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Preface

This book presents some of the basic topological ideas used in studying
differentiable manifolds and maps. Mathematical prerequisites have been
kept to a minimum; the standard course in analysis and general topology is
adequate preparation. An appendix briefly summarizes some of the back-
ground material.

In order to emphasize the geometrical and intuitive aspects of ditferen-
tial topology, I have avoided the use of algebraic topology. except in a few
isolated places that can easily be skipped. For the same reason I make no
use of differential forms or tensors.

In my view, advanced algebraic techniques like homology theory are
better understood after one has seen several examples of how the raw
material of geometry and analysis is distilled down to numerical invariants.
such as those developed in this book : the degree of a map. the Euler number
of a vector bundle, the genus of a surface, the cobordism class of a manifold.
and so forth. With these as motivating examples, the use of homology and
homotopy theory in topology should seem quite natural.

There are hundreds of exercises, ranging in difficulty from the routine to
the unsolved. While these provide examples and further developments of
the theory, they are only rarely relied on in the proofs of theorems.
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Introduction

Any problem which is non-linear in character, which involves more than one
coordinate system or more than one variable, or where structure is initially
defined in the large, is likely to require considerations of topology and group
theory for its solution. In the solution of such problems classical analysis will
frequently appear as an instrument in the small, integrated over the whole prob-
lem with the aid of topology or group theory.

—M. Morse, Calculus of Variations
in the Large, 1934

La possibilité d'utiliser le modéle differential est, & mes yeux, la justification
ultime de I'emploi des modéles quantitifs dans les sciences.

—R. Thom, Stabilité Structurelle
et Morphogénése. 1972

In many branches of mathematics one finds spaces that can be described
locally by n-tuples of teal numbers. Such objects are called manifolds: a
manifold is a topological space which is locally homeomorphic to Euclidean
n-space R". We can think of a manifold as being made of pieces of R glued
together by homeomorphisms. If these homeomorphisms are chosen to be
differentiable, we obtain a differentiable manifold. This book is concerned
mainly with differentiable manifolds.

The Development of Differentiable Topology

The concept of manifoid emerged gradually from the geometry and func-
tion theory of the nineteenth century. Differential geometers studied curves
and surfaces in “ordinary space”; they were mainly interested in local con-
cepts such as curvature. Function theorists took a more global point of view:
they realized that invariants of a function F of several real or complex vari-
ables could be obtained from topological invariants of the sets F~'(c); for
“most” values of ¢, these are manifolds.

Riemann broke new ground with the construction of what we call
Riemann surfaces. These were perhaps the first abstract manifolds; that is,
they were not defined as subsets of Euclidean space.

Riemann surfaces furnish a good example of how manifolds can be used
to investigate global questions. The idea of a convergent power series (in one
complex variable) is not difficult. This simple local concept becomes a com-
plex global one, however, when the process of analytic continuation is
introduced. The collection of all possible analytic continuations of a con-
vergent power series has a global nature which is quite elusive. The global

i



2 Introduction
aspect suddenly becomes clear as soon as Riemann surfaces are introduced:
the continuations fit together to form a (single valued) function on a surface.
The surface expresses the global nature of the analytic continuation process.
The probilem has become geometrized.

Riemann introduced the global invariant of the connectivity of a surface:
this meant maximal number of curves whose union does not disconnect the
surface, plus one. It was known and “proved” in the 1860's that compact
orientable surfaces were classified topologically by their connectivity.
Strangely enough, no one in the nineteenth century saw the necessity for
proving the subtle and difficult theorem that the connectivity of a compact
surface is actually finite.

Poincaré began the topological analysis of 3-dimensional manifolds. In
a series of papers on “Analysis Situs,” remarkable for their originality and
power, he invented many of the basic tools of algebraic topology. He also
bequeathed to us the most important unsolved problem in differential
topology, known as Poincaré’s conjecture: is every simply connected compact
3-manifold, without boundary, homeomorphic to the 3-sphere?

It is interesting to note that Poincaré used purely differentiable methods
at the beginning of his series of papers, but by the end he relied heavily on
combinatorial techniques. For the next thirty years topologists concentrated
almost exclusively on combinatorial and algebraic methods.

Although Herman Weyl had defined abstract differentiable manifolds in
1912 in his book on Riemann surfaces, it was not until Whitney’s papers of
1936 and later that the concept of differentiable manifold was firmly estab-
lished as an important mathematical object, having its own problems and
methods.

Since Whitney’s papers appeared, differential topology has undergone a
rapid development. Many fruitful connections with algebraic and piece-
wise linear topology were found; good progress was made on such questions
as embedding, immersions, and classification by homotopy equivalence or
diffeomorphism. Poincaré’s conjecture is still unsolved, however. In recent
years techniques and results from differential topology have become im-
portant in many other fields.

The Nature of Differential Topology

In today’s mathematical sciences manifolds are found in many different
fields. In algebra they occur as Lie groups; in relativity as space-time; in
economics as indifference surfaces; in mechanics as phase-spaces and energy
surfaces. Wherever dynamical processes are studied, (hydrodynamics, popu-
lation genetics, electrical circuits, etc.) manifolds are used for the “state-
space,” the setting for a model of the process by a differential equation or
a mapping.

In most of these examples the historical development follows the local-
to-global pattern. Lie groups, for example, were originally “local groups”
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having a single parametrization as a neighborhood of the origin in R*. Only
later did global questions arise, such as the classification of compact groups.
In each case the global nature of the subject became geometrized (at least
partially) by the introduction of manifolds. In mechanics. for example. the
differences in the possible long-term behavior of two physical systems become
clear if it is known that one energy surface is a sphere and the other is a
torus.

When manifolds occur “naturaily” in a branch of mathematics, there is
always present some extra structure: a Riemannian metric. a binary opera-
tion, a dynamical system, a conformal structure, etc. It is often this structure
which is the main object of interest; the manifold is merely the setting. But
the differential topologist studies the manifold itself; the extra structures
are used only as tools.

The extra structure often presents fascinating local questions. In a
Riemannian manifold, for instance, the curvature may vary from point to
point. But in differential topology there are no local questions. (More precisely.
they belong to calculus.) A manifold looks exactly the same at all points
because it is locally Euclidean. In fact, a manifold (connected. without bound-
ary) is homogeneous in a more exact sense: its diffeomorphism group acts
transitively.

The questions which differential topology tries to answer are global: they
involve the whole manifoid. Some typical questions are: Can a given mani-
fold be embedded in another one? If two manifolds are homeomorphic, are
they necessarily diffeomorphic? Which manifolds are boundaries of compact
manifolds? Do the topological invariants of a manifold have any special
properties? Does every manifold admit a non-trivial action of some cyclic
group?

Each of these questions is, of course, a shorthand request for a theory.
The embedding question, for example, really means: define and compute
diffeomorphism invariants that enable us to decide whether M embeds in
N, and in how many essentially distinct ways.

If we knew how to construct all possible manifolds and how to tell from
“computable” invariants when two are diffeomorphic. we would be a long
way toward answering any given question about manifolds. Unfortunately.
such a classification theorem seems unattainable at present. except for very
special classes of manifolds (such as surfaces). Therefore we must resort to
more direct attacks on specific questions, devising different theories for
different questions. Some of these theories, or parts of them, are presented
in this book.

The Contents of This Book

The first difficulty that confronts us in analyzing manifolds is their
homogeneity. A manifold has no distinguished “parts™; every point looks
like every other point. How can we break it down into simpler objects?
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The solution is to artificially impose on a manifold a nonhomogeneous
structure of some kind which can be analyzed. The major task then is to
derive intrinsic properties of the original manifold from properties of the
artificial structure,

This procedure is common in many parts of mathematics. In studying
vector spaces, for example, one imposes coordinates by means of a basis;
the cardinality of the basis is then proved to depend only on the vector space.
In algebraic topology one defines the homology groups of a polyhedron
in terms of a particular triangulation, and then proves the groups to be
independent of the triangulation.

Manifolds are, in fact, often studied by means of triangulations. A more
natural kind of decomposition, however, consists of the level sets f~(y) of
a smooth map f:M — R, having the simplest kinds of critical points (where
Df vanishes). This method of analysis goes back to Poincaré and even to
Mobius (1866); it received extensive development by Marston Morse and
today is called Morse theory. Chapter 6 is devoted to the elementary aspects
of Morse theory. In Chapter 9 Morse theory is used to classify compact
surfaces.

A basic idea in differential topology is that of general position or trans-
versality; this is studied in Chapter 3. Two submanifolds A, B of a manifold
N are in general position if at every point of A n B the tangent spaces of
A and B span that of N. If A and B are not in general position, arbitrarily
small perturbations of one of them will put them in general position. If they
are in general position, they remain in it under all sufficiently small per-
turbations; and 4 n B is then a submanifold of the “right” dimension. A
map f:M — N is transverse to A if the graph of f and M x A are in general
positionin M x N. This makes f ~!(A4)a submanifold of M, and the topology
of f ~1(A) reflects many properties of f. In this way an important connection
between manifolds and maps is established.

Transversality is a great unifying idea in differential topology; many
results, including most of those in this book, are uitimately based on trans-
versality in one form or another.

The theory of degrees of maps, developed in Chapter 5, is based on
transversality in the following way. Let f: M — N be a map between compact
oriented manifolds of the same dimension, without boundary. Suppose [ is
transverse to a point y € N; such a point is called a regular value of f. The
degree of f is the “algebraic” number of points in f ~!(y), that is, the number
of such points where f preserves orientation minus the number where f
reverses orientation. It turns out that this degree is independent of y and,
in fact, depends only on the homotopy class of f. If N = S” then the degree
is the only homotopy invariant. In this way we develop a bit of classical
algebraic topology: the set of homotopy classes { M,S"] is naturally iso-
morphic to the group of integers.

The theory of fibre bundles, especially vector bundles, is one of the
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strongest links between algebraic and differential topology. Patterned on
the tangent and normal bundles of a manifold, vector bundles are analogous
to manifolds in form, but considerably simpler to analyze. Most of the deeper
diffeomorphism invariants are invariants of the tangent bundle. In Chapter 4
we develop the elementary theory of vector bundles, including the classifica-
tion theorem: isomorphism classes of vector bundles over M correspond
naturally to homotopy classes of maps from M into a certain Grassmann
manifold. This result relates homotopy theory to differential topology in a
new and important way.

Further importance of vector bundies comes from the tubular neighbor-
hood theorem: a submanifold B < M has an essentially unique neighbor-
hood looking like a vector bundle over B.

In 1954 René Thom proposed the equivalence relation of cobordism: two
manifolds are cobordant if together they form the boundary of a compact
manifold. The resulting set of equivalence classes in each dimension has a
natural abelian group structure. In a tour de force of differential and algebraic
topology, Thom showed that these groups coincide with certain homotopy
groups, and he carried out a good deal of their calculation. The elementary
aspects of Thom’s theory, which is a beautiful mixture of transversality,
tubular neighborhoods, and the classification of vector bundles, is presented
in Chapter 7.

Of the remaining chapters, Chapter 1 introduces the basic definitions
and, proves the “easy” Whitney embedding theorem: any map of a compact
n-manifold into a (2n + 1)-manifold can be approximated by embeddings.
Chapter 2 topologizes the set of maps from one manifold to another and
develops approximation theorems. A key result is that for most purposes it
can be assumed that every manifold is C*. Much of this chapter can be
skipped by a reader interested chiefly in compact C* manifolds. Chapter 8
is a technical chapter on isotopy, containing some frequently used methods
of deforming embeddings; these results are needed for the final chapter on
the classification of surfaces.

The first three chapters are fundamental to everything else in the book.
Most of Chapter 6 (Morse Theory) can be read immediately after Chapter 3:
while Chapter 7 (Cobordism) can be read directly after Chapter 4. The
classification of surfaces, Chapter 9, uses material from all the other chapters
except Chapter 7.

The more challenging exercises are starred, as are those requiring alge-
braic topology or other advanced topics. The few that have two stars are
really too difficult to be considered exercises, but are included for the sake
of the results they contain. Three-star “exercises” are problems to which I
do not know the answer.

A reference to Theorem 1 of Section 2 in Chapter 3 is written 3.2.1. or
as 2.1 if it appears in Chapter 3. The section is called Section 3.2. Numbers
in brackets refer to the bibliography.
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Chapter 1
Manifolds and Maps

11 faut d’abord examiner la question de la définition des variétés.

—P. Heegard, Dissertation, 1892

The assemblage of points on a surface is a twofold manifoldness: the assem-
blage of points in tri-dimensional space is a threefold manifoldness; the values
of a continuous function of n arguments an n-fold manifoldness.

—G. Chrystal, Encyclopedia
Brirttanica, 1892

The introduction of numbers as coordinates . .. is an act of violence . . .

—H. Weyl, Philosophy of Mathematics
and Natural Science, 1949

Differential topology is the study of differentiable manifolds and maps.
A manifold is a topological space which locally looks like Cartesian n-space
R”; it is built up of pieces of R* glued together by homeomorphisms. If these
homeomorphisms are differentiable we obtain a differentiable manifold.

The task of differential topology is the discovery and analysis of global
properties of manifolds. These properties are often quite subtle. In order to
study them, or even to express them, a wide variety of topological, analytic
and algebraic tools have been developed. Some of these will be examined in
this book. .

In this chapter the basic concepts of differential topology are introduced:
differentiable manifolds, submanifolds and maps. and the tangent functor.
This functor assigns to each differentiable manifold M another manifold
TM called its tangent bundle, and to every differentiable map f:M — N it
assigns a map Tf:TM — TN. In local coordinates Tf is essentially the
derivative of f. Although its definition is necessarily rather complicated, the
tangent functor is the key to many problems in differential topology ; it reveals
much of the deeper structure of manifolds.

In Section 1.3 we prove some basic theorems about submanifolds, maps
and embeddings. The key ideas of regular value and transversality are intro-
duced. The regular value theorem, which is just a global version of the implicit
function theorem, is proved. It states that if f:M — N is a map then under
certain conditions f ~!(y) will be a submanifold of M. The submanifolds

7



8 1. Manifolds and Maps

S '(y)and of the map f are intimately related; in this way a powerful positive
feedback loop is created:

Theorems about —— | Theorems about
mantifolds «— maps

This interplay between manifolds and maps wili be exploited in later chapters.

Also proved in Section 1.3 is the pleasant fact that every compact mani-
fold embeds in some R?, Borrowing an analytic lemma from a later chapter,
we then prove a version of the deeper embedding theorem of Whitney:
every map of a compact n-manifold into R*"*! can be approximated by
embeddings.

Manifolds with boundary, or d-manifolds, are introduced in Section 1.4.
These form a natural and indeed indispensable extension of the manifolds
defined in Section 1.1; their presence, however, tends to complicate the
mathematics. The special arguments needed to handle J-manifolds are
usually obvious; in order to present the main ideas without interruption we
shall frequently postpone or omit entirely proofs of theorems about
0-manifolds.

At the end of the chapter a convention is stated which is designed to
exclude the pathology of non-Hausdorff and nonparacompact manifolds.

Running through the chapter is an idea that pervades ait of differential
topology: the passage from local to global. This theme is expressed in the
very definition of manifold; every statement about manifolds necessarily
repeats it, explicitly or implicitly. The proof of the regular value theorem,
for example, consists in pointing out the local nature of the hypothesis and
conclusion, and then applying the implicit function theorem (which is itself
a passage from infinitesimal to local). The compact embedding theorem
pieces together local embeddings to get a global one. Whitney's embedding
theorem builds on this, using, in addition, a lemma on the existence of regular
values. This proof of this lemma, as will be seen in Chapter 3, is a simple
globalization of a rather subtle local property of differentiable maps.

Every concept in differential topology can be analyzed in terms of this
local-global polarity. Often a definition, theorem or proof becomes clearer
if its various local and global aspects are kept in mind.

0. Submanifolds of R"**

Before giviﬁg formal definitions we first discuss informally the familiar
space S" and then more general submanifolds of Euclidean space.
The unit n-sphere is

"= {xe R x| = 1},

. n+1 1/2
where |x| = (Z xf) . We introduce local coordinates in S” as follows.
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Forj = 1,...,n + 1 define open hemispheres
Ujzj-y = {xe§":x; > 0},
U, = {xe8":x; < 0}.

Fori = 1,...,2n + 2 define maps

oU; - R,
¢i(x)=(x1,...,i},...,x,,+:) if!=2j— 10[2}';

this means the n-tuple obtained from x by deleting the jth coordinate.
Clearly ¢, maps U, homeomorphically onto the open n-disk

B={yeR|y <1}.

It is easy to see that ¢, !:B —» R**! is analytic.

Each (¢;,U,) is called a “chart” for S"; the set of all (¢;,U;) is an “atlas™.
In terms of this atlas we say a map f:S* - R* is “differentiable of class C™
in case each composite map

feor:B~R

is €’ ie., has continuous partial derivatives of order r. If it happens that
g:S* — R™*!is C" in this sense, and g(S")  §™, it is naturaltocallg:S™ — S™
a C” map. This definition is equivalent to the following. Let {(§;, ¥})} be an
atlasfor §™,j = 1,...,q. Then g:S* — $™ is C" provided each map

V90 Vo N (V) - R”

is C'; this makes sense because ;g™ '(V)) is an open subset of R".

Thus we have extended the notion of C* map to the unit spheres S*, n =
1,2,....Itiseasy to verify that the composition of C" maps (in this extended
sense) is again C.

A larger class of manifolds is obtained as follows. Let f: R*** - R* be a
C map,r > 1,and put M = f~*(0). Suppose that f has rank k at every point
of £~ 1(0); we call M a “regular level surface”. An exampleis M = S* < R*"!

n+1

where f(x) =1 — ) x7
i=1

Local coordinates are introduced into M as follows. Fix pe M. By a
linear coordinate change we can assume that the k x k matrix ¢f;/éx;,
1 < i, j < k, has rank k at p. Now identify R*** with R" x R* and put
p = (ab). According to the implicit function theorem *there exist a
neighborhood U x V of {(g,b) in R* x R* and 2 C" map g:U — V, such
that g(x) = y if and only if f(x,y) = 0. Thus

MU x V) = {(x,g(x)):x € U}
= graph of g.
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Define
W=Mn(U x V),
oW - R,
(xg(x))—=>x  (xeU).

Then {@,W) is taken as a local coordinate system on M. In terms of such
coordinates we can further extend the notion of C" map to maps between
regular level surfaces.

Exactly the same constructions are made when the domain of f is taken
to be an open subset of R"**, rather than all of R***,

A significantly broader class of manifolds comprises those subsets M of
R"** which locally are regular level surfaces of C" maps. That is, each point
of M has a neighborhood W = R"** such that

WnM=f""

for some C" map f: W -» R* having rank k at each point W n M. Local co-
ordinates are introduced and C" maps are defined as before. A manifold of
this type is called an “n-dimensional submanifold of R***",

In each of these examples it is easy to see that the coordinate changes are
C". These coordinate changes are the maps

P; @i iU A Uj) = oU;n Uy

where (¢;,U;) and (p;,U;) vary over an atlas for the manifold in question.
(The domain and range of ¢, are open subsets of R™, so that it makes
sense to say that ¢ ;' is C")

This has an important implication: to verify thatamap /:M - Nis C,
it suffices to check that for each point x € M there is at least one pair of charts,
(p,U) for M and ({,V) for N, with x € U and f(U) < V, such that the map

R™ > o(U) % y(V) = R"

is C". For suppose this is true, and let (3,0), (§,V) be any charts for M, N; we
must show that §f@~" is C". An arbitrary point in the domain of f@ " is
of the form @(x) where x € U n £~ Y(¥). Let (¢,U), (,V) be charts for M, N

such that x € U, f(U) = Vand yfo ™! is C. Then in a neighborhood of $(x)
we have

Wo ' =y fe Ned ).

Thus Jf~" is locally the composition of three C” maps, so it is C".
Next we discuss the tangent bundle of an n-dimensional submanifold
M < R"*% Let x € M and let (¢,U) be a chart at x (that is, x € U). Puta =

@(x)e R". Let E, = R"** be the vector subspace which is the range of the
linear map

D(pa—l:Rn — R”H‘.

Because of the chain rule, E, depends only on x, not on the choice of (¢,U).
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The set x x E, = M, is called the “tangent space™ to M at x. We give
it the natural vector space structure inherited from E,. Notice that D, !
induces a vector space isomorphism between R* and M,.

If we associate to every (x,y) € M, the point x + y € 8"~* we obtain an
embedding M, — R"**. The image of this embedding is an affine n-plane in
R"** passing through x. It is tangent to M in the sense that it consists of ail
vectors based at x which are tangents to curves in M passing through x.

If f:M — N is a " map (between submanifolds) and f(x) = z, a linear
map Tf,:M, — N, is defined as follows. Let {(¢,U), (V) be charts for M, N
at x, z. Put ¢(x)} = g, and define Tf, by

Tfe:(x,3) = (@D @~ 1))

This is independent of the choice of (¢,U) and (y,V), thanks to the chain rule.

The union of all the tangent spaces of M is called the “tangent bundle™
of M. The linear maps Tf, form a map Tf:TM -» TN. This map plays the
role of a “derivative” of the map f:M — N.

By means of Tf we can extend the notion of “rank™ to maps between
submanifolds: the rank of f at x € M means the rank of the linear map
Tf:M, - N,

The set TM is a subset of M x R*** hence of R*** x R*** Itis natural
to ask whether TM is a submanifold. In fact, if (¢,U) is a chart for M, we
obtain a natural chart ($,TU) for TM by identifying

TU = {(x,y)e TM:xe U}
and defining
&:TU - R x R,
®(x,y) = (@(x1Do; "))
'I(;h_esl»e charts make TM into a C"~! submanifold. The maps Tf are of class
T'iiis completes our sketch of the basic notions of manifold, map and

tangent bundle for the special case of submanifolds of Euclidean space. We
now proceed to abstract manifolds.

1. Differential Structures

A topological space M is called an n-dimensional manifold if it is locally
homeomorphic to R". That is, there is an open cover # = {U;};., of M such
that for each i € A there is a map ¢;: U; - R" which maps U; homeomor-
phically onto an open subset of R". We call (¢;,U;) a chart {(or coordinate
system) with domain U,; the'set of charts @ = {p,,U;},., is an atlas.

Two charts (¢;,U;), (¢;,U;) are said to have (7 overlap if the coordinate
change

(PJ‘Pi-lI‘Pi(Ui NnU;) - oU;nU)
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is of differentiability class C', and @,p; ' is also C". See Figure 1-1. Here r
can be a natural number, oo, or @ (meaning real analytic). This definition
makes sense because @, (U; n U;) and ¢, {U; n U,;) are open sets in R".

@; @

\
/@ “i
P9i
Rll

Figure 1 -1, Overlapping charts.

An atlas @ on M is called (7 if every pair of its charts has C” overlap. In
this case there is a unique maximal C" atlas ¥ which contains &. In fact ¥ is
the set of all charts which have C” overlap with every chart in &.

A maximal C” atlas @ on M is a C" differential structure; the pair (M,a) is
called a manifold of class C". A manifold of class > 1 is called smooth.

To determine a C" differential structure it suffices to give a single C” atlas
contained in it. Thus R” has a unique C differential structure containing the
identity map of R". More generally every open set U < R”" has a unique C’
differential structure containing the inclusion map U < R".

Suppose a is a C* differential structure on M and r is an integer such that
1 €,r < s. Since « also a C” atlas, it belongs to a unique C* differential struc-
ture on M, obtained by adding to « all charts having C” overlap with every
chart in a. In this way every C* manifold may be considered a C" manifold.
In Chapter 2 we shall prove the converse.

Let r be fixed until further notice; we omit the term “C".”
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If(M,®) and (N, ¥) are manifolds their Cartesian product is the manifold
{M x N,8), where @ is the differential structure containing all charts of the
form

(@ x YU x ViU ed, (.1 Y.

Here @ x ¢ maps U x Vinto R™ x R, which we identify with 8=~
1f (M, ) is a manifold and W < M is an open set the induced differential
structure on Wis
W = {(p,U)e d:U < W),

A differential structure & on M is often obtained by the collation of
differential structures &; on open sets U; covering M. This means that

|UinU;=dJU;nU; forall i, j

and & is the unique differential structure on M containing each ¢; as a subset.

Let M be a topological space, (N,#} a manifold and k: M — N a homeo-
morphism of M onto an open subset of N. The induced differential structure
onMis

h*® = {(phh™'U):(e,U)ed and U < AN

The n-sphere S" is given the C® differential structure defined by the atlas
given in the preceding section.

Real projective n-space P" is the C* manifold whose underlying space is
the identification space of S* under the antipodal map: we identify x € S°
with —x. If p:§* — P"is the natural projection, p maps each open hemisphere
homeomorphically. Let {U,,..., U,} be a covering.of $" by open hemi-
spheres. If we give each set p(U,) = ¥ the diflerential structure @; induced
by (p|U,)~!, it is easy to see that @, and @; agree on ¥, n V. Thus P* is gnen
a dlﬂ'erenual structure by collation.

More examples of manifolds are given in the exercises at the end of the
section.

Some manifolds are contained in other manifolds in a natural way; thus
$" ¢ R"*1. A subset 4 of a C" manifold (M,®) is a C" submanifold of (M,®)
if for some integer k > 0, each point of A belongs to the domain of a chart
{¢,U) € & such that

UnA=¢ '(RY

where R* c R" is the set of vectors whose last n — k coordinates are 0." We
call such a (¢,U) a submanifold chart for (M,A). It is evident that if 4 is a
submanifold of M then the maps

plUnAUnA-R

form a C atlas for A, where (¢,U) varies over all submanifold charts. Thus
A is a C" manifold in its own right, of dimension k. The codimension of A is
n—k

! For r = 0 this is sometimes called a focally flat C® submanifold.
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Let W « R"beanopensetand f: W - R?a C"map, | € r € w.Suppose
y € f(W)is a regular value of f; this means that f has rank g at every point
of £71(3). (Therefore ¢ < n.) Then the subset f7*()) is a C" submanifold
of B" of codimension ¢. This follows from the implicit function theorem, as
explained in Section 1.0.

Exercises

1. The Grassmann manifold G, , of k-dimensional linear subspaces or k-planes of R” is
given an atlas as follows. Let E < R" be a k-plane and E! its orthogonal complement.
Identify R" with E x E', Every k-plane near enough to E is the graph of a unique
lineas map E — E*. In this way a neighborhood of E € G, , is mapped homeomorphi-
cally onto an open set in the vector space of linear maps E — E*. This makes G, , an
analytic manifold of dimension k(n — k).

2. Complex projective n-space is the manifold CP" of (real) dimension 2n obtained as
follows. An element of CP” is an equivalence class [z, ..., z,] of (n + 1)-tuples of
complex numbers not all 0. The equivalence relation is: [z,,. .., z,] = [wzy,..., wz,]
if w is a nonzero complex number. The topology is the natural quotient space topology.
An atlas {@, U}, i=0,...,n is defined as follows. Let U; be the set of equivalence
classes whose i'th entry is nonzero. Map U, into C" by

[201 vty Z,J hd (20/2.'» e vm~ R ] zl/zi)\

where . indicates deletion. Under the natural identification of complex n-space C"
with R2", these maps form a C* atlas on CP(n).

3. Quaternionic projective n-space is a 4n-dimensional manifold constructed as in
Exercise 2, using quaternions instead of complex numbers.

4. The group O(n) of orthogonal n x n matrices is a compact submanifold of the vector

A=l

space R™ of all # x n matrices; its dimension is ), k. The component of the identity
k=0
is the subgroup SO(n) of orthogonal matrices of determinant 1.

5. Let @ = {¢;,U,};c4 be an atlas on an n-dimensional manifold M. Put ¢,(U;) =
¥, « R", and let X be the identification space obtained from { },, ¥, x i when (x,i) is
identified with (9 ;" '(x),j). Then X is homeomorphic to M.

6. If A is a submanifold of M, then A is a (relatively) closed submanifold of an open
submanifold of M.

7. Let G, «c R x Rbethegraphofy = |x}, 0 < A < 0. IfreZandr<l<r+1
then G, is a submanifold which is C" but not C*!. What if 1 is an integer?

8. An atlas of class C" on a set X is sometimes defined as a collection of bijective maps
from subsets of X to open subsets of R" such that all coordinate changes are C'. Given

such an atlas @, there is a unique topology on X making & a C atlas (as defined in
the text) on the space X.

9. Let C be the set of countable ordinal numbers. Let M = C x [0,c0\{0,0}. Give
M the total ordering

) <{@t) if a<a or a=a and t<t.



Endow M with the order topology. Then M is a 1-manifold which is Hausdorff but not
paracompact, called the fong line. M has a C* differential structure but no Riemanman
metric. (See Koch and Puppe [ 1], Kneser and Kneser [1].)

10. Let L be the quotient space obtained from (R x 1) U{(R x 0} by identifving (x.I}
with (x,0) if x # 0. Then L is a nonHausdorff 1-manifold. called the line with 1w o origins.
It has a C® differential structure,

*i1. Let U = R? be a nonempty open set. Suppose given a C" (r > 0} vector field
on U without zeros, such that each integral curve is closed in U. Let M be the identi-
fication space obtained by collapsing each integral curve to a point. Then M isa C
1-manifold, which can be non-Hausdorfi. [Hint: Use small intervals transverse to the
integral curves to construct charts.]

**12. A manifold is metrizable, and has a complete metric, if and only if it is paracompact
and Hausdorfl. A connected metrizable manifold has a countable base. But there is a

connected separable Hausdorff 2-manifold which is not paracompact, (the double of M
in Exercise 7, Section 4.6).

**13. A paracompact manifold is an absolute neighborhood retract (see Hanner [1]).

2. Differentiable Maps and the Tangent Bundle

From now on we shall frequently suppress notation for the differential
structure on a manifold M.

Let M and N be C" manifolds and f:M — N a map. A pair of charts
(¢,U) for M and (¢, V) for N is adapted to f if f{U) < V. In this case the map
Yo~ :p(U) = Y(V)
is defined; we call it the local representation of { in the given charts. at the

point x if xe U.

The map f is called differentiable at x if it has a local representation at x
which is differentiable. This definition makes sense since a local representa-
tion is a map between open sets in Cartesian spaces. Similarly, f is differen-
tiable of class C if it has C" local representations at all points.

If f is C" then every local representation is C". To see this, let (.U} and
(¥,V) be a pair of charts adapted to f, and suppose fis C". To prove yf o~ ' C,
let y € @(¥) be any point; put x = ¢~ '(3). Let (¢o.L ) and (. V) be an
adapted pair of charts giving f the C" local representation Yo f5 ' at x. By

replacing U, and V¥, by smaller open sets, if necessary. we can arrange that
Uy =« Uand ¥, = V. Then

Yot = s Nofes Neor ™)

in (U ). The first and third maps on the right are C” since they are coordinate
changes. Hence yifo ™ '|@(U,) is the composition of C" maps and so is C.
This proves that yifp ! is C in some neighborhood of every point. and so
itis C'.
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Let f:M — Nandg:N — P be C" maps between C" manifolds. It is easy
to verify, using local representations, that the composition gf:M — P is
also (7. The identity map and all constant maps are C". There is evidently a
category of C" manifolds and C" maps.

An isomorphism in the C” category is called a C" diffeomorphism. (If r = 0
this means a homeomorphism.) Explicitly, a C* diffeomorphism f:M - N
is a C" map between C" manifolds M and N which is a homeomorphism, and
whose inverse f ~':N — M is also of class C". If such a map exists we call M
and N C” diffeomorphic manifolds and write M ~ N. This is the basic equiv-
alence relation of differential topology.

Lest the reader lose heart at the prospect of an infinite sequence of equiv-
alence relations, one for each r, we hasten to point out that there is no essential
difference between C" and C*for 1 € r < s £ oo {oreven s = w, but that is
much more difficult). In Chapter 3 we shall see that every C" manifold is C’
diffeomorphic to a C* manifold, and the latter is unique up to C? diffeo-
morphism; and any C" map can be approximated by C* maps.

There is, however, an unbridgeable gap between C° and C'. In fact one
of the most fascinating topics in differential topology began with the dis-
coveries by Kervaire [1] and Smale [1] of compact manifolds having no
differential structure whatever. (It is known that such a “nonsmoothable”
manifold must have dimension at least 4; explicit examples are known in
dimension 8.)

A basic task of differential topology is to find methods for deciding
whether two given manifolds diffeomorphic. Of course diffeomorphic mani-
folds are homeomorphic, and have the same homotopy type. Therefore the
diffeomorphism problem usually takes the form: what more do we need to
know about two manifolds, in addition to their having the same homotopy
type, to guarantee that they are diffeomorphic?

Often a differential invariant turns out to be a topological or homotopy
type invariant. {The classic example is the sum of the indices of zeros of a
vector field on a compact smooth manifold, which turns out to equal the
Euler characteristic.) Such an invariant cannot distinguish between non-
diffeomorphic manifolds which are homeomorphic. On the other hand,
when a differential invariant is a homotopy invariant as well, it is easier to
compute.

One of the most important differential invariants is the tangent bundle.
In later chapters we will study the tangent bundle in some detail; here we
merely give its definition (as a manifold) and the definition of the tangent
of a map.

Let (M,9) be a C'*' manifold, 0 € r < w, where o0 + | = ¢ and
o+ 1 = o, with @ = {¢,U;},.,. Intuitively speaking, a “tangent vector”
to M at x € M is simply a vector in R” together with a chart which identifies
each point near x with a point of R". '

A tangent vector should be an object independent of any particular chart,
however, so we make the following definition. A tangent vector to M is an
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equivalence class [ x,i,a] of triples
(xjja)eM x A x R"
under the equivalence relation:

[xia] = [»jb]

ifand only if x = y and

D{g0; Nex))a = b.

In other words, the derivative of the coordinate change at ¢;(x) sends a to b.
That this is an equivalence relation follows from the rules for dematwes of
compositions and inverses.

The set of all tangent vectors is TM, the tangent bundle of M. The map
p=pu:TM = M,
[xia]— x
is well defined. For any subset A « M we putp~'(4) = T M:alsop~ '(x) =

M, for xe M. If U = M is open then (U,®|U) is also a C** manifold. and
we make the harmless identification TyM = TU.

For any chart (g;,U) € ® there is a well defined bijective map
Te,:TU; » oi(U;) x R" c R* x R",

[xjsa] Lang (‘Pi(x);a)~
The map

(To)To) ' :0Uin Uy x B = oU; x U)) x R*
is the homeomorphism

(3.a) = (@07 '(3)Dlep i)

It follows that TM has a topology making each T¢, a homeomorphism.
and this topology is unique. Moreover, since (T} Te;)" " is a C diffeo-
morphism, the set of charts {Te;, TU,};. is a C" atlas on TM. In this way
TM is a C manifold. The projection map p:TM — M is C". The charts
(To;, TU,) are called natural charts on TM.

Let x € U;. The map Ty;,: M, — R", defined as the composition

M.c TU, S pU) x R" - R",

is a bijection; hence it induces an n-dimensional vector space structure on
M_. This structure is independent of i, since if x € U},

(Te; X Toiw) ™' = Dloj; Mo

which is a linear automorphism of R". In this way M, becomes a vector space,
the tangent space to M at x. Thus TM is the disjoint union of the vector spaces
M. It is a bundle of vector spaces, or “vector bundle.” This aspect of TV
will be emphasized in later chapters.
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The simplest kind of tangent bundie is that of an open set W = R In
this case we identify TW with W x R? via the inclusion chart ¢: W — R?
and the corresponding natural chart on TW. The projection TW — W is
just the natural projection W x R? — W. If M is a submanifold of R* we
can think of tangent vectors to M as arrows and M, as a plane, as in

Figure 1--2.
M,
/(P\'/

Figure 1-2. Tangent vectors to M = 52 < R%.

Let fM—->NbeaC*"'"map,0<r<wACmapTf:TM - TN is
defined as follows: a local representation of Tf in natural charts on TM and
TN is the derivative of the corresponding local representation of f. More
explicitly, let ;:U; = R™, ¢;: V; —» R" be charts for M, N with f(U) c V.
An application of the chain rule shows that the C" map

(TN):TU; - TV,
[x,i,a] - [f(x)v.LD(wijoi_ 1)(¢;X)(l]
is independent of i, j. Thus there is 2 well defined map Tf: TM — TN which
coincides with (Tf);; on TU,.

If f(x) = y then Tf maps M, into N, and the restriction of Tf is a linear
map: T, M, - N,

In the natural charts this is just the derivative at x of the corresponding
local representation of f. Thus T, f may be thought of as the derivative of

f at x. Note, however, that its domain and range depend on x.
Using natural charts one sees that the diagram

™ ) >»TN
Pum Pn
¥ ‘IL
M >N
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is commutative, that is, f < py = py < Tf. Likewise if f:M — Nandg: N — Q
are C**! maps then the diagram

TN

T/, Tg

™M~ T

commutes; in other words

Tig - f) = (Tg) - (T]).
And clearly

Tly = lzrn

(The identity map of any space S is denoted by 15.) These last two properties
may be summarized by saying that the assignments M — TM, f+— Tf
define a covariant functor T from the category of C** manifolds to the
category of C" manifolds.

IfM < NisaC*! submanifold, r > 0, let j: M — A be the inclusion
map. Then Tj:TM — TN is a (" embedding and the image of TM isa C
submanifold of TN; this is seen by using natural charts derived from sub-
manifold charts. Thus we identify TM with a C" submanifold of TN.

In the special case M < R%, TM is a submanifold of TR* = R? x R4

A tangent vector to M is sometimes defined as an equivalence class of
C' maps f:[0,a) - M, where f is equivalent to g:[0,b) — M if f(0) = g(0)
and for some (and hence any) chart (¢;,U;) at f(0).

Dig; /)0) = D(pg)0).
To such an equivalence class we associate the tangent vector (as defined
previously)
[/(01i.D(g; S HOY}.

Conversely, to a tangent vector [ x.i,a] we associate the equivalence class of
the C! map

/:[0.a) » M,
1) = o7 Hoilx) + ta),

which is defined for sufficiently small a > 0.

These processes are inverse to each other; the two definitions of tangent
vector are equivalent. But the first definition works better for manifolds with
boundary.

We introduce two special notations which extend standard usage from
calculus. If J « R is an interval and f:J — M is a C' map. for each xe J
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we denote by f'(x) the image under Tf of the tangent vector
(xeTJ=JxR

If U < R*is open and f:M — U is C', for each x € M we define the
linear map
Df, = Df(x):M, » R"
to be the composition

MYTU=Ux R > R"

Exercises

1. Let M, N be C manifolds. A map f/:M - NisC ifandonlyif fog.:W - Nis C
for every C" map g: W — M where W is open in some Euclidean space.

*2. Let M be a C" manifold, r > I, and A © M a connected subset. Suppose that there
is a C retraction f:M — A, ie. f|A = identity. Then A is a C" submanifold. (A con-
verse is proved in Chapter 4.) [Hint: /" has constant rank near A.]

3. Let A, M, M, be C" manifolds. A map 14 - M, x M,, f(x) = (f;(x).fz(x})) is C
if and only if each map f;:4 - M,is C.

4. The map G, ; = G, ., £ — E* (Exercise 1, Section 1.1) is a C* diffeomorphism.

5. Let f:R" — R* be any continuous map. There exists a C* differential structure ¢
on R" x R* such that the map
g:R" - (R* x R %),
x = (x,f(x)),
is a C* embedding.

*6. A connected, paracompact Hausdorff {-manifold is diffeomorphic to the circle if it
is compact, and to the line if it is not compact.

7. Let Q be a positive definite quadratic form on R". Then @~ !(y) is diffcomorphic to
S !'forally > 0.

*8. Every nonempty starshaped open subset of R* is C* diffeomorphic to R*. (M < R*
is starshaped about some x € R”" if it contains the entire closed interval in R* from x
to each point of M.}

9. A C" map which is a C' diffeomorphism is a C” diffeomorphism.
10. (a) The manifold G, , of 2-dimensional subspaces of R? is diffeomorphic to real
projective 2-space P2,

*b) SO(3) = P>

*(c) The manifold of oriented 2-dimensional subspaces of R* (supply the definition}
is diffeomorphic to S? x §2.

*11. A subset of R? which is homeomorphic to S is a C° submanifold. (This requires
Schoenflies’ theorem.)

12. For each n 2> O there is a diffcomorphism
(TS x R~ §" x R+,

[Hint: there are natural isomorphisms T, ® R ~ R**1.]
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13. There is a natural diffeomorphism
TIM x N) =~ TM x TA.

14, Let G < R x R be the graph of y = |x|'*. Then G has a C* differential structure
making the inclusion G — R x R a C* map.

15. (M. Brown [1]) Let M be an n-manifold of the form | M,. whereeach M, = R"
k=1
and M, <« M,,,.Then M =~ R".

3. Embeddings and Immersions

Let f/:M — N be a C' map (where M and N are " mantfolds. r > 1).
We call f immersive at x € M if the linear map T, f: M, — N/, is injective,
and submersive if T, f is surjective. If f i1s immersive at every point of M it is
an immersion; if it is submersive at every point, f is a submersion.

We call f:M — N an embedding if f is an immersion which f maps M
homeomorphically onto its image. To indicate this we may write f:M & N,

3.1. Theorem. Let N be a C" manifold, r 2 1. A subset Ac Nisa C
submanifold if and only if A is the image of a C" embeddinyg.

Proof. Suppose A4 is a C" submanifold. Then 4 has a natural (" differ-
ential structure derived from a covering by submanifold charts. For this
differential structure the inclusion of A in N is a C" embedding.

Conversely, suppose f:M & N isa € embedding. fiM) = A. The prop-
erty of being a C" submanifold has local character, thatis itistrueof A = N
if and only if it is true of 4; < N; where { A;} is an open cover of A and each
N; is an open subset of N containing A;. It is also incariunt under C diffeo-
morphisms, that is. 4 < N is a (" submanifold if and only if g{4) © N'isa
C submanifold where g:N — N’ is a (" diffeomorphism (or even a C
embedding).

~ To exploit local character and invariance under diffeomorphism. let

¥ = {¢i:N; » R}, , be a family of charts on N which covers A. Then find
an atlas @ = {@;:M; - R™};., for M such that f(M,) = N, (re-indexing ¥
if necessary). Since f is an embedding, @ and ¥ can be chosen so that
fIM,) = A n N,. By invariance it is enough to show that ¥; fiM,) = T" 15
a " submanifold. Put

U; = ¢iM)) « R,

fi=vifor U - R
Then f; is a C" embedding and f(U)) = ¢,f(M,). Thus we have reduced the
theorem to the special case where N = R”, M is an open set U — R, and
f:U S R"is a C" embedding. In this case a corollary of the inverse {unction
theorem implies that there is a " submanifold chart for {R*f(U)} at each
point of f{U).

QED
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The theorem just proved exhibits the interplay between local and global.
The statement of the theorem asserts that an object defined by local
properties—a submanifold—is the same as an object defined in global terms,
namely the image of an embedding. The first part of the proof just coilates
the local submanifold charts (restricted to A) into a differential structure on
A; this makes the inclusion map of A into an embedding.

In the second part of the proof a new idea appears: the passage from
infinitesimal to local. The condition that f:M — N be an immersion is an
“infinitesimal” condition in that it refers only to the limiting behavior of f
at each point. The inverse function theorem is a link between an infinitesimal
condition and a local condition (by which we mean a statement about the
behavior of f on whole neighborhoods of points).

Before stating the next theorem we make some important definitions.
Let f:M — N be a C! map. We call x € M a regular point if f is submersive
at x; otherwise x is a critical point and f(x) is a critical value. If y € N is not
a critical value it is called a regular value, even if y is not in f(M).2Ify € f(M)
is a regular value, f ~(y) is called a regular level surface.

The following regular value theorem is often used to define manifolds.

3.2. Theorem. Let f:M — N bea C map,r 2 1. If y € f(M) is a regular
value then { ~(y) is a C" submanifold of M.

Proof. By using local character and invariance, as in the proof of
Theorem 3.1, we reduce the theorem to the case where M is an open set in R™
and N = R". Again the theorem follows from the inverse function theorem.

QED

Theorems 3.2 and 3.1 are somewhat dual to each other under the vague
dualities immersion-submersion and kernel-image, regarding f~'(y) as a
“kernel” of f. The duality is flawed because in Theorem 3.2 the implication
is only in one direction. In fact, it is not true that every submanifold is the
inverse image of a regular value; see Exercise 11.

An important extension of the last result concernsamap f: M — N which
is transverse to a submanifold 4 = N. This means that whenever f{x) =
y € A, then

Ay + Txf(Mx) = Ny;

that is, the tangent space to N at y is spanned by the tangent space to A at y
and the image of the tangent space to M at x.

3.3. Theorem. Let f:M - NbeaC map,r > 1 and A < N a C sub-
manifold. If f is transverse to A then f~'(A) is a C submanifold of M. The
codimension of f~*(A) in M is the same as the codimension of A in N.

2 This is in accordance with the principle that in mathematics a red herring does not have
to be either red or a herring.



Proof. It suffices to prove the theorem locally. Therefore we replace the
pair (N,A) by (U x V,U x 0) where U x ¥V < R” x R*is an open neigh-
borhood of (0,0). it is easy to see that the map f:M — U x V is transverse
to U x 0if and only if the composite map

gMLUxViyY

has O for a regular value (Figure 1-3). Since f YU x 0) = g~ '(0) the
theorem follows from Theorem 3.2.

QED
S(M)
;. /)\/'\ 4
M > 4 w —_— ¢
UxV vV

Figure 1-3. =xf = 4.

We shall see in the Chapter 3 that any map can be approximated by maps
transverse to a given submanifold.

The next result makes the abstract notion of manifold somewhat more
concrete.

3.4. Theorem. Let M be a.compact Hausdorff manifold of class C,
1 £ r < . Then there exists a C' embedding of M into B for some 4.

Proof. Let n = dim M be the dimension of M. Let D"(p) < R* denote
the closed disk of radius p and center 0. Since M is compact it has a finite
atlas, and one easily finds an atlas {¢,,U;}!~, having the following two
properties: for all i

ed(U;) o DY2),
and
M = | ] Int o (D¥(1)).

Let ::R" — [0,1] be a C* map equal to 1 on DX1) and 0 on R* — D*2).
(Such a map is constructed in Section 2.2.) Define " maps

A:M = [01],

2= Ae g, on U,
710 on M-U

3 This means that D*(p) = {x e R*:|x| £ p}; the unit disk is D* = D).



It follows that the sets

B, = A7) c U
cover M.
Define maps
M = R,
Ai(x)p;(x) if xe U;
Jix) = {o it xeM-U,
Put
g = (fLA)M >R x R=R"H,
and

9=015..., g M>R x - x R*! = RO+,

Clearly g is C". If x € B; then g;, and hence g, is immersive at x, so g is an
immersion. To see that g is injective, suppose x # y with ye B,. If xe B;
then g(x) # g(y) since fi|B; = ¢;|B;. If x ¢ B; then A,(y) = 1 # A(x), so
g(x) # g(y). Therefore g is an injective C' immersion. Since M is compact
g is an embedding.

QED

The preceding proof follows a globalization pattern that is typical in
differential topology: a global construction (the embedding) is made by
piecing together local objects (the charts ¢;). In this case the local embedding
is implicit in the definition of manifold, but often the local construction is
the more difficult part.

In most problems one runs into an “obstruction” to globalizing. If that
happens, a successful theory consists of first formalizing the obstruction as
a number, or other algebraic object, and then relating it to other invariants.
We shall see many examples of this process.

The rest of this section is devoted to the following sharpening of Theorem
3.4, known as the “easy Whitney embedding theorem”:

3.5. Theorem. Let M be a compact Hausdorff C" n-dimensional manifold,
2 € r € 0. Then there is a C" embedding of M in R*"*!,

Proof. By Theorem 3.4, M embeds in some R% If ¢ € 2n + 1 there is
nothing more to prove; hence we assume ¢ > 2n + 1. We may replace M
by its image under an embedding. Therefore we assume that M is a C" sub-
manifold of R% It is sufficient to prove that such an M embeds in R?™!, for
repetition of the argument will eventually embed M in R?"*!,

Suppose then that M < R% ¢ > 2n + 1.1dentify R?~* with {xe R%:x, =0
If ve R — R?™! denote by f,:RT - R?™! the projection parallel to v. We
seek a vector v such that

fiM:M - Ra~!

is a C" embedding. See Figure 1-4. We limit our search to unit vectors.
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Figure 1-4. Projecting M < R¥into R*™".

What does this require of v? For f|M to be injective means that v is not

parallel to any secant of M. That is, if x, y are any two distinct points of M,
then

) .l A

More subtle is the requirement that f,|M be an immersion. The kernel of the
linear map f, is obviously the line through v. Therefore a tangent vector.
z e M, is in the kernel of T, £, only if z is parallel to v. We can guarantee that
/.|M is an immersion by requiring, for all nonzero z € TM:

¥4
2 U#ﬂ

Here z is identified with a vector in R? as explained in Section 1.2; thus ||
makes sense.

Condition (1) is analyzed by means of the map
ocMxM—4-8""
xX—=Yy
o(xy) =
PR
where 4 (or M,) is the diagonal:

4 ={{ab)eM x M:a = b}.

Clearly v satisfies (1) if and only if v is not in the image of 6. We consider
M x M — 4 as an open submanifold of M x M; the map ¢ is then C.
Note that

dim{(M x M — 4) = 2n < dim §*" L.
The existence of a v satisfying (1) follows from the following result:

Lemma. Letg:P — Q beaC' map. Ifdim Q > dim P then the complement
of the image of g is dense in Q.



The proof of the lemma, which involves a different set of ideas, is post-
poned to Chapter 3. In the case athand P = M x M — dand Q = §°%.
Assuming the lemma, we know that every nonvoid open subset of S?!
contains a point v which is not in the image of o.

To analyze condition (2) we note that it holds for all ze TM provided
it holds whenever |z| = 1. Let

WM = {ze TM:|z| = 1}.

This is the unit tangent bundle of M. It is a C"~! submanifold of TM. To see
this, observe that

T .M = v~ (1)
where
v:TM - R,
Wz) = |2~

Since v is the restriction to TM of the C* map

TR - R,
2+ |23,

itis C"~ 1. It is clear that 1 is a regular value for v; for if v(z) = 1 then

d

0 v(tz) » # 0.
Hence v~ !(1)is a C"~! submanifold by Theorem 3.2. It is easy to see that it
is compact because M is compact.

Definea C"" ' map : T\M — $% ! as follows. Identify TM with a subset
of M x R?; then T,M isasubset of M x S77!, Define t to be the restriction
to T, M of the projection onto $7~ . Geometrically t is just parallel transla-
tion of unit vectors based at points of M to unit vectors based at 0.

Clearly 7 is C"~ 1. Noting that

dim T,M = 2n — 1 < dim §7°!,

we apply the lemma to conclude that the image of 7 is nowhere dense. Since
TM is compact, it follows that the complement W of the image of 7 is a
dense open set in $77 !, Therefore W meets $7 n (RY — R*™!) in a nonempty
open set W,. As we saw previously W, contains a vector v which is not in the
image of o. This vector v has the property that f,|M:M — R?is an injective
immersion. Since M is compact and Hausdorff, f,|M is also an embedding.

QED

There are some remarks to be made concerning the theorem just proved.
It is easily converted to an approximation theorem: given any C’ map
g:M - R* k > 2n + 1, and any & > 0, there is a C" embedding f:M — R*
such that | f(x) — g(x)| < & for all x € M. To prove this, let h:M — R° be a



C" embedding for some s. Then the map
H=gxhM-Rx D

is a C" embedding, and g is the composition of H with the projection
m:RF x R — R Identifying M with H(M) c R***, we see that it suffices
to approximate n by a C" map which restricts to an embedding of M. Now
n is the composition of linear projections

REXR SR x RS- c SR x B R

By induction on s it suffices to prove that if M = R*** any linear projection
into R***~* can be approximated by a linear projection which embeds M.
provided ¥ + s > 2n + 1. This is exactly what was proved.

Whitney [4] showed that Theorem 3.5 can be improved: for n > 0.every
paracompact Hausdorff n-manifold embeds in R?"; moreover it immerses in
R*~!if n > 1. However, the approximation version cannot be imprgved:
if $ is mapped into R? so that the image curve crosses itself like a figure 3.
no sufficiently close approximation can be injective.

The requirement r 2 2 in Theorem 3.5 can be weakened to r > 1. This
follows from the result in the next chapter that every C' manifold has a com-
patible C* differential structure. In fact Theorem 3.5 is true for C® manifolds.
and even for compact metric spaces; see for example, the books by Pontryagin
[2] or Hurewicz and Wallman [1]. In the other direction. Theorem 3.5 is
also true for real analytic manifolds; see Chapters 2 or 4. Our proof shows
that if M has a C* embedding in some R7, it has one in R"* 1.

We conclude this section with the observation that Theorem 3.5 can be
improved by one dimension if we want only an immersion. For we may
assume M < R?"*! and can then find v € $2* — R?" satisfying (2). Thus we
see that every compact Hausdorff € n-manifold, r > 2, has a C" immersion
into R?". In fact every C" map M — R?" can be approximated by immersions.

