of this question will occupy us throughout much of the book.
Those spaces for which the answer is ““ yes”” will be termed realcompact.
We shall make a few remarks about realcompact spaces here, but their
formal investigation must be postponed until Chapter 8.

If X is compact, then C(X) contains no free ideals. Therefore every
compact space is realcompact.



72 ORDERED RESIDUE CLASS RINGS 5.9

If X is pseudocompact but not compact, then every maximal ideal in
C is real (Theorem 5.8), but not every maximal ideal in C is fixed
(Theorem 4.11); hence X is not realcompact. An example of a non-
compact, pseudocompact space is given in 5.12.

5.10. ExampLEs. First, however, let us look at some other applica-
tions of the preceding theorems, by considering once more our favorite
space N, and the identity function i on N. If M is any real maximal
ideal in C(N), then M(i) has to be a real number 7, i.e., we must have
i = r(mod M). Butthen Z(i — r)—which contains at most one point
—must belong to Z[M]. If M is a free ideal, this is impossible.
Therefore every real ideal is fixed, i.e., N is a realcompact space.

We can see that N is realcompact in another way. The function i is
certainly unbounded on every noncompact set. Therefore, by 5.7(c),
its image modulo any free maximal ideal in C(N) is infinitely large.
This implies, first of all, that every free maximal ideal in C(N) is hyper-
real; thus, N is realcompact.

Secondly, it implies that the image of j modulo any free maximal ideal
in C(N) is infinitely small. In contrast, we have seen that j is a member
of every free maximal ideal in C*(N) (4.7). Here is another proof.
For each ne N, let f, = n=* A j. Then f, — j vanishes at all but a
finite number of points. By 4.3, f, — j belongs to every free maximal
ideal M in C or C*, that s, f, = j (mod M). Butsince0 = f, < n—,
we have 0 < M(f,) < 1/n. Hence 0 £ M(j) < 1/n. As this is true
for every n, M () is infinitely small or zero. In the case of C, jis a unit,
and so M(j) # 0. In the case of C*, the residue class field has no
infinitely small elements (Theorem 5.8(a)), and so M(j) = 0.

SPACES OF ORDINALS

5.11. For purposes of further illustration, both now and later, the
space W of all countable ordinals is indispensable. Before examining
its special properties, we have to gather some facts about spaces of
ordinals in general. The set of all ordinals less than a given ordinal «
is denoted by W(«):

W(«) = {o:0 < o} (e« an ordinal).

It is well-ordered, of course, and so it may be provided with the in-
terval topology (30). Thus, 0 is an isolated point (if « > 0), and for
any point = > 0, the set of all open-and-closed intervals

[e+1L,7r]={x:0<x <7+ 1} (c <7)
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is a system of basic neighborhoods of =. Evidently, a point of W(«) is
an isolated point if and only if it is not a limit ordinal (i.e., it is O or has
an immediate predecessor). The space W(w) of all finite ordinals is
homeomorphic with N. It is clear that:

(a)  For o < «, W(o) is a subspace of W(a).

(Compare 30.4,5.)

As one might expect, the properties of totally ordered spaces listed in
30 can be established more simply in the special case of well-ordered
spaces. For the sake of completeness, we shall derive some essential
properties of well-ordered spaces independently of the general theory
of totally ordered spaces.

Every nonempty set of ordinals, being well-ordered, has a least
element; and, according to the theory of ordinals, every set of ordinals
has an upper bound, and hence has a supremum. If 4 = W(«), then
sup 4 € W(«) if and only if 4 is bounded in W(«), i.e., there exists
o < a such that x £ o for all x€ 4. Now, A4 is cofinal in W(«)
provided that, for all 0 < «, there exists x € A such that x = 0. Thus,
if W(«) has a greatest element, then any subset containing this element
is both bounded and cofinal; however, if « is a limit ordinal, then a
subset is cofinal if and only if it is unbounded.

We now prove:

(b)  For every ordinal o, W(«a) is a normal space.

Verification of the Hausdorff axiom is trivial. Now let H and K be
disjoint closed sets. For each = € H, let U, be an open interval of the
form [o, 7] that does not meet K; correspondingly, define V, for 7 € K.
Then U, .z U, and |, . x V, are disjoint open sets containing H and K,
respectively.

Finally, we have:

(<) W(a) is compact if and only if o is a nonlimit ordinal.
For the necessity, we observe that every fail in W(«a), that is, every set

of the form
W(«) — W(o) = {xe W(a): x Z o} (0 < @),

is a closed set, and that the family of all tails has the finite intersection
property. If «is a limit ordinal, then the intersection of this family is
empty, so that WW(«) is not compact.

For the sufficiency, we note first that 17/(0) is empty, hence, trivially,
compact. Now consider any nonlimit ordinal ¢’ = « + 1, and assume,
inductively, that W (7) is compact for every nonlimit ordinal » < « + 1.
Let % be any cover of W(a + 1) by basic open sets. Since the point «
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is covered, there exists ¢ < « such that [0 + 1, «] € . By the
induction hypothesis, the subspace W(o + 1) (see (a)) is compact,
so that a finite subcollection &# of % covers W(o + 1). Then & U
{[o +1, «]} is a finite subfamily of % that covers W(a + 1).

It follows from this result that W(«) is always locally compact ; and if
W («) is not compact, then W(a + 1) is its one-point compactification.

5.12. The spaces W and W*. We define

W= W(w,) ={o:0 < wy}
and
W* = W(w;, + 1) = {o: 0 £ wy},

&, denoting the first uncountable ordinal. As we have just seen, W* is
compact, while W is not; in fact, W* is the one-point compactification
of W. Since w, is the smallest uncountable ordinal, every uncountable
set in W is cofinal. A more interesting feature is the converse:

()  No countable set in W is cofinal.
For if S is cofinal, then W = |, sW(0); then

x1 = zoeslol = ISI'xo’

whence |S| = X,. (The symbol |4| denotes the cardinal of 4.)

It follows from (a) that every countable set 4 in W is contained in a
compact subspace. For, let « = sup 4;then o € W, and 4 is contained
in the compact subspace W(a + 1). As a consequence, every count-
able, closed set in W is compact. Furthermore, W is countably com-
pact, since every countably infinite set has a limit point. (Compare
5H.5.)

Since W is countably compact, it is pseudocompact, and we have
here an example of a space that is pseudocompact but not compact. It
follows that all maximal ideals in C(W) are real (Theorem 5.8) and that
at least one of them is free (Theorem 4.11), so that W is not realcompact
(5.9).

As is well known, every countably compact metric space is compact.
(Hence, by 3D.2, every pseudocompact metric space is compact.)
Therefore, W is not metrizable.

Next, we prove:

(b)  Of any two disjoint closed sets in W, one is bounded

and hence countable and compact. For, if H and K are cofinal closed
sets, we can choose an increasing sequence («,),.n, Where o, € H for
n odd, and «, € K for n even. Then sup, o, H n K.
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Finally:
(c)  Every function f € C(W) is constant on a tail W — W(a)

(« depending upon f). To see this, observe that every tail W — W (o)
is countably compact (in fact, it is homeomorphic with W itself).
Therefore each image set f[W — W(o)] is a countably compact subset
of R, and hence compact, so that the intersection

Noew /TW — W(o)]

of the nested family is nonempty. Choose any number 7 belonging to
this intersection; then the closed set f*(r) is cofinal in W. Now, for
every n € N, the closed set

{xeW:|f(x) — 7| = 1/n}
is disjoint from f<(r); hence, by (b), it has an upper bound «, in W.
For any countable ordinal « > sup, «,, we have f[W — W(«)] = {r}.

5.13. The rings C(W) and C(W*). An immediate consequence of
this last result is that W is C-embedded in W*: we extend f€ C(W) toa
function f# € C(W*) by defining f#(w,) to be the final constant value of
f. (Note that IW(w) is not C*-embedded in W(w + 1); more generally,
see 5N.1.) It is trivial that f# is the unique continuous extension of f.
In the other direction, given g € C(W*), the restriction of g to W
belongs to C(W). It follows that C(W) is isomorphic with C(W¥*),
under the mapping f— f&.

We have here, then, two spaces that are topologically distinct, but
whose rings of continuous functions are isomorphic. Accordingly,
neither the algebraic structure of C*(X), nor even that of C(X), is
sufficient, in general, to determine X as a topological space.

Since W* is compact, we already have a complete description of the
maximal ideals in C(W*): every ideal is fixed, and the maximal ideals
assume the form

M, = {f# e C(W*):f%0) = 0} (0 € W¥)
(Theorem 4.6). By virtue of the isomorphism of C(W*) with C(W),
the maximal ideals in C(W) are in one-one correspondence with these.
Moreover, the fixed maximal ideals in C(W) correspond to the ideals
M_ in C(W*) for which o € W, leaving just one free maximalidealin C(W),
namely, the one that corresponds to M,,. (For an alternative proof,
see 5L..) We observe immediately that the concepts fixed and free are not
algebraic invariants.

Let M« denote the (free, real) maximal ideal in C(W) that corre-
sponds to M, in C(W*). Then

Moy = {f& C(W): f#(wy) = 0.
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The functions in this ideal are described in terms of their values on
W in this way: M« is the set of all functions in C(W) that vanish on
a tail.

For emphasis: if f € C(W) is equal to the constant 7 on a tail, then the
function f — r vanishes on that tail, and therefore f = r (mod M«));
and, since ff(w,) = 7, we have

Mea(f) = M (f%) = fo(wy) = r.

Plainly Z[M+1] has the countable intersection property; indeed, it is
closed under countable intersection. These attributes are, in fact,
characteristic of real maximal ideals, as we now show.

REAL MAXIMAL IDEALS

5.14. TueoreM. The following are equivalent for any maximal ideal
M in C(X).

(1) M is real.

(2) Z[M] is closed under countable intersection.

(3) Z[M] has the countable intersection property.

PROOF. (1) implies (2). Suppose that (Z(f,)),en is a subfamily of
Z[M] whose intersection does not belong to Z[M]. Define

g®) =2, .N(f®)] A 277) (x € X).

Then g is continuous (because of uniform convergence) and nonnegative,
and Z(g) = N, Z(f,) ¢ Z[M]. Thus, M(g) = 0butg ¢ M; therefore
M(g) > 0.

On the other hand, for any m € N and for every x belonging to the

member
Z(fy) n---n 2Z(f)

gy > 2" =2

Therefore M(g) = 2™ (5.4(a)); and this holds for eachm € N. Hence
M(g) is infinitely small. Thus, C/M is nonarchimedean.

(2) implies (3). Since @ ¢ Z[M], this is trivial.

(3) émplies (1). If M is hyper-real, there exists f for which |M(f)] is
infinitely large. The zero-sets

{x: [f(@)] 2z n} (neN)

are all in Z[M] (5.7(a)), and, obviously, their intersection is empty.

REMARK. It is far less common for a z-filter to be closed under

of Z[M], we have
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countable intersection than to have the countable intersection property.
For instance, the family of all zero-set-neighborhoods of a point in R
has the latter property but not the former. More generally, a non-
maximal z-filter that is contained in a unique z-ultrafilter is never closed
under countable intersection; see 7H.4.

5.15. Real z-ultrafilters. When M is a real maximal ideal in C, we
refer to Z[M] as a real-z-ultrafilter. 'Thus, the real z-ultrafilters are
those with the countable intersection property.

(@)  If a countable union of zero-sets belongs to a real z-ultrafilter o,
then at least one of them belongs tosf.

The proof is an exact analogue of the set-theoretic proof, given in 2.13,
that any z-ultrafilter is prime.

It is perhaps tempting to conjecture that every 2-filter with the count-
able intersection property is contained in a real z-ultrafilter. The
proposition is false, however; see 8H.5.

A space X is realcompact (5.9) if and only if every real z-ultrafilter on
X is fixed. It follows immediately that every countable space is real-
compact: no free z-filter on a countable space can have the countable
intersection property.

PROBLEMS

5A. ABSOLUTE VALUE.

For every element a of a lattice-ordered ring, |a| = 0. [Putx = |4| A O,
y=a A0,andz= ~a A0. Theny Sxandz < x. Next,z =y — a.
Hence

0s@—-NA@E-—2)=@@—-3+0Aa=]a]

5B. CONVEX IDEALS.

1. An arbitrary intersection of [absolutely] convex ideals is [absolutely]
convex. An arbitrary union of [absolutely] convex ideals, if it is an ideal, is
[absolutely] convex.

2. Let Iand Jbe convex ideals in 4, with I < J. If A/l is totally ordered,
then so is 4/J.

3. The following condition characterizes a convex ideal I in a lattice-
ordered ring as absolutely convex: x € I implies x v 0 € L.

4. Let A be the direct sum of the ring R with itself, and let (, s) = (0, 0)
ifand only if » = s = 0. Then 4 is a lattice-ordered ring. The set

I={0,r):7reR}

is a convex maximal ideal, but is not absolutely convex. The ordered ring 4/
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is totally ordered, hence a lattice, but the canonical mapping of 4 onto A/I,
which is order-preserving, is not a lattice homomorphism.

5. If I is any nonmaximal, convex ideal in C(X), then there exists f such
that I(f) > 0, although f is not positive on any zero-set of I; and the latter
assertion holds whenever (Z, f) # C.

5C. HOMOMORPHISM INTO A FUNCTION RING.

Let t be a homomorphism from C(Y) (or C*(Y)) into C(X).
1. Thekernel I of t is absolutely convex. [Theorem 1.6.] (As a matter of
fact, I is a z-ideal; see 10D.)
2. If C(Y)/1is ordered as in Theorem 5.2, then the canonical isomorphism
of C(Y)/I into C(X) is an order isomorphism.

5D. PRIME IDEALS.

Let P be a prime ideal in C or C*.
1. If f2 + g2 € P, then fe Pand g e P. Compare 2D.2.
2. 1ff20,r > 0, and f7 € P, then f € P.

5E. 1pEALs IN C(R).

Let i denote the identity function on R.

1. The ideal (]i]) in C(R) is not convex. But f € (]i|) implies |f]| € (]i]).

2. The ideal (i) in C(R) is convex [2H.1], but it is not absolutely convex.
(Hence (i) is neither prime nor a z-ideal. By 5G.1, (i) contains no prime
ideal.)

3. The set of all functions f in C(R) such that f(x)/x is bounded on a
deleted neighborhood of 0 is an absolutely convex ideal, but it is neither
prime nor a z-ideal.

5F. DIRECTED RING.

Let A be a partially ordered ring with unity and having the following
property: for every x € A, there exists ' € 4 such that ¥’ = x and " =2 0
(i.e., 4 is directed).

1. If M is a maximal ideal containing no element greater than 1, then M is
convex. [If 0 S a=<b, beM, and a¢ M, then there exist me M and
x€ Asuchthat 1 < m + x'b.]

2. Suppose, in addition, that 4 is a lattice-ordered ring. M need not be
absolutely convex. [5B.4.]

5G. TOTALLY ORDERED RESIDUE CLASS RING.

1. If a convex ideal J in C contains a prime ideal, then J is absolutely con-
vex, and C/J is totally ordered.

2. If C/I is totally ordered, then I is contained in a unique maximal ideal.
[5B.2, 5.4(c), and 2.10.]
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3. Let J denote the principal ideal in C(Z) (see 4M) generated by the con-
tinuous extension of j to . Then O, = J < M, (properly), so that J is not
az-ideal. Furthermore, C/Jis a totally ordered ring, although J is not prime.

4. Every ideal in C(Z') is absolutely convex.

5H. REALCOMPACT AND PSEUDOCOMPACT SPACES.

1. The arguments given in 5.10 show that R is realcompact.

2. X is compact if and only if it is both realcompact and pseudocompact.

3. Construct a normal space that is neither realcompact nor pseudocompact.

4. X is pseudocompact if and only if every z-filter has the countable
intersection property. Contrast with countably compact (1.4).

5. X is countably compact if and only if every countable closed set is
compact.

6. X is pseudocompact if and only if every countable, C-embedded subset
is compact. [Necessity. Every C-embedded subset of X is pseudocompact;
apply 2. Sufficiency. Corollary 1.21.] (The space A of 6P is pseudocompact
and has a countable, C*-embedded subset that is not compact.)

7. If X is pseudocompact, then every countable zero-set is compact.
[Lemma 4.10.] (The converse is false; see 61.3.)

51. THE space V.

1. There exists an infinite maximal family & of infinite subsets of N such
that the intersection of any two is finite. [Start with infinitely many disjoint
infinite sets, and apply the maximal principle.]

2. Let D = {wg}g.¢ be a new set of distinct points, and define ¥ = N y
D, with the following topology: the points of N are isolated, while a neighbor-
hood of a point wp is any set containing wg and all but a finite number of points
of E. Thus, E U {wg} is the one-point compactification of E, and N is
dense in ¥. The space ¥ is completely regular.

3. D is an infinite, discrete zero-set in ¥. Hence ¥ is not countably
compact.

4. ¥ satisfies the first countability axiom, and every subset of ¥ is a G,.

5. ¥ is pseudocompact. [Maximality of & implies that an unbounded
function on N is unbounded on some member of £&.] Hence ¥ is not normal.
[3D.2.] Also, ¥ is not realcompact.

6. Each finite subset, but no countably infinite subset of D, is a zero-set
in ¥. [SH.7.] Hence D is not C* embedded in ¥. [1F.3.]

5J. CARDINALS OF RESIDUE CLASS RINGS.

If I is a 2-ideal in C, and m is the smallest of the cardinal numbers of all the
dense subsets of Z, for all Z € Z[I], then |C/I| £ ¢™. [Two functions in C
are congruent modulo I if they agree on a dense subset 4 of some Z € Z[I].
Consider the cardinal of R4.] (If I is not a z-ideal, the conclusion can fail ;
see 12F.3.)
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5K. MAXIMAL IDEALS IN C AND C*,

If M is a maximal ideal in C, then M n C#* is a maximal ideal in C* if
and only if M is real. [Necessity. If M is not real, there exists f € C* with
M(f) infinitely small; then (M n C*, f)is a proper ideal in C*.  Sufficiency.
The canonical homomorphism of C onto C/M = R sends C* onto R.]
(Another proof is given in 7.9, where the correspondence between maximal
ideals in C and those in C* is clarified.)

5L. UNIQUE FREE MAXIMAL IDEAL IN C(W).

1. Any two cofinal, closed sets in W meet in a cofinal set. [5.12(b).]

2. Prove directly from I that the family &/ of all cofinal zero-sets is the
unique free z-ultrafilter on W. [Theorem 2.6(b).]

3. Prove directly from the fact that & is real that for every f e C(W),
there exists 7 € R such that f<(r) is cofinal in W. As in 5.12, this implies
that f is constant on a tail.

SM. FURTHER PROPERTIES OF W AND W*,

1. The only free ideal in C(W) is M«. [4D.]

2. W satisfies the first countability axiom. The set of all limit ordinals in
W is a closed set, but not a G;. [3D.3.]

3. Characterize the closed sets in W that are zero-sets. [See 13B.2.]

4. Describe the finite zero-sets in W*,

5. In the one-point compactification of the topological sum of two copies of
W, each copy is C*-embedded, but their union is not.

6. If X is compact, then W x X is countably compact. [Every countable
set is contained in a compact one.] (More generally, the product of a count-
ably compact space with a compact space is countably compact; see 9].)

5N. WELL-ORDERED SPACES.

1. If W(«) is C*-embedded in W(a + 1), then it is C-embedded, and the
conditions hold if and only if every countable set in W(«) is bounded.
[Utilize the fact that a countably infinite, well-ordered set without last element
contains a cofinal sequence; this result is proved in 13.6(a).]

2. Modify the proof of 5.11(b) to show, without using the axiom of choice,
that every well-ordered space is normal.

50. P-POINTS OF TOTALLY ORDERED SPACES.

1. Ttis plain that w, is a P-point (4L) of W*. More generally, a point p of
a totally ordered space (30) is a P-point if and only if it is neither the limit of
an increasing sequence nor the limit of a decreasing sequence. [4L.1.]

2. A point p of a totally ordered space is a P-point if and only if O, (4I)is a
prime ideal. [Theorem 2.9.]
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5P. P-SPACES.

If X is a P-space (4]), then C(X)/I is totally ordered if and only if I is
maximal. [5.4(c).]

5Q. e-IDEALS.

Let I be an e-ideal (2L) in C*, and let f e C*.

1. f = |f| (mod I) if and only if, for every € > 0, f + € is nonnegative on
some member of E(I).

2. If there exists ¢ > 0 such that f — e is positive on some member of
E(I), then f = |f] #£ 0. And if I is maximal, the converse holds as well.
[2L.14.] (For maximal ideals, these results also follow from 7.2 and 7R.2.)

5R. ALGEBRAIC INVARIANCE OF THE NORM.
The norm ||f| = sup,.x | f(x)| on C*(X) satisfies
1] = supas [M(f)],

M ranging over all the maximal ideals in C*. [|f| < r implies |M(f)| =< 7.
Alternatively, use 2C.2.] Compare 1].6.



Chapter 6

THE STONE-CECH COMPACTIFICATION

6.1. Among the major achievements in the theory of rings of
continuous functions are the characterizations of the maximal ideals in
C(X) and in C*(X). We have already succeeded in obtaining char-
acterizations in case X is compact—by attaching each maximal ideal to
a point of the space (see 4.9(a)). The next step in our program is
to extend this result, somehow, to the case of arbitrary (completely
regular) X. In the general situation—when X is not pseudocompact—
we will be faced with two distinct problems: that of C, and that
of C*.

In the case of C*, we can be guided by the example of the noncompact
space W. Here we were able to find a compactification, W*, in which
W is C*-embedded. Thus, there is a natural isomorphism between
C*(W) and C*(W*), and the characterization of the maximal ideals in
C*(W) was accomplished via this isomorphism, by attaching each of
these ideals to a point of the compactification W*.

In the case of C(X), our guide will be the correspondence between
its maximal ideals and the z-ultrafilters on X (Theorem 2.5). We wish
to sharpen this characterization by associating each z-ultrafilter with a
point of some suitable space, in a natural way. The fixed z-ultrafilters
are associated with the points of X itself; roughly speaking, we wish to
“fix the free z-ultrafilters.” Once again, then, we seek a compactifica-
tion of X.

It is a remarkable fact that these two problems not only have solu-
tions, but a common one: the compactification, BX, that serves to
characterize the maximal ideals in C(X) is also a compactification in
which X is C*-embedded. Moreover, the space BX—known as the
Stone-Cech compactification of X—is essentially unique.

Several different constructions of BX are known. Probably the
82
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simplest is the one to be presented in Chapter 11. This is also the
construction in which the C*-embedding of X shows up most trans-
parently.

The procedure adopted in the present chapter is fitted to the problem
of C(X): we construct X by adjoining to X one new point for each
free z-ultrafilter, to serve as its limit (as defined below). The
topological considerations involved in this process, and some of their
ramifications, will occupy the entire chapter. The formal character-
izations of the maximal ideals in C(X) and in C*(X) are treated in
Chapter 7.

6.2. In general, one compactifies a noncompact space X by adjoining
new points to serve as limit points of sets that are closed in X but not
compact. In considering this process, we may restrict our attention to
the zero-sets, since they form a base for the closed sets. It will also be
convenient, and instructive—though by no means necessary—to trans-
late the problem into the language of convergence of z-filters. (Im-
plicit in this transition is the circumstance that a noncompact zero-set
is contained in a free z-filter (Lemma 4.10).) For this, the ideas set
forth in 3.16 must first be cast in a more general setting.

Let X be dense in a space T, and consider a z-filter (or filter) & on X.
We shall say that a point p € T is a cluster point of Z if every neighbor-
hood (in T') of p meets every member of #—in other words,

(@)  p is a cluster point of F provided that

P€Nzesclr Z.

Now, in any case, any such family of closed sets cl; Z has the finite
intersection property. Consequently, a necessary condition that T be
compact is that every z-filter on X have a cluster point in 7. It is not
hard to see that the converse holds as well; in fact, it is sufficient that
every z-ultrafilter on X have a cluster point in T (6F.4).

We shall say that & converges to the limit p if every neighborhood (in
T) of p contains a member of &#. As in 3.16 ff., one sees immediately
that limits are unique, and that a z-ultrafilter converges to any cluster
point.

The crucial distinction between the situation in 3.16 (i.e., T = X)
and the present one is this: two different z-ultrafilters on X can have a
common limit in T. The counterexample given in 3.18 for ultrafilters
leads to an example here: the traces of % and %' on N are distinct
z-ultrafilters on N, both of which converge to the point w of N*. Itis
easy to generalize the construction in 3.18 so as to obtain infinitely
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many free z-ultrafilters on N; and it is plain that every free z-ultrafilter
on N converges to w.

We have remarked that distinct free z-ultrafilters on X are to converge
to distinct points of 8X. Thus, the one-point compactification N* of
N is a hopelessly inadequate candidate for SN. Even more obvious
is the fact that N* fails the test for C*, i.e., N is not C*-embedded
in N*.

6.3. When will a given dense subspace X of a space T be C*-
embedded in 7? To answer this question, we examine a more general
one: when can every continuous mapping 7, from X into an arbitrary
compact space Y, be extended to a continuous mapping 7 from 7 into Y?

The condition that ¥ carry closures into closures will appear, in the
language of convergence of z-filters, as the requirement that it take
cluster points to cluster points—or limits to limits.

() Let Z be a zero-set in X. If p € cly Z, then at least one z-ultra-
filter on X contains Z and converges to p.

Let & be the z-filter on T of all zero-set-neighborhoods (in T') of p, and
let # be the trace of & on X. Since peclZ, # U {Z} has the finite
intersection property, and so is contained in a z-ultrafilter /. Clearly,
&/ converges to p.

Notice that this result holds even if X is not dense in T.

(b)  If X is dense in T, then every point of T is the limit of at least one
z-ultrafilter on X

This follows from (a) (with Z = X).

6.4. TurOREM. Let X be dense in T. The following statements are
equivalent.

(1) Every continuous mapping = from X into any compact space Y has an
extension to a continuous mapping from T into Y.

(2) X is C*-embedded in T.

(3) Any two disjoint zero-sets in X have disjoint closures in 1.

(4) For any two zero-sets Z, and Z, in X,

(5) Ewvery point of T is the limit of a unique z-ultrafilter on X.

PROOF. (1) implies (2). A function f in C*(X) is a continuous
mapping into the compact subset clg f[X]of R. Hence (2) is a special
case of (1).

(2) implies (3). This follows from the simpler half of Urysohn’s
extension theorem (1.17).
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(3) implies (4). If peclZ; n clZ, then for every zero-set-
neighborhood V (in T') of p, we have
pecd(Vn Z) and pecl(V nZy).
Hence (3) implies that V' n Z; meets V' n Z,, i.e., V meets Z, n Z,.
Therefore
pec(Z, n Z,).
Thus, clZ, nclZ, is contained in cl(Z, n Z,). The reverse
inclusion is trivial.

(4) implies (5). Since X is dense in T, each point of T is the limit of
at least one gz-ultrafilter. On the other hand, distinct z-ultrafilters
contain disjoint zero-sets (Theorem 2.6(b)), and the hypothesis (in
fact, its weaker form (3)) implies that a point p cannot belong to the
closures of both these zero-sets. Hence the two z-ultrafilters cannot
both converge to p.

We remark that the hypothesis that X is dense has been used, thus
far, only to secure the existence of the z-ultrafilter in (5).

(5) implies (1). Given p € T, let o7 denote the unique z-ultrafilter on
X with limit p. As in 4.12, we write

vl = {E e Z(Y): r[E] € ).

This is a z-filter on the compact space Y, and so it has a cluster point
(Theorem 4.11). Moreover, since & is a prime z-filter, so is 7#.47.
Therefore, by Theorem 3.17, 7#./ has a limit in ¥. Denote this
limit by 7p:

@) N ¥ = {7p}.
This defines a mapping 7 from T into Y.

In case p € X, we have p € (] &, sothat7p € [} 7#/. Therefore 7
agrees with 7 on X.

For F,F' € Z(Y), let us write Z = v<[F] and Z' = +<[F']. If
p ecly Z, then by 6.3(a), Z belongs to &/, and so F e r#2/. Thus,
p € cl Z implies 7p € F.

To establish continuity of 7 at the point p, we consider an arbitrary
zero-set-neighborhood F of 7p and exhibit a neighborhood of p that is
carried by 7 into F. Let F’' be a zero-set whose complement is a
neighborhood of 7p contained in F. Then F U F' =Y, so that
Z U Z = X, and therefore c! Z U cl Z' = T. Since 7p ¢ F', we
have p ¢ cl Z’; therefore T — cl Z’ is a neighborhood of p. And every
point ¢ in this neighborhood belongs to cl Z, whence 7¢ € F.

This completes the proof of the theorem. An alternative proof that
(2) implies (1) will be presented in Theorem 10.7.
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CONSTRUCTION OF BX

6.5. COMPACTIFICATION THEOREM. Ewvery (completely regular) space
X has a compactification BX, with the following equivalent properties.

(I) (sToNE) Every continuous mapping v from X into any compact
space Y has a continuous extension 7 from BX into Y.

(II) (sToNE-CecH) Ewvery function f in C*(X) has an extension to a
function f# in C(BX).

(IIT) (CecH) Any two disjoint zero-sets in X have disjoint closures
in BX.

(IV) For any two zero-sets Z, and Z, in X,

(V) Dustinct z-ultrafilters on X have distinct limits in BX.

Furthermore, BX is unique, in the following sense: if a compactification T
of X satisfies any one of the listed conditions, then there exists a homeo-
morphism of BX onto T that leaves X pointwise fixed.

The assertion that BX satisfies (I) will be referred to as Stone’s
theorem, and the mapping 7 will be called the Stone extension of 7 into Y.

PROOF. We commence with the proof of uniqueness. By Theorem
6.4, if T satisfies one of (I)—(V), it satisfies all of them. By (I), the
identity mapping on X, which is a continuous mapping into the com-
pact space T, has a Stone extension from all of 8X into T'; similarly, it
has a Stone extension from T into BX. It follows, as was pointed out
in 0.12(a), that these extensions are homeomorphisms onto.

We turn now to the construction of BX. There is to be a one-one
correspondence between the z-ultrafilters on X and the points of BX,
each z-ultrafilter converging to its corresponding point. Now, we
already have such a correspondence between the fixed z-ultrafilters and
the points of X (3.18(b)); hence X constitutes a ready-made index set
for the fixed z-ultrafilters. We increase it in any convenient way to an
index set for the family of all z-ultrafilters.

(a) The points of BX are defined to be the elements of this enlarged
index set.
The family of all z-ultrafilters on X is written

(Ap)p epX

—with the understanding that for p € X, A? represents the (fixed)
z-ultrafilter with limit p (i.e., the family of all zero-sets containing p).
When emphasis is desirable, we shall denote A? by A,, for p € X; thus,
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A, = Z[M,]. 'The topology on BX will be defined in such a way that p
is the limit of the z-ultrafilter A? for every p € BX, not only for p € X.

In what follows, Z will always stand for a zero-set in the given topo-
logical space X. Let us write

Z ={peBX:Ze A?},

that is, p € Z if and only if Z € A?. In particular, since X itself belongs
to every z-ultrafilter, we have X = BX.

We know that Z, U Z, € A? if and only if Z, € A? or Z, € A?;
therefore

Z_1U22=Z1U22.

And since 0 belongs to no z-ultrafilter, § = 0. Thus, the family of
sets Z is closed under finite union and contains the empty set.

(b)  BX is made into a topological space by taking the family of all sets Z

as a base for the closed sets.

Let us verify first that X is a subspace of BX. Evidently,pe Z n X
if and only if Z € A,, which is to say that pe Z. So Z n X = Z.
Thus, the identity mapping on X carries the family of basic closed sets
in the relative topology onto a family of basic closed sets in the original
completely regular topology (see Theorem 3.2); therefore it is a homeo-
morphism.

Next, we show that X is dense in 8X. In fact, we shall prove, more
generally, that

cox Z = Z,

from which the conclusion clyxy X = X = BX follows. We know that
Z < Z, whence ¢l Z = Z. On the other hand, for every basic closed
set Z' containing Z, we have

Z'=2'nX»>Z,

so that Z' > Z. Therefore, cl Z > Z.
We now have:

() peclyy Zif and only if Z € A®.

Since Z, n Z, € A? if and only if Z, € A? and Z, € A?, this immedi-
ately yields (IV). Accordingly, the proof will be complete as soon as
we know that BX is compact—for then, as already mentioned, all five
of the listed conditions will hold.

To see, first of all, that BX is a Hausdorff space, consider any two
distinct points p and p’. Choose disjoint zero-sets 4 € A? and 4’ € A?’
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(Theorem 2.6(b)). By 1.15(a), there exist a zero-set Z disjoint from 4,
and a zero-set Z’ disjoint from A’, such that Z U Z’ = X. Evidently,
Z¢ At and Z' ¢ A? ;thatistosay,pé¢cl Zand p' ¢ cl Z'. Since

clZ u cZ = BX,

the neighborhoods BX — cl Z of p, and BX — cl Z’ of p’, are disjoint.
Finally, consider any collection of basic closed sets cl Z with the
finite intersection property, Z ranging over some family 4. By (IV),
already established, & itself also has the finite intersection property.
Consequently, & is embeddable in a z-ultrafilter A?, and we have

pe rjze,‘lp cddZc< nZe.‘ECI Z,

so that the latter intersection is nonempty. Therefore BX is compact.

6.6. REMARKS. The space BX is known as the Stone-Cech com-
pactification of X. According to the theorem, it is characterized as that
compactification of X in which X is C*-embedded.

Incidentally, the equivalence of (II) with (III) is an immediate
consequence of Urysohn’s extension theorem (because disjoint closed
sets in BX are completely separated).

In the construction of X, nothing was said about what objects are to
serve as the points of BX — X. In principle, of course, it makes no
difference what these pointsare. It often happens, in a given discussion,
that there are natural candidates for some or all of the points of X — X;
we shall then allow ourselves to regard these as the points in question,
even without explicit mention. For example, we say that W* is SW.
More significant instances occur in 6.7 and 6.9(a) below.

Let &# be a z-filter on X, and let p € BX; from 6.2(a) and 6.5(c), we
get:

(a)  pis a cluster point of F if and only if F < A».

In particular, A? itself converges to p.
From 6.4(a), we can read off the definition of the Stone extension 7:

{7} = Nr*Ar (p € BX).
From (II), it follows immediately that:
(b)  The mapping f— f* is an isomorphism of C*(X) onto C(BX).
Thus, “every C*isa C.” Consequently:

(c)  Any purely algebraic result that is valid for every C holds as well
for every C*.
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By virtue of Theorem 3.9, this is true without restriction on the topology
of the space.

The converse to the last assertion in Theorem 6.5, regarding unique-
ness, is trivially true. (See, however, 6C.2.) The assertion itself may,
of course, be expressed in terms of an arbitrary homeomorphism, not
just the identity: if 7 is a homeomorphism of X onto X', then 7 is a
homeomorphism of BX onto BX’; and, evidently, 7 carries X — X
onto BX’' — X'.

6.7. 'THEOREM. Let X be dense in T. The following are equivalent
with the statements (1) to (5) of Theorem 6.4.

(6) X = T < BX.

(7) BT = BX.

PROOF. We base the proof upon condition (2): X is C*-embedded
in T.

(2) implies (7). X is dense and C*-embedded in BT. Therefore
BX = BT.

(7) implies (6). X < T < BT = BX.

(6) implies (2). X is C*-embedded in BX, and hence in T.

This result specifies all of the spaces in which X is dense and C*-
embedded: they are precisely the subspaces of BX that contain X.
The only compact one among them is 8X itself, of course.

APPLICATIONS OF THE COMPACTIFICATION THEOREM

6.8. The power of Stone’s theorem is illustrated by the following
proof.

TYCHONOFF PRODUCT THEOREM. Amny product of compact spaces is
compact.

PROOF. Let X = Xa X,, where each X, is compact. Then X is
completely regular.

Each projection w,: X— X, has a Stone extension #,: BX — X,.
By 3.10(c), the mapping p — (7,p), from the compact space 8.X onto X
is continuous.

6.9. Let S beasubspace—not necessarily dense— of X. Evidently,
S'is C*-embedded in X if and only if it is C*-embedded in BX. Since
the compact set cl,x S is C*-embedded in BX (3.11(c)), these conditions
hold if and only if Sis C*-embedded in cl,x S. Therefore, under these
conditions, clyx S satisfies the characteristic properties of BS: it is a
compactification of S in which S is C*-embedded. Thus:

(@) S s C*-embedded in X if and only if cl;x S = BS.
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The following result, referred to above, is restated here for emphasis:
(b)  Every compact set in X is C*-embedded in X.

This fact is particularly transparent from (a): if S is compact, then
clyxy S = S = BS, whence S is C*-embedded in X.
() If S is open-and-closed in X, then clyx S and clyx (X — S) are
complementary open sets in BX.
For, BX is the union of cl S with ¢l (X — S), and, by (III), these sets
are disjoint.
From 3.15, we have:
(d)  Anisolated point of X is isolated in BX ; and X is open in BX if and
only if X is locally compact.

The first assertion is also a special case of (c).

6.10. exampLEs. BN, BQ, and PR. Let us try to get some idea of
what these spaces must be like.

By 6.9(d), N is open in 8N, and R is open in SR, but Q is not open
in BQ.

The space BN. More specifically, every point of N is an isolated point
of BN. These are the only isolated points, of course, since N is dense
in BN. By 6.9(c), the closure in BN of every subset of N is open in
BN. The points p of SN — N are in one-one correspondence with the
free ultrafilters A? on N, with A? converging to p. Hence every
neighborhood of p meets N in a member of A?. On the other hand, if
Z € A?, then cl Z is an open neighborhood of p. Next, SN is totally
disconnected: given distinct points p and ¢, choose Z € A? — A¢; then
cl Z is an open-and-closed set containing p but not g.

The subset N, of odd integers is C*-embedded in N. Therefore
cl N, = BN, (6.9(2)), and hence cl N; is homeomorphic with BN.
Similarly for the subset N, of even integers. Thus, SN is expressible
as the union of two disjoint copies of itself.

We can also decompose N into infinitely many disjoint infinite sets
A, (n e N). The sets cl A, are then disjoint open-and-closed subsets
of BN, and each is homeomorphic with BN. Now, though, their
union

T=U.,cl4,

is not all of BN, as a compact space cannot be a union of infinitely many
disjoint open sets. However, T is dense in SN ; in fact, N = T < 8N,
so that BT" = BN (6.7).

I.et us choose a point p, € cl 4, — N, and define

D = {Pl’sz : }
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Trivially, D is a discrete subspace of BN; so D is homeomorphic with
N. Moreover, D is C*-embedded (in fact, C-embedded) in T: to
extend a function f on D to a continuous function on 7, simply assign
the constant value f(p,) to each point of cl 4,. It follows that D is
C*-embedded in BT—which is SN. By 6.9(a), cloy D = BD. Now,
since D is contained in the closed set BN — N, so is cl D; thus, BN —
N > BD. But BD is homeomorphic with SN. We have proved:

(&) BN — N contains a copy of BN.

Let f be a function in C*(N) that assumes all rational values in
[0, 1]. Then every real number in [0, 1] belongs to the closure of
fIN]. Consequently, the compact set f#[SN] is all of [0, 1]. In partic-
ular, the cardinal of BN must be at least the cardinal ¢ of the continuum.
(As a matter of fact, its cardinal is 2¢ (9.3 or 90).)

The space BQ. This space, too, is totally disconnected. For,
distinct points p and q are contained in disjoint closed neighborhoods U
and V, respectively. Then U n Qand V' n Q are disjoint closed sets
in Q. Consequently, there is an open-and-closed set E in Q containing
U n Q and disjoint from V' n Q. (This is proved in 16.16, to which
the reader may refer directly.) The open-and-closed set clyq E in fQ
(6.9(c)) then contains p but not g.

Any mapping 7 of N onto Q is a continuous mapping into the com-
pact space BQ; as such, it has a Stone extension 7 from all of BN into Q.
Since the range of 7 is a compact set in 8Q, and contains the dense set Q,
it must be all of BQ. Thus, B8Q is a continuous image of SN. On the
other hand, 6.9(a) implies that

CIﬂQ N = ﬁN.

Therefore BQ is equipotent with SN.

Since BQ is compact, every neighborhood of a point contains a
compact neighborhood. But, clearly, no compact neighborhood can be
contained entirely in Q. It follows that BQ — Q is dense in BQ.
(This argument is general and shows that if T is any locally compact
space containing Q, then T — Q is dense in 7T')

The space BR. As above, BR is a continuous image of SN, and

(b) clgg N = BN.

Hence BR is equipotent with SN.

Let R* denote the subspace of all nonnegative reals, and R~ the
subspace of nonpositive reals. Since the closure of a connected set is
always connected, clg R* and clg R-, as well as SR = clR, are
connected.
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Trivially, R+ is C*-embedded in R, so that c] R = BR*. Since Rt
is homeomorphic with R-, cl R+ is homeomorphic with cl R-, and
cl R* — R+ with cl R— — R~. Every neighborhood of a point of
cl Rt — R* meets R* in an unbounded set. Since R* is locally
compact, it is open in cl R*, whence cl Rt — R+ is compact.

Obviously, cl R* U ¢l R~ = BR. The arctangent function in C(R)
has a continuous extension to all of SR; clearly, this extension assumes
the sole value 7/2 on ¢l Rt — R*, and the sole value —7/2 on ¢l R— —
R-. 'Therefore BR — R is disconnected: cl R* — R* is disjoint from
cl R— — R-, and their union is SR — R.

Finally, we show that cl R* — R* is connected. If not, it admits a
continuous function that assumes precisely the values 0 and 1. This
has an extension to a function fe C(cl R*) (since cl R* — R* is
compact), and f must assume values near 0, and values near 1, at
arbitrarily large x € R*. Since R* is connected, f must assume the
value 1/2 on an unbounded set in R+, and hence also at some point of
cl R+ — R+, 'This contradiction shows that cl Rt — R* is connected.
Thus, BR — R is the union of two disjoint, homeomorphic connected
sets. For an alternative proof that cl R+ — R+ is connected, see 6L.3.

6.11. LemMma. If ¢ is a continuous mapping of a space E into a space
Y, whose restriction to a dense set X is a homeomorphism, then ¢ carries
E - Xinto Y — o[ X].

PROOF. Suppose, on the contrary, that p = @x, where x € X and
p # x. Let V be a closed neighborhood of x in E that does not contain
p- The homeomorphism ¢|X carries ¥V n X onto a neighborhood of
ex in p[X], i.e., onto a set of the form W n ¢[X], where W is a neigh-
borhood of @x in Y. Since X is dense, every neighborhood of p
contains points of X — V. The homeomorphism ¢|X takes all such
points into Y — W. Hence no neighborhood of p is carried by ¢ into
W. Thus, ¢ is not continuous at p.

6.12. From Stone’s theorem and the lemma, we obtain:

THEOREM. Every compactification of X is a continuous image of BX.
Moreover, if = is any homeomorphism from X into a compact space Y, then
its Stone extension 7 into Y carries BX — X into Y — [ X].

6.13. For later use, we record here some elementary consequences
of the lemma.

() Let X = T. If there exists a continuous mapping from T to X
whose restriction to X is the identity (i.e., X is a retract of T'), then X
1s closed.



6C THE STONE-CECH COMPACTIFICATION 93

According to the lemma (with E = cl X, and Y = X), the mapping
carries cl X—X into the empty set. (Alternative proof: The fixed
points of any continuous map of a space into itself form a closed
set.)

This yields

(b)  If T contains a product X = Xa X,, and each projection m,: X —
X, has a continuous extension w,}: T — X, then X is closed.

By 3.10(c), the mapping p — (w,'p), from T to X is continuous; and,
obviously, its restriction to X is the identity.
In similar vein, we obtain the following familiar result.

(c) The graph of a continuous mapping ¢: A— B is a closed set in
A x B.

Each of the mappings (@, b)— a and (a, b) — @a is continuous. By
3.10(c), the mapping (a, b) — (a, pa) onto the graph X of ¢ is continuous.
Obviously, its restriction to X is the identity.

PROBLEMS

6A. C*.
1. C*(X) is isomorphic with C*(Y) if and only if 8X is homeomorphic
with 8Y.
2. In the uniform norm topology (2M), every closed ideal in C*(X) is an
intersection of maximal ideals. [2M and 40.]
3. Find X and Y such that C*(X) is isomorphic with C*(Y), and X is a
P-space (4]), while Y is not a P-space.

6B. THEOREM 6.4.

Consider the conditions (1), (2), and (3) of Theorem 6.4, where now the
subspace X of T is not necessarily dense. It was pointed out in the proof of
the theorem that (1) still implies (2), and (2) still implies (3). If 7 is normal,
then (3) implies (2), but not otherwise. [3E.2.] However, even if T
is compact, (2) does not imply (1). [Let X be a closed set but not a
retract.]

6C. COMPACTIFICATION THEOREM.
1. If fe C*(X) and p € BX, then

JHp) = infze a0 (sup f[Z]) = supzeav (inf f[Z]).

2. Let X be dense in 7. Trivially, if there is a homeomorphism of X
onto T that leaves X pointwise fixed, then 7T satisfies the conditions listed in
Theorem 6.5. The pointwise invariance of X is essential here. Let
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S=R-—-N,and X = S — {0}. Then X is dense in BS, and BS is homeo-
morphic with X, but X is not C*-embedded in BS.
3. X is normal if and only if it has a compactification Y such that any two

disjoint closed sets in X have disjoint closures in Y. Any such space Y may
be identified with BX.

6D. LEMMA 6.11.

1. Lemma 6.11 does not carry through if the condition that ¢|X be a
homeomorphism is relaxed to allow | X to be an arbitrary one-one continuous
mapping.

2. If = is a continuous mapping of X into a compact space Y, with the
property that F{[8X — X] < Y — 7[X], then =, regarded as a mapping from
X into 7[X], is closed.

6E. ZERO-SETS.

1. If X is dense in T, then the family of all sets cl; Z, for Z € Z(X), is a
base for the closed sets in T.

2. A zero-set in BX need not be of the form ¢l Z, for Z € Z(X). [Consider
N.]

3. Every zero-set in 8X is a countable intersection of sets of the form cl Z,
for Z € Z(X).

4. Any zero-set in SN that meets SN — N has at least ¢ points. [Such a
set contains a copy of SN — N.] Compare 60.6.

5. For suitable choice of o € SN — N, the subspace £ = N U {o} of SN
is the same as the space 2 of 4M. Evidently, {o} is a zero-set in Z; but clgy {o}
is not a zero-set in B2 (= BN).

6. If X is discrete, Z < X, and p € X, then Z € A? if and only if clgxy Z
is an open neighborhood of p.

7. If X is dense in T, and & is an arbitrary base for the closed sets in X,
then the family of all sets clp B, for B € %, need not form a base in T.
[Consider N*.]

6F. CONVERGENCE OF 2-FILTERS.

Let X be dense in T. The following generalize results in 3.16, 3.17,
and 4.11.

1. For any nonempty set S in X, cly S is the set of all cluster points of the
z-filter on X of all zero-sets containing S. [6E.1.]

2. Every z-filter on X with cluster point p is contained in a z-ultrafilter on
X with limit p. Hence a z-ultrafilter converges to any cluster point.

3. A prime z-filter on X converges to any cluster point in 7.

4. T is compact if and only if every z-filter on X has a cluster point in 7', and
if and only if every z-ultrafilter on X has a imit in T. [The z-filter of all
zero-set-neighborhoods of members of a given free z-filter on T is also free;
its trace on X generates a z-filter on X with no cluster point.]
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6G. EXTENSION OF CONTINUOUS MAPPINGS.

Let X be dense in T, and let & be a z-filter on X.

1. Let ¢ denote the identity mapping of X into T. A cluster point or
limit of & in T is precisely a cluster point or limit, respectively, of o% F.
Thus, to “fix”’ & is to ensure that ¢# % be a fixed z-filter on 7.

Let = be a continuous mapping from X into ¥, where now Y is not
necessarily compact.

2. N ™*F = Nzes cly 7[Z]; thus, 7 carries cluster points of # to cluster
points of T#F.

Let X, denote the set of all points p in T with the following property:
for all the z-ultrafilters &/ on X that converge to p, the z-filters r#.o7 all
converge in Y, and to a common limit 7.

3. X, > X.

4. The mapping 7, from X into Y (defined by the above) is a continuous
extension of 7.

5. X, is the largest subspace of T to which t has a continuous extension into Y.
[2] Compare Theorem 10.13.

6H. CONTINUITY OF EXTENDED MAPPING.

Let ¢ be a mapping from T to Y, and let X be dense in T. If the restric-
tion of ¢ to X U {p} is continuous for each p, then ¢ is continuous.
[Given a closed neighborhood V of gp,, let U be an open neighborhood of
poin T such that o[U N X] < V. Then ¢[U] < V.]

6. PSEUDOCOMPACT SPACES.

1. Xispseudocompact if and only if every nonempty zero-set in X meets X.

2. If BX, in 1, is replaced by an arbitrary compactification of X, then the
sufficiency may fail. [Consider the one-point compactification of an un-
countable discrete space.]

3. Every nonempty zero-set in N x (B8N — N) is uncountable [6E.4],
although the space is not pseudocompact. See 5H.7.

6]. ALMOST COMPACT SPACES.

The following are equivalent for any space X. By (2) and Corollary 1.21

(or by (1) and 1G.4), X must be pseudocompact. By (2), the space W
satisfies the stated conditions. For additional equivalences, see 15R.

(1) Of any two disjoint zero-sets in X, at least one is compact.

(2) |BX — X| £ 1. [Establish (1) > (2) > (3)— (4)— (6) = (2).]

(3) X < T implies BX < BT.

(4) Every embedding of X is a C*-embedding.

(5) Every embedding of X is a C-embedding.

(6) The only compactification of X is B.X.

(7) Every embedding of any continuous image of X is a C-embedding.
[If X satisfies (2), so does its image.]
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6K. nHomomoRPHISM OF C(Y) oNTO C*(Y).

Let N, and N, denote the subsets of odd and even integers in N,
respectively, and let Y be the subspace NV, U clgy NV, of SN.

1. Y contains a copy of 8Y.

2. There exists a homomorphism of C(Y) onto C*(Y). [C(Y) is essen-
tially the set of all functions in C(N) that are bounded on IV,.] Contrast with
Corollary 1.8.

3. There exists a subspace Y’ of Y with the following properties:

(i) Y’ is dense and C*-embedded in Y;

(ii) Y’ is not C-embedded in Y;

(i) C(Y") is isomorphic with C(Y).

6l.. CONNECTEDNESS.

1. BX is connected if and only if X is connected.

2. A point x € X has a base of open-and-closed neighborhoods in 8X if and
only if it has a base of open-and-closed neighborhoods in X.

3. It is well known that the intersection of any chain of compact, connected
sets is connected (see Corollary 16.14). Use this result to prove that the
complement of R+ in any compactification is connected. Do the same for
R”, where n > 1.

4. Every nonempty, proper zero-set in SRt — R+ is disconnected. [For
f € C*(R*),if f# assumes both the values 0 and 1 on SR+ — Rt, then the set

{reR:f(x) = 3}

is a union of two disjoint closed sets whose closures in BR* both meet Z(f f) —
R+] Contrast with 10N.5.

6M. EXTREMALLY DISCONNECTED SPACES.

1. BX is extremally disconnected (1H) if and only if X is extremally
disconnected. BX is basically disconnected if and only if X is basically
disconnected.

2. A space T is extremally disconnected if and only if every dense subspace is
C*-embedded. [Necessity. 1H.4, and Urysohn’s extension theorem or
Theorem 6.4. Sufficiency. For an open set U, consider the subspace
U U (T — clU).] Hence, acompact space T is extremally disconnected if and
only if T = BX for every dense subspace X.

3. According to 3N.6, if X is extremally disconnected, then C(X) is a
conditionally complete lattice. Still, the supremum in C of a family of
functions—even of a countable family—need not be the same as the pointwise
supremum: find an example in C(BN).

6N. COMPACTIFICATION OF A PRODUCT.
Let D be an infinite discrete space.



6Q THE STONE-CECH COMPACTIFICATION 97

1. BD x BD is not extremally disconnected (1H). [The open set {(x, x):
x € D} does not have an open closure.]
2. BD x BD is not homeomorphic with f(D x D). [6M.1.]

60. BN, BQ, anp SR.

It was shown in 6.10 that SQ and BR are continuous images of SN.

1. BN and SR are continuous images of SQ.

2. Neither SN nor 8Q is a continuous image of SR. [6L.1.]

3. BN is not homeomorphic with Q. [Use 6M.1, or, alternatively, 1C.4.]
(For generalizations, see Corollary 9.8 and section 10.10.)

4. BQ — Q is not C*-embedded in 8Q. [The function sgn on Q — {0}
has a continuous extension to SQ — {0}, but not to fQ.] Hence B(8Q — Q)
# Q.

5. BQ — Q has no P-points (4L). [Consider a homeomorphism of Q
into [0, 1].] Contrast with 6V.

6. Every countable set E in SN is C*-embedded in SN. [By 3B.5,
N U Eisnormal; apply 3D.1.] Hence every infinite closed set in SN contains
a copy of BN. [0.13.]

6P. THE SPACE A.

Let 4 = BR — (BN — N) (see 6.10(b)).

1. A > R. Hence B4 = BR.

2. 4 — Risdensein 4 — R. [Every closed neighborhood of a point in
BA — R meets R — N.] Hence the zero-set 4 — R in A belongs to A? for
every p € SN — N.

3. 4 is pseudocompact. [An unbounded function on 4 would be un-
bounded on a closed subset of R disjoint from N.] But 4 is not countably
compact. Hence 4 is not normal. [3D.2.] Also, 4 is not realcompact.

4. N is closed and C*-embedded in A, but it is not C-embedded. Compare
3L4,5.

5. N is a closed Gy, but not a zero-set, in 4. Thus, a closed, discrete set,
each of whose points has a countable base of neighborhoods, need not be a
zero-set. Nor need a closed, countable union of zero-sets be a zero-set.

6Q. THE SPACE I1.

1. Let ¢ be a one-one mapping of N onto Q. With each zrrational number
7, select an increasing sequence (s,) of rationals converging to . For each
such sequence, consider the subset

E={p(s), @(s2), -}
of N, and let & denote the family of all sets E thus defined. Then & has ¢
members, and the intefsection of any two is finite.
2. For E € &, define E' = clgy E — N. The c sets E are mutually dis-
joint, open-and-closed subsets of SN — N.
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3. Construct a set D by selecting one point pz from each set E’, and define
IT to be the subspace N U D of BN. Then N is dense in I1, and every sub-
space of IT is extremally disconnected [6M.2]. The following properties of IT
are to be contrasted with those of the space ¥ of 5I.

4. D is a discrete zero-set in I1, of power c.

5. Every subset of I is a Gj, but the first countability axiom is not satisfied.
[4M.2]

6. The zero-set D is not C*-embedded in I1. [Cf. 3K.4.] Therefore IT
is not normal.

7. Define f as follows: f(n) = @(n), f(pr) = sup p[E]. Then f is a
continuous, one-one mapping of IT onto R. Hence IT is not pseudocompact.

8. Let ¢* denote the Stone extension of ¢ from BN into the one-point
compactification of R. Then ¢*|IT = f.

9. Even if & were enlarged to be a maximal family, as in 51, the resulting
space would not be pseudocompact. [Any member of the enlarged family
contains an infinite set without a limit point.]

6R. EXTREMALLY DISCONNECTED SUBSPACES.

1. The closed subspace SN — N of the extremally disconnected space SN
is not extremally disconnected. [In 6Q, let 4 and B be disjoint subsets of D
that cannot be separated by open subsets of II. Consider the unions of the
corresponding sets E’, and apply 1H.1 and the fact that SN — N is normal.]
(For another proof, see 6W.)
2. The following are equivalent.
(1) Every subspace of T is C*-embedded. (Such a space need not be
discrete: witness the space X of 4M.)
(2) T is normal and every subspace is extremally disconnected. [3D.1.]
(The latter condition does not require normality: witness J1.)
(3) T is normal and every closed subspace is extremally disconnected.
[To derive (1), use 6M.2.]
3. If every subspace of a compact space X is C*-embedded, then X is
finite. [Otherwise, by 0.13, X contains a copy of SN.]
4. Every infinite compact space contains a subspace that is not extremally
disconnected.

6S. OPEN-AND-CLOSED SETS IN SN — N.
For infinite A < N, define

A =y A—-N.

1. Every set of the form A’ is homeomorphic with SN — N.

2. B’ < A’ if and only if B — 4 is finite. Thus, B’ = A’ if and only if
B differs from A in a finite set. Hence there are just ¢ distinct sets A4’
[Only R, sets differ from A in a finite set.] As a matter of fact, we have
already found ¢ disjoint such sets (6Q.1).
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3. Every open-and-closed set in SN is of the form clyy 4 for some 4 < N.
The sets of this form constitute a base for the closed sets in SN, and a base
for the open sets in SN.

4. Every open-and-closed set in SN — N is of the form 4’. The sets 4’
form a base for the closed sets in BN — N, and a base for the open sets in
BN — N.

5. If A’ and B’ are proper subsets of BN — N, there exists a homeo-
morphism of BN — N onto itself carrying 4’ onto B'.

6. For any p € BN — N, the set of all images of p under homeomorphisms
of BN — N is dense.

7. If a sequence of sets A, has the finite intersection property, then (), 4,,’
contains a nonempty, open subset of BN — N. [Choose distinct x, € 4, n

-- N A,, and consider the set 4 = {x,}, < n-]

8. Every nonempty G; in SN — N has a nonempty interior.

6T. NON-P-poINTS OF SN — N.
Let fe C*(N), and p € BN — N, with f&(p) = 0.

1. If fA[U] = {0} for some neighborhood U of p in BN — N, then there
exists a sequence (s,) in N such that p belongs to the closure of {s,},n, and
lim, , f(s,) = 0. [U contains a neighborhood of p of the form A4’ of 6S.]

2. Conversely, suppose that no such neighborhood U exists. If (s,) is any
sequence such that lim,,_, ., f(s,) = 0, then p does not belong to the closure of
{S,, neN-

3. The situation described in 2 actually occurs. [4K.1.]

4. Specifically, let g be any function in C(SN — N) with infinite range.
There exists ¢ € BN — N such that g is not constant on any neighborhood of
g. [Otherwise, SN — N would be a union of infinitely many disjoint open
sets.]

6U. 2-ULTRAFILTERS THAT CONTAIN NO SMALL SETS.
A subset S of N is said to have density 7 if

lim, . |{s e S:ns < n} _,
Let # denote the family of all subsets of N of density 1.

1. # is a free filter on N.

2. If % is any ultrafilter containing &, then no member of % has density 0.

3. Define fe C*(N) as follows: f(n) = k/2™ for n = 2™ + k — 2, where
m,keN, and k = 2™ If lim,_,, f(s,) exists, for some sequence (s,) in N,
then {s,}, . n has density 0.

