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Preface

The present book grew out of introductory lectures on the theory of functions
of several variables. Its intent is to make the reader familiar, by the discussion
of examples and special cases, with the most important branches and methods
of this theory, among them, e.g., the problems of holomorphic continuation,
the algebraic treatment of power series, sheaf and cohomology theory, and
the real methods which stem from elliptic partial differential equations.

In the first chapter we begin with the definition of holomorphic functions
of several variables, their representation by the Cauchy integral, and their
power series expansion on Reinhardt domains. It turns out that, in contrast
to the theory of a single variable, for n > 2 there exist domains G, GcC
with G = G and G # G such that each function holomorphic in G has a
continuation on G. Domains G for which such a G does not exist are called
domains of holomorphy. In Chapter 2 we give several characterizations of
these domains of holomorphy (theorem of Cartan—Thullen, Levi’s problem).
We finally construct the holomorphic hull H(G) for each domain G, that is
the largest (not necessarily schlicht) domain over C” into which each function
holomorphic on G can be continued.

The third chapter presents the Weierstrass formula and the Weierstrass
preparation theorem with applications to the ring of convergent power
series. It is shown that this ring is a factorization, a Noetherian, and a Hensel
ring. Furthermore we indicate how the obtained algebraic theorems can be
applied to the local investigation of analytic sets. One achieves deep results
in this connection by using sheaf theory, the basic concepts of which are
discussed in the fourth chapter. In Chapter V we introduce complex manifolds
and give several examples. We also examine the different closures of C" and
the effects of modifications on complex manifolds.

Cohomology theory with values in analytic sheaves connects sheaf theory

v



Preface

with the theory of functions on complex manifolds. It is treated and applied
in Chapter VI in order to express the main results for domains of holomorphy
and Stein manifolds (for example, the solvability of the Cousin problems).

The seventh chapter is entirely devoted to the analysis of real differentia-
bility in complex notation, partial differentiation with respect to z, Z, and
complex functional matrices, topics already mentioned in the first chapter.
We define tangential vectors, differential forms, and the operators d, d,
d". The theorems of Dolbeault and de Rham yield the connection with
cohomology theory.

The authors develop the theory in full detail and with the help of numerous
figures. They refer to the literature for theorems whose proofs exceed the
scope of the book. Presupposed are only a basic knowledge of differential
and integral calculus and the theory of functions of one variable, as well as a
few elements from vector analysis, algebra, and general topology. The book
is written as an introduction and should be of interest to the specialist and
the nonspecialist alike.

Géttingen, Spring 1976

H. Grauert
K. Fritzsche
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CHAPTER I

Holomorphic Functions

Preliminaries

Let C be the field of complex numbers. If n is a natural number we call the
set of ordered n-tuples of complex numbers the n-dimensional complex number
space:

C={3=1(21,---,25):2,€Cfor1 < v < n}.

Each component of a point 3 € C" can be decomposed uniquely into real
and imaginary parts: z, = x, + iy,. This gives a unique 1—1 correspondence
between the elements (z, ..., z,) of C" and the elements (x,, ..., X,,
Vi» -+ - » ¥a) of R?", the 2n-dimensional space of real numbers.

C"is a vector space: addition of two elements as well as the multiplication
of an element of C" by a (real or complex) scalar is defined componentwise.
As a complex vector space C" is n-dimensional; as a real vector space it is
2n-dimensional. It is clear that the R vector space isomorphism between
C" and R*"leads to a topology on C": For 3 = (2, ..., 2,) = (X; + iyy, ...,
X, + iy,) € C" let

n 1/2 n 1/2

||3||3=<sz7k) =(Z(x%+y,%)> ,
k=1 k=1

loll*s = max (i, el

n

Norms are defined on C" by 3+ |3|| and 3 |j3||*, with corresponding
metrics given by

dist(31, 32): = ||31 - 52”,
dist*(34, 32): = ”31 - 52”*-



1. Holomorphic Functions

In each case we obtain a topology on C" which agrees with the usual topology

for R?". Another metric on C", defined by [3]: = max |z, and dist'(3y, 32):
k=1,..., n

= |3; — 32}, induces the usual topology too.

A region B = C" is an open set (with the usual topology) and a domain
an open, connected set. An open set G < C" is called connected if one of the
following two equivalent conditions is satisfied:

a. For every two points 3;, 3, € G there is a continuous mapping ¢:[0, 1] —
C" with 9(0) = 31, ¢(1) = 3,, and ([0, 1]) = G.

b. If B;, B, = G are open sets with B uB, =G, B, n B, = J and
B, # &, then B, = &.

Definition. Let B = C" be a region, 3o € B a point. The set Cz(30): =
{3 € B:3 and 3, can be joined by a path in B} is called the component of
30 in B.

Remark. Let B = C" be an open set. Then:

. For each 3 € B, Cy(3) and B — Cy(3) are open sets.
. For each 3 € B, Cg(3) is connected.
. From Cy(3,) N Cy(32) # J it follows that Cg(3;) = Cp(32)-

. B={) Cs3)

3eB
e. If G is a domain with 3 € G < B, it follows that G = Cg(3).
f. B has at most countably many components.

The proof is trivial.

Ao o

Finally for 3, € C" we define:
U,@0): = {3 € C":dist(3, 30) < &},
Uz (30): = {3 € C":dist*(3, 30) < ¢},
U:(30): = {3 € C":dist'3, 30) < &}

1. Power Series

Let M be a subset of C". A mapping f from M to C is called a complex
function on M. The polynomials

P(Zt) = Z ay,,..., Vn zil Tt an, ay,,..., Vn € C,

are particularly simple examples, defined on all of C". In order to simplify
notation we introduce multi-indices: let v;, 1 < i < n, be non-negative
integers and let 3 = (z4, ..., z,) be a point of C". Then we define:

n
Ve _ v
Vi, 3= l_[ Zii.
1 i=1

M=

vi=(g,..,v), = .
13

m

With this notation a polynomial has the form p(3) = ). a,3"
v=0

2



1. Power Series

Def. 1.1. Let 3, € C" be a point and for |v| > 0, a, be a complex number.
Then the expression

[

Y a3 — 30)"

v=0

is called a formal power series about 3.

Now such an expression has, as the name says, only a formal meaning.
For a particular 3 it does not necessarily represent a complex number. Since
the multi-indices can be ordered in several ways it is not clear how the
summation is to be performed. Therefore we must introduce a suitable
notion of convergence.

Def. 1.2. Let3: = {v=(vq,...,v,):v; = 0for1 < i< n},and 3; e C"befixed.

We say that Y. a,(3; — 30)" converges to the complex number c if for
v=0

each ¢ > 0 there exists a finite set I, = 3 such that for any finite set I

withlpcI <=3 -

Z a,31 — 3" —c¢c[<e

vel

0

One then writes ), a,(3 — 30)" = ¢.
v=0
Convergence in this sense is synonymous with absolute convergence.

Def. 1.3. Let M be a subset of C", 3, € M, f a complex function on M. One

(e}

says that the power series Y a,(3 — 30)" converges uniformly on M to
v=0

f@) if for each ¢ > 0 there is a finite set I, = J such that

Y aB—3) — @) <e

vel

for each finite I with I, « I = 3 and each 3e M.

00

Y. a,(3 — 30)’ converges uniformly in the interior of a region B if the
v=0
series converges uniformly in each compact subset of B.

Def. 1.4. Let B = C" be a region and f be a complex function on B. f is
called holomorphic in B if for each 3, € B there is a neighborhood U =

U(30) in B and a power series Y. a,(3 — 30)® which converges on U to
v=0
c)

Note that uniform convergence on U is not required. We show now why
pointwise convergence suffices.



1. Holomorphic Functions

Def. 1.5. The point set V = {r = (ry,...,r,)eR"r, 20 for 1 <v < n}
will be called absolute space. 7:C" — V with 1(3): = (|24, ..., |2,|) is the
natural projection of C" onto V.

V is a subset of R” and as such inherits the topology induced from R" to V
(relative topology). Then 7:C" — V is a continuous surjective mapping. If
B < Vis open, then 1~ }(B) = C" is also open.

Def. 1.6. Letre V+ ={r=(ry,...,7)€R"r, > 0},30€C" Then P,(30): =

{3€C:|zy — z?| < r, for 1 < k < n} is called the polycylinder about

30 with (poly-)radius . T = T(P): = {3 C":|z, — z¥| = r,} is called
the distinguished boundary of P (see Fig. 1).

IZZI |

r, 7/ «(T)

Figure 1. The image of a polycylinder in absolute space.

P = P(3,) is a convex domain in C" and its distinguished boundary is
a subset of the topological boundary 0P of P. For n = 2 and 3, = O the
situation is easily illustrated: V is then a quadrant in R, 7(P) is an open
rectangle, and 7(T) is a point on the boundary of t(P). Therefore

T = {3eC%|zy| = 1y, |22| = 12}
={3=(r, €% r, €9)eC?>0<0, <21,0<0, <2n}
is a 2-dimensional torus. Similarly in the n-dimensional case we get an
n-dimensional torus (the cartesian product of n circles).
If3,eC"={3=(2,...,2,)€C":2z # Ofor 1 < k < n}, then P;: =
{3 C":|z| < || = refor1 < k < n}isa polycylinder about O with radius
t=(Fi,..., )

Theorem 1.1. Let 3, € C". If the power series Z a3’ converges at 3, then

it converges uniformly in the interior of the polycyhnder pP;.



1. Power Series

PRrOOF
1. Since the series converges at 3,, the set {a,3}:|v| > 0} is bounded.
Let M € R be chosen so that |a,33| < M forall v. If 3, e C"and 0 < g < 1
then q-3,€C" Let P*: =P, ,. For 3eP || = |z ... |z <
lg- 2P g D = gt O L D = g )], that
o0

v=0

e . =3} o v 1 n
M-3 gt +“"=M~<Z q”‘>‘...-<2 Q">=M’<1T>‘
v=0 vi=0 Vn=0 q

The set 3 of multi-indices is countable, so there exists a bijection #:Nj —» 3.

o0
is, Y la,|" 33| - ¢"' is a majorant of ) a,3" and therefore
v=0

Let b,(3): = agw - 3°™. Then Y b,(3) is absolutely and uniformly con-
n=0

0

vergent on P*. Given ¢ > 0 there is an noe N such that ), |b,(3)] < ¢

n=ng+1

on P*. Let Iy: = ®({0,1,2,...,n0}). If I is a finite set with I, = I = 3,
then {0, 1,...,n,} = &7 }(I), so

S b - Tas|=|E O~ T b6

vel ned-1(I)
= Y b < Y |b3)| <eforzeP
ned® - 1(I) n=ng+1
But then ) 4,3 is uniformly convergent in P*.
v=0

2. Let K < P, be compact. {P, ,:0 < g < 1} is an open covering of
P, , and thus of K. But then there is a finite subcovering {P,, .,,..., P, .}
If we set q: = max(qq,...,q,), then K = P,.;, and P, ; is a P* such as

o

in 1). Therefore ) a,3" is uniformly convergent on K, which was to be
v=0
shown. O

Next we shall examine on what sets power series converge. In order to
be brief we choose 3, = 0 as our point of expansion. The corresponding
statements always hold in the general case.

Def. 1.7. Anopenset B — C"is called a Reinhardt domainif3, € B= T;: =
7 11(3,) < B.

Comments. T, is the torus {3 € C":|z| = |z{"|}. The conditions of defi-
nition 1.7 mean that t~'7(B) = B; a Reinhardt domain is characterized by
its image t(B) in absolute space.

Theorem 1.2. An open set B = C" is a Reinhardt domain if and only if there
exists an open set W < V with B = 1~ {(W).



I. Holomorphic Functions

Proor
1. Let B=1" W), W<V open. For 3€B, t(3) € W; therefore

17 11(3) < 1" Y(W) = B.

2. Let B be a Reinhardt domain. Then B = t~'¢(B) and it suffices to
show that t(B) is open in V. Assume that t(B) is not open. Then there is a
point ry € t(B) which is not an interior point of 7(B) and therefore is a cluster
point of V' — 7(B). Let (r;) be a sequence in V' — 7(B) which converges to r,.
There are points 3;€ C" with t; = 1(3;), so that |z{?| = #{” for all j and
1 < p < n. Since (x;) is convergent there is an M e R such that |r)| < M
for all j and p. Hence the sequence (3;) is also bounded. It must have a cluster
point 3o, and a subsequence (3;) with lim 3j, = 30- Since 7 is continuous

(30) = hm 7(3;,) = 11m r;, = 1o. Bis a Remhardt domain; it follows that

30€ET l(to) c t“lt(B) B. B is an open neighborhood of 3,; therefore
almost all 3; must lie in B, and then almost all t;, = 7(3;) must lie in 7(B).
This is a contradiction, and therefore 7(B) is open. O

The image of a Reinhardt domain in absolute space is always an open set
(of arbitrary form), and the inverse image of this set is again the domain.

Def. 1.8. Let G = C" be a Reinhardt domain.
1. G is called proper if

a. G is connected, and
b. 0eG.

2. G is called complete if
3leGn(f?"=P5, c G.

Figure 2 illustrates Def. 1.8. for the case n = 2 in absolute space.

‘r|22| T |zzl

o T

|2 |4

Figure 2. (a) Complete Reinhardt domain; (b) Proper Reinhardt domain.




1. Power Series

For n = 1 Reinhardt domains are the unions of open annuli. There is no
difference between complete and proper Reinhardt domains in this case; we
are dealing with open circular discs.

Clearly for n > 1 the polycylinders and balls K = {3:|z,|* + -+ +
|z.|> < R?} are proper and complete Reinhardt domains. In general:

Theorem 1.3. Every complete Reinhardt domain is proper.

ProOF. Let G be a complete Reinhardt domain. There exists a point 3; € G N
€", and by definition 0 € P, < G. It remains to show that G is connected.

a. Let3;eGbea pomt 1n a general position (i.e., 3; € G n €"). Then the
connecting line segment between 3, and 0 lies entlrely within P, and hence
within G.

b. 3, lies on one of the “axes.” Since G is open there exists a neighborhood
U,(3,) < G, and we can find a point 3, € U,(3;) n €" Hence there is a path
in U, which connects 3; and 3,, and a path in G which connects 3, and 0.
Together they give a path in G which joins 3, and 0.

From (a) and (b) it follows that G is connected. O

o

Let PBG) = Z a,3’ be a power series about zero. The set M = C" on

which B(3) converges is called the convergence set of B(3). PB(3) always con-
verges in M and diverges outside M. B(B(3)): = M is called the region of
convergence of the power series P(3).

9]

Theorem 1.4. Let B(3) = > a,3" be a formal power series in C". Then the
v=0
region of convergence B = B(B(3)) is a complete Reinhardt domain. PB(3)
converges uniformly in the interior of B.

ProoF

1. Let 3, € B. Then Uj(3) = {3€C":|3 — 31| < &} = U (z{") x -+ x
U,(z") is a polycylinder about 3, with radius (g, . . ., ¢). For a sufficiently
small ¢, U.(3,) lies in B. For k = 1,...,n we can ﬁnd a z e U,(z{") such
that |z{?| > |z"|. Let 3,: = (2%, .. z‘z’) Then 3, € B and 3, € P,,. For
each point 3, € B choose such a fixed point 32

2. If3, € B, then there is a 3, € B with 3, € P,,. ¥3(3) converges at 3, there-
forein P,, (from Theorem 1.1). Hence P,, = B.Since P, < P,,and T, < P,,
it follows that B is a complete Reinhardt domain.

3. Let P%: = P,, where 3, is chosen for 3, asin 1). Clearly B = () Pj,.

31€B
Now for each 3, select a g with 0 < g < 1 and such that 35: = (1/g)3, lies

in B. This is possible and it follows that for each 3, € B PB(3) is uniformly
convergent in P}. If K < B is compact, then K can be covered by a finite
number of sets P} . Therefore PB(3) converges uniformly on K. O

7



I. Holomorphic Functions

The question arises whether every complete Reinhardt domain is the
region of convergence for some power series. This is not true; additional pro-
perties are necessary. However, we shall not pursue this matter here.

Since each complete Reinhardt domain is connected, we can speak of
the domain of convergence of a power series. We now return to the notion
of holomorphy.

Let f be a holomorphic function on a region B, 3, a point in B. Let the

power series Y, a,(3 — 30)" converge to f(3) in a neighborhood U of 3,.
v=0

Then there is a 3, € U with z{! # 2% for 1 < v < nand P, _,30) = U.
Nowlet0 < ¢ < min (|#" — Z?|). From Theorem 1.1 the series con-

v=1,..., n
verges uniformly on U}(3,). For each v € 3 one can regard a,(3 — 30)’ as a
complex-valued function on R?". This function is clearly continuous at 3,
and consequently the limit function is continuous at 3,. We have:

Theorem 1.5. Let B = C" be a region, and f a function holomorphic on B.
Then f is continuous on B.

2. Complex Differentiable Functions

Def. 2.1. Let B = C" be a region, f:B — C a complex function. f is called
complex differentiable at 3, € B if there exist complex functions 44, ...,
4, on B which are all continuous at 3, and which satisfy the equality

Q) = fGo) + 3. (2 — 29) 4,(3) in B.

v=1

Differentiability is a local property. If there exists a neighborhood U =
U(30) = Bsuch that f|U is complex differentiable at 3,, then f|B is complex
differentiable at 3 since the functions 4,(3) can be continued outside U in
such a way that the desired equation holds.

At 3, the following is true:

Theorem 2.1. Let B — C" be a region and f:B — C complex differentiable
at 30 € B. Then the values of the functions A4,..., A, at 3¢ are uniquely
determined.

PROOF. E,: = {3e C":z; = z{?) for A # v} is a complex one-dimensional
plane.LetB,: = {{ € C:(z?,...,22,(,z9,,...,Z") € E, n B}.f}(z,): =
9, ..., 29, 2, 29, ..., 2{?) defines a complex function on B,. Since
f is differentiable at 3,, we have on B,

f:(zv) = f(Z(10)9 ceey ZE’O—)M Zy, Zgo-l?la L] ZSIO))
= fGo) + (2, — 2")- 4,2, ..., z,, ..., 2)
= 1) + (2, — 20) - 45(2,).



2. Complex Differentiable Functions

Thus 4%(z,): = 4,22, ..., 224, z,, 29, ..., z29) is continuous at z{?,

Therefore f2(z,) is complex differentiable at z% € C", and 4%(z(?) = 4,(30)

is uniquely determined. This holds for each v. O

Def. 2.2. Let the complex function f defined on the region B = C" be com-

plex differentiable at 3, € B. If f(3) = f(30) + Y. (z, — 2\”) 4,(3), then
v=1

we call 4,(30) the partial derivative of f with respect to z, at 3¢, and

0
ai (o) = fzv(ﬁo) = f(30)-

write 4,(30) =

Theorem 2.2. Let B = C" be a region and f complex differentiable at 3, € B.
Then f is continuous at 3q.

Proor. We have f(3) = f(30) + Y. (z, — z?) 4,(3); the right side of this
v=1

equation is clearly continuous at 3. O
Let B = C" be a region. f is called complex differentiable on B if f is
complex differentiable at each point of B.
Sums, products, and quotients (with nonvanishing denominators) of com-

plex differentiable functions are again complex differentiable. The proof is
analogous to the real case, and we do not present it here.

Theorem 2.3. Let B = C" be a region, f holomorphic in B. Then f is complex
differentiable in B.

PRrROOF. Let 30 € B. Then there is a neighborhood U = U(3,) and a power
series Y a,(3 — 30)” which in U converges uniformly to f(3). Without loss

v=0
of generality let 3o = 0. Then

0
v o__ . vi—1l, ,v2... ¥
Y a3 =ao...0 + 210 Y, Gy 2P T zR e
v=0 VIBI
- -1
+ 230 Y ouyennZP 2R b 2,0 Y Ao,
va21 vp=1

For now, this decomposition has only formal meaning. Choose a poly-
cylinder of the form P = U,(0) x - -+ x U,0) < U(0)andapoint3, € T =
{3 € C":|zi] = ¢}. Then P,, = P and 3, € U (if ¢ is chosen sufficiently small).

Y a3} converges, therefore Y, |a,3}| also converges. Since 3, € C", || # 0
v=0 v=0

for all k. Therefore every subseries in the above representation at 3, also
converges absolutely and uniformly in the interior of P,,. The limit func-
tions are continuous and are denoted by 4,,..., 4,. Since f(3) = f(3o) +
z,-4,B3) + -+ + z,- 4,(3), it follows that f is complex differentiable at3,. O

9



1. Holomorphic Functions

From this proof we obtain the values of the partial derivatives at a point
3¢- For

1@ = Z a 1...‘,“(21 — z(lo))"l sz, — ZS'O))v,.

We obtain
fz,(3o) = day,o,..., 0»

f2.30) = ao,..., 0,1-

3. The Cauchy Integral

In this section we shall seek additional characterizations of holomorphic
functions.

Let r = (ry,...,r,) be a point in absolute space with r, # 0 for all v.
Then P = {3€ C":|z,| < r, for all v} is a nondegenerate polycylinder about
the origin and T = {3€ C":t(3) = r} is the corresponding distinguished
boundary. It will turn out that the values of an arbitrary holomorphic
function on P are determined by its values on T.

First of all we must generalize the notion of a complex line integral.
Let K = {zeC:z = ré”, r > 0 fixed, 0 < 6 < 2=} be a circle in the com-
plex plane, f a function continuous on K. As usual one writes

fK f(2) dz = fo 2® f(re®) - rie® do.

The expression on the right is reduced to real integrals by

j;b(p(t)dt: - J;bRerp(t)dt + i-LbIm(p(t)dt.

Now let f = f(£) be continuous on the n-dimensional torus T =
{€eC":1(é) = r}. Then h:P x T — C with

he &): = /©

& —z) (& — za)
is also continuous. We define

1 n
F(3): = <ﬁ) [ s B - de:

— 1 ”, d¢, dé,

B (5712—1) J;§1|='1 & — 24 fléz]=r2 62 — 22 J;fnl "'é f(él’ v )
(LY e e e S0 e

- <E> fo fo 0 (re — Zl) - (r,e® — z,)

X rl M '-r,,ei(01+"‘+9”) d@l A 'd@,,.

For each 3 € P, F is well defined and even continuous on P.

10



3. The Cauchy Integral

Def. 3.1. Let P be a polycylinder and T the corresponding n-dimensional
torus. Let f be a continuous function on T. Then the continuous function
ch(f): P — C defined by

1y 1) &
Ch(f)(3)' - <27u') fT (él — 21) ce (én - n)

is called the Cauchy integral of f over T.

Theorem 3.1. Let B = C" be a region, P a polycylinder with P < B and T
the n-dimensional torus belonging to P. If f is complex differentiable in B
then f|P = ch(f|T).

Proor. This theorem is a generalization of the familar 1-dimensional
Cauchy integral formula.

The function f} with f3(z,): = f(,,..., &1, z,) is complex differ-
entiable for fixed (¢;,...,&,-1)€C" 1inB,: = {z,€ C:(§, ..., &1, Z) €
E, n B}, where E, is the plane {3 C":z; = &, for A # n}. But then f} is
holomorphic in B,. B, is an open set in C. K,: = {£,€C:|¢,| =r,} is
contained in B,, and the Cauchy integral formula for a single variable says

‘z) = L fa(&)
fn(zn) T i J;{,.l=r,. & -z, dé,.
Therefore
f(él,~'~’€n—1,zn)=—1— f(él’—’é")dén

2ni JEn £, — z,
Similarly for the penultimate variable we obtain

1 ooy EnitsZn
f(éla"'aén—b zn—lszn) = % K"_lf(éé - _éz —llz )dﬁn—l

1 f dén—l l:_l_ f(él,’én)dé]

2mi K"_lén—l — “4n-1 27 JKn én - 2y

And, after n steps
1 d¢ 1 d¢
F e 2) = — _1[2_me 2

2mi JKi &y — 2y 2 6 — 2y

[[L Mdgn]m]]=ch(f|ﬂ(3). O

2ni JKn &, — 2z,

Theorem 3.2. Let P = C" be a polycylinder, T the corresponding torus, and
h a function continuous on T. Then f: = ch(h) can be expanded in a power
series which converges in all of P.

Proor. For simplicity we consider only the case of two variables. Let
T = {(&,, &) € CE|Ey| = 1y, |&2| = 1y}, with fixed 3 = (zy, z,) € P. Then

11



I. Holomorphic Functions

|zl| <1y, |z2| <1, and therefore g;: = (|z;|/r;) <1 for j = 1,2. Hence
o0

Z g}’ dominates Y, ﬁ) forj =1,2and

V= 0 vj=0

1 1 1

& —20& —22) cl~éz'<1 B )(1 - _)
& &
_ 1 o f_l vl' o _Z__z_ v
B ¢i0 & <vlz=o ('51) vzz=:o ('52) >

is absolutely and uniformly convergent for (£, £,) € T.In particular arbitrary
substitutions are allowed, so,

1 © [z \" 22)
NS} v1,§=0 <¢1) (62
also converges uniformly and absolutely on T. Since h is continuous on T

and T is compact, h is uniformly bounded on T: |h[ < M. Then, for fixed
(Zl’ ZZ) € Pa

h(¢s, ¢2) 1 ( ) ‘(Zz>v2
= : h,,
€ —z)(&2 —z2) &1l v,% 0 (1. &) 1 )
converges absolutely and uniformly on T, and we can interchange summation
and integration:

~ (LY. h(E &)
Q) = <2m'> fr C = 2)E — ) ¢, dé,
> ’ fT—é_{g%%g—:‘*leél ¢, = Z a,,,,z\'z%

Il
=
s

I
(=]
N
e
N
oF
P OUERS
[\®]
S|

vi,v2=0
with
1Y’ J(€1, ¢5)
Gypvy* = (2—m> 'fTWdél de,
The series converges for each 3 = (z,, z,) € P. O

Theorem 3.3. Let B = C" be a region, f complex differentiable in B. Then f
is holomorphic in B.

PROOF. Let 3, € B. For the sake of simplicity we assume 3, = 0. Then there
exists a polycylinder P about 3, such that P = B. Let T be the distinguished
boundary of P. From Theorem 3.1 f|P = ch(f|T). f|T is continuous so
from Theorem 3.2 f is holomorphic at 3,. O

12



3. The Cauchy Integral

Theorem 3.4. Let B = C" be a region, f holomorphic in B and 3, a point
in B. If P = B is a polycylinder about 3, with P = B, then there is a power

series B(3) = Y. a,(3 — 30)" which converges to f on all of P.
v=0
Proor. If fis holomorphicin B, then f|P = ch(f|T), where the distinguished
boundary of P is denoted by T. From Theorem 3.2 f|P can be expanded as
a power series in all of P. O

Theorem 3.5. Let the sequence of functions (f,) converge uniformly to f on
the region B with all f, holomorphic in B. Then f is holomorphic in B.

PRrROOF. Let 3, € B. Again, we assume that 3, = 0. Let P be a polycylinder
about 3, with P < B. Let 3 =(z(,...,z,)€P. N(&): = (&, — z1)...-
(&, — z,) is continuous and #0 on T'; therefore, 1/N(&) is also continuous
on T and there exists an M € R such that |1/N(&)] < M on T. (f,) converges
uniformly on T to f so for every ¢ > 0 there exists a vy = v((¢) such that
|f, — f] < ¢/Monall of T for v > v,. But then

SH_ S|t

N N_N'|fv”fl<8'

Hence f,/N converges uniformly on T to f/N and one can interchange the
integral and the limit.

f|P = lim (£|P) = lim ch(f,|T) = ch <lim (fv|T)> = ch(f|T).

f is continous on T since all the f, are continuous on T. From Theorem 3.2
it follows that f is holomorphic at the origin. O

o

Theorem 3.6. Let B(3) = Y. a,3" be a formal power series and G the domain
v=0
of convergence for B(3). Then f with f(3): = P(3) is holomorphic in G.

PrOOF. Let 3 be the set of all multi-indices v = (v, ..., v,), I, = 3 a finite
subset. Clearly the polynomial ) a,3" is holomorphic on all of C".
velo

Let 3, € G be a point, P a polycylinder about 3, with P = G. B(3) con-
verges uniformly on P to the function f(3). If one sets ¢,: = 1/k for ke N

then in each case there is a finite set I, = JIsuchthat Y a3 — f(3)| < gon
vel
all of P for any finite set I with I, = I = 3. For f,: = ) a,3" we have f
vely
holomorphic and for each ke N, |f, — f| < 1/k on all of P. Therefore (f;)
converges uniformly on P to f. From Theorem 3.5 f is holomorphic in P

and in particular at 3. O

13



I. Holomorphic Functions

Theorem 3.7. Let f be holomorphic on the region B. Then all the partial
derivatives f,, 1 < p < n, are also holomorphic in B. If P = B is a poly-

cyclinder with center at the origin and f(3) = Y. a,3’ on P, then
v=0

fz( av v zn...zvu—l cog¥n
,,3 I3 1 n

on P.

PROOF
1. Let P < B, 3, € P n €" Then there is an M e R such that |a,3}| < M

for all v, where Y a,3 is the power series expansion of f in P.If0 < g < 1
v=0

and 3,: = q-3,, then Z a,3% is dominated by M - Z q"™. Now 3, =
(24, ..., z,) with |z] # 0 for k=1,...,n It follows that

|av.vj.z‘il...Z;j_l...z:’lul =_v_ | v32| M- q|VI
zj| IJI

For u # j, Z q"* is a geometric series and therefore convergent. For u = j

v =0

Formally

o]
the convergence of ), v;q" follows from the ratio test:
v, j“o

(v + 1)g%i*! ovi+ 1
J q. m J

Vj
Vj—'d) J q ’ vj— o vj

=q<1

Hence the series

[
converges. By the comparison test the series Y. av;zj'---zP 71 -z is
v=0
also convergent at the point 3,, and therefore in P;,. Since P is the union of all
the P;, the series converges in all of P to a holomorphic function g;.

2. Let
* J
£ =0 zen bz 2 dE 4 Sz, 0,7,

The path of integration can be chosen in such a way that it consists of the
line segments connecting 0 to z; in the z;-plane. Thus f* is defined on P.
[+]

For hy(3: = g’ wehave () = %, h(3)and () = 3. (h).,(9. The path

14



4. Identity Theorems

of integration is a compact subset of P and the series converges uniformly
there. Hence one may interchange summation and integration and obtains

f*(t’)) =;0 (J:J (hv)z,(zl, ceesZj—1s c’ Zjt+1s- .- ,Z”) dc + hv(zla ce sOs s ’zn))

- i h(3)
= f(3)
Hence f,,(3) = /2,6) = 9,3)- =

We conclude this section with a summary of our results.

Theorem 3.8. Let B = C” be a region and f a complex function on B. The
following statements about f are equivalent:

a. f is complex differentiable in B
b. f is arbitrarily often complex differentiable in B
c. f is holomorphic in B. For every 3, € B there is a neighborhood U such

0
that f(3) = Y, a,(3 — 30)" in U. Here the a, are the “coefficients of
v=0
the Taylor series expansion”:

1 av, + - +v'f

avl...v,,= vl!.__v ' azvl. azvn(so)

d. For each polycylinder P with P < B, f|T is continuous and f|T =
ch(f|T).
ProOF. Nearly everything has already been proved, but we must still cal-

culate the coefficients a,. For simplicity let 3, = 0 and n = 2. In the proof
of Theorem 3.2 we obtained:

1 f(zl,ZZ) le de'

avn’z = (27Ii)2 T Z\il+1 . Z;2+1

From the Cauchy integral formula for one variable it now follows that

1 1 flzy4, z3)
MACIN f"l Zptt [27:1 zp*! dz; | 421

1 1 0" dz 1 ot
fK f( 215 ) = : f(’o) 0

v, ! 2mi JK1 9z% 2t T oy v, 0z 9z

a

4. Identity Theorems

Different from the theory of one complex variable, the following theorem
does not hold in C*: “Let G be a domain, M < G have a cluster point in
G and fj, f, be holomorphic on G with f; = f, on M. Then f, = f, in G.”

15



1. Holomorphic Functions

There is already a counter-example for n = 2. Let G: = C%, M: =
{(z1,22) € Gizy = O}, fi(21, 22): = 25 g(21, 22), fa(21, 22): = 25 " h(zy, 25)
with g and h holomorphic on all of C2. Then f;|M = f,|M, but f; # f,
forg # h.

Theorem 4.1 (Identity theorem for holomorphic functions). Let G = C"
be a domain and f,, f, be holomorphic in G. Let B = G be a nonempty
region with f1|B = f,|B. Then f|G = f,|G.

ProOF. Let B, be the interior of the set {3 € G:f1(3) = f,(3)} and W,: =
G — B,. Because B = B, B, # . Since G is connected it suffices to show
that W, is open, for then B, = G follows. Let us assume W, contains a
point 3, which is not an interior point. Then for every polycylinder P about
30 with P G, PN B, # . LetreR and P: = {3:|z; — 20| < r} =
{3:dist'(3, 30) < r} be such a polycylinder. Let

= {3:dist'(3, 30) < r/2} < P.

Then also P’ n By, # . Choose an arbitrary point 3, € P’ n B, and set
= {3:dist'(3, 3;) < r/2}. Clearly 3, € P* and P* < P (triangle inequality).
Therefore P* < P < G. Let

0

A0 = T aG-sr  and 50 = 3 b6 - s

v=0

be the Taylor series expansions of f; and f, in P*. Since f; and f, coincide
in the neighborhood of 3, € By, a, = b, for all v.(The coefficients are uniquely
determined by the function; cf. Theorem 3.8.) Therefore f;|P* = f,|P* and
P* = B,. It follows that 3, € By, a contradiction. O

Theorem 4.2 (Identity theorem for power series). Let G = C" be a

domain with 0 € G, and Z a,3", Z b,3" two power series convergent in G.
v=0 v=

o

If there is an ¢ > O such that Y a3’ = Z b,3" in U,0) = G, then
v=0 v=0

a, = b, for all v.

oo}

PrROOF. Let f(3): = Z a3’ 9G3): = Z b,3" for 3€ G. By Theorem 3.6 f

and g are holomorphlc in G, and dlﬁ'erentlatlon gives:

av1+~~'+v,f _ av1+'~+v,,g

T A ... A - = f... !.
ozy* - -+ Oz ©) ozt -+ - oz ©0) = vy! v,!-b,.

Then a, = b,,. O

16



5. Expansion in Reinhardt Domains

5. Expansion in Reinhardt Domains

In this section we shall study the properties of certain domains in C"
in some detail.

Let r,, r, be real numbers with 0 <7, <r, for 1 <v < n Letr =
(ry,...,r,) e Vbechosenso thatr, < r, < r, forall v. Then T = =
r, for all v} is an n-dimensional torus. We define

H: = {3:7, < |z,| < 7 forall v}
P: = {3:|z,| < r, for all v}.

Clearly H and P are Reinhardt domains.

Izzl

s

g

|Zl[

Figure 3. Expansion in Reinhardt domains.

Let f be a holomorphic function in H. Then for all r € ©(H), ch(f|T;) is a holo-
morphic function in P, = {3:|z,| < r, for all v} (and therefore a fortiori in P).
Proposition. g:P x t(H) — C with g(3, t): = ch(f|T,)(3) is independent of r.
ProOF. We have

n dé" dﬁ”—l “ e
ch(f|T)G) = (27::) ~J;¢" l=m &, — 7, J;ﬁn-nl=r"_, -z
fm =r 51 f(fl, ceos En)

For each j with 1 < j < nwe have |z;| < r; = |&;|; therefore z; # ¢;. Hence
the integrand is holomorphlc on the annulus {z;:r; < |z < r{} and from
the Cauchy integral formula for one variable it follows thatifr = (rl, ., Ty E
t(H) and v* = (r}, ..., r;) € 1(H), then

f(él:""é)dcj - ﬁgl_r*f(fl,.“,én)dfj-

1&jl=r; é -—Z fj_zj

This yields the proposition. O

17



1. Holomorphic Functions

Theorem 5.1. Let G = C"beadomainand E: = {3 = (zy,. .., z,) € C" with
zy = 0}. Then the set G': = G — E is also a domain in C".

PRrOOF
1. E is closed, therefore C* — E is open, and hence G' = G n (C" — E)
is also open. Moreover, E contains no interior points.
2. We write the points 3 € C" in the form 3 = (z,,3*) with 3* € C"~!. Now let
= (z9,3*@) e Gandlet U.(30) = U,(z{?) x U.(3*®)bean e-neighborhood
of 30- We show that U, — E is still connected. Let 3; = (z{",3*") and 3, =
(2, 3*®) be two arbitrary pointsin U, — E. Then we define 35: = (2, 3*V).

z

—
U.(30)

Figure 4. Proof of Theorem 5.1.

Clearly 35 € U, — E. U,(z{?)) is an open circular disk in the z,-plane, and
U,(z{?) — {0} is still connected. Hence there is a path ¢ which joins z{!’ and
Z{? and lies entirely within U,(z{”’) — {0}; naturally there is also a path
which joins 3*" and 3*® and which lies within U,(3*®).

We now define paths wy, w, by wy(£): = (@(t), 3*V)and w,(£): = (22, ¥(2)).
Then w, joins 3, and 33, w, joins 35 and 3,, and the composition joins 3, and
3, in U, — E. Therefore U, — E is connected.

3. Let 3,3 € G — E and let ¢ be an arbitrary path which joins 3’ and 3"
in G. Since ¢(I) is compact, one can cover it with finitely many polycylinders
U,...,U,suchthat U; « GforA =1,...,¢

Lemma. There is a 6 > 0 such that for all ¢, t" € I with |t — t"| < 8, o(t'),
o(t") lie in the same polycylinder U,.

ProOF. Let there be sequences (t}), (t/) el with |t; — tj| - O such that
o(t;), o(t]) do not lie in the same polycylinder U,. There are convergent sub-
sequences (£} ), (t7,) of (t), (). Let to: = lim ¢}, = 11m tj,. lf o(to) € Uy, then

there is an open nelghborhood V=Vity)c1I w1th ¢(V) < U,. Then for
almost all ve N, tj, € V and ¢}, € V, so that ¢(t},) € U, and ¢(t},) € U,. This
is a contradiction, which proves the lemma.

Now let 6 be suitably chosenand0 = ¢, < t; < --* < t;, = 1 bea partition
of Iwitht; —t;_; < dforj=1,...,k Let3;: = ¢(t;) and V] be the poly-

18



5. Expansion in Reinhardt Domains

cylinder which contains 3;, 3;- ; (it can happen that V; = V;, for j; # j,). By
construction 3;_ liesin V; N V;_;,s0 V; n V;_ is always a non-empty open
set. Indeed, V, " V,_; — E # forj=1,...,k.

We join 3’ = 30€ V; — E and a point 3; € V; n V, — E by a path ¢,
interior to V; — E. By (2) this is possible. Next we join 3} with a point
35 € V, n V3 — E by a path ¢, interior to V, — E, and so on.

Finally, let ¢, be a path in V;, — E which joins 3;_, with 3, = 3" € V;, — E.
The composition of the paths ¢, . . ., ¢, connects 3’ and 3" in G — E. O

Theorem 5.2. Let G be a domain in C", Ey: = {3 = (z,...,2,)€C":2, =0
for at least one v}. Then Gy: = G — E, is also a domain.

ProOF. For each pu with 1 < u < n, G,:G — E, is connected, where

E,:={3=(z,...,2,)€C":z, = 0}. This follows from Theorem 5.1 by

a simple permutation of the coordinates.

Clearly E, = () E,; therefore G, = (((G — E;) — E;)---) — E,. A
=1
trivial induction proof yields the proposition. O

Theorem 5.3. Let G = C" be a proper Reinhardt domain, f holomorphic on
G,30€ G n € Then ch(f |T;,) coincides with f in a neighborhood of the
origin.

PrOOF. We have Go: = 1(G n €") < {re Virj#0forj=1,...,n}.
1. G, is a domain:

a. G n C" is a Reinhardt domain; therefore G, = 7(G n €") is open by
Theorem 1.2.

b. Ifry, r, are points in G,, then there are points 3,€ G N ¢ with 1(3p) = 1,
for p = 1, 2. As shown above, G N ¢ is a domain, so that there is a
path ¢ in G n C" which joins 3, and 3,. Then 7 o ¢ is a path in G, which
joins r; and r,.

2. Let
B: = {r € Gy:ch(f|T) coincides with f in the vicinity of 0}.

a. Bisopen: Ift, € B = G, then there is a neighborhood U(ry) = G, which
can be written t(H). This follows from the way we chose the set 7(H) at the
beginning of this section. Let P = P(0) be the corresponding polycylinder.
Then for 3 € Pand r € U(x,) we have ch(f|T,)(3) = ch(f|T,,)(3). Moreover
g(3): = ch(f|T,,)@3) is a holomorphic function on P which coincides
with f near the origin because r € B. Therefore Uj(r,) < B.

b. W: = G, — Bis open: The proof goes as in (a).
¢. B # (J: There is a polycylinder P;, about 0 with P,, = G. Then f|P,,
ch(f|T;,) and xo: = (|27, ..., |z?)) lies in B.

(1) and (2) imply B = G,. O
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I. Holomorphic Functions

Theorem 5.4. Let G = C" be a proper Reinhardt domain, f holomorphic in G.

Then there is a power series B(3) = Y. a,3" which converges in G with

v=0
JG3) = B@) for 3 G.
PROOF. If 3, € G then there is a 3; € G with [20| < |2{V| forj = 1,...,n;

therefore 3, € P,,. Let ch(f|T;,)3) = Y, a,3" for 3 € P,,. The coefficients a,
v=0

are those of the Taylor series about 0; they do not depend on 3,. Since

30 was arbitrary it follows that the Taylor series of f about O converges in

all of G. It defines a holomorphic function g, which coincides with f near

the origin. By the uniqueness theorem, f = g on G. O

Def. 5.1. If G = C" is a proper Reinhardt domain, then G: = Ut P, is
3eGnC"

called the complete hull of G.

Remarks

. G is open.

. G < G.If 30 € G, then there is a 3, € G N " with 30 P;, = G.

. G is a Reinhardt domain. Let 3, € G, 3; € G n C" with 3, € P,,. Then
T, <P, c G.

4. G is complete. Let 30€ G n €", 3, € G n € with 30 € P,,. Then P, <

P, cG.
5. Gsis minimal for the properties (1) through (4). Lec v = G4, G, a complete
Reinhardt domain. If 3 € G n €", then P, c G,. Therefore G = G,.

W N =

G is the smallest complete domain which contains G and we have the
following important theorem.

Theorem 5.5. Let G be a proper Reinhardt domain, f hglomorphic in G.
Then there is exactly one holomorphic function F in G with F|G = f.

ProoF. By Theorem 5.4 we can write in G

[e]

@ =X a3
The series is still convergent on G, and actually converges to a holomorphic
function F. Clearly F|G = f. The uniqueness of the continuation follows
from the identity theorem. O

Forn > 2 we can choose sets Gand G in C"so that G # G. This constitutes
a vital difference from the theory of functions of a single complex variable,
where for each domain G there exists a function holomorphic on G which
cannot be continued to any proper superdomain.
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6. Real and Complex Differentiability

We conclude this section with an important example of such a pair of sets
(G, G)with G # G forn = 2.

Let P: = {3e C*:[3] < 1} be the unit polycylinder about the origin and
D:={3eC%q; <|z| <1, |25/ < g} with 0<g; <1 and 0 <g< 1
Then H: = P — D is a proper Reinhardt domain, and H = \J P,=P.

€eHgo
The pair (P, H) is called a Euclidean Hartogs figure. Their in:age in abso-
lute space appears in Fig. 5.

|22|T

—D

q1 |zl

Figure 5. Euclidean Hartogs figure in C2.

The basis for the difference here between the theories of one and several
variables is that such a Hartogs figure does not exist in C. We already noted
that Reinhardt domains in C are open disks and annuli. Therefore a proper
Reinhardt domain in C is an open disk, i.e., a complete Reinhardt domain.
Hence G is not a proper superset of G.

6. Real and Complex Differentiability

Let M < C" be a set, f a complex function on M. At each point 3, e M
there is a unique representation f(3o) = Re f(30) + i Im f(3).
Therefore one can define real functions g and h on M by

g(x, 9) = Re f(3)
h(z, ) = Im f(3)

where 3 = x + iy. We then write:
f =g+ ih
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1. Holomorphic Functions

Def. 6.1. Let B — C" be a region, f = g + ih a complex function on B,
30 @ point of B. f is called real differentiable at 3, if g and h are totally
(real) differentiable.

What does real differentiability mean? If g and h are differentiable, then

g(x, 1) = g(x0, no) + Z (x, — xMoas(x, 9) + Z (yy — YM)3*(x, ),
(1)
h(z, v) = h(xo, o) + Z (x, — xXM)B3(x, v) + Z (v — YO8 (x, );

where o3, o*, 5, B* are real functions on B which are continuous at (xy, 1))
and for which

«3(%0, Do) = gx,(¥0, Do)
0y *(%0, Do) = gyv(xo, Do)
Bi(20, Do) = hy,(%0, Do)
By (205 Do) = h, (%0, Do)

We combine the equations:

@ O =6+ T (5= EVLG + T 0= 1) A7)

where 4% = o} + if; and A}* = o}* + iB;* are continuous at 3, and where

4330) = 9x,30) + ihe,(30) = :f..(30)
43*(30) = 9,,(30) + ih,,(30) = /5,(30)-

Theorem 6.1. Let B — C" be a region, 3, € B a point, f a complex function
on B. f is real differentiable at 3, if and only if there are functions 4, 4;
on B which are continuous at 3, and satisfy in B the following equation:

O 0= f6o)+ ¥ - &)L+ ¥ @ -0 80,

PrOOF
1. Let f be real differentiable at 3,. We use the equations

Xy — xiO) = %[(Zv - Zim) + (7" - 7(vO))]
and

=W = —i [z — 29 — @z, — Z9)].
Then

n *x - .A**
JG3) = fGo) + vzﬁ (z, — (0))_"(3)2—141(3’) + Z @, — 29) 430) "'21 v (3)
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6. Real and Complex Differentiability

If we define
A;: = u and A" ﬂ

then (3) is satisfied.

2. Let f(3) = f(30) + Z (z, — 27) 4,3) + Z @, — Z9) 4,3), 4., 4y

continuous at 3,. The equatlons 4, = (4, — A**)/2 4y = (4 + id30)/2
appear in matrix form as

4\ 1 (1 =i\ (4
47) 2 \1 i) \ar
1 —i
A'_<1 i)'

Then det 4 = 2i # 0. That means that the equations can be solved for
4y and 4}*. The solution functions satisfy equation (2); (1) follows from
decomposition into real and imaginary parts. Since the values of the func-
tions ay, o*, B, Bi* are uniquely determined at the point 3,4, the same must
be true of the functions 4;, 47 O

Let

We now write:

J2(30): = 44(30) = %I:fxv(?)o) - ifyv(30):|’
ol = 8800) = 3| el + 860 |

Theorem 6.2. Let B < C" be a region 3o € B, f a complex function on B. f
is complex differentiable at 3, if and only if f is real differentiable at 3, and
f2.30) = 0 for 1 < v < n. (This means that the Cauchy-Riemann differ-
ential equations must be satisfied:

ng = h}’v
forl <v<n)
hxv = _gyv
PRrOOF.
1. Let f(3) = f(30) + Z (z, — 29 A(3), 4,(3) continuous at 3,. Then

G = fGo) + Zl (z, — 2) 4,3) + ‘;1 (z, — Z\7) 45(3) with 4,3) = 4,(3)
and 4;(3) = 0, so that f; (30) =0 for 1 < v < n.
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1. Holomorphic Functions

2. Let f be real differentiable and f; (30) = O for 1 < v < n. Then f(3) =
fG) + Y (@ — 246 + Y @, — Z)4/(3) with 47(3) =0 for
v=1 v=1

v=1,...,n

We define
0 ifz, = z©
. = _ =(0)
o, (3): ﬁ -47(3)  otherwise.
Since
7v - 730)
z, — 20

is bounded except at z{”’ and lim 4//(3) = 0, it follows that «, is continuous
3730

at 3o. But then
@ = 16o) + ¥ (& — 2 40 + ¥ @ — ) 4G)

= fGo) + X (2 = Z0)4 + 0,)3)
Therefore f is complex differentiable at 3,. O

We mention another differentiation formula.
1. If f is real differentiable at 3,, we have at 3,

a. f,= (s forl<pu<n
b. f,= (f)., forl<p<n

2. Let f be twice real differentiable in a neighborhood of 3,. Then at 3,

a. fzvz,, = fz,,zv
b. foz = foz for all v and p.

C. fzvz,, = f;;,‘zv

Theorem 6.3 (Chain rule). Let B,, B, be regions in C", respectively C™.
g =1(g1,--.>9gm):B; = C™ be a mapping with g(B,) < B,. Let 3, € By,
wy: = ¢(30) and f a complex function on B,. If all g,, 1 < pu < m, are
real differentiable at 3, and f is real differentiable at w, then fo g is real
differentiable at 3, and

m

(f° 9),(30) = 21 (S0, (®0)) - ((94):,(30)) + 1 (f5,(®0)) - (()z,(30)),

u=

(£ 900) = 3 (o0 (G000 6) + 3 (o 0)) (@) 30))

PROOF. As in the real case, the proof follows from the definitions. O

24



6. Real and Complex Differentiability

Let B =« C" be a region, f = (f,...,f,):B — C" a real differentiable
mapping. Then we can define the complex functional matrix of f:

v=1...,n | v=1,...,n

2 2 I 2 2

Jy= (fv””)y=1,...,n E (r.z) =1,...,n
’ v=1,...,n | v=1,...,n
(ﬂ”“),u=1,...,n | (ﬂ”‘ =1,...,n

We assert that 4,: = det J, agrees with the usual functional determinant
as it is known for the real case. A series of row and column transformations
is necessary for the proof: We have

f;’,zu = %(fv,x” - ifv,y”)9
foz, = 3(fos, + 1)
If we add the (n + u)-th to the u-th column, we obtain

B mm)tgnn+mm5
4““«mw)Taﬂ&+mww

_ A-n (f;r x,,) I (fv Xu if“)’u)>
4, =2 “«an AT )

Subtracting the y-th from the (n + p)-th column yields

_9-n {(fv,xu) I (ifv,y,,)\
A= 2 G T @)

- e (e | )

Since f, = g, + ih,,
fv,x,, = gv,x,, + ihv,xua j:z,xu = gv,xu - ihv,x,,a
f;',y” = gv,yu + ihv,y”’ j:',yu = gv,y” - ihv,y”'
We add the (n + v)-th row to the v-th row and obtain

|
Ay = 27"i" det <2gv’x“) ——y-T Cun) )
gv,x” - v x” (gv Yu lhv, y”)

. (9v.5,) ! (gv ) )
= " det o LA 2
<(gv,x” - lhv,x”) 1|— (gv,y lhv y“)
Subtraction of the v-th from the (n + v)-th row gives
. @v.x) | (@) > <(gv ) | @, ))
A, = i" det {-—% i 2 Y det (20X | IVon ),
d Q—WQ:(HMQ () | (hy)

This is precisely the functional determinant det Jp of the real mapping
F = (gb'--:gmhla"‘ahn)'

therefore

therefore

—
ath
®

=
-
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I. Holomorphic Functions

7. Holomorphic Mappings

Def.7.1. Let B = C" be a region, ¢,,...,d, complex functions on B.
g =1(g1,-.-,9m):B - C™is called a holomorphic mapping if all the com-
ponent functions g, are holomorphic in B.

Theorem 7.1. Let B; = C", B, = C™ be regions, g = (91,-..,9m):B1 = B,
be a mapping. g is holomorphic if and only if for each holomorphic function
f on B, f o g is a holomorphic function on B,.

PRrOOF. Let g be a holomorphic mapping. Then all the component functions
g, are holomorphic, that is, (g,), = O for all v and p. If f is holomorphic,
then f; = O for all y, f o g is real differentiable, and from the chain rule it
follows that

(f ©° g)iv = Zl fw,, ' (gu)'z'v + Zl fﬁz,, : (gu)fv =0 for V= 1, cee, N

Conversely, set f(w) = w,, if the condition is satisfied. Then f o g(3)
gu(3)-

o

From this theorem it follows that f o g: B, — C'isaholomorphic mapping
if g:B; — B, is a holomorphic mapping and f:B, — C' is a holomorphic
mapping.

Def. 7.2. Let B = C" be a region, g = (g4, - - . , g,,) @ holomorphic mapping
from B into C™. We call
N )
.., n

. u=
i,‘ng' = <(gu,zv) v =
Theorem 7.2. Let 3y, € B, wy, = ¢(30), f and g as above. Then
M. 4(30) = My(wo) o My(30)-

Pt
- -

the holomorphic functional matrix of g.