More refined approximation theorems of this type are given in Theorems
3.2.12 and 3.2.13. More sophisticated proofs are given in Section 2.4 and at
the end of Chapter 3.

Exercises

1. An injective immersion might not be an embedding, since there is an injective immer-
sion of the line in the plane whose image is « figure 8. However. an injective immersion
of a compact Hausdorff manifold is an embedding.

*2. Let M be a connected Hausdorfl noncompact " manifold. r > 0. Then there is a
closed T embedding of the half line [0.xc) into M.

3. (a) There is an immersion of the punctured torus $' x S' — !point} in B2, [Hint:
spread out the puncture.]
*(b) There is an immersion of the punctured n-torus. {$')" — |point}. in B

4. Any product of spheres can be embedded in Cartesian space of one dimension higher.

*5, There is no immersion of the Mobius band in the plane.



6. The line with two origins (see Exercise 10, Section [.1) immerses in R.
7. T,S% (the unit tangent bundle of §?) is diffeomorphic to P*.

8. Let M be a compact C' manifold. Every C' map M — R has at least two critical
points.

9, Let f:S! - Rbea C! map and y € R a regular value,
{a) f~!(y) has an even number of points
(b) If £ ~*(y} has 2k points, f has at least 2k critical points.
*(c) Let g:S = R be a C! map and y € g(S?) a regular value. If g~ () has k com-
ponents then g has at least k + 1 critical points. {Use the Jordan curve theorem.]

10. Every C* map f:T? — R has at least 3 critical points. [T? = §! x §' is the torus.
If f has only a maximum p, and a minimum p_ let U be a simply connected neighbor-
hood of p_. Let ,:T? = T2, t € R, be the gradient flow of f. Then one can show that
T? — py = i>0 @{U). This makes T? — p, simply connected.]

11. (a) Regarding S! as the equator of S%, we obtain P! as a submanifold of P2. Show
that P! is not a regular level surface of any C! map on P2. [Hint: no neighborhood of
P! in P? is separated by P'.]

(b) Generalize (a) 10 P* = P**1,
12. A surface of genus p is a 2-dimensional manifold homeomorphic to the space

obtained by removing the interiors of 2p disjoint 2-disks from S? and attaching p
disjoint cyclinders to their boundaries (Figure 1-5).

*(a) For each nonnegative integer p there is a polynomial map f,:R* — R having
0 as a regular value, such that £, *(0) is a surface of genus p. For example:
foxy,2) = x2 + y* + 22 — 1
fx(xJ-z} = (x2 + )’1 - 4)2 + 22 - i
Llxp2) = [4x41 — x) - P + 22 — &

Figure 1-5. Orientable surfaces of genus p = 2.



[Consider functions of the form (F(x,y))? + z*> — ¢ where Fix.y) = 0 defines a closed
curve in R? with p — | crossings, p > 1.]
***(b) What is the minimal degree of f,?

13. A C' surface of genus p has a C' map into R which has exactly 3 critical points.
foralip = 0.

14. The proof of the compact embedding Theorem 3.4 can be adapted to show that
every paracompact Hausdorff manifold is homeomorphic to a closed subset of a Banach
space. It follows that such a manifold has a complete metric.

15. P? embeds in R*. [Think of P? as the union of a Mébius band M and a disk D.
Embed M and D in R’ with 2 common' boundary circle $*; then push them out into
opposite sides of R® in R* leaving S* fixed.]

16. Embeddings of P* in S"** can be constructed as follows (Hopf [1]. James [1]1.
Let h:R"™! x R"™*!' - R"***! be a symmetric bilinear map such that hix.y) # 0 if
x # 0and y # 0. Define g:5" — $7** by g(x) = h(x,x)/}h(x.x)).

(@) g(x) = g(y)ifand only if x = +y.[Hint:consider hix + Zyx — Ay} ifhix.x) =
A%h(y.3).] .

{(b) g induces an analytic embedding P* — S**%.

(c) P" embeds in 52" for all n. [Hint: let h:R**? x R**} — B2

MXgy .oy X ¥ar v vs ¥ub = (Zg0. -0 T2}

wherez, = Y xy;.]

i+j=k

4. Manifolds with Boundary

Our definition of manifold excludes many objects on which differentiable
maps and tangent vectors are naturally defined; the closed unit ball in
D* < R"is an example. Many such objects are “manifolds with boundary.”
a concept we now explain.

A halfspace of R", or an n-halfspace, is a subset of the form

H = {xe R*:ix) = 0}

where 1:R” — R is a linear map. If 1 = 0 then H = R": otherwise H is
called a proper halfspace. If H is proper, its boundary is the set ¢H = kernel 2:
this a linear subspace of dimensionn — 1. If H = R" weset cH = (.

We now extend the definition of chart on a space M to mean a map
¢:U — R” which maps the open set U = M homeomorphically onto an
open subset of a halfspace in R". This includes all charts as defined earlier.
since R" is itself a halfspace; and many new charts as well. Using this definition
of chart, we systematically extend the meaning of atlas, C” atlas, C differential
structure, and finally, C" manifold.

Let (M,®) be a C" manifold (in the new sense). Suppose (¢,U) e @ and
@(U) is an open subset of a proper halfspace H ¢ R If x € ¢~ '(¢H) we say
x is a boundary point for the chart (¢,U). This condition is independent of the
chart. This is the same as saying that a coordinate change cannot map an
interior point of a halfspace onto a boundary point. If r > 1 this follows
from the inverse function theorem. If r = 0 it follows from “invartance of
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domain”. This is the classical and difficult topological theorem which states
that a subset of R" is open if it is homeomorphic to an open set ; see Hurewicz
and Wallman [1] for example.

The boundary of the manifold (M,®) is defined to be the set of points
x € M which are boundary points for some (hence any) chart; the boundary
is denoted by M.

If (M, ) is a C" manifold, a C" atlas for M is obtained as follows. Let
(p,U)ed and U n M # . Let H = R" be a halfspace containing ¢(U)
such that U n dM = ¢~ }(9H). Let L:6H — R""! be any linear isomorphism;
then (Lo,U n 0M) is a chart on M. The set of all such charts is a C" atlas
on M. In this way M is a C" manifold of dimension n — 1.

If oM # & we call M a d-manifold. 1f OM = & we call M a manifold
without boundary.

The definition of C" map between C" manifolds is unchanged, as are
the definitions of tangent vectors and the tangent bundle (if r > 1). The
concepts of immersions, submersion, difffomorphism and embedding go
through as before.

Some care is necessary in defining “submanifold.” We want, for example,
a closed disk to be a submanifold of the plane. But what what about a
closed disk contained in a haifspace in R?, whose boundary meets the
boundary of the halfspace at one point? Or even worse, in a Cantor set?
These are images of embeddings, and should be “submanifolds.”

We first redefine C" submanifold of R® of dimension k. This is now to
mean a subset ¥V < R" such that each point of V belongs to the domain
of a chart y: W — R" of R", such that

VAW =y '(H)

for some k-halfspace H c R* < R".

Now let M be a C" manifold, with or without boundary. A subset 4 <« M
is a C" submanifold if each point of 4 belongs to the domain of a chart
¢:U — R" of M such that (U n A) is a C’" submanifold (in the sense just
defined) of R".

It is useful to have a term for a submanifold A ¢ M whose boundary
is nicely placed in M. We call A a neat submanifold if 4 = 4 N dM and
A is covered by charts (¢,U) of M such that

AnU= ¢ YR™)

where m = dim A. (See Figure 1-6.) A neat embedding is one whose image
is a neat submanifold.



4. Manifolds with Boundary )|

Figare 1-6. A, is neat; A, and 4, are not.

If A is a submanifold of M and 84 = J then A is neat if and only if
AN oM = . In general, A is neat if and only if 34 = 4 n dM and (for
r 2 1) A is not tangent to M at any point x € JA4; that is, A, ¢ (IM),.

The regular value theorem for d-manifolds takes the following form:

4.1. Theorem. Let M be a C J-manifold and N a C' manifold, r > 1.
Let f:M — N be a C map. If ye N — 0N a regular value for both f and
SIEM, then f~(y) is a neat C submanifold of M.

A generalization of Theorem 3.3 to d-manifolds is:

4.2. Theorem. Let A < N be a C submanifold and f:M —» N a C" map.
Suppose A = & and f, fI0M are both transverse to A. Then f 1A isa C'
submanifold with boundary (f~'A) n M.

The proofs of Theorems 4.1 and 4.2 are left to the reader.

The embedding Theorems 3.4 and 3.5 go through with only minor changes.
With some care one can prove:

4.3. Theorem. Let M be a C' n-dimensional manifold, r > 1, which is

compact Hausdorff. Then there is a neat C embedding of M into a halfspace
of R¥*1,

The remarks following Theorem 3.5 are applicable here as well.

Exercises
1. The cartesian product of two C® 3-manifolds is a &-manifold.
2. A C! map M — N takes regular pointsin M — oM into N — @N.

3. Let M be the closed upper halfplane. For any C! map g:R — R, the map fi(x,y) =
y + g(x), from M to R, has every point of M for a regular point. Set

o) = eV sin(l/x) if x#0
=P i x=o0

Then f:M — R is C®, 0 is a regular value, but £ ~(0) is not a manifold.
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4. Let A < N be a neat C" submanifold, r > 0. Let f:(M,0M) — (N,0N) be a C" map.

Suppose every point of A [respectively 247 is a regular value of f[resp. f:0M - 8N].
Then f~!(A4) is a neat C* submanifold of M.

S, Let f:M — R be C, r > 0. Suppose f is constant on each component of M. Let
a and b be regular values. Then the sets f ~(a), £ ~'[a,b], f ~'(a,b], and £~ '[a,o0) are
C’ submanifolds of M.

6. There is a C™ map f:D> — D? with 0 e D? as a tegular value, such that f~1(0) is
a knotted curve (Figure 1-7).

Figure 1-7.

7. (a) The double of a 3-manifoid M is the identification space obtained from (M x Q) v
(M x 1) by identifying (x,0) and (x,1) if x € dM. The double is a C° manifold without
boundary, of the same dimension, in which M is embedded.

8. If M = ¥ then M is a boundary, i.e, M = &N for some d-manifold N. However,

if M is compact, it may be impossible to choose N compact. [Suppose M has dimension
0]

9. A l-dimensional connected paracompact Hausdorff d-manifold of class C,0 € r <

0, is C diffeomorphic to either a closed, or a half open, finite interval. (This is also
true, but hard, forr = @)

10. Diffeomorphic manifolds have diffeomorphic boundaries.

11. A C! manifold is orientable if it has an atias such that all coordinate changes have

positive Jacobian determinants at every point. If M is orientable so is dM; but the
converse can be false.

12. A subset Q of a Cartesian space R" is an orthant if there is a linear isomorphism
L:R" = R™ x --- x R™ and halfspaces H; < R* such that L{Q) = H, x -+ x H,.
There is a category of “C” manifolds with convex corners” whose charts are homeo-
morphisms onto open subsets of orthants. This category contains all C" manifolds,
with and without boundaries, and is closed under Cartesian product.

5. A Convention

Manifolds that are not paracompact are amusing, but they never occur
naturally, What is perhaps worse, it is difficult to prove anything about
them. Non-Hausdorff manifolds occasionally turn up (see Exercise 11,
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Section 1.1) but again it is hard to prove anything interesting. It is convenient
to deal only with manifolds having a countable number of components.
We therefore adopt the following convention:

All manifolds appearing henceforth are assumed to be paracompact. with
a countable base, and all spaces Hausdorff, unless there is an explicit statement
to the contrary.

Of course any space or manifold we construct must be shown to have
these properties; the proof is usually trivial.



Chapter 2

Function Spaces

The statement sometimes made, that there exist only analytic functions in
nature, is in my opinion absurd.

—F. Klein, Lectures on Mathematics,
1893

Many problems in differential topology can be rephrased as questions
about function spaces; this often leads to new insights and greater unity.
For example, in Chapter 1 we constructed “by hand” an embedding of any
compact manifold M in some RY; in this chapter we shall exploit the topology
of a space of maps of M to N to prove that any map M — N can be
approximated by embeddings if dim N > 2 dim M.

The most useful topology on the set C'(M,N) of C" maps from M to N
is the strong topology. Roughly speaking, a neighborhood of f in the strong
topology consists of all maps ¢ which are close to f together with their
derivatives of order r. The degree of closeness is specified by arbitrary
positive numbers controlling the closeness of derivatives of local repre-
sentations of fand g.

The weak (or “C’" compact-open™) topology on C’(M,N) controls the
closeness of maps only over compact sets. When M is compact it is the
same as the strong topology.

Section 2.3 briefly indicates the changes needed to extend the approxi-
mation theorems to d-manifolds and manifold pairs.

In Section 2.4 jets are defined and used to give an indirect definition of
the weak and strong topologies. The density of embeddings is proved again
by exploiting the Baire property. The last section discusses, without proofs,
various results on analytic approximations.

As deeper approximation and globalization techniques are developed
they are used to improve the Whitney embedding and immersion theorems
of the preceding chapter. Thus the density of immersions and embeddings
is re-examined in Sections 2.1 and 2.2 and again in Section 2.4. The final
form of the density of embeddings is Theorem 2.13.

1. The Weak and Strong Topologies on C"(M,N)

1If M and N are C" manifolds, C"(M,N) denotes the set of C" maps from
M to N. At first we assume r is finite.

The weak or “compact-open C™” topology on C'(M,N) is generated
by the sets defined as follows. Let f € C"(M,N). Let (¢,U), (¢,V) be charts

34
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on M, N;let K = U be a compact set such that f(K) < V:let0 < ¢ < .
Define a weak subbasic neighborhood

(1) A(S; (0. U)W, V).K e)
to be the set of C" maps g:M — N such that g(K) < V and

ID*wfo~")x) — DHygo™'Yx)|| < &

for all xe@(K), k =0,...,r. This means that the local representations
of f and g, together with their first k derivatives, are within ¢ at each point
of K.

The weak topology on C'(M,N) is generated by these sets (1); it defines
the topological space Cy(M,N). A neighborhood of f is thus any set con-
taining the intersection of a finite number of sets of type (1).

If the proof of the easy Whitney embedding theorem (Theorem 1.3.5)
is reexamined one sees that it proves the following approximation result:

1.0. Proposition. Let M be a compact C manifold, 2 < r < x. Then
embeddings are dense in Cp{M,R?) if ¢ > 2dim M, while immersions are
dense if g > 2 dim M.

It can be shown that Cy has very nice features: for example it has a
complete metric and a countable base; if M is compact it is locally con-
tractible, and C{M,R™) is a Banach space.

If M is not compact the weak topology does not control the behavior
of a map “at infinity” very well. For this purpose the strong topology is
uscful. (This topology is also called the fine or Whitney topology) A base
consists of sets of the following type. Let & = {¢,, U}, ., be a locally finite
set of charts on M; this means that every point of M has a neighborhood
which meets U, for only a finife number of i. Let K = {K;}; ., be a family
of compact subsets of M, K; < U,. Let ¥ = {y,,V;}; , be a family of charts
on N, and & = {¢};., 2 family of positive numbers. If f € C(M,N) takes
each K, into ¥, define a strong basic neighborhood

@ A5 D,¥.Ke)
to be the set of C" maps g:M — N such that for all ie 4, g(K;) = ¥, and

"Dk('l/lf o Hx) — D‘(d’igwi-l){x)” < §

for all xe (K)), k = 0,...,r. The strong topology has all possible sets
of this form for a base.

It must of course be verified these sets (2), as f, , ¥, K, ¢ vary, actually
form a base for a topology. We leave this to the reader as an exercise; it
also follows from alternative description of the topology given in Section 4.

The topological space Cy(M,N) resulting from the strong topology is
the same as Cy{M,N) if M is compact. If M is not compact, however, and
N has positive dimension, it is an extremely large topology: it is not
metrizable and in fact does not have a countable base at any point; and it
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has uncountably many components. It does have one saving grace, however:
the category theorem of Baire is valid in C{(M,N), as will be proved in
Section 2.4.

We now define the spaces Cip(M,N) and C§{M,N). The weak topology
on C*(M,N) is simply the union of the topologies induced by the inclusion
maps C*(M,N} —» Cy(M,N) for r finite, while the strong topology on
C®(M,N) is the union of the topologies induced by C*(M,N) —» Cy{(M,N).

We give C%(M,N) the weak and strong topologies induced from C*(M,N).

The strong topology is very convenient for differential topology in
that many important subsets are open. For example:

1.1. Theorem. The set Imm"(M,N) of C* immersions is open in Cg(M,N),
rzl

Proof. Since
Imm’(M,N) = Imm'(M,N) n C"(M,N)

it suffices to prove this for r = 1. If f:M — N is a C' immersion one can
choose a neighborhood 4(f; ®,%,K.e) as follows. Let ¥° = {y5,V3}5¢5
be any atlas for N. Pick an atlas ¢ = {¢;,U;};. 4, for M so that each U;
has compact closure, and for each ie A there exists f(i) e B such that
fU) < Vg Put Vpy = Vi Yy = ¥, and ¥ = WiVitiea Let K = {Ki}ic 4
be a compact cover of M with K; < U,.

The set

A; = {DWifor 1)(x)]x € GDi(K:)}

is a compact set of injective linear maps from R™ to R". Since the set of all
injective linear maps is open in the vector space L(R"™,R") of all linear maps
R™ — R", there exists & > Osuch that T e L(R™ R") is injective if | T — S|| < &
and Se€ A;. Set £ = {g}. It follows that every element of A4"'(f; ®,¥ K,
is an immersion.

QED

A similar argument, which we leave to the reader, proves:
1.2. Theorem. The set of submersions is open in Cs(M,N), 1 < r < 0.

Our next goal is the openness of the set of embeddings. We shall need
the following fact:

1.3. Lemma. Let U < R™ be an open set and W < U an open set with
compact closure W < U. Let f:U — R" be a C' embedding. There exists
g > 0 such that if g:U — R is C' and

|Pg(x) — Df(x)|| < & and |g(x) — f)<e
for all x e W then g|W is an embedding.

Proof. By Theorem 1.1 (or rather, its proof) and compactness of W,
there exists &, > 0 so small that if g e C'(U,R") and ||Dg(x) — Df(x)|| < &
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for all x € W then g|W is an immersion. Therefore if the lemma is false
there is a sequence g, € CY(U,R" such that

|Dgu(x) — Df(x)|| - ©
and

3 [gx} — flx)] = 0

uniformly on W, while for each n there exist distinct points a,, b, in W with
gda,) = g,{b,). By compactness of W we may assume a, » ac U, b, = be U
as n - . Then f(a) = f(b) by (3), so a = b. Choosing subsequences if
necessary we may assume that the sequence of unit vectors

_al—b-
v.—lan_bnl

converges to a unit vector v € "', By uniformity of Taylor expansion
(with remainder in integral form) we have

|g!(an) - gn(bn} - Dg(bl)(al - bl)l/la.l - bu| - 0.

Hence Df(b,)v, — 0. But this sequence also goes to Df(b)r, which therefore
is 0. This contradicts the assumption that f is an immersion.

QED
We can now prove:

1.4. Theorem. The set Emb"(M,N) of C" embeddings of M in N is open
inC{M,N),r > 1.

Proof. 1t suffices to take r = 1. Let fe Emb"(M,N). By using the
preceding lemma we can find the following objects:

a locally finite atlas @ = {@;,U;}i¢4 of M;

aset ¥ = {y,V;}ie 4 of charts for N with f(U)) = V;

a family of compact sets K; < U, whose interiors W, cover M;
numbers g > 0 such that if

geNo=N(f; DY K)

then g(W) < V;and g|W, is a C" embedding.

Since f is an embedding for each ie A there exist disjoint open sets
A, B; in N such that f(K;) < 4; and f(M — U;) < B;. One can find a
neighborhood 47, of f in C{{M,N) (in fact, in C(M,N)) such thatifge .+,
then

9(Ki) = A;,
gM — W) < B,
We show that every ge # g n A", is an embedding. By the choice

of A, g is an immersion. To see that g is injective suppose x, y are distinct
points of M with x € K,. If y e U, then g(x) # g(y) since g|U, is injective;
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while if ye M — W, then g(x)e A; and g(y) e B;, so again g(x) # g(y)
To see that g:M — g(M) is a homeomorphism, it suffices to show that if
V. is a sequence in M such that g(y,) — g(x) then y, - x. If x € K; then
g(x) € A;; hence only a finite number of the g(y,) can be in B;, so all but
a finite number of y, are in W,. Since g|W:W — g(W) is a homeomorphism
it follows that y, — x.

QED
A map f is proper if f ~! takes compact sets to compact sets.

1.5. Theorem. The set Prop(M,N) of proper C" maps M — N is open
in C{M,N),r 2 0.

Proof. For any map f:M — N there is a compact cover {K;};. , of
M and an open cover ¥ = {V;};. 4 of f(N) with f(K;) = V.. If f is proper
¥ can be chosen locally finite. There is a neighborhood A~ of fsuch that
if g e A then g(K;) = V, for all i. To see that such a ¢ is proper,let Lc N
be compact. Then L meets only a finite number of V.. Hence g~ '(L) is a
closed subset of M which is covered by finitely many of the compact sets
K;; therefore g~ *(L) is compact.

QED

Since an embedding f:M — N is proper if and only if f(M) is closed
in N, we obtain:

1.6. Corollary. The set of closed embeddings is open in Cs{(M,N), r 2 1.
Let Diff"(M,N) denote the set of C" diffeomorphisms from M onto N.

1.7. Theorem. If M and N are C' manifolds without boundary then
Diff'(M,N) is open in C{M,N), r 2 1.

Proof. A diffeomorphism induces a bijective correspondence from
components of M to components of N. Such a map has a neighborhood
of maps inducing the same correspondence. Therefore we may assume
M and N connected.

A diffeomorphism is simultaneously an embedding, a submersion and
a proper map. Conversely any map g between connected manifolds with
these three properties is a diffeomorphism. For the image of a submersion
is open (by the inverse function theorem) and the image of a proper map is
closed; so g is a surjective embedding, which is a diffeomorphism. Thus
Diff"(M,N) is the intersection of three open subsets of Cy{M,N).

QED

For d-manifolds Theorem 1.6 is false. But one can show that Diff"(M,N)
is open in the subspace

CYM,OM; N,dN) = {f e CM,N):f(3M) < oN}.



i. the weak and Strong Topologies on C(M,N} 39

Theorem 1.6 is false for r = 0: the set of homeomorphisms is not open
in C3(M,N)(unless itis empty or dim M = 0). There is, however. the following
result:

1.8. Theorem. Let M and N be manifolds without boundarv and f:M — N
a homeomorphism. Then f has a neighborhood of surjective maps in CAM.N).

Proof. Let g be near f; then f~ g is near the identity map of M. Hence
it suffices to take M = Nand f = 1.

Let {¢;,U;} be alocally finite cover of M by charts such that ¢,(U;} > D",
the closed unit ball in R, and M = U, (D). For each i let B; < ¢4U})
be a slightly larger closed ball, 0 € D" < Int B;. It suffices to find ¢ > 0
such that if h;:B; —» R" is a continuous map with |h(x) — x| < & for all
i then h(B;) > D" For if this is true then the set of g:AM — M satisfving.
for ail i,

goi '(B) < U,
and
lpgo '(x) — x| <&, all  xeB,

will consist of surjective maps (put @, go; ' = h,).

Let & > 0 be so small that for any z € D", x € éB; and y € R" with
|x — ¥ < &, it is true that the ray issuing from = through y intersects ¢B;
at a point u such that Ju — x| < diam B; (Figure 2-1).

4

Figure 2-1.

Now suppose h:B, —» R" and Ji(x) — x| < &. Suppose =€ D" — h(B,)).
Define a map H:B; — 8B; by sending x € B; to the intersection of ¢B; with
the ray from z through h(x). The choice of ¢ ensures that for x € ¢B;,
H(x) # —x. Then H|0B;:B; —» éB; is homotopic to the identity; the
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homotopy moves H(x) along the shorter great circle path from H(x) to x
(Figure 2-2). A classical theorem of topology, however, says that no map
of an n — 1 sphere to itself which extends to a map of the n — 1 ball to
the sphere can be homotopic to the identity. (This will be proved by
Theorem 3.1.4). This contradiction shows that D" < h(B,), proving
Theorem 1.7.

QED

For J-manifolds one can show that any homeomorphism h:M — N
has a neighborhood of surjections in C3(M,0M; N,0N). In fact this follows
from Theorem 1.7 by extending h to a homeomorphism between the doubles
of M and N.

path of homotopy

Figure 2-2.

Exercises

1. The space C5(R,R), r 2 0, does not have a countable base at any point and so is
not metrizable. Under the usual operations it is a topological group but not a topological
vector space.

2. Let a sequence {f,} converge to g in Cs(M,N), r > 0. Then there exists a compact
set K = M and m such that f(x) = g(x}foralin > mandallxe M - K.

3. Are C2*'(R,R) and C3' '(R,R) homeomorphic to C3R,R) x R and C}(RR) x R
respectively, n 2 0?

*4, Polynomials are dense in C2{R,R) but not in CYR,R).

5. The set of closed maps is closed, but not open, in CP(R,R). (A map f is closed if it
takes closed sets onto closed sets.)
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6. The set of closed immersions is open in Cy{M,N), r > 1. The set of injective im-
mersions is not open in C}(R',R?).

7. A proper C' immersion f:M — N which is injective on a closed subset K < M is
injective on a neighborhood of K. In fact f has a neighborhood .+~ = CHM,N) and K
has a neighborhood U < M such that every g € A is injective on U. If K is compact .4~
can be taken in CM{M,N).

8. The set of proper maps is open and closed in C3(M,N).

9. The set of maps f € C{(M,N) such that f:M — N is a covering space, is open. If
M and N are compact manifolds of the same dimension, without boundaries, then
every submersion M — N is a covering space.

10. If g:R" — R" is a continuous map such that

lim inf, ., , max,., |x - g(x)l/lx| < 1
then g is surjective.

11. The set of neat embeddings of M in N is open in Cy(M.eM; N,éN), r 2> 1. But neat
embeddings are not closed in C}(D*,D?).

12. A base for the strong topology on C(M,N), 0 < r < o¢, is obtained by taking
only those sets A47(f; ®,'P,K.e} where it is further required that K = {K,},, ,be a
covering of M by compact sets.

13. Let Immi{M,N) be the set of C maps M — N which are immersive at each point
of K « M, r 2 1. If K is compact then this set is open in Cy{M,N).

14. Let Emby(M,N) be the set of C maps f:M — N, r > 1, such that f|U is an em-
bedding for some open set U (depending on f), K ¢ U < M. If X is compact then
Emb}{M,N) is open in Cy{M,N).

15. Let M, N be C manifolds, 0 < r < . Let {U.};,, be a locally finite family of
open subsets of M. For each i€ A let of, « Co{U,,N) be an open set. Then the set of
C maps f:M — N such that f[U, € o, lor all i is open in C{(M,N).

16. Let M, N be C" manifolds 0 € r € 0. Let ¥ © M be an open set.
(a) The restriction map

8:C(M.N) ~ C(V.N),
af) = v

is continuous for the weak topologies but not always for the strong. On the other hand:
*(b) J is open for the strong topologies, but not always for the weak.

2. Approximations

In this section all manifolds are without boundary.
Our first job is to find a C* map A:R* — [0,1] with the following prop-
erties, for any givenb > a > 0:

(i) MU)=1 if |x<a
(if) 1>Ax)>0 if a<|x<b
i) AM=0 if |x>b

Such a map is sometimes called a bump function.
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We start with the C* map «:R — R, showing its graph below:

0 if x<0
)= et i x>0

o9

Next define 8:R —+ R:
B(x) = alx — a)x(b — x)

Then define y:R — [0,1],

o = [ 8] 8

S e
o4

Finally define 1:R" — [0,1] by
Ax) = y(|x|).
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Next we define the support Supp f of a continuous rea! valued function
S to be the closure of f (R — 0). The complement of Supp f is the largest
open set on which f vanishes.

Let M be a C" manifold, 0 € r € oc,and # = {L;};., an open cover.
A C partition of unity subordinate to ¥ is a family of C" maps 2,: M — [0.1].
i € A such that the following conditions hold:

Supp 4, < U;  (ieA),

{Supp 4;}; . is locally finite,
and

Tiea dx) =1 (xeM).

Local finiteness ensures that each point has a neighborhood on which
all but finitely many A; are 0; therefore the sum is locally a finite sum.
The third condition ensures that

M = | J; Int Supp 2.

(The interior of any set S is denoted by Int S.) Therefore {Int Supp 2}, , is
a locally finite open cover of M which is a shrinking of #. (A cover v~ =
{Vi}iea 18 @ shrinking of ¥ ifeach V, < U;)

The following remark is often useful. If ¥~ = {},},., is an open cover
of M which refines ¥ = {U,};.,, and if ¥~ has a subordinate C" partition
of unity, then so has . For let {4,},. . be subordinate 10 v ", Let f:4 — .1
be such that V, € U, and define

u:M = [01],
Hix) = Y{Alx); 2 e f7HD)}

Then {Supp y;}; . 4 is locally finite, for p{x) # Oonlyifi = f{z) with i(x) #
0. Clearly Supp u; = U; and Y, p(x) = Y, Afx) = L

The following theorem, one of the basic tools of differential topology.
is frequently used to reduce global theorems to local form. There can be
no similar theorem for analytic maps, which is why they are so much harder
to handle.

2.1. Theorem. Let M be a C" manifold, 0 < r < w. Every open coter
of M has a subordinate C" partition of unity.

Proof. Let # = {U,};. , be an open cover of M. There is a locally finite
atlas on M, {@,,V.},. 4 such that {¥.}, , refines #: and we may assume
that each ¢,(V,) < R" is bounded and each V, ¢ A is compact. There is
a shrinking {W,},.. of ¥ = {V,},.4 and each W, ¢ I is compact. It
suffices to find a ¢ partition of unity subordinate to ¥ .

For each x € 4, cover the compact set ¢,(W,) = R" by a finite number
of closed balls

B(a,1),. .., Blak(x))
contained in ¢,(V,). Choose C® maps

A R =[01], j=1,..., k=),



44 2. Function Spaces

such that
Aq f%) > 0 ifand only if  x € Int B(a,j).

Put

k{z)

Ao = Y Ay iR = [0,00).

=1

Then ’
Mx) >0 if  xe@ (W),
AMx)=0 if xeR -~ {J;Blj).

Put

ta:M = [0,00),
_ JAd,(x)) if xeV,
#alx) = {o if  xeM -V,
Then g, is C, u, > 0 on W, and Supp 1, < ¥,. Define v, = p,/3, u,. Then
{Valae 4 is @ C partition of unity subordinate to ¥".
QED

A partition of unity is used to glue together locally defined maps into
R" to make a globally defined map. For instance, if {4,};. , is a C* partition
of unity subordinate to an open cover {U,};. , of M, and ¢;:U; - R"is C°
for each i, we can define

g M- R,
g(x) = z}'i(x)gi(x)s
summed over {i e A:x € U,}. This is a well-defined C* map since each x has
an open neighborhood on which 4; = 0 except for finitely many i.

The following theorem shows how the condition Y ; 4; = 1 can be used
to obtain approximations.

2.2. Theorem. Let M be a C° manifold, 1 < s € . Then C(M,R") is
dense in CYM,R".

Proof. Let {V }, . 4 be alocally finite open cover of M and foreacha € A
let ¢, > 0. Let f:M — R” be continuous, and suppose we want a C* map g
to satisfy |f — g| < &, on V, for all «. For each xe M let W, < M be a
neighborhood of x meeting only finitely many V.. Set

é, = min {¢g,;:xe V,} > 0.
Let U, = W, be an open neighborhood of x so small that

IS - f)| <8, ryeU.

Define constant maps
gu:M - R,

g:y) = f(x).
Relabeling the cover {U,} and the maps {g,}, we have shown: there is an
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open cover {U.};. , = # of M and C* maps g,:M — =" such that whenever
ye U, n V, then

lg:(») = S| < &

Let {4;};. 4 be a C* partition of unity subordinate to #. Define
g M- R,

g(y) = Zi Zi(3)g:(5).

Then ¢ is C* and
lg(y) ~ SN = X493 ~ T20W0G)] < Yanedy) — finl
Henceif ye ¥,
lg(») = FW| < Laidyle, = &,
QED

Our next task is to approximate C* maps by CC maps. s > r > 1. in the
strong C" topology. The preceding argument will not work now because
the derivatives of the 4; are involved. We need to uniformly approximate
JlU; not by constants, but by C' maps whose derivatives up to order r
uniformly approximate those of f. For maps defined on open subsets of "
we achieve this by the technique of convolution, discussed next.

Let 8:R™ — R be a map having compact support. There is a smallest
o 2 0 such that Supp 6 is contained in the closed ball B,(0) = R™ of radius ¢
and center 0. We call ¢ the support radius of 6.

Let U < R™ be open and f:U — R” a map. If 6:B™ — R has compact
support we define the convolution of f by 8 to be the map

: oxf:U, » R
given by
(n O+ f(x) = 2.00) flx — pdy  (xel)
where

U, = {xeU:B,x) c L}.

The integral is the Lebesgue integral, 4y denoting the usual measure on ™.
The integrand in (1) is 0 on the boundary of B,(0}; we extend it to a con-
tinuous map R™ — R by defining it to be 0 outside B,(0). Therefore we have

@ 6sf(x) = [ Ofix — ndy  (xe L)

For a fixed x € U, we make the measure preserving change of variable
in(1):z = x — y. Then

) Befix) = [ O(x = Ifta)d
= J'Rm 0x — 2)f(z)dz (xelU,)

where again the integrand is defined to be 0 outside B,(x).



46 2. Function Spaces
A map 0:R™ — R is called a convolution kernel if it is nonnegative, has

compact support, and j' am 0, = 1. It is clear that there exist C* convolution
kernels of any given support radius.

We may think of 0 f(x) as a weighted average of the vaiues of f near x.
This makes it plausibie that «f will be an approximation to f which will
be smooth if § is smooth.

We introduce the notation

£l x = sup {||P*/(x)||:xe K,0 < k < r}

if f1U > R"is C", U < R™ is open, K <= U is any subset, and |[D*f(x)|| is
the norm of the k’th derivative of f at x. Here ||D°f(x)|| means | f(x)}, while
for k > 0 the k’th derivative at x is a k-linear map from R™ to R". The norm
|Si| of any k-linear map

SR x - x R"-> R"
is defined to be the maximum of |S(x,, . . ., x;)| where the vectors x, . .., X,

vary over the unit sphere in R™. The value co is allowed for || f]|, . If K is the
entire domain of f we write simply || f||. Note that for all y,,. .., y, in R™:

IS(.Vu- rey ,Vk}i < ”S“ ' |}’ll T |.Vk|-
We have the following basic result:

2.3. Theorem. Let 8:R™ — R have support radius ¢ > 0. Let U < R™
beanopenset,and f:U — R" a continuous map. The convolution0xf-U, — R"
has the following properties:

(a) If OfInt Supp 0 is C*, | < k < oo, then so is 0+ f; and for each finite k,
DO f)(Y,, ..., Y = Lm DH(x — 2)(Y,, ..., Y)f(z) dz.
on U,

(b) If [ is C* then
DO+ f) = O+(D*).

(c) Suppose f is C", 0 < r £ 0. Let K = U be compact. Given ¢ > 0
there exists o > 0 such that K < U,, and if 0 is a C" convolution kernel of
support radius o, then 0xf is C" and

0%/ = flle.x < 2.

Proof. To prove (b), observe that the domain of integration in (1} can be
restricted to Int Supp 6; the integrand is then differentiable in x, and (b)
follows by induction on k and differentiating under the integral sign. (a) is
proved similarly using (3). To prove {c) it suffices to take r = 0, by (b). Since
dK,R™ — U) > 0, we can choose ¢ so small that K = U,. By uniform con-
tinuity of f on a compact neighborhood of K, we can choose o so small that
if xe Kand|x — y| € o then |f(x) — f())| < &

Since
J’Rm 0=1
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we have, integrating over R™:

[62f(x) — f(x)| = |fB(NSx = ) — flx))dy|
< fKW|fix = 3) = fla]dy
< eff(y)dy = ¢
QED
From Theorem 2.3 it immediately follows that a C" map from open subset

of R™ to R" can be C" approximated by C* maps in neighborhoods of com-

pact sets. Using partitions of unity we prove the following stronger approxi-
mation theorem:

2.4. Theorem. Let U = R™ and V < R" be open sets. Then C=(U,V) is
dense in C(U,V),0 € r < c0.

Proof. Since C{U,V)is open in Cy{U,R"), it suffices to prove the theorem
with V = R".

Let f € C'(U,R". A neighborhood base at f in Ci{U,R") consists of sets
A(f,K,e) of the following form (see Exercise 12, Section 2.1). Let K =
{K.;}ic 4 be a locally finite family of compact subsets of U let £ = {g};¢ 4
be a family of positive numbers, and let A47(f,K,¢) be the set of " maps
g:U —» R"such that forallie A

@ lg = fll.x < &
Fixing f,K and ¢, we must show

CUR)Y N A (f.Ke) # .

Let {A;};., be a C* partition of unity on U such that Supp 4 is compact
and K; < Int(Supp 4,).

Given positive numbers {a;}; ., there are C* maps g;: U; — R such that
forxeK;andk=0,...,r,

llg: = fll.x, < .
Put
g:U - R"

g(x) = ¥ A{x)gdx).

Then g is C*. To estimate [|D*g(x) — D*f(x)|| we observe that if 1:U —» R
and ¢:U — R" are C* and y(x) = A(x)e(x), then D*y{x) is a sum of bilinear
functions of D*A(x), DP@(x), p.q = O, ..., k; this bilinear function is universal
and independent of x, A and @. Thus there is a universal constant 4, > 0 such
that

[ID¥Ap)x)|| < A, max ||DPA(x)||- max [|D*e{x)]}.
0<p<k 0<q<k

Set
A = max {4,,..., A4,}.
Fix i € A and set
A= [je LK, nK, # O}
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This is a finite set; let its cardinality be m;. Put

#i = max {||4, x,:j € 4}
Bi = max {a;:j € A;}.

In the following sums j varies over A;. For x€ K, and 0 < k < r we have

1D*g(x) — D*fx)l| = |IZ; D*Asg; = 4,0
<y HDk(l_.'(gj - M| < mApp;.
1t is clear that the numbers a; can be chosen so that
mAuB, < &
With this choice of &; we have, for all i € A,

“9 — . x, < &
QED

A refinement of Theorem 2.4 is needed for the globalization to manifolds.
Suppose we have a C" map f: U — R" that we want to approximate by a C”
map h which is C* in a neighborhood of a (relatively) closed set K <= U. At
the same time, for technical reasons we want h to equal f outside a certain
open set W < U; of course, we must assume f is already C* on a neighbor-
hood of K — W. The following relative approximation theorem ensures that
maps such as h approximate f arbitrarily closely.

2.5, Theorem. Let U < R™ and V < R"* be open subsets, and f:U —» V
a C" map. Let K < U be closed and W < U open, such that f is C* on a
neighborhood of K — W. Then every neighborhood N of f in C{U,V) con-

tains a C" map h:U — V which is C* in a neighborhood of K, and which equals
fonU - W,

Proof. We may assume V = R" (see proof of Theorem 2.4). Let 4 c U
be an open set containing the closed set K — W such that f|A is C*. Let
W, = U be open, with

K-—AcW,cW,cWw.

Let {4o,4,} be a C* partition of unity for the open cover {W,U — Wy} of U.
Thus 4, and A, are C* maps U — [0,1] such that 4, + 4, = 1,4, =0 on
a neighborhood of U — W and 4, = 0 on a neighborhood of W,.
Define
G:CYU,R" —» C{U,R"
by
Glg)(x) = Aolx)glx) + A;(x)f(x).
Then Glg) = g in W, and G(g) = f in U — W. Clearly G(g) is C* on every

open set on which both f and g are C°. It is easy to prove G continuous. Since
G(f) = f, there is an open set A4, « Cy(U,R" containing f such that
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G(A ) © A" By Theorem 2.4 thereisa C*map g € .4 5. Then b = Gig) has
the required properties.

QED

We now prove the basic approximation theorem for manifolds without
boundary. Later we shall extend it to ¢-manifolds and manifold pairs.

2.6. Theorem. Let M and N be C* manifolds, 1 < s < x. Then CYM.N)
is dense in C{{M,N),0 < r <.

Proof. Let f:M — Nbe C. Let @ = {o;,U;};., be a locally finite atlas
for M and ¥ = {y,,V.};., a family of charts for N such that for all ie A.
JWU)c V.LetL = {L;};., beaclosedcoverof M, L, = U,. Lete = {g);.,
be a family of positive numbers, and put & = A™(f: ®.¥.Lg} =« C(M.N).

We look for a g € A" which is C*. The set A is countable: we therefore
assume that A = Z, or, if M is compact, 4 = {1,.... p;. (We denote the
integers by Z, the positive integers by Z,, and the natural numbers by
N=2Z,vu{0})

Let {W.},. , bea family of open sets in M suchthat L, =« W, c W, < U,.

We shall define by induction a family of C" maps g, €.+, k € N, having
the following properties: g, = f, and for k > 1:

(ke G = gi-ronM — W,
6 gy is C* in a neighborhood of { Jo<;<i L,

Assuming for the moment that the g, exist, define g: M — N by g(x) =
Guix)(X), where k(x) = max {k:x € U,}. Each x has a neighborhood on which
g = gx(x- This shows that g is C* and g € .4, and the theorem is proved.

It remains to construct the g,. Put g, = f; then (5), and (6), are vacuously
true. Suppose that 0 < m and that we have maps g, € .4". 0 < k < m, satis-
fying (5), and (6),.

Define a space of maps

4 ={heCLU,V):h=g,.,onU, - W,
Define
T:% - C{M,N),
h on U,
k) = {g,._, on M-U,
Then T is easily proved continuous. Observe that Tiy,_,|U,) = gp-,.
Hence T™Y(A) # @.

Let K = U, «m Lx N U, Then K is a closed subset of U, and
Gm-1:Um — V, is C* on a neighborhood of K — W, . Since U, and },, are
diffeomorphic to open subsets of R™ and R", we can apply Theorem 2.5 to
Cy(U,.,V,)- We conclude that the maps in 4 which are C* in a neighborhood
of K are dense in 4. Therefore T~ '(4") contains such a map i. Define g,, =
T(h); then g, € A satisfies (5),, and {6},

QED
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For the following application of Theorem 2.6 let GXM,N) c¢ C{M,N),
k = 1, denote any one of the following subsets:
diffeomorphisms,
embeddings,
closed embeddings,
immersions,
submersions,

proper maps.

2.7. Theorem. Let M and N be C* manifolds, } < s < . Then G} (M,N)
is dense in G'(M,N) in the strong C" topology, | < r < s. In particular, M and
N are C* diffeomorphic if and only if they are C" diffeomorphic.

Proof. This follows from Theorem 2.6 and the openness theorems of
Section 2.1.

QED

We shall need the following lemma for raising differentiability of
manifolds:

2.8. Lemma. Let U be a C" manifold, 0 < r < oo, and W = U an open
set. Let V < R" be open, f € C{U.V), and put f(W) = V'. Then there is a
neighborhood A~ = Cy(W,V") of f|W such that if g, € 4", the map

T(QO) = g.U - V1

_ 190 on w
9% on U-W

is C"yand T: A — C{U,V) is continuous.

Proof. Let {9;,U;};. , bealocally finite family of charts of U which cover
the boundary Bd W of W. Let {L;},. , be a family of closed subsets of U and
which cover Bd W, with L, < U,.

Let N < Cs(W,V') be the set of C" maps h:W — V' such that if i € A,
yeo, nWyand 0 < k < r, then

M Do Yy ~ DX for "W < dyodU; — W)).

Then 4 is a neighborhood of f|W: by paracompactness W has a locally
finite closed cover {K,} such that each K, meets only finitely many L, and

on each K, n L; the map x ~ d(¢@;(x),0,(U;, — W))is bounded away from 0.
If he A define

Tt =g:U >V,

_'h on w
9% on U-w
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Weclaim g is C”. It suffices to prove thateachmap /; = (g — fio; '@ (L) —
R" is C". Now

2o Jhett —foit  on @)
TT10 on (U, — W)

Obviously 4; is C" on ¢,(W). By (7),for0 < k < r:
DYy(y) =0 as  dixelU; — WhH -0,

uniformly in y € @;(W). It follows that 4; is ", with all derivatives 0 on
@;(U;, — W). Therefore g is C” and the map T:C(W., V') — C(U,V) is well-
defined. The continuity of T is left as an exercise.

QED

Let « be a C" differential structure on a manifold M. A C* differential
structure B on M, s > r, is compatible with x if § < 2. This means that every

chart of f is a chart of 2. Equivalently, it means that the identity map of M
is a C diffeomorphism M(x) — M(f).

2.9. Theorem. Let a be a C differential structure on a manifold M. r > 1.
For every s, r < s < o, there exists a compatible C* differential structure
B < a, and B is unique up to C* diffeomorphism.

Proof. For conveunience we shall denote a differential structure and its
restriction to an open set by the same symbol. By Zorn's lemma there 1s a
nonempty open set B ¢ M and a C* differential structure § on B which is
compatible with «, and such that (B,8) is maximal in this property. We must
prove B = M.

If B # M there is a chart (@,U) for M such that U n(M — B) % .
PutopU)=U c R, UnB=Wand o(W) = W,

There are now two differential structures on W: the " structure x and
the compatible C* structure f < a. We shall find a " diffeomorphism
6:U, = U’ such that 0|W:W, - W’ is a C* diffeomorphism. In that case
the chart (8,U) has C*® overlap with §; the C* atlas U (6.LU}on Bu U is
contained in o and this contradicts the maximality of (B.f).

To construct § we use Lemma 2.8 to obtain a neighborhood .+" <
CyW,. W’) of o|W: W — W’ with the following property. Whenever Yo €.+,
the map T(yy) = ¢: U — U’ defined by

v = Yo on W
T e on U-w
is C", and the resulting map

T:CyW, W) » CHU,U")

is continuous. Since T(o|W)is the diffeomorphism ¢, there is a neighborhood
N © N of o|W such that T(.4") < Diff"(U,U’). By the approximation
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theorem 2.6 there is a C* diffcomorphism 0, € 47,; the required map 0 is
then T(0,).

QED

It is amusing that neither paracompactness nor Hausdorffness of M was
used in the preceding proof; these properties were needed only for the co-
ordinate domain U.

From Theorems 2.7 and 2.9 we obtain a fundamental result:

2.10. Theorem.
(a) Let 1 € r < o0. Every C" manifold is C" diffeomorphic to a C®
manifold.

(b) Let 1 < r <5 < 0. If two C* manifolds are C* diffeomorphic, they
are C* diffeomorphic.

In view of this there is no need to consider C* manifolds for | € r < o0;
and for most purposes C* maps are sufficient. The C* category has several
advantages over the C" categories with r finite. An obvious one is its closure
under derivatives. A more subtle advantage comes from the Morse—Sard
theorem in the following chapter.

Earlier we pointed out the theme of globalization that runs through many
proofs. There is an abstract aspect of the passage from local to global which,
if recognized, can often make a proof obvious; at the least, it provides a clear
strategy for the proof. Since we shall need to globalize several more times,
it is worthwhile to formalize the pattern of proof in the following way.

Let X be a set and 9 a family of subsets. We assume that X € 9 and
that the union of any collection of elements of ) is again in 9. (In practice
X is a manifold and 9 is generated by the elements in an open cover, or a
locally finite closed cover.) Suppose we have a contravariant functor from
the partially ordered (by inclusion) set ) to the category of sets. That is, to
every 4 e 9 there is associated a set #(A), and to every pair of sets 4, Be 9
with 4 < B there is assigned a map of sets ¥ ,5: #(B) — F(A), denoted by
x ++ x|A, where x € F(B) such that # 45 F yc = F 4c whenever A = B < C,
and % ,, = identity map of #(4).

We call (#,9) a structure functor on X. An element of F(A) is thought
of as a “structure” of some kind on A for which “restriction” to subsets of
A makes sense. We wish to prove that X has a structure, that is, #(X) # .

A structure functor is continuous if the following holds. If {Y,} is any
simply ordered family of elements of 9, and UY, = Y, then the inverse
limit of the maps &y y:Z(Y) » #(Y,) is a map F(Y) - inv lim #(Y,)
which is bijective.

A structure functor is locally extendable if every point of X belongs to a
set ¥ € 9 such that for all Y € 9 the map

FyyovFY UV) = F(Y)

is surjective. It is called nontrivial if #(Y) # & for some Y€ 9.
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As an example, let X be a C manifold, 0 < r < ». and 9 the family
of all open sets. Let #(Y) be the set of compatible C* differential structures
on Y for some s > r. Clearly (#.,%) is a structure functor which is nontrivial
and continuous. If 1 £ r < s € o then F# is locally extendable. as was
shown in the preof of Theorem 2.9.

For another example, let X  R" be a nonnull open set. Let 9) be gen-
erated by a locally finite cover of X by compact sets. Let #(Y) be the set
of Y-germs of analytic maps into R; a Y-germ is an equivalence class of
maps defined in neighborhoods of Y, two maps being equivalent if they
agree in some neighborhood of Y. Then (#.9) is continuous and nontrivial,
but is not locally extendabile.

2.11. Globalization Theorem. Let (¥.9) be a nontrivial structure functor
on X which is continvous and locally extendable. Then #(X) # . In fact if
F(Yy) # O then F(X) - F(Y,) is surjective.

Proof. Let a, € #(Y,). Let S be the set of pairs (Y.a) with Y, « Ye 9
and ae #(Y), a|Y, = a,. Partially order Sby (Y',¢) < (Y.a)if Y’ = Y and
alY’ = d'. By the closure of ) under union and the continuity axiom. S has
a maximal element (Y *,q*).

We claim Y+ = X. If not, by local extendability there exists ¥ € ) and
be F(Y+ U V) such that b|Y+ = a+. But then (Y* U I"b) > (Y+.as). con-
tradicting maximality. Hence Y+ = X.

QED

This method is often convenient for proving the existence of a global
structure when local existence and extendability are known: Theorem 2.9 is
an example. Another example is:

2.12. Theorem. Let M, N be C manifolds, | <r < x. If dim N 2
2 dim M then immersions are dense in C{M,N).

Proof. It is convenient to assume r = 2. This is no restriction. for if
r < 2, every C! manifold has a compatible C? structure, and if r > 2 every
C? immersion can be approximated by " immersions. Henceforth we
assume all maps are C2.

Let fo:M — N be a map and A", = CHM,N) a neighborhood of f,.
There is a smaller neighborhood A4~ < .47, of f, of the following form:

N = Y fo O¥ K.E)
where
¥ = {'!’IV: - R.}ie_t
is a family of charts on N;
¢ = {p;:U, - R},
is a locally finite atlas for M with f(U) < V;; K = {K;},. .. where K, < U
0:i(Kj) = D" < R™,

and e = {g ;. , is a set of positive numbers.
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We now define a structure functor (#,9)). For 9 we take the family of
all unions of the disks K;, partially ordered by inclusion. If 4 € 9 we define
F1(A) to be the set of 4-germs of maps f € A4 such that f is an immersion
of some open set containing A. If 4 — B, every such B-germ is contained in
a unique A-germ; this correspondence defines the map # ,5: F(B) - F(A).

It is easy to see that (#,9) is continuous. Moreover, it is locally ex-
tendable. To see this let W <« M be an open neighborhood of 4 € ), and
let f € & be a map such that f|W is an immersion. Then f represents an
A-germ o€ F(A). If A # M pick K; ¢ A. To extend a over A U K| is to
find a map g € & which agrees with f in some neighborhood of A4, and
which is an immersion of a neighborhood of A U K;. This is done as
follows.

Let B < U, be a disk whose interior contains K;. Now f(B) < V,, and
¥, is diffeomorphic to an open set in R", n 2 2 dim M. Therefore by Theorem
1.1 f|B:B - V¥ can be C* approximated by immersions.

Let 1:M - [0,1] equal 0 on an open neighborhood Z of A U (M — int B),
and 1 on an open neighborhood Y of K; — W. For each immersiong:B — V,
define a map S(g):M — N by

_jfy i xeM - B
Slgx = {(1 — M) + M) if  xeB.
Here we have identified ¥, with an open set in R” via ;. The map

S:C¥B,V)) - CHM,N)
is continuous, and
S(f1B) = f,
Sgp=f on Z
S(g) =g on Y.

From the first equation it follows that S(g) € A" if g is sufficiently near f|B.
The second equation implies that S(g) and f have the same A-germ. The
third equation implies that S(g) is an immersion on Y. But in fact S(g) is an
immersion of a neighborhood of K; if g is sufficiently near f|B. For let X be
a neighborhood of K; — Y with X compact in W. Since f|W is an immersion
and X < W is compact, f has a neighborhood 4", such that h|X is an
immersion if h € 4",. If g is close enough to f then S(g) € 4", and so S(g)|X
is an immersion. Such an S(g) is thus an immersion of a neighborhood of
A v K,. This proves that (#,9) is locally extendable. By Theorem 2.11,
F(M) # ¢, that is, A& contains an immersion.
Another proof of Theorem 2.12 is given at the end of Section 3.2.