4. No cluster point in SN of the filter # is a P-point (4L) of SN — N.
[6T.1 and 6.6(a).]

5. There exists a point p in SR — R such that every member of the z-
ultrafilter A? on R is of infinite measure. [4F.] Hence every neighborhood
of p meets R in a set of infinite measure.
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6V. P-POINTS AND NONHOMOGENEITY OF SN — N.

Assume the continuum hypothesis (¢ = X;). Then the ¢ nonempty
open-and-closed sets in BN — N (see 6S.2,4) can be indexed (V,), <,

Define W, inductively, for « < w,, as follows. Assume that (), <, W, is
nonempty for each = < a; then, by 65.4,7, [, <,W, contains aset V. Put
W,=V,or V, n V, according as the latter set is empty or not.

1. If @y < w, for n € N, and o = sup, ay, then (), W, > W..

2. Ne<w, W, contains at least one point p.

3. IfpeV, then V, > W, Hence p is the only point in (), W,.

4. p is a P-point (4L) of SN — N. Compare 6T.

5. BN — N is not homogeneous, i.e., there exist two points such that no
homeomorphism of the space onto itself takes one to the other. [A P-point
must go to a P-point.]

6. BN — N has a dense set of P-points.

6W. DISCONNECTEDNESS OF SN — N.

Recall that SN is extremally disconnected (6M.1).
Let A, (n € N) and 4 be infinite sets in N such that (4,), .~ (as in 6S) is
strictly increasing, and 4’ © cl |, 4,
1. For eachn, A n A, — Ur<n Ap is nonempty. [6S.2.]
2. Choose x, € A N A, — Ur<n A and define
B=A4—{x,:neN}
Then B’ © cl |, 4,/, and B’ is contained properly in A4’

3. In BN — N, the closure of the union of a strictly increasing sequence of
open-and-closed sets is never open. Hence BN — N is not basically dis-
connected (1H).

4. More generally, BX — X is not basically disconnected for any infinite
discrete X.



Chapter 7

CHARACTERIZATION OF MAXIMAL IDEALS

7.1. The promise made at the beginning of Chapter 6 that BX is to
be used to characterize the maximal ideals in C(X) and in C*(X), will
be fulfilled in this chapter. The key to the description of the maximal
ideals in C*(X) has already been given: C*(X) is isomorphic with
C(BX), and the maximal ideals in the latter ring are in one-one corre-
spondence with the points of BX.

Whenever C(X) # C*X), the ring C(X) is definitely not iso-
morphic with C(BX) (Corollary 1.8). But the maximal ideals in C(X)
are still in one-one correspondence with the points of 8X. In fact, of
the various ways of constructing X, we chose to present first the one
that brings out this correspondence most clearly. The bridge between
the maximal ideals in C(X) and the points of BX is provided by the
z-ultrafilters on X.

7.2. THEOREM. The maximal ideals in C*(X) are precisely the sets
M*» = {f e C*X): f(p) = 0} (# € BX),
and they are distinct for distinct p.

PROOF. The mapping f— f? is an isomorphism from C*(X) onto
C(BX); and since BX is compact, the maximal ideals in C(8X) are
precisely the fixed ideals

{f# e C(BX): f¥(p) = 0}.

Evidently, M*? is free or fixed according as p € BX — X or p € X;;
and, in the latter case, M*? is the same as M¥*,.

We recall (5.6) that each residue class field of C or C* (modulo a
maximal ideal M) contains a canonical copy of R, and we have agreed
to identify this copy with R itself: M(r) = 7 for all € R. Thus, an
immediate consequence of the theorem is the formula

J&?) =1011W’”‘”(f) (€ BX, f € CHXX)).
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As another application of the theorem, consider the result (established
in 4.7 and 5.10) that j belongs to every free maximal ideal in C*(N).
Third proof: obviously, j#(p) = O for every p € BN — N (since N is
dense in BN); hence j € M*? for all such p.

7.3. Now we look at C(X). The mapping p — A? is one-one from
BX onto the set of all z-ultrafilters on X. But the latter set is in one-one
correspondence with the set of all maximal ideals in C(X) (Theorem
2.5). Therefore, corresponding to each point p of BX, there is a
maximal ideal M? in C(X), determined by

Z[M?] = A,
and the correspondence p — M? is one-one.
THEOREM (GELFAND-KOLMOGOROFF).  For the maximal ideals in C(X),

we have
M? = {fe C(X): p € clox Zx(f)} (p € BX).

PROOF. Since the maximal ideal M? is a z-ideal, f € M? if and only
if Z(f) € A?, hence if and only if p € clyx Z(f) (6.5(c)).

Again, M? is free or fixed according as p € BX — X or p € X; and,
in the latter case, M? = M,

7.4. Here, then, is an explicit one-one correspondence between the
maximal ideals in C(X) and the points of BX. One item that now
shows up very clearly is the algebraic characterization of z-ideals stated
in 4A.5. As another application, consider the purely algebraic
proposition

f2 + g2 e M? if and only if f € M? and g € M,
which is a special case of 2D.2, and the purely topological statement
pec(Zn Z')ifandonlyif pecl Zand pecl Z’,

given in the compactification theorem (Z and Z’ denoting zero-sets in
X). Atfirst, these may seem unrelated. But the Gelfand-Kolmogoroff
theorem shows that the two propositions are identical (since Z(f2? + g2
=Z(f) n Z(g)). Notice that in the proof of the first, it is the necessity
that is nontrivial, while in the second, it is the sufficiency.

THE EXTENSION f*

7.5. We wish now to consider the problem of extending functions
in C(X) to various points p of 8X and to relate their values at p to the
corresponding maximal ideals M?. The analogous problem for C*(X)
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has already been solved: every function f in C*(X) has a continuous
extension f#, defined over all of BX, and for every point p € BX, we
have fA(p) = M*(f).

In C(X), the considerations are complicated by the possible presence
of unbounded functions, and hence of hyper-real ideals (5.6 fI.).
Certainly, no unbounded function in C(X) can have a continuous,
real-valued extension to all of BX. Moreover, even if f is bounded,
M?(f) need not be a real number.

The situation is clarified in the next theorem and the discussion
following it. Our simplifying device is to notice that each function
fin C(X) may be regarded as a continuous mapping of X into the one-
point compactification

R* =R U {0}

of R; as such, it has a Stone extension
f*: BX — R*,

7.6. THEOREM. Let fe C(X).
(a) f*(p) = oo if and only if |M?(f)| is infinitely large.
(b) f*(p) = r € Rif and only if |M2(f) — 7| is either infinitely small
or zero.
PROOF. If f*(p) = oo, then for each n € N, p is in the closure of
the set
Z, - {xe X: |f(®)] 2 .

By the Gelfand-Kolmogoroff theorem, Z,e Z[M?]. By 5.4(a),
|M2(f)| 2 n. 'Therefore |M?(f)| is infinitely large. (Cf. 5.7(a).)
Similarly, if f*(p) = r, then |M?(f) — r| £ 1/n for each =, so that
|M2(f) — 7| is infinitely small or zero. The converses follow from the
fact that the possibilities considered are mutually exclusive and ex-
haustive.

Obviously, if f is bounded, then f* is the same as f&.

7.7. EXaMPLE. As an application of the theorem, let us consider
again the result (established in 5.10) that the image of j, modulo any
free maximal ideal in C(N), is infinitely small. For eachp € BN — N,
we have j*(p) = 0; and, since j is a unit, M?(j) # 0. Since j = |j|,
we have M?(j) = |[M?(j)|, and, by the theorem, this last is either in-
finitely small or zero, hence is infinitely small.

7.8. Let M? be a hyper-real ideal in C. The totally ordered field
C/M? is nonarchimedean, and it contains the real field R in the form
of the residue classes of the constant functions. The following remarks
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supply further details about the relation between M?(f) and f*(p),
for fe C.
Suppose that |M?( f)| is not infinitely large. Then the sets

A={seR:s <M(f)}, B={seR:s 2 M(f)}

form a Dedekind cut in R. The unique real number sup A = inf B
determined by this cut is none other than f*(p). In fact, for every
n e N, we have

sup A — 1/n < M?(f) < sup A + 1/n,

so that |M?(f) — sup 4| < 1/n. Consequently, |M?(f) — sup 4| is
either infinitely small or zero. Therefore, sup A = f*(p).
Any one of the three possibilities:

fXp) < Mx(f), fX(p) = M2(f), f*(p) > M(f)

may occur. In fact, if M?(g) is infinitely small, then the three functions
f=r+g f=r f=r — g satisfy the three conditions, respectively
(f*(p) = r in each case).

If » is any real number, then M?(f) < » implies f*(p) < r (and,
dually, f*(p) < r implies M?(f) < 7). 'The converse is false, a counter-
example being provided by any function f = r + g (or r — g), where
Mp1(g) is infinitely small.

7.9. The correspondence M?—> M*? is one-one between the
maximal ideals in C(X) and the maximal ideals in C*(X). The
results obtained in this chapter enable us to describe this correspondence
in terms of the functions on X. If f e M?, then p € cl Z(f) (Theorem
7.3), whence f*(p) = 0. In case f is bounded, this last states that
f8(p) = 0, and hence holds if and only if fe M** (Theorem 7.2).
Thus, M? n C* is contained in M*?, The two are. not the same, in
general. Precisely:

(@)  M*? s the set of all.f € C*(X) for which |M?(f)| is either infinitely
small or zero.

In fact, f satisfies this condition if and only if f*(p) = 0 (Theorem

7.6(b)).

A striking distinction between real and hyper-real ideals is provided
by
(b)  Mp?is hyper-real if and only if M*? contains a unit of C.

If M? is hyper-real, there exists g = 1 such that M?(g) is infinitely large.
Then M?(g—1) is infinitely small, and by (a), g~ e M*?. 'The converse
is obvious from (a).
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The equality M, n C* = M*, for fixed ideals was derived in 4.7.
We are now in a position to state the general relation.

(c) M2 n C* = M*if and only if M? is real.

The necessity follows at once from (b), while the sufficiency is obvious
from (a).

STRUCTURE SPACES

7.10. As we have seen, the mapping p — M*? is one-one from BX
ontothe set M* = IM*(X) of all maximalideals in C*(X). Accordingly,
it may be used to define a topology on M*—simply by transferring that
of BX. The image of X under this transfer is, of course, the subspace
of all fixed maximal ideals. The topology on M* can be described
intrinsically as follows. Define

CH(f) = (Mem*: f e M) (f & C*X)).

Theorem 7.2 states that f € M*? if and only if f8(p) = 0—hence that
M*? € G*(f) if and only if p € Z,x (f?). Consequently, the mapping
p — M*? carries the basic family of closed sets Z,x(f*) in X onto the
family of sets G*(f) in M*; therefore this latter family constitutes a
base in M*.

As in 4.9, the topology thus defined is called the Stone topology on
M*; and the set M*, endowed with the Stone topology, is called the
structure space of C*. See 7M.

7.11. In the Stone topology on the set MM = M(X) of all maximal
ideals in C(X), the sets

C(f) = {Mem:fe M} (fe C(X))
form a base for the closed sets. By definition, the sets

{p e BX: Z(f) € A%}
form a base for the closed sets in X (6.5(b)). Therefore the mapping
p— M? is a homeomorphism of BX onto 9. Again, the image of X
under the homeomorphism is the subspace of fixed maximal ideals.

It follows that the mapping M? —~M*? is a homeomorphism between
the structure spaces M and M*. It should be noted, however, that in
spite of the formal similarity between the basic closed sets in the
definitions of the respective Stone topologies, the homeomorphism does
not lead, in general, to a correspondence between the bases. In fact,

we have
M*? € G*(f) if and only if p € Zyx(f*),
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as was pointed out in 7.10; by the Gelfand-Kolmogoroff theorem,
on the other hand,

M? e &(f) if and only if p € clyx Zx(f).

While Z,x(f?) = clgx Zx(f) for every f € C¥(X), it is easy to construct
examples where the two sets are not the same. What is more to the
point, the family of all sets Z,x(f?) may differ from the family of all
sets clgxy Zx(f) (for f € C*(X)) (see 6E.2). Observe that to obtain the
family of all sets €(f), it is enough to let f range over the bounded
functions.

O? AND PRIME IDEALS

The material in the remaining sections of this chapter will not be
needed in the text except in Chapter 14.

7.12. For each point p in X, we denote by O? the set of all f in
C(X) for which cl x Z(f) is a neighborhood of p. We observe, at the
outset, that

(a) fe O? if and only if there is a neighborhood V of p such that
Z(f)>Vn X

The condition is surely sufficient. And since Z(f) is closed in X, we

have Z(f) = clgx Z(f) n X, which yields the converse.

It follows at once from this characterization that O? is a z-ideal in
C(X). (Alternatively, (IV) of the compactification theorem (6.5)
implies that Z[0?] is a z-filter.) Evidently, O? is contained in M?.
For p € X, O¢? is the same as the ideal O, defined in 41.

REMARK. If f¥(p) = oo, then each set

{xe X:|f(x)| 2 n} (n e N)
is a member of Z[0?]. Similarly, if g*(p) = 0, then each set {x:
|g(x)| = 1/n} belongs to Z[O?].
(b)  fe Orif and only if fg = O for some g ¢ MP?.
If f € O?, there exists g € C*(X) such that gf(p) = 1, while g8(¢q) = 0
for all ¢ ¢ int cl Z(f). For this g, we have g ¢ M?, and fg = 0. Con-

versely, suppose that g satisfies these conditions. By the Gelfand-
Kolmogoroff theorem, p ¢ cl Z(g), and this implies quickly that f € O»2.

7.13. TueoreM. An ideal I in C is contained in a unique maximal
ideal M? if and only if I > O¢.

PROOF. Necessity. Given f e O?, let g be as in (b). Since g ¢ M?,
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and M? is the only maximal ideal containing I, we must have (1, g) = C.
Consequently, there exist A€ and s€ C such that 1 =54 + sg.
Hence f = hf e L.

Sufficiency. We show that M? is the only maximal ideal containing
Or. If g # p, there exists f € C*(X) such that f# vanishes on a neigh-
borhood of p, while f8(q) # 0;then fe O? — Ma.

7.14. The Gelfand-Kolmogoroff theorem states that p € cl Z(g) if
and only if g € M?. Hence cl Z(f) is a neighborhood of cl Z(g) if and
only if f € O? whenever g € M?.

THEOREM. clyx Z(f) is a neighborhood of clyx Z(g) if and only if there
exists h such that

Z(f) = X = Z(h) > Z(g).

PROOF. Necessity. There exists A € C*(X) such that %# is equal
to 1 on the compact set cl Z(g), and 0 on BX — cl Z(f).

Sufficiency. 1If h is as described, then Z(k) is disjoint from Z(g),
and so their closures in BX are disjoint. Also, Z(f) U Z(h) = X, so
that

cl Z(f) v cl Z(h) = BX.
Therefore,
cl Z(f) = BX — cl Z(h) > cl Z(g).

Thus, cl Z(f) is a neighborhood of cl Z(g).
The mere fact that Z(f) is a neighborhood of Z(g) does not imply
that cl Z(f) is a neighborhood of cl Z(g). See 8K.Z2.

7.15. The ideals O? are basic to the study of prime ideals. The
following result suggests why.

THEOREM. Every prime ideal P in C contains O? for a unique p, and
M? is the unique maximal ideal containing P.

PROOF. We include a second proof that P is contained in a unique
maximal ideal (Theorem 2.11). Let M? be any maximal ideal contain-
ing P. Given fe O?, let g be as in 7.12(b). Then fg = 0 € P, but
gé¢ P;sofe P. Thus, O? = P. The rest of the theorem follows from
Theorem 7.13.

Regarding the incidence of nonmaximal, prime ideals, we have:
(a)  Mp? contains a nonmaximal prime ideal if and only if M? # O#,

For, the z-ideal O? is the intersection of all the prime ideals contained
in M? (‘Theorem 2.8).

The following observation concerning the order in the residue class
ring C/P will be useful.
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(b)  Let P be a prime ideal contained in M?. If f is nonnegative on
a zero-set of O?, then P(f) = 0.

For, f — |f| € O? < P.

7.16. Asin a field, an element a of a totally ordered integral domain
is said to be infinitely large if a > n for all n € N; and a is infinitely small
if 0 <na <1 for all neN. The discussion in 7.8 concerning the
order in a residue class field modulo a maximal ideal applies equally
well to the case of a prime ideal P, and shows that for any f e C(X),
either | P(f)| is infinitely large, or else there exists a unique real number
7 such that |P(f) — 7| is infinitely small or zero.

THEOREM. Let P be a prime ideal contained in M?. For each f € C:
(a) |P(f)| is infinitely large if and only if |MP?(f)| is infinitely large—
o7, equivalently, f*(p) = oo.
(b) |P(f) — 7| is infinitely small or zero (where r € R) if and only if
|M2(f) — 7| is infinitely small or zero—or, equivalently, f*(p) = r.
PROOF. If P(f) = n, then
f—-n—|f-nlePcM

(Theorem 5.5), whence M?(f) = n. 'This yields the necessity in (a);
and a similar proof establishes the necessity in (b). The converses
follow from the fact that the possibilities considered are mutually
exclusive and exhaustive. The conditions in terms of f* were derived
in Theorem 7.6.

It follows that C/P contains infinitely large elements if and only if
C/M? does—that is, M? is hyper-real. On the other hand, if P is not
maximal, then C/P will always contain infinitely small elements, even
when M? is real: namely, all elements |P(f)| for f € M? — P.

PROBLEMS

7A. ISOMORPHISM OF FUNCTION RINGS.

Use the structure spaces to prove that if C(X) is isomorphic with C(Y),
then C*(X) is isomorphic with C*(Y). Compare 1.9.

7B. RESIDUE CLASS FIELDS.

1. M?(f) > 0 if and only if there exists a neighborhood V of p such that
f(x) >0forallxe V n X. [5.4(b).]

2. If |M#(f)| is not infinitely large, then for every real e > 0, there exists
a neighborhood ¥ of p such that the inequality | f(¥) — M?(f)| < € holds in
the field C/M? forallxe V n X.
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7C. REAL MAXIMAL IDEALS.

M? is real if and only if, for every countable family of functions f,, in C(X),
there exists ¥ € X such that f,(x) = f,*(p) for all n.

7D. CHARACTERIZATION OF MP,

1. M? coincides with the set of all fin C such that (fg)*(p) = O for every
gin C. [C/M? is a field.]
2. Prove directly from the definition that the latter set is a maximal ideal.

7E. FUNCTIONS WITH COMPACT SUPPORT.

The family Cg(X) of all functions in C(X) with compact support (4D)
is the same as the family of all fin C*(X) such that Zgy (f?) is a neighbor-
hood of BX — X. Thus,

Cx(X) = Npepx-x 0.

Hence Cy is the intersection of all the free ideals in C, and of all the free ideals
in C*. [4D.5.]

7F. FUNCTIONS VANISHING AT INFINITY.

Let C(X) denote the family of all functions f in C(X) for which the
set
re X:|f(x)| 2 1n}

is compact for every n € N. (Such functions are said to vanish at infinity.)
Obviously, C,, @ Ck (7E).

1. C(X) is the intersection of all the free maximal ideals in C*(X).

2. The intersection of all the free maximal ideals in C(X) is always con-
tained in the intersection of all the free maximal ideals in C*(X).

3. In case X is locally compact and o-compact, but not compact, then the
inclusion in 2 is proper. (A o-compact space is a countable union of compact
spaces.) [BX — X is a compact G,.]

4. BX — X is dense in BX if and only if either of the intersections in 2
is (0).

5. C(Q) = (0). (Hence BQ — Q is dense in Q.)

7G. Cgk anD C,, FOR LOCALLY COMPACT SPACES.

Let X be a locally compact, noncompact space, and let X* = X U {0}
denote its one-point compactification.

1. C(X) (see 7F) is isomorphic with the ideal M, in C(X*), and Cg(X)
(see 7E) is isomorphic with the ideal O, in C(X*).

2. The subrings Cx and C, coincide if and only if every o-compact
subset of X is contained in a compact set in X. [The complement in X*
of such a subset is a G,; apply 3.11(b). Cf. 4L.1.] Hence these rings are
distinct in case X is not countably compact.



110 CHARACTERIZATION OF MAXIMAL IDEALS 7H

7H. THE IDEALS O°,

1. The sets clgy Z(f), for fe O?, form a base for the neighborhoods of
p.
2. If a zero-set Z meets every member of Z[O?], then Z € Z[M?].

3. Z[M?] has the countable intersection property (i.e., M? is a real ideal)
if and only if Z[O?] has the countable intersection property. [Sufficiency.
Theorem 7.6.]

4. A nonmaximal z-filter containing Z[O?] cannot be closed under
countable intersection. [Every member of Z[M?] is a countable intersection
of members of Z[0?].]

5. If fe M? — O?, then there exists a prime ideal, containing O? and
/, that is not a z-ideal. [Argue as in 41.5.]

6. If f e M? — Op, then there exists a prime ideal containing O?, but not f,
that is not a z-ideal. [Argue as in 41.6.]

71. GENERATORS FOR M? AND O2?,
1. IfMP = (---, f,, ---), then

N. ol Z(f) = {p}-

In case the f, are bounded (see 2A), [, Z(f,f) can contain points other than p.
2. 02 = (---,f,, - -)if and only if the sets cl Z(f,) form a subbase for the
neighborhoods of p. [Theorem 6.5(IV) and 1D.1.]

7]. PRIME IDEALS.

1. No free maximal ideal contains a fixed prime ideal.

2. In C*, M*? is the unique maximal ideal containing O? n C#*; and if P
is a prime ideal contained in M*?, then P > O? n C*. Hence every prime
ideal in C* is contained in a unique maximal ideal. Notice that this also
follows from Theorem 2.11 (or 7.15) and the fact that C*(X) is isomorphic
with C(BX); see 6.6(c).

3. Prove the analogues of 5.7(a, b, c) for arbitrary prime ideals.

4. Give a proof of Theorem 7.16 analogous to that of Theorem 7.6.
[7.15(b).]

7K. RESIDUE CLASS RINGS MODULO PRIME IDEALS.

Let P be a prime ideal in C, define P* = P n C*, and let B denote the
subring of C/P consisting of all elements a for which |a| is not infinitely large.
1. The mapping P*(f)— P(f) (fe C*) defines an order-preserving
isomorphism of C*/P* onto B. [The homomorphism f— P(f) (fe C¥)
maps C* onto B, and its kernel is P*.]
2. C|P is isomorphic with C*/P* if and only if C/P = B, that is, the
maximal ideal containing P is real. [Consider the image of M/P under the
isomorphism, and apply the second isomorphism theorem.]
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7L. P-SPACES.

1. The following are equivalent.
(1) X is a P-space (4]).
(2) M? = O? for all p € BX. Note that for the special case of a dis-
crete space, (1) implies (2) by 6E.6.
(3) Every prime ideal in C(X) is an intersection of maximal ideals.
(4) Every z-ideal in C(X) is an intersection of maximal ideals.

2. Derive 5P from 5G.2.

3. If X is a P-space, then the intersection of all the free ideals in C(X) is the
same as the intersection of all the free maximal ideals, and consists of all
functions that vanish everywhere except on a finite set. [7E and 4K.3.]
(The corresponding result holds for all realcompact spaces (Theorem 8.19).
But not every P-space is realcompact (9L).)

7M. THE STRUCTURE SPACE OF A COMMUTATIVE RING WITH UNITY.

Let A be an arbitrary commutative ring with unity element. Denote
the set of all maximal ideals in 4 by &. For each a € 4, define

Ca) ={MeS:aec M}
1. @ may be made into a topological space by taking the family of all
sets G(a) as a base for the closed sets. This space is called the structure

space of A; its topology is called the Stone topology.

2. The closure of any subset T of & is the set

{Mec: M > T
Hence T is dense if and only if ([} € = (] &. The set
Mes: M>>I}

is called the hull of I, and () T is called the kernel of T. Thus, the closure
of ¥ is the hull of the kernel of €. For this reason, the Stone topology is
often referred to as the hull-kernel topology.

3. & is a T-space.

4. & is a Hausdorff space if and only if, for each pair of distinct maximal
ideals M and M’, there exist a, a’ € A such that a¢ M, a' ¢ M’, and
aa’ € [} ©. In particular, the structure space of the ring of integers is not
a Hausdorff space.

5. For B < A, the collection {&(b)};. 5 has empty intersection if and only
if the ideal (B) generated by B is improper, i.e., all of 4. In fact, if (B) = 4,
then some finite subfamily has empty intersection.

6. Every family of closed sets in & with the finite intersection property
has nonempty intersection. Thus, if S is @ Hausdorff space, it is compact.

7N. 9% AND IR* As MODELS FOR SX.

The properties of the structure spaces 9% and I*, listed below, lead to
independent proofs of the existence of a compactification in which X is
C*-embedded, i.e., of BX.
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1. 9 is compact. [7M.6.]
2. For fe C*(X), and 7, s € R, the set

{M:r < M(f) < s}
is open in M.

3. The set § of all fixed maximal ideals in C(X) is a dense subspace of
I [7M.2] and is homeomorphic with X [4.9].

4. & is C*-embedded in 9. [Evidently, C*(¥) is in one-one corre-
spondence with C*(X). Consider Dedekind cuts as in 7.8. Caution: Note
the last sentence in 7.8.]

5. Similarly, the set of all fixed maximal ideals in C*(X) is homeomorphic
with X and is a dense, C*-embedded subspace of the compact space I*.

6. The topology of It* is the weak topology induced by the family of
functions M — M(f) on M* (f € C*¥(X)).

70. PROPERTIES OF cl Z(f).
For an ideal I in C, define

(1) = {p e BX: M? > I}.

1. 6(I) = (yer cl Z(f), that is, (1) is the set of all cluster points of the
z-filter Z[I].

2. If cl Z(f) is a neighborhood of 6(I), then fe I. [Argue as in 40.1.]
Note that the necessity in Theorem 7.13 is a special case of this result.

3. Given g € C, and a positive unit u, there exists f such that |g — f| £ u
and cl Z(f) is a neighborhood of cl Z(g). [Argue as in 40.2, and apply
Theorem 7.14.]

7P. 1DEALS IN C AND C*.
For any ideal Iin C, I < M?if and only if I n C* < M*?, [70.2.]

7Q. CLOSED IDEALS IN THE m-TOPOLOGY.
For an ideal I in C, define

I={M>:M? > I},

that is, I is the kernel of the hull of 7 (7M.2).

1. Iis a closed ideal in the m-topology [2N.5], and consists of all g for
which ¢l Z(g) = 6(I) (see 70). Furthermore, 6(I) = 6(I).

2. I is the closure of I in the m-topology. [In 70.3, if g € I, then fe I,
by 70.2.] Hence an ideal is closed if and only if it is an intersection of maximal
ideals. 'This generalizes 6A.2.

3. The closed ideals in C* coincide with the intersections of maximal
ideals in C* if and only if X is pseudocompact. [Theorem 5.8(b) and
7.9(c).] It follows that if X is not pseudocompact, then the m-topology is
not preserved under the isomorphism from C*(X) to C(8X); compare 1].6.

4. X is a P-space (4]) if and only if every ideal in C is closed.
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7R. e-IDEALS.

1. E-(Z[M?]) = M*?, that is, the correspondence defined in 2L.16 is the
mapping M? — M*?,

2. E(M*?) = Z[0?] = Z[O? n C*] = E(O? n C*).

3. The only e-ideal containing O? n C* is M*?, Hence every prime
e-ideal is maximal.



Chapter 8

REALCOMPACT SPACES

8.1. Hewitt introduced the notion of realcompact space, and showed
that to a very large extent these spaces play the same role in the theory
of C(X) that the compact spaces do in the theory of C*(X). For
each X there exists a unique realcompact space v.X in which X is dense
and C-embedded (Theorem 8.7), and the space vX serves to characterize
the 7eal maximal ideals in C(X).

Just as C* distinguishes among compact spaces (Theorem 4.9), so
does C distinguish among realcompact spaces (Theorem 8.3). Now,
we have already seen that C is at least as sensitive as C*: if C(X) and
C(Y) are isomorphic, then C*(X) and C*(Y) are isomorphic (Theorem
1.9). Since C distinguishes between N and BN, for example, while C*
does not, C is genuinely more sensitive than C*.

Although C* also distinguishes among other classes of spaces—e.g.,
metric spaces (Corollary 9.8)—the compact spaces form a maximal
class; explicitly: for any X, the compact space BX has the property
that C*(BX) is isomorphic with C*(X). Similarly, the realcompact
spaces form a maximal class with respect to C: for each X, vX is a
realcompact space such that C(v.X) is isomorphic with C(X).

As we know, X is compact if and only if every maximal ideal in
C(X) is fixed (Theorem 4.11). By definition, X is realcompact if
every real maximal ideal in C(X) is fixed (5.9). Equivalently, X is
compact if and only if every z-ultrafilter is fixed; and X is realcompact
if and only if every real z-ultrafilter—i.e., every z-ultrafilter with the
countable intersection property (5.15)—is fixed. Hence it is plain that
realcompactness is a topological invariant. This can also be seen
algebraically : every homeomorphism induces a ring isomorphism; and
any ring isomorphism takes real ideals to real ideals.

While every compact space is realcompact, we have met realcompact

spaces that are not compact—e.g., N and R. Considerable effort was
114
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expended to produce a space that is not realcompact—e.g., W (5.12),
¥ (5I), or A4 (6P).

We shall see in Chapter 12 that for most ““ practical” purposes, the
discrete spaces are all realcompact. More generally, * practically” all
metrizable spaces are realcompact (Theorem 15.24). For the moment,
we point out one elementary criterion. Others will be derived later
in the chapter.

8.2. X is said to be a Lindeldf space provided that every family of
closed sets with the countable intersection property has nonempty
intersection—i.e., every open cover has a countable subcover.

THEOREM. Every Lindelof space is realcompact.

PROOF. In a Lindelsf space, every z-filter with the countable
intersection property is fixed.

As a matter of fact, this condition on z-filters is characteristic of
Lindel6f spaces; see 8H.5.

When X is expressible as a countable union of compact subspaces,
it is said to be o-compact. Clearly, every o-compact space is a Lindelof
space, and hence is realcompact. (Therefore, again, every countable
space is realcompact.) Furthermore, every space with a countable base
of open sets is a Lindeldf space, and hence is realcompact. Therefore
every separable metric space is realcompact. Thus, every subspace of
a euclidean space is realcompact.

In particular, R and all its subspaces are realcompact.

8.3. THEeOREM. Two realcompact spaces X and Y are homeomorphic
if and only if C(X) and C(Y') are isomorphic.

PROOF. Necessity is obvious.

The correspondence p — M, is one-one from the realcompact space
X onto the set of all 7eal maximal ideals in C(X); and the property of
being a real maximal ideal is an algebraic invariant. This means that
the points of X can be recovered from the algebraic structure of the
ring C(X). Furthermore, the purely algebraic relation fe M, is
equivalent to the relation p € Z(f). Since the family of zero-sets is a
base for the closed sets in X, this shows that the topology of X can also
be recovered from C(X). But the realcompact space Y can be extracted
in the same way from the isomorphic ring C(Y). Therefore Y is
homeomorphic with X.

This generalization of Theorem 4.9 could have been presented at the
time: only the definition of realcompact was lacking. The proof of the
theorem amounts to the observation that the space of all real maximal
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ideals is determined algebraically, and, for realcompact X, is homeo-
morphic with X.

THE SPACE vX

8.4. By a realcompactification of X is meant a realcompact space in
which X is dense. In particular, every compactification of X is such a
space. Our next goal is to find a realcompactification in which X is
C-embedded.

It follows from Theorem 6.7 that every space in which X is dense and
C-embedded lies between X and BX. Here, then, is where we must
look for the desired realcompactification.

THEOREM. The following conditions on a point p of BX are equivalent.

(1) Mr is real—alternatively, A? has the countable intersection
property.

(2) f¥(p) # o, for all f e C(X).

(3) fX(p) = M(f) for all f € C(X).

4) fX(p) = 0 implies M?(f) = 0, i.e., f € M?, for all f € C(X).

PROOF. If M? is real, then by Theorem 7.6, each of the conditions
(2), (3), and (4) is satisfied. Conversely, if M? is hyper-real, there
exists a positive function g in C(X) such that M?(g) is infinitely large.
Then g violates (2) (and (3)), while g—! violates (3) and (4).

The set of all points in BX that satisfy the conditions in the theorem
is denoted by vX.

Since X < vX < BX, we have B(vX) = BX.
8.5. We show now that vX is precisely the space we are looking for.

COROLLARY.

(2) vX is the largest subspace of BX in which X is C-embedded.

(b) vX is the smallest realcompact space between X and BX. In
particular, X is realcompact if and only if X = vX.

PROOF. Since vX consists of all points satisfying the conditions of
the theorem, (2) implies (), while (1) yields the second statement in (b).

Next, X < vX < v(vX) < BX. By transitivity of C-embedding, X
is C-embedded in v»(vX), and so, by (a), v(vX) < vX. Therefore
v(vX) = vX, i.e., vX is realcompact.

Finally, if X < T < BX, and T is realcompact, then by (a) again,
T (=vT) is the only subspace of BX (=pT) in which T is C-embedded.
But, clearly, T"is C-embedded in T U vX. Hence, vX < T.

Experience impels us to point out that the Greek letter introduced
above is upsilon, not nu.
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8.6. THEOREM. Let X be densein T. The following statements are
equivalent.

(1) Every continuous mapping v from X into any realcompact space Y
has an extension to a continuous mapping from T into Y.

(2) X is C-embedded in T.

(3) If a countable family of zero-sets in X has empty intersection, then
their closures in T have empty intersection.

(4) For any countable family of zero-sets Z, in X,

CIT nn Zn = nn CIT Zn'
(5) Every point of T is the limit of a unique, real, z-ultrafilter on X.
6) X = T <X
(7) vT = vX.

PROOF. We notice that each of the conditions listed here is stronger
than the corresponding condition in Theorems 6.4 and 6.7. Therefore,
if T satisfies any one of the present conditions, then

X cTc<BX, and BT = BX.

The pattern of proof will be (1) - (2) - (7) > (5) >~ (4) - (3) >
(6) — (1).

(1) smplies (2). Since R is realcompact, (2) is just a special case of (1).

(2) implies (7). 'The hypothesis implies that X is C-embedded in
vT; therefore vT < v.X, by (a) of the corollary, and vT > vX, by (b).

(7) implies (5). By definition (8.4), if p € vX, then A?, which is the
unique z-ultrafilter converging to p (6.6(a)), is real.

(5) émplies (4). Evidently, the left member in (4) is contained in the
right. Conversely, if p € N, cl Z,, then each Z, belongs to the real
z-ultrafilter A? (6.5(c)); hence ), Z, € A?, by Theorem 5.14, and
sopecl N, Z,.

(4) implies (3). Obvious.

(3) implies (6). If p € BX — vX, there exist Z, € A? (n € N) such
that (), Z, = 0. By hypothesis, (),cly Z, = 0. But (), clgx Z,
contains p. 'Therefore, p ¢ T.

(6) implies (1). Consider the Stone extension 7 from BX into BY.
The extension sought must be 7|T. Accordingly, we are to show that
#fT]< Y. Let peT; then pevX. For every ge C(Y), the
function g o 7 is in C(X); therefore (g o 7)*(p) is a real number. But

(gom)* =g*e7,
since all the extensions in question are unique; thus, g*(7p) is real.
As this holds for every g € C(Y), we have 7p e vY = Y.
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This completes the proof of the theorem. An alternative proof that
(2) implies (1) will be given in Theorem 10.7. Proofs of other implica-
tions are indicated in 8D.

REMARK. This theorem specifies all of the spaces in which X is dense
and C-embedded: they are precisely the spaces between X and vX.
The only realcompact one among them is v.X itself, of course. Thus, a
realcompact space cannot be dense and C-embedded in any other space.

8.7. THEOREM. Every (completely regular) space X has a real-
compactification vX, contained in BX, with the following equivalent
properties.

(Y) Every continuous mapping v from X into any realcompact space Y
has a continuous extension ° from vX into Y. (Necessarily, ° = 7|vX,
where 7 is the Stone extension into BY.)

(II) Every function f in C(X) has an extension to a function f* in
C(wX). (Necessarily, f* = f*|vX.)

(II1) If a countable family of zero-sets in X has empty intersection,
then their closures in vX have empty intersection.

(IV) For any countable family of zero-sets Z, in X,

CluX nn Zn = nn CIuX Zn'
(V) Every point of vX is the limit of a unique z-ultrafilter on X, and
it is a real z-ultrafilter.
Furthermore, the space vX is unique, in the following sense: if a real-
compactification T of X satisfies any one of the listed conditions, then
there exists a homeomorphism of vX onto T that leaves X pointwise fixed.

PROOF. Only uniqueness remains to be proved. As in the case of
BX, it follows from (I) and 0.12(a).

8.8. REmMaRks. ThespacevX is called the Hewitt realcompactification
of X. By the theorem, it is characterized as that realcompactification
in which X is C-embedded (just as BX was characterized as that com-
pactification in which X is C*-embedded). Evidently,

(@)  The mapping f — f* is an isomorphism of C(X) onto C(vX).

The converse to the last assertion in Theorem 8.7, regarding unique-
ness, is trivially true. (See, however, 6C.2.)

It is worth while to summarize some facts about zero-sets and vX.
From Theorem 8.4(4), we have f*(p) = 0 if and only if f € M?, hence,
by the Gelfand-Kolmogoroff theorem, if and only if p € cl,x Z(f).
Therefore
(b) Z,x (f*) = clx Zx(f)-

Thus, every zero-set in v.X meets X.
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On the other hand, if p € BX — vX, there exists f € C*(X) such that
Z(f) = 0, while f(p) = 0. Conversely, if a function f in C*(X) is a
unit of C but not of C'*, then f#(p) = 0 for some p (€ BX — vX).

We have seen that C is more sensitive than C* in distinguishing
among spaces. We have also pointed out, in considering z-filters and
e-filters in Chapter 2, that the relations between C(X) and the topology
of X are simpler than those between C*(X) and X. These two facts
are related, and, indeed, they reflect the same phenomenon. For
p € BX — X, C* never distinguishes between X and X U {p}, while C
does precisely when p ¢ vX. And the latter is the case exactly when
M*? contains a unit of C, i.e., when Z[M*?] is not a z-filter.

PROPERTIES OF REALCOMPACT SPACES

8.9. We look now at the problem of manufacturing new real-
compact spaces from old. The results to be obtained will be analogues
of various well-known results about compact spaces. In two out-
standing cases, however—quotients, and finite unions—the analogues
fail ; see 8I and 8H.6.

THEOREM. An arbitrary intersection of realcompact subspaces of a
given space is realcompact.

PROOF. Let (Y,) be a family of realcompact subspaces of a space
Y, and let X = ,Y,. For each «, the identity mapping 7 from X
into Y has a continuous extension from v.X into the realcompact space
Y, (Theorem 8.7). As 7 can have only one continuous extension from
vX into Y, these extensions all coincide; hence this common extension
carries vX into [),Y,, i.e., into X. By 6.13(a), X is closed in vX.
Since X is also dense, it is all of v.X.

8.10. TwureoreM. Every closed subspace of a realcompact space is
realcompact.

PROOF. Let X be a closed subspace of a realcompact space Y.
The identity mapping 7 of X into Y has a continuous extension 7°
from vX into Y. By Lemma 6.11, the preimage of the closed set X,
under 7°, is X ; therefore X is closed in vX. Hence X = vX.

A corollary of this theorem is:

(a)  If Sis C-embedded in X, then cl,x S = vS.
For then, S is C-embedded in vX, and cl 5 S is a realcompactification

of S in which S is C-embedded. In the analogue for C*-embedding,
the converse is also true, as we saw in 6.9(a). This stemmed from the
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fact that a closed subset of a compact space is C*-embedded. But a
closed subset of a realcompact space, even though realcompact, need
not be C-embedded. This is shown in 8.18 below: the space I" is a
nonnormal, realcompact space; and a space is normal precisely when
every closed subset is C-embedded (3D.I). Thus, only a partial
converse to (a) is valid:

(db)  In case X or vX is normal, then cl x S = vS implies that S s
C-embedded in X.

Normality of X and normality of vX are independent. If X is
nonnormal and pseudocompact, then vX (=8X) is normal. (Examples
are ¥ (51) and 4 (6P); another is the Tychonoff plank, described in
8.20 below.) A normal space X for which vX is not normal is de-
scribed in the Notes.

8.11. 'THEOREM. An arbitrary product of realcompact spaces is
realcompact.

prooF. Let X = X X, where each X, is realcompact. Since X
is a product of completely regular spaces, it is completely regular.

Each projection 7,: X — X has a continuous extension 7 ,°: v.X — X.
Therefore X is closed in v.X (6.13(b)). Hence X = vX.

8.12. We now present an alternative proof of the product theorem.
Although not so efficient as the one just given, it is more elementary,
in that it invokes no material beyond Chapter 5.

Lemma. X is realcompact if and only if every prime z-filter with the
countable intersection property is fixed.

proOF. Sufficiency is trivial. To prove necessity, let # be a free,
prime z-filter, and let Z[M] (where M is a maximal ideal) be a z-
ultrafilter that contains #. (Actually, there is only one (2.13).) Since
M is free and X is realcompact, there exists f € C(X) such that [M(f)|
is infinitely large. For each n € N, consider the zero-sets

Z,=(x: |f)| 2 n) and Z', = {x: |f()] S m.

By 5.7(a), Z,,, € Z[M]; hence Z’,, which is disjoint from Z,,, does
not belong to #. Since Z, U Z’, = X, and & is prime, we have
Z,e%. Obviously, N, Z, = 0. Therefore # does not have the
countable intersection property.

ALTERNATIVE PROOF OF THE PRODUCT THEOREM. Let X = Xa X,
where each X, is realcompact. Then X is completely regular.

Let & be a real z-ultrafilter on X. For each «, the z-filter 7 #of is
prime (4.12). Since &/ has the countable intersection property, so has
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¥/ ; by the lemma, then, = #/ is fixed. By Lemma 4.13, &/ is
fixed. Therefore X is realcompact.

8.13. 'THEOREM. Let T be a continuous mapping from a realcompact
space X into a space Y. Then the total preimage of each realcompact
subset of Y is realcompact.

PROOF. Let F be a realcompact set in Y, and let S = +<[F].
Because X is realcompact, the identity map o on S has a continuous
extension to a mapping ¢°: vS— X. Also, 7|S has a continuous
extension (7]S)°: vS— F. Since S is dense in vS, both these exten-
sions are determined by their values on S. Now, 7|.S = 700, and
therefore (7|.S)° = (10 0)° = 700¢°. But by Lemma 6.11,

S - Sl X - 8§,
so that
(rod®)wS — S]<= Y —F,
whereas
(7|S)°’[vS — 8] = F.
Therefore, vS — S = 0.

8.14. CorcLLARY. Every cozero-set in a realcompact space is
realcompact.

PROOF. X — Z(f) = f<[R — {0}].

An arbitrary open set need not be realcompact, however: witness
W in W*,

8.15. CoroLLARY. If Y is realcompact, and each point of Y is a
G,, then every subspace of Y is realcompact.

PROOF. Each one-element set in Y is a zero-set (3.11(b)), and
hence its complement is realcompact (Corollary 8.14). An arbitrary
proper subset of Y is an intersection of such complements, and so is
also realcompact (Theorem 8.9).

8.16. THEOREM. In any space, the union of a compact set with a
realcompact set is realcompact.

PROOF. Let X = S U K, where K is compact, and suppose that X
is not realcompact. Choose p in vX — X. Since K is compact,
peclxS. We show that S is C-embedded in S U {p}, whence S
is not realcompact (see 8.6, REMARK). Consider any function f in
C(S). Thereis a function g in C(vX) that vanishes on a neighborhood
of K and is 1 on a neighborhood of p. The function (g|S)-f may be
extended to a continuous function % on X, by setting it equal to 0 on K.
In turn, % can be extended continuously to p. Since f agrees with A
on a deleted neighborhood of p, f can be extended likewise.
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8.17. THeOReM. The following conditions on a space Y are
equivalent.

(1) For each space X, if there exists a continuous mapping v: X —Y
such that v(y) is compact for each y € Y, then X is realcompact.

(2) Every space of which Y is a one-one, continuous image is real-
compact.

(3) Ewvery subspace of Y is realcompact.

(4) For each point y, Y — {y} is realcompact.

PROOF. It is obvious that (1) implies (2) and (3) implies (4). Also,
by Theorem 8.16, (4) implies that Y is realcompact. (And by Theorem
8.9, (4) implies that every proper subspace of Y is realcompact, so that
(4) implies (3).)

(2) implies (3). Given a subspace F of Y, enlarge the topology of YV
by making both F and Y —F open. The new space X thus defined is
completely regular and the relative topology on F is the same in X as in
Y. Since the identity map from X onto Y is continuous, (2) implies
that X is realcompact. Therefore F, which is a closed subset of X
(though not necessarily of Y), is realcompact.

(4) implies (1). Let X and 7 satisfy the hypotheses of (1). By (4),
as already noted, Y is realcompact. Therefore 7 has a continuous
extension 7°: vX — Y. Now consider any point y € Y. By Theorem
8.13, the set

§ =Y - {5}]

is realcompact, and so, by Theorem 8.16, S U 7<(y) is realcompact.
Since this space lies between X and vX, it must be v.X itself. In other
words, 7° sends no point of vX — X onto y. As this holds for every
y € Y, we must have vX — X = 0.

Incidentally, we already know a class of spaces that satisfy (3): the
Lindelof spaces all of whose points are G,’s—e.g., separable metric
spaces.

8.18. CororrArY. If 0: X — Y is one-one and continuous, and
if every subspace of Y is realcompact, then every subspace of X is real-
compact.

As a first application, we see that every discrete space of cardinal < ¢
is realcompact: every such space can be mapped one-one into R. It
follows that not every realcompact space is a Lindel6f space.

In the one-point compactification of the discrete space of power c,
every subspace is realcompact, but not every point is a G,.

Finally, every subspace of the nonnormal space I" of 3K is real-
compact, because the identity mapping of I" into R x R is continuous.
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8.19. Intersection of free maximal ideals. In 7E, the intersection of
all the free ideals in C(X), or in C*(X), was characterized as the set
Cx(X) of all functions with compact support (i.e., all f for which
cl (X — Z(f)) is compact). In 7F, the intersection of the free maximal
ideals in C*(X) was characterized as the set of all functions that vanish
at infinity (i.e., all f such that {x: |f(x)| = 1/n} is compact for all
n e N). For realcompact X, we can round out the picture in the
following way.

THeOREM. If X is realcompact, then the intersection of all the free
maximal ideals in C(X) is the family Cx(X) of all functions with compact
support.

PROOF. If f has compact support, then, of course, it belongs to
every free maximal ideal.

Conversely, if f has noncompact support, there exists a point p that
belongs to clgx (X — Z(f)) but not to X. As X is realcompact, there
is a function % in C(X) for which A*(p) = co. Then % is unbounded
on X — Z(f), and so, by Corollary 1.20, this set contains a noncompact,
closed set S that is C-embedded in X. By Theorem 1.18, the disjoint
sets S and Z(f) are completely separated; hence they have disjoint
closures in BX. For any point ¢ in clx S — X, then, we have
g ¢cl Z(f). (Such a point exists, as S is closed in X but not compact.)
Therefore, by the Gelfand-Kolmogoroff theorem, f does not belong
to the free maximal ideal Mq.

The condition that X be realcompact is not necessary. For example,
the lone free maximal ideal M«: in C(W) is precisely Cx(W). Another
example was given in 7L.3. On the other hand, the condition cannot
be avoided altogether, as will be seen in the next section.

8.20. The Tychonoff plank. This is the name commonly given to
Tychonoff’s classic example of a nonnormal space, which has achieved
considerable fame as a ‘“universal counterexample.” Consider the
compact space

T* = W* x N*

where N* denotes the one-point compactification N U {w} of N. Let
t = (wq, w).
The plank is the dense subspace
T="T*-{#}

of T*. Evidently, T* is the one-point compactification of T.
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It is convenient to use descriptive, geometric terminology in analyzing

these spaces. Thus, we shall refer to the subspace

W=W x {w}
as the top edge of T, and to

N = {w} x N
as the right edge of T. Trivially, W is homeomorphic with W, and
N with N.  These edges are disjoint closed sets in T. For zn € N, the
horizontal line W* x {n} is homeomorphic with W*, and for « € W,
the vertical line {«} x N* is homeomorphic with N*. Since T contains
a closed copy of W, it is not realcompact (Theorem 8.10). Since N
has no limit point in T, T is not countably compact.

We shall now prove that T* = BT, by showing that T is C*-embedded
in T*—in fact, C-embedded, from which it follows, in addition, that T
is pseudocompact. Hence, again, T is not realcompact. (And, by
3D.2, T is not normal.)

Let fe C(T). For each n € N, there is a countable ordinal o, such
that f is constant on the tail

{(om): 0 2 o)

of the horizental line W* x {n} (5.12(c)). Let o« = sup,o,; then
o < w; (5.12(a)), and for each n € N, f is constant on the tail

{(o,n): 0 2 o}
of W* x {n}. The common limit  of f on each vertical line {o} x N¥*,
for ¢ Z «, is the final constant value of f on the top edge. Hence we
extend f to the corner point ¢ by assigning the value 7 at that point, and
this gives us a continuous extension of f.

The fact that T* = BT enables us to conclude at once that T is not
normal: Wand N have a common limit point in BT, and therefore these
disjoint closed sets are not completely separated in T. (The argument
above also shows this directly.) We can look at this in another way:
N is homeomorphic with N, but its closure in BT is not homeomorphic
with BN; by 6.9(a), IV is not C*-embedded in T (although it is closed),
whence T is not normal (3D.1).

The ring C(T) has only one free maximal ideal, namely, M*. The
function (e, n) — 1/n, (o, @) — 0, belongs to M?, but its support is the
entire noncompact space T. Therefore, in C(T), the intersection of all
the free maximal ideals is not the same as the set of all functions with
compact support. What amounts to the same thing: the above
function does not belong to O?, so that Mt # O,
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8.21. N.B. A number of authors have fallen into the trap of
assuming that every countable, closed, discrete subset of a completely
regular space is C*-embedded. We have just seen a counterexample:
the right edge, N, of T is countable, closed, and discrete, but it is not
C*-embedded in T.

At the same time, however, it is well to be aware of the possibility of
extending certain special functions. Consider, for example, the
function s, — 1/n, defined on a discrete set S = {5,},.n in a space X.
(It is not assumed that S is closed.) We extend the function to cl;x S
by assigning it the value 0 at all limit points of S. The extended
function is continuous, and, in turn, it can be extended from the
compact set cl S to a function f in C(BX). Then f|X is continuous,
and agrees with the original function on S. (A more elementary
construction is indicated in 3L.2.)

Another common error is to assume that a closed, C*-embedded
subspace must be C-embedded. A counterexample is offered by the
space / described in 6P: N is closed and C*-embedded in 4, but it is
not C-embedded.

PROBLEMS

8A. REALCOMPACT SPACES.

1. If a realcompact space X is dense in T, where T # X, then X is not
C-embedded in T': this property characterizes realcompact spaces. Hence
a C-embedded realcompact subset is closed.

2. The ring structure of C(X) determines X up to homeomorphism if and
only if X is realcompact and, for each nonisolated p € X, X — {p} is not
C-embedded in X.

3. Exhibit a space X such that C(X) is not isomorphic to C(Y') for any
normal Y.

4. vX = BX if and only if X is pseudocompact.

5. vX is a P-space (4]) if and only if X is a P-space.

8B. SPACES BETWEEN X AND BX.

1. fr[vX] = f[X] for all fe C(X). Compare 2C.1.
2. For f e C(X), the space

veX = {p € BX: f*(p) # o}

is locally compact and o-compact.

3. The realcompact spaces between X and BX are precisely the spaces
Nyecr vsX, for C' = C(X). (Hence vX is the smallest.)

4. Let 7 be a continuous mapping from X into a realcompact space Y, and
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let 7 be its Stone extension into 8Y. By Theorem 8.13, #[Y] is realcom-
pact. Derive the same conclusion from 3.

5. If X is pseudocompact, then clgx Z is a zero-set in SX whenever
Z e Z(X).

8C. STONE EXTENSION OF AN INJECTION.

Let S be a cozero-set in X, and let o denote the identity map on S
and & its Stone extension into BX. For each xecly S — S,o(x) is
contained in 8S — »S.

8D. THEOREM 8.6.

Let X be dense and C*-embedded in 7. Establish directly (i.e., without

invoking Theorem 8.6):

1. If X is C-embedded, then cly Z(f) = Z(f°), for fe C(X), and f° its
continuous extension to 7.

2. Conversely, if every zero-set in T is of the form cl Z, where Z € Z(X),
then X is C-embedded. [Theorem 1.18.]

3. (1) > (5) in Theorem 8.6. [Take Y = vX.]

4. 2)—>@). [1.]

5. (3)—(2). [Apply Theorem 1.18, noting that every zero-set is a count-
able intersection of zero-set-neighborhoods.)

6. 3)—>(4). [If p¢cl),Z, there exists a zero-set, disjoint from

2 Z,, whose closure contains p.]

7. (3)— (5).

8. (5)— (6).

8E. BOUNDED RESTRICTIONS.

1. For any subset S of a realcompact space X, if f|S is bounded for all
f€ C(X), then cl Sis compact. [Consider any point in clgx § — X.]

2. By 4K.3, the assertion also holds in any P-space. (Hence, by 9L.5, it
can hold when X is not realcompact.) If X is not realcompact, the assertion
can fail.

8F. CONVERGENCE OF %-ULTRAFILTERS.
Let X be dense in T. If T is realcompact, then every real z-ultrafilter on

X converges in 7. [Theorem 8.7(I).] The converse fails, however.
[Consider the space ¥ of 51.]

8G. C-EMBEDDED SETS.
1. If V is an open set in vX, then V' N X is C-embedded in V. [Extend
to each point of V' — X, as in 8.16. 'Then apply 6H.]
2. If K is a compact set in X, then X — K is C-embedded in vX — K.
3. If X is C-embedded in Y, but not dense, then X — {p} need not be
C-embedded in ¥ — {p}. [Consider T*.]
4. Corresponding statements are valid for 8X.
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8H. EXAMPLES OF REALCOMPACT SPACES.

1. BQ — Qs realcompact. [Take Y = [0, 1] in Theorem 8.17.]

2. The space IT of 6Q is realcompact.

3. The lexicographically ordered space R x [0, 1] (see 30) is realcompact,
and so is every subspace.

4. W has a dense, realcompact subspace.

5. A realcompact space can have a free z-filter with the countable inter-
section property. In fact, a space has the Lindel6f property if and only if
every z-filter with the countable intersection property is fixed. [Sufficiency.
Pass from closed sets to zero-sets as in the proof of Lemma 4.10.]

6. The union of two realcompact subspaces of a space need not be real-
compact—even if both are discrete and one is countable. [Consider the
space ¥ of 51.]

7. In Theorem 8.17, “7(y) is compact” may not be replaced by “‘7(y)
is realcompact.”

8. Prove that the discrete space of cardinal ¢ is realcompact by considering
the free ultrafilters on [0,1]. [They all converge.]

8. Wasa QUOTIENT SPACE OF A REALCOMPACT SPACE.

Let Y = W* x D, where D is the set W with the discrete topology.
1. Y is realcompact.
2. The subspace X = {(«, 0): « < o} is realcompact.
3. The mapping (e, ¢) — « is continuous and open, but not closed, from
X onto W.

8]J. PROPERTIES OF THE PLANK.

1. If a subset of W x N* contains points (e, #) for arbitrarily large n € N,
then its closure meets W. [SM.6.] Hence W and N are not contained in
disjoint open sets in T, so that T is not normal. Compare 3L.4,5.

2. W x N* is normal, and T* = B(W x N¥). [Disjoint closed sets have
disjoint closures in T*: by 5.12(b), they cannot have a common limit point on
N; a like argument, with the help of 1, shows that # cannot be a common
limit point either.]

3. Every closed Gs-set E in T is a zero-set and is C-embedded in T.
[E n (W x N*)is a closed G; in the normal space W x N*; apply 3D.3,
and observe that W x N* is C-embedded, in a trivial way, in T.]

4. Describe the class of real-valued functions on NN that can be extended
continuously to all of T. According to Urysohn’s extension theorem (1.17),
N must contain two disjoint sets that are not completely separated in T;
exhibit such a pair. Note that any two such sets are closed and have disjoint
neighborhoods in T.

5. Every noncompact zero-set in T meets ¥, although a noncompact
closed set need not.
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6. In C(T), O* is the smallest, and M the largest free ideal. The ideal
Ot is not prime.

7. T* contains two C*-embedded subsets whose intersection is not
C*-embedded.

8K. AN ENLARGEMENT OF THE PLANK.

Enlarge T* by letting each point (w,, #) of N serve as the point at
infinity for a separate copy of N (yielding, in each case, a copy of N*). Let
X denote the space obtained by deleting the point ¢t = (w,;, w).

1. t e BX.

2. Construct functions f, g € C(X) such that g € M?, and Z(f) is a neigh-
borhood of Z(g), but f ¢ O, i.e., cl Z(f) is not a neighborhood of . Compare
Theorem 7.14.

8L. THE SPACE L.
Let 2% = W* x W*, denote the corner point (w,, w;) by w, and define
Q = Q% — {w}. Then Q* is the one-point compactification of 2. In 2,
the top edge W X {w,}, the right edge {w,} x W, and the diagonal

{(a, OC): a € W},

are mutually disjoint closed sets, each homeomorphic with W (whence
is not realcompact).

1. Let E be a subset of L2, disjoint from both the top edge and the right
edge. If E meets every neighborhood of w, then cl, E meets the diagonal
in every neighborhood of w. [Apply the interlacing technique as in 5.12(b).]

2. Every noncompact, closed set E in {2 has w as a limit point in £2¥%.
Hence E must meet either the top edge, or the right edge, or the diagonal, in
every neighborhood of w.

3. Every function in C(£2) has the same constant value on tails of the top
edge, the right edge, and the diagonal. [Apply I to suitable subsets of
f<(¢) and f < (), where ¢ and r are the final constant values on the edges.]

4. Every function in C(£) is constant on a deleted neighborhood of w.
[Argue as in 5.12(c).] Hence 2 is C-embedded in £2%, so that £ is pseudo-
compact, and 2* = BQ. In addition, {2 is countably compact.

5. £ is not normal. Observe, incidentally, that the top and right edges
are contained in disjoint open sets, although they are not completely
separated (cf. 8].4). On the other hand, the diagonal and an edge are not
contained in disjoint open sets.

8M. FURTHER PROPERTIES OF £2.
Let 2 be as in 8L.
1. Let 7 be a countable limit ordinal. If a subset of W x W{(r + 1)

contains points («, o) for arbitrarily large ¢ < 7, then its closure meets
W x {r}. [Compare 8].1.]
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2. W x W is normal, and 2* = B(W x W). [Compare 8].2.]