PROOF' (intfog)vu = (f;r ° g)zu = ),Z fv,wl : gl,z“ = (intf ° intg)vu* O
=1

Def. 7.3. Let B < C" be a region, g = (g4, ..., gn):B — C" a holomorphic
mapping. M,: = det M, is called the holomorphic functional determinant
of g.

Theorem 7.2 implies:

Theorem 7.3. Let the notation be as above and letm = n = 1. Then M, , =
Mf M

g
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7. Holomorphic Mappings

Complex functional determinants of a holomorphic mapping have the
following form:

— Gv.z) __(9vz)) _ .(Q&@l_l____o__>
4y = det ((gv,,”) (gv,,,,)> d"‘( |

= det((g,,,,)) - det((g,z,))
= det((g,,5,)) - det((g,,,)) = |det((9,,2,))|> = [M,|%,

i.e, they are real and nonnegative. This means that holomorphic mappings
are orientation-preserving.

Def. 7.4. Let B,, B, be regions in C". A mapping g:B, — B, is called
biholomorphic (resp. invertably holomorphic) if

a. g is bijective, and
b. g and g~ ! are holomorphic.

Theorem 7.4. Let B = C" be a region, g:B — C" a holomorphic mapping.
Let 30 € Band wy = ¢g(39). There are open neighborhoods U = U(3o) < B
and V = V(wy) = C" such that g:U — V is biholomorphic if and only if
Mg(?)o) # 0.

PROOF

1. There are open neighborhoods U, V such that g:U — V is biholo-
morphic. Then 1 = My, (30) = M,-1(wo) - M,(30), hence M,(3,) # 0.

2. g is continuously differentiable, and the functional determinant M, is
continuous. If M (30) # O, then there exists an open neighborhood W =
W(30) = Bwith (M,|W) # 0.S0 4,|W # 0and g is regular (in the real sense)
at 3o.

There are open neighborhoods U = U(3¢) « W, V = V(w,) such that
g:U - V is bijective and g~ = (g, . . ., J.) is continuously differentiable.

g °g~'|V = idyis a holomorphic mapping. It follows that

0=00°9 % =2 Gvz Fam + 2 Oz Iaw, = 2 vz Jaw,:
A=1 A=1 A=1

For each u, 1 < p < n, we obtain a system of linear equations:

gbﬁ’”
0="M,o
gn w,
Since det M, # O there is only the trivial solution: §, ; = 0 for all A and
all u. This holds in all of V. Therefore the Cauchy- ~Riemann differential
equations are satisfied and g~ ! is holomorphic. 0O

Theorem 7.5. Let B = C" be a region, g = (¢4, - - . , g,) holomorphic and one-
to-one in B. Then M, # 0 throughout B.
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1. Holomorphic Functions

This theorem is wrong in the real case: for example y = x3 is one-to-one,
but the derivative y’ = 3x? vanishes at the origin.

We shall not carry out the proof of Theorem 7.5 here. (It can be found as
Theorem 5 of Chapter 5 in R. Narasimhan: Several Complex Variables,
Chicago Lectures in Mathematics, 1971.)

Theorem 7.6. Let B, = C" be a region, g:B; — C" one-to-one and holomor-
phic. Then B,: = g(B,)is also anopenset andg~*:B, — B, is holomorphic.

Proor

1. Let wy € B,. Then there exists a 3, € B; with ¢g(39) = wo. From
Theorem 7.5 M, # 0 on B;, and therefore there are open neighborhoods
U(30) = By, V(wy) = C" such that g:U — V is biholomorphic. But then
V = g(U) = g(B;) = B,; that is, w, is an interior point.

2. From (1) for each w, € B, there exists an open neighborhood V(w,) =
B,, such that g~ !|V is holomorphic. O

28



CHAPTER 11

Domains of Holomorphy

1. The Continuity Theorem

In this and the following sections we shall systematically treat the problem
of analytic continuation of holomorphic functions.

Let P = {3eC"|3| <1} be the unit polycylinder, qy,...,q, with
0 < g, <1lforl < v < nbe real numbers. Then for 2 < u < n we define:

D,:={3eP:|zy| < gqandgq,<|z|<1},D:= | ) D,andH:=P - D =
n=2

() (P — D,). Then
n=2
H = {3€P:|zy| > qyor|z,| <g,for2<pu<n}

= {3eP:q, <|zy|} v {3€P:|z,| < g,for2 < p<n}

(P, H) is called a “Euclidean Hartogs figure in C".” H is a proper Reinhardt
domain, A = P its complete hull.

Def. 1.1. Let (P, H) be a Euclidean Hartogs figure in C", g: = (gy, - - -, gn):
P C" be a biholomorphic mapping, and let P: = g(P), H: = g(H). Then
(P, ) is called a general Hartogs figure.

We shall try to illustrate this concept intuitively for n = 3. The Euclidean
Hartogs figure in absolute space appears in Fig. 6. In the future we shall use
the following symbolic representation in C". (Actually the situation is much
more complicated.)
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I1. Domains of Holomorphy

|23H

|24

Figure 6. Euclidean Hartogs figure in C3.

g=>01---,9)

Figure 7. Symbolic representation of a general Hartogs figure.

Theorem 1.1. Let (P, H) be a general Hartogs figure in C", f holomorphic in
H. Then there is exactly one holomorphic function F on P with F|H = f.

ProoOF. Let (P, H) = (g(P), g(H)), g: P — C" be biholomorphic. Then f o g
is holomorphic in H and by Theorem 5.5 of Chapter I there is exactly one
holomorphic function F* on P with F*|H = fog. Let F = F* o g~ '. Then
F is holomorphic in P, F|H = f, and the uniqueness of the continuation
follows from the uniqueness of F*. O

Theorem 1.2 (Continuity theorem). Let B = C" be a region, (P, H) a general
Hartogs figure with H < B, f a holomorphic function in B. If P n B is
connected, then f can be continued uniquely to B L P.
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1. The Continuity Theorem

Figure 8. Illustration of the continuity theorem.

PROOF. f: = f|H is holomorphic in H. Therefore there exists exactly one
holomorphic function f, in P with f,|H = f;.

._J 16 3€B
Let F@B): = { £6) for e b

Since B N P is a domain and f|H = f,|H it follows (from the identity
theorem) that F is a well-defined holomorphic function on B u P. Clearly
F|B = f. The uniqueness of the continuation is a further consequence of the
identity theorem. O

The continuity theorem is fundamental to all further considerations.

Theorem 1.3. Letn > 2, P: = {3:|3| < 1} be the unit polycylinder,0 < r9 < 1
forv=1,...,n P, = {3|z| <r forall v} and G: = P — P,. Then
every holomorphic function f on G can be extended uniquely to a function
holomorphic on P.

N

|21

31® 130

*32

Figure 9. The proof of Theorem 1.3.
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Proor

1. Clearly G is a region. If 3, = (z{",...,2z¥), A = 1, 2, are given,
then the points 7(3,), t(3,) also lie in G. For A = 1, 2 we can connect 3, on
the torus T;, = G with 7(3;). Define @,;:1 - C" by ¢,(t): = (@), ...,
ZP(@) with zZP@): = 2P| + ¢ (max(|z"|, |z2P|) — [2P]) for 1 = 1,2,
v=1...,nClearly |zZ]()| > |2’| > rdforv =1,...,nso that 9,() € G
forteland A = 1, 2.

¢1(20) 0<t<3
p2-2) i<t<l
@ joins 1(3,) with 7(3,). Hence G is connected, and so is a domain.

2. For v=1,...,n let Ey: = {z,€ C:|z,| < 1}. Choose zJ e C with
rd < |z2| < 1 and set

Let 0(0): = {

2z, — 20

T(z,): = 72"2”—_1, 9(z1s s 2) = (21 ooy Zu—1, T(24)).
g:P — P is a biholomorphic mapping with g(0,..., 0, z0) = 0. If U =
U(z0) = {z,€ C:ry < |z,| < 1}isan open neighborhood, then E;, x -+ x
E,_1) x U = G, and therefore E(;) x -+ x Eg_qy X T(U) = g(G). Choose

1 1z
p 9(P)
-9 g(P.)
i H
Pfo
| -

Figure 10. The proof of Theorem 1.3.

real numbers ¢q,,..., g, with 1 < g, <1 for v=1,..., n— 1 and
{Wn:|Wa| < gn} = T(U). Then

H:={weP:q <|w|}u{weP:|w,| <g,forp=2...,n}
is contained in ¢(G) and (P, H) is a Euclidean Hartogs figure. (P, A) with
P: = g (P) = Pand A: = g~ '(H)is a general Hartogs figure with H = G.
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1. The Continuity Theorem

Moreover, P n G = G is connected. The proposition now follows from the
continuity theorem. O

The preceding theorem is a special case of the so-called Kugelsatz:

Letn = 2,G = C" adomain, K = G a compact subset, G — K connected.
Then every function holomorphic in G — K can be uniquely extended to a
function holomorphic on G.

The proof of the Kugelsatz is substantially more difficult than that
of the preceding theorem. An important tool in its proof is the Bochner—
Martinelli integral formula, which is a generalization of the Cauchy integral
formula to a domain with piecewise smooth boundary.

Theorem 1.4. Letn > 2, B — C"be aregion, and 3, € B. Let f be holomorphic
in B: =B — {30} Then f has a unique holomorphic extension on B.
(For n = 2 there are no isolated singularities.)

Proor. Without loss of generality we assume that 3, = 0. Let P be a poly-
cylinder about 3, with P = B, P': = P — {3,}. This is the situation of
Theorem 1.3; so there is a holomorphic function F' in P with F'|P" = f|P".

F@) 3eP
Let F@R): = { ,
9 =Ve  ses.
F is the holomorphic continuation of f to B. O

Def. 1.2. Let G = C" ! be a domain, g:G — C a continuous function. Then
={3eC x G:zy =¢g(z,,... ,,)} is called a real (2n — 2)-dimensional
surface If g is holomorphic, then F is called an analytic surface.

Theorem 1.5. Let G = C"™ ', G, = C be domains, g:G — C be a continuous
function with g(G) = G, and 3o € F = graph(g). If U = U,) < G: =
G, X G is an open neighborhood and f is a holomorphic function on S: =
(G — %) U U, then f has a unique holomorphic extension to G.

Proor. The uniqueness of the extension follows from the identity theorem
because G is a domain. For the proof of existence we treat only the case
G = {3 € C":[3*| < 1}, G, = E, (then G = P, the unit polycylinder in
C"), and in addition assume that |g(3*)| < g < 1 for fixed g€ R and all
3* € G. The proof is in two steps:

1. S = (G — %) u U is connected.

a. Let 3,, 3, be points in G — %. Then define

1 1
3= (—;j, Z0, ..., zf,”), 3= (—E—g, 29 ..., 25,2))‘
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II. Domains of Holomorphy

3, and 3} lie in the punctured disk

(E(l) - {g(z(Zl), sy ZSIA))}) X {(Z(ZA): ceey Zsl“)}

and can therefore be connected by a path which does not cross &. The line
segment connecting 3% and 3} also lies in G — %, so we can join 3, and 3,
by a pathin G — %.

b. If3, e U, 3, € G — &, let U, be the connected component of 3, in U.
Since U; — & is non-empty, we can join 3, in U, witha point3; e U, — Z.
In particular, 3 then lies in G — % and by case (a) we can join it with 3,.
If3,, 3, € U then both points can be connected with a point 3, € G — % and
therefore with one another.

EAN

1

31 32

=
73 N
//’6\4\ \—% <\
30 \

lz2)s - - - |2

Figure 11. The proof of Theorem 1.5.

2. Letn:C x C"~! - C"~ ! be the projection onto the second component.
Then n|# : # — G is a topological mapping with (z|#) ™! = gand n(# n U)
is an open neighborhood V of 35: = 7(30).

Let h(zy, ..., 2,): = (idg,(21), h3(23),- .., H(z,)) With R}(z,): = (z, — 20)/
(z%2, — 1) for v=12,...,n h:P - P is a biholomorphic mapping with
h(0) = (0, 35). Set g,: = q and choose g, with 0 < g, < 1 forv=2,...,n
so that h({(w,,...,w,) e P:jw,| <gq, for v=2,...,n}) is contained in
E, x V.

LetH: = {we P:lw,| < g, forv =2,...,n} U {we P:g; < |w,|}. Then
(P, H) is a Euclidean Hartogs figure and (P, H) with A: = h(H) is a general
Hartogs figure. Clearly H < (Ey, x V) U {3€ P:qy < |z,|} = Sand by (1)
PN S =S is connected. The proposition follows from the continuity
theorem. O

Remark. If g is holomorphic, therefore # an analytic surface, then there
is a holomorphic function f on G — & which does not permit a holomorphic
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2. Pseudoconvexity

extension beyond &. For example set

*). __ 1 .
f(2113 ) zy — 9(3*)
Proor. Assume there existed a point 3, € & and an open neighborhood
U = U(3) = G such that f had a holomorphic extension F defined on
(G — %) U U. Then there would be a sequence (3;) of points of G — %)
which converged to 3, and clearly as 3; — 3o, | /(3;)| would tend to infinity.
But since F is continuous at 3, we would have lim f(3;) = lim F(3;) =

j— o j= o

F(30) and that would be a contradiction. a

With much more effort, one can prove the converse:

If # < Gisareal 2n — 2)-dimensional surface and there is a holomorphic
function f in G — & which is not holomorphically continuable to G, then F
is an analytic surface.

2. Pseudoconvexity

Def. 2.1. Let B = C" be a region. B is called pseudoconvex if for all general
Hartogs figures (P, H) with H < B, all of P lies in B.

Def. 2.2. Let B = C" be a region. f holomorphic in B, 3, € 0B a point. f is
called completely singular at 3, if there exists a neighborhood V = V{(3,)
such that for any connected neighborhood U = U(3,) with U < V.
There is no holomorphic function F which in a non-empty open subset
of U n B coincides with f.

Def. 2.3. Let B = C" be a non-empty open set. B is called a region of
holomorphy if there is a function f holomorphic in B which is completely
singular at every point 3, € B. If in addition B is connected, then B is
called a domain of holomorphy.

EXAMPLES

1. Since C" has no boundary it trivially satisfies the requirements of
Def. 2.3. Therefore C" is a domain of holomorphy.

2. The unit disk E;, = C is a domain of holomorphy, as is shown in
1-dimensional theory.

3. The dicylinder E(;, x E,is a domain of holomorphy: If f:E;, - C
is a holomorphic function which is completely singular on 0E), then
g:Ey, x E4) — C with g(zy, 2,): = f(z;) + f(2z,) is a holomorphic func-
tion which is completely singular on 0(E;, x Ey)).

4. Let (P, H) be a Euclidean Hartogs figure, 3, € 0H n P. For every
function f holomorphic in H there exists a function F holomorphic in P
with F|[H = f.If V is an arbitrary open neighborhood of 3, which is entirely
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1I. Domains of Holomorphy

contained in P and U is the connected component of 3, in V, then F|V is
holomorphic, U n H # &, and FIU n H = f|U n H. Therefore H is not
a domain of holomorphy.

Theorem 2.1. Let B « C" be a region, G = C" a domain with BN G # &
and (C" — B) n G # . Then for each connected component Q of Bn G

GNnIdQ NiB # .

Proor. We have G = Q U (G — Q). Q is open and not empty, and because
(C" - B)NnG # &, G — Qis also non-empty. Since G is a domain it does
not split into two non-empty open subsets. Hence G — Q is not open. Let
31 € G — Q not be an interior point. Then for every arbitrary neighborhood
U(3;) = Gitis true that U n Q # &. Therefore 3, lies in Q. If 3; € B then
there is a connected neighborhood V(3,) € B n G (with V n Q # J also).
But then Q U V is an open connected set in B N G which properly contains
Q. Since Q is a connected component this is a contradiction. Therefore 3,
does not lie in B. Hence it follows that 3, € 0Q N B N G. O

Theorem 2.2. Let G be a domain of holomorphy. Then G is pseudoconvex.

PrOOF. Assume that G is not pseudoconvex. Then there is a Hartogs figure
(P, H) with H = G but P n G # P. We choose an arbitrary 3, in H and
set Q: = Cp6(30)- Since H lies in P n G and is connected it follows that
H < Q. Furthermore, Q G P.

Since PN G # & and (C* — G) n P # J there is by Theorem 2.1 a
point z; € 3Q N dG N P.

Figure 12. The Proof of Theorem 2.2.

Let f be an arbitrary function holomorphic in G. Then f|Q is also
holomorphic, and by the continuity theorem there is a function F holo-
morphic in P U Q = P with F|Q = f|Q. Now if V = V(3,) = P is an open
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connected subset, then F|V is holomorphic, Q N V is open and non-empty,
and F|Q n V = f|Q n V. Therefore G is not a domain of holomorphy.
This completes the proof by contradiction. O

In 1910 the converse of the above theorem was proven in special cases
by E. E. Levi. The so-called Levi Conjecture, that this converse holds without
additional assumptions was first proved in 1942 by Oka for n = 2 and in
1954 for n > 2 simultaneously by Oka and by Norguet and Bremermann.
The proof is very deep and will not be presented here (see, for example, [7]).

To conclude this section, we will sketch the connection between the
pseudoconvexity of a domain G and the curvature of its boundary.

Let B = C" be a region, 3, € B and ¢:B — R a twice continuously dif-
ferentiable function. One can regard B as a subset of R?" and consider the
tangent space T,, and the space T, of the Pfaffian forms (see [21], [22]).
The total differential of ¢ at the point 3, is the linear form

(o), = 3, x(30) dx, + X ¢530) Ay, € T,

If f = g + ih is a complex-valued differentiable function, set df : = dg + idh.
Then dz, = dx, + idy,, dz, = dx, — idy, and we can write the differential
in the form

(o), = ¥, =30 2, + X :(30) d2.

Def. 2.4. A domain with C? boundary is a domain G = C" with the following
properties:
1. G is bounded.
2. For each point 3, € G there is an open neighborhood U =
U(3p) = C" and a twice continuously differentiable function ¢:U — R
for which

a. UnG={3eU:0(3) <0}
b. (dp); # 0 forall 3e U.

Remark. Under the conditions of Def. 2.4 the implicit function theorem
implies

1.0GNU = {3e U:¢(3) = 0};

2. there is (after a reduction of U if necessary) a C2-diffeomorphism
¢:U — B, where B — C" is a region such that (U n G) = {3€ B:x; < 0}
and #(U n 0G) = {3€ B:x; = 0}.

We say that (G, 0G) is a differentiable manifold with boundary.

Theorem 2.3. Let G = C" be a domain with C* boundary, U an open set with
U N 0G # &. Let ¢,y be two functions on U which satisfy the conditions
of Def. 2.4. Then there is a uniquely determined positive differentiable func-
tion h on U such that ¢ = h- .
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II. Domains of Holomorphy

Proor. We only need to show that for each 3, € U n 0G there is a neighbor-
hood V(30) = U and in V exactly one differentiable function h with ¢|V =
h - (Y|V). Therefore let 3o € U n 0G and W(3,) = U be chosen so that there
is a C2-diffeomorphism @: W — B < C" with ®(W n G) = {3e€ B:x; < 0},
&(W N 0G) = {3€ B:x; = 0}. Then the functions @: = o @™, §: =
Y o @~ ! are twice differentiable in B. Without loss of generality we assume
that @(3,) = 0 and B is convex (in the sense that for any two points in B
the connecting line segment lies in B). Define

1 09
hl(xla"'axm Vis - - 'ayn): = J‘O —a‘;c‘—(txla x23"~’yn) dt,
1

10
By(X1se e ey Xy Vip o oo s Yn): = fo gg:(txl,xz,...,y,,)dt.

Then @ = h, - x, and Y = h,-x,. Since (do),, # 0 and (dy),, # O, near
0@/0x, and 0y/0x, have no zeroes, 0 € B and the same holds for h,, h,. Set
h: = (hy/h,) > @ in a neighborhood of 3,. Then

h@3) - YR) = (ho @™)DE)) - W o 2™ )PE)) = (Z—;) (@R) F(PR)
= (b x)(®@)) = B(2R)) = ¢B).

Here h is continuously differentiable and, near 3,, has no zeroes. h is uniquely
determined, for outside dG we have h = @/y. O

Def. 2.5. Let B = C" be a region, ¢:B — R be twice continuously dif-

ferentiable, 3o € B. Then the quadratic form L, , with L, (w): =

12

Y. ©.2,(30)wiw; is called the Levi form of ¢ at 3,. ¢ satisfies the Levi
,Jj=1

condition if the following holds: If we C" and ). ¢,(30)w; = 0, then
i=1
L, ,(m) = 0.
Theorem 2.4. Let G = C" be a domain with C? boundary, 3o € 0G and U =

U(30) an open neighborhood. Let @, be two functions on U which satisfy
the conditions of Def.2.4. If ¢ satisfies the Levi condition at 3y, so does .

Proor. We can find a twice continuously differentiable positive function h

on Uwithy = h-¢.Nowletwe C"and ) ¥, (30)w; = 0. Then at 3,
i=1

I
M=

0 (h* @, + @ h)w;

i=1

=h-

i

™M=

@,,w; (because of p[0G = 0), so Y @,w; =0.
1 i=1
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3. Holomorphic Convexity

Tt follows that:

n

Ll[l(w) = z l/,ziijwiwj = Z (hzi(pij + wziijh + (Pzihfj)wiwj
1

(;;1 (ngwi> hfjwp

i,j=1 i,j=
where the last two terms vanish, as was shown above. Since k is positive, the
proposition follows. O

h- L,(w) + Zx y <pzjwj> h,wi + Y
i=1 \J=1 j=

ji=1

Def. 2.6. For a domain G = C" with C? boundary the Levi condition is
satisfied at a point 3, € dG if there is an open neighborhood U = U(3,)
and a function ¢ on U which satisfies the conditions required by Def. 2.4
so that at 3, ¢ satisfies the Levi condition.

Theorem 2.5. Let G = C" be a domain with C* boundary. Then G is pseudo-
convex if and only if the Levi condition is satisfied for every boundary point
of G.

This theorem will not be proved here.

3. Holomorphic Convexity

We will investigate whether there is a relationship between pseudocon-
vexity and the usual convexity of sets. We start with some observations
about convex domains in R

Let L be the set of linear mappings £:R?> — R with

£(x) = ax, + bx, + ¢, a b ceR.

A line g in R? is a set of points x = x, + to with t € R and appropriate
fixed vectors xy, b e R%, 0 # 0,

g={xeR¥x =%+, teR}

Now let £ € L with £(x) = ax; + bx, + ¢ and (a, b) # (0,0). For b # 0
let xo: = (0, —c¢/b),v: = (1, —a/b);forb = 0and a # Oletx,: = (—c/a, 0),
v: = (0, 1). Then

{(xeR*4(x) =0} = xeR:x =%+, teR}=g

We therefore have two distinct ways of describing a straight line. We shall
use whichever description is most suitable.

Let g = {xe R*:x = x, + tv, t € R} be a line. We denote the positive
ray {xe R*:x = x, + tv, t > 0} by g* and the negative ray {xe R*:x =
Xy + tv, t < 0} by g~. If g is represented by the mapping ¢, then we define

Hf:={xeR%{(x) >0}, H,;:={xeR> (x) <0}
These are the two half-planes determined by g.
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I1. Domains of Holomorphy

We shall use the following terminology: A4 set K lies relatively compact
in a set B(K < < B)if K is compact and contained in B.

Def. 3.1. Let M = R? be a subset. M is called geometrically convex if for
each pointx € R* — M thereisalinegwithxegand M < H,.

Remark. The intersection of convex sets is again convex.

Def. 3.2. Let M — R? be an arbitrary subset. Then M,: = {xe R%: £(x) <
sup £(M) for all ¢ € L} is called the geometrically convex hull of M.

Theorem 3.1 (The properties of the geometrically convex hull). Let M = R?
be an arbitrary subset. Then:

1. M = M,.
2. I\ZI . is closed and geometrically convex.
3. M, =M,.
4. Let M, =« M, = R2 Then(M,), = (M,),.
5. If M is closed and geometrically convex, then M = M,.
6. If M is bounded, then M, is also bounded.
Proor

1. Letx € M. Then for each ¢ € L, {(x) < sup {(M). Therefore x lies in M,.

2. Let x, ¢ M,. Then there exists an £ € L with £(x,) > sup Z(M). Since ¢
is continuous, it is also true that in an entire neighborhood of %, we have
{(x) > sup £(M). Therefore M, is closed. ¢* with £*(x): = £(x) — ¢(x) is 1n
L and ¢*(xo) = O, sup ¢*(M,) = sup £*(M) = sup £(M) — sup {(M) =
Therefore g = {r e R*: ¢*(x) = 0} is a line with xo € g and M, c H;

3. By (1) we have M, = M,. But forxe Me, {(x) < sup/(M,) < sup/(M)
for £ € L. Hence it is also true that M c M,.

4. sup £(M,) < sup £(M,), for all £ e L, so (M), = (M,),.

5. Let xo¢ M. Since M is closed, there is an x; € M with minimal distance
from x,. If %, is the midpoint of the line segment between x, and ¥,, then
¥, ¢ M, and there is an /€ L with £(x,) = 0, {|M < 0. Thus sup ¢(M) < 0,
but £(xo) > 0. Therefore x, ¢ M, and it follows that M, = M.

6. If M is bounded, then there is a closed rectangle 0 with M = Q. For
each x € R* — Q there is a line g through x with Q = H, and therefore
an £ € L with £(x) = 0 and sup £(M) < sup £(Q) < 0. That is, R> — Q <
R? — M,, there M, < Q. O

Remark. M, is the smallest closed geometrically convex set which contains
M.(If M < K, K closed and geometrically convex, then M, c K, = K.)

Theorem 3.2. Let B — R? be an open subset. B is geometrically convex if and
only if K = < Bimplies K, = < B.
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3. Holomorphic Convexity

PrOOF

1. Let B be convex. K = = B means that K is compact and lies in B.
Therefore K and also K, is bounded. Since K, is closed it follows that K, is
compact. It remains to show that K, lies in B.

We assume that there exists an ¥, € K, — B. Since B is convex there is
and £ € L with £ (x,) = 0 and ¢(x) < O for x € B. ¢ attains its supremum on
K so it is even true that {(xo) > sup £(K) > sup £(K). However, that con-
tradicts the fact that x, lies in K,. Hence K, — B = (.

2. Now we assume that x, does not lie in B. First we show that for every
line g which contains x, either g* " B = @Jorg™ n B = . From that we
shall deduce finally that there is a line g, through x, which does not intersect
B at all. We obtain g, by rotating the above line g about x, until the desired
effect occurs.

a. Assume that there exists a line g = {x e R*:x = x, + tv, t € R} with
g*nB# & and g "B # &. Then let x;, =x,+ t;peg” N B and
¥, = Xy + t,0 € g~ N B. The connecting line segment S between z; and x,
is given by

S = {x =% + t(xZ — xl):te [0, 1]}
= {x = *xy + t"*x, with ¢, t** > 0, t+ =1}

Now let t5: = —t,/(t; — t;) and t5*: = 1 — t§5 = t,/(t; — t5). Then x5: =
t4x; + to*x, € S and x, = x5. Let £ € L be arbitrary. We shall show that
£(xo) < m = max(£(x,), £(x,)). Clearly, we can restrict ourselves to homo-
geneous functions £:£(x) = ax; + bx,. Then £ (xy) = €(t5%; + t5*x,) =
t66(xy) + 157¢(x2) < (5 + 15")m = m.

Now let K: = {x, x,}. Then K = c B and therefore, K, = = B. Because
£(xo) < max(f(x,), £(x,)) = sup £(K) for each ¢ € L it follows that x, € K.
That means x, € B, which is a contradiction.

b. Now let such a g be given. If g* " B = and g~ n B = J we are
done. We assume that g* N B # . Let 0, be the angle between g and the
x,-axis, 0;: = sup{6:0, < 0 < 0y + =, g9 N B # I}, where g, denotes
the line which makes the angle 6 with the x,-axis.

Case 1. g5, "B # . Then 0, < 6, + n. If x, € gy, N B, then there
existsang > Osuch that U,(x,)liesin B. We cannow finda 6, with 6, < 6, <
6, + 7 such that g still intersects U,(x,) and of course B as well. That
contradicts the definition of 6,, so Case 1 can be discarded.

Case 2. gy, 0 B # &. We proceed in exactly the same manner as above
to obtain a contradiction.

c. Let H* and H~ be the two half-planes belonging to g,,. From (b)
B = H* U H™. But from (a) B must lie on exactly one side of g,,. Suitable
choice of the orientation of gy, yields that B lies in H™~ O

One could use the conditions of Theorem 3.1 as the definition of convexity.
We now come to the notion of holomorphic convexity by replacing linear
functions by holomorphic functions.
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II. Domains of Holomorphy

Def. 3.3. Let B = C"bearegion, K = Basubset. Then Kp: = {3€ B:|f(3)| <
sup| f(K)| for every holomorphic function f in B} is called the holomor-
phically convex hull of K in B. When no misunderstanding can arise, we
write K instead of K.

Theorem 3.3 (The properties of the holomorphically convex hull). Let
B < C" be aregion, K = B a subset. Then:

1. KK

2. R is closed in B.

3. k=K

4, Let K, « K, « B.Then K, < K,.

5. If K is bounded, then K is also bounded.

PROOF

1. For 3 K, | f(3)] < sup|f(K)|.

2. Let 3€ B — K. Then there exists a holomorphic function f on B with
| f(3)| > sup| f(K)|. Since |f]| is continuous, these inequalities hold on an
entire neighborhood U(3) = B which is contained in B — K. Therefore
B — K is open.

3. sup| f(K)| = sup|f(R)).

4. The statement is trivial.

5. If K is bounded then there exists an R > 0 such that K is contained in

the set {3 = (2, ..., z,):|z,| < R}. The coordinate functions £,(3) = z, are
holomorphic in B, and therefore for 3 € K, |z,| = |£,3)| < sup|/(K)| < R.
Hence K is also bounded. O

Def. 3.4. Let B = C" be a region. B is called holomorphically convex if
K = < Bimplies K = < B.

Remark. In C every domain is holomorphically convex.

PROOF. Let K = = G. Then K is bounded, and therefore K also. Hence K
is compact and it only remains to show that K — G. If there is a point
zo€ K — G, then z, lies in K N dG. But then f(z) = 1/(z — z,) is holo-
morphic in G.

Now let (z,) be a sequence in K with lim z, = z,. From the definition of K,
|f(z,)] < sup|f(K)| < sup|f(K)|, contradicting the fact that {| f(z,)|:v e N} is
unbounded. ]

By no means is every domain in C" holomorphically convex. However,
we have

Theorem 3.4. Let B = C" be a region. If B is geometrically convex, then B
is also holomorphically convex.
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4. The Thullen Theorem

ProoF. We must first clarify when a region in C" is geometrically convex.
Let £:C" —» R be a homogeneous linear mapping of the form

n n n n
L3) = Zl a,x, + Zl by, = Zl a,z, + Zl Bz,

Since we are supposed to have €(3) = £(3) it follows that B, = &,, and
therefore

G) =Y oz, + Y &z, = 2-Re<z ocvzv>-
v=1 v=1 v=1

B is geometrically convex if K = = B implies K, = = B, where we define
K,: = {3 C":£(3) < sup ¢(K) for all homogeneous linear mappings ¢}.
K, has the properties required by Theorem 3.1.

Now let K =« = B. Then K, = = B. Let 3,€ B — K,. Then there exists

a linear homogeneous mapping ¢ with £(3) = 2-Re ), a,z, and £(3,) >
1
sup £(K).

Now we define a function f holomorphic on B by

1G): = exp (2 : z avzv).

v=

Then

11G)| = exp (2 ‘Re ( 5 m)) — exp o £(3),

v=1

therefore

|/Bo)| = exp > £(30) > sup((exp £)(K)) = sup|f(K)|.
Thus 3, € B — Kz, and we have shown Kz = K, = = B. This proves Kp
cc B.

In general holomorphic convexity is a much weaker property than
geometric convexity.

4. The Thullen Theorem

Let M < C" be an arbitrary non-empty subset. If 3, € C* — M is a point,

then dist'(30, M): = inf |3 — 30| is a non-negative real number. If K <
3eM

C" — M is a compact set and M closed, then
dist’(K, M): = inf dist’ (3, M)

3ekK

is a positive number.
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II. Domains of Holomorphy

Def. 4.1. Let B = C" be a region, ¢ > 0. We define
B,: = {3 € B:dist'(3, C* — B) > ¢}.

Remarks

1. {3} is compact, C* — B is closed, so for 3 € B dist'(3, C" — B) > 0.
2. If 3 € B, then 3 € B, for ¢: = dist'(3, C* — B). Therefore B = () B,.

£>0
3. <& =B, o8B,

Theorem 4.1. B, is closed.

PROOF. Let 3o € C" — B,. We define §: = dist'(30, C" — B). ¢ > 6 = 0, so
e—0>0 Let U: = U,_4(30) = {3:[3 — 30| <& — 8}. For 3€ U we have
dist'(3, C" — B) < dist'(3, 30) + dist'(39, C" — B) < ¢ — 6 + & = & Therefore
U lies in C* — B,, that is, C" — B, is open. O

We need the following terminology. Let M — C" be an arbitrary
non-empty set. A function f is called holomorphic in M if f is defined and
holomorphic in an open set U = U(M) with U > M.

Theorem 4.2. Let B be a region, f holomorphic in B, | f(B)| < M, & > 0, and
30 € B, a point. In a neighborhood U = U(3,) < B, let f have the power

0

series expansion f(3) = Y. a,(3 — 30)"- Then for all v,
v=0
M
Iav| < m

ProOOF. Let P: = {3 € C":dist'(3, 30) < &}. Then for 3 € P, dist'(3, C" — B) >
dist'(39, C" — B) — dist'(3, 30) > &€ — ¢ = 0. Therefore P lies in B, that is
P = B = V(B), where V is an open neighborhood of B and f is defined
and holomorphic on V. Then

J‘ f(él,"‘acn)dél"'dgn l
(2m)" r(& — 20 — )

where T is the n-dimensional torus T: = {(&,, ..., &):&, = 2 + e, 0 <
6, < 2r}. Because d¢, = ¢- €% - idf, = i(¢, — 2\?) d6,,

|a\’1 ,,,,, an

1 2n 21 P do
|av! = (27[)" (6 _ Z(O))v; f (é z‘o’)“" f(él, RN én)
1 2n 2n 21
(2ﬂ)”f &, — z‘°)|“ f f Z<0>|vn |f s, - - &)
1 " M M
<G O = g
holds. 5
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4. The Thullen Theorem

Theorem 4.3 Let B = C”" be a region, f holomorphicin B,e > 0,and K < B,
compact. Then for every d with0 < § < ¢ there exists an M > 0 such that

M
< =
sup @) < 55

(We denote by a,(3,) the coefficients a, of the power series expansion

oo

fG) = ZO a3 — 30)")

PROOF o

1. Set B*: = (B,_;). We claim that K lies in (B*);, that is, that for 3, € K
we have dist'(3o, CY — B*) > 6. Assume thereisa 3, e C¥ — B* and a § with
0 < ¢’ < 6 such that dist'(3¢, 3;) < &'. Since 3, does not lie in B*, 3, is not
an interior point of B, _;. Therefore there still are points of C* — B,_; arbi-
trarily close to 3,. Now let & > Obe given. Then thereisa 3, € C¥ — B,_;such
that dist’(3;, 32) < €. Since dist'(3,, C* — B) < ¢ — ¢ it follows that there
exists a 33 € C" — B such that dist'(3,, 33) < ¢ — . Therefore dist'(3, 33) <
dist'(30, 31) + dist'(31, 32) + dist’(32,33) < &' + & + ¢ — 8. This holds for
every ¢ > 0. Therefore

dist'(30,CYN — B) < (0 — 8) + e < &.

So 3, does not lie in B,, contrary to our assumption. So K must lie in (B*);.

2. K is bounded, so there exists a polycylinder P = P(0) with K = P. We
can choose P in such a way that dist'(K, C" — P) > 6. Then let B': = P n
B*. B’ is open and non-empty.

We shall apply Theorem 4.2 to the region B'. Clearly B’ is compact. More-
over, B =« Pn B* «¢ P n B,_; = B. Therefore f is holomorphic in B’ and
can be bounded there by a constant M.

Because dist'(K, C* — P) > 6 and K < (B*);, K = Bj. Therefore

sup|(f|B)| _ M
Iav(30)| < % < il
for every point 3, € K; in particular

M

Theorem 4.4 (Cartan—Thullen). If B = C" is a region of holomorphy, then B
is holomorphically convex.

PrROOF. Let K =« B. We want to show that K cc B. Let & =
dist'(K, C* — B) > dist'(K, C* — B) > 0. Clearly K lies in B,.

1. We assert that even the holomorphic convex hull K lies in B,. Suppose
this is not so. Then there is a 3, € K — B,. Since B is a region of holomorphy,
there is a function f holomorphic in B which is completely singular at each
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II. Domains of Holomorphy

point 3 € B. In a neighborhood U = U(3,) = B f has the expansion

[e]

@) =Y a6 — 3)-

v=0
R A4 C)
<o v, Ozyr... 0z

is holomorphic in B by the theorem on partial derivatives, and a,(30) = a,.
Because 3, € K, |a,(30)| < sup |a,(3)]- And by Theorem 4.3 for every & with
3eK

a,@) = -

0 < 0 < ¢ there existsan M > 0 with

<
sup[a,3)] < 5w

lzs — 2O\ (|2 = 2O\
zi-u- ¥ (B2 (o

dominates Z la,(3 — 30)"|- Now let P;(3,) be the polycylinder about 3, with

Therefore

radius 5 For 3 € P5(30), Y. is a geometric series, and therefore convergent.
Hence Z a,(3 — 30)" converges on the interior of Py(3,).

Let P = {3:]z, — 29| < ¢}. The sets P; with 0 < § < ¢ exhaust P,,
hence Z a,(3 — 30)" is convergent in P,, say to the holomorphic function f.

v=0

Near 30, f = f. If Q: = Cp -5 (30) is the component of 3, in P, 0 B, then
f = finQ. There exists a point3; € P, n dQ N dB.If U = U(3;) = P,isan
open connected neighborhood, then f is holomorphic in U, U n Q is open
inU n Band f|U n Q = f|U n Q. Thatis a contradiction, for f is supposed
to be completely singular at 3;. Therefore K c B,.

2. Since C* — K = (B — K) U (C" — B,) is open, it follows that K is
closed. Since K is compact, K is bounded, and by Theorem 3.3 K is also
bounded. Hence K is compact. This completes the proof. O

In the next section we shall show that the converse of this theorem also
holds.

5. Holomorphically Convex Domains

Theorem 5.1. Let B = C" be a region. Then there exists a sequence of
subsets K, = B with the following properties.
1. K, is compact for all v e N.
2. U K,=8B

v=1

3. K, < Ky, forall ve N.



5. Holomorphically Convex Domains

Proor. It is clear how the K, should be chosen: If P,: = {3:|z,1| < v for
all A}, we define K,: = P, n By,,. Obviously K, is compact and lies in B.
Let 3€ B. Then &: = dist'(3, C" — B) > 0 and there exists a vo € N with
3€P,,. Let v > max(vy, 1/¢). Then 3€ P, n By, = K,. Therefore B =

Ul K,.Let 3¢ € By;,. Then

1
v+ 1

b

dist'3o, C" — B) > % >

and

e 1 1
U=U@o): = {36‘0 :dist'(3, 30) < iy 1}

is an open neighborhood of 3,. For 3 € U, however,

dist'3, C" — B) > dist(30, C" — B)

1 1 1 1
_d't/, —_— —_—— = .
ls(‘?’30)>v <v v+1) v+ 1

Therefore U lies in By, 1). Hence 3, is an interior point of By, and
By, B,,(v“). Because P, — ﬁvﬂ it follows that K, = K, ;.

Remark. 1t is actually true that

Cs

B=(=)11°<v, since B = KV=L=)2KV_ICU219(VCB.

1 =

v

In the remainder of this section we shall call any sequence of compact
subsets of a region B which satisfy the conditions of Theorem 5.1 a normal
exhaustion of B. We define M;: = K; and M,: = K, — K,_; for v > 2.
Then:

LM,AnM,=Zforv#p,

o0

2 (UM, =8B
v=1
"

3. UM, =K,
v=1

Theorem 5.2. Let B = C" be a region and (K,) a normal exhaustion of B.
Then there exists a strictly monotonic increasing subsequence (4,) of the
natural numbers and a sequence (3,) of points in B such that

L 3. eM,;

2. If G =« C"isadomain,GAB # &, GNn(C"— B) # Fand G, a
connected component of G N B, then G, contains infinitely many points
of the sequence (3,),en-

47



II. Domains of Holomorphy

PRrOOF
1. A point 3 = (z4,..., z,) € C" is called rational if

z, = X, + iy, with x,, y, € Q for all v.

The set of U,(3) with rational 3 € C* and ¢ € Q forms a countable basis for
the topology of C"; we denote this basis by I = {W,:x € N}.

Now let B: = (W, eW:W, "B # & and W, n (C" — B) # J}. If
W, e B, then W, n B has countably many components, as each contains
at least one rational point.

Let B: = {B,: There is a k € N such that W, € 8 and B, is a component
of W, n B}. ‘

B is now a countable system {B,:u € N} of connected sets, and for each
p e N there is a k = k(u) such that B, = W, n B.

2. The sequences (4,) and (3,) are now constructed inductively: Let 3,

be arbitrary in B;. Then By = Wy, n B < B and B = (] K,. Therefore
v=1

there exists a v(1) € N such that 3, lies in K, ;. Since the system of M, is a
decomposition of B, there is a A(1) < v(1) such that 3, € My,

Now suppose 3;, . . ., 3, 1 have been constructed so that 3, € K, n B,and
A(1) is chosen so that 3,e M), 1 = 1,...,u — 1. Choose 3,€ B, — K,(,_,
arbitrarily. That is possible since there is a point 3, € W, N 0B N 0B,.
C" — K,(,-1 is an open neighborhood of 3, and contains points of B,.
These points lie in B, — K,(,_;). Now there is a v(u) € N with 3, € K,,.
Therefore 3, € K,(,, N B,, and there exists exactly one A(y) < v(y) with
€ M Alp):

3. If A(w) < v(p — 1), we would have 3,€ M, < K, contrary
to construction. Therefore v(u — 1) < A(u) < v(u); the sequences v(u) and
A(w) are strictly monotone increasing.

4. Now let G = C" be a domain, G " B # J, G n (C" — B) # &, and
G, a component of G n B. We assume that only finitely many 3, lie in G,
say 3¢, - - - , 3m- Then let

G*:=G— {31""33»1}3
GI:= Gl - {31,"~,3m}'

G* and G} are again domains and G; = G* n B. Let 3, € G, 3€ G* N B,
3; and 3 be connected by a path in G* n B. Then they can be connected by
a path in G N B, and 3 belongs to G, n G* = Gj. It follows that G is a
component of G* N B.

Now let 30 € G* N G} N dB. There is a k € N such that W, e 8B and
30 € W, and such that W, n B = G* n B. Moreover W, n B must contain
points of Gj.

Now let 3, e W, nBn G (and B*: = Cy, . p(3;). Because Gi =
Cq- ~5(31) it follows that B* = Gi. B* is an element of B and therefore
contains a 3,. That is a contradiction. The assumption was false and we
have proved the theorem. O

48



5. Holomorphically Convex Domains

Theorem 5.3 Let B < C" be a region and (K,) be a normal exhaustion of B.
In addition, suppose that, for eachve N, K, = K,.
Let (4,) be a strictly monotone increasing sequence of natural numbers
and (3,) a sequence of points with 3, € M; .
Then there exists a holomorphic functlon f in B such that |f(3,)| is
unbounded.

)
ProOF. We represent f as the limit function of an infinite series f = ). f,;
u=1
we define the summands f, by induction.

1. Let fi: = 1. Now suppose fj, .. ., f,— are constructed. Since 3, does
not lie in K;,,_; = K aw-—1> there exists a function g holomorphic in B
such that |g(3,)| > g, where g: = sup|(g|K;(,)-1)|- By normalization one

p—1

can make g(3,) = 1. Henceq < 1. Nowleta,: = ) f(3,) and m be chosen
v=1

so that ¢ < 1/(u + |a,|)- 27* This is possible since g™ tends to zero. We
set f,: = (1 + |a,|) - g™ Then f, is holomorphic in B, £,(3,) = p + |a,| and
sup|(fu|Kie-1)| < 2

2. We assert that Z f, converges uniformly in the interior of B. Let

=1
K < B be compact. There exists a v, € N such that K < KvO 1- Now let

ko € N be chosen so that A(u) = vo. Then K,y o K, for p > p,, that is,
Kju-1 = K,o—1. By construction sup|(f,|Kzu-1)| < 274 therefore in
0 0

particular sup|(f,|K)| < 27" As ), 27* dominates Y, f, in K, the series

u=1 un=1
converges uniformly in K. Therefore f = Z fu is holomorphic in B.

o)

3.1/G)| = Zl £3J| = |G| — HGw)| — ZH A£G = n +
v= v= v=p
|a#| - |au| - Z . |f;(3u)| Because 3u € K).(u) < KA(v)_l for v = u+ 1,
v=u+
we have
/G| = n — Z 27V > - L
v=pu+1

| f(3,)| = oo for p — oo follows. O

Theorem 5.4. Let B = C" be a region. If B is holomorphically convex then
there exists a normal exhausting (K,) of B with the property that K, = K,
for every ve N.

ProoF. Let (K,) be any normal exhaustion of B. Then for all v, K, =« = B

and as B is holomorphically convex, it follows that K, = = B. K, is there-

fore a compact subset of B. We now construct a subsequence of the K,.
Let Ki: = K,.
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II. Domains of Holomorphy

_ Suppose Kj,...,K]_; have been constructed (K-, compact and
K-y = Kj_,). Then there exists a A(v) € N such that Kj_; < K. Let
K;: = K, Clearly the K; are compact subsets of B with R* = K?. More-

over () Ki = ) Ky»y2 | Kzy=Band K} = K41, < Kiu 1.
v=1 v=1 v=1

We now come to the main theorem of this section.

Theorem 5.5. Let B = C" be a region. If B is holomorphically convex, then
B is a region of holomorphy.

Proor. By the preceding theorem there is a normal exhausting (K,) of B
with K, = K, for all v and hence sequences (4,) and (3,) in the sense of
Theorem 5.2 and a function f holomorphic in B with |£(3,)| - oo for p — 0.

We now show that f is completely singular at every boundary point of
B. Assume that there exists a point 3, € 0B at which f has no essential singu-
larity; that is, that there is an open connected neighborhood U = U(3,)
and a function f holomorphic in U such that f = f in near some point
3¢ UnB.

Let U,: = Cy,5(3;) be the connected component of 3; in U n B. There
is a point 3, € U n dU; n 0B. Let V = V(3,) be an open connected neigh-
borhood of 3, with V =« = U.

V n U, contains a point 35. Let V;: = Cy . 5(33). If 3 lies in V, then 3
can be joined to 33 in ¥ n B = U N B, and 35 lies in U, so that it, too, can
be joined to 3, in U n B. Hence V; <= U;.

Because “f = fin the region of 3,”, it follows that f = fin U, and from
this that f = f in ¥} also. On the other hand, infinitely many points of the
sequence (3,) lie in V;. That is, f'is unbounded in V;. That leads to a contra-
diction, since f is holomorphic in U, Vis compact and therefore sup|(f|V1)| <
sup|(f|V)| < sup|(f|7)| < oo. Therefore f is completely singular in 6B. O

Def. 5.1. Let M = C" be an arbitrary subset. D = M is called discrete if
D has no cluster points in M.

Theorem 5.6. Let B = C" be a region. B is holomorphically convex if and
only if for every infinite set M which is discrete in B there exists a function
f holomorphic in B such that |f| is unbounded on D.
(This theorem permits a simpler definition of holomorphically convex.
It holds in complete generality, both on complex manifolds and complex
spaces.)

Proor

1. Let B be holomorphically convex, D < B infinite and discrete. More-
over, let (K,) be a normal exhaustion of B with K, = K,. Then K, n D is
finite for every v € N.
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6. Examples

We construct a sequence (3,) of points in D by induction:

Let 3, € D be arbitrary, v(1) € N minimal with the property that 3, lies
in K, ).

Now suppose the points 34,...,3,-; have been constructed. Then we
choose 3, € D — K,(, -y where v(u — 1) is to be the smallest number with
the property that 3,_; lies in K, ). That is possible, for K, n D is finite,
so D — K, contains infinitely many points.

Thus, v(p) is a strictly monotone increasing sequence of natural numbers
such that 3, lies in M.

By Theorem 5.3 there is a function f holomorphic in B such that | f(3,)|
is unbounded. Therefore | f| is unbounded on D.

2. Now let the criterion be satisfied. We assume B not to be holomor-
phically convex: that is, we assume there is a K = = B such that K is not
relatively compact in B. We construct an appropriate set D.

Let (K,) be a normal exhaustion of B. Clearly K — K, # ¢ for all v,
otherwise we would have K = = B. We define D by induction as a point
sequence. Let 3; € K be arbitrary and v(1) minimal such that 3, € K,y
Suppose 3;,...,3,-1 have been constructed, and for 1 < A< pu — 1 let
v(4) always be the smallest number such that 3, € K,;,. Then we choose
3, arbitrarily in K — K,u-1)- Then v(4) is strictly monotone increasing
and 3, € K,(,.

Let D be the set of points 3,, 1€ N. If 3 € B, then there exists a pe N
such that 3¢ liesin K, f(“ L < KWH) KV(M 1) is an open neighborhood
of 30, which contalns only the points 3y, ..., 3,+;. Therefore 3, is not a
cluster point of D. The set D is discrete in B. By assumption there is a function
f holomorphic in B which is unbounded on D. But then there existsa ye N
such that |f(3,)] > sup|f(K)|- That means that 3, does not lie in K, contrary
to construction. Therefore B must be holomorphically convex. O

6. Examples

Theorem 6.1. Let B = C be a region. Then B is a region of holomorphy.
(Hence for every open set B in C there exists a holomorphic function which
cannot be extended to any proper open superset of B.)

Proor. It was shown in Section 3, that every region in C is holomorphically

convex. From Theorem 5.4 it follows that B is a region of holomorphy. O
In C" we have the following theorem:

Theorem 6.2. Let B = C" be a region. Then the following statements are
are equivalent:

1. B is pseudo-convex.
2. B is a region of holomorphy.
3. B is holomorphically convex.
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II. Domains of Holomorphy

4. For every infinite set D discrete in B there exists a function f holomorphic
in B such that f is unbounded on D.

ProOF. The statements have all been proved in the preceding paragraphs
(apart from the solution of the Levi problem: if B is pseudoconvex, then B is
a region of holomorphy). O

Theorem 6.3. If G = C" is a geometrically convex domain then G is a domain
of holomorphy.

The n-fold cartesian product of open sets is a further example.

Theorem 6.4. Let V,,...,V, = C be regions. Then V:=V; x --- x V, <
C" is a region of holomorphy.

PrOOF. Let D < V be a discrete infinite set and (3,) a sequence of distinct
points of D with 3, = (z{, ..., z®). If the sequence (z{”) in V; has a cluster
point z{?, then there exists a subsequence (z{**’) which converges to z{.
If the sequence (z4'™) in V¥, has a cluster point z{”, then there exists a
subsequence (z42™) which converges to z{. Continuing this way until
n-th component (thus obtaining a subsequence (z*~) which converges to
a point z” € 1), then the sequence (3,,,,) converges to 3o: = (z{?, ..., z) e
V. This is a contradiction, because D is discrete in V.

Therefore there is a g€ {1,...,n} and a subsequence z,, = (z§, ...,
z{)) of the sequence (3,) such that the sequence (z/) has no cluster point
inV,.

By Theorems 6.1 and 6.2 there exists a function f'holomorphic in V, for
which f(z{*)) is unbounded. Now g(zy, ..., t,): = f(z,) is a holomorphic
function on V which is unbounded on D. Therefore V is holomorphically
convex. O

Def. 6.1. LetB = C"and V;, ..., ¥, = Cberegions, fi, . . ., f, holomorphic
functions in B, and U < B an open subset. The set P: = {3e U:f;(3) e V;

Figure 13. Analytic polyhedron in B.



6. Examples

forj=1,...,k} is called an analytic polyhedron in B if P = = U. If, in
addition, V; = -+ = ¥V, = {ze C:|z| < 1}, then one speaks of a special
analytic polyhedron in B.