QED

If M is not compact then embeddings may not be dense in Cy(M,N), no
matter what the dimensions of M, N. For example let f:Z — R” be a map
of the integers whose image is the set of points having rational coordinates.
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Let g:Z —» R" be any map such that

1
lgtn) — fn)} < T

for n # 0. Then the image of g is dense, so g(Z) is not discrete; hence g is
not an embedding.

The difficulty is trying to imitate the proof of Theorem 2.12 for em-
beddings is that if M is not compact the structure functor defined by A-germs
of embeddings is not continuous. It is continuous, however, when M is
compact; and if dim N 2 2 dim M + 1 it can be proved locally extendable
More generally, if the neighborhood 4 <« Cy{M,N) consists of proper maps,
then the structure functor of A-germs of maps in 4~ which are embeddings
in a neighborhood of A is continuous, and locally extendable if dim N >
2 dim M + 1. In this way one obtains a proof of the following result; the
details are left as an exercise:

2.13. Theorem. Let M, N be C manifolds, | < r < x, withdim N >
2dim M + 1. If M is compact then embeddings are dense in C(M,N). If M
is not compact, embeddings are dense in Propy{M,N).

As a corollary we have the following result of Whitney:

2.14. Theorem. Every C" n-dimensional manifold, 1| < r < o0, is C dif-
feomorphic to a closed submanifold of R****,

Proof. This follows from Theorem 2.13 as soon as a proper map /M —
R has been found. If M is compact take f constant. If M is not compact, let
M; « M, = - be an increasing family of compact sets which fill up M,
With Mk < Int Mk+l'

Let

SMyoy —My)=2k+1, k21
and extend fto a continuous map sending M,, — M,,_, into [2k — 1.2k + 1]
using Tietze's theorem. Then f is proper.
QED
We return to Theorem 2.13 in Section 2.4.

Exercises

*1. (a) Let X < M be a closed subset of a ¢ manifold, 0 < r < x. Then there exists
a C" map f:M - [0,00) with X = f~}0).
(b) If X, Y are disjoint closed subsets of a C" manifold M. 0 < r € =, there is a
C map A:M = [0,1]withA™'(0) = X, A" (1) = 1.

2. Any two points in a connected C" manifold, 0 < r < ¢, can be joined by a C

path f:[0,1] = M, and for r = 1, f can be chosen to be an embedding. (This is also
true, but difficult, for r = w.)
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3. Let ppM -+ Nbea C'mapand f:N - M a C section of p (that is, pf = I,).
(a) If 1 € r < 5 € oo then f can be C" approximated by C* sections. In fact if g
is sufficiently € close to f then g(N} is the image of a section.

(b) If 0 = r < s < o0 and p is submersive, then f can be C" approximated by C*
sections.

4, There are relative versions of theorems 2.6, 2.9, 2.12, and 2.13.

5. What are the bilinear functions A, in the proof of Theorem 2.47

3. Approximations on d-Manifolds and Manifold Pairs

In this section we extend the approximation results of Section 2.2 to
d-manifolds and manifold pairs.

In constructing a C* differential structure for a C* d-manifold, one needs
to know that a C" map f:(M,0M) — (N,0N) can be approximated by C®
maps. Thus we are led to consider the space C5(M,0M; N,0N) of C" maps
f:M — N such that f(0M) < N, with the strong topology. More generally
we consider Cy(M,M,; N,N,), where M, « M and N, = N are closed neat
" submanifolds.

The proofs are quite close to those of Section 2.2. The main change is
an adaptation of the approximation Theorem 2.4 to pairs. The details of this
are given for ¢-manifolds; other proofs are omitted.

The definition of || f||,, x, where now f is defined on an open subset of a
halifspace, is the same as before.

3.1. Lemma. Let E c R™ and F = R" be halfspaces, U < E an open
subset, and f:U - F a C" map, 0 < r < w. Let K < U be compact and
e > 0. There is an open neighborhood U’ = U of K anda C® map g: U’ — F

such that |lg — fll,.u < &. Moreover, if X = dU is such that f(X) < oF,
then g can be chosen so that g(X n U') < OF.

Proof. We may assume that either U or &F is nonempty, for if both
are empty Theorem 3.1 is subsumed by previous results. If U = ¢, first
approximate f by a map

folx) = flx) + ¥

where y € F — OF has norm <g; then apply 2.4.
If U # @ but F = &, extend f to a C" map on an open neighborhood
of ¥ in R™, using local extensions and C” partitions of unity, and apply 24.
If both AU and OF are nonempty, make the natural identifications:

R™ = (JE) x R, E = (JE) x [0,00);
R = (0F) x R, F = (3F) x [0,00).
For (x,y) € (OE) x R write

Jxy) = (flx)filx,y) e IF x [0,00).
Note that f; = 0.
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We use a variation of the convolution of Section 2.1. Let :R™ — R be
a C® convolution kernel of the special form

0(x,y) = Ax)B(3)

where a:0E — R, §:R - R are C*® convolution kernels.
Suppose o, § and & have support radius less then é > 0. Let U' =
{xy) e Ulix2)e Uify € z < y + 4. Define

h:U' - R,
h(x,y) = J:)o "wf(x — x,y + Dafs)B(t) ds dt

Then h is C* and ||k — f||,.,- = 0 as & — 0. Moreover H{(U’) < F because
/i and B are nonnegative. If f(dU) < JF then f(x,y) 2 f(x,0), which implies
h(x,y) 2 h(x,0). Now define g(x,y) = h(x,y) — Kx,0). Then g(U") = F and
g(dU") = OF. If § is small enough, the map g: U’ — F satisfies the lemma.

3.2. Lemma. Let E < R™, F c R" be halfspaces and U c E, V< F
open sets. Then C*(U,V) is dense in Cy(U,V), and C=(U,¢U; V,3V) is dense
in CyU,dU; V,éV),0 < r < o0.

Proof. This proof is almost the same as that of Theorem 2.4. The details
are left to the reader.

3.3. Theorem. Let M and N be a C* manifolds, 1 < s € o; éM or dN
or both may be nonempty. Then CM,N) is dense in C{M,N) and
C(M,0M; N,ON) is dense in C{M,0M; NON),0 < r < s.

Proof. A relative version of Theorem 3.2 is proved in the same way as
Theorem 2.5. The globalization to Theorem 3.3 is just like the proof of
Theorem 2.6.

QED

3.4. Theorem. Every C" manifold M, | € r < o, is C' diffeomorphic to
a C® manifold and the latter is unigue up to C® diffeomorphism.

Proof. Similar to the proof of Theorem 2.9, and left to the reader.

By a C" manifold pair (M,M,) we mean a C" manifold M together with
a " submanifold M,. The approximation and globalization techniques
developed so far can be combined to yield the following results; the proofs
have the same general outline as the previous ones and are left to the reader.

3.5. Theorem. Let (M,M;) and (N,N,) be C* manifold pairs,1 < s < 0.
Suppose that M, is closed in M, and My c M — M or My, <« ¢M or M,
is a neat submanifold. Then C(M,M,; N,N,) is dense in C(M,My; N,N,),
0<r<slIfl <r<s, and(MM,) and (N,N,) are C diffeomorphic, they
are also C* diffeomorphic.
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3.6. Theorem. Let (M,M,) be ¢ C" manifold pair. If 0 <r <s< o
then (M, M) has a compatible C* structure (that is,(M,M )} is C" diffeomorphic
to a C* manifold pair). If also M, is closed in M. and Mg <« M — oM or
M, © éM or M is neat, then the compatible C* structure is unique up to C
diffeomorphism of manifold pairs.

Theorem 3.6 is of use in parts of analysis (invariant manifold theory, for
example) where submanifolds of low differentiability occur naturally.

There are counter-examples to the existence of C* structures on C° pairs
{(M,M,), even where M and M, each have C* structures.

We leave to the reader the adaptation of the proofs of Theorems 2.12,
2.13 and 2.14 to d-manifolds.

Exercises
1. Let 1 € r < s € o. There are C* manifolds, M, N andclosedsets A « M,Bc N

such that C(M,A4; N,B) is not dense in Cy{M,A; N,B). [Hint: let A = M. Suppose
B = N is a C" submanifold which is not C*, and f:M — B is a (" diffeomorphism.]

2. Relative versions of Theorems 3.3 through 3.6 are true.

3. Theorems 3.5 and 3.6 extend to maps of manifold n-ads {M;} — {N;} where

M,c -cMycMand N,c---c Ny N are nested families of closed neat
submanifolds.

4, Let M be a C* manifold and 4 = M a closed neat submanifold. If ¢ > 2dim M
then every C® embedding of M in R?, or of 4 in R, extends to C* embedding of M.

4. Jets and the Baire Property

It is convenient to redefine the topologies on C"(M,N} in a way which
avoids coordinate charts. C'(M,N) will be identified with a subset of
C%M,J"(M,N)) where J'(M,N) is the manifold of r-jets of maps from M
to N. In this way C(M,N) becomes a set of continuous maps. Qur first
goal in this section is to define the weak and strong topologies on such sets.

We denote by C(X,Y) the set of continuous maps from a space X to a
space Y. The compact open topology on C(X,Y) is generated by the subbase
comprising all sets of the form

{f € CX,Y):f(K) < V}

where K = X is compact and V < Y is open. We also call this the weak
topology to contrast it with another topology defined below. The resulting
topological space is denoted by Cy(X,Y).

The weak topology is most useful when X is locally compact. When
Y is a metric space the topology is the same as that of uniform convergence
on compact sets. If X is compact and Y is metric, Cw(X,Y) has the metric

d(f.g) = sup, d(f{x),g(x)).
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This metric is complete provided Y is a complete metric space. More
generally:

4.1, Theorem, Ler each component of X be locully compact with a

countable buse; let Y be a complete metric space. Then Cy{ X.Y ) has a complete
metric.

Proof. 1t suffices to construct a complete metric on Cy{X,Y) for each
component X, of X ; therefore we assume X locally compact with a countable
base. Then X has a countable covering by compact sets | X, }. Each space
Cw(X,,Y) has a complete metric.

Define a map

p:Cl X, Y) = []a Cal X Y0
p-(f) = len

Then p is a homeomorphism onto a closed subspace. Since the preduct
of a countable number of complete metric spaces has a complete metric.
Cw(X,Y) is homeomorphic to a closed subspace of a complete metric space
and thus has a complete metric.

QED

Now let X and Y be arbitrary spaces. The space Cg(X,Y) is the set C(X.Y)
with the following strong topology. Let I'y ¢ X x Y denote the graph
of the map f. If W < X x Y is an open set containing I, let

A W)= {ge CX,Y):T, c W}

These sets, for all fand W, form a base for the strong topology. The induced
topology on a subset of C(X,Y) is also called strong.

When X is paracompact and Y is metric, C(X,Y) has the base comprising
all sets of the form

N(fe) = {g:d(g(x)f(x)) < e(x), all xe X}

where fe C(X,Y) and ¢ € C(X,R ) are arbitrary.

If X is compact the weak and strong topologies are the same.

We cannot expect the strong topology to have a complete metric. since
it may not have any metric. But we shall see that in many cases it is a Baire
space, that is, the intersection of a countable family of dense open sets is
dense.

Let Y be a metric space. A subset of C(X,Y) is uniformly closed if it
contains the limit of every uniformly convergent sequence in it. Observe
that this concept depends on the metric on Y. A subset which is closed under
pointwise convergence is uniformly closed, as is a subset which is closed
in the weak topology.

4.2. Theorem. Let X be a paracompuct space and Y u complete metric
space. Then every uniformly closed subset Q < C(X,Y) is a Baire space in
the strong topology.
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Corollary. If M and N are C° munifolds, every weakly closed subset
Q « C(M,N) is a Baire space in the strong topology.

Proof. Let {4,}, ¢~ be a sequence of dense open subsets of Q (referring
always to the strong topology), and let U < @ be a nonempty open set.
Then A, U is a nonempty open subset of Q. Therefore there exists
Jo€ Ag n U and ¢ € C(X,R., ) such that

QN H(foko) € Agn U

where A7( fo.60) = {g:d(foX,gx) < £o(x)}. We may obviously assume ¢, < 1.
. By recursion there are sequences {f,} in Q and {¢,} in C(X,R,) such
that foraline N:

Q N ﬁ(};+h8n+l) < An+1 m -/V(f;nsn),

and ¢,,, < &,/2. The sequence { f,} satisfies

d(fye1xfix) < 27"

and so is uniformly convergent. The limit f is in Q since Q is uniformly closed.
Also f belongs to every A(f,.¢,), 5o f € U and also f € NnA4,.

QED

We now define jets of finite order r, treating first manifolds without
boundary. Let M, N be C" manifolds, 0 < r < . An r-jet from M to N
is an equivalence class [x,f,U], of triples (x,f,U), where U < M is an
open set, xe U, and f:U — N is a C" map; the equivalence relation is:
[x.f,U], = [x/,U’], if x = x' and in some (and hence any) pair of charts
adapted to f at x, f and f” have the same derivatives up to order r. We use

the notation
[(xf.U), = /of = Jfix)

to denote the r-jet of f at x. We call x the source and f(x) the target of [ x.f,U].
The set of all r-jets from M to N is denoted by J(M,N). There are well
defined source and target maps:

o JJ'M\N) - M,  o[xf.U], = x,

©:J'M,N) > N, iixf,U), = flx).
We put

6" '(x) = JUMN), 7)) = J(MN),
and

JAMN) N J(M,N), = J, (M,NY},

this last is the set of all r-jets from M to N with source x and target y.
Consider the special case M = R™, N = R". We write

J(R™R") = J(m,n).
Suppose U = R™ is open and fe C(U,R"). The r-jet of fat xe U has a



4. Jets and the Baire Property : 61

canonical representative, namely the Taylor polynomial of f of order r
at x. This polynomial map from R™ to R" is uniquely determined by the
fist of derivatives of order r of f at x. This list belongs to the vector space

Pimn) = R* x [] LL(R™RM
k=1

where L% (R™R") denotes the vector space of symmetric k-linear maps
from R™ to R". Conversely any element of P'(m.n) comes from a unique
jet in J7(m,n). In this way we have identifications

Jimn) = P'im,n)
and

J'(mn) = R™ x P(m,n).

In particular J’(m,n) is a finite dimensional vector space (for r finite). If
U < R™and V < R" are open sets then J(U,V) is an open subset of J'(m.n).

Now let M, N be manifolds of dimension m, n respectively. Suppose
at first that oM and &N are empty. If (¢,U), (.V) are charts for M. N the
following map 8:J7(U,V) - J(eU V) is a bijection:

02/ if07h),  y=6x).

Thus & sends each jet to the jet of its local representation. Now J'(@U.y 1)
is an open set in the vector space J°(m,n), which is isomorphic to a Euclidean
space. Therefore we can view (6,J'(U,V)) as a chart on J'(M.N); the topology
on J'(M,N) is of course that determined by these charts. In this way J(M.N)
is a C° manifold. In fact if M, N are C"*?* manifolds, J'(M,N) has differenti-
ability class C*.

For each C" map f:M — N we define a map

7f:M = J(MN)

by x — ff(x). This r-prolongation of f is continuous and in fact C* if M
and N are C"**, We consider jf as a kind of intrinsic r'th derivative of f.
It is clear that ' is injective.

4.3. Theorem. The image of
J:C(M,N) = CoM.J(M.N))
is closed in the weak topology.

Proof. Wemust show that the image is closed under uniform convergence
on compact sets. It suffices to consider convex compact subsets of coordinate
charts. Ultimately we must prove that if U < R™ is open and {f,} is a
sequence such that for each k = 0, .. ., r the sequence | D*f(x)} converges
uniformly on U to a continuous map g,:U — LYR™,R"), then g, = D*g,.
This is proved by induction on k. The inductive step is the same as the
case k = 1. If Df, converges uniformly to g, and f, converges uniformly
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to g,, we have, for x, x + ye U:

Qo(x + .V) = limn—*uo f;(x + )’)
= lithe o fux) + limyg [ DA + ty)y dt

1
= gox) + [ gutx + v e,

by uniform convergence. It follows easily that g, = Dyg,.

QED

If we give C'(M,N) the topology induced by f from the weak or strong
topology on C°(M,J"(M,N)), we obtain spaces which coincide with C{M,N)
and C5{M,N), as the reader can verify.

From Theorems 4.1, 4.2, 4.3 we obtain:

4.4. Theorem,

(a) Cw(M,N) has a complete metric;

(b} Every weakly closed subspace of C{M,N) is a Baire space (in the
strong topology).

Suppose M and N are C® manifolds. We define the set J*(M,N) to
be the inverse limit of the sequence

JOMNY — J{MN) - --
and JP(M,N) to be the inverse limit of the sequence
JAMN) <« JYMN) « - -

An element of J2(M,N) is, by definition, an co-jet at x.
The maps j fit together to define a map

j©:C(M,N) = Co(M,J™(M,N)).

Again the image is weakly closed, and the weak and strong topologies on
C™(M,N) are the same as those induced by j* from the corresponding
topologies on C(M,J*(M,N)). 1t follows that Cp(M,N) has a complete
metric and every weakly closed subspace of C$(M,N) is Baire in the strong
topology. In particular, C£(M,N) is a Baire space.

Returning to the density of embeddings, we give an alternative proof
of Theorem 2.13. It suffices to prove that if f,:M — N is a C" proper map
and & < Prop’(M,N) is a neighborhood of f, then .4 contains an injective
immersion, for a proper injective immersion is an embedding.

We may assume that

N = N (P, V,Kpe),

the notation being as usual, where K = {K,},. , is a family of coordinate
disks which covers M.
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For each ie A let
X, = {f e #:f|K; is an embedding]}.

Then X, is dense and open in A4". To see this let B; < U, be a slightly larger
coordinate disk containing K in its interior. By Theorem 1.3.5 we can
approximate f|B; by an embedding g;; glueing g; and f together by a C
map A:M — [0,1] which is 1 on D; and 0 on M — K|, gives a map which
embeds D; and which tends to f as g; tends to f|B;. Thus X is dense. Openness
follows from openness of embeddings.

A similar argument proves that if (ij) is such that K; n K; = ¢, then
the set

X;; = {fe ¥ :f|K; U K is an embedding}
is dense and open.

Let K K2 . be a family of refinements of K such that each X’
is a locally finite covering of M by coordinate disks, and such that for any
distinct x, y e M there exist disjoint disks K{', K%¥'e K" with x ¢ K'{,
y€ KY. Since M has a countable base, each K™ is countable.

Let X™ be the set of f€ 4 such that f|K™ U K!” is an embedding
whenever K™, K are disjoint disks in K. Then each X™, and hence
()a X, is the intersection of a countable family of dense open subsets of
A", Since the Baire property is inherited by open sets, .4 is a Baire space.
Therefore (), X™ is dense in 4. This intersection is precisely the set of
injective immersions in 4". Therefore embeddings are dense.

In our treatment of jets we have assumed that ¢M = éN = @& We now
consider the general case where M and N are allowed to have boundaries.

The definition of r-jet is unchanged, but the topology on J'(M,N) must
be treated carefully. Consider first open subsets U, V of halfspaces E = R™,
F <« R". For each (x,5)e U x V there are canonical identifications (for
r < oo):

T AUV = [T Lh®m R
k=1

= Jo.olm.n).
Consequently

J(UV)=U x V x Jg o(mn).

If either 0U or &V is empty, this is an open subset of a halfspace. But if
oU # ¢J and 0V # ¢ it is not. It is, however, homeomorphic to an open
subset of a half space; this follows from the same property for U x V¥,
which in turn follows from the homeomorphism

[0,00) x [0,00) ® R x [0.cC).
Thus again J(M,N) has a natural C° manifold structure, and the preceding

-

development goes through. (But if M and N are C"** ¢-manifolds, J(M.N)
has no natural C* structure.) The treatment of jets of infinite order is the
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same as before, and Theorem 3.4 holds for all manifolds. The proof of
density of embeddings in Propj(M,N) can be adapted to J-manifolds.

Exercises

1. Let X be locally compact and paracompact. Suppose Y has an open covering by
completely metrizable subspaces. Then every weakly closed subset of C(X,Y) is Baire
in the strong topology.

*2. Under what conditions is the natural map

CAX,C(Y,Z)) » CX x Y,2)
a homeomorphism?

3. Let X be paracompact and Y metric. For each ¢ € C(X,R,) define a metric d, on
C(X,Y):
df.g) = min {1, sup, d{ fx.gx)/e(x)}.
(a) If Y is complete each metric d, is complete.
(b) If @ = C(X,Y) is uniformly closed and ¢ is bounded then Q is closed in the
metric space (C(X,Y)d,).
(c) The strong topology on C(X,Y) is that induced by the family of metrics

{d,:e€ C(X,R,)}

4, The Baire property for the strong topology on uniformly closed subsets of C(X,Y)
follows from Exercise 3 and the following. Let Q be a space whose topology is defined
by a family A of complete metrics. Suppose that A is a directed set under the partial
ordering:

dy<d, if  dixy Sdyixy) forall  (x,).
Then @ has the Baire property.

5. Let {X,};., be a family of complete metric spaces. Let X be the product of the
sets X;, with the following strong product topology: a set is open if and only if its pro-
jection into each X, is open. If Q < X is closed in the usual product topology, the
strong product topology on Q has the Baire property.

6. I M is compact then Cy(M,R") is a Banach space for r < oo,

*71. CH(R,R) is a complete, locally convex topological vector space, but it does not have
a norm. Thus it is not a Banach space. [Hint: let E be a topological vector space. Cali
X c E bounded if for every neighborhood N < E of O there exists t > 0 such that
tX < N. Then E has a norm if and only if there is a bounded convex neighborhood
of 0.]

8. CW(M,R) is a separable, complete locally convex topological vector space; but it
does not have a norm. (See Exercise 7.)

9. Let M be a C manifold, 0 < r € w. The set Diff"(M) of C" diffeomorphisms of M
is a topological group under composition in both the weak and the strong topologies.

10. Let M, N, P be C" manifolds, 0 < r € .
(a) The composition map

C(N,P} x C(M,N) - C"(M,P),
S feg
is continuous in the weak topologies.
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(b) For fixed f = f, composition is continuous in g in the strong topologies.

(c) For fixed g = g, composition is continuous in f in the strong topologies if
and only il g is proper.

(d) Composition is continuous at ( fo.go) if and only if g, is proper.

11. Compute the dimension of J(M,N).
*#12. Is C2(R,R) paracompact? (It is not normal; see Van Dovwen [1].)
13. The subspace
X = {fe C3(RR):Supp f is compact}
is closed but does not have the Baire property.

14. The limit set L(f) of f:M — N is the set of y € N such that y = lim x, for some
sequence {x,} in M which has no convergent subsequence. If dim N > 2 dim M and
1 € r < oo then embeddings are dense in

£ = {fe CAMN):fIM) n LUf) = B},
[If f € &, there is an open set N, = N containing f(M) such that /:M — N, is proper;
use Theorem 2.13.]

15. An open set P < J'(mn) is natural if it is closed under composition with jets of
local diffeomorphisms of R™ and R*. Given such a P and C manifolds M, N define
P(M,N) to be the set of C" maps from M to N all of whose local representations have
their r-jets in P. Then P(M,N) is open in Cy{M,N).

16. The set of immersions is a Baire subset of Cp{M,N), ] < r € 0 if dim M <
2 dim N. (A Baire subset is the intersection of a countable family of dense open subsets.)

*17. The space C{M,N) is completely regular, 0 < r < 0.

S. Analytic Approximations

Partitions of unity are of no use for constructing analytic approximations
because an analytic function on R" is constant if it has bounded support.
More subtle globalization techniques are needed.

Using methods from complex analysis, Grauert and Remmert [1] have
proved the following deep result:

5.1. Theorem. Let M and N be C® manifolds. Then C°(M,N) is dense in
Ci{M,N),0 < r <€ oo.

That this is true is very fortunate, for it means that C* differential topology
is no different from the C*® theory for such questions as diffeomorphism
classification of manifolds, existence of embeddings and immersions, etc.
These questions concern open sets of maps, from one manifold to another.
Where closed sets of maps or individual maps are considered, for example
solutions to differential equations, the degree of differentiability may play
an important role, It is also an important consideration whenever maps
from a manifold to itself are studied. For such maps problems of conjugacy
and iteration arise, and high differentiability is sometimes a crucial
hypothesis.
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Occasionally analytic maps are a useful tool because their level surfaces—
even critical ones—are analytic varieties. More general than manifolds,
analytic varieties still are topologically fairly simple. In particular, they
can be triangulated.

Morrey [1] proved Theorem 5.1 for compact manifolds. An elegant
treatment of this case was given by Bochner {1] under the assumption of
an analytic Riemannian metric.

Once Theorem 5.1 is known, the existence of compatible C structures
on C" manifolds can be proved using the maximality argument of
Theorem 2.9. This was first proved by Whitney [2] using the following
easier approximation result:

5.2. Theorem (Whitney [6]). Let U = R™ be open and f:U >R a C
map, 0 < r < 0. Let v:R™ — [0,1] be a C* map of bounded support, equal
to 1 on a neighborhood of a compact set K < U. Set h(x) = v(x)f(x). Let
8:R"™ - R, 8(x) = exp(—|x|*). Let T = 1/fg 6. Let & > 0. Then for x > 0
sufficiently large, the convolution g of h with the function Tx™ 8(x,x) is analytic
and satisfies ||g — fll,.x < &

The proof is straightforward, but in the absence of partitions of unity
it is not easy to pass from Theorem 5.2 to an approximation theorem for
abstract C® manifolds. For C° submanifolds of R", however, Theorem 5.2
works quite nicely once the technique of tubular neighborhoods is available.

We shall use Theorem 5.2 to prove, in Section 4.6, that C* manifolds
have compatible C* structures.

Nash [1] proved that a compact connected C® manifold without
boundary is C* diffeomorphic to a component of a real algebraic variety;
he also proved an algebraic approximation theorem for maps of such
manifolds; sce Shiata [1].

An interesting topological application of Nash’s results was made by
Artin and Mazur [1]: if M is a compact connected C*® manifold there is
a dense subset of CP(M,M) of maps f:M — M such that the number of
fixed points of f” is bounded above by a function of the form Ae*" where
A and 1 are positive constants.

Exercise

1. fU < R™is open, polynomials are dense in C3(U,R). [Hint: replace the exponential
in Theorem 5.2 by a Taylor polynomial.]



Chapter 3

Transversality

Transversality unlocks the secrets of the manifold.

—H. E. Winkelnkemper

“Transversai” is a noun; the adjective is “transverse.”

—J. H. C. Whitehead. 1959

Consider the following statements:

1. If £:8°— R? is C', then f~'(y) is finite for “most™ points y € R*.

2. Two lines in R’ do not intersect “in general.”

3. If f:R - Ris C!, “almost all” horizontal lines in R x R are nowhere
tangent to the graph of f.

4. “Generically” a C' immersion S -» R? has only a finite number of
crossing points.

These statements illustrate a type of reasoning that is common in differen-
tial topology. Most people would agree they are plausible. Yet there is an
element of uncertainty about them, due to the vagueness of the words in
quotation marks. Even if these are given precise definitions, it is obvious
that something needs to be proved. The purpose of this chapter is to develop
the mathematics needed to justify such statements.

The basis of this mathematics is a profound result in analysis. due to
A. P. Morse and A. Sard.! It says that if f:R" - R* is C", where r > max
{0,n — Kk}, then the set of critical values has measure zero in R*. We prove
this only for the case r = oc. This version is considerably easier and is ade-
quate for differential topology.

The reader may prefer to accept the Morse-Sard theorem {Theorem 1.3)
on faith, since the method of proof is not used elsewhere.

In Section 3.2 the Morse-Sard theorem is used to prove various trans-
versality theorems. These guarantee the existence of plenty of maps f: M — N
which are transverse to a submanifold 4 = N. This is a fundamental result
in differential topology; analogous statements in the theory of topological
or polyhedral manifolds are false.

In this chapter and the remainder of the book, ull manifolds and sub-
manifolds are assumed to be C™ unless the contrary is stated. In view of the
approximation results of the preceding chapter this is not a serious restriction.

! The first theorem of this kind was proved by A. B. Brown [1]. Sex also Dubovickii [H].

[
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1. The Morse-Sard Theorem

An n-cube C = R" of edge 2 > 0 is a product
C=l xxLcRx - xR=R"
of closed intervals of length A; thus
Iy =[aju; + 1] = R

The measure (or n-measure) of C is

HC) = Q) = A"

A subset X « R" has measure zero if for every € > 0 it can be covered
by a family of n-cubes, the sum of whose measures is less than . A countable
union of sets of measure zero has measure zero. Therefore X has measure

zero if every point of X has a neighborhood in X of measure zero (by
Lindelof’s principle).

1.1. Lemma. Let U = R" be an open set and f:U - R" a C' map. If
X < U has measure zero, so has f(X).

Proof. Every point of X belongs to an open ball B < U such that || Df(x)||
is uniformly bounded on B, say by x > 0. Then

|0 = f)] < xfx - y]

for all x, v € B. It follows that if C < B is an n-cube of edge 4, then f(C) is
contained in an n-cube C' of edge less than \/nkd = LA. Therefore y(C) <
o).

a
Write X = {) X; where each X; is a compact subset of a ball B as

i

above. Foreache > 0,X; < { J, C, whereeach C, isan n-cubeand ) y(C}) <
&. [t follows that (X} = U,‘ C\ where the sum of the measures of the n-cubes
C, is less than L". Hence each f(X)) has measure zero, and so f(X) has
measure zero.

QED

Now let M be a (C®) n-dimensional manifold. A subset X <= M is said
to have measure zero if for every chart (¢,U), the set ¢{U n X) = R" has
measure zero. Because of Lemma 1.1, this will be true provided there is some
atlas of charts with this property.

Notice that we have not defined the “measure” of a subset of M, but
only a certain kind of subset which we say “has measure zero.” This is in
accordance with the red herring principle (Chapter 1, page 22, footnote).

It can be shown that a cube does not have measure zero. Therefore a
set of measure zero in R" cannot contain a cube; hence it has empty interior.
It follows that a closed. measure zero subset of R", or of a manifold M, is
nowhere dense. More generally, suppose X < M has measure zero and is
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o-compact, that is, X is the union of a countable collection of compact sets.
Each of these is nowhere dense, and so M — X is dense by the Baire
category theorem. The complement of X is residual. that is. it contains the
intersection of a countable family of dense open sets. The Baire theorem says
a residual subset of a complete metric space is dense. Note that the inter-
section of countably many residual sets is residual.

1.2. Proposition. Let M, N be manifolds withdim M < dim N_If f:M —
Nisa C! map then N — f(M) is dense.

Proof. 1t suffices to show that f(M) has measure zero. This follows from:
g(U) < R" has measure zero if U < R™ is open and g: U — R* is C'. with
m < n. To prove this assertion, write g as a composition of C' maps

U=Ux0cUxR™SUSR
Clearly U x 0 has n-measure zero in

U X Rll_ll c Rﬂ X Rk“m - E{‘El.

»

hence the proposition follows from Lemma 1.1 applied to ng.

QED

Recall that a point x € M is critical for a C' map f: M — N if the linear
map T, f:M, — N, is not surjective. We denote by ¥ , the set of critical
points of f. Note that N — f(3_/) is the set of regular values of f.

1.3. Morse—Sard Theorem. Let M, N be manifolds of dimensions m, n
and f:M — NaC map. If

r > max {0m — n}

then f(3 ;) has measure zero in N. The set of regular values of f is residual
and therefore dense.

The differentiability requirement is strange but necessary. We shall prove
the theorem only in the C* case. Before beginning the proof let us examine
the implications of the theorem in particular instances.

Let f:R — R be C'. If y is a regular value, then the horizontal line
R x y « R x R is transverse to the graph of f (Figure 3-1). Thus the
theorem implies that “most” horizontal lines are transverse to the graph.

Consider next a map f:R? — R'. In this case the theorem says that most
horizontal planes R% x z = R? x R are transverse to the graph of f if f is
C? (Figure 3-2). This seems plausible. In fact it seems plausible that this
should hold even if f is merely C'; but Whitney [1] has found a counter-
example! In fact Whitney constructs a C' map f:%? — R! whose critical
set contains a topological arc 1, yet f|1 is not constant, so that f(} ;) contains
an open subset of R. This leads to the following paradox: The graph of f
is a surface S = R? on which there is an arc 4, at every point of which the
surface has a horizontal tangent plane, yet A is not at a constant height. To
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Figure 3-1.

’
N

Y Horizontal plane

Figure 3-2.

make this more vivid, imagine that S is a hill and A a path on the hill. The
hill is level at every point of the path, yet the path goes up and down.

Proof of the Morse—Sard Theorem for C® Maps. It suflices to prove a
local theorem; thus we deal with a C* map f:W — R" where W < R™ is
open. If m < n then f(W) has measure zero. We assume from now on that
m2zn

A differential operator of order 1 means a map C*(W,R} - C*(W,R) of
the form

og
g’—"a*x—k

for some k € {1, ..., m}. The composition of v such operators is a differential
operator of order v.

We express the critical set >’ as the union of three subsets as follows
Write f(x) = (i), ..., fulx)).
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2' is the set of points p € 3, such that 4f,(p) = O for all differential
operators A of order = m/nand alli =1, ..., n.
Z’ is the set of points p e z s such that Af{p) # 0 for some i and some
differential operator 4 of order =2;
i

Y3 is the set of points p e 3, such that g;‘ (p) # Ofor some i j.

Clearly Y, = Y'uYyru Y’ ’

We now show that f(} ') has measure zero. Let v be the smallest integer
such that v > m/n. The Taylor expansion of f of order v about points of
Y! shows that every point of )_! has a neighborhood U in W such that if
pe)' nUandge U then

f@) - f(@l<Blp—ql',B=0.

We take U to be a cube. It suffices to prove that f(U n }) has measure zero.
Let A be the edge of U and s a large integer. Divide U into s™ cubes of
edge Als. Of these, denote those that meet Y ' by C\, k = 1,...,1, where
t < sn
Each C, is contained in a ball of radius ()./s)ﬁ centered at a point of
U ~ X. Therefore f(C,) is contained in a cube C, = B" whose edge is not

more than
A Y A

Hence the sum o(s) of the n-measures of these cubes C, is not more than

SNIAI (_i_) o sﬂ-vﬁAllVl.
Since m — vn < 0 it follows that 6(s) — 0 as s — . Thus f(U n } ") has
measure zero.

Note that 3! = 3, if n = m = 1. Therefore the Morse-Sard theorem
is proved for this case. We proceed by induction on m. Thus we take m > 1
and we assume the truth of the theorem for any C* map P — Q where
dim P < m.

We prove next that f(3 ' — ) °) has measure zero. Foreachpe 3 2 — 32
there is a differential operator 8 such that

0f{p) = 0,
(n a
o 0fip) # 0

£

for some i, j. Let X be the set of such points, for fixed 0. i, j. It suffices to
prove that f(X) has measure zero.

Formula (1) shows that 0 € R is a regular value for the map 6f,: W — R.
Because f; is C”, so is 8f;. Therefore X is a C~ submanifold of dimension
m — 1.Clearly } , n X < } ;x. By the induction hypothesis, f(} ,y) has
measure zero. Hence f(3 2 — ) *) has measure zero.
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It remains to prove that f(} ) has measure zero. Every point peZ’
has an open neighborhood U <« W on which, for some i, j, éf;/dx; # 0.
By the implicit function theorem we may choose U so that there is an open
set A x B R"! x R and a C* diffeomorphism h:4 x B — U such
that the following diagram commutes:

AxBAU
{ 11
B < R

In other words f{x, ..., X,_.t) =t for (x,f)e A x B.
For notational convenience we reorder the coordinates in R” so that
fi = f.. We identify U with A x B via h; now f|U has the form

R""!'xRoAdxBLR! xR
Sx,0) = (udx),1)

where for each t€ B, u,;:4 - R"™! is a C* map. It is easy to see that (x,t)
is critical for f if and only if x is critical for ,. Thus

an(A X B) = stBZu, x L
Since dim A = n — |, the inductive hypothesis implies that
tn- 1Y) = 0

where u,_, denotes Lebesgue measure in R" ™!, Fubini’s theorem now implies
that

Hn (Utea f(Zu. X t)) = fa Hy - !(“nQ:u,) ) dt
=f0m=a
B
Therefore, reverting to the original notation, we see that f(}* n U) has
measure 0,

QED

As the first application of the Morse-Sard Theorem we prove the
following topological result, equivalent to Brouwer's fixed-point theorem:

1.4, Theorem. There is no retraction D" — S"~ 1,

Proof. Suppose f:D" — S*~! is a retraction, ie., a continuous map
such that f|$"~! = identity. We can find a new retraction g:D" — §"~!
which is C* on a neighborhood of §"~! in D", for example

_ i 2 < <
g(x)_{f(zx) it 0<|x <12

Approximate g by a C* map h:D" — $"' which agrees with g on a
neighborhood of §"~!; then h is a C* retraction.
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By Theorem 1.3 there is a regular value y € S ! of h. (All we need is
one regular value!) Then h™'(y) is a compact one-dimensional submanifold
V < D" and

V=VnAsS

Therefore y is a boundary point of V. The component of ¥ which contains
y is diffeomorphic to a closed interval; it must have another boundary point
ze S""1 z # y. But k(z) = z, contradicting z € k™ !(y).

QED

The same argument proves that if M is any compact smooth manifold,
there is no retraction M — dM. This is true even without smoothness,
but the proof requires algebraic topology.

Brouwer's fixed-point theorem says that any continuous map f:D" — D"
has a fixed point, that is, f(x) = x for some x. This follows from 1.4; for
if f(x) # x for all x, a retraction g:D* - $"~! is obtained by sending x
to the intersection of $"~! with the ray through x emanating from f(x);
see Figure 3-3.

This proof that D* does not retract to S*~! illustrates the interplay
between maps and manifolds. The final step of the proof is the observation
that a compact 1-dimensional manifold has an even number of boundary
components. Thus the very simple topology of 1-manifolds leads to a
highly nontrivial result about maps.

This method of studying maps is used frequently in differential topology.
Its basic pattern is: approximate by a C* map, find a regular value, and then
exploit the topology of the inverse image of the regular value.

An important extension of the method uses not a regular value but a
submanifold to which the map is transverse. To achieve transversality,
further approximation theorems are needed. These are developed in the
next section.

gix)

Figure 3-3.
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Exercises

*1. Let /:R — R be differentiable (not necessarily C'). Then the set of critical values
has measure 0.

2. (a) For every y, € N, the set
{f € C(M,N): v, is a regular value}

is open and dense in C{M,N), 1 € r € o0.

(b} Given yg € N, fo:M — N, aneighborhood 4" = CYM,N)of f,, and a neighbor-
hood W < M of f§ '(yo), there exists g € 4 such that y, is a regular valueand g = f;
onM - W.

3. Let M be a manifold without boundary and K < M a closed set. Every neighborhood
U < M of K contains a closed neighborhood of K which is a smooth submanifold of

M.[Consider 1~ '{0,y] where 1: M -+ [0,1]is 1 on K, has support in U, and yisa regular
value of 1.}

4. (a) Let M be a connected manifold and f:M — N an analytic map. Let ¥, « M
be the set of critical points. If }, # M then /™ 'f(}) has measure zero.
(b) If S is merely C*, the conclusion of (a} can be falsc.

*5, Let U <« R? and V < R? be open sets. If {:U — V is C' and surjective, does [
necessarily have rank 2 at some point of U?

2. Transversality

Let f:M — N be a C' map and 4 = N a submanifold. If K « M we
write f (hx A to mean that f is transverse to A along K, that is, whenever
x€ K and f(x) = y € A, the tangent space N, is spanned by A4, and the
image T, f(M,). When K = M we simply write f o A.

In Sections 1.3 and 1.4 it was shown that if f 4 A4 then f~'(A) is a sub-
manifold (under certain restrictions on boundary behavior). This is one of
the main reasons for the importance of transversality.

Define

My (M,N; A) = {f € C(M.N):f (N\x A},

M (MN; 4) = Ny (M.N; A).

The main result of this section is the following theorem. Recall that a
residual subset of a space X is one which contains the intersection of count-
ably many dense open sets. (Remember that all manifolds and submanifolds
are tacitly assumed to be C*.)

and

2.1, Transversality Theorem. Let M, N be manifolds and A = N a sub-
manifold. Let 1 € r < oo. Then:

(a) m' (M,N; A) is residual (and therefore dense) in C'(M,N) for both the
strong and weak topologies.

(b) Suppose A is closed in N. If L « M is closed [resp. compact], then
ML (M,N; A) is dense and open in Cy{M.N) [resp. in C},(M,N)].

The proof is based on the Morse-Sard theorem for the local result, and
on the same globalization that was used for openness and density of immer-
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sions in Chapter 2. Since this technique will be used more than once. we first
develop it abstractly.

Let M and N be C" manifolds, 0 € r < x. By a " mapping cluss on
(M,N) we mean a function Z of the following type. The domain of 7" is the
set of triples (L,U,V) where U = M, ¥ = N are open. L = M is closed.
and L < U. To each triple & assigns a set of maps .2 (L. V) c C(U.V.
In addition & must satisfy the following localization axiom:

Given triples (L,U,V) a map f € C(U,V) is in & (L.} provided there
exist triples (L;,U;, ;) and maps f € ¥ (U..})) such that L « UL; and
[ = f; in a neighborhood of L;, for all i.

An example to keep in mind is:
FUUVY = NL(UV:V A Q).

A mapping class 4 is called rich if there are open covers #, ¥ of M. N
such that whenever open sets U <« M, V < N are subsets of elements of
%,7v and L < U is compact, then & ,(U,V) is dense and open in C{ L. V).

2.2. Globalization Theorem. Let & be a rich C" mapping functor on(M.N),
0 < r < oo. Forevery closed set L ¢ M:

(@) ¥ (M,N) is dense and open in C{M,N):

{b) & (M,N) is dense and open in Cy(M,N) if L is compact.

Proof. Fix L and f € C(M,N). In what follows i runs over a countable
indexing set A. Let & = {¢,,U;} be a locally finite atlas on M, K; < U;
compact sets such that L = UK, and ¥ = {§..V;} a family of charts on NV
such that f(K;) < V.. Because X is rich we can choose U, and V, so that
A« (E,V) is dense and open in Cy{E,V,) for every open set E < U, which
contains K.

Define # < C(M,N) to be the set of all g € C'(M.N) such that

glU;e Tx(UV) forall et

The localization axiom implies . # < X ,(M,N).

Suppose f € Z,(M,N). Then f e .# by the localization axiom. Our
assumption that each Z'¢(U,.V)) is weakly open implies that when L is
compact .# is weakly open (since A is then finite), while in general .# is
strongly open (because & is locally finite). This proves the two openness
statements in Theorem 2.2.

We now drop the assumption that f e & (M.N) and proceed to the
density part of Theorem 2.2

For each i let ¢ > O be given. Then there is defined the strong basic
neighborhood

N = NS D, K

where K = {K;};., and e = {&}; ;-

Fixje A. Let E = U; n f~}(V)); then K; < E. Since £ is rich, 4 (E.1))
is dense. Let 1:E — [0,1] be a C" map with compact support. such that
4 = 1 near K;.
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To simplify notation, identify V; with an open subset of a halfspace via
¥;, so that vector operations make sense on clements of V).

If g e G(E,V)) is sufficiently close to f|E, the following map I'(g) =
he C'(M,N) is well-defined:

)+ Ax)ex) - f]  if xeE
hx) = {f(x) if xeM-—E

Moreover, as g tends to f|E in the weak topology, h — f in the strong topol-
ogy. Since 2’k (E,V)) is dense, we can choose g € i (E,V)) so close to f |E
that e A", Since h = g near K it follows that h € X' (M,N).

This shows that for all i € A, the set &', (M,N) is dense in Cy(M,N); and
we already know it is open. It follows from Baire that (); Z'x,(M,N) is
strongly dense; since this set contains Z',( M,N), the latter is therefore strongly
dense.

The proof that &';(M,N) is weakly dense when L is compact, is similar.

QED
The proof of Theorem 2.1 will be based on the following semilocal result.

2.3. Lemma. Let K be a compact set in a manifold U, R* < R” a linear
subspace, and V < R" an open set. Then

Mk (UV; R A V)

is dense and open in Clp(U,V), 1 £ r < 0.

Proof. Since Cy(U,V) is open in CL{U,R") it suffices to take V = R".

Let m:R" — R"/R® be the projection. If f € C(UR") and x e U, then
f (M, R*if and only if: either (i) f(x) ¢ R", or (i) x € R" and x is a regular
point for nf: U - R"/R°

Suppose f (N\x R Then each y € K hasa compact neighborhood K, « K
such that either (i) holds for all x € K, or (ii) holds for all x € K. Let such
a K be chosen. It is easily seen that whether (i) or (i) holds y, the set of
f € Cw(U,R") such that f {ix, R* is open. Since K is covered by a finite set
of neighborhoods K, , ..., K,,, it follows that (N} (U,R"; R%) is open.

We now prove denseness. Since C* maps are dense in Cy,(U,R"), it suffices
to show that an arbitrary C® map ¢: U — R"isin the closure of m;( (UR"; E).
Let {y,} be a sequence in R" tending to 0, such that each =n(y,) is a regular
value of ng: U — R"/R?. Define

glt: U - R",
gdx) = g(x) — .

Then g, — g in Cy{U,R". Since g, d R, this shows that Nk (U,R") is dense
in CH(U,R".

QED



2. Transversality 77

Proof of the Transversality Theorem 2.1. First we assume that 4 is a
closed submanifold and prove Theorem 2.1(b). We begin with the case
N =&

It is easy to verify that for 1 < r < oc the function
TALUV)—~ N (U V; 4N V)

is a C" mapping class on (M,N). Under the assumption that ¢N = ¢J and
A is closed, & is rich. This follows from Lemma 2.3 by taking ¥ to be any
open cover of M and ¥~ to be an atlas of coordinate domains on N that
come from submanifold charts for (N,A). It follows from Theorem 2.2 that
{M (M,N; A) is strongly dense and open, and weakly dense and open if L
is compact.

Suppose now that 4 is still closed, but ¢N # (. Wemay assume N < &¢
as a closed submanifold. Then the weak and strong topologies on C’( M.V}
are those it inherits from the weak and strong topologies C't M,R%). We have
already proved that (h’ (M,R?; A) is strongly open, since A < R* is closed
and dR? = ¢, therefore the equation

N (M,N; 4) = C(MN) o (Y (MR A)

shows that (I (M,N; A) is strongly open in C(M.N). A similar argument
shows that mi (M,N; A} is strongly open, and weakly open if L is compact.
For density put No = N — éN, 4, = A — ¢éN, so that éNy = & and
Ay © N, is a closed submanifold. Then ()] (M.Ny: A,) is strongly dense
in C(M,N,), and weakly dense when L is compact. Now C7(M,N) is a
subset of C'(M,N) which is both strongly and weakly dense. Therefore
My (M,No; Ao) is a subset of /N (M,N; A) which is strongly dense. and
weakly dense when L is compact. This proves Theorem 2.1{b} in full
generality.

To prove Theorem 2.1(a) when A is not closed, let A, be a countable
family of compact coordinate disks on A. Then

M MN; A) = () (I (MN: A4y,
k=1

Since A, is closed, N\ (M,N; 4,) is strongly dense and open which proves
I\ (M,N; A4) strongly residual. Write M = { ) M; where each M, is com-

i=1
pact. Then

M (MN; 4) = () (Y MAMN; A,
i=1
This makes each m' (M,N; A,) weakly residual; hence each (" (M.N: 4,
is weakly residual. Finally, m' (M,N; A) is weakly residual. The proof of
Theorem 2.1 is complete.

QED
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Transversality is often used to put submanifolds 4, B = N in general
position; this means that the inclusion map B — N is transverse to A, or
equivalently, that A, + B, = N, when x € A n B. Note that this condition

is symmetric. If 4 and B are in general position then 4 n B is a submanifold
of both 4 and B.

2.4. Theorem. Let A, B be C" submanifolds of N, 1 < r < . Every
neighborhood of the inclusion ig:B — N in CyB,N) contains an embedding
which is transverse to A.

Proof. From the approximation results of Chapter 2 we may assume r =
0. The theorem follows from Theorem 2.1 and the openness of embeddings.

QED
Frequently one wants a map M — N to be transverse not just to one
submanifold, but to each of several submanifolds A,, ..., A, If each 4, is

closed, the set of such maps is open and dense; this foliows from openness

and density of m' {M,N; A,). Butifthe A;are not closed we may lose openness.
(But see Exercises 15 and 8.

2.5. Theorem. Let Ay, ..., A, be C" submanifolds of N, 1 < r < o0.
The set (h' (M\N; Ay, ..., A)) of C" maps M — N that are transverse to
each A, i = 0,..., q, is residual in Cy(M,N).

Proof. Since each set (" (M,N; A,) is residual, k = 0, . . ., g, their inter-
section is residual.

QED

The following typical application of transversality is frequently used.
For integers n 2 k = 0, let V, , denote the Stiefel manifold of linear maps
R* - R" of rank k. It is an open submanifold of the vector space L(R*R").
An element of ¥, ; can be thought of as a k-frame, that is, a k-tuple of in-
dependent vectors in R": the image of the standard basis of R".

2.6. Theorem. Let M be a g-dimensional manifold and K < M a closed
set. Ifq < n — ktheneverymap K —» V, , extendstoamapM - V, .

Proof. We assume n > k > 0, the other cases being trivial. By covering
M with a locally finite family of coordinate disks and making successive
extensions, one reduces the theorem to the case M = D% By Tietze's theorem
f extends to g:D% - L(R“R". Let 4 = LR R") — V,,. Then g~ '(A) is
closed and Kng~'(4)= . By the relative approximation theorem
(Theorem 2.2.5) we assume: g is C® on an open set M, < D? containing
g~ '(A), such that K is disjoint from the closure of My, and g = f on K.

The subset A « L(R*R") is the union of the subsets

Lik.n; p) = {Te L(R*R"):rank T = p},
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p=0,...,k — 1. Each of these is a submanifold. To see this fix T e Lik.n: p).
Let i:R? — R* be a linear injection transverse to the kernel of T, and let
p:R” = R” a linear surjection whose kernel is transverse to the image of T.
For any S € L{k,n; p) in a sufficiently small neighborhood U of T, the linear
map

pSi:R? - R*
is an isomorphism. Define

(p:U - Gk.k—p X L(Rﬂ'Rp} x Gn.p’
S+ (Ker S, pSi, im S);

here G,, , is the Grassmann manifold of {-planes in R™: its dimension is
{(m — ). Then ¢ maps U homeomorphically onto an open set. All possible
maps of this type form an atlas on L(k,n; p). Since the inverse of ¢ is 2 C°
map into L(k,n), it follows that L(k,n; p) is a C* submanifold of L(R* R") of
dimension
d, =(k — plp + p* + pln — p)
= nk ~ (n — p)k — p).

and codimension (n — p}(k — p). This holds for 0 < p < min {k,n}. Note
that d, increases with p.

Put A, = L(k,n; p). The map g can be assumed to be transverse to each
A,. Now
deoy = (k — 1)(n + 1).
Therefore if p < k — 1,
dmLRRY —d, 2 kn—(k—Din+ )=n—k+ 1

It follows thatifdim M < n — k + 1, the image of g misses 4g L -~ U A, _,;
andso g(M) < V, ,.

QED

Frequently one deals not with all C" maps M — N but only with a
family of maps parametrized by another manifold V. Thus one has a map
F:V > C"(M,N) and a submanifold A < N; it required to find v € V such
that the map

Flv)y=F, M > N

is transverse to A. Of course restrictions must be placed on F. We call the
following result the parametric transversality theorem. For simplicity we
state it only for manifolds without boundary.

2.7. Theorem. Let V, M, N be C" manifolds without boundary and A < N
a C" submanifold. Let F:V — C(M,N) satisfv the following conditions:

(a) the evaluation map F*: V x M = N, (v,x)— Fdx). is C";

(b) F* is transverse to A;

(¢} r > max {0, dim M + dim 4 — dim N}.
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Then the set
PMF; A) = {ve ViF, d A}

is residual and therefore dense. If A is closed in N and F is continuous for
the strong topology on C'{M,N) then dMF,A) is also open.

Proof. The last statement follows from openness of (h' (M,N; A). To
prove the rest of the theorem let W = (F*)"{4) < V x M. By (a), Wisa
C" submanifold of V x M. Letn:V x M — V be the projection. It is readily
verified that F, f 4 is and only if v e V is a regular value for the C" map
n|W:W — V. The dimension of W is dim V + dim M — dim N + dim A.
The theorem follows from Morse—Sard.

QED

In many situations parametric transversality is not sufficient; instead of
a map from a manifold to a function space, one must deal with a map defined
on another function space. Often the domain of the map is an infinite dimen-
sional manifold; in this case there is a generalization of Theorem 2.7 due to
R. Abraham [1].

A common situation concerns the jet map
JIC(M,N) = C(IMJ'(M,N)).