3. W x W is countably compact.

4. W x W*, a product of two normal spaces (one of which, in fact, is
compact), is not normal.

5. Every closed Gy in 2 is a C-embedded zero-set. [Compare 8].3.]

6. w is a P-point (4L) of £2*, and the only free ideal in C(£2) is M>.

7. Each edge of 2 is C-embedded, although their union is not C*-
embedded.

8N. DISCRETE SUBSPACES OF PSEUDOCOMPACT SPACES.

Let m be a cardinal > X,. Define ¥ = W* x W(a + 1), where « is
of power m, and form X by removing from Y all points (w,, A) for which A
is a limit ordinal. Then X is pseudocompact, although it contains a closed,
discrete subspace of cardinal m. [If f is unbounded on a sequence of points
(etn ©,), then fis unbounded on a set that is homeomorphic with a subspace
of T containing W x N*.]



Chapter 9

CARDINALS OF CLOSED SETS IN BX

9.1. It was pointed out in 6.10 that the cardinal number of BN is at
least ¢. On the other hand, since each ultrafilter on N is a subset of
the set of all subsets of N, and BN is in one-one correspondence with
the set of all (2-)ultrafilters, we have |fN| < 2¢. 'This latter argument
applies equally well to any completely regular space X and shows that
|BX| = 22X, (See also 9A.1.)

In this chapter, we shall obtain sharper results about the cardinal
numbers of sets in BX. The key to these results is the precise evalua-
tion of the cardinal of BN. (See also 90.)

9.2. THeoREM. For every infinite discrete space X,
|BX| = 22%,

PROOF. For simplicity of notation, put m = 2 The problem is
to show that there are at least m ultrafilters on X. We reduce the
complexity of the notation by considering the following auxiliary sets:
the set # of all finite subsets F of X, and the set @ of all finite subsets ¢
of #. We shall construct m ultrafilters on & x @; since F x D is
equipotent with X (X being infinite), the results are equivalent.

With each (arbitrary) subset S of X, associate a subset bg of # x @,
as follows:

P1b.¢

bs={(F,p)e F x ®: S n Feog}
For simplicity of notation, we shall denote the complement of bg in
f X @ by ‘—bs.
Next, for each of the m subsets & of the set of all subsets of X,
define the family
of subsets of # x ®@. We shall show that each family B, has the

finite intersection property.
130
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Let

bsp 1 bgp = bgyp 0 — B,

be distinct members of B,. The indices Sy, ---, S, are distinct
subsets of X. For i < j, choose a single element x;; that belongs to
exactly one of S;, S;. The selected elements x;;, for 1 <7 < j < n,
form a finite subset F of X. Fori < j, thesets S; n Fand S; n Fare
distinct, since exactly one of them contains x;;. Now consider the
finite set

p={S;nF -, 8 nF}

which is a member of @. Trivially, S; n Feq fori <k, and S; n
F ¢ ¢ for j > k. Therefore (F, ¢) € bg, for i < k, and (F, ¢) € —bg,
for j > k. This shows that B, has the finite intersection property.

Each family 8, is embeddable, therefore, in at least one ultrafilter
Ng. Furthermore, distinct families cannot be contained in the same
ultrafilter; for, if Se & — &', then B, contains bg, while B,
contains its complement. Since there are m sets &%, there are m
ultrafilters .

9.3. As a special case of the theorem, we have
[BN]| = 2.
We proved in 6.10 that 8Q and BR are equipotent with BN. Therefore,
|BQ| = |BR| = 2=

Furthermore,
|BN — N| = |Q — Q| = |BR — R| = 25,

We shall apply Theorem 9.2 to find lower bounds for the cardinals
of various closed sets in BX, or in BX — X, for general X. The idea,
in each case, is to show that the set in question contains a copy of
BN — N; the cardinal of the set, then, is at least 2¢.

94. LemMa. Let E < BX, and suppose that Z is a zero-set in BX
that meets cl E but not X U E. Then E contains a copy N of N, and Z
contains BN — N.

PROOF. Write Z = Z(f), and Y = BX — Z. Since Z n X =9,
we have Y D X, and therefore BY = BX. Also, Y o E. In C(Y),
h = (f|Y)™? exists; and, because Z meets cl E, k is unbounded on E.
By Corollary 1.20, E contains a copy N of N that is C-embedded in YV
and on which % goes to infinity. The first of these conclusi..as shows
that N is C*-embedded in BX, so that cI N = BN (6.9(a)). The
second conclusion implies that cI N — N is contained in Z.
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9.5. THEOREM. Every nonempty zero-set in BX, if disjoint from X,
contains a copy of BN, and so its cardinal is at least 2.

PROOF. Take E = X in the lemma; and recall (6.10(a)) that BN —
N contains a copy of SN.

9.6. CorOLLARY. No point of BX — X is a G, in BX.

PROOF. [Every G,-point is a zero-set (3.11(b)).
For example, a compact metric space cannot be the Stone-Cech
compactification of any other space.

9.7. If xis a G,-point of X, then {x} is a zero-set in X, and hence is
also a zero-set in vX (8.8(b)). Thus, every Gy-point of X is a G, in vX.
On the other hand, no point of vX — X is a G, in v.X, because every
zero-set in v.X meets X (8.8(b)).

It is not true that a Gs-point of X is always a Gy in 8X. (Consider,
for example, the space X of 6E.5.) However, if x has a countable base
of neighborhoods in X, then it also has a countable base in X (or, more
generally, in any space in which X is dense). In fact, if (U,) is a base in
X at x, then (clgy U,) is a base in BX, as is easily seen. On the other
hand, no point of BX — X has a countable base of neighborhoods in
BX, as follows from the corollary.

THEOREM.

(a) If C(X) is isomorphic with C(Y), and if all points of X and Y are
Gy’s, then X is homeomorphic with Y.

(a*) If C*(X) is isomorphic with C*(Y), and if X and Y satisfy the
first countability axiom, then X is homeomorphic with Y.

PROOF. (a). If C(X) isisomorphic with C(Y), then v.X is homeo-
morphic with vY (Theorem 8.3). As noted above, no point of vX — X
orvY — Yisa GyinvX orvY, respectively. Since a homeomorphism
takes G,-points to G5-points, X must be carried onto Y.

The proof of (a*) is similar.

9.8. CoroLrLarY. Two metric spaces X and Y are homeomorphic if
and only if C*(X) and C*(Y) are isomorphic.

9.9. We look now at the cardinals of closed sets that are not neces-
sarily zero-sets.

LemMA. Every nondiscrete, closed set S in BX — vX has a countable,
discrete subset D with a limit point in BX — vX.

PROOF. Let p be a limit point of S. Then p ¢ vX, and so there
exists f € C(BX) such that f(p) = 0, while f vanishes nowhere on vX.
In case Z(f) n S is finite, we choose D to be a discrete set {s,},.n in S,
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such that f(s,) # 0 for every =, while lim, f(s,) = 0. In case
Z(f) n Sisinfinite, we choose D to be a countably infinite, discrete set
in this intersection (0.13). In either case, D is not closed in BX, of
course, and f vanishes on clD — D. Hence clD — D must be
contained in BX — vX, and therefore D is not closed in BX — vX
either.

9.10. LEMMA. Let D be a countable, discrete subset of BX, having a
bimit point p in BX — vX. Then D contains a copy N of N, with

BN — N < BX — »vX.

PROOF. Define g € C(BX) as follows. First, g is to map D one-one
onto the set {1/n},.n. Next, g is to vanish at all limit points of D. So
far, we have a nonnegative, continuous function defined on the compact
set cI D. We choose g to be any nonnegative, continuous extension of
this function to all of BX. (This is the construction described in 8.21.)
Since p is a limit point of D, g vanishes at p.

Because p ¢ vX, there is a nonnegative function f in C(BX) that
vanishes at p, but nowhere on vX. Then Z(f + g) meets cl D, but not
vX U D. By Lemma 9.4, D contains a copy N of N, and the subset
Z(f + g) of BX — vX contains BN — N.

9.11. THroreM. FEach nondiscrete, closed set in BX — vX contains a
copy of BN, and so its cardinal is at least 2¢.

PROOF. By Lemma 9.9, any such set S has a countable, discrete
subset D with a limit point in BX — vX. By Lemma 9.10, S contains
a copy N of N, with BN — N contained in X — vX. Since S is
closed in X — vX, it contains clyx_,x N, which is SN.

9.12. CoroLrLARY. If X is locally compact and realcompact, then
every infinite closed set in BX — X contains a copy of BN (and so its
cardinal is at least 2°).

PROOF. Since X is locally compact, BX — X is compact (6.9(d)),
and so any closed, discrete subset is finite.

REMARKS. When X is not locally compact, X — vX can contain a
countably infinite, closed discrete set; see 9C.1.

When X is not realcompact, BX — X can be of cardinal 1, as for
X = W, and it can be countable but not discrete, as for X = W x N*
(8J.2). As a matter of fact, any space can be BX — X for suitable
X (9K.6).

For practical purposes, as will be shown in Chapter 12, it may be
assumed that every discrete space is realcompact. The corollary
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applies, then, to these spaces. By 9H.2, the conclusion of the corollary
holds for all discrete spaces without reservation. Thus, if X is any
discrete space, then every infinite closed set in BX — X contains a copy of

AN.

PSEUDOCOMPACT SPACES

9.13. LemMA. In order that a space Y be pseudocompact, it is
necessary and sufficient that for any decreasing sequence (V,),.n of
nonempty open sets, (), cl V,, be nonempty.

PROOF. Necessity. Suppose that [),cl V, = 0. Choose y, eV,
distinct for distinct . Then {y,},.n is a closed, discrete set, because
any limit point of this set would belong to (),cl V,. Inductively,
choose closed neighborhoods V', of y,, such that V', = V,, and

V',.nV,=0whenm # n. For eachn, let g, be a function in C(Y)
such that g,(y,) = n, and g, [Y — V’,] = {0}. Finally, let

8 =2, cn &) (yeY)

There is no convergence problem here, because for each y, at most one
of the summands is different from 0. Furthermore, each point y has a
neighborhood meeting at most one V’,. For, any finite number of
these sets that do not contain y can be subtracted from a neighborhood ;
and if every neighborhood of y were to meet infinitely many V”’,, and
hence infinitely many V,, then y would belong to [, cl V,. Therefore,
g agrees with one of the g, on a neighborhood of y. This shows that g
is continuous. Since g is unbounded, Y is not pseudocompact. (This
proof shows, in effect, that {y,},.n is C-embedded in Y; compare
3L.1.)

Sufficiency. If g is an unbounded function in C(Y), then the open
sets V, = {y:|g(»)| > n} form a decreasing sequence for which
N, cl V, is empty.

9.14. TueoreM. If X is compact, and Y is pseudocompact, then
X x Y is pseudocompact.

PROOF. Let (W,) be a decreasing sequence of nonempty, open sets
in X x Y. We shall exhibit a point (x,, y,) in [),cl W,. Let =
denote the projection of X x Y onto Y. Then (#[W,]) is a decreasing
sequence of nonempty, open sets in Y. By the lemma, there exists a
point y, in (), cl #[W,]. Every neighborhood V of y, meets #[W,],
for all n, and hence #<[V'] meets every W,.
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For each neighborhood ¥V of y,, let U, ;- denote the projection into X
of the set W, n #=<[V]. Since a finite intersection of neighborhoods
V of y, is a neighborhood, and since the sequence (W,) is nested, the
family of all sets U, ;- has the finite intersection property. As X is
compact, there exists a point x, in [, ;- ¢l U, ;.

Now, a basic neighborhood of (x,, y,) in X x Y hastheform U x V,
where U and V are neighborhoods of x, and y,, respectively. By
definition of x,, U meets U, ; for every n. This implies that U x V
meets every W,. Therefore (xy, o) € N.cl W, By the lemma,
X x Y is pseudocompact.

9.15. ExamPLE. In contrast to this theorem, we shall now present
an example of a pseudocompact space G such that G x G is not pseudo-
compact. The space G will be a countably compact subspace of SN.

First, we define a homeomorphism = of BN onto itself, as follows.
As we saw in 6.10, BN is the union of two disjoint copies of itself, BN,
and BN,. We choose any homeomorphism of BN, onto BN,, and define
7 to agree on BN, with this homeomorphism, and on BN, with its
inverse. Thus, 7 has no fixed point, and 7 o 7 is the identity on SN.

The subspace G will be defined inductively. Let & denote the
family of all countably infinite subsets of BN. Since |SN| = 2¢, we
have

|Z| = (2% = 2-.

Let < be a well-ordering of % according to the smallest ordinal of
cardinal 2¢. Consider any S € &, and suppose that for each £ < S,
we have chosen a limit point pg of E, distinct from 7pg for all £/ < S.
Now, |c] S| = 2¢, by 9.12, so that |c] S — S| = 2. Since the set of
all predecessors of S is of smaller cardinal, we can select pgincl S — S
so as to differ from 7py for all E < S. We now define

G=NU {Pslsc o

By construction, every countably infinite subset of G (in fact, of SN)
has a limit point in G. Therefore G is countably compact, and hence
pseudocompact.

We wish to show that there exists an unbounded, continuous function
on G x G. Itsuffices to prove that there exists an infinite, discrete set
that is open-and-closed. Consider the infinite set

D = {(n, Tn): n € N}.

Since 7 carries N into N, each point of D is isolated, and hence D is open
and discrete. On the other hand, if p ¢ N, then G, by construction,
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does not contain both p and 7p. Therefore D is the intersection of
G x G with the subset
(2, 7): » € AN}

of BN x BN. Since the latter set is the graph of a continuous mapping,
it is closed (6.13(c)). Therefore D is closed in G x G.

PROBLEMS

9A. THE CARDINAL OF BX.

1. Let X be dense in T. Prove directly from the fact that T is a Hausdorff
space that
|T| < 22X,

[Associate with each point p of T the family of all sets of the form V' n X,
where V' is a neighborhood of p.] (Hence |8Q| < 2¢ and |BR| < 2°.)
2. Derive the same conclusion from Stone’s theorem.

9B. THE sPACE R.

1. There are exactly 2¢ z-filters on R, and 2% filters.
2. If S is an unbounded set in R, then |clgg S| = 25

9C. THE spPACE BQ.
1. BQ — Q contains a countably infinite, closed, discrete set. [Map SQ
onto [0, 1], and consider a sequence of irrationals converging to a rational.]
2. B(BQ — Q) is not homeomorphic with BQ. [Which points have
countable bases?] This result improves 60.4.

ID. BX — vX.

1. If p € BX — vX, then every neighborhood of p in BX contains a copy of
N that is C-embedded in X, and hence contains a copy of BN.

2. If C(X) contains a hyper-real ideal, then it contains at least 2¢ hyper-real
ideals. In other words, if BX — v.X is nonempty, then |BX — vX| = 2¢.

3. If |BX — vX| < 2% then X is pseudocompact. (Compare with 6I.1
and 6].) The converse is not true. [Consider the space A of 6P and 9E.]
Notice that SN has 2¢ infinite, pseudocompact subsets.

9E. THE SPACE /.

Let A = BR — (BN — N). Every zero-set in A that meets 4 — R is of
cardinal 2¢.

9F. ULTRAFILTERS.

If X is infinite, there exist 22'X! ultrafilters on X all of whose members are
of cardinal |X|. [In the proof of Theorem 9.2, observe that every finite
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intersection of members of By is of cardinal | X|. Adjoin to each family
B¢ all subsets of # x @ with complement of power less than | X|.] Com-
pare 121.

9G. ULTRAFILTERS ON N THAT CONTAIN NO SMALL SETS.

Let & be the filter of all sets in N of density 1 (6U).
1. Every set of positive density meets every member of Z.
2. & is contained in infinitely many ultrafilters. [Find infinitely many
disjoint sets of positive density.]
3. & is contained in 2¢ ultrafilters. [The set of all cluster points of & in
BN is closed.]

9H. BASICALLY DISCONNECTED SrACES.

1. Every countable set S in a basically disconnected space X (1H) is
C*-embedded. [3B.4 and Urysohn’s extension theorem.] If S is not
countable, the conclusion may fail, even when S is discrete and X is
extremally disconnected. [6Q.]

2. If X is basically disconnected, then every infinite closed set E in BX
contains a copy of BN, and so its cardinal is at least 2°. [By 0.13, E contains
a countably infinite discrete subset D. By 6M.I, BX is basically discon-
nected.] In particular, this holds for discrete X.

9I. REALCOMPACTIFICATION OF A PRODUCT.

For the space G of 9.15, vG x vG is compact, while v(G x G) is not.
[8A.4.] Hence vG x vG is not homeomorphic with v(G x G). A similar
result for BX was given in 6N.2.

9]. COUNTABLY COMPACT PRODUCT SPACE.

The product of a compact space with a countably compact space is count-
ably compact. [A space is countably compact if and only if every decreasing
sequence of nonempty closed sets has nonempty intersection.]

9K. GENERALIZATIONS OF W AND T.

The smallest ordinal of cardinal X, is denoted by w,. (Thus, w, = w.)
Let o be a nonlimit ordinal > 0. Proofs of the statements below may be
modeled after those given for the case « = 1 in 5.12, 5.13, and 8.20. See
also 5N.1.
1. No subset of W(w,) of cardinal < X, is cofinal. [R,2 = X,.]
2. Of any two disjoint closed sets in W(w,), one is bounded.
3. Every continuous function on the totally ordered space W(w,) into R is
constant on a tail.
4. BW(w,) = W(w, + 1).
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5. If X is a compact space, with | X| < X,, then
BX x W(wy) = X x W(w, + 1).

6. Any space S is homeomorphic with a space BY — ¥ = vY — Y, for
suitable ¥. [In 5, let X be a compactification of S.]

9L.. A P-SPACE THAT IS NOT REALCOMPACT.

Let X be the subspace of W(w,) obtained by deleting all nonisolated
points having a countable base.

1. As an ordered subset of W(w,), X is of order type w,, and hence no
subset of X of power < N, is cofinal. [9K.1.] However, the topology on X
is not the interval topology (30).

2. Every subset of X of type w, has a supremum in X. [5.12(a).] (More
generally, see 131.2.)

3. Of any two disjoint closed sets in X, one is bounded.

4. Every function in C*(X) is constant on a tail. [Choose

reNecl{f(c):o > a},

and modify the argument of 5.12(c).] Hence every function in C(X) is
constant on a tail.
5. X is a P-space (4]), but is not realcompact.

9M. P-POINTS AND NONHOMOGENEITY OF X — X.

Recall that X contains a C-embedded copy of N if and only if it is not
pseudocompact (Corollary 1.21).

1. If N is C-embedded in X and U is any neighborhood of N, then
clgx (X — U) is disjoint from clgxy N (= gN). [3B.2.]

2. If N is C-embedded in a locally compact space T, then every P-point
(4L) of BN — N is a P-point of BT — T. [Let g e C(BT) vanish at the
P-point p of BN — N. Let (s,) be a sequence in N such that lim, g(s,,) = 0,
as provided in 6T.I. For each n, take a compact neighborhood on which
|g(t) — g(sx)| < 1/n, and apply I to their union.] Local compactness is
critical: see 60.5.

3. Assume the continuum hypothesis. If T is locally compact but not
pseudocompact, then BT — T has P-points as well as non-P-points [6V.4].
If, in addition, T is realcompact, then both sets of points are dense in 7' — T
[9D.1].

4. Let N be C-embedded in X, and let ¢ be a homeomorphism of X — X
onto itself. If p is a P-point of BN — N, and if pp € BN — N, then gp is a
P-point of BN — N. [Let f € C(X), with f(rn) = n for n € N, and define

T = vX — ~[fN — N]

(8B.2). Apply 2 (justified by Theorem 1.19) to show that p is a P-point of
¢-[AN — N].
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5. Assume the continuum hypothesis. If X is not pseudocompact, then
BX — X is not homogeneous. [Apply 4.]

9N. THEOREM 9.7.

1. If Y is C*-embedded in T, V is open in T, and ¥V n Y is dense in V,
then V' n Y is C*-embedded in V. [Given te V — ¥, there exists
h € C*(T) that vanishes outside V" and is equal to 1 on a neighborhood of ¢.
Given ge C*V n Y), the function g-(k|V n Y) has a continuous ex-
tension to all of 7. This supplies an extension of g to a neighborhood of 2.]

2. If Sisdensein Y,and a pointye ¥ — Sisbotha G;in S U {y} and
the limit of a sequence (y,),.n of distinct points of Y, then S is not C*-
embedded in S U {y}. [Note that y is a Gs-point in the space

X=SU{}UDineN,

so that {y} = Z(f) for some fe C*(X). Find ke C*R — {0}) such that
h o (f|S) has no continuous extension to y.]

3. Let X and Y be spaces in which every nonisolated point is both a G and the
limit of a sequence of distinct points. If C*(X) is isomorphic with C*(Y), then
X is homeomorphic with Y. [Identify X with BY. If y € Y — X, then by
1,Y — {y}is C*-embedded in BY — {y} > X, and hencein BX > Y. This
contradicts 2.]

4. In 3, the condition that every nonisolated point be a limit of a sequence
of distinct points cannot be dropped.

5. In 3, the condition that every point be a G; cannot be dropped. [8K.]

6. The analogue of 1 with C* replaced by C is valid.

90. THE CARDINAL OF SN.

1. Let X = EE, where E is the closed interval [0,1], and let .S be the set
of all members of X that are polynomial functions with rational coefficients.
Then |X| = 2¢, and S is a countable, dense subset of X.

2. Prove that |fN| = 2¢ by considering the Stone extension of a mapping
from N onto S. Hence by 9A, |BN| = 2.



Chapter 10

HOMOMORPHISMS AND CONTINUOUS
MAPPINGS

10.1. We proved in Theorem 8.3 that two realcompact spaces X
and Y are homeomorphic if and only if their respective function rings
C(X) and C(Y) are isomorphic. The correspondence between the set
of all homeomorphisms from X onto Y, and the set of all isomorphisms
from C(Y) onto C(X), is one-one; this was not pointed out explicitly
at the time, but the information is readily obtainable from an examina-
tion of the proof. We shall begin the present chapter by analyzing, in
considerable detail, the duality relations expressed by this correspond-
ence. More generally, we describe the relations between arbitrary
continuous mappings from X into ¥ and homomorphisms from C(Y)
into C(X). We shall find that, in a sense, every homomorphism
from one function ring into another is induced by a continuous
mapping.

10.2. Induced mappings. Let ¢ be a given mapping from a set A
into a set B. For each mapping g from B into a set E, the composition
go@ carries A into E. Thus, ¢ induces a mapping ¢': EB— E4;
explicitly,

Pg=g°9
There is a duality between the properties one-one and onto (provided
that E has more than one element): ¢’ is one-one if and only if ¢ is onto,
and ¢’ is onto if and only if ¢ is one-one. The verification of these facts
is left to the reader.

In most applications, the object of interest is a restriction of the in-
duced mapping to an appropriate subset. We shall employ the symbol
¢’ to denote the restricted mapping as well.

Here we are concerned with a continuous mapping 7 from X into Y,
140
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with the role of E taken by R. The appropriate subset of RY will be
either C(Y) or C*(Y). The induced mapping 7, defined by

Tg=ger (g € C(Y) [resp. CX(Y)]),

is evidently a homomorphism from C(Y) into C(X) [resp. C*(Y) into
C*(X)]. It carries the constant functions onto the constant functions,
identically: for any x € X and » € R, we have (7'r)(x) = r(rx) = 7.

The homomorphism 7’ determines the mapping = uniquely: if
o' = 7/, then for each x € X, g(ox) = g(rx) for all g; by complete
regularity, ox = 7x.

We now examine the duality relations between = and 7’. Some
complications are introduced by the requirement of continuity.

10.3. THEOREM. Let 7 be a continuous mapping from X into Y, and
7' the induced homomorphism g— g ot from C(Y) into C(X) [resp.
C*(Y) into C*(X)].

(a) 7' is an isomorphism (into) if and only if 7[X] is dense in Y.

(b) 7' is onto if and only if v is a homesmorphism whose image is C-
embedded [resp. C*-embedded] in Y.

PROOF. (a). The following are evidently equivalent: 7' is an iso-
morphism; 7’g = 0 implies g = 0; g(vx) = 0 for all x € X implies
g = 0; 7[X] is dense in Y (since Y is completely regular).

(b). Necessity. 'The hypothesis asserts that for each fe C(X),
there exists g € C(Y) such that ¢ = f. To see that 7 is one-one, we
note that if 7x, = 7x,, then (7'g)(x;) = (7'2)(xy), i.e., f(xy) = f(x5). As
this holds for each f, x; = x,. Thus, 7 is well defined as a mapping
from 7[X] to X. Continuity of 7 follows from Theorem 3.8, since
f o7 is the continuous function g|7[X]; hence 7 is a homeomorphism.
Therefore every function in C(r[X]) has the form g|7[X], i.e., 7[X] is
C-embedded.

Sufficiency. By hypothesis, 7 is a continuous mapping from 7[X]
onto X. Consider any fe C(X). The function fo 7 belongs to
C(7[X]), and, by hypothesis, it has a continuous extension g to all of Y.
Clearly, f = gor, ie., f = 7g.

The proof for C* is similar.

Of course, if 7 is a homeomorphism of X onto Y, then 7’ is an
isomorphism of C(Y) onto C(X).

10.4. CoroLLARY. If 7is a homeomorphism (into), and X is compact,
then 7' is onto.

The hypothesis that X is compact guarantees that 7[X] be C-
embedded, under any homeomorphism = into any space Y (3.11(c)).
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For such an all-encompassing property, compactness is almost un-
avoidable; the precise condition is [8X — X| = 1 (6]).

10.5. We examine, now, the inverse problem of determining when a
given homomorphism of C(Y') into C(X) is induced by some continuous
mapping of X into Y. In this section, we consider homomorphisms
from C(Y) into R—in other words, the case in which X consists of just
one point. The results depend upon the special property that the only
nonzero homomorphism from R into itself is the identity (0.22).

(a)  Any nonzero homomorphism u from C(Y) (or C*(Y)) into R is
onto R; in fact ur = r for all r e R.

Since ug = ug-ul for all g, and u is not identically zero, we must have
ul = 1. Therefore the mapping » — ur is a nonzero homomorphism
of R into R, and hence is the identity.

The kernel of a homomorphism of C(Y’) onto R is a maximal ideal in
C(Y)—by definition, a real maximal ideal. On the other hand, each
real maximal ideal is the kernel of such a homomorphism. Moreover,
distinct homomorphisms onto R have distinct kernels (0.23). Similar
remarks apply to C*(Y'), where now the qualifier “ real”” may be dropped,
since a maximal ideal in C* is always real (Theorem 5.8(a)). We have
proved:

(b)  The correspondence between the homomorphisms of C(Y) (or C*( Y))
onto R, and the real maximal ideals, is one-one.

For y € Y, the fixed maximal ideal M, (or M*) is the kernel of the
homomorphism g — g(y). Now, Y is compact if and only if every maxi-
mal ideal in C*(Y) is fixed (Theorem 4.11); and, by definition, Y is
realcompact precisely when every real maximal ideal in C(Y) is fixed.
Hence we have:

(c) Y is [reallcompact if and only if, to each homomorphism u from
C*(Y) [resp. C(Y)] onto R—i.e., each nonzero homomorphism into
R—there corresponds a point y of Y such that ug = g(y) for all g.

Briefly, the condition states that ““ every real homomorphism is fixed.”
10.6. Our first result about homomorphisms from C(Y) into C(X),
for arbitrary X, is a generalization of (c).

THEOREM. Let t be a homomorphism from C(Y) into C(X) with the
property that t1 = 1. If Y is realcompact, then there exists a unique
continuous mapping v of X into Y such that 7' = t.

REMARKS. The condition t1 = 1 is plainly necessary. The hypo-
thesis that Y be realcompact is also indispensable, for otherwise the
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conclusion will not hold even for a one-point space X. Likewise, the
analogue of this theorem, with C replaced by C*, will require that Y be
compact. Since C*(Y) = C(Y) under this hypothesis, the analogue
is merely a special case of the theorem itself.

PROOF. For each point x of X, the mapping g — (tg)(x) is a homo-
morphism from C(Y) into R; and, since (t1)(x) = 1(x) # 0, it is not
the zero homomorphism. By 10.5(c), since Y is realcompact, there is a
point 7x of Y such that (ig)(x) = g(vx) for all ¢ in C(Y). The
mapping 7 from X into Y, thus defined, evidently satisfies tg = go 7,
for each g. Since tg is a continuous function, Theorem 3.8 shows that
7 is continuous. As observed in 10.2, 7 is the wumigue continuous
mapping for which 7" = t.

10.7. As an application of this theorem, we present an alternative
proof that (2) implies (1) in Theorems 6.4 and 8.6.

THEOREM. Let X be dense in T. If X is C*- [resp. C-] embedded in
T, then any continuous mapping ¢ from X into a [reallcompact space Y has
an extension to a continuous mapping from all of T into Y.

PROOF. It is enough to give the details for C. For any g € C(Y),
the function g o ¢ belongs to C(X), and hence has an extension to a
function (g ¢), in C(T). The mapping g— (g ¢), is a homo-
morphism t of C(Y) into C(7T'), and it carries 1 to 1. 'Therefore, there
is a continuous mapping 7 from T into Y such that 7" = t. For x € X,
we have

g(rx) = (1g)(x) = (g ° P)o(*) = &(px)
for every g e C(Y), which implies that 7x = px. Thus, 7 is an
extension of ¢.

10.8. In spite of the remarks made in 10.6, every homomorphism is
induced, in essence, by a continuous mapping.

THEOREM. If 8 is a homomorphism from C(Y) into C(X), then the set
E={xeX:@3l)(x) =1}

is open-and-closed in X. Furthermore, there exists a unique continuous

mapping T from E into vY, such that for all g € C(Y),
(3g)(x) = g¥(vx) forallx € E,
(Be)x) =0 forallxe X — E.

Similarly, for a homomorphism 8 from C*(Y') into C*(X), v will map E
into BY, and satisfy (8g)(x) = gf(vx) for x € E.

and
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PROOF. As with any homomorphism, the element e = 31 is an
idempotent in C(X). Hence it is the characteristic function of the set
E = e(1). Since e is continuous, E is open-and-closed in X. Fur-
thermore (again as with any homomorphism), e is the unity element
of the image ring 3[C(Y)]; it follows that (8¢)[X — E] = {0} for every
geC(Y).

Consider the homomorphism t from C(vY) into C(E) (assuming
E # 0) defined by: tg® = (8¢)|E. Evidently, t sends 1 to ¢|E, i.e., to
the function 1 in C(E). By Theorem 10.6, there exists a unique
continuous mapping 7 of E into vY such that 7 = t. For x € E, we
have

(8g)(x) = (tg")(x) = g*(7x);
and for x € X — E, (8g)(x) = 0.
The proof for C* is similar.

10.9. The fact that every (ring) homomorphism from C(Y) into
C(X) is both an algebra homomorphism (1I) and a lattice homomorph-
ism (Theorem 1.6) is exhibited clearly by its representation as given in
the theorem.

Some of the results that have been obtained so far may be summarized
in the following way.

(a)  vY contains a continuous image of X if and only if C(X) contains a
homomorphic image of C(Y) that includes the constants on X.

For, if 7 is the given continuous mapping, then 7’ is a homomorphism
from C(vY) into C(X); this implies the necessity. The sufficiency
follows directly from the theorem (in fact, from Theorem 10.6).
Incorporating the duality expressed in Theorem 10.3(a), we obtain:
(b)  vY contains a dense, continuous image of X if and only if C(X)
contains an isomorphic image of C(Y') that includes the constants on X.
In particular, if X and Y are compact, then Y is a continuous image of X
if and only if C(X) contains an isomorphic image of C(Y) that contains
the constants on X. (See 16E.2.)
The duality expressed in Theorem 10.3(b) yields:
(¢)  vY contains a C-embedded copy of X if and only if C(X) is a
homomorphic image of C(Y);
(c*)  BY contains a C*-embedded copy of X if and only if C¥(X) is a
homomorphic image of C*(Y).
By 6.9(a), BY contains a C*-embedded copy of X if and only if it
contains a copy of BX; and a copy of BX, being compact, is necessarily
C*-embedded. Thus, (c*) is equivalent to the following corollary of
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(c): if X and Y are compact, then Y contains a copy of X if and only if
C(X) is a homomorphic image of C(Y).

From (c), we have: when Y is realcompact, C*(Y) is a homomorphic
image of C(Y) if and only if Y contains a copy of BY. An example of a
noncompact space with this property is the space Y = N; U BN, of
6K. (Since Y is the union of a compact space with a realcompact space,
it is realcompact, by Theorem 8.16. The conclusion is also easy to
reach directly.)

10.10. ExampLES. Let us examine C and C* for the spaces N, Q,
and R. When is there a homomorphism of one of these rings onto
another?

Since N is C-embedded in both Q and R, C(N) is a homomorphic
image of both C(Q) and C(R), and C*(N) is a homomorphic image of
both C*(Q) and C*(R).

There are no other homomorphisms. For most of the combinations,
this follows from a straightforward application of the embedding
criteria: N contains no copy of Q, etc. Some of these cases can be
handled even more directly by recalling that the image of every bounded
function is bounded (Corollary 1.8).

A few combinations require some additional comment.

C(Q) is not a homomorphic image of C(R); in fact, R cannot contain
even a C*-embedded copy of Q. For, by 1F.4, such a copy must be
closed in R. As a closed subspace of a locally compact space, then, it
must be locally compact. But this is absurd

C*(R) is not a homomorphic image of C*(N) or C*(Q). For, the
totally disconnected spaces BN and BQ cannot contain copies of R.

Finally, C*(Q) is not a homomorphic image of C*(R) or C*(N).
Suppose that SR contains a C*-embedded copy Q of Q. If O meets the
open set R, then O n Ris an open set in Q, and hence contains a closed
interval of Q. As above, this is impossible. So QO < SR — R. But
this, too, is impossible, for Q contains a countably infinite compact
set, while by Corollary 9.12, every infinite closed set in SR — R
is uncountable. A similar argument shows that SN contains no copy

of Q.

QUOTIENT MAPPINGS

10.11. Let 7 be a mapping from a space X onto a set Y. We
recall that the quotient topology on Y is the largest topology such that =
is continuous. The set Y, endowed with the quotient topology, is
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called the quotient space of X, relative to the quotient mapping ;
we shall denote this space by Y,. The quotient topology is character-
ized as follows: a subset F of Y is closed in Y, if and only if +<[F] is
closed in X. Dually, the corresponding condition holds for open
sets.

The next theorem tells us, in terms of the induced homomorphism,
when a continuous mapping is a quotient mapping. The theorem is
complicated by the fact that a quotient space of a completely regular
space need not be completely regular (3]).

THEOREM. Let 7 be a continuous mapping from X onto a completely
regular space Y, and suppose that the quotient space Y is also completely
regular. Then T is a quotient mapping if and only if v'[C(Y)] contains
(hence is) the set A of all functions in C(X) that are constant on all sets
7(y), forye Y.

PROOF. Necessity. If fe A, then there exists g € RY such that
f=go7. LetFbea closed set in R. The set

™ [g<[F]], thatis, f<[F],

is closed, by continuity of f. Hence g«<[F] is closed, since 7 is a
quotient mapping. Thus, g is continuous, so that f = 7'g € 7'[C(Y)].

Sufficiency. Since 7 is onto Y, the mapping g—gor from RY
(= RY-) into RX is one-one. By hypothesis, the image of C(Y) under
this induced mapping is 4. Since the topology of Y contains that of ¥,
so that C(Y,) © C(Y), the image of C(Y,) is also 4. Thus, C(Y)
and C(Y,) have the same image under the one-one mapping, and there-
fore C(Y) = C(Y,). By Theorem 3.6, the completely regular spaces
Y and Y, are homeomorphic.

The theorem holds with C replaced by C*. The subrings of
C*(X) that are images of homomorphisms are described in 10D.4 and
16E.

10.12. We know that if X is compact, then every continuous
mapping 7 from X onto Y is a quotient mapping, in fact, a closed
mapping. This suggests that for arbitrary X, the space ¥ might be
realized as a quotient space relative to some extension of 7 toward a com-
pactification of X. The suggestion is bolstered by the observation that
there will be fewer continuous functions on the enlarged space, and
larger preimages of points under the extended mapping, making it more
likely that the induced image of C(Y') will include all functions that are
constant on these preimages.

The result is stated in the next theorem. Because we are dropping
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the goal that 7 itself be a quotient mapping, we are able to relax the
requirement that it map X onto Y.
We begin with a lemma, which generalizes Lemma 6.11.

LEmMMA. Let ¢ be a continuous mapping from T into Y, and let S be a
proper dense subset of T. If o(y) n S is compact, for everyy € Y, then
the restriction of ¢ to S is not a closed mapping.

PROOF. Choose pe T — S, and let ¢ = @p. The point p has an
open neighborhood whose closure V' (in T') does not meet the compact
set @*(g) N S. Then gé¢ @[V nS]. But clz (V' nS) =7V, and
ge g[V]. Hence

geglcl,(V n S)] = cly e[V n S].

Therefore @|S takes the closed set V' n S in S to a set that is not closed
inY.

10.13. THEOREM. Let 7 be a continuous mapping from X onto a
dense subspace of Y, 7 its Stone extension into BY, and X, = #[Y].
Then Ty = 7| X, is a closed mapping from X, onto Y, and the preimage of
every compact set is compact.

The space X, is the largest subspace of BX to which = has a continuous
extension into Y. It is the only one for which the extension is a closed
mapping such that the preimage of each point is compact.

PROOF. Since BX is compact, 7 is a closed mapping, and the inverse
image of every compact set is compact. The mapping 7, has the same
properties, because it is the restriction of 7 to a total preimage. Evi-
dently, X, is the largest subspace of BX to which 7 has a continuous
extension. That it is the unique space for which the extension has the
described properties is a consequence of the lemma.

It follows from 10.9(b) that vY is a quotient space of some space
between X and BX if and only if C(X) contains an isomorphic image of
C(Y) that includes the constants on X.

10.14. CoroLrARY. Given Y, let D be any discrete space equipotent
with some dense subset of Y. Then Y is a quotient space of a suitable
subspace of BD.

For example, R is a quotient space of a subspace of SN.

As another example, let D be the discrete subspace of W* consisting
of all isolated points, 7 the identity map on D, 7 its Stone extension from
BD onto W*, and D, the total preimage of W. By Lemma 6.11, the
total preimage of D is D. If a point p of BD — D belongs to the closure
of a countable subset 4 of D, then 7 carries p into cly* 4, and hence
to a countable ordinal. Conversely, if « is a countable ordinal, then
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W(e + 1) is a countable neighborhood of « in W*, so that 7 [W(a +
1)] is a countable set in D whose closure in 8D contains ¥ (). Thus,
D, — D consists precisely of those points of 8D that are limit points of
countable subsets of D. The closed set 7{w,) consists of all points in
BD that are not in the closure of any countable subset of D. By 9F,

there are 22" such points.

10.15. In the general situation of Theorem 10.13, if 7 is a one-one
mapping, then all we can add to the conclusion is the trivial remark that
7o is one-one on X. As we have just seen, a more substantial improve-
ment is obtainable from the requirement that =~ be a homeomorphism,
for then Lemma 6.11 can be applied.

CorOLLARY. If T is a homeomorphism, then T, carries X, — X to
Y — 1[X].

In particular, every compactification Y of X is a continuous image of
BX, under a mapping that leaves X pointwise fixed, and carries BX — X
to Y — X (Theorem 6.12).

The corollary provides a description of all spaces in which X is dense.
Each such space may be constructed from BX by deleting part of
BX — X, and identifying the points in certain remaining compact
subsets of BX — X. Inthissense, BX isthe largest (completely regular)
space, and hence the largest compact space, in which X is dense. A
compactification of X is constructed from X by making identifications
but no deletions.

Recall our description of compactifying X as the process of fixing the
free z-ultrafilters (6.1). In an arbitrary compactification Y, distinct
free z-ultrafilters on X may converge to the same point in Y'; butin the
largest compactification, BX, each z-ultrafilter has its own cluster point.
The z-ultrafilters on X that converge to a given point y of Y are
precisely those that converge in BX to the various points of 74 (y).

10.16. The space X, of Theorem 10.13 reflects certain properties of
Y, as is shown in the next theorem.

THEOREM.

(a) Y is locally compact if and only if X, is locally compact.

(b) Y is compact if and only if X, = BX.

(c) If Y is realcompact, then X, is realcompact.

PROOF. (a). Since BX, = BX, the closed mapping 7 carries
BX, — X, onto BY — Y, as well as X, onto Y. The result now

follows from the fact that a space S is locally compact if and only if it is
open in 8S (6.9(d)).
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Conclusion (b) is obvious, while (c) was given in Theorem 8.13 and
in 8B.4.

We do not know whether every closed, continuous image of a real-
compact space is realcompact, or even whether the converse of (c) is
true. Itis known, however, that an open, continuous image need not be
realcompact; see the example in 8I.

10.17. Filters and z-filters. 'The concept of a z-filter on a space X
was introduced (in Chapter 2) as a tool for the study of ideals in C(X).
It turned out that z-filters can be used in much the same way as filters in
the theory of convergence in completely regular spaces. In this section,
we make some general comments on the relations between filters and
z-filters on X, especially as they concern convergence. Additional
details, along with some illuminating examples, are presented as
problems at the end of the chapter.

Let D denote the discrete space whose points are those of X. The
filters on D are the same as those on X, but the z-filters on the two
spaces will be the same only when X is discrete. The space BX was
constructed by supplying one cluster point for each z-ultrafilter on X,
while 8D, in general much larger than BX, requires a separate cluster
point for each ultrafilter.

We have noted (2.2) that the zero-sets belonging to a given filter form
a z-filter, and that every z-filter is a base for a filter. There is thus a
natural (many-one) mapping from the set of all filters & onto the set of
all z-filters. Let 8 denote the identity map of D onto X. Then the
mapping in question is precisely 3#:

SF = F n Z(X).

Not only is 8% the natural mapping from the set-theoretic point of
view, but it also preserves convergence (10]).

Let % be an ultrafilter. The z-filter %% is prime (4.12), and so it
is contained in a unique z-ultrafilter ; we denote this z-ultrafilter by 4%,
thus defining a mapping 4 from the set of all ultrafilters on X onto the
set of all z-ultrafilters. This mapping shares with 3% the property of
preserving convergence; as a matter of fact, it is characterized by this
property (10].3).

Let § denote the Stone extension of & into BX. Then § induces a
mapping from the set of all ultrafilters on X onto the set of all z-ultra-
filters—precisely, the mapping 4 (10].4). 'The convergence-preserving
property of 4 reflects, first of all, the fact that § is continuous, and,
secondly, the fact that a z-ultrafilter converges in any compactification.
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PROBLEMS

10A. INDUCED MAPPINGS.

Let Y be realcompact, let t be a homomorphism from C(Y) into C(X)
such that t1 = 1, and let t’ denote the mapping 7 of X into Y described in
Theorem 10.6.

1. If each point x of X is identified with the mapping f— f(x) of C(X)
into R, and similarly for Y, then t' may be interpreted as a mapping induced
by t in the sense of 10.2.

2. 7" =7andt" = t.

3. If 7 is a homeomorphism of X onto Y, then 7' is an isomorphism of
C(Y) onto C(X).

4. If t is an isomorphism of C(Y) onto C(X), and if X as well as Y is
realcompact, then t’ is a homeomorphism from X onto Y.

5. If X is connected, then every nonzero homomorphism from C(Y) into
C(X) is induced by a continuous mapping from X into Y.

6. Let o be a continuous mapping from X into Y, and ¢’: C*(Y)— C*(X)
the induced homomorphism. Define a homomorphism 3: C(8Y)— C(BX)
by replacing the functions in C*(Y) and C*(X) by their extensions to Y
and BX, respectively. Then 3’ = . (This contains the essence of the
proof of Theorem 10.7.)

7. Interpret ¢¥ (4.12) as a mapping induced by a mapping induced by ¢.

10B. ISOMORPHISM OF RESIDUE CLASS FIELDS.

1. Let X be C-embedded in T; then BX < BT. Forp € BX, let Mx? and
M? denote the ideals M? in C(X) and C(T'), respectively. Then C(X)/My?
is isomorphic with C(T)/Mr?. [The kernel of the homomorphism g—
Mx? (g|X) is contained in M2.]

2. The above need not hold if X is only C*-embedded in T. [Take
T = BX]

10C. THE SMALLEST COMPACTIFICATION.

1. If T is a compactification of X, and 7' — X has more than one point,
then X has a compactification 7" that is smaller than T, i.e., there is a quotient
mapping of T onto T’ leaving X pointwise fixed.

2. X has a smallest compactification if and only if X is locally compact.

10D. KERNEL AND IMAGE OF A HOMOMORPHISM.

1. Let3 be a homomorphism from C(Y) into a ring of continuous functions.
If Y is realcompact, there exists a unique closed set F in Y such that the
kernel of 3 is the z-ideal of all functions that vanish on F. When Y is not
realcompact, the kernel is still a 2-ideal, but not necessarily of the stated form.

2. In 1,if Y is both realcompact and normal, then 8[C(Y)] is isomorphic
with C(F). [3D.1.]
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3. If Y is realcompact, but not normal (see 8.18), then there exists a
homomorphism of C(Y) into a function ring whose image is not isomorphic
with C(X) for any X. [If the family of restrictions to a closed set F is
isomorphic with C(X), then Theorem 10.3(b) leads to a proof that F is
C-embedded.]

4. For any Y, a homomorphic image of C*(Y) in a function ring is isomorphic
with C*(S) for some S.

10E. EXTENSION OF THE IDENTITY MAP.

1. Let Y, and Y, be compactifications of X, and suppose that whenever
two z-ultrafilters on X converge to the same point in Y, they also converge
to the same point in ¥,. Then there exists a continuous mapping of Y,
onto Y, that leaves X pointwise fixed, and sends Y; — X onto Y, — X.
[6G.4 and 6F.3.]

2. Let Y, and Y, be realcompactifications of X. The functions in C(X)
that are extendable to C(Y,) are the same as those extendable to C(Y,)
when and only when there exists a homeomorphism of Y, onto Y, that leaves
X pointwise fixed. [Theorem 10.6.] A similar result holds for C*.

10F. TtoPoLoGIEs oN C(X).
Let t be a homomorphism from C(Y) or C*(Y) into C(X).
1. t is continuous in the uniform norm topologies (2M). [By 1]J.4, a
homomorphism reduces the norm.]
2. t need not be continuous in the m-topologies (2N). [Let Y be a one-
point space, and X not pseudocompact.]

10G. Lemma 10.12.
Derive Lemma 6.11 from Lemma 10.12.

10H. FILTERS.

1. A filter is contained in a unique ultrafilter only if it is an ultrafilter.
Contrast with z-filters.

2. A filter on a discrete space D converges in BD if and only if it is an
ultrafilter. [6F.2.]

3. Ewvery ultrafilter on X converges in any compactification of X.

4. If ¥ is an ultrafilter on a subset of X, then the filter on X with base ¥~
is an ultrafilter.

5. If X is a finite union of disjoint sets X, - - -, X,,, and % is an ultrafilter
on X, then some ultrafilter on one of the X}, is a base for %.

10I. CONVERGENCE OF 2-FILTERS.
1. A filter or z-filter on X converges to p in BX if and only if it contains
Z[0o?).
2. A z-filter on X converges in BX if and only if it is contained in a unique
z-ultrafilter on X.
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Let T be any space containing X.
3. State and prove an analogue of I with BX replaced by T.
4. If a z-filter & is contained in a unique z-ultrafilter on X, and if the
latter converges in T, then & converges. The converse is false.

10]J. THE mMAPPINGS 8% AND 4.

Let X < T.

1. A filter # on X converges to p in T if and only if %% converges to p.

2. An ultrafilter % on X converges to p in T if and only if 4% converges
to p.

3. If 4, is a mapping from the set of all ultrafilters on X to the z-ultrafilters,
and if 4, satisfies 2 for T = BX, then 4, = 4.

4. Let % be the ultrafilter on X that converges to a point ¢ in 8D (where D
is the discrete space with the points of X). Then % converges to p in BX if
and only if §¢ = p, and if and only if A% = A®.

10K. ULTRAFILTERS CONTAINING A Z-ULTRAFILTER.

1. A necessary and sufficient condition that A? be contained in every
ultrafilter on X that converges to p is that M? = O?. [See 10].4. Necessity.
If Z e A? — Z[O?], then p € clgx (X — Z).] Thus, this holds for a point p
of X if and only if p is a P-point (4L); and it holds for every point p of X if
and only if X is a P-space [7L].

2. For p € X, A, is contained in a unmique ultrafilter if and only if {p} is a
zero-set in X. [Necessity. If S meets every member of A, in a point
distinct from p, then A, U {S} has the finite intersection property.]

3. For p € BX, A? is contained in a umique ultrafilter if and only if A?
generates an ultrafilter on X, i.e., there exists an ultrafilter each of whose
members contains a member of A2, [10H.1.]

4. If A? contains a discrete zero-set Z, and if Z is C*-embedded in X,
then A? is contained in a umigue ultrafilter. [The trace # of A? on Z is an
ultrafilter on Z and is contained in A? [1F.3]; and & generates an ultrafilter
on X [10H.4].]

10L. =z-ULTRAFILTERS ON R, 4, anp T.

1. In the space R: If p € BN, then A? is contained in a unique ultrafilter.
(This is a special case of 10K.4.)

2. In the space R: If p is a point in SR such that every member of A? is of
cardinal ¢ (see, e.g., 6U.5), then A? is not contained in a unique ultrafilter.
[As in 4G, find two disjoint sets in R, each of which meets every member of
Ar]

3. In the space A = BR — (BN — N): If p € BN — N, then A? is not
contained in a unique ultrafilter. [By 6P.2 and 9E, every member of A? is of
cardinal = ¢.]

4. In the space T: An ultrafilter % contains A* if and only if all tails of the
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top edge W of T belong to %, i.e., some ultrafilter on W that includes all
tails is a base for %. Hence there exist 22! ultrafilters that contain A’
[9F.]

5. In the space T: There exist 22" ultrafilters converging to ¢ that do not
contain A% [For each ultrafilter ¥~ on W, consider the filter base on T
consisting of all sets V' x N, for V e ¥".]

10M. REAL IDEALS AND REALCOMPACT SPACES.

1. If % is an ultrafilter on X, and p its limit in X (10H.3), then §#% has
the countable intersection property if and only if M? is a real ideal. [7H.3
and 10I.1.]

2. X is realcompact if and only if every ultrafilter %, for which é#% has
the countable intersection property, has a limit in X.

3. Use 2 to prove that every closed subspace of a realcompact space is
realcompact. [10H.4.]

10N. COMPONENTS OF ZERO-SETS IN SR+,
Let f € C(BR*), with Z(f) — R+ # 0.
1. There exist sequences (r,) and (z,) in R+, with r, < t, < 7,,,, and
lim, 7, = oo, such that |f(x)| < 1/n wheneverr, < x < ¢,.
2. Let % be a free ultrafilter on N. There exist unique p, g € BR*,
satisfying

peNuead{r,ine U}, and ge Nyea cl{t,:ne Ul

Moreover, p # ¢, and p, g € Z(f).

3. If V is any closed neighborhood of p not containing g, then the boundary
of Vmeets Z(f). [LetE € % besuchthat{r,},.r < Vand{t,},cx N V = 0.
For each n € E, there exists s, on the boundary of V, withr, < s, < t,.]

4. p and q belong to the same component of Z(f). [The component of a
point in a compact space is the intersection of all the open-and-closed sets
containing it (Theorem 16.15).]

5. Every nonempty zero-set in SR+ — R+ contains an infinite connected
set. Contrast with 6L.4.



Chapter 11

EMBEDDING IN PRODUCTS OF REAL LINES

11.1. The existence of a compactification of an arbitrary completely
regular space X was first established, by Tychonoff, by embedding X
in a product of a suitable number of copies of the interval [0, 1]. His
process yields BX. The ideas involved will be presented in this chapter,
along with the development of an analogous embedding that yields the
realcompactification v.X.

As a matter of mathematical interest, we wish to obtain 8X and vX
without recourse to our earlier constructions of these spaces. We shall
not use material beyond Chapter 5, except for the portion of Chapter
10 through 10.7.

Imposition of this restriction raises the question of precisely what
is to be meant by 8X and vX. The answer is: BX is a compact space
in which X is dense and C*-embedded, and v.XX is a realcompact space
in which X is dense and C-embedded. We must prove anew that
these definitions determine B8X and vX up to homeomorphisms that
leave X pointwise fixed. From Theorem 10.7, we get Stone’s theorem,
which with 0.12(a) yields the uniqueness of BX as before. The proof
of uniqueness of vX is similar.

We shall construct products P and P, of real lines, and define homeo-
morphisms ¢ and o4 of X into P and Py, respectively, in such a way
that o[ X'] will be C-embedded in P, and o,[X], C*-embedded in P,,.
The closures of of X] and o4[X] will serve as models for v.X and BX,
respectively—as soon as it is proved that the former is realcompact
and the latter compact. We shall present two approaches to these
proofs, one algebraic, and the other topological. The algebraic method
is better suited to the discussion of v.X, while the topological method
handles 8X more efficiently.

11.2. Define
P = RCX), and P, = RCX),
154
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The points of P are, then, precisely the real-valued functions whose
domain is C(X): each point p of P has the form p = (p;);cc, where the
real number p; is the value of p at f.

For each f € C, = will denote the projection of P onto R defined by

7Hp) = Py

By definition, the topology of the product space P is the weak topology
induced by the family of all functions = (see 3.10).

The points, the projections w;, and the topology of P, are described
in an analogous manner.

11.3. 'THEOREM.
(@) The mapping o, defined by

ox = (f(%))seceo (x € X),

is a homeomorphism of X into P, and o[ X] is C-embedded in P.
(a*) The mapping o, defined by

oxx = (f(%))secor (v € X),
is a homeomorphism of X into Py, and o,[X] is C*-embedded in P,.

PROOF. (a). By definition of ¢, m;00 = f, for each fe C(X).
Therefore o is continuous, by 3.10(c). Next, the induced homo-
morphism o’ (10.2) maps C(P) onto C(X); for,

o'wf= mpoa = f.

By Theorem 10.3(b), o is 2 homeomorphism, and o[ X] is C-embedded.
The proof of (a*) is similar.

11.4. Since ¢ maps X homeomorphically onto o[ X], there is an
induced isomorphism of C(c[X]) onto C(X), as follows. The image of
a function g € C(o[X]) is the function f € C(X) for which f(x) = g(ox)
(x € X). But this means simply that g = #/|o[X]; thus, C(o[X]) con-
sists precisely of the restrictions to o[ X] of the projections #;. That
o[X] is C-embedded in P reflects the fact that =, is a continuous ex-
tension of its restriction. Now, a function in C(c[X]) may have many
continuous extensions to all of P; but all of these extensions must agree
on o[ X ]—and hence also on its closure. Thus, the process of extension
provides an isomorphism from C(¢[X]) onto C(clo[X]). As a
consequence, we have:

(@)  The mapping f— mylcl o[ X] is an isomorphism of C(X) onto
C(cl of X)).
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Similarly:
(a*)  The mapping f— mys|cl ou[X] is an isomorphism of C*(X) onto
C*(cl oy [X]).
11.5. THEOREM. The closure of o4 [X] in Py is compact, and hence
is B(ox[X])-
PROOF. By Tychonoft’s theorem (4.14), the subspace

Xsece clp fIX]

of P, is compact; and it evidently contains o4[X]. Therefore cl g,[X]
is a compactification in which o4 [X] is C*-embedded.
Since 04[X] is homeomorphic with X, B(04[X]) is a model for BX.

11.6. In order to prove that clp o[ X] is v(c[X]), we derive an alge-
braic characterization of clp o[ X].

A point p of P is 2 mapping of C(X) into R, the value of p at f being
ps. For each x € X, the point ox of P is determined by: (ox), = f(x).
Now, by the very definitions of the ring operations in C(X),

(0%)1g = (0%); + (o%), and (ox);, = (o%);-(0x),
for all f, ge C(X). Thus, ox is a homomorphism of C(X) into R.

Moreover, ox maps C(X) onto the field R; in fact, its kernel is, evidently,
the maximal ideal M,.

Let H denote the set of all elements of P that are homomorphisms
of C(X) onto R.

(By 10.5(a), these are all the nonzero homomorphisms into R.) Thus,

Prig=P; + P, and ps = psp, (f,gel)
for p in H.

Since P is the set of all mappings of C(X) into R, H is the set of all
homomorphisms of C(X) onto R. Therefore H is in one-one corre-
spondence with the set of all real maximal ideals in C(X)—the kernels
of these homomorphisms (10.5(b)). As we have seen, H contains
o[X], and the correspondence just cited carries o[X] onto the set of
all fixed maximal ideals.

11.7. THeoreM. H = clp o[ X].
PROOF. First, we prove that H is closed. The set
H' =y, gec{PE€P:prig — Pr— Dg =0 =ps, — pspg}

is, clearly, the set of all homomorphisms from C into R (the zero
homomorphism included). Since p—p, is a continuous function
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(namely, ), H' is an intersection of closed sets, and hence is closed.
Now, if p is a homomorphism onto R, then p; = 1. Therefore,

H=H'n{p:p=1}
and so H, too, is closed.

Secondly, 5[X] is dense in H. For, an arbitrary basic neighborhood
of a point p of H is a set

Ni-i{geH: g —p,l <& (e G e > 0).
The kernel of p is a real maximal ideal M in C(X), and, for each &,
the real number M(f,) is equal to p,. Since Z[M] has the finite
intersection property, there is a point x € X such that f,(x) = M(f)
for all & =1,---,n. Thus, (ox); = py,, so that ox is in the given
neighborhood of p.

11.8. THEOREM. The closure, H, of o[X] in P is realcompact, and
hence H = v(o[X)]).

PROOF. Let M be any real maximal ideal in C(H). Now, as was
noted in 11.4(a), C(X) is isomorphic with C(H), under the mapping
f—m;H. Therefore the set

K ={feC(X): n;|He M}

is a real maximal ideal in C(X). This implies that K is the kernel of

some homomorphism p € H, so that fe€ K if and only if 7 /(p) = 0.

Hence, M is the fixed ideal M, in C(H). Thus, H is realcompact.
Since o[ X] is homeomorphic with X, v(¢[X]) is a model for v.X.

11.9. It will be instructive to examine a proof of existence of 8.X
that parallels the one just given for vX. Let H, denote the set of all
homomorphisms of C*(X) onto R. As before, H, is in one-one
correspondence with the set of all maximal ideals in C*(X), and this
correspondence carries the subset o,[X] of H, onto the set of all fixed
maximal ideals. The analogue of Theorem 11.7 is

(a) Hy = clp, 0,[X].