Theorem 6.5. Let B — C" be a region. Then every analytic polyhedron in B
is a region of holomorphy.

Proor. Let U, V,..., W, f1,..., fi and P be given as in Def. 6.1. Then
F:=(filU,..., £|U):U - C* is a holomorphic mapping and P =
F~'(Vy x --+ x V). By Theorem 64 V: =V, x --- x V, is a region of
holomorphy. Let D < P be an infinite discrete set. It suffices to show
that F(D) = V is infinite and discrete. For then there exists a function
holomorphic in V which is unbounded on F(D) and the function g: = fo F
satisfies the corresponding conditions in P.

Let (3;) be a subsequence of pairwise distinct points of D. F(3;) has a
cluster point w, in V. Then there exists a subsequence F(3;,) which converges
to wy. The points 3;, lie in P, and by assumption P is compact. Hence (3;,)
has a cluster point 3, in P, and there is therefore a subsequence (3 jvw)» Which
converges to 3; € P = U. F(3;,,,) then converges to F(3,) and to w, simul-
taneously; that is, F(3;) = w, lies in V. This means that 3, liesin F~ (V) = P,
which is a contradiction to the assumption that D is discrete in P. Hence it
follows that F(3;) has no cluster point in ¥, and we are done. O

ExaMPLE. Let g < 1 be a positive real number and
P: = (3eC%zy| < 1,|z5] < 1,2, - z,] < g}.

4

|22|

>

/P z,

Figure 14. Example of a nontrivial analytic polyhedron.

P is clearly an analytic polyhedron, but neither a geometrically convex
region nor a cartesian product of regions. The analytic polyhedrons therefore
enrich our stock of examples of regions of holomorphy.
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I1. Domains of Holomorphy

We shall show that every region of holomorphy is “almost” an analytic
polyhedron:

Theorem 6.6. Every region of holomorphy B — C" can be exhausted by
analytic polyhedra in the sense that there exists a sequence (P;) of special

analytic polyhedra in B with P = = P;,; and | ) P; = B.
jt1

PROOF

1. Let (K;) be a normal exhaustion of B w1th K; = K If 3€ 0K; i+t is an
arbitrary point, then 3 does not lie in K; = K, {, and therefore not in K j
Hence there exists a function f holomorphlc in Bfor which g: = sup|f(K})| <
| /(3)]. By multiplication with a suitable constant we obtain g < 1 < | f(3)|,
and then there is an entire neighborhood U = U(3) such that |(f|U)| > 1.

Since the boundary 0K, is compact, we can find finitely many open

sets UGY), ..., UG) and correspondmg functions f9, ..., f{ holomor-
phic in B such that K., < U UGY) and |(fQ|UGY))| > 1. Let P;: =
(3eK;.y: |f‘”(3)|<1forp—1 co k) .

2. ClearlyK; = P; = KjH.ButbeyondthatM: =Kji — U UGY) =

Kjyyn|C— U U(3‘”)> is a compact set with P; « M < K;,,. Con-

sequently P; = M M c Kjﬂ,that is, P; « < K;, . Thus P;is a special
aPa]ytlc polyhedron in B. It follows trivially from therelation“K; = P; ¢ <
K;,,” that the sequence (P;) exhausts the region B. O

In the theory of Stein manifolds one can prove the converse of this theorem.

7. Riemann Domains over C"

If Gis a domain in C", we can ask if there exists a largest set M with G « M
over which every function holomorphic in G can be (holomorphically)
extended. It turns out that we cannot restrict ourselves to subsets of C".
We must consider domains covering C":

Def. 7.1. A (Riemann) domain over C" is a pair (G, n) with the following
properties:

1. G is a connected topological space.

2. For every two points x;, x, € G with x; # x, there are open
neighborhoods U, = U,(x,) = G, U, = U,(x,) =« GwithU, nU, = &
(that is, G is a Hausdorff space).

3. m:G - C" is a locally topological mapping (that is: If x € G and
3: = m(x)is the “base point of x”, then there exist open neighborhoods
U =Ux) = Gand V = V(3) = C"such that n|U:U — V'is topological).
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7. Riemann Domains over C"

Remarks

a. The mapping = is in particular continuous.

b. G is path-connected.

Take x, € G and let Z: = {x € G: x can be joined with x, in G}.

Xo € Z, therefore Z # .

. Z is open, since G is locally homeomorphic to C" and therefore locally
pathwise connected.

3. Z is closed: If x, € 0Z, then there exists a neighborhood U(x,) = G

homeomorphic to C" with U n Z # . We can join x; in U with a point

x, € U n Z, and from the definition of Z we can join x, with x,. Therefore

X, also belongs to Z.

o=

It follows from statements 1, 2, and 3 that Z = G.

c. If(G,, =n,) are domains over C" forv = 1, ..., £ and x, € G, are points
with w,(x,) = 3, for v=1,..., ¢, then there are open neighborhoods
U,(x,) = G, and a connected open neighborhood V(3,) = C" such that for
v=1,...,¢n|U,:U, - V is topological.

ProOF. Choose neighborhoods U,(x,) = G,, V,(3,) = C* such that
n,|U,:U, - V, is topological. Then let ¥ be the component of 3, in V.=
3

(| V,and U,: = (n,|0,)"*(V)forv =1,..., ¢ O
v=1

EXAMPLES

1. Domains in C". Let G = C" be a domain. n: = id; the natural inclusion.
Clearly (G, =) is a domain over C" in the sense of Def. 7.1.

2. The Riemann surface of \/z. Let G: = {(w, z) e C*:w? = z,z # 0} be
provided with the relative topology induced from C2. G is a HausdorfT space.
The mapping ¢:C — {0} —» G defined by ¢ > (¢, t*) is bijective and con-
tinuous. G is therefore connected.

Now let #:C* — C be defined by #(w, z): = z. Then n: = #|G:G — C is
continuous. If (wy, zo) € G is an arbitrary point, then z, # 0, and we can find
a simply connected neighborhood ¥(zy) = C — {0}. From the theory of a
single variable we know that there exists a holomorphic function f in V with
f4z) = zand f(zo) = wo. We denote f by /z. Then n~*(V) can be written
as the union of the disjoint open sets U,: = U = {(f(2), z):z€ V} and
U_: = {(—f(2),2):ze V}. Let f(2): = (f(2), 2). Then (n|U)"! = f, that is
|U is topological. Hence (G, m) is a domain over C, the so-called “Riemann
surface of /z”.

G can be visualized in the following manner: We cover C with two additional
copies of C, cut both these “sheets” along the positive real axis and paste them
crosswise to one another (this is not possible in R* without self intersection,
but in higher dimensions, it is).
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I1. Domains of Holomorphy

Figure 15. The Riemann surface of \/z.

Next we consider Riemann domains with a distinguished point.

Def. 7.2. Let 3, € C" be fixed. Then a (Riemann) domain over C" with base
point is a triple ® = (G, &, x,) for which:

1. (G, ©) is a domain over C".
2. n(xo) = 3o-

The point x, is called the base point.

Def. 7.3. Let ®; = (G, m;, x;) be domains with base point over C". We
say 6, < 6, (“®, is contained in ®,”) if there is a continuous mapping
¢:G, —» G, with the following properties:

1. my = 7w, o @ (“¢ preserves fibers”)
2. o(x;) = x,.

Theorem 7.1 (Uniqueness of lifting). Let ® = (G, &, xo) be a domain over
C" with base point, Y a connected topological space and y, € Y a point.
If ¥y, Y:Y > G are continuous mappings with y,(yo) = Y¥2(¥o) = Xo
and oy, = mo,, theny; = y,.

PROOF. Let M: = {ye Y:y(y) = ¥,(y)}. By assumption y, e M, so
M # . Since G is a Hausdorff space it follows immediately that M is
closed. Now let y, € M be chosen arbitrarily, x;: = y¥(y;) = ¥,(y,) and
31: = m(x;). There are open neighborhoods U(x,), V(3;) such that n|U:U — V
is topological and there are open neighborhoods Q,(y;), Q,(y;) with
V,(Q)c UforA=1,2.LetQ: = Q; n Q,. Then

Yi@ = @|U) ™ oo yy|Q = (m|U) ™! e mo h,]Q = ¥5|Q,

therefore Q — M. Hence M is also open, and since Y is connected, it follows
that M = Y. O

Theorem 7.2. Let ®; = (G, mj, x;) be domains with base point over C" for
Jj = 1, 2. Then there exists at most one continuous fiber-preserving mapping
(P:Gl g Gz with (p(xl) = Xj.
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7. Riemann Domains over C"

Proor. If there are two continuous mappings @, Y:G, - G, with, o ¢ =
T, = 7y oY and @(xy) = Y(x;) = x,, then it follows from Theorem 7.1
that @ = . a

Theorem 7.3. The relation “<” is a weak ordering; that is:

1. 6 < G;
2. (51 <(52and(52<(ﬁ3:(51<(53.

The proof is trivial.

Def. 7.4. Two domains 6,, ®, with base point over C" are called isomorphic
(symbolically G, ~ 6,) if ; < , and ®, < G,.

Theorem 7.4. Two domains ®; = (G;, n;, x;), j = 1, 2, are isomorphic if and
and if there exists a topological fiber preserving mapping ¢:G, — G,
with ¢(x{) = x,.

Proor. ®; ~ &, means that there exist continuous fiber-preserving

mappings ¢,:G, — G, with,(x,) = x,and ¢,:G, » G, with @,(x,) = x,.

Then ¢, ° ¢:G,; - G, iscontinuous and both ; o (@0 @) = (T 0 @;) o @y =

0@y = 7y and @, o @,(x{) = @,(x,) = x,. From the uniqueness theorem

(Theorem 7.2) it follows that ¢, ¢, = ids,. Analogously one shows

®; ° @, = idg,. Hence ¢, is bijective and (p;)™! = <p2 We set ¢: = ¢;.

To prove the converse we set ¢@,: = ¢ and @,: = ¢~ 1. O

Def. 7.5. A domain & = (G, 7, x,) over C" with base point is called schlicht
if:
1. G = Cr
2. © = idg is the natural inclusion. (In particular then x, = 3,.)

Theorem 7.5. ®, < &, < G, = G, if &,, ®, are schlicht domains.
The proof is trivial.

ExampLE. Let ®,: = (G, 7, x,) be the Riemann surface of ﬁ with the base
point xo: = (1, 1), ®,: = (C, idg, 1). Then ¢: = =:G — C is a continuous
mapping with id¢ o ¢ = 7 and @(x,) = 1. Therefore ®, < 6,.

Next we consider systems of domains over C". Let I be a set, (®,),.;
a family of domains over C" with base point.
Ifiel, ®, = (G, =, x,), then w,(x,) = 30-

Let X: = () G, = [J (G, x {1}) be the disjoint union of the spaces G,. Let
Kbe anoth:rlset, (N':)i ek @ family of sets. Foreach k € K, let
= {X®:y e N}
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I1. Domains of Holomorphy

be a partition of X (that is:

1. X < X
2. UXoc)_

3. For Ve # e X N XP = ).

Let X: = (X,).x be the family of these partitions. We show that there
exists a partition X* of X which is finer than any ¥, with k € K. (That is, there
exists a partition X* = {X,:v e N} for which, for any v € N and k € K, there
exists a v, € N, with X, = X®)

Let N:= ][ N, and X,:= () X® for v=(v)eexk €N, X*: =

ke K xeK

{X,:ve N}. Then for each ve N, X, = X, and

Ux.= U (ﬂ Xt:’)= ﬂ(u Xsy)= NX=x

veN vellINx \keK keK \vceN xkeK

and

X, X, = (ﬂ xg:)) N < N x(;;g) N XA XW) = g,
xkeK xeK xeK

if v, # p, for some k € K. Therefore X* is a partition, and clearly for fixed

v, X, = () X% < X%. That is, X* is finer than any partition %,, x € K.

kekK

Definition. We say that the equivalence relation ~ on X has property (P)
if for all 1,, 1, € I it is true that
L. (X“, ll) ~ (xzz’ 12)
2. If y:[0,1] - G,,, ¢:[0, 1] - G,, are paths (=continuous mappings)
with (¥(0), 1) ~ (¢(0), 1;) and m,, o Y = mge then (Y(1), 1;) ~ (e(1), 1)

ExampLE. Let(y,1;) ~ (), 1,)ifn,, (y) = 7,,()). Clearly ~ is an equivalence
relation on X and ~ has property (P).

Now let K be the set of all equivalence relations on X which have property
(P). For k € K let X, be the partition of X corresponding to the equivalence
relation «, that is the set of equivalence classes.

For the partition system X = {¥,:x € K} one can construct a refinement
X* = {X,:ve N} as above.

Lemma 1. The equivalence relation ~ defined on X by X* has property (P).
Furthermore, the equivalence classes X, in each case contain only points
over the same fundamental point 3, € C".

Proor. The equivalence relation k € K will also be denoted by “&k”. Then
(x,,5 11)R(x,,, 1) holds for each k € K, 14, 1, € I. Therefore, for each k € K
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7. Riemann Domains over C"

there exists a v, € N,, such that (x,,, 1;), (x,,, 1) simultaneously lie in the
set X(. But then the points also lie in the set () X% = X, for v =

keK
ek € ] N that is (x,,, 11) ~ (x,,, 12). One shows similarly that the
xekK

second requirement of (P) is satisfied. X* is therefore the finest partition
of X which defines an equivalence relation with property (P). If two points
(%, 11), (¥, 15) lie in X, = () X%, then for every x € K (x, 1;)R(x’, 1,), in

ke K

particular for the equivalence relation given in the example. But then
7, (x) = m,,(x"). The fundamental point uniquely determined by X, will be
denoted by 3,. a

Definition. Let X* = (X,),.y be the finest partition of X which defines an
equivalence relation on X with property (P). Then let G: = {X,:ve N},
and let the mapping #:G — C" be defined by #(X,): = 3,. Further, let
Xo = X,, be the equivalence class which contains all the base points
(x,,1), 1€l

Subsequently it will be shown that & = (G, 7, %,) can be given such a
topology that ® is a Riemann domain and , < ® forall 1€ I.

Definition. For 1€ let a mapping ¢,:G, - G be defined as follows: If
y€ G, thenlet ¢,(y) = X, € G be that equivalence class which contains

y. Clearly o (pl(y) = Ttl(y) and (pl(xl) = 52:'0'

It suffices, therefore, to give (G, 7, X,) a Hausdorff topology so that all
mappings ¢, are continuous.

Lemma 2. Let (yq, 1y), (¥2, 1;) € X be equivalent, 3, € C" the common funda-
mental point, V = V(3,) = C" a connected open neighborhood and U; =
Ui(y:) = G,, open neighborhoods such that n,i|Ui:U,~ — V is topological
(fori = 1,2). Then ((n,|U;)™'@)t1) ~ ((m,|U2) "), 12) for every 3€ V.

PrOOF. Let ¢ be a path in V which joins 3, with 3. Theny: = (m, |U,) ' o ¢
and y,: = (n,,|U,,)"" ° ¢ are paths in Uy, resp. U,, which connect y, with
(z,,|U,) (@), resp. y, with (z,,|U,,)~'(3). The initial points are equivalent, and
therefore so are the endpoints. O

Lemma 3. For all 1,, 1, €l it is true that: If M < G, is open, then
¢, 9, (M)) = G,, is open.

PROOF. ¢, (¢, (M)) = {xe G: There is a ye M with ¢, (y) = ¢,(x)} =

{x e G,,: Thereis a y e M with (y, 1;) ~ (x, 15)}.

Let x € ¢, (¢, (M)) be given, ye M with (y, 1) ~ (x,1,) and 3: =
n,,(y) = m,,(x). There exist open neighborhoods U; = U(y), U, = U,(x)
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and a connected open neighborhood V = V(3) such that =, |U,:U, - V,
n,|U,:U, = V are topological mappings. Let ¢: = (r,,|U,) ™" < (n,,|U}):
U, - U,. From Lemma 2 it follows that for y' € U,

(@(¥), 12) ~ (Vs 1)

M is open, and so are Uy: = M n U, and Uj: = ¢o(U}) < U,.
But xe U, < ¢, 1(‘Pz1(M)) Hence x is an interior point, which was to be
shown. O

Lemmad. Let M, < G,, M G,, be arbitrary subsets. Then ¢, (M,,) N
(plz(Mlz) = (plz(Mlz N (plzl(q)u(Mu)))'

PROOF

1. Let ye ¢,,(M,,) n ¢,,(M,;). Then there are points y, e M, , y, e M,,
WIth (Pu(yl) = (pu(yZ) = ). Clearly V2 € (pl; l((ptl(Mu)) N Mlz'

2. Let ye ¢,,(M,, n ¢, (¢,(M,)))). Then there is a point y, e M,, N
¢, ¢, (M,)) with ¢,(y,) = y and furthermore there is also a point
y1 € M,, with ¢,,(y,) = ¢,,(y,). Therefore y € ¢,,(M,)) N ¢,,(M,,). O

Now we can introduce a topology on G:
Let ¥': = {4 = G: There exists an 1€ I, M, c G, open, such that
0M,) = A} U {G}. Then:

1. J = o) foreveryiel,so J e
2. G € T by definition

3. A, A, €T = A, n A, € T, from Lemmas 4 and 3.

T satisfies the axioms for the basis of a topology. Let T be the corresponding
topology on G, that is, the set of arbitrary unions of elements of T’

Theorem 7.6. Let {®, = (G,, n,, x,):1€ I} be a family of domains over C"
with base point, X = U G, the disjoint union of the spaces G,, and X* =

1el

(X,)ven the finest partition of X which defines an equivalence relation with
(P). Let G: = {X,:ve N} be the set of classes of X*. Let the point
%o € G and the mappings %:G — C", ¢,:G, > G be defined as above, and
G be provided with the topology given above. Then:

1. & = (G, &, %,) is a domain over C" with base point.

2. Foreveryi1€el,®, < ®.

3. If 6* = (G*, n*, x5) is a domain over C" and ®, < &* for all 1€ 1,
then also ® < G*.

(® is the smallest Riemann domain over C", which contains all domains ®,.)

PRrOOF

la. G is a topological space and #(%,) = 30 = 7,(x,).

b. G is connected: If y e G, then there is an 1€ I and a y, € G, such that
y = ¢,(y,). Let ¢ be a path in G, which connects y, with x,. Then ¢, o :
[0,1] — G is a mapping with ¢, o Y(0) = y,®, o Y(1) = X,. ¢, (and hence
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7. Riemann Domains over C"

@, o ¥ also) is continuous: if M = G is open, then M = U @, (M,), where
el
M, < G, is open (possibly empty) for every 1.
It follows that, for 15 € I, @, (M) = U ¢, (¢,(M)) is open in G,,. We

can therefore connect every point to the base point by a path in G.

c. G is a Hausdorff space: Let y,, y, € G with y, # y,.

Case 1. #(yy): = 31 # 32 = :®(y,). Then there are open neighborhoods
V31), V'(3,) with VA V' = &, and #~ (V) n #~1(V') = &. Therefore it
suffices to show that 7 is continuous. Let V = C" be open, M: = 7~ (V),
1el. Then ¢, (M) = (o ¢,) (V) ==, '(V) is open in G, therefore
M = ) ¢,0;7 '(M)is open in G.

el

Case 2. Let3: = @(y,) = (y,). There are elements y, € G,,, y, € G,, with
¢, (y1) = ysand @,(¥,) = y,. Furthermore we can find open neighborhoods
Uy(9,) = G,,, Ux(9,) = G, and a connected open neighborhood V(3) = C"
such thatm, |U,:U, —» Vandnr,|U,:U, — V are topological mappings. The
points (7, 1), (7., 1,) are not equivalent, so by Lemma 2 it must be that
¢,,(Uy) n 9,(U,) = &, and we have found disjoint neighborhoods.

d. #islocally topological. Let y € G, 1€ I, y, € G, be such that ¢,(y,) = y.
Let 3: = #(y) = m,(y,). Then there exist open nelghborhoods U,(y,) and
V(3) such that =,|U,:U, - V is topological. U: = ¢,(U,) is an open neigh-
borhood of y, #U:U — V is continuous and surjective. From the equality
@U) o (¢,|U,) = =|U, it follows that #|U is also injective and (F|U)™! is
continuous.

2. The mappings ¢,:G, - G are fiber-preserving and by (1b) are also
continuous. Therefore 6, < .

3. If ®* is given, then there exists a fiber-preserving mapping ¢;:G, — G*.
With the help of the statement “(y, 1,) =~ (¥, 1,) ifand only if@; (y) = @},(¥)”
we can introduce an equivalence relation on X, which because of the unique-
ness lifting also has property (P): Namely, if y:[0, 1] - G,,, ¢:[0,1] - G,,
are two paths with (Y/(0), 1;) ~ (¢(0),1,)and w,, o Yy = 7, ° @, then ¢, o Y(0) =
or, > ©(0) and (because n*o @ = m,) also 7" o (@], oY) = n* o (¢}, ° Q).
Hence ¢}, o Y = ¢;, o @, by Theorem 7.1.

In particular it follows that (Y(1), 1;) ~ (¢(1), 1,). But that means that
a mapping ¢:G — G* is defined by @ o ¢, = . ¢ is continuous and
fiber-preserving. O

Def. 7.6. The domain & described in Theorem 7.6 is called the union of the
domains ®,, 1 € I, and we write

6=)6,.

el

Special Cases

1. From ®, < ® and 6, < © it follows that ®; U 6, < &
2. From 61 < 62 lt fOllOWS that (51 ) 62 >~ 62
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3.6V ~6
4 6, U6, ~6G,u 6,
5. (51U(®2U(53)’:((51U®2)U®3

ExampLE. Let 6, = (G,, ny, x,) be the Riemann surface of w = /z, with
x; = (1, 1) as base point and with the canonical projection 7, :(w, z) — z. Let
6, = (G, 1y, x;) begivenby G,: = {ze C:% < |z| < 2}, x,: = my(xy) = 1
and 7,: = idg,.

Then &, U 6, = (G, &, %), where G = (G, U G,)/~ is the set of all
equivalence classes [(x, 1)], 1 € {1, 2} with respect to the “finest” equivalence
relation with propery (P).

1. Let ye n] }(G,) = G,. Then we can connect y with the point x, by
a path y in n7 1(G,). The path n, o i then connects n,(y) in G, with x,. But
now (xq, 1) ~ (x,, 2), so (y, 1) ~ (m,(y), 2) as well. On the other hand, the
equivalence classes contain only points over the same fundamental point, so
it follows that over each point of G, there is exactly one equivalence class.

2. Let ze C — {0} be arbitrary. The line through z and O contains a
segment ¢:[0, 1] - C — {0} which connects a point z* € G, with z. Then
there exist two paths ¥/, Y, in G, with 7w, oy = 7y oy, = @ and (¥,(0), 1) ~
(¥2(0), 1) ~ (z*, 2). Hence it follows that the points (¥/(1), 2), (¥, (1), 2) over
z are equivalent. From (1) and (2) we have:

(51 v (52 = (C - {0}, idc_(o), 1).
8. Holomorphic Hulls

Def. 8.1. Let (G, n) be a domain over C", f:G — C a function. f is called
holomorphic at a point x, € G if there exist open neighborhoods U = U(x,)
and V = V(n(x,)) such that n|U:U — V is topological and f o (n|U)~':
V — C is holomorphic. f is called holomorphic on G if f is holomorphic
at every point x4 € G.

Remarks

1. Holomorphy at a point does not depend on the neighborhood.

2. For schlicht domains the new notion of holomorphy agrees with the
previous one.

3. If f is holomorphic on G, then f is continuous.

Lemma 1. Let (G, 7y, y1), - - - » (G, 7y, ¥,), (G, 7, ¥) be domains with base
point over C" and let 3 = n(y). If p;:G — G; are fiber-preserving mappings
with @(y) = y; for i = 1,..., 4, then there exist open neighborhoods
U = U(y),v = V(3)and U; = U,(y,) such that for every i all the mappings
in the following commutative diagram are topological
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8. Holomorphic Hulls

<Pi|U

Uv——

U;
nl& %’U:’
Vv

Proor. We can find open neighborhoods U(y), V (3), and U,(y;) such that
the mappings 7|0:U — ¥V and n;|U0,:0; —» V are topological. Since ¢; is
continuous, there is an open neighborhood U(y) = U(y) with ¢;(U) < U,.
If we set V(3): = n(U) and U;: = ¢;(U), we obtain the desired result. a

Def. 8.2. Let ®; = (G;, m;, x;), i = 1, 2 be domains with base points and
®; < ®, by virtue of a continuous mapping ¢:G, — G,. If f is a com-
plex valued function on G,, then we define f|G,: = f o ¢.

Theorem 8.1. Under the conditions of Def. 8.2, f|G, is holomorphic on G,
whenever f is holomorphic on G,.

PROOF. Let y, € G, be arbitrary, y,: = ¢(y,)€ G, and 3;: = 7,(y1) = 72(y>)-
By Lemma 1 we obtain a commutative diagram of topological mappings:

U, _ﬂql_, U,
ndlk ‘/2|U2

|4
(with neighborhoods U; = Uy(y,), U, = U,(y,)and V = V(3,)). But then
(fIG) e (me|U) ™t = fo(@o(my|Uy)™Y) = fo(ma]Uy)™ 2 O

f is called a holomorphic extension or continuation of f|G, to G,.

Def. 8.3

1. Let (G, n) be a domain over C". If x € G is a point and f a holo-
morphic function defined near x, then the pair (f, x) is called a locally
holomorphic function at x.

2. Let (G4, my), (G,, m,) be domains over C", y, € G, and y, € G,
points with zn,(y,) = 7,(y,) = :3. Two local functions (fy, y1), (f2, ¥2)
are called equivalent (symbolically (f;),, = (f2),,) if there exist open
neighborhoods U,(y,), U,(y,), V(3) and topological mappings n;|U,:
Uy - V,m,|Uz: Uy = Vwith fy o (my|Uy) ™" = fp0(m,]Uy) 70

Remark. If (f1),, = (f2)y,> then clearly fi(y;) = f2(y,). In particular if
G, = G,, my = m, and y; = y, then it follows that f; and f, coincide in
an open neighborhood of y, = y,.
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II. Domains of Holomorphy

Theorem 8.2. Let (Gy, ny), (G,, ®,) be domains over C", yr,:[0, 1] - G, be
paths with my oy = 7, o ,. Additionally, let f, be holomorphic on G,,

A= 1L2.If (f)y,0) = (2)ys000 then also (f1)y,1y = (f2)y 1)

PrROOF

1. Let x, € G4, x, € G, be points with w;(x;) = 7m,(x;) = 3. Then there
are open neighborhoods U,(x;), U,(x,) and an open connected neighbor-
hood ¥(3,) such that the mappings ;|U,:U; — V are topological.

If there exist points xj € U,, x5 € U, with n,(x}) = ®,(x3) = 3 and
(f1))si = (f2)xs then fi o (ny|Uy)™! = fy0(n,|U,)™" near 3€ V and there-
fore, by the identity theorem, in all of V. It follows that if (f;),, = (f2)x,»
then (f1),, = (f2)x, forall xj € Uy, x5 € U, with my(x}) = 7,(x3). I (fy)y, #
(f2)x,» then (f1)y # (f2)y, for all X € Uy, x3 € U, with my(x)) = 75(x5).

2. Let W: = {te [0, 1]:(f)y,00 = (F2Iya0}

a. By assumption W # (J, as 0 lies in W.

b. If t; € W, then one sets x;: = ¥,(t,). By (1) there exist open neigh-
borhoods U,(x,), U,(x;) such that (f}),; = (f2), for all x; e U;, x3 € U,
with 7,(x}) = m,(x5). Since the mapping ¥, are continuous, there exists a
neighborhood Q(t,) < [0, 1] with ¥,(Q) = U,, 4 = 1,2. Therefore (f1)yq) =
(f2)yq for t € Q. This means that W is open.

c. One shows that [0, 1] — W is open in exactly the same way. Since
[0, 1] is connected, it follows that W = [0, 1]. O

Theorem 8.3. Let &, = (G,, n,, x;) be domains over C" with 7,(x;) = 30,
A =12 and with &, < 6,.
Let f be a holomorphic function on G,, F a holomorphic extension of
f to G,. Then F is uniquely determined by f.

Proor. Let Fy, F, be holomorphic extensions of f to G,. By Lemma 1 there
exist neighborhoods U, (x,) such that the restriction of the canonical mapping
¢:G; — G, to U, maps the set U, topologically onto U,. Forv = 1, 2itis
true that F, o ¢|U; = f|U;, consequently F,|U, = F,|U,, and therefore
(F1)x, = (F1)x,- Since each point x € G, can be joined to x,, the equality
F, = F, follows from Theorem 8.2. O

Forj=1,...,nlet pr;:C" — C be the projection onto the j-th compo-
nent. If (G, ) is a domain over C”, then z;: = prjo n is a holomorphic
function on G, so the set A(G) of all holomorphic functions on G contains
more than the constant functions.

Def. 8.4. Let ® = (G, =, x,) be a domain over C" with base point & a non-
empty set of holomorphic functions on G. Let {®,, 1 € I} be the set of
domains over C" with the following properties:

1. 6 < ®,foraltiel
2. If f € &, then for every 1 € I there is an F, € A(G,) with F |G = f.
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8. Holomorphic Hulls

Then Hz(6): = () ©, is called the holomorphic hull of ® relative to &

el

If # = A(G), then H(®): = H 4,(®) is called the (absolute) holomorphic
hull of G. If # = {f}, then H (®): = H;(®) is called the domain of
holomorphy of f.

Theorem 8.4. Let ® = (G, ©, x,) be a domain over C*, # a non-empty set of
functions holomorphic on G and H z(®) = (G, #, %) the holomorphic hull of
G relative of . Then & < H 4(®), and for each function f € F there exists
exactly one function F e A(G) with FIG=f.If 6, = (Gy,my,xy) is a
domain over C" with ® < &, and the property that every function f € F
can be holomorphically extended to G, then ; < Hz(®).

PRrROOF
1. Let “~” be the finest equivalence relation on X: = (] G, with prop-

el

erty (P). Then G is the set of equivalence classes of X relative to ~. We now
define a new equivalence relation on X:(y, 1,) ~ (y, 1,), if and only if:

a. m,,(y) = m,())

b. If fe & and f, € A(G,)), f; € A(G,,) are holomorphic extensions of f,
then (f}), = (f2),- “~” is an equivalence relation and has property (P).

a. For each 1 € I there exists a continuous fiber-preserving mapping ¢,:
G — G, with ¢,(xo) = x,. We can find open neighborhoods U(x,), U(x,,),
U,(x,,) and V(m(x,)) such that all mappings are topological in the two
commutative diagrams below.

U U
U q)lll R U1 U (D,ZI U2
n|U 7,|Us n,&{ m,|U,
| 4 | 4

Then f o (1,,|Uz) " = fo0 0, @U) ™ = fo(@U)* = fy 0 0,, 0 (2] U) * =
fi10(m, |Uy)™1; that is the base points are equivalent.

b. If y;:[0, 1] — G,, are paths with (,(0), t;) ~ (¥,(0), 1,) and 7, oy =
7, oY, then (f1)y,0) = (f2)y(0)- It follows from Theorem 8.2 that: (f})y,1) =
(f2)y.1)» and, therefore (y4(1), 11) =~ (Y(1), 1,). Since “~” is the finest
partition with property (P), (y, t;) ~ (), 1) implies (y, 1;) ~ (y, t,).

2. Foralliel, 6 < 6, < ) ®, = Hyg(®). Let $,:G, » G and $:G —

el

G with = @, - @, be the canonical mappings. Let f € # be given. For
9 € G there exists an 1€ I and a y, € G, with §,(y,) = . Let F, e A(G,) be a
holomorphic extension of f. Then we set F(y): = F,(y,). Ifxe L, y, = G,,
&.(y) = ,and if F, € A(G,) is a holomorphic extension of f, then (y,, 1) ~
(¥« k). Hence (y,, 1) =~ (yy, k) as well, so that (F,), = (F), . It follows that
F,(y,) = F(y«)- So F is well defined. Also, Fo @ = Fo {p,o @, = F,0 ¢, =
f, so F is an extension of f. It remains to show that F is holomorphic:
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Let e G.§ = ¢,(y,) and 3 = #($). Then there exist open neighborhoods
U.(3,), U,(9), V(3) and a commutative diagram of topological mappings:

(01IU1
1

& o

It follows that F o (#|U,) ™' = Fo ¢, (n|U;)™! = F, o (n|U,)""; the last is
a holomorphic function.
3. The “maximality” of H z(®) follows immediately from the construction.
The holomorphic hull H;(®) is therefore the largest domain into which
all functions f € # can be holomorphically extended. O

Theorem 8.5. Let 6, = (G,, n;, x), A = 1, 2 be domains over C" with &, L
®, = (G, 7, %), and f,:G, - C, f,:G, — C be holomorphic functions. If
there is a domain & = (G, m, X,) with & < ©, for 4 = 1,2 and f|G =
/2|G, then there is a function f holomorphic on G with f|G, = f; for A =
1,2.

PROOF. Let f: = fi|G = f,|G, #: = {f}. Then f, is a holomorphic exten-
sion of f to G, and f, is a holomorphic extension of f to G,. Therefore by
Theorem 84: 6; < Hz(®) and 6, < Hz(®). But then by Theorem 7.6
®; U 6, < Hz(G). Let f be the holomorphic extension of f to Hz(®) and
f:=f|G.Fori =1,2,f|G = (f|6)|G = |G = f = f,|G, therefore f|G, =
fa- ]

Now let P < C" be the unit polycylinder, (P, H) a Euclidean Hartogs
figure, ®:P - B — C"* a biholomorphic mapping. (B, #(H)) is then a
generalized Hartogs figure. Since P and H are connected Hausdorff spaces
and @ is, in particular, locally topological, it follows that B = (P, &, 0) and
$ = (H, @, 0) are domains over C" with base point and we have § < P.
We regard the pair (B, ) as a generalized Hartogs figure.

Theorem 8.6. Let (G, n) be a domain over C", (B, ) a generalized Hartogs
figure, and x4 € G a point for which < G: = (G, z, x,).
Then every function f e A(G) can be extended holomorphically to
® U PB.

PrOOF. f|H has a holomorphic extension F € A(G). Let 6,: = 6, 6,: =
B, fi: = f, fo: = F. Because < 6, $ < 6, and f,|H = f,|H, the pro-
position follows from Theorem 8.5. O

Def. 8.5. A domain (G, n) over C" is called pseudoconvex if the fact that
(B, ©) is a generalized Hartogs figure and x, € G a point with < &: =
(G, 7, xo) implies ® U P = 6.
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Def. 8.6. A domain ® = (G, =, x,) is called a domain of holomorphy if there
exists an f € A(G) with H:(®) = ®. In the schlicht case this definition
agrees with the old one.

Theorem 8.7.
1. If & = (G, &, xo) is a domain over C" and F a non-empty set of
functions holomorphic on G, then Hyg(®) is a pseudoconvex domain.
2. Every domain of holomorphy is pseudoconvex.
The proof is trivial.

The definition of holomorphic convexity can be extended from the
schlicht case; then we have

Theorem 8.8. (Oka, 1953). If & is pseudoconvex then & is holomorphically
convex and is a domain of holomorphy.
The proof is tedious.

At present the concept of a holomorphic hull is only of theoretical interest,
although it is possible to construct the holomorphic hull by adjoining
Hartogs figures and it is conceivable that such a construction is realized
with the help of a computer. Quicker methods have been found in only a
few special cases, as for example, in connection with the Edge-of-the-Wedge
theorem which in quantum field theory serves as a proof of the PCT theo-
rem (“Under certain assumptions the product PCT of space reflection P,
time reversal T, and charge conjunction C is a symmetry in the sense of
field theory™).
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CHAPTER III

The Weierstrass Preparation Theorem

1. The Algebra of Power Series

In this chapter we shall deal more extensively than before with power
series in C". Our objective is to find a division algorithm for power
series which will facilitate our investigation of the zero sets of holomorphic
functions.

Let No: = N U {0}, N§: = {(v,..., v,):v;€ No}. We denote by C{3}
the integral domain of formal power series about 0 with variables z,, .. ., z,

and coefficients in C. Let R". be the set of n-tuples of positive real numbers.
=)

An element f € C{3} can be writtenas f = ) a,3"
v=0

Def. 1.1. Let t = (ty,..., t,)eR% and f = ) a,3" € C{3}. The norm of
v=0

f with respect to t is the “number”
170 = 3 lae' e R 0 (0} U feo}

One can introduce a weak ordering on R’ if one defines (¢;,...,¢t,)
<(t,...,t) if and only if t; <t for i =1,...,n The norm of f
relative to t is then monotone in t: If t < t*, then || f]|, < || f||-

Def. 1.2. A formal power series f € C{3} is called convergent if f(3) =

Y’ a,3" is convergent in a polycylinder about 0. (The definition of this
v=0

convergence was given in Chapter I.) We denote the ring of convergent
power series by H,,.
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Theorem 1.1. f € C{3} is convergent if and only if there is a t e R with

171l < oo

PrOOF

(e}

1. Let f(3) = ). a,3" be convergent in the polycylinder P. Then there
v=0
exists a t € R} with P, = P, and therefore || f||, < .

2. If || flli = Y |a|t* is convergent, then f(3) is convergent at the point
v=0

t, so f converges on all of P,.
Def. 1.3. Forte R, let B;: = {fe C{3}:||f]li < o}.

Def. 1.4. A set B is called a (complex) Banach algebra if
1. There are operations +:B x B — B,":C x B — Band-:B x B —
B such that

a. (B, +, ) is a C-vector space
b. (B, +, °) is a commutative ring with 1
c. Forall f,geBandallceC,c-(feg)=(c-fleg=folcg).

2. To every f€B a number ||f|| e Ry U {0} is assigned with the
properties of a norm:

a. |l f]l=|c|lf]|forceC, feB.

|
b. ||f + g|| < ||If|| + ||g]| for £, g € B.
c 71 =0=7=0

3|7 o gll <171 -llgll for £, g € B.
4. As a normed C-vector space, B is complete; that is, every Cauchy
sequence (f,) of elements of B converges to an element f of B.

Theorem 1.2. B, is a Banach algebra for every t € RY.

Proor. Clearly C{3} is a C-algebra. In order to show that B, is a C-algebra,
it suffices to show that B, is closed under the operations:

c: Z avav = Z (C : av)3v9
v=0 v=0
Y a3+ Y b3’ =Y (a + b)),
v=0 v=0 v=0

8 |

(£0) (£ 00)- (3, 00)

Straight-forward calculation shows that ||- - -||; is a norm with properties
(2) and (3).

Now if ce C, f € B,, then ¢ - f € B, because of (2a). If f and g are in B,,
then f + g € B, because of (2b) and f o g € B, because of (3).
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It is clear that 1 lies in B,. All that remains is to show completeness:

[e ]

Let (f;) be a Cauchy sequence in B, with f,(3) = Y, al¥3". Then for
v=0

every ¢ > O there is an n = n(g) € N such thatforall A, u > n
5l ~ ol = 1~ £l <
Because t* # 0 it follows from this that
|a? — a®| < fT for every ve N~

For fixed v (a?) is therefore a Cauchy sequence in C which converges to

the complex number a,.
o)

Let f3): = ). a,3" Let § > 0 be given. Then there exists an n = n(J)
v=0
such that

© 5
Y o — aftO <5 fori>n and peN.
v=0

Let I = N be an arbitrary finite set. There always existsa ue N for A > n
such that ) |a?*® — a|t* < 6/2, and then

vel

Y |aP —aft* < Y o — a3+ Y a3t — gt <6 ford=n
vel vel vel

(e}

In particular ||f, — ], = Y. [a¥ — a,|t" < é. Thus (f;) converges to f.
v=0
Because ||f||, < ||f — falle + ||falls» it follows that f lies in B:. O

For the following we need some additional notation:
Ifv=(yg...,v)eN weset v:i=(vy,...,v,); if t = (t,...,t,) R,
we set t': = (t,...,t,); if 3 =1(2,...,2,)€C", we set 3': = (2;,...,2,).
Then v = (v, V), t = (t;, 1), 3 = (21,3), and we can write an element
f € C{3} in the form

0= T AEH  wherefi3) = ¥ a3 ()"

This representation is called the expansion of f with respect to z;. The
following assertions hold:

1. f = Y fiz} lies in B, if and only if every f; lies in B; = B, n C{3'} and
A=0
3 Al < o
2. Forse N, ||z - flle = & - | £l
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2. The Weierstrass Formula

o9
3.Iff = Y a,3 converges and ay...o = 0, then for every ¢ > 0 there exists

=0
ate R with ||f]} < e

PROOF
o0 o0 0 , [ee]
(1) Illi= X laft = < Iaz,v'l(f’)”>tf = 2 Al
v=0 A=0 \v'=0 A=0
oo} oo} o0
@ a-fl=|2 fird™)| = 2 hlltd™ =g X |IAlle-a
i=o0 t 2=0 i=0
=t [}
oo}
3. If one Sets fii = Y. Go...0,viviss-o w2l tZ0 - - Zin, then zg - fy +

vi>0
oz, fy=fand ||f| =ty Al + > + o || fulle I f is convergent,
then there exists a t, € R% with || f]|,, < oo, and fort < t,

n n n
Al = 2 allille < X llfille < max(es, ..o ) 3 All
i= i= i=

which becomes arbitrarily small. O

2. The Weierstrass Formula

Let a fixed element t € R, be chosen. When no confusion is possible we
shall write B in place of B,, B’ in place of B;, and || f|| in place of || f]|,.

Theorem 2.1 (Weierstrass formula). Letg = ) g,z% € B, let therebeaseN,
A=0

for which g, is a unit in B, and let there be an ¢ with 0 < ¢ < 1 such that
Iz — g- 95 || < & t5. Then for every f € B there exists exactly one q € B
and one r € B'[z,] with deg(r) < s such that f = q - g + r (“Division with
remainder”). Furthermore,

_ 1
W loe-all < N1l
1
2 It < AN 7=
PrOOF. Let h: = —(z} —g-g,; ). Then ||h]| <e-tjandg-g;' =z} + h.

Let us start with an arbitrary f € B and inductively construct sequences

(f2), (q,), and (r;). We set fo: = f.
Suppose fo, - - - , f; have been constructed. There exists a representation

fi =Y fi, <25, and we define
k=0

© s—1
Gi= Y findih = 2;) findi  and  fii=(2 — 997 Vs
K=s k=
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III. The Weierstrass Preparation Theorem

Then f; = zi-q; + ryand fi4y = —h-q, = f, — 1, — gg5 ' - q;. Clearly
the following estimates hold:

[Irall < (1]
laall < (14l
el < [ llaall < &-Nlfall. so Al < &*-[I£]-
o0 oo}
Letg:= Y g;'-gqyandr:= ) r; Then
i=0 i=o
lgs *aall < e Ylgs (-1l and  [lrall < &l

By the comparison test the series converge. Since each r; is a polynomial
with deg(r;) < s — 1, it follows that r is a polynomial with deg(r) < s — L

[e 0]
Since the series Y. f; also converges,

A=0
f=f=Y fi— Y fisr=2 (i— fix:) = X (ra+ 995 'q1)
A=0 A=0 A=0 A=0
=g Y gt Yra=gqg+r
A=0 A=0
The estimates now follow readily.
oo} oo} o] 1
O ol =] 3 0| < 3 el <l T =i
A=0 A=0 A=0
[e o) 0 1
2 Il < 2 limall <A1 X e* = (1Al 7=
A=0 A=0

It still remains to show uniqueness.
Let there be two expressions of the form

f=a9+ri=q9+r,.
Then 0 =(q; — q;) g + (r, — r,). From the representation g = g(z} + h)
with ||h]| < &t} we obtain
0= (91 — 92)9:21 + (@1 — q2)gsh + (ry — 12)

and
(a1 — 92)9571|| < (@1 = g2)9,23 + (1 — 72)|

= (g1 = g2)9: - | < &~ 5 - [[(a1 — 42)gs|
e |l(ax — g2)971 -
Because ¢ < 1, (9, — g2)gsz; = 0. Therefore g, = g, and ry = r,. a

Corollary. If the assumptions of Theorem 2.1 are satisfied and if in addition
feB[z], geB'[z,] and deg(g) = s, then qe B'[z,] and deg(q) =
max(— 1, deg(f) — s) [with deg(0): = —1].
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2. The Weierstrass Formula

Proor. Let d: = deg(f). For d < s one has the decomposition f = 0-g + f,
let therefore d > s. Now —1 < deg(q;) < max(—1,deg(f;) —s) and
deg(fy) < d. If we assume that d,: = deg(f,) < d for v=0,..., A, then
deg(q,) < d — s, therefore

deg(fi+1) = deg(fy — 2 — 945 'a1)
< max(deg(f;), deg(ry), deg(qz) + 5)
< max(d,s — 1,(d — s) + 5) < d.

Hence deg(q;) < d — s for all 4, and deg(q) < d — s. On the other hand,
the representation f = g - g + r gives

deg(f) < max(deg(q) + s, s — 1) = deg(q) + s,

therefore d — s < deg(q). All together one obtains:deg(q) = max(—1,d — s).
O

Theorem 2.2. If B is a Banach algebra, fe€ B and ||l — f|| < 1, then f is a
unit in B and || f || < 141 — ||t = f|).

Proor. Letg: = ) (1 — f){,e:=|1 — f||. ThenO0O < e<1land ) &
i=o

A=0

oo}
dominates g. Therefore the series ), (1 — f)* converges and g is an element
A=0

of B. Moreover [*g=(1—(1—f)'g= Y (1=}~ ¥ (1—f)*!=
A=0 1=0

(1-£)°=1,and|g|| < i et = 1/(1 — ). ]

A=0

Def. 2.1. Let se Ny. Anelement g = ) g,2% € B satisfies the Weierstrass
A=0

condition (W-condition) at s if:

a. g, is a unit in B’
b. ||lzi — g9 || < 245

Theorem 2.3 (Weierstrass preparation theorem). If g € B satisfies the W-
condition at s, then there exists exactly one normalized polynomial we B[z, ]
with deg(w) = s and one unit e € B such that g = ¢ .

ProOF. We apply the Weierstrass formula to f = z}: There are uniquely
determined elements g € Band r € B'[z; | with z{ = g~ g + randdeg(r) < s
(e take an ¢ < 3 which satisfies the conditions of Theorem 2.1). But then
z5 — ggs ' = (q — g5 V)g + ris a decomposition of z5 — gg, ! in the sense
of Theorem 2.1; therefore we can employ formula (1):

1 €

<

< 1.
1—¢ 1—¢

llags — 1l = ll(@ — 9 - gl < 17728 — 99577
That means that q - g; and hence g is unit in B.
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I11. The Weierstrass Preparation Theorem

Lete: = ¢~' and w: = z — r. Then w is a normalized polynomial with
deg(w) = s,and e @ = q 7!z} — 1) = g.Ifg = e,(z] — 1)) = ey(z] — 1)),
then

grei'+ri=z1=ge' +r;

but on the other hand, in the decomposition z§ = q-g + r, the elements
q and r are uniquely determined. Therefore e; = e, and r; = 7,. |

Corollary. If g is a polynomial in z,, then e is also a polynomial in z,.

Proor. If we use formula (2) in the decompositionz{ — gg; ! = (g — g; 1) g
+ r, we get

_ 1 Py
Il <l — gl T— < 8- 7— <4
Because w, = 1 it is also true that
24 = o = |l - ol = Pl < 4;

that is, w satisfies the conditions of Theorem 2.1. Since g = e - wis a decom-
position in the sense of the Weierstrass formula, the proposition follows
from the corollary of that theorem. O

Comment. The Weierstrass preparation theorem serves as a “preparation
of the examination of the zeroes of holomorphic functions”.

A function holomorphic in a polycylinder will be represented by a con-
vergent power series g. If there exists a decomposition g = e - w with a unit
e and “pseudo polynomial” w = z} + 4,(3)z;"! + - - + A,@3’), then g and
w have the same zeroes. However, the examination of  is simpler than that
of g.

3. Convergent Power Series

Def. 3.1. g € C{3} is said to be regular in z, if g(z,, 0, . . ., 0) does not vanish
identically.
Ifg = Y g,z} is regular in z,, then ord(g) is that number s € N, for
A=0
which go(0) = - - = g,-,(0) = 0, g4(0) # 0.
We then say that g is regular of order s in z,.

Theorem 3.1. For g,, g, € C{3}

1. gy - g, is regular in z, if and only if g, and g, are regular in z,
2. ord(g, - g,) = ord(g;) + ord(g,).

PROOF. (g; * 92)(21, 0) = gi(z;, 0) - g2(z;, 0). Since C{z,} is an integral do-
main, (1) holds; (2) is obtained by multiplying out. a
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3. Convergent Power Series

Theorem 3.2. Let g € C{3} be convergent and regular of order s in z,. Then for
every € > 0 and every t, € R". there exists at < t, such that g lies in B,,
gs is a unit in By, and ||z} — gg; *||¢ < & 1.

ProoF. Let g = Y g,z1 be the expansion of g with respect to z;. Then
i=o

9,0 =0forA =0,1,...,s — 1 and g(0) # 0.
1. Since g is convergent, there exists a t; = (t{",..., ") e R% with

lgll, = X llgall, - 1% < co; therefore g, € B;,. In particular then
A=0
953
98) _ 1~ .f3)e B,
gs(o) f(3 ) t1

and since f(0) = 0, there exists a t, < t, such that, forallt < t,, ||f] < 1.
95/95(0) (and hence g, also) is therefore a unit in B;. Moreover, it is clear
that g lies in B;.
2. Let h: = 25 — g-g.;!. Then he B, for all t < t,, and we can write

h = d;z} with d, = 0, d;, = —g,9;! for 2 # s and d,(0) = 0 for
i=o
A=0,1,...,s — 1.Fort < t,

) o

_ +1, A—s—1
Z d,zi|| = |71 Z d;zi
A=s+1 t A=s+1 t
© £
+1 A-s—1 +1 A—s—1
=tsl M Z dlzl s Stsl 2 dlz s
A=s+1 t A=s+1 ta*

3. If ¢, is sufficiently small, then

[+ o]
to |l Y dazdi T < des
A=s+1 ta
therefore
o]
Y dzt| < et
A=s+1 t

Because d,;(0) = Ofor A = 0,1,...,s — 1 we can choose for t; a suitable t'
so small that

s—1
3 ldlett < 4o 5.
=0

Fort = (t,, t') it then follows that

s—1
(1Al < z;o lldalle - ¢4 + <& f. O

[ o]
A
Z d,zi
A=s+1

t

Remark. In a similar manner one can show that if g,, . . ., gy € C{3} are
convergent power series and each g; is regular of order s;inz,,i = 1,..., N,
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III. The Weierstrass Preparation Theorem

then for every ¢ > 0 there is an arbitrarily small t € R, for which

g; € By, (9:)s, 1s @ unit in By
and

I — gi(g)s M| < &- %
The problem of what to do if g is not regular in z, now arises. We shall
show that if g does not vanish identically one can always find a biholomorphic
mapping which takes g into a power series g’ regular in z;.

Let A(0) be the set of all holomorphic functions defined in a (not fixed)
neighborhood of 0 € C*, let #: A(0) — H, with &(f) = (f), be the mapping
which associates each local holomorphic function f with its Taylor series
expansion about the origin. @ is clearly surjective and commutes with
addition and multiplication in A(0). If U, U, are open neighborhoods of
0eC" 0:U; » U, a biholomorphic mapping with ¢(0) = 0, then for f
g € A(0) with (f)o = (g9)o We have

(fea)o = (g° 0)o-

Therefore the mapping ¢*: H, - H, with ¢*((f)o) = (f° 0), is well defined
and moreover

. 0" ((f1)o + (f2)o) = ™ ((f1)o) + o*((S2)o)
. 0" ((f1)o - (f2)o) = 0" ((f1)o) - *((f2)0)

- 1d*((o) = (No

- (0020)*((f)o) = (p* 2 ™)((f)o)

. o* is bijective, and (¢*) ! = (6~ ).

DN AWK -

o* is therefore always a ring isomorphism. It is customary to write () ° o
in place of 6*((f)o).

Def. 3.2. Letc=(c,,...,¢,)eC" 1. Then 6.:C" —» C" with g (wy, ..., W,): =
(wy, wy + CuWy, ..., W, + c,w,;) is called a shearing. Let the set of all
shearings be denoted by ).

Theorem 3.3. Y is an abelian group of biholomorphic mappings of C" onto
itself.