Here 1 € r < 5 € 0. One is given a submanifold 4 < J'(M,N) and tries
to approximate a C* map g:M — N by another C° map i whose prolonga-
tion jh:M — J'(M,N) is transverse to A. Denote the set of such maps h by
M (M.N:J,A).

2.8. Jet Transversality Theorem. Let M, N be C* manifolds without
boundary, and let A < JUM,N) be a C® submanifold. Suppose 1 £ r < s €

o0, Then m’ {M,N; ' ,A) is residual and thus dense in Ci{M,N), and open if
A is closed.

Proof. Suppose A is closed. Openness follows from openness of
M*~"(M,J(M,N); A). To prove density let U = M, ¥ < N be open sets
and let L < U be closed in M. Define

ZUUY) = {fe CWUVYTf N A}

One verifies easily that ¥ is a C° mapping class on (M,N). By the
globalization Theorem 2.2 it suffices to prove & rich. For the coverings
9, ¥ in the definition of rich choose any open coverings by coordinate
domains. It now suffices to prove that if U < R™ is an open subset and
A < J(URY is a closed submanifold, then (' (U,R";j,4) is open and
dense in Ciy(U,R". Moreover it is enough to prove this for s finite, s > r.
Fix fe C(U,R". Open'ness is obvious. The strategy for denseness is to
find a C* manifold X and a map «: X - Ci{(U,R") with f € a(x), and then
apply parametric transversality to the composition

F:X 5 CWURY S ¢ (UJ(URM).
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This requires that the evaluation map of F,
F X x U= JWRY

be transverse to A4 and sufficiently differentiable. In fact F© will be a C*
submersion.

Put X = Ji(R™R"). Every element of X is the s-jet at 0 of a unique
map g:R™ - R" whose coordinate maps g,.....g, are polynomials of
degree < s in the coordinates of R™. We identifv the elements of X with
such maps g.

Define a: X ~ C3{U,R"), g+ f + g|U and
. F=joa:X - C(UJWUEY).
Then F(0) = f. To compute F™ make the natural identification
JUURY) = Jo{R™R") x L.

Then
F J(R™RY) x U = Jy(R"R") x U
is given by
(folghx) = (jolg + f)x).
The map

B:JH(R™R") = JHR".R")
olg—=ilg + N

is affine, hence F is C™. Moreover the derivative of § at any point is the
“forgetful” linear map

o(R™R") — Jo(BR™R"),
Jo(g)— jolg)
which is surjective. Thus F* 4y 4; by Theorem 2.7 it follows that
{x & X:7(x(x)) h A}
a:X - C{U,R"
is continuous it follows that f is in the closure of
{he CRURY):fhh A

This proves that & is rich; hence for closed A, Theorem 2.8 follows from

is dense in X. Since

Theorem 2.2. If A is not closed write A = U A; where each 4, is a com-

k=1
pact coordinate disk in A. Then each (h’{M,N; j',A,) is dense and open
in C{M,N). By Baire their intersection, which is (\*{(M,N; 7,A). is dense.

QED

Just as with ordinary transversality, jet transversality extends to sub-
manifold families; we leave the proof of the following result to the reader.
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2.9. Theorem. Let A, ..., Aybe C* submanifolds of IM,N).If 1 < r <
s € oo then the set

{fECMN)Jf DAL k=0,...,q)}
is residual in C3{M,N).

As an application consider anew the question of density of immersions
in C3(M,N). Let A, = J!(M,N)be the set of 1-jets of rank k. Let m = dim M,
n=dim N, Then A, ..., A,_; is a C” submanifold family. A map
f:M = N is an immersion if and only if the image of j'f misses
Aoy U A,_,. The set of fe C*M,N) such that j'f is transverse to
Ao, ..., Ap,_, is dense in CIMN). If, for i =0,...,m — 1, dim 4; +
dim M < dim J}(M,N), such transversality implies that f is an immersion.
As in the proof of Theorem 2.5 one computes that (assuming m < n)

dim A; < dim A,_, = 2m + mn — 1,
dim J'MN)=mn + m + n.
Denseness of immersions in thus implicd by
Cm+mn—-D+m<mn+m+n

which is the same as n > 2m, exactly the condition found previously.

This proof is not very satisfying geometrically; it gives no hint as to
how the immersion is constructed. Nevertheless it shows the power of
transversality: the existence and even the denseness of immersions is proved
by merely counting dimensions!

Exercises

1. An immersion f:M — N has clean double points if whenever x, y are distinct points
of M with f(x} = f{y), they have disjoint neighborhoods U, V such that f|U and f}V
are embeddings, and the submanilolds f(U), f(V) are in general position {as defined in
Section 3.2). The set of immersions that have clean double points is dense and open
in ImmyMN), 1 < r € o0,

2. An immersion f:M — N is in general position if for any integer k > 2, whenever

fix,} =+ = f(x,) = yand the points x,, . .., x, are distinct, then N, is spanned by
TfiM, ,) and

Tf(Mx:) (AR Tf(M!h-x)'

The set of proper immersions which are in general position is dense and open in
Immi(M,N),1 € r € .

3. If f:M — N is transverse to a submanifold complex Ao, ..., 4, then
S YAq v -+ U A,) is a submanifold complex (see Ex. 15).

4, There is a dense open set & < CF(M™,N") such that il f € &, then:
(a) foreach p = 0, ..., min (m,n) the set

R(f,p) = {xe M™rank T, f = p}

is a submanifold of M;
®) R(f.p) = Zil(m — pin — p} > m;
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{c) ifim — p¥n — p) £ mthen

codim R(f,p) = tm ~ p)in — p):
{d) the submanifolds
R(/0).....R(fmin {m.n))

form a submanifold complex {see Ex. 15).

8. Generically, a C' map f[:M™ — N~ ! has rank > m —~ 2 everywhere. and the set
where [ has rank m — 1 is a closed O-dimensional submanifeld (perhaps empty).

*6. A map f:R? - R? has a cusp at x € R? if (if Df, has rank 1, (i) j'f is transverse at
x to the 1-jets of rank 1. and (iii) Ker D, is tangent to R( f.1) (see Exercise 4).
{a) (0,0) is a cusp of the map g(x,y) = (x* - xp.3).
{b) If U = R? is any neighborhood of (0,0), there is a weak C? neighborhood .+
of g such that every map in .4” has a cusp in U.

*7. A k-fold point of a map f:M — N is a point x € M such that there are & distinct
points X = x,,...,x, with f(x;) = - -+ = fix,). Let M and ¥ be manifolds such that

k+1 dimN k
< — < ,
k dimM k-1
{a) There is a dense open set of maps in Cy(M.N). | € r € x, having no (k + 1»
fold points, and whose set of k-fold points is a closed (™ submanifold of dimension
km ~ (k — 1)n (possibly empty).

{b) There is a nonempty open set of maps in CgfM.N). each having a nonempty
set of k-fold points.

k=22

8. The transversality Theorems 2.5, 2.8, 2.9, combined with Ex. 15, take the following
forms for weak topologies:

(a) In Theorem 2.5 the set of maps M — N transverse to A,...., A, is residual in
Cw(M.N), and open if U 4, is compact and {4;} is a submanifold complex.

{b) In Theorem 2.8, h* {M.N; j".4) is residual in Ci(M..V), and open if 4 is compact.

{c) In Theorem 2.9, the set of maps whose r-jets are transverse 10 Ag. .. ... 4, is
residual in C5 (M, N), and open if UA, is compact and | 4,, is a submonifold complex.

9. Consider G, , embedded in G,., .., by identifying a k-plane P < E* with
PxRcR xR=PR* ifdimM <k every map f:M - G,., ,., is homotopic
toamapg:M — G, .. If dim M < k, the homotopy class of ¢ is uniquely determined

by that of f.

10. Let F:V - C"(M,N) be such that F*: ¥V x M — N is (7 isee the parametric trans-
versality Theorem 2.7). Then F is continuous for the strong topology if V' is compact:
or, more precisely, if and only if F is constant outside a compact subset of 1",

11. In the jet transversality Theorem 2.8, the assumption that A = JM.N) bea C*
submanifold can be relaxed to: A is a C* submanifold. for a certain k < x depending
on r, s, dim M, and dim N, Compute k.

*¢12. Are the parametric and jet transversality Theorems 2.7 and 2.8 true when §7. M. N,
and 4 are allowed to have boundaries? (The proof of Theorem 2.8 uses Theorem 2.7.
In Theorem 2.7 there are two difficulties: the first is that 1" x M is not a manifold if
¥ and M are &-manifolds; the second, and more troublesome. is that (F7)™ '(.4} might
not be a submanifold if N and 4 are ¢-manifolds.)

13. Let p: ¥V - M bea C' submersion,and f: M — "a (" section of p(thatis. pf = 11
1 €£r< o.Let A < V bea " submanifold. Then every neighborhood of f in C5( M. 1)
contains a C” section transverse to A. (See Ex. 3. Section 2.2}
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14, Letg:4 —» Nbeamap. Amap f:M — N is transverse to g, written f & ¢ if, when-
ever f(x) = g(y) = z, the images of T, fand T,g span N,.

(a) f h g if and only if the map f x g:M x 4 -+ N x N is transverse to the
diagonal.
***b) Is it true (as seems likely) that the set {fe C“(M,N):f i g} is residual in
C2(M,N) and open if g is proper?
15. Submanifolds A,, ..., A, = N form a submanifold complex if (i}A, is closed and

Ay = Ay S Agu U Ay

(i) dim A,~, < dim A;; (iii) Let 0 < i < j < ¢; put d = dim A,. If a sequence {x,}
in A; converges to y in A,, there is a sequence E, of d-planes, E, < T, A, converging
to T,A;.
(a) The set of C" maps M — N transverse to all the A4;, is dense and open.
*(b) The submanifolds A, in the proof of Theorem 2.5 form a submanifold complex.



Chapter 4
Vector Bundles and Tubular Neighborhoods

The paradox is now fully established that the utmost abstractions are the
true weapons with which to control our thought of concrete fact.

—A. N. Whitehead, Science and
the Modern World. 1925

The Committee which was set up in Rome for the unification of vector nota-
tion did not have the slightest success, which was only to have been expected.

—F. Klein. Elementury Mathematics
from an Advanced Standpoint. 1908

Deux surfaces fermées, par example de genre 0. situées dans une variété a 4
dimensions, sont toujours equivalentes. mais, comme nous le voyons. leurs
entourages ne le sont pas nécessairement.

—Heegard. Dissertation. 1898,

Although the concept of tangent bundle was defined in the first chapter,
until now we have made only minimal use of it. In this chapter we abstract
certain features of the tangent bundle, thus defining a mixed topological-
algebraic object called a vector bundle. Most of the deep invariants of a
manifold are intimately linked to the tangent bundle; their development
requires a general theory of vector bundles.

A vector bundle can be thought of a family {E.}, 5 of disjoint vector
spaces parameterized by a space B. The union of these vector spaces is a
space E, and the map p:E — B, p(E,} = x is continuous. Moreover p is
locally trivial in the sense that locally (with respect to B), E looks like a
product with R"; there are open sets U covering B and homeomorphisms
p YU) = U x R", mapping each fibre E_ linearly onto x x R™. A morphism
from one vector bundle to another is a map taking fibres linearly into fibres.

A vector bundle is similar to a manifold in that both are built up from
elementary objects glued together by maps of a specified kind. For manifolds
the elementary objects are open subsets of R"; the gluing maps are diffeo-
morphisms. For vector bundles the elementary objects are “trivial” bundies
U x R"; the gluing maps are morphisms U x R" - " x R" of the form
{x,)) = {x.g(x)y) where g:U — GL{n. '

In Section 4.1 the basic definitions are given and the covering homotopy
theorem is proved. This basic result is the link between vector bundles and
homotopy.

In both manifolds and vector bundles, linear maps play a crucial role.
But whereas linear maps enter into manifolds in a rather subtle way. as
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derivatives, the linearity in vector bundles is closer to the surface. This makes
the category of vector bundles far more flexible than that of manifolds; as a
consequence, vector bundles are considerably easier to analyze. Many
natural constructions can be made with vector bundles which are impossible
for manifolds, such as direct sum, quotients and pullbacks. These are dis-
cussed in Section 4.2,

In Section 4.3 we prove an important classification theorem for vector
bundies. This theorem says that for given integers k, n > 0 there is an
explicitly defined k-plane bundle & — G which is universal in the following
sense: for every k-plane bundie n - M where M is a manifold of dimension
< n, there is a map f:M — G such that ¢ is isomorphic to f* 5 (the pullback
of n by f), and f is unique up to homotopy. This means that isomorphism
classes of k-plane bundles over M are in natural one-to-one correspondence
with homotopy classes of maps M — G. In this way all questions about
vector bundles over M are translated into questions about homotopy classes
of maps M — G,

Section 4.4 introduces the important concept of orientation for vector
spaces, vector bundles and manifolds. The orientability or nonorientability
of a manifold is an important invariant. As applications some nonembedding
theorems are proved.

In Sections 4.5 and 4.6 a new connection between vector bundles and the
topology of manifolds is introduced: the tubular neighborhood. If M <« N
is a neat submanifold, M has a neighborhood in N which looks like the
normal vector bundle of M in N; moreover, such neighborhoods are essen-
tially unique. Thus the study of the kinds of neighborhoods that M can have
as a submanifold of a larger manifold, is reduced to the classification of
vector bundles over M. For example, the problem of whether the inclusion
M < N can be approximated by embeddings M o N — M is equivalent to
the problem of whether the normal bundle of M in N has a nonvanishing
section.

Section 4.7 exploits tubular neighborhoods to prove that every compact
manifold without boundary has a compatible real analytic structure.

1. Vector Bundles

Let p:E — B be a continuous map. A vector bundle chart on (p,E,B) with
domain U and dimension n a homeomorphism ¢@:p~ '(U) * U x R" where

U < B is open, such that the diagram
A

) —2— U x R
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commutes; here n4(x,y) = x. For each x € U we define the homeomorphism
@, to be the composition

Pp (x) D x x R = R,
Thus if y € p~!(x) we have the formula

@(y) = (x@())).

A vector bundle atlas @ on (p,E,B} is a family of vector bundle charts on
{p.E,B) with values in the same R", whose domains cover B, and such that
whenever (¢,U) and (y,V) are in @ and xe U n V, the homeomorphism

Yo R - R
is linear. The map

UnV - GLn),
x— Yot

is required to be continuous; it is called the transition function of the pair of
charts (o,U), (f,V). If & = {¢;,U;};¢, we obtain a family {g;;} of transition
function,

gi;:Uin Uy - GL(n).

These maps satisfy the identities

gij(x)gu(x) = gulx) (xeU;nU;n Uy,
gulx) = 1 € GL(n).

The family {g;;} is also called the cocycle of the vector bundle atlas . A
maximal vector bundie atlas @ is a vector bundle structure on (p,E,B). We
then call ¢ = (p,E,B,P) a vector bundle having ( fibre) dimension n, projection
p, total space E and base space B. Often @ is not explicitly mentioned. In
fact we may denote & by E, or E by £ Sometimes it is convenient to put
E = E{, B = B¢, etc. An atlas for £ will mean a subatlas of @.

The fibre over x € B is the space p~!(x) = &, = E,. We give £ the
vector space structure making each ¢,:¢, — R” an isomorphism; this struc-
ture is independent of the choice of (¢,U) € @. Thus E is a “bundle” of vector
spaces. To indicate the dimension n we sometimes call £ an n-plane bundle.

If A = Bis any subset we may denote p~'(A) by &,. 5|4, E,, or E{A. The
restriction of £ to A is the vector bundle

ElA = (PIEbEA’Asd)A)
where &, contains all charts of the form
elp" M ANUYXEJAnU >(AnT) x B,

where (¢, U) € @.

The zero section of ¢ is the map Z:B — E which to x assigns the zero
element of ¢,. Often we call the subspace Z(B) < E the zero section. It is
frequently useful to identify B with Z(B) via Z.
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Let &, = (piEi.Bj, @) be a vector bundle. i = O, 1. A fibre map F: &y — &,
is a map F:Eq — E, which covers a map f:B8, — B,, that is, there is a
commuting diagram

E, £ >E,
Po {[’
B >B

0 f 1

Thus if x € B, and f(x) = y, then F maps the fibre over x into the fibre
over vy by amap F,: o, - &,

If each map F, is linear we call F a morphism of vector bundles. If F is
a morphism and cach F_ is injective, F is a monomorphism; if each F, is
surjective, F i1s an epimorphism; while if each F_ is bijective we call F a
bimorphism or vector bundle map. If F is a bimorphism covering a homeo-
morphism f: By - B, then F is an equivalence. If By = B, = Band f = 1,
then F is an isomorphism, and we may write £, = £,.

The trivial n-dimensional vector bundle over B is

g = (p.B x R".B,®)

where p: B x R" — B is the natural projection and @ is the unique maximal
vector bundle atlas containing the identity map of B x R". More generally,
a vector bundle ¢ is called trivial if it is isomorphic to ¢}. Such an isomor-
phism is a trivialization of £.

Fix a differentiability class ", | < r € w. The above definitions make
sense if all spaces involved are required to be " manifolds. and maps are
required to be (" maps. In this way we obtain (7 vector bundles, mor-
phisms and bundle maps. We also interpret ¢V vector bundle to mean
vector bundle as originally defined: similarly for C* morphisms, etc. We
denote C” isomorphism by =,.

The prime example of a €7 vector bundle is the tangent bundle p: TM —
M of a C™*" manifold M. For each chart ¢:U — R" we define a vector
bundle chart

pU) > U x R"

by sending the tangent vector X € T,M to (x,Do (X)) If M > Nisa
C'*! map then Tf: TM — TN is a C" vector bundle morphism. Note that
Tf is a monomorphism, epimorphism or equivalence according as f is an
immersion, submersion or diffeomorphism.

H TM is trivial M is called paralielizuble.

There is evidently a category of C" vector bundles and " morphisms.
An isomorphism in this category is an equivalence of vector bundles. For
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each C" manifold M there is the subcategory of " vector bundles over M
and C" morphisms over |, (for r = 0, M can be any space). An isomorphism
in this subcategory is an isomorphism of vector bundles. The tangent functor
T is a covariant functor from the category of C"* ! manifolds to the category
of C" vector bundles.

The following lemma is the first step in the proof of the covering homo-
topy theorem.

1.1. Lemma. Let { = (p.EB x I) be a C vector bundle. 0 € r € x.
Then each b € B has a neighborhood V < B such that J|V' x [ is trivial.

Proof. By compactness of I and local triviality of { we can find a neigh-
borhood ¥, B of b and a subdivision of I into intervals I, = [r,_,.t,].
0=ty < - <1, =1 such that £ is trivial over a neighborhood of ¥, x
[ti-nt], i=1,...,m Put V = n¥; then I, has a neighborhood U, < I
such that &|V x U, s trivial.

We proceed by induction on m; if m = 1 there is nothing more to prove.
Therefore we shall show that if m > 1, there is a neighborhood J < I of
[0,;] such that £|V x J is trivial. Continuing in this way will eventually
show that &V x I is trivial. Hence it suffices to assume that m = 2.

Let U, = [0,p], U; = [4,1].0 < a < b < 1. Choose (" trivializations

PllV x Uy (Vx U) xR, i=12

Define a C" map
g:V x [ab] = GL(n),
g(x) = q’lx‘PZ_xlv xeV x [db]

Next we construct a C" map
h:V x [a1] — GL(n)

such that h = g on V x [ac] for some ¢, a < ¢ < b. Let 2:[a1] = [a,b]
be a C" map which is the identity on a neighborhood [u,c] of a.
Putpy =1, x 21V x [a1] = V x [ab]. Defineh = g -
Finally define, for each xe V x I:
’\bx:éx - R.’
[/ if xeV x [0c]
Ve = {h(x)qoz_‘ {multiplication in GL(n)) if xel x [al]

The two definitions agree for x € [a,c]. Hence the maps v, fit together to
give a " trivialization of ¢|V . x 1.

QED

1.2. Corollary. Every C" vector bundle (0 < r < ) over an interval is
trivial,



b4Y) 4. vector punales and lubular Neighborhoods

The proof of the covering homotopy theorem is based on the following C*
version of the homotopy extension property:

1.3. Lemma. Fix0 < r < oo and let N, P be topological spaces which are
C" manifolds if r > 0. If r = 0 suppose also that N is a normal space. Let
Z c Nbeclosedand V.« U = N be open, withZ = V < V < U. Suppose
given a commuting diagram

N x0 =) Ux0 c U x [

p

where f and g are C'. Then there exists a C' map h:N x 1 - P such that
AN x 0= fandh =gonV x I

Proof. Let A:N — [0,1] be a C" map with support in U such that
A(V) = L. Define a C" map

h:N x I - P,

_ fgxixn  if xeU
o) = {f(x) if xeN-U

Then h has the required properties.
QED

The following corollary of Lemma 1.3 is called the homotopy extension
theorem.

1.4. Theorem. Let Z be a closed subspace of a normal space N. Let
f:N — P be a continuous map and let g:Z x I — P be a homotopy of flZ.
If g extends to a homotopy of f|U, for some neighborhood U = N of Z, then
g extends to a homotopy h:N x I — P of f. In particular this is the case if
Z is a retract of an open subset of N.

The following theorem is the basic connection between vector bundles

and homotopy. For reasons to be explained later it is called the covering
homotopy theorem.

1.5. Theorem. Let & be a C" vector bundle over B x I, 0 < r £ co.

Assume B is paracompact. Then & is C" isomorphic to the vector bundle
(¢lB x 0) x I.

Proof. Puté|B x 0 =y = (pEB). Letn x I =(p x 1,E x LB x I).
We shall construct a bundle map & —» n x I over the identity mapof B x I.
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For this we use the globalization Theorem 2.2.11 applied to a suitable
structure functor on B.

Let Z = {X,} be a locally finite closed covering of B by sets X, having
the following property: each X; has a neighborhood V, « B such that
E|V; x I is trivial (use Corollary 1.2). It follows that 5!}; x [ is also trivial.
Let 9 be the family of unions of elements of 7.

Let Y « B. Consider pairs ( f,N) where N = B is a neighborhood of ¥
and f:¢IN x I - (n{N) x Iisa C isomorphism. Two pairs (f,N,),i = 0, 1,
have the same Y-germ if Y has a neighborhood M = Ny n N, such that
fo = fyon¢M x I This is an equivalence relation: an equivalence class is
called a Y-germ. If Y € 9 the set of all Y-germs is denoted by F(Y).

IfZePand Y < Z, restriction defines a map

Fyo: F(Z) - F(Y

In this way a structure functor (#,9) on B is defined.

It is evident that (#,3) is continuous; and Lemma 1.1 implies it is non-
trivial. In fact Lemma 1.1 also makes (#.9)) locally extendable. For let X € 7.
Y € 9). We must prove that

Fyyox:FIY U X)— FY)
is surjective. This amounts to extending every X ~ Y—germ to an X-germ.
Now X x [ has a neighborhood N x [ over which both ¢ and n x I are
trivial. Since isomorphisms of the trivial bundle are the same as maps into

GL(n), local extendability is implied by the following statement: if U < ¥
is 2 neighborhood of X n Y and

g(U x LU x 0) = (GL(n\.])

is a C" map (where 1 € GL(n) is the identity matrix). then there is a neigh-
borhood V <« U of X n Yand a C" map

(N x IIN x 0) - (GL(n.1D

which agrees with g on V x [. But this is a consequence of Lemma 1.3;
therefore (#,9) is locally extendable.

We now apply Theorem 2.2.11 and conclude that F#(B) is nonempty.
This is equivalent to Theorem 1.5.

QED

1.6. Corollary. Two " vector bundles ¢y, &, over a paracompact base
space B are C' isomorphic if and only if there is a C’ vector bundle n over
B x [ such that

£= 7B xi (i=0. 0.

Proof. If 5 exists, &, =, &, by Theorem 1.5. Conversely. if F:Zy — ) is
a (" isomorphism we can take n = §, x I.

QED



Exercises

1. Let ¢, n be vector bundles over a paracompact space and let A — B be closed. Then
every morphism f:¢|4 — n|4 over 1, extends to a morphism g:£|W — 5| W over 1,,, for
some neighborhood W <« B of A, and if f is a mono-, epi-, or bimorphism so is g.

2. Let & — Bbea vector bundle over a paracompact space, and let 4 < B be a closed
sct contractible in B. Then A has a neighborhood W < B such that &|W is trivial.

3. Exercises 1 and 2 are true in the category of C" bundies, | < r € o0.

4, Every Lie group is parallelizable. (A Lie group is a manifold G together with a group
operation G x G — G which is C, and such that inversion G — G is C*)

2. Constructions with Vector Bundles

In this section we fix a differentiability class r, 0 € r € w, and work
consistently in the C" category. For r = 0 this means we deal with topo-
logical spaces and continuous maps, while for r > 0 we deal only with C”
manifolds, C" maps, and C” vector bundles. Except for restrictions as indi-
cated below, r is arbitrary. We write “bundle” for “vector bundle.”

There is a general procedure, described in Lang’s book [1], which for
each functorial construction with vector spaces (direct sum, tensor product,
etc.) defines a corresponding construction with vector bundies by applying
the original construction to fibres. Rather than proceed at this level of
abstraction, we describe explicitly the constructions we shall need.

A subbundle of 2 bundle ¢{ = (p,E,B) is a bundle &, = (p,,Eq,B) over the
same base space B, such that E, < E, po = p|E,, and there exists a vector
bundle atlas @ for & with the following property. There is a linear subspace
of R", which we may take to be R*, such that if (¢,U) € @ then ¢ maps
p '(U) n E,yinto U X RY, and the pair

(olp™'(U) N Ep,U)

belongs to the vector bundle structure of &,

The notion of subbundle is patterned after the definition of submanifold;
and in fact if A € M is a C"*! submanifold then TA is a C" subbundle of
T.M.

If &, is a subbundle of & then the inclusion map E; —» E is a mono-
morphism &, — & over 15 Conversely, in analogy with Theorem 1.3.1, if
1 is a bundle over B and F:.n — & is a monomorphism over 15 then F(n), with
the bundle structure induced by F, is a subbundle of . It suffices to prove a
local result; hence we may suppose ¢ and # are the trivial bundles B x R"
and B x R k < n. The monomorphism F:B x R* -+ B x R" has the form

F(x,y) = (x.F (y))

where F:B - L{R*R" is of class C', and each linear map F,:R* - R" is
injective. Fix x € B; put F (RY) = E = R". There is no loss of generality in
assuming that E = R* < R" and F, is the standard inclusion R* - R". Let
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LY

n:R" — R* be orthogonal projection. There is an open neighborhood L = B
of x such that nF_:R* — R*is an isomorphism for e U Let K < =" be the
kernel of &, so that B* = 8% x K. Define

@:U x {B* x Ky - U x (Z* » K)
by

o(zleaw)) = (ZaF.rw).

Then ¢ is a C” vector bundle chart for ¢ and ¢ takes the image of F into
U x R This shows that the image of F is a subbundle.

Another way of getting subbundles is to take the kerne! of an epimorphism
F:¢ — " which covers 1, That is. for each x € B let 5, ‘be the kernel of
F,:&, — & then there is a unique subbundle y of  having fibres .. We
leave this for the reader to prove.

[t is useful to introduce the notion of an exact sequence of vector bundles
morphisms: this means a finite or infinite sequence

= foa: B
Si— 1_’~‘—'~.‘1 -

© =

of morphisms, all covering 1. such that for each x € B we have
image (F;_,), = kernel (F;),

for all i. Of particular interest are the short exact sequences

. F G .
0= 0

where 0 denotes a 0-dimensional bundle over B. Such a sequence means
merely that F is a monomorphism. G is an epimorphism and image F =
kernel G.

The existence of kernel subbundles for epimorphism can be stated in
functorial language; given the exact sequence

G .
"I g [% e d 0
there is an exact sequence

. F G .
(1) 0osZonp>.-0
and (1) is unigue in the sense that for any exact sequence
035 v S0

there is a unique isomorphism ; — &’ such that the diagram

0254 y% 50
i l=1=
0~ pnee—0

commutes.

In the exact sequence (1) we call [ the gquotient bundle of the mono-
morphism F. It is easy to see that every monomorphism has a quotient
bundle and the latter is unique up to isomorphism. In particular, it =
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is a subbundle, the fibres of the quotient bundle are taken to be the vector
spaces 1,/¢,, and we denote the quotient bundle by /¢

The short exact sequence (1) is said to split if there is a monomorphism
H:{ — nsuch that GH = 1,. Working fibrewise we see that this is equivalent
to the existence of an epimorphism K:n — £ such that KF = |,

The Whitney sum (or direct sum) of bundles &, { over B is the bundle
¢ @ { whose fibre over x is &, @ {,. If ¢, ¥ are charts for &, { respectively
over U, a chart 0 for £ @ { over U is obtained by setting

=0, @YD RO R
The natural exact sequences of vector spaces
085600500
fit together to give a split exact sequence
0 ELE@LDL-0.

Let & = (p,E,M) bea C"*! vector bundle. Each fibre £, is a vector space,
with origin x; hence we identify £, with T,(&,). Thus £ is a subbundle of T,E
in a natural way. (Note that the “natural” differentiability class of TyE is
only C") Since M < E is a submanifold (via the zero section), TM is a C
subbundle of Ty E. Evidently we have a short exact sequence

) 0-¢>TYyES TM 50
which is split by the tangent map of the zero section:
(3) : TZ:TM — T,E.

This proves:

2.1. Theorem. Let ¢ = (p,E.M)be a C"*! vector bundle,0 < r < w. The
exact sequence (2) of C" vector bundles is naturally split by (3). Thus there is
a natural C" isomorphism

he: TyE = E@ TM.

In particular ¢ < TyE as a natural subbundle.
Here natural means with respect to C"*! morphisms. If

¢ / >

Ze—
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is such a morphism, then the diagram

Ty EE L4 >TyEn

h, h

L

(D TM—-—f-@—:I:—g——)n TN

commutes, as is easily checked.

The following simple result is one of the most useful facts about vector
bundles.

2.2. Theorem. Every short exact sequence of C vector bundles is split,
0 < r < o, provided the base space is paracompact.

-

a left inverse. This is true locally because F(Z) is a subbundle of n: we
showed above that there are charts for n covering B taking (g|U.L) to0
(U x R"U x R*,and a local left inverse is obtained from a linear retraction
R" — R*. Since local left inverses can be glued together by a partition of
unity, the theorem follows.

Proof. It suffices to prove that a monomorphism F: — 5 over 15 has

QED

Let & = (p,E,B) be a vector bundle. An inner product or orthogonal
structure (of class C") on £ is a family « = {a,}, . » where each a, is an inner
product (symmetric, bilinear, positive definite 2-form) on the vector space
E,, such that the map (x,y,2) — a,(y,2), defined on {(x,3.-)e B x E x E:
x = py) = p(z}}, is C. It is easy to construct such an x whenever B is
paracompact and r < o0, using partitions of unity. In fact, any K-germ of
an orthogonal structure, where K < B is a closed set. can be extended to
an orthogonal structure. The pair (£,x) is called an orthogonal vector bundle.
If M isa C"*' manifold, a C" orthogonal structure on T M is also called a
Riemannian metric on M of class C".

Suppose (£,«) is an orthogonal bundle. If y, - are in the same fibre &, we
write {y,z) or {y,2), for ayz). If n = £ is a subbundle, the orthegonal
complement n* < £ is the subbundle defined fibrewise by

) =m) ={ye&(yz) =0 al:e n}

The natural epimorphism & — &/p maps #* isomorphically onto ¢ #. This
provides another method of splitting short exact sequences, one which works
just as well for analytic bundles with analytic inner products.

Let M = N be a C"*! submanifold; suppose N has a ¢ Riemannian
metric. In this case TM* < TN is called the geometric normal bundle of
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M in N. The algebraic normal bundle of M in N is the C" quotient bundle
TuN/TM; it is canonically C" isomorphic to TM*.

Let ¢ = (p,E,M) be an orthogonal bundle. In each fibre &, an ortho-
normal basis e, can be derived from arbitrary basis b, of £, by the Gram-
Schmidt orthogonalization method. This classical procedure, which is a
deformation retraction of GL(n) into O(n), is so canonical that it leads to a
C’ family of orthonormal bases {e,},.y, U = M, if one starts from an
arbitrary C" family {b,},. v This shows that £ has an orthogonal atlas & =
{@;,U;}, that is, each map

(Pixzéx - R"s X€ Ui
is an isometry. It follows that the transition functions
gi;:Uin U; - GL(n)

take values in O(n). In other words every orthogonal bundle has an orthogonal
atlas. Conversely, given an orthogonal atlas on £ there is a unique orthogonal
structure on ¢ making each ¢;, isometric.

Two orthogonal vector bundles are isomorphic if there is a vector bundie
isomorphism between them which preserves inner products.

The following lemma shows that the orthogonal structure on a vector
bundle is essentially unique.

2.3. Lemma. Let & = {p,E,,M) be a vector bundle, i =0, 1 and f:
&y = &, un isomorphism. Suppose &q and &, have orthogonal structures. Then

f is homotopic through vector bundle maps to an isomorphism of orthogonal
bundles.

Proof. Suppose first &, and &, are trivial as orthogonal bundles. We
have

S MxR ->MxR
Sx.p) = (x,g(x)y),
g:M - GL{n).
Since O(n) is a deformation retract of GL(n), ¢ is homotopic to h: M - O(n).

Moreover the homotopy can be chosen rel g~ ' O(n). Writing such a homo-
topy as g,, 0 < £ € 1, with g, = g, g, = h, we define

FIMxR->MxR, 0<t<1
£y = (x,g,(x)y).

This is a homotopy of vector bundle isomorphisms from f to an isomorphism
of orthogonal bundles, and f; = f whenever f is already orthogonal.

The general case of Theorem 2.3 is proved by applying this special case
successively over each element of a locally finite open cover {U;} of M such
that &, and £, are trivial orthogonal bundles over U;.

QED
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A quite different construction is that of the induced bundle. Let ¢ =
(p,E.M,®P) be a vector bundle and f:My — M a map. The induced bundle
(or pullback) f*¢ = (po,Eo,Mo,Po) is defined as follows. Put

Eq = {(xy)e My x E:f(x) = p(y)},
and define
Po:Eo — M,,

pO(xsy) = X.

Take &, to be the maximal (C") atlas containing all charts of the form
(¥f ~'U) where (9,U)e @ and if ze f~(U), f(z) = xe U, then §, = o,
The natural vector bundle map ¥: f*£ — £ over f is given by (x,)) > y.
Let g:n — M, be a vector bundle and F:n — ¢ a morphism over f.
There is a unique map of total spaces H:n ~» f*¢ making a commutative

diagram
n F
&
¢ L4 > &
1 Po p
M, 7 > M

and H is a morphism of vector bundles. If F is an epimorphism, monomor-
phism, or bimorphism, so is H. This proves the useful fact that if F:1np — ¢
is avector bundle map over f then n is canonically isomorphic to the pullback
e

The main theorem about induced bundles is the following corollary of
the covering homotopy Theorem 1.5.

2.4. Theorem. Suppose B is a paracompact space. Let f, g:B — M be
homotopic maps, and { a vector bundle over M. Then f*¢ is isomorphic to g*Z.
In particular, if g is constant then f*¢& is trivial.

Proof. Let H:B x I - M be a homotopy from f to g. By 1.3, H*{ is
isomorphic to (H3$&) x I = (f*&) x I and also to (H¥E) x I = (¢*¢d) x 1.
Looking at these bundles over B x I we find that f*¢ is isomorphic to g*£.

QED

2.5. Corollary. Every vector bundle over a contractible paracompact space
is trivial.
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The following corollary of 2.5 explains the name “covering homotopy
theorem™:

2.6. Theorem. Let B, be paracompact. Let F:&, — &, be a morphism of
vector bundles covering f:Bo, — B,. Let h:By x [ — B, be a homotopy of f.
Then there is a morphism H:&y x I — &, of F covering h. If F is a mono-,
epi- or bimorphism, H has the same property.

Proof. It suffices to find a morphism &, x I — &, x I which covers the
map g:By, x I - B, x I, g(x,t) = (h(x,t),t) and which is given by F over
B, x 0. Using the relation between induced bundles and bundle maps, we
see that we may replace £, x I with g*(&, x I), g with the identity map of
By x I, and By x I with B, x 1. By 1.3 g%, x I) can be replaced by a
vector bundle n x I over B, x I. Thus we are given an isomorphism map
F:£y - n and we must extend it to an isomorphism H:¢y x I - n x I
We can take H = F x 1,. The last statement is obvious.

QED

Exercises

I. Let & = (p,,E;.B;) be a C" vector bundle, i = 0,1, and f:B, - B, a C" map, 0 <
r < w. There is a C” vector bundle 5 over B, whose fibre over x is 1(&,,.¢,,), such that
C sections of i correspond naturally to C" morphisms £, — £, over f.

2. Let P* denote real projective k-space, ¢ the trivial 1-dimensional vector bundle over
P* and £ the normal bundie of P* < P**!. Thene' @ TP* = ¢ @ -+ - @ & [Consider
the inclusion $* < §**! and the antipodal map.]

3. (a) If nis odd TS" has a nonvanishing section and therefore TS" = ¢! @ 5 where
¢* is a trivial k-dimensional bundle. [If n = 2m — 1, §" <« R*" = C™ If xe S} and
i = /—1 then ix is tangent to S” at x.]

() Ifn = 4m — 1, TS" = £* @ {. [Use quaternions.]

(c) Ifn = 8m — 1, TS" = ¢’ @ i [Use Cayley numbers.]

4, TS" @ &' is trivial. [Consider T(S" x R) = T(R"*'). Compare Exercise 12 of
Section 1.2.] .

5. If TM has a nonvanishing section and TM @ &' and TN @ ¢! are trivial then
M x N is parallelizable.

6. A product of two or more spheres is parallelizable if they all have positive dimensions
and at least one has odd dimension. [Use Exercises 3(a), 4, and 5, and induction.]

*7. Find explicit trivializations of the tangent bundles of §' x §2, §! x §%, 8% x §°

8. The frame bundle F(M} of an n-manifold M is the manifold of dimension n* + n
whose elements are the pairs (x,1) where x € M and 4:R" — M_ is a linear isomorphism.
Define n: F(M) -+ M by n(x,A) = x. The topology and differential structure on F(M)
are such that a coordinate system (p,U} on M induces a diffeomorphism =~ }(U) =
U x GL(n) by (x,4) = (x,Dg, > A).

(a) There is an exact sequence

(S) 0 — kernel (Tr) = TF(M) —» n*(TM) — 0.

{b) kernel (Tr) and n*(TM) are trivial vector bundles.
(c) Therefore F(M) is parallelizable.
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9. (a) Parts(a) and (b) of Exercise 8 are true even if M is not paracompact. In this case.
however, the exact sequence (S) might not split. A splitting j:n*( T M) — TFiM) of iS)
is called a (perhaps nonlinear) connection on M.

(b) Let M be a connected manifold, not assumed to be paracompact or to have a
countable base. If M has a connection then AM is paracompact and has a countable
base. [Hint: use part (a) and Exercise &c) to get a Riemannian metric on F(M).)

3. The Classification of Vector Bundles

We now prove a basic result—ultimately based on transversality—which
quickly leads to the classification Theorem 3.4.

3.1. Theorem. Let & be a k-dimensional C rector bundle over a manifold
M, 0<r < . Let Uc M be a neighborhood of a closed set A < M.
Suppose that

FHU-Ux R

is @ C" monomorphism (of vector bundles) over 1. If s 2 k + dim M then
there is a C' monomorphism ¢ - M x R® over 1y, which agrees with F over
some neighborhood of A in U,

Proof. Consider first the special case where ¢ is trivial. Then for each
xelU, F |§, is a linear map g(x): R* — R* of rank k. We thus obtain a map
g:U — V, ,, which is easily proved to be (. Since dim M < s — k we can
apply Theorem 3.2.5 (on extending continuous maps into ¥, ;) to finda 7
map h:M — V, , which extends the A-germ of g. If r > 0 we use the relative
approximation Theorem 2.2.5 to make & C". Then we interpret h as a mono-
morphism M x R* » M x R over 1,,.

The general case follows by using the globalization Theorem 2.2.11.

{(For those who want more details: a structure functor (#,9) on M is
defined as follows. Let & = {X,} be a locally finite closed cover of M such
that £ is trivial over a neighborhood of each Y. Let 9 be the family of all
unions of elements of . For Y € 9P let #(Y) be the set of equivalence classes
[¢]y (“Y-germs”) of maps @:&|W — W x R, as follows. W < M can be
any neighborhood of Y, and ¢ must be a monomorphism over 1, which
agrees with f over some neighborhood of Y n A. The equivalence relation
is: [@])y = [¥]y if ¢ and y agree over some neighborhood of Y. Restriction
makes (#,9) into a structure functor which is clearly continuous and non-
trivial; and we proved above that (#,9) is locally extendable. Therefore
Theorem 2.2.11 yields Theorem 3.1.)

QED

Let y,,, — G, ; be the following vector bundle over the Grassmannian
G, ,: the fibre of y, , over the k-plane P < R* is the set of pairs (P,x) where
x € P. This makes y, , into an analytic k-dimensional vector bundle in a
natural way. We call this the Grassmann bundle or sometimes the universal
bundle over G, ,.
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From Theorem 3.1 we have:

3.2. Corollary. Let n be a C k-plane bundle over V x I where V is an
n-manifold. Suppose that Fi:n|V x i — R* is a C" monomorphism for i = 0, 1.
If s > k + n then Fy and F, extend to a C" monomorphism F:n - R

Proof. By the covering homotopy theorem, F, and F, extend to a
monomorphism n]U — R, where U < V x I is a neighborhood of V x
{0,1}. Now apply 3.1 (with M = V x [, 4 = V x {0,1}, etc)

QED
Another corollary of Theorem 3.1 is the existence of “inverse™ bundles:

3.3 Theorem. Let £ be a C’ k-plane bundle over an n-manifold M, 0 <
r < », Then there is a C" n-plane bundle n over M such that ¢ @ n =,
M X R’”*.

Proof. Let F:{ - M x R"** be a monomorphism over 1,. Give the
trivial bundle M x R"** its standard orthogonal structure, and for n take
subbundie F(&)' =« M x R"*%,

QED

We now give another meaning to a C" monomorphism F:{ - M x R®
over 1,. Define a vector bundle map

é g > Vs, k
(1)

A 4 v

M 5 >G,

as follows. To y € M, g assigns the k-plane g(y) = F(§) € G,,. If z € §,
defines ¢(2) = (F(£,),f(2)). 1t is easy to see that this correspondence F >
(¢.9) induces a natural bijection between C" monomorphisms £ = M X R’
over 1, and C" bundle maps £ — 7v,;.

The map g:M — G, , in diagram (1) has the property that g*y, , = &.
Such a map is calied a classifying map for &; we also say g classifies £. From
Theorems 3.1 and 3.2 and a collar on M (see Section 4.6), we obtain the
following classication theorem:

3.4. Theorem. If s = k + n then every C" k-plane bundle & over an n-
manifold M has a classifying map fi:M — G, ,. In fact any classifying map
M — G, for £|oM extends to a classifying map for &. Whens > k + n the
homotopy class of f; is unique, and if n is another k-plane bundle over M then
fe~ fyifandonly if £ = n.

Proof. The only statement needing further proof is the “if” clause.
Suppose y:n = £ and let ¢:¢ —~ vy, , be a bimorphism covering f;. From
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;g{
M

we see that f; classifies both £ and 7. Since the classifying map f; is unique
up to homotopy when s > k + n it follows that f; ~ f.

the diagram

n

3 -
-7 sk

f‘ —> Gs.t

QED

Taken together with the covering homotopy theorem. this result is of
fundamental importance because it converts the theory of vector bundles
into a branch of homotopy theory. To put it another way, we can use what-
ever we know about maps to study vector bundles. For example, approxi-
mation theory yields:

3.5. Theorem. Every C vector bundle ¢ over a C* manifold M has a
compatible C® bundle structure; and such a structure is unique up to C*
isomorphism.

Proof. Let g:M — G, , be a C classifying map for ¢. Then g can be
approximated by, and so is homotopic to, a C* map h. Therefore

* ,,
$ =, 0% =, A%y 1

But h*y, , is a C* bundle. Thus £ has a C* structure.

If no and 5, are C* bundles that are C" isomorphic, they have C*
classifying maps that are homotopic. These maps are then C* homotopic.
Pulling back y, ; over M x [ by such a homotopy gives a C® vector bundle
& such that

M xiz= m, i=0.

Therefore 4 =, 1, by Theorem 1.4.
QED

The same result is true if C* is replaced by C*; the proof uses the analytic
approximation Theorem 2.5.1. See also Exercise 3 of Section 4.7 for a
theorem of this type that can be proved without using Theorem 2.5.1.

From now on we need not specify the differentiability class of a vector
bundle.

Although the theorems of this section have been stated for manifolds,
they are also true (ignoring differentiability) for vector bundles over simplicial
(or CW) complexes of finite dimension. The proofs are almost the same. The
main difference is that Theorem 3.1 is proved by induction on dimension;
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the inductive step is proved by extending a map 4™ —» ¥V, , to 4™ if m <
s — k, where A™ is an m-simplex. Similarly for CW complexes.

The classification of vector bundles over more general spaces can be
stated as follows. Let KX X) denote the set of isomorphism classes of k-plane
bundles over the space X. Let [ X,G, ,] be the set of homotopy classes of
maps from X to G, ;. A natural map

ex:Kh(X) - [X,G,‘ k]

is induced by the correspondence f +— f*y, ,; that Oy is well defined follows
from the covering homotopy theorem, if we assume X paracompact. Then
one can prove: if X has the homotopy type of a simplicial or CW complex
of dimension less than s — k, the map Oy is bijective.

Exercises

[X denotes either a manifold, or a finite dimensional simplicial or CW complex; &
denotes the trivial k-plane bundle.}

1. (a) Leti:G, ; — G,4q,.+, be the natural inclusion. Then
Peraer = 0 O 6"
(b) If dim X < s — k, then under the classification of vector bundles the map
i :[X,Ge k] = [X,Gou1,041]
corresponds to the map
oKX - KX, [f—[Eec]
2. Suppose dim X < min {s — kr — j}. The natural embedding

. Gl.k X Gr.j - Gl+r,k+[
induces the map
K*X x K'X - KX

which corresponds to Whitney sum.

3. The map o:K*X - K**1X (see Exercise 1) is surjective if dim X < k and injective
if dim X < k. [Use Exercise 7a and Exercise 9, Section 3.2.]

4. Let &, n,{ bebundles over X such that  @n = ¢ @ {. Ifdim & > dim X theny = {.
[Suppose n @ « is trivial; use Exercise 3.]

®
5, Let G, ; = G,,,,, be the natural inclusion and put G, , = | G, . Then K*X

3=k
is naturaily isomorphic to [X,G,, .. (More usually G, , is denoted by or BO(k). It is
called the classifying space for the functor K*, and also for the group O(k).)

6. Two vector bundles £, n over X are stably isomorphic if £ @ ¢ = n @ ¢ for some
j» k. Let KX denote the set of stable isomorphism classes of bundles over X. The opera-
tion of Whitney sum induces a natural abelian group structure on KX.

*7. There are maps G, , —+ G, ,+, Whose direct limit G, ,, is a classifying space for
the functor K of Exercise 6. That is, there is a natural isomorphism (of sets) KX =
[X,Gy, o). Morcover, there is a map G, o, X Gy, o = G, Such that the resulting
binary operation on [X,G,, ,] corresponds to the Whitney sum operation in KX.
(More usually G,,_,, is denoted by BO.)
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8. A k-plane bundle over $™ has a vector bundle atlas containing only two charts, each
of whose domains contain a hemisphere. The transition function for such a pair of
charts restricts to a map of the equator "' into GL(k). In this way an isomorphism
KMS™) = my_ (GL{K)) = m,_,(O(k)) is established, with no restriction on &, n.

9. Let { = S® be a k-plane bundle corresponding to « € x,_ ,(GL(k)) (see Exercise 8)
If n -+ S” corresponds to the inverse of a (in the abelian group n, . ,(GL(k)) then { & n
is trivial. Onec can interpret n as the “reflection” of £ in the equator.

*10. Every vector bundle over S* is trivial. [Hint: it suffices to consider 3-plane bundies.]

4. Oriented Vector Bundles

Let V be a (real) finite dimensional vector space of dimension n > 0.
Two bases (e, ..., &), (f;,..., f) of V are equivalent if the automorphism
A:V - V such that Ae; = f; has positive determinant. An orientation of V
is an equivalence class {e,,..., e, of bases. If dim ¥ > O there are just
two orientations. If one of them is denoted by , then — w denotes the other
one.

If L:V — W is an isomorphism of vector spaces and o = [e,,...,e.]
is an orientation of ¥ then L{w) = [Le,,. .., Le,] is the induced orientation
of W.

Ifdim V = 0 an orientation of V simply means one of the numbers +1.
Many special but trivial arguments for this case will be omitted.

An oriented vector space is a pair (V,w) where w is an orientation of V.
Given (V,0) and (V',«') is an isomorphism L:V — V" is called orientation
preserving if L(w) = '; otherwise L is orientation reversing.

The standard orientation w" of R*, n > 0, is [e,, ..., e,] where ¢, is the
'th unit vector. The standard orientation of R® is + 1.

Let0 - E' & E % E” - 0 be an exact sequence of vector spaces. Given
orientations @’ = [e,,...,e.]ofE'andw” = [, ..., f,] o E”,an orienta-
tion w of E is defined by

W = [fpe:[, cee s PlGys et gn] where Vg = .ﬁg -

independent of the choice of the g,. For if also y/h; = f, the automorphism
A:E - Esuch that Ae; = e;and Ag; = h;fitsinto the commutative diagram

0 S>Ep—E2 | N —0

i
P
]

0 >E’ —>E >E” —0
P

¥

which implies that det A = 1. Hence
[oes,. ... 0mg1s--- .82 = [@€1,- .., Pty ..., B,]).
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It is easy to see that any two of w', w, @ determine the third uniquely.
Wewritew = o' @ 0", 0 = w/o’, v’ = ofw’.

Now let £ = (p,E,B) be a vector bundle. An orientation for ¢ is a family
® = {0,}:<p Where w, is an orientation of the fibre E, such that ¢ has an
atlas @ with the following property: if ¢:¢|U — R" is in @ then

¢ (Epw,) = (R",00")

is orientation preserving. We call @ a coherent family of orientations of the
fibres. The atlas @ is an oriented atlas belonging to w.

If ¢ has an orientation w, then & is called orientable and the pair (¢,w)
is an oriented vector bundle. It is easy to see that if £ is a C" vector bundle
for any r 2 1, and w is an orientation, then £ has a C" atlas which belongs
to w. An oriented C* vector bundle can be defined as a C” vector bundle
together with a maximal C" oriented atlas.

Let F:n — & be a bimorphism. If £ has an orientation , there is a unique
orientation § of n such that F maps fibres to fibres preserving orientation.
It follows that the pullback f*£ of an oriented bundle (£,w) has a natural
orientation f*w.

Let & = (p,E,B) be any vector bundle. Let A:1 — B be a path and w an
orientation of £|4(0). We propagate w along 2 as follows. Since the induced
bundle A*¢ — I is trivial and [ is connected, there is a unique orientation
6 of A*& such that over 0 € I, 8 coincides with A*w. Denote by 4  the orienta-
tion of £]A(1) such that over 1 € I, A*(A ) coincides with 6.

Let u:I — B be another path with 4(0) = p(0) and A(1) = g(1). If A ~ pu
rel {0,1}, then u, @ = A w. To see this, let f:D* — B be such that f = 2 on
the top semicircle I, < 6D2 and f = yuon the bottom semicircle I_ < 9D
Since D? is contractible, f*¢ is trivial and therefore orientable. Since D? is
connected, f*& has a unique orientation 8 containing f*w = A*w = p*o.
Over 1 € I, therefore, the orientations 6, /*A o and f*p w all coincide. This
implies that 1w = p .

Tt follows that every vector bundle over a simply connected manifold M is
orientable. To see this, pick a point x, € M and foreach ye M let A,:] - M
be a path joining x, to y (we may assume M path connected). Let w be an
arbitrary orientation of &|x, and define , =*A, ,w. Since M is simply con-
nected o, is independent of the choice of 4,. Let U = M be a connected
coordinate domain. Fix y e U. For ze U we can take 1, to be A, followed
by a path in U from y to z. This choice of the 1, shows that the resulting
family of orientations {w,},.y is an orientation of ¢|U. It follows that
@ = {w,},¢n is an orientation of &.

. More generally, the vector bundle { = M is orientable if and only if
every loop A:I = M, A0) = A1), preserves orientation of ¢|A(0); that is,
. 4,0 = o if o is an orientation of &|A(0). If this condition is satisfied and M
is connected then a given orientation of a single fibre &, extends to a unique
orientation of ¢ by propagation along paths. Since each fibre has exactly
two orientations, we see that an orientable vector bundle over a connected
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manifold has just two orientations. If one of these is called w, the other is
called —w.

In general every vector bundle ¢ = (p,E,B) has an oriented double
covering & = (B,E,B). Let

B = {(x,w):x € B, w is an orientation of £,}.