The proof that H, is closed in P, is as before; but the proof that o,[X]
is dense in H, is somewhat different. We consider a basic neighbor-
hood of a point p of H,:

Ni-1{g € Hy: |€Ifk - Pfkl < ¢ (fre C*, e > 0).
The function f, defined by
f() = 2asy (ful®) = 25)* (x € X)
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belongs to C*(X); and, since p is a homomorphism, p; = 0. There-
fore, f belongs to an ideal in C*, and hence it is not a unit. Thus, fis
not bounded away from zero, and so there is a point x of X such that
f(x) < €. 'Then for & £ n, we have

[(ox2)s, — 27 = | fi®) — Pyl < &
so that oyx is in the given neighborhood of p.

The reason for the difference between this proof and the earlier one
is that the zero-sets of an ideal in C* need not have the finite inter-
section property. Essentially, what was done here was to work with
e-filters (2L) rather than z-filters.

Finally:

(b)  Every maximal ideal in C*(H,) is fixed.

The proof is exactly like that of Theorem 11.8. In the case of H, there
was no more to be done, because H is realcompact, by definition, when
every real maximal ideal is fixed. But to conclude from (b) that H,
is compact involves Theorem 4.11, whose proof demands that an
arbitrary ideal be embeddable in a maximal ideal. It is noteworthy
that this last requires the intervention of the axiom of choice, as,
indeed, do all proofs of the existence of BX. In contrast, the proof of
existence of vX given in 11.2 to 11.8 does not seem to depend upon this
axiom. See Notes.

11.10. Next we look at the proof of existence of vX modeled after
the one given in 11.2 to 11.5 for X. The problem is to parallel the
proof of 11.5 in order to show that the closure of of X] in P is real-
compact.

The first step is to observe that P is a product of real lines (one factor
for each member of C(X)), and hence is a product of realcompact
spaces. Now, the product theorem for realcompact spaces does not
require a prior construction of v.X, as was pointed out in 8.12. Conse-
quently, we may claim that P is realcompact.

The remaining step is to prove that the closed subspace cl o[ X] of P
is realcompact. We are not at liberty to invoke the closed subspace
theorem (8.10), as its proof did require the existence of vX. However,
we notice an additional fact here: cl o[X] is not only closed, but it is
also C-embedded. It is enough, then, to provide an independent
proof of the following result:

(@) A closed, C-embedded subset S of a realcompact space Y is real-
compact.

Let u be a homomorphism of C(S) onto R. Since S is C-embedded
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in Y, the mapping g — g|.S is a homomorphism of C(Y) onto C(S).
Therefore g — u(g|.S) is a homomorphism of C(Y) onto R. Since Y
is realcompact, there is, by 10.5(c), a point ¥ of ¥ such that u(g|S)
=g(y) for every g in C(Y). We assert that y € S. Indeed, if this
is not the case, then, because S is closed, there exists g € C(Y) such
that g(y) = 0, while g[S] = {1}. But ul =1, and so

0 =g(y) = u(g]S) =ul =1,

which is absurd. Thus, y € S; and uf = f(y) for every f in C(S).
By 10.5(c) again, this implies that .S is realcompact.

11.11. The constructions of BX and vX presented in this chapter
fail to emphasize one essential property of these spaces, namely, that
vX can be embedded in BX. To derive this result, we observe simply
that B(v.X) is a compactification of X in which X is C*-embedded, and
hence is BX. Additional insight is provided by the following theorem,
which shows how H, the model for v.X, is embeddable naturally in H,,
the model for BX.

Let 7 denote the restriction to H of the projection of P onto P,.
Clearly, = carries H into H,.

THEOREM. The projection T of H into H, is a homeomorphism, and
TOCO = O.

PROOF. Certainly, 7 is continuous, and 7o = oy. The latter
states that the restriction of 7 to o[X] is oy o0, and hence is a
homeomorphism.

We now show that the homomorphism 7’ induced by 7 carries C*(H,)
onto C*(H). Consider any fe C*(H); we are to find g € C¥*(Hy)
such that 7g = f. Since 7 maps o[X] homeomorphically onto o, [X],
we may specify the values of g on ¢,[X] as follows:

&(rp) = f(2) (p € o[ X]).
Inasmuch as ¢,[X] is C*-embedded and dense in H,, the values of g
on H, are determined; by continuity, the above identity holds for
every p € H. This means that f = go 7, that is, g = f. Thus, 7'
is onto. By Theorem 10.3(b), 7 is a homeomorphism.
11.12. If the space X is compact, then o [X] = H,. As we have
seen, H, is contained in the subspace

Xfec° clg f[X]

of P,, so that the compact space X is embedded as a closed subspace
of a product of compact subsets of R.
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If X is realcompact, then o[X] = H, and ¢ embeds X as a closed
subspace of the product P. Conversely, any closed subspace of a
product of real lines is realcompact, by Theorems 8.11 and 8.10
or by 8.12 and 11E.1. Hence we have:

THEOREM. A space is realcompact if and only if it is homeomorphic
with a closed subspace of a product of real lines.

PROBLEMS

11A. THE PrRODUCT P.

1. Describe P and o[X] for a one-point space X, and for a two-point
space.

2. The subspace X fec f[X] of P is realcompact and contains H.

11B. RESTRICTION OF PROJECTIONS.

1. Let S < H. In order that the functions 7|S be distinct for distinct
fe C(X), and constitute all of C(S), it is necessary and sufficient that S
be dense and C-embedded in H. The analogue holds for H,.

2. Find a subset E of P, disjoint from H, such that the functions n|E
are distinct for distinct f, and constitute all of C(E). [Let E = {p": p € H},
where p’ ;= 2p, for all f.]

11C. EMBEDDING OF AN ARBITRARY COMPACTIFICATION.

Let T be any [real]compactification of X. There exists a homeomorphism
7 of X into a suitable product of real lines such that cl 7[X] is homeomorphic
with T.

11D. ANALOGUE OF THEOREM 11.7.

Prove that H, = cl 04[X] by using 11.4(a*) and the fact that cl 0, [X]
is compact.

11E. CLOSED SUBSPACES OF A REALCOMPACT SPACE.

1. Give an alternative proof that a closed subspace S of a realcompact
space Y is realcompact, as follows: let ¢ denote the identity map of S into ¥;
given a real z-ultrafilter &7 on .S, consider g#.27, and take note of Lemma 8.12.

2. In 11.10(a), it was assumed in addition that S is C-embedded in Y.
What special property does 7#% have when £ is a z-ultrafilter on a C-
embedded subspace and = is the identity map into the whole space? [Theorem
1.18.]



Chapter 12

DISCRETE SPACES. NONMEASURABLE
CARDINALS

12.1. We have seen many times that the discrete space N is real-
compact. More generally, according to 8.18, every discrete space whose
cardinal is £ cis realcompact. The question arises whether all discrete
spaces are realcompact. Since, among discrete spaces, the cardinal is
the only significant variable, this is, in fact, a question about cardinal
numbers.

By a {0, 1}-valued measure on a set X, we mean a countably additive
function defined on the family of all subsets of X, and assuming only the
values O or 1. Every set X admits certain trivial measures. One is the
zero measure: the function 0. Another type is obtained by selecting
a point x € X, and defining u(4) = 1if x € 4, and u(4) = 0if x ¢ 4.

We call a cardinal m measurable if a set X of cardinal m admits a
{0, 1}-valued measure p that is not one of these trivial types, i.e., such
that u(X) = 1, and u({x}) = 0 for every x € X. As we shall proveina
moment, a discrete space is realcompact if and only if its cardinal is
nonmeasurable, i.e., every nonzero, {0, 1}-valued measure assigns
measure 1 to some one-element set. Our problem, then, is the purely
set-theoretic one of finding the nonmeasurable cardinals. What will
be proved is that the class of all nonmeasurable cardinals is very
extensive; in fact, it is closed under all the standard operations of
cardinal arithmetic. Whether every cardinal is nonmeasurable is a
celebrated unsolved problem.

The chapter closes with some theorems concerning cardinal numbers
of residue class fields of C(X) for discrete X.

12.2. The realcompact discrete spaces are just those for which every
ultrafilter with the countable intersection property is fixed (Theorem

5.14).
161
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An ultrafilter % on a set X may be specified by its characteristic
function x4 (defined on the set of all subsets of X): for 4 < X,

xalA) =1 if AeW, xo(d)=0 if A¢ .

Evidently, x4(X) = 1. Next,if A n B =0,then A U Be % if and
only if exactly one of 4, B belongs to %. Therefore,

xo(4 U B) = xa(4) + xa(B) (4 n B=09).

Thus, x4 is a nonzero, finitely additive function defined on the family of
all subsets of X.

Conversely, let u be any nonzero, finitely additive function from the
family of all subsets of X into {0, 1}. Define % to be the collection
of all sets A for which u(4) = 1. Like any nonnegative, additive
set-function, u is monotone: if 4 = B, then u(4) £ u(4) + w(B — A4)
= u(B); hence A € % implies Be %. Also, u(X) = 1 (since p # 0).
In addition, u(4 U B) = 0 whenever u(4) = w(B) = 0—whether 4
and B are disjoint or not; therefore % is closed under finite intersection.
Since u(4) + w(X — A) =1, one of A, X — A belongs to %.
Finally, u(0) = p(0) + p(0), whence u(@) = 0, so that @ ¢ %.

Consequently, % is an ultrafilter. Clearly, x4 = u. Thus, the
correspondence % — x4 is one-one from the set of all ultrafilters on X
onto the set of all nonzero, finitely additive, {0, 1}-valued set-functions
defined on X.

If % has the countable intersection property, then it is closed under
countable intersection; for if [, 4, = A ¢ %, then X — A€ %, and
N, (4, — A) = 0 (this is a special case of 5.14). We aver that this
condition is equivalent to countable additivity, that is, to the stipulation
that u = x4 be a measure. By definition, p is countably additive
provided that

Ui 4,) = 2>, w4,

whenever (4,) is a sequence of pairwise disjoint sets. No difficult
question of convergence of the infinite sum can arise here, because we
must have u(4,) = 0 for all but at most one A4, (since two disjoint sets
cannot both belong to %). If u(A4,) = 1 for some (hence just one) #, the
equation in question holds trivially; accordingly, the problem reduces
to the case in which u(4,) = 0 forallz. And here, as in the finite case,
we can drop the requirement that the sets be disjoint. Hence p is a
measure if and only if

WA) =0 (neN) implies w(U,4,) = 0.
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But this is simply the dual of the statement that % is closed under
countable intersection.

Let us call x4 fixed or free according as the ultrafilter % is fixed or free.
Then we have: X is realcompact if and only if every measure yxq is
fixed. Now, by definition, |X| is nonmeasurable if every measure
xa 18 fixed. Therefore we have, finally:

THEOREM. A discrete space is realcompact if and only if its cardinal
1s nonmeasurable.

12.3. All measures referred to henceforth are understood to be
{0, 1}-valued. We shall say that a measure u is m-additive if u(UJ, s 4,)
= 0 whenever (4,),.s is a family of disjoint sets of measure zero, with
| S| = m. Evidently, an m-additive measure is automatically n-
additive for every n < m.

Just as in the countable case, we may drop the requirement that the
sets be disjoint. (To reduce an arbitrary family of sets 4, of measure
zero to an equivalent family of disjoint sets A’;, well-order the index
set, and define 4', = 4, — U, 4,) We find, then, that u is
m-additive if and only if the intersection of any m sets of measure 1 is
of measure 1.

(@)  Each measure is m-additive for every nonmeasurable cardinal m.

If u is not m-additive, there exists a family (4,);.g of m disjoint sets
of measure 0 whose union is of measure 1. Define a set-function A
on the index set .S, as follows:

AE) = m(Usee4) (E < S8).

Evidently, A is a measure on .S, with A(S) = 1. Since A({s}) = p(4,)
= Ofor eachs, Aisfree. Therefore the cardinal m = |.S|is measurable.

(b)  If pis a free measure, and | A| is nonmeasurable, then u(A4) = 0.

For, the restriction of u to the set of all subsets of A4 is a free measure
on A. The result also follows from {a). The restatement of (b) in
terms of topology of discrete spaces is of some interest: no member of a
free ultrafilter with the countable intersection property is realcompact.

12.4. We shall say that a class of cardinal numbers is closed if it is
closed under all the standard processes for forming cardinals from given
ones: addition, multiplication, the formation of suprema, exponentiation,
and the passage from a given cardinal to its immediate successor or to
any smaller cardinal. In the case of the first three of these processes,
it is understood that the cardinal number of the index set is itself a
member of the class in question.
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Plainly, the class of all cardinals is closed. Likewise, the class of all
finite cardinals is closed; in fact, it is the smallest (nonempty) closed
class. Of course, our interest will be in closed classes that also contain
the number R,.

LemMA. A nonempty class € is closed if and only if, whenever m € G,
(i) neC€foralln < m;

(i) the sum of any m members of €és in €;

(iii) 2me@.

PROOF. The necessity of the conditions is obvious. Conversely,
suppose that € satisfies these conditions; we are to prove that € contains
successors, suprema, products, and exponentials, as described. Let
m e €. The successor of m is less than or equal to 2™, and hence
belongs to €, by (iii) and (i). Next, given m cardinals n; belonging to
G, define n = Z‘ n. Since sup, n, < u, and since n € €, by (ii), we
have sup, n, € €, by (i). Furthermore,

[Ln=s][2%=2"€g,

so that [ [,n,€€. Finally, this last implies that if 1€ G, then I™—
which is the product of [ by itself, m times—is also in €.

12.5. THEOREM. The class of all nonmeasurable cardinals is a closed
class containing X,,.

PROOF. R, is already known to be nonmeasurable. We proceed
to verify the conditions of the lemma.

(i) Ewvery cardinal smaller than a nommeasurable cardinal is non-
measurable, in other words, every subspace X of a realcompact, discrete
space Y is realcompact. For, if u is a nonzero, free measure on X,
then v, defined by:

¥B) = (B n X),

is a nonzero, free measure on Y. (Alternatively, the result is a special
case of Theorem 8.10 or Corollary 8.14.)

(ii) Every nonmeasurable sum of nommeasurable cardinals is non-
measurable. Let |X| be a sum of m nonmeasurable cardinals, where
m is nonmeasurable. Then X is expressible as a union of m disjoint
subsets 4, each of nonmeasurable cardinal. Let u be any free measure
on X. By 12.3(b), u(4,) = O for each s. By 12.3(a), p is m-additive,
so that u(X) = (U, 4,) =0. Thus, p=0. Therefore |X| is
nonmeasurable.

(iii) If m is nonmeasurable, then 2™ is nonmeasurable. Let X be any
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set of power m, and ¥ the family of all subsets of X. Then |¥| = 2™
Let u be any nonzero measure on X. By 12.3(a), p is m-additive.
For each x € X, consider the family &, of all subsets of X that contain
%, and its complementary family —&,:

8, ={d<cX:xe4d}, —-c,={B<X:x¢B}

Next, define
S={xeX:us,) =1}
Then the family

G = nxesgx n nx¢S(—@x)

is the intersection of m families of measure 1, and hence is itself of
measure 1 (since p is m-additive). But & is a one-element subfamily
of ¥:

@={4e%: 4> S} n{Be%:Bc S}={S}

Therefore the measure p is not free. 'Thus, |%| is nonmeasurable.

12.6. REMARKS. The smallest closed class containing X, comprises
a vast collection of cardinals; and we know from Theorem 12.5 that all
of them are nonmeasurable. Not only is X, nonmeasurable, but so are
X, -, X o R ooy R, oo, as well as ¢, 2¢, 2% ...; more
generally, so are all cardinals that can be defined in terms of given
nonmeasurable cardinals by the standard processes of cardinal arith-
metic. For all these cardinals, the corresponding discrete spaces are
realcompact.

A cardinal is said to be strongly inaccessible if the set of all smaller
cardinals is a closed class containing 8,. Thus, Theorem 12.5 states
that the smallest measurable cardinal (if any exist) is strongly in-
accessible. We have indicated that it must be huge; in Hausdorff’s
words, if such numbers exist, “so ist die kleinste unter ihnen von
einer so exorbitanten Grésse, dass sie fiir die iiblichen Zwecke der
Mengenlehre kaum jemals in Betracht kommen wird.”

Whether strongly inaccessible cardinals exist at all is still an unsettled
matter. Conceivably, one could prove that no such cardinal exists—
whence no measurable cardinal exists. In any event, it cannot be
proved (in standard axiom systems for set theory) that these cardinals
do exist. For, if we have a model for set theory that includes strongly
inaccessible cardinals, there will, of course, be a smallest such cardinal
a. Let us then reinterpret “set’ to apply only to those sets whose
power is less than a. (This requirement applies as well to the members
of these sets.) The corresponding reduced collection of cardinals will

w " wy? W,
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constitute a closed class containing X,. Now, the arithmetical processes
for constructing cardinals are simply the counterparts of the standard
processes for the construction of sets. Therefore the new model will
again satisfy all the axioms. (A similar situation occurs if one tries to
prove the existence of infinite cardinals, in the absence of the axiom
of infinity. The class of all finite sets satisfies the remaining axioms,
and therefore the existence of an infinite set cannot be derived from
these axioms.)

If strongly inaccessible cardinals do not exist, then, of course, every
cardinal is nonmeasurable. On the other hand, even if such cardinals
do exist, it may still be true that every cardinal is nonmeasurable. As
an example of an intermediate possibility, it is conceivable that the first
measurable cardinal is equal to the second strongly inaccessible cardinal.

The hypothesis that every cardinal is nonmeasurable differs in an
important respect from, say, the continuum hypothesis (which is also
known to be consistent with the usual axiom systems): measurable
cardinals are remote from most mathematical work, whereas the con-
tinuum problem is encountered frequently, in a natural way.

CARDINALS OF RESIDUE CLASS FIELDS

12.7. We close this chapter with some results having to do with
cardinals generally, but not with measurability. The problem is to
get some information about the cardinal of C(X)/M, where M is a
maximal ideal. Since C/M contains the real field, we always have
|C/M| z ¢. And we know that equality can hold, even when M is
hyper-real—for example, in case X = N, so that C(X) itself is of
power c.

We now prove that there exist residue class fields of arbitrarily large
cardinal.

THEOREM. Let X be the discrete space of power m, where m is an
infinite cardinal. Then there exists a maximal ideal M in C(X) such
that |C/M| > m.

PROOF. Since X is infinite, it is equipotent with the set of all its
finite subsets. Let (F,),.x be a one-one indexing of the nonempty
finite subsets of X, and, for each point y of X, define

Z,={xeX:yekF}

The family of all sets Z, has the finite intersection property: Z, n -
N Z, contains the point x for which {y,, ---, y,} = F,. Therefore
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this family is embeddable in an ultrafilter Z[M] (where M denotes a
maximal ideal in C(X)).

To show that |C/M| > m, we consider any subset B of C of power
< m, and exhibit f such that M(f) > M(g) for every g € B. Let B be
indexed as (g,), ¢ x (With duplicate indexing in case |B| < |X|). Define

f®) =1+ max, 5 g,(x) (x € X).
Since F, is finite and not empty, this is meaningful, and defines f on
all of X. Now consider any function g, € B. For every x € Z,, we
have y € F,, and therefore

gy(x) § maxzeFx gz(x) < f(x)

Thus, f — g, is positive on the zero-set Z, of M. Hence M(f) > M(g,)
(5.4(b)).

REMARK. We have actually proved the stronger result that no set of
power < m is cofinal in the totally ordered field C/M.

Notice that |C/M| < 2™ (5]). Hence if there is no cardinal between
mand 2™, then |C/M| = 2™

12.8. For the special case m = ¢, this result can be sharpened.
We need the following general lemma.

LEMMA. Let X and Y be sets of power m, where m is infinite. There
exists a family E of mappings from X into Y, with |E| > m, such that
any two members of E agree only on a set of power < m.

PROOF. By the maximal principle, there exists a maximal subfamily
E of Y%, no two members of which agree on a set of power m. We
suppose that |E| < m and obtain a contradiction.

If |[E| £ m, we can index E by a suitable subset of X: E = (f,),
where s ranges over the subset. Now we define a new mapping f.
Well-order X according to the least ordinal of cardinal m. Then, for
each x € X, we have |{s: s < x}|] < m. Hence we can define f by
choosing f(x) € Y so as to differ from f(x) for every s < x. Thus,
for a given f, € E, f(x) = f(x) only if x < s; hence f agrees with f;
only on a set of power < m. Accordingly, the family E U {f}
satisfies the stated requirement, and so E is not maximal.

12.9. THeorREM. Let X be the discrete space of power c¢. If M is
any maximal ideal in C(X) such that |Z| = ¢ for every Z € Z[M],
then |C/M| > c.

PROOF. By Lemma 12.8, C(X) (=R¥) contains a family of more
than ¢ functions, no two of which agree on a set of power ¢. Hence no
two agree on any zero-set of M, i.e., no two are congruent modulo M.
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Of course, such maximal ideals exist. In fact, let m = n = R,
and let X be a set of cardinal m. The family of all subsets 4 for which
|X — A| < nhasthe finite intersection property, and hence is contained
in an ultrafilter %. Certainly, |Z| 2 n for every Z € %.

Notice, incidentally, that the point in 8X to which % converges is
not in the closure of any subset of X whose cardinal is less than n.
Cf. the second example in 10.14.

There also exists a maximal ideal M in C(R) such that |Z| = ¢ for
every Z € Z[M] (see, e.g., 4F). But |C(R)/M| = ¢, nonetheless.

PROBLEMS

12A. CLOSED DISCRETE SUBSPACES.

Let X = W(e) x N, where |¢| is a (hypothetical) measurable cardinal.
1. Every closed discrete subspace of X is realcompact.
2. There exists a space Y, in which X is dense, such that not every closed
discrete subspace of Y is realcompact.

12B. ALMOST DISJOINT SUBSETS.

Any set of cardinal m = X has a family of more than m subsets, each of
power m, such that the intersection of any two is of power < m. [In
Lemma 12.8, X x Y has such a family.] (For the special case m = X,,
a stronger result is given in 6Q.1.)

12C. ZERO-SETS OF LARGE CARDINAL.

Let m 2 n 2 X, and let X be the discrete space of power m.
1. There exists an ultrafilter % on X such that |Z| 2 n for every Z € %,
and |Z| = n for at least one Z € %.
2. If M is the maximal ideal in C(X) for which % = Z[M], then |C/M|
< 2", by 5]. Incase n = ¢, we have |C/M| > ¢. [10H.4]

12D. FREE REAL IDEALS.

Let X be a discrete space, let M be a free maximal ideal in C(X), and let
m denote the smallest measurable cardinal. If M is real, then |Z| = m for
every Z € Z[M], but not conversely. [12.3(b).] Thus, Theorem 12.9
does not go through with m in place of ¢ in the hypothesis.

12E. RESIDUE CLASS FIELDS OF LARGE CARDINAL.

1. Let X be a discrete space of power m = X,. There exist 2™ maximal
ideals M in C(X) such that |C/M| > m. [Modify the proof of Theorem
12.7, taking account of the following:

(i) X has 2™ subsets S of power m;
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(ii) for each such .S, the family
{Z,,yeStu{X —2Z,:y¢ S}

has the finite intersection property, and so is contained in an ultrafilter ;
(iii) if S # ', then g # Ug'.]
2. Let X be the discrete space of cardinal ¢. There exist 22° maximal
ideals M in C(X) for which |C/M| > ¢. [9F or 121.]

12F. CARDINALS OF RESIDUE CLASS RINGS.

Let n be a given cardinal, and let M? be a hyper-real ideal in C(X) such

that no set of cardinal £ n is cofinal in C/M?,

1. There exists a set 4 of n elements in C/M? such that the ratio of the
larger to the smaller of any two is infinitely large. [Construct 4 inductively.]

2. Let T denote the subspace X U {p} of BX. There exists g € C(T)
such that |C(T)/(g)| 2 n. [Consider f~1, where M?(f) exceeds every
member of A.]

3. For an ideal I in C that is not a z-ideal, |C/I| may be greater than ¢™,
where m is the smallest of the cardinal numbers of the members of Z[I].
Compare 5].

12G. NONMEASURABLE SUMS OF SPACES.

If X is the topological sum of spaces X,, where « ranges over an index set 4
of nonmeasurable cardinal, then vX is the topological sum of the spaces
vX,. [Let ¢ denote the obvious mapping of X onto 4. Then ¢°: vX — 4
satisfies p°“ () = cl,x X,.] Hence if each X, is realcompact, then so is X.

12H. EXTREMALLY DISCONNECTED P-SPACES.

1. Let p be a nonisolated point of an extremally disconnected space X
(1H). There exists a family &% of disjoint open-and-closed sets whose
union is dense in X but does not contain p. [Consider a maximal family.]

2. Let 11 be the collection of all subfamilies J~ of & such thatp € clx |J 7.
Then U is a free ultrafilter on &.

3. If | #| is nonmeasurable, then there exists a bounded function ¢ on %
that is positive everywhere, and converges to zero on the ultrafilter 11 (i.e.,
for each n € N, there exists J € U such that ¢(T) < 1/n for all T e ).
[Consider & as a discrete space.]

4. There exists f € C(X) such that f(s) = ¢(S) forse Se &. [1H.6 or
6M.2.]

5. If || is nonmeasurable, then p is not a P-point (4L) of X.

6. Every extremally disconnected P-space (4]) of nonmeasurable cardinal is
discrete.

7. An extremally disconnected P-space of measurable cardinal need not
be discrete. [Consider v.X for discrete X.]



170 DISCRETE SPACES. NONMEASURABLE CARDINALS 121

12I. BX FOR DISCRETE X.
Let X be any infinite discrete space, and let S denote the set of all points
p € BX such that every neighborhood of p meets X in a set of cardinal | X|.
Then S is compact, and S contains a copy of BX. [Cf. 6.10(a).] Hence



Chapter 13

HYPER-REAL RESIDUE CLASS FIELDS

13.1. In this chapter, we continue the study, initiated in Chapter 5,
of the algebraic structure and order structure of hyper-real residue
class fields of C(X). Although none of the material developed after
Chapter 5 will be called upon, we shall need quite a bit more of the
abstract theory of fields than heretofore. We begin with a summary of
these algebraic prerequisites.

Let E be a subfield of an arbitrary field F. An element of F is said
to be algebraic over E if it is a root of a polynomial equation with
coeflicients in E; otherwise, it is said to be transcendental over E.

The extension of E to the smallest subfield of F that also contains
subsets S, - -, and elements x,- - -, is denoted by E(S,---, x,---). In
case x is a transcendental element, E(x) consists of all rational functions
in x with coefficients in E.

A set T is said to be (algebraically) independent over E if p(xy,- - -, x,)
# 0 whenever n € N, p is a nonzero polynomial over E in n indeter-
minates, and x,,- - -, x, are distinct elements of 7. Thus, T is a set of
independent transcendentals if and only if each xin T is transcendental

over the subfield E(T — {x}).
A transcendence base for F over E is a maximal set of independent

transcendentals. Any set of independent transcendentals is extendable
to a transcendence base. (This follows easily from the maximal
principle.) The cardinal of a transcendence base is an invariant, called
the transcendence degree of F over E.

When every member of S is algebraic over E, E(S) is called an
algebraic extension of E. We state the following well-known facts
without proof: if £’ is an algebraic extension of E, then every element
of E’ is algebraic over E; if E"’ is an algebraic extension of E’, then E”’
is an algebraic extension of E; the set of all elements of F that are

algebraic over E is a field.
171
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Every algebraic extension of an infinite field E is equipotent with E:
algebraic elements are zeros of polynomials, and each polynomial has
only a finite number of coefficients (so that the set of all polynomials in
one indeterminate is equipotent with E), and a finite number of zeros.

Throughout this chapter, ordered, unmodified, is to mean totally
ordered.

The intersection of all the subfields of an ordered field E is a replica
of the rational field Q; for simplicity of notation, we shall identify it
with Q. From the above, if E is uncountable, then its cardinal is
the same as its transcendence degree over Q.

An ordered field F is said to be real-closed if it satisfies the following
conditions—which are known to be equivalent:

(1) every positive element is a square, and every polynomial over F
(in one indeterminate) of odd degree has a zero in F;

(2) K = F(V —1) is algebraically closed (i.e., every polynomial
over K has a zero in K);

(3) F has no proper algebraic extension to an ordered field.

It follows from (2) that every polynomial over a real-closed field, of
degree greater than two, is reducible.

The field R of real numbers is real-closed, of course. Any real-
closed field has a unique ordering: an element is nonnegative if and
only if it is a square. Hence every isomorphism of a real-closed field
(to an ordered field) is order-preserving. The fundamental result on
existence of real-closed fields is the following theorem, which we state
without proof.

THEOREM (ARTIN-SCHREIER). FEwvery ordered field E has an algebraic
extension to a real-closed field ZE whose order is an extension of the order

on E. Furthermore, ZE is unique up to an isomorphism that leaves the
elements of E fixed.

ZE may be called the real-closure of E. Since it is an algebraic
extension, it is equipotent with E.

The uniqueness of #ZE means that every order-preserving iso-
morphism from E onto an ordered field E’ can be extended to an
isomorphism from ZE onto ZE’. On the other hand, an isomorphism
from E to E’ that does not preserve order cannot be so extended, be-
cause the order in a real-closed field is determined by the algebraic
structure. In this connection, see 13C.

CoroLLARY. If E is a subfield of a real-closed field F, then E has a
unique real-closed, algebraic extension—a copy of ZE—in F.

PROOF. Let A denote the subfield of all elements of F that are
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algebraic over E. A routine check shows that A4 is real-closed. Now,
obviously, every algebraic extension of E in F is contained in 4; and,
by (3), no proper subfield of A containing E is real-closed. Therefore,
A is the only real-closed, algebraic extension of Ein F. By the theorem,
A= ZRE.

As an example: ZQ is the set of all algebraic real numbers.

13.2. Let fe C(X), with f 2 0, and let » be any positive real
number. The function f7, defined by

fr®) = (f(=)y (x € X),

is continuous, since it is the composition of two continuous functions.
This is an extension of the definition of exponentiation for positive real
numbers (appearing here as constant functions).

Indeed, it is possible to define exponentiation in any residue class
field C/M. Given r > 0, and a positive element u of C/M, let f and g
be any two nonnegative preimages of # in C. Since f — g = 0 (mod
M), the set Z(fr — g"), which is the same as Z(f — g), belongs to
Z[M]. Therefore f* = g modulo the z-ideal M. Accordingly, the
definition u* = M(f7) depends only upon  (and 7), not upon the partic-
ular representative f.

The laws of exponents, w'u* = u"+* and (u")* = ™, are clearly valid.
Furthermore, if # < v, then »” < v". It follows that if « is infinitely
large, then so is u” for every » (> 0).

THEOREM. The transcendence degree over R of a hyper-real field is
at least c.

PROOF. Given a hyper-real ideal M in C(X), let # be any infinitely
large element of C/M. We shall show that the powers u” of u in C/M
are algebraically independent over R, whenever » ranges over a set of
positive real numbers that are linearly independent over Q. Since
there exist ¢ linearly independent, positive reals, this will establish the
theorem.

Let

PAy- e A) = ZZ‘=1 @A ™a - A

be any polynomial in ¢ indeterminates A;, with nonzero coefficients

a, € R, where it is assumed that like monomials have been collected in
a single term. We are to show that the element
v = P(u'1,~ oy urq)

of C/M (where the 7; are positive and linearly independent) is different
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from zero. We shall prove, in fact, that |o| is infinitely large. We
have

v = z:;l ausy, where s, = mry + -0+ M7,

Since the numbers 7; are linearly independent, the exponents s, are all
distinct. Obviously, they are all positive; therefore, since u is in-
finitely large, so is each power us.

For m = 1, it is trivial that |¢| is infinitely large. In case m > 1,
we pick the largest of the numbers s,—say it is s,—and assume, as we
may, that @, = m — 1. 'Then we have

v = Zk L WU + ay).

In each term, both factors are infinitely large, and therefore v is in-
finitely large.

It is clear from the proof that the conclusion of the theorem is valid
in any nonarchimedean field containing R in which exponentiation can
be suitably defined.

13.3. Our next objective is to show that every residue class field
of C is real-closed.
Fix n e N. For each point

a=(ay,---,a,) R

let pya, - - -, p,a denote the real parts of the (complex) zeros of the
polynomial
P) = X + a7t + -+ a

(listing each according to its multiplicity), indexed so that
pi@ = - = pa.
This defines # functions p,- - -, p, from R into R.  We prove:

(a)  Each of the functions p, from R to R is continuous.

The 7 functions can be handled simultaneously. Consider any point
a € R", and let 7,,- - -, 7, denote the distinct values among p,a,- - -, p,a.
Given neighborhoods W; of 7;, we are to find a neighborhood U of a
such that for every b € U, if pja = 7}, then pp € W;. We may assume
that the W, are disjoint intervals of R. For each j, let I'; be the
boundary of a rectangle in the complex plane that projects into W}, and
that encloses all of the zeros of p,(A) whose real part is ;. The con-
tinuous function

2 — |p,(2)|
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from the complex plane to R has a positive lower bound ¢ on the
compact set |J; I';, 'The mapping

(6, 2) = py(2)
is continuous; therefore, for each complex number w, there exist
neighborhoods U, of a and ¥V, of w such that

[ps(2) = po(w)| < <2
whenever (b, 2) € U, x V,. A finite number of the V,, cover the com-
pact set {J; I';, and the intersection of the corresponding sets U, is a

neighborhood U of a. For each b € U and z € |J,I, there exists w
such that

[Ps(2) — a3)| = [Py(2) — Pu(®)] + [Pow) — P(2)] < e
Thus, for any b € U, and for each j,

[Pa(2)] > [94(2) — pa(2)]
for all zeI';, By Rouché’s theorem, I'; encloses exactly as many
zeros of p,(A) as of p,(A) (counting multiplicities). It follows at once
th.at if Pr@ = rj, then Pkb € VV]-.

13.4. THEOREM. Ewvery residue class field C(X)[M is real-closed.

PROOF. We are to prove that every positive element has a square
root, and that every polynomial of odd degree has a zero.

Given u > 0 in C/M, let f be a nonnegative preimage of u in C;
then M(f %) = u*.

In showing that a given polynomial of odd degree, with coefficients
in C(X)/M, has a zero in C(X)/M, we may assume, of course, that the
leading coefficient is 1. Rephrased in terms of preimages in C(X),
the problem becomes: given a polynomial

BA) =2+ fd 7+ e+
with # odd, and with coefficients f, € C(X), to find g € C(X) such that
B(g) € M.
Define a mapping ¢ from X into R” as follows:
px = (fu(%)," -+ fulx))-
Certainly, ¢ is continuous. It follows from 13.3(a) that:
(a)  Each of the functions g, = p, o @ from X to R is continuous.

For each x € X, the numbers g,(x),- - -, g,(x) are the real parts of the
zeros of the polynomial

Poxd) = X + 1071 + - + f(x).
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Since this is a polynomial of odd degree, with real coeflicients, it has at
least one real zero. Thus:

(b)  For each x € X, there exists an index k such that g,(x) is a zero
of PguA)-

Now, g, € C(X), as was noted in (a). Therefore B(g,) € C(X). By

definition of the ring operations in C(X), B(g,) satisfies

B(£)(%) = Pp8(%))

for every x € X. Hence by (b), for each x € X, there exists an index
k such that B(g,)(x) = 0. Therefore,

B(g)B(g2)- - B(g,) = 0.

Since 0 € M, and M is a prime ideal, we conclude that there exists &
for which B(g,) € M.

ORDER STRUCTURE OF HYPER-REAL FIELDS

13.5. LemMA. Let I be an absolutely convex ideal in a lattice-
ordered ring A. Every countable family E in the partially ordered ring
A|I has a family F of preimages in A—that is, E = {I(a): a € F}—such
that, for all a, b € F,

I(@) < I(b) (in E) implies a < b (in A).

Furthermore, F can be chosen so as to include a specified preimage of any
one element of E.

PROOF. Let (c,),n be an indexed family of preimages of the
elements of E, with ¢, the specified preimage. Consider any n € N,
and suppose that for all 2 < 7, a, has been defined so that a, = ¢,
(mod I), and I(a;) £ I(a;) implies a; < a;,. Let

a' = sup{a,:I(ay) £ I(c,), k < n},
and
a" = inf{a;: I(a)) 2 I(c,), ! < n}.

From the induction hypothesis, ' < a’’. Define
a,=(a" ve,) Aa',

with the convention that a’ or a4’ is simply omitted in case the set
defining it is empty. Then, clearly, a, = ¢, and I(a,) < I(c,) < I(a)
implies @, £ a’ £ a4, £ d"’ £ a;. Since the mapping a— I(a) is a
lattice homomorphism (Theorem 5.3), we have I(a,) = I(c,).
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We recall (Theorem 5.5) that any prime ideal P in a ring C(X) is
absolutely convex, and so the lemma applies to this case. Moreover,
C/P, and hence both E and F, are (totally) ordered.

13.6. 7;-sets. Let E be a (totally) ordered set. For brevity, we
write A < x to mean that a < x for every a € 4; and correspondingly,
A £ x, A < B, etc. These conditions are satisfied vacuously for the
empty set: § < x < 0 for every x € E.

(a)  FEvery countably infinite, ordered set E without last element contains
a cofinal, increasing sequence.

Let (x,),n be an enumeration of the elements of E. Define
S = {x,: %, < x, forall k< n}.

Clearly, the elements of S form an increasing sequence. To see that S
is cofinal, consider any x € E. Let x, be the element of E of smallest
index n such that x < x,; then x, < x < «x, for all # < n. Hence,
x,€S.

By applying this result to-the set E with its ordering reversed (or by a
similar proof), we find that if E has no first element, then it contains a
coinitial, decreasing sequence.

An ordered set E is called an %;-set if for any countable subsets
A and B, with 4 < B, there exists v € E satisfying A < v < B.

With A4 or B, respectively, taken to be the empty set, this definition
implies that in an 7;-set, no countable subset is coinitial or cofinal.
The definition may also be put into the following convenient form:
E has more than one element, and whenever 4 and B are nonempty,
countable subsets, with 4 < B, there exist elements u, v, and w
satisfying

u<A<v<B<uw

Observe that the sets Q and R satisfy the analogous condition for finite
subsets (see 13B). The existence of 7,-sets, which is not at all obvious,
will follow from Theorem 13.8 or Theorem 13.20. It is plain that the
cardinal of an 7;-set must be at least X, : no countable subset is cofinal.
In the absence of the continuum hypothesis, the following result is
stronger.

(b)  The cardinal of any n,-set E is at least c.

We prove that R can be embedded in E.  First of all, it is easy to embed
Q: enumerate its elements in a sequence, (7,),.n, and, inductively,
define 7/, in E so that 7', < 7', < 7', whenever 7, < 7, < r,. (More
generally, see the remark at the end of 13.9.) The 7,-property then
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ensures that each irrational, being determined by a Dedekind cut in Q,
can be accommodated as well.

13.7. LemMmA. Let P be a prime ideal contained in a hyper-real
maximal ideal M in C(X). Given countable sets A and B in C|P, with
A < B, there exists an element v such that

A=<v=B.

REMARK. Our present application of this lemma is to the maximal
ideal M itself: the result for arbitrary P < M will not be needed until
Chapter 14. The portion of the proof for P # M that refers to
material beyond Chapter 5 is enclosed in brackets.

PROOF. We assume that 4 has no greatest element, and B no least,
since otherwise there is nothing left to prove. The proof will be set
up so that the case B = 0 can be handled merely by omitting all state-
ments that refer to B. 'The case A = 0 will then follow from symmetry.

There exist a cofinal increasing sequence (4,) in A4, and a coinitial
decreasing sequence (b,) in B. By Lemma 13.5, there exist preimages
f, of a,, and g, of b,, such that

fo £ fu S g, < g whenever k < n.

We shall define v in terms of the functions f, alone.

There exists s € C(X), with s 2 1, such that M(s) is infinitely large.
This function will be employed to obtain a weighted average of the
fi First we introduce auxiliary functions ¢, € C(R), for each & € N,
as follows:

r—k+1 for k-1
or) =4 k+1—17r for k
0

otherwise.

IA TIA
IA A

v
r

k,
R+ 1,

Then 0 < ¢, = 1, for each k. Next, ¢u(r) = 0 if »r <k — 1 or if
r 2 k + 1. Therefore, if n — 1 <7 <n + 1 (where n e N), then
oi(r) =Ounlessk =n — 1, n, orn + 1. Finally,

ZkeN gp(r) =1 forall » =z 1.

We now cefine the weighted average, % ; its image modulo M [modulo
P] will be the required element v. Put

h(x) = 3 jen PH(S(2)) i) (x € X)
Then 4 is defined on all of X. On each open set
freX:n—-1<s(x) <n+1} (neN),
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we have
h(x) = D71 ou(s(x)) ful®);

it follows that % is continuous on X.
If » 2 n, then @,(r) = 0 for all & < n; hence

if s(x) 2n then h(x)= >, os®)fi(*) (neN).

Since the sequence ( f;,) is increasing, this shows that A(x) = f,(x) on the
zero-set

Z,={xe X:s(x) 2 n}.

Now, Z, € Z[M], by 5.7(a). Thus, & — f, is nonnegative on a zero-
set of M. By 5.4(a), M(h) =2 M(f,). Putting v = M(h), then, we
have v 2 a,, for every n € N, and therefore v = 4.
[Since s*(p) = oo, where M = M?, we have Z,e Z[O?]. By
7.15(b), P(k) = P(f,). Putting v = P(h), then, we have v = 4.]
Finally, we recall that f, < g, for all k and #n. Since % is an average
of the f,, this yields # £ g,. Therefore v < b, for all #, and sov £ B.

13.8. An ordered field that is an 7;-set will be called an 7,-field.
Obviously, an 7,-field is nonarchimedean.

THEOREM. Every hyper-real residue class field of C(X) is an ny-field.

PROOF. The problem not handled in the lemma is that of inter-
polating an element properly between 4 and B. If B, say, is empty,
then by the lemma, 4 < v + 1 < B. If A4 has no last element and
B no first, then obviously 4 < v < B. Finally, suppose that 4 has a
last element . 'The elements y — a, for y € B, are all positive. From
what we have already proved, there exists v exceeding every element
1/(y — a); then 4 < a + 1/v < B.

The cardinal of every residue class field of C(X) is at least c. There
exist hyper-real fields whose cardinal is exactly ¢. For example, the
rings C(N), C(Q), and C(R) are all of power ¢, and so the hyper-real
residue class fields of these rings are 7 -fields of power ¢. Since c is the
smallest cardinal of an 7,-set, it follows that the existence of an 7,-set
of cardinal X, is equivalent to the continuum hypothesis (¢ = R,).

ISOMORPHISM OF %,-FIELDS

13.9. We are going to prove that all »,-fields of power R, are iso-
morphic. Because the proof of this result involves some intricate
interactions between the algebraic structure and the order structure,
we present first an analogous theorem for ordered sets without algebraic
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structure. Its proof will provide an unobstructed view of the purely
order-theoretic aspects of the later one.

Two ordered sets are said to be similar if there exists a one-one,
order-preserving mapping of one onto the other.

THeOREM. Al n,-sets of cardinal R, are similar.
REMARK. As was pointed out in 13.8, this result is vacuous without
the continuum hypothesis.

PROOF. Let S and T be 7,-sets of power X;. We well-order these
sets:

S = {sa}a<wl’ T = {ta}a<w1’

and define a suitable mapping ¢, from .S onto 7', by transfinite induction.

Consider any ordinal ¢ < w;. Our induction assumption is that a
subset {s".},., of S, and a subset {t']},_, of T, have been defined, and
that ¢ has been defined (so far) as a one-one, order-preserving mapping
from the countable set

Sa = {sf}é<a U {s,é}f<a

Ta = {te}e<a U {t’£}£<a’

such that s, = ¢, and @s’, = ¢,, for each ¢ < a.

We now define #/,. In case s, € S,, take ¢, to be the element gs,,
already defined. In case s, ¢ S,, we decompose S, into the comple-
mentary subsets 4g and Bg determined by the condition

to the set

Ag < s, < Bg.
We have ¢[4g] < ¢[Bg] in T, and, clearly, these subsets are countable.
Since T is an 7,-set, some element ¢ of T lies between them. We put
t,=1t and gs, = t',.
Next, we define §,, in a similar way. If
t,eT, U {t},
we take for s, the element ¢*(2,), already defined. If

t.¢ T, U {t'},
we decompose this set into the complementary subsets A, and By
determined by the condition

Ay < t, < By.
Since S is an 7,-set, some element s of S lies between ¢*{A4;] and

¢ [Br]- Weputs', =s, and ps’, = ¢

a*
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It is clear that the mapping ¢, defined inductively in this way, is
one-one and order-preserving from S onto T.

REMARK. In the foregoing proof, if we had defined only ¢s,, in-
ductively, without supplying a value for ¢*=(¢,), we could conclude only
that ¢ maps S into T. To arrive at this conclusion, however, not all
the hypotheses are needed. In fact, it is easy to see that such a pro-
cedure leads to the following result: An 7,-set (of any cardinal) contains
a copy of each ordered set of cardinal < X,.

13.10. Let F be a nonempty, ordered set having no pair of con-
secutive elements. A subset E is dense in F if between any two elements
of F, there lies an element of E. (Because F has no consecutive ele-
ments, this is the same as saying that E is dense as a subspace of F in
the interval topology (30).). We remark that an ordered field never
contains consecutive elements: (@ + b)/2, for example, lies between
a and b (#a).

(@)  If S ts dense in an xy-set F, then whenever A and B are countable
subsets of F, with A < B, there exists v € S satisfying A < v < B.

For, there exist v; € F such that 4 < 9; < B, and, in turn, v, € F
such that v; <v, < B. Since S is dense, there exists v € S satisfying
v, < U < U,

(b)  If a subfield E of an ordered field F contains an intervala < x < b
‘ of F, then E = F.

Subtraction of @ shows that the field E contains every positive element
less than b — a, and taking reciprocals yields the set of all elements
greater than 1/(b — a). Every element of F is a difference of two ele-
ments in the latter set.

13.11. LemmA. Every uncountable ordered field F has a dense
transcendence base over Q.

PROOF. Since F is infinite, it is equipotent with the set of all
intervals of the form a < » < b, where a, b€ F. Let < be a well-
ordering, according to the smallest ordinal of cardinal |F|, of the set
of all these intervals. Inductively, let J be any such interval, and
suppose that a family

Sy = (sD1<s
of independent transcendentals has been defined, with s; € I for each

I < J. Let F; denote the field consisting of all elements of F that
are algebraic over Q(S,). Since |S;| < |F| and F is uncountable, we



182 HYPER-REAL RESIDUE CLASS FIELDS 13.11

have |F;| < |F|, so that F, is a proper subfield of F. Therefore F,
covers no interval of F, and we may choose an element

it will automatically be independent of S,. In this way, we construct
a dense set of independent transcendentals; we then extend it (if
necessary) to a transcendence base.

13.12. LemmMma. If E(x) is an ordered field, where E is real-closed and
x ts transcendental over E, theri the ordering in E(x) is determined by the
ordering in E U {x}.

PROOF. We may confine our attention to the polynomial ring E[x],
as its ordering determines that of its field of quotients E(x): p(x)/a(x)
> 0 if and only if p(x)q(x) > 0. It suffices to show that if p is any
nonconstant polynomial in E[x] with leading coefficient unity, then the
condition » > 0 depends only upon the location of x relative to E.
Since E is real-closed, p is expressible as a product of linear and
quadratic factors; and p > 0 if and only if the number of negative
factors is even. So it is enough to handle the cases in which p is of
degree 1 or 2.

Case 1. p =x — ¢ (where ce E). Then p > 0 if and only if
x>ec

Case2. p = (x — h)? + k(whereh, ke E). Ifk 2 0, thenp > 0,
independently of x. If 2 < 0, then —% has a positive square root a
in the real-closed field E. Then p > 0 if and only if |x — &| > g,
hence if and only if eitherx > A + aorx < h — a.

13.13. TueoreM. All real-closed n,-fields of cardinal R, are
isomorphic.

REMARK. This result has far-reaching consequences if the continuum
hypothesis (¢ = R,) is assumed, but is vacuous otherwise.

PROOF. Let F and G be real-closed 7,-fields of power X,. If E
is any subfield of F, then, by the corollary to the Artin-Schreier
theorem, F contains a unique copy of ZE containing E—the unique
real-closed, algebraic extension of E in F. Likewise, any subfield of
G has a unique extension to its real-closure in G.

By Lemma 13.11, F has a dense transcendence base S over Q, and G
has a dense transcendence base T over Q. Their cardinal is X;. We
begin by well-ordering them:

S = {sa}a<wl’ T = {ta}a<w1'
An isomorphism u of F onto G will be defined, inductively, by mapping
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the base S onto the base T, and extending the mapping algebraically.
We shall denote by #’, the element us, of T, and by s’, the preimage
u(t,)in S. Foreach ¢ £ w,, we shall let

Sy = {edeca U (i<

T, = {t£}6<a u {t,E}E<a‘

Identifying the copies of Q in both F and G with Q itself, we note
that Q(S,) and Q(T,) are the smallest subfields of F and G containing
S, and T, respectively. Their real-closures are also present; we set

F, = ZQ(S)), and G, = Z(QT.).

Consider, now, any ordinal « £ w;. Our induction assumption is
that for each 8 < «, u has been defined (so far) as an isomorphism from
F, onto G,, such that

and

us, = t';, and us’, =1, forevery ¢ < 3.

As an isomorphism of a real-closed field, u will necessarily preserve
order. In extending u to an isomorphism from F, onto G, we dis-
tinguish three cases.

Case I: & = 0. Noting that Sy = Ty = 0, we stipulate that u be
the identity from Q = Q(S,) (in F) to Q = Q(T,) (in G). By the
Artin-Schreier theorem, this mapping has an extension to an iso-
morphism between their real-closures, i.e., from F, onto G,.

Case II: « =X + 1. By our induction assumption, u maps F,
isomorphically onto G,. First we shall define #,; then, later on, s’,.

In case s, € S,, we take ¢/, to be the element us,, already defined.

Assume, now, that s, ¢ S,. Since F, is an algebraic extension of
Q(S,), it does not contain the transcendental s,. In addition, it is
countable, since S, is countable. Decompose F, into the comple-
mentary subsets 4y and B, determined by:

Ap < 5, < Bp.

Since u preserves order, u[4y] < u[Bg]; and each of these subsets of
the n,-set G is countable. By 13.10(a), there exists an element ¢ of
the dense set T such that

u[Ay] < t < u[Bg].
We put ¢/, = t.
Now define us, = t,. Next, extend u to the field extension F)(s,)
so as to preserve sums and products; since s, and ¢’ are transcendentals,
this mapping will be an isomorphism. By Lemma 13.12, it preserves
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order. By the Artin-Schreier theorem, then, it can be extended to an
isomorphism from the real-closure Z(F)(s,)) of F,(s,) into G. It
follows from the corollary to that theorem that
R(F\(s0) = R(Q(S)y 5)))-
We are now ready to define s’,. If
theT, U {thh
we take for s, the element u*<(z,), alteady defined. Assume, now, that

¢ T, U {t)

Since u maps S, onto T}, and s, to t’,, the transcendental #, does not

belong to
u [Z(Fy(s))]-

We decompose this last into the complementary subsets A; and Bg,
determined by:
Az < t, < Bg.

Arguing as above, we find an element s of S satisfying
w[4g] < s < wiBg],
and define s/, = s. Continuing as before, we extend u to an isomor-

phism from F, onto G,.
Case 111: « is a limit ordinal. In this case, we have, by definition,

Sy = Us<a Sp and T, = Usco T

Now, a union of a chain of real-closed fields is real-closed, as a straight-
forward check shows. Therefore J,., F, is real-closed. Clearly, it
is an algebraic extension of |J,., Q(S,), i.e., of Q(S,). Hence we
have
F, = Us<a Fs; and, similarly, G, = U<, G»

It follows that u, as already defined, is an isomorphism of F, onto G.,.

This completes the induction. Since F,, = F, and G, = G, it also
completes the proof of the theorem.

13.14. Every hyper-real residue class field of C(X) is a real-closed

n,-field (Theorems 13.4 and 13.8). Applying the preceding theorem,
we have:

THEOREM. Under the continuum hypothesis (¢ = R,), all hyper-real
fields of cardinal ¢ are isomorphic.

This result applies to any hyper-real field C(X)/M of power ¢, for
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arbitrary X. An important special case is that in which C(X) itself
is of power c¢. This case includes all X having a countable, dense
subset—for example, all subspaces of euclidean spaces, and hence, in
particular, R, Q, and N. Incidentally, subspaces of euclidean spaces
are all realcompact (Theorem 8.2), so that, first of all, topologically
distinct spaces among them have algebraically distinct function rings
(Theorem 8.3), and, secondly, the fields in question are the residue
class fields modulo arbitrary free maximal ideals.

It can also happen, for suitable X, that |C(X)/M| = ¢ for some,
but not all, hyper-real M (12C.2).

13.15. 'The proof of Theorem 13.13 can be modified, like that of
Theorem 13.9 on similarity of 7,-sets, to show that a real-closed 7,-
field contains a copy of any real-closed field of cardinal < X,. Since
every ordered field E can be embedded in its real-closure, and |E|
= |ZE|, this yields: A real-closed n-field (of any cardinal) contains a
copy of each ordered field of cardinal £ R,. Moreover, it contains a
copy of R as well; see 13M.

DEDEKIND COMPLETION OF #,-SETS

13.16. The remainder of this chapter is purely set-theoretic. For
application in Chapter 14, we wish to obtain more information about
the structure of 7,-sets, and to ascertain the minimum cardinal of a
Dedekind-complete set containing an 7,-set. Our discussion will
illustrate a standard procedure for constructing x,-sets and their
generalizations to higher cardinals. Additional details are outlined in
the problems at the end of the chapter.

Let s denote the set of all {0, 1}-valued, transfinite sequences

X = (xf)f<(ul’

Obviously, |s| = 2%. If x and y are distinct members of s, then there
exists an ordinal 7 such that x, = y, for all ¢ < 7, while x, # y,.
Hence, the lexicographic order may be imposed on s; specifically,
x <yifx, =0(andy, =1).

We point out that s contains pairs of consecutive elements, and, in
fact, we can easily characterize these pairs. Suppose that x has an
immediate successor x*. Let 7 denote the first index at which x, # x*,;
then x, = 0 and x*, = 1. Now, x, = 1 for every ¢ > 7: for if there
exists o > 7 such that x, = 0, then the element #, defined by

u,=x, for £ <o, and u, =1 for § zo,
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satisfies ¥ < # < x*. Similarly, x*, = 0 for all ¢ > 7. Thus we
have:

x, = «xt, for ¢ <,

%,=0 and «x*, =1, and

%=1 and xt,=0 for &>

Conversely, if x and x* are as just given, then it is obvious that no
element of s lies between them.

When x has an immediate successor x*, we shall refer to x as a lower
element of s, and to x* as an upper element. It is evident from the
above description that no upper element is a lower element.

13.17. We prove next that s is Dedekind-complete. Since s has
both a first element and a last element (the constant sequences 0 and
1), it is, then, lattice-complete; indeed, this will follow from the
proof.

LemMa. Every set in s has a supremum and an infimum.

PROOF. Given a set A4, we construct its supremum s = (s,) in-
ductively, as follows. Given o < w,, assume that s, has been defined
for every ¢ < o. If there exists a € 4 such that @, = s, for all ¢ < o,
and if, in addition, @, = 1, then we define s, = 1; in the contrary
case, we put s, = 0. It is a straightforward matter to verify that
s = sup 4.

13.18.

The set of all upper elements of s is denoted by Q.

Thus, Q is the set of all x € s such that
{¢: %, = 1}

has a largest member.
For each «, we let Q, denote the set of all elements of Q for which
this largest member is less than «. Obviously, o < « implies Q, < Q,.
By definition, x € Q, if and only if there exists 7 < asuch thatx, = 1,
while x, = 0 for all £ > 7. In this case, x€Q,,;. Now, if a is a
limit ordinal, then 7 + 1 < «. Hence,

Q= U,<.Q for « a limit ordinal.
In particular,
Q = le = Ua<w1 Qa‘

If x € Q,, then, of course, x, = 0 for all £ = «. The converse is
false, however, whenever « 2 w, even for a nonconstant sequence.
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For, let o be any limit ordinal < «. Define x so that x, = 1 for arbi-
trarily large ¢ < o, while x, = O forall £ 2 o (and hence for all £ 2 «).
Then x ¢ Q.

Every set in Q, has a supremum and an infimum in s, though not
necessarily in Q. 'When the extremum does not belong to the set itself,
it takes on a special form.

(@) Let x = sup A, where A < Q,. If x¢ A, then x, = 0 for all
&2 o but x¢Qq.

For, if x, = 1 for some o 2 «, then the element «, given by u, = x, for

£# o0, and u, = 0, satisfies 4 < u < x. And if xeq, then its

immediate predecessor in s is also an upper bound of 4.

(b) Let y =infB, where B<q, If y¢B, then y, =1 for all
&€ 2 a, but y is not a lower element of s.

The proof is similar to that of (a).

13.19. LemMma. Letx,yes, withx < y.
(a) If y # x*, then there exists u € Q such that x < u < y.
(b) If x, ¥y € Q,,,, then there exists u € Q, such that x < u < y.

PROOF. Let 7 denote the smallest index for which x, < y,; then
x, = 0and y, = 1. Define y’ as follows:

ye=y for £=<7, and y,=0 for ¢>r
Theny' €Q,;p,and x < 3" = y.

(a) If y ¢ Q, we define u = y’. If y € Q, then y is an upper element
z*t, and the hypothesis in (a) implies that z > x; we then take u = 2/,
defined analogously.

(b) Since y, = 1, while y € Q,,;, we must have 7 < 0. If 7 = o,
then x€ Q,, and we put ¥ = x. If 7 < o, then 7 + 1 £ o, so that

’

¥y €Q; € Q3 wetakeu = y'.
13.20. THEOREM. Qis an n,-set of cardinal c.

PROOF. Let A and B be countable sets in Q, with 4 < B. Each
member x of the countable set 4 U B belongs to q,,, for some «, < w;.

Define @ = sup, @,. Then a < w, (5.12(a)),and 4 U B < q,.

Definex = supAandy = inf B. Thenx <y. Since 4 U B < q,
13.18(a,b) imply that if x = y, then x€ 4 n B = 0. Thus, x # y,
and therefore x < y.

Now, if x € 4 (< Q,), then x is not a lower element; and if x ¢ 4,
then again, by 13.18(a), x is not a lower element. So y # x+.

By Lemma 13.19(a), there exists # € Q such that x < u < y. This
proves that Q is an 7,-set.
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other hand, it is clear that |Q,,,| = ¢. Since

Qa)+l < Q= Uo<w1 Qo’

It is evident that |Q,| = 2l so that |Q,| = ¢ for ¢ < w;. On the

we have
el =2, 10 = Re=rq

ie, |Q| = ¢. (We also know that Q| Z ¢ from 13.6(b).)