PrOOF. Linear shearings are, of course, holomorphic. It follows from
the equalities

Oa+c; = Og ° Og
and
O.COO._C= 0'0 = idcn

that )’ is an abelian group and that shearings are biholomorphic. ]

Theorem 3.4. Let ge H,, g # 0. Then there exists a shearing o € Y, such that
g o o isregularin z,.

76



3. Convergent Power Series

PrOOF

0

1. Letg = Y a3 = Y pi3) with p,3) = Y a,3’ be the expansion
A=0

v=0 Ivl=2
of g into a series of homogeneous polynomials, 1y: = min{i e Ny:p, # 0}.
0

Then for every shearing o, geo = ), (p;° o) is the expansion of go ¢

A=2o
into a series of homogeneous polynomials.
2.
Die° O'(Wl, 03 RS 0) = Z ('lvw‘ljl(CZWI)v2 T (anl)vn

v[=4

p— oo nt — 7 . A

= | Iz a,cy Wi = Palca, -+ -5 ) - Wy
v[=2

with p; a polynomial in (n — 1) variables. Since by definition not all the
coefficients of p; vanish, there are complex numbers c%, .. ., ¢{* such that
Pr(cD, ..., c?) # 0. Let

Go: = O, o)

Then
0 o)
ge 0'0(W1, 09 ] 0) = Z (p). °© 0.0)(W1, Oa ey 0) = Z ﬁA(C(ZO)a R Cilm)wiv’
A=2o A=2o
and it is clear that g o o, is regular of order 4, in w,. O

Remark. One can show that if gy, . . ., gy are non-vanishing convergent
power series, then there is a shearing o € ), such that all g; - ¢ are regular
in z;.

Theorem 3.5 (Weierstrass formula for convergent power series). Let g € H,
be regular of order s in z;. Then for every f e H, there is exactly one
g€ H,and onere H,_[z,] with deg(r) < ssuchthatf = q-g + r.

PRrROOF

1. There is a t € R% such that f and g lie in B, and g; is a unit in B, and
Iz — 995 ||c < -t for an ¢ with 0 < ¢ < 1. The existence of g and r
then follows from the earlier Weierstrass formula.

2. Let two decompositions of f be given:

f=q-g+ri=q,°g+r,

We can find a t € R% such that f, q,, q,, 7y, 7, lie in B, and g satisfies the
W-condition in B,. From the Weierstrass formula for B, it follows that
g, = g, and r; = r,. O

We also have the

Corollary. If f and g are polynomials in z; with deg(g) = s, then q is also a
polynomial.
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II1. The Weierstrass Preparation Theorem

Theorem 3.6 (Weierstrass preparation theorem for power series). Let ge H,
be regular of order s in ty. Then there exists a unit e € H, and a normalized
polynomial w € H,_ [z, ] of degree s with

g=ew

PRrOOF

1. There exists a t € R% such that g satisfies the W-condition in B,. The
existence of the decomposition “g = e - @” therefore follows directly from
the Weierstrass preparation theorem for B,.

2. whasthe form w =zj — r,wherer € H,_[z;] and deg(r) < s. If there
exist two representations g = e(z] — r;) = e,(z] — r,), then it follows that
efl-g+r, =2, =e;' g + r,. But in this case the Weierstrass formula
says that e;! = e;! and r; = r,. Therefore ¢, = ¢, and w, = w, (for
w,: =z} —r). O

Corollary. If g is a polynomial in z,, then e is also a polynomial in z,.

Theorem 3.7. f € H, is a unit if and only if f(0) # O.

ProOF
1. If f € H, is a unit, then there existsag € H, with f - g = 1. In particular

£(0)- g(0) = 1, s0 f(0) # 0.

2. If f € H, and f(0) # 0, then g: = [ f/f(0)] — 1 lies in H, and g(0) = 0.
Therefore there is a t € R such that |||, < 1, which means that f/f (0) is a
unit in B,. But then f is a unit in H,, also. O

Remark. If the function g e A(0) does not vanish identically near O,
then there is a shearing o such that (g o o), is regular in z,. By the Weierstrass
preparation theorem we can find a decomposition (g - 0)y = e @ with
e0) #0and w =z + A,(3)z ' + -+ + A3) € H,—1[2z,]- g then has a
zero at 0 if and only if w(0) = 0, and that is the case if and only if 4(0) = 0.
But 4, lies in H,_,. The Weierstrass preparation theorem therefore allows
an inductive examination of the zeroes of holomorphic functions.

4. Prime Factorization

In the following let I always be an arbitrary integral domain and I*: =
I — {0}.

We quote some facts from elementary number theory (see for example,
v.d. Waerden, Vol. L.).

Def. 4.1. Let a e I*, b e I. We say that a divides b (symbolically a|b) if there
existsa ce I such thatb = a-c.
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4. Prime Factorization

Def. 4.2

1. Let aeI*, a not a unit. a is called indecomposable if it follows
from a = a; * a, with ay, a, € I* that a, is a unit or a, is a unit.

2. Let ae I* not be a unit. a is called prime if a|a, - a, implies that
ala, or ala,. Itis true that a prime is always indecomposable. The converse
is not always the case, but does hold in some important special cases, such
as the ring of integers.

Def. 4.3. I is called unique factorization domain (or UFD) if every ae I*
which is not a unit can be written as a product of finitely many primes.
This decomposition is then determined uniquely up to order and mul-
tiplication by units.

In unique factorization domains every indecomposable element is prime.

Theorem 4.1. If k is a field, then k[ X ] is a unique factorization domain.

Proor. The euclidean algorithm is valid in k[ X ], hence k[ X] is a principal
ideal domain. But every principal ideal domain is a unique factorization
domain. (Details are found in van der Waerden.) O

Def. 4.4
1. Let I be an integral domain. Then the quotient field of I, denoted
by Q(I), is defined by

od): = {%:a, bel b # 0}.

2. If I[X] is the polynomial ring over I, then we denote the set of
normalized polynomials of I[X] by I°[X].

Remark. I°[X] is closed with respect to multiplication but not with
respect to addition. Therefore I°[ X ] is not a ring. One can, however, consider
prime factorization in I°[ X ].

Theorem 4.2. Let I be a unique factorization domain, Q: = Q(I) the quotient
field. Furthermore, let w,, w, € Q°[ X ],w € I°[X],and v = w, * w,. Then
4, w, also lie in I°[ X ].

PrOOF. For 1 = 1,2, w; = X% + A, (X% '+ .-+ + A, with 4, ,€ Q.
Therefore there exists a d; € I such that d, - w, € I[ X]. In the coefficients of
d, - w, any common divisors are cancelled.

Now letd: = d, - d,. We assume that there exists a prime element p which
divides d. It follows that dfd, - w, for A = 1, 2. Let u; be minimal with the
property that pyd; 4, , . Now (d,w,) - (dyw;) = -+ + X*'"#2 - [(d; - Ay,,)-
(d2A,,,,) + terms divisible by p] + - - - . Therefore the coefficient of X*1*#2
is not divisible by p, hence (d; * w)(d, - w,)is not divisible by p, which clearly

79



II1. The Weierstrass Preparation Theorem

is a contradiction of the fact that (d, - w,)(d, - w,) = d - » with w € I°[X]
and p|d.

Therefore d has no prime divisors, that is d = d; - d, is a unit. Hence
d;, A =1, 2 are units in I. It follows that w; =d;'-d,  w; € I[X] and
hence w; e I°[X]. O

Theorem 4.3 (Gauss’ lemma). If I is a unique factorization domain, then so
is I°[X]; that is, every element of I°[X] is a product of finitely many
prime elements of I°[ X]. (Only the multiplicative structure plays a role,
so one can employ the notion of “factorization” in I°[ X].)

PrOOF

1. LetweI°[X] = Q[X]. Thenw = w, * w, - - - w, with w; € Q[ X ] prime
(Theorem 4.1). In each case let a; be the coefficient of the term of highest
degree in w;. Then clearly 1 = a, - - a,. Therefore

0] [0} w
a; " a a, a,

Without loss of generality we may assume, then, that the w; are normalized.
2. By induction on ¢ it follows from Theorem 4.2 that all w, lie in I°[ X ].
It still remains to be shown that the w; are also prime in I°
with o', ®” € I°[X].
This relation also holds in Q[X] and there either w,|w’ or w,|w”. Say
w;|w’. Then ' = w, - w}; with w; € Q[X] and hence Q°[ X ]. By Theorem
4.2 it further follows that w} € I°[ X]. Therefore w, is prime in I°[X]. O

We now apply these results to the special case I = H,,.

Def.4.5. Let fe H,, f = Z p; be the expansion of f as a series of homo-

geneous polynomials. Then one defines the order of f by the number
ord(f): = min{A e Ny:p,; # 0}, ord(0): = co.
Then:

1. ord(f) = O

2. ord(f; - f2) = ord(f;) + ord(f;)

3. ord(f; + f2) = min(ord(f;), ord(f3)).
4. f is a unit if and only if ord(f) = 0.

Theorem 4.4. H, is a unique factorization domain.

Proor. We proceed by induction on n. For n = 0, H, = C is a field, and
the statement is trivial. Suppose the proposition has been proved for n — 1.

1. If fe H, is not a unit, and f = f - f, a proper decomposition, then
ord(f) = ord(f;) + ord(f,); therefore the orders of the factors are strictly
smaller. Consequently we can decompose f into a finite number of indecom-
posable terms: f = f; - - f,.
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2. Now let f be indecomposable, f;, f, arbitrary and #0, and f|f; - fo.
A shearing makes f; o g, f, o 0, and fo ¢ regular in z,. Thus it follows that
there exists a decomposition foo =eow and f,o6 =e¢," ®,, v =1, 2,
in the sense of Theorem 3.7. Since f|f; - f, we have (f < 6)|(f; ° 0) - (f3 © 0);
therefore w|w; - w, in H,. There exists a g € H, with ¢ @ = w; - w,. By
the Weierstrass formula (Theorem 3.6) g is uniquely determined, and by the
corollary g € H?_[z,].

Since f is indecomposable, so is f o o and thus @ is indecomposable
(in H2_,[z,]). By the induction hypothesis H,_, is a unique factorization
domain, and by Gauss’ lemma so is H?_ [z, ]. Thus w is prime in H?_ [z, ].
Suppose w|w, ; then f o a|f; o 6, so f|f; in H,. Every indecomposable ele-
ment in H, is prime. O

5. Further Consequences
(Hensel Rings, Noetherian Rings)

Hensel Rings

Let R be a commutative C-algebra with 1 in which the set m of all non-
units is an ideal. Let 7:R — R/m and 1:C — R be the canonical mappings.

Proposition
1. m is the only maximal ideal in R.
2. R/mis a field.
3. o 1:C - R/m is an injective ring homorphism.

PRrROOF

1. Let a = R be an arbitrary maximal ideal. If a contains unit, then
a = R, and that cannot be. Therefore a = m;thatis,a = m.

2. If n(a) # O, then a ¢ m, and therefore is a unit in R. There exists an
a’ € R with aa’ = 1, and then =n(a)‘ n(d') = n(a- a’) = n(1) = 1 € R/m.

3. It is clear that mo 1 is a ring homomorphism. If 7 o i(c) = 0, then
1(c) = c¢- 1 must lie in m, and that is possible only if ¢ = 0. Therefore x o 1
is injective. O
Def. 5.1. Let R be a commutative C-algebra with 1. R is called a local

C-algebra if:

1. The set m of all non-units of R is an ideal in R.
2. The canonical ring monomorphism 7 o 1: C — R/m is surjective.

Theorem 5.1. H, is a local C-algebra.

Proor
1. m = {f € H,:f(0) = 0} is clearly an ideal in H,,.
2. For fe H,, f = (f(0)) + (f — (f(0))) with f — 1(f(0)) € m; there-

fore n(f) = = o 1(f(0)). Hence & o 1 is surjective. Moreover, (n o 1)~ ! on(f) =

f0). O
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Let R be a local C-algebra with maximal ideal m and the canonical
mappings 7:R — R/m, 1:C — R. Then there is a mapping p:R[X ] —» C[X]

with p ( Y X ”) = Y (no1)~!-=n(r,)X" which is clearly surjective.

v=0 v=0

Def. 5.2. Let R be a local C-algebra, p:R[X] — C[X] the mapping given
above. R is called henselian if there exist normalized polynomials

fi» f2€ R[X] with p(f;) = g1, p(f2) = g, and f = f; - f,, whenever
f € R[X] is a normalized polynomial and p(f) = ¢, - g, is a decomposi-
tion of p(f) into two relatively prime normalized polynomials g,
g9, € C[X].

Theorem 5.2. H, is a henselian ring.

This theorem follows directly from Hensel’s lemma:

Theorem 5.3 (Hensel's lemma). Let w(u, 3) € HY[u] have the decomposition

I3
o, 0) = n (u — c;)* into linear factors (with ¢, # ¢, for v # p and

A=1
s; + -+ s, = :s = deg(w)). Then there are uniquely determined poly-
nomials w,, . .., w, € H [u] with deg(w;) = s; and w;(u, 0) = (u — c;)*
for A=1,..., £ such that ® = w, " w,

Proor. We proceed by induction on £. The case £ = 1 is trivial; we assume
that the theorem has been proved for £ — 1.

1. First assume that «(0,0) = 0. Without loss of generality we can assume
that ¢, = 0; thus w(y, 0) = u® - h(u) with deg(h) = s — s; and h(0) # 0.
This means that w is regular of order s, in u and we can apply the Weierstrass
preparation theorem:

There is a unit e € H,, ; and a polynomial w, € HY[u] with deg(w,) = s,
such that o = e w,. From the corollary it follows that e lies in H[u].
@4(0, 0) = 0, since w(0, 0) = 0 and e(0, 0) # 0; so w,(u, 0) = u*'. Therefore

4
e(u,0) = h(u) = [] (u — c;)* By induction there are elements w,, ..., w, €
A=2
H?[u] with deg(w;) = 53, 0;u,0) = (u —¢;)* and e = ;""" w,. © =
w1, * - o, is the desired decomposition. ,

2. If w(0,0) # O, then let w'(y, 3): = w(u + ¢y, 3). As in (1) we find a
decompsotion o’ = ) - - w}, and with w,;(y, 3): = wi(u — ¢y, 3) obtain a
decomposition in the sense of the theorem.

The uniqueness of the decomposition is also proved by induction on ¢. In
Case 1 the induction step follows directly from the Weierstrass preparation
theorem, and Case 2 reduces to Case 1. O

Noetherian Rings

Def. 5.3. Let R be a commutative ring with 1. An R-module M is called
finite if there exists a ¢ € N and an R module epimorphism ¢:R? - M.
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5. Further Consequences (Hensel Rings, Noetherian Rings)

This is equivalent to the existence of elements e, ..., e, € M such that

q
every element x € M can be written in the form x = ) r.e, withr, e R.

v=1

Def. 5.4. Let R be a commutative ring with 1. R is called noetherian if every
ideal .# — R is finitely generated. An R-module M is called noetherian
if every submodule M’ <= M is finite.

Theorem 5.4. If R is a noetherian ring and q € N, then R? is a noetherian
R-module.

PrOOF. We proceed by induction on g.

The case g = 1 is trivial. Assume the theorem is proved for ¢ — 1. Let
M < R?be an R-submodule. Then #: = {r, € R: There existr,,...,r, € R
with (ry,7,,...,7r,)€ M} is an ideal in R and as such is finitely generated by
elements ¥, 1 = 1,..., £ For every r{" there are elements ¥, . .., rP e R
such that r;: = (¥, P, ..., rP) liessin M for A=1,..., L. M: = Mn
({0} x R?71) can be identified with an R-submodule of R?~! and is there-
fore, by the induction assumption, finite.

Letr, = (0,r%,..., 1), A =¢ + 1,..., pbe generators of M". If r € M,

[
we can write r = (ry,v') with ry € &, thereforery = ). a,r¥, a;, € R. But then
A=1
{ £ A 1
!’ !
r— Y ar, =(0,r — Y a,(rP,.... K" e M.
A=1 A=1

That is, there are elements a,, 4, . . ., a, € R such that

{ )4
r— Z ar,; = Z a;x,,
A=1 A=(+1
Hence
p
r = Z alrl
A=1
{ry, ..., 1,} is a system of generators for M. O

Theorem 5.5 (Riickert basis theorem). H, is a noetherian ring.

ProOOF. We proceed by induction on n. For n = 0, H, = C and the state-
ment is trivial. We now assume that the theorem is proved for n — 1. Let
4 < H, be an ideal. We may assume that we are not dealing with the zero
ideal, so there exists an element g # O in #. By application of a suitable
shearing g, g': = g o is regular of order s in z;. ¢ induces an isomorphism
o*:H, - H, with ¢*(g) = ¢'. ¢*(#) is an ideal in H, along with .#, and if
o*(#) is finitely generated, then # = (¢*)~! ¢*(#) is also finitely generated.
Without loss of generality we can then assume that g is already regular of
order s in z,. Let @,:H, — (H,_ )’ be the Weierstrass homomorphism, which
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II1. The Weierstrass Preparation Theorem

will be defined in the following manner: For every f € H, there are uniquely
defined elements ge H, and r = ry + ryzy + -+ + 112y '€ H,_[2,],
such that f = q-g + r. Let ®,(f): = (ro,...,7s-1). §,is an H,_;-module
homomorphism. By the induction hypothesis H, _, is noetherian and so by
Theorem 5.4, (H,-,;)° is a noetherian H,_;-module. M: = @,(#) is an
H,_,-submodule, and therefore finitely generated. Let t® = (#V, ..., r{®)),
A=1,...,7, be generators of M. If fe # is arbitrary, then f=q-g +
(ro + r1zy + -+ + rs_123" 1), and there are elements a,, . . ., a, € H,_, such
£

that (ro, 7y, ..., 7s—1) = . a;r'¥. Hence we obtain the representation
A=1

£
A A 2 -1
f=a-g+ ) a8 + 7Pz + -+ 127,
A=1
ie.,
{g. 7 + rVzy + -+ ¥ R+ Pz 4+ 2 7Y

is a system of generators of .£. O

Remark. We have up to now shown that H, has a unique factorization,
and is a henselian and noetherian local C-algebra. If # = H, is an arbitrary
ideal (with # # H,), then A: = H,/. is called an analytic algebra. A is like-
wise noetherian and henselian. Analytic algebras play a decisive role in the
local theory of complex spaces, a generalization of the theory of analytic sets
sketched in the following section.

6. Analytic Sets

Def. 6.1. Let B = C" be a region, M — B a subset and 3, € B a point. M is
called analytic at 3, if there exists an open neighborhood U = U(3,) € B
and functions fj, . . ., f, holomorphic in U such that

UnM={3eU:fig) =" = f3) = O}
M is called analytic in B if M is analytic at every point of B.

Remark. If B < C" is a region and fi, . . ., f, are elements of A(B), then
we call the set

N(fi, .-, f): = {3 B:fi(®) = - - L) = 0}

the zero set of the functions f;, ..., f;.

Theorem 6.1. If B «— C" is a region and M < B is an analytic set in B, then
M is closed in B.
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6. Analytic Sets

Proor. We will show that B — M is open. If 3, € B — M, then there exists
an open neighborhood U = U(3,) = B and functions fi, . . ., f, € A(U) with
N(fi,..-,f) = Un M such that, say, fi(30) # 0. Then there is an entire
neighborhood V = V(30) = U such that f;|V vanishes nowhere, and hence
V is contained in B — M. Therefore 3, is an interior point, and B — M
is open. O

Theorem 6.2. Let G = C" be a domain. Then the ring A(G) of functions
holomorphic on G is an integral domain.

Proor. We need only to show that A(G) has no zero divisors: Suppose f;, f,
are two elements of A(G) with f; # Oand f; - f, = 0. Then thereisa3,€ G
with f1(30) # 0, and hence an entire neighborhood V = V(35) = G such that
f1 never vanishes on V. But then we must have f,|V = 0, and, by the identity
theorem, f, = 0. O

We cannot conclude from this that 4 = A(G) is a unique factorization
domain. But we shall show that A°[u] is a unique factorization domain, as
a consequence of the following theorem:

Theorem 6.3. Let I be an integral domain, Q = Q(I) the quotient field of I.
I°[X] is a unique factorization domain if I satisfies the condition:

0y, 0, €Q°[X] and w, w,el’[X] imply w,, w,eI°[X].

ProOOF. Although Gauss’ lemma assumed that I was a unique factorization
domain, the proof only used the above property of I, which is satisfied for
every unique factorization domain. O

We now show that I = A satisfies the hypothesis of Theorem 6.3. The
quotient field Q: = Q(A) is the field of “meromorphic functions” on G. The
elements h = f/g can naturally be interpreted as functions only in a very
broad sense. Poles may occur, and more besides! If f and g vanish indepen-
dently at a point, then in general one cannot assign any reasonable value
to h at that point. Such indeterminate points only occur for meromorphic
functions of several variables. In what follows we confine ourselves to the
algebraic properties of Q.

For 3e€ G let I; = (H,); be the ring of convergent power series at 3 and
Q, = 0O(I,) the quotient field of I;. Moreover, let A(3) be the set of all functions
defined and holomorphic on a neighborhood of 3. For f € A(3) let (f); denote
the power series of f at the point 3. Then for every 3 € G there exists a ring
homomorphism

0,0 > Q, with 6, (Z) _ U

g (9
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III. The Weierstrass Preparation Theorem

By the identity theorem, (g), # 0 and furthermore 6, is injective. Now if

_f o) = Yo
h = g eQ and (R)y: = 0,,(h) = @, el

then (g),, must be a unit in I,, and therefore g(3o) # 0. But then there is an
open neighborhood V = V(3,) = G such that g is nowhere vanishing on
V, and on V, h represents a holomorphic function. If (h),, € I,, for every
point 3¢ € G, then & is a holomorphic function on G.

30°

Theorem 6.4. If ,, w, are elements of Q°[u] with w, - w, € A°[u] then
y, 0, € A°Tu].

ProoF

1. If w € Q°[u], then w has the form w = ¥ + A;¥™! + - -+ + A with
AieQfor i=1,...,s Let (w): = v + (A’ ! + -+ + (A); € Q%[u].
If (w), lies in I9[u] for all 3 € G, then it follows from the above considerations
that A,, ..., A, are holomorphic functions; that is, w € A°[u].

2. If w;, w, are elements of Q°[u] with w; - w, € A°[u], then for all
3 € G (wy);, (w,), € Q[u] and (w, ), - (w,), € 1?[u]. Since I, = (H,),is a UFD,
it follows that (w,),, (), € I?[u]. By (1) this means that w,, w, € A°[u]. O

Theorem 6.5. Let G = C" be a domain, A = A(G). Then A°[u] is a unique
factorization domain.

The proof follows directly from Theorems 6.3 and 6.4.

Def. 6.2. Let I be an integral domain. [ is called a euclidean ring if there
exists a mapping N:I —» N, with the following properties:

1. N(a*b) = N(a)* N(b).
2.a=0<N()=0.
3. Foralla,b e Iwitha # Othereexistsage I with N(b — q-a) < N(a).

EXAMPLES

a. Z is a euclidean ring, with N:Z — N, with N(a): = |a].

b. If k is a field, then k[ X] is a euclidean ring, by virtue of the mapping
N:k[X] - N, with

N(f): = 2% (and N(0): = 0).
Every euclidean ring is a principal ideal domain (and thus a unique

factorization domain). If a;, a, are elements of a euclidean ring, then their
greatest common divisor can be written as a linear combination,

ged(ag, ax) = ria; + 150 ay,

where N(r,-a, + r,-a,) is minimal. Of course, the greatest common
divisor is uniquely determined up to units only.
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Again let G = C" be a domain, 4 = A(G), Q = Q(A) the field of mero-
morphic functions on G. Q[u] is a euclidean ring. If w,, w, are elements of
Q[u], consider all linear combinations @ = p;w; + p,w, with p;, p, €
Q[u] and w # 0. If » has minimal degree, then w is a greatest common
divisor of w; and w,. Let h € A be the product of the denominator of p,
and p,. The polynomials h - p;liein A[u] and (h - py)w; + (h - pr)w, = h- .
But since A is a unit in Q[u], we have

Theorem 6.6. If w,, w, are elements of Q[u], then there exists a greatest
common divisor of w, and w, which can be written as a linear combination
of w, and w, over A[u].

Def. 6.3. Anelement w e A°[u] is called a pseudopolynomial without multiple
factors if the factors w; (by Theorem 6.5 uniquely determined) of the
prime decomposition w = w; * - - w, are pairwise distinct.

Def. 6.4. Let a mapping D:A[u] — A[u] be defined by

S

D(Z Av(a)w>: =3 v A

v=1

If w € A[u], then one calls D(w) € A[u] the derivative of w.

Remark. The following formulas are readily verified:
1. D((l)l + wz) = D((Dl) + D(wz).
2. D((Dl ¢ wz) = W D((Dz) + wy D(O)l).

{
3. D, w) =Y w & o Dw,) (Here, the hat on w, in-
v=1

dicates that this term is to be omitted.)
Now let o = w, @, = u° + A,G)u*"* + -+ + A,(3) be a pseudo-
polynomial without multiple factors (in 4°[u]). Then

(
D(@) = 0, & Dlw) + Y, @y By 0 D(@,).
v=2

Clearly w, can only be divided by D(w) if w, is a divisor of D(w,). How-
ever, since deg(D(w,)) < deg(w,), a w} € Q[u] with w, - w; = D(w,) cannot
exist. Therefore ), is not a divisor of D(w), and the same holds for w,, . . ., ,.
Hence w and D(w) have no common divisor.

Theorem 6.7. Let @ € A°[u] be a pseudopolynomial without multiple factors.
Then there are elements q,, q, € A[u] such that h: = q, - ® + g, - D(w)
lies in A and does not vanish identically.

Proor. We have shown above that gcd(w, D(w)) = 1, so there exist elements
P1, P2 € Q[u] with pyw + p, - D(w) = 1. If we multiply the equation by an
appropriate factor h e A (with h # 0), we obtain (p, - h)- @ + (p, - h)- D(w) =
h, with p, * h, p, - h e A[u]. O
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In the same way one proves:

Theorem 6.8. If w,;, w, € A[u] are relatively prime, then there exist elements
41, 92 € A[u] such that q, - ©, + q, " w, lies in A and does not vanish
identically.

We must briefly entertain the notion of a symmetric polynomial.

Def. 6.5. A polynomial pe Z[X,, ..., X] is called symmetric if for all v, u
PXy s Xy X X)) =Xy Xy X X).

The most important example are the elementary symmetric polynomials
04, ...,0, Where

O-I(AX1,~~~,)(S)=)(1 + 0+ X,
0'2(X1,...,Xs)=(X1~X2+...+X1_Xs)

+(X2.X3+.--+X2-Xs)+...+Xs_l.Xs
O‘s(Xl,...,XS)éXI...Xs

(so in general
6,(X1,.-., X = Y X,-l'-'Xiv>.
1<iy<--: <ivss

In algebra (see van der Waerden I) one proves:

Theorem 6.9. Let p(X,,...,X,) be a symmetric polynomial with integer
coefficients. Then there is exactly one polynomial Q(Yy,...,Y,) with
integer coefficients such that

p(Xb L] 9Xs) = Q(Gl(Xla LECC ] Xs), e 5os(X13 L 'aXs))‘
Another important example of a symmetric polynomial is the square of
the Vandermonde determinant:

LX, X3 ..., X{!

D(X,,..., X,): = det?| - : =11 (X, — X~

v<pu

L, X, X2..., x5!

Clearly D(X,,...,X,) = 0 if and only if there exists a pair (v, u) with
v#pand X, = X,

Def. 6.6. Let f(X) = X* — a,; X* ' + a,X* 2+ -+ (—1)fa,eC[X] be a
polynomial and let Q e Z[ X4, . .., X,] be that polynomial for which the
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equation
D(Xl, “o ,Xs) = Q(GI(XIS [ ,Xs), “ e ,JS(XI,. ey Xs))
holds. Then A(f): = Q(ay, . . ., aj) is called the discriminant of f(X).

ExaMpLE. Let f(X) = X?> — aX + b. For s = 2 we have

D(X,, X,) = (X; — X,)* = X{ - 2X, - X, + X3,
01(X1, X5) = X1 + X5, 0,(X1, X,) = X, - X,

If we set Q(Y;, Y,): = Y? — 4Y,, then
0(01(X1, X2),05(X1, X5)) = (X1 + X5)* —4- X, - X, = D(Xy, X,).
Therefore A(f) = Q(a, b) = a®> — 4b. If ¢,, c, are both zeroes of f(X), then:
=X -c) X -—c)=X*—(c;+ )X + ¢,
= X? — g4(c1, )X + 05(c1, €2),

and therefore A(f) = D(cy, ¢,).
Thus A(f) vanishes if and only if ¢; = ¢,.

s

Theorem 6.10. Let f(X) = [| (X — X,)e C[X]. f has a multiple root if
p=1

and only if A(f) = 0.

PROOF
fX) = (X = X)X = X;) (X = X))
= X5 — (Xl + -0+ Xs)Xs-l + (X1X2 + ...)Xs—2 4o
+ (=X X, X,
e f(X)= X —a; X' 4+ a, X572 + -+ + (—1)a

with
a, =0,(Xqy,..., X )forv=1,...,s
Therefore
A(f) = Q(ala" ',as) = Q(Gl(Xla'--aXs)"- -ao-s(Xb”'aXs))
=D(X,,...,X,) = [] (X, — X,)~ 0
v<u

Now let w(u, 3) = v* — A,)u* ' + -+ + (—1)°4,(3) be a pseudopoly-
nomial over G. A holomorphic function on G is defined by 4,(3): =
A(w(u,3)) = Q(A,(3), ..., As@3)). Clearly 4,3) # 0 if and only if w(y, 3)
has s distinct roots. But more is true:

Theorem 6.11. Let G = C" be a domain, w(u, 3) € A°[u] a pseudopolynomial.
4, does not vanish identically if and only if w has no multiple factors.
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III. The Weierstrass Preparation Theorem

ProOF
1. Let @ = w? - ® with deg(w,) > 0. If 3 € G, then we can decompose
wy(u, 3) into linear factors,

o1, 3) = U —c) - (u—c)
For w(u, 3) we obtain a decomposition of the form
o,3) =@ —c)? U —c)u—cry) U= cp)

Hence
Aw(c.’)) = D(Cl,...,C,,Cl,...,C,,Ct+1,...,Cp) = 0

Since 3 was arbitrary, 4, = 0.

2. Let wbe a polynomial without multiple factors. Then there are elements
41, 42 € A[u] such that h: = ¢, - @ + q, - D(w) € A does not vanish iden-
tically. We can find a 3, € G with h(30) # 0. Let a;(u): = ¢;(u, 30) € C[u]
fori = 1, 2. Then

a: = a;(u) - oy, 30) + aw) - D(w)(u, 30) # 0 (independent of u).
If w(u, 30) = (u — ¢y)* - @(u), then

D(w)(u, 30) ="D(w(u, 30)) = 2 (u — ¢;) - ®W) + (u — ¢;)* - D(B(u))
= (u—c¢;) Q2dW) + (u— c;) D(@w))) = (u — ¢;) " w1(u),

and therefore
a = ay(cy) - wlcy, 30) + az(cy) - D(w)(cy, 30) = 0,

which cannot be. Hence all the roots ¢y, . . ., ¢, of @w(y, 3,) must be distinct,
and 4,(3) = D(¢y,...,¢) # 0. O

Theorem 6.12. Let G = C" be a domain, A = A(G),
0,3) = u — 4@+ + (—1)°A3) € A°Tu]
a pseudopolynomial without multiple factors,
M,:={u3)eC x G:o, 3) = 0},D,: = {3eG: 4,(3) = 0}.
C1

I
|
|
|
-/

|
|
A .
U ———— D,

| { 30 ! N
U cr

Figure 16. Illustration for Theorem 6.12.
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Then M, and D, are analytic sets and:

1. For3, € G — D, there exists an open neighborhood U(3¢) = G — D,
and holomorphic functions fi, ..., f; on U with f,(3) # f,(3) for v # p
and 3 € U, such that o(u, 3) = (u — f13)) - (u — £3)) for all 3e U.

2. The points of D,, are “branch points,” that is, above a point 3 € D,
there always lie fewer than s points of the set M,,.

PROOF. w(u, 3) always has exactly s distinct roots above G — D,; above
D, multiple roots appear. Nowlet 3, G — D, w(u, 30) = (v — ¢1)*** (u — ¢4).
o, is a polynomial over the ring (H,),,, and by the Hensel lemma there
are polynomials (w;),,, i = 1, ..., s, with the following properties:

1. (@) (4, 30) =u —cifori=1,...,s
2. (@1);, " (@3);, = @y
3. deg((wy),,)) = lfori=1,...,s.
In particular we can write
(w;),, = u — r;withr;e (H,),, fori=1,...,s.
Then there exist a connected open neighborhood U(3,) = G — D,, and
holomorphic functions fi, . .., f; on U.such that the power series r; converge
to f;. If we set @(u, 3): = (u — f13)) - - (u — fi(3)), we obtain

By = = (1)) = () =@ —r) - (u—r) =,
Therefore, near 3,—and by the identity theorem in all of U — @ and

@ must coincide. Hence w(u,3) = (v — fi3)) -~ (u — f,(3)) on U, and
because U =« G — D, f,(3) # f,(3) for v # p. O

We now can continue with the study of analytic sets. We begin with
hypersurfaces:

Let G = C" be a domain, f be holomorphic and not identically zero on
G and N: = {3€ G:f(3) = 0}. Let 30 € N be a fixed point. Since a shearing
does not change an analytic set essentially, we can assume without loss of
generality that (f),, is regular in z,. By the Weierstrass preparation theorem
there exists a unit (e),, and a pseudopolynomial (w),, such that (f), =
(e), - (w);,- We can find a neighborhood U(30) = G on which (e),, resp. (w),,
converge to a holomorphic function e and a pseudopolynomial w such that
f|U = e . If we choose U sufficiently small then e(3) # O for all 3 € U, and
therefore

{3eU:f(3) = 0} = {3e U:(z;,3) = 0}.
Now let @ = w,; - - - w, be the prime decomposition of w. Then
2

{3 U:f(3) =0} = |J 3e U:s(3) = 0}

i=1

If multiple factors appear, then the corresponding components of the analytic
set are equal; it is sufficient therefore to restrict our attention to pseudopoly-
nomials without multiple factors. Let 3, = (24, 30), G, be an open neighbor-
hood of z{”’ € C and G’ be a connected open neighborhood of 3, € C"~! such
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IIT. The Weierstrass Preparation Theorem

that
G, xGcU and {(z1,3)€C x G:w(zy,3) = 0} = Gy x G
Moreover, let
D, = {3 € G':4,(3) = 0}.

N n (G, x G') represents a branched covering of G, whose branch points
lie over D,, (see Theorem 6.12); over G; — D, the covering is unbranched.
One knows the analyticset N = C" once we know the analyticset D, = C" !

z44

22

G;

Figure 17. Representation of an analytic set as a branched covering.

and the branching behavior of N. Inductively one obtains such an overview
of the construction of N. We will consider special cases:

(A) n = 1. Let G = C be a domain, f:G — C a holomorphic function
which vanishes identically nowhere. The local pseudopolynomials corre-
sponding to f are polynomials over C, each having finitely many zeroes. The
analyticset N = {z € G:f(z) = 0} therefore consists of isolated points which
may cluster at the boundary of G.

(B) n = 2. It suffices to consider pseudopolynomials.

1. Let G = C? w(,2): =u?> —z, N: = {(u,2) € G:o(u, z) = 0}. N —
{(0, 0)} is the Riemann surface of /z. The discriminant is 4,,(z) = 4z. Clearly
D, = {ze C:4,(z) = 0} = {0}. For zy € C — D, there is a neighborhood
V(z)) € C — D, and above V there is a decomposition w(u, z) =
(u — J2)(u + \/E). This yields a 2-sheeted covering above C — D, and a
branch point above D, = {0}. N as well as N — {(0, 0)} are connected topo-
logical spaces.

2. Let G = C% w(u,z): = u?> — z> = (u — z)* (u + z). Then

N: = {(u z) e C*:0(u, z) = 0}
={w2)eC*u=1z} U{uzeC®u= -z}
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6. Analytic Sets

The discriminant is 4,(z) = 4z? with zero set
D, = {ze C:4,(z) = 0} = {0}.

In this case globally N consists of two distinct schlicht sheets which intersect
only above the origin. N is connected but N — {(0, 0)} is no longer. In such
a case one speaks of pseudo-branching.

(1) and (2) are the two characteristic cases which can occur. One inductively
reduces cases of higher dimension—as described above—to cases A and B.
There still remains the question how to proceed in the case of analytic sets
which are described by several equations.

Let there be given a domain G = C" and holomorphic functions f;, f, on
G. Both f; and f, vanish nowhere identically. Then let M: = {3 € G:f;(3) =
f2(3) = 0} and 3, € M. A shearing makes (f;),, and (f),, simultaneously
regular in z,, and then there are a connected neighborhood U = U, x U’ of
30 and pseudopolynomials w,, w, € A(U’)°[z,] with

oz, 3) = 24 + APR)ATH + -+ ADE)  for  i=1,2

and
MU = {(z;,3)€ C x Uwy(zy,3) = w2(2,3) = 0}.

We can assume that the polynomials w; contain no multiple factors; but in
general they are not relatively prime. There are polynomials &, w}, w} €
A(U")°[z,] with

W, =0 0,w, =0 W, and ged(wy, wh) = 1.
Hence M n' U = M, U M, with

Ml = {(le 3/)6 UZ(D(Zn&/) = 0}
and
M, = {(Zl, 3)e U:wi(zy, 3) = 3(21,3) = 0}

M, is a “hypersurface” such as we have already considered. M, is given by
two relatively prime pseudopolynomials. By Theorem 6.8 there exist poly-
nomials q,, g, € A(W')[z,] such that h: = g, - ®} + ¢, ) is a nowhere
identically vanishing holomorphic function on U’. Let

M': = {3e U":h(3) = 0}.

If ©:U — U’ is the projection with 7(z;, 3') = 3, then it is clear that 7(M,)
lies in M'. Naturally above each point 3' € M’ there lie only finitely many
points of M,. “M, lies discretely over M".”

By means of sheaf theory one can show that (M) is itself an analytic
hypersurface in U’ and that there exists a nowhere dense analytic subset N
in m(M,) such that M, — n~}(N) is a smooth several sheeted covering of
7'C(M 2) — N.

Similar considerations apply to analytic sets which are given by several
functions. At this point we want to give one example showing that in general
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III. The Weierstrass Preparation Theorem

analytic sets cannot be defined by global equations. Let
Q11 = {3 = (21, 22) € C:i|zy| < 4, ]25| < 1},
0y = {3 = (21, 22) e Cizy| < L3 < |z < 1},
0:=0,v0,.

Furthermore let
M: = {(21, z)€Qyizy = 22}-

|2217

LRIRIEEEELLRRS

O
X

S
<
‘0
’:
>
X
O
‘:
::
X
otel

<L

7
©

|z1[

Figure 18. An analytic set which cannot be defined globally.

1. Q;,0,areopensubsetsof Qand M N Q; = F, M N Q, = {(z4,2,) €
Q,:2, — z, = 0}. M is therefore an analytic subset of Q.

2. We assume that there exist holomorphic functions fi,..., f, on Q
such that M = {3€ Q:£,(3) = - = f,(3) = 0}. But then there exist holomor-
phic extensions F,, ..., F, on P (with Fi|Q = f,fori=1,...,¢),and holo-
morphic functions F;:{z € C:|z| < 1} — C are defined by F;(z): = Fi(z, 2).
For } < |z| < 1(z, z) lies in M and therefore Fi(z) = Fi(z,z) = fi(z, z) = 0.
By the identity theorem it then follows that F; = Ofori = 1,..., £. There-
fore £;(0,0) = F;(0,0) = F;(0) =0fori = 1,..., ¢ that is, (0. 0) lies in M.
That is a contradiction, and the analytic set M cannot be defined globally.

Nevertheless, by means of sheaf theory one can prove the following
theorem:

Theorem 6.13. Let G = C" be a domain of holomorphy, M = G analytic.
Then there exist holomorphic functions fy,..., f,+1 on G such that

M = {3€G:fi(3) = - = fo+1(3) = 0}.

Next we present a short survey of further results from the theory of
analytic sets.
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6. Analytic Sets

Theorem 6.14. Let G = C" be a domain. Then:
1. & and G are analytic subsets of G.

¢
2. IfMy,. .., M, are andlytic in G, so is | ] M,.
i= 1

3. IfM,, ..., M, are analytic in G, so is ﬂ M,.
=1
3. If(M,),c is a system of analytic sets, ﬂ M, is analytic in G.

el

PROOF
1. & ={3eG:1 =0} G = {3e€G:0=0}.

2. Let 3peM: = U M;. Then there exists an open neighborhood
U(3o) < G and holomorphlc functions f; ;, j = 1,...,d; such that
MnU={3eU:f,3)="""= f;,di(a) = 0}.
Letf;,...., = fi,j, " fe.j,- Then
MU= {3eU:f,. . ;3 = 0 for all indices (jy, . . ., j))}-
3. Let3oe M": = h M;. Then

i=1

UnM ={3eU:f, ;3 =0fori=1,....¢4j=1,...,d}.

3'. is more difficult to prove. The proof will be omitted here. O

Comment. (1), (2), and (3') are the axiomatic properties of closed sets in a
topology. In fact, we get the so-called Zariski topology on G by defining
U < G to be open if and only if there exists an analytic set M in G with
U=G - M.

Def. 6.7. Let G = C" be a domain, M analytic in G. A point 3, € M is called
a regular point (ordinary smooth point) of M (of dimension 2k) if there
exists an open neighborhood U(3,) = G and functions fj,..., f,—x
holomorphic on U such that

D UnM={3eU:fi3) = = fo-il3) = 0}.

@ ((f(o))]l:i _k>=n—k.

A point 3o € M is called singular (a singularity of M) if it is not regular.
One denotes the set of singular points of M by S(M). Let 3, be a regular
point of M. Without loss of generality we can assume that

of; i=1,....,n—k
e I
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I1I. The Weierstrass Preparation Theorem

Now let F:U — C" be defined by
F(le RN Zn): = (fl(zl, cees Z,,), ce ,f;n-k(zl’ ) zn)s

0 0)
Zn—k+1 St—)k+1’ ceesZp — zf. )

o, =1....,n—k\ |

<< (°)> 1,...,n—k> 1
F.o=1- : —

0 !

Let

be the functional matrix of F at the point 3,. Then clearly det # # 0 and
there exist open neighborhoods V(30) = U, W(0) = C" such that F|V:
V — W is biholomorphic. But F(V n M) = W n {(wy,...,w,) € C"
wy =+ = w,_, = 0} is a real 2k-dimensional plane segment.

Theorem 6.15. Let G = C" be a domain, M analytic in G and 30€ M a
regular point of M of dimension 2k. Then there exists an open neighbor-
hood V(30) = G such that M NV is biholomorphically equivalent to a
plane segment of real dimension 2k.

Theorem 6.16. Let G = C" be a domain, M analytic in G. Then the set S(M)
of singular points of M is a nowhere dense analytic subset of G.

Def. 6.8. An analytic set M is called reducible if there exist analytic subsets
M; < G,i = 1,2, such that:

1.M=M1UM2.
2. M, # M,i=12

If M is not reducible, it is called irreducible.

Theorem 6.17. Let G = C" be a domain, M analytic. Then there is a countable
system (M;) of irreducible analytic subsets of G such that

1. U M i = M .
ieN
2. The system (M), is locally finite in G.
3. If M;, # M,,, then M; ¢ M,,.
We speak of a decomposition of M into irreducible components. This
decomposition is unique up to the order in which the components appear.

The proof is lengthy and requires the help of sheaf theory.

Remark. Let M be irreducible. Then:
1. M — S(M)is connected. (This condition is equivalent to irreducibility.)
2. The dimension dim (M) of the point 3€ M — S(M) is independent of
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6. Analytic Sets

3. The number thus obtained is denoted by dimg(M). The complex dimension
of M is dimc(M): = ¥ dimg(M).

If M = ) M, is the decomposition of an arbitrary analytic set into

ieN
irreducible components, then we define
dimc(M): = max dimq(M;).
ieN

dimc(M) < n always. In particular, if dim¢(M;) = k for all i e N, then we
say that M is of pure dimension k.

Theorem 6.18. If M is an irreducible analytic set in G and f a holomorphic
function on G with f|M # 0, then dim¢(M  {3:/(3) = 0}) = dim(M) — 1.
For every irreducible component N = M n {3:f(3) = 0} we have
dim¢(N) = dim(M) — 1, hence:

Theorem 6.19. Let G = C" be a domain, let f,,..., f,—, be holomorphic
functions in G,M: = 3e€ G:f1(3) = -+ = fu-i(3) = 0}, M' = M an irre-
ducible component. Then dimc(M') = k.

ProOOF. G itself is an irreducible analytic set. Then, by Theorem 6.18,

dim¢({3€ G:f1(3) = 0}) > n — 1, and the set M; = {3€ G:f;(3) = 0} is

pure dimensional. Let M; = (] N{" be the decomposition of M, into
ieN

irreducible components.

Then dim(N{Y N {3€G:f,(3) = 0}) > n—2 and we obtain the
same value for each ie N. Therefore dimc({3€ G:f,(3) = £,(3) = 0}) =
dim (U NO A {3eG:f,(3) = 0}) > n — 2. We are finished after finitely

ieN
many steps. O

In conclusion we consider one more example of an analytic set:
Let f:C" — C be defined by
fGoeerz)i= 2 4+ 27 with  seN,s > 2
Let M: = {3e C":f(3) = 0}.
' O=fzi(zl"--,2n)=s,~‘z§"‘1

if and only if z; = 0. Thus only the origin could be a singularity. It can be
shown that S(M) = {0}. In this case we say that M has an isolated singularity
at the origin.

Clearly M belongs to the family (M,), . ¢ of analytic sets which are given by

M, = {(z. ... 2) €Chzy + oo+ Zr = 1),

M = M, is an analytic set with an isolated singularity at the origin, while
all sets M, with ¢ # 0 are regular. The family (M,),.¢ is called a deformation
of M.
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III. The Weierstrass Preparation Theorem

Figure 19. Deformation of an analytic set.

One can consider corresponding situations in the real analytic case.
Suppose a, b are real numbers with a < 0 < b and let (M,),(,,; be a family
of real analytic sets which are free of singularities for ¢t # 0 and which have
a singularity at the origin. It can then occur that for ¢ = 0 the topological
structure jumps, that is:

All sets M, , M,, with t;, t, < 0 are homeomorphic, all sets M, , M,, with
t3, t; > 0 are homeomorphic, but for #; < 0 and ¢, > 0, M,, and M,, are
not homeomorphic.

R. Thom recently applied this theory to the developmental processes
in biology for example. One can call the jumping of the structure a revolution.
Thom speaks instead of a catastrophe!
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CHAPTER 1V
Sheaf Theory

If 3, € C" is a point, then O, = (H,) denotes the C-algebra of convergent

power series convergent at 3,. An arbitrary element of 0, has the form f,) =
[e o)

2 a,B = 30)"
v=0
Therefore there is a C-algebra 0 for each point 3 € C". The disjoint union

0: = U O, of these algebras is a set over C" with a natural projection
3ecC"

n:0 — C"taking a power series f; onto the point of expansion 3. There exists
a natural topology on ¢ which makes 7 a continuous mapping and induces
the discrete topology on every stalk 0, derived as follows.

If f,, € O, then there exists an open neighborhood U(3,) = C" and a holo-
morphic function f on U such that the series f,) converges uniformly to f
in U. Therefore, the function f can also be expanded in a convergent power
series at each point 3 € U. Hence f induces a mapping s:U — @ with the
following properties:

l. tos = ldU
2. 5(30) = f,,€s(U) < 0.

All such sets s(U) form a system of neighborhoods of f, in ¢. If we give O
the topology induced in this way, then the topological space O is called the
sheaf of convergent power seies. The C-algebras O, = n~'(3) are called stalks
of the sheaf.  is locally topological and the algebraic operations in ¢ are con-
tinuous in this topology.

1. Sheaves of Sets

Def. 1.1. Let B = C" be a region, & a topological space, and n:%¥ —» B a
locally topological mapping. Then & = (&, n)is called a sheaf of sets over
B. If 3 € B, then we call &;: = n~(3) the stalk of S over 3.
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IV. Sheaf Theory

Remark. In exactly the same manner we define sheaves over arbitrary
topological spaces. If it is clear how the mapping = is defined, we shall also
write & in place of S.

Def. 1.2. Let (&, m) be a sheaf over B, #* = & open and n*: = 7|¥*. Then
(&*, *) is called a subsheaf of &.

Remark. Each subsheaf (¥*, n*) of a sheaf (&, =) is a sheaf. We need only
show that #*:%* — B is locally topological.

For every element ¢ € &* there are open neighborhoods U(¢) = & and
V(n(c)) = Bsuch that n|U:U — V is topological. But then U*: = U n &*
is an open neighborhood of ¢ in &#*, V*: = n(U*) is an open neighborhood
of n(¢) in Band n*|U* = #|U*:U* — V*is a topological mapping. O

If W = Bisopen, #|W: = n~ (W), then (¥|W, n
the restriction of & to W.

(&|W)) is also a sheaf,

Def. 1.3. Let (¥, n) be a sheaf over B, W = B open and s: W — & a con-
tinuous mapping with 7 o s = idy. Then s is called a section of & over W.
We denote the set of all sections of & over W by I'(W, &).

S(W)li-——/‘l S
| |
| |
| |
| L S |
T |
|

Lk
! I . B
- A Y,

W

Figure 20. The definition of sheaves and sections.

Theorem 1.1. Let (¥, n) be a sheaf over B, W = B open and s e I'(W, &).
Then n:s(W) — W is topological and s = (m|s(W))™ 1.

PrOOF. By definition n o s = idy,. For 3¢ W
so (nls(W))(sG)) = s o7 s(3) = 53).
Therefore s o (n|s(W)) = id,u). O
Remark. The equation s = (n|s(W))~! holds even if s is not continuous.
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1. Sheaves of Sets

Theorem 1.2. Let (¥, n) be a sheaf over B, W <= B open and s:W —» & a
mapping with mo s = idy. Then se I'(W, &) if and only if s(W) is open
in &.

PROOF

1. Let s be continuous, o, € s(W), and 3,: = n(g,). Then s(30) = 0, and
there are open neighborhoods V(3,) =« W and U(s,) = & such that
nlU:U - V n W is topological. Moreover, there exists an open neighbor-
hood V'(30) = V with s(V') = U. Therefore (z|U) (s|V’) = (o s)|V’ = idy..
But then (z|U)~ (V') = s(V') = s(W) is an open neighborhood of o, ; that
is, 6, is an interior point of s(W).

2. Let s(W) be open, 3o € W, and 64: = s(3,). Then there are open neigh-
borhoods V(30) = W, U(o,) = s(W) such that #|U:U — V is topological.
s = (n|s(W))~*, so s|V = (n|U)~?, and this mapping is continuous at 3,. O

Theorem 1.3. Let (&, n) be a sheaf over B, 6 € &. Then there exists an open
set V < B and a section s € I'(V, &) with ¢ € s(V).

ProOOF. Let 3: = n(o). Let open neighborhoods U(s) = & and V(3) = B be
chosen so that n|U:U — V is topological. Then V and s: = (n|U)~" satisfy
the conditions. a

Theorem 1.4. Let (¥, ) be a sheaf over B, W < B open. If for two sections
S1, 8, € L(W, &) there is a point 3 € W with 5,(3) = $,(3), then there is an
open neighborhood V(3) = W with s,|V = s,|V.

ProoF. Let o: = 5,(3) = 5,(3). Then U: = s,(W) n s,(W) is an open neigh-
borhood of o and #|U:U — V: = n(U) = W is a topological mapping of
U onto the (consequently) open set V. Hence s, |V = (n|U)™! = s,|V. O

Def. 1.4. Let (¥4, ®y), (¥,, ®,) be sheaves over B.

1. A mapping ¢:¥, —» &, is called stalk preserving if nyo ¢ = 7,
(therefore @((#,);) < (&), for all 3 € B).

2. A sheaf morphism is a continuous stalk preserving mapping
0L > S,

3. A sheaf isomorphism is a topological stalk preserving mapping
0.9, - &,. The sheaves &, &, are called isomorphic if there exists
a sheaf isomorphism between them.

Theorem 1.5. Let (¥4, ©y), (&2, ©,) be sheaves over B, ¢: &, — &, a stalk
preserving mapping. Then the following statements are equivalent:
1. @ is a sheaf morphism.
2. For every open set W < B and every section se '(W, %) ¢pose
rw,<%,).
3. For every element o € &, there exists an open set W < B and a
sectionse I'(W, &) witho e s(W)and ¢ o se I'(W, &,).