The topology of B is generated by the subsets {x,0,},., where U = B is
open, ¢|U is orientable, and 6 is an orientation of &|U. There is a natural
map p:B — B, px,w) = x. Define & = p*£. The natural orientation of & is
defined as follows: given (x,0) € B, assign to £|(x,) the orientation p*. A
section B ~ B is the same as an orientation of . Therefore ¢ is orientable
if B is simply connected. S '

Let 0 = { = £ = {” - 0 be a short exact sequence of vector bundles.
Given orientations «’, w” for &, £ respectively, a family w = {w,}, ., of
orientations of fibres of ¢ is obtained by setting @, = w, @ w). Local
trivializations make it clear that w is coherent; thus w is an orientation of
¢. Any two of @, ', w” determine the third. We put w = o' @ w”, etc. In
particular we have

4.1, Lemma. Two of §, &', & are orientable if and only if the third is.

Let M be a manifold. M is called orientable if TM is an orientable vector
bundle. An orientation of M means an orientation of T M ; an oriented manifold
is a pair (M,w) where @ is an orientation of M. We define —w to be the
orientation of M such that (—w), = —w, (these are orientations of M,)
for all xe M. If M is connected and orientable then it has exactly two
orientations, w and — . Every simply connected manifold is orientable.

An alternative definition of “orientable manifold” is: M is orientable if
it has an atlas whose coordinate changes have positive Jacobian determinants
at all points. A maximal atlas of this kind is an oriented differential structure.
By considering natural vector bundle charts it is easy to see that the two
definitions are equivalent.

Let (M,w) and (N,0) be oriented manifolds. A diffeomorphism f:M = N
is called orientation preserving if Tf :(TM ) — (T N,6) preserves orientation;
in this case we write f{w) = 6. On the other hand f is called orientation
reversing if Tf reverses orientation. Notice that when M is connected, f
must have one of these properties; to determine which one, it suffices to
see whether a single T, f preserves orientation.

Now let M be a connected orientable manifold and let g:M =~ M be a
diffeomorphism. Let w, —w be the two orientations of M. Then cither gw) =
w and g(—w) = —w, or else glw) = —w and g(— w) = w. In other words
g either preserves both orientations or reverses both orientations. We call
g orientation preserving or orientation reversing, accordingly, independent
of any choice of orientation for M. If & is an oriented differential structure
for M then f preserves orientation if f*® = @, that is, if the derivative of
f at any point, expressed by charts in &, has positive Jacobian.
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As an example consider a diffeomorphism of §" obtained from an ortho-
gonal linear operator L € O(n + 1). Since L also maps D"*! onto itself, L|S"
is orientation-preserving exactly when L|D"*! is orientation-preserving, or
equivalently, when L preserves orientation of R"*'. Thus L|S" preserves
orientation if and only if det L > 0. In particular, reflection in a hyperplane
always reverses orientation; the antipodal map of S" preserves orientation if
n is odd and reverses orientation if n is even.

Let M be a manifold and & = (§,E,M) the oriented double covering of
the vector bundle TM. It is easy to see that £ is naturally isomorphic to
TM. Therefore M is an orientable manifold. This shows that every manifold
M has an oriented double covering M. It is easy to see that the natural map
p:IVI — M is a submersion. If M is orientable, then each orientation w of
M defines a section s,: M — M by s,(x) = (x,@,). Conversely, every section
defines an orientation of M.

Next consider the algebraic normal bundle v of M in M:

4.2. Theorem. v is trivial, and hence orientable.
Proof. Let n = dim M. Put
R = {xeR":x, > 0}.

Let 7:R" — R be the projection n(x) = x,.
Let {¢;:U; —» R} be family of charts of M that cover dM.
Define morphisms

F:TMoU; - R,
Fie = D(ng)),.
Since F, maps T(0U)) to 0, it induces a morphism
GivoU; » R

which is clearly a bimorphism. Note especially that if x € dU; n 9U), the
linear map

ijG[.;l:R - R

is positive. This is equivalent to the fact that each ¢; maps U; onto the same
side of dR" in R". This already proves v orientable. A trivialization of v is
obtained by gluing together the G; with a partition of unity.

QED
Implicit in the last part of the above proof is this result:

4.3. Theorem. An orientable I-dimensional vector bundle over a para-
compact space is trivial.

This is true in all C" categories; as usual the analytic case requires a
separate proof. But Theorem 4.3 is false without paracompactness: the
tangent bundle of the long line is orientable, but if it were trivial the long
line would have a Riemannian metric and thus would be metrizable! _
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We now give some classical geometric applications of orientations.

4.4. Lemma. Let N be a connected manifold and let M = N be a connected
closed submanifold of codimension 1, 8M = N = (. If M separates N then
the normal bundle v of M in N is trivial, and N — M has exactly two com-
ponents; and the (topological) boundary of each component is M.

Proof. Let A = N be a component of N — M. Then ) is the boundary
of the subset A. For, since M is closed, Bd 4 is a2 nonempty closed subset
of M. Looking at submanifold charts for (N,M) one sees that Bd 4 is also
open in M. Since M is connected, Bd A = M. Such charts also show that
A is a submanifold of N with 34 = M. Clearly v is also the normal bundle
of M in A; therefore Theorem 4.2 implies that v is trivial. Let B be another
component of N — M; then B is also a submanifold of N with boundary
M. Thus 4 U Bis a closed subset of N. Invariance of domain (or the inverse
function theorem) show that 4 u B is also open. Therefore A U B = N.

QED

From Lemmas 4.1 and 4.4 we obtain:

4.5. Theorem. Let N be a connected manifold and M < N a closed
connected submanifold of codimension 1, M = ¢N = (. If M separates N
then M is orientable if N is orientable.

Next, a basic topological result:

4.6. Theorem. Let N be a simply connected manifold and M < N a con-
nected closed submanifold of codimension 1, ¢M = ¢N = §. Then M
separates N.

Proof. We may suppose N connected. Let xo, x, € N — M.Letf:/ = N
be a C* path from x, = f(0) to x, = f{1); assume [ is transverse to M.
Then f~}(M) is a finite subset of I. Let L(x4,x,,f) € Z, be the reduction
mod 2 of the cardinality of f ~}{M). We assert that L(x,,x,, /) is independent
of f. For let g:I = M be another such path. Since N is simply connected,
the paths f, g are homotopic rel end points. Thus thereisamap H:/ x [ —
N such that H{t,0) = f(1), H(t,1} = g(t), H(O,) = xo. and H(1,t) = x,. By
approximation we may assume that H is C* and transverse to M. Then
H™'(M) is a compact I-dimensional submanifold of I x I = R* with
boundary f~'(0) x 0 u g~ '(0) x 1. Since H™ (M) has an even number of
boundary points, the assertion follows.

It is clear that there exist x,, x,, f as above with L{x,.x,,f) = 1: for
example, take x, and x,; on opposite sides of M, in a small arc transverse
to M. Then x, and x, must be in different components of N — M. since
otherwise there would exist a path g joining them in N — M. Such a path
can be made C® and transverse to N; then L(xq,x;.f) = 0, contradicting
‘the assertion above.

QED
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As a corollary of Theorem 4.6 we obtain the following “nonembedding
theorem”

~ 4.7. Theorem. A compact nonorientable n-manifold without boundary can-
not be embedded in a simply connected (n + 1)-manifold. In particular pro-
jective 2n-space P** does not embed in R**** for n > 1.

Proof. A simply connected manifold is orientable; together with
Theorems 4.6 afid 4.5, this proves the first statemeént. To prove the second
we show that P?" is nonorientable. Consider P?" as the identification space
of §2* by the antipodal map A4; let p:$2* — P?" be the projection. We know
that A is orientation reversing. Therefore P?" cannot be orientable; for if @
is an orientation of P?", there is a unique orientation 8 of $*" such that
T,p(0,) = w,y for all x e S*". But such a 6 would be invariant under the
antipodal map, which is impossible.

QED

Theorem 4.7 is false if “simply connected” is replaced by “orientable”:
for P2 embeds in the orientable manifold P?"*!.

It is also true that P?"*! does not embed in R?"*2, but more subtle
methods are required.

Exercises

1. If £ is any vector bundle, ¢ & & is orientable. This implies that TM is orientable
as a manifold.

2. There are precisely two isomorphism classes of n-plane bundles over §* for each
n 2 1. Two such bundles are isomorphic if and only if both are orientable or both are
nonorientable.

3. M x N is orientable if and only if M and N are both orientable.
4, Every Lie group is an orientable manifold.
(In Exercises 5 through 9, M « N is a closed, codimension | submanifold.}
5. I{ oM +# ¢ and N = & and M, N are connected, then N — M is connected.

6. Suppose N = R**! M is compact and 3M = . Then M bounds a unique compact
submanifold of R**1,

7. Suppose M is a neat submanifold. Then the normal bundle of M in N is trivial if
and only if M has arbitrarily small neighborhoods in N that are separated by M.

8. Suppose N = @M = 4. 1f M is contractible to a point in N then M separates N.

9. If M = dW where W < N is a compact submanifold, and W # N, then M separates
N '

10. Isomorphism classes of oriented k-plane bundies over an n-manifold M correspond
naturally to homotopy classes of maps from M to the Grassman manifold G, g of
oriented k-planes in R', provided s > k + m.
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*11. Let ¢ — B be a nonorientable vector bundle over a connected manifold M. The

set of homotopy classes of orientation-preserving loops at x, € M form a subgroup of
index 2 in 7, (M ,x,).

12. Let M be a connected orientable manifold. The subgroup Diff”, (M) of orientation
preserving diffeomorphisms is normal and has index 1 or 2 in Diff (M), 1 € r € x.
Moreover Diff", (M) is open and closed in both the weak and strong topologies. .

5. Tubular Neighborhoods

Let M — V be a submanifold. A tubular neighborhood of M (or for

(V,M)) is a pair (f,£) where ¢ = (p,E,M) is a vector bundle over M and
[:E — Vis an embedding such that:

1. fIM = 1), where M is identified with the zero section of E;
2. f(E) is an open neighborhood of M in V.

More loosely, we often refer to the open set W = f(E) as a tubular
neighborhood of M. It is then to be understood that associated to W is
a particular retraction q: W — M making (q,W,M) a vector bundle whose
zero section is the inclusion M — W.

It is easy to see that only neat submanifolds can have tubular
neighborhoods.

A slightly more general concept is that of a partial tubular neighborhood
of M. This means a triple (f,§,U) where & = (p,E,M) is a vector bundle
over M, U < E is a neighborhood of the zero section and f:U — V' is an
embedding such that f|M = 1, and f(U) is open in V.

A partial tubular neighborhood ( f,£,U) contains a tubular neighborhood,
in the following sense: there is a tubular neighborhood (g.£) of M in V such
that g = fin a neighborhood of M.

To construct g, fix an orthogonal structure on £. Chooseamap p:M —» R.
such that if ye E, and |y| < p(x) then ye f(U). Let 2:[0.xc) — [0.1) be
a diffeomorphism equal to the identity near 0. Define an embedding

h:E - E,
h(y) = p(p(¥A(¥Diy "y

Then h(E) = U and h = identity near M. Now put g = fh.
Eventually (Theorem 6.3) we shall prove that every neat submanifold
has a tubular neighborhood. The first step is to prove:

5.1. Theorem. Let M — R* be a submanifold without boundary. Then
M has a tubular neighborhood in R®.

Proof. It suffices to find a partial tubular neighborhood.

Put k = n — dim M and let y,, — G, , be the Grassmann bundle
(see Section 4.3). Let vi:M - G, , be a (C®) field of transverse k-planes:
this means that for each x € M, the tangent plane M, — R" is transverse
to the k-plane wx). For example, one could take w{x) = M.
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Put
§ = (PaE'M) = v‘?n,k;
thus € is a vector bundle, and

E={(x,y)eM x R":ye vx)}.
Define a map
fIE-R
fy)=x+y (yevx)

The tangent space to E at a point (x,0) of the zero section has a natural
splitting M, @ v(x). It is clear that T, ,, f is the identity on M, and on
vx). Therefore Tf has rank » at all points of the zero section and it follows
that f is an immersion of some neighborhood of the zero section. Since
fIM = 1, it follows that from Exercise 7, Section 2.1, f|U is an embedding
of some open neighborhood U < E of M. Thus (f,£,U) is a partial tubular
neighborhood of M.

QED

In the above construction, if we choose ¥(x) = M} the resulting tubular
neighborhood is called a normal tubular neighborhood of M in R". It is not
hard to prove that in this case U can be chosen small enough so that f(U n v,)
is the set of points in f(U) whose nearest point of M is x. See Figure 4-1.

Figure 4-1. A normal tubular neighborhood.
5.2. Theorem. Let M < V be a submanifold, 0M = oV = &. Then M

has a tubular neighborhood in V.

Proof. We may assume V < R". Let W < R" be a neighborhood of
Vand rrW — V a C® retraction. (Such a W and r exist because V has a
tubular neighborhood in R™) Give ¥V the Riemannian metric induced from
R"® and let v = (p,E,M) be the normal bundle of M in V. Thus

ve TyV e TyR"= M x R

each fibre v, is contained in x x R".
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For each x € M let
U, = {(xy)evi:x + ye W}
Put U = (), s U,. Then U is open in E, being the inverse image of W under
the map
E -+ R,

(xy)—=x+y (yev)

It is easy to verify that the map
U=V,
Jxy) =rx + y)

provides a partial tubular neighborhood for (V. M).

QED

It is useful to be able to slide one tubular neighborhood of a submanifold
onto another one, mapping fibres linearly onto fibres. Such a sliding is a
special case of an isotopy. Isotopies will be considered in more generality
in a later chapter; at present the following remarks suffice.

If P, Q are manifolds, an isotopy of P in Q is a homotopy

F:P xI-Q,

F(x,) = F(x)
such that the related map

F:Px1-Qxl,
(x,0) & (F(x),0)

is an embedding. We call F the track of F. We also say F is an isotopy from
Foto Fi. If A < P is such that F(x) = Fy(x) for all (x.t)ye A x I then
F is a rel A isotopy.

The relation “f is isotopic to g” is transitive. For let F, G be isotopies
of P in Q such that F, = G,. We can almost define an isotopy H from
Fo to G, by setting

H = {F »  Ost<;

1
Gz;—| ==,

but H is not necessarily smooth at points of P x 3. The solution is to write
instead:

where 7:1 — I is a C® map which collapses a neighborhood of i to i for
i = 0, 1. This H is indeed an isotopy from F, to G,.
The same argument shows that rel A isotopy is an equivalence relation.
Now let (f,,& = (p;,E;,M)) be a tubular neighborhood of M < V for
i = 0, 1. An isotopy of tubular neighborhoods from ( f.Co) to (£,.5,) is a rel



112 4. Vector Bundles and Tubular Neighborhoods

M isotopy F from E, to V such that:
FO = fO,
F\(Eo) = fi(EY),
fi'F\:Ey— E, is a vector bundle isomorphism & — £,

and
F(Ey x )isopenin V x I

This last condition is automatic if OM = .

One thinks of {F{E)},. s as a one-parameter family of tubular neighbor-
hoods of M. Notice also that F defines a tubular neighborhood (F,& x I)
of M x IinV x I

It is easy to see that isotopy is an equivalence relation on the class of
tubular neighborhoods for (V,M).

5.3. Theorem. Let M = V be a submanifold, M = 3V = . Then any
two tubular neighborhoods of M in V are isotopic.

Proof. Let the tubular neighborhoods be (f,& = (p,E,M)), i =0, 1.
First suppose fo(Eo) < fi(E,).

Let ®#:&, — &, be the fibre derivative of g = f7f,:Eo — E,. Thus @ is
the component along the fibres of the morphism

Tug:Tqu = TM e 60 - T™ @ {l = TMEll

which shows that ¢ is an isomorphism of vector bundles.
We define the canonical homotopy from @ to g to be

H:Ey, x [ - E;,
_frilgey if121t>0,

(Here tx means scalar multiplication in the fibre containing x, etc.)
We claim H is C*. This is a local statement; to prove it we can work
in charts for M, &, and £,. Such charts make g locally a C* embedding

g:U x R* > R™ x R,
g(x,y) = (g:1(x,¥),g2(x. ),
g(x.0) = (x,0)

where U < R" is open. Locally, @ becomes the fibre derivative of g:
@:U x R* » R™ x R,
Px,y) = (x, a—g’% (x.O)y)-
Here dg,/dy assigns to each point of U X R* a linear map R*— R*. The local

representation of H is a map (U x R*) x I - R™ x R* given by the same
formula (1).
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By Taylor’s formula we can write

(2) ga(x.y) = (x,O)y + <S(x.y).y>

where ¢, ) tsthemnerproductm R'ands U x R* - R*is a C* map with
S(x,0) =

Itis trmal to verify that the ﬁrst eoordmate of (the local representation
of) H as given by (1) definesa C* map U x R™ x I — R™. By (2) the second
coordinate of H is given by the formula

gg;’(x,o)y +{slxt)y), 12120

Clearly this is C* in (t,x,y). Thus H is C*®; and it is easily verified that H is
an isotopy.
An isotopy of tubular neighborhoods from (f,.&) to (f;.&,) is now

dcﬁned by
Flxn) = fT'H(x,1 - 1),
under the assumption that fo(Eo) <= f(E,).
: FormegeneralcaseweﬁrstpullEointotheopen set fo' fitE)) < E, by
a prehmnary isotopy of the form .
G: Eo x [— Eo,
Gz = (1 = t)y + th(y)

h:Eo - Eo,

L [p(y)
K(y) = [1 +y{|y

where

and 8:M — R, is a suitably small C" map.

Thus ( f5.£o) and ( £,G,,€,) are isotopic tubular neighborhoods; and since
foG, maps E, inte fi(E)), so are (f,Gi&) and (f;,£). Theorem 5.3 now
follows from transitivity of the relation of isotopy.

QED

6. Collars and Tubular Neighborhoods of Neat Submanifolds

The boundary of a manifold cannot have a tubular neighborhood.
However, it has a kind of “half-tubular” neighborhood calied a collar.
A collar on M is an embedding

f:0M x [0,00) = M
such that f(x,0) = x. The following is the collaring theorem:
6.1. Theorem. M has a collar.
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Proof. A proof using differential equations is given in Section 5.2. An
alternative proof is outlined as follows.

First, find a C*® retraction r: W — M of a neighborhood of dM onto
dM. This is obviously possible locally, and two local retractions into
coordinate domains can be glued together with a bump function. A standard
globalization technique (e.g., Theorem 2.2.11) produces a global retraction.

Second, find a neighborhood U = M of M and a map

g:U - [0,00),
g(ocM) = 0

having 0 as a regular value. This is easily done with a partition of unity.
Third, observe that the map

h = (rg):W — éM x [0,00)

maps a neighborhood of dM diffeomorphically onto a neighborhood
W < M x [0,00), and h(x) = (x,0) for x € IM.

Finally, let ¢:0M x {0,00) » h(W) be an embedding which fixes
OM x 0.Then h™'¢ is a collar.

QED

It is also true that boundaries of C° manifolds have collars, although
this is far from obvious. An elegant and surprising proofis given by M. Brown
[2].

We leave as an exercise the proof of the following refinement of
Theorem 6.1:

6.2. Theorem. Let M < V be a closed neat submanifold. Then 3V has
a collar which restricts to a collar on M in M.

Having collars at our disposal we can now prove:

6.3. Theorem. Let M < V be a neat submanifold. Then M has a tubular
neighborhood in V.

Proof. By Theorem 6.2 there is a neighborhood N < V of dV and a
diffeomorphism
@:(N,0V) = (0V x LoV x 0)
such that
@:NndM ~ oM x L

Let g > 2 dim V. Embed 9V in R?-!; extend this to an émbedding
dV x I - R! x [0,00) = RY
(x,1) = (x,1).

We can thus assume N = RY% in such a way that every vector of R? which
is normal to N at a point of 0V, or normal to N n M at a point of 3V, is in
R~ 1, See Figure 4--2.
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NnM

Figwre 4-2, An embedding of Nin RY,.

We can extend the embedding of N to an embedding of V in R%,. Thus
V is now a neat submanifold of R%, and both ¥V and M meet R*"}
orthogonally along ¢V and dM.

We can now find a normal tubular neighborhood of ¥ in RY, (Figure 4-3),
and the rest of the proof is like that of Theorem 5.2.

QED

—r—

m—l

Figure 4--3. A normal tubular neighborhood of ¥ in RY.

The following extension theorem for tubular neighborhoods is useful:

6.4, Theorem. Let M < V be a neat submanifold. Then every tubular
neighborhood of M in OV is the intersection with 3V of a tubular neighborhood
forMinV,

Proof. First consider the specia.l case V=W x I, M = N x I where
N < W is a submanifold and 6N = 0W = . Then
WV=Wx0uWxl
: IN=Nx0uUNXx 1.
In this case a tubular neighborhood for (8¥,0M) is just a pair of tubular

neighborhood for (W,N). Let these be E,, E,. By Theorem 5.3 there is
an isotopy of tubular neighborhoods from E, to E,, say F:Eq x I —+ W.



Then the corresponding embedding

FiEgxI->WxI=W
E(x,t) = (F(x,),0)

a tubular neighborhood for N x I = M in ¥, restricts to E, and E, in oV,
Now consider the general case. Give dV a collar in V which contain a
collar on oM in M; we shall identify ¢V x [0,00) with a neighborhood
of 8V in ¥, so that dM x [0,00) corresponds to a neighborhood of M
in M. Put
V=9V x[01], M =M x[01]
V' =79V x [1,0), M" =M x [1,00).

Thus V=V u V", V' n V" =3V x 1, and similarly for M.

Let E;, be a tubular neighborhood for M in 8V. By 6.3 there is a tubular
neighborhood E” of M” in V", Let E, = E" n 3V < ¢V x 1. Thus E,
and E, form a tubular neighborhood for M x {0,1} in ¥ x {0,1}. By the
special case E; U E; extends to a tubular neighborhood E' of V' in M'.
Then E’' v E” is a tubular neighborhood M in V which extends E,. (Actually

one has to make sure that E’ and E” fit together smoothly at V", this is
left to the reader.)

QED

A closed tubular neighborhood of radius ¢ > 0, of a submanifold M < V,
isanembedding D,(§) - M which is the restriction of a tubular neighborhood
(f:¢ = (p.E,M)) of M. Here

D) = {xeE:|x| < &}

is the disk subbundle of ¢ of radius ¢, for a given orthogonal structure on £.
The isotopy theorem for closed tubular neighborhoods is as follows:

6.5. Theorem. Let M < V be a submanifold. Let & = (p,,E,M) be
orthogonal vector bundles over M, i = 0, 1. Let (f,,£,) be a tubular neighborhood

of M. Let ¢ > 0, 8 > 0. Then (fo,&,) and (f,,§,) are isotopic by an isotopy
of tubular neighborhoods F:E — V, 0 < t < 1, such that Fy = fy and

Fl(Dz(cO)) = Dy&,)-

Proof. By Theorem 5.3 and a preliminary isotopy we may assume that,
as tubular neighborhoods, (fo.£0) = (f1,¢,); but D) and Dy¢&,) might
be defined by different orthogonal structures. However, by 2.3 and a linear
isotopy we may assume that these orthogonal structures are identical.
The theorem is now obvious: in any orthogonal vector bundle there is a
linear isotopy carrying D (&) onto D,(¢). .

QED

As a very special but useful case, let M be a point x, € V. An open tubular

neighborhood of x, is an embedding (R",0) = (V,x,) and a closed tubular
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neighborhood of radius 1 is an embedding (D*,0) — (V,x,), where n = dim V.
(We suppose dV = ()

6.6. Theorem. Let E* = D" or R* and let fi:(E"0) — {V,x,) be an
embedding, i = 0, 1, wheren = dim V. If

Det(D(f1'/o)0)) > 0
then Jo and f, are isotopic rel 0.

 Proof. Note that f'f; is well defined on a neighborhood of 0 in E*,
g0 its derivative at 0 is defined. By isotopy of tubular neighborhoods we
can assume f[ 'f; is a linear automorphism L € GL(n). If det L > 0 then
L is connected to the identity in GL{n) by an arc L, 0 < 1 < 1:

b3

o Ly=fi'fo Li=lp.

The required isotopy from f, to f; is
LY T e O0<t

n

1

QED

One use for tubular neighborhoods is to make a map look like a vector
bundle map (after a homotopy). Let V, N be manifolds, 4 < N a compact
neat submanifold and f:V —+ N a map such that f and f|0V are both
transverse to A. Put M = f~!(4), a neat submanifold of V. Suppose given
tubular neighborhoods U= Vof Mand Ec Nof A. Let Dc U be a
disk subbundle such that f(D) < E.

6.7, Theorem. Under the assumptions above, there is a homotopy f,
Jrom f = f, to amap f, = h:V — N such that:
(a) h|D is the restriction of a vector bundle map U — E over f:M — A;
b) fi=fonMUN-U),0gt< 1.
@ SFIMN-A=V-MO<t< L

Proof. Let ®:U — E be the véctor bundle map, over f:M — A, which
is the fibre derivative of f:D — E. Let f;:D — E, 1 2 t > 0 be the canonical
homotopy from f; = f|D to f, = ®|D:

_frifux), 12120,
H) = {(D(x), t=0.
Notice that f(dD) =« N — A.

Let D' < U be a disk subbundle with D’ <« int D. Put D' — int D = L;
thus L = 3D’ w 0D. Define a homotopy

g0L > N — A,
_ A on oD,
9=1f on éD.

By homotopy extension (Theorem 1.4) g, extends to a homotopy
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gi:L - N — A. Define a homotopy

h:V - N,
f on V-D
h, = <g, on L
fi on D.

The required map is then h = h,,.
QED
Exercises

1. There is an obvious definition of C” tubular neighborhood and C isotopy, 1 € r <
. A neat C' submanifold has a C tubular neighborhood, unique up to C isotopy.

*2. Let M,, M, be neat submanifolds of V in general position. Let (£,£,) be a tubular
neighborhood of My N M, in M,, i = 0, 1. Then there is a tubular neighborhood
(filo ® &,) of Mg N M, in V such that f|§ = f.

*3. Extendability of germs of tubular neighborhoods. Let M < V be a neat submanifold
and U « M aneighborhood ofa ciosed subset A « M. For every tubular neighborhood
E, of Uin V there is a tubular neighborhood E of M in V, and a neighborhood W « U
of A, such that E|W = Eo|W.

4. Let D < M be a neat p-disk of codimension k. Then D has a neighborhood E « M
such that

(E,D) = (D* x R:.D® x 0).
5. Let M < ¥ be a closed neat submanifold of codimension k. Then there is a map

J:(V,M) — (S*,p) such that p is a regular value and £~ !(p) = M, if and only if M has
a trivial normal bundle.

6. Let M < R” be a submanifold of codimension k, M = . Let M —+ G, , be a
transverse field of k-planes. Suppose that v locally satisfies Lipschitz conditions with
respect to Riemannian metrics on M and G, ,. Then M has a tubular neighborhood
U = R" whose fibre over x € M is the intersection of U and the k-plane through x
parallel to W(x). But if v is merely continuous this may be false, even for §' = R

7. The boundary of a nonparacompact manifold does not necessarily have a collar.
For instance there is a 2-dimensional manifoid M such that M — M = R? but oM
has uncountably many components (each diffeomorphic to R).

*8. Let L be the long line with its natural ordering (see Exercise 2, Section 1.1) and set
M={(x,y)eL x L:x < y}.
Then M is a d-manifold with M = L. Show dM has no collar.

*9, Ambient isotopy of closed tubular neighborhoods. In Theorem 6.5, the isotopy F|D,(&o)
can be achieved through a diffeotopy of V. That is, there is an isotopy G:V = V,
0 <t < 1, such that G, = 1, and F(x) = G, fo(x) for x € D,(,).

7. Analytic Differential Structures

We shall use tubular neighborhoods and transversality to prove the
following result:

.. 1.1, Theorem (Whitney). Let M be a compact manifold without bbumiary.
‘Then M is diffeomorphic to an analytic submanifold of Euclidean space.
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Proof. We may assume M embedded in R* with codimension k. Let
E c R* be a normal tubular neighborhood of M. We identify E with a
neighborhood of the zero section of the normal bundle of M. Let p:E - M
be the restriction of the bundle projection.

Let h:M - G, , be the map sending x € M to the k-plane normal to
Matx. LetE, , — G, , be the Grassmann k-plane bundle and let f:E — E, ,
be the natural map covering k; thus

S(y) = (y)y)€ Eqx = Gox x R
Note that f is transverse to the zero section G, , < E, , and

f-l(Gg.t) =M.

The main point of the proof is to C* approximate f by an analytic map.
For this we use Theorem 2.5.2. That result says that a real-valued C" map
(0 < r < oo) on an open subset of Euclidean space can be C" approximated,
near a compact set, by an analytic map. The same result clearly holds for
maps into R*. Moreover it holds for maps from open subsets E  R? into
a C® submanifold N = R*. For a normal tubular neighborthood of N
provides a C® retraction p:W — N where W < R* is an open set. Given
S:E = N, the required C® approximation is p e f' where f:E —» W is
a C® approximation to f.

Now E, , embeds analytically in R® with s = g* + q. For this it suffices
to embed G, , in R. This is done by mapping a k-plane P e G, , to the
linear map R* - R* given by orthogonal projection on P.

It follows that the map f:E — E,_ , can be approximated near M by
an analytic map ¢:E - E_ ,. Put M' = 974G, ,). If ¢ is sufficiently C'
close to f then ¢ ¢ G, , and the restriction of p:E - M to M’ is a C*
diffeomorphism M’ ~ M.

QED

Of course stronger results can be proved by using the powerful Remmert—
Grauert approximation Theorem 2.5.1. The proof given used only the
elementary Theorem 2.5.2.

Exercises
1. Let f:M — R* be an embedding where M is compact without boundary. Then f
can be approximated by embeddings g such that g(M) is an analytic submanifold.

2. Let M = R’ and N < R’ be analytic submanifolds without boundaries, with M
compact. Then analytic maps are dense in CQ(MN), 0 < r < o,

3. Let £ be a C vector bundie over M, where M is a compact analytic submanifold
of Euclidean space, 0 < r £ oo, and M = . Then £ has a compatibie C® vector
bundle structure, unique up to C* isomorphism.



Chapter 5

Degrees, Intersection Numbers, and
the Euler Characteristic

Topology has the peculiarity that questions belonging in its domain may
under certain circumstances be decidable even though the continua to which

they are addressed may not be given exactly, but only vaguely, as is always the
case in reality.

—H. Weyl, Philosophy of Mathematics
and Natural Science, 1949

Geometry is a magic that works . . .

—R. Thom, Stabilité Structurelle
et Morphogénése, 1972

We now have enough machinery at our disposal to develop one of the
most important tools in topology: the degree of a map f:M — N, where M
and N are compact n-manifolds, N is connected, and dM = N = . This
degree is an integer if M and N are oriented, an integer mod 2 otherwise.

Intuitively, the degree is the number of times f wraps M around N. The
precise definition requires the theories of approximation, regular values, and
orientation. If f is C' and if y € N is a regular value, then the degree of f
is the number of points in f ~!(y) at which Tf preserves orientation, minus
the number of points at which T reverses orientation,

It turns out that the degree of f is the same for all maps homotopic to
f. This has two important consequences: it makes the degree of any given
map easy to compute, and it gives us a convenient method of distinguishing
homotopy classes. Moreover the degree is the only homotopy invariant for
maps into S"; this is the main result of Section 5.1.

With the introduction of the degree we enter the realm of algebraic topol-
ogy. Many geometrical questions depend on the computation of degrees of
maps; thus topology is translated to algebra, the continuous is reduced to
the discrete.

The degree is actually a special case of a more general geometrical concept
called the intersection number, developed in Section 5.2. If M and N are
submanifolds of W of complementary dimensions, and M and N are in
general position, their intersection number is the algebraic number of points
in M n N, each counted with appropriate sign determined by orientations.
By means of transversality theory, intersection numbers of maps M, N - W
can be defined; again we obtain homotopy invariants. If W is an n-dimen-
sional oriented vector bundle ¢ - M then the self-intersection number of

120
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the zero section is called the Ewler number X(Z). This is an important iso-
morphism invariant of bundles. The Euler number of TM is the Euler
characteristic y(M).

We can compute X(£) by means of sections of £. This leads to the com-
putation of y(M) as the sum of the indices of zeros of a vector field on M.
In Chapter 6 we shall use the Morse inequalities to recompute y(M) as the
alternating sum of the Betti numbers of M.

1. Degrees of Maps

In this section we exploit orientations and tubular neighborhoods to
derive some classical homotopy and extension theorems.

Recall that Euclidean n-space R", n > 1, has the standard orientation "
given by any basis whose coordinate matrix has positive determinant (and
the orientation of R? is the number + 1). Every n-dimensional submanifold
of R" is also given this orientation.

If (M,w), (N,6) are oriented manifolds, the product orientation » x 8 for
M x N assignsto(x,y)€ M x N the orientationw, @ 8, of(M x N),., =
M,@®N,.

Let (M,w) be an oriented d-manifold and f:2M x [0.0) - M a collar.
Then T, f induces an isomorphism of the trivial bundle M x R onto the
normal bundle v of M in M. The standard orientation of R orients each
fibre of M x R; via T,y f this induces an orientation i of v which does not
depend on the collar. In other words v is oriented by inward pointing vectors
tangent to M at M.

. We now have orientations w and 1 of M and r. From the exact sequence
of vector bundles
0 T(OM) = ToyeM - v 0

we define the induced orientation wfi = 0w of é¢M. Thus (e,,...,€,-,}is an
orienting basis for (dw), if (e,, . . ., €,_,&,) is an orienting basis for w, and
e, points into M at x e M.

Let 8 be an orientation of M. We usually give M x [ the product orienta-
tion w = # x w' where @' is the standard orientation of /. It follows that

dwlM x0=0  and oM x 1 = -8.

We shall frequently speak of “the oriented manifold M”, not naming
the orientation explicitly. In this case M and M x [ are also oriented
manifolds, as is any submanifold of M of the same dimension. If — M de-
notes the manifold M with the opposite orientation, then

MxD=Mx0u(—-Mx1l)

as oriented manifolds.
The closed unit n-disk D**! = R**! has the standard orientation. There-
fore its boundary S" inherits an orientation, also called “standard™. It is easy



to verify that stereographic projection from the north pole P = (0,...,0,1) e
S” is an orientation preserving diffeomorphism $" — P = R". Thus if
(es,...,e,) is an orienting basis for R* = R"*!, an orienting basis for $" at
the south pole — P is (e,, .. ., e,), while at the north pole (e;, ..., €,-1,—¢€,)
is orienting.

Let A:R™ — R™ be the antipodal map 4(x) = —x. Since Det 4 = (—1)*
it follows that 4 preserves orientation of R™ if and only if m is even. The
antipodal map of R"* ! restricts to a diffcomorphism of D"*!. Since it clearly
preserves orientation of the normal bundle of 8D** 1, it follows that A: S — S"
preserves orientation if and only if » is odd.

L1. Lemma, Let (W,w) be an oriented 0-manifold. Suppose K <« W is
an embedded arc which is transverse to 0W at its endpoints u, ve dW. Let x
be an orientation of K, and consider the quotient orientation w/x of the alge-
braic normal bundle of K. Then

(D,‘/K“ = (aw)u had wu/ku = -(a(!)),,.

Proof. Let X,, X, be tangent vectors to K at u, v which belong to «,, x,

respectively. Then X, is inward if and only if X, is outward; this is equivalent
to the lemma.

QED

Let (M,w), (N,8) be compact oriented manifolds of the same dimension,
without boundaries. Assume N is connected. Let f:M — N be a C' map
and x € M a regular point of f. Put y = f(x). We say x has positive type if
the isomorphism T, f: M, — N, preserves orientation, that is, it sends w, to
0,. In this case we write deg, f = 1. If T, f reverses orientation then x has
negative type, and we write deg, f = —1. We call deg, f the degree of f
at x.

Suppose y € N is any regular value for f. Define the degree of f over y

to be
deg(f,}’) = erf“(yl degx f;
if £~'(y) is empty, deg(f,y) = 0. To indicate orientations we also write

deg(fay) = deg{f’y; w,0).

Reversing w or 8 changes the sign of deg(f, y).

To interpret deg( f, y) geometrically, suppose that f ~ *(y) contains n points
of positive type and m points of negative type, so that deg(f,y) =n — m.
From the inverse function theorem we can find an open set U < N about
y and an open set U(x) = M about each x € f ~!(y) such that f maps each
U(x) diffeomorphically onto U preserving or reversing orientation according
to the type of x. Thus deg(f, y) is the algebraic number of times f covers U.

For example, let S! be the unit circle in the complex plane. Let M =
N =S, and § = w. If f:S* — S! is the map f(z) = z" then deg(f,2) = n,
provided z # | when n = 0.
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If M is not connected, but has components M,, .. ., M,, note that
deg f = 3, deg(f|M,).

Of course each M; is given the orientation w|M; induced by the inclusion
MJ o M.

1.2, Lemma. Let W be a compact oriented manifold of dimension n + 1,
N a compact oriented n-manifold without boundary and h:W — N a C? map.
Let y € N be a regular value for both h and hjdW. Then deg(h|oW.¥) = 0.

Proof. Let w, 0 be the orientations of W, N respectively. Let M,, ..., M,
be the components of W.

Since y is a regular value, h™!(y) is a compact I-dimension submanifold
of W whose boundary is (hjdW)~'(y). Let u € h™'(y). Then there is a unique
ve h™'(y), v # u, and a component arc K < h™'(y) such that éK = {uc}.
It suffices to show that u and v are of opposite type for h|dW.

Let v = TW/TK, the algebraic normal bundle of K in W. Since y is a
regular value, Tf induces a bimorphism @:v — N,. There are natural identi-
fications v, = (dW),, v, = (OW),.

Since K is an arc there is a unique orientation x of v such that x, = {(cw),.
By Lemma 1.1, x, = —(dw),.

Suppose u is of positive type (for hjoW). Then &,(x,)} = 6, for all xe K.

It follows that
T(hldW)(0w), = P.x,
= 9,
and
THOW) —d0), = D .x.
=0,
Therefore v is of negative type. This shows that A|¢W has equal numbers
of points of positive and negative type in h~*(y).
QED

1.3. Corollary, Let (M,w) and (N,0) be compact, oriented n-manifolds,
M = 8N = . Let N be connected, and f, g:M — N homotopic C* maps
having a common regular value ye N. Then deg( f,y) = deg(g, ).

Proof. There is a homotopy h:M x I —» N from f to g, and one can
make h C® and transverse to y. As oriented manifolds

MxD=Mx0w)uM x 1,-w).
By Lemma 1.2 we have
0 = deg(hjdM x I))
= deg(f,y; w,0) + deglg,y: —w,0)
= deg(f,y; w,0) — deglg,y; w.9).
QED
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1.4, Lemma. Let M, N be a compact oriented n-manifolds without bound-
aries, n 2 1, with N connected. Let y, z€ N be regular values for a C*® map
J:M = N. Then deg(f,y) = deg(f,2).

Proof. Suppose there is a diffeomorphism #: N — N, homotopic to the
identity, such that h(y) = z. Then deg(h,z) = deg, h = 1, by Corollary 1.3.
It is easy to see that this implies

deg(f,}’) = deg(hfaz)-
But Af is homotopic to f; hence

deg(hf,z) = deg(f,z).

It remains to construct k. If y and z are very close together, say in the same
coordinate ball, the construction is not hard, and is left as an exercise. The
relation between y and z, that such an h exists, is an equivalence relation
on N whose equivalence classes are thus disjoint open sets. Since N is con-
nected, any two points are equivalent.

QED

1.5. Lemma. Let M, N be manifolds and f:M — N a continuous map.
Then f can be approximated by C* maps homotopic to f.

Proof. We may assume, by Theorem 4.6.3, that N is a C® retract of an
open subset W < R%; let r: W — N be a retraction, Let g:M - Nbea C*
map which approximates f so closely that the map

M x IRy,
h(x,)) = (1 — f(x) + tg(x)
takes value in W. Then rh:M x I — N is a homotopy from f to g.

QED

We are ready to define the degree of a map. Let M, N be oriented compact
n-manifolds, n > 1, with N connected and dM = N = . The degree deg f
of a continuous map f:M — N is defined to be deg(g,z) where g:M — N is
a C* map homotopic to f and ze N is a regular value for g. By Lemma
1.5 such a g exists, and deg f is independent of g and z by Corollary 1.3
and Lemma 1.4.

1f M and N are not oriented, perhaps even nonorientable, a mod 2 degree
of f:M — N is defined as follows. Again let ze N be a regular value for a
C® map ¢g:M — N homotopic to f. Let deg,(g,2) denote the reduction
modulo 2 of the number of points in g~ *(z). Then deg,(g,z) is independent
of g and z. This follows from the mod 2 analogue of Lemma 1.2, the proof
of which reduces to the fact that a compact 1-manifold has an even number
of boundary points. We then define deg,(f) = deg,(g,2).

The results proved up to now apply to degrees of continuous maps to
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yield:

1.6. Theorem. Let M, N be compact n-manifolds without boundary, with
N connected.

(a) Homotopic maps M — N have the same degree if M, N are oriented.
and the same mod 2 degree otherwise.

(b) Let M = W, W compact. Suppose a map f:M — N extends to W.
Then degf = 0 if W and N are orientable, and deg, f = 0 otherwise.

The degree is a powerful tool in studying maps. For example, if deg f(or
deg, f) is nonzero then f must be surjective. For if f is not surjective, it can
be approximated by a homotopic C* map g which is not surjective. If
ye N — g(M), clearly deg(g,y) = 0.

Here is an application of degree theory to complex analysis; it has the
fundamental theorem of algebra as a corollary. Let p(z). ¢(z) be complex
polynomials. The rational function p(z)/g(2) extends to a C* map f:5* — §°.
where S? denotes the Riemann sphere (the compactification of the complex
field C by oo). Then: f is either constant or surjective.

The key to the proof is the observation that z € S? is a regular point if
and only if the complex derivative f(x) # 0, and in this case the real deriva-
tive Df,:R? - R? has positive determinant.

If f is not constant then f' is not identically 0; hence there is a regular
point z. By the inverse function theorem there is an open set U < §? about
z, containing only regular points, such that f(U) is open. Let w e f(L) be
a regular value. Then f~!(w) is nonempty. Since every point in f~(w) has
positive type, it follows that deg( f,w) = deg f > 0. Therefore f is surjective.

A famous application of degree theory is the so-called “hairy ball
theorem”: every vector field on S*" is zero somewhere; more picturesquely.
a hairy ball cannot be combed. To prove this, suppose that ¢ is a vector
field on $* which is nowhere zero. A homotopy of $* from the identity to
the antipodal map is obtained by moving each x € $* to — x along the great
semicircle in the direction o(x). The existence of such a homotopy implies
that the antipodal map has degree + 1 and so preserves orientation; therefore
k is odd.

The question of zeros of a vector field, or more generally, of a section
of a vector bundle, is approached more systematically in Section 5.2 with
the theory of Euler numbers.

The following lemma will be used in the extension Theorem 1.8.

1.7. Lemma. Let W be an oriented (n + 1}-manifold and K = W a neat
arc. Let V < W be a neighborhood of ¢K and f:V — N a map to an oriented
n-manifold N, ON = &. Let y € N be a regular value of f and assume ¢K =
£ =Y. Finally, assume that f has opposite degrees at the two endpoints of K.
Then there is a neighborhood Wy, < W of K and a map g:W, — N such that:

@ g=fonW,nV,

{(b) y is a regular value of g,

© g7'(») = K.
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Proof. We may take (N,y) = (R",0). Let the endpoints of K be x,, x;.
Since 0 is a regular value each x; has a neighborhood U; < V such that f
restricts to an embedding f;:(U,x;) = (R",0).

It suffices to prove the lemma for any map agreeing with f near K.
Therefore we can assume that each f; is a diffeomorphism. Then f; ! can
be regarded as a tubular neighborhood of x; in W; and together, f5! and
f1! form a tubular neighborhood of 8K in aW.

By Theorem 4.6.4 this tubular neighborhood extends to a tubular neigh-
borhood E of K in V. We may assume W = E. Since K is an ar¢, E is a
trivial vector bundle over K, and we may assume that

(W,K)y=(I x R"I x 0)
and (N, y) = (R",0). With this notation,
V=0xR'ul x R

and fi:i x R" = R* (i = 0, 1) is given by a linear isomorphism L, € GL(n).
The degree assumptions and the convention for orienting d( x R") mean
that L, and L, have determinants of the same sign. Therefore Ly and L,
can be joined by a path L, in GL(n), 0 < t < 1. The required extension of
[ is the map
I xR - R",
(t,) = L{y).
QED

We can now prove a basic extension theorem:

1.8. Theorem. Let W be a connected oriented compact d-manifold of
dimension n + 1. Let f:dW — $" be a continuous map. Then f extends to
amap W — S* if and only if deg f = Q.

Proof. We already know that the degree vanishes if f extends. Suppose
then that deg f = 0.

By homotopy extension it suffices to extend some map homotopic to
/- Since f is homotopic to a C* map (Theorem 1.5) we may assume f is
C®. Let ye S be a regular value of f.

Since deg(f,y) = 0, f~!(y) has equal numbers of points of positive and
negative type. We can find a set of disjoint embedded arcs K, ..., K, = W,
each going from a positive to a negative point of f~!(y), with K =
K, v+ u K, a neat submanifold and 0K = f~!(y). When dim W > 3
this follows from density of embeddings I - W. When dim W = 2 we can
find immersed arcs X, . .., K,, (which may across each other). A new family
of K3, ..., K}, without crossings can be obtained by the following device.
Assume the crossings are in general position. At each crossing make the
change suggested by Figure 5-1. The arrows indicate the orientation of the
arcs from positive to negative endpoint. There results a compact neat 1-
dimensional submanifold K’ of W with boundary f ~!(y). Each component
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+ -
Before After
Figure 5-1. Eliminating crossings.

of K’ is an arc or a circle; each arc has endpoints of opposite types (see the
arrows in Figure 5-1). Thus we obtain disjoint embedded arcs.

Now apply Lemma 1.7 to each arc K, with N = S™. We obtain an open
neighborhood W, « W of UK, and a map g: W, — 5° which agrees with
f on 8W,, having y as a regular value, and with g~ () = UK.

Let U < W, be a smaller open neighborhood of UK, whose closure is in
W,. Then Bd U « W, — UK;. The maps g and f fit together to form a
continuous map

RX=BdUuU@GW-U)— 5" — y.

Note that X is a closed subset of W — U. Since $* — y = R", Tietze’s
extension theorem permits an extensionof htoamap H:W — U - " — y.
An extension of f to W is the mapequalto Hon W — U andtogon W,.

QED
An analogue of Theorem 1.8 for nonorientable manifolds is:

1.9. Theorem. Let W be a connected compact nonorientable &-manifold
of dimension n + 1 2 2. A map f:6W — S" extends to W if and only if
deg, f = 0.

Proof. If f extends, deg, f = 0 by Theorem 1.6.

Suppose deg, f = 0. We may assume f is C™. Consider first the case
dim W 2 3.

Let y € " be a regular value; then f~'(y) has even cardinality. Hence
f~%y) = 0K where K < W is the union of disjoint neatly embedded arcs.

Let K, be one of these arcs with endpoints i, v € f~'(y). Although TW
is not an orientable vector bundle, TW|K; is. Give TW|K; an arbitrary
orientation; this induces orientations to T,0W and T, ¢W. It then makes
sense to ask whether u and v are of opposite type for the map f. If they are
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not, we change K to a new arc K; by adding to it an orientation reversing
loop L in W (see Figure 5-2).

Because dim W > 3 we can make K; embedded and disjoint from the
other arcs K. Give TW|K; an orientation and give T,0W and T,0W the
induced orientations. With respect to these orientations, ¥ and v are now
of opposite type; otherwise L would preserve orientation.

v v
Before After
Figure 5-2.

We can thus assume that TxW is oriented so that with respect to the
induced orientation of T(@W)|f~!(y), the endpoints of each arc are of
opposite type. The rest of the proof for dim W > 3 is now exactly like that
for the oriented case.

Now let dim W = 2.Let y € S' be a regular value for f. After a homotopy,
we may assume that there are disjoint open intervals I,,..., I, c dW with
the following properties:

(a) each I, contains exactly one point x; of £~ '(y);

(b) f maps I, diffeomorphically onto S* — (—y);

(© f@W ~ UL) = —y.

We say that f is in standard form in this case.

Give W any orientation, so that the integer deg f is now defined. Note
that deg f is even. Each I; contributes +1 to deg f; hence v is even.

We proceed by induction on v = v(f); if v = 0 then f is constant and
extends to the constant map of W. Suppose then that v > 2.

Let K = W be a neat arc joining x, to x,; give Ty W an orientation .
As before, choose K so that x, and x, are of opposite type for f with respect
to the orientations of T, 0W, i = |, 2 induced by w.

Let N = Wbeatubular neighborhood of K suchthat N n oW =1, u I,.

Topologically N is a rectangle whose boundary éN is a circle consisting
Of fOUr arcs I‘, Jll Iz, Jz.
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We change f to a new map g:@W — S' thus: g = fon éW — (I, U I,),
whileg(I, U I;) = —y. Observe that g is in standard form and W(g) = w(f) — 2.
We assume inductively that g extends to a map G: W — S'.

Note that deg(G|dN) = 0, by Theorem 1.6(b) since G extends over N.
Since G|I; U I, is constant, this means that deg G|J, + deg G/J, = 0,
when J, and J, are given orientations induced from an orientation of éN.

Define a new map h:0N — §' equaltoGonJ, U J,andto fon I, U I,.
Because of the way the arc K was chosen, deg f}I, + deg f|I, = 0. It
follows that deg & = 0. By Theorem 1.8 (adapted to N) there is an extension
of h to a map H:N — §'. The required extension of f is the map W — S’
which equals Hon N and Gon W — N.

QED

We can now classify maps of all compact n-manifolds into S™. Let =
denote the relation of homotopy.

1.10. Theorem. Let M be a compact connected n-manifold, n > 1. Let
f,9:M — S be continuous maps.

(@) If M isoriented and OM = , then f ~ gifandonly ifdeg f = deg g;
and there are maps of every degree me 7.

(b) If M is nonorientable and M = (&, then f ~ g if and only if deg, f =
deg, g; and there are maps of every degree me Z .

(c) If oM # P then f ~ g.

Proof. We first show that there are maps of every degree. Let M be as
in (a). The constant map M — S* has degree 0. Givenme Z, let ¢, U; - ®*,
i =1,...,m be disjoint surjective charts which preserve orientation. Let
s:R" — §" — P be the inverse of stereographic projection from the north
pole P so that s preserves orientation. Define

M-85,

f= S on U,
" |constantmapP on M - uU,.

Then f is continuous and has degree m. If the ¢; were orientation reversing
S would have degree —m. Taking m = 1 and ignoring orientations proves
the second part of (b).

The first parts of (a) and (b) are consequences of Theorems 1.8 and 1.9
with W = M x I. To prove {c) let M’ be the double of M, two copies of
M glued along M, and p:M’ — M the map identifying the two copies,
and i:M — M’ the embedding of one copy. It is easy to see that fp: M’ — $*
has degree 0 if M is orientable, and otherwise deg,(fp) = 0. Therefore fp
is homotopic to a constant map ¢ (which also has degree 0). Since fpi = f,
it follows that f = c. Similarlyg ~ ¢,s0 f ~ g.

QED
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Exercises

1. A complex polynomial of degree n defines a map of the Riemann sphere to itself
of degree n. What is the degree of the map defined by a rational function p(z)/g(2)?

2. (a) Let M, N, P be compact connected oriented n-manifolds without boundaries

and M & N 4 P continuous maps. Then deg(fg) = (deg g)(deg f). The same holds
mod 2 if M, N, P are not oriented.

(b) The degree of a homeomorphism or homotopy equivalence is + 1.

*3, Let M, be the category whose objects are compact connected n-manifolds and whose
morphisms are homotopy classes [ /] of maps f:M — N. For an object M let 7 (M)
be the set of homotopy classes M — S". Given{ f]:M — N define[ f]*:2*(N) — z(M),
[/1*[g] = [4f]: This makes n" a contravariant functor from I, to the category of sets.

(a) There is a unique way of lifting this functor to the category of groups so that
(8" = Z with the identity map corresponding to 1 € Z.
(b) Given the group structure of (a), for each M there is an isomorphism

Z if M isorientable, oM = &
™M) x<Z, if M is nonorientable, M = &
0 if oM=#.

But there is no natura! family of such isomorphisms.
4. A continuous map f:S™ — S" such that f(x) = f(—x) has even degree.

*5, Let M, N be compact connected oriented n-manifolds, 0M = .
(a) Suppose n = 2. If there exists a map S" — M of degree one, then M is simply
connected. More generally:
(b) If f:M — N has degree | then the induced homomorphism of fundamentai
groups f,:m,(M) — m,(N) is surjective.

() IT f:M — N has degree k # O then the image of f» is a subgroup whose index
divides [k|.