13.21. LemMA. For o < w,, every set in Q, has a countable cofinal
and coinitial subset.

PROOF. Given 4 < q,, let x = sup 4 (in s). If x € 4, then {x}
is cofinal. Assume, now, that x ¢ 4. By 13.18(a), there exists an
ordinal £ a—and hence a smallest such ordinal +—such that x, = 0

forall £ 2 7;also, x ¢ Q, so that r must be a limit ordinal.

By definition of 7, there exist arbitrarily large indices ¢ < 7 for which
x, = 1. 'To each such o, associate an element s, as follows:

o

s;=x, for { <o, and 5,=0 for ¢ >o0.

Since T is countable, there are only countably many such elements s;
and, clearly, their supremum is x. Hence, if for each such s, we pick
an element a of A for which a = s, then the set of all such elements a
will be a countable, cofinal subset of 4.

The construction of a countable, coinitial subset is similar.

13.22. We prove next that Q is a minimal 7;-set.
THEOREM. Every n,-set contains a copy of Q.

PROOF. Let E be a given %;-set. Inductively, we shall define a
mapping ¢ that embeds Q, in E, for each « £ w,. Consider any such
ordinal «. Our induction assumption is that for every o < «, ¢ has
been defined (so far) as a one-one, order-preserving mapping of Q, into
E. We now extend ¢ to Q,.

Assume, first, that « = ¢ + 1. Consider any element x of Q, — Q,.
Let A denote the set of all predecessors of x in Q,, and B the set of all
its successors. By Lemma 13.19(b), x is the unique element of qQ,
for which 4 < x <B. By Lemma 13.21, 4 has a countable, cofinal
subset A’, and B has a countable, coinitial subset B’. Hence ¢[A4’']
and ¢[B’] are countable subsets of the n,-set E, with ¢[4'] < ¢[B'];
consequently, some element y of E lies between them, and hence also
lies between ¢[A4] and ¢[B]. We define px = y.

Assume, finally, that « is a limit ordinal or 0. Then Q, = |J,-, Q,-
(Note that , = 0.) Hence g, as already defined, embeds q, in E. 'This
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completes the induction. Since Q, = Q, it also completes the proof
of the theorem.

13.23. Let R denote the subset of s obtained by deleting all lower
elements, as well as the end elements 0 and 1.

THEOREM. R is the Dedekind completion of Q, and |R| = 2%1.

PROOF. Obviously, R © Q. To show that R is Dedekind-complete,
consider any bounded subset A, and let s = sup 4 in s. Then,
either s € R, or st is the supremum of 4 in R. Next, since R contains
no lower elements, it follows from Lemma 13.19(a) that between any
two elements of R, there lies an element of Q. Clearly, then, no proper
subset of R containing Q is Dedekind-complete. Therefore R is the
Dedekind completion of Q.

We know that |s| = 2%. Since the set s — R — {0, 1} of all lower
elements is in one-one correspondence with the set Q of all upper

elements, |[s — R| = || =< |r|. With the equation
s = (s —R) UR,
this yields
ls| = [r] + [R| = [&].
Therefore, |R| = |s| = 2%.

13.24. CoroLLARY. A Dedekind-complete set containing an m,-set
contains a copy of R, and hence its cardinal is at least 2%:.

PROOF. Since every 7;-set contains a copy of Q (Theorem 13.22),
the given complete set must contain a copy of R.

PROBLEMS

13A. CONTINUITY OF ZEROS OF POLYNOMIALS.
1. Let f be a real-valued function on R3. If, for each a = (a,, a,, a;),
f(a) is a zero of the polynomial
A2+ a,A% + a ) + a,,

then f is not continuous. [Vary a; only.]
2. Define pq, -+, p, as in 13.3, but where now a,, - - -, a, are complex.
The functions pj are still continuous.

13B.  7q-SETS.

A nonempty ordered set without first or last element, and containing
no pair of consecutive elements, is called an 7,-set.
1. All countable 7q-sets are similar to Q.
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2. Every countable ordered set is embeddable in Q.
3. All ordered fields are 7,-sets.
4. A countable ordered field need not be isomorphic with Q.

13C. COUNTABLE SUBFIELDS OF R.
Let s, 2 € R be transcendentals over Q. Then Q(s) and Q(¢) are iso-
morphic.

1. The ordered fields Q, Q(s), and Q(z), and their real-closures, are all
similar. [13B.]

2. There exists no isomorphism from Q(s) into ZQ.

3. The only isomorphism from Z(Q(s)) into R is the identity. [An
isomorphism of a real-closed field preserves order.]

4. If s and ¢ are independent transcendentals, there exists no isomorphism
from 2(Q(s)) into Z£(Q(z)). Thus, the analogue of Theorem 13.13 for
ng-sets does not hold, even when the fields have the same transcendence
degree over Q.

5. Let s and t be independent transcendentals. Although Q(s) and Q(z)
are both similar and isomorphic, there exists no order-preserving iso-
morphism from one onto the other.

13D. ORDERS ON FIELD EXTENSIONS.
Let F be an ordered field.
1. If F(¢) is an ordered extension of F, with £ > F, then
&> DT antt

for all ¢, € F and n € N.

2. If F(a) is an algebraic extension of F, then it is not possible to order
F(e) so that « > F.

3. If F(7) is a transcendental extension of F, then the condition 7 > F
determines an ordering of F(7); in this ordering, if ¢, # 0, then

4+ oo+ ¢ >0
if and only if ¢, > 0. [F(7) is the set of all rational functions in 7.]

13E. SIMPLE EXTENSIONS OF Q.

1. Let Q(7) be an ordered extension of Q, with 7 infinitely large. The
element 7 is necessarily transcendental. If £ € Q(7), and |£]| is not infinitely
large, then there exists a unique number 7 in Q such that |¢ — 7| is infinitely
small or zero. [13D.]

2. An order in a transcendental extension Q(o) of Q is determined by the
conditions: ¢ > 0, and o2 — 2 is infinitely small. There exists no r € Q
for which |o — 7| is infinitely small or zero. [Every polynomial p(o) is of
the form

p(e) = (0% — 2)* ((e* — 2) 4(0) + ao + b),
where a and b are not both 0.]
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13F. TRANSCENDENTAL EXTENSIONS.

Let F(7) be an ordered transcendental extension of F, with + > F

(13D.3).

1. 7 has no square root in F(7).

2. F(r) is not dense in #(F(r)). [Consider the elements greater than
F but less than 7%.]

3. A transcendental extension F(7)(x) can be ordered so that F < x" < =
for all » e N.

4. F(7)(x) can also be ordered so that F < x < ¢r < 2, forall¢ > 0 in

F. [Let
Zk,m 27 g "

be positive if ¢; , > 0, where 7 is the largest exponent of + occurring among
the terms of highest degree.]

5. The order on F(r) U {x} is the same in 3 and 4. Contrast with
Lemma 13.12.

13G. ISOMORPHISM OF REAL-CLOSED FIELDS.

Let F be an ordered field.

1. The only automorphism of &F that leaves F pointwise fixed is the identity.
[An automorphism preserves the order in ZF and permutes the zeros of each
polynomial over F.]

2. Let F(r) be an ordered extension of F, with 7 > F. The isomorphism
u determined by the conditions: uc = ¢ for all ¢ € F, and ur = 72 is order-
preserving. [13D.3.]

3. The mapping u has an extension to an isomorphism from Z(F(r)) onto
itself. Contrast with 1.

4. Let G = F(ry, 74, - - +) be an ordered extension of F, with

Tn > F(Tl’ Sty Th—1)

for all ne N. Then £G is isomorphic with a proper subfield of itself.

13H. LeEmMa 13.7.

1. Reconcile the following facts:

(i) The construction of 4 in the proof of the lemma depends upon the f,
alone, not upon the g,,.

(ii) C/M is an 7,-set (Theorem 13.8), so that M(k) # sup, M(f,)-

2. Verify that for all n € N,

h(x) = fu(®) + (56x) = 2)(frra(®) — fu(®))

whenever # < s(x) < n» + 1, and then establish continuity of 2 by means of
1A.3.
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131. COFINAL WELL-ORDERED SUBSETS.

1. Every ordered set of cardinal X, has a cofinal, well-ordered subset of
type £ w,. [Argue as in 13.6(a).]

2. If an ordered set has a cofinal, well-ordered subset of type w,, then it
has no countable cofinal subset. [5.12(a).]

3. Let E be an ordered set. Every set in E has a countable cofinal subset
if and only if every well-ordered set in E is countable.

13]. COFINALITY IN SUBSETS OF S.

The following information will lead to an alternative proof that Q is
an 7,-set.

1. Let x € s, and suppose that (x,) has a cofinal (transfinite) subsequence
of 1’s [resp. 0’s]. Exhibit an [inversely] well-ordered set of type w,, con-
tained in Q, having x as supremum [infimum].

2. Suppose that (x,) has a tail of 0’s [resp. 1's]. Exhibit a countable,
cofinal [coinitial] subset of the set of all predecessors [successors] of x.

3. Every set in s has a cofinal and coinitial subset of power < X,. [Apply
1 and 2. Alternatively, reason as in 13.21.]

4. If an element of R is the supremum of a countable subset of Q, then it is
not the infimum of a countable subset of Q, unless it belongs to both sets.
[1 and 131.2.]

5. Use 4 and 1 to prove that q is an »,-set.

13K. SIMILARITY OF 7,-SETS.

1. W(w,y) X qQ, in the lexicographic order, is an ,-set.

2. W(w,) x Qis not similar to any subset of Q. [9K.I and 13].3.]

3. All n,-sets of power ¢ are similar if and only if the continuum hypothesis
is true. [Consider the cardinal of W(w,) x Q.]

13L. SUBSETS OF 7,-SETS.

Let H be an ordered set.
1. The following are equivalent.
(1) H is embeddable in every 7,-set.
(2) H is embeddable in Q (whence |H| < ¢).
(3) H is a union of X, sets, each of which satisfies:

(a)  Ewvery subset has a countable cofinal and coinitial subset.

(4) H is a union of an increasing family of sets, each of which satisfies
(a). [(4) emplies (1). Well-order H so that the set of all predecessors of any
given element satisfies (a). Make use of (a) as in 13.22.]
2. If every set in H of power < |H| satisfies (a), then H satisfies the con-
ditions in 1. The converse holds only under the continuum hypothesis.
3. R contains a copy of s. [The set of all triadic w,-sequences with final
nonzero term can be embedded in Q.]
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13M. EMBEDDING OF R.

Every real-closed n,-field contains 2¢ copies of the field R. [Combine the
idea in 13L with the proof described in 13.15. At each stage in the induction,
there are many possible choices for the image of the transcendental.]

13N. DEDEKIND-COMPLETE SETS.

1. No 7,-set is Dedekind-complete.
2. Q. is Dedekind-complete if and only if « is not a limit ordinal.

130. 7,-sETS.

An ordered set E is called an 7,-set if for any subsets 4 and B of power
< R, with 4 < B, there exists v € E satisfying 4 < v < B. For o =0
or 1, this definition agrees with those given previously. (When « is not a
limit ordinal, a construction analogous to that of Q yields an 7,-set.)

An ordered field that is an 7,-set is called an 7,-field. (We do not know
any examples for « > 1.)

The proofs of the following results (among others) are the same as for
the case o = 1, except for notation.

1. All 5-sets of cardinal X, are similar.

2. An 7,-set contains a copy of every ordered set of cardinal < R,

3. For o > 0, all real-closed n,-fields of cardinal R, are isomorphic. The
condition & > 0 is essential, as is shown by 13C.4.

4. For « > 0, any real-closed 7,-field contains a copy of every ordered
field of cardinal < xa. Again, the condition « > 0 is essential.

13P. ORDERED P-SPACES.

1. Every n,-set, under the interval topology (30), is a P-space (4]) without
isolated points. [50.1.]

2. If E is any 7,-set, then N x E, ordered lexicographically, is a P-space
without isolated points (compare 4K.6), but is not an »,-set.



Chapter 14

PRIME IDEALS

14.1. We saw, in Chapter 7, that every prime ideal P in a ring C(X)
lies between O? and M? for some unique p in BX. We also know that
P is absolutely convex (Theorem 5.5), and hence that the canonical
homomorphism f— P(f) of C onto C/P is a lattice homomorphism as
well. Moreover, the integral domain C/P is totally ordered. The set
of images of the constant functions is a copy of R, and we identify this
copy with R itself.

The present chapter is devoted largely to a study of the order
structure of C/P, and of the distribution of prime ideals in C. The
ring C/P turns out to have properties akin to those of n,;-sets; and, in
some cases, it 75 an 7n,-set.

As in any residue class ring, the correspondence I — I/P is one-one
from the ideals I in C that contain P onto the ideals in C/P. Further-
more, I/P is prime if and only if I is prime. Thus, to investigate the
distribution of prime ideals in C containing P, we may examine
the prime ideals in C/P. The advantage in doing this stems from the
presence of a total order on C/P.

We shall find that the prime ideals containing P form a chain. If P
is not maximal, then the chain is a Dedekind-complete set containing
an 7,-set, and hence its cardinal is at least 2%:.

The chapter closes with some theorems about prime z-ideals,
including some special results about O2,

14.2. We begin with a purely algebraic result.
(a)  The union and intersection of any chain of prime ideals are prime.

It is clear that the union of a chain % of prime ideals is prime. To see
that () A is also prime, suppose that a ¢ ()% and b ¢ (| A. There
exist P, Q€ A such that a¢ Pand b¢ Q. Say P < Q; then b ¢ P.
Since P is prime, ab ¢ P. Hence ab ¢ [ .

194
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We shall call a prime ideal an upper ideal if the set of all its predecessors
(in the partial order under set inclusion) has a maximal element.
Briefly, an upper ideal is one that has an immediate predecessor.
Similarly, a lower ideal is defined as a prime ideal that has an immediate
successor.

PRIME IDEALS IN C|P

14.3. We now apply these ideas to the ring C(X)/P, where P is any
prime ideal in C(X).

(@)  Every prime ideal in the totally ordered ring C|P is convex.
We prove the following more general proposition:

(b)  If I is a convex ideal in a partially ordered ring A, and J is any
convex ideal containing I, then J|I is a convex ideal in the partially
ordered ring A|l.

Given 0 = I(a) £ I(b), where I(b) e J/I (i.e., belJ), there exist
#u20andv20in 4,suchthata=u(mod and b —u =5 —a
=9 (mod I). Then b — (u + v)el < J, and so, u + veJ. But
also, 0 = u < u+ v Since J is convex, u€J, whence I(a) =
I(u) e J/I. Therefore J/I is convex.

Every ideal in a ring is symmetric, i.e., it contains —a whenever it
contains a. A convex ideal in a totally ordered ring, therefore, is a
symmetric interval: with every two of its elements, it also contains all
elements that lie between them. But obviously, of any two symmetric
intervals, one contains the other. We have proved:

(c)  The prime ideals in C|P form a chain.

It follows, incidentally, that C/P contains at most one—and hence
exactly one—maximal ideal. In turn, this yields a third proof that
the prime ideal P in C is contained in a unique maximal ideal.

Because of (c), it is especially easy to describe the upper and lower
ideals in C/P. Let a be a positive non-unit of C/P; such an element
will exist whenever P is not maximal, i.e., C/P is not a field. As in any
commutative ring with unity, a belongs to at least one prime ideal.
By 14.2(a), the intersection of all the prime ideals containing a is prime.
Denote it by Pa:

P2 = the smallest prime ideal containing a (a > 0).

By 0.18, b € Pa if and only if some power of b is a multiple of a.
Since a does not belong to the prime ideal (0), the chain of all prime



196 PRIME IDEALS 14.3

ideals not containing @ is nonempty. The union of this chain is a
prime ideal; denote it by P,:

P, = the largest prime ideal not containinga  (a > 0).

Plainly, a € P — P,, and P¢ is the immediate successor of P, in the
chain of all prime ideals in C/P. Thus, P, is a lower ideal, and P=is an
upper ideal.

Conversely, if I and J are successive prime ideals, with I < J, then
for each positive a € J — I, we have

I<P,#Psc
Hence, the lower ideal I is P,, and the upper ideal J is Pa.

14.4. We have seen that if the prime ideal P is not maximal, then
C/P contains at least one upper ideal and one lower ideal. Later on
(14.13), we shall find that it actually contains infinitely many.

THEOREM. Every nonzero prime ideal in C|P is a union of upper ideals.
Every nonmaximal prime ideal in C|P is an intersection of lower ideals.

PROOF. Let J be a nonzero prime ideal in C/P. If a is a positive
element of J, then P¢ < J. Therefore

J = U0<aeJPa'

This proves the first statement. The proof of the second is similar.

It is clear that when a nonzero prime ideal is not itself an upper
ideal, then it is not only a union of upper ideals, but of the corresponding
lower ideals as well. ~ Similarly, any nonmaximal prime ideal that is not
a lower ideal is an intersection of upper ideals.

14.5. Every non-unit in a commutative ring with unity belongs to
some maximal ideal. In C/P, there is just one maximal ideal, namely
Mp?|P, where M? is the unique maximal ideal in C that contains P.
Hence M?|P is just the set of all non-units of C/P. Since M?/P, as a
prime ideal in C/P, is a symmetric interval, every element greater than
a positive unit is a unit. Thus:

(a)  If ais a non-unit, then sa < 1 for every s € C|P.

It follows that M?/P contains only infinitely small elements, their
negatives, and 0. In case p e vX, M?/P includes all such elements;
but if p ¢ vX, it does not (7.16).

Every positive element a of C/P has a unique positive nth root a'/#
(where n € N). For, if f is any preimage of a in C, with f 2 0, then
P(f/") is a positive nth root of a; and, as in any totally ordered integral
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domain, such an element is necessarily unique. If 0 < @ < 1, then,
of course,
<at<al<a<ath <ah < -

14.6. THEOREM.

Ps = U,en{b€CIP: |b] < a¥lm},
and
P, = Muen b€ CIP: 8] < a7,

PROOF. If b € P4, then b" = sa for some s € C/P and n € N; then
b2 = (s2a)a < a by 14.5(a). Conversely, |b| < a/* implies b € Ps,
since P2 is prime and convex.

Next, if b € P,, then |b] < a”for all , since P, is convex and contains

no power of a. Finally, if 6] < a” for every n, then a ¢ P!, whence
beP¥ c P,

PRIME IDEALS IN C

14.7. TueoreMm. If Iis a z-ideal in C(X), and Q is minimal in the
class of prime ideals containing I, then Q is a z-ideal.

PROOF. Let P be a prime ideal containing I, and suppose that P
is not a z-ideal. 'There exist f € P, and g ¢ P, such that Z(g) = Z(f).
Consider the set

S=(C—-P)u {hfr:h¢ P, neN}

Since P is prime, S is closed under multiplication. Furthermore, S
does not meet I; for, if Afz € I, then hg belongs to the z-ideal I, and
hence to the prime ideal P, whence # € P. By Theorem 0.16, there
is a prime ideal containing I and disjoint from .S, and hence contained
properly in P. So P is not minimal.

Since every ideal contains the z-ideal (0), we have, as a corollary,
that every minimal prime ideal in C(X) is a z-ideal.

14.8. From 14.3(c), we have:
(a)  The prime ideals in C containing a given prime ideal form a chain.

Let %A and B be intersecting chains of prime ideals in C. Then
A N B is a chain, and, by 14.2(a), the intersection of all its members is
a prime ideal, P.

In case both % and B are maximal chains, then P € A n B, and, by
(a), A n B consists of all the prime ideals that contain P. By Theorem
14.7, the minimal prime ideals (] % and [ B are z-ideals. We shall
show that P is a z-ideal as well. Here, for the first time in some while,
we utilize properties of SX.
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LemmA. If I and J are z-ideals, then (I, J) is a z-ideal (or all of C).

PROOF. We are to prove that if Z(k) > Z(g, + g,), where g, €1
and g, € J, then 2 € (I, J). Because % is a multiple of (—1 v 4) A 1,
there is no loss of generality in assuming that 4 is bounded.

Let Z, = Z(g,), and Z, = Z(g,). Then Z(h) > Z, n Z,. By
(IV) of the compactification theorem (6.5),

clox Z(h) = cl Zy n cl Z,.
Hence, we may define a function ¢ as follows:

o(p) =0 forpeclZ,
o(p) = W(p) for p e cl Z,

and ¢ will be continuous on the compact set cl Z; U cl Z,. Then ¢
has an extension to a function in C(BX); this has the form f&, for
suitable f € C*(X). Evidently, Z(f) > Z, € Z[I]; so f belongs to the
z-ideal I. Likewise, Z(h — ) @ Z,, so that & — fe J. Therefore,
h=f+h-f)edJ).

14.9. THEOREM. If U and B are intersecting maximal chains of
prime ideals in C, then [} (% n B) is a prime z-ideal, and is equal to
(1, J), where I and J are the minimal members of % and B, respectively.

PROOF. The minimal prime ideals / and J are z-ideals. By the
lemma, (I, J) is a z-ideal. Since (I, J) contains a prime ideal, it is
prime, by Theorem 2.9. Since the chains % and ®B consist of all prime
ideals containing I and J, respectively, the ideal (1, J) belongs to both,
and is the smallest member of A N B.

14.10. The set of all prime ideals in C containing a given prime
ideal is a chain (14.8(a)). Therefore each lower ideal, i.e., each prime
ideal with an immediate successor, has a unigue immediate successor.
We prove next that each upper ideal has a unique immediate predecessor.

LemMma. A z-ideal in C is never an upper ideal.

PROOF. Let O be an upper ideal, and P any immediate predecessor
of Q. 'Then Q/P is an upper ideal, say P2, in C/P. Choose a preimage
fof ain C, satisfying 0 < f < 1, and define

£0) = 3,0 27 () (x € X).
Then g € C(X), Z(g) = Z(f), and, for each n € N,
g 2 2-mf1m,
Since a'/?# is infinitely small,

P(g) 2 2-g1/2n 2 gl/2ngl/en = glin,
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By Theorem 14.6, P(g) does not belong to the upper ideal P2 = Q/P.
Thus, g ¢ Q. Since f € Q, this shows that Q is not a z-ideal.

It follows from the lemma that a maximal ideal is never an upper
ideal.

A z-ideal cannot be a lower ideal, either; see 14D.4.

14.11. TueoreM. The set of all successors of a lower ideal in C has
a smallest member. The set of all predecessors of an upper ideal in C has
a largest member.

PROOF. The assertion about the lower ideal was noted above.

Let I be an immediate predecessor of an upper ideal J; we shall prove
that I contains every predecessor H of J. Let & be a maximal chain of
prime ideals containing I (and J), and § a maximal chain containing
H (and J). Then I is the immediate predecessor of J in .

By Theorem 14.9, § n © has a smallest member, P, and P is a 2-
ideal. Obviously, P = J. By the lemma, P is not the upper ideal J.
Therefore, P, as a member of &, is contained properly in J. Conse-
quently, P < I.

Now, in the chain 9, either H < Por P = H. In the first case, we
have H < I, at once. On the other hand, if P < H, then H belongs
to the maximal chain &; since H s J, this implies again that H < I.

14.12. Let us summarize what we know about the incidence of
prime ideals in C(X). Every prime ideal lies between O? and Mp, for
some unique p in BX (Theorem 7.15). For any given p, consider a
maximal chain in the family of prime ideals contained in M?. At the
top of the chain is M?, a z-ideal. At the bottom of the chain is a prime
ideal which is minimal, and hence also a z-ideal. Whenever two
maximal chains intersect, their intersection has a least member, which
is again a z-ideal; and the intersection consists of all prime ideals
containing this least member. In special cases, this least member is
Mp itself; see 14G.5.

The z-ideal O? is an intersection of prime ideals. Since each prime
ideal contains a minimal prime ideal, O? is, in fact, an intersection of
minimal prime ideals. Hence, if O? % M?, then M? contains prime
z-ideals different from M?. The ideal O? may itself be prime; then
the prime ideals between O? and M? form a single chain. This
happens, for example, for the space X of 4M: the z-ideal O, is prime,
and there are actually no other z-ideals between O, and M,. In general,
however, O? is not a prime ideal.

14.13. Having emphasized the presence of prime ideals that are
also z-ideals, we take note now of some that are not. It follows from
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Theorem 14.11 that if P is any prime ideal contained in an ideal I, then
1/P is a lower ideal in C|P if and only if I is a lower ideal in C. Likewise,
if P is contained properly in J, then J/P is an upper ideal in C|P if and
only if J is an upper ideal in C.

We can now state the counterpart of Theorem 14.4 for C. Let J be
a nonminimal prime ideal in C, and let % be any maximal chain of prime
ideals, with J € %. Then J is a union of upper ideals belonging to %;
and if J itself is not an upper ideal, then it is also a union of lower
ideals belonging to . Also, if I is a nonmaximal prime ideal in C, then
it is an intersection of lower ideals (necessarily forming a chain); and
if I is not a lower ideal, it is also an intersection of upper ideals.

It follows that there exist infinitely many upper ideals containing any
given nonmaximal prime ideal P; equivalently, there exist infinitely many
upper ideals in C/P. For, the maximal ideal containing P is a union
of a chain of upper ideals that contain P, but, as a z-ideal, is not itself
an upper ideal.

Thus, whenever O? # Mp—i.e., whenever M? contains a nonmaximal
prime ideal—then M? contains prime ideals that are not z-ideals. An
extreme case is that of M, cited above. The considerations that follow
will enable us to conclude that M, contains ¢ = 2% upper ideals, and
2%, prime ideals altogether; none of these, excepting M, and O,, is a
z-ideal.

7.-SETS

14.14. We recall (13.6) that an n,-set is a totally ordered set with the
following property: given countable subsets 4 and B, with 4 < B,
there exists an element ¢ satisfying 4 < ¢ < B. The possibility that
A or B be empty is included here, so that an 7;-set is necessarily non-
empty, and, moreover, no countable subset is either coinitial or cofinal.

Theorem 13.8 states that every residue class field modulo a hyper-
real maximal ideal is an n,-set. Our next goal is to ascertain what 7,-
properties are possessed by C/P for arbitrary prime P. 'The problem
here is complicated by a certain lack of symmetry in C/P (when it is
not a field): infinitely small elements always exist, but infinitely large
elements need not. Moreover, even when infinitely large elements do
exist, there will still remain some infinitely small elements that have
noinverse. Let M? denote the unique maximal ideal containing P. As
we know, M?/P consists of all non-units of C/P, and every positive
non-unit is infinitely small. If p € vX, then, conversely, no infinitely
small element is a unit; but when p ¢ v.X, infinitely small units always
exist.
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14.15. LemmA. Let P be a prime ideal in C, with P < Mp,
(a) Given nonempty, countable sets A and B in C|P, with A < B,
there exists ¢ € C|P satisfying

A=c=sB

(b) C/P has a countable, cofinal subset if and only if MP? is real,
ie., pevX.

PROOF. Lemma 13.7 yields (a) in case M? is hyper-real, i.e.,
p ¢ vX. The same lemma (with B = ) shows that no countable set is
cofinal in this case. The converse in (b) is obvious: if p € v.X, then C/P
has no infinitely large elements (7.16), so that the elements P(n), for
n € N, form a cofinal set.

There remains the proof of (a) for p e vX. Because C(X) and
C(vX) are isomorphic, there will be no loss of generality in assuming
that X = vX, so that p € X.

The proof will proceed along lines similar to those of Lemma 13.7.
We may assume that 4 has no greatest element and B no least. By
13.6(2) and Lemma 13.5, there exist sequences (f,) and (g,), satisfying

fo £ fo £ g, < g whenever k < n,

and with (P(f,)) cofinal in 4 and (P(g,)) coinitial in B. If there
exists a real number r such that sup,f,(p) < r < inf,g,(p), then
P(f,) < P(r) =r < P(g,) for all n, i.e., A <7 < B. We assume,
then, that sup, f,(p) = inf, g,(p); and there is no harm in supposing
this number tobe 0. If P(f,) < 0 < P(g,) foralln,then4 < 0 < B,
and so we may restrict our attention to the case where P(f,) > 0 for
some n. And by discarding finitely many f,, if necessary, we secure
the condition P(f,) > O for all n. It follows, of course, that P(g,) > 0
for all n. Also, 0 £ f(p) < sup,fu(p) = 0, so that f(p) =0 for
every n.

Since g, =g, v 0 and f, = f, v 0, modulo P, we may replace the
former by the latter in both cases, without destroying either our
congruence or our order relations. Therefore we may suppose that
f, 2 0. Similarly, we may suppose that g, < 1.

In summary:

0=<f, =g =1

fA(p) = 0 = inf, g,(p),
for all » € N.

Now we intreduce a function s:

s(x) = ZﬂeN4_"(fn(x) + lgn(‘x) - gn(P)l) (x EX)

and
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Because the convergence is uniform, s is continuous on X. Evidently,
0 < s =1, and s(p) = 0. Hence, for each 7, the zero-set

Z,={xe X:s(x) £ 1/n}

is a neighborhood of p.
Next, we define auxiliary functions ¢, € C(R), for each k€ N, as
follows:

k(k + 1)yr — k for 1/(k + 1) =7 £ 1/&,
ou(r) = (k — k(k — 1)r for 1ksr 21tk -1),
0 otherwise

(with the obvious interpretation in the case s = 1). Then0 £ ¢, = 1,
for each k. Next, (r) =0 if r = 1/(k + 1) or if » 2 1/(k — 1).
Therefore, if 1/(n + 1) < 7 < 1/(n — 1) (where n € N), then g(r) = 0
unless k. =n — 1,n, orn + 1. Finally,

ZkeN‘Pk(r) =1 for >0,

and ¢,(0) = O for each k.
Now we define the function & whose image modulo P will be the
required elementc. Put

h(x) = 34w PR5(0))84(x) (x € X).

Then 4 is defined on all of X, 2 2 0, and A(y) = 0 whenever s(y) = 0.
On each open set

(xeX:1mn + 1) < s(x) < 1(n — 1)} (n e N),

we have
h(x) = D" pu(s(%))ga(%) ;

it follows that % is continuous at every point x at which s does not
vanish.

We still have to prove that % is continuous at every point of Z(s) as
well.  First, recall that if » < 1/n, then ¢,(r) = 0 for all ¢ <7; hence

if s(x) < 1/n, then h(x) = > . Pus(x))gu(%) (n € N).

Since the sequence (g;) is decreasing, h(x) £ g,(x) whenever s(x) < 1/n,
i.e., on the neighborhood Z, of p.

Now consider any point y € Z(s), and let ¢ > 0 be given. Since
inf, g,(p) = 0, there exists m for which g,(p) < e. Let

U = {x: s(x) < 47me}.
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From the definition of s, we have, for x € U,

47 | gu(%) — gal(P)] = s(x) < 477,

so that |g,(x) — g.(p)] < €, whence g,(x) < 2¢. Thus, for all x
belonging to the neighborhood U n Z, of y, we have A(x) < g,(x)
< 2e.  This establishes continuity of % at y.

We have seen that, for each n, A — g, is nonpositive on a neighbor-
hood of p; therefore P(h) < P(g,) (7.15(b)). Next, if f,(x) # 0, then
s(x) # 0, so that A(x) is an average of the g,(x). Since f, < g, for all ,
we have f, < h. Hence P(f,) < P(h).

14.16. 'TuEOREM. Let P be a prime ideal in C.

(a) C/[P is an vy-set if and only if the set of positive elements has no
countable coinitial or cofinal subset.

(b) The set of infinitely small elements in C|P never has a countable
cofinal subset ; and it is an ny-set if and only if it has no countable coinitial
subset.

REMARK. By (b) of the preceding lemma, no countable set of positive
elements is cofinal when and only when the maximal ideal containing P
is hyper-real.

PROOF. We prove first that no countable subset D of the set E of
infinitely small elements is cofinal. By (a) of the lemma, there exists
¢ € C[P such that

D=c=s{l/n:neN}

The second inequality implies that ¢ € E. Therefore 2¢ € E, and we
have D < ¢ < 2¢. So D is not cofinal.

Next, the necessity in (a) and (b) is plain. For the converses, we
assume that no countable subset is coinitial in the set of positive
elements, and consider any two nonempty, countable sets A and B in
C/P, with A < B. By (a) of the lemma, there exists ¢ satisfying
A £ c=B. Say A < c. By hypothesis, the countable set {¢ — a:
a€ A} has a positive lower bound d, and so we have 4 < ¢ — dJ2
<c¢ =B

If, in addition, there is no countable cofinal set of positive elements,
then C/P has no countable coinitial set either, and hence is an n,-set.
This proves (a).

Finally, if both 4 and B are subsets of E, then ¢ — d[2€ E. It
follows that E is an 7,-set. This completes the proof of (b).

Whenever M? is different from O, it contains prime ideals P for
which the set of positive elements in C/P does have a countable,
coinitial subset, as well as others for which it does not; see 14].
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14.17. We examine, next, the 7,-properties of the totally ordered
family of prime ideals in C/P—or of chains of prime ideals in C. If
Pa < P,, then by Lemma 14.15(a), there exists an element c¢ satisfying
al/" < ¢ < b for all n. By Theorem 14.6, ¢ € P, — P2 This shows
that a prime ideal in C/P (or in C) cannot be simultaneously an upper
ideal and a lower ideal. More generally, we have:

THEOREM. Let P be a prime ideal in C, and let (a;) and (b;) be sequences
of positive non-units of C/P. If

Pal = Pb,
for all i and j, then there exists ¢ € C|P such that
Pay < P, < Pc < Py foralliandj;

furthermore, all the inclusions are necessarily proper.

PROOF. 'The hypothesis implies that ;= < b for all 4, j, m, and
n. By Lemma 14.15(a), there exists ¢ such that

allm < c < bpr
for all 4, j, m, and n. Hence
a; <cm<c<bn

for all 4, §, m, and #, and the result follows from Theorem 14.6.

14.18. CorOLLARY. No countable union of upper ideals in C|P is
a countable intersection of lower ideals.

Hence no countable union of a chain of upper ideals in C'is a countable
intersection of lower ideals.

14.19. We pointed out in 14.13 that if P is a nonmaximal prime
ideal, then C/P contains infinitely many upper ideals.

THEOREM. Let P be a nonmaximal prime ideal in C. In C[P:

(a) The chain of all prime ideals is Dedekind-complete.

(b) The set of all upper ideals between any two given ones is an x,-set,
and hence its cardinal is at least ¢ = 2%o.

(c) There exist at least 2% prime ideals between any two upper ideals.

PROOF. (a). The union of a chain of prime ideals is prime, and
hence is the supremum of the chain.

(b). This follows directly from Theorem 14.17, as soon as one
observes that if P4 is contained properly in P?, then P¢ < P,.

(c). According to Corollary 13.24, the cardinal of a Dedekind-
complete set containing an 7;-set is at least 2%1.
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The corresponding results hold for lower ideals, of course; and both
sets of results have their counterparts in C. In particular, if M? is
different from O?, then M? contains nonmaximal prime ideals, and hence
contains at least 2% prime ideals.

14.20. Finally, we examine a special case.

THEOREM. Suppose that there are just ¢ upper ideals between P* and
Pb where Pa < Pb and assume the continuum hypothesis. Then the set
of all prime ideals in the closed interval [Pe, P,] is similar to the lexi-
cographically ordered set s of all {0, 1}-valued, transfinite sequences
(x6)£<w1’

PROOF. We work first with the open interval between P¢ and P,.
The set of upper ideals in this interval is an 7,-set, as was just proved;
under the continuum hypothesis, its cardinal is X;. The set Q of
13.18 is also an 7,-set of cardinal X; (Theorem 13.20). By Theorem
13.9, these two sets are similar. Next, by Theorem 14.4, every prime
ideal in the interval in question is a union of upper ideals. Conse-
quently, given any two nonlower ideals, there is an upper ideal lying
strictly between them. As in 13.23, it follows that the set of all
nonlower ideals in this interval is the Dedekind completion of the set of
upper ideals, and therefore is similar to the Dedekind completion
R of Q. Next, the set of lower ideals maps naturally onto the set of
lower elements of s (see 13.16).  Finally, P¢ corresponds to the constant
sequence 0, and P, to 1.

A noteworthy application of this theorem is to any space X for which
|C(X)| = c—for example, to R or Q. For then, |C/P| £ |C| = ¢;
and, since every upper ideal is determined by some element of C/P,
there are at most ¢ upper ideals. Therefore, if P is not maximal, there
are exactly ¢ upper ideals. Thus, let I be any upper ideal in C(X),
and J any lower ideal, with I = J; and suppose that |C(X)| = ¢ = R,
Then the set of all prime ideals between I and J, inclusive, is similar
to the set s (of cardinal 2%).

PRIME z-IDEALS

14.21. Thus far, we have been concerned for the most part with
arbitrary prime ideals in C. Now, we know that each prime ideal
contains an ideal O?; thus, the z-ideals O? are lower bounds for the
prime ideals. A natural undertaking in the study of prime ideals
is, therefore, to examine conditions under which O? itself can be
prime.
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Before specializing to this extent, we gather some additional informa-
tion about prime z-ideals in general.

LeEMMA. Let I be an ideal in C, and let fe C. If (I(f), I(|f])) is a
principal ideal (perhaps improper) in C[I, then there exists a zero-set
Z € Z[I] such that

Z nposf and Z N negf
are completely separated.
PROOF. By hypothesis, there exists d € C for which
A, I(fD) = T(@)).

Hence there exist g, A, s, t € C such that

f = gd (mod I). |f| = hd (mod I),
and

sf + t|f| = d (mod I).

Now, congruence modulo 7 implies equality on some zero-set of I. We
can therefore find a zero-set Z € Z[I] on which all three of the above
congruences reduce to equalities:

(a) () = g)d(x), @) = hx)d(x), and
S@F() + @) = d@), for xe Z.

On combining these equations, we get

(b) (s(x)g(x) + t(x)h(x))d(x) d(x) (xe Z).
Now, by (a), d has no zeros on Z — Z(f); with (b), this yields
s(x)g(x) + t(x)h(x) = 1 (x e Z — Z(Y)).

Note that Z — Z(f) = (Z n posf) U (Z n negf). Next, (a) implies
that

8(x) = h(x) (x€ Z n posf),
and
g(x) = — h(x) (x € Z n negf).
Consequently,
Znposf <= Z(g— h) n Z(sg + th — 1),
and

Znnegf < Z(g+ h) n Z(sg + th — 1).

Since the second members of these inequalities are disjoint zero-sets,
the first members are completely separated.
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14.22. CoroOLLARY. The following are equivalent for any f € C.
(1) pos f and neg f are completely separated.

(2) There exists k € C such that f = k|f|.

(3) (s |f)) is a principal ideal in C (or all of C).

PROOF. Both (1) and (2) are simply reformulations of the statement
that there exists k € C such that k[pos f] = {1} and k[neg f] = {—1}.
Trivially, (2) implies (3). Finally, if (3) holds, then the lemma, with
I = (0) (whence Z = X), yields (1).

Notice that if f = k|f|, then |f| = kf—for the same k. Since the
validity of these equations is not affected by the values of & on Z(f), it
may always be assumed that |k| < 1.

14.23. Lemma. Let I be a z-ideal containing O? (for some p). If
the (perhaps improper) ideal (I(f), I(|f|)) in C/I is principal, for every
f € C, then I is prime.

PROOF. By the preceding lemma, there exists Z € Z[I] such that
Z nposf and Z n negf are completely separated. These sets,
therefore, have disjoint closures in 8X. Hence there exists a zero-set
Z' e Z[0?] disjoint from, say, Z n neg f. Evidently, f is nonnegative
on the zero-set Z N Z'—which belongs to Z[I], because Z' € Z[0?]
< Z[I]. So I(f) 2 0 (5.4(a)). This shows that C/I is a totally
ordered ring; and since / is a z-ideal, it is prime (5.4(c)).

The hypothesis that I > O? is essential, as is shown by the example
following 5.4(c).

14.24. TueEOREM. Let I be a z-ideal containing O? (for some p).
The following conditions on the residue class ring C|I are equivalent.

(1) Every ideal is convex.

(2) The ideals form a chain.

(3) The principal ideals form a chain.

(4) Every finitely generated ideal is principal.

In addition, these conditions on C[I imply that I is a prime ideal in C.

REMARK. It is clear that every ideal will be convex when and only
when every principal ideal is convex.

PROOF. (1) implies (2). Since —I(|f|) £ I(f) = I(]f|), and
((|f])) is convex, we have I(f) € (I(|f])); therefore,

), 1Dy = A fD)-

By the lemma, C/I is totally ordered. Therefore its ideals, being
convex, are symmetric intervals, and so they form a chain.
(2) implies (3). Trivial.
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(3) implies (4). This holds in any ring; for if (a) < (), then (q, b)
= (b).

(4) implies (1). By the lemma, C/I is a totally ordered integral
domain. Given @, b e C/I, with 0 < a < b, we are to show that a is
a multiple of 5. By hypothesis, (4, b) = (d) for some d, and we may
assume that d > 0. There exist a,, by, s, t € C/I such that a = a.d,
b = byd, and sa + tb = d. Then (sa, + tb,)d = d, whence sa, + tb,
= 1, since C/I has no zero-divisors. Now, 0 < a; < b;. It follows
that b, is a unit, since otherwise we would have

sa; + thy < (|s| + |¢])by < 1,

by 14.5(a). Thus, b, ! exists, and a = a;b,~b.

It has already been noted that condition (4) implies that I is a prime
ideal. (See also 14B.3.) This completes the proof of the theorem.

A commutative ring with unity in which the principal ideals form a
chain is known as a valuation ring. The condition can be expressed
in this form: of any two elements, one is a multiple of the other. The
ring C/I of the theorem satisfies a stronger condition: the smaller of
two positive elements is always a multiple of the larger.

14.25. We now examine the situations in which, for every p, all the
z-ideals containing O? possess the listed properties. As it turns out,
we need only postulate these properties for the ideals O? themselves.
Indeed, the hypothesis that each ideal O? be prime is sufficient. More-
over, it leads to the conclusion that conditions (1) and (4) are satisfied
by the entire ring C.

When every finitely generated ideal in C(X) is principal, we call X
an F-space.

THEOREM. For any X, the following are equivalent.

(1) Ewvery ideal O? is prime.

(2) The prime ideals contained in any given maximal ideal form a chain.

(3) Given p e BX and fe C, there is a zero-set of O? on which f
does not change sign.

(4) For each f € C, pos f and neg f are completely separated.

(5) Given f € C, there exists k € C such that f = k|f|.

(6) Every cozero-set in X is C*-embedded.

(7) Every ideal in C is convex.

(8) Forallf, g C, (f,8) = (If] + |gl)-

(9) X is an F-space (i.e., every finitely generated ideal in C(X) is
principal).

(10) BX is an F-space (i.e., every finitely generated ideal in C*(X)
is principal).
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PROOF. The prime ideals contained in M? are just those containing
Or. Hence if O? is prime, the prime ideals contained in M? form a
chain (14.8(a)). Conversely, if they form a chain, then their inter-
section, which is 02, is prime (14.2(a)). Thus, (1) is equivalent to (2).

The equivalence of (1) with (3) is a special case of Theorem 2.9.
Since completely separated sets in X have disjoint closures in BX, it
is clear that (3) is equivalent to (4). The equivalence of (4) with (5)
was pointed out in Corollary 14.22. Thus, the conditions (1) to (5)
are mutually equivalent.

Next, we establish the cycle (4) — (6) — (7) — (8) — (9) — (4), from
which it will follow that (1) to (9) are mutually equivalent.

(4) implies (6). To show that X — Z(h) is C*-embedded in X, we
apply the Urysohn extension theorem (1.17): we consider any two
completely separated sets 4 and B in X — Z(4), and prove that they
are completely separated in X. There exists k € C* X — Z(#)) such
that % is positive on 4 and negative on B. Define f as follows:

f@®) =0 (x e Z(h)),
() = K@IA)] (x€ X — Z(h).

Since k is bounded, f is continuous on all of X. Obviously, 4 < pos f
and B < negf. The hypothesis now implies that 4 and B are com-
pletely separated in X.

(6) implies (7). Given 0 £ f < gin C(X), we are to prove that f is
amultiple of g. Define s as follows:

i) =26 (ve X - Z(g);
then se C¥(X — Z(g)). By hypothesis, s has an extension to a
function f; € C(X). Since f(x) = g(x) = 0 when x € Z(g), we have
f(x) = fi(x)g(x) for every x € X, i.e., f = f,g.
(7) implies (8). Since

-Ifl-lel=sfs|fl+ sl

convexity implies that f is a multiple of | f| + |g|. Similarly, g is a
multipleof | f| + |g|]. So(f,g) = (|f] + |g|)- Likewise, convexity
implies that f is a multiple of | f |, whence | f| is a multiple of f ; and
similarly, | g| is a multiple of g. Hence (| f| + |g]) <= (f, &)

(8) implies (9). Trivial.

(9) implies (4). This follows from Corollary 14.22.

Thus, the conditions (1) to (9) are mutually equivalent. Finally,
it is clear that (5), for example, will be valid when and only when the
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corresponding condition holds in C*. Consequently, (9) is equivalent
to (10).

14.26. The condition that all finitely generated ideals be principal
is preserved under homomorphism. (For, if t is a homomorphism of a
ring A, and (a, b) = (d) in A4, then, clearly, (ta, tb) = (td).) Therefore,
if C(S) or C*(S) are homomorphic images of C(X) or C*(X), and
if X is an F-space, then S is an F-space. (See also 14A.)

If a subspace S is C*-embedded in X, then C*(S) is a homomorphic
image of C*(X). Consequently, every C*-embedded subspace of an
F-space is an F-space. In particular, every cozero-set in an F-space
is an F-space.

If X is an F-space and I is a z-ideal containing an ideal O?, then
C(X)/I will satisfy (4) of Theorem 14.24, and hence the other con-
ditions as well.

The combination of (5) with (7) in Theorem 14.25 shows that X
is an F-space if and only if every ideal in C is absolutely convex. Also,
we see from Corollary 14.22 that X is an F-space if and only if (f, | f|)
is principal for every f € C.

Evidently, every discrete space D, and hence also 8D, is an F-space.
The next theorem provides us with another extensive class of F-spaces.

14.27. TueoreM. If X is locally compact and o-compact, then
BX — X is a compact F-space.

PROOF. Since X is locally compact, it is open in BX (6.9(d));
hence BX — X is compact, and so it is C-embedded in 8X.

Given ¢ € C(BX — X), we are to prove that the compact sets
cl pos ¢ and cl neg ¢ are disjoint (Theorem 14.25(4)). The function ¢
has a continuous extension to all of 8X, and the extension is of the form
f8, for suitable f € C*(X). Now,

clgx pos ¢ < clgx pos f < clyx Z(f A 0),
and, by the Gelfand-Kolmogoroff theorem,

(a) clex Z(f A 0) = {p: M¥(f) 2 0}.

Thus if peclpose, then M?(f) 2 0. Similarly, if p € clnege,
then M?(f) £ 0. Accordingly, we have only to consider points p of
BX — X for which M?(f) = 0. We shall show that all such points
belong to the interior of Z(¢p), and hence neither to cl pos ¢ nor to
clneg ¢.

Since X is o-compact, BX — X is a compact G,, and hence a zero-
set, in BX (3.11(b)). Let g € C*(X) satisfy BX — X = Z(gf). Then
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£ is a unit of C(X), so that M4(|g|) > O forallg € BX. When M?(f) =
0, the set

V={qepX:M(lg| - |f]) >0}
contains p. But V is an open set (compare (a)). And for all g€
V — X, we have, using Theorem 7.6,

0 = |g8(q)| = | f4(q)l,

i.e,, f8(q) = 0. Hence p is an interior point of Z(¢p).
As an example, BRt — Rt, where R* denotes the space of non-
negative reals, is a compact, connected F-space (6.10), of cardinal 2¢ (9.3).

14.28. The results on F-spaces lead to alternative proofs that C*(Q)
is not a homomorphic image of C*(N) or C*(R). The first thing to
notice is that Q is not an F-space. (For example, the identity function
from Q into R does not satisfy condition (5) of Theorem 14.25.) But
N is an F-space. Therefore C*(Q) is not a homomorphic image of
C*(N). Next, we showed in 10.10 that if C*(Q) were a homomorphic
image of C*(R), then BR — R would have to contain a C*-embedded
copy of Q. And this is impossible because SR — R is an F-space.

14.29. The condition that every ideal O? be prime characterizes
X as an F-space. In the extreme case, every such ideal is maximal.
This is evidently equivalent to the condition that every prime ideal be
maximal, i.e., that X be a P-space as defined in 4]. Corresponding to
Theorem 14.25 on F-spaces, we have the following characterizations
of P-spaces.

THEOREM. For any X, the following are equivalent.

(1) Every ideal O? (p € BX) is maximal.

(2) Every prime ideal is maximal (i.e., X is a P-space).

(3) Given p € vX, and f € C(X), there is a zero-set of O? on which f
is constant.

(4) For each f € C, Z(f) is open.

(5) Given f e C, there exists k€ C such that f = kf? (ie., C is a
regular ring).

(6) Ewvery cozero-set in X is C-embedded.

(7) Every ideal in C is a z-ideal.

(8) Forallf, g € C, (f,8) = (f* + &.

(9) Every finitely generated ideal in C is generated by an idempotent.

(10) vX is a P-space.

By 7.15(a), (1) is equivalent to (2). Since C(X) is isomorphic with
C(vX), (2) is equivalent with (10). Proofs of the remaining implica-
tions are omitted, as they were outlined in sufficient detail in 4].
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Additional equivalences will be found in 4], 7L, 7Q.4, and 10K.1.
Examples of nondiscrete P-spaces appear in 4N and 13P. The space
Z of 4M is an F-space that is not a P-space. Among totally ordered
spaces, the classes are coextensive (50.2). If X is an infinite P-space,
then BX is an F-space (Theorem 14.25); but it is not a P-space, as
every compact P-space is finite (4K.I).

PROBLEMS

14A. CONVEX IDEALS.

1. Let t be a homomorphism from C(Y) onto C(X), and I an ideal in
C(X). If t=[I] is convex, then I is convex. [5C.]

2. Use 1 to prove that if C(X) is a homomorphic image of C(Y), and Y
is an F-space, then X is an F-space.

14B. PRIME IDEALS.
1. If P and Q are prime ideals in C, then (P, Q) is prime (or all of C).
2. Every z-ideal is an intersection of prime z-ideals.
3. If the prime ideals containing a z-ideal I form a chain, then I is prime.
4. X is a P-space if and only if every prime ideal in C(X) is a z-ideal.
[Apply 41.5. Alternatively, if a maximal ideal contains another prime ideal,
then it is a union of upper ideals, and these are not z-ideals.]

14C. GENERATORS OF IDEALS IN C/P.

Let P be a prime ideal in C(X). In the ring C/P:

1. If 0 £ a £ b7, for some rational » > 1, then a is a multiple of 5.
[Lemma 13.5 and 1D.3.]

2. Let I be the finitely generated ideal (a;, - - -, a,), where 0 < a; < -+
< a, Thena,>¢I [Ifbel thenb < sa, for some s. Every element
= 1 is a unit.]

3. Every upper ideal is countably generated; in fact, P* = (a, a*, a’,

--).  But no nonzero prime ideal is finitely generated.

4. No nonzero lower ideal is countably generated.

14D. LOWER IDEALS IN C.

Let P be a prime ideal in C(X).

1. Pis a lower ideal if and only if there exists f = 0 such that {P(f")},.n
is coinitial in the set of all positive elements of C/P.

2. Pis alower ideal if and only if P is maximal with respect to disjointness
from a set of the form {f"},.N. [Sufficiency. f belongs to all prime ideals
containing P properly.]

3. If P is a lower ideal, and Q is its immediate successor, then Q = (P,

i f %, f%, ---), forany fe Q — P. [14C.3.]



14H PRIME IDEALS 213

4. A z-ideal is never a lower ideal. [With m € C(R) as in 41.6, and with
fasin 1, define g = mo f, so that Z(g) = Z(f). Apply 7.15(b).]

14E. C(N) anp C(2).
Let 2 = N U {0}, where 0 € SN — N.
1. The natural isomorphism of C(Z) into C(N) carries O, (in C(X))
onto Me (in C(N)).
2. C(2)/0, is isomorphic with the subring of all elements in C(N)/M°
whose absolute value is not infinitely large.
3. C(N)/Me is isomorphic with the field of quotients of C(Z)/O0,.

14F. PRIME 2-FILTERS.

1. A z-filter & on X is prime if and only if there exists an ultrafilter U such
that % is the family of all zero-sets belonging to %—i.e., in the notation of
10.17, & = &%%. [Adjoin the complement of every zero-set not in Z.]

2. The prime z-ideals contained in MP? are precisely the z-ideals P such
that Z[P] = % n Z(X) for some ultrafilter % on X that converges to p.

3. On the space X of 14E, there are just two ultrafilters that converge to o.
Hence O, and M, are the only z-ideals containing O,. (4M.9.)

14G. PRIME IDEALS IN C(N*).
In the ring C(N*), where N* = N U {w} is the one-point compacti-
fication of N:

1. 0, =M, foralln e N.

2. O, is not prime.

3. The mapping

¥V —>P = {fe CIN*): Z(f) — {w} e ¥V}
is one-one from the family of all free ultrafilters on N onto the family of all
nonmaximal, prime z-ideals contained in M,,. (Cf. 14F.)

4. None of the ideals P of 3 contains another. Hence these are the minimal
prime ideals contained in M,. They are also the maximal 2z-ideals contained
properly in M.

5. There are 2¢ maximal chains of prime ideals contained in M,. Any
two have only M, in common. Compare 141.8.

14H. priME IDEALS IN C(T).
Let % be a z-filter on T (8.20) converging to .  As before, W and N will
denote the top and right edges of T, respectively.

1. # = Atifand only if We #. Compare 10L.4.

2. If # # A? then every member of &# meets N.

3. If # is prime but not maximal, then the trace of # on N is a free
ultrafilter on N. Moreover, distinct prime z-filters have distinct traces.
[If Z, n N= Z, n N, then there exists a zero-set-neighborhood Z of N
suchthat Z, n Z=Z, n Z.]
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4. The mapping
V' —>P={feCT):Z(fyn Ne??}

is one-one from the family of all free ultrafilters on /N onto the family of all
nonmaximal, prime z-ideals in C(T) contained in M*. Compare 14G.3.

5. The ideals P of 4 are the minimal prime ideals contained in M?, and the
maximal z-ideals contained properly in M¢.

141. prIME IDEALS IN C(R).

1. The identity function i in C(R) belongs to at least 2%1 prime ideals, all
contained in M,

2. If # is a prime z-filter on R — {0} that converges to 0, then {Z U {0}:
Z € #} is a prime z-filter on R, contained properly in Z[M,].

3. Let ¥~ be a free ultrafilter on the set {1/n: n € N}. The set P of all
f € C(R) for which Z(f) contains a member of ¥” is a prime z-ideal. It is
maximal in the set of all z-ideals contained properly in M,

4. The correspondence ¥ — P of 3is one-one. Hence there exist 2¢ such
prime z-ideals P. The function i belongs to none of them.

5. Given 77, let I denote the set of all f € C(R) such that int Z(f) contains
a member of ¥". Then I is a z-ideal, but is not prime. [If s € C(R) is as
in 2G.2, then neither s v 0 nor s A 0 belongs to I.]

6. Every nonmaximal 2-ideal containing [ is contained in P.

7. The prime ideals contained in P do not form a chain. [14B.2.]

8. Distinct maximal chains of prime ideals in C(R) can have infinitely
many members in common. Compare 14G.5.

14]J. C|P as AN 7,-SET.

1. Let P be a nonmaximal, prime ideal in C. The positive elements in
C/P have a countable, coinitial subset if and only if P is a countable inter-
section of lower ideals. [If A4 is coinitial, then (0) = (N, 4 P..]

2. If P is a lower ideal, then neither C/P, nor the set of infinitely small
elements of C/P, is an 7,-set.

3. Let P be an upper ideal. The set of infinitely small elements of C/P
is always an 7;-set. C/P itself is an 7,-set if and only if the maximal ideal
containing P is hyper-real.

14K. FINITELY GENERATED IDEALS CONTAINED IN MP?,

Fix p € BX. 1If (g, |g|) is principal for every g € MP, then O? is prime.
[Lemma 14.23. For f ¢ M?, O?(f) is a unit.]

14L.. FINITELY GENERATED IDEALS CONTAINED IN A GIVEN IDEAL.

Let I be an ideal in a commutative ring A with unity. If every finitely
generated ideal contained in I is principal, then the prime ideals contained in
I form a chain. [For pe P — Q, and g € Q — P, there exist a, b, s, and ¢
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such that p = ba, g€ (a), and a =sp + tg. Thenbe P and sb — 1€ Q,
whence 1 € 1]

14M. THE space BQ — Q.

1. Let f(x) = sinmx (x € Q), and let pe clygg N — N. If V is an open
set in BQ containing p, then f# assumes both positive and negative values on
V. [V is a neighborhood of some point of N.]

2. BQ — Qs not an F-space. [V — Qis dense in V.]

14N. SEQUENCES OF POINTS IN AN F-SPACE.

1. No point of an F-space is the limit of a sequence of distinct points.
[Given (%,),en, there exists a continuous f such that f(x,) = (—1)%/n.]
Cf. 5.

2. In an F-space, any point with a countable base of neighborhoods is
isolated.

3. Every metrizable subspace of an F-space is discrete.

4. Xisan F-spaceif and only if any two disjoint cozero-sets are completely
separated. Every basically disconnected space (1H) is an F-space; the
converse fails.

5. Every countable set in an F-space is C*-embedded; hence every infinite
compact F-space contains a copy of BN. [Argue as in 9H.]

140. SOME SPECIAL F-SPACES.

1. For any space X, every zero-set in X that does not meet X is an F-space.
2. If E is a cozero-set in a compact space, then BE — E is an F-space.
3. If X is a locally compact F-space, then X — X is an F-space.

14P. P-SPACEs.

Let X be a P-space.
1. Every subspace of v.X that contains X is a P-space.
2. Every subspace of BX that contains X, but is not contained in vX, is
an F-space, but nota P-space. [Ifp € BX — vX, then there exists f € C(BX)
such that f(p) = 0, while 0 ¢ f[X].]

14Q. F-SPACES AND PRODUCT SPACES.

1. If X x Y is an F-space, then X or Y is a P-space. [Assuming the
contrary, define h(x, y) = |f(x)| — |g(»)| for suitably chosen f e C(X) and
geC(Y)]

2. If X and Y are infinite pseudocompact spaces, then X x Y is not an
F-space. [4K.2.]

3. There exists no homeomorphic mapping of PR x BR into (R x R). [A
homeomorphism would carry some compact set that is not an F-space into
BR x R) — (R x R).]



Chapter 15

UNIFORM SPACES

15.1. In this chapter, we present some of the interactions between
the theories of uniform spaces and rings of continuous functions. We
shall find that every realcompact space admits a complete structure.
One of the outstanding successes of the theory of rings of continuous
functions is Shirota’s result that, barring measurable cardinals, the
converse is also true, so that the spaces admitting complete structures
are precisely the realcompact spaces.