101



IV. Sheaf Theory

PROOF

a. If ¢ is continuous, W < B open and se I'(W, &) then ¢ o s is also
continuous. Moreover: 7, o (¢ o §) = (15 0 @) o s = 7y o s = idy,. Therefore
@ o slies in I'(W, &,).

b. If 6 € &, then there exists an open set W < B and an se I'(W, &)
with ¢ € s(W). If the conditions of (2) are also satisfied, then ¢ o s lies in
r(w,%,).

c. If for a given 6 &, a W = B and a se I'(W, &%,) with ¢ € s(W)
and ¢ o se I'(W, &,) are chosen according to condition (3), then s: W —
s(W) is topological. Therefore @|s(W) = (¢ o 5)o s~ :s(W) —» &, is con-
tinuous, and therefore ¢ is continuous at o. O

Remark. For every open subset W < B a sheaf morphism ¢: %, - &,
defines a mapping ¢,:I'(W, &) - T'(W, ¥,) by @.(s): = pos.

Def. 1.5. Let B = C" be a region. For every open set W < B let there be
given a set M, and for every pair (V, W) of open subsets of Bwith V <« W
let there be given a mapping r} : My, — My, such that:

1. rjy = idy,,, for every open set W < B.

220U cVcW,thenrfor)f =rf.

Then the system {My,, r}/ } is called a pre-sheaf (of sets) and the map-
pings r} are called restriction mappings.

With every sheaf (&, n) over B a pre-sheaf is associated in a natural
manner:

If V, W are open subsets of B, then we set My,: = I'(W, #)and )/ (s): =
s|V for se My,. Clearly {I'(W, &), ry/} is a pre-sheaf; it is called the
canonical pre-sheaf of the sheaf &.

Conversely a sheaf can be constructed for each pre-sheaf:

Let the system {My, r}} be given, 3 € B fixed. On the sets {(W, 5): W is
an open neighborhood of 3, s e My} the following equivalence relation is in-
troduced: (W,, s1) v (W,, s,) if and only if there exists an open neighborhood
Vof 3 with V.« W, n W, and r}'(s;) = ) *(s,). Let the equivalence class
of (W, s) be denoted by (W, s);, and let &; be the set of all classes (W, s);.
Finally, let &: = U &, and n:% — B be the canonical projection. & will

€B

now be provided \?vith a topology such that = becomes locally topological:

If W < Bis open and s € My, then define rs: W — & by rs(3): = (W, s),.
Let B: = {rs(W):W < Bisopen,se My} u {¥}.If W;, W, < B are open
sets, s; € My, 5, € My,, then let W: = {3e W; 0 W,:rs,(3) = rs,(3)}.

a. Wisopen:If 3, € W, then (W, s,),, = (W, 5,),,; therefore there exists
an open neighborhood V(3,) = W; n W, with r¥'(s,) = r}/*(s,). But then
for every 3e€ V also (W, s,); = (W,, s,);, therefore rs,(3) = rs,(3). Hence
V lies in W and 3, is an interior point of W.
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b. Let s: = rjy'(s;) € My,. Then rs,(W,) N rs,(W,) = rs(W): An element
o€ & lies in rs{(W,) N rs,(W,) if and only if there exists a 3 W, n W,
with rs,(3) = o = rs,(3), that is, a 3 € W with rs,(3) = o. This holds if and
only if 6 = (W}, s,), = (W, 5), € rs(W).

For two sets rs; (W), rs,(W,) € B the intersection rs;(W;) N rs,(W,) also
lies in B. Hence B is a basis for a topology on & whose open sets are arbitrary
unions of elements of B. It remains to show that = is locally topological.

a. Let g € &, 3 = n(o). Then there is an open set W < B with 3 W and
an se My, with ¢ = (W, s); = rs(3). We set U: = rs(W). U is an open
neighborhood of ¢ in & and 7mors = idy, rso(n|U) = idy. Therefore
n|U:U — Wis bijective, (n|]U) ™! = rs.

b. Ev y open set U < U is of the form U’ = U rs,(W,) where in every

el
case W, is open in W and s, € My,. Therefore n(U’) = () W, is open in W.
el

n|U then takes open sets onto open sets and hence rs is continuous.

c. If W' < W is open, then (W, s) (W', rly.s) for every 3e€ W’, so that
rs|W’ = r(riy-s). Hence rs(W') = r(r-s)(W'), which is an open set. Also
rs maps open sets onto open sets, and thus 7|U is continuous.

We now have proved the following theorem:

Theorem 1.6. Every pre-sheaf {My, r}} defines a sheaf & over B in the
above manner (forming the inductive limit). Every element se€ My, is
associated with a section rse I'(W, &). If 3€ B and o € &;, then there is
an open neighborhood W(3) = B and an s € My, such that ¢ = rs(3).

Theorem 1.7. If & is a sheaf over B, then the sheaf defined by the canonical
pre-sheaf {T'(W, &), r}} } is canonically isomorphic to & .

PROOF. Let (&, #) be the sheaf defined by the canonical pre-sheaf.

a. If (W, 1) 3 (Ws, s,) then s,(3) = s,(3) and the converse also holds.
Therefore ¢@:(W, s),— s(3) defines an injective mapping ¢:&% — & which
is stalk preserving. If ¢ € &, then there exists a neighborhood W(3) and an
se I'(W, &) with s(3) = . rs(3) = (W, s), then lies in 93, and ¢(rs(3)) = o.
Hence ¢ is also surjective.

b. If o € &,, then there exists an open set W = B and an se I'(W, &) with
o = (W,s), = rs(3). Thenrse I'(W, 533), cers(W)andg o (rs) = se (W, ).
Therefore ¢ is continuous at o.

c. If W< B is open and se I'(W, &), then ¢~ 1(s) = rse I'(W, &).
Therefore ¢ ~! is also continuous. O

Theorem 1.8. Every sheaf morphism is an open mapping.

Proof. Let ¢:&; — &, be a sheaf morphism. Since &, is canonically iso-
morphic to the sheaf &, defined by the canonical pre-sheaf {I'(W, &), i }s
the sets s(W) with se I'(W, &,) form a basis of the topology of &;. If s
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liesin I'(W, &), then ¢ o slies in I'(W, &,) and hence ¢ (s(W)) = (@ o s)(W)
is open in &,. The proposition follows. |

Def. 1.6. Let (¥, my), ..., (<,, n,) be sheaves over B. For open sets W < B
let My: =T (W, ¥,) x - x (W, %,), for s = (5,...,5)€ My and
open subsets ¥V = W let rf/s: = (s;|V, ..., s|V) e My. Then {My, 1}
is a pre-sheaf and the corresponding sheaf ¥ = &, @ - - - @ &, is called
the Whitney sum of the sheaves &4, ..., %,.

Theorem 1.9. Let (¥4, my),...,(%#,, n,) be sheaves over B, and let & =
L@ D L, be their Whitney sum. Then for every 3 € B there is a
bijection @:%, = (£1), x -+ x (¥,), defined by (W,(s1,...,5,));—
(51G), - - -5 5:3))-

PRrOOF
a. Lets, = (sP,...,s") el (W, #)for )l =1,2,3e W, n W,.
(W1, 51) 7 (W,, s,) if and only if there exists a neighborhood V(3) = W, n
W, such that
P, .. s = PV, .., sPY).

This is equivalent to s{(3) = s{¥(3) for i = 1, ..., £ Therefore an injective
mapping is defined by (W, (sy, ..., s)),— (5:3), - - - » 5:(3))-
b. If ¢ =(64,...,0,)€(F1); X+ x (¥,); and, say, o; = si(3) with
4

ste L (W, &;), then W: = () W, is an open neighborhood of 3 and s;: =

i=1
s;'|We r(w, #;). Consequently s: = (sy,...,s,) lies in My, and rs is a
section of the sheaf & with rs(3) = (W, s); — s(3) = ¢. The mapping defined
above is therefore also surjective. a

Henceforth we identify (£, @ - -+ @ &,); With (£ ); X - X (FL)s

Theorem 1.10. Let (¥4, ny), ..., (%%, n,) be sheaves over B. Then the canonical
projections p;: 1 @ -+ - ® L, &; with pl(o4, ..., 6,): = o;) are sheaf
morphisms.

PrOOF. The mappings p; are stalk preserving, by definition. Ife e (¥, @ - - -
@ L), = (F1), X =+ x (&,),, then there exists sections s; in &; with
5;(3) = pi(o) and rs3) = 6 for s: = (sy,...,Ss,). Therefore p;ors =s; is
continuous, p; a sheaf morphism. O

For s;,eI'(W, %)), i=1,...,¢, defined a mapping s, @ - P s,: W —
L1D D@L by(s1 @ - D s)3): = (51(3)s - - -, 5(@))- Clearly, (54, ..., 5)
lies in My, and r(sq,...,$)3) = (W, (51,-..,5)); = (513),- .., 5:(3) =
(51 ® " ® 5,)(3); therefore s, ® - - D s, =r(Sy,...,S)eEl (W, &L, D -
® <,). Hence we can identify the sets '(W, ¥, @ - ® &,) and I'(W,
&) x o x T(W,Z,).
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2. Sheaves with Algebraic Structure

If global sections s; € 1 (5, ;) for i = 1,..., { are given, then we can
define corresponding injections j;: = ji(sg, ..., 8y ..., 8): ;i > L1 D - D
&, where

Ji0): = (51BQ), - - - 5i-1@), 6, 5i+1G)s - - - 5 5.3)), for ce(d).
Clearly j; is stalk preserving and for s € I'(W, &)
ji o5 = (SI|W, ceey Si_1|W, S, Si+1IW7 vy, S IW)

liessin F(W, &) x - xT(W,&L)=TW,&, @ @ &, that is, j; is
continuous. p; o j; = ids, holdsfori = 1,..., ¢

2. Sheaves with Algebraic Structure
Let B = C”" be an open set.

Def. 2.1. A sheaf (&, n) over B is called a C-algebra sheaf if:

1. Every stalk &, is a commutative C algebra with 1.
LS SY (w1th (64, 05) — 0, + 05,) is continuous.
3. @ & > & (with (64, 6,) > 64 * 6,) is continuous.

4. Foreveryc €C, & 5 & (with o — ¢ - o) is continuous.
5. The mapping l:31— ;€ &, lies in I'(B, &).

Consequences
1. 0:3 0; € & liesin I'(B, &).
2. & > & (with ¢ — —g) is continuous.
3. If W < Bis open, then I'(W, &) is also a C-algebra.

PRrROOF

1. Because O I; = O,, 01 = O, and the zero section O is continuous.

2. It follows from the definition that the mapping6+— —o = (—1)- g is
continuous.

3. Addition, multiplication, and multiplication by a complex number
are defined pointwise, so the axioms of a C-algebra are satisfied since they
hold in every stalk. Continuous sections go into continuous sections. O

Theorem 2.1. Let &y,...,%,, & be sheaves over B given by pre-sheaves
(M@, ¥}, i=1,...,¢and {My,r)}. Suppose that for every open set
W < B there exlsts a mapping @ MY x - x ME — My (for ex-
ample, an algebraic operation) with rlf @w (s, ...,5) = @y(¥ysy, ..., 1s,)
for arbitrary elements s;e M, i = 1, ..., ¢, and open sets V.= W. Then
there exists exactly one sheaf morphism ¢: %, @ - @ &, > & with

Orsy, ..., 75) = rQw(sy, ..., S¢).
PROOF

1. Let W, Wbeopent3eWnWand(Ws)~(Ws)forz—1 L.
Then there exists a neighborhood V(3) =« W n W with rlys; = rlYs, for
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IV. Sheaf Theory

i=1,..., ¢{;and then

r{fyq’W(Sh N (pV('{VVSl: cees "Kfst) = (Pv(riyvgn ey rfv{//g() = "{fV(PW(ﬁp AR
therefore 5

(Wa (pW(Sl, ceey St’)) 3 (Wa (PW(§1, sy §£’) )
Hence a mapping ¢:&; @ - @ &, » & is defined by

(rs1B), - - - 5 75,3)) > (W, 0w (s1, - - ., 80))s = 10w (51, - - -, 5)B3);

it is stalk preserving and ¢(rsy,...,rs,) = row(sy,...,s,). Hence ¢ is
uniquely determined.

2. For 6 = (64,...,06,) €(Fy); x - x (&¥,) there is a neighborhood
W(3)and elements s; e M@ fori = 1,..., ¢ suchthats; = (W, s;);. Thens: =
(rsg,- -, 1S)ET(W, L, @ - @ F,), ces(W) and @ os = roy(sy,...,S)€
r(w, &). Therefore ¢ is continuous. 0O

Def. 2.2. Let {My, r}/} be a pre-sheaf with the following properties:
1. Every My, is a C-algebra.
2. r¥:My - My is always a homomorphism of C-algebras. Then
{My,, ¥} is called a pre-sheaf of C-algebras.

Theorem 2.2. Let {My,, r}} } be a pre-sheaf of C-algebras, & the corresponding
sheaf. Then & is a sheaf of C-algebras and for every open set W — B
r:My — (W, &) is a homomorphism of C-algebras.

PrOOF. For W < Blet oy:My, x My — My be defined by ¢y (sy, 55): =
sy + s,. Then

W ow(sy, $3) = 17 (1 + 83) = 178y + 1752 = @y(ry sy, 17/s,).
By Theorem 2.1 there is exactly one sheaf morphism ¢:&¥ @ & — & with
@(rsy, 1s3) = r@w(sy, s2) = r(sy + 83).
An addition ¥ @ & 5 & is defined by 6, + 0, = ¢(04, 65), 5O
rs1(3) + 15:(3) = @(rs1(3), 15:(3)) = [@(rsy, r52)]G) = r(s1 + 52)@);

therefore
rs; + 18, = r(s; + s,).

The remaining operations are defined analogously; r transfers them to the
stalks, and it is clear that r is a homomorphism of C-algebras. a

Def. 2.3. Let & be a sheaf of C-algebras over B and & some sheaf over B.
& is called a sheaf of of-modules if:

1. For every 3 € B, &, is a unitary .«/,-module.
2. @& S5 & iscontinuous.
3. @ & > & is continuous.
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2. Sheaves with Algebraic Structure

Remarks

1. LetO;be the zero element of & ;. ThenO:3+— O,defines the zero section
O eI'(B, &)

2. Forevery W, I'(W, &) is a I'(W, &/)-module.

Def. 2.4. Let {M,,, '} be a pre-sheaf of C-algebras, {My,, 7}/ } a pre-sheaf
of abelian groups, and & resp. & the corresponding sheaves. If for every
open set W — B, My, is a (unitary) My-module and for every s € My,
and every 5 My, #(s-3) = r{/(s) - FY(3), then ({My, ri}, {My, 7¥})
is called a pre-sheaf of modules.

Analogous to Theorem 2.2 it can be shown that every pre-sheaf of modules
defines a sheaf of «/-modules. r: My, — I'(W, &) is then a homomorphism
of abelian groups with r(s - §) = rs - r§

EXAMPLE. Let My, be the set of holomorphic functions in W and let r}}:
My, — My be defined by r}/(f): = f|V. Clearly {My, r} } is a pre-sheaf of
C-algebras. The corresponding sheaf ¢ is a sheaf of C-algebras and called
the sheaf of germs of holomorphic functions on B.

An element (W, f), of the stalk 0, is an equivalence class of pairs (W, F,),
where W, is an open neighborhood of 3 and f, a holomorphic function on W,.
Two pairs (W, f;) and (W,, f,) are equivalent if there exists a neighborhood
V(3) = W, n W, with f;|V = f,|V, that is, if and only if f; and f, have the
same power series expansion about 3. Hence we can identify the stalk ¢,
with the C-algebra of convergent power series, so that nothing new has been
added to O, as introduced above. In particular the power series f; and the
equivalence class (W, f); coincide.

For every open set W = B r:My, — I'(W, 0) is a homomorphism of
C-algebras and r(f|V) = rf|V.

Proposition. r is bijective.

PrOOF

1. Ifrf = O, then for every 3 € W we have rf(3) = O;, therefore (W, f); =
O;; that is, there exists a neighborhood V(3) = W with f|V = 0, in particular
f@) = 0. Therefore f = 0.

2. If se I'(W,0) then for every: 3€ W there exists a neighborhood
U@3) = W and a holomorphic function f on U with (U, f), = s(3). Then
there is a neighborhood V(3) = U with rf |V = s|V.

Now let (U,), ; be an open covering of W such that there is a holomorphic
function f, on each U, with rf, = s|U,. Then a holomorphic function f on
W is given by f|U,: = f;, for which

f|U, = r(f|U) = of, = s|U..
Therefore f € My and rf = s. O
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IV. Sheaf Theory

Hence the following theorem holds:

Theorem 2.3. r: My, — I'(W, 0) is an isomorphism of C-algebras.
Henceforth we shall identify the functions holomorphic on W with the
elements of I'(W, 0).

ExampLE. Let My, = C and r)f = id. for all V, W. Then {My,r¥} is a
pre-sheaf of C-algebras, indeed, of fields. Let o/ be the corresponding sheaf.
(W4, ¢y) v (Wy, ¢c;) if and only if ¢; = ¢,, thatis &/; = C for all 3 € B.

If se (W, A) and 3€ W, then c: = 5(3) lies in &/, = C = My, and
rc(3) = ¢ = s(3). Then there exists a neighborhood V(3) = W with s|V =
rc|V, that is s(3) = c for 3 € V. One can thus regard s as a locally constant
complex function.

We call & the constant sheaf of the complex numbers. Clearly &/ is a sub-
sheaf of 0.

Def. 2.5. An analytic sheaf over B is a sheaf & of ¢¥-modules over B.

EXAMPLES

L. @ is an analytic sheaf.

2. Let & be an analytic sheaf, #* < & a subsheaf. If for every 3 € B,
Fi < &, is a submodule, then &* is likewise an analytic sheaf: If, say,
(5,8)el(W,*® F*) = T (W, ¥ @ &), then s, + s, belongs to I'(W, &),
and therefore to I'(W, &*). This shows addition is continuous. Multiplication
by scalars is treated similarly. Note that if #* < & is an analytic subsheaf,
then I'(W, &*) =« I'(W, &) is a I'(W, 0)-submodule.

3. If # = 0 is an analytic subsheaf, then #;, < (¢; is an ideal. Hence we
also call .# an ideal sheaf.

Def. 2.6. Let # < O be an ideal sheaf. Then we call N(#): = {3€ B:0; # J;}
the zero set of .£.

For f, € 0,, f, converges near 3 to a holomorphic function which we
denote by f.

Theorem 2.4. Let # < (O be an ideal sheaf over B. Then N(#) = {3 € B: For
all fye 4, f(3) = O}

PrOOF
1. Let 3€ N(#), f,€ #,, but f(3) # 0. Then on a neighborhood of W(3),
1/f is holomorphic and L, = r1(3) = r(1/f)r(f)3) € #;; therefore S, = O,
That is a contradiction, so f(3) must be zero.
2. If3 ¢ N(F),then #, = O,, thereforel, € 4, ; on the other hand, 1(3) # 0.
O
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2. Sheaves with Algebraic Structure

ExAMPLE. Let O: = U {0,} and let 7:0 — B be the canonical mapping.
3€B

If we give O the topology of B, then = is a topological mapping. In this way
O becomes an analytic sheaf, the zero sheaf.

Theorem 2.5. Let &y,...,%, be analytic sheaves over B. Then &: =
L@ ® Y, is analytic.

Proor. Clearly &; = (¥4); X *++ x (¥,), is always an @;-module. It

remains to show that the operations are continuous. We only carry out the

proof for addition:
Let

Nerw, e L£)=rw,#) x r(w, <)
(56 5): = (pios, pio§)e T(W, &) x [(W, ;)
=I'W,¥,® %)) for i=1,...,¢
Then
s; +§;er’(W, %)) for i=1,...,4¢
therefore

S+85=(1+5,...,8,+8)elrW, &) x - xIT'(W,¥)=TW,¥). O

Def. 2.7. Forge Nletq0: = 0 @ - - - @ @. (In the literature ¢?is the most

q times

common notation for this.) g0 is always an analytic sheaf.

To conclude this section, we consider quotient sheaves. Let & be an
analytic sheaf over B, ¥* < & an analytic subsheaf. For open sets W < B
we define Ny : = I'(W,0)and My,: = I'(W, )/ (W, ¥*) interpreted as Ny -
module. There is a canonical projection q:I'(W, &) - M. Forse I'(W, S)
let {s>: = q(s). Then (for V =« W < B) we can define

ry ({sy): = sV for (s e My.
Clearly r)f is well-defined: {s;> = {s,>ifand onlyifs, — s, liesin I'(W, &*).

But then (s; — $,)|V eI'(V, %), 50 {s;|V) = {s,|V). Hence {My, 1)} isa
pre-sheaf of abelian groups and for {s) € M, and f € Ny,

W (f<sd) = ({fsD) = (f 9V = S|V) (s|V))
=(fIV)-<s|V) = (V) 1P (D).
({Nw, 7}, {My,r}}) is a pre-sheaf of modules whose associated sheaf

2 is an analytic sheaf. We call 2 the quotient sheaf of & by &* and write
92 = F|F*.

Theorem 2.6. Let & be an analytic sheaf over B, ¥* = & an analytic sub-
sheaf, 2 = F/¥* the quotient sheaf. Then for every 3 € B there is an
isomorphism :2; — &3/ (of O;-modules) defined by (W, <{s)) > s(3).
(G denotes the image of 6 € &5 in &;/F3.)
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IV. Sheaf Theory

PROOF
L. (W, {51)) v (W,, {s2)) if and only if there is a neighborhood V(3) =
W, n W, such that

(1 V) = P (<s1D) = 2({s2)) = (VD

and that is exactly the case when (s, — s,)|V lies in I'(V, &*). But by the con-
tinuity of s; — s,, this is equivalent to having 5,(3) — 5,(3) € &;; therefore
51(3) = s,(3). Hence ¥ is well-defined and injective.

2. Since

W, (30)s + (W, <20) = (W, st + 520) Yoy + 02) = Y(oy) + ¥(o2).

Moreover

Y(fy (W, {D)) = Y((W,<f - 3)) = (- 9B) = f3 5G) = [y Y((W, {sD)y).

y is therefore an ¢);-module homomorphism.

3. If 6e &/, then there exists a neighborhood W(3) = B and an
se I'(W, &) with s(3) = o. But then (W, {s}); is in 2;, and y((W, {s)),) =
s(3) = o. Therefore ¥ is also surjective. a

Henceforth we can identify 2; with &,/¥;.

Remark. 1If s e (W, &), then r{s) lies in I'(W, 2). If we defines: W — 2
by 5(3): = s@3), then ¢ o r{s) = 5. Hence we can identify r{s) and § by
means of .

3. Analytic Sheaf Morphisms

Def. 3.1. Let &, &, be analytic sheaves over B, ¢:¥; — &, a sheaf mor-
phism. ¢ is called an analytic sheaf morphism (or a sheaf homomorphism)
if for every 3 € B, ¢:(¥), = (£>), is an O,-module homomorphism.

EXAMPLEs

1. Let & be an analytic sheaf over B and &#* = & an analytic subsheaf.
Let q: % — &/%* be the canonical projection with g(6) = . Then q:%; —
&,/ is always an ¢);-module homomorphism and for s e I'(W, &), q o s =
s =r{sy e '(W, £/F*). Therefore q is a surjective sheaf homomorphism
(a sheaf epimorphism).

2. If & is an analytic sheaf, then there is exactly one sheaf morphism
& — 0, and it is clearly a sheaf epimorphism.

3. Conversely, though there can be several sheaf morphisms O — &, there
is only one analytic sheaf morphism (mapping O; onto O;). This homo-
morphism is injective (a sheaf monomorphism).

4. If ¥* < & is an analytic subsheaf, then the canonical injection 1 =
idg|#*:F* o & is a sheaf morphism.

Remark. (2) is a special case of (1), with &#* = &; and (3) is a special case of (4),
with &#* = O.

110



3. Analytic Sheaf Morphisms

5. If &4, ..., &, are analytic sheaves, then the canonical projections
Pi:L1 @ @, — &, are sheaf epimorphisms.

6. If O; is the zero section in &;, then the canonical injection j; =
jO4, ..., 0;...,0):% & ¥ @ @ &, are sheaf monomorphisms.

7. Let j;:0 < g0 be the canonical injections. If 1 € I'(B, () is the “unit
1-section”, then we define the unit sections in g0 by

e,~:=j,~0l =(O,...,l,...,0).

Now let ¢:q0 — & be an analytic sheaf morphism and let s;: = @ oe; €
I'(B, &). Then for (ay, . . ., a,) € 90,

q q
eas, ..., a) = ¢ (_Zl a.m(a)) = .Zl a;5:(3)-
So the sections sy,..., s, determine the homomorphism completely, and
conversely we can define an analytic sheaf morphism ¢ = ¢,
above equations for sy, .. ., s,.
8. If p: &, » &, and Y: &, —» &, are analytic morphisms, then so is
Yop:Fy > Fs.

.....

Def. 3.2. Let ¢:&; - &, be an analytic sheaf morphism. Then we define
Im¢: = ¢(¥,) =« &,;Kerp: = ¢71(0) = &;.

Theorem 3.1. If ¢:%; —» &, is an analytic sheaf morphism, then Im ¢ and
Ker ¢ are analytic sheaves.

PrROOF

1. Since every sheaf morphism is an open mapping, Im ¢ = ¢(¥,) = &,
is open in &,, and is therefore a subsheaf. Since (Im ¢); = @((¥1);), Im ¢
is analytic.

2. Because ¢ is continuous and O = &, is open, Ker ¢ = ¢~ }(0) = &,
is open and therefore a subsheaf. Because (Ker @), = {0 € (¥1);:0(0) =
0, e(¥,),} = Ker(¢|(#1),), Ker ¢ is analytic. ]

Def. 3.3. Let &, &, be analytic sheaves over B. A mapping ¢:%; —» &,
is called an analytic sheaf isomorphism if (1) ¢ is stalk preserving; (2) ¢ is
topological; and (3) (p[(y D::(&1); = (£,); 1s an ¢;-module isomorphism
for every 3 € B.

We write &; ~ &, if there exists a sheaf isomorphism ¢:%; —» &,.

Remark. If a mapping ¢:¥, — &, is a bijective sheaf homomorphism
then it is an analytic sheaf isomorphism. Namely, ¢ is stalk preserving and
continuous, and for every 3 € B, ¢|(¥4),:(#1); = (£,); is an ¢,-module iso-
morphism. Since every sheaf morphism is open, it now also follows that
¢~ ! is continuous; ¢ is therefore topological.
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IV. Sheaf Theory

Theorem 3.2. If ¢:& — &, is ananalytic sheaf morphism, then & {/Ker ¢ ~
Im ¢.

PROOF. @(0): = ¢(0) defines a stalk preserving bijective mapping @:<%,/
Ker ¢ — Im ¢ which induces a ¢),-module isomorphism in every stalk. If 5 €
(&1/Ker @),, then there exists a neighborhood W(3) and an s e I'(W, &) with
5@) =6 and @ o3 = @ o se I'(W,Im ¢). Therefore @ is also continuous.
Hence by the above remark @ is a sheaf isomorphism. a

Remark. If ¢:&, — &, is an analytic sheaf morphism and if q:%; —
&1/Ker ¢ and 1:Im ¢ & &, are the canonical mappings, then one has the
canonical decomposition of ¢:

@ =100oq:S 1 »F/Kero ~Imo ¢ &,.

Def. 3.4. Let &4, ..., &, be analytic sheaves over B, and let ¢;: %; —» &;4+1
be analytic sheaf morphisms for i = 1,..., £ — 1. Then we call the
sequence

P B BL o S T,

an analytic sequence of sheaves.
The sequence is called exact at &; if Im ¢;_, = Ker ¢;. The sequence
is exact if it is exact at each &,.

Remarks. The sheaf homomorphism which maps every element stalkwise
onto zero will be denoted by 0.

1. Im ¢;-; = Ker ¢; means:
a @Qiop;i—; =0
b. If ¢;(0) = O, then there is a  with ¢,_,(6) = o.

2. 0 » ¥ 5 &isexact if and only if ¢ is injective.

& 4 9" 5 0is exact if and only if y is surjective.

4. If p: &, - &, is an analytic sheaf morphism, then we have a canonical
exact sequence:

w

O->Kerp » &, »>Ime - 0.

If ¢ is injective, then Ker ¢ = O and &, ~ Im ¢; if ¢ is surjective, then
& /Ker o ~ &,.

Def. 3.5. Let (¥4, my), (¥, m,) be analytic sheaves over B. Hom(,, &)
is the set of all analytic sheaf morphisms ¢:%; —» &,.
If we set (91 + ¢2)(0): = ¢1(0) + @a(0) and (f - ©)(0): = fr (@) " @(0)
for @, @1, ¢, € ¥4, and f € I'(B, 0), then Hom,(¥,, &,) becomes a I'(B, O)-
module.
(@1 + @z)os = @105+ @aosand (f-@)os = f-(pos) are also
sections, and hence ¢, + ¢, and f - ¢ are continuous.)
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4. Coherent Sheaves

4. Coherent Sheaves

B will always be a region in C".

Def. 4.1. An analytic sheaf & over B is called finitely generated if for every
point 3 € B there exist an open neighborhood W(3) = B, a natural
number g and a sheaf epimorphism ¢:qO|W — F|W.

Let ¢; be the i-th unit section of g0, s;: = ¢ o (¢;]/W) the images under ¢.
If 0 € %, then ¢ comes from an element (ay, ..., ) € q0; that is, 6 =
q
@ay,...,a,) = Y, a;si(3). The sections sy, ..., s, therefore generate the
13

0;-module &; simIlltaneously over all of W.

Def. 4.2. If & is analytic over B, then one calls the set Supp(¥): = {3 € B:
&, # 0,} the support of &.

Theorem 4.1. If & is finitely generated, then Supp(¥) is closed in B.

Proor. We show that B — Supp(¥) is open in C". Let 3, € B — Supp(¥) be
chosen arbitrarily, and let W(3,) = B be an open neighborhood over which

a sheaf epimorphism ¢:g0 - F|W exists. Let sy, ..., s, be the images of
the unit sections over W. Then s,3o) = - - = 5,30) = O, = OGo) € F4,-
Hence there exists a neighborhood V(3,) = W with 5|V = -+ = 5|V =

O|V; therefore #|V = O, so V = B-Supp(¥).

EXAMPLES

1. qO is finitely generated, since id:q@) — g0 is a sheaf epimorphism.

2. Let &: %, - &, be a sheaf epimorphism with & finitely generated.
Then trivially &, is also finitely generated.

3. Let ¥* < & be an analytic subsheaf with & finitely generated. Then
2, applied to the canonical projection q:& — &/&*, shows that &/F* is
finitely generated.

4. Let A = B be analytic in B. The ideal sheaf .#(A) is defined as follows:
Let 4, : = {0 €0, There exists a U3,) = B and a holomorphic f in U
with f{lU n 4 = 0and rf(30) = o} for 3 € B; then #(4): = () 4,

3eB
a. #(A) is a subset of 0, and for ¢ € .#; there exists a neighborhood

U@3) = B and an f such that rf(3) = 0. But then the set rf(U), open in 0,
lies in # and contains the element ¢. Therefore o is an interior point and
# is open in 0.

b. That every stalk .#; is an ideal in the ring ¢, follows immediately
from the definition. Hence .# < @ is an analytic subsheaf and an ideal
sheaf.
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IV. Sheaf Theory

By (3) the quotient sheaf # = @/.# (a sheaf of C-algebras!) is finitely
generated. We show that Supp(#’) = A. For 3, € B — A4, 4, = 0,, there-
fore #,, = O,,. For 3,0€ 4, £, # 0, since otherwise L, € #, and there
would be a holomorphic function f on a neighborhood U(3,) with f|[U n A4 =
0 and rf(30) = 1,, = r1(30). But then rf and r1 would agree on a neighbor-
hood ¥(3,) = U. Since in this case r is bijective, it follows that f|V = 1|V,
in particular 0 = f(3,) = 1.

Remark. Clearly
N(#(A)) = Supp O/ F(A) = A.
Yet for an arbitrary ideal sheaf ¢ < 0, the equation F(N(#)) = # is false.

5. Let Bbe connected, B° = Bopen, B’ # ( and B’ # B. An open subset
& =n"'(B) U O(B) of O is defined by #|B": = 0|B and ¥|(B — B') = 0.
It is a subsheaf. Since &, = 0; is always an ideal, & is an ideal sheaf; but
Supp(&¥) = B’isnot closed. Hence it follows that & is not finitely generated.

Def. 4.3. Let & be an analytic sheaf over B. & is called coherent if:
1. & is finite (that is, finitely generated).
2. & is relation finite (that is, if U < B is open and ¢:q0|U - Z|U
is an analytic sheaf morphism, then Ker ¢ is finitely generated).

Let s; € I'(U, &) be the images of the i-th unit section ¢; € I'(U, q0) under
¢:q0|\U - Z|U. Then an element (ay, . . ., 4,) € g0, is mapped onto O, ifand
q

only if the “relation” Y, a;s,(3) = O is satisfied. We call Ker ¢ the relation
i=1

sheaf of sy, ..., 5,

Consequences

1. Coherence theorem of Oka: O is coherent.

2. Coherence theorem of Cartan: The ideal sheaf .#(A4) of an analytic set is
coherent.

These two results are very deep and cannot be proved here.

3. O is coherent. (This is trivial.)

4. If & is coherent and &* <= & a finitely generated subsheaf, then &*
is also coherent. \

ProOF. Let W < B be open, (p:q(9|W - 5”*|W be an analytic sheaf mor-
phism, 1:#*|W ¢ &|W the canonical injection. Then 10 ¢:qO|W — F|W
is also an analytic sheaf morphism, and Ker ¢ = Ker(i o ¢) is finitely
generated. O

Theorem 4.2 (Existence of liftings). Let ¢:& — &* be a sheaf epimorphism,
£ :q0 — &* an arbitrary sheaf homomorphism. Then for every 3, € B there
is a neighborhood U(30) = B and a (non-canonical) sheaf homomorphism
€:q0\U — &|U such that ¢ o ¢ = ¢* (one calls any ¢ with these properties

a lifting of ¢*).
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4. Coherent Sheaves

PROOF. Let sj: = ¢*ce;e['(B,¥#*) fori =1,...,q. Then for 3, € B there
are elements g, € &, with ¢(0;) = s7(39). We can find a neighborhood W(3,) =
B and sections s; € I'(W, &) with s,(30) = 0;; therefore ¢ © s,(30) = 57 (30)-
@os; and s7 coincide on a neighborhood UQRo) = W. &: = ¢,,... s):
q(9|U - VIU is an analytic sheaf morphism with

q
eay, ..., a) = Y a;s3) for (ay,...,a,) € q0;;

i=1

therefore

q
Qoeay,...,a) =Y asi@) = ¢'(ay,...,a). O
i=1

Theorem 4.3. Let O » &* 5 & % %** - O be an exact sequence of ana-
Iytic sheaves over B. If #* and &** are coherent, & is also coherent.

PRrROOF

1. & is finitely generated: Since &* and &** are finitely generated,
there are for every 3, € B aneighborhood W(3,) = B and sheaf epimorphisms
e:q"0 » F*, .70 - S over W. Since p: &S — S ** is surjective, there
is (w. L 0. g. also over W) a lifting of &**

eq0 - & with poe=¢""

If pry:q*0 @ ¢**0 - q*0 and pry:q*0 @ q¢**0 — q**O are the canonical
projections, then
viq@ + 40 > &
with
Y(0): = j o & o pry(o) + & o pry(o)

is an analytic sheaf morphism. It remains to show that i is surjective:

Let 0 € &, 3 € W. Then there is a o, € ¢**0; with ¢**(s,) = p(0). Clearly
g — &(04) lies in Ker p = Im j, therefore there is a ¢, € &} with j(o,) =
o0 — ¢&(0,). Furthermore, we can find a g5 € ¢*0, with ¢*(3) = ¢,. Now

Y(o3, 01) = jo&*(a3) + &(ay) = jlo;) + &(ay) = o.

2. & is relation finite: Let W = B be open, ¢:q0|W — &|W an analytic
sheaf morphism and 3, € W an arbitrary point. Since &** is relation finite
there is a neighborhood V(3,) = W and, over V, a sheaf morphism y,:
10|V — Ker(p o ¢)|V. This gives the exact sequence:

o[V 4 qo|v 28 .
Because Ker p = Im j >~ &*, we can regard ¢ o y,:r® — Ker p as a map-
ping @ o Y, :r0 — &*, and since &* is relation finite, there is a neighborhood

U(30) = V and a sheaf epimorphism y,:s0|U - Ker(p o y,)|U. This yields
the following exact sequence:

s0|U B ro|lU &4 .
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IV. Sheaf Theory

Hence we obtain (over U):

a @oroyr)=(poy)oyy, =0

b. If 6 € g0 and ¢(0) = O, then p o p(6) = O also and there is a ¢, € 10
with Y, (6,) = 0. Then ¢ o ¥,(0;) = O and there is a 6, € sO with Y,(5,) =
0'1. Then l/’l o l//z(o'z) = 0.

(a) and (b) imply that the following sequence is exact:

so|ULY g0|U % #|U
Therefore Ker ¢ is finitely generated. a

Theorem 4.4. Let &* 5 &% B &** - O be an exact sequence of sheaves
over B. If &* and & are coherent, then &** is also coherent.

PROOF
1. Since pis surjective, it follows immediately that ** is finitely generated.
2. Let &*:¢**0 — &** be an arbitrary sheaf homomorphism on an open
set W < B, e:¢**0 - & a lifting (with po¢ = &**). Since &* is finitely
generated, we can find a neighborhood V(3,) = W and a sheaf epimorphism
e:q*0 - &* on V for every point 3, € W. Now let y:q*0 @ ¢**0 - &
be a sheaf morphism on V defined by

Y(o4, 03): = jog*(oy) + &(a2).

Since & is coherent there exists an exact sequence g0 5 ¢*0 @ q**0 L
on a neighborhood U(3y) < V. Let a:q0) — g**0 be defined by a: = pr, © ¢.
The theorem will be proved once we show the exactness of the sequence
40 5 ¢**05 F#**. For 3€ U and o € ¢**0, the following statements are
equivalent:

. g € Ker(e*

. glo)eKerp =Imj

. There is a 6, € "0, with j o ¢*(5;) = &(0)

. Y(—0y,0) = Oforaoc, €q0;

. There is a g, € g0, with ¢(0,) = (—o04, 0)

0 = pry o ¢(g,) = a(o,) € Im a. O

AL AW~

Theorem 4.5. Let O —» &* 5 % B %** be an exact sequence of analytic
sheaves over B. If &, #** are coherent, then &* is also coherent.

PrROOF. We may regard &* as an analytic subsheaf of &, so it suffices to
show that &* is finitely generated. Let 3, € B be chosen arbitrarily. Since &
and &** are coherent there is a neighborhood W(3,) = B, and over W, a
sheaf epimorphism &:9q0 — & and a sheaf epimorphism ¢:¢*0 — q0@ such
that the sequence

g0 5 q0 52 7

is exact.
Then ¢ o ¢(q*0) = ¢(Im ¢) = ¢(Ker(pog)) = Ker p = Imj, so e o ¢(q*0) ~
&*. Hence &* is finitely generated. O
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4. Coherent Sheaves

Theorem 4.6
1. If & is a coherent sheaf over B and &* = & a coherent analytic
subsheaf, then & |S* is also coherent.
2. If &y,..., S, are coherent analytic sheaves over Bthen ¥, @ -+ ® &,
is also coherent.

PRrROOF

1. There exists a canonical exact sequence O - &* - & —» F/F* - O.
The result follows by Theorem 4.4. )

2. For ¢ = 2, apply Theorem 4.3 to the exact sequence O —» &, 5 &, @
#, B3 #, - 0. The result follows by induction from the isomorphism
10D, (1D DS -)D S O

Theorem 4.7. Let ¢:%, — &, be a homomorphism of coherent sheaves over
B. Then Ker ¢ and Im ¢ are also coherent.

ProOOE. Thesequence O — Ker ¢ —» &, —» &, isexact, so Ker ¢ is coherent.
Since Im ¢ ~ &, /Ker ¢, the coherence of Im ¢ follows from Theorem 4.6. O

Theorem 4.8 (Serre’s five lemma). Let &’ Lo B o B o B3 9 be an
exact sequence of sheaves. If &', "', F*, S** are coherent, so also is &.

Proor. The sequence O —» &"/Imj, - & — Ker p, — O is exact and the
sheaves &"/Im j, and Ker p, are coherent. Hence the result follows from
Theorem 4.3. O

Remark. With Serre’s five lemma, we can deduce the other theorems:

For example, if the sequence O —» &* —» &% — &** is exact, then so is
the sequence O - O - &* —» & —» ** If & and &** are coherent, then
the coherence of &* follows from the five lemma.

ExAMPLE. Let A = B be an analytic set, .#(A) its ideal sheaf and #(A4) =
0/F(A). Since #(A) is coherent, the sheaf #°(A4) is also coherent.

If we choose, for example, A = {0} = C", then S(A), = {f,:/(0) = 0}
is the maximal ideal in 0, #(4), = 0O, for 3 # 0. Therefore

C for3 =0
H(A) = {0 otherwise.

In conclusion we note that the general theorems and constructions of this
chapter carry over word for word if one admits as the base space an arbitrary
topological space instead of a region of C".

We define: Let X be a topological space, £ a sheaf of C-algebras over X.
A sheaf of #-modules over X is called coherent if it is a finite and relation
finite sheaf of #£-modules.

In particular £ itself is coherent if for every open set U = X and each
Z-homomorphism ¢:q#|U — Z|U the sheaf Ker ¢ is finite over .
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IV. Sheaf Theory

Theorem 4.9. Let # be a coherent sheaf of C-algebras over X, $ < & a
coherent ideal sheaf. Then as a sheaf of C-algebras #/5 is coherent.

PrOOF. We already know that as a sheaf of #£-modules %/.# is coherent.
Now let n: 2 — %/ the canonical projection, U = X open, ¢:q(%/F)|U -
(#/2)|U a given (%/.#)-homomorphism.

n induces an #-homomorphism n,:q%# — q(%/#) and we set y: =
@ o 1. qR|U — (#/#)|U. ¢ is an #-homomorphism and hence for every
30 € U there is an open neighborhood V(3,) = U and sections sy, ..., s,, s; €
I'(V, Ker ) which generate Ker y over V. For the sections

§5;: = mn(s) e I'(V, q(%/F))
we have
o) =9 nq(si) =Y(s) =0,
hence §; € I'(V, Ker ¢). B
It is easily verified that the 57, . . ., §, generate the sheaf Ker ¢ over V as
an (%#/4)-module.

Corollary. If B = C" is a region, A = B an analytic subset, then #(A) and
hence #(A)|A is a coherent sheaf of C-algebras.
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CHAPTER V
Complex Manifolds

1. Complex Ringed Spaces

Let R be a local C-algebra with maximal ideal m, (see Def 5.1 in
Chapter III), and let 7:R — R/m =~ C be the canonical projection. If f € R,
the value of f is the complex number [ f]: = =(f).

ExaMPLE. Let f be a holomorphic function on a region B, 3, € B a point.
Then f,, = (W, f),, is an element of the local C-algebra 0,, and rf € I'(B, 0)

with 11(30) = fso-

We introduce the complex valued function [rf] on B by setting

[71Go): = [1/(o)]-

Then [ ]Go) = [fio] = 7(fio) = f(30), so that [rf] = f. Consequently the
inverse of the isomorphism r: My, — ['(W, 0) is given by r~(s): = [s].

Def. 1.1. A pair (X, ) is called a complex ringed space if:

1. X is a topological space;
2. A is a sheaf of local C-algebras over X.

If W = X is an open set, then the set of all complex valued functions
on W will be denoted by # (W, C).

If fe'(W, #), then there is an element [ f] e #(W, C) defined by
[f1®): = [f(x)] € #,/m, ~ C. The correspondence I'(W, #) - F (W, C)
given by f — [ f] is a homomorphism of C-algebras but, in general, is
neither surjective nor injective.
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V. Complex Manifolds

Comment. If (X, ) is a complex ringed space and W < X open, then
naturally (W, #|W) is also a complex ringed space.

Def. 1.2. Let (X, #,), (X5, #,) be complex ringed spaces. An isomorphism
between (X, ;) and (X ,, #,) is a pair ¢ = (P, ¢,) with the following
properties:

1. §: X, — X, is a topological mapping.

2. ¢,:H# > H#, is a topological mapping.

3. ¢, is stalk-preserving with respect to @; that is, the following diagram
is commutative:

#, 25 o,
7‘1l lﬂz
1]

X, X,

4. For every x € X, @./(#1),:(#1)x = (#2)px is @ homomorphism of
C-algebras.

The existence of an isomorphism ¢ between (X, # ;) and (X,, #,)
is expressed briefly by
Xy, #1) = (X2, #3).

Theorem 1.1. Let ¢ = (§, ¢.):(Xy, #) = (X4, H#>) be an isomorphism of
complex ringed spaces. Then for every openset V = X, there is a C-algebra
isomorphism

¢:T(V, #,) > T(@ V), #1)

defined by @(s): = @ ' oso §.
PROOF. @(s):¢~1(V) — #, is clearly continuous, and
To(@tesed)=(mop)o(sed) = (G om)o(sed)
=@ lo(nyo8)ed = idg-1p)-

It is clear that @ is a homomorphism of C-algebras. An inverse is given by
¢7Ht) = @.otod . a

Lemma 1. If R is a local C-algebra with the maximal ideal m, then ae m
ifand only ifa — c- 1 ¢ m forallce C — {0}.

PRrOOF

1. Letaem,a—c-1lem. Thenalsoc-1 =a — (@ — ¢- 1) e m. That
is, ¢ cannot lie in C — {0}.

2. For all ceC— {0} let a—c-1¢m. We set c: = n(a). Then
n(a — ¢+ 1) = 0. Therefore a — ¢+ 1 em, hence ¢ = 0 and a e m. O
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1. Complex Ringed Spaces

Lemma 2. Let p:(Ry, my) - (R,, m,) be a C-algebra homomorphism between
local C-algebras. Then p(m;) = m,. If in particular p is an isomorphism,
then p(ml) = 1112.

PrOOF
1. Ifoemy, theno — c- 1 ¢ m, for all ce C — {0}. Therefore for every
ceC — {0} thereisa g, with g, (¢ — ¢ -1) = 1, and then
ple) - (plo) —c-1) =L

Hence p(6) — ¢ - 1 ¢ m,, so p(o) lies in m,.
2. If p is an isomorphism, then p~!(m,) = m,;. Therefore m, =
pp~l(my) = p(my) < my, and p(m,) = m,. o

Theorem 1.2. Let ¢ = (@, ¢,):(X,, #1) = (X5, #,) be an isomorphism
of complex ringed spaces. For an open set V < X, let ¢*:F(V,C) -
F (3~ 1(V), C) be defined by ¢*(f): = f o &. Then for every s ['(V, #,),
[8()] = @*([s]) (therefore [@, ! o 50 3] = [5] > P)-
PROOF. Let V < X, be open, ye V, x: = ¢~ (y) and se I'(V, 5#,). Then
s(y) = ([s1(»))- 1 + ¢* with ¢* € (m;),, therefore
@) = [s]») - 1 + o7 Yo",

with ¢ 1(¢*) € (m,),. Hence

[ostoso@l(x) = [or ()] = [s](») = [s] ¢(x)

follows. O

We thus obtain the following commutative diagram:

te NG\ (V), #,) —2— 1V, #5)5s

I [

(e #@'(V).C) —L—F(V,0) > [s]
Since ¢ and ¢* are isomorphisms, ¢ — [t] is injective if and only if s > [s]
is injective.

Def. 1.3. A (reduced) complex space is a complex ringed space (X, #) with
the following properties:

1. X is a Hausdorff space.
2. For every point x, € X there is an open neighborhood U(x,) = X and
an analytic set 4 such that (U, #|U) ~ (4, #(A4)).

(4 lies in an open set B = C" and #/(A): = (0/.#(A))|A, where J(A) is
the ideal sheaf of A. #(A) is a coherent sheaf of local C-algebras and
hence S is also coherent.)
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A reduced complex space therefore looks locally like an analytic set. If
this analytic set has no singularities, then we call the complex space a complex
manifold:

Def. 1.4. A complex manifold is a complex ringed space (X, #) with the
following properties:

1. X is a Hausdorff space
2. For every point x, € X there exists an open neighborhood U(x,) < X
and a region B = C” such that (U, #|U) ~ (B, 0).

Theorem 1.3. Let (X, #) be a complex manifold, W < X an open subset.
Then the mapping I'(W, ) - F (W, C) given by f — [ f] is injective, and
for every f € (W, #), [ f] is continuous.

Proor. There is an open covering (U,),.; of W and a system (B,),.; of open
sets such that (U,, #|U,) ~ (B,, 0|B,). For f € (W, i)

Lf|u] = LF]U..

Hence it suffices to prove the proposition for the sets U,. It follows im-
mediately from Theorem 1.2 and the equation r~(s) = [s] that the mapping
ru, #) - %(U,C) is injective. If feI'(U,, #), then @,0fod ' =
@~ (f) lies in I'(B,, 0); [¢~*(f)] is therefore continuous. Hence

[f1=[ee""(N]=[06""(N]-¢

is also continuous. O

Def. 1.5. Let (X, #) be a complex manifold, W = X open. A holomorphic
function over W is an element of the set [I'(W, #)] = {[f]1e F(W,C):f e
(W, #)).

Remarks

1. The mapping f + [ f] defines an isomorphism from I'(W, #) onto
the set of holomorphic functions over W.

2. Every holomorphic function is continuous.

3. If U = X is open, B = C" a region and ¢:(U, #) — (B, ) an iso-
morphism, then for every open subset V = U a function fe #(V,C) is
holomorphic if and only if f o ™! is holomorphic.

4. If U < X isopen, B = C"aregion and ¢:(U, #) — (B, 0) an isomor-
phism, then the pair (U, @) is called a complex coordinate system for X. If
(Uy, @4), (U,, @,) are two complex coordinate systems with U; n U, # O,
then @,,: = @, o @5 :3,(U; n Uy) = $,(U; n U,) is a homeomorphism
of open sets in C".
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1. Complex Ringed Spaces

B,

Figure 21. Compatibility of complex coordinate systems.

If f is holomorphic on @ (U, n U,), then f o @, is holomorphic on
U, n U, (by 3). Therefore, f° @, = (f°P,)° P, is holomorphic on
@,(U; nU,). Then @;, is a holomorphic mapping (see Theorem 7.1,
Chapter I).

To conclude this section we shall show conversely that we can also
define a complex manifold with the help of a suitable system of complex
coordinates.

Let X be a Hausdorff space, (U,),.; an open covering of X. For every U,
let there be given a homeomorphism @, from U, onto a region B, = C"
such that every coordinate transformation

Bu o8 Pu(U, AU = 3,(U, 0 Uy)
is holomorphic. One calls the system {(U,, $,):1 € I} a complex atlas for X.
Now let W < X be open, f € #(W, C) and x, € W. f is called holomorphic
at x, if there exists an 1y € I and a neighborhood U(x,) = W n U, such
that f o @, is holomorphic in $,(U) = B,,. f is called holomorphic on W
if f is holomorphic at every point x € W.

Because of the compatibility condition for the coordinate systems f o @, *
is holomorphic at @,(x,) for every 1 with x, € U,, whenever f is holomorphic
at x,.

Let My be the set of holomorphic functions on W, and r}f : My — M,
the usual restriction mapping. Then {My, r}/} is a pre-sheaf. The corre-
sponding sheaf # is called the sheaf of germs of holomorphic functions over X.

If xoe U, ~ W and f € My, then

W o = W U, fIW 0 Uy,

The system My, , ; together with the corresponding restriction mappings
form a pre-sheaf for the sheaf #|U,. An isomorphism between the pre-sheaf
of #|U, and the pre-sheaf of 0|B, is defined by f > f o &, !, and this iso-
morphism induces an isomorphism (¢,),: #|U, — 0|B,. # is thus a sheaf of
local C-algebras, ¢,: = (@,, (¢,),):(U,, #) - (B,, ©) is an isomorphism of
complex ringed spaces, and (X, #) is a complex manifold.
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2. Function Theory on Complex Manifolds

Let (X, ) be a complex manifold, x, € X. Then there is a neighborhood
U(x,) = X and a homeomorphism ¢ of U onto aregion B = C". The natural
number n is independent of the particular choice of ¢ and one defines
dim, (X): = n.