6. Let M < R**! be a compact n-dimensional submanifold, 8M = (J. For each
xeR**! — M define

oM =5y (y— x|y — x|

Then x and y are in the same component of R"*! — M if and only if 5, > ¢,, and x
is in the unbounded component if and only if o, ~ constant. If M is connected then
x is in the bounded component if and only if deg(s,) = +1.

7. Let M, N c R be compact oriented submanifolds without boundaries, of dimen-
sions m, n respectively. Assume that M and N are disjoint, and m + n = ¢ — 1. The
linking number Lk(M,N) is the degree of the map

Mx N-o§i!

(x,y) = (x = pfix - ¥

Then:

(8) Lk(M,N) = (— 1)~ D0~ Lk(N.M).

(b) If M can be deformed to a point in R? — N, or bounds an oriented compact
submanifold in R — N, then Lk(M,N) = 0.

(c) Let S, S’ be the boundary circles of a cylinder embedded in R® with & twists
Then, with suitable orientations, Lk(S,5") = k.

(d) Let C, and C, = R® be cylinders embedded with k, and &, twists respectively
If {ky| # |k,| there is no diffeomorphism of R® carrying C, onto C,.
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8. Let M c R**! be a compact n-dimensional submanifold without boundary. Two

points x, ye R**! — M are separated by M if and only if Lk({x,y},M) # 0. (See
Exercise 7.)

9. The Hopf invariant of a map f:S* — 52 is defined to be the linking number H( /) =
Lk(g~*(a).,g~ (b)) (see Exercise 7) where g is a C* map homotopic to f and a, b are
distinct regular values of g. The linking number is computed in

R=5—¢ flo+ab
(a) H(f)is a well-defined homotopy invariant of f which vanishes if f is null homo-
topic.
(b) 1£g:S? — S has degree p then H(fg) = pH(f).
{c) 1f h:S? — 52 has degrec q then H(hf) = ¢*H( /).
(d) Let $* < C? be the unit sphere and S? = CP*. The Hopf map

@:5* - §2,
Pzw) = [2w]
has Hopf invariant 1. Hence ¢ is not null homotopic.

10. Let U, ¥ be noncompact oriented n-manifolds without boundaries and h:U — ¥
a proper C* map. The degree of h is defined as usual,

degh=73,deg,h (xeh™'(y))

where y is a regular value.

(a) deg h is independent of y, and if g is a C* map homotopic to k by a proper ho-
motopy U x I — V then deg g = deg h. Thus the degree of any continuous proper
map f:U — V can be defined by choosing h sufficiently close to f.

{b) In particular the degree of a homeomorphism U — V is defined; it is always + 1.
(Compare Exercise 2).

{c} A topological n-manifold without boundary is called topologically orientable if
it has an atlas whose coordinate changes have degree + 1 on each component. A smooth
manifold is orientable if and only if it is topologicaily orientable.

(d) Orientability of a smooth manifold is a topological invariant.

11. The fundamental theorem of algebra can be generalized as follows. Let U < R*be
a nonempty open set and f:U — R* a C' map. Assume: (a) f is proper; (b) outside
some compact set, Det(Df,) > 0. Then f is surjective. In particular the equation f(x) = 0
has a solution.

12. Let f,,.. .. f, be real [or complex] polynomials in n > 2 variables. Write f; =
hy + r, where h, is a homogeneous polynomial of degree d, > 0 and r, has smaller
degree. Assume that x = (0,...,0) is the only solution to hyfx) = +-- = h{x) = 0.
Assume also that Det[dh;/dx;] # 0 at all nonzero x in R* [or C*]. Then the system
of equations f(x) = 0,k = 1,..., n, has a solution in R* [or C*]. [Hint: Exercise 11.]

2. Intersection Numbers and the Euler Characteristic

Let W be an oriented manifold of dimension m + n and N c W a
closed oriented submanifold of dimension n. Let M be a compact oriented
m-manifold. Suppose M = N = .

Let f:M — W be a C* map transverse to N.
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A point x & f ~!(N) has positive or negative type according as the com-
posite linear isomorphism

M, Z W, - W/N, y=f(x)

preserves ot reverses orientation; we write # (f,N) = 1 or — 1, respectively.
The intersection number of (f,N) is the integer

#(f!N) = Z#x(f’N)v

summed over all x € f ~!(N).

2.1. Theorem. If f,g:M — W are homotopic C® maps transverse to N
then #(f,N) = #(g,N).

Proof. The proof is similar to that of Corollary 1.3 and is left to the
reader.

QED

For any continuous map g: M — W we define #(g,N) = #(f,N) where
fis a C* map which is transverse to N and homotopic to g. By Theorem 2.1,
#(g,N) is well defined.

Note that it is not really necessary for N and W to be oriented; all that
is actually used is an orientation of the normal bundle of N.

If M is also a submanifold of W and i:M — W is the inclusion, the
intersection number of (M,N) is the integer #(M,N) = #(i,N). We put
#(M,N) = #(M,N; W) to emphasize W. If both M and N are compact
then #(M,N) = (— 1Y #(N,M) as is easily proved.

Clearly #(f,N) =0 if f is homotopic in W to g:M - W — N. In
particular if M and N are closed submanifolds of R™*" with M compact
and M = ON = (, then #(M,N; R™*") = 0.

It is not generally true that if #(M,N) = 0 then M is deformable into
W — N, Figure 5-3 shows a counterexamplie of two circles on a surface S
of genus 2. If M, N, and W are allowed to have boundaries, #(f,N) and
#(M,N) are defined in the same way whenever M is a neat submanifold
and f(0M) <« 8W — ON. In this case the C* map g:M — W must be
homotopic

Figure 5-3. 4 (M,N} = 0, but M is not deformable into § — N.
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to f by a homotopy that takes M into 3W — N at cach stage. Of course
# (f,N) is only an invariant of this kind of homotopy.

If M, N or W is not oriented, mod 2 intersection numbers # ,(f,N)
and # ,(M,N) are defined in a similar way.

Let ¢ = (p,E,M) be an n-dimensional oriented vector bundle over M;
as usual M is identified with the zero section. Assume M is connected,
oriented, compact, n-dimensional and without boundary. The Euler number
of ¢ is defined to be the integer

X)) = #(MM) = #(MM;E)

2.2. Theorem. If { {as above) has a section f that is nowhere zero then
X@) =0.

Proof. f is homotopic to the zero section by the linear homotopy
(x,t) = tf(x). Hence if i:M — E is the zero section,

X(@) = #(iM) = #(f.M) = 0.
QED

To compute X(&) approximate the zero section Z:M — E by a C*
map h transverse to Z(M). If the approximation is close enough then
ph:M — M is a diffcomorphism and we obtain a C™ section g transverse to
the zero section by setting ¢ = h(ph)':thus fg = 1,,.

Let x,,. .., x, € M be the zeros of g. Let ¢,;:¢|U; - U; x R* be local
trivializations of ¢ over open sets U; « M such that x, € U;. The composition

F‘:U"'!’EIU‘-. U.- X R.“’R.
has 0 € R” as a regular value and x; € F; '(0). Then

degl‘ P" = #I‘(g’M)’
called the index of g at x;. Hence

X() = Y deg,, F.

If ¢ = TM with the same orientation as M then X({) is called the Euler
characteristic of M, denoted by y(M). Later we shall define x(M) for non-
orientable and d-manifoids.

A section of TM is called a vector field on M.

To compute y(M) one can start with a C* vector field f:M — TM trans-
verse to the zero section. At each zero x; of f let ¢;:U; - R" be a chart
(preserving orientation). Then To, ° f o ¢! is a C* vector field on ¢, (U;)
and thus defines a C* map g,:@(U;) = R" with a regular value at 0. Denote
by d, the degree of g, at @,(x); then (M) =Y d,. The integer d; is the index
at x; of the vector field f; it is independent the choice of (p,,U;) and the
orientation of M. We denote d, by Ind,, f.
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As an example we compute x(S"). Let P be the north poleand Q = — P
the south pole. Let

aS"-P-R"
" -Q0-R
be the stereographic projections. The coordinate change
1w l=0"RR~-0-R" -0
is given by x — x/|x|%.
Let f be the vector ficld on S" — P whose representation via ¢ is the

identity vector field on R". Then f{x) — 0 as x = P and we define f(P) = 0.
Thus f:S" — TS" has zeroes only at Q and P.

In t coordinates f corresponds to the vector field x — —x on §* — Q.
Thus fis C*.

The identity map of R" has degree 1 at 0, the antipodal map has degree
{(—1)". Therefore

Indpf = I, Indqf = ("' l)ll.
Thus we have proved:
2.3. Theorem.

C 2 if niseven,
"(S")““'(*l)'{o it nisodd.

2.4. Corollary. Every vector field on §** vanishes somewhere.
Some other computations are given by:

2.5. Theorem. (a) Let M and N be compact oriented manifolds without
boundaries. Then y(M x N) = y(M)x(N).

(b) Let & be an n-dimensional oriented vector bundle over a compact
oriented n-manifold M" without boundary. Then X (&) = 0 if n is odd.

(©) M) =0 if M is an odd dimensional compact oriented manifold
without boundary.

Proof. (a) is proved by choosing vector fields f, g on M, N and using
fxgMx N-=>TM x TN to compute (M x N). The details are left
as an exercise.

(b) is proved by using sections f and — f to compute X() in two ways.
One finds that

Ind, f = (—1)" Ind,(—f), n = dim M.
Hence if n is odd, X(§) = — X{(£). And (c¢) follows from (b).

QED

Now we define y(M) for a nonorientable compact manifold M, éM = .
Let f:M — TM be a section transverse to M. For each xe M there is
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a canonical identification
(TM)./M, = M,;

see Theorem 4.2.1. Therefore T/ induces an automorphism &, via the
composition
&,:M, Z(TM), = (TM)/M, =~ M,.
Define
Ind, f = Det @,/[Det &,

1AM) =Y Ind, f, xef'(M).

This definition of course makes sense if M is oriented, and in that case
it is easy to check that it is the same as y(M). In particular, it is independent
of f and of the orientation in this case.

For M nonorientable, let p: 5 —+ M be the oriented double covering.
Given f as above let f:8 — TH be the unique section covering f. Let
% e f~1(M); put p(X) = x. It is clear that

Ind, /" = Ind, f.
It follows that

M) = 22,(M),

(8 = x,(M).

Thus x (M) is independent of f.

Parts (a) and (c) of Theorem 2.5 hold for M nonorientable.

The Euler characteristic (M) of a compact é-manifold M is defined
as follows. Let f:M — TM be a section which is transverse to the zero
section M, and such that f points outward at points of ¢M. Such a section
always exists; for example, an outward section over ¢M can be obtained
from a collar, extended over M by a partition of unity, and then be made
transverse to the zero section by approximation. Moreover any two such

outward vector fields are connected by a homotopy of outward vector
fields. We define

M) =y AM)=Y,Ind, f, xef (M)

To show that x,(M) is independent of f, let M — M be the oriented
double covering of M and let f be the vector field on M which covers f.
Then f is outward, and local computations show that y{M) = 2y /(M.
It therefore suffices to show that x(M) is independent of f when M is
oriented; and this proof is similar to that of Theorem 1.2.

The Euler characteristic y(M) is thus defined for any compact manifold
M. Note that Theorem 2.5 (a) is true whenever dM or ¢N is empty.

The proof of the following lemma is left to the reader (a similar argument
was given in the proof of Theorem 1.4).

or

2.6. Lemma. Let M be a connected manifold, U « M anopenset F < M
a finite set. Then there is a diffeomorphism of M carrying F into U.
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Using the lemma we prove:

2.7. Theorem. Let M be a compact connected 0-manifold. Then M has
a nonvanishing vector field.

Proof. Let M’ be the double of M, containing M as a submanifold.
Then M’.has a vector field f with a finite set F of zeros. Let o:M' - M’
be a diffeomorphism taking F into M’ — M. Then To- fep™!|M is a
vector field on M without zeros!

QED

The following lemma relates the index of a zero of a vector field to the
degree of a map into a sphere.

2.8. Lemma. Let D = R" be an n-disk with center x. Let U = R" be
an open set containing D and f:U — R" a C® map, considered as a vector
field on U. Suppose 0 is a regular value and x = D n f~1(0). Define a map

g:éD —» "1,

y = SISO
Then deg g = Ind, f.

Proof. We may suppose for simplicity that x = 0. Define f;: U — R" by:

_ (G, 12t>0
) = {Dfo(y), (= 0;

define g,:dD — §""! like g, using f; instead of f. Since g, is homotopic
to g, = g, it follows that deg g, = deg g.
We claim Ind, f, = Ind, f. This is because the map

&:DxI->R" x I
(»0) = ()

is C* (see proof of Theorem 4.4.3) and T'® thus induces a homotopy between
Dfo(0) and Df;(0).

It remains to prove Ind, fy = deg go. Now f; is linear, and hence is
homotopic through linear maps to an element of O(n). Thus it suffices to
prove the lemma for the special case where f is orthogonal. But then g = f
and in this case the lemma is easy to verify: Ind, f = +1 = deg gaccording
as f preserves or reverses orientation.

QED

The degree of g:0D — $*~! in Lemma 2.8 is defined whenever x is
an isolated zero of f:U — R", even if f is merely continuous. Moreover
deg g is independent of D, by Theorem 1.6(b). This permits us to extend
significantly the definition of Ind, f. Let U = R" be an open set, f:U - R"
a vector field on U and x € U an isolated zero of f. The index of f at x is
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Ind, f = deg g, where for some n-disk D — U with center x = D~ f~%(0)
g:0D —» "1,
oy = SISO

If 0 is a regular value of f this agrees with the older definition. Note that
deg g can take any integer value (for n > 2).

29. Lemma, Let W < R* be a connected compact n-dimensional sub-
manifold and f: W — R" a C* map. Assume f ~ (0} is a finite subset of W — ¢W.
If

Lhnd f=0 (xef7Y0)
there is a map g:W — R* — O which equals f on dW; and concersely.

. Proof. Let f~(0) = {x;,...,%}. Let D,...,D, be small disjoint
n-disks in Int W, centered at x,, .. ., x; respectively.

Let Wy = W —u Int D,. Then 8W, = dW |} @D;and f(W#;) « R* — 0.
Notice that deg(f|dW,) = 0 by 1.8. Define -
g:Wo—» 571,
y= SO}
According to the preceding lemma,

i dcg(gIaD‘) = 0.
i=1

It follows that deg(g|dW) = 0; by Theorem 1.8 there is a map W — §*!
extending g|oW. The composition

WSS ISR -0

is homotopic to f]0W. Since g extends over W, so does f|¢W. The converse
part of Theorem 2.9 is left to the reader.

QED
We can now prove the converse of Theorem 2.2.

2.10. Theorem. Let M be a compact connected oriented n-manifold with-
out boundary and £ an oriented n-plane bundle over M. If X() = O then { has
a nonvanishing section.

Proof. Let f:M — £ be a C section transverse to M. By Lemma 2.6
we may assume that the finite set f~'(M) lies in the domain of the chart
o:U ~ R" Let y: £y » U x R* be a bundle chart. The map

Vofeo '"R" TR  =R"x R"

is a vector field on R" transverse to the zero section, or what is the same
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thing, a map g:R" — R" transverse to 0. The assumption X(¢) = 0 implies
that

Y,Ind,g=0 (xeg '0)).

Let B = R”" be an n-disk containing g~ !(0) in its interior. By Theorem
29 there is a map h:R* —» R" — 0 which equals g on R* — Int B. Define
fl :M - év

£ = fix) if xeM-—e¢ '(IntB)
Wi e o) if xeB.
Then f; is nonvanishing,

QED

We use all the preceding results to prove a classical theorem of Whitney
{3]. We follow Whitney’s proof.

2.11. Theorem. Let M = R*" be a compact oriented n-dimensional sub-
manifold without boundary. Then M has a nonvanishing normal vector field.

Proof. We may assume M connected. Let v be the normal bundle of
M. By Theorem 2.10 it suffices to prove that X(v) = 0. We identify a neigh-
borhood W of the zero section of v with a neighborhood of M in R?*, Then

X&) = #(MM; W) = #(MM; R™) = 0.
QED

If M in Theorem 2.11 is not assumed orientable, the conclusion may be
false, as Whitney showed for P? — R®.

Exercises

1. Consider complex projective m-space CP™ as a submanifold of CP" in the natural
way. Then (with natural orientations)

#CprCPP ™M= 1.
A similar result holds mod 2 for real projective spaces.

2. #(fN; W) = 0if /:M — W extends to an oriented compact manifold bounded by
M, or if N bounds a closed oriented submanifold of W, or if f or N is null homotopic
in W. Similarly for # ,(f,N).

3. Let M be a compact oriented manifold without boundary. Let
M, = {(xx)e M x M}

be the diagonal submanifold.

(a) (M) = #(M,M,)

(b} x(M) = 0 if and only if there is a map f:M — M without fixed point, which is
homotopic to the identity. This is true even if M is nonorientable.
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4. Let M, N, W be oriented manifolds without boundarics, dim M + dim N = dim W¥.
The intersection number of maps f:M — W, g:N — W is defined as

#Ug) = #(f x gW, W x W)
This integer depends only on the homotopy classes of f and g. If g is an embedding then
#(/4) = #(f9(N}).

#(g)) = (—1)pmNs=rg(fg).
For unoriented manifolds a mod 2 intersection number is defined similarly.

5. Let & = (p..EM,), i = 0, 1, be oricnted n-plane bundles over compact oriented n-
manifolds without boundary. Put

In general

So x & = (po X pr.Eg x E; .My x M)
X(§o x §1) = X()X(Z))

6. Let £ be an n-plane bundle over a connected k-manifold M.
(a) Ifk < n, £ has a nonvanishing section.
(b) Ifk = nand x e M, { has a section which vanishes only at x.
(c) ITk = n,and 3M # & or M is not compact, then ¢ has a nonvanishing section.

7. (a) Suppose a compact n-manifold can be expressed as A L B where A, Bare compact
n-dimensional submanifoldsand A n Bisan(» — 1) — dimensional submanifold. Then
x(A n B}y = x(A) + x(B) — ¥(A n B).

(b} x(9A) is even. [Hint: take B = A.]

8. The Euler characteristic of an (orientable) surface of genus ¢ is 2 — 2g. [Use
Exercise 7.]

Then

9. Let M be a possibly nonorientable compact manifold without boundary, and
G:M — M x M a C™ map. Then the integer L(G) = #(GM,; M x M}is well-defined
using arbitrary local orientations of M at points x where G{x) € M,, and the correspond-
ing local orientationsof M x M and M, at{x,x). Moreover L{G}is a homotopy invariant
and so is defined for continuous maps G. If g:M — M is any continuous map, the
Lefschetz number of g is the integer Lef(g) = L(G) where G{(x) = (x,g{x)). Leftg) is a
homotopy invariant of g. The Lefschetz number of 1, is y(M). If Lef(g) # O then ¢
has a fixed point.

10. Let x € M be an isolated fixed point of a continuous mapg:M — M.Leto:U — B*
be a chart at x; put @¢{x) = y. The vector field f(z) = @ge~'(:) — = is defined on a
neighborhood of y in R” and has y for an isolated zero. Define

Lef(g) = Ind, f.
This is independent of (p,U). If g is C* then
Lef(g) = Det(T.g — 1), I = identity map of M,.
If the set Fix (g} of fixed points of g is finite, then (see Exercise 9)
Lef(g) = 3, Lef{g)  (xeFix(g)).

11. Every continuous map P?* - P?" has a fixed point. [Consider maps of $2* which
commute with the antipodal map. See Exercises 9, 10.]

12. Lemma 2.9 is true even if the map f is merely continuous.
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13. (a) There is a continuous map f:§? — S2 of degree 2, that has exactly two periodic
points. (A point x is periodic if f"(x} = x for some n > 0.)

**(b) If £:5% — $% is C' and has degree d such that |[d] > 1, then f has infinitely
many periodic points. (Shub-Sullivan [1]).
*2%(¢) Identify the 2-torus T2 with the coset space R?/Z* and let f: 7% — T2 be the
diffeomorphism induced from the linear operator on R* whose matrix is [} }]. Shub
and Sullivan ask: if g: 72 — T2 is a continuous map homotopic to f, must g have
infinitely many periodic points?
14. Let M, N be compact oriented n-manifolds without boundary; assume N is con-

nected. Then the degree of a map f: M — N equals the intersection number of the graph
of fwithM x yin M x N, forany ye N.

*15, Using intersection numbers and some elementary homotopy theory one can prove
that every diffeomorphism of the complex projective plane CP? preserves orientation.
Using the fact that =,(CP?) is infinite cyclic, generated by the natural inclusion i:§? =
CP! c CP?, one sees that if h:CP* = CP? then h,[i] = +[i] in ny(CP?). Therefore

#(hihi) = #(ii) = 1
(see Exercise 4). On the other hand it is easy to see that for any maps
f.g:8% - CP?,

#(hf hg) = (deg W[ #(f.9)]
Therefore deg h = 1.

16. Theorem 2.11 generalizes as follows. Let M" = N?" be a compact submanifold.
Suppose M" and N?" are orientable and M" > 0 in N*. Then M" has a nonvanishing
normal vector field (for any Riemannian metric on N2%).

17. What is the degree of the map CP" — CP" defined by
[2or-- s 2] = [Woy .- -5 W]
where w, = (31 Ap2,), if p is an integer and [4,,] € GLin,C)?
18. What is the Euler number of the normal bundle of CP" in CP2*?

19, Let & —» S® be an orthogonal oriented n-plane bundle.
{a) ¢ corresponds to an element o € 7, . ((SO(n}). (Compare Exercise 8, Section 4.3}
(b) X(&) is the image of « in 7, {(S"~!) = Z by the homomorphism

foi 7 (SOM)) — my_ 4 (ST

induced by the map f:SO(n) — "~ !, where f is defined by evaluation on the north
pole Pe "1,

*20. Verify the statement of Heegard quoted at the beginning of Chapter 4.

21. Every vector field transverse to the boundary of the n-disk must have a zero in the
interior.

22. Let p be a singularity of a vector field f on an open set in R". If Df{p)
has k eigenvalues with negative real part and n-k with positive real part, then
Ind, f = (1)L

3. Historical Remarks

The origin d_g;gy_'_c‘notion of the degree is Kronecker's “characteristic of
of a system of f%ions" defined in 1869. The type of problem Kronecker
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studied was the following (in modern terminology). Let F,, ..., F, be C!
maps from R” to R. Suppose 0 € R is a regular value for each of them, and
that each submanifold M, = F !(— a0,0] is compact. If there is no common
zero of Fy,...,F,on dM; for i = 1,...,n, how many common zeros are’
there for the nmaps F;:M; » R, j=0,...,i—1,i+ 1,...,n? Kronecker
gave an integral formula which is equivalent to the degree of the composite
map
MIR~-03 5!

where G, = (F,,..., F,,...,F,) and x{x) = x/|x|. He proved that this
degree is independent of i and equals the algebraic number of zeros of G;
in M;. He also showed that the total curvature of a compact surface M c R?
is 2n times the degree of the Gauss map M? — S2, Later Walter von Dyck
showed that the degree of the Gauss map equals the Euler characteristic of
M, thus giving the first proof of what is now wrongly called the Gauss~
Bonnet theorem.

An influential and still interesting article by Hadamard [1] in 1910 gave
a more geometrical presentation of Kronecker’s ideas. Kronecker’s work is
discussed in modern terms in the books by Lefschetz [1], and Alexandroff
and Hopf [1].

The topological idea of the degree of a map is due to Brouwer [1].
Brouwer made fundamental contributions to the topology of manifolds (see
Lefschetz [1] for an extensive bibliography). In his later years, however, he
developed the intuitionistic view of mathematics and repudiated some of
his earlier results.

Our treatment of the degree closely follows that of Pontryagin {1].



Chapter 6
Morse Theory

La topologie est précisément la discipline mathématique qui permet la passage
du local au global.

—R. Thom, Stabilité Structurelle
et Morphogenése, 1972

Up to this point we have obtained results of a very general nature:
all n-manifolds embed in R*"*!, all maps can be approximated by C®
maps, etc. These are useful tools but they give no hint as to how to analyze
a particular manifold, or class of manifolds. As yet we are unable even to
classify compact 2-manifolds.

In this chapter we analyze the level sets £ ~(y) of a function /M - R
having only the simplest possible critical points. Such a function is called
a “Morse function.” The decomposition of M into these level sets contains
an amazing amount of information about the topology of M. For example
we will show in Section 6.4 how a CW-complex, homotopy equivalent
to M, can be obtained from any Morse function. In Section 6.3 the Morse
inequalities are proved. These relate the critical points of f to the homology
groups of M; in particular they compute the Euler characteristic of M
from any Morse function on M.

Morse functions are shown in Section 6.1 to be open and dense in Cy(M,R),
2 € r € oo. At each critical point a special kind of chart is constructed,
making a Morse function look like a nondegenerate quadratic form. The
index of this form is called the index of the critical point. These charts
give a complete local analysis of the function.

In Section 6.2, which starts out with some facts about differential
equations, the sets f ~'[a,b] which contain no critical point are investigated.
Under mild restrictions it is shown that f ~'{ab] ~ f~'(a) x [ab].

Section 6.3 contains the heart of Morse theory. Suppose f~![a,b]
contains exactly one critical point, of index k. It turns out that up to homotopy
equivalence, f~![a,b] is obtained from f~'(a) by attaching a k-cell. This
leads directly to the Morse inequalities, and to the construction of a
CW-complex homotopy equivalent to M which has one k-cell for each
critical point of index k.

We have presented only the very beginning of Morse theory. For the
subject’s important applications to such fields as differential geometry
and the calculus of variations the reader should consult M. Morse [1],
Milnor [3], Palais [ 1], or Smale [3].
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1. Morse Functions

Let M be a manifold of dimension n. The cotangent bundle T*M is
defined like the tangent bundle TM using the dual vector space (R*)* =
L(R",R) instead of R”. More preciscly, as a set T*M = ( ), »(M?) where
M} = LIM_R). If (p,U) is a chart on M, a natural chart on T*M is the map

T*U - g{U) x (R")*
which sends A € M? to (p(x),Ap; !). The projection map p: T* — M sends
M?to x.

Let /:M - Rbea C*! map, 1 < r < . For each x € M the linear
map T, f: M, - R belongs to M*. We write

T.f = Df.e M.
Then the map
Df:M — T*M,
xr+ Df, = Df(x)

is a ¢ section of T*M. The local representation of Df, in terms of a chart
on M and the corresponding natural chart on T*M, is a map from an open
set in R" to (R")*, of the form x 1~ Dg(x) where g is the local representation
of f. Thus Df generalizes the usual differential of functions on R".

A critical point x of f is a zero of Df, that is, Df(x) is the zero of the vector
space M?¥. Thus the set of critical points of f is the counter-image of the
submanifold Z* < T*M of zeroes. Note that Z* ~ M and the codimension
of Z*isn = dim M.

A critical point x of f is nondegenerate if Df is transverse to Z* at x.
If all critical points of f are nondegenerate f is called a Morse function.
In this case the set of critical points is a closed discrete subset of M.

The idea behind the definition of nondegenerate critical point is this.
By means of local coordinates, assume M = R” and xe R* is a critical
point for f:R* — R. It is easy to see that x is nondegenerate precisely when
x is a regular point for Df:R* — (R")*. Therefore as y varies in a small
neighborhood of x, Df, takes on every value in a neighborhood of 0 in
(R™)* exactly once. Moreover as y moves away from x with nonzero velocity,
Df, moves away from 0 with nonzero velocity.

Let U = R” be open and let g:U — R be 2 C? map. It is easy to see
that a critical point p € U is nondegenerate if and only if the linear map

D(Dg)(p):R" — (RY)*
is bijective. Identify L(R"(R")*) with the space of bilinear maps R* x R* » R;
we see that this is equivalent to the condition that the symmetric bilinear

map D?g(p):R" x R* — R be nondegenerate. In terms of coordinates this
means that the n x n Hessian matrix

&g
[61:‘ 0x; (p)]
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has rank a. This provides a criterion in local coordinates for a critical point
of a map M — R to be nondegenerate.

Let p € U be a critical point of g: U — R. The Hessian of g at the critical
point p is the quadratic form H,f associated to the bilinear form D?g(p);
thus

H,f(y) = D’g(p)(y,y)
Z ax a 9 (Pyiy;-

This form is invariant under diffeomorphisms in the following sense. Let
V < R"be open and suppose h: V — U isa C? diffeomorphism. Let g = h~*(p)
so that g is a critical point of gh:V — R. Then the diagram commutes,

Hy(gh

R 4(gh) SR
Dh(g) flg

Rll

as a computation shows.

Now let f:M ~» R be C2. For each critical point x of f we define the
Hessian quadratic form H_f:M, - R to be the composition

H f:M, 25 pr )R

where ¢ is any chart at x. The invariance property of Hessians of functions
on R* implies that H, f is well-defined independently of ¢. Note that x
is a nondegenerate critical point if and only if H,f is a nondegenerate
quadratic form. Thus we obtain an alternate definition: a critical point of
a C? real valued function is nondegenerate if and only if the associated
Hessian quadratic form is nondegenerate.

Now let Q be a nondegenerate quadratic form on a vector space E.
We say Q is negative definite on a subspace F < E if Q(x) < 0 whenever
x € F is nonzero. The largest possible dimension of a subspace on which
Q is negative definite is the index of Q, denoted by Ind Q. If A = [q;;] is
a symmetric n X n matrix expressing Q(x) as Y a,;x;x; for some choice of
linear coordinates on E, then the index of Q equals the number of negative
eigenvalues of A, counting multiplicities.

Let pe M be a nondegenerate critical point of f:M — R. The index
of p is the index of the Hessian of f at p, denoted by Ind(p) or Ind(p).

This number gives us valuable information about the local behavior

of f near x. Suppose that M = R" and p = 0. The second-order Taylor
expansion of f at 0 looks like

f(x) = fl0) + }Hof(x) + R(»)
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where R(x)/|x|* = 0 as x — 0. Thus f is approximately a constant plus
half the Hessian at 0. Let E_ @® E, be a direct sum decomposition of
R* so that H, f is negative definite on E_ and positive definite on E,, and

dmE_. =k=IndH,f

dmE, =n—k
Then if x € R* and t € R — 0 are sufficiently small, f(rx)'t is a decreasing
function of ¢t for x € E_ and an increasing function of ¢ for xe E,.

It follows that for a Morse function f:M — R, a critical point p is a

local minimum if and only if Ind{p) = 0, and a local maximum if and only if
Ind(p) = dim M.

The following result of Marston Morse is a sharper form of this relation
between f and its Hessian at a nondegenerate critical point p. It states that
S has a local representation at p which equals f(p) + 1H,f.

1.1. Morse’s Lemma. Let pe M be a nondegenerate critical point of

indexk ofa C**map f:M — R, 1 € r € w. Then there is a C chart (¢.U)
at p such that

& n
f‘P-l(ul"”’un):f(p)— Zu'2+ 2 uiz

i=1 i=k+1
The proof is based on the following parametric form of the diagonaliza-
tion of symmetric matrices. Let ‘Q denote the transpose of the matrix Q.

Lemma. Let A = diag{a,,...,a,} be a diagonal n x n matrix with
diagonal entries +1. Then there exists neighborhood N of A in the vector
space of symmetric n X n matrices, and a C* map

P:N - GL(nR)
such that P(4) = [ (the identity matrix), and if P(B) = Q then 'QBQ = A.

Proof of Lemma. Let B = [b,;] be a symmetric matrix so near to A that
b, is nonzero and has the same sign as a,. Consider the linear coordinate
change in R": x = Ty where

X, =[J’1 “‘E':'f}’z"" —gl_' '-]/\Ab_n_‘
X =W for k=2...,n
One verifies that ‘TBT has the form
'al 0 --- 0]
0




If B is near enough to A then the symmetric (n - 1)} x (n — 1) matrix
B, will be as close as desired to the diagonal matrix 4, = diag{a,,...,a,};
in particular it will be invertible. Note that T and B, are C” functions of B.
By induction on n we assume there exists a matrix @, = P,(B,)e GL(n — 1)
depending analytically on B, such that ‘Q,B,Q = A,. Define P(B) = Q by
Q = TS where

1 0 --- 0]
0

S= ’ Q1 »
|.0 o

then 'QBQ = A.
QED

Proof of Morse's Lemma. We may assume M is a convex open set in
R" p =0€R" and f(0) = 0e R. By a linear coordinate change we may

assume that the matrix
A=
| ox; 0x;

is diagonal, with the first k diagonal entries equal to -1 and the rest equal
to + 1. By assumption Df(0) = 0.

There exists a C’ map x > B, from M to the space of symmetric n X n
matrices such that if x € M and B, = [b;;(x)] then

Jx) = z bij(x)xixj

Li=1

and B, = A. This follows, for example, from the fundamental theorem of
calculus applied twice:

Jx)

[? Dyt ar
1 af
A [J‘o ax; (£x) d‘] X;
1 1 62f
1 [J.o J:) 6XJ« axi (Stx) ds dt} X;X;

b,-j(x)xix,-.
1

I
?Ma

] 1l
SMMa 5

Let P(B). be the matrix valued function in the lemma; put P(B,) =

Q, € GL(n). Define a C" map ¢:U - R", where U = M is a sufficiently
small neighborhood of 0:

olx) = 07 'x.
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A calculation shows that Dg{0) = I; therefore by the inverse function
theorem we may assume (¢,U) is a C chart.
Put y = ¢(x); then, in matrix notation:

fix) = 'xB,x
= 'W'Q.B,0.)y

QED

We now have a complete local description of a Morse function /M — R.

If a € M is a regular point then by the implicit function theorem there are
coordinates near a such that

f(xl, oy x.) = Xl.
If a is a critical point there are coordinates near a such that
f(xls'--axu) =f(a) -xg -t - xgz + xg24.1 + +xf.

The index k is uniquely determined by the critical point.

It follows that the level sets f ~'(y) of a Morse function have nice local
structure. Near a regular point f~'(y) looks like a hyperplane in R*. At
a critical point there is a chart (,U) throwing U n f~(y) onto a
neighborhood of 0 in the degenerate quadric hypersurface

=xf—c = A Xy e+ x=0

nearby level surfaces in U go onto open subsets of the nondegenerate quadrics
—x} — - —xf + x4y + -+ + x2 = constant # 0.

See Figure 6-1 for some examples.

As the value of the Morse function increases past a critical value, the
topological character of the level surfaces changes suddenly. This is studied
in detail in the following sections.

We close this section with:

1.2. Theorem. For any manifold M, Morse functions form a dense open
set in C{M,R),2 < s € 0.

Proof. The cotangent vector bundle T*M is isomorphic to J'(M,R),
the bundle of 1-jets of maps M — R; a natural isomorphism is defined by
sending j! f € JY{M,R) to Df, € T*M. Thus a C* map f:M — Ris a Morse
function if and only if its 1-prolongation

Ff:M = J(MR)
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—x? -y + 22

Figure 6-1.

is transverse to the zero section. The theorem now foliows from jet trans-
versality (Theorem 3.2.8).

QED

Exercises

*1. In Morse’s lemma C"*2 can be replaced by C"*!. (Assume M = R, p = 0, f(p) = 0,
Put $D%f(0)(x,x) = Q{x). Let t+ &(t,x) be the solution of the differential equation
dx/dt = grad Q(x) such that £(0,x} = 0. For x near 0 there is a unique #{x) such that
Q&(t(x),x) = f(x). Define @(x) = &(f(x),x). See Kuiper [1], Takens [i])

2. Let M = R**! be a compact C? submanifold. For each v e $ et f,: M — R be the
map f(x) = {v,x). (This is essentially orthogonal projection into the line through v.)
Then the set of v € $ such that f, is a Morse function is open and dense.

3. Let M c R?be a C? submanifold and f:M = R a C* map. The set of linear maps
L e L(R*,R) such that the map M — R, x — f(x} + L(x)is a Morse function, is a Baire
set and thus dense. If M is compact it is open and dense.

4. Let M < R* be a closed compact C* submanifold. The set of points u € R such
that the map x — |x — u|* is a Morse function on M, is open and dense.
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*S. Let fo, f1:M — R be Morse functions. It may be impossible 1o find 2 C2 homotopy
[:M x [0,1] - R such that f{x,0) = f(x), f(x.1} = fi(x)} and each map ffx) = fix.n
is a Morse function, 0 < ¢ £ 1. However, a C? homotopy from f, 1o f; can be found
such that each £, is a Morse function except for a finite set 7, .. ., tn;foreach . f, has
only one degenerate critical point z;; in suitable local coordinates at z;, f; has the form:

=xi— = xf+xfe + -+ x2; + x2 + Rix) + constant

where R(x)/|x|> - 0 as |x] — 0. (Assume f is C* and make the map (x5) s j2 £, trans-
verse to suitable submanifolds of J(M,R).)

There is a Morse function on the projective plane which has exactly three critical
points.

*6. Generalized Morse's lemma. Let f:M — R be 2 C** map. A submanifold V ¢ M
is critical ifevery pointof Vis a critical point. A critical submanifold Vis nondegenerate
of index k if every x € V has the following property: for some (hence any) submanifold
W < M which is transverse to V at x, the point x is a nondegenerate critical point of
f|W having index k. If also V ¢ M — éM, and V is connected, then there is a
tubular neighborhood (g,¢ @ #) for (M, V) and an orthogonal structure on & & 5 such
that the composition E(¢ @ ) < M , Ris given by

)= =P+ +C

for (x,y) € &, © n,, p € V, where C is the constant f(V).

2. Differential Equations and Regular Level Surfaces

We recall some facts about differential equations. Let W « R" be an
open set and g: W — R" a C" map, | < r < w, regarded as a vector feld
on W. Then locally g satisfies Lipschitz conditions, so the basic theorems
about existence, uniqueness and differentiability of solutions of ordinary
differential equations apply to the initial value problem:

M o' (t) = gle(n)),

P(0) = x
for each x € W. Therefore there is an open interval J <« R about 0 and a
C*! map

@:(J,0) - (Wx)

which satisfies (1). If ¢,:J; — W is another solution to (1) then ¢ = ¢,
on JnJ,. Thus ¢ and ¢, fit together to form a solution on J u J,. It
follows that J and ¢ are unique provided J is taken to be maximal. We
call this maximal interval J(x), and the corresponding solution is written
variously as

o*:J(x) = W,

@*(1) = odx) = o(t,x).

The maps @* and sometimes the sets ¢*(J(x)) are called solution curves
or trajectories or flow lines of the vector field g.
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The interval-valued function x — J(x) is lower semicontinuous in the
sense that if @ € J(x) then « € J(y) for all y in some neighborhood of x.
This implies that the set

2= {(tx)eR x W:teJ(x)}
isopenin R x W.
The flow generated by g is the C" map
02— W,
(t,x) > @(x).
Foreach te R let
W, = {xe W:te J(x)}.

Then W, is open in W and there is defined a C" map
oW - W,
X @fx).

Clearly ¢(W,) = W_, and ¢_, = ¢, . Thus ¢, is a C embedding. More
generally we have the relations

(Ps(pl(x) = ‘pzﬂ(x),

valid in the sense that if one side is defined so is the other, and they are equal.
It is not hard to prove that if K < R is any interval and U < Wis an open
set such that U < (), x W, then the map K — Emb"(K,W) is continuous
for the weak topology.

Let P <« W be compact. For each x € W the set of t € J(x) such that
¢@(x) € P, is closed in R, not merely in J(x). This has the important
consequence that if x € P is such that ¢{x) e P for all t e J(x) n R, then
J(x) > R,, and similarly for R_. In particular if the trajectory of x has
compact closure in W then J(x) = R.

Now let X be a C vector field on an n-manifold M; that is, X isa C"
section of TM. Assume first that M = .

An integral curve (or solution curve) of X is a differentiable mapn:J - M
where J < R is an interval and 5'(t) = X(n(r)) for each teJ. If (y,U) is
achart on M (of class C®, or C” ifr = w) containing 5(J)and W = y(U) = R"
then the composite map

fwiiluvirulp
is a C" vector field on W. The map ¢ = \ o :J — Wsatisfies the differential

equation

@2 @'(t) = flol®)),
because
@'(t) = Dyln'(t)) = DY(X (1))
= (DY < X o ¢~ )(yn())
= fle(1).
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Thus ¢ carries an integral curve of X into solution of (2), provided the
integral curve lies in a coordinate domain.

All the results about vector fields on open sets in R” carry over to vector
fields on M. For each x € M there is a maximal open interval J{x) about 0
and a C'*! integral curve (or trajectory, or flow line) of X,

77:(J(x),0) - (M x)
n(0) = nt.x) = ndx).

Q = {(tx)eR x M:te J(x)}
isopenin R x M; the flow of X is the C" map
n:Q - M,
(&,x) > ().

The previous results about endpoints of J(x) and compact subsets of
M are still valid. An important case is where M is compact and without
boundary. In this case 2 = M x R and each », is a C" diffecomorphism of

M. Thus the maps {7, }, . form a one-parameter group of C diffeomorphism
of M the map

The set

R - Diff"(M), trn,

is continuous, and 7,17, = 74,-

Unfortunately we must also consider vector fields on d-manifolds.
Suppose now that M # . The preceding resuits can be used if we first
embed M as a closed submanifold of an n-manifold N without boundary,
such as the double of M, and then extend X to a C" vector field on N. (This
can be done with a partition of unity if 1 < r < oo, since local C extensions
exist by definition, If r = w the local extensions are unique and fit together
to give an analytic vector field on a neighborhood of M in N, which is all
that is needed.)

If X is tangent to dM, that is, if X(6M) < T(0M), everything is as before.
But if X is not tangent to M, the intervals J(x) will not all be open. If x € ¢M,
X(x) # 0, and X(x) points into [respectively, out of] M, then J(x) will
contain 0 as its left [resp. right] endpoint. It is also possible that X(x) is
tangent to M and still J(x) contains the endpoint 0; and J{x) can even
be the degenerate interval {0}. For any y € M, if J(y) contains an endpoint
b then n(b,y) € M.

The set Q, defined as before, is not necessarily open in R x M, but its
interior is dense. Moreover the flow n:Q — M is C in the sense that it
extends to a C" map £ — N where 2 <« R x N is open.

If the trajectory of x € M has compact closure then J(x) is a closed
interval; if also the trajectory lies in M — dM then J{x) = R.

If J(x) = R for all x e M the vector field is called completely integrable.
A necessary condition for X to be completely integrable is that X be tangent
to M. A sufficient condition is that X be tangent to M and each trajectory



132 6. Morse Theory

have compact closure. A more general sufficient condition is given in
Exercise 1.

Differential equations can be used to prove anew the collaring theorem:

2.1. Theorem. Let M be a d-manifold. Then there exists a C* embedding
F:0M x [0,00) > M
such that F(x,0) = x for all x e M.

Proof. Using charts covering éM and a partition of unity, one finds
a C* vector field X on a neighborhood U « M of dM which is nowhere
tangent to dM and which points into M (in local coordinates). Let
W < éM x [0,00) be a neighborhood of dM x 0 on which the flow # of
the vector field is defined. There is a C* embedding h:dM x [0,c0) = W
which leaves M x 0 pointwise fixed. The required map F is the composition

F:oM x [0,0) > W3 M.
QED

We turn now to the construction of a vector field transverse to the regular
level surfaces ofa C"** map f:M — R,r > 1. We assume M has been given
a C® Riemannian metric. The inner product in any M, is denoted by (X,Y);
the corresponding norm is [X| = (X, X )2,

For every linear map A:M, — R there exists a unique tangent vector
X, e M, such that A(Y) = (X,,Y) for all Ye M,. We call X, the vector
dual to A. The map A+ X, is a linear isomorphism from M?¥ onto M..
Its inverse assigns to X € M, the linear map

M, =R, Y (XY

If f:M > R is C*!, for each x € M define the vector grad f(x) e M, to
be the dual of Df,. In this way the C gradient vector field grad f is defined.
It depends on the Riemannian metric.

If M is open in R" and the metric is given by the standard inner product

of R" then )
af aof
grad f(x) “‘(a;r (X), L aax" (XD .

It is clear that grad f(x) = O if and only if x is a critical point of f. At
a regular point grad f(x) is transverse to the level surface f~!(f(x)); in
fact, they are orthogonal.

Notice that f is nondecreasing along gradient lines, that is, along solution
curves of the gradient differential equation »' = grad f{n). For if n(f) is a
solution then

£ ) = <grad S0, grad fia(0)>
= Jgrad SOHO)]? > 0
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And f is strictly increasing along any solution curve which is not a critical
point.

The following regular interval theorem is a useful way of finding diffeo-
morphisms.

2.2. Theorem. Let f:M — [ab] bea C*"' map on a compact &-manifold,
1 < r < w. Suppose f has no critical points and f(6M) = {a,b}. Then there
is a C diffeomorphism F:f~*a) x [ab] - M so that the diagram

S a) x [a,b]——-—-——) M

N/

[ab]

commutes. In particular all level surfaces of f are diffeomorphic.
Proof. Give M a Riemannian metric. Consider the C vector field on M:
_grad f(x)
X
)= erad OO

Notice that X(x) has the same trajectones as grad f but with a different
parametrization.

Let n:[to,t;] = M be a solution curve of X. A computation shows
that the derivative of the map

[tet ] > Rt f(n(1)
is identically 1. This means that
0)) fnity) — folte) = t, — 1o

Let x € f~'(s). Since M is compact, the set J(x) is closed; from (1) it follows
that

(2) J(x) = [a — spb — s].
The assumptions on f imply that f~!(a) is a union of boundary
components of M. Define a map
F:fYa) x [ab] - M,
F(x,t) = nt — a,x).

Since f increases along gradient lines, and thus along X-trajectories, F
is injective. And F is an immersion because gradient lines are transverse
to level surfaces. Thus F is an embedding. Finally, F is onto because of (2).

QED



2.3. Corollary, Let M be a compact manifold and assume OM = A U B
where A and B are disjoint closed sets. Suppose there existsaC map f*M — R

without critical point such that f(A) = 0, f(B) = 1. Then M is diffeomorphic
toboth A x Iand B x I.

The following topological application of critical point theory is due
to G. Reeb.

2.4. Theorem. Let M be a compact n-dimensional manifold without
boundary, admitting a Morse function f:M - R with only 2 critical points.
Then M is homeomorphic to the n-sphere S™.

Proof. Let the critical points be P, and P_. We may assume P, is
a maximum and P_ a minimum. Put f(P,) = z,, f(P_) = z_. By Morse’s
lemma there are coordinates (x,..., x,) in a neighborhood U, of P,

giving f|U, the form
—x} - = x4z,
Therefore there exists b < z, such that the set

D, = f7'[bz,]

is a neighborhood of P, diffeomorphic to the n-disk D”.
Similarly there exists a > z_ such that the set

D_ = f~'z_,a]
is a neighborhood of P_ diffeomorphicto D*. Weassumez_ < a < b < z,.
Note that ‘
oD, =~ oD_ =~ S""\,

By Theorem 2.2 the set f ~![a,b] is diffeomorphicto S"~! x I. See Figure 6-2.

Let Q,, Q. < S" be the north and south poles. Let B, B.. be disjoint
neighborhoods of @, Q_ diffeomorphic to D" (the two “polar caps”™) so
that, putting C = §* — Int(B, v B_), we have C~ 5! x I and
oC = 0B, v@B_.

*Z4
1,
B— a
v iz
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Let hy: D, — B, be a diffcomorphism. Extend
hd@l?, :aD¢ b d aB¢

to a diffeomorphism (dD,) x I — (dB,) x I. This provides an extension
of hy to a homeomorphism

hi:D,uf~ l[a,b]-»B,,\,vC
It is possible to extend
h|@D_:aD_ — aB_

to a homeomorphism D_ — B_. This is the same as extending a homeo-
morphism go:S*~* = S*~! to a homeomorphism g:D* — D*, and one can

extend radially:
#) |x|g¢,(x/|x|) ifx#£0
ifx=0.

Thus g maps each radial scgment [0.y], y € S, linearly onto the segment
[0.90(»]-
In this way h, is extended to a homeomorphism h:M — S*

QED

It is not always possible to find a diffeomorphism between M and S*!
In 1956 John Milnor [1] found an example of a manifold which is homeo-
morphic, but not diffeomorphic, to S”. This very surprising result stimulated
intensive research into such “exotic spheres” and into the more general
problem of finding and classifying all differential structures on a manifold.
A great deal is now known, but the problem has not been solved.

Exercises

1. A vector field X on M has bounded velocity if there is a complete Riemannian metric
on M such that | X(x)| is bounded. In this case every maximal solution curve is defined
on a closed interval J(x). if also X is tangent to M then X is completely integrable.

**2 If a C! vector ficld X is completely integrable, does X necessarily have bounded
velocity? (See Exercise 1)

3. Let X be a C vector field on a manifold M, 1 < r < . There is a completely
integrable " vector field ¥ on M whose trajectories (considered as subsets) are the
same as those of X.

4. Let X be a C! vector field on a d-manifold M. If x € M and J(x) = [0,2] or [0,0)

then every neighborhood of x contains a point y € M such that X(y) A M and X(y)
points inward.

5. Let (x,y) be local coordinates on the torus T = S! x S* corresponding to angular
variables on §! taken mod 2r. For each pair a, § of real numbers not both zero, let
X,, 4 denote the vector field on T which in (x,y) coordinates is the constant field («,f).
(a) If 2 and B are linearly dependent over the rational numbers then every trajectory
of X, , is a circle,
(b) If « and B are lincarly independent over the rationals then every trajectory of
X, 4 is dense. In fact:



(c) Incase (b), let 7 be a real number such that 1, a, § are linearly independent over
the rationals. Then for each x € T the set {¢,(x):n € Z, } is dense, where ¢, is the flow
of X, ;-

*6. On cvery surface of genus p > 1 there is a vector field having a dense trajectory.

*#+7, Does every C? vector field on S* necessarily have either a zero or a periodic
trajectory? (This has been proved false for C! fields by Paul Schweitzer [1] and for C?
fields by Jenny Harrison [1].)

*8. Let X be a completely integrable C' vector field on a manifold M. Suppose that
every positive semi-orbit {@{x):¢ > O} is dense and that every negative semi-orbit
{p{x):t < 0} is dense, where @ is the flow generated by X. Then M is compact.

9, Let f:M — R be a C’ function on a Riemannian manifold and let ¥V <« M be a
submanifold. If x € V then grad(f|V)(x) is the image of grad f(x) under the orthogonal
projection M, — V.

10. Theorem 2.2 is true for noncompact M under the extra hypothesis that M has a
complete Riemannian metric for which [grad f(x)] is bounded below. (See Exercise 1.)
11. The trick used in the proof of Theorem 2.2, of following integral curves, can often
be used to obtain diffeomorphisms. For example, let X be a C” vector field on M,
1 £r < Let ¥V, ¥, be C submanifolds of M which are transverse to X. Assume
0¥, = 8V, = ¢M = . Suppose that every integral curve through a point of either of
the submanifolds intersects the other at a unique point. Then V; and ¥, are C diffeo-
morphic. Moreover if r < o there is a C” diffeomorphism of M which is C isotopic
to the identity and which carries ¥, onto V.

12, Corollary 2.3 is also true for C' maps.

13, Theorem 2.4 admits the stronger conclusion that M is the union of two n-balls
intersecting along their common boundary.

*14. Theorem 2.4 can be generalized as follows. If M admits a function with only two
critical points (perhaps degenerate), then the complement of either critical point is
diffeomorphic to R* and M is homeomorphic to S*. (Use the gradient flow and a disk
around a critical point P_. to exhibit M ~ P, asan increasing union of open disks; then
use Exercise 15 of Section 1.2.)

#*#15, The conclusions of Exercises 13 and 14 suggest the difficult problem:if M — P =
R* is M the union of two n-balls intersecting in their common boundary? This is
known to be true for all n o 4.

3. Passing Critical Levels and Attaching Cells

In order to make 3M behave nicely with respect to level surfaces, we
shall consider Morse functions f:M — [a,b] of the following type, which
we call admissible: M = f~'(a) u f~'(b), and a and b are regular values.
This has the following implications. Each of f ~*(a), f ~'(b} is a union of
components of 9M. If f ~*(a) or f ~ !(b) is empty, the minimum or, respectively,
maximum value of f is taken only at critical points in M — oM.

Theorem 1.2 implies that a compact manifold has an admissible Morse
function taking prescribed constant values on boundary components.
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Figure 6-3 shows some examples of admissible Morse functions on
2-manifolds, the map being orthogonal projection into the vertical interval
[a,b]. Note that if p, q € [a,b] are regular values, p < g, then restriction of
fto £~ [ p.q] is also admissible (into [p,q]).

- \V
Lam % @

Figure 6-3. Admissible Morse functions.

In the last section we saw that if f has no critical points then
M = f~'a) x I. In the following theorem we suppose f has just one
critical point.

By a k-cell in M is meant the image of an embedding D* <, M.

3.1. Theorem. Let M be compact and f:M — [a,b] an admissible Morse
Junction. Suppose f has a unique critical point z, of index k. Then there exists
a k-cell & = M — f~'(b) such that & n f~'(a) = &, and there is a
deformation retraction of M onto f ™ '(a) U €.