From our point of view, the most efficient approach to uniform
spaces is by way of pseudometrics, as they provide us with a large supply
of continuous functions. Accordingly, we define a uniform structure
to be a family of pseudometrics (satisfying appropriate closure condi-
tions). 'This enables us to give complete proofs relatively quickly of
all the facts about uniform spaces that are needed here.

15.2. Pseudometrics. A pseudometric on a set X is a function d on
X x X into R, satisfying, for all x, y, 2 € X:

(i) d(x,y) 2 0;
(i) d(x, x) = 0;
(iii) d(x,y) = d(y, x); and
(iv) d(x,2) = d(x,y) + d(¥, 2) (triangle inequality).
Thus, a pseudometric differs from a metric only in that d(x, y) = 0 need

not imply x = y. For example, the function 0 on X x X is a pseudo-
metric on X. We write

d[4,y) = d(y, 4] = inf, 4 d(% ),

-

and
d[4, B] = inf, 4, ,epd(x,¥)
216
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(where A4, B # 0). Evidently, d[4, B] = inf,.pd[4,y). The d-
diameter of A, denoted by d{A}, is defined by:

d{A} = supx, yed d(x’ y)

(with d{4} = oo in case d(x, y) is unbounded for x, y € 4).

If d, and d, are pseudometrics, then so is d = d, v d,: properties
(i), (ii), and (iii) are trivial, while the triangle inequality is obvious
from the relations

dk(x! z) s dk(‘x! y) + dk(y’ z) s d(x’ y) + d(y! 2‘) (k = ls 2)
15.3. Uniform spaces. By a uniform structure on X, we shall mean
a nonempty family & of pseudometrics on X, with the properties:

(i) if dy, dy€ D, thend, v dy € D; and
(ii) if e is a pseudometric, and if for every € > 0, there exist d€
and & > 0 such that

d(x,y) = 8 implies e(x,y) < €
for all x, y € X, then e € 2.

This last condition may be expressed as follows: d{4} < & implies
e{d} < e. By (ii), if de€ D, then rde D for every r > 0; and, if
de9ande £ d,thenee 9.

A uniform structure 9 is called a Hausdorff uniform structure if

(iii) whenever x # y, there exists d € & for which d(x, y) # 0.

The intersection of any collection of uniform structures on X is,
obviously, a uniform structure. (Since 0 belongs to every structure,
the intersection is never empty.) Hence, if & is any nonempty family
of pseudometrics on X, then there exists a smallest structure £ con-
taining . We call & a subbase for &, and we say that & is generated
by &.

A subbase 4 is called a base for 9 if for every e € & and € > 0, there
exist d € # and 8 > 0 such that d(x,y) = & implies e(x,y) < e.

(a)  Given a subbase & for D, let A be the family of all suprema of
finite subsets of . Then % is a base for 9.

This is so because the set of all pseudometrics e that satisfy condition
(ii), with d € 4, is a uniform structure, and, clearly, it is the smallest
one containing <.

A set X, equipped with a uniform structure 2, is called a uniform
space, and is denoted by [X ; Z]—for short, by X. If 2 is a Hausdorff
structure, then [X; 9] is called a Hausdorff uniform space.
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A metric uniform structure is a uniform structure with a base con-
sisting of a single metric. Reference to R as a uniform space will be
(unless stated otherwise) to the standard structure, i.e., the metric
uniform structure generated by the metric (7, s) — |r — s|.

15.4. Uniform topology. A uniform structure £ on X induces a
topology on X, called the uniform topology, defined as follows: a sub-
base for the neighborhood system at x consists of the sets

(a) {y:d(xy) < ¢

(de 2, e > 0). Indeed, these sets form a base—and it is enough for
d to range over a base for &. Clearly, then, if d ranges over a subbase
for 2, then the sets (a) still constitute a subbase at x. Closures in the
uniform topology are given by:

(b) 4 = Nyeo {*: d(x, 4] = 0};

for, x € cl 4 if and only if every basic set (a) meets 4. Evidently, the
uniform topology is a Hausdorff topology if and only if 2 is a Hausdorff
structure. The uniform topology induced on a metric space is the
usual (metric) topology. References to the topology of a uniform
space are always to the uniform topology.

(c) The mapping x— d[A, x) is always continuous (d e D).
For, every z € A satisfies

d[A4, x) < d(z, x) £ d(z,y) + d(x, y),
whence
d[A4, x) £ d[A4,y) + d(x,y).

Hence if y belongs to the neighborhood (a) of x, then
L4, x) — d[4,3)] < d(x,5) < <
It follows from (c) that the set
(d) d-cl A = {x: d[A4, x) = 0}
(which may be called the d-closure of A) is a zero-set. Moreover,
d{d-cl A} = d{4};

for, if x, y € d-cl A, then

d(x,y) < d(x, x") + d{4} + d(, "),

for all x', y" € A, whence d(x,y) < d{4}. Also, since 4 < clA <
d-cl A, we have
d{cl 4} = d{4}.
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15.5. Admissible uniform structures; € and €*. Suppose X is given
as an arbitrary topological space (not necessarily completely regular),
and let 2 be a uniform structure on X. If the uniform topology
coincides with the given topology, then X is said to admit the structure
9, and 2 is called an admissible uniform structure on X. There may
exist one or more admissible structures, or none at all. Obviously, a
Hausdorff space may admit only Hausdorff uniform structures.

When X is a topological space, we can use the functions in C(X) for
defining various uniform structures on X (not necessarily admissible).
For each fe C(X), let §; be defined as follows:

(% y) = |f(®) = ).

Clearly, i is a pseudometric (even without the continuity of f). The
structure generated by all ¢, for f e C(X), will be denoted by € =
%(X); the structure generated by all ,, for f € C*(X), is denoted by
€* = €*(X). In each case, the pseudometrics ¢, form, in general,
only a subbase. A convenient base consists of all pseudometrics of the
form

‘/,flv...v‘/,f"'

On the space R, ¢; is the usual metric, and generates the standard
structure. For other admissible structures on R, see 15A.

15.6. 'THEOREM. A necessary and sufficient condition that a Haus-
dorff space X admit a uniform structure is that X be completely regular.
Moreover, if X is completely regular, then both € and €* are admissible
uniform structures.

PROOF. If X admits a structure &, then
Cl A = ndeg d—cl A,

so that every closed set is an intersection of zero-sets. Hence X is
completely regular (Theorem 3.2).
On the other hand, the collection of all sets

{y: 4% 9) < & = {y: |[f(® - fO)] < ¢ (xe X, e>0),

for f e C(X) [resp. f € C¥(X)], is a subbase in the uniform topology
induced by € [resp. €*]; and if X is completely regular, these
sets form a subbase (in fact, a base) for the topology of X (Theorem
3.6).

Because of this theorem, we may as well assume from now on that all
given uniform spaces are Hausdorff spaces. Nevertheless, we shall
usually include the adjective when it is really needed.



220 UNIFORM SPACES 15.7

COMPLETE SPACES

15.7. Cauchy z-filters. Let [X; 2] be a uniform space. A z-
filter # is said to be a Cauchy z-filter if for every d € @ and € > 0, &
contains a set of d-diameter < e—briefly, & contains arbitrarily small
sets. Clearly, it suffices here to let d range over a base for 2.

The uniform space [X; 9] is said to be complete if whenever 5 is a
family of closed sets with the finite intersection property, and contains
arbitrarily small sets, then [ £ # 0.

(a) X is complete if and only if every Cauchy z-filter is fixed.
Necessity is trivial. For the sufficiency, let 5 be as above. The

family of zero-sets
{d-c1H:de 2, H e X}

is contained in a z-filter #. Since d{d-cl H} = d{H}, # is a Cauchy
z-filter. By hypothesis, [} & # 0, and so we have

N = NuerlH = Ngewr Nacod-clH>NF #0.

Since every z-filter is contained in a z-ultrafilter, we have, from (a):
(b) X is complete if and only if every Cauchy z-ultrafilter is fixed.

When [X; 2] is a complete uniform space, we refer to £ as a com-
plete structure.

Note that, in any case, every fixed z-ultrafilter is a Cauchy z-filter—
although an arbitrary z-filter whose intersection is just one point need
not be a Cauchy z-filter. On the other hand, a Cauchy z-filter con-
verges to each of its cluster points. In a Hausdorff space, a Cauchy
z-filter converges to at most one point. Hence in a complete, Hausdorff
uniform space, the intersection of a Cauchy z-filter contains exactly
one point.

Assuredly, a compact space X is always complete. (By Theorem
15.6, €(X) is an admissible structure. It is also the unique admissible
structure; see 15H.) The noncompact discrete space N, like any
discrete space, is complete in its discrete structure, generated by the
metric » for which u(x, y) = 1 whenever x # y. (On N itself, this is
the same as the structure generated by the usual metric (m, n) —
|m — n|.) 'The noncompact space R is complete, since every closed
set of finite diameter is compact. More generally, every sequentially
complete metric space is complete (15F.2). As we shall see, [R; €(R)]
and [N; €(N)] are also complete, while, on the other hand, neither
[R; €*(R)] nor [N; €*(N)] is complete.
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15.8. Subspaces; completion. Let X be a subset of a uniform space
[T; %]. 'Trivially, if u € %, then the restriction of  to X x X is a
pseudometric on X. The relative uniform structure & on X is the
structure generated by all such restrictions, for u € %. The space
[X; 2] is called a subspace of [T'; %].

A check of the definitions shows that it is enough to have u range
over a subbase for %; and in case u ranges over a base, the induced
pseudometrics will constitute a base for 2. It follows from this last
that the uniform topology on [X; 2] is the same as that induced by
the uniform topology of [T'; %]. Consequently, references to the
topology on a subspace of a uniform space are unambiguous.

A completion of a uniform space X is a complete Hausdorff uniform
space in which X is dense. One of the key results in the theory of
uniform spaces is the theorem that every Hausdorff uniform space X
has a completion, y.X; moreover, yX is essentially unique. We shall
include a proof of this result, although it is not needed for the proof of
Shirota’s theorem (15.20).

The obvious way to produce yX is by generalizing the familiar con-
struction of R as the completion of Q. This generalization is outlined
in the Notes. It will be seen to resemble the development of BX given
in Chapter 6. This is not an accident: once the general completion
theorem has been established, Theorem 15.13(a*) below may be used
as the definition of BX.

What we shall do here is reverse the procedure by making use of BX
—which has already been developed and explored—to construct y.X.
This approach has the advantage of exposing the relationship between
BX and yX. Since yX is a topological space in which X is dense, it
must be a quotient space of a suitable subspace of 8X (Theorem 10.13).
Now, each Cauchy z-filter must have a unique limit in yX. Accord-
ingly, the construction of yX will be accomplished in two stages. In
the first, the pseudometrics on X are extended to the subspace

c¢X = {p € BX: A? is a Cauchy z-ultrafilter}

of BX. (Recall that A? denotes the z-ultrafilter on X that converges
to the point p of BX.) Here, we use the fact that X is C*-embedded
in BX. However, X x X is typically not C*-embedded in BX x BX
(see Notes, Chapter 6, Compactification of a product). Accordingly,
the pseudometric—which is a function on X x X—is extended in
two steps, one variable at a time. 'The second stage in the construction
of yX consists in identifying all points in c¢X that are cluster points of
the same Cauchy z-filter.
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15.9. CoMmPLETION THEOREM. Every Hausdorff uniform space
[X; D] has a completion yX = y[X; D].

PROOF. We wish to extend every pseudometric d € 2 to a pseudo-
metric d° on cX, in such a way that

(8)  For each fixed p € cX, the mapping q— d*(p, q) is continuous on
c¢X into R.

Fix ye X. The function x— d(x,y) belongs to C(X) (15.4(c));
hence, by Stone’s theorem (6.5), it has a continuous extension p —
d(p, y) from cX into the one-point compactification R* of R. This
extension actually maps into R itself. For, select Z € A? such that
d{Z} is finite. The triangle inequality implies that

{d(z,5): € Z}
is a bounded set of real numbers. By continuity, d(p, y) belongs to
the closure of this set (since p € cl Z).

From the relation
d(x,y) = d(x,2) + d(y, 3)

on X, we obtain, by continuity,

(b) d(p,y) = d(p, 2) + d(, 2)

for p € cX. This implies (as in 15.4(c)) that the function y — d(p, ¥)
from X into R is continuous (for each fixed p € cX). In turn, then,
this function has a continuous extension ¢ — d*(p, ¢) from cX into R*.
Using (b), we see that this, too, maps into R. We have now
established (a).

We still have to prove that the mapping (p, ¢) — d“(p, q) is a pseudo-
metric. Obviously, d(p, g) = 0. To see that d’(p, p) = 0, consider
any € > 0, and choose Z in the Cauchy =z-ultrafilter A? such that
d{Z} < e. By continuity, there exist y € Z such that

d“(p, p) — d(p, 3)| < &
and x € Z such that

[d(p,y) — d(x,9)| < e

@(p,p) = |&(p,p) — d(x,y)| + d(x,y) < 3e.
Finally to establish symmetry and the triangle inequality, we start
with (b); two applications of continuity yield, successively,

a«(p, q) = E(P’ ) + E(q’ 2),
de(p, q) < d(p, 1) + d(g,7),

Therefore,

and
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for p, ¢, recX. Putting » = p, we get d(p, q) < d(q, p); inter-
changing p with ¢ leads to equality. Thus, @ is a pseudometric.

We come to the second stage in the construction of yX. Define
p = p'in cX to mean that d°(p, p") = Oforallde . Thisis obviously
an equivalence relation, and each pseudometric d¢ depends only upon
the equivalence classes of its arguments. Denote the equivalence class
of p by p». The classes pr will be the points of yX. The equation

(9%, ) = d(p, 9)
defines dv as a pseudometric on yX, and the collection {d”: d € &}
generates a Hausdorff uniform structure on y.X.

Now we have to prove that y.X is a completion of X.

Since the restriction of d° to X x X is d, and since X is a Hausdorff
space, the mapping x — &7, for x € X, is one-one. As a matter of fact,
av = {«}, as is easily seen, and we shall identify x with x. Under this
identification, the restriction of d” to X x X is d. Since the pseudo-
metrics d7 form a subbase for the structure on yX, their restrictions
form a subbase for the relative structure on X. But these restrictions
generate (in fact, form) 9. Therefore, 9 is the relative structure on X,
and so the mapping x — x” is an embedding of [X; 2] in yX.

(o) The mapping p — p» from cX onto yX is continuous.
For, the inverse image of the subbasic open set

@, ¢) < ¢
is the open set {r: d°(p, r) < €}.
Since X is dense in cX, it follows that X is dense in y.X.
Finally, to see that yX is complete, consider any Cauchy z-filter &
on yX. The collection of all zero-sets in X of the form

Z={xeX:d[F,x) £ ¢,

where Fe%#, de€ 9, and € > 0, is embeddable in a z-ultrafilter A,
Since d{Z} £ d{F} + 2¢, A? is a Cauchy z-filter; so p € cX. Now,

&, p) = XZ,p) + e = d[Z,p) + c = <
It follows that pr e cl F = F. Thus, pre N £.

REMARK. In case X itself is complete, so that ¢X = X, then, of
course, yX = X. More generally, if, for distinct p and ¢ in cX, there
exists d € 2 such that d(p, q) # 0, then each equivalence class p»
consists of the single point p, whence yX = ¢X (under the identifica-
tion of p» with p). Moreover, in this case, the uniform topology on
yX agrees with the topology of ¢X (see 15S.3).
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UNIFORM CONTINUITY; UNIQUENESS OF
COMPLETION

15.10. In the general theory of uniform spaces, the concept of
uniform continuity is fundamental. If ¢ is a mapping from [X; 2] to
[Y; &], then clearly, for any e € &, the function (x, x') — e(px, px’) is a
pseudometric on X. If for every e € &, this pseudometric belongs to
9, then o is said to be uniformly continuous. In terms of bases 2’ and
&', respectively, the definition takes the familiar form: ¢ is uniformly
continuous if and only if, for each e € §’ and € > 0, there exist d € &’
and 8 > 0 such that d(x,x’) < & implies e(px, px’) < € (for all
x, x' € X)—or, equivalently, d{4} < & implies e{p[A]} = e.

It is evident that a uniformly continuous mapping is continuous
(with respect to the uniform topologies).

A function f from [X; Z] into R is uniformly continuous if and only
if ¢, € P (see 15.5). The function x— d[4, x), for d € D, is always
uniformly continuous, as is shown by the proof of 15.4(c). Every fin
C(X) is uniformly continuous in the structure €, and, moreover, € is
the smallest such structure. Likewise, € * is the smallest structure in
which every f in C*(X) is uniformly continuous.

A one-one, uniformly continuous mapping whose inverse is also
uniformly continuous is called a uniform isomorphism. 'Thus, a uniform
isomorphism of [X; &] onto [Y; €] is a one-one mapping of X onto Y
that induces (as above) a one-one mapping of & onto .

15.11. TueoreM. If X is dense in a uniform space [T; U], then
every uniformly continuous mapping ¢ from X to a complete Hausdorff
uniform space [Y ; &) has an extension to a uniformly continuous mapping
@ from T into Y.

PROOF. Given p € T, let #, denote the z-filter on X generated by
the family of zero-sets

F = {xe X:u(x,p) < 8},

forallu e % and & > 0. Clearly, #, is a Cauchy z-filter.
Consider the z-filter

oHF, ={Z e Z(Y): p=[Z] e F,}

on Y. The restrictions to X x X of the pseudometrics in % form a
base for the uniform structure on X. So, given e€ &, and ¢ > 0,
there exist # € % and & > O such that, for 4 < X, u{4} < 38 implies
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e{p[A]} < e. Now, we can choose 4 € #, with u{A4} < 33; then the
zero-set e-cl p[A] belongs to ¢*F,, and we have

ele-cl p[A]} = e{p[4]} < e
Therefore, g*% , is a Cauchy z-filter on Y.

Since Y is a complete Hausdorff space, there exists a unique point ¢
in ) ¢*%,. Wedefinegp=g. When p is in X, it belongs to [} %,,
so that gp € [ p*F,. Therefore ¢ agrees with ¢ on X.

Finally, consider any subset S of T, with #{S} < 3. Define

S’ ={xeX:ux S] £ 8.

Then #{S’} < 33, and so e{p[S']} = e. Since p € S implies S' e Z,
so that ¢p € e-cl ¢[S’], we have @[S] < e-cl ¢[S’]. Therefore
e{¢[S]} = e. This shows that ¢ is uniformly continuous.

15.12. CoroLLarY. If T is a completion of a uniform space X, then
there exists a uniform isomorphism of yX onto T that leaves X pointwise
fixed.

The proof is like the proof of uniqueness of X (Theorem 6.5).

Thus, we may refer to yX as the completion of X.

It follows from the corollary that a complete Hausdorff uniform
space is its own completion. -Also, if X is dense in a Hausdorff uniform
space Y, then yX = yY.

In contrast to the uniqueness of the completion, a completely regular
space can have several compactifications. The correct analogue of
completion is not arbitrary compactification, but rather Stone-Cech
compactification. Corresponding to the extendability to SX of any
continuwous mapping into a compact space, we have here the extend-
ability to yX of any uniformly continuous mapping into a complete
space. As a matter of fact, the former result is a special case of the
latter (15P.2).

BX AND vX AS COMPLETIONS

15.13. If a z-ultrafilter A? on X is not real, then there exists a
function f in C(X) that is unbounded on every member of A? (see
5.7(a) or 8.4). Then A? contains no set of finite ¢/ ,-diameter. Thus,
every Cauchy z-ultrafilter in the uniform structure %(X) is real.
Consequently, if X is realcompact, then it is complete in the structure
€ (X).

THEOREM. Let X be a completely regular space.

(a) The completion of X in the uniform structure €(X) is [vX; €(vX)].
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(a*) The completion of X in the uniform structure €*(X) is [BX,
E*(BX)]-

PROOF. (a). As noted above, [vX; €(vX)] is complete. Now, X
is dense in vX, of course, and clearly the relative structure on X is
%(X). Since the completion of [X; €(X)] is unique, it must be
[vX; €(X)].

The proof of (a*) is similar, since a compact space is always complete.

It follows from (a) that the Cauchy z-ultrafilters in the structure
%(X) are the same as the real z-ultrafilters; and, by (a¥), every z-
ultrafilter is a Cauchy z-filter in the structure ¥*(X). These results
will be generalized in Theorems 15.21 and 15.16, respectively.

15.14. CoROLLARY.

(a) X is realcompact if and only if it is complete in the structure €.

(a*) X is compact if and only if it is complete in the structure € *.

COMPACT AND REALCOMPACT COMPLETIONS

15.15. Let [X; 2] be a uniform space, and let d€ 2 and 8§ > 0.
A family of sets E, will be called a d-discrete family, of gauge 3, provided
that d[E,, E,] = 8 whenever « # 0. A d-discrete set of points is
defined similarly. A set A in X is said to be d-closed if d-cl A = A.
Thus, every d-closed set is a zero-set.

(@)  The union of a d-discrete family of closed sets is closed. If each
set is d-closed, then their union is d-closed and hence is a zero-set.

In fact, for any «, the neighborhood {y: d(x, y) < 8/2} meets at most
one set E, (notation as above). Therefore,

dU.E. = U.dE,

d-clU. E, = U, d-clE,.
In particular, every d-discrete set in X is closed.
(b)  Any d-discrete set S in X is C-embedded in X.

The function g € C(S) has, as a continuous extension to X, the function
f defined by:

flx) = g(s)(1 — 3d(x,s)/8) for d(x,s) £ 8/3,s€S,

and

and
f(x) = 0 otherwise,

where 8 is a gauge for S.
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15.16. THEOREM. The following are equivalent for amy Hausdorff
uniform space [ X ; D).

(1) vX is compact (in which case X and D are said to be precompact).

(2) For each d € D, every d-discrete set in X is finite.

(3) For every d € D and € > 0, X is a finite union of zero-sets of d-
diameter < e (in which case [ X ; D] is said to be totally bounded).

(4) Every z-ultrafilter on X is a Cauchy z-filter, i.e., BX = cX.

PROOF. (1) implies (2). A d-discrete set in X is d”-discrete, and
hence is closed and discrete in the compact space y.X.

(2) implies (3). Suppose that for some d € & and < > 0, X is not
the union of any finite number of zero-sets of d-diameter < e. In-
ductively, choose x, in the complement of

Uizt {x: d(x ) < 23
The set {x,},. is obviously infinite and d-discrete.

(3) implies (4). Every z-ultrafilter is prime.

(4) implies (1). Under the hypothesis, y.X is a continuous image of
BX (15.9(c)).

It follows from the theorem that every admissible structure contained
in a precompact structure is precompact.

The theorem provides several characterizations of a uniform space
whose completion is compact. (See also 151, J, K, and Q.) We shall
obtain an analogue for the realcompact case; however, the techniques
of the proof will be quite different from those just employed. The
main tool is presented in the next theorem.

15.17. TueoreMm. Let [X; D] be a Hausdorff uniform space, and let
de D, and € > 0 be given. There exist sets Z, ., (n € N, x € X) with
the following properties :

W) U, Z,,. = X.
(ii) Each set Z, . is d-closed, and of d-diameter < e.
(iii) For each n € N, the family of sets Z, . (x € X)) is d-discrete.

PROOF. We make tacit use of the conventions d{0} = 0, and
d[0,A] = + o > r (for reR). Let < be a well-ordering of X.
For each fixed n, we proceed by induction on x. Let & = ¢/2. We
put zin Z, , if and only if

d[Z, ,,3) 2z d/n forall y <x,
and
d(x,2) = 6 — 8/n.
It is clear that Z, , is d-closed, that d{Z, .} < 28 = ¢,and, fory <,
that d[Z, ,, Z, ,] =2 8/n. This establishes (ii) and (iii).
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To prove (i), consider any 2 € X. There exists a least element x (in
the well-ordering) for which d(x, 2) < 8. Select n so that d(x, 2) <
8 — 8/n. For each y < x, we have d(y, 2) = & (by definition of x);

hence, for every w e Z, ,,

dw, 2) 2 d(y,2) —d(y,w) = 8 — (8 — 8/n) = d/n,
which shows that d[Z, ,, ) 2 8/n. Therefore z€ Z, ,.

15.18. For each #n, every union of sets Z, , is a zero-set (15.15(a)).
In particular, for each #, the set J,.x Z, . is a zero-set. Now, the
union of this countable family of zero-sets is X. Hence, given a real
z-ultrafilter .o, there exists k € N such that {J,.x Z, € o (5.15(a)).
We summarize these facts as follows (relabeling the nonempty Z, ).

Givend € 9, € > 0, and a real z-ultrafilter o, there exists a family
of nonempty sets Z, with the following properties:
(i) U. Z. e .

(it) Each Z, is of d-diameter < e.
(iii) The family is d-discrete.
(iv) The union of every subfamily is a zero-set.

Now we construct a set S by selecting one point s, from each Z_.
Then S is d-discrete. Define &7 as follows: for E < S,

Eeog ifandonlyif U, .zZ, €.

We prove that &7 is a real z-ultrafilter on S. Since the sets Z, are
disjoint, the correspondence

E— UsaeE Za
preserves intersection as well as union. Consequently, &7 is a filter
with the countable intersection property (since &/ has this property;
see 5.15). Moreover, we see from (i) and (iv) that for any E < S,
either £ € &/ 5 or S — E € o/ ; therefore & is an- ultrafilter.

15.19. Lemma. Let [X; D] be a Hausdorff uniform space. If for
all d € 9, every-d-discrete subspace is realcompact, then every real z-
ultrafilter of on X is a Cauchy z-filter.

PROOF. Consider any de P and e > 0. The set S defined as
above is d-discrete, and therefore, by hypothesis, it is realcompact.
Consequently, the real z-ultrafilter &7 is fixed, and so there exists «
for which {s,} € &/5. Then & contains the set Z, of d-diameter < .

As the reader will recall from our discussion in Chapter 12, the
requirement that a discrete space be realcompact is very mild: a dis-
crete space fails to be realcompact if and only if its cardinal number is
measurable. It is not known whether any measurable cardinals exist;



15.21 UNIFORM SPACES 229

and any that may exist can be regarded as pathological, since they
cannot be obtained from R, and the other nonmeasurable cardinals by
any of the standard processes of cardinal arithmetic. According to the
preceding lemma, in order to conclude that every real z-ultrafilter is a
Cauchy z-filter, in any structure, one has only to exclude the existence
of d-discrete subspaces of measurable cardinal.

15.20. THEOREM (SHIROTA). Let X be a completely regular space in
which every closed discrete subspace has nonmeasurable cardinal. A
necessary and sufficient condition that X admit a complete uniform struc-
ture is that it be realcompact.

PROOF. Suppose that X admits a complete structure &. By
hypothesis, every closed discrete subspace, hence every d-discrete
subspace (for all d € @), is realcompact. By the lemma, every real z-
ultrafilter is a Cauchy z-filter, and hence fixed, since X is complete.
Therefore X is realcompact. Conversely, if X is realcompact, then
%(X) is an admissible complete structure (15.13).

The proof of sufficiency did not use the hypothesis about subspaces.
But this is neither here nor there, because in a realcompact space, every
closed set is realcompact (Theorem 8.10). Thus:

(a) A complete space is realcompact if and only if every closed discrete
subspace is realcompact.

According to the theorem, if | X| is nonmeasurable (in particular, if
measurable cardinals do not exist), then X admits a complete structure
if and only if it is realcompact. The condition on X is critical : should
a measurable cardinal exist, then the discrete space of that cardinal is
not realcompact, although, like any discrete space, it is complete in its
discrete structure.

15.21. We now prove the analogue of Theorem 15.16. It includes
a sharpened version of Shirota’s theorem.

THEOREM. The following are equivalent for any Hausdorff uniform
space [X; D).

(1) yX is realcompact.

(2) For each d € 9, the cardinal of every d-discrete set in X is non-
measurable.

(3) For every de 2 and ¢ > 0, X is a nonmeasurable union of zero-
sets of d-diameter < e.

(4) Every real z-ultrafilter on X is a Cauchy z-filter, i.e., vX < cX.

PROOF. We shall prove that condition (2) is equivalent to each of
the other three, in turn.
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(2) implies (3). 'This follows as in Theorem 15.16, except that trans-
finite induction is now used in place of ordinary induction.

(3) implies (2). Let S be a d-discrete set. By hypothesis, X is a
nonmeasurable union of sets of d-diameter smaller than a gauge for S;
and each of these contains at most one point of S.

(2) implies (4). 'This is Lemma 15.19.

(4) implies (2). Let S be a d-discrete set in X. Then S is C-
embedded in X (15.15(b)), so that cl,x S = vS (8.10(a)). Hence the
hypothesis implies that vS = ¢X. Given p € vS, let V' be a neighbor-
hood of p in ¢X whose d°-diameter is less than a gauge for S. Then
V n S contains at most one point. But p ecl.x (V n S), because
peclS. Therefore,pe V' n S < S. This shows that vS < §, i.e,,
the discrete space S is realcompact. Hence its cardinal is non-
measurable.

(2) implies (1). We prove, first, that the condition corresponding to
(2) holds for subsets of yX. Let T be any u-discrete subset of y.X
(where u belongs to the structure on yX). Construct S < X by
selecting, for each ¢ € T, a point s € X such that u(t, s) < 8/3, where 8
is a gauge for . Then S is d-discrete (with gauge 8/3), where d is
the restriction of . Hence the cardinal |T'| = |S| is nonmeasurable.

It follows that every real z-ultrafilter on yX is a Cauchy z-filter.
Therefore the complete space yX is realcompact.

(1) implies (2). A d-discrete set in X is d*-discrete, and hence is
closed in yX; and a closed set in a realcompact space is realcompact.

15.22. Let us examine what this theorem adds to our previous
knowledge. We notice that only two of the proofs—(4) implies (2),
and (2) implies (1)—required any effort; all the other implications listed
followed quickly from what was already known. And, in two im-
portant special cases, everything had already been settled:

(i) X s complete. 'Then (1) and (4) are obviously equivalent; and
the deep result that (2) implies (1) is Shirota’s theorem.

(i) |X| és nonmeasurable. 'Then (2) is satisfied trivially; also,
|yX| is nonmeasurable (see 9A). By Lemma 15.19, (4) holds, and by
Shirota’s theorem, (1) holds. Thus (1) and (4) are equivalent because
they are both true.

The main new result in this theorem is that (4) implies (1) even if X
contains sets of measurable cardinal. Although neither condition
explicitly involves a restriction on cardinals, we do not know how to
derive (1) from (4) without passing through (2). On the other hand,
the converse implication is easy; see 15S.5.



15.23 UNIFORM SPACES 231

15.23. Suppose that & and & are admissible structures on X, with
2 < &. Any Cauchy z-filter relative to & is certainly a Cauchy z-
filter relative to &. Therefore, if X is complete in 2, it is also complete
in &.

As an example, consider the structure € on R. Since €(R) con-
tains the metric ¢y, it contains the standard uniform structure. Since
R is complete in this structure, it is also complete in €. (This gives
us yet another proof that R is realcompact.) In this example, % is far
larger than the metric structure: every function in C(R) is uniformly
continuous in % (into R with the standard structure).

Every realcompact space X is complete in €(X). Hence, if X is
realcompact, then it is complete in every admissible structure that
contains %. Shirota’s theorem states a sort of converse: barring
measurable cardinals, if there exists any admissible structure in which
X is complete, then X is also complete in €. As we have just seen,
this tells us very little in the particular case X = R. 'The power of the
result resides in the fact that the structure %, in more general spaces,
is likely to be relatively small. In one sense, Shirota’s theorem may be
regarded as a generalization of the theorem that any {0, 1}-valued
measure must be m-additive for every nonmeasurable m (12.3(a)), as
we shall now explain in some detail.

Let us apply Theorem 15.21 to the structure €. Since condition (1)
is satisfied, so is (3): for d € ¥, X is a nonmeasurable union of zero-sets
of d-diameter < e. But an overwhelmingly stronger statement can
be made:

(a) For every de € and € > 0, X is a countable union of zero-sets of
d-diameter £ e.
To prove this, we look first at the case in which d is a subbasic pseudo-
metric ¢, and consider the sets
Z,={xeX:ne £ f(x) £ (n+ 1)e},

n ranging over the set of all integers. Obviously, each Z,, is a zero-set,
of y~diameter < e;and X = |J, Z,.

For arbitrary d € €, there exist f;, - - -, f, € C(X), and & > 0, such
that d{4} < e whenever §{4} < 3 forall .. For each %, X is the

union of a countable family of zero-sets of i, -diameter < 8. Hence it
is the union of the countable collection of zero-sets of the form

Al n --- nAm

where 4, belongs to the kth family ; and these sets are of d-diameter < e.
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The force of this result shows up particularly clearly in the case of
discrete spaces. By definition, the discrete structure % is that gene-
rated by the metric # for which u(x, y) = 1 whenever x # y. It is
manifest that % contains every pseudometric on the space, and there-
fore is the largest structure; in particular, > %. Since the sets of
u-diameter < 1 are single points, (a) shows that if the space X is not
countable, € must fall vastly short of %:

(b) For discrete X, € = % (if and) only if | X| < R,.
Yet, Shirota’s theorem tells us that if the cardinal of X is arbitrary, so

long as it is not measurable, then, because X is complete in %, it is also
complete in €.

15.24. Metric spaces. Let 2 and & be uniform structures on X.
The smallest structure containing both is denoted by 2 v &. One
sees with little effort that 2 v & is generated by all pseudometrics of
the form d v e, for de @ and e € &, and hence that & v & is ad-
missible if both & and & are. Furthermore, it is clear that a z-filter on
X is a Cauchy z-filter in @ v & if and only if it is a Cauchy z-filter
both in £ and in &. In symbols,

((X; D v &) = [X; 2] n [X; &)
This leads to the following result.

THEOREM. Every metrizable space admits a complete uniform structure.
Hence every metrizable space of nonmeasurable cardinal is realcompact.

PROOF. It is clear, first of all, that the completion of a metric space
[X; 2] is metric: if d generates &, then d” generates the uniform
structure on yX. Now consider any Cauchy z-ultrafilter &/ on X,
and suppose that its limit p” in yX belongs to yX — X. 'The function
g, defined by

&g = (" ¢),
vanishes only at pr. Set f = (g|X)~L Then for every Z e &, f is
unbounded on Z, whence ,{Z} = co. Thus, & is not a Cauchy z-
filter in the structure €(X). This shows that if a z-ultrafilter is a
Cauchy z-filter both in 2 and in %, then it is fixed. Therefore X is
complete in the structure € v 2.

PROBLEMS
15A. ADMISSIBLE UNIFORM STRUCTURES ON R.

The following are distinct, admissible uniform structures on R. For each
(except the first), describe the set of all uniformly continuous functions, and
describe the completion. Order the structures by set inclusion.
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(i) The standard structure.

(ii) The structure generated by s, where f = arctan. [Note that f is a
uniform isomorphism onto an open interval in the standard structure; also,
i belongs to the standard structure.]

(iii) The structure generated by i, and i, where s(x) = 2x/(1 + x2), and
o(x) = (1—x%)/(1 + x2). Compare with 15K.4,7.

(iv) €R).

(v) €*R).

15B. =-FILTERS ON A SUBSPACE.

Let X be a subspace of a Hausdorff uniform space 7"

1. Every z-filter on X with a limit in T is a Cauchy z-filter.

2. If X is dense in T, and every Cauchy z-filter on X has a limit in 7,
then T is complete.

3. For a compact space, the result corresponding to 2 was stated in 6F.4.
The analogue is not valid for realcompact spaces however: if every real z-
ultrafilter on X has a limit in 7, T need not be realcompact. (See 8F.)

4. Use the above to prove that X is precompact if and only if every z-
ultrafilter is Cauchy.

15C. CLOSED SUBSPACE; COMPLETE SUBSPACE.

1. A closed subspace of a complete space is complete.

2. A complete subspace of a Hausdorft uniform space is closed. [15B.1.]
Hence a complete space is its own unique completion.

3. If X is a subspace of a Hausdorff uniform space T, then yX = cl . X.
Hence again, if X is dense in 7, then yX = yT.

4. A closed subspace X of a realcompact space T is realcompact. (This
is Theorem 8.10.) [X is complete in the relative structure from %(T),
which is contained in €(X).]

15D. BOUNDED PSEUDOMETRICS.

1. Let e = d A 1, where d belongs to a uniform structure 2. Then e is
a pseudometric, and, for every € < 1, e(x, y) £ € if and only if d(x,y) < ¢,
so that e € &. Thus, the bounded pseudometrics in & constitute a base.

2. Every pseudometric belonging to a given uniform structure is bounded
when and only when every uniformly continuous function into R is bounded.
[If d is unbounded, then x—> d(p, x) is unbounded for each p.]

3. Let E be the unit ball in real, separable, Hilbert space, i.e., E is the set

of all sequences x = (x,,), <N such that Zn x,2 < 1, with the metric

d(x’ y) = (Z,, (xn - yn)z)yz'

The uniform space E is not precompact. [Theorem 15.16.]
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4. Every uniformly continuous function on E is bounded. [Ifd(x,y) < &
implies | f(x) — f(»)| £ 1, then
/@) = 1O + 1 +1/8

forall ] Hence, in spite of 3, every pseudometric belonging to the structure
on E is bounded.

15E. TOTAL BOUNDEDNESS OF (X; €*).

Let X be a completely regular space.
1. In Theorem 15.16, (2) and (3) are equivalent for any one d.
2. Prove directly, as in 15.23(a), that [X; €*] is totally bounded.
3. If fe C(X), and f is unbounded, then d = iy, A 1, which is a bounded
pseudometric, does not belong to ¥*. [X has an infinite d-discrete subset.]

15F. METRIC UNIFORM STRUCTURE.

1. A Hausdorff uniform structure & is metric if and only if 2 has a
countable base. [Use 15D.1, and consider a convergent sum of pseudo-
metrics.]

2. A sequence (,),cn in a metric space X is a Cauchy sequence (in the
familiar sense) if and only if the family of sets {,}, » s, for k€ N, contains
arbitrarily small sets. X is said to be sequentially complete if every Cauchy
sequence converges to a point in X. A metric space X is complete if and
only if it is sequentially complete. [Sufficiency. From a given Cauchy z-
filter, select Z, of diameter <1/n, and choose x, € Z,. Alternatively, use
the fact that every point in the metric space yX is a limit of a Cauchy sequence
in X.]

15G. CONTINUITY OF PSEUDOMETRICS; THE UNIVERSAL STRUCTURE.
1. If d is a pseudometric, then
|d(a, ) — d(%,y)| S d(a, %) + d(b, 3.

2. If a pseudometric on a topological space X is continuous in one variable,
then it is continuous jointly. Hence if 2 is admissible, then every d € 2 is
continuous on X x X.

3. If 2 is admissible, and e is a continuous pseudometric, then the struc-
ture generated by 2 U {e} is admissible.

4. If X is completely regular, then the set of all continuous pseudometrics
is an admissible structure, and evidently the largest; it is called the universal
structure.

5. Every continuous mapping from X into a uniform space is uniformly
continuous in the universal structure on X.

15H. A COMPACT SPACE ADMITS A UNIQUE UNIFORM STRUCTURE.

1. For a compact space, the universal structure (15G.4) is the only ad-
missible one. [Let % be a continuous pseudometric on a compact space
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[X; 2], and let € > 0. For each xythere exists d, € P such that d,(x, y) < 1
implies #(x, y) < . Apply compactness of X, and (i) and (ii) of 15.3.]

2. Every continuous mapping from a compact space into a uniform space is
uniformly continuous.

15I. GENERATORS FOR A PRECOMPACT STRUCTURE.

Let X be a completely regular space.

1. An admissible uniform structure on X that is generated by a family of
pseudometrics 7, with fe C*(X), is precompact. [Argue as in 15E.2.
Alternatively, apply 15E.2.]

2. Conversely, every admissible precompact structure on X is generated
by such a family. [Consider C(yX), and recall 15H.]

3. €* is the largest admissible precompact structure.

4. If an admissible structure £ on X is generated by a family of pseudo-
metrics ¢, with fe C(X), then y[X; 2] is realcompact. [15.23(a) and
Theorem 15.21. Alternatively, 15.23(a) may be applied to yX; it follows
that every real z-ultrafilter on y.X is Cauchy.] Here the converse is not true,
however, as is shown by 15.23(b). See also 15L.4,5.

15J. ADMISSIBLE PRECOMPACT STRUCTURES.

Let yX and y'X be the completions of X in the admissible structures
9 and @', respectively.

1. 2 = 2’ if and only if there exists a uniform isomorphism of X onto
y'X that leaves X pointwise fixed.

2. yX can be homeomorphic with y’X, under a mapping that leaves X
pointwise fixed, even though & # 2'.

3. For precompact structures, 2 > £’ if and only if 9'X is a continuous
image of yX, under a mapping that leaves X pointwise fixed. [15H.2.]
Note that yX — X maps onto X — X. [Lemma 6.11.]

4. Distinct precompact structures have topologically distinct completions.
Hence there is a one-one correspondence between the admissible pre-
compact structures on X and the compactifications of X.

5. Use 3 and Theorem 6.12 to show that €* is the largest admissible
precompact structure.

6. €* is the unique precompact structure in which any two disjoint zero-sets
can be separated by a uniformly continuous function. [Theorem 6.5(IIT).]

15K. MINIMAL ADMISSIBLE STRUCTURES.

1. Every admissible structure on a completely regular space contains an
admissible precompact structure. [Consider all 5, where f(x) = d(a, x),
a € X, and d is bounded; see 15D.1 and 151.1.]

2. The completion of a discrete space X in the structure generated by all
5, where f, is the characteristic function of {x}, is the one-point compactifi-

cation of X.
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3. Generalize 2 to arbitrary locally compact spaces.

4. In a locally compact space, the structure obtained from the one-point
compactification is the smallest admissible precompact structure [15].3]; in
fact, it is the smallest admissible structure.

5. If a completely regular space X has a smallest admissible structure,
then X is locally compact. [10C.]

6. If a function on a space is uniformly continuous in a given structure, it
is uniformly continuous in every larger structure.

7. A function f in C(R) is uniformly continuous in every admissible
structure if and only if lim,_, , f(x) and lim,_,_, f(*) exist and are equal.

15L. THE sPACEY.

Let E be the unit ball in real, separable Hilbert space (see 15D.3), and
let Y be the subspace of E consisting of all points x having at most one co-
ordinate x,, different from 0.

1. Yis complete. [If some member of a Cauchy z-filter # does not con-
tain (0), then it is bounded away from (0). It follows that & contains a
compact set. Alternatively, use 15F.2.]

2. In the metric topology, Y is realcompact but not compact.

3. Every uniformly continuous function on Y is bounded. [See 15D.4.]
Hence every pseudometric belonging to the uniform structure on Y is
bounded.

4. The uniform structure on Y is contained in €(Y). [Consider the
pseudometric s V i, , where f(x) = Zn %, and g[(x) = 2%(|x,| — €) for
[, > €]

5. In spite of 4, the uniform structure on Y is not generated by any family
of pseudometrics of the form i, for Ae C(Y). [151.1.] Contrast with
151.2.

15M. THE PRODUCT OF UNIFORM SPACES.
The product uniform structure & on a cartesian product

X = X.[X.; 2]

is defined to be the smallest structure in which every projection =, is uniformly
continuous. .

1. 9 is generated by the family of all pseudometrics of the form (x, y) —
d(x, ¥,), where x = (»,),y = (v,), andd € Z,..

2. The uniform topology of the product structure is the product of the
uniform topologies.

3. An arbitrary product of complete spaces is complete. [Adapt either the
proof in 8.11, or those in 4.14 and 8.12.]

4. X, yx, = (X, X,). Contrast with 6N.2 and 91.
5. A product of precompact spaces is precompact. Contrast with 9.15
and 15Q.1.
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15N. UNIFORM CONTINUITY OF PSEUDOMETRICS.

1. If e is a pseudometric on a space [X; 2], then e € @ if and only if e is
a uniformly continuous function from X x X (15M) into R. [Necessity.
15G.1. Sufficiency. Given e > 0, there exist d € 2 and 8 > 0 such that
d(x,y) < & implies |e(x, y) — &(y,y)| < €]

2. If X is a dense subspace of [T'; %], then each u € % is determined by its
restriction to X x X.

3. Every pseudometric in the structure on y[X; 2] is of the form d* for
some d € 9.

4. If [X; 2] is dense in a Hausdorff uniform space [T; %], then every
pseudometric in £ has an extension to one in %. [Use 1. Alternatively,
use 3 and the fact that 97T = yX.]

150. UNIFORM STRUCTURES THAT AGREE ON A DENSE SUBSPACE.

Let % and %' be Hausdorff uniform structures on T, and let X be a
subset of T, dense in both uniform topologies, and having the same relative
structure in % as in %’.

1. The spaces [T; %] and [T; %'] need not be uniformly isomorphic.
[Take for X an open interval of R with one point deleted.]

2. If the uniform topologies on T are the same, then % = %’'. [15N.4.]

3. A uniform isomorphism of [T; %] onto [T; #'] that leaves X pointwise
fixed is necessarily unique; but it need not be the identity, even when % and
' are complete.

15P. THE UNIFORM STRUCTURES & AND %€*.

Let X, Y, and T be completely regular spaces, with X < T.

1. Every continuous mapping from X to Y is uniformly continuous from
[X; € (X)] to [Y; €(Y)], and from [X; €*(X)] to [Y; €*(Y)].

2. Use 1 to derive Stone’s theorem, and (I) of Theorem 8.7.

3. If €*(X) is the relative structure obtained from €*(T'), then X is C*-
embedded in 7. [15C.3.]

4. If €(X) is the relative structure obtained from %(T), and if X is dense,
or if T or vT is normal, then X is C-embedded in T.

5. In Theorem 11.3, X was embedded as a subspace of P = RC(X), and
as a subspace of P, = RC*X), If P and P, are given the product uniform
structures (15M), then the relative structures on the copies of X are € and
€*, respectively.

15Q. PSEUDOCOMPACT SPACES.

Let X be a completely regular space.

1. X is pseudocompact if and only if every admissible structure is precompact.
[15.15(b).] Hence every complete pseudocompact space is compact. Thus,
no pseudocompact, noncompact space (e.g., W) admits a complete structure.

2. X is pseudocompact if and only if €(X) = €*(X).
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15R. SPACES WITH UNIQUE UNIFORM STRUCTURE.

The following conditions are equivalent for any completely regular
space X. [Successive implications are suggested in the hints.]
By (7) and 6], another equivalent condition is |3X — X| £ 1.
In particular, W, T, and 2 (8L) are noncompact spaces having unique
structures. Recall that T is not even countably compact.
(1) X admits a unique structure.
(2) Every continuous mapping from X into any uniform space is uniformly
continuous in every admissible structure on X. [15G.5.]
(3) Every function in C(X) is uniformly continuous in every admissible
structure on X.
(4) Every function in C*(X) is uniformly continuous in every admissible
structure on X.
(5) Every function in C*(X) is uniformly continuous in every admissible
precompact structure on X.
(6) X admits only one precompact structure. [€* is the smallest pre-
compact structure. By 151.3, it is also the largest.]
(7) X has a unique compactification. [(7) implies (1). By 6], X is pseudo-
compact. Apply 15].4 and 15Q.1.]

15S. TOPOLOGICAL PROPERTIES OF y.X.

Let [X; 2] be a Hausdorff uniform space.

1. ¢X is the largest subspace of BX to which the identity mapping on X
into yX has a continuous extension. [15B.1.]

2. The mapping p— p” of ¢X onto yX is a closed mapping. [Theorem
10.13.]

3. If, for any distinct p, ¢ in ¢X, there exists d such that d“(p, q) # 0,
then yX = cX, topologically as well as pointwise.

4. If yX is realcompact, then ¢X is realcompact. [8B.4] Hence, if
| X| is nonmeasurable, then ¢X is realcompact.

5. In Theorem 15.21, prove directly that (1) implies (4). [Corollary
8.5(b).]

6. If every closed, discrete subspace of X is realcompact, then every
closed, discrete subspace of y.X is realcompact. Compare 12A.

15T. REAL 2-ULTRAFILTERS.

1. If d is any pseudometric belonging to the unique admissible structure
on W (15R), then there exists a tail in W of d-diameter 0. Hence, directly,
the real z-ultrafilter A« is Cauchy.

2. More generally, let X be any completely regular space, and let d € €(X).
Every real z-ultrafilter on X contains a set of d-diameter 0. [Theorem 5.14.]

3. Still more generally, let 2 be any admissible structure on X, and let
de 2. Every real, Cauchy z-ultrafilter contains a set of d-diameter 0. Note
that ““ Cauchy” is redundant except in the eventuality of a measurable cardinal.
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15U. COMPLETE STRUCTURES CONTAINING €.

Let 9 be an admissible structure on a completely regular space X.

1. X is complete in € vV 2 if and only if vX n [X; 2] = X, i.e., every
real Cauchy z-ultrafilter in 9 is fixed.

2. If every point in y[X; 2] — X is contained in a zero-set disjoint from
X, then X is complete in € v 2.

3. If there exists a continuous metric on X, then X admits a complete
structure. [By 15G.3, € Vv & is admissible, where & is the (not necessarily
admissible) metric structure. Apply I and 15T.3. Alternatively, modify
the proof of Theorem 15.24.]

15V. THE PSEUDOMETRIC d°.
1. d{4 v B} = d{4} + d{B} + d[4, B].
2. For p, q € [ X; 2],
d{p, q) = inf {d{Z}: Z € A? n A%}
= sup {d[Z,, Z,]: Z,€ A?, Z, € A4}.
3. d(p, q) = 0 for all d € @ if and only if A? N A¢is a Cauchy z-filter.

15W. C-EMBEDDING OF d-DISCRETE SETS.

1. Let [X ; 9] be a uniform space and let de &. If a set D is d-discrete,
then there exist a family of sets (¥,) as in 3L.I and points x, € int ¥, such
that D = {x},.

2. Conversely, let X be a completely regular space, let (V,) be as in 3L.1,
and let D = {x_},, where x, €int V,. Then D is d-discrete for some pseudo-
metric d belonging to the universal structure (15G) on X. [Define d =
sup y, for suitably chosen f,.]



Chapter 16

DIMENSION

16.1. This chapter is devoted to an exposition of Katétov’s char-
acterization of the dimension of X in terms of C*(X). We include
little more of dimension theory than is needed for a self-contained proof
of Katétov’s theorem. The few additional properties of dimension
that are found here should help the reader to examine some illuminating
examples.

How to define the dimension of a topological space has long been a
serious problem. There seems now to be widespread agreement that
the definition best suited to normal spaces is the one due, essentially,
to Lebesgue. The definition we shall use is a slight modification of the
usual one for Lebesgue dimension; it leads to the same dimension of a
normal space as the usual one, but avoids the anomalies that may arise
when the space is not normal. In particular, it always assigns to X
the same dimension as to X.

Since the ring C*(X) determines BX as a topological space, and
since the dimension of a space is a topological invariant, the preceding
remark implies that C*(X) determines the dimension of X. The
problem is to express this dimension directly in terms of C*(X). A
clue to the successful approach is provided by the classical Weierstrass
approximation theorem: if X is a cube in the #-dimensional euclidean
space R#, then every continuous function on X is a uniform limit of
polynomials in 7 real variables. To express this result in a way that is
susceptible of generalization, C*(X) is made into a metric space by
introducing the metric

d(f’g) = SUPyex |f(x) - g(x)l'

The theorem then asserts that the subring of C*(X) generated by the =
projections of X into the factors of R” together with the constant

functions on X, is dense in the metric space C*(X). It turns out,
240
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moreover, that any subring of C*(X) generated by fewer than n
functions (together with the constants) will not be dense. Thus, the
least number of generators of a dense subring of C*(X) is precisely the
dimension of the cube X.

The dimension of an arbitrary completely regular space X will be
found, in a similar way, among the properties of the metric ring C*(X).
However, the relation will not be so simple as in the case of the cube.
For instance, R is one-dimensional; but, as is easily seen, no subring of
C*(R) with only one generator can be dense.

It is worth noting that the metric on C*(X)—or, if one prefers, the
norm | f| = d(f,0)—is determined by the algebra of the ring, as

follows:
Il = sup |M(f)],

M running through the set of maximal ideals in C*(X) (5R or 1].6).
So the metric topology, which will be used in an essential way to
characterize dimension, is actually an algebraic invariant of C*(X).

THE STONE-WEIERSTRASS THEOREM

16.2. A crucial role in the development will be played by Stone’s
well-known generalization of the Weierstrass approximation theorem.
We include a proof of this result, stated in the form best suited to our
applications.

LemMA. If Ais a subring of C*(X) that contains the constant functions,
then cl A, its closure in the metric topology, is a sublattice of C*(X).

PrROOF. Evidently, cl 4 is a subring, and so we may assume in the
proof that A itself is closed. Since f v g =2"Yf+ g+ |f —g|), it
suffices to show that |f| € A whenever fe A. We may also suppose
that |f| < 1. Our object is to show that given e > 0, there exists a
function in 4 whose distance from |f| is at most e. 'The familiar fact
that the binomial expansion of (1 — )% converges uniformly for
|t| = 1 implies the existence of a polynomial p satisfying

(1 —#)% — p(t)] < e for [t|] =1
Then
~[r-a-r) -va-p

< €

that is, d(| f], p(1 — f?)) = e. Thus, p(1 — f?)is the required element

of A

|/l = %1 = f?)
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16.3. LemMA. Let X be compact, and let A be a sublattice of C(X).
Then cl A contains every function f in C(X) that can be approximated at
each pair of points in X by a function from A.

PROOF. Fix € > 0. For each pair of points p, g€ X, let g,, be a
function in 4 such that

[£(P) — £p(P)] < ¢ and [f(g) — g(a)] < e

For each fixed ¢, the union over p of the open sets

{%: £pg(®) — f(%) < ¢}

is all of X, and hence a finite number of them, say for p,, - - -, p,, cover
X. Let

gq =gplq A - A gpsq.

Then g, € 4, g, < f + € and g,(x) > f(x) — e forall x e V, where
Vq = nkés{x:gpkq(x) >f(x) - 6}'

Eaf:h set ¥, is open; and J,.x V, = X, since ge V,. Hence, a
finite number of these sets cover X; let ¢ denote the supremum of

the corresponding functions g, Then ge 4, and |f — g| < ¢, e,
d(f,8) = «

16.4. Let A be a subfamily of C(X); a subset of X on which every
function in 4 is constant will be called a stationary set of A. A one-
element set is stationary for any family of functions. For the family C*,
the one-element sets are the only stationary sets.

THEOREM (STONE-WEIERSTRASS). Let X be a compact space, and let A
be a subring of C(X) that contains all the constant functions. Then cl A
1s the family of all functions in C(X) that are constant on every stationary
set of A.

PROOF. Let A’ denote the family in question. Now, evidently, the
family of all functions in C(X) that are constant on a given set is a
closed subring. Since A’ is an intersection of such families, it, too, is a
closed subring. Hence cl 4 = 4. Consider any fe A’, and any
points p and ¢q. If f(p) = f(g), then there is a constant (in A) that
agrees with f at p and ¢. If f(p) # f(q), then g(p) # g(q) for some
g € A; a suitable multiple of g, plus a constant, will agree with f at
these points. 'Thus every function in A’ can be approximated (in fact,
duplicated) at every pair of points by a function in 4. Since cl 4 is a
closed sublattice of C(X), we have, by the preceding lemma, c1 4 > 4’.



16.6 DIMENSION 243

DIMENSION OF A COMPLETELY REGULAR SPACE

16.5. Let X be a (nonempty) completely regular space. By a cover
of X, we shall mean, throughout this chapter, a finite open cover, i.e., a
finite collection of open sets whose union is X.

Let % and 7" be families of sets. We shall say that ¥~ refines %, or
is a refinement of %, if for every V € ¥, there exists U € % such that
V = U. The definition applies to arbitrary families % and %", not
necessarily covers. A refinement of a cover % will usually be under-
stood from context to mean a cover that refines %.

The order of a cover % is the largest integer n for which there exist
n + 1 members of % with nonempty intersection; evidently, » = 0
(unless X is empty).

The (Lebesgue) dimension of a nonempty space is usually defined as
the least cardinal m such that every cover has a refinement of order at
most m. We shall use a modified definition. While it is equivalent to
the usual one for normal spaces (Corollary 16.9), it eliminates the
pathology that may arise from the absence of normality (16.18).

Let a basic cover be a cover by cozero-sets (complements of zero-sets).

The dimension of X—denoted by dim X—is defined to be the
least cardinal m such that every basic cover of X has a basic refine-
ment of order at most m.

Clearly, 0 = dim X £ X; and dim X = X, provided that for every
n € N, there exists a basic cover having no basic refinement of order £ 7.

16.6. THEOREM. Let ¥ = {V,},<, be a cover of X. If ¥ is basic,
or if X is normal, then there exist a basic refinement W = {W}, <, of ¥,
and zero-sets Z,, - - -, Z, such that

chch V, (k§s).
PROOF. The sets W, and Z, will be found inductively. We shall let
Ak=X" (W]_U"‘UWk_IUVk_'_lU“'UVS),

for each & < s. Suppose that the zero-sets X — W,, --- X — W,_,,
Zy, -+, Z,_, have been found, satisfying

W, < Z, <V, (i < &),
and so that
{Wl) R} Wk—b Vk) Vk+1’ Y Vs}

isa cover of X. The closed sets 4, and X — ¥, are disjoint, and there-
fore, under either hypothesis of the theorem, they are completely
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separated (Theorem 1.15, and Urysohn’s lemma (3.13)). In con-
sequence, there exist zero-sets X — W, and Z, such that
Ay e W= Z, <V,
(see 1.15(a)). It follows from the definition of A4, that
{Wl’ ceey Wk’ Vk+l’ N Vs}
is still a cover of X.

16.7. 'The hypotheses in this theorem are essential: if F and F’ are
disjoint closed sets that are not completely separated, then the (non-
basic) cover

U={X-FX-F'}

has no basic refinement. For, suppose that ¥~ = {X — Z,}, | refines
%, where each Z, is a zero-set. For each k&, Z, contains either F or F'.
Define

Then Z > F, and Z'’ o F’. Since F and F’ are not contained in
disjoint zero-sets, we have

nk§,Zk=Zﬂ Z’#Q.

Therefore ¥” is not a cover.

By definition, every nonnormal space contains disjoint closed sets
that are not completely separated. Thus, the foregoing argument
shows that:

(a)  Ewvery cover of X has a basic refinement when and only when X is
normal.

Since every open-and-closed set is a zero-set, every cover of order 0
is basic. Hence, we have, as a particular case of (a):
(b)  If every cover of X has a refinement of order 0, then X is normal.
16.8. CoroLLARY. Let ¥ be a cover of X, wheredim X < n. If ¥

is basic, or if X is normal, then X has a basic cover of order < n whose
closures refine V.

PROOF. Evidently, in the theorem, the closures of #” refine ¥”; and
if dim X £ n, then the basic refinement %" has a basic refinement of
order =< .