Henceforth we always assume that dim,(X) = n = constant on all of X.
Then (X, 5#) is called an n-dimensional complex manifold.

Theorem 2.1. Let (X, /) be an n-dimensional complex manifold, W < X
open. Then (W, 5#|W) is also an n-dimensional complex manifold.

ProOF. It is clear that W is a Hausdorff space and s#|W a sheaf of local
C-algebras. For every point x, € W there is a neighborhood U(x,) = X and
an isomorphism ¢:(U, #|U) — (B, 0). Then W n U is a neighborhood of
Xoin Wand (W n U, #|W n U) ~ (3(W n U),0). a

Def. 2.1. A complex manifold (X, #) is connected if the underlying topo-
logical space is connected (so there is no decomposition X = X, u X,
into two disjoint non-empty open subsets).

Theorem 2.2 (Identity theorem). Let (X, #) be a connected complex
manifold, f,, f, holomorphic functions on X and V < X a non-empty open
subset with f|V = f,|V. Then f; = f,.

PrOOF. Let W;: = {x € X:rfi(x) = rfa(x)}, Wp: = X — W,. W, isnotempty
since V is contained in W), and W, is open since the set where two sections
coincide is always open. Let x, € W, be an arbitrary point. Then in X there
exists an open neighborhood U(x,) and an isomorphism (U, #) ~ (B, 0)
where B denotes a domain in C". If x, is not an interior point of W,, then
U n W, # & is an open neighborhood and rf;|U n W; = 1f,|U n W;. By
the identity theorem in C" it now follows that rf; and rf, coincide on U,
and so in particular, that x, lies in W,. That is a contradiction. Every point
of W, is an interior point of W,, so W, is open. Since X is connected, it follows
that W, = X and therefore f; = f,. O

Theorem 2.3 (Maximum principle). Let (X, #) be a connected complex mani-
fold, f holomorphic on X, xo € X a point. If |f| has a local maximum at
Xo, then f is constant.

PrOOF. There is a neighborhood U(xy) < X and an isomorphism ¢:
(U, #) > (B, 0). Without loss of generality we may assume that @(x,) = 0
and B is a polycylinder about the origin. For 3€ B and 3 # 0 let E;: =
{t3:t e C}. Then E; n B is a circular disk in the complex t-plane, and
|(f © @ *|E; » B)| has a local maximum at the origin. By the maximum

124
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principle of one dimensional complex analysis this means that f - $ !|E; n B
is constant. In particular f(&'(3)) = f(x,). Since 3 € B was chosen arbi-
trarily it follows that f|U is constant, and by the previously proved identity
theorem that holds only if f is constant. O

Theorem 2.4. Let (X, 5#) be a connected compact complex manifold. Then
every function holomorphic on X is constant.

Proor. If f is holomorphic on X, then | f| is continuous on X and therefore
attains a maximum on the compact manifold X. By the maximum principle,
f is constant. O

ExampLE. If we give the Riemann sphere X : = C u {co} the usual topology,
one obtains a Hausdorff space.

@:X — {00} » Cwith ¢(x): = xand y: = X — {0} - C with y(x): =
1/x are topological mappings, and the transformations

@oy~1:C — {0} >C — {0} and Yoo ':C — {0} > C — {0}

are holomorphic.

Hence {(X — {0}, ¢), (X — {0}, ¥)} is a covering of X by compatible
complex coordinates which induces a sheaf 5# on X. X is a one-dimensional
complex manifold.

1. X is compact:

Let E;:={zeX — {o0}:]7| < 1},
E,: ={zeX:|z > 1}.

Then E, is compact and (w]Ez):EZ — E, is a homeomorphism. Therefore E,
is also compact. The proposition follows because X = E, U E,.
2. X is connected, since the sets E;, E, are connected and E; n E, # .
By Theorem 2.4 it follows that every function holomorphic on the whole
Riemann sphere is constant.

Def. 2.2. An abstract Riemann surface is a connected one-dimensional
complex manifold.

The Riemann sphere is an abstract Riemann surface. In the next section
we shall examine the so-called “concrete Riemann surfaces.”

Note. When no confusion can arise, we shall denote a complex manifold
simply by X.

Def. 2.3. Let X,, X, be complex manifolds. A continuous mapping ¢:
X, — X, is called holomorphic if for every open set U < X,, go ¢ is
holomorphic over ¢ ~}(U) whenever g is holomorphic over U. If ¢ is
topological and ¢ and ¢~! are holomorphic, then ¢ is called biholo-
morphic.
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Remarks

1. idy:X — X is always biholomorphic.

2. If ¢:X, - X, and y:X, —» X5 are holomorphic mappings, then
Yo @:X, — X5 is also holomorphic.

3. Let f:X — C be a continuous mapping. f is holomorphic (in the
sense of Def. 2.3) if and only if f is a holomorphic function.

PROOF

a. If f is a holomorphic mapping, then f = id¢o f is a holomorphic
function over f ~(C) = X.

b. Let f be a holomorphic function, U = C open and g holomorphic
over U. Then for every point x, € f ~}(U) = X there exists a neighborhood
V(xo) = X and an isomorphism ¢:(V, #) — (B, ©). Since by definition
f o @ !isholomorphicover B,(go f) o &' = go(f o @ !)is holomorphic
over B, and that means that g o f is holomorphic at x,. O

Theorem 2.5. A mapping y:X, — X, is biholomorphic if and only if there
exists an isomorphism @:(X {, # ) — (X5, H#,) with § = .

PROOF

1. If y:X, - X, is a biholomorphic mapping, then y and y~! carry
holomorphic functions into holomorphic functions and hence induce an
isomorphism between the canonical pre-sheaves. Naturally § = y for the
corresponding isomorphism ¢:(X,, #,) — (X,, #,).

2. If o = (P, 0,):(X 4, #,) — (X,, #,) is an isomorphism, then @ is a
topological mapping. If U = X, is open and g holomorphic over U, then
there is an s € I'(U, #,) withg = [s],and go & = [s]° @ = [@, ' °s° 3]
with @ 'oso @ e (p~Y(U), #,). Therefore go @ is holomorphic over
@~ Y(U). Hence @ is holomorphic. One shows similarly that ¢! is holo-
morphic. O

Def. 2.4. Let X be a complex manifold. A subset 4 = X is called ana-
Iytic if for every x, € X there is an open neighborhood U(x,) = X and
holomorphic functions f;,..., f, over U such that Un 4 = {xe U:

filx) =+ = fix) = 0}

Theorem 2.6. Let X be a connected complex manifold and M # X an ana-
Iytic subset of X. Then M = (&.

Proor. If M # (&, there exists a point x, € &M such that for every open
neighborhood U(x,) = X the set U n M is open and non-empty. We could
choose a connected U such that there exist holomorphic functions fi, . . ., f;

onUwithUnM = {xeU:fy(x) == fy(x) = 0..Then iU "M =0
for i =1,...,d By the identity theorem it follows that £|U =0 for
i=1,...,dand therefore U = M, a contradiction. O
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Def. 2.5. A complex manifold X is called holomorphically separable if for
every xo € X there are holomorphic functions fj, ..., f, on X such that x,
lies isolated in the set {x € X: fi(x) = - - - = f,(x) = 0}.

Remark. One can show that always £ > dim X.

ExampLE. Let (X, ¢) be a domain over C". Then for every x, € X there are
open neighborhoods U(x,) = X and V(y(x,)) = C"such that y|U:U - V
is topological. (U, i) is therefore a complex coordinate system, and since the
identity is always the coordinate transformation, X becomes a complex
manifold. The mapping : X — C" is holomorphic (in the sense of Def. 2.3).

A continuous mapping y: X — Y between topological spaces is called
discrete if for every y € Y, y ~!(y) is empty or a discrete set in X.
Y is a discrete mapping.

PROOF. Let xo € X, 30: = Y(xo) and x; € ¥ "1(3¢). Then there is a neigh-
borhood U(x,) = X and a neighborhood ¥(3,) = C" such that y|U:U - V
is topological. But that can only be if Y ~(3,) N U = {x,}. Therefore the
fiber ¥ ~1(3,) is a discrete set. O

Hence it follows that every domain over C" is holomorphically separable:

PROOF. Let gi(zq,...,2,): =2z — 2z and fi:=g;oy:X - C for i=
1,...,n fi1,..., f, are holomorphic functions on X, and x, lies isolated in

(xeX:fi(x) =+ = fu(x) = 0} = ¥~ 1(30). =

In particular, every domain G = C" is holomorphically separable. One
can generalize the above results in the following manner:

Theorem 2.7. An n-dimensional complex manifold X is holomorphically
separable if and only if there exists a holomorphic discrete mapping
X ->C"

(One direction is clear, for the other see: H. Grauert: “Charakterisierung
der holomorph-vollstindigen Rdume”, Math. Ann., 129: 233-259, 1955.)

Def. 2.6. Let X be a complex manifold.
1. If K = X is an arbitrary subset, then

K: = {xe X:|[f(x)| < sup|f(K)|}

for every holomorphic function f on X} is called the holomorphically
convex hull of K.

2. X is called holomorphically convex if K < X is compact whenever
K < X is compact.

127



V. Complex Manifolds

Def. 2.7. X is called a Stein manifold if

1. X is holomorphically separable.
2. X is holomorphically convex.

Theorem 2.8. For a domain (X, ) over C" the following properties are
equivalent:

1. X is a Stein manifold.
2. X is holomorphically convex.
3. X is a domain of holomorphy.

The non-trivial equivalence of (2) and (3) was proved in 1953 by Oka.
Theorem 2.8 leads us to regard the Stein manifolds as generalizations of
domains of holomorphy.

ExampLE. If X is a compact complex manifold and dim X > 0, then X is
holomorphically convex but not a Stein manifold.

PrOOF. If K — X is compact, then K — X is always closed. If X is compact
it follows that K is also compact. Therefore X is holomorphically convex.

Since X is compact there exists a decomposition of X into finitely many
connected components, which are also all compact: X = X, u--- U X,.
If x, € X;, f is holomorphic on X and f(x,) = 0, then by Theorem 2.4 f
vanishes identically on X;. Therefore each set of the form

{xeX:fi(x) = = fulx) = 0}
contains, in addition to the point x,, the open subset X; = X; x,, is therefore
not an isolated point and X cannot be holomorphically separable. O

3. Examples of Complex Manifolds

Concrete Riemann Surfaces

Def. 3.1. A (concrete) Riemann surface over C is a pair (X, ¢) with the
following properties:

1. X is a Hausdorff space.

2. ¢:X — Cis a continuous mapping.

3. For every x, € X there is an open neighborhood U(x,) = X, a con-
nected open set V < C and a topological mapping : V — U such that
a. @ o Y:V — C is holomorphic.
b. (¢ o )’ does not vanish on any open subset of V.

One also calls the mapping  a local uniformization of the Riemann surface
X, 9).
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Theorem 3.1. Let (X, @) be a Riemann surface over C. Then X has a canonical
one-dimensional complex manifold structure, and ¢ : X — C is a holomorphic
mapping.

PrOOF

1. Let xg € X, zo: = @(x,) € C. Then there is a neighborhood U(xy) = X
and a connected neighborhood V(z,) = C as well as a topological mapping
Y:V - U with the local uniformization property. (U, ¥ ") is therefore a
complex coordinate system for X at x,.

Now two such coordinate systems (U, 1 ),(U,, 5 }) may be given. Then
Y=Yl oYy (U 0 Uy) — i (U, n U,) is a topological mapping.
If we set f3(t): = @ oy,(t) for teV,, A = 1,2, then f, is a holomorphic
function on ¥, whose derivative does not vanish on any open subset of V.
Let to e Y7 }(U; n U,) be chosen so that % (t,) # 0. Then there is a neigh-
borhood U(te) = ¥; *(U; N U,) and an open set W < C such that f,|U:
U — W is biholomorphic. Let

g1:=(fU) ! = (@YU)W > U.
The mapping
Yi|U:U » V: = y,(U) =« Uy n U,

is topological, and so is
o[V =gr'e (WUt = ((Ys|U) o g) ™11V > W.
Y=Yty

C
W = (V)

Figure 22. The proof of Theorem 3.1.

It now follows that
Y~ HU) = Yt o Yolys (V) = Yt o (oV) T e (@]V) o Yol H(V)
= '/’1_1°'/’1°91°(P°'/’2|'//2_1(V)
=gy @ Y)W3 (V) = g1 o Lo|Y3 (V)
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which is a holomorphic function. By the identity theorem D: = {te V;:
f1(t) = 0} is a discrete set, and so is

D': =y~ WY1 '(Uy 0 Usy) 0 D).

If
So € §02_1(U1 NnU,)—-D = 'p_l('/’l_l(lh N U,) — D),
then
to: = Y(so) ey '(Uy n U,) — D,
therefore

Ji(to) # 0.

As we just showed, there is a neighborhood U(t,) such that Y|y ~*(U) is
holomorphic. In particular i is holomorphic at s, = ¥~ 1(t,).

A continuous mapping which is holomorphic outside a discrete set must,
however, be everywhere holomorphic by the Riemann extension theorem.

Hence the coordinate transformations are holomorphic, so X is canon-
ically a complex manifold.

2. Let B = C be open, g holomorphic on B. Then W: = ¢~ (B) is open
in X and g - (¢|W): W — C is continuous. If (U, y ~!) is a coordinate system,
then f: = @ o Y:yy " (U) — C is holomorphic, and so is (go @) oy = go f,
which means that g o ¢ is holomorphic on W. O

Now let (X, ¢) be a Riemann surface, :V — U a local uniformization
and f: = ¢ o Y. By assumption the set D: = {t e V:f'(t) = 0} is discrete in
V.Lettye Vand xo: = Y(ty) e U.

Case 1. f'(ty) # O.

Then there are neighborhoods V(t,) = V and W(f(t,)) = C such that
f|4:V; > W is biholomorphic. U;: = y(V}) is open in U, and y,: =
Yo (f]i)"1:W > U, is topological. Moreover, ¢ o §/; = idy. Therefore
there exists a local uniformization ¥: W — U, with x,e U; and ¢ o y; =
idy,. Thus, via ¢, U, is a sheet over W.

In this situation we say that X is unbranched at x,. Clearly X is unbranched
everywhere outside a discrete set.

Case 2. f'(ty) = 0.

Let zy: = f(to). Then at ¢y, f — z, has a zero of order k > 2, thatis,on V

f(O) = zo + (t — to)* - h(t),

where h is a holomorphic function with h(t,) # O.

There exists a neighborhood V(t,) = V and a holomorphic function g
on V; with g* = h. In particular g(t,) # 0. Let t:¥; — C be defined by
(t): = (t — to) - g(t). Then t'(t,) = g(ty) # 0, so there is a neighborhood
Va(to) = V; and an open set W, < C such that t|V,:V, > W, is biholo-
morphic. Clearly

Yol(dW) W » Uyt = (V) = X
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is topological and
polo(dVa)™) = fo(r|lp)7?
holomorphic, and (f o (‘tl V,) ') vanishes at most on a discrete set. Moreover

fo@Va) M) = fo(@V2) 7 () = f(8) = 2o + ((t — to) - g(0))*

= zo + ()" = zo + s~

Therefore there exists a local uniformization ¥,: W, — U, with x4 € U, and
@ o Ya(t) = o(xo) + t*.

Since the coordinate transformation has a non-vanishing derivative, the
order k of a zero is not affected by a change of chart, that is, k depends only
on the point x,. Wesay that x, is a branch point of order k. ,, where
@ o Y,(t) = @(xo) + t~ is called the distinguished uniformization.

X then locally represents a branched k-fold covering over ¢(x,), in the
sense that there lies exactly one point of X over ¢(x,), while over every
point z # @(x,) in some neighborhood of ¢(x,) there lie exactly k points
of X.

ExAMPLE. Let X: = {(w, z) e C*:w? = z*}. With the topology induced by
C?, X becomes a Hausdorff space, and the mapping ¢: X — C with ¢(w, z): =
z is continuous.

In order to show that X is a Riemann surface over C, we must specify
the local uniformization. Let :C — X be defined by y(¢): = (£3, t3).

a. ¥ is injective. If Y(t;) = Y(t,), then t2 = t2 and 3 = 3. If Y() = O
then t = 0. If t; # 0, then also ¢, # 0, so we can divide and then ¢, = ¢,.

b.  is surjective. If 0 # (w, z) € X, then z # 0 so there exist two complex
numbers t;, t, such that {t,,¢,} = {t:t> = z}. Then t; = —t, so that
w? = 23 = ()? = (£3)%; therefore we {13, t3}, so either y(t,) = (w, z) or
Y(tz) = (w, 2).

c. ¥:C — X is topological. The continuity of y is clear. Because of the
continuity of the roots, y ~! is continuous.

Hence there is a global uniformization for X, given by . (¢ o y(t) = t2
is holomorphic, and has a derivative which does not vanish identically
anywhere.)

Let 7:X — C be defined by 7: = Y%, Since 10y = id¢, 7 is a holo-
morphic function on X. t cannot be holomorphically extended into C2.
Otherwise, suppose, g(w, z) = Y. a,,w"z" is a holomorphic function on C?

v,
(for example, in a neighborhood of 0 € C?). Then
@X)w, 2) = g () = Y a,, >+
v, 1
= Qoo + Ao1t? + aiot + agat* + ayt® + axet® + -

If 7 were a holomorphic extension of t, then we would have t = 10 y(t) =
(Z|X)(¥(¥)). But that cannot be.
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Complex Submanifolds

Let X be a complex manifold, (U, ¢) a coordinate system on X. If x, € U
and f holomorphic on a neighborhood V(x,) = U, then we define the
partial derivatives of f at x, with respect to ¢ by

(f <p‘)

(Dyf)p(x0): = ————(¢(x0))-

Now suppose we have another coordinate system (U’, ¢')with V < U n U".
Then the functional matrix

v=1,...,n
m(¢’o¢-l)((p(x0)) = <(avﬂ) u = 1, ey n)

has a non-vanishing determinant, and:

Duf)ol50) = 3. Duf) (o)

Therefore, if f,, . . ., f; are holomorphic functions on V, the natural number

ag(fi -0 SO = 1k (((Dvn) e d)

is independent of ¢.

Def. 3.2. Let X be an n-dimensional complex manifold, A = X analytic.
A is called free of singularities of the codimension d if for every point
Xo € A there exists a neighborhood U(x,) = X and holomorphic func-
tions fi,..., f; on U such that:

1. ANU = {xeU: fi(x) =" = fi(x) = 0}
2. rk(fy,...,f;) =dforallxe U.

Theorem 3.2. An analytic set A = X is free of singularities of codimension d
if and only if for every point x, € A there exists a neighborhood U(x,) = X
and an isomorphism @ = ($, ¢.):(U, #) — (B, 0) such that (U n A) =
{Wy,...,w,)eBiw; =+ =w, =0}

—‘*‘” // )
o(U n A) R

Figure 2 . Illustration for Theorem 3.2.

>
—>
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PrROOF. Let x,€ A4 be given, U(x,) = X a neighborhood and ¢:(U, #) —
(B, 0) an isomorphism. A N U is singularity free of codimension d if and
only if $(A4 n U) is a regular analytic set B of the complex dimension n — d.
That, however, is equivalent to the existence, for every 3€ (4 n U) of a
neighborhood V(3) = B and an isomorphism y:(V,®) — (B, ©) such that

V@A U)AV)={weBiw, = =w, =0}
(see Theorem 6.15 in Chapter III).

@12 = Yo @@ (V(B(x0))), #) = (B, 0)
is such a function. O

Theorem 3.3 Let A = X be an analytic set, free of singularities of codimension
d. Then X induces a canonical (n — d)-dimensional manifold structure on A,
and the natural imbedding j,:A < X is holomorphic.

PROOF. A, with the relative topology induced by X, is clearly a Hausdorff
space. A function f defined on an open set W < A4 will be called holo-
morphic if for every x € W there is an open neighborhood U(x) < X and
a holomorphic function f on U such that Un A < W and flU N 4 =
f]U n A. If X is an open set in C" and A4 is a part of a (n — d)-dimensional
plane, then this new notion of holomorphy on A4 agrees with the earlier
notion. The set of holomorphic functions defines a pre-sheaf on A.

If x, € 4, then there exists a neighborhood U(x,) = X and an isomor-
phism ¢:(U, 5#) — (B, 0) such that

dUNA)={weB:w, =---=w; =0} = Bn ({0} x C"™9

The pre-sheaf of holomorphic functions on U n 4 is mapped isomorphically
by ¢ onto the pre-sheaf of locally holomorphically continuable functions on
B~ ({0} x C"%) = B, and the latter coincides with the pre-sheaf of holo-
morphic functions on the region B’ = C" . For the sheaf #' of germs
of holomorphic functions on A it is then true that (U n 4, 5#’) ~ (B',0).
Hence 4 is a complex manifold.

If U = X is open and f holomorphic on U, then by definition f o j, =
fl4 N U is also holomorphic, and hence j,:4 o X is a holomorphic
mapping. O

Remark. An analytic set 4 = X, free of singularities, is also called a
complex submanifold of X. The example X = {(w, z) e C*:w? = z*} con-
sidered in part (a) is not a submanifold of C2.

Cartesian Products

Theorem 3.4. Let X,,...,X, be complex manifolds, n;: = dim X; for
i=1,...,¢€ and n: =n, + - + n,. Then there is an n-dimensional
manifold structure on X: = X, X --- x X,, such that all projections
p;: X — X; are holomorphic.
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Proor. With the sets W = W, x -+ x W,, W; = X, open as the basis for
the topology of X, X becomes a Hausdorff space.

Ifxo = (x4, ..., Xx,) € X, then there exist neighborhoods U;(x;) = X; and
isomorphisms ¢;:(U;, #;) — (B;, 0;). Let

U:=U, x-x U, $; X x P:U—->B:=B x - x B,
be defined by
(Py x = X @YX, ooy X)) = (Po(X), - - ., Bulx7))-

Then (U, (3, x -+ x @)) is a complex coordinate system at X. If (V,
(Y, x -+ x y,)) is another coordinate system, then the transformation

(Py x -+ X@()°(‘;1 X oo X ‘Z{)_1= (@1“}?1 X oo X@N‘Z;l)

is holomorphic. Therefore X is an n-dimensional complex manifold. Suppose
W < X, is open, and g is holomorphic on W. Then

Vi=pit(W)=Wx X, x -+ x X,
Let xo € V and
(Up x - x Up @y X 0 X @)

be a coordinate system for X at x,. Then

Gop)o(@y x -+ X @1)_1(Z1a-~~,zl) =g°¢i_1(zl)
= (g°¢1_1)°PT1(21a--~,Zn),
and
(goPropry:By X -+~ x B,—»C

is holomorphic. Therefore g o p;: X — C is also holomorphic; that is, p, is
a holomorphic mapping. The proof for p,, . . ., p, is similar. O

Theorem 3.5. Let X be an n-dimensional complex manifold. Then the diagonal
D: = {(x,x):xe€ X} < X x X is an analytic subset free of singularities
of codimension n.

PROOF

1. Since X is a Hausdorff space, the diagonal D = X x X is closed.
Therefore D is analytic at each point (x, y)e X x X — D.

2. Let (x, Xo) € D. Then there is a neighborhood U(x,) = X and an
isomorphism ¢:(U, #) ~ (B, 0) and thenU: = U x U is a neighborhood
of (xq, Xo) in X x X, which is biholomorphically equivalent to B x B.
Therefore there exist coordinates zy, . . ., z,, Wy, . . . , W, (With z,: = pr, ° @,
W,: = PIps,o @)inUsuchthatD n U = {(x, x) e X x X:(z; — w)(x, X) =
Ofori =1,...,n}. Moreover

134



3. Examples of Complex Manifolds

K (21 — Wi, oo, 2, — W)
i=1,...,n
- (e = st ) 1)
1. 0| —1 0
=k (0\1 | 0\—1> =
which was to be proved. a

Theorem 3.6. Let X be a complex manifold, D — X x X the diagonal. Then
the diagonal mapping d:X — D by d(x): = (x, x) is biholomorphic.

PROOF. d is bijective, and the inverse mapping d~' = p,|D is holomorphic.
It remains to be shown that d is holomorphic. Let W < D be open, g holo-
morphic on W, (xq, xo) € W. Then there exists a neighborhood U(x,) = X
and a holomorphic function § on U x U such that (U x Uyn D c W
and §|(U x U) n D = g|(U x U) n D. Without loss of generality we may
assume that there is an isomorphism ¢:(U, #) — (B, ¢). The mapping
d*:B — B x B with d*(3): = (3, 3) is holomorphic and

(@od)o@7'QR)=geodod '@ =3G(F x &) ' od*(3)
Therefore (g o d) - @ ~* and hence g - d is holomorphic. O

Complex Projective Spaces

We define a relation on C"** — {0} by setting 3, ~ 3, if and only if there
existsate C — {0} with 3, = ¢ - 3,.

It is clear that “~” is an equivalence relation, and we denote the equi-
valence class of 3o by G(30) = {3 = t30:t€ C — {0}}. G(30) is simply the
complex line through 0 and 3, with the origin removed.

Def. 3.3. The set P": = {G(3):3€ C"*! — {0} } is called the n-dimensional
complex projective space and the mapping n:C"*! — {0} -» P" with
7(3): = G(3) is called the natural projection.

7 is a surjective mapping, and we give P" the finest topology in which
n is continuous. A set U = P" is therefore open if and only if n~}(U) <
Cc"*! — {0} is open.

Let Wi = {3=(21,...,2,41)€C"*1iz; =1}, fori=1,...,n + 1. Then
W is an affine hyperplane in C"*! — {0}, and in particular, it is an n-
dimensional complex submanifold. Let

Wi ={3=021...,2,41)€C" 1z, # 0}.
A holomorphic mapping o;: W; — C" is defined by
1

ai(zla°”,zn+l): = ?(Zlau'azia' ~~aZn+l)‘
i
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Then «;|W;: W; — C" is biholomorphic with
(“i|Wi)—l(Z1, cesZ) = (205 2o, 1, 200, 2,)

If W = W, is open, then for 3e€ W}, 3€ a7 (o;(W)) if and only if there is
a 3’ € W with o;(3) = «;(3'), and therefore with 1/(z;)3 = 3'. That happens if
and only if 3 € ™ 'n(W). Therefore n~'n(W) = a; 'o;(W) is open, which
means that:

1. The system of sets U;: = =(W,) forms an open covering of P".
2. n|W;: W; - U, is an open mapping.

If n(3) = =(3') for 3, 3’ € W, then there is a t € C with 3’ = ¢ - 3; therefore
1 =z =tz =t s0 3 =3. Hence n|W;: W, - U; is injective, so with the
preceding considerations, it is topological. Hence for each i, ¢;: = «; °
(n|W))~':U; —» C"is a complex coordinate system for P". Moreover

_ _ 1
(ﬂIVV,) Lo 7":(Zla ] Zn+1) = (7T|Wz) To n <—Z_ (Zla ey Zn+l))
1
= _(Zb" -azn+1)
2

(1 .
= @{W) (;(zz))
i
= (aiIWE)" 0 0215+ o Zut 1)
and hence the coordinate transformations

@0 0; L 1o(Uin Uj) - 9;(U; 0 Uj)
have the form

@0 (2155 20) = oo (MW) T o mo (| W) TNz, -y 24)
=05(zg, 0005 Zicg, 1,25 0005 2Z)
= i(zl,...,fj,...,zi_l, 1,z,...,2,),
Zj
which is a holomorphic mapping.
We still must show that P" is a Hausdorff space. Let x,, x, € P", x; # x,.
1. If both points lie in the same coordinate neighborhood U,, it is trivial
to find disjoint neighborhoods.
2. Suppose x;, X, are not elements of the same coordinate neighborhood.
Then for arbitrary points 3; € 7~ !(x;) we have

M- =0, j=1...,n+1
Without loss of generality, then, we may assume that
30 =(L,28,...,21,0,...,0), with z!#0for j=2,...,s

2 2
32=(0,...,0,2.(34.)1,...,2;),1).
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Let

VI: = 71:({(1, Wa, . ,W,,+1)EC"+IZ|W,,+1l < 1})’
Vyi = ({(Wy, ..., wp, 1) € C" 1i|wy| < 13).

V; is an open neighborhood of x,, V, is an open neighborhood of x,, and
hWov,=g.

Theorem 3.7. The n-dimensional complex projective space is an n-dimensional
complex manifold, and the natural projection m:C"*' — {0} —» P" is
holomorphic.

PrOOF. In order to complete the proof we have to demonstrate the holo-
morphy of . Let W = X be open, g holomorphic in W. Without loss of
generality we may assume that W < U,. Thengo o7 ' = gomo (a,|W;) " 1:
C" - C is holomorphic, and sois g o = = (g o @1 ') © (04| W)). O

Theorem 3.8. P" is compact.

ProOF. Let S: = {3eC"*":|j3|| = 1} = $*"*'. For 3eC"*! — {0}, 3: =
(1/|[3])) - 3 lies in S and n(3) = =(3). Therefore 7|S:S — P" is a surjective con-
tinuous mapping. Since S is compact and P”" is separated, it follows that P"
is also compact. O

The 1-dimensional complex projective space P! is covered by two coor-
dinate neighborhoods U,, U,. Here U; = n({3 = (1, z;):z, € C}), and
U, — Uy =7({3 = (0,2,):z,6 C — {0} }) = {G(0, 1)} consists of a single
point. Hence P! = U, U {G(0, 1)}.

Theorem 3.9. Let X = C U {o0} be the Riemann sphere. A biholomorphic
mapping @:X — P! is defined by ¢(0): = G(0, 1) and ¢ (2): = @7 '(z) =
n(1, z).

Proor. It is clear that ¢ is bijective. On X one has two coordinate systems
Yi:X — {0} > C, and y,:X — {0} > C. Let X;: = X — {00}, X,: =
X — {0}. Then

=1y — n(1, 2) A=1,
(0lX) - ui'@ = {n(z, yo fr Gy
Therefore ¢|X;:X, — U, is biholomorphic for A = 1,2, and so ¢ is
biholomorphic. O
The n-dimensional Complex Torus
Let ¢y, ..., ¢;, € C" be linearly independent as real vectors. Then

2n
r.= {5 = Y kiycy:kyeZfor A = 1,...,2n}
A=1
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is a subgroup of the additive group of C" (a translation group). Two points
of C" will be called equivalent if there is a translation of I' carrying one into
another; that is,

3~3 <=3 —3el.

This is in fact an equivalence relation, and we give the set T" of all equivalence
classes the finest topology in which the canonical projection n7:C" — T" is
continuous. We call the topological space T" an n-dimensional complex torus.
Any two n-dimensional tori are homeomorphic. For 30’ and U < C"
let U + 30: = {3 + 30:3€ U}. If U is open, then U + 3, is open for every
3oel, andsoisnr 'np(U) = {3eC":3 — el forazeU} = () (U + 3)

3ol
Thus 74 is an open mapping. Let 3, € C" be an arbitrary point. Then the set

2n 1 1
F§O:={3=30+ercv:rvelR and —3<n<3 v=1,...,2n}
v=1

is open in C".
2n

For two points 3, 3€F,,3—3 = Y, (r, — r)e, with |r, — r}| < 1 for
v=1

v = 1,...,2n. Therefore 3 and 3 can only be equivalent if they are equal,

that is
nTlF?»o:F?,o - Uao: = nT(F?,o) T

is injective. Hence
Pyt = (rr|Fy0) 11Uy, = Fy

is a complex coordinate system for the torus, and the set of all U,  covers
the entire torus.

Theorem 3.10 The n-dimensional complex torus T" is a compact n-dimen-
sional complex manifold and the canonical projection np:C" — T" is
holomorphic. [ Since one can show that the complex structure on T" depends
on the vectors ¢y, . . ., ¢y,, we also write: T" = T"(¢y, . .., ¢3,).]

Proor
1. Any two complex charts for T" are holomorphically compatible.
(ph ° (,05;1 = (p51 ° nT:(psz(Uax N U&z) - (Pan(U.n N Usz)

is a topological mapping, where

2n
0y 0 05,'3) =3+ Y kG,
v=1

and the functions k, are integer valued. Since {c,, ..., ¢,,} is a (real) basis
of C", the k, must be continuous, and therefore locally constant. But then
®,, ° ¢, " is holomorphic.
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3. Examples of Complex Manifolds

2. T"is a Hausdorff space: Let x; = nr(3;) # nr(32) = x,. Then we can
write:

2n 2n
31 — 32 = Z kvcv + Z ryCy,
v=1 v=1

with k,eZ and 0 <r, <1 for v=1,...,2n Moreover not all r, can
vanish simultaneously. Suppose r, # 0 and let ¢ > 0 be chosen so that
2e<r; <1 — 2

2n
U: = {3 = Y Rl < 8}
v=1
is open, and hence
U1(31): =U+ 31 and U2(32): =U + 32

are open neighborhoods. Suppose =3 (U;) N np(U,) # &, so there are
points 3’ € Uy, 3" € U, with 3’ ~ 3”. But then we have
2n 2n
3 =3+ > rec and 3" =3, + Y ric, with |r)| <e and
v=1

v=1

<eég,

,1
rv

therefore

2n 2n 2n
=3 =Gi—3)+ Y == ke + Y 4+ — 1),
v=1 v=1 v=1
Since
I>r+2>r+@ —r)|>r, —2>0,

ry + (r; — ri) cannot be an integer. That is a contradiction, so ny(U,) and
nr(U,) are disjoint.
3. If 3 € C", then 3 is equivalent to a point

'eF: = —-%rr—1<r<l
5 - = 3_v=1vv' 2\ v\2~

F is compact, n is continuous, T" is a Hausdorff space, and: = (F) = T"
Hence it follows that T" is compact.

4. n7:C" - T"is holomorphic. If W < T" is open, if g is holomorphic in
W and if 30€V:=nz' (W), then gongV A F, =goe 'lVAF, is
holomorphic. O

Hopf Manifolds

Let p > 1beareal number, I'y: = {p*:keZ}. I'y is a subgroup of the mul-
tiplicative group of the positive real numbers. Two elements 3;, 3, € C" — {0}
are considered equivalent if there is a p* € I'y with 3, = p*3,. The set H of
all equivalence classes will be given the finest topology in which the canonical
projection gy :C" — {0} — H is continuous. We obtain complex coordinate
systems for H in the following manner.
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V. Complex Manifolds

Let
= {3eC" — {0}:r < |l3l| < pr}

for arbitrary real numbers r > 0. Then () F, = C" — {0}, and we can
reR4

show that
nHlFr:Fr - U,:=n(F,)= H

is topological. (U,, ¢,) is therefore a complex chart. In a manner similar to
that of the preceding examples we can prove:

Theorem 3.11. H is a compact n-dimensional complex manifold (the so-called
Hopf manifold), and ny:C" — {0} — H is holomorphic.

If, for 3, 3, € C" — {0}, nx(3:) = mu(3,), then there is a k € Z with 3, =
p*3,. But then G(3,) = G(3,). Therefore there is a mapping h: H — P" defined
by h(ng(3)): = G(3). We obtain the following commutative diagram.

{0} _____) Pr- 1

\/

Since 7y is locally biholomorphic, it follows that h is holomorphic. a

Meromorphic Functions and Projective-Algebraic M anifolds
Let X be an arbitrary complex manifold.

Theorem 3.12. Let U = X be open, x, € U. Let g, h be holomorphic functions
on U with g(xo) = h(xo) = 0. If the germs g,,, h,, are relatively prime,
then for every complex number c there exists a point x arbitrarily close to
Xo with h(x) # 0 and g(x)/h(x) = c.

Proor. Without loss of generality we can assume that U is a polycylinder
in C" and x, = 0. By the Weierstrass preparation theorem one can further
assume that g, , h, are elements of ¢, [z, ]. If we denote the quotient field
of Oy, by Qy,, then it follows from Theorem 4.2 of Chapter III that g,,, h,,
are already relatively prime in Qj [z,]. By Theorem 6.6 of Chapter III
there exists a greatest common divisor of g,,, h,, which can be written as
a linear combination of g,,, h,, with coefficients in ¢} [z, ], and that greatest
common divisor clearly must be a unit in Q}, [z, ]. Thus there exists a neigh-
borhood V(0) = U and there are holomorphic functions g,, h, on V as well
as a nowhere vanishing function d independent of z, such that on V

d =gy9 + hih.

Now suppose that the theorem is false for ¢ = 0. Then there is a neighbor-
hood W(0) = V such that for every 3 € W, g(3) = 0 implies h(3) = 0. Since
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the zeroes of a polynomial depend continuously on the coefficients and
since the polynomial g(z;, 0) has a zero at z, = 0, for suitably small
3 € Wn ({0} x C*™1) there is always a z; with (z;,3) € W and g(z,,3) = 0.
But then h(z;, 3') = 0 also and consequently d(3') = 0. Therefore d vanishes
identically near x, = 0, which is a contradiction. The assertion is thus proved
for ¢ = 0, and if we replace gby g — ¢ - hand g/h by (g — c * h)/h, we obtain
the theorem for arbitrary c. O

Def. 3.4. A meromorphic function on X is a pair (4, f) with the following
properties:

1. A is a subset of X.
2. fis a holomorphic function on X — A4.
3. For every point x, € 4 there is a neighborhood U(x,) = X and holo-
morphic functions g, h on U such that:
a. An U = {xe Ulh(x) = 0}
b. The germs g, , h,, € O, are relatively prime.
c. f(x) = g(x)/h(x) for every x e U — A.

Remark. 1If (A, f) is a meromorphic function on X it follows immediately
from the definition that A is either empty or a 1-codimensional analytic set.
We call A the set of poles of the meromorphic function (A, f).

Theorem 3.13. Let Y < X be an open dense subset, f a holomorphic function
on Y. For every point x, € X — Y let there be a neighborhood U(x,) = X
and holomorphic functions h, g on U such that g,  and h, are relatively prime
and for every x € Y, g(x) = f(x) - h(x).

Finally, let A be the set of all points x, € X — Y such that given a real
number r > 0 and a neighborhood V(x,) = X, there isan x €V n Y with
|lf(x)| > r.

Then there exists a uniquely determined holomorphic extension f of f to
X — A such that (A, f) is a meromorphic function.

Proor. Let xo € X — Y. By assumption there exists a neighborhood
U(xo) = X and holomorphic functions g, h on U which are relatively prime
at x,, such that g(x) = f(x)- h(x)forxe U n Y.

If h(xo) # O, then g/h is bounded in a neighborhood of x,. Therefore x,
does not lie in A.

If h(xo) = O and g(x,) # O, then f = g/h assumes arbitrarily large values
near x,. Furthermore, if h(xy) = g(xo) = 0, f is also not bounded near x,,
by Theorem 3.12. Thus x, lies in A.

Hence A n U = {x e U:h(x) = 0}.

(g/h) is a continuation of f on U — A. We can carry out this construction
at every point of X — Y. Y is dense in X, so by the identity theorem the
local continuation is already uniquely determined by f, and so we obtain
a global holomorphic continuation /' of f to X — A. It follows directly from
the construction that (4, f) is a meromorphic function. a
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Theorem 3.13 allows us to define the sum and product of meromorphic
functions:

If (4, f), (4, f') are meromorphic functions on X, then Y: = X —
(A U A') is open and dense in X, and at every point of 4 U A’ we can write
f + f"and f-f' as the reduced fraction of two holomorphic functions.
There are analytic sets 4;, A, = X and meromorphic functions (4;, f;),
(A3, fo)on X with A;, Ay c AV A and fi|Y = [ + [, fL|Y = f-f".

One sets
(Aaf) + (A’af/): = (Ala fl)
(A, 1) (A, f): = (42, f2).

If X is connected, then the meromorphic functions on X form a field. We can
think of any holomorphic function f on X as a meromorphic function (¢, f).

EXAMPLES

1. Let X = C v {0}, the Riemann sphere with the canonical coordinates
Vi: X, - C,¥,:X, - C (see Theorem 3.9). Let p and q be two relatively
prime polynomials in C[z], and let N,: = {x € X,:q(x) = 0}. Then Y: =
X,; — N, is a dense open subset of X and f(x): = p(x)/q(x) defines a holo-
morphic function f on Y. Let

P = {{00} if deg(q) < deg(p)
%] if deg(q) > deg(p),
We want to show that there is a holomorphic function f on X — A with

FlY = £, such that (4, f) is meromorphic. It suffices to show that there
exists a neighborhood U(c0) = X and holomorphic functions g, h on U with

A:= N, U P

%|UnY=f|Un Y.

For then, since 4 = {x e X:f is bounded in no neighborhood of x}, the
existence of an f with the desired properties follows from Theorem 3.13.

Now let U: = {xe X,:p(x) # 0, q(x) # 0}, set g: = 1/q and h: = 1/p
on U — {0}, and g(00) = h(o0): = 0. Then g, h are continuous functions on
U.p: = goy;'and§: = ho y; ! are continuous on y/,(U) and holomorphic
except at the origin. By the Riemann extension theorem P, § are actually
holomorphic on the whole set ,(U), hence also g, h on U. Moreover, g/h
and f concide on U n Y. This finishes the proof. a

The meromorphic function (4, f) is written in short as p/q, since both
the values and the poles of f are uniquely determined by p and gq.

2. Let X = C% A: = {(z, z;) € C*:z, = 0}. Then f(zy, z,): = z,/z, is a
holomorphic functionon X — A4 and (4, f)is a meromorphic function on X.
For 3o = (2%, 0) € 4 set 3,: = (212 + (1/n), 1/n?). Then the sequence of
points 3, (outside A) tends towards 3,; the values f(3,) = z{® - n*> + n are
unbounded (for arbitrary z{’). At the point 3, = 0, the case of an “indeter-
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minate point” (which cannot occur in the one-dimensional case) arises, as
numerator and denominator vanish simultaneously. The function assumes
every possible value in an arbitrary neighborhood of the indeterminate point.

3. Let 3o € C" — {0} be a fixed vector, G = G(30). If 3 € G, then p*3€ G
also. Hence one can also divide G by I'y. T = G/I'y is a 1-dimensional
complex torus and at the same time a submanifold of H. If f is a meromorphic
function on H, then f o ny is meromorphic on C" — {0}. For n > 2 there
is a continuity theorem for meromorphic functions, which in the present case
says that f o my can be continued to a meromorphic function f on C".
Naturally f|G is then also meromorphic. If 3, were a pole of f|G, then all the
points p*3, € G would also be poles of f |G, and these points cluster about the
origin. Since this cannot be, we must either have f|G = o or f|G holo-
morphic. If 7 |G is holomorphic, then f|T is also holomorphic and therefore
constant (since T is compact). The submanifolds T = H are precisely the
fibers of the holomorphic mapping h: H — P"~!. Hence we can show that
there exists a meromorphic function g on P"~! withg o h = f.In other words,
on the n-dimensional manifold H there are no “more” meromorphic functions
than on the (n — 1)-dimensional manifold P"~*.

Def. 3.5. An n-dimensional compact complex manifold is called projective-
algebraic if there exists an N € N and an analytic subset 4 = PY which
is free of singularities and of codimension N — n such that X ~ A.

By a theorem of Chow every projective-algebraic manifold is already
“algebraic” in the sense that it can be described by polynomial equations.
Furthermore:

Theorem 3.14. Let X be a projective-algebraic manifold. Then for arbitrary
points x,, X, € X with x; # X, there is always a meromorphic function f on
X which is holomorphic at x, and x, with f(x{) # f(x,).

This means that there are “many” meromorphic functions on projective-
algebraic manifolds. The Hopf manifold is not projective-algebraic. One can
also interpret this topologically.

For a topological space X let H(X, R) be the i-th homology group of X
with coefficients in R. If X is a 2n-dimensional compact real manifold, then

< oo for i=0,...,2n

Bi{(X): = dimgH (X, R){=0 for P>
We call B;(X) the ith Betti number and associate with X the Betti polynomial
2n

P(X): = ) Bi(X)t' For cartesian products there is the formula
i=0

P(X x Y) = P(X)- P(Y).
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Theorem 3.15. If X is a projective-algebraic manifold, then the Betti numbers

satisfy
B+ 1(X) €22,

By(X) # 0.

This theorem is proved within the framework of the theory of “Kihler
manifolds.” It constitutes a necessary condition which is not fulfilled for a
Hopf manifold. We can easily convince ourselves that H is homeomorphic
to S~ x S!. But for spheres S*, P(S¥) = 1 + t*. Hence it follows that

P(H) = PS> )-PSY =1+ (1+t)=1+1t+ """+

For n > 2 therefore Bo(H) = 1, B;(H) = 1, and B,(H) = 0. On the other
hand, the n-dimensional complex torus satisfies this necessary condition for
projective-algebraic manifolds:
"~ St x -+ xS§! (topological)
;_v——/
2n-times

therefore

P(T") = (1 + t)*" = i (21") £,

i=0
2n e .
Hence By(T") = D) and the condition is satisfied. Nevertheless not every

torus is projective-algebraic. This property depends very critically on the
vectors ¢y, . . . , ¢, which define the torus. It can be shown that the so-called
“period relations” (which involve only the vectors ¢, ..., ¢,,) furnish a
sufficient condition.

4. Closures of C"

Def. 4.1. Let X and Y be connected n-dimensional complex manifolds. If
Y is compact and X < Y is open, then we call Y a closure of X.

ExaMpLE. The coordinate neighborhood U, = P" is isomorphic to C".
Hence P" is a closure of C". (We use the notation of Section 3, above.)

A holomorphic function f is defined on U, = C" by

P
f(ﬂ:(la Z2s vy Zpt 1)): = Z avz...v,.+ 12;2 to Z:.'Tf
lv|=0

(with a,, ., €Cand|v]: = vy, + -+ + v,y y). If
X = 7T(1,22,...,Z”+1) = ﬂ(Wl,...,l,...,W"+1)€U1 N Ui9

then

Wy 1 Wn+1
e e R L R . T :
Wi Wy Wy

144



4. Closures of C"

Hence there is a meromorphic function f; with f|U; n U, = f|U;n U,
given by

filmwy, oo, 1, W) =

p W, va 1 vi Wyt 1)Vn+ 1
Qg [22) (=) (Bt}
MZ=:0 l<W1> <W1) < W1
f with f|U,: = f; is then a meromorphic function on P" with f|C" =

Def. 4.2. Let Y be a closure of C". Y is called a regular closure of C" if every
polynomial defined on C" extends to a meromorphic function on Y.

Clearly P" is a regular closure of C".
Theorem 4.1. If'Y is a regular closure of C", then Y — C" is an analytic set of

codimension 1.

PrOOF. Let zy,..., z, be the coordinates of C". By hypothesis they can be
continued to meromorphic functions f;, ..., f,on Y.
The set P; of poles of f; is an analytic set of codimension 1, and so is

U P;. Hence it suffices to show that Y — C" =

Let 30 € 0C" < Y. Then there is a sequence (3;) in C" with lim 3; = 3.

i— oo

This means that (z{?) is unbounded for at least one k€ {1,..., n}. We can
find a subsequence (z{?) with lim |z{"| = co. Hence, for i — o0, f(3,,) tends

to infinity, so 3, is a pole of f,. Thus 3, lies in P, and since 3, € 0C" was chosen
arbitrarily, 0C" < P.

An analytic set of codimension 1 cannot separate a manifold; that is,
Y — Pis connected. Hence for every point 3, € (Y — C") — P there is a path
¢:[0,1] » Y — P with ¢(0) = 0 and ¢(1) = 3,. Since such a path always
meets the boundary 0C", we must have (Y — C") — P = (. O

Remark. For n > 2 Bieberbach has constructed an injective holomorphic
mapping :C" — C" whose functional determinant equals 1 everywhere and
whose image U: = B(C") has the property that there exist interior points in
C" — U. We can regard U as an open subset of P". Then P" is a closure of

C" ~ U, but this closure is not regular since C* — U contains interior points.
" A l-codimensional analytic set cannot have interior points (Theorem 2.6)!

As a further example we consider the Osgood closure of C".
Let __
C" =P x -+ x P,
\_—V_—__/

n-times
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Each factor P is isomorphic to the Riemann sphere, which has the canonical
coordinates ¥, ¥,. We obtain coordinates on C" by letting U,, ..., : =
U, x-+xU,, and

Uiyt =Wy, x o x 2 U,, L, —C
(with v, € {1, 2}). C" is compact, and C" ~ U,...; = C" is an open subset.
Therefore C" is a closure of C" and we can see directly that this closure is
regular.

If Y is a closure of C", we call the elements of Y — C" infinitely distant
points. In special cases one can describe the infinitely distant points more
exactly.

1. Let Y = P" be the usual projective closure of C". Then

C'~U, =n({(1,z3,-.,2n+1)€C"'}) = n({(21, ..., 244 1)€C" 122, # 0}),
Therefore
P" — C" = n({(0, z5, ..., 2,.,) € C"* — {0} }),
and this set is isomorphic to P"~ 1.

2. Let Y = C" be the Osgood closure of C". Then C" ~ U,..., =
U; x -+ x U, and

C"—C"= {(x4,...,x,) € P! x -+ x P! thereis an i with x; ¢ U,}
= {(X1,...,x,)€P! x --- x P!:thereis ani with x; = oo}
={oo} x P! x -+ x PHu- - U(P' x -+ x P! x {o0}).

In the first case the set of infinitely distant points is free of singularities of
codimension 1; and in the second case it is the finite union of analytic subsets
of codimension 1 which are free of singularities and each of which is iso-
morphic to C"~ . For n = 1, C = P’. One can prove that only this closure
exists in the 1-dimensional case. For n = 2, C* — C? = ({0} x PY) U
(P* x {oo}) with ({0} x P') A (P* x {0}) = {(o0, 00)}. The analytic set
C? — C? has a singularity at the point (oo, c0) as can easily be demonstrated.

Def. 4.3. Let X and Y be connected n-dimensional complex manifolds, let
M < Xand N < Ybeclosed proper subsets,andletn: X — M - Y — N
be a biholomorphic mapping. Then (X, M, =, N, Y) is called a modification.

For example (P", P""!, ides, C" — C", C") is a modification. We can
therefore use modifications to describe transformations between distinct
closures of C".

Def. 44. Let ¢:X — Y be a holomorphic mapping between connected
complex manifolds, dim X = n and dim Y = m. Then

E@): = {x e X:dim (¢~ (o(x))) > n — m}
is called the set of degeneracy of ¢.
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If dim X = dim Y, then as can be shown, E(¢) = {x € X:x is not an
isolated point of ¢~ }¢(x))}.
Both the following theorems were proved by Remmert:

Theorem 4.2. If ¢:X — Y is a holomorphic mapping between connected com-
plex manifolds, then E(¢) is an analytic subset of X.

Theorem 4.3 (Projection theorem). If¢:X — Y isa proper holomorphic map-
ping between complex manifolds and M < X is an analytic subset, then
@o(M) < Y is also analytic.

Def. 4.5. A modification (X, M, n, N, Y) is called proper if = can be con-
tinued to a proper holomorphic mapping #: X — Y such that M = E(7).

Theorem 4.4. Let (X, M, n, N, Y) be a proper modification, #: X — Y a con-
tinuation of m in the sense of Def.4.5. Then M and N are analytic sets, and
(M) = N.

ProOOF. By Theorem 4.2, M = E(7) is analytic, and by Theorem 4.3, N*: =
7(M) is analytic. It remains to show that N = N*:

1. Suppose there is a yoe N* — N. We set xo: = 1~ }(y,) € X — M and
choese an x5 € M with #(x3) = y,. Then we can find open neighborhoods
U(x,), V(x5) and W(y,) such that:

a UnV=yg
b. WcY—-N
c n(U)y=Ww
d. #&(V)c w.

But from this it follows that V — M < X — M is open and non-empty, and
n(V — M) = #(V — M) lies in W. Therefore

V-M=n'aV—-M)cn (W)= U.

That is a contradiction; and so N* < N.

2. Y — N is open and non-empty, so for every point y, € (Y — N) there

is a sequence (y;)in Y — N with lim y; = y,. Theset K: = {yo, ¥1, ¥2,---}
i

is compact, and since # is proper, K*: = &~ !(K) is also compact. In par-

ticular, K* contains the uniquely determined points x; € X — M with n(x;) =

yi- We can find a subsequence (x,,) of (x;) which converges to a point x, € K*.

Since # is continuous, we must have #(x,) = y,; therefore x,e M and

Yo € #(M) = N*. Hence we have shown that (Y — N) lies in N*.