Proof. Let f(2) = ¢, a < ¢ < b. To prove the theorem it suffices to
prove it for the restriction of f to f~'[a'p’] for any a', b such that
a<d <c<b <b by the regular interval Theorem 22 applied to
S '[aa'] and f~[b,b"]. Moreover, we can assume ¢ = 0, replacing f by
Jf{x) — c otherwise.

Let (¢,U) be a chart at z as in Morse’s lemma. We write " = R* x R*™%;
thus ¢ maps U diffeomorphically onto an open set V < B* x R*™* and

So ' xy) = —|x]* + |

for (x,y) € V. Note that ¢(2) = (0,0). Put g(x.y}) = —|x|* + |3}*

Let 0 < § <1 be such that V contains I' = BYd) x B* %d) where
B'(6) = R is the closed ball about 0 of radius 6. Give M a Riemannian
metric which agrees in ¢ ~ }(I") with the metric induced by ¢ from the standard
inner product on R". If o(u) = ve I’ then

Do{u)(grad f(u)) = grad g(v).
Let ¢ > 0 be much smaller than §, say ¢ < §%/100. Put

B*=BY/e) x 0 c R x R"™*

= {(x0) e R* x R*":|x]* < ¢},
and & = ¢~ '(BY).



A deformation of f![—¢g] to f~!(~¢) U & is made by patching
together two deformations. First consider the set

= DH/Z8) x D*~H\/Ze).

See Figure 6—4 forthecase k = 1,n = 2. InI"; n g™ *[ —¢,¢] a deformation

\ g~ e
9“‘(—6)\ /g"(-e)'

45

/ AN
/

ry g-l(ﬁ)
Figure 6—4.

is obtained by moving (x,y) at constant speed along the interval jommg
(x,y) to the point (x,sy) € g“‘( —&) W BX s e R where

_ ) = x> < &
s = slx.y ./—‘—xiz i e

Note that these intervals are closures of solution curves of the vector field
X(x,y} = (0,—2y). This deformation is transported to ¢ ~!(I",) via conjuga-
tion by ¢.

Qutside the set

Iy = D2 x D"%/2s)

the deformation moves each point at constant speed along the flow line
of the vector field —grad g so that it reaches g~ *(—¢) v B* in unit time.
(The speed of each point is the length of its path under the deformation.)
See Figure 6-5. This deformation is transported to U — ¢~ '(I";) by ¢;
it is then extended over M — ¢~ (I",) by following fiow lines of —grad f.
Each such flow line must eventually reach f~'(—é), for it can never enter
I, because |x| increases and |y| decreases along flow lines, and |grad f|
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Figure 6-5.
has a positive lower bound in the compact set

[ [—eg] - Inte™'r,.
To extend the deformation to points of I'; — I', it suffices to find a

vector field on I' which agrees with X in I'; and with —gradgin " — I,.
Such a field is ;

Y(x,y) = 2lx,y)x,—y)

where the C* map u:R* x R*~* - [0,1] vanishes in I'; and equals 1
outside I';. It is easy to see that each flow line of Y which starts at a point of

(F; —T)ng ' [—ee]

must reach g~ '(—e) because |x| is non-decreasing along flow lines.

The global deformation of f~'[—e¢] into f~!(—¢) U € is obtained
by moving each point of I' at constant speed along the flow line of ¥ until
it reaches g~'(—¢) U B* in unit time and transporting this motion to M
via ¢; while each point of M — ¢ ~}(I') moves at constant speed along the
flow line of — grad f until it reaches f ~!(—¢) in unit time. Of course points
on f~(—¢g) U & stay fixed.

QED
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If we consider the map —f:M — [ —b,—a] instead of f, we obtain the
following result dual to Theorem 3.1:

3.2, Theorem. Let f:M — [ab] be an admissible Morse function having
a unique critical point z, of index k. Then there exists an (n — k)-cell
& e M —~ f~Y @) suchthat &y ™ ~ f~1(b) = d€,™%, and there is a deforma-
tion retraction of M onto f~'(b) U €,"*. Moreover ¢} * can be chosen so
that € (of Theorem 3.1) meets €% only at z, and transversely.

We speak of these cells ¢* and €}, as dual to each other. In Figure 66
dual pairs of cells are shown.

—x? 4 y?

Figure 6—6. Dual cells.

The K’th type number of a Morse function f:M — R is the number v, =
vi{ /) of critical points of index k, 0 < k < n = dim M. We say f has type
(Vo, vaey vn)-

3.3. Theorem. Let f:M — [a,b] be an admissible Morse function of type
(Vos ..., v,) on a compact manifold. Suppose f has just one critical value c,
a < ¢ < b. Then there are disjoint k-cells & <« M — f~'(b), 1 i< v,
k=0,...,n such that & n f~'(a) = d¢¥; and there is a deformation
retraction of M onto f ~Ya) U {| J; . €}.

The proof is just like that of Theorem 3.1, using disjoint Morse charts
for the different critical points.

We can now prove the celebrated Morse inequalities. These require
familiarity with singular homology theory, or any homology theory satisfying
the Eilenberg-Steenrod axioms.
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The k’th singular homology group of the pair (X,4) with coefficients in
the field F is denoted by H,(X,A4; F); this is a vector space over F and thus
has a dimension 1,(X,A4; F). When F is the rational field Q, these are called
the Betti numbers of (X,A). If these numbers are finite, and only finitely
many are nonzero, then the homological Euler characieristic

YXA) = .io (- 1)4(X,4; F)

of (X,A) is defined. When X is a compact manifold and A4 is a compact
submanifold then y'(X,A) is defined and is independent of the field F.

3.4. Theorem. Let f:M — [ab] be an admissible Morse finction on
a compact manifold, of type (vy,...,v,). Let F be a field and denote by P,
the dimension of the relative homology group Hy(M, f ~'(a); F). Then:
@ Y (D" 2 ¥ (-1)**"B,
k=0 k=0

Jor0 < m < n;and

(b) Z (=D*w = ): (=)', = Y (M.f ™~ \(a)).
Before giving the proof we derive some corollaries.

3.5. Theorem. Let f:M — [ab] be an admissible Morse function on a
compact manifold, of type (v, - . ., v,). Assume that f ™ '(a) = . If B, denotes
the dimension of H,(M; F) where F is a field then (a) and (b) of 34 are ralid. In
particular the alternating sum of the type numbers equals the homological

-

Euler characteristic Y(M) = Y, (—1)'B..
£=0
Notice that v /) = v,_{—f). From this follows:

3.6. Theorem. The homological Euler characteristic of a compact odd
dimensional manifold without boundary is 0.

Proof. Let f:M — R be a Morse function of type (vy,...,v,). Let

a < f(x) < b for all xe M; thus f:M — [a,b] is an admissible Morse
function. Then Theorem 3.5 applied to f and —f gives

1 (M) = Z (- = Z (—vei(=N)

k=0 k=0
=(=10 Y (-1 M-
k=0
= —x(M).

QED
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The inequalities (a) in Theorem 3.4 can be conveniently arranged as
follows. Put vy — B, = 6,. Then

S O

-~ &
vV VvV WV
D O O

S

\"

[er]

O
M

and in general
Om+1 Z Om = Oy + - + (=1)"8 = 0.
In particular, §, = 0, k = 0,.. ., n. This proves:

3.7. Theorem. In Theorems 3.4and 3.5,v, 2 B3,k = 0,...,n.

‘We now prove Theorem 3.4. It is convenient to assume that f separates
the critical points, that is, f(z,) # f(z,) if z,, z, are distinct critical points.
This can be arranged by perturbing f slightly in disjoint neighborhoods
U, @ M — 0M of the critical points z; to get a function g:M — R of the
following type. Outside the union of the U;, g = f. In U; we have

glx) = f(x) + &ddx)

where the C® map 4;:M — [0,1] has support in U, and equals 1 on a
neighborhood of z,, while g; > 0. As max ¢; tends to 0, g tends to f in C(M,R).
Thus for small ¢, g will be a Morse function having the same critical points
as f; and these will have the same indices. We can choose the ¢ so that g

separates the points z;. Therefore we assume f separates its critical points
PR

Put f{z;) = ¢;, and order the z; so that a < ¢; < ' < ¢, < b. Let
k(i) be the index of z;,. Choose regular values g, . . ., a, so that

a = Qgp, [ PRt < ¢ < a, ap=b.

Put 4 = f~Yae), X, = f~'[a0,a]. Thus X, is obtained from X,.; by
attaching a k(i)-cell. We denote this by

Xi = Xi"l U ekm.
Define
a(i,j) = dim H(X;,X;_,)

where homology groups always have coefficients in the field F. The excision
axiom for homology implies

H{X,X;_,) = H{DaD*),

Therefore

1 i i= k)
() “("”‘{0 i 0% k).
Define

B(i,j) = dim H (X ,A).
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Since X is obtained from A by adding cells of dimensions < n, (i) =
fori > n

Consider the exact homology sequence of the triple (X;,X;_,,4):
0 — HUX;- 1, A) » H(X ,4) - H(X,X,)_,) ~
H--n(xj-pA) e Ho(x,-,xj- 1) —0.

Exactness implies the vanishing of the corresponding alternating sum of

dimensions of the vector spaces in the sequence. Grouping 3 terms at a time
in this sum gives:

0= 3 (-~ — 1) = B + ).
Summing over j yields
Ea (-1y _; d(iJ)] —1¥[Blin) — B(L0Y]

(=18

IM; llM.

-

Secause B(i,n) = B; and B(i,0) = 0. Now

5 ati)

i=1
is the number of je {1,...,n} such that k) = i, which is v,. Therefore

E( l)"‘i Z( 1)51

i=0 i=0

This proves (b) of Theorem 3.4.
The proof of (a) is similar, starting from the exact sequence

0- Ku,] - Hn(xj—lvA) - u(pr) - m(X_bxj—l)

where the first term is the kemnel of H(X;.,,4A) - H,(X;,A) and the rest
of the sequence is as before. Let ,, ; = dim K,, ;. Exactness yields

ni = T (= V(B ~ 1) — Bli) + ai)]
Summing overj = 1,..., ngives
S kgt T 0= T 0 S i) = T 1,
ji=1 i=0 i=0 i=1 i=0

which implies (a) since k,, ; = 0. The proof of Theorem 3.4 is complete.

QED



For the following important application of Theorem 3.5 let M be a
compact manifold without boundary. Recall that in Chapter 4 we defined
the Euler characteristic of M to be the sum of the indices of zeros of a vector
field on M. We have also defined the homological Euler characteristic of
M to be the alternating sum of the Betti numbers of M. The celebrated
Theorem of Hopf equates these two characteristics:

3.8. Theorem. The homological Euler characteristic equals the Euler
characteristic for a compact manifold without boundary.

Proof. The Euler characteristic can be computed from any vector field
X on M having finitely many zeros. We choose X = 4 grad f, where /:M - R
is a Morse function, and the gradient is taken in a Riemannian metric on M
which, near each critical point, is induced from R" by Morse coordinates.

Let p be a critical point of index k. Let (x4, . . ., x,)} be Morse coordinates
atp =(0,...,0). Then

Sy = —x = = xf x4+ X0+ f(),
and

X(X) = (_xb vy T XXkt 1r -0y xn)'

Thus X is the Cartesian product of the vector fields ¥ on R*, Z on R*~*
defined by Y(y) = -y, Z(z) = z. An easy computation shows that

Indy X = (Ind, Y)(Ind, Z)
and
Indy Y = (—1)% Indy Z = 1.
Therefore

Ind, X = (-1}t

Therefore the sum of the indices of zeros of X is Z (—1)*v, where v, is

. k=0
the number of critical points of f of index k. By Theorem 3.5, this is the
homological Euler characteristic.

QED

Exercises

1. The w-limit set L {x) of a point x € M for a vector field X on M is the set of points
of the form lim, . ,, n{t,,x) where n is the flow of X and ¢, = co. The o-limit set L,(x)
is defined similarly by letting t, — — co instead of 0.

(a) If M is compact, L,(x) and L {x) are connected, compact nonempty sets, invariant
under the flow.

(b) If X = grad f and f:M — R has isolated critical points then L,(x) and L,(x}
each consists of a single critical point.

2. Let f:M — R be a C'*! Morse function on a compact manifold. Suppose M has
a C* Riemannian metric which is induced by Morse charts near critical points. Consider
the flow of grad f for this metric. If z is a critical point the stable manifold of z (also



JLi]

called the inset) is
W(z) = {xe M:L(x)} = z}

while the unstable manifold of z (also called the outser) is

Wiz) = {xe M:L(x) = z}.
(a) Wi(z) and W/[z) are connected C submanifolds, of dimensions k and & — &
respectively, where & = Ind(z).
(b) W(2) and W(2) intersect transversely at z and are otherwise disjoint.
*(c) IfOM = ¥ then W,(z2) = R* *and W,(z) » R*.
**(d) Actually, (a), (b} and (c) are true for any C* Riemannian metric on M.

3. A compact n-manifold is the union of the closures of a finite number of disjoint open
n-cells. [Consider stable manifolds of lockl minima of a Morse function.]

4. Let f:M - [a,b] be an admissible Morse function on a compact manifold, having
a unique critical value c,a < ¢ < b. Let z,,.. ., z, be the critical points of f and put
W, = i Wiz), W, = | ); W{z,). (See Exercise 2 for definition of W, and W,) Then:

M-WuW)x[fta)~-W]xI=[f"b)-W]xL

*5. Let S be a compact surface of genus p.
(a) Every Morse function on § has at least 2p + 2 critical points.
(b} Some Morse function has exactly this number of critical points.

6. Real projective n-space P* can be represented as the quotient space of R**! — 0
under the identifications (x,, . .., X) = (cXq, .. ., cx,) if ¢ # 0. The equivalence class

of (g, . . ., X,) is denoted by [x,, ..., x,}- Let 4o, . . ., 4, be distinct nonzero real num-
bers and define f: P* —+ R by

[Xos- -0 Xad > 2y X3/, 2.

(a) f is a Morse function of type (1,1, ..., 1). (See also Exercise 1, Section 6.4.)

(b) Sketch the critical points and level surfaces of the composition S* 5 P» 4 R,
where p is the canonical double covering, for n = 1,2, 3.

*7. Let f:5* - R be a Morse function invariant under the antipodal map x —» —x.

Then f has at least two critical points of each index 0, 1, . . ., n. [Consider the function
induced on P*. The Z, Betti numbersof P*are 1, 1,...,1.]

8. Let M be a compact n-manifold without boundary and /: M — Ra C? map. Suppose
every critical point belongs to 2 nondegenerate critical submanifold (see Exercise 7.
Section 6.1). Let p, denote the sum of the Euler characteristics of the nondegenerate
critical submanifolds of index k. Then the following generalized Morse equality holds:

M) = z.: (- D'y

k=0

[Let g:M — R vanish outside tubular neighborhoods of the critical submanifolds, such
that g restricts to a Morse function on the critical submanifolds. One can choose g so
that f + g is a Morse function whose critical points are precisely those of g on the
critical submanifolds. If ¥ is a critical submanifold of index k and x e V is a critical
point for g of index i, then x has index {— 1)**' as a critical point of f + g. The sum of
the indices of the critical points of f + g in V is thus (— 1)*4(V). This result is due to
R. Bott.]



9. Let ¢: M — N be a surjective submersion where M and N are compact manifolds
without boundary. Let V = ¢~ '(y)} for some ye N. Then f(M) = x(V)(N). [Let
g:N — R be a Morse function and apply Exercise 8 to f = gg:M — R.]

10. Let 3, M be a union of components of the boundary of a compact n-manifold M;
putd_M = oM — 9, M. Then

(MO M) = Y(M3_M).

4. CW-Complexes

In this section we assume familiarity with the notion of CW-complex.

o0

Briefly, a CW-complex is a space X which can be expressed X = {} X,
Aa=0

where Xo < X = ..., X, is a discrete subset and X, is obtained from

X, ., by attaching n-cells by continuous maps of their boundaries into X, _,.
It is required that a subset of X is closed provided its intersection with each
such cell (image) is closed. If X = X, we call X an n-dimensional CW-
complex. If the number of cells is finite, X is a finite CW-Complex.

A subcomplex A of a CW-complex X is a closed subspace A which is
the union of cells of X. A CW-pair (X,A) consists of a CW complex X and
a subcomplex A.

4.1. Theorem. Let M be a compact n-manifold and f:M — [ab] an
admissible Morse function of type (v, . . ., v,) such that 9M = f~(b). Then
M has the homotopy type of a finite CW complex having exactly vy cells of
each dimensionk = 0, ..., n and no other cells.

Proof. The proof is by induction on the number of critical values, If
¢, is the smallest critical value, then ¢, is the absolute minimum of f because
S Ya) is empty. Choose a < ¢, < a, so that c, is the only critical value in
[a,a,]. Then f~'[a,a,] has the homotopy type of a finite discrete set of
points by Theorem 3.3; in fact f~*[a,a;] is the union of disjoint n-disks.
This starts the induction. The inductive step follows from Theorem 3.3.

QED

Using the same ideas, one can prove the following result. The details
are left to the reader.

4.2, Theorem. Let M be a compact n-dimensional manifold. Then (M, 0M)
has the homotopy type of a CW-pair of dimensions <n.

The restriction that M be compact is not necessary, but the proof for
noncompact manifolds uses triangulation. We outline a proof of a somewhat
weaker result:

4.3. Theorem, An n-dimensional manifold has the homotopy type of a CW-
complex of dimension <n.
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Proof. One can show that M and M — éM are homotopy equivalent
(for example, by the collaring Theorem 2.1). Hence we can assume éM = .

Choose a proper Morse function f:M - R, for example an approxima-
tion to the square of a proper map M — R. Assume f separates the critical
points z,, z,, . . ., which are ordered so that f(z;, ;) > f(z;). Choose numbers
a; so that

0=ay < flz)) <a, < flzz) <---.

Note that f(z;) — co since f is proper and the z; are isolated; therefore
a; — oo also.

From Theorem 4.2, for each integer k > 1 there is a CW-complex X,
of dimension n and disjoint subcomplexes Y,, Z, c X, and a homotopy
equivalence

u:f " [ap-1,8] > Xi,
taking f~*(a,_,) to Y, and f~%{a,) to Z, by homotopy equivalences. Let
vy:Z; = f~Y(a,) bea homotopy inverse to f: f ~*(a,) = Z,. The composition
Z, lf-l(ag) 3"’}'“1

can be approximated by a cellular map wy:Z, — Y, ;. A CW-complex X
homotopy equivalent to M is obtained from the disjoint union of the X,
under the identification of x € Z, with w,(x) € X,, ;.

QED
Another extension of Theorem 4.2 is:

4.4. Theorem. Let M be a compact manifold and A < M a compact sub-
manifold, A = oM = (. Then (M,A) has the homotopy type of a CW-pair.

Proof. Let N <« M be a closed tubular neighborhood of A. Thus N is
a closed submanifold with boundary admitting A as a deformation retract,
and (M,A) has the same homotopy type as (M,N). Let P = M — N; then
0P = 0N = Pn N and P n N = M. By Theorem 4.2, (P,¢P) and (N,0N)
have the homotopy type of CW-complexes; this implies Theorem 4.4.

QED

Again compactness is an unnecessary restriction. There are also general-
izations of Theorem 4.4, to d-manifolds; for example A can be a closed neat
submanifold.

Exercises
*1. Let CP" denote complex projective n-space. Define g:CP" — R by the formula
’ olzo - - -+ 2] = YA/ Tlz

where z,, . . ., z, are complex homogeneous coordinates on CP* and the 4, are distinct
positive numbers. Then g is a Morse function of type (1,0,1,0, . . ., 1,0,1). Therefore CP~
has the homotopy type of a CW complex with 1 cell in even dimensions 0, 2,..., 2»
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and no other cells. Consequently

H(CP": G) = {(,Gothe::,ise 0 < k < 2nand kis even
for any coefficient group G.

2. A relative CW-complex (X,A) consists of a space X and a closed subspace A such
that X = O X,, with A = X_;, <« X, < ..., such that X, is obtained from X, _,

=1
by attaching n-cells. If f: M — [a,b] is an admissible Morse function of type (v, ..., %o
on a compact manifold M, then (M, f~ }(a)) has the homotopy type of a relative CW-
complex having exactly v, cells of dimension k, foreach k =0, ..., n = dim M, and
no other cells.



Chapter 7
Cobordism

.. . the theory of “Cobordisme” which has, within the few vears of its

existence, led to the most penetrating insights into the topology of differentiable
manifolds.

—H. Hopf, International Congress
of Mathematicians, 1958

Mathematicians are like Frenchmen: whatever you say to them they translate
into their own language and forthwith it is something completely different.

—Goethe, Maximen und Reflexionen

In this short chapter we present the elementary part of one of the most
elegant theories in differential topology, René Thom’s theory of cobordism.
It was largely for this work that Thom was awarded the Fields Medal in
1958.

We can partition all compact n-manifolds without boundary into equiv-
alence classes, two manifolds being equivalent if their disjoint union is the
boundary of a compact (n + 1}-manifold. The set R* of equivalence classes
becomes an abelian group under the operation of disjoint union. An analo-
gous construction with oriented manifolds produces an abelian group 2~
Thom [1] set himself (and largely solved) the problem of computing these
cobordism groups. Although their definition is very simple, it is not at all
obvious how to compute them, or even to determine their cardinality.

Thom’s work falls into two parts: first, proving that the cobordism
groups are isomorphic to certain homotopy groups; and second, computing
these homotopy groups. The second step requires a good deal of algebraic
topology and we cannot go into it; it is the first step we are concerned with.
Even though the proof yields no explicit calculations, it provides new insights
into the connections between manifolds, vector bundles, homotopy and
transversality.

1. Cobordism and Transversality
Two compact manifolds M, M, are called cobordant, denoted by M, ~
M, if there is a compact manifold W such that W =~ My, x 0 U M, x L.

Speaking loosely, this means that the disjoint union of M, and M, is the
boundary of W. We call W a cobordism from M, to M,. It is easy to see that
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for each dimension n this defines an equivalence relation, called cobordism,
on the class of compact n-manifolds without boundary. The set of cobordism
classes is denoted by M”; the cobordism class of M is [M].

An analogous equivalence relation, oriented cobordism, is defined for
oriented manifolds. Let «, be an orientation of M;; then (M y,w,) and (M ,,w,)
are cobordant if there is a compact driented manifold (W,0) and an orientation
preserving diffeomorphism

(8W,00) = (M, x 0,—wq) U (M, x L)

The set of these equivalence classes is denoted by Q".

1.1. Theorem. The operation of disjoint union makes N* and Q" into
abelian groups.

Proof. First of all, diffeomorphic manifolds are cobordant: if Mg =~ M,
then

Mo x OUM, x 1 %M, x I

(taking orientations into account where appropriate). The associative and
commutative laws follow easily. The zero element of the group is [V] for
any V which is the boundary of some compact manifold W. For, taking
M x I and W disjoint, we have

(MxOUV)UM x 1)=&M x U W)

Thus M U V ~ M.(We could take V = ) The inverse of [M] is [M]; the
inverse of [M,w] is [M,— w], as is seen by looking at M x I.

QED

We have defined two sequences of abelian groups, the oriented and non-
oriented cobordism groups. How can they be computed? Since we know ail
manifolds of dimension 0 or 1, the computation is easy in this case (Exercise
3); and it is also simple in dimension 2 once we have classified surfaces. But
this kind of head-on attack will not get very far.

For any topological problem it is always a good idea to try to bring maps
into play. Now we have already seen a useful connection between maps and
manifolds: if f:V — N is transverse to a submanifold A = N then f~*(A4)is
a submanifold of V. If we fix V, N and 4, and let f vary, we obtain a collection
of submanifolds of V.

Once we consider maps, we should think about homotopy. A natural
question is: if f, g:V — N are homotopic, how are f~!(4) and g~(A)
related? The following simple result is the key to cobordism:

1.2. Lemma. Let V, N be manifolds without boundary and A = N a
closed submanifold without boundary. Assume V is compact. If fg:V - N
are homotopic maps, both of which are transverse to A, then the manifolds
f~YA), g~ {(A) are cobordant.
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Proof. There is a homotopy H:V x I —» N from f to g, which we can
choose transverse to A. Then H ™ *(A4) is a cobordism from f ~'(A4) to g~ *(A).

QED

We thus obtain a map from the homotopy set [V,N] to N*, where n =
dim V — dim N + dim A. If we want to capture all of 9" in this way. we
must choose V to be a manifold in which all n-manifolds can be embedded.
Thus we take V = S™** with large k = dim N —~ dim 4. We now have a
map [S"*EN] - R

Suppose f:S"** » N is transverse to A. What can we say about the
submanifold f~'(4) = M < $"**? A most important fact is that the normal
bundle of M in S"** is the pullback under f of the normal bundle of A in N.
For by the definition of transversality, Tf induces a vector bundle map of
algebraic normal bundles: :

TS TM ——————T N/TA

. v ) \L
M 7 >4

It follows that the submanifold A = N must have the property that the
normal bundle ofany M® < $"** can be pulled back from the normal bundle
of A by some map M — A. Fortunately we have already constructed a pair
{N,A) with this property, namely (E, ,,G, ,) for s > n + k. Here G, , is the
Grassmann manifold of k-planes in R® and E, , is the total space of the
universal bundle y, , — G, , (see Section 4.3). As usual the base space is
identified with the zero section, so that G, , < E, ,.

For ease of notation we put E = E, ,, G = G, ,. Given a compact n-
dimensional submanifold M < $"** without boundary, let U < $*** be a
tubular neighborhood of M. Then, by Theorem 3.4 of Chapter 4, there is a

map of vector bundles
I
G

. U ‘

£4
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At this stage a new problem arises: we want g defined on all of $***, not
merely on the subset U. Moreover the extended map must not map any
new points into G, since it is essential that g~ !(G) =

Simple examples show that such an extension may not be possible. At
this point Thom introduces a deus ex machina: he adds a “point at infinity”
to E and maps S"** — U to the new point! This stroke of genius completely
solves the problem; it only remains to work out the technical details. We
do this in the next section.

Exercises
1. The operation of cartesian product of manifolds induces bilinear maps
Fx Q- Qs

These pairings are associative, and commutative in the sense of graded rings: if a € &',
Be @ the ap = (—1)"*/pa. There are similar bilinear pairings

m‘ X m} . m“’]
which are strictly commutative.
2. Every element of Rt has order 2.
323.0°=2Z,R° = Z,and ' = N* = 0.

4, Let n 2> 0 be an even integer. The “mod 2 Euler characteristic” defines a surjective
homomorphlsm N - Z,.

5. An orientable surface of genus p > 0 (as defined in Exercise 12, Section 1.3) is the
boundary of a compact oriented 3-manifold.

2. The Thom Homomorphism

Let & = (p,E,B) be a vector bundle over a compact manifold B without
boundary. The one-point compactification E* of E is the space E* = E u {0}
where o is & point not in E. Neighborhoods of co are complements in E*
of compact subsets of E. We also call E* the Thom space of the vector bundle

A fundamental property of E* is that E* — B is a contractible space. A
contraction to o0 is given by the homotopy

(E* —ByxI->E*-B

1+t .
— X, fo<g<t <, o)
(x,t)— (l - t)x ' x#
0, t=1o0rx = o0.
From the homotopy extension theorem we obtain:

2.1. Lemma. Let Y be a closed subset of a manifold Q. Then two maps
Q — E* — B which agree on Y are homotopic rel Y.
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Now let @ be a manifold and ¢:Q — E* a map. We say that g is in
standard form if there is a submanifold M < @ and a tubular neighborhood
U = Q of M such that U = g~ }(E), M = g~ (B), and the diagram

gUu E
l[

U >
is a vector bundle map. This implies: g 4 B and g(Q — U) = 0.

M —
glM

2.2. Lemma. Let Q be a compact manifold and B a compact manifold
without boundary. Then every map f:Q -» E* is homotopic to a map in stan-
dard form.

Proof. By a preliminary homotopy we assume f 4 B. Put M = f~(B);
let U = f~Y(E) be a tubular neighborhood of M and D c U a disk sub-
bundle. By Theorem 4.6.7 we can further assume that f agrees in D with a
vector bundle map ¢: U — E. Define a map

h:Q - E*

b= [ on U
Qoo on Q-U.

Then h agrees with f on D, and k is in standard form. Since h and f agree
on 4D, and both map Q — int D into the contractible space £* — B, it
follows from Lemma 2.1 that f ~ h.

QED

Let E, , — G, , be the Grassmann bundle; put E = E, ,, G = G, ;.

Let =, , . (E*)denote the (n + k)’th homotopy group of E* = E¥,; the base
point is co. The homotopy class of f:§"** — E* is denoted by [ f].

We now define the Thom homomorphism t(n; k,s} = t.%,, (E*) = N" as
follows. Let x € =, , ,(E*). By the transversality theorem there exists f € a such
that f:S"** — E* is transverse to G (or more precisely, f|(S"** — f™'(c0))
is transverse to G). By Lemma 1.2 the cobordism class of the manifold
J~XG) is independent of the choice of f. We define t{a) = [ f ~%(G)]. Thus
o) = [f7*(G)] where f o, f  G.

To see that 7 is additive, let a, 8 € n,(E*). According to one of the
definitions of addition in homotopy groups, we can define @ + § as follows.
Choose maps f € a, g € B, such that f maps the lower hemisphere of S*** to
o and g maps the upper hemisphere to co. Then a + B is the class of the
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map h which equals f on the upper hemisphere and g on the lower hemi-
sphere. We may assume that f, g and h are transverse to G. It is clear that
h~Y(G) is the disjoint union of f ~*(G) and g~ '(G), since these are in disjoint
open hemispheres. Therefore

tx + ) = [k~ 1G)]
=716 vg (6]
=[f7'@)] + [¢7 (0]
= ta) + ).
For oriented manifolds there is defined a similar Thom homomorphism
Tim, (B — 2.

Here £ = E, x is the total space of the vector bundle 7, , defined as follows.
The base space G = G, , is the manifold of oriented k-planes in R'; an
element of G is a pair (P,w) where P G and w is an orientation of the
k-plane P. Thus G is a double covering of G.
The vector bundle ¥, , is defined as the puilback of ¥, , by the covenng
map G = G, (P,w)— P. Thus an element of £ is a triple (P,0,x) comprising
a k-plane P < R, an orientation w of P, and a vector x € P. The bundle
projection of 7, x is the map

E- G, (P,w,x) — (P,w).

Notice that the bundle 7, , has a canonical orientation: the fibre over (P,w)
is oriented by w.
The oriented Thom homomorphism ¥ is defined as follows. Let x €

7+ o(E*). Then #a) = [ f~1(),0] where
[ B fHG, fex

and the orientation 8 of the manifold M = f~}(G) = §*** is defined as
follows. The normal bundie v of M is the pullback of the normal bundle of
G in E, which is just 3, ,. Orient v by the pullback of the canonical orientation
of 7, - Give S"** its standard orientation o; and then give M the unique
orientation 0 such that 8 @ v = g on Ty sk,

The following is the fundamental rheorem of cobordism:

2.3. Theorem (Thom). The Thom homomorphisms t(n; k,s) and T(n; k.s)
are:

(a) surjectiveif k > nands = k + n;

(b) injective (and hence bijective) if k > n + lands 2 k + n + 1.

Proof. For simplicity we deal only with the unoriented case. To prove
(a) let [M"] e N". We can assume M" < $"** by Whitney’s embedding
theorem. Let U < §*** be a tubular neighborhood of M". By 4.3.4 there
is a vector bundle map U — E, ,, because s > k + n. Extend this to the
map g:S"** —» E*, which sends S"** — U to . Clearly g h G, , and
g~ YG,.») = M". Hence 1([g]) = [M"}.
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To prove (b), suppose g:5"** - E?, is such that 1{[¢g]) = 0e N~ We
may assume g is in standard form by Theorem 2.2. Put ¢~ %G, ,) = M".
Then 1{[g]) = [M”] = 0, so that M bounds a compact manifold W**!. The
assumption k > n + 1 implies that the inclusion M"™ — S"** extends to a
neat embedding W™*! — D4+,

The tubular neighborhood U < $*** of M" (used for the standard form
of g) extends to a tubular neighborhood ¥ < D****! of W**! (see Theorem
4.6.4). By Theorem 4.3.4 the bundle map g:U — E, , extends to a bundie
map h:V —» E, ,,since s 2 k + (n + 1). We extend h over all of D**** ! by
mapping D"***! — ¥ to co. Since h|$*** = g it follows that [g] = 0.

QED

As was mentioned earlier we cannot go into the actual computation of
‘cobordism groups, nor can we discuss their important applications; but the
following remarks may indicate some of the power of Thom’s theory.

It is not hard to show that E* and E* are finite simplicial complexes. It
follows from the simplicial approximation theorem that they have countable
homotopy groups. Therefore the groups R* and 2° are countable—a
conclusion by no means obvious from their definitions. Using algebraic
topology it can be shown that in fact these groups are finitely generated.
This means that there is a finite set & of n-manifolds having the following
property: every compact n-manifold without boundary is cobordant to the
disjoint union of a finite number of copies of elements of <.

Much sharper results on the nature of the cobordism groups are known.
As a sample we quote without proof a truly remarkable theorem of Thom:

2.4. Theorem. Let n be a positive integer.

(a) If nis not divisible by 4 then the oriented cobordism group S is finite.

(b) If nis divisible by 4, say n = 4k, then £ is a finitely generated abelian
group whose rank is n(k), the number of partitions of k. Moreover:

(¢) A basis for the torsion-free part of {2** consists of all products of the
Jorm CP%+ x -+ x CP¥ withj, + - - +j,=kand1 <j, € <j <k

Thus the differentiable problem of computing cobordism groups has been
largely reduced to the combinatorial problem of computing ={k). This latter
problem is classical; unfortunately it has not been solved.

Exercises

1. (a) The space E} ; is homeomorphic to P*.

(b) The space E? | is homeomorphic to the space obtained by identifying two potnts
of §".

(¢) The space E} , is homeomorphic to S*.

2. Let E be the total space of a k-plane bundle over a compact manifold.

(a) If M is a manifold of dimension less than k, cvery map M — E* is homotopic
to a constant.

(b) The inclusion R* ~» E of a fibre extends to a map S* ~» E* which is not homotopic
to a constant.
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3. Two n-dimensional submanifolds M,, M, of a compact manifold V are called V-
cobordant if there is a compact submanifold W = V x [ such that

W=M;x0UuM, x I

This is an equivalence relation; the set of equivalence classes is denoted RYV).
*(a) Letdim V = n + k. The natural map ,:[V,E¥ ] = M(V) is surjective if k > n,
52 k + nand bijectiveifk>n+ s>k +n+ 1.
(b} Under what assumptions does the operation “disjoint union™ make R*(V) a semi-
group? A group?
{c) M(S"**)is a group for all n, k.

4, Let V be a Riemannian manifold. A framed submanifold (M",F} of V*** is a compact
submanifold M* c V, plus a family F = (F,,..., F,) of sections of 1,V such that
(Fy(x), ..., Fix)) are independent vectors spanning a subspace transverse to M,, for
all x e M. Two framed submanifolds (M,,F), {M,,F’) are framed cobordant if there is
a framed submanifold (W,G) = V x [ such that 6W = M, x 0Uu M, x 1, and
G|oW = F u F. The resulting set of equivalence classes is denoted FR(V**%),

(a) There is a natural map

u:[pmivk'st] —_ F‘(V’+i).
[Imagine $* = (R*)* = (E,)*]

{b) = is an isomorphism for all k, n.
{c) When k = 0 and V" is connected and oriented, there is a “degree” isomorphism
F{(V") = Z. Thus we recapture the isomorphism deg:[V",S"] = Z.

5. Let n = (p,E,B) be a fixed vector bundle over a compact manifold B, B = ¥. An
n-submanifold (M.f) = V of a manifold V is a pair (M,f) where M < V is a compact
submanifold and f is a bundle map from the normal bundle of M to n (this requires
dim = dim V - dim M). Two y-submanifolds (M,,f;) < V are n-cobordant if there is
an g-submanifold (W,f) <« V x I such that (W) = (Mofo) x O U (M, fy) x 1

(using an obvious notation). The set of n-cobordism classes corresponds bijectively to
the homotopy set [V,E*].

6. The bordism group 2*(X) of a space X is defined as follows. An element of @%(X) is
an equivalence class [ f,M] of maps f:M — X where M is a compact oriented n-
manifold without boundary, two maps being equivalent if they extend to a map
defined on an oriented cobordism between their domains. Taking X = a point gives
0", A homotopy class of maps g: X — Y induces a homomorphism of abelian groups
g4:82"(X) = Q"(Y), by composition with maps /M — X,

*7. There are natural homomorphisms Q%(X) » H,(X). For n = 1 these are isomor-
phisms.

8. There is a bilinear pairing
(X)) x (X)) - " (X)

induced by intersection of maps, when X is an oriented p-dimensional manifold.



Chapter 8
Isotopy

Let us think, say, of a surface or a solid made of rubber, with figures marked
upon it. What is preserved in these figures if the rubber is arbitrarily distosted
without being torn?

—F. Klein, Elementary Mathematics
Jrom an Advanced Standpoint, 1908

In this chapter we investigate more thoroughly the notion of isotopy.
introduced earlier for the tubular neighborhood theorem.

Intuitively speaking, we call two embeddings f, g: ¥ <. M isotopic if one
can be deformed to the other through embeddings; such a deformation is
called an isotopy. By itself this relation is not very useful. However, it is
usually true that the isotopy can be realized by a diffeotopy of M, that is,
by a one-parameter family h, of diffeomorphisms of M such that by = 1,
and h; f = g. In this case f and g embed V in M “in the same way™. It
follows, for example, that if f extends to an embedding F: W <, M, where
W o V, then g also extends to an embedding of W, namely h, F.

Thus in order to extend an embedding, it suffices to prove it is isotopic
to an extendable embedding. This extension technique is one of the main
uses of isotopy.

In Section 8.1 we prove the fundamental isotopy extension Theorem 1.3,
along with several variations and applications. Section 8.2 applies these re-
sults to the question of differential structure on the union of two smooth
manifolds which have been glued together along boundary components. In
Section 8.3 special isotopies are constructed for embeddings of disks, the
point being that there is only one way, up to isotopy and orientation, of
embedding a disk in a connected manifold. Diffeotopies of the circle are
also treated.

These results will be used in Chapter 9 to classify compact surfaces. They
are a basic tool in any attempt to analyze manifolds or embeddings. Several
applications are given in the exercises.

1. Extending Isotopies

~ Let V and M be manifolds. Recall that an isotopy from ¥ to M is a map
F:¥ x I — M such that for each ¢ € I the map

F:V - M, x — F(x,t)
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is an embedding. Intuitively, an isotopy is a smooth 1-parameter family of
embeddings.

The track of the isotopy F is the embedding
FVxI-Mx I,
(x,t) = (F(x,1),1).

Notice that F is level-preserving—it preserves the coordinate ¢. Eveéry level-
preserving embedding is the track of an isotopy.

If F:V x I - M is an isotopy we call the two embeddings F, and F,
isotopic; we also say that F is an isotopy of F,. If V is a submanifold of M
and F, is the inclusion, we call F an isotopy of V in M. When V = M and
each F, is a diffeomorphism, and F, = 1,, then F is called a diffeotopy or
an ambient isotopy. )

There is an important connection between diffeotopies of M and vector
fieldson M x I.Let F:M x I -+ M x I be the track of a diffeotopy F, so
that F is a level-preserving diffeomorphism. Each point of M x I belongs
to a unique arc F(x x I) for some x € M. The tangent vectors to these arcs
form a nonvanishing vector field X on M x I, which is carried by the
projection M x I — [ to the constant positive unit vector field on I. Thus
there is a map H:M x I — TM such that

Xe(yt) = (H(yp,h 1) e M, x R = T, ,(M x I).
The isotopy F is the flow @ of X, applied to M X O:

M = Mx0
F, o,
\L \L
M = x t

The horizontal part H of Xy is a special case of a time-dependent vector
field on M. By this is meant any map G: M x I — TM such that G(x,t) e M,;
we also require that G map M x [ into T(OM).

Not every time-dependent vector field G comes from a diffeotopy, for
there is no guarantee that the flow of the corresponding vector field X on
M x I is defined for all ¢t € I. The following diagram (Figure 8-1) shows
the solution curves of a vector field on R x [ which can be scaled to have
vertical component 1; but no solution curve goes from R x 0 to R x 1!

Since time-dependent vector fields are easy to construct, it is useful to
have a criterion which guarantees that they generate isotopies. One such
condition is the following. A time-dependent vector field G:M x [ - TM
has bounded velocity if M has a complete Riemannian metric such that
|G(x,t)| < K for some constant K. (Compare Exercise | of Section 6.2.)
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\
\

Figere 8-1. A vector fieldon R x 7.

1.1. Theorem. Let G be a time-dependent vector field on M having
bounded velocity. Then G generates a diffeotopy of M. That is, there is a unique
diffeotopy F:M x I — M such that

o (50 = GEsD)).

Proof. Let X:M x I -+ T(M x I)be the vector field X{x,t) = (G(x,1),1).
The projection into I of a solution curve of X isa curve of the form y+» y + .
Therefore all solution curves are defined on intervals of length <1. The
condition of bounded velocity implies that M has a complete Riemannian
metric in which all solution curves have finite length. Completeness then
implies that each solution curve lies in a compact set. This means solution
curves are defined on closed finite intervals, the endpoints of which map
into M x 0 and M x 1. It follows that for x € M there is a solution curve
of X having the form

t  (F(x20.0, 0<t< L

This defines the diffeotopy F. Uniqueness of F follows from uniqueness of
solutions of Lipschitz differential equations.

QED
The support of a time-dependent vector field G:M x I - TM is the set
Supp G « M which is the closure of
{xe M:G(x,t) # 0  for some tel}.

If Supp G is compact then G has bounded velocity. Therefore an im-
mediate consequence of Theorem 1.1 is:

1.2. Theorem. A time-dependent vector field which has compact support
.generates an isotopy. In particular every time-dependent vector field on a
compact manifold generates an isotopy.

The support Supp F < V of an isotopy F:V x I — M is the closure of
{x e V:F(x) # F(x,0) for some ¢t € I}.



We can now prove the following isotopy extension theorems:

1.3. Theorem. Let V c M be a compact submanifold and F:V x I - M
an isotopy of V. If either F(V x I} c M or F(V x I) ¢ M — 0M, then F
extends to a diffeotopy of M having compact support.

1.4. Theorem. Let U = M be an open set and A = U a compact set.
Let F:U x I = M be an isotopy of U such that F(U x I) € M x I is open.

Then there is a diffeotopy of M having compact support, which agrees with F
on a neighborhood of A x I.

Proof of Theorems 1.3 and 1.4. We first prove Theorem 1.4. The tangent
vectors to the curves

EBixxI1-MxI (xeU)

define a vector field X on F(U x I) of the form X(y,t) = (H(y,t),1). Here
H:F(U x I) - TM with H(y,t) € M. By means of a partition of unity we
construct a time-dependent vector field G:M x I - TM which agrees with
H on a neighborhood of 4 x I.(This requires F(U x I) to be open.) Since
A x I is compact, we can make G have compact support. The required
diffeotopy of M is that generated by G.

To prove Theorem 1.3 we start from the vector field X on Fv x D
tangent to the curves F(x x I). By means of a tubular neighborhood of
F(V x I) and a partition of unity, the horizontal part of X is extended to
a vector field Y on a neighborhood of £(V x I)in M x I. The hypothesis
on F allows us to assume that Y, ,, is tangent to (M) x I whenever x € M.
After restricting to a smaller neighborhood, the horizontal part of Y is
extended to a compactly supported time-dependent vector field G on M.
The diffeotopy generated by G completes the proof of Theorem 1.3.

QED

The following is a frequently used corollary of the isotopy extension
theorem.

1.5. Theorem. Let V < N be a compact submanifold. Let f;, fi:V o
M — OM be embeddings which are isotopic in M — ¢M. If f, extends to an
embedding N - M then so does f|.

Proof. There is an isotopy from the inclusion fo(V) « M — OM to
fifoLfolV) o M — 8M. Such an isotopy extends to a diffeotopy H of M
by 1.3. Thus H,:M — M is a diffeomorphism such that H,}fo(V) = /7',

orequivalently H, f; = f,. Thereforeif g: N ¢, M extends f,, then H g:N o
M is an embedding which extends f,.

QED

Compactness in Theorems in 1.3 and 1.4 can be replaced with the weaker
hypothesis of bounded velocity of the isotopy. If V < M is a submanifold,
an isotopy F:V X I — M has bounded velocity if M has a complete
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Riemannian metric with the property that the tangent vectors to the curves
t = F(x,n, have bounded lengths. We obtain:

1.6. Theorem. Let V — M be a closed submanifoldand F:V x I - M an
isotopy of V having bounded velocity. If either F(V x I) c éMor F(V x I) <
M — OM, then F extends to a diffeotopy of M which has bounded velocity.

1.7. Theorem. Let A — M be a closed set and U — M an open neighbor-
hood of A. Let F:U x I -+ M be an isotopy of U having bounded velocity,
such that F(U x I)isopenin M x . Then there is a diffeotopy G of M having
bounded velocity, which agrees with F on a neighborhood of A x I; and
SuppG <« F(U x I).

The proofs are left to the reader.

As a corollary of Theorem 1.7 we obtain the ambient tubular neighborhood
theorem:

1.8. Theorem. Let A « M be a closed neat submanifold and let U ¢ M

be a neighborhood of A. Then the A-germ of any isotopy of tubular neighbor-
hoods of A extends to a diffeotopy of M having support in U.

Proof. Since an isotopy of tubular neighborhoods leaves A pointwise
fixed, in some neighborhood of A it has bounded velocity and we can use
Theorem 1.7.

QED

A theorem analogous to Theorem 1.8 holds for collars on M. It has as
a consequence the following smoothing theorem, which allows us to change
certain kinds of homeomorphisms into diffeomorphisms (see Figure 8-2):

Figare 8-2. Smoothing the homeomorphism A.
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1.9. Theorem. For i = 0,1 let W, be an n-manifold without boundary
which is the union of two closed n-dimensional submanifolds M,, N, such that

M(('\N‘=6M‘=6N‘=I/i.

Let h: W, — W, be a homeomorphism which maps M, and N, diffeomorphically
onto M, and N, respectively. Then there is a diffeomorphism f:W, =~ W,
such that f(Mo) = My, f(No) = N, and f|V, = h|V,. Moreover f can be
chosen so as to coincide with h outside a given neighborhood Q of V.

Proof. Choose a tubular neighborhood 7, for V, in W,. This defines a
collar 7}M, on V; in M,, and 7|N, on V; in N.. We have another ‘collar
h(zo|M,) on ¥, in M, which is the collar induced from 7,[M, by h{M,. By
the ambient tubular neighborhood Theorem 1.8 we can isotop hjMqy: M, —
M, to a new diffeomorphism f':M, - M, f* = hon V,; and on M, — Q,
such that f"(to|M) has the same V;-germ as t,|M,. Similarly we can isotop
h|Nog:Ng = Ny to f":Ny — N, so that f” = hon ¥, and on N, — Q, and
the collar f"(zy|N) has the same V;-germ as 7,|N,. The map f* u f": W, —
W, is then the required diffeomorphism f.

QED

By choosing collars more carefully, we can even make f = h on M, (or
on M,).

Exercises
1. The relation “f is isotopic to g” is an equivalence relation on Emb®(M,N).

2. Iffy, fi:M o Nareisotopicandg,, g,:N o Wareisotopic, theng, 0,81 fi:M & W
are isotopic.

3. (a) f F:M x I — Nis an isotopy, the map I — Emb@(M,N), t = F,, is continuous.
(b) Conversely, every continuous map A:I -» Embg{(M,N) can be approximated by
maps u such that p()) = A(i), i = 0, |, and the map M x I = N, (x,1) b p(t)(x) is an
isotopy.
{c) Part (b), but not (a), is true for EmbQ(M,N).

4. The theorems of Section 8.1 are true for C” isotopies (supply the definition) and C
vector fields, 1 < r < cc. But some of them are false for C* isotopies.

*5. The equivalence classes of the relation “f is isotopic to g,” on Emb®(M,V), are
open sets ia the strong topology.

6. Let V < M be a submanifold. A k-isotopyof V (k = 2,3,...)isa(C*)map F:V x
I* - M such that for each t e /* the map F|V x t is an embedding. Similarly one
defines k-diffestopy of M. If V <« M — éM and V is compact, then every k-isotopy of
V extends to a k-diffeotopy of M with “compact support.”

7. (a) Let M be a compact n-manifold without boundary and f:M < R**! an embed-
ding. If L € GL{n + 1) has negative determinant then f is not isotopic to L = f. [Hint:
Consider the degree of the Gauss map y: M —~ $* where y(x) is the outward unit normal
vector at x e M)
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{b) The inclusion of S* ¢, R**! is isotopic to the antipodal embedding (x — —x)
if and only if n is odd.

8. Suppose IM" is compact. If M” embeds in RY, ¢ > 21 then every embedding ¢M™ —
Rf extends to M™.

*9, Let L = R? be obtained from a straight line by putting a small knot in it thus:

L) :

(a) There is an isotopy F, of L in R? such that F,(L) is a straight line R. [“Roll”
the knot to infinity.]

{(b) Such an isotopy cannot be ambient because R?* — L and R — R have different
fundamental groups.

10. Let f, g:M < V be homotopic embeddings. If 1 + dim ¥V > 2(1 + dim M), then
f and g are isotopic. [Let F:M x I — ¥ be a homotopy from f to g. Approximate
the map M x I - V x 1, (x,1) = (F(x,1),f) by an embedding H. Write H(x.1) =
{G(x,t),K(x,1)) € V x I. Then, assuming H(x,i) = F(x,i) for i = 0, 1, the map G:M x
I - V is an isotopy from fto g.]

*11. Let M, V be noncompact manifolds, M = 3V = . Let f, g:M < V be embed-
dings that are homotopic by a propermapM x [ - V.If1 + dim V > 2(1 + dim M)
then there is a proper ambient isotopy from f to g.

*12. Can the dimension restriction in Exercise 11 be weakened?

13. Let M be a compact submanifold of Q. Suppose 6@ = Fanddim Q > 2dim M +
2. If M is contractible to a point in Q then:

(a) M can be isotoped into any open subset of Q; and

{b) M lies in a coordinate domain.

14. Let M, N < §¥ be disjoint compact submanifolds. Suppose dim M + dim N <
d — 1. Then M and N can be geometrically separated by an isotopy. This means that
there is a diffeotopy of $* carrying M into the northern hemisphere £2 and N into the
southern hemisphere EX. [Assume d > 2 dim M + 2 Use Exercise 13 to isotop M into
E%,.. By general position choose the isotopy to avoid N. Extend to an ambient isotopy
of $Y — N having compact support; etc.]

*15. This exercise outlines a geometric proof of the “easy part” of the celebrated
Freudenthal suspension theorem of homotopy theory: the suspension homomorphism
Z:m (SN = n,,, (') is surjective if m < 2g and injective if m < 2g — 1. Here x,(SY)
is the set of homotopy classes of maps S™ —» S¥ {the group structure is irrelevant).
is defined as follows.

Given f:5™ — 8%, let If:S™*! —» $**1 coincide with f on the equator and map
the north and south poles S**! to the corresponding poles of S1**; and let If map
each great circle quadrant of S™*?, joining a pole to the equator, isometrically onto
a great circle quadrant of §**1,

(a) Amapg:5™*! - §**! is homotopic to a suspension if

ﬁm-ﬁl) I= E‘:l and dﬁ-—+l) - E'_*l.
(b) A map g:S™*! — $**! is homotopic to a suspension if g™ (north pole) =

int EX*! and g~ ! (south pole) < Int E=*". (For then g(ET*") < S**' — (south pole)
which deforms into E%'!; etc)
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(©) Ifm < 2q then Y :n,(S*) - m,,. ,(S**!) is surjective. [Assume the poles of S**1
are regular values; use (b) and Exercise 14.]

(d) If m < 2¢g — 1 then Y :n,(S) = 7, ,(ST*?) is injective. [Imitate the proof of
(c) to show that a homotopy from } (/) to }(g) is homotopic to the suspension of a
homotopy from f to g.]
16. The conclusion of Theorem 1.5 is true for isotopic embeddings V <, M.

*17. Figure 1-5 (p. 28) shows three surfaces in R3. There are diffeotopies of R? carrying
any one of them onto any other!

2. Gluing Manifolds Together

Suppose that P and Q are n-dimension J-manifolds and that f:6Q ~ oP
is a diffeomorphism. The adjunction space W = P | ), Q is a topological
manifold containing natural copies of P and Q. We can give W a differential
structure which extends the differential structures on P and Q. The object
of this section is to show that all such differential structures on W are
diffeomorphic.

For notational simplicity we identify P and Q with their images in W.
Let 9P = dQ = V. By means of collars on V in P and @, we find a homeo-
morphism of a neighborhood U < W of V onto V x R taking xe V to
(x,0), and which maps U n Pand U n Q diffeomorphically onto ¥ x [0,00)
and V x (- ,0], respectively. We give U the differential structure induced
by this homeomorphism. The required differential structure on W is obtained
by collation from P, @, and U.