16.9. CoroLLArY. If X is normal, then dim X £ n if and only if
every cover has a refinement of order < n.
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PROOF. Necessity is contained in Corollary 16.8.  For the sufficiency,
we observe that the order of the basic refinement #” in the theorem is
certainly not greater than the order of ¥".

Thus, for normal spaces, the modified definition of dimension is
equivalent to the usual definition. In the sequel, this result will be
used continually, without further comment. As a matter of fact, our
applications will be almost exclusively to compact spaces. The justifica-
tion for this is the theorem, to which we now turn, that dim X = dim X
for all completely regular X.

16.10. For U < X, define
Ut = BX — clgx (X — U).
LemMa. If % = {Up <, is a basic cover of X, then
U = {Ufhes,

is a cover of BX, of the same order as Y.
REMARK. If U is open in X, then U8 n X = U, whence

Uﬂ < CIBX Uﬁ = CIBX U.

PROOF. By hypothesis, X — U, is a zero-set Z,. Since % is a cover,
Ni Z, = 0. Therefore [,clZ, =0, by (IV) of Theorem 6.5,
whence %8 covers BX. Since

Uicl Z, = cl U Z.

over any common (finite) index set, the orders of % and %?# are the same.

As we know, %P* is not, in general, a basic cover of 8X (6E.5). How-
ever, since BX is compact, we do not have to consider basic covers in
discussing its dimension.

16.11. Tueorem. dim X = dim BX.

PROOF. [dim X £ dim 8X.] Denote dim X by n. Let % be any
basic cover of X. By the lemma, %# covers X. By Corollary 16.8,
°® has a basic refinement #~ of order < n. 'The trace of #" on X is
then a basic refinement, of order < n, of the trace % of %8. Hence
dim X = n.

[dim BX = dim X.] Let ¥” be any cover of SX. By Corollary
16.8, BX has a basic cover #~ whose closures refine ¥". If dim X = #,
then the trace of #” on X has a basic refinement % of order = n.
According to 16.10, the order of ## is also < n, and %P* refines the
closures (in 8.X) of % —whence %# refines ¥". Therefore dim 8X = n.
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ZERO-DIMENSIONAL SPACES

16.12. By a partition of a subset S of X, we shall mean a finite
collection of disjoint, relatively open-and-closed subsets of S whose
union is S. Thus, a partition of S is a cover of S of order 0. No
connected subset can meet two members of a partition; and S is
connected if and only if it has no partition by proper subsets.

Two sets S; and S, are said to be separated by a partition if there
exists a partition {E,, E,} of X such that S, < E, and S, < E,.

We recall that a space is totally disconnected provided that no
connected set has more than one point. (A space of fewer than two
points is both connected and totally disconnected.) The components
of a space are its maximal nonempty connected sets; their existence
follows from the fact that an arbitrary union of connected sets with a
point in common is connected. Thus, the component containing a
given point x is simply the union of all the connected sets that contain x.
Since the closure of a connected set is connected, every component is a
closed set.

The results in the next few sections will help the reader to recognize
zero-dimensional spaces. By definition, a space is zero-dimensional if
every basic cover has a refinement by a partition of the space. It is
useful to notice that if a cover {U,}, <, has a refinement by some partition
W, then it has a refinement by a partition {V/,}, <, such that V,, = U, for
each k: V,, is the union of all members of #” that are contained in U,
but not in U, for any 7 < k.

16.13. LemMA. Let A be a family of compact sets, and let {K,, K,}
be a partition of [\ ". Then there exist a finite subfamily S of ', and a
partition {Hy, Hy} of (| , such that H; > K, and H, > K,.

PROOF. The disjoint compact sets K; and K, are contained in
disjoint open sets U, and U,, respectively. Since [} o is contained
in the open set U; U U,, there exists a finite subfamily # of " such
that () 3¢ < U, U U,. Then the sets

H, = (N#)n U,
(k = 1, 2) have the required properties.

16.14. CoRroLLARY. If the intersection of every finite subfamily of a
Sfamily A~ of compact sets is connected, then () A is connected.

16.15. THEOREM. The component of a point in a compact space is the
intersection of all the open-and-closed sets containing it.
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PROOF. Let £ denote the family of open-and-closed sets containing
a point x. We show first that S = (| & is connected. Let {K,,
K,} be a partition of S, with x € K;, and let H, and H, be as in the
lemma. Since H; U H, is the intersection of a finite family of open-
and-closed sets, H, (as well as H,) is open-and-closed in X. Now,
xe K, < Hj,andso S < H,. Therefore S = S n H, = K,;thus, S
is connected.

If 4 is any set containing S, and y € 4 — S, then there exists an
open-and-closed set containing .S but not y. Consequently, 4 is not
connected, and, therefore, S is a maximal connected set.

16.16. 'THEOREM. If a Lindeldf space X has a base of open-and-
closed sets, then any two disjoint closed sets in X are separated by a
partition.

PROOF. Let H and K be disjoint closed sets. For each point x, let
U(x) be an open-and-closed neighborhood of x that fails to meet at
least one of these sets. Since X is a Lindelof space, the family of

all sets U(x) has a countable subfamily {U,},.n whose union is X.
Define

Viy=U, - Ux‘<k U;;

then {V,},.n is a family of disjoint, open-and-closed sets whose union
is X. Moreover, for each k, either V, n H=0 or V, n K=0.
Let
W=U{V,:Ven H=0};
then
X-W=U{{l,V,n H#0}

so that {W, X — W} is a partition of X. Obviously, W n H = 0;
and since V, n H # @ implies V, n K = 0, we have (X — W) n
K = 0. Thus, H and K are separated by the partition.

16.17. 'THEOREM. Each of the following conditions implies the next
one.

(a) dim X = 0.

(b) Any two disjoint zero-sets in X are separated by a partition.

(c) X has a base of open-and-closed sets.

(d) X is totally disconnected.

Furthermore, (a) and (b) are always equivalent; and if X is a Lindelof
space, they are also equivalent with (c). Finally, if X is compact, then all
four conditions are equivalent.

PROOF. (a) implies (b). Given disjoint zero-sets Z and Z’, let % be
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a refinement of order zero of the basic cover {X — Z, X — Z'}. If U
is the union of all the members of % contained in X — Z’, and U’ the
union of the others, then U and U’ contain Z and Z’, respectively, and
{U, U’} is a partition of X as required.

(b) implies (a). We prove, by induction on the number of sets in the
cover, that every basic cover % = {U,},<, has a (basic) refinement of
order 0. For s = 1, the result is trivial. For s > 1, the induction
hypothesis implies that the basic cover

{Ul’ T Us—2’ Us—l U Us}

has a refinement consisting of s — 1 disjoint sets V5, - - -, V,_;, where
Vo< Upfork £ s — 2, and

V.,cU_ uU.,.

By hypothesis (b), the disjoint zero-sets V,_; — U,_; and V,_, — U,
are separated by a partition {Ii¥, X — W}. The cover

{Vl’ ] Vs—2’ Vs—l n W) V—l - W}

is then a refinement of % of order 0.

(b) émplies (c). If U is any neighborhood of a point x, then, by
complete regularity, {x} and X — U are completely separated, and so
the hypothesis implies that they are separated by a partition. The
member of the partition containing x is an open-and-closed neighbor-
hood of x contained in U.

That (c) implies (d) is trivial; and that (c) implies (b) for a Lindelsf
space is the content of the preceding theorem.

To complete the proof, we have only to show that for a compact
space, (d) implies (c). Let U be any neighborhood of a point x in a
totally disconnected, compact space. It follows from Theorem 16.15
that the intersection of some finite number of open-and-closed neigh-
borhoods of x is contained in U. Hence the open-and-closed sets
form a base for the topology.

None of the other implications in the theorem can be reversed; see
16L, M.

16.18. ExaMPLE. An informative example is provided by the
Tychonoff plank T (8.20). Clearly, the space BT = W* x N* is
totally disconnected. Therefore dim BT = 0, and hence dimT = 0
(Theorem 16.11). Since T is not normal, the unmodified definition of
Lebesgue dimension would yield a dimension number greater than 0
(see 16.7(b)), i.e., greater than that of ST.
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THE EUCLIDEAN SPACES R~

16.19. The space R"—the topological product of n copies of R
(where n € N)—is important not only as a space to be studied in its
own right, but also, like R, as a tool in the study of other spaces. It is
well known that dim R” = #; and it is also well known that the proof of
this fact is not easy. For the sake of completeness, we shall include
here a proof of the one special dimension-theoretic result regarding
R” that will be needed in the development of the general theory—
namely, the theorem that the dimension of any compact subset of R” is
at most # (Theorem 16.22).

It will be convenient to regard R” as a vector space over R, under the
usual operations: if a = (a,, - -+, a,) and b = (by, - - -, b,) belong to R?,
and 7 € R, then

a+b=(ay+5by --,a,+b,), and ra = (ray, ---,ra,).
We also define a norm on R”:
”a” = max {la1|’ R} Ianl}

(for n = 1, ||a| = |a]). The norm induces a metric in the usual way:
(a,b)—|a — b|. With these definitions, R"is a complete metric vector
space.

16.20. In a metric space, a set of the form

{y:dx,y) < ¢
(where d denotes the metric) will be called a cell of radius e. In R,
this is the set

Wil = sl < -

LemMma. In R7, consider the cells of radius 1/2 + 1/2"+1 whose centers

a = (ay, - -, a,) satisfy
(2) ay=m, + Yz-a, 4
(k =1, - -, n), where each m,, is an integer, and ay = 0. Each point of
R» lies in at least one and in at most n + 1 of these cells.

PROOF. For convenience, we denote the number 1/2 + 1/2%+1 by p.
Fix x = (%,, -+ -, x,) in R%. The center of every cell of the stated
type that contains x is found by solving the inequalities

(b) lm; — (x; — Yora; )| <
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successively for integers m;, and defining a; by (a). For each j, the
inequality clearly has an integral solution m;, and so x belongs to at
least one such cell.

We now show that x belongs to no more than n + 1 of these cells.
For each j < n, consider the set A4; of all j-tuples (a,, - -, a;) that
satisfy (a), alonig with the inequality

(©) lay — x| < py

for all # £ j. Thus, 4, is the set of all centers of the cells in question
that contain x.

We begin by deriving some relations among the coordinates of the
members of A;. Let (ay, -+, a;) and (a’y, - - -, @’;) belong to 4;, and
let m, and m’, (k = j) be the corresponding integers defined in (a).
From (c), we have

(d) lay — a's] < 2p (k=1,--7).
Next, for each k:
(e) Ifa, = a',, then a; =a’; forevery i<k

For, from (a), a,_, — a’,_; is equal to 2(m’, — m,), an even integer.
By (d), it can be only 0. The remaining equations follow inductively.
Finally:
) Either m, = m’,, or m, and m’, differ by 1.
For, from (a) and (d),

lmy — m'y| < |a, — @' + Yorlapy — a'py] < 2.

The proof that A4, has at most # + 1 members will proceed by in-
duction. Clearly, 4, has at most two members. Assume that 4, ,
has at most j members. We shall show that there is only one value of
a;_, for which the inequality (b) can admit two solutions for m;. By
(f), two such solutions must be consecutive integers, say ¢ and ¢t + 1.
We have, then,

—p<t—(x;— Yea;,), and ¢+ 1 — (x; — Yp-a;4) < p.

Hence
2x; —t) — 2p < a;_y < 2x; — t) — 2(1 — p),

so that a;_, must lie in a given interval of length 2(2p — 1) = 1/2»-1,
Since a;_, is an integral multiple of 1/2/~2 (as follows inductively from
(2)), and j < n, there can be at most one such number in the interval.

It follows that A; can have at most j + 1 members. This completes
the induction.
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16.21. LemmA. Let X be a compact metric space. For each cover
U, there exists € > 0 such that the cells in X of radius e refine %.

PROOF. Let % = {U,},,. For each k < s, write
Jux) = d(x, X — U] (x € X),

d denoting the metric; this defines f, as a continuous function on X, and
we have f,(x) > 0 for all x € U,. Since % is a cover, the continuous
function f; v --- v f,is everywhere positive on X; since X is compact,
this function has a positive lower bound . Hence, for each point x,
there exists k for which fi(x) = €. It follows that the cell

{y:d(xy) < ¢
is contained in U,.
16.22. TueoreM. If X is a compact subset of R", then dim X < n.

PROOF. Let % be a cover of X. By Lemma 16.21, there exists
€ > 0 such that the cells (in X) of radius e refine %. Therefore, the
system of cells of Lemma 16.20, scaled down by a factor of ¢, and
restricted to X, is a refinement of % of order < n. Thus, dim X < z.

16.23. We shall need some other miscellaneous results about Rz,

LemMA. Given nonempty open sets Ty, ---, T, in R", there exist
vectors y* € T, such that for any n + 1 of these vectors y*, and any
vector y € R", the equations

n+1 k. n+1 _
Zi=l @y =Yy, Zi=1 a; =1
have at most one solution (a,, - - -, @)
PROOF. Each set T, contains a cell

Dily — 2 < e
It is required to find numbers y*; (j < n, k < ) that satisfy
(a) kaf - xk]l < €

and such that the determinant of none of the » + 1 by #» + 1 sub-
matrices of the matrix
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is zero. 'This can be achieved by choosing the y*; successively, so that

the determinant of no square submatrix, constructible from the entries

already selected, is zero. Since there are infinitely many numbers

satisfying (a), while the restriction on the determinants eliminates only

finitely many possibilities, a suitable choice of y*; can always be made.
(The vectors y* are said to be in general position.)

16.24. We shall denote the set of all continuous mappings from X
into R* by C,(X). (Thus, Cy(X) = C(X).) We do not consider
separately the set of bounded functions in C,(X), as, in all our applica-
tions, X will be compact.

LemMMA. Let X be a compact space. Given f,, - - -, f, € C(X), and
given € > 0, there exists a cover ¥~ of X such that the diameter of f,[V'] is
=< € for each k = m and each V € ¥".

PROOF. For each k < m, a finite collection of cells T}, , - -+, T}, ;, in
R” of diameter e cover the compact set f,[X]. Their preimages
under f, cover X. For every choice of indices j; < sy, -, Ju £ S
define

le,...,jm = n;en=1fk(—[Tk.J'k]’

and take for ¥~ the collection of all such sets. Then ¥  is a cover of X.
The bound on diameters follows from the relations

FdVi, oo, iad © fl e T, ]] = T jye

16.25. For a compact space X, we consider the metric d on C,(X)
defined by

d(f, 8) = suPrex | f(x) — &)

The resulting metric space C,(X) is complete. This fact will allow us
to apply the Baire category theorem:

THEOREM. In a nonempty, complete metric space, every countable
intersection of open, dense sets is nonempty.

PROOF. Given such sets G,, (m € N), choose a cell of radius < 1
whose closure F,; is contained in G,. Inductively, choose a cell of
radius < 1/(m + 1) whose closure F,,,; is contained in F,, n G,,,.
Then the family (F,),,.n contains arbitrarily small sets. Since the
space is complete, we have 0 # ), Fu < N G

As a matter of fact, [),, G,, is dense. To prove this, we simply add
the stipulation (as we may) that F; be contained in a specified nonempty
open set.
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ENVELOPMENT

16.26. The algebraic characterization of dimension will require a
prior analysis of the relation between covers of the space and certain
connected subsets. The next three sections are devoted to this pre-
liminary study. We shall say that a cover % envelops a set F if every
component of F is contained in a member of # (i.e., the components
of F refine %). Clearly, if % envelops F, and F > E, then % also
envelops E.

LemMa. If a cover U of X envelops a compact set F, then some
partition of F refines U.

REMARK. The trace of this partition on a subset E of F is, evidently,
a partition of E that refines %.

PROOF. By hypothesis, each component F, of F is contained in
some member U, of %. Now, each F is an intersection of open-and-
closed sets in the compact set F' (Theorem 16.15); hence some finite
intersection is contained in the open set U,. Thus, there exists an
open-and-closed set H, in F, with F, « H, < U,. A finite collection
of the sets H, covers the compact set F'; the required partition of F is
obtained from this collection by taking intersections and differences
where necessary.

We remark that the converse of the lemma is obvious: if a partition of
a set F refines %, then % envelops F.

A standard example shows that the conclusion of the lemma need not
hold if F is not compact, even when X is. (See 16K.)

16.27. LemmA. Let X be a compact space, let g € C(X), and let U
be a cover of X that envelops each set g<(y), for y € g[X].

(a) There exists a cover W of g[X] such that U envelops each set
g[W], for WeW.

(b) % has a refinement of order < n.

PROOF. (a). Fix y e g[X]. By the preceding lemma, there exist a
partition {F;, ---, F,} of the compact set g=(y), and sets U,, ---,
U, € %, such that F, < U, (k £ m). Since X is normal, there exist
disjoint open sets G, - - -, G, with F, < G,; certainly, we may assume
that G, < U, (k < m). The set G = |J, G, is a neighborhood of
g(y). Now, g=(¥) = Ny g [V], where V ranges over all closed neigh-
borhoods of y; and since X is compact, a suitable finite intersection is
contained in G. In consequence, there exists an open neighborhood
V, of y for which g<[V,] = G. As the partition {G,, - - -, G,} of G
refines %, this implies that % envelops g [V,].
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If #” is any finite collection of sets V,, y € g[X], that cover the com-
pact set g[X], then ¥ satisfies (a).

(b). The compact subset g[X] of R* is of dimension < 7 (Theorem
16.22). By Corollary 16.8, then, it has a cover 7 of order < n whose
closures refine #". Then % envelops the compact set g<[cl T}], for
each T;e€J. By the preceding lemma (and remark), the subset
E; = g<[T;] has a partition {E, ;}, that refines %. Since all E;, and
hence all E; ;, are open in X, the collection & = {E; }, ; is a cover—and
it refines %. Clearly, the order of & is that of {E,},, which is that of T
thus, & is a refinement of % of order < .

As the proof shows, the lemma holds, more generally, when g is a
continuous mapping from X onto any space of dimension < n.

16.28. THEOREM. Let X be a compact space. For any cover U of
X, the set

G(%) = {g € C(X): U envelops g~(y) for all y € g[X]}

is open in the metric space C(X). If, further, dim X £ n, then G(%) is
also dense.

PROOF. [G(%)isopen.] Givenge G = G(%),wearetofind e > 0
such that G contains the neighborhood

{f:d&,]) < ¢

of g. By (a) of the preceding lemma, there is a cover #~ of g[X] such
that % envelops each set g« [W], for We #". By Lemma 16.21, there
exists € > 0 such that the cells in g[X] of radius 2¢ refine #". This €
will do the job. For, consider any f satisfying d(g, f) < ¢, and any
y € f[X]. Picka e f<(y), and choose W e # so that |z — g(a)| < 2¢
implies 2 € W. For all x € X, we have

le=) — f@N <
hence, if x € f<(y), then f(x) = y = f(a), and

le@) — g@)l = |g@=) = f)N + /(@) — g@)] < 2

so that g(x) € W. Thus, f<(y) < g<[W]. It follows that % envelops
f<(»). Therefore f € G.

[If dim X £ n, then G(%) is dense.] Given fe C(X), and € > 0,
we are to find g € G for which d(f,g) £ e By Lemma 16.24, there
exists a cover ¥~ of X such that the diameter of f[V] is at most ¢/2, for
each V € ¥". The collectionof allsets V' n U, for Ve ¥ and U € %,
is a refinement of %, and a refinement of ¥”; since dim X < n,ithasa
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basic refinement & = {S,},.,of order < n. The diameter of f[S,]
is = €/2, for each k. Since & is basic, there exist &, € C(X), with
h, 2 0, such that Z(h,) = X — S, (k £s). Since & is a cover,
Zk h, has no zeros on the compact space X, and so we may assume that
Sih=1

Next, choose any point x, in Sj, and let T} denote the cell in R” with
center f(x,) and radius /2. For points y* € T, selected as in Lemma
16.23, the triangle inequality yields

If(x) — 3| < e forall xe€S,.
Now define g € C,(X) as follows:
£(x) = 3, hx)y* (x € X)

(in which the symbols denote scalar multiplication and vector addition
in R"). We shall show that g € G, and that d(f,g) £ . We begin
with the second, which is simpler.

[d(f,g) £ ] Consider any xe X. If xe.S,, then |f(x) —»*|
< €; and if x ¢ S, then %,(x) = 0. In either case, then,

I f(3) — P < ehy().
Consequently, using the fact that Zk h, = 1, we have:
1 1) — g@) = 1f(x) = 2, hux)oH]
= || 24 () = )
2n @) £(x) =
€ 2 (@)

€

IA 1A

Therefore d(f, g) < e

[g € G.] Given y € g[X], we are to show that % envelops g<(y); we
shall show, in fact, that its refinement & has this property. Recall that
the order of & is £ n, and that S, = X — Z(h;). These facts imply
that for any x € X, at most » + 1 of the numbers %,(x) are different
from 0. If, now, x € g=(y), then

£x) = 2 h(x)y* = y.

But only one such linear combination of any # + 1 of the vectors y* can
yield y—by virtue of the choice of y* in accordance with Lemma 16.23.
It follows that the set of all vectors

h(x) = (hy(%), - - -, hy(x)) (¢ € X)
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in Rs, for which g(x) = y, must be finite. Expressed in terms of the
mapping & € C(X) (defined by the above equation): the set A[g<(y)]
in Rs is finite.  Call its distinct elements b3, - - -, b”. Obviously,

(Y, - ()}
is a partition of g“=(y); so to finish the proof, it suffices to show that this

partition refines &. For each j < 7, we have Zk bi, = 1, and hence
b7, is positive for some k. For such &, we have
18P

h=(b) < {x: hy(x) = b/, > 0} =« X — Z(y) = S,
This completes the proof of the theorem.

ANALYTIC DIMENSION OF C*(X)

16.29. Algebraic and analytic subrings. A subring A of C*(X) will
be called an algebraic subring provided that

(i) all constant functions belong to A ; and
(ii) f2 € 4 implies f € A.

Trivially, C* itself is an algebraic subring. An arbitrary intersection
of algebraic subrings is algebraic. Next, if the range of a function
f € C* is finite, then f belongs to every algebraic subring. For, fis a
linear combination (with constant coefficients) of continuous functions
into {0, 2}; and each function g of the latter type belongs to every
algebraic subring, since (¢ — 1)2 = 1. On the other hand, it is obvious
that the set of all such functions f is an aigebraic subring. So we have:
(a) The set A, of all functions in C*(X) with finite range is the

smallest algebraic subring of C*(X).
According to 3L.3, 4, is all of C*(X) only when X is finite.

An algebraic subring that is closed in the metric topology of C*(X)
will be called an analytic subring.

It is evident that the algebraic subrings of C*(X) are in one-one
correspondence with those of C(8X), under the isomorphism f— f2.
Since this mapping also preserves norm, analytic subrings of C*(X)
correspond to analytic subrings of C(8X).

16.30. TuEOREM. The set A of all functions in C*(X) that are
constant on a given connected set S is an analytic subring.

PROOF. Triviaily, 4 is a subring. If a continuous function g2
assumes only one value on S, then g can assume at most two; since S is
connected, g must be constant. Therefore A4 is algebraic. Obviously,
A is closed.
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An analytic subring need not be of the above form, or even an inter-
section of subrings of this form. An example is the set of all functions
fin C*(R) for which lim,_, ,, f(x) exists (16C.I). However, in case X
is compact, then such intersections do comprise all analytic subrings, as
we now proceed to demonstrate.

16.31. Let A be a subfamily of C(X). We recall that a stationary
set of 4 is a subset of X on which every member of A is constant.
Any stationary set E is contained in a maximal such set, namely,

i f(x) = f(p) forall fed,

where p is any point of E.

LemMMA. Let X be a compact space. If A is an algebraic subring of
C*(X), then each maximal stationary set of A is connected.

PROOF. If S is a maximal stationary set of 4, then
S = nfeA Z(f - 1),

where {r} = f[S]. Because 4 is a ring containing the constant func-
tions, this reduces to S = (), Z(g), where g€ A and g[S] = {0}.
Moreover, we need consider only nonnegative g, since Z(h%) = Z(h)
for any A. Since

Z(g) = Ne>olx: gx) = ¢}, for g20,

S = ng,s {x:g(x) é €}’

where € > 0 and g € 4, with g 2 0 and g[S] = {0}.

Now, evidently, any finite intersection of sets of the form {x: g(x) < ¢}
contains a set of the same form. It follows from Lemma 16.13 that if
{S;, Sy} is any partition of S, there exist g and € (as above) for which

{x:g(x) £ ¢ = H, U H,,

where H, and H, are disjoint closed sets containing S; and S, respect-
ively. We now define f as follows:

f(x) = € — g(x) forxe H,,

f(x) =g(x) — ¢ forxe X — H,.
Since g(x) = € on the boundary of H,, f is continuous on X. The
relation f2 = (g — €)? implies that f belongs to the algebraic subring 4,
and hence that f is constant on S. But f(x) = € > 0 for x € S,, while

f(x) = —e < Ofor x € S,. 'Therefore either S; or S, must be empty.
Thus, S is connected.

we get
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16.32. Analytic base. Let B be any subfamily of C*(X). Since
intersections of analytic subrings are analytic, the intersection A4 of all
those that contain B is the smallest analytic subring containing B. We
refer to B as an (analytic) base for A. 'The smallest analytic subring of
C*#*(X) is the one with base @; according to 16A.1, it is the closure of the
algebraic subring 4, of all functions with finite range.

For analytic subrings, the Stone-Weierstrass theorem takes the
following form.

THEOREM. Let X be a compact space, and B any subfamily of C*(X).
The analytic subring with base B is precisely the family of all functions in
C*(X) that are constant on every connected stationary set of B.

PROOF. Let B denote the family in question. Evidently, it is an
intersection of analytic subrings of the type considered in Theorem
16.30; therefore B is an analytic subring. Obviously, B > B. Now
consider any analytic subring A4 containing B. By Lemma 16.31,
every stationary set of 4 is contained in a connected one. This is, of
course, a stationary set of B, and therefore, by definition of B, a station-
ary set of B. 'Thus, every stationary set of A4 is a stationary set of B.
By the Stone-Weierstrass theorem, cl 4 > B, i.e., 4 © B.

REMARK. It follows from Theorem 16.30 that for arbitrary X, if
C*(X) has no proper analytic subring, then X is totally disconnected.
For compact X, the present theorem implies the converse: if X is
totally disconnected, then C*(X) has no proper analytic subring. If,
however, X is totally disconnected but not compact, then C*(X) can
contain proper analytic subrings. For if X is a totally disconnected
space of positive dimension (16L), then by Theorem 16.34 below, the
smallest analytic subring of C*(X) (i.e., the one with base 0) is a proper
subring. ‘

16.33. Each n-tuple of functions g,, - - -, g, € C(X) determines an
element g € C,(X), defined by:

(@ 8(%) = (&%), - - -» 8(*)) (x € X).

Conversely, given g e C,(X), its coordinate functions g; (= m; 0 g)
belong to C(X), and satisfy (a). Obviously, the maximal connected
sets in X on which all g; are constant are precisely the components of
g-(»), for y € g[X]. Hence we have:

CoRrOLLARY. Let X be compact. For g € C(X), the analytic subring
A, with base {g,, - - -, g,} (as in (a)) is precisely the set of all functions that
are constant on every component of g+ (), for all y € g[X].
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16.34. Analytic dimension. Let X be an arbitrary completely
regular space.

The analytic dimension of C*(X)—denoted by ad C*(X)—is
defined to be the least cardinal m such that every countable family in
C*(X) is contained in an analytic subring having a base of power
=m.

Some comments on this definition are desirable. Observe, first,
that we do not require that every analytic subring with countable base
have a base of power < m, but only that it be contained in an analytic
subring having such a base; see 16.36.

Secondly, we shall prove, in 16.35, that the definition is equivalent to
the following: ad C*(X) is the least cardinal m such that every finite
family in C*(X) is contained in an analytic subring with a base of power
< m. In this form, the definition is more clearly analogous to the
definition of dim X.

Evidently, 0 < ad C*(X) £ X,. The main result in this chapter is
that dim X = ad C*(X) for every completely regular X (Theorem
16.35). It is clear from the remarks made in 16.29 that ad C*(X) =
ad C*(BX). As it is also true that dim X = dim BX, we see that it is
enough to handle the problem for compact X.

The result for dimension 0 can be established readily.

THeOREM. dim X = 0 if and only if ad C*(X) = 0, i.e., C*(X) has
no proper analytic subring.

PROOF. We assume that X is compact. Then dim X = 0 if and
only if X is totally disconnected. As remarked in 16.32, if X is totally
disconnected, then C*(X) has no proper analytic subring.

Conversely, if X contains a connected subset S of more than one
point, then the set of all functions constant on S is an analytic subring
(Theorem 16.30), and it is not all of C*(X).

In the proof of the general case, all the accumulated machinery will be
brought to bear.

16.35. THEOREM (KATETOV). The following are equivalent for amy
completely regular space X.

(1) dm X = n.

(2) ad C¥(X) < n—i.e., every countable subfamily of C*(X) is
contained in an analytic subring having a base of cardinal < n.

(3) Every finite subfamily of C*(X) is contained in an analytic subring
having a base of cardinal £ n.

PROOF. As was pointed out in the preceding section, we may
assume in the proof that X is compact.
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The result for n = 0 has already been established; and for X, it is
trivial, because (1), (2), and (3) are always true. So we may assume that
neN.

(1) implies (2). Let {fi}ren be a countable set in C(X). To each
m € N, we apply Lemma 16.24; accordingly, there exists a cover %, of
X such that, for every £ < m and U € %, the diameter of f,[U] is at
most 1/m. Since dim X = n < X, there exists an open, dense subset
G(%,,) of C,(X) as described in Theorem 16.28.

Since the metric space C,(X) is complete, we have

nmeN G(%m) # ﬂ,

by the Baire category theorem (16.25). Choose g in this intersection.
Then %,, envelops g<(y), for all m € N and all y € g[X].

We now show that the analytic subring 4, with base {g,, - - -, g,} (see
16.33) contains every f,—as required in (2). Given y € g[X], let S be
any component of g<(y). Consider any m; since %,, envelops g(y),
we have S = U for some U € %,. Then f,[S] < f,[U], whence, for
k = m, the diameter of f,{S]is £ 1/m. As this holds for all m, f,[S]
must have diameter 0. Thus, f, is constant on S. By Corollary 16.33,
fre A4,

(2) implies (3). This is trivial.

(3) implies (1). Let % = {U,},<, be any cover of X. By Theorem
16.6, there exist a refinement ¥ = {(W,},., of %, and functions
fv -, fs € C(X), such that

W, < Z(f) < U, (k=1,--5)
By hypothesis, the s functions f, are contained in an analytic subring
A, for suitable g € C,(X). Given y € g[X], let S be any component
of g<(y). Now, S meets some member W, of the cover %", whence S
meets Z(f;). But, since f, € 4,, f, is constant on S (Corollary 16.33);
so Z(f,) > S. Hence U, > S. This shows that % envelops g<(y).
By Lemma 16.27(b), % has a refinement of order < n. Therefore
dim X £ n.

16.36. RreEMARkS. One may be tempted to define the analytic
dimension as the smallest cardinal of an analytic base for all of C*(X).
In case X is a compact metric space, this will, indeed, yield ad C*(X)
(see 16G). However, there exist one-dimensional spaces whose
function rings have no countable bases; in fact, the real line is an
example of such a space (16F).

In another direction, it may seem reasonable to require that every
analytic subring with countable base have a base of cardinal ad C*,
rather than that the subring be contained in one with such a base. But
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this requirement may also lead to too large a dimension number.
Suppose that 7 is a continuous mapping from a compact space X onto
a space Y, and that 7(y) is connected, for each y € Y (i.e., 7 is a mono-
tone mapping). It is known that there exist such mappings with the
additional property that dim ¥ > dim X. But the subring

T[C(Y)] ={g-7: g C(Y)}

of C(X) is isomorphic with C(Y) (Theorem 10.3(a)). It follows that
ad 7[C(Y)] = dim Y, which is greater than dim X. Moreover,
7[C(Y)] is an analytic subring of C(X); in fact, it consists of all func-
tions in C(X) that are constant on each connected set 7 (y) (Theorems
10.11 and 16.30). Thus, #[C(Y)] is an analytic subring of C(X);
some analytic subring of /[ C(Y)] with countable base has no base of
cardinal dim X; but every such subring is contained in a subring of
C(X) with a base of cardinal dim X.

PROBLEMS

16A. CLOSURE OF AN ALGEBRAIC SUBRING.

1. If A is an algebraic subring of C*(X), then cl 4 is analytic [X may be
assumed to be compact.]
2. dim X = 0 if and only if cl 4, = C*(X) (16.29(a)).

16B. POLYNOMIALS OVER AN ANALYTIC SUBRING.

Let A be an analytic subring of C*. If g,, ---,g,€ 4, and if fe C*
satisfies the equation

frtefrtt s +8.=0,
then fe€ 4. [A polynomial with real coefficients has only a finite number of
zeros.)

16C. suBrINGs OF C*(R).
1. The set of all fe C*(R) for which lim,_,  f(x) exists is an analytic
subring. [Argue directly. Alternatively, apply Lemma 16.31 to SR.]
2. The set of all functions in C*(R) that have continuous extensions to R*
is a closed subring, but is not algebraic.

16D. ZERO-DIMENSIONAL COMPACTIFICATION.

1. Let X be a compact space, and let Y be the quotient space whose
points are the components of X. Then Y is compact and totally disconnected.
[Theorem 16.15.]

2. A space S has a zero-dimensional compactification if and only if it has a
base of open-and-closed sets. [Apply 6L.2 to S. Caution: It is not enough
that any two points of .S can be separated by a partition; see 16L.]
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16E. CLOSED SUBRINGS OF C*¥,

1. The image of C*(Y), under a homomorphism into C*(X), is a closed
subring of C*(X). [Apply Theorem 10.8; then, either argue directly, or
invoke Theorem 10.11. Alternatively, use 10D.4, 1].6, and 15C.2.]

2. For X and Y compact, Y is a continuous image of X if and only if
C(Y) is isomorphic with a closed subring of C(X') that includes the constants.
[10.9(b).]

3. A closed subring 4 of C*(X) that contains the constants is isomorphic
to C(Y), where Y is a suitable continuous image of 8X. [31.1.]

4. Use the Stone-Weierstrass theorem to prove that any compact subset is
C*-embedded.

16F. pimensioN oy R.

1. A subspace S (# 0) of R is zero-dimensional if and only if its com-
plement is dense. [Sufficiency. S has a base of open-and-closed sets.] In
particular, dim Q = dim (R — Q) = 0.

2. dim[0,1] = 1.

3. dimR = 1. [For each integer ¢, the trace of a given cover {Up}, <, on
[¢, £ + 1] has a refinement of order < 1 by relatively open intervals. From
these, obtain a countable collection of open intervals to refine {U}; <, and let
the kP member of the required refinement be the union of all those contained
in Uy, but not in ;.4 U;.]

4. Any analytic base for C*(R) is uncountable. [10N.5.]

16G. AN ANALYTIC BASE FOR ALL OF C*,

1. If X is a compact metric space, then C(X) has a countable, dense sub-
family. [X has a countable base of open sets. Construct a countable
subfamily B of C(X) that distinguishes points of X, and then a countable
subfamily that is dense in the ring generated by B and the constants.]

2. If X is a compact metric space, C(X) has an analytic base of cardinal
ad C(X).

3. A compact metric space X has dimension £ # if and only if there exists
a continuous mapping g: X — R” such that for each y € R?, g«(y) is totally
disconnected (i.e., g is a light mapping). [Corollary 16.33.]

4. Let X be the quotient space of W#* x [0, 1] obtained by identifying all
points of the form (e, 0). Then X is compact and connected, but not
metrizable. C(X) has a base of cardinal 1.

16H. THE LONG LINE.

Let L denote the totally ordered space (30) obtained by assigning the
lexicographic order to W x R*.
1. L is Dedekind-complete, and contains no consecutive elements. Hence
L is connected.
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2. Every function in C(L) is constant on a tail. [5.12(c).] In fact, any
countable set of continuous functions are constant on a common tail.

3. Every analytic base for C*(L) is uncountable.

4. If ¢ # (0, 0), then {p € L: p < ¢} is homeomorphic with [0, 1]. [13B.]

5.dimL =1. [2and4.]

6. BL is the one-point compactification of L.

16I. THE SUBSPACE THEOREM.

1. If X is C*-embedded in Y, then dim X < dim Y. [Apply Theorem
16.35. Alternatively, argue from the fact that 8X is a closed set in the normal
space BY]. (When X is not C*-embedded, the conclusion can fail; see 16M.)
If, in addition, X is dense, then dim X = dim Y.

2. More generally, if C*(X) is a homomorphic image of C*(Y), then
dim X £ dim Y. [10.9(c*).]

16]. THE PRODUCT THEOREM.
Let X and Y be compact spaces.

1. The ring generated in C(X x Y') by the functions that depend on only
one coordinate is dense in C(X x Y).

2. Any countable subfamily of C(X x Y) is contained in a closed subring
generated by a countable family of functions that depend on only one coordi-
nate. [Given k€ C(X x Y)and#n € N, there exists a finite set in C(X) such
that for each y € Y, some member f of the set satisfies |h(x,y) — f(x)| < 1/n
for all x € X. There also exists a corresponding set in C(Y); apply the
Stone-Weierstrass theorem. Alternatively, make use of a ‘partition of
unity.”]

3. dim(X x Y) £ dim X + dim Y.

16K. COMPONENTS NOT SEPARATED BY A PARTITION.
In the unit square X = [0, 1] x [0, 1], let # = (0, 0), v = (0, 1), and

F=({l/n:neN} x [0,1]) U {u} U {9}

1. Every open-and-closed set in F that contains # also contains v.

2. {u} is a component of F, but it is not an intersection of open-and-closed
sets.

3. {X — {u}, X — {0} is a cover of X that envelops F, but which is refined

by no partition of F.

16L. TOTALLY DISCONNECTED SPACE OF POSITIVE DIMENSION.
Let X be the metric space of all sequences ¥ = (x,,),en Of rational numbers
for which Zn x,%2 < oo, with metric

d(x,y) = (Z,, (%0 — yn)z)%
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(i.e., X is the subspace of all points in real, separable Hilbert space with
rational coordinates). Then X is totally disconnected; in fact, any two points
are separated by a partition of X. However, X does not have a base of open-
and-closed sets. [Let U be a bounded, open neighborhood of (0). In-
ductively, construct a sequence of rational numbers x,, such that each point

xm=(x1’...’xm’0’0,...)

belongs to U, and d(x™, X — U] < 1/m. Then (x,) ecl U — U.]

16M. THE ZERO-DIMENSIONAL SPACE 4y AND ITS ONE-DIMENSIONAL
SUBSPACE 4.

1. There exists an indexed set {r.},.,, of distinct irrational numbers in

[0, 1] such that for each a < w,, the set {r},., is dense in [0, 1].

2. For each a < w,, the set S, = [0, 1] — {7}, is dense in [0, 1], and
dim S, = 0. [16F.1.]

3. The subspace

Al = {(a, s):se Sa, a < wl}

of W* x [0, 1] has a base of open-and-closed sets.

4. For g € C(4,), there exists 7 < w, such that for every ¢ > 7, g(a, 5) =
g(o,s) for all « > o and s € S,. [Apply 5.12(c), first considering rational
values of s.]

5. 4, is dense and C-embedded in the subspace

4 ={(a,$):5€8, = w}, whee S, =]I0,1],
of W* x [0,1]. [4and 6H.]

6. dim 4, = dim4 > 0.

7. For each 7 < w,, {(, 5): s € S,, @ £ 7} is an open-and-closed set in 4,
and is homeomorphic with a zero-dimensional subspace of R2. [13B.2.]

8. dim 4, = 1. [In view of 4, there exists 7 < w; such that a basic cover
of 4 behaves on the complement of the set in 7 like a cover of [0, 1].]

9. Let 4, be the quotient space of 4 obtained by identifying the points of
4 — 4,. Then 4, is a subspace of 4,. Butdim 4, = 0. [4.] Thus, p4,
is a zero-dimensional compactification of 4,; cf. 16D.2.

16N. NORMALITY OF 4, AND 4.

1. The space 4 of 16M is normal. [If H and K are disjoint closed sets,
then H — 4, and K — 4, have disjoint compact neighborhoods in 4 — 4,.
Make use of 16M.7.]

2. Disjoint closed sets in 4, have disjoint closures in 4. [Argue as in
8].2.]

3. 4, and 4 are normal.
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160. BASICALLY DISCONNECTED SPACES.

Every basically disconnected space (1H) is zero-dimensional. [Theorem
16.6. Alternatively, use 6M.1.]

16P. BASES OF OPEN-AND-CLOSED SETS.

1. If each point p € BX has a base of open-and-closed neighborhoods in
X U {p}, then BX has a base of open-and-closed sets. [6L.2.]

2. If dim X > 0, then there exists p € BX such that X U {p} does not have
a base of open-and-closed sets.

3. Specifically, let 4, be the one-dimensional space of 16M, and let
ped— A4, <B4, - 4,. Then 4, U {p} does not have a base of open-
and-closed sets, although 4, itself does have such a base.



NOTES

The notes that follow contain comments on the historical development of
our subject. References are usually to the works in which (to the best
of our knowledge) the results first appeared. Sometimes we refer instead
to a standard text. As a general rule, references have been omitted when
the result is well known—either from standard texts or as folklore—or when
it is of only secondary importance for us; in the latter case, the result will
often be found in a work cited in a related connection.

The groundwork for the theory of rings of continuous functions was laid
in three papers. The first was Stone’s [Sg], in which the basic theory of C*
was developed. The wealth of ideas that appeared for the first time in this
paper will be evident from a reading of these notes. In the second paper, by
Gelfand and Kolmogoroff [GK], it was shown that some of Stone’s results
could be obtained without considering, as Stone had, the metric structure
(2M) of the ring C*. This opened the way to a similar study of C, which
they initiated. Finally, Hewitt, in [H,], made the major contributions to our
knowledge of the ring C, and set the direction for most of the subsequent
research.

CHAPTER 1

Homomorphisms. The ring C(X) may also be regarded as an algebra over
the real field R, by setting 7f = rf. We do not make formal use of this fact,
for, in the work presented here, the additional structure yields no additional
information. This is because the field R has the very special property (not
shared by the complex field, for example) that its only nonzero endomerphism
is the identity; as a consequence, every (ring) homomorphism from C(Y)
into C(X) is an algebra homomorphism (see 1I). For conceptual simplicity,
we never muitiply a function by a real number—only by another function,
Some of the results on isomorphisms and homomorphisms appear in [GK]
and [NB].

Zero-sets. Hewitt’s paper [H,] contains basic information about zero-sets
(including Theorem 1.15). This is the first paper in which zero-sets were
exploited in a systematic way in the study of C(X).

C-embedding and C*-embedding. Theorem 1.17 is an adaptation of
Urysohn’s theorem that any closed set in a normal space is C*-embedded [U,].

266
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The space A, which was constructed by Katétov [K,], makes emphati-
cally clear the distinction between C-embedding and C*-embedding of
closed sets; this distinction was not always appreciated by earlier writers.
The terms “ C-embedding” and “ C*-embedding” were suggested by Kohls.
The characterization given in Theorem 1.18 appears to be new.

Special classes of spaces. The definition of pseudocompact spaces and the
results about these spaces (including several that appear in later chapters)
are taken from [H,]. Extremally disconnected spaces were defined and
studied in [H,], where it is pointed out that the concept arose earlier in a
paper of Stone. The importance of these spaces lies in their connection
with the completeness of C(X) as a lattice (3N). Basically disconnected
spaces (the term is introduced here) also arose in this connection ([S;,], [N,]).

Direct sums. J. de Groot has communicated the following observation
about direct sums of rings (see 1B). Examples are known of a pair of com-
pact spaces X and Y, each homeomorphic to an open subset of the other,
but with X not homeomorphic to ¥ [K,;]. By Theorem 4.9, C(X) is not
isomorphic to C(Y). This, then, provides an example of a pair of rings,
each isomorphic to a direct summand of the other, but yet not isomorphic to
each other.

A relation between decompositions of C'(X) and components of X appears
in [W,, Theorem 9].

CHAPTER 2

z-filters. The theory of filters is presented in Bourbaki [B;]. Filters
and z-filters are dual ideals in the lattice of all subsets and the lattice of all
zero-sets, respectively. Following Bourbaki, we shall refer below to a dual
ideal in a lattice as a prefilter. The basic relations between ideals and z-
filters are given in [H,], where the importance of these relations, especially
for the study of maximal ideals, is clearly demonstrated.

z-ideals and prime ideals. z-ideals, and also the term “=z-filter,” were
introduced by Kohls in [K,,]- Results relating z-ideals to prime ideals,
here and in later chapters, are taken from [K,,], [Ky;], and [K,;,]. The
first example of a nonmaximal prime ideal in C(X) was constructed by
Hewitt (see [K,, p. 176]). A special case of Theorem 2.11 appears in [K,];
the general case is given in [GH,] and in [Sg].

m-topology. The m-topology on C(X) was defined and studied in [H,,
pp. 48-51, 73-74].

3

CHAPTER 3

Completely regular spaces. Tychonoff [T;] demonstrated the importance
of completely regular spaces by proving that they are precisely the subspaces
of compact spaces. Earlier, Urysohn [U,] had considered them briefly.
The observation 3.2(b) will be found in [T;]. The reduction to completely
regular spaces (3.9) is due to Stone [Sg, p. 460] and Cech [Cy, p. 826]. An
example of a regular space that is not completely regular was given in [Tj].
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Later, Hewitt [Hg] produced a regular space on which every real-valued
continuous function is constant. The result 3F appears in [S,].

Urysohn’s lemma; normal spaces. Urysohn’s lemma was proved in [U,].
From the point of view of the theory of rings of functions, it is natural to
define a HausdorfT space to be normal whenever any two disjoint closed sets
are completely separated (as is done in [Bg]). The definition given in the
text seems to be more familiar. In any event, by Urysohn’s lemma, the two
are equivalent. The result 3D.2 is in [H,]; 3L.5 is in [MP]. For the proof
that every regular Lindelsf space is normal, consult [K,, p. 113]. The
space I" of 3K is well known; see, e.g., [AH, p. 31]. The method of proof
of nonnormality indicated in 4 (by counting functions) was used by Kat&tov
in [K;]. The same idea can be employed to prove that Sorgenfrey’s product
space (see [K,, p. 134]) is not normal.

Completeness of the lattice C(X). The results in 3N are taken from

[Sls [S12], and [N,].

CHAPTER 4

Fixed and free ideals. A systematic study of fixed and free ideals was
initiated by Hewitt [H,], who is also responsible for the terminology. The
maximal ideals in C*(X), free as well as fixed, were characterized (4.6(a*)
and (7.2)) by Stone [Sg, Theorems 79 and 80]. He also showed that in the
compact case, all ideals are fixed. In addition, he proved that the closed
ideals in C* are precisely the intersections of maximal ideals (4O and 6A.2)
[Sg, Theorem 85]. The characterization of all the maximal ideals in C(X)
(4.6(a) and 7.3) is due to Gelfand and Kolmogoroff [GK, Lemma 2]. Lem-
ma 4.10 is [H,, Theorem 37]. Example 4F is attributed to W. F. Eberlein
in [EGH].

Isomorphism implies homeomorphism. The first result along the lines of
Theorem 4.9 is due to Banach [B,, p. 170], who proved that when X and
Y are compact metric spaces, an isometry between C(X) and C(Y) (the
metric being as defined in 2M) implies a homeomorphism between X and Y.
Stone [Sg, Theorem 83] generalized this result to the case of arbitrary com-
pact spaces (‘‘Banach-Stone theorem”). The present theorem, whose
hypothesis involves no metric on the rings, is due to Gelfand and Kolmogoroff
[GK]; the proof in the text is theirs. Incidentally, the theorem follows
from the Banach-Stone theorem and the fact that isomorphism implies
isometry (1].6).

Kaplansky proved that a compact space X is determined by the structure
of C(X) as a lattice (see [B,, p. 175]); Milgram [M,] proved the corresponding
result for the multiplicative semigroup of C(X). A survey of the literature
on this subject appears in [DS, pp. 385-386]. See also the notes to Chapter 8.

Structure space. 'The Stone topology was defined first for Boolean rings
[Sg, Theorem 1]. It was applied next to C and C* [GK]. It has since been
applied to general rings; see [J, Chapter 9].
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Tychonoff’s theorem. 'The first proofs of the product theorem appeared in
[T;] and [T¢]. For the proof by means of filters, consult [B;, Chapter 1].

Problems. The original material on P-spaces and related topics is in
[GH,] and [GH,, § 6 and § 8].

CHAPTER 5

Stone [Sq, Theorem 76] proved that C*/M is always the real field. Hewitt
[H,, Theorem 41] proved that C/M is a totally ordered field containing R,
showed how the order in C/M is related to the zero-sets in the space X,
and established the existence of nonarchimedean C/M whenever X is not
pseudocompact. In [H,, Theorem 50], he contributed the characterization
of real ideals stated in 5.14. Theorem 5.5 about prime ideals is due to
Kohls [K;;, Theorem 2.1].

Absolutely convex ideals are called l-ideals in [BP]. Problems about
convex ideals, including 5G, were contributed by Kohls. The example 51
was communicated by Isbell; its novelty lies in choosing & to be maximal
(see [Kg, p. 74]).

CHAPTER 6

Compactification. Tychonoff [T;] proved that every completely regular
space has a compactification. Later, Stone [Sg], and independently,
Cech [C,], produced the compactification X. An expository account of the
Stone-Cech compactification will be found in [S,,].

Cech’s method consisted of embedding X in a product of intervals, as
Tychonoff had done; see Chapter 11.

Stone’s method depended upon a combination of the algebraic properties
of C*(X) with properties of a certain Boolean ring of subsets of X. Each
of these ingredients of Stone’s method led, later, to a separate development
of BX. First, Wallman [W,] extracted the set-theoretic portion. His
construction resembles the one given in the text, but is based upon maxirmal
prefilters of arbitrary closed sets, rather than zero-sets. His space, known
as the Wallman compactification, agrees with BX when X is normal, but not
otherwise. (For nonnormal X, it fails to be a Hausdorff space.) Alex-
androff [A,] adopted a variant of Wallman’s procedure to obtain X for all
completely regular X.

Gelfand and Kolmogoroff [GK], exploiting the algebraic aspects of
Stone’s proof, developed BX as the structure space of C¥*(X) (see 4.9 and
7.10). More unexpected was their development of BX as the structure
space of C(X) as well. Because of the simple connection between the
maximal ideals in C(X) and the z-ultrafilters on X, the construction via
the structure space of C(X) can be accomplished in purely set-theoretic
terms. This is the method presented in 6.5 of the text.

One of the key devices for avoiding the hypothesis that X be normal is to
work with zero-sets rather than with arbitrary closed sets (see 3.1). Applied
to Wallman’s prefilters, this again yields z-ultrafilters. Thus, the algebraic
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aspects and the set-theoretic aspects of Stone’s construction of X merge in
the construction by z-ultrafilters.

Compactification theorem. Stone [Sg, Theorems 88 and 79] proved that
BX satisfies (I) and (II) of Theorem 6.5 and showed that the two properties
are equivalent. Cech [C,, pp. 831-833] proved that BX satisfies (II), (III),
and a special case of (I) (for + a homeomorphism), and showed that these
three properties are equivalent and determine BX uniquely; these results led
him to 6.9(a) and 6.12. The analogues of (IV) and (V) for closed sets,
relative to the Wallman compactification, will be found in [W,].

It is worth noting that while (IV) generalizes immediately to any finite
number of zero-sets, the corresponding generalization of (III) is by no
means a trivial consequence of (IIT) (though it follows, of course, from the
generalization of (IV)). Regarding the proof of Theorem 6.4, see [H,,
Theorem 20], [T,], and [M;, Corollary 2.2]. For 6G, see [M;, Theorem 3.8].

Further information about the relation between Stone’s theorem and
Tychonoff’s theorem (6.8) is contained in Notes, Chapter 11, Axiom of choice.

Compactification of a product. The result 6N was communicated by
Henriksen. It is difficult, in any particular case, to determine whether
B(X x Y) is homeomorphic with BX x BY. (See, however, 14Q.) A
more manageable question is whether these spaces are identical, i.e., whether
the Stone extension of the identity map on X x Y, into 8X x BY, is a
homeomorphism. Glicksberg [G3] has proved that this is the case, for
infinite X and Y, when and only when X x Y is pseudocompact. The
necessity was announced independently in [HI,]. To establish the suffi-
ciency, which is considerably more difficult, Glicksberg utilizes his earlier
result [G,, Theorem 2] that a space S is pseudocompact if and only if Ascoli’s
theorem holds in the metric space C*(S). Incidentally, homeomorphism of
B(X x Y) with BX x BY does not imply their equality; see [G]].

The space BN — N. The discussion of SN — N in 6S and 6V comes from
Rudin’s paper [R]. Regarding 6S.7,8, see also A. Gleason and E. E. Moise,
quoted in [B,, p. 39, Ex. 11]. The result that SN — N is not basically dis-
connected (6W) is well known; the proof outlined in the text was communi-
cated by Henriksen.

Miscellaneous problems. 'The results in 6] are due to Hewitt and Smirnov;
see [Hg] and [M;,]. The spaces A (6P) and IT (6Q) were constructed by
Kat&tov, in [K,] and [K,]. 60.6 is due to Cech; see [N,].

CHAPTER 7

Maximal ideals. The maximal ideals in C*(X) were characterized (7.2)
by Stone [Sg, Theorems 79 and 80]. The maximal ideals in C(X) were
characterized (7.3 and 7D) by Gelfand and Kolmogoroff [GK]. Con-
sideration of the relation between M? and M*? was begun in [H,, Theorems
45 and 48]; the extension f* was introduced into this consideration in [GH]J].

Structure space. 'The structure spaces M and IN* were defined by Gelfand
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and Kolmogoroff [GK] and used by them as models for BX. The approach
to BX outlined in 7N is taken from [H,, Theorem 46]. The content of
7N.6 was employed by Gelfand [G,] as an alternative way of defining a
topology on M*. Detailed discussion of the weak topology and the Stone
topology on spaces of maximal ideals in Banach algebras may be found
in [Lg).

The ideals O?. Consideration of O? stemmed from the result 70.2,
which is due to McKnight [Mg]. The content of 7.12-7.16 appeared in
[GH,], [GH]], and [K,,].

Miscellaneous problems. 7C is in [P,]. The bulk of 7E-7K comes from
[Ki0] and [K,,]. Hewitt’s conjecture that closed ideals in the m-topology
are always intersections of maximal ideals (7Q) was verified in [GHJ] and [S,].

CHAFTER 8

Realcompact spaces. Realcompact spaces were defined and investigated
by Hewitt [H,]. (His original term was ‘““Q-spaces.” Other adjectives
that have been employed by various writers are: e-complete, functionally
closed, Hewitt, real-complete, saturated; and vX is sometimes called the
“Nachbin completion” of X.) Hewitt demonstrated the importance of
these spaces by proving the isomorphism theorem (8.3) and by establishing
the existence, for any X, of a unique realcompactification in which X is C-
embedded. He also derived many of the properties of realcompact spaces.
Much of the theory of realcompact spaces was developed independently (but
not published) by Nachbin within the framework of the theory of uniform
spaces (15.13(a) and 15.14(a)); see Hewitt’s review of [S,] in Mathematical
Reviews 14 (1953), p. 395.

Nachbin [N,] and Shirota [S,] characterized realcompact spaces X in
terms of the topological vector space C(X), where the topology is that of
uniform convergence on compact sets. For a study of C(X) from this
point of view, see [W,].

Realcompactness for totally ordered spaces is characterized in [GH,].

Isomorphism implies homeomorphism. Shirota [S;; S,] established several
analogues of Hewitt’s isomorphism theorem (8.3), among which are the
following: realcompact spaces X and Y are homeomorphic if C(X) and
C(Y) are lattice-isomorphic or if there exists an isomorphism of the multi-
plicative semigroups of C(X) and C(Y). As a consequence of 8.8(a),
Shirota’s results imply that for any X and Y—not necessarily realcompact—
C(X) and C(Y) are isomorphic as rings if and only if there is an isomorphism
between them relative to either of these other structures. See [H,].

Characterizations of C(X). A related problem (not treated in the text) is
to represent a given abstract object as a family of continuous functions.
The method of attack is like that of 8.3, where one regards C(X) as an
abstract entity and constructs from it a topological space homeomorphic
with X. There is an extensive literature devoted to the characterization of
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Banach algebras, Banach spaces, et al., that are isomorphic with C(X) for
some compact X; summaries of these results, along with references to the
literature, may be found in [D,, pp. 87-104], [DS, pp. 396-398], and [K,].
An algebraic characterization of C(X) for arbitrary X is given in [AB].

Construction and properties of vX. Properties (II), (III), and (IV), and
their mutual equivalence, are discussed in [K,3], [V], and [S;]. The system-
atic application in the text of property (I) to the proofs of theorems about
realcompact spaces is new. Many of these theorems were already known:
8.10 is in [Kg]; 8.10, 8.11 (previously stated in [H,], but with an incorrect
proof), 8.15, and most of 8.17 are in [S,]; and 8.9 was announced in [W].
Analogies with compact spaces are emphasized in [EM]. Property (I) itself
is a special case of a general result in the theory of uniform spaces (see
Chapter 15); the particular proof given in the text that (6) implies (1) is
taken from [M;, Theorem 2.6].

Intersection of free maximal ideals. Kaplansky [K,] proved that Cx(X) is
the intersection of all the free maximal ideals in C(X) in the case of discrete
X, and asked whether the equality holds in general. Theorem 8.19, which
is new, shows that the equality holds for the class of realcompact spaces.
On the other hand, the example of the plank shows that the equality may fail
in pathological cases.

Nonnormal realcompact spaces. Hewitt [H;] proved that the nonnormal
space I' is realcompact. Another example is afforded by any uncountable
product of realcompact, noncompact spaces: by 8.11, such a product is real-
compact; and by [Sg, Theorem 3 ff.], the product is not normal. The
following theorem has been proved by Corson [Cy]. Let T be the product
of uncountably many copies of N, and let X be the subspace of T consisting
of those points having all but a countable number of coordinates equal to 1;
then X is normal, and vX = T.

Problems. 'The space v;X (8B) was introduced and applied in various
problems by Henriksen. Example 81 is in [GI].

CHAPTER 9

Cardinal of BX for discrete X. The proof of Theorem 9.2 is taken from
Hausdorff [H,]. It does not seem to be widely known that the content of
this paper is an evaluation of |8X|. (The problem treated there is necessarily
couched in somewhat different terms: SX had not yet been invented.) We
are indebted to P. Erdés for calling Hausdorff’s paper to our attention. An
explicit statement (with proof) of Theorem 9.2 appeared for the first time
in [P;]. The special argument in 90 is taken from [M,,].