Suppose there is a point y, € N — N*. Then since N* is analytic, we can
connect y, with a point y; € Y — N by a path running entirely in Y — N*.
Each such path, however, intersects d(Y — N), and hence N*. That is a
contradiction; so N = N*, and thus N = N*. O
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The most important special case is the Hopf g-process:

Theorem 4.5. Let G = C" be a domain with 0 € G, n:C" — {0} —» P"~! the
natural projection. Then X: = {3, x)€(G — {0}) x P""1:x = zn(3)} U
({0} x P"~')is an analytic set of codimensionn — 1in G x P"~! which is
free of singularities, therefore an n-dimensional complex manifold.

PrOOF. Let ¢;:U; - C"~! be the canonical coordinate system of P"~ !, If
3=1(2,...,2,)€G — {0} and x = =(3) € U,, then

2y Zp
x=n(1232--->2)
2 Z

Therefore w,(x) = z;,,,/z, for A =1,...,n — 1, where we denote the
coordinates on U; by w,. Hence it follows that
Xn(Gx Uy

1
={(zy,..., 23 X)€G x Ujizy - wy(x) — z,
="‘=21’W"_1(X)—Z"=0}.

={(3,x)eG x Uiz, ;éO,w,l(x):Z;H for A=1,...,n— l}u({O} x U;)

There is an analogous representation for U,, ..., U,. Therefore X is an
analyticsetin G x P"~1,

Since clearly rkg (2, "Wy — 23,...,21 "Wy — 2,) = n — 1 on all of
U, and an analogous statement can be made for U,, ..., U,, X is free of
singularities of codimension n — 1. a

Theorem 4.6. Let X = G x P"~! be the analytic set described in Theorem
4.5, @: X — G the holomorphic mapping induced by the product projection
pri:G x P"' 5 G,y = o|(X — ({0} x P"™Y)). Then(X, {0} x P"",
¥, {0}, G) is a proper modification. It is called the “o-process.”

Proor
L. y:G — {0} > X — ({0} x P""') with y'(3): = (3,n(3)) is clearly

holomorphic, and:

Y oY) = pri(3, n(3)) = 3,
Yoy x) =y Y@ @) = i) = 6 7G)

Therefore ¢’ = ¢y~ !, and y: X — ({0} x P"~!) > G — {0} is biholomorphic.
2. ¢ is a holomorphic continuation of ¥, and ¢~'(3) = {3, x)e G x

P"1:3,x) e X} = {3, n(3))} for3 € G — {0}, *(0) = {0} x P"~ ! There-

fore E(p) = {0} x P"~! ~ P~ 1.

3. If K = Gis compact, then K x P"~!is compact, and so is ¢ ~}(K) =

(K x P""1) n X. Therefore ¢ is proper. ]
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{0} x Pt

= \VeN

To be identified
¥_}

Figure 24. The Hopf o-process.

Remark. Clearly we can regard P"~! as the set of all directions in C".
By the o-process these directions are separated in the following sense:

If one approaches the origin in G — {0} from the direction x, € P"~?,
say along a path w, then one approaches the point (0, x,) along the directly
lifted path y "' owin X — P"~ L

It can be shown that the o-process is invariant under biholomorphic
mappings. Hence it can also be performed on complex manifolds.
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CHAPTER VI
Cohomology Theory

1. Flabby Cohomology

In this chapter we apply, with the help of cohomology groups, the methods
and results of sheaf theory to complex manifolds.

X will always be an n-dimensional complex manifold and R a commutative
ring with 1. If & is a sheaf of R-modules over X and U < X is open, then
we let I'(U, &) denote the set of all functions s:U — & with mos = idy
(where n: % — X is the sheaf projection), and we call these not necessarily
continuous functions generalized sections. Clearly I'(U, &) is an R-submodule
of MU, &#).

If :4, - &, is a homomorphism of R-module sheaves, then
0,:.I'(U, %) - (U, %,)with ¢,(s): = ¢ o sis an R-module homomorphism.

Theorem 1.1. (I'y:# n~ ['(U, &), @ ~> ¢,) is an exact covariant functor from
the category of R-module sheaves over X to the category of R-modules.
Therefore:

1. if & is an R-module sheaf, then I'(U, &%) is an R-module;

2. if ¢:%, > &, is a homomorphism of R-module sheaves, then ¢,:
r, %, - U, %,) is a homomorphism of R-modules;

3. a. (idy). = idrw, o;
b. (@Y =0,00,;

4. if ¥, i Py 5 Py is an exact sequence of R-module sheaves, then
ru, %)) % I, #,) % I'(U, &5) is an exact sequence of R-modules.

The proof is completely trivial.
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1. Flabby Cohomology

For U < X open, we set My: = ['(U, &); if U, V < X are open with
V < U, then we define ry:My — My by ry(s): = s|V. Then {My,ry} is
a pre-sheaf and we denote the corresponding sheaf by W(%).

Theorem 1.2.
1. The canonical mapping r:My — I'(U, W(&)) is an R-module
isomorphism.
2. The canonical injection iy:T'(U, #) o I'(U, &) induces an injective
sheaf homomorphism ¢:S — W(¥) with s*|1" U, &) =roiy.

ProoOF. (1) is proved exactly as is Theorem 2.3 in Chapter IV. To prove (2):

Clearly iy(s)|V = iy(s|V) for s e I'(U, &). If we identify the sheaf induced
by {I'(U, &), ry} with the sheaf &, then it follows from Theorem 2.1 of
Chapter IV that there exists exactly one sheaf morphism ¢:& — W(¥)
with ¢,(s) = rig(s) for se I'(U, &). If 6 € &, and ¢(o) = O,, then there
exists a neighborhood U(x) =« X andans e I'(U, &) with s(x) = o. Therefore
0, = g(0) = g0 s(x) = &,(5)(x) = riy(s)(x), with riy(s) € I'(U, W(¥)). Then
there exists a neighborhood V(x) = U with riy(s)|V = O; therefore iy(s)|V =
O by (1), and then clearly s|V = O. Hence ¢ = s(x) = O,. O

Let ¢: ¥, - &, be a sheaf homomorphism. Then for opensets U, V = X
with U < V and se I'(U, &,) we have ¢,(s)|V = ¢,(s|V). By Theorem 2.1
of Chapter IV ¢ induces exactly one sheaf homomorphism We:W(¥,) —»
W(S,) with (Wo).(rs) = r(p.(s)).

Let se I'(U, &,). If ¢;:%, o W(¥,) are the canonical injections (for
A = 1,2), then

(W) oeyos = (Wo)(rig(s)) = r(@.(§(s))) = r(iiP(@.5)) = 200 0s.
Hence it follows that (W) o g, = ¢, o ¢.
Def. 1.1. Let & be a sheaf of R-modules over X. & is called flabby if for
every open set
i IF(X,¥%)->TU,%) issurjective.

Theorem 1.3. If & is a sheaf of R-modules over X, then W (&) is a flabby sheaf .

ProoF. We can identify I'(U, W(¥)) with (U, &). If s e ['(U, &) then we
define s* € ['(X, &) by

win. _ J8(x) for xeU;
S(x)'—{O for xeX — U.

Clearly rfs* = s. O

Theorem 1.4. (W:& ~> W(F), ¢ ~> W) is an exact covariant functor from
the category of R-module sheaves over X to itself.

151



VI. Cohomology Theory

Proor

1. Lety: &, » &£, 0:F - &, besheafhomomorphismsand se I'(U, &,).
Then W(p o y) o rs = r((¢ ° Y).s) = 1@, (.5)) = Wo o (r(y.s)) = Wo °
Wy o rs.

2. W(idy) o rs = r((idy),s) = rs, for se I'(U, &).

3. Let ¥, 4 & 4 &, be exact.

a. Then W o Wy = W(p oY) = W(0) = 0.

b. Let 0 € W(¥), and W¢(o) = O,. Then there exists a neighborhood
U(x) = X andanse I'(U, &) with rs(x) = o, therefore W o rs(x) =
0,.

Hence there exists a neighborhood V(x) = U with O = We o rs|]V =
r( o 5)|V; therefore (¢ o 5)|V = O. We can construct an s, € ['(V, &;) with
Y os; = s|V pointwise. Then Wi ors, = r( o s;) = rs|V, and therefore
Wi (rs,(x)) = o. O
Def. 1.2. Let & be a sheaf of R-modules. A resolution of & is an exact

sequence of sheaves of R-modules:

O >Fog>F1 > Fy—>---.
If the sheaves &, &, ,, ... are all flabby, then we speak of a flabby
resolution.

We now show how to assign a canonical flabby resolution to any sheaf &.

1. The sequence O — & 5 W(¥) is exact. Let Wp(¥): = W(¥).
2. Suppose we have constructed an exact sequence O — & — Wy (&) 8.
W(&), with flabby sheaves Wy(&), Wi(&L), ..., Wi(&).

Then there is an exact sequence
W(P) S WAS)/Im(d,-,) & W(W(S)/Im(d,-,))
Let W 1(£): = W(W,(S)/Im(d, - 1)),
di:=joq.

Clearly Ker(d,) = Ker(q) = Im(d,-,); that is, the extended sequence
0> - Wy(&)— - > W(F) > W, (&) remains exact. Thus we con-
struct an exact sequence Wy(¥) - W (&) - W,(¥) — - - - by induction. We
write (&) as an abbreviation. The exact sequence O — ¥ 5 W(¥) is
called the canonical flabby resolution of <.

dg-y
i

Theorem 1.5. Let ¢:&, — &, be a homomorphism of sheaves of R-modules
over X. Then there are canonical homomorphisms W :W,(S,) - Wi(S>)
with (Wi+19) o d; = d; o (Wp) for ie Ny and (Wop)oe = ¢- o.

ProoF. We proceed by induction. Let Wyp: = Wo. If Wy, Wi, ..., W
have been constructed, then we have the following commutative diagram.
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1. Flabby Cohomology

Wi (F1) %53 WAL ) B WP ) Im(d,-,) & W, (£))
W0 W ‘
W,_1(F2) 553 WUS2) B WS 2)Im(d,— 1) & W, ((£,)

It can be completed by a homomorphism
YW (S 1)Im(d,-,) > WAS,)/Im(d,-,) with Yoq, =gy We.

(If g,(6) = O, then there exists a ¢* with d,_,(¢*) = o¢; therefore W,p(c) =
di—1°(Wi-19)(0%), s0 g, o Wp(0) = O.) We define W, ¢: = Wy. All
diagrams remain commutative. 0O

The system of homomorphisms W,¢ is denoted by ¥(¢). We can regard
W(p): W(F ;) - W(S,) as a “homomorphism between flabby resolutions.”

Clearly B(id,) = idays,, B o ¢) = W) > W(p).

Therefore (IB: S ~» W(p)) is a covariant functor. We need the next two
lemmas in order to show that 2B is also an exact functor.

Lemma 1. Let the following diagram of sheaves of R-modules be commutative,
have exact rows and columns, and moreover let the mapping @, be surjective:

ylﬂ-» &,

vy ‘//zl
g0 g, 0 g,
waj Vs n/zsl
y6_<03_’(;,7_<_0_4_>5p8

Ve

P

If 6 € P and Y o @3(0) = O, then there exists a 6 € &5 with
@3(c — ¥3(6)) = O.

PrOOF. Let a,: = @3(0) € &.

1. Because Y4(0,) = O there exists a o, € &, with Y,(0,) = 0.

2. Ys(@2(02)) = @a(Ya(03)) = @a(@3(0)) = O; therefore there exists a
g3 € &5 With Y,(03) = @,(0,), and there is a 6, € &, with ¢y(0,) = 03.

3. @20 Y1(04) = Y20 @ol04) = @1(0,); therefore @,(0, — ¥y(04)) = O.
Hence there is a 05 € &5 with @,(05) = 0, — Y (04).

4, Let6: = os.
Then

@3(0 — ¥3(68)) = 93(0) — ¥4°0.(05) = 93(6) — Y4(0,) = @3(0) — 0, = O. O
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VI. Cohomology Theory

Lemma 2. In the sequence
y1&>y235p3ﬁ9’4&y5

let @, be surjective, @, injective and Ker ¢; = Im ¢,.

Then
espl P2°Qy «973 Pac Q3 ys
is exact.
ProOF. Im(¢; © ;) = Im ¢, = Ker g5 = Ker(p, © ¢3). o

Theorem 1.6. W is an exact functor.

Proor
1. Let 0 » & » & —» %" — O be exact. We show by induction that

O = W(F") = W) - W(F") > O

is exact. For £ = O this has already been proved in Theorem 1.4. Therefore
let £ > 1. We consider the case £ = 1; the general case is handled entirely
analogously.

The following diagram is commutative:

(0] >0 g0 >0

J q0/ J (pu 1 Jr
0 » Pt F — L >0

El’ll Y, [ 1

"o P2 { o P2 " -
O——=Wo (&) == Wo(&) = Wo(¥') — O

v 2 j |
o %,@' (p3 ‘,@ (p3 :QI/ N O

(with 2: = Wy(&)/<, 2’ and 2" similarly). All columns and the three top
rows are exact.

a. Since ¢ and Y are surjective ¢} is also surjective.

b. Since ¥} is surjective and ¢’ o ¢, = O, also @} o @5 = O.

c. Let o € 2 with ¢3(0) = O. Then there exists a 6* € Wy(&) with y,(c*) =
g; therefore Y o ¢5(c*) = O.

By Lemma 1 there is a 6 € & with ¢%(6* — ,(6)) = O. Therefore there
exists a 0’ € Wo(&') with ¢(0") = o* — ,(3). It follows that y/(¢') € 2’ and
@3 2 Y3(0") = Yi(0™ — ¥4(8)) = o.

d. Leto’ € 2 with ¢3(0’) = O. Then there is a 6* € Wy(&’) with y5(0*) = ¢'.

Hence {r, o ¢%(c*) = O.
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1. Flabby Cohomology

By Lemma 1 there is a § € &' with ¢5(¢* — ¥1(6)) = O. Since ¢ is in-
jective it follows that ¢* — 1(6) = O, hence

O = 30" — ¥i(6)) = Y3(0") = o'
Thus, the last row of the diagram is exact, and by Theorem 1.4 we now have
the exactness of the sequence O —» W (') - W(¥) —» Wi(¥") - O.

2. Nowlet ¥ % & % & be exact.
Then we obtain the following exact sequences:

O -»Kerp » & - 2 - 0O (with 2: = ¥'/Ker ¢)

0-92->%>Imy -0

O-Imy » & —» 2" > O (with 2": = &"/Im ¥).
Applying (1), we obtain an exact sequence of the form

W) > W(2') o W(Z) > W(Imy) o W(S),

where the first mapping is surjective, the last mapping is injective and the
sequence in the center is exact. By Lemma 2 it follows that W(¥') - W(¥) —
W/(&") is exact. But that means that 2 is exact. O

Def. 1.3. A cochain complex over R is a sequence of R-module homo-
morphisms . .
MM E ML M M3

withdi o d~' = Oforie N.
Z"(M*): = Ker &" is called the n-th group of the cocycles,
B'(M*): = Imd"! is called the n-th group of the coboundaries.

We set B°(M®): = 0. Then clearly B"(M®) = Z"(M®), and H"(M®): =
Z"(M®)/B"(M®*) is called the n-th cohomology group of the complex M®.

Remark. Clearly M* is exact at (the location) n > 0 ifand only if H"(M*®) =
0. In this sense, one says that the cohomology groups measure the deviation
of the complex M* from exactness.

Def. 1.4. An augmented cochain complex is a triple (E, e, M®) with the
following properties:
1. Eis an R-module.
2. M*is a cochain complex.
3. &:E - M° is an R-module monomorphism with Im ¢ = Ker d°.
Remark. If (E, &, M®) is an augmented complex, then
E ~ Ime = Kerd®° = Z%(M*®) ~ H(M®).
If H(M*®) = 0 for £ > 1, we call the complex acyclic.
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VI. Cohomology Theory

Theorem 1.7. (I': S~ I['(X, &), @ > @,) is a left-exact functor; that is, if
o-9 4959 50
is exact, then so is
0->I(X,#)5TX, %)% rx, s
exact.

ProOF. Since I is exact (see Theorem 1.1), it is clear that ¢, is injective and
Y, o0, =0.Nowlet se I'(X, &) with O = ,(s) = ¥ o s. Then there exists
a generalized section s’ € ['(X, #') with @,(s) = s. We must still show that
s' is continuous. For every point x € X there is a neighborhood U(x) and an
s*e I'(U, &) with (¢ o s*)(x) = s(x). Therefore there is a neighborhood
V(x) = U with @ o s*|V = s|V.

Since ¢ is injective, it follows from ¢ o s*|V = @ o §'|V that s*|V = s'|V,
so that s’ is continuous at x.

Theorem 1.8. Let & be a sheaf of R-modules over X,
We(&):I'(X, Wo(&)) » T'(X, Wi(¥)) » T'(X, Wy(£)) - -
Then (I'(X, &), &., W*(&)) is an augmented cochain complex.

Proor. Clearly We(&) is a complex, &,:I'(X, &) - I'(X, Wy(¥)) an R-
module monomorphism, and (d,), ° &, = 0.
Consider the mapping

do: Wo(&) 5 Wo(&)/Im(e) & W(Wo(&)/Im(e)) = Wy().
Let se I'(X, Wy(¥)) and O = dyos = jogos. Then qos = O; therefore
s(x) € Im(e) for every x € X. Since Im(¢) ~ &, I'(X, Im(e)) ~ I'(X, &); so
there is an s* € I'(X, &) with ¢,(s*) = s. O
Def. 1.5. Let & be a sheaf of R-modules over X. Then we define
Z4X, &) = ZY(WS)), B‘(X, &): = B{(W(Y)).

We call
HY(X, %) = Z/(X, &)/BYX,¥)= H (W' ¥))

the ¢-th cohomology group of X with values in &.
Remark. Clearly HY(X, &) ~ I'(X, &).

Theorem1.9. If 0 » &' 5 & % %" - 0 is an exact sequence of sheaves
of R-modules, and if &' is a flabby sheaf, then

0-I(X, )5 T(X, LB ILX,F)>0
is exact.
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1. Flabby Cohomology

Proor. We need only show that i, is surjective. Let s e I'(X, &") be given.
1. Ifx,, x, are pointsin X, then there are neighborhoods U(x,), V(x,) =« X
and sections s e I'(U, &), s* e I'(V, #) with y o s = s"|U and o s* = 5"|V.
If U~V = (, then this defines a section over U U V, whose image is
s"|U U V. Suppose U n V # . The sequence

05>TWUAV,#)>TUAV,¥) »TUAV,S)

is exact, and since Y o (s — s*)|[U NV =0, there is an s e (U N V, ¥')
withpos = (s — s)|Un V.
Since &’ is flabby, we can extend s’ to an element §e I'(V, &’). Let

L s(x) for xeU
silx): = (o8 + s*)x) for xeV.

Then s, lies in F(U U V, &) and Yy os; = s”|U L V. In this case there is
also a section over U U V whose image is s”|U vl

2. We consider the system M of all pairs (U, 5) with the following
properties:

a. U c Xisopenwith U =« U
b. 5e (0, S) with3|U = sand y - § = 5"|U.

In M we consider all subsystems (U,, §).er with the following propertles
For (11, zz)eI x I either U, = U, and 3 |Ull = §,, or U,2 c U, and
5 l|U2 = §,,. For each such system the pair (U, 5) with U: = U and

el
810,: = 5,is again an element of M. Zorn’s lemma' implies that there exists

a “maximal element” (U,, s,) in M. By (1) U, cannot be a proper subset of X.
This completes the proof. O

As a consequence we have:

Theorem 1.10. Let & be a flabby sheaf of R-modules over X and O - & —
FLo = F1 — - a flabby resolution of &. Then the sequence

0-TIX,#)>TX,Fo)»>TX,Fy) >
is exact.

! Let X be a non-empty set with a relation < such that:

1. x < xforall xe X.
2. ifx<yandy < z,thenx < zforall x, y, z€ X.
3.ifx < yandy < x,thenx = yforall x, ye X.

A chain in X is a set K = X with the property that for any two elements x, y € K either
x < yory < x. Zorn’s lemma says that if there exists an upper bound for every chain K < X
(an element s € X with x < sforall x € K), then there exists a maximal element in X (an element
Xo € X such that for x € X it always follows from x, < x that x = x,).
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VI. Cohomology Theory

PrOOF. Let #,: = Im(p,: ;-1 > F,;)forA=0,1,2,...and ¥_,: = &.

1. We show by induction that all £, are flabby: For £, ~ & this is true
by assumption; suppose we have proved that %,, 4, ..., %,-, are flabby
sheaves.

For U = X open, the exactness of the sequence 0 —» I'(U, %4,_,) —
rwu,,_,)—r,4%,) — 0 follows from the exactness of the sequence
O-> %,y Py~ B, — O by Theorem 19. Let se I'(U, %4,).

Then there is an s' € I'(U, &, _,) with ¢, o s’ = s. Since &,_, is flabby
there is an s* € I'(X, &, _,) with s*|U = . But now ¢, - s* € I'(X, 4,) and
@, s*|U = s. Therefore, %, is flabby.

2. The following sequences are exact.

0->%-1->%-1>%-0
O->%—-> > %+1—0
0 - %Bi1 > Lev1 > Bz~ O.

By Theorem 1.9 the associated sequences of the modules of sections are exact.
We can combine these into a sequence which satisfies the conditions of
Lemma 2:

I X, %) »IX,%,) > I'X,%,)>TI'(X,%+1) o I'X,%+1)
Then the sequence I'(X, &,-,) - I'(X, &,) » I'(X, &, +) is exact, as was
to be shown. O

Thus we have obtained

Theorem 1.11. If & is a flabby sheaf over X, then the complex W*(¥) is
acyclic; therefore H{(X, &) = 0 for £ = 1.

ExaMPLE. Let .#(4) be the ideal sheaf of the analytic set 4 = {0} e C".
Then #(A) = 0/F(A) is a coherent analytic sheaf over C”, in particular, a
sheaf of C-modules. Clearly #(A) is flabby, and

HO(C", #(A)) ~ C, H(C", #(A)) =0  for £ > 1.

2. The Cech Cohomology

Let X be a complex manifold, R a commutative ring with 1, and & a
sheaf of R-modules. Moreover, let W = (U,),.; be an open covering of X,
with U, # (& for every 1 € 1. We define

Ugi:=U,n ...0 U,

I(: = {(lo, c ey l{): Ulo"‘ll ?é g}.

Let &, be the set of permutations of theset {0,1,2,...,n — 1}.Forge S, let

sgn(o): = +1 if o is the product of an even number of transpositions
B9 =121 otherwise.
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Def. 2.1. An ¢{-dimensional (alternating) cochain over U with values in & is
a mapping
&E&ln- \y rwu, .9
with the following properties:
L &G, ..., el (U,...,, &)
2. E(ts0ys - - - » tay) = SN(G)E(1g, - - -5 1) for g€ Syq-

The set of all £-dimensional alternating cochains over U with values in
& is denoted by C/(U, &). C‘(U, &) becomes an R-module by setting

(cl + 52)(103 ] l(): = 61(10’ ] l() + 62(10’ MR l()

(r : é)('o, ey l(): =r: 6(109 LEEIY l()'
Theorem 2.1. 5°:CAL, &) » C**'(U, &) with

and

t+1

080, - -1 = 3 (=D, » Ty s 1w )| Uigey)

i=o
is an R-module homomorphism with 6°- 5" = 0.
PrOOF

1. First we show that 6’ is alternating. It suffices to consider transposi-
tions.

(6(6)(109 e by Lyrts e gy 1)
= Z (—1)A+lc(109""i2.9"'9l(+l) + (_1)v+1€(109"',iv""3l(+1)

AFfv,v+1 +2
e al G § M < (7P NPT AP |

= - Z (_1)l+16(10""’?).”'"lv+1’ lva"'all+l)
AFv,v+1

+ (_1)v+1€(10’ ceey lv+19 Tva ceey ll+1)

+ (_ 1)v+2 : é(lo, ooy Tv+13 Lys ooy ll+1)

- 5 6(10’ ceeslyrts lys ey ll+1)

2. It is clear that &° is a homomorphism. Moreover,
(64 0 6 (105 -+ - 5 1ex2)

+2

= z (_1)l+1(6l£)(10""afb*"’l(+2)
A=0

¢+2 A—1
Z (_1)l+l|: (_1)"+1€(10""afyl"~'9fla"'al(+2)
A=0 =0

n

¢+2
+ X (—1)"5(10,-.-,7,1,--‘,f.,,m,l¢+z)]
n=2i+1
= Z (_1)l+"£(10’~~‘ai\na‘"’?b~~'al(+2)
n<a
+ Z (—1)A+'I+1£(lo,. Y ’l}‘,. ..,?,,, c ooy l(+2) = O. O
A<n
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VI. Cohomology Theory

Def. 2.2. 6: = 6“.CU, &) - C*1(U, &) is called the coboundary operator.
We denote by C*(M, &) the Cech complex

o, ) S U, 2 S U, F) - -
e:I'(X, &%) —» CO°M, &) is defined by (es)(1): = Sle'

Theorem 2.2. (I'(X, &), e, C*(U, &)) is an augmented cochain complex.

ProoF. Clearly ¢ is an R-module homomorphism. If es = 0, then s|U, = O
for every 1 € I; therefore s = O. Hence ¢ is injective.
Let £ € C°(M, &) and 8¢ = 0. Since

(66)(10’ ll) = (—'g(ll) + 5(10))‘U,0“
this is equivalent to £(19)|U,,, = £(14)|U,,,,- Therefore there is a section
se I'(X, &) with es = £ defined by s|U,: = &(1). ]

Def. 2.3. The elements of Z‘(U, &¥): = Z‘(C°(M, &)), resp. B{U, &¥): =
B{C*(U, &)) are called (alternating) £-dimensional cocycles, resp. cobound-
aries, over W with values in &. HQ, &): = ZN, ¥)/BU, &) =
H{(C*(U, &)) is the ¢-th Cech cohomology group of U with values in &.
In particular H°(Y, &) ~ I'(X, &).

If we choose the covering of U too coarse, then all the higher cohomology
groups vanish:

Theorem 2.3. If X itself belongs to the elements of the covering U, then
HQU F)=0fort > 1.

PROOF. IfU = (U,),., then thereisa p € I with X = U,. Let ¢ € Z‘(Y, &),
¢ > 1. There is an element n € C*~ (U, &) defined by

N(os .5 be—1): = &(p, 105+ - -5 L—1):
Since 6& = 0 we have

0 =060, 105---58) = —E&(lgy .., 1) + Ago (=D*(0, 105 - - > Tay -+ -5 L);
therefore
O(—mMgs--r 1) = — ago (=D** oy ooy Tiy e nr )
= léo (= D2, 19+ - v s Tay oo es b)) = E(lgy -+ - » 1)
In other words, 6(—n) = ¢, so & e B{U, &). O

Theorem 2.4. Let W be an arbitrary covering of X and & a flabby sheaf.
Then H(U, &) = 0 for ¢ > 1.
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PrOOF. We proceed by induction on¢: Let £ € Z{U, &), € > 1.IfU < X is
open, thenweset U nU: = {U N U, # &:U, e U} and

ED)os - -5 1) = EGgs - U N Uy,
With this notation we have ¢|U € Z{(U n U, &).

For arbitrary x, € X, there is an 1,€ I and an open neighborhood
U(xo) € U,. But then Ue U N U, so HUNU, &) =0 for¢ > 1, and
there is ann e C~}(U n U, &) with oy = ¢|U.

If V < X is an open set for which there is an #' € C“~1(V n U, &) with
o' = &|V, we set

= -MUnVeZWUAVAS)
If £ = 1, then s lies in I'(U n V, &), and since & is flabby, we can extend s
toan §e I'(V, &). Then set

N (6] xeU
S0 = {n’(x) + 8(x) xeV.

Clearly s* e I'(U v V, &) and ds* £|U u V (because 65 = 0).
If ¢ > 1, then by the induction hypothesis thereisaye C*"2(U n V n U,
&) with &y = s. Since & is flabby,

Y(gs - -5 b=2) ETU NV U,... &)

1-2°
can be extended to an element
$Gos oo by—2) eV U,...,,_,, %)
Let
. o gnGos - - )(x) for xeUnU,.  ,_,
(o, o)) = {(11’ + Mgy .- -5-1)(x) for xeVnU,

Thenn* e C“ (U L V)n U, F)and on* = E|U L V.

By Zorn’s lemma there must be a “maximal element” (Uy, s,) for £ = 1,
resp.(Uo, 7o) for £ > 1 with so€ I'(U, #) and ds, = &|Uq, resp.noe CU, &)
and ény = ¢|U,. But an element is only maximal if U, = X; therefore
¢ e B4, &) a

Remark. Let U be a covering of X and & a sheaf of R-modules, & €
CY{(U, &). It is worth noting the following criteria:

1. £e Z'U, &) if and only if
E(10, 12) = &(10, 11) + £(14, 12)
onU,, ,,.

2. & e BYU, &) if and only if for all : there exists an p(1) € I'(U,, &) with

Q.-+ =-1

(1o, 11) = p(10) — p(11)
on U

ot1°

The first condition is also called the compatibility condition.
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Def. 2.4. A system (U, f,),.; is called a Cousin I distribution on X if

1. W: = (U,),.; is an open covering of X ;
2. f, is meromorphic on U,;

3. fi, — £, is holomorphic on U, ,, for all 1y, 1;.

ol

A solution of a Cousin I distribution is a meromorphic function f on X
such that f, — f is holomorphic on U,.

Theorem 2.5. Let (U,, f,),c; be a Cousin I distribution on X, S the structure
sheaf of X, W: = (U,),c;. Then

L 90, 11): = (fiy = f.)|Uso, defines an element y € Z'(U, ).
2. (U,, f)),c1 is solvable if and only if y lies in B\(U, ).

PRrROOF
1. Clearly

Yo, 1) + V(s 12) = (fio = £i) + (fiy = fio) = fio = 1o = (00, 12)

onU,,,,.
2. a 2Let (U,, f,),c1 be solvable. Then there is a meromorphic function f
on X such that (f, — f)|U, is holomorphic. Let

p(): = (£ — N|U, e (U, #).
p lies in C°(U, 5#) and
plio) — p(t)) = (fi, = ) = (fy = ) = fio — f1, = (105 14)

onU,,,.

b. If y lies in B, #), then for every 1 €I there is a p(1) e I'(U,, #)
such that p(1) — p(1;) = y(19, 11) on U, ,,. Then

Jio = Jo = (0, 11) = p10) — p(1),

so f,, — p(o) = f,, — p(1;) on U, ,,. Then there is a meromorphic function
f on X defined by f|U,: = f, — p(1) with

(f;—f)|U,=p(l)€r(U,,”) o

Corollary. If H' (M, 5#) = 0, then every Cousin I distribution belonging to the
covering W is solvable.

ExaMpLE. Let X = C. A Mittag—Leffler distribution on C is a discrete point
sequence (z,) together with principal parts f, which define a meromorphic
function in C.

Nowlet Uy: = C — {z,:ve N}, fo: = 0and U, be an open neighborhood
of z, which contains no point z, with pu # v. Then f|(U, — {z,}) is
holomorphic.
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Hence U = (U,),.y is an open covering of C and (f, — £,)|U,, is always
holomorphic. Therefore (U,, f,),.n is @ Cousin I distribution. Each solution
of this Cousin I distribution is a solution of the Mittag—Leffler problem.

3. Double Complexes

Def. 3.1. A double complex is a system (C;j) of R-modules (with i, j € No)
and R-module homomorphisms, d':C;; - C;,; ; and d":C;; > C; 44,
such that

1.dd =0
2.d"d" =0
3. d'd" = —d"d’
(thus
d:=d + 4" @ Cij g @ Cij with dod = 0).

itj=n i+j=n+1

A double complex is therefore an (anticommutative) diagram of the
following form:

Coo &, Co1 £, Coz a, ...
d d d’

‘C'm—‘di’ 611_'LC12_‘£’ T
d d d

Gl &, 4L G
d d d'

Def. 3.2.
Z;: ={¢eC; with d'¢=0 and d"¢ = 0}
Byj: = d"({¢e€Cy j-y with d'¢=0}) for j=>1,
Bi0: = d’({é € Ci—l,() With d”é == O}) for i > 1,
Boo:=0 and Bj;:=dd"Ci_y ;- for j= 1
We call the elements of Z;; cycles of bidegree (i, j); the elements of B;; are
called boundaries of bidegree (i, j).

Clearly B;;is an R-submodule of Z;; for all i, j and we define the homology
group of the double complex of bidegree (i, j) by H;;: = Z;;/B;;. Let the
canonical projection be denoted by g;;:Z;; - H;;.
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Theorem 3.1. Let (M, ¢,, A®), (M, &,, B®) be two augmented cochain com-
plexes. Let there be given a double complex (C,,, d', d") and homomorphisms
dj:A’ - Cy; and d}:B' — C, such that

(1) dgoe;=dgoey,d"od;=djy °d and d'od! =dl ,°d,
where d denotes the operation in A* and B*,

(2) (4%, dj, Ce)) and (B, di, C;e) are augmented cochain complexes. Then
H"(A.) >~ HOJ and HI(B.) >~ HiO'

PrOOF

1. Zy; = {£e€ Cpj:d’é = 0and d"¢ = 0} = {¢ € Cy;: There is an n e A’
with djn = ¢, d"¢ = 0} = {£ e Cy;: There is an n e A’ with djn = ¢ and
dj1(dn) = 0} = {¢ e Cy;: There is an ne A/ with djyp = ¢ and dn = 0} =
d/(Z/(4%)). ‘

2. By; = {d"¢:£e€ Cy j_y with d'¢ = 0} = {d"¢: There is an ne A'™!
with d_n = &} = d)(Bi(4%))forj > 1and By, = 0 = dj(B°(4°%)).

3. Since d; is always injective, it follows that

Hoj = Zo;/Bo; = Z(A%)/B/(A°) = HI(A°®).

One shows that H,, = H'(B®) analogously. O

ExAMPLE. Let X be a complex manifold, & a sheaf of R-modules over X,
U an open covering of X. If W(F): Ly - &, - &, — - - - is the canonical
flabby resolution of &, then let

WAL):T(X, So) ST(X, &) S T(X,F,) S -

X, &), ., Wo&)) is an augmented cochain complex.
If one sets

C, &):Co°, &) S clu, &) S 2, F) > -,
then (I'(X, &), &, C*(1, &)) is also an augmented cochain complex.

Now let

C;: = C(U, &) d': =0y =6:CU, &) - C*(U, &),
d": = (_ l)id* : Ci(u, y}) - Ci(u’ yj+ 1) (Wlth d*é(lo:v“': li): = d*(é(lo:v"': li)))‘
Clearly d’'d’ = 0 and d"d” = 0. Moreover it is true that

i+1
(d*éé)(lo, cees lig 1) = d* (Ago(_ 1)1+1£(109 .. wiﬂ,a cees lig 1))

i+1
= Z (_1)A+1d*6(10a“°afb“'ali+1)=(6d*é)(10""ali+1);
A=0

therefore
dld” + d"d/ = 5(j+ 1)(—“ l)id* + (—“ 1)i+ld*6(j) = (—' l)i'((S(j+ l)d* il d*é(j)) = O.
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Thus (C;;, d',d”) is a double complex which we shall henceforth describe
as the canonical double complex of (X, &, U). We obtain the following
diagram.

0 0 0 0

v

0— I'(X, #) 20 r(x Fo)-dsr(X, ) -4>r(X, ;) -4
& & & &
0— COQL &) 2> COL, #o)- Lot &) L coar, 77,) 4
5 d’ & &
0— L #) <o i, g docrar o) dheran o, s
5 @ & &
0— C2L, 9) £ C201, 7o Lot #,)- Lo 2t ) Lo
& e e Je
Since all the hypotheses of Theorem 3.1 are fulfilled,

HI(X, &) ~ Hy;, HW, &) ~ Hy,  foralli,j.

We can therefore use the homology groups H;; of the canonical double
complex to compute the flabby and Cech cohomology groups of X with
coefficients in <. Homomorphisms ¢,: H(U, &) - H(X, &) will be con-
structed with the help of these double complexes.

Theorem 3.2. Let (C;;, d’,d") be a double complex.
1. Let the d'-sequences be exact at the locations (i, j) and (i — 1, j).
Then there are homomorphisms

H — I{l 1,j+1 fOl‘ i > 1, With (p” ° q” ° d, = qi—l,j+1 ° d".

2. Let the d""-sequences be exact at the locations(i — 1,j + 1),(i — 1, j).
Then there are homomorphisms

VijiHio,j41 = Hyy for @21, with Y094 j410d" = g;5°d.
3. If hypotheses (1) and (2) are satisfied simultaneously, then ¢;; is an
isomorphism with ;' = ;.
PrOOF

1. If &;;€ Z;;, then d'¢;; = 0. Therefore there is an #;,_; ;€ C;_, ; with

d"1i—1,j = éij‘ We set (Pij(‘Iij(fij))i = qi—l,j+1(d"’1i—1,j)'
a. Let¢;; = d'n = d'n*.Thend'(n — n*) = 0; therefore thereisaye C;_, ;
withd'y = n —y*(fori > 2),and it follows thatd”n — d"n* = d"d'ye B;_; j+1.
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Therefore
Gi—1,j+1@d"M) = qi—1,j+1(d"1%).

If i =1, set y*: = n — n*. Then d'y* = 0. Therefore d"y* € By ;+;, and
furthermore qo, j+1(d"n) = qo,;+1(d"n*). The definition does not depend
on the choice of ;¢ ;.

b. Let ;;eB;;. If i > 1 and j > 1, then &;; = d'd"y with ye C;_y ;_,
and d”(d"y) = 0. If j = 0, then &;; = d'y* with d”y* = 0. Therefore the
definition depends only on the cohomology class of &;;.

(© d"(d"ﬂi—l,j) =0, d,(d”rli—l,j) = —d"(d"li—l,j) = d"(—éij) = 0.

Therefore d'n;_ ;liesin Z;_y ..

Because of (a), (b), and (c), ¢;; actually defines a mapping from H;; to
H;_, j+1. It is clear that the map is a homomorphism.

2. The existence of y;; follows exactly like that of ¢;;. If ¢;; and y;; both
exist, then

Qijotijoqi-1,jr1°d" = @joqijed = qi_q,j41°d,
Yijo @ijoqijod = Yijoqioq,je10d" = qod.
Hence it follows that ;! = ;. |

Theorem 3.3. Let X be a complex manifold, & a sheaf of R-modules over X,
and U an open covering of X. Then there is a (canonical) R-module homo-
morphism

o,:H{, &) - H(X, &), for ¢>=1

@, is, in particular, injective.

PROOF
1. Let (C;;, d’, d"”) be the canonical double complex of (X, &, U). Then
H(X, &) ~ H,j;, H(U, &) ~ H,, and we can define

Ge: = Pre-1°"""°Pr—1,1° Pe0
[Since all sheaves &, j > 0 are flabby, we have HQU, & )=0fori>1,
j = 0. Therefore the d’-sequences are exact!]

2. @1 = @10:Hyo = Ho, is given by @y0°qy00d = goy0d". If 0 =
®10(q10 ° d'M) = qo1 © d''n, then d''n lies in By, therefore there is an #* € Cy,
with d'n* = 0and d"n* = d"n. Then d"(n — n*) = 0and d'(n — n*) = d'y,
therefore d'n € By ; that is, g, o d'n = 0. O

Def. 3.3. Let & be a sheaf of R-modules over X and U = (U,),.; an open

covering of X. U is called a Leray covering of & if H(U,,...,, %) =0
for£ > landalli,,...,1.

Theorem 3.4. If U is a Leray covering of &, then ¢,:H'(W, &) > H'(X, &)
is an isomorphism for every £ = 1.
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Proor. If H(U,,...,,, &) = 0, then by the definition of flabby cohomology
the following sequence is exact:
F(Ulo~~-m 'Spj—l) i.) F(Ulo-nm yj) i.’ F(Uzo~~~m yj+l)

Ifdé =0, then 0 = (d,)(0,.--, 1) = d,(E(1g, ..., 1)) for all (zg,... 1;).
Therefore there are elements (i, . . . , ;) Withd*(n(ig, . . . , 1)) = E(1gs - - + 5 1)-
In each case it suffices to determine one ordering #(io, . . . , 1;) of the indices,
since the values for other orderings are determined by the antisymmetric
rule.

In this way a cochain # with d,n = ¢ is determined.

The d”-sequences in the canonical double complex are therefore exact
and the proposition follows. O

4. The Cohomology Sequence

Let X be a complex manifold, #*, &, &** sheaves of R-modules over X.

(A) Let ¢:%* - & be a homomorphism. Then W(p): W(F*) - W(S)
is a homomorphism between canonical flabby resolutions, defined by the
mappings We:¥; - & ;. These mappings induce mappings

Theorem 4.1

1. If ¢ e Z{(X, &%), then (W), ¢ € ZI(X, &).
2. If £ e B(X, &%), then (W), ¢ € B{(X, &).

Proor. The following diagram is commutative:
rx, i) - rex, s —4-rx, 1)
[0 oo, 070100,
rX, %i-) 1, #) —4-1(X, 111)
1. If d¢ = 0, then d((W9).£) = (Wi+10).(dE) = 0.
2. If ¢ = dn, then (W).& = (Wip).dn = d((W;-19).n). O
Corollary. Let
3:Z/X, &) - H(X, &*),4:Z/(X, &) » H'(X, &)
be the canonical residue class mappings. Then there exists a homomorphism
P:H(X, &) - H(X, &), given by & ° qf = q; > (W0)..
Theorem 4.2. (H: & w~H'(X, &), @ w~>®) is a covariant functor, that is:

1. iij = idHi(X,.S’)‘
2Yop=y-p.

The proof is trivial.
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(B) Let 0 » #* 5 &% ¥ %** 5 O be exact. Then we obtain the following
commutative diagram with exact columns:

0 0 0 0

oo I(X, S b r(X, 77 L P(X, P ) LT (X, Fhin) — -

J(Wi—ﬁo)* (W0). (W+10). (W+20),
T, Fiy) D T(X, #) D T, S ) T(X, Frig)— -+
(m—l‘//)* J(VVJP)* (W;+1'//)* J(VVi+2'/I)*

T, ) L rx, 71 L rX, F1 )b T (X, Py —

J

0 0 0 0

Theorem 4.3
1. If £eZ{(X, S**), then there exists an noe I'(X, &;) and an n e
ZIYX, &%) with & = (Wah). o and dng = (Wis10).1. 1 is determined up
to an element n* € B'*1(X, &*).
2. There exists a homomorphism, canonically induced by (1),

O:H(X,¥**) > H*YX,¥*) with $-0=0 and 0oy =0.

PROOF

1. If £ e Z(X, &**), then d¢ = 0, and there exists an #, € I'(X, &;) with
(Wh).no = ¢&. Clearly then 0 = d((Wi).no) = (Wis1¥).dno, that is, there
exists an n e I'(X, &}, ,) with (W, ,0).n = dne. The element 7 is a cycle,
because 0 = ddno, = d((W;+190).1) = (W,4,0).dn and therefore dn = 0.7 is
uniquely determined by #,. If € = (Wah).no = (Wih).15, then there exists a
p e I'(X, &}) with (We).p = no — ng and we have

dno — dng = d(W9).p) = (W4 10).dp;

therefore n’ — 0" = dp.
2. A homomorphism J: Z{(X, #**) - H*1(X, &*) is defined by 0(¢): =
g+ 1(n) such that

Podo(Wih)no =@ qie1 N = diry o (Wis10)1 = gi11(dno) = 0.

If & = d&*, then there is a 0 € I'(X, &;_ ) with (W,;_,¥),0c = &*; therefore
(W), do = d((W;- ¥).0) = & We can choose 5y = do and from the con-
struction we obtain that d(£) = 0. Therefore J induces a homomorphism

O:H(X,%*) » H*Y(X,%*) with dog* =a.
In particular (a) g;*, (W), are surjective and
@odog o (Wi).lno) = & o 0o (Wh).(no) = 0.
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(b) g; is surjective, (W), is injective, and for ¢ € Z{(X, &) we have

0o oqé) =00 (Wih).() = giesln)  with  (We)y=dt =0
thereforen = 0. Hence o0 = 0Oand 9oy = 0. O

Theorem 4.4. Let O » * % % % &** - 0 be an exact sequence of sheaves
of R-modules. Then the following long cohomology sequence is also exact

0-TIX,#)5I(X, ) 5rXx, s % H(X, %) > -
- H™ (X, #*) 5 H(X, ) S H(X, ) S H(X, ) - -+

PROOF

a. The sequence 0 —» I'(X, &¥*) - I'(X, &) - I'(X, £**) is exact, since
I is a left exact functor.

b. The cohomology sequence is exact at H'(X, &*),i > 1

1. § o 0 = 0 by Theorem 4.3.
2. If ¢ e Z{(X, &*) and

0 =004/ = g °Wp).S
then (W9),¢ = dnp withne I'(X, &;-) and
d((W,-1¥).n) = (W), dn = (Wy).(Wip).& = 0.
(W;_ ),y thus lies in Z'~1(X, &**) and
a ql 1° (W 1'//)*” = 5(W 1‘]’)*’1 - qt
Therefore Ker = Im 0.
c. Exactness at H'(X, &),i > 1

1. By Theorem 4.2,y o § = 0.
2. Let e Zi(X, £)and 0 = y o q;(&) = qi* o (Wa), & Then

Wy).§ =adl*  with &= W-)mel(X, i)

and hence d(¢ — dn) = 0 and (Wy).(€ — dn) = 0. Thus there is a
e I'(X, #}) with (Wp),6 = & — dn. Clearly do = 0 also, and

P ° 4i(0) = gi > (Wip)uo = qi(& — dn) = q;(%).
Therefore Ker § < Im @.
d. Exactness at H(X, ¥**),i > 1

1. 0o = 0 by Theorem 4.3.
2. Letdé = 0 and

0=200oq*¢) =0t =gqivn  with &= Wy
and
an = (W;+1(P)*’1-

169



VI. Cohomology Theory

Then n = dg, and
d(no — (Wip).0) = 0,(Wy).(no — (Wip).0) = &;

therefore
¥ o qilno — (W9).0) = gi* - (W), (o — (Wip),0) = qi*¢.
Hence Ker @ = Im {, and the proof is complete. O

(C) Let X be an n-dimensional complex manifold with structure sheaf @. For
every open set U — X there is an associated multiplicative abelian group
My = {f:f is holomorphic on U and f(x) # 0 for x € U}. My becomes a
Z-module (withn - f: = f"),and together with the usual restriction mappings
rv:My — My, yields a pre-sheaf of Z-modules. The corresponding sheaf of
Z-modules 0* is called the sheaf of germs of non-vanishing holomorphic
functions. We write the group operation in ¢0* and in the derived modules
additively. If Ny is the additive abelian group of holomorphic functions,
then there exists a Z-module homomorphism expy:Ny — My defined by
f—e*™/ For V < U the commutative law expy o rY = rY o expy holds.
This defines a sheaf homomorphism exp: @ — O* with exp(rf) = r(e*™).

Theorem 4.5. O - Z — 0 2 0* > O is an exact sequence of sheaves of Z-
modules (where Z also denotes the sheaf of germs of continuous Z-valued
functions).

Proor. Continuous Z-valued functions are locally constant, in particular,
locally holomorphic. Hence we can regard Z as a subsheaf of ¢, and we need
only show that Ker(exp) = Z and Im(exp) = O*.

1. Let 0 = (rf)(x) € O,, f € Ny, exp(e) = O. Then O = exp(rf)(x) =
(r(e®™/))(x). There exists a connected neighborhood V(x) = U with
r(€*™/)|V = O that is, e*®/|V = 1. Then there is an ne Z with f|V = n.
Conversely if o € Z, = 0,, it follows that exp(a) = O.

2. Let p = (rf)(x) € 0%, f € My, xe U. Without loss of generality we
may assume that U is an open set in C", so that log(f) is holomorphically
definable on U. Let

h: = ZLm log(f), o: = (rh)(x) € O,.
Then
exp(o) = exp((rh)(x)) = (r(e**™))(x) = (N )(x) = p. ]
Theorem 4.6

1. Let f € I'(X, 0*). Then there is an he I'(X, 0) with f = *™* if and
and only if 0(f) = 0.
2. If H'(X,0) = 0 for £ > 1, then H'(X, 0*) ~ H*\(X, Z) for £ > 1.

Proor. Look at the long exact cohomology sequence of the short exact
sequence O - Z - @0 - O0* - O. O
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Def. 4.1. A system (U,, f)),.; is called the Cousin II distribution on X if

1. W = (U)),.; is an open covering of X.

2. f,is holomorphic on U, and vanishes identically nowhere.

3. On U,,, there is a nowhere vanishing holomorphic function h
that f,, = h,,, - f,, on U

A solution of this Cousin II distribution is a holomorphic function f
on X such that f, = h,:f with nowhere vanishing holomorphic functions
h,on U,.

such

1011

1001 ot1*

Remark. The functions h, , are uniquely determined by the distribution

(Uv ft)lel : - -

Iff;o = hlol] .j;l = hlou .f;x’ then 0 = (hloll - hloll) .f;f

If it were true that (h,,, — h,,)(x,) # O for an x, € U,,,, then it would
also hold that (h,,, — h,, )(x) # O for x € V, V an open neighborhood of
Xo in U, ,,. Therefore f, |V = 0 which is a contradiction.

ol

ol1°

Theorem 4.7. Let (U, f),.;be a Cousin II distribution on X, U = (U,),.
Then:

1. h(io, 11): = rh,,, defines an element he Z'(U, 0*).
2. (U,, f).c1 is solvable if and only if h lies in B*(U, 0*).

PROOF.
la. Because

f;l = ht:)lll .j;o = hluo : f;o

it follows that h(i,, 15) = —h(1o, 1;).
b. Because

htou : hulz .j;z = hlou .f;1 = j;o = hlotz .f;z

it follows that h(ig, 11) + h(2y, 1) = h(1g, 12).
2a. Let (U,, f,),c; be solvable. Then f, = h, - f with nowhere vanishing
functions h,and f,, = h,,, * f,,, thereforeh, - f = h,, - h, - f. Let p(1): = h,.

Then
p(t0) — p(1y) = r(hy, - h;') = r(hy,) = h(i, 11);

therefore 6p = h.

b. If h lies in B}(U, ¢*), then for every 1 € I there exists a p(1) € I'(U,, 0*)
such that p(i0) — p(11) = h(io, 1;) on U, . Then h,;: = [p(1)] is a nowhere
vanishing holomorphic function, and on U, ,, we have h(i,, 1;) = r(h,,,) =
r(h, - h;;'); therefore h,, = h,,, * h,,.

Similarly we have f,, = h,,, - f;,- Hence it follows that f, - h ' = f, - h'.

Thus there is a holomorphic function f on X with f, = h, - f defined by
flU:=fi-h7L a

ot

Remark. The question of the solvability of a Cousin II distribution is a
generalization of the Weierstrass problem.
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Corollary. If H*(U, 0*) = O, then every Cousin II distribution belonging to
the covering W is solvable.

Theorem 4.8. Let X be an n-dimensional complex manifold with structure
sheaf 0©.

1. If HY(X, ©) = 0, then every Cousin I distribution on X is solvable.
2. If HY(X, 0*) = 0, then every Cousin 11 distribution on X is solvable.

Proor. The canonical homomorphisms H'(U, 0) - H'(X, ®) and H'(Y,
0*) - H'(X, 0*) are injective for every covering U (See Theorem 3.3). O

Def. 4.2. Let he Z'(U, 0*) be the cocycle of a Cousin II distribution
(U, f),cr» h the corresponding cohomology class in H(X, ¢0*), and
0:HY(X, 0*) - H*(X,Z) the “boundary homomorphism” of the long
exact cohomology sequence of O - Z —» ¢ —» 0* - O. Then c(h): =
d(h) € H*(X, Z) is called the Chern class of h (tesp. of (U,, f,),c)-

Theorem 4.9. If H'(X,0) = 0 for ¢ > 1, then the Cousin II distribution
(U,, f)ie1 (With the corresponding cocycle h) is solvable if and only if
c(h) = 0 (and that is a purely topological condition!).

PrOOF. By Theorem 4.6 H!(X, 0*) ~ H*(X, Z), under &. h is thus solvable
if and only if b = 0, and that is the case if and only if c(h) = d(h) = 0. O

ExampLE. There exist very simple domains of holomorphy on which not
every Cousin II distribution is solvable. Suppose,

X:={(zweC|z — 1] <e]|w -1 <é}

X is a Reinhardt domain and, as one can readily see, is logarithmically
convex, therefore a domain of holomorphy.
The “center of X”

T:={(zweClz=1Lw=1cX

is the real torus.
g ={(z weChw=1z-1}

is a complex line, and therefore a real 2-dimensional plane.
For (z, w) eg

MP=ww=C-DEZ-)=zZ+1—-(z+2) =4 +1-2x
(with z=Xx+iy)

If |z| = 1, then in particular we have |w|> = 2 — 2x, so [w| = 1 if and only
if x = 1/2. Let

zyi=31+i3),z: =31 - i\Bywyi=2z — Lw,i =12, — L.
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4. The Cohomology Sequence

Hence it follows that

Tn g = {(Zl’ Wl), (22’ WZ)}

The mapping @:g — C with &(z, w): = z is topological with &~ !(z) =
(z z — 1). Let

R:={zeC:l—e<|zff<1+¢ ={zeC:|z — 1| < ¢},
R,:={zeC:iz—1eR} ={zeC:|z - 1| — 1| < &}.