In defining this differential structure on W, various choices were made.
The following result, called uniqueness of gluing, says that the diffeomorphism
type of W is independent of these choices. It merely restates Theorem 1.9.

2.1. Theorem. Let f:0Q ~ 0P be a diffeomorphism. Let a, § be two
differential structureson W = P | J; Q which both induce the original structure
on P and Q. Then there is a diffeomorphism h: W, ~ W, such that h|P = 1,.

This theorem is somewhat unsatisfying in that there is no canonical
differential structure on P | J, Q; there is only a canonical diffeomorphism
class of structures. Differential topologists generally ignore this, and treat
P\, Q as a well-defined differentiable manifold. Since it leads to no trouble
and saves a good deal of writing, we shall follow this practice.

The following is a useful criterion for diffeomorphism of two glued
manifolds:

2.2. Theorem. Let f,:0Q, ~ 0P and f,:0Q, ~ dP be diffeomorphisms.
Suppose that the diffeomorphismf ; 'f,:0Q, ~ 8Q, extends to a diffeomorphism
h:Qo = Q|. Then P Ufo Qo = P Ufl Ql'

Proof. A map
'1’:P Ufo QO ~ P U!: 2,
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is well-defined by ¢|P = 1., ¥|Qy = h. Now apply Theorem 1.9 and the
remark following it.

QED
An important special case is:

2.3. Theorem. Let f,g:0Q =~ 0P be isotopic diffeomorphisms. Then
P Uf Q 0 P U‘ Q.

Proof. g~ 'f is isotopic to the identity of Q. The isotopy can be spread
out over a collar on 8¢ and then extended to a diffeomorphism of Q which
is the identity outside the collar. Now use Theorem 2.2.

QED

3. Isotopies of Disks

The following useful result says that, except perhaps for orientation, there
is essentially only one way to embed a disk in a connected manifold.

3.1. Theorem. Let M be a connected n-manifold and f, g: D* < M embed-
dings of the k-disk, 0 < k € n. If k = n and M is orientable, assume that
f and g both preserve, or both reverse, orientation. Then f and g are isotopic.
If f(D*) U g(D*) =« M — OM, an isotopy between them can be realized by a
diffeotopy of M having compact support.

Proof. We shall use repeatedly the fact that isotopy is an equivalence
relation on the set of embeddings.

First assume 0M = .

Since M is connected, the embeddings f[0, g/0:0 — M are isotopic: by
Theorem 1.3 they are ambiently isotopic. Therefore we may assume f(0) =
g(0).

Let (@,U) be a chart on M at f(0) such that ¢(U, f(0)) = (R",0). We
can radially isotop f and g to embeddings in U; consider, for example, the
isotopy

() f({1 —t+tex), xeD 0<1<]1,
for sufficiently small ¢ > 0. Therefore we assume
fIDY v g(D*) < U.

If k = n we can further assume that f and g both preserve or both re-
verse orientations, as embeddings into the orientable manifold U. If M is
orientable this follows from the hypothesis. If M is not orientable we can
replace f, if necessary, by an isotopic embedding obtained by isotoping f
around an orientation reversing loop based at f(0).

It suffices to show that ¢f, @g:D* — R” are isotopic. If k = n we can
assume, by proper choice of ¢, that both embeddings preserve orientation.
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Moreover we can also assume, for any &, that ¢f and @g are linear: any
embedding h:D* — R" with h(0) = 0 is isotopic to a linear one by the
standard isotopy (see proof of Theorem 4.5.3):

t~ 1 h(tx), 1z2t>0
() = {Dh(O)x, t=0.

If @f and ¢g are linear, and k = n, then their determinants are both
positive, by our orientation assumptions. Hence they are restriction of maps
in the same component of GL(n). A smooth path in GL(n) provides the
required isotopy. If k < n, we can first extend f and g to linear automor-
phisms of R" having positive determinants and then use a path in GL(n).
This finishes the proof when dM = .

If 6M # @, first isotop f and g into M — M by isotoping M into
M — OM; this is easily accomplished with a collar on M. Then apply the
previous constructions to f, g:D* - M — oM.

QED

An argument similar to the proof of Theorem 3.1 applies to embeddings
of a disjoint union of disks. The following result about pairs of disks gen-
eralizes readily to any number of disks.

3.2, Theorem. Let M be a connected n-manifold without boundary. Suppose
that f,9,:D" =+ M (i = 1, 2) are embeddings such that

LD 0 DY) = & = g4(D") n goD").

If M is orientable suppose further that f;, and g, both preserve, or both reverse,
orientation. Then there is a diffeomorphism H:M — M which is diffeotopic to
the identity such that Hf; = g;{i = 1, 2).

Proof. By Theorem 3.1, f; and g, are ambiently isotopic. Hence there is
a diffeomorphism H, of M, diffeotopic to the identity, with H, f; = g,. We
now apply Theorem 3.1 the embeddings

H\ f3,9::D" & M" — g,(D").

There is diffeomorphism H, of M" — g,(D") such that H,H,f;, = g,,
and H, is isotopic to the identity by a diffeotopy with compact support.
Such a diffeotopy extends to all of M so as to leave g,(D") fixed. Therefore
H, extends to a diffeomorphism of M which is diffeotopic to 1, and such
that H,g, = g,. The theorem is proved by setting H = H,H,

QED
Finally we consider diffeotopies of the circle.

3.3. Theorem. Every diffeomorphism of S! is isotopic to the identity or to
complex conjugation. Therefore every diffeomorphism of S' extends to a
diffeomorphism of D?.
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Proof. Let f:S' — S' be a diffecomorphism. First suppose f has degree
1. By a preliminary isotopy we may assume f is the identity on some open
interval J « §'. Let J' < S! be an open interval such that J u J' = S'.
Identify J* with an interval of real numbers. An isotopy from f to the identity

is given by i ;
XxX€
Hx) = {tx +0~-0fx) if xed.

Now suppose deg f = —1. Let :5' — S! be complex conjugation.
Then deg(fd) = 1 so f4 is isotopic to the identity by an isotopy g,. Then
g0 is an isotopy from f to 8.

QED

3.4. Corollary. Let M be a compact 2-manifold without boundary admit-
ting a Morse function having only 2 critical points. Then M = S2.

Proof. By Theorem 5.6.4 (and its proof) M is the union of two 2-disks
glued along their boundaries. We may take the disks to be the upper and
lower hemispheres of §2; by Theorem 3.3 we may take the gluing map to
be the identity. The result now follows from Theorem 2.3

Exercises

1. Anembedding f:S*~? c, M is unknotted if f extends to an embedding of D*.

(a) f is unknotted if and only if there is a chart ¢:U — R" on M and an isotopy
F of fsuch that oF | :S*~' ¢, R"is the standard inclusion.

(b) An embedding f:S' ¢, R* is unknotted if and only if there is a compactly
supported isotopy of R* carrying f to the standard inclusion.

(c) Let M be a simply connected 4-manifold. Then every embedding S* <, M is
unknotted.

2, The orthogonal group (Xn) is a deformation retract of Diffp{R"), 1 € r < x.

3. If M is an orientable manifold denote by Diff, (M) the group of orientation preserving
diffeomorphisms. Let G < Diff, (S) be the image of Diff,(D"* ') under the restriction
homomorphlsm
-i-(a) If f e Diff ,(S7) is isotopic to the identity, then f € G:

. (b) Let g, he Diff ,(S"). Then g and k are isotopic to diffeomorphisms &, r which
are the identity on the upper and lower hemispheres, respectively; this implies ur = ru.
{& {(c) The qtioumt group I, = Diff,(S")/G is abelian.
S ry={0

""(e) l", = {0} (Smale [2]; Munkres [2]) [Hint: Let f € Diff .(§). By an isotopy
assume f is the identity on a hemisphere. It now suffices to show that a diffeomorphism
g of R?, having compact support K = R?, is isotopic to the identity through such diffeo-
morphisms. The unit tangents to images of horizontal lines form a vector field X on
R? which is constant outside K, and X is homotopic to a constant ret R? — K. By the
Poincaré-Bendixson theorem, such a homotopy gives rise to an isotopy of ¢.]

Remark. These groups I'; are important in classifying differential structures. The set
of diffeomorphism classes of oriented differential structures on §' forms a group under
connected sum. This group is isomorphic to I'; except pcrhaps for i = 4. It is known
that the I'; are finite for all i. The first nontrivial group is 'y = Z,4. For an interesting
(and difficult 1) Morse-theoretic proof that I'y = {0} see J. Cerf[1].



Chapter 9

Surfaces

Un des problémes centraux posés a I'esprit humain est ie probiéme de la
succession des formes.

—R. Thom, Stabilité Structurelle
et Morphogénése, 1972

Concerned with forms we gain a healithy disrespect for their authority . . .

—M. Shub, For Ralph, 1969

A surface is a two-dimensional manifold. The classification of compact
surfaces was “known,” in some sense, by the end of the nineteenth century.
Mabius [1] and Jordan [1] offered proofs (for orientable surfaces in R?)
in the 1860’s. Mdbius’ paper is quite interesting; in fact he used a Morse-
theoretic approach similar to the one presented in this chapter. The main
interest in Jordan's attempt is in showing how the work of an outstanding
mathematician can appear nonsensical a century later.

Of course in those days very few topological concepts had been developed.
Both Jordan and Md&bius considered two surfaces equivalent if they could
be “decomposed into infinitely small pieces in such a way that contiguous
pieces of one correspond to contiguous pieces of the other.” The difficulties
of trying to prove anything on the basis of such a definition are obvious.

The main idea in classifying surfaces goes back to Riemann: cut the
surface along closed curves, and arcs joining boundary points, until any
further cuts will disconnect it. The maximal number of cuts which can be
made without disconnecting the surface, plus 1, was called the connectivity-
by Riemann. Thus a sphere or disk has connectivity 1, or is simply connected;
an annulus has connectivity 2; a torus has connectivity 3; and so on. What
Mébius and Jordan tried to prove is that two compact connected oriented
surfaces are homeomorphic if and only if they have the same connectivity
and same number of boundary circles.

Riemann proved, more or less, the subtle fact that every maximal set of
non-disconnecting cuts has the same cardinality. It seems strange that neither
Riemann nor anyone else in the nineteenth century, except perhaps Mobius,
seems to have realized the necessity for proving that the connectivity of a
compact surface is in fact finite.

If one grants the finiteness of the connectivity, the classification reduces
to that of simply connected surfaces. The latter is another deep result, for
which the nineteenth century offers little in the way of proof.

188
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The connectivity is an intuitively appealing concept, but perhaps for
this very reason, it is hard to work with. It is best treated by means of
homology theory (see Exercise 17 of Section 9.3).

It turns out that every compact connected surface A is diffeomorphic
to one obtained as follows. Punch out a number v of 2-disks from $%: glue
in g cylinders (if M is orientable) or ¢ M6bius bands (if M is nonorientable).
The number g, called the genus of M, is uniquely determined by M. The
diffeomorphism class of M is characterized by its genus, orientability, and
number of boundary components.

The proof of this classification is structured as follows. In Section 9.1
model surfaces are constructed and analyzed. The hardest step is in
Section 9.2: the proof that a surface is a disk if it has an admissible Morse
function with 2 minima, 1 saddle and no other critical points. The proof
given extends to higher dimensions. The classification is completed in
Section 9.3 by induction on the number of saddles of a Morse function on
the surface.

1. Models of Surfaces

Here is a2 way of constructing a surface. Start with a surface M and an
embedding

1:8° x DX M — oM.

The image of f is a pair of disjoint disks in M. Now cut out the interior of
these disks and glue in the cylinder D' x S' by f|S° x S*. This produces
a new surface M':

M =[M — Int f(S° x DY)}{J, D* x S'.

We give M’ a differential structure inducing the original structure on
M — Int f(S° x D?) and D! x S'. By Theorem 8.2.1, this structure is
unique up to diffecomorphism. We shall pretend that M’ is a well-defined
differentiable manifold and write M’ = M[ f]. We say M’ is obtained from
M by atraching a handle, or by surgery on f.

1.1. Theorem. Let M be a surface and let f, f,:S° x D* - M — ¢M
be isotopic embeddings. Then M[ fo] =~ M[f;].

Proof. By the isotopy extension Theorem 8.1.3 there is a diffeomorphism
@:M — M such that ¢fy = f;. Put M — Int f{S® x D) = Q,, i=0, 1.
Put

9 = f1'100::00; ~ S° x S*.
Then
M[fo] = (D' x ') s Qo
M[fl] = (D} x Sl) Uv: Q..
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O () ()

Figure 9-1. Connected sum of 3 tori.

nonorientable surface. Note that 8B ~ §'. Any surface diffeomorphic to B
is also called a Mobius band.
1f M is any surface without boundary then

M#P=x~(M—IntD)\J,B

where D « M is a disk and f:0B ~ dM is arbitrary. This is because the
projective plane is obtained by gluing D? and B along their boundaries.
The image of B in M # P is also called a crosscap, especially when
we think of it as obtained as above by gluing. A nonorientable surface of
genus p 2> 1 is also called a sphere with p crosscaps attached.
An easy computation shows that the Euler characteristic of a non-
orientable surface of genus pis 2 — p.

1.6. Theorem. Let M, N be nonorientable surfaces of genus p, q respec-
tively. Then M =~ N ifand only if p = q.

Proof. Left as an exercise.

A nonorientable surface of genus 2 is called a Klein bottle. It can be
obtained from a sphere by attaching a handie by any nonorientable
embedding §° x D? - §2.

Let M be a connected noncrientable surface without boundary. Let
f:8° x D! s M and consider M[ f]. We may suppose the image of f is
contained in the interior of a small disk D = M. Thus M[f] is obtained
by gluing together M — Int D and D[] along their boundaries. If we
identify D with a hemisphere of S?, and reinterpret f as an embedding
g:5° x D* - §?, we find that M[ f] ~ M # S*[g]. Now S*{[g] is a torus
if g is orientable, and Klein bottle otherwise; and the orientability of g is
the same as that of f:S° x D? ¢, D. But since M is nonorientable, we can
isotop f(1 x D?)around an orientation reversing loop. This leads to another
embedding f,:S° x D?> - D which is isotopic to f in M, and which is
orientable if and only if f is nonorientable. Thus

Mf]~M # S[f]1~ M # S*[fi]

where S2[f] is a torus and S2[f,] is a Klein bottle. Since a Klein bottle
is a sphere with two crosscaps, this proves:
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1.7. Theorem. Attaching a handle to a connected nonorientable surface
is the same as attaching two crosscaps. Therefore attaching a handle to a

nonorientable surface of genus p produces a nonorientable surface of genus
p+2

A dual result is:

1.8. Theorem. Let M be an orientable surface of genus p. Attaching a
crosscap to M yields a nonorientable surface of genus 2p + 1.

Proof. This is clear if p = 0. If p > 0 consider M as the connected
sum of p tori. Then M # P is the same as P with p handles, and the preceding
resuit applies.

QED

We now construct models of d-surfaces by simply cutting out the interiors
of a number k > 0 of disjoint disks from an orientable or nonorientable
surface M of genus g. The result is called a d-surface of genus g with k
boundary components. By isotopy of disks (Section 8.3), the diffeomorphism
class of such a surface depends only on M and the number of disks.

By a model surface we mean a surface or d-surface of genus g, orientable
or nonorientable. In Section 9.3 we shall show that every compact connected
surface is diffeomorphic to a unique type of model surface.

It is clear that two model surfaces are diffeomorphic if and only if (a) they
have the same genus and the same number of boundary circles, and (b) both
are orientable or both are nonorientable.

If a model surface M has genus g, and dM has b components, then its
Euler characteristic yis2 — 2g — bif M is orientable, whiley =2 — g — b
if M is not orientable. (See Exercise 7, Section 5.2) This proves:

1.9. Theorem. Two model surfaces are diffeomorphic if and only if they
have the same genus, the same Euler characteristic, and the same number
of boundary components.

Exercises

1. An orientable surface of genus p contains p disjoint circles whose union does not
separate the surface.

2. A nonorientable surface of genus p contains p disjoint circles each of which reverses
orientation,

3. Let C <= M be acircle in a surface M without boundary, which does not disconnect
5M’
(a) If C reverses orientation, it has a Mobius band neighborhood and there is a
surface N such that M = N # P2
(b) Thereisacircle C' = M meeting C transversely, and at only one point. Moreover:
(¢) C u C has a neighborhood N = M diffeomorphic to T — Int D where D is a
disk in the torus T. Consequently M ~ W # T? for some surface W.
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The diffeomorphism gy 'ge:0Q, — 0Q, extends to the diffeomorphism
©:Qy ~ Q,. The theorem follows by Theorem 8.2.2.

QED

1.2. Corollary. Let M be a connected surface. If M is nonorientable,
all surfaces obtained by attaching a handle to M are diffeomorphic.

Proof. Use Theorem 8.3.2.

QED

We give S° x D? its product orientation. This means that 1 x D?
is oriented like the standard orientation of D2, while (—1) x D? is given
the opposite orientation. This orientation of S° x D? induces an orientation
of $% x S! which is the same as it receives as d(D! x §'), where D! and S!
are given their standard orientations.

Let M be a surface, and let f:S° x D? -» M be an embedding. If M
can be oriented so that f preserves orientation, we call f an orientable
embedding. In all other cases f is nonorientable. 1t is easy to prove:

1.3. Theorem. M f] is orientable if and only if f is orientable.

A connected manifold is called reversible if it is orientable and admits
an orientation reversing diffeomorphism.

1.4. Theorem. Let M be a connected surfaceand f,g:58° x D* -~ M — M
embeddings. Then M[ f1 ~ M{ g] in the following cases:

(a) M is nonorientable;

(b) M is oriented and f and g both preserve or both reverse orientation;

(¢) M is reversible and both f and g are orientable.

Proof. Part (a) has already been proved (Corollary 1.2). Part (b) follows
from Theorem 8.3.2. To prove (c) it suffices to consider the case where M
is oriented so that f preserves and g reverses orientation [since other cases
are covered by (b)]. Let h: M — M reverse orientation. Then M{hg] =~ M[f]
by (b). We must prove M{hg] ~ M[g]. Let p:S° x D* -+ S° x D? be the
orientation reversing diffecomorphism p(x,y) = (—x,y). Then M[hg] =~
M[gp]. But since p|S® x S! extends to a diffeomorphism of D' x §%, it
follows from Theorem 8.2.2 that M{ gp] ~ M[g].

QED

1.5. Lemma. Let M be a reversible surface and {:S° x D* - M — oM
an orientable embedding. Then M{ f] is reversible.

Proof. Let h: M — M be an orientation reversing diffeomorphism. Let
p:8° x D* = 8% x D? be an orientation reversing diffeomorphism such
that p|S® x S! extends to a diffeomorphism p of D* x S'.

By ambient isotopy of disks, there is a diffeotopy of M carrying & to
a diffeomorphism g:M — M such that gf = fp. Note that g reverses
orientation, ,
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Consider the map ¢:M[f] — M[ f] which is p on D' x §* and ¢
on M — Int f(S° x D?). Clearly ¢ is an orientation reversing homeo-

morphism. By uniqueness of gluing (Theorem 8.2.1) ¢ can be made into a
diffeomorphism.

QED

We now define an important class of surfaces. Let p > 0 be an integer. An
orientable surface M is of genus p provided M can be obtained from S? by
successively attaching handles p times. That is, there must exist a sequence of
orientable surfaces M, ..., M, and orientable embeddings f;:5° x D* = M, _,,
i=1,...,p(if p > 0) such that '

Mo = Sz, Ml' ~ Mi-l[ﬁ]’ M’ = M.

Thus each M; has genus i Later we shall also define nonorientable surfaces
of genus p.

Induction on p shows that an orientable surface of genus p is compact,
connected and reversible (use Theorems 1.3 and 1.5). It has Euler character-
istic 2 — 2p (use Exercise 8, Section 5.2). Therefore orientable surfaces of
different genus are not diffeomorphic. On the other hand induction on p and
Theorem 1.4(c} shows that two orientable surfaces of the same genus are
diffeomorphic.

In Section 9.3 we shall prove the main theorem of surface theory: every
compact connected orientable surface has a genus.

Starting from two connected surfaces M, N without boundary, we
construct the connected sum of M and N as follows. Take M and N to be
disjoint. Let f:8° x D?> - M u N be an embedding with f(1 x D¥) c M,
Jf(-1 x D) < N.Let W= (Mu N)f]

The diffeomorphism class of W is independent of f provided at least
one of M, N is nonorientable or reversible. In such a case we pretend W is
a well-defined manifold and write W = M # N.

We can also view M # N as formed by gluing together M — Int B and
‘N — Int D by a diffeomorphism D ~ 3B, where B M and D < N are
disks.

The connected sum of higher dimensional manifolds can be defined
analogously.

Clearly M, # M, is orientable if and only if both M, and M, are orient-
able. It is easy to prove that if M, is an orientable surface of genus p; then
M, # M, is orientable with genus p, + p,. In particular an orientable surface
of genus p = 2 is the connected sum p tori (Figure 9-1).

We turn to models of nonorientable surfaces. Let P denote the projective
plane. A nonorientable surface of genus p > 1 means any surface diffeo-
morphic to the connected sum of p (disjoint) copies of P. Such a surface is
nonorientable.

The Mébius band B is the surface which is the quotient space of
$' x [—1,1] under the identifications (x,y) ~ (—x,—¥). It is the simplest
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4. (a) Every orientable surface of genus p bounds a compact 3-manifold.
{b) A nonorientable surface of genus p bounds a compact 3-manifold if and only
if p is even. {Use Exercise 7, Section 5.2.]

5. The complex projective plane is not reversible. [See Exercise 18, Section 5.2.]
6. Not every 3-manifold is reversible.
7. Let M be an n-manifold without boundary. Then M # §" ~ M.

8. Let f:S* — M be a loop in a surface M. Then f preserves orientation (in the sense

of Section 4.4) if and only if #,(ff) = 0 (see Exercise 4, Section 5.2 for the mod 2
intersection number # ).

2. Characterization of the Disk

The following result is the key to the classification of surfaces.

2.1. Theorem. Let f:M — R be an admissible Morse function on a
compact connected surface M. Suppose f has exactly 3 critical pomts, and
these are of type 0,0, 1. Then M ~ D2

The strategy of proofis as follows. First we find another functiong: N —» R
of the same kind, on a surface N which we know is diffcomorphic to D2,
Then we construct a homeomorphism from M to N using level curves
and gradient lines of the two Morse functions. This homeomorphism is
then smoothed to a diffeomorphism.

Before beginning the proof we discuss a method of cxtendmg diffeo-
morphism.

Let M, be a complete Riemannian manifold, i = 0, 1, and f;:M; - R
a map. For x € M, let A(x) = M, be the maximal solution curve through x
of the vector field grad f;.

Let U; « M; be open and let G:U, =~ U, be a diffeomorphism having
the following properties: for all x € U,

(1) fiG(x) = fo(x), and
Q) G(Uy n Agx)) = Uy A A{Gx).

We say that G preserves level surfaces and gradient lines.
Let UF < M, be the saturation of U,, under the flow of grad f, that is:

U* = Uxelh/li(x)'

2.2. Lemma, In addition to the above, suppose also that for each x € U,,
() folAe(x)) = fi(A,(f(x)));

(b) Ag(x) N Uy is connected.

Then G extends to a unigue diffeomorphism G = U} =~ UT which satisfies
(1) and (2).

Proof. Any critical points of fy in U} are already in U; thus G is already
defined in a neighborhood of such points. If x € Ul — U,, then Ag(x)
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contains a point y € U,. Define

G(x) = A4,(Gy) N [T (folx)).

The intersection is nonempty by (a); it contains only one point since f,
is monotone on gradient lines; and G(x) is independent of y by (b}

It remains to prove that G is C®. Let x € U$; put G(x} = y. Then from
commutativity of the diagram

A

Ao(v“) >A,(»)

we see that
G,Ao(x) = [fllAl(.}’)]"l e [fole‘x)]-
Thus G|A(x) is C*. That G is globally C* follows from the fact that the
gradient flows are C*.
QED

Notice that Lemma 2.2 is also true if U, and U, are open subsets of
level surfaces ((b) is then trivial). The proof is the same.
Next we study the model function

g:R* >R
x* x*
gy =7 ~5 - x +y

=J:t(t+ It — 2)dt + y2.

The critical points of g are at (0,0), (- 1,0), (2,0). They are nondegenerate,
of types 1, 0, O respectively. Note that the three critical values are distinct.

2.3. Lemma. g~ '(c) is connected ifc > 0

Proof. Note that g is proper, 30 g~ '(c) is compact. One component of
the critical level g~*(0) is a figure 8, and each loop of the figure 8 encloses
one of the two (local) minima of g. Any other component of g~ }(0) would
be a circle enclosing another minimum, which is impossible. Therefore
g~ 1(0) is connected. If ¢ > 0, each component of g~ '(c) is a circle enclosing
a minimum. But one component encloses g~ *(0), hence it encloses both
minima. Therefore g~ '(c) has only one component.

QED
24. Lemma. If £ > 0,97 (- 0,¢] =~ D2
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Proof. Tt suffices to prove this for some large ¢, by the regular interval
Theorem 6.2.2. We shall show that if ¢ is large then each ray from (0,0)
meets the curve g~ (&) transversely. Since g~ !({) is connected, this will
mean g~ }(— c0;£] is star shaped, and thus prove the lemma. Since grad f is
perpendicular to g~ (£), it suffices to show that if |x|*> + |y|? is large enough
then

<grad flx,y), (x.y)> # 0

<grad f(x,y), (x.y))

But

<(X3 - x? - 2x’2y), (x’y)>
= x}x? — x — 2) + 2)?

which is positive if x > 2ory > 3.
QED

Now consider the gradient flow &, of g, given by the system of differential
equations

dx
dt
dy
5=

These can be easily solved (see Figure 9-2). It is clear that the x-axis and
y-axis are invariant. The stationary points of the flow are of course the
critical points of g. There*are two sources, {— 1,0) and (2,0); and one saddle,
(0,0). The flow lines are orthogonal to the level curves g = constant.
Ify#0,0ry=0and x <1 orx> 2, then |®(x,y)| = ¢ as t = c0.
If~-1<x<00r0 < x < 2then @,(x,0) - (0,0)as t — co. :

=x¥ - x? - 2x

Figure 9-2. Levels and gradients.
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As t = —oo, lx,y) = (—1,0) if x < 0; to (0,0) if x = 0; and to (2,0}
ifx > 0.

Now let f:M — R be as in Theorem 2.1. Let q, b, c € M be the three
critical points of f, with a and ¢ local minima and b a saddle. By slightly
perturbing f near a and ¢, if necessary, we can assume that f(b) > f{(a) > f(c)-

Let 2:R — R be a2 diffeomorphism such that

Afl@) = -4 = g(~1,0),
Hf(B) = 0 = g(0,0),
Af(e)) = ~% = ¢g2.0)

The map A° f:M — R is a Morse function having the properties listed in
Theorem 2.1. Therefore we may assume that f(a) = g(—1,0), f(b) = g(0.0),
fle) = ¢(2,0).

Set& = f(dM) > 0. Then ¢ is the maximum value of f, and f ~ (&) = éM.

We first prove that M is connected. By the regular interval Theorem 6.2.2
it suffices to prove that f~3(e) is connected for some ¢, 0 < £ < £, since
oM =~ 7).

Give M a Riemannian metric induced by Morse charts near critical
points. Let F, be the flow of —grad f; then F,:M — M is defined for all
t > 0. For each x € M the limit X = lim,.., F(x) is one of the three critical
points. The sets

W, ={xeM:X = a},
W, = {xeM:X = c}
are disjoint open sets.

- A glance at a Morse chart near the saddle b shows there are only two
nonconstant trajectories limiting at b, and these intersect f~!(¢} in two
points, say ¢,, g,. Moreover the set {g,,9,} is the common boundary in
S7Ye) of f7Ye) »n W, and f () » W.. No component of (¢} can be
entirely in W,, for if it were, W, would be a component of M, contradicting
connectedness of M. Similarly for W.. Therefore each component of f ™ !(¢)
must be separated by a subset of {g,.4,}. Since a single point cannot separate,
each component contains both ¢, and g,. Hence there is only one component.

Let ¢:U — R? and : ¥ — R? be Morse charts for f and g at b and
(0,0). We may assume that ¢(U) = (V). Put

H = (p—!#l:V—»M.

Then H maps V diffeomorphically onto U, preserving level surfaces (i.c.,
gH = f). We can choose ¥ so that M has a Riemannian metric making H
an isometry (where V inherits the standard metric from R?). Then H also
preserves gradient lines.

We also choose ¥V so that V meets each g-gradient line in a connected
set; for example, ¥ = Int B, for small é > 0. It then follows from Theorem 2.2
that H extends to a diffeomorphism H:V* = U* between the saturation
of V and U, preserving levels and gradients.
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We can choose y so that H has the following property: as t —» — oo,
the grad f trajectory of H(p) tends to a or ¢, respectively, according as the
grad g trajectory of p € ¥* tends to (~ 1,0) or (2,0).

Fix a real number & such that

9(20) < g(—1,0) < a < ¢g(0,0) = 0.

Let D, D' be the components of the minima { — 1,0), (2,0) respectively, in the
submanifold g~ !(— o0,2] = R% Morse’s lemma implies that D and D’ are
disks. Observe that 0D and 0D’ are components of level curves.
Let ¢ > 0 be very small. Let B, « R? be the square |x| <&, |y < e
Let B* denote the saturation of B, under the gradient flow of g.
Define
P, = [B} — Int{D u D'}] n g™ (— 0]

Figure 9-3.

See Figure 9-3. If ¢ is sufficiently small then B, = V and P, « V*; and
also the sets

A=P,nD=P,naD,

A =P,nD =P, ndD

are (compact) arcs. Fix such ane.

Let I, I'" be the components of a and ¢ respectively in f~'(c0,a]. Then
I and I are disjoint disks.

The diffeomorphism H:V* = U* embeds the arcs 4, 4’ in the circles
or, oI'" respectively. There are diffeomorphisms D ~ I', D' =~ I'" which agree
with H on A, A'. To see this, identify D and I" with D? via diffeomorphisms
in such a way that H|A is transformed into an orientation preservmg
embedding H, of an arc B « dD? into 8D2. By isotopy of disks, H,, is isotopic
to the inclusion of B in D?, and by isotopy extension H, therefore extends
to a diffcomorphism of D2. Hence H extends to a diffeomorphism D ~ I,
and likewise for D’ and I

In this way we obtain a diffeomorphism
GDuD==Irvur
GD)=1T, G(D) =TI"
We now extend the restriction
G:éDvu oD = ar v or
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to a diffeomorphism of saturations
F:(6D v éD’)* — (@I’ v ar’)*,

such that F preserves level curves and gradient lines. For this we use
Lemma 2.2 and the remark following its proof.
Notice that F and H agree on

@D v aD’)* A P,

since they agree on 4 U A’, and both preserve level curves and gradients.
Define a map
: K:g~Y{-0f] M
by
G in bubD
K=<{H in P,
F  elsewhere.
Then K is well defined. It is easy to see that K is surjective and injective,
hence K is a homeomorphism. Moreover K maps D u D' and g~ (- 0,¢] —
Int(D v D) diffeomorphically.
From the smoothing Theorem 8.1.9 we conclude that N ~ M. Since
also N &~ D? by Theorem 2.4, the proof of Theorem 2.1 is complete.

QED

. In the proof of Theorem 2.1 we did not use Theorems 8.3.3 and 8.3.4,
or any other special properties of manifolds of dimension 1 or 2. The same

argument, with only notational changes, proves the following generalization
of Theorem 2.1:

2.5. Theorem. Let f:M — R be an admissible Morse function on a
compact connected n-manifold M. Suppose f has exactly 3 critical points,
of types0,0,1. Then M ~ D".

Exercises

1. The proof of Theorem 2.1 can be varied slightly to prove the following Let f:M — R,
g:D? -+ R be admissible Morse each having only three critical points, and these types
0,0, 1. Suppose that f and g take the same values at corresponding critical points, and
that f(0M) = g(0D?). Then there is homeomorphism h:D? — M such that fh = g.
Moreover M has a Riemannian metric for which h maps gradient lines of g to gradient
lines of f.

2. Let @ < 0 < b. Define a polynomial map in two variables:
P.yRx R R,
Poyxy) =7 ds - a)s — b)ds + |y

(a) P, ,is a Morse function having local minima at (a,0) and (b,0}, a type 1 saddle
at (0,0), and no other critical points.
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(b) P, »a0) # P, ,(b,0)if and only if 2 % —b.
{c) Let a be in the image of P, ,. Then P/ }(— c0,a] is connected if and only i« > 0.
@) P;)—o0a] = D*ifa > 0.

3. Let M be a compact connected surface without boundary which admits a Morse
function having just four critical points, exactly one of which is a saddle. Then M =~ 2.

4, Let f:M — R be a Morse function on a connected compact Riemannian manifold
without boundary. Assume the Riemannian metric comes from Morse charts near
critical points. Then if f has more than one local minimum, there exist two local mini-
ma a, b and a type ! critical point p, with the following property: one branch of the
unstable manifold of p (for grad f) tends to a and the other branch tends to b.

5. [Smale]. Let M be a compact connected manifold. If M = ¢ then M has a

Morse function with only 1 maximum and 1 minimum. [Use Exercise 4 and Theorem
24]

3. The Classification of Compact Surfaces

We begin by investigating neighborhoods of a critical level of an admis-
sible Morse function f on a compact connected surface M. Let pe M be a
saddle (critical point of index 1). Suppose that f(p) = 0 and that ¢ > 0 is
such that p is the only critical point in N = f~'[ —¢¢]. Assume that N is
connected. Put

C.=f"!-¢
Co=f710)
C, =17

Then C_ and C, are compact 1-manifolds without boundary; C_ v C, =
ON. Since N is connected, C, must be connected. Therefore C, is a figure 8.
Here are two examples. In each f has one saddle and one minimum in M.
(1) M is a U-shaped cylinder in R® and f is the height function shown

in Figure 9-4, (2) M is a Mabius band, f has the level curves shown in
Figure 9-5.

Figure 9-4.
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b C

Figure 9-5. ab is identified with ¢d. N is shaded.

Note that example (1) is also obtained from Figure 9-5 if ab is identified
with dc to make a cylinder.

In fact these are the only examples of such an N, up to diffeomorphism.
We do not need to prove this, but only the following consequences:

3.1. Lemma. Let { and N be as above. Then either
{(a) N is orientable and dN has three components; or
{(b) N is nonorientable and ON has two components.

Proof. A Morse chart at p shows that p has an X-shaped neighborhood
in Cg. Label the four branches of the X by the quadrants they lie in (Figure
9-6). The arrows in Figure 9-6 represent grad f. The key question is: how

11 U + I
—_— —

C_ I C.

01 . /-\Q v

Figure 9-6. Levels and gradients near a saddle.



are the four branches I, I, III, IV connected in C,7 Suppose I connects to
IV. The resulting loop A based at p preserves orientation, as can be seen by
considering the orientation defined by the tangent to the loop and grad f.
(Perturb the loop slightly away from p to make it smoothly embedded. See
Figure 9-7.) It is clear that in this case II must connect to III. Notice that

Figure 9-7. The loop A preserves orientation.

C., is connected, for otherwise we could foliow the top part of C, around
the loop and some gradient line would intersect C, twice. This is impossible
because C, = f~!(g). (See Figure 9-8.)

Figure 9-8. Impossible, because C, = f~!(e).

For similar reasons, the right and left branches of C_ must each close up,
forming two components. If I connects to II then C_ is connected and C.,
has two components,

Now suppose I connects to II1. The resulting ioop then reverses orienta-
tion (Figure 9-9). In this case the two branches of C, connect up; C, is
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Figwre 9-9. 1 reverses orientation.

connected. Likewise, II connects to IV and C_ is connected.

QED
Let B,,..., B, « D* — 3D? be disjoint embedded disks. Put H, = D? —
v Int B, and H, = D
A disk with k holes means a surface diffeomorphic to H,, that is, an orien-
table model surface of genus O and k + 1 boundary circles. Any two such
surfaces (for the same k) are diffeomorphic. Since the Euler characteristic of
H,is 1 — k, H, is not diffeomorphic to H, fork # ¢. Notethat H; ~ S§! x I.
Returning to the situation of Theorem 3.1, we have:

3.2. Lemma. Let N be as in Theorem3.1(a). Then N is a disk with 2 holes.

Proof. We may assume C_ has two components and C, has one. Glue
disks onto N along each of the components of C_, to obtain a new manifold
V. Define a map g:V — R which is f on N, and an each disk is x? + y* —
1 — & when the disk is identified with D?. The differential structure on V
can be chosen so that g is C*®. (Use collars determined by level curves and
gradient lines.) Then g is an admissible Morse function on V having one
saddle and two minima. By Theorem 2.1, V ~ D?. Therefore N = H,.

QED



A saddle is a critical point of index 1. We restate Theorem 3.2 as:

3.3. Theorem. Let M be a compact connected orientable surface admitting
a Morse function having only one critical point, a saddle. Then M is a disk with
2 holes; moreover f takes its maximum and minimum on OM.

It is now easy to classify compact orientable surfaces admitting a Morse
function with only one saddle:

3.4. Theorem. Let f:M — R be an admissible Morse function on a com-
pact connected orientable surface. Suppose f has exactly one saddle (and
perhaps other critical points of type O or 2). Then M is diffeomorphic to either
82, D%, 8" x I or Hy. If f|OM is constant then M % H,.

Proof. Delete from M the interior of disjoint disks around the critical
points (if any) of types 0 and 2. Do this in such a way that the disks contain
no other critical points, and their boundaries are components of level curves.
The resulting manifold W is diffeomorphic to H, by Theorem 3.3. If f has
no critical points of type 0 or 2, then M = W; however, this cannot happen
if f|0M is constant, If there are critical points of types 0 or 2, then M is

obtained from W by capping some of the boundary circles with disks. This
produces ' x I, D? or S2.

QED

We now come to the classification of compact orientable surfaces. First
we assume no boundary.

3.5. Theorem. Let M be a compact connected orientable surface without
boundary. Then there is a unique integer p = 0 such that M is an orientable
surface of genus p as defined in Section 9.1 (a “sphere with p handles”). The
Euler characteristic of M determines p by the formula y(M) = 2 — 2p. In
particular (M) is even and <2.

Proof. We proceed by induction on the number v of saddles of a Morse
function f:M - R.

Suppose f has no saddles. Give M a Riemannian metric. Let P <« M be
the set of minima. Each trajeciory of grad f in M — P tends toward a
maximum. The basin of attraction of each maximum is an open set; but it
is also closed since different basins are disjoint. Since M — P is connected,
there is only one maximum. Similarly there is only one minimum, Hence
M =~ §? by Theorem 8.3.4.

Let v = k > 0and suppose inductively that the theorem is true whenever
M admits a Morse function having fewer then k saddles. We may assume f
separates critical points; there is then a unique saddle p such that f{p) < f(q)
for every saddle q # p.

. Let f(p) = « and let § > a be such that p is the only critical point in
S [@B)



Let V be the component of p in f ~}( - o0,8]. Notice that ¢V < f~}(f).
Since f|V has only one saddle, we can apply Theorem 3.4. Since ¢V # (,
we conclude that V % S2. Also ¥ % H, since f]@V is constant. Thus ¥ x D?
orV xS x I

Suppose V ~ D% Then we can define 2 new Morse function g:M — R,
equal to f on M — V¥, and having only one critical point in V (a minimum).
Since g has only k — 1 saddles, it follows from the induction hypothesis
that the theorem is true for M. :

Suppose finally that ¥ =~ S! x I. Then 8V = §' x {0,1}. Let M, be
obtained from M by capping dV with two disks. We can define f on the
disks to get a Morse function f,: My — R having fewer saddles than f. By
the induction hypothesis M is an orientable surface of some genus q. Since
M is evidently obtained from M, by attaching a handle, M has genus g + 1.
This completes the induction.

The uniqueness of the genus and the formula for the Euler characteristic
were proved in Section 9.1.

QED

It is now easy to give a geometric interpretation to the genus.

3.6. Theorem. Let M be an orientable surface of genus p. Then there exist
p disjoint circles in M whose complement is connected; but any p + 1 disjoint
circles disconnect M.

Proof. If p = 0 we may assume M = S%. The first part of the conclusion
is vacuous and the second follows from Theorem 4.4.6.

Suppose Cy, ..., C, are disjoint circles in M, g > 1, and M — UC; is
connected. Let Ny,..., N, be disjoint closed tubular neighborhoods of
Cy,...,CyletV =M — U Int N;. Let W be obtained from V by capping
the 2g boundary circles of V with disks. Notice that W is connected and
orientable, and that M is obtained from W by attaching g handles. Let W
have genus g > 0. Then M has genus g + q = p. It follows that ¢ < p.

QED
The classification of compact orientable ¢-surfaces is as follows:

3.7. Theorem. Let M be a connected compact orientable surface of Euler
characteristic y. Suppose M has k > 0 boundary components. Then y + k
is even. Let p=1— (x + k)f2. Then M is diffeomorphic to the surface

obtained from an orientable surface of genus p by removal of the interiors of
k disjoint disks.

Proof. Cap the boundary circles of M to produce an orientable surface
W. Then the Euler characteristic y + k. Therefore if W has genus p, we find
thaty + k=2 — 2p.

QED
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The number p associated to the d-surface M by Theorem 3.7 is called the .
genus of M.
We turn to nonorientable surfaces.

3.8. Lemma. Every nonorientable surface N contains a submanifold which
is a Mébius band.

Proof. Pick some orientation reversing loop f:S' —+ N — dN. We can
assume f is an immersion with clean double points. It is easy to see that
f(8") contains a topologically embedded circle which reverses orientation.
This circle is smooth except for finitely many corners. The corners can be
smoothed out. In this way we construct a smoothly embedded circle which

reverses orientation. It is easy to see that a tubular neighbor of such a circle
is a Mobius band.

QED

3.9. Lemma. Let N be a compact connected nonorientable surface. Then

there is a unique integer p > O such that M contains p, but not p + 1, disjoint°
Mébius bands.

Proof. It suffices to exhibit an integer n such that no n + 1 Mébius
bands in N can be disjoint.

Suppose B < N is a Mobius band. Then 6B is connected; hence N — B
is connected. Therefore if B,,..., B, N are disjoint M8bius bands, it
follows that N — LB, is connected.

Let n: N — N be the orientable double covering of N. Then n~(B) is a
cylinder in N if B < N is a Mébius band.

Let V <« N be a connected two-dimensional submanifold. Then =~ (V)
is connected if and only if V is nonorientable. Hence n~1(V) is connected
if and only if ¥ contains a Mébius band.

Let the genusof Nben — 1 > 0. e

Let By, ..., B, be disjoint Mébius bands in N. Then n~ l(B,) n~(B,)
are disjoint cylmders in N; they contain n disjoint embedded CITC_!CS There-
fore N — un™(B,), which is " (N — UB,), is disconnected by Thebrem 3.6
It follows that N — uUB, is orientable and contains no Mdbius band.

QED
We call the integer p of Theorem 3.9 the Mdbius number of N-

3.10. Theorem. Let N be a compact connected nonorientable surface
without boundary, having Mébius number p. Then N is a nonorientable surface
of genus p.

Proof. Let My, = N be obtained by cutting out the interiors of p disjoint
Mobius bands. Then M, is orientable. Cap off oM, with p disks to obtain
an orientable surface M; let M have genus g. Clearly N is formed by attaching
p crosscaps to M. By Theorems 1.7 and 1.8 N is a nonorientable surface of
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genus 2g + p. But this implies that the Mdbius number of N is at least
2g + p. Therefore 2g = 0 and M is a sphere.

QED
We conclude with a convenient diffeomorphism criterion:

3.11. Theorem. Two connected compact surfaces are diffeomorphic if and
only if they have the same Euler characteristic and the same number of bound-
ary components, and both are orientable or both are nonorientable.

Proof. In the orientable case this follows from Theorem 3.7. In the
nonorientable case, glue Mdbius bands to the boundary components; this

preserves the Euler characteristic. The theorem now follows from Theorem
3.10.

Exercises

1. A compact surface embedded in R? is diffeomorphic to D* or some H,.

*2. Let M be a surface and C < M a circle. If C is contractible to a point in M then
C bounds a disk in M.

*3. A connected noncompact simply connected surface M without boundary, is diffeo-
morphic to R% {Let f:M — R, be a proper Morse function. For every.regular value
a € f(M), the submanifold M, = f ~(~ o,a] is a disk with holes. For sufficiently large
B > «, every boundary circle of M, bounds a disk in M. Therefore M is an increasing
union of disks: M = uD, D, « Int D;,. And D;,;, — Int D, = §' x I s0 a diffeo-
morphism M 2 R? can be built up successively over the D,.]

4. (a) Let M be an orientable surface of genus p and C,, C,; circles in M. Suppose
neither circle scparates M. Then there is a diffeomorphism f:(M.C,) = (M,C;). [Re-
present M as a sphere with handles so that C; goes around a handle in a standard way.]

(b) Suppose both C, and C, scparate M. In what circumstances is the conclusion
of (a) true?

5. (a) Let M = T — Int D where D « T is a disk in a torus. Then M and H, are not
homeomorphic but M x ] and H, x I are homeomorphic. -
(b) The doubles of M and H, are diffecomorphic.

6. Two compact oriented surfaces which are diffeomorphic, are diffeomorphic by an
orientation preserving diffecomorphism.

7. Every compact nonorientable d-surface admits a diffeomorphism that reverses
orientation of its boundary.

*8. Let C, C' be embedded circles in the sphere §2 = dD?. Then every diffeomorphism

J:C = C extends to a difftomorphism of D*. [C and C’ bound disks in S? over which
J can be extended; etc.]

9. The cobordism groups in dimension 2 are: @* = 0, R? = Z,.

10. If M is an orientable surface of genus p, any 2p + 1 circles in M which meet each
other transversely (or are disjoint) separate M.

11. What are the analogues of Theorem 3.6 and Exercise 10 for nonorientable surfaces?

12. In a compact nonorientable surface every maximal set of disjoint Mobius bands
has the same cardinality.
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13. Let M be a connected noncompact surface. If K < M is compact let n{(K) be the
number of components U of M — K such that U is not compact. Let w be the supremum
of n(K} as K varies over all compact sets. We call w the number of ends of M.

(a) The number of ends is a difeomorphism invariant

(b) R? has 1 end.

(c) For every cardinal number k less than or equal to that of R, there is a surface
having k ends.

*(d) A noncompact connected surface M has only a finite number of ends, and has

finite connectivity (compare Exercise 17), if and only if there is a compact surface N
suchthat M =~ N — gN. )

*14. Let M be a connected surface and {S,} an uncountable collection of circles in M.
Then M — §;u §, is disconnected for some j, k. [Hint: let {f,:S' < M} = Ybe an
uncountable collection of embeddings. Prove that C4(S!,M) is separable and use this
to show that Y contains one of its limit points.]

*15. R? does not contain an uncountable collection of disjoint Mébius bands [see hint
to Exercise 14].

*16. Let f:M — N be a map of degree d between compact connected oriented surfaces
without boundary. What relations, if any, exist between d, the genus of M and the genus
of N?

*17. The connectivity o(M) of a compact surface M is the integer ¢ > O (if it exists)
having the following property. Let ¥V « M be the union ¥; u --- U ¥, where each ¥
isaneatarc,oracirclein M — dM,and ¥, 4 ¥, fori # j. Suppose M — V is connected.
Then r < ¢, and if » < ¢ V is a proper subset of another set V' of the same type.
{Riemann's connectivity is «(M) + 1.)

(a) 1f M has b components then M} = 2 — y(M) — b.
(b) c(M) is the dimension over Z, of H,(M,0M; Z,).
{c} Express o(M) in terms of b and the genus of M.
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Appendix

In this appendix we briefly summarize a few basic facts of analysis and
topology.

General Topology

A topological space X is called:

Hausdorff if every pair of points have disjoint neighborhoods;

normal if for every pair of disjoint closed sets A, B there is a continvous
map f:X — [0,1] with f(4) = Oand f(B) = I;

paracompact if every open cover ¥ = {U,},., has a locally finite open
refinement ¥* = {V,}, . This means: ¥" is an open cover of X, each clement
of ¥ is contained in some element of %, and for each x € X the set of V,
for which x € V, is finite.

The closure of a subset S < X is denoted by S.

A.l. Theorem, If X is normal and & = {U,},. , is a locally finite open
cover then 4 has a shrinking, that is, an open cover ¥~ = {V,}, . , such that
Z < U‘_.

A.2. Theorem. A paracompact Hausdorff space is normal.

A partition of unity subordinate to the open cover 4 is a collection
{ fi}1¢ 4 Of continuous maps f;: X — [0,1] having the following two proper-
ties: the family of open sets {f; '(0,1]} 1< is a locally finite refinement of
W;and ) ;.4 fifx) = 1forall x.

A3, Theorem, A topological space is paracompact if and only if every
open cover has a subordinate partition of unity.

AA. Theorem. Every metric space is paracompact.

A subset A of a space X is nowhere dense if its closure A contains no
nonempty open set; equivalently, X — A is dense in X. If X is the union
of a countable family of closed nowhere dense subsets X is of the first
category; otherwise X is of the second category.

A.S. Baire Category Theorem. A complete metric space X is of the second
category. Equivalently: the union of any countable collection of closed nowhere
dense subsets has void interior, and the intersection of any countable collection
of open dense subsets is dense. -
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214 Appendix
Calculus

Let U < R™ be an open set and f:U — R* a map. A lincar map
L:R™ — R" is called the derivative of f at x e U if

iin; |Al=(f(x + h) — f(x) — Lh) = 0.

[ 142
Here || is the norm (12 h?] of the vector h = (hy,..., h,) € R". If such
=1

an L exists, it is unique and is denoted by Df, or Df(x).
The map f is called C' provided Df, exists for every x € U and the map

Df:U - L(R™,R"),
x — Df,
is continuous,
By recursion we define f to be ', 2 < r < oo, if the map

Df:U - R™ = L(R"R")

is C7LIf fis C for all r it is called C*.

Write f(x) = (fi(x),..., fi(x)). We call f (real) analytic, or C®, if in
some neighborhood of each point of U, each f; is equal to the limit of a
convergent power series (in m variables). This implies that f is C*. We
say o0 € @.

A6. Theorem. f is C', 1 < r < o, if and only if each f;:U —+ R has
continuous partial derivatives of all orders <r.

Let U and V be open subsets of R*. A " diffeomorphism f:U - V is
a C" homeomorphism f:U ~ V whose inverse is also C.

Let W c R" be open,and pe W. A C" map f: W — R"is a local diffeo-
morphism at p if there is an open set U < W such that pe U and f(U) is
open, and f|U:U =~ f(U)is a C diffeomorphism.

A.7. Inverse Function Theorem, Let U = R"beanopensetand f:U —-R"

a C map, 1 < r < w If pe W and Df, is invertible, then f is a C local
diffeomorphism at p.

A.8. Implicit Function Theorem (surjective form). Let U < R™beanopen
set and f:U -+ R" a C map, 1 <r < w. Let pe U, f(p) =0, and suppose
that Df,, is surjective. Then there exists a local diffeomorphism ¢ of R™ at 0
such that ¢(0) = p and

f‘p(xh' cor Xm) = (xb-‘ <3 Xp)-

Proof. After a linear change of coordinates in R™ we can assume that

gg(p)=6;,fori=1,...,nandf=1,---,m- Define h:U — R™, h =
i
(hy,...,h,) where hy=fi, i=1,...,n and hlx,,...,x,}) =X, i =

n+1,...,m Then his C" and Dh, has rank m. By the inverse function
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theorem h is a2 C loca! diffcomorphism at p. Therefore in a neighborhood
of 0in R™, h has a C inverse ¢. Then h(p(x)) = x for x near O; this @ satisfies
the theorem.

QED

A9, Implicit Function Theorem (injective form). Let U < R™ be an open
setand f:U » R*a C' map, 1 € r € o. Let ge R* be such that 0 e f~(qg),
and suppose that Df, is injective. Then there is a local diffeomorphism ¥ of R*
at q such that Yy(q) = 0, and .

‘ Yf(x) = (x5 .., X, ..., O).
The proof is “dual” to that of Theorem A.8 and is left as an exercise.
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0 Residual subset, 74
Restriction map, 41
One-point compactification, 172 Retraction
Openness of certain sets of maps, 36-4( of class C*, 20 .
of Morse functions, 147 ‘ol' D" to $*°1, nonexistence of, 72
Orientation, 103-106, 121122 Riemannian metric, 95, 178, 180
Orthogonal complement of vector bundle, 95 Riemann, G.F.B,, 1, 188
Orthogonal group, 14, 187 R!emann‘surface. 1
Orthogonal structure, 95 Riemann’s connectivity, 208
Qutset, 165
p S
Saddle, 204
Palais, R., 142 Sard, A., 67
Parallelizability theorem of. See Morse—~Sard theorem
of frame bundle, 98 Schweitzer, P., 156
of product of spheres, 98 Second category, 213
Partition of unity, 213 Sections
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