Cardinals of closed sets contained in BX — X. The original results are
due to Cech, to whom is due the idea of securing a lower bound for the
cardinal of a set by finding in the set a copy of SN — N. In[C,], he applied
this idea to zero-sets, obtaining Theorem 9.5 (with ¢ as the stated lower
bound) and its corollary, 9.6. Later (see [N]), he proved that every infinite



NOTES 273

closed set in BN contains a copy of SN. Henriksen has observed that the
proof can be adapted to show that every closed set contained in X — X
contains a copy of SN whenever X is a Lindel6f space (as well as whenever
X is an arbitrary discrete space). The results 9.9-9.12 are new.

Isomorphism implies homeomorphism. Cech [C,] pointed out that a point
having a countable base of neighborhoods in X also has a countable base i
BX, so that, by his result 9.6, if X and Y both satisfy the first countat °
axiom, then a homeomorphism of X onto BY will carry Xonto Y. G @
and Kolmogoroff then had only to add their result 6A.1 to obtain : ),
The analogous proof of 9.7(a) was noted in [H,]; the result itseli : cen
obtained earlier in [Pg] and [A;]. The strengthened version of J.{a¥)
stated in 9N was communicated to us by Kat&tov.

In Chapter 4, Chapter 8, and again here, we have found that within certain
classes of spaces, a space is determined topologically by the algebraic structure
of its ring of continuous functions. We have also seen that this is not true
for the class of all completely regular spaces. However, the following
theorem has been proved by Pursell [P,]: let X and Y be arbitrary completely
regular spaces; if there exists an isomorphism of C*(X) onto C*(Y) that
can be extended to an isomorphism of all of RX onto RY, then X is homeo-
morphic with Y.

Pseudocompact spaces. The product theorem (9.14) was proved by
Glicksberg [Gyg], its analogue (9]) by Kat&tov (see [N3]). Example 9.15 is
due to Terasaka [T,]; see also Novdk [Ng]. The result 91 was observed by
Henriksen.

P-points and nonhomogeneity. The results in 9M were first established by
Rudin [R] for locally compact, normal X. The general case is due to
Isiwata [1,].

CHAPTER 10

Duality. For a general theory of duality, see [M,]. Its application to
function rings is discussed in [I5]. Theorem 10.8 has not been published
before. Representation theorems of this type go back to Banach [B,, p. 172].
The existence of such a representation indicates that whenever the iso-
morphism theorems 4.9 or 8.3 can be used to prove that two given spaces
are homeomorphic, it is probable that a direct proof can be found more
easily.

Stone’s theorem. The proof given for Theorem 10.7 (for C*) is Stone’s
original proof [Sg, Theorem 88].

CHAPTER 11

Embedding in a product. It was Tychonoff’s idea to compactify a space X
by embedding it in a product of intervals [T,;]. Every compactification of
X can be obtained by this procedure (11C). Whereas Tychonoff was
interested in keeping the number of factors in the product as small as possible,
Cech [C,] constructed BX by recognizing the particular advantages of taking
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what amounts to the largest possible product. The embedding of X in P to
obtain vX is due to Hewitt [H,, Theorem 59]; the sufficiency in 11.12 is due
to Shirota [S,]. )

Axiom of choice. Rubin and Scott [RS] announced the equivalence, in
the absence of the axiom of choice, of a number of deep topological theorems;
among them are Stone’s theorem (6.5) and the Tychonoff product theorem.
We saw in 6.8 that the former implies the latter. Conversely, by 11.5, the
latter implies the former.

Kelley [Kg4] proved that a strengthened form of Tychonoft’s theorem—
namely, for products of T-spaces, rather than only for Hausdorff spaces—
implies the axiom of choice. Kelley’s proof shows that the Tychonoff
theorem for Hausdorff spaces implies a weakened form of the axiom of choice
—namely, for arbitrary families of finite sets. Thus, any proof of existence
of BX must depend upon some form of the axiom of choice. Whether it
implies this axiom in full strength is not known. Nor is it known whether
the axiom of choice is independent of the remaining axioms in standard
systems of set theory, although results very close to this have been obtained;
see [M,].

CHAPTER 12

Realcompact discrete spaces. Theorem 12.2 was proved by Mackey [M,].
Hewitt [Hy] obtained the following generalization: a completely regular
space X is realcompact if and only if, for every {0, 1}-valued Basre measure
pon X, with u(X) = 1, there exists p € X such that the sets of measure 1
are precisely the Baire sets containing p. The result on extremally dis-
connected P-spaces (12H.6) is due to Isbell [I,]; our proof was worked out
in collaboration with Henriksen.

Measurable and inaccessible cardinals. 'Theorem 12.5 is due to Ulam [U,]
and Tarski [T,, p. 153]; the proof in the text is taken from Ulam’s paper.
The quotation in 12.6 is from [H,, p. 131]. Actually, the reference there is
to the so-called weakly inaccessible numbers; however, for all we know, the
number ¢, for instance, may be weakly inaccessible (see [ET, p. 326]).
Regarding the nonexistence of inaccessible numbers, see [M,] and the
references contained therein. The argument given in the text apparently
goes back to Kuratowski [K,,].

Residue class fields. Material about residue class fields of large cardinal is
taken from [EGH]. The result 12B is due to Sierpinski [S;, p. 448]. (In
the bibliography of [S;], the entry Sierpinski [26], which is the original
source of the result, should read: Sur les suites transfinies finalement disjointes,
Fund. Math. 28 (1937), p. 115-119.)

CHAPTER 13

The theory of field extensions is presented in [B,, Chapter 5] and [W,,
Chapters 5 and 8]. Material on ordered fields appears in [B,, Chapter 6,
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pp. 31-49], [W,, Chapter 9], and the original paper of Artin and Schreier
[AS]. The result 13G.1 is [AS, Theorem 8]. Results about 7,-sets and
cofinality are due to Hausdorff [H,, pp. 129, 132, 180-185]. The develop-
ment by dyadic sequences follows Sierpinski [S;, Chapter 17, § 6].

Theorem 13.2 is due to Hewitt [H,, Theorem 42]. The theorem that
C(X)/M is real-closed (13.4) was also stated by Hewitt, but was not correctly
proved. The first complete proof was given for the case of a normal space,
by Henriksen and Isbell [HI,]. The proof for arbitrary X was obtained
later by Isbell [I,]. The isomorphism theorems were proved in [EGH].
Lemma 13.7 is stated in that paper for maximal ideals only; the general case
appears in [K,,].

CHAPTER 14

The first general investigation of prime ideals in C(X) was undertaken by
Kohls [K,;; K;,]. The present chapter is devoted chiefly to an exposition
of Kohls’ results. Most of the material in the first 24 sections of the chapter,
and many of the problems, come from the papers cited. Lemma 14.8,
Theorems 14.9, 11, 16, 19, and 20, and 14F.I are new results. Material on
F-spaces is taken from [GH,]; characterizations of C for other classes of
spaces are also included in this paper. 14B.l was contributed by Kohls,
and 14Q.1 by Henriksen and P. C. Curtis. 14Q.3 is in [G]].

CHAPTER 15

The theory of uniform spaces was founded by Weil [W,]. Detailed
expositions of the theory may also be found in [B;, Chapters 2 and 9] and in
[K,, Chapter 6]. An entirely different approach to the subject was given by
Tukey [T,].

According to Weil’s definition, a uniform structure on X is a certain kind
of filter on X x X. Weil proved that each such filter has a base of sets of

the form
{(*):d(x,y) <1}

where d runs through a family of pseudometrics. The correspondence
between these filters on X x X, and those families of pseudometrics that
satisfy (i) and (ii) of 15.3, is one-one; accordingly, the choice of which is to
be regarded as the uniform structure is dictated only by convenience. As
was remarked in the text, we choose to emphasize the pseudometrics because
they supply us with continuous functions. This approach also has the
technical advantage of bypassing Weil’s theorem on the existence of pseudo-
metrics. (The theorem is proved by the same kind of argument as in
Urysohn’s lemma (3.13).)

Our approach is not so well suited to the theory of topological groups. In
order to apply it there, one would have to begin by proving the existence of
sufficiently many pseudometrics that are invariant under translation. Cf.
[K,, p. 210].
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Base for a uniform structure. Since d € @ implies rd € @ for all » 2 0,
the collection of sets {y:d(x,y)< 1} is the same as the collection
{y:d(x,y) < €}. We retain the ¢ so as to allow d to range only over a
base for 9, rather than over all of &. As a consequence, the formulas look
just like the classical ones for metric spaces. Indeed, in the classical case,
the metric is a base for the uniform structure.

Because a d-discrete family (15.15) of gauge 8 is (6-'d)-discrete of gauge 1,
we could deal exclusively with families of gauge 1. The term ‘“gauge”
would then be unnecessary. This, however, would complicate the state-
ments of subsequent theorems.

Completion theorem. A completion of a uniform space X can be con-
structed as follows. For each pseudometric d on X, the d-distance between
any two Cauchy filters is defined by the formulas in 15V.2, suitably modified.
This yields a uniform structure on the family of all Cauchy filters. By
reducing to equivalence classes, as in the text, one obtains a Hausdorff
uniform space which can be identified as the completion of X.

Another method is to construct yX by embedding X in a product of
complete metric spaces—corresponding to the development of SX given in
Chapter 11. See [K,] for details.

When the completion has been constructed by either of these methods, X
can be defined as the completion of [X; €*(X)]. Then, Stone’s theorem
can be derived as in 15P, and compactness of 8X established by 15I.1.
(See [B5, Chapter 9, p. 14].) It is interesting to observe that in this con-
struction of BX, the axiom of choice enters by way of Theorem 15.16, i.e.,
in the proof that every totally bounded space is precompact. (See the notes
to Chapter 11, Axiom of choice.) The latter is equivalent to Tychonoff’s
theorem and to Stone’s theorem, as was observed by Rubin and Scott [RS].

Shirota’s theorem. Theorem 15.17 is due to A. H. Stone [S;]. Shirota’s
theorem (15.20) was proved in [S,]; see also [Kg, Theorem 3]. The proof
that (4) implies (1) in 15.21 was supplied by Isbell.

Problems. Most of the results stated in the problems are taken from the
literature. Example 15L was contributed by Isbell.

CHAPTER 16

Dimension theory. The standard reference for the theory of dimension of
separable metric spaces is [HW]. An exposition based on the Lebesgue
dimension will be found in [A,, Chapters 5 and 6]. For a discussion of the
dimension of general spaces, see [Ag]. The use of basic covers (16.5) goes
back to Alexandroff [A,]. The scheme for evaluating the dimension of a
compact set in R”? (16.20) is essentially the one that Lebesgue suggested in
[L,] and carried out in detail in [L,]. Within the framework of a general
development of dimension theory, the result stated in Theorem 16.22 is
obtained more efficiently than here, but via the introduction of additional
concepts.
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Stone-Weierstrass theorem. This theorem appeared in [S;, p. 467]. An
expository account of the theorem and its applications is presented in [S;,].
Generalizations of the theorem are discussed in [DS, pp. 383-385].

Dimension of BX. That dim BX = dim X is due to Wallman [W,], who
proved the analogous statement with the usual definition of Lebesgue
dimension and with the Wallman compactification in place of 8X.

Katétov’s theorem. The theorem appears in [K;]. A good deal of the
machinery of the proof is developed in the earlier paper [K3]. (The example
16H and the general form of the subspace theorem (16I) are also in these
papers.) Our algebraic subring is related to what Katétov calls an ““algebraic-
ally closed” subring, but is somewhat simpler. The analytic subrings here
are identical with his “analytically closed” subrings. (The term “analytic
ring”” was used by Stone in [S4] in a broader sense.)

Dimension-raising mappings. Clearly, every compact metric space is a
continuous image of SN. Indeed, it is well known that every such space is
a continuous image of the Cantor set [Ky, p. 166]. More significant is the
fact that every compact metric space is a monotone image of some one-
dimensional space; see [H;,] and [M].

Miscellaneous problems. The result in 16G.3 is due to Hurewicz [H,].
The counterexample 16G.4 was supplied by R. F. Williams. We do not
know whether 16].3 is valid for arbitrary spaces; known counterexamples for
the analogous statement with the usual definition of Lebesgue dimension all
involve nonnormal spaces (see [M4]). The examples in 16M and 16N are
taken from Dowker [D,].
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LIST OF SYMBOLS

(References are to sections)

Special symbols
“~ (inverse of mapping), 0.1-2
’ (induced mapping), 10.2, see Index: Homomorphism of C (induced)
# (induced mapping), 4.12, see Index: Sharp mapping

0,1 (constant functions), 1.1

Other symbols
o (infinity), 7.5
~! (multiplicative inverse), 0.1
| | (absolute value), 0.19, 1.2
| | (cardinal), 0.2
(, ) (generators), 0.14, 2.1
[ ] (image of set), 0.2
vV, A (sup, inf), 0.5, 15.24
° (comﬁosition), 0.2
/ (residue class ring), 0.14

| (restriction), 0.2

U , N (union, intersection), 0.2
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(References are to sections or problems)

A,, A? (z-ultrafilter), 3.18, 6.5-6, 7.3
Ay (functions with finite range), 16.29,
16A
A, (analytic subring), 16.33
Absolute value, 0.19, 1.2-3, 1.6, 5A
(f, |/D, 2H, 14.21-23, 14.25
(/1 + lg), 4M, 14.25
f=F|fl, 1EH, 14.22, 14.25
lil, 2H, SE
Absolutely convex, 5.1, 5.3, see Ideal
ad (analytic dimension), 16.34-36
Algebraic element, extension, 13.1
Algebraic subring, 16.29, 16.31, 16AC
Algebraically closed, 13.1
Algebraically independent, 13.1
Almost compact (|8X — X| £1), €],
10.4, 15R
Almost disjoint, 5I, 6Q, 12.8, 12B
Analytic:
base, 16.32-36
base for all of C*, 16.36, 16FGH
dimension, 16.34-36
subring, 16.29-34, 16ABCE
Arbitrarily small sets, 15.7
Archimedean, 0.21, 5.6
Artin-Schreier theorem, 13.1
Axiom of choice, 0.7, 5N, 11.9, Notes
(pp- 274, 276)

Baire category theorem, 16.25
Banach algebra, 2M
Banach-Stone theorem, Notes (p. 268)
Base: see also Countable
foranalyticsubring, 16.32-36,16FGH
for closed sets, 3.2, 3.6, 3.10, 4E,
6.5, 6E

of open-and-closed sets, 4K, 6LS,
16.16-17, 16DLP
for ultrafilter, 4G, 10HKL
for uniform structure, 15.3, 15DF
for z-filter, 2.2
Basic cover, refinement, 16.5-10
Basically disconnected space, 1H, 4K,
9H, 14N, 160
BN — N not, 6W
not extremally disconnected or
P-space, 4MN
if and only if, 3N, 6M
BN, 6.10, 6MS, see also 1T
vs. 8Q, BR, 6.10, 60
cardinal of, 6.10, 9.1-3, 90
embedded in a space, 6.10, 60, 9.5,
9.11-12, 9DH, 14N
subspaces of, 6EQ, 9.15
zero-set in, 6E
BN —N, 6.10, 6RSW, see also A
cardinal of, 6.10, 9.3
embedded in a space, 61, 9.4, 9.10
non-P-points of, 6TU
P_points and nonhomogeneity of,
6V, 9M
8Q, 6.10, 60, 7F, 8H, 9.3, 9C, 14M
BR, 6.10, 60U, 9.3, 9B, 14Q, see also A
BR*, 6.10, 6L, 10N, 14.27
BX, 6.1, 6.5-7, 11.1, 15.13
basically or extremally disconnected,
6M, 9H
cardinal of, 6.10, 9.1-3, 9A0
closed set in, 9.12, 9H
constructions of, 6.5, 7N, 11.5, 11.9,
15.8,15.13
dimension of, 16.11
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BX for discrete X, 6EMW, 9F, 10H,
121, 14.26
cardinal of, 9.2
product of, 6N
Stone mapping from, 10.14, 10.17,
10]

BX — X, BX —vX:
cardinal of, 6], 9.3, 9.12, 9D, 15R
closed set in, 9.9-12
connected, 6.10, 6L
dense in X, 7F
no Gs-point, 9.6
as homeomorph of arbitrary space,
9K
image of, 6.12, 10.15
for locally compact X, 9.12, 9M,
14.27, 140
P-points and nonhomogeneity of,
6V, 9M
zero-set contained in, 9.5
B(X x Y), 6N, 8JM, 9K, 14Q, Notes
(p. 270)

C, C* 1.1, 1.3-5, 6.6
characterizations
271-272)
determined by lattice or semigroup,
Notes (p. 271)
C,, (functions vanishing at infinity),
7FG
Cx (functions with compact support),
4.3, 4D, 7EG, 8.19
C, (space of mappings into R"),
16.24-28, 16.33
%, €* (uniform structures deter-
mined by C, C*), 15.5-6, 15.10,
15.13-14, 15APQ
€, 15.23, 15L.U
€*, 15EI]
¢ (cardinal of continuum), 0.2
C-embedding, 1.16
and ¥, 15P
of closed set, 1F, 3D
and closure in v.X, 8.10
of compact set, 3.11, 6.9, 16E
of countable set, 3B, 4K, 5H
of countable discrete set,
1.20-21, 3L, 9DM

of, Notes (pp.

1.16,

of cozero-set, 4], 14.29
of dense set, 8.1, 8G, 9N, see also v
of dense set in well-ordered space,
5.13, 5N
of discrete set, 3L, 15.15, 15W
in every embedding, 6]
and homomorphism onto, 1F, 10.3,
10.9
if and only if, 1.18, 8.6-7
implied by C*-embedding, 1F, 3D,
5N, 6]
not implied by isomorphism, 6K
in R, 1.19, 1F
of zero-set, 1F, 8JM
C- vs. C*-embedding, 1.18, 4M, 6K
of countable, closed, discrete set, 6P
C*-embedding, 1.16, 1F
and €*, 15P
of closed set, 1.17, 3D
and closure in 8X, 6.9
of countable set, 60, 9H, 14N
not of countable, closed, discrete set,
8.20-21
of countable discrete set, 4M
of cozero-set, 14.25
of dense set, 4M, 6.1-5, 6M, 8G, 9N,
see also B
not of discrete zero-set, 3K, 51, 6Q
in every embedding, 6]
of every subset, 6R
not in homeomorph of X, 6C
and homomorphism onto, 1F, 10.3,
10.9
if and only if, 1.17, 6.4-5, 6.7, 6.9
not implying extendability of more
general mapping, 6B
not of intersection, 8]
of open set, 1H
in R, 1.17, 1F
Tietze’s extension theorem, 1.17
not of union, 5M, 8M
Urysohn’s extension theorem, 1.17,
3E, 6.6, 8]
¢X (space of Cauchy z-ultrafilters),
15.8-9, 158
Cardinal, 0.2
closed class of, 12.4-6
inaccessible, 12.6, Notes (p. 274)
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measurable, 12.1, 12.6, 12AD,
15.19-20
nonmeasurable, 12.1-6, 12GH,
15.19-24, 155
Cauchy sequence, 15F
Cauchy z-filter, 15.7, see Uniform
space
Cech  compactification, see
Cech compactification
Cell, 16.20-21
Chain, 0.7
Change of sign, 2.9, 5.4, 5Q, 7.15, 14.25
cl, clx (closure), 0.8
Closed:
class of cardinals, 12.4-6
under countable intersection, 0.3,
5.13-14, 7H
under finite intersection, 0.3, 2.2
ideal, 2MN, 40, 6A, 7Q
mapping, 0.8, 6D, 10.12-13, 10G,
158
subring, 2N, 16.2-4, 16.29, 16CE
Cluster point, 3.16, 6.2, see z-filter
Cofinal, Coinitial subset, 0.6
countable, 13.21, 13JL, 14.15-16,
14]
well-ordered, 13.6, 131]
of well-ordered set, 5.11-12, 5SLLN, 9K
Compact space, 0.8-12, 3.11, 4.9
C-embedding of, 3.11, 6.9, 16E
complete regularity of, 3.14
completeness of, 15.7, 15.14
completion, see Precompact
components of, 16.15, 16D
convergence on, 3P, 4.11, see also
Compactification
G as zero-set, 3.11
if and only if, 30, 4.11, 5.11, 5H, 6F,
10.5, 11.12, 15.14, 15.16
intersection of, 16.13-14
metric, 9.6, 16.21-22, 16G
product of, 4.14, 6.8, 11.5
support, 4.3, 4D, 7EG, 8.19-20
unique uniform structure, 15H
zero-dimensional, 16.17, 16DMP
Compactification, 3.14, 6.2, 6.12, 10.15,
11.1, 11C, 15]

vs. completion, 15.12

Stone-

convergence in, 6.2, 6.5, 6F, 10EHI]J
one-point, 3.15, 34, 10C, 15K, 16H,
see also N*, Q% R* T* W*
of product, 6N, 8JM, 9K, 14Q,
Notes (p. 270)
of R+, R", 6L
smallest, 10C
Stone-Cech, 6.1, 6.5-6, 15.12, see 8
theorem, 6.5, 6C
totally ordered, 30, 5.11, 16H
unique, 6], 15R
Wallman, Notes (pp. 269, 270, 277)
zero-dimensional, 16DMP
Complete, Completion: see also Uni-
form space
Dedekind-, 0.6, 30, 13.16-17, 13.23,
13N, 14.19-20, 16H
lattice-, 0.5, 3NO, 6M
metric space, 16.19, 16.25
sequentially, 15F
Completely regular family of functions,
3H
Completely regular space, 3.1. From
Chapter 4 on, all given topological
spaces are assumed to be completely
regular.
admitting uniform structure, 15.6
compactification of, 6.5, see 8
product of, 3.10, 4.13
quotient of, 3]
realcompactification of, 8.7, see v
Completely separated, 1.15-18, 3.1
closed sets, 3.13, 3D
compact set, 3.11
countable set, 3SBL
cozero-sets, 1H, 14.21-22, 14,25
vs. disjoint closures, 3E, 8.20, 8JL
open sets, 1H
Component, 16.12, 1B, see also Con-
nected set
of compact space, 16.15, 16D
refining a cover, 16.26, 16K
of zero-set in Rt — R+, 10N
Composite mapping, 0.2, 3.8-10, 10.2
Connected set, 16.12, see also Com-
ponent
intersection of compact, 16.14
set of functions constant on, 16.30-33
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Connected space:
BX — X as, 6.10, 6L
if and only if, 1B, 30
Constant function, 0.1, 1.1
Continuity of:
extended mapping, 6H
function, 1.3, 1A, 13A
Continuum hypothesis, 6V, 9M, 12.6,
12.7, 13.13-14, 13L, 14.20
if and only if, 13.8, 13K
Convergence, see z-filter, z-ultrafilter
Countable, 0.2
Countable base of neighborhoods:
at a point, 41, 9.7, 14N
at all points (first axiom), 3K, 5IM,
9.7

for space (second axiom), 8.2
Countable intersection property, 0.3,
8.2, see also z-filter, z-ultrafilter
Countably compact space, 1.4, 5.12,
SM, 8LM, 9.15; 9], see also
Pseudocompact
if and only if, 3L, 5H
Cover (in definition of dimension), 16.5
Cozero-set, 1.11, 3B, 7.14, 14.21-22,
16.5
in a basically disconnected space, 1H
in an F-space, 14.25-26, 14NO
in a P-space, 4], 14.29
in a realcompact space, 8.14

4° 15.9, 158V

d7,15.9, 15N

d {A} (d-diameter), 15.2

d-cl, d-closure, 15.4

d-closed, 15.15, 15.17

d-diameter, 15.2

d-discrete, 15.15-22

Dedekind-complete, completion, 0.6,
30, 13.16-17, 13.23, 13N,
14.19-20, 16H

4y, 4, 4 (spaces), 16MNP

8, 4 (mappings), 10.17, 10JM, 14F

Dense in ordered set, 13.10

Density of a set of integers, 6U, 9G

Derivative, 2H

Determines the topology, 3.5, see Weak

topology

dim, 16.5
Dimension, 16.5
analytic, 16.34-36
of BX, 16.11
of C*-embedded subspace, 161
of compact metric space, 16.22, 16G
Katg€tov’s theorem, 16.35
Lebesgue, 16.5, 16.9, 16.18
of long line, 16H
of normal space, 16.5-9
of product, 16]
of Q, R, 16F
of subspace, 16IMN
of T (Tychonoff plank), 16.18
zero, 16.12, 16.17, 16MO
zeroif and only if| 16.17, 16.34, 16AF
zero of compactification, 16DMP
Direct sum, 1BC, Notes (p. 267)
Disconnected, see Basically, Extrem-
ally, Totally
Discrete space, 1.3, 2F, 12H
|C(X)/M]| for, 12.7, 12.9, 12CDE
realcompact, 8.18, 8H, 12.1-3
uniform structures on, 15.7, 15.23,
15K
Discrete subspace, 0.13, se¢ also N
closed, 8N
closed, C-embedded, 3L, 15.15, 15W
closed, C*- not C-embedded, 6P
closed vs. realcompact, 12A,
15.19-22, 158
countable, C*-embedded, 4M
countable, closed, not C*-embedded,
8.20-21
d-, 15.15,15.18-22, 15W
extension of certain functions from,
3L, 8.21
zero-set, C-embedded, 1F, 10K
zero-set, not C*-embedded, 3K, 5I,
6Q
Divisor, 1D
f = k| fl, 1EH, 14.22, 14.25
Duality, 10.1-10, 10.13, 10A

E E—,E,2L,7R

e-filter, -ultrafilter, 2L, 7R, 11.9
e-ideal, 2LLM, 5.4, 5Q, 7R
Envelopment, 16.26-28, 16K
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Ng-, Na-set, -field, 13BO
m,-field, 13.8, 13.13-15, 13M
m,y-set, 13.6, 13.16, 13NP
cardinal of, 13.6, 13.8, 13.20, 13.24,
13K
Dedekind completion of, 13.23, 14.20
Q, 13.20, 13.22, 13]
residue class field as, 13.8, 13H
residue class integral domain as,
14.14, 14.16, 14]
set of prime ideals as, 14.19
similarity of, 13.9, 13K
subsets of, 13.9-10, 13.22, 13L.
Euclidean space, 8.2, 13.14,
16.19-24, see also R
Exponential, 1.3,1D, 5D, 13.2,14.5,14C
Extension of certain functions, 3CL,
8.21, see also C-, C*-embedding,
Stone extension
Extremally disconnected space, 1H
BN — N not, 6RW
BX as, 6M
every subspace as, 4M, 6QR
if and only if, 1H, 3N, 6M
vs. P-space, 4MN, 12H

f* (extension to R¥), 7.5
f*(p) vs. M?(f), 7.6-8,7.16, 7D, 8.4,
8.8

16.1,

f# (extension to 8X), 6.5-6, 6C, 7.2
S* (extension to vX), 8.7-8, 8B
F_space, 14.25-28, 14AMNO

connected, 14.27

vs. P-space, 14.29, 14PQ

product of, 14Q
Field, see Ordered, Residue class field
Filter, 2.2, see z-filter
Finite intersection property, 0.3, 2.2,

2.5, see also z-filter

First countability axiom, 3K, 5IM, 9.7
Fixed, Free:

homomorphism, 10.5

ideal, 4.1

measure, 12.2

z-filter, 4.10

G (space), 9.15, 91
Gs, 1.10, 3.11, see also Zero-set
every closed set as, 3K, 51, 6Q

with interior, 4JL, 6S

-point, 3.11, 3C, 41, 9.6-7

-space, 8.15, 9.7, 9N
I’ (space), 3K, 8.18
vX (completion), 15.9, see Uniform

space

Gauge, 15.15
Gelfand-Kolmogoroff theorem, 7.3
General position, 16.23
Generators, see Base, Ideal, Subbase
Glicksberg’s theorem, Notes (p. 270)
Graph, 6.13

H, Hy, 11.6,11.9
Hausdorff’s maximal principle, 0.7
Heine-Borel-Lebesgue theorem, 30
Hewitt realcompactification, 8.7-8,
see v
Hilbert space, 15DL, 16L
Homeomorphism:
of completions, 15]JS
extension of, 0.12, 6.5-6, 6.11-12,
8.7, 8C, 10.15, 10E, 15]JS
implied by isomorphism, 4.9, 6A,
8.3, 8A, 9.7-8, 9N, 10.1, Notes
(pp. 268, 271, 273)
Homogeneity, 6V, 9M
Homomorphism of abstract ring, 0.14,
0.22
canonical, 0.14
order-preserving, lattice-, 0.5, 5.2-3,

to R, 0.22-23
Homomorphism of C or C*:

algebra, 11, 10.9, Notes (p. 266)

boundedness-preserving, 1.7-9

and C-, C*-embedding, 1F, 10.3, 10.9

of C onto C*, 6K, 10.9

canonical, 4.5

continuous, 10F

fixed, 10.5

image under, 10D, 16EI

induced by continuous mapping,
10.1-11, 10A, 16.36

kernel of, 5C, 10D

lattice-, 1.6, 5C, 10.9

norm-reducing, 1]

to R, 10.5, 11.6, 11.9
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Hull, Hull-kernel topology, 7MQ
Hyper-real field, 5.6, 5.9, see Residue
class field
real-closed, 13.4
transcendence degree of, 13.2

i (identity function), 0.1
in C(N), 1.13, 5.10
in C(R), 2.4, 2.7, 2GH, 5EH, 141
I(a) (residue class), 4.5
Ideal (proper) in abstract ring, 0.14-18
chain of, 0.15
convex, absolutely convex, 5.1-3,
5BF, 13.5, 14.3
finitely generated implying principal,
14L
maximal, 0.15
prime, 0.15-18, 2B, 14.2, 14L
Ideal in C, C* or residue class ring,
2.1, 2.3, 14.1, see also Maximal,
0?, Prime, 2z-
absolutely convex, 5.1, 5.4-5, 5CG,
14.26
absolutely convex not prime or z-,
5E
in C vs. C* 2.1, 2C, 7P, 8.19
in C(N), 2.7, 2], 4.3
in C(Q), 21IJ, 4D, 7F
in C(R), 2.4,2.7-8,2.10,2GH]N, 5E
chain of, 2], 14.24
closed, 2MN, 40, 6A, 7Q
contained in unique maximal ideal,
5G, 7.13
convex, 5.1, 5B, 14.3, 14.24-25, 14A
convex vs. absolutely convex, SEG
countably generated, 4IL, 14C
e-, 2LM, 5.4, 5Q, 7R
(f, 1/), 2H, 14.21-23, 14.25, 14K
(7 + g2, 4], 14.29
(/] + 1eD), 4M, 14.25
finitely generated, 4C, 14C
finitely generated implying principal,
4JLM, 14.21-25, 14K
finitely generated not principal, 2H
fixed, free, 4.1-4, 4.8,4.10-11,4CDE
generators of, 2.1, 2A, 71
intersection of free, 4.3, 4D, 7EL,
8.19

principal, 2F, 4B], 5G, 14.24, see
also in C(R)
upper, lower, see Prime
Idempotent, 1BC, 2F, 4], 14.29
Identity, 0.1
Induced mapping, see Homomorphism
of C, Isomorphism of C
inf, 0.5
Infinitely large or small element of:
field extension of Q, 13E
residue class field, 5.6-8, 5.10, 7.6-9,
7.16, 12F
residue class integral domain, 7.16,
77, 14.5, 14.14, 14.16, 14]
int, intx (interior), 0.8
Interval, Interval topology, 30
Inverse of a mapping, 0.1-2
Isolated point, 3.15, 4BL, 6.9
Isomorphism of C or C%, 8.1
carrying C* onto C*, 1.9, 3.9
implying homeomorphism of spaces,
4.9, 6A, 8.3, 8A, 9.7-8, 9N, 10.1,
Notes (pp. 268, 271, 273)
induced by continuous mapping, 3.9,
31, 10.3, 16.36, 16E
norm-preserving, 1J; 5R

j, 0.1
as counterexample for C*, 1.13, 2.4,
5.4
vs. free maximal ideals in C(N),
5.10, 7.7
in free maximal ideals in C*(N), 4.7,
5.10, 7.2

Kat&tov’s theorem, 16.1, 16.35
Kernel of a set of ideals, 7MQ

A (space), 6P, 8.21, 9E
z-ultrafilters on, 10L
Lattice, 0.5
-complete, 0.5, 30, 13.17, 14.20
conditionally complete or o-com-
plete, 3N
homomorphism, 0.5, 1.6, 5.3, 5BC,
10.9
isomorphism, 3.9
isomorphism implies homeomor-
phism, Notes (pp. 268, 271)
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-ordered ring, 0.19, 1.2-4, 5.1, 5.3,
5ABF, 13.5
sub-, 0.5, 1.3-4, 5.3, 16.2-3
Lebesgue dimension, 16.5, 16.9, 16.18
Lebesgue measure, 4F, 6U
Light mapping, 16G
Limit, see z-filter (convergence), z-ul-
trafilter (convergence)
of sequence, 9N, 14N
Lindelsf space, 3D, 8.2, 8.18, 8H,
16.16-17
Locally compact space, 3.15
BX — X for, 9.12, 9M, 14.27, 140
C(X) for, 4D, 7FG
if and only if, 6.9,
15K
as open subspace, 3.15, 6.9
well-ordered, 5.11
Locally finite, 1A
Long line, 16H
Lower:
element, 13.16
prime ideal, 14.2

10.16, 10C,

M,, M*, (maximal ideals), 4.6-7, 4.9,
4A

in C(R), 2.4, 2.8, 2.10
M?, M* (maximal ideals), 7.2-3,
7.9-11, 7D
M”(f) vs, f¥(p), 7.6-8, 7.16, 7D, 8.4,

M(f) (resxdue class), 4.5-6, 5.5-6, 7.2,
see also Residue class ﬁeld

M, IM* (structure spaces), 4.9, 7.10-11,
7N

m-topology on C, 2N, 7Q, 10F
Maximal, Minimal, 0.4
Maximal chain, 0.7
Maximal ideal, 0.15, 2.1, 2.5-6, see also
Residue class field
in Cvs. C* 2L,4.7, 5K, 7.9, 7R
in C* 2L, 5.8, 7.2, 7R
convexity of, 5.5, 5F
fixed, 4.4-9
fixed vs. free, 4.1, 4.11, 5.9, 7.2-3,
see also Realcompact
free real, 5.13, 12D
hyper-real, 5.6, 5.9

293
intersection of, 2.8, 2.10, 2F, 4AJO,
6A, TLQ
intersection of free, 4E, 7FL,
8.19-20

0 as, 4JL, 14.29
prime ideal as, 2F, 4], 7R, 14.29
principal, 4BL
real, 5.6, 5.8-9, see also v
real if and only if, 5.14, 5K, 7.9,
7CH, 8.4, 10M
structure space, 4.9, 7.10-11, 7AMN,
8.3
unique — in C/P, 14.3, 14.5
unique — containing ideal with
totally ordered residue class ring,
5G
unique — containing 0P, 2.8, 4I,
7.13, 7]
unique — containing prime
2.11, 41, 7.15, 7], 14.3, 14.5
Maximal princi le 0.7
Measure (]0,1 valued), 12.1
fixed, free, 12.2
m-additive, 12.3,15.23
Metric space, 1.10, 1.17, 5.12, 9.8, 14N,
see also Uniform norm topology
compact, 9.6, 16.21-22, 16G
complete, 15.24, 16.19, 16.25
Monotone mapping, 16.36
Multiple, 1D
f=k|f|, 1EH, 14.22, 14.25

ideal,

N (positive integers), 0.1, 0.13, see also

B’ H) gly Xz

Cvs. C* Q,R, 1C, 4K, 10.10, 13.14,
14.28

Cvs. C* X, 4M, 14E

C-embedded copy of, 1.16, 1.20-21,
3L, 9DM

C*-embedded copy of, 4M, 6P,
9.4-5, 9.10-12

ideals in C or C*, 2.7, 2], 4.3

j as counterexample for C*, 1.13,
2.4, 5.4

j vs. free maximal ideals in C, 5.10,
7.7

j in free maximal ideals in C*, 4.7,
5.10, 7.2
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Ny, N, 6.10, 6K, 9.15
realcompactness of, 5.10, 5.15, 7.7
ultrafilters on, 3.18, 6.2, 6U, 9G,
14GHI
N* (one-point compactification), 1C,
3.18, 6.2, see also T
prime ideals in C, 14G
Nachbin completion, Nozes (p. 271)
neg, 1.11, see Cozero-set
Neighborhood, 0.9
Norm, 1], 2M, 5R, 16.1, 16.19, see also
Uniform norm topology
Normal space, 3.12, 3.1, 3.13, 3D, 6R,
Notes (p. 268)
dimension of, 16.5-9
examples of non-, 3K, 5I, 6PQ, 8.20,
8JLM
vs. nonnormal, 3DE, 6BC, 8A, 10D,
16.7
product of, 8M
totally ordered, 30, 5.11, 3N
X vs. vX, 8.10, Notes (p. 272)

0,, O? (ideal), 41, 7.12-15, TEHJR
in C(R), 2.8, 2GN
contained in prime ideals, 4I, 7.15,
14.12
contained in unique maximal ideal,
41, 7.13, 7]
generators for, 71
as maximal ideal, 4JL, 14.29
as prime ideal, 50, 14.12, 14.25, 14K
as prime ideal in C(X), 4M, 5G,
14.12-13, 14EF
z-ideals containing,
14.23-24, 14F
2, 2%, (spaces), 8LM, 15R
w, 3.18, 5.11
W), We, 5.12, 9K
Open-and-closed set:
base of, 4K, 6LS, 16.16-17, 16DLP
closure in BX of, 6.9-10, 6S
intersection of, 16.15, 16K
partition by, 16.12-13, 16.16-17,
16.26, 16KL
Open mapping, 0.8, 81
Order of a cover, 16.5
Order-preserving, 0.4

4M, 14.12,

Ordered field (abstract), 0.20-21, 13.1,
13.10-12, 13BCDEFG
isomorphism of, 13.1, 13.13, 13CGO
real-closed, 13.1, 13.12, 13CFG
real-closed na-, 13.13, 13.15, 13MO

P, P, (products of real lines), 11.2,
15P
P,, P? (prime ideals in C/ P),14.3, 14.6,
14.17, 14.20
P(f) (residue class), 4.5, 5.5, see also
Residue class integral domain
P-point, 4L
of BX — X, 60TUV, 9M
of extremally disconnected space,
12H
if and only if, 4L, 50, 10K
P_space, 4JKL, 5P, 7L
vs. basically or extremally discon-
nected, 4KMN
not described by C*, 4M, 6A
not discrete, 4N, 9L, 13P
extremally disconnected, 12H
vs. F-space, 14.29, 14PQ
if and only if, 4], 7LQ, 8A, 10K,
14.29, 14BP
product of, 4K, 14Q
not realcompact, 9L
2?7 (point in vX), 15.9
Partially ordered, 0.4-7
abstract ring, 0.19-20, 5.1-3, 5ABF,
13.5, 14.3
function ring, 1.2-4, see also Residue
class field, integral domain, ring
Partition, 16.12-13, 16.26
refined by, 16.26, 16K
separated by, 16.12, 16.16-17, 16KL
IT (space), 6Q, 8H
Ta, Ty (projections), 3.10, 11.2
Polynomial, 13.1, 13.3-4, 13A, 16B
pos, 1.11, see Cozero-set
Precompact, 15.16, 15.13, 15BEIJK-
MQR
Prefilter, Notes (pp. 267, 269)
Prime ideal in abstract ring, 0.15-18
chain of, 14.2, 14L.
intersection of, 0.18, 2B, 14.2
union of, 14.2
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Prime ideal in C, C*, or residue class
integral domain, 2.1, 2.12, 5D,
14.1, see also Residue class inte-
gral domain

absolute convexity of, 5.5, 14.3

in Cvs. C/P, 14.1, 14.13

in C vs. C*, 2B

in C(N¥%), 14G

in C(Q), 14.20

in C(R), 2.8, 2G, 14.20, 141

in C(T), 14H

chain of, 14.3, 14.8, 14.25, 14B

contained in unique maximal ideal,
2.11, 41, 7.15, 7], 14.3, 14.5

containing 0%, 41, 7.15, 7]

intersection of, 2.8, 2B, 4], 14.4,
14.12-13, 14.18, 14B

lower, see upper

as maximal ideal, 2F, 4], 7R, 14.29

not maximal, 2.8, 4IM, 7.15

maximal chain of, 14.8-9, 14.12,
14GI

maximal 2-ideal, I4GHI

minimal, 14.7-9, 14.12, 14GH

07 as, 50, 14.12, 14.25, 14K

0, in C(2)as, 4M, 5G, 14.12-13,
14EF

order structure of set of (in C),
14.8-12, 14GHI

order structure of set of (in C/P),
14.3, 14.17-20, 14C

P,, P% 14.3, 14.6, 14.17, 14.20

sum of, 14.9, 14B

union of chain of, 14.4, 14.13, 14.18

upper, lower, 14.2-4, 14.10-13,
14.17-20, 14CDJ

zideal, 2.9, 5.4, 14.7-9, 14.12,
14.23-24, 14BF

not z-ideal, 2G, 41, 7H, 14.10, 14.13,
14D .

Prime z-filter, 2.12, see 2-filter

Product, 3.10

of compact spaces, 4.14, 6.8, 11.5

compactification of, 6N, 14Q, Notes
(p. 270)

of complete spaces, 15M

of completely regular spaces, 3.10,
4.13,6.13

completion of, 15M
of countably compact spaces, 5M,
8M, 9.15, 9]
dimension of, 16]
of F-spaces, 14Q
of normal spaces, 8M
of P-spaces, 4K, 14Q
of precompact spaces, 15M
of pseudocompact spaces, 9.14-15,
14Q
of real lines, 11.1-2, 11.12, see also
R”
of realcompact spaces, 8.11-12, 11A
realcompactification of, 91
of uniform spaces, 15MP
Pseudocompact space, 1.4
vs. [BX—X]|, 6], 9D, 15R
vs. complete, 15Q
not countably compact, 3], 5I, 6P,
8.20, 8N
vs. countably compact, 1.4, 1G, 3D,
3L, 5H
if and only if, 1.21,.1G, 2N, 4C, 5.8,
5H, 61,70, 8A, 9.13, 15Q
product of, 9.14-15, 14Q
vs. realcompact space, 5.9, 5.12,
5H
Pseudometric, 15.2-3, 15.10
bounded, 15DEIKL
continuous, 15.4, 15GN
d°, 15.9, 158V
dv,15.9, 15N
extension of, 15.8-9, 15N
Py, 15.5, 15.10, 15AIKL
¥ (space), 51, 6Q
P (pseudometric), 15.5,15.10, 15AIKL

Q (field of rationals), 0.20, 13.1, 13CE
Q (space of rationals), 0.1, 13B
8Q, 6.10, 60, 7F, 8H, 9.3, 9C, 14M
Cvs. C* N, R, 1C, 4K, 10.10, 13.14,
14.20, 14.28
dimension of, 16F
ideals in C or C*, 2IJ, 4D, 7F
prime ideals in C, 14.20
realcompactness of, 5.15
Q, Qq (dyadic sequences), 13.18-24,
13JKLN



296

INDEX

Q-space, Notes (p. 271), see Real-
compact

Quotient space, mapping, 10.11, 3], 81,
10.11-16, 16DGM

R (field of reals), 0.1, 13.1
embedded in real-closed =,-field,
13M
embedded in residue class integral
domain or field, 4.6, 5.5-6, 13.2
homomorphism into, 0.22-23, 10.5,
11.6, 11.9
subfields of, 0.21, 13.1, 13C
R (space of reals), 0.1
analytic base for C*, 16F
BR, 6.10, 60U, 9.3, 9B, 14Q, see also
A
Cvs. C* N, Q, 1C, 4K, 10.10, 13.14,
14.20, 14.28
dimension of, 16F
ideals in C, 2.4, 2.7-8, 2.10, 2GH]JN,
SE
prime ideals in C, 2.8, 2G, 14.20,
141
as a quotient space, 10.14
realcompactness of, 5H, 8.2, 15.23
subrings of C*, 16C
suprema in C, 3M
uniform structures on, 15.5; 15.7,
15.23, 15AK
z-filters on, 3.16, 4F, 6U, 9B, 10L,
141
R* (one-point compactification), 7.5
REXO RCD 11,2, 15P
R”, 6L, 13.3, 16.1, 16.19-24, 16G
R¥, 1.1-3, Notes (p. 273)
R+, R—,6.10, 6L, 10N, 14.27
R (real-closure), 13.1
R (dyadic sequences), 13.23-24, 13JL
r (constant function), 0.1
Range of a function, 1G, 2C, 3L, 8.21,
8B, 16.29, 16A
Real:
maximal ideal, 5.6
z-ultrafilter, 5.15
Real-closed field, Real-closure, 13.1,
see Ordered, Residue class field
Realcompact space, 5.9, 8.1

closed discrete subspace of, 124,
15.19-22, 158

closed subspace of, 8.10, 10M, 11.10,
11E, 15C

vs. complete, 15.13-14, 15.20-23,
151IS

countable space as, 5.15

discrete space as, 8.18, 8H, 12.1-3,
12.6

examples of, 5.10, 5H, 8.2, 8.18, 8H

examples of non-, 5.9, 9L, see Pseudo-
compact

if and only if, 5.15, 8.5,. 8A, 10.5,
10M, 11.12, 15.14, 15.20-22

intersection of, 8.9, 8B

intersection of free maximal ideals
for, 8.19

Lindelsf space as, 8.2

locally compact (8X—X for), 9.12,
M

metric space as, 8.2, 15.24
N as, 5.10, 5.15, 7.7
not normal, 8.18, Notes (p. 272)
preimage of, 8.13, 8.17, 8B, 10.16,
158
product of, 8.11-12, 11A
Q as, 5.15
quotient of, 81, 10.16
R as, 5H, 8.2, 15.23
Shirota’s theorem, 15.20-23
as subspace, 8.13-18, 8E
union of, 8.16, 8H
between X and 6X, 8.5, 8B
Realcompactification, 8.4, 10E, 11C
convergence in, 8.7, 8F
Hewitt, 8.7-8, see v
Refine, Refinement, 16.5-9,16.21,16.27
by partition, 16.26, 16K
Regular ring, 4], 14.29
Residue class, 0.14, 4.5
Residue class field of C or C*, 5.5-6
cardinal of, 12.7, 12.9, 12CE
as field of quotients, 14E
hyper-real, 5.6, 5.9
infinitely large or small element of,
5.6-8, 5.10, 7.6-9, 7.16, 12F
isomorphism of, 10B, 13.14
order structure of, 12.7, 13.7-8, 13H
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positive element of, 5.4, 5Q, 7B
real-closed, 13.4, 13.14
transcendence degree of, 13.2
Residue class integral domain of C or
C* 55
of C vs. C*, 7K
field of quotients of, 14E
infinitely large or small element of,
7.16, 7], see set of
order structure of, 5.5, 13.7, 13H,
14.5, 14.15-16
order structure of set of prime ideals
in, 14.3, 14.17-20, 14C
positive element of| 7.15
set of infinitely small elements of,
14.5, 14.14, 14.16, 14]
unique maximal ideal in, 14.5
non-unit of, 14.5, 14.14
Residue class ring of C or C*:
cardinal of, 5], 12F
isomorphic to function ring, 5C
positive element of, 5.4, 5BQ
totally ordered, 5.4, 5GP, 7L
Restriction, 0.2
Retract, 6.13

s (dyadic sequences), 13.16-19, 13L,
14.20
Semi-simple, 4A
Semigroup, Notes (pp. 268, 271)
Separated, see Completely —
by partition, 16.12,16.16-17, 16KL
Sharp mapping (¥), 4.12, 10.17, 10A
convergence-preserving,
10]
of prime z-filter, 4.12
of ultrafilter, 10M, 10.17, 14F
of z-ultrafilter, 4.13, 4H, 6.6, 11E
Shirota’s theorem, 15.20-23
2 (space), 4MN, 5G, 6E, 14.29

the prime ideal O, in C, 4M, 5G,

14.12-13, 14EF
0, 0y, 11.3
g-compact space, 7FG, 8.2
BX—X for, 14.27
Similar ordered sets, 13.9, 13BCKO
Small sets, 4F, 6U, 9G, 15.7
Square roots, 1.6, 1BC, 3A, 16.29

6.6, 6G,
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Stationary set, 16.4, 16.31-32
Stone-Cech compactification, 6.1,
6.5-6, see B

as completion, 15.8, 15.12-13
Stone extension, 6.5-6, 10.7, 15P

f* 7.5

f*(p) vs. M?(f),7.6-8,7.16,7D, 8.4,

fﬁ 6 5-6, 6C, 7.2
of homeomorphxsm, 6.5-6, 6.12, 8C
of identity map from discrete space,
10.17, 10J
Stone extension, restriction of, 6.4, 6G,
8.6-7, 8D, 10.7, 10.13, 10.16, 15P
/v, 8.7-8, 8B
of homeomorphism, 8.7, 10.15, 15S
of identity map from discrete space,
10.14
Stone topology, see Structure space
Stone-Weierstrass theorem, 16.2-4,
16.32, 16E
Stone’s theorem, 6.5, 6.8, 9A, 10.7,
15P, Notes (pp. 274, 276)
Structure space, 4.9, 7.10-11, 7AMN,
8.3
Subbase for:
closed sets, 3.4
uniform structure, 15.3, 15ILM
Sublattice, 0.5, 1.3-4, 5.3, 16.2-3
Subring :
algebralc, 16.29-31, 16AC
analytic, 16.29-36, "I6ABCE
closed, 2N, 16.2—4, 16.29, 16CE
Sum of spaces, 12G
sup, 0.5

T, T* (Tychonoff plank), 8.20-21,
8JK, 9K, 15R
dimension of, 16.18
prime ideals in C, 14H
2-filters on, 10L, 14H
Ty-space, 3F
Tail, 5.11
6(I) (set of points in 8X), 70Q
Tietze’s extension theorem, 1.17
Topological ring, algebra, vector space,
2MN, 16.19
in m-topology, 2N, 7Q, 10F
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in uniform norm topology, 2MN,
40, 6A, 10F, 16.1
Topological spaces (particular spaces
listed in this index): BN, BN-N,
BO) BRy BR+, AO) G) F) A: Long
line) N’ N*) 'Q’ Hy !P) Q) R) R*)
R+, 2) T, Y) W, ¥ (a)
Totally bounded, 15.16, 15E, see Pre-
compact
Totally disconnected space, 16.12,
6.10, 16.17, 16.32
of positive dimension, 16DL
Totally ordered, 0.6-7
space, 30, 50, 13P, 16H, see also W,
W(a)
Transcendence:
base, 13.1, 13.11
degree, 13.1-2
Transcendental element, 13.1, 13.12,
13CDEFG
Tychonoff plank, see T
Tychonoff product theorem, 4.14, 6.8,
11.5, Notes (pp. 274, 276)

Ultrafilter, see z-ultrafilter
Uniform isomorphism, 15.10
extension of, 15.12, 15JO
Uniform norm topology on C*, 2MN,
40, 6A, 10F, 16.1
Uniform space, structure, 15.3, see also
Pseudometric
admissible, 15.5-6, 15AG
agreeing on dense subspace, 150
base for, 15.3, 15DF
€, €* 15.5-6, 15.10, 15.13-14,

v

15APQ
%, 15.23, 15LU
€ *, 15EIJ
Cauchy vs. real z-ultrafilter on,

15.19-22, 15STU

Cauchy z-filter on, 15.7, 15BV

Cauchy z-ultrafilter on, 15.7, 15.16,
15C

compact, 15.7, 15.14, 15H

compact completion of, see¢ pre-
compact

complete, completion of, 15.7-9,
15.12-14, 15BU

complete vs. realcompact, 15.13-14,
15.20-23, 1518
complete subspace of, 15C
completely regular, 15.6
completion of metric, 15.24
completion theorem, 15.9, 15.12
continuous metric on, 15U
discrete, 15.7, 15.23, 15K
vX, 15.8-9, 158, see also complete
Hausdorff, 15.3, 15.6
homeomorphism of completions of,
15JS
on locally compact space, 15K
metric, 15.3, 15.7, 15.24, 15DFLU
precompact, 15.16, 15.13, 15BEIJK-
MQR
product of, 15MP
on R, 15.3, 15.5,15.7, 15.23, 15AK
realcompact, see complete vs.
Shirota’s theorem, 15.20-23
smallest, 15K
standard, 15.3, see also on R
subbase for, 15.3, 15ILM
subspace of, 15.8, 15BCOP
supremum of, 15.24, 15U
totally bounded, 15.16, 15E, see
precompact
unique, 15HRT
universal, 15GH
Uniform topology, 15.4
Uniformly continuous, 15.10-11
bounded function, 15DL
every continuous mapping as,
15GHPR
extension, 15.11-12, 15NO
function, 15.10, 15JKR
pseudometric, 15N
Unit, 0.14, 1.12, 1BE, 3A
of C not of C*, 1.13, 7.9, 8.8
Unity, 0.1, 0.14, 1.1, 1.3
Upper:
element, 13.16
prime ideal, 14.2
Y (space), 15L
v, X, 8B, 9IM
vX, 8.1, 8.4-8, 8AB, 11.1
constructions of, 8.4, 11.8, 11.10,
15.13
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normality of, 8.10, Notes (p. 272)
for sum of spaces, 12G
v(XxY), 91 _
Urysohn’s extension theorem, 1.17, 3.1,
3E, 6.6, 8]
Urysohn’s lemma, 3.12-13, 3.1, Notes
(p. 268)

Valuation ring, 14.24
Vanishing at infinity, 7FG, 8.19

W, W* (spaces of ordinals), 5.12-13,
S5LM, 6], 8H, 15QRT
as factor in a product, 5M, 8.20,
8ILN, 16HM
as a quotient space, 81, 10.14
W (a) (space of ordinals), 5.11,5N,9KL,
see also W
as factor in a product, 8N, 9K, 12A,
13K
Wallman compactification, Notes (pp.
269, 270, 277)
Weak topology, 3.3-10, 3FGHI, 7N
Weierstrass approximation theorem,
16.1
Stone-, 16.2-4, 16.32, 16E
Well-ordered space, see W, #(a)
Well-ordering theorem, 0.7

Z(f), Zx(f) (zero-set), 1.10
Z[1},2.3
Z(X), 1.14
2-filter, 2.2—4, see also z-ultrafilter
base for, 2.2, 2D
as base for closed sets, 4E
and C*, 2.4, 2.14, 2KL
cardinal of members of, 5], 9E, 12.9,
12CDF
Cauchy, 15.7, 15BV
cluster point of, 3.16-18, 6.2, 6.6,
6FG, 70
contained in ultrafilters, 9G
contained in unique z-ultrafilter,
2.13, 3.18, 3P, 10HI
convergence of, 3.16-18, 3P, 6.2,
101)
convergence of prime, 3.17, 6F, 10]
convergence of prime with countable
intersection property, 8.12, 10M

with countable intersection property,
5.14, 5H, 7H, 8.12, 8H, 10M

e-filter, 2L, 7R, 11.9

fixed vs. free, 4.10-11, 4.13, 4E, 15.7

limit of, see convergence

on N, 3.17

of neighborhoods, 3.16, 5.14, see also

d
prime, 2.12-13, 2E, 4.12, 14F, see
also convergence
prime — on N*, 14G
prime — on R, 141
prime — on T, 14H
on R, 3.16, 4F, 6U, 9B
z-ideal, 2.7-8, 2D, 14B, see also OF
algebraic characterization of, 4A, 7.4
as closed ideal, 2N
containing 0%, 4M, 14.23-24, 14F
as kernel of homomorphism, 5.4, 5J,
10D
maximal prime, 14GHI
for P-space, 4], 7L, 14B
prime, 2.9, 5.4, 14.7-9, 14.12,
14.23-24, 14BFG, see also O
sum of, 14.8
not upper or lower ideal, 14.10, 14D
z-ultrafilter, 2.5-6, 2.13
base for, 4G, 10HKL
and C*, 2K, 8.8
cardinal of members of, 9F, 10L,
12.9, 12C
cardinal of set of (ultrafilters), 9.1-2,
9FG, 10L
Cauchy, 15.7, 15.16, 15C, see also
real
contained in ultrafilters, 10KL
convergence of, 3.16, 4.11, 6.2-3, 6F,
10.15, 10E
convergence of real, 8.1, 8.6-7, 8DF,
15B
convergence of (ultrafilter), 10.17,
10HJKL, 14F
convergence of unique, 3.18, 6.4-6,
8.6-7, 8D
with countable intersection prop-
erty, see real
fixed vs. free, 4.10-11, 4.13, 6.1,
15.7
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on A, 10L

onN, 3.18, 6.2, 9G, 14GHI, see also X

on R, 4F, 6U, 10L

real, 5.15, 5.13-15, 5L, 7H, 12.2,
15.18

real vs. Cauchy, 15.19-22, 15STU

on T, 10L, 14H

Zero-dimensional compactification,

16DM

Zero-dimensional space, 16.12, 16.17,
16DMO

if and only if, 16.17, 16.34, 16AF

with  one-dimensional  subspace,

16MN

Zero-divisor, 3A

Zero-set, 1.10-12

as base for closed sets, 3.2, 3.6, 3.10,
4E

in BR*—R+, 6L, 10N

in gX, 6EI, 9.4-5, 140

cardinal of, 5H, 6EI, 9.4-5, 9E, see
also z-filter, z-ultrafilter

closed Gjs not, 3K, 6P

closed set not, 3E, 4N

closure of, 6.3, 7.3

closure of intersection of, 6.4-5, 7.4,
8.6-7, 8D

closure of — as neighborhood, 6.10,
6E, 7.12, 7.14, 70

closure of — -neighborhood, 8K

closure of —as zero-set in larger
space, 3C, 8.8, 8BD

closure of — vs. zero-set in larger

space, 6E, 7.11

closures of — as base for closed sets,
6.5, 6ES

closures of —as base of neighbor-
hoods, 6S, 7HI

not compact, 5.7, 6.2, 7]

compact G as, 3.11

compact vs. noncompact, 1G, 4.10,
4EN, 6] )

complement of, see Cozero-set

completely separated, see disjoint

containing 6N, 9.5, 9DH

d-closed, 15.4, 15.15

discrete, C-embedded, 1F, 10K

discrete, not C*-embedded, 3K, 5I,
6Q

disjoint, 1.15, 1G, 3.1, 6], 15], 16.17

disjoint closures of, 6.4-5, 6.9-10, 6B

disjoint from a set, 1.18, 3B

every closed Gs as a C-embedded,
3D, 8JM

every closed set as, 1.10, 4M

in vX, 15U

intersection of, 1.10, 1.14, 3.1-2, see
also z-filter, z-ultrafilter

intersection of closures of, 6.2, 6E,
71, see also closure of intersection

-neighborhood, 1.15, 1D, 3.2, 40,
8K, see also O,

open, 4], 14.29

union of, 1.10, 1.14, 2.12, 2E, 5.15,
6P

union of small, 15.16-18, 15.21-23,
15E

invX, 8.8