R,, R, are two congruent annuli displaced from one another with
R.NR, =d(gnX)> dgnT) = {z, 2}

n

ol

Figure 25. Illustration for the example.

If we choose ¢ sufficiently small, then R, n R, decomposes into two connected
components Y;, Y,.

Let F,: = ¢~ 1(Y)forA = 1,2.Thengn X = F, U F,withF, n F, =
& and the sets F, are analytic in X. Let
Ui:=X-F,,U;:=X —F,gz,w):=w—z+ 1,
as well as
fii= glUpfzi = 1|U2‘

g has no zeroes in U;, = X — (F, U F;) = X — g, and we have f,|U,, =
g f5|U1,. Therefore ((Uy, f1), (Us, f3)) is a Cousin II distribution on X.
We can introduce real coordinates on T

(Za W) = (eitp, eiO) — (q’a 6)
Then g|T = € — € + 1 = (cos § — cos ¢ + 1) + i(sin @ — sin @), and
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the mapping.
U, nT->R? with (¢, 0): = (cosd — cos ¢ + 1,sin 6 — sin @)

is real analytic and has exactly one zero (¢q, 0y) = (24, 2, — 1).
For the functional determinant we have

sin ¢, —sin 6, sin o —sin @
det J.(@o, 0y) = det = det
et J.(@o, 0o) = de <—cos ®o  cOs 00> <—COS Po  COS Qo — 1)

sin 0 .
= det(—cos Z:Z —1) = —sin@y = —Imz, = —%ﬁ;ﬁ 0.
Hence we can find a neighborhood V = V(¢,, 8,) =« U; n T which is
mapped by t biholomorphically onto a domain of R? Let V*: =
V — {(@0, 00)}-

We can regard 7 as a complex valued function. Then on V' * the differential
form w = dz/z is defined and clearly dw = 0.

We now choose an open subset B = V which relative to t|V is the
inverse image of a circular disc{z € C:|z| < s}. Let H: = B. Then

fw J;rl sT;éO

Now suppose there is a solution f of the above Cousin II problem. Then
f|Uy = g h, with a nowhere vanishing holomorphic function h in U,, and
f|T has a zero only at (¢, 6,). Therefore @: = dh/h is a differential form
on U; n T, a: = dfjf a differential form on T — {(¢,, 0,)} and d& = 0,
do = 0 and o|V* = @ + @. Thus it follows that

fw— cho—fdco—O

f = = doc =0,

H o(T— B)

but fHa=fw+fw_fw¢0

That is a contradiction. A solution f cannot exist. 0O

5. Main Theorem on Stein Manifolds

The two following theorems of Cartan—Serre are the basis for the theory
of Stein manifolds. The proofs are difficult and cannot be included here.

Theorem 5.1 (Theorem A). Let (X, 0) be a Stein manifold, & a coherent ana-
Iytic sheaf over X. Then for every point x, € X there are finitely many
global sections s,, . . ., s, € I'(X, &) which generate &, over O,,.

Theorem 5.2 (Theorem B). Let X be a Stein manifold, S a coherent analytic
sheaf over X. Then H(X, &) = 0 for¢ > 1. (For the definition of a Stein
manifold, see Chapter V, Section 2.)
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Theorem 5.3. Let X be a Stein manifold, and O - * - ¥ —» F£** - O an
exact sequence of coherent analytic sheaves over X. Then

0 I'(X, ") » (X, %) > [(X, ¥**) > 0

is exact and
X, %)
rX, ") ~ ——-.
&I T 7
ProOOF. The cohomology sequence
0-TI(X,#)>T(X,¥)>T'(X,¥**) > HX, F*) >
is exact and by Theorem B, H(X, &*) = 0. a

Theorem 5.4. Let X be a complex manifold and U,, U, = X open Stein
manifolds. Then U: = U, n U, is also a Stein manifold.

ProOF
1. If x, € U, then there are holomorphic functions f, . . ., f, on U, such
that x, is an isolated point in
{xeU:fi(x) = -+ = fi(x) = O}.
Then the functions f;|U, . . ., f,|U are holomorphic and x, is also isolated in
{(xeU:fy(x) =+ = fi(x) = 0}.

Therefore U is holomorphically separable.

2. Let K = U be compact. Then K is also compact in U;, and so, for the
holomorphically convex hulls, K c K;, K; compact. Clearly K is contained
in K, nK,. U— K is open; therefore K, nK, - K=K, nK, n
(U - K) is open in K; n K. Since K; n K, is compact, it follows that
K is compact. O

Def. 5.1. Let X be a complex manifold. An open covering W = (U,),.; of
X is called Stein if all the sets U, are Stein.

Theorem 5.5 (Leray). Lex X be a complex manifold, & a coherent analytic
sheaf on X, W a Stein covering of X. Then W is a Leray covering of X and
for all ¢, HW, &) ~ H(X, &).

Proor. If W = (U,),. is Stein, then by Theorem 5.4 all sets U, ..., are
Stein, and by Theorem B, H(U,,...,, ¥) =0 for £ > 1. Therefore II is a
Leray covering and ¢,: H'(, 9’) H‘(X &) is an isomorphism. O

Theorem 5.6. If X is a complex manifold, then there are arbitrarily fine Stein
coverings of X. If & is coherent analytic on X, then for every open covering
U of X there exists a refinement B such that H(B, ¥) ~ H/(X, &) for
all £ =2 0.
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PrROOF. Let s# be the structure sheaf of X. If x, € X, then there is an
open neighborhood U(x,) = X, a domain G < C" and an isomorphism
@:(U, #) - (G, 0). If V(x,) is an arbitrary neighborhood, then there exists a
polycylinder P with 3~ (P) c < V n U. Then @~ (P) is Stein. Therefore
there exist arbitrarily small Stein neighborhoods and hence arbitrarily small
Stein coverings. O

Theorem 5.7. Let X be a Stein manifold, & a coherent analytic sheaf over X,
U an arbitrary open covering of X. Then H'(N, &) = 0. In particular,
every Cousin I distribution over X is solvable.

Proor. H'(X, &) = 0 and ¢, :H'(W, &) - H\(X, &) is injective. 0

Theorem 5.8. If X is Stein, then for all ¢ > 1, H'(X, 0*) ~ H'* (X, 2).
ProOF. Theorem B and Theorem 4.6. O

Theorem 5.9. Let X be Stein, (U,, f,),; a Cousin II distribution on X,
he Z'QU, 0*) the corresponding cocycle. Then (U,, f,),c; is solvable if and
only if c(h) = 0.

ProoF. Theorem B and Theorem 4.9. O

At the end of the last section we gave an example of a Stein manifold on
which not every Cousin II problem is solvable. Let us assume the following
two (topological) results without proof:

1. If X is a connected non-compact Riemann surface (X is then Stein by a
theorem of Behnke-Stein), then H%(X, Z) = 0.

2. If X is a Stein manifold which is continuously contractible to a point,
then H*(X, Z) = 0.

Theorem 5.10. If X is a Stein manifold and H*(X,Z) = 0, then every Cousin I1
problem on X is solvable.

Proor. Immediate corollary of Theorem 5.9. O

Therefore, every Cousin II problem on X is solvable if X is a non-compact
connected Riemann surface or an arbitrary contractible Stein manifold.
Specifically it follows that if G = C is a domain, then all Mittag—Leffier
and Weierstrass problems on G are solvable. So far we have only used
Theorem B. Interesting possibilities for applications of Theorem A are found
primarily in the area of analytic subsets of Stein manifolds.

Def. 5.2. Let A be an analytic subset of a complex manifold X. A complex
valued function f on A is called holomorphic if for every point x, € 4
there is a neighborhood U(x,) = X and a holomorphic function f on
Uwith flUN 4 = f|U n A
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For analytic sets which are free of singularities (therefore submanifolds)
this coincides with the old notion of holomorphy.

Theorem 5.11. Let (X, O) be a Stein manifold, A = X an analytic subset and
f a function holomorphic on A. Then there is a holomorphic function f on
X with f|A = f. (Global continuation!)

PrOOF. We assign to every point x € A a neighborhood U, < X and a
holomorphic function f; such that f|4 n U, = f|4 n U,. To every point
x € X — A let there be assigned a neighborhood U, = X with U, n 4 =
& and the function f;: = 0|U,. Let

u: = (Ux)xeX’ ﬂ(X): = j; er(Ux’ (9)
Then e C°(U, 0) and &: = 6y e Z' (U, O). Moreover, for all x,, x; € X
E(xos X1)|A N Usory = feold 0 Usory — Firld 0 Upyr, = 0.

Therefore ¢ € Z1(U, #(A)), where we denote the ideal sheaf of 4 by #(A).
By Theorem B, H'(X, #(4)) = 0 and hence also H'(U, #(A4)) = 0. There-
fore there is a p € C°(U, #(A)) with ép = ¢, that is, 5(n — p) = 0. There is
a holomorphic function f € I'(X, 0) defined by

FlUe: =169 = p(x) = f = p(x)
flAnU, =f|AnU,=flANT,.
That is, f|4 = f. O

0X1

and

Theorem 5.12. Let (X, O) be Stein, X' = < X open, & a coherent analytic
sheaf over X. Then there are sections s,, . . ., s, € I'(X, &) which at each
point x € X' generate the stalk &, over 0,.

PROOF

1. Let x, € X'. Then there exists an open neighborhood U(x,) = X and
sections t, ..., t, € I'(U, &) such that for every point x € U the stalk &,
over O, is generated by t,(x), . . ., t,(x). Now, by Theorem A there are global
sections sy, . . ., s, € I'(X, &) and elements g;; € O, such that

14
ti(xo) = Z aiij(xo) fori = 1, cees q.
j=1

There exists an open neighborhood V(x,) = U and sections d;;e I'(V, 0)
with @;(xo) = a;; for all i, j. Hence it follows that there exists an open neigh-
p
borhood W(x,) = V with ti‘W ={) dijs,)
j=1

S1, ..., S, generate each stalk &, x e W.

2. Since X’ is compact, we can find finitely many points x, .. ., x, € X/,
open neighborhoods W,(x;) and global sections

Wfori=1,...,q; that is,

sP S8, i=1,.r
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such that W, U - - - U W, covers X';
sP, L8y, i=1,...,r

generate & on W,. Then

sP, s8Ry, i=1,0,7
generate the sheaf & on X'. a
Theorem 5.13. Let (X, 0) be Stein, X' =« = X open, A = X analytic. Then
there are holomorphic functions f, . . ., f, on X such that
AnX ={xeX' fi(x) == f(x) = 0}.

PRrROOF. Since #(A4) is a coherent analytic sheaf on X, by Theorem 5.12
there exist global sections f3, . . ., f, € I'(X, #(A4)) = I'(X, 0) which generate
each stalk of #(A4) over X'. Clearly

AnX c{xeX:[fi)] =" =[ 0] =0}

so we need only show the converse. (Recall that for an element f € I'(X, 0)

the corresponding holomorphic function is denoted by [ f].)
'
If xoe X' — A, then there are elements a, e 0,, with Y, a,f,(xo) =

v=1

1€0,,. Then in a neighborhood V(x,) = X’ — A the function 1 has the

4
representation 1 = Y 4,[ f,], where the @, are holomorphic functions in

v=1
V. But then not all the [ f,] can vanish at x,,.
Therefore

xeX: [fix)]="=[£x]=0 cAnX. O
We record the following sharpened version of Theorem 5.13 without proof.

Theorem 5.14. Let X be an n-dimensional Stein manifold, A = X an analytic
subset. Then there exist holomorphic functions f,, . . ., fy+1 on X such that

A={xeX:fi(x) =" = far1(x) = 0}.
We note that the theorem does not imply that #(A4) is globally finitely

generated. Indeed, there is an example due to Cartan which shows that this
is not possible, in general.

178



CHAPTER VII
Real Methods

1. Tangential Vectors

In this section X is always an n-dimensional complex manifold.

Def. 1.1. Let ke N,. A k-times differentiable local function at xo€ X is a
pair (U, f) such that:

1. U is an open neighborhood of x, in X ;

2. f is real-valued function on U continuous at x,; and

3. there exist a neighborhood V(x,) = U and a biholomorphic mapping
V:V — G <= C"such that f o ! at ¥(x,) is k-times differentiable.

Complex valued local functions can be defined correspondingly.
Let the set of all k-times differentiable functions at x, be denoted by
2% . Instead of (U, f) we usually write f.

Remark. Since the coordinate transformations are biholomorphic, so in
particular k-times differentiable for every k, Definition 1.1 is independent of
the choice of the coordinate system (V, ). The elements of 2% can be added
and multiplied by real or complex scalars in the obvious fashion. (For
example (U, f) + (U, f):=UnU, f + f))

A well-known theorem says that if f € 2}, g € 22 and f(x,) = g(x,) =
0, then f - g € 91, (see [21]).

Def. 1.2. A (real) tangent vector at x, is a mapping D: 2. — R such that:

1. D is R-linear;
2. D(1) = 0; and
3. D(f - g) = Ofor f € 2}, and g € 22, such that f(x,) = g(x,) = 0.
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We call (2) and (3) the derivation properties. The set of all tangent vectors
at x, is denoted by T,

Remark. T, forms a real vector space. The partial derivatives

o o8 @
ox, T ox, dyy 0

which depend on the choice of the coordinate system form a basis for T,
(see [21]). Therefore dimg T,, = 2n. For complex valued local functions
f =g+ ihatx,and De T, we set D(f): = D(g) + iD(h). D remains R-
linear!

Theorem 1.1. If c,, ..., c, are arbitrary complex numbers then there exists

exactly one tangent vector Dwith D(f) = Y ¢, 6% (f) for each function f
v=1 v

holomorphic at x. In particular, a given tangent vector D is already uniquely
determined by its values on the holomorphic functions. In local coordinates
D has the representation

D= Z Re(D(zv)) —+ Z Im(D(zv))

V=

Proor. Ifc, = a, + ib,forv = 1,..., n, we set
D: =
vgl b ox, ax v; vayv

Then for each function f holomorphic at x, (because f, = if;)

D(f) = i a,f., + 21 b,f,, = 21 (a, + ib)f,, = 21 cva%(f)

v=1

Hence ¢, = D(z,)forv = 1,..., n. It is clear that D is uniquely determined
by its values on the holomorphic functions as well as by the numbers ¢, . . .,
Cp- O

Theorem 1.2. If ce C and D e T,,, then there exists exactly one tangent
vector ¢+ D e T, such that (c- D)(f) = c-(D(f)) for every function f
holomorphic at x,.

PrOOF. There exist complex numbers cy, . . ., ¢, such that

D) = 3 ez ()
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for every function f holomorphic at xo ;and by Theorem 1.1 there is exactly
one tangent vector D* with D*(f) = Z (ccv) ( f) = ¢ (D(f)) for holo-
morphic f. We set ¢+ D = D*. 0O

Theorem 1.3. Let

i o _20 and i 0o __0

ox, oy, oy,  0x,
Then T, is an n-dimensional complex vector space with basis {0/0x, . ..,
0/0x,}, and this new complex structure is compatible with the given real
structure on T .

for v=1,...,n.

Proor. If f is holomorphic at x,, then

.0 {0
(l . 6xv> ()= l<6xv

The axioms of a C-vector space are clearly satisfied; in particular

i 9 =i-|i- 9 9
ayv_ ax ax"'

o 0
ax,’ " ox,

forms a system of generators of T, over C.

>=i'fn=%(f)-

Therefore

n

If Y cv'ai = Owithc, = a, + ib,forv = 1,...,n, then

v=1

n

0
Z ava'x—'i'

by +—,
v=1 v v=1 vayv

M=

= 0 . e 0
_vglava_x;-’-l v;lbvaxv_

therefore a, = b, = Oforv = 1,..., n. Thatis, {9/0x,, . .., 0/0x,} is a basis
for T, over C. o

Remark. A complex tangent vector at x,, is a C-linear mapping D: 92}, — C
with the derivation properties (2) and (3) of Def. 1.2. Let the set of all complex
tangent vectors at x, be denoted by T's,. Then we set

T,,: = {De T5:D(f) =0  if f is holomorphic at x,},
Ty:={DeTs:D(f) =0 if f is holomorphic at x,}.

We call the elements of T, holomorphic tangent vectors, the elements of T,
antiholomorphic tangent vectors. The partial derivatives d/0z, . . . , 0/0z, resp.
0/0z,, . .., 0/0zZ, form a basis for T resp. Ty, and Ty, = Ty, ® T,.
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We can now assign to every element D € T,, complex tangent vectors
D' eT, and D" € T} suchthat D = D' + D". If

D=3 az

0
v Xy v=1 bV ayv’

we set
’ 1 - .
D': = Ev;l (av + lbv) aZv
P L. 0
Primaz ey

Clearly D'(f) + D"(f) = D(f) for every f € 9% . Hence we can write every
real tangent vector D € T, in the form

" 0 " 0
b vgl & 2y * vgl C" 2y
If ce C, then
D " 0 "0
c-D= v;1 ce, oz + v;l @ o

Def. 1.3. An r-dimensional complex differential form at x, is an alternating
R-multilinear mapping

@:Ty x - x T, »C
%/.—_J
r-times

The set of all r-dimensional complex differential forms at x, is denoted
by FO).

Remarks

1. F¥) is a complex vector space. We can represent an element ¢ € F%)
uniquely in the form ¢ = Re(¢) + i Im(p), where Re(¢) and Im(p) are
real-valued differential forms (cf. [22]). It follows directly that

dimg F® = (2n> + <2n>’
r r
dim FO) — <2">.
r

2. By convention FQ = C. For r = 1 we obtain F) = T; @ iT},
with T, = Homg(T,,, IR) FQ) is the complexification of the real dual space
of T,.

3. We associate with each element ¢ € F?) a complex-conjugate element
@ € F{) by setting

so that

@(6la R ] ér): = (0(51, L] ér)
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We have

a0 =0

b.lo+¥)=0+V,cp=C5.
c. pisreal ifand only if o = @.
If we define the element dz, € F() by dz,(¢): = £(z,), then we obtain an
additional element dz, € F{) from

dz,(): = dz,(§) = dz,(%) = &(z,) = £(z,).
{dz,,...,dz,, dz,,...,dz,} is a basis of F{). In general § = Re(p) —
i Im(¢p); as a special case
dz, = dx, + idy,, dz, = dx, — idy,.

4. Let ¢ € FO), € F$). The wedge product ¢ A y € F&*9 is defined as
in [22]:

(A '/’(51, ceey ér, ér+1,- . -,£r+s)‘ =
Z (Sgn a)q)(éd(l)a ey ‘:o'(r)) : '//(éd(r+ 1)s ¢+ *> éo’(r+s))~

r. ! GESy+s

Then:

a o AY=(—-1)"Y Ao (anticommutative property);
b.pAY)Aw=0 AW A o) (associative property).

In particular
dz, A dz, =0 = dz, A dzZ,.

o0
With the multiplication “A™ F,: = (P FY) becomes a graded associative
o

(non-commutative) ring with 1.
5. Forj=1,...,nletdz,,;: = dz;. Then F{) is generated by the elements

dz,, A - Adz, withl1 <v; <: "<V, < 2n The number of these ele-

. 2n .
ments is exactly ( . >; so they form a basis.

Theorem 1.4. If z,, ..., z, are coordinates of X near x, and if ¢ € F{), then
there is a uniquely determined representation

At A dz;

ir

Q = Z a; ...q dz;

1 ir 131
1<i;<---<i.<2n

(normal form of ¢ with respect to zy,...,z,). In particular ¢ = 0 for
r > 2n; therefore F$) = 0 for r > 2n.

Def. 14. Let p,ge Nyand p + g = r. ¢ € FY) is called a form of type (p, q)
if
(p(céla MR Cér) =cP- Z'q(p(él, RS | ér)
forallce C.
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Theorem 1.5. If ¢ € F$), ¢ # 0and ¢ is of type (p, q), then p and q are uniquely
determined.

PrOOF. Suppose ¢ is of type (p, q) and of type (p, ¢'). Since ¢ # 0 there

exist tangent vectors &, .. ., &, such that ¢(&,,...,¢&,) # 0. Then

(e, cE) = {z;ﬁfgl e

Therefore c? c?= c?'c? for each c € C. Let ¢ = ¢” with arbitrary 6 € R. Then
P9 = ¥('~9) That can hold for all § only when p — q = p' — ¢'. Since
p + q =p + ¢ = r by assumption, it follows that p = p’, q = ¢'. 0O

Theorem 1.6.
1. If ¢ is of type (p, q), then @ is of type (q, p).
2. If @,y are of type(p, q),ce C, then ¢ + Y and c- @ are of type(p, q).
3. If pis of type (p, q), ¥ of type (P, q), then ¢ A Y is of type (p + P/,
q+ 9)
PROOF
(1) @(Cél, ceey Cé,.) = q)(céla ceey Cf,j = Cp?qu(én ceey ér) = zl’(ﬂ@(éb ey ‘:r)
(2) Trivial.
(3) (D(Cél, L] Cér)l//(CéH. ERRRE) c§r+s) = cpzqcp'zq'(p(él’ sy ‘Er)w(ér+ SRR 6r+s)‘

Therefore

1 . ,
@AY,y pig) = g TP Y (580 0)0Coay - - -5 o)

geG, + s

X 'I/(éa(r+ 1) ¢ ¢ 2 6a(r+s)) = cp+p'?q+q’ QA '//(éla s ér+s)‘ |
Theorem 1.7. If ¢ € FY), then ¢ has a uniquely determined representation
Q= Z q,(p, q)

ptq=r
where @2 € F{) are forms of the type (p, q).
Proor. Clearly dz, is of type (1, 0), dz, of type (0, 1). Hence it follows that

monomials dz;, A -++ A dz;, AdZj A Adzy (With 1 <0y <00 <) <
nand 1 <j; < - < j, < n)are forms of type (p, q).
— (p,9)
o= ¢
ptq=r
with
(p(p,q) —
Z a,-l...ip,,,”h...,,,”q dZi1 At A dZip A dEh JANEAN dqu
I<ip< <i,<n
L<ji<  <jsn

is therefore a representation of the desired sort. Let
Q= Z (p(p,q) = Z @(p,q)'

ptq=r ptq=r
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Then
Z l/,(p,q) =0 for l/,(p,q) — (p(p,q) — @(p,q)

ptq=r
It follows that
0= Y yY®oct,....,c&)= Y WPy, ..., ¢)
ptqg=r p+q=r

For fixed (5, ..., &) we obtain a polynomial equation in the polynomial
ring C[c, ]. Then the coefficients y»9(&, .. ., &,) also vanish for all p, g.
Since we can choose &i,.. ., &, arbitrarily, we have @9 = @9 for all

b, q. O

2. Differential Forms on Complex Manifolds

Def. 2.1. Let X be a complex manifold. An ¢-form on X is a mapping
¢:X - ) F9

xeX
with the property that ¢(x) e F¥ for every xe X. If z,, .. ., z, are coor-
dinates on an open subset U < X, then for xe U
ox: = @(x) = > @y (X dz, A A dz,
1<y <. <y<2n

X+ a,, ., {x)defines a complex valued function a, ,, on U. We call
@ k-times differentiable at x, € U if all functions a, ,, are k-times differ-
entiable at x,. This definition is independent of the choice of coordinates.
o is called k-times differentiable (on X) if ¢ is k-times differentiable at
every point of X.

Henceforth the set of all arbitrarily often differentiable ¢-forms will be
denoted by A = AY(X), by AP 9 the set of all arbitrarily often differ-
entiable forms of the type (p, 9).

Def. 2.2. If f is an arbitrarily often differentiable function on X (therefore
an element of A?), then we define an element df € AV by (df).(¢): =
E(f) for & € T, (total differential of f).

Remarks

1. For the basis elements dz,, dz, the definition does not change anything.
2. In local coordinates

WAL WAS

Proor. We write
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VII. Real Methods

If ¢ € T, then

+Zc

v
z, T zZ,

Z e
and hence )

U =) = ¥ ekt ¥k

v=1

In particular it follows that

0 0
azv) = aw sf‘iv = df (a?v) = bv' D

We can also define a total differential d: 4¥ — A“* 1 on manifolds. It
has the following properties:

sz=df(

1. d is C-linear.
2. d(f) = df (in the sense of Def. 2.2) for fe A?.
3. d(p|U) = (do)|U.
4. Ifpe A",y e A9 thend(p A ) =do A Y + (—1Yp A dy.
5. If
o|U = > Ayyoedzy, A 20 A dzy,
1<y <---<y<2n
then
do|U = > da, ..., Adz, A A dz,.
1<y <+ <1y<2n
6. dod = 0.

7. d is a real operator; that is, dp = do. In particular then dgp = d(Re ¢) +
id(Im o).

Theorem 2.1. If ¢ € AP9, then dp = d'¢ + d"¢ with d'p e AP*"? and
d"p € AP+,

PrOOF. One usually abbreviates the normal form of ¢® 9 as
P9 = z ar,yd31 A d3;.
1,J
Then

de»9 = z day ; A d3r A d3y
IJ

=Zzaa”dz /\d3,Ad3,+ZZ ”d—/\dg,/\dg,

I,J v=1 v I.Ivlazv

which is a decomposition of do*? into a form d'¢®? of type (p + 1, q)
and a form d”¢'7? of type (p, q + 1). O
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Ifop= Y ¢PPisanarbitrary ¢-form,thenwecalld'p:= ) d'¢®»?
pta=1 ptg=1
the total derivative of ¢ with respect to 3 and d'¢: = ). d"¢»? the
ptq=1
total derivative with respect to 3. (In the English literature one generally

writes 0 instead of d’ and @ instead of d".)

Theorem 2.2.

1. d’ and d" are C-linear operators withd' + d" = d.
2.dd =0,d"d" =0andd'd" + d"d’ = 0.

3. d’, d" are not real. Moreover o = d"@ and d"¢ = d'p.
4. If o is an £-form,  arbitrary, then

d@nrnd)y=do Ay + (=Do A dy,
d'e AY)=d"e A ¥ +(=Dp A dy.

Proor. It suffices to prove this for pure forms:

(1) is trivial. For (2):
0=dd(p=(d,+d”)0(d’+d”)¢=d’d’¢+d’d"¢+d”d’¢+d”d”(p.
If ¢ has type (p, 9), then d’d’p has type (p + 2, q), (d'd"¢ + d"d'¢p) has type
(p + 1,9 + 1),and d"d" ¢ has type (p, g + 2). Since the decomposition into

forms of pure type is uniquely determined, the proposition follows.
For (3), since dp = d@ it follows that

do+do=dp+d"p; therefore (Ao —d'g)+(d ¢ —dp) =0.

Hence d'¢ — d”® has type (¢, p + 1) and d"¢ — d’'p has type (g + 1, p).
Therefore both terms must vanish.

For (4), both formulas follow from Rule (4) for the total derivative d by
comparing types as in (2) and (3). a

Remark. A real differentiable function f is holomorphic if and only if
fe,=0forv=1,...,n, thatis if ”f = 0. Correspondingly it follows for

¢ =o"% = ) a;

1<iy< - <ip<n

1...ip th At A dZiP

that d"¢ = 0 if and only if a;,...;, is always holomorphic. Hence we make
the following definitions.

Def. 2.3. ¢ € AY is called holomorphic if

1. ¢ is of type (p, 0), and

2.d"p = 0.

@ € AY is called antiholomorphic if

1. ¢ is of type (0, g), and

2. dop = 0.

Remark. Clearly ¢ is antiholomorphic if and only if @ is holomorphic.

187



VII. Real Methods

3. Cauchy Integrals

The Poincaré Lemma from real analysis (see, for example, [22]) can be
formulated as follows:

Let B = C" be a star-shaped region (for example, a polycylinder), ¢ € AY,
¢ > 0,dp|B = 0. Then there exists a yy € A~V with & = o.

We will below prove a similar theorem for the d” operator. In order to
do this, we must first generalize the Cauchy integral formula.

If Bc< C is a region and f a complex valued, continuous, bounded
function on B, then there exists a continuous function Ch{® on C defined by

1 f(2)
B(y): =
Ch®P(w): = 2m~fs - dz A dz.
Specifically, let ®:[0, co) x [0, 27r) — C be defined by &(r, 6): = re®® + w,
and let B* be the region @~ (B). Then

1) ., _ f(@(,0)) .
(z— wdz A dz) o = (. 0) d® A dP

=2i-fr-e® +w)-e ®dr A db

4

is a continuous, bounded differential form on B*. Hence

f()

zZ—Ww

dz A dzZ

is integrable over B, the integral is continuously dependent on w, and
1 ; —i
ChP(w) = £ [[. fre + whe™ dr n db.

If the real numbers R, k > 0 are chosen so that |z, — z,| < Rforz;,z, € B
and |f(z)| < k for z € B, then we get the following estimate:

k
[ChP )| < ~ [,.ar n do < 2kR
Now let P = C be a circular disk (therefore a polycylinder), and T: =
OP. If g is holomorphic on P, then the Cauchy integral formula holds:
g9(2)

Tz —w

g(w) = ch(g|TYw) = —— iz, forweP.
2mi

As a generalization we obtain
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Theorem 3.1. Let g be continuously differentiable on P, f: = g, bounded.
Then forwe P
g(w) = ch(g|T)(w) + Ch{P(w).

ProOF. Let we P, H, a small circular disk about w with H, = = P, and
T,: = 0H,. If T and T, are given the usual orientation, then it follows from
Stokes’ theorem (see [22]) that:

- L (i) L[S

2ni JP-H zZ—-w 2niJHr z — w

1 — . 9@ — dz + Chi™(w)

27-51 P—-Hy) 7 —
_ 1 g9(2) 1 g9(2) .
T 2mi Tz—-wdz+21zifTrz— dz + Chy(w)

= —ch(g|T)(w) + ch(g|T,)(w) + Chi{# (w).

Hence the function p(r): = ch(g|T,)(w) + Ch{¥”(w) has the constant value
ch(g|T)(w) + Ch{P(w), and it suffices to consider the limit for r — 0:

p(r) = a(r) + b(r) + c(r)

with
1 d
ar): = 5 [ 2t = g5 [ = g0
T p e o

. — Ch#»
T dz and c(r): = Ch}'™"”(w).

Since g is continuously differentiable as a function of w there exist functions
A’, A” which depend continuously on w such that
9(2) = gw) + (z — w)- 4'(2) + (z — W) 4"(2).

If we choose r, and M such that |4'(z)|, |4"(z)] < M for ze H, and r < 1o,

then we get

9(z) — gw)
z—w

<|A'(z)|+|A"(z)|.:W<2M for zeT, and r<ro;

therefore
o) < 5 [,

|b(r) + c(r)] < 2Mr + |ChifP(w)| < 2r- (M + 2 sup|f(P)|),

and this expression becomes arbitrarily small. Hence it follows that
p(r) = gw). O

<2M:-r for r<r,.

g(Z) g(W)l

Hence
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Theorem 3.2. Let f be continuously differentiable on C, Supp(f) = < C,
P < C a circular disk with Supp(f) <= P.
Then g: = Ch'P is continuously differentiable on C, with g, = f.

PRrOOF. Let
P.:={zeC:z + ce P},

yw, ¢): = ChP(w + ¢) = ;J;;ﬁ[ dz A dz

fz + c) N dz

27u Pe 7z —w

Because

flz + c)dz A dz.

2niJC z —w

Supp(f) = P,  y(w,¢) =

By known theorems on parametric integrals (see [22]), y is continuously
differentiable with respect to ¢ and <. Since y(0, ¢) = g(c), g is differentiable.
Applying formulas for the derivative of parametric integrals and the chain
rule gives

1 J~ f,(z + c)

fz(z) P)
_21z - dz A dz = Chj)(c),

dz A dz = Chif(c).

g:(c) = A dz =

fz(z)

2m Pz —¢

gs(c) =

Since f vanishes on T: = 0P, it also follows from Theorem 3.1 that g, =
Ch{) = f — ch(f|T) = f. O

Theorem 3.3. Let B =« = C be a region, f continuously differentiable and
bounded on B.
Then g: = Ch'® is continuously differentiable on B and g, = f.

PrROOF. Letw, € B be given, H an open circular disk about w, with H < < B.
We can then find an arbitrarily often differentiable function p:C — R for
which

LO<p<],
2. pH=1,
3. Supp(p) = <= B.
Then let fi: =p-f, f,: = f — f;. Clearly
fi+ f=f and Ch{) + Ch}) = Ch{.
Moreover, f;|H = f|H and f,|H = 0. f; is even continuously differentiable
on all of C and if P is a circular disk with B = P, then Ch{® = Ch{?). Hence

it follows from Theorem 3.2 that Ch{) is continuously differentiable on C
and (Ch), = f,.
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4. Dolbeault’s Lemma

For w e H we also have

Ch®(w) = Bzfz(z) A d7 = _J; f2(2) dz A d2,

2mi JB-H 7 —

the integrand is continuous and bounded on B — H, as well as holomorphic
with respect to w. From the theory of parametric integrals it follows that
Ch‘?|H is continuously differentiable and

(Ch®|H), = 0
Therefore g|H is continuously differentiable and (g|H), = f|H. ]

Remark. If B = C, B* = R"are regions, B = = Bopenand f:B x B* —
C arbitrarily often differentiable, then it follows from the theory of para-

metric integrals that Ch{® with ChP(w, x): = 2_1u 5 5 ) dz A dzis arbi-
trarily often differentiable on B x B*, and
(2, %
(Ch{P), (w, bLL() A dz, (ChP), = f.

4. Dolbeault’s Lemma

Theorem 4.1 (Dolbeault’s lemma): Let K, = C be compact sets for v
1,...,n, U, open neighborhoods of K, K:=K; x---K,, U:
Uy x - x U,

Moreover, let ¢ = %9 e A®D(U) with d"¢ = 0, q > 0. Then there
exist an open set U’ with K <« U' < U and a y € A% V(U") with
d"y = o|U'.

If ¢ is arbitrarily often differentiable as a function of real parameters,
then is also arbitrarily often differentiable as a function of these parameters.

ProOF. By induction on n.

1. If n =1, then also ¢ = 1 and ¢ has the form ¢ = a(z, ) dz. Let
U’ = < U be open with K = U’. Then Ch{¥? is arbitrarily often differen-
tiable, and

d"(Ch{"’) = (Ch{’"), dz = adz = ¢

(see Theorem 3.3 and Remark).
2. Now suppose the theorem proved for the case n — 1, n > 1. The
operators d, and 0/0z, are defined by

0 da

d; (z aﬂ@) Z Z & d_ Z, A d3; and 67(2 aJd§J> Z L d3,
J 7 =2 0z, Z1 \J

so that

11 7 a¢

d'o = d)o + dz, Ag_z—l-
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If we write ¢ in the form ¢ = dz; A ¢, + @,, where ¢, ¢, no longer
contain dz,, then

s s a i’
0=d"'e =dz; A (—d,(pl + %:) + do,.

Since d ¢, contains no dz;,, it follows that d/¢, = 0.

Now regard z; as an additional parameter and apply the induction
hypothesis.

Let

K, =K, x---xK,U,:=U, x--x U,
There is an open set U, with K, < U, = U, and a ¢ = y®4V in which
z; appears as a parameter, such that
d’*"/’IUl X U; = (p2|U1 X U;.

On U': = U, x U, we have

1’ — 1y = a‘l’_ = a‘//
go—dllz—(p—d,w—dzl/\a?—dzl/\((pl 671)’

1

where @, — (0y/0Z,) contains no dz,. On the other hand

0
0= o - d) =z n (01— 52
therefore
d:[q?l - (a'///afl)] = 0.

For the case ¢ > 2 by the induction hypothesis there are an open set
U’ with K, « U? < U,and ay = 9" Y on U’ such that

~ 0
iy = <(P1 - a_Tl/ll)

Henceon U": = U, x U}

"
U,.

d'(dzy A |/~/) = —dz; A di"; = —dz; A (‘Pl - %) =dy — o,
* 1
therefore ¢ = d"(y — dz; A ¥).
For g = 1, ¢, — (0y/0z,) is a function a = a(zy, z,, . . ., z,) which is
holomorphic in z,, ..., z,. We regard z,, ..., z, as additional parameters

and determine a region U’ with K = U} = < U, by (1), and a function
f = Chl"? with d"f = a dz, = ¢ — d"y. Then ¢ = d"(f + ). This com-
pletes the proof. O

We immediately obtain the following result for manifolds X.

If e A%9(U),q > 1, U = X open and d’¢ = 0, then for every xe U
there exists an open neighborhood V(x) =« U and ayy = y*4~Y on V with
d"y = ¢|V.(Let K = {x}.) We present the following theorem without proof.
It provides us with some more precise information.
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5. Fine Sheaves (Theorems of Dolbeault and de Rham)

Theorem 4.2 (Lieb). Let G = C" be a domain with smooth boundary 0G
(see Def. 2.5 in Chapt. 1I; the function ¢ defining the boundary are arbi-
trarily often differentiable). Let the Levi form of the defining functions be
positive definite everywhere. (In such a case one calls G strongly pseudo-
convex.)

Let w = Y, a; d3; be an arbitrarily often differentiable form of type
J

0, q) on G withd"w = 0. Moreover let there be given a real constant M with

l|ool|: = mJax sup|a,(G)| < M.

Then there exists a constant k independent of w and a form Y of type
(0,9 — 1)on G withd"y = wand ||y|| < k- M.

According to Siu and Range there exists a generalization of this theorem
for domains with piece-wise smooth boundaries (See R. M. Range, and
Y. -T. Siu: Uniform estimates for the -equation on intersections of strictly
pseudo-convex domains. Bull. Amer. Math. Soc., 78(5):721-722, 1972).

5. Fine Sheaves (Theorems of Dolbeault and de Rham)
In this section X is always a paracompact complex manifold.

Def. 5.1. A test function on X is an arbitrarily often differentiable function
t: X — R with compact support.

Let the ring (without 1) of all test functions be denoted by T. Let J be the
sheaf of germs of test functions on X.

Remark. Let W = (U,),.; be an open covering of X. Since X is para-
compact, there exists for Ui a subordinate partition of unity, that is, a system
(t,),c; of test functions with the following properties:

1.0<t < lforeveryiel;

2. Supp(t,) = U, forevery 1€,

3. the system of sets Supp(t,) is locally finite;

4. Y t, = 1[by (3) the sum is finite at each point].

el

Def. 5.2. Let & be a sheaf of T-modules over X. & is called fine if for all
xeX,0eF andteT

l.t-o=0 ifx¢ Supp(t)

2. t-0 = oif x ¢ Supp(l — ).

Remarks

1. If &4, ..., ¥, are fine sheaves, then ¥, @ - - @ & is also fine.

2. The sheaf o/?? of germs of (arbitrarily often differentiable) forms of
type (p, q) defined by the pre-sheaf {AP4(U),ry} is clearly a fine sheaf.

193



VII. Real Methods

The sheaf
A= @ AP
ptq=1

is fine, by (1). Here
rU, o) = @ IrU,«»)= @O 4»4U)=A4(),
ptq=1 ptq=1

that is, «7¢ is the sheaf of germs of arbitrarily often differentiable ¢-forms.

Theorem 5.1. Let &, &' be fine sheaves over X, ¢:& — &' an epimorphism
of sheaves of T-modules. Then ¢,:I'(X, &) - I'(X, ¥’) is surjective.

PROOF

1. Let s e I'(X, &), x € X. Then there exist a ¢ € &, with ¢(0) = §(x),
a neighborhood W(x) = X and a section s* € I'(W, &) with s*(x) = ¢, so
that ¢ o s*(x) = s'(x). We can find a neighborhood U,(x) = W with
@ o s*|U, = §|U,. Let s,y: = s*|U,.

2. U = {U,:x e X}isan open covering of X. Let (). x be a subordinate
partition of unity. For x € X ¢, - 5 is an element of I'(X, &). Since the
system of sets Supp(t)) is locally finite, for fixed x, we have t,) - 5(xo) = O
for almost all x € X. Therefore

s1= ) te S
xeX

is also an element of I'(X, &) and
(@ °8)(xo0) = o ( ZX Ly * S(x)(x0)> = ZX Ly " O(Sey(X0)) = ZX tey - 5'(%o)
= ZE (e - S'(x0)) = ( Z t(x)) - 5'(x0) = 5'(xo),

xeE

where E is a finite set and ). ¢, = 1 near x,. o

xeE

Theorem 5.2. If & is fine, then H(X, &) = 0 for{ > 1.

PROOF. Let O - & - Fy » & - &, — - - be the canonical flabby res-
olution of &. & and all the &, are sheaves of T-modules. By induction on
v we show that the &, are all fine.

Lo = W(¥) is defined by the pre-sheaf {F(U, #),r%}. [(U, &) is a
T-module with ¢t - s = 0if Supp(t) " U = Fandt-s = sif Supp(l — ) n
U = . Therefore &, is fine.

Now let Fy,..., S, be fine and ¢ > 0. The homomorphisms which
appear take into account the T-module structure. Therefore the subsheaves

'%i: = Im(&’i_l 4 y,)

are finefori =0,...,7and ¥_;: = &; hence &, ., = W(¥,/%,) is fine.
Since all the sheaves J¢';: = Ker(¥; » &;,,) are fine, we obtain epi-
morphisms of fine sheaves: &;_; » A"; = #;. By Theorem 5.1,I'(X, &;_ ) -
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I'(X, ;) is also surjective, and therefore

Im(I'(X, &i-4) - I'(X, &) = Ker(I'(X, &) > I'(X, #i41)),
ie, H(X, %) =0fori > 1. O
Def. 5.3. The sheaf of germs of holomorphic (p, O)-forms on X will be

denoted by QP. A holomorphic (p,0)-form ¢ = @®® has a local
representation

(p= Z ail...i dz

1<iy< - <ip<n

ip?

with holomorphic coefficients a;, . ;.

Thus the sheaf Q? is locally isomorphic to the (free) sheaf (Z) -0. We

also call Q7 a locally free sheaf. In particular ©F is coherent.
There is a canonical injection &:Q” ¢, o7 ° and the differential

d":APYU) - AP 1T Y(U)
induces homomorphisms of sheaves of abelian groups:
d":. P — ofPatl,

Theorem 5.3. The following sheaf-sequence is exact:
O Qr & agp0 L gr1 & yp2 ...
Proor
1. It is clear that d"c¢ = 0 and d" o d” = 0.
2. Let x€ X, U be a coordinate neighborhood of x in X. An element
@ € APYU) has the form

Q = Z dz,'1 AN A dZip A (Pil...,'p,
1<iy < 7 <ip<n
with @;,...; € A%»%U). Therefore
d’o = Y (—1Pdz;, A -+ Adzg, A d"py,.,

1<ig< - <ip<n

and so d”"¢ = 0 implies that d"¢;,...;, = Ofor all i, ..., i,.

According to Dolbeault there are neighborhoods Uj,...;, of x with
Ui,...;, = U, as well as forms y;,...;, of type (0,g — 1) on Uj,...; such
that d"Y;,...;, = ¢;,...;,|U;,...;,. Let U’ be the intersection of all sets
Ui; g and

Y= Y (—VPdzy Ao Adzy Ay, |U
1<ig<- <ip<n
Then d"y = ¢|U".

3. Let 6 /7% xe U, U an open neighborhood of x and ¢ e A7 %(U)

such that ¢ = ro(x). O = d"6 = r(d"¢)(x) if and only if d”¢ = 0 near x,
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if therefore ¢ is holomorphic near x. That means ¢ € Q. The sequence is
exact at o/P'°,

4. Letqg > 1, 0 e &/%4, U a neighborhood of x and ¢ € A4 U) be such
that ¢ = rep(x). O = d"o = r(d"¢)(x) if and only if d"¢ = 0 near x, and
without loss of generality, on U.

By (2) this is equivalent to the existence of a neighborhood U'(x) = U
anday € 474~ }(U") withd"y = ¢|U’, and that is equivalent to ¢ = ro(x) =
r(d"y)(x) = d"(ry)(x). Therefore the sequence is exact at o/, O

Def. 5.4. The induced sequence
0 - TI(X,Q7) 5 I(X,«”° 4 rXx,s?H —---

is called the Dolbeault sequence. Clearly we have an augmented cochain
complex (of C-vector spaces). The associated cohomology groups

_ Ker(I'(X, /7% - I'(X, APty

- Im(I(X, #777Y) - [(X, o/™9))

H»YX):
are called the Dolbeault groups.

Theorem 5.4 (Dolbeault)
HPYX) ~ HY(X, QF) for g€ Ny.

ProoF. Let O —» 7% > A —> | —> /4 — --- be the canonical flabby
resolutions of the sheaves /7% (all &/{ are fine!). Let C,,: = I'(X, «/}) for
v,ue Ny.Leté":C,, - C,,y, ,and6":C,, —» C, ,. be the homomorphisms
induced by the flabby solution O —» Q? - ¥, -» &, —» -+ and the
Dolbeault sequence, with signs so that (C,,, §', 6”) is a double complex. We
obtain the following diagram:

0 0 0 0

J J

0 ——I(X, Q) —TI'(X, Fo) —I(X,S) (X, ) — "

0 —— I'(X, 5#%%) —— Coo—" > Cyy —" > ¢y — 9"
5 5 5

0 —— I(X, P ) ——s C g — 8 0. 8",
: bk

0 —I(X, 72— Cpy—2 >, — s, —9
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All the hypotheses of Theorem 3.1 of Chapter VI are satisfied, so
HPYX) ~ H,o, H(X, QF) ~ H,,.

Since H'(X, o/79) = 0 (for i > 1) the §”-sequences are exact. Since the
sequence O — QP —» /70 - /P! — - --isexact and W is an exact functor,
all sequences O » &, —» 0 — ! — - -+ are exact. Since all sheaves are
flabby, the ¢'-sequences are exact. Therefore Hy, ~ H,,, and the theorem
is proved. O

Theorem 5.5. Let X be a Stein manifold, ¢ = 1. If ¢ is a form of the type (p, q)
on X withd"@ = 0, then on X there exists a form  of the type (p, q — 1),
with d"'y = ¢.

Proof. By Theorem B H4(X, Q7) = O for g > 1; therefore H>%(X) = O for

q =1 O

Remarks. W‘iith the help of Poincaré’s Lemma one shows that the sequence
0-C& 5 o' % o2 -+ is exact. The associated cohomology
groups

H'(X): = Ker(I'(X, ") —» (X, ")) Im(['(X, " 1) > (X, "))

are called the de Rham groups. As above one shows
Theorem 5.6. H'(X) ~ H'(X,C) forr = 0.

Since
A= P AP

ptq=¢

we would expect that a connection between the topological cohomology
groups H'(X, C) and the analytically defined cohomology groups H(X, QF)
exists. That is in fact the case. If, for example, X is a Kahler manifold (for
example, a projective-algebraic manifold), then according to Kodaira,

H'(X, 0~ P HIX, Q).

ptq=r
As a consequence one obtains:
B(X) = 2p = even;

on X there exist p linearly independent differentials of the first kind, that is,
elements of I'(X, Q1).
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203



Index

Complex atlas [cont.]
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ringed space, 119
space, 121
submanifold, 133
torus, 138

Connected, 2, 124
component, 2

Continuity theorem, 30

Convergence of power series, 3, 68

Coordinate transformation, 123

Cousin I distribution, 162

Cousin II distribution, 171

Covariant functor, 150

D

Deformation, 97
de Rham groups, 197
Derivation properties, 180
Derivative of a polynomial, 87
Diagonal, 135
Differential form, antiholomorphic, 182

holomorphic, 187

normal form of, 183
Dimension of an analytic set, 97

of a complex manifold, 124
Discrete mapping, 127 set, 50
Discriminant, 89
Distinguished boundary, 4
Divisibility, 78
Dolbeault groups, 196

lemma, 191

sequence, 196

theorem, 196
Domain 2

of convergence, 8

of holomorphy, 35, 65

with C? boundary, 37
Double complex, 163

E

Edge-of-the-Wedge theorem 67
Euclidean Hartogs figure, 21, 29
ring, 86
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Fiber preserving, 56
Fine sheaf, 193
Finite analytic sheaf, 113
module, 82
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Five lemma, 117
Flabby resolution, 152
sheaf, 151
Form of type (p, q), 183
Formal power series, 3
Functional determinant, 25
holomorphic, 26
Functional matrix, holomorphic, 26
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exact, 150
covariant, 150
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Gauss lemma, 80
Geometrically convex, 40, 43
hull, 40
Greatest common division (GCD), 86
Group, Dolbeault, 196
de Rham, 197
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Hartogs figure, 29, 66

Hensel’s lemma, 82

Henselian ring, 82

Holomorphic differential form, 187
domain, 35, 64
function, 3, 44, 62, 63, 122, 176
functional determinant, 26
functional matrix, 26
hull, 65, 127
mapping, 26, 125
region, 35
tangent vector, 181
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Kihler manifold, 144, 197
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Leray covering, 166
Leray’s theorem, 175
Levi conjecture, 37
condition, 37
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Lieb’s theorem, 193
Lifting, 56, 114
Local C-algebra, 81
analytic, 84
uniformizing, 128
Locally differentiable function, 179
free sheaf, 195
topological, 58
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Manifold, 122
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discrete, 127

holomorphic, 26, 125
Maximum principle, 124
Mittag-Leffler problem, 163
Meromorphic function, 85, 141
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Multi-index, 2

N

Noetherian, 83
Norm of a power series, 68
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form of a differential form, 183
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Order of a convergent power series, 80

Osgood closure, 145

P

Partial derivative, 9, 132
Partition of unity, 193
Period relations, 144
Permutation, 158
Poincaré lemma, 188
Pole, 85, 141
Polycylinder, 4
Power series, formal, 3, 68
convergent, 3, 68
norm of, 68
order of, 80
Presheaf, 102
of modules, 107
of C-algebras, 106
Prime, 79
decomposition, 79
Projection theorem, 147
Projective algebraic manifold, 143
space, 135
Proper modification, 147
Reinhardt domain, 6
Pseudo branching, 93
Pseudopolynomial, 87
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205



Index

monomorphism, 110

Q morphism, 101
Quotient field; 79 morphism, analytic, 110
sheaf, 109 of A-modules, 106
of C-algebras, 106
R of sets, 99
Real differentiable, 22 Shearing, 76
Reducible analytic set, 96 Singularity (singular point), 95
Region, 2 free, 132
of convergence, 7 isolated, 33, 97
of holomorphy, 35 Stalk, 99
Regular closure, 145 Stalk preserving (mapping), 101
inz,, 74 Stein manifold, 128
point, 95 covering, 175
Reinhardt domain, 5 Strongly pseudoconvex, 193
complete, 5 Submanifold, 133
proper, 5 Subsheaf, 100
Relation finite, 114 Support of an analytic sheaf, 113
sheaf, 114 Symmetric polynomial, 88

Relatively compact, 40
Resolution of a sheaf, 152 T

Riemann domain, 54 Tangent space, 37, 180

,With distinguished point, 56 Tangent vector, antiholomorphic, 181
Riemann surface, abstract, 125 holomorphic, 181

concrete, 128 real, 179
of \/z, 55, 62,92

. Taylor series expansion, 15
Riemann sphere, 125

Test function, 193

Riickert basis theorem, 83 Theorem A, 174
B, 174
S Topological mapping, 54
Schlicht domain, 57 Torus, complex, 137
Section, 100 real, 4
Sequence, exact, 112 Total differential, 37, 185, 186
of sheaves, analytic, 112 Type (p, q), 183
Serre’s five lemma, 117
Set of degeneracy, 146 U
Sheaf, analytic, 108
conherent, 114, 117 Unbranched, 130

Union of domains, 61

constant, 108 3 N .
Unique factorization domain, 79

epimorphism, 110

fine. 193 Unit section, 111

finitely generated, 113

homomorphism, 110 w

isomorphism, analytic, 111 Wedge product, 183
locally free, 195 Weierstrass condition, 73
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formula, 71, 77
homomorphism, 83
preparation theorem, 73, 78
problem, 171

Whitney sum, 104

Z

Zariski topology, 95
Zero section, 105
set, 108
set of functions, 84, 109
sheaf, 109
Zorn’s lemma, 157



